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Abstract

Widespread introduction of Distributed Energy Resources (DERs) such as volatile renewable gen-
eration, electric vehicles, heat-pumps and battery storages causes a paradigm shift of the power
system. Traditional power systems with few large-scale power plants are expanded or replaced by
millions of small- to medium-size DERs. Local Energy Markets (LEMs) are a promising approach
to facilitate the optimal operation and dispatch of DERs and enhance grid-integration on regional
grid levels.
In this Thesis, a novel linear-optimization-based market model for LEMs is developed. The market
matching problem aims to maximize the social welfare of participants while considering technical
and financial aspects of participants’ assets and the distribution grid.
A simulative framework is set-up to evaluate the model with regards to its capabilities to foster
the optimal use of flexibilities, to provide sufficient financial incentives for participants and to
improve grid-integration. Yearly simulations of LEMs and a benchmark case are carried out for
three different grid types (rural, semiurban, urban) and scenario years ranging from 2020 until
2035 in 5 year steps. The simulation results reveal that self-consumption and self-sufficiency of the
local energy system can be increased by 4 ... 23 and 1 ... 9 percentage points depending on the
grid type when compared to a business as usual benchmark case. An analysis of possible designs
for regulated electricity price components in LEMs shows that a reduction of feed-in and load peaks
of 30 ... 64 % can be achieved when considering power fees in the market matching problem.
The simulative evaluation also shows that themarket model is able to generate temporal, spatial, and
asset-specific prices signals. Depending on the grid type and its load-generation ratio, participants
with generation assets have higher benefits in urban, load-dominated grids whereas consumers
have higher benefits in generation-dominated rural and semiurban grids.
Load forecast uncertainty is identified as one of the major challenges in LEMs. Compared to
simulations with perfect foresight, benefits of market participants are substantially decreased
taking into account typical electric load forecast errors on the level of individual households.
The application of the market model in a six months field-test in Southern Germany demonstrates
the real world applicability of the developed approach. The field-test confirms findings from the
simulative evaluation regarding the implication of forecast errors and generated price signals. It
additionally shows that market interfaces to the Distribution System Operator (DSO) might further
increase grid-integration capabilities of LEMs. By taking into account active power constraints of
the DSO, 1499 events of critical grid load could be avoided.
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Zusammenfassung

Die fortschreitende Dezentralisierung des Energiesystems, getrieben durch den Ausbau erneuerbarer
Energien, Elektromobilität, Wärmepumpen und Batteriespeicher, bewirkt einen Paradigmenwechsel
im Stromversorgungssystem. Traditionelle Stromversorgungssysteme mit wenigen Großkraftwer-
ken werden durch Millionen kleiner bis mittelgroßer verteilter Erzeuger erweitert bzw. ersetzt.
Lokale Energiemärkte (LEMs) sind ein vielversprechender Ansatz für die optimale Betriebsführung
verteilter Erzeuger, Verbraucher und Speicher sowie die Netzintegration auf regionaler Ebene.
Diese Arbeit behandelt die Entwicklung eines neuartigen Marktmodells für LEMs basierend auf
linearer Optimierung. Das Modell zielt darauf ab, den Gesamtnutzen der Marktteilnehmer unter
Berücksichtigung finanzieller und technischer Randbedingungen der Anlagen, der Teilnehmer
und des Verteilnetzes zu maximieren. Das Marktmodell wird durch ein Simulationsverfahren im
Hinblick auf die optimale Nutzung von Flexibilitäten, die Schaffung finanzieller Anreize für die
Teilnehmer sowie bezüglich Aspekten der Netzintegration untersucht. Jahressimulationen drei
verschiedener Verteilnetztypen (ländlich, halbstädtisch, städtisch) werden für die Szenariojahre
2020, 2025, 2030 und 2035 durchgeführt. Dabei wird insbesondere der Betrieb des Energiesystems
durch einen LEM mit einem Benchmark-Fall ohne eine Einführung eines LEMs verglichen.
Die Simulationsergebnisse zeigen, dass der Eigenverbrauch und der Autarkiegrad des lokalen
Energiesystems abhängig vom Verteilnetztyp durch die Einführung eines LEMs um 4,3 ... 22,5
bzw. 1,1 ... 9,4 Prozentpunkte gesteigert werden können. Eine Analyse möglicher Ausgestaltungen
von regulierten Strompreiskomponenten in LEMs zeigt weiterhin, dass eine potenzielle Reduktion
von Einspeise- und Lastspitzen von 30 ... 64 % erreicht werden kann, wenn Leistungspreise im
Marktmodell berücksichtigt werden.
Die simulative Auswertung zeigt außerdem, dass das Marktmodell in der Lage ist, zeitliche, räumli-
che und anlagenspezifische Preissignale zu erzeugen. Abhängig vom Verteilnetztyp und dessen
Last-/Erzeugungsverhältnis weisen Teilnehmer mit Erzeugungsanlagen in städtischen Netzen
höhere wirtschaftliche Vorteile auf, wohingegen Verbraucher einen höheren Nutzen in erzeugungs-
dominierten, ländlichen und halbstädtischen Netzen erreichen.
Unsicherheiten von Lastprognosen stellen sich als eine der größten Herausforderungen von LEMs
heraus. Verglichen mit Simulationen mit perfekter Vorraussicht werden die Vorteile der Markt-
teilnehmer erheblich verringert, wenn typische Lastprognosefehler auf der Ebene der einzelnen
Haushalte berücksichtigt werden.
Die Anwendung des Marktmodells in einem sechsmonatigen Feldversuch in Süddeutschland
demonstriert die Praxistauglichkeit des entwickelten Ansatzes. Der Feldversuch bestätigt die Er-
kenntnisse aus der simulativen Untersuchung bezüglich des Einflusses von Lastprognosefehlern und
Preisanreizen. Darüber hinaus zeigt der Feldtest, dass Marktschnittstellen zum Verteilnetzbetreiber
die Netzintegrationsfähigkeit von LEMs weiter erhöhen können. Durch die Berücksichtigung von
Wirkleistungsbeschränkungen konnten 1499 Fälle kritische Netzüberlastungen verhindert werden.
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Notation

Remarks on nomenclature and notation

Definition of sets, variables and parameters for the main model in this Thesis are listed below. All
symbols are additionally defined in the text when introduced or used. In general, variables are
defined with upper case letters. Parameters are defined with lower case letters. Superscripts of
parameters and variables are descriptive and non-cursive. Subscripts of parameters and variables
define variable indices and are cursive. P in

t for example would define the variable P for the index t
(e.g., from a set T of timesteps) specified for inwards direction. Deviations might apply in some
contexts. In this case the symbols are specifically defined in the text. Subsets are notated with a
subscript. For example, Sp is the subset of all sell orders S belonging to a participant p, i.e., Sp ⊆ S.

Sets

Set Description
T Set of T timesteps (indexed with t).
P Set of P market participants (indexed with p).
N Set of N nodes (indexed with n).
L Set of L lines (indexed with l).
B Set of B buy orders (indexed with b).
S Set of S sell orders (indexed with s).
ST Set of ST storage orders (indexed with st).
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Variable Unit Description
Pb,t [kW] Active power of buy order b at timestep t
Ps,t [kW] Active power of sell order b at timestep t
P ch
st,t [kW] Active charging power of storage order st at timestep t

P dch
st,t [kW] Active discharging power of storage order st at timestep t

Est,t [kWh] State of charge/filling level of storage order st at timestep t
P(j,k),t [kW] Active power at line l from node j to node k at timestep t
P in
p,t [kW] Active power inflow of participant p at timestep t

P out
p,t [kW] Active power outflow of participant p at timestep t

P in
n,t [kW] Active power inflow of node n at timestep t

P out
n,t [kW] Active power outflow of node n at timestep t

P bu
s,t [kW] Active power of sell order s from the backup utility bu at timestep t

P bu
b,t [kW] Active power of buy order b from the backup utility bu at timestep t
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ce(j,k),t [ct/kWh] Line energy fee
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1. Introduction

1.1. Motivation

The ongoing, widespread expansion of Variable Renewable Energy (VRE) technologies is introducing
a significant transformation process to power systems world-wide. Traditional power systems
with few large-scale power plants are expanded by small- to medium-size Distributed Energy
Resources (DER). Renewable generation capacity accounted for 82 % of the global generation
capacity additions in 2020 [1]. Alongside with continuously decreasing costs [2] and ambitious
emission reduction targets this trend seems likely to continue and accelerate in the coming decades.
In countries with already well advanced VRE installations like Germany1 grid expansion and
advanced grid integration measures will be required to achieve the target of 65 % renewable
energy in the electricity sector by 2030 [4], [5].
Parallel to this development, the electrification of the sectors heat and transport is envisaged to
further decarbonize other major emitting sectors [6]. This electrification process manifests in an
increase of electricity demand mainly through Heat Pump (HP)s and Electric Vehicle (EV)s. Like
distributed generation assets, these demand assets are dominantly connected to the distribution
grid leading to an increase in demand peaks due to high simultaneity factors of, e.g., EV charging
processes [7]. Both described trends can lead to critical states in the distribution grid at times of
peak feed-in or peak demand.
Besides the described technical developments, the current energy market design in Europe (zonal
energy markets) does not consider intra-zonal grid infrastructure constraints and is hence not able to
reflect regional scarcity or excess. This leads to increasing costs for system security measures such as
redispatch and feed-in management measures, e.g., 1.3 bn. e in Germany 20192 [8]. Additionally
the uniform, zonal pricing scheme in most European countries does not provide locational price
signals which would be needed to steer future generation and flexibility investments to the best
suitable regions. At retail level, the consumption tariffs for end-customers are dominated by taxes,
levies, and fees. Only a small portion reflects the actual marginal costs of generation, e.g., 12 %
in Germany in 2020 [9]. Hence, there is little financial incentive for residential and other small
end-customers to flexibly respond to price signals and shift their consumption to times of lower
electricity prices (demand response). The same observation holds true for subsidized distributed
generation which is remunerated with feed-in tariffs fixed for a certain timeframe. In this case
there is no incentive to, e.g., shift the feed-in to times of high consumption with high prices.
Asset owners additionally face the upcoming challenge of marketing their generation after the
guaranteed feed-in tariffs expire. In the upcoming decade numerous DERs, especially photovoltaic
1>1.9 mio installed VRE assets (May 2020) [3] and a share of 42 % of the supplied demand in 2019.
2The year 2019 is chosen as a reference here as energy demand decreased in 2020 and 2021 due to the COVID
pandemic.
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and wind power plants, will leave the 20 years guaranteed feed-in time, but still be technically
operable. Fig 1.1 shows this development for solar Photovoltaic (PV) systems in Germany. It is
clear to see that especially in regions of early adaption, e.g., in Southern Germany, new ways of
marketing this renewable capacity will be required.
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Figure 1.1.: Development of photovoltaic capacities per German postal code and inhabitants which
do not receive feed-in subsidies after 20 years operation time. Data is based on the
energy market data register [10]. Neglecting degradation and assuming an average
technical lifetime of 30 years. Plotting functionality provided by [11].

The concept of automated integration of residential and other smaller consumers into the energy
market is nothing new and was already proposed in the 1980s, e.g., by Schweppe et al.:

"This sophisticated residential customer under the 24-hour update spot price has a small,
special-purpose computer which automatically dials the utility once each day to get the 24 prices for
the next day. The computer then controls the space conditioning and water heating to meet this

customer’s desires (as told to or learned by the computer) with minimum cost." [12]

However, until now only few opportunities of small-scale end-customer engagement with energy
markets are realized ,e.g., time of use pricing schemes. Increasing demand at end-customer level
through EVs, HPs, an increasing amount of prosumer owned VRE and the availability of cheap
"special-purpose computers" might be the relevant developments to make the vision from Schweppe
et al. [12], [13] now a reality.
Local Energy Markets (LEMs) have recently been proposed as a measure to address the described
challenges at the distribution grid level [14]–[17]. A LEM provides a virtual trading layer on top
of the existing distribution grid infrastructure enabling formerly passive consumers, producers,
and prosumers to actively engage in the energy market. This adds an additional business and
information layer on top of the physical layer. Enabling technologies such as smart meters and
edge devices are being rolled out and provide the necessary connectivity (information layer) to link
the physical asset layer with the virtual trading layer [18]. In contrast to the current market design
in Europe, LEMs would allow to address local grid congestions directly in the distribution grids.
Although the regulatory basis for such a concept does not exist yet in most countries, new legisla-
tion is on the way to support and enable decentralized energy trading or sharing within energy
communities, e.g., in Europe [19].
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Figure 1.2.: Overview of the current status quo and challenges of the European energy system
and the aspects LEMs can address in the future.

1.2. Objective, structure and contributions

The introduction of LEMs to the power system could both facilitate the integration of flexibility
inherent in prosumer energy systems and reduce the shortcomings of current electricity market
designs by considering regional grid limitations (Figure 1.2). As concepts for LEMs are continuously
evolving many questions on the design and operation of LEMs are still uncovered. This Thesis
deals with the following main research question:

How can a Local Energy Market be designed to incentivize regional flexibility options and contribute
to the grid integration of VREs, EVs, HPs?

In order to answer this question the Thesis is structured as follows (Figure 1.3):
Chapter 2 formulates the problems of the current market designs, evolving grid integration chal-
lenges and possible measures to address these challenges. Local Energy Markets are identified and
classified as one possible measure to integrate prosumer flexibility and DER. The current state of
the art is then examined to determine research gaps and derive more precise research questions.
The chapter concludes by defining relevant modeling requirements and the necessary spatial and
temporal scope to address the defined research questions.
In Chapter 3 a novel market model and market mechanisms is developed. This market framework,
introduced in [20], aims at providing an optimal dispatch of DER within the limits of the distribu-
tion grid. A linear-optimization based market matching formulation is proposed to achieve this.
Constraints and parameters for the optimization problem are implicitly provided by the participants
through market orders. These market orders reflect technical and economic properties of demand,
generation, and flexibility of the respective assets. The market model is then further extended to
incorporate a simplified grid topology. This allows to not only consider grid constraints during
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matching, but also to introduce topology specific grid fees and taxes as demonstrated in [21].
Besides the market model, considered participant models and asset models are formulated in this
Chapter.

The methodological and simulative framework to evaluate the proposed market model is described
in Chapter 4. A variation of different scenarios for generic distribution grids (rural, semiurban,
urban) and the respective residential and commercial market participants are introduced. The
generation of simulation scenarios and the input data and expansion scenarios for various pene-
tration levels of DER are described. Different approaches to design the tariff structure in a LEM
are specified as well as a benchmark (business as usual) operation scenario assuming no regula-
tory change. To study the impact of load forecast uncertainty on the LEM a method to generate
synthetic forecast errors is developed [22]. Consequently, the evaluation criteria for the following
quantitative analysis are introduced.

Chapter 5 is dedicated to the quantitative evaluation of the developed LEM design. In a first
analysis, simulation results with a focus on the comparison to the benchmark case are evaluated
with regards to the distribution grid type and scenario years. A second, more detailed analysis,
focuses on the effect of various grid tariff designs in LEMs introduced in [23]. The impacts of
load forecast uncertainty on the profitability of participating in a LEM are subsequently evaluated
followed by a scalability analysis of the developed LEM matching algorithm.

Additionally to the simulative evaluation, Chapter 6 provides first results of a real world field test
in the pebbles project [24] where the developed market model is implemented at a rural test site
in southern Germany. Insights from the field test results are subsequently discussed regarding
further design considerations for LEMs.

Chapter 2: Background and Analysis

Chapter 7: Conclusion and Outlook

Chapter 3: Modeling Chapter 4: Method

Simulation scenarios, simulation framework, market model and market platform

Chapter 5: Simulative evaluation Chapter 6: Field test

Analysis and problem formulation Literature review and gap analysis Modeling requirements and scoping

Research questions

Definition of orders and optimization problem

On site energy system of participants

Asset based order generation

Market

Part.

Asset

Development of simulation framework including:
• Scenario generation for 3 distribution grid types

between 2020 and 2035
• Evaluation of grid tariff design
• Consideration of forecast uncertainty
• Development of evaluation metrics

• Analysis of self-consumption, self-sufficiency
• Impacts on peak loads and feed-in
• Analysis of market prices and participant benefits
• Effects of regulated electricity price components
• Impacts of load forecast uncertainty
• Scalability analysis of the market matching problem

• Analysis of results of 8 months field test in southern 
Germany

• Effects of regulated electricity price components
• Evaluation of grid operator interface
• Impacts of load forecast uncertainty

Model requirements

Figure 1.3.: Structure of the Thesis.
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2. Background and Analysis

2.1. Problem formulation

This section gives an overview over the main technical and economical challenges arising with the
large-scale deployment of DER, EVs and HPs. The current energy market design at wholesale and
retail level is analyzed in this context. Various measures to cope with the technical and economical
challenges are evaluated and LEMs are classified within these measures. The following analysis is
focusing on Germany but is also applicable for other countries with deregulated energy markets
and an increasing share of DER.

2.1.1. Grid integration

Traditional power systems are designed to supply customers with a few central large-scale power
plants from the highest voltage level to the lowest voltage level (top-down). With an increasing
number of DER this paradigm currently shifts as decentralized, small-scale power plants are now
feeding in mainly at distribution grid level (>90 % [25]) regionally and temporalily reversing the
load flow lower to higher voltage levels.

Figure 2.1 describes this transition for the different voltage levels in Germany. In the traditional
system design, large coal, nuclear or gas-fired power plants are feeding in at the transmission
(220/380 kV) and high voltage level (110 kV). The power is transmitted cross regionally throughout
the European transmission grids (horizontal power flow) and then distributed through high- (110
kV), medium- (5-30 kV) and low voltage grids (0.4 kV) to the consumers (unidirectional vertical
power flow).

With the uptake of VRE, a bidirectional vertical power flow is introduced as small scale residential
PV, utility scale PV and small windfarms are mainly connected to the distribution grid.

Among others, two major technical challenges arise:

1. Balancing of an increasing volatile supply through VRE and mostly inflexible demand on a
temporal and spatial dimension to maintain security of supply and frequency stability (global
parameters).

2. Regionally concentrated feed-in of DER can compromise the secure grid operation through
violations of thermal or voltage limits of lines and other grid infrastructure (local parameters).
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a) Traditional energy system structure b) Energy system with distributed generation
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Figure 2.1.: Simplified representation of the traditional compared to the current/future power
system structure.

In the current German power system the main grid integration challenges affect the transmission
grid where concentrated, high feed-in of wind power predominantly in the north can cause
congestion during the transportation to load centers in the south [26], [27]. Costly congestion
management measures like curtailment of VRE or redispatch1 are applied to guarantee the secure
operation of the overall system.

At distribution grid level, the main grid integration challenge lies in the secure operation of the grid
in the range of the tolerable power quality limits defined in grid codes, e.g., for voltage in [28].
Especially in rural radial distribution grids, the feed-in of active power from DERs can increase the
voltage in the grid above the tolerable limits [29]. Additional demand, e.g., through uncontrolled
charging of EVs, substantially decreases the voltage during times of low regional generation [30],
[31].

Where high installation density of VRE meets low demand, a reversed vertical load flow is induced
in times of high feed-in. Figure 2.2 shows this effect for a low-voltage feeder line with high PV
penetration in the village of Wildpoldsried2 in Germany . The Figure also illustrates the high
variability of this reverse load flow due to the cloud-induced volatility of PV feed in, e.g., at midday
of June 21, 2018.

Generation capacities in Germany are expected to further increase from 50.5 GW to 75.5 ... 85.5
GW for wind and 42.4 GW to 72.9 ... 104.5 GW for PV for different scenarios of the energy regulator
Bundesnetzagentur for the year 2030 [33]. Additionally, large amounts of distributed demand
through heat-pumps (1.1 ... 4.1 mio.) and electric vehicles (1 ... 10 mio.) are envisaged to foster
the usage of renewable power in other sectors. Against this background the described technical
challenges will exacerbate, thus requiring advanced measures for grid integration (described in
Section 2.1.3).

1Imposed interference of the Transmission System Operator (TSO) to the market-determined schedule of power plants
to avoid or cure congestion in the transmission grid.

2With a feed-in of renewable energy covering 8 times the annual demand [32], Wildpoldsried is a frontrunner of the
energy transition.
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Figure 2.2.: Measurements at low-voltage feeder with high PV penetration on three summer days
in southern Germany (Wildpoldsried).

2.1.2. Current market design

Wholesale market

Energy markets can provide a cost efficient short-term coordination of demand and supply as well
as long-term investment signals. In liberalized energy markets energy is traded either bilaterally,
e.g., through brokers, in so called Over The Counter (OTC) trades or via power exchanges such as
EPEX SPOT [34]. Energy can be traded either in advance for long term contracts (futures/forward
market) or on spot markets (day-ahead and intraday) for the next day (Figure A.1). In Europe,
energy market participants submit bid and ask orders to the power exchanges for a specific bidding
zone mostly defined by the country border (Figure 2.3). Trading across zones/countries is possible
but limited by interconnection capacities.
Such a zonal market allows a large number of market participants and high liquidity, however,
does not account for potential transmission grid constraints within the zones. Therefore, the
Transmission System Operator (TSO) needs to account for planned schedules determined by the
energy market and react with redispatch or curtailment if they jeopardize secure system operation.
In addition to the energy market, the reserve market enables the TSOs to acquire up- downward
flexibility, ensuring the balance of supply and demand at all times (see Figure A.1 for details).
This is necessary to stabilize the grid frequency due to deviations of the planned generation and
demand (compare section 2.1.1).
The day-ahead market at EPEX SPOT is organized as an auction with a closed-order book3. The
orders are formulated as tuples of price and quantity for a specific or multiple hours of the day.
Uniform pricing is applied as a pricing scheme setting the price for all market participants to the
price the last generation unit needed to serve the demand has bid (Figure 2.4). In a market with
perfect competition4 power producers have an incentive to bid with or close to their marginal
costs, i.e., the cost to supply an additional quantity including fuel, CO2 certificates, etc. [35]. The
3Bid and ask orders are submitted until the market closing time (12:00) without disclosure to the market participants.
4No market participant is able to affect the market price by bidding prices other than the marginal costs.
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Figure 2.3.: Simplified representation of zonal market bidding zones in central Europe. Dotted
lines represent intra-country zones. Status of September 2020.

market price is then determined by the intersection of the mostly inflexible demand curve and the
generators marginal costs in ascending order.
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Figure 2.4.: Merit order curves of power plants for Germany (data for 2019 from [36]) for different
renewable energy feed-in scenarios. Total demand ranges and price elasticity derived
from [37] and [38].

In this case, generation units bidding below the market price can recover parts of their fixed costs
while generation units with operational costs above the market price do not win the bid (so called
merit order curve). As shown in Figure 2.4, the market price is mainly determined by two factors.
The overall demand influences the price to the extent of the possible ranges between low demand
at night and high morning or evening demand. A growing influence on the price is determined by
the feed-in of VRE. As they are fueled by solar radiation, wind or water, they bid with zero marginal
costs and shift the merit order curve to the right lowering the market price (Figure 2.4 (b)). This so
called merit order effect increased the price fluctuation on the energy markets significantly during
the last two decades [39], [40].
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Strong temporal variability in energy prices could theoretically incentivize the usage of highly
needed flexibility [41], i.e., by shifting demand to times of low prices or charging storages at low
prices and discharging at high prices. The first concepts of electricity spot markets developed in the
1980s ([12], [13], [42]) already envisaged that the volatile price signals could propagate to end
customers and incentivize demand side flexibility. However, these price signals are still not well
propagating to consumers and producers at the retail level as outlined in the following section.

Retail market

End-users of electricity such as Household (HH) or Commercial and Industrial (C&I) customers
are typically supplied by energy retailers with contracts lasting months to years. Before the
liberalization of the electricity markets, few vertically integrated utilities5 supplied all end-users.
Despite increasing competition on the wholesale market, average retail prices for households
increased significantly in Germany over the past decade [9]. While purchasing prices from the
wholesale market declined, Regulated Electricity Price Components (REPC)s such as grid fees,
taxes and other levies increased. Figure 2.5 shows the decomposed cost structure of one kWh for a
residential customer with a yearly demand of 3500 kWh.
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3.42 7.71 6.76 1.66 2.05 1

24.17

0 5 10 15 20 25 30

All  price
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Market vs. regulated
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Retail purchasing price [ct/kWh]
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Grid fees Renewable energy levy

Concession fee Electricity tax

Others (KWKG levy, Offshore-liability levy,…) Regulated price components

3.42

5.01

Figure 2.5.: Composition of retail energy prices in Germany (2020) data from [9] and [43].

The actual power procurement costs from the wholesale market only account for about 12 % (3.76
ct

kWh) of the overall costs structure. Including sales costs, the margin of the retailer and grid fees
needed for the financing and operation of the grid infrastructure, still around 52 % of the costs
remain for taxes renewable energy levy and other fees.
For large-scale customers, e.g. industrial customers, reduced REPCs apply increasing the incentive
to shift energy consumption to times of low prices. Volatile price signal from the wholesale market
do, however, not propagate to small-scale end consumers as the market price only accounts for
4Combined Cycle Gas Turbine (CCGT)
5An entity operating at all levels of the electricity supply chain through generation, transmission to distribution
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a small portion of the overall price which is dominated by constant REPCs. This strongly limits
incentives for end-customers to shift their demand to times of low energy market prices. In [44],
the authors show that the current regime of REPC highly distorts the operation decision of actors
in the power system leading to suboptimal dispatching decisions and efficiency losses. Although
there are several tariff structures which offer variable end-customer tariffs, e.g., lower prices during
the night for night storage heating, widespread application in Germany is limited [45]. Other
approaches to reinforce the propagation of the wholesale market price signal to end customers are
discussed in Section 2.1.3.

2.1.3. Measures for grid integration of DER

Various technical and regulatory measures to cope with the described grid integration challenges
are discussed in the literature. They can be classified along the dimensions of demand, generation,
market and grid (Figure 2.6). Additionally, these measures can be categorized with regards to
their application at different states of the grid. The traffic light concepts defined in [46] describes
these states as:

• Green: Uncritical grid state, unrestricted trading on markets.
• Yellow: Partial critical grid state, responsible grid operators interact with market participants
to establish grid stability.

• Red: Critical grid state, grid operators directly intervene in operation.

Measures for grid 
integration of DER 

Demand 

Variable 
tariffs

Time-of-use 
pricing

Real-Time-
Pricing

DSO 
intervention

Generation 

Curtailment Feed-in limit

Market

Nodal
pricing

Zonal split
Additional 

local market

Energy 
market

Flexibility 
market

Grid 

Infrastructure Fees

Expansion

Upgrade

Locational

Time-
variable

Figure 2.6.: Overview of measures to improve grid integration ranging from demand and genera-
tion side measures to market and grid adaption

In this section, measures for grid integration shown in Figure 2.6 are analyzed and classified in the
context of the traffic light concept for distribution grids. LEMs are then identified as one solution
combining several aspects within the range of measures.

Demand

Variable tariffs

In order to activate demand side flexibility through price signals, various schemes for variable
tariffs are possible [47]. Variable tariffs can take effect in the green grid phase, when applied to
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a significant share of end consumers, they could shift demand away from peak consumption to
peak feed-in of VRE. Static time-of-use pricing defines fixed time blocks throughout the day with
varying prices, e.g., day-night tariffs, to roughly reflect the peak demand in the grid. These tariffs
are rather easy to implement, however, only approximate the actual grid situation based on typical
demand patterns. The actual situation of demand and supply is not reflected which can differ
substantially due to VRE feed-in.
Dynamic real-time pricing tries to overcome this issue by propagating the time varying supply and
demand situation, i.e., the wholesale market prices, to the end customers. This can be achieved
by dynamization of REPCs such as grid fees or other levies such as the renewable energy levy as
proposed in [45], [48]. However, an implementation of such a concept is complex and implies
high transaction costs [44].
For both approaches to variable tariffs it should be mentioned that the potential of this measure is
highly limited due to the low and time-variable short-term price elasticity of residential customers
[49]. To harvest the full potential, the operation of the residential energy system has to be auto-
mated and optimized on the basis of the price signal [50]. In this case, further flexibility potential
, e.g., of home battery storage systems, can be tapped into.

DSO intervention

Grip operators are empowered to switch off so called interruptible loads in critical grid situations
(red grid phase) [51]. This affects energy intensive industry process (TSO level), but also devices
with a relatively high peak demand such as HPs, electric heating and possibly EVs in the future.
Direct DSO interventions can be seen as a curative measure and are only allowed for critical grid
situations as they interfere with the operation of the on-site devices of the customer.

Generation

VRE can be marketed via constant feed-in tariffs or through direct marketing, i.e., directly selling
to the wholesale market. Direct marketing of VRE, e.g., aggregated in a Virtual Power Plant (VPP)
combining multiple DERs, allows to optimize generation based on wholesale market prices. The
main instruments to reduce feed-in peaks of VRE are active curtailment and feed-in limits.
Curtailment

Like the direct intervention of grid operators to reduce loads, generation from VRE can also be
reduced or curtailed. Plant operators have to provide the grid operator with an interface to reduce
the feed-in power [52]. This affects mostly larger installations, e.g., installations larger than 30
kWp for PV. Although curtailment is only used to prevent or relieve congestions in the red phase,
in Germany around 5.4 TWh were curtailed in 2018 [26].

Feed-in limit

Besides the curtailment of VRE, feed-in limits are implemented which constrain the maximum
power output to a certain share of the nominal peak power. Feed-in of PV power plants is, e.g.,
limited to 70 % of the nominal capacity of the plant for certain ranges of the rated power [53].
Government subsidized coupled PV and battery systems are even limited to 50 % of the nominal
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PV capacity [54]. Weniger et al. [55] show that this limitation only causes a minor reduction of
energy yield through curtailment and a slight self-consumption decline, however, only if a Model
Predictive Control (MPC) is implemented. If the on-site energy system is operated using typical rule
based management, i.e., charging the battery if the feed-in is greater than the demand, average
curtailment losses of 8 % are to be expected [55].

Market

As described in Section 2.2.3, energy markets in most European countries are structured as a zonal
market with uniform pricing. While providing high liquidity and low opportunities to exercise
market power, these zonal markets do not provide locational price signals which might lead to
inefficient operation and investment decisions on the generation and flexibility side [56], [57].
Additionally, extensive grid expansion is necessary to ensure the matching of demand and supply in
the long run, e.g., if generation capacity is locally concentrated and far from load centers. Several
approaches to adapt or extend the current market design, based on the findings in [56], [58], [59],
are described and discussed in the following subsection.

Nodal pricing

Nodal pricing, also called Locational Marginal Pricing (LMP), considers the grid limitations during
price determination. To achieve this, an Independent System Operator (ISO) calculates the
economic dispatch of the market including the grid topology and its limitations. If there is no
anticipated congestion in the grid, i.e., the grid does not operate at its limit to serve the load, a
uniform market price is determined for the overall market. However, if certain lines are congested
the prices at the nodes affected by the congestion diverge. This scarcity signal reflects the need for
expansion measures and can lead to a more efficient grid expansion and allocation of generation
and flexibility. As a nodal pricing scheme only allows a power plant dispatch compliant with grid
limitations it can be seen as a preventive measure for grid congestion opposed to the curative
measure of redispatch after the market matching in a zonal market (compare Section 2.2.3).
The operation of a nodal market, as, e.g., applied in multiple US states/systems, requires the ISO as
an entity operating both the spot market as well as the transmission grid or at least needs sufficient
information on the grid topology and its limitations. Additionally, the generated locational price
signals do not necessarily justify long-term investment as they are subject to short-term change
due to grid or generation expansion [60].

Zonal split

If intra-zonal congestion is structural or increases over time, a splitting of the market zone along
the major grid bottlenecks can induce regional price incentives for generation and flexibility as well
as for expanding the grid capacity between zones. Compared to the introduction of nodal pricing,
this approach is less complex and does not imply structural changes such as the introduction of the
role of an ISO. Trepper et al. [61] show that such a zonal split in Germany into a Northern and a
Southern zone could reduce upcoming increasing congestion events.
On the other hand, this zonal split comes with the effect of undesirable distributional effects as
prices for consumers in the South would increase. Another shortcoming of this approach compared
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to a nodal pricing scheme is that grid congestions are dynamic and change over time, hence the
zonal borders would ideally need to be adapted permanently. Additionally, intra-zonal congestions
are also not accounted for during the day-ahead market matching which again requires redispatch
measures.
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Additional local markets

In addition to the zonal energy and reserve market, additional local markets are recently discussed
to address and integrate the increasing flexibility of DER into the energy market. Two types of
markets need to be differentiated. Local flexibility markets aim to empower DSOs to procure up-
and downward flexibility in their distribution grid area for the yellow grid phase [62]. Additional
local energy markets or regional order books as, e.g., described in [63], aim at increasing the scope
of the energy market to small prosumers and generate locally highly resolved price signals. The
introduction of additional local markets, however, needs to be accompanied with an appropriate
regulatory framework to account for the increasing market power or possible market-distorting
gaming on multiple markets as described in [56].

Grid

Infrastructure expansion

Clearly, the most straight-forward approach to solve grid congestions in the long run is to expand
the grid infrastructure accordingly. This however requires long planning and implementation
effort and high costs [5], [33]. Grid expansion, however, might not be the most cost effective
measure to cope with rarely occuring congestions. The process of grid expansion can additionally
be prolonged when the regionally affected population is not satisfied with the process and the
planning is challenged through protests [64], [65].

Infrastructure upgrade

The necessary expansion of the grid can be limited by the implementation of feed-in limits as
described above, but also through the upgrade of existing grid infrastructure. The application
of innovative electrical equipment such as smart transformers6 might lead to a reduction of the
necessary grid expansion costs of more than 20 % [5], [25].

Locational grid fees and tax exemptions

To foster the regional installation of generation assets and hence reduce necessary transmission
capacities, locational grid tariffs can be applied. This could, e.g., be a reduction of certain REPCs
for consumption of electricity generated within a certain regional scope. In Germany, e.g., there is
an exemption from the electricity tax for small power plants (< 2MWp) if the distance between
seller and buyer is less or equal to 4.5 km [66]. In Austria, a similar approach is planned, i.e., a
reduction of REPC for exchanges within renewable energy communities [67].

Storage flexibility

Flexibility, e.g., provided by battery storages, is not explicitly shown in Figure 2.6, because it
can be applied as a grid integration measure at multiple dimensions. An increasing number of
residential storage systems are recently deployed in the German energy system [68]. Currently,
6Local substations or transformers capable of automatically steering the voltage between the tolerable limits through
tap changes.
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the main use case for these storages at the residential domain is to increase the self-consumption
of generated electricity behind the meter [69]. This use case is profitable, as, for most parts of the
country, the Levelized Cost of Electricity (LCOE) for a PV-Battery system has fallen below the price
of utility electricity. In this case they can be used to shift peak generation to times of peak demand
by storing generation which would be otherwise curtailed, e.g., solar PV at midday, and supplying
peak demand (e.g., EV charging at the evening). Klein et al. [70] show that the most economical
operation of residential storage, a maximization of self-consumption, prevents the usage of this
flexibility in a "system-friendly" way7. Other operation strategies of PV-battery systems, e.g., based
on wholesale market price signals, are uneconomical due to high REPC and constant feed-in tariffs
(as described in section 2.2.3). In [71], the authors show that a flexible operation of PV-inverters
and battery storages can significantly increase the hosting capacity of PV in distribution grids up to
45 % without the need for costly grid expansion.

2.2. Local Energy Markets

The previous section introduced present and upcoming challenges arising with the grid integration
of DER and possible measures to cope with these challenges. In this section Local Energy Markets
are introduced as one of these measures. First, a taxonomy of roles and actors in Local Energy
Markets is developed. Relevant market features and requirements are then derived from the grid
integration challenges. Common market designs found in the literature are evaluated with regards
to market features and technical maturity. From this research gap analysis, relevant research
questions, covered in this Thesis, are then derived.

2.2.1. Roles and actors

This subsection provides an overview of roles and actors within the context of LEMs. This taxonomy
is required to later classify existing market design concepts of LEMs and put the market framework,
developed in this thesis, into context.
Figure 2.7 shows the main roles required for the operation of a LEM. Most of the roles already occur
in the current energy system landscape, however, the entities or actors which fulfill these roles
are not yet defined and might be different for each regulatory framework. The following role and
responsibility descriptions are focused on the German energy market, however have similarities to
other liberalized energy markets.
Table 2.1 describes the roles and possible actors to fulfill these roles. This description has no claim
to completeness, but shall provide the reader with some definitions for further analysis.
As described in [72], the different roles and especially the role of the LEM operator are not yet
well defined. Depending on the market design (compare Section 2.2.3) this role can be seen as
an auctioneer, aggregator or middleman for trading with the wholesale market. Also it should be
mentioned that one actor might fulfill multiple roles. An energy retailer could for example act as
both, the platform operator, and the balance responsible party.

7For example reducing consumption or feed-in peaks.
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by various actors in the energy system. Table 2.1 provides details on the roles and
possible actors.
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Table 2.1.: Role descriptions and definitions of actors in Local Energy Markets.
Role Role description in the con-

text of LEMs
Possible actors

Backup provider Supplies locally unmatched de-
mand or buys unmatched gen-
eration.

Energy retailer, aggregator

Balance responsible party Procures imbalance energy
for mismatch between fore-
casts and measurements at the
LEM.

Energy retailer, DSO, aggrega-
tor

Distribution System Operator
(DSO)

Responsible for the reliable op-
eration of the distribution grid.
Communication of grid limita-
tions to market operator to en-
sure trading within grid con-
straints.

Distribution System Operator
(DSO)

Market maker Provides liquidity on the local
market, e.g. through bidding
and offering at a proxy of the
wholesale market prices.

Energy retailer, energy trader,
energy utility

Market participant Owns or manages generation,
consumption or flexibility as-
sets in the spatial proximitiy of
the LEM. Sends orders to mar-
ket operator. Operates assets
based on market results.

Consumers, producers, pro-
sumers, flexibility providers,
aggregators

Market platform operator Receives orders of participants.
Calculates market matching.
Sends results to participant.

Energy retailer, DSO, technol-
ogy provider, possibility for
new actors

Payment processor Handles clearing, billing, fi-
nancial settlement and credit
risk.

Banks, Fintechs

Meter operator Operates measurement de-
vices at participant site. Com-
municates measurements to
3rd parties (e.g. DSO, re-
tailer).

DSO, meter operator, possibil-
ity of new actors
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2.2.2. Market features

In order to address the challenges of grid-, market- and prosumer- integration described in Section
2.1 a LEM has to provide several features. These market features are derived as requirements for
a market design based on the previous analysis and serve to classify the state of the art in the
following section.

1. Optimal dispatch of distributed generation and demand
To tackle the challenges of grid integration, one of the key features of a LEM is the cost
optimal coordination of increasing DER deployment.

2. Consideration of flexibility
Peak loads and peak feed-in will be the main challenges regarding the integration of HPs,
EVs and VRE. A LEM has to consider and incentivize demand- and generation-side flexibility
as well as storage flexibility to reduce peak loads and feed-in in the grid.

3. Consideration of grid infrastructure
To account for the limitations of local grid infrastructure, the LEM should incorporate
information on the grid infrastructure (e.g., the grid topology or maximum power limits)
during the market matching. With this information, consumption and feed-in can be limited
(compare Section 2.1.3). Additionally, demand-, generation and storage-flexibility can be
utilized to reduce peak demand and feed-in at specific nodes in the grid.

4. Participation incentive
In addition to the technical market features, a LEM also has to incentivize participation.
• Financial incentives: For a purely rational market participant, participation at the LEM
has to be financially beneficial compared to other opportunities like direct delivery from
retailer (demand) or a constant feed-in tariff (generation). This can for example be
achieved through the adaption of reduced REPCs for local energy trading as described
previously in Section 2.1.3. An additional feature of the market design is to derive
price signals for investments in specific asset types, i.e., for a region with a low share of
renewable generation the market prices should indicate a high benefit for additional
generation whereas a region with a large share of renewables should rather indicate
high benefits for additional load.

• Participant preferences: Despite purely financial incentives, market participation can
also be driven by "soft" incentives such as buying electricity directly from the neighbor or
buying based on personal preferences such as a preference for green and local electricity
[73]–[76].

5. Autonomy and privacy of participants
Compared to a direct intervention on the market participants energy system (e.g., intervention
of a DSO), the operator of a LEM should not directly interfere with appliances "behind the
meter" of the market participant to avoid a deprivation of the participants autonomy.

The listed features focus on the use case of a LEM to harvest the technical potential of assets
of market participants for grid integration. Additional desirable economic properties of energy
markets, e.g., market efficiency, incentive compatibility, cost recovery or revenue adequacy [12],
[77] should be considered in detailed economic evaluations. Additionally, careful consideration
should be given to the possibility of strategic behavior of market participants.
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2.2.3. State of the art

While first approaches of local coordination of DER through markets were already proposed in
2009 [14], increasing challenges of system integration, prosumer-engagement and large scale
deployment of Information and Communications Technology (ICT), the research field is growing
rapidly in the last decade (Figure 2.8).
Zhou et al. [78] reviewed 30 journal papers on P2P energy trading. They identified the main
research foci as market design and trading platform followed by social science perspectives, physical
and ICT infrastructure, and policy. Besides academic research, various pilot and commercial projects
are deployed world-wide (e.g., [24], [79]–[84]). In [78] the authors also reviewed 20 pilot projects
of which almost all projects used distributed ledger technologies such as blockchain to facilitate
local energy trading.
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Figure 2.8.: Number of scientific publications queried from google scholar [85] advanced search
using the terms: "Local energy market" OR "Peer to Peer energy" OR "Transactive
energy" in the title. Date of queries: 15.08.2022

The following sections provide a characterization and analysis of typical market designs, market
matching algorithms and market features. On this basis, the research gap and a distinction of this
thesis from previous research is formulated.

Market design

Market designs for LEMs are typically divided into three categories: 1) Decentralized or Peer-to-Peer
(P2P), 2) Distributed or community and 3) Centralized or coordinated (Figure 2.9). The follow-
ing subsection provides an overview of these concepts and works out advantages and disadvantages.

1. Decentralized/P2P

In a P2P market, both the information exchange on either volume and/or price and the resulting
energy contracts are organized in a decentralized fashion without a central coordinator. Instead,
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Figure 2.9.: Simplified overview of possible market architectures for local energy markets. Own
illustration based on [78], [86].

the role of the market operator can be defined as a supervisor which is responsible to control
and enforce market rules. The advantage of this approach is that participants keep full autonomy
and privacy on the information and control of their assets behind the meter [87]. Additionally,
the social factor of participant engagement, i.e., the gained ability of a participant to virtually
exchange energy directly with a peer, is fostered in such a system.

However, in a purely decentralized negotiation set up, necessary information exchange between a
number of participants n scales non-linearly with an increasing number of participants. In a fully
connected graph (n− 1) · n information exchanges would be necessary for one negotiation step.
First research shows that this scalability issue can be tackled by applying relaxation techniques to
decrease the amount of necessary communication.

A Multi-Bilateral Economic Dispatch (MBED) formulation is proposed by Sorin et al. in [88].
They propose a novel algorithm for decentralized optimization (Relaxed Consensus + Innovation).
Their approach shows results close to the global optimum (deviation of a few percentage) after
an average of 298 iterations. As their simulation use case covers 12 participating agents and a
simplified economic dispatch problem, scalability of this approach is not covered in detail.
Another way to reduce the communication overhead is to form coalitions within the P2P market.
This approach is, e.g., described in [89], where the authors introduce a blockchain based Multi-
Agent coalition network leading to increased scalability.
In other approaches in the literature, distributed optimization methods are applied. Mostyrn et al.
[90], for example make use of the Alternating Direction Method of Multipliers (ADMM) to find
a solution to the nested optimization problem. They can show that their optimization approach
works for several participants, but scaling up the number of participants is not covered.

The rather complex formulation of these, until now theoretical, approaches requires fast response
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and information transportation times between participants or intermediaries. In a real system, this
could lead to problems due to package losses, asynchronous responses or the lack of a sufficiently
fast transfer rate [91].
Besides this issue, the lack of a central coordinator also limits the ability of the system to incorporate
information of third parties like the DSO to account for grid constraints within the distribution grid
[87], [92]. The lack of full information on all system parameters also complicates the calculation
of an optimal dispatch of all generation demand and storage assets throughout multiple time steps
and might lead to suboptimal results.

2. Distributed/Community

Distributed market designs, also referred to as community market, share properties of decentralized
and centralized solutions. The market operator acts as a coordinator or auctioneer receiving
information on price and energy through market orders from the participants. After performing
the market matching (compare Section 3.1.2), the resulting energy balance and price is sent
back to the participants. The market participant in turn need to control their respective assets
to obey the contracted energy at the Point of Common Coupling (PCC)8. With this setup, the
necessary information flow and revealed parameters of each participant can be limited to one set
of parameters defined in an order, e.g., energy and price limit. The central formulation of the
market matching allows to obtain optimality in the overall objective function (e.g., Social Welfare
(SW) maximization, cost minimization, CO2 minimization). However, the optimality of the market
matching with regards to the overall system operation is limited to the set of parameters submitted
by the participants and defined in the market design.
El-baz et al. [93] propose a double-sided auction9 for energy trading in microgrids. A home
energy management system is operating the participants assets and communicates the asset specific
demand and generation via buy and sell orders to a market platform operator. By shifting demand
to times of high feed-in from renewables, an increase of self-consumption and self-sufficiency can
be observed.
In [94], the authors propose an iterative mechanism for energy trading with a central market
operator as an Energy Sharing Provider (ESP). They also report an increase of locally consumed
PV energy and cost savings for the prosumers compared to constant feed-in tariffs.
In principle, the distributed energy market design allows the market operator to incorporate
information from third parties, e.g., grid operator or energy retailer (wholesale market coupling),
however, this has not yet been studied in detail. Distributed energy market designs lack the
feature of providing "real" or direct P2P interaction between participants which would reduce
responsibilities of a market operator.

3. Centralized/Coordinated

In a centralized local energy market design, the market operator acts as a central controller of
the assets of the participants. To achieve an optimal operation of the energy system, full asset
models and parameters and measurement information is provided to the market operator. This
8Interconnection point of the participants energy system with the public grid.
9Buyers and sellers can submit tuples of energy and price limits.
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leverages the advantage that a centralized control can provide an optimal solution with regards
to the optimization target. Also, third party parameters such as grid constraints can be directly
incorporated in this optimization. Additionally, the central coordinator can directly steer assets
based on a request from a grid operator to ensure the save operation of the grid in the yellow or
red phase. Centrally coordinated markets can be compared to economic dispatch problems using
model predictive control. These are intensively studied in the literature (e.g., [95], [96]).
On the other hand, a centralized approach interferes with the data privacy and autonomy of
the market participants in operating their energy system. Regarding the increasing number of
distributed assets (as shown in Section 2.1.1), solving such a complex problem in a central way is
computationally challenging. Yet, there are theoretical approaches and studies to overcome this
issue, e.g., through graph theory based algorithms [97].

The exploitation of market power can be an issue in energy markets with imperfect competition
[98]. Both decentralized and distributed market set ups can be affected by market power. Due to
their small scope in terms of installed capacities, dominant players, e.g., with large generation
units, can influence market prices.

2.2.4. Research gap analysis

Market design

Table 2.3 provides a qualitative assessment of the described market design categories with respect
to the desired market features. Based on the analysis of the three market design categories in
Section 2.2.3, the implementation feasibility of the market features are evaluated with following
categories:

Table 2.2.: Evaluation categories for market design to market feature coverage
Quality Description
++ Market feature can be fully covered by the market design
+ Market feature can be partially covered the market design
0 Market feature could be covered by the market design, but is currently not found in the literature
- Market feature can be covered by the market design with high implementation effort
- - Market feature can not be covered by the market design or only with very high implementation effort

In summary, market designs with a centralized coordinator are best suited to tackle the technical
challenges described in Section 2.1. However, they lack the capability of enabling and incentivizing
prosumers to become autonomous participants in the energy market of the future. On the other
hand, purely decentralized P2P designs operate without an intermediary guaranteeing full auton-
omy and privacy of participants. Yet, an optimal dispatch of the energy system with consideration
of 3rd party information like grid constraints is highly limited and only approachable with complex
interaction schemes.
Distributed market designs provide an interim solution between the P2P and centralized approach.
However, the consideration of flexibility, optimal dispatch and grid limited trading have not yet
been addressed in detail in the literature. In [93], e.g., storage flexibility and grid constraints are
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Table 2.3.: Qualitative evaluation of the capability of described market designs to provide market
features introduced in section 2.2.2.

Market design
Market feature P2P Distributed Centralized
1. Optimal dispatch - 0 ++
2. Consideration of flexibility - 0 ++
3. Consideration of grid infrastructure - - 0 ++
4. Participation incentive ++ + -
5. Autonomy and privacy of participants ++ + - -

not explicitly considered in the optimization problem of the market operator. In The developed
market design in this Thesis (section 3.1) tries to fill this gap by extending the functionality of
distributed energy market designs to account for the consideration of grid constraints, flexibility
incentivization and optimal dispatch (Figure 2.10).

Optimal dispatch

Flexibility

Grid constraintsParticipation incentive

Autonomy and privacy

P2P Distributed Centralized Developed market design in this thesis

Figure 2.10.: Radar chart of evaluated market designs and scope of this Thesis based on qualita-
tive assessment (Table 2.3)

Aspects of real-world application

Besides the described research gap regarding the theoretical market designs, there is also a broad
range of in research concerning the technical maturity or real-world applicability of LEM designs.
State of the art research can be subdivided into three categories ranging from rather methodology-
focused theoretical research over comprehensive simulations to first pilot projects. Along this range,
the addressed market features differ significantly. Figure 2.11 shows a categorization of market
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designs in the literature with regards to the technical maturity and addressed market features,
which are described in the following sections.

Category 1
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Figure 2.11.: Categorization of reviewed literature in the field of LEMs and the focus of this Thesis
with regards to addressed market features and technical maturity.

Category 1

The reviewed literature in Section 2.2.3 mainly focuses on theoretical market designs and con-
cepts. Research in this category covers detailed work on a wide range of certain aspects like
game-theoretic modeling of participants, negotiation mechanisms for P2P trading, consideration of
grid constraints or computational properties of local energy trading.
Chakraborty et al. [99], for example propose a scalable P2P negotiation scheme with full autonomy
and privacy of participants aiming at an increase of system efficiency through optimized flexibility
dispatch. In a first use case with simulations of example days, they show that their approach
increases social welfare and system efficiency through decentralized coordination. The effects of
local energy trading on the distribution grid are not covered in their research.
This aspect is covered, e.g., in [100] where the authors propose a P2P framework which only
allows trading within the grid constraints of the low voltage network. They use an iterative scheme
estimating the impact of trades on the grid via Voltage Sensitivity Coefficients (VSC)s and Power
Transfer Distribution Factor (PTDF)s. In a test scenario, they show that the proposed method is able
to operate the distribution grid within its limit while increasing the exported energy of prosumers
compared to other approaches like constant upper limits for generation. While this approach is
well suited to tackle grid-integration challenges, the approach requires access to the detailed grid
topology data of the DSO and the involvement of the DSO in the iterative P2P trading process. This
requires a complex interaction between the market platform operator and third parties such as the
DSO and might be a blocker for realization.
Ghorani et al. [101] investigate various bidding strategies of market agents in local energy markets.
They show that profit/losses of every participant is highly depending on the agent’s bidding strategy.
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In [90], the authors provide a comprehensive P2P market framework ("Multi-Class energy man-
agement") enabling trading of specific energy products (e.g., green energy, subsidized energy,
grid energy) instead electricity as a commodity. They propose an Alternating Direction Method
of Multipliers (ADMM) based market matching mechanism considering the constraints of the
distribution grid, however, requiring a complex iterative communication between prosumers and
platform agent.
The mentioned papers serve as examples of research in Category 1. All market features described
in Section 2.2.2 are addressed in this category through detailed mathematical analysis and method-
ological work. However, most of the studies are limited with regards to comprehensive stimulative
assessment of the approaches, i.e., most studies are only evaluated through stimulative studies
using dummy data or sample days. More importantly, real-world application of the approaches
might be limited due to complex negotiation schemes [91], [102], or the neglection of imperfect
information amongst the actors in a LEM environment (e.g., between the DSO and the market
operator).

Category 2

Category 2 covers simulative studies on LEMs as well as hardware and software architecture designs
and first lab-test. The focus of addressed market features is reduced compared to Category 1 to
rather simple market designs with regards to communication effort, i.e., auction based markets
instead of multi-bilateral negotiation schemes. Still, market features like flexibility, autonomy,
privacy and participant engagement are addressed.
In [93], the authors introduce a market design based on the physical properties of the assets of the
participants, e.g., PV, EV, HP, CHP. They propose a model architecture where each prosumer is
equipped with an energy management system and a market agent controlling the specific assets via
a device controller. Comprehensive simulation based on weather data, detailed building models and
physical device models show that the proposed double-sided auction can significantly increase the
self-sufficiency and self-consumption of the overall system while reducing CO2-emissions through
harvesting the flexibility of distributed assets. Measures to directly reduce grid-constraint violations
or other interfaces to the DSO are not covered in this research.
Bullich-Massagué et al. [103] describe a hardware and software architecture for local energy
markets based on the Smart Grid Architecture Model (SGAM). The proposed communication
architecture based on several cloud services (market service, metering service, control services)
allows a a direct communication of set points to DER unit controllers via a communication platform.
They test this system in a laboratory environment emulating loads, batteries and PV. In [104],
they build on this architecture to introduce a model for a local flexibility market allowing the
DSO to optimally schedule and activate flexibility from DER. They cover the use case of flexibility
procurement for a DSO, however, do not address the optimal dispatching of DER and flexibility.
Summing up, research in Category 2 includes comprehensive simulations, first prototypes and
lab-tests of LEMs mainly addressing specific market features while neglecting others.

Category 3

Recently, several field tests have been launched demonstrating the implementation of LEM tech-
nologies. A prominent case study, the Brooklyn microgrid, is introduced in [79], [105]. The project
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enables local electricity trading of PV within a neighborhood. The market design allows for simple
trading between the participants and the respective billing. However, a clear explanation how this
ex post approach can incentivize flexibility over multiple timesteps is not provided.
A similar project is introduced in Wallenstadt, Switzerland [106]. The trading among 37 partici-
pants is facilitated via blockchain and a simple market design. Prosumers can set their preference
prices for selling and buying locally. As the market design in this project also only accounts for
ex post determination of prices for P2P trades, no direct incentivization of flexibility usage at
prosumer level is induced10. In the Landau Microgrid Project (LAMP) [80], an energy market
with generation from PV and CHP is demonstrated. Price preferences of prosumers are taken into
account in an ex post market matching using the Borda count voting mechanism proposed in [107].
Grid constraints or the incentivation of demand or generation side flexibility are not accounted for
in the project.
To conclude, there is a large gap between theoretical work covering the whole range of market
features with a focus on grid-integration challenges (optimal dispatch, grid constraints, flexibility)
and first field tests which cover only simple use cases focusing on participant engagement and
autonomy and privacy aspects. Theoretical work often assumes complex communication schemes
between actors in the market. This assumption however might block real-world application of
these systems due to package losses, asynchronous responses or the lack of a sufficiently fast
transfer rate [91], [92] as well as general scalability issues [102]. Within this Thesis, this gap is
addressed by proposing a market design which tackles grid-integration challenges with limited
communication effort between participants and market operator (3.1.2) as well as market operator
and DSO (Section 3.1.3).
On the other side of the spectrum, first commercial and non commercial field tests only implement
ex post market mechanisms which do not tackle the challenges of grid-integration described in
Section 2.1.1. Several adaptions to the market design need to be made to integrate the necessary
market features like optimal dispatching of flexible demand, generation and storage in real-world
LEM applications.
Most importantly, optimum scheduling of DER requires forecasting of the relevant variables like
inflexible load and generation. Therefore, the market needs to be designed as a forward/ex ante
market. Due to the stochastic nature of single household consumption profiles an accurate pre-
diction is very challenging. The reported errors in state-of-the art load forecasting depend on the
forecast horizon, the forecast granularity and the forecasting method (Figure 2.12). These forecast
errors might lead to high penalty payments and consequently a high burden to participate in a LEM,
when balancing penalty mechanisms are used [108]. This effect of forecasting uncertainty in LEMs
has not yet been studied systematically in detail [22], [92] or is often neglected in studies (e.g.,
[109]). Hence, a novel methodological framework for the systematic assessment and sensitivity
analysis is proposed (Section 4.3.3) and applied (Section 6.3.5) in this Thesis.

2.2.5. Research questions

After the introduction of the challenges of grid integration and market design and the analysis on
the state of the art and the research gaps, the initial research question proposed in the introduction
10Except a community battery which is directly controlled to charge or discharge if the community exports or imports
electricity.
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Figure 2.12.: Forecast errors for day-ahead load forecast for individual households. Figure from
own publication [22] based on data in [110]–[114]. Analyzedmethods: Artificial Neural
Network (ANN), Persistence Forecast (PF), Exponential Smoothing (ES), Autoregres-
sive (AR).

can be refined with additional sub-questions.

Main research question

How can a Local Energy Market be designed to incentivize regional flexibility options and contribute
to the grid integration of VREs, EVs, HPs?

Sub-questions

1. How can an optimized scheduling of DER be achieved through a LEM without a central
coordinator while providing real world applicability?

2. What effect does a dynamization of Regulated Electricity Price Components (REPCs) have
on local energy trading? How can REPCs be utilized to steer local energy trading in a
grid-friendly manner?

3. Does the LEM produce price signals which financially incentivize the participation of pro-
sumers? How does forecast uncertainty affect the benefit of participation of prosumers?

Research question 1 tackles the research gap on LEM market designs derived in Section 2.2.3, 2.2.4
as well as aspects of real world application. Research question 2 aims at the aspect of incentivization
of regional flexibility options through a systematic adaption of REPC. In research question 3 a key
challenge of real-world implementation of LEMs - load forecast uncertainty - is addressed.
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2.3. Modeling requirements and scoping

In order to answer the proposed research questions, several requirements for the modeling of the
LEM can be derived. Based on these requirements, scoping decisions with regards to the spatial
and temporal model granularity and the model type are made in this section.
To address the main research question as well as research questions 1 and 2, the used simulation
model is required to allow analysis on the overall system level of the local energy system. On a
more granular level, the participants’ energy systems also need to be reflected by the model. This
is required to account for the operation of flexible assets like EVs, HPs and the effect of forecast
uncertainty (research question 3). Additionally, the model needs to be able to reflect the local grid
topology as well as the temporal variability of VRE. To cover all of these aspects within one model,
a high interpretability of the model outputs needs to be guaranteed.

2.3.1. Model type

Several mathematical formulations can be used to model and analyze LEMs. Figure 2.13 provides
an overview of the most common model formulations used in literature. Each of the modeling
formulations has a different modeling focus ranging from the overall system perspective in central-
ized optimization models to the behavior of single market participants in agent-based simulation
models.

Modeling approaches for LEMs

Centralized 
optimization 

models

Social welfare 
maximization

Minimization of 
operational costs

Game theory-based 
models

Non-cooperative 
games

Cooperative 
games

Auction theory-
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Single-sided 
auction

Open order book

Double-sided 
auction

Closed order 
book
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Agent-based 
simulation

Model focus

System Participant

Figure 2.13.: Overview of possible modeling formulations for LEMs. Own illustration based on
[115].

Centralized optimization based models take the perspective of the market operator or DSO, which
solves an optimization problem, e.g., the maximization of social-welfare or the minimization of
operational costs, subject to technical constraints of the local energy system. The maximization
of social-welfare, i.e., the maximization of the difference of total consumer utility and producer
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costs, is commonly used as an objective function of the overall market, e.g., in [91], [116]–[118].
This approach allows a transparent formulation and interpretation of the optimal operation of the
LEM. The formulation of the market as an optimization problem also allows to cover multi-timestep
optimization (e.g., to model storage flexibility) and can be extended by additional constraints such
as grid constraints. The on-site energy systems of market participants are assumed to be centrally
controllable and the participant behavior is not modeled in detail.

Resource allocations within a LEM can also be modeled using auction theory, similar to the existing
wholesale market, where auctions are used for day-ahead and intraday market matching (see
Section 2.2.3). In contrast to the wholesale market, the sizes of the orders sent to the market
(quantity to buy or sell) can be as small as the overall load of a household [91], [118], [119] or
even only one appliance within the participants energy system [93]. Several design aspects need to
be considered when designing an auction. Single-sided auctions are used if a fixed demand has to
be supplied by multiple sellers11 or vice versa. Double-sided auctions are the more common design
for energy markets and are used if both sellers and buyers can submit their price and quantity limits
to the auctioneer (market operator). Additionally, the auction can either be executed at a certain
point in time or continuously, with sealed orders (closed order book) or with exposure of the order
information to the market participants (open order book). Auction theory based models allow to
model both the participants energy system and interaction with the market through orders as well
as the perspective of the market operator as an auctioneer. However, more complex optimization
tasks like the optimal operation of flexible assets (as described in the previous sections) are harder
to achieve through auctions.

Game theoretic models are used to model the decision process of multiple rational actors in
competitive situations, where the decision taken by one actor may influence the actions of others.
Two main types of game theoretic models are used to model the participants in LEMs: non-
cooperative and cooperative games [120]. In non-cooperative games, actors are restricted to take
decisions without the possibility to communicate with other actors. Typically, this type of model
is used to analyze the bidding behavior and market outcome of competing market participants
(e.g., in [121], [122]). The state of the Nash equilibrium, i.e., the condition where no actor
can benefit by unilaterly deviating from it’s own strategy, is commonly used to determine the
solution of the model [123]. In cooperative games, actors are allowed to exchange information
and form coalitions to improve their overall position by sharing the surplus among the group.
For different household actors owning VRE and energy storages, the authors in [124] show that
forming coalitions decreases overall costs compared to optimization of the single households. As
shown in [125], this concept can also be applied one level above single household participants by
creating coalitions between different Microgrids optimizing the interaction and optimum operation
of various micogrids. Game theoretic models allow a detailed modeling of market participants and
their interaction with each other. However, most game theory based models rely on an iterative,
sometimes stochastic process of price determination through algorithms for each type of player
(e.g., as described in [121], [126]). This can lead to multiple results or equilibria as solutions of a
simulation instance [127], which makes the interpretation of the overall optimization targets, e.g.,
maximization of costs subject to grid constraints, difficult.

An even stronger focus on the behavior of participants in LEMs is achieved in agent based simulation
models. Within the context of smart grids, agent based modeling allows to simulate the individual
actions and interactions with other agents and learning of agents [128]. These type of models have
11For example a fixed amount of flexibility procured by a TSO supplied by multiple flexibility providers
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the advantage of being highly flexible with regards to the modeled agents, e.g., market participants,
DSO, market operator, and the complexity of the decision making process of the participants,
e.g., by including the continues learning of optimal bidding strategies [129]. On the other side,
this increases the level of complexity when describing stochastic processes of agent decisions and
interactions and hence leads to low interpretability of the outputs and high computational effort
[115].

Both, game theory and agent based simulation models, are unsuitable as they do not provide highly
interpretable model results for the overall LEM. For this Thesis, a combination of centralized and
auction-based models is chosen to cover the overall system optimization as well as an adequate
representation of participants. This approach allows to model the central optimal dispatch of VREs,
EVs, HPs owned by multiple market participants through an enhanced market matching. The
market matching is adjusted to cover multiple timesteps, grid constraints and flexibility (described
in section 3.1). This market matching is formulated as a linear optimization problem LP to ensure
a higher scalability for an increasing number of participants compared to non-linear problems or
non-convex problems such as mixed integer linear programs MILP.

2.3.2. Spatial model scope and distribution grid assumptions

As illustrated in Section 2.1.1, the most severe grid integration challenges are caused by volatile,
locally concentrated generation from VRE as well as increasing demand from EVs and HPs. The
majority of VREs are connected to the low and medium voltage level of the distribution grid [25].
A major increase in demand from EVs and HPs will most probably also affect distribution grids
[7]. The most severe effect of additional generation and load on voltages and congestion in the
grid can be observed in rural, radial distribution grids with high PV concentration and low load
[29]. Most problems of over or under voltage appear at long feeder lines in the low voltage grid
with high active resistance. Therefore the spatial scope in this thesis is focusing on specific rural
distribution grids modeling low/medium voltage substations and feeder lines.
To model a market design without a central coordinator, the energy systems of each market
participant need to be modeled separately to evaluate the impact of the participants’ actions on
the distribution grid. This level of granularity does not allow the modeling of a whole country
or region due to computational complexity [130]. Therefore, only specific market set ups at low
voltage and medium voltage level are evaluated in this thesis. The exchange with the upstream
grid/rest of the power system is assumed to be only limited by the respective connection to the
high voltage grid neglecting the direct interaction with other LEMs.
The literature shows that the technical properties of these grids, e.g., rated power of the substation,
line length, cable type, number of connection points and households per substation or peak power
per connection point vary significantly [29], [131], [132]. Typical substations used in rural areas or
villages are dimensioned with a rated apparent power of 250, 400 or 630 kVA. The number of grid
connection points per substation ranges between 30-90 [132] resulting in a wide range of power
per connection point, e.g., 3.38/4.52 kVA

HH (Grids GO and BW in [131]), 7.02 kVA
HH (Kerber village

grid [29]) and roughly 3-20 kVA
HH (based on Fig. 4.8 in[132]). While well dimensioned distribution

grids with a high potential rated power per connection point are suited to cope with additional
generation from VRE and load from HPs and EVs. Schlömer [132] points out that numerous
distribution grids with a rated power per connection point below 3 kVA can be found. In these types
of distribution grids, grid-integration challenges become most apparent as the grid infrastructure

32



might not withstand additional generation or load12. Hence, in the simulated scenarios in this
Thesis, low rated power per connection point in the range of 3-5 kVA per connection point is
assumed to demonstrate the potential effect of LEMs to reduce peak loads and peak feed-in.
Following a recent report of the German federal network regulator (Bundesnetzagentur) among
59 representative DSOs [133], only 3 report to fully and automatically monitor their LV grid
automatically keeping track of the status of the grid (e.g., switching states). Therefore it is assumed,
that the full grid topology and switching states are not known to the market operator. Only
simplified information on the grid, e.g., which participants are connected to which substation or
feeder lines are considered.

2.3.3. Temporal model scope

Computation time of energy system models is highly dependent on the number of timesteps
considered [134]. With an increasing number of timesteps (higher temporal granularity), both
model accuracy and computation time increase. Similar to the spatial scoping, the requirement
of modeling VRE influences the decision on the temporal model scope. As the main type of VRE
in low voltage grids is PV, the temporal granularity should be able to reflect its variability. Short
term variability of PV is induced by cloud movement. The correlation of this variability between
two sites decreases significantly with an increasing distance between the sites [135], i.e., the
larger the spatial scope of the model the lower the impact of the variability. In order to capture
the relevant variability in a typical distribution grid, a temporal resolution of 15 min is a widely
accepted compromise [136]. Faster ramp rates and variability induced by fast moving clouds in
the domain of minutes or seconds are neglected.
Since an optimal scheduling requires to plan and forecast the electric load, the impact of temporal
granularity on the forecasting error needs to be taken into account when deciding on the temporal
model scope. Yildiz et al. [137] show that an increase in temporal granularity results in higher
forecast errors leading to extremely high forecasting errors for a granularity below 15 min.
An additional factor for setting the temporal granularity to 15 min is the data availability. Yearly
timeseries data in high quality are required to model the seasonal variability of demand and
generation and are mostly only available at resolutions up to 15 min. Also, the temporal resolution
used in most energy economic processes, e.g., for billing (larger customers), is 15 min. The
temporal resolution of the models used in this thesis is hence set to 15 min to adequately model
VRE variability and forecasts with sufficient data availability.

12Especially load with a high simultaneity factor such as the charging of EVs in the evening or generation from PV.
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3. Modeling

This chapter provides an overview of the mathematical models used to simulate the LEM. First,
the overall market model is developed based on the modeling scope and requirements introduced
in Section 2.3. This includes the objective function of the market operator, the definition of
market orders and the formulation of constraints representing the inputs of the DSO and the utility.
Secondly, a generic formulation of the on-site energy system model of the market participants is
presented followed by the description of the main components modeled in this Thesis - VREs, EVs,
HPs, and battery systems.

General modelling assumptions

Component

model

Market model

Participant

model

• Definition of market orders
• Formulation of objective function of market

operator
• Consideration of grid topology, flexibility as

constraints

• On-site energy system model of participants
• Assumptions on prices, behavior
• Order generation

• Component models of:
1. Photovoltaic systems

2. Electric vehicles

3. Heat-pumps 

4. Battery storages

Figure 3.1.: Overview of the modeling chapter.

3.1. Market model

As derived in Section 2.3.1, the core of the market matching is a linear optimization problem
implemented as a closed order book. Due to the inherently lower market liquidity of LEMs, a
closed order book with one specific market matching time per day is used to concentrate all bids
to one market matching. The central concept is that participants send orders to the market which
contain the parameters used in the objective function and constraints of the optimization problem
(lower and upper bounds, price parameters for the objective function). Participants submit their
sealed market orders, which are valid for a certain time period T (e.g., the next day), before a
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predefined market matching time (e.g., 5:00 pm). The orders (Section 3.1.1) contain all relevant
parameters for the market operator to perform the market matching (Section 3.1.2). Additional
parameters and constraints are supplied by other parties like the DSO to account for distribution
grid limits and REPCs (Section 3.1.3).

3.1.1. Order definition

The simplest form of a double-sided auction for one timestep can be achieved through price-
quantity value tuples expressing either a buy order (maximum quantity, maximum price) or a
sell order (maximum quantity, minimum price). This is sufficient to model non-dispatchable
generation and load at the market side. In traditional wholesale energy markets the calculation of
the optimal dispatch of the market participants assets through the trading period is handled at the
participant side. Including flexible demand or generation at the market side, however, requires the
incorporation of multiple timesteps and the respective quantities and prices for sell (Table 3.1) and
buy orders (Table 3.2). To also consider the flexibility of storages, which can act as both buyers
and sellers in the market, a new order type is introduced (storage order, Table 3.3).

Sell order

A sell order s, from a set of sell orders (S), can be defined for a freely selectable range (tstart, tend)
within the market horizon T. For each defined timestep, both the maximum power output (pmax

s,t )
and a minimum sell price (cmin

s,t ) are defined. Additionally, a maximum emax
s and minimum amount

of energy emin
s can be defined1. This formulation covers both the definition of flexible and inflexible

sell orders.
A flexible sell order s can be defined if less energy is available throughout the time period T then
potentially available,

emax
s ≤

tend∑︂

t=tstart

pmax
s,t ∆t, ∀s ∈ S, (3.1)

with ∆t as the time delta of one market matching interval, e.g., 15 minutes.
For inflexible generation, e.g., PV2, the maximum available energy is defined as the sum of the
potentially available generation,

emax
s =

tend∑︂

t=tstart

pmax
s,t ∆t, ∀s ∈ S. (3.2)

It should be noted that a minimum power and energy output could also be defined in the sell order.
This, however, requires that there is a guaranteed buyer of the offered generation (backup supplier
introduced in Section 3.1.4) and that the generation does not cause a violation of grid constraints.
1The definition of a minimum energy amount is only possible if a backup supplier which buys local excess generation is
defined (compare Section 3.1.4).

2With regards to shifting in time, disregarding curtailment.
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Table 3.1.: Overview of the definition of a generic sell order.

Parameter Unit Description
cmin
s,t [ct/kWh] Minimum sell price for each timestep
pmax
s,t [kW] Maximum power output for each timestep

emax
s [kWh] Maximum amount of sold energy within timeperiod T

Buy order

A buy order b, from a set of buy orders (B), can be defined analogous to the sell order. The only
difference being that the maximum buy price cmax

b,t and power input pmax
b,t needs to be defined

for the respective time range. A flexible buy order is defined if the maximum amount emax
b to

be consumed is smaller than the sum of the maximum power input. This flexible demand is, for
example, required when defining a buy order for the charging of an EV, i.e., requiring a certain
charging energy emax

b to be provided within the interval tstart-tend,

emax
b ≤

tend∑︂

t=tstart

pmax
b,t ∆t, ∀b ∈ B. (3.3)

For inflexible demand (e.g., lighting) the maximum available energy is defined as the sum of
demand over time,

emax
b =

tend∑︂

t=tstart

pmax
b,t ∆t, ∀b ∈ B. (3.4)

Table 3.2.: Overview of the definition of a generic buy order.

Parameter Unit Description
cmax
b,t [ct/kWh] Maximum buy price for each timestep
pmax
b,t [kW] Maximum power input for each timestep

emax
b [kWh] Maximum amount of requested energy within timeperiod T

Storage order

The proposedmatching algorithm also considers the flexibility of storages, both for self-consumption
optimization (internal, int) and for the overall LEM (external, ext). To calculate the optimal dispatch
of the storage, i.e., when to charge and when to discharge, several asset parameters need to be
communicated to the market operator via a storage order. Most importantly, the maximum storage
capacity emax

st,t needs to be defined. This can either be the full rated capacity of the storage or a
part of it, e.g., respecting minimum and maximum State Of Charge (SOC) limits. Additionally, a
value for the initial SOC einist and final SOC eendst needs to be provided. This allows the storage to be
operated within these limits with a maximum charge and discharge power (pmax,ch

st,t , pmax,dch
st,t ). To
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account for losses within the operation, charging and discharging efficiencies need to be defined
(ηchst , ηdchst ). A limit for the maximum amount of storage cycles3 can be defined with the parameter
nmax
st . In order to financially compensate the usage of the storage for the LEM a minimum discharge
price cdch,min

st is introduced. The storage will hence only be used externally if the price difference
between a bought amount of energy at time t1 and a sold amount at t2 is higher than cdch,min

st

including efficiency losses.

Table 3.3.: Overview of the definition of a generic storage order.

Parameter Unit Description
emax
st,t [kWh] Maximum storage capacity
einist [kWh] Initial storage capacity
eendst [kWh] Final storage capacity
cdch,min
st [ct/kWh] Minimum discharge price
pmax,ch
st,t [kW] Maximum charging power

pmax,dch
st,t [kW] Maximum discharging power

ηchst , η
dch
st [-] Charge and discharge efficiency

nmax
st [-] Maximum number of cycles

3.1.2. Market matching problem

Figure 3.2 shows an overview of the market matching problem.

storage splitting

Participant 1 Participant n

Part. node

LEM node

Sell

…

Sell Buy Storage

Figure 3.2.: Representation of orders and participant energy system in the market matching

A LEM with a set of P participants (e.g., prosumers, consumers, producers), a set of buy orders B, a
set of sell orders S and a set of storage orders ST is considered. The objective function formulated
as the maximization of social welfare (SW) with the decision variables Pb,t, Ps,t, P

dch,ext
st,t :

3One cycle = full charge and discharge.
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max(SW) = max
(Pb,t,Ps,tP

dch,ext
st,t )

(
∑︂

t∈T
∆t

∑︂

p∈P
(
∑︂

b∈Bp

Pb,tc
max
b,t −

∑︂

s∈Sp

Ps,tc
min
s,t −

∑︂

st∈STp

P dch,ext
st,t cdch,min

st )),

(3.5)
where Pb,t, Ps,t, P dch,ext

st,t are continuous variables (R+
0 ) defining the matched quantity of each

order. With Bp, Sp and STp as the respective subsets of orders belonging to a participant p. The
respective orders are limited by price limits cmax

b,t , cmin
s,t and cdchst . To model possible self-consumption

of a prosumer, a participant node is introduced (Figure 3.2). The node balance constraint of each
prosumer is defined as:

∑︂

s∈Sp

P int
s,t +

∑︂

b∈Bp

(−P int
b,t + P ext

b,t ) +
∑︂

st∈STp

(−P ch,int
st,t +P dch,int

st,t ) = 0, ∀ p ∈ P, t ∈ T, (3.6)

where superscripts int and ext indicate the connections of each order to the participant node and
LEM node respectively (compare Figure 3.2). Equation 3.6 is required to formulate a differentiation
between internally (behind the meter) consumed energy and energy bought from other participants
or the grid. As REPCs are usually only applied for externally purchased energy, this formulation
allows to financially favor self-consumption over externally purchased energy (later shown in
Section 3.1.3). Additionally, a virtual splitting of energy storages into an internal (int) and external
(ext) part is introduced. Externally discharged energy can now be associated with a discharge
price while the internal usage of the storage is free.
The LEM node balance for an exchange with other participants via the grid is further formulated
as:

∑︂

s∈Sp

P ext
s,t −

∑︂

b∈Bp

P ext
b,t +

∑︂

st∈STp

(−P ch,ext
st,t + P dch,ext

st,t ) = 0. ∀ p ∈ P, t ∈ T, (3.7)

Additional constraints to account for the power and energy limits of the specific order types are
introduced. For sell orders:

Ps,t = P int
s,t + P ext

s,t , ∀ t ∈ T, s ∈ S, (3.8)

Ps,t ≤ pmax
s,t , ∀ t ∈ T, s ∈ S, (3.9)

tend∑︂

t=tstart

Ps,t∆t ≤ emax
s . ∀ s ∈ S. (3.10)

For buy orders:

Pb,t = P int
b,t + P ext

b,t , ∀ t ∈ T, s ∈ B, (3.11)
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Pb,t ≤ pmax
b,t , ∀ t ∈ T, b ∈ B, (3.12)

tend∑︂

t=tstart

Pb,t∆t ≤ emax
b , ∀ b ∈ B. (3.13)

For storage orders, a storage constraint is introduced to couple the charging behavior and the
SOC of the storage. For the internal (Eint

st,t) and external (Eext
st,t) energy content of the storage

respectively,

Eint
st,t − Eint

st,t−1

∆t
= P ch,int

st,t ηchst −
1

ηdchst

P dch,int
st,t , ∀ t ∈ T, t > tstart, p ∈ P, st ∈ STp, (3.14)

Eext
st,t − Eext

st,t−1

∆t
= P ch,ext

st,t ηchst −
1

ηdchst

P dch,ext
st,t , ∀ t ∈ T, t > tstart, p ∈ P, st ∈ STp. (3.15)

Limits for the storage variables are defined as:

Eint
st,t + Eext

st,t ≤ emax
st,t , ∀ t ∈ T, p ∈ P, st ∈ STp, (3.16)

P dch,int
st,t + P dch,ext

st,t ≤ pmax,dch
st,t , ∀ t ∈ T, p ∈ P, st ∈ STp, (3.17)

P ch,int
st,t + P ch,ext

st,t ≤ pmax,ch
st,t , ∀ t ∈ T, p ∈ P, st ∈ STp. (3.18)

Initial and final SOC are set according to the storage order as4 :

Est,tstart = einist = Est,tend . (3.19)

The number of storage cycles is constrained, defining one cycle as a full charge and discharge of
the system:

∑︁
t∈T ∆t(P ch,int

st,t + P dch,int
st,t + P ch,ext

st,t + P dch,ext
st,t )

2emax
st,t

≤ nmax
st , ∀ p ∈ P, st ∈ STp. (3.20)

The introduced market model until now is a single node model without the consideration of the
distribution grid. The market price in this simplified model can be derived from the dual variables
of Equation 3.7. The dual variables at the node balance can be interpreted as the marginal price
required to influence the node balance by a marginal power.
4The SOC at the end of the market interval can not be set arbitrary by the participant. This could lead to possible
infeasibilities, i.e., if the final SOC is set greater than the the initial SOC and no sell order is offered by other market
participants.
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3.1.3. Grid topology and fees

In this section, the market model is extended to account for a simplified grid topology. Thus, three
key market features can be represented by the model:
1. Consideration of simplified grid limits during market matching.
2. Representation of localized REPCs along the topology.
3. Regionally resolved price information (nodal prices) if the grid is congested.

The simplified grid topology and its constraints and grid fees are supplied by the DSO. This interface
and its input parameters are described in Table 3.4. It consists of a set of N nodes and L ⊆ N ×N

lines connecting the nodes. Additionally, participant parameters and their associated nodes are
added to the model. The main idea is to add maximum real power capacity constraints of lines,
nodes and participants to the optimization problem. Moreover, each topology element can be
assigned with a specific relative energy fee and power fee which are added to the objective function
(Equation 3.24).

Table 3.4.: Overview of the grid topology input parameters.

Symbol Unit Description
Line j, k [-] Start and end node of line

pmax
(j,k),t [kW] Maximum real power capacity for a specific timestep and

node j -> k
ce(j,k),t [ct/kWh] Line energy fee
cp(j,k) [ct/kW] Line power fee
pmin,p
l [kW] Contracted power above which power fees apply

Node pmax,in
n,t [kW] Maximum real power capacity for an import to the node

pmax,out
n,t [kW] Maximum real power capacity for an export from the node

ce,inn,t [ct/kWh] Node energy fee
Participant pmax,in

p,t [kW] Maximum real power for an import to the participant
pmax,out
p,t [kW] Maximum real power for an export from the participant

ce,inp,t [ct/kWh] Participant energy fee in

Figure 3.3 shows an example of a typical radial distribution grid model (a) and the simplified
model used in the LEM market matching (b). It consists of two LV/MV substations and a MV/HV
substation. An exemplaric participant with PV, a battery storage and a load is connected to the
first feeder of the first MV/HV substation.
The LEM model consists of four layers: The participant bus, the low voltage feeder, the substation
and the backup grid. The participant bus represents the exchange from the orders of that participant
used for self-consumption (behind the meter). The lowest aggregation level in the LEM model
is one feeder line of the LV grid. All participants connected to that feeder line may exchange
energy only passing one line associated with fees (blue participant fees). An exchange with other
feeders at the same substation (orange feeder fee) requires an additional fee (e.g., low voltage grid
fees) to be paid. With this approach, stress on a specific feeder line, e.g., a long line with high
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(a) Grid model

Backup

Sell Buy Storage Buy BuyBuy

Participant fees
(e.g. taxes, surcharges)

Feeder fees
(e.g. low voltage fee)

Substation fees
(e.g. medium voltage fee)

Backup fees
(e.g. high voltage fee)

(b) Simplified LEM model

Figure 3.3.: Representation of a typical radial distribution grid topology (a) and the respective
simplified model of the LEM (b). Colors of arrows indicate a possible splitting of
REPCs along the grid topology [21].

PV penetration, might be reduced. In this case, flexible demand at the same feeder line would be
incentivized to be covered at times of feed in at the same feeder. At the next layer, an exchange
between participants connected to different substations is additionally penalized with a substation
fee (green). This approach might reduce the overall loading of a substation for the same rational
as explained for the feeder. To reduce the overall exchange with the rest of the grid, i.e., all energy
not supplied or over-generated locally, a backup fee is introduced at the highest voltage level.

The objective function (Equation 3.24) is extended to cover energy (f e) and power fees (fp) of
REPCs:

REPCs = f e + fp, (3.21)

f e =
∑︂

t∈T
∆t(

∑︂

(j,k)∈L

P(j,k),tc
e
(j,k),t +

∑︂

n∈N
P in
n,tc

e,in
n,t +

∑︂

p∈P
P in
p,tc

e,in
p,t ), (3.22)

where P(j,k),t is the active power flow from node j to node k. Energy fees ce(j,k),t are considered
for the usage of a line. Energy fees ce,inn,t are paid for an active power flow P in

n,t into a low voltage
feeder. Energy fees ce,inp,t every participant has to pay are added for the consumption P in

p,t of buy
orders from the external grid (Equation 3.25). Equation 3.23 introduces the possibility to add a
power price cp(j,k),t to lines:

fp =
∑︂

(j,k)∈L

P bil
(j,k)c

p
(j,k), (3.23)

with P bil
(j,k) as a variable defining the billable active power over a line during a market matching

interval for which power fees apply. Depending on the day of the market matching interval, power
fees might not be applied since they were already paid for a higher peak in an earlier interval
during the simulation horizon. Respective constraints are introduces in Equations 3.34, 3.35, 3.36.
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The overall objective function is extended to account for both, the maximization of SW and the
minimization of REPCs with the decision variables of orders Pb,t, Ps,t, P

dch,ext
st,t and grid elements

P(j,k),t, P
in
n,t, P

in
p,t, P

bil
(j,k):

min
(Pb,t,Ps,t,P

dch,ext
st,t ,P(j,k),t,P

in
n,t,P

in
p,t,P

bil
(j,k)

)
(REPCs− SW). (3.24)

The following additional constraints and adaptions to previous constraints are made to account for
the grid topology. The power balance of the participant bus (3.6) stays untouched, however for
simplification the sum of all buy orders covered from outside the participant systems is reduced to:

P in
p,t =

∑︂

b∈Bp

P ext
b,t , ∀ t ∈ T, p ∈ P, (3.25)

and the sum of all sell orders to:

P out
p,t =

∑︂

s∈Sp

P ext
s,t , ∀ t ∈ T, p ∈ P. (3.26)

The internal balance of the feeder node can hence be formulated as:
∑︂

p∈Pn

(P in
p,t − P out

p,t )−
∑︂

st∈STn

(P dch,ext
st,t − P ch,ext

st,t ) + P in
n,t − P out

n,t = 0, ∀ n ∈ N, t ∈ T. (3.27)

P dch,ext
st,t is the inflow from the external part of the node to the internal node and P out

n,t is the
respective outflow to the external part of the node. The sets Pn, STn are subsets of Participants
and Storage orders associated with the node n. The transport equation, connecting the external
part of the nodes via lines is formulated as:

∑︂

k:(k,n)∈L

Pl(k,n),t −
∑︂

k:(n,k)∈L

P(n,k),t + P in
n,t − P out

n,t = 0, ∀ n ∈ N, t ∈ T. (3.28)

The following inequality constraints are introduced to allow the DSO to define upper bounds for
lines, nodes and participants:

P(j,k),t ≤ pmax
(j,k),t, ∀ (j, k) ∈ L, t ∈ T, (3.29)

P in
n,t ≤ pmax,in

n,t , ∀ n ∈ N, t ∈ T, (3.30)

P out
n,t ≤ pmax,out

n,t , ∀ n ∈ N, t ∈ T, (3.31)

P in
p,t +

∑︂

st∈STp

P ch,ext
st,t ≤ pmax,in

p,t , ∀ p ∈ P, t ∈ T, (3.32)
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P out
p,t +

∑︂

st∈STp

P dch,ext
st,t ≤ pmax,out

p,t , ∀ p ∈ P, t ∈ T. (3.33)

The variables P ch,ext
st,t and P dch,ext

st,t for external charging and discharging of the storages are separated
from P in

p,t and P out
p,t as they are associated with different prices (e.g., minimum discharging price)

in the objective function.
In current regulatory frameworks, power prices are paid for the maximum consumed power in a
time interval ∆t within a contractual period of, e.g., a year. To reflect this in the shorter matching
time period of the LEM, e.g., one day, a threshold power (e.g., pnp,min, Table 3.4) is introduced.
The power price is only paid if the maximum power of the respective grid element exceeds this
threshold during the market matching interval. Additional variables for the actual power price
P bil
(j,k) are introduced and constrained by equations 3.34, 3.35, 3.36 to reflect the maximum power
during the matching interval exceeding the threshold power. Additionally, a power price for feed-in
to the grid cp,out is introduced to penalize feed-in peaks.
The billable peak power variables P bil

(j,k) are constrained with the following inequalities. To simplify,
P bil
l,t is used as an equivalent for both line directions.

PTmax
l ≥ Pl,t, ∀ t ∈ T, l ∈ L, (3.34)
PTmax
l ≥ Pmin,p

l , ∀ l ∈ L, (3.35)
P bil
l ≥ PTmax

l − Pmin,p
l , ∀ l ∈ L. (3.36)

Equation 3.34 defines the helper variable PTmax
l as the maximum power during the matching

interval T. With Equations 3.35 and 3.36 the actual billable power P bil
l is defined. If PTmax

l does
not exceed the contractual threshold power Pmin,p

l , Equation 3.36 introduces a lower bound of
P bil
l of 0. Hence no power price will be charged as a deviation from 0 would introduce costs in
the objective function (Equation 3.23). If PTmax

l exceeds the the contractual threshold power P bil
l ,

power fees are added to the objective function since the RHS of Equation 3.36 would be positive.
With this approach a lower limit P bil

l for the power price can be defined which can dynamically be
adapted during the simulation. For example if a high power peak already occurred on a day in
January, following simulation days are not affected by the power price except a higher peak would
occur.

3.1.4. Backup energy supply

The formulation of the market model until now does not guarantee the fulfillment of all buy and
sell orders. If there are no or insufficient local sell order available to match a buy order, the buy
order will not be fulfilled. If price preferences of counterparts do not match, i.e., if minimum sell
prices exceed maximum buy prices, a local matching is also not possible.
A backup energy supplier is introduced to overcome this issue and to provide additional liquidity
to the market. The backup supplier is modeled as an additional participant (bu) connected to the
LEM (compare Figure 3.3) which offers to buy excess energy and supply missing demand with a
sufficiently large amount on the buy (∑︁b∈B pmax

b,t ≪ pmax,bu
b,t ) and sell side (∑︁s∈S p

max
s,t ≪ pmax,bu

s,t ).
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This solves the issue of availability of supply and demand on the LEM. However, a mismatch in
price preferences between seller and buyer could still lead to unsupplied energy or curtailment.
Unlike market participants at the wholesale market, most participants at LEMs do not have access
to other means of buying or selling electricity. Especially with regards to the field test5 of the
LEM (Chapter 6), the concept of exclusiveness is introduced. A sell or buy order can be marked
as exclusive by the market participant (εs = 1, εb = 1). This implies that the full amount of the
ordered quantity has to be fulfilled either by other market participants or the backup supplier.
The following constraints apply either for exclusive sell orders Se = {s ∈ S|εs = 1} or buy orders
Be = {b ∈ B|εb = 1}. For flexible buy orders (∑︁t∈T ∆tPmax

b,t > Emax
b ), the overall demanded

energy amount is fixed:

tend∑︂

t=tstart

∆t(Pb,t + P bu
b,t ) = emax

b , ∀ b ∈ Be. (3.37)

For inflexible buy orders (∑︁t∈T ∆tpmax
b,t ≤ emax

b ), each power demand is fixed to its maximum:

Pb,t + P bu
b,t = pmax

b,t , ∀ b ∈ Be, t ∈ T. (3.38)

The same logic applies for the sell side. For flexible generation (∑︁t∈T ∆tpmax
s,t > Emax

s ),

tend∑︂

t=tstart

∆t(Ps,t + P bu
s,t ) = emax

s , ∀ s ∈ Se, (3.39)

and inflexible generation (∑︁t∈T ∆tpmax
s,t ≤ emax

s ),

Ps,t + P bu
s,t = pmax

s,t , ∀ s ∈ Se, t ∈ T. (3.40)

With this formulation, inflexible demand and generation will directly be matched with the respective
maximum amounts. For flexible order types, the objective function of social welfare maximization
will still lead to the cost optimal match within the time horizon T.
It should be noted that if the concept of exclusiveness is applied alongside grid constraints, the
optimization problem might be infeasible, for example, if a participant without own generation
or storage demands more power than transportable via the connecting node. In this case, too
much generation or demand which might lead to a violation of grid constraint violations must
be curtailed. To still provide numerical solutions, additional slack variables for the buy and sell
constraints can be introduced on the left hand side of equations 3.37-3.40. Additionally, sufficiently
high costs for curtailed demand and low costs for curtailed generation have to be introduced in the
objective function to avoid that the slack variables are used instead of order variables. In this Thesis,
exclusiveness of orders and active power limits of grid components are not applied simultaneously.
This approach would require to modify market orders in order to reach feasible solutions for the
market matching problem. However, this would circumvent the interpretation of the dual variables
of node balances as market prices.
5A mismatch of price preferences can be handled in simulations, however price preferences set by real actors (backup
supplier and market participants) might lead to unmatched load or generation.
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The introduction of power fees also influences the interpretability of node balance dual variables
as market prices as they are considered in each daily market matching but are only billed for the
highest peaks of the year later. This process is later introduced in Section 4.3.2 (Equation 3.23).

Further features of the market model such as a distinguishability of electricity categories are
implemented in the field-test but not evaluated in this thesis. A detailed description can be found
in Appendix A.2.

3.2. Participant model

Figure 3.4 shows an overview of a generic energy system model of a participant including the
modeled assets. The energy system of LEM participants is modeled as a two-bus system for the
commodities electricity and heat. Energy assets (generation, load, storage) can be connected to
either of the buses or convert one commodity to another (e.g., HPs). Connections to the grid are
modeled separately for the LEM and the Backup supplier as different prices may occur.

Electrical
Node

Thermal
Node

El. load
Thermal 

load

Grid
Connections

EV bus

LEM

Backup

Heat 
Pump

HW
StorageStorage

EV
Battery

PV

EV
Demand

Electric 
Boiler

Participant energy system model

PV: Photovoltaic
EV: Electric Vehicle
HW: Hot-water

Figure 3.4.: Overview of a generic participant energy system model with all considered energy
assets.

The main equations of the participant energy system model are the balance equations of the
electrical and thermal buses. For a set of Loads L, Storages ST , Generators G and Converters C
the electrical balance equation is defined as:
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∑︂

l∈L
P el
l,t +

∑︂

st∈ST
P el,ch
st +

∑︂

c∈C
P el,in
c +

∑︂

g∈G
P el
g + P bu,out

t + PLEM,out
t

=
∑︂

st∈ST
P el,dch
st +

∑︂

c∈C
P el,out
c + P bu,in

t + PLEM,in
t , ∀ t ∈ T,

(3.41)

with P el
l,t as the active power demand of a load, P el,ch

st and P el,dch
st as charging and discharging

powers of a storage, P el,in
c as power input to a converter, P el,out

c as power output from a converter
and P el

g as power output from a generator. PLEM,in
t and PLEM,out

t represent exchange from and to
the LEM. P bu,in

t and P bu,out
t represent exchange from and to the backup supplier.

The thermal balance constraint can be defined as:

∑︂

l∈L
P th
l,t +

∑︂

st∈ST
P th,ch
st =

∑︂

st∈ST
P th,dch
st +

∑︂

c∈C
P th,out
c , ∀ t ∈ T (3.42)

with P th
l,t as thermal loads, P th,ch

st and P th,dch
st as input and output from a thermal stroage. P th,out

c

represents the thermal output of a converter converting electric power to thermal power.

A detailed description of the asset models and respective constraints is provided in Section 3.3.

Asset-based order generation

As described in Section 3.1.2, the optimal operation of the energy system is performed by the
market matching algorithm. Hence, no local optimization of the participants energy system is
required to participate in the LEM. Participants with a local Energy Management System (EMS)
might also participate in the market solving a local optimization problem with, e.g., minimizing
operation costs, to then submit the residues as market orders. This requires an accurate forecast of
market prices at the LEM as an input to the objective function of the EMS.
The simulations in this Thesis focus on participants without a local EMS which submit orders to the
markets mapped to the assets of the participant. For inflexible assets (e.g., baseload of a participant
or PV), buy and sell orders are generated with the forecast of the respective time series. Flexible
assets like EVs or HPs and their representation as market orders are described in the following
section. The participation of a market participant with a local Energy Management System (EMS)
is demonstrated in the field test.

Price parameters of the market orders are assumed to reflect the opportunity costs of the asset to
the participant. The opportunity costs in this case reflect the value or costs which would have been
generated when not participating in the LEM and purchasing or selling at another opportunity.
More concretely, e.g., the minimum sell price for a PV asset at the LEM is the price the participant
would earn for directly feeding into the grid (fixed feed-in tariff). The detailed derivation of asset
prices for the evaluated simulations is described in Section 4.2.2.
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3.3. Asset models

For inflexible demand (baseload), inflexible generation (PV) and storage assets the mathematical
models describing their behavior are equivalent to the models already introduced in the market
model (Section 3.1.2). For the flexible demand of EVs and HPs a detailed model and the generation
of market orders is introduced in the following sections.

3.3.1. Electric vehicles

To model flexibility provided by an electric vehicle as a flexible order to the LEM, three main order
inputs are required:
• When are the vehicles plugged in/plugged out?
• How much energy needs to be provided during the time the vehicles are plugged in?
• What is the maximum rated charging power of the EV?

To generate the respective time series of plugin state µpl(t)[0/1] synthetic profiles for individual
EVs are generated mainly based on empirical data of the mobility behavior in Germany which
provides a detailed dataset differentiated by modes of transport, region, trip reason, etc. [138].
Additionally, parameters of the individual EVs and charging facility (battery capacity, charging
efficiency, rated power of charger) are taken into account to calculate the consumed energy and
the SOC at plugin and plugout events SOC(µpl(t)).
The representation of an EV charging station within the energy system of a participant is shown in
Figure 3.5.

EV bus

EV
Battery

Participant
bus

EV
Demand

SOC-state:
SOC(μpl(t))

Trip consumption:
Etr

Figure 3.5.: Model of EV within the participant energy system

Figure 3.6 provides an overview of the modeling procedure to generate the required model inputs
for one trip. The departure time is chosen on the basis of the day type (weekday/weekend).
Assumptions for the departure time are based on a distribution function derived from empirical
data which is upsampled to match the intervals of the market period T (96 time intervals per
day). A comparison of the derived distributions for weekdays and weekend is shown in Figure 3.7.
Assumptions for the driven distance, duration and speed (trip parameters) are also derived from
[138]. For an individual EV, these parameters and the duration of the average working day are
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Figure 3.6.: Overview of modeling approach to generate synthetic EV charging curves as an input
for the LEM model.

kept constant throughout the generation of trips in one year assuming the participant behavior
and work place do not change.

On the basis of the trip parameters, the plugin state of the EV is calculated assuming that the EV is
directly plugged in when reaching the charger. Two types of EV charging behaviors are considered.
For residential LEM participants, the EV is only charged at home assuming that it has to be fully
charged when starting the next trip, i.e., when plugged in after work in the evening the EV is fully
charged when departing to work. For commercial LEM participants, e.g., an office building with
a charging facility, EVs are charged once they arrive at the work destination (ref. Figure A.3). A
combination of both, i.e., an EV charging at home and at work, is not considered here.

The consumed energy of one trip is mainly depending on the average speed driven and the ambient
temperature (ref. Figure A.2). This is mainly caused by the additional demand of air conditioning
for warm periods and heating for cold periods. Based on the ambient temperature and the average
speed of the trip the energy consumption rate [kWh/100 km] is calculated with a piecewise linear
interpolation of the data points provided by [139]. Multiplied by the trip distance, the total
energy consumption of the trip is calculated (Etr). Self-discharge of the battery is neglected. If the
calculated trip is infeasible, e.g., if the calculated trip consumption exceeds the available battery
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Figure 3.7.: Probability of departure times for trips on weekdays and weekends. Based on empiri-
cal data in [138] with selected trip reasons work ("Arbeit, dienstlich / geschäftlich") and
education ("Ausbildung") for weekdays - shopping ("Besorgung") and leisure ("Freizeit")
for weekends.

capacity, input assumptions (distance, speed) are reduced to feasible levels.

In the last step, the SOC at the arrival at the charger is calculated based on the SOC at the last
plug out SOC(µpl−1) and the total consumption of the trip Etr and the maximum battery capacity
Ebat,max:

SOC(µpl) = SOC(µpl−1)− 100%
Etr

Ebat,max
(3.43)

Based on the available plugin time ∆tpi, rated power of the charger P r,ch and charging efficiency
ηch, the maximum SOC at departure is calculated as:

SOC(µpl+1) = min(100%, SOC(µpl) +
P r,ch∆tpi
ηchEbat,max

) (3.44)

A resulting plugin state and SOC profile is shown for a home-charged example vehicle for one
week in Figure 3.8. A regular commuter pattern during workdays and two short trips during the
weekend are generated. With the generated data, the participation of the EV as a flexible load
at the LEM can now be modeled as an order considering the valid timeperiod (tstart, tend) as the
plugin time of the vehicle, the maximum power input as the rated charging power P r,ch and the
ordered energy as the difference between the energy amount at plugin and plugout.
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Figure 3.8.: Generated plugin state and SOC for plugin and plugout events for home charging in
an example week. Assumptions: Battery capacity = 30 kWh, one way distance to work
= 25 km, average speed = 50 km/h, working hours = 8 h.

Order generation

EVs are represented in the market model as flexible demand. The maximum power pmax
b,t of a buy

order for an EV can be defined with the generated EV driving data defining the maximum power
of the order as:

pmax
b,t =

{︃
pr,ch, µpl(t) = 1
0, µpl(t) = 0

(3.45)

With pr,ch as the rated charging power and the required energy as:

emax
b = SOC(µpl+1)− SOC(µpl+1) (3.46)

3.3.2. Heat pumps

Heat pumps allow the coupling of the electricity and heat demand at the participants energy system.
As the commodity heat is not traded at the investigated LEM in this Thesis, the heat demand has to
be translated into a flexible buy order at the LEM. Within the participant model, heat is supplied
either by the heat pump or a peak electric boiler. A Hot Water Storage (HWS) tank is assumed
which uncouples the generation of heat and the thermal demand (ref. Figure 3.9).
To simplify, the equations presented are limited to a system containing only one asset per asset
type (e.g., heat pump, electric boiler, heat storage, and thermal load). The thermal load balance
constraint of a participant can be formulated as:

P th
hp,t + P th

eb,t + P th,dch
st,t = P th,ch

st,t + P th
l,t , ∀ t ∈ T, (3.47)
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Figure 3.9.: Model of HP, electric boiler and thermal system within the participant energy system.

with P th
hp,t as the thermal power output of the heat pump hp, P th

eb,t the thermal power output of an
electric boiler eb, P th,ch/dch

st,t as the charge and discharge power of the HWS and P th
l,t as the thermal

load. The coupling of the electricity node and the thermal node through the electric boiler and
heat pump are defined as:

P el
eb,tηeb = P th

eb,t, ∀ t ∈ T, (3.48)
with ηeb as the efficiency of the electric boiler. And

P el
hp,tCOPhp,t = P th

hp,t, ∀ t ∈ T, (3.49)

with COPhp,t as the Coefficient Of Performance (COP) of the heat pump. The COP, i.e., the ratio of
the provided thermal energy per spent electrical energy, is dependent on the source temperature
ϑsource and the supply temperature ϑsupply. It can be derived from the Carnot-efficiency and the
heat pump efficiency (ηhp) following [140] as:

COPhp,t =
ϑsupply,t

ϑsupply,t − ϑsource,t
ηhp, ∀ t ∈ T, (3.50)

assuming a fixed supply temperature ϑsupply and a variable source temperature ϑsource,t (e.g.,
for air source heat pumps). For the simulative evaluations a constant supply temperature of
55◦C/328.15K and an ηhp of 0.36 is assumed based on [140].

Order generation

A buy order of the heat pump can be interpreted as a flexible buy order at the LEM, as the HWS
provides a decoupling of the thermal demand and electrical power consumption to a certain extent.
For the simulative evaluation, a sufficiently sized HWS is assumed which can supply the thermal
demand for a specific time horizon (T), e.g., a quarter of a day. For the residual demand, it is
assumed that the peak electric boiler can cover the demand and peaks which can not be covered
by the heat pump or HWS. It is assumed that the total heat demand over the time horizon T (El

th)
and the ambient temperature ϑsource is known before submitting the order. Relevant parameters
for a buy order b are defined as:
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pmax
b,t = P r,el

hp . (3.51)

With P r,el
hp as the rated electrical power of the heat pump and the maximum electricity demand as:

emax
b =

∑︁
t∈T ∆tP th

l,t

COP hp
t

.

This formulation might lead to a suboptimal solution of the operation of the participant heat pump
as an average COP hp

t over the temporal set T is assumed. However, the flexibility incorporated
in the order might lead to cheaper buy prices at times with a suboptimal COP hp

t . The order
generation for heat pumps could be improved, e.g., by specifying different maximum buy prices
for a varying COP hp

t . However, within the scope of this Thesis, it is assumed that the maximum
buy price of the order is constant over time.
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4. Method

4.1. Overview

The methodological part of this work is divided into three parts: Scenario generation, simulation,
and result evaluation (Figure 4.10).
The scenario generation (Section 4.2) aims at providing a set of consistent distribution grid
topologies along with modeled assets and price assumptions. To model the effect of an increasing
number of DERs, four scenario years (2020, 2025, 2030, 2035) are considered. Further, a multi-
year analysis allows to model more detailed assumptions on the distribution of order prices, e.g.,
for PV assets considering future feed-in tariffs and assets which run out feed-in tariff. Another main
focus is put on the effect of a LEM on a variation of typical LV distribution grids (rural, semiurban,
urban). Hence, a variation of typical load, generation and asset distribution characteristics can be
analyzed. To evaluate seasonal and daily effects yearly time series of VRE electrical and thermal
loads are considered. A plausibility check is applied to ensure the consistency of the generated
scenario assumptions. Additionally, a method to synthetically generate erroneous load forecasts is
developed and applied.
The simulation of the generated scenarios (Section 4.3), includes two modes of operation logic
of the energy system. The Business As Usual (BAU) mode represents the benchmark case and
assumes an individual rule-based operation of the participants’ energy systems. The LEM mode
represents an operation of the energy system with a market operator, market participants and a
variation of fee scenarios (flat-, variable-, feeder- and power-fees). Considering the permutations
of all parameter variations, i.e., grid types, scenario years, fee scenarios and modes of operation,
results in 60 yearly simulation scenarios.
The result evaluation (Section 4.4) focuses on generating a set of interpretable/normalized KPIs
on the basis of market, participant and grid results to answer the research questions.
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Figure 4.1.: Overview of the methodological framework and steps for the simulative evaluation.
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4.2. Scenario generation

4.2.1. Benchmark grids

To provide comparability of the results, benchmark grids derived from typical LV distribution grids
from the Simbench dataset [141] are used. This dataset also provides expansion scenarios of assets
(PV, HP, EV and battery storages) for a baseline year 2016 and expansion scenarios for 2024 and
2034. The expansion scenarios are mainly based on the German grid development plan of 2019
[33]. These assumptions are taken as a baseline for the generated scenarios, however, are adapted
to the latest grid development plan [142] and the equidistant scenario years 2020, 2025, 2030,
2035.
Three different distribution grid types (rural, semiurban, urban) are evaluated to cover the full
bandwidth of different shares of residential and commercial participants as well as load or genera-
tion dominated regions. From the Simbench dataset grids with a similar amount of grid connection
points are chosen (rural: LV2.101, semiurban: LV5.201, urban: LV6.201). A full list of the technical
parameters of the grids can be found in [140].
The number of EVs for the scenario years are adapted to the updated grid development plan
taking into account the mean of the described scenarios for the scenario years of 2020 and 2035
and linearly interpolating for others. The relative share of EVs per household is calculated by
accounting for the specific cars per participants for the respective regions. Figure 4.2 shows the
adapted cars per household assuming a steady number of private cars (42.5 Million in 2020 [143])
and 1.1, 1.2 and 1.3 cars per household for urban, suburban and rural regions respectively from
the German mobility statistics database [144].
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Figure 4.2.: Scenario assumptions for the development of electric vehicles per household based
on [142], [143] and [144].

Besides the shares of EVs, scenario assumptions for HPs are also adapted to new projections from
the grid development plan and based on the assumption of a stable number of heating systems
(20.2 Million [145]) for the scenario years. The resulting share of heatpumps per heating system
are 5 %, 6.6 %, 13.2 %, 24.8 % for the scenario years 2020, 2025, 2030 and 2035. Since further
parameters like the installed PV capacity or battery storage capacity do not significantly change
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between the grid development plan used in Simbench and the plan used in this Thesis, Simbench
scenario assumptions are used and linearly inter- and extrapolated to fit to the scenario years in
this Thesis.
Timeseries for electric vehicles are developed using the algorithm described in Section 3.3.1. Since
the Simbench dataset only provides timeseries for the electric demand of the heat pumps, the
thermal load required to generate flexible demand orders (Section 3.1.1) is derived as described
in Equations 3.49, 3.50. Weather data based timeseries (PV-profile, ambient temperature) in the
Simbench benchmark grids are based on data from northern Germany (Hannover, Lübeck).
The resulting asset parameters and assumptions for the benchmark grids and the scenario year
2035 are shown in Table 4.1, data for all other scenarios can be found in the Appendix A.3.

Table 4.1.: Simulation scenario parameters and assumptions for the scenario year 2035.

Rural Semiurban Urban
Parameter Type/Unit
Grid connection points Count [-] 96 110 58
Residential loads Count [-] 92 92 102
Commercial loads Count [-] 7 12 9
Photovoltaic systems Rated power [kW] 326.7 432.4 222.1

Count [-] 19 30 19
Heat pumps Rated power [kW] 138.1 100.9 63.4

Count [-] 24 27 14
share 24.2 26.0 12.6

Electric vehicles Rated power [kW] 241.0 262.8 166.2
Count [-] 33 35 17

Battery Rated power [kW] 93.0 247.7 50.8
Count [-] 8 15 7
Capacity [kWh] 186.3 495.5 101.7

Electric load Energy [MWh] 257.9 470.3 530.9
Thermal load Energy [MWh] 159.5 166.9 102.0
Electric load EV Energy [MWh] 111.2 90.6 62.0

Plausibility check

To check the plausibility of the scenario assumptions, the overall electric, thermal and mobility
(EVs) demand of the final scenarios are compared to average values found in the literature.
The overall demand for EVs for the rural grid in the year 2035 for instance is 111.2 MWh. Broken
down to the 33 EVs in this scenario case and considering a charging efficiency of 90 % an average
of 3032 kWh is consumed per EV and year. Assuming an average mileage of 21.58 kWh

100km [146]1,
this results in a total driving distance of 14 053 km

a . This distance is slightly above the average
driving distance of 13 323 km

a reported by the German Federal Motor Transport Authority for
private vehicles in 2020 [147], which is plausible for in a rural environment compared to the
national average and well within the same order of magnitude.
1Average mileage of 49 investigated EV models in a test under real conditions.
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The yearly electricity demand for the same scenario is 257.9 MWh. Divided by the total number
of participants/loads this yields an average annual demand of 2605 kWh, which is close to the
average yearly demand of 2782 kWh reported in [148].
The yearly thermal energy demand of the whole LEM (159.5 MWh) is distributed to households
with a HP resulting in a thermal consumption of 6625 kWh

a per household with a HP. Considering
a specific heat demand of typically well insulated buildings equipped with heat pumps of 67 kWh

m2a
[149] and an area of 100m2 for a 3 person household [150] this leads to a similar value for the
thermal demand of 6700 kWh

a .
Besides this rough plausibility check, a thorough plausibility analysis on the asset parameters of
the benchmark grids is performed in [140].

4.2.2. Order prices

Price assumptions for orders at the LEM are based on the opportunity costs of the involved assets.
Minimum sell prices for PV are for example based on the expectable revenue for selling one kWh
at the guaranteed feed-in tariff. Maximum buy prices are based on the next cheapest option, i.e.,
the price directly buying from an energy retailer or utility. In this section the method to generate
the relevant prices for the simulation scenarios is described.

Photovoltaic

Opportunity costs for PV systems are derived from the historic and projected feed-in tariffs in
Germany, which are valid for 20 years, and the current as well as projected installations. For the
currently installed systems the database "Anlagenstammdaten" of the four German TSOs is used
which provides technical (e.g., the installed rated power) and non-technical (e.g., the installation
date) data on renewable energy power plants in Germany. In this thesis the latest dataset including
data until 2021 is used [151]. The dataset is filtered for the relevant power plants, i.e., PV plants
which are still in operation resulting in around 2.02 Million assets.
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Figure 4.3.: Historic and projected guaranteed feed-in tariffs for PV power plants with a rated
capacity between 0 and 100 kWp in Germany based on [152], [153].
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To map the installed asset base with the respective feed-in tariff, each asset is assigned with its feed-
in tariff based on the installation date and the size of the assets. The historic and projected feed-in
tariffs are shown in Figure 4.3. Within the last 15 years, the feed-in tariffs reduced drastically from
a level of around 55 ct/kWh in 2005 to below 10 ct/kWh in 2020. For the future development of
the tariffs, a monthly degression of 1.4 % is assumed based on the regulatory framework [153].
After an adaption of the regulatory framework in 2012, the structure of the feed-in tariff changed
to a more granular assessment of the PV size and a decrease of the guaranteed feed-in times to a
monthly adaption.

To obtain relevant price distributions for the modeled scenario years, each PV asset is assigned
with its feed-in tariff based on the date of construction. For PV assets which operate longer than
20 years in the considered scenario, the feed-in tariff of the scenario year is applied to the asset,
assuming a technical lifetime of 30 years [154] and the market value of the sold energy based on
direct marketing and feed-in premium [155]. The increase of PV capacity until the last scenario
year (2035) is based on the latest grid development plan [142].

In Figure 4.4, the resulting average feed-in tariffs and share of assets without a feed-in tariff are
shown. With a steeply increasing share of PV assets without feed-in tariff within 2025 and 2035
and an increasing feed-in tariff of new assets, the average feed-in tariffs drop from the baseline
30.9 ct/kWh (in 2020) to 21.4 ct/kWh in 2025, 10.3 ct/kWh in 2030 to 3.2 ct/kWh in 2035.
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Figure 4.4.: Development of weighted average feed-in tariffs and the share of PV plants without
feed-in tariff for in Germany. Based on [151]–[153].

To model individual assets for different benchmark grids, each modeled asset is assigned with a
minimum sell price based on the yearly distributions shown in Figure 4.5. For each asset in the
modeled grid, a feed-in tariff is randomly drawn from the yearly distribution until the average of
the year is reached with a stopping criterion of a 0.1 % difference. This approach allows to model
the prices of individual assets while retaining a consistent average price allowing an improved
generalization of the simulation results. It should be noted that depending on the geographical
area these price assumptions might differ as certain areas with early adopters of PV assets will
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reach lower prices earlier as the number of assets without feed-in tariffs are higher in the respective
scenario years.
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Figure 4.5.: Histograms of feed-in tariffs or minimum sell price assumptions for 2010, 2015 and
the modeled scenarios (2020, 2025, 2030, 2035). Bin size: 1 ct/kWh.

Battery storages

As described in the order definition (Section 3.1.1), storage orders are submitted with a minimum
discharge price. Each sold kWh from a battery storage system needs to be previously bought
from the market. The minimum sell price hence, represents the arbitrage opportunity costs of the
battery operator benefiting from buying at lower prices (e.g., at high PV feed-in) and selling at
higher prices. It is assumed that the arbitrage opportunity at the wholesale market can be used
as an approximation for the expectable revenue of a battery storage owner. Figure 4.6 visualizes
the daily maximum arbitrage as the difference of the daily maximum and minimum prices at the
day-ahead spot market.

The minimum storage sell price (cdch,min
st ) is required as an input parameter to storage orders in the

LEM. It is approximated as the average of typically daily price spreads at the day-ahead wholesale
market, as:

cdch,min
st =

∑︁D
d=1max {λd,t1, ..., λd,t24} −min {λd,t1, ..., λd,t24}

D
, (4.1)
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Figure 4.6.: Exemplaric day ahead spot market price and arbitrage opportunities for a week in
January 2018. Data source: [156].

with D as the number of evaluated days and λd,t as the day-ahead market price for day d at hour t.
For the evaluation period of the years 2016 ... 2019 an average daily arbitrage of 28.7 e/MWh or
2.87 ct/kWh is calculated, which is assumed as the minimum discharge price in the simulations.
The full price curves over the years are shown in Figure A.5. It should be noted that this is an
optimistic assumption, as the operator of the battery might only achieve the maximum arbitrage if
a perfect foresight of the prices and an optimal trading strategy is assumed. The degradation of the
battery and its associated costs are not taken into account in this assumption. Depending on the
battery type and battery usage degradation, costs might be higher than the calculated opportunity
costs. In this case the maximum of opportunity costs and degradation costs should be considered
as the minimum discharge price.
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4.3. Simulation

4.3.1. Business as usual scenario

In the Business As Usual (BAU) scenario, the operation of assets at the participant site are not
optimized in the simulation. The operation of flexible assets (EVs, HPs, battery storages) are based
on rules described in this section. While EVs and HPs are operated individually, the operation of a
combination of battery, PV and loads is coordinated.
Operation of PV and battery storage

The operation of a prosumers energy system with a PV installation, a battery storage system and
electric loads is modeled with a simple rule based strategy (Algorithm 1). For each simulation
timestep t the residual load of the system P res

t is calculated as the difference of all electric loads and
the PV feed-in. If the residual load is negative, i.e., if more generation than consumption is present,
the algorithm tries to charge the battery system with the residual load if the maximum charge power
is not exceeded and the state of charge of the battery is not exceeded. If otherwise the residual
load is positive, the battery storage is discharged with the residual load if the maximum discharge
power is not exceeded or the battery storage is not empty. The strategy aims at maximizing the
self-consumption of generated PV energy and is commonly applied for small roof mounted PV
systems and battery storage systems in the residential domain [157], [158]. Figure 4.7 illustrates
the resulting battery storage dispatch. At the start of the day, the storage is used to serve the
residential demand. Once, the PV generation exceeds the residential demand, the storage is
charged with excess PV electricity. If the maximum SOC is reached, the excess PV electricity is fed
into the grid. While obtaining a high degree of self-consumption, this approach results in a full
feed in of the PV output during the midday.

Figure 4.7.: Simulated daily operation of residential system with PV and storage for the BAU case.
PV rated power = 6 kWp, storage capacity = 5 kWh.
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Algorithm 1 Determination of rule based storage dispatch for a timestep t, a battery storage st, a
PV plant PV and an electric load l

Variables
P res
t : Residual load

SOCst,t: Storage state of charge
P ch
st,t: Charging power

P dch
st,t : Discharging power

Parameters
PPV,t: PV power output
Pl,t: Electric load
SOCmax

st : Maximum storage state of charge
SOCmin

st : Minimum storage state of charge
P ch,max
st : Maximum charging power

P dch,max
st : Maximum discharging power

ηchst : Charging efficiency
ηdchst : Discharging efficiency

P res
t = Pl,t − PPV,t

if P res
t < 0 then
P ch
st,t = min(P ch,max

st , |P res
t |, SOCmax

st −SOCst,t−1

∆t·ηchst
)

Pst,dch,t = 0
else if P res

t > 0 then
P dch
st,t = min(P dch,max

st , P res
t ,

(SOCst,t−1−SOCmin
st )·ηdchst

∆t )
Pst,ch,t = 0

else
P ch
st,t = 0

P dch
st,t = 0

end if
SOCst,t = SOCst,t−1 + (P ch

st,t · ηchst − Pdch,max
st

ηdchst
) ·∆t

Electric vehicles

The BAU operation of EVs assumes that the charging process begins right after the vehicle is
plugged in (tstart). The charging process then operates for n timesteps until the final State Of
Charge (SOC) SOCtend is reached. To calculate the number of timesteps required the following
equation is applied for one charging process:

n =
(SOCtend − SOCtstart)E

max
ev

Pmax,ch
ev ηchev∆t

, (4.2)

with Pmax,ch
ev as the maximum nominal charging power of the electric vehicle, ηchev as the charging

efficiency, ∆t as the simulation timestep size and Emax
ev as the storage capacity of the electric

vehicle. Since this equation might yield non-integer values for n, all timesteps where full charging
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is applied are the floor values (⌊n⌋), the remaining charging power for the last until the full SOC is
reached can then be calculated as:

Ptend = (n− ⌊n⌋)Pmax,ch
ev . (4.3)

Heat pumps

The operation of heat pumps is based on the operation strategy proposed in the Simbench dataset
[140]. It is based on the assumption that the heating and hot water demand is supplied by the heat
storage systems. The SOC of the storages is kept at a minimum of 50 % and once this threshold is
undercut the storage is filled again by the heat pump or electric boiler depending on the operation
mode ([140] Section 3.5.2). Additionally, off-times for the heat pumps are defined for peak demand
times: 07:45 - 09:30, 11:30 - 12:30 and 16:45-19:00.

4.3.2. Local energy market

This section describes the procedure for a yearly simulation of one simulation scenario, i.e., for
one scenario year, distribution grid topology and REPC scenario. The full method is shown in
Figure 4.9. In a first step, the market operator and the grid model is initialized. The simplified grid
topology is derived from the Simbench grid model as described in Section 3.1.3. Depending on the
REPC scenario, the revelant parts of the grid topology are subsequently assigned with energy and
or power fees.

REPC scenarios

The analyzed variation of REPC scenarios is shown in Figure 4.8.

Model

Fees

Flat

Backup

Participant Participant

feeder

t

ct/kWh

Feeder

Backup

Participant Participant

feeder

t

ct/kWh

Variable

Backup

Participant Participant

feeder

t

ct/kWh

Power fee

Backup

Participant Participant

feeder

t

ct/kWh
ct/kWp

Figure 4.8.: Overview of the simulation scenarios varying the grid tariff design.

Starting on the left, the Flat scenario reflects the current state of the regulatory framework. A time
independent (flat) energy fee is paid for every consumed kWh by the participant. These constant
REPCs are set to 24.17 ct

kWh for the baseline year 2020 (compare Section 2.1.2).
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The scenario Feeder assumes a reduction of the flat participant fee and adds the difference of the
reduction to the feeder node. This scenario is based on the approach of locational grid fees (Section
2.1.3) and incentivizes trades between participants at the same feeder. The assumed reduction
in this scenario are based on current regulations in Germany [66] with of the participant fee of
2.44 ct

kWh and an introduction of a node fee with the same amount.
A time variable tariff structure is assumed in the Variable scenario. Parts of the fee paid by
a consumer is adjusted by a factor influenced by the wholesale market day-ahead price. This
scenario incentivizes the operation of flexible demand at times of low wholesale market prices.
The participant fee cp,t per timestep t is calculated as:

ce,inp,t = cp,base + cp,variable
λWM,t

λWM,T

, t ∈ T, p ∈ P (4.4)

where cp,base is a constant base fee at 24.17 ct
kWh , cp,variable the variable part of the fee at 2.44 ct

kWh
adjusted by the ratio of the wholesale market price of the timestep (λWM,t) and the mean price
λWM,T of the simulation horizon T .

The scenario Power fee combines a flat participant fee with a power fee for the exchange of the
community with the backup provider (for consumption and generation). With this approach a
direct influence on the daily peaks of the overall LEM can be achieved, since the usage of flexibility
will be incentivized to avoid generation and demand peaks. A relative power price of 3.7 e

kW is
assumed based on [159]. During the simulation procedure, the maximum peak and feed-in power
is passed on to the next day, i.e., a peak once reached is not to be paid again when undercut.
Additionally, a mechanism is introduced rewarding the usage of flexible assets to avoid peaks. It is
performed after market matching for a whole billing period. The overall paid power fees (Cpower)
are distributed and weighted to the cost contribution cp of each participant. The set D of timesteps
with the highest daily demand peak (Pmax,in

d ) of the overall LEM are taken into account and the
total power fee costs Cpower are split amongst the contributing participants:

cp = Cpower

∑︁
b∈Bp

∑︁
d∈D Pb,d

∑︁
d∈D Pmax,in

d

, p ∈ P (4.5)

with Pb,d as the contracted power of a buy b order at timestep d. For now, the calculation is limited
to demand peaks (Pmax,in,d) to stay closer to current regulations on peak power pricing.

Simulation loop

After the initialization of market operator and grid model, the simulation is performed consecutively
for each day within the simulation horizon of one year. Each participant model is generated from the
asset assumptions and time series described in the previous section. For each asset of a participant
the respective order (sell-, buy-, storage-order) is generated for one day (96 timesteps) according
to the model and method described in Sections 3.3 and 3.1.1.
Once all orders are collected for the day, the market matching problem (Section 3.1.2) is triggered
and solved. The market results are saved and fixed to the participants assets, e.g., the resulting
SOC of an EV at the end of the day. Once the last day is reached, the simulation terminates and all
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relevant asset, participant and market results are saved. The software environment/framework for
the implementation of this method is later described in Section 4.3.5.

Start simulation

Scenario input data

∀ d ∈ Simulation days

∀ p ∈ Participants

Prepare participant as-
sets and time series (p, d)

∀ a ∈ Assets(p)

Generate order(a) a+=1 p+=1 d+=1

is last(a)?

is last(p)?

Trigger market matching

Fix order results
to participants

is last(d)?

Save results

Finish simulation

Initialize market oper-
ator and grid model

Collect orders

Run market matching (d)

Market results

Participants

d

p, d
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True
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False
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Simulation days

Grid topology, REPC scenario

Order

Figure 4.9.: Simplified overview of the simulation method for one LEM simulation case.
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4.3.3. Generation of synthetic forecast errors

The following methodological framework is developed to evaluate the impact of load forecast errors
on the benefit of individual market participants. The full description, evaluation and classification
in the literature can be found in Schreck et al. [22]. Figure 4.10 provides a schematic overview of
the method. The central aim is to modify an input load profile in such a way that a predefined
forecast error value Es is achieved within the generated synthetic forecast profile P̂ t. Instead of
arbitrarily shifting the load profiles values, e.g., by adding a random noise, the method aims to
produce similar statistical properties as produced by typical forecasting methods in the literature.

Define setpoint for error
value Es, e.g. 40 % MAPE

Parametrization of
stochastic model:

min
(P̂ ,Φp)ϵR

(∣∣∣Es − E(Pt, P̂t(Φ, Pt))
∣∣∣
)

Input load profile for
model parameterization

t

Pt

Set of shape parameters
Φ describing vertical and

horizontal shifting probabilities

Generate forecast
profile with error Es:

P̂t,Es(Pt,Φ)

Input load profile to distort

t

Pt

t

Pt Original profile
Erroneous forecast profile

Es

Φ

Pt

Pt

Figure 4.10.: Schematic overview of the method to generate realistic electric load forecast profiles
with a previously defined error set point from [22].

The to be adapted load profile Pt is shifted and parameterized by solving the following nonlinear
optimization problem. The objective function minimizes the difference between the to be achieved
error value Es and the error of the generated profile:
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min
(P̂ t,Φ)ϵR

(︂⃓⃓
⃓Es − E(Pt, P̂ t(Φ, Pt))

⃓⃓
⃓
)︂
. (4.6)

The error function E(Pt, P̂ t(Φ, Pt)) can be arbitrarily chosen, e.g., Mean Absolute Percentage Error
(MAPE), Normalized Root Mean Square Error (NRMSE). Φ represents a set of shape-variables
(α, β, γ, σh) which are relevant in the following constraints. The constraints are used to shift the
load profile in such a way that typical error distributions found in the literature are reproduced.
Stephen et al. [110] demonstrate that various forecasting models show distinguishable strengths
and weaknesses predicting the load profile depending on the type of day and time of day. They
also show that times of low consumption and low variability, e.g., during the night, are mostly
associated with low forecasting errors throughout different forecasting methods. On the contrary,
consumption peaks are notably more difficult to predict as also demonstrated by Shi et al. [160].
This context is the baseline for the definition of the following vertical shift of the profile which
is modeled as a random walk process. To keep the structure of demand patterns of appliances
(e.g., demand of an oven over multiple timesteps) in the distorted profile, an additional logic of a
horizontal shift is later defined.

Vertical-shift

The vertical-shift is defined as:

P̂ t = Pt + δt, (4.7)

with

δt ∼ N(µt, σ
2
t ), (4.8)

µt = α(P̂ t−1 − Pt−1), (4.9)

σt = γωt(Pt) + β(Pmax − Pmin). (4.10)

For each timestep t of the original value Pt is distorted with δt which is drawn from a normal
distribution (Equation 4.8). The mean and standard deviation of the normal distribution depend
on the respective timestep and are adjusted according to Equations 4.9 and 4.10. Through the
consideration of the vertical shift of the previous timestep (Equation 4.9) the mean is damped
and a strong base oscillation is prevented. The shape variable α gives the option to increase or
decrease the relative vertical shifting throughout all timesteps. The standard deviation σt is defined
by two influences. On the one hand, a weight ωt(Pt) is applied based on Equations 4.11 and 4.12.
The weight is designed to reduce the standard deviation for values close to the minimum and
maximum loads of the profile (Pmin, Pmax) as shown in Figure 4.11. This approach avoids, that
the resulting profile will show values significantly lower that the minimum baseload or maximum
peak. The quadratic formulation of ωmin

t is applied to ensure that values of Pt that are closer Pmin

are non-proportionally assigned with a lower standard deviation.
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Figure 4.11.: Schematic illustration of weights for the vertical shifting of the demand. Figure from
[22].

4.11).
ωt = 1−

⃓⃓
ωmax
t − ωmin

t

⃓⃓
, (4.11)

ωmax
t =

Pmax − Pt

Pmax − Pmin
. (4.12)

ωmin
t =

P 2
t − 2PtP

max + Pmax2

(Pmax − Pmin)2
. (4.13)

On the other hand, a second shape-parameter β is introduced which is able to increase the overall
standard deviation of the profile for higher error values. This is achieved by the multiplication of β
with the spread of the overall profile. Hence, higher values of delta will lead to an overall higher
vertical distortion of the profile.

Horizontal-shift

The horizontal-shift is introduced to shift an aggregation of coherent timesteps at once. In a first
step relevant consumption patterns are defined with the following Equations:

∆Ptstart > θh∆Pt, > 0, (4.14)

∑︁Th
t=1 Pt − Pmin

Pmin
> νh(Pt − Pmin), (4.15)

∆Ptend < θh∆Pt, < 0. (4.16)

A coherent block for a horizontal shift is defined if a sufficiently large ramp in the consumption
Ptstart (Equation 4.14), is enclosed by a sufficiently large negative ramp in the consumption Ptend
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Figure 4.12.: Exemplaric results for the application of the method for an example day of a house-
hold load profile for (a) 30 % MAPE and (b) 50 % MAPE. Figure from [22].

(Equation 4.16). Additionally, the average load within tstart and tend (Th) needs to be sufficiently
large compared to the overall mean of the profile and the minimum load to avoid shifthing blocks
close to the baseload. With θh and νh, the sensitivity for the detection of coherent blocks can be
adjusted, i.e. a higher value of θh or νh will lead to less detection of start and end timesteps of
peaks as the threshold for a peak detection is increased.

Once the coherent blocks are identified, the shifting of these blocks in time are achieved by moving
them in time by a time ∆tp drawn from the zero-mean normal distribution:

∆tp ∼ N(0, σ2
h). (4.17)

Depending on the size of the error that is being reproduced, the standard deviation σh of this
horizontal shift can be adapted . Two examples of distorted load profiles and the respective shape
parameters are shown in Figure 4.12. The original profile in Figure (a) is distorted with a forecast
error of 30 % (MAPE) and Figure (b) with a forecast error of 50 % (MAPE). Both, the vertical
and horizontal shifting can be visually detected. While the morning peak load (8:00-10:00) is not
shifted horizontally in Figure (a), it is slightly shifted to the left in Figure (b). The vertical shifts
are also more distinctive in Figure (b) than in Figure (a).

4.3.4. Scalability analysis

A scalability analysis is performed to evaluate the solving time of the developed market matching
problem for a variation of model parameters. As a main parameter the effect of an increasing
number of market participants is analyzed. Additionally, the impacts of the number of considered
nodes, the share of flexibility orders (storage-orders), and the number of market timesteps are
considered. Table 4.2 provides an overview of the parameter variations. The scalability analysis is
performed for all reasonable permutations of the parameter variations listed in the table, i.e., a
combination of one participant and 1000 nodes is not considered.
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Table 4.2.: Overview of parameters and parameter variations of the scalability analysis

Parameter Parameter Variation
Number of participants [-] 1, 10, 100, 1000, 10000
Share of participants with a battery storage [%] 0, 50, 100
Number of nodes [-] 1, 10, 100, 1000
Number of timesteps [-] 24, 96

For each set of parameters, a synthetic LEM with reasonable parameters for orders, participants
and grid topology is generated. In the default case, each participant is modeled with one base
load (buy-order) and one generation (sell-order). For a variation of the share of battery storages,
participants are additionally equipped with a battery storage (storage-order). Input parameters of
the orders are randomly chosen from uniform distributions within similar ranges as in the scenario
simulations. Generated participants are subsequently assigned to a node. Each node is connected
to the previous node and additionally to 3 random nodes.

The scalability analysis is performed on a windows machine with an Intel Core i7-7820HQ CPU,
16 GB of RAM using the solver Gurobi (9.1.12) [161]. Each permutation of the parameters is
run 5 times to reduce the influence of other processes running on the machine. The focus of
the evaluation is put on the overall solver time. The model generation time is not considered in
detail as it highly relies on the used programming language (interpreted or compiled) and the
implementation of the API to the solver.

4.3.5. Simulation framework

The simulation framework is implemented as an object-oriented software package in Python. This
section gives a broad overview of the used libraries, frameworks and solvers. The framework con-
tains the previously introduced models/classes for the market operator, grid operator, participants
and assets as well as the simulation logic defined in Section 4.3. The linear optimization problem
of the market matching is formulated using the mathematical programming language AMPL [162].
The integration of the optimization problem into the python framework is achieved using AutoLP
[163] which provides an autogenerated formulation of the optimization problem with direct access
to the solver. The solver SCIP [164] is used to solve the generated optimization problem accessed
by the solver API pyscipopt [165] from python. For the scalability analysis, Gurobi [161] is used
as a solver.

The nonlinear optimization problem to generate erroneous forecasting profiles (Section 4.3.3) is
formulated in MATLAB using the fmincon solver [166].

For testing and productive implementation of the market matching in the field test (Section 6), a
.NET Framework solution written in C# is build around the core market matching functionality
which is also implemented using AMPL, AutoLP and SCIP.
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4.4. Evaluation metrics

The evaluation metrics are chosen to enable comparability among the the scenarios. Hence, where
applicable, relative evaluation metrics are used normalized. The metrics are chosen to evaluate the
simulation results from the overall market level perspective, from the perspective of a participant
and the perspective of the grid operator.

4.4.1. Market

Share of generation sold on LEM

The share of generation sold on the LEM (SL) is evaluated as a first metric to analyze the impact
of decreasing minimum sell prices throughout the scenario years. It is defined as the ratio of
the electric power of all sell orders S of all participants P contracted at LEM (Ps,t) to the overall
contracted electric power of all sell orders including sale to the Backup P bu

s,t :

SL =

∑︁
s∈S

∑︁
t∈T Ps,t∑︁

s∈S
∑︁

t∈T(Ps,t + P bu
s,t)

. (4.18)

Average market prices

Weighted average sell prices and buy prices (including REPCs) are used to evaluate the economic
incentivation especially regarding the price difference between the different grid types (load,
feed-in dominated) and REPC scenarios. They are evaluated on different time scales, e.g., 15 min
averages or averages over the whole year to allow an assessment of short-term flexibility and a
general yearly evaluation. The weighted average sell price is defined as:

λs =

∑︁
s∈S

∑︁
t∈T(Ps,tλs,t)∑︁

s∈S
∑︁

t∈T Ps,t
, (4.19)

and can be evaluated for contracted sells either to the LEM, the backup or both. Since the developed
market model considers REPCs already in the matching sell and buy prices can differ. The weighted
average buy price can be formulated accordingly:

λb =

∑︁
b∈B

∑︁
t∈T(Pb,tλb,t)∑︁

b∈B
∑︁

t∈T Pb,t
, (4.20)

The weighted average buy prices implicitly also contains the prices of bought energy from storages.
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Self-consumption

The overall self-consumption SC of participants at the LEM enables an evaluation of the usage of
flexibility options when compared to the BAU scenario. A high share of self-consumption indicates
that locally generated energy is either directly used or stored to later be discharged. It is defined as
the share of the total local generation directly consumed by participants at the LEM. An equivalent
definition, i.e., the share of generation not sold to the backup can be formulated as

SC = 1−
∑︁

s∈S
∑︁

t∈T P bu
s,t∑︁

s∈S
∑︁

t∈T (Ps,t + P bu
s,t )

. (4.21)

Self-sufficiency

The self-sufficiency ratio SSR, also referred to as autarky rate, indicates to which degree the
demand of participants at the LEM can be covered by local resources, i.e., local sell orders or local
storage orders and can similarly to the self-consumption be defined as:

SSR = 1−
∑︁

b∈B
∑︁

t∈T P bu
b,t∑︁

b∈B
∑︁

t∈T (Pb,t + P bu
b,t )

. (4.22)

4.4.2. Participants

To evaluate the incentivation of participants at the LEM their relative benefit of participation is
calculated. Since the structure of participants and their assets can be diverse, e.g., participant
with load, prosumer with load and generation, prosumer with battery storage, etc., an asset-based
evaluation of benefits is performed. This additionally allows the evaluation of the benefit of specific
assets, e.g., EV charging at home or EV charging at work.
The average benefit can be derived by subtracting the achieved revenues or costs from the oppor-
tunity costs of the scenario without a LEM. The weighted average cost benefit CB can hence be
defined as:

CB = λbu
b −

∑︁
b∈B

∑︁
t∈T (Pb,tλb,t)∑︁

b∈B
∑︁

t∈T Pb,t
, (4.23)

where B can either be a set of all buy orders or buy orders of specific asset type with λbu
b as the

reference price for buying from the backup supplier. Vice versa, the average revenue benefit RB
can be calculated as:

RB =

∑︁
s∈S

∑︁
t∈T (Ps,tλs,t)∑︁

s∈S
∑︁

t∈T Ps,t
− λbu

s , (4.24)

with λbu
s as the reference price for selling to the backup supplier.The benefits are calculated on an

asset type basis to make a more general assessment per asset type rather then per participant type. A
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direct evaluation on participant level (e.g., participant w/ PV, participant w/ PV and HP, participant
w/ EV and Battery, etc.) would weaken the generalizability of the results as a whole permutation
of participant types would leave few groups with only a small sample size in some scenarios (e.g.,
only one participant w/ PV, Battery, HP and EV). This asset based formulation additionally allows
a subsequent bottom up calculation of typical yearly benefits of specific participant types with
greater generalizability.

Load forecast error

The Mean Absolute Percentage Error (MAPE) is used to evaluate load forecasting errors. Although
this metric has shortcomings with regards to the impact of small or close to zero actual values
[167] it is a widely used metric [22] and allows for a comparison of errors within the literature.
For a forecasted load (ŷ) and the actual load (y) the MAPE is defined as:

MAPE[%] = 100%

∑︁T
t=1

⃓⃓
⃓ ŷt−yt

yt

⃓⃓
⃓

T
, (4.25)

considering T timesteps.

To include the effect of load forecast uncertainty in the calculation of the participant benefit
(relevant for Section 4.3.3), Equation 4.23 needs to be adapted by the penalty cost λb,pc

t for not
satisfying the contracts due to forecast errors. Simplified for a single participant p the Participant
Benefit (PB) is formulated:

PB =
∑︂

b∈B

∑︂

t∈T
∆t(λb,buPb,t − λLEM

b,t PLEM
b,t − λpc

b,t(Pb,t − PLEM
b,t )), (4.26)

with Pb,t as the actual measurement at the PCC of the participant and PLEM
b,t as the contracted

power at the LEM. Depending on whether the demand was under- or over-forecasted, the penalty
price λpc

b,t is calculated as:

λpc
b,t =

{︄
λbu
b + λfee, Pt > P b,LEM

t (4.27)
−λfee, Pt < P b,LEM

t (4.28)

where λfee are constant additional energy fees added to to the backup utility price λbu
b for under-

forecasting (first condition). For over-forecasting no additional backup energy needs to be bought,
therefore only λfee applies for the second condition.
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4.4.3. Grid

Peak assessment

To evaluate the impact of the LEM on the local distribution grid, the power peaks in the exchange
with the backup supplier, i.e., the load of the transformer, are analyzed. The observed peaks of
all LEM scenarios are compared to the BAU scenario both, for demand peaks and feed-in peaks.
To avoid overestimation of single peak events, N daily peaks within the yearly simulation are
analyzed. The relative deviation is calculated as:

PD =
1

N

∑︂

n∈N
max
n

(
PBAU
n − PLEM

n

PBAU
n

), (4.29)

with PBAU
n and PLEM

n as the daily maximum peaks at the transformer connection the LEM to the
superior grid level. The absolute deviation can be calculated by removing the denominator PBAU

n .
To evaluate the frequency of the maximum utilizations which occurred during the field test
operation, a utilization factor UF is introduced. The utilization factor describes the ratio of actual
utilization and utilization limit and is calculated for a feeder node n and a timestep t as:

UFn,t[%] = 100

⎧
⎪⎨
⎪⎩

P in
n,t

Pmax,in
n,t

, P in
n,t ≥ 0,

P out
n,t

Pmax,out
n,t

, P out
n,t > 0,

Collected regulated electricity price components

An introduction of reduced REPCs as described in Section 4.3.2, might lead to a reduction of the
collected grid fees, taxes and levies. For each simulation scenario with the same scenario year and
grid type the collected REPCs might hence differ for a variation of grid tariffs. The relative share
of the collected REPCs (αs) compared to the BAU scenario is calculated for a scenario z as:

αz = 1− REPCsz
REPCsBAU

, (4.30)

with REPCsBAU as the collected REPCs in the baseline scenario defined as:

REPCsBAU =
∑︂

t∈T

∑︂

p∈P
∆tceP

bu,in
t,p (4.31)

with P bu,in
t,p as the power drawn from the grid by one participant p and the constant energy fees ce

(ct/kWh). Collected REPCs in the LEM scenario REPCsz can be directly calculated as a part of the
objective function of the market matching problem (Equation 3.21).
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5. Simulative evaluation

The simulative evaluation consists of four major assessments. Section 5.1 and 5.2 deal with the 60
yearly simulation scenarios with variations of scenario year, grid type and REPC scenarios described
in Section 4.2 and their implications on market and participant economics as well as the impact on
the grid. Section 5.3 focuses on the economic impact of load forecast uncertainty. Finally, Section
5.4 presents the results of the scalability analysis for the proposed market matching algorithm.

5.1. Effects of grid type and scenario year: Comparison to BAU

The results presented in this section are focused on the comparison between the BAU scenario and
the Flat LEM scenario as defined in Section 4.3.2. Hence, there is no adaption of the fee structure
in the LEM scenario compared to the BAU scenario, i.e., full REPCs are paid by each participant.

5.1.1. Overview of main scenario KPIs

Figure 5.1 shows the development of the self-consumption ratio of the considered distribution grids
for the BAU and LEM scenario.
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Figure 5.1.: Development of self-consumption in the BAU and LEM scenarios over the scenario
years and a variation of grid types. LEM REPCs scenario: Flat.
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The self-consumption is almost equal for the BAU and LEM scenario in the base scenario year
2020 for all grid types. In the base year, the Urban scenario reaches a self-consumption of almost
100 %, while the Semiurban and Rural scenarios reach 92 % and 73 % respectively. Throughout
the scenario years 2025, 2030 and 2035 the self-consumption in the BAU scenarios consistently
decreases. Compared to the LEM scenarios, the self-consumption first decreases with lower rate
until the year 2030, to then increase for the scenario year 2035. While overall the introduction of a
LEM increases self-consumption, there are considerable difference between the studied distribution
grids. The relative increase of self-consumption compared to the BAU scenario is substantially
lower for the Urban grid (4.3 percentage points), than for the Semiurban grid (19.1 percentage
points) and Rural grid (22.5 percentage points) in 2035.
A similar effect is reflected in the self-sufficiency ratio (Figure 5.2). The leverage of the LEM
to increase the self-sufficiency is lower for the Urban grid (1.1 percentage points), than for the
Semiurban grid (7.2 percentage points) and Rural grid (9.4 percentage points) in 2035.
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Figure 5.2.: Development of self-sufficiency in the BAU and LEM scenarios over the scenario years
and a variation of grid types. LEM REPCs scenario: Flat.

The overall reachable self-sufficiency in the final scenario year is 21.1 % for the Urban, 37.9 % for
the Semiurban and 36.9 % for the Rural grid. The difference between the BAU and LEM scenarios
increases over the scenario years and is less distinct for the Urban than for the Semiurban and
Rural grids.
The described effects are caused by two main influences. Firstly, the relative increase of the
impact of the introduction of a LEM on the KPIs over time can be attributed to the overall share of
generation which is sold at the LEM (Figure 5.3). Due to the high minimum sell-prices in the first
scenario years (compare Section 4.2.2), almost no buy and sell orders are matched in scenario
year 2020. As the maximum buy prices and the REPCs prices stay constant during the scenario
years, an increasing share of the local generation is matched at the LEM starting from scenario
year 2025. With this increasingly cheaper local generation (Figure 5.4), it becomes profitable
for storage assets to increase the self-consumption not only of individual participants, but for the
overall market. Secondly, the significantly lower impact on the Urban grid can be allocated to the
lower ratio of generation capacity to overall demand in this scenario (Rural: 0.9 kWp

kWel
, Semiurban:

78



0.75 kWp

kWel
, Urban: 0.37 kWp

kWel
). While the feed-in from additional PV installations can be utilized

for flexibility in the Semiurban and Rural cases, it is mostly directly consumed in the Urban case
leading to the highest self-consumption rates.
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Figure 5.3.: Share of generation sold via the LEM over the scenario years for a variation of grid
types. LEM REPCs scenario: Flat.

Figure 5.4 shows the average sell prices for the LEM scenario starting from the scenario year
2025. Generally, the prices decrease over time due to the decreasing feed-in remuneration and
minimum sell-prices. In the load dominated scenario (Urban) the weighted average sell prices are
consistently higher than in the other cases, since the sell orders are mostly the price setting units,
as the demand is higher than the overall supply. The price development for the different grid types
and economic evaluation of specific assets is analyzed further in the following section.

5.1.2. Economic evaluation

Figure 5.5 provides a more detailed assessment of the development of market prices over the year
for the different grid types. The gross weighted average buy prices (including REPCs) are plotted
over the day of the year (x-axis) and the time of the day (y-axis). Various effects of the LEM can be
explored within the two time dimensions, i.e., seasonal effects on the x- and daily effects on the
y-axis.
The seasonal effect of reduced PV generation and increased demand in the winter months is
reflected in higher prices in these months. In these months, the market price is set by the buy
orders and their maximum price (31.37 ct/kWh). During spring and summer months, the prices
are reduced during the main hours of PV feed-in when the supply is greater than the demand. This
effect is explicitly visible for the Rural and Semiurban scenarios, whereas the Urban scenario is
still dominated by demand in summer times with a few exception dates, mostly weekends.
Regarding the daily price evolution (Figure 5.5) various observations can be made. First, prices
during daytime are dominated by the availability of excess PV generation. The higher the availability
the lower the prices. During nighttime in the winter periods, there are no trades at the LEM, hence,
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Figure 5.4.: Weighted average sell price over the scenario years for a variation of grid types. LEM
REPCs scenario: Flat.

no prices. During nighttime (summer period), the prices reach the maximum buy price. This price
is dominated by storage orders, which are the only source of supply during night times. Due to the
lack of excess PV which can be stored and later discharged, only few days with trades at night
are observed in the Urban grid scenario. In the Rural and Semiurban grid scenarios, nighttime
trades occur more frequently. In the early morning (06:00-7:30) and evening hours (16:30:18:00),
prices reach the upper end (maximum buy price) during summer time in the Rural and Semiurban
scenarios indicating an efficient price signal for hours where the PV supply is limited.

Figure 5.6 shows the impact of the temporal and grid type specific price developments on the
average benefit per asset type. As described in Section 4.4 the average benefit is calculated as the
difference of costs and revenues to the BAU scenario. The asset-specific benefits, i.e., cost reduction
for buy orders, increased revenue for sell-orders, additional revenue for storage orders, are shown
for the different grid types and the scenario year 2035.
There is an observable difference between the grid types, but also comparing the asset types. As
expected by the previous results on the market prices, the highest benefits for generation assets
(PV) are achieved in the Urban scenario (4.4 ct

kWh), followed by the Semiurban (2.5 ct
kWh) and the

Rural scenario (2.0 ct
kWh). However, the demand side shows only small benefits (0-0.2 ct

kWh) in the
Urban grid scenario. This can be contributed to the only few days where the price drops below the
maximum buy price (compare Figure 5.5 (c)).
For the other grid scenarios a significant difference in the benefit per asset type on the demand
side is visible ranging from 0.2-1.6 ct

kWh . The highest benefit is achieved for EVs charging at work
in the Rural scenario. In this case only a few work charging stations benefit from the low market
prices during the midday. Also in the Semiurban case the biggest profiteer are EVs charging at
work with a benefit of 1 ct

kWh . Interestingly, for other flexible demand assets (EVs charging at home
and HPs) a benefit below the benefit of inflexible baseloads is achieved. This effect can mainly be
accounted for the lack of supply during the heating periods for HPs and the increased demand and
low supply for typical charging patterns for EVs charging at home.
The additional benefits achieved by storage orders range from 3.5 to 4.3 ct

kWh . In all cases this
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Figure 5.5.: Heatmaps of the weighted average buy price at the LEM (Flat scenario) over one
simulation year (2035) for the grid scenarios Rural (a), Semiurban (b) and Urban (c).
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is above the minimum price (2.87 ct
kWh) for the external usage of a storage defined above. The

relative benefit is the lowest for the Semiurban grid. In this case, the most storage capacity is
available among the scenarios.
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Figure 5.6.: Average benefit of various asset types for the simulation year 2035. The benefit
represents an increased revenue for Storage and PV systems and a cost reduction
for demand assets compared to the BAU scenario.

5.1.3. Exchange with upstream grid

Besides the described impact on participant benefits, the introduction of a LEM additionally
influences the overall exchange with the upstream grid, i.e., the power flow at the LV/MV substation.
Figure 5.7 shows exemplary two heatmaps of the power exchange at the LV/MV substation for the
rural grid in the scenario year 2035. Positive values (green-yellow) indicate an import from the
MV grid, negative values (blue-black) indicate an export through excess generation.
The BAU scenario (a) shows typical morning and evening load peaks and feed-in peaks during
midday. The evening peaks are the highest, amplified by the charging strategy of EVs, i.e., they are
directly charged to a full SOC after plug-in. In this Rural scenario the dominance of EVs charged
at home further increases this effect. The overall highest load peaks can be observed in winter,
and the highest feed-in peaks in summer. Furthermore, a clear workday- weekend pattern can be
observed analyzing the load peaks at the evening time, which are drastically higher for workdays
than for weekends.
Similar seasonal patterns can be observed in the LEM case (b). However, the occurrence of multi-
timestep load peaks is not as distinct as in the BAU case. The overall load and feed-in peaks are
below the BAU case. The highest load peaks do not occur in the same range of the evening peaks
in the BAU scenario, but are rather distributed over the nighttime.
Figure 5.8 provides the numeric evaluation of the peak values. It shows the average reduc-
tion/increase of the 5 % highest daily load/feed-in peaks compared to the BAU scenario.
The potential reduction of load and feed-in peaks consistently increases over the scenario years.
Starting from the base year (2020) almost no deviation from the BAU or even a small increase of
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Figure 5.7.: Heatmaps of the exchanged power with the backup (load of the LV/MV transformer)
for one simulation year (2035) for the Rural grid and for the Business As Usual (BAU)
(a) and Local Energy Market (LEM) (b) scenario. Positive values indicate import from
backup supplier, negative values indicate export.

peaks can be observed. This is due to the low share of trades on the LEM in this timeframe. Still,
the optimal operation of the energy systems (exchange with backup) is calculated by the LEM for
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Figure 5.8.: Relative change of absolute daily load- (a) and feed-in- (b) peaks between the scenarios
Business As Usual (BAU) and Local Energy Market (LEM) for a variation of scenario
years and grid types. The relative change is calculated as the average of the 5 %
highest daily peaks.

the individual participants. However, in the Flat scenario there is no incentive for a reduction of
peaks and hence the small deviation occurs. For the final scenario year, a peak reduction of 37-47
kW is achieved which is equivalent to a reduction of 15-20 % compared to the BAU peaks. The
highest reduction is achieved for the Urban grid followed by the Semiurban and Rural grid.
The reduction of feed-in peaks shows a similar increasing trend over the scenario years, however,
the difference between the grid scenarios is more apparent. The highest peak reduction is achieved
in the Semiurban grid (80 kW, 42 %), followed by the Rural (42 kW, 28 %) and the urban (24
kW, 37 %). Due to the high ratio of installed storage capacity to installed generation capacity in
the Semiurban case (compare Section 4.2.1), the majority of excess generation can be charged by
the storages during midday, thus, reducing feed-in peaks. The lower reduction in feed-in peaks
for the Urban scenario, is consistent with the previous observations as most generation is directly
consumed leading to a high share of self-consumption.

Summing up the impacts of introducing a LEM with a flat tariff scheme compared to the BAU
operation:

• Clear potential to increase self-consumption and self-sufficiency throughout the scenario
years.

• Low impact in the scenario years 2020, 2025 as an economic participation for most generation
assets is not yet given.

• Potential to reduce demand and feed-in peaks: Highest demand reduction achieved in the
Urban case. Highest feed-in reduction in the Semiurban case.
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• Higher economic benefit for sellers in the Urban case. Higher benefit for buyers in the
Semiurban and Rural case. Storage orders reach higher benefit compared to the set minimum
price in all scenarios.

• No clear economic incentive for specific flexible load assets (EVs at home, HPs) for the
provided flexibility. In all cases the reached benefit is below the benefit of baseloads.

The following section will expand the found results with regards to a variation of the applied tariff
structure (REPCs scenario) focusing on the impact on the operation of assets, the effects on the
grid and the economic incentivation of flexibility.

5.2. Effects of regulated electricity price components

This section deals with the analysis of effects introduced by an adaption of the Regulated Electricity
Price Components (REPC)s as described in Section 4.3.2. The analysis focuses on the scenario year
with the highest amount of flexibilities (2035).

5.2.1. Operational differences

To obtain a first impression on the operational differences between the scenarios, Figure 5.9 and
5.10 show the operation of the LEM under different REPC regimes for example days (Summer,
Winter). In Figure 5.9 the market matching results are shown separated by the order categories (sell,
buy, storage). The result includes the market results for trades between market participants on the
LEM as well as the matched orders with the Backup supplier (lower opacity). Several observations
can be made for all scenarios: An external usage of storage orders (non self-consumption operation
of storage) is only visible at Summer days. Excess PV generation (sell orders) is used to charge
storages during midday and discharge them during the night. Additionally, the overall higher
demand and lower generation in the Winter case leads to a lower self-sufficiency in the Winter
case where all residual load has to be covered by the backup supplier.
Besides the mentioned operational similarities, severe differences in the resulting residual load
curve are obtained for the different scenarios. Especially in the winter day, significant differences in
the operation can be shown for the residual demand peaks. While the operation between scenario
Flat and Feeder does not show a significant difference in demand peaks (both at around 150
kW), the scenario Variable shows a peak of around 250 kW while the scenario Power fees shows
an almost constant backup residue of around 70 kW. Since the time variable fees in the Variable
scenario (c) provide incentives for the consumption at certain timesteps (correlated to the wholesale
market prices), peaks at these timesteps are generated. The Power fees scenario however tries
to limit the demand to a peak above which additional power fees need to be paid. The feed-in
peaks are similar for scenarios Flat, Feeder and Variable at around 150 kW at around 12:00. In
the Power fees scenario the feed-in power fees again result in a flattening of the feed-in peak at
around 100 kW.

85



00:00May 26, 2035

06:00
12:00

18:00
00:00May 27, 2035

−100

0

100

200

00:00Feb 17, 2035

06:00
12:00

18:00
00:00Feb 18, 2035

Backup residue
Storage orders at LEM
Buy orders from Backup
Buy orders from LEM
Sell orders to Backup
Sell orders to LEM

Ac
tiv

e 
po

w
er

 [k
W

] Summer Winter

(a) Flat fees

00:00May 26, 2035

06:00
12:00

18:00
00:00May 27, 2035

−100

0

100

200

00:00Feb 17, 2035

06:00
12:00

18:00
00:00Feb 18, 2035

Backup residue
Storage orders at LEM
Buy orders from Backup
Buy orders from LEM
Sell orders to Backup
Sell orders to LEM

Ac
tiv

e 
po

w
er

 [k
W

] Summer Winter

(b) Reduced feeder fees

00:00May 26, 2035

06:00
12:00

18:00
00:00May 27, 2035

−100

0

100

200

00:00Feb 17, 2035

06:00
12:00

18:00
00:00Feb 18, 2035

Backup residue
Storage orders at LEM
Buy orders from Backup
Buy orders from LEM
Sell orders to Backup
Sell orders to LEM

Ac
tiv

e 
po

w
er

 [k
W

] Summer Winter

(c) Time variable

00:00May 26, 2035

06:00
12:00

18:00
00:00May 27, 2035

−100

0

100

200

00:00Feb 17, 2035

06:00
12:00

18:00
00:00Feb 18, 2035

Backup residue
Storage orders at LEM
Buy orders from Backup
Buy orders from LEM
Sell orders to Backup
Sell orders to LEM

Ac
tiv

e 
po

w
er

 [k
W

] Summer Winter

(d) Power fees

Figure 5.9.: Exemplary market matching results for a variation of REPC scenarios. Grid: rural,
scenario year: 2035.
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A more detailed analysis is provided in Figure 5.10 which shows the underlying asset specific
operation. The observed load peaks at the winter day in the Variable scenario are clearly caused by
the flexible consumption of HPs and EV. In Figure 5.10 (a) and (b) these flexible assets are more
evenly distributed while the Power fees scenario (c) results in a perfect alignment of the flexible
loads with the inflexible baseload. A major share of the operation of HPs is shifted to the midday
where the backup residue is reduced due to PV feed-in. At the summer day the operation of assets
does not differ significantly during nighttime. However, during midday the charging of storages
and EVs at work are well aligned with the highest PV feed-in hence reducing the feed-in peaks.
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Figure 5.10.: Exemplary asset specific market results results for a variation of REPC scenarios.
Grid: rural, scenario year: 2035.
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5.2.2. Impact on the distribution grid

This section deals with the translation of the described exemplary operational differences on the
full simulation horizon.

Figure 5.11 shows the load duration curve of the residual loads for the scenario year 2035 and
the rural grid for a variation of REPC scenarios. Positive values on the y-Axis indicate an import
from the MV grid, negative values indicate an export. At a first glance at Subfigure (a), the REPC
scenarios seem to almost overlap. Within a residue range of 0-50 kW the curves are even almost
similar to the BAU scenario.
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Figure 5.11.: Load duration curves of the REPC scenario variation. Positive residues represent
import from the MV grid. Negative values represent feed-in. Figure (a) shows the
full load duration curve of all 30,540 15-min timesteps of the simulation. Figure (b)
shows the 100 timesteps with the highest feed-in and Figure (c) the 100 timesteps
with the highest import. Grid type: Rural, Scenario year: 2035.
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A closer inspection of the highest 100 feed-in peaks (Subfigure (b)) and the highest 100 demand
peaks (Subfigure (c)) reveal significant differences. In both cases, the scenario Power fees shows
the lowest peak values which are almost flat for the highest 100 timesteps. Compared to the BAU
scenario the highest absolute peaks are observed for the scenarios Time variable, which shows
even higher peaks than the Flat scenario, followed by Reduced feeder fees and the Flat scenario.
This observation confirms the findings from the example days. However, additionally compared to
the BAU a substantial reduction of the highest peak values can only be achieved in the Power fees
scenario.

Figure 5.12 shows a more comprehensive analysis on the feed-in and demand peaks. It includes a
parameter variation of the scenario years and grid types and shows the average difference of the
highest 5 % peaks compared to the BAU scenario.

The first analysis on the peaks in the rural scenario (load duration curve) can be confirmed for other
scenarios. The biggest leverage of peak reduction can be achieved within the Power fee scenario.
Depending on the grid type, the difference of the Power fee scenario to the other scenarios can be
more severe (e.g., demand peak reduction for the rural grid) or less pronounced (e.g., demand
peak reduction for the urban grid).

With an increase of available demand flexibility and storages throughout the scenario years, the
potential peak reduction consistently increases for the Power fee scenario. For other scenarios
however, the relative reduction might even decrease over the scenario years, e.g., demand peaks
for the Time variable scenario between the scenario years 2030 and 2035 in the rural case. This
might be caused by the uncoordinated usage of flexibility which does not cover the increase of
loads and generation in these scenarios.

Overall, a demand peak reduction of 30-60 % depending on the distribution grid can be achieved
with the Power fee scenario. The highest reduction is achieved in the rural distribution grid with its
high share of EVs charging at home. Compared to the BAU the charging (especially during plugin
times in the evening) can be distributed over the night hence reducing the overall load peak. This
effect is further illustrated in Figure 5.13. It shows the average contribution to the demand peaks
by asset type over a variation of scenarios. It shows that the contribution of flexible loads (EVs
and HPs) can be drastically reduced to only 29 % in the Power fees scenario, while flexible loads
account for more than 80 % of the load peaks in other scenarios. In the semiurban and urban case,
the peak reduction is at 32 % and 30 % respectively. The other REPC scenarios which are solely
based on energy fees (ct/kWh) show a significantly lower reduction between 8 % (Time variable,
2035, rural grid) and 22 % (Feeder fees, 2035, rural grid).

The discrepancy between the Power fees and the energy fee based scenarios is not as severe for the
feed-in peaks. For the scenario year 2035 the Power fees scenario reaches a reduction of 46-64 %,
while the energy fee scenarios reach a reduction between 21 and 49 %. There is no clear trend for
the best performance within the REPC scenarios with energy fees. For the semiurban and urban
scenario a relative increase of feed-in can be observed for all REPC scenarios, but Power fee, for
the scenario year 2020. As shown in Section 5.1.3, the absolute difference is only a few kW in
these cases. This effect is caused by the operation of the storages, which in the BAU case might
lead to a reduction at peak feed-in hours. However, in scenarios without a power fee, charging
of the storages is not specifically incentivized at peak hours and might be adversely distributed
alongside the generation peak of PV.
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Figure 5.12.: Relative change of daily load- (left) and feed-in- (right) peaks between the scenarios
Business As Usual (BAU) and Local Energy Market (LEM) for a variation of scenario
years (x-axis) and REPC scenarios. Different grid types are represented by Subplots.
The relative change is calculated as the average of the 5 % highest daily peaks.

The development of peak reductions over the scenario years for the variation of scenarios behaves
similar to the results above. Detailed boxplots of the absolute daily maximum peaks and heatmaps
can be found in the Appendix (Figure A.6 and A.7).

5.2.3. Analysis of economic impacts

As shown in the previous Section (Figure 5.6), the Flat scenario introduces asset specific benefits
for a variation of grid types which do not specifically value the operation of flexible assets. In some
cases inflexible baseloads achieve a higher benefit than flexibilities such as EVs or HPs. Figure
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Figure 5.13.: Relative contributions to the highest 5 % demand peaks per asset type. Scenario
year: 2035, Grid type: Rural

5.14 shows the same assessment for a variation of REPC scenarios for the semiurban scenario.
Compared to the Flat scenario, the other energy fee scenarios (Time variable, Feeder fees) show a
higher benefit throughout all asset categories (0.1-0.3 ct/kWh) for demand assets, 1.6-2.3 ct/kWh
for PV and 0.8-1.8 ct/kWh for storage orders. This can be explained through the further reduction
of the energy fees in both scenarios. However, a similar observation can be made for these more
advanced scenarios: in both cases flexible loads like HPs and EVs charging at home show a lower
benefit than the inflexible baseload . EVs charging at work benefit from the overall low sell prices
during the midday (PV excess) and show a constantly higher benefit than the inflexible load.

Through the introduction of the power fee distribution based on the contribution of the buy order
to the overall peak load (Section 4.3.2), the power fee scenario shows a clear incentivation for the
usage of flexibilities to avoid peak loads. In all cases the average benefit for flexible loads is higher
(1.4-2.8 ct/kWh) than the benefit for the inflexible load (0.3 ct/kWh).
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Figure 5.14.: Average asset benefit of assets types for a variation of fee scearios. Scenario year:
2035, Grid type: Semiurban.
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The presented results show that an introduction of a LEM can benefit both the grid and partici-
pants. However, as introduced earlier, this comes with a reducing the Regulated Electricity Price
Components (REPC) components in the more advanced scenarios. REPC collected by the DSO and
other tax collecting entities will hence be reduced compared to the BAU scenario and the scenario
without a reduction (Flat scenario). Figure 5.15 shows the impact of the introduction of a LEM on
the overall collected REPCs by the DSO and other legal entities (state taxes etc.). Since there is
no adaption of energy fees in the Flat scenario, the same amount of REPCs are collected in this
case. Over all, for other scenarios a reduction of around 5 % in collected fees can be observed.
The introduction of time variable fees might lead to a slightly (around 1 %) higher reduction in
collected fees than the other scenarios.
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Figure 5.15.: Collected Regulated Electricity Price Components (REPC) for the different grid types
and scenarios. Scenario year: 2035

5.3. Impacts of load forecast uncertainty

Main results regarding the impact of forecast uncertainty are presented in this section. For a more
detailed analysis please refer to [22].
The economic impacts of a variation of forecasts errors are evaluated using the method proposed
in Section 4.3.3 to generate erroneous synthetic load profiles. The method is applied to typical
household profiles for Germany [168]. A variation of the Mean Absolute Percentage Error (MAPE)
is applied with a MAPE ranging from 10 to 100 % in steps of 10 %. An example of the resulting
error distribution for one example household load profile is shown in Figure 5.16. Clearly, a
distinguishable pattern between times of low inflexible load (e.g., during the night) consumption
with a tighter error bandwidth and times of peak consumption (e.g., evening times) is generated.

The generated profiles are applied to an application case (Figure 5.17), which is based on a single
node LEM with 72 household participants. Representative household load profiles for Germany
[168] are utilized to cover a wide range of yearly consumptions and load patterns. A total of 195.5
kWp of PV installations are distributed among 24 households, of which 12 additionally own a
battery storage (total capacity 68 kWh). The sizing of PV and battery storages is based on typical
installations in Germany [169]. An additional small scale CHP (25 kWel) supplies the market
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Figure 5.16.: Average yearly consumption profile and the 10-90 % percentile of generated forecast
errors of an exemplary household and a MAPE of 30 %.

during times of low PV feed-in. After the simulation of the application case, the Participant Benefit
(PB) is calculated (Equation 4.26) including penalty payments for over- or under-consumed energy.
A variation of penalty prices (0/2/4 ct/kWh) is analyzed. The considered REPC are set to 10
ct/kWh.
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Figure 5.17.: Application case of the forecast uncertainty evaluation.

Figure 5.18 shows the PB for a variation of forecast errors (x-axis) and penalty prices for two
households. A household solely with electric consumption (blue lines) and one household with a
6.5 kWp PV and a 5 kWh storage-installation (orange lines). The plot shows that for the household
without flexible assets, the PB declines with increasing forecast errors reaching negative values
between a forecast error of around 30-40 % depending on the penalty price. The household with
PV and storage also sees a declining PB for a forecast error until 40 %, then stabilizes with positive
benefits. Hence, in this case forecast errors can be compensated through the battery storage.
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In Figure 5.19, 20 household participants without generation and flexible assets are evaluated.
With a yearly consumption range of 1400-7500 kWh the households reflect a variety of potential
participants. The tight 95 % confidence interval suggest that the participant benefit in this case is
not significantly related to the underlying consumption profile. In this set-up a day-ahead forecast
error below 30 % is required in order to achieve a positive PB.
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Figure 5.18.: Participant benefit of two households for a variation of forecast error and penalty
prices.
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Figure 5.19.: Participant benefit of 20 household participants (consumers) over increasing fore-
cast errors. Penalty price: 2 ct/kWh.
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5.4. Scalability analysis

Figure 5.20 shows the required solver time over an increasing amount of participants for a variation
of the shares of participants with battery storages. For all variation cases, a linear growth on the
log-log axis can be observed. The slope of the curves on the log-log axis can be interpreted as
the power s of the underlying relationship between the variables y (solver-time) and x number of
participants1. The slope of the linear fitted curves for the three cases (0 %/50 %/100 %) are 0.96,
1.12 and 1.11 revealing that the problem scales below linear without the consideration of storages
and non-linear with the consideration of storages. While the market matching for one day with 96
15min timesteps requires 92s for 10 000 participants, a significant increase of computation time
can be observed for a share of storages of 50 %/100 % with 451s and 796s respectively. Since the
machine ran out of memory for the most extreme case (10 000 participants with one storage each)
the value is extrapolated. On average, a doubling of the number of storages (from 50 % to 100 %)
increases the solver time by the factor of 2.45.
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Figure 5.20.: Elapsed solver time over an increasing number of market participants and a variation
of the share of participants with a battery storage systems. Constant parameter
settings: Number of timesteps: 96, number of nodes: 1, problem formulation: LP.

Figure 5.21 depicts the impact of the number of timesteps taken into acount in the market matching.
For a whole day either 24-hourly timesteps or 96 15-min timesteps are considered. For the most
extreme case (10,000 participants) the solver time reaches 451 s and 80 s for 96 and 24 timesteps
respectively. Both curves run almost parallel with an average factor of 5.19 between 96 and 24
timesteps. Hence, doubling the number of timesteps might lead to an increase of solver time by
the factor of 2.6.
The impact of an increasing number of nodes is shown in Figure 5.22. In this case, no storages are
considered. For the most extreme case (1000 nodes and 10 000 participants) the solver time reaches
81s. To take more datapoints into account the increase factor for 10 and 100 nodes is evaluated. A
1The power function y = axs.
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Figure 5.21.: Elapsed solver time over an increasing number of market participants and a variation
of the number of timesteps. Constant parameter settings: Share of participants with
battery storage: 50 %, number of nodes: 1, problem formulation: LP.

tenfold increase of the number of nodes hereby leads to an increase in computational time with a
factor of 2.3. Hence, doubling the number of nodes leads to an increase of computational time of
0.46 (46%).
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Figure 5.22.: Elapsed solver time over an increasing number of market participants and a variation
of the number of nodes. Constant parameter settings: Number of timesteps: 24,
share of participants with battery storage: 0, problem formulation: LP.
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5.5. Discussion

This section discusses the presented simulative evaluations with respect to the desired market
features introduced in Section 2.2.2. The found results are put into context of similar studies in
the literature. Limitations and potential future research directions are evaluated.

Regarding the desired market features of optimal dispatch and the consideration of flexibility
of DER, the results indicate that the proposed market model can significantly increase relevant
KPIs (Section 5.1). Compared to the benchmark operation (Business as Usual), an increase of
self-consumption and self-sufficiency of the local energy system is achieved through the optimal
usage of flexible assets like EVs, HPs and battery storages. The potential increase ranges from
1.1 to 22.5 percentage points for a scenario year 2035. A similar study on LEMs by Cramer et al.
[170] shows an even higher increase for the same scenario year (10-74 percentage points). This
study, however, takes into account all market participants below a HV/MV substation and includes
large-scale DER such as wind power and CHP. Compared to this Thesis, only including PV at the
LV level, the potential of increasing self-consumption and self-sufficiency is naturally higher due
to the additional generation during the night (wind power) and dispatchable generation which
match a higher share of the local demand.

The results indicate that the optimal scheduling of flexibilities through the LEM can reduce
consumption and feed-in peaks in the considered grid. Significant differences in the reduction
potential are observed depending on the REPC incentivation scheme. The highest reduction is
achieved when power fees are applied in addition to energy fees (30-60 % demand peak reduction,
46-64 % feed-in peak reduction). Lower reductions are achieved in the energy fee based scenarios
(8-22 %). These findings coincide with findings in [170] which show an average reduction of
39 % for a simulation case with power fees and 17 % for a simulation case without power fees.
The results presented in Section 5.2, show that a tariff scheme based on wholesale market prices
(Variable scenario) induces higher demand peaks than other REPC scenarios. Gemassmer et al.
[171] draw similar conclusions showing that a purely market-oriented charging strategy for EVs
leads to increasing peak loads compared to a balanced charging strategy.
It should be noted that the reduction of feed-in and demand peaks from the upstream grid should
be considered as a theoretical maximum. For the main sources of demand side flexibility, i.e., EVs
and HPs, the actual achievable flexibility potential might be lower in reality. For EVs the potential
demand shifts in the charging process highly depend on the actual arrival times of the EV, the
charging duration and the energy demand. All of these parameters are associated with a forecast
uncertainty which is not considered in the day-ahead simulation and will in reality lead to a
reduction of the achievable flexibility utilization. For HPs, the estimated ability to shift the demand
in time significantly depends on the sizing of the thermal storage as for example demonstrated in
[172]. In the evaluated demonstration cases, a sufficiently sized thermal storage is assumed to
allow a shifting of the heat-demand.
An additional factor that needs to be considered is that the presented simulations assume that all
private and commercial grid users are participating at the LEM. Thus, potential peak reduction
will be lower in absolute numbers and might be lower in relative numbers for smaller shares of
participants depending on the composition of the participants.

The market feature of participants’ financial incentivation is well covered in the found results.
The implemented market design shows that market prices reflect scarcity or excess on a temporal
dimension but also depending on the assets of participants and the considered grid type. Higher
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benefits are achieved for generation assets in the urban case with higher demand. In generation
dominated grids (rural/semiurban) demand assets show higher benefits. In scenarios with en-
ergy fees, no clear financial incentivation for flexible loads (EVs and HPs) is given compared to
uncontrollable loads which might influence the willingness of participants to provide the flexibility
to the system. Including a distributional mechanism to value the reduction of peak loads (power
fee scenario) flexible assets achieve higher benefits compared to inflexible loads and might hence
be incentivized to offer their flexibility. The proposed mechanism, however, might be complex to
implement in reality as it would require to track the achieved reductions on participant level.
It should be noted, that the results for the economic evaluation are highly dependent on the
development of future energy market prices and regulatory adaptions. The height of the actual
REPC-adaption and future remuneration schemes for VRE will determine the actual benefit of
participants. The results presented do not aim to answer the question if the incentivation is high
enough but rather show that the developed market model is able to efficiently and specifically
introduce price signals for DER deployment.
The analysis of the consideration of demand forecast uncertainties on individual participant level
shows that forecast errors drastically reduce the benefits due to penalty payments. Other studies,
e.g., [173], [174], show that this effect, although not as severe, is additionally increased when
considering the uncertainty in generation forecast of PVs. Hence, future research should address
this issue. Following measures are conceivable to reduce the described effect: An introduction
of an intraday market with smaller lead times (e.g., 15 min) might reduce the impact due to an
increasing forecast accuracy. Another approach is to introduce an aggregation of participants,
e.g., at feeder level to reduce the stochasticity of individual demand patterns. This approach is
demonstrated in [174] showing that an aggregation of a small number of aggregated households
(14-23) drastically reduces forecast errors and increases the average benefit of participants.
The scalability analysis shows that the main influence on the computation time of the proposed
market matching is introduced by the number of timesteps considered (factor of 2.6 when doubling
the number of timesteps), followed by the number of storages considered (factor of 2.5 when
doubling the number of storages) and the number of nodes (factor 0.45). The solver time stays below
900s even for a case with 10 000 participants each equipped with a load, generation and a storage.
The demonstrated scalability analysis is limited to one single optimization problem combining
the full set of participants, orders and grid topology. Further speed-up of the computational time
might be achieved by applying temporal or spatial disaggregation techniques as, e.g., described in
[175] or [134].
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6. Field test

6.1. Field test description

The data of the following results were produced within the field test demonstration of the research
project pebbles1 between the 1st of April 2021 and 15th of October 2021. The project was set up
in the village of Wildpoldsried in southern Germany and demonstrates the implementation of a
LEM with real residential and commercial participants in a rural setting.
Besides the real participants, additional virtual participants were added to the market to increase
liquidity. Additionally, a load bank, a large electrical storage, a diesel generator and a back-
to-back DC connection were available at the Energy Campus Wildpoldsried (ECW)to physically
emulate further participants. A total of 9 real participants, 50 virtual participants and 4 emulated
participants were part of the field test (Table 6.1). The distribution grid considered in the field
test consisted of a total of 8 secondary substations (LV/MV) distributed across Wildpoldsried and
neighboring villages/cities.
The market model and matching algorithms described in Section 3.1 were applied in the field test
as a day-ahead market. The following description of the project and result analysis are limited to
aspects within the scope of this Thesis and the developed market matching software (from here
on referred to as local market platform). For further details on the project please refer to [24],
[176]–[178]. For a detailed analysis on the regulatory framework for P2P energy platforms in
Germany please refer to [179].
Figure 6.1 shows a simplified sequence diagram of one market cycle and the relevant actors, actions
and data exchanges. One market cycle can be separated into three phases:

Before market closing

The market closing time in the field test is set to 17:00 for the matching of the next day. Before the
market closing time, the actors need to submit the relevant data required for the matching. The
data is submitted to a central data hub (Transaction platform) which can be queried by the local
market platform to retrieve the relevant data for the matching.
The trading agent of each participant needs to generate the market orders with the respective
parameters (compare Section 3.1.1). This requires user data of the residential participant, e.g.,
price preferences, asset configurations, as well as a forecast of the inflexible load and generation
of the participant. The user data (e.g., price preferences) is supplied by a mobile app and can be
adapted by the participants. The forecasts are calculated on the basis of weather forecasts and
1Pebbles was funded by the German Federal Ministry of Economic Affairs and Energy within the funding program,
‘Smart Service Welt II’ (Grant ID.: 01MD18003D).
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historic measurements of the respective assets.
The DSO provides the grid topology as well as grid limits and grid fees in the data structure
described in Section 3.1.3. For the field test, an iterative power flow simulation is performed by
the DSO to calculate active power limits of the LV feeder lines (Figure 6.2). This simulation is
performed on a daily basis taking into account producers and consumers which do not participate
at the LEM to find active power limits which do not violate voltage band limits.
The backup supplier provides information on the backup prices, i.e., prices for unmatched demand
and generation, and information on REPCs such as fees, taxes and levies. The detailed distribution
of REPCs along the grid topology is explained in the following section.

After market closing

After the market is closed (17:00), market orders, grid input and the input of the backup supplier
are queried by the local market platform. All orders submitted after closing are not considered
for the matching of the following day. With the queried data, the local market platform builds
the optimization model including the grid topology, grid limitations, REPCs and the orders of the
participants. The market matching is performed by solving the optimization problems described in
Section 3.1.2. The market results and grid utilization results are then transferred to the transaction
platform. All relevant actors can then query the results of the matching from the transaction
platform. The trading agents for example retrieve the matched quantities and prices to calculate
the schedule for the next day.

Delivery

During the delivery periods (96 15-min intervals of the following day) the local automation devices
of controllable assets (e.g., storages, flexible demand, flexible generation) receive setpoints by the
trading agent to comply with the results produced by the market (contracts). During delivery,
the power consumption and generation of all assets are measured to later calculate the deviation
between the traded (forecasted) values and the actual measurement. This is especially relevant
for uncontrollable generation and demand such as PV and the baseload as later demonstrated in
Section 6.3.5.
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Figure 6.1.: Sequence diagram of one market cycle within the field test.
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6.2. Setup and scenarios

During the field test several scenarios adaptions were made to analyze the impact of the market
participant set up and the structure of REPC on the LEM. The baseline scenario reflects the year
2020 and an increase of distributed generation and demand was projected for the year 2030. To
achieve this projection of parameters in the field test, the asset parameters of the virtual participants
were adapted accordingly (Table 6.1). The real participants and emulated participants at the
energy campus do not change parameters between the scenarios. The asset parameters of the
virtual participants for 2030 show a strong increase in PV capacity as well as controllable demand
(EVs and HPs). For the overall system (scenario 2030) a rated PV capacity of 115.5 kWp, an electric
storage capacity of 198 kWh, controllable generation of 395 kW (biodiesel and biogas generators)
and a controllable demand of 99 kW is installed. The participants are composed of 53 household
participant, 6 commercial participants. The emulated participants at the energy campus represent
one residential participant and one commercial participant. Additional generation capacity is
provided by the Virtual Power Plant (VPP) of the local utility. The VPP acts as participant at the
LEM selling electricity at a remote substation of the grid. The minimum sell prices of the VPP are
based on forecasts of spot market prices. It should be noted that especially due to the high rated
power of controllable generation, the considered system is oversized with regards to the available
generation.

Table 6.1.: Set up of market participants of the field test for the baseline (2020) and expansion
(2030) scenarios.

Scenario 2020 Scenario 2030
Virtual participants Number of households [-] 45 45

Number of commercial participants [-] 5 5
Electrical storage rated power [kW] 3 8
Electrical storage capacity [kWh] 5 5
Rated PV capacity [kWp] 6 55
Controllable demand [kW] 14 99

Real participants Number of households [-] 8 8
Number of commercial participants [-] 1 1
Rated PV capacity [kWp] 50.6 50.6
Controllable generation [kW] 240 240

Energy campus Emulated participants [-] 4 4
Electrical storage rated power [kW] 170 170
Electrical storage capacity [kWh] 193 193
Rated PV capacity [kWp] 9.9 9.9
Controllable generation [kW] 155 155

Additionally to the scenario adaption of asset parameters, the structure and quantity of REPC is var-
ied between two scenarios (Table 6.2, Figure 6.2). The regular fees scenario is based on the status
quo of the regulation, i.e., the main proportion of the overall fees (full grid fees, levies, surcharges)
is applied directly to each consumed kWh of a market participant. The electricity tax is assumed
as a variable portion which only needs to be paid when electricity is bought from a participant at
another substation. In a more progressive scenario (reduced fees) the grid fees of 9 ct/kWh are
equally split across the LV-, MV- and HV-level. An energy trade within the same substation is hence
only charged with LV grid fees, levies and surcharges. Surcharges are additionally reduced by the
EEG-surcharge (6.5 ct/kWh). Table 6.3 shows the schedule of the experiment with the respective
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expansion and REPC scenarios. The regular fees scenario will be referred to as unattractive scenario
and the reduced fees scenario will be referred to as attractive scenario in the following result section.

Table 6.2.: Distribution of Regulated Electricity Price Components (REPC)s for the two fee struc-
ture scenarios

Scenario
Regular fees

Scenario
Reduced fees

High voltage grid fees [ct/kWh] 0 3
Electricity tax [ct/kWh] 2.05 2.05
MV grid fees [ct/kWh] 0 3
Levies, surcharges [ct/kWh] 9.416 2.916
LV grid fees [ct/kWh] 9 3

110 kV 20 kV

20 kV

0.4 kV

~ =

Low voltage feeder

Participant bus

Substation

~ =

HV grid

(a) Grid model

Backup

Sell Buy Storage Buy BuyBuy

Levies, surcharges

Electricity tax

HV grid fees

LV grid fees

MV grid fees

Feeder limit

(b) LEM Model

Figure 6.2.: Representation of a typical radial distribution grid topology (a) and the applied fee
structure and grid limitations in the field test (b).

6.3. Results

6.3.1. Overview

For a first overview, Figure 6.3 shows the daily share of local and non-local generation in the
electrical energy consumption of the LEM participants. A clear fluctuation in local generation can
be seen across the scenarios. The average degree of self-sufficiency varies from 16% in the 2020
regular fees scenario to 97.7% in the 2030 reduced fees scenario (see Table 6.4).
Figure 6.4 shows the same plot partitioned into generation types. The Figure provides a first indi-
cation of the cause of the strong differences in the degree of self-sufficiency. It can be observed that
especially the share of biodiesel and biogas plants decreases strongly and is partly almost zero in the
regular fees scenarios. Furthermore, the generation share of the VPP is significantly higher in the
attractive scenarios (20.9% - 45.5%) than in unattractive scenarios (4.7% - 5.2%). Generation from
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Table 6.3.: Overview of time periods of the field test scenarios years and fee structures

Scenario
number Year Fee structure Scenario start date Scenario end date

1 2020 Reduced fees 01.04.2021 30.04.2021
2 2020 Regular fees 01.05.2021 31.05.2021
3 2030 Reduced fees 01.06.2021 30.06.2021
4 2030 Regular fees 01.07.2021 31.07.21
5 2030 Reduced fees 01.08.21 20.09.21
6 2030 Regular fees 21.09.21 15.10.21
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Figure 6.3.: Calculated relative daily generation share of local and nonlocal generation during the
field test. Data gap in August due to planned downtime of the system.

PV also varies between scenarios (10.7% - 27.1%), but this variation is not as pronounced compared
to the other generators. The strong variations between attractive and unattractive scenarios with
respect to VPP and biodiesel/biogas can be explained by the difference in the structure of REPCs.
In the case of biodiesel/biogas for example the average minimum sell price (15 ct/kWh) plus all
REPCs (20.5 ct/kWh in the regular fees scenario) exceed the maximum purchase price preference
of most participants (31 ct/kWh). Generation with lower minimum prices, e.g., from PV plants, is
matched more frequently at the LEM almost regardless of the scenario. The overall share of PV
generation increases from scenario 2020 to scenario 2030 as the installed PV capacity of virtual
participants is increased almost tenfold while the overall demand only increases slightly (Table 6.1).

Another remarkable observation is that the share of generation supplied by the VPP drastically
decreases between scenario 3 (45.4%) and 5 (20.9%) although the scenario settings are the same
(2030 reduced fees). This reduction can be attributed to the increase of day-ahead wholesale
market prices from an average of 74 e/MWh in scenario 3 to an average of 106 e/MWh in
scenario 5 during that time (Appendix Figure A.8). The VPP which forwards these prices to the
sell orders gets hence matched less at the LEM as the prices exceed the maximum buy price of
market participants.
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Table 6.4.: Scenario assumptions for base case, medium and high expansion cases
Scenario 1 2 3 4 5 6
Scenario Name 2020 Reduced 2020 Regular 2030 Reduced 2030 Regular 2030 Reduced 2030 Regular
Share of Generation

Backup supplier [%] 40.4 84.0 2.3 69.9 7.7 75.1
Biodiesel/Biogas [%] 17.5 0.0 22.9 - 45.5 2.9
PV [%] 16.7 10.7 27.1 20.6 24.3 16.1
Storage discharge [%] 1.2 0.6 2.2 0.9 1.5 0.6
Virtual power plant [%] 24.2 4.7 45.4 8.6 20.9 5.2
Self-sufficiency [%] 59.6 16.0 97.7 30.1 92.3 24.9
Average buy prices [ct/kWh] 26.6 29.3 25.3 28.8 26.3 29.1
Average sell prices [ct/kWh] 13.8 9.0 11.6 8.3 13.9 9.6
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Figure 6.4.: Calculated relative daily generation share of generation different generation types
during the field test. Data gap in August due to planned downtime of the system.

6.3.2. Flexibility

One goal of the LEM is to make optimal use of the available local flexibility. In the following, this
is illustrated by the example of flexible generation from biodiesel/biogas and storage flexibility.
Figure 6.5 shows the share of the different types of generation for three days in the attractive
scenario 2020. Flexible generation from biodiesel/biogas is matched by the LEM only when there
is little supply from PV plants and the VPP at the LEM. This is the case, for example, in the
morning and evening hours. Furthermore, in the sales bids of the biodiesel/biogas plants, a total
energy quantity, a maximum nominal power as well as a time range (02:00 - 22:00) were specified
(compare Chapter 3.1.1). For the night hours between 22:00 and 02:00, the only source available
locally are the storages which discharge during this time frame.

In contrast to the dispatch scenario the reduced fees scenario, Figure 6.6 shows three days from
a regular fees scenario. It can be seen, that no biodiesel/biogas generator is utilized in this
case. The storages are discharged at night, but to a much smaller degree than in the reduced
fees scenario. This is due to the fact that the storage facilities in the regular fees scenario are
only used to meet the individual participants’ own demand and are not made available to other
participants as flexibility. This is uneconomical in the regular fees scenario due to the higher REPCs.
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Figure 6.5.: Three example days (12.04.2021 - 15.04.2021) of the generation share within 15 min
trading periods in the scenario 2020 reduced fees.
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Figure 6.6.: Three example days (03.05.2021 - 06.05.2021) of the generation share within 15 min
trading periods in the scenario 2020 regular fees.

A detailed dispatch schedule of all storages over the entire field test period is shown in Figure 6.7.
As expected, the storage units are mainly charged over the midday period when low-cost PV
electricity is available. The storages are then discharged in the evening hours or at night. In the
reduced fees scenarios, there is additional charging power in the midday hours and discharging
power in the evening hours. This is particularly pronounced in the 2030 scenarios with increased
PV capacity. In addition, especially in the first scenario (2020 reduced fees), individual quarter
hours with high charging capacities can be seen. The patterns described in the reduced fees
scenarios can be explained by the use of the community storage at the energy campus. The main
discharge periods are in the night hours starting from 22:00. As explained above, this is the time
period where no flexible generation from biogas/biodiesel generators is available.
The storages are mainly used for self-consumption in the regular fees scenarios because the
additional revenue that must be generated by buying and selling a kWh cannot be generated
(higher REPCs, see above). In the reduced fees scenarios, however, favorable prices at the midday
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peak of the PV feed-in or low prices of the VPP are used to charge the storage and then profitably
sell it again in the evening when there is an under supply. This effect will be examined in more
detail in the following chapter with a detailed analysis of the market prices.
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Figure 6.7.: Calculated heatmap of the storage usage throughout the field test.

6.3.3. Market prices

Figure 6.8 shows the volume-weighted sell prices at the LEM over the days (X-axis) and time of
day (Y-axis) of all six scenarios. The prices range from about 6 ct/kWh to about 20 ct/kWh and
differ strongly between the individual scenarios. Both the composition of the participants (2020 vs.
2030) and the design of REPCs have a strong influence on the pricing. For white fields (missing
values), no local trading occurred. In the reduced fees scenarios, generation from biodiesel/biogas
dominates the price in the evening or at night (15 ct/kWh). As already described in the previous
section, the storage facilities feed in during the night hours (22:00 - 02:00) and are the only
"producers" that determine the price here. With a typical maximum purchase price of about 31
ct/kWh (gross), storages can get paid more then 20 ct/kWh (net) for their electricity. In the most
favorable case (trading at the same transformer station), the electricity tax, medium and high
voltage grid fees as well as the EEG levy are omitted, which leads to a reduced REPCs of 5.9 ct/kWh.
For several days in the reduced fees scenarios, the prices also drop to 6-8 ct/kWh during evening
and night hours. In these days, the price is predominantly influenced by the VPP. This influence
decreases comparing scenario 3 and 5 due to the increased wholesale market prices (compare
Figure A.8 in the Appendix).
In the regular fees scenario 2030, the prices are mainly influenced by the generation of PV electricity.
In case of a strong surplus at midday, the price drops down to 6 ct/kWh hour. In the regular fees
scenario 2020, significantly less PV power is installed than in the reduced fees scenario 2020. In
both scenarios, the load at midday is dominated by commercial participants who have increased
consumption at midday. Thus, in the attractive scenario 2020, the price at midday is determined
by the PV installations, but since there is mostly shortfall in the market, the price is determined by
the buyers and leads to increased revenues on the generation side (about 18 ct/kWh).
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Figure 6.8.: Calculated heatmap of weighted average buy prices at the LEM within the demonstra-
tor period.

The consideration of the grid topology and topology dependent REPCs in the market matching
optimization lead to nodal prices as a result of the market matching. Figure 6.9 shows the average
buy prices for the 2030 scenarios plotted over the share of generation which is supplied directly to
demand at the same substation. Especially in the reduced fees scenario a strong reduction of the
average buy price can be observed for increasing generation shares at the same substation. At the
most expensive substation with no generation the weighted average price is 26.5 ct/kWh, whereas
the cheapest price is 21.2 ct/kWh at a substation with 52.3 % generation. The same effect can be
observed for the regular fees scenario. However the influence of the generation share is not as
prominent, as the reduction of fees is only 2.05 ct/kWh (electricity tax) in this scenario.

6.3.4. Grid utilization

As described in Section 6.1, the DSO is able to influence the market matching by sending daily
power limits. During the field test, the low voltage feeder lines where limited both for imports
to the feeder as well as exports from the feeder. The feeder node IDs are anonymized (mapped
with random numbers) in the following evaluations. Figure 6.10 shows an example of a feeder
with 4 market participants including PV generation. The import and export limits are represented
with the dotted lines. The residual load at the feeder is the result of the market matching and
represents the trades at the LEM 2. The example days demonstrate that the export limit follows
the inverse of a typical PV generation profile. With this, the DSO is able to limit the local trades
during the peak feed-in times around 13:00 at midday. At several 15 minute intervals, e.g., on the
9th of April, the residual load reaches the limit of the feeder export. The demand limit however is
not reached in this example.

2Trades with the backup utility are not shown here as they are not limited by the market. These trades could result in
a violation of the constraints. However, curtailment of load and generation through the market which, would solve
this issue, was not considered during the field test.
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Figure 6.9.: Calculated weighted average buy prices at 8 substations in the field test over the
share of generation at the same substation (self-sufficiency). Each scatter represents
one substation.
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Figure 6.10.: Example of low voltage feeder limits and residual load of feeder #N4 between
05.04.2021 and 10.04.2021. The residual load represents the result of all buy, sell
and storage orders traded locally at the feeder. Feeder limits are inputs from the
DSO.

For all quarter-hourly time steps of the demonstrator, the distribution of the utilization of the
individual low-voltage lines is shown in Figure 6.11. While a large part of the feeders show a
low average utilization, some feeders show a significant amount of 15 minute intervals with full
utilization. High utilization rates are registered in particular on the feed-in side. A full (100 %)
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utilization can be interpreted as an avoidance of a voltage violation, as this is the limit is set by the
DSO exactly at a rate where no voltage violations are expected.
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Figure 6.11.: Boxplots of the calculated utilization factor at low voltage feeders for all 15 minute
intervals during the field test.

In Figure 6.12 the sum of these violations is plotted for the affected low voltage feeders. A total of
six low voltage feeders are affected by critical utilization. A total of 1499 trading intervals were
limited by the input of the DSO. 99.5 % of all avoided violations can be attributed to limiting the
generation at low voltage feeders. Only 0.5 % are due to demand limitations.
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Figure 6.12.: Sum of all 15 minute time intervals where a voltage violation is avoided (feeder is
fully utilized) during the field test period.
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6.3.5. Forecast uncertainty

As demonstrated in the simulative results (Section 5.3), day-ahead load forecasting for individual
participants is challenging and leads to high errors between forecasted/traded demand and the
actual measurement. Figure 6.13 shows the Mean Absolute Percentage Error (MAPE) of the
demand forecasts for all real participants divided into three categories (Commercial, Household
and Household with EV). The forecast errors range between 29 % and 330 %, which is in line with
typical forecast errors found in the literature (Figure 2.12). The household with EV stands out as
the magnitude of the error is considerably higher than the ones of households and commercial
participant. Examples of each category are shown in the following figures.
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Figure 6.13.: Day-ahead load forecast error of different real participants during the first 4 scenarios
of the demonstrator (01.04.2021-30.07.2021)

Figure 6.14 shows exemplaric days of the forecasted and measured demand of participant B20.
High measured loads between 9 ... 12 kW during midday of the first days (20.04.21 and 21.04.21)
indicate the charging of the EV. The forecasting algorithm anticipates this behavior and forecasts a
similiar pattern for the next day (22.04.21). However, no clear charging pattern can be observed
for the coming days. This leads to a large positive bias of the forecast and large errors during this
period.
The stochastic charging behavior however is not limited to the example days as shown in the
heatmap in Figure 6.15. Although there is an observable tendency of charging periods during the
middle of the day, this pattern is not regular and hence hard to forecast (MAPE of 330 %).

A contrary household example with a MAPE of only 33 % is shown in the heatmap Figure 6.16. A
clear pattern of increased load during the morning hours around 6:00 and midday around 12:00
is observable. However, in the example Figure 6.17, the magnitude of the profile is forecasted
accurately however the exact match of the 15 min intervals is still inaccurate. A vertical and
horizontal shift comparably to the results of the simulation chapter (section 5.3) can be observed.
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Figure 6.14.: Example days of the measured and forecasted demand of participant B20 (partici-
pant with EV).

As an example of a load profile with clear and repetitive demand patterns, heatmap and example
days of participant L29 (commercial) are illustrated in Figure 6.18 and 6.19. The heatmap profiles
shows regularly weekly pattern with increased demand during 6:00 and 20:00 at 5 days of the
week and 6:00 to 17:00 at 1 day of the week. Figure 6.18 shows that this pattern is reproduced
well by the forecasting algorithm leading to an overall MAPE of 29 %.
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Figure 6.15.: Measured heatmap of the electric demand of participant B20 during the first 4
scenarios.
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Figure 6.16.: Measured heatmap of the electric demand of participant H26 during the first 4
scenarios.
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Figure 6.17.: Example days of the measured and forecasted demand of participant H26.
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Figure 6.18.: Example days of the measured and forecasted demand of participant L29 (commer-
cial).
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Figure 6.19.: Measured heatmap of the electric demand of participant L29 during the first 4
scenarios.
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6.4. Discussion

The field-test application demonstrates that the market model developed in this thesis is imple-
mentable in the real-world. The results show similar findings compared to the simulative evaluation
and even extends them. This section reflects the field-test results and puts them into context to the
findings of the simulative evaluation and discusses limitations.

The introduction of reduced REPCs in the field-test result in an increased self-sufficiency compared
to the regular fee structure. Although a benchmark case without a LEM is not analyzed in the
field-test, these findings indicate that the additional usage of flexible generation and storages
through the LEM drastically increases self-sufficiency. The absolute values of self-sufficiency in
the regular fee scenario for the scenario year (25 ... 30 %) are in the same order of magnitude
compared to the simulation of the rural grid and the scenario year 2035 (37 %). The absolute
self-sufficiency in the scenarios with reduced fees (92 ... 98 %) is drastically higher compared
to any scenario in the simulation results. This is mainly due to relatively large dimensioning of
dispatchable generation in the field test (biodiesel/biogas) which is able to supply almost all load.

The results additionally show that the desired incentivation of flexibility is achieved. Sellers
with higher marginal costs (e.g., Biogas) are only operated if cheaper sources such as PV are not
available. The schedule patterns of battery storages show that the batteries are not only used for
self-consumption, but are shared amongst participants increasing local self-consumption.

Regarding the price formation at the LEM, two additional observations can be made compared to
the simulative study.
In the field-test, prices are not only determined by the scarcity or excess of local PV generation
and their minimum prices but also through the local VPP which provides price signals from the
wholesale market. It is demonstrated that this coupling works, since with the drastic increase of
day-ahead spot prices in the last quarter of the field-test period the share of generation from the
VPP decreased.
Through the consideration of multiple LV/MV another observation can be made. The results show
an almost linear relationship between increasing self-sufficiency at a substation and decreasing
buy prices at the same substation. Reduced fees at substation level might directly incentivize
investments of generation capacity at substations with a low share of self-sufficiency and additional
demand vice versa (compare Figure 6.9).

The additional interface with the DSO, which can provide upper limits of active power at certain
feeders shows that the developed market model limits the traded amount on the LEM to the lower
or upper bound of the DSO. This might not necessarily avoid all overloadings/overvoltages in the
grid due to forecast uncertainty, but might however give DSOs a hint on specifically stressed grid
equipment and critical buses.

The analysis on load forecasting errors of the participants in the field-tests confirms the findings
from typical day-ahead forecast errors in the literature for single households (MAPE of 33 ... 130
%, compare Figure 2.12). An additional observation is that the issue of forecasting errors might
even further with the uptake of EVs charging at households (MAPE of 330 %). These findings
make the topic of handling of uncertainties even more important for future research.

An overall remark has to be made on the generalization of the found results. Since the field-test
was performed with only 9 real participants in one specific distribution, the findings on absolute
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numbers are not generalizable to other grid types or regulatory frameworks. Future research
should address larger use cases or even a commercial long-term experiment.
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7. Conclusion and outlook

7.1. Conclusions

This Thesis dealt with the main research question of how Local Energy Markets (LEMs) can be
designed to incentivize regional flexibility options and contribute to the grid integration of Variable
Renewable Energies (VREs), Electric Vehicles (EVs) and Heat Pumps (HPs). To answer this question
a novel market model for LEMs was developed and evaluated through extensive simulations and
applied in a field-test. The following sub-questions were formulated after the analysis of the
problem and are answered and reflected with regards to the findings in this Thesis in this Section:

1. How can an optimized scheduling of DERs be achieved through a LEM without a central
coordinator while providing real world applicability?

To address this question a novel market model formulated as a linear optimization problem
was developed in this Thesis. Relevant parameters for an optimal dispatch of DER, e.g., maximum
energy and power limits of flexible loads or storage parameters are abstracted as buy-, sell- and
storage orders. These orders are generated at participant level thus abstracting the interface to
the market operator without revealing specific asset parameters. A simulative framework was
developed to analyze the proposed market model. Yearly simulation experiments for generic
German rural, semiurban and urban distribution grids were conducted for scenario years 2020,
2025, 2030 and 2035. The simulation results show that the implementation of a LEM increases
self-consumption, self-sufficiency and financial benefits of market participants compared to a
benchmark case without the introduction of a LEM. The described findings increase throughout
the scenario years with the highest impact starting with scenario year 2030.
The implementation of the market model in a field-test in Southern Germany demonstrated the real
world applicability of the approach. The field-test revealed similar findings as the simulation and
additionally highlights the importance of load forecast uncertainty in LEMs (addressed in Question
3.). The performed scalability analysis showed that the computation time of the LP formulation is
highly dependent on the number of considered timesteps, the number of storage orders considered
and the number of nodes in the grid model. For a case with 10,000 market participants, each
equipped with a load- generation- and storage-asset, the solver time stayed below one time interval
(15 min) of the market matching problem.

2. What effect does a dynamization of Regulated Electricity Price Components (REPCs)
have on local energy trading? How can REPCs be utilized to steer local energy trading in a
grid-friendly manner?

Several potential regulatory schemes of REPCs were analyzed in the simulative evaluation of
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this Thesis. An energy fee based flat tariff scheme, i.e., every consumed kWh is attached with
a constant REPC, an energy fee based scheme with a reduction of fees for trades at the same
feeder, an energy fee based scheme with a time variable component based on spot market prices
and a scheme with additional power fees were compared. The results indicate that significant
differences of peak loads and peak feed-in occur for the different REPC schemes. While power fees
can drastically reduce peaks, a time variable schema might induce higher peak loads compared
to solely energy fee based schemas. Policy makers should hence take careful consideration when
designing the regulatory framework of LEMs to steer the system operation to a grid-friendly manner.

3. Does the LEM produce price signals which financially incentivize the participation of
prosumers? How does forecast uncertainty affect the benefit of participation of prosumers?

The simulative evaluation showed that the market model is able to generate temporal, spatial and
asset-specific prices signals. Depending on the grid type and its load-generation ratio, participants
with generation assets show higher benefits in the urban, load dominated grids whereas consumers
show a higher benefit in generation and flexibility dominated grids (rural and semiurban). An
asset-specific analysis of participation benefits reveals that demand assets (EVs, HPs, inflexible
loads) show similar average benefits if flexibility to reduce peaks is not additionally incentivized.
EVs charging at work benefit from excess PV and low prices during midday, while HPs and EVs
charging at home compete for storage discharging capacity during nighttime.
The analysis of the impact of load forecast uncertainty shows that introducing penalty payments
for over- or under-consumptions reduces achievable participant benefits drastically and might make
a participation uneconomical. An analysis of the forecast errors of participants in the field-test
confirmed the ranges of day-ahead forecast errors found in the literature (30 ... 130 % MAPE) and
revealed that additional uncertainties introduced by EV charging (330 % MAPE for a single EV)
might further significantly increase forecast errors.

7.2. Outlook

Several limitations of the study were identified, which should be addressed in future research.

As demonstrated in the simulative experiments and the field-tests, forecast uncertainty might
be a major concern for the implementation of LEMs. This Thesis did not include an analysis of
potential measures to reduce the impact of forecast uncertainty such as an intraday market or the
aggregation of participants, which could be an interesting future research direction. As shown in
[174], optimal aggregation of participant load profiles can significantly reduce forecasting errors
and the resulting negative effects.

Macroecomic aspects, e.g., considering the impact of an implementation of a trans-regional energy
system with multiple LEMs or the impact of LEMs on the wholesale energy market were not studied
in this Thesis. First research in this direction by Schmitt et al. [180] show promising results
using a framework to model a pan-European energy system including LEMs. Additional aspects to
investigate might be the exploitation of market power by participants at the LEM and measures
to avoid market manipulation. Further aspects that requires detailed attention are distributional
effects introduced with the adaption of LEMs. Depending on the market design and changes to the
regulatory framework, regions or individual customers might benefit to the costs of other regions
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or customers [181]. Future research should focus on market designs which prevent or reduce
distributional effects.
The technical scope of the model could be extended by, e.g., considering additional sources of
VRE such as wind power. The usage of EVs as grid storages (Vehicle-to-Grid) might be another
source of flexibility to reduce load and feed-in peaks. Additionally, results of the operation of the
energy system through the LEM could be postprocessed in a power flow simulation for a detailed
assessment of impacts on the distribution grid. First results [182] indicate that the proposed
market matching algorithm is capable of not only reducing power peaks but also mitigating voltage
violations at critical busses in the distribution grid. In a further step, power flow equations could
be integrated into the market matching problem as for example demonstrated by Guerrero et al.
[183].
Regarding the financial incentivation of participation at a LEM, future work should focus on
determining the minimal benefit required to make a participation economically viable. This
analysis should focus on the costs for hardware like edge devices or smart meters, engineering,
commissioning and the operation of the market infrastructure which are not analyzed in this
Thesis.
In the introduction of this Thesis research by Schweppe et al. [12], [13] was cited who proposed
direct engagement of end-customers in the energy market already in the 1980s. However, almost 40
years later the direct participation of end-customers in the energy market is still not achieved. This
Thesis demonstrated that such engagement can technically be realized through LEMs including
substantial benefits not only for participants but also for the grid integration of renewables and
flexible loads. Regulatory boundaries seem to be major hurdle to overcome for a widespread
implementation of end-customer engagement in energy markets. Nevertheless, similar concepts
like renewable energy communities, which are closer to regulatory implementation or are already
regulated, e.g., in Austria, seem to be a promising future research field with analogous effects to
LEMs as for example demonstrated by Sudhoff et al. [184].
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A. Appendix

A.1. Appendix to background and analysis chapter
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Figure A.1.: Temporal sequence of energy and ancillary service markets in Germany. Own illustra-
tion based on [185].

A.2. Appendix to modeling chapter

Electricity categories

Electricity categories are introduced to further incentivize participation at the LEM. Buyers can
specify additional markups for preferred electricity categories from a set of available categories C
(Figure A.4). The maximum buy price cbmax,t specified in the buy order is extended to cbmax,t,c to
define an absolute price for each available category (if applicable). Sellers mark their sell order with
one of the categories1. The whole optimization model is extended by the dimension of categories.
Node balance equations, for example (Equation 3.27, 3.28) are extended to cover the balance not
1In a real world application this requires a calibration and certification of the respective measurement device to perform
billing.
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Figure A.2.: Piecewise linear interpolation of EV consumption dependency of ambient temperature
(θa) and driving speed for an average vehicle based on [139].
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Figure A.3.: Probability of arriving at work based on empirical data in [138].

only in time but also category wise.
The new formulation can be pictured as multiple grid layers for each category. To introduce
permeability between these layers, available categories are organized in a hierarchical manner
(Figure A.4). Categories with the highest quality (Wind, Bio, Solar, Hydro) can be sold as their
own category, green, local or non-local. The category green, e.g., chosen by a participant which
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wants to consume arbitrary renewable energy, can only supply green, local or non local customers.
A seller of local energy (e.g., a CHP power plant) can only sell on the local layer or to the backup
supplier (non-local).
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Figure A.4.: Overview of tradable electricity product categories on the LEM

While the physical layer of the grid is not directly affected by this, it might incentivize further
investment in generation units supplying the most demanded category. The currently implemented
scheme for trading renewable energy certificates in the European Union [186] does not account
for the exact time the renewable energy is generated and consumed. The described model allows
to make the category wise generation traceable on the basis of the time interval of the model, e.g.,
on a 15 min basis.

A.3. Appendix to method chapter
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Figure A.5.: Day ahead spot market price and arbitrage opportunities for the time frame 2016-2018
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Table A.1.: Simulation scenario parameters and assumptions for the scenario year 2020.

Rural Semiurban Urban
Parameter Type/Unit
Grid connection points Count [-] 96 110 58
Residential loads Count [-] 92 92 102
Commercial loads Count [-] 7 12 9
Photovoltaic systems Rated power [kW] 185.7 202.7 93.8

Count [-] 19 30 19
Heat pumps Rated power [kW] 16.8 19.8 13.8

Count [-] 5 5 3
share 5.1 4.8 2.7

Electric vehicles Rated power [kW] 22.0 29.2 0
Count [-] 1 1 0

Battery Rated power [kW] 20.7 55.0 11.3
Count [-] 8 15 7
Capacity [kWh] 41.4 110.1 22.6

Electric load Energy [MWh] 257.9 470.3 530.9
Thermal load Energy [MWh] 19.1 31.2 27.7
Electric load EV Energy [MWh] 4.6 3.3 0.0
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Table A.2.: Simulation scenario parameters and assumptions for the scenario year 2025.

Rural Semiurban Urban
Parameter Type/Unit
Grid connection points Count [-] 96 110 58
Residential loads Count [-] 92 92 102
Commercial loads Count [-] 7 12 9
Photovoltaic systems Rated power [kW] 236.0 284.8 139.6

Count [-] 19 30 19
Heat pumps Rated power [kW] 38.6 26.7 15.8

Count [-] 6 7 4
share 6.1 6.7 3.6

Electric vehicles Rated power [kW] 80.4 91.3 82.3
Count [-] 11 12 6

Battery Rated power [kW] 46.5 123.9 25.4
Count [-] 8 15 7
Capacity [kWh] 93.2 247.8 50.8

Electric load Energy [MWh] 257.9 470.3 530.9
Thermal load Energy [MWh] 37.8 42.0 33.7
Electric load EV Energy [MWh] 40.1 30.7 20.8
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Table A.3.: Simulation scenario parameters and assumptions for the scenario year 2030.

Rural Semiurban Urban
Parameter Type/Unit
Grid connection points Count [-] 96 110 58
Residential loads Count [-] 92 92 102
Commercial loads Count [-] 7 12 9
Photovoltaic systems Rated power [kW] 286.4 366.8 185.4

Count [-] 19 30 19
Heat pumps Rated power [kW] 102.0 63.2 41.6

Count [-] 13 15 8
share 13.1 14.4 7.2

Electric vehicles Rated power [kW] 157.1 175.2 122.4
Count [-] 22 23 11

Battery Rated power [kW] 72.3 192.7 39.5
Count [-] 8 15 7
Capacity [kWh] 144.9 385.4 79.1

Electric load Energy [MWh] 257.9 470.3 530.9
Thermal load Energy [MWh] 101.8 98.7 64.3
Electric load EV Energy [MWh] 75.2 62.7 36.7

A.4. Appendix to results chapter
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Figure A.6.: Boxplots of the daily maximum and minimum exchange with the backup utility for a
variation of scenario years and REPC scenarios.
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Figure A.7.: Heatmaps for a variation of REPC scenarios. Grid type: Rural, Scenario year: 2035.
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Figure A.8.: Day ahead spot market prices for the zone Germany/Luxembourg at EPEX Spot during
the field test. Source: [156].
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