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The viscoelastic behavior of short fiber reinforced polymers (SFRPs) partly depends on different microstructural parameters
such as the local fiber orientation distribution. To account for this by simulation on component level, two-scale methods couple
simulations on the micro- and macroscale, which involve considerable computational costs. To circumvent this problem, the
generation of a viscoelastic surrogate model is presented here. For that purpose, an adaptive sampling technique is investigated
and data are obtained by creep simulations of representative volume elements (RVEs) using a fast Fourier transform (FFT)
based homogenization method. Numerical tests confirm the high accuracy of the surrogate model. The possibility of using
that model for efficient material optimization is shown.
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1 Introduction

SFRPs are extensively used for engineering applications [11] because they combine attractive features like low density and
ease of fabrication with high stiffness and strength. To study the long-term and rate-dependent behavior of SFRP parts, the
use of simulation is useful since very time-consuming tests can be partially replaced. For that purpose, the knowledge of the
effective viscoelastic behavior is of fundamental importance. Production by injection molding usually leads to locally different
fiber orientations in the component. These orientations on the microscale have a great influence on the effective material
behavior. By performing multiscale simulations, many similar problems accounting for that local microstructure information
have to be solved [3]. Especially for complex structures, that approach is associated with significant computational effort. To
overcome this, data-driven approaches [14] are gaining popularity in the past few years, where machine learning (ML) models
are used to reproduce micromechanical simulations. In this paper, the idea of surrogate modeling is introduced to construct
an effective viscoelastic model for different (arbitrary) microstructural parameters. As microstructural parameters, the local
fiber orientation distribution, the fiber volume fraction and the linear elastic properties of the fiber material are investigated.
A generalized Maxwell model [2] is considered as viscoelastic material model for the polymer matrix and the associated
material parameters are identified by an experimentally determined master curve. An adaptive sampling scheme based on a
bias-variance decomposition is used to efficiently explore the space of microstructural parameters. The samples are evaluated
by performing numerical homogenization [1, 10, 12, 13] on RVEs [5]. Beside using the model for an efficient two-scale
simulation, it will be shown that such a model can be applied to solve an inverse problem. In order to design materials with
desired properties, a formulation as parameter optimization problem accounting for different microstructural descriptors is
presented. Using the surrogate model for the solution of that optimization problem with global optimization methods enables
an efficient determination of optimized microstructures.

2 Microscopic structure and material input parameters

2.1 Parametrization of the microstructure

For the representation of the local fiber orientation state, the second-order symmetric Advani-Tucker tensor [9] is employed.
By making use of a principal component analysis, that tensor can be expressed in terms of an orthogonal rotation matrix
defined by three Euler angles θ, γ, β and a diagonal matrix with eigenvalues λ1, λ2 and λ3 with λ1 + λ2 + λ3 = 1. Different
fiber orientation states can be visualized within the constrained fiber orientation triangle spanned by λ1 and λ2. In [3], a special
coloring scheme is introduced in order to visualize theses different orientation states. All investigated material parameters are
listed in Table 1 and are chosen such that many SFRPs relevant in industrial applications can be considered. The Sequential
Addition and Migration (SAM) method [5] is used for the virtual generation of RVEs of short fiber reinforced polymers. The
fiber length is specified to be constant with 200 µm and an aspect ratio (=fiber length/fiber diameter) of 20 is chosen, because
these are typical values for industrially used SFRPs. For arbitrary fiber orientation states, the tangential stiffness tensor can be
calculated in a post-processing step by specification of the angles θ, γ, β.
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Table 1: Microstructure descriptor with lower- and upper bounds.

Index i Microstructure Descriptor di Lower bound di,low Upper bound di,up
1 Fiber volume fraction [%] 5 20
2 Fiber orientation state λ1 [-] 0.33 1
3 Fiber orientation state λ2 [-] 0.5(1− λ1) min(λ1, 1− λ1)
4 Young’s modulus fibers [GPa] 25 180
5 Poisson’s ratio fibers [-] 0.2 0.4
6 θ [rad] 0 π
7 γ [rad] 0 π
8 β [rad] 0 π

2.2 Viscoelastic material model and parameter identification of the matrix material

In order to describe the viscoelastic behavior of the polymer matrix, a generalized Maxwell model [2] is used. The stresses σ
and strains ϵ are linked in linear viscoelasticity via a convolution integral taking into account arbitrary strain histories by the
superposition principle:

σ(t) =

∫ t

0

Γ(t− s) :
∂ϵ(s)

∂s
ds. (1)

In (1), Γ describes a symmetric fourth-order relaxation tensor. It will be assumed that for the generalized Maxwell model
(sketched as rheological model in Fig. 1), the relaxation tensor can be expressed as

Γ(t) = ψ(t)Cr (2)

with the normalized relaxation function

ψ(t) = 1 +

N∑

k=1

γk exp

(
t

τk

)
, (3)

and the normalized relaxation coefficients γk = Ek

E0
. For t → ∞, Γ(t) tends to the relaxed stiffness tensor Cr and leads to

a purely linear elastic (relaxed) material described by a single spring element. In this paper, PA66 (Zytel 101) is investigated
as matrix material and the behavior of the polymer is assumed to be isotropic with Poisson’s ratio ν = 0.38. For the material
model (1), the material parameters Ek and τk (respectively ηk := Ek · τk, k = 1, ..., N ) have to be determined. In [8],
corresponding measurements including a master curve for this polymer material are given. 10 Maxwell elements (N = 10,
one for every time decade) are used to approximate the master curve in the time range from t ∈ [0, 1010]s and the relaxation
constants τk are specified to be constant (see Table 2). The stiffness parameters Ek and E0 are determined by solving a least
squares optimization problem considering the differences in the strain values from the master curve and the numerical model
with the sequential quadratic programming (SQP) method. The identified viscoelastic material parameters are summarized in
Table 2. The fibers are modeled as linear elastic (isotropic) and can be described by the specification of a Young’s modulus
and a Poisson’s ratio (see Table 1).

Table 2: Material parameters of the generalized
Maxwell model (N = 10).

Maxwell Element k Ek [MPa] τk [s] γk [-]
0 498.45 - -
1 47.40 1e+01 0.095
2 15.00 1e+02 0.030
3 187.61 1e+03 0.376
4 197.39 1e+04 0.396
5 200.04 1e+05 0.401
6 200.30 1e+06 0.402
7 145.39 1e+07 0.292
8 99.91 1e+08 0.200
9 51.24 1e+09 0.103
10 20.35 1e+10 0.041

Fig. 1: Principal sketch of the generalized Maxwell
model.
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3 Construction of a viscoelastic surrogate model

3.1 Initial and adaptive sampling strategy

In Fig. 2, a flowchart of the data-based material analysis and design framework is shown. In a first step, based on a Design
of Experiment (DoE) scheme, predefined samples in the material parameter space are selected. For that purpose, the space-
filling Latin Hypercube sampling (LHS) [7] scheme is chosen, and 12 samples are selected for the construction of an initial
surrogate. For each of these samples, an RVE is created and six boundary value problems (3 tensile and 3 shear loads in
perpendicular coordinate directions) are solved by FFT-based homogenization [1, 12, 13] using 8 time increments per decade
equally spread over a logarithmic time scale. As quantity of interest, the orthotropic components of the creep compliance
tensor are investigated because the other parameters are quite small compared to these components. These orthotropic material
parameters are described by three Young’s moduli, three shear moduli and three Poisson’s ratios and can be identified in the
creep compliance tensor (in Voigt notation) as follows:

Υ(t) =




1
E1(t)

−ν21(t)
E2(t)

−ν31(t)
E3(t)

0 0 0

−ν12(t)
E1(t)

1
E2(t)

−ν32(t)
E3(t)

0 0 0

−ν13(t)
E1(t)

−ν23(t)
E2(t)

1
E3(t)

0 0 0

0 0 0 1
G23(t)

0 0

0 0 0 0 1
G13(t)

0

0 0 0 0 0 1
G12(t)




. (4)

For each of these orthotropic parameters, a Kriging interpolation model [4] is generated. The time-dependence is modeled on
the logarithmic time scale. This means that in the considered time domain t ∈ [0.133, 1010]s, 11 time-steps in the logarithmic
time domain (one for the first time-increment and one for every decade (101, 102, ..., 1010)s) are used for each microstructural
sample. In order to refine the initial Kriging model, the expected improvement for global fit (EIGF) criterion [6] is investigated
as learning function. That learning function can be expressed by a bias-variance decomposition as

EIGF(d) = (f̂(d)− f(dk))
2 + σ2(d). (5)

where the first term is the bias term with f̂(d) being the Kriging prediction at d and f(dk) being the true response of the
nearest (measured in the normalized Euclidean distance) sampling point dk related to d. The variance term σ2(d) results

Fig. 2: Data-based viscoelastic material analysis and design frame-
work
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directly from the Kriging interpolation. For the determination of the next sampling point, the so-called infill sampling criteria,
the maximum of the EIGF-function is considered:

dnext = argmax
d

EIGF(d)

s. t. di,low ≤ d ≤ di,up.

(6)

Based on (6), 24 samples are selected to refine the surrogate, so in total nsamp = (12 + 24) · 11 = 396 samples are
used for the building of the surrogate models. The created database is described as nsamp sets of six inputs d ∈ R6 (since
the orthotropic constants are time-dependent, the time can be assumed as additional parameter) and the nine orthotropic
parameters y ∈ R9 (y → E1, E2, E3, G23, G13, G12, ν23, ν13, ν12) as outputs as

{(d(1), y(1)), (d(2), y(2)), ..., (d(nsamp), y(nsamp))}. (7)

After each adaptive sampling step, a new Kriging model is generated. The samples (initial in blue, adaptive in red) in the
geometrical microstructure (top, a), b)) and in the fiber material property descriptor space (bottom, c), d)) are shown in
Fig. 3 for E1 (left, a), c)) and for G12 (right, b), d)). One can observe a good distribution of the samples within the entire
microstructure descriptor spaces. Many of the adaptive samples are selected along the edges of the fiber orientation triangle.
By adding more samples, the inner area of the triangle gets explored. In Fig. 4, the RVEs for two samples (unidirectional a)
and isotropic fiber orientation b)) are illustrated. In Fig. 5, the associated stress fields (von Mises) within a cross-sectional
area (half RVE length) by specification of a macroscopic tensile load of 1 MPa in fiber direction a) and a macroscopic shear
load of 1 MPa b) are shown for t=10,000s. As expected, the highest stresses can be found in the fiber material, leading to a
highly anisotropic macroscopic material behavior.

Fig. 3: Sample distribution in the geometrical microstructure (top,
a), b)), and fiber material property descriptor space (bottom, c), d))
for E1 (left, a), c)) and G12 (right, b), d))

3.2 Surrogate model validation

In order to assess the quality of the surrogate models, an error analysis using 20 % of all samples (randomly selected) as
validation data is performed. For that purpose, in Fig. 6, the surrogate results are plotted against the predictions of the
numerical model for the component E1 (left) and G12 (right). It can be observed that the Kriging interpolation shows high
prediction accuracy. For both models, as quantitative error criteria, the coefficient of determination (CoD) is computed. A
CoD-value of 1.0 confirms the high fidelity of the surrogate models. If the quality of the model would not be sufficient, more
infill samples could be computed to improve the prediction quality of the model.
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a) b)

Fig. 4: RVE of samples: a) Unidirectional (d2 = 1, d3 = 0) fiber orientation with fiber volume fraction d1 = 18.08 %, b) isotropic fiber
orientation (d2 = d3 = 0.33) with d1 = 19.87 %.

a) b)

Fig. 5: Von Mises stress within a cross-sectional area (half RVE length) of the associated RVEs by specification of: a) A macroscopic tensile
load of 1 MPa in fiber direction with the fiber material propertys d4 = 180 GPa and d5 = 0.2, b) a macroscopic shear load of 1 MPa with
d4 = 63.10 GPa and d5 = 0.2 after t=10,000s.

Fig. 6: Comparison of the Kriging predictions with the microme-
chanical results for E1 (left) and G12 (right)
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3.3 Parametric material optimization

In technical applications, it often occurs that desired material properties are specified to fulfill desired product requirements.
In order to find an optimal microstructural design with target viscoelastic behavior, the following parametric minimization
problem for the design variables d is introduced:

J(d) =

∥∥∥∥
Υ(d)−Υ∗

Υ∗

∥∥∥∥
2

→ min

s. t. di,low ≤ d ≤ di,up.

(8)

In (8), Υ = Υ(d) describes the creep compliance tensor in dependence of the design variables d, and Υ∗ is the target
creep compliance tensor. A further analysis of optimization problem (8) shows that the use of gradient-based optimization
methods possesses difficulties. The stochastic nature of the RVEs leads to mutual fluctuations in the considered strain and
stress fields, which, in turn, leads to noise in the objective function. Even if the optimization is performed on the surrogate
model, the influence of such noise or deviations of the generated geometrical microstructure from the specification exhibits
non-convexity of the objective function leading to get stuck in a local optimum when gradient-based optimization techniques
are used. Furthermore, it is likely that non-convexity is encountered due to the diversity of design parameters. Due to these
reasons, a global optimization method such as differential evolution seems appropriate for the solution of (8). Using such
global methods on the direct numerical model leads to tremendous numerical effort, because in every iteration an RVE has
to be generated and six boundary value problems have to be solved. If the optimization is performed on the surrogate model,
the function evaluations in every iteration can be performed very fast and the computational effort is drastically reduced. By
locally influencing the microstructure during the manufacturing process, the results of the material optimization can be taken
into account to achieve a required macroscopic viscoelastic behavior.

4 Conclusion

In this paper, a surrogate model of the effective viscoelastic behavior of short fiber reinforced composites was presented. For
an efficient exploration of the constraint design space, an infill sampling criterion was used. Numerical tests show a high
predictive quality of the surrogate model. Therefore, the surrogate model can be used for efficient multiscale optimization.
The proposed methodology has a generalization ability and can be extended to the optimal material design for a wide range of
composites and various other effective material properties.
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