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Abstract . The hardware implementation of a cartesian closed-loop control 
scheme will be presented which allows to define the dynamic behaviour of each 
degree of f reedom of the cartesian coordinate system in a prescribed 
sense . The control system at joint level is designed by multivariable 
design methods with an additlonal feedforward component using the concept 
of inverse dynamics. 
To achieve high accuracy for cartesian motions quasi-continuous control 
mode with cartesian sampling periods of not greater than 5 ms is aimed at . 
A special purpose processor for calculation of kinematic and dynamic terms 
is designed and integrated into a multiprocessor architecture. This imple
mentation concept with Robot Arithmetic Processor provides the necessary 
computational power and allows real-time cartesian closed-loop control which 
is also essential for cartesian sensory control tasks . 

Keywords . Robots; cartesian robot control; 
ce control; closed- loop systems; real - time 
systems; control system synthesis . 

INTRODUCTION 

Control sys t em design methods implemented in con
ventional robot control systems are focused on 
joint control level, where the control design pro
cedure incorporates conventional PID controllers 
to optimize the dynamic response in each joint. 
In case of fast motions along a deslred time-based 
cartesian t r ajec t ory two significant problems 
arise: 

i. Due to the highly nonlinear coupled 
dynamic relationship between the joints 
resulting trajectory shows deformations 
even if the dynamic performance of each 
single joint is acceptable or optima l . 

ii . EVen if the control scheme at Joint le
vel can cope with the above mentioned 
problem of robots cross-coupled nonlinear 
dynamics the described dynamlc perfor
mance at joint level is strongly modified 
at the cartesian level due to the non l i
near coordinate transformation between the 
joint coordinate and cartesian coordinate 
system . 

The purpose of robot control should be to maintain 
the prescribed motion along the desired cartesian 
trajectory or to have a "'ell defined response in 
each direction of task coordinate - as it lS r equi
red for sensory loops-. Thus a dynamic performance 
has to be prescribed with respect to the task coor 
dinate system , i.e . the cartesian coo~dinate system. 
The goal has to be to design a control system which 
achieves the same dynamic performance in a prescri 
bed sense for the whole cartesian work space, so 
that the dynamic response for the end-effector is 
not influenced by the actual joint configuratl0n . 
This goal requires a re - definition of the robot 
control design task and the control design at joint 
level plays a subordinate role . 

Very few control algorithms have been proposed which 
focus on this goal /1-6/. The major part of them 

special purpose processors ; for
control ; multivariable control 
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utilizes adaptive schemes which are confronted with 
problems of changing dynamics due to fast cartesian 
motions . One of the widely used design method is the 
resolved motion acceleration control /1/ which is 
also conceptually adopted by some of the adapt ive 
algorithms /4/ . 

This paper discusses a nonadaptive approach. At car 
tesian level control system design strateg i es of 
state - space are used . The proposed decoupl i ng sche 
me utilizes at Joint level t he inverse dynamics con
cept and allows arbitrary pole - placement at carte 
sian level in each cartesian coordinat e, similar to 
the conventional Joint servo techniques . Furthermore 
a task-dependent on-line modi - fiable pole - placement 
strategy is realized which is essential for various 
sensory feedback control tasks /7/ . 

At the joint level the ideas of inverse dynamic 
concept is adopted to a robust closed - loop veloclty 
control concept with acceleration - feedforward - decoup 
ling. ThlS strategy overcomes the difficult,es of 
pure non-l i near feed-forward decoupling due to the 
modelling errors , parameter and load variations. 

The main subject of this paper , however , is the 
hardware implementation of such a sophisticated ro
bot control scheme . Here the problem lS that present 
standard 16/32 bit microprocessors do not offer 
effective solutions to achieve real-time control . 

For samp l lng periods of less than 5 msec ln 
a quasi-continous l y sampled cartesian control loop 
the amount of computational effor t requires special 
purpose processors and a multiprocessor architecture 
all designed specially for real - time control ca l 
culations. The special purpose processor we designed 
lS called Robot Arithmetlc Processor (RAP ) . The 
concept of RAP al ms at very fast processing which 
utl1izes all the symmetries and parallelism inherent 
in the kinematic and dynamic transformatl0n and com
pensation equations. 
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BASIC CARTESIAN CLOSED-LOOP FORMULATION 

One of the main problems of cartes1an closed-loop 
robot control is that sensory information must be 
provided which defines the end-effector's position 
and orientation in 3-D space with respect to the 
base coordinate system. There are only a few ex
perimental systems which are rather expensive and 
complex and do not offer cost-effective practical 
solutions for on-l1ne applications/ll/. An indirect 
method is the calculation of cartesian position 
from measurements in joint coordinates via kinema
tic coordinate transformations. In case of link 
deformations due to end-effector contact with en
vironment or due to large pay-loads and .also in 
case of flexible links. this type of indirect mea
surement does not reflect the real cartesian posi
tion. These errors can be compensated by mathemati
cal modelling and calculation of the link deforma
tions. 

One of the most useful mathematical tools to hand
le kinematic structures is the homogeneous trans
formation matr i ces/8/. The effective position and 
orientation of the robot's endeffector can be de-
scribed in terms of a homogeneous transformation 
indicating the coordinate frame attached to robot's 
last link: 
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where ET (p,. Py. pz) specifies the position 
of the coordinate frame with respect to the refer
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are the unit vectors in the reference coordinate 
frame and describe the orientation. For each fra
me a corresponding position vector can be calcu
lated 

(2) 

giving the end-effectors position (px ' Py ' p z ) 
and its angles of orientation (~ , ~ , t; , e.g. 
p.PY-angles)/8/ 

For serial link robots eq.s (1) and (2) are utili
zied to formulate the kinematic coordinate trans
formation equations. Attaching a coordinate frame 
to each link a transformation matrix Ai for link 
i can be defined by the corresponding geometric 
link parameters /8/ including the joint coordinate 
q (rotation8i for revolute joints or translation 
d for prismatic joints). The position of the 
terminal link of a series of one degree-of-freedom 
joints is then given by the transformation Tn : 

t:3 ) 

where Tn is then a function of 
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So. ( ~l ' ... , c:.:-,:' 
vector of joint coordinates. 

Calculating th~ corresponding cartesian position 
vector (eq. 2 ) to Tn one obtains the solution 
of the general kinematic problem: 
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which can be used to evaluate robots cartesian 
position from measurements in joint coordinates. 

The cartesian velocity can be computed from the 

The cartesian velocity can be computed from the 
joint velocities via the 6xn Jacobian matrix J. 
Based on Ai matrices the Jacobian can be calculated 
for any series of one-degree-of-freedom joints/9/. 
The cartesian velocity of the end-effector can be 
then obtained by the following equation: 

x = J.s. 

where 

x 

with 

(5) 

cartesian velocities 
in coordinate frame T 
angular velocities 
about the frame axes 

The cartesian accelaration can be obtained from (5) 
by simple differentiation: 

R ~ J·ii + ~. s. (6) 

where J is the time derivative of the Jacobian 
which can be calculated analytically by the follow
ing equation: 

(7 ) 

For on-line calculations a numerical differentiation 
of J may be more suitable. 

To close the cartesian control loop it is necessary 
to compute the cartesian position and velocity 
errors. T~e actual cartesian posi tion ~ a and 
velocity ~a can be obtained by (3) or (4) and (5). 
respectively. The desired cartesian position ~d 
can be expressed according to (1) and (2) as Tnd I 
thus the cartesian position error 

x = X - X 
~ "-,j -a 

(8) 

can be calculated as a differential rotation and 
translation by the corresponding homogeneous trans
formation matrices of the actual Tna and desired 
position Tnd /9/ in coordinate frame of Tn: 
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Based on equation (5 ) for the actual cartesian 
velocity 

X = J · G :. i 2) 
- a a ....... a 

the cartesian velocity error can be obtained from 

X = X. - X 
-e -c -a 

when id is given in an appropriate form in the 
corresponding coordinate frame. If Xd(t) is gi
ven as Tnd(t) then id can be calculated simi
lar to eq. (9) /2/ by , 
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Having determined the formulas for the cartesian 
position and velocity error, now, the control 
problem is to find a feedback law 

m 
-c 
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torque vector 
commanded to 
joint actuators 
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such that the closed-loop robot control system is 
stable and shows a prescribed dynamic behavior. 

PRESCRIBED DYNAMICS 

The developed cartesian closed-loop control design 
is based on state-space plant description. Defining 
the state vector for the cartesian position and 
velocity as 

~ = f ~] 
(-

( 16) 

eq. (6) can be expressed in state-space represen
tation as 

i=[: :}-~+ [:)'i+ [~) .~ ( 17) 

where I is the (6x6)-identity matrix. 

The control problem is to design a feedback law 
which minimizies the performance index 

t 
I = Um J I~( t ) - ~a(t) lI·d t ( 18) 

t-o 

where 

( 19) 

represents the desired i.e. prescribed closed-loop 
dynamics. Gd is a (12x12) stable real matrix, i.e. 
all eigenvalues of Gd have negative real parts. 
A very convenient choice for Gd is 

Gd = [: :j (20) 

where A and Bare (6x6) real matrices. 

By this choice the control law for (18) can be gi
ven as 

.. -1 • -1 •• 
~ = J • ( A~ + B~ ) - J .J. 9,. (2 1 ) 

In general it is a nontrivial problem to determine 
appropriate non-diagonal matrices for A and B which 
reflect a prescribed dynamic behaviour. In practice 
they will be chosen as positive diagonal matrices, 
thus a linear second-order time invariant dynamic 
behaviour will result for each cartesian degree of 
freedom. The advantages of this choice are the de
sired dynamic behaviour characteristics, such as 
overshoot, rise time or natural frequency and dam
ping ratio respectively, can be specified for each 
degree of freedom independently by the correspondin 
matrix elements a ii and b ii 

On the other hand this choice allows an on-line tas 
dependent prograMming of the prescribed dynamic be
haviour by simply specifying a new set of aij bii 
where constraints on actuator dynamics can to be ta
ken into consideration. 

The control law ( 21) requires that the Jacobian mat
rix J has an inverse. If J is not square because 
the arm has redundant degrees of freedom a pseudo
inverse J. can be found /12/. Otherwise linear prog
ramming techniques can be applied by rewriting eq. 
(21) as a set of linear algebraic equations 

dX (22) 

where 

dX = A~ + B~ - J . 9.. 

to obtain a numerical "best approximate" solution 
/10/. As the whole control strategy is implemented 
in a quasi-continous mode the solution procedure 

CONTROL AT JOINT LEVEL 

Given the reference input by equation (21) the con
trol system at joint level has two components: 

i. For the feedforward component the 
computed torque technique based on 
inverse dynamic model is used. A mo
dified Lagrange-Eu1er-formulation /13/ 
is implemented which greatly reduces 
the computation time. The resulting 
equations are well structured expli
citly expressed matrix form, thus 
insignificant terms or matrix elements 
can be easily identified and elimina
ted during computations. 

ii. One of the main disadvantages of the 
computed torque technique is that the 
resulting control loop is very sensi
tive to modelling inaccurancies, pay
lood and parameter changes. To elimi
nate these effects an additional velo
city feedback loop is integrated at 
joint level. For the velocityloop the 
reference input is generated by simple 
integration of the desired accelerati
on in eq. (21). Robust control design 
methods are used to specify the con
troller /14/. 
A detailed discussion of the applica
tion of this design method to manipu
lators can be found in /15/. Due to 
the additional feedforward via inverse 
model the multivariable design problem 
can be simplified and constraints on 
actuator dynamics can be handled 
easily. 

Figure 1 illustrates the overall control system. 
The whole design is simulated for a r3-arm of 
MANTEC, a six-link robot, on VAX 11/780. The simu-
1ations has shown good results. The implementation 
for r3-arm is now in work and will be discussed in 
following sections • 

PRESCRIBED CARTESIAN DYNAMICS IN SENSORY LOOPS 

The proposed concept for robot-contol with pre
scribed cartesian dynamics allows the integration 
of force/torque-sensory loops. Thereby the approach 
permits the simultaneous position and force control 
which is a prerequisite to application of robot 
manipulations to complex handling and assembly 
tasks. 

The architecture for the control of the position 
and the velocity of the manipulator and the con
tact forces generated at the hand is presented in 
Figure 2. ( For the control of cartesian and joint 
level refer to Figure 1. ) The basic idea within 
this concept is the formulation of 6-dimensional 
stiffness E in a frame C located arbitrarily in 
cartesian space /16/. 

(23) 

wherell~F is the displacement from the commanded 
position of the hand. 

The frame C is a task-orientated coordinate system 
within which trajectories poSition/ force constraints 
are determined /17/. c • 
The desired values of position ~d' velocity c ~ d 
and contact forces C Kd are specified due to the 
frame C. 
Therefore the actual values ~a' i a and Ka must be 
transformed into the same coordinate system C be
fore the compliance selection is applied and errors 
are found. 
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The compliance selection S is a 6x6 - matrix that 
specifies which cartesian degrees of freedom are un
der position control (Si = a), and which are under 
force control (Si = 1): 

r sI 0 
I s 2 

5 =, (2 4 ) 

10 
l 56} 

The error signals in position and velocity are found 
by the following equations: 

c~x + ( I-5) - (e X _ e X ) 
'-'Ps "<:l -a 

(25) 

Cx = ( 1-5 ) ' (cx ~ e X ) (26) 
-e s -u -a 

The commanded position displacement <6 XFs is 
given by the following equation, when equation (23) 
is applied: 

c - 1 c cF ) (27) 
t~s = E ' 5 ' ( ~ - a 

The desired cartesian accelaration ~ d can be 
obtained , after a transformation of the error sig
nals from the frame C to the base-coordinate system 
by: 

A X + B X 
-es -E: S 

(2 8 ) 

where 

X position error in base --es 
coordinates 

X velocity error in base 
--e s coordinates 

A,B see equation (20) • 

The compliance selection tune is a mechanism which 
allows the modification of the selection matrix S 
during the performance of a special task. The main 
reason for tuning this matrix is the possible lack 
of sensor-signals. In this case it is necessary 
to continue the processing with all degrees of 
freedom under position control. Other necessarities 
for tuning are discrepancies in the preplanned mo
tion or the occurance of unexpected obstacles. 
For these reasons the compliance selection tuning 
allows the adapt ion of the coordinate system C to 
the variation of the processing task. 

REAL-TIME IMPLEMENTATION PROBLEMS 

The number of mathematic operations - in particular 
multiplications, additions and transcendental func
tions - could be used to estimate the necessary com
putational performance the hardware should have. 
The number of these operations for the calculation 
of the kinematic equations, the inverse dynamics 
and the cartesian controller of a robot with six de
grees-of-freedom is tabulated in TABLE 1. 
The computation time of the cartesian controller in
cludes the calculation of ~o,ko,Rd,gd.The inverse 
dynamic implemented with an algorithm based on La
grange-Euler formulation is optimized for minimum 
computation effort /13/. It is obvious, that the 
calculation of these terms requires the greatest 
computation time (s. TABLE 1 ). Therefore the cal
culations must be executed in two different cycles 
to get a short sampling period. Thus it is suffi
cient to refresh the terms of inverse model in a 
multiple k of the sampling period tp. 

TABLE 1 lists also the computation times for a six
link arm with a 8086 microprocessor with 8087 arith
metic coprocessor. Hence it follows the minimum 
clock cycle using one processor for the control and 
one for the calculation of the terms of the inverse 

dynamics: 

tp = 24,8 msec 25 msec, k=2 

The large sampling time tp ( 25 msec) leads to an 
unsatisfactory control behaviour for high-speed car
tesian motion. Furthermore the computation time ra
pidly increases with rising number of degrees of 
freedom • 

To improve the performance it is necessary to de
velop a fast advanced floating-point processor 
which handles floating-point numbers with a single 
precision through put greater than 1 MEGAFLOP 
(8087, 5MHz, ca. 0,05 MEGAFLOP). TABLE 1 contains 
the sum of the calculation times of a bit-si ice
processor with a computation performance for 
multiplications and additions which is about the 
factor 20 higher than the performance of the 
8087-coprocessor. Herewith it is possible to reduce 
the sampling time tp to 2,2 msec and k·tp = 4,4msec 
Only one processor is required. The sampling times 
increases to tp = 2,5 msec, k·tp = 5 msec if the 
control architecture is enlarged by sensory loops. 

ROBOT ARITHMETIC PROCESSOR (RAP) 

Figure 3 is the block diagram of the high-speed 
floating-point processor. The main modules of the 
processor are two special floating-point chips, 
which handle full 32-bit and 64-bit floating-point 
formats and operations, confirming to the proposed 
IEEE standard 742, version 10.0. A fast mode of 
operation is included which removes the time penalty 
of underflow exception handling by substitution of 
zero for denormalized numbers. The array flow-through 
time for floating-point multiplication and addition 
is under 180ns for single precision operations. 

Furthermore, a control unit is required to build 
an independent processor-subsystem. The microprogram 
control architecture is instruction-address-data 
based, three stages of pipeline are involved. 
A 16 bit ALU is used as a microprogrammed address 
generator because directly desired memory addresses 
from the microcode are inefficient for large program 
A register-file connects the floating-point units 
with the data-bUS to support efficient computation 
of vector and matrix operations. The supervisory 
machine has direct access to the memory of RAP for 
communication and data transfer. 

TABLE 2 lists the total computation time for 
memory-to-memory and full pipelined operations 
(clock time = 90 nsec ) . This corresponds to the 
maximum and minimum c o mputation performance. The 
computation time in TABLE 1 for RAP refers to the 
worst case memory-to-memory operations. Therefore 
the total sampling time could be reduced if the 
microprogram uses the pipeline facilities and the 
parallel data paths. 

MULTIPROCESSOR CONTROL ARCHITECTURE 

The control system consists of 4 identical micro
computers based on iAPX-80186 processors with two 
bus interfaces. The global bus connects all micro
processors applying a dual-port memory concept for 
the inter-processor communication. The local pri
vate bus is used f o r I / O - interfaces, intelligent 
controllers, local memory expansion and interface 
to RAP. This increases the throughput of the sys
tem and allows parallel computations. 

Figure 4 is the block diagram of the control sys
tem. The task of the cartesian motion controller 
with attached RAP and multisensory data proces
sing unit has been described above. The third 
microcomputer connects the robot arm with the con-
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trol system via power adapter and data acquisition 
subsystems and performs supervision. The task of 
interprocessor coordination and communication and 
trajectory planning are carried out by the forth 
computer including the interface to the super
visory machine and the human user. This micropro
cessor control system is expandable with additio
nal processor units and I/O-moduls to increase the 
performance for complex and advanced applications. 

SUMMARY 

The hardware implementation of a cartesian closed
loop control scheme is presented which allows to 
define the dynamic behaviour of each degree of free
dom of the cartesian coordinate system in a pre
scribed sense. The control system at joint level is 
designed by multi variable design methods with an 
additional feedforward component using the concept 
of inverse dynamics. 

To achieve high accuracy for cartesian motions 
quasi-continuous control mode with cartesian samp
ling periods of not greater than 5 ms is aimed at. 
A special purpose p r ocessor for calculation of 
kinematic and dynamic terms i s designed and integ
rated into a multiprocessor architecture. This 
implementation concept with Robot Arithmetic Pro
cessor provides the necessary computational power 
and allows real-time cartesian closed-loop control 
which is also essential for cartesian sensory con
trol tasks. 
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TABLE 1 

Computational effort and comparison of the calculation times 
( six degree- at-freedom robot) 

Number of Computation time 
calculation 
of 

HulUpli- Additions Transcen- 8086/87 RAP 
c ations dental (5KHz ) 

kinematic 
equations 

terms of t he 

387 

inverse dynamics 1312 

inverse dynamics 
(accumulation 
of the terms) 

cartesian 
controller 

TA,BLE 2 

180 

48 

RAP : Times for execution 

functions 

272 23 

1055 

183 

60 

computation tl.me for 
operation memory - to-memory t ota l pipelined 

multiply 

add/ pubstract 
convert/compose 

divide 

transcendental 
functions 

transfer o pecatlon s 

720 ns 45 0 n s 

720 ns 4 50 ns 

2220 n8 1950 ns 

3330 ns 3150 ns 

15 ,6 1118 

50 

7,2 illS 

0,9 '11'18 

0 ,36 me 

0 , 11 11\8 
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Figure 1. Block diagram of the cartesian closed-loop robot control system. 
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Figure 2. Block diagram of cartesian sensory contol loop . 
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Figure 3. Principal structure of RAP . 
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Figure 4 . Multiprocessor control system architecture . 




