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Abstract

Image quality assessment (IQA) plays an important role in numerous digital image

processing applications, including image compression, image transmission, and image

restoration, etc. The goal of objective IQA is to develop computational models that

can predict image quality in a way being consistent with human perception. Com-

pared with subjective quality evaluations such as psycho-visual tests, objective IQA

metrics have the advantages of predicting image quality automatically and effectively

in a timely manner.

This thesis focuses on a particular type of objective IQA – blind IQA (BIQA),

where the developed methods not only achieve objective IQA, but also are able to

assess the perceptual quality of digital images without access to their pristine ref-

erence counterparts. Firstly, a novel blind image sharpness evaluator is introduced

in Chapter 3, which leverages the discrepancy measures of structural degradation.

Secondly, a “completely blind” quality assessment metric for gamut-mapped images

is designed in Chapter 4, which does not need subjective quality scores during the

model training. Thirdly, a general-purpose BIQA method is presented in Chapter 5,

which can evaluate the quality of digital images without prior knowledge on the types

of distortions. Finally, in Chapter 6, a deep neural network-based general-purpose

BIQA method is proposed, which is fully data driven and trained in an end-to-end

manner.

In summary, four BIQA methods are introduced in this thesis, where the first three

are heuristic-based and the last one is learning-based. Unlike heuristics-based ones,

the learning-based method does not involves manually engineered feature designs.

vi
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Chapter 1

Introduction

1.1 Motivation and Background

With the growing popularity of mobile devices, the last decade has seen a blossom

of multimedia applications. People are thrilled by various apps, such as Facebook,

Instagram, Tiktok, and Youtube, which can be used to share photos and videos

with others. However, the quality of digital images is subject to degradation during

the acquisition, transmission, and restoration processes [1, 2, 3, 4], as shown in Fig.

1.11. For example, motion blur may be introduced by the motion of both image

acquisition devices and moving targets, and the image compression process may lead

to “blockiness” and “ringing” artifacts. These degradations usually lead to the loss of

visual information, resulting in a poor experience for human viewers and difficulties

for image processing and analysis at subsequent stages [5].

To obtain fine quality images from the massive amounts of available images, it
1*: This thesis focuses on natural (photographic) images which do not include images constructed

randomly by computers.

1



Front-end
processing

Back-end
processing

Digital
communication

Potential sources of distortions

Source
compression,

Transmission over
 networks,

Decompression,
Gamut mapping,Nature image

signal

Sensor Display Human visual
system...

...

...

Figure1.1:Potentialsourcesofdistortionsinasimplifieddigitalimageprocessing

pipeline[6].

isnecessarytoincorporateimagequalityassessment(IQA)inmodernmultimedia

systems.Inevitably,thereliableassessmentofimagequalityisofgreatimportancein

varioussectorsofimageprocessingtechnologies,e.g.,thequalitymonitoringofmulti-

mediavisualdataservices. WiththehelpofIQA,animageprocessingortransmission

systemmayhavetheirparametersbefine-tuned,e.g.,compressionratioforencoding

solutions.Inanimageretrievalsystem,IQAmetricscanbeusedtorankimages.

Moreover,IQAmetricscanbeutilizedtobenchmarkimageprocessingalgorithms.

AsM̈ollerpointedoutinPoriklietal.[7],visualqualityistheresultofahuman

judgmentprocess,duringwhichtheperceivinghumancomparesthefeaturesofthe

perceptualeventtothefeaturesofsomeinternalreference.Hence,themoststraight-

forwardapproachforIQAistoperformpsycho-visualtestsfollowingthestandard

internationaltelecommunicationunion(ITU)recommendation[8],suchassingle-

stimulustests(e.g.,absolutecategoricalrating)anddouble-stimulustests(e.g.,paired

comparison,asshowninFig.1.2). Forexample,inacomparisontestforgamut-

mappedimages,apairofimagesobtainedfromdifferentgamutmappingalgorithms

areshowneithersimultaneouslyorconsecutively,theobserversareaskedwhichimage

2



Task: select the higher quality image

Vote
Time

Figure1.2:Overviewofapairedcomparisontest[9].

isperceivedtohavebetterquality[10].Inasingle-stimulustest,areferenceimage

isusuallypresentedtotheobserversaswell,soastoreduceassessmentbiasdueto

thedifferenceofimagecontent[11]. Thecollectedsubjectiveratingsaretypically

averagedacrossallobserverstoobtainthemeanopinionscores(MOS)ordifferential

meanopinionscores(DMOS).Forinstance,inanabsolutecategoricalratingtest,the

differentialsubjectivescoreforthej-thtest(distorted)imagebythei-thobserver

canbecomputedasinSheikhetal.[12]

di,dis(j)=ri,ref(j)−ri,dis(j), (1.1)

whereri,dis(j)denotestherawsubjectivescoreforthej-thdistortedimageandri,ref(j)

istherawsubjectivescoreforthecorrespondingreferenceimage.Tounifytheinher-

entvariabilityinvisualqualityjudgmentacrossdifferentobservers,di,dis(j)isoften

3



Objetive
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Full-reference 
(FR)

Reduced-reference 
(RR)

No-reference/Blind 
(NR)

Distortion-specific

General-purpose

Figure1.3:CategorizationofobjectiveIQA.

normalizedintoZ-score[13]as

zi,dis(j)=
di,dis(j)−d̄i
σi

, (1.2)

whered̄idenotesthemeanofrawsubjectivescoresforalldistortedimagesgradedby

thei-thobserverandσiisthecorrespondingstandarddeviation. TheZ-scoresare

thenaveragedacrossobserverstocomputetheDMOSforthej-thdistortedimage.

The MOSorDMOSvaluesproducedfromthosepsycho-visualexperimentsare

generallyacceptedtobethe“goldstandard”forqualityevaluation.However,these

subjectivetestsareusuallyquiteexpensive,cumbersome,andtime-consuming,and

arethusnotsuitableforsystemswherereal-timeevaluationofimagequalityisre-

quired.Ontheotherhand,objectiveIQAapproachescanprovideevaluationresults

moreefficiently. TheaimofobjectiveIQAistodesigncomputationalmodelsfor

measuringimagedistortionsautomaticallyandtopredictimagequalityinamanner

beingconsistentwithhumansubjectiveperceptionatthesametime[14].

ThecurrentobjectiveIQAmethodscanbecategorizedasfull-reference(FR),

reduced-reference(RR),andno-reference(NR)dependingontherequiredamountof

4



(a) (b) 

(c) (d) 

Figure1.4:FeaturemapsgeneratedbyanFR-IQAmetric[16].(a)isthereference

image.(b)isadistortedversionof(a)withchromaticaberrations.(c)and(d)are

theircorrespondingfeaturemaps.Thefeaturemapscanbeutilizedtocharacterize

qualitydegradation.

referenceinformation[15].AsummaryofdifferenttypesofobjectiveIQAapproaches

isshowninFig.1.3. Whenthereferenceimagesareavailable,FR-IQAapproaches

canbeappliedtodirectlyquantifythedisparitiesbetweendistortedimagesandtheir

referenceversions.Thepeaksignal-to-noiseratio(PSNR)model[17]isaclassicalFR-

IQAmethod,whichevaluatedimagequalitybycalculatingpixel-to-pixeldifferences.

However,thismethodhasweakconsistencywithhumanperceptioninthatittreats

distortionsindifferentregionsequally.Arenownedworkcalledstructuralsimilarity

indexmeasure(SSIM)proposedby Wangetal.[18]addressedthisproblemthrough

structuralsimilarity,wherelocalluminanceandcontrastdeviationswerecombined

tocomputethequalityscores.InVIF[19],thevisualinformationfidelitymodel
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quantified image distortion by the amount of information lost from a reference image.

Usually, FR-IQA methods would generate a map to indicate quality variations across

spatial locations, as shown in Fig. 1.4. Unlike FR-IQA approaches that require the

full information of reference image, in RR-IQA methods, partial information such

as scaled entropies [20] extracted from the reference image is used to quantify image

degradations. The RR-IQA methods provide a compromise between FR- and NR-IQA

approaches in terms of both quality prediction accuracy and the amount of required

information to describe the reference.

Since the pristine reference images are usually not available in real-world scenarios,

the FR- and RR-IQA metrics thus have a rather limited application scope. Recent

studies have put more efforts in developing NR/blind IQA metrics, where the infor-

mation of corresponding reference images is not required in the quality prediction of

distorted images. The blind IQA (BIQA) models are generally classified as either

distortion-specific or general-purpose. Metrics in the former category are designed

to quantify image quality with a presumed distortion type, such as blur, ringing, or

blockiness [21, 22, 23, 24]. On the other hand, general-purpose BIQA models are

able to produce quality scores without the prior information of distortion types. The

focus of this thesis is on BIQA, as highlighted by the pink area in Fig. 1.3. Two

methodologies have been explored in the development of effective BIQA approaches,

from heuristic-based to learning-based. The relevant related work is introduced in

Chapter 2.
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Table 1.1: Commonly used image quality databases.

Database
Reference

images

Distorted

images

Distortion

types
Observers

Subjective

scores

LIVE 29 779 5 161 DMOS

CSIQ 30 866 6 35 MOS

TID2013 25 3000 24 971 MOS

LIVEWC N.A. 1162 authentic > 8100 MOS

CID2013 N.A. 474 12–14 188 MOS

1.2 Image Quality Databases and Evaluation Cri-

teria

Image quality databases facilitate the IQA metric development and benchmarking,

which are constructed through the subjective psycho-visual tests as discussed above.

The associated MOS or DMOS values in the databases are served as the ground truth.

Table 1.1 lists some of the publicly available image quality databases, including

three legacy databases: LIVE [18], CSIQ [25], and TID2013 [26], and two real camera

image databases: LIVE in the Wild image quality Challenge database (LIVEWC)

[27] and CID2013 [28]. The five distortion types in the LIVE database are white

Gaussian noise, JPEG compression, JPEG2000 compression, Gaussian blur, and fast-

fading transmission error. Sample images of each distortion type in this database can

be found in Fig. 1.5. A single-stimulus methodology was adopted in the subjec-

tive quality ratings. The CSIQ database was generated with six distortion types,

including JPEG compression, JPEG2000 compression, Gaussian blur, pink Gaussian

noise, white Gaussian noise, and global contrast decrement. The largest widely-used
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(e) (f)(d)

(a) (b) (c)

Figure1.5: Apristineimageandfivedistortedcounterparts.(a)Pristineimage.

(b)Rayleighfastfading.(c)Gaussianblur.(d)JPEG2000compression.(e)JPEG

compression.(f) Whitenoise.ImagesarefromtheLIVEdatabase[18].

database–TID2013contains24typesofdistortions,asdetailedinFig.1.6.Forexam-

ple,theindex“#(5,3)”referstothe“contrastchange”distortion.Inthisdatabase,

apairedcomparisonmethodologywasutilizedtoobtainthe MOS.Eachdistorted

imageparticipatesinninepair-wisecomparisonsandthescaleofobtainedestima-

tionsofMOSrangesfromzerotonine.DistortedimagesintheLIVEWCdatabase

werecapturedusingavarietyofmobiledeviceswithoutintroducingextraartificial

distortions.IntheCID2013database,imageswerecontaminatedwithconcurrent

distortiontypes,andtherealisticdistortionswerefrommultipleconcurrentsources.
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Figure1.6:DistortioninformationfortheTID2013database[26].

NotethattheLIVEWCandCID2013databasesweredesignedforBIQAonly,where

thereferenceimagesarenotavailable. Thelegacyimagedatabasesincludeimages

withasingledistortionsource,whereasthetworealcameraimagedatabasescontain

imagesafflictedbymixturesofmultipledistortions.

Twocommonlyusedcriteriaareadoptedtoquantitativelymeasuretheperfor-

manceofobjectiveIQAmetrics,includingPearsonlinearcorrelationcoefficient(PLCC)

andSpearmanrankordercorrelationcoefficient(SRCC)[29].Specifically,PLCCis

usedtomeasurethepredictionaccuracyandSRCCisusedtomeasuretheprediction

monotonicity,whicharedefinedas

PLCC =
N
i=1(Xi−X̄)(Yi−Ȳ)

N
i=1(Xi−X̄)

2 N
i=1(Yi−Ȳ)

2
, (1.3)

SRCC =
N
i=1(xi−x̄)(yi−ȳ)

N
i=1(xi−x̄)

2 N
i=1(yi−ȳ)

2
, (1.4)

whereNisthenumberoftestimages,XiandYidenotetheMOSorDMOSvalue

andthequalitypredictionofthei-thimagerespectively.X̄ istheaveragevalueof

Xi,xirepresentsthecorrespondingrankofXi,andx̄istheaveragevalueofxi.

TheserepresentationsapplytoȲ,Yi,yi,andȳaccordingly.Inaddition,anonlinear
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fitting is usually required to map the predicted scores to the same scales of the MOS

or DMOS values. In this thesis, a five-parameter logistic nonlinear mapping [12] is

employed, which is described as

f(x) = τ1

(1
2 −

1
1 + eτ2(x−τ3)

)
+ τ4x+ τ5, (1.5)

where τi denote the fitting parameters, i = 1, 2, · · ·, 5. x and f(x) represent the

predicted score and the mapped objective score respectively. IQA metrics with bet-

ter quality evaluation performance are suppose to produce higher PLCC and SRCC

values. Generally, the evaluation of a quality metric should be performed on multiple

independent databases, so as to verify whether its performance is consistently reliable

over generic image contents and/or distortion types.

1.3 Contributions

This thesis aims at developing efficient objective BIQA methods under various scenar-

ios. Four BIQA metrics are presented, which cover both heuristic-based and learning-

based methods. Particularly, two distortion-specific heuristic-based, one general-

purpose heuristic-based, and one general-purpose learning-based BIQA metrics are

introduced. The main contributions are summarized as follows:

• A novel blind image sharpness evaluator is proposed (see Chapter 3), which

shows that the discrepancy measures of structural degradation between an in-

put image and its “reblurred” version are effective indicators for sharpness eval-

uation. This work is published as a journal article [30]:

Hao Cai, Mingjie Wang, Wendong Mao, and Minglun Gong. No-reference image
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sharpness assessment based on discrepancy measures of structural degradation.

Journal of Visual Communication and Image Representation, 71:102861, 2020.

• An objective BIQA metric for gamut-mapped images is proposed (see Chapter

4), which is the first work that addresses the blind quality assessment of gamut-

mapped images. This work is published as a journal article [31]:

Hao Cai, Leida Li, Zili Yi, and Minglun Gong. Blind quality assessment of

gamut-mapped images via local and global statistical analysis. Journal of Visual

Communication and Image Representation, 61:250–259, 2019.

• A statistics-based general-purpose BIQA metric is proposed (see Chapter 5),

which demonstrates the robustness of second-order statistical image features in

quality assessment. This work is published as a journal article [32]:

Hao Cai, Leida Li, Zili Yi, and Minglun Gong. Towards a blind image quality

evaluator using multi-scale second-order statistics. Signal Processing: Image

Communication, 71:88–99, 2019.

• A fully data-driven deep neural network is proposed for general-purpose BIQA

(see Chapter 6), which demonstrates that the developed multi-scale integration

strategy and multi-level supervision mechanism are able to enhance the fea-

ture representation capability for image quality prediction. This work will be

submitted to a journal shortly, considering IEEE Transactions on Multimedia.

Co-Authorship Statement: I, Hao Cai, hold a principle author status for all the

published or submitted works introduced in this thesis, as mentioned above. For all

the works, I proposed the idea and the solution, conducted the experiments, wrote
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the manuscript, etc. The co-authors contributed on providing constructive comments,

setting up experiments, and manuscript revision.

1.4 Thesis Outline

The remainder of this thesis is as follows. Chapter 2 discusses the related work in

the literature. Chapters 3 – 6 introduce the four proposed methods in detail. Finally,

Chapter 7 summarizes the thesis and discusses the methods, and Chapter 8 points

out to promising directions for future work.
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Chapter 2

Related Work

As indicated in Fig. 1.3, the current BIQA metrics can be categorized as either

distortion-specific or general-purpose. The former category aims at a specific kind

of distortion, whereas the latter category estimates the quality of an image without

prior knowledge of the distortion types. This thesis presents two distortion-specific

BIQA metrics in Chapter 3 and Chapter 4, where each chapter emphasizes one type of

distortion (blur or gamut mapping), followed by two general-purpose BIQA methods

introduced in Chapter 5 and Chapter 6 respectively. The following subsections discuss

the relevant related work.

2.1 Distortion-Specific BIQA

2.1.1 Blur

As a key determinant in the perception of image quality, blur is typically characterized

by the spread of edges [33]. The causes of blur are multifold, such as defocus, relative

13



motion, and image compression. Generally, blur is likely to occur across the whole life-

cycle of images. Note that image blurriness and sharpness are two sides of the same

coin, the terms of “blur” metric and “sharpness” metric are often used interchangeably

in the literature.

During the past few years, a series of image sharpness assessment methods have

been proposed. Marziliano et al. proposed to measure the spread of image edges using

the Sobel operator, and then the sharpness score was computed as the average width

of edges [34]. In JNB [35], a sharpness model was derived from the measured just

noticeable blur and the probability summation over space. In CPBD [36], the JNB

model was further extended by calculating the cumulative probability of blur detec-

tion. In FISH [37], a fast image sharpness model was proposed by first decomposing

the input image using discrete wavelet transform (DWT), and then image sharpness

was measured via a weighted mean log-energies of the DWT subband coefficients.

By using both the spectral and spatial properties, the spectral and spatial sharp-

ness (S3) metric [38] quantified local perceived sharpness within and across images.

In SVC [39], a simple image blur index was proposed based on the singular value

curve. In LPC-SI [40], a local phase coherence (LPC) based sharpness index was

introduced with the assumption that blur affects the LPC relationship near sharp

image features. Bahrami et al. [41] utilized the maximum local variation (MLV)

distribution of neighbouring image pixels as an indication of sharpness. In ARISM

[42], an autoregressive image sharpness metric was proposed based on the hypothe-

sis that image blurring increases the resemblance of locally estimated autoregressive

model coefficients. Since blur affects the magnitudes of moments of an image, a

blind image blur evaluation (BIBLE) algorithm [43] was proposed based on discrete

14



Tchebichef moments. In SPARISH [33], a blind sparse representation-based image

sharpness index was proposed, where the variance-normalized energy over a set of se-

lected high-variance blocks was computed as sharpness score. By learning multi-scale

features extracted in both the spatial and spectral domains, Li et al. put forward

with a blind and robust image sharpness evaluation (RISE) model [44]. In Zhan et al.

[45], an efficient sharpness metric was proposed by combining the maximum gradient

and the variability of gradients of blurry images, which is referred as “MVGV” in

this thesis. Yu et al. proposed a sharpness metric [46] using a shallow convolutional

neural network (CNN), where a single hidden layer CNN was employed for feature

extraction. In GRNN [47], the general regression neural network was used to replace

the multi-layer perception in the original CNN architecture, producing the CNN-

GRNN model. Hosseini et al. proposed a metric called “HVS-MaxPol” [48] , which

simulated the response of human visual system in a convolutional filter form. The

MaxPol convolutional filters were utilized to decompose meaningful features that are

related to image sharpness level. These discussed methods mainly centre on deriving

effective features directly from the input image, whereas in this thesis the discrepancy

measures of statistical regularity between the input image and its “reblurred” version

is exploited to quantify image sharpness.

2.1.2 Gamut Mapping

Gamut mapping is a key technology to achieve high-quality cross-media color repro-

duction. For each device, such as a display, its color gamut is the set of colors that it

can reproduce. If a color to be reproduced is beyond the device’s gamut, then it needs
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(c) (e)(a)

(d) (f)(b)

Figure2.1: Colorgamutdistortion.(a)and(b)arethereferencepristineimages.

(c)–(f)aregamut-mappedimagesgeneratedbytwodifferentGMAs(i.e.,SGCK

andHPMinDE[56]),where(c)and(d)aregeneratedbySGCK,and(e)and(f)are

generatedbyHPMinDE.

atransformation,whichiscalled“colorgamutmapping”[49].Athoroughreviewof

colorgamutmappingisprovidedinMorovǐc[50].

Ingamutmapping,distortionsmainlyappearoncolorwhilestructuraldistortions

mayalsoexist,e.g.,clipping.Anotherartifactofgamutmappingislightnessinversion

whichdescribesaninverserelationoftwoneighboringcolorsinthelightnesschannel

[49]. Colordistortionscanhaveahighimpactonimagequality,especiallywhen

memorycolors1(e.g.,skintones[51])comeintoplay.Inmostcases,conventional

distortionsoperatelocally,whereasgamutmappingdistortionsalsoincorporateglobal

distortions.Ingamutmappingdatabases,severalgamutmappingalgorithms(GMAs)
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are applied to a number of original images so as to generate the distorted images (see

Fig. 2.1).

Early developed color image-difference metrics such as S-CIELAB [53] emphasized

the spatial-color sensitivity of the human visual system, where the color difference

at each pixel is weighted by the differences computed over a local neighborhood

[54]. The iCAM framework [55] incorporated more sophisticated models of chromatic

adaptation than S-CIELAB. It employs a single-scale spatial filtering and allows for

the prediction of various appearance phenomena. Little work has been reported in

the literature for the perceptual evaluation of gamut-mapped images, among which

a large portion compares GMAs by incorporating psycho-visual tests as guided by

the commission internationale de l’eclairage (CIE) technical committee [56]. In the

past several years, efforts have been devoted to design objective metrics for assessing

gamut-mapped images. In a related work [57], a color image quality metric was

derived from the SSIM index [18], which can be used to evaluate the quality of

gamut-mapped images. However, since this is an FR-IQA metric that requires ground

truth pristine images available, its application scope is thus limited. In this thesis, a

BIQA method for gamut-mapped images is proposed, which is able to produce quality

assessment results in the absence of pristine images.
1*: A memory color is the typical color of an object that observers acquires through their expe-

rience with that object [52].
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2.2 General-Purpose BIQA

The past decade has seen the emergence of several general-purpose BIQA methods,

where the majority leverage the statistical regularities of natural images. Moorthy

et al. proposed the blind image quality index (BIQI) that involves distortion classi-

fying and distortion-specific quality assessment in sequence, leveraging the distorted

image statistics to classify images into distortion categories [58]. BIQI was further

extended to the distortion identification-based image verity and integrity evaluation

index (DIIVINE) [59] by modeling the wavelet coefficients with generalized Gaus-

sian distribution. In BLIINDS-II [60], an upgraded framework blind image integrity

notator was proposed, which trains a probabilistic model based on discrete cosine

transform statistics. In BRISQUE [61], the blind/referenceless image spatial qual-

ity evaluator utilizes the statistics of luminance coefficients to quantify the quality

degradation. Zhang and Chandler proposed the derivative statistics-based quality

evaluator (DESIQUE) [62], which uses log-derivative statistics and log-Gabor filters

to extract image quality-related features in the spatial and frequency domain respec-

tively. Follow the same framework as BIQI, Liu et al. proposed the spatial-spectral

entropy-based quality (SSEQ) index [63], which utilizes local spatial and spectral en-

tropy features on distorted images. By extracting gradient magnitude and Laplacian

of Gaussian features, Xue et al. proposed a BIQA model referred as GL-BIQA [64].

Gu et al. proposed a metric named NR free energy-based robust metric (NFERM)

[65] that utilizing free energy-based brain theory and classical human visual system

inspired features. In NIQE [66], the natural image quality evaluator was proposed,

which extracts features based on a multivariate Gaussian model and relates them
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to perceived quality in an unsupervised manner. Since NIQE uses a single global

multivariate Gaussian model to describe an image, Zhang et al. extended NIQE to

integrated local NIQE (ILNIQE) [67] by gathering multiple selected natural statistics

scene features in both the spatial and frequency domain. A model named quality-

aware clustering (QAC) [68] was proposed by Xue et al., which is learned from a

set of quality-aware centroids to compute the quality levels of image patches. These

general-purpose BIQA methods mostly revolve around first-order statistics, that is,

extracting quality-aware features from the characteristics of single image pixels. In

this thesis, second-order statistics that emphasizing the relationship between neigh-

bouring pixels/coefficients are examined and demonstrated to be effective to measure

the extent of image distortions.

More recently, researchers have put attention on developing learning-based general-

purpose BIQA methods, leveraging the advance of CNN methodologies. Kang et al.

developed a network model with one convolutional and two fully connected layers for

BIQA, which is referred to as “Kang’s CNN” [69] in this thesis. Bianco et al. adopted

CNN features that are pretrained on the image classification task as inputs to learn a

quality evaluator [70]. In Ma et al. [71], a discriminable image pairs inferred quality

index was proposed. The input image pairs are automatically generated with the help

of current available FR-IQA methods. In BIECON [72], a blind image evaluator was

proposed, which utilizes FR-IQA metrics to estimate patch-wise quality maps, and

the pooling process is incorporated as a single layer in the training. Pan et al. pro-

posed a model called “BPSQM” [73], which is able to predict a pixel-by-pixel similar

quality map from a distorted image under the guidance of similarity maps derived

by FR-IQA methods. In DIQaM [74], a deep image quality measure model was in-
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troduced, which adapts a Siamese network and comprises ten convolutional layers

and five pooling layers for feature extraction. After a slightly adaptation, this model

can fulfill both FR- and NR-IQA. Liu et al. [75] proposed a model RankIQA, which

learned from rankings. A Siamese network was trained to rank images in terms of

image quality, leveraging synthetically generated distortions. In MEON [76], an end-

to-end optimized deep neural network was designed, where the model consists of two

sub-networks: a distortion identification network and a quality prediction network.

Kim et al. [77] proposed a deep image quality assessor (DIQA), where the training

process consists of two stages: regression onto objective error maps and regression

onto subjective scores. A model named “DistNet-Q3” was developed in Dendi et

al. [78], which utilizes a convolutional autoencoder for distortion map generation.

The SSIM index [18] was used as a proxy for the generation of the ground-truth dis-

tortion maps. In NSSADNN [79], a multi-task natural scene statistics aided neural

network model was proposed, where the auxiliary statistical feature prediction task

helps the quality score prediction task to learn mapping between the input image and

its quality score. Zhang et al. [80] proposed a deep bilinear model (DB-CNN), which

treats the synthetic and authentic distortions as two-factor variations, and bilinearly

pools the two pretrained feature sets into a unified representation. These learning-

based general-purpose BIQA methods largely neglect the importance of multi-level

supervision and multi-scale integration, while multi-granularity features have been

investigated in other realms of vision tasks and shown to be effective in capturing

various semantic information in images. In this thesis, a novel learning-based BIQA

approach is introduced, which exhibits superior performance in the evaluation of im-

age quality.

20



Chapter 3

Blind Image Sharpness Assessment

This chapter presents a novel blind image sharpness evaluator which leverages the

discrepancy measures of structural degradation in both the spatial and wavelet do-

mains. The computed discrepancies are utilized as sharpness-aware features and then

a support vector regressor is employed to map the feature vectors into quality scores.

Experimental results demonstrate the effectiveness of the proposed method.

3.1 Introduction

It is worth noting that the discrepancy between an image and its “reblurred” version

usually indicates the extent of blur in the image. This lies in the fact that blur mainly

influences the high-frequency components of an image, whereas the low-frequency

components remain quite stable [22]. Particularly, blur changes the structures of a

sharp image greater than that of a blurred image. Fig. 3.1 shows the impact of
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(h)

Figure3.1:Impactofreblurring.(a)Sharpimage.(b)Gradientmapof(a).(c)

Blurredimage.(d)Gradientmapof(c).(e)“Reblurring”of(a).(f)Gradientmap

of(e).(g)Reblurredversionof(c).(h)Gradientmapof(g).Thegradientimages

areconvertedtotherange[0,255]forbetterdisplay.Thisfigureshowsthatblurring

hasmoreimpactonsharpimagethanonblurredimage.

reblurringonsharpandblurredimages1. Thereblurringprocessesareconductedby

applyingthesameGaussianlow-passfilteronFig.3.1(a)and(c).Sinceedgesare

betterrepresentedingradientdomain,hereweproposetocomputethegradients,in

whichcasemostofthelow-frequencycomponentsareremovedandhigh-frequency

componentsbecomedominantwhicharesensitivetoblur.Fromthecomparisonof

Fig.3.1(b)and(f),andthecomparisonofFig.3.1(d)and(h),wecanseethat

blurringhasmoreimpactonthesharpimagethanontheblurredimage.Generally,

animageisconsideredasblurredifitissimilartoitsreblurredversion,andthusthe

1*:ThegradientmapsinFig.3.1arenormalizedbasedontheoverallmaximumandminimum

gradientvaluesofallthesharpandblurredimages.
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discrepancy can be taken as an indicator of the extent of blur.

Based on the above observations, this chapter presents a novel blind image sharp-

ness metric, which leverages the discrepancy measures of structural degradation. For

an input image, its reblurred version is first obtained by applying a Gaussian low-

pass filter. Studies in neuroscience have shown that the human visual system (HVS)

exhibits orientation selectivity mechanism for perception and understanding, and the

arrangement of excitatory/inhibitory cortex neuron arises orientation selectivity in a

local receptive field [81, 82]. To this end, local spatial structures of an image are char-

acterized by orientation selectivity-based visual patterns. Furthermore, it has been

proved that the power spectrum of a blurred image falls faster than the sharp image

[83], the reduction of the high-frequency components can then be utilized to evaluate

image sharpness. Here we propose to extract sharpness-aware features by calculating

the discrepancies of orientation selectivity-based visual patterns and log-Gabor filter

responses between the input image and its corresponding reblurred version. Exper-

imental results on both synthetically and real blurred image databases demonstrate

that the proposed method performs consistently well across several databases and

also shows good generalization ability.

3.2 Proposed Method

Fig. 3.2 shows the flowchart of the proposed sharpness metric. For an input image, its

reblurred version is first built. Then sharpness-aware features are extracted between

the input image and its reblurred version. Taking into account that the perceived

quality of an image is greatly affected by the viewing distance [84], multiresolution
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Figure3.2:Flowchartoftheproposedimagesharpnessqualitymetric.

representationoftheinputimageisconstructedandthentheinter-resolutionself-

similarities(i.e.,thesimilaritiesbetweentheoriginalimageanditsmultiresolution

version)arecalculated. Finally,tomaptheextractedfeaturesintoanobjective

predictionscore,asupportvectorregression(SVR)model[85]isutilizedtotrainthe

qualitymodelprovidingwiththeMOSvalues.TheSVRmodelisthendeployedfor

thesubsequentqualitypredictionoftestimages.Inthefollowingsubsections,the

extractionofquality-awarefeatureswillbeintroducedindetail.

3.2.1 Self-Similarity

Theself-similaritycharacteristicofnaturalimageshasbeenemployedtoapplica-

tionslikeimagecompression[86].Inthiswork,weexploretomeasuretheglobal

sharpnessdiscrepancybasedonthefactthatblurringwouldaffecttheglobalimage
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Figure3.3:Impactofimageresolutiononsharpness. Fromlefttoright: Original

image,imagesdown-sampledby2×and4×respectively.

self-similarityattribute[87].

Ithasbeenpointedoutthatviewingdistanceandimageresolutionhavesub-

stantialinfluencesonimagequalityassessment[84]. Fig.3.3showstheimpactof

imageresolutiononsharpness.Theoriginalimageisdown-sampledby2×and4×

inbothbothhorizontalandverticaldirectionsrespectively,soastogeneratethe

down-sampledimages.Althoughblurrinesscanbeclearlyobservedfromtheoriginal

image,thedown-sampledimageslooksharperthantheoriginalimageduetothe

reductionofspatialresolution. Withthisobservation,weconstructamultiresolution

representationoftheinputimage.Themultiresolutionrepresentationofinputimage

Iisconstructedbydown-samplingitwithttimes,andthedown-sampledimagesare

denotedasI1,I2,...,It,whereItindicatestheimagewiththelowestresolution.In

thiswork,thescalingfactorissetto0.5,andthusI1representsdown-samplingby

2×.

Theglobalsharpnessdiscrepancyismeasuredbycomputingtheself-similarities
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between the input image and its multiresolution versions. Suppose the input image

I is denoted as I0, the self-similarity S0j between images I0 and Ij is defined as

S0j = 1
N

N∑
n=1

√∣∣∣∣(δ(n)
0

)2
−
(
δ

(n)
j

)2
∣∣∣∣, (3.1)

where j ∈ [1, t]. N is the number of non-overlapping partitioned blocks. δ
(n)
0 and

δ
(n)
j represent the standard deviations of the nth block in I0 and Ij respectively. The

number of blocks N is computed as

N =
⌊
X

d

⌋
·
⌊
Y

d

⌋
, (3.2)

where X×Y represents the resolution of the original input image, d is the block size,

and b c denotes floor rounding. Note that the block sizes of down-sampled images are

also processed by the down-sampling operation as with the image resolution, therefore

the original image I0 and down-sampled images Ij have the same number of blocks.

In this work, we set the block size of the original image d = 32, and t = 4 which

means four down-sampled images are obtained. We calculate the inter-resolution

self-similarities between the original image I0 and four down-sampled images (I1, I2,

I3, I4). The self-similarities S01, S02, S03, and S04 are then utilized as quality-aware

features to predict image sharpness.

3.2.2 Discrepancy Measure of Orientation Selectivity-Based

Patterns

Previous studies have shown that orientation selectivity reveals the inner mechanism

for visual structure extraction [88]. The orientation selectivity of each local receptive

field can be represented using a set of binary values which called pattern. Particularly,
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these patterns characterize the spatial structures of local image textures. Inspired by

this, we propose to estimate the local spatial structural degradation in a blurred image

by measuring the histogram disparity of orientation selectivity-based visual patterns

between the image and its reblurred version.

To obtain the reblurred version of an input image I(x, y), a Gaussian low-pass

filter is employed and defined as

g(x, y, ρ) = 1
2πρ2 exp

(
−(x2 + y2)

2ρ2

)
, (3.3)

where ρ is the standard deviation. In this work, we utilize a Gaussian filter with a

window size 3 × 3 and ρ = 5. While generating the reblurred images, we performed

this filtering operation twice iteratively. We found that for extremely blurred images,

further blurring produces little effect. The reblurred version of image I is denoted as

Ib.

By imitating the arrangement of the interactions among cortical neurons, the

correlations between a central pixel and its neighboring pixels are binarized. Then

the orientation selectivity-based patterns can be obtained according to these correla-

tions. Specifically, the pattern P for a pixel x of image I is described as the spatial

correlations with its circularly symmetric neighborhood Φ = {x1, x2, ..., xn }

P (x|Φ) = A (ξ (x|Φ)) = A (ξ (x|x1, x2, ..., xn)) , (3.4)

where A represents the arrangement of correlations and n is the number of neighbours.

ξ (x|Φ) denotes the spatial correlations between x and neighbor pixels in Φ. Research

in neuroscience indicates that the correlations among neurons in a local receptive

field are extremely complex [88]. Each neuron may connect to thousands of cortical
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Figure3.4:Anexampleoforientationselectivity-basedpattern.(a)showsthepre-

ferredorientationsofacentralpixelanditsneighboringpixels,while(b)exhibitsthe

generatedpatternwithrespecttothecentralpixel.‘1’and‘0’representexcitatory

andinhibitoryinteractionsrespectively.

neuronsthroughsynapses.HubelandWiesel[89]proposedtoanalyzetheorientation

selectivitymechanismbyonlyutilizingthesynapsesbetweenthecentralneuronand

itsneighboringneurons.Tothisend,herewerecomputethepatternPas

P(x|Φ)≈A(ξ(x|x1),ξ(x|x2),...,ξ(x|xn)), (3.5)

whereξ(x|xi)istheinteractionbetweenpixelsxandxi,i∈[1,n].

Theinteractiontype(excitatory/inhibitory)betweencorticalneuronpairisde-

terminedbythecorrelationoftheirreceivedstimuli.Specifically,corticalneurons

thathavehigherapproximationdegreewiththepreferredorientationswouldrespond

asexcitatory,andviceversa[90]. Forinstance,Fig.3.4(a)showsthepreferred

orientationsofacentralpixelanditsneighboringpixels(n=8).Thegreenarrows

indicatethe“excitatoryinteractions”sincetheirpreferredorientationsarehighlyap-

proximatedwiththatofthecentralpixel(redarrow),whilethebluearrowsdenote

the“inhibitoryinteractions”.Therefore,theinteractionξ(x|xi)canbecomputedus-
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ing the orientations of pixels x and xi. For a pixel x of image I, the orientation θ (x)

is defined as

θ (x) = arctanGv (x)
Gh (x) , (3.6)

where θ ∈ [−180◦, 180◦], Gv and Gh denote the vertical and horizontal gradients

respectively. In this work, Gv and Gh are calculated as

Gv = [−1 1] ∗ I, Gh = [−1 1]T ∗ I, (3.7)

where ∗ denotes the convolution operation and T denotes the transpose operation.

The interaction ξ (x|xi) is estimated according to the approximation degree with

the preferred orientations, which is defined as

ξ (x|xi) =


1, if |θ(x)− θ(xi)| < Θ

0, otherwise,
(3.8)

where Θ denotes the orientation threshold, ‘1’ and ‘0’ represent excitatory and in-

hibitory interactions respectively. Campbell et al. [91] pointed out that nearby

gratings with highly approximated orientations would cause masking effect, and the

masking effect becomes marginal when the orientation difference is beyond a certain

degree, e.g., 12◦. Taking into account that the preferred orientations lie in two sides,

Θ is set to 6◦.

Finally, through Eq. 3.5 and Eq. 3.8, the correlations between a central pixel and

its neighboring pixels are binarized. Fig. 3.4 (b) shows the generated pattern with

respect to the orientation correlations depicted in Fig. 3.4 (a). In this work, we set

n = 8, in which case the orientation correlations are transformed as 8-bit patterns.
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For example, Fig. 3.4 (b) exhibits a pattern [00100011], which is formed starting from

the right center neighbouring pixel in clockwise.

Note that the primary visual content of an image can be represented by sev-

eral histograms of structural patterns [88]. In this work, the local spatial structural

degradation of an image is characterized by the histogram discrepancy of orientation

selectivity-based visual patterns between the image and its corresponding reblurred

version. The structural patterns of all pixels in an image are computed to build a

structural histogram. Generally, pixels producing the same patterns are combined.

Hence, the structural histogram of an input image I is described as

H(k) =
N∑
c=1

w(xc)ϕ(P (xc), P (k)), (3.9)

where H(k) represents the histogram value for the kth bin, N is the number of

pixels, P (k) denotes the kth fundamental pattern and w(xc) is the weighting factor.

The thresholding function ϕ(·) is defined as

ϕ(P (xi), P (k)) =


1, if P (xi) = P (k)

0, otherwise.
(3.10)

Since blur would decrease the variance values for most of the image regions [33], here

we set w(xc) = var(xc), where var(xc) is the local variance with regard to pixel xc.

It is clear that local receptive field with 8 neighbors will result in 28 patterns.

However, patterns with the same excitatory subfield usually represent similar response

[88]. Also, excitatory subfield denotes the number of excitations. For example, the

pattern in Fig. 3.4 (b) denotes three excitatory interaction. To this end, these 28

patterns can be further divided into 9 types of fundamental patterns according to
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(i) (j)

Figure3.5:Examplesofstructuralhistogramchange.(a)and(e)aresharpimages.

(b)–(d)and(f)–(h)aretheblurredversionsof(a)and(e)respectively,with

increaseddegreeofblur.(i)showsthestructuralhistogramsobtainedfrom(a)to

(d),while(j)exhibitsthestructuralhistogramsfeaturing(e)to(h).Imagesarefrom

theTID2013database[26].

theirexcitatorysubfields.Inthiscase,aninputimageIcanbemappedintoa

9-binhistogram(k=9).Particularly,patternswithsmallerexcitatorysubfieldare

probablytoappearindisorderlyregions,whilepatternswithlargerexcitatorysubfield

aremorelikelytoappearinorderlyregions.
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Fig. 3.5 shows the histograms of orientation selectivity-based visual patterns on

sharp and blurred images. It can be clearly observed that the structural histograms

vary between the sharp image and its blurred version. Generally, patterns correspond

to edge regions (e.g., trees) are defined as disorderly patterns, while patterns corre-

spond to plain regions (e.g., a clear sky) are defined as orderly patterns [88]. The

fact that blur smooths edge regions, which may change a disorderly pattern into an

orderly pattern. By comparing the histograms in Fig. 3.5 (i) and the histograms in

Fig. 3.5 (j), we can see that the energies of most bins are decreased as a result of

blurriness, especially for the first and second bins, while the energies of the last bin

is increased. The larger bin number denotes patterns with larger excitatory subfield

as illustrated above, which means the last bin corresponds to patterns appeared in

orderly regions. Furthermore, the histogram comparison results of Fig. 3.5 (a) and

(e) indicate that different visual contents present different structural histograms.

With these observations, we believe that local spatial structural degradation can

be characterized by the histogram change of visual patterns. We measure the discrep-

ancy of structural degradation by computing the histogram similarity SH between the

original image and its reblurred version as

SH = 2×H ·Hb

(H)2 + (Hb)2 , (3.11)

where H represents the histogram of patterns for the original input image, and Hb

denotes the histogram for its reblurred version. It should be noted that the similarity

is calculated in an element-wise manner. Since each histogram involves nine bins, the

histogram similarity SH thus produces nine quality-aware features.
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3.2.3 Discrepancy Measure of Log-Gabor Filter Responses

It is widely accepted that information from both the spatial and frequency domains

play important roles in characterizing image structure degradation [40]. For example,

blur would lead to a reduction in the variance of edge-pixel values in the spatial

domain, whereas in the frequency domain blur would result in a reduction of the high-

frequency components [62]. Here we propose to extract sharpness-aware statistical

features in the wavelet domain by calculating the discrepancies of log-Gabor filter

responses between the input image and its corresponding reblurred version.

Cortical cells in the visual cortex are highly sensitive to frequency for scene percep-

tion [58]. Studies have proved that the response properties (local frequency responses)

of these cells can be well modeled by Gabor filters [92]. Compared with classical Gabor

filters, the log-Gabor filters are able to alleviate the frequency distribution problem

[93]. To form bandpass responses, we employ the log-Gabor filter as defined in Zhang

et al. [62]

Gs,o (ω, θ) = exp
{
− [log(ω/ωs)]2

2 [log(σs/ωs)]2

}
× exp

(
−(θ − µo)2

2σ2
o

)
, (3.12)

where Gs,o denotes the log-Gabor filter with scale index s and orientation index o.

ω represents the normalized radial frequency and θ is the orientation. Note that the

perceptual decomposition (octaves) resembles the models of bandpass responses that

occur in area V1 of visual cortex [94]. To capture the magnitude differences in the

high-frequency band, an input image is decomposed with three scales s ∈ {1, 2, 3} and

over ten frequency orientations o ∈ {0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦},

thereby producing thirty subbands. The other parameter values are consistent with

those used in Zhang et al. [62].
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It is worth noting that coefficients of natural images exhibit a Gaussian-like ap-

pearance, and the presence of distortion could affect the distribution of this Gaussian

model [95]. Given a collection of image patches, their statistics can be characterized

by quality-aware features computed from each selected patch. Inspired by this, we

propose to utilize the distribution of Log-Gabor coefficients for sharpness evaluation.

Particularly, the coefficients for each subband are modeled by a zero-mean generalized

Gaussian distribution (GGD)2 as described in Gu et al. [65]

f(x;λ, γ2) = λ

2βΓ
(

1
λ

)exp
−(−|x|

β

)λ , (3.13)

where β = γ

√
Γ( 1

λ)
Γ( 3

λ) . The function Γ(·) is defined as

Γ(a) =
∫ ∞

0
ta−1e−tdt, a > 0. (3.14)

The parameter λ controls the “shape” of the distribution, while γ2 denotes the vari-

ance. This two parameters can be estimated by the moment-matching method illus-

trated in Sharifi et al. [96]. We deploy this parametric model to fit the distributions

of Log-Gabor coefficients from both the input image and its corresponding reblurred

version. Fig. 3.6 gives an example of histogram distributions of Log-Gabor coefficients

for sharp and blurred images at subband (s = 1, o = 0◦), where large MOS values

indicate better image quality. It can be seen from Fig. 3.6 (d) that the histogram dis-

tributions exhibit Gaussian characteristics. Moreover, the distributions become more

heavy-tailed and center-peaked as the image quality degrades. The model parameters

(λ, γ2) thus can be utilized to measure the quality degradation caused by blur.

Additionally, we find that the degradation of image sharpness usually leads to

the decrease of the energy of subbands. Hence, the energy of each subband is taken
2*: GGD is useful when the errors around the mean or in the tails are of particular interest.
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(d)

Figure3.6:ExampleofhistogramdistributionsofLog-Gaborcoefficients.(a)isa

sharpimage.(b)and(c)aretheblurredversionsof(a),whichcorrespondtosub-

jectivescoresMOS=3.6154andMOS=2.9250respectively.(d)showsthehistogram

distributionofLog-Gaborcoefficientsatsubband(s=1,o=0◦)forthethreeimages.

ImagesarefromtheTID2013database[26].

asanothersharpnessindicator. ThesubbandenergyEs,oisdefinedasthemean

magnitudeofthecoefficients

Es,o=
1

XY

X

i=1

Y

j=1

[Gs,o(i,j)]
2, (3.15)

whereX×Ydenotestheresolutionoftheinputimage.Fig.3.7showstheenergy

ofsubbandsatscale(s=1)forimagesinFig.3.6.Itcanbeclearlyseenthatthe
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Figure3.7:Theenergyofsubbandsatscale(s=1)forimagesinFig.3.6.

energyofsubbandschangesaccordinglytotheextentofdistortion,whichindicates

Es,ocanbeutilizedforsharpnessassessment.

TheperceptualdecompositiondescribedinEq.3.12facilitatesmultiplebandpass

responsesoverfrequencytuningorientations.Inthiswork,weproposetoextract

multi-scalestatisticalfeaturesfromtheobtainedsubbandcoefficientstoportraythe

localstructuraldegradationofblurredimagesinthewaveletdomain.Particularly,

asimilarityformulation[18]isadoptedtocomputethediscrepancy(element-wise)

ofbandpassSRresponsesbetweentheinputimageanditscorrespondingreblurred

version

SR=
2×Rz·R

b
z+c0

(Rz)
2+(Rbz)

2+c0
, (3.16)

wherez∈{λ,γ2,E}.Rzdenotestheparametersofbandpassresponsesobtained

fromtheinputimage,whileRbzrepresentsparametersfromitsreblurredversion.

c0=0.0001isastabilizingconstant.
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As mentioned above, the input image is decomposed with three scales and over

ten frequency orientations, SR thus returns a set of ninety quality-aware features.

3.2.4 Regression Module

In the final stage, we utilize the support vector regression (SVR) module [85] to map

the two categories of features into an overall quality score by the consideration that

SVR is effective at handling high-dimensional data. Given a set of training images,

quality-aware features are extracted in both wavelet domain and spatial domain re-

spectively as described above. The extracted features and associated subjective rated

scores (ground truth) are fed into the SVR for training, and then the learned model

is utilized to predict the quality score of testing images.

Suppose the training set is described as (x1, z1), (x2, z2), · · ·, (xi, zi), where xi is

the feature vector and zi is the ground truth, the SVR can be formulated as

min
ω,b,ν,ν∗

1
2ω

Tω + C

(
l∑

i=1
νi +

l∑
i

ν∗i

)
s.t.



ωTφ(xi) + b− zi ≤ ε+ νi,

zi − ωTφ(xi)− b ≤ ε+ ν∗i ,

νi, ν
∗
i ≥ 0,

(3.17)

where ω denotes a high-dimensional vector variable. νi and ν∗i are the slack variables.

C is a hyper-parameter, ε is the constraint, and b is the bias. K(xi,xj) = φ(xi)Tφ(xj)

represents the kernel to be optimized.

We implemented the SVR using the publicly available libSVM package [97]. The

radial base function (RBF) K(xi,xj) = exp
(
−η ‖xi − xj‖2

)
was chosen as the ker-

nel since it has fast convergence characteristic and approximates to the nonlinear

function. η is the parameter of the kernel. A grid search technique with ten-fold
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(a) (b) (c)

(d) (e) (f)

Figure3.8:Sampleblurredimagesfromdatabases.Images(a),(b),and(c)arefrom

theLIVEdatabase[18].Images(d),(e),and(f)arefromtheBIDdatabase[99].

Zoominforbetterview.

cross-validationwasemployedtodeterminealltheSVRparameters. Moredetails

abouttheSVRmodulecanbefoundinSmolaetal.[85].

3.3 ExperimentalResultsandAnalysis

Theperformanceoftheproposedsharpnessmetricwasevaluatedonsixpublicimage

qualitydatabases,includingfoursyntheticallyblurredimagedatabases:LIVE[18],

CSIQ[25],TID2013[26],andLIVEmultiplydistorted(LIVEMD)[98],aswellastwo

realblurredimagedatabases:BID[99]andCID2013[28].Thenumbersofblurred

imagesinthesixdatabasesare145,150,125,450,586,and473respectively.In

LIVE,CSIQ,andTID2013,imagesweredegradedbypureblurandweregenerated

throughapplyingGaussianlow-passfiltersonpristineimages.ThedatabaseLIVEMD
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consists of images corrupted under two distortion scenarios (i.e., blur + JPEG/noise),

and all the distortions were synthetically applied. In comparison, images in the real

blurred image databases were captured by consumer-type cameras in uncontrolled

environments, which are more challenging to evaluate. Fig. 3.8 shows several sample

blurred images from the LIVE and BID databases. We can see that the synthetic blur

in images (a), (b), and (c) distributes uniformly, whereas the real blur in images (d),

(e), and (f) is much more complex. Subjectively rated MOS values are all provided

in these databases as the ground truth. We employed two commonly used criteria

PLCC and SRCC for evaluating the performance of the proposed sharpness metric,

as defined in Section 1.2.

3.3.1 Performance Comparison

We first compared the performance of our proposed method against sixteen existing

blind image sharpness metrics over five individual databases, namely LIVE [18], CSIQ

[25], TID2013 [26], BID [99], and CID2013 [28]. The compared metrics are Marziliano

[34], JNB [35], CPBD [36], FISH [37], S3 [38], SVC [39], LPC-SI [40], MLV [41],

ARISM [42], BIBLE [43], SPARISH [33], RISE [44], MVGV [45], CNN-GRNN [47],

Yu’s CNN [46], and HVS-MaxPol [48]. In the experiment, we randomly divided the

reference images along with their corresponding distorted images in each database

into a training subset (80%) and a testing subset (20%). To avoid bias, this train-test

partition was conducted a thousand times and the median performance of all test

metrics were reported. For fair comparison, training-free metrics were evaluated on

the corresponding testing subsets. Table 3.1 summarizes the experimental results on
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Table 3.1: Performance comparison against blind image sharpness metrics. The two

best results are marked in boldface.

LIVE CSIQ TID2013 BID CID2013

Metric PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Marziliano 0.8134 0.8113 0.7224 0.7536 0.7718 0.7617 0.2549 0.2417 0.5164 0.4278

JNB 0.8157 0.7934 0.8603 0.8270 0.7121 0.6877 0.2574 0.2290 0.5276 0.4438

CPBD 0.9016 0.9043 0.8138 0.8674 0.8590 0.8429 0.2603 0.2685 0.5146 0.4329

FISH 0.8924 0.8733 0.8655 0.8822 0.8253 0.7936 0.4682 0.4711 0.6472 0.5794

S3 0.9389 0.9314 0.9077 0.8967 0.8702 0.8528 0.4155 0.4120 0.6792 0.6373

SVC 0.9276 0.9159 0.9214 0.8975 0.8618 0.8542 0.4175 0.3485 0.3285 0.2483

LPC-SI 0.9233 0.9207 0.9251 0.8923 0.8826 0.8878 0.3866 0.3092 0.6927 0.5973

MLV 0.9351 0.9243 0.9368 0.9166 0.8724 0.8684 0.3582 0.3149 0.6743 0.6178

ARISM 0.9426 0.9411 0.9374 0.9137 0.8857 0.8802 0.1795 0.1646 0.5463 0.4673

BIBLE 0.9503 0.9513 0.9274 0.9059 0.8974 0.8865 0.3682 0.3578 0.6851 0.6772

SPARISH 0.9521 0.9543 0.9321 0.9067 0.8986 0.8879 0.3479 0.3408 0.6633 0.6548

RISE 0.9547 0.9402 0.9380 0.9211 0.9364 0.9228 0.5904 0.5763 0.7832 0.7547

MVGV 0.9432 0.9405 0.9613 0.9481 0.9477 0.9503 0.4377 0.4106 0.7038 0.6129

CNN-GRNN 0.9570 0.9438 0.9353 0.8990 0.9370 0.9031 0.5387 0.5260 0.7094 0.6938

Yu’s CNN 0.9469 0.9486 0.9255 0.9048 0.8875 0.8376 0.5491 0.5412 0.7152 0.7039

HVS-MaxPol 0.9762 0.9378 0.9419 0.9124 0.8823 0.8726 0.4636 0.4483 0.7347 0.6155

Proposed 0.9581 0.9547 0.9516 0.9233 0.9569 0.9409 0.6327 0.6032 0.8803 0.8739

the five aforementioned databases. For each performance criterion and database, the

two best results are highlighted in bold.

It can be seen from Table 3.1 that our proposed method achieves consistent good

performance across these databases. For synthetic blur, it achieves the best prediction

monotonicity in the LIVE database. In CSIQ, although not the best, our proposed

method performs only slightly worse than the best metric. In TID2013, our proposed

method achieves the best prediction accuracy, while the prediction monotonicity ranks

the second. For real blur, it is worth noting that our proposed method outperforms

all the compared metrics by a clear margin on the BID and CID2013 databases,

regardless of prediction accuracy and monotonicity. Specifically, in CID2013, our

proposed method achieves 0.8803 and 0.8739 for PLCC and SRCC respectively, while
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Figure3.9:F-testresultsofninecomparedsharpnessmetricsagainsttheproposed

method.

thesecondbestresultsareonlyPLCC=0.7832andSRCC=0.7547. Fromthese

resultsweknowthatourproposedmethodproducesthestate-of-the-artperformance

forbothsyntheticandrealblur.Furthermore,Wecannoticethatthecurrentmetrics

usuallyperformbetteronsyntheticallyblurredimagedatabasesthanonthereal

blurredimagedatabases.

Tofurtheranalyzethestatisticalsignificanceoftheproposedmethodagainstthe

currentleadingsharpnessmetrics,weconductedtheF-testasdescribedinSheikh

etal.[12].F-testisoftenusedtodetermineifametrichassignificantlylarger(or

smaller)predictionerrorsthananothermetric[16],whichisbasedonanassumption

ofGaussianityoftheresidualdifferencesbetweenthemetricpredictionandsubjective

ratedscore.SupposethevariancesofpredictionerrorsofacomparedmetricAand

ourproposedmethodaredenotedasσ2Aandσ
2
Brespectively,theF-testscoreisthen

41



Table 3.2: Statistical performance between the proposed method and nine compared

sharpness metrics on five databases.

Metric LIVE CSIQ TID2013 BID CID2013

MLV [41] +1 +1 +1 +1 +1

ARISM [42] +1 +1 +1 +1 +1

BIBLE [43] 0 +1 +1 +1 +1

SPARISH [33] 0 +1 +1 +1 +1

RISE [44] 0 +1 +1 +1 +1

MVGV [45] +1 –1 0 +1 +1

CNN-GRNN [47] 0 +1 +1 +1 +1

Yu’s CNN [46] +1 +1 +1 +1 +1

HVS-MaxPol [48] –1 +1 +1 +1 +1

defined as

F = σ2
A

σ2
B

. (3.18)

Fig. 3.9 shows the F-test results between nine compared metrics and the proposed

method on the five databases. It can be observed that our proposed method produces

either the lowest or comparable prediction errors among the leading sharpness metrics

in LIVE, CSIQ, and TID2013 databases. In addition, the prediction errors of our

proposed method are smaller than all the compared blind sharpness metrics on the

two real blurred image databases, which are more favorable in real-world imaging

environments.

The statistical significance of the proposed method against the compared metrics

are obtained by employing a threshold Fcritical. Fcritical is determined by the number

of prediction errors and a confidence level. If F > Fcritical (or F < Fcritical), the

compared metric performs worse (or better) than our proposed method in terms of

statistical significance. Otherwise, their performance are comparable. A 95% confi-

dence level was utilized to determine the threshold Fcritical. Table 3.2 summarizes the
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Table 3.3: Performance comparison with general-purpose BIQA metrics. The best

result is marked in boldface.

LIVE CSIQ TID2013 BID CID2013

Metric PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BIQI 0.9201 0.9137 0.8463 0.7734 0.8248 0.8153 0.6039 0.5724 0.7769 0.7438

DIIVINE 0.9431 0.9355 0.8863 0.8790 0.8472 0.8417 0.5064 0.4885 0.4987 0.4766

BLIINDS-II 0.9387 0.9309 0.8864 0.8917 0.8571 0.8624 0.5583 0.5302 0.7314 0.7012

BRISQUE 0.9512 0.9430 0.9211 0.9070 0.8622 0.8608 0.6120 0.5903 0.7144 0.6823

QAC 0.9155 0.9028 0.8313 0.8306 0.8412 0.8417 0.3208 0.3177 0.1866 0.1624

NIQE 0.9387 0.9302 0.9184 0.8914 0.8155 0.8073 0.4713 0.4692 0.6930 0.6328

SSEQ 0.9468 0.9347 0.8706 0.8702 0.8628 0.8621 0.6044 0.5809 0.6891 0.6755

ILNIQE 0.9209 0.9153 0.8679 0.8578 0.8253 0.8142 0.5184 0.4867 0.6758 0.6679

Proposed 0.9581 0.9547 0.9516 0.9233 0.9569 0.9409 0.6327 0.6032 0.8803 0.8739

statistical significance results, where “+1”, “0”, and “-1” denote that our proposed

method is significantly better, competitive, and worse than the compared metric re-

spectively. It can be observed from Table 3.2 that our proposed method is superior to

the compared metrics in most cases. In LIVE, only HVS-MaxPol [48] performs better

than our proposed method. Among the 45 combinations of metrics and databases,

our metric performs significantly better in 38 cases. This indicates that the proposed

method performs consistently well across all databases.

Since our proposed method is designed specifically for image sharpness evaluation,

it is anticipated to outperform the general-purpose BIQA metrics. We compared our

proposed method with eight leading general-purpose BIQA metrics, including BIQI

[58], DIIVINE [59], BLIINDS-II [60], BRISQUE [61], QAC [68], NIQE [66], SSEQ

[63], and ILNIQE [67]. We employed the same train-test procedure as described

above. For those training-free metrics such as NIQE [66] and QAC [68], they were

evaluated on the corresponding testing subsets for fair comparison. Table 3.3 lists the

experimental results on the five databases, where the best result is marked in bold
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Table 3.4: Statistical performance between the proposed method and general-purpose

BIQA metrics on five databases.

Metric LIVE CSIQ TID2013 BID CID2013

BIQI [58] +1 +1 +1 +1 +1

DIIVINE [59] +1 +1 +1 +1 +1

BLIINDS-II [60] +1 +1 +1 +1 +1

BRISQUE [61] 0 +1 +1 +1 +1

QAC [68] +1 +1 +1 +1 +1

NIQE [66] +1 +1 +1 +1 +1

SSEQ [63] +1 +1 +1 +1 +1

ILNIQE [67] +1 +1 +1 +1 +1

for each performance criterion.

From the results shown in Table 3.3, we can see that our proposed method out-

performs all the general-purpose BIQA metrics on the five databases. Particulary,

our proposed method has a performance gain of about 14% ↑ and 10% ↑ in terms

of prediction accuracy over the other metrics on CID2013 and TID2013 respectively.

Similarly, we also conducted the F-test to analyze the statistical significance of our

proposed method against the compared general-purpose BIQA metrics. Fig. 3.10

provides the F-test results, and the corresponding statistical significance results are

listed in Table 3.4. It can be observed from Fig. 3.10 that our proposed method pro-

duces the lowest prediction errors in CSIQ, TID2013, BID, and CID2013 databases.

Furthermore, we can see from Table 3.4 that only BRISQUE [61] is statistically com-

petitive to our proposed method in the LIVE database. Our proposed metric performs

statistically better than all the compared metrics in the other four databases. From

these results, it can be concluded that the proposed method achieves the best overall

statistical performance.
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Figure3.10:F-testresultsofgeneral-purposequalitymetricsagainsttheproposed

method.

Table3.5:Cross-databaseperformanceevaluationofourproposedmethod.

TestingDatabase

LIVE CSIQ TID2013

TrainingDatabase PLCC SRCC PLCC SRCC PLCC SRCC

LIVE – – 0.9524 0.9460 0.9416 0.9352

CSIQ 0.9374 0.9211 – – 0.9053 0.8951

TID2013 0.8367 0.8259 0.9178 0.9126 – –

BID 0.9237 0.9043 0.9017 0.8913 0.8088 0.7857

CID2013 0.9310 0.9255 0.8791 0.8432 0.9015 0.8924

3.3.2 MethodAnalysis

Sinceourproposedmethodisbasedonfeaturelearning,weconductedcross-database

performanceevaluationtofurthertestitsgeneralizationcapability.Specifically,for

thethreesyntheticallyblurredimagedatabases,ourmodelwastrainedinoneofthem

andthenitwastestedontheothertwodatabases.Asintroducedinthebeginningof

thissection,realblurismuchmorecomplexthansyntheticblurintermsofformation,
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it is thus impractical to train a model with synthetic blur and then test it with real

blur. Hence, for real blurred image databases, we trained our model in BID or

CID2013 and then the trained model was employed for the sharpness evaluation on

the three synthetically blurred image databases. Table 3.5 shows the cross-database

performance evaluations of our proposed method. It can be observed that for the

three synthetically blurred image databases, our proposed method produces quite

promising results. The obtained PLCC and SRCC values are greater than 0.90 on

most of the testing cases. Particularly, near state-of-the-art performance are achieved

when the model is trained in the LIVE database. In addition, when our model is

trained on the two real blurred image databases BID and CID2013, the prediction

results are still very encouraging with most of the obtained PLCC values are larger

than 0.87. Table 3.5, together with Table 3.1 and Table 3.3, indicate that our method

not only achieves very good overall performance, but also shows good generalization

capability.

It has been reported that adding noise may increase or decrease the sharpness of

an image [38]. In this experiment, we investigated the impact of contaminated noise

on the performance of our proposed method. Specifically, we tested our method on the

LIVEMD database [98]. As mentioned in the beginning of this section, the LIVEMD

database consists of 450 images corrupted under two multiple distortion scenarios:

1) 225 images are first blurred and then compressed by a JPEG encoder; 2) 225

images are first blurred and then corrupted by white Gaussian noise. For simplicity,

the two sub-databases are denoted as LIVEMD1 (blur + JPEG) and LIVEMD2

(blur + Gaussian noise) respectively. Note that images in LIVEMD1 and LIVEMD2

were obtained by sequentially adding distortions to pristine images. Table 3.6 lists
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Table 3.6: Performance comparison of our proposed method and other blind sharpness

metrics on the LIVEMD database [98]. The best result is marked in boldface.

LIVEMD1 LIVEMD2

Metric PLCC SRCC PLCC SRCC

Marziliano [34] 0.4725 0.4235 0.3188 0.1719

JNB [35] 0.8034 0.7762 0.1934 0.0453

CPBD [36] 0.5241 0.4398 0.3215 0.2311

FISH [37] 0.8205 0.7324 0.2403 0.1908

S3 [38] 0.7329 0.5781 0.3877 0.2798

SVC [39] 0.8129 0.6488 0.2403 0.1310

LPC-SI [40] 0.8207 0.6954 0.5788 0.4329

MLV [41] 0.8466 0.7972 0.5738 0.4912

ARISM [42] 0.9084 0.8732 0.3785 0.5544

BIBLE [43] 0.8879 0.8367 0.3147 0.2386

SPARISH [33] 0.9039 0.8814 0.3217 0.5168

RISE [44] 0.9107 0.8870 0.8759 0.8603

MVGV [45] 0.8223 0.7464 0.5635 0.3169

Proposed 0.9188 0.8853 0.9176 0.8954

the experimental results of our proposed method and the compared blind sharpness

metrics, where the best result for each performance criterion is marked in boldface.

It can be seen from Table 3.6 that our proposed method outperforms all the

compared blind sharpness metrics on the LIVEMD database, regardless of prediction

accuracy (PLCC) and monotonicity (SRCC). Specifically, our method achieves PLCC

values above 0.91 on both the LIVEMD1 and LIVEMD2 sub-databases, which reveals

that our method is robust to JPEG and Gaussian noises.

We further investigated how does the number of training images affect the per-

formance of our proposed method. In the experiment, we used different proportions

of images for the model training, namely, 80%, 70%, 60%, 50%, and 40% respec-

tively. The median values of a thousand train-test procedures were reported. The

experimental results are summarized in Table 3.7. From Table 3.7 we can see that
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Table 3.7: Performance of the proposed metric with different percentages of images

used in the training.

Traning-test Criterion LIVE CSIQ TID2013 BID CID2013

80%-20%
PLCC 0.9581 0.9516 0.9569 0.6327 0.8803

SRCC 0.9547 0.9223 0.9406 0.6032 0.8739

70%-30%
PLCC 0.9527 0.9490 0.9510 0.6113 0.8714

SRCC 0.9542 0.9306 0.9385 0.5729 0.8673

60%-40%
PLCC 0.9455 0.9457 0.9437 0.5892 0.8677

SRCC 0.9431 0.9279 0.9353 0.5362 0.8609

50%-50%
PLCC 0.9422 0.9412 0.9406 0.5574 0.8624

SRCC 0.9407 0.9128 0.9317 0.5238 0.8588

40%-60%
PLCC 0.9358 0.9376 0.9365 0.5164 0.8526

SRCC 0.9387 0.9054 0.9279 0.5032 0.8503

Table 3.8: Individual contributions of the two categories of features.

Database Criterion
Spatial

domain

Wavelet

domain
All

LIVE
PLCC 0.9368 0.9492 0.9581

SRCC 0.9275 0.9363 0.9547

CSIQ
PLCC 0.9371 0.9381 0.9516

SRCC 0.9133 0.8861 0.9223

TID2013
PLCC 0.9458 0.9366 0.9569

SRCC 0.9377 0.9312 0.9406

BID
PLCC 0.5274 0.5855 0.6327

SRCC 0.4838 0.5345 0.6032

CID2013
PLCC 0.7424 0.8625 0.8803

SRCC 0.7166 0.8551 0.8739

the performance of our proposed method drops slightly with the decrease of training

images. Particulary, our proposed method achieves PLCC values above 0.93 on the

three synthetically blurred image databases and above 0.85 on the CID2013 databases

even if only 40% of images are used for training, which is quite impressive compared

to the performance of other metrics reported in Table 3.1. The results shown in this

table further demonstrate the robustness of our proposed method.

The proposed method involves two categories of features, including spatial-domain
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features and wavelet-domain features. To investigate the individual contribution of

each type of feature, we conducted model training and testing using the two categories

of features separately on the five databases. The train-test procedure on the databases

was set as the same as introduced before. Table 3.8 summarizes the experimental

results.

It can be seen from Table 3.8 that each category of features achieves good per-

formance for synthetic blur, with the prediction accuracy (PLCC value) greater than

0.93. Nevertheless, neither of them can achieve the best results in all the three syn-

thetically blurred image databases. For real blur, features extracted in the wavelet

domain contribute more than spatial-domain features. It can be further observed

that the integration of two categories of features achieves much better performance

than using a single category of features on all the five databases, which indicates the

importance of using features derived from both domains so as to achieve consistently

good performance for sharpness evaluation.

The proposed method involves more than one hundred of features (adding up those

described in Section 3.2). It would be meaningful to use dimensionally reduction tech-

niques to limit the number of required features. We conducted an experiment which

employed principal component analysis (PCA) to reduce features’ redundancy. We

found that our proposed method achieved comparable performance even if only fifty

features were utilized in the model training. In addition, we further investigated the

effectiveness of the discrepancy measures by directly using the parameters of band-

pass responses (see Eq. 3.16) computed from the original input images in the model

training. In the experiment, only features constructed in the wavelet domain were

involved. We found that this setting produces PLCC value of 0.9188 on the TID2013
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database, which is inferior to the results reported in Table 3.8. The experimental re-

sults show that additional performance gain is achieved by utilizing the discrepancy

measures in our method.

In this work, we propose to evaluate image sharpness utilizing the discrepancy

between an input image and its “reblurred” version which is obtained by employing

a Gaussian filter. Here we investigate how does the reblurring parameter, i.e., the

window size of Gaussian filter, affects the performance of our proposed method. In

the experiment, we used different window sizes of Gaussian filter, and only features

constructed through the reblurred version were involved in the model training. The

experimental results on the three synthetically blurred image databases are summa-

rized in Table 3.9. From Table 3.9 we can see that the best performance are achieved

when window size of 3×3 is used. This setting of reblurring parameter was applied to

the two real blurred image databases BID and CID2013, and from the experimental

results in Table 3.1 we know that our proposed method achieves the state-of-the-art

performance. However, we found that this parameter setting is not optimal for high

resolution (e.g., 4K or 8K) images, considering that pixel values within a 3×3 window

might be the same. Note that the highest resolution of the examined five databases

is 1600× 1200, thus larger window size is preferred to apply the proposed method to

higher resolution images.

In addition, we investigated how does the parameters (s, o) affect the performance

of our proposed method, where s and o denote scale index and orientation index

respectively as described in Eq. 3.12. In the experiment, only features constructed

in the wavelet domain were involved in the model training. The experimental results

are summarized in Table 3.10. From Table 3.10 we can see that the best performance
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Table 3.9: Impact of reblurring parameter on the performance of the proposed metric.

Kernel Size Criterion LIVE CSIQ TID2013

3 × 3
PLCC 0.9502 0.9419 0.9422

SRCC 0.9413 0.9151 0.9208

5 × 5
PLCC 0.9453 0.9377 0.9352

SRCC 0.9377 0.9002 0.9193

9 × 9
PLCC 0.9386 0.9201 0.9263

SRCC 0.9264 0.8988 0.9095

Table 3.10: Impact of parameters (s, o) on the performance of the proposed metric.

Parameters

(s, o)
Criterion LIVE CSIQ TID2013

(2, 6)
PLCC 0.9125 0.8953 0.9177

SRCC 0.9008 0.8576 0.9053

(2, 10)
PLCC 0.9322 0.9136 0.9219

SRCC 0.9288 0.8701 0.9188

(3, 10)
PLCC 0.9492 0.9381 0.9366

SRCC 0.9363 0.8861 0.9312

(4, 10)
PLCC 0.9501 0.9399 0.9407

SRCC 0.9376 0.8902 0.9329

are achieved when (4, 10) is employed. However, the performance with (4, 10) are

only slightly better than the case with (3, 10). To balance between performance and

computational overhead, (3, 10) is chosen in this work.

We further evaluated the computational cost of our proposed method. The exper-

iments were conducted on a PC with an Intel Xeon E5540 (four cores @ 2.53 GHz)

and 12 GB RAM, running on Matlab R2017a. The compared methods include both

sharpness and general-purpose BIQA metrics that presented in Table 3.1 and Table

3.3. The time cost consumed by each metric for evaluating the quality of a 512× 512

image in the CSIQ database is shown in Table 3.11. It can be seen that the proposed

method has a moderate computational complexity.
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Table 3.11: Computational cost of each metric.

Metric Time (s) Metric Time (s) Metric Time (s)

Marziliano [34] 0.30 ARISM [42] 21.28 BRISQUE [61] 1.11

JNB [35] 0.51 BIBLE [43] 2.13 QAC [68] 0.54

CPBD [36] 0.56 SPARISH [33] 2.95 NIQE [66] 0.98

FISH [37] 0.67 RISE [44] 0.32 SSEQ [63] 2.79

S3 [38] 15.22 MVGV [45] 0.03 ILNIQE [67] 14.28

SVC [39] 0.23 BIQI [58] 2.76 Proposed 1.56

LPC-SI [40] 1.23 DIIVINE [59] 28.53

MLV [41] 0.08 BLIINDS-II [60] 54.38

3.4 Summary

This chapter presents a novel blind image sharpness metric based on the observation

that the discrepancy between an image and its “reblurred” version usually indicates

the extent of blur in the image. Specifically, the global sharpness discrepancy is mea-

sured through inter-resolution self-similarities, while the local structural degradation

of an image is characterized by the discrepancies of orientation selectivity-based vi-

sual patterns and log-Gabor filter responses between the image and its corresponding

reblurred version. A regression module is employed to map the extracted features

into an overall quality score. Extensive experiments and comparisons are conducted

on six public blurred image databases, including both synthetic and real blur. The

experimental results have demonstrated that the proposed method consistently per-

forms well across several databases and outperforms other available metrics on the

real blurred image databases by a clear margin (prediction accuracy improved from

0.7832 to 0.8803 on CID2013 database).
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Chapter 4

Blind Quality Assessment of

Gamut-Mapped Images

The BIQA metric introduced in Chapter 3 deals with a conventional type of distortion,

namely blur. This chapter presents a BIQA metric for an unusual distortion type –

gamut mapping based on natural scene statistics. To the best of our knowledge, this

is the first work that addresses the blind quality assessment of gamut-mapped images.

The method described in Chapter 3 resorts to a scheme that extracts effective

features from distorted images first followed by training a regression module using

those features. Particularly, subjectively rated scores are required in the training

stage. In this chapter, the proposed metric does not need ground-truth quality scores

for training, which means it is “completely blind”.

53



(a) (b) 

(c) (d) 

Figure4.1:Distortionofhuechange[49].(a)and(b)aretwocolorimageswhere(a)

istheoriginalpristineimageand(b)isitsdistortioncounterpart.(c)and(d)are

theircorrespondinggrayscaleversions. Thisfigureshowsthatsomedistortionsare

hardtodiscriminatethroughthegrayscaleversionofimages.

4.1 Introduction

Therenderingofacolorimagetodevicelimitations,alsocalled“gamutmapping”,is

oftenusedasoneoftheprimarycontrolparametersforcolorreproduction[50,10].To

quantifyhowreproducedimageshavebeenchangedbythereproductionprocessand

howmuchofthesechangescouldbeperceivedbythehumaneye,arobustevaluation

ofthegamut-mappedimagesishighlyneeded[100].

Duringthepastdecade,anumberofperceptuallymeaningfulIQAmodelshave

beenproposedwhilemostofthemdonotplaceenoughemphasisoncolorinforma-

tion. ThepredictionperformanceofsomegrayscaleIQAmodelsisimpressiveon

mostconventionaldistortionslikecompression,blur,orblockiness[45,23].However,

distortionssuchassaturationchangeorgamutmappingmaynotbeeffectivelyde-
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tected by these grayscale IQA metrics [12]. Fig. 4.1 shows an example of this type

of distortion. While the distortion can be seen clearly on Fig. 4.1 (b) (e.g., feathers

of the left parrots), the grayscale versions (Fig. 4.1 (c) and Fig. 4.1 (d)) are hard to

discriminate.

The main image quality factors for gamut mapping are preservation of spatial

details and preservation of color [101]. It is worth noting that the statistic-based

general-purpose BIQA methods mentioned in Section 2.2 often fail on the quality

prediction of gamut-mapped images since it mostly involves color distortions. Mo-

tivated by this, this chapter presents a BIQA metric for gamut-mapped images. In

the proposed method, images are first transformed into an opponent color space and

then two categories of statistics are analyzed. In particular, the proposed metric does

not need subjective quality scores for training. Quality predictions of gamut-mapped

images are performed by quantifying their departure from the statistical regularities

of natural undistorted images. We conducted experiments on three gamut map-

ping image databases to evaluate the quality evaluation performance of our method.

Moreover, the proposed metric was further applied for benchmarking gamut mapping

algorithms.

4.2 Proposed Method

According to the working mechanism of the human visual system (HVS), human eyes

employ both global-to-local and local-to-global strategies for judging the quality of

images with different extents of distortions [25]. Fig. 4.2 illustrates the flowchart of

our proposed metric. It consists of two phases, a model training phase followed by
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Figure4.2:Flowchartoftheproposedqualitymetricforgamut-mappedimages.

aqualitypredictionphase. Theimagesarefirsttransformedintoaworkingcolor

space.Inthemodeltrainingphase,localstatisticalfeaturesareextractedfromaset

ofpristineimagesandthencombinedtolearnamultivariateGaussian(MVG)model,

whichisusedforthesubsequentqualitypredictionofgamut-mappedimages. The

localstatisticalfeaturesareusedtoportraythestructuralandcolordistortions,while

theglobalstatisticalfeaturesareutilizedtocharacterizethelossofglobalnaturalness.

Theextractionofthesetwotypesoffeatureswillbeexplainedindetailinthefollowing

subsections.
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4.2.1 Working Color Space

In digital imaging, RGB color model is widely-used to represent a color image. How-

ever, the RGB color model does not perform well with regard to perceptual uniformity,

which means Euclidean distances in the space do not match perceived color differences

[57].

Basically, perceptual color distortion (Dperceptual) can be computed as the mean

squared error between a reference color image (Ir) and its distorted version (Id)

Dperceptual = 1
N
||Ir − Id||2, (4.1)

where N is the number of pixels in the image. In RGB color space, the set of equally

distorted RGB vectors is not isotropic around the reference vector and the geometry

of this set varies from different reference vectors [102]. This makes Dperceptual fails

to produce distortion values that are consistent with human perception. The same

situation applies to other perceptually nonuniform color models such as YCbCr. In

order to quantify perceptual color distortions effectively, distorted images are first

transformed into a perceptually uniform CIELAB color space [103] which is separated

into a lightness channel “L”, a red-green channel “A”, and a blue-yellow channel “B”.

The CIELAB color space corresponds to the human color perception better than the

perceptually nonuniform color models and avoids cross contamination between the

color attributes [49].

4.2.2 Local Statistics

Note that local statistical features extracted from image patches can effectively cap-

ture the essential statistics of natural images [66]. In this work, a number of statistical
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features are adopted to accomplish the quality prediction of gamut-mapped images.

Specifically, features extracted from local mean subtracted and contrast normalized

(MSCN) coefficients are utilized to characterize local structural distortion. On the

other hand, color distortions are captured by features derived from color responses.

According to [61], characterizing normalized luminance coefficients is useful to

quantify quality in the presence of distortion. It is worth noting that these coefficients

follow a Gaussian model [95]. The coefficients normalization can be defined as

Ī(i, j) = I(i, j)− µ(i, j)
σ(i, j) + C

, (4.2)

where i ∈ 1, 2, · · ·,M and j ∈ 1, 2, · · ·, N are coordinates (M and N are the image

height and width respectively). I denotes the lightness channel “L” in the CIELAB

color space. The constant C = 1 is used to prevent instabilities when the denominator

tends to zero. σ(i, j) and µ(i, j) are the local image contrast and mean, which can be

computed as

σ(i, j) =

√√√√ K∑
k=−K

H∑
h=−H

ωk,h [I(i+ k, j + h)− µ(i, j)]2, (4.3)

µ(i, j) =
K∑

k=−K

H∑
h=−H

ωk,hI(i+ k, j + h), (4.4)

where ω = {ωk,l|k = −K, · · ·, K, h = −H, · · ·, H} is a 2D circularly-symmetric

Gaussian weighting function that re-scaled to unit volume.

Note that the MSCN coefficients Ī(i, j) conform to a Gaussian distribution on

high-quality images [95]. On the other hand, the Gaussian model can be affected

by the presence of distortion and quantifying the deviation will make it possible to

predict perceptual quality. Specifically, the distribution of {Ī(i, j)} is modeled by a

generalized Gaussian distribution (GGD) as described in Eq. 3.13. Fig. 4.3 shows
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(a) Pristine image (b)  MOS=0.5383 (c)  MOS=0.9789 (d)  MOS=1.0539

Figure4.3:Gamut-mappedimagesandtheirsubjectiveMOSscores.(a)istheref-

erencepristineimage,and(b)–(d)aregamut-mappedimagesgeneratedbythree

differentGMAsrespectively(i.e.,SGCK,Scomp,andHPMinDE[56]).

threegamut-mappedimagesandtheirsubjectiveratings. AsshowninFig. 4.4,

pristineanddistortedimagesshowdistributionsdifferinshapeandscale,inwhich

fromFig.4.3(b)toFig.4.3(d)thedistributionsbecomemoreheavy-tailedand

center-peaked.Asaresult,aftermodelingthesedistributions,themodelparameters

canbeusedasperceptualfeaturesforqualityassessment.

Inaddition,thepairwiseproductsofadjacentnormalizedMSCNcoefficients[66]

canalsobeusedtomeasureperceptualquality,especiallyalongfourorientations:

horizontal,vertical,main-diagonal,andsecondary-diagonal.Theseproductsofneigh-

boringcoefficientsarewellmodeledasazero-meanAsymmetricGGD(AGGD).The

densityfunctionisdescribedasinLasmaretal.[104]

ga(x;γ,δl,δr)=






γ

(δl+δr)Γ(1γ)
exp− −x

δl

γ
,∀x≤0

γ

(δl+δr)Γ(1γ)
exp− x

δr

γ
, ∀x>0

(4.5)

wheretheparameterγdenotesthedistributionshape,whileδlandδrarescalepa-

59



          


























































Figure4.4:HistogramdistributionofMSCNcoefficientsforimagesinFig.4.3.

rametersthatcontrolthespreadoneachsideofthemodel.Ifδl=δr,thentheAGGD

reducestotheGGD.ThemeanofAGGDcanalsobeusedasafeatureparameter,

whichiscomputedas

η=(δr−δl)
Γ 2

γ

Γ 1
γ

. (4.6)

Theparameters(γ,δl,δr,η)areestimatedthroughthemoment-matchingmethodin

Sharifietal.[96].Foreachpairedproduct,sixteenparameters(fourparametersfor

eachorientation)arecomputed,yieldingthenextsetofperceptualfeatures.

AspointedoutinSection2.1.2,gamutmappinglargelyincorporatescolordistor-

tions.Thestatisticalpropertiesofcolordistortionsingamut-mappedimagesarethen

investigated.InRudermanetal.[105],studiesexplainedthatthestatisticsofcolor

responseinnaturalimagefollowaunivariateGaussiandistributioninanopponent

colorspace.Inthiswork,thegamut-mappedimagesarefirsttransformedintothe

CIELABcolorspacewhichhasthreechannels(L,A,B).Thefollowingfunctionis
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Figure4.5:Histogramdistributionof(L,A,B)coefficientsforimagesinFig.4.3.

employedtofittheprobabilitydensityofimagedata

f(x;ζ,ρ2)=
1
√
2πρ
exp

−(x−ζ)2

2ρ2
, (4.7)

whereζandρ2arethemodelparameters.

Foreachofthechannels,ζandρ2areestimatedandtakenasqualityfeatures,

yieldanothersixfeatures.Fig.4.5plotsthehistogramof(L,A,B)coefficientsfor

imagesinFig.4.3. Wecannoticethatinthecaseofcolordistortions,thedistribution

“forms”of(L,A,B)areclearlychanged.Thisindicatesthatthesemodelparameters

canbeusedasquality-awarefeaturestopredictimagequality.

Toincorporatemulti-scalebehavior,imagesaredown-sampledbyafactoroftwo.

Allofthelocalstatisticalfeaturesarecomputedattwoscales,yieldingasetofforty-

eightfeatures. Thesefeaturesarethencombinedtolearnan MVGmodelforthe
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subsequent local statistic quality prediction of gamut-mapped images. The model

training will be further explained in detail in Section 4.2.4.

4.2.3 Global Statistics

Unlike conventional distortions that operate locally in most cases, gamut mapping

also incorporates global distortions. Many studies have been dedicated to global nat-

uralness which has important significance to both image processing applications and

the understanding of biological vision [106]. It is generally believed that natural im-

age of high visual quality has a high degree of naturalness [107]. Inspired by this,

the proposed IQA model takes into account a statistical naturalness model devel-

oped upon the naturalness prior. The naturalness prior is a linear combination of

a gradient distribution prior and the consistent Laplace operator prior (i.e., the one

corresponding to the divergence of the gradient).

It has been proved that the gradient distribution prior is closely related to im-

age quality and is quite stable [108]. Specifically, the HVS mainly detects gradient

information for processing and the neurons have been evolved to be adapted to the

environment based on this information. In addition, different people have almost

the same visual perception, so the gradient distribution of natural scene images is

stable [14]. These two properties of gradient distribution prior naturally fit into the

requirements of IQA.

The gradient field of an image is equivalent to the original image adding a single

point constraint [109]. Given an intensity image I(x, y), the gradient field G can be
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defined as

G = (Gx, Gy) = (∇xI(x, y),∇yI(x, y)), (4.8)

where Gx and Gy are the gradients in x and y directions respectively. ∇x and ∇y

denote the finite-difference approximations, which are defined as in Eq. 3.7. It is

easy to know that Gx, Gy ∈ [−255, 255]. Since Gx and Gy both satisfy the heavy-tail

characteristic in log-scale, they are commonly modeled as a Gaussian or Laplacian

distribution [110].

In this work, the normalized gradient histograms of Gx and Gy are modeled based

on the cumulative distribution function (CDF), which is computed as

C(G) =
∫ Gx

−255

∫ Gy

−255
P (u, v)dudv, (4.9)

where P (·) represents the probability density. Particularly, the CDF is approximated

through the Cauchy distribution as in Gong et al. [109]

C̃(G) = (atan(T1G
x))

π
+ 1

2)(atan(T1G
y))

π
+ 1

2), (4.10)

where T1 is the model fitting parameter.

In addition to gradient statistics, studies have shown that Laplace prior is also

very powerful for image processing [111]. The Laplace field L is described as

L = L(x, y) = ∆I(x, y), (4.11)

where ∆ is the Laplace operator. L(x, y) is discretized by the five-point stencil, and

L(x, y) ∈ [−255× 4, 255× 4]. Similar to the gradient CDF, Laplace CDF is used to

model the distribution of the Laplace operator response, which is defined as

L(t) =
∫ t

−∞
P (∆I(x))d∆I(x). (4.12)
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Table 4.1: Estimated global statistical parameters for the gamut-mapped images

shown in Fig. 4.3.

Parameter Fig. 4.3(b) Fig. 4.3(c) Fig. 4.3(d)

MOS 0.5383 0.9789 1.0539

T1 2.2326 2.4462 2.5149

T2 3.3120 4.4140 6.9153

Nf 2.7723 3.4301 4.7151

To approximate the Laplace CDF, the following parametric model is utilized

L̃(t) = atan(T2t))
π

+ 1
2 , (4.13)

where T2 is the model fitting parameter.

The gradient and Laplace distributions are both of great importance for charac-

terizing natural images [14]. The model parameters T1 and T2 are combined to define

the image naturalness factor Nf as

Nf = 1
2

(
T1

T pr1
+ T2

T pr2

)
, (4.14)

where T pr1 and T pr2 are the gradient distribution and Laplace distribution priors re-

spectively, which are obtained based on the aggregation results on seven datasets of

natural scene images [109]. In this work, T pr1 = 0.380 and T pr2 = 0.145. The disparity

between the gradient/Laplace distributions of a test image and the prior distributions

represents the naturalness extent of the test image. For high-quality natural images,

the Nf value should be close to 1.

Note that Fig. 4.3 shows three gamut-mapped images and their subjective MOS

scores. Table 4.1 lists the naturalness factors Nf of these images and their associated

statistical model parameters T1, T2. From the table we can see that T1 and T2

increase monotonically with the decreased qualities from Fig. 4.3 (b) to Fig. 4.3 (d).
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Moreover, the values of Nf are becoming more and more larger than 1, which indicate

that the images from Fig. 4.3 (b) to Fig. 4.3 (d) are perceived with degraded quality.

4.2.4 Model Training and Quality Prediction

The proposed IQA metric computes quality scores based on both local and global

statistics. Since the naturalness level is an indication of global distortion severity, we

take the naturalness factor Nf as the global statistic score QG, which means QG = Nf .

To compute the local statistic quality score, an MVG model of the local statistical

features was first learned from a set of pristine images. The MVG model can be

computed by fitting features from patches with an MVG density

f(x) = 1
(2π)m2 (|Σ|) 1

2
exp

(
−1

2(x− ν)TΣ−1(x− ν)
)
, (4.15)

where x = (x1, · · ·, xm) is the feature vector. ν and Σ are the mean and covariance

matrix of the MVG model respectively. The values of ν and Σ were estimated using a

standard maximum likelihood estimation technique [112]. Note that an MVG model

is fully described by the pair (ν, Σ).

A set of original pristine color images in the AlgMix databases [113] were collected

to learn the pristine MVG model, which do not overlap with those discussed in Table

4.2. The pristine images were first divided into patches and then features described

in Section 4.2.2 were extracted from these patches. The patch size is p × p. We se-

lected patches whose contrast (see Eq. 4.3) are bigger than a threshold θ to get more

meaningful feature extraction. The local statistic quality of the distorted image is

expressed as the distance between the learned pristine MVG model and the distorted

image’s MVG model which fitted to the features extracted from the distorted im-
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age. The local statistic quality score QL is computed referring to the Bhattacharyya

distance [114] as

QL =

√√√√√
(ν0 − ν ′)T

(
Σ0 + Σ′

2

)−1

(ν0 − ν ′)
, (4.16)

where (ν0, Σ0) and (ν ′, Σ′) denote the learned pristine MVG model and the distorted

image’s MVG model respectively.

So far, we have obtained the local statistic quality score QL and global statistic

quality score QG. The overall quality score is then calculated as

Q = (QL)α · (QG)β, (4.17)

where parameters α, β ∈ [0, 1] are used to balance the relative contributions of differ-

ent components.

4.3 Experimental Results and Analysis

The performance of the proposed IQA metric was evaluated based on three gamut

mapping databases, namely Image Gamut [115], Basic Study [101], and Local Con-

trast [116]. We refer to these three databases by their initials simply as IG, BS,

and LC. MOS values are provided as the ground truth of image quality, which were

derived from a choice distribution model Thurstone’s Law [117] with the raw data

(i.e., the observers’ paired comparison choices). The databases are detailed in Table

4.2. In the IG database, algorithms that either uses a linear or sigmoidal mapping

have three possible source gamuts, then these six combinations were compared to

HPminDE and SGCK [56], resulting in eight GMAs. More description about these

databases can be found in Barańczuk et al. [101].
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Table 4.2: Gamut mapping image databases.

Database
Reference

images

Distorted

images
Subjects GMAs

IG 65 520 42 8

BS 97 1067 9–12 11

LC 72 576 21 8

PLCC and SRCC were employed for evaluating the performance of image quality

metrics as defined in Eq. 1.3 and Eq. 1.4. In our implementation, the patch size p

was set to 96 as suggested in Mittal et al. [66]. Stable performance was observed

across p ranging from 64 × 64 to 128 × 128 in the training of the MVG model. The

threshold θ was computed as 75% of the image’s maximum patch contrast empirically.

There are two free parameters α and β in Eq. 4.17, which were determined based

on the IG database. Specifically, these parameters were first tuned by maximizing

the SRCC and PLCC values in the IG database, and then they were used in the

performance evaluation of the other two databases, namely BS and LC. In this work,

we set α = 0.72, β = 0.32, which can achieve consistently good performance across

all databases.

4.3.1 Performance Comparison

The performance of the proposed metric was compared with several existing general-

purpose BIQA metrics, namely BIQI [58], DIIVINE [59], BLIINDS-II [60], BRISQUE

[61], DESIQUE [62], GL-BIQA [64], NFERM [65], NIQE [66], ILNIQE [67], and QAC

[68]. Note that a majority of these general-purpose BIQA metrics require subjective

quality scores to calibrate the learned support vector regression (SVR) module [85].

We implemented the SVR as described in Section 3.2.4. To get fair comparison, for
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(b)(a)

(d) (e)(c)

Figure4.6:Fiveimageswithdifferentextentsofgamutdistortion.(a)MOS=0.1750.

(b)MOS=0.2984.(c)MOS=0.4906.(d)MOS=0.8107.(e)MOS=1.1327.

metricslikeNIQE[66]andtheproposedmetricthatdonotneedsubjectivescoresto

trainamodel,theperformancewereevaluatedonthecorrespondingtestingsubsets.

Likewise,weemployedthetrain-testprocedurethatintroducedinSection3.3.1.

Toshowhowtheproposedmetricperformsonrealimages,wetesteditusing

severalgamut-mappedimages.Fig.4.6showsfiveimagesintheIGdatabase.They

havedifferentextentsofgamutdistortionandtheirsubjectivequalitiesareindicated

bythe MOSvalues. FromFig.4.6(a)–(e),the MOSvaluesaremonotonicallyin-

creased.Fromthisperspective,agoodqualitymetricshouldproducemonotonically

decreased/increasedscores.Table4.3summarizesthequalityscorespredictedbydif-

ferentmetrics.Itisobservedfromthetablethattheproposedmethodcanproduce
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Table 4.3: Quality scores predicted by different metrics on the images shown in Fig.

4.6.

Image (a) (b) (c) (d) (e)

MOS 0.1750 0.2984 0.4906 0.8107 1.1327

BIQI [58] 0.3252 2.5993 0.2448 1.7573 0.9508

DIIVINE [59] 2.2832 1.4810 2.9830 4.3668 3.2062

BLIINDS-II [60] 1.0178 2.2231 1.3299 2.3807 0.8861

BRISQUE [61] 1.4116 0.2731 1.0728 0.5091 0.8992

DESIQUE [62] 2.1690 0.4767 2.4472 0.6817 1.4283

GL-BIQA [64] 1.2103 1.3521 1.3068 0.9956 1.9890

NFERM [65] 1.9165 1.7856 2.1444 1.0183 2.0063

NIQE [66] 3.6236 3.1368 4.3637 4.7277 5.1013

ILNIQE [67] 25.6355 29.1973 22.1943 18.5658 19.0343

QAC [68] 0.6322 0.6480 0.7747 0.6984 0.7543

Proposed 2.3151 3.5770 4.3392 5.3979 6.7507

Table 4.4: Performance comparison of the proposed metric and the leading general-

purpose BIQA metrics on three gamut mapping databases.

BS IG LC

Metric PLCC SRCC PLCC SRCC PLCC SRCC

BIQI [58] 0.5937 0.5225 0.6098 0.5493 0.5861 0.5284

DIIVINE [59] 0.6538 0.5911 0.6926 0.6342 0.6387 0.5726

BLIINDS-II [60] 0.5865 0.5187 0.5880 0.5322 0.5990 0.5280

BRISQUE [61] 0.5958 0.5330 0.5779 0.5284 0.6262 0.5579

DESIQUE [62] 0.6554 0.5811 0.6435 0.5833 0.6264 0.5639

GL-BIQA [64] 0.6298 0.5684 0.6551 0.5994 0.6241 0.5624

NFERM [65] 0.6285 0.5509 0.5800 0.5230 0.5915 0.5266

NIQE [66] 0.5840 0.5280 0.5256 0.4520 0.6974 0.6288

ILNIQE [67] 0.5545 0.4849 0.5085 0.4520 0.5447 0.4940

QAC [68] 0.5143 0.4790 0.5241 0.3766 0.5634 0.4577

Proposed 0.7865 0.7275 0.7464 0.7165 0.7573 0.7074

monotonically increased quality scores for the five images, which are consistent with

their subjective scores. By contrast, the quality scores produced by the compared

metrics do not satisfy the monotonicity very well.

Table 4.4 summarizes the experimental results on the BS, IG, and LC databases.

It is observed from Table 4.4 that the proposed metric outperforms all the compared

69



0.0

1.0

2.0

3.0

BS

IG

LC
4.0

5.0

Figure4.7:F-testresultsofthecomparedmetricsagainsttheproposedmethod.

Table4.5:Summaryofstatisticalperformancebetweentheproposedmethodandthe

comparedmetricsonthreedatabases.

Metric BS IG LC Metric BS IG LC

BIQI[58] +1 +1 +1 GL-BIQA[64] +1 +1 +1

DIIVINE[59] +1 0 +1 NFERM[65] +1 +1 +1

BLIINDS-II[60] +1 +1 +1 NIQE[66] +1 +1 0

BRISQUE[61] +1 +1 +1 ILNIQE[67] +1 +1 +1

DESIQUE[62] +1 +1 +1 QAC[68] +1 +1 +1

metricsbyaclearmargin.Thegeneral-purposeBIQAmetricscanonlyproducequal-

ityscoresthatslightlycorrelatewithsubjectiveratings.Itappearsthatdistortions

ofgamutmappingareindeedverydifferentfromconventionalones,onlymeasur-

inggrayscaleofimageisnotsufficientforthequalityassessmentofgamut-mapped

images.

Thestatisticalsignificanceoftheproposedmodelwasfurtheranalyzedusingthe

F-test[12]asintroducedinSection3.3.1.ItisobservedfromFig.4.7thatinthethree

gamutmappingdatabases(i.e.,BS,IG,andLC),theproposedmethodproducesthe
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Table 4.6: Performance of each feature category.

Database Criterion Local Global All

BS
PLCC 0.7465 0.7033 0.7865

SRCC 0.6979 0.6575 0.7275

IG
PLCC 0.7269 0.6954 0.7464

SRCC 0.6738 0.6565 0.7165

LC
PLCC 0.7273 0.7073 0.7573

SRCC 0.6865 0.6474 0.7074

smallest prediction errors among all compared metrics. Table 4.5 lists the statistical

significance between the proposed metric and ten compared metrics. In Table 4.5, it

is clear that our method is superior to the existing metrics in most cases. Among

the 30 cases, our metric performs significantly better in 28 cases and comparable in

2 cases. Specifically, the proposed metric outperforms all the compared metrics in

the BS database. In the IG database, only DIIVINE is comparable to our method,

and the proposed metric outperforms all other metrics. In LC, only NIQE performs

comparably, and our method is superior to the remaining nine metrics. This indicates

that the proposed method performs consistently well across all databases, which is

desired in real applications.

4.3.2 Method Analysis

Two categories of statistical features are employed in the proposed metric, i.e., the

local statistics and the global statistics. In order to understand the relative contribu-

tions of the two components, the performance of each feature category was evaluated

separately on all the databases. The results are reported in Table 4.6. From the

results shown in Table 4.6, we can see that both local statistical and global statistical

features exhibit very good performance, which are already better than those of the
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Table 4.7: Computational overhead of each metric.

Metric Time (s) Metric Time (s)

BIQI [58] 2.39 GL-BIQA [64] 1.88

DIIVINE [59] 27.38 NFERM [65] 70.67

BLIINDS-II [60] 76.51 NIQE [66] 1.25

BRISQUE [61] 1.63 ILNIQE [67] 13.22

DESIQUE [62] 1.14 QAC [68] 0.38

Proposed 1.42

compared metrics in Table 4.4. Moreover, much better results are obtained when

they are used together. This indicates that the two categories of statistical features

can work cooperatively for image quality evaluation.

We further compared the computational overhead of each competing BIQA met-

ric. The experiments were conducted using the same platform as described in Section

3.3.2. The average runtime consumed by each metric for evaluating the quality of a

610× 400 image in the IG database is shown in Table 4.7. We observe that NFERM

and BLIINDS-II are the slowest, and QAC is the fastest. However, the quality pre-

diction performance of QAC is worse than other metrics (see Fig. 4.7). It can be seen

from Table 4.7 that the proposed model only needs less than 1.5 seconds to process

an image, which exhibits relatively low computational complexity.

In the next experiment, the proposed quality metric was applied for benchmarking

gamut mapping algorithms (GMAs). Since MOS scores are served as the ground truth

of image quality, we first ranked the GMAs according to the MOS values. This MOS-

based ranking was taken as the indicator of the relative performance. We then did

the same rankings on different quality metrics with their predicted scores and finally

the metric score-based rankings were compared with MOS-based ranking. For a good

quality metric, its score-based ranking should be consistent with the MOS-based
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Table 4.8: Performance rankings of eight GMAs based on the MOS values and pre-

dicted scores by different image quality metrics. Number “8” represents the worse

performance and smaller number indicates better performance. “Statistics” shows

the number of objective rankings that are consistent with the subjective rankings.

Correct objective rankings are marked in boldface.

GMAs MOS
BIQI

[58]

BRISQUE

[61]

NFERM

[65]

NIQE

[66]

ILNIQE

[67]

QAC

[68]
Proposed

Img00 1 6 2 3 3 4 3 1

Img01 2 4 1 2 2 5 1 2

Img10 3 3 5 4 1 1 2 4

Img11 4 1 4 1 4 3 8 3

LComp 5 5 7 6 7 2 5 5

SGCK 6 7 6 8 6 8 7 6

SComp 7 2 3 7 5 7 4 7

HPMinDE 8 8 8 5 8 6 6 8

Statistics – 2 2 2 3 1 1 6

ranking [14]. Hence, in terms of benchmarking GMAs, the performance of different

quality metrics can be easily determined through checking the number of consistent

rankings. Table 4.8 summarizes the experimental results on the eight GMAs [115]

which are used to build the IG database. Six general-purpose BIQA metrics were

included in the performance comparison.

From Table 4.8 we can see that our proposed quality metric shows the best consis-

tent ranking performance. Specifically, the proposed metric produces six consistent

rankings among the eight considered GMAs. In comparison, the compared metrics

produces at most three consistent rankings, which are significantly fewer than that

of our proposed metric. This further validates the superiority of the proposed metric

in benchmarking GMAs, which is quite useful in image processing systems.
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4.4 Summary

This chapter presents a “completely blind” quality assessment metric for gamut-

mapped images. A multivariate Gaussian model is pre-learned from local statistical

features extracted from a set of pristine natural images. The local features are used to

portray color and structural distortions, while features extracted from global statis-

tics are utilized to characterize the global naturalness of image. The performance

of the proposed metric has been tested on three gamut mapping databases. Com-

pared to the relevant general-purpose BIQA metrics, the proposed metric produces

predicted quality scores that are more consistent with human subjective perception.

The proposed metric can also be used for benchmarking gamut mapping algorithms.
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Chapter 5

Blind Image Quality Assessment

Based on Multi-Scale

Second-Order Statistics

Chapter 3 and Chapter 4 each introduces a distortion-specific BIQA metric. This

chapter presents a general-purpose BIQA method based on multi-scale second-order

statistics. Statistical features are extracted in both the wavelet domain and spatial

domain on natural images. A regression module is employed to map the extracted

features into quality scores.

5.1 Introduction

The majority of current statistics-based general-purpose BIQA methods, as discussed

in Section 2.2, focus on first-order statistics, which try to compute the characteristics
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of single pixels overlooking the spatial relationship with other pixels. For exam-

ple, the BRISQUE model [61] utilized the statistics of locally normalized luminance

coefficients to measure image degradation. In recent years, research has found that

higher-order statistics are also of great importance in the quality evaluation of images.

Xu et al. [118] presented a BIQA metric incorporating higher-order image statistics

for document image quality prediction. This metric showed superior performance in

comparison with their previously proposed neural network-based metric [119] which

considered only zero-order statistics from images. Liu et al. [120] utilized high-level

statistical features to capture the quality degradation of real camera images. Both

of these two methods employ features derived from cumulative higher-order moments

such as skewness (third-order) and kurtosis (fourth-order). However, the third- and

fourth-order image statistics are less robust than first- and second-order statistics due

to the high power of those functions that employed to produce the statistics.

Second-order statistics have proved to be effective in various image processing

tasks [109]. Huang et al. [121] pointed out that the second-order descriptor – HSOG

provides more discriminative ability than first-order descriptors such as SIFT [122].

The first-order information usually can not describe second-order properties of an im-

age such as variations of contrast or orientation whose detection requires the compar-

ison of neighbouring pixel points [123]. Moreover, second-order image dependencies

such as inner-orientation dependency are often disturbed by distortions, which can be

utilized to quantify deviations caused by image impairments [124]. While there are

extensive work on first-order statistical metrics, application of second-order statistics

to BIQA remains largely under-investigated.

In this chapter, a blind image quality evaluator based on multi-scale second-order
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statistics (BQEMSS) is proposed. The statistical features extracted in the wavelet do-

main are used to model the joint distribution of adjacent subband coefficients, while

features derived from the histogram of Gaussian derivative pattern in the spatial

domain are employed to capture structural degradation. To quantify the statisti-

cal regularities between subband coefficients, three types of image dependencies are

explored, which include spatially adjacent dependency, subband orientation depen-

dency, and subband scale dependency. Particularly, a bivariate generalized Gaussian

distribution is utilized to model the spatially adjacent bandpass responses. Moreover,

the distortion effects on spatial-oriented correlations between adjacent subband co-

efficients are examined by deploying an exponentiated cosine model. Experimental

results on several publicly available image quality databases demonstrate the good

performance of our approach.

5.2 Proposed Method

Fig. 5.1 shows the flowchart of the proposed BQEMSS metric. Before feature extrac-

tion, images are first transformed into a working color space – CIELAB [103], so as to

obtain better perceptual uniformity (see Section 4.2.1). Since the human visual sys-

tem (HVS) perceives image structures in a coarse-to-fine strategy, the spatial-domain

and wavelet-domain features are extracted at multiple scales. The two categories of

features are stacked to form a feature vector, then feature vectors obtained from a

set of training images are used to learn a support vector regression (SVR) model [85]

providing with the subjectively rated scores. The SVR model is then utilized for the

subsequent quality prediction of test image. The following subsections explain the
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Figure5.1:FlowchartoftheproposedBQEMSSmodel.

extractionofthesetwocategoriesoffeatures.

5.2.1 Second-OrderStatisticsofBandpassResponses

Studieshavedemonstratedthatthereexiststrongstatisticalrelationshipsbetween

co-locatedbandpasscoefficients[125].Previousprimaryrealizationsmainlyfocuson

extractingfirst-orderunivariatestatisticalfeaturestocapturethemarginaldescrip-

tionsofimagebandpassresponses,thustocreatesinglepixelsbasedstatisticalmodels

(e.g.,BRISQUE[61]).Notethatfirst-orderstatisticalfeaturesandsecond-ordersta-

tisticalfeaturesinwaveletdomaindifferinthenumbersofpixelsrequiredfordefining

localfeatures,namelyonepixelforfirst-orderandpairofpixelsforsecond-order[126].

Inthiswork,second-orderimagedependenciesbetweenadjacentsubbandcoefficients

(i.e.,pairofcoefficients)arestudied.Particularly,thedependencybetweenspatially

neighbouringpixelpointsiscapturedbyexploitingbivariatestatisticalfeatures.

Toformbandpassresponses,distortedimagesarefirstdecomposedusingawavelet
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transform model, i.e., the steerable pyramid [127]. Through the perceptual decom-

position, we are able to extract multi-scale statistical features from the obtained

subband coefficients. The use of steerable filters increases orientation selectivity and

avoids aliasing in subbands [128]. Given a frequency tuning orientation θ, a steerable

filter can be defined as

F (θ) = cos(θ)Fx + sin(θ)Fy, (5.1)

where Fx and Fy are the gradient component of two-dimensional bivariate isotropic

Gaussian function along the horizontal and vertical directions respectively [129, 130].

The Gaussian function is described as in Eq. 3.3 where ρ is the scale parameter. By

altering ρ, we are able to perform the multi-scale bandpass image decomposition. In

this work, images are decomposed with three scales and over ten frequency tuning

orientations.

Then a perceptually significant process (i.e., divisive normalization [131]) is ap-

plied to the subband coefficients. Note that a cortical neuron’s response is normalized

based upon the responses of its neighboring neurons in the HVS [125]. The use of

divisive normalization is designed to de-couple subband responses, which can be com-

puted as in Lyu et al. [132]

ŝ(xi, yi) = s(xi, yi)√
c1 +∑

j w(xj, yj)s(xj, yj)2
, (5.2)

where (xi, yi) are spatial indices, s denotes the subband coefficients and ŝ represents

the coefficients after divisive normalization. c1 is a saturation constant. The sum-

mation (Σ) is calculated over the neighboring pixels in the same subband which are

indexed by j, and w(xj, yj) is the associated Gaussian weighting function. After ap-
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plying divisive normalization, the subband statistics of high quality images become

more Gaussianized.

Univariate generalized Gaussian distribution has been widely-used to model the

locally mean subtracted and contrast normalized coefficients which are often utilized

to investigate first-order statistics [61, 67]. Here we study the bivariate statistics

of spatially adjacent subband responses. Bivariate analysis examines the correlation

between two sets of values, which can be used to explore second-order statistics [133].

In this work, A zero-mean bivariate generalized Gaussian distribution (BGGD) is

employed to model the joint distribution of spatially adjacent subband coefficients

ŝ(xi, yi). The corresponding density function of BGGD is defined as

d(x|M;λ, δ) = 1
|M| 12

gλ,δ
(
xTM−1x

)
, (5.3)

where x ∈ R2 and M is a 2 × 2 symmetric real scatter matrix. The parameter δ

controls the “shape” of the distribution while λ controls the scale. gλ,δ is the density

generator which can be computed as

gλ,δ(z) = δ

2 1
δπλΓ

(
1
δ

)exp
(
−1

2

(
z

λ

)δ)
, (5.4)

where z ∈ R+ and Γ(·) is the gamma function as defined in Eq. 3.14. In the case of

δ →∞, Eq. 5.3 converges to a bivariate uniform distribution; while δ = 0.5, Eq. 5.3

corresponds the bivariate Laplacian distribution [125]. Note that when δ = 1, Eq. 5.3

becomes the similar form of the distribution shown in Eq. 4.15 with m = 2. λ and

δ are “quality-aware” features that can be estimated using the maximum likelihood

estimator algorithm [112].

To quantify the statistical regularities between subband responses, we extract

features from joint distributions of adjacent subband coefficients. Three types of
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Figure5.2: BivariatedistributionsandBGGDfitsofverticallyadjacentsubband

coefficientsderivedfromthepristineimageFig.1.5(a). Column(a),(b),and(c)

correspondtotuningorientations0◦,36◦,and90◦respectively.Thefirstrowshows

thebivariatedistributions,wherethebluebarsdenotethehistograms.Thecolored

3DmeshesinthesecondrowrepresentthecorrespondingBGGDfits.

imagedependenciesareexploredandthefactthatthepresenceofdistortionwill

alterthesedependencies. WewilluseimagesinFig.1.5toillustratethedifferent

featurebehaviorsinpristineanddistortedimages.

1)SpatiallyAdjacentDependency1:Inthefirstimagedependency,weinvestigate

thestatisticsofspatiallyadjacentbandpassresponses. Specifically,weemphasize

thebivariatestatisticsofadjacentpixelsalongthehorizontalandverticaldirections

ateachsubband.ForanimageI(x,y),coefficientpairsarecollectedfromadjacent

locations(x,y)(x+1,y)and(x,y)(x,y+1)whichcorrespondtospatialorientations

90◦and0◦respectively. Werepresentthespatialorientationasθs.Anumberofbins

arecreatedusingthesubbandcoefficientsandthenbivariatehistogramsareobtained
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[125].

The joint empirical distributions of spatially adjacent subband coefficients are

well fitted by the BGGD model [124]. Fig. 5.2 shows the bivariate distributions and

BGGD fits of vertically adjacent (i.e., θs = 0◦) subband coefficients derived from the

lightness channel “L” of the pristine image Fig. 1.5 (a) at scale ρ = 1. Here we only

plot figures with tuning orientations θ ≤ 90◦, since the distribution across different θ

is nearly symmetric around 90◦. It can be seen that the shapes of both the bivariate

distributions and BGGD fits change along with the subband tuning orientations. The

three-dimensional illustrations of bivariate distributions exhibit close fits of BGGD.

As θs matches θ (see Fig. 5.2 (a)), the distribution height reaches peak and becomes

elliptical, which indicates highest dependency between vertically adjacent subband

coefficients. On the other hand, the bivariate distribution becomes a circular Gaussian

when θs and θ are orthogonal (see Fig. 5.2 (c)), which means almost no dependency

exists at this tuning orientation. Generally, the bivariate distribution becomes more

circular as θ increases and would exhibit an opposite trend in the case of θ ≥ 90◦.

Interestingly, the spatially adjacent subband coefficients derived from the red-green

channel “A” and blue-yellow channel “B” of images also exhibit this kind of bivariate

distribution. For simplicity, here we only discuss the statistics in lightness channel

“L”.

To further explain this spatially adjacent dependency, we plot the two BGGD

model parameters λ and δ based on the difference between θs and θ on the images

in Fig. 1.5. The results are shown in Fig. 5.3. The spatial and tuning orientation

difference is defined as ∆θ = θ − θs. We can see from Fig. 5.3 that both λ and δ

1*: Here means dependency between spatially adjacent subband coefficients in wavelet domain.
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Figure5.3: BGGDmodelparametervaluesacrossspatialandtuningorientation

differencesforimagesinFig.1.5.

exhibitsstrongdependencies.Thevaluesofλandδreachmaximumwhen∆θ=90
◦,

i.e.,θsandθareorthogonal.Notethatdifferenttypesofdistortionexhibitdifferent

extendofdependency,whichprovesthatλandδcanbeusedasquality-awarefeatures.

Sincetherearethirtysubbands,asetofsixtyfeaturesarethenobtained.

2)SubbandOrientationDependency:Ithasbeendemonstratedthatnaturalim-

agesexhibitstatisticalcorrelationsacrossorientations[59]. Hereweexaminethe

orientationdependenciesbetweenadjacentsubbandcoefficientsintwoperspectives.

First,adjacentsubbandresponseswithinthesamescaleareinvestigatedbyutiliz-

ingawindowedstructuralcorrelation.Subbandsarefilteredusingan11×11circular

symmetricGaussianweightingfunctionwithstandarddeviationof1.5[18]. Witha

similarformulationinEq.3.16,thestructuralcorrelationiscalculatedas

βij=
2αij+c2
α2i+α

2
j+c2

, (5.5)

whereβijdenotesthestructuralcorrelationmap,αiandαjarewindowedstandard

variancesinadjacentsubbands.αijisthecross-covariancewithinthelocalwindow

betweenadjacentsubbandcoefficients.c2isastabilizingconstant.Byusingthewin-
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Figure5.4:AdjacentorientationcorrelationstatisticsforimagesinFig.1.5.

dowingstrategy,theorientationcorrelationmapsexhibitalocallyisotropicproperty.

Themeanofβijistakenasaqualityfeature.Fig.5.4showsthefeaturevaluesofeach

adjacentorientationpairoverthreescalesforimagesinFig.1.5. Wecanobservethat

featuresfromonescalearenotenoughtodistinguishalltheorientationcorrelations.

Hereweproposetoinvestigatethenineadjacentorientationpairsatthreescales,

yieldatotaloftwenty-sevenperceptualfeatures.ItcanbeseenfromFig.5.4that

theorientationcorrelationbetweenadjacentsubbandresponsesdoesexistinnatural

images,andthiscorrelationisaffecteddifferentlybydifferenttypesofdistortion.

Ontheotherhand,studieshaveshownthatthecorrelationbetweenspatially

adjacentsubbandcoefficientsexhibitsperiodicbehavioracrossorientations[124].An

exponentiatedcosinefunctioncanbeutilizedtomodelthisperiodicbehavior,which

isdefinedas

φ=A[cos(2∆θ)]
2σ+ , (5.6)
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Figure5.5:Correlationsbetweenverticallyadjacentsubbandcoefficientswithrespect

torelativeorientationforimagesinFig.1.5.Theleftimageshowsthedistributionof

correlationcoefficientsanditscorrespondingmodelfitforFig.1.5(a),whiletheright

imageindicatesthatthedistributionofcorrelationcoefficientsvaryswithdifferent

distortiontypes.

whereφrepresentsthecorrelationcoefficients,Adenotestheamplitude.σand are

theshapeexponentandoffsetrespectively. Thisspatial-orientedcorrelationsserve

asinner-orientationdependenciesofimagebandpassresponses.Fig.5.5showsthe

correlationsbetweenverticallyadjacentsubbandcoefficientswithrespecttorelative

orientation∆θforimagesinFig.1.5atscaleρ=1.Itcanbeseenthatthecorrelations

betweenverticallyadjacentsubbandcoefficientsarewellfittedbytheexponentiated

cosinemodel. Thevalueofφreachesminimumwhen∆θ=90
◦,asθsandθare

orthogonal.Theoccurrenceofdistortionschangethedistributionofthecorrelation

coefficientsfromFig.1.5(a)intermsofamplitudeand/orshape. Moreover,wecan

noticethatdistributionsfromdifferenttypesofdistortionexhibitdifferentextentof

deviations. TheparametersA,σand arethenutilizedasquality-awarefeatures.

Foreachscale,threeparametersarecomputed,constitutingthenextsetofnine

perceptualfeatures.
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Figure5.6:AdjacentscalecorrelationstatisticsforimagesinFig.1.5.

3)SubbandScaleDependency:Previousstudyfoundthattheresponsesofreti-

nalganglioncellsarecloselyrelatedtoenhancementoffeatureslikeedgeswherethe

correlationsexistacrossscales[59].Inthiswork,weinvestigatethestatisticalproper-

tiesofsubbandresponsesbetweenadjacentscalesbyutilizingawindowedstructural

correlation(seeEq.5.5).Specifically,subbandcoefficientsfromadjacentscalesare

employedtocomputethestructuralcorrelationmapacrossorientations.Again,the

meanofthiscorrelationmapisusedasaqualityfeature.Fig.5.6showsthefeature

valuesofeachadjacentscalepairovertenorientationsforimagesinFig.1.5.Note

thatthehigh-passsubbandistakenas“scale‘0’”bandpassresponse.Itcanbeseen

thatthescale-structuralcorrelationsbetweenadjacentsubbandresponsesareinflu-

enceddifferentlyacrossdistortiontypes.Sincetherearethreescalepairsforeach

orientation,agroupofthirtyfeaturesarethenextracted.
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5.2.2 Statistics of Gaussian Derivative Pattern

First-order pattern features have been utilized for background modeling and face

recognition [134]. However, the first-order features usually fail to capture more de-

tailed discriminative information compared to that of second-order features. It has

been demonstrated that gradient is a powerful descriptor of local image structure, and

distortions in an image would change the distributions of its Gaussian smoothed gra-

dient magnitudes [67]. Here we calculate the gradient magnitude map by convolving

image I (lightness channel “L”) with two Gaussian derivative filters along the hori-

zontal and vertical directions respectively. The gradient magnitude gm is computed

as

gm =
√

(Ix ∗Gx)2 + (Iy ∗Gy)2, (5.7)

where Gx and Gy are the Gaussian derivative filters.

In the next step, spatially varying patterns in local regions of image I are encoded

by applying the local binary pattern operator [135] on the gradient magnitude map.

Note that applying the local binary operator on the original image would extract the

first-order structural information [136]. Here we apply the local binary operator on

the gradient magnitude map, thus to obtain second-order features. The Gaussian

derivative pattern (GDP) code is defined as

GDPN,R =
N−1∑
k=0

ϕ (g̃m) 2k, (5.8)

where g̃m = g(k)
m − g(c)

m , R is the radius of neighbourhood circle and N is the number

of neighbours. c and k denote the center and neighbouring locations respectively. If

the coordinates of center c are (0, 0), then the coordinates of its neighbours are given
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by (−Rsin2πk
N
, Rcos2πk

N
). ϕ(·) is the thresholding function

ϕ (g̃m) =


0, g̃m ≤ 0

1, g̃m > 0.
(5.9)

The GDP code characterizes the spatial structure of the local image texture. Ojala

et al. [135] pointed out that “rotation invariant” codes can measure the occurrence

statistics of individual patterns corresponding to certain micro-features in image,

and the histogram of “uniform” patterns provides better discrimination compared to

that of all individual patterns. In order to get a rotation invariant uniform texture

descriptor, the GDP code is revised as

GDPN,R =


∑N−1
k=0 ϕ (g̃m) , if Ψ (GDPN,R) ≤ 2

N + 1, otherwise
(5.10)

where GDPN,R denotes the locally rotation invariant uniform GDP operator. Ψ(·) is

the uniformity measure function, which is defined as

Ψ (GDPN,R) =
∣∣∣ϕ (g(N−1)

m − g(c)
m

)
− ϕ

(
g(0)
m − g(c)

m

)∣∣∣
+

N−1∑
k=0

∣∣∣ϕ (g(k)
m − g(c)

m

)
− ϕ

(
g(k−1)
m − g(c)

m

)∣∣∣ . (5.11)

This uniformity measure corresponds to the number of bitwise transitions in patterns.

The choice that restricts the bitwise transition number to no larger than 2 is proved

to provide the GDP operator with better discriminative ability [135]. The uniform

operator GDPN,R outputs N+2 patterns where one of them is labeled as “non-uniform

pattern” and the rest are grouped as “uniform pattern”.

In this work, we set R = 1 and N = 8, which means the uniform GDP operator

GDPN,R has ten distinct output values. The obtained nine “uniform” patterns corre-

spond to primitive micro-structures such as edges and spots, which can be taken as
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feature detectors [135]. Specifically, “0” represents bright spot, “1–7” stands for edges

of different negative and positive curvature, “8” denotes dark spot or flat area. Note

that the presence of distortion could change the pattern type, for example, blurring

can change an edge pattern to flat pattern, which makes the uniform GDP operator

an effective measure to describe different distortions [137].

The uniform GDP operator is applied on each pixel to extract discriminative

features from its neighborhood. We model the distribution of obtained patterns by

spatial histogram. Suppose the size of an input image is X × Y and a pixel location

is denoted as (i, j), the histogram of the uniform GDP patterns is computed as

H(p) = 1
XY

X∑
i=1

Y∑
j=1

ϕ′
(
GDPN,R(i, j), p

)
, (5.12)

where p ∈ [0, N + 1] are the possible patterns, ϕ′(·) is a thresholding function as ϕ(·)

(see Eq. 5.9). If GDPN,R(i, j) = p then ϕ′(·) = 1, else ϕ′(·) = 0.

Fig. 5.7 shows the histograms of the uniform GDP patterns on images in the CSIQ

database [25]. We calculate the average histograms of images in the same category.

It can be seen that the structural histograms vary by distortion type except for the

contrast change distortion. Since the uniform GDP operator excludes magnitudes of

the difference between the center pixel and its neighbours in encoding, it fails to cap-

ture local contrast change (cause blur between neighbouring pixels) in images which

is important in the human perception [138]. To this end, we modify H, leveraging

gradient magnitude gm (see Eq. 5.7) as a weighting map. The improved histogram

H ′ is then calculated as

H ′(p) = 1
XY

X∑
i=1

Y∑
j=1

gm(i, j)ϕ′
(
GDPN,R(i, j), p

)
. (5.13)
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Figure5.7:HistogramsoftheuniformGDPpatternsonimagesintheCSIQdatabase

[25].(a)Histogramfrompristineimages.(b–f)correspondtohistogramsfromdis-

tortedimageswherethedistortiontypeisGaussianblur,JPEG2000compression,

JPEGcompression,whitenoise,andcontrastchangerespectively.

ThehistogramH incorporatesthestructuralandgradientinformation,whichmakes

iteffectivetodescribetheimpactofdistortions. Weextracttenquality-awarefeatures

fromeachimageasH hastenbins. Tocapturemulti-scalebehavior,featuresare

computedatsixscalesbydown-samplingtheimages,yieldingasetofsixtyfeatures.

5.2.3 Regression

Inthefinalstage,aclassicregressionmoduleSVR[85]isutilizedtolearntheproposed

qualitypredictionmodel.DetailsabouttheregressionprocedurearegiveninSection

3.2.4.
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5.3 Experimental Results and Analysis

The performance of the proposed BQEMSS model was evaluated on five public image

quality databases. The databases are detailed in Table 1.1, including the numbers of

distorted images, distortion types, etc. A total of 6281 images were used in the experi-

ments. We compared our proposed BQEMSS model with nine leading statistics-based

general-purpose BIQA metrics, including BIQI [58], DIIVINE [59], BLIINDS-II [60],

BRISQUE [61], QAC [68], BHOD [136], NIQE [66], NFERM [65], and ILNIQE [67].

Two evaluation criteria were adopted as described in Section 1.2. In our proposed

BQEMSS model, there are three free parameters, including the number of scales and

orientations in wavelet decomposition and the number of scales in spatial-domain

feature extraction. These parameters were tuned based on the CSIQ database [25]

by maximizing the PLCC and SRCC values, and then they were applied in the per-

formance evaluation of the other four databases.

5.3.1 Performance Comparison

We first evaluated the IQA models on each individual database using the train-test

procedure introduced in Section 3.3.1. To get fair comparison, metrics that do not

incorporate training process (as described in Section 2.2) were evaluated on the par-

titioned testing subsets. The results are summarized in Table 5.1. It can be seen

from Table 5.1 that the proposed BQEMSS model performs consistently well in the

five databases. Specifically, in CSIQ, BQEMSS produces the best prediction accuracy

(PLCC) and monotonicity (SRCC). In LIVE, although not the best, BQEMSS per-

forms only slightly worse than the best metrics. In the largest database TID2013 and
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Table 5.1: Performance comparison on each individual database. The best result is

marked in boldface.

LIVE CSIQ TID2013 LIVEWC CID2013

Metric PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BIQI 0.7405 0.7581 0.5348 0.5209 0.3664 0.3458 0.5479 0.5324 0.6757 0.6569

BLIINDS-II 0.9129 0.9165 0.6983 0.6961 0.6278 0.5307 0.5064 0.4885 0.4987 0.4766

DIIVINE 0.8923 0.8822 0.7154 0.7150 0.6595 0.5471 0.5283 0.5148 0.5124 0.4972

BRISQUE 0.9275 0.9296 0.6950 0.7077 0.5422 0.5296 0.5864 0.5685 0.4783 0.4309

QAC 0.8612 0.8645 0.6323 0.5161 0.4950 0.3914 0.2835 0.2764 0.2244 0.2063

BHOD 0.9344 0.9282 0.7654 0.7483 0.6137 0.5432 0.5361 0.4755 0.6092 0.5934

NIQE 0.9037 0.8993 0.7275 0.6214 0.4363 0.3236 0.4848 0.4292 0.6136 0.6007

NFERM 0.9321 0.9369 0.8030 0.7861 0.6709 0.6389 0.6055 0.5908 0.6322 0.6281

ILNIQE 0.8904 0.8936 0.8335 0.8143 0.6456 0.5278 0.5127 0.5033 0.4634 0.4540

BQEMSS 0.9305 0.9212 0.8464 0.8225 0.6973 0.6674 0.6335 0.6212 0.7214 0.7053

two real camera image databases LIVEWC and CID2013, BQEMSS achieves notably

better prediction performance than the compared methods. From these results we

then draw the conclusion that BQEMSS produces the state-of-the-art performance.

It is worth noting that the competing methods usually perform better on legacy

databases than on the real camera image databases, which indicates that quality

assessment for real camera images reserves great potential for further study.

Besides direct comparisons with numerous IQA metrics, we further analyzed the

statistical significance of the proposed model using F-test [12]. Details about the

F-test can be found in Section 3.3.1. Fig. 5.8 shows the F-test results between

the compared metrics and the proposed BQEMSS model on the five databases. It

can be observed that BQEMSS produces the smallest prediction errors among all

the compared metrics in CSIQ, TID2013, LIVEWC, and CID2013. In LIVE, only

NFERM produces slightly smaller prediction errors than BQEMSS. Table 5.2 lists

the statistical significance between the proposed metric and ten compared metrics. It
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Figure5.8:F-testresultsofthecomparedmetricsagainsttheproposedBQEMSS

method.

Table5.2:StatisticalperformancebetweentheproposedBQEMSSmethodandthe

comparedmetricsonfivedatabases.

Metric LIVE CSIQ TID2013 LIVEWC CID2013

BIQI +1 +1 +1 +1 +1

BLIINDS-II 0 +1 +1 +1 +1

DIIVINE +1 +1 +1 +1 +1

BRISQUE 0 +1 +1 +1 +1

QAC +1 +1 +1 +1 +1

BHOD –1 +1 +1 +1 +1

NIQE +1 +1 +1 +1 +1

NFERM –1 +1 +1 +1 +1

ILNIQE +1 0 +1 +1 +1

isclearfromTable5.2thattheproposedBQEMSSmodelissuperiortotheexisting

metricsinmostcases. Amongthe45combinationsofmetricsanddatabases,our

metricperformssignificantlybetterin40cases,comparablein3casesandworsein

only2cases. Thisindicatesthattheproposedmethodperformsconsistentlywell

acrossalldatabases,whichisdesiredinpracticalapplications.

Forvisualization,weprovidethescatterplotsofthesubjectiveMOSvaluesagainst
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Figure5.9:ScatterplotsofsubjectiveMOSvaluesagainstpredictedscoresbydifferent

metricsontheTID2013database.

theobjectivescorespredictedusingdifferentqualitymetricsinthelargestTID2013

database(seeFig.5.9). Agoodmetricisexpectedtoproducescatterplotswith

betterconvergenceandmonotonicity.ItcanbeobservedfromFig.5.9thatthe

qualityscorespredictedbytheproposedBQEMSSmodelaremoreconsistentwith

subjectiveevaluations.

Inthenextexperiment,wecomparedtheperformanceofBQEMSSandfivelead-

inggeneral-purposeBIQAmetrics(BLIINDS-II,DIIVINE,BRISQUE,NFERM,and
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Table 5.3: SRCC results on each individual distortion type in the full TID2013

database. The indexes represent the distortion types explained in Fig. 1.6.

Metric #(1,1) #(2,1) #(3,1) #(4,1) #(5,1) #(6,1) #(1,2) #(2,2)

BLIINDS-II 0.7148 0.6642 0.5269 0.4118 0.7362 0.6096 0.5830 0.8165

DIIVINE 0.7537 0.4676 0.4684 0.3766 0.6084 0.7468 0.5656 0.8075

BRISQUE 0.8284 0.5547 0.4948 0.3459 0.6204 0.6055 0.6786 0.8426

NFERM 0.8262 0.8393 0.3127 0.2473 0.8958 0.5525 0.6684 0.8187

ILNIQE 0.8737 0.8155 0.8703 0.5107 0.8653 0.7047 0.8733 0.8132

BQEMSS 0.8643 0.7266 0.8458 0.6047 0.8385 0.7106 0.8869 0.8221

Metric #(3,2) #(4,2) #(5,2) #(6,2) #(1,3) #(2,3) #(3,3) #(4,3)

BLIINDS-II 0.6882 0.8684 0.8894 0.2424 0.2818 0.0982 0.3235 0.1250

DIIVINE 0.7516 0.7927 0.8533 0.3365 0.2609 0.1389 0.1924 0.0914

BRISQUE 0.5821 0.9055 0.9135 0.2878 0.3136 0.0829 0.1717 0.1122

NFERM 0.6554 0.9277 0.9264 0.2140 0.2804 0.0629 0.0718 0.1842

ILNIQE 0.7257 0.8386 0.8536 0.2828 0.4217 0.0820 0.1331 0.1558

BQEMSS 0.7952 0.9135 0.9075 0.3488 0.3167 0.2023 0.1876 0.1764

Metric #(5,3) #(6,3) #(1,4) #(2,4) #(3,4) #(4,4) #(5,4) #(6,4)

BLIINDS-II 0.0286 0.0146 0.3075 0.4610 0.5169 0.7882 0.5363 0.8159

DIIVINE 0.1686 0.1632 0.7463 0.2157 0.6336 0.6384 0.6657 0.8353

BRISQUE 0.0488 0.1053 0.6263 0.2068 0.5889 0.7747 0.6586 0.7654

NFERM 0.2624 0.3335 0.8053 0.1197 0.7886 0.6635 0.5779 0.6585

ILNIQE 0.1125 0.1696 0.6932 0.3535 0.7558 0.7462 0.6777 0.8636

BQEMSS 0.6532 0.3826 0.7886 0.4179 0.7797 0.7065 0.6211 0.8582

ILNIQE) on each distortion type in TID2013. The competing models were trained

on the 80% of images of various distortion types and then tested on the left 20% of

images with the specific distortion type. Their performance are reported in Table

5.3. Without losing the generality, only the SRCC results are shown. For each per-

formance criterion and database, the two best results are highlighted in bold. Note

that the TID2013 database has 24 distortion types, where the detailed distortion

information can be found in Fig. 1.6.

From the results shown in Table 5.3, we can see that BQEMSS has won 18 times in

the first two place, whereas the compared metrics at most have 9 times. This further
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validates the effectiveness of the proposed BQEMSS model across various distortion

types compared to the leading general-purpose BIQA metrics. Note that for distortion

type “#(5, 3)”, the proposed BQEMSS model outperforms the other metrics by a large

margin, which owes to the improved histogram of Gaussian derivative patterns (see

Section 5.2.2). Moreover, it is observed that for distortion types “#(1, 3)”, “#(2, 3)”,

“#(2, 4)”, “#(3, 3)”, “#(4, 3)”, “#(6, 2)”, and “#(6, 3)”, none of the evaluated models

is able to obtain satisfying results. This indicates that more investigations are needed

to deal with these “sophisticated” distortion types.

5.3.2 Method Analysis

To test the generalization capability of the proposed BQEMSS model, we conducted

cross-database performance evaluation. Five general-purpose BIQA metrics that in-

corporate training process were included in the comparison, namely BIQI, BLIINDS-

II, DIIVINE, BRISQUE, and NFERM. The competing metrics were trained on one

database and then tested on other two databases. The results are shown in Table 5.4.

It is clear in Table 5.4 that the proposed BQEMSS model exhibits the best gener-

alization capability. Specifically, when trained on TID2013 and then applied to other

databases, BQEMSS outperforms the compared metrics in terms of both prediction

accuracy and monotonicity in CSIQ. In LIVE, only NFERM is comparable to our

proposed BQEMSS model. When trained on LIVE, the proposed BQEMSS metric

outperforms all the compared metrics by a large margin. Note that in the case of

training on LIVE, the competing methods deliver worse performance than that of

training on TID2013. This is not surprising since the TID2013 database contains far
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Table 5.4: Cross-database performance evaluation. Models are trained on full LIVE

or TID2013 respectively, and tested on the other two databases. The best result is

marked in boldface.

Trained on LIVE Trained on TID2013

CSIQ TID2013 LIVE CSIQ

Metric PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BIQI 0.3650 0.2725 0.0685 0.0608 0.6031 0.5858 0.3802 0.2817

BLIINDS-II 0.4342 0.3460 0.0945 0.0833 0.8088 0.7857 0.4991 0.4208

DIIVINE 0.4113 0.3332 0.1284 0.1089 0.6421 0.6294 0.4780 0.4528

BRISQUE 0.3925 0.3679 0.1453 0.1370 0.5877 0.5247 0.4517 0.4167

NFERM 0.5585 0.5209 0.1965 0.1832 0.8283 0.7963 0.6567 0.5644

BQEMSS 0.6843 0.6275 0.4165 0.3211 0.8211 0.8054 0.7398 0.7193

more distortion types than the other two databases, and a majority of distortion types

in TID2013 are not included in the other two databases. The results indicate that

BQEMSS not only produces very good overall performance, but also shows superior

generalization capability.

In BQEMSS, we use two categories of features, including wavelet-domain features

and spatial-domain features. To explore the contributions of two components, we

evaluated the performance of each feature category separately on all databases. The

results are reported in Table 5.5.

It can be seen from Table 5.5 that by using a single type of features, the perfor-

mance of BQEMSS is much worse than using the integrated features. The wavelet-

domain features are more capable of quantifying distortions in the LIVE database,

while spatial-domain features are superior on the quality prediction in CSIQ and

CID2013. In TID2013 and LIVEWC, the two categories of features exhibit compa-

rable performance. This indicates that both two categories of features are needed

in the proposed metric, and they have complementary contributions to the overall
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Table 5.5: Relative contributions of the categories of features.

Database Criterion
Wavelet

domain

Spatial

domain
All

LIVE
PLCC 0.9138 0.8927 0.9305

SRCC 0.9046 0.8904 0.9212

CSIQ
PLCC 0.7894 0.8037 0.8464

SRCC 0.7355 0.7835 0.8225

TID2013
PLCC 0.6418 0.6329 0.6973

SRCC 0.6354 0.6032 0.6674

LIVEWC
PLCC 0.6094 0.6138 0.6335

SRCC 0.5994 0.6057 0.6212

CID2013
PLCC 0.6388 0.6947 0.7214

SRCC 0.6229 0.6791 0.7053

performance.

5.4 Summary

In this chapter, a general-purpose BIQA metric based on multi-scale second-order

statistics is presented, namely BQEMSS. The proposed BQEMSS model investigates

second-order statistics in both the wavelet domain and spatial domain on natural im-

ages. Specifically, the statistical features extracted in the wavelet domain are used to

model the joint distribution of adjacent subband coefficients, while features derived

from the histogram of Gaussian derivative pattern are employed to capture struc-

tural degradation in the spatial domain. We have conducted extensive experiments

and comparisons on five subjectively rated image quality databases. The experi-

mental results have demonstrated that BQEMSS is superior over the state-of-the-art

statistics-based general-purpose BIQA models.
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Chapter 6

Deep Neural Network for Blind

Image Quality Assessment

The BIQA metrics presented in Chapters 3 – 5 are all heuristic-based, which require

highly manually engineered feature designs. In addition, these frameworks usually

involve separate feature extraction stage and quality prediction stage. In this chapter,

a fully data-driven learning-based model is presented, which provides an end-to-end

solution to general-purpose BIQA.

6.1 Introduction

During the past few years, convolutional neural networks (CNNs) have an enormous

impact on computer vision research and witnessed the great development of data-

driven algorithms for various vision tasks. Instead of carefully designing hand-crafted

features, deep CNNs models are able to automatically discover feature representa-

tions from raw image data. With continuous efforts of boosting the abilities of CNNs,
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a series of popular architectures have been developed, such as AlexNet [139], VG-

GNet [140], GoogLeNet [141], ResNet [142], and DenseNet [143], etc., which have

been widely used in many vision applications [144, 145, 146, 147, 148, 149, 150]. In-

spired by the huge success of CNNs and their higher representational ability, a range

of CNNs-based approaches (as described in Section 2.2) have been progressively pro-

posed to promote the performance of IQA.

Analogous to the applications in other vision tasks, the CNNs-based IQA frame-

works also conform to the basic principles of CNNs architecture design, which gener-

ally consist of a feature extractor for characterizing the rich features of input images

followed by a regression head for predicting the final quality assessment scores. For

example, Kang et al. [69] developed a network with the first several convolutional

layers producing feature maps and the last layer is a simple linear regression with an

one-dimensional output that predicts the score. In Bosse et al. [74], features were

extracted from the distorted image patches and the reference image patches by CNNs

and then the feature vector was regressed to a patch-wise quality estimate. Although

impressive prediction accuracies have been achieved, these prior approaches some-

what ignore the importance of multi-level supervision and multi-scale integration,

which have become the study focuses in other realms of vision problems, e.g., saliency

detection [151, 152], crowd counting [153, 154], and classification [155, 156, 157]. The

works [158, 159] have demonstrated that shallow layers are beneficial for extracting

informative localization information, whereas higher layers usually feature the more

abstract and high-level semantic cues. Moreover, the inception module in GoogLeNet

[141] with different kernel sizes proves the effectiveness of multi-scale features aggre-

gation.
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Recently, investigation on delicate CNNs structures with higher learning ability

and finer feature fusion has drawn attention in designing IQA models. Gao et al.

[160] analyzed the deficiencies of shallow networks and proposed a deep structure with

multi-level feature aggregation to reduce the sensitivity to local feature degradations,

where the potential of utilizing supervision of intermediate features to boost the

prediction performance was discussed. Even though the usage of multi-level features

obtained certain performance improvement, they densely reused the previous layers

and inevitably increased the input dimension for the final score predictor, thereby

impeding the model to well adapt to testing datasets. Considering the limited training

samples in available IQA datasets, it is meaningful to sparsely sample the feature

levels for final prediction with the demands of necessary and fundamental multi-level

semantics. Furthermore, scale-invariance was neglected in the underlying network of

this pioneer work, whereas Fu et al. [161] explained that multi-scale features are of

great importance for the robustness of IQA methods, as different receptive fields can

implicitly capture distinct noise levels.

To mine the diverse semantic levels of representations and to extract scale-invariant

features while avoiding drastic increase of model’s parameters, a novel CNNs-based

multi-scale integration network (MSINet) is put forward for general-purpose BIQA

in this chapter. The proposed MSINet combines the advantages of multi-level and

multi-scale aggregations at the same time. In specific, a VGG-16 model pretrained

on ImageNet database [162] is attached at the beginning of the network to extract

general features, and then a group of multi-scale integration modules (MSIs) are suc-

cessively connected to exploit high-level fine-grained representations. To facilitate the

convergence of the network and help MSIs better learn useful information, residual
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connections among deep MSI modules and two-level pretrained features are incorpo-

rated. Finally, features at multiple levels (low, middle, and high) are concatenated

and fed into the regression head to utilize the discriminative hints for score estima-

tion. Apart from the discriminative features, this multi-level strategy also plays a

vital role in directly passing the gradient flows to deep layers, and thus avoids the

issues of gradient vanishing.

It is worth noting that attention mechanisms have become the prevailing construc-

tion units in CNNs architectures and obtained promising improvements. For example,

the SENet [163] presented an attention protocol along the convolution channels to

emphasize informative kernels while suppressing useless ones. The spatial attention

mechanism [164] was proposed to reweigh the spatial pixel-wise values. Benefiting

from the intrinsic merits of attention mechanisms, these two strategies have been

used in many CNNs models for performance boosting [165, 166, 167]. To take advan-

tages of the attention mechanisms and better recalibrate the array of kernels from

multi-level features, in our proposed MSINet, channel-wise multi-level adaptation is

deployed on the combined multi-level feature maps before entering into the regression

head.

Experimental results on five public available datasets shows that our proposed

MSINet attains the state-of-the-art performance among the existing learning-based

general-purpose BIQA approaches. Ablation studies also shed light on the effective-

ness of each component in our model.
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Figure 6.1: The overall architecture of our proposed MSINet.

6.2 Proposed Method

6.2.1 The Overall Pipeline of MSINet

As shown in Fig. 6.1, the proposed MSINet for general-purpose BIQA is comprised of

four primary components: the pretrained frontend, a stack of multi-scale integration

modules (MSIs), multi-level semantics reuse, and channel-wise multi-level adaptation.

In the rest of this section, we will elaborate each component accordingly.

6.2.2 The Frontend

The pretrained VGGNet features the simplification and good generalization ability

of the model and has dominated various downstream tasks (e.g., object detection

[144] and visual tracking [168]) by fine-tuning its parameters on datasets in unseen

domains. Although ResNet [142] and DenseNet [143] are also well-known pretrained
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Figure6.2: Multi-scaleintegrationmodule(MSI).Itconsistsofmulti-branchconvo-

lutionswithkernelsizesfrom1×1to11×11toextractfine-grainedfeatureswiththe

propertyofscale-invariance.Theresiduallearning[142]isleveragedtofacilitatethe

convergenceofthewholenetwork.

models,theyhaverelativelyhigherscalesandareeasilypronetooverfitting.Hence,

inourmethod,thefirsttenlayersofVGGNet-16pretrainedonImageNetdatabase

[162]areselectedtobuildthefrontendstemforextractinglow-levelfeatures,which

iscapableofremedyingtheissuesoflimitedtrainingsamples.Theuseofpretrained

modelnotonlyspeedsuptheconvergenceofthenetwork,butalsoaimsatproviding

low-andmiddle-levelfeaturesforenrichingthecluesofdistortionextentinference.

Notethatthefrontendisfine-tunedalongwiththebackendinanend-to-endmanner.

6.2.3 Multi-ScaleIntegration Module

InspiredbytheinherentmeritsofinceptionmoduleinGoogLeNet[141],wepropose

amulti-scaleintegration(MSI)moduletoextractcharacteristicsatvariedscales,

seeFig.6.2. Differentfromtheoriginalinceptionmodule,weremovethepooling
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sub-branch from the cardinality dimension and move a further step to broaden the

diversity of scale branches. The six branches of convolutions Ci (i ∈ {1, 2, 3, 4, 5, 6})

with different kernel sizes from 1×1 to 11×11 are delicately designed to capture

abundant receptive fields. Taking the model complexity into account, the plain con-

volutions with real larger kernel sizes are evaded as they easily incur the explosion

of computational overheads. Instead, the atrous convolutions [169] with a number of

dilation rates (1,2,3,4,5) are leveraged in the MSI module to enlarge the kernel sizes.

As shown in Fig. 6.2, an 1×1 convolution layer (Rf ) is first plugged in the front

of a multi-branch structure to readjust and fuse the input feature maps. The outputs

of all branches are concatenated together along the channel dimension to form the

input of the rear 1×1 convolution (Rr) with the purpose of dimension reduction.

Notably, residual learning [142], which uses identity mapping for shortcut connections,

is employed in this module to accelerate the learning procedure by incorporating

residual connection. Given the input features F , the computation of the MSI module

can be formulated as

T1 = Rf (F,WRf )

B1 = C1(T1,WC1), B2 = C2(T1,WC2), B3 = C3(T1,WC3)

B4 = C4(T1,WC4), B5 = C5(T1,WC5), B6 = C6(T1,WC6)

T2 = B1 ◦B2 ◦B3 ◦B4 ◦B5 ◦B6

T = Rr(T2,WRr) + T1,

(6.1)

where WRf ,WC1 ,WC2 ,WC3 ,WC4 ,WC5 ,WC6 ,WRr denote the learnable parameters of

corresponding convolutions and “◦” represents the concatenation operation. Ti and

Bi represent the intermediate features and T is the output. All convolution layers are

followed by batch normalization and ReLU activation function to reduce the internal
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covariate shift and to add non-linearity. This multi-scale convolution aggregation

module is believed to substantially reduce the number of parameters while preserving

the performance.

As for the configuration of the MSINet, six MSI modules are stacked sequentially

to process the general features from the frontend and to produce the high-level repre-

sentations with more abstract hints, as shown in Fig. 6.1. To delve deep into previous

multi-scale information encoded by the frontend, we devise side shortcut connections

among intermediate layer and final layer of the frontend, and the output of the third

MSI module. Then three the groups of feature maps are combined through max

pooling, 1×1 convolution and pixel-wise summation.

6.2.4 Multi-Level Semantics Reuse

As described in Section 6.1, features extracted at multiple levels are vital for the

development of IQA metrics since different levels focus on various semantics of gran-

ularities. The categories and distributions of distortions dispersing across natural

images are drastically varied, from global to local [26]. Therefore, it is reasonable and

meaningful to capture multi-granularity features for multi-level noises that appeared

in images. CNNs naturally learn hierarchical features with the depth of layers from

shallow to deep [160]. For example, the assessment of global distortion may heavily

rely on the shallow layers with the behaviour of low-pass filtering (e.g., low-level fea-

tures as described in Chapter 3), whereas modelling local distortions demands more

abstract features provided by deep layers1.
1*: In IQA, global distortion means the distortion operates “globally”, which differs from the

terminology in CNNs architectures such as global features. For example, impulse noise and Gaussian
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(a) (b) 

(c) (d) 

Figure6.3:Imageswithconventionalorrealisticdistortions.(a)and(b)arecon-

ventionaldistortionswhere(a)iscontaminatedwithimpulsenoiseand(b)comes

withlocalblock-wisedistortions(e.g.,inpaintingsituation).(c)and(d)arerealistic

distortions.(a)and(b)arefromtheTID2013database[26].(c)and(d)arefrom

theLIVEWCdatabase[27].

Fig.6.3depictsimageswithseveraltypesofdistortions,whichexplainsthatmulti-

levelsemanticsareneededintheassessmentofdistortions.Specifically,Fig.(a)and

(b)areconventionaldistortions,whereasFig.(c)and(d)arerealisticdistortionsas

describedinChapter1.Intuitionally,globalobjects-agnosticdistortionslikeFig.(a)

maybemeasuredthroughthecorrelationdifferencesfromthegradientandcontrast

informationthatusuallycapturedbyshallowfeaturesinCNNs,whereasforlocal

noiseareconsideredasglobaldistortion.
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distortions like Fig. (b), the objects that dispersing across the whole scene need to be

recognized by resorting to higher-level representations with larger receptive fields in

CNNs models. Particularly, assessing the distortions in Fig. (c) and (d) needs more

rich and abstract semantic information provided by deeper CNN layers. For example,

in Fig. (c), observers need to recognize that the building and the persons are not in

their upright positions, and in Fig. (d), it is vital to be aware of there is a person in

the left part of the image before predicting the image quality.

To avoid the dense sampling of levels, we predefine three levels of representations

to be reused by the decoder head, namely low-, middle-, and high-level semantics

(denoted as L1, L2, and L3), which cover diverse noises levels. Specifically, the low-

level semantics are delivered from the fourth layer of the frontend, and the output of

the frontend is regarded as the middle-level cues, while the final MSI module produces

the high-level semantics, see Fig. 6.1. Three adaptive average pooling operations are

imposed on the three-level semantics respectively so as to reduce dimensions of the

feature maps, and then the results are concatenated together to be utilized by the

subsequent module. Hence, the output Hin of multi-level semantics reuse can be

denoted as

Hin = avg(L1) ◦ avg(L2) ◦ avg(L3), (6.2)

where “avg” means adaptive average pooling. The concatenation operations perform

along the channel dimension. By this means, the discriminative features at multiple

levels of granularities are fused and passed through the regressor for adapting to a

wide range types of distortions.
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6.2.5 Channel-Wise Multi-LevelAdaptation

Oncethemulti-levelfeaturesareextracted,itisnaturaltocombinethemandthen

takethemastheinputofregressionhead.Anintuitiveideaistotreatthemequally

anddirectlyconvolvethem.However,thisintegrationmethodinevitablyintroduces

noisesintothesubsequenceconvolutionlayerasthereareredundantorinformation-

lesschannels,therebyincreasingburdensoflearningatthenextlayer. Totackle

thisissue,achannel-wiseattention(Attn)strategyisimplementedtoachievethe

multi-leveladaptation,seeFig.6.4.Theattentionsubnetworktakesthemulti-level

characteristicsHinasinputandcomputesasetofchannel-wiseweightsthrougha

sequenceofconvolution,averagepooling,fully-connectedlayers,andsigmoidfunc-

tion.Then,theinputrepresentationsarerecalibratedusingthelearnedchannel-wise

weightstoemphasizeinformativemapswhilesuppressingtheimpactsofuselessones

ontheregressor,whichisformulatedas

Ĥin=Attn(Hin,Wattn)×Hin, (6.3)

whereWattnindicatestheparametersoftheattentionsubnetwork.

ĤinisfurtherfedintotheregressionheadRHtogeneratethefinalpredicted

scorevalueP.Theregressionheadiscomprisedofone3×3convolutionandthree
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fully-connected layers. Likewise, batch normalization, ReLU and dropout techniques

are also employed in the regressor. The predicted score P is calculated as

P = RH(Ĥin,WRH), (6.4)

where WRH are the learnable weights of the regression head. Hence, the object

function (Loss) of the whole network is formulated as:

Loss = 1
N

∑N
i=1 ||Pi −GTi||2, (6.5)

where N is the batch size and GTi represents the ground truth of ith input image.

6.3 Experimental Results and Analysis

The proposed MSINet for general-purpose BIQA was evaluated on the commonly-

used popular image quality datasets LIVE [18], CSIQ [25], TID2013 [26], LIVEMD

[98], and LIVEWC [27]. The datasets are introduced in Chapter 1 and Chapter 3.

The PLCC and SRCC were selected as the evaluation criteria as described in Chapter

1.2.

In the implementation, the Adam [170] with the initial fixed learning rate of 0.0001

served as the optimizer for our MSINet, thanks to its higher convergence ability of

learning. Since deep CNNs models usually require large amount of training samples,

whereas most of the current image quality databases only contains a few hundreds

annotated images, which is prone to overfitting. Random data augmentations of

horizontal and vertical flip were performed. For each input image, a 336×336 patch

was randomly cropped in an online manner. We train our model with Pytorch [171]

on a single GTX TITAN XP GPU with a mini-batch size of 20. All experiments
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Table 6.1: Performance comparison on five databases. The best results on each

database are marked in boldface.

LIVE CSIQ TID2013 LIVEMD LIVEWC

Metric PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Kang’s CNN 0.9528 0.9507 0.7537 0.6845 0.6538 0.5592 0.9259 0.9304 0.5321 0.5118

BIECON 0.9602 0.9573 0.8235 0.8157 0.7654 0.7170 0.9322 0.9008 0.6177 0.5937

BPSQM 0.9665 0.9603 0.9142 0.8733 0.8852 0.8644 0.9052 0.8847 – –

DIQaM-NR 0.9708 0.9625 0.8977 0.8634 0.8536 0.8359 0.9357 0.9022 0.6053 0.6009

RankIQA 0.9814 0.9736 0.9157 0.8944 0.7966 0.7813 0.9247 0.9088 0.6748 0.6442

MEON 0.9562 0.9487 0.9422 0.9310 0.8223 0.8114 0.9344 0.9243 0.6955 0.6871

DIQA 0.9703 0.9618 0.9125 0.8842 0.8572 0.8266 0.9318 0.9206 0.7029 0.7006

DistNet-Q3 0.9547 0.9520 0.9133 0.8874 0.8253 0.7946 0.8926 0.8472 0.6034 0.5728

NSSADNN 0.9834 0.9817 0.9257 0.8944 0.9175 0.8466 0.9487 0.9413 0.8122 0.7455

DB-CNN 0.9688 0.9658 0.9572 0.9437 0.8653 0.8155 0.9327 0.9211 0.8603 0.8517

MSINet (ours) 0.9743 0.9769 0.9613 0.9623 0.9051 0.9024 0.9641 0.9688 0.8438 0.8331

were conducted ten times to avoid the bias of randomness and the average results of

evaluation criteria were reported.

6.3.1 Quantitative Evaluation

We compared our proposed MSINet with ten leading learning-based general-purpose

BIQA approaches on five datasets, see Table 6.1, including Kang’s CNN [69], BIECON

[72], BPSQM [73], DIQaM-NR [74], RankIQA [75], MEON [76], DIQA [77], DistNet-

Q3 [78], NSSADNN [79], and DB-CNN [80]. We employed the train-test procedure

that introduced in Section 3.3.1.

It can be observed from Table 6.1 that our proposed method outperforms all the

competing approaches on the CSIQ and LIVEMD datasets as indicated by the cor-

relation coefficients PLCC and SRCC. Besides, the best SRCC is also produced on

TID2013 while the PLCC value is only somewhat lower than that of NSSADNN.

Although the performance of our MSINet on the LIVE and LIVEWC datasets are
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slightly behind NSSADNN and DB-CNN respectively, the overall performance of

our method is still the best. In comparison, NSSADNN only obtains the best per-

formance on the LIVE dataset and the same situation goes for DB-CNN on the

LIVEWC dataset. Although NSSADNN attains the best PLCC on the TID2013

dataset, it produce rather inferior SRCC results compared with the state-of-the-arts.

Moreover, both NSSADNN and DB-CNN report “noticeable worse” performance over

some datasets, such as NSSADNN on the CSIQ and LIVEWC datasets, and DB-CNN

on the TID2013 and LIVEMD datasets. In particular, the SRCC value on TID2013

(4.4%) and the PLCC value (1.6%) and SRCC value (2.9%) on LIVEMD are improved

by our method with a clear margin compared to the second-ranked approaches. Fur-

thermore, through Table 6.1 and Table 5.1, we can notice that the learning-based

approaches generally perform much better than the traditional heuristic-based ones,

which is expected and demonstrates the high capability of CNNs in representation

and feature learning. More discussions about the two methodologies are given in

Chapter 7.2.

As we described above, in the experimental setting, the input images were ran-

domly cropped into patches. Here we examine the influence of the form of input

samples (i.e., cropping or no cropping) on the performance of our MSINet. It can be

seen from Table 6.2 that the input images under the “no cropping” setting generally

produce a slightly worse performance across the databases, which is understandable

since the cropping operation provides more samples. We can further notice that, the

performance on the LIVE database under the “cropping” setting is inferior than the

“no cropping” setting. Our hypothesis is that the LIVE database contains imbal-

ance image samples, e.g., there are 175 and 145 images under the JPEG compression
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Table 6.2: Impact of the form of input samples. SRCC results on databases are

reported.

LIVE CSIQ TID2013 LIVEMD LIVEWC

Proposed 0.9769 0.9623 0.9024 0.9688 0.8331

w/o cropping 0.9797 0.9617 0.9005 0.9662 0.8233

“w/o M” means our proposed model without component M

and Gaussian blur types of distortion respectively. Nevertheless, our proposed BIQA

method consistently performs well without the cropping operation, which indicates

the robustness of the MSINet model.

As in the previous chapter, we further analyzed the statistical significance of the

proposed model using F-test [12]. Description about the F-test can be found in

Section 3.3.1. Fig. 6.5 shows the F-test results between nine compared metrics and

the proposed MSINet model on the aforementioned five databases. Table 6.3 lists the

statistical significance between the proposed method and the compared metrics.

It can be observed from Fig. 6.5 that our MSINet produces the smallest predic-

tion errors among all the compared metrics in CSIQ and LIVEMD. In LIVE and

TID2013, only NSSADNN produces slightly smaller prediction errors than MSINet.

In LIVEWC, DB-CNN reports smaller prediction errors than the proposed model. As

described in Chapter 3 and Chapter 1, LIVEMD [98] contains images under multiple

distortions, and LIVEWC [27] is a real camera image database which involves realistic

distortions. Our proposed MSINet produces the smallest prediction errors than most

of the compared models on these two databases, which is quite impressive.

It is clear from Table 6.3 that the proposed MSINet model is superior to the exist-

ing approaches in most cases. Among the 44 combinations of methods and databases,
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Figure6.5:F-testresultsofnineexistingapproachesandourproposedMSINet.

Table6.3:StatisticalperformancebetweentheproposedMSINetandninecompared

approachesonfivedatabases.

Metric LIVE CSIQ TID2013 LIVEMD LIVEWC

BIECON +1 +1 +1 +1 +1

BPSQM 0 +1 +1 +1 –

DIQaM-NR 0 +1 +1 +1 +1

RankIQA 0 +1 +1 +1 +1

MEON +1 +1 +1 +1 +1

DIQA 0 +1 +1 +1 +1

DistNet-Q3 +1 +1 +1 +1 +1

NSSADNN –1 +1 –1 +1 +1

DB-CNN 0 0 +1 +1 -1

ourmodelperformssignificantlybetterin35cases,comparablein6casesandworse

inonly3cases.Thisindicatesthattheproposedmethodperformsconsistentlywell

acrossallthefivedatabases.

6.3.2 AblationStudy

InordertodemonstratetheeffectivenessofeachcomponentintheproposedMSINet

andtobetterunderstandtheimpactsofthesecomponents,weconductedaseriesof
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Table 6.4: Ablation study results of MSI modules.

Kernels 1×1 3×3 5×5 7×7 9×9 11×11 Proposed

PLCC 0.9260 0.9285 0.9053 0.9053 0.9144 0.9077 0.9613

SRCC 0.9167 0.9244 0.9160 0.9037 0.9033 0.9219 0.9623

ablation studies on the CSIQ database to empirically single out each contributor in

this BIQA model.

First, we ablated the impacts of the proposed multi-scale integration on the final

performance. The groups of multi-branch convolutions in each MSI module were

configured with the same fixed kernel size in the set of {1× 1, 3× 3, · · ·, 11× 11}. By

conducting such experiments, we can not only be aware of the effectiveness of multi-

scale features aggregation, but also take a closer look at the importance of different

scales on the prediction performance.

The empirical results shown in Table 6.4 demonstrate that when considering di-

verse scale information, our model achieves much better performance owing to the

parallel multi-branch convolutions with distinct kernel sizes (see Fig. 6.2), which force

the model to extract fine-grained multi-scale representations with varying receptive

fields. This is consistent with the observation in the prior work [161]. It is proved

beneficial to use different kernel sizes, and we attribute the reason to the aggregation

of multi-scale information. Furthermore, we can find that the performance of net-

works configured by pure 1×1 or 3×3 kernels outperforms those with larger kernel

sizes as large kernels may cause the failure of localizing local-oriented distortions.

This observation coincides with the phenomenon that a wide range of the prevailing

CNNs (i.e., VGGNet) are inclined to adopt vast kernels with small sizes instead of

larger ones.
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Table 6.5: Ablation study results of multi-level semantics reuse.

Level(s) Low+High Middle+High High Proposed

PLCC 0.9198 0.9271 0.9217 0.9613

SRCC 0.9197 0.9187 0.9168 0.9623

Table 6.6: Ablation study results of channel-wise attention.

w/o attention Proposed

PLCC 0.9382 0.9613

SRCC 0.9227 0.9623

Then, the ablation study on multi-level semantics reuse was also carried out to

have an insight into the impacts of features at multiple levels of granularities. The ab-

lative results shown in Table 6.5 illustrate that the multi-level strategy (low-, middle-

and high-level features) indeed plays a pivotal role for the outstanding performance

of the model. It can be seen that the removal of features at low- or middle-level seri-

ously degrades the performance of the whole network. Additionally, it seems that the

middle-level representations are vital for the overall impact of this multi-level strat-

egy since removing them brings slightly worse results than only utilizing high-level

features. This might be the reason that middle layers in our model allows producing

more discriminative clues which are beneficial for combating overfitting. The experi-

mental results further verify our hypothesis that multi-level semantics are important

in capturing multi-granularity cues for the assessment of various distortion types.

Finally, the impacts of channel-wise recalibration on the regression accuracy were

investigated to demonstrate the necessity of attention mechanism in our model design.

The experimental results in Table 6.6 demonstrate the effectiveness of “attention along

channel dimension”, as the channel-wise attention is capable of enhancing the model
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to learn more discriminative multi-level characteristics.

6.4 Summary

In this chapter, a multi-scale integration network (MSINet) is introduced, which pro-

vides an end-to-end solution for general-purpose BIQA. The proposed MSINet fea-

tures the pretrained VGGNet-based frontend, multi-scale integration module (MSI),

multi-level semantics reuse, and channel-wise attention mechanism. Specifically, the

MSI module is devised to characterize fine-grained information at various scales, and

allows the network to be equipped with scale-invariant property. A pattern of multi-

level semantics reuse is proposed to make full use of features from previous layers.

Furthermore, the channel-wise attention mechanism is designed, so as to adaptively

recalibrate the channels from multiple levels to learn more discriminative features.

Experimental results on several image quality datasets demonstrate the superiority

of our proposed MSINet compared with the state-of-the-art learning-based BIQA

methods.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

Subjective quality ratings for digital images cannot be performed in real-time appli-

cations and are usually quite expensive and inefficient. This thesis has focused on

designing novel and effective BIQA metrics for natural images. Specifically, Chapter 3

and Chapter 4 each presents a distortion-specific BIQA metric, one for blur (conven-

tional) and the other one for gamut mapping (unconventional) distortions, whereas

Chapter 5 and Chapter 6 aim at developing general-purpose BIQA methods.

In Chapter 3, sharpness-aware features are extracted based on the discrepan-

cies of orientation selectivity-based visual patterns and log-Gabor filter responses be-

tween the input image and its reblurred version. Considering the influence of viewing

distance on image quality, global sharpness discrepancy is measured through inter-

resolution self-similarities. The proposed blind image sharpness evaluator demon-

strates that these discrepancy measures are effective indicators for quantifying image
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blurriness.

In Chapter 4, two categories of statistics are analyzed in the design of BIQA

metric for gamut-mapped images. Specifically, the local statistical features are used to

portray structural and color distortions, and features extracted from global statistics

are utilized to characterize the naturalness of image. This chapter provides the first

attempt to blindly quantify the gamut mapping distortion. To further validate its

effectiveness, the proposed metric has been applied for benchmarking gamut mapping

algorithms.

In Chapter 5, second-order statistical features are investigated in multiple scales

from the joint distribution of adjacent subband coefficients in the wavelet domain and

the histogram of Gaussian derivative pattern in the spatial domain respectively. Ex-

perimental results of the proposed general-purpose BIQA metric over several datasets

demonstrate that second-order image statistics are more robust in the measurement of

various image distortions compared with those first-order statistics-based approaches.

Unlike these three heuristics-based methods, Chapter 6 introduces a learning-

based BIQA method which does not involve engineered design of quality-aware fea-

tures. In the proposed MSINet network model, multi-scale integration modules and

multi-level supervision mechanism are delicately structured. This fully data-driven

method provides an end-to-end framework for general-purpose BIQA, which demon-

strates the strong capability of CNNs in feature representations.
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7.2 Discussion

The BIQA models presented in Chapter 3 and Chapter 5 share a same two-stage

structure: 1) extraction of quality-aware features; 2) a nonlinear regression function

is learned through machine learning tools (e.g., support vector regression (SVR) [85])

from training images with the ground truth. The metric proposed in Chapter 4 does

not need ground-truth subjective scores in the model training, thus is an unsuper-

vised BIQA method. These three BIQA metrics are all heuristic-based, which means

their performance greatly depends on the relevance of utilized features to visual qual-

ity perception. Hence, identifying a set of quality-aware features that are able to

properly mimic the characteristics of the human visual system is of particularly im-

portance. In the thesis, statistics-based features are largely employed, with the fact

that high quality natural images obey some kind of statistical regularities while qual-

ity degradations can be deviated from these statistics. The proposed MSINet model

in Chapter 6 provides a learning-based general-purpose BIQA method, which jointly

optimizes feature representation and quality prediction. From the experimental re-

sults shown in Chapter 6 and Chapter 5, we can observe that MSINet produces much

better performance than the heuristic-based method, which demonstrates the high

capability of deep neural networks in feature learning.

Objective IQA of natural images is an ill-posed problem. The development ef-

fective BIQA metrics can be quite challenging since the problem itself is multi-

disciplinary. It involves physiology, psychology, vision science and engineering [15]. In

addition, the understanding of the HVS mechanism is still limited and there are large

variability of image contents and distortions. In this thesis, two methodologies have
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been explored in the development of effective BIQA approaches, both heuristic-based

and learning-based. The heuristic-based methods have the advantages of low com-

putational cost, small data scale required in the training, etc., but the development

of this type of methods needs prior knowledge about image distortions and highly

engineered feature designs. On the other hand, the learning-based approaches bene-

fit from fully data-driven, and those neural networks could perform feature learning

automatically and deliver powerful feature representations. However, this kind of

methods are mostly computation intensive and in the need of vast amount of training

data. Moreover, the deep neural network-based methods are generally considered as

“black box”, which makes them quite difficult in terms of explicit feature analysis.

In recent years, deep neural networks have gained much attention in the research

community and achieved great success on various computer vision tasks. While this

learning-based methodology is powerful, the requirement of high computational over-

head may limit their application scope, e.g., running on low-cost mobile devices.

In addition, for quality assessment of some unconventional distortions with limited

training samples, it is still meaningful to investigate heuristic-based methods.

Although four BIQA metrics have been proposed and their performance has been

validated over several public databases in this thesis, they are still vulnerable in the

case of customer-facing applications. As we discussed in Section 1.2 and through-

out the thesis, the authentic distortions that occupied often in practical scenarios are

quite complex and there might be multiple types of distortion occurred in an image at

the same time, which makes them very hard to measure. More balanced and compre-

hensive image quality datasets are needed in this regard. Since setting up a physical

psycho-visual test environment and recruiting a large group of people performing the
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subjective ratings would be very costly, one possible solution is resorting to the crowd-

sourcing technique, e.g., Amazon Mechanical Turk1. In this case, proper guidelines

and instructions about the “labelling” as suggested by the ITU recommendation (see

Section 1.1) should be given to the workers.

1*: https://www.mturk.com/.
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Chapter 8

Future Work

There are several possible directions where the current work can be extended. The

related research topics are listed as follows for further study.

Blind Video Quality Assessment. Compared to IQA, the development of

video quality assessment metrics needs to take the perceptual spatiotemporal char-

acteristics into consideration. One simple solution is applying a current IQA metric

on a frame-to-frame basis and then averaging the scores. However, this strategy may

not work well when the video contents incorporate large motion [172]. It would be

interesting to extend the proposed BIQA methods to blind video quality assessment

by investigating the temporal structure and temporal features.

Image Aesthetics Assessment. Although the assessment of image aesthetics

can be viewed as a classification or regression problem [173], it is quite different from

IQA tasks. One crucial distinction is that the aesthetic quality of an image is greatly

influenced by common photographic rules like “rule of thirds” and visual balance [174].

Potential applications of this technique include image recommendation, personalized
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photo album management and aesthetics-based image cropping [175]. While directly

applying the proposed BIQA approaches to image aesthetic assessment may produce

misleading results, it is believed that the multi-scale integration modules and multi-

level supervision mechanism introduced in Chapter 6 would benefit the network model

design of this task.

IQA Guided Image Synthesis. In recent years, the most prominent approach

to image synthesis is based on generative adversarial network (GAN) [176] which

consists of a generative network and a discriminative network. Related representative

work in this field includes StackGAN [177] (text-to-image synthesis) and DualGAN

[178] (image-to-image translation). However, the current GANs for image generation

usually suffer from one critical issue, that is, the learned distribution is prone to poor

quality samples. Attempts have been made to tackle this issue, such as building prior

for underlying data distribution [179].

It is natural to think about employing IQA metrics as cost functions or regularizers

in GANs’ objective functions, since the generated images should preserve the local

structural and statistical characteristics. Nevertheless, the mathematic formulation

of these metrics are mostly not suitable being directly applied in the optimization

framework due to their inherent properties such as non-convexity. In a pioneer work

[180], valid regularizers were derived from the popular SSIM [18] and NIQE [66]

indexes, and the experimental results proved their effectiveness. One promising future

direction is to modify the proposed heuristic-based metrics, so that it can be utilized

in guiding the generative network towards high-quality images.
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