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Abstract

Despite mounting evidence that data drift causes deep learning models to deteriorate over time, the ma-
jority of medical imaging research is developed for – and evaluated on – static close-world environments.
There have been exciting advances in the automatic detection and segmentation of diagnostically-relevant
findings. Yet the few studies that attempt to validate their performance in actual clinics are met with
disappointing results and little utility as perceived by healthcare professionals. This is largely due to the
many factors that introduce shifts in medical image data distribution, from changes in the acquisition
practices to naturally occurring variations in the patient population and disease manifestation. If we truly
wish to leverage deep learning technologies to alleviate the workload of clinicians and drive forward the
democratization of health care, we must move away from close-world assumptions and start designing
systems for the dynamic open world.

This entails, first, the establishment of reliable quality assurance mechanisms with methods from the
fields of uncertainty estimation, out-of-distribution detection, and domain-aware prediction appraisal.
Part I of the thesis summarizes my contributions to this area. I first propose two approaches that identify
outliers by monitoring a self-supervised objective or by quantifying the distance to training samples
in a low-dimensional latent space. I then explore how to maximize the diversity among members of a
deep ensemble for improved calibration and robustness; and present a lightweight method to detect
low-quality lung lesion segmentation masks using domain knowledge.

Of course, detecting failures is only the first step. We ideally want to train models that are reliable in the
open world for a large portion of the data. Out-of-distribution generalization and domain adaptation
may increase robustness, but only to a certain extent. As time goes on, models can only maintain
acceptable performance if they continue learning with newly acquired cases that reflect changes in the
data distribution. The goal of continual learning is to adapt to changes in the environment without
forgetting previous knowledge. One practical strategy to approach this is expansion, whereby multiple
parametrizations of the model are trained and the most appropriate one is selected during inference. In
the second part of the thesis, I present two expansion-based methods that do not rely on information
regarding when or how the data distribution changes.

Even when appropriate mechanisms are in place to fail safely and accumulate knowledge over time, this
will only translate to clinical usage insofar as the regulatory framework allows it. Current regulations
in the USA and European Union only authorize locked systems that do not learn post-deployment.
Fortunately, regulatory bodies are noting the need for a modern lifecycle regulatory approach. I review
these efforts, along with other practical aspects of developing systems that learn through their lifecycle,
in the third part of the thesis.

We are finally at a stage where healthcare professionals and regulators are embracing deep learning.
The number of commercially available diagnostic radiology systems is also quickly rising. This opens up
our chance – and responsibility – to show that these systems can be safe and effective throughout their
lifespan.
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Zusammenfassung

Trotz zunehmender Beweise dafür, dass Deep Learning Modelle im Laufe der Zeit an Qualität verlieren, wird
der Großteil der Forschung im Bereich der medizinischen Bildgebung in statischen Umgebungen entworfen und
evaluiert. Es gab in den letzten Jahren spannende Entwicklungen bei der automatischen Erkennung und Segmen-
tierung diagnostisch relevanter Befunde. Allerdings haben die wenigen prospektiven Studien, die es dazu gab,
enttäuschende Ergebnisse gezeigt. Dies ist vor allem auf die vielen Faktoren zurückzuführen, die zu Verschiebungen
in der Verteilung medizinischer Bilddaten führen. Diese reichen von Änderungen in den Bildgebungsverfahren bis
hin zu natürlich vorkommenden Variationen in der Patientenpopulation und der Ausprägung von Krankheiten.
Wenn wir Deep Learning wirksam einsetzen wollen, müssen wir uns von den Annahmen einer geschlossenen
Umgebung lösen und damit beginnen, Systeme für die dynamische offene Welt zu entwerfen.

Dies erfordert zunächst die Einrichtung zuverlässiger Qualitätssicherungsmaßnahmen. Der erste Teil dieser
Dissertation fasst meine Beiträge zu diesem Themengebiet zusammen. Ich schlage zuerst zwei Ansätze vor, welche
Ausreißer durch ein selbst überwachtes Lernziel oder durch die Quantifizierung des Abstands zu Trainingsbeispielen
in einem niedrig dimensionalen latenten Raum identifizieren. Anschließend untersuche ich, wie die Vielfalt
unter den Mitgliedern eines tiefen Ensembles maximiert werden kann, um die Kalibrierung und Robustheit zu
verbessern. Zudem stelle ich eine domänenbasierte Methode zur Erkennung schlechter Segmentierungsmasken für
Lungenläsionen vor.

Natürlich ist die Erkennung von Fehlern nur der erste Schritt. Im Idealfall wollen wir Modelle trainieren, die in
der offenen Welt für einen großen Teil der Daten zuverlässig funktionieren. Bisherige Verfahren, unter anderem
aus der Domänenanpassung, können zwar die Robustheit erhöhen, aber nur bis zu einem gewissen Grad. Mit der
Zeit behalten Modelle nur dann eine akzeptable Leistung bei, wenn sie mit neu erfassten Beispielen weiterlernen,
welche die Änderungen in der Verteilung der Daten widerspiegeln. Das Ziel des kontinuierlichen Lernens besteht
darin, sich an Veränderungen in der Umgebung anzupassen, ohne bereits Gelerntes zu vergessen. Eine praktische
Strategie, um dies zu erreichen, ist die Expansion, bei der mehrere Parametrisierungen des Modells trainiert
werden, und während der Inferenz die am besten geeignete ausgewählt wird. Im zweiten Teil der Arbeit stelle ich
zwei Methoden vor, welche auf Expansion basieren, aber nicht auf Informationen darüber angewiesen sind, wann
oder wie sich die Datenverteilung ändert.

Selbst wenn geeignete Mechanismen vorhanden sind, um Fehler zu erkennen und mit der Zeit neues Wissen
zu erwerben, kann dies nur dann in die klinische Anwendung übertragen werden, wenn der rechtliche Rahmen
dies zulässt. Die derzeitigen Vorschriften in den USA und der Europäischen Union lassen nur abgeschlossene,
deterministische Systeme zu, deren Parameter sich nicht mehr verändern dürfen. Glücklicherweise erkennen die
Aufsichtsbehörden die Notwendigkeit eines modernen, lebenszyklusorientierten Regulierungsansatzes an. Im dritten
Teil der Dissertation gehe ich auf diese Bemühungen ein, sowie auf andere nötige Aspekte der Entwicklung von
Systemen, die während ihres Lebenszyklus weiterlernen.

Wir befinden uns endlich in einer Phase, in der medizinische Fachkräfte und Aufsichtsbehörden Deep Learning
begrüßen, und in der die Zahl der kommerziell erhältlichen diagnostischen Radiologiesysteme schnell ansteigt.
Dies eröffnet uns die Chance – und die Verantwortung – zu zeigen, dass diese Systeme während ihrer gesamten
Lebensdauer sicher und effektiv sein können.
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Introduction

Even the most optimistic machine learning researchers were awed at the milestones reached by deep
learning during the past decade. Whether topping game leaderboards (Silver et al., 2016), generating
realistic-looking images (Goodfellow et al., 2020) or simulating human speech (Brown et al., 2020), it
seems there are few tasks that deep neural networks (DNNs) cannot solve if given enough training data
in close-world environments. This has generated ambitious expectations on how our lives will change in
the coming years.

In the healthcare sector, deep learning (DL) is increasingly viewed as an opportunity to counter rising
costs, lack of personnel and global challenges such as pandemic preparedness (Makower et al., 2010;
Parekh et al., 2020). DNNs have shown impressive performance in medical imaging tasks such as
automatic lesion localization and tissue segmentation (Isensee et al., 2021) which are key for helping
clinicians make downstream diagnostic decisions and select appropriate treatment plans. Leveraging
these advances could pave the way for better healthcare even in middle and low-income countries and
rural areas.

Unfortunately, these hopes are often crushed when systems designed for close-world environments are set
free in the dynamic open world. There, it becomes evident that DNNs have difficulty extrapolating the
learnt knowledge to a shifted – if only slightly so – data distribution (Hendrycks and Dietterich, 2018).
Within the deep learning community, it has long been understood that models will learn the simplest
solution for the training data and stay within the bounds of the training scenario (Beery et al., 2018).
Yet this is rarely taken into account when products are designed and placed in the market. In fact, there
are hundreds of medical decision support software products that are commercially available today and
have not gone through external or multi-site validation (van Leeuwen et al., 2021; Wu et al., 2021).

Naturally, with the passage of time, the data used for training and the samples the model encounters
during deployment grow further apart, a phenomenon commonly referred to as data drift. In the medical
sector, image acquisition practices and disease patterns are constantly changing. This means that DNNs,
which held the promise of learning as more data became available, actually deteriorate as time goes on.
The great successes of DL were possible due to having access to large, heterogeneous datasets. One could
therefore argue that although specific models may become outdated, the database can continue growing
and future models will, in fact, improve when compared to their previous states. However, this neglects
the fact that data cannot always be centrally stored. Particularly in the medical field, privacy regulations
strongly limit the storage and transfer of patient data (European Commission, 2017b). It is, therefore,
possible that certain training samples will only be available for a limited duration.

It should also be considered that retraining models with ever-growing datasets requires significant time
and computational resources. Even OpenAI’s hugely popular Chat GPT (Brown et al., 2020) cannot
answer questions referring to events that took place after 2021. This limits where we can leverage DNNs
and whether they can help us in time-critical situations where human resources are at full capacity.
Consider, for instance, the Covid-19 pandemic. There was a lot of research, but disappointingly little
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actual use of DL (Hu et al., 2020; Roberts et al., 2021). As we will later see, although there were several
initiatives for releasing open-souce code and annotated datasets of chest CT lesion segmentation (Liu
et al., 2022a), models trained only with these cases did not generalize well enough to be used safely.

How, then, can we best transfer the close-world success of DNNs to the dynamic clinical world and trust them
with something as important as our well-being? This is the core question I attempt to address in my thesis.

The first step comes with understanding what types of distribution shifts can occur in dynamic clinical
settings. In this work, I focus on Computer Tomography (CT) and Magnetic Resonance Image (MRI)
data. In Chapter 1, I give an overview of the different factors of change that can cause a gap in DNN
performance. These result from changes in image acquisition – such as the use of a different scanner – the
patient population or disease patterns. Unfortunately, we do not always know which shifts are introduced
in the data distribution or when these take place. DNNs fail silently, so observing the magnitude of the
outputs (often incorrectly interpreted as confidence) is not enough for deciding when a prediction is
trustworthy. I go over techniques for detecting uncertain predictions in Chapters 2 through 5. In Chapter
6, I investigate to what extent we can mitigate the problem of data drift through out-of-distribution
generalization and domain adaptation.

In Part II, I move on to how we can leverage new data through continual learning. The goal here is to adapt
to changes in the environment without forgetting previous knowledge. We will see that if we sequentially
fine-tune a model without mechanisms for information preservation, the performance increases for
new data but substantially decreases for images from an earlier data distribution. From a technical
perspective, the goal of continual learning is to train a model (or model ensemble) in such a fashion
that the performance increases for all seen data distributions. Even in continual learning validations,
close-world assumptions are often made, such as presuming that image precedence information is given
and that distribution shifts happen suddenly at set intervals. I show how working under these assumptions
can be problematic when applying continual learning to more realistic settings and suggest how we can
leverage quality assurance mechanisms presented in previous chapters to avoid such relaxations.

In practice, continual learning techniques would enable lifelong learning where ML systems continue to
train throughout their entire lifecycle. Coming back to the pandemic preparedness scenario from before,
a good strategy would have been to start with a large database of pneumonia subjects, for which training
could require several weeks, and incrementally update the model to better reflect the specific disease
patterns that manifest in SARS-CoV-2 infections. If the predictions were assessed by appropriate quality
control mechanisms, the model could at each time stage assist in the diagnosis of at least a fraction of
the cases, alleviating the workload of primary care workers.

However, there are still several hurdles to overcome before we see systems in clinics that train throughout
their lifecycle. The first is a lack of benchmarking standards for validating DNNs in continual scenarios.
I address this problem in Chapter 11. Secondly, lifelong learning comprises close collaborations with
clinicians on-site, who must collect appropriate training data and monitor the quality of the predictions,
tasks which were traditionally the sole responsibility of the manufacturer. In Chapter 12, I show how
active learning can enhance the collaboration between healthcare professionals and the ML system.
Finally, as we will see in Chapter 13, the current regulatory framework simply does not allow for model
updates to take place post-approval. This means that newly collected data cannot be used until there is a
new product release and subsequent approval process, which can take several months. Fortunately, there
are several initiatives from the responsible entities that are actively trying to establish lifecycle regulatory
protocols. This change would not only allow for pre-determined modifications to take place post-approval,
but also drive manufacturers to develop continuous quality assurance mechanisms.

11



A change in the regulatory landscape is urgently needed. There are currently several hundred ML-based
medical software products in the European and North American market, yet these are neither permitted
to adapt to changing data distributions nor made to sufficiently monitor their performance. Very few
prospective studies have actually taken place, and several commercially available products do not even
report external validation results (Wu et al., 2021). Software standards adopted by regulatory bodies
are not set in isolation but instead defined by researchers (Azzouzi et al., 2022), so by formalizing and
improving our evaluation practices, we can help define the forthcoming guidelines.

I firmly believe that the promises of DL in healthcare can be realized. But for this, we need to quickly
move away from designing close-world systems and start considering the factors of change that our
models will encounter in the dynamic open world. We also need to manage expectations for single
methodologies and instead build pipelines that can accumulate knowledge over time; but also fail safely
thanks to appropriate quality assurance mechanisms. This will lay the ground for commercial systems
that clinical end users actually find helpful and that they enjoy cooperating with.
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Part I.

Data Drift in Medical:
Detection and Adaptation
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1. Domain Shift in Medical Imaging

Humans have an innate capacity to extrapolate learned knowledge. We are taught traffic signs from
colored pictures expecting that we will know when to cross the street; medical doctors learn about
some conditions from textbooks and later recognize them in real patients. We tend to assume that deep
learning models – which perform surprisingly well in some tasks – share this capability. Unfortunately,
that is far from reality. DNNs will inevitably learn the simplest solution that maximizes their objective,
a phenomenon referred to as shortcut learning (Beery et al., 2018). They will therefore only make
meaningful predictions for inputs similar to those seen in the training data. Even slight perturbations
in contrast or brightness can significantly decrease the performance of state-of-the-art computer vision
architectures (Hendrycks and Dietterich, 2018).

This problem is exacerbated for medical imaging, where datasets are smaller due to stringent data
privacy regulations and the cost of expert annotations; and higher in dimension. Popular computer vision
datasets include MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky et al., 2020) with, respectively, 70
thousand 28×28 and 60 thousand 32×23 images. In contrast, the widely-used datasets from the Medical
Segmentation Decathlon (Simpson et al., 2019) range from 30 (left atrium) to 750 (brain tumor) subjects
and 36× 50× 35 (hippocampus) to 512× 512× 482 (liver) mean resolution.

Generalizing to even slight changes in the domain is therefore extremely difficult. And there are a
lot of sources of domain shift that affect medical images and have been identified as problematic in
the deployment of machine learning systems (Midya et al., 2018; Van Timmeren et al., 2020). Many
are closely related to the acquisition and result from high variability between imaging protocols. For
computer tomography (CT) and magnetic resonance imaging (MRI) data, these include:

• Scanner vendor (or even model)

• Acquisition settings, such as slice thickness, field strength (for MRIs), or tube current (for CTs)

• Factors that affect the position or geometry of the region of interest (ROI), such as field of view or
the usage of coils

• Useage and timing of contrast agent

• Choice of the reconstruction algorithm

• Presence of image artifacts (e.g. due to movement, metallic foreign bodies, ghosting, or ringing)

In addition, there are factors related to the subject population that introduce geometric modifications
and make it difficult to generalize to other geographical regions, including:

• Demographic factors (age, gender, heritage, etc.)

• Disease expression (phenotypes) and spread

14



• Co-morbidity factors resulting from cultural or societal aspects

This makes distribution or domain shift a vital concern when training deep learning models for a number
of medical imaging problems (Dou et al., 2019; Yan et al., 2019; Liu et al., 2022b). Yet we do not seem to
grasp the scope of the problem and how much it hinders translating innovative research to clinics. Only
very few medical ML solutions are validated in prospective clinical trials (Kelly et al., 2019; Nagendran
et al., 2020), and some even lack proper external validation (Hu et al., 2020; Roberts et al., 2021). This
causes ML models to display disappointing performance in real settings (Beede et al., 2020).

While strategies such as data augmentation and image harmonization may improve generalization, we
do not always know which shifts we will encounter in the future. The data distribution changes over
time, a phenomenon we often refer to as concept or data drift (Hoens et al., 2012), causing a gradual
deterioration of machine learning model performance. The best way to counter this process is by adapting
the model with new data samples, and we will explore strategies to do this in Part II.

But first, we will review how to detect (Chapters 2 through 5) when the model makes failed predictions
with the help of automatic quality assurance mechanisms, and how to encourage adaptation to other
(known) domains in Chapter 6.

15



2. Towards Automatic Quality Assurance:
Detecting Silent Failures

One thing is safe with working with deep learning: no matter how robust our model is, there will always
be cases for which it is simply not suitable for making a prediction. This only hinders the deployment of
DNNs insofar as this translates to silent failures that we do not detect. If we are able to make an accurate
assessment regarding the validity of each output, we can utilize the model for at least a fraction of test
subjects.

While the commonly used Softmax function normalizes outputs so they add up to one, this should not
be understood as a probability estimate. The typical way of training DNNs with backpropagation and
an objective such as Binary Cross Entropy encourages outputs close to the discrete ground truth values,
which will therefore tend to be over-confident (Hein et al., 2019). This brings us to the question of how
to reliably detect faulty predictions, for which I believe there are three major strategies (illustrated in
Figure 2.1) that all pursue the goal of automatic quality assurance.

…

Uncertainty 
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Figure 2.1.: Three mechanisms for automatic quality assurance: (1) out-of-distribution detection, (2)
uncertainty estimation and (3) assessing the coherence of model predictions.

The first is out-of-distribution detection, where we identify inputs that the model was not trained to handle.
This is the case when no meaningful prediction could ever be made for a given input, such as if a colon
examination is erroneously fed to a model for lung segmentation; and also when the test case is so far
from the training data that our model will not be able to generalize to it. The second would, for instance,
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Figure 2.2.: Input space as deemed acceptable by different quality assurance mechanisms. OOD
detection excludes samples far from the training distribution. Uncertainty estimation learns
a function to calibrate the model, so only low-uncertainty predictions are considered. For
certain tasks – such as image segmentation – observing properties of the outputs can help
detect when these are erroneous.

take place when a scan from a child is given to a model trained only with adults. We typically aim to
distinguish between in-distribution (ID) and out-of-distribution (OOD) cases (see Figure 2.2, left),
and can further differentiate between near and far-OOD scenarios (Fort et al., 2021).

Secondly, we can employ techniques from uncertainty estimation. These are typically utilized for in-
distribution data where the model would be expected to make a meaningful prediction; and are not
deemed reliable in the presence of dataset shift (Ovadia et al., 2019). The objective is to obtain continuous
uncertainty scores. Ideally, this would inversely correlate with model performance. We refer to this
goal as model calibration, which is usually measured with the Expected Calibration Error (ECE) in its
various forms1. For a specific confidence threshold, we can also evaluate the uncertainty method with
the coverage on test data – quantifying model utilization – and performance of the predictions deemed to
be confident enough.

Finally, there are certain tasks – particularly when we have domain knowledge such as medical imaging
– where we can identify suspicious predictions simply by observing the model outputs. One example of
this is semantic segmentation. By simply viewing the segmentation mask and quantifying certain aspects,
such as the number of connected components and their geometric shapes, we can use domain knowledge
to flag suspicious predictions. This is more challenging for anatomies such as lung lesions that take on
diffuse shapes, but it is still a meaningful quality check (as we will see in Section 5.1). We find this
direction to be particularly important for increasing trust in ML systems. If a radiologist is presented
with a suggestion that has clear semantic inconsistencies, this will inevitably worsen their opinion of the
system and – in the worse case – even DL in general.

Significant advances have been made in automatic quality assurance in recent years. However, we do
not believe that any one single method would ever be sufficient. Instead, an array of strategies should be
employed in tandem to monitor the performance of DNNs, and these should be integrated at various
points of the clinical workflow.

1The ECE is very susceptible to hyperparameter settings such as bin size, so several variants have been proposed instead
(Ashukha et al., 2019).
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3. Out-of-distribution Detection

Out-of-distribution detection looks to identify samples far from the training distribution. We can roughly
classify OOD detection methods into four categories, which we illustrate in Figure 3.1 along with their
benefits and disadvantages.

FLEXIBILITY POST-HOC

PERFORMANCE

Model outputs

Outlier detectorSelf-supervision

Distance in z space

PROXY DETECTOR

Figure 3.1.: Visual representation of four strategies for OOD detection. We can (1) quantify certain
properties of the model outputs, such as the magnitude of the predicted class, (2) calculate
how far the network features of test cases are from the training data, (3) monitor a self-
supervision loss or (4) explicitly train an outlier detector with OOD samples. Ideally, the
method should be effective at identifying OOD cases (performance) and applicable to any
model architecture (flexibility) and to locked models without needing re-training (post-hoc).

The first strategy consists of observing network outputs. A simple baseline proposed by Hendrycks
and Gimpel (2016) detects novelty by an equal distribution between logit values, i.e. how far these are
from a one-hot encoding that would signal a confident prediction. Guo et al. (2017) discovered that
using a temperature-scaled version of the Softmax function instead of the regular one leads to more
accurate estimates, and Liang et al. (2018) built upon this with ODIN, which perturbs the inputs in an
adversarial fashion to increase the distance between ID and OOD outputs. In a similar direction, Liu et al.
(2020) employ an Energy Scoring function to identify out-of-distribution samples. The main advantage
of output-based methods is that they are computationally inexpensive and work on a purely post-hoc
basis. This means that OOD detection does not need to have been taken into account when designing
the model architecture; and can instead be calculated even for pre-trained models.

If this is not a constraint, another possibility is to explicitly train an outlier detector that distinguishes
between training ID and (real or simulated) OOD samples (Hendrycks et al., 2018; Lee et al., 2018a;
Sabokrou et al., 2018; Vyas et al., 2018; Bevandić et al., 2019; Mohseni et al., 2020). This is a good
option if one has some knowledge about the types of domain shifts that the model will encounter; and if
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OOD detection is a main goal from the start. The main drawback is that the model architecture and loss
function need to be modified to accommodate the additional OOD detection objective, which excludes
the use of pre-trained models and may disrupt training. In addition, the model will only detect samples
similar to OOD train samples, so there is no guarantee that unexpected shifts will be flagged.

A third category of methods leverages self-supervision to detect novelty. In self-supervised learning, we
typically solve the target task that we are actually interested in together with a proxy task. The proxy task
does not require manual annotations, so it allows us to leverage non-annotated data and encourages the
model to learn more expressive representations (Asano et al., 2019). Besides improving the performance
and robustness on the target task, self-supervised models have an additional advantage: as we can
calculate the proxy loss during testing, we can use this as an OOD detection signal. The intuition is that
for an OOD sample, the model will fail on the proxy task as much as it does for the target one. Proxy
losses that have been utilized for this purpose include input reconstruction (Pidhorskyi et al., 2018; Xia
et al., 2020), contrastive learning (Winkens et al., 2020; Wu and Goodman, 2020) and detection of
transformations or rotation to the input (Golan and El-Yaniv, 2018; Hendrycks et al., 2019). Monitoring
the proxy loss is undoubtedly a good practice when already working with a self-supervised model, and
we will see how this idea can be exploited for cardiac CMR segmentation in Section 3.1.1. Nevertheless,
it is doubtful whether augmenting a model with self-supervision solely for the goal of OOD detection is
justifiable.

Finally, a fourth strategy looks at model features and flags inputs for which test features diverge strongly
from the training distribution. Considering the way deep learning models learn and operate, we know
that they will not produce reasonable outputs for activations in previous layers that are too far from
those seen during training (Lee et al., 2018b). The challenge here is to obtain features that are small
enough to estimate their distribution yet expressive enough to communicate a shift in the domain. In
Section 3.1.2, we propose a method that uses this strategy for identifying low-quality segmentations.
This method is also computationally efficient and works in a purely post-hoc manner, and we find it to
work effectively at detecting OOD silent failures.

3.1. The papers

During my doctoral studies, I worked with two of the directions presented in the previous section:
leveraging self-supervision and observing the distance to features in the training data. I will first describe
the method we propose which combines uncertainty estimation with the test-time proxy loss value in
Section 3.1.1. Afterward, I will outline our work flagging samples with a high Mahalanobis distance to
the training distribution in a low-dimensional latent space, for which we published one conference and
one journal paper (Sections 3.1.2 and 3.1.3).

3.1.1. Self-supervised out-of-distribution detection for cardiac CMR segmentation

We presented the work Self-supervised out-of-distribution detection for cardiac CMR segmentation (González
and Mukhopadhyay, 2021) at the Medical Imaging with Deep Learning (MIDL) conference which took
place from July 7th to 9th, 2021. The conference was initially planned for Lübeck, Germany, but instead
took on a virtual format due to the Covid-19 pandemic. The paper was featured at the RSIP Vision MIDL
Daily magazine, and later in the August 2021 issue of Computer Vision News (Anzarouth et al., 2021).
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Abstract

The segmentation of cardiac structures in Cine Magnetic Resonance imaging (CMR) plays
an important role in monitoring ventricular function, and many deep learning solutions
have been introduced that successfully automate this task. Yet due to variabilities in
the CMR acquisition process, images from different centers or acquisition protocols differ
considerably. This causes deep learning models to fail silently. It is therefore crucial to
identify out-of-distribution (OOD) samples for which the trained model is unsuitable. For
models with a self-supervised proxy task, we propose a simple method to identify OOD
samples that does not require adapting the model architecture or access to a separate
OOD dataset during training. As the performance of self-supervised tasks can be assessed
without ground truth information, it indicates during test time when a sample differs from
the training distribution. The proposed method combines a voxel-wise uncertainty estimate
with the self-supervision information. Our approach is validated across three CMR datasets
and two different proxy tasks. We find that it is more effective at detecting OOD samples
than state-of-the-art post-hoc OOD detection and uncertainty estimation approaches.

Keywords: out-of-distribution detection, self-supervision, distribution shift

1. Introduction

Despite significant advances in diagnostic deep learning research, the adoption of learning-
based systems in clinical practice is very limited. One reason for this is the inability of
models to generalize to out-of-distribution (OOD) samples in real clinical settings, coupled
with their tendency to produce overconfident predictions. Most deep learning systems are
evaluated on test data similar in distribution to that used for training. When testing takes
place on data gathered from different pieces of equipment or with a different protocol, there
is a noticeable drop in performance (Glocker et al., 2019).

Cardiac Cine Magnetic Resonance imaging (CMR), the gold-standard for non-invasive
volumetric quantification, is particularly prone to shifts in image properties. The acquisi-
tion process requires breath-holding, which is difficult for patients with arrythmias. As a
consequence, variations in image quality are magnified (Oksuz et al., 2019; Ruijsink et al.,
2020). Automatic cardiac segmentation that generalizes well to unseen manufacturers is
still an open challenge (Bevandić et al., 2019; Yan et al., 2020). Clinical deployment of
deep neural networks (DNNs) would comprise a two-step process where the plausibility of a
model output being correct is considered alongside the prediction. Observing softmax out-
puts is not sufficient, as DNNs produce overconfident predictions for OOD data (Hein et al.,
2019). Fig. 1 shows how the segmentation performance of a U-Net deteriorates silently on
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OOD data. As OOD detection is a secondary goal, an ideal detector would integrate into
any existing model and require no modifications in the architecture or training procedure.

In this work, we explore how self-supervision can help uncover OOD samples for the task
of left ventricular blood pool segmentation, which is often utilized clinically to calculate
parameters such as Ejection Fraction. DNNs only produce meaningful outputs for in-
distribution (ID) data (Su et al., 2020). This manifests in a drop in performance for OOD
samples and, accordingly, a higher loss between the predicted and target values. While the
loss cannot be calculated during inference for supervised tasks, it can be for self-supervised
tasks that derive target values from the input images. For self-supervised models, this
opens the possibility to leverage the test-time performance as a signal for the identification
of OOD samples without needing any manual annotations or OOD training data.

Our proposed method uses the value of the self-supervision loss in combination with post-
hoc uncertainty estimation. While other works have used the self-supervision loss to detect
OOD samples in classification tasks, we adopt this idea for medical image segmentation.
Unlike current state-of-the-art, the proposed approach does not require a specific proxy task,
or training the model with the explicit goal of OOD detection, and is therefore applicable
to a wide array of self-supervised architectures. The proposed method outperforms state-
of-the-art post-hoc approaches for OOD detection and uncertainty estimation across three
CMR datasets and for two different proxy tasks: edge detection and contrastive learning.
Our main contributions are: (A) the introduction of self-supervision as a lightweight OOD
detector for cardiac CMR segmentation and (B) a thorough evaluation of OOD detection
methods on CMR imaging for three datasets and two different self-supervised architectures.

Model trained with 
M&M Vendor A  (ID)

Ground truth 
segmentation

Model trained with 
M&M Vendor B (OOD)

Model trained with 
Sunnybrook (OOD)
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Figure 1: Distribution shift causes a deterioration on the left ventricular blood pool seg-
mentation for a subject from the Multi-Centre, Multi-Vendor and Multi-Disease
(M&M) Vendor A dataset, but traditional confidence quantification fails silently.

2. Related Work

In this section, we review relevant related work for self-supervision and OOD detection.
Self-supervision methods combine the training for the regular target task with a proxy

task. Whereas the target task is usually supervised, the proxy task does not require manual
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annotations, i.e. the target value can be derived from the input. For the sake of brevity
we refer to Asano et al. (2019) and Zhang et al. (2019) for a detailed description of self-
supervision in image segmentation.

In the field of out-of-distribution detection, several methods look at network out-
puts to detect novel samples. Hendrycks and Gimpel (2016) introduce the baseline of using
the distribution of softmax values as an indicator for novelty. Guo et al. (2017) find temper-
ature scaling to be an effective DNN calibration method. Liang et al. (2018) introduce the
ODIN method, which extends temperature scaling by adding small adversarial-like pertur-
bations to the inputs during inference which increase the separation between ID and OOD
softmax values. Lee et al. (2018b) use the class-conditional distribution of neural activa-
tions to detect OOD samples. Other methods – that do not work in a post-hoc basis – use
OOD data during training to explicitly train an outlier detector (Hendrycks et al., 2018;
Lee et al., 2018a; Mohseni et al., 2020; Vyas et al., 2018; Bevandić et al., 2019). Related to
the task of OOD detection is uncertainty estimation. Popular methods include Monte
Carlo (MC) Dropout (Gal and Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan
et al., 2017). Several publications look at their effectiveness in the field of medical image
segmentation, and find that ensembles are most reliable, though MC Dropout is also effec-
tive (Jungo and Reyes, 2019; Jungo et al., 2020; Mehrtash et al., 2020). Other methods
have shown better performance in some cases, but require special training considerations
(Blundell et al., 2015; Kohl et al., 2018; Monteiro et al., 2020).

Some research delves into OOD detection in self-supervised models. Pidhorskyi
et al. (2018) use the reconstruction error of an autoencoder to assess novelty. Winkens et al.
(2020) and Wu and Goodman (2020) augment classification networks with a contrastive
learning term and estimate the density on different feature spaces. Similar to us, Golan and
El-Yaniv (2018) train a multi-head model, where one head performs image classification and
the second learns to detect image transformations, and calculate the novelty through the
softmax outputs. Hendrycks et al. (2019) improve OOD detection by training a classifier
with a proxy rotation estimation loss. For image segmentation, Xia et al. (2020) calculate
the reconstruction error between the original image and a synthesized version.

Unlike other approaches, our proposed method does not require the use of a particular
proxy task, and works entirely in a post-hoc manner. This ensures the applicability to a
variety of deployed learning systems that include a self-supervised component. In terms
of application we focus on semantic segmentation, and evaluate our method on datasets
which solve the same semantic task (left ventricular blood pool segmentation) but differ
in terms of acquisition vendor and center. Our research is, to our knowledge, the first to
utilize self-supervision losses for OOD detection in medical image segmentation.

3. Methods

Consider a model F trained with n samples {xi}ni=1. The goal of OOD detection is to
identify – during deployment – new samples that variate significantly from the training
distribution. For this, a continuous novelty function N : X → R and a threshold ψ are
defined so that xi is classified as out-of-distribution if N (xi) ≥ ψ. The expectation is that
real-world OOD samples are flagged for which the model produces unreliable predictions.
In this section, we describe our proposed method to detect OOD samples in a post-hoc
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manner for models trained with a self-supervised proxy task. We start by introducing the
two architectures we explore in this work, and then explain the process of OOD detection.

3.1. Self-supervised Learning

A task is said to be self-supervised if the target information is generated by the learning
system. Increasingly, DNNs for semantic segmentation are being augmented with self-
supervision (Wang et al., 2020; Pan et al., 2020) in order to leverage non-annotated data or
shape the feature space. In this work, we explore edge detection and contrastive learn-
ing. These proxy tasks are well-suited to the segmentation of cardiac structures as they
encourage learning geometrically-aware features that disregard image quality information
(Chu et al., 2020; Winkens et al., 2020; Sahu et al., 2020). However, the novelty metric we
introduce in Sec. 3.2 can be calculated for models trained with any self-supervised task.

Contrastive learning teaches the model to distinguish between different data points
in the training set, while at the same time learning a semantically meaningful feature space
that disregards certain transformations. Inspired by Winkens et al. (2020), we transform
an original image xi into T (xi) = xi. During training, we maximize the cosine similarity
between xi and xi in the feature space and minimize the similarity between xi and a second
image xj . For function T , we use implementations from the TorchIO library (version
0.17.46) (Pérez-Garćıa et al., 2020). We randomly apply RescaleIntensity, RandomGamma,
RandomMotion, RandomBiasField, RandomNoise and RandomBlur operations, each with
a probability of p = 0.5. Features zi are extracted from the output of the encoder E . Eq. 1
defines the contrastive loss LCss, and the architecture is displayed in Fig. 2 (left).

LCss(xi, xj) = Lsim(E(xi), E(xj))− Lsim(E(xi), E(T (xi)), Lsim(zi, zj) =
zi · zj

‖zi‖2 · ‖zj‖2
(1)

The goal of edge detection is to extract a mask of edges ĥi from image xi. We train
a standard two-headed architecture consisting of a shared encoder E and two decoders, G
for the segmentation task and H for edge detection. Fig. 2 (right) outlines the proposed
architecture. We train both heads with a combined loss of Dice (LDice) and binary cross
entropy (LBCE) weighted equally. To produce target masks hi in a deterministic manner,
we use the Canny Edge detector (Canny, 1986) of the Scikit Learn (Pedregosa et al., 2012)
library (version 0.24.1) with lower and upper bounds of, respectively, 150 and 200. During
inference, we treat the edge detection loss LEss (Eq. 2) as a component of our novelty metric.

LEss(xi, hi) = LDice(H(xi), hi) + LBCE(H(xi), hi) (2)

3.2. Novelty Estimation

For detecting OOD samples during inference we combine uncertainty estimates with the
loss of the self-supervised proxy task. Uncertainty estimation produces good calibrations
in ID data, but often fails in the presence of dataset shift (Ovadia et al., 2019). We expect
dataset shift to manifest in an unusually large self-supervision loss (Su et al., 2020) that
compensates for the decreased ability to detect uncertain cases of uncertainty estimation
methods. By combining these two factors, we obtain a reliable detection signal.
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Contrastive learning Edge detection

Figure 2: Two self-supervision architectures are explored in this work. Left: features are
extracted for xi, T (xi) = xi and xj to calculate a contrastive loss term. Right:
network with an additional decoder head for the task of edge detection.

As we aim to find a flexible post-hoc method applicable to most learning-based systems,
we explore two different types of uncertainty estimation. MC Dropout (Gal and Ghahra-
mani, 2016) involves performing several forward passes with dropout during test time. The
method can be applied to any model that uses dropout layers, which includes most modern
architectures. Deep Ensembles – the practice of training several networks and averaging
their predictions – have consistently shown the best performance in uncertainty estimation
(Jungo et al., 2020; Mehrtash et al., 2020). They are also a straightforward way to im-
prove prediction performance and therefore often used in practice. In the event that several
trained models are present, we propose using this method as an uncertainty estimate.

During inference, the novelty of a test subject is assessed by combining the self-supervised
loss Lss with uncertainty estimation. The Lss loss is calculated in the same way as during
training. For the experiments performed in this work, either LCss(xi, xj) or LEss(xi, hi) are
calculated depending on the model architecture. In the first case, we use a different subject
from the same dataset as xj . For 2D models, the loss for a test subject is the average across
slices, as is also the case during training. As the uncertainty estimation component we take
the voxel-wise standard deviation between model predictions, which is averaged over all
voxels to produce a subject-level score. Different predictions are obtained by performing
MC Dropout or, if ensembles are available, by making a prediction with each model. We
define the proposed novelty function N in Eq. 3, where K is the number of trained models
or dropout forward passes and N is the number of voxels xi,j in an image xi.

N (xi) = λLss(·) +
1

N

N∑
j=1

√√√√ 1

K

K∑
k=1

(
xki,j − µi,j

)2
, µi,j =

1

K

K∑
k=1

xki,j (3)
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4. Experimental Setup and Results

We use three CMR datasets. The first two are part of the Multi-Centre, Multi-Vendor and
Multi-Disease Cardiac Segmentation (M&M) dataset (Campello and Lekadir, 2020) and
contain healthy subjects as well as subjects with hypertrophic and dilated cardiomyopathies.
We use the data for vendors A and B, for which ground truth segmentations are available.
The images were acquired with Siemens Avanto and Philips Achieva scanners, respectively,
at different centers. Each dataset contains 75 subjects. Lastly, we use the Sunnybrook
Cardiac Data (Radau et al., 2009), acquired at a different center with a General Electric
Signa scanner. The data consists of 45 scans from healthy as well as diseased subjects
suffering from hypertrophy and heart failure. All images were acquired with 1.5T fields
strength. We extract from each subject the segmented diastolic and systolic phase volumes.

We train a slice-by-slice U-Net with five encoding blocks based on the implementation
by Pérez-Garćıa (2020). Images are center-cropped to 256× 256. Each model is trained for
200 epochs with the PyTorch Adam optimizer. For the edge detection task, the encoder is
shared and the decoder is replicated from the point with minimum spatial resolution. Refer
to Appendix A for an overview of segmentation performance in ID and OOD data. Note that
the results on the target task change slightly due to the incorporation of self-supervision.

We compare the proposed method against taking the inverse maximum softmax value
(Hendrycks and Gimpel, 2016) (reported as Max. Softmax), temperature scaling (Temp.
Scaling) (Guo et al., 2017) and the ODIN method (Liang et al., 2018); as well as against
the corresponding uncertainty estimation (MC Dropout and Ensemble) and using only
the self-supervised loss as a novelty estimate (SS Loss). When necessary, we average voxel-
wise estimates to produce a volume-wise novelty score. We refer to our method variations
using and not using ensembles as Ours E and Ours, respectively. We further specify in
parenthesis whether the model learned a contrastive (C) or edge detection (E) task.

In turn, we consider each of the three datasets as ID and the other two as OOD. We
divide the ID cases into three folds to perform cross-validation. For each cross-validation
run, we train a model with the ID train data made out of two folds and evaluate it with the
third fold, which is the ID test data. For OOD detection, we use one OOD dataset and the
ID train data to select the best hyperparameters and evaluate the detection performance
on the second OOD dataset and the ID test samples. We average the results of using each
of the two OOD datasets for the evaluation, and report the mean and standard deviation
of the three-fold cross-validation. Refer to Appendix D for a graphical illustration of our
evaluation strategy. The following hyperparameters are tested: T ∈ {1e1, 1e2, 1e3} for tem-
perature, ε ∈ {1e− 1, 1e− 2, 1e− 3} for perturbation magnitude (ODIN), p ∈ {0.3, 0.5, 0.7}
for dropout probabilities and λ ∈ {1e0, 1e2, 1e4} for weighting magnitudes.

We train ensembles with K = 3 models and perform K = 30 MC Dropout passes. We
select the threshold ψ that achieves a 95% True Positive Rate (TPR) in the in-distribution
train data, and flag samples as OOD when N (x) ≥ ψ. Reported are the Detection Error as
defined by Liang et al. (2018) and the False Positive Rate (FPR) at 95% TPR.

4.1. Results for Contrastive Learning Models

We start by analyzing the results of OOD detection methods for the models trained with
a contrastive learning loss component. Table 1 summarizes our findings. We see that for
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Table 1: OOD Detection Error and FPR at 95% TPR for models trained with a contrastive
learning loss term (lower is better). The mean and standard deviation are reported
of testing with each OOD dataset and performing three-fold cross validation.

M&M Vendor A M&M Vendor B Sunnybrook
Method Error FPR Error FPR Error FPR

Max. Softmax .48 ±.00 .93 ±.01 .51 ±.02 .90 ±.02 .53 ±.00 .91 ±.09
Temp. Scaling .51 ±.01 .93 ±.01 .51 ±.02 .93 ±.01 .47 ±.01 .90 ±.02
ODIN .43 ±.02 .84 ±.03 .49 ±.00 .87 ±.01 .51 ±.01 .87 ±.02
SS Loss (C) .33 ±.03 .61 ±.04 .36 ±.11 .60 ±.17 .50 ±.04 .91 ±.02
MC Dropout .45 ±.01 .85 ±.05 .38 ±.10 .72 ±.20 .21 ±.02 .23 ±.09
Ours (C) .33 ±.03 .60 ±.05 .33 ±.12 .58 ±.18 .19 ±.02 .19 ±.09

Ensemble .46 ±.02 .86 ±.01 .44 ±.03 .37 ±.08 .26 ±.01 .06 ±.02
Ours E (C) .32 ±.05 .49 ±.13 .26 ±.05 .17 ±.04 .28 ±.01 .05 ±.00

all datasets, the popular temperature scaling and ODIN methods perform poorly. This
may be due to the fact that both methods are developed for the classification task and
not segmentation, where different voxels may be more or less significant for determining
whether a sample is in-distribution. Our proposed method results in a lower detection error
and FPR than all baselines both in cases where ensembles are available and when they are
not. Only in dataset Sunnybrook does the ensemble alone achieve a lower detection error
than the proposed method. As expected, considering the deviation between ensembles as
an uncertainty estimation component leads to better results than applying MC Dropout.
However, this method variation is only applicable if multiple models have been trained.

Figure 3: Distribution of novelty scores for contrastive learning models (lesser overlap is
better). The scores for ID and OOD data are aggregated for all experiments and
normalized to [0, 1] by taking the range of the ID training set.

Fig. 3 illustrates the ranges that different novelty scores occupy, normalized by taking the
minimum and maximum novelty for ID train data, so that different methods are comparable.
Ideally, novelty scores would cluster close to one (upper plot segment) for OOD data, and
there would be a minimal overlap between ID and OOD scores. By observing the boxes
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ranging from the first to the third quantiles we notice that the proposed method achieves
the best separation between ID and OOD novelty scores in its two variations.

4.2. Results for Architectures with Edge Detection

Table 2 compiles the results for models trained with an edge detection proxy task. Despite
this being a very different task and self-supervision loss, the proposed method still performs
best in all but one cases. However, the method shows its limitations for models trained
with data from M &M Vendor B. This indicates that although our method is suited to any
self-supervised task, some tasks may be more helpful than others.

Table 2: OOD Detection Error and FPR at 95% TPR (± standard deviation) for models
trained with an edge-detection proxy task (lower is better).

M&M Vendor A M&M Vendor B Sunnybrook
Method Error FPR Error FPR Error FPR

Max. Softmax .49 ±.00 .97 ±.00 .49 ±.01 .95 ±.04 .50 ±.00 .96 ±.01
Temp. Scaling .51 ±.01 .87 ±.02 .51 ±.03 .91 ±.01 .48 ±.02 .92 ±.04
ODIN .47 ±.02 .90 ±.01 .48 ±.03 .89 ±.02 .48 ±.01 .92 ±.00
SS Loss (E) .33 ±.01 .66 ±.01 .55 ±.03 .99 ±.01 .29 ±.01 .53 ±.04
MC Dropout .43 ±.04 .81 ±.04 .44 ±.06 .33 ±.33 .28 ±.03 .28 ±.16
Ours (E) .32 ±.01 .63 ±.01 .44 ±.05 .81 ±.16 .28 ±.02 .25 ±.14

Ensemble .39 ±.04 .68 ±.14 .45 ±.03 .45 ±.02 .37 ±.13 .51 ±.49
Ours E (E) .32 ±.01 .55 ±.08 .45 ±.03 .44 ±.02 .25 ±.01 .23 ±.22

5. Conclusion

Automatic segmentation of cardiac structures in CMR data could significantly alleviate
the burden of clinicians. Competitive performance has been achieved by DNNs, but as
long as these are susceptible to domain shift their applicability is limited. One way to
approach this is by identifying OOD samples during deployment. For self-supervised models,
combining the test-time value of the proxy loss with uncertainty estimation forms a reliable
and lightweight novelty score. This finding is significant when considering the surge in
popularity of self-supervision and introduces a further benefit of including a proxy term in
DNN training. The proposed method can augment a wide array of learning-based systems,
although for fully-supervised models incorporating a proxy task can have unintended effects
in the target task. Future work should contemplate whether our results extend to other
proxy tasks and anatomies. As it requires minimal overhead, we hope that monitoring the
proxy loss during deployment becomes a widespread method for quality assurance.
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Appendix A. Segmentation Performance of Trained Models

Table 3 showcases the Dice coefficient for left ventricular blood pool segmentation for models
trained with two proxy tasks (contrastive and edge detection), as well as without any proxy
task. In the diagonal, the results are displayed of testing each model with ID data.

Table 3: Mean Dice for models trained with a contrastive learning loss component (first
row), edge detection (second row) and no self-supervised loss (third row). Reported
are the mean and standard deviation of three cross-validation runs.

F trained with F trained with F trained with
Data M&M Vendor A M&M Vendor B Sunnybrook

LCss
M&M Vendor A .85 ±.02 .37 ±.05 .57 ±.02
M&M Vendor B .71 ±.01 .87 ±.02 .44 ±.10
Sunnybrook .57 ±.03 .14 ±.04 .83 ±.02

LEss
M&M Vendor A .83 ±.04 .36 ±.05 .50 ±.05
M&M Vendor B .65 ±.02 .86 ±.02 .35 ±.15
Sunnybrook .60 ±.03 .09 ±.03 .82 ±.01

No Lss
M&M Vendor A .86 ±.02 .42 ±.05 .60 ±.06
M&M Vendor B .71 ±.07 .87 ±.06 .36 ±.08
Sunnybrook .53 ±.02 .16 ±.08 .80 ±.06

Appendix B. Novelty Distribution for Edge Detection Models

Fig. 4 displays the distribution of novelty scores for models with an edge detection proxy
task. We see that the amount of overlap between ID and OOD data is more pronounced
than for contrastive learning models (see Fig. 3). The variant of our method that uses
ensembles (Ours E (E)) is the only approach that achieves a good separation.

Figure 4: Distribution of novelty scores for models with an edge detection proxy task (lesser
overlap is better). The novelty scores for ID and OOD data are aggregated for
all experiments. The scores were normalized to [0, 1].
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Appendix C. Generation of Target Data for Proxy Tasks

Fig. 5 displays exemplary data generated to train the proxy tasks explored in this work.
The first column showcases slices from the M &M Vendor B dataset with overlayed ventricle
blood pool segmentation (in red). The second column shows the same slices but with
overlayed edge masks. Finally, the third column illustrates possible results of applying the
transformation T (xi) = xi.

Input image slices Edge masks Transformed image slices

Figure 5: From left to right: image xi with overlayed left ventricle blood pool segmentation
(yi), xi with overlayed edges hi and transformed image xi with overlayed yi.

Appendix D. Evaluation Strategy

Fig. 6 graphically illustrates our evaluation setup with three datasets for one cross-validation
run. In turn, each dataset is considered ID and is divided into ID train and ID test data.
The ID train data is used to train the model, as well as to set hyperparameters alongside
one OOD dataset. The detection performance is reported in the ID test data and the second
OOD dataset. The results of using each OOD dataset for each purpose are averaged.
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Figure 6: Graphical illustration of the evaluation strategy.
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Contribution and impact

Cardiac Cine Magnetic Resonance imaging (CMR) allows accurate non-invasive volumetric quantification
of cardiac structures. However, automatic cardiac segmentation suffers from (1) MRIs varying notoriously
across vendors and (2) the fact that the examination requires breath holding, which is particularly
difficult for its target population and often results in motion artifacts.

Given the rise in popularity of self-supervised models for semantic segmentation (Bai et al., 2019;
Araslanov and Roth, 2021), we explore whether monitoring the proxy loss during testing can help detect
OOD images. As the proxy term only captures certain characteristics of the data, we combine this
signal with uncertainty estimation, for which we test Monte Carlo Dropout and Deep Ensembles. To our
knowledge, we were the first to look into this strategy for medical image segmentation.

Instead of limiting our study to a specific self-supervision component, we look into architectures with
edge detection and contrastive learning proxy losses. Our goal is not to suggest one specific architecture
that allows for OOD detection but instead to extract post-hoc novelty estimates from the trained model.
Our empirical results show that this is a useful signal for identifying examinations acquired with a
yet-unseen vendor.

Discussion and limitations

The main limitation of the proposed method is that it can only be applied to models that contain a
self-supervision module. I would advise against augmenting a model with a proxy term for the sole
purpose of OOD detection. Besides, the self-supervised term will only supply information on certain
aspects of the data. For instance, an edge detector may help detect a shift in MR vendor but generalize
well to patients with yet-unseen conditions.

Regarding the scope of the study, it would be interesting to explore more ROIs and self-supervision
strategies, as well as scenarios where only a portion of the training data is labeled. Several interesting
works have emerged since the publication of this paper on using self-supervision, particularly contrastive
learning, for OOD detection (Li et al., 2022; Qi et al., 2022; Wang et al., 2022) which shows this
is a promising research direction. Contrastive learning has also been successfully applied to domain
adaptation (Gu et al., 2022), confirming that it is a useful technique for learning meaningful features
and increasing robustness.

3.1.2. Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion
segmentation

Our publicationDetecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation
was presented as an oral at the 24th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) which was held from September 27th to October 1st, 2021, as a virtual
event. For the execution of this research, we cooperated closely with colleagues from the interventional
radiology department at the University Hospital Frankfurt, who collected CT examinations from Covid-
19 patients and delineated them with lesions characteristic of the infection. Thanks to the paper, I
was awarded the Young Scientist Award by MICCAI Society, which recognizes up to five out of 1600+
submitted and 500+ accepted papers where the first author is an early-career researcher.
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Abstract. Automatic segmentation of lung lesions in computer tomog-
raphy has the potential to ease the burden of clinicians during the Covid-
19 pandemic. Yet predictive deep learning models are not trusted in the
clinical routine due to failing silently in out-of-distribution (OOD) data.
We propose a lightweight OOD detection method that exploits the Ma-
halanobis distance in the feature space. The proposed approach can be
seamlessly integrated into state-of-the-art segmentation pipelines with-
out requiring changes in model architecture or training procedure, and
can therefore be used to assess the suitability of pre-trained models to
new data. We validate our method with a patch-based nnU-Net architec-
ture trained with a multi-institutional dataset and find that it effectively
detects samples that the model segments incorrectly.

Keywords: out-of-distribution detection · uncertainty estimation · dis-
tribution shift.

1 Introduction

Automatic lung lesion segmentation in the clinical routine would significantly
lessen the burden of radiologists, standardise quantification and staging of Covid-
19 as well as open the way for a more effective utilisation of hospital resources.
With this hope, several initiatives have gathered Computed Axial Tomogra-
phy (CAT) scans and ground-truth annotations from expert thorax radiologists
and released them to the public [6, 20, 23]. Experts have identified ground glass
opacities (GGOs) and consolidations as characteristic of a pulmonary infection
onset by the SARS-CoV-2 virus [24]. Deep learning models have shown good
performance in segmenting these lesions. Particularly the fully-automatic nnU-
Net framework [11] secured top spots (9 out of 10, including the first) in the
leaderboard for the Covid-19 Lung CT Lesion Segmentation Challenge [7].

Such frameworks would ideally be utilised in the clinical practice. However,
deep learning models are known to fail for data that considerably diverges from

? Supported by the Bundesministerium für Gesundheit (BMG) with grant [ZMVI1-
2520DAT03A].
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the training distribution. CAT scans are particularly prone to this domain shift
problem [4]. The data showcased in the challenge is multi-centre and diverse in
terms of patient group and acquisition protocol. A model trained with it would
be presumed to produce good predictions for a wide spectrum of institutions.
Yet when we evaluate a nnU-Net model on three other datasets, we notice a
considerable drop in segmentation quality (see Fig. 1 (a)). Lung lesions do not
manifest in large connected components (see Fig 4), so it is not trivial for a
novice radiologist to identify an incorrect segmentation.

Clinicians can still leverage models trained with large amounts of heteroge-
neous data, but only alongside a process that identifies when the model is un-
suitable for a new data sample. Widely-used segmentation frameworks are not
designed with OOD detection in mind, and so a method is needed that reliably
identifies OOD samples post-training while requiring minimal intervention.

Several strategies have shown good OOD detection performance in classifi-
cation models. Hendrycks and Gimpel [8] propose using the maximum softmax
output as an OOD detection baseline. Guo et al. [5] find that replacing the regu-
lar softmax function with a temperature-scaled variant produces truer estimates.
This can be complemented by adding perturbations to the network inputs [19].
Other methods [10, 17] instead look at the KL divergence of softmaxed outputs
from the uniform distribution. Some approaches use OOD data during training
to explicitly train an outlier detector [1, 9, 17]. Bayesian-inspired techniques can
also be used for outlier detection. Commonly-used are Monte Carlo Dropout [3]
and Deep Ensembles [16]. These have shown promising results in the field of
medical image segmentation [12, 13, 21]. Approaches that modify the architec-
ture or training procedure have shown better performance in some cases, but
their applicability to widely-used segmentation frameworks is limited [2, 15, 22].

We propose a method for OOD detection that is lightweight and seamlessly
integrates into complex segmentation frameworks. Inspired by the work of Lee
et al. [18], our approach estimates a multivariate Gaussian distribution from
in-distribution (ID) training samples and utilises the Mahalanobis distance as
a measure of uncertainty during inference. We compute the distance in a low-
dimensional feature space, and down-sample it further to ensure a computa-
tionally inexpensive calculation. We validate our method on a patch-based 3D
nnU-Net trained with multi-centre data from the Covid-19 Lung CT Lesion
Segmentation Challenge. Our evaluation shows that the proposed method can
effectively identify OOD samples for which the model produces faulty segmen-
tations, and provides good model calibration estimates. Our contributions are:

– The introduction of a lightweight, flexible method for OOD detection that
can be integrated into any segmentation framework.

– An extension of the nnU-Net framework to provide clinically-relevant uncer-
tainty estimates.
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2 Materials and Methods

We start by summarising the particularities of the nnU-Net framework in Sec. 2.1.
In Sec. 2.2, we outline our proposed method for OOD detection, which follows
a three-step process: (1) estimation of a Gaussian distribution from training fea-
tures (2) extraction of uncertainty masks for test images and (3) calculation of
subject-level uncertainty scores.

2.1 Patch-based nnU-Net

The nnU-Net framework is a standardised baseline for medical image segmen-
tation [11]. Without deviating from traditional U-Net architectures [26], it has
won several grand challenges by automatically customising the architecture and
training configuration to the data at hand [7]. The framework also performs pre-
and post-processing steps, such as adapting voxel spacing and contrast normali-
sation, during both training and inference. In this work we utilise the patch-based
full-resolution variant, which is recommended for most applications [11], but our
method can be integrated into any other architecture. For the patch-based archi-
tecture, training images are first divided into overlapping patches with a sliding
window approach, resulting in N patches {xi}Ni=1. Predictions for each patch are
multiplied by a filtering operation that weights centre-voxels more heavily, and
then aggregated into an output mask with the dimensions of the original image.

0.0

0.6

0.4

0.2

0.6 0.7 0.8 0.90.5

𝑦

𝑥

Fig. 1. (a) Dice coefficient of a model trained with Challenge data, evaluated with ID
(Challenge) test data as well as on three other datasets. (b) The euclidean distance
DE does not recognize that ẑ1 (purple marker) is closer than ẑ2 (blue marker) to
the distribution of training samples (gray markers), with mean µ (green marker) and
covariance Σ. This difference intensifies in high-dimensional spaces, where it is common
for regions close to the mean to be underrepresented.

2.2 Estimation of a subject-level uncertainty score

We are interested in capturing epistemic uncertainty, which arises from a lack of
knowledge about the data-generating process. Quantifying it for image regions
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instead of region boundaries is challenging, particularly for OOD data [14]. One
computationally inexpensive way to assess epistemic uncertainty is to calculate
the distance between training and testing activations in a low-dimensional fea-
ture space. As a model is unlikely to produce reasonable outputs for features far
from any seen during training, this is a reliable signal for bad model performance
[18]. Model activations have covariance and the activations of typical input im-
ages do not necessarily resemble the mean [27], so the euclidean distance is not
appropriate to identify unusual activation patterns; a problem that exacerbates
in high-dimensional spaces. The Mahalanobis distance DM rescales samples into
a space without covariance, supplying a more effective way to identify typical
patterns in deep model features. Fig. 1 (b) illustrates a situation where the eu-
clidean distance assumes that ẑ2 is closer to the training distribution than ẑ1,
when ẑ2 is highly unusual and ẑ1 is a probable sample.

In the following we describe the steps we perform to extract a subject-level
uncertainty value. Note that only one forward pass is necessary for each image,
keeping the computational overhead to a minimum.

Estimation of the training distribution: We start by estimating a multi-
variate Gaussian N (µ,Σ) over model features. For all training inputs {xi}Ni=1,
features F(xi) = zi are extracted from the encoder F of the pre-trained model.
For modern segmentation networks, the dimensionality of the extracted features
zi is too large to calculate the covariance Σ in an acceptable time frame. We
thus project the latent space into a lower subspace by average pooling. Finally,
we flatten this subspace and estimate the empirical mean µ and covariance Σ.

µ =
1

N

N∑
i=1

ẑi, Σ =
1

N

N∑
i=1

(ẑi − µ)(ẑi − µ)T (1)

Extraction of uncertainty masks: During inference, we estimate an uncer-
tainty mask for a subject following the process outlined in Fig. 2. For each patch
xi, features are extracted and projected into ẑi. Next, the Mahalanobis distance
(Eq. 2) to the Gaussian distribution estimated in the previous step is calculated.

DM(ẑi;µ,Σ) = (ẑi − µ)TΣ−1(ẑi − µ) (2)

Each distance is a point estimate for the corresponding model input. These
are aggregated in a similar fashion to how network outputs are combined to form
a prediction mask. Following the example of the patch-based nnU-Net, a zero-
filled tensor is initialised with the dimensionality of the original image. After
assessing the distance for a patch, the value is replicated to the specified patch
size and a filtering operation is applied to weight centre voxels more heavily.
Finally, patch-level uncertainties are aggregated to an image-level mask.

Subject-level uncertainty: The process described above produces an uncer-
tainty mask with the dimensionality of the CAT scan. In order to effectively
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Fig. 2. Extracting an uncertainty mask based on the Mahalanobis distance DM for an
image during inference, in combination with a patch-based nnU-Net architecture.

identify highly uncertain samples, we aggregate these into a subject-level uncer-
tainty U by averaging over all voxels. We then normalise uncertainties between
the minimum and doubled maximum values represented in an ID validation set
– which we assume to be available during training – to ensure U ∈ [0, 1].

3 Experimental Setup

We work with a total of four datasets for segmentation of Covid-19-related find-
ings. The Challenge dataset [6] contains chest CAT scans for patients with a
confirmed SARS-CoV-2 infection from an array of institutions. The data is het-
erogeneous in terms of age, gender and disease severity. We use the 199 cases
made available under the Covid Segmentation Grand Challenge, which we ran-
domly divide into 160 cases to train the model, 4 validation and 35 test cases.

We evaluate our method with two publicly available datasets and an in-house
one. The public datasets encompass cases for patients with and without con-
firmed infections. Mosmed [23] contains fifty cases and the Radiopedia dataset
[20], a further twenty. Finally, we utilise an in-house dataset consisting of fifty
patients who were tested positive for SARS-CoV-2 with an RT PCR test. All
fifty scans were reviewed for diagnostic image quality. The annotations for the in-
house data were performed slice-by-slice by two independent readers trained in
the delineation of GGOs and pulmonary consolidations. Central vascular struc-
tures and central bronchial structures were excluded from all segmentations.
All delineations were reviewed by an expert radiologist reader. For the public
datasets, the segmentation process is outlined in the corresponding publications.

With the Challenge data, we train a patch-based nnU-Net [11] on a Tesla T4
GPU. Our configuration has a patch size of [28, 256, 256], and adjacent patches
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overlap by half that size. To reduce the dimensionality of the feature space, we
apply average pooling with a kernel size of (2, 2, 2) and stride (2, 2, 2) until the
dimensionality falls below 1e4 elements. With the Scikit Learn library (version
0.24) [25], calculatingΣ requires 85 seconds for 1e5 samples. Our code is available
under github.com/MECLabTUDA/Lifelong-nnUNet.

We compare our approach to state-of-the-art techniques to assess uncertainty
information by performing inference on a trained model. Max. Softmax consists
of taking the maximum softmax output [8]. Temp. Scaling performs temperature
scaling on the outputs before applying the softmax operation [5], for which we
test three different temperatures T = {10, 100, 1000}. KL from Uniform com-
putes the KL divergence from an uniform distribution [10]. Note that all three
methods output a confidence score (higher is more certain), which we invert
to obtain an uncertainty estimate (lower is more certain). Finally, MC Dropout
consists of doing several forward passes whilst activating the Dropout layers that
would usually be dormant during inference. We perform 10 forward passes and
report the standard deviation between outputs as an uncertainty score. For all
methods, we calculate a subject-level metric by averaging uncertainty masks, and
normalise the uncertainty range between the minimum and doubled maximum
uncertainty represented in ID validation data.

4 Results

We start this section by analysing the performance of the proposed method
in detecting samples that vary significantly from the training distribution. We
then examine how well the model estimates segmentation performance. Lastly,
we qualitatively evaluate our method for ID and OOD examples.

OOD detection: We first assess how effective our method is at identifying
samples that are not ID (Challenge data). Due to the heterogeneity of the Chal-
lenge dataset, in practice data from an array of institutions would be considered
ID. However, for our evaluation datasets there is a drop in performance which
should manifest in higher uncertainty estimates. As is common practice in OOD
detection [19], we find the uncertainty boundary that achieves a 95% true pos-
itive rate (TPR) on the ID validation set, where a true positive is a sample
correctly identified as ID. We report for the ID test data and all OOD data the
false positive rate (FPR) and Detection Error = 0.5 (1− TPR) + 0.5 FPR at
95% TPR. Tab. 1 summarizes our findings. All methods that utilise the network
outputs after one forward pass have a high detection error and FPR, while the
MC Dropout approach manages to identify more OOD samples. Our proposed
method displays the lowest FPR and detection error.

Segmentation performance: While the detection of OOD samples is a
first step in assessing the suitability of a model, an ideal uncertainty metric
would inversely correlate with model performance, informing the user of the
likely quality of a prediction without requiring manual annotations. For this we
calculate the Expected Segmentation Calibration Error (ESCE). Inspired by Guo
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Table 1. Detection Error (lower is better) and FPR (lower is better) for the boundary
of 95% TPR, ESCE (lower is better) and (mean±sd) Dice (higher is better) for subjects
with an uncertainty below the 95% TPR boundary. The results are reported for ID
test data and all OOD samples.

Method Det. Error FPR ESCE Dice

Max. Softmax [8] 0.334 0.583 0.319 0.582 ±0.223
Temp. Scaling T = 10 [5] 0.508 0.758 0.407 0.601 ±0.233
Temp. Scaling T = 100 [5] 0.361 0.550 0.408 0.589 ±0.233
Temp. Scaling T = 1000 [5] 0.500 1.000 0.408 0.592 ±0.233
KL from Uniform [10] 0.415 0.717 0.288 0.600 ±0.215
MC Dropout [3] 0.177 0.183 0.215 0.614 ±0.234
Ours 0.082 0.050 0.125 0.744 ±0.143

et al. [5], we divide the N test scans into M = 10 interval bins Bm according
to their normalised uncertainty. Over all bins, the absolute difference is added
between average Dice (Dice(Bm)) and inverse average uncertainty (1−U(Bm))
for samples in the bin, weighted by the number of samples.

ESCE =
M∑

m=1

|Bm|
N
|Dice(Bm)− (1− U(Bm))| (3)

The results are reported in Tab. 1 (forth column). Our proposed approach
shows the lowest ESCE at 0.125. The average Dice of admitted samples (fifth
column) lies at 0.744, which is consistent with the ID expected performance of
the model (see Fig. 1 (a)).

MC Dropout Ours

ID OOD 95% TPR

Fig. 3. Dice coefficient against normalised uncertainty for OOD (gray triangles) and
test ID (black circles) samples. The vertical gray line marks the boundary of 95% TPR
for ID validation data. To the right of this line, samples are classified as OOD. The
lower left (red) quadrant is clinically most relevant. Unlike MC Dropout, our method
does not fail silently by assigning low uncertainties to low-Dice samples.
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Fig. 3 depicts the Dice coefficient plotted against the uncertainty for our
proposed approach and MC Dropout, which has the second lowest calibration
error. Relevant for a safe use of the model in clinical practice is the lower left
(red) quadrant, where silent failures are located. Whereas MC Dropout fails to
identify OOD samples with faulty predicted segmentations, our proposed method
assigns these cases high uncertainty estimates. The only OOD samples that fall
below the 95% TPR uncertainty boundary for our method have Dice scores
over 0.6 (upper left quadrant with green background). However, our method
shows room for improvement in the upper right (yellow) quadrant. Here, OOD
samples for which the model produces good predictions are estimated to have a
high uncertainty. An ideal calibration would place all samples in the upper left
(green) and lower right (blue) quadrants.

Qualitative evaluation: Fig. 4 depicts two example images alongside cor-
responding ground truths and predictions. The top row shows a example from
the Challenge dataset for which the model produces an adequate segmentation.
The bottom contains a scan from the Mosmed dataset. The model oversegments
the lesion at the middle left lobe and incorrectly marks two additional regions
at the left and right superior lobes. Only our proposed method signals a possible
error in the lower row with a high uncertainty, while producing a low uncertainty
estimate for the upper row.

= .100

= .136

= .054

= .616

= .005

= .196

KL from Unif.

Max. Softmax

MC Dropout

Ours

Temp. Scaling

Dice

= .100

= .105

= .081

= .027

= .003

= .875

KL from Unif.

Max. Softmax

MC Dropout

Ours

Temp. Scaling

Dice

Vol. renderingAxial slices

GROUND TRUTHGROUND TRUTHPREDICTIONIMAGE

Uncertainty

Fig. 4. Upper row: a good prediction. Lower row: a prediction for an OOD sample
where two lesions are erroneously segmented in the superior lung lobes. Despite the
considerable differences to the ground truth, these errors are not directly noticeable
for the inexpert observer, as GGOs can manifest in superior lobes [24].
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5 Conclusion

Increasingly, institutions are taking part in initiatives to gather large amounts
of annotated, heterogeneous data and release it to the public. This could poten-
tially alleviate the work burden of medical practitioners by allowing the training
of robust segmentation models. Open-source end-to-end frameworks contribute
to this process. But regardless of the variety of the training data, it is necessary
to assess whether a model is well-suited to new samples. This is particularly true
when it is not trivial to identify a faulty output, such as for the segmentation of
SARS-CoV-2 lung lesions. There is currently a disconnect between methods for
OOD detection, which often require special training or architectural considera-
tions, and widely-used segmentation frameworks. We find that calculating the
Mahalanobis distance to features in a low-dimensional subspace is a lightweight
and flexible way to signal when a model prediction should not be trusted. Future
work should explore how to better identify high-quality predictions and evaluate
the methods considered in this work on other segmentation models. For now, our
work increases clinicians’ trust while translating trained neural networks from
challenge participation to real clinics.



10 C. Gonzalez et al.

References
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Appendix

Table 1. Summary of characteristics for Covid-19 lung lesion segmentation datasets.

Dataset
name

Nr. of
subjects

Mean spatial
resolution

Mean spacing

Challenge 199 [68.87, 512.0, 512.0] [4.81, 0.78, 0.78]

Mosmed 50 [40.98, 512.00, 512.00] [8.00, 0.73, 0.73]

Radiopedia 20 [176.00, 559.55, 571.00] [1.00, 1.00, 1.00]

In-house 50 [266.64, 819.20, 825.68] [1.89, 0.60, 0.60]

Table 2. Training parameters and specifications. For further details refer to the nnU-
Net code at github.com/MIC-DKFZ/nnUNet.

Specification Value

Patch size [28, 256, 256]

Batch size 250

Padding None

Loss Cross-entropy and Dice (smoothing 1e-5), weighted
equally

Optimizer SGD

Initial learning rate 0.01

Weight decay 3e-5

Momentum 0.99

Foreground oversampling 33%

Train-time augmentation Elastic deformation, scaling, rotation, gamma transfor-
mation

Test-time augmentation None
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Fig. 1. Model architecture, configured based on properties of the training dataset by
the nnU-Net framework.



Contribution and impact

Since the start of the Covid-19 pandemic, many algorithms were proposed for automatic lung lesion
segmentation with the hope of alleviating the medical workforce (Liu et al., 2022a). In particular, the
nnU-Net framework (Isensee et al., 2021) showed promising results in the segmentation of ground glass
opacities (GGOs) and consolidations. Yet very few solutions successfully translated to the clinical routine
(Hu et al., 2020; Parekh et al., 2020).

Given the insufficient external validation of many methods (Roberts et al., 2021), this may have been
the right decision. In our work, we show how a model trained with supposedly heterogeneous data fails
to generalize to two other datasets. Low-quality predictions are particularly problematic for lung lesion
segmentation, and these have diffuse shapes and can manifest in different sections of the lung, making it
difficult to assess their correctness. Network outputs, as we have previously seen, are also not reliable.

In order to identify such silent failures, we propose a method that estimates the distribution of training
features in a low-dimensional space and, during testing, assesses how far the test activations are in
terms of Mahalanobis distance. Though we are not the first to propose this idea (Lee et al., 2018b),
our contribution lies in adapting it to semantic segmentation and, specifically, highly parameterized 3D
models. To ensure that we can calculate the covariance Σ in an acceptable time frame, we apply pooling
operations until the feature size is below 103. This allows us to estimate the feature distribution and
calculate the Mahalanobis distance purely in the CPU. As we operate in a full-resolution patch-based
model, we extract features from each patch, calculate the distance, and add the distance patch to an
uncertainty mask with the size of the original image.

Discussion and limitations

The method effectively differentiates ID from OOD samples, which allows us to detect silent failures that
are the product of domain shift. However, it does not provide an ideal model calibration. In particular, it
fails to identify OOD images for which the model does produce high-quality segmentation masks.

Another central limitation of the work is the experimental scope, where we focused only on the segmen-
tation of Covid-19 lesions in chest CTs. An additional concern lies in the fact that, as we used two openly
available datasets, we could not assess which factors caused the shift in distribution. These could come
from a change in the population (likely, as the data came from different global regions including Russia,
China, and Germany), acquisition practices (which also varied between data sources), and/or variation
in the annotation protocols. We address these concerns in our follow-up paper described in the next
section, where we validate our method across a number of scenarios and on MRI data.

3.1.3. Distance-based detection of out-of-distribution silent failures for Covid-19 lung
lesion segmentation

We significantly extended our work presented in the previous section for a MICCAI 2021 Special Edition
in the Medical Image Analysis journal. We titled this new publication Distance-based detection of out-of-
distribution silent failures for Covid-19 lung lesion segmentation (González et al., 2022a). The version of
the paper contained in this thesis was published on August 24rd, 2022. A pre-print with very similar
content but minor style changes is available in arXiv since August 5th, 2022.
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A B S T R A C T

Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scans
can potentially ease the burden of radiologists during times of high resource utilisation. However, deep learning
models are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. We
propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space and
seamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pre-
trained models with clinically relevant uncertainty quantification. We validate our method across four chest CT
distribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampus
and the prostate. Our results show that the proposed method effectively detects far- and near-OOD samples
across all explored scenarios.

1. Introduction

Automatic segmentation of lung lesions in chest computed to-
mography (CT) scans could standardise quantification and staging of
pulmonary diseases such as Covid-19 and open the way for more ef-
fective utilisation of hospital resources. Ground glass opacities (GGOs)
and consolidations are characteristic of pulmonary infections onset by
the SARS-CoV-2 virus (Parekh et al., 2020). Since the early phases
of the pandemic, many institutions have compiled scans from af-
flicted patients in intensive care, and some initiatives have publicly
released cases with ground-truth delineations from expert thorax ra-
diologists (Roth et al., 2021; Jun et al., 2020; Morozov et al., 2020).
Deep learning has shown promising results in segmenting these pat-
terns. Particularly the fully-automatic nnU-Net (Isensee et al., 2021)
secured top spots (Henderson, 2021) (9 out of 10, including the
first) in the leaderboard for the Covid-19 Lung CT Lesion Segmentation
Challenge (Roth et al., 2021).

Unfortunately, models trained with publicly available cohorts may
not generalise well to real-world clinical data, thus posing safety issues
when deployed without extensive testing and/or quality assurance (QA)
protocols. Deep learning models are known to fail for data that diverges
from the training distribution (Mehrtash et al., 2020); a phenomenon
commonly referred to as domain shift. This hinders the deployment of
AI solutions during the Covid-19 pandemic (Hu et al., 2020), as most

∗ Corresponding author.
E-mail address: camila.gonzalez@gris.tu-darmstadt.de (C. González).

institutions do not dedicate resources to annotate in-house datasets.
There are many potential causes for domain shift, ranging from changes
in the acquisition process to naturally shifting patient populations.
Some can unknowingly occur within the same institution, rendering
even models trained with in-house data unreliable with the passage of
time (Srivastava et al., 2021).

This performance deterioration is visualised in Fig. 5 for an nnU-
Net trained on data from the COVID-19 Lung CT Lesion Segmentation
Challenge (Roth et al., 2021; An et al., 2020; Clark et al., 2013).
Featuring 199 cases, 160 of which were used for training, the data pool
is much larger than single institutions realistically collect and annotate,
considering how time-intensive the process of lung lesion delineation is.
The data is also multi-centre and diverse with regard to patient group
and acquisition protocol, yet the model fails to generalise to different
distribution shifts. Lung lesions do not manifest in large connected
components (see Fig. 12), so it is not trivial for novice radiologists to
identify incorrect segmentations.

While we have so far painted a sombre outlook for clinical use
of deep learning models, these could still be safely utilised alongside
proper quality assurance mechanisms. The problem is that human-
performed QA is time-consuming and expensive, ultimately defeating
the promise of AI in radiology. On the other hand, automatic methods
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may be an inexpensive and effective first step in identifying low-
quality cases. In particular, reliable out-of-distribution (OOD) detection
can signal when the model is unsuitable for a patient.

Existing methods for OOD detection or uncertainty quantification
either (a) observe the network logits, which often fail silently exhibiting
plausible behaviour mimicking in-distribution (ID) cases even for novel
inputs (Hein et al., 2019) or (b) require special training considerations
that reduce their usability, such as a self-supervision loss term or outlier
detector. In practice, models are used which exhibit the best perfor-
mance in the target task. Widely-used segmentation frameworks are not
designed with OOD detection in mind, and so a method is needed that
reliably identifies OOD samples post-training while requiring minimal
intervention.

We propose to directly estimate the similarity of new samples to
the training distribution in a low-dimensional feature space. A large
distance signals that the model has not seen specific activation patterns
in the past, and therefore outputs produced from such novel features
cannot be trusted. Our method (Gonzalez et al., 2021), initially presented
at MICCAI 2021, is lightweight and requires no changes to the network
architecture of the training procedure, allowing it to integrate into
complex segmentation pipelines seamlessly. Further, as the distance es-
timation process follows after training, it can provide clinically-relevant
uncertainty scores for pre-trained models.

Building on our previous work, in the present article we provide
more context into our methodology, perform an ablation study on
selecting feature maps and considerably extend our evaluation. We
validate our proposed method across four scenarios with a nnU-Net
trained on Challenge data.

1. For the first setting, we perform inference on the publicly avail-
able Radiopedia and Mosmed datasets. This setting, which we
have explored in the past, simulates a dataset shift situation
where the user does not know exactly which changes are intro-
duced.

2. Secondly, we apply affine transformations and synthetic arte-
facts to the ID test data in order to simulate, respectively, ge-
ometric changes in the subject population and common quality
problems in CT acquisition.

3. We also evaluate a diagnostic shift scenario on an in-house data
cohort with 50 Covid-19 and 50 new non-Covid pneumonia
patients.

4. Finally, we carry out a far-OOD evaluation where we feed colon
and spleen CT examinations from the Medical Segmentation De-
cathlon (MSD) to the model.

In addition, we explore two additional segmentation tasks to assess
the transferability of our method to other settings, namely hippocampus
and prostate segmentation from, respectively, T1- and T2-weighted
Magnetic Resonance Images (MRIs). We also perform experiments on
a HighResNet (Li et al., 2017) architecture, which does not follow the
classic encoder–decoder structure.

Our results show that our proposed distance-based method reliably
detects out-of-distribution samples that other approaches fail to identify
across a wide array of use cases.

2. Related work

Several strategies have shown acceptable OOD detection perfor-
mance in classification tasks. Output-based methods assess the confi-
dence of the logits by estimating their distance from a one-hot en-
coding. Hendrycks and Gimpel (2017) propose using the maximum
softmax output as an OOD detection baseline. Guo et al. (2017) find
that replacing the regular softmax function with a temperature-scaled
variant produces truer estimates, and Liang et al. (2018) complement
this approach by adding perturbations to the network inputs. Simi-
larly, Liu et al. (2020b) use Energy Scoring to detect OOD samples
in a post-hoc fashion. Given access to explicit OOD samples, training

Fig. 1. Desirable properties for OOD detection and corresponding paradigms. A method
should ideally (1) be widely applicable (2) work on a post-hoc basis even if OOD
detection was not a goal during training and (3) reliably detect OOD samples.

Table 1
Comparison between Output- (O), Sample- (S) and Distance-based (D) methods. We
compare important factors for applicability: parameters, number of modifications (0–3)
and additional inference time from high [− −] to none [++].

Method Type Parameters Mod. level Inf. time

Max. Softmax O t 0 ++
Temp. Scaling O t,T 1 ++
KL O t, 𝑝(𝜃) 2 +
Energy Scoring O t,T 1 ++
MC Dropout S t, p 3 –
TTA S t, 𝐼𝐴𝑢𝑔 2 − −
Ours D t, 𝜇, 𝜎 2 +

with an energy-based loss can further improve OOD detection. Other
methods (Hendrycks et al., 2019; Lee et al., 2018a) instead look at the
KL divergence of softmaxed outputs from the uniform distribution.

Sample-based Bayesian-inspired techniques (Blundell et al., 2015)
consider the divergence between several outputs produced under differ-
ent conditions as the uncertainty. Commonly-used methods are Monte
Carlo Dropout (MC Dropout) (Gal and Ghahramani, 2016) and Deep
Ensembles (Lakshminarayanan et al., 2017). The latter usually per-
forms better but requires several models to be trained, whereas MC
Dropout can assess uncertainty for any model trained with Dropout
layers. Ashukha et al. (2019) show that Test-Time Augmentation (TTA)
can significantly improve both singular models and ensembles. Sample-
based methods have shown promising results in the field of medical im-
age segmentation (Jungo et al., 2020; Jungo and Reyes, 2019; Mehrtash
et al., 2020).

Other approaches use OOD data to explicitly train an outlier detec-
tor (Bevandić et al., 2019; Hendrycks et al., 2018; Lee et al., 2018a).
However, as they require OOD detection to be a primary goal through-
out the training process, they cannot be applied post-hoc to pre-trained
models.

Methods that modify or make certain assumptions on the archi-
tecture or training procedure have shown good performance (Kohl
et al., 2018; Monteiro et al., 2020a,b; Fuchs et al., 2021). For instance,
self-supervision losses provide valuable assessments for novelty (Pid-
horskyi et al., 2018; Golan and El-Yaniv, 2018; Hendrycks et al., 2019;
Gonzalez and Mukhopadhyay, 2021). However, their applicability to
widely-used segmentation frameworks – which do not typically use
self-supervision – is limited.

In Fig. 1, we illustrate how existing paradigms perform in terms
of different desiderata. We are interested in approaches that can be
directly used with any model, and so we restrict our analysis to the
methods outlined in Table 1.

Unlike previous work, our method observes model activations at the
end of the encoder. We project these to a lower-dimensional feature
space and estimate a multi-variate Gaussian with the training data.
During inference, we detect samples with a high Mahalanobis distance
to this distribution, which is suitable for quantifying differences in the
latent space (Lee et al., 2018b; Çallı et al., 2019).
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Fig. 2. Proposed method for OOD detection on a full-resolution nnU-Net model. The input image first goes through a series of pre-processing steps and is divided into patches.
For each patch, we take the feature maps generated at the end of the encoder during the forward pass. We then project these into a lower-dimensional, flattened subspace. During
the training phase, we estimate a Gaussian distribution from the feature space by calculating 𝜇 and 𝛴. At inference time, we calculate the Mahalanobis distance to the training
distribution and project the resulting point value into the dimensions of the original patch. Finally, a filtering operation is performed to weigh voxels at the centre more heavily,
and the result is aggregated into a volume with the same dimensionality as the input image.

3. Material and methods

Our proposed method, visualised in Fig. 2, assesses the uncertainty
as the distance of new samples to the training distribution in the feature
space. First, we extract feature maps from the trained model and project
these to a low-dimensional space to ensure a computationally inexpen-
sive calculation. We then estimate a multi-variate Gaussian distribution
from ID train samples. At test time, we repeat the feature-extraction
process and calculate the Mahalanobis distance.

We first briefly introduce the patch-based nnU-Net architecture in
Section 3.1 and outline how our method links to it. In Section 3.2
we describe our proposed method for OOD detection, which follows a
three-step process: (1) estimation of a Gaussian distribution from training
features (2) extraction of uncertainty masks for test images and finally
(3) calculation of subject-level uncertainty scores.

3.1. Patch-based nnU-Net

The nnU-Net is a standardised framework for medical image seg-
mentation (Isensee et al., 2021) that has reported state-of-the-art results
across several benchmarks and challenges (Henderson, 2021). Without
deviating from the traditional U-Net structure (Ronneberger et al.,
2015), it automatically chooses the best architecture and learning
configuration for the training data. The framework also performs pre-
and post-processing steps during both training and inference, such as
adapting voxel spacing and normalising the intensities.

We use the patch-based full-resolution variant, which is recom-
mended for most applications (Isensee et al., 2021). After performing
all necessary prepossessing operations, input image 𝑥 is divided into
patches following a sliding window approach with an overlap of 50%.
This results in 𝑁 patches

{

𝑥𝑖
}𝑁
𝑖=1. A forward pass is made for each

patch, at which point we extract feature maps for our method. Pre-
dictions for each patch are multiplied by a filtering operation that
weights centre-voxels more heavily. Finally, weighted predictions are
aggregated into an output mask with dimensionality of the original
image.

We also experiment with a 3D HighResNet model (Li et al., 2017),
which we integrate into the nnU-Net framework and thus follow the
same steps for image preparation and combination of the outputs into
a coherent prediction.

3.2. Distance-based OOD detection

We are interested in capturing epistemic uncertainty, which arises
from a lack of knowledge about the data-generating process. While

most uncertainty estimation methods quantify this uncertainty for pre-
diction boundaries, we want to do so for whole regions, which is chal-
lenging for OOD data (Kendall and Gal, 2017).

One way to directly assess epistemic uncertainty is to calculate the
distance between training and testing activations. As a model is unlikely
to produce reasonable outputs for features far from any seen during
training, this is a reliable signal for bad model performance (Lee et al.,
2018b).

Model activations have covariance, and they do not necessarily re-
semble the mode for high-dimensional spaces (Wei et al., 2015), so the
Euclidean distance is not appropriate for identifying unusual activation
patterns. Instead, inspired by the work of Lee et al. (2018b), we make
use of theMahalanobis distance 𝐷, which rescales samples into a space
without covariance. Fig. 3 illustrates how the Mahalanobis distance
better captures the behaviour of in-distribution data and correctly
identifies samples outside the unit circle as OOD.

The following sections describe how we leverage the Mahalanobis
distance in our approach. Note that only one forward pass is necessary
for each patch, keeping the computational overhead at a minimum.

3.2.1. Estimation of the training distribution
We start by estimating a multivariate Gaussian distribution  (𝜇,𝛴)

over training features. For all training patches
{

𝑥𝑖
}𝑁
𝑖=1, features  (𝑥𝑖) =

𝑧𝑖 are extracted from the encoder  .
For modern segmentation networks, the dimensionality of the ex-

tracted features 𝑧𝑖 is too large to calculate the covariance 𝛴 in an
acceptable time frame. We thus project the latent space into a lower
subspace by applying average Pooling operations with a kernel size
of (2, 2, 2) and stride (2, 2, 2) until the dimensionality falls below 1𝑒4
elements. Finally, we flatten this subspace and estimate the empirical
mean 𝜇 and covariance 𝛴.

𝜇 = 1
𝑁

𝑁
∑

𝑖=1
𝑧𝑖, 𝛴 = 1

𝑁

𝑁
∑

𝑖=1
(𝑧𝑖 − 𝜇)(𝑧𝑖 − 𝜇)𝑇 (1)

In Table 2 we demonstrate that for a dimensionality of 1𝑒4 elements
we can estimate the covariance in a maximum of a few minutes (rows
3 and 4) with the Scikit Learn on an AMD Ryzen 9 3900X CPU, whereas
for higher dimensions the times increase abruptly (row 5).

3.2.2. Extraction of uncertainty masks
During inference, we estimate an uncertainty mask for a subject

following the process illustrated in Fig. 2 (right). First, we perform
the same preprocessing steps as during training and divide the image
into patches. Next, we extract features maps for each patch 𝑥𝑖 and
project them onto 𝑧𝑖 as done during training. We then calculate the
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Fig. 3. Comparison between Euclidean and Mahalanobis distances in a two-dimensional space. Left: Euclidean distance fails to detect that OOD samples (orange triangles) strongly
deviate from the expected behaviour of training samples (grey circles). Right: Mahalanobis distance adequately detects OOD samples, assigning them a distance outside the unit
circle whilst properly admitting ID test samples (blue circles).

Table 2
Times in seconds required for estimating the covariance 𝛴 (column 3) and calculating
the Mahalanobis distance 𝐷 to one sample (column 4).

Nr. samples Dimensionality 𝛴 time (s) 𝐷 time (s)

1e3 1e3 0.260 0.001
1e6 1e3 8.480 0.001
1e3 1e4 69.11 0.050
1e4 1e4 81.80 0.051
1e3 2e4 6555.13 0.194

Mahalanobis distance (Eq. (2)) to the Gaussian distribution estimated
in the previous step.

𝐷(𝑧𝑖;𝜇,𝛴) = (𝑧𝑖 − 𝜇)𝑇𝛴−1(𝑧𝑖 − 𝜇) (2)

Each distance is a point estimate for the corresponding patch. We
replicate this value to the size of the patch and combine the dis-
tances for all patches in the same manner as the segmentation pipeline
combines patch outputs into a coherent prediction.

Following the example of the patch-based nnU-Net, we start by
initialising a zero-filled tensor with the dimensionality of the original
image. We then apply a filtering operation to each patch to weigh
voxels at the centre more heavily and add them to the image-level
mask.

3.2.3. Subject-level uncertainty
The previous step produces an uncertainty mask with the dimen-

sionality of the input CT scan. In order to effectively identify highly
uncertain images, we average over all voxels to obtain one value
 , and normalise uncertainties between the minimum and doubled
maximum uncertainties for ID train data to ensure  ∈ [0, 1].

4. Experimental setup

We start by describing the data used in our experiments in Sec-
tion 4.1. Afterwards, we state relevant details on our models (Sec-
tion 4.2). We then introduce all baselines (Section 4.3) and define our
evaluation metrics (Section 4.4).

4.1. Data

We train our first model with data from the COVID-19 Lung CT
Lesion Segmentation Challenge (Roth et al., 2021; An et al., 2020; Clark
et al., 2013), which we refer to as Challenge or in-distribution (ID).
The dataset contains chest CT scans for patients with a confirmed
SARS-CoV-2 infection from various centres and countries. The data is
also heterogeneous in terms of age, gender, and disease severity of

Table 3
Characteristics of the Covid-19 lung lesion segmentation datasets.

Dataset name Nr. cases Mean image size Mean spacing

Challenge 199 [512, 512, 69] [0.8, 0.8, 4.8]
Mosmed 50 [512, 512, 41] [0.7, 0.7, 8.0]
Radiopedia 20 [560, 571, 176] [1.0, 1.0, 1.0]

Table 4
Parameters used to randomly generate artefacts and affine transformations with the
TorchIO library. For each type of shift, three transformed datasets are generated with
increasingly stronger transformations.

Shift Operation Weak Medium Strong

Artefact

Ghost intensity (0, 0.2) (0, 0.4) (0, 0.7)
Spike intensity (0, 0.2) (0, 0.5) (0, 0.7)
Blur STD (0, 0.3) (0, 0.3) (0, 0.3)
Noise STD (0, 15) (0, 30) (0, 30)

Affine

Scales (0.9, 1.4) (0.7, 1.8) (0.6, 2)
Rotation degrees 5 8 9
Translation range (−15, 15) (−20, 20) (−20, 20)
Isotropic True True False

the patients. We use the 199 cases that are made available for the
challenge, which we divide into 160 training and 39 testing cases with
the nnU-Net random splitting function.

We include results for four types of out-of-distribution samples: (1)
dataset shift, where we evaluate the model on two other datasets with
differences in the acquisition and population patterns (2) transforma-
tion shift where we apply artificial transformations to our ID data, (3)
diagnostic shift, where we compare Covid-19 to non-Covid pneumonia
patients, and (4) far-OOD, where we use the Spleen and Colon tasks
of the Medical Segmentation Decathlon (MSD) (Simpson et al., 2019;
Antonelli et al., 2022).

In addition, we perform a study on hippocampus and prostate
segmentation from MR images. We train each nnU-Net model with the
corresponding task of the MSD and use two and three OOD datasets for
hippocampus and prostate, respectively.

4.1.1. Dataset shift
We use two publicly available datasets: Mosmed (Morozov et al.,

2020) contains fifty cases and the Radiopedia dataset (Jun et al., 2020),
a further twenty. Both encompass patients with and without confirmed
infections. Table 3 provides a summary of data characteristics.

4.1.2. Transformation shift
We transform the 39 in-distribution test cases with multiple opera-

tions from the TorchIO (Pérez-García et al., 2021) library.
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Fig. 4. Top row: Exemplary CT slice with overlaid segmentation mask in red after being
transformed to contain artefacts in three magnitudes. Bottom row: Three exemplary CT
slices with overlaid segmentation masks after applying affine transformations in three
magnitudes. The border colours map each example to their corresponding datasets in
Fig. 5.

The artefact transformations include ghosting, k-space spikes, Gaus-
sian blurring, and Gaussian noise. Affine transformations include scal-
ing, rotation, and translation. All affine operations can be either
isotropic or anisotropic. We deploy the same transformation parameters
for the sagittal, coronal, and axial dimensions for the isotropic case.
For the anisotropic case, these parameters change for every dimen-
sion, causing a stronger shift. For both groups of transformations, we
generate three sets (weak, medium, and strong), each with increasingly
stronger augmentation parameters. The parameters used are reported
in Table 4. Examples of the performed transformations are visualised
in Fig. 4.

4.1.3. Diagnostic shift
We utilise an in-house dataset of one hundred cases. Fifty pa-

tients have pulmonary infection of Covid-19 confirmed by RT PCR
test and visible pulmonary Covid-19 lesions in all cases (3/2020 to
12/2020). The remaining fifty cases were composed of various Covid-
mimics, manifesting similar pulmonary lesions but acquired prior to the
Covid outbreak or tested negative for Covid-19 by RT PCR (3/2017 to
2/2020). Cases were collected and annotated in the RACOON project
(Roefo, 2022). Covid-mimics included are viral non-Covid pneumonia,
bacterial pneumonia, fungal pneumonia, tuberculosis, chronic obstruc-
tive pulmonary disease, cystic fibrosis, interstitial pulmonary fibrosis,
acute interstitial pneumonia, cryptogenic organising pneumonia, med-
ication associated pulmonary toxicity, radiogenic pulmonary fibrosis,
acute lung embolism, chronic lung embolism, pleural pathologies, pul-
monary vasculitis, bronchial carcinoma, pulmonary metastasis, as well
as a control case without any lung pathologies.

A clinical radiologist with 8 years of experience in reading chest
CT reviewed all scans and found them to be of good enough quality
for accurate visual diagnosis. Manual annotations of the entire image
stack were performed slice-by-slice by two independent readers trained
in the delineation of GGOs and pulmonary consolidations. Central
vascular structures and central bronchial structures were excluded from
all annotations. Care was taken to differentiate between artefacts and
GGO. Consolidations were defined as visible in a soft tissue window
and at least 5 mm in size. An expert radiologist reader reviewed all
delineations. In Table 5 we report some details on the demographic
distribution.

4.1.4. MRI tasks
For hippocampus we consider three T1-weighted datasets: the MSD

task, which we denote MSD H, and contains healthy and schizophrenia
patients, the Dryad (Kulaga-Yoskovitz et al., 2015) dataset with fifty

Table 5
In-house data cohort with 50 Covid-19 and 50 non-Covid cases. We report the age
(median Q1/Q3), gender (f/m), voltage (median kV), and tube current-time product
(mAs).

Age Gender Voltage mAs

Covid-19 57.17 [49/67] 16% 100 121.21 ± 55.91
Non-Covid 60.24 [47/73] 42% 120 114.77 ± 82.56

Table 6
Characteristics of the MR hippocampus (top) and prostate (bottom) segmentation
datasets. Models were trained with the respective tasks of the Medical Segmentation
Decathlon.

Dataset name Nr. cases Mean image size Mean spacing

MSD H 260 [50, 35, 36] [1.0, 1.0, 1.0]
Dryad 50 [64, 64, 48] [1.0, 1.0, 1.0]
HarP 270 [64, 64, 48] [1.0, 1.0, 1.0]

MSD P 32 [316, 316, 19] [1.0, 1.0, 1.0]
ISBI 30 [384, 384, 19] [0.5, 0.5, 3.7]
UCL 13 [384, 384, 24] [0.5, 0.5, 3.3]
I2CVB 19 [384, 384, 64] [0.5, 0.4, 1.3]

healthy subjects and the Harmonised Hippocampal Protocol data (Boc-
cardi et al., 2015) (HarP) with senior subjects, some of which have
Alzheimer’s.

For the segmentation of the prostate in T2-weighted MRIs we use a
corpus of four datasets including the MSD data (MSD P) and three OOD
sets: the cases provided in the NCI-ISBI 2013 Challenge (Bloch et al.,
2015) (ISBI) and the I2CVB (Lemaître et al., 2015) and UCL (Litjens
et al., 2014) datasets as made available by Liu et al. (2020a). To align
label characteristics, we unify the labels of head and body for the
hippocampus and of central gland and peripheral area for the prostate. A
summary of the relevant dataset characteristics can be found in Table 6.

4.2. Models

We train three patch-based nnU-Nets (Isensee et al., 2021) and one
HighResNet (Li et al., 2017) on a Tesla T4 GPU. Our configurations
have patch sizes of [256, 256, 28], [56, 40, 40] and [320, 320, 20] for the
Challenge, MSD H and MSD P tasks, respectively. In all cases, adjacent
patches overlap by 50%, and we train with a loss of Dice (smoothing 1e-
5) and Binary Cross-entropy weighted equally until after convergence.
Training begins with a learning rate of 0.01 and a weight decay of 3e-
5. No test-time augmentation was applied to extract predictions, as this
signifies a speed-up of 8 times for 3D data.

4.3. Baselines

We compare our approach to output- and sample-based techniques
that assess uncertainty information by performing inference on a
trained model. Max. Softmax consists of taking the maximum softmax
output (Hendrycks and Gimpel, 2017). Temp. Scaling performs tempera-
ture scaling on the outputs before applying the softmax operation (Guo
et al., 2017). KL from Uniform computes the KL divergence from a
uniform distribution (Hendrycks et al., 2019). Note that all three
methods output a confidence score (higher is more certain), which we
invert to obtain an uncertainty estimate (lower is more certain). Energy
Scoring (Liu et al., 2020b) assesses uncertainty as the logarithmic sum
of the softmax denominator.

MC Dropout (Gal and Ghahramani, 2016) consists of doing several
forward passes whilst activating the Dropout layers that would usually
be dormant during inference. We perform 10 forward passes. Test-Time
Augmentation (TTA) follows a similar strategy by augmenting images
during testing (Wang et al., 2019). We use image-flip as augmenta-
tion and generate eight predictions by flipping the input image once
clockwise and counter-clockwise for every axis. We report the standard
deviation between outputs as an uncertainty score for both methods.



Medical Image Analysis 82 (2022) 102596

6

C. González et al.

Fig. 5. Performance deterioration of a model trained with ID (Challenge) data and tested on (1) Radiopedia and Mosmed; Challenge test cases after applying (2) artefact and (3)
affine transformations with different levels of intensity; and (4) in-house Covid-19 and non-Covid pneumonia patients.

For all baselines and our proposed method we calculate a subject-
level metric by averaging voxel values, and normalise the uncertainty
range between the minimum and doubled maximum uncertainty rep-
resented in ID train data. For Energy Scoring and Temp. Scaling, we
always report the result with lowest ESCE from among three different
temperature settings 𝑇 ∈ {1, 10, 100}.

4.4. Metrics

For OOD detection, we calculate the 95% true positive rate (TPR)
boundary on ID data, i.e. the boundary that covers at least 95% of
train samples. Samples with uncertainties greater than this boundary
are predicted to be OOD. We report the false positive rate, defined as

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

, (3)

where a false positive (FP) is an OOD sample incorrectly deemed to be
in-distribution, the Detection Error

𝐸𝑟𝑟𝑜𝑟 = 1
2
(1 − 𝑇𝑃𝑅) + 1

2
𝐹𝑃𝑅 (4)

and the area under the receiving operating curve (AUC), calculated with
the Scikit Learn library (Pedregosa et al., 2012).

While the detection of OOD samples is a first step in assessing the
suitability of a model for a new image, an ideal uncertainty metric
would inversely correlate with model performance. For this, we calcu-
late the Expected Segmentation Calibration Error (ESCE). Inspired by Guo
et al. (2017), we divide the 𝑛 test scans into 𝑀 = 10 interval bins 𝐵𝑚.
For each bin, the absolute difference is calculated between average Dice
(𝐷𝑖𝑐𝑒(𝐵𝑚)) and inverse average uncertainty (1 − (𝐵𝑚)) for samples in
the bin. A weighted average is reported that weights the score for each
bin by the number of samples in it (Eq. (5)).

𝐸𝑆𝐶𝐸 =
𝑀
∑

𝑚=1

|

|

𝐵𝑚
|

|

𝑛
|

|

𝐷𝑖𝑐𝑒(𝐵𝑚) − (1 − (𝐵𝑚))|| (5)

5. Results

We first analyse the dataset shift scenario, where a model trained
on the Challenge dataset is tested on publicly available Radiopedia and
Mosmed cases (Section 5.1). Afterwards, we evaluate how robust the
model is against the presence of artefacts and affine transformations
of different magnitudes and explore to what extent these are correctly
detected (Section 5.2). As a third setting, we apply our method to an
in-house data cohort with both Covid-19 and non-Covid patients in
Section 5.3.

In Section 5.4, we perform a far-OOD study where we examine
whether our method detects samples very far from the raining distribu-
tion. We then carry out an ablation study where we measure the use of
different network layers for feature extraction (Section 5.5) and repeat
the dataset shift experiments on a HighResNet model (Section 5.6).
In all these experiments, we explore whether our method can distin-
guish between ID cases – test subjects from the Challenge data – and

Table 7
Dataset shift results. Ability of assessing segmentation quality as Estimated Segmenta-
tion Calibration Error (ESCE) and identifying samples from Radiopedia and Mosmed as
OOD in terms of Detection Error (Error), False Positive Rate (FPR) and Area Under the
ROC (AUC).

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .39 .43 .84 .61
MC Dropout .28 .41 .79 .75
KL .38 .44 .83 .69
TTA .36 .41 .77 .74
Temp. Scaling .02 .47 .89 .42
Energy Scoring .46 .51 .90 .31
Ours .15 .09 .04 .96

OOD images. We qualitatively look into exemplary predictions and
corresponding uncertainty scores in Section 5.7.

Finally, in Section 5.8, we evaluate the transferability of our method
to MR data, where we look at hippocampus and prostate segmentation
tasks.

5.1. Dataset shift

In Table 7, we report the performance of our proposed method
and six other approaches in identifying the OOD samples, i.e. samples
from the Mosmed or Radiopedia datasets for which the model produces
unreliable predictions (see Fig. 5). Following previous research in
OOD detection (Liang et al., 2018), we find the uncertainty boundary
that covers 95% of in-distribution train samples and deem cases with
uncertainties beyond the ID 95th percentile threshold as OOD. Our
distance-based method is the only approach that successfully flags cases
far from the training distribution, as shown by a low detection error and
FPR and an AUC close to one.

We plot the Dice score against normalised uncertainty for the three
best-performing methods in Fig. 6. The vertical line marks the 95%
TPR boundary. We consider predictions with a Dice score lower than
0.6 to be of low quality as they diverge significantly from the ground
truth (Valindria et al., 2017) and, for the task of Covid-19 lesion
segmentation, provide a misleading assessment of the spread of the
infection.

The lower left (red) quadrant is critical for the safe use of segmenta-
tion models, as it houses silent failures for which low-quality predictions
are made but which are not identified as such. Only our method assigns
sufficiently large uncertainty estimates to poorly segmented OOD sam-
ples, excluding them from this section. Nevertheless, the upper right
(yellow) quadrant shows that our method is too conservative in estimat-
ing uncertainties, not identifying samples for which the model produces
good segmentations. This overly cautious behaviour potentially leads
to an under-utilisation of the model for cases that are technically OOD
but have very apparent lesions which are easy to segment; though any
amount of safe utilisation is advantageous. Another limitation of the
proposed method is that it fails to identify ID samples that the model
segments incorrectly due to the lesions being too small or different from
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Fig. 6. Dice coefficient against normalised uncertainty for test ID (black circles) and OOD (orange triangles) scans. The ID samples are from the Challenge dataset, and the OOD
ones from Mosmed or Radiopedia. The grey vertical line marks the 95% TPR for ID train data. Samples to the right are predicted to be OOD. Clinically relevant is the lower left
(red) quadrant that houses silent failures, i.e. predictions with a Dice < 0.6 and low uncertainty scores.

Fig. 7. Dice coefficient against normalised uncertainty. Black circles are the test ID
(unmodified Challenge) images, and the remaining markers stand for the same Challenge
images after applying transformations to simulate common artefacts.

those seen in the training data, highlighting the fact that OOD detection
is only part of a thorough QA process.

Regarding the estimation of segmentation quality, Temp. Scaling
reaches the lowest ESCE (first column in Table 7), but a closer in-
spection of Fig. 6 (left) displays that this is due to most uncertainties
clustering on the fifth bin. An ideal segmentation calibration would
house all samples in the upper left (green) and lower right (blue)
quadrants.

5.2. Artefact and affine shifts

The dataset shift scenario observed in the previous section depicts a
realistic setting whether there are several potential degrees of variation
between the training data and cases encountered during deployment.
However, it is difficult to assess whether the model performance falls
due to (a) changes in the acquisition process, (b) another patient
population or simply (c) a different delineation process for ground truth
segmentation masks. Subsequently, we cannot confidently assess why
cases are flagged as OOD. We therefore artificially transform the same
ID test cases in two different ways and three levels of magnitude. More
than any other explored scenario, these images could be deemed near-
OOD (Fort et al., 2021). Nevertheless, there is a significant performance
deterioration for transformed images, which grows with the magnitude
of the perturbation (Fig. 5).

We start by simulating the presence of common image artefacts. In
Fig. 7, we visualise the results of our method.

While non-transformed (original) cases are correctly assigned low
uncertainty scores and most heavily transformed samples are identified
as OOD, several samples for which bad segmentations are produced
are not identified. Most of these are only weakly transformed (mint-
coloured squares). On the other hand, many weakly transformed cases

Table 8
Transformation shift results. Segmentation calibration (as ESCE) and OOD detection
scores between original Challenge images and cases modified with synthetic artefacts
and affine transformations, respectively.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .46/.44 .48/.46 .94/.89 .55/.56
MC Dropout .44/.44 .51/.51 1.0/.99 .22/.23
KL .46/.44 .48/.46 .91/.86 .58/.57
TTA .43/.41 .46/.38 .87/.72 .63/.61
Temp. Scaling .05/.04 .51/.35 .95/.62 .50/.76
Energy Scoring .52/.51 .53/.33 .92/.53 .49/.76
Ours .26/.21 .29/.18 .45/.24 .83/.89

for which good segmentations are produced are correctly assigned low
uncertainties despite not being ID. Most heavily transformed images
(turquoise crosses) are correctly deemed too far from the training
distribution to have reliable predictions.

A similar situation occurs when we apply affine transformations
to simulate geometric changes (Fig. 9). These could arise from shift-
ing population patterns, scans being acquired for different ranges, or
using other acquisition parameters. Our method deems many weakly
transformed cases (yellow squares) to be ID. This is positive as good
segmentations are available for most cases. However, a few failure cases
are not adequately identified.

Table 8 compares several approaches in terms of OOD detection
and segmentation quality assessment. While our method displays an
acceptable calibration error and the best OOD detection performance,
this near-OOD problem proves more difficult than dataset shift. It par-
ticularly seems to be very difficult to reliably detect image artefacts.

We further visualise the uncertainty ranges assigned to each shift
and magnitude in Fig. 8. As expected, the uncertainty increases with
the degree of transformation for artefact shifts. For affine shifts, medium
changes result in similar uncertainties to strong ones. This is likely due
to the selected transformation sequences being too similar (see Table 4),
which results in a similar performance for medium and strong artefacts
(Fig. 5).

In general, we can conclude that the uncertainty correlates posi-
tively with the degree of deformation and inversely with model per-
formance. Affine transformations also have a more pronounced effect
on the uncertainties (Fig. 8). This possibly stems from the training data
containing similar patterns to those introduced by the weaker artefact
transformations.

5.3. Diagnostic shift

We have not yet analysed how the segmentation model performs
across disease patterns. To explore this, we segment lung lesions in the
form of GGOs and consolidations for an in-house cohort of 50 Covid-19
and 50 non-Covid cases. The performance of the model on the non-
Covid cases is significantly worse. Table 9 summarises our findings, and
we plot our uncertainty assessment in Fig. 10.
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Fig. 8. Distribution of uncertainty scores estimated by our proposed method for the artefact shift and affine shift scenarios. In general, the uncertainties increase with the intensity
of the transformations.

Fig. 9. Dice coefficient against normalised uncertainty. Black circles are the test ID
(unmodified Challenge) images, and the remaining markers stand for the same Challenge
images after applying transformations to simulate affine shifts.

Table 9
Diagnostic shift results. Segmentation calibration (as ESCE) and OOD detection scores
between test ID Challenge images and in-house cases with and without Covid-19,
respectively.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .29/.42 .22/.32 .42/.62 .86/.87
MC Dropout .22/.38 .30/.46 .58/.90 .84/.69
KL .29/.42 .23/.33 .40/.60 .88/.89
TTA .25/.32 .19/.17 .32/.28 .89/.95
Temp. Scaling .07/.05 .34/.54 .62/1.0 .78/.06
Energy Scoring .38/.54 .49/.56 .86/1.0 .61/.05
Ours .16/.26 .13/.15 .14/.18 .93/.92

Our method reliably detects cases from our in-house cohort, though
it does not distinguish between Covid-19 and non-Covid cases. Though
ideally Covid-19 cases for which good predictions are produced should
be deemed low-uncertainty, the fact that badly segmented non-Covid
cases are flagged as OOD is more relevant for clinical use as unsure
good predictions are preferred over confident faulty ones.

5.4. Far-OOD examinations

We have extensively examined near-OOD (Fort et al., 2021) cases
where a performance deterioration is unexpected. In contrast, far-OOD
situations occur when an input is erroneously fed into a model, and
there is no realistic expectation that a model can produce a sensible
prediction.

In Table 10, we examine what happens when we feed CT spleen
and colon cancer examinations from the Medical Segmentation Decathlon
into our model trained to segment pulmonary lesions from chest CTs.
Our method distinguishes between ID and far-OOD cases, correctly
identifying all colon examinations as OOD (FPR = 0) and showing
detection errors of up to 0.1 for both anatomies.

Fig. 10. Dice coefficient against normalised uncertainty for ID test (Challenge) data and
in-house chest CTs of Covid-19-positive (purple triangles) and non-Covid (pink triangles)
patients.

Table 10
Far-OOD results. Segmentation calibration (as ESCE) and OOD detection scores be-
tween test ID Challenge images and CT scans for spleen and colon examinations,
respectively.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .58/.71 .44/.42 .85/.81 .89/.89
MC Dropout .50/.64 .37/.36 .68/.66 .88/.87
KL .59/.72 .44/.42 .85/.81 .88/.88
TTA .48/.58 .18/.22 .29/.37 .95/.95
Temp. Scaling .62/.71 .48/.42 .93/.81 .79/.89
Energy Scoring .31/.16 .49/.51 .93/1.0 .50/.50
Ours .34/.41 .10/.06 .07/.00 .96/.98

5.5. Ablation study

We evaluate which features are most expressive for detecting dis-
tribution shifts in Table 11. We compare the use of activations at
the middle of the network, more specifically the convolutional (Conv)
parameters of the sixth encoding block (EB) against those of the first
decoding block (DB), and features at the beginning (1st EB) and final
end (6th DB) of the architecture. In addition, we look into the use
of batch normalisation (BN) layers, as these normalise layer inputs and
therefore contain domain information (Ioffe and Szegedy, 2015). The
results show that features at the middle of the network (6th EB Conv,
followed by 6th EB BN and 1st DB Conv) are the most suitable for
detecting distribution shifts.

5.6. HighResNet model

Not all segmentation models follow an encoder–decoder structure.
For instance, the HighResNet (Li et al., 2017) uses dilated convolutions
and residual blocks to produce accurate segmentations. That raises the
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Table 11
Ablation study on the usability of feature maps. OOD detection and segmentation
calibration for our proposed method using different convolutional (Conv) and batch
normalisation (BN) at different encoding (EB) and decoding blocks (DB). The results are
for the dataset shift and transformed (including both artefact and affine shifts) scenarios,
respectively.

Features ESCE ↓ Error ↓ FPR ↓ AUC ↑

6th EB Conv .15/.23 .09/.24 .04/.35 .96/.86
6th EB BN .18/.23 .11/.25 .09/.37 .95/.85
1st EB Conv .42/.24 .56/.70 .13/.40 .81/.21
1st EB BN .52/.45 .50/.50 .00/.00 .51/.51
1st DB Conv .17/.25 .09/.25 .06/.38 .96/.84
6th DB Conv .52/.45 .50/.50 .00/.00 .50/.50

Table 12
HighResNet results. Segmentation calibration (as ESCE) and OOD detection scores
between test ID Challenge images and OOD samples belonging to the Radiopedia or
Mosmed datasets, for a HighResNet model trained on Challenge. The bottom part of
the table shows three variations of our method with different feature maps: the 7th
conv. block, the 6th block with dilated conv., and the 12th (last) block with dilated
convolutions.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .35 .48 .94 .57
MC Dropout .35 .49 .96 .59
KL .34 .46 .90 .60
TTA .35 .48 .90 .61
Temp. Scaling .35 .48 .93 .54
Energy Scoring .58 .49 .97 .50

7th Conv Block .41 .47 .00 .94
6th Dil Conv Block .58 .50 .00 .50
12th Dil Conv Block .33 .37 .00 .84

questions of whether our proposed approach would be effective on this
architecture and which features would be most helpful for detecting
distribution shifts. We report these results for the dataset shift scenario
in Table 12. The upper section summarises the results for all baselines,
and the lower part shows the performance of our proposed method for
three different feature maps.

The HighResNet architecture is divided into four sections: (1) seven
convolutional blocks, (2) six blocks with dilated convolutions using a
dilation factor of 2, (3) six dilated convolutional blocks with a factor
of 4, and (4) a final convolutional block. Residual connections with
identity mapping are also included every two blocks to join features at
different levels. We test the use of three feature maps: the last (7th)
convolutional block, the last (6th) dilated convolutional block with
factor 2, and the last (12th) dilated convolutional block.

The best results are for the variant of our method which uses the
last block with dilated convolutions. Though the FPR and AUC are
encouraging, the detection error is relatively high, suggesting that the
TPR is low as the 95% TPR on ID train data does not cover a significant
portion of ID test samples (see Eq. (4)). We plot the performance of the
network vs. normalised uncertainties for the best-performing features
in Fig. 11. A separation is noticeable between ID (Challenge) and OOD
(Radiopedia and Mosmed), but the uncertainty boundary – as hypothe-
sised from the high Detection Error – is too low. This means that OOD
samples are correctly detected, yet the model is under-utilised.

5.7. Qualitative evaluation

We now take a detailed view of some cases in Fig. 12. The first
column shows an in-distribution Challenge case with a good prediction.
The second and third cases are from Mosmed and Radiopedia, respec-
tively. While the Mosmed prediction is significantly different from the
ground truth (incorrectly marking several regions as lesions), a good
segmentation is produced for the third case.

We first notice the complexity of assessing whether a segmentation
mask for lung lesions is correct. An untrained observer would not be
able to detect that the second segmentation is so different from the

Fig. 11. Dice coefficient against normalised uncertainty for the variant using the 12th
Dil. Conv. Block. Black circles are test ID (Challenge) images, and orange triangles are
OOD cases from Radiopedia or Mosmed.

ground truth, and even trained radiologists may not directly identify
this error, as GGOs can manifest in superior lobes and with multiple
connected components (Parekh et al., 2020). Similarly, all methods fail
to detect this case except for our distance-based method, which assigns
an uncertainty of 0.61.

The prediction for the third case over-segments some lesions, though
if we observe the difference between the Challenge and Radiopedia
ground truth masks, we notice that delineations are courser for the
first case (we see in the first image that broad regions around lesions
are marked as infected). Therefore, the model learns to mimic this
behaviour. Beyond this, the segmentation model correctly detects all
lesions and only creates a very small additional component. Here, our
method makes an overly cautious uncertainty assessment, assigning this
case an uncertainty of .43 which falls beyond the 95% TPR boundary.

5.8. Application to MRI data

Magnetic Resonance Imaging (MRI) data is even more susceptible to
changes in the acquisition conditions than CTs, as there is no consensus
on the calibration of intensity values. This causes the performance
of segmentation models trained on MR tasks to deteriorate on OOD
data (Zakazov et al., 2021; Kondrateva et al., 2021).

In this section, we evaluate how our proposed method can help
detect such distribution shifts on nnU-Net models trained with the
hippocampus and prostate tasks of the MSD. Fig. 13 illustrates that while
the initial performance of the models is over 0.8 Dice on in-distribution
test data (MSD H and MSD P), it falls significantly for the OOD datasets.

Table 13 summarises our results on OOD detection, and we visualise
the uncertainties of our method in Fig. 14. We immediately see that
– for both MR segmentation tasks – detecting OOD cases is much
easier than for chest CT. In all cases, the proposed method correctly
distinguishes ID from OOD data. This is likely due to the inherent
variability across MRI datasets in terms of intensity histogram and
fields-of-view. The last row includes a far-OOD case where we look
to detect MSD H cases on the model trained with MSD P and vice
versa. This also seems to be an easy problem, and our method correctly
identifies all OOD cases.

6. Discussion

Uncertainty quantification is an unavoidable cornerstone for safely
deploying predictive models in real clinics. Our results show that the
proposed distance-based approach provides valuable information for
detecting images that the model is unprepared to segment.

As distance-based OOD detection can seamlessly augment any seg-
mentation pipeline, there is no reason against performing this quality
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Fig. 12. Axial and coronal slices with overlaid predictions and ground truths and volume renderings of the predictions for three different subjects. First column: a good prediction.
Second column: a poor prediction for an OOD case which our method successfully detects. Though there are considerable differences to the ground truth, these errors are not
directly noticeable even for trained observers. Third column: a good prediction for an OOD case.

Fig. 13. Performance as Dice score of models trained with MSD H (left) and MSD P
(right) data for hippocampus and prostate segmentation, respectively. Plotted are the
ID test (in dark blue) and OOD scores.

check. However, we found in our analysis several areas where there is
room for improvement. Almost all our experiments showed that our
method is overly cautious in its uncertainty estimation. Specifically,
many OOD cases for which the model did produce adequate segmenta-
tion were deemed highly uncertain. Only for the artefact shift scenario
were weekly transformed samples segmented.

The artefact and affine shifts experiments show that – for both ex-
plored synthetic scenarios – the produced distances grow linearly with
the degree of change and are inversely proportional to segmentation
quality. This is ideal behaviour for an uncertainty metric. However, the
same does not hold for the dataset shift and diagnostic shift settings. Par-
ticularly for the last scenario, our method assigns similar uncertainties
to both Covid-19 and non-Covid cases, even though segmentations are
much worse for the last group. Further research should explore which

Table 13
MRI results. Segmentation calibration (as ESCE) and OOD detection scores between
test ID and OOD cases for hippocampus and prostate, respectively. The networks were
trained with MSD H and MSD P data, respectively, so these cases are ID. The last row
summarises the results for the far-OOD case of detecting MSD P cases on the MSD H
model and vice versa.

Method ESCE ↓ Error ↓ FPR ↓ AUC ↑

Max. Softmax .20/.36 .05/.49 .00/.82 1.0/.74
MC Dropout 𝑁 = 10 .53/.08 .50/.01 1.0/.02 .40/1.0
MC Dropout 𝑁 = 100 .48/.14 .53/.00 1.0/.00 .12/1.0
KL .18/.15 .05/.16 .00/.16 1.0/.83
TTA .20/.40 .09/.25 .00/0.0 1.0/.83
Temp. Scaling .12/.36 .03/.49 .00/.82 1.0/.74
Energy Scoring .68/.53 .50/.49 1.0/.98 .50/.12
Ours .21/.19 .00/.00 .00/.00 1.0/1.0

Ours far-OOD .08/.01 .00/.00 .00/.00 1.0/1.0

distribution shifts negatively affect model performance, and how these
can be distinguished from harmless shifts.

This discrepancy might also be associated with the relatively higher
variety of the pulmonary patterns for the labels GGO and consolida-
tion present in the various pulmonary diseases making up the non-
Covid-19 group, as compared to the Covid-19 group. This group was,
however, purposefully designed to resemble a broad range of non-
Covid-associated pulmonary disease patterns, which represent Covid-
19-mimics. Further, the large time frame in which these cases were
collected, as well as a differing distribution amongst the three CT
scanners used to generate these cases, might contribute to this finding.

Our experiments also show that our distance-based approach does
not adequately detect poorly segmented cases for in-distribution data.
This shortcoming reinforces the notion that uncertainty estimation
methods, which are mainly designed to detect uncertain predictions
in ID data, should complement OOD detection in practice. However,
neither MC Dropout nor TTA were successful at assessing segmentation
quality.
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Fig. 14. Dice coefficient against normalised uncertainty for the segmentation of the
hippocampus (left) and prostate (right) in MR images. Black circles are test ID (MSD)
images, and orange triangles are OOD cases.

Our ablation study shows that intermediate network layers are the
most informative for assessing distribution shifts. OOD samples do not
display patterns that differ sufficiently from training samples in feature
maps near the inputs or outputs of the model. In contrast, activations
in intermediate layers allow the separation between ID and OOD cases.
For the HighResNet model, which does not follow an encoder–decoder
structure, dilated convolutions near the end of the model resulted in
the best uncertainty estimates.

Finally, our far-OOD experiments on both CT and MR data confirm
that our proposed method accurately detects cases very far from the
training distribution. Such far-OOD cases may arise when an erroneous
input is fed into the model, and automatically signalling such mistakes
can be helpful for inexperienced users.

7. Conclusions

Despite ample progress in the development of segmentation so-
lutions, these are not ready to be deployed in clinical practice. The
main reason behind this is the fact that predictive models fail silently,
coupled with a lack of appropriate quality controls to detect such
behaviour. This is particularly true when it is not trivial to identify a
faulty output, such as segmentation of SARS-CoV-2 lung lesions.

Increasingly, institutions are taking part in initiatives to gather
large amounts of annotated, heterogeneous data and release it to the
public. This could allow the training of robust models and potentially
alleviate the burden of radiologists. However, even models trained with
heterogeneous cohorts are susceptible to distribution shifts.

We propose a distance-based method to detect images far from the
training distribution in a low-dimensional feature space, and find that
this is a lightweight and flexible way to signal when a model prediction
should not be trusted.

Future work should explore how to improve uncertainty calibra-
tion by identifying high-quality predictions. For now, our work in-
creases clinicians’ trust while translating trained neural networks from
challenge participation to real clinics.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Most data used in this work is publicly available. We do not have
permission to share the 100 in-house cases.

Acknowledgements

This work was supported by the RACOON network under BMBF,
Germany grant number [01KX2021]; and the Bundesministerium für
Gesundheit (BMG), Germany with grant [ZMVI1-2520DAT03A].

References

An, P., Xu, S., Harmon, S., Turkbey, E., Sanford, T., Amalou, A., Kassin, M., Varble, N.,
Blain, M., Anderson, V., et al., 2020. CT images in COVID-19. Cancer Imaging Arch..

Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman, B.A.,
Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., et al., 2022. The medical
segmentation decathlon. Nat. Commun. 13 (1), 1–13.

Ashukha, A., Lyzhov, A., Molchanov, D., Vetrov, D., 2019. Pitfalls of in-domain uncer-
tainty estimation and ensembling in deep learning. In: International Conference on
Learning Representations.

Bevandić, P., Krešo, I., Oršić, M., Šegvić, S., 2019. Simultaneous semantic segmentation
and outlier detection in presence of domain shift. In: German Conference on Pattern
Recognition. Springer, pp. 33–47.

Bloch, N., Madabhushi, A., Huisman, H., Freymann, J., Kirby, J., Grauer, M., En-
quobahrie, A., Jaffe, C., Clarke, L., Farahani, K., 2015. NCI-ISBI 2013 challenge:
automated segmentation of prostate structures. http://dx.doi.org/10.7937/K9/
TCIA.2015.zF0vlOPv.

Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D., 2015. Weight uncertainty
in neural network. In: International Conference on Machine Learning. PMLR, pp.
1613–1622.

Boccardi, M., Bocchetta, M., Morency, F.C., Collins, D.L., Nishikawa, M., Ganzola, R.,
Grothe, M.J., Wolf, D., Redolfi, A., Pievani, M., et al., 2015. Training labels
for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal
protocol. Alzheimer’s Dement. 11 (2), 175–183.

Çallı, E., Murphy, K., Sogancioglu, E., van Ginneken, B., 2019. FRODO: Free rejection
of out-of-distribution samples: application to chest x-ray analysis. In: International
Conference on Medical Imaging with Deep Learning–Extended Abstract Track.

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., et al., 2013. The cancer imaging archive (TCIA):
maintaining and operating a public information repository. J. Digit. Imaging 26 (6),
1045–1057.

Fort, S., Ren, J., Lakshminarayanan, B., 2021. Exploring the limits of out-of-distribution
detection. Adv. Neural Inf. Process. Syst. 34.

Fuchs, M., Gonzalez, C., Mukhopadhyay, A., 2021. Practical uncertainty quantification
for brain tumor segmentation. In: Medical Imaging with Deep Learning.

Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: International Conference on Machine
Learning. PMLR, pp. 1050–1059.

Golan, I., El-Yaniv, R., 2018. Deep anomaly detection using geometric transformations.
Adv. Neural Inf. Process. Syst. 31.

Gonzalez, C., Gotkowski, K., Bucher, A., Fischbach, R., Kaltenborn, I., Mukhopad-
hyay, A., 2021. Detecting when pre-trained nnu-net models fail silently for Covid-19
lung lesion segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, pp. 304–314.

Gonzalez, C., Mukhopadhyay, A., 2021. Self-supervised out-of-distribution detection for
cardiac CMR segmentation. In: Proceedings of the Fourth Conference on Medical
Imaging with Deep Learning. In: Proceedings of Machine Learning Research, 143,
PMLR, pp. 205–218, URL: https://proceedings.mlr.press/v143/gonzalez21a.html.

Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q., 2017. On calibration of modern neural
networks. In: International Conference on Machine Learning. PMLR, pp. 1321–1330.

Hein, M., Andriushchenko, M., Bitterwolf, J., 2019. Why ReLU networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 41–50.

Henderson, E., 2021. Leading pediatric hospital reveals top AI models in COVID-19
grand challenge. Accessed: 2021-02-28. http://news-medical.net.

Hendrycks, D., Gimpel, K., 2017. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: International Conference on Learning
Representations.

Hendrycks, D., Mazeika, M., Dietterich, T., 2018. Deep anomaly detection with outlier
exposure. In: International Conference on Learning Representations.

Hendrycks, D., Mazeika, M., Kadavath, S., Song, D., 2019. Using self-supervised learning
can improve model robustness and uncertainty. Adv. Neural Inf. Process. Syst. 32.

Hu, Y., Jacob, J., Parker, G.J., Hawkes, D.J., Hurst, J.R., Stoyanov, D., 2020.
The challenges of deploying artificial intelligence models in a rapidly evolving
pandemic. Nat. Mach. Intell. 2 (6), 298–300.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning.
PMLR, pp. 448–456.

Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H., 2021. Nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18 (2), 203–211.



Medical Image Analysis 82 (2022) 102596

12

C. González et al.

Jun, M., Cheng, G., Yixin, W., Xingle, A., Jiantao, G., Ziqi, Y., Minqing, Z., Xin, L.,
Xueyuan, D., Shucheng, C., Hao, W., Sen, M., Xiaoyu, Y., Ziwei, N., Chen, L.,
Lu, T., Yuntao, Z., Qiongjie, Z., Guoqiang, D., Jian, H., 2020. COVID-19 CT lung
and infection segmentation dataset. http://dx.doi.org/10.5281/zenodo.3757476.

Jungo, A., Balsiger, F., Reyes, M., 2020. Analyzing the quality and challenges of
uncertainty estimations for brain tumor segmentation. Front. Neurosci. 14, 282.

Jungo, A., Reyes, M., 2019. Assessing reliability and challenges of uncertainty esti-
mations for medical image segmentation. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, pp. 48–56.

Kendall, A., Gal, Y., 2017. What uncertainties do we need in bayesian deep learning
for computer vision? Adv. Neural Inf. Process. Syst. 30.

Kohl, S.A., Romera-Paredes, B., Meyer, C., Fauw, J.D., Ledsam, J.R., Maier-Hein, K.H.,
Eslami, S.A., Rezende, D.J., Ronneberger, O., 2018.

Kondrateva, E., Pominova, M., Popova, E., Sharaev, M., Bernstein, A., Burnaev, E.,
2021. Domain shift in computer vision models for mri data analysis: an overview.
In: Thirteenth International Conference on Machine Vision, Vol. 11605. SPIE, pp.
126–133.

Kulaga-Yoskovitz, J., Bernhardt, B.C., Hong, S.-J., Mansi, T., Liang, K.E., Van
Der Kouwe, A.J., Smallwood, J., Bernasconi, A., Bernasconi, N., 2015. Multi-
contrast submillimetric 3 tesla hippocampal subfield segmentation protocol and
dataset. Sci. Data 2 (1), 1–9.

Lakshminarayanan, B., Pritzel, A., Blundell, C., 2017. Simple and scalable predictive
uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30,
6402–6413.

Lee, K., Lee, H., Lee, K., Shin, J., 2018a. Training confidence-calibrated classifiers
for detecting out-of-distribution samples. In: International Conference on Learning
Representations.

Lee, K., Lee, K., Lee, H., Shin, J., 2018b. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In: Advances in Neural Information
Processing Systems. pp. 7167–7177.

Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.,
2015. Computer-aided detection and diagnosis for prostate cancer based on mono
and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31.

Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T., 2017. On
the compactness, efficiency, and representation of 3D convolutional networks:
brain parcellation as a pretext task. In: International Conference on Information
Processing in Medical Imaging. Springer, pp. 348–360.

Liang, S., Li, Y., Srikant, R., 2018. Enhancing the reliability of out-of-distribution
image detection in neural networks. In: International Conference on Learning
Representations.

Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B.,
Vincent, G., Guillard, G., Birbeck, N., Zhang, J., et al., 2014. Evaluation of prostate
segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18
(2), 359–373.

Liu, Q., Dou, Q., Yu, L., Heng, P.A., 2020a. MS-Net: multi-site network for improving
prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imaging 39
(9), 2713–2724.

Liu, W., Wang, X., Owens, J., Li, Y., 2020b. Energy-based out-of-distribution detection.
Adv. Neural Inf. Process. Syst. 33, 21464–21475.

Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T., 2020. Con-
fidence calibration and predictive uncertainty estimation for deep medical image
segmentation. IEEE Trans. Med. Imaging 39 (12), 3868–3878.

Monteiro, M., Le Folgoc, L., Coelho de Castro, D., Pawlowski, N., Marques, B., Kam-
nitsas, K., van der Wilk, M., Glocker, B., 2020a. Stochastic segmentation networks:
modelling spatially correlated aleatoric uncertainty. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.F., Lin, H. (Eds.), Advances in Neural Information Processing
Systems, Vol. 33. Curran Associates, Inc., pp. 12756–12767.

Monteiro, M., Le Folgoc, L., Coelho de Castro, D., Pawlowski, N., Marques, B.,
Kamnitsas, K., van der Wilk, M., Glocker, B., 2020b. Stochastic segmentation
networks: modelling spatially correlated aleatoric uncertainty. Adv. Neural Inf.
Process. Syst. 33, 12756–12767.

Morozov, S., Andreychenko, A., Pavlov, N., Vladzymyrskyy, A., Ledikhova, N., Gom-
bolevskiy, V., Blokhin, I.A., Gelezhe, P., Gonchar, A., Chernina, V.Y., 2020.
Mosmeddata: Chest ct scans with covid-19 related findings dataset. arXiv preprint
arXiv:2005.06465.

Parekh, M., Donuru, A., Balasubramanya, R., Kapur, S., 2020. Review of the chest CT
differential diagnosis of ground-glass opacities in the COVID era. Radiology 297
(3), E289–E302.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Louppe, G., 2012.
Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12.

Pérez-García, F., Sparks, R., Ourselin, S., 2021. Torchio: a python library for effi-
cient loading, preprocessing, augmentation and patch-based sampling of medical
images in deep learning. Comput. Methods Programs Biomed. 106236. http:
//dx.doi.org/10.1016/j.cmpb.2021.106236, URL: https://www.sciencedirect.com/
science/article/pii/S0169260721003102.

Pidhorskyi, S., Almohsen, R., Doretto, G., 2018. Generative probabilistic novelty
detection with adversarial autoencoders. Adv. Neural Inf. Process. Syst. 31.

Roefo, 2022. RACOON: das radiological cooperative network zur beantwortung der
großen fragen in der radiologie. http://dx.doi.org/10.1055/a-1544-2240, Accessed:
2022-03-08, http://news-medical.net.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomed-
ical image segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, pp. 234–241.

Roth, H., Xu, Z., Diez, C.T., Jacob, R.S., Zember, J., Molto, J., Li, W., Xu, S., Turkbey, B.,
Turkbey, E., et al., 2021. Rapid artificial intelligence solutions in a pandemic-the
COVID-19-20 lung CT lesion segmentation challenge.

Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken, B.,
Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., et al., 2019. A large an-
notated medical image dataset for the development and evaluation of segmentation
algorithms. arXiv preprint arXiv:1902.09063.

Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D., 2021. Continual
domain incremental learning for chest x-ray classification in low-resource clinical
settings. In: Domain Adaptation and Representation Transfer, and Affordable
Healthcare and AI for Resource Diverse Global Health. Springer, pp. 226–238.

Valindria, V.V., Lavdas, I., Bai, W., Kamnitsas, K., Aboagye, E.O., Rockall, A.G., Rueck-
ert, D., Glocker, B., 2017. Reverse classification accuracy: predicting segmentation
performance in the absence of ground truth. IEEE Trans. Med. Imaging 36 (8),
1597–1606.

Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., 2019. Aleatoric
uncertainty estimation with test-time augmentation for medical image segmentation
with convolutional neural networks. Neurocomputing 338, 34–45.

Wei, D., Zhou, B., Torrabla, A., Freeman, W., 2015. Understanding intra-class
knowledge inside cnn. arXiv preprint arXiv:1507.02379.

Zakazov, I., Shirokikh, B., Chernyavskiy, A., Belyaev, M., 2021. Anatomy of domain
shift impact on U-net layers in MRI segmentation. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, pp.
211–220.



Contribution and impact

We significantly expand the validation of our method for this publication. For starters, besides the original
Covid-19 experimental setup with three different datasets (which we now denominate dataset shift), we
(a) explore a diagnostic shift scenario with non-Covid pneumonia subjects and (b) generate artificially
transformed datasets across two types of shifts, namely applying affine operations and adding common
CT artifacts, for three severities each. On this last data, we have total knowledge of the factors behind
the shifts, which allows us to quantify how sensitive our method is to different changes in the data
distribution.

Additionally, we look at two different MRI tasks, namely hippocampus and prostate segmentation; and
validate our approach on a model that does not follow an encoder-decoder architecture. We also explore
far-OOD cases to observe how our method reacts to inputs extremely far from the expected distribution
to see whether it would accurately detect the erroneous use of the model. Specifically, we pass colon and
spleen CTs through the model trained for lung lesion segmentation in chest CTs.

Our results show that the proposed method is effective across a number of problems and scenarios. The
thorough evaluation provides insight into how different types of shifts affect model performance and how
difficult these are to detect. We also confirm that the further data diverges from the training distribution,
the easier these cases are to detect. This is observed in the gradually transformed dataset experiments,
where the estimated uncertainty grows with the intensity of the transformation; and the far-OOD setting,
which proved to be a very easy problem.

Discussion and limitations

Beyond encouraging empirical results in identifying problematic OOD samples, the proposed method has
several practical advantages. For starters, it works purely post-training, and the user only needs to modify
the code base so as to extract network features during a forward pass. This makes the method flexible
and applicable to complex image segmentation pipelines. It is also extremely lightweight, demanding no
GPU resources other than to perform the forward pass that also segments the image. I, therefore, find it
meaningful to perform this quality check in numerous settings.

One major limitation of the proposed approach is the simplification of assuming a multi-variate Gaussian
distribution, which may not be the most suitable for describing the latent space. In particular, it fails to
represent multi-modal data where there are several clusters. Training samples with certain characteristics
may have successfully taught the model how to deal with similar cases, but may not be sufficiently
represented so as to result in a low distance from the distribution mean.

Capturing complexities in the training features could also address one of the central practical concerns
with the method, namely the fact that it is overly cautious in assessing the uncertainty for OOD predictions.
Why is it that, in some cases, the model seems successful at extracting segmentation masks for features
far from the training distribution? The obvious assumption would be that the distribution is not properly
captured in our estimation.

In the future, we would like to develop strategies to identify in what ways a test sample is different from
the training distribution. With this information, we could adapt the image or model in such a way that a
high-quality prediction can be extracted.
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3.2. Conclusions and outlook

Quantifying how suitable a model is for a particular image is key to ensuring the safe use of deep learning
models in unpredictable clinical environments. We know that DNNs only produce meaningful outputs for
inputs – and, in deeper layers, features – close to the training distribution, so samples should be flagged
that do not meet this criterion.

I do not deem it necessary to adapt the architecture or training mechanism for this purpose. At the end of
the day, the model will be used that obtains the best performance on the target task. Fortunately, methods
exist that only look at the inputs or network features and do not require changing the architecture or
even re-training the model. Calculating the distance to the training distribution in a down-sampled latent
space is one strategy that reliably identifies both far-OOD cases where the model is used incorrectly and
near-OOD images that contain artifacts or yet-unseen characteristics.

The difficulty with this approach lies in learning an expressive distribution that captures meaningful
aspects of the data. It is also possible that learning multiple distributions for different sections of the
latent space is more reasonable. For instance, a model trained with data from different sites may learn a
specific set of features for each site. Then, it would be reasonable to calculate the distance to each such
cluster.

Certain DNNs may additionally contain components that directly help assess their suitability. For instance,
when deploying self-supervised models, the proxy loss can be monitored. A deterioration in the proxy
task performance is often an indication of a similarly bad target task prediction.

Until now, I limited my work in this area to detecting whether a case is OOD. A more valuable objective
may be to identify the cause behind this shift. Or, put in another manner, in what ways a test image is
different from the training data. This information may help us select the best course of action for the
low-quality prediction.

Imagine, for instance, a model that classifies between healthy subjects and patients suffering from
different types of pneumonia from chest CTs. If the model were to receive a patient with a Covid-19
infection, which manifests differently from other conditions, the OOD detection system should signal that
the case presents certain lesions it has not seen before. After several such cases, radiologists may start
to note new disease patterns emerging. If, instead, the classifier were to receive the scan from a viral
pneumonia patient acquired with a new scanner, it should inform the user that the image is different from
the training base due to characteristics related to the acquisition. Here, domain adaptation approaches
could potentially be used to obtain a successful prediction.

I hope to see more research in the coming years, preferably in the form of prospective studies in real
clinics, on how OOD detection directs the use of further ML components.
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4. Epistemic Uncertainty Estimation

Closely related to OOD detection is uncertainty estimation. Though the boundaries between both fields
are blurry, uncertainty estimation performs best for in-distribution cases (Ovadia et al., 2019). We can
distinguish between two types of uncertainty. Aleatoric uncertainty quantifies the inherent randomness
in the prediction process. Imagine, for instance, the clearly irreducible uncertainty when a coin is tossed.
The second is epistemic uncertainty which results from a lack of information or, from a more practical
perspective, training data (Senge et al., 2014). Assuming that a model is suitable for the intended use,
which we hope was proven by sufficient pre-market evaluation, we are interested in quantifying the
epistemic uncertainty that arises from differences between a test image and the training data.

Uncertainty estimation methods typically obtain n different outputs {yi}i≤n for the same input x under
different conditions. These are acquired by training separate models for the same problem, or by using
only one model but disturbing the input or the network features so that they produce different outputs
(while still remaining within the expected range). We then calculate the variance between predictions to
obtain an estimate of the uncertainty (Equation 4.1).

σ2 =
1

n

n∑︂
i=1

(yi − µ)2, µ =
1

n

n∑︂
i=1

yi (4.1)

The intuition is that if the model – or model ensemble – is confident in the prediction for a particular
input, small variations will not significantly affect it and the variance will be low. If, instead, predictions
made by similar models or inputs are widely different, this could be an indication of high uncertainty.
By averaging the predictions, we also typically obtain a better result (Lakshminarayanan et al., 2017),
which is why ensembles are popular beyond their use for uncertainty estimation.

Two popular methods for estimating model uncertainty are Monte Carlo (MC) Dropout (Gal and Ghahra-
mani, 2016) and Deep Ensembles (Lakshminarayanan et al., 2017). MC Dropout involves performing
multiple forward passes through the model with activated Dropout layers (which are typically dormant
at test time) and can be applied to any model that utilizes Dropout. Deep Ensembles, on the other
hand, involves training multiple networks under slightly different conditions, such as from different
initializations. These methods have been found to be effective in medical image segmentation (Jungo
and Reyes, 2019; Jungo et al., 2020; Mehrtash et al., 2020), particularly Deep Ensembles. Another
option is to slightly perturb inputs through Test-Time Augmentation (Ashukha et al., 2019), which can
improve predictions for both single models and ensembles. Other methods, such as Probabilistic Back-
propagation (Kohl et al., 2018), and Stochastic Activation Pruning (Monteiro et al., 2020), have shown
better performance in some cases, but require specific training considerations, limiting their applicability.

Finally, Bayesian Neural Networks (BNNs) learn a distribution for each model parameter p(θ|x, y) as
opposed to a point estimate. A prior probability distribution is first defined over the parameters, which
is updated during the training process to reflect the posterior. As p(y|x) is not tractable, Variational
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Inference (VI) approximates the posterior by minimizing the Kullback-Leibler divergence between the
approximating distribution and the true posterior. Typically, normal distributions are used, so a mean µ
and standard deviation σ are learned for each parameter θ. Though VI takes an interesting perspective
and allows us to quantify uncertainty for each parameter, it is computationally expensive and does not
supply reliable uncertainties for complex tasks such as medical imaging problems.

In our recent work by Fuchs et al. (2022), we show that by combining VI with a multi-head ensemble
mechanism and limiting the Bayesian layers to the deeper part of the network, we can leverage the
advantages of both strategies while limiting the overhead. While the VI component captures the
uncertainty within each local minimum, training multiple heads allows us to assess how different
solutions to the problem diverge.

4.1. The paper: Improving robustness and calibration in ensembles with
diversity regularization

Deep ensembles are highly popular as they produce reliable uncertainty scores and improve prediction
quality with minimal additional work: models simply need to be replicated and perhaps trained from
different initializations or training data subsets. Nevertheless, they also have several downsides. One
is the additional computational overhead of training and performing inference with different models.
There is also no guarantee that ensemble members will learn different functions or reach different local
minima in the solution space, so each additional model may provide minimal additional value. Finally,
the estimated uncertainties may only be meaningful for in-distribution data.

We attempt to solve these challenges with the paper Improving robustness and calibration in ensembles
with diversity regularization, authored by Hendrik Mehrtens, Anirban Mukhopadhyay and myself and
presented at the 2022 DAGM German Conference on Pattern Recognition in Konstanz in September 30th,
2022. The publication summarizes the key findings of Mr. Mehrtens’ Master’s thesis (Mehrtens, 2021),
which I had the pleasure to supervise. Mr. Mehrtens presented the work and subsequently won the
German Association for Pattern Recognition Young Researchers’ Forum 2022 Best Master’s Thesis award. We
additionally uploaded a pre-print of the publication to arXiv on January 26th, 2022.
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Abstract. Calibration and uncertainty estimation are crucial topics
in high-risk environments. Following the recent interest in the diver-
sity of ensembles, we systematically evaluate the viability of explic-
itly regularizing ensemble diversity to improve robustness and calibra-
tion on in-distribution data as well as under dataset shift. We intro-
duce a new diversity regularizer for classification tasks that uses out-of-
distribution samples and increases the overall accuracy, calibration and
out-of-distribution detection capabilities of ensembles. We demonstrate
that diversity regularization is highly beneficial in architectures where
weights are partially shared between the individual members and even
allows to use fewer ensemble members to reach the same level of ro-
bustness. Experiments on CIFAR-10, CIFAR-100, and SVHN show that
regularizing diversity can have a significant impact on calibration and
robustness, as well as out-of-distribution detection.

Keywords: diversity · ensembles · robustness · calibration

1 Introduction

When a machine learning system is used in high-risk environments, such as
medicine and autonomous driving, a well-calibrated estimate of the uncertainty
is necessary. A model is said to be calibrated [9] if the confidence of its predictions
reflects its true probability of being correct. However, deep neural networks tend
to be overconfident in their predictions [9] leading to multiple recent approaches
attempting to improve their calibration [2,32]. Furthermore, models need to be
robust to shifts in the data domain, which can for example arise in the data shift
between the training and deployment domains.

To this day, Deep Ensembles [21] outperform most other approaches. A com-
mon explanation for the improved performance is the high diversity of solutions
in the ensemble [4,6,27], which is mostly generated by training from different
parameter initializations. While this approach works well empirically, distance
in parameter space generated through training from different starting positions
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does not guarantee diversity in the solution space, which we refer to as func-
tional diversity [43]. However, ensuring a diverse set of solutions in an ensemble
is critical to its performance [6,43].

Following recent interest in the topic of diversity in neural network ensem-
bles [6], many publications try to implicitly generate diversity by training with
different architectures [1,45], different data augmentations [38] and different hy-
perparameters [42]. However, this approach to generate diversity is sub-optimal,
as it does not guarantee diversity. Additionally, choosing the right architectures
and hyperparameters requires a lot of design decisions and is thereby time-
consuming.

On the other side, functional diversity can be regularized explicitly [27], an
idea recently used to improve adversarial robustness in ensembles [16,33]. Al-
though these explicit approaches guarantee diversity of predictions, they rely on
diversity measures on the original training data, which can lead to a degrada-
tion in accuracy. Additionally, these approaches do not perform well in tasks of
out-of-distribution detection and the naive implementation requires the simul-
taneous training of multiple ensemble members, which is expensive and can be
prohibitive in some tasks.

In our experiments, we put a special focus on ensembles that share parameters
between the members. While these architectures require much less computational
time, the lower ratio of independent parameters per member leads to a reduction
of diverse predictions [25], which naturally lends itself to using explicit diversity
maximization. For this, we use ensemble architectures with an increasing ratio
of shared parameters between members and show that the effect of diversity
regularization on robustness and calibration increases with a higher ratio of
shared parameters.

We introduce the Sample Diversity regularizer (SD) that instead of us-
ing in-distribution images to diversify the predictions, uses out-of-distribution
images. This, as we show, can be sampled from noise, not requiring an external
dataset and increases accuracy and calibration under dataset shift, while also
increasing the out-of-distribution detection capabilities of the model, contrary to
our other baseline regularizers. The proposed regularizer can also be combined
for greater effect with the other explicit diversity regularizers. Taking inspiration
from the methods of Shui et al. [35], we systematically evaluate the effectiveness
of explicit diversity regularization, coming to the conclusion that diversity regu-
larization is especially useful when encountering dataset shift [32], even reducing
the number of ensemble members needed for the same performance and allow-
ing for the training of light-weight approximate ensemble architectures instead
of full ensembles.

To summarize, our contributions are as follows:

– We demonstrate that diversity regularization is highly effective for archi-
tectures with a high ratio of shared parameters, reducing the number
of needed ensemble members under dataset shift and allowing for smaller
architectures.
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– We introduce the Sample Diversity regularizer, which increases the
accuracy and calibration under dataset shift, as well as the out-of-
distribution detection capabilities and can be combined with existing
diversity regularizers for greater effect.

2 Related work

In recent years, calibration of deep neural networks has become a focus in ma-
chine learning research. Although multiple approaches, from temperature scal-
ing [9], MC Dropout [7,18] to Variational Inference methods [3,28] have been
explored, neural network ensembles have demonstrated that they produce the
best-calibrated uncertainty estimates [2,32,21].

An important property of well-calibrated models is whether they still give
reasonable uncertainties when encountering dataset shift, as this setting better
reflects real-world conditions. Ovadia et al. [32] compared multiple approaches
using the CIFAR-10-C, CIFAR-100-C and ImageNet-C datasets by Hendrycks et
al. [12], coming to the conclusion that Deep Ensembles [22] outperformed every
other approach, making them the de-facto standard for uncertainty estimation
and robustness.

The superiority of ensembles in these task has been partly attributed to the
diversity between the individual members [6]. Ensemble diversity, in general,
has long been a research topic in machine learning with many early works rec-
ognizing it as a key principle in the performance of ensembles [4,27]. Recently,
a greater focus has been placed on improving diversity in neural network en-
sembles by different implicit means, for example by providing each ensemble
member with differently augmented inputs [38], building ensembles out of dif-
ferent neural network architectures [1,45,36] or training ensemble members with
different hyperparameters [42].

Explicit approaches on the other hand try to maximize the diversity between
ensemble members by orthogonalizing their gradients [16], decorrelating their
predictions on all classes [27,35] or on randomly sampled noise inputs [15] or
orthogonalizing only on non-correct classes [33]. Another strategy is to increase
diversity in the internal activations or parameters of the ensemble members
[34,37,23] , which forms a promising direction but requires computationally ex-
pensive adversarial setups. Finally, there are sampling-based methods that try
to maximize the diversity of the sampling procedure, for example through De-
terminantal Point Processes [20,40]. The advantage of these explicit approaches
is that they can directly control the diversity in the ensemble and do not rely
on decisions with indirect and often unclear consequences.

As training ensembles is expensive, multiple methods have tried to reduce
training costs. Snapshot-based methods [8,14] save multiple epochs along a train-
ing trajectory, Batch Ensembles [41] generate individual ensemble members by
addition of a per-member Rank-1 Hadamard-product and TreeNets [25] approxi-
mate a Deep Ensemble by sharing the lower levels of a network between members.
Furthermore, distillation approaches were proposed [39,44] that try to compress
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multiple networks into a single one. However, these approaches tend to reduce the
diversity between the individual members, by either sharing parameters between
them or not training them independently, leading to a reduction in accuracy and
calibration.

In this work we show that diversity regularization is highly useful in pa-
rameter shared ensembles and that diversity regularization can not only help
with accuracy and under dataset shift but also with out-of-distribution detec-
tion. Taking inspiration from Jain et al. [15] we introduce an explicit diversity
regularizer for classification that uses out-of-distribution samples, leaving the
predictions on the original data intact.

3 Methods and metrics

For our evaluation, we consider a classification task with C classes. Given a data
point x ∈ RL out of a dataset with N entries and its corresponding one-hot label
ŷ ∈ RC , the prediction of the j-th member of an ensemble with M members is
called f(x, θj) = yj , where θj ∈ RP are the parameters of the jth ensemble
member. We refer to the mean of all predictions as ȳ.

In this section, we describe the evaluated regularization functions, architec-
tures, and metrics as well as introduce our novel approach to diversity regular-
ization.

3.1 Regularizers

Given an image x, a label ŷ and the ensemble predictions yi, i ∈ [1, ...,M ], all
regularizers Lreg, which will be introduced in the following paragraphs, work as
a regularizer to the cross-entropy (CE) loss, where λreg is a hyper-parameter
that is chosen for each individual method.

Ltotal(ŷ, y1, ..., yM ) = LCE(ŷ, ȳ)− λregLreg(. . . ) (1)

For our experiments, we select a set of regularization functions that compute
a measure of similarity of the individual ensemble members’ predictions. An
illustration of the general structure can be seen in Figure 1.

Regularizers under consideration are our Sample Diversity regularizer, the
ADP [33] regularizer, which was recently introduced for increasing robustness
in ensembles to adversarial attacks, and the Negative Correlation regularizer.

Additionally we consider the average pair-wise χ2 distance (see Eq. 4). All
these regularizers encourage the individual members to have diverse predictions
given the same input and can therefore be seen as increasing the functional
diversity.

Negative Correlation: The Negative Correlation regularizer was first used
by Liu et al. [27] to increase the diversity in neural network ensembles. The key
insight was that the error of an ensemble depends upon the correlation of the
errors between individual members [4]. Originally designed for regression tasks,
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it was already used by Shui et al. [35] to improve the diversity and calibration in
neural network ensembles in classification tasks. This approach however reduces
the accuracy of the ensemble and can lead to training instabilities.

NegCorr(y1, ..., yM ) = −
C∑
i

((yi − ȳ) · (
∑
i ̸=j

yj − ȳ)) (2)

ADP: The ADP regularizer [33] orthogonalizes the predictions of the en-
semble members on the non-correct classes during training.

Given a correct class k, the vector of the predictions for the non-correct

classes are formed y
\k
i = (y1i , . . . , y

k−1
i , yk+1

i , . . . , yCi ), re-normalized and stacked
into a matrix Y\k ∈ R(C−1)×M . Furthermore an entropy regularizer (H) is used
to prevent extreme solutions. Together the regularizer is optimized using the
hyperparameters α and β.

ADP (ȳ\k, y
\k
1 , . . . , y

\k
C ) = α ·H(ȳ\k) + β log(det(Y T

\k · Y\k)) (3)

χ2 distance: As a distance measure between distributions, we implement
the average pair-wise χ2 distance between the members’ predictive distributions
as a regularizer. Like the likelihood, the measure lives on the range [0, 1] and the
regularizer can be computed as

χ2(y1, ..., yM ) = log

 1

M · (M − 1)

∑
i ̸=j

C∑
k=1

y
(k)
i − y

(k)
j

y
(k)
i + y

(k)
j

 (4)

Fig. 1. Conceptual figure showcasing the differences between approaches. (left) Given
an input x, the individual members are not only optimized individually with regard to
the cross-entropy loss but the predictions are additionally regularized by a diversity
regularizer (Lreg). The predictions of the individual members on the original input
are compared by a diversity regularizer. (right) Our Sample Diversity (LSD) approach
utilizes additional inputs, sampled from the uniform distribution, to compute a measure
of diversity as a regularizer. This preserves the original predictions on the training data.

Sample Diversity:
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Building on the work of Jain et al. [15] and the loss-formulation of ADP [33],
we introduce a similar regularizer for classification tasks, which we illustrate in
Figure 1. Instead of regularizing diversity on the predictions of in-distribution
data points, which could degrade performance, we generate out-of-distribution
data points and enforce predictive orthogonality there. The loss reaches a min-
imum if all predictions are orthogonal on the sampled data points and thereby
diverse but correct on the in-distribution data. Image batches are sampled from
the uniform probability distribution (white noise). Given all logits outputs for
a sampled data point x̃ ∼ UH×W , of all M ensemble members (ỹ1, ..., ỹM ), nor-
malized to length one and stacked in a matrix Ỹ ∈ RC×M , we maximize Eq. 5
as our regularizer.

SampleDiversity(ỹ1, ..., ỹM ) = log(det(Ỹ T · Ỹ )) (5)

Other possible formulations are evaluated in the supplemental material, for
comparability we stick to the ADP loss formulation. In the out-of-distribution
detection literature, multiple other approaches that utilize OOD data during
training exist, however these approaches act on single neural networks, utilize ad-
versarial generators and experiment in the out-of-distribution detection domain
[29,24,13]. Our goal is to formulate a practical functional diversity regularizer
that utilizes the strength of ensembles, while not requiring expensive adversarial
training.

3.2 Architectures

As more shared parameters reduce the computational resources required when
training an ensemble but also the diversity of the ensemble, we study if higher
dependency between members, increases the viability of diversity regularization.
To this end, we compare the independently trained Deep Ensembles of randomly
initialized neural networks [21] without adversarial training with TreeNets [25]
that approximate a Deep Ensemble by sharing a base part of the network with
each member, as well as Batch Ensembles [41] that generate their members by
adding a Rank-1 Hadamard product to the parameter matrices of a base network
and have the least number of independent parameters. We limit the scope of
our study to the aforementioned architectures, although other architectures like
the MiMo architecture [10] exist, as they are closest in structure to the Deep
Ensemble.

3.3 Metrics

When working with calibration it is not only important to be well-calibrated
on the original data but also under reasonable dataset shifts, which is crucial
for real-world application. To evaluate this, corrupted datasets are used that
simulate realistic noise and corruptions settings. All our metrics will be reported
on the original datasets, as well as under dataset shift. In addition to accuracy
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and negative log-likelihood (NLL), we measure additional metrics, which are
explained in the following:

Calibration: A commonly used measure of calibration is the Expected Cal-
ibration Error (ECE) [30]. As noticed by Ashuka et al. [2] this metric may not
produce consistent rankings between models. For this reason, temperature scal-
ing [9] with five-fold cross-validation on the test-set is deployed to generate con-
sistent results. The temperature is computed for each dataset on the uncorrupted
version. Our scores are computed after applying temperature scaling to the pre-
dictions. The temperature is chosen to minimize the negative log-likelihood, as
proposed by Guo et al. [9].

AUC-ROC: The ability of detecting out-of-distribution data is tested, as
intuitively more diverse ensemble members should produce more diverse pre-
dictions when evaluated on out-of-distribution data. We use the confidence of
the average prediction of the ensemble as threshold classifier for distinguishing
between in-distribution (ID) and out-of-distribution (OOD) data. Following [2]
the AUC-ROC metric is reported for OOD detection.

Table 1. Experiments on CIFAR-10. Comparison of diversity regularization on differ-
ent architectures with ensemble size 5 under dataset shift on the original (org.) data
and highest corruption level (corr.).

Model Method Accuracy ↑ ECE ↓
org. corr. org. corr.

DeepEns.

ind. .936±.001 .543±.010 .023±.001 .170±.014

ADP .933±.000 .549±.005 .032±.002 .126±.010

NegCorr. .934±.001 .538±.002 .023±.001 .164±.007

χ2 .934±.001 .542±.006 .023±.000 .171±.008

SampleDiv. .933±.001 .579±.004 .022±.001 .134±.007

TreeNet

ind. .919±.002 .523±.01 .035±.001 .234±.010

ADP .917±.002 .535±.019 .024±.000 .180±.031

NegCorr. .918±.003 .528±.013 .027±.002 .200±.014

χ2 .920±.004 .517±.013 .027±.001 .238±.013

SampleDiv. .916±.002 .545±.007 .030±.002 .213±.014

BatchEns.

ind. .905±.001 .512±.019 .097±.002 .285±.014

ADP .906±.002 .517±.011 .032±.008 .171±.049

NegCorr. .904±.001 .503±.002 .072±.021 .258±.030

χ2 .905±.002 .503±.014 .058±.007 .265±.030

SampleDiv. .904±.000 .545±.007 .037±.015 .175±.032
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4 Experiments and results

We first describe the general setup that is used in all of our experiments. After
that, we test the effect of our different diversity regularizers on the accuracy,
NLL and calibration and later focus on out-of-distribution detection.

4.1 Datasets, models, and training

The base architecture for all our experiments is a ResNet-20 [11]. We train
our models on the CIFAR-10, CIFAR-100 [19] and SVHN [31] datasets. For
experiments under dataset shift, we use the corrupted versions of the CIFAR-10
and CIFAR-100 datasets created by Hendrycks et al. [12] and additionally create
a corrupted version of the SVHN dataset using all 19 corruptions with 5 levels
of corruption intensity.

All experiments are conducted, unless otherwise stated, with a learning rate
of 1e− 4, a L2 weight decay of 2e− 4, a batch size of 128 and Adam [17] as the
optimizer, with the default β1 and β2 parameters. Each model is trained for 320
epochs. For augmentation, we use random crops and random horizontal flips, as
described by Kaiming et al. [11]. The optimal temperatures are computed by
five-fold cross-validation on the test dataset, as suggested by Ashukha et al. [2].

When using the TreeNet architecture the ResNet is split after the second
pooling operation. The cross-entropy loss is computed for each member indi-
vidually and then combined. When training the Batch Ensemble, each member
is trained with the same inputs at each step, so it is possible to compare the
predictions of the individual members. Batch Ensemble was originally trained
by splitting a batch over the ensemble members in each step. When evaluating
the impact of this change, we found no significant differences between the two
training methods. The comparison can be found in the supplemental material.

Each experiment is performed 3 times and we report the mean performance
together with the standard deviation. Whenever possible, hyperparameters are
chosen as presented in the original papers. All other parameters were fine-tuned
by hand on a 10% split of the training data.

When training with the ADP regularizer, we use the parameters α = 0.125,
β = 0.5 which performed best for us in preliminary experiments. Those are the
original parameters reported in the paper scaled by a factor of 0.25. For the
Sample Diversity regularizer, we choose the number of sampled images equal to
the original batch size. The images are sampled uniformly on all 3 channels in
the range [0, 1]. We then choose λSD = 0.5 for training. The χ2 baseline used
λχ2 = 0.25. The Negative Correlation regularizer proved hard to train in a stable
manner. We use λNC = 1e − 5, as values above this threshold destabilized the
training process.

4.2 Diversity regularization under dataset shift

We train the Deep Ensemble, TreeNet, and Batch Ensemble architectures on
CIFAR-10, CIFAR-100, and SVHN. The experiments are performed with 5 en-
semble members. On all three datasets, we compare the independently trained
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ensembles, which we refer to as ’ind.’ in our figures, with the regularized vari-
ants. We then evaluate all models on the corrupted versions of the datasets,
comparing the accuracy, NLL and ECE.

Fig. 2. Accuracy (left) and NLL (right) with different regularizers over different
datasets.

Table 1 shows the results of our experiments on CIFAR-10 and the corrupted
variant with all architectures. We compare the accuracy and ECE on the original
data and on the highest corruption level. The results for the CIFAR-100 and
SVHN datasets can be found in the supplemental material.

The Sample Diversity regularizer outperforms all other regularization func-
tions in terms of accuracy on the corrupted data, improving the accuracy under
dataset shift by 3.6% (Deep Ensemble), 2.3% (TreeNet) and 3.3% (Batch En-
semble), as can be seen on all architectures under dataset shift. Both the Sample
Diversity and ADP regularizer outperform the other approaches in terms of
ECE. The only exception occurs on the non-corrupted data with the Deep En-
sembles architecture, where the ADP regularizer slightly decreases the calibra-
tion. Overall the χ2 and Negative Correlation regularizer perform worse. This is
most likely due to the fact that the diversity in these regularizers is also enforced
on the correct class. When training these regularizers we also observed training
instabilities.

As hypothesized the diversity regularization is effective when using con-
strained ensemble architectures. This is particularly noticeable for the Batch
Ensemble architecture, which has the highest amount of shared weights per mem-
ber, but also on the TreeNet architecture, a significant decrease of the ECE is
observable, even on the original data, compared to the Deep Ensemble architec-
ture, where diversity regularization performs worse. An interesting observation is
that the TreeNet and Batch Ensemble regularized with the Sample Diversity loss
outperform the Deep Ensemble of the same size (54.5% on both architectures,
compared to 54.3% for the unregularized Deep Ensemble) on the corrupted data
in terms of classification accuracy. Looking at the results it is clear that reg-
ularizing diversity helps in improving robustness to dataset shifts. It improves
ensemble calibration, lowering the ECE under dataset shift significantly. The
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Fig. 3. Comparison of the three different architectures over the ensemble sizes 2 to 5
on the highest corruption level on CIFAR-10.

displayed metrics show a clear split between ADP and Sample Diversity on one
side and the normal training routine on the other side.

Figure 2 compares the mean accuracy and negative log-likelihood of the Sam-
ple Diversity and ADP regularizer over all three datasets. We use a TreeNet
with 5 members. The x-axis denotes the corruption level, the colors encode the
dataset, while the line style and marker encode the regularizer.The Sample Diver-
sity regularizer (solid, square) consistently improves the accuracy and decreases
the negative log-likelihood under dataset shift. This difference is especially no-
ticeable for the CIFAR-10 and CIFAR-100 datasets, on SVHN all methods stay
relatively close to each other. The ADP (dashed, plus) regularizer on the other
hand can even strongly decrease the negative log-likelihood on the original data,
as can be seen with the CIFAR-100 results.

Figure 3 compares the effectiveness of Sample Diversity regularization on the
highest corruption level of CIFAR-10 over the different ensemble sizes 2 to 5,
comparing the mean accuracy, NLL and ECE. The colors encode the architec-
ture, while the line style and marker encode the regularizer (Sample Diversity
or independent training). As can be seen in the figure, diversity regularization
is even highly effective when using as few as 2 ensemble members and does not
require a large pool of members. Even a TreeNet or BatchEnsemble with 2 mem-
bers, outperforms the unregularized equivalent with 5 members. This strongly
reduces the number of ensemble members required for the same performance
and shows that even lightweight ensemble architectures can outperform a Deep
Ensemble. A table with detailed results can be found in the supplemental ma-
terial.
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Fig. 4. Distribution of confidence (top) and ROC curve for distinguishing between
ImageNet and ID data (bottom) for a TreeNet architecture with 5 members with
different regularization’s on CIFAR-10 (left) and CIFAR-100 (right).

4.3 Out-of-distribution detection

Figure 4 shows the distribution of confidence and the receiver operating charac-
teristic (ROC) for differentiating between in-distribution and out-of-distribution
data, which was in this experiment chosen as tinyImageNet [26], a 200-class sub-
set of the ImageNet [5] dataset. The evaluated models are TreeNet architectures
with 5 members, trained on CIFAR-10 and CIFAR-100. We do not report on
SVHN, as every model there reached a near-perfect separation between in- and
out-of-distribution data.

Looking at the ROC on CIFAR-10, Negative Correlation and ADP improve
the separation slightly, while Sample Diversity strongly increases the dataset sep-
aration. Things look different on CIFAR-100 where all regularizers but Sample
Diversity decrease the separation of the two datasets compared to independent
training. To explain this, we take a look at the differences in the confidence
distributions across the datasets. While all models are fairly confident in their
predictions on CIFAR-10, most likely due to the few well-separated classes, on
CIFAR-100 every model is highly uncertain, with confidence distributions be-
tween in-distribution data and OOD highly overlapping. There, the increased
uncertainty that Negative Correlation and ADP introduce on in-distribution
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Table 2. AUC-ROC over three runs, on separating in-distribution data and out-of-
distribution data. Entries marked with ’-’ diverged.

Model Method AUC-ROC ↑
(trained on) CIFAR-10 CIFAR-100

DeepEns.

indi. .980±.014 .798±.025

ADP .965±.017 .804±.034

NCL .993±.001 .729±.038

χ2 .983±.011 .834±.037

SD .982±.012 .919±.026

TreeNet

indi. .947±.044 .799±.049

ADP .952±.008 .695±.050

NCL .960±.011 .663±.097

χ2 .916±.020 .815±.019

SD .995±.003 .877±.122

BatchEns.

indi. .928±.008 .497±.187

ADP .909±.026 .595±.110

NCL .934±.076 -
χ2 .974±.008 .809±.122

SD .991±.004 .614±.080

predictions is a disadvantage as the confidence distributions now tend to overlap
more. On the other hand, Sample Diversity that only encourages orthogonality
on OOD data improves the OOD detection capability.

Table 2 reports the AUC-ROC, as suggested by Ashuka et al. [2], for all
our evaluated models. None of the baseline regularizers is able to consistently
increase the AUC-ROC over the level reached by independent training. Sample
Diversity, even though it is not the best in every single experiment, outperforms
independent training and nearly all other regularizers consistently in every set-
ting. We conclude that Sample Diversity can not only increase the robustness
and calibration but at the same time also the out-of-distribution detection ca-
pabilities of the model, while only requiring uninformative out-of-distribution
noise and no additional datasets.

Ablation studies, as well as more detailed results can be found in the supple-
mental material. There the experiments indicate that the ADP loss formulation
is sub-optimal and future research could increase the viability of diversity regu-
larization further. Furthermore, adversarial training for the image generation of
Sample Diversity or using real out-of-distribution data like ImageNet instead of
the uniformly sampled noise images, does not lead to any further improvements.
We also conduct experiments, measuring the impact of distance in parameter
space and the different behaviors of our tested regularizers. Finally, we test
other architectures are tested to confirm our results.
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5 Conclusion

We conduct a comprehensive study comparing different popular diversity regu-
larization methods on robustness, calibration and out-of-distribution detection
benchmarks, over multiple datasets and architectures. Furthermore, we intro-
duce the Sample Diversity regularizer, which is well suited for improving ac-
curacy and ECE and can be combined with the ADP regularizer for
greater effect. Contrary to other regularizers, our regularizer also increases
the out-of-distribution detection capabilities. Our experiments show that
diversity regularized ensembles are better in terms of accuracy and
calibration under dataset shift. Regularizing ensembles beyond the diversity
reached by independent training especially on architectures with shared parame-
ters is beneficial. Even the TreeNet and Batch Ensemble can outperform
a Deep Ensemble in terms of robustness to dataset shift when diver-
sity regularization is used, even when we use fewer members.
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6 Supplemental Material

6.1 Variants and ablation studies

Table 3 shows multiple variants of our Sample Diversity and the ADP regular-
izer. Increasing the batch size of sampled images to 512 (fourfold) increases
the accuracy on the original and corrupted data even further, while also lower-
ing the ECE, suggesting that there is more future potential in this approach.
When Sample Diversity is combined with the ADP regularizer, we observe an
improvement in all measured metrics suggesting that Sample Diversity combines
constructively with other diversity regularizers. We suspect that this is due to
the different behaviors of the regularizers (see Section 6.3) that emerge due to the
different datasets the regularizers work on. Replacing the uniform noise with the
tinyImageNet dataset reduces the overall accuracy on the original and corrupted
data and increases the calibration error compared to our standard approach. We
suspect the ever-new nature of newly sampled images to be more effective, than
a limited pool of images, for diversity maximization on OOD data. Combining
real datasets with augmentations and corruptions could be a future solution to
the problem.

We replace the log-determinant regularization term in the ADP (ADPχ2)
and Sample Diversity (SDχ2) regularizer, with the pair-wise χ2 distance (see
Eq. 4). This has the advantage that ensembles with more members than classes
can be trained with diversity regularization, as otherwise for a matrix Y ∈ RC×M

(C − 1 in case of ADP)

det(Y T · Y ) = 0, if C < M (6)

Table 3 shows that this formulation performs just as well while being numerically
more stable, as it does not require a determinant and matrix-inversion operation
and allows for arbitrary ensemble sizes. An ensemble of size 11 on CIFAR-10
in this case also benefits greatly from diversity regularization. This is a useful
property for datasets with a low number of classes.

Finally, following recent work [17,26] we apply adversarial Fast-Gradient sign
attacks [10] on the regularizer, to create more effective out-of-distribution im-
ages, on which to maximize the diversity. However, this approach only slightly in-
creases the accuracy on the corrupted data (0.3%), while significantly increasing
the computational time, suggesting that uniformly sampled images are already
effective enough.

To test if regularization during test-time is necessary or if a functional di-
verse initialization is enough, we only apply the regularizers in a 3 epoch warm-
up phase, then switching to standard cross-entropy training. We test only using
Sample Diversity (OrthoInitOOD) and Sample Diversity combined with ADP
(OrthoInitIID+OOD). These initialization do not lead to improvements, suggest-
ing that constant regularization during training is necessary. This is an inter-
esting avenue of research, as the diversity of the ensemble members seems to
collapse to more similar solutions if no regularisation is applied.
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Table 3. Comparison of different Sample Diversity (SD) and ADP variants on a
TreeNet on CIFAR-10.

Reg. Accuracy ↑ ECE ↓
org. corr. org. corr.

ADP (base) .917±.002 .535±.019 .024±.000 .180±.031

SD (base) .916±.002 .545±.007 .040±.002 .213±.014

OrthoInitOOD .917±.001 .516±.007 .036±.003 .232±.010

OrthoInitID+OOD .917±.002 .512±.006 .037±.001 .247±.004

SD (bs. 512) .921±.001 .562±.012 .041±.001 .210±.010

SD+ADP .919±.001 .560±.010 .027±.002 .150±.008

SD (adversarial) .918±.000 .549±.013 .036±.006 .167±.026

SD (ImageNet) .916±.004 .520±.007 .040±.002 .234±.014

SDχ2 .919±.003 .545±.008 .041±.005 .222±.010

ADPχ2 .921±.001 .533±.004 .027±.001 .208±.007

ind. (size 11) .939±.001 .544±.005 .023±.001 .155±.003

ADPχ2 (size 11) .935±.004 .552±.007 .028±.001 .138±.007

SDχ2 (size 11) .932±0.003 .589±.003 .027±.001 .114±.009

6.2 Distance in parameter space

We additionally use the distance in parameter space as a baseline regularizer to
contrast distance in parameter space with functional diversity. Distance in pa-
rameter space is no guarantor of diverse functions, as different parameter settings
can represent the same function, through a reparamerization of the function. A
simple example of this is a permutation of filters inside a convolutional layer,
with corresponding changes to the filters in adjacent layers. While this operation
creates distance in parameter space, both parameter settings represent the same
function.

Benjamin et al. [3] experimented with distance in function space, coming
to the conclusion that parameter distance is no good measure for functional
differences. We conduct similar experiments by introducing the WeightCos reg-
ularizer that orthogonalizes the parameter vectors θi ∈ RP , stacked into a matrix
Θ ∈ RM×P , of the individual ensemble members during training.

WeightCos(θ1, . . . , θM ) = log(det(Θ ·ΘT ))

We report the performance of the WeightCos regularizers in some of the later
tables. While WeightCos does not lead to improvements in the Deep Ensemble
and TreeNet architecture we observed that in the BatchEnsemble architecture
WeightCos behaves very similar to the ADP regularizer in terms of ECE and
NLL, leading to substantial improvements under dataset shift. We suspect that
the formulation of the individual members in the BatchEnsemble does not allow
for easy reparametrization. In this case orthogonality in parameter space could
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Fig. 5. Entropy (left), Jensen-Shannon-Divergence (middle) andOracle NLL (right) for
a 5-member TreeNet on CIFAR-10, with different regularizations. The x-axis indicates
the level of corruption.

induce functional diversity, which is an interesting finding for future work. See
Section 6.7 for the results including the WeightCos regularizer.

6.3 Differences in diversity regularizers

To further investigate the effects diversity regularization has on the predictions
of the ensemble, we measure the predictive entropy, Jensen-Shannon-Divergence,
and Oracle NLL [27]. The predictive entropy of the ensemble is an indicator of
how diverse an ensemble is, as more varying individual predictions will increase
the entropy of the mean prediction.

H(ȳ) = − 1

log (C)

C∑
i=1

ȳi log (ȳi) (7)

However, an ensemble composed of highly uncertain but similar members will
also produce high entropy predictions. For this, we measure the Jensen-Shannon-
Divergence (abbr.: JSD), which is the mean Kullback-Leibler (abbr.: KL) diver-
gence between the individual ensemble members’ predictions (y1, . . . , yM ) and
the mean prediction ȳ. A higher value for the JSD therefore indicates more
diverse predictions across the ensemble.

KL(yi||yj) = −
C∑

k=1

y
(k)
i · log(y

(k)
i

y
(k)
j

) (8)

JSD(ȳ, y1, . . . , yM ) =
1

M

M∑
i=1

KL(yi||ȳ) (9)

A measure introduced by Lee et al. [27] is the Oracle NLL, which is the
negative log-likelihood of the best performing ensemble member for each input.
A more diversified ensemble with more specialized members results in a lower
Oracle NLL.

The result for a TreeNet with 5 members can be found in Figure 5. The
markers indicate the type of regularization and the x-axis indicates the level of
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Fig. 6. Percentage of different argmax predictions between the ensemble members on
the original data and the highest corruption level.

corruption. It can be seen that in the ADP regularized ensemble the individ-
ual members stray the furthest from the mean prediction, as seen in the higher
entropy, Jensen-Shannon-Divergence between the members and also the signifi-
cantly lower Oracle NLL [27]. On the other hand, the entropy of the Sample Di-
versity regularizer is only slightly increased compared to the independent ensem-
ble training, even though the ECE and accuracy are constantly superior, which
is most likely due to Sample Diversity only regularizing on out-of-distribution
data, leaving the predictions on the training data intact. Sample Diversity and
ADP have the lowest Oracle NLL, indicating a high functional diversity and
specialised members. Consistent with our prior results, this is then followed by
the χ2 and Negative Correlation regularizer, which also performed worse on the
other measured metrics. Independent training and WeightCos have the highest
Oracle NLL, indicating that they lack diverse members. Additionally, Weight-
Cos also has a very low JSD, showcasing that distance in parameter space is no
guarantor of diverse members or diverse predictions. The JSD of the Negative
Correlation regularizer is lower than that of the independent baseline, while the
predictive entropy is higher. We interpret that as the Negative Correlation regu-
larizer producing highly spread out and uncertain predictive distributions, which
results in a lower JSD. These results show that all regularization approaches in-
crease the differences between member predictions, as seen in the lower Oracle
NLL and the higher entropy, but they do not all behave in the same way. We
suspect these differences in the behaviour to be the reason why ADP and Sample
Diversity combined so well in our experiments.

Figure 6 shows the percentage of differing argmax predictions on the original
data and the highest corruption level. While distance in parameter space does
not lead to more diverse predictions both Sample Diversity and ADP produce
comparably diverse predictions.
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6.4 Network capacity

To test if diversity regularzation also works with larger models we conduct exper-
iments on the ResNet-44 architecture. Table 4 shows that when we use a bigger
base architecture for the TreeNet, diversity training is still highly effective. In
this case ADP even slightly increases the accuracy on the original data. Also
in terms of ECE and NLL both regularizers lead to an improvement. However,
further experiments with more varied architectures could give more insight in
future work.

Table 4. Capacity experiments. To test if, diversity regularization still performs well
with bigger architectures, the backbone of the TreeNet was exchanged for a ResNet-44
architecture (Res44). All experiments were conducted on CIFAR-10 with a TreeNet
architecture with 5 members. We report the accuracy, ECE and NLL.

Method Accuracy ↑ ECE ↓ NLL ↓
(corruption intensity) org. corr. org. corr. org. corr.

ind. .922±.001 .510±.016 .049±.005 .284±.004 .343±.031 2.175±.029

ADP .926±.002 .544±.004 .032±.001 .227±.031 .318±.004 1.853±.120

SampleDiv. .922±.003 .546±.008 .047±.002 .238±.021 .321±.025 1.887±.118

6.5 Differences in training Batch Ensemble

In our experiments, we trained the Batch Ensemble with the same data input
in each step, while in the original paper [43] a batch was split over each member
in every step. The difference is that in our approach each member sees the data
points in the same order. This could lead to a reduction in diversity, which could
be larger than the gain from diversity regularization. Figure 7 plots our Batch
Ensemble training schedule (BatchEns. (ours)), the original training schedule
(BatchEns. (org.)) and our schedule trained with Sample Diversity and ADP.
While there is a minimal gain in the original training schedule, as noted by Ford
et al. [7], the gain of the diversity regularization is far greater.

Fig. 7. Comparison of training the Batch Ensemble architecture with our training
schedule compared to the original implementation.
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6.6 Different split levels

We test using different split points, which we call split levels, in the TreeNet
architecture to measure the influence of the ratio of shared parameters on the
effectiveness of diversity regularization. In most of our experiments we set the
split level to 3, which corresponds to a split just before the third ResNet block.
A split of 0 is the same as a Deep Ensemble trained with the same data order
during training. Split level 1 and 2 are placed before the first and second ResNet
block, while split level 4 splits the network just before the last convolutional
layer.

Table 5 shows our results for splitting a TreeNet trained on CIFAR-10 with
5 members at these different split points. As can be seen diversity regularization
is effective even in the extreme case of split level 4, where just one convolutional
layer is regularized.

Table 5. Experiments with different split levels on the TreeNet architecture on CIFAR-
10 with 5 members. Comparison of the Sample Diversity and ADP regularizer.

Split Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

ind. .936±.001 .543±.010 .023±.001 .170±.014 .210±.004 1.783±.051

0 ADP .933±.000 .549±.005 .032±.002 .126±.010 .241±.004 1.606±.037

SampleDiv. .933±.001 .573±.004 .022±.001 .134±.002 .221±.004 1.634±.010

ind. .936±.001 .546±.014 .024±.000 .163±.011 .214±.004 1.769±.064

1 ADP .935±.001 .553±.005 .036±.004 .108±.010 .245±.008 1.545±.034

SampleDiv. .933±.002 .570±.001 .024±.001 .148±.008 .214±.009 1.566±.029

ind. .932±.002 .530±.002 .023±.001 .185±.009 .226±.005 1.822±.063

2 ADP .931±.001 .539±.004 .028±.002 .148±.014 .256±.003 1.671±.046

SampleDiv. .929±.003 .554±.009 .024±.001 .166±.016 .225±.007 1.624±.074

ind. .919±.001 .523±.007 .035±.001 .234±.012 .286±.006 1.986±.076

3 ADP .917±.002 .535±.019 .024±.000 .180±.031 .298±.005 1.699±.132

SampleDiv. .916±0.002 .545±.007 .030±.002 .213±.014 .305±.013 1.822±.044

ind. .899±.003 .502±.010 .067±.018 .257±.032 .395±.051 1.996±.209

4 ADP .902±.001 .509±.024 .038±.002 .216±.027 .393±.008 1.843±.128

SampleDiv. .900±.001 .527±.007 .081±.018 .243±.022 .438±.063 1.902±.093
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6.7 Detailed results - CIFAR-10, CIFAR-100 and SVHN

Here we show the detailed results over all three datasets. Table 6 shows our
results on CIFAR-10, Table 7 our results on the SVHN dataset and Table 8 our
results on CIFAR-100. We notice that all regularizers have problems on CIFAR-
100, which is most likely due to the large number of classes compared to the
small number of ensemble members.

When we repeat the experiments with ensemble size 20 on CIFAR-100 we
observe a better performance (see Table 9). However, datasets with large number
of classes remain a problem. Here methods that utilize class number independent
measures like internal activation’s of the neural network for diversification could
prove superior.

6.8 Detailed results - Different Ensemble Sizes

Table 10 shows the results for our experiments on CIFAR-10 on the TreeNet
architecture with different ensemble sizes, displaying the accuracy, ECE and
NLL. We compare the ensemble sizes 2 to 5, using the ADP and Sample Diversity
regularizer. Table 11 shows the same for the experiments on the BatchEnsemble
and Deep Ensemble architectures. As before the scores are computed over 3
differently seeded runs and we report the mean and standard deviation. Sample
Diversity consistently improves the accuracy under dataset shift and also lowers
the ECE compared to the independent ensemble training (ind.). ADP performs
best in terms of calibration error, having the lowest ECE in most settings. As
mentioned before even a TreeNet of size 2 can outperform a Deep Ensemble of
size 5 on the corrupted data, if diversity regularization is used. Furthermore, the
ADPχ2 and SampleDiv.χ2 formulation allow for training a Deep Ensemble of
size 11 on CIFAR-10, which still provides large gains in terms of robustness to
dataset shift.
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Table 6. Experiments on CIFAR-10 with five members on different architectures.

Model Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

DeepEns.

ind. .936±.001 .543±.010 .023±.001 .170±.014 .210±.004 1.783±.051

ADP .933±.000 .549±.005 .032±.002 .126±.010 .241±.004 1.606±.037

NegCorr. .934±.001 .538±.002 .023±.001 .164±.007 .210±.001 1.714±.082

χ2 .934±.001 .542±.006 .023±.000 .171±.008 .226±.007 1.767±.044

SampleDiv. .933±.001 .579±.004 .022±.001 .134±.007 .217±.008 1.494±.026

WeightCos. .935±.001 .537±.007 .023±.000 .166±.003 .212±.004 1.790±.034

TreeNet

ind. .919±.002 .523±.01 .035±.001 .234±.010 .286±.006 1.990±.076

ADP .917±.002 .535±.019 .024±.000 .180±.031 .298±.005 1.699±.132

NegCorr. .918±.003 .528±.013 .027±.002 .200±.014 .271±.009 1.785±.095

χ2 .920±.004 .517±.013 .027±.001 .238±.013 .282±.014 1.925±.117

SampleDiv. .916±.002 .545±.007 .030±.002 .213±.014 .305±.013 1.822±.044

WeightCos. .919±.002 .517±.014 .032±.003 .225±.020 .275±.014 1.927±.143

BatchEns.

ind. .905±.001 .512±.019 .097±.002 .285±.014 .455±.003 2.254±.099

ADP .906±.002 .517±.011 .032±.008 .171±.049 .363±.036 1.735±.160

NegCorr. .904±.001 .503±.002 .072±.021 .258±.030 .385±.052 2.086±.230

χ2 .905±.002 .503±.014 .058±.007 .265±.030 .391±.032 2.069±.178

SampleDiv. .904±.000 .545±.007 .037±.015 .175±.032 .343±.014 1.649±.121

WeightCos. .907±.003 .499±.005 .022±.001 .182±.022 .385±.005 1.836±.108

Table 7. Experiments on SVHN with five members on different architectures.

Model Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

ind. .969±.001 .879±.000 .008±.000 .026±.006 .126±.004 .432±.026

ADP .971±.001 .882±.004 .012±.001 .009±.003 .132±.005 .430±.014

TreeNet NegCorr. .969±.001 .878±.004 .008±.001 .029±.009 .126±.004 .437±.042

χ2 .969±.000 .880±.006 .009±.002 .027±.013 .128±.011 .434±.058

SampleDiv. .969±.001 .882±.004 .009±.001 .008±.001 .122±.004 .413±.018

BatchEns.

ind. .965±.000 .877±.001 .010±.001 .028±.008 .139±.001 .435±.008

ADP .970±.001 .891±.004 .021±.005 .036±.018 .139±.003 .407±.007

NegCorr. .964±.003 .878±.007 .010±.002 .025±.008 .138±.009 .432±.027

χ2 .969±.002 .882±.006 .010±.001 .021±.020 .131±.015 .417±.041

SampleDiv. .965±.000 .879±.002 .010±.001 .029±.004 .139±.003 .442±.013

WeightCos .966±.001 .867±.003 .018±.004 .022±.011 .141±.003 .450±.007
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Table 8. Experiments on CIFAR-100 with five members on different architectures.

Model Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

DeepEns.

ind. .726±.001 .300±.001 .055±.000 .058±.002 1.008±.008 3.329±.008

ADP .719±.001 .308±.002 .128±.004 .032±.004 1.175±.003 3.274±.025

NegCorr .623±.015 .267±.002 .073±.003 .035±.002 1.375±.054 3.342±.016

χ2 .717±.002 .308±.002 .078±.002 .035±.002 1.020±.003 3.225±.019

SampleDiv. .708±.002 .306±.001 .053±.003 .053±.003 1.070±.006 3.173±.025

WeightCos .726±.003 .303±.002 .056±.001 .056±.002 1.005±.003 3.287±.014

TreeNet

ind. .710±.004 .288±.007 .036±.002 .075±.004 1.054±.007 3.380±.038

ADP .708±.004 .292±.001 .106±.004 .020±.002 1.207±.006 3.362±.025

NegCorr. .595±.003 .244±.008 .038±.003 .057±.008 1.451±.016 3.474±.077

χ2 .711±.003 .290±.001 .043±.002 .075±.007 1.076±.010 3.362±.019

SampleDiv. .701±.003 .306±.004 .034±.003 .082±.001 1.083±.011 3.188±.036

WeightCos .705±.003 .283±.001 .038±.004 .076±.005 1.060±.005 3.437±.013

BatchEns.

ind. .645±.000 .259±.005 .073±.005 .093±.011 1.336±.008 3.525±.027

ADP .637±.004 .265±.004 .082±.005 .017±.003 1.537±.003 3.542±.055

χ2 .642±.004 .258±.002 .055±.004 .067±.004 1.341±.019 3.484±.047

SampleDiv. .635±.003 .275±.002 .073±.007 .102±.007 1.372±.007 3.354±.002

WeightCos .648±.002 .265±.003 .038±.003 .075±.008 1.277±.015 3.506±.026

Table 9. Experiments on CIFAR-100 with a TreeNet and ensemble size 20.

Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

ind. .721±.003 .297±.005 .043±.002 .083±.003 .991±.009 3.345±.042

ADP .718±.001 .309±.006 .189±.002 .048±.004 1.339±.013 3.319±.034

SampleDiv. .719±.002 .309±.007 .042±.001 .087±.004 1.006±.008 3.215±.052
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Table 10. Experiments with different TreeNet ensemble sizes on CIFAR-10. Com-
parison of the Sample Diversity and ADP regularizer with independent training on
different architectures under dataset shift.

Model Size Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

TreeNet
ind. .909±.002 .511±.005 .036±.000 .220±.013 .310±.004 1.862±.026

2 ADP .909±.000 .523±.012 .028±.002 .172±.015 .330±.007 1.696±.069

SampleDiv. .906±.002 .541±.009 .042±.002 .192±.007 .332±.010 1.680±.032

TreeNet
ind. .919±.002 .518±.008 .039±.002 .236±.003 .295±.004 1.972±.012

3 ADP .919±.002 .525±.006 .025±.002 .189±.009 .301±.013 1.752±.029

SampleDiv. .910±.001 .542±.014 .036±.001 .187±.011 .303±.006 1.693±.059

TreeNet
ind. .918±.002 .515±.009 .034±.003 .226±.012 .290±.008 1.933±.120

4 ADP .919±.002 .524±.010 .026±.001 .190±.021 .297±.004 1.740±.101

SampleDiv. .910±.003 .543±.014 .033±.001 .185±.005 .298±.008 1.654±.059

TreeNet
ind. .919±.002 .523±.01 .035±.001 .234±.010 .286±.006 1.990±.076

5 ADP .917±.002 .535±.019 .024±.000 .180±.031 .298±.005 1.699±.132

SampleDiv. .916±.002 .545±.007 .030±.001 .213±.012 .290±.005 1.659±.062
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Table 11. Experiments with different Batch Ensemble and Deep Ensemble ensemble
sizes on CIFAR-10. Comparison of the Sample Diversity and ADP regularizer with
independent training on different architectures under dataset shift.

Model Size Method Accuracy ↑ ECE ↓ NLL ↓
org. corr. org. corr. org. corr.

ind. .898±.005 .499±.010 .046±.016 .220±.048 .348±.027 1.883±.109

BatchEns. 2 ADP .893±.001 .518±.007 .032±.004 .118±.002 .367±.007 1.596±.035

SampleDiv. .897±.001 .533±.006 .038±.005 .186±.008 .337±.011 1.711±.036

ind. .905±.002 .503±.013 .085±.015 .270±.019 .430±.038 2.159±.112

BatchEns. 3 ADP .906±.002 .516±.010 .035±.003 .135±.015 .335±.005 1.678±.060

SampleDiv. .897±.001 .534±.002 .039±.018 .187±.028 .344±.027 1.754±.084

ind. .906±.001 .491±.001 .067±.018 .261±.038 .377±.054 2.117±.170

BatchEns. 4 ADP .905±.001 .513±.002 .040±.011 .157±.055 .360±.018 1.716±.085

SampleDiv. .896±.002 .540±.011 .052±.010 .203±.016 .363±0.020 1.712±.096

ind. .905±.001 .512±.019 .097±.002 .285±.014 .455±.003 2.254±.099

BatchEns. 5 ADP .906±.002 .517±.011 .032±.008 .171±.049 .363±.036 1.735±.160

SampleDiv. .904±.000 .545±.007 .037±.015 .175±.032 .343±.014 1.649±.121

ind. .921±.004 .519±.009 .022±.001 .191±.009 .248±.010 1.786±.039

DeepEns. 2 ADP .922±.002 .541±.002 .027±.001 .143±.007 .282±.002 1.599±.010

SampleDiv. .921±.002 .569±.012 .029±.001 .158±.009 .263±.005 1.579±.062

ind. .929±.002 .532±.009 .021±.001 .174±.017 .225±.005 1.747±.058

DeepEns. 3 ADP .928±.001 .544±.002 .029±.003 .132±.008 .259±.010 1.592±.035

SampleDiv. .926±.001 .566±.014 .026±.002 .149±.021 .238±.002 1.562±.066

ind. .932±.004 .539±.005 .023±.001 .157±.006 .216±.009 1.675±.038

DeepEns. 4 ADP .929±.001 .554±.002 .031±.002 .113±.009 .250±.008 1.532±.006

SampleDiv. .930±.002 .575±.003 .023±.001 .129±.007 .223±.002 1.499±.010

ind. .936±.001 .543±.010 .023±.001 .170±.014 .210±.004 1.783±.051

DeepEns. 5 ADP .933±.000 .549±.005 .032±.002 .126±.010 .241±.004 1.606±.037

SampleDiv. .933±.001 .579±.004 .022±.001 .134±.007 .217±.008 1.494±.026

ind. .939±.001 .544±.005 .023±.001 .155±.003 .191±.001 1.667±.043

DeepEns. 11 ADPχ2 .935±.004 .552±.007 .028±.001 .138±.007 .206±.010 1.524±.030

SampleDiv.χ2 .932±0.003 .589±.003 .027±.001 .114±.009 .208±.009 1.420±.034



Contribution and impact

As long as the models within an ensemble are similar, a larger number of members does not translate
into better uncertainty or performance scores. Instead, only the computational overhead is increased.
This has spurred research into increasing ensemble diversity, hoping to obtain smaller yet more effective
ensembles.

While some methods add variety in terms of model architecture or data augmentations, functional
diversity approaches directly encourage diversity in the solution space by regularizing models to produce
different predictions. This strategy can augment any architecture and does not require making additional
design choices. Nevertheless, the competing objective can harm performance: by forcing some models to
make wrong predictions, we may reduce the accuracy of the ensemble.

In this work, we introduce the Sample Diversity method that improves calibration and robustness under
dataset shift by only encouraging a diverse solution space for OOD samples. By increasing diversity only for
samples for which the model would anyhow be less confident, we can identify OOD samples more easily
during testing without affecting the performance on ID data.

We demonstrate that our approach is particularly effective for weight-sharing architectures – specifically
TreeNets (Lee et al., 2015) and Batch Ensembles (Wen et al., 2020) – that have a smaller computational
footprint but typically less diversity.

Discussion and limitations

Though the results in the paper are encouraging, most of our experiments were carried out on low-
resolution computer vision datasets. This was due to the computational overhead involved with training
multiple ensembles in many different settings. By staying in the domain of natural images, we could also
use the widely popular corruptions introduced by Hendrycks and Dietterich (2018) in our evaluation.

In the preliminary experiments we carried out for medical image segmentation, we did not see an
improvement in our method when compared to the existing ADP (Pang et al., 2019) approach that
increases diversity in the in-distribution training data. This was potentially due to our overly simplistic
strategy to generate OOD cases by sampling from a uniform distribution, which would naturally not be
suitable for complex tasks. In future work, I would like to explore different ways to generate OOD cases
that are semantically meaningful for the task at hand.

Of course, an additional downside of the proposed method is that it forces the user to consider uncertainty
estimation from the time the model is trained. The additional term in the loss function could also make
training more difficult in some cases.

4.2. Conclusions and outlook

Within uncertainty estimation, training ensembles is a very simple strategy that identifies high-uncertainty
cases for in-distribution data. Weight-sharing architectures have been proposed to limit the computational
overhead of training and performing inference with different models (Lee et al., 2015; Wen et al., 2020),
and by purposely increasing diversity among members we can obtain the advantages of increased
performance and uncertainty estimation with only a few models.
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5. Assessing the Coherence of Model Predictions

For some problems – such as classification or regression – simply observing the network output gives little
information on its quality, so silent failures can go undetected. Fortunately, for tasks such as semantic
segmentation and registration, we expect certain coherence in the obtained predictions. Just like an
expert observer may immediately detect an incorrect mask that segments the hippocampus outside the
brain, we may perform simple automatic tests that help us catch low-quality predictions without manual
examination by an expert.

This has several implications. First, we can ensure that only coherent predictions reach the clinicians,
avoiding the risk of them losing trust in the ML system. Secondly, we can control the quality of annotations
that will serve as training data for a continuously adapting system, which may have been fully manually
delineated or initialized by another ML system. Finally, we may employ such methods to get an idea of
how a system deployed at different sites is performing.

What method we employ is highly dependent on the problem and whether we have access to the image
data. Existing strategies for assessing the quality of segmentation masks typically train a model that
predicts the quality (Valindria et al., 2017; Chen et al., 2020; Lee et al., 2020) or leverage domain
knowledge to design meaningful features based on the expected shape (van Rikxoort et al., 2009).
The second strategy has the advantage that the user can easily interpret why a certain prediction was
discarded. In the following, we show how such an approach can be meaningful even when our anatomy
has no defined number of connected components or a specific geometric shape.

5.1. The paper: Quality monitoring of federated Covid-19 lesion segmentation

While OOD detection methods observe the network inputs or activations and uncertainty estimation
approaches look at outputs, here we only work with the predictions. We conceived the work that we
published as Quality monitoring of federated Covid-19 lesion segmentation (González et al., 2022b) as
preparation for a multi-clinical federated learning study for the segmentation of Covid-19-related findings
in chest CT. The challenge lay in developing methods that would give a user in a central location an
overview of how well a federated segmentation model was performing at each site, without ever having
access to patient data.

We initially presented our work at the 102nd German Röntgen Congress (RöKo) in Remscheid on November
5th, 2021. The paper was accepted for oral presentation at the Bildverarbeitung für die Medizin (BVM) in
June 27th, 2022, in Heidelberg, where it was nominated for the Best Scientific Work award.
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Abstract. Federated Learning is the most promising way to train robust
Deep Learning models for the segmentation of Covid-19-related findings
in chest CTs. By learning in a decentralized fashion, heterogeneous data
can be leveraged from a variety of sources and acquisition protocols whilst
ensuring patient privacy. It is, however, crucial to continuously monitor
the performance of the model. Yet when it comes to the segmentation of
diffuse lung lesions, a quick visual inspection is not enough to assess the
quality, and thorough monitoring of all network outputs by expert radi-
ologists is not feasible. In this work, we present an array of lightweight
metrics that can be calculated locally in each hospital and then aggre-
gated for central monitoring of a federated system. Our linear model
detects over 70% of low-quality segmentations on an out-of-distribution
dataset and thus reliably signals a decline in model performance.

1 Introduction

The Covid-19 pandemic has strained medical resources across the world while
demonstrating the value of time-saving workflow enhancements. Deep Learning
solutions for the quantification of clinically relevant infection parameters, which
segment Covid-19-characteristic lesions in CTs, have shown promising results.

Yet sufficient maturity for clinical use is frequently not reached by present
approaches [1]. This is mainly due to neural networks failing silently coupled
with a lack of appropriate quality controls. Scanner models and acquisition
protocols vary between and within hospitals, changing image distribution. This
causes deep learning models to produce low-quality outputs with high confidence
[2].

Covid-19-related ground glass opacities and consolidations can occur in var-
ious forms, from covering multiple small regions to diffuse affection of the entire
lung [3]. Identifying low-quality segmentation masks is very time consuming and
requires extensive experience, but thorough monitoring of all network outputs
by expert readers is not logistically feasible.
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Fig. 1. Quality fea-
tures are extracted
and an SVM model
is used to perform
inference locally at
several hospitals.
These quality scores
are aggregated for
each site and visu-
alized at a central
dashboard. In
the entire process,
only the privacy-
preserving aggre-
gated scores leave
the institutions.
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Automated quality assurance for segmentation masks is not yet a developed
field. Existing approaches include the training of a CNN on the logits of the
segmentation prediction [4] or the concept of a Reverse Classification Algorithm
[5] to predict segmentation quality. These are either computationally expensive
or depend on rigid target shapes, which is not given in the case of Covid-19
lesions. Failed segmentations can however be identified by observing certain
properties in the segmentation masks.

We propose an array of lightweight yet reliable quality metrics for segmen-
tation masks that do not require ground truth annotations. These can be cal-
culated locally without the need for expert reader review and then aggregated
for each hospital for central monitoring of federated systems, as illustrated in
Fig. 1.

2 Materials and Methods

We implemented our code with Python 3.8 and PyTorch 1.6 and performed a
retrospective study using several open-source datasets, as well as in-house data.
The code can be found at github.com/MECLabTUDA/QA Seg.

Data: To obtain a dataset of predicted segmentations, we extracted predic-
tions from an nnU-Net [6] trained on the COVID-19 Lung Lesion Segmentation
Challenge (Challenge) dataset [7]. We also predicted segmentations on MosMed
[8], as well as in-house data with further 50 cases. Images were interpolated
to dimension (50,512,512). Further details can be found in Table 1. We parti-
tioned the predictions into in-distribution (ID) for the Challenge and in-house
datasets (with which we trained our classifiers) and out-of-distribution (OOD)
for MosMed. The ID datasets were randomly divided into ID train and ID test.
We considered the Dice between ground truth and predicted masks as a measure
of segmentation quality, as it is the most-used metric for segmentation overlap.
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Table 1. Data distribution, including ratio of infection within the segmented lung
volume [9], nnU-Net performance and number of failed segmentation masks.

Property Challenge In-house MosMed

Nr. cases (train, test) 199 (160, 39) 50 (40, 10) 50 (0, 50)

Mean resolution (68.87,512.0,512.0) (266.64,819.20,825.68)(40.98,512.00,512.00)

Infection ratio 0.061 ± 0.093 0.275 ± 0.274 0.016 ± 0.015

nnU-Net Dice (train) 0.75 ± 0.14 0.59 ± 0.2 N.A.

nnU-Net Dice (test) 0.71 ± 0.18 0.68 ± 0.1 0.47 ± 0.19

Failed masks (train) 24 12 N.A.

Failed masks (test) 8 1 37

As shown in Table 1, the ID data is heavily skewed towards good-quality seg-
mentations. We define a failed segmentation as having a Dice lower than 0.6
(following Valindria et al. [5]) and report their prevalence in Table 1.

Proposed features: Inspired by van Rikxoort et al. [10], we looked to predict
the quality of segmentation masks - in the form of Dice coefficient - using only
four features (see Fig. 2), defined as follows:

– Connected Components: While lung lesions may occupy several components,
failed segmentations are often more disconnected. We counted the number
of connected components using Scikit-Image [11], defining a component as
one with a maximal distance of 3 by the City Block Metric to other voxels.

– Intensity Mode: Observing the intensity values in the CT, we can identify
tissue that is very unlikely to be infected. Inspired by Kalka et al. [12], we
fitted a Gaussian distribution over the largest component and returned its
mean.

– Segmentation Smoothness: In a correct segmentation mask, we expect two
consecutive slices to have a high overlap and thus a high two-dimensional
Dice. We computed the smoothness for every component by taking the
average Dice scores for all consecutive slices that were not identical. We
then averaged the smoothness over all components.

– Lesions within Lungs: A correct segmentation mask should be completely
contained within the lung. To factor this in, we used a pre-trained lung
segmentation model [9] and recorded the percentage of segmented tissue
that is inside of the lung.

Models and training: With these features, we trained and evaluated several
models to predict the segmentation quality. We directly regressed the qual-
ity with a Ridge Regression (RR) and a Support Vector Regression (SVR)
(trained until convergence) as well as a Multi-Layer-Perceptron (MLP) with
(50,100,100,50) layers for 200 epochs minimizing the Mean Squared Error. We
also discretized the quality values into five bins and performed classification with
Support Vector Machine (SVM) and Logistic Regression (LR) models, using bal-
anced class weights. Unless otherwise stated, we used the default Scikit-learn
[13] library implementations.
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Fig. 2. Exemplary subjects and slides for the four features used to assess seg-
mentation quality.

Evaluation: As we were primarily interested in detecting failed segmenta-
tions, we report the sensitivity of all 5 models on this task. We also report
the specificities for identifying the correct quality interval (averaged over 5 bins)
on all ID and OOD datasets. In addition, we report the Mean Absolute Er-
ror as a metric than quantifies the ability of all models to directly predict the
segmentation quality.

3 Results

In terms of sensitivity (detection of faulty segmentations) the classifiers (LR and
SVM) outperformed the regression models by a large margin (see Table 2). This
can be attributed to the class weights of the LR and SVM models balancing
the disparately appearing classes in the training data, which improved their
performance on differently distributed data. Though we were unable to detect
the single failed segmentation out of 10 on the in-house dataset, we highlight the
performance of the LR model, which detects over 60% of failed segmentations
on both of the bigger Challenge and MosMed datasets. All models showed a
high specificity of over 0.8 on all datasets. The regression models achieved a
lower mean absolute error but seemed to overfit the good-quality segmentations
on the training dataset, which might explain their worse sensitivity.

We further evaluated the LR model using 10000 bootstrapping runs, sampling
192 data points from the training set and evaluating the model’s sensitivity
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Table 2. Sensitivity of finding failed segmentations (Dice < 0.6), specificity of
identifying the correct quality interval (avg. over 5 bins) and Mean Absolute
Error (mean+/- std) results for each model for ID and OOD datasets.

Classifiers Regressors

LR SVM RR SVR MLP

Sensitivity

Challenge 0.63 (5/8) 0.38 (3/8) 0.38 (3/8) 0.13 (1/8) 0.25 (2/8)

In-house 0.0 (0/1) 0.0 (0/1) 0.0 (0/1) 0.0 (0/1) 0.0 (0/1)

MosMed 0.76 (28/37) 0.68 (25/37) 0.14 (5/37) 0.35 (13/37) 0.35 (13/37)

Specificity

Challenge 0.84 0.85 0.88 0.87 0.87

In-house 0.8 0.83 0.95 0.9 0.9

MosMed 0.8 0.83 0.82 0.84 0.85

MAE

Challenge 0.29 ± 0.22 0.26 ± 0.22 0.1 ± 0.1 0.11 ± 0.11 0.18 ± 0.13

In-house 0.24 ± 0.12 0.26 ± 0.14 0.08 ± 0.09 0.1 ± 0.07 0.09 ± 0.07

MosMed 0.33 ± 0.19 0.29 ± 0.23 0.22 ± 0.16 0.21 ± 0.18 0.23 ± 0.18

trained on these samples on the ID and OOD datasets for every run. We achieved
95% confidence intervals for the sensitivity covering a range from 0.22 to 1.0.
Furthermore, using a p-valued test with a significance level of 0.05, we can reject
every null hypothesis stating that the sensitivity of the LR model is below 0.28.

In order to evaluate the individual contribution of each feature, we performed
an ablation study where we left out each of the features for LR models. The
”Intensity Mode” feature proved to be the least useful. Leaving it out allows us
to correctly identify 5 more high-quality segmentations as such, though 9 faulty
segmentations less are detected. All in all, using all four features achieves the
best sensitivity-to-specificity trade-off.

We attribute most of the falsely classified segmentations to the low represen-
tation of bad segmentations in the training data and to these displaying plausible
shapes. For example, segmentation masks covering only a few spots of healthy
lung tissue, containing intensity values of possibly infected areas, while main-
taining a smooth shape, were not detected.

4 Discussion

We introduced a simple method to monitor performance of an nnU-Net trained
to detect lung infections onset by Covid-19. We designed four features and found
that a LR model using these reliably detects faulty segmentation masks. All the
features are lightweight and do not require ground truth annotations, and so
they can be used to monitor the deployment of a distributed, federated learning
system.

Our findings have some limitations. First, we tested our methods retrospec-
tively on a statically trained nnU-Net. This allowed us to accurately evaluate our
methods, as we had access to ground truth test annotations, but a prospective
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study on a federated system with a few participating institutions would better
emulate real deployment.

Secondly, the CT data was acquired on ICU patients, thus introducing con-
siderable bias in patient demographics which are likely not representative of the
general Covid-19 population. This also suggests that a measure other than Dice
may be better suited for the general population, as the expressiveness of Dice is
heavily dependent on lesion size.

Finally, each dataset was annotated by a different group of experts, so the
definitions of the findings may vary across datasets. This is often the case when
evaluating with OOD data but should be taken into account when considering
the differences in performance.

In conclusion, training models in a federated fashion allows to leverage het-
erogeneous data sources without compromising patient privacy. However, it is
necessary to constantly monitor the quality of the model outputs. In this work,
we introduced an array of lightweight quality metrics that can be calculated lo-
cally and aggregated for central monitoring. These are particularly well-suited
to the use case of lung lesion segmentation in chest CTs, as lesions vary greatly
in terms of form and location and verifying their correctness is time-intensive
even for trained radiologists. Future work should expand the metric catalogue
and assess the effectiveness of the proposed methods in a model deployed across
multiple hospitals. Our results present a first step towards an effective quality
control of federated lung lesion segmentation.
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Contribution and impact

As touched upon in Section 3.1.2, assessing the validity of lung lesion segmentation masks can be complex
even for trained radiologists. This is due to their diffuse shapes and the fact that the intensities they take
in the Hounsfield scale overlap with that of common CT artifacts. Intuitively, this does not seem like a
problem that we can solve by performing simple quality checks on the predictions.

In this paper, we show that we can indeed identify many failure cases by only calculating four simple
features: (1) the continuity of the two-dimensional masks across slices, (2) the number of connected
components, (3) the intensity mode of the voxels covered by the segmentation and (4) ensuring that the
prediction is within the lungs, for which we employ a separate lung segmentation model that is highly
accurate (Hofmanninger et al., 2020).

This has a significant impact on model monitoring, as it means we can detect a significant performance
degradation without any access to patient images or DNN activations (which could potentially encode
patient-identifying information). We show in the paper how we can train various models with the
designed features to get a continuous quality score for each patient. However, the fact that these are
highly interpretable provides valuable insights into what is problematic about a particular prediction.

Considering that calculating the proposed features requires minimal hardware, this strategy can be
employed in scenarios where we do not even have direct access to the network outputs but rather only
to aggregated quality metrics, as the metrics could be calculated at the individual sites.

Discussion and limitations

The study has many limitations, primarily with regard to feature design. The feature catalog could
be tuned further, and new features could be incorporated. Additionally, a prospective study where
the usability of the metrics is assessed in a real setting would be interesting, and this is hopefully an
analysis we can perform in the future across the network of German university hospitals. It would also
be interesting to assess whether failure cases are identified that OOD detection or uncertainty estimation
methods fail to uncover.

Nevertheless, the study highlights how even state-of-the-art models can produce predictions that are
clearly faulty. Many of these can be detected with simple, computationally inexpensive methods.
Therefore, for problems such as semantic segmentation, the usability of metrics that directly assess the
coherence of a prediction should not be underestimated.

5.2. Conclusions and outlook

Working with medical images introduces certain challenges, such as needing to work with small datasets
made of high-dimensional data. But the importance of domain knowledge can help reduce the complexity
of the problem. Particularly for quality assurance, automatic methods that consider such domain
information can be more helpful than purely algorithmic techniques for detecting which model predictions
can be trusted.
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6. Domain Adaptation and OOD Generalization

Faced with the problem of domain shift, one may first attempt to avoid learning spurious correlations
and idiosyncrasies in the data. The hope is that by encouraging the model to instead learn semantically
meaningful representations, it will generalize better and be more robust in the presence of domain shift.
Such an approach is especially possible if we have training data - with or without corresponding ground
truth annotations - from several sources at once during training. Then, we can directly steer the training
process so that the performance is stable across domains. We commonly refer to this as out-of-distribution
(OOD) generalization (Hendrycks et al., 2021).

Another alternative, if we have a model trained for one particular source domain and wish to extract a
prediction for an image from a different target domain, is to employ techniques from domain adaptation
(Farahani et al., 2021), which allow us to align the latent space of the new image to our source domain.

These are exciting fields of research and highly relevant for developing models that perform as expected
in the open world. During my doctoral studies, I had the pleasure of exploring these possibilities for
medical image segmentation alongside several students, and I will briefly summarize our findings in the
following sections. Our empirical results show that we can learn more generalizable features that are
relevant for the downstream diagnosis. However, this often comes at the cost of more computationally
expensive and challenging training procedures, where several hyperparameters need to be properly
tuned in order to reach convergence.

6.1. Training models to maintain stable performance across domains

Some methods adapt the training objective to minimize performance variations between domains.
Popular examples of taking this approach are Invariant Risk Minimization (IRM) (Peters et al., 2016)
and Variance Risk Extrapolation (VREx) (Krueger et al., 2021). Of course, these methods assume that
there is training data available from several domains during training. VREx in particular recognizes that
the data shifts observed in the real world may be different – and likely more pronounced – than in the
training corpus. Still, by minimizing the risk on the worse-performing domain, the resulting model can
produce higher-quality results on yet-unseen domains.

Another strategy consists of minimizing the ability of a domain predictor to identify the domain of training
images from the learned features (Dinsdale et al., 2021). Here, instead of learning features that perform
well on the worse domain, we simply maximize performance on all the training data but ensure that
features do not contain any information of one particular domain.

In Sanner et al. (2021), we explore both these directions in an attempt to increase the generalization
of hippocampus segmentation models, which are affected by distribution shifts such as the age of the
patient and the presence of neuropsychiatric disorders, among other factors. We train with labeled data
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from two domains and try to generalize to a third one. For segmentation, we employ a U-Net architecture
that we augment with a VREx loss term, domain predictor, or both.

Using three openly available hippocampus segmentation datasets, we carry out experiments across
scenarios with different data availability constraints: (1) in a purely supervised setting where the model
works with labeled data from two domains (2) in a semi-supervised setting where the model is trained
with all three datasets but only very few annotated samples from the last one; and finally (3) in a setting
where only a few examples from each dataset are annotated.

In the supervised scenario, all approaches improved the performance on a third yet-unseen domain when
compared to training the U-Net with both datasets without using a generalization mechanism. However,
the effect we saw was either small (in cases where the base performance was already acceptable) or
the gap to the intra-domain performance remained so significant that actually employing the method
in a clinical workflow would be questionable. Solely utilizing the V-REx produced the most consistent
improvement, also in the second semi-supervised setting.

6.2. Adapting data to the training domain

Let us now imagine a more restrictive scenario where we only have labeled samples from one domain.
Here, we would need to train the supervised model solely with data from that source domain; and would
be unable to introduce knowledge into possible domain shifts that may occur during deployment. We
can even think of some situations where the model is locked and cannot be re-trained.

One strategy for extracting high-quality predictions from new distributions is to transfer these to the
source domain (as visualized in Figure 6.1). For this process to be effective, we need to disentangle
– either explicitly or implicitly – domain-specific factors from diagnostically relevant content such as
anatomical properties of the ROI and its surroundings. We can learn a one-to-one mapping between the
source and target domains, one-to-many (Mansour et al., 2008) or, ideally, many-to-many (Yang et al.,
2019) mappings.

Traditional segmentation Cross-domain seg. with domain adaptation
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Figure 6.1.: Left: Differences in acquisition practices and patient population cause significant variability
in MRIs. Right: With traditional segmentation, a model U fails to produce an acceptable
hippocampus segmentation for an OOD image. If the image is transferred to the training
domain with generator G, a high-quality segmentation is obtained.
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In Kalkhof et al. (2022), we evaluate several methods that pursue such disentanglement or direct transfer
between domains for the problem of hippocampus segmentation. That is to say that images are first
transferred to the source domain and later passed through a downstream segmentation U-Net. We review
Dr-GAN (Tran et al., 2017), SD-Net (Chartsias et al., 2019) and SA-GAN (Chen et al., 2018). Additionally,
we propose a new method called CDD-GAN especially designed for image segmentation that employs a a
cycle consistency loss (Zhu et al., 2017).

While we note an improvement in the target-domain performance, a central limitation of all methods is
the significant overhead they introduce in terms of computational requirements and/or training time.
Additionally, again, inter-domain results are far below those of in-distribution evaluations.

We also find that a necessary step to come close to the in-distribution performance is to fine-tune the
U-Net with the same labeled training data after going through the domain-transferring process. That is,
converting images from the source domain to, again, the source domain. This introduces slight changes
in the images that allow the extraction of higher-quality segmentations for other data. The fact that
the U-Net needs to be retrained constrains the settings where the evaluated methods can be applied,
basically excluding their use on pre-trained models or situations where the user no longer has access to
all the training data.

When considering current regulations for clearing DL-based software, which we will review in Chapter
13, it is often the case that the predictive model is locked and cannot be trained post-approval. Domain
adaptation may pose a reasonable alternative by transferring images to the source domain, extending
the lifespan of the system without modifying the actual model. But only insofar as the model does not
need to be altered post-deployment.

6.3. Conclusions and outlook

Learning expressive features that generalize well to unseen domains is an objective that, if fulfilled,
could greatly mitigate the risks of deploying DL systems in the wild. Particularly when there is training
data from several domains at once – be it labeled or not – the model can be trained to anticipate what
shifts it may encounter in the future.

However, though current methods do improve performance on the unseen domain, a considerable gap
remains to the intra-domain performance, at least for medical image segmentation tasks. This puts
into doubt whether such methods would actually be useful in practice. If typical Dice segmentation
performance for a certain ROI is around 90% Dice, a 70% Dice segmentation will have as little use as a
50% Dice one.

Besides, generalizability improvements often come at the cost of increased training times and computa-
tional constraints. In addition, either the architecture and/or the training objective need to be modified
to accommodate this additional goal.

I thus believe that in many situations, particularly clinical settings, effectively detecting failures and
limiting the use of the model to high-quality and confident predictions is the most practical avenue for
managing distribution shift. This can, of course, be used alongside mechanisms to increase generalization
that are deemed effective.
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Part II.

Continual Learning
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7. The Continual Learning Landscape

Continual or lifelong learning can have many meanings. Knowing what elements of the data change over
time, whether these changes happen abruptly and how much knowledge we have of the data-generating
process are all aspects that help us select an appropriate method. We begin this chapter by defining key
concepts and establishing the notation we use in this work (Section 7.1). We then categorize continual
learning scenarios and describe the setting that we believe is most relevant for medical imaging (Section
7.2). Afterward, we explain how to evaluate performance and introduce popular metrics (Section 7.3).
Finally, we give an overview of strategies proposed for classification and segmentation and contextualize
our work within the larger landscape of continual learning research (Section 7.4).

7.1. Key definitions

For the sake of simplicity, let us consider a classic supervised computer vision situation where each
sample is a (x, y) tuple of an image x ∈ X and label y ∈ Y. In continual learning, models are trained
with N tasks. Each task Ti is a set of samples (x, y) ∈ Ti, naturally divided into train and test sets.

Tasks {Ti...TN} arrive sequentially, and each is only available for a certain time interval. Our model
Fθ : x → ŷ is trained following this order. We denote a model trained only with Ti as Fi, and one trained
with tasks up to and including i as F[1,...,i]. With F{1,...,N}, we refer to the upper bound of a model trained
statically with the shuffled training data from all tasks.

Our goal is to train F[1,...,N ] in such a fashion that it performs well on all seen tasks. The challenge here
lies in preserving the knowledge acquired in the early stages, which is to say maintaining performance
close to F[1,...,i] for all tasks {Ti}i≤N , without affecting the plasticity of F to learn new information. We
thus wish to find a parametrization θ of Fθ that minimizes our loss L over all stages (Eq. 7.1).

argmin
θ

N∑︂
i=1

E(x,y) ∼ Ti [L (Fθ(x), y)] (7.1)

This distinguishes continual from transfer learning, where we are only interested in maximizing perfor-
mance on the last task by levering knowledge found in earlier stages and are not interested in knowledge
accumulation/retention. The field is also closely related to online learning, though the focus of online
learning lies in training with small batches (often even with one data point at a time) in environments
with constrained resources. There is usually no focus on data drift, so the performance is measured
with respect to one test set. When we speak of lifelong learning we refer to the practice of updating a
DL-based product through its lifecycle, possibly leveraging continual learning techniques. That is to say
that we consider the wider deployment setting. However, these terms are often used interchangeably in
the literature (Chen and Liu, 2018).
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7.2. Properly characterizing a continual setting

Possibly the most important aspect for defining our setting lies in identifying what changes occur in our
data distribution. Based on this information, van de Ven et al. (2022) and Hsu et al. (2018) identify
three continual learning scenarios.
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Figure 7.1.: The way tasks vary from one another determines the continual learning scenario. It is crucial
to identify the correct scenario in order to choose an appropriate learning strategy. Domain-
incremental learning (first row) is common in diagnostic radiology and happens when tasks
are different due to discrepancies in image properties caused by the acquisition process.

Changes in image acquisition practices and in the captured content cause shifts in the image space X .
For instance, we previously identified variations in the scanner model or patient population as prevalent
for CTs and MRIs (Chapter 1). If we only have this shift, but the problem our algorithm solves – that is to
say, the label y for each x – remains the same, we are performing domain-incremental learning. I find
this to be the most prevalent problem in medical imaging, as it affects all deep learning models that are
deployed in dynamic environments. It is therefore also the setting I focus on in my research.

This scenario is closely related to the domain drift problem explored in previous chapters. If our
models were not as susceptible to changes in the domain, we could train them sequentially without any
interference. The first row in Figure 7.1 illustrates two examples in the medical domain: a classifier that
must cope with contrast changes in X-rays and a model that learns to incrementally segment data from
different scanners.

The second scenario, class-incremental learning, describes a situation where the label space Y grows over
time. Examples of this, visualized in Figure 7.1 (second row) include adding an additional anatomy
label to our classifier or segmenter (such as the peripheral zone besides the central prostate gland). This
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can also involve a change in the image space X to accommodate the new class – as in our first example –
or not – as in our second one. The main challenge here lies in dealing with a shifted label distribution,
i.e. if we no longer have sufficient representation of certain classes, the optimization process will stop
assigning such labels.

Finally, in task-incremental learning the model learns to solve fully different tasks, and the core structure
of the problem changes over time. This may involve shifts in the image space, label space, or both.
This scenario is closely related to multi-task learning, with the additional challenge that tasks arrive
sequentially. The goal here is to leverage similar content for tasks that have certain semantic aspects in
common. Ideally, the algorithm will learn expressive representations that allow the model to effectively
leverage large amounts of data beyond that acquired for one specific problem. Real-world examples
include learning to play different sports or musical instruments jointly (van de Ven et al., 2022).

7.2.1. Task identity and boundaries

Another way of interpreting the three continual learning scenarios, and a central aspect when categorizing
a learning setting, is whether task identity is known during training and testing. Naturally, in task-
incremental learning, the algorithm must know which task to train and perform inference on (van de
Ven et al., 2022).

This is not always the case for domain-incremental learning. We can easily imagine a situation in which
this information is present, such as a model trained with multi-institutional or multi-scanner data where
we have access to the acquisition metadata. However, once we picture a more realistic clinical scenario
where there are different degrees of change affecting the image distribution – such as demographic and
disease patterns, acquisition conditions, and reconstruction algorithms, just to name a few – we see that
these labels may not be easily obtainable or even well-defined. Additionally, data protection regulations
may prevent the use of patient-identifying information in, for instance, teleradiology settings.

Whether or not we have task identity information is primarily interesting from a practical perspective:
if we do have such information, we may maintain task-specific parameters. During training, we may
set these depending on the task at hand and only update shared parameters in a continual manner. At
inference time, we can use the task identity of the test image to build an appropriate model from our
shared and task-specific weights. In the simplest case, we could maintain a different model per task.
Each model would only leverage task-specific data (though it could be initialized and fine-tuned from a
previous state) but suffer no forgetting. This should always be a baseline in a scenario with task identity
information.

What parameters to share depends on the problem and architecture. A common practice is to maintain
different heads, i.e. keep the last layers of the network task-specific as visualized in Figure 7.2, whereas
earlier layers that are believed to capture more global information are shared. Other works propose
keeping separate Batch Normalization layers, as these encode domain characteristics (Rebuffi et al.,
2017a; Karani et al., 2018).

In the absence of task identity labels, another aspect to consider is whether the boundaries between tasks
are clearly defined. That would be the case if, for instance, our model received training samples from
three different scanners, one after the other, without any metadata as to what scan an image was taken
with but with knowledge of when we start receiving data from a new scanner. In that case, we can employ
an oracle at test time that infers the task identity for each image, as we will see in Section 8.1.1.

112



Shared a�er Task 3Shared Task 1a�erTask 1

TRAINING INFERENCE

Figure 7.2.: Illustration of a classic multi-head continual learning setup. Most layers of the model are
shared and updated sequentially during training. During inference, the model is constructed
from the shared parameters and the task-specific head.

The situation changes when there are slowly occurring changes in the data distribution. This happens, say,
when there are several factors that naturally shift over time related to acquisition practices and/or the
patient population. In this – more complex – setting, task labels may not even be clearly defined. Yet we
find this to be a particularly interesting scenario as it more closely approaches the situation in the open
world, where there are several factors of change operating that we may not even be aware of.

7.3. Quantifying continual performance

The goal of continual learning is to train a model sequentially over an array of tasks in such a way that
the final model reaches good performance across all seen tasks. This means that – unlike in transfer
learning – the model should preserve knowledge learned early on, i.e. sustain sufficient rigidity. At the
same time, it should be able to adapt to changes in the environment, i.e. remain plastic. A reasonable
upper bound in terms of rigidity or knowledge preservation is the model state right after training each
task, and the upper bound in terms of plasticity is sequential training with no forgetting prevention.

From a more optimistic perspective that considers the possibility of learning expressive representations
that leverage all the training data, the actual upper bound in both cases is a static or joint training setting
where all training data is merged together. If tasks really can benefit from the information contained in
the other stages, this setting should display better test-time performance over all seen tasks 1.

Figure 7.3 provides an overview of recommended metrics for continual learning. We typically measure
forgetting through its inverse, backward transfer (BWT), that – for any task Ti except the last – subtracts
the performance of model F[1,...,i] after training with Ti from the performance of F[1,...,N ] at the end of
training with the entire sequence. Similarly, we quantify plasticity for tasks {Ti}i>1 through forward
transfer, which we can calculate by subtracting the performance of Fi trained only with Ti from that of
model F[1,...,i] trained sequentially with all tasks up to Ti. FWT can also be understood as the performance
of the model on future tasks (Díaz-Rodríguez et al., 2018).

BWT and FWT are calculated separately for each task and averaged over the sequence. They will usually
display negative values, with positive results indicating an advantage over keeping separate models per
1In practice, factors such as class unbalance and under-representation of various characteristics may prevent this.
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METRICS

STATIC TRAINING
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Figure 7.3.: Evaluation metrics for continual learning. Backward transfer (BWT) is, for task Ti, the
performance difference between the model after training with Ti and after training with
the following tasks. A negative BWT shows that the model forgot some of the information
learnt in Ti. Forward transfer (FWT) measures the difference between training the model
with Ti from scratch vs. after fine-tuning from previous tasks. A positive value shows that
the model leveraged previous knowledge, as is expected for transfer learning. Negative
values typically happen when a method for forgetting prevention reduces the plasticity of
the model. The inter-task performance puts continual results into context by quantifying
how well a static model works on other tasks.

task. We can contextualize both metrics by dividing the results by the second part of the subtraction in
order to compare problems with different base performances, such as the Dice score of the left vs. right
ventricular blood pool segmentation.

In addition, and particularly when we are not working with well-researched computer vision benchmarks
but with more complex medical imaging problems, we should calculate the inter-task performance of
individually trained models. This allows us to put task transferability into context. As we will see later on,
two tasks Ti and Tj may be so similar that we see unexpected patterns such as the model performance on
Ti unexpectedly recuperating after training with Tj . Inter-task matrices let us understand this behavior.

Though it may seem redundant, I would like to stress the importance of evaluating the performance
on the test sets from all tasks individually. In addition, dataset splits should be defined once and
maintained throughout the study. In an optimal case, we would repeat all experiments for all possible
tasks orderings. However, this is often computationally unfeasible. If so, I recommend observing the
inter-task performance and selecting an order that realistically mimics a slowly changing data distribution,
i.e. an order that maximizes transferability between subsequent tasks.
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7.4. Continual learning methods

In this section, we give a brief overview of popular continual learning strategies. We broadly classify
approaches into the following categories, illustrated in Figure 7.4.

Task 1 parameters

Task 2 parameters

Shared     after Task 1

Shared after Task 2

Sparse connectivityRegularization Expansion

Multi-head (Pseudo-) RehearsalMulti-model

Figure 7.4.: Commonly used continual learning strategies, as well as architectural changes that are
sometimes employed when training models in a continual fashion. Different approaches
can be combined to build a suitable learning strategy. Some methods make a distinction
between shared and task-specific parameters, displayed here with different node colorings.

Rehearsal methods involve storing a selection of examples from previous tasks and incorporating them
into training at regular intervals (Ratcliff, 1990; Rebuffi et al., 2017b). These methods are effective in
practice but can become impractical as the number of tasks increases, at which point the main technical
challenge consists of selecting a representative set of samples. But the main drawback of rehearsal is
that it is not admissible in any setting that restricts the storage of samples from previous stages due to
– among other factors – data privacy considerations. Rehearsal-based strategies have been tested for
medical images by Ozdemir et al. (2018) for humerus and scapula segmentation, Perkonigg et al. (2021)
for chest CT classification, and Venkataramani et al. (2019) for x-ray lung segmentation.

Pseudo-rehearsal methods have been proposed as viable rehearsal alternatives precisely for situations
where samples cannot be stored. This category encompasses both generation-based and distillation-
based strategies. The first involves synthesizing samples similar to those seen in early training stages
(Draelos et al., 2017; Shin et al., 2017; Ostapenko et al., 2019; Rao et al., 2019). Here, caution should
be taken so that no actual inputs can be restored from the generated ones (Yu et al., 2019). The second
research direction proposes distilling knowledge from a teacher to a student model, for instance by
extracting outputs from the last model state with samples from the new task and trying to maintain the
outputs close during fine-tuning (Li and Hoiem, 2017; Lee et al., 2019).

Regularization methods assess the importance of each parameter after each training stage for the
corresponding data; and prevent these from being modified too heavily in later stages. This is imple-
mented by adding an additional term to the loss function. By tuning how much this term is weighted, an
acceptable trade-off can be obtained between knowledge preservation and model plasticity. Different
metrics have been proposed for calculating the importance. In the medical domain, the popular Elastic
Weight Consolidation (Kirkpatrick et al., 2017) method was evaluated for chest X-Ray lesion classification
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(Lenga et al., 2020), as well as glioma (van Garderen et al., 2019) and white matter lesion segmentation
(Baweja et al., 2018) and Özgün et al. (2020) adapt Memory Aware Synapses (Aljundi et al., 2018) to
brain segmentation. Zhang et al. (2021) define an importance metric using domain knowledge for
prostate segmentation in MR images.

Sparse-connectivity approaches take a more direct route and avoid interference by separating the
pathways used by different tasks (Knoblauch et al., 2014; Goodrich and Arel, 2014; Ellefsen et al., 2015).
Some reserve certain neurons or connections for each task and turn them on or off during inference
(Mallya and Lazebnik, 2018; Golkar et al., 2019). This directly prevents forgetting, but also limits
the network’s capacity for features that are not shared. Therefore, sparsity-based approaches are best
reserved for cases where the model is thought to be over-parametrized. In addition, such methods
invariably require knowledge of task identity.

Expansion strategies follow a similar idea to sparsity-based ones. However, they add trainable parameters
and pathways as time goes on instead of restricting existing ones. This means that performance is no
longer capped by model capacity. So-called network-growing methods change the model architecture
by physically adding new parameters (Terekhov et al., 2015; Wang et al., 2017; Draelos et al., 2017;
Yoon et al., 2018), whereas others keep sets of task-specific parameters that are interchanged depending
on the task at hand. A common strategy consists of learning task-specific Batch Normalization layers
(Rebuffi et al., 2017a; Karani et al., 2018), as tested for brain MR segmentation by Karani et al. (2018).

Before selecting a subset of methods to take for a particular problem, we recommend considering the
following constraints and requirements of the continual learning scenario:

• Is it possible to store a subset of training samples? Are there no data privacy or storage
constraints that would prohibit this? In that case, a rehearsal-based method would likely perform
best. A sample selection strategy should be employed that uses the memory buffer efficiently.

• Must the model architecture and loss remain unchanged? Involving a new objective can
have consequences on model performance. Rehearsal methods or generative pseudo-rehearsal
approaches that artificially synthesize new data avoid this issue. Expansion methods can also be
utilized as long as they involve maintaining interchangeable task-specific parameters.

• Is there a specific trade-off desired between plasticity and rigidity? In that case, select a
strategy that adds a loss term for knowledge preservation, such as regularization or distillation.

• Is persistent memory a limiting factor? This could be the case in certain resource-constraint
settings. In that case, rehearsal and expansion-based methods should be avoided. Sparsity or
some forms of regularization could be good options.

• Is GPU memory a limiting factor? This is more likely, particularly when working with medical
images. We have found pseudo-rehearsal approaches that either generate synthetic inputs or use a
distillation term to be very computationally heavy. Certain regularization approaches can also be
problematic. For settings where GPU access is limited, we recommend sparsity or expansion-based
methods (for the latter, only those that exchange instead of add parameters).

• Is the scenario task-agnostic? Or are the boundaries between tasks and task identities given?
Most methods proposed for task-agnostic learning are rehearsal-based (Aljundi et al., 2019a,b;
Jin et al., 2021; Perkonigg et al., 2021; Srivastava et al., 2021), though other approaches can be
adapted to this setting by employing a task-selection oracle (Aljundi et al., 2017). As described in
Section 7.2.1, task precedence information allows us to maintain task-specific parameters.
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8. Expansion Methods and Task-agnostic Learning

Expansion-based methods, particularly solutions that do not change the model architecture but instead
interchange parameter states, are a flexible yet often overlooked continual learning avenue. In this
chapter, I present the work I did in this direction and explain why I believe it is, at the moment, the best
solution for adapting DNNs to dynamic clinical environments.

8.1. The papers

We discussed in previous sections how continual learning attempts to adapt the model to changes in the
environment while preserving previous knowledge. However, there is a simple way to avoid catastrophic
forgetting or a loss in model plasticity: maintaining different model states, one for each task. This is an
alternative that should always be considered in continual evaluations. Of course, it implies that we know
from which task each sample originates.

In this section, I present ways to adapt expansion-based methods to task-agnostic settings; first by
introducing an oracle that infers task identity during inference (Section 8.1.1), and then by proposing a
method that leverages OOD detection to handle slowly shifting task boundaries (Section 8.1.2).

8.1.1. What is wrong with continual learning in medical image segmentation?

I began working on this manuscript at the beginning of my doctoral studies with Georgios Sakas and
Anirban Mukhopadhyay, and we uploaded a version to arXiv on October 21st, 2020. After a review
process lasting more than a year, the paper was rejected due to having only results for a prostate use
case, relying on in-house data, and the segmentation architecture not being state-of-the-art. We recently
carried out a significant revision, where we report results using only openly available data for three
anatomies, namely prostate, hippocampus, and right ventricle. For the experiments, we make use of our
Lifelong nnU-Net project extending the nnU-Net pipeline. I had the support of Nick Lemke as student
assistant for running the experiements, who is now a co-author.

The work is the result of having tested many popular continual learning methods in medical image
segmentation and obtaining disappointing results. The main point we try to make is that several methods
employ task-specific components, implying a continual learning scenario with knowledge of task labels,
yet the performance in the final model falls below maintaining one model-per task. It is inspired by
the work of Aljundi et al. (2017), who proposes an oracle based on autoencoder networks that supply
class identity information even when this is not given. We adapt that approach to image segmentation
and develop an evaluation strategy that proposes appropriate multi-model baselines for each continual
learning scenario.
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ABSTRACT

Continual learning protocols are attracting increasing attention from the medical imaging community. In continual environments,
datasets acquired under different conditions arrive sequentially; and each is only available for a limited period of time. Given
the inherent privacy risks associated with medical data, this setup reflects the reality of deployment for deep learning diagnostic
radiology systems. Many techniques exist to learn continuously for image classification, and several have been adapted
to semantic segmentation. Yet most struggle to accumulate knowledge in a meaningful manner. Instead, they focus on
preventing the problem of catastrophic forgetting, even when this reduces model plasticity and thereon burdens the training
process. This puts into question whether the additional overhead of knowledge preservation is worth it – particularly for medical
image segmentation, where computation requirements are already high – or if maintaining separate models would be a better
solution. We propose UNEG, a simple and widely applicable multi-model benchmark that maintains separate segmentation
and autoencoder networks for each training stage. The autoencoder is built from the same architecture as the segmentation
network, which in our case is a full-resolution nnU-Net, to bypass any additional design decisions. During inference, the
reconstruction error is used to select the most appropriate segmenter for each test image. Open this concept, we develop a
fair evaluation scheme for different continual learning settings that moves beyond the prevention of catastrophic forgetting.
Our results across three regions of interest (prostate, hippocampus, and right ventricle) show that UNEG outperforms several
continual learning methods, reinforcing the need for strong baselines in continual learning research.

1 Introduction

Supervised deep learning in a static setup is considered the de-
facto standard for benchmarking the performance of learning-
based medical image segmentation systems. In the static setup,
an annotated dataset is divided into training, validation and
testing subsets onto which the performance of the learning
system is evaluated. Before making this division, all available
data is shuffled to ensure that the samples are identically
distributed. Yet this is not realistic for diagnostic radiology1.
To obtain robust medical imaging models, it is necessary to
leverage data from a variety of sources and continue learning
over time. But two constraints may arise when handling
medical data due to privacy regulations. These are that (a) data
must be stored in predefined servers and so multiple datasets
cannot be shuffled, and (b) some of it is only available for
training the model during a limited period.

The medical imaging community is becoming aware of
the discrepancies between how deep learning algorithms are
evaluated and the performance drop that occurs in real clinical
settings. This manifests in an increased interest in alterna-
tive training and evaluation protocols such as federated2–4

and continual learning5–15. Continual learning in particular
addresses the possibility that datasets from different domains
arrive sequentially and are only accessible during a certain
time interval, as illustrated in Figure 1.

The main technical challenge of continual learning is the
prevention of catastrophic forgetting, which occurs when deep

Static environment Continual environment

Figure 1. Static vs. continual protocols for training and
evaluating machine learning models. Each color represents a
different domain. In static settings, all data is shuffled and
used at once to train the model. In continual environments,
the model acquires knowledge over time and can cope with
losing availability to part of the data.

learning models adapt too strongly to idiosyncrasies in the last
data batches and lose the ability to handle domains seen in
the initial stages of training. Most existing continual learning
approaches look to prevent this loss, and their evaluations
focus on this aspect. Yet the actual goal of continual learn-
ing should be achieving positive backward transfer, which
occurs when the performance on data from early domains
improves as training continues. In a real clinical setting, only
an approach that is successful in this second goal would be
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deployed. Otherwise, maintaining a separate model for each
data source would be preferred.

Particularly for the problem of medical image segmentation,
where large model architectures are used and computational
requirements are already high due to the dimensionality of
the data, we find multi-model approaches to be a practical
solution. Of course, we do not always have access to domain
identity labels during inference. That is to say, we may not
have any knowledge on the origin of a particular image. The
question is then raised of how to select the most appropriate
model. For this, we propose a simple approach based on
image autoencoders. By training an autoencoder network per
task, we can select the segmenter corresponding to the lowest
reconstruction error.

The Expert Gate method has been previously proposed
for image classification using autoencoders that reconstruct
features extracted from an AlexNet network16. Considering
the architectural similarities between autoencoder and seg-
mentation networks, in that both produce an output with the
same dimensionality as the input, we instead suggest replicat-
ing the segmentation architecture for the autoencoder, and
merely adapting the last layer and training objective to the
mean squared error. This poses the advantages that (1) the
architecture is already optimized for the problem at hand, (3)
the process of data preparation and pre-processing, which has
likewise been tuned for the specific problem, can remain the
same and (3) no additional design decisions are required. We
refer to this multi-model solution as the U-Net Expert Gate, or
UNEG. We show that this is a better strategy for the segmen-
tation problem with our results across three different regions
of interest (ROIs), namely prostate, hippocampus, and right
ventricle, using the state-of-the-art nnU-Net pipeline17.

Despite several strategies being introduced to permit con-
tinual learning, no article has, as of yet, properly introduced
the variants and related terminology of continual learning
in the medical imaging segmentation context and proposed
an evaluation scheme that moves beyond forgetting pre-
vention for each setting. This makes it difficult to compare
different approaches and assess their potential usability in
clinical practice. A major goal of this article is to provide a
holistic view regarding the trade-offs and terminologies of ex-
isting strategies, as well as the differences between continual
learning scenarios. We propose fair multi-model benchmarks
to compare against new continual learning approaches that
take these into consideration. In this way, we aim to establish
a common ground to facilitate discussion around continual
learning in the coming years.

Our contributions are as follows:

1. Introducing a fair multi-model benchmark for continual
learning in medical image segmentation; a solution that
can be easily used alongside highly specialized mod-
els. The method uses an oracle to select the appropriate
model in situations where (a) domain identify informa-
tion is not provided or (b) the system should handle
observations from previously-unseen sources.

2. Proposing an autoencoder-based oracle that follows the
same architecture as the segmentation network, which
is already suitable for the current image modality and
region of interest, thereby requiring no additional design
decisions.

3. Showing the effect of catastrophic forgetting in three
magnetic resonance imaging (MRI) segmentation tasks,
namely prostate, hippocampus, and right ventricle, and
how this can be avoided.

We start this work by formalizing the problem of continual
learning and describing existing scenarios in section 2. We
give an overview of related work on continual learning and
its applicability to image segmentation and medical data in
section 3. In section 4, we describe our proposed evaluation
setup based on a multi-model approach and a domain identi-
fication strategy with image autoencoders. We report results
for three different MR segmentation problems in section 6.
Finally, we give an outlook for future research in section 7.

2 Problem formulation
We start this section by introducing key terminology and a
taxonomy for continual learning settings based on a) how
data distributions from different sources differ and b) whether
domain identity information is available during inference. We
then motivate the need for specialized continual learning solu-
tions to prevent catastrophic forgetting. Finally, we propose a
new way to evaluate continual learning approaches that moves
beyond forgetting prevention.

2.1 Continual Learning
In a continual learning setting, the database consists of N
datasets {Xi,Yi}i≤N . Each dataset comprises samples (x,y)
where x is an input and y is the corresponding annotation. In
this work we focus on image segmentation, so each sample
is a pair of an image x and segmentation mask y. The goal is
to train a model F that performs well on all datasets, which
arrive sequentially and are only available for a limited period.
Figure 1 illustrates how data is received in a continual learn-
ing protocol. Model F is trained sequentially with {X1,Y1},
{X2,Y2} and so on until it has acquired information contained
in all available data sources. Unlike in a static setup, samples
(x,y) ∈ {X1,Y1} share certain characteristics resulting from
the generation process which are not present in samples from
other training stages.

Differences in the sample distributions can manifest in
various ways. van de Ven et al.18 introduce three continual
learning scenarios. These are demonstrated in Figure 2 for the
case of prostate segmentation on T2-weighted MRI.

In the incremental task scenario, both the input and label
spaces can vary, and usually task identity information is pro-
vided. For the exemplary task, the network would segment
the prostate central gland for task 1, and the peripheral zone
for task 2. This scenario is not seen frequently for image
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Figure 2. Three continual learning scenarios, exemplified
for the case of prostate segmentation. In the incremental task
scenario, both the image and label spaces can widely differ,
but task identity information is available during inference.
The incremental class problem consists of sequentially
expanding the number of classes that a model can handle.
Finally, in the incremental domain setting, the label space
remains the same but there are differences in the image space,
often resulting from the acquisition protocol, and we have no
access to domain identity labels.

segmentation. In the incremental class scenario, new classes
are incrementally added to the label space. In our example,
Whilst only the class for the central gland can be learned
with dataset 1, an additional class for the peripheral zone is
learned with dataset 2, and the final model can segment both
classes. This scenario is interesting to explore, but only mean-
ingful under certain specific circumstances, and adapting the
architecture is required each time a new class is introduced.
Finally, in the incremental domain scenario, the knowledge
learned is the same semantically, but there are differences in
terms of image characteristics, that is to say that Xi ≃ X j and
Yi = Yj. We argue that this is the most prevalent scenario in
practice for medical imaging, as it comes into play each time
a system must learn incrementally from images acquired from
different sources and/or at different times. We thus focus on
this scenario for the rest of this work.

A domain D is a set of image characteristics that are partic-
ular to the acquisition source but independent of the content of
interest. For instance, images obtained with one MR machine
may have a different contrast than those obtained with another,
and the ROI may be captured from a slightly different angle
depending on the acquisition protocol.

We further differentiate between whether domain identity
information is available during inference, as this is ambiguous
in the incremental domain scenario. Based on this, we define
three settings. In the simpler case, that we name Domain
Knowledge, test inputs have the form (x, i), where i speci-
fies that x ∈ Xi. This would be the case if, for instance, a
model is trained with data from three different scanners, and
we receive at inference time metadata on the scanner used
to acquire each image. In the second scenario, No Domain
Knowledge, no such information is available during testing.
The main advantage of having domain identity information
is that domain-specific parameters can be maintained that
are not shared across domains, so only a subset of the model
parameters, the shared parameters, must be trained in a con-
tinual fashion. For classification, the feature extraction part of
the model is typically shared whereas the last network layers
are domain-specific and set during inference depending on
the domain precedence of the test instance.

There are two limitations on the usability of the Domain
Knowledge scenario. Firstly, the model can only be applied to
data from domains that have been observed during training.
Secondly, it is not realistic to assume that domain labels will
be available during deployment. There are a lot of variabilities
in how information regarding image acquisition is encoded
in the metadata of image files, even within the same institu-
tion. In certain cases, such as in teleradiology systems, this
information may not be available due to the anonymization
process. Additionally, in a realistic dynamic setting where
multiple factors vary over time, it is not trivial to assess which
of those factors is the most relevant.

2.2 The Catastrophic Forgetting debacle

The naïve way to train a model continuously is to perform
sequential fine-tuning, executing training steps as data arrives.
But if samples belonging to distinct datasets stem from differ-
ent distributions, this violates the assumption that data be i.i.d.
as required by stochastic gradient descent. One prevalent de-
gree of variability for diagnostic radiology are particularities
in the image domains that arise from the acquisition protocols
or equipment vendors used for each dataset, a phenomenon
commonly known as domain interference or domain shift19.

Neural networks trained using stochastic gradient descent
on sequentially arriving data adapt too strongly to domain
properties present in the last batches. For data similar to that
seen in the initial stages of training, this causes a significant
drop in performance known as catastrophic forgetting20. If,
instead, the model is protected sot hat it does not change too
much, it is possible that future knowledge cannot be acquired.
Therefore, special attention must be taken during training to
ensure that the final model performs well on data similar to
that seen at any stage of training. However, we argue that
simply preventing forgetting and ensuring model plasticity
are only the first objectives of continual learning.
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2.3 Existing approaches to mitigate Catastrophic
Forgetting and their evaluation

Different strategies have been developed to reduce the de-
gree of forgetting. The applicability of several popular con-
tinual learning methods to medical imaging has also been
explored in the past, both for classification8, 12, 15, 21 and seg-
mentation6, 7, 9–11, 13. These methods are compared against
the baseline of performing sequential fine-tuning and other
continual learning approaches, as well as against the upper
bound of performing static training that would be preferred if
all data were available at once.

However, we find that often these methods are not com-
pared against the simple multi-model benchmark, i.e. main-
taining one model per domain, which could potentially out-
perform the proposed approach. They are compared to the
static setup of training a model with all, joint, data. Yet unlike
a multi-model solution, this is a clear upper bound that is not
applicable in a continual learning setting.

In the Domain Knowledge case, where domain information
can be used at test time, a naïve way to avoid catastrophic
forgetting is to maintain a separate model Fi for each do-
main {Xi}i≤N . Model F1 is only trained with data {X1,Y1},
F2 is initialized with the parameters of F1 and fine-tuned
with {X2,Y2}, and so on. Of course, only model FN lever-
ages all available data, as it is sequentially fine-tuned with
all data batches. However, no catastrophic forgetting takes
place. Each model Fi maintains the same performance it had
after training on data {Xi,Yi}. Additionally, models do not
suffer from a loss of plasticity as the training process does not
discourage large parameter changes.

We found only three methods11, 13, 22 in medical imaging
to report a similar comparison. In all cases, either the multi-
model solution is treated as an upper bound or the improve-
ment against it is minimal. In addition, some publications re-
port a backward transfer or forgetting measure that compares
the performance at the end of training with all domains to that
at the end of training with the corresponding one10, 12, 14, 23.
The results only rarely show a situation of positive backward
transfer or negative forgetting, where the performance im-
proves after learning from other domains.

This is worrying, as it questions the applicability of the
proposed methods in real clinical workflows. If a model
does not improve after continuing training, what advantage
comes in maintaining a single model, other than reduced
storage requirements? Particularly in clinical practice, space
constraints are rarely an issue, and robustness is always the
priority.

Despite this, it is common practice to assume domain iden-
tity information during testing. In the No Domain Knowledge
scenario or if the model should be applicable to previously-
unseen domains, many continual learning methods cannot
be used directly.
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Figure 3. Flowchart for the proposed evaluation of continual
learning methods. If domain identity information is available,
the method should be compared against a benchmark
containing one model per domain (comparison A). If domain
information is not available, or the model should be usable
for data of previously-unseen domains, then it should instead
be compared against a combination of the multi-model
benchmark and an oracle that identifies which model to apply.
If the method requires such information, then the same oracle
can be used in conjunction (comparison C). Otherwise, the
method is evaluated without using domain knowledge
(comparison B). If the benchmark outperforms the newly
proposed method, the latter is only an improvement under
additional problem-specific constraints, such as limited
memory.

2.4 Proposed evaluation / Our solution
We argue that all methods proposed for continual learning
should be compared against a multi-model benchmark, as it is
a straightforward solution to the catastrophic forgetting prob-
lem and thus the trivial lower bound for performance. While
other continual learning methods require a particular way of
training the model or architectural adjustments, the bench-
mark does not alter the training procedure or architecture of
the main model.

In Figure 3, we illustrate how an ideal evaluation would pro-
ceed. If domain identity information can be used during
inference, a comparison can take place with the benchmark.
If domain information is unavailable, we propose using an
oracle to infer the closest domain for an incoming image x. If
the proposed method requires domain information, then
a comparison can take place for both the continual learning
method and the benchmark using domain information inferred
by the oracle. If the method does not use domain infor-
mation, then only the benchmark would make use of the
oracle.

If the proposed method outperforms the benchmark, the
evaluation can go forward. If it performs worse, then its
use is only reasonable under additional constraints, such as
limitations on persistent memory.
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3 Related work
In this section, we give an overview of common continual
learning strategies and exemplary methods. We also summa-
rize recent research on continual learning for image segmen-
tation and diagnostic radiology.

3.1 Strategies to prevent catastrophic forgetting
Methods to prevent catastrophic forgetting can be broadly
classified into the following strategies.

Rehearsal methods store a subset of examples from previ-
ous tasks and periodically interleave these during training24–26.
They perform best in practice but do not scale well to an in-
creasing number of domains and can only be used if there are
no restrictions against storing training data. Pseudo-rehearsal
approaches simulate the same effect without requiring the stor-
age of data files. Within this category are methods that use
long-term and short-term memory components27, 28, generate
examples similar to those of previous tasks with generative
models29–32 or use distillation losses to encourage the outputs
of the latest model to remain close to previous outputs33, 34.
Despite no data being explicitly stored, care should be taken
when using generative methods that the models not be suffi-
cient to regain the data35.

Sparse-connectivity methods discourage overlap be-
tween representations learned while training with different
tasks36–38, based on the theory that representational overlap
causes catastrophic forgetting. Some methods directly reserve
a certain portion of the network for each task. Yet unused
network regions are masked, and inference takes place with
all regions up to that of the current task39, 40. Therefore, the
performance does not decrease. A disadvantage of this strat-
egy is that the capacity of the network is limited for features
that are not shared, and task identity is always required.

Network growing strategies prevent the loss of model
capacity by continuously adding new trainable parameters.
Some maintain a single network, to which additional lay-
ers or neurons are added as new tasks appear41, 42. This is
especially successful when complemented by rehearsal train-
ing29, 43. Others train a separate model per task and combine
these by merging the parameter values44, 45 or learning con-
nections between the models46. Alternatively, one model
state is chosen during inference16. The main disadvantages
of network-growing approaches are that the space require-
ments grow linearly with the number of tasks, and network
architectures must be continuously adapted.

Regularization approaches calculate an importance value
for each parameter after training a model with data for do-
main Di, and penalize the divergence from those parameters,
weighted by the importance, when training with data of do-
mains D j : j > i. Methods differ mainly on how they assess
the importance47–49.

Bayesian methods have also been developed to reduce
catastrophic forgetting in Bayesian Neural Networks50–52.
The disadvantage is that training networks in a Bayesian man-
ner comprises a considerable time overhead.

Other strategies include learning domain-invariant fea-
tures53 or maintaining different batch normalization pa-
rameters54.

3.2 Applications to semantic segmentation
Most work on continual learning has focused on the classi-
fication problem. However, recent research has looked into
adapting these strategies for semantic segmentation.

Following the pseudo-rehearsal strategy, a simple ap-
proach consists of saving image statistics of previous domains
for pseudo-example generation55. Using a distillation loss,
Shmelkov et al.56 prevent catastrophic forgetting for object
detection. Michieli et al.57 expand on this by distinguishing
between output and feature-level distillation terms, through
results show that considering the divergence of intermediate
features rarely improves the performance. Recently, Cermelli
et al.58 introduce a distillation loss that takes into account how
the proportion of background pixels change across domains
and show that this improves segmentation performance.

Beyond pseudo-rehearsal methods, Nguyen et al.23 propose
a regularization-based approach that uses saliency maps as
a measure for parameter importance, and Matsumoto and
Yanai9 introduce a sparse-connectivity method that learns
task-specific masks.

Unlike in classification or regression, where even wrong
outputs may seem plausible, semantic segmentation poses the
additional challenge that output masks must maintain certain
characteristics to resemble the ground truth, such as having
a certain number of connected components or adhering to
geometric properties. Sequential learning causes the integrity
of masks to deteriorate, even if the correct ROI is identified.
This is reflected in a greater gap between the performance of
static and continual learning results in semantic segmentation.

3.3 Continual learning in medical imaging
Several works have explored the applicability of continual
learning methods to medical imaging, mostly adapting ex-
isting regularization and pseudo-rehearsal strategies to the
task at hand. In medical image segmentation, the research is
mostly focused on brain MRIs.

Lenga et al.8 evaluate both EWC and LwF for the prob-
lem of Chest X-Ray lesion classification. EWC has also been
evaluated for glioma7 and white matter lesion5 segmentation.
As is often the case with using this approach, the level of
catastrophic forgetting is decreased but learning new domains
becomes more difficult. Özgün et al.10 also adapt the MAS
regularization method to brain segmentation. The authors
slightly modify how the importance is calculated and normal-
ized, which causes a small improvement over the regular MAS
implementation.

Ozdemir et al.11 look at how best to select previous ex-
amples to prevent catastrophic forgetting using a rehearsal
method for the task of segmenting humerus and scapula bones
on MR images. A rehearsal method with dynamic memory
is also evaluated for the problem of chest CT classification15.
Venkataramani et al.13 explore continual lung segmentation
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on X-Ray images using a memory component that stores data
samples for each target domain.

Karani et al.22 mitigate the performance loss in brain MR
image segmentation obtained with different scanners or scan-
ning protocols. The method consists of learning a U-Net with
shared convolutional layers but domain-specific batch nor-
malization layers; and performs slightly better than training a
separate network for each domain. However, it requires data
from several domains to be available at once.

Some works focus on learning domain-independent fea-
tures or learning transformations between feature spaces. Kim
et al.21 aim to directly create a domain-independent feature
space by maximizing the mutual information between the
feature space Z and output space Y . This is achieved through
minimizing the L2 distance between features z and the re-
construction h(g(z)), where G : X =⇒ Y and h = h−1. The
proposed method outperforms EWC and LwF in the classi-
fication of tuberculosis from chest X-Rays, as well as on
CIFAR10 and CIFAR100. Elskhawy et al.14 use an adversar-
ial approach to disentangle domain-dependent from domain-
independent features. Their method outperforms LwF in the
incremental class learning setting. Ravishankar et al.12 in-
stead propose using feature transformer networks that turn
features extracted for each domain appropriate for using with
a following classification network. They show positive results
for X-Ray pneumothorax and ultrasound cardiac view clas-
sification. However, no comparison takes place between the
transformed features and those trained for each task.

Finally, the Bayesian Distributed Weight Consolidation
method is proposed for performing brain segmentation in a
distributed manner for an ensemble of networks trained with
Variational Inference6.

Due to the complexity of the semantic segmentation prob-
lem and the geometric differences between ground truth masks
from different datasets, methods are mostly evaluated with
very similar datasets and only one ROI. In this work, we report
results for the segmentation of the prostate, hippocampus, and
right ventricle.

4 Methods
If we store the model state after each training stage, there are
three ways to select model parameters depending on whether
domain knowledge is provided and/or used. The flowchart
in Figure 3 depicts how this translates to different evaluation
settings, and Figure 4 provides a graphical portrayal of how a
model state can be selected.

In the Domain Knowledge setting where identity labels are
given (upper image), the model state right after training with
the corresponding domain can be used. If this information is
not given, as in the second image, an oracle can be used at
test time to select the most appropriate model. Finally, single-
model methods use the state after finishing training with all
domains for extracting all predictions.

Every continual learning method can be compared to a
multi-model benchmark. As the name suggests, the bench-

mark maintains one model per domain. It, therefore, poses
a fair comparison where no catastrophic forgetting or loss
of plasticity take place. In the Domain Knowledge scenario,
simply using the appropriate model state according to the
domain of a test sample is a fair comparison. In No Domain
Knowledge, the previous method is an upper bound, and an
oracle must be used to select the best state at test time.

The main drawbacks of the benchmark are that the space re-
quirement grows linearly with the number of domains and that
the model Fi does not leverage information from

{
X j,Yj

}
j≥i.

There is therefore no possibility of positive backward transfer,
though also no forgetting in the individual models.

For the sake of simplicity, we assume that all the model
parameters are taken from the selected state. In practice, it
is possible that only certain layers (such as the end of the de-
coder) are kept domain-dependent, and the rest are shared. For
instance, many continual learning methods maintain separate
model heads, one per domain.

4.1 Autoencoder-based oracle
Inspired by Aljundi et al.16, we use autoencoder networks to
build our oracle for domain identification during inference.

An autoencoder is a neural architecture designed to re-
construct the input, i.e. learning the mapping A : X → X
by minimizing the mean-squared error between the original
image and the reconstruction, for n samples (Eq. 1).

LMSE =
1
n

n

∑
i=1

(xi,A (xi))
2 (1)

For our oracle, one autoencoder Ai is trained for each in-
coming dataset. If the hardware allows it, this can occur
in parallel to training the segmentation model for the same
training stage.

When a test image x arrives, a reconstruction is then created
using each of the trained autoencoders {Ai}i≤N . The domain
of the autoencoder with the smallest reconstruction error is
used to segment x (Eq. 2).

ŷ = Fi(x); argmini LMSE(x,Ai(x)) (2)

Typically, autoencoders contain an encoder that reduces the
spatial dimensionality of the input and a decoder that returns
it to the initial dimensions. The method proposed by Aljundi
et al.16 uses a small CNN to reconstruct AlexNet features.

We take a different approach, leveraging the fact that au-
toencoders follow the same structure as U-Net architectures.
We, therefore, propose replicating the same architecture that
is used for the segmentation problem, as it is already suitable
for the specific problem and does not require making any ad-
ditional design decisions. The only variation we do is that
we remove the last layer, which discretizes output values into
prediction labels so that we can train the model with the MSE
between the inputs and outputs.

6/13



D
o

m
ai

n
 id

en
ti

ty
 

p
ro

vi
d

e
d

INFERENCETRAINING

D
o

m
ai

n
 id

en
ti

ty
n

o
t 

p
ro

vi
d

e
d

 b
u

t 
in

fe
rr

e
d

D
o

m
ai

n
 id

en
ti

ty
 

n
o

t 
u

se
d

ORACLE

TA
SK

 1
TA

SK
 2

TA
SK

 3
TA

SK
 1

TA
SK

 2
TA

SK
 3

TA
SK

 1
TA

SK
 2

TA
SK

 3

Figure 4. Training and testing of continual learning methods
under three different settings. During training, shared
parameters are trained by sequential fine-tuning, and the state
of domain-dependent parameters is saved after each training
stage. In the upper image, domain information is provided.
During inference, the model state corresponding to the
domain of the test image is restored. If this information is not
provided, it is inferred through image properties by a domain
detection oracle, as shown in the middle diagram. Finally, the
lower image shows the case where the continual learning
method does not use any domain information.

5 Experimental Setup

In the following, we describe our data corpus for three differ-
ent image segmentation problems. We also state details on
the architecture and training procedure of the segmentation
and autoencoder networks and the continual learning methods
that we compare.

5.1 Data
We evaluate the proposed approach across three anatomies in
MRIs, namely the prostate, hippocampus, and right ventricle.

For prostate, we use T2-weighted MRIs from five different
sites59. The datasets are different in terms of manufacturer
and acquisition settings, and each contains 12 to 30 cases.
We train in the following order: BIDMC → I2CVB → HK
→ UCL → RUNMC. The delineations encompass both the
central gland and the peripheral zone.

The hippocampus corpus consists of the Multi-contrast
submillimetric 3 Tesla hippocampal subfield segmentation
(henceforth referred to as Dryad) dataset60, the Harmonized
Hippocampal Protocol dataset61 (HarP for short) and the
data released as part of the Medical Segmentation Decathlon
(DecathHip)62. We train in the order DecathHip → Dryad
→ HarP. The segmentation masks cover the posterior and
anterior hippocampus.

For right ventricle segmentation, we use the data re-
leased for the Multi-Centre, Multi-Vendor and Multi-Disease
(M&M) Cardiac Segmentation Challenge63, which contains
two datasets with 75 samples each, the first acquired with
Siemens scanners, the second with Philips.

5.2 Segmentation nnU-Net
We use the patch-based, three-resolution variation of the nnU-
Net17. One model is trained per anatomy, and we perform 250
epochs per dataset.

The architecture and training configuration, such as the
patch size, are automatically configured by the framework.
As we perform continual training, the settings selected for
the first dataset are maintained for subsequent data of the
same anatomy. The patch sizes used are [28,256,256] for the
prostate examinations, [40,56,40] for the hippocampus, and
[14,256,224] for the right ventricle.

5.3 Continual Learning baselines
We compare our proposed benchmark to three popular contin-
ual learning methods. We use the implementations and default
hyperparameters of the Lifelong nnU-Net framework64. All
methods are trained in 3D full-resolution with the same con-
figurations as stated in the previous section.

We explore EWC (Elastic Weight Consolidation)48 with
a λEWC = 0.4 , LwF (Learning without Forgetting)33 with a
temperature of 2 and MiB (Modeling the background)58, with
the alpha parameter of 0.9 and KD loss weighting to 1. These
are the parameters suggested by default. We additionally
compare to sequential learning without using any mechanism
for knowledge preservation and to the upper bound of static,
joint training where we use all training data at once.

5.4 Autoencoder architectures
The Expert Gate method by Aljundi et al.16 proposes extract-
ing features from a pre-trained AlexNet model65 and recon-
structing them with a two-layer CNN. We test this approach,
though we do not believe it is the most suitable for medical
images, and refer to this method as AlexNet z-CNN. Since
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Figure 5. Mean Dice of five prostate segmentation tasks, after training with each of five stages. The diagonal from the upper
left to lower right corners shows the score after training with the corresponding training data.

AlexNet is trained for RBG image classification, we use two-
dimensional slices. Replicating the channel 3 times and feed-
ing it through the AlexNet results in a feature volume of 256
channels with reduced spatial resolution.

As autoencoders follow a similar architecture to U-Nets and
other popular segmentation models, we propose mimicking
the same architecture as used for segmentation. In the case
of the nnU-Net, each model is already configured for the
specific particularities of the data. We simply modify the
last layer to not discretize the logits with a softmax function;
and minimize the reconstruction error to the input instead of
the segmentation loss. This is our proposed UNEG (U-Net
Expert Gate) oracle. We also try an alternative autoencoder
that directly reconstructs the input images, namely that offered
by the MONAI framework66 which consists of convolution,
instance normalization and PReLU blocks. Different to the
nnU-Net autoencoder, there is no change in spatial resolution.

To assess whether it is the features or the model which are
the most relevant, we experiment as well with using features
from the corresponding nnU-Nets, reconstructed with a 2-
layer CNN autoencoder. We call this method, which also
works in three dimensions, nnU-Net z-CNN. Similarly, we
try out a CNN network to reconstruct the images directly. In
both cases, the features are taken from the last decoder block.

All autoencoders are trained to minimize the MSE between
the reconstruction and the input for 250 epochs. During in-
ference/evaluation, we use the segmentation network that cor-
responds to the autoencoder with the smallest reconstruction
error.

6 Results

We first compare the proposed UNEG benchmark to several
continual learning methods. We then perform an ablation
study where we explore alternatives for the autoencoder oracle.
Finally, we look at a few visual examples of reconstructions
from the nnU-Net autoencoders.

6.1 Comparison to continual learning methods
Figure 6 visualizes the results for prostate segmentation. The
first boxplot shows the upper bound of a model trained stat-
ically with all data. For prostate segmentation, a Dice of
around 90% is expected in a static scenario. We then see the
results for training a model sequentially without forgetting
prevention, where the scores are distributed across the perfor-
mance spectrum. Three continual learning methods follow,
namely EWC, LwF and MiB, the latter of which performs
best. The multi-model UNEG benchmark performs consider-
ably better than continual learning approaches, though there
is still a gap in performance to static training.

.

Figure 6. Dice scores of the final model state on test data
from five prostate segmentation datasets.

Figure 5 provides additional insight into how the methods
perform at different stages. For regular sequential training, we
notice the performance deterioration typical of catastrophic
forgetting. MiB reduces this effect somewhat, but the final
model still produces low-quality segmentations for the first
few stages. EWC instead displays a different behavior: the
performance remains high for the first task, but the model is
clearly constrained in its ability to capture new knowledge.

A similar but more pronounced behavior takes place for hip-
pocampus segmentation. Figure 7 visualizes these results. For
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Table 1. Ablation study on the selection of the best autoencoder architecture for an oracle that infers task identity. We report
the mean Dice, BWT64 and the accuracy at selecting the “correct” task identity.

Prostate Hippocampus Right ventricle
Method Dice ↑ BWT (%) ↑ Acc. ↑ Dice ↑ BWT (%) ↑ Acc. ↑ Dice ↑ BWT (%) ↑ Acc. ↑
Task identity 89.6 ±2.0 - - 90.6 ±2.2 - - 89.6 ±1.5 - -
AlexNet z-CNN 87.2 ±6.6 -3.5 ±6.0 84.2 73.3 ±19.2 -23.9 ±23.9 24.1 81.1 ±9.9 -19.2 ±0.0 50.0
UNEG 87.0 ±6.5 -3.8 ±5.9 68.4 89.0 ±3.1 -2.6 ±2.6 97.4 88.7 ±2.3 -2.0 ±0.0 90.0
MONAI 66.2 ±29.7 -30.0 ±36.2 31.6 65.0 ±22.8 -29.4 ±29.4 13.8 89.6 ±1.5 -0.0 ±0.0 100.0
CNN 80.3 ±11.3 -11.5 ±13.0 52.6 72.0 ±28.3 -0.0 ±0.0 56.0 87.5 ±4.3 -5.6 ±0.0 60.0
nnU-Net z-CNN 84.2 ±7.0 -3.5 ±6.1 52.6 60.7 ±26.4 -15.0 ±14.1 46.6 81.1 ±9.9 -19.2 ±0.0 50.0

all single-model methods, we see a clear separation between
samples that are correctly segmented and those for which
performance is dismal.

.

Figure 7. Dice scores of the final model state on test data
from the three hippocampus segmentation datasets.

For our third region of interest, the right ventricular blood
pool (Figure 8), all methods perform much better. Only se-
quentially training the model and LwF display a visible perfor-
mance loss when compared to the joint training upper bound.
This is likely due to the fact that there are only two tasks, and
the domain differences caused by using different scanners may
not be as significant as those introduced in the hippocampus
datasets, where the patient populations differ.

.

Figure 8. Dice for the task of right ventricle segmentation
on test data from both datasets, Philips and Siemens.

6.2 Ablation study
We perform an ablation study where we test several autoen-
coder options in Table 1. We calculate the mean Dice over all
tasks of the final model states, BWT as defined by González
at al.64 and how accurately the oracle properly identifies the
domain.

The first row shows the upper bound of using the ground
truth task identities, as is possible in the Domain Knowledge
scenario. The second row is the CNN autoencoder proposed
by Aljundi et al.16, which reconstructs AlexNet features. We
then report the results of using the nnU-Net autoencoder
(UNEG) and several other settings, which are described in
Section 5.4. While AlexNet z-CNN correctly identifies the
domain for most prostate cases, it fails to do so for the hip-
pocampus and cardiac examinations. UNEG instead achieves
high accuracy for the three anatomies, but most importantly a
high Dice across all domains.

6.3 Qualitative evaluation of image reconstructions
We can observe exemplary image reconstructions for the three
anatomies in Figure 9. The first column shows the original
image. Then, we see the reconstruction produced by the
autoencoder trained with data from the same domain and the
residual image highlighting the differences between the two.
This is followed by the reconstruction made by an autoencoder
from a different domain. The reconstructed images look good
at first sight, but when looking at the residual distance, we
notice that the quality is much worse than for in-distribution
reconstructions.

6.4 Discussion
The conversation on continual learning often revolves around
catastrophic forgetting, the brusque fall in performance for
domains seen in early training stages. Often, a trade-off is
pursued between rigidity and plasticity, whereby the model
preserves previous knowledge but can still adapt to changes
in the environment. Yet there is a trivial way to circumvent
the loss of performance in both directions: keeping a separate
model per domain – stored after completing the respective
training stage – and using the appropriate model at test time.

In this work, we introduce an evaluation workflow along-
side a multi-model benchmark, a fair baseline that maintains
one model per domain. The benchmark has no possibility
of gaining useful information from data seen in later stages
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Figure 9. Qualitative evaluation of the reconstructions extracted by the “correct” autoencoder vs. an autoencoder trained with
a different domain. Besides the reconstructed image we display the residual between the image and the reconstruction.

for an earlier domain, i.e. no positive backward transfer can
occur. Yet related works show us that this is rarely the case
in practice, which puts into question whether the additional
complexity of continual learning approaches that modify the
training procedure is worth it.

Central to our evaluation scheme is the question of whether
domain identity information is present during inference. Many
continual learning methods assume so, which makes it pos-
sible to maintain a multi-head architecture where only some
parameters are shared. Yet this assumption does not hold in
many real-world settings, which compromises the applicabil-
ity of the proposed methodologies.

For cases where identity labels are not known, we propose
UNEG (U-Net Expert Gate), which trains one autoencoder
per domain. The autoencoder replicates the architecture of
the segmentation model – in our case, a patch-based nnU-
Net. This makes use of the fact that the architecture and pre-
preprocessing steps are already tuned to the particular input
data and task. Our empirical evaluation exploring various
autoencoder settings confirms that this is the most effective
way to select the correct model at test time.

One limitation of our approach is that one additional model,
namely the autoencoder, needs to be trained per stage. This
can occur in parallel to training the segmenter but still implies
the use of additional computation resources. In future work,
we will explore more efficient oracle strategies.

7 Conclusion and Outlook
Many methods exist to prevent catastrophic forgetting for im-
age classification, and several have been adapted with relative
success to semantic segmentation. Yet few methods achieve
positive backward transfer, i.e. while the model does not
forget how to deal with data seen in early training stages, it
also does not leverage information seen later on. In such cases,
a multi-model solution would be preferable in clinical prac-
tice, where reliability is paramount and there is rarely a lack
of persistent storage. In this work, we present a multi-model
strategy alongside a fair evaluation framework for continual
learning methods.

The proposed evaluation considers the fact that continual
learning approaches often rely on receiving domain identity
information during inference. This may not be the case in
real-world dynamic environments, where metadata may be
concealed for privacy reasons or the model must handle data
from previously-unseen sources.

Continual learning methodologies are gaining a lot of atten-
tion from the diagnostic radiology community. Just like we are
seeing more works that evaluate models on out-of-distribution
data, we hope that training and evaluating models in a con-
tinual fashion and quantifying their backward transferability
becomes common practice.
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Contribution and impact

A main concern that we address in the paper is the fact that very few continual learning works actually
report positive backward transfer. This means that, while they may prevent catastrophic forgetting to
some extent, the performance of the model after training with the first task remains best at solving
it. Similarly, the sequentially fine-tuned model is better at solving the last task that one trained with
forgetting prevention (though this is to be expected, as that model state has leveraged knowledge from
preceding tasks).

Considering these objectives, if task identity labels were available, methods should be compared against
the baseline of maintaining multi-task models. When this information is not available, then an oracle
can be employed to infer it, and the combination of the oracle + multi-model solution is an appropriate
baseline.

We base the design of our oracle on the work by Aljundi et al. (2017), who propose training one
autoencoder per task. At test time, the task is used for which the respective autoencoder obtains
the lowest reconstruction error. The authors reconstruct features extracted from an AlexNet network
pretrained on ImageNet. Our main contribution lies in adapting this method to the medical imaging
setting. We suggest that, as autoencoders and U-Net-style segmentation architectures both follow an
encoder-decoder structure, the most suitable autoencoder will follow the same network architecture
and pre-processing steps as the segmenter. For this, we simply remove the softmax layer that discretizes
the outputs and replace the segmentation objective with the mean squared error. Our empirical results
confirm that this is an effective strategy for the three anatomies we explore.

We carry out our evaluation in our open-source Lifelong nnU-Net project for state-of-the-art continual
segmentation. Performing an evaluation with our new proposed benchmark thus requires minimal
additional work for any researcher familiar with the nnU-Net.

Discussion and limitations

A critique I have received several times when proposing multi-model solutions is that this is not considered
continual learning – which seeks training one model sequentially – and that training several models and
architectures comprises additional computational and storage concerns. I firmly disagree with the first
statement. I believe continual learning describes the constraints and characteristics of the problem scenario
and is not limited to specific aspects of the method. Regarding the second point, it disregards the fact
that many pseudo-rehearsal or regularization solutions require the storage of previous model states
and/or increase training overhead by growing the architectures through several heads. I also wish to
highlight the difference between a multi-model approach and a deep ensemble, as in the first only one
model at a time is trained, and one used for inference. This means that no more resources are needed in
using a multi-model strategy other than the persistent memory required for model storage and those
related to the oracle.

Nevertheless, it is true that the autoencoder-based oracle comprises an additional overhead, as a second
model must be trained per task and as many forward passes are required from autoencoders as the number
of tasks. In addition, we do not consider the situation where there are no clear boundaries between
tasks, an additional challenge of many task-agnostic settings. We address both these considerations in
the paper described in the following section.
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8.1.2. Task-Agnostic continual hippocampus segmentation for smooth population shifts

The paper Task-Agnostic continual hippocampus segmentation for smooth population shifts (González et al.,
2022d) combines my research in OOD detection with my interest in expansion-based continual learning.
I presented the paper at the MICCAI Domain Adaptation and Representation Transfer (DART) workshop on
September 23rd, 2022, where it won the best-paper runner-up award. A pre-print version is available in
arXiv since August 5th, 2022. The publication is joint work with Anirban Mukhopadhyay, Amin Ranem,
who helped adapt the evaluation code in the Lifelong nnU-Net code base, and Ahmed Othman, who
supervised the experimental design from a neuroradiological perspective.

Contribution and impact

We previously stated the benefits of multi-model solutions, both as a baseline and a simple strategy to
allow the continual adaptation of any DNN. One point we did not address in the past is how to deal with
another characteristic of task-agnostic scenarios: the absence of clear domain boundaries. In this work, we
look at how to deal with a slowly shifting data distribution in two different hippocampus segmentation
scenarios. This adds three additional challenges to our problem: detecting domain shifts, keeping the
model pool small, and selecting an appropriate model state during inference.

We propose ODEx, which uses the Mahalanobis-based method introduced in Section 3.1.2, but adapted
to a setting where we do not have access to all the training data at once for estimating the distribution
of network features. Key to our approach is that we select for each training stage whether an existing
model is updated or a new one is initialized. Specifically, we proceed in the following fashion. We
extract features from the training data (in this case, from batch normalization layers) and estimate a
multi-variate Gaussian distribution. As new data comes in, we calculate the Mahalanobis distance to the
distribution of all maintained model states. If the lowest distance exceeds a threshold, we initialize a
new model from the closest state. Otherwise, we update the nearest model. During inference, we again
calculate the distance of the image to all models and extract a prediction with the closest one.

One main contribution of our paper is that we accumulate the mean and covariance over feature stages
to capture the distribution of the model as it changes over time. We find that ODEx reliably maintains
high performance over all seen tasks, only requiring negligible additional amounts of persistent memory.

Discussion and limitations

One limitation of our paper is the focus on hippocampus segmentation, as the method would be well-
suited to the problems where the OOD detection approach is successful. Within medical segmentation,
the hippocampus has several practical advantages such as the relatively low resolution and the fact that
non-expert-readers can – to a certain extent – assess the validity of the predictions.

Another aspect we do not investigate is whether only certain layers instead of the entire model could be
kept task-specific. The reason we decided against this is that it introduces an additional design choice that
would be dependent on the problem scenario. We believe that for maintaining the amount of persistent
storage within an acceptable range as time goes on, the central aspect is keeping the model pool small, not
storing fewer parameters per model state, which is a constant factor. Still, keeping shared parameters
could potentially have advantages such as enabling positive backward transfer.
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Abstract. Most continual learning methods are validated in settings
where task boundaries are clearly defined and task identity information
is available during training and testing. We explore how such methods
perform in a task-agnostic setting that more closely resembles dynamic
clinical environments with gradual population shifts. We propose ODEx,
a holistic solution that combines out-of-distribution detection with con-
tinual learning techniques. Validation on two scenarios of hippocampus
segmentation shows that our proposed method reliably maintains per-
formance on earlier tasks without losing plasticity.

Keywords: Continual learning · Lifelong learning · Distribution shift.

1 Introduction

Deep learning methods are mostly validated in stationary environments where
the train and test data have been carefully homogenized to preserve the i.i.d.
assumption. This does not reflect the reality of clinical deployment, where acqui-
sition conditions and disease patterns evolve over time. Continual learning (CL)
paradigms are being explored by medical imaging researchers [19,22,27] and reg-
ulatory bodies [29] as evaluation settings that are better suited for AI in health-
care. Continual methods deal with temporal restrictions on data availability by
sequentially accumulating knowledge over a stream of tasks, each containing data
from a different distribution, without revisiting previous stages.

Yet most CL approaches are validated in settings with rigid task boundaries
and known task labels, which is far from how real dynamic environments behave
[7]. When deviating from this simplistic problem formulation, they perform worse
than simple baselines [23]. Previous research has established desirable properties
for CL methods, illustrated in Fig. 1. These include no reliance on either (1)
assumptions on task boundaries during training or (2) access to task identity
labels, i.e. the method should be task-agnostic [10]. In addition, the model should
(3) preserve previous knowledge while (4) maintaining sufficient plasticity to

⋆ Supported by the Bundesministerium für Gesundheit (BMG) with grant [ZMVI1-
2520DAT03A].
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learn new tasks and (5) not require additional computational resources during
training [7,10]. The last three objectives are often deemed to be orthogonal, i.e.
most approaches either catastrophically forget previous knowledge (too plastic),
cannot learn new tasks (too rigid) or the training time and resource requirements
grow linearly with the number of tasks.
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Fig. 1. Desiderata for continual learning [7,10]. Left: methods should not rely on rigid
boundaries or task labels. Right: trade-off between plasticity, rigidity and resource use.

Methods for task-agnostic continual learning are overwhelmingly rehearsal-
based [1,2,12,21,27], i.e. store a subset of past images or features in a memory
buffer, which is not admissible in many diagnostic settings due to patient pri-
vacy considerations. Active learning methods also exist which rely on expert
interaction [22].

Other approaches train generative models to identify distribution shifts [24]
or only update the shortest sub-path of the network that allows a correct classi-
fication [6], but such solutions are computationally expensive and are therefore
only evaluated in low-resolution classification settings. The field of continual
learning for medical segmentation is still under-studied. Most research follows
regularization-based strategies that calculate the importance of parameters and
penalize their deviation [19,30]. Approaches have also been proposed for active
learning [31], others allow the storage of previous samples [21,28]. Some meth-
ods leverage feature disentanglement to alleviate forgetting [16,18] or maintain
task-dependent batch normalization layers [13]. To our knowledge, no method
has been previously introduced for semantic segmentation that is task-agnostic
and does not make use of a rehearsal component.

We propose ODEx, an expansion-based approach that (1) does not revisit
previous stages, (2) is well-suited to a wide array of use cases, including semantic
segmentation and (3) is task-agnostic, i.e. requires neither task boundaries nor
task labels during training or inference. ODEx uses continual out-of-distribution
(OOD) detection to signal when to expand the model and select the best pa-
rameters during inference. Although we maintain multiple parameter states in
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persistent memory, each occupies less than 0.2 GB and the continual OOD de-
tection mechanism ensures that this number remains low. Unlike other methods,
ODEx requires the same GPU memory and training time as regular sequential
learning. Our contributions include:

1. proposing a task-agnostic continual learning solution suitable for a wide
array of deep learning architectures, and

2. introducing a continual OOD detection mechanism that does not require
access to early data for estimating the distance to the training distribution.

We explore the problem of hippocampus segmentation in T1-weighted MRIs,
which is crucial for the diagnosis and treatment of neuropsychiatric disorders but
highly sensitive to distribution shifts [25], for two non-stationary environments.
Our results show that ODEx outperforms state-of-the-art approaches while ad-
hering to desirable properties for continual learning.

2 Methodology

We start by defining our problem formulation of task-agnostic continual learning.
We then introduce ODEx, visualized in Fig. 2 (bottom). During training, we
accumulate the mean and covariance of batch normalization layers and detect
domain shifts with the Mahalanobis distance. When a domain shift occurs, a
new model is initialized with the most appropriate parameters and added to the
model pool. During inference, we extract predictions with the best model state.

R
IG

ID
 B

O
U

N
D

S.
 &

 

TA
SK

 L
A

B
EL

S
TA

SK
-A

G
N

O
ST

IC

TRAINING DEPLOYMENT

Fig. 2. Top: continual setting with rigid boundaries and task labels. Expansion methods
create new parameters at each task boundary. Bottom: the task-agnostic ODEx method
initializes a new set of parameters when a domain shift is detected.

Task-agnostic continual learning: In continual learning settings, model
Fθ : x → ŷ is trained with data samples from an array of Nt different tasks or
data distributions {Ti...TNt

}, each found at the ith stage ti. The model should be
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deployable after finishing the first stage, and evolve over time. For segmentation,
each instance has the form (x, y, j), where x is an image and y the segmentation
mask. Additionally, j denotes the task label, i.e. that (x, y) ∼ Tj . The goal is to
find parameters θ that minimize the loss L over all seen tasks {Ti}i≤Nt

(Eq. 1).

argmin
θ

Nt∑
j=1

E(x,y) ∼ Tj
[L (Fθ(x), y)] (1)

The objective cannot be optimized directly, as at any training stage tj only
data from Tj is available. The main challenge consists of ensuring enough rigidity
during training to obtain good performance on (x, y) ∼ {Ti}i<j and enough
plasticity to learn from present and future data (x, y) ∼ {Ti}i≥j .

Expansion-based methods approach this by keeping task-dependent param-
eters {θ1...θNt}, which in their simplest form comprise the entire model, and
perform inference on (x, y, j) with the respective Fθj (see Fig. 2, above). In
task-agnostic scenarios, task labels j are unknown and may not even be clearly
defined. The goal is to learn a set of parameters Θ =

{
θ1...θ|Θ|

}
and an infer-

ence function J : x → θ that selects the best parameters during testing (Eq.
2). In the absence of rigid task boundaries, the size of the model pool |Θ| is
unknown. Task-agnostic settings thus signify three additional challenges: (1) de-
tecting when domain shifts occur, (2) keeping |Θ| low and (3) choosing the best
parameters during testing. In the following, we outline how we approach these.

argmin
Θ

Nt∑
j=1

E(x,y) ∼ Tj

[
L
(
FJ (x)(x), y

)]
(2)

Detecting domain shifts: During training, we extract features z from the
first set of Batch Normalization layers BN1. These normalize inputs and thus
contain domain-pertinent information which has been found to play a key role
in detecting interference during sequential learning [13]. We estimate a multi-
variate Gaussian Ni(µi, Σi) at the end of training stage ti as:

zk ← BN1(xk); µi ←
1

N

N∑
k=1

zk; Σi ←
1

N

N∑
k=1

(zk − µi)(zk − µi)
T (3)

Inspired by previous research on OOD detection for semantic segmentation
[9], we detect data shifts by calculating the Mahalanobis distance DM(z;µ,Σ)
to the training distribution. In contrast to other methods for assessing similarity,
such as the Gram distance popular in rehearsal-based continual learning [21,22],
the Mahalanobis distance requires storing only µ and Σ.

As we cannot revisit data from previous stages, we cannot estimate N with
all data used to train the model. In a situation with slowly shifting data distri-
butions, if we were to only consider the µ and Σ of the last training batch, then
we may never detect a sufficiently large distance signaling the need to expand
the model pool. We therefore store µi and Σi at the end of each training stage ti
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and add this to the history Bi of the model which contains information from all
pertinent training stages. At stage ti+1, parameters θ̂ are selected that minimize
the summed distance of the present training data to the history of θ̂ (Eq. 4).

DM(z; i) : min
θj∈Θi

∑
(µj ,Σj)∈Bj

DMj
(z;µj , Σj) (4)

Managing the model pool: When data arrives for a new stage ti, the
distance DM(z; i) is calculated and the best model θ̂ is selected. If DM(z; i) < ξ

(case 1), then θ̂ is updated with the current data. Afterwards, µi and Σi are
calculated and added to the model history B̂. If instead DM(z; i) ≥ ξ (case 2),
a domain shift is detected and a new model θi is initialized with the parameters
of θ̂. After a domain shift, the size of the model pool |Θ| grows by 1. The history
of the new model Bi is initialized with B̂, so the history of each model contains
information pertaining to all data distributions used to train it. Following previ-
ous research [9] we normalize the distances between the minimum and doubled
maximum in-distribution values, and set ξ = 2µ.

Continuing to train older models instead of initializing a new one for each
stage has two advantages: (1) the model pool does not grow linearly with the
length of the data stream, which would be prohibiting for deployment over long
time periods and (2) models can benefit from further training when the data
distributions are compatible, potentially allowing positive backwards transfer.

Performing inference: Inference proceeds as illustrated in Fig. 2 (right).
For each image, the summed Mahalanobis distance of the test image to each set
of parameters θ ∈ Θ is calculated. Again, the best model θ̂ is selected and, in
this case, directly used to extract a segmentation mask Fθ̂(x) = ŷ.

3 Experimental Setup

We briefly outline how we build our data base of tasks with smooth distribu-
tion shifts from publicly available datasets and report relevant aspects of our
experimental setup. For further implementation details, we refer the reader to
the supplementary material and our code found under https://github.com/

MECLabTUDA/Lifelong-nnUNet.
Data: We look at two different scenarios of data streams with slowly shifting

distributions for segmentation of the entire hippocampus (head, body and tail)
in T1-weighted MRIs. The first is constructed from three public datasets: HarP
[3] contains 135 healthy and Alzheimer’s disease patients, Dryad [15] has 25
healthy adult subjects and Decathlon [26] contains 130 healthy and schizophrenia
patients. We slowly shift the distribution of cases from each source as illustrated
in Appendix A. We refer to this scenario as shifting source. For the second
scenario, henceforth referred to as transformed, we slowly modify the Decathlon
data using the TorchIO library [20]. We apply intensity rescaling up to a contrast
stretching of (0.1, 0.9) and affine transformations of up to a (0.8, 1.2) scaling
range, 15 degrees rotation and 5 mm translation.
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Table 1. Performance of the joint training upper bound (first row), sequential learning
and six continual learning strategies on the two hippocampus segmentation scenarios.

Shifting source Transformed
Method Dice ↑ BWT ↑ FWT ↑ Dice ↑ BWT ↑ FWT ↑
Joint .89 ±.01 .90 ±.01

Seq. .57 ±.32 -.19 ±.12 .14 ±.09 .87 ±.03 -.02 ±.02 .09 ±.05
EWC .78 ±.08 .02 ±.03 .08 ±.08 .79 ±.10 .01 ±.01 .04 ±.02
MiB .67 ±.24 -.10 ±.07 .14 ±.10 .87 ±.04 -.02 ±.02 .07 ±.04
RW .61 ±.28 -.15 ±.10 .14 ±.10 .87 ±.03 -.03 ±.03 .09 ±.05
PLOP .57 ±.32 -.22 ±.14 .13 ±.09 .86 ±.02 -.02 ±.02 .10 ±.06
LwF .51 ±.35 -.23 ±.13 .10 ±.07 .86 ±.04 -.04 ±.04 .10 ±.06
ODEx (ours) .87 ±.04 -.03 ±.02 .14 ±.09 .89 ±.01 -.01 ±.01 .09 ±.05

Network architecture and training: We use a full-resolution nnUNet [11]
model for all experiments, with the architecture and training settings selected
for the first training stage of each data stream. We perform 200 epochs for
each stage, with a loss of Dice and Binary Cross Entropy weighted equally. All
experiments were carried out on a Nvidia Tesla T4 GPU (16 GB).

Metrics: We report the average Dice on test data from all tasks {Ti}i≤Nt

as well as backwards (BWT) and forwards (FWT) transferability [7,10]. BWT
is the inverse forgetting and displays to what extent the performance on test
samples (x, y) ∼ Ti deteriorates with further training in stages {ti}i>Nt

. FWT
instead measures what impact training on each stage {ti}i≤Nt

has on test data
(x, y) ∼ Ti. Methods that prevent forgetting show high, realistically close to 0,
BWT. FWT is high if enough plasticity is maintained to acquire new knowledge.
For both metrics, we report the average over test data from all tasks.

Baselines: In Sec. 4.1, we compare our approach against sequential training
and five popular continual learning approaches: Elastic Weight Consolidation
(EWC) [14], Modelling the Background (MiB) [4], Riemannian Walk (RW) [5],
PLOP [8] and Learning without Forgetting (LwF) [17]. We also report the upper
bound of joint training. In most cases, we use the hyperparameters suggested
in the corresponding publications or code bases (for more details see Appendix
B). For MiB, we reduce the lkd to prevent loss explosion. In Sec. 4.2 we perform
an ablation study and compare the use of the Mahalanobis distance to other
methods proposed within task-agnostic learning, namely using the Gram matrix
[21] and detecting domain shifts through a fall in training performance [6].

4 Results

We first compare ODEx to state-of-the-art continual learning approaches in Sec.
4.1. Afterwards, we take a closer look at the cumulative Mahalanobis distance
for identifying domain shifts and selecting the best parameters (Sec. 4.2).
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4.1 Continual learning performance

We compare our proposed approach ODEx to five continual learning methods in
Tab. 1. The first row shows the upper bound of training a model statically with
all training data. Sequential results show the deterioration of the performance
in earlier tasks as training is carried out, and the following rows display how five
continual learning strategies alleviate this. From these, only EWC maintains
performance on earlier tasks, but at the cost of losing model plasticity and being
unable to acquire new knowledge. ODEx instead reaches a high FWT showing
effective learning on later tasks while still performing well on data from the first
training stages. This behavior is further illustrated in Fig. 3 (left), where the per-
task performance is plotted for EWC, which successfully retains old knowledge,
MiB, which reaches a high Dice on later tasks, and ODEx that performs well on
data from all stages. This is particularly clear for the more difficult shifting source
case, but a Wilcoxon one-sided signed-rank test affirms that ODEx significantly
outperforms all other approaches in terms of Dice score for both scenarios.

As for resource utilization, ODEx requires no more GPU memory than se-
quential training, as we update one model at a time. The estimation of Σ and
the calculation of DM can be carried out in the CPU given the low resolution
of z. Fig. 3 (right) shows that ODEx takes only marginally longer than training
without any method for forgetting prevention. Though several models are stored
(two for shifting source and four for transformed, see Tab. 2) each weights less
than 200 MB, being far from a limiting factor in practice.

SHIFTING SOURCE TRANSFORMED

MiB

EWC

ODEx

Fig. 3. Left: Per-task Dice. EWC and MiB are at opposite ends of the plasticity/rigidity
spectrum, whereas ODEx allows for further training without compromising perfor-
mance on previous tasks. Right: training times for the shifting source scenario.

Fig. 4 qualitatively shows in the upper row the sequential deterioration of
the segmentation for a test subject (x, y) ∼ T1. The lower row displays the seg-
mentation masks produced by each continual learning method. Though the head
is mostly segmented well by several methods, only EWC and ODEx properly
segment the body and tail and maintain the integrity of the shape.
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Fig. 4. Crops with overlayed segmentations for axial slice 25 of a subject from T1

(shifting source). Top: ground truth (blue) and performance deterioration with regular
SGD. Bottom: six continual learning methods, after finishing training on last stage.

4.2 Ablation study

In Tab. 2 we compare our strategy for detecting when to grow the model pool
to previous work in the field of task-agnostic learning. The performance of all
methods is very similar for the easier transformed scenario, but we see clear
differences in shifting source. We first explore two versions of ODEx that use
our proposed strategy for selecting the best model but detect domain shifts
in a different fashion. ODEx −∞ ξ creates a new model for every stage. The
lower Dice suggests that the models suffer from the lack of training data, and |Θ|
grows linearly with the number of training stages. DiceEx initializes a new model
when the training Dice falls more than 10%, which results in higher forgetting.
ODEx ¬B shows the situation where we do not keep a history for the training
distributions of previous stages and only calculate the distance to the last stage.
For this version, no new model is initialized for shifting source and the single
available model significantly forgets previous knowledge. Finally, we test the use
of the Gram distance instead of Mahalanobis for both training and testing, and
find that it does not properly detect distribution shifts for shifting source.

Table 2. Performance of different strategies for detecting domain boundaries and/or
selecting a model state during inference.

Shifting source Transformed
Method Dice ↑ BWT ↑ FWT ↑ |Θ|↓ Dice ↑ BWT ↑ FWT ↑ |Θ|↓
ODEx (ours) .87 ±.04 -.03 ±.02 .14 ±.09 2 .89 ±.01 -.01 ±.01 .09 ±.05 4
ODEx −∞ ξ .83 ±.04 .00 ±.00 .11 ±.09 5 .89 ±.01 .00 ±.00 .09 ±.05 5
DiceEx [6] .84 ±.08 -.07 ±.03 .14 ±.10 2 .89 ±.02 -.01 ±.01 .09 ±.05 2
ODEx ¬B [9] .57 ±.32 -.19 ±.12 .14 ±.09 1 .89 ±.01 .00 ±.00 .09 ±.05 3
Gram [21] .57 ±.32 -.19 ±.12 .14 ±.09 1 .90 ±.01 .00 ±.00 .09 ±.05 3
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5 Conclusion

We introduce ODEx, an expansion-based continual learning strategy suitable
for real clinical environments with smooth acquisition and population shifts. We
evaluate our approach on two hippocampus segmentation scenarios and show
that it outperforms state-of-the-art methods by maintaining good performance
on data from early stages without compromising model plasticity. ODEx requires
only marginally higher training times than regular sequential learning, and the
same amount of GPU memory. While additional persistent storage is needed
to store different sets of parameters, the OOD detection strategy keeps this
number low. Each explored scenario required less than 0.8 GB, rendering this
limitation insignificant in practice. Future work should explore whether it suffices
to maintain only a subset of domain-specific parameters, such as the last decoder
blocks or batch normalization layers. By releasing our code and models, we hope
to boost continual learning research in task-agnostic medical settings.
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20. Pérez-Garćıa, F., Sparks, R., Ourselin, S.: Torchio: a python library for effi-
cient loading, preprocessing, augmentation and patch-based sampling of medi-
cal images in deep learning. Computer Methods and Programs in Biomedicine
p. 106236 (2021). https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106236,
https://www.sciencedirect.com/science/article/pii/S0169260721003102

21. Perkonigg, M., Hofmanninger, J., Herold, C.J., Brink, J.A., Pianykh, O., Prosch,
H., Langs, G.: Dynamic memory to alleviate catastrophic forgetting in continual
learning with medical imaging. Nature Communications 12(1), 1–12 (2021)

22. Perkonigg, M., Hofmanninger, J., Langs, G.: Continual active learning for efficient
adaptation of machine learning models to changing image acquisition. In: Inter-
national Conference on Information Processing in Medical Imaging. pp. 649–660.
Springer (2021)

23. Prabhu, A., Torr, P.H., Dokania, P.K.: Gdumb: A simple approach that questions
our progress in continual learning. In: European conference on computer vision.
pp. 524–540. Springer (2020)

24. Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y.W., Hadsell, R.: Continual un-
supervised representation learning. NeurIPS 32 (2019)

25. Sanner, A., Gonzalez, C., Mukhopadhyay, A.: How reliable are out-of-distribution
generalization methods for medical image segmentation? In: DAGM German Con-
ference on Pattern Recognition. pp. 604–617. Springer (2021)

26. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B.H., Ronneberger,



Task-agnostic Continual Hippocampus Segmentation 11

O., Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S., Jarnagin, W.R., McHugo, M., Napel, S., Vorontsov, E., Maier-Hein,
L., Cardoso, M.J.: A large annotated medical image dataset for the development
and evaluation of segmentation algorithms. CoRR abs/1902.09063 (2019)

27. Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D.: Continual do-
main incremental learning for chest x-ray classification in low-resource clinical set-
tings. In: Domain Adaptation and Representation Transfer, and Affordable Health-
care and AI for Resource Diverse Global Health, pp. 226–238. Springer (2021)

28. Venkataramani, R., Ravishankar, H., Anamandra, S.: Towards continuous domain
adaptation for medical imaging. In: IEEE 16th ISBI. pp. 443–446. IEEE (2019)

29. Vokinger, K.N., Gasser, U.: Regulating ai in medicine in the united states and
europe. Nature machine intelligence 3(9), 738–739 (2021)

30. Zhang, J., Gu, R., Wang, G., Gu, L.: Comprehensive importance-based selective
regularization for continual segmentation across multiple sites. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
pp. 389–399. Springer (2021)

31. Zheng, E., Yu, Q., Li, R., Shi, P., Haake, A.: A continual learning framework for
uncertainty-aware interactive image segmentation. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 35, pp. 6030–6038 (2021)



1

A Data scenarios

Original Trans. stage 3 Trans. stage 5

HarP Dryad Decathlon

TRANSFORMED

SHIFTING SOURCE

Contrast
Transla�on
Scaling
Rota�on

Fig. 1. The two scenarios of data streams with distribution shifts explored in this
work. Top: number of cases from three datasets is slowly shifted. Bottom: the De-
cathlon dataset is artificially transformed. We used the first 80/20 split generated by
the nnUNet framework for HarP, Dryad and Decathlon and ensured that test cases
remained as such across both scenarios.

B Architecture and training parameters

Table 1. Hyperparameters for training continual learning methods. The settings spec-
ified in the first row were used for all experiments.

Method Setting

All optimizer = SGD, lr = 0.01, weight decay = 3e− 5, momentum = .99,
nr. blocks = 4 for shifting source, nr. blocks = 3 for transformed

EWC λ = 0.4

MiB α = 0.9, lkd = 1 for shifting source, lkd = 0.1 for transformed

RW α = 0.9, λ = 0.4, update after = 10

PLOP λ = 0.01, scales = 3, resampling to (48, 48, 48) for transformed, no
resampling for shifting source

LwF T = 2
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C Calculation of evaluation metrics

Considering Fi(x) = ŷi as the prediction made at stage ti, backwards transfer
(BWT) is the change in performance after training with each subsequent task
{T }j>i, averaged over the number of samples in Ti and the number of tasks (Eq.
1). BWT is not defined for the last task TNt

, as {tj}j>Nt
= ∅.

BWT =
1

Nt

Nt∑
i=1

 1∣∣∣{tj}j>i

∣∣∣
∑
j>i

 1

|Ti|

|Ti|∑
k=1

Dice (Fj(xk), yk)−Dice (Fi(xk), yk))


(1)

Forwards transfer (FWT) is, for each task Ti, the change in performance in
each stage before and up to ti, averaged over the number of samples and tasks.
FWT is not defined for the first task T1, as {tj}j<1 = ∅.

FWT =
1

Nt

Nt∑
i=1

 1∣∣∣{tj}j≤i

∣∣∣
∑
j≤i

 1

|Ti|

|Ti|∑
k=1

Dice (Fj(xk), yk)−Dice (Fj−1(xk), yk))


(2)

D Static learning results
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Fig. 2. Base transferability in terms of Dice score of training separate models statically
with each task on test data from each task.



8.2. Conclusions and outlook

My practical experience working with an array of continual learning strategies shows that expansion-based
solutions are the most practical in terms of performance (as they preserve previous knowledge without
affecting plasticity), computational overhead (as they merely require additional persistent memory, which
is rarely a constraint) and flexibility (as they can augment any existing architecture and do not disturb
the training process).

One central reason ensembles are so popular is that they do not require making additional design decisions
of data preparation, architecture, or training procedure. Just as deep ensembles have demonstrated to be
a simple strategy that leads to performance increases and usable uncertainty estimates, expansion-based
continual learning approaches have the potential to easily transfer DNNs to the clinical open world.
And just as ensembles can be made more efficient by sharing certain weights, we can take the same
approach with continual learning. Parameter-sharing solutions (such as multi-head architectures) have a
long-standing tradition in continual learning and could potentially allow for positive backward transfer
by sharing parameters of modules that solve similar aspects of the problem.

As mentioned previously, one direction I am optimistic about and exploring at the moment is to combine
the predictions of multi-model solutions as if they were an ensemble. That is to say, selecting a set
of models instead of just one for both (1) updating their parameters during training and (2) carrying
out inference. Perhaps, depending on the model, only certain layers should be used to construct a
sub-ensemble that is the most suitable for making each prediction.

One central takeaway I would like to leave from my work is that solving the continual learning problem
cannot be separated from addressing distribution shifts and detecting changes in the domain. Purely
algorithmic solutions that do not consider what changes transpire in the data and proactively react to
them will rarely learn expressive representations that can leverage all training samples and reach top
performance across domains.
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9. Learning Meaningful Representations

Our goal, then, is not merely to prevent catastrophic forgetting while allowing the model to learn as
easily as if it was being fine-tuned. We ought to go beyond that and instead search for positive backward
transfer. That is, to accumulate knowledge from all the data we see during the training process. We hope
to hereby improve across all domains and match the performance of the statically trained upper bound.

If we wish to achieve this with one single model, then we need to learn expressive features that encode as
much relevant knowledge as possible. Similarly, we want to disregard information that is not relevant
and instead leads models to learn spurious correlations. If we successfully build such a feature space,
there will be no interference caused by non-relevant image characteristics. This would also improve
generalizability to new domains.

This research direction is tightly connected to the OOD generalization and domain adaptation strategies
reviewed in Chapter 6. Unfortunately, when we pursue this avenue, we come across the same challenges
we faced then: greater computational requirements, changes to the architecture or training objective
that limit flexibility, and ultimately disappointing performance. Considering this, I do not believe this to
be the most practical strategy for medical imaging at the moment, though it is a fascinating field.

Instead of augmenting models with new components for continual learning, it is also worth quantifying
whether specific layers or practices in DNN design would naturally lead to less forgetting. For instance,
visual transformers, which have gained enormous popularity in recent years, display certain properties
that could be advantageous for continual learning. I look into this possibility in Section 9.2.

9.1. Building an expressive latent space

Similarly to the domain adaptation methods we explored in past sections, we can use generative adversarial
networks (Goodfellow et al., 2020) to build representations that disregard certain data characteristics,
such as image properties that result from the acquisition process. Several works look into this strategy
for computer vision problems (Ebrahimi et al., 2020; Michieli and Zanuttigh, 2021), and Elskhawy et al.
(2020) propose a method with an adversarial component for an incremental class learning scenario on
chest CTs. The approach outperforms regular fine-tuning and LwF, but maintains task-specific heads and
does not show an improvement against individual model states.

We similarly present a GAN-based approach for hippocampus segmentation (Memmel et al., 2021). The
Adversarial Continual Segmenter (ACS) assumes that we have access to at least two different domains in
the initial training phase and adversarially disentangles the domain information from the content. By
removing domain-identifying information from this new data, the last few layers can be fine-tuned while
preserving more knowledge. However, the proposed architecture is rather particular and involves several
discriminator and generator modules in addition to the segmentation section. It is, therefore, clearly not
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a flexible solution that can be applied to any problem and model. In addition, the empirical results show
a decrease in forgetting but a significant gap to state-of-the-art segmentation performance for the task.

A different – though related – approach is to translate features from new incoming domains to the source
domain to prevent interference. Ravishankar et al. (2019) explore this strategy for X-Ray pneumothorax
and ultrasound cardiac view classification, showing an improvement in knowledge preservation though
no direct performance gains.

9.2. Continual learning in transformer architectures

Transformer architectures (Vaswani et al., 2017), and specifically vision transformers (ViTs) for computer
vision (Dosovitskiy et al., 2021), are becoming hugely popular. Some recent work shows that such
components, which learn the relation between sequences of image patches, could be helpful for medical
image segmentation (Karimi et al., 2021; Hatamizadeh et al., 2022).

In a recent article (Ranem et al., 2022), we examine whether transformer-based segmentation architec-
tures are less affected by the problem of catastrophic forgetting given how they combine sequentially
arranged inputs with global knowledge. A major contribution of our work is the implementation of a
vision transformer option in Lifelong nnU-Net, our framework extending the nnU-Net pipeline for contin-
ual learning. Specifically, we design a model that places the Vision Transformer (ViT) block between
the encoding and decoding layers. Our results indicate that this has a minimal effect on knowledge
preservation. In addition, augmenting transformer architectures with continual learning methods can
be challenging. In particular, we find that regularizing ViT layers with EWC can lead to decreased
performance.

Given the rise in popularity of ViTs for medical segmentation, our study provides interesting insight into
how these models react when trained in a sequential fashion. Nevertheless, from the continual learning
perspective, this type of architecture does not display better properties than a regular U-Net.

9.3. Conclusions and outlook

I still believe in the overarching goal of learning expressive, semantically sound feature representations
that capture all the diagnostically-relevant content of the training images. Such a latent space could be
sequentially updated with less interference. Nevertheless, our empirical experience shows that several
factors speak against the practicality of this research direction for continual learning (at least at the
moment). For starters, generative modeling and/or feature disentanglement comprise a significant
computational overhead. It can also be challenging to reach convergence, as multiple loss terms need to
be appropriately weighted to reach training equilibrium. Further, purely domain-agnostic features often
do not result in the expected performance on the downstream target task.

New architectures and training mechanisms are being proposed for image classification and segmentation,
which may be more prone to knowledge preservation. Though I would not recommend adding a particular
component to a model for the purpose of continual learning, by routinely evaluating new architectures
in a continual fashion – the way we do for robustness – we could identify new layers or mechanisms that
are naturally better suited to dynamic environments.
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10. Practical Challenges Hindering Lifelong Learning

We have looked in length at the problem of data drift in medical imaging and discussed technical methods
to learn continuously. Unfortunately, we are far from bringing these advances to clinical practice. In this
part of the thesis, I will take a more holistic view at the practical challenges hindering the use of systems
that adapt to changing clinical environments. In the past three years, I have helped overcome these
difficulties by establishing benchmarking standards and evaluation best practices, releasing open-source
projects that we thought would be helpful to the community, and maintaining a dialogue with different
stakeholders on how they approach the problem of data drift. I presented much of the work shown in
this section at the radiological venues EuSoMII, RSNA and ECR.

The first obstacle we must overcome is the need for appropriate reporting standards. Benchmark datasets
commonly used in continual learning research, such as split and permuted MNIST, are overly simplistic and
unsuitable for medical imaging. Lacking a unified framework where researchers can evaluate methods
across anatomies and imaging modalities, it is challenging to compare different works, and the barrier for
developing new techniques is high. We approach this for image segmentation with our Lifelong nnU-Net
project (Chapter 11), where we augment the state-of-the-art nnU-Net pipeline with continual learning
methods and metrics and report results for three anatomies using openly-available datasets.

Another key element for developing adequate decision support systems lies in looking at the larger
clinical workflow where several DL models work alongside healthcare professionals. In Chapter 12,
we describe a scenario where a radiologist receives a second opinion on the localization of pulmonary
emboli. We show how quality assurance mechanisms, interpretability techniques, and an active learning
approach can all contribute to effective collaboration with the radiologist.

I hope to have painted a convincing picture of how DNNs can be used safely and in close interaction
with clinicians, leveraging user input to maintain and even increase performance over time. Nevertheless,
companies are reluctant to develop products that learn continuously given the difficulty that these
be cleared for commercial use. Instead, they invest significant resources in assembling large and
heterogeneous databases with the hope that the trained models will be robust as long as possible. Though
many products in the market today collect user feedback in the form of corrected diagnosis, they do not
use this data until a new product release months or even years later. When queried about this strategy
– and continual learning in general – they maintain that current regulations strictly prohibit frequent
model updates and this will remain so for the foreseeable future.

While it is true that current regulatory frameworks do not allow for continual learning, there are initiatives
from both the US Food and Drug Administration (FDA) and European Commission indicating that this
could change sooner than many stakeholders expect. In particular, the interest of regulatory bodies
in maintaining safety and efficiency throughout the entire lifecycle of medical devices and the focus
on active quality assurance suggest that regulatory changes are fast approaching. In Chapter 13, I
summarize regulations currently in force for medical software in the US and European Union, as well as
official documents that hint at how the clearance process may soon be adapted for lifelong learning.
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11. The Need for Unified Evaluation Standards

Despite increased interest in continual learning from the medical imaging community (for instance,
continual learning is now a paper category in the MICCAI conference), the number of publications does not
reflect how relevant the topic is for maintaining consistent performance of medical software. Particularly
for image segmentation, regularization-based approaches are still regarded as a satisfactory solution,
and most studies only cover one anatomy (Baweja et al., 2018; van Garderen et al., 2019; Özgün et al.,
2020; Patra and Noble, 2020; Zhang et al., 2021).

We are even further from a situation where papers on various topics include evaluations in continual
environments the way they do on external/OOD data. Quantifying how well DNNs designed for diverse
problems react to post-deployment adaptation would encourage the release of lifelong learning products
much more than dedicated continual learning research.

One major reason behind this is the lack of open-source continual learning frameworks and unified
evaluation standards. I further believe that only models that reach the best performance in the target task
have a real chance to come into use. Modifications to the model architecture which cause performance
degradation will be avoided even if this fulfills a secondary goal such as OOD detection or forgetting
prevention. Therefore, benchmark evaluations for continual learning should be performed in state-of-
the-art frameworks.

11.1. The paper: Lifelong nnU-Net for standardizedmedical continual learning

We attempt to alleviate these issues with Lifelong nnU-Net, an open-source project where we extend the
popular nnU-Net library, which sits at the top of numerous medical segmentation challenges (Isensee
et al., 2021), with continual learning capabilities. The functionality includes multiple continual learning
methods and all the required logic to monitor performance across datasets over time. The project – hosted
in github.com/MECLabTUDA/Lifelong-nnUNet – received a good reception from the community,
currently bearing 72 stars and 9 forks.

Alongside the code, we drafted the manuscript Lifelong nnU-Net: a framework for standardized medical
continual learning (González et al., 2022c), where we report benchmark results on openly available
datasets for three anatomies and define evaluation standards for continual learning in medical imaging.
The paper is the result of a close collaboration with Daniel Pinto dos Santos from the University Hospital
Cologne and the neuroradiologist Ahmed Othman from the University Medical Center Mainz. From the
TU Darmstadt, Amin Ranem and Anirban Mukhopadhyay helped carry out the experiments and draft
the text. The manuscript is currently under review, but we already presented an abstract at the European
Society of Medical Imaging Informatics (EuSoMII) Annual Meeting this past October in Valencia, where I
was awarded the best oral presentation award. The content was also accepted for oral presentation at the
European Congress of Radiology (ECR) taking place in March 2023.
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ABSTRACT

As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to
safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the
clinical open world is the shift from static to continual learning. Continual learning, the practice of training models throughout
their lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnU-Net, a standardized
framework that places state-of-the-art continual segmentation at the hands of researchers and clinicians. Built on top of the
nnU-Net – widely regarded as the best-performing segmenter for medical applications – and equipped with all necessary
modules for training and testing models sequentially, we ensure broad applicability and lower the barrier to evaluating new
methods in a continual fashion. Our benchmark results across three medical segmentation use cases and five continual
learning methods give a comprehensive outlook on the current state of the field and signify a first reproducible benchmark.

Introduction
Deep Learning methods for medical use cases continue to be
evaluated in a static setting, where all available data is shuffled
and the model is tested on a subset of in-distribution samples.
This stands on the unrealistic assumptions that (a) all training
data is available in a central location, and (b) the acquisition
conditions do not change over time after clinical deployment1.
Evaluating in this manner creates a considerable gap between
the reported performance of new methods and their usability
in practice2–4, which hinders the vital deployment of lifelong
learning agents in dynamic clinical environments5.

Continual learning does not neglect the temporal dimen-
sion of the data and trains models in a sequential fashion, as
illustrated in Figure 1. The goal hereby is to adapt to new envi-
ronments without losing performance on previously observed
training conditions and subject groups. Distributed feder-
ated learning methods have been explored in multi-clinical
settings and also do not require sharing data between institu-
tions6, 7. However, they neither address temporal restrictions
on data availability nor provide a framework for agents that
continuously adapt to shifting population dynamics. Contin-
ual learning in healthcare, which tackles these concerns, is
receiving growing enthusiasm8–11 and regulatory procedures
are being actively debated5, 12, 13. Currently, re-approval is
required each time a model is adapted during deployment, but
there are initiatives from both the FDA and European Com-
mission for a lifecycle regulatory protocol that allows the use
of continuously adapting algorithms14. These pursuits may
lead us to the rare situation where the regulatory guidelines
are in place while the technology is still in its infancy.
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Figure 1. In a static setting (bottom), all training data is
brought together. Continual settings (top) consider the time
of acquisition and train the model sequentially.
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Figure 2. Performance of models trained independently solely on one dataset. On the (lower left to upper right) diagonal we
find the Dice coefficient of evaluating models on the test cases of the dataset used for training. In the remaining cells, we see
how these models transfer to other datasets.

Technical literature of continual learning for simpler com-
puter vision tasks is plagued by controversies about the
lack of a standardized evaluation setup15–17. Recently, the
Avalanche18 project has emerged as a solution to this problem
for continual classification by providing a unified code base.
The field is not as mature for continual segmentation, which
assigns a label to each pixel in the image and is arguably the
primary AI task in the clinical domain. Though more work
has been done in recent years8, 10, 19–23, it neither (1) builds on
top of state-of-the-art segmentation pipelines nor (2) exam-
ines how popular methods transfer to image segmentation for
multiple open-source benchmarks.

In this work, we present Lifelong nnU-Net, a standardized
framework for training and evaluating segmentation models
in continual settings. We build our code on top of the nnU-
Net24 pipeline, which is widely popular and state-of-the-art
for medical segmentation tasks, thus ensuring high usability
and performance. Our contributions are:

• the introduction of an open-source continual learning
framework built on top of the state-of-the-art nnU-Net

• a thorough performance and run-time comparison for
training sequentially under different settings, and

• open-source implementations for five continual learning
methods, allowing the fast evaluation of the state-of-the-
art and accelerating the development of new approaches.

Our experiments on publicly available data for three differ-
ent segmentation problems show that:

• none of the explored continual learning methods consis-
tently achieve positive backward transfer for segmenta-
tion, exhibiting the need for new solutions,

• in accordance with previous research, rehearsal-based
methods display the least amount of forgetting while
maintaining model plasticity, and

• the practice of maintaining task-specific heads, common
in continual learning literature, is only minimally rele-
vant for segmentation.

The goal of Lifelong nnU-Net is to ensure high technical
standards and reproducible results while the community is
translating continual learning to medical image segmentation.
By releasing our code and trained models for open-source
datasets, we establish a benchmark for evaluating future con-
tinual learning methods on segmentation models.

Results
We start this section by examining the results of training mod-
els statically with one dataset. Afterward, we explore sequen-
tial learning and five popular continual learning strategies:
Rehearsal, Elastic Weight Consolidation25 (EWC), Learning
without Forgetting26 (LwF), Riemannian Walk27 (RW) and
Modeling the Background28 (MiB). We hereby regard the
datasets of each region of interest (hippocampus, prostate, or
pulmonary emboli) as n tasks T1, ..., Tn and train the model
of each use case sequentially with all respective tasks.

We quantify segmentation performance with the Dice co-
efficient and report backward transfer (BWT), which mea-
sures the degree of forgetting older tasks, and forward transfer
(FWT), which assesses the ability to learn new knowledge.

Finally, we analyze the difference between using single- vs.
multi-head architectures, briefly illustrate the importance of
task orderings and provide a summary of our training times.

Static results and inter-task performance
To put continual learning results into context, we first observe
the performance of independent models trained solely on one
dataset. These are illustrated in Figure 2. On the diagonal
from the lower left to the upper right corner, we see static
evaluations on in-distribution data. In this setting, all models
for prostate and hippocampus achieve at least an 86% Dice.
The lowest performance with merely a 7,3% Dice is for pul-
monary embolism with the FUMPE dataset, well behind the
results for the larger CAD-PE dataset with a 75% Dice.

The inter-task matrices also allow us to see how effectively
each model performs on out-of-distribution data. These differ-
ences in performance are due to both the inherent dissimilarity
between datasets in terms of acquisition and patient population
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Prostate Hippocampus
UCL I2CVB ISBI DecathProst HarP Dryad DecathHip

Static 70.91 (±6.02) 93.05 (±0.29) 92.27 (±0.26) 91.90 (±0.36) 90.48 (±1.71) 94.12 (±0.05) 93.99 (±0.45)
Seq. 85.16 (±1.24) 21.04 (±5.63) 93.09 (±0.36) 91.91 (±0.38) 20.20 (±5.55) 57.19 (±1.02) 90.92 (±1.08)
EWC 86.87 (±0.49) 58.53 (±4.73) 88.43 (±0.61) 87.79 (±0.83) 88.01 (±3.47) 86.09 (±0.59) 31.93 (±6.09)
LwF 85.30 (±0.82) 22.89 (±4.82) 92.37 (±0.36) 91.48 (±0.33) 3.90 (±1.97) 46.00 (±1.62) 90.85 (±1.08)
Reh. 85.94 (±0.76) 90.64 (±0.77) 93.39 (±0.28) 91.55 (±0.34) 88.17 (±3.63) 92.07 (±0.15) 91.16 (±1.17)
MiB 86.31 (±0.62) 48.87 (±6.55) 92.96 (±0.39) 92.11 (±0.27) 82.45 (±2.94) 85.27 (±0.32) 20.75 (±6.99)
RW 84.08 (±1.66) 26.51 (±6.13) 93.18 (±0.32) 92.07 (±0.41) 7.33 (±3.77) 34.87 (±1.86) 91.07 (±1.03)

Table 1. Continual learning performance as Dice coefficient. The first row shows the upper bound of training a model
statically with all training data of the respective anatomy. We then see the performance of sequential training with and without
(Seq.) several continual learning strategies (EWC, LwF, Reh., MiB and RW). The Dice performance is reported of the final
model (after training with all tasks).

and to model robustness caused by larger and more diverse
training data. The assumption is that if a model trained on T1
is later trained on T2, the amount of forgetting for T1 will be
lower the more similar the data distribution and the higher
the initial performance of the model on T2.

For prostate segmentation (first heatmap), I2CVB is a clear
outlier. In the case of hippocampus, the model trained on
HarP performs worse on DecathHip and the other way around.
While the HarP model achieves a 86% Dice on Dryad, the
Dryad model only reaches 50% on HarP. This is likely due
to the much larger size of HarP (see Table 5). The same does
not hold for pulmonary embolism, where the model trained
with the larger CAD-PE dataset badly fails on FUMPE.

Continual learning methods
Next, we inspect the performance when models are trained in
a sequential fashion, summarized in Table 1 for the prostate
and hippocampus anatomies. In the first row, we report the
upper bound of a static model trained with all shuffled train-
ing data from the respective anatomy. The following row
shows the result of training a model sequentially in a trivial
manner, and further rows are for different continual learning
strategies which attempt to dampen the amount of forget-
ting. Reported is the Dice of the final model after training
in the orders UCL → I2CV B → ISBI → DecathProst and
HarP→ Dryad→ DecathHip.

Over both anatomies, the Rehearsal29 (Reh.) method is the
most effective at preventing forgetting. This is consistent with
previous research29. However, this strategy cannot always be
used as it requires samples to be stored from previous tasks in
order to interleave them in future training. This is not possible
in many scenarios, where rehearsal would be an additional
upper bound. In these cases, EWC and RW are good alterna-
tives, reliably reducing the amount of forgetting. We directly
illustrate the forgetting as inverse backward transfer in Figure
4 (y-axis), where we see that EWC (t) and Rehearsal (6)
maintain high backward transfer scores.

Note, however, that this often comes at the cost of a loss of
model plasticity, reducing the performance on later tasks. For
instance, while the sequential model shows a Dice of 91.91%

in DecathProst (the last task), it decreases to 87.79% for EWC.
For hippocampus segmentation, this behavior is much more
pronounced. The Dice on DecathHip falls from 90.92% to
31.93% for EWC and 20.75% for MiB. This is illustrated
as forward transfer (x-axis) in Figure 4, where EWC shows
negative values while Rehearsal stays close to zero.

We further analyze the behavior of trivial sequential training
alongside the best-performing Rehearsal method and EWC
by observing the training trajectories in Figures 3 and 5.

Task

Method

Epochs

D
ic
e

Figure 3. Learning trajectory for prostate segmentation.
The vertical lines mark task boundaries, i.e. when training
with a new task starts. Each tasks is displayed with a different
color, and we compare trivial Sequential training (solid lines)
to EWC (dashed) and Rehearsal (dotted).

The solid lines for sequential training mostly depict a rapid
fall after task boundaries. We only see a marked recovery
in Figure 3 for UCL (cyan) after training with I2CVB (sec-
ond stage) is concluded. However, this is likely due to the
inherent good performance of models trained with ISBI and
DecathProst on UCL (see Figure 2). Both Rehearsal and EWC
considerably reduce the amount of forgetting. However, the
decreased plasticity manifesting as a negative forward transfer
for EWC is evident, with the dashed lines of a new task often
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Figure 4. Relative backward (y-axis) and forward (x-axis) transfer for sequential segmentation of three regions of interest,
averaged over all use-case datasets. Backward transfer is the inverse forgetting and forward transfer measures how well the
model adapts to future tasks. For both metrics, higher is better, and results near zero can be realistically expected.

starting below the sequential equivalents (most noticeable in
Figure 5 for DecathHip at the third hippocampus stage).

Task

Method

Epochs

D
ic
e

Figure 5. Learning trajectory for hippocampus
segmentation. A loss in model plasticity for EWC is clearly
noticeable at the third training stage.

Pulmonary embolism results and task orderings
For the segmentation of pulmonary embolism, we examine
two possible orderings, i.e. CAD-PE followed by FUMPE
and vice-versa. We recall that the performance on the difficult
FUMPE dataset was only of 7.3% Dice on in-distribution test
data and 7.6% on CAD-PE (see Figure 2). On the other hand,
CAD-PE shows an in-distribution performance of over 75%
Dice but abysmal results on FUMPE (1.8%).

Table 2 summarizes our findings. In the first direction
(CAD−PE→ FUMPE), we see the situation where we have
a model that performs well in in-distribution data. However,
further training after a distribution shift causes the model to
forget by 93.97% its ability to produce adequate segmenta-
tions. Such an abrupt performance decrease should be de-

tected at all costs. Fortunately, Rehearsal and EWC strategies
prevent this fall in performance. If we observe the second
scenario (FUMPE→CAD−PE) we note a similar behavior.
Though the absolute amount of forgetting is lower, the relative
forgetting is just as significant. Unlike in the previous order
Rehearsal does not prevent forgetting, likely due to the lower
number of cases in this dataset, which means that the number
of interleaved T1 samples is comparatively small.

This extreme case shows how important task orderings are
when comparing continual learning methods. Ideally, all or-
derings should be considered, but this can be computationally
prohibiting when training 3-dimensional segmentation archi-
tectures. Alternatively, static in-distribution and inter-task
performance results should be taken into account. We also
see that relative backward transfer is a more intuitive metric
for assessing the degree of forgetting than the absolute alter-
native, which requires in-tandem consideration of the base
performance.

Multi-head architectures
In previous experiments, we assumed that the entire model
was sequentially trained. Continual learning is sometimes
evaluated in a multi-head setting where the last network layer
is kept task-dependent and not updated after training with its
respective task15. During inference, the corresponding head
is used alongside the shared body. If the task precedence is
not known for a sample during inference, it can be inferred
from image characteristics such as the distribution of intensity
values or the ability of an autoencoder to reconstruct it19, 30.

We look at how relevant this distinction is for the task
of semantic segmentation by leaving the last layer task-
independent. Table 3 displays the performance delta of using
the “correct” head vs. that of the final model. We observe
that in most cases the difference is minimal and there is no
consistent pattern regarding which head is preferable. Only
for LwF does using the correct head significantly deteriorate
performance. These results indicate that, for segmentation,
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T1 =CAD-PE→T2 =FUMPE T1 =FUMPE→T2 = CAD-PE
FUMPE CAD-PE CAD-PE FUMPE

Dice Dice BWT BWT (%) Dice Dice BWT BWT (%)
Static 16.81 (±7.37) 68.86 (±17.78) - - 68.86 (±17.78) 16.81 (±7.37) - -
Seq. 5.44 (±3.34) 4.49 (±5.31) -69.99 -93.97 73.12 (±14.72) 1.83 (±2.79) -8.97 -83.06
EWC 1.28 (±1.51) 72.44 (±13.31) -1.90 -2.55 9.90 (±11.60) 8.77 (±4.08) 0.50 6.00
LwF 4.63 (±3.42) 5.97 (±8.16) -70.17 -92.16 74.34 (±13.51) 1.86 (±2.87) -9.91 -84.20
Reh. 6.35 (±7.92) 69.94 (±14.17) -5.33 -7.08 72.32 (±16.98) 3.81 (±2.63) -5.99 -61.11
MiB 2.21 (±2.46) 12.52 (±8.90) -63.08 -83.44 66.95 (±16.10) 0.32 (±0.33) -14.37 -97.83
RW 5.36 (±4.54) 7.56 (±11.52) -67.65 -89.95 72.97 (±13.99) 1.86 (±2.75) -4.05 -68.54

Table 2. Performance of sequential pulmonary embolism segmentation on two different orderings. The Dice is reported for
the final model (after training with T2). For T1, the absolute and relative backward transfer (BWT) is also reported.

Prostate Hippocampus T1 =CAD-PE T1 =FUMPE
UCL I2CVB ∆ ISBI HarP Dryad CAD-PE FUMPE

Dice ∆ IoU ∆ Dice ∆ IoU ∆ Dice ∆ IoU ∆ Dice ∆ IoU ∆ Dice ∆ IoU ∆ Dice ∆ IoU ∆ Dice ∆ IoU ∆

Seq. -0.01 -0.02 -0.04 -0.03 0.03 0.06 -0.05 -0.03 -0.04 -0.04 -0.00 -0.00 -0.01 -0.01
EWC -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.00 -0.05 -0.05 0.01 0.01
LWF -85.30 -74.37 -22.89 -12.99 -1.70 -2.89 -0.56 -0.29 1.32 1.13 0.01 0.01 -0.00 -0.00
Reh. -0.04 -0.06 0.01 0.02 0.02 0.04 -0.02 -0.03 -0.03 -0.06 -0.03 -0.02 -0.02 -0.01
MiB -1.38 -2.12 -1.15 -0.98 -0.11 -0.18 0.24 0.34 -0.68 -1.02 3.96 2.43 0.09 0.04
RW 0.00 0.01 -0.00 -0.00 0.03 0.05 -0.02 -0.01 -0.00 -0.00 0.08 0.05 -0.02 -0.01

Table 3. Performance difference of evaluating models with the “correct” (task-dependent) head parameters recorded after
completing the corresponding training stage vs. using the head of the final model, i.e. after training with the last task. For
pulmonary embolism, both orders are reported.

maintaining task-specific heads does not have a significant ef-
fect and may actually decrease performance, as the old heads
are not tuned to the new parameters of the shared body.

Qualitative evaluation
It is interesting to consider which changes forgetting causes
in segmentation masks. Unlike image classification, segmen-
tations may give a direct indication of when and how a model
is failing. Figure 6 displays examples from the UCL and
HarP datasets, which are the first tasks for the prostate and
hippocampus use cases, respectively.

The first and second columns show the ground truth and
the segmentation produced by the model right after finish-
ing training with the corresponding task. Further columns
show the prediction of the final model with different con-
tinual learning strategies. Like when trivially training the
model in a sequential fashion (Seq at Tn), methods LwF and
RW produce scattered segmentation masks with additional
connected components. EWC maintains the integrity of the
hippocampus segmentation, but not the prostate one. This
is likely due to the increased rigidity of the hippocampus
model, which in turn results in negative forward transfer (see
Figure 4). Rehearsal generally maintains the correct shapes,
though the prostate mask is larger than should be and includes
one additional connected component. Finally, MiB success-
fully produces reasonable masks in both cases, though slightly
lower-segments the prostate.

Hardware and run times
Our experiments were carried out in a system with 8 NVIDIA
Tesla T4 (16 GB) GPUs, 2 Intel Xeon Silver 4210 CPUs, and
256GB DDR4 RAM. Experiments were run in parallel, each
taking up one GPU with the exception of the LwF experiments
for the prostate and pulmonary embolism use cases. For these,
2 GPUs were used in tandem.

Table 4 provides an overview of the training times needed
for one epoch for each method and anatomy. The hippocam-
pus experiments were the fastest due to the lower resolution,
while pulmonary embolism took the longest. The methods
that required the longest were LwF and MiB, almost doubling
the time required per epoch in several instances.

Prostate Hippocampus Pulm. Emb.
Seq. 214.3 (±3.1) 117.3 (±20.6) 216.3 (±33.3)
EWC 215.25 (±3.9) 131.0 (±5.2) 227.0 (±41.6)
LwF 423.3 (±591.5) 233.3 (±252.2) 469.0 (±299.6)
Reh. 206.0 (±3.16) 140.3 (±21.6) 223.5 (±33.5)
MiB 365.5 (±99.1) 212.0 (±72.0) 318.8 (±100.3)
RW 223.5 (±1.3) 136.1 (±1.0) 234.3 (±32.1)

Table 4. Seconds required for completing one epoch of
training. We report the mean and standard deviation over
each anatomy, and in the case of the pulmonary embolism
experiments, over both training orders.
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Figure 6. Qualitative deterioration of segmentation performance when training models sequentially for UCL and HarP, for
which we display region-of-interest crops of axial views and 3D renderings produced with ITK-SNAP31.

Discussion

In dynamic clinical environments, models are needed that
can adapt to changing imaging protocols and disease pat-
terns. While the importance of continual learning for medical
imaging segmentation is being recognized, our community
lacks the reporting standards and benchmark datasets that
researchers employ for natural image classification.

With the Lifelong nnU-Net, we establish a framework for
the standardized evaluation of continual segmentation. We
extend the popular nnU-Net pipeline with all components
needed for training and evaluating segmentation architec-
tures in a sequential fashion, including five popular continual
learning strategies and metrics specific to continual learning
paradigms.

Our evaluation across three different segmentation use cases
allows us to gain valuable insights. Consistent with previous
research29, Rehearsal leads to the best results, considerably
decreasing forgetting by interleaving a subset of cases from
previous tasks in the training data. Of course, a rehearsal-
based strategy is only feasible if this data can be stored. For
scenarios where this is not the case due to patient privacy
considerations, the regularization-based EWC method proves
to be a suitable alternative, effectively reducing forgetting
though at the cost of reducing the ability of the model to adapt
to new tasks. Finally, the LwF, MiB and RW methods do not
appear to be well-suited to our setup.

One disappointing takeaway in our study is that no method
resulted in positive backward transfer (BWT). This is clearly
illustrated in Figure 4, where we see that even the best meth-

ods only manage to prevent forgetting, reaching a BWT of
zero. This means that no knowledge acquired from later tasks
improves performance on earlier tasks. Therefore, maintain-
ing wholly independent models and using the corresponding
model during inference would outperform all explored con-
tinual learning methods. We also only saw positive forward
transfer in the prostate experiments. This means that pre-
ceding training with earlier tasks and then fine-tuning only
minimally improves performance when compared to training
a model with the corresponding task from scratch.

In addition, we found that the practice of maintaining task-
specific heads, common in the continual learning literature,
do not significantly affect the performance for continual seg-
mentation in medical images. Further studies should look into
leaving a greater portion of the network task-specific.

We have identified several limitations in our study. Firstly,
due to limited computational resources, we did not perform
a grid search for all possible hyperparameters, such as the
weight of the regularization loss for EWC and the memory
buffer for Rehearsal. Instead, we used the parameters sug-
gested in the original publications or selected with preliminary
experiments using a subset of the training data and fewer iter-
ations. We urge the reader to read the results as one possible
trade-off between plasticity and rigidity, or between training
time and performance. In real-world use, these hyperparam-
eters should be tuned to obtain the desired trade-off with a
separate validation set.

Secondly, we limited our study to the full-resolution patch-
based 3D nnU-Net variant, which is suggested for most ap-
plications. We did not repeat our experiments on the slice-
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by-slice or 3D down-sampled networks. Our evaluation also
focuses on the incremental domain learning scenario which
is most relevant in the context of medical imaging8.

Finally, as of now, there is a limited catalog of contin-
ual learning methods in the Lifelong nnU-Net framework.
We looked to have sufficient representation of individual ap-
proaches across different strategies, and implemented a mix-
ture of highly popular but older methods (simple Rehearsal,
EWC and LwF) and newer approaches (MiB and RW). In the
future, we hope this catalog grows both from our efforts and
the contributions of other members of the community.

Methods
An effective framework for continual image segmentation has
the following requirements:

1. it has all components for achieving state-of-the-art static
segmentation results and supports both two- and three-
dimensional architectures (like the nnU-Net),

2. simplifies the evaluation of incremental domain scenarios
by relying on widely accepted dataset formats and the
alignment of label characteristics across datasets,

3. includes integrated evaluation logic that tracks the per-
formance of the model for different tasks during training
with appropriate metrics, and

4. supports existing state-of-the-art continual learning so-
lutions, including the training of multi-head models that
maintain both shared and task-independent parameters.

We start this section by introducing the three segmentation
use cases that we explore, as well as our notation. We then
outline how we approach each one of the requirements stated
above to ensure that the Lifelong nnU-Net framework provides
a solid foundation for medical continual learning research.
Finally, we describe the continual learning methods used and
briefly state details of our experimental setup.

Datasets
We explore the problem of continual image segmentation
for three very different use cases. To ensure reproducibility,
we use only openly available datasets and align the label
characteristics according to the process outlined below. For
each anatomy, we select an array of datasets that act as our
tasks T1...Tn. Table 5 provides an overview of data and label
characteristics for all datasets.

The first use case we approach is the segmentation of the
prostate in T2-weighted MRIs, for which we use a corpus of
four data sources. We utilize the data as provided in the Multi-
site Dataset for Prostate MRI Segmentation Challenge32, 33

for sites A (ISBI34), C (I2CVB35) and D (UCL36). Lastly, we
use the data provided as part of the Medical Segmentation
Decathlon37 (DecathProst). The segmentation masks contain
two labels representing the peripheral zone and central gland,
which we join into one prostate label. Prostate segmentation

Dataset # Cases Resolution Spacing ROI % # CC
UCL 13 [24 384 384] [3.3 0.5 0.5] 0.01 1.00
I2CVB 19 [64 384 384] [1.3 0.5 0.4] 0.01 1.00
ISBI 30 [19 384 384] [3.7 0.5 0.5] 0.03 1.00
DecathProst 32 [19 316 316] [1.0 1.0 1.0] 0.03 1.00
HarP 270 [48 64 64] [1.0 1.0 1.0] 0.01 1.60
Dryad 50 [48 64 64] [1.0 1.0 1.0] 0.02 1.04
DecathHip 260 [36 50 35] [1.0 1.0 1.0] 0.05 1.05
FUMPE 35 [251 512 512] [0.9 0.6 0.6] 0.00 3.86
CAD-PE 91 [453 512 512] [0.9 0.7 0.7] 0.00 20.46

Table 5. Image and label characteristics; including the
number of cases, mean resolution and spacing, mean
percentage of images labeled as the region-of-interest (ROI)
and number of connected components (CC).

is a rather easy problem, though crucial for determining the
possible location of tumorous tissue preceding a biopsy, and
the shape of the prostate varies very little between different
patients. Figure 7 shows examples of the four datasets.

ISBI DecathProst

I2CVBUCL

Figure 7. Exemplary slices for four subjects from the
prostate segmentation datasets.

The second use case is the segmentation of the hippocam-
pus in T1-weighted MR images, for which we include three
data sources. The Harmonized Hippocampal Protocol data38,
henceforth referred to as HarP, contains senior healthy sub-
jects and patients with Alzheimer’s disease. The Dryad39

dataset has fifty additional healthy patients. As a third data
source, we use the images provided as part of the Medical
Segmentation Decathlon37 (DecathHip), from both healthy
adults and schizophrenia patients. For the segmentation of
the hippocampus, Dices of over 90% can be expected24. Ex-
emplary image slices from all three datasets can be found in
Figure 8.

Finally, we explore the segmentation of pulmonary emboli
in chest CTs. This is a very complex task, as emboli can
occupy few voxels and there can be multiple emboli in a scan,
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DecathHipDryadHarP

Figure 8. Exemplary slices for three subjects from the
hippocampus segmentation datasets.

possibly in different lobes. The first dataset we use is CAD-PE,
containing 91 pulmonary angiography scans initially released
for the Computer Aided Detection for Pulmonary Embolism
Challenge40. Each embolism was originally labeled with
a different class, but we merge these into one pulmonary
embolism label. Secondly, we use the Ferdowsi University of
Mashhad’s PE (FUMPE)41 dataset, containing cases with and
without embolisms and generally a lower number of emboli
(see Figure 5). Exemplary slices can be observed in Figure 9.

FUMPECAD-PE

Figure 9. Exemplary slices for subjects from the two
pulmonary embolism segmentation datasets.

We select these three problem settings to ensure variability
across modality, shape and size of the segmentation masks,
and difficulty of the task at hand. Of course, our framework
allows for the fast evaluation of further use cases. For all
datasets, we divide 20% of the data for test purposes and
maintain this split across all experiments. We make the splits
publicly available alongside our code.

Notation
Consider n tasks T1, ..., Tn. Model F2 is trained only on
the training data of task T2. Model F[1,2,3] was trained se-
quentially on tasks T1, T2 and T3, in that order. F{1,2,3}
is instead a static model, trained with shuffled training data
from all three tasks. Finally, we use Fi(T j) to refer to the
performance of model Fi applied to the test data of task T j.

Aligning label characteristics
Very often, segmentation datasets that explore similar prob-
lems are not uniform in terms of label structure. Contin-
ual learning is only feasible if the annotations are consistent
throughout datasets. Therefore, before a model can be trained
in a continual fashion, a crucial pre-processing step involves
aligning label characteristics.

Consider, for instance, the problem of prostate segmenta-
tion. Dataset T1 may include annotations for the prostate
class, distinguishing prostate voxels (which take value 1 in
the segmentation mask) from the background marked with
zeros. Dataset T2 may instead include annotations for the
central gland (label 1) and peripheral zone (label 2), two re-
gions that together make up the prostate. Yet another dataset,
T3, may include annotations for both the prostate (label 1)
and bladder (label 2). We can align these labels to take up the
structure of dataset A by converting annotations for labels 1
and 2 to class 1 (prostate) in dataset B and converting label 2
(bladder) to class 0 (background) for dataset C. This process
is visualized in Figure 10. Of course, an alternative scenario
would be incremental label learning, where the number of
labels grows over time. In this case, one would maintain the
separate bladder label in T3.

ORIGINAL

P
R
O
ST
A
TE

ALIGNED

H
IP
P
O
C
A
M
P
U
S

Figure 10. Alignment of label characteristics for prostate
(merging the central gland and peripheral zone) and
hippocampus (merging head and body).

Aligning these characteristics is crucial for obtaining
enough open-source data for a meaningful evaluation of dif-
ferent use cases. In Lifelong nnU-Net, we have included a
pre-processing script that easily performs these steps.

Multi-head models
The natural alternative to training a model sequentially – under
our data availability constraints – is maintaining one model
per task and selecting which model to use for each subject dur-
ing inference. This option ensures that no forgetting occurs,
though it leaves out any possibility for backward and forward
transfer and increases the memory requirements linearly with
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the number of tasks. Several continual learning methods adopt
an intermediate approach: earlier layers are shared but last lay-
ers are kept task-specific25, 26. The intuition is that multi-head
models allow earlier parameters to learn from new data while
the last network layers conserve task-specific information.

We implement this behavior in the Lifelong nnU-Net frame-
work as visualized in Figure 11. For the first task, the training
proceeds as usual. Before training takes place with the second
task, the model head is replicated. Training then goes on with
the shared body and the new head. This process is repeated for
all tasks. During inference, a head is selected for each image
and combined with the shared body. Which parameters make
up the head is determined by the user. For the experiments on
multi-head architectures, we use seg_outputs as a split point.

TRAINING

INFERENCE

Figure 11. During training, the shared body is sequentially
modified while the model head remains task-specific. During
inference, the corresponding head is merged with the final
state of the shared body to extract a prediction.

Evaluation Logic and Metrics
The nnU-Net includes methods for dataset preparation, train-
ing and performing inference. During training, the perfor-
mance on a validation set is monitored. Considering the
requirements of continual learning, we expanded this logic
with:

• an evaluation module for testing on all datasets of inter-
est, to be run after training has concluded, and

• the extended behavior of tracking the performance during
training on several different validation sets. This gives
the user insight into how the training with any task Ti

gradually affects the training with task T j, and allows
them to export expressive training trajectories as that
visualized in Figures 3 and 5.

These modifications allow for quick validation of contin-
ual learning settings and simplify the validation on out-of-
distribution data without needing to store all model states.

In addition to observing the segmentation performance in
the form of the Dice coefficient, we explore metrics from
continual learning research that provide a more intuitive way
of understanding the results. These are described in the fol-
lowing and visualized in Figure 12.

The primary goal of continual learning in the open world,
where distribution shifts are commonplace, is to avoid over-
fitting to image characteristics in the last batches so that the
final model can cope with samples from all seen sources. Be-
sides avoiding the dreaded catastrophic forgetting, the model
should ideally achieve both backward and forward transfer42

and ensure reliable performance across all subject groups.
Forgetting and backward transfer (BWT): we measure

the difference between the performance of a model in task Ti
right after training with that task and after training with further
tasks. If the result is negative, this implies forgetting has
occurred. If, instead, the result is positive, then the desirable
property of backward transfer was achieved, e.g. training
with tasks Ti+1 improves the performance on task Ti.

BWT = F[...,i,...](Ti)−F[...,i](Ti) (1)

Forward transfer (FWT): we calculate how advantageous
the fine-tuning process is for a certain task, i.e. the difference
between the continual model state right after training with task
Ti and model Fi trained solely on task Ti. A positive result
implies that preceding training with data from other tasks
improves the performance of the model after fine-tuning, and
a negative result signifies that the model is unable to adapt to
Ti. This second case may occur when using certain continual
learning methods that reduce model plasticity. Though other
definitions consider this metric for all future tasks, we focus
on the corresponding task and define:

FWT = F[...,i](Ti)−Fi(Ti) (2)

For both metrics, we report the relative performance change
with respect to the right-hand side of the subtraction. This
allows us to compare the performance across different use
cases.

Inter-task performance: We train one separate model for
each task and visualize how each model performs on the other
tasks. This helps us estimate the compatibility between tasks,
which should facilitate continual learning.

Continual learning methods
Rehearsal: The simplest form of lifelong learning entails
interleaving samples from previous tasks into the training
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METRICS

STATIC TRAINING

Train with1Train with1

Test on     ,2

DICE

Test on    ,2

DICE

CONTINUAL TRAINING

Train with3Train with1

Test on     ,2

DICE

Test on     ,4

DICE

BWT: (     -     ) / FWT: (     -     ) /
Inter-task 

performance:

Figure 12. Continual learning evaluation metrics. We compare the performance of the segmentation model in terms of the
Dice coefficient for static (left) and continual (right) training. We calculate the backward transfer (BWT) for Ti as the
difference in performance between the model after training with Ti and after training with future tasks T|( j>i); and the forward
transfer (FWT) as the difference between only training the model with Ti and preceding this training with previous tasks. The
BWT shows the degree of forgetting and the FWT exposes the plasticity of the model or ability to learn new knowledge.
Finally, the inter-task performance displays how well a model trained with each task transfers to other domains.

data. The size of the memory buffer determines how many of
such samples are stored. The Lifelong nnU-Net framework
allows the user to perform this type of training with only one
line of code, specifying the tasks and size of the memory
buffer. The necessary command is exemplified in Listing 1.

1 nnUNet_train_rehearsal 3d_fullres

2 # Specify tasks and fold

3 -t 11 12 13 -f 0

4 # Ratio of previous task data

5 -samples_in_perc 0.15

6 # Other training parameters

7 -num_epoch 250 -d 0 -save_interval 25

8 # Layer dividing body from head

9 -s seg_outputs

10 # Store evaluation results

11 --store_csv

Listing 1. Command-line directive for performing training
with rehearsal. An optional seed argument can also be used to
select samples from previous tasks in a deterministic manner.

Running other methods proceeds in a similar manner, al-
though with different hyperparameters. Rehearsal is a very

effective strategy that consistently ensures good performance,
though not admissible in settings that do not allow the storage
of training samples.

Elastic Weight Consolidation: Regularization-based ap-
proaches assess the importance of each training parameter
and penalize the divergence from the previous state weighted
by the importance. The main difference among regularization-
based methods consists in how the importance is calculated.
The popular EWC method25 utilizes the Fisher Information
Matrix, which measures how far model outputs are from the
one-hot encoded predictions. The training process is outlined
in Algorithm 1.

Learning without Forgetting: The LwF method26 con-
sists of three training stages, outlined in Algorithm 2.

After the training phase for task Ti, and before starting
task Ti+1, model outputs F i

[i](Ti+1) are recorded and a new
head is created for Ti+1. Then, shared parameters are frozen
and only the new head is trained. Finally, the shared body
alongside all heads is fine-tuned. The outputs recorded in the
first step are used for training previous heads.

Riemannian Walk: A combination of the previously in-
troduced EWC with Path Integral forms RW27. The main
difference to EWC is the online calculation of the Fisher Infor-
mation Matrix. With this modification, the additional forward
pass at the end of the training to obtain the Fisher values can
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Algorithm 1: Elastic Weight Consolidation
Data: {Ti}0<i≤nr_tasks
Args :λEWC
// Initialize model Fθ

1 θ ← initialize_model;
// State and importance buffers

2 Θ, Ω← [] , [];
// Train with first task

3 θ ← train(θ ,T1);
4 for i← 2 to nr_tasks do

// Store model states, importance
5 Θ←Θ∪θ ;
6 Ω←Ω∪Fisher(Ti−1);

// Train with EWC loss
7 θ ← train(θ ,Ti,Θ,Ω,λEWC);

Algorithm 2: Learning without Forgetting
Data: {Ti}0<i≤nr_tasks
Args :λLwF
// Initialize body and head

1 θB,θ
1
H ← initialize_model;

2 ΘH ←
{

θ 1
H
}

;
// Train with the first task

3 θB,θ
1
H ← train(θB,θ

1
H ,T1);

4 for i← 2 to nr_tasks do
// Store outputs

5 Y ←
{

θ
j

H(θB(Ti))
}

j<i
;

// Create and train new head
6 ΘH ←ΘH ∪θ i

H ;
7 θ i

H ← train(θB,θ
i
H ,Ti);

// Train all parameters
8 θB,ΘH ← train(θB,ΘH ,Ti,Y ,λLwF);

be omitted.
Modeling the Background: The MiB28 method – specifi-

cally developed for semantic segmentation – uses a modified
cross entropy loss in combination with a knowledge distil-
lation term. The knowledge distillation is used to force the
activation of the current network Fθ to be similar to the pre-
vious network Fθi−1 . Algorithm 3 outlines this process.

Experimental details and hyperparameters
We train the full-resolution version of the nnU-Net which is
recommended for most applications24. This is a patch-based,
three dimensional network. For each of our three use cases,
models are trained with every dataset for 250 epochs.

The nnU-Net automatically configures hyperparameters for
the network architecture and training process - such as the
number of encoding blocks, learning rate and patch size - from
the training data. It is possible that these parameters differ
between datasets of the same use case. In our framework,

Algorithm 3: Modeling the Background
Data: {Ti}0<i≤nr_tasks
Args :αMiB, lkdMiB
// Initialize model Fθ

1 θ ← initialize_model;
// Train with the first task

2 θ ← train(θ ,T1);
3 for i← 2 to nr_tasks do

// Extract previous model
4 θ∗← θ ;

// Train with MiB loss(Ti) using
previous model

5 θ ← train(θ ,θ∗,Ti,αMiB, lkdMiB);

we always use the configuration chosen for the first dataset,
which is the most realistic choice as in a real continual setting
only this data is available when building the architecture.

For continual learning, we select hyperparameters used in
previous work or which showed reasonable loss trajectories
in preliminary experiments with a fraction of the epochs. For
Rehearsal, we state the number of cases from previously seen
tasks to be included in the current task to 25%. For EWC,
we use the default value of λ = 0.4 to weigh the importance
of the regularization term. In the case of LwF, we set the
knowledge distillation temperature to 8 for hippocampus and
64 otherwise. For RW, λ = 0.4 for regularization and α = 0.9
for calculating the Fisher values are used. These are updated
every 10th iteration. MiB expects two hyperparameters. The
first weights the knowledge distillation loss and is set to 10
for hippocampus and 0.6 for all other cases. The second
parameter is used to hardify the soft labels and is set to 0.9
for the hippocampus experiments and 0.75 otherwise.

We refer the reader to our code base and documentation for
further details.

Data availability
All datasets used in this work are openly available and down-
loading instructions can be found under the respective refer-
ences.

Code availability
Our code is available under https://github.com/
MECLabTUDA/Lifelong-nnUNet. Upon acceptance,
we will facilitate access to the trained models.
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Discussion and limitations

Our results present interesting insights but also some disappointing facts about the current state of
continual learning for medical image segmentation. Most notably, none of the five methods we test
consistently results in positive backward transfer. Instead, methods that are successful at preventing
forgetting (most notably the regularization-based EWC) only do so at the cost of plasticity loss.

There are also several limitations in our study. The first is that due to computational constraints we
only carry out experiments for the full-resolution patch-based nnU-Net. This network achieves the best
performance of the three architectures, but the nnU-Net framework also includes the possibility to train
3D downscaled and slice-by-slice networks. We did ensure when implementing the code that all methods
would work with these three architectures.

Further, we study the possibility of keeping task-independent heads; but do not test keeping task-
independent parameters for any other split points. Again, we do implement this functionality in the
code, so we wish to explore further configurations in the future. Finally, we wish to establish even more
benchmark datasets than the three anatomies we consider as of now, though we believe the selected
tasks are sufficient for getting an overview of the benefits and downsides that different strategies for
forgetting prevention signify.

I would like to highlight that this is an ongoing project. We built several other functionalities in the
repository, such as extracting uncertainty scores (González et al., 2021), using domain identification
oracles (González et al., 2023) and augmenting the models with transformers (Ranem et al., 2022).
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12. Safe and Efficient Active Learning in Clinics

One new risk that continual learning introduces is the possibility that erroneous data is fed into the
training set, resulting in unreliable predictions later on. Manufacturers invest considerable resources
into building high-quality training sets, often employing medical professionals with high consultancy
fees to produce annotations. Meanwhile, doctors working in clinical practice are overworked and do not
have the time to, for instance, delineate lesions in 3D images.

In this section, we present one example of how a DL system can safely support a radiologist in detecting
pulmonary emboli. We illustrate this workflow in Figure 12.1. The radiologist first performs an initial
diagnosis. In parallel, a UNet model is used to segment emboli in the image. If the quality assurance
system (which may include the components seen in Chapters 3 to 5) deems the prediction to be acceptable,
it is supplied to the radiologist as a second opinion.

M3d-CAM

QA

i3Deep
Refinement DNN

Figure 12.1.: From left to right: a radiologist receives a chest CT scan and produces an initial diagnosis.
In parallel, a UNet extracts a segmentation which, if deemed confident by the QA system,
is supplied to the radiologist alongside saliency maps. With the additional input, the doctor
rectifies the report by adding small emboli that were initially not detected; and later corrects
the segmentationmask for a portion of the volume. The image and corrected segmentation
can then be used to improve model performance as an additional data sample.

A key aspect for generating trust lies in increasing transparency in the workings of the model. Saliency
maps are the most popular DNN interpretability technique and highly sought-after by end-users. The
system could supply this information together with the prediction so that the clinician can further certify
the validity of the suggestion. The physician can then correct the report after looking more closely at
certain areas by combining his insights with those of the model.
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The automatically generated segmentation mask could, after being updated, be used as an additional
data sample. Active learning methods, such as our i3Deep approach introduced in the following section,
can produce high-quality annotations with minimal user input. The image with the corresponding
segmentation mask can then be used for further training for an acceptable amount of work.

A note on interpretability

In 2020, we releasedM3d-CAM (Gotkowski et al., 2021), a plug-and-play library that allows the extraction
of attention/saliency maps with several methods for two-and three-dimensional data, and which works
for most CNN-based PyTorch models (for classification or segmentation). The project is hosted at
github.com/MECLabTUDA/M3d-Cam and also integrated into Gandlf (Pati et al., 2021).

Our aim with M3d-CAM was to simplify the process of extracting saliency maps for medical imaging
models. We designed the library so that it could be seamlessly integrated with existing code basis by
allowing the user to inject the extraction mechanism in their CNN-based PyTorch model. The project was
quite well received. At the time of writing this thesis, it has 216 stars and 26 forks.

Nevertheless, recent work on the trustworthiness and usability of attention maps puts into question
whether they are the best strategy to increase transparency of medical DNNs. Arun et al. (2021) find
that they are often unreliable and difficult to interpret, though GradCAM, one of the methods included in
M3d-CAM, was found to be one of the most helpful from several explored approaches. Alqaraawi et al.
(2020) show that while the maps provide users a better understanding of some model features, they
do not help them predict which regions of a new image the model will focus on, displaying a lack of
repeatability in their behavior.

Part of this stems from the noisy nature of saliency maps, as they often highlight image regions that
contribute to features that take an important role in the model but are not directly involved in making
a particular decision (Kim et al., 2019). This indicates that other interoperability approaches, such as
counterfactual visual explanations (Goyal et al., 2019) that illustrate what modifications to an image
would alter the prediction, explanatory interactive learning where users can provide feedback to the expla-
nations (Schramowski et al., 2020) and model-agnostic surrogate explainers that supply patient-specific
interpretations (Kumarakulasinghe et al., 2020) may be better suited for increasing the transparency
of DNN models in a way that is helpful to clinicians. On the other hand, saliency maps have helped
identify cases of shortcut learning (Geirhos et al., 2020); and could potentially be utilized to prevent
model deterioration over time (Patra and Noble, 2020).

What interoperability methods(s) are adequate for an ML-based decision support system depends on the
particularities of the problem and the intended use. An usability analysis should always be performed
in collaboration with healthcare professionals before a product is released. Ideally, prospective studies
should continuously monitor how users interact with different sources of information.
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12.1. The paper: Efficient 3D interactive segmentation with i3Deep

One main goal of the RACOON (racoon.network) project, which I was involved with from 2020 to
early 2022, was to collect a multi-centre dataset across the network of German university hospitals
that contained CT scans from Covid-19 patients and corresponding lung lesion annotations. During
my involvement in the project, we developed methods to assist radiologists in producing high-quality
segmentations in a reasonable time frame. The publication i3Deep: Efficient 3D interactive segmentation
with the nnU-Net (Gotkowski et al., 2022) was one result of these efforts.

The paper was joint work with Karol Gotkowski, who thereby continued the research from his Master’s
thesis (Gotkowski, 2021), Anirban Mukhopadhyay and colleagues from the interventional radiology
department at the University Hospital Frankfurt. In particular, Andreas Bucher provided his counsel from
a clinical perspective. Isabel Kaltenborn and Ricarda Fischbach helped prepare and annotate in-house
chest CTs. The work was presented at the Medical Imaging with Deep Learning (MIDL) conference on
July 7th, 2022, in Zürich.

Contribution and impact

Until now we have assumed that, in continuous environments, training data becomes available over time.
However, I never specified how it is actually collected. While images are naturally acquired for diagnostic
purposes, in order to use them for supervised deep learning, physicians need to produce high-quality
annotations in the appropriate format. This is particularly difficult to obtain for image segmentation, as
manually delineating segmentation masks is highly time-consuming.

While there are existing methods for interactive image segmentation, these are often limited to lightweight
architectures so they can produce real-time improvements. This is a significant downside for challenging
problems where large architectures are required to obtain acceptable performance, such as lung lesion
segmentation. With i3Deep, we propose a method that trains a refinement network in an offline fashion.
The network accepts as input the image alongside corrected masks for only a few slices.

During the interaction with the clinician, only two forward passes are necessary: one for producing a
pre-segmentation from the initial DNN, where slices in potential need of correction are selected using
uncertainty estimation, and one through the refinement network. Correcting only one-fifth of the initial
segmentation results in this manner in a 40% improvement in Dice score.

Interactive methods are highly relevant for continual learning, as they allow the generation of high-quality
inputs validated by experts – which can serve as new training data – with a reasonable amount of effort.
In realistic scenarios where healthcare professionals are already overworked, we must develop techniques
that assist instead of hinder them.
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Abstract

3D interactive segmentation is highly relevant in reducing the annotation time for experts.
However, current methods often achieve only small segmentation improvements per inter-
action as lightweight models are a requirement to ensure near-realtime usage. Models with
better predictive performance such as the nnU-Net cannot be employed for interactive seg-
mentation due to their high computational demands, which result in long inference times.
To solve this issue, we propose the 3D interactive segmentation framework i3Deep. Slices
are selected through uncertainty estimation in an offline setting and afterwards corrected
by an expert. The slices are then fed to a refinement nnU-Net, which significantly improves
the global 3D segmentation from the local corrections. This approach bypasses the issue of
long inference times by moving expensive computations into an offline setting that does not
include the expert. For three different anatomies, our approach reduces the workload of
the expert by 80.3%, while significantly improving the Dice by up to 39.5%, outperforming
other state-of-the-art methods by a clear margin. Even on out-of-distribution data i3Deep
is able to improve the segmentation by 19.3%.

Keywords: interactive segmentation, nnU-Net, uncertainty, out-of-distribution

1. Introduction

Manual segmentation of 3D medical data such as CT, MRI or ultrasound scans is highly
time-consuming, as it often consists of hundreds of slices. Interactive segmentation reduces
the workload on experts by refining the segmentation from user interactions with the goal
to minimize the necessary amount and thus saving the expert time. Such methods could
enable an expert to segment a CT scan with just a few clicks.
The two requirements for interactive applications are a high predictive performance
and a low reaction time (< 1s). The first enables the expert to annotate the image with
much fewer interactions than when done manually, while the latter ensures the application
is usable in practice. Current approaches limit the model capabilities as all their computa-
tions are performed live. To this day, no approaches exist to our knowledge that try to lift
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this limitation and benefit from the much higher predictive performance of larger models.
Our framework addresses this and provides an alternative by moving the expensive compu-
tations into an offline setting. Not only does this lead to fast reaction times, but also enables
the use of large models, which provide much better segmentation results. Our method con-
sists of the following steps, illustrated in Figure 1.
First, we extract both initial segmentations and uncertainties with a presegmentation nnU-
Net for a subject. Based on the uncertainties, we automatically select a small number
of slices with a one-shot slice acquisition function and send these to the expert for
corrections. The corrections are then used by a refinement nnU-Net to improve the
segmentation globally by inferring from the local corrections. Both the presegmentation
and refinement nnU-Nets are trained once beforehand, with the framework solely relying
on inference during the interactive segmentation process.
The expert is not involved in the presegmentation or refinement stages, which reduces the
practical reaction time for the framework to zero. As a one-shot slice acquisition function
is used, only a single iteration with the framework is needed to significantly improve the
segmentations.
We demonstrate the effectiveness of our approach with an evaluation on the brain tumor and
pancreas datasets from the Medical Segmentation Decathlon and an out-of-distribution
in-house chest CT scan dataset with COVID-19 lesions. The code is open source and
released at: https://github.com/Karol-G/i3Deep

2. Related Work

A number of interactive segmentation approaches have been proposed over the years, which
we discuss in the following. An overview of the relevant methods in regards to predictive
performance and reaction time is given in Table 1.

Classical U-Net/FCN Konyushkova P-Net/iW-Net i3Deep

Predictive Performance Low Medium Low Medium High

Reaction Time Medium Slow Fast Fast Instantly

Table 1: Predictive performance and reaction times of interactive segmentation approaches.

Classical methods that are still popular today in the medical domain are Graph-Cut
(Greig et al., 1989), Watershed (Meyer, 1994) and Random Walker (Grady, 2006). These
methods are relatively fast even on 3D data, but have a low predictive performance by
current standards.
Deep interactive segmentation approaches often outperform classical methods and most of
them follow a very similar pattern of pretraining a refinement model with simulated user
input and then running inference with actual expert input. However, processing higher
resolution 3D images is computationally very expensive with CNNs. Therefore, approaches
that employ a U-Net or FCN have slow reaction times as it is the case with Bredell et al.
(2018); Li et al. (2021) and the 3D Slicer implementation of Sakinis et al. (2019).
As an alternative, other approaches use very lightweight 3D models like the P-Net (Wang
et al., 2018, 2019b; Lei et al., 2019; Liao et al., 2020; Xu et al., 2021) or iW-Net (Aresta
et al., 2019), which achieve a near-realtime reaction time, but have a lower predictive
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performance in turn.
Besides the approaches that are task-agnostic, there are also a number of methods that are
tailored to specific tasks like prostate, cell or vessel segmentation (Cheng and Liu, 2017;
Koohbanani et al., 2020; Dang et al., 2022).
Other approaches used in active learning, such as by Konyushkova et al. (2015, 2019), use
Boosted Trees uncertainties to find areas that should be corrected by an expert. Drawbacks
of this method are the limited predictive performance and the need to retrain after every
iteration.

3. Methodology

The i3Deep framework uses the nnU-Net (Isensee et al., 2021) for both the presegmentation
and refinement model, as it has a very high predictive performance and achieves state-of-the-
art results on many medical benchmarks. The training process of both models is explained
in 3.1 and the inference pipeline of i3Deep is outlined in 3.2.

3.1. Presegmentation & refinement nnU-Net training

We presume that a small number of subjects is already annotated, which make up the
train set. Both the presegmentation and the refinement nnU-Net are trained exclusively
on this train set once. The presegmentation nnU-Net is trained in a normal fashion, while
the refinement nnU-Net further uses the ground truth annotations of the training set to
simulate user interactions. For each image during training, slices of the ground truth are
randomly chosen and all other slices are set to zero in the image volume. This modified
image volume is then concatenated along the channel dimension of the image data and used
as training input. When presented with corrected slices during inference, the refinement
model is then able to utilize the corrections.

3.2. Inference pipeline

The inference pipeline consists of a four-stage process depicted in Figure 1.

Figure 1: Overview of our proposed i3Deep framework and its four stages.

3.2.1. Stage 1: Presegmentation & uncertainty computation

In stage one, the presegmentation model is used to run inference on new unseen subjects
to provide presegmentations alongside uncertainties from the model. Estimating the uncer-
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tainties for our approach can be done with multiple uncertainty predictors such as Test-Time
Augmentation (Wang et al., 2019a), Monte Carlo Dropout (Gal and Ghahramani, 2016) or
Deep Ensembles (Lakshminarayanan et al., 2017), which provide multiple varying predic-
tions for an image. The voxel uncertainty inherent to the variations of these predictions is
then quantified by computing their entropy. The uncertainty estimation process is expanded
on in Appendix A.

3.2.2. Stage 2: Slice acquisition

In stage two, a one-shot slice acquisition function selects multiple slices for each subject in
axial, coronal and sagittal orientation from the 3D image based on the quantified uncer-
tainties. The goal of this acquisition function is to select the minimum number of slices
necessary to maximally improve the segmentation in a single run.
First, for each slice the sum of all uncertainty voxels is computed. Next, slices that have
less uncertainty than any other slice within a minimum distance minDist are removed.
This leaves only slices that are local maxima and decreases uncertainty correlation between
slices. Afterwards, slices that have not enough uncertainty are removed as well, based on
a minUncert parameter. Of the remaining slices, further, only a subset of maxSlices is
selected that have the highest uncertainty. All three parameters are optimized after the
training of the presegmentation nnU-Net once on validation data.

3.2.3. Stage 3: Expert annotations

In this stage, the expert is involved in the process for the first time. The acquired slices
of the previous stage are sent to the expert for correction. The expert is provided for each
slice the presegmentation and subsequently corrects any mistakes they identify. We opt to
let the expert choose their preferred annotation tool to enable precise corrections even on
images with diffuse class borders, as it is the case with COVID-19 lesions. It is important
to note that stage 1 and 2 both happen in an offline setting and the expert is only involved
once these stages have been completed.

3.2.4. Stage 4: Refinement

In stage four, the refinement model is used to improve upon the segmentation as depicted in
Figure 2. The corrected slices are projected into an empty volume back into their original

Figure 2: Inference process of the refinement nnU-Net with the corrected slices.
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positions. Then this volume is concatenated with the original image and used for inference
by the refinement model, which significantly improves the segmentation.

4. Experimental Setup

4.1. Datasets

We evaluate on three datasets to prove the applicability of our approach to a number of use
cases. First, we use the Medical Segmentation Decathlon (MSD) brain tumor (Antonelli
et al., 2021) dataset consisting of 484 labeled brain MRI scans with 5 MRI-modalities.
The labeled classes are edema, non-enhancing tumor and enhancing tumor and the mean
subject size of the dataset is 240x240x155 voxels. We split the dataset into a train set of
100 subjects, a validation set of 50 subjects and a test set of 334 subjects.
The MSD pancreas (Antonelli et al., 2021) dataset consists of 281 labeled portal-venous
phase CT scans with the classes pancreas and cancer and a mean subject size of 512x512x98
voxels. Again, we split the dataset into a train set of 100 subjects, a validation set of 36
subjects and a test set of 145 subjects.
The third dataset is a COVID-19 dataset, which consists of COVID-19 chest CT scans
with the label ground-glass opacity (GGO). The dataset is divided into a set of subjects
that are publicly available (MedSeg; Jun et al., 2020; Morozov et al., 2020) and an out-of-
distribution (OOD) in-house private set to evaluate the generalizability of our approach.
In total, the dataset consists of 129 subjects and a mean subject size of 1280x1280x266
voxels. The data is split into a train set of 79 subjects, a validation set of 10 subjects and
an in-house OOD test set of 40 subjects.

4.2. Baselines

We compare our approach to other state-of-the-art 3D interactive segmentation techniques
that focus on fast reaction times for the expert and can thus be used in practice. Ap-
proaches that have long reaction times such as Bredell et al. (2018); Li et al. (2021); Sakinis
et al. (2019) are excluded due to their missing practicality. For the classical methods, we
compare against Graph-Cut (Jirik et al., 2018; Jirik), Watershed (Skimage) and Random
Walker (Skimage). For CNN-based methods, we compare against the P-Net from DeepI-
GeoS (Wang et al., 2019b), which is used in most fast CNN-based approaches. We found
during training that the used geodesic distance transforms from DeepIGeoS drastically de-
crease the performance in our setting and thus opted train the P-Net in the same fashion
as our refinement nnU-Net instead. Further, to be able to fairly compare all baselines, they
all receive the exact same corrected slices as the refinement nnU-Net from i3Deep.

4.3. Training details

Training of the presegmentation and refinement nnU-Nets was done in PyTorch with SGD
optimizer, a learning rate of 1e−2, a weight decay of 3e−5, a momentum of 0.99 and 1000
epochs of training time. The P-Net used the same settings, but with grid-search optimized
learning rates for the brain tumor, pancreas and COVID-19 datasets of 1e−2, 1e−4 and
1e−4, respectively. The parameters of the acquisition function were optimized to a minDist
of 0.0234, maxSlices of 12 and minUncert of 0.1.
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5. Results

5.1. Predictive performance

We conduct an evaluation of the predictive performance in terms of Dice score performance
over all datasets. The results are shown in Figure 3 and as table in Appendix B.1. Based
on our uncertainty ablation study in section 5.3, we choose Deep Ensembles as the used un-
certainty predictor for the presegmentation nnU-Net. However, other uncertainty methods
can be used as well and are viable options for i3Deep.
Starting with the brain tumor dataset (red plots in Figure 3), we can see that the pre-
segmentation (blue) performs acceptable for the classes edema and enhancing tumor, but
rather bad for non-enhancing tumor. By contrast, i3Deep with nnU-Net refinement (or-
ange) outperforms the presegmentation and all other baselines over all classes by a margin
of up to 19.2%. Compared to the presegmentation, i3Deep improves the mean Dice score
by 8.1%, 19.2% and 7.2%, respectively. The improvements for edema and non-enhancing
tumor are lower as the Dice scores are already high for the presegmentation and thus only
limited improvements are possible.

Figure 3: Box plots for different classes of the brain tumor, pancreas and COVID-19 dataset
for the presegmentation, our method and all baselines.

Next, we inspect the results for the pancreas dataset (blue plots in Figure 3). For the
pancreas class, we see again a significant improvement with i3Deep in comparison to the
presegmentation by 8.4%. By contrast, all baseline methods perform significantly worse
than the presegmentation, which shows their limited predictive performance. For the can-
cer class, we see that the presegmentation fails completely with a mean Dice score of only
27.4% due to the difficulty of separating the small cancer class from the pancreas class, by
which it is often surrounded. In this instance, i3Deep manages to improve the segmenta-
tion by a margin of 39.5%. The P-Net improves the Dice score by 34.1%, which is also
considerable. Yet, it shows again the predictive limitations of this lightweight model. The
other baselines manage to improve the Dice score, but are significantly worse than i3Deep
and the P-Net.
The last dataset we evaluate is the COVID-19 test set (green plot in Figure 3). It is im-
portant to note, that i3Deep has never seen any of our in-house data during training, thus
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making the test data out-of-distribution (OOD) and an important benchmark for the prac-
tical usability of i3Deep. Here, the presegmentation achieves a Dice score of 64.4%, which
is acceptable for OOD data. However, even though the data is OOD i3Deep still improves
the Dice score by 19.3% to 83.7%, showing the applicability of our approach for real world
usage. This time, the P-Net achieves a similar performance with a Dice score of 80.09%.
The other baselines are again considerably worse, with Graph-Cut showing even a very high
variance in terms of predictive performance.
In summary, i3Deep can improve the segmentation quality significantly in comparison to
state-of-the-art baselines, while enabling the usage of models with high predictive perfor-
mance such as the nnU-Net in an interactive setting.

5.2. Qualitative comparison

In Figure 4 a qualitative comparison of the brain tumor dataset is shown. Here, the preseg-
mentation model fails to detect a part of the non-enhancing tumor (green) and only badly
predicted the enhancing tumor (blue). By contrast, i3Deep manages to recover the missing
regions almost perfectly with only minor inaccuracies for the enhancing tumor. The P-Net
also recoveres some of the regions, but the overall prediction lacks the same quality as that
of i3Deep. The predictions for Watershed and Random Walker also recover small amounts
of the missing regions, but are worse in comparison to both i3Deep and the P-Net. The
pancreas and COVID-19 dataset comparison (Appendix B.2) further confirm our results.
In conclusion, all refinement models managed to recover missing lesions, yet i3Deep is the
model that achieves the best segmentation in comparison to the ground truth. This shows
the importance of using models with a high predictive performance in interactive settings
to reliably provide segmentations of high quality for the expert.

Figure 4: Qualitative comparison of the ground truth, the presegmentation, our approach
and the baselines on the brain tumor dataset.

5.3. Uncertainty ablation

We conduct an ablation study to determine the uncertainty predictor for the presegmen-
tation model that performs best with our approach. It is important to note that the
tested uncertainty predictors are only used for the presegmentation model, as the refine-
ment model does not need to compute uncertainties. In total, we compare the predictors
Test-Time Augmentation (TTA), Monte Carlo Dropout (MC Dropout) and Deep Ensem-
bles. The evaluation is done on all three validation datasets and measured in terms of Dice
score. The results are shown in Figure 5. The Dice scores show that all predictors perform
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quite similar on the brain tumor dataset with Deep Ensembles being only 0.8%, 1.3% and
0.1% better in the mean than the second best predictor on each class respectively. On the
pancreas dataset the results are clearer with Deep Ensembles surpassing the second best
predictor in the mean by 2.4% and 5.1%, respectively. However, Deep Ensembles perform
1.5% worse than TTA on the COVID-19 dataset. As Deep Ensembles have the best perfor-
mance on most classes, we choose it as our predictor for our evaluation in section 5.1. Yet,
the evaluation also shows that all three predictors are viable methods.
Further, we evaluate the predictors in terms of ECE for which the results are discussed in
Appendix C.1 and reflect these results. We also evaluate the impact of using P-Net Deep
Ensemble uncertainties instead of nnU-Net Deep Ensemble uncertainties in Appendix C.2.
The results show that the uncertainties of both models are equally good for our approach.

Figure 5: Comparison of the uncertainty predictors TTA, MC Dropout and Deep Ensembles
on the brain tumor, pancreas and COVID-19 dataset.

5.4. Annotation Ratio

To assess the expected workload reduction we propose the subject-wise Annotation Ratio
(AR), which measures how many fewer slices need to be annotated: AR = |S|

|GTforeground| .

Here, |S| denotes the number of all selected slices and |GTforeground| the number of axial
ground truth slices that contain foreground annotations.
On the brain tumor dataset we achieve an AR of 20.56%, on the pancreas dataset 17.94%
and on the COVID-19 dataset 20.50%. Averaged over all datasets, we achieve an AR of
19.67% meaning that an expert needs to annotate 80.33% less slices of what they would
normally annotate, resulting in a significant workload reduction.

6. Conclusion

We introduce the interactive framework i3Deep, which enables the usage of models with
a high predictive performance. i3Deep provides an expert pre-acquired slices based on
uncertainties and uses the expert corrections to improve the segmentation with a refinement
nnU-Net. The evaluation shows that this approach reduces the workload of the expert by
80.3%, while significantly improving the segmentations up to 39.5% and outperforming
other state-of-the-art interactive methods often considerably. Even on out-of-distribution
data, i3Deep is able to improve the segmentation by 19.3%. In the future, we intend to move
from slices to patches and evaluate i3Deep in multiple user studies on even more anatomies
and out-of-distribution datasets.
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Appendix A. Uncertainty estimation

Uncertainty can be estimated by multiple means and the estimation consists of two steps.
First, multiple predictions need to be inferred stochastically with methods such as Test-
Time Augmentation (Wang et al., 2019a), Monte Carlo Dropout (Gal and Ghahramani,
2016) or Deep Ensembles (Lakshminarayanan et al., 2017), which we refer to as uncertainty
predictors. Second, the uncertainty from the predictions must be quantified with methods
such as the entropy, variance or the bhattacharyya coefficient (Kang and Wildes, 2015),
which we refer to as uncertainty quantification. We determine the best predictor in section
5.3, but choose entropy for the quantification as it is the most popular one and the influence
of the quantification method is limited.
In this context, the entropy is defined as the entropy of each voxel belonging to a certain
class and is based on the average of multiple predictions. Further, the entropy is divided
by its information length to be within the interval of [0,1].
For an image x with C classes and a total of T different predictions pt,c(x) for each class,
the entropy is defined as:

pT,c(x) =
1

T

T∑
t=1

pt,c(x) (1)

H(pT,C(x)) =
−
∑C

c=1 pT,c(x) ∗ log(pT,c(x))
log(C)

(2)

Appendix B. Results

B.1. Predictive performance

In this section we report the mean and standard deviation for our results of the brain tumor
dataset in Table 2, the pancreas dataset in Table 3 and the COVID-19 dataset in Table 4.
Dice scores marked with ∗ denote a p-value < 0.05 when compared with the second place
method. The results are the same as the one depicted in Figure 3.
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Brain Tumor

Preseg. i3Deep P-Net Watershed Random Walker

Edema 0.784±0.128 0.865±0.103∗ 0.792±0.101 0.53±0.102 0.75±0.124

Non-E. T. 0.566±0.233 0.758±0.192∗ 0.596±0.218 0.603±0.174 0.7±0.182

Enh. T. 0.792±0.201 0.864±0.158∗ 0.751±0.186 0.598±0.155 0.74±0.175

Table 2: Mean and standard deviation Dice scores for the edema, non-enhancing tumor and
enhancing tumor class of the brain tumor dataset for the presegmentation, our method and
all baselines.

Pancreas

Preseg. i3Deep P-Net Watershed Random Walker

Pancreas 0.749±0.096 0.834±0.08∗ 0.66±0.114 0.509±0.116 0.525±0.181

Cancer 0.274±0.309 0.669±0.298∗ 0.615±0.308 0.478±0.274 0.467±0.312

Table 3: Mean and standard deviation Dice scores for the pancreas and cancer class of the
pancreas dataset for the presegmentation, our method and all baselines.

COVID-19

Preseg. i3Deep P-Net Watershed Graph-Cut

GGO 0.644±0.125 0.837±0.079 0.809±0.136 0.702±0.172 0.464±0.357

Table 4: Mean and standard deviation Dice scores for the GGO class of the COVID-19
dataset for the presegmentation, our method and all baselines.

B.2. Qualitative comparison

We continue the qualitative comparison of the pancreas and COVID-19 dataset in this sec-
tion. Figure 6 shows a comparison for the pancreas dataset.

Figure 6: Qualitative comparison of the ground truth, the presegmentation, our approach
and the baselines on the pancreas dataset.

Both the pancreas and the cancer class are relatively small with the pancreas class surround-
ing the cancer class in most subjects. It can be seen, that the presegmentation overestimated
both classes. By comparison, i3Deep and the P-Net both reduced this oversegmentation,
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yet i3Deep aligned the class borders overall better with the ground truth borders than the
P-Net. For Watershed and Random Walker the issue of oversegmentation only increased
with either the pancreas or cancer class oversegmenting the entire lesion. The comparison
for the COVID-19 dataset is shown in Figure 7. Here, we see that the presegmentation
missed the GGO lesions in the lower lungs, while all interactive methods were able to re-
cover the missing lesions. However, we see again similar results with i3Deep being the most
precise by not falsely segmenting the sparse small pockets of lesion free lung. The P-Net also
recovered the GGO lesions for the lower lungs, but oversegmented the lung in general by
segmenting the small lesion free pockets too. Again, the classical methods did not achieve
the same level of refinement as i3Deep as both of them are too coarse.

Figure 7: Qualitative comparison of the ground truth, the presegmentation, our approach
and the baselines on the COVID-19 dataset.

Similar to our qualitative evaluation of the brain tumor dataset, all refinement models
managed to recover missing lesion. However, i3Deep is the method that achieved the best
segmentation in comparison to the ground truth, showing the importance of using models
with a high predictive performance in interactive settings to reliably provide segmentations
of high quality.

Appendix C. Uncertainty ablation

C.1. Expected Calibration Error

A common method to determine the quality of uncertainty is the Expected Calibration
Error (ECE) (Naeini et al., 2015; Guo et al., 2017). The ECE measures the difference in
expectation between confidence and accuracy to determine the miscalibration and thus the
quality of the uncertainty. It divides the softmax output range of [0,1] into M multiple bins
Bm of equal size and measures the accuracy and confidence of the softmax outputs that
fall within each bin. A weighted average over the total number of predictions n is taken to
compute a scalar miscalibration value. The ECE is formally defined as:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (3)

The accuracy and confidence of bin Bm are defined as follows:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (4)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (5)
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Here, ŷi and yi denotes the predicted class and ground truth class for a prediction i and p̂i
denotes the confidence for a prediction i.
Based on this, we evaluated the predictors TTA, MC Dropout and Deep Ensembles on the
validation sets of the brain tumor, pancreas and COVID-19 dataset with the ECE measure.
The results are shown in Table 5. For the brain tumor and pancreas dataset Deep Ensembles
achieve the lowest calibration error and have thus the best uncertainties. By contrast, TTA
performs best on the COVID-19 dataset with Deep Ensembles being slightly worse than
MC Dropout. We can conclude that Deep Ensembles have probably a slight advantage
over the other predictors, yet it is difficult to estimate based on the ECE how relevant that
advantage is. However, in conjunction with our Dice score evaluation in section 5.3 we can
conclude that this advantage is noticeable but not too significant.
Another important aspect to note is that the calibration seems to be very good based on the
ECE results. However, this is most likely only partly the case as the ECE has a number of
issues that are discussed in (Nixon et al., 2019) and which are especially true for 3D data,
which suffers from severe class imbalance. Still, the ECE is a commonly used measure,
hence us including it, but the result should always be taken with a grain of salt. For this
reason, our uncertainty evaluation based on Dice score performance is more reliable.

Brain Tumor Pancreas COVID-19

Deep Ensembles 0.0008 0.0004 0.0103

MC Dropout 0.0012 0.0011 0.01

TTA 0.0013 0.0006 0.0086

Table 5: The ECE results for the uncertainty predictors TTA. MC Dropout and Deep
Ensembles over all three datasets.

C.2. nnU-Net & P-Net uncertainty comparison

We evaluated the impact of using a different underlying model when using Deep Ensem-
bles for the uncertainty computation. For this purpose, we computed uncertainties with a
nnU-Net and a P-Net Deep Ensemble on the brain tumor dataset and used the resulting
uncertainties to compare the predictive performance of the refinement nnU-Net and refine-
ment P-Net. The mean Dice score result are shown in Table 6.
The performance of both nnU-Net refinement models is almost the same and independent
of the uncertainty generating underlying model. The results for the refinement P-Net are
similar with no significant change in model performance. However, due to the fact that the
nnU-Net has a considerably better predictive performance, the refinement nnU-Net achieves
a significantly better mean Dice score across all classes than the refinement P-Net.
We can conclude that there is no impact of using a different presegmentation model for
uncertainty computation in our setting when using Deep Ensembles.
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Brain Tumor

i3Deep (nnU-Net U.) i3Deep (P-Net U.) P-Net (nnU-Net U.) P-Net (P-Net U.)

Edema 0.865±0.103 0.863±0.105 0.792±0.101 0.785±0.116

Non-E. T. 0.758±0.192 0.770±0.183 0.596±0.218 0.615±0.204

Enh. T. 0.864±0.158 0.863±0.1655 0.751±0.186 0.75±0.188

Table 6: Mean and standard deviation Dice scores on the brain tumor dataset for the i3Deep
nnU-Net refinement model and P-Net refinement model evaluated with nnU-Net and P-Net
uncertainties. The term Uncertainties has been denoted as U.
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Discussion and limitations

A central limitation of our study is that we only conduct a retrospective analysis where we simulate user
interaction with ground truth annotations as “corrections”. While we had initially planned to perform a
user study with our interventional radiology colleagues, this did not come to fruition due to several of
the students involved in the project having other commitments and later graduating.

Additionally, the i3Deep method could not yet be validated across the network of German university
hospitals due to missing key components in the data communication infrastructure. However, radiologists
across Germany did receive access to our pre-trained nnU-Net model to extract pre-segmentations that
they would later correct.

12.2. Conclusions and outlook

Despite Geoffrey Hinton’s assessment back in 2016 that deep learning would replace radiologists (Al-
varado, 2022), it has become clear by now that it will not. DNNs do have the potential to reduce the
total workload of healthcare professionals and allow for more effective utilization of hospital resources.
However, this actually depends to a great extent on the involvement of human users with the system.

Figure 12.2 summarizes some of the additional tasks that working alongside DL products signify for
clinicians, namely (1) curating the data, (2) monitoring the quality of the model predictions and (3)
assessing whether the support systems are actually helpful. This involvement is even more crucial for
continual learning algorithms, where the doctors on-site are directly involved in the data-generating
process.

Advancements in quality assurance, interpretability and active learning are key for maximizing trust and
minimizing the additional work that DL systems comprise. Only if sufficient medical staff is committed
to using and improving the product will it translate to actual improvements in resource utilization and
diagnostic accuracy.

DATA CURATION 

Datasets must be maintained which are 
separate from the daily clinical workflow 

to assess model performance

It is necessary to establish internal 
benchmarks for the performance of the 

ML model and continually monitor it

Clinical users of the ML model should 
be asked regularly about its utility 
and impact on their daily practice 

BENCHMARKING & QA UTILITY ASSESSMENT 

Figure 12.2.: Additional tasks that medical professionals must be involved in for ensuring the correct
functioning of ML-based decision support systems.
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13. Regulatory Landscape in the US and EU

Following technical advances in deep learning and ever-increasing healthcare costs, regulatory bodies are
rushing to determine how to make safe use of the possibilities new technologies present. The landscape
for ML regulation is hence rapidly evolving. In this chapter, I give an overview of directives that are
currently in force and under consideration in the USA and European Union. I presented much of this
content at the EuSoMII 2020 and RSNA 2021 and 2022 annual meetings, which allowed me to engage
with different stakeholders, including radiologists, members of hospital administration, developers and
business representatives from companies looking to market their ML software.

Software meant to aid in the diagnosis or treatment of medical conditions is deemed a medical device in
the USA and EU. This is a different category from pharmaceutical drugs but the same group as mechanical
devices such as pacemakers. If it is not part of a hardware medical device, then it is Software as a Medical
Device (SaMD) as defined by the International Medical Device Regulators Forum (IMDRF, 2013).

There are many commonalities, but also some differences, in how SaMD regulation is approached
by US authorities and EU member states. One core difference is that the USA delegates decisions to
sector-specific agencies, such as the Food and Drug Administration (FDA) for medical devices. In contrast,
manufacturers who wish to sell their products in the EU must adhere to both area-specific directives –
which currently means the Medical Device Regulation (MDR) that came into effect on May 26th, 2021 –
and cross-sectional guidelines, such as the GDPR and, in the future, an Artificial Intelligence Act (AI Act)
that was proposed on April 21st, 2021 (Vokinger and Gasser, 2021).

Commonalities between the two models include following a risk/benefit model that minimizes high risks
but embraces moderate risks as long as they are outweighed by potential benefits (FDA et al., 2012) and
proposing a lifecycle regulatory framework in new directives. In both regions, said new framework would
comprise (1) documentation to be submitted during the initial clearance phase outlying what and how
modifications to the software will be implemented, (2) establishment of quality assurance mechanisms
that monitor the product for its entire lifecycle, (3) data bias mitigation strategies and (4) transparency
on all changes towards regulatory agencies, business partners and users.

This could enable ML models to adapt over time without obtaining clearance every time parameters are
updated (as long as appropriate quality assurance mechanisms are in place). However, it would not
permit changes that introduce new risks or change the intended use of the software.

No specific pathway has been defined and regulated in either region for continual learning systems,
but official public documents suggest how these will be defined. I will start by briefly summarizing the
current process for obtaining clearance in Section 13.1 and discuss new initiatives from the pertinent
regulatory bodies in Section 13.2.
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13.1. The road towards marketing SaMD in the USA and EU

In the USA there are three possible ways to receive medical device clearance from the FDA. Which process
is appropriate for a device is decided by its risk categorization and whether there is a substantially similar
product that is already commercially available. A comprehensive list of relevant guidelines and a list
with all cleared devices are available and regularly updated on the FDA website (FDA, 2023a).

In the European Union, we find ourselves in a period of chance. SaMD is now regulated under theMedical
Device Regulation (MDR) (European Commission, 2017b), which was published in early 2017 and came
into effect on May 26th, 2021, replacing the previous Medical Devices Directive (MDD). A grace period
for obtaining new clearance was initially stipulated for three years, so manufacturers could continue
to sell products certified under the MDD until 2024. The deadline will probably be further extended
due to the limited capacity of notified bodies, which are struggling to meet demand. In the following,
we summarize the core relevant aspects of the MDR, the problematic associated with a lack of notified
bodies, and how this calls for modern lifelong learning regulation.

13.1.1. Receiving approval in the USA

Software is characterized in terms of risk from Class I (lowest risk) to Class III (greatest risk). There are
three main paths for receiving clearance, which may or not be pursued depending on the risks introduced
by a device and whether there are sufficiently similar products that have received clearance in the past
(FDA et al., 2017).

For novel devices of low to moderate risk for which no similar products have been cleared, a De Novo
path must be followed where the manufacturer ensures the safety and effectiveness of the system (Hwang
et al., 2019). After successful clearance, the FDA establishes necessary standards and controls for the
new class of devices.

The road becomes simpler when there is already cleared Class I or II software with the same intended
use. In this case, 510(k) approval can be followed where the existing device serves as a reference. The
new product must only show that it is substantially equivalent to previously-cleared devices, without the
need for new clinical testing. A new piece of software can even prove similarity to other 510(k)-cleared
devices, causing a chain that grows over time. This is somewhat controversial, as devices can refer to
products cleared decades ago (Hwang et al., 2019), and references to devices with ongoing recalls in
510(k) submissions are associated with a significant increase in recall probability (Everhart et al., 2023).

Finally, premarket approval (PMA) is necessary for high-risk (Class III) medical devices which are
essential for supporting life or introduce a high risk of illness or injury. This is the most stringent process
and requires clinical studies and facility investigations. Makower et al. (2010) estimated the average
cost of PMA clearance at 75 million US dollars, while obtaining 510(k) approval costs around 24 million.
At the time of writing this thesis, there are only three ML software devices that successfully completed
this pathway (FDA, 2023a).
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13.1.2. The Medical Device Regulation

To enter the European market, medical devices must receive a Conformité Européene (CE) mark. Besides
EU member states, countries that recognize this seal include free trade association states (Liechtenstein,
Iceland, Norway, and Switzerland) and Turkey (Muehlematter et al., 2021). Switzerland historically
only accepted CE-marked devices but since recently also allows FDA-certified products (Medtech, 2023).

European regulations also categorize products according to their risk, from Class I (low risk) to III (very
high risk). The MDR plans to standardize this categorization, and the great majority of ML-based SaMD
will fall into classes IIa and IIb (van Leeuwen et al., 2021). The AI for Radiology website, which collects
information on available devices, currently tracks 201 products with CE marking (certified under either
MDD or MDR). Of these, 66 are Class I (low risk), 117 are Class IIa, 18 are Class IIb, and none are Class
III (van Leeuwen et al., 2023). From the 43 devices compliant with the MDR, 29 are Class IIa, and 14,
Class IIb. Muehlematter et al. (2021) instead identify two ML software devices classified as Class III.
There is yet no official website where CE-marked devices are listed, though a concrete MDR goal to
increase transparency is to establish a European database on medical devices (Eudamed) with up-to-date
information on devices in the market.

The main requirement that products should fulfill is being safe and effective for the expected conditions of
use. The performance should be in line with the clinical state-of-the-art in accordance with the standards
reached by human professionals or commercially available software. A new system for which there is
already a competing product that previously received clearance should show an improvement in the
benefit/risk ratio. That is to say, it should either improve performance or pose fewer risks.

Manufacturers should establish post-market risk management and surveillance systems that actively gather
information during the real-world use of their product. There is an explicit wish that risk management
be a continuous process that evolves throughout the product’s lifecycle. The collected data should be
used to regularly update the documentation, including the risk assessment sections.

There is a strong focus on the MDR in ensuring transparency and traceability. Both clinical users and
patients should have access to information on the expected and real-life performance of the system and
on the collected data. This is in line with GDPR principles, and it is explicitly stated that GDPR should
be followed for matters concerning data protection.

There is one section of the regulation which could be potentially problematic for lifelong learning devices,
namely Article 17 on “electronic programmable systems and software” (European Commission, 2017b)
which states that these should ensure repeatability, reliability, and performance. This could imply that the
system be “locked” in that the same input always produces the same output; but not necessarily. To some
extent, we can consider repeatability and reliability/performance as opposing goals, as data drift causes
models to fail silently. From this perspective, and considering the importance that the MDR places on a
positive benefit/risk ratio and lifecycle quality monitoring, repeatability could be proven by showing
that healthcare professionals assisted by the software reach the same diagnostic decisions on the initial
validation set; not that every DNN in the software will produce the same output for the same input. This
perspective is more in line with current ML practices, which are often not deterministic. For instance, a
prediction produced by averaging several forward passes using Monte Carlo Dropout is not deterministic,
yet consistent as long as enough passes are made.
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The role of notified bodies and a worrying lack of capacity

Unlike in the USA, where manufacturers are audited by a central authority, in the EU notified bodies take
on this role 1. These are third-party entities tasked with assessing conformity to present regulations.
They typically start by looking over the technical documentation and, if satisfied, move on to an on-site
audit where they confirm that certain quality standards are met. If certification is granted, a yearly audit
should follow which can potentially result in a product being recalled if there is evidence that it is no
longer compliant.

Many sections of the MDR are ambiguously defined. It is then up to the notified body, who places its seal
on the audit stating that a product is safe and effective, on how these are interpreted. For instance, in
the case of continual ML, if the performance of a locked system is likely to degrade over time, a notified
body may determine that the risks associated with updating the model outweigh the risks of not doing
so. A different one may instead insist that the system remains deterministic.

A central critique of the MDR is that there are not enough notified bodies to meet demand. All vendors
need to re-certify their medical devices, and there is a multitude of new companies looking to release
their products in the European market. There are currently only 36 notified bodies that can carry out
this task, and only 26 more have applied to take on this role. As of October 2022, there were over 8000
applications for MDR approval, and less than 2000 had been granted (European Commission, 2023).
Additionally, only auditors certified for the specific MDR code of a product are eligible; and notified bodies
look at both the MDR and EMDN codes when deciding which products to audit (European Commission,
2017a). The Open Regulatory website provides an overview of notified body capacity. At the time of
writing this thesis (January 2023), of 35 observed bodies, only seven were identified that are accepting
new clients and offer audits in six to twelve months (Open Regulatory, 2023). It is also challenging to
estimate the cost, as consultancy fees vary widely and it is difficult to estimate how long the auditing
process will take (Azzouzi et al., 2022). This introduces a lot of uncertainty to companies – particularly
smaller ones – looking to market their products.

Monir El Azzouzi, CEO and founder of the Easy Medical Device consulting firm and host of the podcast
with the same name, estimates that it currently takes at least a year to bring a product to the European
market from the time there is a working prototype (Azzouzi et al., 2022). For this estimate, three
processes should run in parallel: (1) establishing and testing a quality management system (2) preparing
all technical documentation on the working and validation of the software and (3) contacting notified
bodies to secure an audit. Concerning continual or lifelong learning, he mentions that at present models
are expected to be frozen at a certain point, as allowing adaptation makes the process of gathering the
necessary documentation much more difficult. Nevertheless, he highlights that unlike for pharmaceutical
drugs, the process of adhering to medical device regulations works on a case-by-case base. The most
important aspect when seeking compliance is to identify the possible risks and have an appropriate risk
mitigation strategy in place.

At the current rate, only around 7000 products will have been certified by the initial May 2024 deadline.
There has therefore been a proposal by the European Commission to extend the grace period for MDD-
certified devices until 2027 and 2028 for high and low to medium-risk devices, respectively (European
Commission, 2023).

1Low-risk (Class I) devices do not require a notified body as manufacturers can declare conformity themselves. However,
ML-based SaMD rarely falls into this category.
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At present, any modification to cleared devices, including adapting DNNs to local environments, requires
re-certification. Naturally, this puts further pressure on the few notified auditors who have experience
validating ML-based software devices. A comprehensive approach to certifying lifelong learning products
could alleviate the situation by substantially reducing the work of notified bodies. Currently, there is
a real danger that the performance of ML software falls as the environment changes, and models can
currently not be updated due to a backlog in certification applications.

13.2. Planned regulations that embrace lifelong learning

At present, there is no formal process for certifying ML-based software that updates models post-
deployment. However, there are several initiatives that indicate how this could be approached in future
regulations, which I summarize in the following sections.

13.2.1. The FDA’s discussion paper and action plan

One of the greatest promises of AI is, according to the FDA website, “its ability to learn from real-world
use and experience, and its capability to improve its performance” (FDA, 2023b). Though high-risk CL
systems already function in the USA, for instance in the form of autonomous vehicles (Vokinger et al.,
2021), this is not yet the case for SaMD. In May 2019, the FDA published a discussion paper and request
for feedback showing the agency’s goal to amend this situation.

The document identifies several potential benefits of continual learning, including higher accuracy, the
discovery of new disease patterns, and the personalization of the system to certain patient populations
or physician preferences. It also notes new risks such as the introduction of errors or biases in the data
and the deterioration of performance for early data distributions (Vokinger et al., 2021).

A locked algorithm is defined as one that provides the same output for the same input, i.e. one that
works in a deterministic fashion. In contrast, an adaptive algorithm may be trained post-deployment
and generate a different prediction after the adaptation phase. Continuously learning algorithms are
a subclass of adaptive systems that leverage real-world data post-approval. Figure 13.1 illustrates the
potential of continual learning as well as new risks that it introduces into the system.

The discussion paper sketches a framework for regulatory oversight that allows model adaptation without
compromising patient safety. Existing guidance documents outlying when a software modification
requires a new 510(k) clearance (FDA et al., 2017) or supplemental application for devices approved
through a PMA (FDA et al., 2008) are based on risk assessment. Changes must be subjected to re-approval
if they introduce a new risk or modify existing risks and/or risk control mechanisms.

This includes modifications that may affect:

• the product’s performance, e.g. after re-training with new data or modifying the model architecture;

• the inputs, including extending compatibility to new device models;

• the intended use, which includes changes in an expanded patient population.

194

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device


Catastrophic Forgetting

The model can over-adapt to the new data 
distribution, causing a fall in performance for 

earlier domains

Good performance on new domains

The model can be adapted to changes in  
image characteristics (e.g. acquired with a 

new device) or the patient population

Retro-alimenting biases

Data biases such as under-representation of 
certain classes can be fed into the model

Backward transfer

The overall larger amount of data can 
increase performance on earlier domains

Incorporating failures

Bad-quality or faulty data can be integrated 
into the model, causing unexpected failures

Forward transfer

The overall larger amount of data can 
increase performance in later domains even 

with a few examples

B
EN

EF
IT

S
C

H
A

LL
EN

G
ES

Figure 13.1.: Continuously learning ML systems adapt to new environments, obtaining higher perfor-
mance on the local data distribution that generated the latest training samples. By lever-
aging more data overall, global performance may also increase on yet-unseen or older
domains. However, it is also possible that the system forgets how to cope with earlier data
or that failures and/or biases are introduced into the model.

Without diverging from the focus on risk mitigation, the new mechanism would ensure the safety and
effectiveness of the product by defining from the time of initial clearance a predetermined change
control plan stating what and how changes will occur during the product’s lifecycle. This includes SaMD
Pre-Specifications (SPS) describing the expected changes (to inputs, performance or intended use) and an
Algorithm Change Protocol (ACP) which specifies the data collection protocols (to ensure data is correct
and unbiased), the model update strategy, and the control mechanisms to ensure the product remains
safe and effective.

Future modifications that are not outlined in the approved change control plan would only require a
review of the SPS and ACP. Certain changes, particularly those on the intended use that change the risk
assessment of the product, would still require a traditional pre-market review under the new regulatory
framework. The discussion paper describes a few examples where re-certification would and would not
be appropriate.

Key elements for approving the change control plan are (a) a suitable quality monitoring strategy that
considers new risks which may result from adaptation and (b) increased transparency to the FDA,
collaborators of the manufacturer, clinicians, and patients through post-market performance reporting
and documentation for the software version control.

The discussion paper generated a lot of interest, and feedback was gathered in the ensuing months in a
public forum on the FDAwebsite (FDA, 2023c). In February 2020, the first SaMD outlying a predetermined
change control plan with anticipated modifications was cleared through the De Novo pathway. Following
this development, an action plan was released by the FDA summarizing the stakeholder feedback and
outlying clear action items to formalize guidelines in this topic (FDA et al., 2021).
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The action plan summarizes the feedback and proposes five action items:

• Updating the proposed framework with stakeholder feedback, including, among other items, new
types of modifications and a timeframe for reviewing the SPS and ACP, and issuing a first guidance
on drafting predetermined change control plans;

• standardizing what entails Good Machine Learning Practices (GMLP), for instance related to proper
validation and documentation, collaborating closely with community initiatives;

• holding a public workshop on increasing transparency and trust in ML, handling among other
aspects how continuous learning can impact transparency;

• developing methodology to identify and remove algorithmic bias and evaluate robustness to
changing clinical inputs; and

• clarifying expectations on Real-World Performance (RWP) monitoring. For instance, define what
reference data should be used to measure performance.

In September 2022, an updated Software Pre-certification Pilot Program was released summarizing the
findings in a pilot study that investigated good practices for monitoring SaMD real-world performance
(FDA et al., 2022). One main goal of the study lay in researching whether monitoring methods could
ensure safety and effectiveness over a product’s lifecycle better than the current regulatory framework.
These should identify, trace and fix errors, therefore allowing for faster innovation, as is “necessary to
provide reasonable assurance of safety and effectiveness of rapidly evolving devices” (FDA et al., 2022).
The FDA claims being open to further feedback through the new Digital Health Center of Excellence (FDA
et al., 2023).

13.2.2. The European AI Act

In the EU, products must adhere to all application-specific and cross-sectional regulations which are
currently in force. If two directives come into conflict, the manufacturer needs to follow that which
is more strictly defined or argue the selected pathway through a risk/benefit perspective. At present,
products must mainly adhere to the stipulations posed by the MDR as well as other relevant directives
such as GDPR. Neither of these directly addresses continual learning, though the MDR does emphasize
the need for continuous monitoring.

In parallel, the Artificial Intelligence Act (AI Act) (European Commission, 2021) has been in the works for
several years. The act does in fact describe how to treat continual learning within high risk applications
(a category where SaMD falls). Once that directive comes into force, manufacturers could refer to that
protocol to prove that planned future modifications are safe and effective.

The AI Act provides a framework for AI software covering all application areas except defense. A
regulation laying down harmonized rules on AI was first proposed in April 2021. In a press release from
December 6th, 2022, the European Council adopted the general approach of the act, indicating that
further legislative action will proceed at a faster pace from now on (European Council, 2023). The act
takes a risk-based approach which categorizes systems into four levels from minimal to unacceptable risk.

In several segments, the act directly addresses “AI systems that continue to learn after being placed on
the market or put into service” (European Commission, 2021), which we will henceforth refer to as CL
devices. The following declarations are particularly relevant:
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• Article 9 states that all high-risk AI products require a risk management system that is regularly
updated. Over time, the system should identify and evaluate new risks and adopt measures
to mitigate them. Specifically for CL devices, manufacturers should ensure post-market quality
assurance mechanisms that recognize possible risks introduced by the adaptation process and react
to these in a timely manner. Emphasis is also given to appropriate record-keeping that logs certain
metrics during use, ensuring traceability throughout the device’s lifecycle.

• Article 15 says that high-risk AI systems must be accurate, robust and consistent throughout their
lifecycle; and that specifically CL devices should prevent the generation of biased outputs. Given
the direct referral to CL devices, the consistency requirement likely does not refer to generating
the same output for a given input. Rather, the focus lies on ensuring a high level of performance
over time. It is later explicitly stated that in accordance with non-discrimination laws, quality
data sets should be maintained (which implies dataset updating) and biases should be mitigated
throughout the product’s lifecycle.

• Article 43 clarifies that high-risk AI systems will need a new conformity assessment when they are
substantially modified. It then specifically states that for CL devices, pre-planned modifications
described in the technical documentation of the initial assessment are not a substantial modifica-
tion. It is also clarified that a new conformity assessment is required when a change may affect
compliance with the act or when there is a change in the intended use.

13.2.3. Commonalities and a look into a future lifecycle regulatory approach

In both regions, there is a strong focus on maximizing the benefit/risk ratio and controlling that it does
not diminish over time. This implies that if the risks associated with system adaptation are outweighed
by the benefits; or if not updating the system poses an additional risk, manufacturers should minimize
this risk by adapting the system to the new environment.

The way this would take place is by allowing manufacturers to supply additional documentation stating
which changes will occur over time and how this process will proceed, as illustrated in Figure 13.2.
Changes that were specified can then occur without additional clearance. That is, of course, as long as
the planned modification remains within “normal conditions of use”. That is to say that while adapting
the model to work on new scanners or naturally occurring population changes is acceptable, adjusting it
to widely different conditions of use (such as scans acquired with vs. without contrast agents) is not
acceptable. The EU and USA also share similar objectives related to increased post-deployment quality
monitoring, bias mitigation, and transparency.

Vokinger and Gasser (2021) sustain that the EU approach is more stringent, or at least defines require-
ments in a more specific manner. This methodology clashes with certain characteristics of the EU setting,
potentially making adherence problematic. For instance, under EU regulations, medical software must
maintain state-of-the-art performance throughout its lifespan across all subject groups for which the
software is intended. Yet patient populations vary greatly within EU member states, and gathering
geographically diverse data may be challenging. Additionally, electronic health data formats vary within
states, and the GDPR poses strict stipulations for data protection. Also in terms of transparency, EU
guidelines are more far-reaching, demanding that users obtain insight into the systems. Yet, for instance,
there is not yet an official public website with up-to-date information on commercially available medical
devices similar to the FDA’s.
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Figure 13.2.: Possible framework for regulating continual ML products. Planned modifications and
pre-defined and submitted as extra documentation during initial clearance. Additional
quality assurance during the product’s lifecycle oversees both the outputs generated by
the model and the new training data.

Muehlematter et al. (2021) instead maintain that obtaining clearance in the EU is simpler. They follow
222 approved medical devices in the USA and 240 in Europe. Of the 124 approved for both regions, 80
were first cleared according to EU standards, which could imply a simpler process to enter the European
market. This is supported by the fact that 12 products that were commercially available in the EU
were denied entry to the US market for not meeting safety and effectiveness standards. Manufacturers
surveyed by Makower et al. (2010) also state that the European process is faster and less expensive.

Besides the cases explored in more detail of the USA and EU, other states including Canada and the UK
are drafting regulations that may soon describe how best to handle continual ML products (Smith and
Severn, 2022). I focused on the FDA and EU cases in part as products certified under these regulations
are permitted in numerous countries (Muehlematter et al., 2021; Smith and Severn, 2022).

13.3. Conclusions and outlook

When I approach regulatory consultants or companies selling medical ML software on the topic of
continual learning, the response I usually receive is that we are far from moving to a lifecycle regulatory
protocol that allows such post-market modifications. However, this neglects how important many aspects
of continual learning research are today.

DNNs may not be updated in an online manner, immediately integrating new data and annotations. But
companies do collect data – often in the form of corrections made by healthcare professionals – with the
hope of improving their models over time by adding new findings, adjusting them to new acquisition
practices, or preparing them to be deployed in new geographic regions. These changes are introduced
with new product versions in discrete intervals (as we illustrate in Figure 13.3), but they are still continual
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Figure 13.3.: Advantages and disadvantages of locked vs. continual learning systems with respect to
resource utilization and model performance.

in the sense that the system keeps on learning post-deployment. In fact, most continual learning research
divides training into stages and evaluates the performance on different data distributions after each
stage. That the adaptation process is divided into segments does not make it static, unless there are no
plans to improve the product over time.

A lot of the questions I posed, such as how can we cope with changing data availability and what are
appropriate evaluation datasets and metrics, are essential right now beyond the specific subfield of
continual learning research. For instance, when we have new labeled cases but lost access to some of the
training data, should we re-train our model or not? If the performance of our model has decreased on the
initial validation set but increased for more recent data, should the update be rolled out? What happens
when the detection of several findings improves, but that of one finding deteriorates? There is a discourse
around these issues that I believe is missing from public policy and medical imaging circles. Regulatory
bodies often consider existing standards established by researchers and members from industry, so we
can help draft these answers (Azzouzi et al., 2022).

I am fully aware of the dangers of unmonitored model updating and do not endorse this avenue. The
way I understand the standing and upcoming regulatory documents for SaMD, each model update that
is rolled out will need to be tracked and documented with accompanying validation results. My hope is
that when the validation shows an increase in safety and/or effectiveness, a model update can be carried
out faster, without waiting for months for regulatory authorities or notified bodies to have sufficient
capacity. For this, unified standards need to be established on what signifies an increase in effectiveness.
The majority of medical ML-based software has only been commercially available for a few years or less,
so many companies have not yet rolled out any model updates. But all evidence on the effects of data
drift on DNNs suggests that the lifespan of static models is short.

There is some misconception that current regulations are, if anything, overly conservative/risk-averse
and that continual learning is avoided because it poses too big of a risk. Yet we have seen that there are
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simple techniques – such as expansion-based multi-model approaches – that can be flexibly applied to
most modern architectures and do not cause performance degradation on older data distributions. And
there are valid concerns on the current process of ML software clearance. For instance, Wu et al. (2021)
investigate 130 certified devices and find that 126 only went through retrospective studies, and 93 did
not report any multi-center validation. From 54 high-disk devices, none showed prospective evidence.
van Leeuwen et al. (2021), similarly, report that for 100 commercially available AI products, 192 from
237 studies were retrospective, and only 71 released multi-site results.

The risks of static ML systems that we explored in previous chapters – such as the gradual deterioration
of performance caused by data drift – cannot be overlooked. Changes in acquisition practices and
reconstruction algorithms are also accelerating, which means that the data drift problem will manifest
faster than expected. Following the benefit/risk perspective taken by both the FDA and European
Commission, and considering the fact that DNNs fail silently and many commercially available software
systems lack sufficient prospective validation, further postponing a lifecycle regulatory approach that
allows controlled model updates and requires sufficient QA poses too high a risk. If we act fast enough, a
regulatory framework that is more beneficial to healthcare professionals and patients may be in place
before the next medical condition spreads, pushing healthcare resources to a limit. We could then
leverage DL advances for more effective action across the globe.
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Part IV.

Summary and Future Perspectives
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Whenever a colleague working in a radiology department mentions that a deep learning solution is
being actively used, my first reaction is to be pleasantly surprised. Most DL-based products only recently
came into the market, but there are now several hundred devices cleared for clinical use in the EU and
USA (van Leeuwen et al., 2021). Unfortunately, the initial excitement drops when I hear about the
software committing blatant mistakes, and I cannot help but think about the many failures that are going
undetected. How can this happen when we expect regulatory authorities to only approve systems that
are proven to be safe and effective?

I believe the core of the problem lies in the fact that most DL evaluations, both in research publications
and for commercial products, are made in static, close-world environments where most factors behind
the data distribution are accounted for. In fact, van Leeuwen et al. (2021) find that 192 from 237 studies
performed by manufacturers for obtaining certification were retrospective. Wu et al. (2021) state that
from 130 observed certified devices, only four overall went through prospective studies, and this includes
the 54 high-disk devices. Regulatory bodies have identified this problem and are moving towards a
lifecycle approach where manufacturers and clinical users must continuously monitor devices.

In this thesis, I take a holistic view at the problem of designing systems for the clinical open world so that
they remain safe and effective over time. Substantial performance degradations of DNNs are in no way
surprising. Even if manufacturers train their systems with large, heterogeneous datasets, with time data
drift will inevitably take place and the system will begin to fail. In Chapter 1, I explore what changes
cause a shift in the data distribution. These can be related to both the image acquisition practices and
the patient population. In fact, there are often several factors that introduce changes in parallel, even
within the same institution.

This performance deterioration is particularly problematic because DNN failures tend to be silent. The
first step is, therefore, to detect when a prediction is uncertain. In Chapter 3, I summarize OOD detection
methods I developed for this purpose that either monitor the value of a proxy loss (González and
Mukhopadhyay, 2021) or calculate the distance to training features in a low-dimensional latent space
(González et al., 2021). The second strategy works reliably across a number of use cases (González et al.,
2022a) and is applicable to virtually any DNN model without needing re-training. This is a significant
advantage, as models are mostly chosen for their target-task performance and not for secondary goals
such as outlier detection. In future work, I wish to research ways to better capture properties of the
latent space and identify in what ways a sample is different from the training data.

Uncertainty estimation can also help us identify low-confident predictions. In Chapter 4, I describe a
method to increase the diversity between members in a deep ensemble (Mehrtens et al., 2022). I also
show how domain knowledge can be used to find failure cases (González et al., 2022b) in Chapter 5. I
do not believe that any one method should be completely trusted. Instead, a quality monitoring system
as that suggested for a lifecycle regulatory approach (FDA et al., 2019) should quantify multiple metrics
in tandem.

Effectively detecting failures can allow the model to be utilized for a portion of the cases. However,
our objective is to maintain good performance for the majority of the data. Domain adaptation and
OOD generalization methods pursue this goal with some success. However, as I mention in Chapter 6,
robustness is only increased up to a certain level and at the cost of considerable computational overhead.

We know by now that a model is only as good as the data it was trained on. For a DNN to maintain stable
performance through its lifecycle, it inevitably needs to be trained with new samples. Continual learning
looks to adapt models to changes in the environment while preserving previous knowledge. As I explain
in Chapter 7, most methods attempt to find an appropriate trade-off between rigidity and plasticity.
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There is, however, a simple solution that maximizes both these objectives, namely expansion-based
approaches that maintain several parametrizations of the model and employ the most appropriate one
during inference. I present two methods in Chapter 8 that apply this concept to task-agnostic scenarios
where no information is provided about the data-generating process. The first introduces an oracle that
trains one autoencoder network per domain and, during testing, selects the model corresponding to
the domain with the smallest error (González et al., 2023). The second method, ODEx, leverages OOD
detection and works even in situations where there are no rigid domain boundaries during training
(González et al., 2022d). A central challenge of continual learning in the open world lies precisely in
detecting changes in the data distribution, which is why effective OOD detection and lifelong learning go
hand-in-hand. In the future, I hope to extend this approach to an ensemble-based paradigm where
multiple model states are updated during training and used during inference.

Coupling OOD detection with expansion-based continual learning is a simple and effective strategy
that allows most DNNs used today to adapt to changes in the environment. Nevertheless, there are
several practical challenges hindering the release of lifelong learning systems, which I explore in Chapters
10 through 13. The first is a lack of unified validation standards and frameworks that allow the easy
evaluation of state-of-the-art models in dynamic environments, a fact that we look to mitigate for medical
image segmentation with our Lifelong nnU-Net project (González et al., 2022c). Another factor is the key
role that physicians must play in updating the database, which signifies an additional workload. Active
learning can help reduce the amount of work, for which we propose the i3Deep method that allows the
correction of segmentation masks with a refinement network trained prior to the interaction with the
user (Gotkowski et al., 2022).

Finally, the most significant hurdle is the fact that, as of now, systems that adapt post-deployment cannot
be cleared for commercial use. As I mentioned previously, and I describe in more detail in Chapter 13,
there are several initiatives trying to amend this situation.

Yet considering the speed at which medical software devices are being developed and authorized despite
insufficient prospective validation (van Leeuwen et al., 2021), coupled with the concerning lack of auditors
who are allowed to provide certification in the EU (European Commission, 2023); it is paramount that
we move to a better regulatory framework soon. Only with a swift change in regulation will we have
products that truly remain safe and effective over time, and do not disappoint their users.
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