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ABSTRACT 

Glioblastoma multiforme (GBM) tumors are highly malignant in nature and 

despite an aggressive therapy regimen, long–term survival for glioma patients is 

uncommon as cells with intrinsic or acquired resistance to treatment repopulate the 

tumor. This creates the need to investigate new therapies for enhancing GBM treatment 

outside of the standard of care, which includes Temozolomide (TMZ). Our lab focused 

on two novel strategies to overcome resistance in GBMs. In our first approach, the 

cellular responses of GBM cell lines to two new TMZ analogues, DP68 and DP86, are 

reported. The efficacy of these compounds was independent of DNA repair mediated by 

Methyl Guanine Methyl Transferase (MGMT) and the mismatch repair (MMR) pathway. 

DP68 or DP86 treated cells do not give rise to secondary spheres, demonstrating that they 

are no longer capable of self-renewal. DP68-induced damage includes interstrand DNA 

crosslinks and exhibits a distinct S-phase accumulation before G2/M arrest; a profile that 

is not observed for TMZ-treated cells. DP68 induces a strong DNA damage response and 

suppression of FANCD2 expression or ATR expression/kinase activity enhanced the anti-

GBM effects of DP68. Collectively, these data demonstrate that DP68, and to a lesser 

extent DP86, are potent anti-GBM compounds that circumvent TMZ resistance and 

inhibit recovery of cultures. Our second approach stems from a previous discovery in our 

lab which demonstrated that the combination of TMZ with Notch inhibition, using a 

gamma secretase inhibitor (GSI), enhances GBM therapy. Efficacy of TMZ + GSI 

treatment is partially due to GBM cells shifting into a permanent senescent state. We 

sought to identify a miR signature that mimics the effects of TMZ + GSI as an alternative 
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approach to enhance GBM therapy. MiR-34a expression was highly upregulated in 

response to TMZ or TMZ + GSI treatment. Exogenous expression of miR-34a revealed 

that it functions as a tumor suppressor and mimicked the in vitro effects of TMZ + GSI 

treatment. Additionaly, miR-34a overexpression leads to the downregulation of Notch 

family members. Together these two studies contribute to our understanding of the 

complex mechanisms driving resistance in GBM tumors and suggest strategies to develop 

more effective therapies.  
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CHAPTER I 

Introduction 

Gliomas 

The annual incidence of primary and central nervous system tumors is 6.4 per 

100,000 men and women per year. This year alone 22,850 new brain and central nervous 

system tumor cases are estimated, making up 1.4% of all new cancer cases (Institute 

2015). Astrocytomas are a subtype of glioma derived from astrocytes, one of the major 

types of glial cells (Kimelberg and Nedergaard 2010). Clinically, astrocytomas are 

divided into four grades established by the World Health Organization (WHO). The 

classification is based on histology and tumors are given a grading of I-IV depending on 

presence and extent of nuclear atypia, mitosis, microvascular proliferation, and necrosis 

(Louis, Ohgaki et al. 2007). Grade I (pilocytic astrocytoma) and II (diffuse astrocytoma) 

tumors are considered low grade while Grade III (anaplastic astrocytoma) and IV 

(Glioblastoma Multiforme (GBM)) are high-grade, malignant tumors (Figure 1.1 A). 

These astrocytic tumors are rapidly proliferating, heterogeneous, have aberrant 

vascularization, and are diffuse infiltrative in nature (Veliz, Loo et al. 2015), meaning 

tumors grows intermingled with normal brain cells. This makes it hard to define tumor 

borders and makes surgical resection challenging and not curative. GBMs are different 

from the low grade tumors in that they have microvascular proliferation and necrosis 

(Louis, Ohgaki et al. 2007) (Figure 1.1 B-C). These tumors grow so quickly that the 

vasculature is unable to keep up, resulting in necrosis. 
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GBMs can be divided into de novo (primary) GBMs and secondary GBMs. 

Secondary GBMs progress from a lower grade astrocytomas (Ohgaki and Kleihues 

2013). Primary GBMs are characterized by EGFR amplification, loss of heterozygosity 

(LOH) on chromosome 10q, and inactivation of PTEN. On the other hand, secondary 

GBMs exhibit PDGFR activation and p53 mutations, which are rare in de novo GBMs 

(Ohgaki and Kleihues 2013; Ahmed, Oborski et al. 2014). 

 

Integrative genomic studies of GBM tumors have given us insights into the 

signaling networks driving this disease. Of those commonly altered are the p53 and RB 

pathways, and receptor tyrosine kinases (RTK)-activated pathways (Cancer Genome 

Atlas Research 2008). The p53 pathway was dysregulated in 85.3% of GBM, RB 

pathway dysregulated in 78.9%, and RTKs are altered in 67% of GBMs; most GBMs 

have alterations in all three pathways (Chen, McKay et al. 2012; Brennan, Verhaak et al. 

2013). These large studies have elucidated the redundancy of signaling pathways within 

GBM cells. This is important as it gives us insight into how GBM cells can quickly evade 

targeted therapies. 

  

The epidermal growth factor receptor (EGFR) is amplified or mutated in ~ 40% 

of tumors and critical for GBM signaling, contributing to anti-apoptotic, angiogenic, and 

invasive pathways (Chandramohan, Bao et al. 2013). In addition, PTEN which is 

frequently inactivated in GBMs (Cancer Genome Atlas Research 2008; Brennan, 

Verhaak et al. 2013) coupled with activated EGFR signaling, keeps tumors in a constant 
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proliferative state as a result of downstream activation of the growth and survival 

PI3K/Akt pathway. One well studied EGFR mutation is the EGFR variant III 

(EGFRvIII), which results from deletion of exons 2-7 of EGFR, leaving the receptor 

unable to bind to its ligand, and results in constitutively active EGFR signaling (Gan, 

Kaye et al. 2009). Lack of EGFR or EGFRvIII expression in normal cells makes it an 

attractive target for therapy. However, EGFR tyrosine kinase inhibitors (TKI), such as 

Gefitinib and Erlotonib, have shown very little promise in the clinic so far  (Perry, 

Okamoto et al. 2012).    

 

Using large-scale sequencing, novel GBM-associated mutations have been 

identified (Parsons, Jones et al. 2008). It was found that 50-80% of low-grade gliomas 

carried mutations of isocitrate dehydrogenase 1 (IDH1) or isocitrate dehydrogenase 2 

(IDH2) while later studies showed that IDH mutants are more prevalent in secondary 

GBMs with 60-90% expressing mutant IDH proteins (Prensner and Chinnaiyan 2011; 

Zhang, Moore et al. 2013). Although a variety of other tumor types bear IDH mutations, 

the percentages of mutation-positive tumors are much less than for GBMs. The IDH1 and 

IDH2 enzymes catalyze the oxidative decarboxylation of isocitrate, producing α-

ketogutarate (α-KG) and regenerating NADPH as part of the tricarboxylic (TCA) cycle. 

For both enzymes, arginines in the catalytic pocket (IDH1 R132 and IDH2 R140 or 

R172) are mutated. The uniqueness of these mutations suggested a gain-of-function 

mutation, and a subsequent study demonstrated that these mutated IDH enzymes reduced 

α-KG to an oncometabolite, 2-hydroxyglutarate (2-HG) (Dang, White et al. 2009). 
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Overexpression of these mutated IDH enzymes induces histone and DNA 

hypermethylation and blocks cellular differentiation. 

 

A natural question is whether IDHs are targets for therapy. Although IDH is 

universally expressed, the unique IDH mutations could be specifically targeted, lowering 

levels of 2-HG and slowing tumor growth. In two recent studies, promising IDH 

inhibitors were described (Rohle, Popovici-Muller et al. 2013; Wang, Travins et al. 

2013). Both the IDH1 and IDH2 inhibitors showed marked preferences for the cancer-

mutated IDH enzymes. Wang et al (Wang, Travins et al. 2013) inhibited the mutated 

IDH2 enzyme in leukemia cells, slowing cell proliferation and inducing differentiation. 

Rohle et al (Rohle, Popovici-Muller et al. 2013) used the IDH1 inhibitor to slow 

proliferation of GBM cells, induce demethylation of histones and enhance astroglial 

differentiation. These results have exciting applications for the clinic. For example, a 

mutated IDH inhibitor with low toxicity might delay progression of low-grade to high-

grade tumors. 

 

Standard of Care: surgery, radiation, and chemotherapy 

In 2000, a phase III study was carried out by the European Organization for 

Research and Treatment of Cancer (EORTC) and the National Cancer Institute of Canada 

with the objective of comparing the regimen of TMZ concurrent and adjuvant to 

radiotherapy versus radiotherapy alone.  At the two year time point, a statistically 

significant increase in survival rate was observed; from 10% with radiation alone to 27% 
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when radiation was combined with TMZ. For patients, that translates to an increase in 

median overall survival (OS) of 14.6 months from 12.1 months (Stupp, Mason et al. 

2005).  As a result of the Stupp et al study, the standard of care now consists of surgical 

resection, coupled with ionizing radiation, and the chemotherapeutic agent TMZ 

(Temodar, Temodal) (Stupp, Mason et al. 2005; Stupp, Hegi et al. 2009). Patients receive 

30 fractions of 200 cGy five days a week, for six weeks, for a total radiation therapy dose 

of 60 Gy. TMZ is orally available and treatment begins with a 75 mg/m2 daily dose while 

patients are receiving radiation. Adjuvant dose of TMZ increases to 150-200 mg/m2 for 

five consecutive days, every four weeks, for a total of 6 months (Grossman, Ye et al. 

2011). 

 

Despite aggressive surgical resection and chemotherapy, almost all GBM patients 

undergo tumor recurrence. Ninety percent of GBM tumors have been shown to recur 

within 2 cm of the original tumor (Wen and Kesari 2008; Milano, Okunieff et al. 2010).  

Many patients undergo further surgical resection and therapy options include: 

rechallenging with TMZ or other alkylating agents (carmustine, lomustine,), platinum 

drugs, or the VEGF inhibitor, bevacizumab (Avastin®). However, these measures are not 

curative and ultimately patients succumb to this disease.  
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Glioma Chemotherapy: TMZ and Gliadel 

TMZ is an orally available alkylating drug that crosses the blood brain barrier 

(BBB) (Zhang, Stevens et al. 2012). It has excellent uptake and distribution behavior, and 

there is direct evidence of tumor localization (Spiro, Liu et al. 2001).  TMZ is a prodrug, 

and its aqueous chemistry is typical of imidazotetrazine compounds (Figure 1.2 A). It 

undergoes hydrolytic ring opening at neutral or alkaline pH under purely chemical 

control, and the first significant intermediate is the open-chain triazene MTIC (Figure 1.2 

A) (Wheelhouse and Stevens 1993). 

 

 The activated intermediate MTIC is shared with dacarbazine, a prodrug used 

against malignant melanoma, which in contrast, requires hepatic demethylation to release 

MTIC. From MTIC, methyldiazonium is released, which methylates DNA (Figure 1.2 

B). The majority (70%) of the methyl groups transferred to DNA appear at N7-Guanine 

(N7-G) sites with only about 10% at N3-Adenine (N3-A) and 5% at O6-Guanine (O6-G) 

(Denny, Wheelhouse et al. 1994; Zhang, Stevens et al. 2012). P53 status impacts the 

response TMZ elicits within the cell. The classical prolonged G2/M arrest known to 

occur following TMZ treatment is characteristic of p53 wild-type cells. In contrast, p53 

deficient cells have a minimal G2/M arrest (Hirose et al, Cancer Research 2001).  

 

 Gliadel is a biodegradable wafer impregnated with carmustine (bis-

chloroethylnitrosourea (BCNU)), a small lipophilic alkylating and interstrand 

crosslinking nitrosourea (Perry, Chambers et al. 2007; Panigrahi, Das et al. 2011).  There 
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are strong parallels between the mechanisms of prodrug activation and action of 

carmustine and TMZ (Figure 1.3)  (Pratt, Ruddon et al. 1994).  Under physiological 

conditions, spontaneous hydrolysis results in fragmentation of the nitrosourea to release 

an alkyldiazoinium ion  (in this case chloroethyldiazonium) and an isocyanate (Bleasdale, 

Golding et al. 1991).  Subsequent reaction of the isocyanate with biological 

macromolecules is not a major contributor to the pharmacology.  Chloroethyldiazonium 

in aqueous systems has a complex fate (Lown and Chauhan 1981; Lown and Chauhan 

1982), but the therapeutic activity is derived from guanine chloroethylation of DNA, in 

particular at O6-G positions, and further reaction of the monoalkylation adducts to form 

interstrand crosslinks.  

 

 Gliadel wafers are implanted in the cranial resection cavity prior to radiotherapy. 

The Gliadel wafers release high local concentrations of carmustine directly into the tumor 

bed after surgery when the tumor burden is low (Grossman, Reinhard et al. 1992; Fung, 

Ewend et al. 1998). The rationale for this approach is that the resection cavities are 

relatively avascular and Gliadel may target cells missed by systemically administered 

carmustine. Furthermore, the wafers release carmustine for several weeks. In contrast, 

systemically administered carmustine persists only for a few hours. Clinical trials 

demonstrated that Gliadel wafers are safe for both newly diagnosed and recurring GBMs 

(Kleinberg, Weingart et al. 2004; McGirt, Than et al. 2009). Radiotherapy plus Gliadel 

showed greater OS than radiotherapy alone. However, the combination of radiotherapy, 

TMZ and Gliadel did not show a statistically significantly increase in survival over 
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radiotherapy and TMZ. As a result, radiotherapy and TMZ continue to be the standard 

therapy for GBMs. 

 

DNA Damage Repair 

MGMT  

 The best-documented mechanism of resistance to TMZ is mediated by the DNA 

repair protein MGMT, which removes methyl groups from O6-meG lesions that arise 

from TMZ treatment (Park, Kim et al. 2012). During the repair process, the modified 

base is flipped out of the double helical stack so it can enter the MGMT active site; its 

position in the DNA duplex being taken by a lysine residue (Pegg 2000).  In the active 

site, base-catalysis generates a reactive thiolate nucleophile from cysteine 145 (in the 

human form).  This cleaves the C-O bond of O6-meG in a nucleophilic substitution 

reaction that results in a mixed thioether product, leading to the inactivation of the protein 

(Figure 1.4) (Daniels, Mol et al. 2000). MGMT is thus a reagent consumed 

stoichiometrically during the repair reaction, not an enzyme. In the context of TMZ 

antitumor activity, DNA repair by MGMT is the primary mechanism of drug resistance. 

 

MGMT expression inversely correlates with sensitivity to the alkylating agents 

TMZ and carmustine in glioma cells and glioma stem-like cells (Gerson 2002; 

Hermisson, Klumpp et al. 2006; Sato, Sunayama et al. 2011). Differentiated cell lines 

with elevated levels of MGMT show increased chemoresistance (van Nifterik, van den 

Berg et al. 2010; Villalva, Cortes et al. 2012). This dependence has been demonstrated by 
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treating glioma, leukemia, ovarian, and breast cell lines with suicide inactivators of 

MGMT, O6-Benzylguanine (O6-BG) (Kanzawa, Bedwell et al. 2003) or 6-[(4-Bromo-2-

thienyl) methoxy]-9H-purin-2-amine (PaTrin-2) (Barvaux, Ranson et al. 2004; Clemons, 

Kelly et al. 2005; Turriziani, Caporaso et al. 2006); MGMT inhibition increased 

sensitivity to TMZ treatment. 

 

 Methylation of the MGMT promoter occurs in approximately 45% of newly 

diagnosed GBM patients and is prognostic for response to TMZ treatment (Hegi, 

Diserens et al. 2004). Patients with MGMT promoter methylation have increased survival 

when treated with radiotherapy in combination with TMZ, while patients with MGMT-

positive tumors do not benefit as greatly from this dual treatment (Hermisson, Klumpp et 

al. 2006; Stupp, Hegi et al. 2009). Several methods can be employed to determine 

MGMT status (mRNA levels, protein levels by immunohistochemistry (IHC), and 

promoter methylation); however, current evaluations in the clinic usually only assess 

MGMT protein expression and promoter methylation. It remains unclear which technique 

has the greatest prognostic value in the clinical setting. In a new retrospective study, 

Lalezari et al (Lalezari, Chou et al. 2013) focused on 418 patients with newly diagnosed 

GBMs, of whom 410 were treated with radiotherapy and TMZ. Tumors were analyzed 

for MGMT protein expression via IHC, promoter methylation by methylation-specific 

PCR (MSP), and individual CpG sites were analyzed by bisulfite sequencing (BiSEQ). 

Low MGMT protein expression (<30% positive cells) and high promoter methylation 

individually correlated with OS and progression-free survival (PFS). MGMT MSP 
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correlated with MGMT IHC, and IHC status stratified outcome in the methylated group. 

This data was further validated by BiSEQ analysis of 24 CpG sites within the 

differentially-methylated region 2 (DMR2) of the MGMT promoter. Protein levels 

inversely correlated with methylation density in the DMR2 and showed that 

hypermethylation (≥3 CpG sites) was correlated with higher OS and PFS. Combining 

analyses of protein expression and promoter methylation offers superior prognosis than 

individual analyses of these factors and is recommended for testing of newly diagnosed 

GBMs (Lalezari, Chou et al. 2013). 

 

 A subpopulation of GBM patients have low MGMT expression with no detectable 

promoter methylation (Park, Kim et al. 2012; Lalezari, Chou et al. 2013), indicating that 

other molecular mechanisms also regulate MGMT expression. Recently, Kreth et al 

(Kreth, Heyn et al. 2010) focused on the post-transcriptional regulation of MGMT and 

found that MGMT was subject to alternative polyadenylation, giving rise to transcripts 

with varying 3’ untranslated region (UTR). The longer 3’UTRs were expressed in tumors 

and absent in normal brain tissue. MGMT protein levels were reduced when the 

elongated transcript was expressed. These results were independent of the promoter 

methylation and were attributed to decreased mRNA stability as a result of miRNA 

regulation. This study provides an explanation for tumors with unmethylated MGMT 

promoter and low MGMT expression and provides further insight into molecular 

mechanisms that regulate MGMT expression. Further studies are needed to evaluate 
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whether the long 3’UTR MGMT transcript is a prognostic factor for survival of GBM 

patients.  

 

MGMT Therapeutic Targets 

Inhibition of MGMT in combination with TMZ has been studied as an approach 

to improve treatment of GBMs in the clinic. O6-BG is a small-molecule pseudosubstrate 

that transfers a benzyl group to the MGMT active site cysteine 145 residue, thereby, 

inactivating MGMT and preventing removal of methyl groups from the DNA (Pegg 

2000). Initial phase I clinical trials showed that O6-BG effectively inhibits MGMT in 

GBM tumors, but TMZ therapy in combination with O6-BG was limited by 

myelosuppression (Quinn, Desjardins et al. 2005). This enhanced toxicity is attributed to 

O6-BG inhibition of the low levels of MGMT in hematopoietic progenitor cells. Studies 

on MGMT-/- mice, also demonstrated that damage to bone marrow was the main source 

of toxicity. This effect can be averted by transplantation of wild-type bone marrow into 

MGMT-/- mice (Reese, Qin et al. 2001). A new clinical trial will explore the feasibility 

of infusing hematopoietic progenitors modified to express MGMT via a retroviral vector 

as a way to overcome the limitation of therapy-induced myelosuppression (Srinivasan 

and Gold 2012).  

 

 One therapeutic strategy that has been evaluated is the use of increased doses and 

prolonged scheduling of TMZ as a means of depleting MGMT. This approach was shown 

to decrease MGMT activity in peripheral blood mononuclear cells (Tolcher, Gerson et al. 
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2003). In addition, a recent phase II study of 58 patients, with first recurrences, evaluated 

the efficacy and safety of a 21 days on/7 days off regimen at 75-100 mg/m2/day. Only 

patients whom had previously received TMZ concomitant and adjuvant radiotherapy 

were included, and the study was ended when second progressions occurred. This 

regimen proved to be safe, but none of the patients achieved a complete response. Partial 

responses for 13 % of patients were observed as well as 6 month PFS of 11 %, showing 

this regimen had little efficacy for recurrent tumors (Norden, Lesser et al. 2013).  

 

 Other approaches utilize RNAi to directly interfere with MGMT protein 

expression. Using MGMT-siRNAs and a novel liposome, LipoTrust EX Oligo, for 

delivery, MGMT was efficiently knocked down in glioma cells lines, GBM-stem like 

cells, and in vivo glioma tumors. In vivo delivery was effective whether administered 

intratumorally (IT) in a subcutaneous model or via an osmotic pump in an intracranial 

model. Both in vitro and in vivo, MGMT siRNA enhanced sensitivity to TMZ (Kato, 

Natsume et al. 2010). Another RNAi approach employed a lentiviral-based technology to 

target MGMT with a small hairpin RNA (Viel, Monfared et al. 2013). MGMT was 

successfully inhibited in TMZ-resistant glioma cultures, enhancing sensitivity to TMZ for 

tumors implanted into the flanks of nude mice. Efficient in vivo transduction of the 

shMGMT vector into GBM xenografts decreased MGMT expression and inhibited tumor 

growth following TMZ treatment. Although this seems a promising therapy, the efficacy 

and toxicity of these viral vectors require further evaluation. 

 



14 
 

 Post-translational regulation of MGMT occurs by the 26S proteasome, making 

this a candidate for therapy. Bortezomib (BTZ, PS-341) is a boronic acid dipeptide that 

inhibits the proteasome and markedly reduces levels of MGMT mRNA and protein 

(Vlachostergios, Hatzidaki et al. 2013). MGMT is directly regulated by NF-κB. The 

proteasome activates NF-κB by degrading its inhibitor, IκB. Upon treatment with BTZ, 

the proteasome is inhibited, IκB is stabilized, NF-κB is not activated, and MGMT levels 

are reduced. Efficacy of combined BTZ and TMZ therapy differed between glioma lines 

and was schedule-dependent. MGMT-negative U87MG cell line showed decreased 

viability and increased apoptosis when TMZ was administered before BTZ, while the 

opposite was true for MGMT-positive T98G cells. This effect was partially mediated 

through MGMT downregulation (Vlachostergios, Hatzidaki et al. 2013) and speaks to the 

importance of sequence of therapy in combination treatments. Primary glioma stem-like 

cells were more sensitive to proteasome inhibition by BTZ than normal neural stem and 

progenitor cells due in part to the lower proteasome activity (Gong, Schwartz et al. 2011), 

making it an attractive therapy to combat recurrence. Phase I studies showed BTZ to be 

well tolerated with thrombocytopenia being the most common toxicity (Dy, Thomas et al. 

2005; Phuphanich, Supko et al. 2010). BTZ is now clinically approved for hematopoietic 

malignancies (Phuphanich, Supko et al. 2010). 

 

MMR 

 The MMR pathway is made up of Mut S homologs (MSH) (MSH2, MSH3, and 

MSH6), MutL homologs (MLH) (MLH1, MLH3), and post meiotic segregation (PMS) 
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(PMS1, PMS2) (Pal, Permuth-Wey et al. 2008). Important for the repair of mismatch is: 

the MutSα heterodimer consisting of MSH2 and MSH6, as well as the MutLα 

heterodimer, made up of MLH1 and PMS2. MutSα recognizes the mispaired nucleotide 

and subsequently leads to the recruitment of MutLα, displacement of DNA polymerase 

and PCNA, and recruitment of an exonuclease (EXO1) (Rodrigues, Gomes et al. 2013).  

 

Deficiencies in MMR contribute to TMZ resistance 

The response to TMZ treatment does not absolutely correlate with MGMT levels, 

leading us to believe that additional mechanisms are at play. One mechanism thought to 

mediate resistance is loss of MMR (Ghosal and Chen 2013). O6-meG lesions 

mismatched with thymine bases are recognized by the MMR.  The thymine residue is 

excised; however, in the absence of MGMT, the O6-meG remains, and, thymine is 

reinserted opposite the O6-meG. These futile cycles of repair result in activation of ATR 

and Chk1, generation of double-strand breaks (DSBs) and eventually apoptotic cell death 

(Zhang, Stevens et al. 2012). Cells with MMR deficiencies do not process the mismatch, 

DNA replication proceeds, and no cell cycle arrest or apoptosis occurs.  

 

In vitro and in vivo analysis shows that resistance to alkylating agents is mediated 

by loss of MMR pathway protein such as MLH1 and MSH2 (Fink, Aebi et al. 1998; 

Shinsato, Furukawa et al. 2013; McFaline-Figueroa, Braun et al. 2015). In contrast, 

Rellecke et al (Rellecke, Kuchelmeister et al. 2004) showed that the source of resistance 

was high MSH2 expression in 25 primary de novo glioma cultures. The sensitivity of 
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these primary GBM cells to a panel of chemotherapeutic agents, including carmustine, 

cisplatin, and taxol, was evaluated with 36% of the cultures showing insensitivity to all of 

the agents tested. Expression levels of MMR across the 25 glioma cultures showed no 

differences between the lines, with the exception of MSH2. MSH2 expression was high 

in 48% of the tumors while the remaining 52% has low to undetectable levels. 

Interestingly, all the multiresistant tumors showed high MSH2 transcript. 

 

However, clinical studies examining MMR have failed to show that MMR 

deficiency is responsible for TMZ resistance. In one study, 52 glioma patient samples 

were assessed for microsatellite instability (MSI), which is thought to be a result of MMR 

gene inactivation (Martinez, Schackert et al. 2005). Zero patients exhibited high MSI, 

defined as instability in three of five loci analyzed. Direct sequencing of MSH6 identified 

mutations, many of which did not hinder generation of wild-type protein. In this study 

MMR deficiency does not appear to contribute to resistance to TMZ therapy (Maxwell, 

Johnson et al. 2008). A low MSI rate of 8.5 % was found in a larger panel of 129 GBM 

patients and a higher presence of MSI was detected amongst the 20 GBMs that had 

recurred. Consistent with the previous studies, no high MSI was detected, and IHC for 

MMR proteins showed aberrant expression in only one tumor with MSI (Martinez, 

Schackert et al. 2005).  A larger scale analysis of 624 gliomas further validated the lack 

of high MSI with an incidence of 0.16 % (Eckert, Kloor et al. 2007).  Paired analysis of 

primary and recurrent tumors, noted no differences in PMS2, MLH1, MSH2, and MSH6 

expression, and promoters of these genes remained unmethylated in both instances (Park, 
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Kim et al. 2012). Similarly, another study saw no apparent correlation between MSH2, 

MSH6, and PMS2 protein and sensitivity to TMZ (Hermisson, Klumpp et al. 2006). 

Single nucleotide polymorphism (SNPs) analysis of patient samples treated with radiation 

alone or with TMZ showed that 50 % harbored MSH6 G268A polymorphisms. However, 

no OS benefit was noted between samples harboring or lacking MSH6 G268A (Pei, Chen 

et al. 2013). Yip et al (Yip, Miao et al. 2009) focused their studies on a cohort of The 

Cancer Genome Atlas (TCGA) recurrent tumors, which had been previously found to 

have MSH6 mutations. Analysis of samples pre and post exposure to alkylating agents 

showed the MSH6 mutations were not present in pre-treatment samples; indicative that 

these mutations arose as a result of therapy. This same observation carried over to in vitro 

work with an A172 glioma line cultured to be resistant to TMZ. The TMZ resistant line, 

A172TR3, had reduced sensitivity to TMZ, decreased expression of MSH6 and a MSH6 

somatic mutation. Similarly, knockdown of MSH6 in the glioma U251 line reduced 

sensitivity to TMZ. All these results were independent of MGMT as the glioma lines and 

the TCGA recurrent samples, were all MGMT negative. However, in agreement with 

previous studies high MSI was not detected (Yip, Miao et al. 2009). Some of the 

contradictory reports may be explained by the continued use of high levels of MSI as 

readout for MMR deficiency, despite reports indicating no correlation between the two 

(Maxwell, Johnson et al. 2008; Yip, Miao et al. 2009). One hypothesis is that the low 

levels of MSI observed in some cases might indeed be the result of MMR but of minor 

MMR players, which were not tested in these analyses (Martinez, Schackert et al. 2005).  
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 Despite the complex interpretation of MSI, we conclude that both the MGMT and 

MMR pathways contribute to the tumor response to TMZ treatment.  A tumor low in 

MGMT will respond well to initial TMZ therapy but at the cost of accumulated 

mutations.  Surviving tumor cells are likely to have acquired MMR mutations, resulting 

in acquired tolerance to further TMZ therapy: a situation typical of GBMs in the clinic. 

 

Fanconi Anemia Pathway and FANCD2 

 The Fanconi Anemia (FA) pathway is involved in the repair of interstrand cross-

links (ICLs) generated by cross-linking agents such as platinums, nitrogen mustards, and 

mitomycin C (Deans and West 2011).  ICLs are extremely toxic to cells as they 

covalently link both DNA strands and prevent unwinding coordinated by DNA helicases;  

thus, replication does not progress. Currently 17 FA genes make up the FA pathway and 

mutations in any of these renders the cell unable to resolve ICLs (Wang and 

Smogorzewska 2015). FANDA, FANCB, FANC, FANCE, FANCF, FANCG, FANCL, 

and FANCM assemble into what is known as the FA core complex which has E3 

ubiquitin ligase activity attributed to FANCL (Meetei, de Winter et al. 2003). In response 

to DNA damage, ATR is activated and serves as the signal for the cell to activate the FA 

pathway (Andreassen, D'Andrea et al. 2004). FA complex is recruited to the site of 

damage where it monoubiquitinates FANCD2 and FANCDI. Monoubiquitinated 

FANCD2/FANCDI dimer localizes to chromatin foci that contain repair factors such as: 

FANCD1 (BRCA2), FANCJ (BACH1), Rad51, and PCNA which work together to 
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resolve the cross-link. The role of each FA protein within this pathway remains poorly 

undefined.  

 

Recent studies implicate the FA pathway in repairing DSBs and stalled replication 

forks by homologous recombination repair (HRR.)(Kee and D'Andrea 2010). HRR is an 

error-free repair mechanism that uses homologous DNA from a sister chromatid as a 

template for DNA polymerase to extend past the breaks. FANCG has been shown to 

complex with FANCD1 (BRCA2), FANCD2, and XRCC3, a Rad51 paralog. This 

complex is proposed to function in HRR, independent of the FA complex (Wilson, 

Yamamoto et al. 2008).  

 

FANCD2 and GBMs 

Analysis of FANCD2 expression in GBM tumors has only been carried out in one 

published study (Patil, Sayal et al. 2014). FANCD2 was found to be upregulated in 93 % 

of the GBM samples analyzed and correlates with tumor grade. Additionally, cultures 

derived from fresh GBM samples expressed monoubiquinated FANCD2 and formed 

FANCD2 foci in response to TMZ; indicating that the FA pathway is not only expressed 

but activate in GBM cells. Similarly FANCD2 expression is higher in primary melanoma 

samples compared to controls (Kao, Riker et al. 2011).  
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FANCD2 and TMZ Resistance 

 The role of FANCD2 and the FA pathway in mediating TMZ resistance has not 

been extensively studied. In the absence of functional MGMT and MMR, O6-meG 

lesions go unresolved, and following futile cycles of repair, give rise to DSBs (Zhang, 

Stevens et al. 2012). DSBs can be repaired by both error-prone non homologous end 

joining (NHEJ) and HRR (Kondo, Takahashi et al. 2010). However, it has been 

demonstrated that cells are protected from O6-meG-induced DSBs by BRCA2/XRCC2 

mediated HRR and not NHEJ (Roos, Nikolova et al. 2009). Thus, FANCD2, through its 

role in HRR, could mediate resistance to TMZ.  

 

Chen et al demonstrated that resistance to alkylating agents, TMZ and BCNU, is 

mediated in part by the FA pathway (Chen, Taniguchi et al. 2007). In this study, HT16 

GBM cells (FA-deficient) were more sensitive to TMZ or BCNU treatments, than FA-

proficient GBM lines. Similarly, inhibition of FANCD2, via siRNA, sensitizes U87MG 

cells to BCNU and TMZ treatment.  Inhibition of MGMT in FANCD2 knockdown lines 

further sensitizes the cells to TMZ treatment. In a similar study, the FA pathway in GBM 

lines was inhibited with commercial small molecule inhibitors (Patil, Sayal et al. 2014). 

Treatment of U87MG (FA-proficient) or primary GBM cells with FA inhibitors led to a 

decrease in monoubiquitinated FANCD2 and FANCD2 nuclear foci. Reduction of FA 

pathway activity sensitizes cells to TMZ treatment and this activity was independent of 

MGMT. Examination of individual components of the FA pathway shows that FANCD2 

-/- cells and to a greater extent, FANCD1 (BRCA2) mutant, and FANCG -/- cells are 
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more sensitive to TMZ exposure than parental cells (Kondo, Takahashi et al. 2011). An 

in vitro recombination assay to assess HRR demonstrated that frequency of HRR was 

greatest following treatment with TMZ. Subsequently, knock down of FANCD1 

(BRCA2) in A172MG cell line sensitizes the cells to TMZ and ACNU, and does not give 

rise to Rad51 foci. Therefore, targeting FANCD1 (BRCA2) in combination with TMZ 

might be of use for the treatment of GBMs. While FANCD2 -/- was more sensitive than 

the parental line, it was not to the same magnitude as FANCD1 (BRCA2) mutant cells.   

 

MicroRNAs  

MicroRNAs (miRNAs) are 18-25 nucleotide long non-coding double stranded 

RNA molecules known to regulate the stability and translation of target mRNA (Bartel 

2004). Thousands of human miRNAs have been identified and are thought to regulate as 

many as 60 % of human transcripts (Friedman, Farh et al. 2009); playing a role in many 

of the cells processes including development (Alvarez-Garcia and Miska 2005), invasion 

(Ma, Creanga et al. 2006), DNA damage (Hu, Du et al. 2010), cell-cycle control, 

proliferation, and apoptosis (Ivanovska, Ball et al. 2008). Recent studies have shown that 

aberrant expression of miRNAs occurs in many human cancers, including GBMs. This 

dysregulation of expression has shown that miRNAs themselves can serve as oncogenes 

or tumor suppressors. Furthermore, recent studies support the involvement of miRNAs in 

modulating radiotherapy and chemotherapy resistance (Blower, Chung et al. 2008; Shi, 

Zhang et al. 2013). 
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MiRNA discovery, biogenesis, and mode of action 

In 1993, studies examining the development of Caenorhabditis elegans (C. 

elegans) led to the discovery of lin-4, a small non-coding RNA that regulates the 

translation of LIN-14 protein (Lee, Feinbaum et al. 1993; Wightman, Ha et al. 1993). 

Analysis of lin-4 demonstrated that it did not encode a protein, transcript size was small, 

and was complementary to a site within the 3’UTR of lin-14 mRNA. Seven years later, 

another small non-coding RNA molecule, let-7, was found to regulate the transition from 

late larval to adult fate (Pasquinelli, Reinhart et al. 2000). Subsequent studies found let-7 

to be conserved across species, including humans, where its expression is cell-type 

specific (Pasquinelli, Reinhart et al. 2000). By 2001 the term microRNA was established 

(Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; Lee, Kermani et al. 2001).  

Fast forward 14 years and 2,588 human miRNAs have been identified and are being 

functionally validated (Griffiths-Jones 2014). 

 

Transcription of miRNAs by the RNA polymerase II (pol II) promoter give rise to 

long primary miRNA transcripts (pri-miRNA) that are capped, polyadenylated, and 

spliced. These long transcripts are processed by a RNAse III endonuclease known as 

Drosha to form a 70 bp precursor miRNA (pre-miRNA). The Ran-GTP-dependent 

transporter, Exportin-5, transports the stem-looped pre-miR from the nucleus into the 

cytoplasm, where it interacts with another RNAse III molecule, Dicer. The endonuclease 

activity of Dicer leads to the formation of a miRNA:miRNA duplex consisting of a 

passenger strand and a mature miRNA strand . The double-stranded RNA duplex is 
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unwound, allowing for the subsequent specific incorporation of one of the strands into the 

RNA-induced silencing complex (RISC). Activated RISC is guided to complementary 

regions within the 3’UTR of target mRNA and either cleaves the mRNA or inhibits 

translation (Winter, Jung et al. 2009).  Additionally, miRNAs can bind to the 5’UTR of 

target mRNA, resulting in enhanced translation (Orom, Nielsen et al. 2008). 

 

Role in GBM resistance 

MiRNAs are thought to mediate resistance through their regulation of cellular 

processes that allow malignant cells to evade apoptosis, invade, and grow.  More recently 

involvement of miRNAs in regulating DNA damage repair pathways has been 

demonstrated. MiR-221 influences GBM cell’s response to TMZ treatment by targeting 

MGMT. Overexpression of miR-221 increases TMZ-induced apoptosis and DSBs 

(Quintavalle, Mangani et al. 2013). MiR-181d also post-transcriptionally regulates 

MGMT in GBMs (Zhang, Zhang et al. 2012) and expression of miR-181d is inversely 

correlated with patient OS. Like MGMT, miR-181d could serve as a predictive 

biomarker. Another miRNA, miR-21, is upregulated in GBMs and its expression 

correlates with sensitivity to radiation (Chao, Xiong et al. 2013). The MMR protein, 

MSH2, was found to be directly regulated by miR-21. Similarly, miR-21 was shown to 

directly target both MSH2 and MSH6 in colorectal tumors (Ahmad, Patel et al. 2011). In 

an in vivo xenograft model, high levels of miR-21 contributed to resistance to 5’-

fluorouracil (5’-FU). Other miRNAs target DNA damage sensors as shown by miR-421 

mediated regulation of ATM in neuroblastomas (Hu, Du et al. 2010). Overexpression of 
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miR-421 allows cells to overcome ionizing radiation-induced S-phase block and survive. 

Hu et al, found that N-Myc regulates miR-421 expression; thus provides a mechanism for 

N-Myc to indirectly regulate ATM. 

 

TCGA data analysis identified a miRNA signature of 25 miRNAs associated with 

survival in GBMs. The 25 miRNAs were classified as risky or protective (Wong, Fatimy 

et al. 2015). Among the risky miRNAs were miR-221, miR-222, miR-31, miR-148a, 

miR-34a, and miR-34b. The authors chose miR-31 and miR-148a for further evaluation. 

Despite no effect in vitro, delivery of miR-31 or miR-148a inhibitors to orthotopic GBM 

xenografts decreased proliferation, reduced a CD133+ population within the tumor, 

provided a normalized vasculature, and minimized invasion. Both miRNAs target the 

factor inhibiting hypoxia-inducible factor 1 (HIF1) and thus affect downstream pathways 

involved with HIF1 and Notch which promote growth of the tumor. MiR-34a, another 

miRNA identified as risky, has been previously identified as a regulator of growth 

signaling as it regulates hundreds of transcripts involved in growth factor signaling and 

cell cycle regulation (Lal, Thomas et al. 2011). Among the list of miR-34a validated 

targets are: CDK4/6, CCND1 (Cyclin D1), and E2F3, all of which participate in cell 

cycle regulation.  Among miRNAs with protective phenotypes is miR-21 which, as 

discussed earlier, is upregulated in GBMs. MiR-21 has been shown to protect GBM cells 

from TMZ-induced apoptosis by decreasing the ratio of Bax:Bcl-2 as well as caspase 

activity (Shi, Chen et al. 2010). 
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Glioma Cancer Stem Cells (CSCs)  

Another layer contributing to the complexity of resistance in GBMs is the 

subpopulation of cancer stem cells within tumors. These cells have proliferative and self-

renewal capacities, and are capable of multi-lineage differentiation. When transplanted 

into immunodeficient mice, GBM CSCs recapitulate the parental tumor (Singh, Clarke et 

al. 2003; Park and Rich 2009). GBM CSCs are resistant to the cytotoxic effects of 

radiation and chemotherapy (Altaner 2008), leading many to conclude that this 

population of cells must be targeted in order to achieve complete responses.  

 

GBM CSCs Markers 

One of the challenges facing the study of GBM CSCs is the lack of reliable 

markers for the identification and subsequent isolation of these cells. Several influential 

studies found that GBM CSCs defined by expression of the marker CD133 (Prominin-1) 

are more tumorigenic than bulk tumor cells (Singh, Clarke et al. 2003; Singh, Hawkins et 

al. 2004).  And these CD133+ populations have been shown to be resistant to TMZ, 

carboplatin, Taxol, and etoposides (Liu, Yuan et al. 2006).  However, CD133 has proven 

to be a controversial marker. CD133 expression is stress- and cell cycle-dependent 

(Platet, Liu et al. 2007; Jaksch, Munera et al. 2008). Most GBMs have a small fraction of 

CD133+ cells, but others have no CD133+ cells or a high percentage of CD133+ cells 

(Nakano, Masterman-Smith et al. 2008; Wang, Sakariassen et al. 2008; Mihaliak, Gilbert 

et al. 2010).  Despite this variation in CD133 expression, all GBMs are highly 

tumorigenic. Anti-CD133 antibodies vary in tissue staining, and one of the most 
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commonly used anti-CD133 antibody is dependent on protein glycosylation 

(Bidlingmaier, Zhu et al. 2008).  As a result, it is now common to assess multiple stem 

cell markers (CD133, Nestin, Musashi-1, Sox2, and SSEA among others) (Christensen, 

Schroder et al. 2008) as well as carrying out functional assays such as neurosphere 

formation (Iacopino, Angelucci et al. 2014). Cell sorting experiments reveal that selection 

for one stem cell marker, does not pull out all of the cells with other stem cell markers. 

These results suggest that the GBM CSCs are heterogeneous, and there is not a single 

marker signature for CSCs (Chen, Nishimura et al. 2010; Venere, Fine et al. 2011; 

Antoniou, Hebrant et al. 2013). Suva et al (Suva, Rheinbay et al. 2014) proposed a novel 

model to explain these results. They found that CSCs require expression of four 

transcription factors (POUF3F2, SOX2, SALL2 and OLIG2). Many GBM cells express 

three or fewer of these transcription factors, express some stem cell markers, but are not 

CSCs.  

 

CSCs and GBM resistance 

It has been proposed that CSCs contribute to resistance and subsequently are 

responsible for regrowth after therapy (Chen, Li et al. 2012). CSCs may be resistant to 

therapy by multiple mechanisms, including over expression of DNA repair proteins such 

as MGMT and overexpression of ABC-transporters such as BCRP1 (Bao, Wu et al. 2006; 

Liu, Yuan et al. 2006). In addition, the role of the CSCs may be complicated by 

epigenetic changes that allow differentiated cells to undifferentiate and become CSCs 
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(Safa, Saadatzadeh et al. 2015). However, interpretation of these data is complicated by 

the lack of specific cell-surface CSC markers. 

 

One molecular mechanism being examined involves the histone-lysine N-

methyltransferase (EZH2), an enzyme within the polycomb repressive complex 2 (PRC2) 

which tri-methylates histone H3 and aids in the silencing of differentiation genes (Simon 

and Lange 2008). EZH2 is of interest to the study of GBMs as it is located on 

chromosome 7, which is often amplified in GBMs (Brennan, Verhaak et al. 2013). 

Depletion of EZH2 in GBM CSCs decreases self-renewal and tumors formation 

following transplantation into mice (Suva, Riggi et al. 2009). Recently it was shown that 

EZH2 is regulated by a complex made up of the kinase, MELK, and the transcription 

factor, FOXM1 (Kim, Joshi et al. 2015). MELK is enriched in GBM stem cells 

(CD133+) and its expression is inversely correlated with survival of GBM patients (Liu, 

Yuan et al. 2006; Nakano, Masterman-Smith et al. 2008).  Knockdown of MELK via 

siRNA influences proliferation of GBM CSCs and decreases the number of neurospheres. 

Another study by the same lab showed that radioresistance of GBM cells can be 

attributed to MELK expression. Cells without MELK are radiosensitive, and sensitivity is 

diminished in cells overexpressing MELK (Kim, Joshi et al. 2015). Post-radiation 

recurrent tumors analyzed in that study were also found to contain more MELK and 

EZH2 positive cells than naïve therapy GBMs. Interestingly, EZH2 is highly expressed in 

established TMZ-resistant cultures and knockdown of EZH2 in these lines sensitized 

cells to TMZ and decreased expression of multiple ATP-binding cassette (ABC) 
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transporters (Fan TY 2014). These studies elucidate one of many mechanisms by which 

GBM CSCs are radiation- and chemotherapy-resistant.   

 

Emerging Approaches to Therapies 

Development of Novel TMZ-like Drugs 

TMZ is a successful drug with oral administration, manageable side effects and 

enhanced survival for patients with GBMs (Stupp, Mason et al. 2005; Stupp, Hegi et al. 

2009; Zhang, Stevens et al. 2012). However, its most toxic product, O6-meG, is readily 

reversed by MGMT, and methylation of DNA at other sites is reversed by BER. A drug 

with less readily repaired products would enhance therapy in the clinic. Fortunately, TMZ 

and related compounds have been extensively studied, and this information will facilitate 

design of TMZ-like drugs with increased anticancer activity and good pharmacokinetics. 

 

Two approaches are currently being taken to develop new TMZ derivatives that 

are resistant to, or avoid the two principal constraints on the ability of a tumor to respond 

to TMZ therapy, via, MGMT and MMR dependence. One approach has been to modify 

the imidazotetrazine 3-substituent so that the group transferred to DNA O6-G sites is 

either not recognized or not repaired by MGMT. A range of neutral polar and charged 

O6-G substituents resistant to cleavage by MGMT has been characterized (Pletsas, 

Wheelhouse et al. 2006). Several such substituents have been incorporated into 

experimental imidazotetrazines 2, 3 (Figure 1.5). Other than the free carboxylic acid (2, 

R = H), these compounds have all been shown active against GBM and colorectal cell 
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lines that are resistant to TMZ, whether because of proficient MGMT or having 

deficiency or mutation in the MMR components hMLH1 or hMSH6. Onset of repair 

processes was slower than for TMZ and replication-independent (i.e., MMR-

independent) DSBs were implicated in the cellular mechanism.  

 

In the second approach a complete switch of chemical mechanism has been 

achieved with the dual aims of avoiding MGMT and MMR dependence and making the 

drug more efficient than TMZ by generating pharmacological activity from the major 

reaction site on DNA, N7-G (70% for TMZ), rather than the minor (5%) O6-G site. This 

advance employs a neighboring group participation mechanism to control the behavior of 

the released alkyldiazonium ions (Figure 1.6). This serves the dual functions of 

controlling reactivity, so giving the electrophile time to locate its reaction site on DNA, 

and delivering an alternative form of damage to DNA. Since the response of tumors to 

TMZ is determined by the interaction of DNA repair systems with modified DNA, 

altering the electrophile would necessarily alter the profile of tumor responses. In these 

respects, the potential of the imidazotetrazines as acid-stable precursors of aziridinium 

ions was explored as these are reactive intermediates of proven clinical utility, widely 

found in or generated by synthetic and natural product anti-tumor drugs, e.g., nitrogen 

mustards. The bifunctional agent DP68 and its analogous monofunctional form DP86 are 

currently under preclinical investigation. 
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The aqueous chemistry of diazonium ions is beset by problems of competing 

hydrolysis, elimination and re-arrangement reactions, which are reduced for aziridinium 

ions. In a 13C labeling study, DP86 was shown to be an efficient precursor of aziridinium 

ions (Figure 1.6). At the stage of the diazonium ion, there was 96% conversion to the 

aziridinium form with only 4% direct hydrolysis. Products of further reaction had the 

labeled atom scrambled so that it appeared equally at both positions of the ethyl chain: 

confirming that they were entirely derived via the aziridinium route. Highly effective 

control of the diazonium ions had been achieved—in sharp contrast to other agents 

designed as precursors of aminoethyldiazonium ions (Garelnabi, Pletsas et al. 2012). 

 

Rationale for Thesis 

Despite advances in the treatment of GBMs with a three prong approach of 

surgery, radiotherapy, and TMZ, tumors with intrinsic or acquired resistance to TMZ 

persist and repopulate. Recurrent tumors have been shown to be genetically diverse from 

the primary tumor (Kim, Joshi et al. 2015; Mazor, Pankov et al. 2015), hindering therapy 

as a drug regimen effective in a naïve tumor will likely be ineffective in the subsequent 

recurrence. This necessitates drug regimens that bypass DNA repair mechanism and 

eliminate all cells within the initial tumor, including those with self-renewal capability, in 

an attempt to overcome recurrence.  

 

Our first approach involves the characterization of two TMZ-analogues, DP68 

and DP86. The rationale for this research project was developed from knowledge that the 
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efficacy of TMZ is dependent on the MGMT and MMR pathways (Fink, Aebi et al. 

1998; Hegi, Diserens et al. 2004; Hermisson, Klumpp et al. 2006). Prior clinical 

strategies to overcome resistance utilized MGMT inhibitors such as O6-BG and PaTrin-

2(Pegg 2000; Barvaux, Ranson et al. 2004; Quinn, Desjardins et al. 2005; A and H 2011). 

However, these inhibitors gave rise to bone marrow toxicity and were not optimal for use 

in the clinic. Our collaborator, Dr. Richard Wheelhouse took a different approach: 

developing drugs that deliver O6-G modifications not recognized or repaired by MGMT 

(Pletsas, Wheelhouse et al. 2006). He demonstrated that MGMT-mediated drug 

resistance may be bypassed through agents that deliver polar groups to DNA, rather than 

the current simple alkyl groups (methyl, chloroethyl). Bulkier groups are also hard for 

MGMT to clear. Our hypothesis is that the TMZ analogues, DP68 and DP86, whose 

response is independent of MGMT, will be more efficacious agents for GBM therapy. 

We investigated the biological effects of these novel alkylating agents in a GBM model 

in the context of resistance mediated by DNA repair mechanisms. Chemotherapeutic 

agents whose damage cannot be repaired by the classic DNA repair pathways are 

desirable not only for de novo GBM patients but for those with TMZ-resistant tumors.  

 

Our second approach involved miRNA replacement therapy for GBMs. The 

rationale for this research project came from a previous preclinical study in our lab. 

Gilbert et al (Gilbert, Daou et al. 2010) demonstrated that blocking the Notch pathway 

with GSIs enhanced TMZ treatment. TMZ + GSI treated cells are no longer capable of 

self-renewal and survival was enhanced in a GBM xenograft model compared to TMZ or 
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GSI alone. TMZ + GSI treatment leads to therapy-induced senescence in glioma cells, 

which in turn prevented regrowth of GBM cultures (Gilbert 2011). Because therapy-

induced senescence is one mechanism currently being investigated to target cancer cells 

we wanted to identify miRNAs whose expression could be modulated to induce 

senescence.  MiR-34a is an appealing miRNA to study as it is downregulated in GBMs 

and has predicted seed matches to Notch family members.  Our hypothesis is that miR-

34a alone has therapeutic benefits by inhibition of Notch signaling. The study described 

herein focuses on the effects of miR-34a on GBM biology and the study of its potential 

targets.  
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Figure 1.1 Glioblastoma: pre-operative scan and histology. 
GBMs appear as contrast enhancing lesions on MRI scans (A). Left Scan: Tumor is 
enhanced with Gadolinium Chloride, Right scan: flair (*) in this scan shows the 
vasogenic edema, which results from disruption of the blood brain barrier, and infiltration 
beyond the enhanced mass. Matched H&E stain of patients GBM tumor depicting large 
areas of necrosis (B) and vascular proliferation (C).  
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Figure 1.5 Novel TMZ-like drugs. 
Experimental imidazotetrazines 2 and 3 and the substituents that have been incorporated 
into the compounds.  
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CHAPTER II 

 

EVALUATION OF NOVEL IMIDAZOTETRAZINE ANALOGUES DESIGNED 

TO OVERCOME TEMOZOLOMIDE RESISTANCE AND GLIOBLASTOMA 

REGROWTH 
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CHAPTER II 

Preface 

The contents of this chapter stem from research carried out in Alonzo Ross’s lab 

from the end of 2011 until 2014. It is a collaboration with Dr. Wheelhouse from the 

University of Bradford, who supplied us with TMZ analogues he and his colleagues 

synthesized. As the project proceeded, the project expanded to include Dr. Phillips of the 

University of Bradford, Dr. Sakaria from the Mayo Clinic and Dr. Rautio from the 

University of Eastern Finland. Parts of this chapter represent work that resulted from our 

collaboration, published as: Ramirez YP, Mladek AC, Phillips RM, Gynther M, Rautio J, 

Ross AH, Wheelhouse RT, Sakaria JN. Mol Cancer Ther. 2015 Jan;14(1):111-9. 

 

In this chapter, I carried out the following: generation and characterization of the 

U87NSTMZ line, IC50 studies for U87NS, U87MG, U118MG, U118NS, and 

U87NSTMZ lines, all secondary sphere assays, knockdown of MLH1 in T98G and 

U87MG and subsequent experiments, PMS2 western, limiting dilution assays and all in 

vivo mouse work. First co-author Ann C. Mladek (Mayo Clinic) performed all GBM6, 

GBM12, and GBM12TMZ work, westerns for DNA damage response, O6-BG 

experiments, flow cytometry with U251 and T98G, and knockdown/inhibition of 

ATM/ATR/FANCD2 experiments. Dr. Phillips performed the comet assays. Dr. Gynther 

and Dr. Rautio performed pharmacokinetic experiments. Dr. Wheelhouse supplied the 

schematics depicting compound structure and chemistry. 
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Abstract 

 The cellular responses to two new TMZ analogues, DP68 and DP86, acting against 

GBM cell lines and primary culture models are reported. Dose-response analysis of 

cultured GBM cells revealed that DP68 is more potent than DP86 and TMZ and that 

DP68 was effective even in TMZ-resistant models. Based on a secondary neurosphere 

formation assay, DP68 inhibits repopulation of these cultures even at low concentrations.  

The efficacy of these compounds was independent of MGMT expression and the MMR 

pathway protein, MLH1. We characterized DP68-induced damage in H2O2-treated cells 

and found that DP68 formed interstrand DNA crosslinks. Furthermore, DP68 induced a 

distinct cell cycle arrest with accumulation of cells in S phase that is not observed for 

TMZ. Consistent with this biological response, DP68 induces a strong DNA damage 

response, including phosphorylation of ATM, Chk1 and Chk2, KAP1, and histone variant 

H2AX. Suppression of FANCD2 expression or ATR expression/kinase activity enhanced 

anti-GBM effects of DP68. Initial pharmacokinetic analysis revealed rapid elimination of 

these drugs from serum. In line with this, efforts to demonstrate efficacy of compounds in 

vivo were unsuccessful. Collectively, these data demonstrate that DP68 is a novel and 

potent anti-GBM compound that circumvents TMZ resistance, likely as a result of its 

independence from MGMT and MMR and its capacity to crosslink strands of DNA. 

These results will guide Dr. Wheelhouse in the preparation of additional TMZ analogues 

with the potential to treat GBMs in vivo. 
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Introduction 

The imidazotetrazine prodrug TMZ (Figure 2.1) concurrent and adjuvant to 

radiotherapy is now the first line of  treatment for GBM  in North America and Europe; 

however, intrinsic and acquired resistance ultimately limit the efficacy of therapy (Stupp, 

Hegi et al. 2009; Zhang, Stevens et al. 2012). It is stable under acidic conditions and is 

orally available. At neutral pH, TMZ is moderately unstable (t1/2 = 1.24 h, pH 7.4) 

(Stevens, Hickman et al. 1987) and is hydrolyzed in a ring-opening reaction to the open 

chain triazene MTIC (Figure 1.2 A; t1/2 = 8 min, pH 7.4) (Shealy and Krauth 1966) that 

fragments to the reactive electrophile, methyldiazonium (t1/2 = 0.39 s, pH 7.4) (McGarrity 

and Smyth 1980; Wheelhouse and Stevens 1993; Saleem, Brown et al. 2003). The 

methyldiazonium ion reacts with nucleophilic groups on DNA, resulting in DNA 

methylation.  Approximately 70% of the methyl groups are located on N7-G, 10% on N3-

A and 5% at O6-G sites (Denny, Wheelhouse et al. 1994; Zhang, Stevens et al. 2012).  

Products of N-methylation are readily repaired by the base-excision repair pathway and 

are not thought to be major contributors to cytotoxicity (Svilar, Dyavaiah et al. 2012). In 

contrast, O6-methylguanine (O6-meG) lesions are reversed by the DNA repair gene, 

MGMT, and failure to remove these lesions can lead to cytotoxicity and accumulated 

GA transition mutations (Figure 1.2 B) (Pegg 2000). The MGMT gene is silenced by 

promoter methylation in approximately 35% of GBMs and is believed to be a predictive 

marker for TMZ response (Park, Kim et al. 2012). In these tumors, persistent O6-meG 

lesions form wobble base-pairs with thymidine during replication. These O6-meG:T 

pairings trigger futile cycles of mismatch repair by the MMR machinery, stalled 
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replication forks and lethal DNA DSBs. Disruption of MMR through mutation or 

suppressed expression results in a TMZ-tolerant phenotype, while high-level expression 

of MGMT protein is a major mechanism of inherent TMZ resistance (Ramirez, 

Weatherbee et al. 2013). 

 

The short lifetime of the methyldiazonium ion can limit the efficiency of DNA 

methylation by TMZ; furthermore, of the methyl groups transferred to DNA, only a small 

fraction is the therapeutically-beneficial O6-MeG lesion. In an attempt to overcome these 

limitations, new TMZ derivatives with modified spectra of activity have been engineered.  

One strategy is to modify DNA at O6-G in a manner that is not recognized or repaired by 

MGMT, which is known to occur by addition of a polar or bulky adduct (Pletsas, 

Wheelhouse et al. 2006; Zhang, Stevens et al. 2011). In addition, the design of the 

imidazotetrazine compounds investigated herein sought a switch of chemical mechanism 

with the aims of avoiding known mechanisms of TMZ resistance and generating 

therapeutic benefit from the major reaction site, N7-G (70% for TMZ), rather than the 

minor (5%) O6-G site (Garelnabi, Pletsas et al. 2012).  

 

In this study, we focus on two of the most promising compounds developed: the 

mono-functional DP86 and the bi-functional DP68 imidazotetrazines (Figure 2.1) 

(Garelnabi, Pletsas et al. 2012; Pletsas, Garelnabi et al. 2013). These compounds are 

precursors of aziridinium ions, which are reactive intermediates of proven clinical utility 

related to those generated by nitrogen mustard drugs (Figure 2.2 A-B). The bi-functional, 
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DP68, and monofunctional, DP86, have been previously screened in the ovarian cancer 

cell line, A2780, and its cisplatin resistant counterpart, A2780-cp70.  Chemosensitivity to 

both compounds was measured in the A2780 (MMR+) and A2780-cp70 (MMR-) cell 

lines with and without the MGMT inhibitor PaTrin-2.  DP68 is the most potent 

compound and has the least dependence on MGMT function and MMR status. Further 

evaluation showed activity of novel analogues is independent of p53, unlike TMZ 

(Pletsas, Garelnabi et al. 2013). The bi-functional molecules would be expected to 

generate DNA crosslinks, which would not be processed by MMR and should overcome 

that mechanism of resistance. This analogue was selected for detailed investigation; the 

mono-functional analogue, DP86, was evaluated for comparison.  

 

The novel analogues were screened against the NCI-60 panel of human tumor cell 

lines, which includes six gliomas, four of which are the GBM lines SF-295, SF-539, 

SNB-19 and U251 (Shoemaker et al, nature reviews, 2006).  In matrix COMPARE 

analysis of the NCI-60 data, the new compounds showed no significant correlation with 

another TMZ analogue, mitozolomide, (0.46 ≥ P ≥ 0.35). So these are distinct new 

members of the imidazotetrazine class. The putative DNA lesion of the bifunctional agent 

is a five-atom crosslink, related in structure to those formed by the nitrogen mustard 

prodrugs; however, no drugs of this class showed strong correlations (0.59 ≥ P ≥ 0.29). 

Notably, there was also no similarity to the nitrosoureas, which are also diazonium ion 

precursors (0.45 ≥ P ≥ 0.05), or cisplatin, another N7-G reactive agent (0.42 ≥ P ≥ 0.27) 

(Pletsas, Garelnabi et al. 2013).  
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These data describe the biological effects of these novel DNA alkylating agents in 

GBM models and their relative activities in the context of MGMT-overexpression and 

other mechanisms of TMZ resistance. 

 

Results 

MGMT expression correlates with TMZ sensitivity but not DP68 or DP86 

Because MGMT expression is associated with TMZ resistance (Gerson 2002; 

Hermisson, Klumpp et al. 2006; Sato, Sunayama et al. 2011), we analyzed the sensitivity 

of a panel of glioma cells following exposure to various concentrations of TMZ and 

novel analogues, DP68 and DP86 (Table 2.1). A correlation between MGMT expression 

(Figure 2.3D) and TMZ sensitivity was observed in all lines examined. MGMT-negative 

lines, U87MG and U251 (U87MG, IC50 =43 μM; U251, IC50 =60 μM), showed the 

greatest sensitivity to TMZ treatment, while the MGMT-positive lines were the least 

sensitive (U118MG, IC50 =135 μM; T98G, IC50= 340 μM). In contrast to TMZ, DP68 

was efficacious in both MGMT-negative (U251, IC50= 5.2 μM; U87MG, IC50 =14 μM) 

and MGMT-positive (T98G, IC50 = 11.3 μM; U118MG, IC50=10 μM) cell lines. The bi-

functional agent DP68 was significantly more potent than TMZ in all cell lines with IC50 

ratios (TMZ:DP68) ranging from 3 to 85 (Table 2.1). The mono-functional agent DP86 

was approximately 10-fold less potent than DP68 in all lines studied, but similar to DP68, 

the activity of DP86 was independent of MGMT expression (U251, IC50= 68 μM; 

U87MG, IC50 =67 μM; T98G, IC50 = 110 μM; U118MG, IC50=42 μM). To validate that 
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the efficacy of the novel imidazotetrazine analogues was not limited to long-term 

monolayer glioma cultures alone, U87NS and U118NS neurosphere cultures as well as 

neurospheres derived from the Mayo xenograft panel were treated with TMZ, DP86, and 

DP68. All neurosphere cell lines showed similar trends in the sensitivities to DP68 and 

DP86 (Figure 2.3). Interestingly, while U87NS and U118NS had similar DP86 IC50 to 

their adherent counterparts (U87NS IC50 = 61 μM vs U87MG IC50 = 67 μM; U118NS 

IC50 = 42 μM vs U118MG IC50 = 42 μM), sensitivity to DP68 was 2-fold increased in the 

neurosphere cultures (U87NS IC50 = 5.9 μM vs U87MG IC50 = 14 μM; U118NS IC50 = 

2.7 μM vs U118MG IC50 = 5.2 μM). Patient-derived GBM6 and GBM12 lines showed 

similar elevated sensitivity to DP68 (GBM6, IC50 = 1.3 μM; GBM12, IC50 = 0.8 μM). 

 

Generation of TMZ resistance models 

In order to study the effects of DP86 and DP68 in TMZ-mediated resistance, we 

exposed U87MG cells to increasing doses of TMZ and generated the line U87MGTMZ 

with a resistant phenotype. Neurosphere culture, U87NSTMZ, was generated by 

culturing the U87MGTMZ line in serum-free media. Changes in morphology included 

enlarged cells observed with U87MGTMZ and U87NSTMZ cultures (Figure 2.4). 

U87MGTMZ cultures contained cells that had “flattened” out with processes extended 

outwards in all directions.  TMZ-resistant neurospheres grew in spheres that were not as 

compact as the parental line. Attempts to propagate U87NSTMZ line in vivo failed; 

subcutaneous injection (1x106 cells) into the flank of Nu/Nu mice did not give rise to 

tumors (n=10 mice, zero tumors).  Our collaborators in the Sarkaria lab simultaneously 
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generated the U251TMZ-resistant line along with a resistant primary line, GBM12TMZ 

(Giannini, Sarkaria et al. 2005; Kitange, Mladek et al. 2012). GBM12TMZ was 

developed from a primary line GBM12 propagated in vivo and repeatedly treated in vivo 

with TMZ. U87MGTMZ and U251TMZ lines remained MGMT negative like their 

parental lines (Figure 2.3 D). In contrast, GBM12TMZ showed expression of MGMT at 

high levels.  

 

DP68 is efficacious in models of TMZ resistance 

In our three models of acquired TMZ resistance, the sensitivity of the cells to 

TMZ decreased significantly (Table 2.1, Figure 2.5 green circles): U251TMZ,  

U87NSTMZ, and GBM12TMZ showed 5.1-fold, 20.3-fold, and 156-fold less sensitivity 

to TMZ, respectively, than the corresponding parental cell lines. TMZ IC50 values for all 

three resistant lines (U87NSTMZ, IC50 = 153 μM; U251TMZ, IC50 = 306 μM; 

GBM12TMZ, IC50 = 500 μM) are substantially greater than the concentrations achieved 

in the clinic.  In contrast, the efficacy of DP68 was essentially unchanged compared to 

the parental lines with an IC50 for DP68 in U251TMZ of 3.6 M and in U87NSTMZ of 

4.1 M. In the third TMZ-resistant model, GBM12TMZ, DP68 was highly effective (IC50 

= 1.4 μM). DP86 was approximately 10-fold less potent than DP68 with IC50s ranging 

from 19– 43 μM. However, these IC50s were similar to the responses measured for the 

parental cell lines.  
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Efficacy of DP68 is not an artifact of neurosphere plating density 

Because plating density affects the efficiency of neurosphere formation (Pastrana, 

Silva-Vargas et al. 2011), limiting dilution assays were carried out with GBM12, 

GBM12TMZ, and GBM6 cells plated at various densities (1, 10, 30, 100, and 1000 

cells/well) and treated with TMZ, DP68, or DMSO. GBM12 was the only line that 

formed spheres at all of the tested densities. TMZ and DP68 have similar potencies for 

inhibition of neurosphere formation in this line regardless of cell density. DP68 

demonstrated greater inhibition of neurosphere formation than TMZ (Figure 2.6). While 

GBM12TMZ and GBM6 were unable to form spheres at the single cell level, sphere 

formation was observed at the higher densities (10 cells/well and 30 cells/ well). The 

potency of TMZ and DP68 agrees with our other assays. 

 

Efficacy of DP68 and DP86 in human glioma cultures is independent of MGMT and 

MMR expression  

 To assess the impact of MGMT activity on DP68 and DP86 activity, T98G and 

GBM6 cells were co-treated with the MGMT suicide inhibitor O6-BG. O6-BG is a 

synthetic derivative of guanine and works by transferring a benzyl group to the active site 

of MGMT, thus inactivating it. Consistent with previous data, co-treatment with O6-BG 

increased sensitivity to TMZ in MGMT-expressing T98G and GBM6 cells (Figure 2.7 

A, C), while O6-BG had no impact on the efficacy of DP68 and DP86 in these cells 

(Figure 2.7 B, D).  
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Cytotoxicity of TMZ also depends on the integrity of the MMR system, which is 

activated in response to O6-meG lesions that mismatch with thymine. To assess the 

importance of this pathway, we infected T98G (MGMT+) and U87MG (MGMT-) cells 

with shRNA lentiviruses targeting MLH1 (Figure 2.8 A-B). In the T98G line, 

knockdown of MLH1 had no impact on activity of DP86 or DP68 while decreasing the 

sensitivity to TMZ (empty vector IC50=982 μM, sheGFP IC50=1077 μM, shMLH1 #1 

IC50= 2005 μM, shMLH1 #2 IC50= 1748 μM) (Figure 2.8 C). The MGMT-negative line, 

U87MG, had a similar response to TMZ treatment but larger in magnitude with 2.6-fold 

(shRNA#1), 4.9-fold (shRNA#2), and 5.2-fold (shRNA#3) changes in sensitivity 

compared to sheGFP control (empty vector IC50=230 μM, sheGFP IC50=153 μM, 

shMLH1 #1 IC50= 396 μM, shMLH1 #2 IC50= 756 μM, shMLH1 #3 IC50= 791 μM). 

Responses to DP68 and DP86 were not altered despite the efficacy of MLH1 knock 

down. Because MLH1 affects protein stability of another MMR pathway protein, PMS2, 

(Trojan, Zeuzem et al. 2002) T98G MLH1 knockdown lines were analyzed for PMS2 

expression and both shMLH lines shows substantial decrease in expression (Figure 2.8 

E). Collectively, these data confirm that activity of the new imidazotetrazine compounds 

is independent of cellular MGMT and MMR expression in the panel of glioma cell lines 

tested.   

 

DP68 and DP86 inhibit recovery and secondary sphere formation  

 The effects of imidazotetrazines on long-term cell growth were evaluated in a 

secondary neurosphere formation assay (Figure 2.9) with MGMT non-expressing glioma 
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line U87NS and MGMT expressing line U118NS. Treatment of U87NS and U118NS 

with TMZ (100 μM) showed similar reductions in the number of neurospheres at day 7 

(‘Treatment’ – Figure 2.10 A) with 95% and 96% reductions, respectively.  By day 14, 

U118NS cultures recovered, showing similar number of neurospheres as the DMSO 

treated culture (‘Recovery’ – Figure 2.10 A), while there were few spheres present for 

U87NS cells. The neurospheres were dispersed and replated. By day 21, U87NS and 

U118NS cultures formed secondary spheres with marked recovery from TMZ treatment 

(‘Secondary’ – Figure 2.10 A). In contrast, DP68 treatment greatly reduced neurosphere 

formation after a single treatment and prevented the subsequent recovery of spheres 

(Figure 2.10 B); secondary sphere formation was completely repressed by 10 to 30 μM 

DP68. Similar results were seen with DP86 at approximately 10-fold higher 

concentrations than DP68 (Figure 21.0 C). Thus, in comparison to TMZ, DP68 and 

DP86 provide more durable inhibitory effects on primary and secondary neurosphere 

formation. 

 

DP68 Induces DNA Crosslinks in Glioma Cells 

To evaluate the DP68-induced lesions we examined damage to nuclear DNA by 

single cell electrophoresis (comet assay).  This assay detects single and DSBs and alkali 

labile sites and has been adapted to measure DNA inter-strand cross-linking. Pre-

treatment with DNA cross-linking agents retards the migration of DNA fragments 

generated by H2O2 treatment (Collins, Oscoz et al. 2008). In this assay, a decreased 

comet tail moment indicates DNA cross-linking. The cross-linking agent melphalan 
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(positive control) and DP68 showed significant and comparable, concentration-dependent 

cross-linking of nuclear DNA in U251 cells (Figure 2.11), while DP86 and TMZ showed 

no evidence of cross-linking (Figure 2.11). These data show that DP68 is equipotent with 

melphalan at DNA cross-linking; in contrast, the mono-functional agents do not form 

crosslinks.  

 

S-phase accumulation and G2/M arrest by DP68 

 The effects of DP68 and TMZ on cell cycle distributions were compared in U251 

(MGMT non-expressing) and T98G (MGMT expressing) cells (Figure 2.12 A). In U251 

cells, treatment with 30 M TMZ had relatively minimal effects on cell cycle until 72 h 

after treatment, when there was an accumulation of cells in G2/M, which is characteristic 

of TMZ treatment. In contrast, DP68 induced a marked S-phase accumulation within 16–

24 h, and by 72 h the majority of cells accumulated in G2/M. In contrast, TMZ treatment 

has no significant effects on cell cycle distribution in TMZ-resistant T98G cells, while 

DP68 treatment results in a similar cell cycle distribution as in U251 with marked 

accumulation in S and G2/M 24 h after treatment and significant accumulation in sub-G1 

by 72 h after treatment. A preliminary experiment with another MGMT negative line, 

U87MG, showed similar responses to TMZ (Figure 2.12 B) with arrest at G2/M phase 72 

h following TMZ treatment. Marked S-phase accumulation was observed by 24 h with 

doses as low as 5 μM, which is less than half of U87MG’s IC50 of 14 μM. However, this 

low concentration did not lead to the G2/M arrest observed with 10 μM DP68. Thus, 
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DP68 has a cell cycle arrest profile distinct from TMZ, with an early accumulation of 

cells in S-phase followed by G2/M arrest.  

 

Activation of DNA damage response by low concentrations of DP68 

 Consistent with the flow-cytometry data, DP68 activated DNA damage signaling 

pathways within hours of treatment. As seen in Figure 2.13 A, phosphorylation of ATM 

(S1981) and the canonical ATM substrate Chk2 (T68) were detected 4 to 8 h after 

treatment with 30 μM DP68, while phosphorylation of the canonical ATR substrate Chk1 

was later with reproducible phosphorylation induction at 8 to 16 h. Both ATM and ATR 

can phosphorylate KAP1 (S824) in response to DNA damage (White, Negorev et al. 

2006), and consistent with activation of these pathways, phosphorylation of KAP1 was 

evident within 8 h of DP68 treatment and maintained for at least 72 h. In contrast, TMZ-

induced damage signaling was evident only in U251 cells and only at a late 72 h time-

point. DP68-induced phosphorylation of this DNA damage response network (p-ATM, p-

Chk2, p-Chk1, and p-KAP1) and histone variant H2AX (S139; γ-H2AX) at 

concentrations as low as 3 μM in MGMT-negative U251 and MGMT-positive T98G cells 

(Figure 2.13 B). Collectively, these data are consistent with robust activation of ATM- 

and ATR-dependent DNA damage signaling at concentrations associated with significant 

chemosensitivity. 
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Impact of ATM, ATR and FANCD2 suppression on imidazotetrazine sensitivity 

 The Fanconi’s Anemia pathway is important for repairing DNA inter-strand 

crosslinks, and DP68 forms DNA inter-strand crosslinks, activating the ATM and/or 

ATR damage responses. To assess functional importance, these pathways were evaluated 

using siRNAs and small molecule inhibitors. U251 cells were electroporated with 

siRNAs directed against ATM, ATR and a core Fanconi Anemia pathway gene, 

FANCD2 (Figure 2.14 A). Knockdown of ATM had no impact on sensitivity to TMZ, 

DP68, or DP86 (Figure 2.14 B), while ATR knockdown significantly enhanced the 

responses to TMZ, DP86 and DP68. FANCD2 knockdown resulted in a significantly 

enhanced activity only with DP68 treatment (relative fluorescence of 0.16 vs. 0.51, 

p≤0.001), but had no significant effect on TMZ (0.37 vs. 0.44, respectively; p=0.26) or 

DP86 (0.87 vs. 0.96, respectively; p=0.11) treated cells.  The impacts of ATR and ATM 

signaling on cytotoxicity were confirmed using small-molecule inhibitors of ATM (KU-

60019) and ATR (VE-821) kinase activity in U251 (Figure 2.15 A) and T98G (Figure 

2.15 B) cells. In both lines, co-treatment with VE-821 markedly enhanced the efficacy of 

DP68, and to a lesser extent DP86 in T98G cells.  In contrast, KU-60019 was less 

effective than VE-821 when combined with DP68 in T98G cells (p-value ≤ 0.001) and in 

U251 cells (p-value ≤ 0.01). Similarly, co-treatment with the ATR inhibitor VE-821, but 

not KU-60019, enhanced the efficacy of DP68 and DP86 in a neurosphere assay with 

GBM12 or GBM12TMZ (Figures 2.15 C-D).  These data are consistent with the 

induction of DNA crosslinks by DP68 and suggest that ATR and FANCD2 aid recovery 

following treatment with DP68. 
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GBM tumors fail to respond to novel imidazotetrazine compounds in vivo 

 The efficacy of DP68 and DP86 was evaluated in vivo in xenografts of U87NS 

(Figure 2.16 and Figure 2.17). Mice were injected with 1x106 U87NS single cells and 

drug treatments began when tumor volumes reached 250-350 mm3 (Figure 2.16 A) or 

300-450 mm3 (Figure 2.16 B). Treatment groups consisted of: vehicle control, TMZ (20 

mg/kg), DP86 (20 mg/kg), DP68 (10 mg/kg), or DP68 (20 mg/kg) and drug was 

delivered via intraperitoneal (IP) injection on two consecutive days. Following TMZ 

treatments, tumor growth continued but leveled off around day five, showing a delay in 

tumor growth for an additional 10 days (Figure 2.16 A). However, with the exception of 

one mouse, TMZ-treatment did not completely inhibit tumor progression and eventually 

tumor growth resumed. DP86- and DP68-treated mice failed to show any effect on tumor 

growth. Survival data (Figure 2.16 C, Table 2.2) shows that DP86- and DP68-treated 

mice had median survival times equivalent to DMSO:PBS treated mice. TMZ-treated 

mice showed a 2-fold increase in survival (Table 2.2).  Concerns regarding the solubility 

of the novel imidazotetrazines in PBS, as was used in the initial in vivo work, led us to 

repeat the mouse experiments with drugs dissolved in 100% DMSO, but there was still 

no in vivo response to DP86 and DP68 (Figure 2.16 B and D, Table 2.3). We next 

attempted to improve the efficacy of DP86 and DP68 with different drug delivery 

methods and changes to the treatment schedule (Figure 2.17). U87NS subcutaneous 

xenografts were treated with DMSO, 25 mM TMZ, 25 mM DP86, or 25 mM DP68 via IT 

injection on five consecutive days. IT injections allow for higher doses of drug delivered 

to the tumor with less systemic toxicity. TMZ-treated tumors showed strong inhibition of 
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tumor growth with four of the six tumors failing to progress and even regressing in some 

cases (Figure 2.17). Finally, DP86 and DP68 failed to demonstrate an effect on tumor 

growth compared to DMSO control in this model. Tumors were removed and examined 

once the mice were sacrificed (Figure 2.18). DP68 tumors displayed areas where drug 

precipitated. This was not seen for tumors treated with any of the other drugs, including 

DP86.  

 

Evaluation of pharmacokinetic properties of imidazotetrazine compounds 

The pharmacokinetic properties of DP68 and DP86 were evaluated in mice for 

potential dosing strategies. Following a single IP injection, DP86 peaked rapidly with a 

Tmax of 10 min, Cmax of 3230 nM and t1/2 = 14 min (Figure 2.19 A). DP68 had similar 

pharmacokinetic properties except that absorption was much more limited with a Cmax of 

206 nM (Figure 2.19 B). No adverse clinical effects were noted in the mice for up to 6 h 

after drug injection. However, because of the very short half-life for both drugs and the 

relatively limited absorption for DP68, further in vivo characterization of these 

compounds was not pursued.  

 

 We investigated whether the fast elimination could be due to enzymatic 

degradation using published techniques (Gynther, Laine et al. 2008). The half-lives of 

DP68 and DP86 were determined in mouse liver homogenate (DP68 t1/2 = 1.73 ± 0.05 h 

(n=3); DP86 t1/2 = 1.62 ± 0.18 h (n=3)), and the half-lives were roughly the same as those 

in aqueous buffer at pH 7.4 (DP68 t1/2 = 1.75 ± 0.04 h (n=3); DP86 t1/2 = 1.74 ± 0.08 h 
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(n=3)). Therefore, it is likely that DP68 and DP86 are not susceptible to enzymatic 

degradation in the liver. 
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Conclusion and discussion   

TMZ is a key component of therapy for GBM, but resistance limits the ultimate 

benefit. Expression of the MGMT DNA repair protein accounts for profound TMZ 

resistance in the majority of chemotherapy-naïve GBM patients, and inactivation or 

down-regulation of MMR can lead to acquired tolerance of TMZ-induced lesions. 

Therefore, developing therapeutic agents based on the TMZ structure that circumvent 

mechanisms of TMZ resistance may provide significant therapeutic gains. In this study, 

the anti-glioma activity was evaluated for two novel imidazotetrazine analogs: the 

bivalent DP68 and monovalent DP86. Both compounds exhibited activity in established 

glioma lines maintained in both serum-containing medium and as neurospheres in 

defined medium. In short-term explant cultures from primary GBM xenograft lines, these 

compounds were equipotent in TMZ-sensitive and -resistant GBM models. The bivalent 

DP68 induced a rapid and profound S-phase accumulation, and was associated with early 

activation of DNA damage signaling. These data provide a proof-of-concept that novel 

TMZ analogs can circumvent TMZ resistance in GBM models.  

 

TMZ chemotherapy provides significant benefit to a subset of patients, although 

eventual emergence of TMZ resistance and progressive tumor growth are almost 

universal. Stem-like cells express drug efflux transporters, have higher DNA repair 

capacities and may be responsible for re-populating tumors with therapy-resistant clones 

(Bao, Wu et al. 2006; Chen, Li et al. 2012; Kreso, O'Brien et al. 2013). They grow as 

neurospheres in serum-free media, and in this study, the effects of the imidazotetrazine 
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analogs on neurosphere growth were evaluated in cell line- and patient-derived 

neurospheres.  

 

The neurosphere recovery assay provides a 3-dimensional tumor model that 

measures acute responses to drug therapy and the clonogenic potential of cells following 

treatment.  Both U87NS (TMZ sensitive) and U118NS lines (TMZ resistant), cells were 

initially responsive to TMZ treatment, but outgrowth of secondary neurospheres was only 

inhibited at TMZ concentrations greater than 100 M (Figure 2.10), which is at the limit 

of clinically achievable levels of TMZ (Middlemas, Stewart et al. 2000). A similar 

pattern of regrowth was observed with DP68, but at a 10-fold lower concentration. The 

impact of drug therapy also was evaluated in neurosphere cultures derived directly from 

patient-derived xenograft lines. In both GBM12 (TMZ sensitive) and GBM6 (TMZ 

resistant) models, DP68 effectively suppressed neurosphere formation at a log-lower dose 

of drug than TMZ. Although other criteria for defining tumor stemness were not tested in 

this study, we have demonstrated tri-lineage differentiation, self-renewal and 

tumorigenicity in animals for multiple Mayo GBM xenograft lines (Higgins, Wang et al. 

2013). Thus, these data suggest that DP68 effectively kills stem-like cells and reduces the 

emergence of TMZ resistance mechanisms. 

 

Three models of acquired TMZ resistance were evaluated in this study. The dose 

responses for DP68 and DP86 were similar for GBM12 and GBM12TMZ, while the 

latter line was markedly resistant to TMZ. Resistance in GBM12TMZ has been linked to 
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high-level MGMT expression (Kitange, Carlson et al. 2009). Co-administration of the 

MGMT suicide inhibitor O6-BG significantly sensitized MGMT overexpressing cells 

lines to TMZ (GBM6 and T98G), but had no impact on responses to DP68 or DP86. The 

U87NSTMZ and U251TMZ lines have distinct mechanisms of TMZ resistance unrelated 

to MGMT. Previous studies linked mutational inactivation of MSH2 or MSH6 in the 

MMR pathway to tolerance of cytotoxic O6-MeG lesions, resulting in TMZ resistance in 

GBM patients (Zhang, Stevens et al. 2011; Zhang, Stevens et al. 2012). Further analysis 

of TMZ-resistant line U87NSTMZ (Figure 2.20) showed an increase in MLH1 and a 

decrease in MSH2 levels compared to parental U87NS.  In the FA/BRCA pathway, we 

observed FANCD2 overexpression and BRCA1 downregulation in U87NSTMZ. 

FANCD2 data is consistent with studies demonstrating FANCD2 overexpression in 

chemotherapy-resistant lines (Chen, Taniguchi et al. 2007) while FANCD2 loss sensitizes 

multiple cell types to chemotherapy drugs (Lyakhovich and Surralles 2007). The 

mechanism of resistance in the U251TMZ line was not evaluated. Regardless of 

mechanism, the data demonstrate equal efficacy of DP68 and DP86 in parental tumor 

lines (U251, U87NS) and derivative models of acquired TMZ resistance (U251TMZ, 

U87NSTMZ). Thus, DP68 and DP86 are highly effective in models with diverse 

mechanisms of TMZ resistance and support our hypothesis that these compounds can 

overcome a major clinical problem, TMZ resistance.   

 

The aqueous chemistry of DP68 and DP86 is subtly different from that of TMZ 

(Figure 2.2). All three compounds undergo pH-dependent hydrolytic ring-opening 
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reactions to generate reactive diazonium ions.  For TMZ these are the final reactive 

intermediates that covalently modify N7-G, O6-G, and N3-A. In contrast, the diazonium 

ions from DP68 and DP86 undergo an efficient, intra-molecular trapping reaction to form 

aziridinium ions, and these intermediates react with DNA, predominantly at N7-G sites 

(Garelnabi, Pletsas et al. 2012).  These new agents are designed to generate anticancer 

activity from N7-G adducts, but in addition, adducts at O6-G are resistant to repair by 

MGMT (Pletsas, Garelnabi et al. 2013). Consistent with either mechanism, sensitivity to 

both compounds was unaffected by MGMT expression in the TMZ-resistant T98G, 

GBM6, or GBM12TMZ models, and a similar MGMT-independence was observed in 

A2780 ovarian carcinoma cells (Pletsas, Garelnabi et al. 2013). The early arrest in S-

phase with DP68 treatment is consistent with DNA adducts that cannot be bypassed by 

the replication machinery, thereby, stalling replication forks. Consistent with these 

observations, DP68 triggered robust DNA damage signaling to the Chk1 and Chk2 

checkpoint kinases and the chromatin remodeling protein KAP1 within 4 to 8 h of 

treatment, and ultimately phosphorylation of H2AX (Ghosal and Chen 2013). These 

damage-inducible modifications are typically mediated by ATM in response to DNA 

DSBs and by ATR in response to replication-induced DNA damage. Consistent with 

signaling triggered by replication-induced damage, disruption of ATR signaling enhanced 

the potency of DP68 and DP86, while ATM inhibition had less significant and 

inconsistent effects (Figure 2.14 and 2.15). Collectively, these data suggest that DP68 

and DP86 induce DNA lesions that disrupt DNA replication.   
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 Despite likely similar nucleotide targets, DP68 and DP86 trigger significantly 

different patterns of DNA damage processing compared to TMZ. DP68 is a bivalent 

molecule that could generate two reactive aziridinium ions. Given the propensity of 

aziridinium ions to react with N7-G, we speculated that DP68 would insert five-atom, 3-

azapentylene N7-G–N7-G intra- and/or inter-strand crosslinks. The marked suppression 

of H2O2-induced comet tail moment following treatment with DP68, but not DP86, is 

consistent with formation of DNA inter-strand crosslinks. Moreover, the Fanconi’s 

anemia DNA repair pathway specifically repairs cross-link damage (Chen, Taniguchi et 

al. 2007), and disruption of this repair function, via siRNA suppression of FANCD2, 

sensitized U251 cells to DP68 but not DP86 or TMZ. These data indicate formation of 

inter-strand crosslinks by DP68, and the 10-fold greater potency compared to DP86 likely 

reflects this DNA cross-linking activity.  

 

 The present study provides proof-of-concept for novel imidazotetrazine analogs 

that induce DNA adducts insensitive to TMZ-resistance mechanisms. Specifically, bi-

functional DP68 with DNA cross-linking activity provided significant gains in potency 

and was highly effective against cells with the most common mechanism of TMZ 

resistance: MGMT overexpression. While in vivo studies failed to demonstrate efficacy 

of either DP86 or DP68, preliminary pharmacokinetic studies gave us better insight into 

the lack of in vivo efficiency.  These pharmacokinetic studies showed that the half-life for 

DP68 and DP86 (14 min) are significantly shorter than TMZ (55 min). Based on these 

data, medicinal chemistry approaches are being used to optimize the drug-like properties 
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for improved biodistribution. Essentially all GBM patients treated with TMZ develop 

refractory disease and ultimately die from progressive tumor growth. Thus, developing 

novel chemotherapies specifically effective against, or indeed averting the evolution of 

TMZ-resistant tumors is a critical unmet clinical need (Johnson, Mazor et al. 2014). The 

data presented suggest that mono- and bi-functional imidazotetrazines may be a 

compound class for treating TMZ-resistant tumors. Future studies with optimized second-

generation molecules will focus on defining the in vivo efficacy in orthotopic GBM 

xenograft models and defining the toxicity profile and therapeutic window for this 

promising class of agents. 
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Materials and Methods 

Cells and Reagents 

 The glioma cell lines U87MG, T98G, and U251 were purchased from the ATCC 

in 2011, 2001, and 2001, respectively. U118MG was a kind gift from Dr. Larry Recht 

(Stanford University, 2003). U251 (ATCC), T98G (ATCC), U118MG (IDEXX RADIL) 

and U87MG (IDEXX RADIL) were authenticated by short tandem repeat analysis in 

2013. These cell lines are representative of the diverse GBM genotypes (Table 2.1). 

Adherent lines were maintained as monolayer cultures in DMEM supplemented with 

10% FBS and 1% penicillin/streptomycin. U87MG and U118MG were converted to 

neurosphere cultures, U87NS and U118NS, by lifting cells from plates with 

0.05%Trypsin-EDTA (Gibco), washing cells three times with PBS to remove traces of 

FBS, and plating 500,000 cells/75 cm2 flask. U87NS and U118NS were maintained in 

serum-free media consisting of DMEM/F12 1:1 (Gibco), B27 supplement (Gibco), 15 

mM HEPES (Gibco) supplemented with 20 ng/mL EGF (Invitrogen) and 20 ng/mL bFGF 

(Invitrogen). Short-term explant cultures, GBM6 and GBM12, were established from 

Mayo GBM xenograft lines by mechanical disaggregation followed by culture in 

neurobasal serum-free media (StemPro NSCSFM; Invitrogen Cat#A1050901) 

supplemented with 20 ng/mL EGF (Invitrogen) and 20 ng/mL bFGF (Invitrogen).   

 

TMZ-resistant culture, U87MGTMZ, was established from U87MG cells by 

incrementally increasing TMZ twice-weekly to a final concentration of 325 μM. 

U87MGTMZ cells were then converted to the neurosphere culture, U87NSTMZ. TMZ-
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resistant cells were maintained with a single weekly dose of TMZ and passaged every 14 

days. GBM12TMZ (#3080) from the Mayo GBM xenograft panel and U251TMZ have 

been described (Giannini, Sarkaria et al. 2005; Kitange, Mladek et al. 2012).  

 

 DP68 and DP86 were synthesized as described previously (Garelnabi, Pletsas et 

al. 2012), and TMZ was bought from Schering-Plough Corp and Sigma-Aldrich.  All 3 

agents were prepared as 25 mM stocks in dimethyl sulfoxide (DMSO). O6-benzylguanine 

(O6-BG) was obtained from Sigma-Aldrich, the ATR inhibitor VE-821 from ChemieTek 

and the ATM inhibitor KU-60019 from Selleck Chemicals.  

 

Antibodies against ATM (ab10939), p-ATM S1981 (ab81292), p-KAP1 

(ab70369), and MSH2 were purchased from Abcam; Chk1 (#04-207), Chk2 (#05-649) 

and ATR (#PC538) from Millipore; PMS2 from B.D. Bioscience,  p-Chk1 Ser345 

(#MA5-15145) and MGMT (#MS-470-P) from Thermo Scientific; p-Chk2 Thr68 

(#2661), KAP1 (#4123), p-H2A.X Ser139 (#2577), MLH1 (#3515), and BRCA1 from 

Cell Signaling; and FANCD2 (#2986-1) from Epitomics. Levels of FANCD2 in 

U87TMZ lines were measured using antibody from Santa Cruz Technologies. β-actin 

antibody was purchased from Sigma-Aldrich and Cell signaling (8H10D10, #3700). 

Secondary anti-rabbit IgG, peroxidase-linked and anti-mouse IgG, peroxidase-linked 

were purchased from Cell Signaling Technologies and Pierce, respectively.  
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Western Blotting 

 Cells were lysed in RIPA lysis buffer (R0278, Sigma-Aldrich) supplemented with 

a protease inhibitor cocktail (Roche). Total proteins were isolated from flash frozen flank 

xenografts or short-term explant cultures, separated by SDS-PAGE, and electro-

transferred onto PVDF membranes. Membranes were blocked in Tris-buffered saline 

(TBS) containing 5% powdered milk and 0.1% Tween-20 at room temperature. All 

primary antibodies were incubated overnight at 4 ºC followed by room temperature 

incubation with a secondary antibody conjugated with horseradish peroxidase for 1 h. 

Detection was performed with Super Signal Chemiluminescent reagent according to the 

manufacturer’s protocol (Pierce).    

 

CyQUANT cell proliferation assay 

 A cell proliferation assay was performed using the CyQUANT Cell Proliferation 

kit (Invitrogen) according to manufacturer’s recommendations. Cells were seeded (1,000 

cells/well) in triplicate in 96-well plates, exposed to various concentrations of DP68, 

DP86, or TMZ, and incubated for 5 days. In experiments where MGMT was inhibited, 

O6-BG (10 μM) was added 1 h before DP68, DP86, or TMZ treatment. On day 5, 

medium was removed, cells were washed once with PBS, and plates were stored at –80o 

C. The plates were thawed and lysed in CyQUANT GR dye-containing lysis buffer (200 

μL/well). After 4 min incubation at room temperature, the fluorescence intensity of the 

DNA-binding dye was measured using a TECAN plate reader with excitation at 480 nm 

and emission at 520 nm.  
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Flow cytometry analysis 

 Cell cycle distribution was analyzed by flow cytometry. Cells were harvested, 

washed with PBS, and fixed with ice-cold 70% ethanol/30% PBS. Cells were re-

suspended in PBS containing propidium iodide (40 μg/ml), RNase A (100 μg/ml) and 

Triton X-100 (0.05%), and incubated at 37 ºC for 30 min. DNA content was determined 

using a FACScan flow cytometer system (Becton Dickinson), and results were analyzed 

with Modfit software (Verity Software).  

 

Neurosphere assays 

 Chemosensitivity (sphere IC50) of GBM cells to TMZ, DP86, and DP68 was 

analyzed by seeding U87NS and U118NS cells in triplicate in 96-well plates (1,000 

cells/100 μL/well) (BD Falcon). After 24 h, vehicle, TMZ, DP86, or DP68 was added to 

the wells, and primary neurospheres were quantified after 7 days. Primary xenograft 

cultures (GBM6, GBM12, and GBM12TMZ) were plated (500 cells/well), treated, and 

neurospheres were quantified at day 14. For the limiting dilution experiments in Figure 

2.6, GBM12, GBM12TMZ, and GBM6 cells were plated at 1, 10, 30, 100, 300 or 1000 

cells/well, drug treated after 24 hrs, and counted at day 14. Recovery and secondary 

sphere assay (Gilbert, Daou et al. 2010), cells were plated at clonal density (3,000 

cells/mL; 2 mL total) in 6-well plates (BD Falcon) and treated with TMZ, DP86, DP68, 

or vehicle. Primary spheres were counted on day 7 and cells were fed with neurosphere 

medium (2 mL). Spheres for the recovery phase were counted on day 14, dissociated 
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using a basic pH dissociation method (Sen, Kallos et al. 2004), and a fraction of the 

culture re-plated. Secondary spheres were counted on day 21. Spheres with 10 cells or 

more were counted. 

 

siRNA and shRNAs 

 Transient knockdown of ATM, ATR, and FANCD2 was achieved using siRNAs 

from Thermo Scientific/Dharmacon: ATM- AAG CAC CAG TCC AGT ATT GGC; 

ATR- C CTC CGT GAT GTT GCT TGA; FANCD2- GGU CAG AGC UGU AUU AUU 

C; control luciferase siRNA- CTT ACG CUG AGU ACU UCG A. siRNAs were mixed 

with 5-8 million U251 cells and electroporated with two 280 V pulses of 10 ms. The cells 

were plated, incubated overnight and again electroporated. After a 24 h recovery, cells 

were plated for subsequent studies.  

 

For MLH1 knockdown experiments, lentiviral (TRC) shRNAs against eGFP and 

MLH1 (TRCN0000040053, TRCN0000040056) as well as the empty pLK0.1 vector 

construct were purchased from UMASS RNAi Core (Open Biosystems), and lentiviruses 

were produced using HEK293T. T98G and U87MG cells were infected by lentivirus 

using 10 μg/mL polybrene, followed by selection using 2 μg/mL puromycin for two 

weeks to generate stable lines. 
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Analysis of DNA cross-linking in single cells using alkaline comet assay 

U251 cells in exponential growth were exposed to DP68, DP86, TMZ, or 

melphalan (positive control for cross-linking) for 24 h and subsequently treated with 100 

μM hydrogen peroxide for 20 min.  As described previously (Phillips and Ward 2001), 

cells then were embedded in 0.5% low melting point agarose, spread on agarose coated 

glass slides, and lysed in ice cold lysis buffer before being transferred to electrophoresis 

buffer (pH >13). After a 30 min incubation to allow DNA unwinding and expression of 

alkali labile sites, cells were subjected to electrophoresis at 0.6 V/cm for 25 min. 

Neutralization buffer was added drop-wise to the slides followed by rinsing in distilled 

water, fixation in 100% ice-cold ethanol and drying overnight. Slides were stained with 

SYBRTMGold solution (Molecular Probes Inc.), and the comets were visualized using an 

epi-fluorescent microscope (Nikon Eclipse E800). Tail moments were measured on 50 

randomly selected comets using Comet Assay III software (Perceptive Instruments, UK). 

Percentage DNA cross-linking was calculated from (TMC-TMT) / TMC where TMC and 

TMT represent the tail moment of control and drug treated cells respectively (Phillips and 

Ward 2001).  

 

Subcutaneous xenografts and in vivo drug treatments  

U87NS neurospheres were pH dissociated, counted, and injected (1x106/100 μL 

PBS) into the right flanks of Nu/Nu male mice (Charles River Labs). For the in vivo work 

in Figure 2.17, tumor volumes were measured with calipers, and drug treatments were 

initiated when tumor volumes reached 250-350 mm3. Volume was calculated as (4/3) x 
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(π) x (length/2) x (width/2)2. Mice were randomly assigned into treatment groups 

consisting of: 150 μL DMSO:PBS (1:1) (n=3), 20 mg/kg TMZ (5 mg/kg working stock) 

(n=4), 20 mg/kg DP86 (5 mg/mL working stock) (n=4), 10mg/kg DP68 (5 mg/mL 

working stock) (n=3), and 20 mg/kg DP68 (10 mg/mL working stock) (n=4). All drugs 

were prepared in DMSO and diluted in PBS to a working stock for injection. Drug was 

delivered via IP on two consecutive days. Tumor growth was monitored, and mice were 

sacrificed when tumor volumes reached 1000-1200 mm3.  For the in vivo work in Figure 

2.18, drug treatments were initiated when tumor volumes reached 250-450 mm3. Mice 

were divided into four treatment groups consisting of: DMSO IT (n=7), TMZ IT (25 mM 

stock) (n=6), DP86 IT (25 mM stock) (n=6), and DP68 IT (25 mM stock) (n=6). All 

drugs were prepared in DMSO. Drug was delivered on five consecutive days and drug 

volumes used to treat used were based on tumor volumes (1/10th of tumor volume). 

Tumor volumes were monitored for 25 days before remaining mice were sacrificed.  

 

Pharmacokinetic analysis of imidazotetrazine compounds 

DP68 and DP86 were formulated in 0.9% NaCl, 10% (w/v) HP-β-cyclodextrin, 

and C57B2/6 mice were dosed with a single 25 μmol/kg IP. Groups of 3 mice were 

euthanized at times up to 6 h after injection, and plasma was harvested for analysis. Drug 

levels were assessed by the LTQ quadrupole ion trap mass spectrometry method 

(Gynther, Laine et al. 2008). 
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Figure 2.1 Structures of TMZ, DP68, and DP86. 
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Figure 2.2 Summary of prodrug activation.  
Summary of prodrug activation and drug mechanisms of action for DP68 and DP86 
highlighting the roles of diazonium and aziridinium ion intermediates. DP86 
monoalkylation (A) and DP68 crosslink formation (B). 
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Figure 2.4 TMZ-resistant lines are morphologically different from parental. 
Phase-contrast microscopy of TMZ-resistant lines, U87MGTMZ and U87NSTMZ, and 
their respective parental lines. Morphological differences between the resistant and 
parental lines can be noted.  
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Figure 2.6 Cell density does not affect efficacy of DP68. 
Primary cell lines GBM12 (A), GBM12TMZ (B), and GBM6 (C) were plated at various 
cells densities with the lowest being 1 cell/well. Cells were treated with TMZ, DP68, or 
control DMSO. Neurospheres were counted14 days later.  GBM12 is capable of 
neurosphere formation following single cell plating while the other two primary lines do 
not have this capability. However, DP68 efficacy was maintained in all three lines at 
lower cell densities. Mean ± SEM is plotted. A is a representative of two independent 
experiments plated in triplicate while B-C is one experiment plated in triplicate.  
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Figure 2.7 Activity of novel TMZ analogues is independent of MGMT. 
T98G (A-B) and GBM6 (C-D) co-treated with TMZ (A,C), DP86 (B,D), or DP68 (B,D) 
and 0 or 10 μmol/L O6-BG were evaluated by a CyQUANT assay (A-B) or neurosphere 
formation (C-D).  Inhibition of MGMT by O6-BG had no impact on GBM cell line 
response to DP86 or DP68. Mean ± SEM of three independent experiments are shown. 
 

 
 
 
 
 
 
 
 
 
 
 

C. 

A. B. 

D. 
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Figure 2.8 DP86 and DP68 activity is independent of MMR expression. 
Western blot confirming knockdown in T98G (A) and U87MG (B) cells infected with 
empty vector, sheGFP, and shRNAs targeting MLH1. Infected T98G (C) and U87MG 
(D) cells were treated with TMZ, DP86, or DP68 and cell survival was analyzed via 
CyQUANT assay. Mean IC50 ± SEM from at least three independent experiments are 
graphed. *p<0.05, **p<0.01. Western blot shows decrease of PMS2 (E) expression in 
T98G MLH1 knockdown cells.  
 

 

A. B. 

C. D. 
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Figure 2.9 Schematic of neurosphere secondary assay. 
Neurosphere secondary assay is used to evaluate the treatment, recovery, and secondary 
sphere formation potential of our GBM lines following treatment with TMZ or novel 
analogues, DP86 and DP68. On Day 0 GBM neurospheres are dissociated, plated at 
clonal density, and treated with a single dose DMSO, TMZ, DP86, or DP68. During the 
course of the assay neurospheres are quantified at day 7 (treatment phase), day 14 
(recovery phase), and day 21 (secondary sphere formation phase).   
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Figure 2.11 DP68 induces DNA damage in the form of crosslinks.  
U251 cells were treated with Melphalan, TMZ, DP68 and DP86 for 24 h and then H2O2 
for 20 min prior to analysis in an alkaline comet assay (A). C= control, T= treated. 
Relative amount of DNA cross-linking (B) was calculated from (TMC-TMT)/TMC. TMC= 
tail moment of control, TMT= tail moment of drug treated cells. The tail moments of 50 
randomly selected comets were measured using Comet Assay III software. % DNA 
cross-linking ± SD from three independent experiments. 
 

  

A. 

B. 
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Figure 2.12 Cellular response of GBM lines to TMZ and DP68. 
U251 and T98G (A) cells were treated with vehicle, 10 μM DP68, or 30 μM TMZ for 24 
or 72 h, and then fixed. Histograms are representative of three independent experiments. 
Similarly U87MG (B) were treated with vehicle, TMZ, or DP68, stained with propidium 
iodide, and changes to cell cycle profiles were analyzed by flow cytometry.  
 

 

 

A. 

B. 
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Figure 2.14 Recovery from DP68 induced DNA damage is ATR and FANCD2 
dependent.   
Western blot confirming knockdowns in U251 cells double electroporated with control 
(fLuc), ATM, ATR, or FANCD2 siRNA (A). Transfected cells were treated with 0 or 30 
μM TMZ, 3 μM DP68 or 30 μM DP86 and assessed for cell growth using a 
CyQUANTassay (B). Mean ± SEM from three independent experiments.  * p<0.05, ** 
p<0.001 
 

 

 

 

A. 
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Figure 2.16 Efficacy of DP68 and DP86 in vivo. 
U87NS were subcutaneously injected into Nu/Nu male mice and tumors allowed to 
progress. Mice were treated with vehicle control, TMZ, DP86, or DP68 via IP injections 
on two consecutive days (A-B). Drugs were diluted in either DMSO:PBS 1:1 mix (A, C) 
or 100% DMSO (B, D) to address solubility problems. Tumor volume was monitored and 
measured with calipers. Data plotted as percent survival (C-D). TMZ-treated tumors 
showed decreased tumor volumes and increased median survival. In contrast, DP86 and 
DP68 failed to show any apparent effect in vivo independent of solvent drug was diluted 
in. 
 

A. 

B. 

D. C. 
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Table 2.2 Median survival of U87NS xenografts drug treated via IP injection with 
drugs diluted in DMSO:PBS (1:1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



88 
 

Table 2.3 Median survival of U87NS xenografts drug treated via IP injection with 
drugs diluted in 100% DMSO.  
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Figure 2.18 DP68 shows poor distribution following IT injections. 
Tumors were removed after mice were euthanized and examined. DP68 tumors show 
precipitation of drug (yellow) within the tumor.  
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Figure 2.19 Pharmacokinetic evaluation of DP86 and DP68.  
Following a single IP injection of DP86 (A) or DP68 (B), plasma drug levels were 
determined at times up to 6 h post-injection by LTQ quadrupole ion trap mass 
spectrometry. Results shown are mean ± SD at each time-point (n=3 mice per time-
point).  
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Figure 2.20 Characterization of U87NSTMZ line. 
Western analysis on whole cell lysates showing difference in expression of MLH1 (A), 
MSH2 (B), FANCD2 (C) and BRCA1 (D) between parental U87NS and TMZ-resistant, 
U87NSTMZ. 
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CHAPTER III 

 

TARGETING MICRORNAS TO ENHANCE A NOVEL THERAPY FOR 

GLIOBLASTOMA MULTIFORME 
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CHAPTER III 

Preface 

The contents of this chapter stem from a side-project carried out during my time 

in the Ross lab. We were interested in expanding the work done by a previous graduate 

student, which focused on the effects of TMZ in combination with GSIs in GBMs. In 

particular, we wanted to explore how miRNAs contribute to the efficacy of the therapy. 

While this work has been presented at the 24th EORTC-NCI-ACCR (2012) conference, it 

remains unpublished.  

 

In this chapter, I was responsible for the majority of experimental set-up, data 

acquisition, and analysis. The UMASS flow cytometry core performed the cell sorting 

and flow cytometry and the UMASS tumor bank supplied us with tumor #5075. 
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Abstract 

Our lab has previously shown that combination therapy, consisting of TMZ and a GSI, 

decreases recovery of GBM neurosphere cultures and propagation of secondary spheres, 

when compared to TMZ-only or GSI-only treatment. In vivo administration of TMZ + 

GSI in animals with pre-existing tumors inhibited tumor growth, blocked progression, 

and resulted in complete tumor regression in 50% of the mice. Our most recent data 

suggests the induction of senescence as a potential mechanism for the high efficacy of the 

TMZ + GSI treatment. In order to design a more targeted therapy, the signaling and 

regulatory mechanisms which are unique to senescence need to be elucidated. We sought 

to identify a miRNA signature that is differentially expressed in TMZ + GSI-treated 

GBM neurosphere cultures, since modulating miRNA transcript levels has therapeutic 

applications. We found microRNA-34a (miR-34a) expression was highly upregulated in 

response to TMZ or TMZ and the GSI inhibitor, DAPT. The upregulation was greatest at 

day 21, coinciding with senescence and suggesting a role for miR-34a in inducing 

senescence. Exogenous expression of miR-34a in our glioma lines reduced cell 

proliferation and lead to an induction of senescence, as demonstrated by senescence-

associated β –galactosidase (SA-β-gal) staining. MiR-34a overexpression modified cell 

cycle profiles by inducing a G1 arrest, but apoptosis was not detected. Notch family 

members were investigated as potential targets of miR-34a through which these effects 

might be mediated. Overexpression of miR-34a reduced Notch-1, Notch-2, and Notch-3 

levels in glioma cultures.  
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Introduction 

TMZ and radiotherapy became the standard of care following the 2005 study by 

Stupp et al. which showed that addition of concurrent and adjuvant TMZ to radiotherapy 

significantly increased GBM patient survival (Stupp, Mason et al. 2005). However, 

therapy with TMZ in GBMs gives a short-lived response as cells with intrinsic or 

acquired resistance ultimately re-grow, causing tumor recurrence. One approach to 

overcome resistance has been to develop novel combination therapies. Notch is a 

promising candidate for combination therapy as it regulates proliferation, cell death, 

differentiation, and cancer stem cell maintenance (Lino, Merlo et al. 2010).  Increased 

expression of Hey1, a Notch downstream target, in GBM patients is a poor prognosis 

factor associated with a 2-fold decrease in survival (Hulleman, Quarto et al. 2009).  

Notch inhibition in combination with other agents is promising as inhibition of Notch 

sensitizes cells to radiation (Wang, Chadalavada et al. 2010) and chemotherapy agents 

such as oxaliplatin (Meng, Shelton et al. 2009). 

 

We have previously analyzed the combination of TMZ + GSI and shown it 

enhances GBM therapy (Gilbert, Daou et al. 2010). The effects of TMZ + GSI were 

evaluated in a secondary neurosphere formation assay (Figure 3.1 A), which allows us to 

evaluate initial response (Treatment), re-growth following a recovery period (Recovery), 

and the ability to give rise to secondary spheres following dissociation (Secondary). 

Secondary sphere counts serve as a measure of self-renewal. Drug treatment schedule 

consisted of a single dose of TMZ and GSI on day 0 with subsequent doses of GSI on 
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days two, four, and seven (Figure 3.1. A, green and red arrows). Two GSIs were chosen 

for analysis: DAPT and LY411,575. TMZ-treated cultures show an initial decrease in the 

number of neurospheres but eventually recover and form secondary spheres (Figure 3.1 

B). The combination of GSI and TMZ enhanced treatment as neurospheres were not 

capable of self-renewal. Assessment of tumor formation in immunocompromised mice 

showed that TMZ + GSI treated cells had decreased tumorigenicity. Furthermore, in vivo 

TMZ + GSI treatment of pre-existing subcutaneous tumors showed no tumor progression 

in 50% of the mice. TMZ + GSI combination therapy is promising for overcoming 

resistance as cells capable of recovery are targeted and self-renewal is inhibited. 

Examination into the biological mechanism of TMZ + GSI treatment showed that a 

permanent growth arrest was induced, which in turn prevented regrowth of GBM cultures 

(Gilbert 2011).  Induction of apoptosis did not occur, and interestingly, TMZ + GSI 

treated cells were more likely to undergo phagocytosis by macrophages. This is of 

interest as treatments that induce cytostasis, the inhibition of proliferation without 

induction of cell death, are being evaluated as novel therapies. Therapy-induced 

senescence (TIS) is one way to achieve cytostasis. Currently there is a phase 1 clinical 

trial to evaluate side effects and optimal dose of GSI RO4929097 in combination with 

TMZ and radiotherapy in patients with newly diagnosed GBM (Clinical Trial # 

NCT01119599) (Institute 2015).  

 

We were interested in targeting miRNAs in order to enhance this novel 

combination therapy. MiRNAs are non-coding double stranded RNA molecules that 
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regulate gene expression. Some miRNAs serve as oncogenes or tumor suppressors (Chen 

2005; Kent and Mendell 2006), and dysregulation of miRNA expression is a critical 

component of cancer (Dalmay and Edwards 2006). Studies have shown that aberrant 

expression of microRNAs is present in many human cancers, including GBMs (Lu, Getz 

et al. 2005).  Oncogenic miR-21 is highly upregulated in GBMs and its inhibition 

sensitizes cells to chemotherapeutic agents and radiation (Chan, Krichevsky et al. 2005; 

Zhang, Wan et al. 2012; Chao, Xiong et al. 2013; Costa, Cardoso et al. 2013; Giunti, da 

Ros et al. 2015), expression of miR-196a is associated with poor survival (Yang, Han et 

al. 2014) , while upregulation of miR-195, miR-10a, and miR-455-3p occurs in TMZ-

resistant GBM lines (Ujifuku, Mitsutake et al. 2010).  

 

In this study, we show that TMZ and TMZ + GSI drug treatments upregulate the 

expression of miR-34a in GBM cells, which acts as a tumor suppressor in this context. 

Following miR-34a overexpression proliferation is inhibited, cells arrest at G1, SA-β-gal 

staining is present, and the invasiveness of GBM cells decreases. Our data also provides 

evidence for the involvement of miR-34a in the regulation of the Notch pathway. Thus, 

we demonstrate that miR-34a alone has therapeutic implications in GBMs.  

 

Results 

TMZ + DAPT treatment leads to altered expression of miR-34a   

 To identify a miRNA signature that is differentially expressed in TMZ + DAPT 

treated cultures, we began by examining the expression levels of a selected group of 
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miRNAs: miR-34a, miR-7, miR-29 family, and miR-519 following drug treatment. 

MiRNAs were selected based on published reports implicating their role in senescence or 

on a predicted target’s role in senescence (Tazawa, Tsuchiya et al. 2007; Marasa, 

Srikantan et al. 2010; Zhao, Li et al. 2010; Martinez, Cazalla et al. 2011). U87NS and 

U373NS cells were treated with DMSO control, DAPT, TMZ or a combination of TMZ 

+ DAPT according to the regimen previously described (Figure 3.1 A). RNA isolation 

from treated cultures at day 2, 8, 14, and 21 allowed us to evaluate miRNA expression at 

each stage of the secondary sphere assay. MiR-519 showed no detectable transcript in 

these glioma lines and was not further pursued. Changes in miR-7 and miR-29 expression 

levels are addressed in Appendix II. Expression of miR-34a was reproducibly 

upregulated ≥2-fold following treatment with TMZ and TMZ + DAPT in U87NS and 

U373NS (Figure 3.2 A-B). We have previously shown that U87NS and U373NS treated 

with TMZ (U87NS= 36.3 %; U373NS =33 % on day 7) or TMZ + DAPT (U87NS= 64 

%; U373NS= 56.3 %) have a large induction of SA-β-gal expression, a marker for 

senescence (Gilbert 2011). For day 21 cultures, SA-β-gal positive cells remained higher 

in the TMZ (U87NS= 11.6 %; U373NS= 18.5 %) and TMZ + DAPT (U87NS= 79.2 %; 

U373NS= 82.1 %) treated neurospheres than the DMSO (U87NS=2.3 %; U373NS= 2.3 

%) or DAPT only (U87NS= 2.6 %; U373NS= 2.4 %) controls.  Consistent with a 

potential role in induction of senescence, miR-34a expression is 2-6 folds greater in TMZ 

and TMZ + DAPT treated cultures. For this reason, we focused on analyzing how miR-

34a affects GBM cultures. 
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MiR-34a expression in glioma cultures 

We assessed miR-34a expression levels in a panel of glioma cultures by qRT-

PCR analysis of mature miR-34a (Figure 3.3). All of the cell lines had detectable levels 

of miR-34a, but U87MG had the highest levels. MiR-34a transcript levels appear to 

correlate with the p53 status of the lines, with p53 mutant lines having low miR-34a 

expressions and p53 wild-type have higher expression. It has been previously shown that 

p53 regulates miR-34a levels (Bommer, Gerin et al. 2007; Chang, Wentzel et al. 2007; 

He, He et al. 2007) and expression of miR-34a in our glioma cultures is in line with this 

observation. A 1.7 fold decrease in expression of miR-34a can be seen following 

conversion of U87MG to the neurosphere culture, U87NS. 

 

MiR-34a exerts anti-proliferative effects on GBM cell lines 

We evaluated effects of miR-34a on GBM cell line proliferation following 

transfection with miR-34a or negative control.  In the adherent U87MG line, the 

neurosphere U87NS line, and our patient-derived 5075MG line, cell proliferation was 

significantly suppressed by miR-34a (Figure 3.4). In U87NS cultures, transfection with 

5, 10, 20, and 30 nM miR-34a mimic led to changes in neurosphere morphology (Figure 

3.5). Control cultures gave rise to tight, densely packed neurospheres characteristic of the 

U87NS cell line. MiR-34a transfected cultures formed neurospheres with large cells in 

loose aggregates.  A simple explorative evaluation into miR-34a effects on neurosphere 

self-renewal was carried out by pH dissociating spheres seven days post-transfection, 
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replating, and observing sphere formation seven days later (Figure 3.6). Interestingly, 

secondary neurospheres failed to form in the miR-34a transfected U87NS. 

 

MiR-34a does not promote apoptotic cell death but does arrest cells at G1 

To examine whether miR-34a inhibition of proliferation was associated with 

induction of apoptotic cell death, we assessed the percent of Annexin-V and 7-AAD 

positive cells (Figure 3.7 A) in control versus miR-34a cells. U87NS cells harboring the 

miR-34a mimic showed no difference in the early apoptotic (Annexin-V +, 7-AAD -) or 

late apoptotic (Annexin-V +, 7-AAD +) populations both 48 h and 72 h post-transfection. 

Furthermore, cleavage of PARP was not detected in cell lysates up to 96 h post-

transfection (Figure 3.7 B).  Interestingly, PARP levels appear to go down in response to 

miR-34a overexpression (Figure 3.7 C). Thapsigargin, a known inducer of apoptosis 

(Andersen, Lopez et al. 2015), was included as a positive control for PARP cleavage. 

Overexpression of miR-34a did induce a slight, but statistically significant, G1 arrest in 

cells (Figure 3.8). These results suggest that miR-34a overexpression fails to induce 

apoptosis but does alter cell cycle progression in glioma cells.  

 

MiR-34a induces SA-β-gal expression 

 TMZ + DAPT treatment induces senescence, thereby inhibiting secondary sphere 

recovery and the progression of tumors in vivo (Gilbert 2011). Senescence is largely 

evident by day 7 and peaks at day 21 post-treatment. We have shown that miR-34a 

expression is significantly elevated at these time points in the TMZ and TMZ + DAPT 
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treatment groups. Because of this we examined whether dysregulation of miR-34a drives 

cells into senescence. Senescence was assessed via SA-β-gal staining of U87NS cells 

following transfection with miR-34a or negative control (Figure 3.9 A). SA-β-gal was 

evident as early as three days post-transfection (Figure 3.9B). DharmaFect 1(transfection 

reagent only) treated cells and negative control transfected cells had a minimal percent of 

cells expressing SA-β-gal, 8.1 ± 0.9 % and 10.1 ± 1.5 %, respectively. Cells 

overexpressing miR-34a showed a 5-fold (53 ± 1.8 %) increase of SA-β-gal staining.  

 

Invasiveness of GBM cells was reduced in vitro by miR-34a 

 GBMs, by nature, are highly invasive (Wen and Kesari 2008). We wanted to 

determine if miR-34a regulates this process. To address this, we measured the in vitro 

ability of GBM control versus miR-34a cells to invade through Matrigel®-coated 

transwell chambers (Figure 3. 10 A-B). In just 12 h, U87MG negative control cells 

invaded through the Matrigel®. MiR-34a cells led to a 56 % reduction in invasive 

U87MG cells (p-value< 0.01). These data suggest that miR-34a regulates the 

invasiveness of GBM cells.  

  

Notch family members are negatively regulated by miR-34a 

  In silico analysis using TargetScan (Lewis, Burge et al. 2005) and PicTar (Krek, 

Grun et al. 2005) predicts that miR-34a targets Notch-1 and Notch-2, which play roles in 

proliferation, senescence, and invasion (Lino, Merlo et al. 2010). We examined changes 

in expression of Notch receptors following miR-34a overexpression. Western analysis 
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shows that expression of miR-34a inversely correlates with the expression of Notch 

receptors (Figure 3.11 A-B). Decrease in full length (FL) and intracellular domain (ICD) 

of Notch-1, Notch-2, and Notch-3 occurs with as little as 5 nM miR-34a mimic in U87NS 

cells. Expression of Notch-1, Notch-2, and Notch-3 decreased significantly (Notch-1 

ICD= 13.8-fold; Notch-2 ICD= 10.6-fold; Notch-3 ICD= 89-fold) following transfection 

of 20 nM mimic. This is the concentration the majority of our assays were carried out at. 

Similar decreases in Notch-1, Notch-2, and Notch-3 were also seen in the adherent 

U87MG cells (Figure 3.11 C). Activation of the Notch pathway occurs following the 

interaction of ligand on one cell with a receptor on a neighboring cell (Bray 2006).  In 

line with this, we observed that downregulation of Notch receptors was affected by 

density at which assays were plated (Figure 3.12).  
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Conclusions and Discussion 

 We have previously shown that the combination of cytotoxic TMZ with a GSI 

enhances GBM therapy in both in vitro and in vivo models (Gilbert, Daou et al. 2010). 

Further examination revealed that efficacy of TMZ + GSI treatment is partially due to 

cells entering a permanent senescent state that is more susceptible to macrophage 

phagocytosis (Gilbert 2011). However, applications of GSI in the clinic can cause 

gastrointestinal toxicity so we sought to identify miRNAs that mimic the effects of TMZ 

+ GSI as an alternative approach to enhance GBM therapy. In this study we find that 

miR-34a is upregulated in TMZ and TMZ + DAPT treated cells. Exogenous expression 

of miR-34a revealed that it functions as a tumor suppressor by: inhibiting proliferation, 

inducing a G1 arrest, increasing SA-β-gal staining, and decreasing the invasion potential 

of GBM cells. Anti-tumor effects of miR-34a were not mediated by apoptosis. Instead, 

these results mimic the in vitro effects previously demonstrated in GBM cells following 

TMZ + DAPT (Gilbert, Daou et al. 2010). The down-regulation of Notch family 

receptors (Notch-1, -2, and -3) by miR-34a might be one mechanism by which miR-34a 

exerts its tumor suppressive effects.Therefore, miR-34a’s contribution to senescence may 

provide a valuable tool for the future treatment of GBMs. 

 

Our data shows that GBM neurospheres treated with TMZ and the combination 

TMZ + DAPT distinctly modulate the expression of miR-34a. Upregulation of miR-34a 

was observed at all time points tested for the U87NS and U373NS lines. While no other 

studies have analyzed changes in miRNA following TMZ or GSI treatments in cancer 
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models, induction of miR-34a has been shown in other cancers in response to DNA 

damaging agents. MiR-34a was upregulated in colon cancer cell lines following 

Adriamycin (Tazawa, Tsuchiya et al. 2007), in the livers of mice following ENU (N-

ethyl-N-nitrosourea) treatment (Li, Branham et al. 2010), in osteosarcoma lines following 

etoposide (Novello, Pazzaglia et al. 2014), and in muscle-invasive bladder cancer lines 

following cisplatin treatment (Li, Yu et al. 2014).  Similarly, miR-34a was upregulated in 

U87MG and LNZ308 lines after TMZ-resistance was generated (Hiddingh, Raktoe et al. 

2014). While the upregulation we measured is in agreement with these studies, many of 

those studies showed that upregulation occurred in a p53-dependent manner. In contrast 

in our studies, miR-34a was upregulated in both p53 wild type U87NS and p53 mutant 

U373NS lines, indicating that miR-34a upregulation in U373NS occurs in a p53-

independent manner. However, basal levels of miR-34a in our panel of GBM cell lines 

did correlate with p53 status.  

 

Initially we sought to determine if the combination of TMZ and miR-34a mimic 

would have therapeutic benefits in GBMs, but we were met challenges. We have 

previously shown that the response to TMZ + DAPT treatment is sequence-dependent, 

(Gilbert, Daou et al. 2010) as secondary sphere formation is inhibited only when DAPT 

treatment is administered 24 h following TMZ. This was difficult to model in vitro as 

cells cannot be transfected following TMZ treatment without large amounts of cell death.  

 



106 
 

Induction of cellular senescence is one mechanism by which TMZ + DAPT exerts 

its anti-tumor properties.  Following TMZ + DAPT treatment, cells enter permanent 

growth arrest which in turn inhibits the recovery of cells from TMZ treatment. We found 

that modulating miR-34a expression recapitulates these effects in vitro.  Inhibition of 

proliferation, increase in cell size, G1 arrest, and enhanced SA-β-gal expression were 

evident following overexpression of miR-34a. Three days following the introduction of 

miR-34a, 53.3 ± 1.8% of the cells were positive for SA-β-gal. This mimics the induction 

of senescence seen in day 7 post TMZ + DAPT treatment, in which 64.0 ± 9.5% of the 

cells are positive (Gilbert 2011). MiR-34a has been reported to exert an apoptotic effect 

in many different cancer models including: GBM (Li, Guessous et al. 2009; Guessous, 

Zhang et al. 2010; Luan, Sun et al. 2010; Yin, Ogawa et al. 2013; Rathod, Rani et al. 

2014) neuroblastoma (Cole, Attiyeh et al. 2008), medulloblastoma (de Antonellis, 

Medaglia et al. 2011) and prostate (Wei-Yu Chen 2014).  Interestingly, induction of 

apoptosis was not detected in our model. Analysis of Annexin V and 7-AAD showed no 

double positive (Annexin-V+, 7-ADD+) population when compared to control. This was 

further validated by the lack of PARP cleavage in miR-34a overexpressing samples up to 

96 h post-transfection. However, this is in line with our lab’s previous observations of 

TMZ + DAPT treated cultures and further confirms that cells have entered a senescent 

state.  

 

GBMs are highly invasive in nature (Wen and Kesari 2008). In this study, 

overexpression of miR-34a reduced invasion of U87MG by 56 %, showing that miR-34a 
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contributes to glioma invasion. Previous examination of TMZ +DAPT therapy did not 

assess the contribution of Notch inhibition on invasion. Due to the large number of miR-

34a targets, invasion could be regulated through many pathways. In our system, miR-34a 

downregulates members of the Notch family and Notch has been shown to promote 

invasion mediated by cross-talk with Wnt pathway proteins (Hurlbut, Kankel et al. 2007; 

Zhang, Chen et al. 2012). Similarly, miR-34a has sites in the 3’UTR of Wnt pathway 

members such as WNT1 and Dickkopf (DKK1) (Krek, Grun et al. 2005; Lewis, Burge et 

al. 2005) and could potentially regulated these protein directly. In human hepatocellular 

carcinoma cells, miR-34a has been shown to inhibit invasion by directly targeting c-Met 

leading to decreased phosphorylation of ERK1/2 and resulting in decreased invasion of 

HepG2 cells (Li, Fu et al. 2009). C-Met has also been shown to be directly regulated by 

miR-34a in a GBM model (Li, Guessous et al. 2009) and could regulate invasion through 

this pathway as well.  Lastly, miR-34a might regulate invasion through another of its 

targets, EGFR (Yin, Ogawa et al. 2013). Notch, c- Met, Wnt, and EGFR signaling can all 

affect invasion as downregulation of these pathways leads to decrease in matrix 

metalloproteases (MMPs) (Pang, Leung et al. 2010; Paul, Bhattacharya et al. 2013). MiR-

34a overexpression would lead to a downregulation of EGFR, c-Met, Wnt, or Notch 

signaling, which in turn would decrease MMP expression and decrease invasion of GBM 

cells.  
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Inhibition of Notch by the GSI, DAPT, enhances TMZ therapy. Of the four Notch 

receptors, Notch-1 and Notch-2 are predicted targets of miR-34a based on seed sequence 

homology to their 3’UTR. In this study we showed Notch-1, Notch-2, and Notch-3 

receptors expression is downregulated by miR-34a overexpression. However, in the time 

since this data was generated others have published studies demonstrating that miR-34a 

binds directly to the 3’UTR of Notch-1(Li, Walling et al. 2009; Li, Guessous et al. 2009; 

Du, Sun et al. 2012; Bu, Chen et al. 2013) and Notch-2 (Li, Walling et al. 2009; Li, 

Guessous et al. 2009; Kang, Kim et al. 2013; Sun, Wan et al. 2014). Additionally, miR-

34a has been shown to directly bind to the 3’UTR of Notch-4 and negatively regulate its 

expression in MCF-7 and SK-3rd mammospheres (Yu, Jiao et al. 2012).  However, there 

are no published reports of miR-34a regulating Notch-3 directly or indirectly therefore 

validating this target would be of interest. Notch pathway regulation by other miRNAs 

shows similar anti-tumor effects. MiR-306 targets Notch-1 and Notch-2 in GBM cells 

decreasing viability, proliferation, G1 arrest, and invasion. (Kefas, Comeau et al. 2009). 

Similarly, Notch-3 regulation by miR-206 leads to apoptosis and decrease in migration 

(Song, Zhang et al. 2009).  

 

Our studies demonstrate that mirR-34a functions as a tumor suppressor in GBM 

cells stimulating a permanent growth arrest. Targets of miR-34a include the Notch 

receptor family. Its anti-tumor response mimics that of cells treated with novel TMZ + 

DAPT combination therapy indicating that miR-34a alone has therapeutic implications in 

GBMs.  
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Materials and Methods 

Cell Lines and Reagents 

U87MG cells were purchased from the ATTC in 2011 and authenticated by short 

tandem repeat analysis in 2013 (IDEXX RADIL). U87MG cells were converted to 

neurosphere cultures, U87NS, by lifting cells from plates with 0.05% Trypsin-EDTA 

(Gibco), washing cells three times with PBS to remove traces of FBS, and plating 5x105 

cells per 75-cm2 flask. Neurospheres were dissociated every seven days via acid-base 

dissociation (Sen, Kallos et al. 2004). Spheres were used under 10 passages following 

conversion.  Patient-derived culture, 5075T, was established from a GBM tumor obtained 

from the UMASS tumor bank following debulking surgery as previously described 

(Gilbert, Daou et al. 2010). Briefly, the tumor sample was minced and dissociated in 

Trypsin solution: DMEM/F12 mix (1:1) for an hour, at 37°C, with mechanical 

dissociation every ten minutes. Cells are then pelleted, washed in PBS, and replated in 

growth media. For these studies 5075MG was propagated as an adherent line. Adherent 

glioma lines were cultured in DMEM (Gibco) supplemented with 1% Na pyruvate and 

10% FBS. Neurospheres were maintained in DMEM:F12 (1:1) with B27 supplement 

(Gibco), 15 mM HEPES (Gibco) supplemented with 20 ng/mL EGF (Invitrogen) and 20 

ng/mL bFGF (Invitrogen).  All cells were maintained at 37 °C in 5% CO2 and regularly 

tested for mycoplasma via a PCR Mycoplasma Detection Kit (MDB Bioproducts). 
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TMZ and N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester 

(DAPT) were purchased from Sigma Aldrich. TMZ and DAPT were resuspended at 10 

mg/mL (51.5 mM) and 10 mM stocks, respectively, in 100 % DMSO (Fisher).  

 

Antibodies against Notch-1 (D6F11, #4380), Notch-2 (D67C8, #4530), Notch-3 

(D11B8, #5276), PARP (46D11, #9532), and β-actin (8H10D10, #3700) were purchased 

from Cell Signaling. Ki-67 (NCL-Ki67p) was purchased from Novacastra. Secondary 

Anti-rabbit IgG, peroxidase-linked (from donkey) and Anti-mouse IgG, peroxidase-

linked (from sheep) were purchased from GE Healthcare.  

 

Recovery and secondary sphere assay 

To quantify neurospheres in a recovery and secondary sphere assay (Gilbert, 

Daou et al. 2010), cells are plated at clonal density (3cells/μL; 2 mL total) in 6-well 

plates (BD Falcon). However, in order to isolate RNA from cells at different time points 

in the sphere assay, the experiment was scaled up. Neurospheres were plated at 5x105 

cells/ 10 mL (50 cells/ μL) in 75-cm2 flasks (BD Falcon). Because clonal density has 

been previously defined as ≤ 10cells/ μL (Chaddah, Arntfield et al. 2012) one set of 

experiments were plated at 2x105 cells/ 20 mL (10 cells/ μL), allowing us to verify that 

cell density did not affect outcome of the assay.  Cells were treated with either 200 μM 

TMZ, 1 μM DAPT, combination of 200 μM TMZ + 1 μM DAPT, or vehicle control, 

DMSO. DAPT only and TMZ + DAPT treatment groups received subsequent 1 μM 

DAPT treatments on days two, four, and seven of the assay (Figure 3.1 A). TMZ only 
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and DMSO control wells were treated with DMSO on these days.  All treatment groups 

were fed with neurosphere medium (2 mL) on day seven eeeeee. On day 14 of the 

assay, spheres were dissociated using a basic pH dissociation method (Sen, Kallos et al. 

2004), and a dilution of the culture was re-plated. Cells from each treatment group were 

collected at days 2, 8, 14, and 21 of the assay for subsequent RNA isolation. Cells were 

collected from a total of four assays.  

 

RNA Isolation and Detection 

RNA isolation and small RNA enrichment (>200 bp) were carried out using the 

miRVANA miRNA isolation kit (Applied Biosystems) according to manufacturer’s 

protocol. Reverse transcription was performed using the TaqMan miRNA Reverse 

Transcription Kit. Expression levels of mature miR-34a (hsa-miR-34a-5p) were measured 

by TaqMan MicroRNA Assays (Applied Biosystems). U6 (RNU6B) small nuclear RNA 

was used as a normalization control. Expression levels were quantified on ABI Prism 

7900HT sequence detection system (Applied Biosystems) using TaqMan Universal 

Master Mix II with UNG. Relative gene expression was calculated using the ΔΔCt 

method. RNA was isolated and analyzed in three independent experiments. 

 

siRNA 

U87MG and U87NS were plated at 5x104 cells per well in a 6-well plate and 

transfected with hsa-miR-34a-5p (MC11030) miRVana miRNA mimic (Applied 

Biosystems) using DharmaFect 1 Transfection Reagent (Dharmacon) according to 
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manufacturer’s protocol. A non-targeting Negative Control #1 (Applied Biosystems) was 

used as a negative control. Initial transfection efficiencies were examined using Cy3™ 

Dye-Labeled Pre-miR Negative Control #1 (Ambion) (Figure 3.14). To test optimal 

transfection conditions, concentrations, and cell density we utilized Cy3 labeled negative 

control siRNA. Monitoring Cy3 fluorescence signal allowed us to analyze transfection 

efficiencies.   

 

Western Blotting 

Cells were lysed in RIPA lysis buffer (Boston Bioproducts) supplemented with a 

protease inhibitor cocktail (complete mini tab, Roche Applied Science, IN). Bradford 

assay (Protein Assay Dye Reagent Concentrate, 1:4 dilution, Bio-Rad) was used to 

measure protein concentrations. Lysates were analyzed by SDS-PAGE, and proteins were 

electro-transferred onto 0.45 μM PVDF membranes. Membranes were blocked in Tris-

buffered saline (TBS) containing 5 % milk and 0.1 % Tween-20 at room temperature for 

one h. All primary antibodies were incubated overnight at 4 ºC followed by room 

temperature incubation with a secondary antibody conjugated with horseradish 

peroxidase for 1 h. Detection was performed with lab made chemiluminescent reagent 

consisting of 30 mL 1.25 mM Luminol in 0.1 M Tris pH 8.5 (solution B), 30 μLof 68 

mM p-coumaric acid in DMSO (solution A) and 30 μL of 3 % hydrogen peroxide 

(Matthews, Batki et al. 1985). Membranes were soaked in chemiluminescent reagent for 

10 min at RT and exposed to film. Quantification of band intensity was carried out using 

Image J. 
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Proliferation Assays 

U87MG, U87NS, and 5075MG were plated in duplicate and transfected with 

miR-34a mimic or negative control as described above. On selected days, cells were 

collected and proliferation was assessed via trypan blue exclusion.  Changes in 

proliferation of each line were analyzed from at least three independent experiments. 

 

Immunocytochemistry 

Cells were transfected with mimics or controls and were collected 72 h post-

transfection. Neurospheres were spun down on to slides using Shandon double 

cytofunnels (Thermo Fisher Scientific).  Cells were fixed in 4 % paraformaldehyde for 15 

mins at RT and permeabilized in TBS containing 0.25 % Triton X-100 (TBS-T). 

Blocking was carried out by incubating cells in 10 % goat serum with 1 % BSA and 0.3 

M Glycine in TBS-T for one h at RT. Cells were incubated in primary antibody overnight 

at 4 °C followed by RT incubation with a fluorophore-conjugated secondary for one h at 

RT.  Vectashield Hardset mounting media containing DAPI was added (Vector 

Laboratories) and cells were visualized under a microscope. Ki-67 positive cells were 

quantified and measured as a percent of positive over total cells.  

 

Flow Cytometry and Cell Cycle 

Cell cycle distribution was analyzed by flow cytometry. Cells were harvested 72 h 

post-transfection, washed with PBS, and fixed with ice-cold 70 % ethanol/30 % PBS. 
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Cells were re-suspended in PBS containing PI (40 μg/ml), RNase A (100 μg/ml) and 

Triton X-100 (0.05 %), and incubated at 37 ºC for 30 min. Samples were run by UMASS 

Flow Cytometry facility. DNA content was determined using a FACScan flow cytometer 

system (Becton Dickinson), and results were analyzed with FlowJo. Experiments were 

performed in duplicate. 

 

Cell Death 

Apoptosis was evaluated via flow cytometry for Annexin-V-FITC (BD 

Bioscience) and 7-Aminoactinomycin D (7-AAD) (Molecular Probes, Life 

Technologies). Cells were transfected with miR-34a mimic or negative control, at 48 h 

and 72 h cells were harvested, and stained with Annexin-V-FITC and 7-AAD. Samples 

were run by UMASS Flow Cytometry Core and results were analyzed with FlowJo.  

 

Senescence Assays 

Senescence was analyzed by quantifying senescence-associated β-galactosidase 

(SA-β-gal) using Senescence Detection Kit (Calbiochem) according to manufacturer’s 

protocols. Cells were transfected with mimics or controls and analyzed five days post-

transfection. Neurospheres were collected and spun down on to slides using Shandon 

double cytofunnels (Thermo Fisher Scientific) before staining. To quantify SA-β-gal 

positive cells, at least 2,500 cells were counted in random fields from each of the three 

independent replicates.  
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Invasion Assay 

Upper surface of 8 μM pore transwells (Costar) were coated with Matrigel® 

Basement Membrane Matrix, LDEV-free (10 μg/well) (Corning) and dried overnight. 

U87MG were plated at 5x104 cells per well in a 6-well plate and transfected with miR-

34a mimic and negative control. At 72 h post-transfection, cells were released by 

trypsinization, stopping the reaction by addition of 1 % BSA in DMEM . Cells were 

resuspended at 5x105 cells/mL in 0.1 % BSA/DMEM and 100 μL of this cell/media 

mixture was added to the top of the transwell. Each condition was plated in duplicate. 

Cells were serum-starved 24 h prior to the assay and DMEM, and 20 % FBS was used as 

a chemoattractant in the lower chamber. Assays proceeded for 12 h at 37 °C. Then the 

upper surface of the transwell was swabbed with a Q-tip twice to remove residual cells. 

Cells that had invaded through the Matrigel® were fixed with methanol for 10 mins and 

mounted on a slide using Vectashield Hardset Mounting media containing DAPI (Vector 

Laboratories). Cells in 14 random fields were quantified.  
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Figure 3.1 TMZ + GSI treatment decreased secondary sphere formation of glioma 
cultures. 
Schematic of drug treatment schedule and neurosphere assay carried out to assess 
response, recovery, and secondary sphere formation following treatments (A). U87NS 
cells were plated in duplicate and treated with DMSO, DAPT (red arrows), TMZ (green 
arrows), or a combination of TMZ + DAPT (T+D) and spheres were counted on day 7, 
14, and 21 (B).  Cells treated with TMZ show an initial response (red) but eventually 
repopulate the culture (green). TMZ + DAPT cultures fail to recover as demonstrated by 
a significant decrease in secondary sphere formation compared to TMZ-only treated 
cultures. Mean ± SEM of a representative result from at least three independent 
experiments.  
 

 

A. 

B. 
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Figure 3.2 MiR-34a transcript increases in response to TMZ and the combination of 
TMZ + DAPT.  
RNA lysates were collected from each of the treatment groups at several time points 
during a neurosphere assay and levels of miR-34a transcript were quantified by qRT-
PCR. Induction of miR-34a expression occurred in response to TMZ and TMZ +DAPT 
in both U87NS (A) and U373NS (B) cells. This appears to be independent of p53 as the 
response is similar in both the p53 wild type U87NS and p53 mutant U373NS line. A 
representative figure from at least three independent replicates is shown. * p-value <0.05, 
** p-value <0.01 
 

 

 

 

A. 

B. 
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Figure 3.3 Glioma cultures express varying levels of miR-34a transcript.  
RNA was isolated from seven GBM lines and mature miR-34a was quantified via qRT-
PCR. Raw data was normalized to U6. Expression of miR-34a shows an apparent 
correlation with p53 status.  
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Figure 3.4 Exogenous miR-34a expression suppresses GBM growth. 
U87NS (A), U87MG (B), and 5075MG (C) were transfected with either miR-34a mimic 
or scrambled negative control. Changes in cell numbers were quantified via trypan blue 
exclusion (A-C). Three days post-transfection U87NS spheres were stained for 
proliferation marker Ki-67 (D) and Ki-67+ cells were quantified (E). miR-34a 
overexpression decreased the proliferation of GBM cell lines. Data are reported as mean 
± SEM. Representative from at three independent experiments shown. * p-value <0.05, 
** p-value <0.01 
 
 

 

A. B. 

C. D. 

E. 
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Figure 3.6 Mir-34a disrupts neurosphere renewal. 
U87NS cells were plated at 5x104 cells/well and transfected with miR-34a or negative 
control at 10 nM and 20 nM. Seven days post-transfection cells were pH dissociated and 
replated to evaluate secondary sphere growth. Neurospheres failed to give rise to 
secondary spheres. 
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Figure 3.8 Cells arrest in G1 following overexpression of miR-34a.  
U87MG and U87NS were transfected with miR-34a mimic or negative control. Flow 
analysis for PI was done 72 h post-transfection (A-B) and indicated a slight G1 arrest 
within the U87MG (A) cultures and U87NS (B). Mean ± SEM. U87NS and U87MG data 
is a representative of two replicates. G2/M phase is unaltered between control and miR-
34a overexpression cultures. ** p-value <0.01 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

A. B. 
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Figure 3.9 SA-β-gal induction occurs in response to miR-34a overexpression. 
Representative micrographs of SA-β-gal staining in U87NS cells transfected with 20nM 
miR-34a mimic or negative control. Neurospheres were spun down unto slides and 
stained for SA-β-gal and DAPI (A). SA-β-gal positive cells were counted (B). U87NS 
overexpressing miR-34a had a 5-fold increase in SA-β-gal positive cells than negative 
control. Data plotted as mean ± SEM from three independent experiments. ** p-value 
<0.01. 
 
 

 

 

 

A. 

B. 
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Figure 3.10 MiR-34a reduces invasiveness of glioma cells. 
Representative micrographs of DAPI stained cells which have invaded through 
Matrigel® coated transwell chambers (A) GBM U87MG cells were transfected with 
miR-34a mimic or negative control and assessed for invasion via a transwell invasion 
assay. Cells were allowed to invade for 12 h, at which time cells that had invaded were 
fixed, stained with DAPI and counted. (B) Forced expression of miR-34a inhibits 
transwell glioma cell invasion. Mean ± SEM of two independent replicates. ** p-value 
<0.01. 
 
 
 
 

A. 

B. 
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Figure 3.11 MiR-34a suppresses expression of Notch family members. 
Notch-1, Notch-2, and Notch-3 expression in U87NS (A-B) and U87MG (C) transfected 
with miR-34a mimic or negative control was determined by Western blot analysis. Whole 
cells lysates were collected and probed for the expression of each Notch receptor. A 
histogram shows the average band density normalized to β-actin (B). MiR-34a suppresses 
the expression of full length (FL) and ICD of Notch family members.  
 
 
 
 
 
 

A. B. 

C. 
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Figure 3.12 Suppression of Notch family members is affected by cell density. 
U87MG were plated at 5x104 cells (A) and 1x105 cells (B) per well, transfected with 
varying doses of miR-34a mimic or negative control, and analyzed for expression of 
Notch-2 via Western blot. Cell density plays a role in the suppression of Notch-2 
expression by miR-34 with lower concentrations leading to Notch suppression in less 
dense cultures.  
 

 

 

 

 

 

 

 

 

 

 

 

A. B. 
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Figure 3.13 Optimization of miRNA transfections. 
A Cy3-labeled scrambled oligo was used to optimize transfection efficiencies in GBM 
neurospheres. U87NS were plated at 5x104, 1x105, or 2x105, transfected with 20 nM 
Negative control-Cy3, and Cy3 signal was monitored.   
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CHAPTER IV 

FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

GBMs are malignant brain tumors with limited treatment options. The current 

standard of care consisting of surgery, radiation, and TMZ gives a median survival of 12-

14 months but does not cure, as only a dismal 9.8% of patients survive 5-yrs or longer 

(Stupp, Hegi et al. 2009). This poor survival is attributed to the high incidence of 

recurrence in patients with 80-90% of recurrences occurring within seven months of 

diagnosis at the site of the original tumor (Wen and Kesari 2008; Milano, Okunieff et al. 

2010). The work contained within this thesis sought to explore novel strategies to 

overcome resistance in GBMs. Two approaches were taken: 1) evaluation of novel 

imidazotetrazine analogues designed to overcome resistance and 2) modulating miR-34a 

expression to mimic effects of novel TMZ + GSI therapy. Together they contribute to the 

understanding of the mechanisms underlying resistance and provide us with insight into 

ways to develop more effective chemotherapies. 

 

Bypassing DNA repair with Novel Imidazotetrazines 

In my first study we evaluated two novel imidazotetrazine analogues designed to 

overcome resistance in GBMs (Figure 2.1). The key to this approach is to bypass DNA 

repair pathways with chemotherapeutic agents which form adducts that cannot be 

processed.  We demonstrated that both the monofunctional, DP86, and bifunctional, 

DP68, had significant higher efficacy in GBM cells lines than TMZ (Table 2.1). 
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Established lines, neurosphere cultures, patient-derived cell lines, and models of TMZ 

resistance were all sensitive to both DP86 and DP68 independent of their expression of 

MGMT expression (Figure 2.3, Figure 2.5). This is exciting because, in contrast to 

DP68 and DP86, the efficacy of TMZ is dependent on repressed MGMT expression. In 

vitro inhibition of MGMT in cells enhanced TMZ efficacy in MGMT positive GBM cells 

while DP86 and DP68 sensitivity was unchanged (Figure 2.7).  Similarly, both TMZ 

analogues were independent of the MMR DNA repair pathway as knockdown of MLH1 

did not alter efficacy (Figure 2.8). Evaluation of DP86 and DP68 in a secondary sphere 

assay showed inhibition of recovery and secondary sphere formation demonstrating that 

the self-renewing population is effectively killed (Figure 2.10).  DP68 is an effective 

cross-linker (Figure 2.11) and exhibited cell cycle profile distinct from TMZ marked by 

an S-phase accumulation before G2/M arrest (Figure 2.12). Recovery of DP68 induced 

damage was found to be dependent on ATR and FANCD2, but not ATM (Figure 2.14-

15). Unfortunately, we were unable to exert any anti-tumor response with either DP68 or 

DP86 in in vivo drug treatments of immunocompromised mice (Figure 2.16-18, Table 

2.2). Phamacokinetics studies demonstrated that both drugs had relatively short half-life 

and limited absorption (Figure 2.19).  

 

While cytotoxicity of TMZ is attributed to O6-meG lesions, methylation of N7-G 

and N3-A is much more common (Denny, Wheelhouse et al. 1994; Zhang, Stevens et al. 

2012). N7-G and N3-A TMZ lesions are processed by the base excision repair pathway 

(BER), which is responsible for removing damaged bases (Fu, Calvo et al. 2012; Svilar, 
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Dyavaiah et al. 2012). DP68 and DP86 were designed to generate anticancer activity 

from N7-G adducts (Garelnabi, Pletsas et al. 2012); however, we did not evaluate the 

contribution of N3-A and N7-G lesions to DP68 and DP86 toxicity. This can be examined 

by inhibiting the BER pathway via shRNAs targeting PARP-1. The BER deficient cells 

(shPARP-1) would then be treated with DP68 or DP86 and evaluated via a CyQUANT 

assay. If N3-A and N7-G do contribute to DP68 and DP86’s toxicity, we would see an 

increase in sensitivity to drug treatments. Because another member of the PARP family, 

PARP-2, may be able to compensate for loss of PARP-1, this protein can also be 

knockdown should one fail to see a response in the initial PARP-1 knockdown.(Ménissier 

de Murcia, Ricoul et al. 2003). Contribution of N3-A and N7-G can also be studied by 

targeting DNA glycosylases which work in BER to recognize and excise the damage. 

One of these glycosylases, alkylpurine-DNA-N-glycosylase (APNG), is an attractive 

target because it has been shown to confer TMZ resistance in in vitro and in vivo models 

of GBM (Agnihotri, Gajadhar et al. 2012). Patients with tumors positive for APNG 

staining had poor OS.  Furthermore, when patients with methylated MGMT promoters, 

meaning TMZ sensitivity, were stratified into good OS and poor OS groups, a greater 

number of APNG positive tumors were found in the poor OS group.  Established lines as 

well as the primary GBM6 line used in our analysis of DP68 and DP86 are APNG 

positive (Agnihotri, Gajadhar et al. 2012). Future studies that examine N7-G and N3-A 

contribution to DP68 and DP86 toxicity would be informative. 
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The most detrimental factor affecting the survival of GBM patients is the 

emergence of TMZ resistance, which leads to re-growth of tumors.  Despite extensive 

research, many of the molecular mechanisms that regulate resistance remain undefined. 

In our study, U87NSTMZ, U251TMZ, and GBM12TMZ cells lines were generated as 

models of acquired TMZ resistance.  Resistance of GBM12TMZ results from expression 

of MGMT, which could not be attributed to changes in promoter methylation (Kitange, 

Mladek et al. 2012).  Instead GBM12TMZ showed greater acetylation of histone H3K9 

(H3K9-ac).  In contrast, U251TMZ and U87NSTMZ do not express MGMT (Figure 2.3 

D).   In our examination of the U87NSTMZ lines we found MLH1 and FANCD2 

upregulated and MSH2 and BRCA1 downregulated compared to parental U87NS cells 

(Figure 2.20 A-D). Our studies are in line with Chen et al in which FA-proficient cells 

are resistant to BCNU and TMZ treatments. Loss of BRCA1 is associated with chemo 

sensitivity and not resistance as was observed in our U87NSTMZ line. However, 

simultaneous loss of p53 binding protein (53BP1) in BRCA1 null cells has been shown to 

rescue chemo resistance in breast cancer cells; our GBM cells might utilize the same 

mechanism to drive resistance (Bouwman, Aly et al. 2010). Expression of 53BP1 in our 

resistant lines was not analyzed but would be interesting. Contribution of FANCD2 and 

BRCA1 to TMZ resistance is not well documented and would benefit from further study. 

 

  The MMR pathway is important for detection and subsequent repair of base pair 

mismatch that occurs due to uncorrected O6-meG lesions. The changes that we observed 

for MSH2, a key player in MMR, are similar to those already reported in the literature.  
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For instance, TMZ-resistant lines generated by McFaline-Figueroa et al showed 

decreased MSH2 levels. Interestingly, although the decrease was modest (30%), it was 

sufficient to elicit resistance. Increased MLH1 expression in our U87NSTMZ line 

contrasts with our earlier experiments where MLH1 was knocked down in U87MG and 

T98G lines. Loss of MLH1 in U87MG and T98G mediated resistance to TMZ treatment 

(Figure 2.8 C-D). U87MG shMLH1 lines were as much as 5.2-fold less sensitive to 

TMZ than U87MG cells, with TMZ IC50s as high as 795 μM, a concentration that could 

not be achieved in the clinic without toxicity. Our MLH1 knockdown experiments are in 

line with previous studies. Loss of MLH1 expression has been associated with TMZ 

resistance in GBM cell lines (Happold, Roth et al. 2012; Shinsato, Furukawa et al. 2013).  

Interestingly, a study by Samimi et al examined ovarian carcinomas pre and post 

platinum treatment and unexpectedly found that patients who showed a complete 

response to therapy had the lowest percent of MLH1 positive cells in post-treatment 

samples (Samimi, Fink et al. 2000). Similar results were seen in Stark et al analysis of 

initial versus recurrent GBM tumors.  Patients with positive MLH1 expression in initial 

samples had increased survival. The MLH1 staining is hypothesized to be due to an 

accumulation of a non-functional protein (Stark, Doukas et al. 2010). This observation 

could explain the increase in MHL1 that we observe in our U87NSTMZ line. We did not 

examine other members of the MMR pathway, including Mutα component, MSH6, and 

MutL component, PMS2. The in vitro and clinical data on PMS2 indicates that it is 

reduced in TMZ-resistant lines and recurrent tumors (Felsberg, Thon et al. 2011; 

Happold, Roth et al. 2012). MSH6 has been associated with GBM tumor progression, and 



134 
 

mutations in MSH6 arise during TMZ therapy and contribute to resistance (Yip, Miao et 

al. 2009) (Cahill, Levine et al. 2007). Expression of PMS2 or MSH6 in our U87NSTMZ 

cell line was not analyzed. These data are a perfect example of the complexity of 

resistance in cancer and demonstrate that our novel compounds overcome resistance 

mediated by multiple different DNA repair pathways.   

 

While TMZ-resistance was evaluated in our study, we did not examine if repeated 

DP86 or DP68 exposure would give rise to resistance. This can be pursued in the future, 

as it would allow us to study which pathways GBM cells use to circumvent the damage 

caused by DP86 and DP68. Our data (Figure 2.14-2.15) shows that inhibition of 

FANCD2 or ATR sensitizes cells to DP68 but it also highlights a mechanism by which 

resistance can be acquired; overexpression of members of the FA-pathway and the ATR 

kinase could enhance repair of DP68-induced ICLs. On such member, FANCD2, and 

ATR interact with proteins involved in mediating ICL repair, such as BRCA1 and 

RAD51. In multiple myeloma cells resistance to the cross-linker Melphalan has been 

attributed to the overexpression of FANCF and RAD51C (Chen, Van der Sluis et al. 

2005).  A study of 131 FFPE GBM tumors showed FANCD2 staining in 93% of samples 

while normal brain tissue had little to no FANCD2 staining (Patil, Sayal et al. 2014). 

Primary GBM cultures established in that study, showed FANCD2 was not only 

expressed but the pathway was active in the cells. It would be of interest to generate a 

DP68 resistant line through repeated exposure to DP68, similar to how our TMZ-resistant 

lines were established. We would then be able to measure protein levels of FA-pathway 
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members, starting with FANCD2, ATR, BRCA1, and Rad51 in our DP68-resistant lines.  

The hypothesis is that these proteins would be overexpressed in DP68-resistant cultures. 

We could subsequently knock down the above-mentioned proteins and carry out dose-

response experiments to see if they regain DP68 sensitivity. Simultaneously, comet 

assays would allow us to evaluate the increase in ICL formation if the cells are no longer 

resistant. It is possible, and more than likely, that a single gene knockdown will not 

completely account for the resistance at which point double knockdowns can be pursued.  

 

We did not evaluate the effects of DP68 on normal cells; however, examining 

potential toxicity to normal human astrocytes (NHA) is important and should be 

evaluated in the future. In vitro TMZ studies have shown that NHAs treated with 100 μM 

TMZ arrest at G1 and a small population at G2/M but show no induction of γH2AX or 

apoptosis and expression of cell cycle proteins such as p53, p21, and Chk2 remain 

unchanged (Sato, Kurose et al. 2009). We would predict our TMZ-analogues to have 

similar effects on NHAs. However, there is one caveat: cultured astrocytes are more 

proliferative than normal brain such that they are poor model to determine “normal 

damage”. Effects of DP68 on normal cells would best be analyzed in an in vivo 

intracranial model following treatment with DP68, unfortunately, without an efficient 

delivery system we are unable to do this.    

 

Experience treating patients with TMZ or the crosslinker, BCNU, establishes that 

the most common, but manageable, side effect is damage to the bone marrow (Zielske 
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and Gerson 2002). I would predict that our novel TMZ compounds will have the same 

side effects, but without an effective delivery, we cannot really make a definitive 

statement. However, low levels of MGMT in hematopoietic precursors are thought to be 

responsible for the myelosuppression that arises following TMZ and BCNU treatment 

(Zielske and Gerson 2002). This is of concern as DP68 deposits adducts onto the O6-G 

which cannot be repaired by MGMT thus potentially could give rise to greater bone 

marrow toxicity than TMZ. This could be studied using primary hematopoietic stem cells 

in colony forming assays following treatment with compound of interest, in our case 

DP68 (Clarke, Pereira et al. 2007). A decrease in the number of colonies formed would 

indicate potential toxicity. Similarly, a mouse model containing humanized bone-marrow 

can be utilized to study toxicity in vivo (Cai, Wang et al. 2011).  If we had an effective 

delivery system, these would be great parameters to test.  

 

We demonstrated that DP68 activates the DDR with as little as 3 μM (Figure 

2.13 B) and inhibits self-renewal of U118NS spheres with a single 10 μM dose (Figure 

2.10 B). It is promising that DP68 can exert such strong anti-tumor effects at such a low 

dose as it could limit toxicity to normal cells. Additionally, we showed that FANCD2 or 

ATR inhibition sensitizes GBM cells to DP68 treatment (Figure 2.14-2.15). Therefore, 

ATR or FANCD2 deficient cells would likely be hypersensitive to DP68, which could be 

exploited to treat ATR or FANCD2 deficient tumors at concentrations that minimize 

toxicity to normal cells. However, all this work was carried out in vitro, which is not an 

adequate model for the analysis of the therapeutic window. 
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 Unfortunately DP86 and DP68 failed to demonstrate an effect in vivo despite 

varying treatment regimens and delivery methods (Figure 2.16-18, Table 2.2).  Both 

TMZ analogues were rapidly eliminated from plasma, and their half-life is much shorter 

compared to TMZ (DP86 t1/2 = 14.4 min; DP68 t1/2 = 14.3 min; TMZ t1/2 = 53 min). Based 

on these data changes to DP86 and DP68’s chemical properties are needed to enhance 

drug delivery.  

 

 In vivo efficacy of DP68 is limited by its poor aqueous solubility. One approach 

to enhance the efficacy of this compound would be inclusion of DP68 in cyclodextrin, a 

process that enhances solubility of compounds and their bioavailability (Del Valle 2004). 

In our own pharmacokinetic analysis (Figure 2.19) DP68 and DP86 were formulated in 

0.9% NaCl, 10% (w/v) HP-β-cyclodextrin demonstrating that this could be an effective 

approach to overcome solubility issues seen with DP68. Another technique to increase 

solubility would be the conversion of DP68 into a salt form (Savjani, Gajjar et al. 2012). 

Thirdly, encapsulation of cytotoxic drugs by nanocarriers is a great option to try to 

overcome limiting factors such as poor solubility and pharmacokinetics (Yu, Tai et al. 

2010). The nanocarriers can be designed to target the tumor cell by coupling a moiety to 

the nanocarrier such as antibody molecules or synthetic ligands (Pastorino, Brignole et al. 

2013). Tsutsui et al created a bionanocapsules that targeted EGFRvIII by conjugating it to 

an anti-EFGR antibody that recognized the deletion variant (Tsutsui, Tomizawa et al. 

2007). Conjugated EGFR antibody-bionanocapsules were effectively delivered to GBM 
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cells in vitro and to brain tumor tissue in a mouse intracranial model.  These are three 

promising approaches which could be tested.  

 

DP68’s and D86’s poor pharmacokinetic properties limit their efficacy. This is 

evident as DP86 displayed no solubility issues and yet failed to be effective in our in vivo 

GBM xenograft model (Figures 2.16-2.17). DP68 and DP86’s half-lifes of 14 mins is 

significantly shorter than TMZ’s half-life of 55 mins. In order to circumvent this, 

delivery methods can be modified. Two approaches to test are impregnation of the drug 

into biodegradable polymer wafers and the use of osmotic pumps for infusion of the 

drugs; two methods which would provide the tumor with continuous DP68 and DP86 

delivery. BCNU is an example of a chemotherapy compound with a short half-life which 

was reformulated as a polymer wafer (GLIADEL®). This method has been shown to 

provide constant drug levels within the tumor for 5 days (Fleming and Saltzman 2002). 

Osmotic pumps can be implanted subcutaneously to be used in subcutaneous xenograft 

models or used with a catheter to infuse into the brain in intracranial models (DURECT 

2015). Future experiments utilizing osmotic pumps implanted subcutaneously to deliver 

DP68 and DP86 in vivo to a subcutaneous xenograft models would be a good place to 

start before moving into the more invasive intracranial models. If this proves effective it 

would allow us to define the in vivo efficacy of our novel TMZ analogues, toxicity 

profile, and therapeutic window for these agents.  
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Ideally we would want to develop a drug that retains the good chemical properties 

of TMZ but avoids TMZ-induced resistance. Properties of this drug would include: 

modest stability at neutral pH to pass through the BBB, solubility in both aqueous and 

organics as this would facilitate passage to the tumor and through the BBB, and good 

pharmacokinetics. The poor aqueous solubility of DP68 is a major reason why this 

otherwise promising drug might never be tested in the clinic. A drug with good acid 

stability would be nice, but not essential, as it allows oral administration. The drug-

induced DNA damage would be poorly reversed by MGMT and other DNA repair 

proteins as was seen with DP68 and DP86.  

 

 DNA interstrand crosslinking is difficult to repair and, hence, desirable. As a 

result, we would be happy to test crosslinkers but consider it too restrictive to only test 

crosslinkers, as such we would continue to test monofunctional compounds. For example, 

TMZ is a great monovalent drug, and I would not want to miss a more effective TMZ-

like drug. Also, the larger size of crosslinkers may reduce solubility (MW DP68= 534 

g/mol, MW DP86= 331 g/mol, MW TMZ= 194 g/mol). 

 

We want to learn from our experiences with DP68 and DP86 and eliminate 

inappropriate compounds as early as possible. Our scheme involves three steps: 

characterization by the medical chemists, initial characterization by our lab, and finishing 

with detailed studies of any promising compounds. To begin we would seek out 

medicinal chemists to examine solubility of pure drug candidates in water and organic 
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solvents. Simultaneously, they would examine the rates of hydrolysis at acidic and 

neutral pHs. This can be done via a spectrophotometric assay, taking advantage of 

differences in absorbance values between the parent compound and the hydrolysis 

product. Following this, we would begin the initial characterization of compounds by 

acquiring dose-response curves with a MGMT+ and MGMT- GBM line via MTT assay. 

Once efficacy in vitro is established we would move to IP administration of nude mice 

bearing subcutaneous GBM xenografts. While intracranial GBM models are the best, for 

initial experiments I prefer subcutaneous tumors as one does not have to worry about 

penetrance of the BBB. The final step would involve more details studies of promising 

compounds. Here we would examine efficacy of the compounds in intracranial tumors 

generated from injection of luciferase-labeled GBM cells, including testing of additional 

models of TMZ-resistant cells that we and our collaborators have derived as some of 

these models are resistant by mechanisms other than MGMT. Finally, we would carry out 

pharmacokinetic studies. HPLC assays can be done to assess drug levels in serum, brain 

and other organs. If we discover an effective anti-cancer drug that does not pass through 

the BBB, its efficacy in other cancer models can be tested. 

 

Overall, this study serves as a proof-of-concept for these novel imidazotetrazine 

analogues that create DNA lesions insensitive to DNA repair by MGMT or the MMR 

pathway. Importantly, the cross-linking activity of DP68 was efficacious in all models of 

TMZ resistance tested and prevented regrowth of cultures following treatment. 

Unfortunately, GBM patients succumb to disease due to recurrence. DP86 and DP68 



141 
 

could be the therapy that fills this unmet clinical need by overcoming mechanisms of 

TMZ resistance.   

 

Targeting miR-34a as Therapy in GBMs 

In my second study, we examined the role of miRNAs in our novel TMZ + GSI 

therapy. MiR-34a was found to be upregulated following TMZ and TMZ + GSI treatment 

in both, p53 wild type, U87NS cells and, p53 mutant, U373NS cells (Figure 3.2).  In a 

panel of GBM cell lines, levels of miR-34a transcript were associated with p53 status of 

the lines (Figure 3.3). In vitro examination of miR-34a in GBM cultures shows it 

functions as a tumor suppressor.  MiR-34a overexpression significantly inhibits 

proliferation of cells (Figure 3.4) and gives rise to loosely bound neurosphere made up of 

large cells (Figure 3.5). These neurospheres do not form secondary spheres following 

dissociation (Figure 3.6). This decrease in cell number is not due to an induction of 

apoptosis (Figure 3.7) but rather a permanent growth arrest as miR-34a mediates G1 

arrest (Figure 3.8) and a large induction of SA-β-gal staining (Figure 3.9).  These 

phenotypes mimic the effects of our TMZ + GSI treatment. Additionally, miR-34a 

decreases invasion of our GBM cells (Figure 3.10) In our GBM models, miR-34a 

overexpression downregulares Notch family members, suggesting that these effects could 

partially be due to suppression of Notch receptors by miR-34a (Figure 3.11).  

 

We showed that miR-34a is upregulated in both TMZ and TMZ + GSI treated 

U87NS and U373NS cells. While previous studies have noted upregulation of miR-34a 
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following radiation and/or cytotoxic therapy (Tazawa, Tsuchiya et al. 2007; Li, Branham 

et al. 2010; Li, Yu et al. 2014; Novello, Pazzaglia et al. 2014), few have studied miRNA 

expression changes following TMZ or DAPT treatment, and even less in the context of 

GBMs. A single study analyzed the expression of miRNAs following TMZ treatment in 

T98G cells. They found that five miRNAs were downregulated and nine miRNAs, 

upregulated; none of which were miR-34a (Tunca, Tezcan et al. 2012). While this is in 

contrast to what we found, it is not surprising as T98G expresses very low basal levels of 

miR-34a compared to other GBM cells lines (Figure 3.2), and it has mutant p53. MiR-

34a is transcriptionally activated by p53 (Bommer, Gerin et al. 2007; Chang, Wentzel et 

al. 2007; He, He et al. 2007) and in return regulates p53 indirectly by inhibiting 

expression of p53 regulators such as Sirtuin 1 (SIRT1), Ying-Yang 1 (YY1), and, MAGE-

A (Yamakuchi, Ferlito et al. 2008; Chen, Yu et al. 2011; Weeraratne, Amani et al. 2011). 

Surprisingly, in our study miR-34a transcript levels are upregulated in both, p53 wild 

type, U87NS and, p53 mutant, U373NS cells. Additional p53 mutant cell lines can be 

analyzed to evaluate if this is a cell-specific response. Alternatively, in U373NS, miR-34a 

upregulation could occur through a p53-independent mechanism. The molecular 

determinants of p53-independent regulation of miR-34a are being explored. In primary 

human fibroblasts, BRAF-induced senescence caused a p53-independent upregulation of 

miR-34a mediated by an ETS transcription factor, ELK1 (Christoffersen, Shalgi et al. 

2010). In another study, miR-34a was shown to target histone deacetylase 1 (HDAC1), 

leading to the induction of p21, independent of p53 (Zhao, Lammers et al. 2013).  
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Elucidating other potential p53-independent pathways at work is of interest as p53 

signaling is altered in 87% of GBMs (Cancer Genome Atlas Research 2008).   

 

The miR-34 family consists of miR-34a, miR-34b, and miR-34c. MiR-34b and 

miR-34c are located at chromosome 11q23.1 and are expressed from a polycistronic 

transcript while miR-34a maps to chromosome 1p36.23 a region deleted in 34% of GBM 

patients (Cole, Attiyeh et al. 2008; Ichimura, Vogazianou et al. 2008). While our focus 

was miR-34a, it would be of interest to also quantify changes in miR-34b and miR-34c 

expression following TMZ and TMZ + DAPT expression to see if they are differentially 

expressed following drug treatment.  

 

In vitro studies evaluating the efficacy of the combination of miR-34a and other 

conventional chemotherapeutic agents has been conducted  in models of breast, lung, 

colon, bladder, medulloblastoma, liver, prostate, and head and neck cancers. (Weeraratne, 

Amani et al. 2011; Bader 2012; Misso, Di Martino et al. 2014). Interestingly, miR-34a 

and TMZ combination treatment has yet to be evaluated. While this was one of our 

original aims of the study, we were unable to examine the combination of miR-34a and 

TMZ as we could not mimic the TMZ + GSI treatment schedule.  We had previously 

shown that TMZ + GSI response is schedule dependent. Inhibition of secondary sphere 

formation and induction of SA-β-gal staining are dependent on DAPT being administered 

24 h after TMZ. DAPT pre-treatment or co-treatment with TMZ fails to inhibit secondary 

spheres and does not lead to a permanent senescent arrest (Gilbert 2011) (Gilbert, Daou 
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et al. 2010). However, we were unable to treat cells with TMZ and subsequently transfect 

cells with miR-34a mimic without causing large amounts of cell death. The use of a 

different delivery method, as discussed above, is appealing for future experiments. One 

study showed efficient uptake of miR-21 inhibitor within polymer-nanoparticles which 

allowed evaluation of miR-21 and TMZ combination therapy in GBM cell lines (Qian, 

Ren et al. 2012). MiR-34a encapsulation within a nanoparticle is appealing. We could 

then evaluate the efficacy, if any, of combining miR-34a and TMZ treatment. Although, 

miR-34a elicits a strong anti-glioma response on its own, coupled with TMZ it might act 

synergistically thus allowing for sub-optimal doses to be administered without sacrificing 

efficacy.  The mode of action of TMZ is distinct enough from miR-34s that the 

combination of miR-34a and TMZ might show added benefits.  

 

 MiRNAs are known to regulate many cellular processes including: proliferation, 

apoptosis, senescence, differentiation, and invasion (Di Leva, Garofalo et al. 2014). 

Furthermore, they may regulate multiple genes within a pathway and several pathways at 

once, making them attractive candidates for therapy (Lal, Thomas et al. 2011).  MiR-34a 

with its strong tumor suppressor phenotype and mis-expression in a number of cancers 

(Lodygin, Tarasov et al. 2014) makes it ideal for miRNA replacement therapy.  Several 

approaches can be taken to overexpress miR-34a in vivo (Costa and Pedroso de Lima 

2013; Li, Ren et al. 2014). One approach is to express pri-miR or pre-miR sequences 

from a viral vector.  The pri-miR or pre-miR messages subsequently undergo processing 

within the cell. However, expression of miRNAs from viral vectors can be challenging 
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due to limited infectivity and failure of proper transcription and processing of gene 

product. This is in part due to the misexpression of miRNA processing machinery in 

many cancers (Kumar, Lu et al. 2007; Melo, Ropero et al. 2009). Another approach is the 

use of miRNA mimics, synthetic double strand RNA molecules, which mimic the 

miRNA:miRNA* duplex generated following Dicer cleavage of pre-miR message. It is 

made up of a guide strand identical to the mature miRNA sequence and a passenger 

strand. The guide strand is incorporated into the RISC which then binds complementary 

sequences in the 3’UTR of target genes. Methyl (2’-O-Me), methoxyethyl (2’-MOE), or 

fluorine (2’-F) can be added to enhance the stability. Packaging of miRNA mimics within 

different lipid or polymer based-nanoparticles are being evaluated to insure effective 

delivery in vivo (Ben-Shushan, Markovsky et al. 2014).  Of interest is Mirna Therapeutics 

NOV340 technology (SMARTICLES®) that allows encapsulation of miRNA within an 

ionizable lipid-based carrier. In areas of low pH, such as within tumors, the particles are 

cationic and can adhere to the cells within the tumor. In contrast, at physiological pH 7-

7.5 the particles are slightly anionic (Bader 2012). A phase I clinical trial of a Mirna 

Therapeutic MRX34 (miR-34a mimic encapsulated in NOV340) is underway to evaluate 

safety and tolerability in liver and hematological malignancies (Clinical Trial 

#NCT01829971) (Mirna Therapeutics 2015). Following our in vitro analysis of miR-34a 

in GBM, efficacy of miR-34a needs to be evaluated in an in vivo intracranial model. In 

collaboration with a gene therapy lab, we have begun to clone lentiviral vectors from 

which the pre-miR-34a sequence can be expressed. Similarly, lentiviral vectors with 

miRNA tough decoys (Xie, Ameres et al. 2012) were generated to inhibit miR-34a. These 



146 
 

will allow us to study miR-34a function within an in vivo GBM model as a single agent 

or in combination with TMZ. 

 

One well known side effect of GSIs is the gastrointestinal (GI) toxicity that arises 

as a response to Notch inhibition in the crypts of the intestine. Inhibition of Notch drives 

cells to differentiate into mucin secreting goblet cells (van Es, van Gijn et al. 2005).  In 

this study we demonstrated that miR-34a inhibits Notch-1, Notch-2 and Notch-3 (Figure 

3.11). We can then hypothesize that systemic delivery of a miR-34a mimic could elicit 

similar GI toxicity. It has been found that addition of dexamethasone to GSI therapy 

alleviates GSI-induced GI toxicity (Real, Tosello et al. 2009). However, as of yet, in vivo 

treatment of miR-34a mimics has shown minor to no systemic toxicity (Misso, Di 

Martino et al. 2014).  

 

Future experiments to determine if miR-34a requires inhibition of Notch signaling 

to have therapeutic value are needed. In order to answer this question we can utilize a 

U87MG line retrovirally infected to express constitutively-active NICD-1. MiR-34a 

mimic or negative control can be transfected in the NICD-1 line and effects on 

proliferation, cell cycle, senescence, and invasion assessed. If the NICD does not rescue 

from miR-34a’s anti-GBM effects it would lead us to examine another one of its targets, 

such as EGFR. Similarly, lines expressing constitutively active forms of NICD-2 and 

NICD-3 can be generated and tested. 
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Our findings indicate that novel TMZ + GSI treatment upregulates miR-34a. This 

is in line with what we know about p53, Notch, and miR-34a. P53 regulates expression of 

miR-34a and Notch downregulates p53 (Purow, Sundaresan et al. 2008). Therefore, the 

induction of p53 by TMZ and the inhibition of Notch by GSI, would contribute to 

upregulate miR-34a. We showed that miR-34a decrease expression of Notch-1, Notch-2, 

and Notch-3.MiR-34a replacement therapy, mediated by Notch downregulation, may 

provide growth inhibition of tumors by forcing cells into a permanent senescence state.  

 

Ultimate goal: Prevent Recurrence of Tumor 

 Despite an aggressive treatment schedule, the prognosis for patients remains 

bleak, as GBM patients undergo tumor recurrence and few live past 5 years post-

diagnosis (Stupp, Hegi et al. 2009). Patients are left with limited options consisting of a 

combination of: further surgical resection, rechallenging with TMZ, or treatment with 

other agents such as the anti-VEGF antibody, bevacizumab. However, these measures are 

not curative and patients ultimately succumb to the disease. These approaches fail to 

target the radiation and chemotherapy resistant population of cells that can self-renew and 

repopulate the tumor; the CSC hypothesis states that CSCs are that resistant population. 

This necessitates drug regimens that bypass DNA repair mechanism and eliminate all 

cells within the initial tumor, including those with self-renewal capability, in an attempt 

to overcome recurrence. 
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 Both our strategies, treating cells with novel TMZ analogues or overexpressing 

miR-34a, are effective in our GBM cultures grown as neurospheres (Figure AI.1 B). 

These heterogeneous spheroid cultures are thought to be a model of CSCs as they can 

self-renew, express stem cell markers, differentiate down multiple lineages, and give rise 

to GBM tumors following injection into the brain (Singh, Clarke et al. 2003; Varghese, 

Olstorn et al. 2008; Chen, Nishimura et al. 2010). We did not characterize our cells for 

stem cells markers or capability to differentiate so we do not claim we are working with a 

stem cell population but rather a stem-like population. Our established, primary, and 

TMZ-resistant neurospheres were sensitive to treatment by DP68, and to a less extent 

DP86 (Table 2.1). Similarly, overexpression of miR-34a significantly decreased 

proliferation of GBM neurospheres (Figure 3.4 A). These data are promising as they 

indicate that both strategies are effective in targeting a stem-like population. 

Additionally, the cultures did not form secondary spheres and indication that the cells 

capable of self-renewal have been targeted. DP68 inhibited secondary spheres 

independent of MGMT expression (Figure 2.10). This is significant as primary GBM 

stem-like cultures (CD133+) positive for MGMT have been shown to require 100-fold 

more TMZ (Beier, Rohrl et al. 2008). Similarly, miR-34a overexpressing neurospheres 

failed to give rise to secondary spheres after being dissociated and re-plated as single 

cells (Figure 3.6). Together these two approaches provide more durable effects on GBM 

cultures in vitro and these data suggest that both strategies effectively target stem-like 

cells. In vivo applications of both of these strategies are needed to see if the efficacy can 

be translated into an intracranial tumor model.  
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Conclusions 

The work presented within this dissertation contributes to our understanding of 

the complexity of resistance in GBMs and explores two novel approaches to generate 

more effective therapies. Our evaluation of two novel imidazotetrazines, DP86 and DP68, 

shows that these compounds are highly efficacious in GBMs, independent of MGMT and 

MMR. The applications of such a drug in the clinic would have a vast impact.  While 

inefficient in their current form, the current study of DP86 and DP68 serves as a proof-of-

concept for this novel class of compounds. In our second study, we identified a tumor 

suppressor miRNA, miR-34a, which mimics the response elicited by our novel TMZ + 

GSI therapy. Forced expression of miR-34a had a strong anti-tumor effect as several 

processes were affected: decrease in proliferation, G1 cell cycle arrest, induction of SA-

β-gal, and decrease in invasion. While Notch family members were downregulated with 

increased miR-34a, these strong changes in phenotype are likely to be the result of 

downregulation of multiple oncogenes at once. MiRNAs ability to regulate multiple 

genes within a pathway and several pathways at once makes them attractive candidates 

for therapy in contrast to a targeted therapy approach. These target therapies are usually 

limited by the emergence of primary or secondary resistance from acquired mutations; 

miRNA therapy could overcome this obstacle. Together these two strategies provide us 

with insight into ways to develop more effective chemotherapies with the ultimate goal, 

preventing recurrences of patients’ tumors. 
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APPENDIX I 

 

Generation of established line-derived neurospheres and patient-derived cell lines 

For our studies, three different GBM culture models were utilized: established 

monolayer cultures, neurospheres generated from these monolayer cultures, and patient-

derived GBM cell lines (Table AI.1, Figure AI.1A).  From a panel of GBM monolayer 

lines (Table A.1, blue), four of the seven established lines gave rise to neurospheres upon 

serum removal and addition of growth factors. T98G, A172MG, and LN-229 lines did 

not give rise to spheres under these conditions. This is consistent with results from others 

(Broadley, Hunn et al. 2011).  In contrast, one lab reported the successful growth of 

T98G and LN-229 as neurospheres by seeding cells in 2% poly (2-hydroxyethyl 

methacrylate)-coated flasks, which was not attempted here (Hong, Chedid et al. 2012). 

Also, A172MG have been shown to give rise to spheres but only following lentiviral 

introduction of Oct-4 and Sox-2 (Dr. John Laterra presentation given at UMASS Medical 

School, 2012).  Neurosphere cultures can be propagated for many passages (>30 passages 

for U87NS). However, for our studies, we used neurosphere cultures for at most 10 

passages post-conversion to minimize changes that result from long-term passaging in 

vitro (Vukicevic, Jauch et al. 2010). 

 

Isolation of GBM cell lines from primary and recurrent patient specimens was 

also carried out (Table AI.1, purple and grey). GBM tumors were obtained following 

surgical debulking according to IRB protocols. The tumor samples were minced and 
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subject to enzymatic digestion using Trypsin-EDTA in Hanks Buffered Saline 

solution:DMEM/F12 mix (1:1). Samples were incubated in a 37° C water bath for 1-3 h. 

During the incubation period, samples were mechanically dissociated every 10 mins via 

repeated pipetting. and included mechanical dissociation (via repeated pipetting) every 

ten minutes. Red blood cells in the samples were then lysed with ammonium chloride 

solution (Stem Cell Technologies) according to manufacturer’s protocol. Finally, cells 

were pelleted, washed in PBS, and replated in neurosphere growth media.  

 

One patient-derived tumor, 5276T, was isolated by another procedure 

(Panchision, Chen et al. 2007). Briefly, cells were minced and enzymatically digested 

with 200 mg/mL Liberase DH (Roche) in 1X Hanks Buffered Saline Solution containing 

1 mM MgCl2 and 200 units/mL DNase. Minced tumor in Liberase solution was incubated 

for 15-30 mins in a rotator oven set to 37° C. Recovery of viable cells from Liberase 

digested samples was low at incubation times longer than 30 mins. Limiting the 

digestions to 30 min allowed for better and more consistent results.  Red blood cells were 

lysed before cells were centrifuged at 200 x g for 5 min, and the pellet was re-suspended 

in 1X HBSS + 1 mM MgCl2 + 200 U/mL DNAse. Cells were triturated with a P1000 

pipette tip, pelleted, and replated in neurosphere growth media.  

 

Morphological differences were observed between the various glioma cultures 

(Figure AI.1B). Among the converted neurosphere lines, two grew as free-floating 

spheres (U87NS and U138NS), one displayed a semi-adherent morphology with small 
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processes extending from the edges of the spheres (U118NS), and one was predominantly 

adherent (LN-18NS). The patient-derived lines described in Table AI.1 were 

predominantly free-floating spheres with the exception of 4304T. This line did not give 

rise to neurospheres and instead grew as a monolayer in serum-free conditions.  

 

Many of the tumors efficiently formed xenograft tumors upon engraftment in 

immunodeficient male Nu/Nu mice (Charles River Labs). U87NS formed tumors 

following pH dissociation and subcutaneous injection (1x106/100 uL PBS) into the right 

flank of mice. Similarly, U87NS gave rise to tumors in an intracranial model. Mice were 

anesthetized with an IP injection of Ketamine (10 mg/mL)-Xylazine (1.2 mg/mL) at a 

dose of 0.1 mL/10 g of mouse. U87NS were pH dissociating cells and 5x105/5 μL PBS) 

cells were injected (rate of 1 μL/min) into the subventricular zone via stereotaxic surgery, 

using these coordinates from the bregma: lateral +2.3 mm, anterior +0.7 mm, and distal 

3.0 mm. Subcutaneous injection of the analgesic Buprenex (0.1 mg/kg) was given 

immediately after surgery and 4-6 h following. Primary lines 4268T, 4304T, 5075T, and 

5276T all engrafted subcutaneously in the flanks of Nu/Nu mice and were further 

passaged in vivo. Cells were allowed to rest for 24 h following enzymatic digest before 

being centrifuged and resuspended in growth media and Matrigel® Basement Membrane 

Matrix High Concentration (HC), LDEV-free (1:1) (Corning) subcutaneous injection 

(1x106/ 200 μL) into the right flank of mice.  
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Converted neurospheres had the same MGMT (Figure AI.2A) expression 

patterns as their monolayer counterparts. Growth differences were observed between 

monolayer and sphere cultures (Figure AI.2B) when cell numbers were tracked for 

several passages. 5x105 cells were plated and split once a week and live cell numbers 

were quantified via trypan blue exclusion assays. U118NS cultures gave rise to 2.4-fold 

fewer cells than U118MG while U87NS had the opposite effect, generating 1.4-fold more 

cells than U87MG. Growth of GBM lines as neurospheres is thought to enrich for a 

cancer stem cell-like phenotype (A and H 2011) so a slower proliferative state is not 

surprising. However, U87NS do not follow this prediction. While we did not test for stem 

cell markers such as Sox2, Oct 4, and Nanog, others found an increase of stem cell 

markers  for U87NS (Broadley, Hunn et al. 2011)(Ledur, Villodre et al. 2012) and LN-

18NS (Broadley, Hunn et al. 2011).  Cell cycle analysis of U87MG and U87NS was 

carried out via flow analysis of PI-stained cells (Figure AI. 2C) and revealed decreased 

G1 and S populations for the U87NS line and a marked increase in the G2/M population. 

This work was further validated by co-staining for Click iT® EdU-Alexa Fluor-488 

(Invitrogen) and PI (Figure AI. 2D) and analysis via flow cytometry. EdU (5-ethynyl-2'-

deoxyuridine) is a modified thymidine analog, just like BrdU, that is incorporated during 

DNA synthesis. The decrease of G1/S and increase of G2/M increase as U87NS 

neurospheres are passaged. G1 lengthening is associated with differentiation while NSC 

exhibit higher G2/M (Roccio, Schmitter et al. 2013). Our findings therefore align with 

published observations.  Further examination of differences in expression of cell cycle 
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regulators between sphere cultures and their monolayer counterpart would help to 

elucidate which players are responsible for the differences in cell cycle populations.  

 

 







158 
 

 

Figure AI.2 Characterization of established GBM neurospheres. 
MGMT expression (A) of established and that of neurosphere lines generated show 
MGMT expression patterns are maintained after conversion to neurospheres in these 
three cell lines. Cell numbers (B) of monolayer and respective neurosphere cultures were 
tracked for more than eight passages via trypan blue exclusion assays. U118NS spheres 
showed reduction in cell numbers while U87NS showed an increase in cell number when 
compared to their monolayer counterparts. Flow analysis of PI (C) or EdU/PI stained (D) 
U87NS and U87MG cultures shows that conversion of U87MG to neurospheres leads to 
reductions of G1- and S-phases while increasing G2/M phase. Data are mean ± SEM of 
triplicate samples but from one independent experiment *p<0.05, **p<0.001 
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APPENDIX II 

 

TMZ + DAPT treatment leads to miR-7 downregulation while miR-29 family 

expression is slightly upregulated  

As part of our goal to identify a miRNA signature that is differentially expressed 

in TMZ + DAPT treated cultures, we examined miR-7, miR-29a and miR-34a in our 

initial analysis.  MiR-7 is of interest as it is downregulated in senescent WI38 cultures 

and targets EGFR as well as components of the mTOR and PI3K pathways (Fang, Xue et 

al. 2012) MiR-29 family members function as tumor suppressors in GBM and, like miR-

34a, target Notch family members.  

 

To determine whether miR-7 or miR-29 family members are differentially 

expressed in TMZ + DAPT treated GBM neurosphere cultures, we carried out qRT-PCR 

analysis. U87NS and U373NS cells were treated with DMSO, DAPT alone, TMZ alone, 

or TMZ + DAPT and analyzed by a 21-day neurosphere assay. For these preliminary 

experiments, cells were plated and treated with drug. RNA was isolated from cells on 

days 2, 8, 14, and 21 of the assay using the miRVANA miRNA isolation kit (Applied 

Biosystems). Due to our interest in quantifying microRNAs, small RNA enrichment 

(<200bp) was carried out according to the manufacturer’s protocol. Reverse transcription 

was performed using TaqMan miRNA Reverse Transcription Kit. Expression levels of 

mature miR-7a (hsa-miR-7), miR-29a (hsa-miR-29a), miR-29b (hsa-miR-29b), and miR-

29c (hsa-miR-29c) were measured by TaqMan MicroRNA Assays (Applied Biosystems), 
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and U6 small nuclear RNA was used to normalize all samples. Expression levels were 

quantified on an ABI Prism 7900HT sequence detection system (Applied Biosystems) 

using TaqMan Universal Master Mix II with Uracil N-glycosylase (UNG). UNG within 

the master mix is activated prior to starting PCR cycling and works to prevent 

amplification of contaminants from previous PCR reactions. 

 

 MiR-7 expression decreased following treatment with TMZ and TMZ + DAPT 

with its lowest level on day 8 (Figure AII.1 A and B). By day 14, there was a significant 

rebound for miR-7 levels in both the TMZ and TMZ + DAPT samples; however, cell 

death was evident in all day 14 neurosphere cultures , introducing variability and limiting 

the reproducibility of this time point.  By day 21, transcript levels of miR-7 increased in 

the TMZ and TMZ + DAPT treated groups for both U87NS (Figure AII.1 A) and 

U373NS (Figure AII.1 B). However, despite this increase, the miR-7 transcript levels 

were less than those of the DMSO control. It has previously been shown that U87NS and 

U373NS treated with TMZ (U87NS= 36%; U373NS =33%) or TMZ + DAPT (U87NS= 

64%; U373NS= 56%) by day seven have a large induction of SA-β-gal (Gilbert 2011), 

which is a marker for senescence. For day 21 cultures, SA-β-gal positive cells remained 

higher for TMZ (U87NS= 11.6%; U373NS= 18.5%) and TMZ + DAPT (U87NS= 

79.2%; U373NS= 82.1%) treated neurospheres than the DMSO (U87NS=2.3%; 

U373NS= 2.3%) or DAPT only (U87NS= 2.6%; U373NS= 2.4%) controls.  MicroRNA 

profiling of senescent human fibroblasts, WI-38, showed that miR-7 is downregulated 

(Marasa, Srikantan et al. 2010), and inhibition of miR-7 in lung carcinoma cells, A549, 
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decreased cell growth (Cheng, Byrom et al. 2005) .  The decreased levels of miR-7 

transcript at day 8 and day 21 could contribute to the induction of senescence in these 

samples, potentially through a predicted target, Retinoblastoma (Rb). Whether the 

decrease in miR-7 transcripts contributes to the induction of senescence or senescence 

leads to its downregulation remains to be tested.  

 

The miR-29 family consists of three mature miRNAs: miR-29a, miR-29b, and 

miR-29c, and expression levels of all three were analyzed in treated U87NS cells at days 

2, 8, and 21 (Figure AII.2). MiR-29a, b, and c showed increased transcript levels in 

TMZ + DAPT treated cultures by day 8, and this elevation was maintained up to day 21, 

with the exception of the miR-29a transcript, which decreased to control levels. Mir-34a 

levels were quantified within these same samples, and similar expression patterns were 

observed. Since both families are predicted to target Notch family members, it is possible 

that they function within the same network.  

 

Exogenous miR-29a expression decreases proliferation 

 We analyzed the effects of miR-29a overexpression in U87MG. Cells were plated 

at 50,000 cells/well (6-well plate) and transfected with a 20 nM miR-29a mimic or a 20 

nM negative control with DharmaFect Transfection Reagent 1 (Dharmacon) according to 

the manufacturer’s protocol. At various time-points, cells were collected and counted via 

trypan blue exclusion. This particular data set is based on a single biological experiment 

with duplicate wells.  
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 Trypan blue exclusion counts showed that overexpression of miR-29a reduced the 

proliferation of U87MG cells compared to control transfected cells (Figure AII.3 A and 

B). This preliminary data suggests that miR-29a acts as a tumor suppressor by decreasing 

growth of GBM cultures.  

 

MiR-29a alters expression of members of Notch and Wnt signaling pathways  

In silico analysis using TargetScan, miRanda, and PicTar predicts that miR-29a 

targets the 3’UTR of Notch-2 and several members of Wnt signaling: Frizzled family 

receptor 5 (FZD5), low density lipoprotein receptor-related protein 6 (LRP6), catenin 

beta interacting protein 1 (CTNNBIP1, β-catenin), and glycogen synthase kinase 3-beta 

(GSK-3β). Following transfection with pre-miR-29a or negative control, we assessed 

changes in protein levels of some of these genes. U87NS cells were plated and 

transfected with 5, 10, 20, 30, or 50 nM of pre-miR29a or negative control, as previously 

described. Cell lysates were collected, separated by SDS-PAGE, and electro-transferred 

onto 0.45 μM PVDF membranes. Membranes were blocked in TBS + 5% milk and 0.1% 

Tween-20 at RT for one hour. All primary antibodies were incubated overnight at 4 º C 

followed by RT incubation with a secondary antibody conjugated with horseradish 

peroxidase for 1 h. Detection was performed with lab-made chemoluminescent reagent as 

previously described in Chapter 2. Antibodies against Notch-1 (D6F11, #4380), Notch-2 

(D67C8, #4530), LRP6 (C47E12, #3395), and β-actin (8H10D10, #3700) were purchased 

from Cell Signaling. Anti β-catenin (clone 8E7, #05-665) was from Upstate. Secondary 
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Anti-rabbit IgG, peroxidase-linked (from donkey) and Anti-mouse IgG peroxidase-linked 

(from sheep) were purchased from GE Healthcare.  

 

Overexpression of miR-29a in U87NS cells leads to a concentration-dependent 

decrease in Notch-2 protein (Figure AII.4 A). Western blots showed that miR 

concentrations as low as 10 nM decrease both the full length and intracellular domains of 

Notch-2. Simultaneously, we tested the effects on another member of the Notch receptor 

family, Notch-1, which in silico analysis does not predict to be a target for miR-29a 

(Figure AII.4 B). While transfection with either 30 nM or 50 nM of pre-miR-29a mimic 

appears to decrease by 50% expression of Notch-1 in U87NS cells, follow up westerns 

are needed to validate this observation. Further experiments utilizing a luciferase reporter 

with the 3’UTR of Notch-1 or Notch-2 cloned are needed to determine whether Notch-2 

and Notch-1 are direct or indirect targets. 

 

Changes in Wnt pathway proteins following miR-29a expression were also 

analyzed for U87NS cultures (Figure AII.5). We focused on the co-receptor for Wnt, 

LRP6, as well as the transcriptional co-activator, β-catenin. Surprisingly, as little as 10 

nM of exogenous miR-29a leads to a minor increase of LRP6 and a much greater 

induction of β-catenin. Studies to examine whether the 3’UTR’s of LRP6 and β-catenin 

respond to miR-29a are needed. The current data provides insight into the potential 

regulation of Notch-2, LRP6, and β-catenin by miR-29a. 
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Since these data were generated, a report was published demonstrating that 

exogenous miR-29a leads to decreased proliferation in esophageal squamous cell 

carcinoma (Liu, Duan et al. 2015). Changes in Notch1 mRNA and protein levels were not 

observed following overexpression of miR-29a, validating the lack of Notch1 repression 

that we observed when overexpressing miR-29a at lower concentrations (Figure AII. 

4B). The Notch1 downstream target, Hes 1, was upregulated in response to increased 

miR-29a. Follow-up experiments showed that miR-29a regulates Hes1 through an 

indirect mechanism, and it is indeed a player in the regulation of Notch signaling.  
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Figure AII.1 Expression of miR-7 transcript is reduced by day 8 in GBM 
neurospheres in response to TMZ and TMZ + DAPT. 
U87NS (A) and U373NS (B) cultures were treated with DMSO, 1 μM DAPT, 200 μM 
TMZ, or combination of 200 μM TMZ + 1 μM DAPT. RNA was isolated from cells 
collected at day 2, 8, 14, and 21 and miR-7 transcript levels were quantified by qRT-
PCR. Expression levels were normalized to U6, and each sample is plotted relative to the 
DMSO control. TMZ-only and TMZ + DAPT treatment groups had a decrease in miR-7 
expression which correlated with SA-β-gal staining at day 8 and day 21.  Representative 
data, mean ± SEM, from three independent experiments are shown. * p<0.05, ** p<0.001 
 
 
 
  

  

A. 

B. 
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Figure AII.3 Effects of exogenous miR-29a on proliferation of GBM cell lines. 
Proliferation of U87MG (A) was measured following transfection with 20 nM miR-29a 
mimic or negative control via trypan blue exclusion assays. Cells overexpressing miR-
29a had a significantly decrease in proliferation than control transfected cells. Data are 
mean ± SEM of one experiment perfomed in duplicate. *p<0.05, **p<0.01 
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Figure AII.5 MiR-29a overexpression leads to increased Wnt-pathway signaling. 
U87NS cells were transfected with 5, 10, 20, or 30 nM pre-miR-29a or negative control. 
Whole cell lysates were collected and analyzed by western blot for expression of Wnt-
signaling pathway components, LRP6 and β-catenin. β-actin was used as a loading 
control. Overexpression of miR-29a lead to the induction β-catenin while causing 
minimal increase in LRP6 protein expression.  
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