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SUMMARY

Necrotizing enterocolitis (NEC) afflicts approximately
10% of extremely preterm infants with high fatality.
Inappropriate bacterial colonization with Enterobac-
teriaceae is implicated, but no specific pathogen has
been identified. We identify uropathogenic E. coli
(UPEC) colonization as a significant risk factor for
the development of NEC and subsequent mortality.
We describe a large-scale deep shotgun metage-
nomic sequence analysis of the early intestinal mi-
crobiome of 144 preterm and 22 term infants. Using
a pan-genomic approach to functionally subtype
the E. coli, we identify genes associated with NEC
and mortality that indicate colonization by UPEC.
Metagenomic multilocus sequence typing analysis
further defined NEC-associated strains as sequence
types often associated with urinary tract infections,
including ST69, ST73, ST95, ST127, ST131, and
ST144. Although other factors associated with pre-
maturity may also contribute, this report suggests a
link between UPEC and NEC and indicates that
further attention to these sequence types as poten-
tial causal agents is needed.

INTRODUCTION

Necrotizing enterocolitis (NEC) is a leading cause of morbidity

and mortality in preterm infants. One in fourteen infants born

prior to 32 weeks of gestation develop NEC, and nearly one-third

of cases is fatal (Neu and Walker, 2011). The etiology of NEC is

not confidently established but appears to result from a hyperin-

flammatory response to the gut microbiota (Nanthakumar et al.,

2011; Neu and Walker, 2011). For years, research on NEC

focused on identifying pathogens responsible for triggering

NEC onset (Boccia et al., 2001; Hoy et al., 2000). With the advent

of high-throughput sequencing, the focus shifted toward identi-

fying microbial community dysbiosis that predisposes infants to

develop NEC (Claud et al., 2013; La Rosa et al., 2014; Mai et al.,

2011; Morrow et al., 2013; Torrazza and Neu, 2013; Wang et al.,

2009; Zhou et al., 2015).

Relative to term infants, the enterocytes of preterm infants

exhibit excessive toll-like receptor 4 (TLR4) signaling in response

to lipopolysaccharide (LPS)-bearing organisms (Nanthakumar

et al., 2011). Themost abundant LPS-bearing bacteria in the pre-

term infant are of the phylum Proteobacteria, family Enterobac-

teriaceae. Some have reported that Proteobacteria are more

abundant at the time of NEC onset (Wang et al., 2009), whereas

others have reported a surge in Proteobacteria a week or more

prior to NEC onset (Claud et al., 2013; Morrow et al., 2013; Tor-

razza and Neu, 2013; Zhou et al., 2015). These reports support

the view that an excessive quantity or increase in Proteobacteria

triggers a hyperinflammatory response that leads to NEC. How-

ever, many preterm infants are highly colonized by Proteobacte-

ria and experience a surge in this phylum without developing

NEC (La Rosa et al., 2014). Thus, a generalized Proteobacteria

dysbiosis alone does not adequately explain this disease.

NEC often occurs in outbreaks (Boccia et al., 2001; Mein-

zen-Derr et al., 2009), and investigations using culture-based

techniques have reported that Enterobacteriaceae members

Escherichia coli, Klebsiella pneumoniae, and Enterobacter

cloacae were most often associated with NEC (Boccia et al.,

2001; Hoy et al., 2000). The most recent investigations of

NEC have used culture-independent 16S rDNA community

profiling (Claud et al., 2013; La Rosa et al., 2014; Mai et al.,

2011; Morrow et al., 2013; Torrazza and Neu, 2013; Wang et

al., 2009 Zhou et al., 2015), which lacks the ability to resolve

strains with ‘‘pathogenic potential’’ from non-pathogenic mem-

bers of a lineage. A recent shotgun metagenomic study with

five temporally clustered cases of NEC and five healthy infants

provided strain-level resolution but did not find a specific,

‘‘genetically distinct’’ pathogenic strain associated with the

case cluster (Raveh-Sadka et al., 2015), and cultivation of

Enterobacteriaceae strains associated with 15 episodes of sus-

pected NEC (eight confirmed) reached a similar conclusion

(Hoy et al., 2000).
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We analyzed deep shotgun metagenomic sequencing of fecal

samples collected from 144 preterm infants in 3 neonatal inten-

sive care units and 22 term infants.We applied an assembly-free,

pangenome-based computational analysis to determine the

E. coli-specific gene content of strains within the infant micro-

biomes. Accessory genes involved in iron acquisition, phospho-

transferase systems (PTSs), and D-serine metabolism were

characteristic of strains associated with NEC risk. Additional

analysis characterized the risk strains as uropathogenic E. coli

(UPEC) (Flores-Mireles et al., 2015; Wiles et al., 2008; Zhang

and Foxman, 2003). We present evidence that (i) colonization

by UPEC is a risk factor for development of NEC and (ii) UPEC

correlated with death as an outcome. These findings suggest

an association between UPEC and NEC and provide a founda-

tion for advancing the epidemiology of NEC.

RESULTS

Subjects and Overview
We generated metagenomic shotgun sequence data from 144

preterm infants less than 30 weeks gestational age (GA) and 22

term infants greater than 37 weeks GA with stool samples

collected between days 3 to 22 of life (Tables 1 and S1; Figures

S1 and S2). We divided the collection period into three windows

(days 3–9, 10–16, and 17–22) and selected the latest postnatal

sample per infant per window for inclusion in community anal-

ysis. NEC cases and controls had a similar average day of life

of sample collection within each of the three windows analyzed.

We investigated the prevalent Enterobacteriaceae species in

relation to risk of NEC. These results led us to functionally sub-

type E. coli and associate UPEC with NEC and infant death.

Infant Microbiome at Days 3–9 Postpartum
Samples from 97 infants, 75 preterm and 22 term, were collected

days 3–9 postpartum (median day of sample collection = 7). 8 of

the preterm infants later developed NEC. MetaPhlAn (v2.0) (Se-

gata et al., 2012; Truong et al., 2015) was applied in order to

determine the relative abundance of species present (Figure 1A

and Table S1). Defining carriage to be when a sample contains

a species present at a minimum of 1% relative abundance, we

determined the most commonly carried species in this sampling

window. In descending order, Enterococcus faecalis occurred

in 33 of 75 preterm infants (a prevalence of 44%) followed by

Staphylococcus epidermidis (43%), Streptococcus sp. GMD4S

(37%), Klebsiella spp. (25%), E. coli (24%), Serratia marcescens

(21%),Enterobacter aerogenes (12%), andEnterobacter cloacae

(12%) (Figure 2, red circles).

In many samples, a single species dominated the community.

We calculated the median relative abundance (MRA, scaled in

the [0.0–1.0] interval) of the most commonly carried species,

excluding samples in which the species were not carried. The

most abundant species, ordered by MRA, were E. coli (0.92),

S. marcescens (0.24), Klebsiella spp. (0.14), Streptococcus sp.

GMD4S (0.12), and E. faecalis (0.11) (Figure 2).

Term infant samples were more diverse than preterm infant

samples, as assessed with Shannon’s index (SI) (Figure S3A;

SI = 1.59 ± 0.95 and 1.1 ± 0.77, respectively; p = 0.015). To iden-

tify taxa that were significantly enriched in either term or preterm

infants, we used LEfSe (Segata et al., 2011) (Figures S4A–S4C).

Taxa enriched in term infant samples included the phyla Acti-

nobacteria (e.g., Bifidobacterium species) and Bacteroidetes,

as well as some of the Firmicutes, including the classes Clostri-

dia, Erysipelotrichia, and Negativicutes (e.g., Veillonella). In

contrast, taxa enriched in preterm infant samples included Firmi-

cutes classes Bacilli (e.g., S. epidermidis) and Lactobacillales

(e.g., E. faecalis) as well as the Gammaproteobacteria genus

Enterobacter.

In preterm infants, early empirical antibiotic prophylaxis con-

sisted of ampicillin and gentamicin. The number of days of anti-

biotic treatment during the first 14 days of life was used to stratify

infants. We observed few, if any, significant differences in micro-

biome composition between preterm infants with no postnatal

antibiotic treatment and infants with only a few days of treatment

(data not shown). Thus, we compared preterm infants who

received 0–6 days treatment (low) to those who received

7–14 days treatment (high) during the first 2 weeks of life (Figures

1A, S3, and S4D–S4E). Diversity did not differ significantly

comparing low and high antibiotic treatment (SI = 1.06 ± 0.79

and 1.18 ± 0.7, respectively; p = 0.582). Infants who received

low treatment were enriched in the class Bacilli; high treatment

infants were enriched in the genus Bacteroides (Figures S4D

and S4E). These differences may be due to antibiotic treatment,

Table 1. Characteristics of 144 Preterm and 22 Term Study

Infants

Characteristic

NEC

Cases

Preterm

Control

Term

Control

Infants, number 27 117 22

Infant birth weight,

median (range), grams*

850

(415,1340)

904

(520,1741)

3476

(2217,4173)

Infant gestational age,

median (range), weeks*

26 (23,28) 26 (23, 29) 39 (38, 41)

Male, number (%) 15 (56%) 61 (52%) 11 (50%)

Cesarean section delivery,

number (%)

16 (59%) 70 (60%) 10 (45%)

Multiple births, number (%)*** 2 (7%) 49 (42%) 2 (9%)

Primiparous, number (%)** 15 (56%) 28 (24%) 7 (32%)

Days infant antibiotic

use in first 14 days of life,

median (range), days*

7 (0, 14) 3 (0, 14) 0 (0, 0)

Human milk R 75%

feedings over the first

month of lifea, number (%)

17 (63%) 86 (74%)

Maternal antibiotics at

delivery (%)*

12 (44%) 79 (68%) –

Infant with sample available

for days 3-9, number (%)

8 (50%) 67 (75%) 22 (100%)

Infant with sample available

for days 10-16, number (%)

15 (94%) 81 (91%) 18 (82%)

Infant with sample available

for days 17-22, number (%)

7 (44%) 37 (42%) 7 (32%)

*p < 0.05, **p = 0.002, ***p = 0.001
aHuman milk feeding calculated as the number of days of feedings since

birth to the occurrence of NEC, death, or the end of the first month of life,

whichever occurred first.
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or, alternatively, infants with these profiles may differ in their like-

lihood of treatment with antibiotics.

There were 46 Cesarean births and 29 vaginal births in the pre-

term infants with days 3–9 samples. Diversity did not differ signif-

icantly by delivery mode (SI = 1.21 ± 0.81 versus 1.02 ± 0.73; p =

0.305). However, Bacilli were enriched inCesareanbirths (Figures

S4FandS4G). Preterm infantswhodevelopedNEChadsimilar di-

versity in comparison to preterm controls (SI = 1.11 ± 0.79 versus

0.96± 0.56; p= 0.597), and therewere nonotable differentially en-

riched taxa between these groups (data not shown).

Infant Microbiome at Days 10–16 Postpartum
Infant sampleswere collected during days 10–16 from96preterm

and 18 term infants (median day of sample collection = 13);

15 preterm infants later developed NEC. (Figure 1B, Table S1).

The prevalence of the most commonly carried organisms was

S. epidermidis (46%), E. faecalis (45%), Klebsiella spp. (36%),

E. cloacae (26%), E. coli (24%), and K. oxytoca (21%) (Figure 2).

However, the species with the highest MRA were E. coli (0.93),

S. marcescens (0.39), V. parvula (0.33), Klebsiella spp. (0.19),

K. oxytoca (0.11), andStreptococcus sp.GMD4S (0.12) (Figure 2).

Again, term infant samples weremore diverse than preterm in-

fant samples (SI = 1.82 ± 01.1 versus 1.13 ± 0.76; p = 0.002). Pre-

term infants delivered vaginally tended to have lower diversity

than Cesarean births (SI = 0.96 ± 0.68 versus 1.25 ± 0.79; p =

0.061), and infants with high antibiotic treatment tended to

have lower diversity than those with low antibiotic exposure

(SI = 0.92 ± 0.81 versus 1.22 ± 0.71; p = 0.073). However, infants

who developed NEC did not significantly differ in diversity from

preterm controls (SI = 1.01 ± 0.92 versus 1.15 ± 0.72; p = 0.524).
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Figure 1. Species Composition and Relative Abundance in the Infant Gut

(A) Days 3–9 postpartum.

(B) Days 10–16 postpartum.

(C) Days 17–22 postparum.

Species are ranked top to bottom by average relative abundance across samples. Species presented exhibit a minimum average relative abundance of 0.2% or

achieve at least 5% relative abundance in at least one sample (complete abundance data in Table S1). Samples were hierarchically clustered with Bray-Curtis

dissimilarity. Color indicates relative abundance on a logarithmic scale.
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Term infants were enriched in nearly all taxa, except that

the species S. epidermidis, E. faecalis, E. cloacum, and

S. marcescens were all enriched in preterm infants in this sec-

ond collection window (Figures S5A and S5B). Differences in

delivery mode or antibiotic treatment indicated few differ-

ences in these samples (Figures S5C and S5D). Strepto-

coccus and the order Bacteroidales were enriched in infants

with high antibiotic exposure (Figures S5C and S5D). Citro-

bacter and Klebsiella were enriched in Cesarean delivered

infants (Figures S5E and S5F). NEC infants did not exhibit

notable, differentially enriched taxa relative to preterm con-

trols (data not shown).

Infant Microbiome at Days 17–22 Postpartum
44 preterm infants and 7 term infants were included in the days

17–22 collection window (median day of sample collection =

20); 7 preterm infants later developed NEC (Figure 1C; Table

S1). The most prevalent organisms were E. faecalis (52%), Kleb-

siella spp. (39%), E. coli (36%), E. cloacae (25%), C. perfringens

(20%), C. difficile (18%), K. oxytoca (18%), V. parvula (18%),

C. freundii (16%), S. epidermidis (16%), and V. atypica (14%).

Again, the species with the highest MRA provided a different

picture—E. coli (0.81), Klebsiella spp, (0.48), V. atypica (0.21),

E. cloacae (0.14), C. freundii (0.13), and Streptococcus sp.

GMD4S (0.12) (Figure 2).
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Figure 2. Relative Abundance and Prevalence of the Most Frequently Occurring Species in the Early Preterm Infant Microbiome

Fourteen of the most prevalent species observed in the preterm infant microbiome are presented. E.coli is an outlier with a median relative abundance exceeding

0.80 in each of the three collection windows presented. Relative abundance calculations include only samples where the infant carried the organism with at least

1% relative abundance. Prevalence is indicated as red circle, mean relative abundance as a blue diamond, and median relative abundance as box and whisker

plot.
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Term infant samples were againmore diverse than the preterm

infant samples (SI = 2.35 ± 1.2 versus 1.24 ± 0.69; p = 0.0017).

Similar to the days 10–16 samples, diversity did not differ by de-

livery mode (SI = 1.11 ± 0.67 versus 1.35 ± 0.67; p = 0.253). How-

ever, infants with high antibiotic treatment were markedly less

diverse (SI = 0.91 ± 0.67 versus 1.39 ± 0.64; p = 0.032). Samples

from infants who developed NEC tended to be less diverse than

preterm controls, but the difference was not significant (SI = 0.87

± 0.63 versus 1.32 ± 0.68; p = 0.122).

Term infants were enriched in nearly all taxa except E. faecalis

and Streptococcus, which were enriched in preterm infants (Fig-

ures S6A and S6B). Delivery mode indicated few differences,

although E. aerogenes was enriched in Cesarean births (Fig-

ure S6C). Infants with high antibiotic treatment were specifically

enriched in E. coli relative to low treatment infants who were en-

riched in the order Clostridiales, genus Veillonella, and Klebsiella

spp. (Figures S6D and S6E). Finally, infants who developed NEC

had less Veillonella and were specifically enriched in E. coli (Fig-

ures S6F and S6G).

E. coli and NEC-Associated Death
Of 27 infants who developed NEC, 13 had E. coli at greater than

1% relative abundance in at least one sample collected from

days 3–22 of life; 10 of the 13 infants died. The next most abun-

dant species, carried in 12 infants (4 deaths), wasKlebsiella spp.;

2 NEC cases carried both E. coli and Klebsiella spp. In infants

who developedNEC,Klebsiella spp. carriage in at least one sam-

ple correlated with NEC survival (p = 0.057), whereas E. coli car-

riage correlated with death (p = 0.054).

Defining E. coli Sub-types as a Risk Factor for NEC
Considering the prior association of Enterobacteriaceae with

NEC, and our observations that E. coli was associated with

NEC and NEC-associated death, we hypothesized that strain

level differences among colonizing E. coli may further stratify

NEC risk. To test this hypothesis, we developed assembly-

free, metagenomic approaches to subtype E. coli by gene con-

tent (Scholz et al., 2016) and by multilocus sequence type

(MLST) assignment (Figure 3, Tables 2, 3, S1, and S2). Both ap-

proaches indicated that the dominant E. coli strain-type in any

single infant was constant over the collection period. Infant

21461 was an exception, providing two samples with each pre-

senting a different dominant strain type. For association analysis,

we considered genes that could be assigned to a KEGG Orthol-

ogy (KO) group (Table S2) (Kanehisa et al., 2014). The UniProt

Knowledgebase (http://www.uniprot.org/uniprot/) was used to

infer E. coli-specific gene assignments from KO assignments.

919 of 3,004 total genes with KO assignments were considered

accessory genes in that they were not found in all infant samples

(Table S2). Strain-specific gene presence and absence profiles

were used to hierarchically cluster the samples (Figure 3). Infants

who developed NEC were observed throughout the large cluster

(clade 1) and in a second smaller cluster (clade 2).

E. coli Accessory Genes Associated with NEC-
Containing Clades
In total, 120 genes significantly associated with clade 1 and

clade 2, and 152 genes associated with clade 3 (p < 0.02) (Tables

2, 3, and S2). Because strains from infants that developed NEC

tightly co-clustered with strains from infants who did not develop

NEC (Figure 3)—and, thus, would have very similar gene con-

tent—we did not expect, and did not find, any E. coli genes

significantly associated with development of NEC (data not

shown). Genes involved in phenylalanine metabolism and the

degradation of aromatic compounds (Dı́az et al., 2001) were

associated with clade 3. Phylogroup A strains exhibit capacity

for aromatic acid utilization, whereas clinical isolates generally

lack these capacities (Burlingame and Chapman, 1983). Func-

tional gene categories significantly associated with clades 1

and 2 included iron acquisition and metabolism, D-serine detox-

ification and metabolism, and sugar-specific PTSs. These gene

categories are found to be enriched in UPEC strains, where

they most likely represent adaptation to the environment of the

urinary tract (Brzuszkiewicz et al., 2006; Chen et al., 2006; Lloyd

et al., 2007). Thus, we speculated that clade 1 and 2 E. coli

strains may be functionally related to UPEC. The observed clade

structure (Figure 3) also indicated E. coli subtypes within the

three clades we defined. We sought to further resolve these sub-

types so as to better define the E. coli lineages present in our

cohort.

Metagenomic MLST Analysis Indicates that Clade 1 and
2 Strains Are UPEC
We were able to assign an existing an multilocus sequence type

(MLST) (Maiden et al., 1998) to most samples with at least 1%

relative abundance of E. coli (Figure 3; Table S1). The assigned

MLSTs are remarkable in their concordance with the clade struc-

ture obtained independently from accessory gene content—all

MLSTs mapped to discreet subclades within our functionally

defined clusters. Phylogroup B2 MLSTs 73, 95, 127, 131, 144,

and 998 fall in clade 1. Clade 2 represents MLST 69 and is a phy-

logroup D type. Clade 3 contains representatives that have been

recognized in animal hosts—MLSTs 648 and 2200 have been

placed in phylogroup D (Ciccozzi et al., 2013; Giufrè et al.,

2012; Wieler et al., 2011)—as well as phylogroup A strains.

The dataset contains five fraternal twin pairs (Figure 3, consec-

utively numbered, shaded infant IDs). The four preterm pairs

each share the same MLST assignment, whereas the term pair

differs. Preterm infant 12511 developed NEC and died, whereas

the sibling twin, infant 12512, survived free from NEC.

We identified one potential strain turnover event in a single in-

fant. E. coli from infant 21461 typed as ST127 in a sample from

day 7 and as ST144 from a day 10 sample. Infant 21461 devel-

oped NEC and died on day 33. Both samples indicated greater

than 95% relative abundance of E. coli. Each sample clustered

by functional composition with other samples of the same

MLST. In the association analyses presented, we have included

the ST127 sample.

UPEC as a NEC Pathogen and Risk Factor for Death
We identified UPEC MLSTs belonging to phylogroups B2 and D

as associated with NEC risk. We then calculated the ORs

regarding UPEC as a risk factor for NEC, NEC-associated

deaths, and all deaths. In our primary analysis, we included

143 of the available 144 preterm infants less than 30 weeks GA

(Table 4; Figure S2). The data from one preterm infant who
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survived free from NEC or death (12611) failed in E. coli analysis,

allowing no conclusions about UPEC status for this infant to be

made; thus, this infant was excluded from analysis. We defined

controls as preterm infants who survived hospitalization free of

NEC. The analysis included 27 NEC cases and 21 deaths (of

which 15 deaths were NEC-associated and 6 were independent

of NEC). UPEC was significantly associated with NEC, NEC-

associated deaths, all deaths, and NEC or death, with unad-

justed ORs of 4.1 (p = 0.003), 10.3 (p < 0.001), 5.7 (p < 0.001),

and 3.4 (p < 0.007), respectively.

We then modeled NEC and death outcomes in relation to

UPEC, adjusting for potential confounders using logistic regres-

sion analysis; NEC-associated deaths and death free of NEC

were not modeled separately because of a lack of adequate

case numbers. All factors included in Table 1 were evaluated

as potential confounding factors for NEC. Potential confounding

factors were examined univariately in relation to NEC; only those

factors identified as significant at p < 0.10 were considered in lo-

gistic regression models. From this process, six clinical factors

were identified as potential confounding factors for NEC: birth

weight, GA at birth, singleton versus multiple birth, primiparity

versus multiparity, lack of antibiotic use by the mother at the

time of delivery, and infant exposure to antibiotics in postnatal

life. Given themodest number of NEC cases, we aimed to further

reduce the number of confounding factors to be included in

models of NEC outcomes. Infant GA and birth weight were highly

correlated (rho = 0.7, p < 0.001), and thus, only one of these fac-

tors was included in given regression models. Antibiotic use of

mother and infant were examined jointly in relation to NEC; the

most significant prediction of NEC was found with lack of

maternal perinatal antibiotics at delivery combined with high in-

fant antibiotic use (R7 days in the first two weeks of life), and this

variable was used for modeling. Five covariates were entered

into the logistic model: high-risk antibiotic use, infant GA (weeks)

or infant birth weight (grams), multiparity, multiple birth, and car-

riage of UPEC. Stepwise removal of factors that were not
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Figure 3. Functional and Metagenomic MLST Sub-typing of E. coli Strains Present in Metagenomic Samples Indicates UPEC Lineages Are
Associated with NEC Risk

E. coli accessory gene-content information (Table S2) was used to hierarchically cluster infant strains and indicated three distinct functional clades. Approxi-

mately Unbiased (AU) p value, a multiscale bootstrap resampling method (Shimodaira, 2004), indicates the strength of support for clusters. Clades 1 (red) and

2 (green) contain NEC cases. Metagenomically identified MLST IDs are indicated, and the corresponding phylogroup inferred from literature and available re-

sources (http://mlst.warwick.ac.uk/mlst/). Consecutively numbered and shaded infant IDs indicate fraternal twin pairs. Boxed infant IDs indicate two strains of

E.coli identified in temporally separated samples from a single infant (patient ID 21461).
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significant at p < 0.10 resulted in amodel that included only high-

risk antibiotic use (p < 0.001), multiple birth (p = 0.002), and car-

riage of UPEC (p = 0.001). In order to ensure adequate control for

immaturity, infant GA was re-entered into the model and kept,

as its presence decreased the adjusted OR for UPEC by 13%.

In the final logistic model for NEC, the adjusted OR for carriage

of UPEC was 6.0 (95% CI 2.0, 18.1; p = 0.002), which remained

higher than the OR (Table 4) without adjustment for covariates.

The logistic model for NEC or death included the same co-vari-

ates and had a somewhat lower OR than for NEC alone (4.6, 95%

CI 1.6, 13.0, p = 0.004), but the adjusted OR was again higher

than the crude OR. 12 infants developed NEC by the last day

of sample availability, day 22 (early), and 15 infants developed

NEC after day 22 (late). We analyzed the association between

identification of UPEC and odds of NEC that occurred early

Table 2. Selected Genes Associated with Clade 3

KOa pb Gene Description

Catabolism of 4-hydroxyphenylacetic acid

K02508 1.4E-02 hpaA; 4-hydroxyphenylacetate

3-monooxygenase operon regulatory

protein

K00483 3.6E-04 hpaB; 4-hydroxyphenylacetate

3-monooxygenase

K00484 3.6E-04 hpaC; flavin reductase (NADH)

K00455 3.6E-04 hpaD; 3,4-dihydroxyphenylacetate

2,3-dioxygenase

K00151 3.6E-04 hpaE; 5-carboxymethyl-2-

hydroxymuconic-semialdehyde

dehydrogenase

K01826 3.6E-04 hpaF; 5-carboxymethyl-2-

hydroxymuconate isomerase

K05921 3.6E-04 hpaG; 4-hydroxyphenylacetate

degradation bifunctional isomerase/

decarboxylase

K02509 3.6E-04 hpaH; 2-oxo-hept-3-ene-1,7-dioate

hydratase

K02510 3.6E-04 hpaI; 4-hydroxy-2-oxoheptanedioate

aldolase

K02511 1.4E-02 hpaX; 4-hydroxyphenylacetate

permease

Aerobic catabolism of phenylacetic acid

K00146 8.2E-05 feaB; phenylacetaldehyde

dehydrogenase

K02609 5.2E-03 paaA; ring-1,2-phenylacetyl-CoA

epoxidase subunit

K02610 8.2E-05 paaB; ring-1,2-phenylacetyl-CoA

epoxidase subunit

K02611 8.2E-05 paaC; ring-1,2-phenylacetyl-CoA

epoxidase subunit

K02612 8.2E-05 paaD; ring-1,2-phenylacetyl-CoA

epoxidase subunit

K02613 8.2E-05 paaE; ring-1,2-phenylacetyl-CoA

epoxidase subunit

K01692 8.2E-05 paaF; enoyl-CoA

hydratase

K15866 8.2E-05 paaG; 2-(1,2-epoxy-1,2-dihydrophenyl)

acetyl-CoA isomerase

K02614 8.2E-05 paaI; acyl-CoA thioesterase

K02615 8.2E-05 paaJ; acetyl-CoA acetyltransferase

K01912 8.2E-05 paaK; phenylacetate-CoA ligase

K02616 8.2E-05 paaX; phenylacetic acid degradation

operon negative regulatory protein

K02617 2.9E-08 paaY; phenylacetic acid degradation

protein

K02618 8.2E-05 paaZ; oxepin-CoA hydrolase / 3-oxo-5,

6-dehydrosuberyl-CoA semialdehyde

dehydrogenase

K00276 8.2E-05 tynA; primary-amine

oxidase

Table 2. Continued

KOa pb Gene Description

Phenylpropanoate/cinnamate degradation

K05711 1.5E-06 hcaB; 2,3-dihydroxy-2,3-

dihydrophenylpropionate dehydrogenase

K05710 1.5E-06 hcaC; 3-phenylpropionate/trans-cinnamate

dioxygenase ferredoxin subunit

K00529 1.5E-06 hcaD; 3-phenylpropionate/trans-cinnamate

dioxygenase ferredoxin reductase subunit

K05708 1.5E-06 hcaE; 3-phenylpropionate/trans-cinnamate

dioxygenase alpha subunit

K05709 3.3E-05 hcaF; 3-phenylpropionate/trans-cinnamate

dioxygenase beta subunit

K05817 1.5E-06 hcaR; hca operon transcriptional activator

K05712 6.0E-04 mhpA; 3-(3-hydroxy-phenyl)propionate

hydroxylase

K05713 6.0E-04 mhpB; 2,3-dihydroxyphenylpropionate 1,2-

dioxygenase

K05714 6.0E-04 mhpC; 2-hydroxy-6-ketonona-2,4-

dienedioic acid hydrolase

K02554 6.0E-04 mhpD; 2-keto-4-pentenoate hydratase

K01666 6.0E-04 mhpE; 4-hydroxy 2-oxovalerate aldolase

K04073 6.0E-04 mhpF; acetaldehyde dehydrogenase

homology to the hydrogenase hyc operon

K12136 1.5E-06 hyfA; hydrogenase-4 component A

K12137 1.5E-06 hyfB; hydrogenase-4 component B

K12138 1.5E-06 hyfC; hydrogenase-4 component C

K12139 1.5E-06 hyfD; hydrogenase-4 component D

K12140 1.5E-06 hyfE; hydrogenase-4 component E

K12141 1.5E-06 hyfF; hydrogenase-4 component F

K12143 3.3E-05 hyfF; hydrogenase-4 component H

K12142 1.5E-06 hyfG; hydrogenase-4 component G

K12144 1.5E-06 hyfI; hydrogenase-4 component I

K12145 1.5E-06 hyfJ; hydrogenase-4 component J

K12146 1.5E-06 hyfR; hydrogenase-4 transcriptional

activator
aKEGG orthology (KO) identifier
bp is calculated as two-tailed Fisher’s exact probability. A complete gene

list with p values is found in Table S2.
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(versus all controls) and odds of NEC that occurred late (versus

all controls). The association between NEC and carriage of

UPECwas not significantly influenced by the timing of NEC onset

(OR early NEC = 3.7 [1.06, 12.8], p = 0.041; OR late NEC = 4.5

[1.5, 13.9], p = 0.009). Nevertheless, the slightly lower OR for

early NEC compared to late NEC is potentially consistent with

previous data suggesting that the timing of NEC onset might

have somewhat different microbial risk profile (Morrow et al.,

2013; Zhou et al., 2015). Thus, the finding that UPEC carriage

associated with NEC and death outcomes is highly significant

does not appear to be due to confounding factors.

DISCUSSION

Recent studies have correlated increased relative abundance

of Enterobacteriaceae with NEC and suggest this represents a

dysbiosis predisposing preterm infants to NEC (Claud et al.,

2013; Morrow et al., 2013; Torrazza and Neu, 2013). Epidemic

Table 3. Selected Genes Associated with NEC Risk Clades 1 and 2

KOa pb Gene Description

Clade 1 associated

K10125 2.1E-12 dctB; (C4-dicarboxylate transport) two-component system histidine kinase

K10126 2.1E-12 dctD; (C4-dicarboxylate transport) two-component system response regulator

K01451 2.1E-12 hipO; hippurate hydrolase

K00016 2.1E-12 L-lactate dehydrogenase

K02765 2.1E-12 PTS system, Fused glucose-specific IIB component

Clade 1 and 2 associated

K08094 7.3E-10 hxlB; 6-phospho-3-hexuloisomerase

K03445 7.4E-04 nepI; MFS transporter, DHA1 family, purine ribonucleoside efflux pump

Iron acquisition

K16087 8.2E-05 chuA: outer membrane heme/hemoglobin/transferrin/lactoferrin receptor protein

K07225 8.2E-05 chuS: putative hemin transport protein

K07227 8.2E-05 chuX Putative heme iron utilization protein

K06202 1.6E-03 CyaY protein

K15721 1.9E-02 fyuA; pesticin/yersiniabactin receptor

K04786 5.2E-03 irp1; yersiniabactin nonribosomal peptide/polyketide synthase

K04784 1.9E-02 irp2; yersiniabactin nonribosomal peptide synthetase

K05374 1.9E-02 irp4: ybtT; yersiniabactin synthetase, thioesterase component

K04783 1.9E-02 irp5; yersiniabactin salicyl-AMP ligase

K04781 1.9E-02 irp9; salicylate synthetase

K07230 3.0E-04 putative iron transporter

K11607 4.5E-04 sitB; manganese/iron transport system ATP-binding protein

K11605 4.5E-04 sitC; manganese/iron transport system permease protein

K11606 5.1E-05 sitD; manganese/iron transport system permease protein

K05372 5.2E-03 ybtA; AraC family transcriptional regulator

Phosphotransferase systems

K02538 1.4E-02 manR; activator of the mannose operon, transcriptional antiterminator

K02768 1.4E-02 PTS system, fructose-specific IIA component

K02769 1.4E-02 PTS system, fructose-specific IIB component

K02765 1.5E-06 PTS system, Fused glucose-specific IIB component

K02812 8.2E-05 sorF; PTS system, sorbose-specific IIA component

K02813 7.1E-04 sorB; PTS system, sorbose-specific IIB component

K02814 7.1E-04 sorA; PTS system, sorbose-specific IIC component

K02815 7.1E-04 sorD; PTS system, sorbose-specific IID component

K11189 7.1E-04 fryA; PTS-HPR; phosphocarrier protein

Serine

K01753 1.6E-03 dsdA; D-serine dehydratase

K13636 1.8E-02 dsdC; LysR family transcriptional regulator, D-serine deaminase activator

K13629 3.5E-02 dsdX; D-serine transporter
aKEGG Orthology (KO) identifier
bp is calculated as two-tailed Fisher’s exact probability. A complete gene list with p values is found in Table S2.
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outbreaks have also been documented, suggesting the involve-

ment of infectious agents (Boccia et al., 2001). Culture-based

studies have most frequently implicated E. coli and Klebsiella

spp. (Boccia et al., 2001; Hoy et al., 2000) and, to a lesser extent,

clostridial species, especially C. butyricum (Boccia et al., 2001;

Cassir et al., 2015). In our patient population, we identify carriage

of uropathogenic subtypes of E. coli as a significant contributor

to risk of NEC.

Uropathogenic E. coli Is a Risk Factor for NEC and NEC-
Associated Death
The major translational findings from this work are that (i) coloni-

zation by UPEC is a highly significant risk factor for development

of NEC and (ii) UPEC is even more strongly correlated with mor-

tality as an outcome. In our study, 44% of the 27 NEC cases (OR

4.1, p = 0.003) and 52% of the 21 deaths (OR 5.7, p < 0.001)

could be attributed to UPEC in comparison to 16% of the 111

controls whowereNEC-free survivors. Of the three free-standing

NICUs in our study, located in two different cities, each had two

or more UPEC-associated cases of NEC. Thus, our findings

imply that some proportion of NEC and death cases in other sites

may occur as the result of colonization by UPEC strains.

Early Strain Identification May Reduce NEC Risk
Using assembly-free, metagenomic approaches, we identified

E. coli-specific accessory gene content that functionally distin-

guished clades associated with NEC-risk. Furthermore, metage-

nomic MLST assignment showed that NEC risk is associated

with several important pathogenic MLSTs. Both lines of evi-

dence implicate UPEC. Colonization by UPEC lineages is not

restricted to preterm infants; we found that term infants were

also colonized by similar MLST as preterm infants (Figure 3).

Thus, we suggest that other factors associated with prematurity,

such as the hyperinflammatory response of the immature gastro-

intestinal tract (Nanthakumar et al., 2011), also contribute to the

development of NEC in UPEC-colonized infants.

The association of UPEC lineages with NEC-associated death

is concerning (OR 10.3, p < 0.001) and underscores the impor-

tance of determining the epidemiology of colonization. Colonizing

strainsmaybederived frombothmaternal andenvironmental res-

ervoirs such as the neonatal intensive care unit (Adlerberth and

Wold, 2009; Brooks et al., 2014; Fryklund et al., 1992). However,

both cultivation-based and metagenomic approaches have

shown that no particular strain correlates with NEC (Hoy et al.,

2000; Raveh-Sadka et al., 2015).

Our finding that greatest NEC risk is associated with a subset

of functionally related E. coli strains—specifically, uropatho-

genic E. coli—could be overlooked by analysis of specific strain

types (e.g., based on MLST or genomic SNP variants) or by

considering E. coli as a single taxonomic group or OTU (e.g.,

based on 16S rDNA). Having defined the nature of a risk-asso-

ciated pathogen, we anticipate our finding will assist epidemio-

logical investigation of the sources of UPEC colonization and

NEC risk.

Four preterm twin pairs each harbored the same MLST, sug-

gesting common early colonization. For infants who developed

NEC, we observed a correlation of vaginal delivery with NEC-

associated death (p = 0.018). In these same infants, the carriage

of UPEC in any sample also correlates with vaginal birth (p =

0.057), suggesting that UPEC colonization occurs at birth. If

the primary reservoir for infant colonization by UPEC is the

maternal gut or urinary tract, an opportunity exists for typing

thematernal strain prior to onset of NEC indications. If the strains

are primarily nosocomially acquired, then routine surveillance of

strains present in the care environment should be emphasized.

In either scenario, proactive typing of the colonizing strains

would allow assessment of NEC risk and, importantly, risk of

NEC-associated death before NEC is indicated.

Klebsiella as a Potential NEC Risk Factor
E. coli and Klebsiella spp. exhibited similar carriage frequency

in this study. However, E. coliwas unusual in that, when present,

it was frequently the dominant organism in the community with a

median relative abundance exceeding 80%. In contrast, the next

highest median abundance was 48% for Klebsiella spp. and only

in the days 17–22 collection window. We were not able to assign

a species to the Klebsiella spp., however, preliminary pan-

genomic analysis incorporating K. pneumoniae reference ge-

nomes indicates the majority of the Klebsiella spp. functionally

cluster with K. pneumoniae subspecies (data not shown).

Although Klebsiella spp. prevalence did not significantly corre-

late with NEC, Klebsiella spp. subclades may. Torrazza et al.

(2013) report that an OTUmost similar to K. pneumoniaewas en-

riched in the first stool samples collected after birth and corre-

lated with subsequent development of NEC.

UPEC Antibiotic Resistance May Confound Therapy
Duration of antibiotic treatment has been significantly correlated

with increased risk of NEC and death in preterm infants (Alex-

ander et al., 2011; Cotten et al., 2009; Kuppala et al., 2011).

Table 4. Carriage of UPEC and Odds of NEC and Death Outcomes

Outcomes No. UPEC/Cases (%) Unadjusted OR (95% CI), p value Adjusted OR (95% CI), p value

NEC 12/27 (44.4) 4.1 (1.5, 11.2) 0.003 6.0 (2.0, 18.1) 0.002

NEC-associated deaths 10/15 (66.7) 10.3 (2.8, 42.2) <0.001 –

All deaths 11/21 (52.4) 5.7 (1.8, 17.2) <0.001 –

NEC or death 13/33 (39.4) 3.4 (1.3, 8.6) 0.007 4.6 (1.6, 13.0) 0.004

Controlsa 18/111 (16.2) 1.0 1.0

Adjusted OR calculated from logistic regression models including UPEC carriage, multiple birth, maternal and infant antibiotic use, and infant gesta-

tional age.
aControls were defined as preterm infants who survived free of NEC.
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Infants with increased antibiotic treatment are likely to have con-

foundingmedical conditions, other than specific bacterial coloni-

zation, that may also increase their risk of developing NEC. Here,

high antibiotic treatment is associated with increased E. coli car-

riage but reduced carriage of Klebsiella spp. This suggests that

Klebsiella may be susceptible to antibiotic treatment and that

E. coli are more likely to be resistant. A striking finding from

our analysis was that NEC infants in whom Klebsiella spp. is de-

tected are likely to survive NEC (p = 0.057). Possibly, differential

resistance characteristics between the two species contribute

to differential outcomes in NEC-associated deaths. Surveys of

antibiotic resistance profiles of UPEC isolates report high levels

of resistance to ampicillin and gentamicin (Banerjee et al., 2013;

Shariff V.A et al., 2013; Wang et al., 2014), a combination

frequently used to treat NEC and the combination used in this

study. Depending on the colonizing strain, this combination of

antibiotics may be less effective for preventing or treating

UPEC-associated NEC. Early identification of colonizing sub-

types and, ideally, their antibiotic resistance profiles, could

inform lifesaving care decisions and the selection of effective

antibiotics.

Dysbiosis and UPEC Establishment
Diversity was lower among infants receiving high antibiotic

administration. Diversity was higher at days 17–22 in preterm

controls but decreased in infants who developed NEC. Because

our measurements are relative abundance, loss of diversity

necessarily correlates with increased relative abundance of

fewer taxa. Here, we observed increased prevalence of E. coli

in infant groups where alpha diversity was decreased. High anti-

biotic administration at days 17–22 was associated with lower

relative abundance of Clostridiales and Veillonella. NEC was

also associated with lower relative abundance of Veillonella.

Clostridiales and Veillonella are relatively enriched in term

infants and do not appear to be significantly influenced by

mode of birth in preterm infants. Either loss of overall diversity

or loss of these key taxa could represent a dysbiosis predispos-

ing infants toward increased abundance of E. coli and increased

NEC risk.

Alternatively, colonization by E. coli, particularly UPEC, may

be an event that promotes dysbiosis and increases the likelihood

of antibiotic administration. When observed, E. coli frequently

dominated the community. The relative dominance of E. coli

may drive the decreased diversity rather than decreased diver-

sity preceding increased E. coli abundance. Either way, high

antibiotic exposure may favor UPEC strains and reduce the rela-

tive abundance and diversity of antibiotic sensitive taxa.

Alternative Etiologies of NEC
Although we identified UPEC to be the major risk factor for NEC,

we also observed NEC cases where Klebsiella was dominant. In

a recent study, applying both culture-based and qPCR assays,

Cassir et al. (2015) found NEC to be significantly associated

with the presence of cytotoxic C. butyricum strains, reporting

that, of 15 NEC cases from 4 different neonatal intensive care

units, all carriedC. butyricum. Metagenomic analysis in our study

detected C. butyricum in only 1 of 27 preterm infants who devel-

oped NEC (3.7%) and in 22 of 117 (18.8%) preterm infants who

did not develop NEC. Detection methods differed between the

two studies and our study did not utilize an assay specific for

C. butyricum. Additionally, Cassir et al. (2015) analyzed samples

obtained at the time of NEC diagnosis, whereas our sampling

was limited to the first weeks of life. Although our study does

not implicateC. butyricum, it is consistent with the idea that there

may be multiple etiologies of NEC.

Conclusions
The epidemiology, and rapid identification, of E. coli strains may

be critical to understanding NEC pathology. We demonstrate

that metagenomic sequencing in combination with computa-

tional approaches for strain-level, functional profiling is an effec-

tive, cultivation-free approach for investigating the epidemiology

of colonizing E. coli. We have shown that detection of UPEC

strains indicates risk of NEC and death as an outcome in preterm

infants. Future studies should attempt to identify the character-

istics of potentially beneficial perinatal antibiotic administration

to the mother. Furthermore, proactive typing of the colonizing

strains should allow assessment of infants at heightened risk

for developing NEC and potentially inform selection of antibiotic

therapies to improve outcomes.

EXPERIMENTAL PROCEDURES

Subjects

Preterm study infants were enrolled from two level III neonatal intensive care

units (NICUs) in Cincinnati, OH, fromDecember 2009 to July 2012, andone level

III NICU in Birmingham, AL, from June 2010 to December 2011, as part of a

cohort study of novel biomarkers for NEC. The Cincinnati Children’s Hospital

Medical Center Institutional Review Board, the University of Alabama Institu-

tional ReviewBoard, the TriHealth Institutional ReviewBoard, and theUniversity

of Cincinnati Institutional Review Board approved this study. Written consent

was obtained from parents or guardians of study subjects. NEC was defined

as Bell’s Stage II or III. Infants with congenital anomalies or spontaneous intes-

tinal perforationwere excluded from the study. Data collection used a standard-

ized protocol describedpreviously (Morrowet al., 2013). All NECcases less than

30 weeks GA were identified, and 4 matched controls were identified per case.

NEC incidence by GA of 23–29 weeks was 0.5, 0.21, 0.21, 0.15, 0.21, and 0.11,

respectively. NEC incidence and UPEC detection did not significantly differ by

birth year, hospital, or NICU (Table S4). Seven NEC cases were enrolled but

not included in the study because they either failed to stool prior to NEC or the

stool prior to NEC failed to yield sufficient DNA for shotgun sequencing; two of

these seven NEC cases died. NEC mortality in this study was 15/27 (55.6%,

95% CI, 36.9%–74.3%). Because NEC-associated mortality typically ranges

from 20%–40%, we examined the possibility that mortality was significantly

higher than expected. Based on the birth weight distribution of our cases, and

applying the birth-weight-specific mortality rates for NEC reported by Fitzgib-

bons et al. (2009), we calculated the expected mortality of our NEC cases to

be 37.0%, which is within the CI of our observed rate. Thus, although the re-

ported mortality is high, it is not evidently higher than expected given the birth

weight rangeof ourcases. Themedianquantity of humanmilkgivenover thefirst

28 days of life was 85% of total enteral feedings. All but three infants received

eithermother’s ownmilk, pasteurized human donormilk, or both. Perinatal anti-

biotic administration is defined as maternal antibiotic use during the admission

and prior to delivery of the study infant(s).

Stool Extraction

Thawed stool was pelleted and resuspended in TE buffer with lysozyme and

proteinase K at 0.24 g stool per 100 ul Buffer RLT (QIAGEN) with beta-mercap-

toethanol. Samples were homogenized for 3 min in a bead beater with 0.3 g of

0.1 mm glass beads and debris pelleted. DNA was isolated with the QIAGEN

AllPrep DNA/RNA Mini Kit (QIAGEN).
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Sequencing Data and Availability

A minimal read length filter of 80 nt was applied to all data used in analysis.

Human sequences were removed from the dataset prior to analysis and sub-

mission by alignment to the human genome (Genome Reference Consortium

Human Build 37 patch release 5; http://www.ncbi.nlm.nih.gov/assembly/

GCF_000001405.17/) using theBurrows-Wheeler Aligner (Li andDurbin, 2009).

Sample Selection

Samples were collected at days 3–22 of life. This dataset represents 405 sam-

ples from 166 infants, 22 of whom were term (Figure S2). 27 preterm infants

developed NEC (median day of NEC onset = 21, range = 7,39). During the

study, the initial method of sample extraction was supplanted by a second

method that was then applied to the majority of collected samples (Morrow

et al., 2013). To avoid potentially confounding influences of extraction proto-

col, all community-oriented analyses (Table 1; Figures 1, 2, and S3–S6) were

performed on infants whose samples were extracted by the second protocol

(77% of all infants in study; 105 preterm infants, and all 22 term infants). Ana-

lyses of E.coli gene content and strain subtypes (Figures 3 and S7; Tables 2–4),

and of association of UPECwith NEC and death (Table 4), included all infants in

the study.

Community Analysis

Ifmultiple samples from the same infantwere availablewithin ananalysiswindow

(3–9, 10–16, or 17–22 days), then the sample of latest postnatal collection day

was selected. Selection resulted in 262 samples from 127 infants; 16 of the 105

preterm infants developed NEC (median day of NEC onset = 26, range = 10,39).

E.coli Gene Content and MLST Analysis

We identified 130 samples from 58 infants with reads mapping to E. coli ge-

nomes (Figure S2); all were subjected to gene content and MLST analysis.

When multiple E. coli containing samples were available from a single infant,

the sample with the highest E. coli relative abundance, and >10%, was

selected (mean = 79.9%, SD = 26.7) for clade construction and gene-associ-

ation analysis (Figure 3; Tables 2 and 3). For OR calculation of UPEC as a risk

factor for NEC, NEC-associated deaths, and all deaths, all 143 preterm infants

were considered (Table 4; Figure S2).

Community Profiling

Relative taxonomic abundances were determined with MetaPhlAn version 2.0

(Segata et al., 2012; Truong et al., 2015). Resulting species-level abundance

estimates were considered for all analysis. Heatmaps were generated with

hclust2 (https://bitbucket.org/nsegata/hclust2) using Bray-Curtis dissimilarity

for sample clustering. QIIME (Caporaso et al., 2010) package scripts were

used to estimate alpha diversity.

Pangenome-Based Strain-Level Profiling of E.coli from

Metagenomes

We generated the E.coli pangenome from 116 sequenced reference genomes

(Table S3) selected to maximize diversity using PhyloPhlAn (Segata et al.,

2013). Genes were clustered into gene families based on 95% sequence sim-

ilarity using USEARCH (Edgar, 2010), yielding a set of 21,351 gene families es-

tablishing the pangenome. Sequences were mapped to all 116 representative

E.coli genomes with Bowtie2 (version 2.1.0; very-sensitive option). The cover-

ages of all gene locations were extracted with Samtools (Li et al., 2009) and

merged as gene-family coverage profiles. A uniform and consistent coverage

depth across an expected genome gene set of about 4,600 gene families was

used to define the presence of an E.coli strain in a sample. Based on a cutoff of

half the median depth, coverage levels were converted into gene-family pres-

ence and absence profiles that represent the individual gene set of a specific

strain captured in a sample. Thesemethods have been implemented as part of

the PanPhlAn tool (Scholz et al., 2016) available at http://segatalab.cibio.unitn.

it/tools/panphlan.

To functionally sub-type E. coli strains present in the metagenomes, gene-

family presence and absence profiles were hierarchically clustered withWard’s

minimum variancemethod implemented in the R package, pvclust (http://www.

sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/). Multiscale bootstrap re-

samplingwasperformedwith10,000 iterationsand theApproximatelyUnbiased

p value (Shimodaira, 2004) is reported. The resulting dendrogramwas rendered

using FigTree software (http://tree.bio.ed.ac.uk/software/figtree/).

Metagenomic MLST Analysis

We developed a metagenomic approach to exploit the MLST strategy

commonly used in cultivation-based typing assays (Maiden et al., 1998).

Reads were mapped with Bowtie2 against a database of the known E. coli

MLST sequences corresponding to distinct alleles of seven genes: adk,

fumC, gyrB, icd, mdh, purA, and recA (parameters -D 20 -R 3 -N 0 -L 20 -i

S,1,0.50). A consensus sequence for each loci was constructed considering

the nucleotide with the highest frequency in each position. All samples where

all loci obtained a minimum breath of coverage of at least 90% were confi-

dently mapped. For the small fraction of loci with low or non-complete

coverage (2.11% of the loci in the positive samples), the best-matching refer-

ence allele from the MLST database was used to fill the uncovered positions.

Reconstructed consensus alleles were used to determine the most abundant

MLST (ST) profile in a sample based on known E. coli ST profiles—3,895

known profiles from the University of Warwick Medical School MLST data-

base, http://mlst.warwick.ac.uk/mlst/ (Wirth et al., 2006).

Statistical Methods

Significance assessment with LEfSe (Segata et al., 2011) first applies the non-

parametric factorial Kruskal-Wallis sum-rank test to detect taxa with signifi-

cant differential abundance with respect to the subject class of interest. LEfSe

then uses linear discriminant analysis (LDA) to estimate the effect size of each

differentially abundant feature. The alpha value applied for factorial Kruskal-

Wallis testing was 0.05; the threshold applied on the logarithmic LDA score

for feature discrimination was 2.0. Significance in class comparisons of alpha

diversity was calculated with a non-parametric, two-sample t test with 10,000

Monte Carlo simulations implemented in the Qiime 1.8.0 script compare_al-

pha_diveristy.py. All other p values reported throughout the manuscript were

calculated as two-tailed Fisher’s exact probability test for 2 3 2 contingency

tables unless otherwise specified.
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