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Abstract 

XIST RNA established the precedent for a noncoding RNA that stably associates 

with and regulates chromatin, however it remains poorly understood how such RNAs 

structurally associate with the interphase chromosome territory. I demonstrate that 

transgenic XIST RNA localizes in cis to an autosome as it does to the inactive X 

chromosome, hence the RNA recognizes a structure common to all chromosomes. I 

reassess the prevalent thinking in the field that a single protein, Scaffold Attachment 

Factor-A (SAF-A/hnRNP U), provides a single molecule bridge required to directly 

tether the RNA to DNA. In an extensive series of experiments in multiple cell types, I 

examine the effects of SAF-A depletion or different SAF-A mutations on XIST RNA 

localization, and I force XIST RNA retention at mitosis to examine the effect on SAF-A. 

I find that SAF-A is not required to localize XIST RNA but is one of multiple proteins 

involved, some of which frequently become lost or compromised in cancer. I additionally 

examine SAF-A’s potential role localizing repeat-rich CoT-1 RNA, a class of abundant 

RNAs that we show tightly and stably localize to euchromatic interphase chromosome 

territories, but release upon disruption of the nuclear scaffold.  

Overall, findings suggest that instead of “tethering” chromosomal RNAs to the 

scaffold, SAF-A is one component of a multi-component matrix/scaffold supporting 

interphase nuclear architecture. Results indicate that Cot-1 and XIST RNAs form integral 

components of this scaffold and are required to maintain the chromosomal association of 

SAF-A, substantially advancing understanding of how chromatin-associated RNAs 

contribute to nuclear structure. 
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Chapter I : Introduction 

The complex Nucleus:  

Heterochromatin and Euchromatin 

The human genome contains roughly 2 meters (6.5 feet) of linear DNA, all of 

which fits inside the ~10-20 µM diameter cell nucleus. To make it fit, DNA is packaged 

into chromatin: wrapped around nucleosomes composed of histone proteins, which are 

further organized into complex higher-order structure that we have yet to fully understand 

(Gilbert et al., 2005). It is now widely appreciated that this intricate packaging not only 

exists to compress DNA into nuclear structure, but the packaging is a key component of 

genome regulation. Moreover, beginning with XIST RNA, long noncoding RNAs are 

thought to play a role in genome packaging. Scientists have recently discovered a vastly 

underestimated transcriptome containing numerous previously unknown noncoding 

RNAs, and whether some of these bind and regulate chromatin at specific loci is a rapidly 

evolving area of investigation. Work described in this thesis examines the role of 

noncoding chromosome-associated RNAs in chromatin structure. 

Chromatin is subdivided into two types: transcriptionally active euchromatin and 

silent heterochromatin, which are spatially separated in a cell type-specific manner, 

suggestive of an epigenetic blueprint that may function to shape cellular identity (Carone 

and Lawrence, 2013) (Figure 1.1). Euchromatin, generally localized to the nuclear 

interior, contains loosely packaged active genes that are accessible to transcription 

factors. Euchromatin stains lightly by DAPI (4',6-diamidino-2-phenylindole), indicative 
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of its more “open” and mobile structure. In contrast, inactive genes are packaged into 

highly condensed heterochromatin, which in human cells, localizes primarily to the 

nuclear or nucleolar periphery. Heterochromatin is further subdivided into two types: 

constitutive and facultative. Constitutive heterochromatin contains sequences that are 

silent in all cells (i.e. centromeric satellites), and in mouse cells, these are visible by 

DAPI staining as “chromocenters,” round foci scattered throughout the nucleus. 

Facultative heterochromatin contains sequences that are silenced in a cell-type specific 

manner (i.e. the inactive X chromosome). These regions are generally silenced during 

cellular differentiation as a cell specifies its lineage (for review, see (Gilbert et al., 

2005)).  

Pluripotent cells have been shown to contain almost entirely euchromatin, with 

highly mobile “open” chromatin and relative lack of nuclear structure (Meshorer et al., 

2006; Dang-Nguyen and Torres-Padilla, 2015). In contrast, differentiated cells contain a 

heterochromatin footprint unique to their specific cell type that is visible by various 

imaging techniques. In addition to compaction and relocation to the nuclear periphery, 

heterochromatin formation involves DNA methylation and repressive histone 

modifications (i.e. H3K27 methylation or H4K20 acetylation), marks that are replicated 

with DNA during S-phase to maintain the silent state and retain cellular identity in 

progeny (Hathaway et al., 2012).   

Within these euchromatic and heterochromatic regions, entire chromosomes are 

further spatially separated into discrete territories (Lichter et al., 1988; Cremer et al., 

2006) (Figure 1.1). Most striking of these is the inactive X chromosome (Xi) territory in  
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Figure 1.1  Principals of nuclear organization in normal vs. cancer cells.  

Above, the Eukaryotic nucleus is well-organized into heterochromatic and euchromatic 
compartments. The nuclear lamina and internal nuclear matrix/scaffold organizes 
chromosome territories and other nuclear bodies. Below, the cancer cell nucleus 
undergoes several changes during transformation including altered shape, compromised 
nuclear scaffold, enlarged nucleoli, re-positioning of chromosome territories, and 
disorganized heterochromatin, including aggregation and heterochromatin/Barr body 
loss. 
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female cells, termed the Barr body, highly condensed heterochromatin that is visible by 

DAPI stain (Figure 1.1). More euchromatic chromosome territories can be visualized 

after hybridization with chromosome-specific plasmid libraries that “paint” the DNA 

(Lichter et al., 1988). The active and inactive X chromosome territories were found to 

have similar volumes, but the active X had a much greater surface area and reduced 

roundness factor (Eils et al., 1996). While chromosome territories contain a mix of both 

heterochromatin and euchromatin, in general, gene-rich chromosomes tend to localize to 

more interior euchromatic regions, and gene-poor chromosomes closer to the peripheral 

heterochromatin (Croft et al., 1999; Kupper et al., 2007; Dechat et al., 2008).  

Facultative heterochromatin: X Chromosome Inactivation 

X chromosome inactivation (XCI), the near-complete transcriptional silencing of 

one X chromosome, is a premier example of specialized facultative heterochromatin 

formation, as a major means of epigenetic regulation throughout the genome (for review, 

see (Heard, 2005)). Eutherian mammals use XCI to correct disparity in X-linked gene 

dosage between males (XY) and females (XX). X inactivation initiates in pluripotent 

female cells when XIST (X inactivation specific transcript) RNA is transcribed from a 

single, randomly selected X chromosome. Both the human XIST and mouse Xist genes 

lack an open reading frame, and instead of coding for protein, produce long noncoding 

RNAs (lncRNA) that spatially associate with the inactive X-chromosome DNA territory 

(Brown et al., 1992; Clemson et al., 1996).  

The XIST gene is located in the 2.3 Mb region called the X inactivation center 

(XIC) (Chureau et al., 2002), which also contains several noncoding genes that regulate 
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XIST RNA (for review, see (Galupa and Heard, 2015)). Most of what we know about 

regulation of the XIST/Xist gene itself comes from studies in the mouse, which contains a 

750 kb orthologous Xic region (Chureau et al., 2002). While Xist is the primary factor 

required for chromosome silencing, other genes in the Xic function in chromosome 

counting, choice, and regulation of Xist expression. For example, transcription of mouse 

Tsix, antisense to Xist, is sufficient to repress Xist RNA accumulation prior to 

inactivation and on the active X (Stavropoulos et al., 2001). Tsix is also implicated in 

chromosome choice (Lee and Lu, 1999), but the exact mechanism remains to be 

elucidated (Galupa and Heard, 2015). Like Xist, Tsix expression is regulated by genes in 

the Xic, including DXPas34 and Xite, both of which are also transcribed but do not code 

for protein (Ogawa and Lee, 2003; Cohen et al., 2007; Pollex and Heard, 2012).  

While Tsix is involved in Xist repression, Jpx, Ftx, and Xpr appear to contribute to 

its activation. However, the precise mechanism, including whether they act in cis or in 

trans, remains unclear (Sun et al., 2013; Barakat et al., 2014; Galupa and Heard, 2015). 

Xist is also regulated in trans by pluripotency factors including Oct4 and Nanog, which 

respectively activate Tsix and repress Xist (Galupa and Heard, 2015).  

Although well characterized in mouse, less is known about genes in the human 

XIC. For example, the human ortholog TSIX lacks the 5’ CpG island required for its 

function. Therefore, although it is transcribed, human TSIX has no repressive effect on 

XIST RNA expression, and may be the product of an evolutionary breakpoint (Migeon et 

al., 2001a; Migeon et al., 2002). Furthermore, JPX and FTX have not been shown to 

activate human XIST, and FTX lies outside of the human XIC (Migeon, 2014). 
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Once transcribed, however, both human and mouse XIST/Xist RNAs recruit a 

host of epigenetic factors that decorate, structurally reorganize, and silence most genes on 

the chromosome. Silencing is maintained in all cells of the organism by several layers of 

repressive chromatin modifications (reviewed by: (Wutz and Gribnau, 2007; Gendrel and 

Heard, 2014). XIST RNA forms a tightly-bordered nuclear territory coincident with the 

inactive X chromosome (Xi) DNA territory, providing a readily visualized model for 

RNA binding to chromatin and determining its epigenetic state.  

Nuclear Organization and Structure 

Nuclear bodies 

Far more than just a bag of chromatin, the nucleus is highly dynamic, facilitating 

DNA replication, RNA transcription, splicing, and export in an efficient and coordinated 

manner. To support these activities, the nucleus is further compartmentalized into 

specialized domains or “bodies” that likely function as localized concentrations of 

substrates, enzymes and other factors required to facilitate efficient and carefully 

controlled gene expression (Dundr, 2012). For example, the euchromatic region contains 

nucleoli, hubs of mRNA metabolism and ribosome assembly (Boisvert et al., 2007), and 

splicing factor-rich SC-35 domains, which tend to localize near large clusters of active 

genes (Lamond and Spector, 2003) (Figure 1.1). While the protein components of nuclear 

bodies can be highly dynamic (Phair and Misteli, 2000), the bodies themselves resist 

extraction of DNA and chromatin (Nickerson et al., 1997), suggesting they are not free-

floating in the nuclear space but rather tightly bound to the nuclear sub-structure  
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(Shopland and Lawrence, 2000; Nickerson, 2001). This suggests the existence of a 

scaffold that organizes chromatin and various functional nuclear compartments.  

Evidence for a nuclear “matrix” or “scaffold” 

Evidence for a non-chromatin scaffold or “matrix” first came to light many years 

ago when electron microscopy (EM) and 2-D gel analysis revealed that the nucleus 

contains a large amount of non-chromatin insoluble protein and heterogeneous RNA 

resistant to extensive biochemical extraction (Herman et al., 1978; Capco et al., 1982). 

This fibrogranular structure was present in all cells and tissues examined and shown to 

organize chromatin by attaching to the bases of DNA loops (Matrix/Scaffold attachment 

region (S/MAR) DNA), while also serving as a platform for DNA replication (Vogelstein 

et al., 1980; Nickerson, 2001). It was termed the nuclear matrix and proposed to form an 

architectural scaffold for nuclear domains and chromatin. In this thesis, I will use the 

terms “matrix” and “scaffold” interchangeably.  

The nuclear matrix (NM) has been a somewhat controversial entity (Pederson, 

1998; Pederson, 2000; Nickerson, 2001) in part due to the extensive manipulation of the 

nucleus necessary to visualize it. While protocols vary somewhat, a general approach 

(nuclear matrix fractionation) involves 1) Triton-X-100 detergent to remove membranes 

and soluble proteins, 2) 0.25M ammonium sulfate to remove histones, 3) DNAse I 

digestion to remove 90-95% of DNA, and 4) a final high-salt wash to remove any 

remaining fragments. This leaves behind ~75% of nuclear RNA and insoluble protein 

(Herman et al., 1978; Berezney and Jeon, 1995).  
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The nuclear matrix contains both the largely peripheral nuclear lamina and an 

associated network of core filaments that stretches throughout the nuclear interior 

(Nickerson, 2001) (Figure 1.1). The nuclear lamina is comprised of a meshwork of 

polymerized intermediate filament proteins (Lamins A/C, B1, and B2) that form a nuclear 

“skeleton,” analogous to the cytoskeleton, providing mechanical stability to the whole 

nucleus (Dechat et al., 2008). In addition, the lamina has been shown to organize 

chromatin, including controlling the position of entire chromosome territories (Malhas et 

al., 2007; Meaburn et al., 2007). Essential for proper cell function, more than 300 known 

mutations in lamin proteins result in several debilitating laminopathies that fall broadly 

into four categories: striated muscle disease, lipodystrophy syndromes, peripheral 

neuropathy, and accelerated aging disorders including Hutchinson–Gilford progeria 

syndrome (Worman and Bonne, 2007). 

Distinct from the nuclear lamina, the internal nuclear matrix is comprised of thick 

irregular fibers revealed by DNAse digestion and ammonium sulfate extraction (He et al., 

1990). These fibers contain a wide variety of proteins that vary by cell type (Fey and 

Penman, 1988). Upon further salt extraction, the majority of these proteins are stripped 

away leaving behind what one study termed a network of branched 10nm “core 

filaments” connected to the nuclear lamina (He et al., 1990). These core filaments were 

shown to contain heterogeneous nuclear RNA (hnRNA), further raising the possibility 

that RNA may serve as a structural component nuclear architecture (Fey et al., 1986; 

Nickerson et al., 1989; He et al., 1990). 
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Some fraction of the RNA component was suggested to be nascent RNAs 

undergoing transcription, splicing and export associated with various nuclear bodies. For 

example, in Epstein-Barr Virus (EBV)-infected cells, long EBV RNA “tracks” remain 

visible after nuclear matrix fractionation. This suggested that these nascent pre-mRNA 

transcripts attach to some underlying structure, consistent with the concept of a nuclear 

scaffold that plays an important role in RNA processing and/or nuclear export (Lawrence 

et al., 1989; Xing and Lawrence, 1991). A larger component of this RNA was identified 

as high-molecular weight hnRNA. RNAse digestion of this RNA led to release of hnRNA 

associated proteins (hnRNPs), leaving what appeared to be largely hollow nuclei 

(Herman et al., 1978; Nickerson et al., 1989), which may suggest that the hnRNA 

provides structural support to the matrix. However, fueling the controversy, another study 

suggested incubation at 37°C after RNAse treatment retained the hnRNPs in the nucleus 

(Martelli et al., 2002), thus challenging the concept that an RNA component is required 

for nuclear structure. Today, the controversial concept of the nuclear matrix and RNA’s 

role in nuclear structure remains essentially unresolved (Razin et al., 2014), however 

emerging technologies will enable future studies to elucidate the crucial proteins and 

nucleic acids comprising nuclear structure. Studies described here advance this 

fundamental question of cell biology in new ways, moving the field past the long 

standing impasse. 

Cancer effects on nuclear organization 

The nuclear matrix is also implicated in tumor progression. Cancer cells 

commonly have vastly altered nuclear structure including irregular nuclear shape, 
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formation or loss of heterochromatin aggregates, and loss of the Barr body (Zink et al., 

2004) (Figure 1.1). Some evidence implicates deletion or mutation in lamina proteins, as 

the nuclear lamina is primarily responsible for nuclear shape and connecting 

heterochromatin to the nuclear periphery (Zink et al., 2004), however changes to the 

overall protein composition of the nuclear matrix may also impact nuclear shape (Konety 

and Getzenberg, 1999). 

Furthermore, numerous nuclear matrix proteins have been shown to have altered 

expression levels in cancer cells (Fey and Penman, 1988; Getzenberg et al., 1991) for 

review: (Konety and Getzenberg, 1999). In general, tumor grade is inversely proportional 

to the number of nuclear matrix proteins, consistent with decreased heterochromatin 

content and increased transcriptional activity (Konety and Getzenberg, 1999; Barboro et 

al., 2012). However, in de-differentiated prostate cancer cells, despite an increase in the 

copy number and expression level of NM proteins, fewer proteins bound to S/MAR 

DNA, resulting in larger DNA loops and overall loss of chromatin structure (Barboro et 

al., 2012). Preliminary work has been done to identify specific nuclear matrix proteins 

that may serve as biomarkers for certain cancers, and one such test, NMP22, is currently 

used to detect bladder cancer (Konety et al., 2000; Kibar et al., 2006). While this is 

promising, further study is needed to develop similar tests for more cancers. 

In addition to altered expression levels of NM proteins, the conserved positioning 

of chromosome territories (with more gene-poor chromosomes localized toward the 

nuclear periphery) is often lost in cancer cells (Figure 1.1), supporting that changes in 

NM composition compromise nuclear organization and structure (Cremer et al., 2003). 
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These findings further support the hypothesis that nuclear organization is fundamental for 

controlling the epigenome, and essential for keeping cancer at bay. While the goal of this 

thesis was not to study cancer per se, unanticipated results encountered in the course of 

this work have significant implications for fundamental cancer biology, particularly in 

regard to a compromised relationship of RNA to the nuclear scaffold. 

Noncoding “chromosome-associated” RNA  

Chromosomal RNAs in genome regulation 

Noncoding RNAs (ncRNAs) are increasingly recognized as essential players in 

genome regulation. Diverse types of ncRNAs have been shown to participate in activities 

such as gene silencing, cell cycle regulation, stem cell pluripotency, immunity, and 

metastasis, (Rinn et al., 2007; Gupta et al., 2010; Guttman et al., 2011; Gomez et al., 

2013; Tripathi et al., 2013), but their mechanisms of action are diverse and incompletely 

understood. Some ncRNAs are hypothesized to function by binding to chromatin. XIST 

RNA is the best-characterized ncRNA that functions by binding to chromatin, raising the 

possibility that other ncRNAs may also. However, we still lack a clear understanding of 

how XIST RNA localizes, and knowledge of this will not only enhance understanding of 

how this ncRNA induces the structural transformation and silencing of an entire 

chromosome, but also will provide insight into how other ncRNAs may interact with 

chromatin. 

Below I will summarize the current understanding of two types of “chromosomal-

RNAs” that are the focus of this thesis: XIST RNA, which is well established to bind and 
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function in heterochromatin (Chapters II and III), and repeat-rich sequences in CoT-1 

RNA, which we show bind to euchromatin, and results suggest likely function there 

(Chapters IV and V). 

XIST RNA 

As described above, XIST RNA is transcribed from the inactive chromosome and 

physically “paints” the chromosome territory, bringing about its transcriptional silencing. 

It was previously demonstrated that two populations of XIST RNA accumulate on the Xi: 

a smaller concentration of intron-containing pre-mRNA that is continuously transcribed 

and spliced, and a much larger concentration of mature, functional RNA that is 

structurally associated or embedded within the chromosome architecture (Clemson et al., 

1996). Mature XIST RNA has a half-life of about 5 hours following transcriptional 

inhibition (Clemson et al., 1998), whereas several pre-mRNAs tested are undetectable 

after 1-3 hours (Hall et al., 2014). Mature XIST RNA remains unperturbed in cells 

treated with RNAse H, which specifically targets RNA/DNA hybrids (Clemson et al., 

1996). This supports the hypothesis that the majority of XIST RNA is not hybridized to 

DNA, but it is likely tethered by specific proteins (Clemson et al., 1996). Finally, the 

XIST RNA territory remains unperturbed after removal of chromatin and DNA (nuclear 

matrix fractionation) (Clemson et al., 1996). This suggests that the proteins responsible 

for localizing XIST RNA to the Xi territory are components of the insoluble nuclear 

scaffold or matrix.  

Despite substantial progress, we still lack a complete understanding of the 

proteins that bind XIST RNA including the chromatin modifiers it recruits to initiate the 
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silencing cascade and those that localize it to the chromosome. Several studies have 

catalogued a host of histone modifications that can be visualized on the inactive 

chromatin by light microscopy (e.g.: (Jeppesen and Turner, 1993; Costanzi and Pehrson, 

1998; Boggs et al., 2002; Plath et al., 2003), and several non-histone proteins have been 

observed enriched on the inactive chromosome territory, and therefore are hypothesized 

to play a role in inducing these chromatin modifications (Helbig and Fackelmayer, 2003; 

Blewitt et al., 2008; Baumann and De La Fuente, 2009; Pullirsch et al., 2010). However, 

the sequence in which these modifications occur remains unresolved. For example, a 

prior report concluded that Xist RNA first directly binds PRC2 to induce H3K27 tri-

methylation, but this is now debated (for review, see (Cerase et al. (2015)).  

The development of RNA FISH (Lawrence et al., 1989) and the initial 

demonstration that XIST RNA uniquely coats its interphase chromosome territory in cis 

(Lawrence et al., 1989; Clemson et al., 1996) became the mainstay of many X 

inactivation studies, however this approach does not typically provide information on a 

molecular scale. This approach may miss highly transient interactions, or occasionally an 

epitope may be masked on the condensed Barr body. Hence, other approaches are needed 

to determine the direct molecular interactions of the functional XIST RNA in vivo. 

However, as will be discussed in more detail below, extraction-based biochemical 

methods have also proven insufficient, hindered in part by the large size of Xist/XIST 

RNA (14- 17kb) (Brockdorff et al., 1992; Brown et al., 1992), its association with the 

insoluble nuclear structure, and the transient developmental window during which X 

inactivation is initiated in pluripotent cells (for review, see (Heard and Disteche, 2006)).  
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Highlighting this difficulty, it was previously thought that BRCA1 tumor 

suppressor protein directly bound XIST RNA and anchored it to the chromosome 

(Ganesan et al., 2002). The authors used RNA immunoprecipitation (RIP), then a 

relatively new technique, to find what appeared to be a direct interaction between XIST 

RNA and BRCA1. To isolate XIST RNA, they used formaldehyde to crosslink nuclei, 

immunoprecipitated BRCA1, and adapted the chromatin immunoprecipitation (ChIP) 

protocol to isolate RNA instead of DNA. They performed RT-PCR and detected XIST 

RNA in the BRCA1 fraction. In addition, they reported complete overlap of BRCA1 

signal with that of the whole XIST RNA territory in many cells, by combined 

immunofluorescence (IF) and fluorescence in situ hybridization (FISH). However, this 

was later shown to reflect a general relationship of BRCA1 to replicating satellite 

heterochromatin rather than specifically Xi or XIST RNA (Pageau and Lawrence, 2006; 

Pageau et al., 2007a; Pageau et al., 2007b; Xiao et al., 2007). Hence molecular 

cytological analyses can lead to misinterpretations, such as antibody specificity or bright 

signals in one fluorescence channel “bleeding through” to create a dim signal in another, 

and RIP-based approaches can be fraught with technical artifacts.  

More recently, three independent groups developed techniques to pull Xist RNA 

out of the nucleus and characterize associated proteins using mass spectrometry. These 

groups produced three very different lists of putative Xist interacting proteins. While this 

provides a starting point for future studies, as discussed in detail below, it also further 

highlights challenges of studying chromosome-associated RNAs like Xist, particularly 
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when using extraction-based techniques. The nature of XIST RNA’s relationship to its 

parent chromosome is the subject of Chapters II and III. 

The repeat genome and CoT-1 RNA 

It has long been recognized that genomes of most organisms contain more than 

protein-coding sequences. Beginning with the observation that different organisms 

contain differing amounts of DNA, it was determined that the C-value, the amount of 

DNA per haploid genome, varies >80,000 fold between eukaryotes (Pagel and Johnstone, 

1992). This was followed by the surprising discovery that genomic size does not correlate 

with organismal complexity. This apparent contradiction, coined the C-value paradox 

(Thomas, 1971; Gregory and Hebert, 1999), led to various hypotheses explaining the 

existence of up to 98% of the human genome which does not code for protein. Early 

attempts to explain this paradox included the proposition that non-coding human DNA is 

simply “junk” (Ohno, 1972; Pagel and Johnstone, 1992) resulting from genetic drift, 

chromosome segment duplications, or maintenance of extinct genes. These hypotheses 

supported the view that evolutionary pressure led to increased genome size over time 

(Gregory and Hebert, 1999), and DNA was only eliminated when the metabolic cost 

associated with its replication became detrimental to the organism (Pagel and Johnstone, 

1992).  

Among the junk are intronic sequences, which on average comprise the vast 

majority of pre-mRNA sequence. Why introns would be so large, or even exist in such 

prevalence, is not firmly understood. Most introns and intergenic DNA is replete with 

repetitive sequences, and more than 50% of the human genome attributed to junk DNA is 
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comprised of repetitive sequences that include transposon-derived short and long 

interspersed nuclear elements (SINEs and LINEs), simple sequence repeats (e.g., (A)n, 

(AT)n or (CGG)n), and tandemly repeated sequences, such as centromeric satellites and 

telomeres (Lander et al., 2001). These repeat sequences are part of CoT-1 DNA, the 

fraction of the genome that anneals most quickly after melting. CoT-1 is calculated by 

C0 (the DNA concentration at time zero) * t seconds. Abundant, highly repetitive DNA 

reanneals faster than unique sequences and therefore has lower CoT values (Britten et al., 

1974).  

Despite an overall lack of evidence for the junk hypothesis, (Gregory and Hebert, 

1999) these views have been widely adopted (Germain et al., 2014) and have had a 

lasting impact on the direction of biological research. Repetitive sequences in CoT-1 are 

routinely screened out of biochemical analyses by repeat masker, and only a few studies 

propose biological importance for interspersed repeats. For example, studies of X-

autosome translocations and Xist transgene insertions suggest that genes in LINE-rich 

regions may be silenced better than those in LINE-poor regions. This led to the 

suggestion that LINE elements potentially function as DNA signals to facilitate the 

spread of silencing across the X chromosome (Lyon, 1998), and this was supported by 

the observation that LINE-1 (L1) DNA elements are enriched on the human X 

chromosome compared to the genomic average (and X escape region) (Bailey et al., 

2000), and to any individual chromosome ((McNeil et al., 2006) reviewed in (Hall and 

Lawrence, 2010)). However, the role of L1 in X inactivation remains speculative, for 

example another study found, for a very different reason, that XIST RNA preferentially 
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associates with gene-rich (and LINE-poor) regions during its initial spread across the 

chromosome (Engreitz et al., 2013).  

 Recently, the ENCODE project helped to turn the notion of junk DNA on its 

head by ascribing a putative function to 80% of DNA in the human genome (Consortium, 

2012; Germain et al., 2014). These claims are controversial, in large part due to the 

definition of “function” (Graur et al., 2013). However a distinction can be made between 

true “junk” (DNA with no biological relevance) and DNA that may not engage in 

relevant biochemical activities, however still cannot be ignored by biomedical research 

(Germain et al., 2014).  

As a result of their historical label as genomic junk, most investigators assume 

most interspersed repeats and other CoT-1 sequences are packaged into transcriptionally 

silent heterochromatin, and thus few studies have considered the possibility that repeat 

elements may be transcribed into functional RNAs. However, it is possible that 

expression of repetitive RNAs has been overlooked by numerous biochemical analyses. 

In addition to widespread use of repeat-masker, RNA extraction protocols designed for 

cytoplasmic RNAs may fail to pull repetitive RNAs of the cell, as these sequences may 

be more likely to form complex and relatively insoluble structures. As described above, 

previous studies have suggested substantial nuclear RNA remains after extensive 

biochemical extraction removes most DNA and protein (Fey et al., 1986). 

To circumvent the limitations of extraction-based and bioinformatic approaches, 

the potential expression and distribution of repeat RNAs may best be revealed in situ. In 

fact, one such study did find a suggestion that a subset of L1 elements are expressed 
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specifically on the Xi during initiation of XCI in mouse ESCs (Chow et al., 2010). Deep 

sequencing has also vastly improved our knowledge of the transcriptome, and there are 

now several examples of individual transposons impacting the promoter or transcription 

factor binding sites of nearby genes (reviewed in: (Faulkner and Carninci, 2009)), setting 

a precedent for functional RNAs transcribed from transposon-derived repeats.  

There is also long-standing evidence that SINEs are expressed in response to 

stress-stimuli such as heat shock or viral infection (Liu et al., 1995; Li et al., 1999). Early 

studies focused on whether stress can induce transposons to become mobile and jump 

around the genome, potentially causing damaging mutations (Capy et al., 2000). More 

recently, SINEs (human Alu, and mouse B1 and B2 RNA) transcribed by RNA Pol III 

during the stress response were shown to broadly inhibit cellular gene transcription by 

specifically binding to Pol II (Allen et al., 2004; Espinoza et al., 2004; Mariner et al., 

2008). These studies provide evidence that interspersed repeat RNAs can regulate 

genome-wide transcription and set a precedent for interspersed repeat ncRNAs with a 

biological function.  

This implies that any perturbation impacting the balance of repeat RNA expression 

could have physiological repercussions for the cell. Scientists routinely stress cells while 

investigating a variety of hypotheses, including, but not limited to drug treatments, 

transient protein overexpression, and osmotic stress. These treatments are assumed to elicit 

a stress-response, however it is usually ignored. In Chapter IV of this thesis, I provide 

evidence that transient plasmid transfections of GFP-tagged proteins can significantly  
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Figure 1.2 Xist and Cot-1 RNAs localize to heterochromatin and euchromatin, 
respectively.  

XIST RNA (green) and CoT-1 RNA (red) localization in the nucleus is mutually 
exclusive. XIST RNA localizes to the heterochromatic Barr body, in a CoT-1 RNA hole 
(arrow). 
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increase transcription of individual repeat families, including both SINEs and LINEs. This 

has potential consequences for both gene expression and nuclear organization.  

Many FISH protocols use the CoT-1 fraction as an unlabeled competitor to block 

hybridization of genomic probes to repeats. Several years ago our lab developed an in 

situ assay using labeled CoT-1 DNA as a probe under non-denaturing conditions to show 

that the inactive X chromosome was transcriptionally silent (Hall et al., 2002a). The CoT-

1 RNA signal was excluded from the Barr body coated by XIST RNA (Figure 1.2), but 

not the active X chromosome. This and other findings led to the hypothesis that silencing 

of repeat-rich hnRNA occurs in parallel to chromosome condensation and formation of 

the heterochromatic Barr body (Hall and Lawrence, 2010). In addition, hybridization to 

CoT-1 RNA produced a signal that associates exclusively with euchromatin, and its 

surprising abundance led us to question whether it represented byproducts of RNA 

metabolism as was widely assumed. The nature of this abundant repeat RNA and its 

relationship to interphase chromatin is the focus of Chapters IV and V. 

Anchoring chromosomal RNA 

Evidence for anchoring by SAF-A/hnRNP U 

XIST RNA’s association with the insoluble nuclear scaffold has made it difficult 

to identify the proteins that anchor it to its parent chromosome in cis. Insoluble scaffold 

proteins, particularly those which can bind DNA and/or RNA, are potential chromosomal 

RNA anchors. Scaffold Attachment Factor-A (SAF-A/hnRNP U) was separately 

identified as an insoluble nuclear scaffold protein (Romig et al., 1992) and as an hnRNP 
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protein involved in pre-mRNA processing (Kiledjian and Dreyfuss, 1992). SAF-A is an 

abundant, ubiquitous protein that binds to all interphase chromosomes, but it is enriched 

on the Xi (Helbig and Fackelmayer, 2003). SAF-A was shown to bind RNA through its 

C-terminal RGG box (Kiledjian and Dreyfuss, 1992; Thandapani et al., 2013), which is 

required for its Xi enrichment (Helbig and Fackelmayer, 2003). Cross-linking 

immunoprecipitation (CLIP) experiments suggest SAF-A binds a variety of RNAs 

including Xist (Hasegawa et al., 2010) and many other nuclear noncoding RNAs, and it is 

thought to play a role in RNA metabolism (Huelga et al., 2012; Xiao et al., 2012). SAF-A 

was found to bind DNA through its N-terminal SAP (SAF-A/B, Acinus and PIAS) 

domain, and it has particularly high affinity for AT-rich S/MAR DNA (Romig et al., 

1992; Gohring and Fackelmayer, 1997). Hence, since SAF-A can potentially bind both 

RNA and DNA (Fackelmayer et al., 1994), it alone could provide “the bridge” between 

XIST RNA and Xi DNA. 

A significant finding by Hasegawa et al. (2010) showed that SAF-A knockdown 

is sufficient to completely release Xist RNA from the interphase chromosome, primarily 

in mouse Neuro2a neuroblastoma cells. This has led to the perception that SAF-A is the 

single scaffold factor required to anchor Xist RNA to chromatin (e.g.: (Nakagawa and 

Prasanth, 2011; Tattermusch and Brockdorff, 2011)). While the study by Hasegawa et al. 

(2010) implicates SAF-A, how human XIST RNA interacts with its parent chromosome 

remains unknown, and the potential role of human SAF-A has not been investigated. 

Several key differences exist in the processes of XCI between the two species (Chow et 

al., 2005), and the XIST/Xist RNA sequence and XIC region are not well conserved 
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(Chureau et al., 2002). Human XIST RNA does not localize properly to the human X in a 

mouse cell, suggesting differences in the protein(s) that localize the RNA (Clemson et al., 

1998). In addition, evidence suggests that multiple regions of the long Xist RNA 

transcript contribute to its localization (Wutz et al., 2002). In light of this, the complexity 

of the nuclear scaffold, and the functional importance of proper XIST localization, it 

would be surprising for the RNA’s localization to depend on a single anchor protein. 

Model: multiple proteins anchor XIST RNA to the nuclear matrix/scaffold 

Prior work from our lab provides additional evidence supporting a model for 

multiple XIST RNA anchors. Given that biochemical techniques had not yielded 

significant insight into XIST RNA anchor proteins, we pursued an approach to 

manipulate XIST RNA localization in situ based on the fact that XIST RNA releases 

from the chromosome during mitosis (Clemson et al., 1996; Hall et al., 2009). Hall et al. 

(2009) tested whether XIST RNA would release in interphase if chromatin proteins were 

phosphorylated as they are during cell division. They found that AURKB suppression 

during prophase led to XIST RNA retention during metaphase. However, while 

activation of AURKB during interphase promoted XIST RNA release, it was not reliable 

or consistent. Thus, this work supported a model in which XIST RNA has multiple 

anchor points: perturbation of a single anchor (an AURKB substrate) did not release the 

RNA during interphase, but retention of that anchor retained XIST RNA on the mitotic 

Xi. As further explored in Chapter III, I hypothesize that an “AURKB-dependent” 

anchor, potentially together with multiple components of the nuclear scaffold (such as 

SAF-A), likely ensure the RNA’s strict localization to only its parent chromosome, and 
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reliable maintenance of silencing during development and beyond. In Chapter V, I 

investigate the hypothesis that SAF-A is involved in anchoring CoT-1 chromosomal 

RNA to its parent chromosome in cis. 

Approaches to identify RNA interacting proteins 

The following section was written as part of a review article that is currently accepted 

pending minor revisions at The Journal of Cell Biology. (Kolpa, H.J. and J.B. Lawrence. 

In search of bona fide Xist/XIST RNA binding proteins: mixed messages from 

extraction-based approaches).While work in this dissertation relies on in situ for the bulk 

of the experiments, it is important to consider other techniques that may provide an 

alternative means for investigation, especially when used in parallel as a means to 

substantiate findings. 

Protein-centric methods to investigate direct RNA-protein interactions 

It is widely understood that the majority of nuclear ncRNAs function by 

interacting with proteins. To begin to characterize the mechanisms through which these 

RNAs function, we need tools to identify their protein binding partners. However, 

researchers have had only partial success developing biochemical methods to identify 

direct nuclear RNA-protein interactions, and in particular to discern actual in vivo 

functional interactions with high fidelity (Ule et al., 2005; Keene et al., 2006). Many 

extraction-based techniques were developed for cytoplasmic RNAs, thus the challenge is 

especially difficult for structurally embedded nuclear RNAs like XIST. Importantly, 

Hasegawa et al. (2010) showed that sonication increased extractability of Xist RNA, a 
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finding replicated by subsequent studies. However, this insolubility remains a significant 

consideration for anyone looking to pull down Xist RNA. 

The first widely-used techniques to identify RNA binding proteins were “protein-

centric.” Researchers chose candidate protein(s) thought to bind an RNA-of-interest and 

immunoprecipitated the protein with its associated RNA(s). These techniques represented 

a significant technical advance. However as suggested above, they also have several 

potential pitfalls. Since RNA is inherently sticky, even the most carefully controlled 

experiments can be compromised by background, creating poor signal to noise ratios. In 

particular, RIP protocols may or may not involve chemical crosslinking with 

formaldehyde, and this must be carefully optimized in an assay-dependent manner. With 

chemical crosslinking, large chemical bridges form not only between proteins 

immediately contacting the RNA, but also between multiple adjacent proteins (Ule et al., 

2005). RNA binding proteins often exist in larger complexes, or, in the case of XIST 

RNA, in a dense complex structure or inter-connected “scaffold”, and this can lead to 

erroneous identification of putative interactors that may be quite indirect. However, with 

no crosslinking, transient interactions are lost (Riley and Steitz, 2013). Importantly, 

evidence suggests that without crosslinking, proteins and RNAs can re-associate after cell 

lysis and during processing, further complicating analysis and creating the risk for false 

positives (Mili and Steitz, 2004; Riley et al., 2012). Despite these limitations, RIP may be 

more useful when looking at an entire RNA molecule as opposed to small fragments or 

binding sites (Darnell, 2010), and this is particularly relevant for a long RNA molecule 

like XIST. 
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The caveats described above showcase the need for methods with fewer artifacts 

and increased reproducibility. This led to development of CLIP, which replaced 

formaldehyde crosslinking with ultraviolet light (UV). CLIP was considered superior 

because UV does not crosslink proteins to other proteins. In addition, the covalent bond 

forms only between proteins and nucleic acids within angstroms of each other, which 

both increases specificity and allows for greater stringency during purification (Ule et al., 

2005). UV crosslinking was not adopted earlier because scientists thought it was too 

inefficient, capturing only 1-5% of all protein-RNA interactions. In addition, the 

crosslink is irreversible, a potential barrier to RT-PCR identification of the RNA. 

However these barriers have proven negligible as the technique became more widely 

adopted and was shown to significantly improve signal:noise. Several studies have 

successfully used CLIP to identify proteins bound to specific RNAs (reviewed in 

(Darnell, 2010)). 

Protein-centric studies of Xist RNA binding proteins 

After BRCA1 was misidentified as an Xist RNA-interacting protein required for 

the RNA’s localization, six years passed before another protein was reported to bind Xist 

RNA, when Zhao et al. (2008) used RIP to test whether Xist RNA directly bound 

proteins in PRC2. They did not perform a crosslinking step, hoping to avoid fixation 

artifacts, which can include reduced lysis efficiency, sequence biases, increased 

background, and irreversibility (Keene et al., 2006). Zhao et al. (2008) detected Xist 

RNA by RT-PCR after pull down of Ezh2 and Suz12 in undifferentiated mouse ES cells 

but not in differentiated MEFs, suggesting PRC2 is primarily bound to Xist RNA during 
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initiation of XCI. It should be noted that PRC2 also pulled down Xist RNA in a 

subsequent CLIP study by the same lab (Sarma et al., 2014), however, other labs have 

attempted to replicate this finding and failed ((Chu et al., 2015b; McHugh et al., 2015) 

for review: (Cerase et al., 2015)). Hence, the jury remains “out” on the important 

question of whether a key mechanism of Xist RNA function is direct binding of PRC2 to 

initiate the silencing cascade. Subsequent CLIP studies have since identified three other 

proteins that appear to bind Xist RNA: hnRNP U/SAF-A, YY1, and ATRX (Hasegawa et 

al., 2010; Jeon and Lee, 2011; Sarma et al., 2014), bringing the total number of putative 

Xist RNA interacting proteins to four.  

RIP and CLIP both suffer from the limitation that RNA identification relies on 

pull down of specific proteins. A more impartial investigation of RNA binding proteins 

would identify proteins after pull down of a specific RNA. Below, I will examine three 

recently developed RNA-centric techniques, used to define what each of three studies 

concludes is a definitive list of proteins that directly bind to Xist RNA in vivo.  

ChIRP-MS, RAP-MS and iDRiP: alphabet soup, or reliable identification of specific 

RNA binding proteins? 

The three RNA-centric techniques recently used for Xist RNA differ in 

substantial ways but share an overall approach: pull down of the RNA using antisense 

oligonucleotides, followed by mass spectrometry to identify associated proteins. This was 

a logical but significant extension of RNA antisense purification (RAP) experiments 

developed to analyze lncRNA association with specific chromatin loci, as done for Xist 

RNA (Engreitz et al., 2013). 
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Comprehensive identification of RNA binding proteins by mass spectrometry 

(ChIRP-MS) (Chu et al., 2011), involves chemically crosslinking cells with 

formaldehyde or glutaraldehyde (which must be optimized according to the properties of 

an individual RNA) prior to lysis, sonication and hybridization with biotinylated 

antisense DNA oligonucleotides, followed by mass spectrometry (Chu et al., 2015a). The 

authors suggest that ChIRP-MS avoids several pitfalls of previous techniques, including 

formation of non-specific protein-RNA interactions during purification. ChIRP uses a 

collection of short (~20-mer) oligonucleotide probes modeled after those used for single-

molecule RNA FISH (Chu et al., 2011), which tile across the length of the RNA, 

excluding repetitive or non-unique sequences. Tiling probes were required to pull down 

sufficient quantities of RNA, with the advantage that they require no prior knowledge of 

the RNA sequences accessible to hybridization in vivo, and they capture all or most of the 

transcript, even when fragmented by sonication (Chu et al., 2015a).  

Chu et al. (2015b) used different cell conditions/types with either endogenous or 

transgenic Xist, to study proteins associated with either random or imprinted XCI, during 

both the initiation and maintenance phases. By MS, they generated a list of 62 proteins 

pulled down with Xist RNA in all four cell types, and an additional 19 enriched only in 

differentiated cells post-XCI. They obtained similar results from mESCs (with an 

inducible Xist transgene on chromosome 11), epiblast-derived stem cells (random XCI), 

and trophoblast stem cells (imprinted XCI), supporting the hypothesis that Xist RNA 

pulls down similar proteins in all of these distinct contexts (Chu et al., 2015b).  
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The authors examined a handful of candidates using siRNA knockdown and RNA 

FISH in mouse ES cells, finding that hnRNP K, Spen, and hnRNP U/SAF-A were 

required to initiate Xi silencing, but hnRNP M was not. Importantly, the authors used 

northern blotting to test whether hnRNP K, U, and M had an indirect role in Xist 

biogenesis, and found they did not. hnRNP M may be redundant with some other factor, 

but it will be important for future studies to further analyze whether it and the remaining 

77 proteins directly bind Xist RNA, particularly the mature transcript, in relation to its 

function.   

McHugh et al. (2015) used a second technique, RAP and mass spectrometry 

(RAP-MS), to identify ten proteins that pulled down with Xist RNA in the same male ES 

cells used by Chu et al. (2015b) which contain an Xist transgene on chromosome 11. 

Similar to ChIRP-MS, RAP-MS uses antisense biotinylated oligos (90-mers) tiled across 

unique regions of the entire RNA sequence, and then captures and purifies the RNA 

complexes using streptavidin-coated beads after DNAse treatment and sonication. Using 

RNAi and a gene silencing assay, McHugh et al. (2015) found three of the ten proteins 

identified, SHARP, LBR, and SAF-A/hnRNP U are required for gene silencing; however 

knockdown of the remaining seven candidates (including hnRNP M) had no effect. Thus, 

further analysis is needed to corroborate whether these proteins indeed specifically and 

directly bind mature, functional Xist RNA in vivo, potentially with a non-essential or 

functionally redundant role.  

RAP-MS differs from ChIRP-MS in at least two key ways: 1) UV rather than 

chemical crosslinking, and 2) stable isotope labeling of amino acids in culture (SILAC) to 
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more quantitatively assess proteins pulled down by the assay. Both of these theoretically 

increase specificity. As described above, UV crosslinking can provide superior specificity 

to formaldehyde since it captures only “zero-length” interactions. SILAC labeling allows 

for more quantitative comparison of peptide ratios between experimental and control 

samples, increasing the likelihood of discerning real from non-specific interactors. The 

authors also used a stricter cut-off (>3-fold enrichment compared to control) when 

assessing positive interactors. These differences may help to explain why the number of 

Xist-interacting proteins found using RAP-MS was much smaller than those generated by 

the other RNA-centric methods.   

Minajigi et al. (2015) developed yet a third variation of the RNA-centric pull-

down approach to generate yet another “Xist RNA interactome”, which again differs 

markedly from the other lists. Identification of direct RNA interacting proteins (iDRiP) 

uses UV crosslinking and antisense oligo probes to pull down Xist RNA, followed by 

quantitative mass spectrometry to identify associated proteins. Instead of tiling probes, 

the authors used nine 25-mers, spaced out across the Xist RNA transcript. They treated 

isolated complexes with DNAse to eliminate DNA-bound proteins, and emphasize this is 

an important distinction and advantage of their study (however, McHugh et al. (2015) 

also treat with DNAse). This approach found more than 200 proteins that were ≥2-fold 

enriched over background, and more than 80 that were ≥3-fold enriched, all of which the 

authors concluded bind to Xist RNA. Among these, SAF-A/hnRNP U, PRC2, and ATRX 

were identified in previous protein-centric CLIP studies, but, importantly, the latter two 

were not found by the other RNA-centric studies. These authors used fibroblasts 
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expressing endogenous Xist RNA, which may be more reliable than transgenic Xist, 

although Chu et al. (2015b) found little difference between the two. Minajigi et al. (2015) 

used two different quantitative MS techniques (spectral counting and multiplexed 

quantitative proteomics), however, it is striking to us that these two MS techniques found 

different lists of interactors, with almost no overlap between them. Furthermore, we note 

that the top ten candidates on both lists include abundant proteins that do not localize in 

the nucleus, such as the secreted proteins Collagen Alpha-2 and Fibrinogen Beta Chain. 

In our view, such observations raise questions about the reliability of the technique to 

pull down proteins that directly and specifically bind Xist RNA in vivo. Testing some of 

the more logical hits, the authors found they could reactivate genes on Xi by inhibiting 

multiple proteins at once, in particular DNMT1, Topoisomerase II, SMC1a, SMC3, 

RAD21, SMARCA4, and AURKB. 

Three studies and three different lists of the “Xist RNA interactome” 

While similar in concept, the differences between iDRiP-MS, RAP-MS, and 

chIRP-MS provide different strengths and vulnerabilities. For example, ChIRP-MS uses 

formaldehyde crosslinking, potentially leading to pulldown of nonspecific yet abundant 

networks of chromatin-associated factors rather than direct Xist-interacting factors (Chu 

et al., 2015b). While Chu et al. (2015b) perform their experiments in multiple cell types 

and XCI conditions, the other studies use only one cell type, including transgenic cells in 

which Xist RNA expression creates a lethal monosomy of chromosome 11, possibly 

eliminating factors involved in XCI maintenance. Minajigi et al. (2015) use fibroblasts 

expressing endogenous Xist, which does not identify factors specifically involved in XCI 
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initiation. These authors argue that UV crosslinking and DNAse treatment make their 

method more specific, however they pull down many more proteins than the other groups 

(Minajigi et al., 2015), and some at the top of their list are clearly non-specific, as noted 

above. These discrepancies are perhaps best illustrated by the table comparing the top 32 

hits from each study (Table 1.1). While the majority of the ten proteins found by RAP-

MS were also top hits in the other two studies, overall the lists reveal large variations in 

the data. 

Since tiling or oligo probes would hybridize to either population of Xist RNA, a 

key question is whether the proteins found by each of these studies associate with Xist 

RNA as it is being transcribed and spliced, or with the mature RNA that stably localizes 

with the Xi. It was previously shown that Xist RNA is produced throughout the cell-cycle 

and that some Xist pre-mRNA accumulates on the Xi along with the larger accumulation 

of mature transcript (Clemson et al., 1996). Tiling or oligo probes could hybridize to and 

pull down either population of Xist RNA. Chu et al. (2015b) distinguish 30 of the 81 

proteins that were also highly enriched with another ncRNA, either U1, U2, or 7SK, 

suggesting these interactions are more likely related to Xist biogenesis. It will be 

important for future studies to determine whether each of the identified proteins bind Xist 

RNA during transcription and processing. A more definitive way to draw this important 

distinction may be to also examine the “interactome” of Xist RNA detected with intronic 

probes, which will pull-down proteins associated with the pre-mRNA.  
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Techniques that pull down RNA and identify attached proteins theoretically 

provide a more unbiased identification of proteins that interact with a specific RNA. 

However, current proteomics technologies can produce large background signals, 

especially when used for low abundance RNAs or high abundance proteins (Chu et al., 

2015a). For example, abundant hnRNP proteins have been found in the majority of RNA 

purifications performed to date, regardless of whether whole cells or synthetic RNAs 

with cellular extracts were used, and it is not clear whether these interactions are 

biological or technical artifacts (McHugh et al., 2014). MS analysis also suffers from 

technical variation across experiments (Chu et al., 2015a).  

Biochemical extraction techniques are a mainstay of many important studies in 

molecular cell biology. Nonetheless, the largely discordant results of recent studies of the 

“Xist RNA interactome” illustrate the reality that even seemingly small perturbations to a 

cellular environment or protocol can produce large discrepancies in data (Riley and 

Steitz, 2013). Ever since discovery that XIST RNA is embedded in nuclear structure, 

biochemistry has proven insufficient to reliably characterize the proteins with which it 

interacts. In situ techniques such as RNA FISH and IF as well as functional studies can 

validate interactions suggested by these and future biochemical methods. As further 

explored in Chapter III, manipulating Xist RNA localization during the cell cycle such as 

by forcing its retention on the chromosome during mitosis (Hall et al., 2009) could 

provide insight into which of these proteins binds Xist RNA in vivo. Such experiments 

would help to transform these from lists of candidate to definitive Xist RNA-interactors. 
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Concluding Remarks 

Despite some holdouts (Razin et al., 2014), the once highly controversial concept 

of the nuclear matrix as a “skeleton” providing mechanical structure to the nucleus is no 

longer considered taboo. At the very least, most no longer think of the nucleus as an 

unstructured assembly of DNA relying on osmosis or diffusion of enzymes and substrates 

for replication and RNA metabolism. DNA is inherently structured, and its organization 

into chromatin allows it to fit inside the nuclear membrane. Sufficient evidence now 

supports that scaffolding proteins facilitate higher-order chromatin organization and 

nuclear compartmentalization.  

In addition, RNA is increasingly recognized as far more than strictly a messenger 

transferring information from DNA to protein. The idea that a structural ncRNA 

comprises part of the nuclear scaffold is not new, and evidence for this was first 

described in the early days of nuclear matrix discovery (Nickerson et al., 1989). XIST 

sets a precedent for a scaffolding RNA that paints an interphase chromosome territory to 

orchestrate its epigenetic transformation into heterochromatin. Scientists are actively 

investigating the idea that other noncoding RNAs may function in a similar fashion, but 

they are limited by current extraction-based methods.  

This thesis advances our understanding of how RNA may function as part of an 

overall nuclear scaffold required to maintain nuclear structure. Work in our lab has 

identified a class of repeat-rich RNA transcribed from sequences previously thought 

silent junk DNA, and I show evidence that these repetitive RNAs may form part of a 

scaffold for euchromatin. I encounter significant complexity to the anchoring of XIST 
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RNA in the Xi chromosome, and provide an important revision to currently widely 

accepted model of a single anchor protein. This work has important implications for 

epigenetic and nuclear structural changes that occur in cancer. However, my primary 

contribution advances knowledge of the basic biology of nuclear structure, which we 

must understand before we can begin to grasp the disease state.  
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Chapter II : Silencing of Chr 21 in Down syndrome fibroblasts by insertion of 

transgenic XIST RNA 

Preface 

Work presented in this chapter was part of a large effort by members of the 

Lawrence lab to target an XIST transgene to chromosome 21 in Down syndrome cells 

using zinc finger nucleases (in collaboration with Sangamo BioSciences). This work was 

primarily done in induced pluripotent stem cells in which we demonstrate comprehensive 

chromosome silencing, and it resulted in the following publication:  

Jiang, J., Y. Jing, G.J. Cost, J.C. Chiang, H.J. Kolpa, A.M. Cotton, D.M. Carone, B.R. 
Carone, D.A. Shivak, D.Y. Guschin, J.R. Pearl, E.J. Rebar, M. Byron, P.D. Gregory, C.J. 
Brown, F.D. Urnov, L.L. Hall, and J.B. Lawrence (2013) Translating Dosage 
Compensation to Trisomy 21. Nature. 500(7462):296-300. doi: 10.1038/nature12394 
 

My contribution to this manuscript involved targeting of the XIST transgene to 

primary Down syndrome fibroblasts. This chapter includes some sections from the cited 

manuscript (Figures 2.2a, 2.3, and parts of the introduction and discussion), and some 

unpublished results that I obtained as a result of this effort. This work was supported by 

NIH grants GM053234, GM085548 and GM096400 RC4 to J.B.L.  
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Introduction 

Evolution has devised a mechanism to compensate for the difference in X-linked 

gene dosage between sexes by inactivating one X chromosome in all female cells. 

However, no similar mechanism exists to handle dosage compensation for trisomy of an 

autosome. In the U.S., about 1 in 300 live births carry a trisomy, and roughly half of these 

are trisomy for chromosome 21, which causes Down syndrome (DS). DS is the leading 

genetic cause of cognitive disability and presents many progressive medical issues that 

affect multiple organ systems. Other chromosome duplication disorders that can result in 

live birth (trisomy 13 and 18) often are fatal within the first 1-2 years of life. While 

autosome duplication has extremely deleterious effects, the human sex chromosomes 

present the same challenge between females (XX) and males (XY) (Lyon, 1961). Our lab 

set out to test whether the natural mechanism for silencing the X chromosome can be 

applied to chromosome 21 for dosage compensation in Down syndrome.  

It is not known whether XIST RNA has capacity to silence any chromosome, or if 

its function is limited to the X chromosome. Many human X-chromosome genes escape 

inactivation, the majority of which lie in a 10 MB X-escape region (Brown et al., 1997; 

Bailey et al., 2000; Carrel and Willard, 2005). Word frequency analysis has shown that 

the escape region differs from that of the rest of the chromosome in that it is >10-fold 

enriched in [GATA]n repeats (McNeil et al., 2006). As described above, the X 

chromosome is unique compared to autosomes in that it is enriched in L1 elements, and 

these have been hypothesized to play a role in Xist RNA spread (for review see (Hall and 

Lawrence, 2010). This suggests that DNA sequence could potentially influence XIST 
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RNA localization across its parent chromosome, and this could largely restrict XIST 

RNA’s ability to silence an autosome. While studies of X:autosome translocations (e.g., 

(White et al., 1998; Hall et al., 2002b)) and randomly integrated XIST/Xist transgenes 

(Lee et al., 1996; Wutz and Jaenisch, 2000; Hall et al., 2002a) have indicated that 

autosomal chromatin has substantial capacity to be silenced, to better understand the 

potential of an autosome for silencing, this issue needs to be examined under conditions 

that avoid creation of a deleterious functional monosomy. The strategy pursued here 

meets that requirement, and provides the first tractable model to study the distinct biology 

of human chromosome inactivation (Heard et al., 1999; Migeon et al., 2001b; Hall et al., 

2002a; Chow et al., 2007).  

We used zinc finger nucleases (Moehle et al., 2007) to target an inducible XIST 

transgene to the gene-rich core of a trisomic Chr 21 in induced pluripotent stem (iPS)  

cells and fibroblasts derived from a subject with DS. Given its large size, neither the XIST 

gene nor its cDNA has previously been integrated in a targeted fashion. In the published 

manuscript, we report (i) an unprecedented efficiency and precision of this addition using 

by far the largest transgene to date; (ii) the resulting on-demand heterochromatinization 

of the extra Chr 21 due to acquisition of de novo histone modifications and chromatin 

condensation; (iii) long-range uniform transcriptional repression as gauged by in situ 

analyses, genome-wide expression profiling, and CpG promoter methylation status; (iv) 

inducible trisomy silencing in vitro impacts cell phenotype to improve both cell 

proliferation and neural rosette formation; and, finally, as described in this chapter, (vi) 

transgenic XIST RNA has capacity to silence an autosome in differentiated fibroblasts.  
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This first step toward correction of chromosomal imbalance in DS raises the 

important prospect of a combined genetic/epigenetic approach to “chromosome therapy.” 

In addition, our findings establish a unique system to study DS-related cellular 

pathologies, as well as to investigate the initiation of epigenetic chromosome silencing 

and its relationship to genomic sequence context. Results described here indicate that 

XIST RNA has capacity to spread across and initiate silencing of an autosome in a 

differentiated cell. Recognition of the autosome boundary by XIST RNA indicates the 

chromosome scaffold may play a role in marking the edge of the chromosome territory. 
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Materials and Methods 

Cell culture: The human female Down syndrome primary fibroblast line (Coriell) 

(AG13902) was maintained according to supplier’s instructions.  

 

ZFN design: ZFNs against the DYRK1A locus were designed using an archive of pre-

validated zinc finger modules (Urnov et al., 2010; Doyon et al., 2011), and validated for 

genome editing activity by transfection into K562 cells and Surveyor endonuclease-based 

measurement of endogenous locus disruption (Miller et al., 2007; Guschin et al., 2010) 

exactly as described (Doyon et al., 2011). Southern blotting for targeted gene addition 

was performed exactly as described (Urnov et al., 2005; Moehle et al., 2007) on SphI-

digested genomic DNA probed with a fragment corresponding to positions 

Chr21:38825803+38826056 (hg19). 

 

XIST plasmid construction and targeting: Fourteen-kilobase human XIST cDNA, a 

splicing isoform of full-length XIST cDNA, was subcloned into pCMV 2x TetO2 

(Invitrogen) containing a hygromycin selectable marker. Two homologous arms (left 

arm, 690 bp; right arm, 508 bp) of DYRK1A gene on chromosome 21 were amplified by 

PCR from primary Down syndrome fibroblasts (AG13902) (Coriell). When introduced 

without the Tet-repressor construct, the TetO2 CMV promoter is constitutively active. We 

transfected two ZFN-containing vectors and the 21-kb XIST transgene into primary DS 

fibroblasts using Stemfect polymer (Stemgent) (10:1 ratio of XIST to ZFN, and 13 μg 
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DNA to 1.3 μl Stemfect per well of 6-well plate) and selected stable clones with 

hygromycin (75 μg ml−1).  

 

Fixation: Our standard cell fixation protocols have been previously described (Tam et 

al., 2002). Briefly, cells were grown on glass coverslips and extracted on ice in 

cytoskeletal buffer, 0.5% Triton X-100, and vanadyl ribonucleoside complex for 3-5 min. 

Cells were fixed at room temperature for 10 min in 4% paraformaldehyde and stored at 

4°C in 70% EtOH.  

 

IF: As previously described (Tam et al., 2002), coverslips were incubated in primary 

antibody diluted in 1% BSA, 1× PBS for 1 h at 37°C. They were then washed and 

immunodetected with a 1:500 dilution of fluorescent conjugated anti-mouse or -rabbit 

antibody in 1× PBS with 1% BSA. Coverslips were counterstained with DAPI and 

mounted with Vectashield (Vector Laboratories) for imaging. Antibodies were as 

follows: H3K27me3 (Millipore, 07-449), UbH2A (Cell Signaling, 8240), H4K20me 

(Abcam, ab9051), macroH2A (Millipore, 07-219). 

 

Fluorescence in situ hybridizations: RNA hybridization was performed under non-

denaturing conditions as previously described (Johnson et al., 1991; Tam et al., 2002; 

Byron et al., 2013). Briefly, hybridizations were done overnight at 37°C in 2× SSC, 1 

U/μl of RNasin Plus RNase inhibitor (Promega), and 50% formamide with 2.5 µg/ml 

DNA probe. Cells were washed with 50% formamide/2× SSC at 37°C for 20 min, 2× 
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SSC at 37°C for 20 min, 1× SSC at RT for 20 min, and 4× SSC at RT for 1 min. 

Detection was with antidigoxigenin or fluorescein-conjugated avidin in 1% BSA/4× SSC 

for 1 h at 37°C. Three 10 min washes were done in 4× SSC, 4× SSC with 0.1% Triton, 

and 4× SSC at RT in the dark. Coverslips were counterstained with DAPI and mounted 

with Vectashield (Vector Laboratories). In simultaneous DNA/RNA FISH (interphase 

targeting assay), cellular DNA was denatured and hybridization performed without 

eliminating RNA and also treated with 2 U μl−1 of RNasin Plus RNase inhibitor 

(Promega). For immunostaining with RNA FISH, cells were immunostained first with 

RNasin Plus and fixed in 4% paraformaldehyde before RNA FISH. DNA probes were 

nick translated with either biotin-11-dUTP or digoxigenin-16-dUTP (Roche). 

The XIST probe is a cloned 14-kb XIST cDNA (the same sequence as XIST transgene 

in Fig. 1b) in pGEM-7Zf(+) (Promega). DYRK1A and APP gene probes were bacterial 

artificial chromosomes (BACs) from BACPAC Resources.  

 

Microscopy and image analysis: Digital imaging and analysis was performed using an 

Axiovert 200 microscope (Carl Zeiss, Inc.) with a 100× NA 1.4 Plan-Apochromat 

objective and multi-bandpass dichroic and emission filter sets (model 83000; Chroma 

Technology Corp) set up in a wheel to prevent optical shift. We used AxioVision 

software (Carl Zeiss, Inc.) and an Orca-ER camera (Hamamatsu Photonics). A narrow 

bandpass fluorescein filter was inserted to eliminate cross talk between channels. When 

necessary, we used Photoshop (Adobe) to enhance images for brightness and contrast. 
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Results 

Targeted XIST gene addition in primary DS fibroblasts  

To test the translational applicability of chromosome silencing for DS therapy, we 

questioned whether targeted XIST addition may be achievable in primary human cells. 

Due to infrequent homologous recombination and frequent cell senescence (which 

precludes sub-cloning from single cells), targeted gene addition in non-immortalized 

human fibroblasts generally is not feasible. However, we reasoned that ZFN-driven 

editing may make it possible. 

I targeted a single XIST transgene with a CMV promoter and selectable marker to 

the DYRK1A locus on chromosome 21 (Figure 2.1) in fibroblasts from a female DS 

patient. I obtained numerous colonies that grew into a sparse monolayer. Many cells in 

the pooled integrant population expressed either transcription foci or localized 

accumulations of XIST RNA that diminished over several passages, as cell proliferation 

also diminished. While this precluded in-depth analysis, the majority of XIST RNA 

signals were accurately targeted to chromosome 21, with a minimum of 74% (46/62) 

associated with the DYRK1A locus, as seen by both interphase and metaphase FISH 

analysis (Figure 2.2A-B). This suggests efficient ZFN targeting, expression and 

localization of the transgene in primary fibroblasts.    

XIST RNA expression was robust and localized in a territory over one Chr 21 in 

the majority of cells, though the transgene territories tended to be smaller than the 
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Figure 2.1 The 21 kb XIST targeting construct 

The 21 kb targeting construct contains two cassettes: a full-length XIST cDNA and a 
hygromycin selection gene. The XIST transgene was driven by a CMV promoter. 
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Figure 2.2 The XIST transgene is targeted to Chr 21 and induces an RNA “paint” 
that localizes to the autosome territory in cis.  

(A) Metaphase DNA FISH in human DS primary fibroblasts. Long arrows indicate three 
Chr 21s, and an asterisck indicates the XIST-targeted Chr 21 that is enlarged in the side 
panel. Arrowheads indicate endogenous XIST genes on the two X chromosomes in the 
female cell. (B) Transgenic XIST RNA (red) paints a single Chr 21 (DYRK1A DNA, 
BAC probe) (green) in interphase DS fibroblasts.  
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endogenous XIST RNA territory at the Xi locus, which may reflect the different sizes of 

the chromosomes (Chr 21 is the smallest chromosome) (Figure 2.2B). Nevertheless, the 

transgenic XIST RNA modeled the unique behavior of endogenous XIST RNA which 

“paints” the inactive X nuclear territory (Clemson et al., 1996).     

XIST RNA induces heterochromatin formation on the targeted chromosome  

The Xi in female cells forms a visibly condensed Barr body which carries an 

epigenetic signature of repressive histone modifications (reviewed in (Wutz, 2011)). 

Evidence has shown that differentiated mouse fibroblasts lack the capacity to support 

chromosome silencing (Surralles and Natarajan, 1998; Wutz and Jaenisch, 2000). 

Surprisingly, my data suggests XIST RNA induced several heterochromatin 

modifications on Chr 21, and heterochromatic marks were notably enriched with the 

XIST RNA paint in many cells: H3K27me (39%), H4K20me (38%), UbH2A (66%) and 

MacroH2A (24%) (Figure 2.3). Further, in a fraction of cells, chromosomal DNA in the 

XIST-coated territory became visibly condensed into a “Chr 21 Barr body,” which 

appears indistinguishable from that of the endogenous Xi (Figure 2.3, arrows). This 

supports that XIST RNA function is not limited to the X chromosome, and it can also 

recruit chromatin modifiers and induce structural changes to transform an autosome from 

euchromatin to heterochromatin. 
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Figure 2.3  XIST RNA induces heterochromatin formation on the targeted 
chromosome.  

Transgenic XIST RNA induces heterochromatin formation on the targeted Chr 21. 
Heterochromatin markers H3K27me, UbH2A, H4K20me, and MacroH2A become 
enriched with the XIST RNA paint in a fraction of cells. Chromatin condenses to form a 
“Chr 21 Barr body” (arrows) in some cells. % in lower right corner indicates fraction of 
cells with enrichment over both endogenous and transgenic XIST RNA territories. 
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XIST RNA induces transcriptional silencing on the targeted autosome 

Several years ago our lab demonstrated that the inactive X chromosome coated by 

XIST RNA is transcriptionally silent by hybridizing with a labeled CoT-1 fraction of 

genomic DNA, which is enriched for repeat sequences and broadly detects heterogeneous 

nuclear RNA (Hall et al., 2002a). RNA FISH to CoT-1 produces a robust signal on 

euchromatin that is excluded from the inactive X chromosome territory, suggesting it is 

transcriptionally inactive. I examined CoT-1 RNA expression in cells containing the 

XIST RNA-coated Chr 21 and found a CoT-1 RNA hole forms over the XIST RNA 

territory in 38% of cells (Figure 2.4A). This further suggests that XIST RNA has capacity 

to induce transcriptional silencing of an autosome.  

I next used RNA FISH to examine the presence of transcription foci at each allele 

of the APP gene, which encodes amyloid beta precursor protein. Mutations in APP 

(causing accumulation of amyloid) lead to early onset familial Alzheimer’s disease 

(Tanzi and Bertram, 2005), and APP over-expression is linked to Alzheimer’s disease in 

DS as well (Webb and Murphy, 2012). RNA FISH with a cDNA probe detects a 

transcription foci for actively transcribed genes, an established approach to discriminate 

active versus silenced genes on Xi (Clemson et al., 2006). Cells lacking a robust XIST 

RNA paint over Chr 21 contained readily visible RNA transcription foci for each APP 

allele, including one adjacent to the XIST RNA signal (Figure 2.4B). However, 80% of 

the cells with XIST RNA paint over the targeted Chr 21 contained only two APP 

transcription foci, which were not adjacent to the XIST RNA signal, indicating XIST 

RNA had silenced transcription of the targeted chromosome (Figure 2.4B). 



49 
 

 

 
 
Figure 2.4 Transgenic XIST RNA induces transcriptional silencing of an autosome. 

(A) Transgenic XIST RNA induces silencing of heterogeneous RNA (CoT-1 RNA) on 
the targeted and endogenous loci. XIST RNA (red) localizes in a CoT-1 RNA 
(green/gray) “hole” in 38% of the targeted loci. (B) Targeted XIST RNA induces 
silencing of APP mRNA. APP mRNA transcription foci (green) indicate active 
transcription of the allele. APP transcription is silenced on the the targeted, XIST RNA 
painted chromosome (lower panels), but not the targeted chromosome with no XIST 
RNA paint (upper panel). 
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Discussion 

While in-depth characterization is beyond the scope of the present work due to the 

limited lifespan of primary cells and progressive silencing of the CMV promoter, these 

data emphasize that targeted XIST gene addition to Chr 21 can be attained in primary 

cells. In addition to providing a new analytical approach to study the cellular impact of 

trisomy, the targeted integration of XIST cDNA into the DYRK1A locus in primary 

fibroblasts of a female DS patient establishes feasibility for the unprecedented concept of 

chromosome therapy. Over the longer-term, this has potential to provide a strategy for 

DS genetic therapy. 

Over the shorter term, this offers a means to study initiation of X chromosome 

inactivation in human cells, including XIST RNA localization and spreading across its 

parent chromosome in cis. Our XIST transgene lacks any counting sequence, thus this 

strategy translating dosage compensation to an autosomal imbalance equally applies in 

both male and female cells without interfering with natural X-inactivation. The robust 

silencing induced by XIST RNA makes it essential that the RNA avoid spreading to and 

silencing genes on neighboring chromosomes, however it is not known how XIST RNA 

recognizes the boundaries of the X chromosome. These results support that XIST RNA 

not only has capacity to bind to an autosome, but that the RNA does not recognize a 

sequence or scaffold unique to the X chromosome. Instead it may recognize a more 

universal scaffold that defines the boundaries between the densely-packed chromosomes. 

In the following chapter, I will further investigate how XIST RNA localizes to the 

scaffold for the inactive X chromosome. 
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Chapter III : The complex biology anchoring chromosomal XIST RNA 

Preface 

Work described in this chapter has been submitted for publication in 

Developmental Cell and is currently in revision.  

Kolpa, H.J, F.O Fackelmayer, and J.B. Lawrence. Multiple Anchors localize 

XIST RNA in normal cells but some cancer lines require SAF-A. 

I would like to thank Emiliano Ricci (M. Moore lab) for advice and reagents for 

making the stable cell lines. This work was supported by NIH grant GM053234 to J.B.L. 
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Introduction 

Work described in this chapter advances understanding of how XIST RNA, a 

paradigm for RNA that regulates chromatin, localizes to its parent chromosome. Prior 

work showed mouse Xist RNA localization solely depends on Scaffold Attachment 

Factor-A (SAF-A/hnRNP U), but human SAF-A’s relationship to XIST RNA has not 

been studied. Here I use RNAi and a series of SAF-A deletion mutants in a variety of cell 

types to examine in vivo the protein’s requirement to support XIST RNA localization to 

the human Xi. Having found some initially discrepant results, I also revisit this question 

in mouse cells. I show that SAF-A is involved in localizing human XIST RNA to the 

chromosome territory, and that the DNA binding domain was most critical for this role. 

However, evidence also suggests that in normal somatic cells (both mouse and human) 

XIST RNA localization is not singularly dependent on SAF-A. Cell types differ in their 

requirement for SAF-A, and only the highly transformed or immortal cell types examined 

here completely require SAF-A. By inhibiting phosphorylation changes that normally 

release XIST RNA at prophase (Hall et al., 2009), I provide further evidence that XIST 

RNA has multiple anchors, one (or more) of which is controlled by Aurora B Kinase 

(AURKB), whereas SAF-A is not. Finally, this novel strategy has utility to identify in 

vivo proteins that have bone fide interactions with XIST RNA, as I show for hnRNP K. 

Ultimately in situ approaches will be required to further dissect the complex biology that 

underpins RNA’s strict localization on chromatin to maintain epigenetic stability. These 

findings demonstrate unrecognized complexity to the biology of anchoring chromosomal 

RNA embedded in the nuclear scaffold.  
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Materials and Methods 

Cloning: SAF-A cDNA was cloned into pEGFP-N1 vector (Clontech) and the ΔRGG 

and G29A mutants made by PCR-based mutagenesis with the primers ΔRGG: Fwd: 5'-

TCCGTTAAACTGGTTCTTGCCACTCTTA-3' 

Rev: 5'-TCCGGCGGTGGAGGAAGTGGTGGAATC-3' and G29A: Fwd: 5'-

ACGCCTTTCTGACAAGGCCCTCAAGGCCGAGCTC-3' 

Rev: 5'-GAGCTCGGCCTTGAGGGCCTTGTCAGAAAGGCGT-3'. 

Dominant negative C280-GFP was cloned into pEGFP-NLS (Clontech) after PCR 

amplification with primers Fwd: 5'-AGATCGA ATTCTGTTTAAGAAGCAAATG 

GCAGAT-3'  Rev: 5'-AGATCGGATCCGAATAATATCCTTGGTGATA ATGC-3'. 

Flag tags were added by restriction digest to cut GFP from pEGFP-N1and ligating with 

annealed oligo adaptors: sense: 5'-

AGCTTGATTACAAGGATGACGACGATAAGATCTGAGCGGCCGCGGTAC-3' 

antisense: 5'-CGCGGCCGCTCAGATCTTATCGTCGTCATCCTTGTAATCA-3'. 

For stable lines, Flag-tagged constructs were cloned into pcDNA/FRT/TO (Invitrogen). 

Mutagenesis to SAF-A siRNA target sites was done by Genscript: GGC → GGA 

(Glycine), TCG → TCA (Serine), GTT → GTA (Valine), and GTT → GTA (Valine).  

 

Cell culture: Tig-1 (Coriell) and PCS-400-012 (ATCC) are normal female fibroblasts. 

Female MEFs were a gift from S. Jones [U. of Massachusetts Medical School, Worcester, 

MA]. Neuro2a cells were a gift from J. Landers [U. of Massachusetts Medical School, 

Worcester, MA]. Mouse 3x cells were a gift from C. Brown [U. of British Columbia, 
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Vancouver, British Columbia, Canada]. Hek 293 Flip-in cells were a gift from M. Moore 

[U. of Massachusetts Medical School, Worcester, MA]. All cell lines were maintained 

according to supplier’s instructions. Poly-D-lysine-coated coverslips were used for Hek 

293 cells.  

 

Drug treatment: Hesperadin (EMD Millipore cat #375680) dissolved in DMSO was 

mixed with cell culture media at 100nM and added to cells for 2 hours. For analysis of 

mitotics, cells were trypsinized and diluted in cold 1× PBS then cytospun at 5000 RPM 

onto coverslips as described (Johnson et al., 1991). Tautomycin (EMD Millipore cat 

#580551) dissolved in DMSO was mixed with cell culture media at 1, 2.5, or 5 µM and 

added to wells for 4 hours. 

 

Fixation: Our standard cell fixation protocols were described in Chapter II.  

 

siRNA and Plasmid transfections: For RNAi, cells (70-80% confluent) were 

transfected with SMARTpool siRNAs and DharmaFECT 1 transfection reagent (GE 

Dharmacon) according to manufacturer’s instructions, and fixed after 72 hours. siGLO 

siRNA (GE Dharmacon) was used as a control which had no impact on RNA 

localization. For plasmid transfections, 2-4 ug of DNA was mixed with Lipofectamine 

2000 (Invitrogen) according to manufacturer’s instructions, and added to 80-90% 

confluent cells in a 6-well plate. Cells were fixed and assayed 6, 24, 48 or 72 hours after 

transfection.  
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Creation of stable cell lines: Hek 293 Flip-in cells were transfected with pOG44 and 

SAF-A Flag constructs in the expression vector pcDNA5/FRT/TO. Cells were selected in 

Geneticin (Gibco).  

 

IF: IF was done as previously described in Chapter II. Prior to some SAF-A antibody 

stains, I treated cells with epitope retrieval by incubating coverslips in 10mM citric acid 

and .05% tween 20 at 100°C for 20-40 minutes. This allowed us to visualize the enriched 

layer of endogenous SAF-A on the Barr body, previously seen only after a matrix prep or 

with the GFP-tagged protein. Antibodies used were anti–Flag M2 (Sigma), anti-SAF-A 

(Abcam ab20666 and ab10297), anti-FUS (Bethyl Labs), anti-hnRNP C (Abcam 

ab97541), anti-SafB1 (Abcam ab8060), anti-NuMA (Abcam ab36999), anti-Lamin B1 

(Abcam ab16048 and Santa Cruz sc-6217), anti-hnRNP K (Abcam ab18195), anti-

hnRNP M (Sigma HPA024344), and anti–phosphorylated histone H3S10 (Cell Signaling 

9706). 

 

Fluorescence in situ hybridizations: RNA hybridization was performed under non-

denaturing conditions as previously described in Chapter II. Probes were a cloned 14 kb 

human XIST and 6.3 kb mouse Xist cDNA in pGEM-7Zf(+) (Promega), XIST introns 1 

and 2 (gift from H. Willard [Duke University Medical Center, Durham, NC] and C. 

Brown [U. of British Columbia, Vancouver, British Columbia, Canada]), and cloned 
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COL1A1 collagen intron 6 made by PCR with the primers: Fwd: 5'-

GTTCTGCTTGTGTCTGGGTTTC-3' 

Rev: 5'-AGTAAGTTCAACCTTCCCCCTCC-3' 

 

Microscopy and image analysis: This was done as described in Chapter II. At least 100 

cells in triplicate were scored in each experiment. 
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Results 

SAF-A is not required for XIST RNA localization in normal human fibroblasts 

To test whether SAF-A is required for XIST RNA localization in human cells, I 

used siRNA (sMARTpool Dharmacon/Thermo) to knock down SAF-A in two normal 

primary human cell lines and analyzed XIST RNA localization in hundreds of single 

nuclei. To rigorously account for gradations in XIST RNA “phenotype”, I distinguished 

four levels of mislocalization, ranging from fully localized to fully mislocalized (Figure 

3.1A). I discriminate between RNA released from the chromosome (partially or fully 

mislocalized) versus RNA that remains “loosely” localized to a potentially decondensed 

territory. In primary Tig-1 (lung) fibroblasts, XIST RNA was almost never fully 

mislocalized after SAF-A knockdown, with 95% of cells showing one of the three more 

localized phenotypes (Figure 3.1B-C). XIST RNA was even more resistant to 

mislocalization after SAF-A knockdown in a primary human kidney cell line (PCS-400-

012, ATCC). In this cell line, XIST remained fully or loosely localized in 88% of cells 

(Figure 3.1B, D-E).  

The XIST RNA phenotype did not reflect the extent of SAF-A depletion by 

RNAi, since only cells which lost SAF-A staining were scored, and SAF-A levels 

averaged 84% (kidney) and 90% (Tig-1) reduced as measured by fluorescence intensity 

of single nuclei (see Materials and Methods and Figure 3.2A). Nor was the lack of 

requirement for SAF-A due to an arrest of the cell-cycle. Cells continued to proliferate 

and the majority of siRNA-treated cells lacking SAF-A had gone through mitosis in the 
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Figure 3.1 SAF-A is not required for XIST RNA localization in some cell types. 
 

(A) Representative images of XIST RNA phenotypes after SAF-A knockdown. (B) 
Quantification of XIST RNA phenotypes after SAF-A knockdown in Tig-1 and Primary 
Human Kidney cells. Error bars: standard error of the mean. (C) XIST RNA localization 
in Tig-1 cells after SAF-A siRNA (72h). XIST RNA is still localized even in SAF-A-
depleted post-mitotic G1 daughter cells (arrows). (D-E) XIST RNA localization in 
control (D) and SAF-A siRNA-treated Primary Human Kidney cell (E). Scale bars, 5 µm.  
  



59 
 

 

 
 
Figure 3.2  XIST RNA phenotype after SAF-A siRNA does not reflect average 
reduction in SAF-A levels.   

(A) Quantification of SAF-A levels in multiple individual nuclei (at least 50 cells  
per experiment) treated with SAF-A siRNA or no siRNA. Measured fluorescence  
intensity with Image J. Data represent mean percentage +/- standard deviation of 
knockdown, compared to control. (B) Quantification of XIST/Xist RNA phenotypes after 
SAF-A knockdown across seven cell types. 
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72 hours prior to analysis. These human cells divide ~every 24 hours, and I could readily 

identify post-mitotic G1 daughter (G1d) cells lacking SAF-A staining which nonetheless 

localized newly synthesized XIST RNA (Figure 3.1A). Hence, results indicate that SAF-

A is not required for XIST RNA localization in these normal human somatic cells. They 

do not rule out that SAF-A may be involved or sufficient in some cells, as further studied 

below. 

SAF-A is required for XIST RNA localization in more transformed or immortal cell 

types 

Since our results in human cells differed from published results showing SAF-A 

knockdown alone in mouse Neuro2a neuroblastoma cells was sufficient to release Xist 

RNA, I repeated this analysis in Neuro2a cells. Xist RNA became fully mislocalized 

(dispersed RNA with no evident territory) in ~80% of cells, similar to the published 

results (Hasegawa et al., 2010) (Figure 3.2A-B, 3.3A-B). In the prior study, Xist RNA 

did not appear to us to be comparably released in the presented images of mouse 

embryonic fibroblasts (MEFs), though the authors did not describe a difference 

(Hasegawa et al., 2010; Hasegawa and Nakagawa, 2011). Thus, I repeated SAF-A 

knockdown in primary MEFs and found that the majority maintained localized or loosely 

localized Xist (3.2A-B, 3.3C-D). Results confirm a requirement for SAF-A in localizing 

Xist RNA in Neuro2a cancer cells, however I saw little to no Xist RNA release in 

primary fibroblasts, indicating the effect may be cell-type specific.  

I next tested three transformed or immortalized cell lines: human Hek 293 and 

MCF10A mammary epithelial cells, and mouse 3X. In each of these lines, I found that 



61 
 

SAF-A RNAi caused partial release of XIST/Xist RNA in the majority of cells and full 

release in ~25% (3.2A-B, 3.3E). These results show clear differences in the requirement 

for SAF-A to localize XIST/Xist RNA in different cell types. They further show that 

there is some heterogeneity between cells within these cultured cell lines. Importantly, 

only Neuro2a cells showed a complete and consistent release of Xist RNA from the 

chromosome. These findings raise the important possibility that immortalized or 

transformed cells depend more on SAF-A to localize XIST RNA than primary cells. I 

noticed that the XIST RNA territories in many untransfected Hek 293 cells (Figure 3.3E, 

arrowhead) resemble the loosely localized territories observed in Tig-1 cells after SAF-A 

knockdown, which may reflect compromised chromatin architectural proteins resulting in 

less condensed DNA territories in transformed cells, likely related to why the RNA is 

more easily dispersed by SAF-A knockdown. 

Since pluripotent nuclei have more “mobile” chromatin (Meshorer et al., 2006) 

and cancer cells recapitulate some properties of early stem cells (Carone and Lawrence, 

2013), I examined XIST RNA after SAF-A knockdown during inducible initiation of 

XCI in human iPS cells harboring an XIST transgene on one of three chromosome 21s 

(Jiang et al., 2013). I found that 72 hours after induction, XIST RNA failed to accumulate 

and form a territory in cells lacking SAF-A staining, instead forming only transcription 

foci (Figure 3.3F-G). These data support that SAF-A is required for localized 

accumulation of XIST RNA during initiation of human X inactivation in pluripotent 

cells. I also find that iPS cells containing SAF-A more loosely localize or partially 

mislocalize XIST RNA compared to differentiated cells (Figure 3.3F,  
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Figure 3.3  SAF-A is required to localize XIST RNA in some transformed or 
immortal cell types.  

(A-B) Xist RNA localization in control (A) and SAF-A siRNA-treated (B) Neuro2a cells. 
(C-D) Xist RNA localization in control (C) and SAF-A siRNA-treated (D) MEFs. (E) 
XIST RNA localization in control (arrowhead) and SAF-A siRNA-treated (arrows) Hek 
293 cells. (F) XIST RNA localization in control (arrowheads) and SAF-A siRNA-treated 
(arrows) human iPS cells. (G) Quantification of XIST RNA phenotypes in iPS cells. 
Error bars: standard error of the mean. Scale bars, 5 µm. 
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arrowheads). We suggest that once cells differentiate and X inactivation becomes stable, 

additional proteins contribute to anchoring XIST RNA, making it more tightly localized 

as the epigenetic state is defined, and more resistant to mislocalization after knockdown 

of a single protein. 

A dominant negative form of SAF-A disrupts XIST RNA localization in normal cells 

We considered that SAF-A depletion mislocalizes XIST RNA in transformed or 

pluripotent but not in normal cells because normal cells have multiple anchors. Therefore 

I tested whether XIST RNA is disrupted in primary Tig-1 cells expressing a dominant 

negative SAF-A, which more broadly disrupts nuclear scaffold proteins. I used a plasmid 

encoding the C-terminal 280 amino acids of SAF-A fused to a GFP tag (C280-GFP), 

which causes changes to endogenous SAF-A localization and chromatin packaging 

(visible by DAPI and IF) (Figure 3.4A-B). I found that dominant negative SAF-A caused 

XIST RNA mislocalization in 73% of Tig-1 cells (Figure 3.4C-D) in contrast to RNAi, 

suggesting the SAF-A mutant disrupts other XIST RNA localization factors.  

Consistent with this, I found that C280-GFP expression affects the localization 

patterns of several other known nuclear matrix proteins, including FUS, hnRNP C, 

SAFB1, and NuMA but, interestingly, not LaminB1 (Figure 3.5A-E). These results 

highlight that SAF-A is embedded with XIST RNA in a complex structure, and they 

support the concept that XIST RNA depends on multiple proteins and scaffold integrity 

for proper localization in normal cells. 
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Figure 3.4  Dominant negative SAF-A expression mislocalizes XIST RNA. 

(A) Map of full length SAF-A and dominant negative C280-GFP. (B) Dominant negative 
SAF-A (C280-GFP) disrupts endogenous SAF-A (red). (C-D) XIST RNA localizes to a 
discreet territory in Tig-1 cell (C) and mislocalizes in Tig-1 cell expressing C280-GFP 
(D). Scale bars, 5 µm. 
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Figure 3.5  Dominant negative SAF-A expression mislocalizes other nuclear matrix 
proteins. 

(A-E) C280-GFP expression affects localization of nuclear matrix proteins FUS (A) 
hnRNP C (B) SAFB1 (C) and NuMA (D) but not LaminB1 (E). Scale bars, 5 µm. 
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A point mutation in SAF-A’s DNA binding domain releases XIST RNA from the 

chromosome 

To more specifically probe SAF-A’s role and the specific domains of SAF-A 

required to localize human XIST RNA, I transiently expressed tagged SAF-A deletion 

mutants in Hek 293 cells. I used Hek 293 cells since above results indicate they rely more 

on SAF-A exclusively to anchor XIST RNA than primary cell types. Importantly, I found 

that overexpression of full length SAF-A causes XIST RNA release (Figure 3.6A), 

suggesting that the stoichiometric relationships of SAF-A to other nuclear components 

are important for its role. Hence, variable and uncontrolled expression levels of transient 

SAF-A constructs makes them unreliable for analysis of effects on XIST RNA (Figure 

3.6B-D). Therefore, to control expression levels, I made stable cell lines expressing 

doxycycline-inducible Flag-tagged SAF-A or SAF-A deletion mutants lacking either the 

DNA or RNA binding domains (see Materials and Methods) (Figure 3.6E). Flag-tagged 

full-length SAF-A expression did not affect XIST RNA localization in the stable cell line 

(Figure 3.6B, F).  

While a protein could contribute to XIST RNA localization without directly 

binding DNA, a distinguishing feature of a “primary” anchor would be its capacity to 

bind DNA directly. To test whether SAF-A must bind DNA in order to properly localize 

human XIST RNA, I used a mutant containing a G29A point mutation in the DNA 

binding site (Figure 3.6E). I analyzed XIST RNA localization after endogenous SAF-A 

knockdown in cells expressing stable, inducible G29A-Flag (which contained silent 

mutations to prevent siRNA targeting of the Flag-tagged transcript, see Materials and  
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Figure 3.6  Effect of SAF-A and SAF-A deletion mutants on nuclear organization 
depends on expression level.  

(A) Transient overexpression of full-length SAF-A mislocalizes XIST RNA (arrows). (B-
D) Quantification of XIST RNA localization in cells expressing stable or transient SAF-
A Flag, ΔRGG-Flag, or G29A-Flag. Transiently transfected cells were scored according 
to whether they had high (bright) or low (dim) levels of Flag-tagged protein. Error bars: 
standard error of the mean. (E) Map of ΔRGG and G29A SAF-A mutants with C-
terminal GFP or Flag tag. (F) XIST RNA territories are not affected in cells expressing 
stable Flag-tagged SAF-A. Scale bars, 5 µm. 
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Methods). Whereas full length flag-tagged-SAF-A “rescued” XIST RNA localization 

after endogenous SAF-A knockdown (Figure 3.7A, D), the G29A mutant did not (Figure 

3.7B, D).  

Further, I found that XIST RNA mislocalization was more striking and prevalent 

in cells both lacking endogenous SAF-A and expressing G29A-Flag (55% fully 

mislocalized) compared to cells only lacking endogenous SAF-A (18% fully 

mislocalized) (P=.002) (Figure 3.8A). In fact, the G29A mutant had an even stronger 

disruptive effect in cells that still expressed endogenous SAF-A (81% fully mislocalized) 

(Figure 3.8B). Taken together, results suggest that SAF-A binding to DNA is required for 

XIST RNA localization, and further, that the SAF-A protein without the normal DNA 

binding domain is more disruptive to XIST RNA localization than absence of SAF-A, 

likely through its impact on other interactors (see model in Figure 3.8C).  

SAF-A’s RGG domain is not required to support XIST RNA localization 

I repeated the above experimental strategy in cells expressing a mutant containing 

a short deletion of the C-terminal RGG box, ΔRGG (Figure 3.6E). SAF-A’s RGG 

domain was previously shown to bind poly U and poly G RNA, as well as single-stranded 

DNA in vitro (Kiledjian and Dreyfuss, 1992). In contrast to the DNA binding domain 

mutant, in the same experiments, the ΔRGG mutant was able to substitute for full-length 

SAF-A, such that XIST RNA was fully or loosely localized in cells expressing ΔRGG-

Flag despite endogenous SAF-A knockdown (Figure 3.7C-D). These findings contrast 

with published results that suggest the RGG domain is required for Xist RNA localization 

in mouse Neuro2a cells (Hasegawa et al., 2010). However, the interpretation of such  
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Figure 3.7  The DNA but not the RNA binding domain of SAF-A is required for 
XIST RNA localization in normal cells. 

(A) Flag-tagged SAF-A rescues XIST RNA localization after SAF-A knockdown 
(arrows). XIST RNA is mislocalized in cells lacking SAF-A Flag (arrowheads). (B) 
G29A-Flag does not rescue XIST RNA localization after SAF-A knockdown (arrows). 
(C) ΔRGG-Flag rescues XIST RNA localization after SAF-A knockdown (arrows). 
Arrowhead points to cell with endogenous SAF-A only. Other cells in the field received 
SAF-A siRNA. (D) Quantification of XIST RNA localization in cells with SAF-A 
knockdown and Flag-tagged SAF-A expression. **P value = .0021, *** P value < .001 
by unpaired two-tailed t-test. Error bars: standard error of the mean. (E) A model for 
localization of XIST/Xist RNA in Neuro2a cells (left) and Hek 293 cells (right). Neuro2a 
cells require SAF-A’s RGG domain for Xist RNA localization and Hek 293 cells do not. 
Scale bars, 5 µm.  
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Figure 3.8  SAF-A DNA binding mutant impacts XIST RNA localization in mouse 
and human cells. 

(A) Quantification of XIST RNA mislocalization after SAF-A siRNA depletion in Hek 
293 cells expressing stable G29A-Flag (+ dox) or no G29A-Flag (no dox). Error bars: 
standard error of the mean. (B) XIST mislocalization in Hek 293 cells expressing stable 
G29A-Flag. (XIST RNA was fully mislocalized in 81% of Flag positive cells). Scale 
bars, 5 µm. (C) Models of XIST RNA localization in human cells with multiple anchor 
proteins, suggesting that additional XIST RNA anchor proteins have greater affinity for 
the SAF-A DNA binding mutant than for DNA, but they rescue XIST RNA localization 
in the absence of SAF-A. 
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experiments may be difficult due to over-expression of transiently transfected SAF-A. 

Supporting this, our transient transfections of mouse or human SAF-A constructs 

frequently mislocalized Xist RNA in Neuro2a cells, even when there was no siRNA 

depletion of endogenous SAF-A (Figure 3.9A-B).  

While I was surprised that in our studies of human cells, the RGG domain was not 

required to maintain XIST RNA localization after SAF-A RNAi, the RGG domain may 

still be required for XIST RNA to enrich SAF-A concentration on the Xi (see 

Discussion), and for binding RNA in other capacities. For example, we have evidence 

that the RGG domain is required for binding of a different chromosomal RNA, CoT-1 

(Figure 3.9C-D) (further explored in Chapter V). I also saw evidence the ΔRGG mutant 

affects XIST RNA transcription and splicing, which are among SAF-A’s varied roles in 

the nucleus (Vizlin-Hodzic et al., 2011; Huelga et al., 2012; Xiao et al., 2012) (Figure 

3.9E-G). It is also possible that SAF-A does contribute to XIST RNA anchoring through 

its RGG domain, but this is not required for XIST RNA localization in Hek 293 cells. For 

example, ΔRGG-Flag may anchor XIST RNA to DNA indirectly via a redundant XIST 

RNA binding protein(s), as shown by the model in Figure 3.7E. In contrast, above results 

indicate that Neuro2a cancer cells are deficient in other proteins that contribute to 

anchoring Xist RNA, hence SAF-A is completely required in that context (Figure 3.7E).  

In vivo manipulation of XIST RNA localization shows SAF-A is not its only anchor 

Above findings show that SAF-A contributes to XIST RNA’s faithful 

chromosomal localization in a variety of human and mouse cell lines and types, but also 

that this biology is more complex than currently realized, and SAF-A is likely not the  
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Figure 3.9  SAF-A’s RGG domain potentially has multiple functions. 

(A-B) Transient overexpression of mouse full length (A) and ΔRGG (A-B) SAF-A 
constructs releases Xist RNA in Neuro2a cells. Xist RNA was mislocalized in 48% of  
cells expressing low/moderate levels of ΔRGG-Flag. Error bars: standard error of the 
mean. (C-D) ΔRGG-Flag expression mislocalizes chromosome-associated CoT-1 RNA 
(C) from the human chromsome in mouse human hybrid cells (D). (E) 36% of transiently 
transfected Tig-1 cells expressing ΔRGG-Flag lacked any detectable XIST RNA, even 
the transcription focus. Many of these cells had recently gone through mitosis, and since 
XIST RNA needs to be re-synthesized in G1 daughter cells (Clemson et al., 1996), this 
implicates the RGG domain in XIST RNA transcription. (F-G) Transient ΔRGG-Flag 
expression causes aberrant accumulation of (F) XIST (47% of Flag-positive cells) and 
(G) Collagen (Col1A1) (10% of Flag-positive cells) intron-containing RNAs, supporting 
a role for SAF-A’s RGG domain in the processing of nascent RNAs. Scale bars, 5 µm.  
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sole XIST RNA anchor in most normal cell types. The Lawrence lab earlier demonstrated 

an approach to investigate what controls XIST RNA localization by manipulating the 

binding versus release of XIST RNA from the chromosome during different phases of the 

cell cycle in vivo. This approach revealed that inhibition (by RNAi or hesperadin) of 

Aurora B Kinase, which phosphorylates histone H3 in early prophase, was sufficient to 

force retention of XIST RNA on metaphase chromosomes, when it normally detaches in 

early prophase. Results also indicated it was more difficult to force release of XIST RNA 

in interphase. Hall et al. (2009) speculated that multiple anchors may be present, but one 

or more was not controlled by AURKB. Since SAF-A has several known 

phosphorylation sites and is phosphorylated in mitosis (Douglas, Ye et al. 2015), I 

investigated if SAF-A normally detaches from chromosomes at prophase and whether 

AURKB controls its release. If AURKB inhibition forcibly retains SAF-A on all 

chromosomes, this would show it is the putative “AURKB-dependent” anchor. 

Alternatively, SAF-A detachment while XIST RNA is retained would support the 

existence of at least two anchors: SAF-A and an “AURKB-dependent” anchor.  

I first addressed whether SAF-A normally detaches from chromatin at mitosis, in 

early prophase contemporaneously with XIST RNA. There are conflicting reports of 

whether SAF-A remains on chromosomes at mitosis (Pullirsch et al., 2010; Ma et al., 

2011), so I looked at endogenous SAF-A using two specific SAF-A antibodies. This 

showed that SAF-A detaches from early mitotic chromosomes and disperses in the 

cytoplasm (Figure 3.10A). Interestingly, in many cells, SAF-A-GFP stayed on 

chromosomes throughout mitosis, suggesting the bulky GFP tag (and/or expression level)  
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Figure 3.10  SAF-A releases from chromosomes in mitosis. 

(A) Endogenous SAF-A releases from chromosomes during normal mitosis. (B) SAF-A-
GFP stays on mitotic chromosomes throughout mitosis. The bulky GFP tag may prevent 
SAF-A release from DNA, perhaps by blocking a phosphorylation site. Alternatively, the 
stoichiometry of SAF-A to other nuclear proteins is important, and when the pool of 
these interaction partners is exhausted due to a high level of SAF-A, the "superfluous" 
SAF-A-GFP may bind DNA (and maybe RNA) in an uncoordinated, non-physiological 
way. (C) SAF-A releases from mitotic chromosomes in prophase shortly after XIST 
RNA. Scale bars, 5 µm. 
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impacts the protein’s behavior (Figure 3.10B). Nonetheless, it is significant that 

endogenous SAF-A releases from prophase chromosomes at about the same time as XIST 

RNA (with some suggestion that XIST RNA may detach first (Figure 3.10C)). Thus it 

was of interest to address whether SAF-A is the AURKB-controlled anchor that forces 

XIST RNA to remain on Xi after AURKB inhibition.  

I used hesperidin to inhibit AURKB in Hek 293 cells and examined localization 

of SAF-A and XIST RNA. As previously reported, XIST RNA is retained on the Xi 

under these conditions. Strikingly, SAF-A came off mitotic chromosomes as usual, but 

with a notable exception: much of it remained with XIST RNA on the Xi (Figure 3.11A). 

Since SAF-A still detaches from all other chromosomes, this indicates SAF-A’s 

association with chromatin is not controlled by AURKB. Rather, SAF-A likely remains 

on Xi through its interaction with XIST RNA, which in turn remains on Xi via the anchor 

controlled by AURKB. Hence, SAF-A is the “AURKB-independent” anchor previously 

speculated to exist. These findings further validate that SAF-A interacts with XIST RNA 

in vivo and that XIST RNA is tethered by multiple proteins, whose chromatin association 

is controlled by distinct mechanisms.    

While retention of one anchor can tether XIST RNA at metaphase, its release at 

interphase would require disruption of all anchors. I further tested this hypothesis by 

activating AURKB in interphase by RNAi to its inhibitor, Protein phosphatase-1 (PP1). I 

saw little release of XIST RNA (partially or fully mislocalized in 4% of cells) despite 

clear up-regulation of H3S10 phosphorylation (Figure 3.11B). This is likely due at least 

in part to the continued presence of SAF-A, an AURKB-independent anchor. Therefore, I  
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Figure 3.11  SAF-A is one of multiple XIST/Xist RNA anchor proteins. 

(A) SAF-A comes off of all chromosomes except Xi when AURKB is inhibited by 
Hesperadin during mitosis (see arrows and inset). (B) AURKB activation (indicated by 
H3S10ph) by PP1 siRNA does not affect XIST RNA in interphase cells (96% of cells 
retain localized or loosely localized XIST RNA, arrow). (C) Simultaneous AURKB 
activation and SAF-A knockdown releases XIST RNA in the majority of Tig-1 cells 
(XIST is partially or fully released in 66% of H3S10ph positive cells, arrows). H3S10ph 
negative cell got no siRNA. Scale bars, 5 µm.  
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used RNAi to PP1 and SAF-A simultaneously to perturb both anchors in the same 

cells. Consistent with the hypothesis, 66% of cells had partially or fully mislocalized 

XIST RNA (Figure 3.11C), more than PP1 RNAi (or SAF-A RNAi, Figure 3.1) alone. 

Thus in these normal fibroblasts, XIST RNA has at least two anchors, and binding of one 

(or more) is controlled by AURKB, whereas binding of SAF-A is not. Finally, I note that 

even after disruption of two anchor proteins, XIST RNA release and dispersal in the 

nucleoplasm is not as complete as both Hasegawa et al. (2010) and I saw after depletion 

of only SAF-A in the tumor cell line, Neuro2a (Figure 3.2, 3.3A-B).     

Forced retention of XIST RNA at metaphase can identify bona fide interacting 

partners in vivo, such as hnRNP K  

As described in Chapter I, biochemists have struggled to identify proteins that 

directly interact with XIST RNA because it is embedded in complex nuclear structure. 

However, three recent studies used three variations of RNA pull-down assays to identify 

XIST RNA “interactors” (iDRiP, RAP-MS, and ChIRP-MS) (Chu, Zhang et al. 2015, 

McHugh, Chen et al. 2015, Minajigi, Froberg et al. 2015). While these studies advance 

XIST RNA biology by identifying what may best be considered candidates for XIST 

RNA interacting proteins, collectively, they also highlight the limitations of extraction-

based biochemical approaches. The lists identified by each group contain striking 

differences, with only six proteins in common between all three data sets (Table 1.1).   

As the approach inhibiting AURKB-mediated chromatin phosphorylation can 

provide direct in vivo evidence that a protein interacts with XIST RNA, I extended this 

analysis to three hnRNP proteins identified by the recent pull-downs. I treated Hek 293 
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cells with hesperadin and determined whether each protein remained with XIST RNA on 

the mitotic Xi. Interestingly, hnRNP K, a factor identified in two studies, also remains 

exclusively on the mitotic Xi during AURKB inhibition (Figure 3.12A-B), however 

hnRNP C and hnRNP M, identified by each of the three studies, do not (Figure 3.12C-D). 

Further, I looked at the localization of these proteins in interphase nuclei and found that 

hnRNP K, but neither hnRNP C nor hnRNP M substantially overlap with the Barr body 

(Figure 3.13A-C). While it is possible that hnRNP C and hnRNP M play some role in 

initiation of X inactivation in pluripotent cells, these findings highlight the importance 

that potential XIST RNA binding factors be validated in vivo. Future studies in 

pluripotent cells are needed to further test in vivo interactions of these and other 

candidates with XIST RNA. 
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Figure 3.12  hnRNP K interacts with XIST RNA in vivo. 

(A-B) hnRNP K normally releases from chromosomes during mitosis (A) but stays 
exclusively on the Xi when AURKB is inhibited by Hesperadin (see inset, red) (B). (C-
D) hnRNP M (C) and hnRNP C (D) are released from all chromosomes including the Xi 
when AURKB is inhibited by Hesperadin during mitosis. Scale bars, 5 µm. 
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Figure 3.13  hnRNP K localizes with the Barr body during interphase but hnRNP C 
and M do not. 

(A-C) hnRNP K (A) overlaps with the Barr body (enriched with SAF-A-GFP) in 
interphase Hek 293 cells but hnRNP C (B) and hnRNP M (C) do not. Scale bars, 5 µm. 
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Discussion 

Interactions between chromosomal RNAs and chromatin are increasingly 

recognized as essential for regulating the epigenome, but how RNAs like XIST/Xist 

interact with chromatin is not well understood. The prevailing view is that SAF-

A/hnRNP U is a single molecule bridge that tethers Xist RNA on the Xi during 

maintenance of X inactivation ((Hasegawa et al., 2010) cited e.g. in (Nakagawa and 

Prasanth, 2011; Gendrel and Heard, 2014)). I confirm a requirement for SAF-A to 

localize Xist RNA in Neuro2a cells; however, I discovered that Neuro2a cells are the 

only somatic cells tested in which SAF-A depletion fully and consistently releases 

XIST/Xist RNA from the chromosome. In several other human and mouse cell types, in 

which SAF-A is as or more effectively depleted, the effect on XIST RNA ranged from 

significant, but more modest and variable, to negligible. Hence, the biology of XIST 

RNA and the nuclear scaffold is far more complex than a single protein bridge between 

DNA and RNA.     

The fact that XIST RNA still localized in primary human cells lacking SAF-A 

might initially suggest that SAF-A is not involved and a different protein anchors XIST 

RNA in these cells. However, our results support that SAF-A is involved, but redundant 

anchors together support faithful localization of RNA to the chromosome. For example, 

our experiments expressing the dominant negative SAF-A mutant in normal fibroblasts 

and manipulating AURKB support the presence of an additional anchor(s). I find that 

endogenous SAF-A detaches from all chromosomes in early prophase, as does XIST 

RNA, but its release is not controlled by AURKB chromatin phosphorylation. Thus, at 
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least one other protein still tethers XIST RNA to the mitotic chromosome when AURKB 

is inhibited. Further evidence for multiple anchors comes from experiments showing 

more extensive XIST RNA delocalization in interphase nuclei with both SAF-A 

depletion and AURKB activation (perturbing both anchors). Interestingly, even in this 

condition, XIST RNA was not as fully released as in Neuro2a cells treated with just SAF-

A RNAi, suggesting there may be more than two anchor proteins for XIST RNA in 

normal somatic cells.   

Results here demonstrate that the requirement for SAF-A to localize XIST/Xist 

RNA varies with the cells examined, and generally correlates with cellular transformation 

or immortality (and not with efficiency of SAF-A RNAi). While it is possible that the 

proteins binding RNA in the nuclear scaffold vary between all normal differentiated cell 

types, I favor the hypothesis that differences in XIST RNA phenotypes observed here 

relate to loss of redundant anchors in neoplastic cells. SAF-A is ubiquitous and essential 

for early development, and pluripotent stem cells share several properties with de-

differentiated neoplastic cells. This includes less defined nuclear architecture and more 

open chromatin state (Meshorer and Misteli, 2006; Carone and Lawrence, 2013), as well 

as more loosely localized XIST RNA. Hence, I suggest that the more committed, 

differentiated state may be associated with tighter, redundant anchoring of chromosomal 

RNAs, to maintain a more fixed and stable epigenome.  

It is a compelling, straightforward model that a single protein molecule bridges 

DNA to RNA. This may occur in some contexts, but our studies encountered more 

complexity. Results support that human SAF-A’s DNA binding domain localizes the 
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“XIST RNA complex” to the chromosome, and I identify a single nucleotide required for 

this function. While SAF-A is often characterized primarily as an RNA binding protein, it 

was shown to have much greater affinity for DNA in vitro, and electron microscopy 

revealed its remarkable ability to organize DNA into loops (Fackelmayer et al., 1994). 

Hence, I have compelling evidence to support earlier studies showing the contribution of 

SAF-A’s DNA binding domain to XIST RNA chromosomal association (Hasegawa et al., 

2010; Pullirsch et al., 2010) and the higher-order folding of chromatin in response to 

XIST RNA.  

Having obtained initially unexpected results from transient transfections, I used 

multiple strategies to validate that the RGG domain is not essential for SAF-A’s 

contribution to XIST RNA localization in the human cell types examined. It is possible 

that SAF-A binds XIST RNA somewhere other than its RGG domain. I note that eight of 

the ten proteins suggested to directly bind Xist RNA by McHugh et al (2015) contain 

RRM RNA binding motifs (not RGG), which SAF-A and LBR lack (McHugh et al., 

2015). Interestingly, in other work I find the RGG domain is required for localizing a 

different RNA (described in Chapter V), and the RGG domain may be required for SAF-

A enrichment on Xi (Helbig and Fackelmayer, 2003), but not to support XIST RNA 

localization. SAF-A does not become enriched on Xi until after Xist coats the 

chromosome during initiation of X inactivation (Pullirsch et al., 2010). Thus evidence 

indicates there may be two “layers” of SAF-A: ubiquitous SAF-A integral to all 

chromosomes which supports XIST RNA localization, and an enriched layer on Xi which 

requires XIST RNA. The enriched layer of SAF-A may be that which remains bound 
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when XIST RNA is retained at mitosis following AURKB inhibition. Hasegawa et al. 

(2010) reported that transient expression of neither the SAF-box nor the RGG deletion 

mutant could rescue Xist RNA localization after SAF-A RNAi in neuroblastoma cells. 

Despite our finding that transient overexpression of even wild-type SAF-A can cause 

XIST RNA mislocalization, the RGG domain may not be required in some cells because 

other SAF-A associated scaffold proteins bind XIST RNA, whereas Neuro2a cells lack 

these additional proteins.  

Here, I have investigated factors that influence XIST RNA anchoring to 

chromatin directly within the cell. This study supports that SAF-A/hnRNP U is one major 

player connecting long XIST/Xist transcripts, embedded with scaffold proteins, to 

chromosomal DNA. These findings point to new, interesting, and impactful directions 

into how this fundamental biology changes with the epigenetic and neoplastic state of 

cells, and how the RNA/scaffolding structure is disassembled and reassembled during 

mitosis.   
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Chapter IV : Abundant RNA from interspersed repeats is a stable component of 

euchromatic interphase chromosome structure 

Preface 

Work presented in this chapter resulted from a joint effort by Lawrence lab 

members to characterize the heterogeneous CoT-1 RNA signal visualized by RNA FISH, 

and it produced the following publication:  

Hall, L.L., D.M. Carone, A.V. Gomez, H.J. Kolpa, M. Byron, N. Mehta, F.O. 
Fackelmayer, and J.B. Lawrence. 2014. Stable C0T-1 repeat RNA is abundant and is 
associated with euchromatic interphase chromosomes. Cell. 156:907-919. 

 

This chapter contains a slightly abridged version of the published manuscript and 

includes my contribution, which was to analyze the association of CoT-1 RNA with the 

nuclear scaffold. The chapter also includes some unpublished results in which I 

investigate the behavior of specific repeat families that may be differentially regulated. 

This work was supported by NIH grant GM053234 and GM107604 to J.B.L. and 

NIH/NCI NRSA 1F32CA154086 to D.M.C. The authors thank Jeff Nickerson for helpful 

discussion of EM results and Lara Strittmatter from the UMMS Electron Microscopy 

core for the EM fixation and analysis. The EM Core facility is supported by NIH award 

S10RR027897. 
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Introduction 

Recent studies recognize a vast diversity of noncoding RNAs with largely 

unknown functions, but few have examined interspersed repeat sequences, which 

constitute almost half our genome. Although some noncoding RNAs (ncRNAs) are 

thought to interact with specific loci, RNA is not generally considered a broad component 

of chromatin or chromosomes. Our interest in exploring this understudied half of the 

genome is bolstered considering how XIST RNA enacts X chromosome silencing, by 

propagating across and “painting” the whole chromosome, yet remaining strictly 

localized within the boundary of the chromosome territory (Clemson et al., 1996). 

Here, in situ analyses show that RNA broadly and stably associates with 

euchromatin and that the predominant component of this chromatin-associated RNA is 

surprisingly abundant CoT-1 RNA from interspersed repetitive elements, including 

LINE-1. The unusual properties of CoT-1 RNAs are distinct from short-lived nascent 

transcripts and indicate that CoT-1 repeat RNAs comprise a class of chromosomal RNAs, 

which persist long after transcriptional inhibition, and remain localized strictly with the 

interphase chromosome territory in cis. Further, the RNA is tightly associated with 

euchromatin and the nonchromatin scaffold, but it is silenced by XIST RNA on 

inactivated chromosomes. Finally, we suggest that chromosomal RNA associated with 

euchromatin, comprised largely of CoT-1 repeat RNA, may help maintain open 

chromatin packaging. 
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Materials and Methods 

Cell Culture and Treatments: DM1 myoblasts, HT1080 G3 (Hall et al., 2002a), Wi38, 

Tig-1, NIH 3T3, and GM11687 were grown under conditions recommended by supplier 

(ATCC, DMI, and myoblasts from Charles Thorton, Wellstone Muscular Dystrophy 

Cooperative Research Center, Rochester). Inhibitors: Actinomycin D (5–20 μg/ml), 5,6-

dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) (40–80 μg/ml), or α-amanitin (5–

50 μg/ml) (dissolved in DMSO) were added to culture media (4–6 hr, also 16–32 hr for 

α-amanitin). Nocodazole (100 ng/ml) -arrested cells were released into inhibitors for 4–

6 hr to score inhibited G1d cells. Cytospin: interphase cells were trypsinized and 

cytospun at 8,000–10,000 RPM onto glass coverslips prior to fixation. Matrix prep: 

digestion of DNA and histones was performed as described previously (Clemson et al., 

1996). RNase: unfixed cells on coverslips were permeabilized with 0.1% triton-X in CSK 

buffer (4°C for 3 min) and then treated with 5 μl/ml DNase-free RNase (Roche 

11119915001) in cytoskeleton (CSK) buffer (20 min) or in PBS (3 hr, 37°C) for fixed 

cells. SAF-A: 2 μg/ml GFP-tagged full-length and C280 SAF-A were used to transfect 

cells with Lipofectamine 2000 (Invitrogen). Cells were fixed after 16, 24, 48, or 72 hr. 

Highly overexpressed cells were not scored. 

 

Cell Fixation, FISH, and Immunofluorescence: This was done as described in chapter 

II. Human tissue blocks were cryosectioned and then fixed. The absence of cytoplasmic 

CoT-1/L1 RNA was confirmed using fixations that preserve cytoplasmic RNAs 
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(Clemson et al., 1996; Hall et al., 2009). See the Figure 4.9 legend for standardized 

beads. 

FISH Probes: We used human L1.3 ORF2 and L1.3 ORF1 (from J. Moran, University of 

Michigan), 2 kb of DMPK intron 9 (Table 4.1), the 10 kb human XIST pG1A construct, 

10 kb 18S rDNA (from G. Stein, UMMS), the 330 bp Human Alu pPD39 clone (ATTC), 

human and mouse CoT-1 DNA (Roche and Invitrogen, respectively), and two Chr 4 

paints (Qbiogene & Cytocell). Introns (nonrepetitive) for XIST, COL1A1, 

and GAPDH were PCR-generated and cloned into pSC-A (Stratagene) (Table 4.1). 

Oligos used were 54-mer Poly-dT, 55-mer 5s rRNA, and 33-mer human Alu (Table 4.1). 

Antibodies: Antibodies used were HP-1 Gamma (Chemicon), Histone H3K9me3 

(Upstate), and Rad 21 (Abcam). 

 

Northern Blot: Total RNA was extracted from Tig-1 fibroblast cell pellets using Trizol 

(Invitrogen) per the manufacturer’s instructions. 10μg total RNA was DNase-treated 

(Promega RQ1 RNase-free DNase) then electrophoresed on a 1% agarose denaturing gel 

and transferred to a nylon membrane (Ambion Brighstar Plus) using a semi-dry 

electroblotter at 400 mA for 1 hr and UV crosslinked. 10ng Biotin-labeled L1ORF2 

plasmid was hybridized overnight in UltraHyb buffer (Ambion Northernmax) in a 

rotating hyb oven at 37°C and washes were performed according to manufacturer’s 

instructions (Ambion Brightstar Biodetect kit). 
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3D Colocalization Analysis: 0.5μm Z-stacks were deconvolved using Zeiss Axiovision 

or Volocity (Perkin Elmer) Restoration package. Images were quick projected for 

publication quality images or co-localization analysis was performed in 3D using 

Volocity co-localization analysis. A thresholded Pearson’s correlation coefficient was 

generated from 3D images to take into account background levels for individual 

fluorophor channels.  

 

L1 qPCR: Trizol-extracted Tig-1 fibroblast RNA was reverse transcribed with IScript 

Supermix (Bio-Rad) and then RT-qPCR for L1 was performed and analyzed as per 

(Carone et al., 2013). Expression levels obtained with primer sets for L1 5′ UTR: Fwd: 5′ 

GAACAGCTCCGGTCTACAGC Rev: 5′TCACCCCTTTCTTTGACTCG and L1 

3′UTR: Fwd: 5′TGATGAGTTCATATCCTTTGTAGGG Rev: 

5′GATATTCCCCTTCCTGTGTCC were normalized to levels for β-ACTIN: Fwd: 

5′AGCGAGCATCCCCCAAAGTT Rev: 5′GGGCACGAAGGCTCATCATT. 

 

DNA/RNA qPCR: DNA or RNA was extracted from 1.4X105 Tig-1 fibroblast cells with 

phenol-chloroform or Trizol, respectively. RNA was then reverse transcribed as above 

and qPCR was performed from Tig-1 cDNA and genomic DNA with the primer sets as 

above. Dilution calculations were taken into account to normalize for the amount of DNA 

or RNA going into the initial PCR reaction (to account for amount subjected to reverse 

transcription and dilution of DNA). qPCR analysis was performed as above. Results 

shown (Figure 4.14) are in log scale. 
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Transmission Electron Microscopy and Fixation: Mitotic shake-off cell cultures 

grown for 2 hr in the presence of 40ug/ml DRB or 4uL/ml DMSO (control) in 6 well 

plates were fixed by adding 2.5% glutaraldehyde in 0.1 M Na Cacodylate buffer (pH 7.2) 

to the culture plates one drop at a time until the initial volume of media was doubled. The 

cell cultures were allowed to stabilize in this solution for 10 min, then all the 

media/glutaraldehyde was removed and fresh 2.5% glutaraldehyde in the same buffer was 

added and the cells were allowed to fix for 60 min. at room temperature. After this 

primary fixation, the cells were rinsed three times in fresh fixation buffer for 10 min. 

each time and were secondarily fix with 1.0% osmium tetroxide in ddH2O for 30 min at 

room temperature. The cell cultures were then washed again three times in ddH2O and 

subjected to a tertiary fixation with 1% Uranyl Acetate in ddH2O for another 30 min. 

After two more washes with ddH2O the cells were dehydrated through a graded series of 

ethanol (10% to 100%; 3 changes), and then transferred to ethanol 100%: SpiPon 

812/Araldite 502 resin (50:50 / V:V) for 12 hr at room temperature. Following infiltration 

in the resin, the cells were transferred through 3 changes of pure SpiPon 812/Araldite 502 

epoxy resin each 1 hr long. The cells were then changed to a final step of embedding 

resin mixture and were polymerized for two days at 70°C in their original culture dishes. 

Each individual culture plate was separated from the others, and then the rims of each 

dish were sawed off. The individual sawn plates were then placed in liquid nitrogen to 

separate the bottom of the dish from the cells embedded in the resin. Pieces of the 

embedded cultures were then mounted onto blank stubs with a drop of super glue and the 
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blocks were trimmed and sectioned (100 nm thick). Sections were collected onto 200 

mesh copper support grids and imaged using both a Philips CM 10 and Tecnai 12 BT 

Transmission under 80Kv accelerating voltage. Images were recorded with a Gatan 

Erlangshen CCD Digital camera. 

 

Microscopy and Image Analysis: This was done as described in Chapter II/III. Volocity 

from Perkin Elmer and Metamorph digital imaging software was used to quantify signals. 
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Table 4.1 Probe Sequences:  

Probe 
Name  

Sequence  Label  Reference  

Sat2-LNA  
(Oligo)  

5’ATTCCATTCAGATTCCATTCGATC  5’ Biotin  Exiqon,  
Product #  
200501-03  

Sat3  
(Oligo)  

5’CCATTCCATTCCATTCCATT  3’ Biotin  Prosser et  
al., 1986  
(Invitrogen)  

HuAlpha 
Sat (Oligo)  

5’ CCT TTT GAT AGA GCA GTT TTG 
AAA CAC TCT TTT TGT AGA ATC TGC 
AAG TGG ATA TTT GG  

3’& 5’  
FITC  

Biosource & 
Invitrogen  

HuAlu  
(Oligo)  

CCC AAA GTG CTG GGA TTA CAG GCG 
TGA GCC ACC  

3’& 5’  
FITC  

Biosource  

DMPK 
intron 9  
(primers)  

Fwd: 5’GAGTTGCAGGATCAGTCTTGGA  
Rev:5’TGCTGATTCTCTGGTGGAGAAC  

Biotin or 
Dig PCR 
label  

 

L1 5’ UTR  
(primers)  

Fwd: 5’GAACAGCTCCGGTCTACAGC  
Rev: 5’TCACCCCTTTCTTTGACTCG  

Biotin or 
Dig PCR 
label  

 

L1 3’ UTR  
(primers)  

Fwd: 
5’TGATGAGTTCATATCCTTTGTAGGG  
Rev: 5’GATATTCCCCTTCCTGTGTCC  

Biotin or 
Dig PCR 
label  

 

Poly A  
(oligo)  

T…(54)  5’ FITC   

5s rRNA  CCTGCTTAGCTTCCGAGATCAGACGAG
ATCGGGCGCGTTCAGGGTGGTATGGCC
G  

Alexa 594   

COL1A1 
Intron 6 

Fwd: 5’GTTCTGCTTGTGTCTGGGTTTC 
Rev: 5’AGTAAGTTCAACCTTCCCCCTCC 

  

XIST 
Intron 1 

Fwd: 5’TCCCATCACTGTTCAATGCC 
Rev: 5’ATTGTGGACCCAGCTCTATGC 

  

GADPH 
Intron 1 

Fwd: 5’ATGGAGGTCCTCTTGTGTCCC 
Rev: 5’AGACAAGAGGCAAGAAGGCAT 
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Results 

CoT-1 repeat RNA is abundant in mammalian nuclei  

CoT-1 DNA fraction is routinely used to block nonspecific hybridization of 

genomic probes to repeats; however, here, we use labeled CoT-1 DNA is as a probe to 

detect RNAs containing high copy repeats (CoT-1 RNA). We previously showed that 

CoT-1 RNA hybridization provides a convenient assay to identify silent heterochromatic 

regions within nuclei by the absence of hnRNA hybridization signal (Hall et al., 2002a; 

Tam et al., 2004; Clemson et al., 2006). CoT-1 hnRNA is broadly distributed throughout 

the nucleoplasm in all interphase cells but is absent from nucleoli, cytoplasm, and DAPI-

dense heterochromatic regions (Figure 4.1). This robust CoT-1 RNA signal is ubiquitous 

in all primary and cancer cell lines (mouse and human) and frozen tissue sections 

examined (Table 4.2). Several lines of evidence establish this signal is single-stranded 

RNA and not DNA: it is detected under nondenaturing conditions (which does not detect 

highly abundant DNA sequences) (Lawrence et al., 1989), it is eliminated by RNase A 

(Figure 4.2), and the CoT-1 RNAs detach from chromatin and disperse to the cytoplasm 

at mitosis (Figure 4.1A). 

The abundance of CoT-1 repeat RNA is indicated by a bright signal broadly 

distributed through most of the nucleus, the intensity of which is close to or exceeds that 

of highly abundant nuclear RNAs such as rRNA or XIST RNA (Figure 4.3). For 

example, the linescan in Figures 4.3C-D illustrates that the intensity of CoT-1 RNA 

signal is similar to that of XIST RNA on the X chromosome territory, but CoT-1 RNA is 

much more widely distributed (and thus abundant). Likewise, by measuring the average  
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Figure 4.1  CoT-1 RNA is expressed in all mammalian cells examined. 

(A and B) All blue signals are DAPI DNA. CoT-1 RNA is expressed in 100% of 
interphase cells, e.g., HeLa (M = metaphase) (A) and NIH 3T3 (B). Inserts: CoT-1 RNA 
exclusion from chromocenters (inset arrows) of indicated cell (arrow). (C and D) (C) 
Human ES cells and (D) frozen human tissue sections. (D and E) Linescan across nucleus 
shows CoT-1 RNA absence from peripheral heterochromatic compartment (yellow 
zones). (F and G) XIST RNA (arrow) paints the inactive X chromosome in female cells, 
while CoT-1 RNA is silenced. Scale bar, 5 μm. 
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Table 4.2 Cell types positive for nucleoplasmic CoT-1 RNA.  

 

HUMAN CANCER LINES  

U2OS  - Osteosarcoma  

SAOS-2 - Osteosarcoma  

PC3 - Prostate Adenocarcinoma  

HEP-G2 - Hepatocellular carcinoma  

HT-1080 - Fibrosarcoma  

MCF-7 - Breast Adenocarcinoma  

HCC-1937 - Breast  Ductal Carcinoma  

T47D - Breast  Ductal Carcinoma  

MDA-MB-436 - Breast Adenocarcinoma  

MDA-MB-231 - Breast Adenocarcinoma  

SUM-149pt - Inflammatory breast cancer  

JAR - Choriocarcinoma  

HELA - Cervical Adenocarcinoma  

HUMAN NON-CANCER  LINES  

MCF-10A - Breast Fibrocystic Disease  

IMR-90 – Primary Lung Fibroblast  

WS1 – Primary Embryonic Skin Fibroblast  

TIG-1 – Primary Fetal Lung Fibroblast  

Wi38 –Primary Fetal Lung Fibroblast  

HFF – Primary Foreskin Fibroblast  

HSMM – Myoblasts & Myotubes  

HUMAN NORMAL TISSUES  

1880N – Renal  

2081N – Fallopian Tube  

2312N – Pancreas  

2632N – Thyroid  

MOUSE LINES  

NIH 3T3 - Fibroblasts  

MEFs – Embryonic Fibroblasts  

3X female line  

GM11667 – Mouse-Human Hybrid cells  
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Figure 4.2  CoT-1 RNA signal is removed with RNase treatment. 

All blue signals are DAPI DNA. (A-F) RNase A treatment removes the majority of CoT-
1 RNA and XIST RNA signals in all treated cells (D-F) compared to controls (A-C). The 
RNA signals are separated in images B-C & E-F. All images were taken at same 
exposure. All scale bars are 5 μm. 
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Figure 4.3 CoT-1 RNA appears highly abundant. 

(A) XIST RNA paints interphase X chromosome territory. (B) The DAPI dense Barr 
body (arrow) defines the inactive X chromosome painted by XIST RNA. (C) Both CoT-1 
and XIST RNAs are detected simultaneously with the same fluorochrome. (D) Linescan 
(white line in C) through the Barr body (arrow) illustrates similar intensities for both 
RNAs (green). (E–G) CoT-1 RNA is more abundant than rRNA. All images are the same 
exposure. (E) CoT-1 RNA alone, (F) nucleolar 18S rRNA alone (insert is same cell with 
DAPI DNA included), and (G) CoT-1 RNA and 18S rRNA detected with same 
fluorochrome. (H) Average total intensities were measured for each RNA signal (n = 40). 
Error bars represent 95% confidence interval. Scale bar, 5 μm. 
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total RNA signal for rRNA and CoT-1 RNA per nucleus, we found that the CoT-1 RNA 

signal exceeds that of abundant nuclear rRNA (Figures 4.3E–H). The surprising 

abundance and distribution of this nuclear repeat RNA signal led us to investigate its 

stability and relationship to chromosome structure. 

CoT-1 RNA localization is tightly restricted to the parent chromosome territory 

XIST RNA is unique in that it coats and is restricted to its parent chromosome 

territory in interphase nuclei and does not disperse to the surrounding nucleoplasm 

(Figure 4.4A), unlike mRNAs or many excised introns (Figure 4.4C-D) (Clemson et al., 

1996; Johnson et al., 2000; Smith et al., 2007). This finding was key to understanding 

that an ncRNA could have an unanticipated role in regulating chromatin structure and 

function. To investigate whether CoT-1 RNA showed a structural relationship to the 

chromosome of origin, we needed a strategy to examine ubiquitous repeats expressed 

from just an individual chromosome.  

To this end, we studied the localization and behavior of human CoT-1 RNA in 

mouse somatic hybrid cells (GM11687) containing a single human Chromosome 4. 

Although mouse and human genomes have similar families and patterns of interspersed 

repeats, the primary sequences differ sufficiently such that human CoT-1 does not 

hybridize to mouse DNA (or RNA) and vice versa. RNA FISH in the hybrid cells showed 

a striking result: CoT-1 RNA is restricted to a tightly defined nuclear territory 

(Figure 4.4B). This is highly reminiscent of the XIST RNA territory over the inactive X 

chromosome (Figure 4.4A). Sequential hybridization to CoT-1 RNA and DNA (in two 

different colors) demonstrates that both the RNA and DNA territories appear as sharply 
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bordered structures with coincident boundaries (Figures 4.4E-F) and are highly co-

localized by 3D imaging analysis (Figures 4.4G-I), which is similar to XIST RNA and its 

parent chromosome (Figures 4.5A-B). Additionally, human CoT-1 RNA does not overlap 

with mouse CoT-1 RNA (Figure 4.5C), indicating that they remain associated with their 

parent chromosomes. 

Although XIST is a structural RNA tightly bound to its parent chromosome in cis, 

it is released from chromatin in mitotic cells and resynthesized in early G1d cells (Figures 

4.6A-C). CoT-1 RNA behaves similarly and disassociates from the chromosome at 

prophase, where it disperses in the cytoplasm and is resynthesized in G1d cells (Figures 

4.6D-F). 

Most RNA stably associated with interphase chromosomes is composed of repeats   

The abundance and localization of repeat RNA to its parent chromosome suggests 

that it may not be simply a byproduct of “genic” transcription. To further evaluate this, 

we compared the abundance of repeat RNAs associated with the interphase chromosome 

to the collective contribution of unique RNA from a whole Chr 4 library. 

Chromosome libraries are designed to detect specific sequences throughout a 

particular chromosome. Although libraries are depleted of repeats, they still contain 

some, requiring competition with cold CoT-1 DNA to enhance the library specificity 

(Figures 4.6G and 4.5D-E). Using two commercially available Chr 4-specific library 

probes to detect RNA in hybrid cell nuclei, we found that the RNA territory over the 

human chromosome was only weakly defined (Figures 4.6H-I) in contrast to the well-

defined, bright CoT-1 RNA territory over the same chromosome. This was not simply 
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Figure 4.4 CoT-1 RNA localizes to the chromosome similar to XIST RNA. 

(A) XIST RNA is strictly localized to the inactive chromosome in interphase. (B) Human 
CoT-1 RNA is also strictly localized to human Chr 4 in all interphase hybrid cells. Both 
RNAs are released at mitosis (M) (arrows). (C–D) Excised introns do not localize to 
chromatin and drift away from their transcription sites. RNA channel separated in (D) 
and shown in black and white. Transcription foci are denoted by arrows. (E) CoT-1 DNA 
identifies human Chr 4 in hybrid cells painted by CoT-1 RNA (channels separated at 
right).  (F) A linescan (white line in E) shows that the RNA has a sharp border at the edge 
of the chromosome territory. (G) 3D image of CoT-1 DNA and RNA on human Chr4 in a 
single hybrid nucleus, with side views. (H) Same image as (G) with DAPI DNA 
removed. (I) CoT-1 DNA and RNA signals are co-localized. Scale bar, 5 μm. 
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Figure 4.5 CoT-1 RNA remains localized, is more stable than XIST or Collagen in 
interphase, and is resynthesized after release from DRB. 
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Figure 4.5 CoT-1 RNA remains localized, is more stable than XIST or Collagen in 
interphase, and is resynthesized after release from DRB. 
 
All blue signals are DAPI DNA. (A and B) (A) XIST RNA is localized to the inactive 
chromosome and delineates the DAPI dense Barr body (BB). Close up of XIST-covered 
chromosome separated into DNA and XIST RNA channels at right. White line is region 
in linescan. (B) A linescan shows a defined XIST RNA border over the DAPI dense BB. 
(C–E) (C) Mouse and human CoT-1 RNA do not co-localize, and remain associated with 
their respective chromosomes, making a “hole” in the mouse CoT-1 RNA signal (arrow) 
over the human chromosome territory. Close up of region separated into mouse CoT-1 
and human CoT-1 RNA channels at right D-E) Human Chr 4 library probe non-
specifically cross-hybridizes with other chromosomes in a metaphase spread (DNA stain 
of chromosomes not shown), due to the presence of residual CoT-1 repeats in the probe 
(D), which are effectively repressed with unlabeled CoT-1 competition (E). (F and G) 
Col1A1 makes very large transcription foci in many fibroblast nuclei. (H and I) Most 
cells lack collagen RNA after 5 hr of transcriptional inhibition, although a low number 
(18%) still show a residual signal (arrows). Images F-I are at the same exposure. (J and 
K) CoT-1 RNA signal is fairly uniform in interphase Tig-1 cells treated with DRB for 
5 hr, but the XIST RNA signal is highly variable in this same treatment, with over half 
the population showing significant reduction or no XIST signal remaining (arrows). XIST 
was more variable with DRB than we had seen before. (L and M) All G1 daughter cells 
from mitotic shake-off show full repression of CoT-1 re-synthesis in the transcriptional 
inhibitor DRB, and within 1 hr of DRB removal CoT-1 expression has recovered in all 
cells. Scale bars, 5 μm. 
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Figure 4.6  The majority of RNA associated with interphase chromosomes is repeat 
RNA, which is released at mitosis and resynthesized in G1. 

(A–C) XIST RNA is released at mitosis and resynthesized in early G1d cells. (D–F) CoT-
1 RNA is also released at mitosis and resynthesized in G1d. (G) A Chr 4 library probe 
effectively detects the unique single-copy DNA sequences across the chromosome (with 
CoT-1 competition). DAPI DNA in blue. Green channel separated at right (I). (H and I) 
The same Chr 4 library probe detects only a weak RNA signal (arrow) over the Chr 4 
territory (with CoT-1 competition). (J and K) More RNA is detected on the Chr 4 
territory when CoT-1 competition is removed. DAPI DNA in blue. Green channel 
separated at right (K). (H)-(K) are taken at the same exposure with standardized 
fluorescent beads (small round objects in images). Beads are 2.5 μm. Scale bar, 5 μm. 
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due to the complexity of the Chr 4 library because it labels the unique sequences along 

the whole chromosome well by DNA FISH (Figure 4.6G). Instead, this suggests that the 

total amount of steady-state RNA that accumulates over the chromosome may be 

substantially less from unique sequences than from repetitive sequences. To further 

examine this, we removed the cold CoT-1 competitor from the hybridization reaction, 

and this identical Chr 4 library yielded a large increase in RNA signal over the territory 

(Figures 4.6J-K). This supports that the vast majority of RNA sequences associated with 

an interphase chromosome territory are repetitive in nature. 

CoT-1 transcripts are stable following transcriptional inhibition  

The relative prevalence of repeat-containing RNA with interphase chromosomes 

could be due to either a high transcription rate or accumulation of stable RNA. Although 

transcriptional inhibitors can have complex effects on RNA metabolism (Bensaude, 

2011), most nascent transcripts or introns are reported to be relatively short-lived with 

transcriptional inhibition. For example, the small nascent transcription focus of XIST 

intron RNA is no longer detected 1 hr after inhibition, whereas the mature XIST RNA 

has a longer (∼5–6 hr) half-life, which was part of the initial evidence for a novel type of 

chromosomal RNA (Clemson et al., 1996). To assess CoT-1 RNA stability when 

transcription is arrested (by multiple distinct mechanisms), we used three different 

transcription inhibitors: 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), 

Actinomycin-D (ActD), and α-amanitin (α-aman) in hybrid and human cells. Numerous 

experiments with the different inhibitors consistently demonstrated exceptional stability 

of CoT-1 RNA in interphase nuclei (see Materials and Methods). In fact, because of this 
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unusual stability, we relied on G1d cells to confirm that the inhibitors were working (i.e., 

preventing resynthesis). As detailed in Figures 4.5, 4.7 and 4.8, CoT-1 RNA was not 

resynthesized in 90%–100% of G1d cells in all three inhibitors but remained robust in 

93%–100% of nuclei that had not divided. 

Detailed analysis was performed with DRB in human fibroblasts to compare 

interphase CoT-1 RNA stability with mRNA transcription (COL1A1 and GAPDH) and 

with the relatively long-lived XIST RNA (Figures 4.5, 4.7, and 4.8). Five hours in DRB 

was sufficient to essentially eliminate COL1A1 RNA transcription foci in interphase Tig-

1 nuclei (Figures 4.7I–L), with only 18% retaining a barely visible signal (Figures 4.5H-

I), and this was also seen using intron probes. In contrast, the CoT-1 RNA, though 

somewhat reduced, remained in 100% of these same nuclei and persisted longer than 

XIST RNA (Figures 4.5J-K). CoT-1, XIST, COL1A1, and GAPDH RNA all were absent 

and not resynthesized in inhibited G1d cells (Figures 4.7K-L and data not shown). Upon 

removal of the reversible DRB inhibitor, 100% of G1d cells re-expressed CoT-1 across 

the nucleus within an hour (Figures 4.5L-M). Taken together, the persistence of CoT-1 

RNA in these transcriptionally inhibited interphase cells is due to stability, not continued 

synthesis. 

We used highly extended treatments with α-amanitin to further examine the 

stability of the RNA and were surprised to see that a bright RNA signal remained after 

16–32 hr. In fact, comparison of the RNA signal to a standard fluorescent bead showed  
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Figure 4.7  CoT-1 RNA localization is very stable under transcriptional inhibition. 

All blue signals are DAPI DNA. (A and B) CoT-1 RNA is resynthesized early in G1d 
(arrows). (C–H) Transcriptional inhibition using three inhibitors (C–H) prevents CoT-1 
resynthesis in 95%–100% of G1d cells (arrows) but does not significantly affect CoT-1 
RNA levels in 93%–95% of interphase cells. The RNA channel is separated and shown in 
black and white to the right of the merged color image. (I–L) COL1A1 transcription foci 
are detected in 95% of interphase and G1d cells (arrows). (I and J) COL1A1 RNA foci 
are eliminated in 82% of cells after 5 hr in DRB, but only G1d cells (arrows) also lack 
CoT-1 RNA. Scale bars, 5 μm. 
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Figure 4.8  CoT-1 RNA is stable under long-term transcriptional inhibition, some is 
mislocalized by ActD, and evidence suggests that RNAPII may transcribe some of it. 
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Figure 4.8 CoT-1 RNA is stable under long-term transcriptional inhibition, some is 
mislocalized by ActD, and evidence suggests that RNAPII may transcribe some of it. 

 
All blue signals are DAPI DNA. (A–H) The DNA intercalating inhibitor, Actinomycin-
D, sometimes affected localization of both CoT-1 RNA (A-D) (A–B is a control cell) and 
XIST RNA (E-H) (E-F is a control cell). RNA channels are separated in black & white. (I 
and J) α-amanitin was effective in preventing re-synthesis of CoT-1 RNA in 92% of 
mitotic shake-off (G1d enriched) cells. Control cells in insert. (K) Even high 
concentrations of α-amanitin for 16 hr did not affect the localization of CoT-1 RNA in 
interphase Tig-1 and hybrid cells (∼93% of cells had localized CoT-1 RNA). Both cell 
types were cultured and hybridized together on the same slide. Insert shows the intensity 
of the CoT-1 RNA territory in treated cells compared to the bead standard. Bead is 
2.5 μm. (L and M) RNAP I transcribed 18 s rRNA is present in nucleoli of all control (L) 
and DRB-treated (M) G1 daughter cells (arrows). (N–Q) RNAP III transcribed 5 s rRNA 
is present in nucleoli of all control (N-O) and DRB treated (P-Q) post-mitotic, G1 
daughter cells. Scale bars, 5 μm. 
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that the signal actually became brighter in most cells at both concentrations (5 and 

20 μg/ml), which was seen in multiple experiments (Figure 4.8K). Although this may 

relate to the extraordinary stability of the RNA, as considered in the Discussion, it is 

possible that this is due to increased synthesis of some repeat RNAs in response to stress. 

Because 18 s rRNA (RNAPI) and 5 s rRNA (RNAPIII) were seen in G1d nuclei under 

conditions in which CoT-1 RNA was not (Figures 4.8L–Q), this suggests that much of 

the CoT-1 RNA signal could be RNAPII regulated. However, the increased interphase 

expression with prolonged α-amanitin potentially implicates the involvement of 

RNAPIII. These results are consistent with other recent evidence that there is a complex 

interplay between RNAPII and RNAPIII transcription (Raha et al., 2010). 

An important observation is that the repeat RNA consistently maintained its tight 

localization to the chromosome territory in cis, unlike poly-A and other nuclear RNAs, 

which typically redistribute if they persist following transcription arrest (discussed 

in (Hall et al., 2006)). CoT-1 RNAs did not significantly disperse during short or long 

periods of DRB or α-amanitin (Figures 4.7A–H), suggesting a structural association with 

the chromosome territory. The only exception was that, in ActD, some portion of the 

CoT-1 RNA drifted from the parent chromosome in hybrid cells (Figures 4.8A–B, E-F). 

This was also seen with XIST RNA in female fibroblasts (Figures 4.8E–H), suggesting 

the interesting possibility that this DNA intercalating drug displaces some chromosome-

bound RNAs. 
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Collectively, these data indicate that the abundance of the repeat RNA signal 

reflects a steady-state accumulation of stable RNAs on the chromosome territory, rather 

than a high rate of their transcription. 

5′ Truncated L1 sequences are a prominent component of CoT-1 RNA 

Because CoT-1 DNA will detect a mixture of repeat-containing transcripts, we 

sought to identify specific components of CoT-1 RNA and evaluate the relative 

expression of different repeat families. Using specific probes to several different repeat 

families (Table 4.1), we determined that satellite RNAs (α, SatII and SatIII) and several 

simple sequence repeats did not contribute appreciably to the broadly distributed 

nucleoplasmic CoT-1 RNA signal. In contrast, both L1 and Alu RNAs showed 

nucleoplasmic signal, although initial observations suggested that their levels may differ. 

Comparison of overall expression of repeat families is complicated by differences in size, 

number, and divergence of genomic repeats. To circumvent both this and technical 

differences in probes, we developed a strategy based on the ratio of nuclear RNA to DNA 

signal as an indication of the amount of RNA detected per unit of DNA. Thus RNA:DNA 

ratios for L1s (5′ and 3′) and Alu (Table 4.1) were compared (see Materials and 

Methods). We introduced fluorescent beads as an intensity standard (Figure 4.9) for more 

rigorous quantitative comparisons within and between slides.  

Full-length (transposable) LINEs (6 kb) have a canonical 5′ promoter transcribing 

two open reading frames (ORF1 and ORF2), encoding a reverse transcriptase and 

endonuclease that can “copy and paste” the retrotransposon elsewhere in the genome.  



111 
 

 
 
Figure 4.9 Use of fluorescent beads for in situ standardization/quantitative 
comparison. 

(A–H) We use standardized microscope intensity calibration beads of uniform intensity 
(∼3% relative intensity) and size (2.5μm) (Invitrogen/Molecular Probes InSpeck Green 
(505/515) Microscope Image Intensity Calibration Kit) to provide standardization for 
quantitative comparisons between different samples hybridized under identical conditions 
in the same color. These kits contain a series of well-defined fluorescent intensity levels 
covering the range of intensities and fluorescence spectra (red, green & blue) commonly 
encountered in microscopy applications. Appropriately colored beads (same Fluorescence 
Ex/Em spectra as labeled probed to be measured) are included in the mounting media on 
the slides with the cells. Calibration of different sample images is done at the time of 
photographing (all exposure settings adjusted to bead intensity), or can be accomplished 
later by manipulating image enhancement with software such as Photoshop, ensuring that 
all beads in the images are of equal intensity (A-D). This allows you to compare signal 
intensities across different experiments that may not have been taken at the same 
exposure or on the same day. It also provides an internal “scale bar” of 2.5 μm. The beads 
allow us to measure relative probe signal intensities more reliably between different 
samples. For example, linescans (E-F) or area measurements (G-H) (including whole 
nuclei area measurements as in Figures 4.3E–H) can be used to measure the signal 
intensities of the same labeled probe on different samples, normalized to the bead. White 
line in (E) is region measured in linescan (F). Max pixel intensity for green bead and cell 
signal indicated by arrows. Signal intensities measured in nucleoli (if signal to be 
measured is not present there) or on the glass slide are subtracted as background. 
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Most of the ∼500,000 human copies are truncated and lack the 5′ promoter, with the few 

full-length L1 elements suppressed by promoter methylation in somatic cells (Lander et 

al., 2001; Goodier and Kazazian, 2008). Thus, the vast majority of L1 are thought to be 

silent in normal cells. We first used a 4 kb probe to ORF2 of human L1 (L1.3) to broadly 

assess for presence of L1 RNAs (Figure 4.10A). 

L1 ORF2 RNA signal was abundant through the nucleoplasm but was not in the 

cytoplasm, nucleoli, or heterochromatin, similar to CoT-1 RNA (Figures 4.10B–G). In 

hybrid cells, L1 RNA formed a bright, well-defined RNA territory, precisely overlapping 

the corresponding Chr 4 DNA territory (Figures 4.11A-B) and also persisted following 

transcription arrest. Using the quantification strategy described above, L1 RNA signal 

was roughly 4-fold more than its abundant DNA signal. The RNA:DNA ratio (range 2.3–

4.5) was comparable in hybrid cells and normal fibroblasts (Figures 4.11A–D, I and 

Table 4.3); hence, L1 RNA level is not an aberration of hybrid cells (Figures 4.10H–M). 

Because full-length L1s are 5′ truncated, we measured the RNA:DNA ratios for 

probes to the 5′ or 3′ ends (Figure 4.10A and Table 4.3). L1 ORF2 RNA was consistently 

several-fold brighter than the corresponding DNA, whereas the opposite was true for the 

5′ ORF1 (RNA:DNA ∼1:4) (Figures 4.11E–H and 4.12A). Preference for 3′ L1 RNA was 

confirmed using smaller probes of identical size (200 nt) to the 5′ versus 3′ UTRs of 

L1Hs (Figures 4.12B–F) and was further supported by 5′ versus 3′ L1Hs RT-qPCR 

(Figure 4.11J). Consistent with other evidence that full-length L1Hs are silenced, results  

 



113 
 

 
 
Figure 4.10  L1 ORF2 RNA is expressed in different cell types and is not aberrantly 
expressed in hybrid cells. 

All blue signals are DAPI DNA. (A) Full-length LINE elements are 6 kb long and have 
two open reading frames (ORF1 and ORF2), encoding a reverse transcriptase and an 
endonuclease. Four different probes were used to detect L1 RNA or DNA by FISH. Two 
plasmids containing either the entire ORF1 or ORF2 regions of L1, or two PCR-
generated probes to the 3′ or 5′ UTRs (see Table 4.1 for primer sequences). (B–G) L1 
ORF2 RNA is expressed as a large component of CoT-1 RNA in all cell types examined, 
including (B-C) primary female fibroblasts, (D-E) cancer cell lines and (F-G) human ES 
cells. Exposures are the same in all images, and XIST RNA is included in the fibroblasts 
for comparison. (H and I) The intensity of CoT-1 RNA signal is similar between normal 
Tig-1 fibroblasts and mouse/human hybrid cells, suggesting the hybrid cells do not 
aberrantly overexpress this RNA (cells were hybridized together on the same slide). (J 
and K) As expected, the intensity of L1 DNA signal between the single human 
chromosome in the hybrid cells is similar to the average human signal in fibroblasts, 
although some regions of the human nucleus are brighter (cells were hybridized together 
on the same slide). (L and M) The L1 ORF2 RNA from the human chromosome in the 
hybrid cells is not aberrantly overexpressed and may even be slightly lower than the 
average level in the human nucleus (cells were hybridized together on the same slide). 
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Figure 4.11  RNA from the 3′ end of L1 is a large component of the CoT-1 RNA 
signal. 

All blue signals are DAPI DNA. (A–H) L1 ORF2 RNA signal (A and B) is ∼4× brighter 
than the double-stranded L1 ORF2 DNA signal (C and D), whereas the L1 ORF1 RNA 
signal (E and F) is ∼0.2× the DNA signal (G and H). (I) L1 RNA/DNA signals were 
quantified using digital fluorimetry (n = 25). (J) qPCR confirms that L1 ORF2 RNA is 
∼5–7× more expressed than ORF1 RNA. (K) Alu RNA is ∼3–4× dimmer than its DNA 
signal quantified by digital fluorimetry (n = 25). For (I) –(K), all error bars represent 95% 
confidence interval. 
 

  



115 
 

 

Figure 4.12  L1 RNA arises predominantly from the 3′ end of the element, in the 
sense direction, and it is heterogeneous in size, whereas Alu RNA is expressed at a 
low level. 
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Figure 4.12  L1 RNA arises predominantly from the 3′ end of the element, in the 
sense direction, and it is heterogeneous in size, whereas Alu RNA is expressed at a 
low level. 

All blue signals are DAPI DNA. (A) Quantification of signal intensity for L1 ORF1 and 
ORF2 DNA and RNA signal in hybrid cells reveals that very little ORF1 RNA is 
expressed from its corresponding DNA signal, confirming previous reports that full-
length L1 elements are silenced in normal cells. Error bars represent 95% confidence 
interval. (B–E) Because L1 sequences are divergent, it was difficult to design an oligo to 
broadly detect L1 sequences as was done for Alu. Instead we used 200 bp PCR-generated 
probes for the 3′ and 5′ UTR of L1 to confirm more 3′ expression (B-C) compared to 5′ 
(D-E) in hybrid and fibroblast cells. All images are at the same exposure, except for the 
insert in D (RNA signal in black & white), which has been increased for visibility. XIST 
RNA signal is shown for comparison in (C-E). (F) The 3′ and 5′ UTR RNA levels were 
measured using digital morphometrics and normalized to the bead. Error bars represent 
95% confidence interval. (G) Most L1Hs deep sequencing reads from pancreatic cancer 
(Ting et al., 2011) map to the 3′ end of the element and are predominantly in the sense 
direction. (H) Northern blot analysis shows L1 ORF2 RNA extracted by Trizol is low in 
abundance but heterogeneous in size. (I–P) Because Alu shows more conservation than 
L1, oligo probes succesfully detected Alu DNA sequences comparable to full length 
(∼200nt) Alu plasmid probes. Here, using an oligo probe, Alu DNA (I-J) signal is much 
brighter than Alu RNA (K-L) in Tig-1 fibroblasts. Similarly, Alu DNA (M-N) signal is 
brighter than Alu RNA (O-P) in hybrid cells. All images are at the same exposure, 
normalized to the bead. Alu RNA is visible by eye through the microscope in hybrid 
cells, but it is too low to be seen in the image (P) when normalized to the bead. All beads 
are 2.5 μm. 
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Table 4.3  L1 versus Alu RNA levels normalized to their DNA signal in both cell 
lines. 

 RNA DNA 

L1 Fibroblast 4 1 

L1 Hybrid 4.5 1 

Alu Fibroblast .25 1 

Alu Hybrid ˂0.1 1 

 

Since DNA is double-stranded and the RNA is single stranded, the ratio of signals is ~6-8 
times more RNA than DNA per L1 ORF2 sequence element   
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indicate that 5′ truncated L1s are abundantly and stably associated with chromosome 

territories. 

We also examined L1 expression in several human RNA deep sequencing data 

sets and found more L1 reads mapping to the 3′ than to the 5′ end, mostly in the sense 

direction (Figure 4.12G). However, L1 read frequency overall in these extraction-based 

RNA samples was lower than expected from our FISH analyses. For example, in normal 

pancreatic tissue, using a database of L1 consensus sequences from Repbase, we find 

only 100 reads per million mapping to L1. We also attempted to examine these repeat 

RNAs by dot blot or Northern blot (Figure 4.12H) using standard Trizol RNA extraction 

and found only a low level of heterogeneously sized L1 transcripts. We suggest that the 

underrepresentation of these transcripts by most extraction-based methods may be due to 

the structural nature of this chromatin-associated RNA (discussed further below). 

The copious nature of L1 nuclear RNA was reinforced by comparison to a 

substantially lower RNA:DNA ratio for the major human SINE, Alu, using oligo as well 

as larger probes (Table 4.1), measured in parallel samples with L1. Although Alu RNA 

was across the nucleoplasm, the signal was consistently several-fold less than its DNA 

signal in fibroblasts and was very weak in hybrid cells (Figures 4.11K and 4.12I–P). 

Assuming roughly similar accessibility of sequences in situ, this marked difference in 

RNA:DNA ratios indicates that representation of L1 sequences in nuclear RNA is 

substantially higher (Table 4.3). Bioinformatic analysis of L1 and Alu on human Chr 4 

shows similar copy number (151 full-length and 58,639 truncated L1s, and 54,993 Alu). 

Because 68% of Alus and 47% of L1s are in introns, genic transcription would not 
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account for this difference. This further suggests that the nuclear repeat RNA signal is not 

mere transcriptional noise, and it raises the possibility of differential regulation/roles of 

repeat families. 

CoT-1 RNA remains structurally associated with the interphase territory but can be 

released by perturbation of the nuclear scaffold 

Strict localization of CoT-1 RNA to the territory in cis (even after transcription 

arrest) suggests that it may be actively tethered to nuclear/chromosome structure, as 

opposed to passive accumulation of a nontransported RNA (or rapid degradation of 

released RNA). We found that CoT-1 RNA localization resists mechanical disruption of 

nuclei by vigorous cytospinning (Figure 4.13A), and even after biochemical fractionation 

(removing > 90% protein and DNA), the bright, precisely localized CoT-1 RNA territory 

remains undisturbed (Figures 4.13B–E and 4.14A–D). This suggests that the RNA is 

bound to or embedded in a nonchromatin nuclear substructure (described above and 

reviewed in (Nickerson, 2001)), similar to XIST RNA (Figures 4.14E–H). 

 Because CoT-1 RNA fractionates with the nonchromatin scaffold, we used a 

dominant-negative mutant of Scaffold Attachment Factor-A, SAF-A/hnRNPU (C280) 

(Figure 4.14I) (Fackelmayer et al., 1994), to generally disrupt the scaffold. Strikingly, 

transfection with C280 readily released CoT-1 RNA (in ∼80% of hybrid cells), which is 

then clearly seen dispersed through the nucleoplasm (Figures 4.13H-I, and 4.14J–N). 

Full-length SAF-A did not have this effect (88% remain localized) (Figures 4.13F-G, 

and 4.14L), and there was no indication of apoptosis (data not shown). Because this 

mutant will impact the complex nuclear scaffold, we do not yet know whether the 
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relationship of SAF-A and repeat RNAs is direct. However, the fact that CoT-1 RNA can 

be released from the territory shows that its normal localization is not via passive 

accumulation but involves a reversible mechanism for tethering to the parent 

chromosome. 

Early studies suggested that chromatin-associated RNAs may be more resistant to 

extraction (Bynum and Volkin, 1980), and our results indicate that repeat RNAs are 

nuclear embedded and likely underrepresented by traditional methods. Supporting this, 

we find that the RNA:DNA ratio for L1 when hybridized in situ is 4:1 but is less than 

1:1,500 following extraction and qRT-PCR (Figure 4.14O and Table 4.3). This may also 

explain why L1 ORF2 RNA is poorly represented in data sets compared to RNA FISH 

(Figures 4.14P-Q). 

Evidence for expression of specific repeat families 

I extended this analysis to specific repeat families to test which potential 

components of the CoT-1 RNA fraction were mislocalized by dominant negative SAF-A 

expression. I used probes specific for L1 ORF1, L1 ORF2, Alu, and mouse B1 and B2 

RNA and found that with the exception of mouse B1 RNA, these repetitive and RNAs 

mislocalized from the Chromosome 4 territory, and they also appeared to be substantially 

upregulated in a fraction of cells (Figure 4.15). I saw similar results in human cells (not 

shown). This suggests that specific repeat families within CoT-1 may be differentially 

regulated during stress. 
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Figure 4.13  CoT-1 RNA associates with the nuclear scaffold, and Cot-1 RNA loss is 
coincident with chromatin collapse. 
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Figure 4.13 CoT-1 RNA associates with the nuclear scaffold, and Cot-1 RNA loss is 
coincident with chromatin collapse. 

All blue signals are DAPI DNA. (A) CoT-1 RNA remains bound to human Chr 4 in 
ruptured nuclei. (B–E) (B and C) CoT-1 RNA is localized in control cells and (D and E) 
remains localized after removal of ∼95% of DNA and histones (Matrix digestion) in 
100% of interphase cells. Exposure times are equal for both images. (F–H) (F and G) 
CoT-1 RNA remains localized in 88% of cells containing wild-type SAF-A-GFP, 
whereas 80% of cells transfected with C280-GFP mutant (H and I) release CoT-1 RNA. 
Images include neighboring untransfected cells. (J–L) (J and K) Chromatin collapse seen 
by EM in transcriptionally inhibited G1d cells compared to similarly inhibited interphase 
cells (L). (M) Transcriptionally inhibited interphase cells retain stable CoT-1 RNA, 
whereas postmitotic cells do not. (N) Chromatin does not collapse in interphase cells, but 
more compacted postmitotic cells were seen in treated (86%) versus control (12%) 
samples. (O and P) Interphase chromatin collapses when unfixed cells are treated with 
RNase. Scale bars are 5 μm except for EM images, which are 2 μm. 
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Figure 4.14  XIST and CoT-1 RNA are both retained on the nuclear matrix and 
released with the SAF-A C280 mutant, and the RNA may resist standard RNA 
extraction. 
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Figure 4.14  XIST and CoT-1 RNA are both retained on the nuclear matrix and 
released with the SAF-A C280 mutant, and the RNA may resist standard RNA 
extraction. 

(A–H) All blue signals are DAPI DNA. (A–D) Like CoT-1 RNA, L1 ORF2 RNA is 
localized across the interphase chromosome territory of its parent chromosome in control 
cells (A-B), and remains attached following removal of ∼90%–95% of DNA and 
chromatin proteins (Matrix digestion) using ammonium sulfate and DNase (C-D) 
(Clemson et al., 1996). Scale bar, 5 μm. (E-H) This is also true for XIST RNA, which 
remains equally localized in all control (E-F) and matrix-digested (G-H) hybrid 
interphase nuclei. All treated and control images are taken at the same exposure showing 
little to no diminishment of the RNA signal after chromatin digestion. Red channels 
separated below multicolor images. (I) Diagram of full length SAF-A/hnRNP U and the 
C280 SAF-A deletion mutant. (J and K) RNA from the 3′UTR of L1 is released from Chr 
4 in hybrid cells transfected with the C280 mutant, while untransfected cells in the same 
field are not affected. (L) Number of cells showing mislocalized CoT-1 RNA was scored 
in cells transfected with C280 or full length SAF-A (n = 100, in triplicate). (M and N) In 
Tig-1 cells transfected with C280, CoT-1 RNA is released and is degraded over time, 
while untransfected cells in the same field still contain CoT-1 RNA. (O) L1 ORF2 
DNA:RNA ratio and β-actin DNA:RNA ratio by qPCR from fibroblasts (corrected for 
cell input number, see Materials and Methods). Shown in log scale. (P and Q) 
Comparison of L1 and XIST RNA levels in normal cells measured either by digital 
fluorimetry of RNA FISH in fibroblast cell line (P) or by RNA deep-sequencing reads in 
normal uterine tissue (Q). Error bars represent 95% confidence interval, and data were 
normalized to account for size of the probe. Deep-seq reads from normal uterus (Ting et 
al., 2011) were mapped to the same sequence used as probes for RNA FISH (L1Hs ORF2 
and XIST G1A) by local BLAT. (R–U) A chromosome 21 transgene (Jiang et al., 2013) 
demonstrates that XIST RNA can act on, and silence, Cot-1 repeat RNA on an autosome 
(see Cot-1 RNA “hole” arrow), which is coincident with Barr body formation (arrow). 
Separated channels are shown in white (S-U). 
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Figure 4.15  Dysregulation of specific repeat families in hybrid cells expressing 
dominant negative SAF-A. 

(A-E) mouse B2 (A), human Alu (C), and human LINE-1 (D-E) transcripts are 
mislocalized and/or upregulated in hybrid cells expressing dominant negative SAF-A 
C280-GFP, but mouse B1 RNA (B) is not. Percentages indicate fraction of GFP-positive 
cells with mislocalized phenotype. Scale bars, 5µm. 
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Loss of CoT-1 RNA is associated with chromatin condensation 

In contrast to XIST RNA’s association with Xi heterochromatin, CoT-1 RNA 

distributes across euchromatic regions but is excluded from heterochromatin, as is 

apparent for mouse pericentromeric heterochromatin (Figure 4.1B), and the peripheral 

heterochromatic compartment (Tam et al., 2002) (Figures 4.1D-E). We previously 

showed that exclusion of CoT-1 RNA provides a convenient assay for chromosome 

silencing (Hall et al., 2002a) and that this CoT-1 RNA “hole” overlapped the condensed 

Barr body, which we showed was a repeat-rich silent core of the chromosome (Hall et al., 

2002a; Clemson et al., 2006) (Figures 1F -G). Although CoT-1 RNA has been assumed 

to reflect nascent pre-mRNAs, results here indicate that repeat RNAs are more 

widespread and associated with active chromosomes. Thus, chromosome inactivation by 

XIST involves widespread silencing of CoT-1 RNA and overall chromosome 

condensation. 

This suggests the possibility that CoT-1 RNA loss may be associated with 

chromatin condensation in heterochromatin. To further investigate this, we examined 

post-mitotic G1d cells, which lack CoT-1 RNA following transcriptional inhibition, 

compared to two types of controls: inhibited interphase cells (which retain the stable 

CoT-1 RNAs, but not short-lived or pre-mRNAs; Figures 4.7K-L) and untreated normal 

G1d cells (which resynthesize CoT-1 RNA). Using mitotic shake-off to enrich for G1d 

cells, we noted more condensed DNA regions within treated nuclei and examined them 

by both fluorescence and electron microscopy. Electron microscopy confirmed a 

consistent increase in dense chromatin clumps in most DRB-treated G1d cells (Figures 



127 
 

4.13J-K, 4.16B, D) compared to similarly treated interphase nuclei (Figure 4.13L) and 

untreated G1d controls (Figures 4.16A, C); additionally, we noted two types of unusual 

condensed structures not seen in controls (Figures 4.16E–F). We quantified these same 

cultures by light microscopy, where 77% of DRB-treated G1d cells exhibited larger, 

more numerous condensed clumps of chromatin, compared to only 16% of controls. 

Similar results were seen in inhibited asynchronous cultures, which showed 2-fold more 

paired G1 daughter cells with condensed clumps of chromatin (Figures 4.13M-N, 4.16G-

H). The chromatin of interphase cells remained more uniform in topography, with fewer 

regions of high-density DNA compared to inhibited G1d nuclei (Figures 4.16M-O), and 

this was also evidenced by less homogeneous distribution of chromatin proteins (Figures 

4.16I–L). Examination of the Chr 4 DNA territory in inhibited G1d hybrid cells showed 

the territory partially decondensed but retained a large mass of condensed chromatin 

within it (Figures 4.16P-Q). 

The lack of chromatin collapse in interphase cells (which retain CoT-1 RNA) 

(Figures 4.13L–N) indicates that condensation is not due to transcriptional inhibition per 

se or to the absence of nascent or short-lived nuclear RNAs. Alternatively, it could be due 

to lack of resynthesis of stable nuclear RNAs or proteins necessary to open chromatin. To 

address this, we used RNase in unfixed cells to determine whether removal of CoT-1 and 

other nuclear RNA could cause interphase chromatin to condense (Figures 4.16R-S). 

Chromatin collapse was immediately visible (within 20 min); ∼60% of cells were 

markedly affected as seen in Figures 4.13O-P. This is consistent with earlier observations 

of RNase (Nickerson et al., 1989), but collective findings here indicate that abundant, 
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stable, repeat-rich RNAs are widely associated with euchromatic chromosome territories 

and likely promote more open chromatin packaging. 
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Figure 4.16  RNase digestion and transcriptional inhibition causes changes in 
chromatin structure. 
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Figure 4.16  RNase digestion and transcriptional inhibition causes changes in 
chromatin structure. 

 
(A and B) A) Control DMSO-treated G1d cells exhibit a normal nuclear phenotype B) 
DRB-treated G1 daughter cells show condensed chromatin clumps by EM. Scale bar, 
1 μm. (C and D) C) Enlarged normal G1d cell to show chromatin distribution D) 
Enlarged DRB-treated G1d cell to show aberrant chromatin clumps. (E) Example of 
aberrant darkly staining structure with spindle-like fibers radiating outward (arrow), 
which are found in all DRB-treated G1d cells (2-8 per nucleus). Scale bar, 0.5 μm. (F) 
High resolution EM analysis shows large clumps of dense material in DRB-treated G1d 
cells (arrow), present in ∼70% of G1d nuclei. Scale bar, 0.5 μm. (G and H) Paired nuclei 
with condensed chromatin clumps (arrows) were about twice as common in 
transcriptionally inhibited cultures (H) compared to controls (G). Control = 11%, DRB = 
23% & ActD = 25%. (I–L) Nucleoplasmic chromatin proteins showed a more “lumpy” 
distribution in DRB-treated G1d nuclei than in control G1d nuclei. Some proteins 
delineated the condensed chromatin (HP1 and H3K9me3), while others were excluded 
from the chromatin clumps (Rad21). (M and N) Linescan measurements through the 
nuclear DNA of two representative cells show a broader range of DAPI DNA pixel 
intensity in a transcriptionally inhibited G1d nucleus compared to a similarly treated 
interphase nucleus. (O) The DNA pixel intensity was measured in ten 3D images of 
transcriptionally inhibited G1d and neighboring interphase cells and the highest 3/5ths 
(pixel intensity > 129) of the DAPI signal was compared. Box and whisper plot of high 
intensity DAPI staining calculated as percent area of nuclei for DRB-treated G1d and 
interphase cells (n = 10). Horizontal lines on boxes indicate lower, median, and upper 
quartile values. (P and Q) Human Chr 4 is delineated by CoT-1 DNA hybridization (P) 
and the regions of the chromosome territories (black circles) are transferred to the DAPI 
DNA channel (Q) to determine if individual chromatin clumps comprise a single 
chromosome. (R and S) All CoT-1 RNA is removed with RNase A treatment in unfixed 
cells. All blue signals are DAPI DNA. Scale bars, 5 μm. 
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Discussion 

These findings impact two “black boxes” of genome biology: the unexplained 

prevalence of repetitive elements interspersed throughout higher-order genomes and the 

poorly understood diversity of ncRNAs. In situ visualization of RNA using CoT-1 DNA 

as a probe reveals that abundant RNA is broadly distributed with chromatin and remains 

stable and localized to the parent chromosome long after transcriptional arrest. Recent 

evidence indicates that specific ncRNAs may bind a subset of chromosomal loci. 

Findings here support a distinct but potentially related concept that RNA generally and 

broadly associates with nuclear chromosome territories, where it remains stable and 

localized independent of ongoing transcription. This suggests that RNA is a fundamental 

component of chromosome biology, rather than only a product of it. Like XIST RNA, 

CoT-1 RNA detaches from mitotic chromosomes, yet it tightly adheres to the interphase 

chromosome structure in cis, even after nuclear fractionation. Hence, CoT-1 RNAs and 

XIST RNA can be considered “chromosomal RNAs” that likely bridge chromatin with 

insoluble nonchromatin structural elements. Although speculative, repetitive sequences 

would be well suited to form an intermolecular lattice or structural element because 

lncRNAs can have an “architectural” role, and intermolecular RNA duplexes were long 

ago noted in nuclear RNA (Fedoroff et al., 1977). Such RNAs may also play a role in 

higher-order chromatin packaging linked to regulation. In contrast to XIST RNA, which 

triggers chromosome condensation, CoT-1 transcripts specifically distribute across 

euchromatin, where they may promote an open chromatin state. 
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These findings point to the import of interspersed repeat sequences in chromatin-

associated RNA, raising many next questions about this poorly studied fraction of the 

genome. Britten and Davidson long ago hypothesized that repeats function in genome 

regulation, stating “a concept that is repugnant to us is that about half of the DNA of 

higher organisms is trivial or permanently inert…” (Britten and Kohne, 1968; Britten and 

Davidson, 1971). Our motivation to study repeats stemmed from their poorly explained 

abundance and wide distribution in conserved patterns, suggesting to us a potential role in 

coordinate regulation of the genome. We show that repeat sequences are not only 

prevalent in chromosome-associated RNA but that they are the predominant component 

of hnRNA stably associated with chromosomes. Retention on the parent chromosome and 

longer nuclear half-life likely contribute to the greater level of repeat RNAs detected on 

the chromosome versus the collective nonrepetitive sequences in the whole chromosome 

library. Hence, the level of an RNA on the chromosome can be disproportionate to the 

transcription rate and cytoplasmic abundance. The in situ analyses here revealed both 

unexpected nuclear abundance and unusual cellular properties of CoT-1 RNAs distinct 

from those expected for nascent pre-mRNAs or “genic” transcripts, including localization 

to the chromosome territory, which persisted for more than a day after transcription 

arrest. To minimize any chance that an inhibitor induced stabilization, we tested 

inhibitors with three distinct mechanisms with similar results. Interestingly, it has been 

reported that the many thousands of uncharacterized lncRNAs are rich in (or related to) 

interspersed repeat elements (Hadjiargyrou and Delihas, 2013; Kapusta et al., 2013), and 

many show prolonged stability (Clark et al., 2012). 
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Full characterization of the heterogeneous class of CoT-1 repeat RNAs will 

require improved nuclear RNA extraction methods and RNA sequencing; however, we 

were able to identify L1 RNA as a major component. The prevalence of 5′ truncated L1 is 

consistent with evidence that full-length transposable L1s are silenced in normal cells 

(Goodier and Kazazian, 2008) and is distinct from the reported transient expression of a 

few full-length L1s during mouse X chromosome silencing (Chow et al., 2010). A recent 

study found that highly abundant, truncated L1 elements contain internal and 3′ 

promoters, are expressed at low levels in a cell-type-specific manner, and some may be 

resistant to extraction (Faulkner and Carninci, 2009). Our in situ analysis with large 

probes and preliminary Northern analyses (also limited by extraction) showed that most 

L1 transcripts are large (>4 kb); thus, these could include lncRNAs or even intron-

derived sequences. Importantly, the vast majority of introns contain interspersed repeats, 

and most introns still have no known function. Although excised introns are generally 

thought to rapidly degrade, a very recent study in Xenopus oocytes found that highly 

stable RNAs representing excised introns accumulate in the germinal vesicle (Gardner et 

al., 2012). Although the Xenopus oocyte is a distinct biological system, it is an interesting 

possibility that repeat-rich sequences in excised introns could accumulate on 

chromosomes. 

To minimize the technical obstacles to studying repeats, we needed to develop 

new approaches, such as the use of RNA:DNA ratios (and fluorescent beads as intensity 

standards) to assess the relative expression of repeat families and control for differences 

between probes. It has been reported that SINE RNAs (mouse B2 and human Alu) are 
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upregulated by RNAP III upon heat shock and then bind RNAP II to broadly repress 

transcription (Espinoza et al., 2004; Mariner et al., 2008). Studies here used normal 

unstressed cells; however, under prolonged transcriptional inhibition (with α-amanitin), 

CoT-1 RNA signal intensity increased consistently. Thus, we are investigating whether 

some component(s) of CoT-1 RNA are upregulated upon inhibition of RNAP II. 

Interestingly, HERV-H retroviruses, a component of CoT-1 DNA, have been reported to 

be highly expressed specifically in pluripotent stem cells (Santoni et al., 2012). Thus, we 

believe the collective evidence supports that studies of genome biology should include 

the “repeat genome” in which distinct repeat families likely will show differential 

regulation and different functions in a cell-type-specific manner. This is also supported 

by our results showing differential regulation of repeat families in response to disruption 

of the nuclear scaffold by dominant negative SAF-A expression. 

Our demonstration that the CoT-1 RNA “territories” resist mechanical (or 

transcriptional) disruption but can be released to disperse indicates that their 

accumulation is not passive but involves a reversible mechanism(s). That the release was 

triggered by perturbation of a nuclear scaffold factor further supports the biochemical 

fractionation results, which indicate that repeat RNAs are tethered with a nonchromatin 

scaffold. Because the latter is likely a complex structure (not simple polymers), we do not 

yet have a full understanding of how the dominant negative C280 mutant disrupts CoT-1 

RNA localization. Preliminary evidence indicates that the relationship may not be direct 

and that multiple factors may anchor the RNA; thus, the role of SAF-A with RNA and 

chromatin will be examined in Chapter V. Findings here identify cis-localized CoT-1 



135 
 

RNA as a major component of the undefined RNAs previously suggested to be part of an 

insoluble nonchromatin structure (e.g., (Fey et al., 1986)). The structural nature of 

repetitive RNAs may well make them more difficult to extract by methods designed for 

the cytoplasm. We are working to identify improved extraction methods for further 

analyses; however, molecular hybridization in situ avoided this issue and was essential to 

study the relationship of these RNAs to the nuclear chromosomes. 

In sum, the repetitive “junk” genome is worthy of study, not only as DNA, but 

also as a major part of the “dark matter” transcriptome. As only 5% of promoters are with 

canonical genes (Venters and Pugh, 2013), we are far from understanding genome 

expression and regulation. This work contributes to what may emerge as a next 

revolution in genome science: the relationship of chromosomal RNAs and repetitive 

elements to each other and to genome packaging, regulation, and evolution. 
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Chapter V : CoT-1 RNA is integral to the structure of euchromatic interphase 

chromosome territories 

Preface 

This work was supported by NIH grant GM107604 to J.B.L. I wish to thank 

Frank Fackelmayer for the gift of SAF-A GFP constructs and helpful discussions, and 

Rick Adshead from the UMMS MAPs department for training and time on the SIM 

microscope. A modified version of this chapter will be submitted for publication. 
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Introduction 

In Chapter IV, I showed that abundant non-coding CoT-1 repeat RNA localizes in 

cis to euchromatin, and the RNA territory persists after transcriptional inhibition, 

reminiscent of XIST RNA painting the heterochromatic Xi chromosome (Clemson et al., 

1996; Hall et al., 2014). Evidence suggests this CoT-1 chromosomal RNA may localize 

to chromatin via proteins of the nuclear scaffold, defined as an insoluble fibrillogranular 

structure that resists extraction of histones and genomic DNA (Nickerson, 2001; Hall et 

al., 2014). While the initial findings were hotly debated, some early studies suggested 

that most nuclear RNA (hnRNA) is in an insoluble state bound to scaffold proteins (e.g., 

(Fey et al., 1986; Nickerson et al., 1989; He et al., 1990)). Experiments here investigated 

whether the class of repeat-rich CoT-1 RNAs are bound to and potentially integral 

structural components of the nuclear chromosome territory. 

I used SAF-A knockdown and a series of SAF-A deletion mutants in human cells 

to investigate whether SAF-A has a role in localizing CoT-1 RNA to euchromatin, and to 

address what domains of the protein may be required. In doing so, I manipulate CoT-1 

RNA’s association with chromatin to examine the hypothesis that this RNA supports the 

more open, decondensed packaging of euchromatin. I ask whether these chromosomal 

RNAs are not only bound to the scaffold, but are integral to scaffold structure, and thus 

required to maintain SAF-A or specific nuclear proteins. I found that SAF-A is not 

required for CoT-1 RNA localization to chromatin, but instead, SAF-A associates with 

chromatin in an RNA-dependent manner. Association between CoT-1 RNA and the 
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nuclear matrix is required for CoT-1 RNA stability and maintenance of euchromatin 

structure. 
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Materials and Methods 

Cell culture and drug treatments: Tig-1 human fibroblasts (Coriell) and GM11687 

mouse human hybrid cells (ATCC) were grown under supplier-recommended 

conditions. Transcriptional inhibition: DRB (40–80µg/ml dissolved in DMSO) was added 

to culture media and left on for 4–6 hours prior to fixation. Cell synchronization: Cells 

were arrested in Nocodazole (100ng/mL) for 5 hours and collected by mitotic shakeoff 

prior to transfection. RNase: We permeabilized unfixed cells on coverslips with 0.1% 

triton-X in CSK buffer (4°C for 3 min) then treated with 5µL/mL DNase-free RNase 

(Roche #11119915001) or RNasin Plus RNase inhibitor (Promega), in CSK (10-30 min, 

37°C).  

 

Fixation: Our standard cell fixation protocols have been previously described in Chapter 

II. 

 

RNAi and Plasmid transfections: For RNAi, cells (70-80% confluent) were transfected 

with SMARTpool siRNA and DharmaFECT 1 transfection reagent (GE Dharmacon) 

according to the manufacturer’s instructions. Cells were fixed after 72 hours. Control 

siGLO siRNA (GE Dharmacon) had no impact on CoT-1 RNA localization. For plasmid 

transfections, 2 ug DNA was mixed with Lipofectamine 2000 (Invitrogen) according to 

manufacturer’s instructions, and added to 80-90% confluent cells in a 6-well plate. Cells 

were fixed and assayed 6, 24, 48 or 72 hours after transfection.  
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IF: IF and epitope retrieval was done as described in Chapter II. Anti-SAF-A antibodies 

were from Abcam (ab20666 and ab10297).  

 

Fluorescence in situ hybridizations: RNA hybridization was performed under non-

denaturing conditions as previously Chapters II/III. The DNA probe was made using 

CoT-1 DNA (Roche). 

 

Microscopy and image analysis: Digital imaging and analysis was performed as 

described in Chapters II and III. I used Huygens to measure Chr 4 territory voxel 

volumes. Super-resolution 3D-SIM images were acquired on a DeltaVision OMX V4 

(GE Healthcare) equipped with a 60x/1.42 NA PlanApo oil immersion lens (Olympus), 

405, 488, 568, and 642 nm solid state lasers and sCMOS cameras (pco.edge). Image 

stacks of 7-9 µm with 0.125 µm thick z-sections and 15 images per optical slice (3 angles 

and 5 phases) were acquired using immersion oil with a refractive index of 1.518. Images 

were reconstructed using Wiener filter settings of 0.001 and optical transfer functions 

(OTFs) measured specifically for each channel with SoftWoRx 6.1.3 (GE Healthcare) to 

obtain super-resolution images with a two-fold increase in resolution both axially and 

laterally. Images from different color channels were registered using parameters 

generated from a gold grid registration slide (GE Healthcare) and SoftWoRx 6.5.2 (GE 

Healthcare). I used Image J/Fiji for signal intensity quantification and, when necessary, 

Fiji or Photoshop (Adobe) to enhance images for brightness and contrast.  
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Results 

Endogenous SAF-A localizes primarily to chromatin and not to nuclear speckles  

Originally classified as an hnRNP protein, SAF-A/hnRNPU was widely 

implicated to have a role in pre-mRNA splicing (Kiledjian and Dreyfuss, 1992). SAF-A 

was pulled down as part of a major splicing complex (C complex) (Jurica et al., 2002), 

and purified from mouse interchromatin granule clusters (SC-35 domains), which contain 

pre-mRNA splicing factors (Saitoh et al., 2004). However, a similar study failed to 

identify SAF-A as part of the spliceosome (Zhou et al., 2002). Hence, I carefully 

examined the nuclear distribution of SAF-A relative to chromatin and non-chromatin 

nuclear compartments using IF, FISH, and structured illumination microscopy (SIM). 

SAF-A and CoT-1 RNA both release from chromosomes in early prophase (similar to 

XIST RNA and most other nuclear structural proteins). Although some residual SAF-A 

can be seen on condensed chromatin prior to full release (Figure 5.1A), to evaluate the 

extent to which SAF-A associates with chromatin during interphase, I carefully 

scrutinized its distribution relative to DNA and SC-35, a protein marker for non-

chromatin SC-35 domains (speckles or interchromatin granule clusters) in which most 

splicing factors and spliceosomal components concentrate (Hall et al., 2006; Spector and 

Lamond, 2011). Results using both widefield microscopy and SIM showed that the vast 

majority of SAF-A co-localizes over DAPI stained DNA, including euchromatin and 

heterochromatin. In contrast, SAF-A was clearly not enriched in SC-35 domains, from 

which it appears largely excluded (Figure 5.1B), as is DNA (Carter et al., 1991). These 

results do not preclude that SAF-A has dual roles in pre-mRNA metabolism and  
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Figure 5.1  Endogenous SAF-A localizes to chromatin. 

(A) SAF-A (red) localizes to prophase chromosomes (blue, DAPI). (B) SAF-A (red) 
localizes primarily with heterochromatin and euchromatin (gray, DAPI) but not splicing-
factor-rich SC-35 domains (SC-35 protein, green, arrows). 
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chromatin packaging, but they indicate that the greatest proportion of SAF-A associates 

with chromatin.  

A highly truncated SAF-A protein releases CoT-1 RNA from chromatin whereas 

SAF-A depletion does not   

As shown in Chapter IV, repeat-rich CoT-1 RNAs show unusually strict 

localization to the parent chromosome territory in cis, remaining abundant and tightly 

localized after prolonged transcriptional inhibition, as well as after digestion of nuclear 

DNA and removal of most nuclear proteins (Hall et al., 2014). Yet, evidence indicated 

that CoT-1 RNAs could be rapidly dispersed upon disruption of the nuclear scaffold by 

expression of truncated SAF-A (C280-GFP) (Figure 5.2A-C) in mouse hybrid cells 

containing one human chromosome that allow examination of CoT-1 RNA localization 

relative to the individual chromosome territory (Figure 5.2A). This indicates that SAF-A 

plays some role in CoT-1 RNA’s stable association with chromatin, however, it does not 

address whether SAF-A directly localizes CoT-1 RNA. 

To investigate whether SAF-A is required to maintain CoT-1 RNA localization, I 

used siRNA (Dharmafect SMARTpool Thermo/Fisher) to deplete SAF-A in mouse-

human hybrid cells, and affirmed by microfluorimetry in individual cells that SAF-A 

depletion was highly effective, reduced by 97% compared to untransfected cells. In 

marked contrast to expression of the truncated protein (C280-GFP), SAF-A depletion had 

no visible effect on either the CoT-1 RNA territory (or overall DNA distribution, as 

further discussed below) (Figure 5.2D).  
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Figure 5.2  Dominant negative SAF-A mislocalizes CoT-1 RNA in human cells. 

(A) CoT-1 RNA (red) localizes to discreet chromosome territory in mouse-human hybrid 
cells. (B) Map of SAF-A domains and truncated C280-GFP mutant. (C) Truncated SAF-
A (C280-GFP) expression causes CoT-1 RNA (red) release in mouse human hybrid cells.  
(D) SAF-A RNAi has no effect on CoT-1 RNA localization in mouse/human hybrid cells. 
CoT-1 RNA (red) remains in condensed territory in cells lacking endogenous SAF-A 
(green). Scale bars, 5 µm. 
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The fact that the C280 mutant has a much greater effect than SAF-A depletion 

indicates it acts as dominant negative, likely through perturbation of other nuclear 

structural proteins that support Cot-1 RNA localization. As described in Chapter III, the 

C280 mutant causes general disruption to the nuclear localization patterns of NuMA, 

SafB1, FUS, and hnRNP C. Here I additionally show that both hnRNP C and FUS co-

localized with C280-GFP aggregates in a fraction of cells (Figure 5.3A-C). This supports 

that hnRNP C and FUS were perturbed by and likely interact with the normal and mutant 

SAF-A protein. Collectively these results suggest that SAF-A is part of a complex 

scaffold that binds CoT-1 RNA, but that it may not anchor CoT-1 RNA directly as a 

single molecule bridge. 

Mutations in either SAF-A’s RNA or DNA binding domains mislocalizes CoT-1 

RNA from chromatin 

Previously I showed that SAF-A’s DNA but not its RNA binding domain is 

required to localize XIST RNA (Chapter III). Here I examined the effect of expressing 

the RNA and DNA binding domain deletion mutants to more specifically characterize the 

effect on CoT-1 RNA localization. I used the precise SAF-A mutant with a point 

mutation in its DNA binding domain (G29A-GFP) (Figure 3.6E) to test whether CoT-1 

RNA localization is impacted by SAF-A’s ability to bind DNA. I found that expression 

of this mutant results in release of CoT-1 RNA from the chromosome territory in most 

hybrid cells expressing G29A-GFP (~60% P=.0016) (Figure 5.4A-B). I repeated this 

experiment in primary Tig-1 fibroblasts. Strikingly, in 82% of cells, CoT-1 RNA was no 

longer uniformly distributed throughout the nucleus, and it was localized with G29A- 
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Figure 5.3  Scaffold proteins FUS and hnRNP C localize with dominant negative 
C280-GFP. 

(A) FUS (red) localizes in C280-GFP aggregates. (B-C) hnRNP C co-localizes with  
C280-GFP (C) in contrast to its more uniform distribution on chromatin in control cell 
(B). Scale bars, 5 uM. 
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GFP in DAPI-depleted nuclear regions (Figure 5.4C-D). This indicates that the G29A 

mutant SAF-A cannot bind DNA, but suggests it can still bind CoT-1 RNA, potentially 

through its RGG domain, and thus this G29A mutant appears to “pull” CoT-1 RNA off of 

chromatin. Most importantly, these results support that SAF-A’s ability to bind DNA 

impacts CoT-1 RNA’s ability to localize to chromatin.  

I next examined the ∆RGG SAF-A mutant (Figure 3.6E), which can bind DNA 

but not RNA. I found that CoT-1 RNA was mislocalized in most hybrid cells expressing 

ΔRGG-GFP (~60% P=.004) (Figure 5.5A). The CoT-1 RNA signal was largely 

diminished and did not localize with the ΔRGG mutant, supporting that CoT-1 RNA 

normally binds to SAF-A’s RGG domain (Figure 5.5B). I tested whether CoT-1 RNA 

was similarly affected in human Tig-1 fibroblasts. Unlike in normal cells where CoT-1 

RNA clearly localizes over chromatin (Figure 5.5C), CoT-1 RNA was diminished and 

restricted to DAPI-depleted areas in 53% of cells expressing the ΔRGG mutant for 24 

hours, while the ΔRGG mutant protein remained localized with chromatin (Figure 5.5D-

E). I also examined the localization of endogenous SAF-A with an antibody that does not 

recognize the ∆RGG mutant. In 96% of GFP-positive cells exhibiting abnormal CoT-1 

RNA distribution, the majority of endogenous SAF-A localized with the released CoT-1 

RNA in DAPI holes and not with chromatin and the ∆RGG mutant (Figure 5.5F and 

Figure 1B). Hence, ∆RGG-GFP appears to largely displace endogenous SAF-A on 

chromatin, suggesting that CoT-1 RNA requires SAF-A’s RGG domain to localize to its 

parent chromosome. Since SAF-A has a long (~48h) half-life, it further suggests that a 

cell may have to go through mitosis before the ∆RGG mutant can gain access to 



148 
 

 

 
 
Figure 5.4  SAF-A DNA binding domain mutant causes CoT-1 RNA release and 
chromatin condensation. 

(A) SAF-A DNA binding domain mutant (G29A) expression releases CoT-1 RNA from 
the human chromosome in mouse-human hybrid cells (59%, P=.001). (B) CoT-1 RNA 
(red) releases from its parent chromosome in mouse-human hybrid cell. (C-D) G29A-
GFP causes chromatin condensation and CoT-1 RNA release in human Tig-1 cell.  
Linescan shows CoT-1 overlaps with G29A-GFP and not with DAPI. Images represent 
single slice of z-stack deconvolved using Softworx. Scale bars, 5 µm. 
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Figure 5.5  SAF-A’s RNA binding domain is required for CoT-1 RNA localization. 

(A-B) CoT-1 RNA releases from the human chromosome in mouse-human hybrid cells 
expressing the RGG domain deletion mutant (58% P=.004). Error bars, standard 
deviation of the mean (A). CoT-1 RNA (red) is largely diminished compared to GFP-
negative cell (B). (C-E) CoT-1 RNA releases from chromatin in Tig-1 cell expressing 
ΔRGG-GFP (D) but not in normal cell (C). GFP mutant co-localizes with chromatin, 
while CoT-1 RNA (red) localizes in DAPI holes, see linescan (E). CoT-1 RNA signal 
was boosted for visibility. (F) Endogenous SAF-A (red) localizes in DAPI holes and not 
with chromatin and ΔRGG-GFP (see linescan). Scale bars, 5 µm.  
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chromatin and displace CoT-1 RNA. This may also explain the penetrance to only ~50-

60% of transfected cells.  

These results show a complex relationship between SAF-A and CoT-1 RNA. 

SAF-A appears to bind CoT-1 RNA through its RGG domain, and it appears to play a 

role in localizing CoT-1 RNA to DNA by a complex mechanism, but not as a direct 

bridge. Collective results suggest that both mutants act through a dominant negative 

mechanism, since SAF-A knockdown had no effect on CoT-1 localization. 

Lack of CoT-1 RNA, and not lack of SAF-A, consistently causes chromatin 

condensation  

These perturbations also facilitate investigation of Cot-1 RNA and/or SAF-A’s 

role on the overall packaging and condensation of chromatin. In this context, expression 

of all three SAF-A mutants markedly perturbs normal chromatin distribution, including 

complete loss of DAPI-dense mouse chromocenters (Figure 5.2A, C; 5.4C-D; 5.5D-F). 

To further examine this relationship, I tested the effect of the C280-GFP mutant in 

normal human cells. I found that ~50% of C280-GFP positive human cells contained 

large clumps of chromatin, indicated by large peaks in staining intensities compared to 

more uniform staining in control cells (compare the blue lines in Figures 5.6A-B). 

Moreover, these DNA clumps lacked both C280-GFP protein and CoT-1 RNA (Figure 

5.6A, C). This suggests that as C280-GFP expression causes CoT-1 RNA release, it also 

causes widespread chromatin perturbation, in particular the formation of condensed 

“clumps”. Since C280-GFP still contains SAF-A’s RNA binding RGG domain 

(Fackelmayer et al., 1994) (Figure 5.2B), it is plausible that the SAF-A mutant binds to 
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CoT-1 RNA, pulling it away from chromatin and causing chromatin to condense. This is 

further suggested by the overlap of Cot-1 RNA with large C280-GFP foci in 71% of cells 

with chromatin collapse (Figure 5.6A, C).  

DAPI staining showed similar abnormal clumps of DNA in 82% of cells 

expressing G29A-GFP, indicated by large peaks in signal intensity (Figure 5.4C-D).To 

more rigorously test for chromatin collapse caused by this mutant, I measured the impact 

on the human chromosome 4 DNA territory in hybrid cells expressing G29A-GFP, 

delineated by hybridization with the human CoT-1 DNA probe (which does not hybridize 

to mouse repetitive DNA) (Figure 5.6 D, F). As measured in deconvolved z-stacks 

(Huygens, see Methods), the total volume of the human chromosomal DNA territory 

decreased in cells expressing the mutant SAF-A, as compared to untreated control cells 

(Figure 5.6E). These findings are further consistent with the possibility that loss of CoT-1 

RNA from chromatin promotes chromatin collapse. However, it remains unclear whether 

chromatin condenses due to loss of CoT-1 RNA, SAF-A and/or potentially other scaffold 

proteins, or both.  

Importantly, chromatin also condenses in cells expressing ΔRGG-GFP, in which 

the mutant remains with chromatin but CoT-1 RNA releases (Figure 5.5D-E). This 

supports that the impact on chromatin condensation and overall chromatin packaging 

noted above for the C280 and G29A mutants likely is not due to the loss of SAF-A, but to 

the release of RNA from chromatin. Supporting this, siRNA depletion of endogenous 

SAF-A does not impact chromatin structure in the majority of cells tested (with the 

potential exception of Neuro2a cells examined in Chapter III), thus lack of CoT-1 RNA,  
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Figure 5.6  SAF-A mutants cause chromatin collapse. 

(A-C) C280-GFP expression causes chromatin condensation in human Tig-1 fibroblasts. 
(A) Linescan shows higher DAPI peaks indicating large variations in staining intensity in 
GFP-positive cell compared to lower, more uniform DAPI intensity in control cell (B). 
CoT-1 RNA localizes with C280-GFP and not with DAPI (A). (D-E) The human Chr 4 
territory collapses in mouse human hybrid cells expressing SAF-A’s DNA binding 
domain mutant. The territory (hybridized to human CoT-1 DNA) in normal cell (D) is 
larger than in cell expressing G29A-GFP (F). The total volume of the chromosome 
territory decreases by 38% (P=.0002, n=11) (E). Error bars, standard deviation of the 
mean. Z-stacks deconvolved and voxel volume measured using Huygens software. Scale 
bars, 5 µm. 
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and not lack of SAF-A, is the only condition I observed to consistently cause chromatin 

condensation. 

RNA is an integral component of the nuclear scaffold required to retain SAF-A but 

not Lamin B1 

Earlier literature describing evidence for a non-chromatin nuclear scaffold or 

matrix shows that ~70% of nuclear RNA remained after extensive fractionation removes 

over 90% of protein and DNA. While the concept was controversial, significant evidence 

suggested that processes such as splicing occurred in a structurally bound context, hence 

most pre-mRNAs undergoing metabolism would be bound to the matrix (Xing and 

Lawrence, 1991; Nickerson, 2001). In addition, some views suggested that certain RNAs 

were not just bound to the matrix, but that unidentified RNA(s) may comprise an integral 

component of that structure (Nickerson et al., 1989; He et al., 1990). Hence, several 

properties of CoT-1 RNA led us to question whether it was bound to the scaffold by one 

or more proteins, or whether it may be a component of the scaffold itself, such that it 

would support the retention of specific proteins in the scaffold. For example, results 

described above indicate this abundant CoT-1 RNA fraction promotes open chromatin 

structure, since its release consistently is associated with abnormal chromatin 

condensation and/or chromocenter loss. I therefore tested whether CoT-1 RNA depletion 

affects the distribution of known nuclear matrix proteins. Changes to matrix structure and 

composition would implicate CoT-1 RNA as an architectural component of the nuclear 

matrix.  
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 Since CoT-1 RNA is heterogeneous, stable, and highly abundant, it is not feasible 

to knock down using traditional methods. As reported in Chapter IV, prolonged 

transcriptional inhibition eliminates pre-mRNA but does not eliminate stable repeat-rich 

CoT-1 RNAs from interphase nuclei (Hall et al., 2014). However, CoT-1 RNA is 

released from chromosomes during mitosis (as is SAF-A), and cells that divide in the 

presence of transcriptional inhibitors cannot resynthesize it (Hall et al., 2014).  

I examined SAF-A’s distribution after transcriptional inhibition and found it was 

substantially diminished and aberrantly distributed in G1d cells lacking CoT-1 RNAs. In 

contrast to its more homogeneous granular distribution on chromatin in normal G1d cells 

(Figure 5.7A), or in DRB-treated interphase cells that retain CoT-1 RNA but lack 

mRNAs (Figure 5.7B), remaining SAF-A was prominently localized in small rings 

roughly 1µM in diameter that localized in DAPI holes (Figure 5.7C, arrows). This 

suggests that endogenous SAF-A largely requires long-lived nuclear RNAs for its 

chromatin association. 

To test the possibility that SAF-A may require an RNA component to maintain its 

relationship to nuclear structure, I treated unfixed, permeabilized Tig-1 fibroblasts with 

RNAse and visualized SAF-A by SIM. Strikingly, within ten minutes of RNAse 

treatment, the SAF-A signal effectively disappeared (Figure 5.8A-B). This indicates that 

the widely-held assumption that SAF-A functions as an anchor for chromosomal RNA 

may in fact be backwards, and that instead, RNA may anchor SAF-A. It is consistent with 

results in Chapter III showing that XIST RNA may retain SAF-A on the mitotic Xi when 

it is retained during AURKB inhibition.  
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I next tested whether RNAse treatment affects two other nuclear matrix proteins, 

NuMA and Lamin B1. I found that while the NuMA signal was reduced in a fraction of 

cells after RNAse treatment, it still retained a relatively homogeneous distribution (Figure 

5.8C-D), while the Lamin B1 signal was unaffected (Figure 5.8E-F). I reduced the 

RNAse treatment to one minute and found similar results for SAF-A, NuMA, and Lamin 

B1 (not shown).  

The impact of RNAse treatment on SAF-A and NuMA but not Lamin B1 suggests 

RNA removal does not simply cause non-specific devastation of nuclear structure, but 

rather suggests there are “layers” to nuclear substructure, one that requires RNA for 

integrity and one that does not. Collectively, these data suggest that CoT-1 repeat RNA is 

a significant fraction of the RNA comprising an integral part of the nuclear scaffold. As 

suggested by the model in Figure 5.9, SAF-A requires this RNA to form a scaffold for 

heterochromatin and euchromatin, but, importantly, other proteins do not.    

 



156 
 

 
 
Figure 5.7  CoT-1 RNA depletion impacts SAF-A’s association with chromatin.  

(A) Normal G1 daughter cells express both SAF-A (green) and CoT-1 RNA (red). (B) 
CoT-1 RNA and SAF-A remain on chromatin in 100% of transcriptionally inhibited 
interphase cells. (C) Some SAF-A is recycled during mitosis but it does not localize 
properly to chromatin in transcriptionally-inhibited G1 daughter cells lacking CoT-1 
RNA. SAF-A (green) is largely excluded from DAPI (arrows) in 100% of 
transcriptionally inhibited G1 daughter cell that lack CoT-1 RNA (red). Scale bars, 5 µm. 
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Figure 5.8  SAF-A association with chromatin is RNA-dependent. 

(A) CoT-1 RNA (red) and SAF-A (green) in normal Tig-1 cells. (B) SAF-A evacuates 
the nucleus after 10 minutes of live-cell RNAse treatment (100% of cells). (C-D) NuMA 
(green) is marginally depleted in some cells but largely unaffected by RNAse treatment. 
(E-F) Lamin B1 (green) is unaffected by RNAse treatment (100% of cells). SIM images 
in E-F are single slices from z-stacks deconvolved in Softworx (see Materials and 
Methods). Scale bars, 5 µm. 
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Figure 5.9 Contrasting two models of chromosomal RNA localization. 

Above: Model depicting SAF-A as a single molecule bridge anchoring chromosomal 
RNA to chromatin, adapted from graphical abstract of Hasegawa et al. (2010).  
Below: Our revised model showing SAF-A and chromosomal RNA woven into a “fabric” 
of the interphase chromosome, in which multiple proteins bind to chromosomal RNA.  
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Discussion 

The release of CoT-1 RNA by expression of truncated SAF-A may initially 

appear to indicate that SAF-A is directly involved in localizing CoT-1 RNA. However, 

results here indicate that this and potentially other SAF-A mutants have dominant 

negative effects on other chromosomal architectural proteins with which SAF-A and 

chromosomal RNAs interact. Results indicate that CoT-1 RNA and SAF-A associate with 

a common structure, referred to here as the nuclear scaffold. The results also suggest a 

possibility with broad fundamental implications for genome and chromosome biology: 

that the abundant presence of RNA on chromatin counters an inherent propensity to 

condense. This possibility is consistent with various results in this Chapter, where I have 

attempted to characterize the association between CoT-1 RNA and SAF-A. I found that 

expressing several specific SAF-A deletion mutants, but not SAF-A RNAi, perturbed 

CoT-1 RNA’s relationship to chromatin, and loss of CoT-1 RNA from chromatin was 

consistently accompanied by widespread chromatin condensation, visible in human cells 

by formation of large DAPI clumps.  

Experiments treating live cells with RNase further indicate that RNA is required 

to prevent visible, gross changes to DNA condensation suggestive of chromatin collapse. 

Furthermore, these experiments also reveal that RNA is required for SAF-A to bind to 

chromatin, and therefore for the integrity of what is an RNA-dependent chromosome 

scaffold. However, RNAse experiments do not address whether the collapse is specific to 

loss of CoT-1 repeat-rich RNAs or to RNA in general. While CoT-1 RNA may reflect a 

diversity of repeat-rich lincRNAs and intron-containing RNAs in nuclei, we show in 
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Chapter IV that these sequences appear to be the most prominent component of 

euchromatin-associated RNA, therefore the CoT-1 component likely plays a large role in 

the collapse.  

Experiments using transcriptional inhibitors more convincingly show that collapse 

is due to loss of CoT-1 RNA specifically (not loss of all RNA) since only G1d cells 

lacking both CoT-1 RNA and short-lived transcripts are affected. Here I also show 

evidence that while some SAF-A is clearly recycled after cell division, it is not properly 

localized in DRB-treated G1d cells, further suggesting the requirement for RNA on 

chromatin to replicate the matrix following cell division. The failure of G1d nuclei to 

rebuild open chromatin structure despite the recycled SAF-A suggests that an RNA-

dependent matrix plays a fundamental role as an integral component of interphase 

chromosome structure. 

Work in this chapter advances understanding of how abundant nuclear CoT-1 

RNAs associate with the chromosome territory and how RNA impacts overall 

chromosome packaging. Findings provide renewed support for the earlier contested 

concept of a nuclear scaffold or “matrix,” which was reported to bind most nuclear RNA. 

Evidence that that SAF-A deletion mutants, but not SAF-A RNAi, impact CoT-1 RNA 

association with interphase chromosomes supports that chromosomal RNAs are not just 

tethered by one or two scaffold proteins, but are intimately intertwined in a complex 

structure (see model in Figure 5.9). As suggested by the model, results show that specific 

proteins and RNA’s association with the chromosome is mutually dependent.  
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Finally, findings here contribute an additional, unanticipated insight into the 

fundamental nature of nuclear chromosome structure. In marked contrast to the release of 

SAF-A by RNAse, removal of RNA had no effect on the retention of Lamin B1, not only 

at the nuclear periphery but throughout the nucleoplasm. This finding merits and will 

prompt further investigations into the hypothesis that nuclear chromosome architecture 

involves at least two distinct and separable layers: one, which involves SAF-A and is 

RNA-dependent, and the other, involving lamins, which appears to be RNA-independent. 

In either case, these structural elements are not simply proteins or RNA bound to 

canonical chromatin (DNA wrapped in histones), but components of the complex fabric 

which packages and regulates the genome. 
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Chapter VI : Final Summary and Conclusions 

Overall Summary 

The large non-coding XIST RNA is the premier example of an RNA that binds an 

interphase chromosome to modify its structure and epigenetic state. We now have 

evidence for a heterogeneous but novel class of chromosome-associated repeat-rich CoT-

1 RNA that like XIST, binds to the interphase chromosome territory in cis and may 

function as an architectural RNA. However, even for the heavily studied XIST RNA, we 

lack a clear understanding of how chromosomal RNAs structurally associate with 

chromosomes. This study advances knowledge of how XIST and CoT-1 chromosomal 

RNAs integrate into chromosome scaffolds for heterochromatin and euchromatin, 

respectively, to support epigenetic genome regulation. I demonstrate unrecognized 

complexity to the anchoring of chromosomal RNA embedded in what we suggest is a 

complex interconnected “fabric” of interphase chromosomes.  

At the onset of this work, we anticipated initial experiments would validate and 

extend the current predominant model, which depicts Scaffold Attachment Factor-A 

tethering chromosomal RNA to chromosomal DNA as a single molecule bridge. I began 

to examine the role of SAF-A for XIST and CoT-1 RNAs in human cells. Through series 

of experiments using RNAi and SAF-A mutants in numerous cell types, I found that 

SAF-A is not required for XIST/Xist RNA localization in normal human or mouse cells.  

Evidence leads to a different model, in which SAF-A is one of multiple proteins in 

nuclear scaffold that is mutually dependent on the presence of RNA to associate with 

chromatin. Evidence supports that changes to the nuclear scaffold during transformation 
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may compromise anchors in certain cancer cells, as most clearly illustrated by mouse 

Neuro2a cells. In addition, results expressing a series of SAF-A deletion mutants 

demonstrated that the DNA binding domain was required to support XIST RNA 

localization, but, unexpectedly, the RGG domain capable of binding RNA was not. This 

contradicts the assumption that a single protein tethers chromosomal RNAs to the 

chromosome as a direct RNA-DNA bridge. 

 Similarly, we find that repeat-rich CoT-1 RNA associates with euchromatic 

interphase chromosome territories but releases upon disruption of the nuclear scaffold. 

Therefore I examined the potential role of SAF-A in the chromosomal association of 

CoT-1 RNA. Highly effective SAF-A depletion had no effect on CoT-1 RNA localization 

to the human chromosome, whereas a single point mutation in the DNA binding domain 

releases CoT-1 RNA, resulting in abnormal DNA condensation. Unlike results for XIST 

RNA, SAF-A’s RGG domain appears required to localize CoT-1 RNA, and CoT-1 RNA 

loss is associated with euchromatin condensation, also supported by RNAse experiments.  

Importantly, results support a model in which repeat-rich CoT-1 RNAs are not 

merely tethered to architectural proteins, but instead are integral to nuclear architecture as 

components of a complex nuclear scaffold/matrix. Remarkably, SAF-A is completely lost 

from RNAse-treated nuclei, indicating the potential for mutually dependent chromosomal 

association of SAF-A and RNA. In contrast, Lamin B1 is unaffected by RNAse 

treatment, suggesting two “layers” to the architectural underpinnings of interphase 

chromosomes, one that requires the RNA structural component and one that does not. 

The RNAse experiment indicates that RNA in the scaffold does not function via 
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recruitment of epigenetic factors, but suggests the possibility that the physical presence of 

this diverse set of repeat-rich RNA on the chromosome serves to keep it open. It is thus 

tempting to speculate that the default state of nucleosomal chromatin is condensation. 

Caveats  

Reproducibility of scientific experiments is a major problem plaguing researchers 

today. One recent study estimated that >50% of pre-clinical research is not reproducible, 

at a cost of roughly 28 billion dollars in NIH funds (Freedman et al., 2015). While this 

figure is almost certainly inflated (Kaiser, 2015), it does highlight the degree of the 

problem. Three major factors contributing to lack of reproducibility are widespread in the 

literature: (1) Transient overexpression of proteins and/or mutant proteins (2) 

introduction of protein tags (GFP, Flag, Myc, etc.) and (3) use of transformed cells or 

inconsistent cell types. Each of these widely-used experimental approaches can introduce 

off-target effects that highly complicate data analysis and interpretation.  

Throughout this work, I have struggled with complications from all three of these 

factors and made an effort to control for them as much as possible. For example, I created 

stable cell lines to avoid effects of protein overexpression, and when I had to use transient 

transfections, I carefully scored cells according to whether they expressed “high” or 

“low/moderate” levels of the transfected protein in the most objective manner possible.  

I additionally examined endogenous SAF-A by IF (rather than using tagged 

proteins) whenever possible. When I did use tagged proteins, I compared both GFP and 

Flag-tagged constructs to the behavior of endogenous SAF-A. Our Flag and GFP-tagged 

mutants produced similar phenotypes, however, the GFP-tagged version often affected a 
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higher percentage of cells at a lower expression level, and this depended on the specific 

mutation or the cell type.  

Results presented in this thesis also highlight the problem of using transformed 

cells to test principles of basic biology. In Chapter III, I attempt to correct a 

misunderstanding in the field that stems from use of transient transfections in transformed 

cells. In testing the effect of SAF-A RNAi on XIST RNA localization, I show that 

phenotypic differences arise in different cell types. In particular, transformed cells exhibit 

heterogeneity not only between tissue types, but also cell types, cell lines, and individual 

cells. In many cases I saw significant variation in my results that may have resulted from 

epigenetic differences within a cultured cell line.  

While these studies presented many challenges, they also highlight the importance 

of using in situ experiments to validate findings from extraction-based techniques. For 

example, as described above, hnRNP M and C were identified as top candidate Xist RNA 

interacting proteins in recent RNA pull downs, however I show that neither protein 

appears to localize to the Barr body. Thus, although scoring can be subjective, looking 

directly at cells, rather than simply extracting their various components, is an essential 

part of understanding biology. 

Major results, implications and future directions 

XIST RNA recognizes the autosome territory boundary in a differentiated cell 

To initiate chromosome inactivation for dosage compensation, XIST RNA 

spreads across the inactivating X chromosome and localizes strictly in cis, limiting its 
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spread to neighboring chromosome territories which are densely packaged together in the 

10-20 µM nucleus. As I show in Chapter II, transgenic XIST RNA can also spread and 

localize across an autosome in cis in a fully differentiated cell. This has several 

implications for both the mechanism of XIST RNA spread and the required cellular 

context for initiation of chromosome silencing. 

Although some studies suggest that L1 DNA elements may facilitate XIST RNA 

propagation across the chromosome (Lyon, 1998; Bailey et al., 2000), as described 

above, XIST RNA appears to localize through interactions with the nuclear scaffold 

rather than by interacting directly with DNA. Engreitz et al. (2013) proposes a model in 

which Xist RNA spreads via proximity in 3D. In this model, Xist RNA localizes to 

regions of the chromosome that are nearby in 3D space by binding to the nuclear scaffold 

proteins associated with that DNA, then actively modifying the chromosome 

conformation to “pull” more DNA into the silencing compartment. While this model does 

not rely on specific DNA sequences and should theoretically work on any chromosome, it 

does not account for how Xist RNA avoids spreading to neighboring chromosomes.  

XIST RNA recognition of both the Xi and an autosome boundary is consistent 

with the hypothesis that individual chromosome scaffolds are distinct and separable from 

those of neighboring chromosomes. In Chapter V, I show evidence for two distinct 

nuclear scaffolds, one that depends on an RNA component, and one that does not. These 

findings provide support for a hypothesis that RNA-dependent scaffold proteins could 

somehow delineate the boundaries between individual chromosome territories to limit 

XIST RNA spread to neighboring chromosomes. It is possible that XIST RNA 
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recognizes and even becomes an integral part of the RNA-dependent single-chromosome 

scaffold, while the RNA-independent scaffold (the lamina) functions to fix all the 

chromosome territories together in space.  

Results in Chapter II also imply that any chromosome can transform from 

euchromatin into a heterochromatic Barr body. Further, this transformation is not strictly 

limited to a pluripotent setting, which is the natural setting for XCI. Anton Wutz and 

others suggested that only pluripotent cells have capacity to initiate chromosome 

silencing (Surralles and Natarajan, 1998; Wutz and Jaenisch, 2000; Savarese et al., 2006), 

though one study showed that viral expression of Special AT-rich Binding protein 

(SATB1) confers the capacity for silencing post-differentiation (Agrelo et al., 2009). 

However, these studies are limited by the use of transgenic Xist targeted to an autosome 

in a diploid cell, thus creating a deleterious monosomy upon Xist activation, and in some 

cases, the read-out for chromosome silencing is cell death (Wutz and Jaenisch, 2000; 

Savarese et al., 2006). Some prior evidence suggests differentiated HT1080 cancer cells 

have capacity for silencing (Hall et al., 2002a; Chow et al., 2007). However, as discussed 

in Chapter III, cancer cells often resemble pluripotent cells epigenetically, and may 

therefore exhibit epigenetic plasticity that normal somatic cells lack. Importantly, our 

system targeting human XIST to a trisomic chromosome 21 provides further indication 

that XIST-mediated human chromosome silencing may be possible in a fully 

differentiated primary cell. 
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Proper XIST RNA localization requires specific scaffold proteins and DNA 

packaging, not specific DNA sequence 

The capacity for transgenic XIST RNA to spread to and silence an autosome also 

might suggest that XIST RNA could spread across and silence a chromosome from a 

different species. However, evidence presented in this thesis and prior evidence suggests 

that chromosome packaging may be more important than DNA content, therefore, the 

chromosome’s species of origin may matter less than the cellular context. For example, 

human XIST RNA will not spread to a human chromosome in a mouse cell (Clemson et 

al., 1998). This is particularly interesting given that SAF-A, shown to be involved in 

localizing XIST/Xist RNA in both species, is highly conserved, with only ~20 amino 

acids different between mouse and human. Therefore, this provides further support that 

SAF-A is not the sole XIST/Xist RNA localization factor in either species, and it 

supports the hypothesis that the proteins packaging chromosomal DNA are essential for 

XIST RNA localization, and the human RNA and DNA alone are not sufficient.   

Additional support that proper DNA packaging is required for XIST RNA spread 

comes from studies showing human XIST RNA can paint a mouse chromosome in mouse 

ES cells. Although this only occurred when XIST was expressed from a yeast artificial 

chromosome (YAC) containing the entire XIC (Heard et al., 1999; Migeon et al., 1999), 

and not in clones with low-copy number XIST integrations (in which the RNA may have 

been unstable) (Heard et al., 1999; Migeon et al., 2001b) and (Lawrence lab, unpublished 

observations), this supports that scaffold proteins are more important for RNA 

localization than the DNA (or RNA) by itself. As further illustrated by the table below, 
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the human RNA can’t localize unless the DNA and scaffold proteins are species 

compatible.  

It would be interesting to test whether human XIST RNA would spread to a 

mouse chromosome in a human cell, where the RNA and proteins are species-compatible, 

but the DNA is not. Evidence that DNA sequence is not involved in XIST RNA spread 

suggests that perhaps it would. However the human packaging proteins may not properly 

fold the foreign DNA, making it unrecognizable to the RNA. 

 

RNA DNA Proteins Localized RNA? 

Human Human Mouse no 

Human Mouse Mouse yes (copy-number dependent) 

Human Mouse Human ?

 

Similar studies have been done in other organisms. XIST-mediated XCI is a 

eutherian mechanism, however marsupials also inactivate an X chromosome through the 

action of a recently-discovered noncoding RNA that like XIST RNA, paints the inactive 

chromosome territory (Grant et al., 2012; Whitworth and Pask, 2016). RNA on the silent 

X (RSX) is a ~27 kb spliced and polyadenylated RNA enriched in several tandem repeats, 

however it has no sequence homology with Xist/XIST (Grant et al., 2012). Notably, it was 

shown that a single-copy Rsx transgene inserted into mouse chromosome 18 produces an 

RNA that paints the mouse chromosome and induces partial silencing. We also have 

evidence that under some circumstances mouse Xist RNA paints a human chromosome in 
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a human cell (unpublished observations), therefore, human XIST RNA may be unique in 

its more limited ability to localize to foreign or improperly packaged DNA.  

Other species with X and Y sex chromosomes have mechanisms of dosage 

compensation that differ more significantly from eutherians, and these include 

upregulation of the X chromosome in male Drosophila (through the MSL complex which 

includes Rox ncRNAs), and partial silencing of both X chromosomes in C. elegans 

hermaphrodites (through the multi-protein DCC complex which contains several 

condensin proteins) (for review: (Chery and Larschan, 2014)). It is interesting to 

speculate whether XIST RNA would paint and silence a C. elegans chromosome, for 

example, in either a human or C. elegans cell. Evidence suggests that cellular context is 

more important than chromosome sequence suggests that this would be more likely to 

occur in the human cell than in the C. elegans cell.  

Multiple anchors localize XIST RNA 

As described in Chapter I, identification of XIST RNA binding and localization 

factors has been difficult. XIST RNA is embedded in nuclear structure and has eluded 

most extraction-based methods of study. Hasegawa et al. (2010) reported that SAF-A 

depletion consistently released Xist RNA in mouse neuroblastoma cells, suggesting that 

SAF-A, an abundant nuclear matrix protein that binds both DNA and RNA, is the 

singular factor required for its localization. However, this finding contradicts prior 

evidence manipulating XIST RNA during the cell cycle, which suggested multiple 

proteins would anchor the long RNA molecule to the human chromosome, and that one 

of these proteins is a substrate of the mitotic kinase Aurora B (Hall et al., 2009). 
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Therefore, despite decades of work, we still lacked a clear picture of the proteins 

involved in XIST RNA localization. 

Described in Chapter III, I investigated the role of SAF-A in human XIST RNA 

localization and provide evidence that the factors binding XIST RNA to the chromosome 

exhibit complex biology, which varies with cell type. I affirm that mouse Xist RNA is 

completely delocalized in the Neuro2a neuroblastoma cells studied by Hasegawa et al. 

(2010), but its localization is at most mildly perturbed in normal MEFs, consistent with 

our results in primary human cells. These findings in MEFs directly contradict the 2010 

study, which relied on MEFs to support that the observations in Neuro2a cells were 

generally applicable and not due to anomalies of the Xi in the Neuro2a line, which are 

known to lack specific Xi hallmarks. This thesis contributes a needed depth of 

perspective and correction of an overly simplified view of the biology of Xist RNA 

localization and erroneous conclusion that SAF-A is singularly required for Xist RNA 

localization (Hasegawa et al., 2010). 

I uncovered multiple lines of evidence supporting that XIST RNA is not tethered 

to the chromosome by a single anchor protein. The Neuro2a cells used by Hasegawa et 

al. (2010) proved the only cell line, even among several transformed cell lines, to show a 

complete requirement for SAF-A to localize Xist RNA. Moreover, in various normal 

cells tested, effective SAF-A RNAi simply did not release XIST/Xist RNA from the 

chromosome. Importantly, this included the same cells and RNAi approach Hasegawa et 

al. used, further suggesting it is not a technical difference. In addition, I found evidence 

that SAF-A is not required to keep XIST RNA on the chromosome using a very different 
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experimental strategy, by manipulating the normal release of XIST RNA during mitosis. 

Our lab previously showed that AURKB activity is one factor controlling XIST RNA 

release (Hall et al., 2009). Here, I further show that AURKB phosphorylation is not 

required for SAF-A release. Thus, SAF-A is not the “AURKB-dependent” XIST RNA 

anchor. Supporting this, simultaneous knockdown of SAF-A and activation of AURKB 

during interphase increased XIST RNA mislocalization in normal cells. Therefore, while 

SAF-A may be involved in localizing XIST RNA, it is one of multiple factors.  

Most recently, I found preliminary evidence that SAF-A may not be the only Xist 

RNA anchor in Neuro2a cells. Human SAF-A consistently releases from the mitotic 

chromosome after XIST RNA (Chapter III), but mouse Xist RNA hangs on to the mitotic 

chromosome slightly longer. I frequently observed Neuro2a cells in which Xist RNA 

remained on the mitotic Xi after SAF-A had been released (data not shown). While this 

may be transient and/or fleeting, it is possible that another protein anchors Xist RNA 

after SAF-A has been released. If, like all other cell types tested, Neuro2a cells have 

multiple anchors for Xist RNA, SAF-A RNAi may affect Xist RNA in these cells in a 

more dominant negative way, for example, by disrupting the overall nuclear scaffold. 

This is supported by visible changes to chromatin structure that occur after SAF-A 

knockdown in these cells that do not appear to occur in other cells types examined (not 

shown).  

It will be important for future studies to examine the potential role of putative Xist 

RNA binding proteins recently identified in several RNA pull downs described above. I 

have demonstrated a tool to examine relationships in situ, to determine whether specific 
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proteins localize with XIST RNA when it is forcibly retained on the mitotic Xi. I show 

evidence that one of these proteins, hnRNP K, binds XIST RNA directly within the cell, 

but hnRNP M and C may not. Future studies examining additional antibodies in both 

somatic and pluripotent cell types may help to narrow down the long list of candidate 

Xist RNA binding proteins. This may also lead to identification of the putative “AURKB-

dependent” XIST RNA anchor protein, if one of these candidates is found to be retained 

on all mitotic chromosomes after AURKB inhibition when it is normally released. 

Epigenetic evolution of the chromatin-RNA interactome in transformed and cancer 

cells  

This study provides evidence for a new concept: that the normal faithful binding 

of an RNA that epigenetically regulates chromatin may be commonly weakened or 

compromised in cancer. Cancer progression almost invariably involves epigenetic as well 

as genetic instability (for review, see (Timp and Feinberg, 2013)). Any compromise in 

the binding of epigenetic RNAs to chromatin could contribute to this instability.  

While SAF-A RNAi minimally impacted XIST RNA localization in normal cells, 

it had a moderate effect in several immortalized and transformed cell lines. Compromise 

of RNA’s interaction with chromatin may be common and important to the deregulation 

of the epigenome in cancer, and it likely relates to other perturbations to nuclear structure 

during transformation and cancer progression, which commonly includes loss of 

organized heterochromatin. Earlier studies suggesting that neoplasia can involve changes 

to the nuclear scaffold (Getzenberg et al., 1991; Konety and Getzenberg, 1999) support 

the suggestion that RNA mislocalization is underpinned by loss or compromise of certain 
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nuclear architectural proteins. It appears such changes can contribute to heterogeneity, as 

I observed the XIST RNA phenotype shows marked variability in clusters of cells of 

some transformed cell lines (before and after treatment), consistent with epigenetic 

evolution of the chromatin-RNA “interactome.”   

Further supporting this, XIST RNA localization is lost or compromised in many 

cultured cancer cell lines (Pageau et al., 2007a; Pageau et al., 2007b). I also noted that the 

XIST RNA territory often appears “decondensed” in transformed cells prior to SAF-A 

knockdown, similar to fibroblasts after SAF-A knockdown. Hence, this leads credibility 

to the conclusion that cancer cells can commonly lack certain factors that normally 

contribute to the packaging of XIST RNA territories, making XIST RNA more 

susceptible to release by knockdown of a single nuclear scaffold factor (i.e. SAF-A). 

As described in Chapter III, one XIST RNA anchor is a substrate of Aurora B 

Kinase, which phosphorylates H3 Serine 10 along the chromosome arms at the onset of 

mitosis. Overexpression of AURKB is another common property of cancer cells (Hegyi 

and Mehes, 2012). AURKB activity was shown to be essential for proper chromosome 

condensation and segregation, and failure of H3 phosphorylation can lead to polyploidy 

(Hauf et al., 2003). However, through an unknown mechanisms, hyper phosphorylation 

of H3S10 caused by AURKB overexpression can lead to aneuploidy (Ota et al., 2002), 

which is both a symptom and a cause of epigenetic instability that can lead to cancer. 

Since AURKB activity is required for the mitotic release XIST RNA from the 

chromosome (Hall et al., 2009), it is possible that excess active AURKB contributes to 

the loss of XIST RNA commonly seen in cancer cells. It may also abrogate the AURKB-
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dependent XIST RNA anchor, making cancer cells more susceptible to XIST RNA 

release by SAF-A RNAi alone. For example, in Chapter III I show evidence that 

simultaneous activation of AURKB (via RNAi to its inhibitor, PP1) and depletion of 

SAF-A in primary cells releases more XIST RNA than SAF-A or PP1 RNAi alone, 

perhaps mimicking the situation already existing in transformed cell lines that 

overexpress AURKB.  

Although my data provides evidence that SAF-A is not required for XIST RNA 

localization in somatic cells, it supports prior evidence that SAF-A is required for 

formation of the XIST RNA territory during XCI initiation in pluripotent cells (Hasegawa 

et al., 2010). Pluripotent cells share several properties with cancer cells including a 

relative lack of heterochromatin and “open” nuclear structure (Meshorer and Misteli, 

2006; Carone and Lawrence, 2013). Changes occurring during cancer development often 

return cells to a relatively de-differentiated state. Prior evidence has shown that the 

nuclear scaffold changes during differentiation, as it does during transformation 

(Dworetzky et al., 1990). We hypothesize that as cells differentiate, the nuclear scaffold 

evolves to contain many more proteins, including proteins that contribute to XIST RNA 

localization. In somatic cells, these proteins act in a semi-redundant fashion to maintain 

XIST RNA localization and heterochromatin organization.  

Collective evidence supports a model in which chromosomal XIST RNA attaches 

to a nuclear scaffold that increases in complexity as cells differentiate, and loses 

complexity in cancer. However, future studies are needed to further characterize the 

relationship of chromosomal RNA to nuclear scaffold proteins. While work presented 
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here suggest a strong correlation between transformation and release of XIST RNA from 

the Barr body, similar analyses in additional cell types (both primary and transformed) 

are needed to further examine this potentially broadly important point for cancer biology.   

In addition, proteomic analysis after nuclear matrix fractionation in cancer compared to 

normal cells would be compelling to more precisely characterize changes to the nuclear 

matrix that occur with transformation. 

SAF-A may not function as a single molecule RNA-DNA bridge 

Having found that the nuclear scaffold is involved in localizing both XIST and 

CoT-1 chromosomal RNAs, and that SAF-A likely plays an important role, in Chapters 

III and V, I tested the requirement for SAF-A’s separate RNA and DNA binding 

domains. These experiments were complicated by the fact that transient overexpression 

of the SAF-A deletion mutants and of the full-length protein mislocalized XIST and CoT-

1 RNAs, while also inducing dramatic changes to overall chromatin structure (visible by 

DAPI staining). This suggests the stoichiometry of SAF-A must be carefully regulated 

for maintaining nuclear structure, and overexpression may disrupt other scaffold proteins 

in a dominant negative manner.  

I found that regardless of expression level, SAF-A containing a single point 

mutation in the DNA binding SAP domain (G29A) delocalizes XIST RNA in multiple 

cell types, and it was unable to rescue XIST RNA localization after SAF-A RNAi (in 

transformed cells in which SAF-A depletion has an effect). In contrast, expression of the 

putative RNA binding domain deletion mutant (ΔRGG) had a minimal effect on XIST 

RNA localization, and, surprisingly, it was able to rescue XIST RNA localization 
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following SAF-A knockdown. Since this result did not affirm the conclusions from 

rescue experiments with the mouse ΔRGG mutant by Hasegawa et al. (2010), I examined 

this question multiple times, first by transient transfection as in Hasegawa et al., and then 

in stable cell lines expressing dox-inducible SAF-A (and deletion mutants) to avoid the 

overexpression effects of SAF-A constructs on XIST RNA localization. Hence, my 

results further argue against a simple model that SAF-A forms a single molecule bridge 

necessary to connect XIST RNA to the Xi DNA.  

I was not able to perform the same rescue experiments with CoT-1 RNA, since 

SAF-A RNAi had no effect on CoT-1 RNA in the hybrid cells used to visualize CoT-1 

RNA localization. Nevertheless, at lower expression levels, both the SAP and RGG 

domain mutants mislocalized CoT-1 RNA in over 50% of cells (human fibroblasts and 

mouse-human hybrid cells), and the ΔRGG mutant had a greater effect on CoT-1 RNA 

than on XIST RNA. The fact that the distribution of the ΔRGG mutant no longer closely 

coincides with CoT-1 RNA, which becomes displaced from chromatin, suggests that 

SAF-A normally binds CoT-1 RNA through its RGG domain. It is interesting that when 

the ΔRGG mutant localizes over chromatin, both endogenous SAF-A and CoT-1 RNA 

become excluded. Although this could fit with a requirement of SAF-A’s RGG domain to 

localize CoT-1 RNA to chromatin, our collective findings suggest that SAF-A mutants 

can have dominant negative effects on other chromosomal proteins and more generally 

perturb the nuclear scaffold, and the total lack of a CoT-1 RNA phenotype after SAF-A 

RNAi argues against a model in which SAF-A is a single molecule bridge between CoT-

1 RNA and DNA.  
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It is generally assumed that scaffold proteins bind or tether chromosomal RNAs to 

chromatin (histones wrapped in DNA). SAF-A has been considered a prime candidate for 

this with its separate RNA and DNA binding domains. Results in Chapters III and V 

support a model in which SAF-A is fundamental in attaching S/MAR regions of DNA to 

the nuclear scaffold. This is consistent with early evidence that SAF-A not only binds 

AT-rich DNA with high affinity in vitro, but also organizes DNA into loops 

(Fackelmayer et al., 1994). However, direct binding between SAF-A and chromosomal 

RNA is less clear. Differences in the XIST and CoT-1 RNA phenotypes in cells 

expressing the ΔRGG domain mutant suggest that the two RNAs may differ in how they 

interact with the nuclear matrix and SAF-A. This is plausible given the divergent nature 

of euchromatin and heterochromatin. Further experiments are required to truly know the 

nature of the relationship between SAF-A’s RGG domain and chromosomal XIST and 

CoT-1 RNAs. Despite this, collective results using both RNAi and deletion constructs 

support a model in which SAF-A is a major player in forming a “basement” layer of 

nuclear architecture, supporting that interconnected DNA, RNA, and protein are woven 

into a “fabric” of the interphase chromosome (see model in Figure 5.9) 

Chromosomal association of SAF-A and RNA may be mutually dependent 

We were surprised to find that RNAse treatment which effectively eliminates 

RNA from nuclei also eliminates SAF-A. It is curious that disruption of SAF-A’s 

association with RNA would also impact its association with DNA, especially given that 

SAF-A was shown to have greater affinity for DNA than for RNA in vitro (Fackelmayer 

et al., 1994). This finding also is not compatible with the prevailing model in which SAF-



179 
 

A anchors chromatin-associated RNAs to the scaffold. Instead, this suggests the potential 

for a mutually dependent chromosomal association of SAF-A and RNA. The idea that a 

protein may require RNA for association with chromatin is not unprecedented, as it was 

recently shown that noncoding RNAs transcribed from regulatory elements may tether 

the transcription factor YY1 to those sites in a positive feedback loop stabilizing 

transcription (Sigova et al., 2015). 

Other evidence supports the concept that SAF-A associates with chromatin in an 

RNA-dependent manner. As described in Chapter III and above, XIST RNA is normally 

released from the Xi in prophase after activation of AURKB. AURKB inhibition (with 

the drug Hesperadin) leads to XIST RNA retention on the mitotic Xi, and this leads to 

Xi-specific retention of SAF-A (which releases from all other chromosomes as usual). 

While it is possible that AURKB phosphorylation impacts SAF-A specifically on the Xi 

but not on all other chromosomes, a more likely explanation is that XIST RNA retention 

(by the AURKB substrate) leads to retention of the entire XIST RNA localization 

complex which includes SAF-A. In this situation, XIST RNA tethers SAF-A rather than 

SAF-A tethering XIST, as one might initially expect. It is noteworthy that mitotic release 

of CoT-1 RNA from euchromatic chromosomes is not affected by Hesperadin treatment. 

It would be interesting to see if SAF-A would be retained on all chromosomes with CoT-

1 RNA if we had a way to test this. 

In contrast to results with SAF-A, RNAse has no effect on the nuclear matrix 

protein Lamin B1. Lamin B1 is an intermediate filament protein that polymerizes into a 

network of nuclear fibers that concentrate in the nuclear lamina abutting the nuclear 
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envelope. The lamins also distribute throughout the nucleoplasm, thus providing 

mechanical stability and structure to the nucleus, analogous to the cytoskeleton (Goldman 

et al., 2002). Similar to SAF-A, lamins have been shown to play a role in higher order 

genome organization, binding to chromatin and to a large number of nuclear regulatory 

proteins (Dittmer and Misteli, 2011). The finding that two major structural components of 

the nucleus are differentially impacted by RNA depletion supports a new model in which 

the architectural fabric of chromosomes comprises two distinct “layers,” one that requires 

an RNA component to maintain its structural relationships, and one that does not. While 

experiments with RNAse and the ΔRGG SAF-A mutant indicate that the RNA-dependent 

component is required to maintain “open” chromatin structure, other aspects of nuclear 

structure may depend on the lamina. These include overall nuclear shape, which is not 

altered in cells after RNA depletion, and/or the organization of chromosome territories.  

Potential for competition between XIST and CoT-1 RNAs binding to the scaffold on 

the inactivating Xi 

Comparing/contrasting CoT-1 RNA with XIST RNA offers an interesting 

perspective from which to evaluate the role of each RNA in determining chromatin 

structure. XIST and CoT-1 RNAs have several similarities, but CoT-1 RNA distributes 

specifically over euchromatin, rather than condensed heterochromatin like XIST. This 

mutually exclusive relationship presents an enticing model: that XIST RNA may out-

compete or somehow displace CoT-1 RNA during the initial silencing of the X 

chromosome. Further, the nature of the RNA may modify the architectural arrangement 

of other components to shape chromatin packaging into heterochromatin or euchromatin. 
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The Barr body is enriched in CoT-1 DNA but lacks CoT-1 RNA (Clemson et al., 

2006). While these sequences are what traditionally would have been considered silent 

junk DNA, evidence in Chapter IV suggests at least some may contribute to the CoT-1 

RNA signal on the X chromosome prior to its inactivation during development (Hall and 

Lawrence, 2010). CoT-1 RNA silencing is one of the earliest events in the initial 

silencing of the X chromosome (Lawrence lab, unpublished observations). Prior evidence 

showed that formation of the CoT-1 RNA “hole” on the Barr body is spatially (Clemson 

et al., 2006) and temporally (Chaumeil et al., 2006) separable from gene silencing, and 

results described above show that CoT-1 RNA loss is coincident with DNA 

condensation. This suggests CoT-1 silencing may be a fundamental step in 

transformation of chromatin from active to inactive, as it is required for DNA 

condensation into the Barr body. It further raises the possibility that competition for XIST 

RNA binding contributes to CoT-1 RNA silencing and Barr body formation during 

initiation of XCI. This may also be a mechanism that allows for XIST-mediated silencing 

to occur on any chromosome (as shown in Chapter II), not just the X. Whereas XIST 

RNA may function to promote chromatin condensation, CoT-1 RNA may conversely 

promote decondensation. In vitro competition studies analyzing XIST and CoT-1 RNAs 

binding to SAF-A would further test this hypothesis.  

Concluding remarks 

Collective results presented in this thesis support a model in which SAF-A does 

not function as a bridge tethering RNA directly to DNA, and instead they suggest a more 

complex relationship. Supporting earlier evidence for an RNA component to the “core 
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filaments” of a nuclear scaffold (He et al., 1990), the data seems to fit a model in which 

chromosomal RNA serves as a virtual “nuts and bolts” for scaffold proteins and 

chromatin in the RNA-dependent fraction of the nuclear scaffold. This sheds light on how 

nuclear RNA that resists extraction contributes to interphase nuclear architecture and 

influences chromatin condensation. I further show that an additional component to the 

nuclear scaffold does not require the presence of this RNA. The recent discovery of a 

vastly underestimated transcriptome containing numerous previously unknown 

noncoding RNAs raises the possibility that other RNAs may also interact with and 

regulate chromatin loci as part of the nuclear scaffold. Such a discovery would improve 

our understanding of the epigenetic state and how it is altered in cancer.   
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