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Abstract

Advanced functional materials play a vital role in modern industry and human society.
Therefore, accelerating the discovery and exploration of novel functional materials is
critical for us as a society to tackle the energy issues and further developments. In
this regard, computational materials science based on quantum mechanics is now well
established as a crucial pillar in condensed matter physics, chemistry, and materials
science research, in addition to experiments and phenomenological theories. In this
thesis, the strategy of designing new functional materials driven by the lattice degree of
freedom is explored, where "lattice" refers to (1) the ground state crystal structures, (2)
elementary excitations as represented by phonons, (3) coupling within themselves (i.e.,
anharmonicity) and the other degrees of freedom (i.e., electron-phonon interaction).
We systematically studied several classes of physical phenomena and the resulting
properties, such as magneto-structural coupling and magnetocalorics, anharmonicity
and thermal conductivity, electron-phonon interaction and superconductivity. Addi-
tionally, an integrated computational paradigm that combines the high-throughput
(HTP) calculations, phonon theory, and CALPHAD methods is established and applied
to design metastable functional materials, extending the applicability of DFT beyond 0
K.

Considering lattice as crystal structures, we selected MAB phases with nanolaminated
crystal structure as a test case, and performed an HTP screening for stable magnetic MAB
compounds and predicted potential candidate magnets for permanent magnets and
magnetocaloric applications. After a comprehensive validation, 21 novel compounds are
predicted to be stable based on the systematic evaluation of thermodynamic, mechanical,
and dynamical stabilities, and the number of stable compounds is increased to 434
taking the tolerance of convex hull being 100 meV/atom. The detailed evaluation of
the magnetocrystalline anisotropy energy (MAE) and the magnetic deformations (ÂM)
leads to 23 compounds with significant uniaxial anisotropy (MAE > 0.4 MJ/m3) and
99 systems with reasonable magnetic deformation (ÂM > 1.5%). For those compounds
containing no expensive, toxic, or critical elements, it is observed that Fe3Zn2B2 is a
reasonable candidate as gap permanent magnet, and Fe4AlB4, Fe3AlB4, Fe3ZnB4, and
Fe5B2 as potential magnetocaloric materials. This work paves the way for designing novel
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magnetic materials for energy applications based on the combinatorial sampling of the
chemical space with specific crystal structure prototypes.

Moreover, considering the elementary excitations of lattice vibrations, i.e., phonons,
the anharmonicity caused by phonon-phonon interaction leads to many intriguing
properties such as the lattice thermal conductivity. We performed DFT calculations
to evaluate the thermal transport properties of novel 2D MoSi2N4 and WSi2N4, and
found their thermal conductivities being 162 Wm�1K�1 and 88 Wm�1K�1 at room
temperature, respectively, which are 7 and 4 times the one for monolayer MoS2, 16
and 9 times the one for silicene. These results show that, MoSi2N4 and WSi2N4 have
promising potential being thermal management materials. Additionally, to gain insight
into the low thermal conductivity of 2D materials, we investigated the mechanism of
anharmonicity from the fundamental phonon mode and electronic structure level for
GaX (X= N, P, As). The thermal conductivity of GaP is calculated to be 1.52 Wm�1K�1,
which is unexpectedly ultra-low and in sharp contrast to GaN and GaAs. The reason
for the low thermal conductivity of the GaP can be attributed to the fact that the FA
phonon dominates the thermal conductivity of GaN but contributes less to that of GaP,
which is due to the symmetry-based selection rule and di�erence of atomic structure.
The phonon anharmonicity quantified by the Grüneisen parameter is further analyzed
to understand the phonon–phonon scattering, indicating the strong phonon-phonon
scattering of GaP and the strongest phonon anharmonicity of GaP. The buckling structure
has strong influence on the anharmonicity, leading to the low thermal conductivity.
The non-bonding lone pair electrons of P and As atoms are stronger, which induces
nonlinear electrostatic forces upon thermal agitation, leading to increased phonon
anharmonicity in the lattice and thus reducing the thermal conductivity. Furthermore,
high order phonon anharmonicity could have significant e�ect on the thermal transport
properties in materials within strong anharmonicity. Hence, we calculated the thermal
conductivity of pristine EuTiO3. And the role of the quartic anharmonicity in the lattice
dynamics and thermal transport of the cubic EuTiO3 was elucidated by combining ab
initio self-consistent phonon theory with compressive sensing techniques. The anti-
ferromagnetic G-type magnetic structure is used to mimic the para-magnetic EuTiO3.
We find that the strong quartic anharmonicity of oxygen atoms plays an important role
in the phonon quasiparticles without imaginary frequencies and causes the hardening
of the vibrational frequencies of soft modes.

Furthermore, in terms of electron-phonon interaction, we derived from DFT calculations
the formation energies of a newly synthesized orthorhombic compound GeNCr3, which is
a metastable phase. In accordance with the experimentally discovered superconductivity
in antiperovskite MgCNi3, we performed calculations to evaluate the electron-phonon
interaction and the resulting superconducting critical temperature of GeNCr3. It is
observed that its superconducting temperature is about 8.2 K driven by the electron
phonon interaction. Correspondingly, it is suspected that the superconductivity may
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exist in the other MAX, MAB, and APV compounds, which will be investigated in the
future based on the established workflow to evaluate the electron phonon coupling.
Such a workflow allows us to obtain the T-dependence of electric conductivities and
also the lattice thermal conductivities.

Last but not least, considering the thermodynamic properties where the lattice free
energy plays a dominant role at the finite temperatures, we combined DFT calcula-
tions and CALPHAD modeling to optimize the phase diagrams, which can be validated
with experiments and be bridged to phase field simulations to map out the processing-
microstructure-property relationships. For instance, the thermodynamic properties
of the Fe-Sn system are studied. First-principles phonon calculations with the quasi-
harmonic approximation (QHA) approach were performed to compute the thermody-
namic properties at finite temperatures. Thermodynamic properties, phonon dispersions
of pure elements, and intermetallics were predicted to make up for the shortage of ex-
perimental data. A set of self-consistent thermodynamic parameters of Fe-Sn system are
obtained by the CALPHAD approach. Thermodynamic modeling of the Fe-Sn phase dia-
gram has been re-established. The metastable phase Fe3Sn was first introduced into the
current metastable phase diagram and corrected phase locations of Fe5Sn3 and Fe3Sn2

under the newly measured corrected temperature ranges.

In summary, in my thesis, a systematic computational paradigm has been established
based on DFT to tackle both the thermodynamic and non-equilibrium transport proper-
ties associated with the lattice degree of freedom. Such a paradigm allows us to design
and optimize functional materials with physical properties driven by magneto-structural
coupling, phonon-phonon coupling, and electron-phonon interaction, and also to bridge
to large-scale simulations.
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Zusammenfassung

Fortschrittliche Funktionswerksto�e spielen in der modernen Industrie und der men-
schlichen Gesellschaft eine entscheidende Rolle. Daher ist die Beschleunigung der
Entdeckung und Erforschung neuartiger Funktionsmaterialien für uns als Gesellschaft
von entscheidender Bedeutung, um die Energieprobleme und weitere Entwicklun-
gen anzugehen. In diesem Zusammenhang hat sich die auf der Quantenmechanik
basierende rechnergestützte Materialwissenschaft neben Experimenten und phänome-
nologischen Theorien als wichtige Säule der Physik der kondensierten Materie, der
Chemie und der materialwissenschaftlichen Forschung etabliert. In dieser Arbeit wird
die Strategie des Entwurfs neuer funktioneller Materialien untersucht, die durch
den Freiheitsgrad des Gitters angetrieben werden, wobei sich "Gitter" auf (1) die
Grundzustands-Kristallstrukturen, (2) elementare Anregungen, wie sie durch Phononen
dargestellt werden, (3) die Kopplung in sich selbst (d. h. Anharmonizität) und die
anderen Freiheitsgrade (d. h. Elektron-Phonon-Wechselwirkung) bezieht. Wir haben
systematisch mehrere Klassen physikalischer Phänomene und die daraus resultierenden
Eigenschaften untersucht, wie z. B. magnetisch-strukturelle Kopplung und Magne-
tokalorik, Anharmonizität und Wärmeleitfähigkeit, Elektron-Phonon-Wechselwirkung
und Supraleitung. Darüber hinaus wurde ein integriertes Berechnungsparadigma
entwickelt, das Berechnungen mit hohem Durchsatz (HTP), Phononentheorie und
CALPHAD-Methoden kombiniert und zur Entwicklung metastabiler funktioneller Mate-
rialien eingesetzt wird, wodurch die Anwendbarkeit von DFT über 0 K hinaus erweitert
wird.

Unter Berücksichtigung des Gitters als Kristallstruktur haben wir MAB-Phasen mit
nanolaminierter Kristallstruktur als Testfall ausgewählt und ein HTP-Screening nach
stabilen magnetischen MAB-Verbindungen durchgeführt und potenzielle Magnetkan-
didaten für Permanentmagnete und magnetokalorische Anwendungen vorhergesagt.
Nach einer umfassenden Validierung wurden 21 neue Verbindungen auf der Grund-
lage der systematischen Bewertung der thermodynamischen, mechanischen und dy-
namischen Stabilität als stabil eingestuft, und die Anzahl der stabilen Verbindungen
wurde auf 434 erhöht, wobei die Toleranz der konvexen Hülle 100 meV/Atom be-
trägt. Die detaillierte Auswertung der magnetokristallinen Anisotropieenergie (MAE)
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und der magnetischen Verformungen (ÂM) führt zu 23 Verbindungen mit signifikan-
ter uniaxialer Anisotropie (MAE > 0.4 MJ/m3) und 99 Systemen mit angemessener
magnetischer Verformung (ÂM > 1.5%). Bei den Verbindungen, die keine teuren,
giftigen oder kritischen Elemente enthalten, ist Fe3Zn2B2 ein geeigneter Kandidat
für einen Lückenmagneten. Fe4AlB4, Fe3AlB4, Fe3ZnB4 und Fe5B2 können potenzielle
magnetokalorische Materialien sein. Diese Arbeit ebnet den Weg für die Entwicklung
neuartiger magnetischer Materialien für Energieanwendungen auf der Grundlage der
kombinatorischen Abtastung des chemischen Raums mit spezifischen Kristallstruktur-
prototypen.

Betrachtet man darüber hinaus die elementaren Anregungen der Gitterschwingungen,
d. h. die Phononen, so führt die Anharmonizität, die durch die Phonon-Phonon-
Wechselwirkung verursacht wird, zu vielen faszinierenden Eigenschaften wie zum
Beispiel die Wärmeleitfähigkeit des Gitters. Wir haben DFT-Berechnungen zur Be-
wertung die thermischen Transporteigenschaften von neuartigem 2D MoSi2N4 und
WSi2N4 durchgeführt und fanden deren Wärmeleitfähigkeiten bei 162 Wm�1K�1 und
88 Wm�1K�1 bei Raumtemperatur, was 7- bzw. 4-fach höher ist als die Wärmeleit-
fähigkeit von einlagigem MoS2 und 16- bzw. 9-fach höher ist als die Wärmefähigkeit
für Silicen. Diese Ergebnisse zeigen, dass MoSi2N4 und WSi2N4 ein vielversprechendes
Potenzial als Thermomanagementmaterialien haben. Um einen Einblick in die niedrige
Wärmeleitfähigkeit von 2D-Materialien zu erhalten, haben wir den Mechanismus der
Anharmonizität anhand des fundamentalen Phononenmodus und des elektronischen
Strukturniveaus für GaX (X= N, P, As) untersucht. Die Wärmeleitfähigkeit von GaP
wird berechnet bei 1,52 Wm�1K�1, das ist unerwartet niedrig und steht in scharfem
Kontrast zu GaN und GaAs. Der Grund für die niedrige Wärmeleitfähigkeit von GaP
kann darauf zurückgeführt werden, dass das FA-Phonon die Wärmeleitfähigkeit von
GaN dominiert, aber weniger zur Wärmeleitfähigkeit von GaP beiträgt, was auf die
symmetriebasierte Selektionsregel und die unterschiedliche atomare Struktur zurück-
zuführen ist. Die Phonon Anharmonizität, quantifiziert durch den Grüneisen-Parameter,
wird weiter analysiert, um die die Phonon-Phonon-Streuung zu verstehen, was auf
die starke Phonon-Phonon-Streuung von GaP und die stärkste Phonon-Anharmonizität
von GaP deutet. Die Knickstruktur hat einen starken Einfluss auf die Anharmoniz-
ität, was zu einer niedrigen Wärmeleitfähigkeit führt. Die nicht-bindenden einsamen
Elektronenpaare von P- und As-Atomen sind stärker, was bei thermischer Bewegung
nichtlineare elektrostatische Kräfte bei thermischer Bewegung induzieren, was zu einer
erhöhten Phononenharmonizität im Gitter führt und damit zu einer Verringerung der
Wärmeleitfähigkeit. Außerdem könnte die hohe Ordnung Phononenanharmonizität
erhebliche Auswirkungen auf die thermischen Transporteigenschaften in Materialien
mit starker Anharmonizität haben. Daher haben wir die Wärmeleitfähigkeit von un-
behandeltem EuTiO3 berechnet. Und die Rolle der quartischen Anharmonizität für
die Gitterdynamik und des Wärmetransports von kubischem EuTiO3 wurde durch die
Kombination von ab initio selbst konsistenten Phononentheorie mit Techniken der
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Drucksensorik aufgeklärt. Die anti-ferromagnetische G-Typ-Magnetstruktur wird zur
Nachahmung des paramagnetischen EuTiO3 verwendet. Wir finden, dass die starke
quartische Anharmonizität der Sauersto�atome eine wichtige Rolle bei den Phononen
Quasiteilchen ohne imaginäre Frequenzen spielt und die Verhärtung der vibrationellen
Frequenzen der weichen Moden verursacht.

Darüber hinaus haben wir anhand von DFT-Berechnungen die Bildungsenergien einer
neu synthetisierten orthorhombischen Verbindung GeNCr3 ermittelt, die eine metasta-
bile Phase ist. In Übereinstimmung mit der experimentell entdeckten Supraleitfähigkeit
im Antiperowskit MgCNi3 haben wir Berechnungen durchgeführt, um die Elektron-
Phonon-Wechselwirkung und die daraus resultierende kritische Temperatur für die
Supraleitung von GeNCr3 zu bestimmen. Es wurde festgestellt, dass die supraleit-
ende Temperatur bei etwa 8.2 K liegt, was auf die Elektron-Phonon-Wechselwirkung
zurückzuführen ist. Dementsprechend wird vermutet, dass die Supraleitung auch in
den anderen MAX-, MAB- und APV-Verbindungen existieren könnte, die in Zukunft
auf der Grundlage des etablierten Arbeitsablaufs zur Bewertung der Elektron-Phonon-
Kopplung untersucht werden sollen. Ein solcher Arbeitsablauf ermöglicht es uns, die T-
Abhängigkeit der elektrischen Leitfähigkeiten und auch die thermischen Leitfähigkeiten
des Gitters zu erhalten.

Nicht zuletzt unter Berücksichtigung der thermodynamischen Eigenschaften, bei denen
die freie Gitterenergie bei endlichen Temperaturen eine dominante Rolle spielt, haben
wir DFT-Berechnungen und CALPHAD-Modellierung kombiniert, um die Phasendia-
gramme zu optimieren, die mit Experimenten validiert und mit Phasenfeldsimulationen
verknüpft werden können, um die Beziehungen zwischen Verarbeitung und Mikrostruk-
tur und Eigenschaften zu ermitteln. So werden beispielsweise die thermodynamis-
chen Eigenschaften des Fe-Sn-Systems untersucht. Zur Berechnung der thermody-
namischen Eigenschaften bei endlichen Temperaturen wurden First-Principles-Phonon-
Berechnungen mit dem Ansatz der quasi-harmonischen Annäherung (QHA) durchge-
führt. Die thermodynamischen Eigenschaften und die Phononendispersionen der reinen
Elemente und der intermetallischen Verbindungen wurden vorhergesagt, um den Man-
gel an experimentellen Daten auszugleichen. Eine Reihe von selbstkonsistenten thermo-
dynamischen Parametern des Fe-Sn-Systems wurde mit Hilfe des CALPHAD-Ansatzes
ermittelt. Die thermodynamische Modellierung des Fe-Sn-Phasendiagramms wurde
wiederhergestellt. Die metastabile Phase Fe3Sn wurde zunächst in das aktuelle metasta-
bile Phasendiagramm eingeführt und die Phasenlagen von Fe5Sn3 und Fe3Sn2 unter den
neu gemessenen korrigierten Temperaturbereichen korrigiert.

Zusammenfassend lässt sich sagen, dass in meiner Dissertation ein systematisches
Berechnungsparadigma entwickelt wurde auf der Grundlage von DFT, um sowohl
die thermodynamischen als auch die Nicht-Gleichgewichts-Transporteigenschaften im
Zusammenhang mit dem Gitterfreiheitsgrad zu untersuchen. Ein solches Paradigma
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ermöglicht es uns, funktionelle Materialien mit physikalischen Eigenschaften zu entwer-
fen und zu optimieren, die durch magnetisch-strukturelle Kopplung, Phonon-Phonon-
Kopplung und Elektron-Phonon-Wechselwirkung bestimmt werden, und auch eine
Brücke zu groß angelegten Simulationen zu schlagen.
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�. Introduction

�.�. Computational Design of Functional Materials

Advanced functional materials play an essential role in modern industries and hu-
mankind society. In fact, every stage in the human history has been accompanied by
the development of materials science. From the Stone Age to the Silicon Age, vari-
ous novel functional materials have introduced, with tremendous improvements in
technology and industry, benefiting humankind’s welfare. Nowadays, as energy be-
comes an apparent constraint to the whole human society, accelerated discovery and
exploration of novel functional materials are critical for global competitiveness. The
conventional way of developing materials is mainly based on try-and-error or empirical
structure-property relationships, which is time- and resource-costly. Fortunately, the
computational modeling of materials has grown dramatically in the past few decades
with new innovative methods and applications, which, together with enhancing the
capability of computer hardware, have established it as an essential pillar of study for
materials understanding and discovery. Early in 2011, the Materials Genome Initiative
(MGI) [1] was launched by the US government to accelerate the discovery, design,
development, and deployment of new materials, at a fraction of the cost, by harnessing
the power of data and computational tools in concert with experiment. Later, in 2015,
the Chinese government announced Materials Genome Engineering (MGE) program [2],
aiming to revolutionize the research and development mode of new materials, signifi-
cantly improving the research e�ciency, shortening the research time, and reducing the
cost. In 2019, the European Materials Modeling Council (EMMC) program was created
to integrate materials modeling and digitization critical for more agile and sustainable
product development in Europe.

A multi-scale modeling framework (as shown in Figure 1.1) is established and embraced
in the above programs, leading to the integrated computational materials engineer-
ing (ICME) approach [3]. From Figure 1.1, various computational methodologies are
usually positively interconnected, stimulating the vitality of interdisciplinary computa-
tional materials design. Note that the many-body Hamiltonian builds the foundation.
According to it, the electron quantum ground state can be described as a functional of
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Figure �.�.: A multi-scale modeling framework of computational materials science.
Contemporary quantum and classical computational methodologies ad-
dress systems spanning from microscopic length scales (⇠�.� nm) to
macroscopic length scales (⇠� mm).

the electronic charge density within density functional theory (DFT). The excited states
demand the introduction of the concepts of elementary excitations such as quasiparticles
excited from the ground state (most current ab initio quasiparticle calculations of weakly
to moderately correlated materials use the GW approach based on quantum many-body
perturbation theory (MBPT)). For larger-scale systems, quantum mechanical descrip-
tions of local e�ects may be fed into more coarse-grained models that describe atom
and molecule dynamics and their collective motions. So far, the unification of these
methods into multi-scale models has primarily been driven by the insights of scientists.
Furthermore, machine learning techniques can identify new correlations in complex
systems and between di�erent scales, accelerating the simulation speed and saving
costs.

Over the past few decades, DFT (more fundamentals in Chapter 2) has been arguably
the most predominant and flourishing technique for the ab initio computational study
of ground-state properties of the materials due to its power to calculate the accurate
electronic structure. This can help us to obtain a clear understanding of the physical
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properties of the materials. Moreover, DFT can be applied to evaluate the needed pa-
rameters for large-scale quantitative simulations. Only DFT can predict novel materials,
not any other large-scale simulation tools. Furthermore, the more substantial power of
DFT-based computational materials science has now become apparent owing to the wide
range of properties and spectroscopies that can be studied for systems of increasing
complexity [4, 5]. In a review paper from Marzari et al., they sketched the very rich
phenomena that can be addressed nowadays, providing pointers to the models, theories,
and electronic-structure toolbox that can be used to make these predictions [5]. They
also summarized some milestone approaches that are now widely used. Nowadays, the
maturity of DFT-based methods and the fast blossoming of high-performance computing
(HPC) resources have created new opportunities for high-throughput (HTP) calculations
and designing novel materials with desired properties.

�.�. HTP Design of Functional Materials

Thanks to the accuracy and e�ciency of first-principles calculations and the exponential
availability of computational power, not only has the range of calculated materials
properties expanded dramatically but also the use of these methods to design and
discover novel materials has become an extremely active and growing research area.
Here the emphasis transforms from computing the property of interest of one system
at a time to calculating it at scale for many systems. In the extreme, people can even
attempt to calculate properties for all known or predicted compounds. HTP calculations
aim to perform the first-principles calculations under the automated workflow. Robust
rates of automation for these calculations have little or no manual intervention. In
addition, owing to the applicability of first-principles methods to most or all elements
of the periodic table, HTP DFT calculations can be implemented in various complex
systems. Till now, HTP DFT calculations have been applied to design various functional
materials, such as electro-catalysts [6], advanced magnets [7], thermoelectrics [8],
photovoltaics [9], high entropy alloys [10], solar cell [11], and so on. Correspond-
ingly, large open databases of materials structures and properties, such as Materials
Project [12], AFLOW [13], NOMAD [14], and he Open Quantum Materials Database
(OQMD) [15], have been build, with integrated platforms like AiiDA [16] and Atom-
ate [17] available. Each of these databases is based on DFT-calculated properties of
experimentally synthesized and of novel, predicted compounds. On the one hand, they
can obtain properties from standard ground-state energy calculations, such as total
energy, the density of states, electronic structure, and magnetic moments. On the other
hand, these databases have been increasingly used to curate additional datasets for
more complex properties, for example, elastic and piezoelectric tensors, thermoelec-
tric properties, surface energies, phonon dispersions, and x-ray absorption near-edge
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spectroscopy spectra.

Hence, the HTP DFT screening changes the way of performing calculations from a few
compounds to thousands of compounds. This technical innovation needs people to
think and employ an e�cient screening strategy for treating large datasets. One starts
with a large pool of candidate compounds and applies more and more stringent criteria
to downselect the most promising compounds. E�ciency and cost should be considered
the most important factors. Selection criteria prioritize relatively straightforward ad
inexpensive quantities to calculate, and only later introduce more computationally com-
plex, and hence expensive, quantities for further refinement. A very common criterion
is thermodynamical stability, which is identified through the formation of energy and a
convex hull approach. Such a screening strategy is illustrated in Section 3.1, but the
literature o�ers many examples that have been summarized in several reviews [18, 19,
20].

�.�. Designing Functional Materials Driven by the Lattice
Degree of Freedom

Among all the physical properties which can be tackled based on DFT calculations, those
driven by the lattice degree of freedom are very interesting. Due to the motion of the
nuclei, the corresponding elementary excitation, i.e., phonons, is introduced, leading fur-
ther to phonon-phonon interactions and electron-phonon interactions. These couplings
between electrons and nuclei going beyond the Born–Oppenheimer approximation are
central to many important physical properties, such as thermodynamical properties,
thermal transport properties, and superconductivity.

Firstly, after considering the lattice dynamics, the phonon dispersion relations and
materials’ thermodynamic properties can be computed. Generally, the lattice free energy
makes the most contributions to the total Gibbs free energy. Lattice free energy can be
obtained based on the quasi-harmonic approximation (QHA) with volume-dependent
harmonic phonons as part of the anharmonic e�ect. Hence, the DFT calculations can
be bridged to the thermodynamic properties of systems, to the atomistic modeling at
a larger length scales while maintaining accuracy, and to experiments with mutual
validation. In this way, the limitation of DFT calculations can be overcome, namely, valid
only at 0 K with a substantial size limit. Additionally, the calculated Gibbs free energies
can be fed into the CALPHADmethod [21] as initial input values. The CALPHADmethod
models the thermodynamic properties of compounds and obtains global minimization
of the Gibbs free energies of all the competing phases out of one system, leading to multi-
component phase diagrams. Such phase diagrams o�er a roadmap for experimental
synthesis.
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Secondly, the phonon-phonon scattering governed by phonon anharmonicity is the
critical factor limiting the heat transfer. Indeed, thermal conductivity is a crucial phys-
ical property of materials, which is important for many applications, such as heat
dissipation in ever-smallest integrated circuits, energy conversion in thermoelectrics,
thermal insulation in high-power engines, and information processing based on novel
thermal transistors. Based on the single mode relaxation time approximation (RTA) of
the phonon Boltzmann transport equation (BTE), thermal conductivity in a system is
governed by the phonon dispersion relations, which determine heat capacity, group
velocity, and phonon lifetime (due to phonon anharmonicity). In principle, all these
components are determined by the nature of the interatomic potentials, which can be
feasibly modulated by changing either the structure topography or the relative position
of atoms. In principle, atomistic models with DFT accuracy can be constructed by
developing interatomic potentials combining HTP calculations and machine learning.
Recently, machine learning interatomic potentials (MLIP) have been developed and
implemented for both molecular and solid [22]. In the multi-scale modeling framework,
molecular dynamics is e�ective in modeling the microstructure properties and can
be further bridged to macroscopic modeling. And the interatomic potentials lie at
the core of MD. However, MD is mostly implemented based on the empirical inter-
atomic potentials of analytical functional forms, which is challenging to obtain for
multi-component systems due to the many-body nature of potential energy surface
(PES). In this regard, MLIP can aid MD in treating more complex systems within DFT
accuracy.

Besides the phonon-phonon interactions, the interaction between electrons and phonons
also plays an essential role in materials properties [23], such as the transition tempera-
ture of conventional superconductors [24], the carrier mobility in semiconductors [25],
the temperature dependence of optical spectra in direct and indirect-gap semiconduc-
tors [26], the nonadiabatic corrections to phonon dispersion relations [23], and so on.
Among that, the prediction of superconductiviting transition temperature attracts more
attention in this thesis. In conventional superconductors below the transition tempera-
ture electron pairing results from a subtle interplay between the repulsive Coulomb
interaction and the attractive electron-phonon interaction [24]. Starting from the
seminal work of Bardeen, Cooper, and Schrie�er (BCS) [27], several techniques for the
computation of the superconducting properties have been proposed, ranging from semi-
empirical methods such as the McMillan-Allen-Dynes formula [28] to first-principles
Green’s-function methods such as the Migdal-Eliashberg (ME) formalism [29, 30], and
more recently also approaches based on the DFT concept, such as the density-functional
theory for superconductors (SCDFT) [31, 32]. Furthermore, the output from electron-
phonon interactions calculations, such as electron-phonon relaxation times, can be used
as inputs for nonadiabatic molecular dynamics (NAMD) simulations [33], which is
particularly suitable for simulating large molecular systems.
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Therefore, going beyond the currently intensively studied designing of materials by
performing HTP DFT evaluation of the ground state electronic structure, I aim at
exploring and developing further how HTP DFT calculations can be performed to
tackle the physical properties driven by the lattice degree of freedom. All aspects
covered are summarized in Figure 1.2.

Lattice

Electron

Phonon

Magnetism

Calphad

Electron-Phonon Interaction
Superconductivity

Anharmonicity
Thermal Conductivity

Magneto-structural Coupling
Magnetocalorics

Gibbs Free Energy
Thermodynamic Phase Diagram

“Designing Functional Materials Driven by the Lattice Degree of Freedom”

Figure �.�.: Designing functional materials driven by the lattice degree of freedom.

�.�. Machine Learning Accelerates Materials Design

The rapid growth of data-driven machine learning approaches and algorithms in recent
years has altered our anticipations of what computational simulations can achieve [4,
5, 34]. The speed of designing new materials can be accelerated faster by aiding
Data-driven machine learning approaches [35]. Materials informatics methods are
commonly based on three distinct elements: materials databases, a representation
to quantitatively describe each material, and machine learning algorithms to dis-
cover patterns within the data or to predict the properties of new materials [36].
The combination of high-throughput calculation with machine learning approaches
holds promise for unprecedented speed-up in the discovery of new functional materi-
als [37]. The use of HTP DFT calculations for data collection has the great benefit of
improving systematically and exponentially the size of the database, which is queried
and fed into machine learning models to predict new materials with targeted proper-
ties [38].
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Turning to the main topic of this thesis, namely "Designing Functional Materials Driven
by Lattice Degree of Freedom", machine learning also can significantly aid us. Firstly, to
consider the higher-order anharmonicity for phonon thermal transport, the calculations
of finite displacement methods or density functional perturbation theory (DFPT) are
cumbersome and time-consuming. Recently, people have used compressive sensing
(CS) [39], a technique developed in the field of information science for recovering
sparse solutions from incomplete data, to simultaneously determine which anharmonic
terms are essential and to find their values [40, 41]. Hence, compressive sensing
lattice dynamics (CSLD) can handle large, complex unit cells and strong anharmonicity,
including materials with harmonically unstable phonon modes. Additionally, machine
learning can be used to create interatomic potentials, which represent remarkable
progress toward large length scale and long-time atomistic simulations beyond the
reach of direct ab initio calculations. For instance, the machine learning interatomic
potentials (MLIP) fitted from DFT calculations significantly improve the accuracy of po-
tential functions used in MD simulations for calculating thermal transport for large and
complex systems. Furthermore, the error associated with the so-obtained interatomic
potential is within the chemical accuracy (1 kcal/mol), MLIP can hence be applied
to study the phase transition in Zr [42], phase diagram optimization [43], and high
entropy alloys [44]. The literature o�ers many examples that have been summarized
in several reviews [34, 35] Last but not least, machine learning models of materials
properties have seen a large number of applications targeted at the discovery of novel
materials with promising properties. Recent studies have shown how machine-learned
models can be aided to HTP studies to predict novel superconductors [45, 46, 47],
and machine learning method can constructs CALPHAD database and optimize phase
diagram automatically [48]. In summary, combining DFT calculations with interpretable
machine learning is a very e�cient methodology for studying and systematizing whole
classes of materials and is easily extendable to other families of compounds or physical
properties.

�.�. Organization of the Thesis

As introduced above, focusing on the materials design driven by the lattice degree of
freedom, the rest parts of the thesis are organized as follows: The theoretical back-
ground will be documented in Chapter 2, with detailed discussion on the fundamental
aspects for the methods used for the researches in this thesis. In Chapter 3, the work-
flows and selection of options and parameters involved in the numerical computations
are discussed. The reason to do so is that a practical workflow is critical for calculating
target properties e�ciently and economically. In Chapter 4, we investigate how to
design functional magnets for permanent magnet and magnetocaloric applications
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based on HTP DFT. In Chapter 5, after considering phonon-phonon interactions, the
thermal transport properties are calculated based on the Boltzmann transport equation
(BTE) coupled, enabling us to design novel 2D materials for thermal management. In
Chapter 6, a microscopic picture is established from the fundamental level of electronic
structure, which explains the mechanism underlying the phonon anharmonicity in
Ga-based 2D materials based on the buckled structures and lone-pair electrons. In
Chapter 7, we investigate the role of the quartic anharmonicity in the lattice dynam-
ics and thermal transport of the cubic EuTiO3 by combining ab initio self-consistent
phonon theory with compressive sensing techniques. In Chapter 8, after considering
electron-phonon interactions, we design a new electron-phonon driven superconductor
GeNCr3. Finally, in Chapter 9, beyond 0 K, the finite temperature-dependent free
energy of Fe-Sn is investigated, which is more realistic and practical for designing
materials in the lab. Summary and outlook are placed at the end of the thesis as
Chapter 10.
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�. Theoretical Background

In this chapter, the fundamental aspects of the underlying theories for the applied
methods will be thoroughly elucidated, in order to provide a physically sound basis
for all the calculations done to understand and design novel materials with intriguing
physical properties.

�.�. Quantum Many-body Problem

Solids generally consist of 1022 or more ions and 1023 or more electrons, with Coulomb
interaction between each other. Hence, studying solid statematerials is to solve quantum
many-body problems. Correspondingly, the total non-relativistic Hamiltonian describing
the behaviour of the constitute particles (i.e., nuclei and electrons), from a quantum
mechanics point of view, can be written as:

Ĥtot = T̂ e +V̂ e�e +V̂ ext + T̂ n +V̂ n�n

=�
N

Â
i=1

h̄2

2me
—2

i +
1

2
Â
i6= j

e2

|ri�rj |
�

N

Â
i

M

Â
I

Zne2

|ri�RI |
�

M

Â
I=1

h̄2

2mn
—2

I

+
1

2
Â
I 6=J

ZIZJe2

|Ri�Rj |
,

(2.1)

where me(n), r(R), and — denote the mass, position, and momentum operator of
electrons (nuclei), respectively, Z stands for the atomic number, M and N denote the
total number of ions and electrons, respectively; T̂ e(n) is the kinetic energy operator for
electrons (nuclei), V̂ e�e (n�n) is the electron-electron (nuclei-nuclei) interaction, V̂ ext is
the Coulomb interaction between the electrons and nuclei. Note that relativistic e�ect
and spin-orbit coupling are not considered.

In principle, the ground state of the system can be found by solving the time-independent
Schrödinger equation using this interacting Hamiltonian:
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Ĥtot(r,R)Y(r,R) = EY(r,R), (2.2)

where Y(r,R) is the total wave function, which depends on both the positions of all
electrons and the positions of all nuclei. Based on this fact, the many-body system
is generally a superposition of combinations of single-particle states. Taking CO2 as
an example, the full wave function depends on 22⇥ 3 = 66 coordinates. As a result
of the calculation, the wave function needs to be stored. Using a very poor grid
of 10 points per coordinate, the storage would require 10

66 memory units, which
is an astronomically large number. There is no plausible way to store it in usable
form. Hence, it is impossible to obtain the analytical solutions for these many-body
problems directly. Reasonable approximations have been proposed in order to develop
physically meaningful solutions for such complicated entangled quantum many-body
problems.

�.�.�. Born-Oppenheimer Approximation

Considering that the mass ratio between an atomic nucleus and an electron is quite large,
which is of the magnitude of 103. This means, generally speaking, the motion velocity
of the nuclei is far less than the velocity of the electrons. When electrons move, the
nuclei can be assumed as stationary. As a result, the motion of electrons and the motion
of the nucleus can be considered as dynamically decoupled that do not a�ect each other,
i.e., the two subsystems can be regarded as moving adiabatically, namely, electrons
follow adiabatically the motion of ions while ions move in an e�ective potential due to
electrons. The separation of the nuclei and electrons into two individual mathematical
problems is the Born-Oppenheimer approximation (adiabatic approximation). Then
the electronic component of the Hamiltonian in the Schrödinger equation of system
can be written as:
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Under the Born-Oppenheimer approximation, the Schrödinger equation of the electronic
part of the Hamiltonian is:

Ĥel(r,R)yi(r,R) =Ui(R)yi(r,R), (2.4)
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where Ui are the electronic energy eigenvalues for the fixed nuclei, with i = 0 referring
to the electronic ground state. Repeating this calculation for di�erent R, we obtain
the form of the e�ective or mean-field potential for the electronic states on which the
nuclei can move. These e�ective potentials are known as Born–Oppenheimer (adiabatic)
potential-energy surfaces (PES).

For the nuclear degree of freedom, a Hamiltonian for the ith electronic PES is defined
as

Ĥnuc,i =�
M

Â
I=1

h̄2

2mn
—2

I +Ui(R), (2.5)

Note that the PES can be expanded according to:

U(R) =U(R0)+
∂ 2U

∂d1d2

, (2.6)

where d is a small displacement giving rise to the interatomic force constant giving rise
to phonons.

After considering this approximation, is the situation better? The answer is No. The
Schrödinger equation Eq. 2.3 is still a many-body problem, due to the electron-electron
interaction.

�.�.�. Hartree-Fock Approximation

Hartree Equation: To solve the eigenvalue equations of Hamiltonian in Eq. 2.3, the
Coulomb interactions among the electrons should be simplified. Similar to a strat-
egy for approximating the interaction between electrons and nuclei, the interaction
between electrons might also be approximated (there is no interaction between elec-
trons). We then can transform the problem into a more straightforward problem of
solving a single electron motion in a given potential field. In 1928, Hartree imple-
mented a mean-field theory (MFT) method to transfer electron-electron interactions
problem into a single electron motion equation problem [49]. The well-known Hartree
wave function (Hartree product) is the product of the one-electron wave function, in
which each single-electron wave function is only dependent on its spatial coordinate
position,

Y(r) = y1(r1)y2(r2)...yi(ri)...yN(rN). (2.7)
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Based on the Hartree approximation, Hartree equation can be obtained, namely, the
Schrödinger equation for the single-electron wave function,

Hiyi(r) = Eiyi(r), (2.8)

where the Hamiltonian for one electron can be written as:

Hi =� h̄2
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The e�ective potential Âi0( 6=i)
R

dr0 |yi0(r
0)|2

|ri�r0i|
is originated from the interaction of one elec-

tron with the other electrons, formulated based on the charge density of the other
electrons as an e�ective mean field potential. The second potential Â j Ve�n(R j) repre-
sents the motion of one electron in the potential field from the nuclei in lattice. Hence,
the significant contribution of the Hartree equation is that the original N-electrons
system, in which electrons interact with each other, is transformed into N independent
sub-systems each with an e�ective mean-field potential averaged over the motion of
other electrons. And each independent sub-system can be expressed by the same
Schrödinger equation.

Hartree-Fock Equation: It is well known, that electrons are Fermions thus the cor-
responding many-body wave function should be antisymmetric with respect to the
exchange of two particles. Apparently, such a requirement is not fulfilled by the ansatz
wave function Eq. 2.7 in the Hartree approximation. The antisymmetry principle indi-
cates that the wave function must alternate signs if two electrons exchange not only
position but also spin, i.e., any degree of freedom. However, the sign of the Hartree
term in Eq. 2.9 does not change when exchanging two electrons. In 1929, Slater
proposed the famous Slater determinant to overcome this serious drawback. To obtain
a more reasonable approximation to the many-body wave function of a many-fermion
system, N orthogonal normalized one-electron wave functions is applied to construct
the N-electron wave function (including the spin of electrons s) with the following
determinant:

Y(r1s1,r2s2, ...,rnsn) =
1p
N!

���������
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... . . . ...
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(2.10)
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The Slater determinant implicitly builds in a physical description of electron exchange,
which satisfies the Pauli exclusion principle. When two di�erent electrons have the
same one-electron wave function or same coordinates, the determinant equals zero,
which means the total wave function Y(r) is zero.

Correspondingly, the total Hamiltonian of the electrons system is:

E = hY|H|Yi
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(2.11)

where the first term is the one body expectation values, the second term represents the
direct (Hartree) interactions between electrons, the last term is the e�ective exchanging
(Fock) interaction. Through the method of the Lagrange undetermined multipliers to
do the variation on the Lagrangian and find the minimum of the functional concerning
the system energy, we can get the following one electron Schrödinger equation which
is the Hartree-Fock equation:
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(2.12)

Due to the presence of the exchange term, the equation needs to be solved using a
nonlinear method, namely, the self-consistent field method. Hence, a Hartree-Fock
calculation is an iterative procedure: 1. make an initial density; 2. construct a po-
tential; 3. solve the Hartree-Fock equations and obtain a new density. 4. estimate
whether the new density is converged with respect to the one in the previous iter-
ation. If no, put new density into step 2. The process is repeated until the charge
density and associated quantities are converged. In fact, at last, the limitation of the
Hartree–Fock approximation should be mentioned. The energy calculated from the
Hartree–Fock method is not the same as the energy for the true electron wave function.
The reason is that the Hartree–Fock approximation does not consider the electron
correlation.
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�.�. Density Functional Theory

Compared with the Hartree-Fock approximation, the central tenet of DFT is to apply
electron density instead of the wave function as the primary variable. This change can
greatly reduce the degrees of the freedom for the N-electron system from 3N to 3. More
clearly, the wave function of the N-electron system has 3N variables (each electron
has three spatial variables), and the electron density is only a function of 3 variables.
Therefore, dealing with functional dependent on the electron DFT holds both practically
and conceptually advantages simultaneously, which is a more e�ective computational
tool for calculating the ground state energy, electronic structures, and other physical
properties of molecules and solids. The development of DFT has experienced the ongoing
exploration and collision of the wisdom of several generations of scientists. In 1927, the
Thomas-Fermi model was developed, statistical physics was used to describe the atomic
charge distribution approximately, and system energy can be expressed as the functional
of the electron density. However, this brilliant idea didn’t raise much attention. In
1964, Hohenberg and Kohn published the milestone theoretical work on DFT. More
and more scientists worked in this field. The remarkable achievements of local density
approximation (LDA) and generalized-gradient approximation (GGA) functionals within
the Kohn-Sham formalism have raised widespread attention.

�.�.�. Hohenberg-Kohn Theorems

In the Hohenberg and Kohn’s milestone paper [50], it is argued that the total energy of
the ground state of inhomogeneous electron gas could be obtained by introducing a
generic functional (independent of the external potential V (r)) of electron density n(r).
The Hohenberg-Kohn theorems include two parts, which established the theoretical
basis for the DFT.

Theorem I: The external potential V (r) is uniquely determined by the functional
of the ground state charge density n(r).

Proof of Theorem I

Now, we suppose that there are two di�erent external potentials V (1)
ext and V (2)

ext , which
di�er by more than a constant, leading to the same ground state density n(r). Ob-
viously, the two external potentials belong to distinct Hamiltonians, Ĥ(1) and Ĥ(2).
Hence, di�erent Hamiltonians have di�erent ground state wave functions Y(1) and
Y(2). Since Y(1) 6= Y(2), Y(2) is not the ground state wave function of Ĥ(1), it follows
that
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E(1) =
D

Y(1)|H(1)|Y(1)
E
<
D

Y(2)|H(1)|Y(2)
E
. (2.13)

Here we can assume the ground state is not degenerated, the last term in Eq. 2.13 can
be rewritten as:

D
Y(2)|H(1)|Y(2)

E
=
D

Y(2)|H(2)|Y(2)
E
+
D

Y(2)|H(1)�H(2)|Y(2)
E

= E(2) +
Z

d3r[V (1)
ext (r)�V (2)

ext (r)]n0(r).
(2.14)

Combining Eq. 2.13 and Eq. 2.14, we obtain

E(1) < E(2) +
Z

d3r[V (1)
ext (r)�V (2)

ext (r)]n0(r) (2.15)

On the other hand, we can get E(2) similarly:

E(2) < E(1) +
Z

d3r[V (2)
ext (r)�V (1)

ext (r)]n0(r) (2.16)

After that, adding together Eq. 2.15 and Eq. 2.16, we approach at the contradictory
inequality

E(1) +E(2) < E(1) +E(2). (2.17)

Therefore, there cannot be two di�erent external potentials di�ering by more than a
constant which give rise to the same non-degenerate ground state charge density. That
is, there is a one-to-one mapping between the ground state charge density and external
potential.

Theorem II: The total energy E[n] in terms of the density n(r) can be obtained varia-
tionally by defining a universal functional FHK[n], valid for any external potentialVext(r).
For any particular Vext(r), the exact ground state energy of the system is the global
minimum value of this functional, and the density n(r) that minimizes the functional is
the exact ground state density n0(r).

Proof of Theorem II Since all properties of a multi-electron system can be uniquely de-
termined if n(r) is specified, the total energy functional can be regarded as a functional
of n(r)
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EHK[n] = T [n]+Eint [n]+
Z

d3rVext(r)n(r)+EII

⌘ FHK[n]+
Z

d3rVext(r)n(r)+EII,
(2.18)

where EII represents the interaction energy of the nuclei. In Eq. 2.18, the functional
FHK[n] = T [n] + Eint [n] consist of all internal energies, kinetic and potential, of the
multi-electron system.

Now we consider a system with the ground state density n(1)(r), which corresponds
to external potential V (1)

ext (r) and wave function Y(1). The energy can be then written
as:

E(1) = EHK[n(1)] =
D

Y(1)|H(1)|Y(1)
E
. (2.19)

After that, a di�erent density n(2)(r) corresponding to a di�erent wave function Y(2) is
assumed. Then the energy E(2) is greater than E(1), since

E(1) =
D

Y(1)|H(1)|Y(1)
E
<
D

Y(2)|H(1)|Y(2)
E
= E(2). (2.20)

Thus the energy from Eq. 2.18 in term of the Hohenberg-Kohn functional evaluated
for the correct ground state density n0(r) is the lowest one with respect to any other
density n(r). That is, there is a one-to-one mapping between the charge density and
the ground state energy.

�.�.�. Kohn-Sham Equations

Following the discussion above, the Hohenberg-Kohn theorems provide the feasibility
of implementing the electron density as a basic variable to calculate the ground-state
properties. However, the explicit form of the ground state energy functional has not been
specified thus the Hohenberg-Kohn theorems alone cannot be implemented to perform
calculations, thought it is physically exact. In 1965, Kohn and Sham proposed [51]:
to replace the original many-body problem by an auxiliary independent-particle problem.
That means, in principle, we can use independent-particle methods to solve for the
exact calculations of properties of many-body systems. Namely, interacting systems can
be projected to the non-interacting systems with the same densities, which provides a
operational formulation of the missing Hohenberg-Kohn functional which can be then
solved based on the variational principles.
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For non-interacting systems, only the kinetic energy T [n(r)] contributes to the universal
F-functional: F0[n(r)] = T [n(r)] (the superscript zero is for non-interacting systems).
Hence, the F-functional of the interacting systems is decomposed by using the formal
Kohn-Sham logic as:

F [n(r)] = T [n(r)]+UH [n(r)]+EXC[n(r)], (2.21)

in which UH [n(r)] denotes the electrostatic interaction, which is well defined for all
densities as:

UH [n(r)] =
1

2

Z Z n(r)n(r0)
|r�r0| drdr0. (2.22)

The kinetic energy in Eq. 2.21 is taken to be that of the non-interacting homogeneous
systems which have the same charge density as the interacting non-homogeneous
systems. The true kinetic energy di�erence between interacting and non-interacting
systems with same densities will be incorporated together with the other interactions
beyond the electrostatic one in the term EXC[n(r)].

Furthermore, the charge density can be formulated using the non-interacting wave
function ansatz as

n(r) = Â
i

ni|fi(r)|2, (2.23)

⌦
fi|f j

↵
= di j, (2.24)

the kinetic energy T [n(r)] can be defined explicitly as:

T [n] = min
ni,fi

(

Â
i

⌧
fi|�

∂ 2

∂r2
|fi

�)
,n(r) = Â

i
ni(r)|fi(r)|2,

⌦
fi|f j

↵
= di j. (2.25)

Therefore, the ground state energy can be evaluated by

E[next ,n] = min
ni,fi

(
T [Â

i
ni|fi|2]+UH [Â

i
ni|fi|2]+EXC[Â

i
ni|fi|2]�hn|Vexti

)
,

n(r) = Â
i

ni(r)|fi(r)|2,
⌦
fi|f j

↵
= di j.

(2.26)
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The exchange-correlation term EXC[n(r)] collect all many-body e�ects of exchange and
including also the di�erence of the kinetic energies. Performing the variational principle,
the single-particle-like Schrödinger equation can be obtained

[�1

2
r2 +VKS(r)]f j(r) = e jf j(r), (2.27)

where f j(r) represents the Kohn-Sham orbital, namely one-electron wave function of the
fictitious Kohn-Sham non-interacting system. And e j is the corresponding Kohn-Sham
eigenvalue. In Eq. 2.27, VKS(r) can be expressed as

VKS(r) = next(r)+VH(r)+VXC(r), (2.28)

which means the electron moves in the e�ective Kohn-Sham potential. next(r) is for the
external potential,VH(r) is the Hartree potential, expressed as:

VH(r) =
∂U [n]
∂n(r)

=
Z n(r0)

|r�r0|dr
0. (2.29)

As well, the exchange-correlation potential is

VXC(r) =
∂EXC[n]
∂n(r)

. (2.30)

After the discussion above, we get the famous Kohn-Sham equation. The importance
of this equation is that it can simplify the many-body interacting problem into a non-
interacting problem of a single electron. Since the exchange-correlation functional is
generally orbital-dependent, we can solve the Kohn-Sham equation self-consistently, as
shown in Figure 2.1. From the solution, we can obtain the charge density constructed
by the single electron wave function, which is the ground state charge density of the
interaction systems. Notably, the only di�erence between the Kohn-Sham equation
and the Hartree equation is that the e�ective potential in the single-electron equation
includes an extra exchange-correlation potential, which is yet unknown. Till now,
combining the Hohenberg-Kohn theorems and Kohn-Sham equation, an exact formalism
of DFT can be obtained, which provides an operational computational framework to
solve the many-body problem of interacting electrons. The only pending issue is that
the exact form of the exchange correlation functional is not available, leading to many
di�erent flavors of approximations as detailed below.
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Figure �.�.: A �ow chart of the self-consistent method to procedure Kohn-Sham equa-
tions for normal DFT calculations.

��



�.�.�. Exchange Correlation Functional

Turning now to the exchange correlation energy, it is the crucial quantity in the Kohn-
Sham equation, which is expressed as a functional of the density EXC[n] in Eq. 2.26. The
choice of the proper exchange-correlation functional is critical, which determines the
accuracy of the results calculated from DFT. In principle, the exchange-correlation func-
tional including all the unknown quantum mechanical e�ects can be decomposed in two
parts, namely the exchange part and the correlation part:

EXC[n] = EX [n]+EC[n]. (2.31)

In fact, the true form of the exchange-correlation functional is impossible to obtain.
Hence, some further approximations are used to approach the exchange-correlation
functional, such as a local, semi-local, or non-local functional of the density. Among that,
the local density approximation (LDA) and the generalized gradient approximation
(GGA) are widely used.

Local Density Approximation: At the time, in Kohn and Sham’s seminal paper [51],
they indicated that solids can be treated as close to the limit of the homogeneous
electron gas. Meanwhile, a multi-electron system can be separated into many smaller
subsystems, and the each local subsystem can be considered as a homogeneous system.
Based on these ideas, hence, they proposed the concept of LDA, and more generally
the local spin density approximation (LSDA) when spin-polarization is considered.
L(S)DA assumes that an inhomogeneous electrons system can be divided into many
small enough volume element dr, treated as the non-interacting homogeneous electron
gas, hence the exchange correlation energy is simply an integral over all space with the
exchange correlation energy density at each element. Now, the exchange-correlation
functional can be approximated as:

EXC[n]⇡ ELSDA
XC [n]

=
Z

d
3rn(r)ehom

XC (n(r),z (r)),
(2.32)

where ehom
XC (n(r),z (r)) is for the the exchange-correlation energy per electron in homo-

geneous electron gas. z (r) denotes the degree of spin-polarization. So introducing spin
densities (spin-up density n(+), spin-down density n(�), and total electron density n),
the z (r) is expressed as

z (r) = n(+)�n(�)

n
. (2.33)
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The corresponding exchange-correlation e�ective potential can also be obtained by
functional derivation:

V LSDA
XC (r,±) =

dELSDA
XC

dn(r,±)
=

∂
∂n±

[neXC(n,z )]. (2.34)

When the system is non-polarized, z = 0. In summary, the L(S)DA can give good
results in metallic systems because the homogeneous electron gas show the metal-
lic system behaviour. However, L(S)DA tends to underestimate the exchange energy
and overestimate the binding energies, resulting in too short bond lengths. Despite
these deficiencies, several L(S)DA exchange correlation functionals, such as VWN [52],
PZ81 [53], CP [54], PW92 [55], are widely applied in modern DFT calculations.

Generalized Gradient Approximation: To get more close to the real system and
reduce the error caused by the inhomogeneous charge density distribution in space,
next step is to go beyond the LDA based on the homogeneous electron gas model,
to consider the electron density gradient in the energy density functional. Such an
approximation is the so called GGA, in which the exchange-correlation functional is
made by a functional of both the electron density n(r) and the corresponding gradient
—n(r). Therefore, GGA is mainly used for reflecting the inhomogeneity of the electron
gas of real system, which yields

EGGA
XC [n] =

Z
d3rn(r)ehom

XC [n(r)]FXC[n(r),—n(r)]. (2.35)

FXC[n(r),—n(r)] represents the enhancement factor that modifies the LDA exchange
correlation potentials, and is dimensionless. Because of the enhancement factor
is not a unique function of the electron density, there are various existing meth-
ods to the GGA exchange correlation functional. For instance, people fitted the ex-
perimental data to obtain the functional with empirical parameters, like B88 [56],
FT98 [57]. Or directly obtaining from first principles calculations, the functional is
without any empirical parameters, such as B86 [58], PBE [59]. At present, the most
widely used GGA form is PBE(Perdew-Burke-Ernzerhof) [59], which can be written
as:

EPBE
XC [n] =

Z
d3rn(r)ehom

XC [n(r)]FXC[n(r),—n(r)]

= EPBE
X [n]+EPBE

C [n],
(2.36)

where the exchange term is
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EPBE
X [n] =

Z
d3rn(r)ehom

X [n(r)]FPBE
X (s)

FPBE
X (s) = [1+ k� k

1+bp2s(r)2/3k
]

s(r) =
|—n(r)|

2n(r)kF(r)

k = 0.804

b = 0.066725

(2.37)

and the correlation term is

EPBE
C [n] =

Z
d3rn(r)[ehom

C [n(r)]+HPBE(rs, t)]

HPBE
X (rs, t) =

b 2

2a
ln(1+

2a
b

t2 +At4

1+At2 +A2t4
)

A =
2a

be
�2aehom

C (n)

b2 �1

t =
|—n(r)|

2ksn
ks =

p
4kF/p

a = 0.0716

b = 0.066725

(2.38)

At last, LDA and GGA successfully describe the electrons of s and p orbitals. However, s
and p orbitals are non-localized, and there are significant deviations in describing the
strongly correlated electrons in partially occupied d and f orbitals with LDA and GGA.
One problem in practical calculations is that both LDA and GGA will underestimate
the band gap of semiconductors. This is because the band gap is a property of the
excited states, marginally related to the d/ f correlation problem. Thus, it is necessary
to modify LDA and GGA in calculating d and f electrons. One correcting method is
to introduce a strong interaction in the energy expression, and the interaction origins
from the inner electron shell of an atom. Correspondingly, we can describe the d �d
electron Coulomb interaction more precisely, similar to the Hubbard model’s form. This
correcting method is also known as LDA(GGA)+U.
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�.�.�. Spin-polarized Density Functional Theory

The above discussion about DFT mainly focuses on how to perform calculations on
non-magnetic systems. However, magnetism in solids is a fascinating topic in physics
and materials science. To get insight into magnetic materials, the current DFT should
be extended in the spin-polarized systems [60, 61, 62]. In this regard, the func-
tional is formulated with respect to the spin density matrix r, which can be writ-
ten

rab = n(r)dab +m(r) ·sab , (2.39)

where n(r) is the electron density, m(r) is the magnetization density originating
from the spin polarization, s is the Pauli matrices, and a and b are corresponding
to the spin directions. Now, we expand the spin density formula by using m(r) ·
s = mxsx + mysy + mzsz, the charge density then can be written in a matrix form
as:

r(r) =


n(r)+mz(r) mx(r)� imy(r)
mx(r)+ imy(r) n(r)�mz(r)

�
(2.40)

In the spin-polarized framework, the orbitals are spinors given by:

Yi(r) =


yia(r)
yib (r)

�
(2.41)

Hence, the charge density or spin-polarized charge density in terms of the spinors is
given by:

r(r) =

"
yia(r)y⇤

ia(r) yia(r)y⇤
ib (r)

yib (r)y⇤
ia(r) yib (r)y⇤

ib (r)

#
(2.42)

The magnetic ground state is determined by the spin orientation. Specifically, if there is
a common spin quantization axis, the material exhibits a collinear nature, whereas, in
its absence, it is non-collinear.

For a collinear magnetic material, note that the non-diagonal terms of the spin density
matrix of Eq. 2.40 disappear, hence the charge andmagnetization density read:
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n(r) = Â
i

Y†

i (r)IYi(r)

m(r)= µB Â
i

Y†

i (r)sYi(r),
(2.43)

in which I is the identity matrix. Same as obtaining the energy functional in the non-
spin-polarized system, the spin-polarized energy functional is defined as:

EKS[r] = T [r]+EH [r]+Eext [r]+EXC[r]

= T [r]+
Z

drdr0
r(r)r(r0)
|r�r0| +Â

ab

Z
drV ab

ext (r)rab (r)+EXC[r]
(2.44)

and then the spin-dependent Kohn-Sham equations is

Â
b
[�dab

1

2
—2 +V ab

ext (r)+dab

Z r(r0)
|r�r0|dr

0+V ab
XC (r)]yib (r) = dab yib (r), (2.45)

and

V ab
XC (r) =

dEXC[r]
drab (r)

. (2.46)

Further, the non-collinear magnetic DFT calculations can be realized by substituting a
3D charge density matrix into the spin-polarized calculations scheme, more details can
be found in Ref. [63].

�.�.�. Relativistic Effect

One important e�ect due to the full relativistic expansion is spin-orbit coupling (SOC) [64].
It is directly related to several interesting spintronics e�ects such as the magnetocrys-
talline anisotropy and the spin Hall e�ect. The well-known four-component formu-
lated Dirac equation generalizes the Schödinger equation in a relativistically covariant
form

ih̄
∂
∂ t

Y = (ca ·p+bmc2)y = HDY, (2.47)
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where Y represents a four-component single-particle wave function. p=�ih̄— is the
momentum operator. And the (4⇥4) matrices ai and b is expressed in terms of the
Pauli matrices

ai =

✓
0 si
si 0

◆
, b =

✓
1 0

0 �1

◆
, (2.48)

where si are the (2⇥2) Pauli spin matrices

s1 =

✓
0 1

1 0

◆
, s2 =

✓
0 �i
i 0

◆
, s3 =

✓
1 0

0 �1

◆
, (2.49)

and the unit entries of b are (2⇥2) unit matrices.

Assuming the electronmagnetimetic field is described by the scalar potential j and
the vector potential A, the momentum can be obtained by minimal substitution pµ !
p�qA.

Firstly, considering only the e�ect of time-independent vector potential qA, the station-
ary Dirac equation for one electron can be described as

HY = EY = [ca · (p+ eA)+bmc2]Y (2.50)

It is convenient to write the solution in the form

Y =


f
c

�
(2.51)

where f and c are time-independent two-component spinors describing the spatial
and spin-1

2
degree of freedom. And for electrons, f is the large component and c is the

small component. Then, the Dirac equation transforms a set of coupled equations for f
and c

c� · (p+ eA)c +mc2f = Ef , (2.52)

c� · (p+ eA)f �mc2c = Ec, (2.53)

Define W = E �mc2, is the energy shifting over the rest mass energy. In the non-
relativistic limit, W ⌧ mc2.
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Then,

c =
c� · (p+ eA)

2mc2 +W
f ⇡ c� · (p� eA)

2mc2
f , (2.54)

next,

[
1

2m
(p+ eA))2 � eh̄

2m
� · (r⇥A)]f =Wf . (2.55)

AS one known, r⇥A=B, so eh̄
2m� · (r⇥A) is the Zeeman splitting induced by the

magnetic field.

Now, for the time-independent scalar potential V =�ej . The stationary Dirac equation
is written as

HY = EY = [c� ·p+bmc2 +V ]Y. (2.56)

Then,
c� ·pc +(V +mc2)f = Ef , (2.57)

c� ·pf +(V �mc2)c = Ec, (2.58)

so we get

c =
c� ·p

E �V +mc2
f . (2.59)

Same as vector potential case, we define W = E �mc2, then

1

E �V +mc2
=

1

E �V +2mc2

=
1

2mc2
(1+

W �V
2mc2

)�1

⇡ 1

2mc2
(1� W �V

2mc2
).

(2.60)

Combining Eq. 2.59 and Eq. 2.60, we get
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c = c� ·p 1

2mc2
(1� W �V

2mc2
)f . (2.61)

Therefore,

(
p2

2m
+V � p4

8m3c2
� i� ·p⇥ [p,V ]

4m2c2
� p⇥ [p,V ]

4m2c2
)f =Wf , (2.62)

where,
[p,V (r)]f =�ih̄(rV (r))f . (2.63)

If we consider the relativistic e�ect as perturbation, we can decompose the Dirac
Hamiltonian into two independent parts as

HDY =WY+HSOC = Y = EY, (2.64)

where W represents non-relativistic term and HSOC denotes the relativistic or spin-orbit
coupling e�ect part. Then, spin-orbit coupling term is expressed as

HSOC =� i� ·p⇥ [p,V ]

4m2c2

=� h̄rV

4m2c2
� ·p⇥r

⇡ x (r)� · l,

(2.65)

where rV (r) represents the electrostatic potential induced by the electron. The elec-
trostatic potential always has strong e�ect in the core regions. Thus SOC term can
be regarded as the summation of the local contribution x (r)� · l. The SOC constant x
denotes a radial function as:

x (r) = �Zeh̄2

2m2c2

1

r
df
dr

. (2.66)

Using the Dirac theory, the magnetism or spin can be explained for electrons physi-
cally [65]. First of all, the magnetization connects spin with the Maxwell equation. Then,
the spin-orbit interaction is the origin of the magnetocrystalline anisotropy. The former
concept is to construct themodern spin-density-functional theory.
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�.�. Phonon Theory

When people achieve a lot of developments in the computational electronic structure,
the atomic motions are meanwhile explored by using first-principles methods. The
fundamental question concerning nuclei dynamics is: how does the system respond
to forces induced by atomic displacements? Before answering this question, we will
discuss the phonon theory in this section. Phonons are bosons, propagating as lattice
vibrational waves through crystalline solids, as shown in Table 2.5, which are collective
excitations of all atoms. In other words, the phonons are the quantum mechanical
description of elementary vibrational motions in which atoms uniformly oscillate at
a single frequency [66]. In classical mechanics, this means a normal mode of vibra-
tion. While normal modes are wave-like phenomena in classical mechanics, phonons
show particle-like properties, treated as quasi-particle in quantum mechanics. Lattice
(phonon) conduction driven heat transfer in solids is proportional to the lattice (phonon)
thermal conductivity tensor Kp, namely qk =Kp ·—T . And the vibrational (phonon)
specific heat capacity determines the sensible heat storage, as well the vibrational free
energy makes a dominant contribution to the total free energy in most cases. Hence,
the phonon theory is one of the crucial concepts in condensed matter physics. In this
section, we will briefly discuss the fundamental concepts in the phonon theory, including
harmonic approximation and lattice specific heat capacity.

�.�.�. Normal Modes

A normal mode is a pattern of motion in which all parts of the system move sinusoidally
with the fixed frequency and with a fixed phase relation. Normal modes are essential
because any arbitrary lattice vibration can be considered as a superposition of these
elementary vibration modes. Firstly, assume a system within n point-mass-like particles
interconnected by harmonic springs. It induces 3n equations of motions and 3n degrees
of freedom. These 3n degrees of freedom consist of 3 translational and 3n-3 vibrational
degrees of freedom. The system is, in principle, ultimately solvable, albeit excessively
challenging to tackle directly when the number of particles becomes large. In practice,
we can transform such a problem with many coupled variables into many individual
problems, and each resulting problem has only one variable. This method is widely
used for mechanical systems and is commonly done by diagonalizing the dynamical
matrix from the equations of motion [67]. Now, for a n-particle system, it has 3n-3
normal modes (except for some geometric arrangements), the general motions of the
system are superpositions of all normal modes. The normal modes are uncoupled, which
means that in a harmonic system, excitation of one mode will never induce the motion
of a di�erent mode, i.e., there is no energy transfer between these (harmonic) normal
modes.
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In solids with periodic lattices, these harmonic normal modes’ evenly spaced energy
levels are precisely the phonons. Assume the unit cell of solid has more than one type
of atom, there are correspondingly the solid has two types of phonons, namely acoustic
phonons and optical phonons. Some of characteristics of acoustic and optical phonons
are summarized in Table 2.1.

Table �.�.: Characteristics of lattice-vibrational acoustic and optical phonons [68].
Characteristic Acoustic Phonon Optical Phonon

Group velocity sound waves, constant for
wave number k ! 0

smaller than acoustic mode

Displacement of
adjacent atoms in-phase out-of-phase

Largest frequency at the edge of Brillouin zone higher than acoustic
polarization

Density of states ( per
unit volume, per dw

Debye model
Dp,D,a = w2

2p2u3
p,g,a

Debye-Gaussian Model
Dp,DG = dw2exp[�(w�wc

Dw )2]

Phonon number
density np,A =

R
fpDp,A(w)dw np,O =

R
fpDp,O(w)dw

Acoustic mode
number density

3n
n is the atomic number density

(3N0-3)n
N0 is the number of atoms
per primitive cell

Number of
polazrizations

two transverse and one
longitudinal (per unit-cell
lattice)

3N0-3

f or w vs. l or
1/l = k (dispersion
relation)

longer-wavelength modes have
smaller frequency, and for
l ! •(k ! 0),w ! 0

even long-wavelength modes
have a finite frequency

Acoustic phonons are in-phase movements of atoms out of their equilibrium positions
and are named after their close relation to sound waves. Acoustic phonons are long-
wavelength modes having smaller frequency. They can be both longitudinal (LA, in
the direction of propagation) or transverse (TA, perpendicular to the propagation
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direction). Acoustic phonons mostly have a linear dispersion relationship between
frequency and phonon wavevector, in which the frequency goes to zero in the limit of
longer-wavelength.

Optical phonons are short-wavelength, out-of-phase movements of the atoms in the
lattice and only occur if the lattice basis consists of two or more atoms. They are named
optical because in some ionic crystals, they can be excited by electromagnetic radiation
(light) through infrared absorption or Raman scattering. Optical phonons are even
long-wavelength modes having a finite frequency. They have a non-zero frequency at the
Brillouin zone center and because of the symmetry, they show no dispersion near that
long-wavelength limit. This is because they correspond to a mode of vibration where
positive and negative ions at adjacent lattice sites swing against each other, creating a
time-varying electrical dipole moment. Similar to acoustic phonons, optical phonons
are also abbreviated as LO and TO phonons, for the longitudinal and transverse modes
respectively; the splitting between LO and TO frequencies is often described accurately
by the Lyddane–Sachs–Teller relation [69].

�.�.�. Symmetry Analysis

With group theory, finding the vibrational states of di�erent phonon modes is possi-
ble.

Basic concepts of group theory
The mathematical definition of a group is a collection of elements A, B, C, ..., which are
interrelated according to certain rules:

• The product of any two elements in the group must be an element in the group;
If A,B 2 G then AB =C 2 G.

• The associative law is valid, i.e., (AB)C = A(BC).

• There exists an identity element E, then AE = EA = A.

• For every element A there exists an inverse element A�1 such that AA�1 = A�1A =
E.

In general, the elements of a group will not commute, i.e., AB 6=BA. But if all elements of
a group commute, the group is then called an Abelian group.

Here, we list a simple example of a group, the permutation group for three numbers,
P(3).
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E =

✓
1 2 3

1 2 3

◆
A =

✓
1 2 3

1 3 2

◆
B =

✓
1 2 3

3 2 1

◆

C =

✓
1 2 3

2 1 3

◆
D =

✓
1 2 3

3 1 2

◆
F =

✓
1 2 3

2 3 1

◆. (2.67)

Eq. 2.67 shows the 3! = 6 possible permutations that can be accomplished. The top
and bottom rows represent the initial and final arrangement of the three numbers,
respectively. Each permutation is an element of P(3). Now, we use three points in an
equilateral triangle (see Figure 2.2) to present the elements in Eq. 2.67. For example,
in symmetry operation F , 1 goes to position 3, and 2 goes to position 1, while 3 goes to
position 2, which shows a counterclockwise rotation of 2p/3. As the e�ect of the six
distinct symmetry operations that can be performed on these points, we can call each
symmetry operation an element of the group.

Y

X

2 3

1

Figure �.�.: The symmetry operations on an equilateral triangle are the rotations by
±2p/3 about the origin and the rotations by p about the three twofold axes.
Here the axes or points of the equilateral triangle are denoted by numbers
in circles.

The multiplication Table 2.3.2 presents the product of group elements. As one can see,
the symmetry operations satisfy the four rules of a group. Each element of P(3) has
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a one-to-one correspondence to the symmetry operations of an equilateral triangle.
Hence, these two groups are isomorphic to each other.

Table �.�.: Multiplication table for the point symmetry operations of an equilateral
triangle.

E A B C D F
E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

Group theory is helpful for some physical problems, especially symmetry operations
in a crystal. If we can associate each element with a matrix that obeys the same
multiplication table as the elements themselves, that is, if the elements obey AB = D,
then the matrices representing the elements must obey

M(A)M(B) = M(D). (2.68)

If this relation is satisfied, then we perform all geometrical operations analytically in
terms of arithmetic operations on matrices, which are usually easier to perform. The
one-to-one identification of a generalized symmetry operation with a matrix is the basic
idea of a representation and why group theory plays such an essential role in solving
practical problems.

Here, we list a set of matrices that satisfy the Table 2.3.2 for P(3) as

E =

✓
1 0

0 1

◆
A =

✓
�1 0

0 1

◆
B =

✓
1/2 �

p
3/2

�
p

3/2 �1/2

◆

C =

✓
1/2

p
3/2p

3/2 �1/2

◆
D =

✓
�1/2

p
3/2

�
p

3/2 �1/2

◆
F =

✓
�1/2 �

p
3/2p

3/2 �1/2

◆ . (2.69)

Note that the matrix corresponding to the identity operator E is always a unit matrix.
The matrix in Eq. 2.69 constitute a matrix representation of the group that is isomorphic
to P(3) and to the symmetry operations on an equilateral triangle. The A, B, andC matrix
show a rotation by±p about theY -axis, 2-axis, and 3-axis, respectively. D and F show ro-
tation of �2p/3 and 2p/3 around the center of the triangle.

Besides these essential rules of the group theory, there are also some crucial concepts
in the group theory [70],
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• The order of the group is defined as the number of elements in the group. Then
groups have finite order and infinite order. We will be mainly concerned with
finite groups.

• A subgroup is the smaller groups, whose elements are taken from the larger group.

• The order of an element is the smallest value of n in the relation Xn = E.

• A, B and X are elements of a group, if B = X�1AX , we say B is conjugate with A.

• A class is a complete set of elements which are conjugate to on another.

• The elements of the same class are of the same order, because if B = XAX�1 and
An = E, then Bn = (XAX�1) = XAX�1 . . .XAX�1 = E.

• The factor group is constructed with respect to a self-conjugate subgroup as the
collection of cosets of the self-conjugate subgroup, each coset being considered
an element of the factor group.

Representation theory
Representation theory is necessary for developing the group theoretical framework that
is used for the applications of group theory to solid state physics. Representations of
groups are a set of matrices, each corresponding to a single operation in the group, that
can be combined among themselves in a manner parallel to how the group elements
combine. The assigned matrices follow the multiplication relation of the original ab-
stract group. We assign a matrix D(A) to each element A of the abstract group such that
D(AB) = D(A)D(B). Then, the dimensionality of a representation equals the dimen-
sionality of each of its matrices, which is, in turn, equivalent to the number of rows or
columns of the matrix. These representations are not unique. For instance, by executing
a similarity transformation UD(A)U�1, we generate a new set of matrices that provides
an equally good representation. A simple physical example of this transformation is the
rotation of reference axes, such as (x,y,z) to (x0,y0,z0). Hence, people can generate a new
representation by taking one or more representations and combining them according
to

✓
D(A) O

O D0(A)

◆
, (2.70)

where O = (m⇥n) matrix of zeros, not necessarily a square zero matrix. The matrices
D(A) and D0(A) can be identical or not. This is a reducible representation because the
matrix corresponding to each and every element of the group is in the same block form.
To overcome the di�culty of the ambiguity of representations in general, irreducible
representations (irrep) are introduced. The definition of irrep is that, if by one and the
same equivalence transformation, all the matrices in the representation of a group can
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be made to acquire the same block form, then the representation is said to be reducible;
otherwise, it is irreducible. Thus, an irreducible representation cannot be expressed in
terms of representations of lower dimensionality.

Here, there are three irreps for the P(3):

E A B
G1 : (1) (1) (1)
G10 : (1) (�1) (�1)

G2 :

✓
1 0

0 1

◆ ✓
�1 0

0 1

◆ ✓
1/2 �

p
3/2

�
p

3/2 �1/2

◆

C D F
G1 : (1) (1) (1)
G10 : (�1) (1) (1)

G2 :

✓
1/2

p
3/2p

3/2 �1/2

◆ ✓
�1/2

p
3/2

�
p

3/2 �1/2

◆ ✓
�1/2 �

p
3/2p

3/2 �1/2

◆

(2.71)

A reducible representation having these three irreps is

E A B

GR

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCA

0

BB@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1

CCA

0

BBB@

1 0 0 0

0 1 0 0

0 0
1

2

p
3

2

0 0 �
p

3

2
�1

2

1

CCCA
. . .

. (2.72)

where GR is of the form

0

@
G1 0 O

0 G10 O

O O G2

1

A . (2.73)

GR can be denoted as

GR = G1 +G10 +G2. (2.74)

Representation theory is useful for treating physical problems because of a particular
orthogonality theorem, also called the “Wonderful Orthogonality Theorem,” which we
will present. Before that, the unitarity of representations should be mentioned; that is,
every representation with matrices having nonvanishing determinants can be brought
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into unitary form by an equivalence (similarity) transformation. The orthonormality
relation is defined as

Â
R

D(G j)
µn (R)D

(G j0)

µ 0n 0 (R�1) =
h
l j

dG j,G j0dµµ 0dnn 0 , (2.75)

which is obeyed for all the inequivalent irreps of a group, where the summation is over
all h group elements A1, A2, . . . , Ah. l j and l j0 are the dimensionalities of representations
G j and G j0 , respectively. If the representations are unitary, the orthonormality relation
becomes

Â
R

D(G j)
µn (R)[D

(G j0)

µ 0n 0 (R)]⇤ =
h
l j

dG j,G j0dµµ 0dnn 0 , (2.76)

More details of proof can be found in Ref. [70].

Character of a representation
To get around the arbitrariness of a representation with regard to similarity or equiv-
alence transformations, we now present the use of the character of a matrix repre-
sentation which remains invariant under a similarity transformation. The character
of the matrix representation cG j(R) for a symmetry operation R in a representation
D(G j)(R) is the sum over diagonal matrix elements of the matrix of the representa-
tion:

cG j(R) = traceD(G j)(R) =
l j

Â
µ=1

D(G j)(R)µµ . (2.77)

From the definition, it follows that G j will have h characters, one for each element in
the group. Since the trace of a matrix is invariant under a similarity transformation, the
character is invariant under such a transformation. Furthermore, the character for each
element in a class is the same. This theorem is called "the great beauty of character"
by van Vleck. If two elements of a group are in the same class, this means that they
correspond to similar symmetry operations. Here, considering the permutation group
P(3) as an example, we summarize the information on the characters of this group in
the well-known character table (see Table 2.3.2).

The wonderful orthogonality theorem and the second orthogonality theorem for char-
acter give the fundamental orthogonality relations used to set up character tables. The
wonderful orthogonality theorem is
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Â
R

c(G j)(R)c(G j0)(R�1) = hdG jdG j0 , (2.78)

and for the unitary representations is

Â
R

c(G j)(R)c(G j0)(R⇤) = hdG jdG j0 , (2.79)

those describe that the primitive characters of an irreducible representation obey the
orthogonality relation; in other words, unless the representations are identical or
equivalent, the characters are orthogonal in h-dimensional space, where h is the order
of the group.

Moreover, a second orthogonality theorem for characters sums over the irreps and is
quite practical for constructing character tables.

Â
G j

c(G j)(Ck)[c(G j)(Ck0)]Nk = hdkk0 , (2.80)

where Nk denotes the number of elements in class k. Thus, the wonderful orthogonality
theorem for character yields an orthogonality relation between rows in the character
table while the second orthogonality theorem gives a similar relation between the
columns of the character table.

Basis functions
Basic functions associated with each irrep are used to generate the matrices that
represent the symmetry elements of a particular irrep. Having a group G with symmetry
elements R and symmetry operators P̂R, we can represent the irrep by Gn (n labels
the representation). Then a set of basis vector |Gn jGn ji is defined, and each vector
|Gn ji of Gn is called a component ( j labels the component of the representation). All
components collectively generate the matrix representation denoted by D(Gn)(R). The
relation between P̂R and D(Gn)(R) is expressed as

Table �.�.: Character table for the permutation group P(3).
class! C1 3C2 2C3

Irrep # c(E) c(A,B,C) c(D,F)
G1 1 1 1
G10 1 -1 1
G2 2 0 -1
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P̂R|Gnai= Â
j

D(Gn)(R)) ja|Gn ji. (2.81)

The basis vectors also follow orthogonality relations

hGn j|Gn0 j0i= dnn0d j j0 . (2.82)

According to the above expression, we have a relation between each matrix element of
D(Gn)(R) ja and the e�ect of the symmetry operation on the basis function [70]:

D(Gn)(R) ja = hGn0 j0|P̂R|Gnai. (2.83)

Therefore, taking matrix elements of a symmetry operator P̂R between all possible
components of an irrep, the matrix representation D(Gn)(R) ja can be generated. This
is the easiest way to practically obtain these matrix representations for the symmetry
elements.

Now, the projection operation P̂(Gn)
kl is defined as transforming one basis vector |Gnli

into another basis vector |Gnki of the same irrep Gn:

P̂(Gn)
kl |Gnli ⌘ |Gnki. (2.84)

The utility of projection operators is mainly to project out basis functions for a given
component of a given irrep from an arbitrary function.

Group theory for lattice modes
Group theoretical techniques are important for lattice dynamics in formulating the nor-
mal mode secular determinant in block diagonal form, and symmetry is also important
in determining the selection rules for optical processes involving lattice modes such as
infrared and Raman activity.

The general outline for procedures that operate group theory to solve for the lattice
modes in solids is as follows [70]:

1. Find the symmetry operations for the group of the wave vector k = 0, the appro-
priate character table and irreducible representations.

2. Find the irreducible representations using Glattice modes = Gequivalence ⌦Gvector.

3. Find the irreducible representations of Glattice modes. The characters for the lattice
mode representation express the symmetry types and degeneracies of the lattice
modes.

��



4. Find the normal mode patterns.

5. Repeat items 1–4 for other points in the Brillouin zone and find the lattice for
k 6= 0.

6. Using the compatibility relations, connect up the lattice modes at neighboring k
points to form a phonon branch.

�.�.�. Harmonic Approximation

Now we have a crystal consisting of N unit cells each containing n atoms, where
the atoms are in their equilibrium positions. The instantaneous position Rk

l (t) of
the kth atom in the lth unit cell at time t with displacement ulk(t) can be written
as

Rk
l (t) = Rl + tk, (2.85)

where the lattice vector Rl represents the position vector of the lth unit cell. And the tk

is the position vector of atom k with respect to the origin of the unit cell. If the atoms
vibrate about their equilibrium positions by a displacement vector uk(R), the kinetic
energy of the lattice is written as

T =
1

2
Â

kaR
Mku̇k

a(R), (2.86)

where a = x,y,z is Cartesian indices and M is the atomic mass. The equation of motion
for kth atom in the lth unit cell can be expressed as

Mkük
a(Rl) =� ∂F

∂uk
a(Rl)

, (2.87)

where the F is the lattice potential energy. For lattice dynamics, the Hamiltonian for
nucleus motions in a crystal is given as [71, 72]

Hn = Â
l,k

P2

lk
2Mk

+F, (2.88)

where P is the momentum of the kth atom in the lth unit cell. And the lattice potential
energy (potential energy surface) is F. The F can then be expanded into a Taylor series
in powers of the uk(Rl), about their equilibrium positions
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F = F0 + Â
kaR

Fk
a(R)uk

a(R)

+
1

2!
Â

k1a1R1

Â
k2a2R2

Fk1k2

a1a2
(R1R2)u

k1

a1
(R1)u

k2

a2
(R2)

+
1

3!
Â

k1a1R1

Â
k2a2R2

Â
k3a3R3

Fk1k2k3

a1a2a3
(R1R2R3)u

k1

a1
(R1)u

k2

a2
(R2)u

k3

a3
(R3)

+ · · ·

(2.89)

The F0 is the equilibrium value of the lattice potential energy. The second term vanishes
since the atoms are in equilibrium and have no forces acting upon them. The quadratic
term is the harmonic lattice potential energy. In the harmonic approximation, the series
expansion is cut at this term so as not to include the higher order terms.

The Harmonic Equations of Motion is

Mkük
a(R) =� Â

k0R0

∂ 2F
∂uk

a(R)∂uk0
a 0(R0)

uk0
a 0(R0). (2.90)

Assuming that the u is time dependent, the time derivatives in the equations of motion
can be evaluated

Mkw2uk
a(R) = Â

k0R0
Fkk0

aa 0(R,R0)uk0
a 0(R0). (2.91)

This eigenvalue problem can be diagonalized to yield the phonon frequencies, atomic
displacement patterns, and dynamical matrices.

�.�.�. Phonon Density of States

The density of states (DOS) of phonons is employed to determine the total number of
phonons Np and the phonon-related properties. The phonon DOS Dp(w) is the total
number of modes in the frequency range w to w +dw, divided by volume V . First, we
use —kwa relate dk and dwa , where a is for acoustic and optical branches, the density
of normal modes for three-dimensional cubic lattice with lattice constant L is written
as

Dp(w) =
1

L3
(

L
2p

)3 Â
a

1

|—kwa |
= (

1

2p
)3 Â

a
4pk2

dk
dwa

. (2.92)
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For any quantity f related to the modes, we have

Â
a

Â
k

f [wa(k)] = Â
a

Z

k

1

(2p)3
f [wa(k)]dk

⌘ Â
a

Z

wa
Dp(wa)f(wa)dwa .

(2.93)

We also can use the Dirac delta function dD to represent the total DOS for normal modes.
Then, Dp(w) is given as

Dp(w) = Â
a

Z

k0

dk0

(2p)3
dD[w �wa(k0)], dk0 = 4pk02dk0. (2.94)

Therefore, the phonon frequency density of states Dp(w) converts the number of
phonons of wave number k to those of frequency w , using the dispersion relations.

For acoustic phonons, as listed in Table 2.1, there is a linear dispersion at zone cen-
ter k ! 0, leading to a constant group velocity. In this regard, the Debye model
(parabolic DOS, proportional to E2

p, Ep = h̄w = h̄up,gk) is used to describe the acoustic
modes (two TA and one LA). From Eq. 2.92 for a 3D k-space, the Debye DOS model
is

Dp,D,a(w) =
4pk2

(2p)3

1

up,g,a
=

1

2p2

w2

u3
p,g,a

,
dw
dk

= up,g,a =
w
k
= up,p,a

=
1

2p2

E2
p

h̄2u3
p,g,a

.

(2.95)

If we assume two TA and one LA modes are the same, we obtain a simple Debye DOS
model, which is

Dp,D(w) =
3

2p2

w2

u3

p,A
, (2.96)

where u3

p,A is average modal acoustic-phonon velocity. Then, we can define two quanti-
ties from the Debye model,

The Debye polarization temperature:

TD,a =
h̄wD,a

kB
=

h̄
kB

up,g,a(6p2n)1/3, (2.97)
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where n is the atomic number density.

The Debye cut-o� frequency:

wD = (6p2nu3

p,A)
1/3 = (6p2n)1/3up,A (2.98)

The physical meaning of wD is the maximum frequency of atomic vibrations. When
w > wD, the Dp,D(w) = 0.

For optical phonons, the Debye–Gaussian model can be used to describe the density of
states, i.e.,

Dp(Ep) =CE2

pexp[�(
Ep �Ep,c

DEp
)2], Dp(Ep) = Dp(w)

∂w
∂Ep

, (2.99)

where C is a normalization constant, Ep,c represents the energy at the center of
the DOS, DEp is the width of the distribution. At low phonon energies, the De-
bye–Gaussian model behaves similarly to the Debye model, and near the center behaves
similarly to a Gaussian distribution. This also avoids the appearance of a cut-o� fre-
quency.

�.�.�. Thermodynamics of Phonons

After obtaining the phonon dispersion and the phonon DOS, many phonon-related
properties can be determined, such as phonon specific heat capacity, which is an
essential quantity in the thermodynamic properties of solids. At a finite temperature,
the lattice will vibrate following the finite temperature dependence of phonon modes
inducing energy fluctuations, which can be regarded as a gas of phonon. Meanwhile, a
phonon mode can be created and dismissed with random energy fluctuations. As listed
in Table 2.5, phonons are bosons that obey the Bose-Einstein statistics. In other words,
there is no limit to how many phonons can present in each normal mode. Hence, in
thermal equilibrium and within the harmonic regime, the phonon occupancy f (w,T )
with a given angular frequency w at temperature T is:

f (w,T ) =
1

exp( h̄w
kBT )�1

. (2.100)

And the total energy of phonons, in a volume V , is

Ep = Â
p

Z •

0

h̄w 1

exp( h̄w
kBT )�1

Dp(w)dw. (2.101)
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Now, the lattice (phonon) specific heat capacity of a solid at constant volume is defined
as:

CV,p =
∂Ep

∂T
|V = Â

p

Z •

0

h̄w ∂
∂T

[exp(
h̄w
kBT

)�1]�1Dp(w)dw. (2.102)

The di�erentiation on the right-side can be simplified as

∂
∂T

[exp(
h̄w
kBT

)�1]�1 =
h̄w

kBT 2

ex

(ex �1)2
, x =

h̄w
kBT

. (2.103)

Finally, we get

CV,p = kB Â
p

Z x2ex

(ex �1)2
Dp(w)dw. (2.104)

According to the Debye DOS model in last subsection, the lattice specific heat capacity
can be approximately obtained as

CV,p = 9NkB(
T
TD

)3

Z TD/T

0

x4ex

(ex �1)2
dx. (2.105)

Eq. 2.105 is known as the Debye T 3 law. TD = h̄wD/kB is the Debye temperature. The
high-temperature and low-temperature expansions of the lattice specific heat capacity
are

CV (T )⇠ 3NkB[1�
1

20
(
TD

T
)2], T � TD, (2.106)

CV (T )⇠
12p4

5
NkB(

T
TD

)3 = 234NkB(
T
TD

)3, T ⌧ TD. (2.107)

In addition, before the Debye model, the earliest quantum theories of lattice specific
heat capacity was put forth by Einstein in 1907, namely the Einstein phonon model. In
which, the atomic vibrations are represented by the Einstein approximation, which is
described by a fixed frequency n that does not depend on k. Hence, the equilibrium
total energy of phonons is

Ep,E = 3N[
1

2
hn +

hn
ehn/kBT �1

]. (2.108)
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Thus, themolar specific heat capacity of phonon gas or atomic vibrations are

Cmole(T ) = 3NkB(
TE

T
)2

eTE/T

(eTE/T �1)2
, (2.109)

where TE = hn/kB is the Einstein temperature. In the Einsteinmodel, the high-temperature
and low-temperature expansions of the lattice specific heat capacity are

Cmole(T )' 3R[1� 1

12
(
TE

T
)2], T � TE , (2.110)

Cmole(T )' 3R(
TE

T
)2e�TE/T , T ⌧ TE . (2.111)

Therefore, the high-temperature expansion in Einstein model matches well with experi-
mental values, tending to the Dulong-Petit law Cmole = 3R. The Einstein model is often
used to approximate the optical phonon part of the phonon spectrum. At low tempera-
ture, the Debye T 3 law agrees better with experiments.

�.�. Finite-temperature Thermodynamics in DFT

Till now, phonon theory provides a connection between DFT calculations at zero temper-
ature and thermodynamic properties at finite temperature. Hence, DFT calculations can
be bridged to the thermodynamic properties at finite temperatures and the experiments
with mutual validation. To access the thermodynamic properties and phase transitions
of functional materials, the Gibbs free energies should be calculated instead of the total
energies for the ground states at 0 K. At finite temperature, in addition to the lattice
free energy due to phonons, there are also electronic and magnetic contributions to
the total Gibbs free energy. The most fundamental quantity is the Gibbs free energy,
which can be formulated as a function of temperature T , pressure P, and magnetization
direction M. Following the Legendre transformation, the Gibbs free energy G(T,P,M)
can be reformulated into the sum of Helmholtz free energy H(T,V,M) and the PV term
which can be obtained explicitly fitting of the equation of states. The Helmholtz free
energy has four contributions [73], as shown in Figure 2.3.
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�.�.�. Helmholtz Energy

In Figure 2.3, E(V,P,M) is the static total energy, which is the total energy of the system
at zero Kelvin without the zero-point energy contribution, which was determined by
fitting the energies concerning the volume data using the Birch-Murnaghan equation of
state (EOS) [74].

E = a+bV�2/3 + cV�4/3 +dV�2 + eV�8/3 (2.112)

Vibrational Contributions
Under the harmonic/quasi-harmonic approximation, lattice dynamics or phonon theory
is currently the most established method, which has been discussed in the previous
sections. Hence, the Fvib(V,T ) in Figure 2.3 represents the lattice vibrational contribu-
tion to the Helmholtz energy, which can be derived from the phonon density of states
(PhDOS), g(w,V ), by using the following equation [75]:

Fvib(V,T ) = kBT
Z •

0

ln [2sinh
h̄w

2kBT
]g(w,V )dw, (2.113)

where kB is the Boltzmann constant, and w denotes the phonon frequency for a given
wave vector q. The PhDOS g(w,V ) can be obtained by integrating the phonon dispersion
in the Brillouin zone. It is recommended that g(w,V ) is calculated at the same volume
set at which the static total static energies are calculated.

Electronic Contributions
The third term Fel in Figure 2.3 expresses the electronic contribution to the Helmholtz
free energy, obtained by [76]:

Fel(V,T ) = Eel(V,T )�T ·Sel(V,T ) (2.114)

• DFT
• EOS

• DFT-Fermi-Dirac

• DFPT
• QHA

• IHJ model

! ", $, % = ' ",(, % + $( = * (,% + +!"!#$%&'(# (, " + +")$$(#! (," + +*)+'!$(# (," + $(

T: temperature
V: volume
P: pressue

Figure �.�.: Different contributions to the total Gibbs free energy.
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where Eel(V,T ) and Sel(V,T ) indicate the thermal electronic energy and bare elec-
tronic entropy, respectively. With the electronic DOS, both terms can be formulated
as [76]:

Eel(V,T ) =
Z

n(e) f ede �
Z eF

�•
n(e,V )de, (2.115)

Sel(V,T ) =�kB

Z
ne[ f ln f +(1� f )ln(1� f )]de, (2.116)

where n(e) is the electronic DOS, f represents the Fermi-Dirac distribution function
and eF is the Fermi energy.

Magnetic Contributions
Finally, based on the original Inden–Hillert–Jarl (IHJ) model [77, 78] and further
improved expression by Xiong [79], the magnetic Gibbs energy can be formulated
as:

Gmagn = RT ln(b ⇤+1) f (t), (2.117)

where t is T/T ⇤, T ⇤ is the critical temperature (the Cutie temperature TC for ferromag-
netic materials or the Neel temperature TN for antiferromagnetic materials). b ⇤ is the ef-
fective magnetic moment per atom, which can be expressed as b ⇤ =’i(bi+1)xi �1. [79].
And g(t) is given by:

g(t) = 1� [
0.38438376t�1

p
+0.63570895(

1

p
�1)

⇥ (
t3

6
+

t9

135
+

t15

600
+

t21

1617
)]/D, 0 < t  1

g(t) =�[
t�7

21
+

t�21

630
+

t�45

2975
+

t�49

8232
]/D, t > 1

(2.118)

where D = 0.33471979+0.49649686( 1

p �1).

In addition, magnetic free energy can be evaluated by integrating the specific heat ob-
tained byMonte Carlo simulation of the Heisenberg model Hmag =Âi j Ji jSi ·S j, where the
exchange parameters Ji j can be calculated using DFT calculations [80].

�.�.�. Thermodynamic Properties

After calculating the free energy of a system, we can quickly obtain the thermodynamic
properties of the system, such as entropy, enthalpy, and heat capacity. The equilibrium
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voluem Veq(P,T ) at given T and P can be calculated by finding the root of the following
equation

�(
∂F(V,T )

∂V
)T = P (2.119)

The entropy S(V,T ) can be obtained through free energy of system by

S(V,T ) =�(
∂F(V,T )

∂T
)V (2.120)

Based on free energy and entropy, the enthalpy at given P and T is defined as

H(V,T ) = F(V,T )+T S(V,T )+PV (2.121)

After getting the equilibrium volumeVeq(P,T ), the volume thermal expansion coe�cient
can be obtained as

bP(P,T ) =
1

Veq
(
∂Veq(P,T )

∂T
)P (2.122)

The heat capacity at constant volume can be calculated from

CV (V,T ) = (
∂U(V,T )

∂T
)V , (2.123)

where the internal energy is U(V,T ) = F(V,T )+T S(V,T ).

Then the heat capacity at constant pressure is defined as

CP(P,T ) =CV (V,T )+V T BT (V,T )(b (P,T ))2. (2.124)

It can be seen that thermal expansion makes the di�erence between the heat capacity
at constant volume and the heat capacity at constant pressure. And in the equation,
BT (V,T ) is the isothermal bulk modulus. The bulk modulus of a solid represents the
substance’s resistance to uniform compression. Depending on how the temperature
varies during compression, a distinction should be made between the isothermal bulk
modulus (constant temperature) and the adiabatic bulk modulus (constant entropy or
no heat transfer). Now, the BT (V,T ) can be obtained as
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BT (V,T ) =V (
∂F2(V,T )

∂V 2
)T , (2.125)

and the adiabatic bulk modulus can be then calculated

BS(V,T ) = (CP/CV )BT (V,T ). (2.126)

�.�. CALPHAD Modeling

The calculated thermodynamic properties can be fed into the CALculation of PHAse
Diagram (CALPHAD) method [81] as initial input values. The CALPHAD method
models the thermodynamic properties of compounds and obtains global minimization
of Gibbs free energy of the system, leading to multi-component phase diagrams. Such
phase diagrams o�er a roadmap for experimental synthesis. Traditionally only the
experimental measurements are used in the thermodynamic assessment. However, even
extensive experiments cannot provide all the parameters needed, whereas DFT can give
reasonable values for the thermodynamic quantities of the reference phases. Hence, the
CALPHAD method can be a bridge between theoretical predictions and experimental
validations. Here we briefly discussed the thermodynamic description in the CALPHAD
method of a binary system.

Pure elements

The Gibbs free energies for pure element i were taken from the Scientific Group Thermo-
data Europe (SGTE) pure element database [82], whichwas described by:

�Gf
i (T ) = Gf

i (T )�Hi,SER(298.15 K)

= a+bT + cT ln(T )+dT 2 + eT 3 + f T�1 +gT 7 +hT�9 ,
(2.127)

where Hi,SER(298.15 K) is the molar enthalpy of element i at 298.15 K and 1 bar in its
standard element reference (SER) state, and a to h are known coe�cients.

Solution Phases

The solution phases are normally described using the substitutional solution model, with
the corresponding molar Gibbs free energy formulated as:

Gj
m = xAGj

A(T )+ xBGj
B(T )+RT (xAlnxA + xBlnxB)+Gex +Gmagn, (2.128)
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where xA and xB are the mole fraction of elements A and B in the solution, respectively.
Taken from SGTE [82], Gj

i denotes the molar Gibbs free energy of pure A and B in the
structure j at the given temperature. Gex denotes the excess Gibbs energy of mixing,
which measures the deviation of the actual solution from the ideal solution behaviour,
modelled using a Redlich-Kister polynomial [83]:

Gex = xAxB

n

Â
j=0

( j)Lj
A,B(xA � xB)

j. (2.129)

The j � th interaction parameter between A and B is described by ( j)Lj
A,B, which is

modelled in terms of a⇤+b⇤T.

Stoichiometric intermetallic compounds

AxBy is considered as stoichiometric phases. The Gibbs free energies per mole atom of
these phases were thus expressed as follows:

GAxBy
m =

x
x+ y

GA,SER +
y

x+ y
GB,SER +DGAxBy

f (T ) , (2.130)

where DGAxBy
f (T ) is the Gibbs free energy of formation of the stoichiometric compound

AxBy which can be expressed as:

DGAxBy
f (T ) = z +JT , (2.131)

where the coe�cients z , J are the parameters to be optimized. Generally, the calculated
enthalpies of formation for these phases from DFT calculations can be treated as initial
values of the coe�cient z in Eq. 2.131 in the present optimization.

�.6. Boltzmann Transport Equation

Till now, we have been focusing on the equilibrium properties of the solids, i.e., for
electrons based on DFT. Transport properties belong to the non-equilibrium properties,
i.e., how electrons/phonon behave with stimuli. Based on classical Hamiltonian statisti-
cal mechanics, the Boltzmann equation or Boltzmann transport equation (BTE) is to
describe the steady state of a particle by its position x and momentum p and relates
their time derivatives appearing in the equation of motion to their derivatives of the
Hamiltonian, through ∂x

∂ t = ∂H
∂p , ∂p

∂ t =�∂H
∂x [84]. In addition, BTE also recognizes the

particle and its energy according to its position and momentum (x,p), and also allows
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for the determination of a non-equilibrium probability distribution of particles fi under
an applied field and also the return to equilibrium, after an initial non-equilibrium state.
These distributions are used in determining transport coe�cients under the influence
of driving forces in cases of non-equilibria. BTE can be further for electrons, phonons,
and photons based on their corresponding probability distribution function fe, fp, and
fpt .

A Simple Derivation of BTE

BTE is the equation governing the evolution of the distribution function based on
non-equilibrium in time and space. We can start with being the fraction of particles
whose positions and momenta are x and p at time t derive it. Under the external
driving forces, if no collision happens, after a short time Dt, the particle would move
from x to x+uDt, where u is the velocity of the particle. And the particle momentum
would change from p to p+FDt, where F is the sum of the external forces on the
particle at time t. Furthermore, if there are any di�erence between f (x,p, t) and
f (x+uDt,p+FDt, t+Dt), the reason is the collision. Thus, the collision term is defined
in term of a collision rate ∂ f/∂ t|s, including particles of positions x0 and momenta p0

over the time interval Dt entering (x,p). Note that, this term represents a change, not
a formal derivative.

As shown in Figure 2.4, we generated a presentation of balance on f in the x� px space.
Then, we obtain

[ f (x+uDt, p+FDt, t +Dt)� f (x,p, t)]dxdp=
∂ f
∂ t

|sdx0
dp0Dt (2.132)

where ∂ f
∂ t |s is the time rate of change of f due to collisions. Here, neither a new

particle is created nor an old particle is removed, it only changes particles momen-
tum.

Then, using the Taylor expansion the first term on the left is defined as

f (x+uDt,p+FDt, t +Dt) = f (x,p, t)+(
∂ f
∂x j

u j +
∂ f
∂ p j

Fj +
∂ f
∂ t

)Dt

= f (x,p, t)+ [(—x f ) ·u+(—p f ) ·F +
∂ f
∂ t

]Dt.
(2.133)

Now, considering the limit as Dt ! 0, and introducing a sink/source term ṡ f , we ob-
tain
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∂ f
∂ t

+u j
∂ f
∂x j

+Fj
∂ f
∂ p j

=
∂ f
∂ t

|s + ṡ f

∂ f
∂ t

+u · (—x f )+F · (—p f ) =
∂ f
∂ t

|s + ṡ f .

(2.134)

This is the Boltzmann transport equation (BTE), and the velocity term in the equation
represent the speed of propagation of the energy of the carrier, namely the group
velocity. The the carrier i can be considered as phonons, electrons, and photons, we
hence listed a Table 2.4 for carrier i.

In summary, the critical characteristic of BTE is the return from non-equilibrium distribu-
tion f to the equilibrium distribution f 0, through scattering ∂ f

∂ t |s.

Using the BTE, studying phonon and electron transport properties is our goal. Firstly,
thermal equilibrium particle (energy occupancy) distribution (statistical) function f 0

i
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Figure �.�.: Simple, in�nitesimal (Dx ! 0, Dpx ! 0) balance on conserved property
f , in single-space x and single-momentum px coordinates. The storage,
scattering, and source terms are also shown.
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Table �.�.: The Boltzmann transport equation (BTE) for particle i [8�].

∂ fi
∂ t +ui · (—x fi)+Fi · (—p fi) =

∂ fi
∂ t |s + ṡ f ,i, i = p, e, ph

Fi external force
fi probability distribution function of particle i
ṡ f i carrier source rate, 1/s
—x spatial gradient, 1/m
—p momentum gradient, 1/N-s

is listed in Table 2.5. Hence, the derivatives in Eq. 2.134, such as ∂ f/∂ t, ∂ f/∂x j,
Fj∂ f/∂ p j, respond to scattering events (and source/sink or generation ṡ f ,i ) in return to
the equilibrium population. Clearly, the transport properties are related to the process
of scattering from f to f 0, which means the slower the rate of scattering the more
e�ective is the transport.

�.6.�. Scattering Effects

The probability distribution function in BTE has their positions and momenta changed
after collisions (scattering) with each other or with other particles. At time t0, only the
momentum of the scattered particle change, but the instantaneous position keeps. A
scheme of particle scattering is plotted in Figure 2.5.

For no collision ∂ f
∂ t |s = 0, the particles keep the original path (dashed curve) moving,

then the f 0

i keeps original also. We have

f 0

i (x�uDt,p�FDt, t �Dt) = f 0

i (x,p, t)

= f 0

i (x+uDt,p+FDt, t +Dt),
(2.135)

or called equilibrium distribution, which means the status of energy state does not
change anymore (i.e., occupied state is still occupied.), then having

D f 0

i
Dt

= (
∂
∂ t

+u ·—x +F ·—p) f 0

i = 0. (2.136)

For collision (scattering) cases, on the one hand, a particle moves from state (x,p) into
another state (x,p0) (like particle B in Figure 2.5). This is defined as out-scattering,
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which decreases the probability of occupation of this state. On the another hand, after
scattering, a particle (x,p0) enter a state (x,p) (like particle C in Figure 2.5). This is
called in-scattering.

Table �.�.: Thermal equilibrium particle (energy occupancy) distribution (statistical)
function f 0

i = (Ei), i = p (phonon) and e (electron) and its temperature
dependence for principal energy carriers.

Attributes Phonon Electron and Hole

Iconic
presentation

Energy
presentation

wave vector kp,
dispersion kp(wp),
and polarization in
reciprocal lattice space g

wave vector ke
band structure,
and spins

Particle
type

Bose-Einstein
(boson)

Fermi-Dirac
(fermion)

Nature of
particle

particles are
indistinguishable,
integer spin
(angular momentum),
and any number of
particles may
occupy a given
eigenstate

particles are
indistinguishable,
odd, half-integer
spin (angular
momentum) and
obey the Pauli
exclusion
principle

Equilibrium
distribution
function

1

exp( Ep
kBT )�1

1

exp(Ee�µ
kBT )+1

Energy Ep = Ep,potential +Ep,kinetic Ep = Ee,potential +Ee,kinetic

µ = EF [1 = 1

3
(pkBT

2EF
)2] is the chemical potential.

A general relation can be used for all particles as f 0

i = 1

exp(Ei�µ
kBT )+g

,

where g = 1 for fermion, g =�1 for boson.
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Figure �.�.: Two-dimensional (x, px) rendering of particle scattering that results in a
change in the particle momentum. In-scattering adds particles to state
(x, px), whereas out-scattering removes particles from it.

Hence, for nonequilibrium distribution, we have

D fi

Dt
=

∂ fi

∂ t
|s + ṡ f ,i, (2.137)

where ṡ f ,i would collect for any other source/sink not incorporated in ∂ fi
∂ t |s.

Now, we sum over all possible scattering processes (p0 to p and p to p0), so ∂ fi
∂ t |s

is

∂ fi

∂ t
|s = Â

p0
fi(p

0)[1� fi(p)]gi̇(p
0,p)�Â

p0
fi(p)[1� fi(p

0)]gi̇(p,p
0), (2.138)
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where gi̇(p0,p) is the transition-probability rate, particle at state p0 scatters to state
p. Eq. 2.138 relies on the sum of in- and out-scattering. The first term represents
in-scattering, fi(p0) shows the probability that p0 is occupied, and [1� fi(p)] shows the
probability, which can be occupied by p. The second term represents out-scattering.
fi(p) and [1� fi(p0)] are the probabilities that p is occupied and p0 is empty, respec-
tively.

The sum of the collisions presented in ∂ fi
∂ t |s does not create or destroy carriers (particles),

leading to

Â
p

∂ fi

∂ t
|s = 0 overall balance equation. (2.139)

This indicates that in-scattering originates from out-scattering of another state, and
when adding all exchanges, the net rate of change of fi is zero. And this is a steady
state, not the equilibrium state.

�.6.�. Relaxation-Time Approximation of Scattering

As discussed above, the collision or scattering term represents particles’ elastic- (where
the energy of principal carrier groups is conserved) or inelastic- (energy change between
principal carriers) scattering rate in BTE. Such collisions could involve phonons, elec-
trons, fluid particles, and photons [68]. For instance, the phonon scattering is mostly by
other phonons. In a three-phonon scattering, a phonon could split its energy and create
two other phonons. And these scattering events return the distribution to the equilib-
rium state f 0

i . Then the scattering rates are generally in integral form, with the integral
taking over the energy of the final (after-collision) state and the energy of the other
participating particles. According to Eq. 2.134, therefore, BTE is an integral-di�erential
equation, and the unknown function in the equation is a probability distribution func-
tion in a six-dimensional space of a particle position and momentum. In general, we
have to use some approximation methods to solve it.

The relaxation-time ti approximation (RTA) is widely used to describe the scattering
rate, i.e.,

f 0

i = fi +
∂ fi

∂ t
|sti + · · ·

∂ fi

∂ t
|s ⇡�

fi � f 0

i
ti

=� f 0i
ti

=�gi̇ f 0i .
(2.140)
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Clearly, it indicates that the smaller ti, the faster fi back to equilibrium, and ti =
1

gi̇
. This

approximation is generally valid for a small force field and under elastic or isotropic
scattering (collisions).

Now, we only consider the time dependence, i.e., ṡ f ,i = 0, it yields

d fi(t)
dt

=
∂ fi

∂ t
|s =�

fi(t)� f 0

i
ti

. (2.141)

Using fi(t = 0) = fi(0), the solution to this equation is

fi(t) = f 0

i +[ fi(0)� f 0

i ]e
�t/ti . (2.142)

It indicates within a small time constants ti, the f 0

i is restored.

�.�. Lattice Thermal Transport

�.�.�. Anharmonic Effects

Although the harmonic phonon model is useful in many cases, there are many important
physical phenomena that cannot be explained in a purely harmonic theory. Especially,
for those properties with strong temperature dependent, harmonic approximation is
incomplete. For instance, in a rigorously harmonic crystal, the equilibrium size is
independent with temperature, however, we find finite thermal expansions in the real
materials. And the quantum theory of the harmonic crystal predicts that the lattice
specific heat capacity should obey the classical Dulong-Petit law at high temperatures.
The failure of the high-temperature specific heat to approach this value indicates that
there is an anharmonic e�ect. A rigorously harmonic crystal would have an infinite
thermal conductivity. However, this is incorrect. After considering the anharmonic
e�ects the thermal conductivity of an insulating solid is finite. This is probably the most
important transport property determined by the anharmonic e�ects, but they also play
essential roles in almost any of the processes by which the lattice vibrations transmit
energy. Beyond the harmonic approximation, the potential energy of lattice can be
expanded as

F = Feq +Fharm +Fanh, (2.143)

where Feq, Fharm, and Fanh represent the equilibrium, harmonic, and anharmonic
potential energy of the lattice, respectively.
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We have recognized that phonon frequencies of a real crystal are volume-dependent.
Hence, we can in principle use the quasi-harmonic approximation to describe volume-
dependent thermal e�ects, such as thermal expansion. It is based on the assumption
that the harmonic approximation holds for every value of the lattice constant, which
is to be viewed as an adjustable parameter. More details will be discussed in the
following section. Now, we give a brief discussion of the thermal expansion coe�cient
(a) [86],

a =
CV g
3B

, (2.144)

where B =�V (∂P/∂V )T is the bulk modulus. g is the overall Grüneisen parameter. The
Grüneisen parameter is defined for every phonon mode as

gi =�∂ lnwi

∂ lnV
, (2.145)

where i indicates a phonon mode. The total Grüneisen parameter is the sum of all gi. It
is a measure of the anharmonicity of the system.

How phonon anharmonicity emerges in a real system is complicated to understand.
In past decades, people used advanced measurement and computational methods to
determine the origin of phonon anharmonicities, such as lone-pair electrons, resonant
bindings, polar covalent bonding, and buckling structures [87, 88, 89]. Meanwhile,
the concept of phonon “anharmonicity engineering” [90, 91] has also been proposed
recently to regulate the thermal properties in numerous materials, like thermoelectric
materials and thermal barrier coatings [92].

�.�.�. Phonon-Phonon Interactions

Up to now, by using harmonic and single electron approximations, we have assumed
that the energy and propagation properties of any excitation in the system are entirely
una�ected by the presence or absence of other excitations, and the excited states of the
system are treated as an assembly of completely independent phonons and electrons.
In fact, through those approximations, the transport properties are incorrect. Now, we
rewrite the full Hamiltonian of a crystal as

H = Hn +He +Hep (2.146)

where He is for the electronic Hamiltonian, Hep is for the electron-phonon interac-
tions.
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From Eq. 2.89, we know that the third and higher order terms indicate the interactions
among phonons. The Hamiltonian for the lattice including anharmonicity can be written
as

Hn = H0 +HA, (2.147)

where H0 is the above discussed harmonic part of the Hamiltonian. HA is the anharmonic
terms

HA = Â
n�3

1

n!
Â

k1...kn
a1...an
R1...Rn

Fk1...kn
a1...an(R1 . . .Rn)uk1

a1
(R1) . . .ukn

an(Rn). (2.148)

Usually, it is easy to work with the quantized phonon field by using the second quanti-
zation formalism. The atomic displacement can be expressed by using the phonon field
operator A(l ) = a(l )+a†(l ), which is constructed from the momentum and position
operators of the Hamiltonian, l ⌘ {q, j}, the lower a(l ) and raising a†(l ) operators
are the phonon annihilation and creation operators, respectively. This is also called
the occupation number representation, in which n phonons of wave-vector q are cre-
ated with n raising operations as (a†(l ))n |0il = (n!)�1/2 |nil . Then the displacement
operators is represented as

uk
a(R) = Â

l

s
h̄

2NMkwl
eak(l )eiq·RA(l ). (2.149)

Substitution into the Hamiltonian for the nth order anharmonic term yields:

H(n)
A =

1

n!
Â

k1...kn
a1...an
R1...Rn

Fk...kn
a...an(R1 . . .Rn)uk1

a1
(R1) . . .ukn

an(Rn)

=
1

n!
(

h̄
2N

)n/2 Â
l1...ln

Â
k1...kn
a1...an
R1...Rn

ek1

a1
(l1) . . .ekn

an(ln)

(Mk1
wl1

. . .Mknwln)
1/2

Fk...kn
a...an(R1 . . .Rn)

⇥ ei(q1·R1+···+qn·Rn)A(l1) . . .A(ln)

(2.150)
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We in principle expand the HA in any chosen coordinate [71]. For instance, the an-
harmonic Hamiltonian expanded in powers of the Fourier components of the ionic
displacement in reciprocal space:

HA = Â
n�3

1

n!
Â

k1...kn
a1...an
q1...qn

Fk1...kn
a1...an(q1 . . .qn)uk1

a1
(q1) . . .ukn

an(qn), (2.151)

where the a-component of the Fourier-transformed displacement vector of atom k of
wave vector q is

uk
a(q) =

1p
N Â

R
e�iq·Ruk

a(R) (2.152)

Interatomic Force-Constants (IFCs) are the derivatives of the potential with respect to
the displacements, from Eq. 2.89, the nth order IFCs is expressed as

Fk1···kn
a···an(R1 . . .Rn) =

∂ nF
∂uk1

a1
(R1) · · ·∂ukn

an(Rn)
. (2.153)

and similarly, the Fourier-transformed IFCs matrix:

Fk1···kn
a···an(q1 . . .qn) =

∂ nF
∂uk1

a1
(q1) · · ·∂ukn

an(qn)
. (2.154)

and we have

Fk1···kn
a···an(q1 . . .qn) =

1

N Â
R1...Rn

Fk1···kn
a···an(R1 . . .Rn)ei(q1·R1+···+qn·Rn). (2.155)

Among that, the second order (harmonic) IFCs (Fk1k2

a1a2
) are the harmonic response of

the force acting on atom k1 (a1-direction) resulted form the displacement of atom k2

(a2-direction). Based on the finite displacement di�erence method, the second order
IFCs tensor can be obtained as
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Fk1k2

a1a2
=

∂ 2F
∂uk1

a1
∂uk2

a2

=

2

66664

∂ 2F
∂uk1

x ∂uk2
x

∂ 2F
∂uk1

x ∂uk2
y

∂ 2F
∂uk1

x ∂uk2
z

∂ 2F
∂uk1

y ∂uk2
x

∂ 2F
∂uk1

y ∂uk2
y

∂ 2F
∂uk1

y ∂uk2
z

∂ 2F
∂uk1

z ∂uk2
x

∂ 2F
∂uk1

z ∂uk2
y

∂ 2F
∂uk1

z ∂uk2
z

3

77775
. (2.156)

Based on the second order IFCs the dynamical matrix can be constructed and the phonon
dispersion are obtained by diagonalizing the dynamical matrix. The anharmonic nature
of the system is described using the third order IFCs, while the contributions of the
fourth and higher order terms are usually neglected. The anharmonic IFCs are evaluated
based on the third order derivatives of the total potential energy with respect to the
atomic displacements

Fk1k2k3

a1a2a3
=

∂ 3F
∂uk1

a1
∂uk2

a2
∂uk3

a3

, (2.157)

which is the response along the a1 direction on atom k due to the displacement of atom
k2 (a2-direction) and atom k3 (a3-direction). Using the anharmonic IFCs, the scattering
matrix can be constructed, based on which one can calculate the three-phonon scatter-
ing rates and then obtain the phonon lifetime.

Anharmonic Phonon Coupling Tensor

On the other hand, the anharmonic Hamiltonian HA can also be expanded in powers of
phonon field operators A(l ), which is

HA = Â
l1...ln

Vn(l1, . . . ,ln)A(l1) . . .A(ln) (2.158)

As mentioned above, the phonon field operator is the sum of an annihilation and creator
operator, set up as:

A(l ) = A(q j) = a(q j)+a†(�q j) (2.159)

as well as

Vn(l1, . . . ,ln) =
1

n!

∂ ne
∂A(l1) . . .∂A(ln)

. (2.160)

Hence, this is the anharmonic phonon coupling tensor, which is the nth derivative of the
total energy with respect to the A(l ). Now, using Eq. 2.149, we have
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Â
l1...ln

Vn(l1, . . . ,ln)A(l1) . . .A(ln)

=
1

n!
Â

k1...kn
a1...an
R1...Rn

Fk...kn
a...an(R1 . . .Rn)uk1

a1
(R1) . . .ukn

an(Rn)

= (
h̄

2N
)n/2 Â

k1...kn
a1...an
R1...Rn

Fk...kn
a...an(R1 . . .Rn)ei(q1·R1+···+qn·Rn)

⇥ Â
l1...ln

ek1

a1
(l1)p

Mk1
wl1

· · ·
ekn

an(ln)p
Mknwln

A(l1) . . .A(ln)

(2.161)

which indicates a general expression for Vn(l1, . . . ,ln):

Vn(l1, . . . ,ln) =
1

n!
(

h̄
2N

)n/2
1

pwl1
· · ·wln

Â
k1...kn
a1...an
R1...Rn

Fk1...kn
a...an(R1 . . .Rn)

⇥ ei(q1·R1+···+qn·Rn)
ek1

a1
(l1)p
Mk1

· · ·
ek1

an(ln)p
Mkn

(2.162)

If we write

eYk1...kn
a1...an(q1, ...,qn) = Â

R1...Rn

Fk1...kn
a...an(R1 . . .Rn)ei(q1·R1+···+qn·Rn)

p
Mk1

· · ·Mkn

(2.163)

then

Vn(l1, . . . ,ln) = (
h̄

2N
)n/2

1
pwl1

· · ·wln
Â

k1...kn
a1...an

eYk1...kn
a1...an(q1 . . .qn)ek1

a1
(l1) . . .ekn

an(ln) (2.164)
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Therefore, eYk1...kn
a1...an(q1, ...,qn) is defined as a nth order dynamical tensor:

eYk1...kn
a1...an(q1, ...,qn) =

1p
Mk1

· · ·Mkn

∂ ne
∂uk1

a1
(q1) . . .∂ukn

an(qn)
. (2.165)

Harmonic dynamical matrix is hence given by

eYk1k2

a1a2
(q1q2) =

1p
Mk1

Mk2

∂ 2e
∂uk1

a1
(q1)∂uk2

a2
(q2)

. (2.166)

Furthermore, dividing by the square root of the atomic mass, we have the third-order
dynamical tensor

eYk1k2k3

a1a2a3
(q1q2q3) =

1p
Mk1

Mk2
Mk3

∂ 3e
∂uk1

a1
(q1)∂uk2

a2
(q2)∂uk3

a3
(q3)

. (2.167)

Hence, higher order dynamical tensors are derivatives of the harmonic dynamical
matrix with respect to atomic displacements with wave vector q in the Brillouin
zone

eYk1k2k3

a1a2a3
(q1q2q3) =

1p
Mk3

∂
∂uk3

a3
(q3)

eYk1k2

a1a2
(q1q2),

uk
a(q) = Â

j
(

h̄
2NMkwl

)
1

2 ek
a(l )A(l ),

A(l ) = Â
ka
(
2NMkwl

h̄
)

1

2 ek
a(l )⇤uk

a(q),

(2.168)

where ek
a(l ) is the displacement pattern for mode l ⌘ {q, j}, where q is wave vector

and j is the phonon branch index. Hence, for example, the third-order anharmonic
coupling tensor is

V3(l1,l2,l3) = (
h̄

8N3w1w2w3

)
1

2 Â
k1...kn
a1...an

∂Yk1k2

a1a2
(q1,q2)

∂uk3

a3
(q3)

ek1

a1
(l1)p
Mk1

ek2

a2
(l2)p
Mk2

ek1

a3
(l3)p
Mk3

(2.169)

6�



As a result, a phonon of the wave vector q and the branch j of the dispersion spectrum
w j(q) will decay into other phonons in a finite time. Phonon–phonon interactions
involve di�erent number of phonons in di�erent interaction process. Because of the
conservation of energy and momentum, details of the phonon dispersions are crucial for
calculating the anharmonic behaviour of phonons. If we use a d function to indicate that
the conservation of lattice momentum q1 +q2 +q3 = g, and g = 0 and g 6= 0 represent
the Normal and Umklapp process of the three phonon scattering, respectively. Umklapp
processes allow many more three-phonon interactions, but the phonon wave-vectors
must be of length comparable to the reciprocal lattice vector for this to be possible.
Umklapp scattering is one process limiting the thermal conductivity in crystalline
materials.

�.�.�. Phonon Boltzmann Transport Equation

In general, the net heat flux vector of a system generated by a change in the distribution
function of energy carriers can be expressed as

J = Â
a

1

Cp3

Z
[Ep(k)�µ]up(k) f 0p(k)dk, (2.170)

where Cp3 represents the volume of the system, and C = 8 is for phonons and C = 4 is
for electrons (because of spin degeneracy). Ep means the carrier energy, µ represents
its chemical potential, up is the carrier velocity (group), and f 0p is the deviation of the
mode population from the equilibrium distribution.

Now, we only consider phonons. The sum is over all mode polarizations, the chemical
potential is zero, and the phonon group velocity is defined as carrier speed. And the
heat flux (Eq. 2.170) can be compared with the Fourier law (J =�Kp ·—T), and we
can have an expression for the thermal conductivity.

The steady-state BTE (with no external force and source), for a single-phonon mode
(as listed in Table 2.4) needs

up ·— fp =
∂ fp

∂ t
|s phonon BTE. (2.171)

If the phonon population is only influenced by the temperature, then introducing
temperature gradient we have

up ·— fp = up ·
∂ fp

∂T
—T = up ·—T

∂ fp

∂T
(2.172)
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Defining fp = f �p + f 0p, where f �p is the equilibrium phonon distribution, we assume the de-
viations from equilibrium f 0p are independent of temperature, then having

∂ fp

∂T
'

∂ f �p
∂T

. (2.173)

Using the relaxation-time approximationmethod for the collision term, we have

∂ fp

∂ t
|s =

f �p � fp

tp
=�

f 0p
tp

SMRT approximation. (2.174)

So this is the single-mode relaxation time (SMRT) approximation for a phonon mode.
The relaxation time tp describes the temporal response of the system when that par-
ticular phonon mode is activated. In this regard, instead of temperature gradient,
microwave/ultrasonic driving forces can also lead to thermal conductivity. Under these
assumptions, phonon BTE becomes

f 0p =�tp
∂ f �p
∂T

up ·—T. (2.175)

The heat flux vector J can be rewritten as

J =�(
1

8p3 Â
a

Z
Eptp

∂ f �p
∂T

upupdk) ·—T, (2.176)

Taking Ep to be independent of temperature, we have

Z
Ep f �pdk =

⌦
Ep
↵

V
, (2.177)

in which
⌦
Ep
↵
is the total energy of system. Then the mode specific heat capacity is

given by

nCV,p =
∂ (Ep f �p)

∂T
|V = Ep

∂ f �p
∂T

. (2.178)

Therefore, the heat flux vector is

J =�(
1

8p3 Â
a

Z
CV,ptpupupdk) ·—T, (2.179)
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The phonon thermal conductivity tensor is

Kp =
1

8p3 Â
a

Z
CV,ptpupupdk (2.180)

�.�.�. Phonon Scattering Relaxation Time Models

The thermal transport properties for a solid is determined by the various scattering
rates. The Matthiessen’s rule can be used for combining the contributions from various
scattering mechanisms, as written as

1

tp
= Â

j

1

tp, j
, (2.181)

where tp represents the e�ective phonon relaxation time and tp, j means relaxation
time caused by di�erent scattering mechanisms.Several typical phonon scatterings
are shown in Figure 2.6, including phonon-crystalline boundary scattering, phonon-
impurity scattering, three-phonon scattering and phonon electron scattering, with
detailed discussed as follows.

Phonon-boundary scattering

To address the grain size e�ect dependent phonon transport properties, the phonon
boundary scattering due to di�use boundary absorption/emission should be considered.
It is also called Casimir boundary scattering. It gives a mean free path for a phonon
equal to the Casimir length L, which is the length of travel of the phonon before the
boundary absorption/re-emission. As shown in Figure 2.6 (a), L = (2/p1/2)(l1l2)1/2, the
relaxation time is

1

tp�b
=

up,A

L
(2.182)

This reveals ballistic transport within the crystal, with the scattering bottleneck being
the grain boundary scattering. In micro-particles and nano-particles, this boundary
scattering dominates at very low temperatures.

Phonon-impurity scattering

Phonon impurity scattering is similar to the Rayleigh scattering of the transverse elec-
tromagnetic waves, which is proportional to w4

p, the relaxation time can be estimated
as
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tp�im =
4pu3

p,A

V Âi xi(1� Mi
M )2

w�4, (2.183)

where the impurity i has a molecular weight Mi and mass fraction xi. The volume is V ,
and the host molecular weight is M.

Phonon-electron scattering

Based on maximum phonon frequency, the phonon-electron relaxation time is cal-
culated from a momentum balance analysis [93]as

1

tp�e
=

3u2

p,A

µ2
e

se

cv,pT
(2.184)

where se represents the electrical conductivity, µe is the electrical mobility, and cv,p
represents the phonon heat capacity of the phonons allowed to interact with conduc-
tion electrons. The phonon–electron coupling will be discussed in the next section,
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Figure �.6.: Phonon scattering by (a) crystalline (grain) boundary, (b) impurity, (c) other
phonons, and (d) electron.
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and the case of acoustic phonons in elastic interaction with the conduction electrons
will use a electron-phonon coupling potential. In general, phonons a�ect conduction
electron transport more than electrons a�ect phonon transport. The coupling potential
is weaker for metals than semiconductors, but the conduction electron density is higher
in metals [68].

Phonon-phonon scattering

Phonon-phonon scattering dominates the phonon conductivity at high temperature. In
general, the three-phonon interaction makes mostly contribution to the interphonon
scattering. As shown in Figure 2.6(c), the phonon-phonon scattering can be divided
into Normal tp�p,N (N) and Umklapp tp�p,U (U) process. Because interphonon scat-
terings change the energy of all phonon modes involved, it is barely expected that
these processes could be exactly presented by a relaxation-time approximation. For
the N-processes, the crystal momentum and energy are conserved. However, for the
U-Processes, the crystal momentum is not conserved, but energy is. Therefore, we have
three-phonon N-Processes

k1+k2 = k3 (momentum), w1 +w2 = w3 (energy) (2.185)

and three-phonon U-Processes

k1+k2 = k3+g (momentum), w1 +w2 = w3 (energy) (2.186)

where g represents the reciprocal lattice vector. The g is not limited to a process that
flips the wave-vector summation to the neighboring reciprocal space unit cell only but
can involve other cells.

Based on the in-and-out scattering in BTE and the Fermi golden rule (FGR), namely,
the Peierls three-phonon scatterings are defined as [94]

∂
⌦

fp,1
↵

∂ t
|s =Â

k2

Â
a2

[Â
a3

ġ p,a1,a2,a3
(k1,k2,�k3)h fp,3( fp,2 +1)( fp,1 +1)

� ( fp,3 +1) fp,2 fp,1idD(w1 +w2 �w3)

+
1

2
Â
a3

ġ p,a1,a2,a3
(�k1,k2,k3)h( fp,1 +1) fp,2 fp,3

� fp,1( fp,2 +1)( fp,3 +1)idD(w1 �w2 �w3)]

(2.187)
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�.8. Electronic Thermal Transport

Heat conduction in solids can be determined through the Fourier law, namely qk =�K ·
—T . The total conductivityK consisted of electronic thermal conductivity tensorKe and
phonon thermal conductivity tensorKp, hence, we haveK =Ke+Kp. Compared with
lattice (i.e., phonon), the heat capacity of an electron cv,e is relatively small, except at
very high temperatures. In addition, electrons can have a net motion under an external
electric field. This process would provide chances for the exchange of their kinetic energy.
For example, electrons can exchange energy with lattice (phonon) through inelastic
scattering in Joule heating. This electronic and thermal transport coupling is known as
thermoelectricity, leading to Peltier heating/cooling.

�.8.�. Free Electron Gas

In the free electron gas model, the Fermi energy EF is defined as the highest occupied
energy level in a quantum system of non-interacting fermions (electrons) at absolute
zero temperature. We can use the Fermi sphere to represent the occupied orbitals, the
wave vectors at the Fermi surface have a magnitude kF , and:

kF = (3ne,cp2)1/3, (2.188)

where ne,c is the number density of conduction electrons.

ne,c =
Z •

0

De(Ee) fedEe, (2.189)

The Fermi energy is defined as

EF =
h̄2k2

F
2me

. (2.190)

For metals, ne,c is found directly from the number of conduction (delocalized) electrons
and is independent of temperature. For semiconductors, ne,c depends on temperature
and on Fermi energy.

For metals, we have
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ne,c =
Z •

0

De(Ee) f �e dEe = nze, De(Ee) =
mekF

p2h̄2
=

2
1/2m3/2

e E1/2

e

p2h̄3

=
Z EF

0

DedEe =
1

3p2
(
2me

h̄2
EF)

3/2

(2.191)

Then the Fermi velocity based on Fermi energy and me is

uF = (
2EF

me
)1/2. (2.192)

The Fermi temperature is

TF =
EF

kB
. (2.193)

The Fermi momentum is

pF = 2(meEF)
1/2. (2.194)

The electron group velocityue,g is defined similarly to that for phonons as

ue,g =
1

h̄
—kEe(k). (2.195)

Further, the Fermi surface separates the occupied from unoccupied energy levels.
Increasing the temperature, the kinetic energy of the electron gas increases, corre-
spondingly the occupation of the electron states changes. The Fermi-Dirac distribution
function is used to describe the probability that an orbital will be occupied from an
ideal electron gas model in thermal equilibrium

f �e =
1

exp(Ee�µ
kBT )+1

=
1

exp(Ee�EF
kBT )+1

(2.196)

where µ is the chemical potential and assumed to be equal to EF .

For semiconductors, at T=0 K, all electrons occupy the valence bands. As the tempera-
ture increases, more electrons move to the conduction bands. The conductive electron
density is
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ne,c =
Z •

0

De(Ee) fe(Ee)dEe ⌘ Â
k

fe[Ee(k)].

In general, the electron energies Ee(x,p) = Ee,p(x)+Ee,k(p), is the sum of the potential
and kinetic energies, assuming µ = EF , we have

f �e =
1

exp(Ee(x,p)�µ
kBT )+1

=
1

exp[
Ee,p(x)+Ee,k(p)�EF

kBT ]+1

. (2.197)

Note that, for the free-electron gas, the µ = EF , but there is a temperature dependence
given by µ = EF [1� 1

3
(pkBT

2EF
)2+ · · · ], which is negligible for T ⌧ EF

kB
. The potential energy

Ee,p(x) is the same as the lowest energy of the conduction band. For Ee�EF
kBT � 1 (the

nondegeneracy approximation) and Ee,k =
p2

2me,e
(me,e =

h̄2

∂2Ee(k)
∂k2

|k=0

is electron e�ective

mass), we have

f �e = exp(�Ee �EF

kBT
) = exp(

EF �Ee,p

kBT
)exp(� p2

2me,ekBT
). (2.198)

The conduction band electron density in the nondegeneracy equilibrium is defined
as

ne,c =
1

4
(
2me,ekBT

p h̄2
)3/2

exp(
EF �Ee,p

kBT
) for

Ee �EF

kBT
� 1

⌘ ne,Fexp(
EF �Ee,p

kBT
), ne,F = 2(

me,ekBT
2p h̄2

)3/2.
(2.199)

The e�ective density of conduction band ne,F has a counter-part for the valence band
(e.g., the hole density). Therefore, unlike metals, for semiconductor ne,c and EF are
temperature-dependent. The larger the EF (µ), the larger are the number of conduction
electrons (carriers). Compared with metals that have large EF , semiconductors have a
small EF (or ne,c). The density of electronic states in energy space De(Ee) is the number
of electric states having energy Ee(k) and given as

De[Ee(k)] =
2

1/2m3/2

e,e E1/2

e

p2h̄3
. (2.200)

This is same as electron gas for metals, except here we use the e�ective mass and bond
energy.
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�.8.�. Speci�c Heat Capacity of Electrons

The specific heat heat of the electron gas is defined similarly to phonon and given in
terms of electron density of states as

ne,ccv,e =
∂ (hEei�EF)

∂T
|V , (2.201)

where the energy of a system of electrons is defined as

hEei=
Z •

0

(Ee �EF) f �e De(Ee)dEe. (2.202)

As one can see, because the Fermi energy is large, the high energy electrons are not
excited until very high temperatures and this results in vanishing electronic heat capacity
at low and moderate temperatures.

Then,

ne,ccv,e =
Z •

0

(Ee �EF)
∂ f �e
∂T

De(Ee)dEe, (2.203)

and we have

cv,e =
Z •

0

(Ee �EF)De(Ee)
∂

∂T
1

exp(Ee�EF
kBT )+1

dEe. (2.204)

This equation can be approximated by changing the limit of the integral by using
De(Ee) ' De(EF) and then putting this outside the integral. Then we use a variable
substitution x = (Ee �EF)/kBT , having

ne,ccv,e = k2

BT De(EF)
Z •

�EF/kBT

x2ex

(ex +1)2
dx. (2.205)

On using the density of conduction electrons of metals, we have the electron-gas specific
heat capacity as

ne,ccv,e = k2

BT
3ne,c

2EF

Z •

�EF/kBT

x2ex

(ex +1)2
dx

= k2

BT
2

1/2m3/2

e E1/2

F

p2h̄3

Z •

�EF/kBT

x2ex

(ex +1)2
dx.

(2.206)

��



As one known, the Fermi temperature of metal is rather large at moderate temperatures,
the integral in Eq. 2.206 is small, and hence the specific heat of electron gas is small.
This is because electrons with energy less than the Fermi energy are already occupied.
So, very small fraction of electrons, those within kBT of EF are able to contribute to
cv,e.

Because at moderate temperatures kBT ⌧EF , and by using ne,c =
Ne
V =

k3

F
3p2

= 1

3p2
(2me

h̄2
EF)3/2,

we have the low-temperature limit as

De(EF) =
3ne,c

2EF
. (2.207)

and now by using this in Eq. 2.206 for EF � kBT , we have

ne.ccv,e = (
p2kBT
2EF

)ne,ckB, (2.208)

which, we use the classical behavior for a particle, would be 3ne,ckB/2, which is in-
dependent of the temperature and extremely large for low and moderate tempera-
tures.

For a nondegenerate semiconductor with parabolic bands, we can use Eq. 2.199 for
EF/kBT ⌧ 1 and then we have the specific heat capacity for nondegenerate semicon-
ductors

ne.ccv,e =
p2k2

BT
2EF

ne,c(T ), (2.209)

where ne.ccv,e is per unit volume. This equation shows a linear temperature dependence
of electron specific heat at moderate temperatures in addition to the ne,c(T ) dependence
given by Eq. 2.199.

�.8.�. Electron Boltzmann Transport Equation

Similar to our treatment of phonon conductivity, we now discuss the transport properties
of electrons in solids. Ziman introduced the theoretical treatment of electron transport
in Ref. [95]. And Lundstrom gave an explicit introduction to electron transport in
semiconductor [96]. Here, we briefly review the properties of electron transport. Under
a steady-state and uniform electric field along the x direction ee,x, the conduction
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electrons in a semiconductor have ∂ fe/∂ t = 0 and —x fe = 0. Then, using RTA (Fx =
�ecee,x), the Eq. 2.134 is now changed as

�ecee,x
∂ fe

∂ px
=� fe � f 0

e
te

=� f 0e
te
. (2.210)

In addition, using the low-field approximation, we assumed ∂ fe
∂ px

= ∂ f 0
e

∂ px
, and px = h̄kx, we

have

�ecee,x

h̄
∂ f 0

e
∂kx

=� f 0e
te
. (2.211)

Further, we obtain

f 0e =
ec

h̄
ee,xte

∂ f 0
e

∂kx
or fe = f 0

e +
ec

h̄
ee,xte

∂ f 0
e

∂kx
, (2.212)

where te = te(k). The equilibrium distribution function f 0
e (k) is described in Table 2.5,

fe can be determined.

For instance, a nondegenetate electron energy distribution in semiconductors is consid-
ered here. We assume a one-dimensional electron motion, where the total energy in
Table 2.5 is

Ee = Ee,p(x) +Ee,k(px). (2.213)

Then,

f 0

e =
1

exp(Ee �EF �1)
⇡ exp[�

Ee,p(x)�EF

kBT
]exp[�

Ee,k(px)

kBT
] nondegenerate f 0

e . (2.214)

And we know Ee,k = p2/2me = h̄2k2
x/2me as well as the nondegenerate electron does not

obey Pauli principle (low ne,c semiconductors). Hence, we obtain,

∂ f 0
e

∂kx
=

h̄2kx

mekBT
exp[�

Ee,p(x)�EF

kBT
]exp(� h̄2k2

x
2mekBT

). (2.215)

At last,
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fe = f 0

e (1�
h̄ecee,xte

mekBT
kx)

= f 0

e (1�
ecee,xte

mekBT
px)

= f 0

e (1�
2

1/2ecee,xte

m1/2

e kBT
E1/2

e,k ).

(2.216)

This represents that fe is shifted on the Ee,k axis when compared with the f 0
e . Using

the Eq. 2.216, the directional electron drift velocity ue,x, the electron mobility µe,x, and
electrical conductivity se,x can be found as

µe,x =�
hue,xi
ee,x

⌘� 1

ee,x

Âp ue,x fe

Âp fe
, se,x = ne,cecµe,x, (2.217)

in which ne,x is the conduction electron density, ec is the electron charge. Here, the
relaxation time te = 1/gė, indicating that the relaxation time approaches zero when
the transition rate is enormous. The scattering force the distribution toward equilib-
rium.

�.8.�. Electronic Thermal Conductivity

For a free-electron gas, the Fermi velocity uF is given in Eq. 2.192, and specific heat
capacity cv,e is defined as Eq. 2.206, for electrons in thermal equilibrium with the lattice.
For Te 6= Tp, cv,e =

3kBT
2

, per electron [68].

Then the mobility is given in terms of the relaxation time by Eq. 2.217 and can in turn
be written in terms of the electron mean free path le = uFhhteii, and then the electrical
conductivity becomes

se = ne,ce2

c
le

me,euF
. (2.218)

The electronic thermal conductivity can be defined because of the kinetic form of the ther-
mal conductivity, similar to lattice thermal conductivity. We have

ke =
1

3
ne,ccv,euFle. (2.219)
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Next, combining all the properties together, we have the Wiedemann-Franz law, which
is expressed as

ke

seT
= NL =

p2

3

k2

B
e2

c
. (2.220)

NL is the Lorenz number and NL,0 = 2.442⇥10
�8WWK�2. The Wiedemann-Franz law

states that for metals at the finite temperature, the ratio of the electronic thermal con-
ductivity to the electrical conductivity is proportional to the temperature. NL,0 results
from the fact that at low temperature. At finite temperature two mechanisms lead to a
deviation of the ratio NL from the theoretical value NL,0. First, interactions from other
thermal carrier such as phonons. Second, the inelastic scattering process. At higher tem-
perature the contribution of phonon to thermal transport is important, which can lead to
NL(T )� NL,0. Above the Debye temperature the phonon contribution to thermal trans-
port is constant and the ratio NL(T ) is again found constant.

�.8.�. Thermoelectric Power

Now, the electrical conductivity, electronic thermal conductivity, and phonon thermal
conductivity are known in the previous sections. The coupling of electronic and thermal
transport is known as thermoelectricity. Thermoelectricity is the direct conversion of
heat into electrical energy. Thermoelectric systems are solid-state devices that either
convert heat directly into electricity or transform electric power into thermal power for
heating or cooling. These phenomena encompass three separately identified e�ects: the
Seebeck e�ect, the Peltier e�ect, and the Thomson e�ect.

The Seebeck e�ect describes the buildup of a voltage di�erence (DV ) across materials
due to the di�usion of charge carriers along a temperature gradient (DT ), which the
material experiences because one side of it is heated or cooled. The ratio of the voltage
developed to the temperature gradient (DV/DT ) is related to an intrinsic property of the
materials called the Seebeck coe�cient S, which is given as

S =
DV
DT

(2.221)

Determined by the type of majority carriers (i.e., holes or electrons), the voltage
di�erence (and therefore the Seebeck coe�cient) can be positive or negative, i.e., S > 0

for p-type semiconductors and S < 0 for n-type semiconductors. The Seebeck coe�cient,
which can be understood as the entropy per charge carrier, is related to the density of
states (DOS).
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The Peltier e�ect describes an electric current is passed through a junction of the two
di�erent materials, heat is generated at one junction and absorbed at the other junction,
which is depended on the direction of the current. The Peltier coe�cient is related to
the Seebeck coe�cient (P), written as

P = ST (2.222)

Therefore, the Seebeck e�ect describes how a temperature di�erence creates an elec-
trical current. The Peltier e�ect describes how an electrical current can create a heat
flow.

The Thomson e�ect was predicted by Lord Kelvin, describing an electric current that is
passed through a homogeneous circuit in the presence of a temperature gradient. This
is now called the Thomson e�ect and has a minor magnitude among the thermoelectric
e�ects.
At last, the thermoelectric performance of a material at a given absolute temperature
T can be determined by the nondimensional figure of merit ZT , which is simply a
particular combination of transport coe�cients:

ZT =
S2sT
ktot

=
S2sT

ke +kp
. (2.223)

�.�. Electron-Phonon Interaction

In the Born-Oppenheimer approximation, the Hamiltonian of the system is separated
into nuclei and electron contributions. However, the interaction between electrons and
phonons plays an essential role in many-particle physics, especially in the theory of
transport and superconductivity in solids. For example, electron-phonon interactions
(EPIs) enable the thermalization of hot carriers, determine the temperature dependence
of electron band structure in solids, and give rise to phonon-mediated superconductors.
In this section, we briefly review the basic formalism underlying the calculation of EPIs
using DFT, and we will also discuss how the solids’ superconductivity is calculated by
using DFT.
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�.�.�. Electron-phonon Interaction in DFT

To discuss the electron-phonon interaction, we start from the standard form of the Hamil-
tonian describing a coupled electron-phonon system [23]:

Ĥ =Â
nk

enkĉ†

nkĉnk +Â
qn

h̄wqn(â†

qn âqn +1/2)

+N�1/2

p Â
k,q
mnn

gmnn(k,q)ĉ†

mk+qĉnk(âqn + â†

�qn)

+ [N�1

p Â
k,q,q0

mnn

gDW
mnnn 0(k,q,q0)ĉ†

mk+q+q0 ĉnk ⇥ (âqn + â†

�qn)(âq0n 0 + â†

�q0n 0)],

(2.224)

where the first line represents the separate electron and phonon subsystems using
the second-quantized formalism. The second line describes the first order atomic
displacements in electron-phonon coupling. Then the third line specifies the electron-
phonon coupling Hamiltonian to second order in the atomic displacements, which
is barely used but plays a critical role in the theory of temperature-dependent band
structures. Here enk denotes the single-particle eigenvalue of an electron with crystal
momentum k in the band n, wqn is the frequency of a lattice vibration with crystal
momentum q in the branch n . ĉ†

nk and ĉnk and (â†

qn and âqn) are the associated electron
(phonon) creation and destruction operators. Np defines the number of unit cells in
the supercell. The gmnn(k,q) and gDW

mnnn 0(k,q,q0) are electron-phonon coupling matrix
elements. Here the superscript “DW” stands for Debye-Waller and relates to the Debye-
Waller self-energy [23].

Having outlined the Hamiltonian for electrons and phonons in crystals in previous
sections, we now proceed to generate the connection between the coupling Hamilto-
nian and DFT calculations. The electron-phonon coupling Hamiltonian is obtained
by expanding the KS e�ective potential in term of the nuclear displacement D⌧kp
from their equilibrium positions ⌧ 0

kp. The potential to fist order in the displacements
is

V KS({⌧kp}) =V KS({⌧ 0

kp})+ Â
ka p

∂V KS

∂tka p
Dtka p. (2.225)

Using ladder operators Dtka p, in the normalmode coordinates [23], we have
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V KS =V KS(D⌧ 0

kp)+N�1/2

p Â
qn

DqnV KS(âqn + â†

�qn),

DqnV KS = eiq·rDqnvKS,

DqnvKS = lqn Â
ka
(M0/Mk)

1/2eka,n(q)∂ka,qvKS,

lqn = [h̄/(2M0wqn)]
1/2,

∂ka,qvKS = Â
p

eiq·(r�Rp)∂V KS

∂tka
|r�Rp .

(2.226)

In above expressions, the Dka,qvKS and DqnvKS are lattice-periodic functions. lqn is the
"zero-point" displacement amplitude. M0 is an arbitrary referencemass, ensuring that lqn
has the dimensions of a length and is similar inmagnitude to Dtka p.

Hence, we have the electron-phonon coupling Hamiltonian as the usual second-quantized
formalism

Ĥep = Â
nk,n0k0

hynk

���V KS({⌧kp})�V KS({⌧ 0

kp})
���yn0k0 iĉ†

nkĉn0k0 , (2.227)

where the bra and ket indicate an integral over the supercell. After introducing the
electron-phonon matrix element, we have

Ĥep = N�1/2

p Â
k,q
mnn

gmnn(k,q)ĉ†

mk+qĉnk(âqn + â†

�qn), (2.228)

where the electron-phononmatrix element gmnn(k,q) is defined as

gmnn(k,q) = humk+q|DqnvKS|unkiuc. (2.229)

Here the subscript “uc” represents that the integral is carried out within one unit cell of
the crystal.
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�.�.�. Phonon-mediated Superconductivity

Now, we briefly discuss the study of phonon-mediated superconductivity [97] based
on the DFT calculations of EPI. Nowadays, a semiempirical expression introduced by
McMillan [28] is popular for predicting the superconducting transition temperature.
The refined equation [98] is

kBTc =
h̄wlog

1.2
exp[� 1.04(1+l )

l �µ⇤(1+0.62l )
], (2.230)

where Tc is the superconducting transition temperature, wlog represents the logarithmic
average of the phonon frequencies, l is the electron-phonon coupling strength, and
µ⇤ is the Coulomb interaction parameter. Under the isotropic version of the Eliashberg
function [99], the electron-phonon coupling strength and logarithmic average of the
phonon frequencies can be obtained as follows

a2F(w) =
1

NF

Z dkdq
W2

BZ
Â
mnn

|gmnn(k,q)|2d (enk � eF)⇥d (emk+q � eF)d (h̄w � h̄wqn),

(2.231)

l = 2

Z •

0

a2F(w)

w
dw, (2.232)

wlog = exp[
2

l

Z •

0

dw a2F(w)

w
logw], (2.233)

where NF is the DOS at the Fermi level, µ⇤ is usually treated as an adjustable parameter
from 0.05 to 0.2. And from above expressions, it is assumed that the superconductor is
isotropic and exhibits a single superconducting gap.

�.��. Machine-learned Accelerator

Machine learning approaches have changed our anticipations of what computational
simulations can achieve. In other words, machine learning methods enrich the choice
of simulation methods in computational materials science, which can significantly
accelerate the speed of calculations and economically extend to accurate large time-
and length-scales simulations. Although many successful cases have been reported in
computational materials design, such as machine-learned potentials for next-generation
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matter simulations [34], combining HTP with ML for novel materials design [4]. This
thesis will only focus on the compressive sensing (CS) technique and its application in
lattice dynamics.

�.��.�. Compressive Sensing

The CS [39] technique is a recently developed approach in the field of signal process-
ing, which provides a simple, general, and e�cient way to model building. Before
discussing the power of CS for constructing physical models, the concept of itself is
firstly illustrated. Usually, the definition of `p norms is required for discussing the
CS,

kukp =

 

Â
i
|ui|p

!1/p

, (2.234)

of which `1 and `2 norms are special cases. The number of nonzero elements of u~ is
often (improperly) referred to as the `0 “norm” even though it is not a norm in a strict
mathematical sense.

The CS technique is used in signal processing to recover sparse signals exactly with far
fewer samples than required standard spectral methods. Assuming a signal has the
functional form

f (t) =
N

Â
n=1

unei2pnt , (2.235)

for a sparse signal, most of the coe�cients un are 0. The Fourier transform is mathe-
matically equivalent to solving the matrix equation

Au~ = f~ , (2.236)

where the matrix A is constructed by the values of the Fourier basis functions at the
sampling times tm, namely, it consists of rows of n terms of the form Amn = ei2pntm,
and fm ⌘ f (tm) is the sampled signal [40]. The solution vector u~ includes the relative
amounts of the di�erent Fourier components. Using Fourier transform methods to
catch all relevant frequency components of the signal needs the signal to be sampled
regularly and at a frequency at least as high as a specific frequency (Nyquist frequency),
a severe restriction stemming from the requirement that the linear system (described in
Eq. 2.236) should not be under-determined [41]. Nevertheless, the central conception
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of CS is that when the signal is sparse, one can recover the exact signal with several
measurements proportional to the number of nonzero components, i.e., with far fewer
samples than those given by the Nyquist frequency. Conceptually, it could be achieved by
searching for a solution, with which the measured time signal exactly can be reproduced
and the number of nonzero Fourier components is minimum. However, this formulation
leads to a discrete optimization problem, which cannot be solved in polynomial time.
CS converts the problem as a simple minimization of the `1 norm of the solution, subject
ot the constraint given by Eq. 2.236:

min
u

n
ku~ k

1
: Au~ = f~

o
, (2.237)

In other words, one is trying to minimize the sum of the components of the solution
vector u~ subject to the condition that the measured signal is reproduced exactly. This
constitutes the so-called basis pursuit problem. A simple illustration was given in
Ref. [40]. And a mathematical theorem proven by Candès, Romberg, and Tao [100]
provides the mathematical foundation of CS, which guarantees that with an overwhelm-
ing probability, any sparse signal with S nonzero components can be recovered from
M ⇠ SlnN random measurements. N represents the total number of sensing basis
functions.

�.��.�. Compressive Sensing Lattice Dynamics

As discussed above, the starting point of the computational methodology for lattice
dynamics is to approximate the potential energy of interacting atoms by a Taylor
expansion concerning atomic displacements, shown in Eq. 2.148. In that equation, the
IFCs are also defined. Now, let us denote a column vector comprising the N irreducible
set of IFCs as F. Then, the Taylor expansion potential (TEP) re-defined by Eq. 2.148 is
written as

UT EP = bT F, (2.238)

where b 2 R1⇥N is a function of atomic displacements {ui} defined as b = ∂U/∂F. The
atomic forces based on the TEP is defined as

FT EP =�∂UT EP

∂u
=�∂bT

∂u
F = AF, (2.239)

where A 2 R3Ns⇥N , Ns is the number of atoms. uT = (ux
1
,uy

1
,uz

1
, . . . ,ux

Ns
,uy

Ns
,uz

Ns
,) is the

vector containing 3Ns atomic displacements in the supercell. It is noted that the matrix
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A and force vector FT EP depend on the atomic configuration of the supercell. To make
this point clearer, let us denote them as A(u) and FT EP(u). To estimate the IFCs F
by linear regression, it is usually necessary to consider several di�erent displacement
patterns. Supposing we have Nd displacement configurations and atomic forces for each
configuration obtained by DFT, Eq. 2.239 defined for each displacement configuration
could be combined into a single equation as

FT EP = AF, (2.240)

whereFT EP = [FT (u1), . . . ,FT (uNd)] andA= [AT (u1), . . . ,AT (uNd)].

To calculate the harmonic phonon frequency, harmonic IFCs are obtained using the finite-
displacement approach. Hence, we can extract Fµn(`k;`0k 0) by solving the ordinary
least-square (OLS) problem

�OLS = argmin
�

1

2Nd
kF DFT �F TEPk2

2
= argmin

�

1

2Nd
kF DFT �A�k2

2
, (2.241)

FDFT is is the vector of atomic forces obtained by DFT calculations.

To overcome both of time-consuming calculations by using the finite-displacement
approach and overfitting issue in OLS [101], the compressive sensing lattice dynamics
(CLSD) method based CS technique is proposed by Zhou [102], which is a more robust
approach to estimate anharmonic IFCs. Given training data, CS automatically picks
out the relevant signals (i.e., expansion coe�cients in physics models) and determines
their values in one shot. The linear problem FT EP = AF is solved by minimizing the `1

norm of the coe�cients,
kFk

1
⌘ Â

i
|Fi|, (2.242)

while demanding a specific level of accuracy for reproducing the data. Noting that only
a small fraction of IFCs has non-negligible contributions to atomic forces, and obtained
the sparse solution using the least absolute shrinkage and selection operator (LASSO)
technique, which is expressed as

�lasso = argmin
�

1

2Nd
kFDFT �A�k2

2
+a kFk

1
. (2.243)

Owing to the `1-regularization term, physically irrelevant IFCs are driven to be exactly
zero and important terms are selected and calculated automatically. And the penalty
term is added to the OLS equation to avoid the overfitting inherent in the OLS method.
The coe�cient a is a hyperparameter that controls the trade-o� between the sparsity
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and accuracy of the model, an optimal value of a can be estimated, for example, by
cross-validation (CV).
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�. Methodology and Selection of
Parameters

As for the employment of the methods described in Section 2, there are lots of option-
s/parameters involved, which deserve to be carefully studied to make sure that the
results are converged via good practices of the numerical calculations. In addition, a
practical workflow is also very critical for calculating target properties e�ciently and
economically. In this Section, we first present the workflow of using high-throughput
DFT calculations for screening functional materials in detail. Then, the workflows
and selection of parameters of thermodynamics and thermal transport calculations are
discussed. At last, the workflows of construction of the Wannier function and electron-
phonon interaction calculation are briefly discussed. More computational can be found
in each corresponding result section.

�.�. High-throughput DFT Calculations

Nowadays, using high-throughput (HTP) computations based on DFT, people have
been successfully screened and designed various functional materials, such as ther-
moelectrics [8], functional magnets [7], and so-on. One of the achievements of this
thesis is designing functional magentic materials using the HTP DFT method. Here,
we briefly discuss the workflow for designing magnetic materials based on HTP-DFT
calculations. In addition, more fundamental aspects and detailed summaries for proper
HTP calculations on magnetic materials can be found in the recently published review
paper "High-throughput design of magnetic materials [19]." Figure 3.1 shows the gen-
eral workflow to perform screening on stable magnetic materials used in current work,
highlighting how the most fundamental target magnetic properties can be evaluated.
The main steps in the workflow are:

• At the starting point, the crystal structures are the only input for the DFT calcula-
tions. The structure information can be obtained from (1) known database, such
as ICSD [103], OQMD [15], and Materials Projects [104], (2) generated based on
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Figure �.�.: The HTP work�ow for screening magnetic materials.

evolutionary algorithms using USPEX [105] and CALYPSO [106], (3) predicted
using machine learning algorithm [107], (4) combinatorial substitutions of the
crystal structure prototypes.

• Three stability criteria can be evaluated, namely, the thermodynamic, mechan-
ical, and dynamic stabilities. Thermodynamic stability is generally determined
using formation energy and convex hull analysis. The mechanical and dynamical
stabilities and the related properties can be obtained by evaluating the elastic
constants and the phonon spectra.

• Before digging out the promising magnetic properties, the magnetic ground states
of stable compounds should be determined. Then the other magnetic proper-
ties, such as magnetization, electronic structure, critical temperature, magnetic
anisotropy, and magnetocaloric e�ect, are calculated.

• Finally, a research database is needed to avoid repetitive calculations and to
share data. Moreover, the data should be findable, accessible, interoperable,
and reusable. Such databases are indispensable for data mining using machine
learning techniques.
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Figure �.�.: Work�ow for phonon quasi-harmonic approximation calculations.

�.�. Lattice Thermodynamics Calculations

The critical aspect in the first-principles thermodynamic calculation for solids is the
phonon quasi-harmonic approximation calculations. Before doing the resource-consuming
calculations, an important step to avoid possible calculation errors and dynamical
instability is to examine the phonon dispersions first. After this step, the general
computational protocol for the QHA method is depicted in Figure 3.2, and described
below:

1. First, only the electronic ground state energies E0(V ) for approximately ten vol-
umes are calculated using DFT.
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2. Next, the phonon dispersion for each volume is calculated.

3. From the phonon dispersion, F(V ) of each volume within a specified temperature
window is calculated.

4. Then, an EOS is used to fit the calculated F(V ) at each considered temperature.

5. Finally, G = F +PV is minimized with respect to volume at each considered
temperature, which yields various thermodynamic properties.

The volume interval is usually up to +/� 5% of the equilibrium volume. Too small
volume interval can result in numerical instability due to the numerical uncertainties
in the static total energy calculations, particularly when one numerically computes
the 1st- and the 2nd-order derivatives of the Helmholtz energy in deriving the ther-
modynamic quantities. It should be noted that, whenever available, analytic formulas
should be used instead of a numerical 2nd-order derivative to avoid numerical errors.
For example, when the phonon approach is employed, CV has an analytic expres-
sion regarding the phonon DOS. In addition, for the non-cubic system, the lattice
constants of each varied volume, namely c/a, should be optimized for accurate free
energies.

�.�. Lattice Thermal Transport Calculations

Over the last decade, based on the first-principles calculations to solve the Boltzmann
transport equation, people successfully reproduced experimental thermal conductivities
of di�erent materials [108, 89], and predicted many promising thermal transport
properties for thermoelectric and thermal management applications [109, 110]. Here,
the work flow of calculating the lattice thermal conductivities is presented, as shown
in Figure 3.4. To extract the harmonic and anharmonic interatomic force constants
(IFCs) from the calculated forces, we use the linear regression or compressive sensing
(CS) methods [111, 102, 102], as shown in Figure 3.3. After getting the IFCs, the
thermal conductivity can be calculated by solving BTE. Typically, the conventional
solution of BTE on the basis of phonons within the harmonic approximation (HA) and
required 3-order IFCs has successfully worked for most cases [87, 112], which can give
reasonable thermal conductivity (highlighted as HP+BTE in Figure 3.4(a)). However,
due to the possible structural instability or strong anharmonicity, the HP+BTE method
has failed to gain the correct thermal conductivity in some structures [113], especially
for pervoskites [101]. Therefore, the inclusion of lattice anharmonicity is important
to be considered in the calculations of the thermal conductivity for such systems. In
the last decade, several methods have been proposed to consider the anharmonic
e�ect [114, 115, 116, 117, 113]. Among these methods, the self-consistent phonon
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(SCP) theory in Ref. [117] is the one implemented in DFT calculations recently [101,
113]. Combined with the CS lattice dynamics that can train the IFCs swiftly based on
the required data set of displacements and forces [111, 102, 102], the SCPH method is
even capable of calculating anharmonic phonons quickly in complex systems, such as
f the type-I clathrate Ba8Ga16Ge30 [118], and even can be used for high-throughput
screening [119]. To solve the SCP equation and estimate the anharmonic phonon
frequencies, one has to prepare quartic IFCs. As shown in Figure 3.4, for the calculations
of thermal conductivities, the SCP computations are first performed based on quartic
IFCs, and then the real-space e�ective harmonic IFCs at each considered temperature
are obtained by Fourier transformation from the temperature-dependent anharmonic
dynamical matrices produced by the SCP calculations. Finally, the e�ective harmonic
IFCs at each temperature are used to replace the harmonic IFCs to solve BTE. The
whole process is named as SCP+BTE method, the more details will discussed in the
Chapter 7.
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Figure �.�.: Work�ow for force constants calculations.
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It is worth noting that many options and parameters are involved in the procedure
of applying the HP+BTE or SCP+BTE method. Hence, the selection of parameters is
crucial for predicting accurate thermal conductivities. Here, several essential options
and parameters are listed as follows

• The selection of exchange-correlation functional.

• Considering long-range van der Waals interactions or not.

• The electronic wavevector grid.

• The planewave cuto� energy.

• The Fermi-Dirac function smearing.

• The thickness of vacuum layer for 2D materials.

• The energy and force tolerances for structure optimization.

• Non-analytical term correction.

• The symmetry tolerance for the structure.

• The supercell size for harmonic and anharmonic IFCs extraction.

• The displacement magnitude for generating displaced supercells for force constant
extraction.

• The cuto� distance for evaluating anharmonic IFCs.

• The invariance constraints (translational and rotational invariance) for renormal-
izing the IFCs.

• The Q-grid size for calculating thermal conductivity.

• The broadening parameter for phonon-phonon scattering delta function.
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Figure �.�.: Work�ow for the lattice thermal conductivity.

Unfortunately, the list is so long that, in many cases, it is hard to conduct all the tests
comprehensively. Some parameters are susceptible to specific systems. People could
follow some hints in the previous references [120] to choosing options and parameters.
However, some parameters should be carefully tested for convergence, such as the cuto�
distance when evaluating the anharmonic IFCs and the Q-grid size when calculating
the thermal conductivity. Unfortunately, little work did such thorough tests due to the
high computational cost.

�.�.�. State of Art for Calculating Lattice Thermal Conductivity

After using the Debye model to describe the specific heat of crystalline solids, the
harmonic oscillator is one of the most successful and most frequently discussed models,
where quantum mechanics, quantum field theory, and so on can be applied to tackle
real problems in condensed matter physics. It has become a pillar of solid-state physics.
Among that, theoretical techniques attracted the attention of the phonon community
due to their high flexibility in calculating the thermal conductivity of various materials.
A variety of approximations have thus been introduced to develop an understanding of
phonon driven thermal properties. For instance, Slack et al. proposed a simple model for
the lattice thermal conductivity and a simple set of rules for its interpretation based on
crystal structures, average atomic mass, bonding strength, and anharmonicity. These are
quantified in terms of a material’s Debye temperature and average Grüneisen parameter,
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which measure the speed of sound of the heat-carrying phonons and anharmonicity,
respectively [121].

Nowadays, with the recent advances in theoretical and computational techniques and
the exponentially increasing computational power, the thermal conductivities of a wide
range of materials can be obtained through theoretical methods. In general, there are
two popular numerical methods for calculating the thermal conductivity: first principles
calculations by solving the BTE and molecular dynamics (MD) simulations. The BTE
method calculates thermal conductivity using force constants usually obtained from
DFT. The harmonic and anharmonic interatomic force constants (IFCs) can be calculated
numerically either from DFT electronic structure calculations based on supercell pertur-
bations method [122] or from the linear response methods within density functional
perturbation theory (DFPT) [123]. Moreover, the solution of BTE has been achieved
so substantially beyond the typical relaxation-time approximation, from variational
methods [124] to self-consistent iterative procedures [125] and self-consistent phonon
(SCP) theory combining compressive sensing (CS) [111]. Various open-source code
packages give the ability to calculate thermal conductivity using the BTE method,
including but not limited to ShengBTE [125], Phono3py [126], and almaBTE [127].
Beyond these conventional DFT-BTE calculations, state-of-the-art phonon calculations
are recently developed to treat more realistic systems. For example, it has been shown
that considering four-phonon scattering has a significant contribution to the thermal
conductivity of several specific structures [128], which has been implemented in Four-
Phonon code [129]. Moreover, for systems with complexity and strong anharmonicity,
Hellman et al. developed an accurate method, called the temperature-dependent e�ec-
tive potential (TDEP) technique, to determine the temperature-dependent anharmonic
free energy, based on ab initio molecular dynamics (AIMD) followed by mapping onto
an e�ective model Hamiltonian describing the lattice dynamics [115]. In addition,
Tadano et al. developed an open-source code ALAMODE [113], which uses the SCP
theory combined with the CSLD to obtain the anharmonic phonons quickly in very
large systems [118].

Another popular branch to determine thermal conductivity is the MD approach, in which
thermal conductivity is calculated by selecting an appropriate potential function to de-
scribe interatomic forces. Equilibrium molecular dynamics (EMD) and non-equilibrium
molecular dynamics (NEMD) methods are employed to calculate thermal conductivity.
In the EMDmethod that is based on the linear response theory, a system is maintained at
the equilibrium state. The Green-Kubo method is an EMD simulation that can be used by
employing the fluctuation-dissipation theorem [130]. The thermal conductivity is calcu-
lated based on the Green–Kubo formalism [131], as follows:

k =
V

3kBT 2

Z •

0

hJ(t)J(0)idt, (3.1)
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where k is the lattice thermal conductivity, V is the volume of the system, kB is the
Boltzmann constant, T refers to the system temperature, J denotes the heat flux,
and hJ(t)J(0)i is heat-current autocorrelation function (HCACF). Within the length
of integral time, HCACF must deteriorate to zero to produce convergence. Therefore,
the correlation length is an important parameter to guarantee enough time for the
autocorrelation function to deteriorate to zero.

To utilize the NEMD method, a temperature gradient is used in the simulation cell,
resembling a measurement mechanism in experimental procedures. The thermal
conductivity is inferred based on the Fourier’s law as J = �k—T . There are multiple
methods to calculate thermal conductivity by NEMD. In the first method, two regions
are created and their desired temperatures are preserved by adding and subtracting
energy to the hot zone and from the cold zone, respectively. The other method is to
add and remove a known amount of energy to and from two di�erent regions [132].
Afterward, the temperature gradient in the material is calculated to estimate the
thermal conductivity. A reverse non-equilibrium molecular dynamics (RNEMD) as
another method is performed using an algorithm suggested by Müller-Plathe [133]. In
this method, kinetic energy displacement is imposed to create a temperature gradient
within the specimen.

However, one principal limitation of the MD approach for thermal conductivity is the
insu�cient accuracy of the interatomic potentials, which is usually sacrificed for the
simplicity of the potential form and the computational cost. On the other hand, the heavy
DFT calculations to obtain the lattice thermal properties are among the limitations of the
quantum methods utilized in the BTE method. Lately, with the development of artificial
intelligence and machine learning, it has become possible to significantly improve the
accuracy of potential functions used in MD simulations and computing IFCs required
in the BTE method. Machine-learning interatomic potentials (MLIPs) o�er a unique
possibility to conduct first-principles multi-scale modeling, in which ab initio level of
accuracy can be hierarchically bridged to explore lattice thermal conductivity. The main
steps within the first principles hierarchical multi-scale modeling framework include four
key steps: (1) DFT simulations for training data, (2) development of MLIPs, (3) classical
MD simulations, and (4) calculation of e�ective lattice thermal conductivity. MLIPs
are a type of nonparametric designed interatomic potentials to provide accuracy in the
order of quantum mechanics computations. At the same time, their computational costs
are in the order of empirical interatomic potentials. A nonparametric potential consists
of two basic elements. The first element is called “descriptors” and the second element
is a regression model that is a function of the descriptors. The goal of every machine-
learning potential is the determination of the potential energy surface (PES) that is
related to descriptors. Here, we summarised in Table 3.1, which lists the characteristics
of four popular machine learning methods in creating interatomic potentials and their
prepared software packages.
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Table �.�.: Machine learning methods in creating interatomic potentials.

Method Descriptor Regression
model Code

Moment Tensor
Potentials (MTPs) [134] Moment tensor Linear MLIP [135]

Spectral Neighbor
Analysis Potential
(SNAP) [136]

Bispectrum
coe�cients Linear PyXtal_FF [137]

Gaussian Approximation
Potentials (GAP) [138] SOAP kernel Gaussian

process QUIP [139]

Neural Network
Potentials (NNP) [140] Behler–Parrinello Artificial

neural networks RuNNer [141]
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�.�. Electron-Phonon Interaction Calculations
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Figure �.�.: A general work�ow for electron-phonon matrix element using EPW. Green,
blue, and red blocks denote the main process of calculation, input �le, and
useful output information, respectively.

In the section 2.9, we discussed the DFT calculation of electron-phonon coupling. There
are two important aspects: obtaining the electron-phonon matrix element and using
Wannier interpolation techniques to reduce computational resources. These techniques
have been implemented in the Electron-Phonon with Wannier functions (EPW) code,
allowing previously unpractical calculation of properties related to the electron-phonon
interaction [142]. Hence, we present the workflow for calculating the electron-phonon
matrix element using EPW code in Figure 3.5.

Note that a fully relaxed structure in Step 1 is essential for the following phonon
calculation, which is sensitive to the structure. The self-consistent calculation in Step 2
will generate the charge density for the non self-consistent calculation. The dynamical
matrices and deformation potential can be found in the DFPT calculation in Step
3, which are input files for Step 4. And in Step 4 and 5, we do two times Fourier
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transform of the electron-phonon matrix elements between reciprocal space and real
space.

�.�.�. Wannier Interpolation

The study of EPI from first principles requires evaluating Brillouin-zone integrals of
functions that exhibit strong fluctuations. In DFT total energy calculations, we usually
discretize the Brillouin zone using meshes of the order of 10

3 points. However, the
numerical convergence of EPI calculations demands much denser grids, sometimes
with as many as 10

6 wave vectors [143]. Determining phonon frequencies wqn and
perturbations DqnvKS(r) for such a large number of wave vectors is a prohibitive work,
since every calculation is roughly as expensive as one total energy minimization. In
practical DFT calculations, we use an e�cient electron-phonon Wannier interpolation
technique based on maximally localized Wannier functions (MLWF) to perform the
calculations of EPI.

The Wannier function describes a Fourier transform of the extended Bloch wave func-
tions, given as

wmp(r) = N�1

p Â
nk

eik·(r�Rp)Unmkunk(r), (3.2)

whereUnmk expresses a unitary matrix in the indices m and n. One can consider electron
bands enk with eigenfunctions ynk, where the index n is restricted to a set of bands that
are separated from all other bands by finite energy gaps above and below. These bands
are referred to as “composite energy bands” [144]. In addition, we know the unk(r) is
lattice periodic. Then, Wannier functions have the property wmp(r) = wm0(r�Rp). The
inverse transformation of Eq. 3.2 is

unk(r) = Â
mp

eik·(r�Rp)U†

mnkwmp(r). (3.3)

Note that, the unitary matrix Unmk is completely arbitrary, and therefore there exists
considerable freedom in the construction of Wannier functions. Marzari and Vanderbilt
exploited this degree of freedom to construct Wannier functions that are maximally
localized. There is a comprehensive and up-to-date review of the theory and applications
of MLWFs in Ref. [145].

In 2007, Giustino et al. [146, 143] used Wannier functions for evaluation EPI. The
electron-phononmatrix element in theWannier representation is
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gmnka(Rp,Rp0) = hwm0(r)|
∂V KS

∂tka
(r�Rp0)|wn0(r�Rp)isc, (3.4)

where the subscript "sc" represents that the integral is over the supercell. The relation
between gmnka(Rp,Rp0) and gmnn(k,q) is

gmnn(k,q) = Â
pp0

ei(k·Rp+q·R0
p)⇥ Â

m0n0ka
Umm0k+qgm0n0ka(Rp,Rp0)U

†

n0nkuka,qn , (3.5)

where uka,qn = (h̄/2Mkwqn)1/2eka n(q) and eka n(q) are the eigenmodes of phonon. The
inverse relation is

gmnka(Rp,Rp0) =
1

NpNp0
Â
k,q

ei(k·Rp+q·R0
p)⇥ Â

m0n0n
u�1

ka,qnU†

mm0k+qgm0n0n(k,q)Un0nk. (3.6)

As one can see, these two equations express a generalized Fourier transform of the
electron-phonon matrix elements between reciprocal space and real space. The critical
idea for solving practically electron-phonon matrix elements is to first evaluate a small
number of electron-phonon matrix elements in the MLWF representation, and then
perform a generalized Fourier interpolation into the momentum space, i.e., into the
Bloch representation.
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�. Designing of Functional Materials
from Structure Prototypes

Part of this chapter is published in: Designing of magnetic MAB phases for energy applica-
tions. Reproduced with permission from Chen Shen et al. [Journal of Materials Chemistry A
9 (13), 8805-8813] Copyright 2022 Royal Society of Chemistry.

Based on high-throughput density functional theory calculations, we performed screen-
ing for stable magnetic MAB compounds and predicted potential strong magnets for
permanent magnet and magnetocaloric applications. The thermodynamical, mechani-
cal, and dynamical stabilities are systematically evaluated, resulting in 21 unreported
compounds on the convex hull, and 434 materials being metastable considering convex
hull tolerance to be 100 meV/atom. Analysis based on the Hume-Rothery rules revealed
that the valence electron concentration and size factor di�erence are of significant im-
portance in determining the stability, with good correspondence with the local atomic
bonding. We found 71 compounds with the absolute value of magneto-crystalline
anisotropy energy above 1.0 MJ/m3 and 23 compounds with a uniaxial anisotropy
greater than 0.4 MJ/m3, which are potential gap magnets. Based on the magnetic
deformation proxy, 99 compounds were identified as potential materials with interesting
magnetocaloric performance.

�.�. Introduction

The modern industrial and societal demands for advanced functional magnetic mate-
rials are growing faster as we are witnessing the global expansion of hybrid-electric
vehicles, robotics, wind turbines, and automation, leading to a strong incentive on the
green energy revolution [147, 148]. Particularly, the e�cient harvesting of renewable
energy (such as wind energy) and endeavor to reduce the greenhouse e�ect (mainly
through the development of e-mobility and magnetic refrigeration) have intensified
the impetus to design resource-e�cient magnetic materials with optimal performance,
such as permanent magnets and magnetocaloric materials. For instance, one interesting
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question is to identify the so-called gap magnets [149], i.e., permanent magnets with
their energy density (BH)max [150] lying between the widely applied AlNiCo and
Ferrites [151] and the high-performance Sm-Co [152] and Nd-Fe-B-based [153] perma-
nent magnets. Potential candidates can be characterized using the dimensionless figure

of merit k =
q

K1/(µ0M2

S) [154], providing an e�ective descriptor for high-throughput
screening. Moreover, following the discovery of Gd5Si2Ge2 [155] and LaFeSi13 [156]
with giant magnetocaloric e�ect (MCE) around room temperature, magnetic refrigera-
tion technology is assumed to be capable of competing with and hopefully surpassing
conventional refrigeration in terms of energy e�ciency, environmentally friendly and
ecological impact in the near future [157, 158, 159]. However, most permanent mag-
nets and potential magnetocaloric materials with high performance are based on the
intermetallic compounds containing rare-earths (RE), which are resource critical [160].
Therefore, rare-earth-free permanent magnets and MCE materials with enhanced ef-
ficiency over a broad temperature range and useful secondary properties, such as
mechanical stability, corrosion resistance, shapeability, sustainability, and recyclability,
are still desirable [161, 147, 162].

The MAB phases with nanolaminated crystal structures exhibit intriguing magnetic
properties and mechanical deformation behavior, which have attracted considerable
attention recently [163]. Such materials are ternary borides comprising stacked M-
B layers (M = transition metal, B = Boron) interleaved by monolayers of A atoms.
In this regard, the crystal structures are quite similar to those of the well-known
MAX phases Mn+1AXn (X = C and N, A denotes a main group element), which host
a unique combination of metallic and ceramic properties [164]. The novel magnetic
nanolaminates recently discovered in the MAX phases [165], are also expected in
the MAB phases. Moreover, Fe2AlB2 was found to be a promising magnetocaloric
material exhibiting an interesting MCE [166], with the ordering temperature around
300 K confirmed by experimental [167, 168] and theoretical studies [169, 170, 171].
Ke et.al. [172] investigated the intrinsic properties of Fe2AlB2, and found a MAE as
large as -1.34 MJ/cm3, in good agreement with the experiments [168]. Recently,
Cr4AlB4 with a novel structure of MAB phase has been synthesized consistent with
the theoretical calculations [173]. Khazaei et.al. [174] carried out high-throughput
(HTP) calculations on Al-containing non-magnetic MAB phases and predicted 9 stable
compounds. More recently, Miao et.al. [175] reported another HTP screening for Ti-A-B,
Zr-A-B, and Hf-A-B and predicted 7 thermodynamically stable compounds. Therefore,
an interesting question is whether there exist more stable MAB compounds beyond the
above-mentioned cases and whether are they good candidates as potential functional
magnetic materials.

In this work, based on HTP density functional theory (DFT) calculations, we system-
atically studied the stabilities and the magnetic properties of the MAB compounds
to identify possible candidates for permanent magnets and magnetocaloric materials.
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Six experimentally synthesized MAB phases and three non-MAB phases (as competi-
tive phases) are considered (Figure 4.1), including MAB [176] (space group Cmcm),
M2AB2 [177] (space group Cmcm), M3A2B2 [178] (space group Cmcm), M3AB4 [179]
(space group Immm), M4AB4 [173] (space group Immm) and M4AB6 [180] (space
group Cmcm); non-MAB phases are M5AB2 [181] (space group I4/mcm), M3A2B2 [182]
(space group P2/m) and M4A3B2 [182] (space group P4/mmm). Three non-MAB
phases are considered as competitive phases in order to make the prediction of MAB
compounds more reliable. Such compounds are flexible in the chemical compositions
and have tunable magnetic properties. For example, Fe5SiB2 has a TC higher than
760 K, a MS larger than 1 MA/m, and a MAE more than 0.30 MJ/m3 at room tem-
perature [183, 184, 185, 186, 187]. After validating all the experimentally known
phases, we identified stable and metastable ternary borides based on the systematic
evaluation of the thermodynamical, mechanical, and dynamical stabilities. Taking
the M2AB2-type compounds as an example, we investigated the e�ect of magnetic
ordering on the thermodynamic stability, followed by a comprehensive analysis of the
stability trend following the Hume-Rothery rules and local atomic bonding. The MAE
and magnetic deformation proxy are evaluated explicitly, which help to screen for
potential permanent magnets and magnetocaloric materials. Our work expands the
materials library of rare-earth free permanent magnets and magnetic refrigeration,
and thus provides valuable guidance to further theoretical and experimental studies
to design advanced magnetic materials in transition metal-based ternary borides for
energy applications [162, 159].

�.�. Computational Details

The DFT calculations are performed using an in-house developed HTP environment [188,
189] to determine the thermodynamical stability for the above mentioned six MAB
and three non-MAB phases, as demonstrated in recent studies [190, 191, 192]. It
is noted that the non-MAB phases are regarded as competitive phases for the MAB
phase to obtain the reliable convex hull, which is also applied in designing MAX phases
by considering antiperovskites as a competitive phase [191]. Thermodynamical sta-
bility is evaluated by considering the formation energy (E f ) and the distance to the
convex hull with respect to all the relevant competing phases available in the OQMD
database [15]. All the calculations are carried out using the Vienna ab initio simulation
package (VASP) code [193, 194]. The MAE of the predicted stable phases is obtained
using the full-potential local-orbital (FPLO) [195] code in the force theorem regime,
and the recently proposed magnetic deformation proxy [196] is used to evaluate the
MCE.
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Figure �.�.: Crystal structures of considered MAB phases(a-f) and non-MAB phases(g-
h): (a)���-type [Cmcm], (b)���-type [Cmcm], (c)���-type [Pmmm], (d)��6-
type [Cmmm], (e) ���-type [Cmcm], (f) ���-type [Immm], (g) ���-type
[I�/mcm], (h) ���-type [P�/m] and (i) ���-type [P�/mmm].
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�.�. Results and Discussion

�.�.�. Stabilities of Phases

Thermodynamical Stability

The thermodynamical stability of the MAB and non-MAB phases (shown in Figure 4.1)
are obtained based on the formation energy DE f and distance to the convex hull DEh,
where DE f < 0 and DEh = 0 are required for the stable phases. In general, DE f < 0

ensures that the target compounds are energetically stable against decomposing into the
constituent elements following the reaction MxAyBz ! xM+ yA+ zB, whereas DEh = 0

denotes the stability upon the decomposition into any binary and ternary phases ac-
cording to the reaction DEh = Etot(predicted phase)�Etot(competing phases). In our
calculations, the competing phases include all the relevant compounds found in the
OQMD database [15, 197]. As summarized in Table 4.1, there are 21 compounds
satisfying the thermodynamic stability criteria, 17 of them are with one of the MAB
structures. According to the literature, 15 ternary borides with one of the considered
structures have been experimentally synthesized, as listed in Table 4.1. All such com-
pounds exhibit DE f < 0 and DEh < 80 meV/atom (due to the possible numerical errors
in DFT, competing phases, and finite-temperature e�ects), validating our methodology
and hence the validity of the newly predicted phases. The resulting lattice parameters
are in good agreement with the existing measurements and other theoretical calcula-
tions, as listed in Table 4.1. A special case is Co5PB2, where the lattice constants are
underestimated (overestimated) along [100] ([001]) directions. This is also observed in
previous DFT calculations, [198] which may be driven by the missing spin fluctuations
as confirmed in (Fe1�xCox)2B [199].

Furthermore, not all the compounds are magnetic, e.g., with finite magnetization larger
than 0.05 µB per magnetic atom (Table 4.1). It is observed that the nonmagnetic
compounds occur mostly for the Cr-, Mn-, and Ni-based cases, whereas Fe4Al3B2 and
Co4Be3B2 are nonmagnetic as well. This can be understood based on the Stoner
criteria, where In(EF)> 1 indicate possible itinerant magnetic ordering, with I being
the Stoner parameter and n(EF) the density of states (DOS) at the Fermi energy EF of
the nonmagnetic state. For instance, the Stoner parameters of magnetic atoms range
between 0.6 and 0.75 from Cr to Ni, [200], thus those compounds with marginal n(EF)
smaller than 1.4 states/eV per magnetic atom end up as nonmagnetic (Figure S1 in
Appendix) because In(EF)< 1. Moreover, the predicted results agree well with previous
experimental and theoretical reports, e.g., Fe5PB2 with average magnetization 1.71
µB/Fe [186] and Cr4AlB4/6 being nonmagnetic. [180, 173] Furthermore, it is observed
that there exist nonzero induced magnetic moments on the nonmagnetic atoms which
are antiparallel to the magnetic moments of the 3d atoms. For instance, Mn4BeB4 has
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the smallest ratio Mtot/M3d of about 0.94, where the magnetic moments of non-metal
B atoms are about -0.05 µB per B atom and those of metal Be atoms are smaller than
-0.01 µB per Be atom.

Interestingly, the distance to the convex hull for the experimentally synthesized com-
pounds are finite (Table 4.1), e.g., Cr4AlB6, Fe5PB2 and Co5PB2 with distances to the
convex hull of 12, 33 and 79 meV/atom, respectively. Co5PB5 with a distance to the con-
vex hull being 79 meV/atom is a special case, where there is also a 3% deviation in the
theoretical and experimental lattice constants. In fact, the calculated lattice constants
of this compound agree well with previously reported calculations.[198]. Nevertheless,
this suggests that a loose tolerance DEh < 100 meV/atom is reasonable, though it is not
deliberately chosen to cover the Co5PB5 phase.

Critical tolerance with comparable values for the convex hull has also been adopted
in other HTP studies [192, 189, 209]. This leads to 434 (335 are MAB phases) stable
compounds, as listed in Table S1 in the Appendix. As a consequence, our predictions
become consistent with another HTP study[174] focusing on Al-containing MAB phases
with early transition metals on the M-sites. For instance, 8 novel MAB phases they
found, i.e., CrAlB, MnAlB, Cr3Al2B2, Mn3Al2B2, Ni3Al2B2, Mn3AlB4, and Fe3AlB4, are
also predicted to be stable using the loose tolerance on the convex hull, as listed in
the Table S2. It is noted that even if such compounds are metastable, they can still be
synthesized using non-equilibrium methods such as MBE and ball milling. Hereafter
we will consider the stability trend and magnetic properties for all those compounds.
Last but not least, it is essential to consider the non-MAB phases as competing phases
beyond those in the OQMD database. It is observed that the 322-MAB Fe3Al2B2 is
stable with DEh = 0 compared with competing phases in OQMD, whereas it becomes
metastable with DEh = 33 meV/atom after considering the non-MAB Fe3Al2B2. Certainly
there are other competing phases and even novel crystal structures beyond those
considered in this work, which will be saved for future investigation after experimental
validations.

Another interesting question for predicting stable magnetic materials is whether the
magnetic configurations would influence the thermodynamic stability, since most HTP
calculations are done assuming the ferromagnetic (FM) state as in the OQMD and the
Materials Project [210]. This applies particularly to Mn-based compounds, as revealed
by a recent work that the energy landscape of the convex hull is drastically changed
after considering the magnetic ground state [211]. According to the literature, the
212-type Mn2AlB2 is observed to display an AFM magnetic ground state with Néel
temperature about 390K, [212, 213, 172] thus we performed extensive calculations
on the predicted 212-type MAB compounds. As summarized in Table S3, 15 out of 54
magnetic compounds prefer AFM magnetic configurations, including not only Mn-based
but also Fe- and Co-based compounds. The magnetic ground states are consistent with
those obtained from our Monte Carlo modeling based on the Heisenberg model taking
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Table �.�.: List of MAB and non-MAB phases that we found stable based on relative sta-
bility analysis. The present considered phases experimentally synthesized
are indicated by asterisks (*). Lattice parameters (Å), formation energy
(eV/atom), distance to the convex hull (eV/atom), competing phases, mag-
netism (Mag.) and magnetic moment (M and the unit as µB per magnetic
atom) in considered phases are shown.

Phases Space Lattice DE f DEh
Competing Mag. Mgroup a b c phases

FeBeB 63 2.648 12.164 2.925 -0.326 0 FeB, Be2Fe, B FM 0.422
MnBeB 63 2.811 12.252 2.809 -0.378 0 MnB, Be NM 0.002
Fe2AlB2

⇤ 65 2.916 11.019 2.851 -0.401 0 FeAl6, AlB2, FeB FM 1.330
Ref. Exp. [166] 2.928 11.033 2.868
Ref. Cal. [172] 2.915 11.017 2.851
Fe2BeB2 65 2.904 9.947 2.749 -0.344 0 Be2Fe, B, FeB AFM 0.760
Cr2AlB2

⇤ 65 2.923 11.051 2.932 -0.466 0 Cr3AlB4, Cr7Al45, CrB NM 0.010
Ref. Exp. [180] 2.937 11.051 2.968
Ref. Cal. [172] 2.921 11.034 2.929
Mn2AlB2

⇤ 65 2.894 11.080 2.831 -0.471 0 Mn4Al11 , MnB, MnB4 AFM 0.765
Ref. Exp. [170] 2.923 11.070 2.899 AFM
Ref. Cal. [172] 2.887 11.109 2.830 AFM
Mn2BeB2 65 2.846 9.969 2.815 -0.435 0 MnB, Be NM 0.011
Cr3AlB4

⇤ 47 2.939 2.939 8.091 -0.445 0 Cr2AlB2, CrB4, CrB NM 0.049
Ref. Exp. [180] 2.956 2.978 8.054
Ref. Cal. [201] 2.938 2.943 8.090
Cr4AlB6

⇤ 65 2.947 21.328 2.943 -0.422 0.012 CrB4, Cr3AlB4, CrB NM 0.003
Ref. Exp. [180] 2.952 21.280 3.013
Ref. Cal. [202] 2.972 21.389 2.961
Fe4AlB4 71 2.927 18.565 2.870 -0.417 0 AlFe2B2, FeB FM 1.271
Fe4BeB4 71 2.918 17.513 2.821 -0.377 0 FeB, Be2Fe, B FM 1.017
Fe4GaB4 71 2.939 18.557 2.883 -0.343 0 FeB, Ga3Fe, B FM 1.288
Fe4MgB4 71 2.932 19.626 2.875 -0.354 0 FeB, Mg FM 1.391
Fe4ZnB4 71 2.931 18.726 2.872 -0.348 0 FeB, Zn FM 1.326
Cr4AlB4

⇤ 71 2.920 18.856 2.939 -0.510 0 AlCr2B2, CrB NM 0
Ref. Exp. [173] 2.934 18.891 2.973
Ref. Cal. [173] 2.932 18.912 2.957
Mn4BeB4 71 2.899 17.591 2.878 -0.467 0 MnB, Be FM 0.878
Mn4AlB4 71 2.929 18.591 2.889 -0.499 0 MnB, Mn2AlB2 FM 1.014
Mn4IrB4 71 2.959 18.716 2.966 -0.450 0 MnB, Ir FM 2.003
Ni4AuB4 71 3.012 18.793 2.950 -0.224 0 Au, Ni4B3, NM 0
Ni4CuB4 71 2.992 18.125 2.875 -0.227 0 B, Cu, Ni4B3 NM 0
Ni4PdB4 71 2.996 18.453 2.931 -0.265 0 Ni4B3, BPd2, B NM 0
Ni4PtB4 71 2.995 18.351 2.960 -0.267 0 BPt2, Ni4B3, B NM 0
Ni4ZnB4 71 2.992 18.517 2.880 -0.261 0 Ni4B3, B, ZnNi3B2 NM 0
Fe3Al2B2

⇤ 10 5.685 2.833 8.593 -0.426 0 FeAl6, AlB2, FeB FM 0.784
Ref. Exp. [182] 5.723 2.857 2.857
Fe4Al3B2 123 8.083 8.083 2.791 -0.411 0 AlFe, AlFe2B2 NM 0.002
Co4Be3B2 123 7.586 7.586 2.586 -0.395 0 Be3Co, BeCo, CoB NM 0
Ni4Li3B2 123 8.049 8.049 2.734 -0.252 0 Li, Ni2B NM 0.0002
Fe5BeB2 140 5.455 5.455 9.914 -0.292 0 Be2Fe, Fe2B, Fe FM 1.932
Fe5PB2

⇤ 140 5.570 5.570 10.436 -0.392 0.033 Fe2B, FeB, Fe2P FM 1.705
Ref. Exp. [181] 5.548 5.548 10.332 FM 1.730
Ref. Exp. [186] 5.485 5.485 10.348 FM 1.720
Ref. Exp. [203] 5.492 5.492 10.365 FM 1.658
Ref. Cal. [198] 5.456 5.456 10.296 FM 1.770
Fe5SiB2

⇤ 140 5.509 5.509 10.299 -0.359 0.003 Fe2B, FeSi FM 1.731
Ref. Exp. [184] 5.551 5.551 10.336 FM 1.808
Ref. Exp. [183] 5.554 5.554 10.343 FM 1.750
Ref. Cal. [185] 5.546 5.546 10.341 FM 1.840
Co5PB2

⇤ 140 5.279 5.279 10.477 -0.357 0.079 Co2P, CoB, Co FM 0.409
Ref. Exp. [204] 5.420 5.420 10.200
Ref. Cal. [198] 5.284 5.284 10.541 FM 0.440
Co5SiB2

⇤ 140 5.484 5.484 9.942 -0.337 0.042 CoB, Co2Si, Co FM 0.394
Ref. Exp. [205]
Ref. Cal. [185] 5.511 5.511 9.953 FM 0.484
Cr5PB2

⇤ 140 5.537 5.537 10.317 -0.474 0.032 Cr3P, CrB NM 0.022
Ref. Exp. [206] 5.593 5.593 10.370
Cr5B3

⇤ 140 5.431 5.431 9.923 -0.418 0 CrB, Cr2B NM 0
Ref. Exp. [207] 5.460 5.460 10.460
Mn5PB2

⇤ 140 5.509 5.509 10.287 -0.480 0.033 Mn2B, MnB, Mn2P FM 1.665
Ref. Exp. [204] 5.540 5.540 10.490
Ref. Exp. [208] 5.540 5.540 10.490
Mn5SiB2

⇤ 140 5.559 5.559 10.293 -0.415 0.003 MnSi, Mn2B FM 1.583
Ref. Exp. [208] 5.540 5.540 10.490
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exchange parameters from DFT calculations (not shown), which will be discussed
in detail elsewhere. Nevertheless, the energy di�erence between the FM and AFM
states is less than 20 meV per atom, hence the magnetic ground state has no strong
impact on the thermodynamic stability for such compounds. This can be attributed
to the nano-laminated crystal structure, where the magnetic interaction between the
local Mn-moments is relatively weak, in comparison to the strongly frustrated fcc-
lattice from the Cu3Au lattice considered in Ref. [211]. It is noted that systematic
evaluation of the magnetic ground states is a challenge, hereafter we will focus on
the physical properties of the FM states, which should be valid for most of the other
compounds.

After the thermodynamic stability, mechanical and dynamical stabilities should be
addressed as well in order to make systematic predictions. It is observed that mechanical
stability plays a marginal role as explicitly demonstrated for 21 stable compounds on
the convex hull. This is consistent with our previous studies on the antiperovskite
compounds. [192]. For the orthorhombic MAB phases, there are nine independent
elastic constants C11, C22, C33, C44, C55, C66, C12, C13, and C23. For the tetragonal
non-MAB phases, there are six independent elastic constants C11, C33, C44, C66, C12,
and C13. According to the mechanical stability defined in the Ref. [214], none of the
novel compounds predicted to be thermodynamically stable is found to be mechanically
unstable. In addition, the dynamical stability is verified by examining the the phonon
spectra as compiled in Figure S3 for 21 predicted and 15 known cases. Obviously, there
is no imaginary modes observed for 35 compounds, indicating that those compounds are
stable against local atomic displacements. The resulting phonon spectra for Cr2AlB2 and
Cr3AlB4 are in good agreement with previous reported results [215]. The mechanical
(not shown) and dynamical (as indicated by phonon spectra in Figure S3) stabilities
seem to be of marginal importance for the newly predicted compounds on the convex
hull (cf. Table 4.1), which is consistent with our previous studies on the antiperovskite
compounds [192]. Due to the expensive computational cost, we have not performed
such detailed evaluations for the other predicted compounds with the distance to the
convex hull smaller than 100 meV/atom.

Nevertheless, for Ni4Li3B2 there exists an imaginary mode at the M point. This suggests
that the compound may end up with other crystal structures or synthesized on certain
substrates using molecular beam epitaxy.

Trends in the Stability

To understand the trend of stabilities for the MAB and non-MAB phases, the number of
stable compounds (DEh < 100 meV/atom) with respect to the A element are shown in
Figure S4. It is obvious that most elements in the periodic table act as a constituent
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element stabilizing at least one of the considered crystal structures, whereas nine out
of 59 elements (i.e., K, Rb, Cs, Sr, Ba, Zr, N, Sb, and Bi) do not form any stable phases.
Particularly, each of the five elements like Be, Al, Pt, Zn, and Ir support more than 22
stable phases. Moreover, among all the structure types considered in this work, 136
compounds are stable with the 414-type structure, albeit the first compound Cr4AlB4

was reported in 2019. [173].

Figure �.�.: The stability map of ���-MAB phases (circle symbols represent unstable
phases in the present work; triangle symbols represent possible stable
phases with convex hull distance below ��� meV/atom in the present
work; square symbols represent newly reported novel phases in Ref. [���]).

Taking the 212-type MAB structure as an example, the stability trend with respect to
the chemical composition can be understood based on the Hume-Rothery rules [216].
Such rules are formulated based on the di�erence of size, electronegativity factors
and the valence electron concentration (VEC). It is observed that the electronegativity
di�erence between the M and A elements has no strong correlation with the stability
(Figure S5), same as the MAX compounds [217]. On the other hand, as shown in
Figure 4.2, both the atomic radius di�erence of the M and A elements |RM�RA|

RA
and
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VEC have significant influence on the stability. Clearly, most stable compounds are
within the region |RM�RA|

RA
< 0.4 and VEC < 5.5. The newly reported novel phases in

Ref. [174] also prove the practicality of the current expression factors. Similar behavior
is also observed for the 414-type MAB compounds with a slightly smaller tolerance for
VEC < 6, as shown in Figure S6. The reason might be due to the fact that the M-site
and boron-site contributing less valence electrons because of the extended M-B block
(Figure 4.1).

The general trend in the stability can be elucidated based on the chemical orbital
Hamilton population (COHP) obtained using the LOBSTER code [218], which provides
an atomic picture about the bonding. As an example which is representative for all
the compounds we considered, the bond-resovled COHP is shown for M2AlB2 (where
M are Cr, Mn, Fe, Co and Ni) and Fe2AB2 (where A are Be, Mg, Ca, Sr and Ba) in
Figure S7. Focusing on varying the M elements, the number of valence electron on
the M-sites increases from 6 in Cr2AlB2, to 8 in Fe2AlB2, and finally to 10 in Ni2AlB2.
For Cr2AlB2, it is obvious that the values of -COHP are all positive below the Fermi
energy, indicating only boning states are occupied in the corresponding bonds, which
leads to a high overall stability (Figure S7) Increasing the number of valence electron
to 10 in Ni2AlB2, the negative energies -COHP appeared below the Fermi energy in
the Ni-B, Ni-Al, and Ni-Ni bonds. The occupation of such anti-bonding states weakens
the bonds and therefore destabilizes the Ni2AlB2 compound. Therefore, the ICOHP
of M-Al and M-B are increasing within the the number of valence electron increasing,
which indicates the corresponding bond strength weakens. Similar behaviour is also
observed in the COPH os Fe2AB2 compounds with varying A elements being Be, Ca,
and Ba (Figure S7). As the atomic size changes from 0.99 Å(Be), 1.74 Å(Ca) and 2.06
Å(Ba), the bond strength of those compounds becomes weaker, which are confirmed by
the COHP values of Fe-Fe, Fe-B, Fe-A and A-B.

Hence, with respect to varying both M and A elements with increasing number of
valence electrons and atomic size, the Fermi energy is shifted into the anti-bonding
states, leading to instability. This helps to understand the trend observed in Figure 4.2,
which provide valuable guidance to guide the synthesis of MAB phases by substituting
the M/A sites or via forming solid solutions.

�.�.�. Magnetic Properties

MAE

Turning now to the magnetic properties, we focus on the magnetocrystalline anisotropy
energy (MAE) andmagnetocaloric e�ect (MCE), in order to identify potential candidates
for permanent magnet and magnetocaloric applications. The MAE is caused by the
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broken continuous symmetry of magnetization directions due to the spin-orbit coupling
(SOC) [219], which is defined (denoted as K) in terms of

Kn̂1�n̂2
= En̂1

�En̂2
, (4.1)

where En̂ denotes the total energy with the magnetization direction parallel to n̂. In the
present work, we consider n̂ along three crystalline directions, namely, [100], [010]
and [001], as MAB compounds have orthorhombic structures (Figure 4.1). This leads to
three MAEs, i.e., K001�010, K001�100 and K010�100. Figure 4.3 shows the MAE with respect
to the saturation magnetization (MS), in comparison with the experimentally known
permanent magnets. There are in total 71 cases (cf. Table S4 in the Appendix) with the
absolute value of at least one MAE greater than 1.0 MJ/m3. For instance, the MAE of
Fe2AlB2 has been evaluated by di�erent groups [172, 167, 168], and our result of -1.14
MJ/m3 is in good agreement with the experimental measurements of -0.9 MJ/m3 at 50
K by Barua [168] and theoretical calculation -1.34 MJ/m3 by Ke [172]. In the newly
predicted compounds, the MAB phase Mn4PtB4 has the largest MAE as 13.498, 11.948
and -1.550 MJ/m3 for K001�010, K001�100 and K010�100. Additionally, the 111-type FePtB
shows the largest MAE in non-Mn-containing compounds as -10.646, 7.225 and -3.421
MJ/m3 for K010�100, K001�010 and K001�100, suggesting the b-direction (c-direction) is easy

(hard) axis. Based on the dimensionless figure of merit k =
q

K1/(µ0M2

S) [154], there
exist quite a few compounds which can be classified as hard magnets. Particularly, the
MAE of such ternary TM borides fill the gap between the widely used low performance
magnets (such as AlNiCo and ferrite) and high performance magnets (such as Sm-Co
and Nd-Fe-B).

However, not only the absolute values of the MAE but also the sign matters, e.g., the
easy axis (direction with the lowest energy) is ideally aligned along a special crystalline
axis. For all the MAB compounds, the [001] direction along the stacking direction of
the M-B layers (Figure 4.1) is chosen, corresponding to the most-probably exposed
surfaces for such nano-laminated structures. For the non-MAB phases of the tetragonal
space groups, the special axis is chosen to be the axis of 4-fold rotational symmetry,
i.e., the [001] direction in Figure 4.1(g & i). The MAE for the 322-type compounds
(Figure 4.1(h)) is overall small thus we do not consider them. Correspondingly, we
found 16 MAB and 7 non-MAB phases with a significant out-of-plane MAE (> 0.4
MJ/m3), as well as 33 (18) MAB (non-MAB) compounds with a reasonable in-plane
MAE (absolute value larger than 0.4 MJ/m3), as listed in Table S5. Among them, the
322-type MAB compound Mn3Ir2B2 has the largest out-of-plane MAE of 10.17 MJ/m3

for K010�001, and Fe2ReB2 with a large MAE of 9.00 MJ/m3 in K010�001. Interestingly, the
MAE value of Fe3Zn2B2 is as large as 3.00 MJ/m3 in K100�001 while its Ms is comparable
to that of MnAl. It contains no expensive, toxic or critical element, which is a good
candidate permanent magnet material. Moreover, Fe7B2 has a sizable MAE 0.681
MJ/m3, which is quite comparable to that of hcp Co. Such a phase is beyond the known
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binary Fe-B phase diagram [220], which might be synthesizable under non-equilibrium
conditions. Last but not least, our results (Figure 4.3 and Table S4) provides reasonable
matrix compounds whose MAE can be further enhanced by proper doping to engineer
permanent magnets. For instance, our calculations reveal that Fe5PB2 has an MAE of
0.63 MJ/m3 consistent with the experimental measured value of 0.65 MJ/m3 [187],
whereas a recent work demonstrated that its MAE can be enhanced by substitutionally
doping tungsten [221].

As discussed above, most compounds with significant MAE contain 5d elements, such
as Pt, Ir, and Re. This suggests that the MAE is originated from the enhanced atomic
SOC strength for the 5d-shell of such elements. Following Ref. [222], the atomic
resolved SOC energy changes are listed in Table S6 for the 111-type FeXB with X =

Figure �.�.: The MAE vs magnetization of the promising candidates of targeted
phases. The dashed lines correspond to magnetic hardness parameter
k =

q
K1/(µ0M2

S) for values k = � and �.�. Hard magnetic materials (k > 1)
can be used to make ef�cient permanent magnets of any shape.
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Ni, Pd, and Pt. As the atomic SOC strength increases from 98 meV for Ni, 185 meV
for Pd, to 533 meV for Pt [223], the contribution from the X element to the MAE
is becoming more significant, as given by the change of atom-resolved SOC energy
DESOC = ESOC(n̂1)�ESOC(n̂2). For FeNiB, DESOC(Fe) (-0.492 meV/at. in [100]-[010]
direction) dominants the total DESOC (-0.586 meV/f.u. in [100]-[010] direction) of the
compound, as the SOC strength is comparable for Fe (55 meV) and Ni. Furthermore, for
FeXB with X = Ni, Pd, and Pt, the DESOC of Ni, Pd, and Pt are -0.093, 0.702, and 2.603
meV/atom between two magnetization directions [100] and [010], corresponding
to the changes in the total MAE of -0.128, 0.181, and 2.106 meV/atom, respectively.
That is, DESOC of X has a more dominant contribution to the total DESOC and hence
the MAE, when moving down the group from 3d to 5d elements. In the FePtB, the
contribution of DESOC of Pt is 84% in total DESOC. Therefore, like FePt [224], the 5d
elements have a more significant contribution to the MAE because of enhanced atomic
SOC strength, though the magnetic moments on such elements are induced by those of
the 3d atoms.

MCE

As introduced above, it is postulated that ternary TM borides are promising candi-
dates for MCE applications, such as Fe5SiB2 [183] and Fe2AlB2 [166, 168, 171, 167].
To search for more candidates in the predicted MAB and non-MAB compounds, we
performed screening based on the magnetic deformation proxy [196]. It is demon-
strated that the magnetic entropy change DSM upon magneto-structural transitions
has a strong correlation with the magnetic deformation SM = 1

3
(h2

1
+h2

2
+h2

3
)1/2 ⇥100

and ⌘ = 1

2
(PT P� I) where P = A�1

nonmag ·Amag with Anonmag and Amag being the lattice
constants of the nonmagnetic and magnetic unit cells. Although there is no direct
scaling between DS and SM, it is suggested that SM > 1.5% is a reasonable cuto� to
select the promising compounds [196]. Figure 4.4 shows the 99 potential MCMs with
ÂM > 1.5% from 434 compounds with convex hull DE < 100 meV/atom. Among them,
the reported [196] ÂM of Fe5SiB2 (2.14%) and Fe2AlB2 (2.05%) are confirmed in our
calculations, with the resulting ÂM of 2.03 % and 1.96 %, respectively. Interestingly,
there is positive correlation between the magnetization density and the magnitude of
magnetic deformation, i.e., as the magnetic deformation increases, the magnetization
of compounds also increase (Figure 4.4). It is noted that 82 out of 99 potential MCMs
locating at ÂM < 3.5%, and the magnetization concentrating between 500 to 1000
emu/cm3. Particularly, there are four compounds, e.g., Fe5B2 (322-MAB), Fe3Co2B2

(322-MAB), Mn3Co2B2 (322-MAB), and Fe2B (111-MAB), at the upper-right corner,
which perform on both large magnetization and magnetic deformation. We suspect
such compounds can exhibit significant DSM upon second order phase transition at the
corresponding Curie temperature, which will be saved for detailed investigation in the
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future. Additionally, isostructural doping can be applied to improve the magnetocaloric
performance [225] or to fine tune the the magnetostructural or metamagnetic tran-
sitions[226], which enables further design of magnetocaloric materials with optimal
performance.

Figure �.�.: The �� potential MCMs with magnetic deformation ÂM > 1.5%. The color
bar marks the distance to the convex hull. The dash line indicates a
positive correlation between the magnetization density and the magnitude
of magnetic deformation.

Several important aspects on possible MCE in such materials are noteworthy, based on
the distributingmapwith respect to theM andA sites as shown in Figure S8. For instance,
compounds with Fe and Mn occupying the M-site show a high possibility to posses a
large MCE based on the magnetic deformation, which have been confirmed in several
reported compounds [208, 227, 228]. Based on the correlations observed in known
MCMs in Ref. [196], such materials are likely to show a strong magnetocaloric e�ect and
are therefore excellent candidates for experimental study. Moreover, compounds with
Mn/Fe/Co, Ru/Rh/Pd and Os/Ir/Pt occupying the A-site also show a high potential to
host remarkablemagnetocaloric properties. Furthermore, it is noted the fact that Fe2AlB2

is composed entirely of earth-abundant elements. This provides a major advantage at
least from a cost and resource point of view, over the competing MCMs that contain
expensive critical elements (e.g., Gd, Gd5Si2Ge2, FeRh). Therefore, such economic
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material without critical elements appears especially appealing to us, and the present
system MxAyBz, when A = Al, Zn, Si and Fe should be attracted more attention, such as
Fe4AlB4 (2.33 %), Fe3AlB4 (2.11 %), Fe4SiB4 (2.73 %), Fe3ZnB4 (2.42 %) and Fe5B2

(Cmmm, 6.56 %) (Figure S8).

�.�. Conclusions

In summary, our high-throughput screening on 6 types of MAB phases and 3 types
of competing non-MAB phases predict 434 magnetic ternary transition metal borides
which are potential candidates for permanent magnets and magnetocaloric materials.
After validating the 15 reported compounds, 21 novel compounds are identified to
be stable based on the systematic evaluation of thermodynamic, mechanical, and
dynamical stabilities, and the number of stable compounds is increased to 434 taking
the tolerance of convex hull being 100 meV/atom. It is observed that the magnetic
ground state for such compounds with layered structures does not have a strong
influence on the thermodynamic stability. The trend of stability for the MAB phase
can be understood based on the Hume-Rothery rules, where the size factor di�erence
and the valence electron concentration play a critical role. Such a trend can be further
attributed to the bond-resolved COHP, providing intuitive guidance for experimental
synthesis. The detailed evaluation of the magnetocrystalline anisotropy energy and the
magnetic deformations leads to 23 compounds with significant uniaxial anisotropy (>
0.4 MJ/m3) and 99 systems with reasonable magnetic deformation (ÂM > 1.5%). For
those compounds containing no expensive, toxic, or critical elements, it is observed that
Fe3Zn2B2 is a reasonable candidate as gap permanent magnet, and Fe4AlB4, Fe3AlB4,
Fe3ZnB4, and Fe5B2 as potential magnetocaloric materials. This work paves the way
for designing more magnetic materials for energy applications. In particular, it also
provides a good starting point to search for novel two-dimensional magnetic materials,
i.e., MBene, based on detailed evaluation of the exfoliation energy and follow-up
experiments.[229] At last, the realistic assessment of the predicted potential MAB phases
are conducting and will add to our library [162, 159] soon.
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�. Thermal Transport in Novel �D
Systems

Part of this chapter is published in: Two-dimensional layered MSi2N4 (M = Mo, W)
as promising thermal management materials: a comparative study. Reproduced with
permission from Chen Shen et al. [Physical Chemistry Chemical Physics 24 (5), 3086-
3093] Copyright 2022 Royal Society of Chemistry.

With the miniaturization and integration of nanoelectronic devices, e�cient heat re-
moval becomes a key factor a�ecting the reliable operation of such devices. Two-
dimensional (2D) materials, with the high intrinsic thermal conductivity, good mechani-
cal flexibility, and precisely controllable growth, are widely accepted as ideal candidates
for thermal management materials. In this work, by solving the phonon Boltzmann
transport equation (BTE) based on first-principles calculations, we investigated the
thermal conductivity of novel 2D layered MSi2N4 (M = Mo, W). Our results point to
a competitive thermal conductivity as large as 162 Wm�1K�1 of monolayer MoSi2N4,
which is around two times larger than that of WSi2N4 and seven times larger than
that of monolayer MoS2 despite their similar non-planar structures. It is revealed that
the high thermal conductivity arises mainly from its large group velocity and low an-
harmonicity. Our result suggests that MoSi2N4 could be a potential candidate for 2D
thermal management materials.

�.�. Introduction

MoSi2N4 was synthesized by chemical vapor deposition (CVD) method [230]. It can be
structural viewed as 2H-MoS2-type MoN2 intercalating into a-InSe-type Si2N2 [231].
2D MoSi2N4 was reported to exhibit semiconducting behavior, high carrier mobility,
high strength, and excellent ambient stability [230, 231]. In addition to that, due to its
noncentrosymmetric hexagonal structure and unique electronic structure, several new
physical properties such as second harmonic generation [232], valley pseudospin [233,
234] and piezoelectricity [235] were proposed in this system. However, at present,
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these researches mainly focus on the electronic properties instead of the phononic
properties of MoSi2N4, which is of great significance to the operating reliability with
applications in electronics.

The thermal conductivity of 2D semiconductors is one of the significant phononic prop-
erties that have attracted considerable interest [236, 237, 238, 239, 240], which calls
for its layered structural feature that is out-of-plane van der Waals bond and in-plane
covalent bond. Due to the atomic thin monolayer with van der Waals bond along
the out-of-plane direction, thermal conductivities of 2D semiconductors are generally
thickness-dependent in both out-of-plane, and in-plane direction [241]. Several 2D
semiconductors such as h-BN [242], PdSe2 [25], phosphorene [243], and MoS2 [244]
are experimentally and theoretically reported to have the thickness-dependent thermal
conductivity. As for monolayer with an in-plane covalent bond, weak covalent bonds
result in lower in-plane thermal conductivity than that of graphene [245]. There-
fore, various 2D semiconductor materials with di�erent lattice structures and covalent
bonds strength produce di�erent thermal conductivity values. Low thermal conduc-
tivity materials can be candidates for thermoelectric (TE) [109], while high thermal
conductivity materials can be used as thermal management materials [246, 247]. Par-
ticularly, transition metal dichalcogenides (TMDCs) with tunable band gap [248] and
the allotropes [249] make possess low or high thermal conductivity. For instance, the
thermal conductivity of monolayer 1T -ZrSe2 and 1T -HfSe2 at room temperature is 1.2
Wm�1K�1 and 1.8 Wm�1K�1 [110], which is benefit to thermoelectric application. In
contrast, the thermal conductivity of monolayer MoS2 is 23.2 Wm�1K�1 [250], which
can be expected to be used in thermal management applications [251]. Among all
the 2D materials, graphene holds the highest thermal conductivity, which can be up
to 3000-5300 Wm�1K�1 [245, 252]. Such superior thermal conductivity promises
its application in thermal management. However, the graphene channel field e�ect
transistor has a low on/o� ratio (< 100) metal behavior at room temperature [253].
With such consideration, TMDCs can be a candidate for both high heat conduction and
excellent on/o� ratio compared to graphene [254, 255].

As proposed in Ref. [230] and Ref. [231], MoSi2N4 monolayer holds 1.74 eV PBE band
gap and 2.30 eV HSE band gap, which is comparable to that of MoS2 (1.8 eV, PBE).
And the derived carrier mobility of MoSi2N4 is four times that of MoS2. Furthermore
the Young’s modulus of MoSi2N4 is about 50 GPa, which is higher than that of MoS2 by
26.8 GPa [256]. Similarity to MoS2 of TMDCs, MoSi2N4 is also a member of MA2Z4

family. In addition, both MoSi2N4 and WSi2N4 have been synthesized experimentally
by CVD. Geometrically, MoSi2N4 contains 2H-MoS2 type MoN2 in its monolayer and
it is sandwiched by two two-atomic-layer zigzag-SiN. Given the fact that both the
2H-MoS2 (23.2 Wm�1K�1) and Si3N4 (177 Wm�1K�1) [257] have excellent thermal
conductivity, it is urgently required to study the thermal conductivity of MoSi2N4 and
WSi2N4 monolayer for promoting their applications. Although predicting the thermal

���



conductivity by using machine-learning-based interatomic potentials [258] and solving
the phonon BTE based on DFT calculation [259] have been used to study the thermal
conductivity of MoSi2N4 family, more comprehensive analysis and higher precision
computation is always required.

In this work, we performed a systematic study of the phonon transport properties
of both MoSi2N4 and WSi2N4 by solving the phonon BTE based on first-principles
calculations. Firstly, the lattice structure and phonon dispersion of the MoSi2N4 and
WSi2N4 were studied. Then, the lattice thermal conductivities of them at di�erent
temperatures were calculated. We found that the MoSi2N4 and WSi2N4 are promising
thermal management materials with outstanding thermal conductivity. The mecha-
nism underlying the high thermal conductivity of such MoSi2N4-based materials is
explained by analyzing the mode resolved phonon properties. Considering the similar
geometry structures of monolayer MoS2 and silicene, namely, 2H-MoS2 corresponds
to 2H-MoN2 of MoSi2N4, and silicene corresponds to top or bottom two-atomic-layer
SiN unit of MoSi2N4. We chose these two materials as comparison materials. The
thermal transport properties of them are also calculated. Moreover, the electronic struc-
tures were further studied to obtain a deep insight into phonon transport. This paper
systematically studied the thermal transport properties of 2D MSi2N4-based materials
for exploring their potential applications in thermal management and many other fields.

�.�. Computational Details

Ab initio calculations based on density functional theory (DFT) were performed using
the Vienna ab initio simulation package (VASP) [260, 193], which implements the
projector augmented wave (PAW) [194]. Exchange-correlation energy functional is
treated using the Perdew-Burke-Ernzerhof of generalized gradient approximation (GGA-
PBE) [59]. The wave functions are expanded in plane wave basis with a 20⇥20⇥1
Monkhorst-Pack [261] k-sampling grid and cut-o� energy of 700 eV. A large vacuum
region is set as 35 Å to avoid the interactions between the monolayer and its mirrors
induced by the periodic boundary conditions. Precision of total energy convergence for
the self-consistent field (SCF) calculations was as high as 10�8 eV. All structures are
fully optimized until the maximal Hellmann-Feynman force is less than 10�8 eVÅ�1. To
calculate the phonon dispersion, thermal conductivity, and various phonon properties,
it is necessary to extract second- and third- interatomic force constants (IFCs) from
first-principles calculations. To this end, 4⇥4⇥1 supercells containing 112 atoms were
constructed, which is su�ciently large to allow the out-of-phase tilting motion. To
extract second-order IFCs, an atom in the supercell was displaced from its equilibrium
position by 0.01 Åand the Hellmann-Feynman forces were calculated based on the
displaced configuration. To estimate the anharmonic phonon frequencies of current
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systems, we extended the finite-displacement approach to preparing cubic IFCS with
appropriately chosen displacement magnitude Dµ (Dµ=0.04 for cubic). A cut-o� radius
is introduced to disregard the interactions between atoms with a distance larger than a
specific value for practical purposes. In principle, the cut-o� radii should exceed the
range of physically relevant anharmonic interactions to get satisfactory results, which
should be carefully tested. ALAMODE only implements the RTA method for calculating
thermal conductivity. The previous work [25] mentioned the larger cut-o� radius
could provide more reasonable thermal conductivity for the RTA method. Based on the
convergence test of thermal conductivity vs. cut-o� radius and numerical consideration,
we choose the cuto� interactions up to the 26th nearest neighbors for the anharmonic
term. The cut-o� radius of 18a0 and 14a0 (where a0 is the Bohr radius) was used for
harmonic and cubic IFCs. The cubic IFCs within considering 26th nearest neighbors
results in 2771 displacement configurations. And the Q-grid of 101 ⇥ 101 ⇥ 1 for
calculating the thermal conductivity of MSi2N4 system. Lattice thermal conductivity
(kL) and relative phonon properties were determined by solving the phonon BTE, as
implemented in the ALAMODE [113] package. The kL is estimated by the BTE within
RTA through the following equation:

kab
L (T ) =

1

NV Â
q

Cq(T )na
q (T )nb

q (T )tq(T ), (5.1)

where V , Cq(T ), nq(T ), and tq(T ) are the unit cell volume, mode specific heat, phonon
group velocity, and phonon lifetime, respectively.

�.�. Results and Discussion

�.�.�. Lattice Structures of Monolayer MoSi2N4 and WSi2N4

MoSi2N4 and WSi2N4 are new septuple-atomic-layer monolayer materials reported
in Ref. [230], as shown in Figure 5.1. This monolayer is built up by septuple atomic
layers of N-Si-N-M-N-Si-N (M = Mo, W), which can be structurally constructed by
inserting 2H-MoS2-type MN2 into a-InSe-type SiN. Interestingly, the space group of
MoSi2N4 (P6̄m2, No. 187) is consistent with that of 2H-MoS2 and a-InSe monolayer.
Note that since MSi2N4, 2HMoS2, and a-InSe holds multiatomic-layer complex lattice
structures, instead of the plane group, the space group is used here to describe their
lattice structures. In detail, in Figure 5.1(a), Si locates in the center of a tetrahedron
formed by four N atoms, and Mo is in a triangular prism consisted of six N atoms.
Notably, MoSi2N4 described above is identified as the most energetically favorable
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structure among thirty structures proposed in Ref. [231] in combination with first-
principles structural optimization (lattice parameters and space group are listed in
Table 5.1).

(a) (b)

(c)

ba

ba

c

M = Mo, W

Si
N

Figure �.�.: The top and side views of structures of MoSi2N4 and WSi2N4.

Table �.�.: Lattice parameters of monolayer MoSi2N4 and WSi2N4 (unit Å).
Compound Space group a Thickness
MoSi2N4 P6̄m2 2.91 6.79
WSi2N4 P6̄m2 2.91 7.02

�.�.�. Phonon Dispersion and Density of States

To study the phonon transport properties of monolayers MoSi2N4 and WSi2N4, phonon
dispersion calculations are firstly performed based on the finite displacement di�erence
method. The phonon dispersions are shown in Figure 5.2, it is noted that no imaginary
part existing in monolayers MoSi2N4 and WSi2N4, indicating the dynamic stability of the
twomonolayer compounds. The primitive cell of monolayerMoSi2N4(WSi2N4) has seven
atoms. Thus there are three acoustic phonon branches and eighteen optical branches.
The three lowest phonon branches are acoustic phonon branches, i.e. the out-of-plane
flexural acoustic (FA) branch, the in-plane transverse acoustic (TA) branch, and the
in-plane longitudinal acoustic (LA) branch, present linear behavior when approaching
the G point, while the flexural acoustic (FA) phonon branch shows a quadratic behavior,
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which is consistent with our previous results [108]. Similar behaviors are always found
in 2D materials, and the consistency ensures the accuracy of the obtained thermal
conductivity.

pDoSpDoS

(a) (b)
MoSi2N4 WSi2N4

Figure �.�.: The phonon dispersions adn density of states (pDOS) of MoSi2N4 and
WSi2N4.

In addition, the two monolayer compounds show very similar dispersion curves along
the path passing through the main high symmetry K-points in the irreducible Brillouin
zone (IBZ). The phonon dispersions of monolayer MoSi2N4 and WSi2N4 are separated
into three regions. There exists a gap between the regions. The gap between these two
compounds is also quite similar. Interestingly, the frequencies of acoustic branches of
MoSi2N4 and WSi2N4 are pretty similar and comparable with the common 2D materials,
such as WS2 and MoS2. The high frequency of acoustic branches indicates that the
phonon harmonic vibrations of MoSi2N4 and WSi2N4 are strong, which will significantly
a�ect the phonon transport properties. However, as shown in Figure 5.2, TA, FA, and
LA branches (highlighted as a green line) of MoSi2N4 and WSi2N4 are di�erent. The LA
branch of MoSi2N4 interacts with other optical modes, and the frequency is larger than
that of WSi2N4. This phenomenon will also impact the thermal transport properties;
we will discuss them in the next section.

As revealed by the partial density of states (pDOS), high-frequency optical phonon
branches above the gap are mainly contributed by the vibration of the light N atom. In
the low-frequency range around 200 cm�1, the contribution of W atoms and Mo atoms
to the DOS of the MoSi2N4 and WSi2N4 are the main parts. In frequency range around
400 cm�1, partial DOS of Si atoms has the same level with N atoms, while above the
frequency of 400 cm�1, partial DOS of N atoms is more significant than that of other
atoms, and the transition metals Mo andW contribute rarely.
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�.�.�. Phonon Transport Properties

Based on the harmonic and anharmonic IFCs, the lattice thermal conductivities of
monolayer MoSi2N4 and WSi2N4 are calculated solving the BTE. In Figure 5.3, thermal
conductivities of the two systems at di�erent temperatures with monolayer MoS2 and
silicene as references for comparison are presented. The reason for choosing these
two materials is the similar geometry structures. 2H-MoS2 corresponds to 2H-MoN2

of MoSi2N4, and silicene corresponds to top or bottom two-atomic-layer SiN unit of
MoSi2N4.

162,32

88,07

24,10

9,49

MoSi2N4

WSi2N4

2H-MoS2

Silicene T=300 K

Figure �.�.: Temperature (���-���� K) dependent thermal conductivities of monolayer
MoSi2N4, WSi2N4, �H-MoS2 and silicene.

As one can see that, the intrinsic lattice thermal conductivities are temperature depen-
dent, which is approximately proportional to the inverse temperature of T�1, consistent
with the expected behavior of crystalline materials in both bulk and 2D forms. It is noted
that MoSi2N4 has larger thermal conductivities. In contrast, the thermal conductivities
of WSi2N4 are lower, which may be owing to the low frequencies of TA, FA, and LA
branches. Comparing with the common excellent thermoelectric materials, such as
ZrSe2 [110] and HfSe2 [262], the thermal conductivities of MoSi2N4 and WSi2N4 are
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huge, 162 Wm�1K�1 and 88 Wm�1K�1 at room temperature respectively. Such large
thermal conductivities limit the MoSi2N4 and WSi2N4 being the promising thermoelec-
tric material. However, these two compounds with such larger thermal conductivities
present the promising potential for thermal management materials. The MoSi2N4

and WSi2N4 possess rather high thermal conductivity compared to a lot of thermal
management materials, such as MoS2, silicene, phosphorene, etc [243]. In this work,
the thermal conductivity of silicene as the comparison is plotted in Figure 5.3. As one
can see, the intrinsic lattice thermal conductivities of MoSi2N4 and WSi2N4 are 7 and 4
times the one for monolayer MoS2 (24.10 Wm�1K�1, agree with Ref. [250]), 16 and 9
times the one for silicene (9.49 Wm�1K�1, agree with Ref. [263]). Furthermore, the
intrinsic thermal conductivities of MoSi2N4 and WSi2N4 are much larger than those
of the other well-known 2D semiconductors, such as GaN (24 Wm�1K�1) [112], and
monolayer 2H-MoTe2 (42.2 Wm�1K�1) [264]. Especially, the thermal conductivity of
MoSi2N4 is even much higher than those of widely used electronic materials such as
Si (142 Wm�1K�1), which could guarantee heat transfer in the corresponding nano-
electronic devices, which provides the penitential for it to be thermal management
materials.

To understand the underlying mechanism responsible for the mode contributed thermal
conductivity of monolayers MoSi2N4 and WSi2N4. We plot the spectrum of thermal
conductivities and absolute contribution from each acoustic phonon branch [FA, TA,
and LA as marked in Figure 5.4] to the overall thermal conductivity in Figure 5.3. As
shown in Figure 5.4(a), the low-frequency phonons (below a frequency of 400 cm�1) of
MoSi2N4 and WSi2N4 dominate the thermal conductivity contributions. Especially, the
contribution from FA, TA, and LA phonon branches (below a frequency of 200 cm�1)
contribute the most proportion of thermal conductivities of both of them. Further, the
high-frequency phonons of MoSi2N4 and WSi2N4 hardly contribute as heat carriers. In
Figure 5.4 (b and c), we compared each acoustic phonon branch (FA, TA, and LA as
marked in Figure 5.4) to the overall thermal conductivity. Each acoustic phonon branch
contributes quite similarly to both materials. However, the FA, TA, and LA phonon
branches of MoSi2N4 are almost two times larger than the values of WSi2N4; the results
are also consistent with the deduction from phonon dispersion of them. The main
contribution of phonons in the low-frequency region of 2D materials to the thermal
conductivity has been confirmed in many materials [265].

Finally, to understand the grain-size e�ect quantitatively, the cumulative lattice thermal
conductivity was analyzed concerning the mean free path (MFP) of phonons. The
cumulative thermal conductivities with respect to MFP for the MoSi2N4 and WSi2N4 are
plotted in Figure 5.5. The MFPs corresponding to 50% of the cumulative lattice thermal
conductivities for MoSi2N4 and WSi2N4 at 300 K are 80 and 50 nm, respectively. The
MFP helps study the size e�ect on the ballistic vs. di�usive phonon transport. This
quantity is crucial for the thermal design to modulate the thermal conductivity in the
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(a)

(b)

MoSi2N4 WSi2N4

(c)

Figure �.�.: (a) The spectrum of thermal conductivities (at ��� K) and (b,c) acoustic
phonon branch contributions for overall thermal conductivities of mono-
layer MoSi2N4 and WSi2N4.
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small-grain limit.

Figure �.�.: Comparison of the cumulative lattice thermal conductivities of monolayer
MoSi2N4 and WSi2N4 with respect to phonon mean free path (MFP) at ���
K.

�.�.�. Mode Level Analysis

To gain insight into the phonon transport in MoSi2N4 and WSi2N4, we performed a
detailed analysis on the mode level phonon group velocity and lifetime (relaxation
time). Comparison of the mode level phonon group velocity of MoSi2N4, WSi2N4,
MoS2 and silicene as a function of frequency at 300 K are shown in Figure 5.6(a). It
is worth noted that the overall phonon group velocity of monolayer MoSi2N4, WSi2N4

are on the same order of magnitude, which is larger than that of monolayer MoS2

and silicene. As for these four materials, it is interesting to notice that the acoustic
phonon branches have large phonon group velocities. Furthermore, the high-frequency
phonon branches (above a frequency of 400 cm�1) for MoSi2N4, WSi2N4 have also
relatively large phonon group velocities, which is distinctly di�erent from MoS2 and
silicene. Besides, the phonon velocity of acoustic branches of MoSi2N4 is larger than
the values of WSi2N4, and the rest of the branches are almost identical. It is also
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confirmed that TA, FA, and LA manipulate thermal conductivity between MoSi2N4 and
WSi2N4.

(a)

(b)

Figure �.6.: The comparison of mode level (a) phonon group velocity and (b) phonon
lifetime of monolayer MoSi2N4, WSi2N4, �H-MoS2 and silicene at ���K.
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In addition, the phonon lifetimes of MoSi2N4, WSi2N4, MoS2 and silicene at 300 K
are plotted in the Figure 5.6(b). It can be seen that the overall lifetime of phonon
branches of MoS2 and silicene are smaller than that of MoSi2N4, WSi2N4, which might
be due to the enhanced phonon-phonon scattering in MoS2 and silicene, so it has a
lower lattice thermal conductivity. Considering the same magnitude of group velocity
as MoSi2N4, WSi2N4 possesses lower thermal conductivity due to its small phonon
lifetime.

�.�.�. Phonon Anharmonicity

Figure �.�.: The mode level Grüneisen parameters for MoSi2N4, WSi2N4, �H-MoSi2 and
silicene.

It is well known that the phonon-phonon scattering process is determined by the
anharmonic nature of structures, whose magnitude can be roughly quantified by the
Grüneisen parameter. To this end, we examine the phonon anharmonicity of these
materials by calculating the Grüneisen parameter. As shown in Figure 5.7, themagnitude
of Grüneisen parameter for MoS2 is obviously larger thanMoSi2N4 andWSi2N4, meaning
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stronger phonon anharmonicity in MoS2. The strong phonon-phonon scattering due
to the anharmonicity leads to the small phonon lifetime of MoS2 (Figure 5.6(b)),
and thus leads to the low thermal conductivity of silicene (Figure 5.3). For the same
reason, the Grüneisen parameter of MoSi2N4 smaller than that of WSi2N4, which is the
underlying reason for the small phonon lifetime and further lower thermal conductivity
of WSi2N4 than MoSi2N4. Significantly, the deviation of the Grüneisen parameter
between MoSi2N4 andWSi2N4 mainly occurs at low-frequency range (below a frequency
of 200 cm�1), indicating the acoustic phonon branches dominate the thermal transport
properties.

�.�.6. Insight from Electronic Structures
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Figure �.8.: (a,b) The electronic structures for MoSi2N4, WSi2N4, (c,e) �D ELF images
for MoSi2N4, WSi2N4, and (d,f) �D isosurface images with ELF = �.6 for
MoSi2N4, WSi2N4.

To understand the fundamental mechanism underlying the phonon thermal transport,
the electronic structures of MoSi2N4 and WSi2N4 monolayers are derived by first-
principles calculations, as comparably shown in Figure 5.8(a and b). MoSi2N4 and
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WSi2N4 are semiconductors with indirect band gap about 1.74 and 2.08 eV, which are
also confirmed by the density of states (DOS) as shown in Figure 5.8(c and e). For
both MoSi2N4 and WSi2N4 monolayers, we find that the valence bands from -10 to -2
eV mainly originate from p-orbits of N. In contrast, the bands from -1.5 to 6 eV are
mainly dominated by the d-orbits of M (M = Mo, W) and are weakly contributed by
the p-orbits of N. Such fact implies strong orbital hybridization between N-p and M-d
orbits.

To learnmore about the bonding formability with respect to the variation of orbital states
of atoms, detailed analysis on crystal orbital Hamilton population (COHP) is carried
out. A positive -pCOHP value indicates the bonding interaction, while a negative value
indicates the antibonding interaction. As shown in Figure 5.9, close to the Fermi level,
Mo[4d](W[5d])-N[2p] orbitals hybridize and dominantly contribute to the bonding,
which indicates a positive -pCOHP at Fermi level. This scenario can also confirmed by
the DOS calculation in Figure 5.8. To further explore the bonding characteristics of
MSi2N4 monolayer, the electron localization function (ELF) is plotted in Figure 5.8(c
and e) ranging from 0 (blue) to 1 (red). ELF = 1 means perfect localization, while ELF
= 0.5 is the probability of electron-gas-like pair. In MSi2N4 monolayers, the electrons
are largely localized around N atoms and decayed from M and Si atoms, indicating that
the electrons are transferred fromM and Si to N to form bonds with ionic characteristics
between M, Si and N. Furthermore, compared with Mo atom, smaller ELF value near W
atoms indicates stronger ionic bonding of W-N than Mo-N, which is consistent with the
TMDCs [266, 267].

(a) (b)

Figure �.�.: Orbital-resolved COHP of monolayer MoSi2N4 and WSi2N4.

Generally, strong interatomic bonding and low average atomic mass are benefit to
high thermal conductivity of 2D materials [268]. Therefore, the Young’s modulus
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and average atomic mass of MSi2N4 are derived in Table 5.2. For more detail, in
the linear elastic regime the Young’s modulus of 2D materials (Y2D) is possible to
estimate by the elastic constants C11 and C12, the form of Y2D as follows [269,
270]

Y 2D =
C2

11
�C2

12

C11

(5.2)

Note that, the elastic constant is rescaled by d0/h to obtain the e�ective elastic con-
stant, where d0 is slab model length along thickness direction and h is the thickness of
monolayer. As listed in Table 5.2, we can find that the Young’s modulus of MSi2N4 is
more than twice than that of MoS2 and silicene, which indicates stronger interatomic
bonding in MSi2N4. Furthermore, the average atomic mass (M̄ = Mt/n, where Mt is
total mass per formula cell, and n is the number of atoms per formula cell) of MoSi2N4

is about half of MoS2 and comparable to that of silicene, indicated a higher thermal
conductivity of MSi2N4. Such a fact is in good agreement with the results derived by
first-principle-based BTE calculations that higher thermal conductivity of MSi2N4 than
that of MoS2 and silicene.

Table �.�.: The average atomic mass (M̄), Young’s modulus (Y2D, GPa) and thickness
(h, Å) of MSi2N4, MoS2 and silicene.

Compound M̄ Y2D h
MoSi2N4 29.74 474.75 10.28
WSi2N4 42.29 499.83 10.29
MoS2 53.36 205.81 6.04
silicene 28.09 207.94 2.97

�.�. Conclusions

In summary, by solving the phonon BTE based on the first-principles calculations, we
have performed a comprehensive study on the phonon transport properties of MoSi2N4

and WSi2N4 and made a thorough comparison with monolayer MoS2 and silicene. The
thermal conductivities of MoSi2N4 and WSi2N4 are found to be 162 Wm�1K�1 and
88 Wm�1K�1 at room temperature respectively, which are are 7 and 4 times the one
for monolayer MoS2, 16 and 9 times the one for silicene. These results show that,
MoSi2N4 and WSi2N4 have promising potential being thermal management materials.
To understand the underlying mechanism for the high thermal conductivity of MoSi2N4

and WSi2N4, systematic analysis is performed based on the contribution from each
phonon branch and comparison among the mode level phonon group velocity and
lifetime. The root reason for the high thermal conductivity of MoSi2N4 and WSi2N4 is
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that the high group velocity of these two materials. The phonon Grüneisen parameter is
further analyzed to understand the phonon-phonon scattering. And the Grüneisen pa-
rameter of MoSi2N4 smaller than that of WSi2N4, which is the underlying reason for the
small phonon lifetime and further lower thermal conductivity of WSi2N4 than MoSi2N4.
Therefore, our study o�ers fundamental understanding of thermal transport properties
in monolayer MoSi2N4 and WSi2N4 within the framework of BTE and the electronic
structures from the bottom, which will enrich the studies and exploring of novelMSi2N4

type two dimensional thermal management materials.
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6. Mechanism Underlying Phonon
Anharmonicity

Part of this chapter is published in: Two-dimensional buckling structure induces the ultra-
low thermal conductivity: a comparative study of the group GaX (X= N, P, As). Reproduced
with permission from Chen Shen et al. [Journal of Materials Chemistry C 10 (4), 1436-
1444] Copyright 2022 Royal Society of Chemistry.

With the successful synthesis of the two-dimensional (2D) gallium nitride (GaN) in a
planar honeycomb structure, the phonon transport properties of 2D GaN have been
reported. However, it still remains unclear for the thermal transport in Ga-based
materials by substituting N to other elements in the same main group, which is of more
broad applications. In this paper, based on first-principles calculations, we performed
a comprehensive study on the phonon transport properties of 2D GaX (X = N, P, and
As) with planar or buckled honeycomb structures. The thermal conductivity of GaP
(1.52 Wm�1K�1) is found unexpectedly ultra-low, which is in sharp contrast to GaN
and GaAs despite their similar honeycomb geometry structure. Based on PJTE theory,
GaP and GaAs stabilize in buckling structure, di�erent from the planar structure of
GaN. Compared to GaN and GaAs, strong phonon-phonon scattering is found in GaP
due to the strongest phonon anharmonicity. In view of electronic structures, deep
insight is gained into the phonon transport that the buckling structure has the most
significant influence on the anharmonicity. And the delocalization of electrons in GaP
is restricted due to the buckling structure. Thus, non-bonding lone pair electrons of P
atoms induce nonlinear electrostatic forces upon thermal agitation, leading to increased
phonon anharmonicity in the lattice and thus reducing the thermal conductivity. Our
study o�ers a fundamental understanding of phonon transport in GaX monolayers with
honeycomb structure, which will enrich future studies of nanoscale phonon transport
in 2D materials.
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6.�. Introduction

The e�ective manipulation of thermal energy and thermal transport plays a pivotal role
in the thermal management for advanced energy and nano-electronic devices [271,
246]. On the one hand, materials with enhanced thermal transports are indispensable
to maximize the heat transfer or minimize the heat waste, which can be applied
to improve the working stability and energy e�ciency of microelectronics. On the
other hand, systems with low thermal conductivity benefit the performance of the
thermal barrier coating and thermoelectric devices [272]. Therefore, insulators with
tailored thermal transport properties originated from the crystal lattices are essential,
as they can be integrated as thermal management components without causing other
complications [273]. There is a strong impetus to gain deeper insights into the thermal
transport mediated by phonons and to further treat the appealing thermophysical
problems with enormous practical implications, which can be applied in electronic
cooling [274], thermoelectrics [272, 275], phase change memories [276, 277], thermal
devices (diodes, transistors, logic gates) [278], etc.

Particularly, initiated by the discovery of graphene [279], 2D materials have been inten-
sively investigated for promising applications in engineering miniaturised devices [276,
280]. For instance, a variety of 2D materials have been theoretically predicted and
successfully fabricated, such as Xenes (e.g., black phosphorus) [281], transition-metal
dichalcogenides (TMDCs) (e.g., MoS2) [282], MXenes (e.g., Ti3C2, and Ti4N3) [283],
and nitrides (e.g., BN, MoSi2N4) [284, 22, 285], which provide alternative solutions
for electronic, spintronic, and optoelectronic applications. Moreover, the more e�cient
high-throughput density functional theory method is implemented to screen the novel
2D thermoelectric materials [286]. Recently, monolayer GaN with a planar honeycomb
structure was successfully fabricated in experiments [287, 288] and has been intensively
theoretically studied [112, 108], which shows low thermal conductivity and is consid-
ered as potential application in energy conversion such as thermoelectrics. Therefore,
an interesting question is how does the thermal transport perform in monolayer GaP
and GaAs as the same main group of GaN and whether they are also good candidates
as potential thermoelectric applications.

In this work, we performed first-principles calculations on the thermal conductivities in
a series of Ga-based 2D materials GaX (X = N, P, and As). It is observed that the lattice
thermal conductivity of GaP monolayers is unexpectedly ultra-low, which is in sharp
contrast to GaN and GaAs monolayers. Detailed analysis of the crystal structure and
mode-resolved thermal conductivities reveals that the lone-pair non-bonding electrons
play a critical role in the thermal conductivity. Such lone-pairs are strongly correlated
with the crystal structure distortions, which can be attributed to the pseudo Jahn-Teller
e�ect (PJTE). Such mechanistic understanding of the thermal conductivities in GaX
monolayers and the established electronic structure descriptors pave the way to optimize
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and design novel 2D materials as thermal functional materials and to enrich the studies
of nanoscale phonon transport in 2D materials.

6.�. Computational Details

Ab initio calculations based on density functional theory (DFT) were performed using
the Vienna ab initio simulation package (VASP) [260, 193], which implements the
projector augmented wave (PAW) [194]. The outer electrons configurations of Ga, N,
P, and As are 4s24p1, 2s22p3, 3s23p3, and 4s24p3 respectively. Exchange–correlation
energy functional is treated using the Perdew–Burke–Ernzerhof of generalized gradient
approximation (GGA-PBE) [59]. The wave functions are expanded in plane wave
basis with a 20 ⇥ 20 ⇥ 1 Monkhorst-Pack [261] k-sampling grid and cut-o� energy of
1000 eV. A large vacuum region is set as 20 Å to avoid the interactions between the
monolayer and its mirrors induced by the periodic boundary conditions. Precision of
total energy convergence for the self-consistent field (SCF) calculations was as high as
10�8 eV. All structures are fully optimized until the maximal Hellmann–Feynman force
is less than 10�8 eVÅ�1. To calculate the phonon dispersion, thermal conductivity, and
various phonon properties, it is necessary to extract second- and third-interatomic force
constants (IFCs) from first-principles calculations. To this end, 6 ⇥ 6 ⇥ 1 supercell
containing 72 atoms were constructed, which is su�ciently large to allow the out-
of-phase tilting motion. To extract harmonic and anharmonic IFCs, an atom in the
supercell was displaced from its equilibrium position by 0.01 Å (harmonic) and 0.04 Å
(anharmonic), namely the real-space finite displacement di�erence method, and the
Hellmann-Feynman forces were calculated based on the displaced configuration. To
get more accurate results, all the possible anharmonic terms (3rd order force constant)
between each element are considered in this work, which means the cuto� radius
exceeds the range of physically relevant anharmonic interactions. And the Q-grid of
101⇥101⇥1 for calculating the thermal conductivity of GaX. Besides, the Born e�ective
charges (Z⇤) and dielectric constants (e) are obtained based on the density functional
perturbation theory (DFPT), which is added to the dynamical matrix as a correction to
take the long-range electrostatic interactions into account. Lattice thermal conductivity
(kL) and relative phonon properties were determined by solving the phonon BTE, as
implemented in the ALAMODE [113] package. The kL is estimated by the BTE within
RTA through the following equation:

kab
L (T ) =

1

NV Â
q

Cq(T )na
q (T )nb

q (T )tq(T ), (6.1)

where V , Cq(T ), nq(T ), and tq(T ) are the unit cell volume, mode specific heat, phonon
group velocity, and phonon lifetime, respectively. When calculating the thermal conduc-
tivity, the real thickness of 2D materials can be obtained by considering the van der
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Waals radius of the upper and lower atoms plus the distance between the upper and
lower atoms (buckling distance in this work). At last, the stabilities of current systems
can be checked in the C2DB database [289], which also indicates the GaSb and GaBi
unstable.

6.�. Results and Discussion

6.�.�. Lattice Structures of Monolayer Ga-based Compounds

The optimized structures of 2D GaN, GaP, and GaAs monolayers are shown in the
Figure 6.1. According to the top views, all three GaX monolayers exhibit honeycomb
structures, with the resulting lattice parameters listed in Table 6.2. However, GaN mono-
layers have a planar structure, whereas the GaP and GaAs monolayers are buckled, et al.,
the Ga and X sublattices are shifted in opposite directions perpendicular to the monolay-
ers, leading to larger thickness than GaN (as listed in Table 6.2). The lattice constants
of the GaN, GaP, and GaAs are in good agreement with previous reports [290, 108]. For
instance, the in-plane lattice constant of GaN is 3.21 Å as optimized in this study, which
is between 3.20 Å in Ref. [290] and 3.26 Å in Ref. [108].

The origin of such di�erences (i.e., planar versus buckled) in the crystal structures can
be attributed to the electronic structure. Following the theory of PJTE, the curvature of
the adiabatic potential energy surface (APES) yields

K =

⌧
Y0

����(
∂ 2H
∂Q2

)0

����Y0

�

| {z }
K0

�2Â
n

���
D

Y0

���(∂H
∂Q )0

���Yn

E���
2

En �E0| {z }
Kv

(6.2)

where H represents the Hamiltonian, Y0(Yn) denotes the ground state (excited state)
wave function, and all the functions are considered for the high-symmetry configu-
ration. It is noted that for the high-symmetry configuration the K0 term is greater
than zero, [291, 292, 293] and Kv, the vibronic contribution, is smaller than zero and
the source of instability. If the resulting K = K0 +Kv is smaller than zero, the crystal
structure is unstable with respect to the distortion mode denoted by Q. Correspondingly,
the allowed virtual transitions can be obtained based on the symmetry analysis, i.e.,
the direct product of the irreducible representations (irrep) of the ground state G0, the
excited state Gn, and the distortion mode Gq should contain the A1g representation. That
is, G0⌦Gq⌦Gn � A1g. In other words, when the direct product of the representations of
the electronic states contains the irrep of the distortion mode, [294] i.e., G0 ⌦Gn � Gq,
there is possible finite contribution to the Kv term. Besides, in the case of strong PJTE,
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the curvature of ground (excited) state in the APES becomes negative (positive) with
respect to the q distortion mode.

Figure 6.�.: The side and top views of structures, phonon dispersions, and partial
density of states (pDOS) of monolayer GaN, GaP and GaAs. Electronic
band structures and pDOS of planar monolayer (a) GaN, (b) GaP, and (c)
GaAs. (d) The adiabatic potential energy surface cross section of planar
GaN, GaP, and GaAs with respect to the A

00
2
distortion mode. Electronic

band structures and pDOS of buckled monolayer (e) GaP and (f) GaAs.

For the GaX monolayers, following the PJTE at the center of the BZ (G point), the
buckling is induced by the A

00
2
mode, which causes the phase transition from the high-

symmetric P6̄m2 structure to the low-symmetric P3m1 structure. Based on symmetry
analysis and according to the irreps of the electronic states in Figure 6.1(a-c), only
the A

00
2
(originated mostly from the X-p states) and A0

1
(mainly of the X-s character)

states are allowed to be coupled by the A
00
2
distortion mode, because A00

2
⌦A0

1
= A00

2
.

The resulting adiabatic potential energy surface cross section with respect to the A
00
2

distortion amplitude is shown in Figure 6.1(d). Obviously, the softening of the ground
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state, with A
00
2
irrep, and increasing of the excited state, with A0

1
irrep, increases from

the GaN to the GaAs monolayers. One main reason is the reduced energy di�erence
between the two electronic states (En �E0 in the KV term), marked as energy gap,
e.g.,the energy gap changes from 4.98 eV for GaN, to 3.15 eV for GaP, and finally to 1.59
eV for GaAs monolayers. Thus, such an enhanced PJT coupling leads to the buckling of
the crystal lattices of GaP and GaAs.

Table 6.�.: Symmetry space group, lattice constant (a in Å), thickness (Å), and buckling
distance (Å) of monolayer GaN, GaP, and GaAs. (The real thickness of �D
materials can be obtained by considering the van der Waals radius of the
upper and lower atoms plus the distance between the upper and lower
atoms.)

Compound Space group Thickness a Buckling distance
GaN P6̄m2 3.74 3.21 0
GaP P3m1 4.06 3.90 0.39
GaAs P3m1 4.30 4.05 0.58

6.�.�. Phonon Dispersion

Turning now to the lattice dynamics and thermal transport properties. Figure 6.2 shows
the phonon spectra of GaX monolayers obtained by diagonalizing the dynamical matrix
based on the second order IFCs. As the GaX systems behave more like ionic insulators,
the longitudinal optical (LO) - transverse optical (TO) splitting clearly occurs after
considering the nonanalytical corrections based on the Born e�ective charges listed
in Table 6.2. This indicates the arising of macroscopic electric fields resulted from the
atomic displacements associated with the long-wave LO phonons [295]. Note also that
after considering the non-analytical correction, the slightly imaginary mode at G point
for GaP and GaAs monolayers disappear. This is due to the macroscopic field generated
by the strongly polarized covalent bonds, leading to modified force constants and hence
dynamical stability at the G point.

Interestingly, in comparison to those of GaP and GaAs monolayers, there exists a big gap
in the phonon spectra of GaN monolayers between the LO/TO and other phonon bands.
This can be attributed to the large di�erence in the atomic mass of Ga and N atoms.
Moreover, the frequencies of the acoustic branches of GaP and GaAs monolayers are
lower than those in GaN cases, and much lower than the common 2D materials, such
as h-BN [89] and graphene [296]. This implies that the phonon harmonic vibrations of
GaP and GaAs are weak, which will have a significant e�ect on the phonon transport
properties. In addition, the longitudinal acoustic (LA) and transverse acoustic (TA)
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phonon branches of the GaX systems present linear behavior when approaching to the
G point, while the flexural acoustic (FA) phonon branch shows a quadratic behavior.
This is consistent with our previous results in GaN [108], which is a common behavior
for 2D materials.

Table 6.�.: Born effective charges (Z⇤) of Ga and X (where X = N, P, and As) atoms and
the dielectric constants (e) of GaP, GaP, and GaAs.

GaN Z⇤(Ga) Z⇤(N) e
xx 3.071 -3.071 1.859
yy 3.071 -3.071 1.859
zz 0.337 -0.337 1.148
GaP Z⇤(Ga) Z⇤(P) e
xx 2.975 -2.975 3.025
yy 2.975 -2.975 3.025
zz 0.156 -0.156 1.179
GaAs Z⇤(Ga) Z⇤(As) e
xx 2.955 -2.955 3.901
yy 2.955 -2.955 3.901
zz 0.107 -0.107 1.193

L

TO

L

L

Figure 6.�.: The phonon dispersion considering the effect of Born effective charges
and dielectric constants is plotted in a violet dash-dot line, showing LO-TO
splitting at the center of the BZ (G point). The phonon dispersions not
including the dipole correction are also plotted in solid line for comparison.

6.�.�. Anomalous Thermal Conductivity

Figure 6.3 (a) shows the thermal conductivities of the three systems as a function of tem-
perature, evaluated by solving the BTE with Born e�ective charges considered. Clearly,
the temperature dependence of the lattice thermal conductivities presents the typical
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1/T behavior, consistent with other crystalline materials in both bulk and 2D forms.
Furthermore, GaN has the highest thermal conductivities in the whole temperature
range, while those of GaP and GaAs are on average more than five times smaller. The
most striking result illustrated in Figure 6.3 (a) is that the thermal conductivity shows a
non-monotonous behaviour when moving from N to As, i.e., GaP monolayers possesses
the lowest thermal conductivity. For instance, at 300 K, the thermal conductivity of GaP
monolayers is 1.52 Wm�1K�1, which is half of the value of GaAs monolayers and more
than one order of magnitude smaller than that of GaN monolayers. Similarly, Sun et
al. [297] reported ultra-low thermal conductivities for 2D triphosphides (InP3, GaP3,
SbP3, and SnP3), which might be driven by the flatter acoustic phonon branches as
expected for the GaP and GaAs monolayers. It is noted that the thermal conductivities
of GaP and GaAs monolayers are even lower than those of typical 2D thermoelectric
materials such as GeSe [298] and SnSe [299].

Figure 6.�.: (a) Temperature (���-��� K) dependent thermal conductivities of mono-
layer GaN, GaP, and GaAs. Inset �gure at the right corner shows the thermal
conductivity (Wm�1K�1) of the three compounds at ��� K. (b-d) The ab-
solute contribution to the total conductivity of monolayer GaN, GaP, and
GaAs from each individual phonon branch as a function of temperature

To understand the underlying mechanism responsible for the ultra-low thermal conduc-
tivities of GaPmonolayers and the anomalous trend for the GaX series, themode-resolved
(FA, TA, LA, FO, TO, and LO modes) contributions to the thermal conductivity are shown
in the Figure 6.3 (b-d) for GaX monolayers. Obviously, the acoustic modes exhibit
dominant contributions in contrast to the optical modes. Moreover, the FA and TA
branches make the most significant contributions to the total thermal conductivity of
GaN monolayers, while the TA branch dominates the phonon transport in GaP and
GaAs monolayers. The reason for the domination of the FA branch in GaN has been
analyzed in previous work, [108] where the reflectional symmetry of the planar hon-
eycomb structure of GaN monolayers leads to the symmetry-based selection rule of
phonon-phonon scattering and results in the small scattering rate of FA phonons [296].
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On the contrary, the FA branch has drastically reduced contribution to the total thermal
conductivities of GaP and GaAs monolayers due to the buckled (non-planar) crystal
structures.

6.�.�. Mode Level Analysis

Figure 6.�.: (a) The comparison of mode phonon group velocity, the comparison of
the mode-level (b) contributions to thermal conductivity and (c) phonon
lifetime of monolayer GaN, GaP, and GaAs at ���K. (d-f) The mode-level
scattering phase space of absorption and emission processes, and (g-i)
the mode level Grüneisen parameters for three compounds.
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To gain further insight into the thermal transport in GaX monolayers, we performed
detailed analysis on the mode level phonon properties. Comparison of the mode level
phonon group velocity of GaN, GaP and GaAs as a function of frequency at 300 K are
shown in Figure 6.4 (a). It is clearly seen that the overall phonon group velocity of
monolayer GaP and GaAs are on the same order of magnitude, which is smaller than
that of monolayer GaN. Note that, the optical phonon branches of GaN and GaAs have
relatively larger group velocities. Besides, the phonon velocity of FO branches of GaN,
GaP and GaAs are large among the other branches Interestingly, the contribution of
thermal conductivity of FA mode for GaX monolayers are dramatically di�erent, as
mentioned in previous section. Hence, we plotted the phonon propeties of FA branch
in the Figure 6.5. Note that, the phonon group velocity of FA mode of GaN has larger
values and wilder distribution than those of GaP and GaAs. Especially, the phonon
group velocity of FA mode of GaP is concentrated in a smaller value area, leading to
the lowest thermal conductivity.

The mode-level contribution to thermal conductivity and the corresponding phonon
lifetime at 300 K are shown in the Figure 6.4 (b,c). It can be found that the phonon
frequencies of monolayer GaN contributing to the thermal conductivity are concentrated
at 0-400 cm�1, which is consistent with the results as illustrated in Figure 6.3. And the
main contribution of phonon frequencies in GaP and GaN are distributed at a much
lower range, which can be confirmed by the phonon dispersion as shown in Figure 6.2.
It is worth noting that not only acoustic branches, but also some optical branches with
low-frequency play a major role in contributing to the thermal conductivity, which is
more pronounced in GaN. Commonly, the phonons with low frequency dominating the
main contribution of thermal conductivity is the universal for 2Dmaterials. Figure 6.4 (c)
shows the phonon lifetime for GaN, GaP and GaAs at 300 K. Compared to GaN and GaAs,
GaP has the lowest phonon relaxation time, which could be an indicator of the strong
phonon anharmonicity, leading to an ultra-low lattice thermal conductivity. For GaAs,
the phonon relaxation time in the high frequency range above the gap is comparable
with that in the low frequency range below the gap. For GaN, the phonon lifetime of
optical phonon branches are quite high, some of them are even larger than acoustic
phonon modes. Thus, the thermal conductivity of GaN is much higher than the other
two. As same as the group velocity of FA mode for GaX monolayers, the FA mode in GaP
has the lowest phonon lifetime (as shown in the Figure 6.5 (b)), which also results in the
lowest thermal conductivity of GaP in these three materials.

Furthermore, based on phonon dispersion, the scattering phase space has been calcu-
lated with the criteria of energy and momentum conservation. As shown in Figure 6.4,
the mode level scattering phase space of GaN, GaP and GaAs are presented for the
phonon modes available for absorption and emission processes, respectively. It is clearly
seen that there is an inverse relationship between phase space for the three-phonon
process. As one can see, because of the selection rule applied to the planar honeycomb
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structure of monolayer GaN, the phonon scattering processes involving odd numbers of
FA phonon modes are largely restricted, which results in the dominant contribution of
the FA mode to thermal conductivity. For the buckled GaP and GaAs where symmetry-
based selection rule of phonon-phonon scattering are broken, the scattering phase space
of FA branches available for both absorption and emission processes is not reduced
consequently. As shown in Figure 6.5 (c), the scattering phase space for absorption
processes of FA modes of GaP and GaAs are larger, which subsequently leads to the less
contribution to thermal conductivity.

As one known, the phonon-phonon scattering process is influenced by the anharmonic
nature of structures, which can be roughly quantified by the Grüneisen parameter.
In this vein, we analyzed the phonon anharmonicity of the GaN, GaP and GaAs by
calculating the Grüneisen parameter. As shown in the Figure 6.4 (g-i), the magnitude
of Grüneisen parameter of GaP is much larger than that of other two, especially for the
FA phonon branch, which indicates the strongest phonon anharmonicity in GaP. Owing
to the strong anharmonicity, the strong phonon-phonon scattering results in the small
phonon lifetime, as previously shown in Figure 6.4 (c). Hence, monolayer GaP has the
ultra-low thermal conductivity.

(a) (b) (c)

Figure 6.�.: The comparison of (a) phonon group velocity, (b) phonon lifetime, and (c)
the scattering phase space of absorption (P+) and emission (P-) processes
of FA mode of GaX monolayers.

6.�.�. Insight from Electronic Structures

The systematic investigation of model level phonon transport in the framework of
Boltzmann transport theory has been implemented in the above sections to analyze the
ultra-low thermal conductivity of monolayer GaP due to strong phonon anharmonicity.
In this section, we conduct intensive study on the electronic structures to get deep insight
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into the phonon transport and the phonon anharmonicity. We will present that the active
lone-pair electrons due to special orbital hybridization and buckling structures drive
the remarkable phonon anharmonicity in monolayer GaP.

It was proposed by Petrov and Shtrum that lone-pair electrons could lead to low thermal
conductivity [300]. As shown in the Figure 6.6 (a), the electron localization functions
(ELF) provides information on the structure of atomic shells, and also displays the
location and size of bonding and lone electron pairs [301]. Non-bonding lone-pair
electrons arise around N, P, and As atoms. The overlapping wave functions of lone-pair
electrons with valence electrons from adjacent atoms Ga induce nonlinear electrostatic
forces upon thermal agitation, which leads to increased phonon anharmonicity in
the lattice and thus reduces the thermal conductivity [300, 302, 303, 304, 305, 306,
307].

N

Ga

P

Ga

As

Ga

（a） （d）（b） （c）

N

Ga

P

Ga

Ga

As

0.0

1.0

0.5

（a）

Figure 6.6.: (a) The top view of electron localization functions (ELF), and (b-d) Orbital-
resolved COHP of monolayer GaN, GaP, and GaAs

It is noted that there exists di�erence in the electronegativity between Ga and (N, P, and
As), which leads to polarization for the Ga-(N, P, and As) bonds as revealed by charge
transfer, as shown in the Table 6.3. The more charge transfer means the covalent bond
is more strongly polarized. Considering the largest di�erence in the electronegativity
and charge transfer between Ga and N atoms, the phonon anharmonicity in GaN is
expected to be the strongest. However, this does not happen because GaP and GaAs have
relatively lower thermal conductivities. The reasonmight be that the buckled honeycomb
structures of GaP and GaAs would induce stronger phonon-phonon scattering, leading
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to the much stronger anharmonicity. In our previous work [112], the strongly polarized
covalent bond could lead to larger phonon anharmonicity. In this regard, based on
the charge transfer and ELF shown in Figure 6 (a), the stronger polarized covalent
bond and restrict the delocalization of electrons in GaP leads to the much stronger
localization of lone-pairs electrons. Moreover, the bonding electrons for the Ga-P bonds
is relatively closer to P atom, which contributes positively to the stronger interaction
with the non-bonding P-s electrons and thus leads to a stronger phonon anharmonicity.
Furthermore, a metavalent boning inducing the low thermal conductivity has been
reported recently [308, 309]. And the polarized covalent bonging in the monolayer
GaX can be considered as metavalent bonding.

Table 6.�.: The transferred charges between each Ga-X bond (X = N, P, and As).
Compound Charge on Ga Charge on X

GaN -0.4846 0.4846
GaP -0.2633 0.2633
GaAs -0.1974 0.1974

To learn more about the bonding formability with respect to the variation of orbital
states of atoms, detailed analysis on crystal orbital Hamilton population (COHP) is
carried out. A positive -pCOHP value indicate the bonding interaction, while a negative
value indicates the antibonding interaction. Thus, the active lone-pair electrons are
considered as neither bonding nor anti-bonding interactions. The integrated COHP of
orbitals should be zero closing to Fermi energy. Generally, the active lone-pair electrons
are dominantly contributed by the s-orbital. In this regard, we focus on the 4s orbital
of Ga and outermost s orbital of N, P, and As. As shown in Figure 6.6 (b-d), closing to
the Fermi level, Ga[p]-(N, P, and As)[p] and Ga[s]-(N, P, and As)[p] orbitals hybridize
and dominantly contribute to the bonding, which indicates a positive -pCOHP at Fermi
level. In contrast, the (N, P, and As)[s]-Ga[p,d] orbitals present neither bonding nor
anti-bonding interactions. Therefore, N, P, and As form the polar covalent bonds with
Ga by sharing the p electrons, while the s2 electrons of N, P, and As form isolated (lone
pair) bands. Such behavior is also confirmed by the electronic band structures and
partial density of states as shown in the Figure 6.1. The s orbital is largely (around
10 eV) confined below the valence band, forming an isolated band. However, the
situation for the orbitals is di�erent for the N atom where the s orbitals hybrid with
Ga-d orbitals. In this regards, we can find relatively large anti-bonding Ga[3d]-N[2s]
as shown in the Figure 6.6 (b).

In this vein, the buckling structure has a high priority influencing the anharmonicity,
leading to the low thermal conductivity. Then, due to the buckling structures, the delocal-
ization of electrons in GaP and GaAs are restricted, namely, the bonds are polarized. The
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non-bonding lone pair electron of P and As atoms are stronger, which induces nonlinear
electrostatic forces upon thermal agitation, leading to increased phonon anharmonicity
in the lattice and thus reducing the thermal conductivity.

6.�. Conclusions

In summary, by solving the phonon BTE based on first-principles calculations, we have
performed a comprehensive study on the phonon transport properties of 2D GaX with
planar and buckled honeycomb structures. The thermal conductivity of GaP is calculated
to be 1.52 Wm�1K�1, which is unexpectedly ultra-low and in sharp contrast to GaN and
GaAs. Considering the similar honeycomb geometry structure of GaP to that of GaN and
GaAs, it is quite intriguing to find that the thermal conductivity of GaP is very low. Firstly,
to understand the underlying mechanism for GaX monolayers having planar or buckling
structures, systematic analysis is performed based on PJTE theory. The larger bandgap
and smaller the vibronic coupling constant, the less destabilization of the ground state
and less stabilization of the excited states. Hence, the GaN exists in planar structure,
and GaP and GaAs stabilize in buckling structures. Then, to gain insight into anomalous
phenomena of ultra-low thermal conductivity for GaP, we perform a detailed analysis of
the underlying mechanisms in the framework of phonon mode-solved investigation. The
reason for the low thermal conductivity the of GaP is found to be that: FA dominates
the thermal conductivity of GaN but less contributes to the one of GaP, which is due
to the symmetry-based selection rule and di�erence of atomic structure. In particular,
the di�erence originates from the di�erent situations for the phonon lifetime, which
is determined by phonon–phonon scattering. The phonon anharmonicity quantified
by the Grüneisen parameter is further analyzed to understand the phonon–phonon
scattering, indicating the strong phonon-phonon scattering of GaP and the strongest
phonon anharmonicity of GaP. Considering that all the properties are fundamentally
determined by the atomic structure and the behavior of electrons (such as charge
distribution and orbital hybridization), we further perform analysis from the view of
electronic structures and orbital bonding to gain deep insight into the phonon transport.
The buckling structure has a high priority influencing the anharmonicity, leading to
the low thermal conductivity. Then, due to the buckling structures, the delocalization
of electrons in GaP and GaAs are restricted, namely, the bonds are polarized. The
non-bonding lone pair electron of P and As atoms are stronger, which induces nonlinear
electrostatic forces upon thermal agitation, leading to increased phonon anharmonicity
in the lattice and thus reducing the thermal conductivity. Our study o�ers fundamental
understanding of phonon transport in GaX monolayers with honeycomb structure within
the framework of BTE and the electronic structure from the bottom, which will enrich
the studies of nanoscale phonon transport in 2D materials.
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�. Quartic Anharmonicity in the Lattice
Dynamic

We investigate the role of the quartic anharmonicity in the lattice dynamics and thermal
transport of the cubic EuTiO3 by combining ab initio self-consistent phonon theory with
compressive sensing techniques and experimental thermal conductivity determination
measurement. The anti-ferromagnetic G-type magnetic structure is used to mimic the
para-magnetic EuTiO3. We find that the strong quartic anharmonicity of oxygen atoms
plays an important role in the phonon quasiparticles free from imaginary frequencies
in EuTiO3 and causes the hardening of vibrational frequencies of soft modes. Based
on these results, the lattice thermal transport properties are predicted through the
Boltzmann transport equation within the relaxation time approximation. The hardened
modes thereby a�ect calculated lattice thermal conductivity significantly, resulting in an
improved agreement with experimental results, including the deviation from kL µ T�1

at high temperature. The calculated thermal conductivity of 8.2 Wm�1K�1 at 300 K
matched the experimental value of 6.1 Wm�1K�1. When considering the boundary
scattering, the calculated thermal conductivity is reduced to 6.9 Wm�1K�1 at 300 K,
which agrees better with the experimental results.

�.�. Introduction

Thermoelectric materials have attracted intensive attention due to their promising
application as green energy materials, i.e., to convert temperature gradient into elec-
tricity [310, 311, 312, 313], so that waste heat can be harvested. The e�ciency of
thermoelectric materials is measured by a dimensionless figure of merit, ZT = S2sT/k ,
where higher Seebeck coe�cient (S) and electrical conductivity (s), and lower thermal
conductivity (k) are needed for optimal performance. In the last decades, various bulk
materials, such as skutterudite (e.g.,CoSb3) [314], clathrates (e.g., Ba8Ga16Ge30) [315],
heusler alloys (e.g., NbCoSn) [316], chalcogenides (e.g., Bi2TeSe2) [317], zintl phases
(e.g., YbZn2Sb2) [318], and oxides (e.g., SrTiO3) [319], have been intensively in-
vestigated [313]. Oxides are particularly applicable in the high-temperature range
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(800⇠1200 K), which is unreachable for well-known bismuth telluride based materials,
thereby leading to a high Carnot e�ciency that somewhat compensates for the low
ZT [320, 321]. Among them, perovskite-type titanates with a chemical formula of ABO3,
such as SrTiO3 and EuTiO3, exhibit significant thermoelectric figures of merit which
are promising for thermoelectric applications [310, 321]. For instance, they present
optimal charge carrier concentrations, high flexibility in their structure and composi-
tion, and their properties can be easily tuned by ionic substitutions [310, 321], such as
SrTi1�xNbxO3 performing ZT = 0.25 at 1200K [310].

Europium titanate (EuTiO3) is one of the perovskite oxides as promising high-temperature
thermoelectric materials, which has the typical perovskite structure of space group
Pm3̄m (as shown in Figure 7.1) [322]. Despite its similar crystal structure to SrTiO3,
EuTiO3 is more attractive owing to its rich magnetic structure induced by 4f shell elec-
trons and strong coupling between spin magnetic moments and surrounding lattices,
e.g. phonons. In EuTiO3, the Eu2+ ions possess a half-filled 4f shell thus a large spin
magnetic moment (7 µB) [322, 323], with a second order phase transition at 5.3 K
from the paramagnetic to the antiferromagnetic states [324]. The shape of Eu 4f band
near the Fermi level suggests a giant Seebeck coe�cient [325]. In addition, the electri-
cal conductivity and thermal conductivity of EuTiO3 can be tuned by cation or anion
substitutions and several substitutions have been reported (e.g., EuTi(O,N)3+d [326],
Eu1�xBaxTiO3 [327]). For instance, the thermoelectric properties of EuTiO3 were stud-
ied and a high Seebeck coe�cient was found -1053 µV/K at 300 K [327]. The electrical
conductivity was improved by partial Nb substitution at the Ti site, resulting in a ZT
of EuTi0.98Nb0.02O3�l equals to 0.4 at T =1040 K [328]. Although the thermoelectric
properties of pristine and doped EuTiO3 have been extensively explored, there is no
detailed experimental and theoretical study on thermal transport properties of magnetic
EuTiO3. Therefore, an imperative question is how the intrinsic magnetic behavior play
with lattice vibrations, especially anharmonic phonons, and build a quantitative thermal
conductivity dependence on them.

Like the other perovskite oxides [101, 329], one challenge to evaluate the thermal
conductivity of EuTiO3 is how to properly deal with the strong anharmonic e�ect, partic-
ularly in the high-temperature range where the phonon-phonon interaction is enhanced.
In this regard, the recently implemented self-consistent phonon (SCP) theory [101]
o�ers an e�ective way to systematically consider the anharmonic e�ects, where the high-
ordered interatomic force constants (IFCs) can be obtained based on the compressive
sensing technique [111]. Such techniques have been employed to tackle systems with
strong anharmonicity, such as SrTiO3 [330], ScF3 [331] and Ba8Ga16Ge30 [118], where
thermal expansion, thermal transport properties, anharmonic vibrational free-energy
are accurately predicted and explained.

In this paper, to elucidate the lattice thermal transport properties of EuTiO3, we per-
formed accurate first-principles calculations to evaluate the lattice dynamics of EuTiO3,
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including the anharmonic e�ects. We used the e�cient implementation of the SCP the-
ory [101], which employs anharmonic force constants calculated using the compressive
sensing lattice dynamics method [111], to calculate the thermal transport properties.
And the role of the quartic anharmonicity in the lattice dynamics and thermal trans-
port of the EuTiO3 was comprehensively analyzed. We found that the strong quartic
anharmonicity of oxygen atoms plays an important role in the phonon quasiparticles
free from imaginary frequencies in EuTiO3 and causes the hardening of vibrational
frequencies of soft modes. Further, by using the e�ective harmonic force constants
corrected under anharmonic force constants, the accurate thermal conductivity and
relative phonon properties of EuTiO3 are obtained. Meanwhile, the EuTiO3 sample is
experimentally synthesized. The thermal conductivity is measured to compare with the
predicted results, which have a good agreement.

Ferromagnetic G-type antiferromagnetic

Eu

Ti

O

Figure �.�.: Crystal structure of cubic EuTiO3 with different magnetic structures. The
corner atoms represent Eu, and the atoms at the body-centred and the
face-centred positions represent Ti and O, respectively.

�.�. Self-consistent Phonon Theory

Let us briefly restart by expressing the potential energy of an interacting ions systemU as
a Taylor expansionwith respect to the atomic displacement u:

U =U0 +U2 +U3 +U4 + . . . , (7.1)
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Un =
1

n!
Â

{`,k,µ}
Fµ1...µn(`1k1; . . . ;`nkn) ⇥uµ1

(`1k1) · · ·uµn(`nkn). (7.2)

Here, Fµ1···µn(`1k1; · · · ;`nkn) is the nth-order derivative of the nth-order potential en-
ergy Un with respect to displacement, which is called the interatomic force constant
(IFC). The IFCs are determined at the ground state and therefore have no tempera-
ture dependence. uµ(`k) is the atomic displacement of atom k in the `th cell along µ
direction.

In the harmonic approximation, only the second order term U2 is considered, and all of
the anharmonic terms are neglected. Then, the Hamiltonian of the system H0 = T +U2

can be represented in terms of the harmonic phonon frequency w , which can be obtained
for the dynamical matrix

Dµn(kk 0
;q) =

1p
MkMk 0

Ầ
0

Fµn(`k;`0k 0)exp
⇥
iq · (r(`0)�r(`))

⇤
, (7.3)

where Mk is the mass of atom k , and r(`) is a translation vector of the primitive lattice.
By diagonalizing the dynamical matrix, we can obtain the squared harmonic phonon
frequencies and the polarization vector as

w2

q j = (e⇤q j)
TD(q)eq j, (7.4)

where the index j labels the phonon modes for each crystal momentum vector q and
eq j is the polarization vector of the phonon mode q j. Since the harmonic IFCs are
independent with temperatures, there is no the intrinsic temperature dependence of
phonon frequencies and polarization vectors

�
wq j,eq j

 
in the harmonic approxima-

tion.

In order to derive the SCP equation, the many-body Green’s function theory is addressed.
The one-phonon imaginary-time Green’s function is expressed as

Gq j,q j0(t) =
D

TtAq j(t)A†

q j0(0)
E

H

= Z�1
Tr

n
e�bHTt [Aq j(t)A†

q j0(0)]
o
,

(7.5)

where Tt represents the time-ordering operator, Aq j(t) is the displacement operator in
the Heisenberg picture, Z = Tre�bH is for the partition function, and b = 1

kT . Aq j = bq j +
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b†

q j where bq j +b† and b†

q j are the annihilation and creation operators of the phonon
q j. It is clear to show that the Green’s function satisfies

Gq j j0(t) = Gq j j0(t +b h̄) for �b h̄ < t < 0, (7.6)

Gq j j0(t) = Gq j j0(t �b h̄) for 0 < t < b h̄, (7.7)

where we simply denote Gq j,q j0 as Gq j j0. Because of these properties, we can also
show the following result for the Fourier transform of the Matsubara Green’s func-
tion

Gq j j0(iwm) =
Z b h̄

0

dtGq j j0(t)eiwmt , (7.8)

where wm = 2pm/b h̄ is the Matsubara frequency.

To get the Green’s function for anharmonic systems, one needs to solve the Dyson
equation. When one obtains Gq j j0(iwm) within some approximations, it is possible
to obtain the retarded Green’s function Gq j j0(w) by analytic continuation to the real
axis as Gq j j0(w) = Gq j j0(iwm ! w + ie) with a positive infinitesimal e. Gq j j0 has a pole
at the energy corresponding to the renormalized frequency Wq j. In the harmonic
approximation, the Gq j j0 is expressed as

G0

q j j0(w) =�
2wq j

w2 �w2

q j
d j j0 . (7.9)

Hence, the free-phonon Green’s function is diagonal in the phonon polarization index j
and can be obtained from the harmonic phonon frequencies.

To estimate the phonon Green’s function Gq j j0(w), and thereby obtain the anharmonic
frequency Wq j, we solve the Dyson equation

[Gq(w)]�1 = [G0

q(w)]�1 �Sq(w). (7.10)

The retarded Green’s functions are denoted in the matrix form. And Sq(w) repre-
sents for the phonon self-energy, estimated within a systematic diagrammatic ap-
proximation. Since [Gq(w)]�1 becomes 0 at the frequencies of the renormalized
phonons, finding the solution

�
Wq j

 
is equivalent to solving the following equa-

tion:
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det
�
[G0

q(w)]�1 �Sq(w)
 
= 0. (7.11)

By multiplying det(L
1

2

q) from the left and right of above equation with the diagonal
matrix Lq j j0 = 2wq jd j j0, we obtain the SCP equation:

det[w2 �Vq(w)] = 0, (7.12)

Vq j j0(w) = w2

q jd j j0 � (2wq j)
1

2 (2wq j0)
1

2 Sq j j0(w). (7.13)

This equation needs to be solved self-consistently because the self-energy is a function
of the solution w.

To solve the SCP equation, we use a diagrammatic approximation to the phonon self-
energy. Now considering the anharmonicity up to the fourth order, Un is expressed in
terms of the displacement operator A. This can be obtained by substituting for Eq. 7.2
as

uµ(`k) = (NMk)
� 1

2 Â
q

s
h̄

2wq
Aqeµ(k;q)eiq·r(`), (7.14)

where q labels the phonon modes, and N is the number of q points. Then Un is obtained
as

Un =
1

n!
(
h̄
2
)

n
2 Â
{q}

D(q1 + · · ·+qn)
F(q1; . . . ;qn)pwq1

. . .wqn

⇥Aq1
· · ·Aqn . (7.15)

The D functions is 1 when q is an integral multiple of the reciprocal vector G and 0 for
others.

In solving the SCP equation, one consider only the 1st order contribution to the phonon
self-energy due to the quartic term,

S(a)
q j j0(iwm) =� q

w Â
qq

h̄F(q j;�q j0;q1;�q1

4
pwq jwq j0wq�1

⇥ [1+2n(w1)], (7.16)

where n(w) = (eb h̄w � 1)�1 is the Bose-Einstein distribution function. Since the iter-
ation cycle of the self consistent equation continues to calculate until obtaining a
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anharmonic frequency convergence, the SCP equation automatically includes an infi-
nite class of anharmonic self energies that can be generated from the loop diagram.
Without considering polarization mixing, the SCP equation is reduced to the diagonal
form:

W2

q = w2

q +2WqI(a)q , (7.17)

I(a)q =
1

2
Â
q1

h̄F(q;�q;q1;�q1)

4WqWq1

[1+2n(Wq1
)] (7.18)

�.�. Computational Details

�.�.�. DFT Calculations

Ab initio calculations based on density functional theory (DFT) were performed using the
Vienna ab initio simulation package (VASP) [260, 193], which implements the projector
augmentedwave (PAW) [194] potentials. We employed the PBEsol exchange-correlation
functional [332], which was reported to work exceedingly well for predicting the
equilibrium volume and harmonic phonon frequency of BaTiO3, SrTiO3 and ScF3 [333,
331]. To account for the strong electron correlation e�ects on the f shells of Eu atoms,
we performed the DFT+U scheme [334] in Dudarev’s approach [335] with an on-site
Coulomb parameter U = 5.7 eV and Hund’s exchange JH = 1.0 eV, which has been
checked out in the previous works [336, 337]. The cubic structure (space group Pm3̄m)
of EuTiO3 is stable at room temperature [322], which is considered in this work. The
experimental lattice parameter of the cubic phase of EuTiO3, 3.90 Å [324, 338, 339]
was used to perform all the calculations. The magnetic ground state of cubic EuTiO3 was
considered as G-type anti-ferromagnetic to mimic the paramagnetic state of practical
observation, and the results of ferromagnetic structure as references were considered
in this work (as shown in Figure 7.1). For forces calculations, the self-consistent field
loop was continued until the total electronic energy change between two steps became
smaller than 10�8 eV under a cuto� energy of 600 eV.

�.�.�. Force Constants Calculation

To calculate the thermal conductivity, temperature-dependent phonon frequencies
and various phonon properties, it is necessary to extract harmonic and anharmonic
interatomic force constants (IFCs) from first-principles calculations. To this end, a
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2⇥2⇥2 cubic supercell containing 40 atoms was constructed, which was also considered
as the conventional cell for G-type antiferromagneitc structure. To extract second-
order IFCs, we used frozen phonon method, namely, an atom in the supercell was
displaced from its equilibrium position by 0.01 Åand the Hellmann-Feynman forces
were calculated for the displaced configuration. From the data sets comprising the
displacements and forces, we estimated the second-order terms by the least-squares
fitting [340], as implemented in the ALAMODE [113] package. The anharmonic IFCs
were calculated using the CSLD method [111]. To this end, we employed the following
procedure: First, we performed ab initio molecular dynamics (AIMD) to generate
physically relevant atomic configurations. The AIMD simulation was performed with
2⇥ 2⇥ 2 Monkhorst-Pack k-grid and 4000 steps at 500 K with the time step 2 fs.
Second, we uniformly sampled 110 snapshots from the AIMD trajectory. In each
sampled snapshot, we further displaced all atoms by 0.1 Åin random directions to
decrease cross-correlations between the sampled configurations. Third, we performed
static DFT calculations for the 110 snapshots and calculated Hellmann-Feynman forces
accurately. Finally, we estimated anharmonic IFCs by using the LASSO [101, 118]. The
hyperparameter for the LASSO was selected from cross-validation scores [341]. From
the gained harmonic, cubic, and quartic IFCs, the SCP calculations are performed to
obtain the anharmonic frequencies.

�.�.�. Phonon Calculations

The lattice thermal conductivity kL is estimated by the Boltzmann transport equation
(BTE) within the relaxation-time approximation (RTA). A 20⇥20⇥20 q mesh was used
to obtain the converged kL, as implemented in the ALAMODE code [113]. Unlike the
conventional BTE approach (HP+BTE), we solved the BTE on the top of SCP. That is,
after the SCP iteration converges, the resulting renormalized harmonic force constants
were used to evaluate the phonon spectra, whereas the phonon self-energy was obtained
by considering the three-phonon processes with the anharmonic IFCs as an input,
resulting in the phonon lifetime. This is the so-called SCP+BTE method, more detailed
computational procedures are described in Ref. [118].

�.�. Experimental Details

�.�.�. Sample Synthesis and Preparation

The polycrystalline EuTiO3 was synthesized via a modified Pechini method. Eu2O3 (Alfa
Aesar, 99.9 %), titanium(IV) bis (ammonium lactato) dihydroxide solution (Sigma-
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Aldrich, 50 wt. % in H2O), citric acid (Sigma-Aldrich, 99 %), and ethylene glycol (Sigma-
Aldrich, � 99 %) were chose as raw materials. First, a stoichiometric amount of Eu2O3

(0.01 mol) and citric acid were weighted separately and placed into a round-bottom
flask. Then 200ml of demineralized water was added into the flask. Afterwards, the flask
containing the mixture was heated up to 373 K in an oil bath under vigorous magnetic
stirring. When the solution was completely transparent, the flask was transferred
to a room temperature environment without vigorous stirring. Subsequently, the
stoichiometric ratio of titanium (IV) bis (ammonium lactato) dihydroxide solution and
ethylene glycol were added into the flask. The flask was then placed in an oil bath at
338 K with vigorously stirring for another 2 hours. Finally, the transparent solution
was transferred to a Pyrex crystallizing dish and heated at 473 K for 12 h followed by
calcination at 753 K for 6 h in a mu�e furnace, leaving a white powdery residue as oxide
precursors for further preparation. To obtain the polycrystalline EuTiO3 powders, the
white precursors were annealed at 1273 K for 12 h under a reducing atmosphere (5 vol.%
H2 in Ar) in a tube furnace with a flow rate of 100 ml/min. The obtained black powder
materials were densified to bulk samples by cold isostatic pressing at 205 MPa pressure
following by conventional sintering at 1673 K with a forming gas flow for the thermal
conductivity measurement and characterization afterwards.

�.�.�. Sample Characterization

Powder X-ray di�raction (XRD) pattern of the obtained EuTiO3 compound was obtained
using a Rigaku Smartlab X-ray di�ractometer using Cu-Ka1,2 radiation. The morphology
of the sintered EuTiO3 was characterized by scanning electron microscopy (SEM, Zeiss
Merlin) The thermal conductivity k was calculated by the formula k = ldCp, where
l is the thermal di�usivity, d is the density of samples and Cp is the specific heat.
Experimental densities (d) of the bulk sample was determined by the Archimedes
method. The l was measured by a laser flash analyzer (LFA 457, Netzsch) under a
forming gas atmosphere (5 vol% H2 in Ar) in the temperature range of 300 K to 1173
K. Cp was measured by a high-temperature di�erential scanning calorimeter (DSC404,
Netzsch).

Table �.�.: Current experimental lattice parameters of EuTiO3 comparingwith literature.
Compound Space group Lattice constant (Å) Method
EuTiO3 Pm3̄m 3.90 EXP

Pm3̄m 3.94 DFT[337]
Pm3̄m 3.90 EXP[324, 339]
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�.�. Results and Discussion

�.�.�. Crystal Structure and Microstructure

Figure 7.2 shows the collected PXRD data of synthesized EuTiO3 compound. The
crystal symmetry of the synthesized EuTiO3 was found to be cubic perovskite structure
with space group Pm3̄m. All reflections shown in Figure 7.2 can be indexed into
corresponding Miller indices (hkl) of EuTiO3. The profile fitting of the patterns revealed
the cell parameters of EuTiO3 is 3.90 Å, as listed in the Table 7.1. The result is agreed
well with previous experimental and theoretical results.

Figure �.�.: Powder X-ray diffraction (PXRD) pattern of the synthesized EuTiO3 with
the corresponding hkl indexes.

Figure 7.3 (a and b) are SEM micrographs illustrating the grain size and microstructure
of the sintered bulk EuTiO3. The grains were connected well under the given sintering
condition, and the relative density of the sintered EuTiO3 is around 90 %. The SEM
images also show clear porous in the sintered bulk sample and the sizes of the porous
are in the range of 200 nm – 10 µm. Such multi-scale porous structure can scatter
phonons with di�erent wavelengths.
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Figure �.�.: SEM micrographs of the sintered EuTiO3 bulk sample.

�.�.�. Phonon Dispersion and Density of States

The calculated phonon dispersion curves of G-type cubic EuTiO3 within the harmonic
approximation (dotted lines) and SCP theory (solid lines) are shown in Figure 7.4. For
the harmonic approximation, it indeed reveals strong structural instabilities, which is
the same as the results of EuTiO3 within the ferromagnetic state in Ref. [337, 342].
Evidently, the low-lying modes around the G (0,0,0) and M (0.5,0.5,0) points in G-type
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EuTiO3 are unstable (w2 < 0), e.g., with the respective imaginary frequencies of 123.6i
cm�1 and 73.7i cm�1 for the softest mode at G andM in which only oxygen atoms vibrate
(G5� and M5�). In addition, the calculated harmonic phonon density of states (HPDOS)
reveals that the imaginary phonons in G-type EuTiO3 are contributed dominantly by
the collective motions of the oxygen atoms, which indicates that these instabilities are
nonpolar and arise from the displacements of oxygen atoms.

Figure �.�.: Harmonic and anharmonic phonon dispersions, harmonic phonon density
of states (HPDOS), and anharmonic phonon density of states (AHPDOS)
(unit: states/cm�1). Temperature-dependent phonon dispersion of cubic
EuTiO3 calculated with the PBEsol exchange-correlation functional. The
colorful lines represent the SCP solutions at different temperatures ranging
from ��� to ���� K. The grey dotted lines are harmonic lattice dynamics
results. In both HPDOS and AHPDOS, the blue, green, and red lines repre-
sent the partial phonon density of states of the Eu atoms, Ti atoms, and
oxygen atoms, respectively. For the AHPDOS, only the result at ��� K is
displayed.

The anharmonic phonon dispersion with temperature dependency is shown in Figure 7.4
from 200 to 1000 K in steps of 100 K. To investigate the convergence of the anharmonic
phonon frequency Wq concerning the number of q1 points, the results for the lowest
energy soft modes at G and M points are summarized in Table 7.2. Our results indicate
that at least 4⇥4⇥4 q1 points are needed to obtain convergence and a less dense 2⇥2⇥2
q1-point grid significantly overestimates the Wq values. Therefore, the anharmonic
phonon dispersion calculated within the 4⇥4⇥4 in Figure 7.4 is well convergent.
Obviously, the quartic anharmonicity shift of the softest modes in EuTiO3 is particularly
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predominant in low-energy optical modes at G (0,0,0), and M (0.5,0.5,0) points, and
no imaginary frequency appear anymore.

In the present SCP theory, only quartic phonon interactions are considered, which causes
frequency shifts, while cubic and other terms that causes phonon lifetime broadening
and frequency shift as well as lattice thermal expansion are neglected. Quartic anhar-
monicity generally boost the frequencies of low-lying modes due to the positive and
dominant contribution from the diagonal terms of the force constants [101, 330, 118].
In Figure 7.4, compared with HPDOS in which softest phonon modes arise completely
from oxygen atoms, there are no soft modes in the calculated anharmonic phonon
density of states (AHPDOS) at 300K. It reveals that the oxygen atoms in the EuTiO3

have significantly strong quartic anharmonicity, which plays an important role in the
structural stability of EuTiO3. In addition, the collective motions of europium atoms
dominate the acoustic modes and low-frequency optical modes. The high-frequency
phonon branches are governed primarily by the motions of oxygen atoms. Furthermore,
the low-frequency anharmonic modes harden with the temperature increase, while the
high-frequency modes have relatively small anharmonic renormalization. These results
indicate that anharmonicity is very significant for phonon frequency and also influence
the thermal conductivity consequently.

Table �.�.: Anharmonic phonon frequency (cm�1) of the soft modes at ��� K calcu-
lated using the SCPH equation with various q1 grid densities. The harmonic
phonon frequency is also shown for comparison.
q1 points G5� M5�
2⇥2⇥2 26.1 35.1
3⇥3⇥3 19.3 20.2
4⇥4⇥4 14.5 14.6
5⇥5⇥5 14.3 14.4
6⇥6⇥6 14.3 14.4

Frozen phonon 123.6i 73.7i

�.�.�. Lattice Thermal Conductivity

After obtaining the hardened low-lying modes, the accurate thermal transport properties
of the EuTiO3 can be evaluated. As one known, the lattice thermal conductivity is
a crucial quantity for optimizing the thermoelectric figure-of-merit ZT. Therefore,
we carried out experimental measurements and theoretical calculations to evaluate
the lattice thermal conductivity of cubic EuTiO3. In the theoretical work, the lattice

���



thermal conductivity kL is estimated by the BTE within RTA through the following
equation:

kab
L (T ) =

1

NV Â
q

Cq(T )va
q (T )v

b
q (T )tq(T ), (7.19)

where V , Cq(T ), vq(T ), and tq(T ) are the unit cell volume, mode specific heat, phonon
group velocity, and phonon lifetime, respectively.

Figure �.�.: Temperature dependence of lattice thermal conductivities of EuTiO3 from
experimental measurements and theoretical calculations are presented.
The phonon-boundary scattering result is also shown for comparison.

Due to the sizeable imaginary mode in the harmonic phonon dispersion, we performed
SCP+BTE methods to obtain the lattice thermal conductivity. This SCP+BTE method
is di�erent from the conventional harmonic phonon-based BTE method (HP+BTE),
where the phonon group velocity and lifetime are estimated using harmonic frequencies
and eigenvectors as the ground state. Namely, the SCP frequencies and eigenvectors are
employed as inputs for the BTE, leading to nq(T ) = ∂Wq(T )/∂q. Therefore, the group
velocity also shows an intrinsic T dependence. The phonon lifetime tq(T ) is estimated
using Matthiessen’s rule 1/tq = 1/tanh

q + 1/t iso
q + 1/tbun

q . The anharmonic scattering
rate 1/tanh

q is calculated from the imaginary part of the bubble self-energy from the
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cubic IFCs (see Eq. (2) in Ref. [118]), and the phonon-isotope scattering rate 1/t iso
q is

evaluated in a manner of perturbation [343]. For the phonon-boundary scattering rate
1/tbun

q = 2|nq|/L, where L is the grain size.

The calculated lattice thermal conductivity kL of G-type cubic EuTiO3 comparing exper-
imentally measured values are shown in Figure 7.5. As can be seen in the Figure 7.5,
the G-AFM results are overall good agreement with experimental values. The exper-
imental thermal conductivity value was calculated by using the measured l , d, and
Cp. Obviously, the LTC values calculated by the SCP+BTE method are generally higher
than those obtained by the experimental method, which is due to the reason of the pore
and boundary scatterings in the practical sample. The calculated kL value of G-type
AFM EuTiO3 by the SCP+BTE method is 8.2 Wm�1K�1, which matches well with the
experimental value 6.1 Wm�1K�1. In Figure 7.5, we also show a theoretical result of
EuTiO3 (green cycle) with the e�ect of phonon-boundary scattering considered by using
Matthiessen’s rule. The result agrees better with the experimental values in a wide
temperature range. Note that kL values of EuTiO3 with magnetism in the ferromagnetic
state (shown in Figure 7.1) are also plotted in Figure 7.5, which is far from experimental
results. Hence, the G-type AFM chosen in this work is more reasonable. These results
above clearly reveal that the frequency renormalization plays an essential role in the
thermal transport properties of EuTiO3, and the SCP+BTE method works very well for
the system with a strong quartic anharmonic e�ect. Another critical point is that the kL
exhibits a temperature dependence in EuTiO3. The kL decreases with the increase of
temperature in both theoretical and experimental results, and at high temperature (e.g.,
T > 600 K), the kL follows the trend of T�1, indicating the phonon-phonon scattering
is the dominated phonon scattering processes. We can approximately describe the
temperature dependence by a power law kL µ T�1. When the temperature approaches
room temperature, the kL deviates from the trend of kL µ T�1. It can be attributed
to boundary phonon scattering and/or defect phonon scattering. Such temperature
dependence is known as a common behavior of crystals in the high-temperature regime
(in which phonon-phonon scattering is dominant) [344, 345]. Obliviously, a platform
exists above 700 K in the experimental measurement. We do not fully understand why
a plateau shows around 700 K. The DSC curve and heat capacity are pretty smooth and
do not show any visible transition. The known phase transitions are below 300 K. But
the thermal di�usivity of EuTiO3 is repeatable, and the plateau always shows around
700 K. Another interesting aspect that needs to be mentioned is the thermal conductivity
of EuTiO3 prepared by solid-state reaction does not have a plateau of around 700 K.
We guess the plateau might be related to the microstructure (nanodomain structure),
which will be studied in further work.

To understand the underlying mechanism responsible for the presence of strong quartic
anharmonic renormalization of the soft modes through the SCP+BTE method, thermal
conductivity spectra (kL(w)) and corresponding cumulative values calculated by the
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SCP+BTE method for EuTiO3 at 300 K, 600 K, and 900 K are shown in Figure 7.6.
As one can see, the dispersive phonon modes at the low/medium frequency range
contribute more than 90% to the total thermal conductivity at three temperatures.
Furthermore, below < 100 cm�1 the hardened soft modes enhanced the thermal
conductivity obviously. Meanwhile, the temperature dependence of thermal conductivity
is also shown in character in the figure. Consequently the di�erence between the kL
values at the three considered temperatures results primarily from the temperature-
induced changes in the kL(w) for the modes with frequencies below 500 cm�1. In
principle, in the conventional method (HP+BTE), the increase of temperature leads
to the uniform enlargement of the three phonon scattering phase space with the Bose
distribution function, and thus the enhanced three-phonon scattering and reduced
phonon lifetime of all phonon modes [346]. However, in the current SCP+BTE methods,
due to the presence of strong quartic anharmonic renormalization of the soft modes,
the e�ect of the changes in the Bose distribution function is o�set by the frequency
enhancement.

Figure �.6.: Thermal conductivity spectra kL(w) (the curves below which the areas
are �lled) and corresponding cumulative values (the bare curves). The
SCP+BTE results for EuTiO3 at ��� K, 6�� K, ��� K.
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As shown in Figure 7.7, the phonon lifetime of the soft modes (below 100 cm�1)
are less sensitive to the increase of temperatures. In addition, the phonon lifetime
shows a characteristic feature in the low-frequency region (< 100 cm�1). When the
phonon lifetimes are above 3 ps, the phonon mode corresponds to the acoustic modes
exhibiting w2 dependence, which is in good agreement with Klemens’ formula and
other calculations [347, 348, 349, 113]. As the phonon lifetime is around 0.5 ps, the
phonon modes correspond to the phonon modes around the M point, which indicates
the severe anharmonicity induced by the Oxygen atoms, which is the same as SrTiO3 in
Ref. [101]. Therefore, considering the anharmonicity of the soft modes in the current
calculations plays a significant role in the final thermal conductivity. Moreover, it is
worth noting that other factors also play crucial roles in determining the temperature
dependence of the kL, for instance, thermal expansion and additional four-phonon
scattering induced by the quartic anharmonicity [350].

Figure �.�.: Phonon lifetimes with respect to frequency in EuTiO3 at ��� K, 6�� K, ���
K.
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�.6. Conclusions

In this work, it is the first time to calculate the thermal conductivity of pristine EuTiO3.
And the role of the quartic anharmonicity in the lattice dynamics and thermal trans-
port of the cubic EuTiO3 was studied by combining ab initio self-consistent phonon
theory with compressive sensing techniques and experimental thermal conductivity
determination measurement. The anti-ferromagnetic G-type magnetic structure is used
to mimic the para-magnetic EuTiO3. We find that the strong quartic anharmonicity of
oxygen atoms plays an important role in the phonon quasiparticles free from imaginary
frequencies in EuTiO3 and causes the hardening of vibrational frequencies of soft modes.
Based on these results, the lattice thermal transport properties are predicted through the
Boltzmann transport equation within the relaxation time approximation. The hardened
modes thereby a�ect calculated lattice thermal conductivity significantly, resulting in an
improved agreement with experimental results, including the deviation from kL µ T�1

at high temperature. The calculated thermal conductivity of 8.2 Wm�1K�1 at 300 K
matched the experimental value of 6.1 Wm�1K�1. When considering the boundary
scattering, the calculated thermal conductivity is reduced to 6.9 Wm�1K�1 at 300 K,
which agrees better with the experiment.

��8



8. Electron-phonon driven
Superconductivity

Antiperovskites are one of the well known and most commonly explored families of
ternary compounds. In contrast to ternary oxides, the number of known ternary nitrides
is an order of magnitude lower, partially due to their higher free energy of formation
and lower thermodynamic stability. This challenges experimentalists to continuously
explore the synthetic parameter space and push toward research on new nitride phases.
Recently, we demonstrated synthesizing a hitherto unknown orthorhombic structure
(space group Cmcm) of GeNCr3, which typically crystallizes in a tetragonal (space group
P4̄21m) structure. In this work, we derived from DFT calculations that the formation
energies of both phases are similar. The orthorhombic GeNCr3 is a metastable phase,
which can be stabilized by choosing lower reaction temperatures. According to detailed
thermodynamic analysis, the new compound is stable up to 500 °C and exhibits the same
phase transitions as the tetragonal phase at higher temperatures. Moreover, motivated
by the occurrence of superconductivity in MgCNi3 [351], antiperovskites are recognized
as possible candidates of superconductors. As a matter of fact, many carbide, boride,
nitride, and oxide antiperovskites were proved experimentally to be superconductors,
and a few others were predicted by theory [46]. Hence, we performed calculations on
the electron-phonon interaction for the new orthorhombic compound and found that it
is a superconductor with a Tc of 8.2 K.

8.�. Introduction

Perovskites are a well-known and extensively studied family of ternary compounds. Due
to the simple cubic ABO3 lattice, the tunability of their physical properties can be easily
achieved by incorporating intercalations, dopants, and defects [352]. Hence, a multi-
tude of remarkable applications of perovskites have been explored in recent years, such
as advanced magnets [353], thermoelectrics [354], lasing [355], ferroelectrics [356],
and photovoltaics [357], etc. Analogous to perovskites, the antiperovskites (APVs) also
attract intensive attention in the last two decades. The essential di�erence between
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perovskites and antiperovskites is that the positions of the cation and anion constituents
are reversed in the unit cell structure. APVs also exhibit a lot of exciting physical prop-
erties, such as negative thermal expansion, high ionic conductivity, superconductivity,
and gaint barocaloric e�ect [358, 359].

Cr
Ge
N

Figure 8.�.: The crystal structures of orthorhombic GeNCr3.

In 2001, He et al. eported MgCNi3 as a superconductor, which crystallizes in the cubic
antiperovskite structure [351], which is considered as an s-wave superconductor with a
paring mechanism mediated by the electron-phonon interaction [360]. This surprising
discovery sparked the interest of researchers, and more and more people turned their
attention to the antiperovskites superconductors in the following years. Several other
carbon-, boron-, nitrogen- and oxygen-based antiperovskites were experimentally found
to be superconductors, for example, transition temperature of CdCNi3 is 3.2 K [361]. In
addition, based on first-principles calculations and machine learning methods, people
predicted more antiperovskites superconductors [46]. Recently, we reported a synthesis
strategy to stabilize a hitherto unknown GeNCr3 in the orthorhombic antiperovskite
structure with a space group Cmcm (as shown in Figure 8.1). Together with our exper-
imental collaborators, we also showed the metastability of the Cmcm-GeNCr3 phase,
including all expected phase transitions, through detailed thermal analyses coupled with
subsequent X-ray powder di�raction data. Further, magnetometry data and electron
transport measurements indicated this new structure of a nitride antiperovskite having
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the potential as a new superconductor with a remarkably high critical temperature Tc
= 7.2 K.

Therefore, we theoretically investigated the thermodynamical stability of Cmcm-GeNCr3.
Moreover, based on density-functional perturbation theory calculations and Wannier
interpolation methods, we estimated the superconducting transition temperature us-
ing the commonly used Allen-Dynes formula and further solved the Eliashberg equa-
tions using the isotropic average of the Eliashberg function. We predicted Cmcm-
GeNCr3 having superconducting behavior with a Tc of 8.2 K due to electron-phonon
coupling.

8.�. Computational Details

For formation energies, DFT calculations were performed using the Vienna Ab-Initio
Simulation Package (VASP) code [332]. The exchange correlation interactions and the
ion–electron interactions were solved by the Perdew–Burke–Ernzerhof functionals [59]
and the projected-augmented wave method [362], respectively. A plane-wave kinetic-
energy cuto� value of 520 eV was taken to guarantee good convergence The electron
phonon interaction calculations were performed using the QUANTUM ESPRESSO [363]
package. We adopted relativistic norm-conserving pseudopotentials [364] with the
Perdew-Burke-Ernzerhof [59] exchange-correlation functional in the generalized gradi-
ent approximation (GGA). A plane-wave kinetic-energy cuto� value of 90 Ry was taken
to guarantee good convergence, where a gamma centered 10⇥10⇥10 Monkhorst-Pack
k-mesh [261] and a Methfessel and Paxton smearing [365] of 0.02 Ry were used
for the Brillouin-zone (BZ) integration. The atomic positions and lattice parameters
were optimized until the total energies converged within 10

�6 eV, and the maximum
Hellmann-Feynman force less than 10

�6 eV/Å. The dynamical matrices for phonons
and electron-phonon coupling (EPC) potential were calculated within the framework
of density-functional perturbation theory [123] on the irreducible set of a regular
3⇥3⇥3 q-mesh. The isotropic Migdal-Eliashberg (ME) equation [24, 366] was solved
to evaluate the superconducting properties using the EPW code [142]. To obtain the
electron-phonon matrix elements on dense grids and hence the accurate superconduct-
ing properties, we performed Wannier interpolation [144, 145] on a 30⇥30⇥30 k-mesh
and 15⇥15⇥15 q-mesh with 68 maximally localized Wannier functions constructed on
a uniform gamma-centered 6⇥6⇥6 k-mesh. An e�ective Coulomb potential µ⇤

c = 0.16

was used for solving the isotropic ME equations. The Matsubara frequency cuto� was
chosen to be 0.2 eV and the Dirac deltas were replaced by Lorentzians of width 50 meV
(for electrons) and 0.1 meV (for phonons). And vibrational free energies for P4̄21m and
Cmcm phases are calculated by using the quasi-harmonic approximation (QHA) method
as implemented in the software Phonopy [367].
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8.�. Results and Discussion

8.�.�. Structure Stability

In the previous experimental synthesis process [368], the polycrystalline GeNCr3 (syn-
thesized at a temperature around 1,000 °C) crystallizes in space group P4̄21m-GeNCr3

and shows subsequent structural transition to I4/mcm, P4/mbm and ultimately cubic
Pm3̄m. Beyond this, our recent work presented a synthesis strategy to stabilize the pure
nitride GeNCr3 in the orthorhombic antiperovskite structure (typically only found for
the respective carbide or carbon-rich carbonitride). The orthorhombic GeNCr3 phase
exhibits a crystal structure with space group Cmcm (No. 63), as shown in Figure 8.1.
The structure can be derived from the cubic antiperovskite structure (Pm3̄m) by tilting
of the Cr6N octahedra. To evaluate the thermodynamic stability of Cmcm-GeNCr3, we
performed DFT calculations to obtain the formation energies for all five allotropes of
GeNCr3, with the resulting optimized lattice parameters consistent with the experimen-
tal values (cf. Table 8.1) [368, 369]. It is noted that magnetism is not considered in
our current calculations. As listed in Table 8.1, GeNCr3 in the P4̄21m structure has the
lowest formation energy, indicating that it is the most stable phase. This confirms in our
recent submitted paper. Furthermore, the energy di�erence between P4̄21m-GeNCr3

and Cmcm-GeNCr3 is only about 0.013 eV/atom, which is comparable with the energy
fluctuation at room temperature (about 26 meV).

Table 8.�.: Calculated formation energies (E f , eV/atom) and lattice constants (Å) of
three allotropes of GeNCr3.

Space group E f
DFT EXP.

a b c a b c
P4̄21m -0.347 5.289 5.289 3.996 5.373 5.373 4.015 [368]
Cmcm -0.334 2.850 10.397 7.544 2.892 10.400 7.670
Pm3̄m -0.309 3.822 3.822 3.822 3.876 3.876 3.876 [368]
I4/mcm -0.312 5.336 5.336 7.824 5.393 5.393 8.017 [368]
P4/mbm -0.293 5.367 5.367 3.869 5.497 5.497 3.948 [368]

In addition, we performed quasi-harmonic approximation (QHA) to calculate the vi-
brational free energy for the P4̄21m and Cmcm-GeNCr3 phases. As one can see, from
Figure 8.2, the Gibbs free energy di�erence between these two phases is 11 meV/atom,
which has the same magnitude of formation energy di�erence at 0 K. Therefore, Cmcm-
GeNCr3 is a metastable phase which is accessible by controlled experimental synthesis,
as accomplished in this work.
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(a) (b)
-

Figure 8.�.: (a) The Gibbs free energies for the P4̄21m- and Cmcm-GeNCr3 phases. (b)
The Gibbs free energy difference between these two phases.

8.�.�. Superconducting Behavior
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Figure 8.�.: The electronic structure and partial density of states (PDOS) of Cmcm-
GeNCr3 phases.

�6�



To confirmwhether Cmcm-GeNCr3 is a superconductor, we performed first-principles cal-
culations to evaluate the electron-phonon interaction and to solve the isotropic Migdal-
Eliashberg equation to evaluate the superconducting transition temperature explicitly.
Figure 8.3 shows the band structure of Cmcm-GeNCr3, displaying hole and electron
bands crossing the Fermi level in the whole Brillouin zone. Such electronic states around
the Fermi level are dominated by the bands originating from the Cr-3d orbitals, with
marginal contributions from the p orbitals of Ge andN atoms.

FS1

FS2

FS3

FS4

FS5

FS6

FS7

FS-merged

Figure 8.�.: The Fermi surface of Cmcm-GeNCr3 phases.
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Figure 8.�.: Phonon dispersion and phonon density of states (PHDOS) for Cmcm-
GeNCr3.

Correspondingly, as shown in Figure 8.4, the Fermi surfaces comprise seven sheets with
two butterfly-like (FS3, FS4), four two-dimensional cylinder-like (FS1, FS2, FS5, FS6),
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and one small electron pocket (FS7) geometries. The two-dimensional cylinder-like
Fermi surface sheets reflect the underlying nano-laminated crystal structure (Figure 8.1),
which are similar to those of MgB2 [24], where the strong EPC in two-dimensional Fermi
surface sheets give rise to the two-gap superconductivity [24]. The phonon spectra and
density of states (PHDOS) for Cmcm-GeNCr3 are shown in Figure 8.5. Obviously, no
imaginary mode exists in the phonon spectra, indicating Cmcm-GeNCr3 is dynamically
stable.
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Figure 8.6.: The isotropic Eliashberg spectral function a2F(w) and electron-phonon
coupling strength l (w).

The Eliashberg spectral function a2F(w) is obtained in terms of the mode-specific EPC
l (w), by evaluating

a2F(w) =
1

2Nq
Â
qn

lqnwqnd (w �wqn), (8.1)

and the total EPC constant is assessed by

l = 2

Z •

0

dw a2F(w)

w
. (8.2)
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The resulting Eliashberg spectral function together with the frequency-dependent
integrated EPC are plotted in Figure 8.6. The total EPC for Cmcm-GeNCr3 is estimated
to be 0.81, which is bigger than 0.75 for MgB2 [24]. Two cluster peaks are found in
the whole frequency range in a2F(w): One from 50 to 300 cm�1 and another from
500 to 700 cm�1. That is, the low-frequency range contributes more significantly to
the total EPC. A comparison of a2F(w) with PHDOS suggests an enhanced EPC to the
vibrational modes below 400 cm�1, which are originated mostly from the Cr and Ge
atoms. After obtaining EPC, we estimated the superconducting transition temperature
Tc using the Allen-Dynes modified McMillan equation:

Tc =
wlog

1.2
exp[

�1.04(1+l )
l �µ⇤

c (1+0.62l )
]. (8.3)

With the EPC being 0.81 and an e�ective Coulomb parameter µ⇤
c = 0.16, Tc is estimated

to be 7.6 K.
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Figure 8.�.: The calculated superconducting gap at the Fermi level as a function of
temperature.

Figure 8.7 shows the isotropic superconducting gap function at the Fermi level as a
function of temperature, where the leading edge of the gap at T = 0 K is found to be
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D0 = 1.24 meV. Correspondingly, Tc = 8.2 K as identified by the temperature where the
gap vanishes, consistent with the estimated Tc of 7.6 K based on the McMillan equation.
Hence, a fine superconducting critical temperature for Cmcm-GeNCr3 is predicted,
indicating that the superconductivity in Cmcm-GeNCr3 is likely driven by the electron-
phonon interactions. Recently, people used the same strategy through a high-throughput
DFT framework to screen novel superconductors, such as antipervoskites [46] and MAX
phases [370].

8.�. Conclusions

In this chapter, we derived from DFT calculations the formation energies of a newly
synthesized orthorhombic compound GeNCr3, and confirmed that the nitride is similarly
stable in P4̄21m- and Cmcm-GeNCr3 phases. In accordance with the experimentally
discovered superconductivity in antiperovskite MgCNi3, we performed calculations to
evaluate the electron-phonon interaction and the resulting superconducting critical
temperature of GeNCr3. The electron-phonon interaction calculations suggest Cmcm-
GeNCr3 is likely a BCS superconductor with a Tc of 8.2 K. Correspondingly, it is suspected
that superconductivity may exist in the other MAX, MAB, and APV compounds, which
will be investigated in the future based on the established workflow to evaluate the
electron phonon coupling.
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�. Thermodynamic Phase Diagram of
the Fe-Sn System

Part of this chapter is published in: Thermodynamical and topological properties of
metastable Fe3Sn. Reproduced with permission from Chen Shen et al. [npj computa-
tional materials, in press] Copyright 2022 Springer Nature.

Considering the thermodynamic properties where the lattice free energy plays a domi-
nant role at finite temperatures, the integrated computational paradigm that combines
the DFT calculations, phonon theory, and CALPHAD methods is employed to construct
the thermodynamic database, which can be validated with experiments and bridged
to phase field simulations to map out the processing-microstructure-property rela-
tionships. Combining experimental data, first-principles calculations, and Calphad
assessment, thermodynamic and topological transport properties of the Fe-Sn system
were investigated. DFT calculations were performed to evaluate the intermetallics’
finite-temperature heat capacity (Cp). A consistent thermodynamic assessment of the
Fe-Sn phase diagram was achieved by using the experimental and DFT results, to-
gether with all available data from previous publications. Hence, the metastable phase
Fe3Sn was firstly introduced into the current metastable phase diagram, and corrected
phase locations of Fe5Sn3 and Fe3Sn2 under the newly measured corrected temperature
ranges.

�.�. Introduction

The kagome lattice is a 2D network of corner-sharing triangles that has been intensively
investigated the last years. Due to its unusual geometry, it o�ers a playground to
study interesting physics including frustrated, correlated [371, 372], exotic topological
quantum [373, 379, 380, 381, 382, 383, 384, 385, 386, 381, 371, 374, 375, 376,
377, 378], topological Chern [387], insulating and Weyl semimetal [375, 388] phases,
originating from the interplay between magnetism and electronic topology. In fact,
the kagome lattice has been realized in several materials including metal stannides,
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germannides [389, 390] as well as TmXn compounds with T=Mn, Fe, Co, X=Sn, Ge
(m:n=3:1, 3:2, 1:1) [391]. Recent studies demonstrated that Fe-Sn-based kagome
compounds exhibiting interesting properties, such as large magnetic tunability [371].
Furthermore they can host Dirac fermions and flat bands, as found in Fe3Sn2 [392, 393]
and FeSn [394, 391]. The existence of spin degenerate band touching points was linked
to the generation of several interesting phenomena. Specifically, the anomalous Hall
e�ect (AHE) results in a transverse spin polarized charge current (charge current and
spin current due to the imbalance of spin up and spin down electrons in ferromagnets)
in response to a longitudinal charge current, in the absence of an external magnetic
field [395, 396, 397, 398, 399]. This applies also to its thermal counterpart, the
anomalous Nernst e�ect (ANE), in which the external stimuli is replaced by a thermal
gradient [400] as well as the Seebeck e�ect [401].

Interestingly, the Fe-Sn-based intermetallics compounds exhibit not only attractive
topological transport properties but also show rich magnetic properties. In our previous
studies [402, 403], a DFT screening of the Fe-Sn phase diagram was used to identify
Fe-Sn based phases with the potential to be stabilized upon alloying, and their magneti-
zation and magnetocrystalline anisotropy were evaluated. The results revealed that
a strong anisotropy as observed in Fe3Sn might also be found in other Fe-Sn based
phases, having high potential to be used as hard magnetic materials. Meanwhile, we
applied the reactive crucible melting (RCM) approach to the Fe-Sn binary system, and
observed 3 metastable intermetallic compounds, namely Fe3Sn, Fe5Sn3, Fe3Sn2, which
are ferromagnetic and exist between 873 K and 1173 K. We found that such metastable
phases can be synthesized using the RCMmethod at specific temperature ranges. What’s
more, the phase diagram of the Fe-Sn system reported in the literature [389, 404, 405]
has mentioned that the Fe3Sn was considered to be a metastable phase, and presented
the relevant so-called metastable composition range and phase relations. According to
Fayyazi’s [402] work, the reactive crucible reproduced the corresponding phase rela-
tions as in the bulk samples at 998 K (a-Fe, Fe3Sn2, FeSn and Sn) and 1023 K (Fe3Sn2,
Fe3Sn, and FeSn), of which Fe3Sn can only be stabilized between 1023-1098 K during
a non-equilibrium process as a metastable phase but disappears at 1123 K due to the
presence of Fe5Sn3 phase. Accordingly, adding more details to the phase diagram of the
metastable Fe3Sn phase, with the discovered temperature range based on the reported
phase diagram is of great significance. Therefore, to further explore the interesting
properties of metastable Fe-Sn phases, it is important to understand the phase diagram
and thermodynamical properties of the Fe-Sn system.

In this work, we adopted our new measurements [402, 403] on the equilibria states of
Fe3Sn, Fe5Sn3, Fe3Sn2, combined with the thermodynamic properties of such intermetal-
lic phases obtained based on first-principles calculations. A consistent thermodynamic
assessment of the Fe-Sn system was then developed based on all available experimental
and first-principles results.
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�.�. Methodology

�.�.�. First-principles Calculations

Our calculations were performed using the generalized gradient approximation (GGA)
for the exchange-correlation functional, in the parameterization of Perdew-Burke-
Ernzerhof [406] for the Vienna ab�initio Simulation Package (VASP) [362, 367].
The energy cuto� is set at 600 eV and at least 5000 k-points in the first Brillouin
zone with G-centered k-mesh were used for the hexagonal lattices (Fe3Sn, FeSn, and
Fe5Sn3), while for all the other structures, Monkhorst-Pack grids were used. The energy
convergence criterion was set as 10

�6 eV, and 10
�5 eV/Åwas set as the tolerance of

forces during the structure relaxation. The enthalpy of formation, D f H(FexSny), for the
FexSny intermetallic compounds was obtained following

D f H(FexSny) = EFexSny �
x

x+ y
EFe �

y
x+ y

ESn, (9.1)

where all the total energies for the equilibrium phases in their corresponding stable
structures were obtained after structural relaxation.

For the phonon calculations, the frozen phonon approach was applied using the
PHONOPY package [367]. The temperature-dependent thermodynamical properties
were calculated by using the quasi-harmonic approximation [407]. The Gibbs free
energy G(T,P) at temperature T and pressure P can be obtained from the Helmholtz
free energy F(T,V ) as follows: [75]

G(P,T )�PV = F(T,V ) = E0(V )+Fvib(V,T )+Fel(V,T )+Fmagn(V,T ), (9.2)

where E0(V) is the total energy at zero Kelvin without the zero-point energy con-
tribution, which were determined by fitting of the energies with respect to the vol-
ume data using the Birch-Murnaghan equation of state (EOS) [74]. Fvib corresponds
to the lattice vibration contribution to the Helmholtz energy, which can be derived
from the phonon density of states (PhDOS), g(w,V ), by using the following equa-
tion [75]:

Fvib(V,T ) = kBT
Z •

0

ln [2sinh
h̄w

2kBT
]g(w,V )dw, (9.3)

where kB and h̄ are the Boltzmann constant and reduced Planck constant, respectively,
and w denotes the phonon frequency for a given wave vector q. The PhDOS g(w,V )
can be obtained by integrating the phonon dispersion in the Brillouin zone. The third
term Fel represents the electronic contribution to the Helmholtz free energy, obtained
by [76]:

Fel(V,T ) = Eel(V,T )�T ·Sel(V,T ) (9.4)
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where Eel(V,T ) and Sel(V,T ) indicate the electronic energy and electronic entropy, re-
spectively. With the electronic DOS, both terms can be formulated as [76]:

Eel(V,T ) =
Z

n(e) f ede �
Z eF

�•
n(e,V )de, (9.5)

Sel(V,T ) =�kB

Z
ne[ f ln f +(1� f )ln(1� f )]de, (9.6)

where n(e) is the electronic DOS, f represents the Fermi-Dirac distribution function
and eF is the Fermi energy.

Finally, based on the original Inden–Hillert–Jarl (IHJ) model [77, 78] and further
improved expression by Xiong [79], the magnetic Gibbs energy can be formulated
as:

Gmagn = RT ln(b ⇤+1) f (t), (9.7)

where t is T/T ⇤, T ⇤ is the critical temperature (the Cutie temperature TC for ferro-
magnetic materials or the Neel temperature TN for antiferromagnetic materials). b ⇤

is the e�ective magnetic moment per atom [79]. And the relative parameters are
summarized in Table 9.1. Note that, we adopted the experimental critical temperatures
and calculated magnetic moments.

Table �.�.: Magnetic moment (µB per Fe atom) and critical temperature (K) of inter-
metallic phases.
Phases Magnetism Magnetic moment Critical temperature
Fe3Sn FM 2.35 743 [403]
Fe5Sn3 FM 2.34 601 [403]
Fe3Sn2 FM 2.22 650 [403]
FeSn AFM 2.01 368 [408]
FeSn2 AFM 1.92 378 [409]

�.�.�. CALPHAD Modeling

Pure elements

The Gibbs free energies for pure Fe and Sn were taken from the Scientific Group Thermo-
data Europe (SGTE) pure element database [82], whichwas described by:

�Gf
i (T ) =Gf

i (T )�Hi,SER(298.15 K) = a+bT +cT ln(T )+dT 2+eT 3+ f T�1+gT 7+hT�9 , (9.8)
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where i represents the pure elements Fe or Sn, Hi,SER(298.15 K) is the molar enthalpy
of element i at 298.15 K in its standard element reference (SER) state, and a to h are
known coe�cients.

Solution Phases

The solution phases, Liquid, BCC_A2, FCC_A1 and BCT_A5 phases are described using
the substitutional solution model, with the corresponding molar Gibbs free energy
formulated as:

Gj
m = xFeGj

Fe(T )+ xSnGj
Sn(T )+RT (xFelnxFe + xSnlnxSn)+Gex +Gmagn, (9.9)

where xFe and xSn are the mole fraction of Fe and Sn in the solution, respectively. Taken
from SGTE [82], Gj

i denotes the molar Gibbs free energy of pure Fe and Sn in the
structure j at the given temperature. Gex denotes the excess Gibbs energy of mixing,
which measures the deviation of the actual solution from the ideal solution behaviour,
modelled using a Redlich-Kister polynomial [83]:

Gex = xFexSn

n

Â
j=0

( j)Lj
Fe,Sn(xFe � xSn)

j. (9.10)

The j� th interaction parameter between Fe and Sn is described by ( j)Lj
Fe,Sn, which is

modelled in terms of a⇤+b⇤T.

Stoichiometric intermetallic compounds

Fe5Sn3, Fe3Sn2, Fe3Sn, FeSn, and FeSn2 were considered as stoichiometric phases.
The Gibbs free energies per mole atom of these phases were thus expressed as fol-
lows:

GFexSny
m =

x
x+ y

GFe,SER +
y

x+ y
GSn,SER +DGFexSny

f (T ) , (9.11)

where DGFexSny
f (T ) is the Gibbs free energy of formation of the stoichiometric compound

FexSny which can be expressed as:

DGFexSny
f (T ) = A3 +B3T , (9.12)

where the coe�cients A3, B3 are the parameters to be optimized. Since there is no
experimental data of the thermodynamic properties for such intermetallic phases,
the calculated enthalpies of formation for these phases from DFT calculations were
treated as initial values of the coe�cient A3 in Eq. 9.12 in the present optimiza-
tion.
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�.�. Results and Discussion

Most end-members in the sublattice models are not stable and their thermodynamic data
are impossible to be determined by experiments. First-principles are hence performed to
estimate the Gibbs energies of the compounds and end-members at finite temperatures.
In order to benchmark the current DFT calculations, the calculated crystallographic
information of phases in the binary Fe-Sn system are listed in Table 9.2, in comparison
with the available experimental data.

Table �.�.: Lattice parameters of intermetallics from �rst-principles calculations com-
pared with experimental values.

Phases Space group Magnetism
Lattice parameters (Å)

k-point mesh Refs.
a c

Fe3Sn P63/mmc FM 5.457 4.362 [410]
5.461 4.347 [411]
5.421 4.434 [412]
5.440 4.372 [413]
5.464 4.352 [389]
5.475 4.307 10⇥10⇥12 This work

Fe5Sn3 P63/mmc FM 4.223 5.253 [414]
Fe3Sn2 R-3 m FM 5.344 19.845 [415]

5.340 19.797 [389]
5.315 19.703 [372]
5.328 19.804 10⇥10⇥3 This work

FeSn P6/mmm AFM 5.307 4.445 [410]
5.297 4.481 [416]
5.288 4.420 [417]
5.300 4.450 [418]
5.298 4.448 [389]
5.297 4.449 [419]
5.299 4.449 10⇥10⇥10 This work

FeSn2 I4/mcm AFM 6.502 5.315 [420]
6.539 5.325 [421]
6.539 5.325 [409]
6.542 5.326 [416]
6.542 5.386 [417]
6.536 5.323 [389]
6.533 5.320 [422]
6.545 5.326 [423]
6.561 5.338 8⇥8⇥10 This work
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The calculated lattice parameters of the solid phases at 0 K are in good agreement with
the experimental results at room temperature. As one can see, the di�erences between
the theoretical and experimental lattice constants are within 0.5 % for all the phases.
Note that, in our earlier study [402, 403], we showed, that the crystal structure of
“Fe5Sn3” synthesized by the equilibrated alloy method, is not of the typically assumed
hexagonal Laves structure (as shown in Table 9.2). We rather observed superstructure
reflections in the powder XRD spectra that could not be explained by the hexagonal
structure and we assigned to a modulated orthorhombic unit cell with lattice parameters
of a = 4.221 Å, b = 7.322 Å, c = 5.252 Å. More details and explanations can be found in
Ref. [402, 403]. Hence, we used this structure to do phonon calculations. Furthermore,
the calculated phonon bands of such phases are shown in Figure 9.1. To prove the
validity of the calculations, as shown in Figure 9.1, the phonon dispersion of BCC-Fe is
compared with the experimental data [424], presenting good agreement. Therefore, it is
expected that the thermodynamical properties of the Fe-Sn intermetallic phases can also
be accurately obtained based on DFT calculations. As shown in Figure 9.1, no imaginary
phonon modes exist for all the compounds, indicating that all the intermetallics are
dynamically stable. And the quasi-harmonic approximation (QHA) can be used to
calculate the thermodynamic properties.

The thermodynamic properties at finite temperatures are evaluated based on the Gibbs
free energies specified in Eq. 9.2. And from the thermodynamical point of view, we
can derive the Gibbs free energies from the heat capacity. To obtain the accurate heat
capacity of the intermetallics, we firstly compare the calculated heat capacity of the
BCC-Fe with the available experimental data [425], as shown in Figure 9.2. Among that,
the magnetic contribution to the heat capacity is analyzed following the theory of IHJ
model [77, 78] and further improved version by Xiong [79]:

Cpmag = Rln(b ⇤+1)c(t). (9.13)

Figure 9.2 shows isobaric heat capacity obtained from our DFT calculations. It can be
observed that the lattice vibrations dominate other contributions to the heat capacity.
Interestingly, the correction made by adding electronic and magnetic heat capacities
shifted the result toward bigger values and after that calculations show an excellent
agreement with the experimental data [425]. More interestingly, the magnetic contri-
bution to the heat capacity presents at the magnetic phase transition of BCC-Fe. These
results prove the accuracy of the current methods and justify the following calculations
for intermetallics. Using the same strategy, we calculate heat capacities of Fe5Sn3,
Fe3Sn2, Fe3Sn, FeSn2, and FeSn at finite temperatures, as shown in Figure 9.2, with the
magnetic heat capacity evaluated using Inden model [78].
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Bcc-Fe FeSn

Fe3Sn Fe3Sn2

Fe5Sn3 FeSn2

Figure �.�.: Phonon dispersions of the pure elements and intermetallic phases in the
Fe-Sn system. The black solid points represent the experimental data from
Ref. [���].

The heat capacity of Fe3Sn shows a good consistency between our calculations and
experiments at low temperature, which also confirms the accuracy of current theoretical
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results. We note that such good agreements are supported by considering the magnetic
contributions in the magnetic system.

Bcc-Fe

Fe3Sn Fe3Sn2

Fe5Sn3 FeSn2

FeSn

Figure �.�.: Heat capacity of pure Fe and Sn from DFT calculations in comparison with
the experiment data [���]. Those for all the intermetallics are also shown,
experimental data of Fe3Sn is obtained from our previous studies [���,
���].

After getting the thermodynamical properties of intermetallics, we used CALPHAD
method [21] to evaluate the thermodynamic model parameters of the Fe-Sn system,
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and the phase diagram and thermodynamic properties are calculated by Thermo-
Calc [426]. Combining DFT and CALPHAD methods has already been successfully
applied in di�erent systems [427, 428]. Thermodynamic database in Appendix lists the
modelled thermodynamic parameters of the Fe-Sn system. The calculated Fe-Sn phase
diagram is presented in Figure 9.3 along with the experimental data [429, 434, 435,
436, 437, 438, 439, 440, 434, 430, 431, 432, 433, 402].

Figure �.�.: The optimized Fe-Sn phase diagram based on our thermodynamic mod-
elling, in comparison with the experiment data [���, ���, ���, ��6, ���,
��8, ���, ���, ���, ���, ���, ���, ���].

The comparison of the calculated temperatures and compositions of invariant reactions
with experimental data [429, 434, 435, 436, 437, 438, 439] as well as results from
previous thermodynamic assessments [441, 405] are listed in Table 9.3. Using the
reactive crucible melting (RCM) approach, it is found that 3 metastable intermetallic
compounds, i.e., Fe3Sn, Fe5Sn3, and Fe3Sn2, can be stabilized between 873 K and 1173
K. Furthermore, we are convinced that the phase diagram reported in the literature is
inaccurate in the temperature interval 1023-1038 K and Fe3Sn can exist at 1023 K. Thus,
the meta-stable phase Fe3Sn is introduced by considering the current accurate experi-
mental results. Obviously, good agreement between the optimized and experimental
Figure S1 and S2 in Appendix show the calculated thermodynamic properties of the
compounds in current CALPHAD modeling, first-principles calculations, previous CAL-
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PHAD modeling and the experimental data. The calculated thermodynamic properties
in this work are consistent with experimental data.

Table �.�.: Summary of the invariant reactions in the Fe-Sn system.
Invariant Reaction Reaction type Composition at % Sn Temperature (K) Refs.

Liquid#1 !BCC_A2+Liquid#2 Eutectic 0.312 0.083 0.811 1395.9 [441]
1381 [429]
1404 [434]
1403 [435]
1403 [431]
1407 [405]
1413 [436]

Eutectic 0.297 0.095 0.796 1436 This work
BCC_A2 + Liquid !Fe5Sn3 Peritectic 0.081 0.929 0.375 1174.1 [441]

1166 [436]
1168 [405]
1183 [438]
1183 [437]

Peritectic 0.088 0.948 0.375 1182 This work
BCC_A2 + Fe5Sn3 !Fe3Sn Peritectic 0.064 0.375 0.250 1111 [402]

Peritectic 0.062 0.375 0.250 1113 This work
Fe5Sn3 + Liquid !Fe3Sn2 Peritectic 0.375 0.967 0.400 1074.8 [441]

1072 [439]
1079 [438]
1079 [437]
1080 [405]

Peritectic 0.375 0.979 0.400 1086 This work
Fe5Sn3 ! Fe3Sn + Fe3Sn2 Eutectoid 0.375 0.250 0.400 1055 [402]

Eutectoid 0.375 0.250 0.400 1062 This work
Fe3Sn2 + Liquid !FeSn Peritectic 0.400 0.980 0.500 1024.7 [441]

1013 [435]
1034 [405]
1043 [438]
1043 [437]

Peritectic 0.400 0.979 0.500 1042 This work
Fe3Sn ! BCC_A2 +Fe3Sn2 Eutectoid 0.250 0.046 0.400 1023 [402]

Eutectoid 0.250 0.046 0.400 1023 This work
Fe3Sn2 ! BCC_A2 +FeSn Eutectoid 0.400 0.017 0.500 874.9 [441]

870 [439]
873 [435]
880 [438]
880 [437]
880 [405]

Eutectoid 0.400 0.015 0.500 884 This work
FeSn + Liquid !FeSn2 Peritectic 0.500 0.999 0.666 775.4 [441]

769 [436]
769 [429]
769 [435]
786 [437]
786 [438]
786 [405]

Peritectic 0.500 0.999 0.666 783 This work
Liquid ! FeSn2 +BCT_A5 Eutectic 0.999 0.666 1.000 504.9 [441]

501 [436]
505 [437]
505 [438]
505 [405]

Eutectic 0.999 0.666 1.000 505 This work
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�.�. Conclusions

In this chapter, based on DFT calculations, the thermodynamical properties of the Fe-Sn
system are studied. First-principles phonon calculations with the QHA approach were
performed to calculate the heat capacities of pure elements and intermetallics at finite
temperatures. The calculated formation energies and Gibbs free energies were then
fed into the CALPHAD method as initial input values, which can make up the shortage
of experimental data. Hence, thermodynamic modeling of the Fe-Sn phase diagram
has been re-established. The problems concerning invariant reactions of intermetallics
Fe5Sn3 and Fe3Sn2 are remedied under recently newly measured temperature ranges.
We reported that the metastable phase Fe3Sn was introduced into the current metastable
phase diagram. At latst, a set of self-consistent thermodynamic parameters of Fe-Sn
system is obtained by the CALPHAD approach. Taking Fe-Sn as a prototype system, the
integrated computational paradigm that combines the HTP DFT calculations, phonon
theory, and CALPHAD methods is employed to construct the thermodynamic database,
which can be validated with experiments and bridged to phase field simulations to map
out the processing-microstructure-property relationships.
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��. Summary and Future Work

��.�. Summary

In this thesis, we established a computational paradigm to treat the lattice degree
of freedom systematically and explored it via performing high-throughput density
functional theory calculations to design novel functional materials, in particular those
materials for energy applications. Such a paradigm can tackle the magnetocaloric,
thermodynamic, and non-equilibrium transport properties by considering the magneto-
structural coupling, quasi-harmonic approximations, and phonon-phonon coupling,
as well as superconductivity driven by the electron-phonon interaction. Eventually,
such a paradigm can be bridged to large-scale simulations, and also to experimental
synthesis.

Considering lattice as crystal structures, our HTP DFT calculations on 6 types of MAB
phases and 3 types of competing non-MAB phases predict 434 magnetic ternary transi-
tion metal borides which are potential candidates for permanent magnets and magne-
tocaloric materials. After a comprehensive validation, 21 novel compounds are predicted
to be stable based on the systematic evaluation of thermodynamic, mechanical, and
dynamical stabilities, and the number of stable compounds is increased to 434 taking
the tolerance of convex hull being 100 meV/atom. The trend of stability for the MAB
phase can be understood based on the Hume-Rothery rules, where the size factor
di�erence and the valence electron concentration play a critical role. Such a trend
can be further attributed to the bond-resolved COHP, providing intuitive guidance
for experimental synthesis. From the magneto-structural coupling point of view, the
detailed evaluation of the magnetocrystalline anisotropy energy (MAE) and the mag-
netic deformations (ÂM) leads to 23 compounds with significant uniaxial MAE larger
0.4 MJ/m3 and 99 systems with reasonable ÂM over 1.5 %. For those compounds
containing no expensive, toxic, or critical elements, it is observed that Fe3Zn2B2 is a
reasonable candidate as gap permanent magnet, and Fe4AlB4, Fe3AlB4, Fe3ZnB4, and
Fe5B2 as potential magnetocaloric materials. This work paves the way for designing
more magnetic materials using HTP DFT for energy applications. In particular, it also
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provides a good starting point to search for novel two-dimensional magnetic materi-
als, i.e., MBene, based on detailed evaluation of the exfoliation energy and follow-up
experiments.[229]

Furthermore, considering the lattice degree of freedom as elementary excitations of
lattice vibrations, i.e., phonons, the phonon-phonon interaction governed by phonon
anharmonicity is employed to design functional materials within many intriguing
properties. The thermal transport properties of novel materials of 2D layered MSi2N4

(M = Mo, W) are investigated. The thermal conductivities of MoSi2N4 and WSi2N4

are calculated by solving BTE based on the DFT calculations, and found to be 162
Wm�1K�1 and 88 Wm�1K�1 at 300 K, respectively, which are 7 and 4 times the one
for monolayer MoS2, 16 and 9 times the one for silicene. These results indicate these
two novel 2D materials have the potential to be thermal management materials. To
understand the underlying mechanism for the high thermal conductivity of MoSi2N4 and
WSi2N4, systematic analysis is performed based on the contribution from each phonon
branch and comparison among the mode level phonon group velocity and lifetime. The
root reason for the high thermal conductivity of MoSi2N4 and WSi2N4 is that the high
group velocity of these two materials. The phonon Grüneisen parameter is further
analyzed to understand the phonon-phonon scattering. And the Grüneisen parameter
of MoSi2N4 smaller than that of WSi2N4, which is the underlying reason for the small
phonon lifetime and further lower thermal conductivity of WSi2N4 than MoSi2N4.
Therefore, our study o�ers fundamental understanding of thermal transport properties
in monolayer MoSi2N4 and WSi2N4 within the framework of BTE and the electronic
structures from the bottom, which will enrich the studies and exploring of novelMSi2N4

type two dimensional thermal management materials.

In addition, to gain insight into the phonon anharmonicity in 2D materials, we per-
formed DFT calculations for 2D GaX (X= N, P, As) to investigate the mechanism of
anharmonicity from the fundamental phonon mode and electronic structure level. The
thermal conductivity of GaP is calculated to be 1.52 Wm�1K�1, which is unexpectedly
ultra-low and in sharp contrast to GaN and GaAs. Considering the similar honeycomb
geometry structure of GaP to that of GaN and GaAs, it is quite intriguing to find that the
thermal conductivity of GaP is very low. To understand the underlying mechanism for
GaX monolayers having planar or buckling structures, systematic analysis is performed
based on PJTE theory. The larger bandgap and smaller the vibronic coupling constant,
the less destabilization of the ground state and less stabilization of the excited states.
Hence, the GaN exists in planar structure, and GaP and GaAs stabilize in buckling
structures. Moreover, in order to gain insight into anomalous phenomena of ultra-
low thermal conductivity for GaP, we perform a detailed analysis of the underlying
mechanisms in the framework of phonon mode-solved investigation. The reason for
the low thermal conductivity ofthe GaP is found to be that: FA dominates the thermal
conductivity of GaN but less contributes to the one of GaP, which is due to the symmetry-

�8�



based selection rule and di�erence of atomic structure. In particular, the di�erence
originates from the di�erent situations for the phonon lifetime, which is determined by
phonon–phonon scattering. The phonon anharmonicity quantified by the Grüneisen
parameter is further analyzed to understand the phonon–phonon scattering, indicating
the strong phonon-phonon scattering of GaP and the strongest phonon anharmonicity
of GaP in GaX. Considering that all the properties are fundamentally determined by
the atomic structure and the behavior of electrons (such as charge distribution and
orbital hybridization), we further perform analysis from the view of electronic struc-
tures and orbital bonding to gain deep insight into the phonon transport. The buckling
structure has a high priority influencing the anharmonicity, leading to the low thermal
conductivity. Then, due to the buckling structures, the delocalization of electrons in GaP
and GaAs are restricted, namely, the bonds are polarized. The non-bonding lone pair
electron of P and As atoms are stronger, which induces nonlinear electrostatic forces
upon thermal agitation, leading to increased phonon anharmonicity in the lattice and
thus reducing the thermal conductivity. Our study o�ers fundamental understanding of
phonon transport in GaX monolayers with honeycomb structure within the framework
of BTE and the electronic structure from the bottom, which will enrich the studies of
nanoscale phonon transport in 2D materials.

Besides 2D materials, the pervoskites materials always show the phase instability. High
order phonon anharmonicity could have significant e�ect on the thermal transport
properties in such materials. In this work, it is the first time to calculate the thermal
conductivity of pristine EuTiO3. And the role of the quartic anharmonicity in the lattice
dynamics and thermal transport of the cubic EuTiO3 was studied by combining ab initio
self-consistent phonon theory with compressive sensing techniques and experimental
thermal conductivity determination measurement. The anti-ferromagnetic G-type
magnetic structure is used to mimic the para-magnetic EuTiO3. We found that the
strong quartic anharmonicity of oxygen atoms plays an important role in the phonon
quasiparticles free from imaginary frequencies in EuTiO3 and causes the hardening
of vibrational frequencies of soft modes. Based on these results, the lattice thermal
transport properties are predicted through the Boltzmann transport equation within
the relaxation time approximation. The hardened modes thereby a�ect calculated
lattice thermal conductivity significantly, resulting in an improved agreement with
experimental results, including the deviation from kL µ T�1 at high temperature. The
calculated thermal conductivity of 8.2 Wm�1K�1 at 300 K matched the experimental
value of 6.1 Wm�1K�1. When considering the boundary scattering, the calculated
thermal conductivity is reduced to 6.9 Wm�1K�1 at 300 K, which agrees better with
the experimental values.

Furthermore, the interaction between electrons and phonons also plays an essential
role in materials properties. In this thesis, based on DFT calculations we investigated
the thermodynamical stability of a newly synthesised orthorhombic compound GeNCr3,
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and found this new compound is a metastable phase. The finding of superconductor
MgCNi3 and more antiperovskites showing superconducting behavior sparked our
interest. Hence, we preformed calculations to evaluate the electron-phonon interaction
for the new orthorhombic compound and predicted its superconducting behavior with a
Tc of 8.2 K. This study o�ers a fundamental understanding of electron-phonon coupling
in materials in the antiperovskite structure, which also invokes our suspecting and
imagination of whether the superconductivity may exist in the other MAX, MAB, and
APV compounds.

Last but not least, considering the thermodynamic properties where the lattice free
energy plays a dominant role at finite temperatures, the integrated computational
paradigm that combines the HTP calculations, phonon theory, and CALPHAD meth-
ods is employed to construct the thermodynamic database, which can be validated
with experiments and bridged to phase field simulations to map out the processing-
microstructure-property relationships. Combining experimental data, first-principles
calculations, and Calphad assessment, thermodynamic properties of the Fe-Sn system
were investigated. First-principles phonon calculations with the QHA approach were
employed to calculate the heat capacity of each pure element and intermetallic phase
at finite temperatures, which make up for the shortage of experimental data. A set of
self-consistent thermodynamic parameters are obtained by the CALPHAD approach.
Thermodynamic modeling of the Fe-Sn phase diagram has been re-established. In this
work, we reported that the metastable phase Fe3Sn was introduced into the current
metastable phase diagram, and corrected phase locations of Fe5Sn3 and Fe3Sn2 under
the newly measured corrected temperature ranges.

��.�. Future Work

Despite the fact that we can design functional materials from the lattice degree of
freedom, they mostly focus on crystalline or ordered structures within the atomic
level. In the future, we plan to extend the current paradigm to many more large-scale
simulations, which are more realistic for experimental synthesis. To achieve this, we
plan to combine the DFT, CALPHAD, and phase field methods to map the composition-
processing relationships based on thermodynamics. In addition, a more accurate MLIP
will be developed for MD simulations, which could be used to study heat and mass trans-
port properties. Hence, we are going to integrate the DFT, MLIP, and MD for atomistic
lattice (and possibly spin) modeling to understand the dynamical and kinetic processes.
This is critical for the rapidly developed energy materials industry. Meanwhile, the study
of thermal transport properties for 2D and bulk materials has been demonstrated in
the current work. More fundamental interactions between the elementary excitations
should be further investigated, such as (a) electron-phonon interaction for electronic
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transport, thermal conductivity, BCS superconductivity and high-Tc superconductivity;
(b) magnon-phonon interaction for spin-driven thermoelectric materials; (c) phonon-
phonon driven thermal conductivity in the quantum limit, and at interfaces, which is
critical for thermal management materials; (d) ultra-fast processes at the picosecond
time scale for photovoltaic materials. For disorder and complex materials, such as
multicomponent and high entropy alloys, we plan to use the Exact Mu�n-Tin Orbitals
(EMTO) theory within the spherical cell approximation and combine it with the Full
Charge Density technique and the Coherent Potential Approximation (CPA) to treat the
complex alloys. To implement the above plans, more knowledge about theories and
techniques should be solid. For instance, from the technical point of view to model the
potential energy surfaces, such as advanced algorithms for MLIP, phonon calculations
under electric fields, quantum Monte Carlo, and non-adiabatic molecular dynamics,
should be learned and understood deeper.
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A. Supporting Information for MAB

Table S�.: List of MAB and non-MAB phases that we found stable and meta-stable based convex hull distance < �.� eV/atom.
Lattice parameters (Å), formation energy (eV/atom), distance to the convex hull (eV/atom), and magnetic moment (the
unit as µB per magnetic atom) in considered phases are shown.

Compounds Space Group Lattice Constant Convex Hull Formation Energy Magnetic momenta b c
FeBeB 63 2.925 2.648 12.164 0.000 -0.326 0.422
MnBeB 63 2.809 2.811 12.252 0.000 -0.378 0.002
CrAlB 63 2.969 3.004 13.881 0.011 -0.377 0.011
CoBeB 63 3.058 2.539 12.098 0.014 -0.284 0.087
CoPtB 63 3.133 2.822 14.347 0.037 -0.250 0.092
FeMgB 63 2.902 2.871 17.037 0.040 -0.211 0.908
FeCrB 63 2.912 2.926 13.261 0.041 -0.310 2.254
FeZnB 63 2.904 2.857 14.631 0.045 -0.206 1.151
Cr2B 63 2.900 2.892 13.469 0.047 -0.328 0.002
NiPtB 63 3.053 3.024 14.015 0.048 -0.227 0.002
NiLiB 63 2.996 2.714 15.995 0.052 -0.149 0.003
CrReB 63 2.881 2.905 15.108 0.052 -0.299 0.003
NiCuB 63 3.037 2.881 13.038 0.054 -0.111 0.000
FeMnB 63 2.912 2.904 13.354 0.057 -0.301 3.889
CrBeB 63 2.860 2.860 12.584 0.060 -0.291 0.012
FeIrB 63 2.896 2.856 14.896 0.061 -0.190 1.451
MnIrB 63 2.926 2.925 14.755 0.062 -0.271 1.992
FePtB 63 2.951 2.974 14.720 0.063 -0.242 1.887
CrNiB 63 2.927 2.983 12.697 0.066 -0.297 0.020
MnAlB 63 2.988 2.953 13.908 0.066 -0.329 0.997
FeAlB 63 2.856 2.729 15.972 0.067 -0.281 0.644
Fe2B 63 2.919 2.868 13.357 0.068 -0.244 4.078
CrPtB 63 2.850 3.124 14.749 0.069 -0.330 0.100
NiAuB 63 3.057 2.995 15.082 0.070 -0.095 0.002
NiPdB 63 3.044 2.965 14.116 0.070 -0.211 0.003
FeLiB 63 2.837 2.797 15.498 0.071 -0.180 0.356
CoMgB 63 2.930 2.834 16.933 0.072 -0.201 0.001
MnPtB 63 2.954 3.071 14.596 0.073 -0.340 2.441
CrTcB 63 2.888 2.915 14.819 0.075 -0.289 0.002
CrRhB 63 2.869 2.892 15.040 0.077 -0.295 0.005
NiZnB 63 2.973 2.788 14.808 0.078 -0.132 0.002
NiIrB 63 3.164 2.828 13.941 0.079 -0.139 0.016
CoPdB 63 3.017 2.847 14.528 0.081 -0.217 0.185
CoRhB 63 2.988 2.811 14.250 0.084 -0.191 0.006
MnCoB 63 2.930 2.891 13.195 0.084 -0.255 3.540
NiMnB 63 2.950 2.942 12.894 0.086 -0.278 2.448
CoLiB 63 2.962 2.679 15.351 0.087 -0.186 0.031
CoIrB 63 2.950 2.845 14.489 0.087 -0.186 0.000
MnZnB 63 2.872 2.868 14.626 0.087 -0.246 0.039
FePdB 63 2.946 2.938 14.740 0.088 -0.216 1.739
MnRhB 63 2.938 2.950 14.468 0.089 -0.273 2.236
MnPdB 63 2.958 3.015 14.701 0.090 -0.296 2.435
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CrPdB 63 2.913 2.982 14.950 0.091 -0.270 0.185
CoZnB 63 2.980 2.818 14.328 0.092 -0.181 0.002
FeRuB 63 2.863 2.854 14.744 0.095 -0.155 1.528
MnReB 63 2.832 2.790 15.606 0.096 -0.237 0.049
MnMgB 63 2.883 2.887 17.126 0.096 -0.237 0.265
FeNiB 63 2.957 2.896 12.742 0.097 -0.209 1.977
CoCrB 63 2.927 2.963 12.754 0.097 -0.254 1.379
FeRhB 63 2.913 2.866 14.666 0.098 -0.201 1.852

Fe2BeB2 65 2.749 2.904 9.947 0.000 -0.344 0.760
Mn2BeB2 65 2.815 2.846 9.969 0.000 -0.435 0.011
Fe2AlB2 65 2.851 2.916 11.019 0.000 -0.401 1.330
Mn2AlB2 65 2.831 2.894 11.080 0.000 -0.471 0.400
Cr2AlB2 65 2.932 2.924 11.051 0.000 -0.466 0.010
Cr2SiB2 65 2.931 2.923 10.441 0.029 -0.414 0.001
Cr2BeB2 65 2.911 2.895 9.911 0.034 -0.387 0.131
Cr2ReB2 65 2.916 2.885 11.474 0.034 -0.387 0.006
Fe2MgB2 65 2.849 2.895 12.019 0.035 -0.266 0.910
Co2BeB2 65 2.542 3.017 10.196 0.043 -0.300 0.016
Cr2TcB2 65 2.916 2.887 11.376 0.045 -0.385 0.005
Mn2IrB2 65 2.950 2.960 11.131 0.046 -0.354 2.068
Fe2ZnB2 65 2.853 2.905 11.158 0.054 -0.248 1.046
Cr2IrB2 65 2.933 2.876 11.456 0.055 -0.377 0.009
Ni2LiB2 65 2.667 2.999 11.874 0.058 -0.182 0.002
Ni2PtB2 65 2.962 3.028 10.878 0.060 -0.214 0.006
Co2AlB2 65 2.687 2.971 11.351 0.063 -0.347 0.149
Cr2FeB2 65 2.927 2.913 10.586 0.064 -0.357 1.334
Fe2IrB2 65 2.878 2.917 11.246 0.065 -0.236 1.684
Ni2CuB2 65 2.800 2.995 10.754 0.065 -0.133 0.001
Ni2ZnB2 65 2.819 2.977 11.145 0.066 -0.169 0.005
Cr3B2 65 2.884 2.901 10.773 0.066 -0.374 0.008
Fe2PtB2 65 2.914 2.974 11.188 0.067 -0.267 1.598
Cr2WB2 65 2.926 2.899 11.646 0.068 -0.353 0.007
Co2MgB2 65 2.795 2.932 12.069 0.069 -0.259 0.017
Cr2MoB2 65 2.929 2.903 11.593 0.071 -0.357 0.007
Mn2CoB2 65 2.909 2.934 10.500 0.071 -0.336 2.717
Mn2FeB2 65 2.906 2.926 10.588 0.071 -0.344 2.830
Mn2RhB2 65 2.947 2.961 11.070 0.071 -0.346 2.170
Fe3B2 65 2.840 2.931 10.679 0.074 -0.265 2.899

Cr2RuB2 65 2.917 2.882 11.312 0.075 -0.346 0.013
Cr2OsB2 65 2.916 2.883 11.372 0.077 -0.344 0.007
Mn2PtB2 65 3.015 2.984 11.158 0.067 -0.384 2.354
Fe2GaB2 65 2.877 2.944 10.995 0.078 -0.237 1.360
Ni2BeB2 65 2.712 2.964 10.174 0.080 -0.207 0.001
Ni2PdB2 65 2.928 3.019 10.958 0.080 -0.199 0.005
Mn2SiB2 65 2.734 2.937 10.668 0.081 -0.354 0.004
Mn2ReB2 65 2.907 2.926 11.306 0.081 -0.319 1.647
Cr2RhB2 65 2.934 2.877 11.407 0.082 -0.352 0.034
Cr2VB2 65 2.908 2.927 10.971 0.083 -0.475 0.005
Ni2AuB2 65 2.958 3.044 11.262 0.084 -0.114 0.014
Cr2CoB2 65 2.934 2.904 10.520 0.085 -0.336 1.111
Cr2NiB2 65 2.971 2.917 10.347 0.085 -0.344 0.009
Co2PtB2 65 2.819 3.059 11.026 0.085 -0.252 0.307
Cr2MnB2 65 2.885 2.878 10.698 0.087 -0.360 0.034
Fe2ReB2 65 2.826 2.870 11.552 0.088 -0.232 1.386
Fe2NiB2 65 2.862 2.941 10.376 0.090 -0.244 1.537
Mn2ScB2 65 2.891 2.873 12.668 0.092 -0.432 0.323
Cr2PtB2 65 3.061 2.881 11.283 0.093 -0.357 0.185
Fe2RhB2 65 2.886 2.911 11.204 0.095 -0.248 1.899
Mn2RuB2 65 2.929 2.938 11.061 0.096 -0.304 1.798
Mn2NiB2 65 2.910 2.953 10.404 0.096 -0.322 2.096
Mn2WB2 65 2.790 2.833 12.067 0.099 -0.328 0.006
Mn2TcB2 65 2.899 2.927 11.270 0.099 -0.320 1.605
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Cr3AlB4 47 2.939 2.939 8.091 0.000 -0.445 0.049
Cr3BeB4 47 2.915 2.916 7.571 0.011 -0.403 0.006
Mn3BeB4 47 2.911 2.830 7.591 0.025 -0.364 0.636
Cr3SiB4 47 2.954 2.918 7.787 0.035 -0.392 0.010
Mn3AlB4 47 2.937 2.834 8.164 0.038 -0.396 0.758
Fe3BeB4 47 2.953 2.792 7.586 0.047 -0.240 1.198
Fe3AlB4 47 2.961 2.818 8.149 0.065 -0.27975 1.255
Cr3IrB4 47 2.911 2.911 8.359 0.067 -0.37507 0.007
Cr3GaB4 47 2.948 2.950 8.100 0.071 -0.34263 0.099
Cr3ZnB4 47 2.932 2.944 8.162 0.083 -0.33128 0.200
Cr3PtB4 47 2.921 2.968 8.335 0.086 -0.36613 0.245
Fe3ZnB4 47 2.953 2.851 8.198 0.088 -0.19442 1.364
Fe3IrB4 47 2.949 2.854 8.245 0.091 -0.19070 1.436
Fe3MgB4 47 2.940 2.855 8.675 0.092 -0.21718 1.259
Mn3IrB4 47 2.963 2.966 8.165 0.093 -0.32952 2.219
Mn3PtB4 47 2.976 3.011 8.176 0.094 -0.33546 2.258
Mn3SiB4 47 2.982 2.824 7.826 0.095 -0.31629 0.975
Cr3B5 47 2.922 2.920 7.239 0.095 -0.33817 0.013

Mn3MgB4 47 2.911 2.887 8.683 0.098 -0.30260 0.526
Mn3GaB4 47 2.940 2.838 8.228 0.099 -0.29042 0.791
Cr3NiB4 47 2.936 2.944 7.785 0.099 -0.36333 0.019
Cr3ReB4 47 2.916 2.902 8.358 0.099 -0.37916 0.011
Fe3PtB4 47 2.961 2.888 8.264 0.099 -0.21703 1.450

Fe3Al2B2 65 2.872 2.912 16.537 0.033 -0.393 0.735
Mn3Al2B2 65 2.832 2.853 17.788 0.007 -0.406 0.962
Cr5B2 65 2.881 2.889 16.320 0.044 -0.277 0.006

Cr3Al2B2 65 2.950 2.936 17.311 0.046 -0.326 1.024
Mn3Ir2B2 65 3.012 2.979 17.063 0.050 -0.302 2.731
Mn3Rh2B2 65 3.022 2.981 16.960 0.052 -0.299 2.968
Co3Al2B2 65 2.781 2.931 16.884 0.056 -0.412 0.006
Fe5B2 65 2.854 2.914 16.253 0.057 -0.211 3.519

Ni3Pt2B2 65 2.969 3.077 16.525 0.059 -0.202 0.161
Co3Be2B2 65 2.596 2.894 15.185 0.066 -0.287 0.076
Fe3Be2B2 65 2.624 2.914 15.157 0.067 -0.266 0.879
Mn3Be2B2 65 2.787 2.820 15.315 0.068 -0.321 0.950
Mn3Co2B2 65 2.920 2.915 16.092 0.070 -0.248 3.321
Mn3Si2B2 65 2.808 2.883 16.009 0.071 -0.391 0.022
Co3Pt2B2 65 2.775 3.191 16.604 0.072 -0.195 0.477
Fe3Ir2B2 65 2.883 2.912 17.631 0.074 -0.174 2.108
Cr3V2B2 65 2.921 2.920 16.757 0.080 -0.397 0.002
Cr3W2B2 65 2.980 2.985 17.281 0.082 -0.232 0.004
Ni3Zn2B2 65 2.793 2.965 17.255 0.084 -0.174 0.004
Cr3Re2B2 65 2.945 2.940 17.330 0.084 -0.230 0.260
Mn3Pt2B2 65 2.946 2.940 18.452 0.087 -0.351 2.794
Ni3Al2B2 65 2.831 2.961 16.872 0.087 -0.368 0.000
Cr3Tc2B2 65 2.942 2.932 17.178 0.088 -0.229 0.234
Fe3Co2B2 65 2.859 2.900 16.112 0.088 -0.182 3.101
Cr3Mo2B2 65 2.977 2.976 17.263 0.089 -0.226 0.013
Fe3Zn2B2 65 2.816 2.874 17.849 0.090 -0.156 1.484
Fe3Si2B2 65 2.762 2.914 16.035 0.091 -0.315 0.819
Cr3Mn2B2 65 2.881 2.878 16.063 0.094 -0.240 0.000
Mn3Ga2B2 65 2.830 2.848 18.356 0.095 -0.249 1.111
Fe3Rh2B2 65 2.795 2.841 17.976 0.096 -0.172 2.168
Ni3Be2B2 65 2.615 2.945 15.349 0.100 -0.240 0.001

Fe4BeB4 71 2.821 2.918 17.513 0.000 -0.377 1.017
Fe4AlB4 71 2.870 2.927 18.565 0.000 -0.417 1.271
Mn4BeB4 71 2.878 2.899 17.591 0.000 -0.467 0.878
Fe4MgB4 71 2.875 2.932 19.626 0.000 -0.354 1.391
Cr4AlB4 71 2.939 2.920 18.856 0.000 -0.510 0.000
Mn4AlB4 71 2.889 2.929 18.591 0.000 -0.500 1.014
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Ni4ZnB4 71 2.880 2.992 18.517 0.000 -0.261 0.000
Fe4ZnB4 71 2.872 2.931 18.726 0.000 -0.348 1.326
Ni4CuB4 71 2.875 2.992 18.125 0.000 -0.227 0.000
Ni4PtB4 71 2.960 2.995 18.351 0.000 -0.267 0.001
Ni4AuB4 71 2.950 3.012 18.793 0.000 -0.224 0.000
Fe4GaB4 71 2.883 2.939 18.557 0.000 -0.343 1.288
Ni4PdB4 71 2.931 2.996 18.453 0.000 -0.266 0.001
Fe5B4 71 2.880 2.932 18.163 0.001 -0.354 2.135

Ni4CdB4 71 2.914 3.004 19.570 0.001 -0.219 0.001
Fe4IrB4 71 2.887 2.930 18.791 0.003 -0.332 1.530
Cr4BeB4 71 2.919 2.896 17.837 0.003 -0.465 0.002
Mn4IrB4 71 2.966 2.959 18.716 0.005 -0.439 2.004
Fe4NiB4 71 2.878 2.938 17.924 0.007 -0.346 1.453
Fe4PtB4 71 2.914 2.950 18.827 0.009 -0.344 1.565
Ni4AgB4 71 2.904 2.997 19.167 0.009 -0.211 0.000
Cr4SiB4 71 2.925 2.932 18.249 0.010 -0.470 0.000
Mn4FeB4 71 2.929 2.940 18.189 0.013 -0.439 2.237
Ni4BeB4 71 2.828 2.969 17.582 0.013 -0.257 0.000
Mn4CoB4 71 2.932 2.949 18.134 0.013 -0.435 2.246
Cr4ReB4 71 2.922 2.895 19.306 0.014 -0.454 0.001
Ni4LiB4 71 2.812 2.991 19.253 0.015 -0.252 0.000
Co4MgB4 71 2.823 2.994 19.214 0.019 -0.346 0.006
Cr4FeB4 71 2.925 2.914 18.438 0.019 -0.449 0.668
Mn4RhB4 71 2.966 2.962 18.697 0.019 -0.435 2.072
Fe4RhB4 71 2.887 2.933 18.798 0.020 -0.338 1.614
Mn4GaB4 71 2.906 2.946 18.573 0.021 -0.423 1.004
Mn4SiB4 71 2.885 2.974 17.913 0.022 -0.442 1.124
Cr4IrB4 71 2.927 2.895 19.312 0.023 -0.451 0.002
Co4AlB4 71 2.844 2.987 18.182 0.023 -0.387 0.001
Co4BeB4 71 2.787 2.999 17.096 0.024 -0.349 0.006
Cr4TcB4 71 2.924 2.898 19.231 0.024 -0.449 0.000
Fe4SiB4 71 2.869 2.938 17.935 0.025 -0.342 1.253
Ni5B4 71 2.884 2.984 17.819 0.025 -0.251 0.005

Fe4PdB4 71 2.901 2.941 18.845 0.025 -0.327 1.507
Fe4ReB4 71 2.871 2.898 19.036 0.026 -0.322 1.436
Co4ZnB4 71 2.817 3.010 18.275 0.027 -0.338 0.001
Mn4NiB4 71 2.943 2.959 18.024 0.027 -0.428 1.963
Cr4NiB4 71 2.947 2.908 18.228 0.027 -0.445 0.001
Cr5B4 71 2.903 2.905 18.629 0.028 -0.451 0.001

Fe4CoB4 71 2.882 2.933 18.044 0.028 -0.335 1.922
Mn4ReB4 71 2.932 2.947 18.884 0.028 -0.416 1.727
Cr4CoB4 71 2.932 2.912 18.356 0.029 -0.439 0.676
Cr4WB4 71 2.925 2.900 19.518 0.029 -0.439 0.000
Fe4LiB4 71 2.856 2.915 19.111 0.029 -0.306 1.385
Mn4ZnB4 71 2.919 2.918 18.694 0.030 -0.414 1.103
Co4PtB4 71 2.838 3.054 18.233 0.030 -0.339 0.001
Cr4GaB4 71 2.951 2.924 18.875 0.031 -0.437 0.000
Fe4CuB4 71 2.873 2.935 18.316 0.031 -0.304 1.437
Cr4MoB4 71 2.927 2.902 19.483 0.031 -0.442 0.001
Fe4MnB4 71 2.877 2.923 18.396 0.032 -0.351 2.163
Mn4MgB4 71 2.918 2.921 19.595 0.032 -0.412 0.983
Cr4VB4 71 2.916 2.919 18.857 0.033 -0.514 0.001
Mn4PtB4 71 2.989 2.978 18.796 0.034 -0.437 2.074
Fe4TcB4 71 2.875 2.904 18.986 0.036 -0.322 1.485
Cr4RhB4 71 2.930 2.893 19.287 0.036 -0.439 0.002
Cr4OsB4 71 2.923 2.896 19.189 0.038 -0.430 0.002
Cr4MnB4 71 2.906 2.893 18.541 0.038 -0.444 0.181
Fe4RuB4 71 2.882 2.922 18.768 0.038 -0.304 1.528
Mn4RuB4 71 2.956 2.953 18.649 0.039 -0.405 1.897
Cr4RuB4 71 2.924 2.895 19.153 0.039 -0.429 0.003
Mn4OsB4 71 2.953 2.953 18.676 0.040 -0.404 1.867
Fe4CdB4 71 2.882 2.939 20.057 0.041 -0.294 1.418
Fe4OsB4 71 2.879 2.916 18.762 0.042 -0.293 1.410
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Cr4ZnB4 71 2.944 2.912 18.995 0.042 -0.426 0.005
Ni4GaB4 71 2.931 3.005 18.282 0.043 -0.218 0.000
Ni4IrB4 71 2.922 2.984 18.389 0.045 -0.217 0.000
Ni4MgB4 71 2.883 2.986 19.384 0.045 -0.274 0.000
Mn4TcB4 71 2.934 2.949 18.842 0.046 -0.411 1.717
Ni4AlB4 71 2.880 2.986 18.490 0.046 -0.273 0.000
Co4NiB4 71 2.804 3.033 17.487 0.046 -0.328 0.024
Fe4AuB4 71 2.903 2.952 19.333 0.047 -0.288 1.461
Co4RhB4 71 2.828 3.015 18.211 0.049 -0.316 0.024
Cr4PtB4 71 2.977 2.900 19.288 0.049 -0.435 0.003
Fe4CaB4 71 2.897 2.947 21.118 0.050 -0.285 1.278
Mn5B4 71 2.922 2.941 18.363 0.051 -0.417 2.127
Fe4MoB4 71 2.861 2.896 19.370 0.052 -0.331 1.380
Co4GaB4 71 2.860 3.006 18.043 0.053 -0.321 0.001
Ni4NaB4 71 2.823 3.024 20.975 0.053 -0.177 0.000
Co4PdB4 71 2.836 3.024 18.360 0.054 -0.319 0.003
Fe4WB4 71 2.864 2.890 19.388 0.057 -0.323 1.387
Co4IrB4 71 2.849 3.006 18.193 0.057 -0.308 0.016
Mn4WB4 71 2.858 2.903 19.560 0.057 -0.403 1.084
Ni4InB4 71 2.958 3.024 19.418 0.057 -0.163 0.000
Mn4PdB4 71 2.976 2.967 18.895 0.060 -0.402 2.017
Cr4ScB4 71 2.964 2.934 20.212 0.061 -0.468 0.007
Mn4ScB4 71 2.923 2.913 20.264 0.062 -0.487 0.981
Fe4InB4 71 2.891 2.947 19.867 0.063 -0.272 1.300
Ni4HgB4 71 2.945 3.018 19.498 0.066 -0.154 0.000
Fe4B5 71 2.839 2.938 16.717 0.066 -0.269 1.046

Fe4AgB4 71 2.882 2.933 19.644 0.066 -0.269 1.419
Ni4RhB4 71 2.904 2.988 18.424 0.067 -0.240 0.001
Mn4MoB4 71 2.861 2.902 19.542 0.068 -0.406 1.064
Mn4TaB4 71 2.878 2.894 19.978 0.068 -0.470 0.955
Fe4NbB4 71 2.863 2.907 19.876 0.068 -0.381 1.298
Co4LiB4 71 2.776 2.984 18.980 0.068 -0.297 0.041
Cr4NbB4 71 2.937 2.907 20.085 0.069 -0.464 0.000
Cr4B5 71 2.917 2.906 17.160 0.070 -0.415 0.003

Co4CuB4 71 2.799 3.026 17.758 0.070 -0.295 0.001
Mn4NbB4 71 2.885 2.894 20.064 0.071 -0.458 0.945
Cr4PdB4 71 2.967 2.907 19.260 0.071 -0.401 0.006
Cr4MgB4 71 2.962 2.920 19.743 0.071 -0.397 0.001
Cr4TaB4 71 2.932 2.908 19.968 0.072 -0.480 0.001
Fe4ScB4 71 2.863 2.937 20.181 0.072 -0.416 1.154
Co5B4 71 2.792 3.032 17.541 0.073 -0.292 0.431
Fe4TaB4 71 2.857 2.907 19.773 0.073 -0.386 1.241
Co4CdB4 71 2.847 3.007 19.419 0.075 -0.290 0.001
Mn4YB4 71 2.954 2.938 21.025 0.075 -0.401 0.958
Mn4CuB4 71 2.932 2.951 18.281 0.075 -0.369 1.615
Cr4TiB4 71 2.937 2.932 19.267 0.075 -0.530 0.002
Mn4B5 71 2.888 2.937 16.811 0.078 -0.379 1.069
Fe4CrB4 71 2.868 2.917 18.422 0.080 -0.309 1.811
Co4AuB4 71 2.860 3.035 18.681 0.080 -0.285 0.003
Cr4CuB4 71 2.944 2.910 18.580 0.082 -0.386 0.037
Mn4VB4 71 2.863 2.931 18.869 0.083 -0.459 1.144
Co4FeB4 71 2.765 3.047 17.871 0.084 -0.290 0.753
Co4ReB4 71 2.811 2.985 18.529 0.084 -0.285 0.000
Fe4YB4 71 2.906 2.965 20.832 0.085 -0.334 1.243
Fe4VB4 71 2.870 2.912 18.813 0.086 -0.374 1.592
Co4CaB4 71 2.837 3.014 20.640 0.087 -0.278 0.245
Fe4GeB4 71 2.903 2.961 18.490 0.088 -0.247 1.372
Mn4CdB4 71 2.915 2.918 20.248 0.088 -0.356 0.926
Mn4AuB4 71 2.973 2.972 19.285 0.089 -0.355 1.781
Ni4FeB4 71 2.874 2.976 18.178 0.090 -0.214 0.633
Mn4CrB4 71 2.897 2.940 18.401 0.090 -0.384 1.619
Co4TcB4 71 2.805 2.993 18.540 0.091 -0.285 0.002
Mn4LiB4 71 2.902 2.904 18.789 0.092 -0.352 0.881
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Mn4InB4 71 2.928 2.930 20.097 0.092 -0.352 1.039
Co4RuB4 71 2.830 3.002 18.227 0.093 -0.272 0.003
Co4MnB4 71 2.768 3.024 18.463 0.094 -0.292 0.960
Ni4B5 71 2.962 2.987 16.367 0.096 -0.124 0.000

Cr4AlB6 65 2.943 2.947 21.328 0.012 -0.422 0.003
Cr4BeB6 65 2.925 2.932 20.320 0.020 -0.391 0.013
Cr4SiB6 65 2.924 2.961 20.743 0.043 -0.377 0.018
Mn4BeB6 65 2.853 2.935 20.351 0.044 -0.341 0.912
Mn4AlB6 65 2.869 2.948 21.493 0.055 -0.362 1.071
Cr4IrB6 65 2.930 2.930 21.783 0.060 -0.371 0.008
Cr4GaB6 65 2.955 2.955 21.334 0.062 -0.349 0.003
Cr4ZnB6 65 2.951 2.943 21.439 0.066 -0.345 0.004
Cr4PtB6 65 2.969 2.938 21.766 0.069 -0.370 0.158
Cr4CuB6 65 2.947 2.941 21.072 0.079 -0.332 0.008
Cr4NiB6 65 2.943 2.943 20.747 0.080 -0.365 0.023
Cr4MgB6 65 2.958 2.942 22.329 0.082 -0.339 0.004
Cr4B7 65 2.929 2.938 19.646 0.085 -0.339 0.011

Mn4IrB6 65 2.939 2.960 21.583 0.089 -0.319 1.973
Mn4PtB6 65 2.958 2.965 21.737 0.092 -0.322 2.033
Cr4PdB6 65 2.965 2.940 21.726 0.092 -0.348 0.036
Cr4OsB6 65 2.918 2.932 21.731 0.093 -0.348 0.004
Fe4BeB6 65 2.803 2.970 20.364 0.093 -0.184 1.242
Mn4SiB6 65 2.909 2.964 20.680 0.094 -0.307 1.321
Mn4ZnB6 65 2.893 2.938 21.635 0.094 -0.291 1.085
Mn4GaB6 65 2.884 2.953 21.564 0.097 -0.288 1.153
Cr4FeB6 65 2.930 2.950 20.905 0.099 -0.366 0.726
Mn4MgB6 65 2.897 2.935 22.512 0.099 -0.303 0.996
Cr4AuB6 65 2.961 2.945 22.225 0.100 -0.311 0.011

Cr5B3 140 5.431 5.431 9.923 0.000 -0.418 0.000
Fe5BeB2 140 5.455 5.455 9.914 0.000 -0.292 1.932
Fe5SiB2 140 5.509 5.509 10.299 0.003 -0.359 1.731
Mn5SiB2 140 5.559 5.559 10.293 0.003 -0.415 1.583
Cr5BeB2 140 5.500 5.500 10.002 0.008 -0.313 0.001
Fe5B3 140 5.337 5.337 9.959 0.020 -0.308 1.837

Mn5GeB2 140 5.624 5.624 10.504 0.020 -0.303 1.731
Fe5GeB2 140 5.553 5.553 10.576 0.024 -0.242 1.825
Ni5SiB2 140 5.510 5.510 10.110 0.031 -0.367 0.002
Cr5PB2 140 5.537 5.537 10.317 0.033 -0.474 0.022
Fe5PB2 140 5.444 5.444 10.303 0.033 -0.392 1.705
Mn5PB2 140 5.509 5.509 10.287 0.033 -0.480 1.665
Ni5B3 140 5.191 5.191 10.296 0.036 -0.253 0.000
Mn5B3 140 5.352 5.352 9.990 0.037 -0.391 1.433
Cr5AsB2 140 5.603 5.603 10.619 0.038 -0.292 0.098
Ni5BeB2 140 5.443 5.443 9.757 0.039 -0.299 0.000
Mn5BeB2 140 5.456 5.456 9.916 0.040 -0.309 1.337
Co5GeB2 140 5.545 5.545 10.187 0.040 -0.224 0.462
Co5SiB2 140 5.484 5.484 9.942 0.042 -0.337 0.394
Fe5AsB2 140 5.536 5.536 10.652 0.044 -0.244 1.807
Co5BeB2 140 5.451 5.451 9.487 0.045 -0.238 0.680
Ni5PB2 140 5.412 5.412 10.334 0.045 -0.356 0.000
Ni5AsB2 140 5.514 5.514 10.609 0.054 -0.246 0.001
Ni5GeB2 140 5.559 5.559 10.372 0.055 -0.267 0.001
Ni5GaB2 140 5.568 5.568 10.336 0.056 -0.273 0.000
Cr5SiB2 140 5.586 5.586 10.359 0.061 -0.384 0.023
Fe5GaB2 140 5.583 5.583 10.507 0.062 -0.219 1.885
Ni5LiB2 140 5.598 5.598 9.565 0.065 -0.179 0.000
Co5B3 140 5.169 5.169 10.115 0.070 -0.238 0.549

Co5AsB2 140 5.510 5.510 10.283 0.070 -0.212 0.242
Cr5GeB2 140 5.623 5.623 10.571 0.070 -0.259 0.009
Mn5GaB2 140 5.626 5.626 10.502 0.074 -0.253 1.616
Fe5AlB2 140 5.570 5.570 10.436 0.076 -0.241 1.830
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Co5GaB2 140 5.566 5.566 10.095 0.076 -0.201 0.620
Ni5ZnB2 140 5.611 5.611 10.138 0.078 -0.209 0.001
Co5PB2 140 5.279 5.279 10.477 0.080 -0.357 0.409
Cr5CB2 140 5.364 5.364 9.960 0.083 -0.232 0.003
Ni5SnB2 140 5.361 5.361 12.718 0.088 -0.196 0.001
Cr5CoB2 140 5.602 5.602 10.063 0.090 -0.192 0.010
Cr5NiB2 140 5.611 5.611 10.084 0.090 -0.192 0.000
Ni5AlB2 140 5.581 5.581 10.177 0.096 -0.311 0.001
Fe5ZnB2 140 5.605 5.605 10.364 0.098 -0.142 1.996
Ni5InB2 140 5.356 5.356 12.785 0.098 -0.174 0.000
Co5ZnB2 140 5.590 5.590 9.972 0.099 -0.110 0.699

Fe3Al2B2 10 5.685 2.833 8.593 0.000 -0.426 0.523
Fe3Pt2B2 10 6.221 2.829 8.657 0.091 -0.216 2.059
Mn3Al2B2 10 5.745 2.877 8.524 0.003 -0.410 0.420
Co3Be2B2 10 5.264 2.587 8.327 0.004 -0.349 0.050
Co3Mg2B2 10 6.309 2.806 8.722 0.006 -0.232 0.013
Fe3Be2B2 10 5.239 2.705 8.066 0.006 -0.327 0.402
Ni3Li2B2 10 6.234 2.721 8.582 0.011 -0.201 0.000
Co3Zn2B2 10 6.007 2.743 8.472 0.029 -0.224 0.012
Co3Al2B2 10 5.812 2.781 8.555 0.031 -0.437 0.106
Ni3Zn2B2 10 6.009 2.768 8.591 0.037 -0.221 0.000
Mn3Re2B2 10 6.114 2.775 8.533 0.038 -0.279 0.024
Fe3Re2B2 10 6.119 2.737 8.574 0.043 -0.214 0.617
Mn3Be2B2 10 5.268 2.826 7.835 0.043 -0.346 0.003
Cr3Re2B2 10 5.894 2.920 8.735 0.046 -0.268 0.005
Ni3Pt2B2 10 6.056 2.903 8.580 0.048 -0.213 0.002
Cr3Tc2B2 10 5.848 2.918 8.702 0.053 -0.264 0.017
Ni3Be2B2 10 5.386 2.660 8.271 0.057 -0.283 0.000
Fe5B2 10 5.558 2.861 8.483 0.059 -0.210 3.349

Ni3Cu2B2 10 5.779 2.804 8.395 0.065 -0.140 0.000
Co3Y2B2 10 6.735 3.047 9.550 0.067 -0.279 0.020
Cr3Al2B2 10 5.916 2.957 8.384 0.067 -0.305 0.007
Mn3Tc2B2 10 6.055 2.780 8.508 0.069 -0.268 0.029
Fe3Ir2B2 10 6.082 2.827 8.507 0.071 -0.178 1.851
Cr3Os2B2 10 5.976 2.883 8.588 0.071 -0.243 0.004
Fe3Tc2B2 10 6.078 2.734 8.532 0.071 -0.211 0.616
Cr5B2 10 5.553 2.883 8.553 0.076 -0.245 0.006

Cr3Ru2B2 10 5.951 2.880 8.532 0.078 -0.236 0.002
Fe3Mo2B2 10 6.285 2.700 8.604 0.078 -0.208 0.046
Fe3Zn2B2 10 6.030 2.803 8.425 0.079 -0.167 1.130
Ni3Mg2B2 10 6.276 2.870 8.855 0.079 -0.254 0.001
Ni3Pd2B2 10 6.002 2.902 8.572 0.083 -0.193 0.000
Fe3W2B2 10 6.276 2.703 8.640 0.083 -0.197 0.066
Fe3Rh2B2 10 6.023 2.848 8.521 0.084 -0.184 2.233
Fe3Co2B2 10 5.589 2.824 8.345 0.084 -0.186 2.794
Cr3Mn2B2 10 5.594 2.848 8.356 0.085 -0.249 0.011
Ni3Al2B2 10 5.848 2.817 8.626 0.085 -0.370 0.001
Cr3Ir2B2 10 6.216 2.816 8.544 0.088 -0.303 0.046
Mn3Ir2B2 10 6.090 2.843 8.545 0.089 -0.263 1.391
Co3Pt2B2 10 6.134 2.815 8.587 0.091 -0.176 0.663
Mn3Co2B2 10 5.534 2.935 8.434 0.091 -0.227 3.310
Co3Tc2B2 10 6.087 2.690 8.602 0.092 -0.172 0.281
Mn3Os2B2 10 6.077 2.758 8.549 0.095 -0.221 0.211
Cr3W2B2 10 5.891 2.969 8.866 0.096 -0.218 0.009
Cr3Mo2B2 10 5.861 2.968 8.869 0.096 -0.219 0.007
Mn3Si2B2 10 5.398 2.818 8.550 0.096 -0.366 0.016
Co3Rh2B2 10 5.987 2.786 8.542 0.097 -0.139 1.060
Co3Fe2B2 10 5.629 2.705 8.674 0.098 -0.160 2.565
Mn3Rh2B2 10 6.029 2.914 8.477 0.098 -0.242 2.156
Co3Re2B2 10 6.106 2.724 8.587 0.098 -0.159 0.032
Co5B2 10 5.633 2.629 8.641 0.099 -0.136 1.905
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Co4Be3B2 123 7.586 7.586 2.586 0.000 -0.395 0.001
Fe4Al3B2 123 8.083 8.083 2.791 0.000 -0.411 0.001
Ni4Li3B2 123 8.049 8.049 2.734 0.000 -0.203 0.000
Fe4Be3B2 123 7.487 7.487 2.697 0.028 -0.287 0.530
Fe7B2 123 7.917 7.917 2.875 0.037 -0.171 3.606

Co4Zn3B2 123 8.273 8.273 2.679 0.042 -0.162 0.003
Ni4Be3B2 123 7.643 7.643 2.649 0.049 -0.320 0.001
Mn4V3B2 123 8.067 8.067 2.850 0.063 -0.384 0.198
Co4Al3B2 123 8.181 8.181 2.736 0.063 -0.437 0.420
Mn4Cr3B2 123 7.948 7.948 2.786 0.072 -0.197 0.250
Ni4Zn3B2 123 8.398 8.398 2.687 0.074 -0.187 0.000
Co4Fe3B2 123 8.118 8.118 2.640 0.075 -0.145 2.677
Co4Mg3B2 123 8.486 8.486 2.791 0.075 -0.112 0.001
Mn4Al3B2 123 8.250 8.250 2.823 0.075 -0.306 1.181
Co7B2 123 8.146 8.146 2.571 0.075 -0.107 2.106

Ni4Cu3B2 123 8.282 8.282 2.614 0.085 -0.111 0.000
Cr7B2 123 7.963 7.963 2.890 0.086 -0.163 0.020

Ni4Pt3B2 123 8.479 8.479 2.838 0.087 -0.138 0.002
Fe4Co3B2 123 7.855 7.855 2.851 0.088 -0.136 3.111
Mn7B2 123 7.937 7.937 2.764 0.089 -0.180 1.288
Ni7B2 123 7.482 7.482 3.099 0.091 -0.146 0.007

Table S�.: Comparing the current MAB results with previous predicted results from Ref. [���]

Compounds Space Group Lattice Constant (Å) Convex Hull (eV/atom) Sourcea b c
CrAlB 63 2.969 3.004 13.881 0.011 This work

2.969 3.003 13.889 0.008 Ref. [174]
MnAlB 63 2.988 2.953 13.908 0.066 This work

2.989 2.955 13.859 0.065 Ref. [174]
Cr2AlB2 65 2.932 2.924 11.051 0 This work

2.934 2.924 11.051 0 Ref. [174]
Mn2AlB2 65 2.831 2.894 11.080 0 This work

2.831 2.896 11.074 0 Ref. [174]
Fe2AlB2 65 2.851 2.916 11.019 0 This work

2.853 2.917 11.024 0 Ref. [174]
Cr3Al2B2 65 2.950 2.936 17.311 0.046 This work

2.951 2.936 17.313 0.038 Ref. [174]
Mn3Al2B2 65 2.832 2.853 17.788 0.007 This work

2.833 2.851 17.863 0.004 Ref. [174]
Fe3Al2B2 65 2.872 2.912 16.537 0.033 This work

2.875 2.913 16.536 0 Ref. [174]
Ni3Al2B2 65 2.831 2.961 16.872 0.087 This work

2.840 2.962 16.926 0.084 Ref. [174]
Cr3AlB4 47 2.939 2.939 8.091 0 This work

2.939 2.939 8.088 0 Ref. [174]
Mn3AlB4 47 2.937 2.834 8.164 0.038 This work

2.937 2.835 8.153 0.036 Ref. [174]
Fe3AlB4 47 2.961 2.818 8.149 0.065 This work

2.960 2.819 8.144 0.063 Ref. [174]
Cr4AlB6 65 2.943 2.947 21.328 0.012 This work

2.944 2.947 21.325 0.008 Ref. [174]

Here, we found that there are two kind of AFM structures (interlayer and intralayer)
existing in 212-type MAB phase, as shown in Figure S2.
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MnBeB Cr2AlB2 Mn2BeB2 Cr3AlB4

Cr4AlB6 Cr4AlB4 Ni4ZnB4 Ni4PtB4

Ni4PdB4 Ni4CuB4 Ni4AuB4 Co4Be3B2

Ni4Li3B2 Fe4Al3B2 Cr5B3 Cr5PB2

Figure S�.: Density of states of predicted non-magnetic MAB phases.

Figure S�.: Antiferromagnetic structure of ���-type MAB (a) intralyer: the antiferro-
magnetic direction exists in two layers; (b) interlayer: the antiferromagnetic
direction exists in single layer. The red arrow presents magnetic direction.
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Table S�.: The magnetic ground state of stable ���-MAB phases.
Compounds AFM-1(interlayer) AFM-2 (intralayer) FM NM
Co2AlB2 -65.88683765 -65.88739406 -65.89295922 -65.88713772
Fe2BeB2 -70.64633821 -70.819765 -70.70739773 -70.62268063
Mn2BeB2 -74.58037508 -74.580124 -74.58040138 -74.58040414
Fe2AlB2 -71.13230669 -71.09418939 -71.22404215 -70.89307686
Mn2AlB2 -74.8532619 -74.98085613 -74.88387864 -74.84775026
Cr2AlB2 -76.85518352 -76.86093353 -76.85519078 -76.86519042
Cr2SiB2 -79.71707885 -79.7170405 -79.71708159 -79.71708801
Cr2BeB2 -76.13809946 -76.13763057 -76.13897144 -76.13825155
Cr2ReB2 -93.44839084 -93.44947192 -93.4483936 -93.4484053
Fe2MgB2 -65.35932093 -65.487255 -65.40892677 -65.22253462
Co2BeB2 -65.46095924 -65.46052103 -65.46096941 -65.46096508
Cr2TcB2 -89.32741701 -89.32863 -89.32741413 -89.32742021
Mn2IrB2 -84.04569417 -83.71480308 -83.93695103 -83.29687721
Fe2ZnB2 -64.29285113 -64.3351 -64.4243543 -64.06986852
Cr2IrB2 -86.19893738 -86.19928 -86.19893654 -86.19894242
Ni2LiB2 -54.27823214 -54.277735 -54.27824987 -54.27825027
Ni2PtB2 -62.98827476 -62.98661738 -62.98827225 -62.98825967
Cr2FeB2 -84.74945681 -84.74946883 -84.77690838 -84.2112152
Fe2IrB2 -79.92897498 -79.74748988 -79.79422707 -79.42577378
Ni2CuB2 -57.44034817 -57.43990365 -57.44036768 -57.44036423
Ni2ZnB2 -52.56202703 -52.56513507 -52.56201213 -52.56202985
Cr3B2 -87.43351322 -87.43396514 -87.43798357 -87.43751847
Fe2PtB2 -74.70423426 -74.62013806 -74.59938047 -74.22282814
Cr2WB2 -94.30228641 -94.29669283 -94.30228909 -94.30228437
Co2MgB2 -60.52900881 -60.52999946 -60.52899462 -60.52898785
Cr2MoB2 -90.20335062 -90.19891642 -90.20335146 -90.20335561
Mn2CoB2 -79.69489999 -79.35527983 -80.1317531 -78.96686236
Mn2FeB2 -81.85999957 -81.93613345 -82.61290818 -81.17754211
Mn2RhB2 -80.76741383 -80.42217598 -80.70689175 -80.09631274
Fe3B2 -78.20603462 -77.97281357 -78.85399875 -77.44795282
Cr2RuB2 -86.69911492 -86.70007 -86.69911455 -86.69911566
Cr2OsB2 -90.66864023 -90.668995 -90.66864015 -90.66865212
Mn2PtB2 -78.79303215 -78.45515068 -78.58993224 -77.82327552
Fe2GaB2 -67.88642365 -67.75845476 -67.92364477 -67.62770421
Ni2BeB2 -58.26200763 -58.26036285 -58.26200875 -58.2619976
Ni2PdB2 -61.07432402 -61.0729872 -61.07429402 -61.0742564
Mn2SiB2 -77.09190803 -77.26047303 -77.09190222 -77.09192171
Mn2ReB2 -90.6081387 -90.7066324 -90.74289642 -90.60827896
Cr2RhB2 -82.79945631 -82.799195 -82.79944198 -82.79945691
Cr2VB2 -87.46225672 -87.46198938 -87.46225834 -87.46226062
Ni2AuB2 -56.23165208 -56.22294795 -56.2316556 -56.23166659
Cr2CoB2 -82.01197093 -82.01197657 -82.16236059 -81.79494385
Cr2NiB2 -79.102105 -79.10211 -79.10212617 -79.10191962
Co2PtB2 -69.63778263 -69.65924301 -69.63859647 -69.63785776
Cr2MnB2 -86.38774777 -86.389125 -86.28089684 -86.28099021
Fe2ReB2 -86.89963676 -86.69655193 -86.90407834 -86.44485698
Fe2NiB2 -73.2030513 -73.05261169 -73.10598643 -72.71702075
Mn2ScB2 -79.49799809 -79.47839842 -79.51282108 -79.48712127
Cr2PtB2 -80.49575377 -80.496715 -80.49590885 -80.49575249
Fe2RhB2 -76.83798018 -76.64636958 -76.77048282 -76.27060534
Mn2RuB2 -84.07773177 -84.02944525 -84.24640701 -83.72690734
Mn2NiB2 -77.03817855 -76.59623733 -76.85380813 -76.52395167
Mn2WB2 -92.01502458 -92.015225 -92.01504492 -92.01504981
Mn2TcB2 -86.50318745 -86.60635618 -86.64415689 -86.50455953
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Figure S�.: Phonon bands of unreported MAB and non-MAB phases.
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Figure S�.: Elements are color-coded as a function of the number of stable com-
pounds with the respective element on the A sites. (Above) Histogram
representation of number of stable compounds of different systems calcu-
lated in this work, purple bar means MAB phases and yellow bar means
non-MAB phases.

Table S�.: The novel MAB and non-MAB phases with |Ki� j|> 1 MJ/m3.

Compounds Space Group MAE (MJ/m3) Magnetic moment (µB/f.u) Magnetic density (emu/cm3)K001�100 K001�010 K010�100

CoCrB 63 -1.884 -1.884 0.000 5.514 462.330
Fe2B 63 2.230 1.865 0.365 16.310 1.352.627
FeIrB 63 -2.627 -1.258 -1.369 5.805 436.918
FeNiB 63 0.834 -0.654 1.488 7.909 672.329
FePtB 63 -3.421 7.225 -10.646 7.550 542.026
FeRhB 63 2.528 0.309 2.220 7.409 561.255
FeZnB 63 0.300 -1.997 2.297 4.602 351.641
CoMnB 63 1.292 1.743 -0.451 14.160 1.174.969
MnIrB 63 4.135 8.049 -3.914 7.967 584.998
MnNiB 63 1.245 1.767 -0.521 9.792 811.435
MnPdB 63 0.790 1.592 -0.802 9.739 688.735
MnPtB 63 9.126 11.969 -2.843 9.763 683.691
MnRhB 63 2.863 4.016 -1.153 8.943 661.411
Co2PtB2 65 -2.412 -3.102 0.690 1.228 119.739
Fe2AlB2 65 -1.110 0.031 -1.141 5.319 538.463
Fe2BeB2 65 -1.917 -0.047 -1.869 3.043 355.462
Fe3B2 65 0.245 1.666 -1.421 11.596 1.209.796

Fe2GaB2 65 -1.122 0.096 -1.218 5.439 541.505
Fe2IrB2 65 5.056 7.245 -2.190 6.736 661.715
Fe2MgB2 65 -2.438 0.470 -2.908 3.640 340.502
Fe2NiB2 65 -2.443 0.010 -2.453 6.147 652.780
Fe2PtB2 65 -3.924 1.211 -5.135 6.392 611.442
Fe2ReB2 65 -4.958 -8.999 4.042 5.541 548.443
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Fe2RhB2 65 0.619 1.838 -1.219 7.597 748.423
Fe2ZnB2 65 -1.919 0.636 -2.555 4.183 419.456
Mn2CoB2 65 1.981 1.756 0.225 10.868 1.124.732
Mn2FeB2 65 1.446 1.565 -0.119 11.320 1.165.646
Mn2IrB2 65 1.803 -2.559 4.362 8.270 789.006
Mn2NiB2 65 1.407 0.101 1.305 8.382 869.483
Mn2PtB2 65 20.271 20.271 0.000 9.414 869.433
Mn2ReB2 65 -8.247 -2.133 -6.114 6.589 635.442
Mn2RhB2 65 1.609 1.609 0.000 8.678 833.085
Mn2TcB2 65 -1.424 -0.811 -0.613 6.417 622.289
Fe3BeB4 47 -1.672 0 1.672 3.594 532.907
Fe3IrB4 47 1.021 -5.786 -6.807 4.307 575.519
Fe3MgB4 47 -1.054 -0.099 0.954 3.778 481.034
Fe3PtB4 47 -1.921 7.214 9.134 4.350 570.827
Fe3ZnB4 47 -1.324 -0.056 1.269 4.093 550.002
Mn3IrB4 47 0.965 -3.888 -4.853 6.657 860.514
Mn3PtB4 47 -3.324 -8.892 -5.568 6.773 857.270
Mn4AlB6 65 -1.123 -1.123 0.000 8.566 436.975
Mn4GaB6 65 -1.004 0.010 -1.014 9.221 465.665
Mn4IrB6 65 3.816 3.768 0.047 15.786 779.608
Mn4PtB6 65 6.258 4.738 1.519 16.260 790.929
Mn4ZnB6 65 -0.892 0.149 -1.041 8.680 437.764
Co3Pt2B2 65 -2.429 -1.745 -0.685 2.864 180.640
Co3Pt2B2 65 -2.429 -1.745 -0.685 2.864 180.640
Fe3Al2B2 65 -1.420 0.066 -1.487 4.410 295.705
Fe3Be2B2 65 -2.012 -2.012 0.000 5.274 421.961
Fe3Co2B2 65 -0.159 1.158 -1.317 18.609 1.291.798
Fe5B2 65 0.774 1.528 -0.754 21.114 1.448.993

Fe3Ir2B2 65 8.212 6.782 1.430 12.651 792.503
Fe3Rh2B2 65 0.131 1.027 -0.896 13.009 845.070
Fe3Zn2B2 65 -3.001 -1.361 -1.640 8.907 571.752
Mn3Al2B2 65 -0.197 0.950 -1.148 5.771 372.455
Mn3Co2B2 65 1.788 1.666 0.122 19.929 1.348.995
Mn3Ir2B2 65 -10.171 -7.582 -2.589 16.385 992.463
Mn3Pt2B2 65 6.415 4.767 1.648 16.765 972.699
Mn4PtB4 71 11.948 -1.550 13.498 16.588 919.450
Fe4OsB4 71 4.573 -3.677 8.251 11.281 664.139
Fe4IrB4 71 7.789 4.471 3.318 12.238 714.201
Fe4ReB4 71 -7.417 -1.875 -5.543 11.486 672.519
Fe4TaB4 71 1.785 6.706 -4.921 9.930 560.842
Co4IrB4 71 -6.061 -3.840 -2.221 0.129 7.657
Mn4IrB4 71 -5.757 -3.647 -2.109 16.027 905.022
Mn4ReB4 71 0.411 4.484 -4.073 13.815 785.087
Mn4OsB4 71 -3.608 -0.049 -3.560 14.938 850.492
Fe4AuB4 71 0.570 3.051 -2.481 11.687 654.290
Fe4WB4 71 2.543 2.647 -0.103 11.096 641.107
Fe4AgB4 71 0.927 2.465 -1.538 11.353 633.953
Fe4PdB4 71 0.098 2.453 -2.355 12.053 695.196
Fe4TcB4 71 -0.746 1.474 -2.220 11.881 695.087
Fe4ZnB4 71 0.311 2.213 -1.902 10.608 624.239
Fe4CuB4 71 0.375 2.059 -1.684 11.498 690.269
Fe4NbB4 71 0.528 2.038 -1.511 10.379 581.800
Fe4CdB4 71 1.125 2.030 -0.905 11.340 619.058
Fe4RuB4 71 1.976 1.591 0.385 12.221 717.097
Fe4B5 71 -0.741 1.231 -1.973 8.371 556.735

Fe4MgB4 71 1.086 1.942 -0.856 11.129 623.970
Fe4MoB4 71 0.857 1.809 -0.952 11.036 637.712
Co4FeB4 71 1.379 -0.420 1.799 6.020 370.788
Fe4NiB4 71 0.243 1.776 -1.533 11.622 711.144
Fe4LiB4 71 0.710 1.774 -1.064 11.077 645.627
Mn4CoB4 71 1.568 -0.188 1.756 17.969 1.062.915
Mn4AuB4 71 1.749 0.153 1.596 14.244 775.212
Fe4VB4 71 -0.111 1.511 -1.622 12.732 750.986
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Fe4CrB4 71 0.151 1.591 -1.439 14.488 871.794
Fe4RhB4 71 1.582 1.526 0.056 12.909 752.215
Co4MnB4 71 1.562 0.209 1.353 7.677 460.624
Fe4InB4 71 0.156 1.560 -1.404 10.395 569.677
Fe5B4 71 1.017 1.497 -0.480 17.079 1.032.848

Mn4FeB4 71 1.491 0.226 1.265 17.898 1.059.765
Mn4PdB4 71 1.202 -0.237 1.439 16.137 8.971.075
Fe4BeB4 71 -0.182 1.253 -1.435 8.133 523.344
Fe4MnB4 71 0.982 1.326 -0.344 17.299 1.036.999
Fe4GaB4 71 0.170 1.235 -1.065 10.306 607.816
Fe4CoB4 71 0.792 1.209 -0.416 15.379 934.922
Fe4GeB4 71 0.029 1.182 -1.153 10.975 640.336
Fe4AlB4 71 0.063 1.153 -1.090 10.166 604.617
Mn4VB4 71 0.513 -0.616 1.130 9.149 535.797
Mn5B4 71 1.090 0.352 0.738 17.017 999.941

Mn4RhB4 71 0.335 -0.685 1.019 16.572 935.596
Fe4YB4 71 0.575 1.014 -0.438 9.945 513.817
Co5BeB2 140 1.810 1.810 0 13.608 447.646
Co5ZnB2 140 1.689 1.689 0 13.972 415.771
Fe5ZnB2 140 1.889 1.889 0 39.919 1.136.984
Co3Fe2B2 10 1.072 0.000 -1.072 15.387 1.080.426
Co3Pt2B2 10 4.492 1.922 -2.570 3.979 249.501
Fe3Ir2B2 10 3.395 7.741 4.346 11.105 706.387
Fe3Pt2B2 10 4.931 2.545 -2.386 12.353 755.315
Fe3Rh2B2 10 -0.115 1.043 1.157 13.396 852.345
Fe3Zn2B2 10 -1.503 -0.368 1.135 6.781 443.081
Mn3Co2B2 10 1.210 0.628 -0.582 19.858 1.342.777
Mn3Ir2B2 10 5.313 0.000 -5.313 8.346 525.648
Mn3Rh2B2 10 -0.846 -1.380 -0.533 12.938 807.529
Co4Fe3B2 123 1.156 1.156 0.000 21.417 1.141.436

Table S�.: The novel MAB and non-MAB phases with uniaxial MAE.

Compounds Space Group MAE (MJ/m3)
K001�100 K001�010 K010�100

CoCrB 63 Out-of-plane -1.884 -1.884 0.000
FeIrB 63 Out-of-plane -2.627 -1.258 -1.369
MnPtB 63 In-plane 9.126 11.969 -2.843
MnRhB 63 In-plane 2.863 4.016 -1.153
Fe2B 63 In-plane 2.230 1.865 0.365

CoMnB 63 In-plane 1.292 1.743 -0.451
MnNiB 63 In-plane 1.245 1.767 -0.521
Co2PtB2 65 Out-of-plane -2.412 -3.102 0.690
Fe2ReB2 65 Out-of-plane -4.958 -8.999 4.042
Mn2CoB2 65 In-plane 1.981 1.756 0.225
Mn2RhB2 65 In-plane 1.609 1.609 0.000
Mn2FeB2 65 In-plane 1.446 1.565 -0.119
Cr2CoB2 65 In-plane 0.697 0.697 0.000
Cr2FeB2 65 In-plane 0.446 0.446 0.000
Ni3Pt2B2 65 Out-of-plane -0.467 -0.467 0.000
Fe3Be2B2 65 Out-of-plane -2.012 -2.012 0.000
Co3Pt2B2 65 Out-of-plane -2.429 -1.745 -0.685
Fe3Zn2B2 65 Out-of-plane -3.001 -1.361 -1.640
Mn3Ir2B2 65 Out-of-plane -10.171 -7.582 -2.589
Fe3Ir2B2 65 In-plane 8.212 6.782 1.430
Mn3Pt2B2 65 In-plane 6.415 4.767 1.648
Mn3Co2B2 65 In-plane 1.788 1.666 0.122
Fe3MgB4 47 Out-of-plane -1.054 -0.099 0.954
Fe4PtB4 71 Out-of-plane -0.442 -0.557 0.115
Ni4CoB4 71 Out-of-plane -0.502 -0.801 0.299
Fe4ReB4 71 Out-of-plane -7.417 -5.543 -1.875
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Mn4PtB4 71 In-plane 11.948 13.498 -1.550
Mn4AuB4 71 In-plane 1.749 1.596 0.153
Mn4CoB4 71 In-plane 1.568 1.756 -0.188
Co4MnB4 71 In-plane 1.562 1.353 0.209
Mn4FeB4 71 In-plane 1.491 1.265 0.226
Co4FeB4 71 In-plane 1.379 1.799 -0.420
Mn4PdB4 71 In-plane 1.202 1.439 -0.237
Mn4PB4 71 In-plane 0.975 0.924 0.051
Co4CrB4 71 In-plane 0.890 1.015 -0.125
Mn4GeB4 71 In-plane 0.788 0.742 0.046
Mn4NiB4 71 In-plane 0.769 0.928 -0.159
Mn4TiB4 71 In-plane 0.731 0.590 0.141
Mn4SiB4 71 In-plane 0.679 0.694 -0.015
Mn4AlB4 71 In-plane 0.556 0.500 0.055
Mn4NbB4 71 In-plane 0.482 0.491 -0.009
Mn4GaB4 71 In-plane 0.461 0.609 -0.148
Mn4HgB4 71 In-plane 0.429 0.510 -0.081
Mn4ZrB4 71 In-plane 0.415 0.256 0.158
Mn4MgB6 65 Out-of-plane -0.768 -0.768 0.000
Mn4AlB6 65 Out-of-plane -1.123 -1.123 0.000
Fe4BeB6 65 Out-of-plane -0.745 -0.745 0.000
Mn4IrB6 65 In-plane 3.816 3.768 0.047
Mn4PtB6 65 In-plane 6.258 4.738 1.519
Fe5PB2 140 Out-of-plane -0.634 -0.634 0.000
Co5AsB2 140 In-plane 0.486 0.486 0.000
Fe5AlB2 140 In-plane 0.475 0.475 0.000
Mn5BeB2 140 In-plane 0.559 0.559 0.000
Co5PB2 140 In-plane 0.665 0.665 0.000
Co5GaB2 140 In-plane 0.642 0.642 0.000
Co5B3 140 In-plane 0.762 0.762 0.000

Co5GeB2 140 In-plane 0.755 0.755 0.000
Mn5GaB2 140 In-plane 0.783 0.783 0.000
Fe5BeB2 140 In-plane 0.898 0.898 0.000
Co5BeB2 140 In-plane 1.810 1.810 0.000
Co5ZnB2 140 In-plane 1.689 1.689 0.000
Fe5ZnB2 140 In-plane 1.889 1.889 0.000
Fe3Tc2B2 10 Out-of-plane -0.581 0.162 0.742
Co5B2 10 Out-of-plane -0.595 -0.684 -0.089

Mn3Rh2B2 10 Out-of-plane -0.846 -1.380 -0.533
Fe3Al2B2 10 Out-of-plane -0.971 0.025 0.996
Fe3Zn2B2 10 Out-of-plane -1.503 -0.368 1.135
Fe3Pt2B2 10 In-plane 4.931 2.545 -2.386
Co3Pt2B2 10 In-plane 4.492 1.922 -2.570
Fe3Ir2B2 10 In-plane 3.395 7.741 4.346
Mn3Co2B2 10 In-plane 1.210 0.628 -0.582

Fe5B2 10 In-plane 0.408 0.482 0.074
Fe7B2 123 Out-of-plane -0.681 -0.681 0.000

Co4Fe3B2 123 In-plane 1.156 1.156 0.000
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Figure S�.: The stability map of ���-MAB phases according to the feature factors elec-
tronegativity and electron concentration (circle symbols represent unstable
phases in the present work; triangle symbols represent possible stable
phases with convex hull distance below ��� meV/atom in the present).

Figure S6.: The stability map of ���-MAB phases (the meaning of symbols is same
as above Figure).
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Table S6.: The MAE and ESOC for the FeXB (where X are Ni, Pd, and Pt).
FeNiB FePdB FePtB

[100]-[001] -0.028 0.002 0.579
MAE (meV/f.u.) [100]-[010] -0.128 0.181 2.106

[001]-[010] -0.100 0.179 1.526
[100] -10.660 -10.443 -6.934

ESOC (Fe) (meV/atom) [001] -10.391 -10.230 -6.787
[010] -10.167 -10.026 -7.424

[100]-[001] -0.269 -0.213 -0.147
DESOC (Fe) (meV/atom) [100]-[010] -0.492 -0.417 0.490

[001]-[010] -0.223 -0.204 0.637
[100] -18.892 -338.919 -4223.153

ESOC (X) (meV/atom) [001] -18.918 -339.122 -4224.317
[010] -18.799 -339.621 -4225.756

[100]-[001] 0.026 0.203 1.164
DESOC (X) (meV/atom) [100]-[010] -0.093 0.702 2.603

[001]-[010] -0.119 0.499 1.439
[100] -29.569 -349.380 -4230.111

ESOC (FeXB) (meV/f.u.) [001] -29.326 -349.369 -4231.125
[010] -28.983 -349.665 -4233.204

[100]-[001] -0.243 -0.011 1.014
DESOC (FeXB) (meV/f.u.) [100]-[010] -0.586 0.284 3.092

[001]-[010] -0.343 0.296 2.078

Fe2BeB2 Fe2MgB2 Fe2CaB2 Fe2SrB2 Fe2BaB2

——M-M ——M-B ——M-A —— A-B

Cr2AlB2 Mn2AlB2 Fe2AlB2 Co2AlB2 Ni2AlB2

Figure S�.: The COHP results of (upper) M2AlB2 (where M are Cr, Mn, Fe, Co and Ni)
and (bottom) Fe2AB2 (where A are Be, Mg, Ca, Sr and Ba).
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Figure S8.: The calculated ÂM for all ��� compounds with convex hull tolerance of
DEh meV/atom. Different structures were presented with different color in
the square above the �gure. Magnetic elements were shown in different
symbols. The black bold dash line indicates ÂM > 1.5%; candidates above
this line are predicted to show large DSM values.
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A. Supporting Information for Fe-Sn

The thermodynamic database of themeta-stable Fe-Sn system is listed as follows:
$�����THERMODYNAMICAL AND TOPOLOGICAL PROPERTIES OF MATA�STABLE FE3SN�����
$ Chen Shen , I l i a s Samathrakis , Kun Hu, Harish K . Singh , Nuno Fortunato ,
Huashan Liu , O l i ve r Gu t f l e i s c h and Hongbin Zhang
$ ����������������������FE�SN .TDB��������������������������������������������

TYPE_DEFINITION % SEQ � !
DEFINE_SYSTEM_DEFAULT ELEMENT 2 !
DEFAULT_COMMAND DEF_SYS_ELEMENT VA /� !

$����������������������������������������������������������������������������
ELEMENT /� ELECTRON_GAS 0.0000E+00 0.0000E+00 0.0000E+00!
ELEMENT VA VACUUM 0.0000E+00 0.0000E+00 0.0000E+00!
ELEMENT FE BCC_A2 5.5847E+01 4.4890E+03 2.7280E+01!
ELEMENT SN BCT_A5 1.1871E+02 6.3220E+03 5.1195E+01!

$����������������������������������������������������������������������������
$ FUNCTION FE
$����������������������������������������������������������������������������
FUNCTION GHSERFE 298.15

1225.7+124.134�T�23.5143�T�LN(T)�4.39752E�3�T��2�0.058927E�6�T��3
+77359�T��(�1); 1811 Y
�25383.581+299.31255�T�46�T�LN(T)+2296.03E28�T��(�9); 6000 N !

FUNCTION GFCCFE 298.15
�236.7+132.416�T�24.6643�T�LN(T)�3.75752E�3�T��2�0.058927E�6�T��3
+77359�T��(�1); 1811 Y
�27097.3963+300.252559�T�46�T�LN(T)+2788.54E28�T��(�9); 6000 N !

FUNCTION GLIQFE 298.15 12040.17�6.55843�T�367.516E�23�T��7+GHSERFE; 1811 Y
�10838.83+291.302�T�46�T�LN(T ) ; 6000 N !

$����������������������������������������������������������������������������
$ FUNCTION SN
$����������������������������������������������������������������������������
FUNCTION GHSERSN 100.00

�7958.517+122.765451�T�25.858�T�LN(T)+0.51185E�3�T��2�3.192767E�6�T��3
+18440�T��(�1); 250 Y
�5855.135+65.443315�T�15.961�T�LN(T)�18.8702E�3�T��2+3.121167E�6�T��3
�61960�T��(�1); 505.078 Y
2524.724+4.005269�T�8.2590486�T�LN(T)�16.814429E�3�T��2+2.623131E�6�T��3
�1081244�T��(�1)�123.07E23�T��(�9); 800 Y
�8256.959+138.99688�T�28.4512�T�LN(T)�123.07E23�T��(�9); 3000 N !

FUNCTION GLIQSN 100 7103.092�14.087767�T+147.031E�20�T��7+GHSERSN; 505.078 Y
9496.31�9.809114�T�8.2590486�T�LN(T)�16.814429E�3�T��2+2.623131E�6�T��3
�1081244�T��(�1); 800 Y
�1285.372+125.182498�T�28.4512�T�LN(T ) ; 3000 N !

FUNCTION GFCCSN 100 +5510�8.46�T+GHSERSN; 3000 N !
FUNCTION GBCCSN 100 +4400�6�T+GHSERSN; 3000 N !
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$����������������������������������������������������������������������������
$ LIQUID (FE ,SN)1
$����������������������������������������������������������������������������
PHASE LIQUID % 1 1 !

CONSTITUENT LIQUID : FE ,SN : !
PARAMETER G(LIQUID , FE ;0) 298.15 +GLIQFE ; 6000 N !
PARAMETER G(LIQUID ,SN;0) 100 +GLIQSN ; 3000 N !
PARAMETER G(LIQUID , FE ,SN;0) 298.15
+72347.042�202.434261�T+22.9803823�T�LN(T ) ; 6000 N !
PARAMETER G(LIQUID , FE ,SN;1) 298.15
�9133.33753+1.97377668�T+0.104808067�T�LN(T ) ; 6000 N !
PARAMETER G(LIQUID , FE ,SN;2) 298.15 +1041.92838�6.34102594�T ; 6000 N !

$�����������������������������������������������������������������������������
$ BCC_A2 (FE ,SN)1
$�����������������������������������������������������������������������������
TYPE_DEFINITION " GES A_P_D BCC_A2 MAGNETIC �1.0 4.00000E�01 !
PHASE BCC_A2 %" 1 1 !

CONSTITUENT BCC_A2 : FE ,SN : !
PARAMETER G(BCC_A2 , FE ;0) 298.15 +GHSERFE; 6000 N !
PARAMETER TC(BCC_A2 , FE ;0) 298.15 +1043; 6000 N !
PARAMETER BM(BCC_A2 , FE ;0) 298.15 +2.22; 6000 N !
PARAMETER G(BCC_A2 ,SN;0) 100 +GBCCSN; 3000 N !
PARAMETER G(BCC_A2 , FE ,SN;0) 298.15 +24853.4276+4.7843622�T ; 6000 N !
PARAMETER G(BCC_A2 , FE ,SN;1) 298.15 �17676.7821; 6000 N !
PARAMETER TC(BCC_A2 , FE ,SN;0) 298.15 +932.545; 6000 N !
PARAMETER BM(BCC_A2 , FE ,SN;0) 298.15 �5.688; 6000 N !

$����������������������������������������������������������������������������
$ FCC_A1 (FE ,SN)1
$����������������������������������������������������������������������������
TYPE_DEFINITION & GES A_P_D FCC_A1 MAGNETIC �3.0 2.80000E�01 !
PHASE FCC_A1 %& 1 1 !

CONSTITUENT FCC_A1 : FE ,SN : !
PARAMETER G(FCC_A1 , FE ;0) 298.15 +GFCCFE ; 6000 N !
PARAMETER TC(FCC_A1 , FE ;0) 298.15 �201; 6000 N !
PARAMETER BM(FCC_A1 , FE ;0) 298.15 �2.10; 6000 N !
PARAMETER G(FCC_A1 ,SN;0) 100 +GFCCSN; 3000 N !
PARAMETER G(FCC_A1 , FE ,SN;0) 298.15 +24140.28; 6000 N !

$����������������������������������������������������������������������������
$ FE5SN3 (FE)5(SN)3
$����������������������������������������������������������������������������
PHASE FE5SN3 % 2 5 3 !

CONSTITUENT FE5SN3 : FE :SN : !
PARAMETER G(FE5SN3 , FE :SN;0) 298.15
�97000+51�T+5�GHSERFE+3�GHSERSN; 6000 N !

$����������������������������������������������������������������������������
$ FE3SN2 (FE)3(SN)2
$����������������������������������������������������������������������������
PHASE FE3SN2 % 2 3 2 !

CONSTITUENT FE3SN2 : FE :SN: !
PARAMETER G(FE3SN2 , FE :SN;0) 298.15
�9.45194246E+04+6.25316153E+01�T+3�GHSERFE+2�GHSERSN; 6000 N !

$����������������������������������������������������������������������������
$ FE3SN1 (FE)3(SN)1 INVENTED
$����������������������������������������������������������������������������
PHASE FE3SN1 % 2 3 1 !

CONSTITUENT FE3SN1 : FE :SN: !
PARAMETER G(FE3SN1 , FE :SN;0) 298.15

���



�38822.9184+21.3557�T+3�GHSERFE+GHSERSN; 6000 N !

$����������������������������������������������������������������������������
$ FESN (FE)1(SN)1
$����������������������������������������������������������������������������
PHASE FE1SN1 % 2 1 1 !

CONSTITUENT FE1SN1 : FE :SN: !
PARAMETER G(FE1SN1 , FE :SN;0) 298.15
�55704.5693+41.6671059�T+GHSERFE+GHSERSN; 6000 N !

$����������������������������������������������������������������������������
$ FESN2 (FE)1(SN)2
$����������������������������������������������������������������������������
PHASE FE1SN2 % 2 1 2 !

CONSTITUENT FE1SN2 : FE :SN: !
PARAMETER G(FE1SN2 , FE :SN;0) 298.15
�80135.4578+67.9318396�T+GHSERFE+2�GHSERSN; 6000 N !

$����������������������������������������������������������������������������
$ BCT_A5 (SN)1
$����������������������������������������������������������������������������
PHASE BCT_A5 % 1 1 !

CONSTITUENT BCT_A5 :SN: !
PARAMETER G(BCT_A5 ,SN;0) 100 +GHSERSN; 3000 N !

���



Figure S�.: Calculated activities of Fe and Sn in liquid Fe-Sn system compared with
the experimental data at �8�� K and �8�� K [���, ���]. Reference state:

Liquid Fe and Liquid Sn.
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Figure S�.: Calculated enthalpies of mixing of liquid phase compared with the
experimental data at �8�� K, �8�� K and �88� K [���, ���, ���]. Reference

state: Liquid Fe and Liquid Sn.
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