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Abstract

The present work deals with the stability theory of fluid flows. The central subject is the
question under which circumstances a flow becomes unstable. Instabilities are a frequent
trigger of laminar-turbulent transitions. Stability theory helps to explain the emergence of
structures, e.g. wave-like perturbation patterns. In this context, the use of Lie symmetries
allows the classification of existing and the construction of new solutions within the framework
of linear stability theory. In addition, a new nonlinear eigenvalue problem (NEVP) is presented,
whose derivation is completely based on Lie symmetries.
In classical linear stability theory, a normal ansatz is used for perturbations. Another ansatz
that has been shown in early work is the Kelvin mode ansatz. In the work of Nold and Oberlack
(2013) and Nold et al. (2015) it was shown that these ansätze can be traced back to the Lie
symmetries of the linearized perturbation equations.
Interestingly, knowledge of the symmetries also allows for the construction of new ansatz
functions that go beyond the known ansätze. For a plane rotational shear flow, in addition
to the normal mode ansatz, an algebraic mode ansatz with algebraic behavior in time ts
(eigenvalue s) can be constructed. The flow is stable according to Rayleigh’s inflection point
criterion, which is also confirmed by the algebraic mode ansatz. Furthermore, exact solutions
of the eigenfunctions can be found and new stable modes can be determined by asymptotic
methods. Thereby, spiral-like structures of the vorticity can be recognized, which propagate in
the region with time.
Another key result of this work is the formulation and solution of an NEVP based on the Lie
symmetries of the Euler equation. It can is shown that an NEVP can be formulated for a class of
flows with a constant velocity gradient. These include, for example, linear shear flows, strained
flows, and rotating flows.
The NEVP for linear shear flows shows a relation to experimental data from turbulent shear
flows. It can be theoretically shown that the turbulent kinetic energy scales exponentially with
the eigenvalue of the NEVP. The eigenvalue is determined numerically using a parallel spectral
solver. Initially, nonlinear terms are neglected. The determined eigenvalues are in the range of
known literature values for turbulent shear flows. Furthermore, the NEVPs for plane flows with
pure rotation and pure strain are solved. It is shown that the flow is invariant to rotation, while
oscillatory eigenfunctions are found in the case of strain. In addition, an algorithm to solve the
NEVP including the nonlinear terms is presented. The results allow an exciting insight into a
new stability theory and form the basis for further investigation and understanding of the full
nonlinear dynamics of the fluid flows based on the NEVP.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Stabilitätstheorie von Strömungen. Zentraler
Gegenstand ist die Fragestellung, unter welchen Umständen eine Strömung instabil wird. In-
stabilitäten sind ein häufiger Auslöser laminar-turbulenter Transitionen. Die Stabilitätstheorie
hilft ferner die Entstehung von Strukturen, z.B. wellenartigen Störungsmustern, zu erklären.
Die Verwendung von Lie-Symmetrien erlaubt dabei die Klassifizierung bestehender und die
Konstruktion neuer Lösungsansätze im Rahmen der linearen Stabilitätstheorie. Zudem wird ein
neues nichtlineares Eigenwertproblem (englisch: nonlinear eigenvalue problem, kurz: NEVP)
vorgestellt, dessen Herleitung vollständig auf Lie-Symmetrien basiert.
In der klassischen linearen Stabilitätstheorie werden Störungen in Form von Normal-Moden
als Ansatz verwendet. Ein weiterer Ansatz, der bereits in frühen Arbeiten gezeigt wurde, ist
der Kelvin-Moden-Ansatz. In der Arbeit von Nold und Oberlack (2013) und Nold et al. (2015)
konnte gezeigt werden, dass sich diese Ansätze auf die Lie-Symmetrien der linearisierten
Störungsgleichungen zurückführen lassen.
Interessanterweise erlaubt die Kenntnis der Symmetrien zudem die Konstruktion neuer Ansatz-
funktionen, die über die bekannten Ansätze hinausgehen. Für eine ebene rotationssymmetrische
Strömung mit Geschwindigkeitsprofil in Umfangsrichtung kann neben dem Normal-Moden-
Ansatz ein weiterer Ansatz mit einem algebraischen Verhalten in der Zeit ts (Eigenwert s)
konstruiert werden. Die Strömung ist dabei stabil gemäß dem Wendepunktkriterium von
Rayleigh, was auch durch den algebraischen Ansatz bestätigt wird. Weiterhin können exakte
Lösungen der Eigenfunktionen gefunden werden. Mit Hilfe asymptotischer Methoden lassen
sich zudem neue stabile Moden bestimmen. Dabei sind spiralartige Strukturen der Wirbelstärke
zu erkennen, die sich mit der Zeit im Gebiet ausbreiten.
Ein weiteres zentrales Ergebnis dieser Arbeit ist die Formulierung und Lösung eines NEVP
basierend auf den Lie-Symmetrien der Euler-Gleichung. Es kann gezeigt werden, dass für eine
Reihe von Grundströmungen mit einem konstanten Geschwindigkeitsgradienten ein NEVP
formuliert werden kann. Dazu zählen beispielsweise lineare Scherströmungen, Strömungen
unter Kontraktion und Expansion oder rotierende Strömungen.
Das NEVP für lineare Scherströmungen zeigt dabei einen Bezug zu experimentellen Daten aus
turbulenten Scherströmungen. Es kann theoretisch gezeigt werden, dass die turbulente kineti-
sche Energie exponentiell mit dem Eigenwert des NEVP skaliert. Der Eigenwert wird numerisch
mit Hilfe eines parallelen Spektrallösers bestimmt. Dabei werden zunächst nichtlineare Terme
vernachlässigt. Die ermittelten Eigenwerte liegen im Bereich von Literaturwerten turbulenter
Scherströmungen. Außerdem werden NEVP für ebene rotierende und ebene gestreckte Strö-
mungen gelöst. Dabei zeigt sich, dass die Strömung invariant gegenüber ebener Rotation ist,
während im Fall ebener Streckung oszillierende Eigenfunktionen gefunden werden. Abschlie-
ßend werden nichtlineare Terme berücksichtigt und diesbezüglich ein Lösungsalgorithmus
entwickelt. Zusammenfassend erlauben die Ergebnisse einen spannenden Einblick in eine
neue Stabilitätstheorie und bilden die Basis für weitere Untersuchung und das Verständnis der
vollständigen nichtlinearen Dynamik von Strömungen auf Basis des NEVP.
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1. Introduction

The scope of the present work is the stability analysis of fluid flows based on the Lie symmetries
of the underlying mathematical equations.

1.1. Motivation

Stability theory gives fundamental insight into instability mechanisms and provides math-
ematical tools to predict instabilities. From an engineering point of view, it is important to
understand instabilities in flows as they are a trigger for turbulence. Turbulent flows have higher
drag than laminar flows. From a global perspective, about five percent of the worldwide CO2

emissions are due to wall-bounded turbulence (Jiménez, 2013). In other words, understanding
instabilities can help delay the laminar-turbulent transition for some flows and save energy.
An important example is the reduction of drag for aircraft. There are numerous attempts to
design airfoils, which leave the flow laminar even for cruise speeds of commercial aircraft.
Such airfoils would allow for significant reductions in fuel consumption for commercial flight
scenarios (Joslin, 1998; Green, 2008; Spalart and McLean, 2011). It is therefore important
to understand the instability mechanisms and to find ways to circumvent them or delay the
transition.
There has been a growing interest in understanding the instabilities in fluids since the middle
of the 19th century. An important and illustrative experiment was conducted by Reynolds
(1883). He used a transparent water pipe into which a dye was inserted. For moderate flow
velocities, the dye is simply convected by the flow. For higher velocities, there was a breakup
of the dye and small eddies and vortices could be observed (see Figure 1.1). The flow becomes
unstable for higher flow velocities. This leads to the famous Reynolds number, which is a
gross measure of the inertial force compared to the viscous force. Reynolds’ experiment is
a classical example in textbooks and lectures on fluid mechanics. However, the pipe flow is
stable according to linear stability theory, which is not consistent with the findings from the
experiment. Thus, there is ongoing research on finding alternative ways to explain stability
and to develop theories that better match the experimental findings (Eckhardt et al., 2007).
Further work has to be done and the pipe flow is only one example. Another important class
of flows is linear shear, which is the focus of the present thesis. It is shown how Lie symmetry
methods can help to extend classical stability theories.

1.2. Symmetry-based stability theory

A definition of the terms stability and symmetry is given in the following. The term stability in
mechanics describes how the equilibrium of a body changes under perturbations. If the body
stays in the same position, the state is called stable. If the body moves away from the original
position, such a state is unstable. Neutrally stable states are also possible (Hahn, 1967). Figure
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Figure 1.1.: Reynolds’ pipe flow experiment: low Reynolds number (top), high Reynolds number
(bottom), adapted from Reynolds (1883).

Figure 1.2.: Stability of a ball under infinitesimal perturbations: unstable (left), neutral (center),
stable (right), adapted from Kundu et al. (2012).

1.2 shows the stability of a ball under very small (so-called infinitesimal) perturbations. The
trajectories of the ball can be used to characterize the stability. In nonlinear stability theory,
the trajectories are often analyzed in phase space, which also allows tracing the branching of
solutions (bifurcation) (Kambe, 2007; Marsden and Ratiu, 1999). The concept of stability can
also be applied in fluid mechanics. Therefore, a basic state (comparable to an equilibrium) of a
flow is considered. The quantity of interest is the perturbation. In linear stability theory, these
perturbations are of smaller order than the base flow and linearized equations are considered. If
the perturbations grow in time or space, the flow is temporally or spatially unstable, respectively.
Usually, the kinetic energy of the perturbations is a measure of the instability, cf. Schmid and
Henningson (2001).
Hydrodynamic stability theory dates back to the 1870s with mathematical and experimental
studies. Since then, ongoing research of both theoretical and experimental nature has led to a
large body of knowledge which was also fostered by the use of computational fluid dynamics
(CFD) in the second half of the 20th century. The present work considers symmetry-based
stability theory. We are aware that different concepts that make use of symmetries to study the
stability of fluids. The literature shows that both symmetries of the governing equations, as well
as those of the flow geometry (e.g. a pipe with rotational symmetry, a channel with reflection
symmetry), are considered, cf. Holmes et al. (2012). Geometrical symmetries are used in
bifurcation theory, e.g. by Golubitsky and Schaeffer (1985) and Schecter (1976). A general
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observation is that flows with geometrical symmetries (i.e. a reflection or rotation symmetry)
have in general more complicated bifurcations than non-symmetric systems. In addition, new
states can arise, which have fewer symmetries (symmetry-breaking) and usually have more
complicated dynamics (Crawford and Knobloch, 1991). Symmetries are also used to determine
energy stability, which is part of the nonlinear stability theory. Here, symmetry properties
of the differential operators are used to make formal predictions of the eigenvalue spectrum
(Straughan, 2004). The use of symmetries also plays a role in Hamiltonian formulations for
classical mechanics and some applications in fluid mechanics (Bluman et al., 2010; Marsden
and Ratiu, 1999; Olver, 1986).
In this work we consider the use of Lie symmetries to formulate eigenvalue problems in the
context of stability theory. Therefore we understand the term symmetry-based in the sense
of employing the Lie symmetries of the governing equations. Lie symmetries are named after
Sophus Lie, who dedicated his entire research life to studying continuous symmetries (Cantwell,
2002). An introduction to Lie symmetries is given in various textbooks (cf. Bluman et al., 2010;
Olver, 2000; Hydon, 2000; Cantwell, 2002). In the context of fluid mechanics, Birkhoff (1960)
gave the first general introduction to symmetries and group theory. There are several applica-
tions of Lie symmetries, including rigorous theory building, solution of differential equations,
or the construction of conservation laws, see Bluman et al. (2010) and Sundermeyer (2014)
for an introduction.
In this work, symmetries are used as follows. First, it is possible to generalize the existing
normal mode ansatz by using the symmetries of the stability equations. The related concept is
a separation of variables using symmetries (cf. Burde et al., 2007; Zhalij et al., 2006; Nold and
Oberlack, 2013; Nold et al., 2015; Hau et al., 2017).
Second, the Lie symmetries of the inviscid flow equations (Euler equations) give rise to a novel
eigenvalue problem. This eigenvalue problem is nonlinear in the eigenfunctions and is referred
to as a nonlinear eigenvalue problem (NEVP) throughout the present work. This idea is part of
ongoing research and was introduced recently by Oberlack (2018) and Oberlack (2020). The
results of this thesis are part of ongoing research on symmetry-based turbulence theory, which
also involves turbulence modeling (Klingenberg et al., 2020) and scaling laws in turbulent
flows (Rosteck, 2014; Oberlack et al., 2022).
For the sake of completeness, we note that the mentioned Hamiltonian formulation with applica-
tion to stability theory in fluid mechanics has a close link to Lie symmetries, cf. Cantwell (2002)
and Swaters (2000). Indeed, there is a correspondence between Lie symmetry groups and
conservation laws by Noether’s theorem (Noether, 1918; Anco and Bluman, 2002). However,
stability theory based on a Hamiltonian formulation is not studied in the present thesis.

1.3. Outline of the thesis

Chapter 2 presents the Navier-Stokes and Euler equations, which describe the dynamics of
incompressible fluids. In addition, the Lie symmetries of the Navier-Stokes and Euler equations
are presented.
Chapter 3 is dedicated to the linear stability theory based on eigenvalue problems. Chapter 3.1
gives a review of linear stability theory using the normal mode ansatz. The Orr-Sommerfeld
equation is derived for a shear flow. In addition, extensions of the normal mode theory, such
as the non-modal theory are mentioned. An observation is that there are modes besides the
normal mode ansatz, which are presented in Chapter 3.2. The relevance of Lie symmetries to
generalize the normal mode approach is shown in Chapter 3.3 with various examples. Finally,
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their application to a rotational shear flow is presented in Chapter 3.4.
In Chapter 4, a new eigenvalue problem is derived based on the symmetries of the Euler
equations. This problem is nonlinear in its eigenfunctions and is referred to as a nonlinear
eigenvalue problem (NEVP) in the following. It is possible to derive the NEVP for a class of
flows in an unbounded domain having a constant velocity gradient, which is shown in Chapter
4.1. The equations for the cases of linear shear (Chapter 4.2), pure strain (Chapter 4.3), and
pure rotation (Chapter 4.4) are derived in detail. In addition, an NEVP for a wall-bounded
flow can be formulated (Chapter 4.5).
The NEVP is solved numerically by using a spectral collocation method, which is explained
in Chapter 5. Details on the collocation method using Chebyshev and Hermite polynomials
are given in 5.1. Chapter 5.2 explains of the numerical routines to solve eigenvalue problems.
The succeeding Chapter 5.3 summarizes methods to identify non-physical eigenvalues in the
computed spectrum. Implementation details are given in Chapter 5.4. The test cases in Chapter
5.5 show that the equations are successfully implemented.
The numerical solution of the linearized NEVP is presented in Chapter 6. Special attention is
drawn to the case of linear shear flow, which is studied in 2D and 3D. The effects of strain and
rotation in 2D are also discussed.
Chapter 7 is dedicated to the solution of the NEVP including the nonlinear terms. To this end,
the Newton-Kantorovich method is described in Chapter 7.1. To better understand possible
effects in nonlinear equations, two examples are studied in Chapter 7.2. The final nonlinear
algorithm is given in Chapter 7.3.
A summary of the results of this thesis and an outlook are given in Chapter 8.
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2. Governing equations

The motion of fluid flows is described by the Navier-Stokes and continuity equations. Physically,
these equations describe the conservation of momentum and mass, respectively. The present
work investigates incompressible flows with a constant density ρ. The velocity is denoted by
u(x, t) and the pressure by p(x, t). In the notation, (u, v, w) denote the (x, y, z)-components
of the velocity. Alternatively, index notation is used for a more compact notation. In that case,
ui denotes the component of the velocity corresponding to the xi-direction (i = 1, 2, 3) for
three-dimensional flows.

2.1. Navier-Stokes and Euler equations

The Navier-Stokes equations are given by

ρ

(︃
∂u

∂t
+ (u · ∇)u

)︃
= −∇p+ µ∆u+ f , (2.1)

and the continuity equation reads

∇ · u = 0, (2.2)

where µ is the dynamic viscosity, and f denotes the forcing term. When the flow is described
in a rotating system with constant rotation Ω around the origin, additional non-inertial terms
appear. These are the centrifugal and Coriolis forces. Centrifugal forces can be absorbed in
the pressure term and the Coriolis terms can be written as an external forcing f = −2Ω× u.
The equations (2.1) and (2.2) can be written in dimensionless form, denoted by a tilde, as

∂ũ

∂t̃
+
(︂
ũ · ˜︁∇)︂ ũ = −˜︁∇p̃+ 1

Re
∆ũ+ f̃ , (2.3)˜︁∇ · ũ = 0, (2.4)

where the Reynolds number is defined by Re = (ρu0l0)/µ as a ratio of the inertial and viscous
forces with a characteristic length l0 and velocity u0. For the sake of readability, the tilde
is omitted in the following. For inviscid flows (µ = 0), the momentum equations (2.3) in
a non-rotating frame, i.e. Ω = 0, the Navier-Stokes equations (2.3) simplify to the Euler
equations which are given by

∂u

∂t
+ (u · ∇)u = −∇p. (2.5)

2.2. Lie symmetries of the Navier-Stokes and Euler equations

The Lie symmetries of the Euler and Navier-Stokes equations are considered. We start with a
precise definition of a Lie symmetry (transformation) (Oberlack, 2001). We consider a system
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of partial differential equations F with variables y and z given as

F (y, z) = 0. (2.6)

A transformation of the variables is given by

y → ỹ, z → z̃, (2.7)

where ỹ and z̃ are the transformed variables. Any transformation which leaves the form of the
equation invariant, i.e.

F (y, z) = 0 ⇔ F (ỹ, z̃) = 0 (2.8)

is called a symmetry (transformation) (Oberlack, 2000). If not indicated otherwise, we refer to
Lie symmetries whenever the word symmetry is used in the present thesis. The symmetries of
an ordinary differential equation (ODE), or partial differential equation (PDE) can be calculated
in an algorithmic way by hand or by using a computer algebra system (CAS), see e.g. Bluman
et al. (2010) and Cheviakov (2010).
The symmetries of the Navier-Stokes equation were first derived by Puhnachev (1960) for
two-dimensional flows and by Bitev (1972) for three-dimensional flows (Boisvert et al., 1983).
The symmetries of the Euler equations (2.5), as presented by Oberlack (2000), are given by

T1 : t̃ = t+ a1, x̃ = x, ũ = u, p̃ = p, (2.9)
T2 : t̃ = t, x̃ = ea2x, ũ = ea2u, p̃ = e2a2p, (2.10)
T3 : t̃ = ea3t, x̃ = x, ũ = e−a3u, p̃ = e−2a3p, (2.11)

T4 − T6 : t̃ = t, x̃ = a · x, ũ = a · u, p̃ = p, (2.12)

T7 − T9 : t̃ = t, x̃ = x+ f(t), ũ = u+
df

dt
, p̃ = p− x · d

2f

dt2
, (2.13)

T10 : t̃ = t, x̃ = x, ũ = u, p̃ = p+ f4(t). (2.14)

The parameters ai denote the group parameters. The term a is a constant rotation matrix
with a · aT = aT · a = I where I is the identity matrix and |a| = 1. The function f4(t) is
differentiable in time and f = (a4f1(t), a5f2(t), a6f3(t))

T is twice differentiable in time. The
symmetry T1 describes a translation in time. The transformations T2 and T3 are the scaling
symmetries in space and time. In addition, the equations are invariant under a finite rotation
as described by the symmetries T4−T6. The symmetries T7−T9 are due to Galilean invariance,
i.e. a translation of the frame with a constant velocity. Finally, the symmetry T10 shows that
any time-dependent function (or constant) can be added to the pressure, as only the pressure
gradient appears in the Euler equations (2.5).
For two-dimensional flows, i.e. u = u(x1, x2, t), the Euler equations (2.5) have an additional
symmetry given by

T11 : t̃ = t, x̃1 = x1 cos (a8t)− x2 sin (a8t) , x̃2 = x1 sin (a8t) + x2 cos (a8t) ,
ũ1 = u1 cos (a8t)− u2 sin (a8t)− a8x1 sin (a8t)− a8x2 cos (a8t) ,
ũ2 = u1 sin (a8t) + u2 cos (a8t) + a8x1 cos (a8t)− a8x2 sin (a8t) ,

p̃ = p+ 2a8

∫︂
Q
(u2dx1 − u1dx2) +

1

2
a28
(︁
x21 + x22

)︁
. (2.15)

6



The symmetry T11 is called 2D material frame indifference, we refer to Oberlack (2000) and
Silvis (2020) for a detailed explanation. It is possible to combine two symmetries. For example,
the translation in time T1 (2.9) and the scaling in space T2 (2.10) can be combined to a new
symmetry described by the two parameters a1 and a2:

T1 + T2 : t̃ = t+ a1, x̃ = ea2x, ũ = ea2u, p̃ = e2a2p. (2.16)

The Navier Stokes equations (2.1) have a reduced set of symmetries compared to the Euler
equations. This is due to the the viscous term (a constant viscosity ν = µ/ρ is assumed). The
symmetries T1 and T4 − T10 remain. Combination of the scaling symmetries T2 (2.10) and T3
(2.11) gives (Oberlack, 2000)

t̃ = e2at, x̃ = eax, ũ = e−au, p̃ = e−2ap. (2.17)

Note that there are usually two representations of Lie symmetries used in this work. The
symmetries in (2.9) to (2.15) are global transformations. It is also possible to define an
infinitesimal generator X to describe the transformations. Those two representations are
equivalent and can be converted to another representation, which is explained later in Chapter
(4). For more details, the reader is referred to Oberlack (2000) and Bluman et al. (2010).
In addition, the Navier-Stokes and Euler equations further have discrete symmetries. The
spatial reflection, as presented by Oberlack (2000), reads

TD1 : t̃ = t, x̃α = −xα, ũα = −uα, x̃β = xβ, ũβ = uβ, p̃ = p with β ̸= α (2.18)

where α ∈ {1, 2, 3} corresponds to the reflection of the spatial coordinate xα and the remaining
directions β are unaltered. In addition, the Euler equations show a reversibility in time, which
follows from a reflection in time and velocity by

TD2 : t̃ = −t, x̃ = x, ũ = −u, p̃ = p. (2.19)

Note that this latter reflection symmetry does not exist for the Navier-Stokes equations, which
from this point are not reversible due to viscosity (Oberlack, 1997; Oberlack, 2000). It is
important to note that the discrete symmetries (2.18) and (2.19) are not Lie symmetries. Both
Lie symmetries and discrete symmetries are sometimes referred to as an invariance or an
invariant transformation in the literature, cf. Pope (2000).
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3. Generalization of modal stability theory
using symmetries

In this chapter, we show how Lie symmetries can help to systematize classical stability theory.
Furthermore, it is shown how classical ansatz functions such as the normal mode ansatz can
be extended by symmetry methods. We start with an introduction to hydrodynamic stability
and present some important results for channel flows, including the Orr-Sommerfeld (OS)
equation. We show how several alternative ansatz functions can be constructed by using Lie
symmetries. In addition, we present a stability analysis for rotational shear flows using a novel
ansatz function which is referred to as the algebraic mode ansatz.

Stability theory in fluid mechanics

Hydrodynamic stability theory is part of many textbooks (cf. Lin, 1955; Chandrasekhar, 1961;
Schmid and Henningson, 2001; Drazin, 2002; Criminale et al., 2003; Drazin and Reid, 2004;
Georgescu, 2010; Charru, 2011; Yaglom, 2012). There are different approaches to studying
the occurrence of instabilities, which can be classified as linear or nonlinear theories. Based on
a literature review, we briefly explain the main idea and systematize the different branches of
stability theory.

Linear stability theory Linear stability theory covers the understanding of linearized stability
equations. The stability equations can be derived directly from the Navier-Stokes equations by
superposition of fluctuations and omitting nonlinear terms. In classical work, the initial-value
problem for the perturbations is transformed into an eigenvalue problem by assuming an
exponential time dependence. This is referred to as the normal mode ansatz. In general, the
perspective of stability as an eigenvalue problem instead of an initial-value problem is called a
modal (eigenvalue) analysis (Schmid, 2007). If all directions unless one are inhomogeneous,
this leads to the so-called normal mode approach. For more than one inhomogeneous direction,
some methods have been proposed, e.g. bi-global, tri-global methods, cf. Theofilis (2003). The
various latter methods are called global, whereas the normal mode ansatz is considered a local
method (Juniper et al., 2014). The normal mode fails to predict the stability of some flows. For
example, a plane Couette flow is stable to infinitesimal perturbations for all Reynolds numbers
(Schmid, 2007). However, experiments clearly show instabilities (Avila et al., 2011). Since
the 1990s, the initial-value formulation of stability problems has attracted growing attention.
This is usually called nonmodal stability theory or theory of transient growth. The main idea
is to study the response of an initial-value problems with different initial conditions and to
understand the interaction of different (non-orthogonal) modes (Schmid, 2007).

Nonlinear stability theory If the perturbations grow in amplitude, nonlinear terms can no
longer be neglected (Schmid and Henningson, 2001). The most general way to study nonlinear
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Figure 3.1.: Channel flow between two walls at y = ±hwith a laminar base flow U(y), adapted
from Schmid and Henningson (2001).

stability is to define an energy norm E(t) for the initial state and consider the growth of the
perturbation energy in time (Kerswell, 2018). From a mathematical point, there is no longer
a simple (linear) superposition principle of mode solutions. In a physical picture, we can
observe wave interactions (Schmid and Henningson, 2001). Moreover, nonlinear equations
are associated with bifurcation (Kambe, 2007). There are several different nonlinear methods
so we can only mention the most frequent approaches here, cf. Schmid and Henningson
(2001). Weakly-nonlinear techniques allow using series expansions and perturbation methods
to analytically solve the stability equations. The energy method studies the evolution of the
energy E(t) (Schmid and Henningson, 2001). There is also an extension of the non-modal
theory to a full nonlinear initial-value problem (nonlinear nonmodal theory) (Kerswell, 2018).
In addition, there are nonlinear methods, which rather consider the stability problem in state
space, cf. Skufca et al. (2006) and Eckhardt et al. (2007).
This chapter mainly considers modal stability theory, i.e. the formulation of corresponding
eigenvalue problems for the stability. While studying stability problems, it is important to
keep the assumptions of a problem in mind. The stability results may differ if two- or three-
dimensional perturbations are considered. Furthermore, the effect of viscosity and the choice
of the boundary condition (BC) can alter the stability results.

3.1. Stability theory with normal modes

In this section, we show the basic steps for a temporal stability analysis for a channel flow. As
a classical example, we consider a parallel shear flow in a channel. We consider linear stability
theory based on normal modes. This is a part of the so-called modal stability theory. In the
following, we consider a channel flow which is depicted in Figure 3.1. The channel is bounded
by two walls at y = ±h. It is assumed that the base flow only depends on the wall-normal
coordinate y, i.e. (U, V,W ) = (U(y), 0, 0). Possible base flows satisfying these conditions are
the Poiseuille flow or the Couette flow (walls moving in opposite directions).

3.1.1. Viscous flows

We present a stability analysis for viscous flows. The derivations in this section are based
on Schmid and Henningson (2001) if not indicated else wise. The starting point is a given
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basic state of the Navier-Stokes equations. Usually, an exact solution of the unperturbed flow
equations is used, so analytical techniques can be used to conduct the stability analysis. In a
next step, perturbations are added to the base flow so that the instantaneous velocities (u, v, w)
are given by

(u, v, w)T = (U + u′, v′, w′)T , p = P + p′ (3.1)

For sake of readability, the primes are omitted in the following. For a base flow U(y), the
momentum equation can be written as

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −∂p

∂x
+

1

Re
∇2u, (3.2)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re
∇2v, (3.3)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

Re
∇2w. (3.4)

Here U ′ and U ′′ denotes the first and second derivative of U(y)with respect to y. The continuity
equation is given by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3.5)

By taking the divergence of the momentum equations, a Poisson equation for the pressure can
be derived

∇2p = −2U ′ ∂v

∂x
(3.6)

Inserting the pressure from (3.6) into the momentum equation for v, given by (3.3), and
neglecting all nonlinear terms in the fluctuations gives[︃(︃

∂

∂t
+ U

∂

∂x

)︃
∇2 − U ′′ ∂

∂x
− 1

Re
∇4

]︃
v = 0. (3.7)

In the context of wall-bounded flows, this is referred to as the wall-normal velocity. By using
the wall-normal vorticity

η =
∂u

∂z
− ∂w

∂x
, (3.8)

it is possible to derive an equation for the wall-normal vorticity from ∂z(3.2)− ∂x(3.4) which
gives [︃

∂

∂t
+ U

∂

∂x
− 1

Re
∇2

]︃
η = −U ′∂v

∂z
. (3.9)

The main question in stability theory is, if the perturbations grow in time. Therefore a normal
mode ansatz can be used to reduce the PDE problem from (3.7) and (3.9) to an ODE. The
ansatz reads

v(x, y, z, t) = v̂(y)ei(αx+βz−ωt), (3.10)

η(x, y, z, t) = η̂(y)ei(αx+βz−ωt) (3.11)
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with an assumption of Fourier modes in space (α, β ∈ R) and a exponential growth or decay
rate (ω ∈ C) in time. The criterion for temporal stability is based on ωi, which is the imaginary
part of ω

ωi =

⎧⎪⎨⎪⎩
< 0 stable
= 0 neutrally stable
> 0 unstable

(3.12)

The flow is unstable if and only if there is one unstable mode. Consequently, the stability
equations have to be solved for the eigenvalue ωi. By inserting the ansatz into (3.7) and (3.9),
we obtain the following system[︃

(−iω + iαU)
(︁
D2 − k2

)︁
− iαU ′′ − 1

Re
(︁
D2 − k2

)︁2]︃
v̂ = 0, (3.13)[︃

(−iω + iαU)− 1

Re
(︁
D2 − k2

)︁]︃
η̂ = −iβU ′v̂, (3.14)

where D denotes a differentiation with respect to y and k2 = α2 + β2. The BCs at the solid
walls are

v̂ =
dv̂

dy
= η̂ = 0, for y = ±h. (3.15)

The system of (3.13) and (3.14) together with the BCs (3.15) constitutes an eigenvalue problem
for ω. Equation (3.13) does not contain the vorticity and therefore decouples from the equation
for the normal vorticity (3.14). Consequently, the OS equation (3.13) must be solved first and
the solution can be inserted as a particular solution to (3.14). The solution gives an eigenvalue
ω and a set of corresponding eigenfunctions v̂, η̂. There are two types of solutions. First, we
have OS modes

{v̂, η̂, ω} (3.16)

These modes can be found by solving the homogeneous equation for v̂ and using the solution
as inhomogeneity to solve for the vorticity η̂. The second type of solutions are the Squire (SQ)
modes which are a solution in the case of v̂ = 0

{v̂ = 0, η̂, ω} (3.17)

The OS equation is usually solved numerically using spectral methods. For an introduction the
reader is referred to Schmid and Henningson (2001) and Canuto et al. (2007). Another question
is, whether it makes a difference if two-dimensional or three-dimensional perturbations are
considered. Squire (1933) showed that for unstable three-dimensional flows there is critical
Reynolds number which is lower for two-dimensional perturbations.

3.1.2. Inviscid flows

For inviscid flows, the viscous term in stability equation (3.7) disappears and the equation for
v from (3.3) simplifies to [︃(︃

∂

∂t
+ U

∂

∂x

)︃
∇2 − U ′′ ∂

∂x

]︃
v = 0, (3.18)
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and for the vorticity follows from (3.9)(︃
∂

∂t
+ U

∂

∂x

)︃
η = −U ′∂v

∂z
. (3.19)

Using the normal mode ansatz (3.10), it is possible to derive the following Rayleigh equation

(U − c)
(︁
D2 − k2

)︁
v̂ − U ′′v̂ = 0, (3.20)

with the BC v̂ = 0 on the wall and c defined as

ω = αc. (3.21)

Although the Rayleigh equation (3.20) is only a second order equation compared to the OS
equation (3.13), the solution is not necessarily easier. One reason is that the equation has a
variable coefficient in leading order (Yaglom, 2012). In addition, there is a singularity in the
equation for U = c (Drazin, 2002).

Rayleigh’s inflection point criterion

An important finding for the stability is Rayleigh’s inflection point criterion, which can be
directly derived from the Rayleigh equation (3.20). Following the arguments of Squire (1933),
the two-dimensional modes can be used as a proxy to study three-dimensional instability, cf.
Drazin (2002). The two-dimensional Rayleigh equation reads

(U − c)
(︁
D2 − α2

)︁
v̂ − U ′′v̂ = 0, (3.22)

and can be rewritten as

v̂′′ − α2v̂ − U ′′

U − c
v̂ = 0. (3.23)

Here v̂′′ is the second derivative of v̂ with respect to y. We consider a possibly unstable mode
with ci > 0. Multiplying (3.23) by the complex conjugate v̂∗ of v̂ and integrating the equation
from y1 to y2 (for the channel flow this would be y1 = −h to y2 = h) we obtain∫︂ y2

y1

(︁
|v̂′|+ α2|v̂|2

)︁
dy +

∫︂ y2

y1

U ′′

U − c
|v̂|2dy = 0, (3.24)

where the imaginary part reads

ci

∫︂ y2

y1

U ′′

|U − c|2
|v̂|2dy = 0. (3.25)

From the assumption ci > 0 follows that U ′′ must change sign in that interval. Note that the
inflection point is only a necessary criterion for instability of flows (Drazin, 2002).
Using a similar theoretical approach, Fjørtoft (1950) and Howard (1961) proposed relevant
extensions to Rayleigh’s criterion for some special cases. The interested reader is referred to
Schmid and Henningson (2001) for more information.
An important result of Rayleigh’s criterion is that classical flows such as the plane Couette
flow or the Blasius boundary layer flow are stable under inviscid perturbations according to
this theory (Mack, 1984; Charru, 2011). It should be noted that this result also holds for
unbounded flows, where the fluctuations vanish in the far field (Drazin, 1958; Lin, 2003;
Sun, 2007). For flows with no inflection point, it is necessary to consider the viscous stability.
However, some theoretical results from normal mode stability are not in line with observations
from experiments. This motivated the non-modal theory which is explained in the next section.
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3.1.3. From modal theory to a non-modal theory

Stability theory using normal mode helps to understand instabilities and to calculate critical
Reynolds numbers. It is reported that the results for flows with thermal (e.g. Rayleigh-Bérnard)
or centrifugal (e.g. Taylor-Couette) instabilities match reasonably well with experiments.
However, the results for shear-driven flows deviate from theory (Trefethen et al., 1993). Two
prominent examples are the plane Poiseuille and the plane Couette flow. The critical Reynolds
number for Poiseuille flows from theory is of order Re = 5300 while instabilities are observed
for even smaller Reynolds numbers. The plane Couette flow is stable for all Reynolds numbers,
however instabilities are observed in experiments (Daviaud et al., 1992; Trefethen et al., 1993).

An important observation is that the differential operators of the thermal and centrifugal
instabilities are normal, while those for linear shear flows are non-normal. By definition an
operator (or matrix) is non-normal if its adjoint L† does not commute (Kerswell, 2018)

LL† ̸= L†L. (3.26)

A new perspective on stability problems emerged by considering possible non-normal effects.
The stability problem is written as an initial-value problem. A combination of certain non-
normal modes can lead to a short time growth of the perturbation energy. This is called
transient growth (Yaglom, 2012).
We present a short example to illustrate the idea of non-modal stability theory. This example
was initially proposed by Trefethen et al. (1993) and frequently used in other publications
(Schmid andHenningson, 1994; Kerswell, 2005; Eckhardt and Pandit, 2003; Grossmann, 2000).
The following explanation is mainly based on Kerswell (2005). Consider a two-dimensional
evolution equation

d

dt

(︃
x
y

)︃
= L

(︃
x
y

)︃
:=

(︃
− 1

Re 0
1 − 2

Re

)︃(︃
x
y

)︃
. (3.27)

The eigenvalues of the linear operator L are λ1 = −1/Re and λ2 = −2/Re. Both eigenvalues
are negative and the eigenfunctions (1,Re)T and (0, 1)T are stable modes according to the
normal mode stability theory. Note however that the operator L is non-Hermitian (see definition
(3.26)) and therefore non-modal growth can occur. The eigenvector basis together with the
initial condition (x, y)T = (1, 0)T can be expanded for small times using a Taylor series (for
technical details refer to Farrell and Ioannou, 1996), which gives(︃

x(t)
y(t)

)︃
=

(︃
1
Re

)︃
e−t/Re −

(︃
0
1

)︃
e−2t/Re ≈

(︄
1− t

Re +O
(︁

t
Re
)︁2

t+O
(︁

t
Re
)︁2

)︄
. (3.28)

This shows an algebraic growth until t = O(Re). This example indicates several consequences
of the non-modal approach. First, even two modes which are stable (in a sense that both have
stable eigenvalues) can interact and lead to a growth of perturbation energy. This mechanism
can trigger nonlinear instabilities if the perturbation energy exceeds a certain threshold. In
that way, one can seek for a combination of modes or an initial condition such that this growth
is maximized (optimal growth theory) (Kerswell, 2005; Kerswell, 2018).
Further, in non-modal theory, there is an interaction between the modes. Therefore the shape
of the modes can change in time. This contrasts with the normal mode stability theory, where
the spatial structure of the modes does not change in time (Kerswell, 2018). It is also reported
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1Figure 3.2.: Linear shear flow with a constant shear rate A in an unbounded domain y → ±∞

that flows with 3D instabilities can have larger amplifications of the instabilities than 2D
perturbations. This contrasts with the classical Squire criterion, which states that the most
unstable modes are two-dimensional (Trefethen et al., 1993).

3.2. Review of some special ansatz functions

In linear (modal) stability theory, there are two important examples ansätze which are different
from the normal mode ansatz (compare (3.10) and (3.10)). The first examples are the Kelvin
modes in shear flows, the second example are Görtler-Hämmerlin (GH) modes in stagnation
point flows. One important question is if the stability results are different from the normal
mode case or if there are instabilities which can be only observed with these alternative modes
(Yaglom, 2012). We present these two examples in the following and explain their relevance
in stability theory.

3.2.1. Kelvin modes

The Kelvin modes can be observed in unbounded linear shear flows. Such a flow is depicted
in figure 3.2, where the shear rate A is constant. This solution was first presented by Kelvin
(1887) and further examined by Orr (1907a) and Orr (1907b). It is argued, that the term
Kelvin mode or Kelvin wave may be misleading as this might evoke different concepts in fluid
mechanics (Sagaut and Cambon, 2018). Here we use the term Kelvin modes to describe
solutions of linear shear flows in unbounded domains according to Kelvin’s work.
The stability equation (3.3) together with the Poisson equation (3.6) can be written as a scalar
equation for v in (3.7). In the case of linear shear U = Ay, the second derivative of U with
respect to y is zero (U ′′ = 0). Using this result, it is possible to rewrite (3.7) as a system of
second order PDE [︃

∂

∂t
+Ay

∂

∂x

]︃
σ =

1

Re
∇2σ (3.29)
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where

σ = ∇2v. (3.30)

For inviscid flows (1/Re→ 0), Kelvin (1887) proposed the ansatz

σ = f(x−Ayt), (3.31)

where f is an arbitrary function. For viscous flows, the ansatz

σ = T (t)ei(kxx+(ky−kxAt)y+kzz) (3.32)

is used by Kelvin, where T (t) is an arbitrary function of the time t and kx, ky, kz denote the
spatial wavenumbers. Inserting (3.32) into (3.29) gives an ODE for T (t)

dT

dt
= − 1

Re

[︂
k2x + (ky − kxAt)2 + k2z

]︂
T, (3.33)

which can be solved by

T (t) = Ce
− 1

Re t

(︃
k2x+k2y+k2z−kykxAt+

k2x
3
A2t2

)︃
, (3.34)

where C is a constant of integration. The perturbation velocity v can be obtained from (3.30)
together with the ansatz (3.32) and T (t) defined in (3.34) and reads

v = −T (t) ei(kxx+(ky−kxAt)y+kzz

k2x + (ky − kxAt)2 + k2z
. (3.35)

The ansatz (3.31) has some interesting physical properties. For the solution (3.32) we see that
there is a time-dependent wave number. The time-dependent transformation is a Galilean
transformation with the constant shear rate A, i.e. U = Ay (Drazin, 2002). Sagaut and
Cambon (2018) recommend therefore to call the solution Fourier modes advected by the mean
or mean-Lagrangian Fourier modes. The Galilean transformation for shear flows has several
applications in fluid mechanics, see e.g. Yaglom (2012) for a detailed explanation. Examples
are the Rogallo transformation (Rogallo, 1981) or a corresponding transformation in Rapid
Distortion theory (Moffatt, 1965; Goldstein, 2020).
Note that the the denominator in the solution (3.35) behaves as t−2 for large t. It is interesting
to see that the solution has an algebraic decay in time. This contrasts with the normal mode
solutions, which have an exponential decay rate (Yaglom, 2012).
In stability theory, Kelvin mode solution have received little attention for a long time. It even
seems that these ideas were forgotten, cf. Craik and Criminale (1986) and Yaglom (2012).
This changed around 100 years after Kelvin’s discovery, mainly with the work of Craik and
Criminale (1986). The authors studied an initial-value problem for linear shear and used
Kelvin mode solutions. This was studied by other researchers at this time, e.g. (Farrell, 1987;
Criminale, 1991; Criminale and Drazin, 1990), leading to an increasing interest in Kelvin mode
solutions. For a detailed review the reader is referred to Yaglom (2012) or Hau (2016). In
addition, it was further shown, that Kelvin modes are the natural choice for non-Hermitian
operators (Yoshida, 2005).
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Figure 3.3.: Stagnation point flow, the stagnation point is at the origin (0, 0) of the coordinate
system, based on Kundu et al. (2012)

3.2.2. Görtler-Hämmerlin modes

A second example for special ansatz functions are the so-called Görtler-Hämmerlin (GH) modes,
compare (Theofilis et al., 2003) (in earlier works they are sometimes called Hämmerlin modes,
e.g. in Hall et al. (1984)). These modes play an important role in the stability analysis of
stagnation point flows. The GH modes should not be confused with the Görtler problem, which
describes vortices along a concave wall (centrifugal instability) (Görtler, 1940). For the GH
modes, it is assumed that the perturbations have a similar form as the base flows. For this
reason, we start with an analytical solution for stagnation point flows and proceed with the
stability theory afterwards. A stagnation point flow is shown in figure 3.3. The (unperturbed)
stagnation point flow was studied in a classical work by Hiemenz (1911) and numerically
by Howarth (1934). For the inviscid case, the velocities are given by U = ax, V = −ay. For
viscous flows the ansatz

U = kxf ′(ζ), V = − (νa) f(ζ) ζ = z (a/ν)1/2 (3.36)

allows to reduce the x-component of the Navier-Stokes equation to an ODE

f ′′′ + ff ′′ + f ′2 + 1 = 0 (3.37)

with BCs f(0) = f ′(0) = 0 and f ′(∞) = 1, e.g. (Görtler, 1955; Rosenhead, 1963; Schlichting
and Gersten, 2006). Note that the ansatz for U has the factor of x in front of the first derivative
f ′.
The idea of Görtler (1955) and Hämmerlin (1955) was to study the stagnation point flow
under three-dimensional disturbances. Periodic disturbances were assumed in the z-direction.
The authors proposed an ansatz for the stability equations which has the same form as the
ansatz (3.36) and also contains the factor x for the streamwise component. The ansatz reads

(u, v, w) = (xû(y), v̂(y), ŵ(y)) ei(βz−ct) (3.38)

This ansatz (3.38) is referred to as the GH ansatz. It should be noted that Görtler (1955) used
a different notation. For consistency with the normal mode ansatz, we used a different notation
in (3.38), compare e.g. (Lin and Malik, 1996).
The stability analysis reveals a spectrum of neutrally stable modes whose eigenfunctions decay
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algebraically in y-direction as well. In addition, there is a discrete spectrum of eigenvalues
with exponentially decaying eigenfunctions that decay in y-direction (Hämmerlin, 1955) . The
extension to three-dimensional stagnation point flows was later done by Hall et al. (1984). The
GH ansatz plays a major role in the stability analysis of flows around aircraft wings. There is a
high interest in understanding the instability and transition mechanisms for swept wings. The
possible instability mechanisms are attachement line, streamwise, centrifugal, or cross-flow
instabilities (Saric et al., 2003). The work by GH provides the basis for the so called attachement
line instability, or alternatively leading-edge boundary-layer theory, cf. Theofilis et al. (2003).
Consequently, the GH modes were used in many works (cf. Hall et al., 1984; Lin and Malik,
1996; Theofilis, 1998; Obrist and Schmid, 2003a; Obrist and Schmid, 2003b; Theofilis et al.,
2003). The stability analysis shows that the GH mode corresponds to the most unstable mode.
Other modes are also found, but they are less unstable (i.e. they have smaller temporal growth
rates) than the GH mode (Theofilis et al., 2003). This shows that the normal mode ansatz
alone does not always predict the most unstable mode. Thus, it can be valuable to consider
alternative ansätze besides the normal mode ansatz to study the stability of a flow.

3.3. Extension of normal mode stability using symmetry methods

The Kelvin modes (3.31) and the GH ansatz (3.38) show that there are alternative ways besides
the normal mode ansatz to formulate eigenvalue problems.
There are different approaches in systematizing them. For example, the Kelvin mode solution
shows an algebraic growth in time, which is different from the exponential growth for the
normal mode solution. Algebraic growth rates are also observed in non-modal stability theory
due to non-Hermitian operators, compare chapter 3.1.3. Using the term non-modal for Kelvin
modes might be misleading, as still an eigenvalue problem rather than an initial-value problem
is considered, e.g. compare to the definition of non-modal in Schmid (2007).
In the author’s opinion, it is more appropriate to systematize the Kelvin modes and GH modes
as a generalized modal approach (note that this term was already used for Kelvin modes in a
less regarded work by Volponi and Yoshida (2002)).
A common property of Kelvin, GH, and normal modes are that they reduce an PDE to an
ODE for the eigenvalue. Interestingly, there is a link between the subsequently introduced Lie
symmetries of the equation and this property. We explain this aspect in the following.

Lie symmetries and stability

There is a link between separation of variables and Lie symmetries, which was described by
Miller (1977) in a monograph ”Symmetry and separation of variables”. However, this idea was
already known, and mentioned earlier, e.g. in Winternitz and Fris (1965) (Miller, 1977). The
examples in the book showed a separation of variables for different equations in theoretical
physics, e.g. the Schrödinger equation. The application to linear hydrodynamic stability theory
was done by Burde et al. (2007) and Zhalij et al. (2006). In earlier works by these authors,
they considered the separation of equations from theoretical physics (cf. Zhalij, 1999; Zhdanov
and Zhalij, 1999a; Zhdanov and Zhalij, 1999b; Zhalij, 2002). In their hydrodynamic stability
studies, they essentially considered non-parallel flows. They showed that ansatz functions
consisting of algebraic and exponential terms can be used to study the stability of a flow
between two concentric cylinders. Due to a time-dependent spatial coordinate, they used
permeable walls with transpiration and moving walls. These problems were solved analytically
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for some special cases and numerically. Unstable modes were found for the three-dimensional
case (Zhalij et al., 2006; Burde et al., 2007).
Nold and Oberlack (2013) realized that the concept of separation is linked to Lie symmetries.
They showed that Lie symmetry methods can be applied to calculate the symmetries and to
systematically derive ansatz functions.
They found that the normal mode ansatz is based on classical symmetries (translation in space
and time and a scaling symmetry of the dependent variable). Their idea is to use the general
algorithms for finding symmetries to find the symmetries of the linearized flow equations. They
showed that a combination of classical symmetries leads to the normal mode ansatz. If the
stability equations have additional symmetries it is possible to construct alternative ansatz
functions. This is not always the case, as some flow profiles or BC can be symmetry-breaking.
This method was also applied successfully to compressible shear flows (Hau, 2016), the
asymptotic suction boundary layer (Yalcin et al., 2021) and to rotational shear flows (Gebler
et al., 2021). We present these results in the following.

Linear shear flows

In this section we summarize the results from Nold and Oberlack (2013) and Nold et al. (2015).
The stability of a two-dimensional flow (U(y), 0)T with perturbations (u′, v′)T is considered.
By using a stream function Ψ for the perturbations

u′ =
∂Ψ

∂y
, v′ = −∂Ψ

∂x
, (3.39)

the linearized stability equation in terms of the stream function reads

∂

∂t
∆Ψ+ U

∂

∂x
∆Ψ− U ′′∂Ψ

∂x
= ν∆2Ψ. (3.40)

A symmetry analysis of (3.40) for a general base flow U(y) gives the following symmetries

X0 = Ψ0
∂

∂Ψ
, X1 =

∂

∂x
, X2 =

∂

∂t
, X3 = Ψ

∂

∂Ψ
, (3.41)

and a symmetry X0 due to the superposition principle for linear differential equations and
Ψ0(x, y, t) solves (3.40). The symmetry X1 is a translation in space, X2 is a translation in time,
X3 is a scaling symmetry. The symmetries X1 −X3 are classical symmetries. For linear shear
flows, i.e. U(y) = Ay an additional symmetry X4 exists

X4 = At
∂

∂x
+

∂

∂y
(3.42)

The symmetries can be combined by a linear combination

X = a1X1 + a2X2 + a3X3 + a4X4. (3.43)

In general, the coefficients are complex numbers ai ∈ C, i = 1, 2, 3. Based on the combination
of symmetries according to (3.43) it is possible to construct different ansatz functions. A
combination of the classical symmetries (translation in space and time and scaling of the
dependent variable) gives

X = a1
∂

∂x
+ a2

∂

∂t
+ a3Ψ

∂

∂Ψ
(3.44)
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We use an invariance condition for the solution Ψ = Ψ(x, y, t) given by

X (Ψ−Ψ(x, y, t)) |Ψ=Ψ(x,y,t) = 0, (3.45)

which yields

a3Ψ− a1
∂Ψ

∂x
− a2

∂Ψ

∂t
= 0. (3.46)

This condition can be solved using the method of characteristics for a2 ̸= 0 which gives

Ψ(x, y, t) = f(ξ, y)e
a3
a2

t
, (3.47)

where

ξ = x− a1
a2
t. (3.48)

The ansatz (3.47) can be inserted into the linearized stability equation (3.40) and we obtain
the following differential equation(︃

U − a1
a2

)︃
∂

∂ξ
∆f +

a3
a2

∆f − U ′′ ∂

∂ξ
f = ν∆2f. (3.49)

A symmetry analysis of (3.49) shows that the equation has two symmetries

X = b1
∂

∂ξ
+ b2f

∂

∂f
. (3.50)

By using the invariant surface condition (see (3.45)) a second time, it is possible to find the
following ansatz, assuming b1 ̸= 0

f(ξ, y) = g(y)e
b2
b1

ξ (3.51)

Combining the ansätze (3.47) and (3.51) we find

Ψ(x, y, t) = g(y) exp
(︃
b2
b1
x+

a3b1 − a1b2
a2b1

t

)︃
. (3.52)

Using a different notation with α = b2/b1 and c = a1/a2 − (a3b1)/(a2b2) (here it is assumed
that all parameters are real values) we obtain

Ψ(x, y, t) = g(y)eiα(x−ct). (3.53)

We see that by a successive use of symmetries from (3.44)and (3.50) we can recover the normal
mode ansatz. In addition, the Orr-Sommerfeld equation can be also derived directly from the
Lie symmetries.
Moreover, it is possible to construct two distinct modes using a different combination of
symmetries including X4. Note that the symmetry X4 only exists for linear shear.

• Kelvin mode approach X1, X2, X4

Ψ(x, y, t) = g(t)eikx(x−Ayt)+ikyy (3.54)

with wavenumbers kx and ky for the two-dimensional flow.
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• New invariant solution using symmetries X1, X2, X3, X4

Ψ(x, y, t) = g

(︃
κy − t

T

)︃
exp

(︃
iκ

(︃
x− At2

2κT

)︃
+ cxt

)︃
(3.55)

where the coefficients κ, T, c depend on the coefficients of the symmetries, i.e. on ai for
a linear combination of the symmetries. The coefficient κ is real and c is proportional
to κ but can take complex values. T is a time scale such that (κT )−1 is constant. The
modes of the new invariant solution are periodic in stream-wise direction and travel with
a constant speed (κT )−1 in cross-stream direction.

Asymptotic suction boundary layer

In stability theory there is an interesting extension to wall-bounded flows with permeable walls
(wall suction). This allows for crossflows relative to the streamwise velocity. The displacement
thinkness δ1 (a measure for the boundary layer thickness) is asymptotically constant for
distances large enough from the inflow (i.e. the leading edge of the flat plate). This is referred
to as the asymptotic suction boundary layer (ASBL) in the literature, cf. Hughes and Reid
(1965). We consider a wall-bounded flow with a constant suction at the wall with a constant
velocity V0. The base flow is given by

(U, Y,W ) =
(︂
U∞

(︂
1− e

yV0
ν

)︂
,−V0, 0

)︂
. (3.56)

A critical Reynolds number was found to be Re = 54.370 (Hocking, 1975). However, numerically
the transition to turbulence could be shown for Reynolds numbers of order Re ≈ 300 (Schlatter
and Örlü, 2011). For further numerical work the reader is referred to e.g. Fransson and
Alfredsson (2003) and Khapko et al. (2013). This section is a summary of a recent work
by Yalcin et al. (2021). The stability equation can be derived in a similar way as the Orr-
Sommerfeld equation. However, there is an additional term due to the suction which scales
with Re−1 (refer to Yalcin et al. (2021) for details). For the 2D inviscid case the stability
equation in terms of a streamfunction reads[︃

∂

∂t
+
(︁
1− e−y

)︁ ∂

∂x
− 1

Re
∂

∂y

]︃
∆Ψ+ e−y ∂Ψ

∂x
= 0, (3.57)

where the Reynolds number is defined as

Re =
U∞
V0

. (3.58)

A symmetry analysis gives the following symmetries (Mirzayev, 2016)

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = Ψ

∂

∂Ψ
, (3.59)

X4 = e1/Re
[︃
∂

∂t
+

∂

∂x
− 1

Re
∂

∂y

]︃
, X0 = Ψ0

∂

∂Ψ
. (3.60)

The symmetries X1 − X3 are the classical symmetries and X4 is a special symmetry which
only exists for inviscid flows. The symmetry X0 gives the superposition principle for linear
differential equations, where Ψ0(x, y, t) solves (3.57). The combination of the symmetries
reveals three ansatz functions.
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• The normal mode ansatz (2D) is based on the symmetries X1, X2, X3 and is given by

q(x, y, t) = q̂(y)ei(αx−ωt). (3.61)

A stability analysis reveals unstable normal modes. The reader is referred to Yalcin et al.
(2021) for more details.

• The double-exponential ansatz function arises from the symmetries X2, X3, X4 and reads

Ψ(x, y, t) = Φ (Rey + t) eReωe
t
Re+αx+Reαy, (3.62)

where the time-dependency can be interpreted as a travelling wave solution.

• The alternative exponential ansatz function with symmetries X1, X2, X3, X4 is given by

Ψ(x, y, t) = ϕ (y(1− λ)Re+ t− λx) eα(Rey+x). (3.63)

The stability analysis shows that all modes from (3.63) are stable.

Rotational shear flows

Another interesting class of flows are rotational shear flows. One example are flows confined
by two concentric cylinders. For the viscous case V (r) = Ar +B/r is an exact solution. For
inviscid flows, any profile V (r) is a solution (Chandrasekhar, 1961). If three dimensional
perturbations are allowed, this leads to the Taylor Couette experiment (Taylor, 1923). The
study of the plane rotational shear flow reveals new stable modes, which are presented in the
following.
The Navier-Stokes equations (2.3) with perturbations are written in cylindrical coordinates
(r, ϕ) with velocities ur, uϕ in a stationary frame (without any forcing terms). The streamfunc-
tion ψ for the two-dimensional perturbations u′r, u′ϕ is defined by

u′r =
1

r

∂ψ

ϕ
, u′ϕ = −∂ψ

∂r
. (3.64)

The linearized stability equation for a general base flow

V (r) = Ar +B/r (3.65)

reads [︃
∂

∂t
+

(︃
A+

B

r2

)︃
∂

∂ϕ

]︃
∆Ψ =

1

Re
∆2Ψ, (3.66)

where the Reynolds number is defined as Re = B/ν. In the following, we consider the case
B = 1. The symmetries of the equation (3.66) are given as follows (these symmetries were
first presented by Sanjon (2005))

X1 =
∂

∂t
, X2 =

∂

∂ϕ
, X3 = Ψ

∂

∂Ψ
, X4 = r

∂

∂r
+ 2t

∂

∂t
+At

∂

∂ϕ
(3.67)

The symmetries X1 −X3 are the classical symmetries, namely the translation in time, space
and the scaling symmetry. In addition, X4 is a special symmetry. There are two types of modes
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• normal mode ansatz with symmetries X1, X2, X3

ψ(r, ϕ, t) = g(r)ei(mϕ−ωt) (3.68)

• algebraic mode ansatz with symmetries X1, X2, X3, X4

ψ(r, ϕ, t) = f

(︃
r√
t̄

)︃
eim(ϕ−At)t̄s (3.69)

Due to the coordinate transform r/
√
t , there is a singularity for t = 0. However, the

symmetry X1 admits a translation in time, which allows to shift the origin of time, i.e.
t̄ → t + t0 to avoid this singularity. The term t̄s implies an algebraic growth in time.
Therefore we refer to ansatz (3.69) as the algebraic mode ansatz in the following.

The base flow V (r) = Ar + 1/r covers a large class of flows. The base flow profile is a plane
analogue to the flow between two concentric cylinders. For three-dimensional perturbations this
corresponds to the Taylor-Couette experiment (Taylor, 1923). However, only two-dimensional
perturbations are considered here. In the case of a vanishing A the base flow reduces to a point
vortex flow.
An interesting extension to base flows with V (r) = r−n is given in Kleinjung (2019). The
symmetries X1 −X3 from (3.67) are preserved. However, the symmetry X4 can be written
more generally as

X4 = r
∂

∂r
+ (n+ 1)t

∂

∂t
, (3.70)

which reduces to the special case for X4 from (3.67) for A = 0 and n = 1. The corresponding
ansatz function to the symmetries X2, X3 from (3.67) with symmetry X4 from (3.70) reads

ψ(r, ϕ, t) = f

(︃
r

t
1

n+1

)︃
eimϕts. (3.71)

For n = 2 we obtain a base flow V (r) = r−1/2 which is known as a Keplerian velocity profile.
The flow profile is used to model accretion disks in astrophysics. Accretion is seen as a key
process in the growth of new stars (Shariff, 2009). Interestingly, the mass fluxes in accretion
disks indicate that the flow is turbulent, however the flow profile is stable to classical analysis
(Shakura, 2018). Several extensions including magneto-hydrodynamic effects were proposed
(Shariff, 2009). Though, this still bears several open questions for the hydrodynamic stability
theory (cf. Ji et al., 2006; Balbus, 2011; Avila, 2012; Balbus, 2017; Shi et al., 2017). In the
following we present a full stability analysis using the novel algebraic mode ansatz with a base
flow V (r) = r−1 (point vortex flow).

3.4. Example: stability analysis of rotational shear flow

This section is based on the publication “Algebraic Stability Modes in Rotational Shear Flow” by T.
Gebler, D. Plümacher, J. Kahle, and M. Oberlack (2021). The results, equations, and figures are
based on the publication mentioned.
We consider a rotational base flow V (r) = r−1. Physically, this can be interpreted as a point
vortex. The base flow has a singularity at the center r = 0. Special attention is therefore needed
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for the BCs and physical quantities (e.g. perturbation velocity or vorticity) near the center.
The stability criteria are different for this flow under two- or three-dimensional perturbations.
This work addresses two-dimensional instability. Here Rayleigh’s inflection point theorem
for rotational flows holds (cf. Rayleigh (1879), which is similar to the Rayleigh’s inflection
point criterion for plane flows in (3.23) to (3.25)). The theorem states that the necessary
condition for instability is a change of sign for the base flow vorticity, cf. Drazin and Reid
(2004) and Kerswell (2015). Therefore the point vortex is stable according to classical stability
analysis. For the stability analysis under three-dimensional instabilities, the reader is referred
to Rayleigh (1917), Synge (1938), and Billant and Gallaire (2005).
In the present work, we investigate if there are any instabilities using the algebraic mode
ansatz. In addition, we discuss how the stability criterion from a normal mode ansatz can be
generalized and applied to the algebraic mode ansatz.

Formulation of the eigenvalue problem

Inserting the algebraic mode ansatz (3.69) into the linearized stability equation (3.66) gives
the following equation for the eigenvalue s(︃

im

x2
+ s− 1− x

2

d

dx

)︃
Lf(x) = 1

Re
L2f(x), (3.72)

where

L =

(︃
d2

dx2
+

1

x

d

dx
− m2

x2

)︃
. (3.73)

Note that due to the coordinate transform x = r/
√
t, the new coordinate x is implicitly

time-dependent. The derivative with respect to r transforms as

∂

∂r
=

1√
t

∂

∂x
. (3.74)

The velocity can be obtained from the definition of the stream function and the algebraic mode
ansatz as follows

ur = lim
x→∞

ts−
1
2
f(x)

x
eimϕim, (3.75)

uϕ = lim
x→∞

ts−
1
2 f ′(x)eimϕ. (3.76)

Vanishing velocities in the limit r →∞ for all times t are applied as BC. With (3.75) and (3.76),
the outer BCs therefore read

lim
r→∞

ur = lim
x→∞

ts−
1
2
f(x)

x
eimϕim = 0, (3.77)

lim
r→∞

uϕ = lim
x→∞

ts−
1
2 f ′(x)eimϕ = 0. (3.78)

For the inner BCs, Batchelor and Gill (1962) proposed conditions for smooth and bounded
solutions for the velocity given by (Khorrami et al., 1989)

lim
r→0

∂u

∂ϕ
= 0, (3.79)
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or written component-wise as

lim
r→0

[︃(︃
∂ur
∂ϕ
− uϕ

)︃
er +

(︃
ur +

∂uϕ
∂ϕ

)︃
eϕ
]︃
= 0. (3.80)

By using the definition of the stream function (3.64) and the algebraic mode ansatz (3.69) the
condition (3.80) can be rewritten as

lim
r→0

(︃
f(x)

x
m2 − f ′(x)

)︃
= 0, (3.81)

lim
r→0

(︃
f(x)

x
im− f ′(x)im

)︃
= 0. (3.82)

Special attention must be paid to the case m = 0 as there are two dependent BCs (Khorrami
et al., 1989). By using the continuity equation we can derive an additional condition

2

(︃
f(x)

x

)︃′
− f ′′(x) = 0. (3.83)

The resulting BCs read

m = 0 :
f(x)

x
finite, f ′(x) = 0, (3.84)

m = 1 :
f(x)

x
− f ′(x) = 0, 2

(︃
f(x)

x

)︃′
− f ′′(x) = 0, (3.85)

m ≥ 2 :
f(x)

x
= f ′(x) = 0. (3.86)

The eigenvalue equation (3.72) and the BCs (3.84)-(3.86) constitute an eigenvalue problem
for the stability of the rotational shear flow.

Stability criterion for algebraic modes

According to (temporal) stability theory using normal modes, a flow is unstable if there exists
at least one mode (wave-like disturbance) which is not damped for large times (Yaglom, 2012).
If we consider an unstable mode with ωi > 0, the kinetic perturbation energy of the mode
grows as E ∼ exp (2ωit) (Canuto, 1988). In that way, we see that the kinetic energy E of the
perturbations is defined in general by

E =
1

2

∫︂
V
uiuidV (3.87)

and can be taken as a criterion for the longtime stability, cf. Schmid and Henningson (2001).
In (3.87), the square of the perturbation velocities ui is integrated over the domain V . As the
rotational shear flow is defined on an infinite domain, the integration has to be done over
r = [0,∞[, or written in transformed variables over x = [0,∞[. In addition, the eigenfunctions
f from (3.72) with corresponding BCs are in general complex valued. As the perturbation
velocities can be obtained directly from the eigenfunctions (cf. (3.75) and (3.76)), the velocities
are in general also complex valued. Therefore, the complex conjugate f of f is used to obtain
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the (real valued) kinetic energy. For the algebraic mode ansatz (3.69), the perturbation energy
from (3.87) can be written as

E(t) =
1

2
t2sR

∫︂ ∞

0

∫︂ 2π

0

(︃
m2

x2
ff + f ′f

′
)︃
xdϕdx =

1

2
t2sRE0, (3.88)

where E0 is the initial kinetic energy. It follows directly that a necessary criterion for a temporal
growth of energy is sR > 0, where sR is the real part of the eigenvalue s. The stability therefore
only depends on the real part of s. Note that only the real part of s, i.e. sR remains in (3.88)
due to the use of complex conjugate quantities. In addition, it can be shown that the stability
equation (3.66) has a discrete symmetry (m, s)→ (−m, s̄) and is invariant under a change of
sign of the wavenumber in a two-dimensional analysis. In three-dimensional stability analysis,
for example, vortices with an axial flow, the stability results may depend on the sign of the
wavenumber, e.g. (Ash and Khorrami, 1995). As the energy E(t) has to be bounded at all
times, the integral in (3.88) has to be bounded. Therefore the eigenfunctions f(x)/x and f ′(x)
must decay as x−1 or faster to have bounded results. This gives an additional condition for a
physically realizable solution and has to be checked for any possibly unstable mode. It can be
discussed if other quantities, such as the vorticity (η = ∇× u) or enstrophy (ϵ =

∫︁
|η|2dV ,

integrated over the corresponding volume V ) should be bounded as well.
The vorticity η for the two-dimensional flows in polar coordinates reads

η =
1

r

∂

∂r
(ru′ϕ)−

1

r

∂u′r
∂ϕ

= −∆ψ. (3.89)

Transforming the expression (3.89) from (r, ϕ, t) to (x, ϕ, t) and using the definition of the
velocity fluctuations from (3.75) and (3.76) gives

η = ts−1eimϕ

(︃
f ′′(x) +

f ′(x)

x
+m2 f(x)

x2

)︃
, (3.90)

where f ′′(x) denotes the second derivative with respect to x. Using the result for the vorticity
from (3.90), the enstrophy

ϵ =

∫︂
V
η2dV (3.91)

can be calculated by multiplying the vorticity η from (3.90) with its complex conjugate and
integrating the expression over the infinite domain, which gives

ϵ = t2sR−2

∫︂ ∞

0

∫︂ 2π

0

(︃
f ′′ +

f ′

x
+m2 f

x2

)︃(︄
f
′′
+
f
′

x
+m2 f

x2

)︄
xdϕdx. (3.92)

In order that the integral (3.92) is bounded, its integrand must decay faster than x−1. Ex-
panding the product of the integrand leads to an expression of nine terms. For the case that
bounded enstrophy is used as an additional criterion together with the bounded energy (3.88),
we can use the result that f/x and f ′ must decay as x−1 or faster (see section below (3.88)).
For the remaining terms follows the condition that that f ′′ and f ′′ have to decay faster than x−1.
Throughout the present work, the behavior for large arguments, i.e x→∞ is discussed based
on asymptotic expansions. These expansions admit a series representation as polynomials.
In general, if the polynomial for the asymptotic of f ′ has a decay rate of x−1 or faster, its
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derivative, i.e. the polynomial for the asymptotic of f ′′ decays with x−2 or faster. The same
arguments also holds for the complex conjugate f ′′. Therefore, the enstrophy criterion (3.92)
does not give further limitations on the decay of the solutions if it is used in addition to the
energy criterion (3.88). However, in the following, we restrict the present study to the kinetic
energy of the perturbation and therefore only force the expression (3.88) to be bounded.

Stability analysis for inviscid flows

The stability equation (3.72) simplifies for inviscid perturbations to(︃
im

x2
+ s− 1− x

2

d

dx

)︃
Lf(x) = 0, (3.93)

where L is defined in (3.73). The solution for for the axisymmetric case reads

f(x) = C1 ln(x) + C2x
2s + C3. (3.94)

With respect to the BCs (3.78) and (3.84) it follows that only the trivial solution f(x) = 0
exists for the axisymmetric case. For the non-axisymmetric case (m ̸= 0) the solution of (3.93)
is

f(x) = C3x
m + C2x

−m + C1x
2s

⎛⎝e−
z
2

2m

2∑︂
j=1

(−1)jz−
κj
2
W
[︁κj

2 ,
κj

2 + 1
2 , z
]︁

κj(1 + κj)
− e−z

2κ1κ2

⎞⎠ , (3.95)

where W is the Whittaker function with the following parameters

κ1 = −s−
m

2
, κ2 = −s+

m

2
, z =

im

x2
. (3.96)

We perform an analytic investigation of the solution. The Whittaker function has a singularity
if its second argument is a negative integer. In addition, the denominator is singular if κj = 0
or κj + 1 = 0. These cases have to be considered separately. In the following, an analysis for
the non-singular case |m| ̸= 2s is performed.

By using the limit x→∞ of (3.95) and with the asymptotic limits for the Whittaker function
given by Olver (2010) we obtain

f(x)

x
∼ C1x

2s−1

(︃
κ̂x−2 − 1

2κ1κ2

)︃
+ C3x

m−1 + C2x
−(m+1), (3.97)

where
κ̂ =

i

2

(︃
1

κ2(κ2 + 1)
− 1

κ1(κ1 + 1)

)︃
. (3.98)

The term x2s−1 with coefficient C1 in (3.97) converges to zero if sR < 1/2. However, to ensure
sufficient decay, the condition sR < 0 is necessary. Otherwise, C1 must be set to zero. In the
following analysis, positive wavenumbers are assumed. The term xm−1 with coefficient C3 in
(3.97) is therefore critical. For any wavenumber m ≥ 1, it follows directly that C3 = 0 must
hold.
The limit of (3.95) for x→ 0 gives

f(x) = (C3 − C1α)x
m + (C2 − C1β)x

−m − C1i

2m2
γe−im/x2

x2(s+2), (3.99)
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with

α = −Γ(κ2)

2m
(im)−κ2 , β =

Γ(κ1)

2m
(im)−κ1 . (3.100)

We use the conditions for smoothness and boundedness for r → 0. For perturbations with
higher modes m ≥ 2 the BC (3.86) is used, giving

lim
x→0

f(x)

x
=(C3 − C1α)x

m−1 + (C2 − C1β)x
−(m+1) − C1i

2m2
γe−im/x2

x2s+3 = 0, (3.101)

lim
x→0

f ′(x) = (C3 − C1α)mx
m−1 + (−C2 + C1β)mx

−(m+1)

+C1γe
−im/x2

(︃
1

m
x2s+1 − i(s+ 2)

m2
x2s+3

)︃
= 0. (3.102)

The constant γ arises from the asymptotic limit of the Gamma function. The term x−m−1 is
singular for positive wavenumbers (m ≥ 2). The contributions vanish for a linear combination
of the coefficients, i.e.

C2 = C1β. (3.103)

The exponential term e−im/x2 in (3.102) and (3.101) has a purely imaginary argument and
thus has unit amplitude. The terms

1

m
x2s+1 − i(s+ 2)

m2
x2s+3 (3.104)

which are given between the brackets in (3.102) are of order x2s+1 and x2s+3. Any choice
sR > −1/2 satisfies the BC (3.86). From the analysis for x→∞, we find the condition sR < 0.
It follows that under condition (3.103), the solution (3.95) admits a continuous spectrum.

For mode-one perturbations (m = 1) the inner BCs from (3.85) yield

lim
x→0

[︃
f(x)

x
− f ′(x)

]︃
= 2(C2 − C1β)x

−2 + C1γe
−i/x2

x2s+1
(︁
1 +O(x2)

)︁
= 0 (3.105)

lim
x→0

[︃
2

(︃
f(x)

x

)︃′
− f ′′(x)

]︃
= −6(C2 − C1β)x

−3 + C1γie
−i/x2

x2s−2
(︁
1 +O(x2)

)︁
= 0 (3.106)

To avoid singularities due to the terms x−2 and x−3 their contribution must vanish by a linear
combination of of the coefficients C1 and C2, i.e. C2 − C1β = 0. The condition (3.105) gives
sR ≥ −1/2 while (3.106) requires sR > 1. Therefore (3.105) and (3.106) can not be fulfilled
at the same time. As a consequence, C1 must be zero and it follows that only the trivial solution
(f(x) = 0) exists for m = 1.
It can be shown that also in the singular case m = 2s, only a trivial solution f(x) = 0 exists,
see Gebler et al. (2021) for more details. To summarize, all inviscid eigenfunctions are stable
with wavenumber m ≥ 2. For wavenumber m = 0 and m = 1 there are only trivial solutions
(f(x) = 0). The corresponding eigenfunction f(x)/x for m = 2 is shown in Figure 3.4. It can
be seen that there is an oscillation near r = 0. The real part of the velocity component ur is
shown in Figure 3.5, which reveals a spiral-like structure of the velocity field.
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Figure 3.4.: Algebraic mode, inviscid flow: f(x)/x from definition (3.95) (s = −1/4,m = 2)
with absolute value, real part and imaginary part. The domain is truncated at
x = 6. The functions are rescaled by the maximum of the absolute value

Figure 3.5.: Algebraic mode, inviscid flow: real part of the ur disturbances for (s = −1/4,m =
2, t = 1) in polar coordinates (r, ϕ). The domain is truncated at r = 6.
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Stability analysis for viscous flows (non-axisymmetric perturbations)

The solution of (3.72) for viscous flows is given by

f(x) =C3x
m + C4x

−m (3.107)

+C1

[︃
xm
∫︂ x

1
x̃−me−

z̃
2M [κ, µ; z̃] dx̃− x−m

∫︂ x

1
x̃me−

z̃
2M [κ, µ; z̃] dx̃

]︃
+C2

[︃
xm
∫︂ x

1
x̃−me−

z̃
2W [κ, µ; z̃] dx̃− x−m

∫︂ x

1
x̃me−

z̃
2W [κ, µ; z̃] dx̃

]︃
with

z =
Re
4
x2, κ =

1

2
− s, µ =

1

2

√︁
m2 + imRe. (3.108)

Note that there is also a representation in terms of hypergeometric functions, cf. Kahle (2017)
for more details. We use the solution representation (3.107), and perform an asymptotic anal-
ysis with respect to the BCs. First, the integrand is replaced by its asymptotic expansion and
second, the integration is performed. This approach can be found in textbooks on asymptotic
methods, see e.g. Olver (1974).

The limit of (3.107) for small x under non-axisymmetric perturbations reads

x→ 0 : f(x) = C3x
m + C4x

−m + x2+2µC1a1 + x2−2µC2a2, (3.109)

with

a1 =

(︃
Re
4

)︃1/2−µ 2m

(2 + 2µ−m)(2 + 2µ+m)
, (3.110)

a2 =

(︃
Re
4

)︃1/2−µ 2m

(2 + 2µ−m)(−2 + 2µ−m)
. (3.111)

It can be easily verified that ℜ(µ) > 1/2. Thus, the term C1 with x2+2µ converges to zero. This
contribution is therefore uncritical in the limit of x→ 0. The BC(3.85) for mode one solutions
(m = 1) gives

lim
x→0

[︃
f(x)

x
− f ′(x)

]︃
= a2 (2µ− 1)C2x

1−2µ + 2C̃4x
−2 = 0, (3.112)

lim
x→0

[︃
2

(︃
f(x)

x

)︃′
− f ′′(x)

]︃
= −2a2(2µ− 1)C2µx

−2µ − 6C̃4x
−3 = 0. (3.113)

The terms x−2 and x1−2µ with ℜ(µ) > 1/2 are in general singular as x → 0. A special case
occurs for the Reynolds number Re = 12

√
2 which gives exponents of the same order. However,

it can be easily shown that this special case does not satisfy (3.112) and (3.113) at the same
time. Therefore, the choice C2 = C4 = 0 is necessary.
For modes m ≥ 2, the conditions from the terms C3 are uncritical and we obtain from BC
(3.86)

lim
x→0

f(x)

x
= C4x

−m−1 + x1−2µC2a2 = 0, (3.114)

lim
x→0

f ′(x) = −C4mx
−m−1 + x1−2µC2(2− 2µ)a2 = 0. (3.115)
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Similar to the case with wavenumber m = 1 only a trivial choice (C2 = C4 = 0) is possible.
Special care must be taken for limit x→∞. Here, the asymptotic depends on sR and a case
split is necessary. The asymptotic expansions read

lim
x→∞

f(x)

x
∼ C3x

m−1 + C1a3γx
m−1 for sR < −m

2 , (3.116)

lim
x→∞

f(x)

x
∼ C3x

m−1 + C1a3
(︁
γxm−1 − ln(x)x−m−1

)︁
for sR = −m

2 , (3.117)

lim
x→∞

f(x)

x
∼ C3x

m−1 + C1a3
(︁
γxm−1 − a4x2s−1

)︁
for sR ∈]− m

2 , 0[, (3.118)

with a proportionality constant γ from the integration and the coefficients

a3 =

(︃
Re
4

)︃s−1/2 Γ(1 + 2µ)

Γ(12 + µ− κ)
, (3.119)

a4 =
1

2s+m
. (3.120)

For sR > 0 there are only trivial solutions, therefore a detailed analysis is omitted here. The
terms xm−1 vanish under a linear combination of C3 and C1. The contributions ln(x)x−m−1

and x2s−1 both have sufficient decay and satisfy the energy criterion (3.88). Therefore a
non-trivial viscous eigenfunction is found based on (3.107).

Stability analysis for viscous flows (axisymmetric perturbations)

For axisymmetric perturbations (m = 0), the equation (3.72) simplifies and has the solution

f(x) = C1 + C2 ln(x) (3.121)

+C3

[︃
x2Re+ 4s

x2
e−

z
2M(−s, 1

2
, z) +

−4s+ 4

x2
e−

z
2M(1− s, 1

2
, z)

]︃
+C4

[︃
x2Re+ 4s

x2
e−

z
2W(−s, 1

2
, z)− 4

x2
e−

z
2W(1− s, 1

2
, z)

]︃
,

The radial velocity vanishes (i.e. ur = 0) in the axisymmetric case, which follows directly from
the definition of the stream function (3.64). The azimuthal perturbations are proportional to
f ′(x) and are obtained by differentiation of (3.121) with respect to x

f ′(x) =
C2

x
+ C3

2sRe
x

e−
z
2M
(︃
−s, 1

2
, z

)︃
+ C4

2sRe
x

e−
z
2W

(︃
−s, 1

2
, z

)︃
. (3.122)

The asymptotic analysis of x→∞ reads

f ′(x) ∼ C2

x
+ C3

2sRe
Γ(1 + s)

(︃
Re
4

)︃s

x2s−1 + C42sRe
(︃
Re
4

)︃−s

x−2s−1, (3.123)

and it follows that

C4 = 0 for sR < 0, or C3 = 0 for sR > 0. (3.124)

In addition, C2 has to be set to zero because of the energy criterion (3.88) which demands a
decay faster than x−1. In the limit of x→ 0, we find for the expression (3.122)

f ′(x) ∼ C2

x
+ C3

sRe2

2
x+ C4

2sRe
Γ(1 + s)

1

x
. (3.125)
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Figure 3.6.: Algebraic mode, viscous flow,m = 0: real part f ′(x) from (3.126). The eigenvalue
is sR = −0.1 and different values of sI , scaled to unity.

In general, the condition (3.125) could be satisfied for a linear combination of C2 and C4, so
that the singular term x−1 annihilates. However, the constant C2 has to be zero to satisfy
the energy criterion (3.88) as can be seen from (3.123). The only non-trivial solution is the
contribution due to the term with constant C3. The corresponding modes are given by

f ′(x) = C3
2sRe
x

e−
z
2M
(︃
−s, 1

2
,
Re
4
x2
)︃
, sR ∈]−∞, 0[ \ {−1,−2, ...}, (3.126)

which are stable for all sI . Figure 3.6 shows the real part of the eigenfunction (3.126) for
different choices of stable eigenvalues s. The stability limit is sR = 0. The eigenfunctions decay
faster as x→∞ for smaller sR. For the inviscid flow, only trivial solutions for the vorticity can
be found due to the presence of a singularity at x→ 0. The stability analysis using algebraic
modes confirms the results of the normal mode theory and shows that only stable modes exist.

Vorticity evolution for viscous flows

The vorticity for this two-dimensional flow is given by (3.89). Using the algebraic mode ansatz
(3.69) the vorticity for viscous flows can be obtained by solving

η = −ts−1eim(−At+ϕ)Lf(x). (3.127)

Solving the viscous equation (3.72) for Lf gives

Lf(x) = C1
e−z/2

x
M(κ, µ; z) + C2

e−z/2

x
W(κ, µ; z), (3.128)
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with the definition for z, κ, and µ from (3.108). The limit of (3.128) for x→ 0 reads

η ∼ C̃1x
−2s+2 + C̃2x

2s. (3.129)

Note that constants from the asymptotic limit are taken into C̃j . It is shown in the analysis of
the velocity eigenfunctions that solutions only exist for sR < 0. As a consequence C2 = 0 is
chosen to eliminate the singularity at x = 0. The limit x→∞ yields

η ∼ Ĉ1x
−2+2s, (3.130)

where Ĉ1 contains coefficients from the asymptotic limit. With the condition sR < 0 in (3.130),
the vorticity has a sufficiently fast decay with x−2 for large x. The temporal vorticity evolution
of (3.128) is shown in Figure 3.7. For a wavenumberm = 2, there are two pairs of low and high
vorticity that evolve in time. The temporal evolution has an algebraic decay rate. Furthermore,
the figure illustrates that the spiral structures are diffusive and its maximum amplitude decays.
Note that the solid body rotation in the general velocity profile V (r) = 1/r +Ar (cf. general
solution (3.65)) is suppressed by setting A = 0. Otherwise, a rotation would be superposed
on these structures.

3.5. Summary and discussion

Classical linear stability theory uses a normal mode decomposition, which gives the famous
Orr-Sommerfeld equation. Kelvin (1887) showed that for linear shear, there are also solutions
with time-dependent wave number (Kelvin modes). Both the normal and algebraic modes can
be systematized by a Lie symmetry analysis. Further, it is shown that new ansatz functions can
be derived for linear shear flows by using additional symmetries.
For rotational shear flows, it is shown that an algebraic mode ansatz exists. This ansatz allows
finding new modes with an algebraic decay. Only stable solutions are found, which is in line
with the normal mode result.
Still, the relation between the GH modes and the Lie symmetries is not elucidated. The GH
modes are based on the solution of the Hiemenz flow (Hall et al., 1984). The Hiemenz flow has
a more complicated group-theoretical explanation. The solution of the (unsteady) stagnation
point flow can be explained by partially invariant solutions (Kuznetsov and Pukhnachev, 2009;
Pukhnachev, 2021). For details, the reader is referred to Olver (1992) and Ondich (1995)
for an introduction. Alternatively, the ansatz can be explained as a nonlinear separation of
variables. It is shown that the Hiemenz flow solution can be systematically obtained from the
Navier-Stokes equation (Polyanin, 2001; Polyanin and Zhurov, 2022).
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(a) t = 1 (b) t = 2

(c) t = 4 (d) t = 8

Figure 3.7.: Vorticity evolution for algebraic mode, viscous (m = 2, Re = 1, s = −0.2 + 2i) for
four different time steps t = [1, 2, 4, 8] in physical space (r, ϕ).
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4. A new nonlinear eigenvalue problem in
stability analysis

Contributions:
The formulation of a nonlinear eigenvalue problem (NEVP) is based on an idea by M. Oberlack and
was raised in a proposal for the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG, see Oberlack (2018)). The derivations were done by M. Oberlack and A. Yalcin. The deriva-
tion of the NEVP (chapter 4.1), the formulation of the Rayleigh quotient (chapter 4.2), and the
derivation for wall-bounded flows (chapter 4.5) are based on private communications, cf. Yalcin
(2018).

Motivation Recently, a novel idea for an eigenvalue problem in stability theory has been
proposed (Oberlack, 2018; Oberlack, 2020). This approach also uses the Lie symmetries of
the underlying equations but goes beyond the classical modal approach (see Chapter 3 for an
overview). Based on the Lie symmetries of the Euler equations an invariant solution for the
following velocity decomposition

u = u+ u′ = exAy + eλAtũ′(x̃), x̃ = xe−λAt (4.1)

for an unbounded linear shear flow. Here, A is the constant shear rate and λ is a parameter
arising from the symmetries. The inverse of the shear rate A−1 is called the shear time scale
(Sagaut and Cambon, 2018). The fluctuation velocities scale as

u′ = eλAtũ′. (4.2)

In general, the turbulent kinetic energy is defined as

k(t) =
1

2
u′iu

′
i, (4.3)

where u′i are the turbulent fluctuations and the overbar denotes a Reynolds average (which
is in general an ensemble average, cf. Pope (2000) and Sagaut and Cambon (2018)). As a
consequence, the scaling in (4.2) implies a growth of the kinetic energy of the fluctuations k(t)
as

k(t) ∼ e2λAt. (4.4)

The velocity decomposition (4.1) can be interpreted as base flow u and perturbations u′. Alter-
natively, in the view of turbulence theory, (4.1) corresponds to a Reynolds decomposition in
mean flow and fluctuations (see e.g. Pope (2000) for more details).
Interestingly, a similar exponential scaling as (4.4) is observed in turbulence research. Ex-
periments (e.g. (Tavoularis and Corrsin, 1981) and direct numerical simulation (DNS) (e.g.
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Brethouwer (2005) and Isaza and Collins (2009)) of linear shear flows also show an expo-
nential growth of the turbulent kinetic energy in an asymptotic regime At ≥ 25, where At
is a dimensionless quantity. The reader is referred to Briard et al. (2016) and Sagaut and
Cambon (2018) for an overview. It should be noted that the community usually uses the letter
γ or σ to describe the exponential growth, i.e. exp (γAt) (Sagaut and Cambon, 2018). It is
found that the value is nearly constant for flows of high Reynolds numbers. Typical values are
σ ≈ 0.07 − 0.33 (Briard et al., 2016). This indicates, that λ acts as a kind of eigenvalue for
linear shear flows.

We show that a nonlinear eigenvalue problem (NEVP) for the eigenvalue λ can be derived
based on the symmetries of the Euler equations. In other words, the NEVP establishes a theory
to calculate the exponent λ of the growth of kinetic energy (4.4) and may help to better
understand the flow dynamics. In particular, a detailed derivation of the result from (4.1) is
shown. Moreover, this theory can be applied to flows having a constant velocity gradient, in
particular flows under strain or with rotation. The extension to these cases is also part of the
present chapter.

4.1. Flows with constant velocity gradient

In the introductory example, the velocity decomposition (4.1) for a linear shear flow is shown.
However, it is possible to formulate an eigenvalue problem for other base flows that have a
constant velocity gradient. A general form for the velocity decomposition reads

ui = ui + u′i = Aijxj + u′i, p = p+ p′, (4.5)

where Aij is the velocity-gradient tensor defined as

Aij =
∂ui
∂xj

. (4.6)

The tensor Aij can be split into a symmetric part Sij and an antisymmetric part Ωij

Aij = Sij +Ωij , (4.7)

where Sij = (Aij + Aji)/2 and Ωij = (Aij − Aji)/2. The tensor Aij has nine entries for the
three-dimensional case. Due to tensor invariants, Aij only has five independent entries, which
are denoted by (A11, A12, A13, A22, A23) in the following (Meneveau, 2011). The general tensor
can thus be written as (Mishra and Girimaji, 2015)

Aij =

⎛⎝ A11 A12 A13

−A12 A22 A23

−A13 −A23 −A11 −A22

⎞⎠ . (4.8)

The continuity equation is satisfied by Aii = 0, cf. tensor invariants in (4.8). There are some
canonical cases concerning the choice of Aij . These include the case of (pure) linear shear,
(pure) strain, and (pure) rotation (Oberlack, 1994; Sagaut and Cambon, 2018). We depict
the three different types in Figure 4.1.
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x1

x2

Ω

x2

x1

1

Figure 4.1.: Three different types of base flows with constant velocity gradient: linear shear
(left), pure rotation (center), and pure strain (right), based on a representation by
Takagi and Strickler (2020)

4.1.1. Symmetry analysis of the velocity decomposition

The following derivation (in particular (4.10) to (4.34)) is based on Oberlack (2018) and
Yalcin (2018). In a first step, we consider the invariance of the velocity decomposition (4.5)
under Lie symmetries. The starting point are the Euler equations given in (2.5) and restated
here in a index notation

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
. (4.9)

The corresponding Lie symmetries for the Euler equation are presented in (2.9)-(2.15). We
use the scaling symmetries in space (2.10) and time (2.11) given by

t̃ = ea3t, x̃i = ea2xi, ũi = ea2−a3ui, p̃ = e2a2−2a3p. (4.10)

We start with the velocity decomposition for linear shear (constant shear rate A), i.e. uT =
(Ax2, 0, 0)

T . Therefore (4.5) reads

ui = ui + u′i = Ax2δi1 + u′i. (4.11)

Using the symmetries (4.10) in (4.11) yields

ũie
−a2+a3 = Ax̃2e

−a2δi1 + ũ′ie
−a2+a3 . (4.12)

Multiplying with exp(a2 − a3) simplifies the expression to

ũi = Ax̃2e
−a3δi1 + ũ′i. (4.13)

In order that (4.13) is invariant to (4.11) with respect to the symmetry groups a2 and a3, it
follows directly that a3 = 0, i.e. the linear shear term is symmetry-breaking for the scaling in
time. The symmetries from (4.10) with a3 = 0 are therefore simply

t̃ = t, x̃i = ea2xi, ũi = ea2ui, p̃ = e2a2p. (4.14)

It is also possible to show that the velocity decomposition for the more general base flow

ui = Aijxj + u′i (4.15)
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is also invariant under the symmetry groups. Using the definition of Aij from (4.6) explicitly
in (4.15) and applying the scaling symmetry in space from (4.14) gives

ũie
−a2 = ea2

∂ũie
−a2

∂x̃j
x̃je

−a2 + e−a2 ũ′i, (4.16)

which simplifies to

ũi =
∂ũi
∂x̃j

x̃j + ũ′i. (4.17)

Therefore the velocity decomposition (4.15) for a general base flow is also invariant under the
scaling symmetry in space (4.14).

4.1.2. Construction of an invariant solution

The aim is to construct an invariant solution. Therefore we use the symmetry for scaling in
space (2.10) with group parameter a2 and the translation in time (2.9) with group parameter
a1. The translation in time does not affect the invariance of the velocity decomposition shown
in (4.16). The two-parameter symmetry group reads

t̃ = t+ a1, x̃i = ea2xi, ũi = ea2ui, p̃ = e2a2p. (4.18)

The corresponding infinitesimal operator is given by

X = a2xi
∂

∂xi
+ a1

∂

∂t
+ a2ui

∂

∂ui
+ 2a2p

∂

∂p
. (4.19)

Using the invariant surface condition

XF |F=0 = 0, (4.20)

and applying the method of characteristics (see e.g. Schneider (1978) for an introduction to
this method) we obtain the following system of equations

dτ =
dxi
a2xi

=
dt

a1
=

dui
a2ui

=
dp

2a2p
. (4.21)

We collect the independent variables (xi, t) which gives
dxi
dt

=
a2
a1
xi. (4.22)

The expression (4.22) can be integrated and the constant of integration is the invariant x̃i.
Analogously, the expressions for ui and p are integrated, so that the set of invariant variables
reads

xi = xĩe
a2
a1

t
, ui (x) = ũi (x̃) e

a2
a1

t
, p (x) = p̃ (x̃) e

2a2
a1

t
. (4.23)

For sake of simplicity, we introduce the variable λ as a ratio of the two group parameters a1
and a2 by

λ :=
a2
a1
. (4.24)

By using the definition for λ from (4.24), the expression (4.23) can be rewritten as

xi = x̃ie
λt, ui = ũi(x̃)e

λt, p = p̃(x̃)e2λt. (4.25)
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4.1.3. Derivation of an eigenvalue problem

In the following, the derivation of an eigenvalue problem for λ and the eigenfunctions (fluctua-
tions) ũ′i and p̃′ around a base flow profile ui = Aijxj is presented. The velocity decomposition
(4.5) based on the result (4.25) reads

ui = Aijxj + ũ′i(x̃)e
λt. (4.26)

The decomposition of the pressure (4.5) from (4.25) is

p = p+ p̃′(x̃)e2λt, (4.27)

Note that the mean quantities (ui, p) are solutions of the Euler equation (4.9). By inserting
these quantities into the Euler equation (4.9), it follows that the mean pressure gradient

∂p

∂xi
=− uj

∂ui
∂xj

(4.28)

=−Ajlxl
∂

∂xj
(Aikxk) (4.29)

=−AjlxlAij (4.30)

is a function of the mean velocity-gradient tensorAij and the spatial variables xj . By integrating
(4.28), the mean pressure p reads

p = −
∫︂
uj
∂ui
∂xj

dxi + C, (4.31)

where C is a constant of integration. Note that the mean pressure for a linear shear flow
uT = (Ax2, 0, 0)

T is a constant, i.e. p = C. This can be directly shown by inserting the mean
velocity profile into (4.31). However, for flows under strain and rotation the mean pressure
depends in general on the velocity-gradient tensor Aij and on the spatial variables xj . For
example, for a planar strain flow with uT = (−Sx1, Sx2, 0)T it can be shown with (4.31) that
the mean pressure is

p = −1

2
S2
(︁
x21 + x22

)︁
+ C. (4.32)

The derivation of the eigenvalue problem is based on the Euler equation (4.9), which needs to
be transformed to x̃i and t̃, where t̃ = t holds. The chain rule for x̃i = x̃i(xi, t) and t̃ = t̃(xi, t)
gives

∂

∂xi
=

∂

∂x̃i

∂x̃i
∂xi

+
∂

∂t̃

∂t̃

∂xi
= exp(−λt) ∂

∂x̃i
, (4.33)

∂

∂t
=

∂

∂x̃i

∂x̃i
∂t

+
∂

∂t̃

∂t̃

∂t
= −λx̃i

∂

∂x̃i
+
∂

∂t̃
. (4.34)

Inserting the decomposition for the velocity (4.26) and the pressure (4.27) into the Euler
equation (4.9) gives

∂

∂t

(︂
Aijxj + ũ′i(x̃)e

λt
)︂
+
(︂
Ajlxl + ũ′j(x̃)e

λt
)︂ ∂

∂xj

(︂
Aikxk + ũ′i(x̃)e

λt
)︂
= − ∂

∂xi

(︂
p+ p̃′e2λt

)︂
.

(4.35)
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Subtracting the Euler equation (4.9) for the mean quantities (ui, p) from (4.35) gives an
equation for the fluctuations (ũ′i, p̃′) which reads

∂

∂t

(︂
ũ′i(x̃)e

λt
)︂
+Ajlxl

∂

∂xj
ũ′i(x̃)e

λt + ũ′j(x̃)e
λt ∂

∂xj
(Aikxk) + ũ′j(x̃)

∂

∂xj
ũ′i(x̃)e

2λt = −∂p̃
′e2λt

∂xi
.

(4.36)

Applying the transform of the variables (4.25), as well as the transform of the derivatives from
(4.33)-(4.34), we can rewrite (4.36) as(︃

−λx̃k
∂

∂x̃k
+
∂

∂t̃

)︃(︂
ũ′i(x̃)e

λt
)︂

+Ajlx̃l
∂ũ′i(x̃)

∂x̃j
eλt + ũ′j(x̃)Aije

λt + ũ′j(x̃)
∂ũ′i(x̃)

∂x̃j
eλt = − ∂p̃

′

∂x̃i
eλt. (4.37)

Differentiating, and multiplying by exp(−λt) gives

−λx̃k
∂

∂x̃k
ũ′i(x̃) + λũ′i(x̃) +Ajlx̃l

∂ũ′i(x̃)

∂x̃j
+ ũ′j(x̃)Aij + ũ′j(x̃)

∂ũ′i(x̃)

∂x̃j
= − ∂p̃

′

∂x̃i
. (4.38)

Note that we have also used that ũ′i and p̃′ are not a function of t̃. In addition, from the
continuity equation follows that

∂ũ′i
∂x̃i

= 0. (4.39)

The set of equations (4.38) and (4.39) already constitutes an eigenvalue problem for λ if
supplied by suitable boundary conditions. However, we have not discussed the role of ũ′i and p̃′
for this eigenvalue problem. This is done in the following for different base flows.

4.2. Linear shear

In Chapter 3, some interesting properties of the stability of linear shear flows are discussed,
including the Kelvin mode solution and new alternative modes. The velocity-gradient tensor
for a base flow (u, 0, 0) = (Ax2, 0, 0) reads

Aij =

⎛⎝0 A 0
0 0 0
0 0 0

⎞⎠ . (4.40)

The transformed velocities from (4.5) are given by

ũ1 = Ax̃2 + ũ′1, ũ2 = ũ′2, ũ3 = ũ′3, p̃ = p̃′, (4.41)

where the prime quantities denote the fluctuations. The expression (4.41) can be written in a
compact way using

ũi = Ax̃2δ1i + ũ′i, (4.42)
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where the unity tensor is defined as

δij =

{︄
0 i ̸= j

1 i = j.
(4.43)

Inserting the base flow given by (4.40) into the transformed Euler equations (4.38) gives

λũ′i − λx̃k
∂ũ′i
∂x̃k

+ ũ′j
∂ũ′i
∂x̃j

+
∂p̃′

∂x̃i
+Aũ′2δ1i +Ax̃2

∂ũ′i
∂x̃1

= 0. (4.44)

For the continuity equation from (4.39) we find with (4.42) that

∂ũ′i
∂x̃i

= 0. (4.45)

The BC for the system (4.44) and (4.45) are given by vanishing perturbation in the far-field,
i.e.

ũ′i → 0, p̃′ → 0 for |x̃j | → ∞ and i, j ∈ {1, 2, 3} (4.46)

Properties of the nonlinear eigenvalue problem

The problem (4.44), (4.45) with BC (4.46) is a nonlinear eigenvalue problem for λ. The
nonlinearity refers to the eigenfunction ũi, which is nonlinear, however, the eigenvalue appears
linearly. It is possible to gain a first insight into the problem. We start with the physical inter-
pretation of the velocity, which can be interpreted from two perspectives. First, the velocity
decomposition (4.42) can be seen as a stability problem (base flow with perturbations), or sec-
ond, as a turbulent flow (Reynolds decomposition of the flow). We present some consequences
and physical interpretations of the equations, which are based on a turbulence perspective. As
shown in (4.4), the turbulent kinetic energy defined in (4.3) scales as k ∼ exp(2λAt). Such a
scaling is observed in experiments for homogeneous turbulence (Pope, 2000). However, the
precise value of the exponential growth rate has not been determined precisely (Isaza and
Collins, 2009). The new theory might help use first principles to find a value.

Further information on λ can be gained. Multiplying (4.44) with ũ′i gives

λũ′2i − λx̃k
∂ũ′i
∂x̃k

ũ′i + ũ′j
∂ũ′i
∂x̃j

ũ′i +
∂p̃′

∂x̃i
ũ′i +Aũ′2δ1iũ

′
i +Ax̃2

∂ũ′i
∂x̃1

ũ′i = 0. (4.47)

The first two terms in (4.47) can be rewritten as

λũ′2i − λx̃k
∂ũ′i
∂x̃k

ũ′i = λ

(︃
ũ′2i −

1

2
x̃k
∂ũ2i
∂x̃k

)︃
. (4.48)

It is easy to verify that

∂
(︁
x̃kũ

2
i

)︁
∂x̃k

= 3ũ2i + x̃k
∂ũ2i
∂x̃k

. (4.49)

A direct consequence from (4.49) is that

1

2
x̃k
∂ũ′i
∂x̃k

=
1

2

(︃
∂xkũ

′
i

∂x̃k
− 3ũ′i

)︃
. (4.50)
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Using the finding (4.50) for (4.48) gives

λũ′2i − λx̃k
∂ũ′i
∂x̃k

ũ′i =
5

2
ũ′2i −

1

2

∂x̃kũ
′2
i

∂x̃k
. (4.51)

The third and fourth term in (4.47) can be rewritten using the continuity equation as

ũ′j
∂ũ′i
∂x̃j

ũ′i +
∂p̃′

∂x̃i
ũ′i =

1

2

∂ũ′2i ũ
′
j

∂x̃j
+

1

2

∂p̃′ũ′i
∂xĩ

. (4.52)

The fifth and sixth term in (4.47) (both terms scale with A) can be rewritten as

Aũ′2δ1iũ
′
i +Ax̃2

∂ũ′i
∂x̃1

ũ′i = Aũ′1ũ
′
2 +

1

2
A
x̃2ũ

′2
i

∂x̃1
. (4.53)

Using the results from (4.51), (4.52), and (4.53) in (4.47) and integrating over a volume Ω
gives ∫︂

Ω

5

2
λũ′2i −

1

2
λ
∂x̃kũ

′2
i

∂x̃k
+

1

2

∂ũ′2i ũ
′
j

∂x̃j
+

1

2

∂p̃′ũ′i
∂xĩ

+Aũ′1ũ
′
2 +

1

2
A
x̃2ũ

′2
i

∂x̃1
dV = 0. (4.54)

The divergence theorem (Gauss’s theorem) can be used to rewrite the volume integrals con-
taining expressions under a divergence as a surface integral. As the problem is defined on an
unbounded domain Ω = R3 the surface terms disappear due to vanishing fluctuations in the
far field by (4.46). The remaining terms are given by

λ

∫︂
Ω

5

2
ũ′2i dV = −

∫︂
Ω
Aũ′1ũ

′
2dV. (4.55)

This gives the following nonlocal relation for λ

λ = −2

5
A

∫︁
Ω ũ

′
1ũ

′
2dṼ∫︁

Ω ũ
′
j ũ

′
jdṼ

, (4.56)

with Ω = R3 (Oberlack, 2018). The eigenvalue λ scales linearly with the shear rate A. The
expression (4.56) is related to a variational formulation or the Rayleigh-Ritz quotient in
mechanics. The reader is referred to Jost and Li-Jost (1998) for an introduction. Note that in
turbulence research, (u′1u′2)/(u′iu′i) describes the ratio of production of kinetic energy (which
is proportional u′1u′2) to the kinetic energy (4.3) (the overbar denotes the Reynolds average).
In experiments on turbulent shear flows, this quantity is found to be constant (Sagaut and
Cambon, 2018). Interpreting the Reynolds average as a spatial average corresponds to a
constant λ according to (4.56).
Still, the shape and dynamics of the eigenfunctions (modes) are an open question. To further
study the equations (4.44), (4.45) with BC (4.46), a velocity-vorticity formulation is derived,
similar to the linear stability problem with a normal mode ansatz, as shown in Chapter 3.1.1.

Velocity equation

The starting point is the system of equations given by (4.44) and (4.45). We perform two main
steps to eliminate the pressure for the momentum equations.
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• The divergence of (4.44) gives a Poisson equation for the pressure (the continuity equation
(4.45) can be used to simplify the expression afterward).

• The Poisson equation is inserted in the expression ∆(4.44)2 (subscript 2 denotes the
second component) to find a pressure-free equation for the normal velocity ũ′2.

For sake of readability, we introduce the termsMj and Sj . The momentum equation (4.44)
can be expressed as

Mj + Sj = 0. (4.57)

Here Mj denotes the common terms for the j-th component. The common terms arise
purely due to the decomposition of the flow equation in mean and fluctuation quantities. The
calligraphic letter Sj describes the special terms due to the base flow (e.g. linear shear). The
term should not be confused with the symmetric part of the strain tensor S or Sij . The common
terms read

Mi = λũ′i − λx̃k
∂ũ′i
∂x̃k

+ ũ′k
∂ũ′i
∂x̃k

+
∂p̃′

∂x̃i
. (4.58)

And the terms S for linear shear are

S1 = Aũ′2 +Ax̃2
∂ũ′1
∂x̃1

, S2 = Ax̃2
∂ũ′2
∂x̃1

, S3 = Ax̃2
∂ũ′3
∂x̃1

. (4.59)

This notation facilitates the derivation of the velocity-vorticity formulation. To take the
divergence of (4.44) we can use the following result (for details we refer to Appendix (B.1))

∇ ·M =
∂

∂x̃i

(︃
ũ′k
∂ũ′i
∂x̃k

)︃
+

∂2p̃′

∂x̃i∂x̃i
. (4.60)

After some calculations using the incompressibility condition (4.45), we find

∇ · S = 2A
∂ũ′2
∂x̃1

. (4.61)

Rearranging the terms from (4.60) and (4.61) in ∇ · (M+ S) = 0 gives the Poisson equation
for the pressure

∆p̃′ = −2A∂ũ
′
2

∂x̃1
− ∂

∂x̃i

(︃
ũ′k
∂ũ′i
∂x̃k

)︃
. (4.62)

In the next step, we apply the Laplacian (∆) to the second component of the momentum
equation (i.e. the momentum equation for ũ′2) (4.44), i.e.

∆(M2 + S2) = 0. (4.63)

The term ∆M2 withM2 defined in (4.58) reads

∆M2 = ∆

(︃
λũ′2 − λx̃k

∂ũ′2
∂x̃k

+ ũk
∂ũ′2
∂x̃k

+
∂p̃′

∂x̃2

)︃
. (4.64)

43



The Laplacian can be applied on the second term on the RHS in (4.64) which gives

∆

(︃
λx̃k

∂ũ′2
∂x̃k

)︃
= λx̃k

∂∆ũ′2
∂x̃k

+ 2λ∆ũ′2, (4.65)

and therefore the expression for ∆M2 from (4.64) can be rewritten as

∆M2 = −λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+∆

(︃
ũ′k
∂ũ′2
∂x̃k

)︃
+

∂

∂x̃2
∆p̃′. (4.66)

Note that the sign in front of the first term λ∆ũ′2 in (4.66) changes to a negative sign. The
term ∆S2 from (4.59) reads

∆S2 = A∆

(︃
x̃2
∂ũ′2
∂x̃1

)︃
(4.67)

= Ax̃2
∂3ũ′2
∂x̃31

+ 2A
∂2ũ′2
∂x̃2∂x̃1

+ x̃2A
∂ũ′2

∂x̃1∂x̃
2
2

= 0 (4.68)

= 2A
∂ũ′2

∂x̃2∂x̃1
+Ax̃2

∂

∂x̃1
∆ũ′2. (4.69)

Using the results (4.66) and (4.69) in (4.63) gives

−λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+∆

(︃
ũ′k
∂ũ′2
∂x̃k

)︃
+

∂

∂x̃2
∆p̃′ + 2A

∂ũ′2
∂x̃2∂x̃1

+Ax̃2
∂

∂x̃1
∆ũ′2 = 0. (4.70)

Substituting the pressure from (4.62) in (4.70) gives

− λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+∆

(︃
ũ′k
∂ũ′2
∂x̃k

)︃
+

∂

∂x̃2

(︃
−2A∂ũ

′
2

∂x̃1
− ∂

∂x̃i

(︃
ũ′k
∂ũ′i
∂x̃k

)︃)︃
+ 2A

∂ũ′2
∂x̃2∂x̃1

+Ax̃2
∂

∂x̃1
∆ũ′2 = 0. (4.71)

Obviously, the term 2A(∂ũ′2)/(∂x̃2∂x̃1) vanishes. The resulting equation for ∆ũ′2 from (4.71)
reads

−λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+Ax̃2
∂

∂x̃1
∆ũ′2 +N2 = 0, (4.72)

where the nonlinear terms are given by

N2 = ∆

(︃
ũ′k
∂ũ′2
∂x̃k

)︃
− ∂

∂x̃2

∂

∂x̃i

(︃
ũ′k
∂ũ′i
∂x̃k

)︃
. (4.73)

Vorticity equation

An equation for the normal vorticity η̃′2 (in the following simply denoted by η′ as defined by
(3.8)) can be obtained by

∂

∂x̃3
(4.44)(1) −

∂

∂x̃1
(4.44)(3) = 0. (4.74)
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Making use of the notation in terms ofM from (4.58) and S from (4.59), the expression (4.74)
can be rewritten as

∂

∂x̃3
(M1 + S1)−

∂

∂x̃1
(M3 + S3) = 0. (4.75)

For the divergence operator acting on the common termsM1 andM3 we find

∂M1

∂x̃3
− ∂M3

∂x̃1
= −λx̃k

∂η′

∂x̃k
+ ũj

∂η′

∂x̃j
− η∂ũ

′
2

∂x̃2
+
∂ũ′2
∂x̃3

∂ũ′1
∂x̃2
− ∂ũ′2
∂x̃1

∂ũ′3
∂x̃2

. (4.76)

Therefore we find for (4.75) the expression

−λx̃k
∂η′

∂x̃k
+Ax̃2

∂

∂x̃1
η′ +A

∂ũ′2
∂x̃3

+Nη = 0, (4.77)

with

Nη = ũj
∂η′

∂x̃j
− η∂ũ

′
2

∂x̃2
+
∂ũ′2
∂x̃3

∂ũ′1
∂x̃2
− ∂ũ′2
∂x̃1

∂ũ′3
∂x̃2

. (4.78)

Consider the velocity-vorticity system given by (4.72) and (4.77) with BC

ũ′2 → 0, η′ → 0, for |x̃j | → ∞. (4.79)

If the nonlinear terms are neglected, it is possible to solve (4.72) for (ũ′2, λ) in a first step. In
the second step, the linearized equation (4.77) can be solved, which reduces to a boundary
value problem, as λ is known from the solution of (4.72) in the previous step. This procedure
is similar to solving stability problems in the context of the normal mode ansatz. The recovery
of the velocities ũ′1, ũ′3 is done using the definition of the vorticity and the continuity equation.
The starting point is the definition of the vorticity

η′ =
∂ũ′1
∂x̃3
− ∂ũ′3
∂x̃1

. (4.80)

Differentiating the equation (4.80) with respect to x̃3 gives

∂η′

∂x̃3
=
∂2ũ′1
∂x̃23

− ∂2ũ′3
∂x̃1∂x̃3

. (4.81)

Using the continuity equation for the second term on the right hand side, i.e.

∂ũ′3
∂x̃3

= −∂ũ1
∂x̃1
− ∂ũ2
∂x̃2

, (4.82)

gives an equation for ũ′1 in terms of ũ′2 and η′(︃
∂2

∂x̃21
+

∂2

∂x23

)︃
ũ′1 =

∂η′

∂x̃3
− ∂2ũ′2
∂x̃1∂x̃2

. (4.83)

The velocity ũ′3 can simply be obtained from the continuity equation with the result from
(4.83)

∂ũ′3
∂x̃3

= −∂ũ
′
1

∂x̃1
− ∂ũ′2
∂x̃2

. (4.84)
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Analytical solution for the velocity ũ′2

In this section, we discuss an analytical solution for ũ′2. We consider the linearization of (4.72),
i.e. with N2 = 0. If the fluctuations are infinitesimal, the linearization seems justified as shown
in Chapter 3 regarding linear stability theory. The linearized equation reads

−λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+Ax̃2
∂∆ũ′2
∂x̃1

= 0, (4.85)

with the boundary conditions from (4.46) given by

|ũj | → 0, for |x̃j | → ∞. (4.86)

Similar to the normal mode analysis, the system can be solved by calculating the eigenpair
(ũ2, λ) and obtaining the vorticity η′ by solving (4.77) afterward. Note that ũ′2 appears always
with the Laplacian operator (∆). It is therefore possible to rewrite (4.85) as a system of
equations

−λq − λx̃k
∂q

∂x̃k
+Ax̃2

∂q

∂x̃1
= 0, (4.87)

∆ũ′2 = q, (4.88)

where q(x̃1, x̃2, x̃3) is introduced as auxiliary function. Obviously, (4.88) states a Poisson
equation. It can be easily shown that any harmonic function for ũ′2 solves (4.88) on a square
domain, e.g. (x, y) ∈ [−1, 1]. However, for an infinite domain, this problem is more involving.
The harmonic functions, such as a sine or cosine do not satisfy the boundary conditions
(4.46) and restated in (4.86). In general, the existence and uniqueness of elliptic problems on
unbounded domains is a difficult topic, involving the definition of appropriate function spaces
and norms. These aspects are not discussed here and the reader is referred to the literature
(see e.g. Janßen (1986) and Mäulen and Werner (1983)).
The aim is to find a solution to (4.87) in a first step. For the linearized case, the shear rate
A can be absorbed into the eigenvalue, i.e. λ/A → λ. Writing the equation without index
notation in the three-dimensional case (x̃1, x̃2, x̃3) and collecting the terms gives

(−λx̃1 + x̃2)
∂q

∂x̃1
− λx̃2

∂q

∂x̃2
− λx̃3

∂q

∂x̃3
= λq. (4.89)

Using the method of characteristics with parameter τ , the following system of ODEs can be
derived

dx̃1
dτ

= −λx̃1 + x̃2,
dx̃2
dτ

= −λx̃2,
dx̃3
dτ

= −λx̃3,
dq

dτ
= λ. (4.90)

The characteristics are easily obtained by integration. A general solution for ∆ũ′2 from (4.85)
is found, which reads

∆ũ′2 (x̃1, x̃2, x̃3) = F

(︃
x̃2
x̃3
,
2

λ
ln(x̃2) +

x̃1
x̃2

)︃
1

x̃2
, (4.91)

where F is a free function depending on two characteristics. To obtain a physical solution,
F should be continuous and give smooth solutions (no jumps, etc.) for ∆ũ′2 and ũ′2. In
addition, the solution for ũ′2 should decay sufficiently fast at infinity (e.g. for boundedness
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Figure 4.2.: Characteristic c2 from (4.92) for different values of c2

of kinetic energy). Assuming that the corresponding Green’s integral exists, a solution for ũ′2
from the Poisson equation (4.91) can be constructed. However, there is some doubt that the
corresponding integral exists, which depends on the properties of F . To discuss possible choices
of F , it is convenient to study the characteristics in (4.91). The characteristic c1 = x̃2/x̃3 gives
a linear relation between x̃2 and x̃3. The characteristic c2 can be solved for x̃1 to obtain:

x̃1 = c2x̃2 −
2

λ
ln (x̃2) x̃2 (4.92)

The characteristics for different choices of c2 are shown in Figure 4.2. The characteristics all
diverge to infinity in x̃1 for large x̃2. Moreover, there is a singularity for x̃2 = 0 due to the
logarithmic term. Even a transform would still leave the singularity caused by the factor 1/x̃2
in (4.91). In that way, a function F should be chosen to eliminate this singularity.
Even after numerous attempts, it was not possible to find a function F such that the boundary
conditions are satisfied. The use of canonical functions such as trigonometric functions or expo-
nential functions as well as series expansions were considered without success. Consequently,
(4.85) should be solved numerically using spectral methods (see Chapter 5 and Chapter 6 for
more details).

4.3. Pure Strain

In the following we consider flows with strain. The most general form of a flow under strain is

Aij =

⎛⎝S1 0 0
0 S2 0
0 0 S3

⎞⎠ , (4.93)

while S1 + S2 + S3 = 0 must hold (Sagaut and Cambon, 2018). We consider two special cases
of (4.93) in the following. The first case is a pure irrotational strain (planar distortion) and
the second case is axisymmetric (irrotational) strain.
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4.3.1. Irrotational (planar) strain

The velocity gradient tensor for planar strain is given by

Aij =

⎛⎝−S 0 0
0 S 0
0 0 0

⎞⎠ , (4.94)

and therefore the velocities according to (4.5) read

ũ1 = −Sx̃1 + ũ′1, ũ2 = Sx̃2 + ũ′2, ũ3 = ũ′3. (4.95)

The momentum equation for the fluctuations can be obtained by inserting Aij from (4.94) into
the general momentum equation (4.38). The termsM are given in (4.58) and are identical to
the terms for linear shear. There are contributions due to strain for the x̃1 and x̃2-component
which can be taken into the averaged pressure according to (4.31). The averaged pressure for
planar strain reads

p̃ = −1

2
S2(x̃21 + x̃22). (4.96)

The terms S as defined in (4.57) are given by

S1 = −Sx̃1
∂ũ′1
∂x̃1
− ũ′1S + Sx̃2

∂ũ′1
∂x̃2

, (4.97)

S2 = Sx̃2
∂ũ′2
∂x̃2

+ ũ′2S − Sx̃1
∂ũ′2
∂x̃1

, (4.98)

S3 = −Sx̃1
∂ũ′3
∂x̃1

+ Sx̃2
∂ũ′3
∂x̃2

, (4.99)

where we have to keep in mind the difference between a calligraphic S and the strain rate S.

Velocity formulation in 2D

We try to find a velocity-vorticity formulation as in Section 4.2 for linear shear. The divergence
of the momentum equations ∇ · (M+ S) yields the Poisson equation for the pressure

∆p̃′ = −S
(︃
∂ũ′2
∂x̃2
− ∂ũ′1
∂x̃1

)︃
− ∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
. (4.100)

At this point, we see that the latter equation contains the velocities ũ′1 and ũ′2. The derivative
of (4.100) with respect to x̃2 can inserted into the momentum equation for the component
ũ′2, i.e. M2 + S2 = 0. This procedure is analogous the the derivation for the linear shear case.
Note that the linearized equation for irrotational strain would still contain ũ′1 components.
This contrasts with the linear shear case, where only ũ′2-components occur, which allows to
formulate a scalar equation for ũ′2. Therefore, the derivation of a single scalar equation in not
possible for the three-dimensional case.
However, for the two-dimensional case (planar strain with two-dimensional fluctuations) it is
possible to use the continuity equation to rewrite (4.100) as

∆p̃′ =− 2S

(︃
∂ũ′2
∂x̃2

)︃
− ∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
. (4.101)
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The third term on the right-hand side (RHS) of (4.101) is a nonlinear term. However, by
neglecting them, the remaining two terms on the RHS only depend on ũ′2. For three-dimensional
perturbations it is not possible to modify the Poisson equation, such that the linear terms on the
RHS only depend on ũ′2. Therefore it was not possible to find a velocity-vorticity formulation
for the three-dimensional case. For the two-dimensional case, the Laplacian can be applied on
the eigenvalue problem defined by the terms (4.58) and (4.97) to (4.99), i.e.

∆(M2 + S2) = 0. (4.102)

∆M2 is already given in (4.66), for ∆S2 we find

∆S2 = Sx̃2
∂

∂x̃2
∆ũ′2 − Sx̃1

∂

∂x̃1
∆ũ′2 + 3S

∂2ũ′2
∂x̃22

− S∂
2ũ′2
∂x̃21

. (4.103)

Inserting the Poisson equation (4.101) into (4.102) and simplifying the expression gives

(−λ+ S)∆ũ′2 + (−λ− S) x̃1
∂∆ũ′2
∂x̃1

(−λ+ S) x̃2
∂∆ũ′2
∂x̃2

− 2S
∂2ũ′2
∂x̃21

+N = 0, (4.104)

where the nonlinear terms are given by (4.73).

Analytical solutions

We consider the linearized form of (4.104) for the two-dimensional case, given by

(−λ+ S)∆ũ′2 + (−λ− S) x̃1
∂∆ũ′2
∂x̃1

(−λ+ S) x̃2
∂∆ũ′2
∂x̃2

− 2S
∂2ũ′2
∂x̃21

= 0. (4.105)

In contrast to the case of linear shear, a substitution of ∆ũ′2 = q (cf. (4.87) and (4.88)) does
not work here, as the last term on the left hand side does not contain ∆ũ′2. However, it is
possible to find solution for a special case. For λ = S, the eigenvalue equation simplifies to
a partial differential equation (or to a boundary value problem (BVP) if supplied with the
corresponding BC)

x̃1
∂∆ũ′2
∂x̃1

+
∂2ũ′2
∂x̃21

= 0. (4.106)

Similarly, the choice λ = −S in (4.104) gives

x̃2
∂∆ũ′2
∂x̃2

+
∂2ũ′2
∂x̃22

= 0. (4.107)

with a vanishing of ũ′2 at infinity (compare BC (4.46)). Both equations (4.106) and (4.107)
can be solved analytically (e.g. using CAS). The general solution of (4.106) can be obtained
from MAPLE and be written as the real part ℜ of the following expression

ũ′2(x̃1, x̃2) = ℜ
[︃
F1(x̃2)−

1

2
x̃1 (C3 sin (αx̃2) + C4 cos (αx̃2))F2(x̃1, x̃2)

]︃
, (4.108)

where F2 is defined by

F2(x̃1, x̃2) =− C2πK0 (αx̃1) L1 (αx̃1)− C1πI0 (αx̃1) L1 (αx̃1)
+ C1πL0 (αx̃1) I1 (αx̃1) + C2πL0 (αx̃1)K1 (αx̃1)

− 2C2K0 (αx̃1)− 2C1K0 (αx̃1) . (4.109)
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(a) F1 = 0, C1 = C3 = 1, C2 = C4 = 0, α = 1 (b) F1 = 0, C1 = C3 = 0, C2 = C4 = 1, α = 1

Figure 4.3.: Pure strain (2D): analytical solution for ũ′2 from (4.108) with (4.109) for different
values of the constants Cj and the wavenumber α.

Here C1, C2, C3, C4, α are constants, F1 is an arbitrary function depending on x̃2, In and Kn

are n-th modified Bessel function, and Ln is n-th the modified Stuve function. An asymptotic
analysis of the solution (4.108) is omitted here and it subject to future work. Figure 4.3 shows
the analytic solutions (4.108) for two different sets of constants on a truncated domain.
The preliminary analysis of the solution (4.108) for the set of constants shown in Figure 4.3b
indicates that the solution is periodic in x̃2 even for large arguments in x̃1. Therefore the this
solution does not satisfy the BC (4.46) and is not an eigenfunction in a proper sense. It can be
discussed, if the boundary conditions should be relaxed, by enforcing bounded values instead
of vanishing (zero) values at infinity. This topic is addressed in detail in Chapter 6.1.2.

4.3.2. Axisymmetric strain

For three-dimensional axisymmetric strain, the velocity gradient tensor is given by

Aij =

⎛⎝−S/2 0 0
0 −S/2 0
0 0 S

⎞⎠ . (4.110)

The velocity decomposition (4.5) reads

ũ1 = −
S

2
x̃1 + ũ′1, ũ2 = −

S

2
x̃2 + ũ′2, ũ3 = Sx̃3 + ũ′3 (4.111)

with a mean pressure following from (4.31), which is given by

p̃ = −1

8
S2x̃21 −

1

8
S2x̃22 −

1

2
S2x̃23. (4.112)
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The momentum equation with Aij from (4.110) can be obtained from (4.38). The common
terms are defined in (4.58), while the specific terms are given by

S1 = −
S

2
x̃1
∂ũ′1
∂x̃1
− S

2
ũ′1 −

S

2
x̃2
∂ũ′1
∂x̃2

+ Sx̃3
∂ũ′1
∂x̃3

, (4.113)

S2 = −
S

2
x̃1
∂ũ′2
∂x̃1
− S

2
x̃2
∂ũ′2
∂x̃2
− S

2
ũ′2 + Sx̃3

∂ũ′2
∂x̃3

, (4.114)

S3 = −
S

2
x̃1
∂ũ′3
∂x̃1
− S

2
x̃2
∂ũ′3
∂x̃2

+ Sx̃3
∂ũ′3
∂x̃3

+ ũ′3S. (4.115)

Velocity equation

Taking the divergence of the Sj terms defined by (4.113) - (4.115) and using the result from
∇ ·M given in (4.60) yields the Poisson equation

∆p̃′ =− 2S

(︃
−1

2

∂ũ′1
∂x̃1
− 1

2

∂ũ′2
∂x̃2

+
∂ũ′3
∂x̃3

)︃
− ∂

∂x̃i

(︃
ũ′k
∂ũ′i
∂x̃k

)︃
. (4.116)

By using the continuity equation it is possible to rewrite the linear part of the Poisson equation
entirely in terms of ũ′3 as

∆p̃′ =− 3S
∂ũ′3
∂x̃3
− ∂

∂x̃i

(︃
ũ′k
∂ũ′i
∂x̃k

)︃
. (4.117)

Therefore we obtain a decoupled equation for the linear part of ũ′3 given by

−λ∆ũ′3 − λx̃k
∂∆ũ′3
∂x̃k

− 3S
∂2ũ′3
∂x̃23

− S

2

(︃
x̃1
∂∆ũ′3
∂x̃1

+ x̃2
∂∆ũ′3
∂x̃2

− 2x̃3
∂∆ũ′3
∂x̃3

)︃
+ S∆ũ′3 +N = 0,

(4.118)

where the nonlinear term still depend on ũ′1 and ũ′2 and are given by

N = ∆

(︃
ũ′k
∂ũ′3
∂x̃k

)︃
− ∂

∂x̃3

∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
. (4.119)

Vorticity equation

The velocity-vorticity formulation is usually based on the normal velocity and the normal
vorticity, i.e. the components ũ′2 and η2. As the present formulation (4.118) is based on ũ′3,
the corresponding vorticity component η3 is considered instead. This is done to be consistent
with the formulations for ũ′2. The vorticity component η3 is defined by

η′3 =
∂ũ′2
∂x̃1
− ∂ũ′1
∂x̃2

. (4.120)

A cross-differentiation is performed, i.e.

∂

∂x̃1
(M2 + S2)−

∂

∂x̃2
(M1 + S1) (4.121)
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which gives after some reshaping

−λx̃k
∂η′3
∂x̃k
− S

2
x̃1

∂

∂x̃1
η3 −

S

2

∂

∂x̃2
η′3 + Sx̃3

∂

∂x̃3
η′3 − Sη′3 +Nη3 = 0, (4.122)

where the nonlinear term is given by

Nη3 =
∂

∂x̃1

(︃
ũ′k
∂ũ′2
∂x̃k

)︃
− ∂

∂x̃2

(︃
ũ′k
∂ũ′1
∂x̃k

)︃
. (4.123)

4.4. Pure Rotation

The velocity-gradient tensor for a flow with pure (constant) rotation around the x3-axis, i.e.
Ω = (0, 0,Ω) reads

Aij =

⎛⎝0 −Ω 0
Ω 0 0
0 0 0

⎞⎠ . (4.124)

However, it is easier to consider the flow in a rotating frame (Sagaut and Cambon, 2018). In
this non-Galilean frame, the Coriolis force has to be taken into account. The case of a pure
rotation has no base flow and therefore the velocity decompositions read

ũ1 = ũ′1, ũ2 = ũ′2, ũ3 = ũ′3. (4.125)

The corresponding eigenvalue problem is given by the transformed Euler equations (4.38) with
velocity fluctuations (4.125) and an additional Coriolis force. Therefore we have

Eq. (4.38)+ fi = 0, (4.126)

with the Coriolis force

fi = 2Ω (−ũ2, ũ1, 0) . (4.127)

Pressure-free formulation

The aim is to find an expression where the pressure does not explicitly occur. This is comparable
to the velocity-vorticity formulation for linear shear. Consistent with the notation, we have again
common termsM and a term due to the Coriolis force given by F = fi from (4.127). By taking
the divergence of the transformed Euler equation in the rotating frame, i.e. (∇ · (M+ F) = 0,
we obtain the Poisson equation for the pressure

∆p̃′ = 2Ω
∂ũ′2
∂x1
− 2Ω

∂ũ′1
∂x̃2
− ∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
. (4.128)

Substituting into ∆(M2 + F2) = 0 gives

−λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+
∂

∂x̃2

(︃
2Ω

∂ũ′2
∂x1
− 2Ω

∂ũ′1
∂x̃2

)︃
+ 2Ω∆ũ1 +N2 = 0, (4.129)
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where the nonlinear terms read

Nj = −
∂

∂x̃j

∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
+∆

(︃
ũ′k
∂ũ′j
∂x̃k

)︃
. (4.130)

Note that explicitly contains ũ′1 and ũ′3. It was not possible to obtain a scalar equation in only
one variable, e.g. ũ′2. Instead, the pressure from (4.128) is substituted in ∆(M1 + F1) = 0
giving

−λ∆ũ′1 − λx̃k
∂∆ũ′1
∂x̃k

+
∂

∂x̃1

(︃
2Ω

∂ũ′2
∂x1
− 2Ω

∂ũ′1
∂x̃2

)︃
− 2Ω∆ũ′2 +N1 = 0, (4.131)

and in ∆(M3 + F3) = 0 which yields

−λ∆ũ′3 − λx̃k
∂∆ũ′3
∂x̃k

+
∂

∂x̃3

(︃
2Ω

∂ũ′2
∂x̃1
− 2Ω

∂ũ′1
∂x̃2

)︃
+N3 = 0. (4.132)

The nonlinear termsN1 andN3 are defined by (4.130). The linearized equations (4.4) (4.131),
(4.132) with Nj = 0 can be written as a system in terms of the velocities (ũ1, ũ2, ũ3)T which
takes the form

Au = λBu, (4.133)

with

u =
(︁
ũ′1, ũ

′
2, ũ

′
3

)︁T
, (4.134)

and

A = 2Ω

⎛⎜⎜⎝
− ∂2

∂x̃1∂x̃2

(︂
∂2

∂x̃2
1
−∆

)︂
0

−
(︂

∂2

∂x̃2
2
−∆

)︂
∂2

∂x̃1∂x̃2
0

− ∂2

∂x̃2∂x̃3

∂2

∂x̃1∂x̃3
0

⎞⎟⎟⎠ (4.135)

and

B =

⎛⎜⎝−∆− x̃k
∂∆
∂x̃k

0 0

0 −∆− x̃k ∂∆
∂x̃k

0

0 0 −∆− x̃k ∂∆
∂x̃k

⎞⎟⎠ (4.136)

The matrices A from (4.136) and B from (4.136) contain differential operators. When using
numerical methods (e.g. spectral collocation), the discretization of A leads to a singular
(discretized) matrix for the three-dimensional case, since the third column is a zero vector.
This can be circumvented by only considering plane (two-dimensional) fluctuations, which
yields a non-singular matrix A.

4.5. Wall-bounded shear flows (log law)

In the previous sections, an NEVP for unbounded flows is derived. However, in engineering
applications, flows are often bounded by solid walls. In the following, the symmetry-based
approach is applied on wall-bounded flows. In comparison to unbounded flows, the distance to
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the wall gives a length scale to the problem (Rotta, 2010; Jiménez, 2013). For wall-bounded
turbulent flows, the velocity profile is logarithmic in the near-wall region (von Kármán, 1930;
Prandtl, 1932; Millikan, 1939). This is referred to as the logarithmic law of the wall, or simply
log law. The wall-normal distance is denoted by y+ and the streamwise velocity by U+. The
superscript + denotes that the quantities are normalized by using the friction velocity uτ and
the kinematic viscosity ν. The velocity in the range between y+ > 30 and y/δ < 0.1 − 0.2
(outer length scale δ: e.g. boundary layer thickness) can be described by

U+ =
1

κ
ln y+ +B, (4.137)

where κ is the van Kármán constant and B is an additive constant (Pope, 2000; Örlü et al.,
2010). Based on a symmetry approach, an additional constant A is proposed in the argument
of the logarithm (Oberlack, 2001)

U+ =
1

κ
ln
(︁
y+ +A

)︁
+B. (4.138)

However, the determination of the precise values of κ and B is difficult (Örlü et al., 2010;
Marusic et al., 2010). The values are given by approximately κ ≈ 0.41 and B ≈ 5.2 (Pope,
2000). The value of κ seems to be universal in wall-bounded turbulence (Örlü et al., 2010).
The value is not only interesting from a theoretical perspective. Moreover, numerical simulation
of turbulent flows also depends on the choice of κ (George, 2007). However, to the author’s
knowledge, there is no precise value obtained from a first-principles theory.

Derivation of a nonlinear eigenvalue problem for κ

An interesting extension of the NEVP for boundary-layer flows, which also covers κ, was
proposed by Oberlack (2020). The following derivation is based on private communications
(Yalcin, 2018).
In the following, we consider a flow under the decomposition

ui = δ1i

(︃
1

κ
ln(x2) +B

)︃
+ u′i. (4.139)

The starting point for the derivation of the eigenvalue problem is the combination of three
symmetries of the Euler equation, namely scaling in space (2.10), scaling in time (2.11) and a
generalized Galiean invariance (2.13). The infinitesimal generator reads

X = (a1xi + fi(t))
∂

∂xi
+ a2t

∂

∂t
+
(︂
(a1 − a2)ui + fi̇(t)

)︂ ∂

∂ui

+
(︂
(a1 − a2) 2p− xifï(t)

)︂ ∂

∂p
. (4.140)

where fi̇ and fï denotes the first and second derivative with respect to time, respectively. Using
the invariant surface condition for ui, i.e.

X (u− u(x, t)) |u(x,t)=u = 0, (4.141)

leads to the following equation to determine the characteristics

dxi
a1xi + fi(t)

=
dt

a2t
=

dui

(a1 − a2)ui + fi̇(t)
. (4.142)

54



The characteristics can be solved for xi and ui, which gives

xi = t
a1
a2

(︃
x̃i +

1

a2

∫︂
fi(t)t

−a1+a2
a2 dt

)︃
, (4.143)

ui = t
a1−a2

a2

(︃
ũi +

1

a2

∫︂
fi̇(t)t

−a1
a2 dt

)︃
. (4.144)

Accordingly, a symmetry transform of (4.139) in terms of transformed variables is given by

ũi = δi1

(︃
1

κ
ln(x̃2) +B

)︃
+ ũ′i. (4.145)

By inserting the decomposition (4.145) into (4.144), the following ansatz is constructed

ui = t
a1−a2

a2

(︃
δi1

(︃
1

κ
ln(x̃2) +B

)︃
+ ũ′i(x̃) + δi1

1

a2

∫︂
fi̇(t)t

−a1
a2 dt

)︃
. (4.146)

The aim of ansatz (4.146) is to determine the group parameters a1, a2 and the function fi such
that the logarithmic base flow is invariant under the transform. In order that the logarithmic
profile in (4.146) is invariant under the symmetries according to (4.139), a first condition is

t
a1−a2

a2 = 1, (4.147)

and it follows directly that

a1 = a2. (4.148)

With (4.148), the transform x̃i from (4.143) simplies to

x̃i = t−1xi −
1

a2

∫︂
fi(t)t

−2dt. (4.149)

Therefore ln(x̃2) reads

ln(x̃2) = ln
(︃
t−1x2 −

1

a2

∫︂
f2(t)t

−2dt

)︃
. (4.150)

By comparison of coefficients with the base flow (4.139), the contribution of the second term
in (4.150) must vanish and it follows that

f2 = 0. (4.151)

Consequently, the transform of x̃2 from (4.143) simplifies to

x̃2 = x2t
−1. (4.152)

From the logarithmic identities we have

ln(x̃2) = ln(x2)− ln(t). (4.153)

With the findings (4.148), (4.151) and the identity (4.153), we can rewrite (4.146) as

ui =

(︃
δi1

(︃
1

κ
ln(x2) +B

)︃
+ ũ′i(x̃)− δi1

1

κ
ln(t) + δi1

1

a2

∫︂
fi̇(t)t

−1dt

)︃
. (4.154)
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Additionally, it follows from (4.154) that the condition

1

κ
ln(t) =

1

a2
f1̇(t)t

−1dt (4.155)

must hold. Integrating over t gives

a2
κ
t−1 = f1̇(t)t

−1. (4.156)

Solving for f1(t) by integration gives

f1(t) =
a2
κ
t+ C, (4.157)

where C denotes a constant, which is set to zero in the following. The resulting transform for
x1 from (4.143) is therefore

x1 = t

(︃
x̃1 +

1

κ

∫︂
t−1dt

)︃
(4.158)

= t

(︃
x̃1 +

1

κ
ln(t)

)︃
. (4.159)

Based on the ansatz (4.146), we do not obtain an explicit condition for f3. However, by
considering (4.143) and (4.144), we set f3 = 0 for this base flow. Therefore, the transform of
the spatial variables reads

x1 = t

(︃
x̃1 +

1

κ
ln(t)

)︃
, x2 = tx̃2, x3 = tx̃3. (4.160)

The first derivatives with respect to these variables transform as

∂

∂x1
= t−1 ∂

∂x̃1
,

∂

∂x2
= t−1 ∂

∂x̃2
,

∂

∂x3
= t−1 ∂

∂x̃3
. (4.161)

To derive an eigenvalue problem for κ, we insert the velocity decomposition following from
(4.154) with (4.157) and given by

ui =

(︃
δi1

(︃
1

κ
ln(x2) +B

)︃
+ ũ′i(x̃)

)︃
, (4.162)

and the ansatz for the pressure (4.140)

p = p+ p̃′, (4.163)

into the Euler equation (4.9), which gives

∂

∂t

(︃
δi1

(︃
1

κ
ln(x2) +B

)︃
+ ũ′i(x̃)

)︃
+

(︃
δj1

(︃
1

κ
ln(x2) +B

)︃
+ ũ′j(x̃)

)︃
∂

∂xj

(︃
δi1

(︃
1

κ
ln(x2) +B

)︃
+ ũ′i(x̃)

)︃
+
∂(p+ p̃′)

∂xi
= 0.

(4.164)
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Subtracting the Euler equation (4.9) for the base flow (ui, p) from (4.164) gives
∂

∂t

(︁
ũ′i(x̃)

)︁
+ ũ′2(x̃)

δi1
κx2

+

(︃
1

κ
ln(x2) +B

)︃
∂

∂x1
ũ′i(x̃) + ũ′j(x̃)

∂

∂xj
ũ′i(x̃) +

∂p̃′

∂xi
= 0. (4.165)

The next step is to rewrite the equation entirely in the transformed variables x̃i. The transform
of the spatial variables is given in (4.161). The time derivative can be expressed in terms of x̃i
by the chain rule of differentiation which gives

− t−1

(︃
x̃k

∂

∂x̃k
+

1

κ
ln(t)

∂

∂x̃1
+

1

κ

∂

∂x̃1

)︃
ũ′i(x̃) + t−1ũ′2(x̃)

δi1
κx̃2

+ t−1

(︃
1

κ
ln(x̃2t) +B

)︃
∂

∂x̃1
ũ′i(x̃) + t−1ũ′j(x̃)

∂

∂x̃j
ũ′i(x̃) + t−1 ∂p̃

′

∂x̃i
= 0. (4.166)

By using the identity ln(x̃2t) = ln(x̃2)+ ln(t), the two contributions of ln(t) cancel. Multiplying
with t yields

−
(︃
x̃k

∂

∂x̃k
+

1

κ

∂

∂x̃1

)︃
ũ′i(x̃) + ũ′2(x̃)

δi1
κx̃2

+

(︃
1

κ
ln(x̃2) +B

)︃
∂

∂x̃1
ũ′i(x̃) + ũ′j(x̃)

∂

∂x̃j
ũ′i(x̃) +

∂p̃′

∂x̃i
= 0. (4.167)

Reordering of the terms finally gives
1

κ

(︃
(ln(x̃2)− 1)

∂ũ′i(x̃)

∂x̃1
+ δi1

ũ′2(x̃)

x̃2

)︃
− x̃k

∂

∂x̃k
ũ′i(x̃) +B

∂ũ′i(x̃)

∂x̃1
+
∂p̃′

∂x̃i
+ ũ′j(x̃)

∂ũ′i(x̃)

∂x̃j
= 0.

(4.168)

For the continuity equation follows that
∂ũ′i
∂x̃i

= 0. (4.169)

Note that (4.168) establishes an equation for the eigenvalue κ and the parameter B together
with (4.169). Equation (4.168) is also non-linear in the eigenfunctions similar to the linear
shear case (cf. (4.44)). The solution of (4.169) in combination with the boundary conditions
gives a value for κ. The boundary condition for the domain are given by

ũ′i = 0, p̃′ = 0 on ∂ Ω, (4.170)

where ∂Ω denotes the boundary of the domain Ω. In particular, it follows that the fluctuations
quantities vanish in the far field for ỹ →∞.
Multiplying the equation (4.168) with ũ′i, integrating over the domain Ω, and using the
divergence theorem gives a Rayleigh quotient for κ (Oberlack, 2020)

κ =
2

3

∫︂
Ω

ũ′1ũ
′
2

x̃2
dṼ /

∫︂
Ω
ũ′2dṼ . (4.171)

It should be noted that a Rayleigh quotient has also been derived for linear shear flows in
a similar way, cf. (4.56). Interestingly, in (4.171) the constant B does not appear explic-
itly. However, the solution of (4.169) requires the solution for both unknown parameters or
eigenvalues κ and B and for the corresponding eigenfunctions. Formally, if the eigenvalue is
defined as a vector of κ and B, this would correspond to a multiparameter eigenvalue problem
by the definition of Volkmer (1988). In addition, the similarity variable x̃ from (4.160) is
complicated as it involves a time-dependency. The study of the log law problem is subject to
further research.

57



4.6. Summary and outlook

A novel NEVP was derived based on the symmetries of the Euler equation. The velocity field is
decomposed in a mean flow and fluctuations, which can be interpreted both from a stability
theory or turbulence perspective. In the latter case, the splitting of the velocity is effectively a
Reynolds decomposition. The symmetries hold for a large class of unbounded flows having
a constant velocity gradient. This allows studying problems with linear shear, strain, and
rotation. In addition, there is an extension to the log law region in wall-bounded flows. The
eigenvalue results from the group parameters of the symmetries. There is a strong indication
that the eigenvalues have a deep physical meaning. For linear shear flows, the eigenvalue λ is
related to the exponential growth rate of energy, while for the log law the eigenvalue κ is van
Kármán’s constant.
We have shown that for the linearized NEVP, it is possible to formally find a solution for the
eigenfunctions in the linear shear case. However, the solution has a free function that could
not explicitly be determined to satisfy the boundary conditions. Therefore, the NEVP is solved
numerically in the following chapters.
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5. Numerical method for the linearized
eigenvalue problem

The aim is to numerically solve the NEVP from Chapter 4. In the first step, the nonlinear terms
are neglected. The full nonlinear algorithm is presented in Chapter 7.

Classification of the problem To numerically solve the problem, it is convenient to choose a
pressure-free formulation. This has the advantage that no explicit treatment of the pressure is
necessary. In addition, the memory demand decreases. For example, with a velocity-vorticity
formulation, only two variables have to be stored compared to four variables in a primitive
formulation (formulation in velocity and pressure), cf. Canuto et al. (2007).
For linear shear, the linearized equation from (4.72) for the eigenpair (ũ2, λ) reads

−λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+ x̃2
∂∆ũ′2
∂x̃1

= 0. (5.1)

The shear rate A has been absorbed in the eigenvalue λ/A → λ. The eigenvalue equation
(5.1) is scalar and only contains the dependent variable ũ′2. The variables ũ′1, ũ′3, p̃′ have been
eliminated by substitution (see Chapter 4 for details). The derivatives are up to order 3 and
contain mixed derivatives in x̃1, x̃2, x̃3. It should be noted that the independent variable occurs
as a coefficient in front of the derivatives.
It is assumed that the perturbations are inhomogeneous in all three spatial directions. We refer
to an inhomogeneous direction as a direction with non-periodic perturbations. In contrast, the
classical normal mode ansatz (3.10) in three dimensions has two homogeneous directions in
space (Fourier transform or wavelike disturbances in x1- and x3-direction) and one inhomoge-
neous direction (with an amplitude function depending on x2). The base flow is unbounded,
i.e. no walls are prescribed and the domain for the two- or three-dimensional flow is R2 or R3,
respectively. The fluctuations vanish in the far-field, i.e. we have

ũ′2 → 0, for |x̃| → ∞. (5.2)

The problem (5.1) with BC (5.2) has the form of a generalized eigenvalue problem. This
can be easily shown by discretizing the equation, which leads to a matrix system of the form
Ax = λMx.

Outline of the chapter In this chapter, we present a spectral method (Chebyshev and Hermite
collocation) to discretize the linearized NEVP, e.g. (5.1) with BC (5.2) for linear shear. As
already mentioned, the discretized equation gives a generalized matrix eigenvalue problem.
Appropriate numerical solvers are presented. In addition, different techniques are discussed to
filter out non-physical eigenvalues. Finally, we perform some test cases which demonstrate
that discretization, solver, and filter routines work properly.
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5.1. Spectral collocation

We use a spectral collocation method. This method has been proven for the numerical solution
of eigenvalue problems in fluid mechanics (Canuto et al., 2007). In general, spectral methods
have better convergence properties than e.g. finite difference or finite volume schemes. We
start with a short summary of spectral methods. An introduction to this topic is also given by
Gottlieb and Orszag (1977), Canuto (1988), Canuto (2006), and Canuto et al. (2007). The
work of Kopriva (2009), Boyd (2000), and Trefethen (2000) gives practical advice for the
implementation.

Weighted residual method

The different types of spectral methods can be best explained by starting with the weighted
residual method (WRM) (Fornberg, 1996; Shen et al., 2011). The following summary is based
on Shen et al. (2011). Consider a boundary value problem for a solution u(x) given by

Lu(x) = f(x), x ∈ Ω, (5.3)

whereL is a linear differential operator and the right-hand side is given by f(x). The differential
equation (5.3) is defined on a domain Ω and appropriate boundary conditions are prescribed.
The exact solution u(x) is approximated by a numerical solution uN (x) as a finite sum

u(x) ≈ uN (x) =

N∑︂
k=0

akφk(x), (5.4)

with trial (or basis) functions φk. The coefficients ak are called expansions coefficients and have
to be determined in the following. Substituting the solution u(x) in (5.3) by the approximate
solution uN (x) defined in (5.4) gives

RN (x) = LuN (x)− f(x) ̸= 0. (5.5)

Here RN denotes the residual which is in general non-zero. The idea of the WRM is eliminate
the residual RN by enforcing the following expression

(︁
RN (x),Ψj

)︁
ω
:=

∫︂
Ω
RN (x)Ψj(x)ω(x)dx = 0, 0 ≤ j ≤ N, (5.6)

where the Ψj(x) denotes the test function and ω(x) is a positive weight function. By defining
a set of N + 1 collocation points xk = x0, x1, ...xN the quadrature of the integral (5.6) can be
expressed as a finite sum

⟨RN ,Ψj⟩N,ω =
N∑︂
k=0

RN (xk)Ψj(xk)ωk(xk) = 0, 0 ≤ j ≤ N, (5.7)

which is evaluated at collocation points xk and ωk are the weights of the selected numerical
quadrature formula. Using the definition of RN from (5.5) and expressing the numerical
solution uN (x) by (5.4) finally allows to determine the set of coefficients ak at the cost of
solving a linear system of equations.
Spectral methods use both global trial functions ψj and global test functions Ψj . This is the
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main difference to finite-difference or finite-element methods which use local test functions.
Common trial functions in spectral methods are orthogonal polynomials. The different methods
are named after their trial functions, for example,

φk(x) = eikx Fourier spectral method (5.8)
φk(x) = Tk(x) Chebyshev spectral method (5.9)
φk(x) = Hk(x) Hermite spectral method (5.10)

where Tk,Hk are the Chebyshev, Hermite polynomials of degree k, respectively. Fourier
polynomials are a natural choice for periodic problems. Chebyshev polynomials are usually
used for non-periodic problems on finite domains, while Hermite polynomials are considered for
infinite domains. It should be noted that there are more polynomials (e.g. Legendre, Laguerre,
and Sinc) considered in the literature (e.g. Weideman and Reddy (2000)) but beyond the scope
of the present thesis. With the chosen method, the approximate solution can be expressed as
finite sum according to (5.4).
The spectral method is further characterized by the choice of the test function Ψj . A Galerkin
method uses the same test and trial functions (Φk = Ψk), while a collocation method evaluates
the residuals pointwise at collocations points, i.e. the test function is only non-zero at certain
collocation points xj .
In this work, we use collocationmethods, which allow for simple implementation and adaptation
of the code, its implementation is best described in e.g. Trefethen (2000). Concerning the
trial functions, the focus of the present work is on Chebyshev polynomials with mapping and
Hermite polynomials.

5.1.1. Chebyshev polynomials

The ansatz for uN (x) using a Chebyshev collocation method can be easily found by using the
finite sum approximation (5.4) together with definition of the Chebyshev trial function from
(5.9). For the numerical solution of u(x), the Chebyshev expansion is truncated at order p

uN (x) ≈
p∑︂

k=0

ûkTk(x), (5.11)

where Tk is the Chebyshev polynomial of degree k defined as

Tk(x) = cos(kθ), θ = arccosx. (5.12)

It is possible to use a transformation x = cos(t) to recast a Chebyshev series into a Fourier
series Tx(x) = cos(nt), cf. Boyd, 2000. The Chebyshev polynomials can be computed by a
three-term recurrence relation, which is numerically stable and with cost O(N), cf. (Boyd,
2000)

T0 = 1; T1 = x; Tn+1 = 2xTn − Tn−1, n = 1, ... (5.13)

The collocation points (Gauss-Lobatto points) are given by

xj = cos
πj

N
. (5.14)
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For numerical implementation, a differential operator can be expressed by a differentiation
matrix D̃j

∂j

∂xj
→ D̃

j
. (5.15)

An explicit formula for D̃1 is given in appendix A.1. Different implementations are proposed,
in order to improve the numerical accuracy of the differentiation matrices (Canuto et al., 2007).
Indeed, the round-off errors can become quite large, especially for higher-order derivatives, see
Baltensperger and Trummer (2003) and Don and Solomonoff (1997) for an introduction to that
topic. Higher-order derivatives (D̃2

, D̃
3
, ...) can be constructed by matrix-matrix-multiplication

(e.g. D̃2
= D̃ · D̃) or by explicit formulas, see e.g. Canuto et al. (2007).

Mapping of the unbounded domain

The problem (5.1) and with BC (5.2) from the introduction is defined on an infinite domain,
whereas the Chebyshev polynomials are defined on [−1, 1]. Therefore, we seek a way to solve
the physical problem with a finite numerical basis. Several techniques are proposed in the
literature, the interested reader is referred to Shen and Wang (2009) and Shen et al. (2011)
for an introduction. There are two approaches which can be applied here. The first approach
is a domain truncation to a finite domain x ∈ [−xmax,+xmax]

x = xmaxξ, ξ =
x

xmax
, ξ ∈ [−1, 1] x ∈ [−xmax,+xmax], (5.16)

where a simple linear map is used. Note that nonlinear maps are also possible to obtain a better
distribution of grid points, which is in general problem-dependent. Note that the cutoff length
xmax is an additional numerical parameter in the problem. In general, the domain truncation
is favorable if the solution decays fast to zero so that after a certain length the domain can be
truncated (Canuto et al., 2007).
The second approach is a mapping of the infinite domain to a finite domain [−1, 1]. Different
mappings are possible, however, the algebraic and exponential map is frequently used. The
following summary is based on Canuto et al. (2007). An algebraic map is given by

x = L
ξ√︁

1− ξ2
, ξ =

x√
x2 + L2

, ξ ∈ (−1, 1), x ∈ (−∞,+∞). (5.17)

The algebraic map leads to so-called rational Chebyshev functions TBn, which are related to
the Chebyshev functions Tn, cf. (Boyd, 1987)

TBn(x) := Tn(ξ) = Tn

(︃
x√

x2 + L2

)︃
= cos

(︁
n cot−1(x/L)

)︁
(5.18)

As a consequence, a differential problem on the real line can be mathematically recast into
a cosine transform. It should be noted that L has to be increased with N to obtain spectral
accuracy (Boyd, 2000). An exponential map is given by

x = L tanh−1 ξ, ξ = tanh
(︂x
L

)︂
, ξ ∈ (−1, 1), x ∈ (−∞,+∞). (5.19)

In addition, a domain truncation and some non-linear maps (i.e. more complicated maps than
in (5.16)) can be combined. However, this usually gives two additional numerical parameters
(cutoff length and mapping parameter) besides the parameter N .
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Boundary conditions

There are two important issues concerning the boundary conditions. First, the problem
is defined on an infinite domain. Second, third-order derivatives require in general the
implementation of three boundary conditions.
For problems on unbounded domains, one can distinguish between behavioral and numerical
boundary conditions. Behavioral boundary conditions enforce a certain behavior of the solution.
For example, periodic solutions have the same values at the endpoints for multiples of a period.
Another example is an unbounded function which is zero at the endpoints. If the basis functions
for the collocation have the same behavior, it is in general not necessary to explicitly implement
the boundary conditions in the discretized matrices. However, there might be cases for which
this approach does not work, e.g. due to singularities of the differential equation. Here,
numerical boundary conditions have to be implemented explicitly for the differential equations
(Boyd, 2000).
For the equation from example (5.1), the boundary conditions have to be enforced explicitly,
as the variable xj appears as a factor in front of the derivatives and this would lead to infinite
values for the coefficients through the mapping.
The implementation of third-order boundary conditions needs special attention. Note that the
majority of textbook examples only covers second or fourth order derivatives (e.g. Poisson-type
equations, Orr-Sommerfeld equations in Trefethen (2000)). There are only a few examples
with third order derivatives in textbooks, cf. Shen et al. (2011).
From an analytical perspective, any third order differential equation on a finite domain requires
three boundary conditions for a unique solution. Let us consider a solution u2(x) on a domain
[−1, 1] for a third order differential equation. Here two Dirichlet conditions are used together
with one Neumann condition

u2(±1) = u′2(−1) = 0. (5.20)

The Dirichlet conditions can be treated in the same ways as for a second order operator, e.g.
by eliminating the first and last row and column in the discretized matrix, for details refer to
(Trefethen, 2000; Weideman and Reddy, 2000) To impose the Neumann condition, modified
polynomials T̃ of the form

T̃n(x) = (1 + x)Tn(x) (5.21)

are used (Heinrichs, 1999). By differentiating the expression (5.21), it can be easily shown
that the boundary conditions are fulfilled. The use of modified polynomials for fourth order
differential equations (e.g. Orr-Sommerfeld equation) is usually referred to as clamped bound-
ary conditions (Trefethen, 2000).
Finally, special care must be taken for the implementation of the mapped modified polynomials.
In general, the matrix operations involved for mapping and applying the BC do not commute.
Formally a chain rule applies, compare Solomonoff (1992) for a similar problem.

Multidimensional expansion of Chebyshev collocation

So far we have only considered the Chebyshev method in one dimension. The method can be
easily extended to higher dimensions, for example, the two-dimensional analog to (5.11) is

uN (x, y) ≈
p1∑︂

k1=0

p2∑︂
k2=0

ûk1,k2Tk1,k2(x, y), (5.22)
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with an approximation to order p1 and p2 in each spatial direction. For the numerical imple-
mentation, Kronecker products of the differentiation are used (Canuto et al., 2007) and a
differential operator can be extended in the following way

∂i+j

∂xi1x
j
2

= Dj ⊗Di := Di,j . (5.23)

The extension to three dimensions is straightforward and not shown here. An early applications
of multi-dimensional Chebyshev methods can be found for example in Lin and Pierrehumbert
(1988). Note that the multidimensional Chebyshev collocation leads to large matrices, as
the Kronecker product of two matrices of size N × N results in a matrix of size N2 × N2

In contrast, stability theory based on normal mode usually applies Chebyshev collocation in
only one inhomogeneous direction, while the periodic directions are discretized using Fourier
methods.

5.1.2. Hermite polynomials

The Hermite polynomials are an example of eigenfunctions defined on the real line. They can
therefore be used for problems on unbounded domains without mapping. In particular, they
are eigenfunctions of the Hermite equation and therefore give a very good approximation for
this class of problems (Boyd, 2000). As Hermite polynomials Hk(x) have a difficult asymptotic
for x→∞ (exception: H0(x) is constant), it is convenient to use so-called Hermite functions
for numerical purposes (Shen and Wang, 2009). They form a basis set defined as

ψn(x) = e−x2/2Hn(x), (5.24)

where Hn(x) is the Hermite polynomial of degree n (Boyd, 2000). The factor exp(−x2/2) is
a weight function ωk in the general framework of (5.7), cf. Weideman and Reddy (2000).
The collocation points are the roots of the polynomials Hn(x). Hermite functions also have a
three-term recurrence, similar to (5.13) for Chebyshev polynomials (Shen and Wang, 2009).
Similar to Chebyshev polynomials, it is possible to create differentiation matrices, for explicit
formulas the reader is referred to Funaro (1992).
The endpoints of the collocation points are finite values and grow as O(N) for N → ∞
(Weideman and Reddy, 2000). In general, neither mapping nor a domain truncation is necessary.
In this work, a scaled weight function w(x) = exp(−x2b2/2) is used, cf. Boyd (2000). This
allows to scale the collocation points with xk/b. Finally, the extension to higher dimensions is
done by Kronecker products (compare (5.23)).

5.2. Eigenvalue solver

With the discretization techniques presented in Chapter 5.1, it is possible to discretize eigenvalue
equation for linear shear flow (5.1). The discretized equation has the form of a generalized
eigenvalue problem

Ax = λMx, (5.25)

where λ ∈ C is the eigenvalue. The terms corresponding to the matrix A and M and the
eigenvector x are explained in the following. For sake of clarity, the PDE (5.1) is rewritten in a
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different order

x̃2
∂

∂x̃1
∆ũ′2 = λ

(︃
∆+ x̃1

∂∆

∂x̃1
+ x̃2

∂∆

∂x̃3
+ x̃3

∂∆

∂x̃3

)︃
ũ′2. (5.26)

Obviously, the terms on the left hand side are given by a linear operator acting on ũ′2. On the
right hand side, there is a product of the eigenvalue λ and a linear operator acting on ũ′2. The
spectral collocation is evaluated at the collocation points ξi,1, ..., ξi,N in each direction. The
vector x with dimension N3 contains the solution ũ′2(ξ1,j , ξ2,j , ξ3,j) at the collocation points
and therefore reads

x =
(︁
ũ′2(ξ1,1, ξ2,1, ξ3,1), ..., ũ

′
2(ξ1,N , ξ2,N , ξ3,N )

)︁
. (5.27)

In the following, it is assumed that the disretizations are identical in each spatial direction,
i.e. in each direction we have ξi = ξ1, ..., ξN . The extension to different discretizations for the
spatial directions is straight-forward and only a matter of bookkeeping. We define the matrix
Q (of size N ×N) containing ξi at the diagonal

Qij =

{︄
ξi for i = j

0 else.
(5.28)

For the case of different discretizations in each direction this would correspond to different Q
for each direction. We define the matrices Xj of dimension N3 ×N3 given by

X1 = Q⊗ I⊗ I, X2 = I⊗ Q⊗ I, X3 = I⊗ I⊗ Q, (5.29)

where I is the identity matrix of dimension N ×N and ⊗ denotes the Kronecker product. The
discretized Laplacian L reads

L = D2
ξ ⊗ I⊗ I+ I⊗D2

ξ ⊗ I+ I⊗ I⊗D2
ξ , (5.30)

where the second derivative with respect to ξ is denoted by D2
ξ . The resulting matrices read

A = X2 (Dξ ⊗ I⊗ I) L, (5.31)
M = L+ [X1 (Dξ ⊗ I⊗ I) + X2 (I⊗Dξ ⊗ I) + X3 (I⊗ I⊗Dξ)] L, (5.32)

where a matrix-matrix product is implied and Dξ is the discretized operator for the first
derivative with respect to ξ. The matrices A and M are of dimension N3 ×N3.
The aim is to numerically solve the (discretized) generalized eigenvalue problem (5.25) with
A and M defined in (5.31) and (5.32) and x defined in (5.27). From a numerical perspective,
there are two groups of eigenvalue solvers. The first are direct methods (QR/QZ routines).
The second are iterative solvers (Boyd, 2000). We give a short introduction and discuss
the advantages of each method. The matrices are in general dense and non-symmetric. No
particular structure (e.g. band-structured entries) can be observed. Therefore specific routines
(e.g. routines for symmetric matrices or sparsity preserving routines) are not discussed here,
the reader is referred to Golub and van der Vorst (2000) for an extensive review.
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5.2.1. Full spectrum

A standard eigenvalue problem

Ax = λx (5.33)

with a matrix A of dimension N has N eigenvalues. To compute the full spectrum of all N
eigenvalues, a QR routine for standard (5.33) or a QZ routine for generalized eigenvalue
problems (5.25) can be used. The main idea of the QR routine is briefly sketched. Consider a
standard eigenvalue problem (5.33) where A ∈ RN×N . A Schur decomposition of the matrix A
is defined as

Q∗AQ = R, (5.34)

where Q ∈ CN×N is a unitary matrix and R ∈ CN×N is an upper triangular matrix. This
decomposition has the interesting property that the eigenvalues λi of A are located on the
diagonal of R. The spectrum of the matrix A can therefore be directly extracted from R. The
QR algorithm aims at finding a decomposition of the matrix A in terms of Q and R (Dahmen
and Reusken, 2008).
The QZ algorithm is an equivalent routine to the QR routine with the difference that the
decomposition is applied on B−1A, given that the inverse B−1 of B exists. As this operation is
internally implemented, the rounding errors are usually smaller than performing the matrix
operation first and calling a QR routine afterward (Dahmen and Reusken, 2008). It can
therefore be used for generalized eigenvalue problems. Both QR and QZ algorithms are
available for numerical libraries such as LAPACK (Anderson et al., 1999). There are several
particularities (e.g. row shifts, deflation) in the numerical implementation of QR/QZ routines.
The reader is referred to Kressner (2005) and Golub and Van Loan (2013) for more details.
The QR/QZ routines are widely used for the computation of the eigenvalue spectrum for
stability problems, for example in Orszag (1971). The advantage is that the full spectrum
is resolved and branches in the spectrum can be directly detected. The drawbacks are high
computational costs and storage requirements. The operations scale with O(N3) for a matrix
of size N ×N , which blows up the computational time for large eigenvalue problems (Boyd,
2000).

5.2.2. Iterative solver

For large matrices, iterative solvers are a better choice. In particular, a multidimensional Cheby-
shev expansion (compare (5.23)) leads to very large matrices, which can only be efficiently
solved by iterative methods, cf. Theofilis et al. (2003).
The main idea is to compute only a portion of eigenvalues rather than the complete spectrum.
Only a few eigenvalues are computed by a user-specified criterion, for example, eigenvalues
having the largest magnitude or largest real part. The storage requirement to compute k
eigenvalues is N · O(k) +O(k2) (Lehoucq et al., 1997). It is reported that they are used up to
problem size with 384 GB of memory, e.g. Timme (2020) and Theofilis (2011) with massively
parallel computing. The withdrawal is that no information of the full spectrum is given, as
eigenvalues are calculated locally for some part of the spectrum (Boyd, 2000). In stability
theory using normal modes, this is often the spectrum near ωi = 0 as this defines stability on
instability (compare (3.12)).
There are different types of solvers, which are mainly based on Krylov subspace methods. For
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more details refer to Stewart (2002). In the following, we focus on the implicitly-restarted
Arnoldi algorithm which is implemented in the ARPACK library. The following explanations
are based on the ARPACK manual (Lehoucq et al., 1997) if not indicated otherwise.

Basic idea of the Arnoldi algorithm

The implicitly restarted Arnoldi algorithm belongs to a class of Krylov methods. Detailed
introductions and explanations of that algorithm can be found in the literature (Golub and
Van Loan, 2013; Meerbergen and Roose, 1996). We limit our explanation to important aspects
of the use of the ARPACK package. Consider a standard eigenvalue problem (EVP) defined by

Cx = λx. (5.35)

The vector x is iterated from an initial guess until convergence. Therefore a repeated matrix-
vector operation of an iterated vector on the matrix C is required

w ← Cv. (5.36)

The matrix C is not affected or changed by the algorithm. The iteration stops if the computed
eigenvalue satisfies a user-specified tolerance.
The repeated calls of the matrix-vector routine (5.36) make ARPACK an efficient tool when it
comes to large structured matrices, where the number of floating-point operations O(N) of
(5.36) can be reduced compared to unstructured (dense) matrices with O(N2). Iteration of
100 or more are possible so that the matrix-vector multiplication can be the bottleneck for the
computation time and should be a suspect candidate for code optimization.

Conversion to standard EVP

The discretization of the linearized NEVP for linear shear in (5.1) gives a generalized eigenvalue
problem (GEVP). However, GEVPs are only supported in ARPACK if M and A are symmetric (or
Hermitian for complex matrices). As the matrices in (5.1) are non-symmetric, it is necessary
to convert (5.1) to a standard EVP of the form (5.35). For non-singular M (i.e. an inverse M−1

exists) this can be achieved by the following transform

M−1Ax = λx, (5.37)

which gives a standard EVP as in (5.35) with C = M−1A. It is not recommended to perform the
operation in (5.37) directly. In general, this converts sparse problems to dense ones. Instead,
the matrix-vector product (5.36) is replaced by a matrix-vector multiplication and a solution
of a linear system

z ← Av (5.38)
Mw = z (5.39)

The second step (5.39) can be efficiently implemented using a LU-decomposition of the matrix
M = LU with forward and backward substitution, cf. Bornemann (2016).
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User-specified eigenvalue search

ARPACK includes predefined settings to compute k eigenvalues with a certain property, for
example, those with the largest or smallest magnitude. However, one may be interested in
eigenvalues in the interior of the spectrum. For a GEVP (A,M) with an eigenpair (x, λ) this
can be achieved by a shift and invert spectral transformation

(A− σM)−1 Mx = xν, where ν =
1

λ− σ
. (5.40)

This transformation allows finding eigenvalues near a user-specified shift σ ∈ C. The eigenval-
ues have to be transformed back by

λj = σ + 1/νj (5.41)

Again, the matrix inversion in (5.40) should not be performed explicitly. A substitution similar
to the one in (5.39) should be used instead (Lehoucq et al., 1997).

5.3. Filtering of spurious modes

A curse in solving eigenvalue problems is the occurrence of spurious modes (Gottlieb and
Orszag, 1977; Weideman and Trefethen, 1988; Boyd, 2000; Manning et al., 2008). These
modes are numerically correct as they are solutions to the discretized eigenvalue problem.
However, these modes are nonphysical solutions. If a differential operator with an infinite
number of modes is discretized, only a portion of the modes is correctly represented by the
discretization. High-frequency modes lack poor resolution and lead to spurious solutions. A
rule-of-thumb for a one-dimensional problem on a bounded domain is that about one-half of
the modes are spurious. For problems on an infinite domain, the percentage of spurious modes
is in general higher (Boyd, 2000).
Different approaches to handling spurious modes are presented in the literature. In the context
of the Orr-Sommerfeld equation, modified polynomials are proposed (similar as shown in
(5.21)), to reduce the number of spurious modes as e.g. implemented by Zebib (1987),
McFadden et al. (1990), and Gardner et al. (1989). However, spurious modes may persist.
Another approach is to filter out spurious modes from the calculated spectrum. For a full
spectrum (QZ-algorithm) the eigenvalues are therefore computed for two different resolutions.
These two spectra are then compared and only the values which change little according to a
certain metric are kept, for details refer to Boyd (2000) and Gheorghiu (2020a). Some spectral
codes (e.g. Chebfun) already implement these filtering techniques by default, cf. Driscoll et al.
(2008). In the following, we present some metrics from Boyd (1996) and Boyd (2000). The
eigenvalues are sorted according to their magnitude and the absolute ordinal drift is calculated
by

δj,ordinal =
⃓⃓⃓
λ
(N1)
j − λ(N2)

j

⃓⃓⃓
, (5.42)

for two sets of numerical solutions, indicated by the superscript (N1) and (N2). For different
resolutions, it can happen that spurious modes enter somewhere between these values. So it
might be better to find the eigenvalues with the smallest difference between them (nearest
neighbor), given by

δj,nearest = min
k∈[1,N2]

⃓⃓⃓
λ
(N1)
j − λ(N2)

k

⃓⃓⃓
. (5.43)
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In some eigenvalue problems, for example, the Legendre equation, there is a scaling of the
j-th eigenvalue as O(j2). Therefore a certain metric of how fast the eigenvalues grow can be
used. This is named intermodal separation and is defined as (Boyd, 1996)

σj =

{︄
|λ1 − λ2| j = 1
1
2 (|λj − λj−1|+ |λj+1 − λj |) j > 1.

(5.44)

Boyd (1996) proposes to plot the rj values to find eigenvalues that change little. A large value
of rj is an indicator that the mode is non-spurious. These values are given by

rj,ordinal =
min(|λj |, σj)
δj,ordinal

, (5.45)

rj,nearest =
min(|λj |, σj)
δj,nearest

. (5.46)

A third technique is to calculate the Chebyshev coefficients of the eigenfunction. This can
be done by the so-called Chebyshev approximation formula, see e.g. Press (1996). If the
solution is known as a closed analytical expression, e.g. as a polynomial, the calculation of the
Chebyshev coefficients can be implemented using a fast Fourier transform (Gentleman, 1972;
Townsend, 2014). For a discretized solution from a numerical solver, we can use the Chebyshev
approximation formula. Given that we know the discretized solution of the eigenfunctions
uN2 (xk)withN collocation points in one dimension, we can calculate the Chebyshev coefficients
by

cj =
2

N

N∑︂
k=1

uN2 (xk)Tj(xk), (5.47)

where the Chebyshev polynomials Tj(xk) can be easily obtained from (5.13). Further, it is
possible to reconstruct the solution based on the Chebyshev coefficients as a Chebyshev series,
which can give further insights. The eigenfunction can be approximated by

u2 ≈
N−1∑︂
k=0

ckTk(x)−
1

2
c0. (5.48)

Note that the reconstruction in (5.48) can also be done by taking the sum including the N -th
term. However, if the coefficients are characterized by an exponential decay (or at least a
sufficiently fast decay), this contribution is usually very small.
The extension of (5.48) to higher dimensions is shown in Appendix A.3. The relation between
the coefficients can also be expressed as matrix-vector products

uN = Tc, c = T−1uN , (5.49)

where c is the vector containing the coefficients, and T is a matrix containing the Chebyshev
polynomials of different orders evaluated at the collocation points, and uN is the numerical
solution (Peyret, 2002). In addition, the one-dimensional series in (5.48) differentiated sym-
bolically (using CAS) and inserted into the differential equation to calculate a residual.
A different criterion without calculating (5.48) explicitly is to investigate the Chebyshev coeffi-
cients. Spurious modes are usually associated with non-decaying and oscillating coefficients
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(Boyd, 2000).
There are other filtering techniques that are not used in this work. However, we mention them
for sake of completeness. Another approach is to compute the orthogonality of the eigenvectors.
This approach can also be used if the solution is not known a priori (Gheorghiu, 2018). To our
knowledge, this was first used in Bailey et al. (1978) for Sturm-Liouville problems. A different
approach is to use certain symmetries in the eigenvalue spectrum. For example, if the spectrum
is a priori known to be symmetric, all the modes which do not have a symmetric counterpart
can be rejected (Kitsios, 2010).

5.4. Implementation

To solve the eigenvalue problem defined in Chapter 4 it is convenient to design and implement
a software framework. It is acknowledged that there are existing software packages (Driscoll et
al., 2014) as well as Fortran and MATLAB routines (Canuto, 1988; Weideman and Reddy, 2000;
Trefethen, 2000; Schmid and Henningson, 2001) publicity available for spectral eigenvalue
problems. These codes provide the flexibility to study a large number of one-dimensional
eigenvalue problems. In the context of stability theory, they can be used to discretize and solve
the Orr-Sommerfeld equation.
On the contrary, the NEVP defined in Chapter 4 has some particularities as unbounded domains,
variable coefficients depending on xj , third-order derivatives, and two-or-three inhomogeneous
directions. These aspects need careful implementation and testing. In addition, parallel
computation with distributed memory is necessary to solve multidimensional problems. To the
author’s knowledge, there is no out-of-the-box solution for this problem type publicly available.
Therefore, we decided to write our own software for this application. The three main goals
are:

• High-performance computing: Multidimensional eigenvalue problems lead to large
matrices with a large memory demand. It is therefore necessary for production runs
to use a high-performance language (Fortran) with parallel computing standards (in
particular the message passing interface (MPI) standard).

• Full user control of all parameters: the user has full access to all parameters of the
discretization (polynomial, collocation points, mapping parameters), MPI parallel data
distribution (number of cores, block sizes for distributed matrices), eigenvalue solver
routines (full or iterative solver, number of iterations, tolerance), and filtering (metric,
tolerance).

• Ease of use in implementing new equations: In Chapter 4 we show different applications
of flows with constant velocity gradients. Differentiation matrices and Kronecker products
are available from routines, such that new equations can be easily implemented.

Serial implementation A serial implementation in Fortran can be done as follows. For the
discretization, existing MATLAB routines for Chebyshev (Trefethen, 2000) and Hermite (Weide-
man and Reddy, 2000) differentiation matrices were ported to Fortran. Linear algebra routines
(e.g. matrix-vector multiplication) were called from the library LAPACK. The implementation
was tested extensively against MATLAB code giving the same results up to machine epsilon.
Note that MATLAB internally also implements LAPACK routines, cf. Bornemann (2016). The
eigenvalue solvers for the full spectrum were called from LAPACK. The iterative solution of
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the eigenvalue problem is done from ARPACK (Lehoucq et al., 1997). Note that generalized
non-symmetric eigenvalue problems have to be transformed to standard eigenvalue problems
which was done using LAPACK routines.

Parallel implementation The serial code is parallelized in Fortran using MPI. The parallel
routines from ScaLAPACK (Blackford, 1997) and PARPACK (Maschho and Sorensen, 1996)
were called instead of their serial implementations. The basic approach is as follows. The data
is distributed over the processors with a block-cyclic layout. In other words, the global matrix
is split into blocks that are distributed in a certain order over the processor grid. ScaLAPACK
uses the BLACS communicator and provides MPI routines for data manipulation across the
processor grid.
However, parallelization involves several challenges. To our knowledge, there is no simple
routine available for the parallel Kronecker product from ScaLAPACK. Therefore the routines
for the matrix assembly are written using elementary MPI communicators.
Concerning the eigenvalue solver for the full spectrum, there is only a parallel implementation
for standard eigenvalue problems. Therefore conversion is necessary. Note that PARPACK uses
a row-cycling layout. For performance reasons, matrix redistribution routines between a row-
cyclic layout and block-cyclic layout are used. These routines are available from ScaLAPACK.
At run-time, there are two main issues. First, the choice of the block size impacts the parallel
communication effort and therefore the performance. The block size is varied within the
recommended range from literature (Choi et al., 1996; Blackford, 1997) to reduce computa-
tional time. Note that the optimal values also depend on other factors such as computational
architecture and latency times.
Second, it is necessary to call linear solvers within this framework, for example, to calculate
the velocity u1 from u2. Another application is the iterative solution of non-linear equations,
where a linear system has to be solved in each iteration (the details are given in Chapter 7.3).
However, the linear solvers from ScaLAPACK are direct solvers and have a poor scaling in
performance for larger problems (Schäfer, 1999). As ScaLAPACK only contains direct solvers
turned out to be a bottleneck at runtime, we decided to use iterative solvers from the PETSc
library (Balay et al., 2021). In that way, it is also possible to call iterative eigenvalue solvers
from the related SLEPc package (Hernandez et al., 2005).

Post-processing routines Routines for the post-processing of the data are provided within the
software framework. This includes the filtering and the approximation of Chebyshev coefficients
(cf. Chapter 5.3). Moreover, an interface to MAPLE (CAS) is provided to analytically reconstruct
the Chebyshev series and calculate the residuals. In addition, some auxiliary routines are
provided to track the memory demand on run time. The code can be compiled with a profiling
option, which calls Score-P (Knüpfer et al., 2012) at runtime and allows for performance
analysis after job completion.

5.5. Test cases

The software framework has been designed and implemented by the author. Most of the
routines for the matrix assembly and eigenvalue filtering are based on code written by the
author. Therefore all routines and functions have to undergo careful testing. The purpose
of this section is two-fold. First, we show that the implementation works correctly. Second,

71



the findings help to select appropriate numerical parameters (number of collocation points,
mapping parameter) and filtering routines.

5.5.1. Choice of mapping parameter (1D)

The code was tested for different 2nd order PDEs and EVPs on finite and infinite domains. The
results from the literature could be successfully reproduced. In the following, we focus on
third order differential equations defined on finite domains. A test case is constructed using
the method of manufactured solutions, cf. Roache (2019). The BVP reads

uxxx + ux = F , u(±∞) = 0, u′(∞) = 0. (5.50)

The forcing term on the RHS depends on the solution of u(x). We use typical test cases (see
e.g. Shen et al. (2011)) for the solutions with their specific RHS

u(x) = exp(−x2), F = 10xe−x2 − 8x3e−x2
, (5.51)

u(x) =
1

x2 + 1
, F = − 48x3

(x2 + 1)4
+

24x

(x2 + 1)3
− 2x

(x2 + 1)2
. (5.52)

We denote (5.51) as the exponentially decaying and (5.52) as the algebraically decaying test
case.

Influence of the mapping parameter For problems on unbounded domains, the quality of the
numerical solution depends on the number of collocation points and the mapping parameter
(Boyd, 2000). For Chebyshev collocation, an exponential map (5.19) formally maps the
physical domain x ∈ [−∞,∞] to a numerical basis ξ ∈ (−1, 1). In the implementation, the
points ξ ± 1 are excluded (effectively they are Dirichlet BC). The reason is that for problems
with coefficients depending on x (like the NEVP (5.1)), this would otherwise give infinite
values.
A numerical solution shows that the mapping parameter has an important effect on the quality
of the solution. This qualitative result is shown in Figure 5.1 for two different mapping
parameters. The choice L = 1.0 gives good results, while the choice L = 0.25 does not
approximate the analytical solution.
We consider the L2-norm of the error ∥u− uN∥2 evaluated at the collocation points. In Figure
5.2a we show how the error depends on the mapping parameter L. There seems to be a
minimum the error for L = 10. This corresponds to an effective domain length of L̂ ≈ 41.63
(magnitude of the outer points of the collocation grid). Note that the function 5.51, is already
of order 10−16 for x ≈ 6 and numerically zero at L̂. The dependence of N is shown in the
Figure 5.2b for a constant L. Interestingly, it was not possible to find an error as low as for
the left figure. Moreover, the error grows for values The reasons can be that the collocation
points are distributed in a way that they do not capture the main structure of the function, e.g.
many points are located in a domain where the function is nearly zero. The second reason is
rounding errors for larger differentiation matrices.
In that sense, it is not the right way to simply increase N but to wisely choose a corresponding
scaling parameter L. If the solution is known as in this example, the domain width can be
adjusted accordingly. However, if the solution is not known a priori, it is necessary to iterate
both N and L to reduce the error (Boyd, 2000).
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Figure 5.1.: Test case in 1D: Chebyshev collocation with exponential mapping, N = 101 with
different mapping parameter L.
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Figure 5.2.: Test case in 1D: Chebyshev collocation with exponential mapping, Variation of N
and L.
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Figure 5.3.: Test case in 1D: Spectral collocation with Chebyshev polynomials with exponential
and algebraic map, and Hermite polynomials. The calculations are done with
N = 100 collocation points.

Choice of the polynomial The previous examples apply Chebyshev collocation with expo-
nential mapping. It is interesting to see the difference between exponential maps, algebraic
maps, and the use of Hermite polynomials. Figure 5.3a shows the results for the exponentially
decaying test case (5.51) . The L2-error is plotted over the effective domain length. The Cheby-
shev collocation with an exponential map gives good results for moderate L̂. The Hermite
collocation is even more dependent on a good choice of L (or L̂). The algebraic map gives
relatively good results from a certain L̂ and is not that much dependent on the choice of L
from that point on.
Figure 5.3b shows the results for the algebraically decaying test case (5.52). Here we see,
that the Chebyshev polynomials with exponential map and the Hermite polynomials do not
give good results. By definition, the algebraic map is a good choice for algebraically decaying
functions. Both test cases are also calculated with a simple domain truncation, which does not
give any satisfactory results.

The test case with the algebraic decay shows that slow decay is a challenge in selecting the
appropriate map. Another aspect is possible singularities in the solutions. As we focus on
smooth solutions with a sufficiently fast decay, we do not consider this possibility here. The
interested reader is referred to Boyd (2000) for an introduction.

5.5.2. Multidimensional examples (2D and 3D)

The discretization of problems in higher dimensions involves the use of Kronecker products
(compare 5.23). To test the implementation for higher dimensions, we use a linear operator L
which is similar to the linearized NEVP operator for linear shear. The test case is written as a
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BVP with a manufactured solution u(x1, x2) or u(x1, x2, x3), and a RHS given by F as

Lu = F . (5.53)

Test case 2D The linear operator L is obtained from (4.85) by setting λ = 1 and A = 1,
which gives

L = −∆− x1
∂∆

∂x1
− x2

∂∆

∂x2
+ 2x2

∂∆

∂x1
, (5.54)

and the test solution reads

f = exp
(︁
−ax21 − bx22

)︁
, a, b ∈ R+, (5.55)

where the parameters a and b control the decay rate. The corresponding RHS corresponding
to 5.53 is given by

Lf = 8e−ax2
1−bx2

2

(︃
x31 (x1 − 2x2) a

3 + x1
(︁
bx1x

2
2 − 2x1 + 3x2

)︁
a2

+

(︃
−1

2
+ x1(x1 − 2x2)b

)︃(︃
bx22 −

1

2

)︃
a+ b3x42 − 2b2x22 +

b

4

)︃
. (5.56)

Equation (5.53) is solved with boundary conditions |u| → 0 as |xj | → ∞. The equation is
discretized using Chebyshev collocation with exponential mapping. Note that algebraic maps
gives rather badly scaled matrices which should be avoided. Technically speaking, the condition
numbers are large, see Schäfer (1999) and Bornemann (2016) for a longer discussion on the
topic of solving linear systems. Second order boundary conditions are applied. Note that the
results showed better convergence than using third order boundary conditions. The linear
system is solved and the L2-error of the difference between the numerical and the analytical
solution is shown in figure 5.4. Here the parameters are chosen to have different convergence
rates in x1 and x2 directions. This test case is also used to test different mapping parameters
for the different directions.

Test case 3D The linear operator in the 3D case from (4.85) with λ = 1 and A = 1 reads

L = −∆− x1
∂∆

∂x1
− x2

∂∆

∂x2
− x3

∂∆

∂x3
+ 2x2

∂∆

∂x1
, (5.57)

with a test solution

u(x1, x2, x3) = e−aq2 , with q2 = x21 + x22 + x23 (5.58)

and a RHS given by

F = 8e−aq2a
(︁
0.75 + q2(q2 − 2x1x2)a

2 + (−3q2 + 5x1x2)a
)︁

(5.59)

with boundary conditions |u| → 0 as |xj | → ∞. The equation is discretized using Chebyshev
polynomials with exponential mapping (with Dirichlet boundary conditions). Additionally, a
test case based on the Poisson equation is implemented. The Poisson equation with an exact
solution (5.58) reads(︃

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)︃
u(x1, x2, x3) =

(︁
4a2q2 − 6a

)︁
exp(−aq2) (5.60)
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Figure 5.4.: Test case in 2D: L2 error between the numerical and the analytical solution (5.55),
shown for parameter a = 0.1 and b = 0.01, Chebyshev collocationwith exponential
map and N collocation points in each direction, the mapping parameters are
shown in the legend.

The use of two test cases allows for comparing the convergence rate of third order derivatives
with variable coefficients in (5.57) with second order derivatives in (5.60). The L2-convergence
of the residuals is shown in figure 5.5. We see that the residuals converge. The refinement
is done up to N = 91 collocation points in each direction. Note that this corresponds to a
discretized matrix with 906 entries in double precision, which requires in total approximately
3.9 terabyte [TB] of memory.

5.5.3. Eigenvalue filtering

The boundary value problem in (5.56) can be rewritten as a generalized eigenvalue problem

Lf = λMf (5.61)

where the linear operator L is given in (5.54) and the solution f in (5.55). The operatorM
implies the multiplication of f by an expression depending on x1 and x2 as follows

M = 8

(︃
x31 (x1 − 2x2) a

3 + x1
(︁
bx1x

2
2 − 2x1 + 3x2

)︁
a2

+

(︃
−1

2
+ x1(x1 − 2x2)b

)︃(︃
bx22 −

1

2

)︃
a+ b3x42 − 2b2x22 +

b

4

)︃
. (5.62)

The problem (5.61) together with the boundary conditions |f | → 0 as |x| → ∞ constitutes a
generalized eigenvalue problem. From (5.56) we know that λ = 1.0 and f(x1, x2) given by
(5.55) is an exact solution for the problem.
The GEVP (5.61) is discretized using Chebyshev polynomials with exponential mapping and
the full eigenvalue spectrum for two resolutions N = 61 and N = 81 is calculated. After
applying the boundary conditions we have a set of 3600 eigenvalues (for N = 61) and 6400
eigenvalues (for N = 81). The aim is to filter out spurious eigenvalues.
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Figure 5.5.: 3D test case: L2-error of the residuals, Chebyshev collocation, exponential map-
ping L = 10 for the 3D BVP from (5.53) with (5.57) and (5.59) and the Poisson
equation from (5.60). The exact solution is given in (5.58) with a = 1.

EV(rordinal) EV(rnearest) EV(rneighbor)
6.403e-06 1 -3.6352e-05
-5.5867e-06 -27.9764 -3.7768e-06
-1.2034e-05 0.10957 -2.3986e-06
-7.1652e-06 914.5045 -3.2599e-05
1.0416e-05 -211.4281 -0.00024621

Table 5.1.: Five eigenvalues with the best filtering metrics according to criterion rordinal, rnearest
and rneighbor

Calculation of the metrics rj In the first step, the spectrum from the two resolutions is
compared. Following the approach of Boyd (1996) the value of rj defined in (5.45) and (5.46)
is calculated. In addition, we use the inverse of the nearest neighbor as a third filter criterion
(i.e. without intermodal separation). The results after the filtering are shown in table 5.1
for the 5 eigenvalues having the best metric. The results show that the eigenvalue λ = 1.0
is only found by the metric rnearest. However, if the correct eigenvalue is not known a priori,
further analysis of the eigenpair is necessary. The corresponding eigenfunctions provide more
information. Some solutions can be directly rejected by optical inspection (e.g. if they do
not satisfy the boundary conditions). An automated selection can be done by calculating the
Chebyshev coefficients.

Calculation of theChebyshev coefficients The Chebyshev coefficients for the two-dimensional
eigenfunction are calculated from the Chebyshev approximation formula (see (5.47) for the 1D
case or Appendix A.3 its extension to 2D). This routine is successfully tested for 1D examples
against existing implementations (e.g. Chebfun). The approximation of the five eigenvalues
from Table 5.1 shows that only the eigenfunction for λ = 1.0 has rapidly decaying coefficients.
The other four eigenfunctions do not have such a decay. The first 10 Chebyshev coefficients
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Figure 5.6.: Approximated Chebyshev coefficients of the filtered eigenfunction for λ = 1.0.

in both directions (in total 100 coefficients) are shown in Figure 5.6. Note that most of the
information of the eigenfunction is therefore already stored in the leading coefficients. The
odd coefficients are close to zero. This indicates a reflection symmetry x→ −x and y → −y,
which is in line with the analytical solution (5.55). In this case, the discrete symmetry could
be exploited to reduce the size of the discretized matrices, see e.g. Boyd (1986) and Boyd
(2000) for some examples. Moreover, the Chebyshev coefficients can be used to calculate
residuals by inserting the reconstructed series solution into the differential equation. However,
this usually needs rapidly decaying coefficients, in the sense that higher-order coefficients are
negligible. The reason is that the coefficients of Chebyshev polynomials are growing as 2k−1

for a truncated Chebyshev series of order k. This can be best seen from the recursion formula
(5.13). Due to this growth of coefficients, the computed solution must have already a fine
resolution. Otherwise, the numerical errors become too large. From the author’s experience,
higher-order contributions of non-zero Chebyshev coefficients often arise if the approximated
solution does not perfectly satisfy the boundary conditions. This is the case for problems on
unbounded domains and is observed frequently for the problems in this thesis. Therefore
the practical use of residuals from a series reconstruction for the EVP is very limited in our
experience.

This example shows that the value we seek for is only found by the metric rnearest. The L2

residual of the eigenfunction is 1.5 · 10−3 and the difference between the numerical eigenvalue
λN and the exact eigenvalue λ is |λ − λN | = 3.70 · 10−6. Our conclusion from this example
is that the rnearest filter works best. In addition, we see the calculation of the Chebyshev
coefficients is a valuable tool to identify spurious modes.

5.6. Summary

A spectral method based onmapped Chebyshev or Hermite polynomials can be used to discretize
the linearized equations of the NEVP from Chapter 4. The discretized generalized eigenvalue
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problem can be solved both for a full spectrum or iteratively around certain values of interest.
As inhomogeneity is assumed in all spatial directions, this leads to large matrices, which makes
the use of MPI routines necessary. The calculated eigenvalues should be carefully analyzed,
as spurious modes frequently occur in generalized eigenvalue problems. Therefore different
filtering techniques (e.g. distance metrics and decay of Chebyshev coefficients) are proposed.
The test cases show that the discretization and filtering routines are correctly implemented for
the 2D and 3D cases.
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6. Results for the linearized eigenvalue problem

The numerical solution of the linearized NEVP from Chapter 4 is presented. The results are
obtained with the software framework presented in Chapter 5.4 by first solving the eigenvalue
problem for different numerical parameters (in particular collocation points and mapping
parameters) and filtering the results afterward. The findings are discussed in the light of
stability theory. In addition, a comparison with experimental and DNS data from turbulent
flows is presented. As dimensionality may alter stability results, the present chapter is divided
into results from 2D and 3D flows.

6.1. Two-dimensional flows

The approach for two-dimensional flows is the following: The eigenvalue equations for flows
with constant velocity gradient from Chapter 4 are discretized using Chebyshev and Hermite
polynomials. The full spectrum is computed, which reveals the location of all eigenvalues
and possible branches in the spectrum Note that we numerically solve EVPs embedded in a
completely new stability theory. Therefore we have little information on the spectrum a priori.
In comparison, in normal mode theory (cf. ansatz (3.10) and (3.11)), it often suffices to seek
eigenvalues near the neutral curve ωi = 0 to check for unstable modes. This is appropriate if
the corresponding eigenvalue has already been intensively studied. However, this is the first
numerical study of such a NEVP. Thus, we decided to resolve the full spectrum. This may also
give information on branches or complex conjugate eigenvalues in the eigenvalue spectrum.
Due to the occurrence of spurious modes in the solution, the calculations are done for different
resolutions (number of collocation points).
The general approach is as follows:

1. The full spectrum is calculated for two different set of numerical parameters (e.g. different
number of collocation points).

2. The data from the two spectra are filtered with a distance metric.

3. The eigenfunctions of the filtered eigenvalues are investigated and their Chebyshev
coefficients are calculated.

4. The eigenpairs with sufficient decay from step 3 are further investigated (by using
iterative solvers with shift-invert transformation for higher resolutions).

6.1.1. Linear shear

The full spectrum of (4.72) (with N2 = 0 from (4.73)) is solved for a resolution of N = 141
collocation points in each direction (Chebyshev collocation with exponential mapping). Figure
6.1 shows the full spectrum with a total of 19.600 eigenvalues. To filter the results, a calculation
withN = 121 collocation points is done. Note that numerical eigenvalues with zero and infinite
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Figure 6.1.: Linear shear (2D): full spectrum, N = 141 Chebyshev collocation points in each
direction with exponential map L = 10

values have been removed from the spectrum before the filtering. The corresponding filtering
metric rnearest from (5.46) is shown in Figure 6.2. As a cut-off for the filter was to be chosen, we
selected all eigenvalues with rnearest > 104 (in total 66 eigenvalues). We believe that this limit
is a reasonable choice to filter correct eigenvalues. The filtered spectrum is shown in Figure 6.3.
Here λr and λi denote the real and imaginary parts of λ, respectively. The filtered spectrum
shows two interesting properties. First, all eigenvalues are real (in numerical double-precision,
largest value with λ = 0.16995). Second, the filtered spectrum is symmetric with respect to
λr = 0. Interestingly, we expect real eigenvalues and discussed this constraint already for
the analytical solution (compare Chapter 4.2). Due to the (symmetry) transform with eλt, an
imaginary part of λ would lead to oscillations and periodicity. The occurrence of the discrete
reflection in the spectrum is an interesting finding. Note that the equation (4.72) itself is not
invariant under λ→ −λ.

The influence of the shear rate A is given implicitly, as the shear rate has been absorbed
in the eigenvalue. To allow a better physical interpretation of the results, we note that the
physical eigenvalue λ(P ) scales with the shear rate A and the numerically computed eigenvalue
λ(N) by

λ(P ) = Aλ(N). (6.1)

Interpretation of the results From a physical perspective, positive real parts λr correspond
to a growth of the kinetic energy k ∼ exp(2λt), cf. (4.4). Evidently, the kinetic energy grows
exponentially. Note that this is the result of the linearized equations. Therefore the energy
growth is not a solution for infinite times, but only for the shorter time scales until nonlinear
effects are no longer negligible (from physical grounds an exponential growth can also be not
infinitely long for a nonlinear equation). However, these findings indicate the existence of
modes with growing perturbation energy. These modes can be interpreted as unstable modes.
These findings are discussed in light of stability theory. Classical results show that the inviscid
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Figure 6.2.: Linear shear (2D): Metric r(nearest) over log(NEV) is the number of eigenvalues
from the full spectrum
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Figure 6.3.: Linear shear (2D): Filtered spectrum with rnearest > 104
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plane linear shear is stable. This follows directly from Rayleigh’s inflection point theorem
(3.25). Similarly, the plane Couette flow, i.e. a linear shear flow bounded by walls is stable
(Schmid and Henningson, 2001). However, experiments and numerical simulations show
a critical Reynolds number of Re ≈ 400. This indicates subcritical instability. Non-modal
stability theories were used to explain this behavior. In that way, the solution of the NEVP
reveals unstable modes (subcritical instability) for the two-dimensional inviscid linear shear
flow. Further investigations should, therefore, investigate the eigenfunctions to further validate
and verify these findings.
Interestingly, the filtered eigenvalues appear in pairs with the same absolute values but opposite
signs. This indicates that there is a discrete symmetry λ → −λ in the spectrum of filtered
eigenvalues. Alternatively, these values as complex conjugate pairs under multiplication by
i, which means iλ. The latter view shows similarity to complex conjugate pairs in normal
mode analysis, see e.g. Drazin (2002). Consequently we investigate whether if this discrete
symmetry is also found in the equation. Therefore we consider (5.1),

−λ∆ũ′2 − λx̃k
∂∆ũ′2
∂x̃k

+ x̃2
∂∆ũ′2
∂x̃1

= 0. (6.2)

which is restated here for sake of clarity. Substituting λ→ −λ in (6.2) gives

λ∆ũ′2 + λx̃k
∂∆ũ′2
∂x̃k

+ x̃2
∂∆ũ′2
∂x̃1

= 0. (6.3)

Obviously, the negative sign can not be entirely annihilated and the equation is not invariant.
Alternatively, substituting both the eigenvalue λ → −λ and the eigenfunction ũ′2 → −ũ′2 in
(6.2) by a reflection symmetry gives

λ∆ũ′2 + λx̃k
∂∆ũ′2
∂x̃k

− x̃2
∂∆ũ′2
∂x̃1

= 0. (6.4)

Again the equation changes under this transform, i.e. the equation is not invariant under the
discrete transform. A possible explanation of the discrete symmetry in the spectrum may be
due to the metric calculated by the filtering algorithm.
As mentioned, an interpretation from a turbulence perspective is possible if the perturbations
are regarded as turbulence fluctuations. Note, however, that the flow physics for two- and
three-dimensional turbulence differ (Boffetta and Ecke, 2012). To the author’s knowledge,
there is comparably little data available for two-dimensional turbulence. For example, we are
aware of the work of Barkley and Tuckerman (1999) and references therein. However, note
that most numerical work on plane Couette flow uses three-dimensional numerical domains
(see e.g. Bech et al. (1995)). The eigenvalues are therefore interpreted in the context of
three-dimensional turbulence in Chapter 6.2.1.

Eigenfunctions The eigenfunctions, or modes as they are referred to in normal mode stability
theory, give insight into the structures of the perturbation velocities. In the following we
select the filtered eigenvalue λ = 0.14920 having the best metric rnearest, i.e. this value is the
most reliable. To further validate the existence of this eigenvalue, calculations with higher
resolutions (up to N = 520 collocation points per direction) are performed. The corresponding
eigenfunction for u2 is shown in Figure 6.4a. The approximated Chebyshev coefficients decay
sufficiently fast, which is shown in Figure 6.4b for the leading 40 coefficients in each spatial
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(a) Eigenfunction (velocity u2) (b) Chebyshev coefficients

Figure 6.4.: Numerical solution of the eigenfunction corresponding to leading eigenvalue
λ = 0.14920

direction. To summarize, there are three arguments that this eigenvalue is non-spurious
(filtering metric, persistence for higher resolutions, Chebyshev coefficients). It can also be
shown that the negative eigenvalue, i.e. −λ, because it has a metric of the same order.
The eigenfunction for u2 has two peaks. From a numerical perspective, it is recommended to
use a mesh refinement in areas with strong gradients, i.e. near the peak. This is the subject of
future work. To better show the structure, a slice of the eigenfunction in the center x2 = 0
along the x1-axis is shown in Figure 6.5 (a spline interpolation is used).
An interesting property of the eigenfunction is due to the scaling symmetry of the problem
(4.72) (see also Oberlack (2018)), i.e. there is a freedom of spatial scaling. This is also reflected
in the discretized equations. In the numerical implementation, the discretized equations with
the same mapping parameter in both spatial directions (i.e. L = Lx = Ly) are equivalent for
the same number of collocation points. However, for different mapping parameters in space
(Lx ̸= Ly) the discretizations are no longer equivalent. This can be easily shown by writing
down the equations and applying the mappings.

6.1.2. Pure strain

The problem for pure planar strain (4.104) is solved. We performed various calculations using
Chebyshev and Hermite collocation with different (or scaling) mapping parameters respectively.
The filtered spectrum (r > 104) is shown for both Chebyshev (exponential mapping, L = 10)
and Hermite collocation (scaling parameter b = 0.35) in Figure 6.6. A cluster of filtered
eigenvalues around λ = ±1 can be observed. For the case of Chebyshev collocation, there
are a few values with a real part around ℜ (λ) = 0.5 Most of the eigenvalues are complex
values. For physical reasons, we are interested in real-valued solutions and eigenvalues. For
eigenvalues that occur as a complex conjugate pair, where λ is the eigenvalue and λ∗ its
complex conjugate, the real part can be recovered by a linear combination 2λr = λ+λ∗. There
is also the possibility that these eigenvalues later converge to unity, for unresolved solutions.
Therefore one could follow a single eigenvalue and trace its trajectory while increasing the
number of collocation points. However, for this problem, there is some indication for the
value λ = 1.0 as shown for the analytical solution for (4.106). Therefore, with this guess, it
is possible to insert λ = 1.0 directly into the eigenvalue problem which leads to a BVP for u2.
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Figure 6.5.: Slice of the eigenfunction from figure 6.4a along the x1 axis
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Figure 6.6.: Pure strain (2D): Filtered spectrum rnearest > 104 for Chebyshev and Hermite
collocation
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(a) Velocity u1 (b) Velocity u2

Figure 6.7.: Pure strain (2D): solution usingHermite collocation (N = 240, b = 0.35) forλ = 1.0,
cf. (4.106)

The solutions are the eigenfunctions which can be further analyzed.

Analysis of eigenfunctions In the next step, the corresponding eigenfunctions are inspected
around λ = 1.0. The observation is that the eigenfunctions from the Chebyshev collocation show
high oscillations and do not satisfy the boundary conditions. To further validate the results,
Chebyshev polynomials with algebraic map and Hermite collocation were used. To perform
the calculations for higher resolutions, an iterative solver (ARPACK) is used for performance
reasons. Note that a shift σ (cf. (5.40)) near the sought value, e.g. σ = 1.01 is usually better
(which is due to the structure of the Arnoldi algorithm, refer to Embree (2009) for more
details). In addition, the candidate eigenvalue λ = 1.0 is inserted directly into the equations
and solved. The results are shown in Figure 6.7. Interestingly, the results qualitatively resemble
the analytical solution (cf. Figure 4.3 in Chapter 4.3). Note that the analytical solution in
(4.108) contains a free function and four constants C1 − C4. Formally, a linear system for the
coefficients can be formulated where the coefficient matrix involves the point-wise evaluation of
the special function. From this numerical solution, we see that Hermite collocation qualitatively
captures the structure of the analytical solution while the mapped Chebyshev polynomials fail.
This might have several reasons, for example, the distribution of grid points or the mapping
parameter (as shown for the 1D test case). Another possible reason is the implementation
of the boundary conditions. In contrast to Chebyshev polynomials, no boundary conditions
need to be applied for Hermite collocation. We suppose that this makes a difference, as the
eigenfunction does not decay at infinity and this causes large errors for mapped Chebyshev
polynomials at the outer collocation points.

Discussion of the boundary conditions This observation raises the question if the prescribed
boundary conditions for the problem should be refined. The reason for choosing boundary
conditions of decay is to have bounded energy, given that the eigenfunctions have sufficient
decay (compare rotational shear flow). However, there are examples within stability theory
where the eigenfunction does not decay to zero, but rather to a constant value for |x| → ∞. This
was observed in the stability analysis for boundary layer flows (Grosch and Salwen, 1978). The
corresponding modes are called improper eigenfunctions (Friedrichs, 1950) and are bounded
but not square-integrable on the infinite domain (Miura et al., 1968). Mathematical details of
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Figure 6.8.: Pure rotation 2D: Filtered spectrum, showing the 92 leading eigenvalues with
rnearest > 105 (unlike Figure 6.6 for linear shear where rnearest > 104)

improper eigenfunctions are given in textbooks on spectral theory (cf. Friedman, 1990; Hanson
and Yakovlev, 2002). These solutions are associated with a continuous spectrum of modes
besides a discrete spectrum (if it exists). Another example of (eigen-)functions that asymptote
to a constant for |x| → ∞ can be found in the theory of nonlinear waves. In general, soliton
waves are nonlinear waves that asymptotically preserve their shapes even after interaction with
other soliton waves (Ablowitz, 2011). Soliton waves that decay to a constant rather than zero
are called non-local, cf. Boyd (1989), Boyd (1990), and Boyd (1991).
In future work, the problem should be studied with these more general boundary conditions.
This needs careful implementation.

6.1.3. Pure rotation

The filtered eigenvalue spectrum (Chebyshev collocation with exponential map) for (4.133) is
shown in Figure 6.8. Note the scaling of the axis which is 10−6 for the real part. Therefore the
eigenvalues are near zero. All eigenfunctions have very strong oscillations in the Chebyshev
coefficients, which is an indication for an under-resolved or spurious solution. As the rotation
rate is combined with the eigenvalue, we cannot vary the rotation rate in terms of scaling.
However, the direction of rotation can be changed. We, therefore, perform a calculation for
the inverse rotation rate Ω→ −Ω. The filtered results also give eigenvalues near zero, with
real parts smaller than 10−5. All non-zero eigenvalues also have non-decaying Chebyshev
coefficients. In conclusion, there is a strong indication, that λ = 0 is the numerical solution
to the problem. The very small deviation from zero in the numerical results may be due to
rounding errors.

Interpretation The solution λ = 0 is consistent with the rotation invariance for the 2D case,
cf. symmetry (2.15). In addition, we consider the result from a turbulence perspective. Even
though real-world turbulence is almost three-dimensional, the Taylor-Proudman theorem
states for a sufficiently large rotation rate Ω, the flow is perpendicular to the rotation vector
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and therefore two-dimensional (Chandrasekhar, 1961; Billant, 2021). For two-dimensional
turbulence modeling the so-called frame-invariance is shown. For two-dimensional flows, the
turbulent fluctuations in the momentum equation can be absorbed into the pressure term
(Speziale, 1981; Speziale, 1989). This is consistent with the finding of the solution λ = 0 for the
eigenvalue problem. Note that the frame-invariance does not hold for 3D flows. Experiments
for isotropic turbulence show that the rotation rate decreases the decay rate (Mansour et al.,
1992; Sagaut and Cambon, 2018).

6.2. Three-dimensional flows

The general approach for three-dimensional flows is different from two-dimensional flows.
Due to the higher numerical cost (in particular storage) an iterative solver (Arnoldi method) is
used instead of a QZ routine (full spectrum). Consequently, there is no information on the full
spectrum available. The following approach is used for the large-scale 3D calculations:

1. Define an area of interest (if possible from theoretical considerations).

2. Calculate the eigenvalue in the area of interest. Use successive shifts in the domain of
interest and make sure that the solutions of each shift overlap, similar to a method used
e.g. in Timme (2020).

3. Repeat the calculations with different numerical parameters (e.g. a different number of
collocation points).

4. Filter the set of eigenvalues using the methods described in chapter 5.3.

6.2.1. Linear shear

Area of interest from theory Iterative solvers seek solutions in certain areas of the spectrum.
A turbulence perspective on the NEVP helps us to identify these areas. As discussed in Chapter
4, the study of homogeneous shear flows reveals growth of kinetic turbulent energy. Pope
(2000) derived a simple balance for the turbulent kinetic energy as a function of time k(t) and
the difference in production of kinetic energy P and dissipation ϵ

dk

dt
= P − ϵ (6.5)

which can be rewritten as

τ

k

dk

dt
=
P
ϵ
− 1, (6.6)

and be solved as

k(t) = k(0) exp
(︃
t

τ

(︃
P
ϵ
− 1

)︃)︃
. (6.7)

The results from the literature indicate that P/ϵ ≈ [1.4, ..., 1.8]. Usually, a different notation is
used, cf. Briard et al. (2016). Exponential growth is observed for finite times, i.e. the growth
cannot be sustained infinitely long (Sagaut and Cambon, 2018). For short times scales, a
Taylor expansion of the exponential term around t = 0 reveals a linear growth in leading order
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λN=60 λN=64 rnearest
1 0.00609 0.00612 292.8
2 0.12995 0.12978 210.2
3 0.01771 0.01769 109.6

Table 6.1.: Linear shear (3D): three eigenvalues for the two different resolutions having the
best metric rnearest

(Rohr et al., 1988).
The aim is to use these predictions and compare them with the three-dimensional formulation
of the linearized NEVP. One may argue that the linearization of the NEVP may limit the ability
to predict turbulence phenomena. It should be noted that the Rapid Distortion Theory (RDT)
also neglects the nonlinear terms as the forcing by shear dominates (Jacobitz et al., 1997; Hunt
and Carruthers, 1990). The linearization is however only valid for At = O(1) (Jacobitz et al.,
1997). Moreover, the linearized solution should serve as an initial guess for the full nonlinear
equation (see chapter 7.3). We find the following area of interest for our numerical calculation.
The kinetic energy of the fluctuations grows as exp(2λt) (here, a different scaling of λ is used
compared to equation 4.4). We compare the coefficients with those from the literature (Sagaut
and Cambon, 2018) and find

2λ = σA (6.8)

For the numerical implementation of the linearized equation the eigenvalue is scaled by A−1,
i.e. λN = λ/A, where λN denotes the result from the numerical solution. Using this result, we
find

λ(N) =
σ

2
(6.9)

according to the literature this gives theoretical values for λ(N) = [0.035, 0.165]. Note that the
filtered values from the 2D linear shear flow lie in the range [−0.170, 0.170].

Results The approach to calculating the eigenvalues is the following. A parallel iterative
solver is used to solve (4.72). Due to the sizes of the matrices for the three-dimensional case,
an iterative solver is chosen. Keep in mind that routines for a full spectrum scale as O(N3)
for matrices of size N × N (cf. Chapter 5.2). A shift-invert technique is used and the sizes
of the shifts σ were chosen to have overlapping solutions for each shift. This procedure is
also used for problems with global stability analysis, cf. Timme (2020) and Nichols and Lele
(2011). For this problem, the shifts were chosen as [0.01, 0.05, 0.1, 0.15]. As the calculated
eigenvalues may still be spurious, the calculations are done for two resolutions with N = 60
and N = 64 collocation points in each spatial direction. Here we present the results for several
shifts (different parameters N = 61 and N = 65, with L = 10) shown in Figure 6.9. The
metrics for the two sets of eigenvalues are calculated. As there is a significant decrease in
the metric after the first three eigenvalues, only these eigenvalues are considered. Note that
the metrics rnearest and rordinal both select the same three eigenvalues. These three leading
eigenvalues are shown in Table 6.1. The analysis shows that there are three eigenvalues that
change little for the two resolutions and are therefore are assumed to be physically relevant
eigenvalues. In this way, eigenvalues in the domain of interest (compare to theory) are found.
These values would explain an exponential growth of the kinetic energy in a view of turbulence
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Figure 6.9.: Linear shear (3D): calculated eigenvalues with shifts along the real line, Chebyshev
collocation with exponential map (L = 10) for N = 60 and N = 64 collocation
points in each direction

theory. Additional investigations of the eigenfunctions and their Chebyshev coefficients are
necessary to confirm these findings.

6.3. Summary

In this chapter, the numerical solution for the linearized NEVP is presented. The equations
are successfully implemented and solved in an MPI solver for runs on O(1000) processors.
The study of the linear shear shows the first promising results. First, the filtered values in the
two-dimensional case reveal exponential growth. Second, the eigenfunction to the leading
eigenvalue is obtained. For the three-dimensional case, we can show that there are three
filtered eigenvalues that are in the range of experimentally observed eigenvalues. An analysis
of the eigenfunctions should be performed in the next step. The effects of strain and rotation
can also be included in the equation. Two-dimensional results for the calculation of these
single effects are in accordance with theory.
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7. Towards a solution for the nonlinear
eigenvalue problem

In Chapter 4 a novel NEVP based on Lie symmetries is presented. The equations involve a
non-linear term arising from the convective term of the Euler equation. The linearized dynamics
are discussed in chapter 6. The aim is to understand the full nonlinear dynamics in stability
theory, as finite amplitude perturbations can trigger turbulence (Pringle and Kerswell, 2010).
This chapter gives an introduction to the numerical solution of nonlinear problems.
The dynamics of non-linear equations can be different from those of the linearized equation.
The linear superposition of solutions no longer holds. Moreover, solutions of the equation
can bifurcate at specific points in phase space. For an introduction to these phenomena
refer for example to Strogatz (2018). In the scope of the present work, the term nonlinear
eigenvalue problem refers to problems that are nonlinear in the eigenfunctions. However, the
term nonlinear eigenvalue problem needs some clarification, as in general, the nonlinearity
can apply to the eigenvalue, the eigenfunctions, and to both of them (Appell et al., 2004).
An example of nonlinearity of the eigenvalue arises in structural mechanics and leads to the
eigenvalue problem

λ2M+ λC+ K = 0, (7.1)

where the eigenvalue is quadratic in leading order. This eigenvalue problem is used in the
dynamic analysis of oscillating systems where M,C, and K denote the mass, damping, and
stiffness matrix, respectively (Mehrmann and Voss, 2004). The numerical solution of (7.1) is
widely discussed, for an extensive review refer to Mehrmann and Voss (2004).
By contrast, the NEVP considered in the present work is nonlinear in eigenfunctions, but the
eigenvalue occurs linearly. Therefore the focus of this chapter is on this type of nonlinear
problem. Mathematical theory is provided for some problems mostly where the eigenfunctions
have a polynomial nonlinearity (Cerami, 1988; Lindqvist, 1993; Bognár, 2000). The spectrum
of the eigenvalue problems can be studied with techniques from non-linear analysis, namely
variational methods (Rayleigh’s quotient), cf. Lindqvist (2008) and Appell et al. (2004). For
the numerical solution of problems with nonlinear eigenfunctions, Newton-type methods are
frequently used (Boyd, 2000). An example of nonlinear eigenfunctions in classical mechanics
is a heavy rotating string problem (Kolodner, 1955). In theoretical physics, the nonlinear
Schrödinger equation (Sulem and Sulem, 2004), the Korteweg-deVries equation (Miura, 1976)
and Bratu’s equation (Boyd, 1986; Boyd, 2000) are further examples.

7.1. Newton-Kantorovich method

We first summarize some basic ideas for solving nonlinear equations. The Newton method for
nonlinear equations can be applied to differential equations, called the Newton-Kantorovich
method, named after the work of Kantorovich and Akilov (1964). It has been successfully
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applied in fluid mechanics, e.g. for the two-dimensional Navier-Stokes equation (Gabrielsen,
1975), wetting pheneomena (Smith, 1995), or vortical structures in shear flows (Haupt et al.,
1993). This section is based on Boyd (2000) if not indicated otherwise.

Ordinary Newton method The ordinary Newton method can be used to compute the roots of
an equation f(x) = 0. To this end, a Taylor expansion is used and truncated to linear terms.
The linearization is done around a current guess x(i) as follows

f(x) = f
(︂
x(i)
)︂
+ fx

(︂
x(i)
)︂(︂

x− x(i)
)︂
+O

(︃(︂
x− x(i)

)︂2)︃
, (7.2)

where fx
(︁
x(i)
)︁
is the derivative of f with respect to x at the point x(i). Neglecting higher order

terms, an improved guess x(i+1) can be obtained from

x(i+1) = x(i) −
f
(︁
x(i)
)︁

fx
(︁
x(i)
)︁ . (7.3)

Newton-Kantorovichmethod A generalization of the ordinary Newton’s method to differential
equations is provided by the so-called Newton-Kantorovich method. Consider therefore the
following differential equation

ux = F (x, u(x)), (7.4)

where F is an operator, acting on the solution u(x) and ux is the derivative of u with respect to
x. Using Taylor expansion for the right hand side of (7.4) with respect to u(x) at u(i)(x) yields

ux = F
(︂
x, u(i)(x)

)︂
+ Fu

(︂
x, u(i)(x)

)︂(︂
u(x)− u(i)(x)

)︂
+O

(︃(︂
u(x)− u(i)(x)

)︂2)︃
. (7.5)

The linear differential equation for the next iterate u(i+1)
x is given as

u(i+1)
x − Fuu

(i+1) = F − Fuu
(i). (7.6)

The function F as well as its derivative Fu with respect to u are evaluated at u(i). Consequently,
u
(i+1)
x is found from a solution of linear differential equations.

First, we introduce the correction ∆(x) to the solution, which is defined as

u(i+1)
x = u(i)(x) + ∆(x). (7.7)

Consider then a nonlinear operator N acting on u+∆, which can be expanded as a Taylor
series

N (u+∆) ≈ N (u) +Nu(u)∆ +O
(︁
∆2
)︁

(7.8)

where nonlinear terms (i.e. O
(︁
∆2
)︁
) are neglected in the following. The derivative Nu, called

Fréchet derivative, can be computed by

Nu∆ =
∂N (u+ ϵ∆)

∂ϵ

⃓⃓⃓⃓
ϵ=0

. (7.9)

Non-linear problems can therefore be solved by treating the non-linear term with a Newton-
Kantorovich method. For more details regarding the implementation of the Fréchet derivative
refer to Birkisson and Driscoll (2012). The resulting linearized equation can be solved for the
corrections and used to update the solution after each iteration. The stopping criterion for the
iteration is usually based on an error norm for the residuals or the corrections.
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Figure 7.1.: Bratu’s equation: two solutions for λ = 0.4, obtained with Chebfun for two different
initial conditions (1) and (2).

7.2. Examples of non-linear eigenvalue problems

To solve a non-linear eigenvalue problem, it is important to understand the typical phenomena
of this class of eigenvalue problems. Therefore two examples are presented in the following.

Bratu’s equation In this section we consider the Liouville–Bratu–Gelfand equation (Liouville,
1853; Bratu, 1914; Gel’fand, 1959) in one dimension given by

uxx + λ exp(u) = 0 with u(±1) = 0, (7.10)

where λ is the eigenvalue. This equation describes for example the thermal heat explosion
in chemical reactions (Trefethen et al., 2018). The problem (7.10) is frequently used as a
test case for nonlinear eigenvalue problems, refer to Boyd (2011) for a review. In the spectral
methods community, the eigenvalue problem is usually called Bratu’s equation (Boyd, 2011)
and we adopt this term in the following. An analytical solution to (7.10) is given by

u(x;λ) = log
(︂
z2sech2

(︂
z
√︁
λ/2x

)︂)︂
, (7.11)

where the z is obtained implicitly from a transcendental equation

z = cosh
(︂√︁

λ/2z
)︂
. (7.12)

The analytical solution for two different initial guesses is shown in Figure 7.1. The results are
obtained with a nonlinear solver from the Chebfun package (Driscoll et al., 2014). The details
on the algorithm are omitted here and can be found in Driscoll et al. (2014) and Birkisson
(2013). Interestingly, the result shows that there are two eigenfunctions corresponding to the
single eigenvalue λ = 0.4. This phenomenon is called bifurcation. The two different solutions

95



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

5

6

Figure 7.2.: Bratu’s equation: bifurcation curve, obtained using a path following routine in
Chebfun, based on a code from Trefethen et al. (2018).

are found by using different initial conditions, e.g. a simple polynomial with x2 (initial guess
1) and a sine function (initial guess 2).
It can be easily shown numerically and analytically that the maximum value is um = u(x =
0). The maximum value is taken as a measure to distinguish two eigenfunctions in the
following. In contrast to linear eigenvalue problems, there is no longer freedom of scaling for
the eigenfunctions. An observation is that there is a critical eigenvalue λc ≈ 0.87845 (Boyd
et al., 2003) associated with a saddle-node bifurcation (Trefethen et al., 2018). For eigenvalues
λ < λc there is a continuous spectrum of eigenvalues and every single eigenvalue corresponds
to two solutions. At the critical value λc there is only one solution. For values λ > λc no solution
exists. This finding can be deduced from the solution of (7.12), compare (Boyd et al., 2003;
Gheorghiu, 2020b). Figure 7.2 shows the bifurcation curve which is obtained numerically
using path-tracking methods (Birkisson, 2013) based on a code presented in Trefethen et al.
(2018). Note that the position of the saddle point depends on the domain length. For the
domain [0,1] the saddle point is 4λc.
The information on the bifurcation and continuous spectrum is useful to formulate the numerical
algorithm. First, there are eigenvalues λc > λ which do not have any solutions. Therefore the
algorithm does usually not converge for initial guesses of λ(0) ≫ λc. Second, for a solution
λ < λc, only the eigenfunction has to be iterated, but not the associated eigenvalue. This is
due to the continuous spectrum of solutions. Boyd (2011) presents the following algorithm.
The Fréchet derivative (defined in (7.9)) obeys the following form

∂

∂ϵ
exp(u+ ϵδ)|ϵ=0 = δ exp(u+ ϵδ)|ϵ=0 = δ exp(u). (7.13)

Therefore the algorithm to solve (7.10) by iteration reads (Boyd, 2011):

δ(k)xx + λ exp
(︂
u(k)

)︂
δ(k) = u(k)xx + λ exp

(︂
u(k)

)︂
, u(k+1) = u(k) − δ(k) (7.14)
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The solution depends on the initial conditions, as shown in the example. Technically, it is
not difficult to extend this algorithm to higher dimensions. However, special care must be
taken to identify the bifurcation points. Therefore Boyd (1986) iterated both the eigenvalue
and the eigenfunctions. Some work has been done to identify the bifurcation in two-and
three-dimensional Bratu’s equation, cf. Karkowski (2013) and Ali and Ma (2020).

Van der Pol equation The solution of Bratu’s equation shows that there are zero, one, or
two solutions depending on the eigenvalue. In addition, a continuous spectrum of eigenvalue
exists. However, this might not always be the case. Consider the Van der Pol equation, which
describes a nonlinear oscillation, e.g. studied by Boyd (2000) and Amore et al. (2018). For
this equation, only a single (discrete) eigenpair exists. The equation is given by

utt + u+ Γ
(︁
1− u2

)︁
ut = 0 (7.15)

with a damping parameter (proportional to the velocity) Γ. The equation is an example of
non-linear oscillation. Without the term (1 − u2), this equation would describe a (linear)
spring-mass system. The amplitudes become periodic as t increases. The trajectories, therefore,
tend to a point in phase space, which is called the limit cycle (Abell and Braselton, 2018). The
Van der Pol equation is a classical example to study the limit cycle property (Davis, 1962). It is
useful to make a substitution t = Ωτ which leads to (Hunter and Tajdari, 1990)

Ω2uττ + u+ ΓΩ
(︁
1− u2

)︁
uτ = 0. (7.16)

For a starting solution with a large amplitude, the solution rapidly turns to a solution with
fixed frequency and amplitude. For the numerical solution, it is necessary to iterate both the
eigenvalue (frequency) Ω and the eigenfunction u in each iteration. The nonlinear term is
treated by a Fréchet derivative.
The Van der Pol equation has a translational invariance. It is therefore necessary to apply a
phase condition ux(x = 0) = 0 (Boyd, 2000). There are other examples of nonlinear wave
equations that need constraints to eliminate certain symmetries, cf. Boyd (1996), Feng and
Kawahara (2000), and Gameiro and Lessard (2017). This finding should be kept in mind
when constructing algorithms for nonlinear equations.

Summary

The two examples show different properties of nonlinear eigenvalue equations. For both
examples, the Newton-Kantorovich method can be applied algorithmically. Care must be taken
for the initial guesses. Bratu’s equation shows that the solutions depend on the eigenvalue,
moreover, there are no solutions for eigenvalues larger than the critical eigenvalue. An inter-
esting property is the existence of a continuous spectrum. However, the Van der Pol equation
illustrates that nonlinear equations might also have discrete eigenpairs. In particular, the Van
der Pol equation only admits a single eigenpair. To numerically solve this equation, both the
eigenfunctions and the eigenvalue should be iterated. Moreover, the iteration of both quantities
is a good idea when there is little or no information about bifurcation points.

7.3. Algorithm for the non-linear eigenvalue problem

We present an algorithm to solve the non-linear eigenvalue problem for linear shear given
in (4.72) and (4.73). Here the prime and tilde are omitted for sake of readability. Both the
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eigenfunctions and the eigenvalues are iterated, so that the corrections read

u2 → u2 + û2, (7.17)

λ→ λ+ λ̂. (7.18)

The basic approach is as follows. First, the quantities u2 and λ in (4.72) and (4.73) are
replaced by the expressions (7.17), and (7.18). Then, nonlinear terms are neglected by using
the Newton-Kantorovich method. The resulting linear system can be solved for the corrections
û2 and λ̂.

Nonlinear terms The nonlinear term (4.73) is rewritten as

N2 = −
∂ũ2
∂x̃2

∆ũ2⏞ ⏟⏟ ⏞
A

+ ũ2
∂

∂x̃1
∆ũ2⏞ ⏟⏟ ⏞

B

+ ũ1
∂

∂x̃1
∆ũ2⏞ ⏟⏟ ⏞

C

− ∂ũ2
∂x̃1

∆ũ1⏞ ⏟⏟ ⏞
D

. (7.19)

This expression not only depends on u2 but also on u1 and in the three-dimensional case also
on u3 (or respectively on the vorticity η). Still, there are some differences concerning the
nonlinearity of the terms in (7.19):

• A and B: These terms are non-linear in u2, therefore the Newton-Kantorovich method
must be applied.

• C and D: These terms are products of u2 and u1. If solving for û2 in the first step, u1 from
the previous iteration can be used.

This procedure is consistent with the handling of non-linear terms in the velocity-vorticity
formulation (Kim et al., 1987). The Fréchet derivative for the term A with the correction
u2 → u2 + û2 can be calculated as follows

FA =
∂

∂ϵ

[︃
−∂(u2 + ϵu2̂)

∂x2
∆(u2 + ϵû2)

]︃ ⃓⃓⃓⃓
ϵ=0

(7.20)

=
∂

∂ϵ

[︃
−∂u2
∂x2

∆u2 − ϵ
∂u2
∂x2

∆û2 − ϵ
∂û2
∂x2

∆u2 − ϵ2
∂û2
∂x2

∆û2

]︃ ⃓⃓⃓⃓
ϵ=0

(7.21)

=

[︃
−∂u2
∂x2

∆û2 −
∂û2
∂x2

∆u2 − 2ϵ
∂û2
∂x2

∆û2

]︃ ⃓⃓⃓⃓
ϵ=0

(7.22)

=− ∂u2
∂x2

∆û2 −
∂û2
∂x2

∆u2. (7.23)

The calculation for the term B is analogous and yields

FB = û2
∂

∂x1
∆u2 + u2

∂

∂x1
∆û2. (7.24)

The terms C and D can be simply evaluated by inserting u2 → u2 + û2. The correction û2
is used to update the solution after each iteration and the correction for the velocity u1 is
calculated thereof. By using the result from (7.23) and (7.24) together with the terms C and
D one obtains the expression

N2 ≈−
∂u2
∂x2

∆û2 −
∂û2
∂x2

∆u2 + û2
∂

∂x1
∆u2 + u2

∂

∂x1
∆û2 + u1

∂

∂x1
(∆u2 +∆û2)

− ∂ (u2 + û2)

∂x1
∆u1. (7.25)
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Linear terms The linear operator is written as

L2(λ)[u2] = −λ∆u2 − λxk
∂∆u2
∂xk

+Ax2
∂

∂x1
∆u2 (7.26)

to indicate that the linear operator depends on λ and acts on the argument in square brackets
[...]. As both the differential operator and the eigenvalue λ is linear, the corrections can be
simply applied and give

L2
(︂
λ+ λ̂

)︂
[u2 + û2] =−

(︂
λ+ λ̂

)︂
∆[u2 + û2]−

(︂
λ+ λ̂

)︂
xk
∂∆[u2 + û2]

∂xk

+Ax2
∂

∂xk
∆[u2 + û2] , (7.27)

where ∆[...] acts on the argument in the square brackets. The eigenvalue problem contains
terms with both the eigenvalue and the eigenfunctions. Note that in contrast to the linearized
case it is no longer possible to absorb the shear rate in the eigenvalue by using a substitution
λ/A→ λ. Expanding the expression (7.27), sorting the terms, and ignoring all terms of order
λ̂û gives

L2(λ+ λ̂) [u2 + û2] ≈ L2(λ) [u2] + L2(λ) [û2]− λ̂∆u2 − λ̂xk
∂∆u2
∂xk

. (7.28)

It can be easily shown that neglecting the nonlinear terms is equivalent to applying Newton-
Kantorovich method on these terms.

Linear system for iterations The equation can be discretized using spectral methods, e.g. a
Chebyshev collocation method with exponential mapping. Sorting the terms from (7.25) and
(7.28) gives a GEVP

Aû2 + λ̂Bu2 = Cu2, (7.29)

where A, B, and C are matrices arising from the discretized operators. The aim is to solve
(7.29) for the corrections u2̂ and λ̂, as the quantity u2 is known and the expression Bu2 has
the dimension of a vector. To formulate a linear system we use an approach similar to Boyd
(1986) and define

q̂T =
(︂
λ̂, û∗

2

)︂
, (7.30)

where the star (∗) indicates that the first entry has been eliminated. Introducing a new matrix
D defined as

D =

⎛⎝ |
Bu2 A∗

|

⎞⎠ , (7.31)

where A∗ is matrix A with the first column being eliminated, we obtain a linear system for the
corrections

Dq̂ = r (7.32)

with r = Cu2. The equation (7.32) can be solved by linear solvers, e.g. from LAPACK or PETSc
(compare chapter 5.4)
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Full algorithm All steps to solve the nonlinear problem are summarized in algorithm 1. The
starting point is an initial guess, which can be obtained from solving the linearized equations
(see chapter 6). In each step, (7.32) is solved and the solution is updated until convergence.
The norm of the corrections may be used as a stopping criterion, i.e. if the norm of the changes
is lower than a certain value, the iteration stops. Additionally, a maximum number of iterations
can be specified.

Algorithm 1 Algorithm to solve the NEVP for linear shear
Initial guess (solution of the linearized equation)
u2 ← u2/∥u2∥2 ▷ Normalize u2
while c > tol do

u1 ← f(u2) ▷ Obtain u1 from the continuity equation
Assemble r and D ▷ assemble linear system
q̂ ← D/r ▷ solve linear system (7.30)
λ← λ+ q̂[1] ▷ apply corrections
q̂[1]← 0
u2 ← u2 + q̂
u2 ← u2/∥u2∥2 ▷ Normalize u2
c← ∥q̂∥2 ▷ Norm of corrections, for while loop

end while

The application of the algorithm to other base flows with constant velocity gradient (strain,
rotation) is straightforward. The Fréchet derivative allows us to easily derive the necessary
equations for these cases. The algorithm has been implemented in the software framework
with MPI routines for matrix assembly and the solution of the linear system.

7.4. Future work

Oberlack (2018) noted that the nonlinear eigenvalue equation in primitive variables (velocity
and pressure) has a scaling symmetry in space for pressure and velocity. In addition, there is
a translation symmetry for the pressure, as only the pressure gradient occurs. It is proposed
to use a unit norm for the velocities as a constraint. So far a constraint for the norm has
been applied in the algorithm. However, the examples in Chapter 7.2 show that constraints
have to be carefully applied for all symmetries, see also Boyd (2000). It should be further
investigated if this constraint is sufficient or if further constraints have to be imposed. It might
be helpful to study the nonlinear Schrödinger equation, which also has a scaling symmetry
for the eigenfunctions, cf. Duyckaerts and Roudenko (2010). It may well be that the solution
bifurcates. Therefore, the study of different eigenpairs as an initial condition is recommended.
In addition, existing path tracking methods can be considered. Finally, a working algorithm
allows studying of the full physics of the NEVP. In particular, we hope to get full information
on the eigenvalues (which are interpreted as growth rates), the nonlinear eigenfunctions, and
possible bifurcations.
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8. Conclusion

The present work shows two main applications of Lie symmetries for stability theory. First, it
is possible to extend the normal mode ansatz and to find new modes. Second, it is possible
to derive a completely new nonlinear eigenvalue problem (NEVP). These two aspects are
summarized in the following. Finally, directions for future work are shown.

Extension of normal mode stability theory In this thesis, we have shown that the Lie sym-
metries allow for a deeper mathematical understanding of the linear stability equations. In
particular, they allow to explain and systematize existing ansatz functions. For example, the
well-known normal mode ansatz implements a separation of variables that has a close link to
the Lie symmetries. It is shown that the normal mode ansatz relies on three classical symme-
tries (translation in space and time and scaling of the dependent variable). Consequently, the
Orr-Sommerfeld equation can be explained based on Lie symmetries. Moreover, the Kelvin
mode solution is obtained from a symmetry analysis.
In addition, new ansätze can be found by the combination of additional (non-classical) Lie
symmetries. This is shown in the work of Nold and Oberlack (2013), Nold et al. (2015),
and Hau (2016) for a linear shear flow, where new modes are found. The same method was
successfully applied to the asymptotic suction boundary layers (Yalcin et al., 2021), and to
rotational shear flows (Gebler et al., 2021). For the latter case, it is shown that a stable solution
with an algebraic rather than an exponential decay (as for the normal mode ansatz) in time is
found. This is referred to as an algebraic mode solution. The stability results are in line with
classical results so the algebraic modes are an interesting alternative ansatz in stability theory.
The corresponding vorticity modes show a spiral-like behavior. In conclusion, Lie symmetry
methods help to understand existing ansatz functions and generalize the modal approach such
that new modes can be found.

On a new nonlinear eigenvalue problem The Lie symmetries of the Euler equations give
rise to a completely new formulation of an NEVP. This formulation is completely new and the
present thesis provides the first numerical results. An important aspect of the NEVP is a velocity
decomposition into a mean flow with fluctuations, which shows a close link to problems in
(linear) stability theory and to the Reynolds’ decomposition for turbulent flows. The NEVP thus
provides a theory to calculate the growth rate λ of the turbulent kinetic energy in homogeneous
shear or the value of the van Kármán’s constant κ.
In this work, unbounded flows with constant velocity gradient, for example, the cases of linear
shear, strain, and rotation have been studied. Using analytical techniques, it is shown that
the eigenvalue λ for linear shear scales linearly with the shear rate. A formal solution for the
eigenfunctions is found, however, a free function therein could not be fully determined. There-
fore, to gain further insight, the NEVP is solved numerically. For this, a software framework is
implemented using parallel routines which allow to distribute large-scale matrices over several
thousand processors. In the first step, the linearized NEVP is solved, where filtering has to be

101



applied to eliminate spurious eigenvalues.
The numerical solution of the 2D linear shear shows that the leading filtered eigenvalues are
all real. The eigenvalues with positive real parts correspond to temporal growing solutions
of the shear flow. The eigenvalue with the best filtering metric is found to be λ = 0.14920.
The analysis of the corresponding eigenfunction for the velocity u2 shows that a double peak
structure is visible.
The solution of linear shear with 3D perturbations reveals eigenvalues in the range of values
from the literature on turbulent homogeneous shear. This result has been obtained at a medium
resolution of N = 64. The corresponding memory demand of the matrices makes the use
of O(103) processors necessary. The investigation of the corresponding eigenfunctions is the
subject of future work.
The results for pure strain indicate a solution of λ = ±1.0 which gives a closed-form solution.
This special case arises from the structure of the equation, with a unit strain rate. The analytical
solution is bounded at infinity but has no zero decay of the velocities. This type of eigenfunction
does not satisfy the boundary conditions but may be referred to as an improper eigenfunction
in accordance with the literature from linear stability theory.
Finally, it is shown that flows in rotating frames are affected by Coriolis forces which can be
implemented in the equations. The numerical solution for pure rotation in 2D shows that the
flow is unaffected by rotation, i.e. λ = 0. To gain further insight into the nonlinear dynamics,
a nonlinear algorithm is developed in Chapter 7, which uses the linearized solution as an initial
guess.

Outlook The present work is a basis for future research on the NEVP. We can identify three
main questions for future work, which concern (1) the dynamics of the eigenfunctions, (2) the
non-linear dynamics, and (3) the interaction with walls.
In Chapter 6, the eigenfunctions for linear shear and pure strain are presented. It would be
interesting to investigate their temporal dynamics in transient flows. For example, in linear
shear, the leading eigenfunctions can be taken as an initial perturbation in a direct numerical
simulation (DNS) and its temporal evolution can be studied.
Moreover, the nonlinear algorithm presented in Chapter 7 can be applied by using the linearized
solution as an initial guess. Consequently, the nonlinear evolution can be studied and possible
bifurcations or mode-interactions can be analyzed.
Finally, the NEVP for wall-bounded flows can be investigated. For this, an NEVP for the log law
region has been presented in the present work. Its numerical solution is the subject of future
work.

102



A. Implementation details for Chebyshev
collocation

A.1. Chebyshev differentiation matrices

The following formula to obtain the Chebyshev differentiation matrix is given by Canuto et al.
(2007):

(︂
D̃

1
)︂
jl
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cj
cl

(−1)j+l

xj−xl
, j ̸= l

− xl

2(1−x2
l )
, 1 ≤ j = l ≤ N − 1

2N2+1
6 , j = l = 0

−2N2+1
6 j = l = N.

(A.1)

with

cj =

{︄
2, j = 0, N,

1 j = 1, ..., N − 1
(A.2)

A.2. Transform of differentiation matrices under mapping

For a mapped Chebyshev collocation, it is necessary to transform the derivatives. The following
summary is adopted from Boyd (2000).

Algebraic map

The derivatives transform according to

ux =
√︁
QQuξ/L, (A.3)

uxx =Q2 (Quξξ − 3ξuξ) /L
2, (A.4)

uxxx =
√︁
QQ2

(︁
Q2uξξξ − 9ξQuξξ + (12− 15Q)uξ

)︁
/L3, (A.5)

where the auxiliary parameter is Q = 1− ξ2.

Exponential map

The derivatives transform according to

ux =uξ
Q

L
, (A.6)

uxx =(Quξξ − 2ξuξ)
Q

L2
, (A.7)

uxxx =
(︁
Q2uξξξ − 6ξQuξξ + (4− 6Q)uξ

)︁ Q
L3
, (A.8)
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where the auxiliary parameter is Q = 1− ξ2.

A.3. Approximation of Chebyshev coefficients in 2D

The extension of the Chebyshev approximation to 2D cases is straightforward and can be
found in the literature. The reader is referred to Glau and Mahlstedt (2019) and Thomas et al.
(2012). For sake of simplicity assume that the number of collocation points is the same in both
directions, i.e. Nx = Ny = N . The coefficients are given by cij from

cj1,j2 =

(︃
2

N

)︃2 N∑︂
k1=1

N∑︂
k2=1

uN2 (xk1 , xk2)Tj1(xk1)Tj2(xk2) (A.9)

As can be seen from the one-dimensional formula (5.48), the coefficient c0 is weighted by 1/2.
This extends to the two-dimensional case, where the boundaries of the coefficient matrix cij
are weighted by 1/2, except the corner points which are weighted by 1/4. The function can be
reconstructed by

u2(xk1 , xk2) ≈
N−1∑︂
k1

N−1∑︂
k2

c′j1,j2Tj1(xk1)Tj2(xk2) (A.10)

with the modified coefficients with a weight factor at the end points given by

c′j1,j2 =

⎧⎪⎨⎪⎩
cj1,j2 j1, j2 ∈ [1, .., N − 1]
1
2cj1,j2 j1 ̸= j2 and j1 ∈ {0, N} or j2 ∈ {0, N}
1
4cj1,j2 j1 = j2 ∈ {0, N}

. (A.11)
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B. Derivations for the non-linear eigenvalue
problem

B.1. Derivation of common termM

B.1.1. Divergence

∇ ·M =λ
∂ũi
∂x̃i⏞⏟⏟⏞
=0

−λ

⎛⎜⎜⎝∂x̃k∂x̃i

∂ũi
∂x̃k

+ x̃k
∂ũi

∂x̃k∂x̃i⏞ ⏟⏟ ⏞
=0

⎞⎟⎟⎠+
∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
⏞ ⏟⏟ ⏞
nonlinear terms

+
∂2p̃′

∂x̃i∂x̃i
(B.1)

∇ ·M =
∂

∂x̃i

(︃
ũk
∂ũ′i
∂x̃k

)︃
⏞ ⏟⏟ ⏞
nonlinear terms

+
∂2p̃′

∂x̃i∂x̃i
(B.2)

B.1.2. Divergence ofM

∇ · S =
∂

∂x̃1

(︃
Aũ′2 +Ax̃2

∂ũ′1
∂x̃1

)︃
+

∂

∂x̃2

(︃
Ax̃2

∂ũ′2
∂x̃1

)︃
+

∂

∂x̃3

(︃
Ax̃2

∂ũ′3
∂x̃1

)︃
(B.3)

=2A
∂ũ′2
∂x̃1

+Ax̃2
∂

∂x̃1

⎛⎜⎜⎝∂ũ′1∂x̃1
+
∂ũ′2
∂x̃2

+
∂ũ′3
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=0

⎞⎟⎟⎠ (B.4)

B.1.3. Laplacian ofM

∆M = ∆

(︃
λũ′i − λx̃k

∂ũi
∂x̃k

+ ũk
∂ũ′i
∂x̃k

+
∂p̃′

∂x̃i

)︃
(B.5)

B.1.4. Rotation

In the following we split the common part into a linear and a non-linear part

M =ML +MN (B.6)

The rotation of the linearized common part ∇×ML

∂

∂x̃3

(︃
λũ′1 − λx̃k

∂ũ′1
∂x̃k

+
∂p̃′

∂x̃1

)︃
− ∂

∂x̃1

(︃
λũ′3 − λx̃k

∂ũ′3
∂x̃k

+
∂p̃′

∂x̃3

)︃
=− λx̃k

∂η′

∂x̃k
(B.7)
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and of the nonlinear part

∇×ML = N = ũj
∂η

∂x̃j
− η∂ũ

′
2

∂x̃2
+
∂ũ′2
∂x̃3

∂ũ1
∂x̃2
− ∂ũ′2
∂x̃1

∂ũ3
∂x̃2

(B.8)
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