
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2016-04-22 

The molecular basis of the genesis of basal tone in internal anal The molecular basis of the genesis of basal tone in internal anal 

sphincter sphincter 

Cheng-Hai Zhang 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Cellular and Molecular Physiology Commons, Genetics Commons, Molecular Biology 

Commons, and the Molecular Genetics Commons 

Repository Citation Repository Citation 
Zhang C, Lui D, Lu P, Zheng K, Craige SM, Lifshitz L, Keaney JF, Fogarty KE, Zhuge R, Zhu M. (2016). The 
molecular basis of the genesis of basal tone in internal anal sphincter. Open Access Articles. 
https://doi.org/10.1038/ncomms11358. Retrieved from https://escholarship.umassmed.edu/oapubs/
2856 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/56530438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/70?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1038/ncomms11358
https://escholarship.umassmed.edu/oapubs/2856?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/oapubs/2856?utm_source=escholarship.umassmed.edu%2Foapubs%2F2856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


ARTICLE

Received 2 Nov 2015 | Accepted 16 Mar 2016 | Published 22 Apr 2016

The molecular basis of the genesis of basal tone
in internal anal sphincter
Cheng-Hai Zhang1,2,*, Pei Wang1,*, Dong-Hai Liu2, Cai-Ping Chen1, Wei Zhao1, Xin Chen1, Chen Chen1,

Wei-Qi He1,3, Yan-Ning Qiao1, Tao Tao1, Jie Sun1, Ya-Jing Peng1, Ping Lu2, Kaizhi Zheng2, Siobhan M. Craige4,

Lawrence M. Lifshitz5, John F. Keaney Jr4, Kevin E. Fogarty5, Ronghua ZhuGe2,* & Min-Sheng Zhu1,6,*

Smooth muscle sphincters exhibit basal tone and control passage of contents through

organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal

incontinence. However, the molecular mechanisms underlying this tone remain unknown.

Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle

cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation.

Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2þ

channels (VDCCs) or TMEM16A Ca2þ -activated Cl� channels significantly changes global

cytosolic Ca2þ concentration ([Ca2þ ]i) and the tone. TMEM16A deletion in IAS-SMCs

abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global

[Ca2þ ]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused

by a global rise in [Ca2þ ]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone.

Targeting this module may lead to new treatments for diseases like faecal incontinence.
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T
he human body, and those of other mammals, contains up
to 50 sphincters, ring-shaped structures encircling an
opening or passage in hollow organs such as the intestine

and the bladder. These sphincters control the entrance of material
into, or the release of contents from, these organs, and participate
in a variety of biological functions essential for homeostasis1.
Dysfunction in the sphincters, either structurally or functionally,
can have severe consequences leading to diseases/disorders
including gastroesophageal reflux disease, achalasia, gastroparesis,
dysphagia, recurrent episodes of pancreatitis or biliary pain, faecal
incontinence and urinary incontinence1. Healthy sphincters open
transiently but, in the basal state, remain closed and therefore
require constant force generation from the smooth muscle cells
that make up sphincters. It is thus of fundamental importance
to determine the molecular and cellular mechanisms that
dictate sphincter smooth muscle contraction at rest (basal tone
formation).

The internal anal sphincter (IAS) located at the end of the
gastrointestinal tract, has served as a prototypical model to
understand basal tone genesis in sphincters. A significant number
of in vitro and in vivo experiments have indicated that the basal
tone of IAS is independent of extrinsic nerve and hormone
stimulation2, but instead is an intrinsic property of the sphincter
smooth muscle itself. Smooth muscle force generation results
from the cross-bridge movement of myosin and actin filaments
on 20-kDa myosin regulatory light-chain phosphorylation
(p-RLC)3. The amount of p-RLC is controlled by the balanced
activation of Ca2þ /calmodulin-dependent MLC kinase (MLCK)
and Ca2þ -independent MLC phosphatase (MLCP). MLCP
consists of three subunits including a regulatory 110–130 kDa
subunit, called the myosin-targeting subunit of MLCP (MYPT1),
which anchors MLCP to p-RLC. MLCP can be phosphorylated
by activation of small GTPase RhoA and Rho-associated,
coiled-coil containing serine/threonine kinase (ROCK)4. Based
on pharmacological and biochemical evidence, it has been
suggested that a lower activity of MLCP as a result of ROCK-
mediated phosphorylation of pThr696-MYPT1 may be responsible
for the basal tone in IAS (refs 5–7).

In this study, we use smooth-muscle-specific MYPT1 knockout
mice to directly test this hypothesis. We find that the basal tone
of IAS from the knockout mice is the same as that from
wild-type mice. We, therefore, also test a new hypothesis that
Ca2þ -mediated MLCK activation is required for the IAS basal
tone. We find that the basal tone in IAS from MLCK knockout
mice is essentially abolished and these mice give rise to larger
faeces, a sign of impaired faecal continence. By directly
examining Ca2þ signals and ion channel activity, we further
find that Ca2þ -releasing ryanodine receptors/channels (RyRs),
TMEM16A Ca2þ -activated Cl� (ClCa) channels and L-type
voltage-dependent Ca2þ channels (VDCCs) form a module
which generates a global rise in Ca2þ , and that pharmaco-
logically altering any one of the three channels can severely
impair IAS basal tone (to the same degree as MLCK deletion).
Moreover, genetic deletion of TMEM16A in IAS smooth muscle
cells (IAS-SMCs) severely impairs both the RyR-mediated Ca2þ

rise and the basal tone, and results in wider and longer faeces.
Our results hence demonstrate that MLCK activation by a
RyR-TMEM16A ClCa channel-L-type VDCC signalling cascade in
the IAS-SMCs is required for basal tone formation and
maintenance, and is essential for faecal continence.

Results
MLCK is required for basal tone and evoked contraction in IAS.
IAS is a phenotypical sphincter consisting mainly of circular
smooth muscle. To assay the basal tone, we employed a standard

protocol8,9 in which excised mouse IAS strips had a 0.5-g ‘load’
applied to them. In response to this load, the IAS gradually
generated force (Fig. 1a, black trace; Supplementary Fig. 1 for the
tone measurement). The slow development of the tone may
reflect the unique smooth muscle arrangement in IAS, that is, it is
divided into ‘minibundles’ separated by connective tissue septa
without electrical couplings10,11, so that the IAS is not readily
synchronized as a whole. To directly examine the role of MYPT1
in the IAS basal tone5–7, we assessed the effect of MYPT1 deletion
on this tone using MYPT1 knockout mice12. The development
(time to 50% of the plateau) of the IAS basal tone was no different
between MYPT1 knockout mice (8.4±0.62 min, n¼ 12) and
their littermate controls (10±0.97 min, n¼ 10; P40.05, by
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Figure 1 | MLCK and RLC phosphorylation are required for the basal tone

in IAS. (a) Time courses of changes in force after application of 0.5 g

tension in CTR and MlckSMKO mice. (b) Summarized data showing much

smaller IAS tone in MlckSMKO mice than in control (mean±s.e.m., CTR

n¼ 7, MlckSMKO n¼ 5, ****Po0.0001 by two-tailed Student’s t-test ).

(c) Faeces from CTR mice and MlckSMKO mice after 20 days of

tamoxifen treatment. (d) The length (left) and width (right) of faeces were

increased in MlckSMKO mice compared with the controls. Bars represent

mean±s.e.m., n¼ 20, ****Po0.0001 by two-tailed Student’s t-test.

(e) Examples of RLC phosphorylation during the process of spontaneous

tone generation in IAS from CTR and MlckSMKO mice. (f) Quantification

of p-RLC during basal tone generation in CTR and MlckSMKO IAS. Bars

represent mean±s.e.m., n¼ 3, *Po0.05, **Po0.01, ***Po0.001 by

two-tailed Student’s t-test.
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two-tailed Student’s t-test), neither was the amplitude of the tone
(MYPT1 knockout: 0.24±0.03 g, n¼ 15; control: 0.22±0.02 g,
n¼ 13, P40.05 by two-tailed Student’s t-test) (Supplementary
Fig. 2). Our genetic evidence thus indicates that p-RLC regulated
by MYPT1-mediated MLCP activity may be not necessary for
basal tone generation. This implies that p-RLC, regulated by
MLCK, may be a determinant of IAS basal tone.

To directly test whether MLCK is required for IAS basal tone
formation, we analysed the tone generation and contractile
properties of IAS from tamoxifen inducible MLCK-deficient mice
(MlckSMKO)13. We found that 20 days after tamoxifen injection14,
MLCK in IAS from MlckSMKO mice was reduced by 70–98%. For
the phenotypic analysis, other than where noted, only the IAS
tissue in which MLCK was decreased by 495% was used
(Supplementary Fig. 3a). But, as shown in Fig. 1a,b, MLCK
deletion completely inhibited the basal tone (MlckSMKO:
0.07±0.01 g; control (CTR): 0.29 ±0.02 g, Po0.0001 by two-
tailed Student’s t-test; Fig. 1b). Moreover, after the 18th day post
tamoxifen induction, mouse faeces became softer and larger.
At the 20th day, the length of the faeces from MlckSMKO mice
increased from 5.4±0.1 to 11.3±0.8 mm (Po0.0001 by
two-tailed Student’s t-test, n¼ 20), and the diameter increased
from 2.1±0.1 to 2.7±0.1 mm (Po0.0001 by two-tailed Student’s
t-test, n¼ 20) (Fig. 1c,d). These results suggest that MLCK
deletion abolishes the basal tone, likely resulting in weaker
compacting capability and slight rectoanal incontinence15,16.

To determine whether the suppression of the IAS basal tone in
MlckSMKO mice was due to a decrease in regulatory light-chain

(RLC) phosphorylation, we measured p-RLC in MlckSMKO mice
and their controls. As shown in Fig. 1e,f, IAS muscle strips from
the controls generated phosphorylated myosin light chain during
tone development. Although the time course of p-RLC level was
not strictly correlated with the time course of basal tone, p-RLC
level was always above its basal level during tone development
and maintenance. Significantly p-RLC in IAS from MlckSMKO was
not detectable during the same time frame.

It is known that MLCK is required for phasic smooth muscle
contraction induced by contractile agonists13. To determine
whether this is also the case in sphincter smooth muscle, we
examined the dependency of agonist-induced contraction on
MLCK and RLC phosphorylation. On stimulation with KCl and
bethanechol , IAS smooth muscle from the control mice displayed
a robust contraction with prolonged tension (Supplementary
Fig. 3b), whereas IAS from MlckSMKO mice developed much
weaker contraction (26 and 28% of the controls with KCl and
bethanechol, respectively) (Supplementary Fig. 3b,c). Moreover,
the IAS from the MlckSMKO mice showed a significantly lower
level of RLC phosphorylation at different time points on
stimulation with KCl or bethanechol (Supplementary Fig. 3d,e).

The decreases in both the basal tone and the evoked
contraction in the MLCK-deficient IAS cells were not due to a
structural change in IAS because with standard H&E staining, no
apparent changes in structure or cell morphology in IAS from
these MlckSMKO mice were detected (Supplementary Fig. 4).
Neither could they be explained by compensatory changes
in the cyclic guanosine monophosphate (cGMP)/cGMP-
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Figure 2 | RyRs, ClCachannels and VDCCs are essential for the basal tone in IAS. (a) Ryanodine (100mM) significantly decreased the spontaneous tone

in IAS. Bars represent mean±s.e.m., control n¼ 5, ryanodine n¼6, ****Po0.0001 by analysis of variance (ANOVA) comparing the sustained phases.

(b) Caffeine (3 mM) increased the tone in IAS. Bars represent mean±s.e.m., n¼ 7, ****Po0.0001 by ANOVA comparing the sustained phases. (c)

Summarized results on the IAS tone affected by 100mM ryanodine (n¼ 6), 3 mM caffeine (n¼8). Bars depict mean±s.e.m., *Po0.05, **Po0.01 by paired

two-tailed Student’s t-test. (d) Summarized results on the IAS tone affected by 100mM niflumic acid (NFA; n¼ 8), 10mM 16Ainh-A01 (n¼4), 30 mM

Eact (n¼ 5), 1mM nifedipine (n¼8) and 0.1mM FPL64176 (n¼ 5). Bars depict mean±s.e.m., *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001 by paired

two-tailed Student’s t-test.
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dependent kinase (PKG), protein kinase C (PKC) and RhoA/
ROCK signalling pathways because, as shown in Supplementary
Fig. 5, the expressions of soluble guanylate cyclase (sGC), PKG,
integrin-linked kinase (ILK), PKC and CPI-17 were not changed
significantly in IAS between MlckSMKO mice and control mice.
Together, the above results demonstrate that both the generation
of basal tone and evoked contraction in IAS requires MLCK
activation and RLC phosphorylation.

Ion channel activation is required for basal tone in IAS. The
requirement of MLCK activation in the basal tone formation in
IAS prompted us to search for the Ca2þ signalling mechanism
essential for this tone. Given the myogenic nature of the basal
tone and the autonomic activation of ryanodine receptors (RyRs)
at resting Ca2þ concentration ([Ca2þ ]i), we hypothesized that
RyRs could be a critical component of this essential Ca2þ signal.
To examine this possibility, we investigated the effects of
(RyR inhibitor) ryanodine and (RyR agonist) caffeine on IAS
basal tone. As shown in Fig. 2, ryanodine (100 mM) fully blocked
the tone (Fig. 2a,c). On the other hand, caffeine (3 mM) increased
the maximal level of the basal tone B68% over the control
(Po0.05 by paired two-tailed Student’s t-test; Fig. 2b,c). These
results indicate that RyRs alone, or in conjunction with other
molecules, can generate the calcium signal essential for basal tone
formation in IAS. L-type VDCCs blockers reverse the IAS basal
tone of various animals9,17. We confirmed this in mice since (1)
mouse IAS-SMCs exhibit typical L-type Ca2þ currents, which
can be blocked by nifedipine, a specific L-type VDCC blocker
(Supplementary Fig. 6); (2) nifedipine fully inhibited the basal
tone, and FPL64176, a specific L-type VDCC agonist,18,19

enhanced the tone (Fig. 2d; Supplementary Fig. 7e,g). The
above results concerning RyRs and VDCCs raise a possibility that
RyR-mediated Ca2þ events functionally couple with L-type
VDCCs to control the basal tone. In several smooth muscles, ClCa

channels act as the mediator coupling RyR and L-type VDCC
activity, that is, a local or global rise in Ca2þ due to RyR opening
activates ClCa channels, which depolarizes the membrane and
turns on L-type VDCCs (refs 20–22). To investigate whether this
mechanism underlies the IAS tone formation, we examined
changes in the tone by 16Ainh-A01 (a specific blocker of
TMEM16A ClCa channels23) and niflumic acid (a non-specific
blocker of ClCa channels24). We found that niflumic acid
and 16Ainh-A01 dose-dependently reversed the basal tone
(Supplementary Fig. 7a–d). Niflumic acid at 100 mM and
16Ainh-A01 at 10 mM fully reversed the basal tone (Fig. 2d;
Supplementary Fig. 7a–d), similar to the effect of MLCK deletion.
Moreover, Eact, a newly developed activator of the TMEM16A
ClCa channel25, potentiated the basal tone (Fig. 2d;
Supplementary Fig. 7f). Since the inhibitors for RyRs, the ClCa

channels and L-type VDCCs can all fully reverse the basal tone
while their agonists can potentiate the tone, we propose that these
three channels form a signalling module which sets this tone
in IAS.

A RyR-mediated rise in global [Ca2þ ]i contracts IAS-SMCs.
Having established that the RyR-ClCa channel-VDCC module
controls the basal tone of IAS, we next studied the nature of the
Ca2þ signalling generated by activation of these channels in
IAS-SMCs. Since RyRs generate spontaneous Ca2þ sparks in a
variety of smooth muscle cells26–28, these Ca2þ events may
directly regulate IAS smooth muscle contraction. To test this
possibility, we examined the relationship between Ca2þ sparks
and cell length using isolated single IAS-SMCs. We found that
freshly isolated IAS-SMCs generated spontaneous localized Ca2þ

events (Fig. 3a) at a frequency of 1.4±0.2 Hz (n¼ 36; Fig. 3b).

These events can be classified as Ca2þ sparks because caffeine
(180 mM) increased their activity by almost eightfold (n¼ 10)
while ryanodine at 100mM suppressed them by 62%±22 (n¼ 4)
(Fig. 3b). Interestingly, as shown in Fig. 3c, there was an inverse
relationship between the spark frequency and cell length, that is,
the higher the frequency, the shorter the cell length. This inverse
relationship raises a possibility that Ca2þ sparks may be a causal
signal for cell shortening. If this is the case, we should observe
that an increase in Ca2þ spark activity by other means shortens
IAS-SMCs. To assess this possibility, we used caffeine to evoke
Ca2þ sparks. In IAS-SMCs, caffeine elicited Ca2þ sparks at a
concentration as low as 10 mM, which is about one-tenth the
concentration needed in other types of smooth muscle cells27

(Supplementary Fig. 8). Interestingly, caffeine at concentrations
that only increase Ca2þ sparks did not induce the shortening of
cells with different original lengths (Fig. 3d). Only at the level
which caused both a burst of Ca2þ sparks and a rise in global
[Ca2þ ] did caffeine cause cell shortening (Fig. 3e). This caffeine-
induced rise in global [Ca2þ ]i was mediated by RyR since
ryanodine could essentially block the Ca2þ response evoked by
caffeine (Fig. 3f). These results indicate that a RyR-mediated rise
in global [Ca2þ ]i, and not the RyR-mediated Ca2þ sparks,
regulate the shortening of IAS-SMCs.

ClCa channels and VDCCs contribute to the RyR-mediated
global [Ca2þ ]i. Since RyRs, ClCa channels and L-type VDCCs
form a signalling module to control the basal tone (Fig. 2), and a
RyR-mediated rise in global [Ca2þ ]i is required to induce
shortening of IAS-SMCs (Fig. 3), we asked whether ClCa channels
and L-type VDCCs contribute to the RyR-mediated rise in global
[Ca2þ ]i. In the absence of extracellular Ca2þ , caffeine increased
[Ca2þ ]i to a smaller extent (DF/F0: 108±23%, n¼ 10) than in
the presence of extracellular Ca2þ ((DF/F0: 159±28%, n¼ 12)),
indicating that in addition to Ca2þ release from ryanodine-
sensitive Ca2þ stores, caffeine also induced Ca2þ influx.
To determine the potential roles of the ClCa channel and L-type
VDCCs in this Ca2þ influx we compared the caffeine-induced
Ca2þ rise in control cells with the rise produced when
modulators of ClCa channels or L-type VDCCs were present.
Figure 4a shows that niflumic acid (100 mM), 16Ainh-A01 (10 mM)
and nifedipine (1 mM) inhibited the caffeine-induced increase in
global [Ca2þ ]i by 33, 35 and 74.0%, respectively. Eact (1mM) and
FPL64176 (1 mM) enhanced the caffeine-induced rise in [Ca2þ ]i

by 28 and 20%, respectively. These results demonstrated that
activation of RyRs can turn on ClCa channels and L-type VDCCs,
resulting in a global rise in [Ca2þ ]i.

A global rise in [Ca2þ ]i activates ClCa currents in IAS-SMCs.
To directly examine whether an increase in [Ca2þ ]i can activate
ClCa channels, we examined the relationship between Ca2þ

signals and ClCa currents by simultaneously measuring [Ca2þ ]i

with high- speed imaging and membrane currents with the patch-
clamp technique28. In several types of smooth muscle cells, Ca2þ

sparks activate ClCa channels to generate spontaneous transient
inward currents (STICs)29. To our surprise, in mouse IAS-SMCs,
Ca2þ sparks did not associate with any detectable currents when
the membrane was clamped at voltages more negative than the
reversal potential for Cl� (Fig. 4b, n¼ 5), indicating they do not
activate STICs. We then assessed whether an increase in global
[Ca2þ ]i could elicit ClCa currents. To raise global [Ca2þ ]i, we
stimulated the cells with caffeine (10 mM) and recorded the
membrane current at different voltages. As shown in Fig. 4c, on
stimulation with caffeine, the IAS-SMC generated an inward
current when held at � 70 mV. This inward current was
determined to result from the opening of ClCa channels,
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because at the reversal potential for Cl� (that is, 0 mV), the same
cell failed to generate current in response to the same caffeine
stimulation. At þ 40 mV, the cell produced a markedly outward
current, as would be predicted if this current was a Cl� current.
Finally, caffeine raised the global [Ca2þ ]i to the same level at
three different holding potentials (Fig. 4c,d), indicating the
difference in Cl� currents at different holding potentials is not
due to the variation in [Ca2þ ]i. The cells that generated these
Cl� currents are authentic smooth muscle cells as the IAS
cells with positive green fluorescent protein (GFP) from a-
smooth muscle actin-GFP mice produced similar currents in
response to caffeine (Supplementary Fig. 9). In conclusion, these
results argue that a rise in global [Ca2þ ]i via RyR activation can
activate ClCa channels in IAS-SMCs.

Ion channel expression in IAS-SMCs. It is well established that
RyRs underlie Ca2þ sparks, and Cav1 encodes L-type VDCCs in
smooth muscle. PCR with reverse transcription (RT–PCR)

detected three types of Ryrs with the dominant expression of Ryr1
(Supplementary Fig. 10a), and of Cav1 (that is, Cav1.1, Cav1.2
and Cav1.3; Supplementary Fig. 10b) in IAS-SMCs. The
TMEM16 family (that is, TMEM16A and TMEM16B) was
recently found to function as ClCa channels in several cell
types30–35. We therefore decided to determine whether
TMEM16A and/or TMEM16B are also expressed in IAS cells.
With RT–PCR, we detected the transcripts of Tmem16a
(Supplementary Fig. 10c). Interestingly, we failed to detect
Tmem16b in IAS tissue (Supplementary Fig. 10d). An
immunohistochemistry assay showed the colocalization between
TMEM16A and Myh11, a specific smooth muscle marker,
in IAS-SMCs, particularly in its inner layer (Supplementary
Fig. 10e).

Knockout of TMEM16A impairs the basal tone in IAS. If a
RyR-TMEM16A-Cav1 module is critical for the basal tone
formation, genetic interruption of one of the members in this
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module could impair, or even abolish, the tone. Since IAS tissues
express multiple RyRs and Cav1s, but only TMEM16A ClCa

channels, we tested this prediction by generating smooth-muscle-
specific TMEM16A knockout mice. A conditional knockout of
this gene is necessary because global deletion of TMEM16A
causes post-natal lethality36, which makes force measurement in
IAS quite a challenge. Supplementary Fig. 11a depicts the
schematic of the strategy used to produce smooth-muscle-
specific knockout mice with Tmem16a gene deletion, in which
exon 12 was floxed with two loxP sites. That homologous
recombination occurred in the floxed mice was confirmed with
Southern blot analysis (Supplementary Fig. 11b). To delete
TMEM16A specifically in smooth muscle, we crossed Tmem16a
floxed mice with SMA-Cre transgenic mice12. The resultant mice
Tmem16a flox/flox, SMA-Cre (that is, Tmem16aSMKO) were used as
the KO mice, while Tmem16a flox/þ , SMA-Cre littermates were
used as control mice (CTR). Birth of Tmem16aSMKO and CTR
pups occurred in the expected Mendelian ratio. Tmem16aSMKO

mice were fertile, viable and lacked apparent developmental
defects. Western blot demonstrated that TMEM16A in the KO
IAS tissues was significantly decreased to B20% of the control
levels (Supplementary Fig. 11c). The residual TMEM16A is most
likely from other types of cells (for example, interstitial cells of
Cajal (ICCs); Supplementary Fig. 12) in the IAS. To determine
the changes in ClCa currents due to TMEM16A deletion in

IAS-SMCs, we compared these currents in cells from CTR
and Tmem16aSMKO mice. In the CTR cells, caffeine at 10 mM
generated a ClCa current of � 1.67±0.37 pA pF� 1 at the holding
potential of � 70 mV (n¼ 12), while in the Tmem16a� /�

IAS-SMCs, the same concentration of caffeine yielded
essentially no ClCa current (� 0.05±0.01 pA pF� 1; n¼ 14;
Fig. 5a). To further characterize ClCa currents in these cells, the
IAS cells from both the KO and CTR were dialyzed with 600 nM
[Ca2þ ]i via the patch pipette. Out of 29 control cells, 6 cells
produced a current of 36.54±6.18 pA pF� 1 (n¼ 6) at þ 100 mV
and showed an outward rectification and time-dependent
activation at positive potentials (Supplementary Fig. 13); In the
Tmem16aSMKO cells, one cell out of 29 had about one-half that
current (16.54 pA pF� 1) at þ 100 mV, and the other 28 cells had
markedly reduced currents with 6.31±0.30 pA pF� 1 (n¼ 28) at
the same potential (Supplementary Fig. 13). These results confirm
that Tmem16a encodes ClCa channels in smooth muscle
cells34,37–40. They further reveal that some of cytosolic factors
that bind with TMEM16A (ref. 41) may be required to prevent
TMEM16A from its rundown, a characteristic often observed in
ClCa currents from native smooth muscle cells and other cell
types42,43.

We further examined potential functional changes in IAS as a
result of TMEM16A deletion in IAS-SMCs. We first studied the
effect of TMEM16A modulators on caffeine-induced Ca2þ
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signals in the Tmem16aSMKO cells. We found that both
16Ainh-A01 and Eact did not decrease caffeine-induced Ca2þ

release, nor did nifedipine and FPL64176 affect caffeine-induced
Ca2þ release (Fig. 5b). We next compared the basal tone of IAS
in the CTR and Tmem16aSMKO mice. As shown in Fig. 5c,
TMEM16A deficient IAS tissue produced B50% of the tone
compared with the CTR IAS. We finally determined whether
TMEM16A deletion in IAS-SMCs affect faecal continence by
comparing the size of faeces from CTR and Tmem16aSMKO mice
(Fig. 5d). We found that faeces from Tmem16aSMKO were both
longer and wider (length: 5.4±0.26 mm in CTR versus
7.2±0.3 mm in Tmem16aSMKO; n¼ 7 for each group, Po0.01
by two-tailed Student’s t-test; width: 1.9±0.1 mm in CTR versus
2.3±0.1 mm in Tmem16aSMKO, n¼ 7 for each group, Po0.05 by
the t-test). These results indicate that TMEM16A is required for
ClCa currents in IAS-SMCs, and its deficiency impairs IAS basal
tone formation and faecal continence.

Discussion
Our results support a model in which RyRs, TMEM16A ClCa

channels and L-type VDCCs in IAS-SMCs form a signalling
module to regulate global [Ca2þ ]i, which activates MLCK and
sets IAS basal tone (Fig. 5e). This model is supported by several
lines of evidence. First, genetic deletion of MLCK or TMEM16A
specifically in IAS-SMCs abolishes or severely impairs the basal
tone, leading to faecal impairment. Second, pharmacological
activation of RyRs, TMEM16A or L-type Ca2þ channels
increases the tone, while their blockage suppresses it. Third, the
RyR-mediated increase in global [Ca2þ ]i induced by caffeine is
enhanced by TMEM16A agonist Eact and L-type Ca2þ channel
agonist FPL64176, and inhibited by TMEM16A antagonist

16Ainh-A01 and L-type Ca2þ channel blocker nifedipine. Fourth,
the aforementioned effects by the modulators of TMEM16A
and L-type Ca2þ channels are abolished when TMEM16A in
IAS-SMCs is deleted. Finally, a global increase in [Ca2þ ]i

activates ClCa channels, as directly recorded by patch clamp. Our
model provides a molecular explanation for a long-standing
notion that the basal tone in IAS is intrinsic to smooth muscle
and independent of external stimuli1,2.

In our model, calcium release from the opening of RyRs in the
sarcoplasmic reticulum of IAS-SMCs could be an initial signal
for the basal tone generation and maintenance. The increased
calcium then activates TMEM16A ClCa channels subsequently
activating L-type Ca2þ channels, resulting in Ca2þ influx. Given
that TMEM16A has a low-Ca2þ sensitivity with an EC50 at
B3 mM at � 70 mV (refs 31,44), an unexpected finding is that
although Ca2þ sparks, a phenotypical localized Ca2þ release
event, are present in IAS-SMCs, they do not activate TMEM16A
ClCa channels to generate STICs as in other smooth muscle
cells26. Instead, a global rise in [Ca2þ ]i created by activating RyRs
is required to activate TMEM16A ClCa channels, which in turn
depolarizes the membrane and activates VDCCs, leading to the
Ca2þ -MLCK signalling cascade. Our results motivate three new
questions. The first regards the reasons for the lack of STICs in
IAS-SMCs. One possibility is that TMEM16A ClCa channels do
not concentrate near enough to Ca2þ spark sites. Since the
unitary conductance of TMEM16A ClCa channels is on the order
of a few picosiemens, it requires B300 of them to localize near
a spark site in order for a STIC to be generated. A direct
visualization of TMEM16A ClCa channels and RyRs at high
spatial resolution will help solve this puzzle. The second question
concerns the endogenous signalling molecules that convert local
calcium events like Ca2þ sparks to a global rise in [Ca2þ ]i.
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One possibility is that applied stretch may activate a diffusible
messenger such as cyclic ADP-ribose (cADPR), a potential
endogenous ligand for RyR, or a stretch-gated ion channel. In this
regard, it is worth mentioning that stretch can activate the non-
selective cation channel TRPV4, which is known to activate Ca2þ

sparks in vascular smooth muscle45. And the third question
raised is the mechanism which terminates RyR-TMEM16A-L-
type VDCC signalling. Interestingly, in smooth muscle Ca2þ

levels in both the cytosol and the internal Ca2þ store can auto-
regulate RyR activity28,46,47, and high Ca2þ in the cytosol inhibits
L-type VDCCs and ClCa channels48,49. One or more of these
regulators may be able to terminate the RyR-TMEM16A-L-type
VDCCs signalling process in IAS-SMCs. The activation and
termination of this signalling module also imply that global
[Ca2þ ]i in these cells could be oscillating during basal tone
development and maintenance. It would be interesting to examine
whether an oscillating [Ca2þ ]i leads to a low level of RLC
phosphorylation during tone generation as revealed in Fig. 1e,f.

Out of two identified ClCa channel genes32,35, we detected the
expression of TMEM16A but not TMEM16B in IAS, consistent
with the report that TMEM16B is predominantly expressed in the
nervous system35. Interestingly, TMEM16A is thought to be
absent from smooth muscle cells in the gastrointestinal tract
where they generate phasic contractions30. With evidence from
electrophysiological recordings, functional assays, RT–PCR and
immunofluorescence, we have unambiguously demonstrated
that TMEM16A is present and functional in IAS-SMCs. More
importantly, using TMEM16A smooth muscle conditional
knockout mice, we established that this gene is required for the
generation and maintenance of basal tone in IAS. The fact that
TMEM16A is expressed in sphincter smooth muscle cells while it
is absent in phasic GI smooth muscle cells suggests this gene may
be a differentiator for the phenotype of sphincters and phasic
muscles. This finding suggests that TMEM16A may be an
attractive therapeutic target for IAS motility disorders.

In the TMEM16A deficient mice, the tone was decreased by
51% compared with littermate controls. What accounts for this
remaining tone? One possibility is that Cre in a small subset
of IAS-SMCs has an insufficient efficiency, resulting in an
incomplete deletion of the TMEM16A in these cells. Another
possibility could be that activation of RyRs alone (that is, without
amplification due to TMEM16A and L-type VDCCs) is sufficient
to generate a certain amount of IAS tone. This is supported
by our finding that caffeine-induced Ca2þ release is intact in
IAS-SMCs from TMEM16A knockout mice (Fig. 5b). Finally the
remaining tone could be attributed to the TMEM16A in ICCs in
IAS tissues (Supplementary Fig. 12). In some types of smooth
muscle a depolarization in ICCs can propagate to smooth muscle
cells via gap junctions50. Whether this is the case in IAS-ICCs is
not clear as IAS tone and slow waves are similar in control and
W/WV mice (that is, ICC depleted mice)51,52. Nevertheless, the
presence of TMEM16A in the ICCs in IAS would require the
application of an ICC cell specific knockout technique to uncover
the role of ICC’s TMEM16A in IAS function. Our study shows
the power of this technique in addressing the role of TMEM16A
in the IAS smooth muscle and so did by Heinze et al. 2014 who
also elegantly demonstrated its role in the blood vessel smooth
muscle38.

It is interesting that TMEM16A unevenly distributes across
IAS smooth muscle, with the highest concentration apparently in
the region adjacent to the submucosal space. This pattern of
distribution implies that mechanical stretch by faeces may be able
to preferentially activate TMEM16A in IAS smooth muscle,
making this channel an attractive sensor of anal contents. This is
in line with findings that membrane stretch can activate
TMEM16A in vascular smooth muscle cells40, perhaps through

the actin cytoskeleton53. This role for TMEM16A necessitates gap
junctions among IAS-SMCs to propagate the electrical signals
initiated in ClCa channels near the submucosal space to the entire
tissue. This is certainly possible as gap junctions are expressed
abundantly in IAS cells (Supplementary Fig. 14) and other
smooth muscle sphincter tissue54,55.

In summary, with an integrative approach combining
genetically modified mice, bioassays, molecular biology and
electrophysiology, we have uncovered the molecular mechanism
underlying the genesis of spontaneous basal tone in IAS.
This understanding will facilitate further insight into the
pathophysiology of IAS disorders and the therapeutic options
for treating them, as well as many other diseases related to
smooth muscle sphincters.

Methods
Preparation of IAS tissue. C57BL/6, MYPT1 CTR (Mypt1flox/þ ; SMA-Cre) and
Mypt1SMKO (Mypt1flox/flox; SMA-Cre) mice, TMEM16A CTR (Tmem16aflox/þ ;
SMA-Cre) and Tmem16aSMKO (Tmem16aflox/flox; SMA-Cre) mice at 6–10 weeks
were decapitated. MLCK CTR (Mlckflox/þ ; SM22-CreERT2) and MlckSMKO (Mlckflox/

flox; SM22-CreERT2) mice were decapitated 20 days after tamoxifen injection. MYPT1
CTR, Mypt1SMKO, MLCK CTR and MlckSMKO mice were in a C57BL/6 background.
TMEM16A CTR and Tmem16aSMKO mutant mice were in a mixed C57BL/6 and Sv/
129 background. Both genders of the mice were used equally. The anal canal and an
adjacent region of the rectum were quickly removed and transferred to ice-cold and
oxygenated Krebs physiological buffer (KPS) which was comprised of (in mM):
118.07 NaCl, 4.69 KCl, 2.52 CaCl2, 1.16 MgSO4, 1.01 NaH2PO4, 25 NaHCO3 and
11.10 glucose. Strained skeletal muscle fibres, mucosal layer and other extraneous
tissues (for example, large blood vessels) were carefully dissected away, whereas the
anal canal was left intact. The IAS was identified as a thickened circular smooth
muscle situated at the lowermost part of anal canal, and the strips of IAS smooth
muscle (B1� 6 mm) were prepared for experiments.

Animal experiments in this study were conducted in accordance with the
guidelines of the Animal Care and Use Committee of Model Animal Research
Center of Nanjing University (Nanjing, China), or University of Massachusetts
Medical School, Massachusetts, USA.

Measurement of IAS basal tone and contractility. Isolated strips of IAS smooth
muscle were transferred to 8 ml muscle baths containing ice-cold oxygenated KPS.
One end of the smooth-muscle strip was anchored to the bottom of the muscle
bath. The other end of the smooth-muscle strip was connected to a force
transducer (MLT0202, AD Instruments) and isometric tension was measured by a
PowerLab (AD Instruments) recording device. A wire myograph (610-M, Danish
Myo Technology, Aarhus, Denmark) was also used for force measurements.
Each smooth-muscle strip was equilibrated for 60 min followed by a 0.5-g load8,9.
The basal tone measurement is described in Supplementary Fig. 1. For evoked
contractility measurements (that is, Supplementary Fig. 3), the resting tension of
the IAS was adjusted to B0.2 g after developing spontaneous tone. KPS containing
(in mM) 124 KCl, 2.52 CaCl2, 1.16 MgSO4, 1.01 NaH2PO4, 25 NaHCO3 and 11.10
glucose was used to achieve membrane depolarization. Bethanechol (100 mM) was
used to induce agonist-induced contraction in IAS. For RyR inhibitor ryanodine
experiments, IAS strips were pretreated with 100 mM ryanodine for 5 min before
giving the initial stretch. For RyR agonist caffeine experiments, 3 mM caffeine
was added into the bath 8 min after the initial stretch. Both ryanodine and caffeine
were present through the experiments after administration. For L-type VDCC
modulators (nifedipine and FPL64176) and ClCa channel modulators (Eact, niflumic
acid or 16Ainh-A01), experiments were performed in the presence of 1 mM atropine
and 10 mM guanethidine to eliminate the possible effects of cholinergic and
sympathetic nerves on the basal tone.

Generation of Tmem16a knockout mice (Tmem16aSMKO). Bacterial artificial
chromosome retrieval methods were used for constructing the TMEM16A
targeting vector56. Briefly, the Tmem16a locus including Exon 12 was retrieved
from a 129/sv bacterial artificial chromosome clone (bMQ 379h21, provided by the
Sanger Institute) by a retrieval vector containing two homologous arms. Exon 12
which encodes a partial transcript in the second trans-member domain was floxed
by 2 loxP sites, and an frt-Neo-frt cassette was inserted as a positive selection
marker (Supplementary Fig. 11a). The deletion of this domain causes an
out-of-frame reading shift and thereby generates a premature stop codon and a
loss-of-function allele36. Embryonic stem W4 cells were electroporated with the
linearized targeting vector, selected by long-fragment PCR and Southern blot
analysis. Chimeric mice were generated by injecting homologous recombined
embryonic stem cells into the blastocysts of C57BL/6 mice. Floxed Tmem16a mice
with germ-line transmission were further confirmed by genotyping analysis and
Southern blot analysis. To generate smooth-muscle-specific Tmem16a knockout
mice, floxed Tmem16a mice were crossed with SMA-Cre mice.
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Isolation of mouse IAS-SMCs. Mice as listed above from 6 to 10 weeks of age of
both genders were decapitated or euthanized with CO2. IAS was quickly removed
and placed in a pre-chilled dissociation solution consisting of (in mM): 135 NaCl,
6 KCl, 5 MgCl2, 0.1 CaCl2, 0.2 EDTA, 10 Hepes and 10 glucose (pH 7.3). The tissue
was then incubated in the dissociation medium containing 30 unit per ml papain,
1 mM DTT and 0.5 mg ml� 1 BSA, at 35 �C for 30 min. The tissue was then
transferred to a dissociation medium containing 3 unit per ml collagenase F and
0.5 mg ml� 1 BSA, and incubated at 35 �C for another 15 min to produce isolated
IAS cells. Finally, the tissue was agitated with a fire polished wide-bore glass pipette
to release the cells.

Western blot assay. IAS smooth muscle strips were homogenated in 120 ml lysis
buffer (containing 20 mM Tris base, 137 mM NaCl, 2 mM EDTA, 1% NP-40, 10%
glycerol, protease inhibitor cocktail (Roche), pH¼ 8). Then the homogenization
was incubated on ice for 15 min, and centrifugation at 3,000g, 4 �C to remove cell
debris. Protein concentration was measured with a bicinchoinic acid protein assay
kit (Pierce). The proteins were denatured at 95 �C for 5 min with sample buffer
and reducing agent (5� sample buffer contains 10% SDS, 20% glycerol, 0.05%
bromophenol blue 10 mM b-mercapto-ethanol, 200 mM Tris-HCl and 8M urea).
General SDS-page processes were followed. The blots were visualized by using the
enhanced chemiluminescence method, the Super Signal West Dura substrate
(PIERCE) and MaxiSignal Western Solution (SUDGEN) were used. All the
primary antibodies used in western blot assay are listed in Supplementary Table 1,
and the full scans of western blots are available in Supplementary Figs 15–17.

Immunohistochemical analyses. Anal tubes were isolated and fixed in ice-cold
acetone for 10 min, then washed with PBS overnight at 4 �C and rewashed for 4 h
with a change of PBS per hour. Cryosections with a 10-mm thickness were used.
The non-specific binding of primary antibodies was blocked by incubation with
PBS containing 1% BSA and 5% non-immune goat serum for 1 h. Incubation was
carried out overnight at 4 �C with a rabbit polyclonal antibody to TMEM16A
(ab53212, abcam) diluted 1:200, together with a rat anti-c-Kit antibody (ACK2,
Chemicon, 1:100) or mouse monoclonal Myh11 antibody (ab683 clone 1G12,
1:200; abcam). After washing in PBST, sections were incubated with a Alexa
Fluor 555-conjugated goat anti-Rabbit antibody (Sigma) diluted 1:250 and a
FITC-conjugated goat anti-rat antibody (Invitrogen) diluted 1:250 or a Alexa Fluor
488–conjugated goat anti-mouse antibody (Cell signaling technology) for 1 h.
4,6-diamidino-2-phenylindole was used for nuclear staining. Immunoreactivity was
evaluated using a FV1000 confocal laser scanning microscope system (Olympus).

Patch-clamp recording. Membrane currents were recorded using the perforated
whole-cell patch recording configuration. The extracellular solution contained
(in mM): 130 NaCl, 5.5 TEA-Cl, 2.2 CaCl2, 1 MgCl2, 10 Hepes and 5.6 glucose;
pH adjusted to 7.4 with NaOH. The pipette solution contained (in mM): 137 CsCl,
1 MgCl2, 10 Hepes, 3 Na2ATP; pH adjusted to 7.3 with CsOH. Amphotericin B was
freshly made and added to the pipette solution at a final concentration of
200mg ml� 1. Whole-cell currents were recorded when cells were held at the
designated potentials and the currents were low-pass filtered using the Axopatch
1D amplifier (200 Hz cutoff) and then digitally sampled at 1 kHz and stored for
analysis. Caffeine was applied to the cells via a puffing pipette placed B100 mm
from the cells under the control of a picospritzer.

For recording of 600 nM Ca2þ -induced currents, conventional whole-cell patch
clamp was carried out. The extracellular solution contained (in mM) 144.5 NaCl,
5.5 TEA-Cl, 1 CaCl2, 1 MgCl2, 10 glucose, 10 mannitol and 10 Hepes; pH was
adjusted to 7.4 with NaOH. The pipette solution contained (in mM) 130 CsCl, 10
EGTA, 1 MgCl2, 8 CaCl2, 10 Hepes, 1 MgATP; pH was adjusted to 7.3 with NaOH.
Whole-cell currents were recorded in response to 1 s voltage pulses from � 80 to
þ 100 mV in 10 mV increments followed by 700 ms pulses to � 60 mV, in freshly
isolated IAS-SMCs. Holding potential was 0 mV. Currents were sampled at 20 kHz
using the Axon MultiClamp 700B amplifier (Molecular Devices) and then low-pass
filtered at 2 kHz.

For recording L-type VDCCs in IAS-SMCs, conventional whole-cell patch
clamp was carried with extracellular solution containing (in mM) 130 TEA-Cl,
10 CaCl2, 1 MgCl2, 10 Hepes, 10 glucose; pH was adjusted to 7.4 with NaOH.
The pipette solution contained (in mM) 130 CsCl, 4 MgCl2, 10 Hepes, 10 EGTA,
5 Na2ATP; pH was adjusted to 7.2 with CsOH. Cells were held at � 80 mV,
whole-cell currents were recorded in response to 200 ms voltage pulses from
� 80 to þ 50 mV in 10 mV increments. Freshly isolated IAS-SMCs were incubated
in extracelluar solution with 1 mM Nifedipine or vehicle (0.1% EtOH) during
recording. Currents were sampled at 20 kHz using the Axon MultiClamp 700B
amplifier (Molecular Devices) and then low-pass filtered at 2 kHz.

Imaging and measurement of Ca2þ sparks. Fluorescent images were obtained
using fluo-3 as the Ca2þ indicator and a custom-built wide- field, high-speed
digital imaging system57. Rapid imaging was made possible by using a cooled
high-sensitivity charge-coupled device camera (128� 128 pixels) developed in
conjunction with the Massachusetts Institute of Technology Lincoln Laboratory.
The camera was interfaced to a custom-made inverted microscope equipped with a
� 60 oil immersion lens (numerical aperture of 1.3), with each pixel covering a

333� 333-nm area of the cell. The 488-nm line of a multiline argon laser provided
fluorescence excitation for the indicator fluo-3, and a laser shutter controlled the
exposure duration. Emission of the Ca2þ indicator was monitored at wavelengths
4510 nm. Ca2þ sparks were measured as the conventional fluorescence ratio
(DF/F0) within a restricted volume as described previously57.

Reverse transcription PCR detection of messenger RNA. The IAS and rectal
smooth muscle (4 mm above IAS) from mice were carefully isolated, quickly
removed from connective tissue and then frozen in liquid nitrogen. The total
RNA was isolated using the TRIZOL (Invitrogen) method according to the
manufacturer’s guidelines, and cDNA was synthesized. Primers were synthesized
by Invitrogen, and their sequences are available in Supplementary Table 2.

Statistical analysis. Data are presented as the mean±s.e.m. Differences between
groups were determined by Student’s t-test, or two-way analysis of variance
(ANOVA) for significant differences. The significance levels were indicated as
follows: NS P40.05, *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001.
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