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ABSTRACT

The chicken hepatoma cell line, LMH, was evaluated with respect to its

usefulness for studies of the regulation of heme metabolism. Levels of 8-

aminolevulinate synthase mRNA and accumulation of porphyrins were used to
evaluate the heme biosynthetic pathway. Regulation of heme oxygenase-1 by
known inducers was used as a measure of heme degradation. The induction of
heme oxygenase-1 by sodium arsenite was characterized. AP-1 transcription
factor elements and MAP kinase signal transduction pathways that modulate
expression of endogenous heme oxygenase-1 and transfected heme
oxygenase-1 reporter gene constructs in response to arsenite were delineated.

‘In initial studies, the drug glutethimide was used alone or in combination

with ferric nitrilotriacetate to induce d-aminolevulinate synthase mRNA. Levels

of porphyrins, intermediates in the heme biosynthetic pathway, and levels of 6-

aminolevulinate synthase mRNA were increased by these treatments in a
manner similar to those previously observed in the widely used model system,
primary chick embryo liver cells. The iron chelator, deferoxamine, gave a
characteristic shift in the giutethimide induced porphyrin accumulation in

primary hepatocytes, but was found to have no effect on LMH cells. Heme

mediated repression of §-aminolevulinate synthase mRNA levels was similar

among primary hepatocytes and LMH cells. Heme oxygenase-1 was regulated



Vi

by heme, metals, heat shock, and oxidative stress-inducing chemicals in LMH
cells. Heat shock induction' of heme oxygenase-1 mRNA levels was observed
for the first time in primary chick embryo liver cells. These data supported the

further use of LMH cells to elucidate mechanisms responsible for modulating

heme oxygenase-1 gene expression in response to inducers.

The remainder of the studies focused on the role of heme oxygenase-1
as a stress response protein. The oxidative stress inducer, sodium arsenite was
used to probe the cellular mechanisms that control the expression of heme
oxygenase-1. A series of promoter-reporter constructs were used to search the
heme oxygenase-1 promoter for arsenite responsive elements. Several
activator protein-1 (AP-1) transcription factor binding elements were identified
by COmputer sequence analysis. Three of these sites, located at -1578, -36586,
and -4597 base pairs upstream of the transcription start site, were mutated. The
arsenite responsiveness of the reporter constructs containing mutated AP-1
elements was less than that of the same constructs containing wild type AP-1
elements. At least part of the arsenite-mediated induction of heme oxygenase-1
required the activity of AP-1 transcriptional elements.

The MAP kinase signal transduction pathways and heme oxygenase-1
are activated by similar stimuli, including cellular stress. MAP kinases have
been shown to exert control over gene expression through effects on the AP-1
family of transcription factors. The MAP kinases ERK, JNK, and p38 were

activated by arsenite in LMH cells. Constitutively activated components of the
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ERK and p38 pathways increased expression of heme oxygenase-1 promoter-
luciferase reportér constructs. Arsenite-mediated induction of heme oxygenase
-1 was blocked by dominant negative ERK or p38 pathway components, and by
specific inhibitors of MEK (upstream ERK kinase) or p38. In contrast, reporter
gene expression was unchanged in the presence of constitutively activated JNK
pathway components. Dominant negative JNK pathway components had no
effect on arsenite induced heme oxygenase-1 gene activity.

In summary, LMH cells were characterized as a new model system for
the study of heme metabolism. This cell line was then used to delineate
promoter eléments and signaling pathways involved in the arsenite
responsiveness of heme oxygenase-1 gene expression. Three AP-1
transcription factor binding sites in the heme oxygenase-1 promoter region
were required for responsiveness to arsenite. The MAP kinases ERK and p38
were shoWn to play an integral role in arsenité-mediated induction of heme
oxygenase-1». These studies elucidate one facet of heme oxygenase-1
regulation, and provide tools that will be useful in delineating additional

regulatory mechanisms.
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CHAPTER |
INTRODUCTION AND OBJECTIVES

Introduction

Sianificance of heme and heme metabolism. Heme (ferrous

protoporphyrin IX) plays a major role in the health and normal functioning of
cells and organisms mainly by acting as the prosthetic group for hemoproteins.
The tetrapyrrole ring structure of heme (Figure 1.1) enables hemoproteins to
perform reduction and oxidation reactions that are necessary for cell and tissue
growth and maintenance. Hemoglobin and myoglobin are essential for
respiration and gas exchange. The mitochondrial and microsomal cytochromes
are the major hemoproteins that carry out steroid biosynthesis, detoxification
and activation of xenobiotics, and energy generation. Hemoproteins also
contribute to cellular defense mechanisms. Cellular protection is attributed to
antioxidant proteins such as catalase, superoxide dismutase, and most recently,
heme oxygenase, the rate-limiting enzyme of heme degradation. The balance
of heme anabolism and catabolism in cells is essential to proper functioning.
Lack of heme may result in the failure of cells to produce enough energy to
sustain themselves, whereas excessive “free” or loosely-bound heme may lead
“to excessive oxidative stress, causing damage to lipids, proteins, and nucleic
acids. Therefore, the biosynthesis and degradation of cellular heme are tightly

controlled by several mechanisms.



Figure 1.1: The structure of heme, ferrous protoporphyrin IX. According to

common reference, the pyrrole rings are labeled A through D, and the methenyi

bridges between the rings are labeled a.B,y, and d. The substituents on the

pyrrole rings are different for uroporphyrins (acetate and propionate),
coproporphyrins (methyl and propionate), and protoporphyrins (methyl,
propionate, and vinyi, as shown here). Mesoporphyrin derivatives have 1
methyl and 1 ethyl group on each of the A and B rings, and 1 methyl and 1
propionate group on each of the C and D rings. Protoporphyrin and
mesoporphyrin may chelate other divalent cations (Mn, Co, Cu, Sn, Zn, etc.) to

form metalloporphyrins.
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Biosynthesis of heme. Heme biosynthesis is a multi-step process that

has been well characterized ™. The major sites of heme synthesis are
hepatocytes and developing erythrocytes, for which the overall steps in heme
biosynthesis are similar. Heme synthesis begins and is completed in the

mitochondria, with intermediate steps occurring in the cytosol (Figure 1.2). The

first committed step of heme biosynthesis is the formation of §-aminolevulinic

acid (ALA), the precursor of porphyrins and chlorophylis, as well as the corrin

ring of vitamin B,,. In the mitochondria, 8-aminolevulinic acid synthase (ALA

synthase) [E.C. 2.3.1.37] cafalyzes the condensation of succinyl CoA and
glycine to form ALA. In the cytosol, ALA dehydratase (ALAD) [E.C. 4.2.1.24]
links two molecules of ALA to form the monopyrrole, porphobilinogen (PBG).
Porphbbilinogen deaminase (PBGD) [E.C. 4.3.1.8] then converts four molecules
of PBG into the linear tetrapyrrole, hydroxymethylbilane, which in the presence
of uroporphyrinogen lil cosynthase [E.C. 4.2.1.75], is subsequently converted to
the asymmetric cyclic tetrapyrrole, uroporphyrinogen lll, by inversion of pyrrole
ring D (See Figure 1.1). In the absence of the cosynthase, hydroxymethylbilane
undergoes spontaneous nonenzymatic cycllization to form uroporphyrinogen |I.
The formation of heme specifically requires the asymmetric isomer,
uroporphyrinogen lll. Through a series of four successive decarboxylations,
uroporphyrinogen lll is converted to coproporphyrinogen Il by the ﬁext enzyme
in the pathway, uroporphyrinogen decarboxylase (UROD) [E.C. 4.1.1.37].

UROD also catalyzes the formation of coproporphyrinogen | from




Figure 1.2: Schematic diagram of the heme biosynthetic pathway. Heme
synthesis begins and ends in the mitochondria, with intermediate steps
occurring in the cytoplasm of the cell. The substrates and products are

indicated for each step. Enzymes are indicated in italics.
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uroporphyrinogen |. The next step is catalyzed by the mitochondrial enzyme,
coproporphyrinogen oxidase [E.C. 1.3.3.3], which oxidatively decarboxylates
the two propionic groups of the A and B rings of coproporphyrinogen Ill to vinyl
groups, resulting in the formation of protoporphyrinogen IX.
Protoporphyrinogen oxidase [E.C. 1.3.3.4] then oxidizes the methylene groups
which link the pyrrole rings of protoporphyrinogeh IX, to methenyl groups to
form protoporphyrin IX, the substrate for the final step of heme biosynthesis.
Heme synthesis is completed by ferrochelatase (FC) [E.C. 4.99.1.1] through
insertion of a ferrous iron atom into protoporphyrin IX to form heme (Ferrous
protoporphyrin 1X).

Regulation of heme biosynthesis in erythroid cells. During development,

erythroid cells must maximize the production of the heme-containing oxygen
transport protein, hemogilobin, to last for the lifetime of the erythrocyte. Two
enzymes of heme biosynthesis have isoforms that are erythroid specific: ALA
synthase, and porphobilinogen deaminase *. ALA synthase is encoded as two
| separate genes: erythroid-specific (located on the X chromosome ©) and non-
specific or housekeeping. The erythroid-specific and non-specific isozymes of
porphobilinogen deaminase result from differential transcription and splicing of
a single gene product. All of the other enzymes of heme biosynthesis are the
same for developing erythrocytes and hepatocytes, and other cells. In
developing erythrocytes, heme increases: 1) the transcription and translation of

the erythroid form of ALAS; 2) the formation of the erythroid form of



porphobilinogen deaminase; and 3) the synthesis of many other proteins,
including the other enzymes of heme biosynthesis and the globins. The overall
rate of erythroid heme biosynthesis is dependent on the supply of iron for the
7-11

final step, catalyzed by ferrochelatase

Requlation of hepatic heme biosynthesis. Hepatic heme synthesis

accounts for approximately 15% of the total heme produced in humans 2% In
hepatocytes, heme is utilized primarily (65%) as the prosthetic group for
microsomal cytochrome P450 2°. Hepatic heme synthesis is controlled primarily
by the rate of formation of ALA. As the first and rate-limiting enzyme, ALA
synthase has been shown to be the major site of regulation of hepatic heme
synthesis. Basal ALA synthesis is generally low, but is highly inducible (up to
100-fold) by many hormones (progesterone, estrogens, and testosterone).
Chemicals or drugs can induce ALA synthase by several means: 1) by directly
up-regulating ALA synthase transcription (e.g. barbiturates and hydantoins), 2)
by increasing demand for heme through induction of cytochrome P450, 3) by
rapidly destroying cytochrome P450 heme (e.g. chemicals such as
allylisopropylacetamide (AlA) and 3,5-diethoxycarbonyi-1,4-dihydrocollidine
(DDC)), and 4) by inhibiting other heme biosynthetic enzymes and causing a
depletion of hepatic heme (e.g. succinylacetone, an inhibitor of ALA
dehydratase, or iron chelators, which inhibit ferrochelatase). These chemicals

and drugs are often used to induce or mimic porphyria in animals or cell culture

models.




The requlatory heme pool. Hepatic ALA synthase is subject to negative

feedback regulation by heme, the end-product of the pathway. It is generally
accepted that a small, rapidly turning-over “regulatory” heme pool exists in
hepatocytes ", and that the heme present in this pool is in dynamic
equilibrium with the heme incorporated into hemoproteins and other cellular
heme pools (Figure 1.3). The concentration of heme in the hepatic heme pool
is maintained at concentrations estimated at 107 to 10® M by a balance
between ALA synthase and heme oxygenase, the enzyme that controls heme
degradation 2*5'2 Both of these enzymes are regulated by heme. The
regulatory heme pool controls heme biosynthesis by several mechanisms: 1)
by decreasing the transcription of ALA synthase mRNA (although this has been
shown in rodents only); 2) by decreasing the translation of ALA synthase mRNA
into protein; and 3) by interfering with the processing of the ALA synthase
precursor protein and uptake of the enzyme by mitochondria. Heme may also
directly inhibit ALA synthase enzyme activity, but only at a much higher
concentration of heme (K; =2 x 10°° M) than that requiréd for regulation of HO or
ALA synthase gene expression >*'2. Thus, depletion of regulatory heme
generally increases ALA synthesis, whereas excess heme represses ALA
synthesis.

Diseases associated with defects in heme synthesis. Deficiencies in

heme biosynthetic enzymes may lead to various disease states, the most

common being porphyria. Porphyrias were so named due to the characteristic
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Figure 1.3: Effects of the regulatory heme pool on hepatic heme metabolism.
Heme exerts regulatory effects on both ALA synthase and heme oxygenase-1 to
control both its synthesis and its degradation. Heme increases the transcription
of HO-1, leading to increased production of HO-1 protein, which catalyzes heme
degradation. Several steps in the production of functional mature ALA synthase
protein may be inhibited by heme as indicated by minus signs, or by the plus
sign indicating increased degradation of ALA synthase mRNA. Regulatory
heme is incorporated into apo-hemoproteins as the prosthetic group to form

functional holo-hemoproteins. Heme may also increase the transcription of

apo-hemoproteins, especially the cytochrome P450 proteins.
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accumulation and excretion of porphyrins in patients with these disorders.
Because only porphyrinogens are substrates for all except the last step of the
biosynthetic pathway, very little porphyrin normally accumulates in cells.
Porphyrinogens are colorless and have no fluorescent properties. However,
the porphyrinogens are very reactive, and are easily oxidized to their
corresponding porphyrins. Oxidation can occur spontaneously in the presence
of light and oxygen, or it can be catalyzed by cytochrome P450 mono-
oxygenase mediated mechanisms upon activation by xenobiotics such as
aromatic hydrocarbons . Porphyrins are stable, colored compounds (usually
red to purple), that absorb light at about 400 nm (Soret band), and fluoresce
when excited. The buildup of porphyrinogens and their oxidation to porphyrins
cause the photosensitivity that is observed in most forms of porphyria. The
properties of porphyrins have facilitated the detection and diagnosis of the
various forms of porphyria. These colored, fluorescent compounds are excreted
and can be quantitated by fluorescence spectroscopy or high performance
liquid chromatography.

-The erythroid form of ALA synthase is critical for erythrocyte development
', A deficiency in erythroid ALA synthase leads to X-linked sideroblastic
anemia. Deficiencies of the other enzymes in the heme biosynthetic pathway
result in porphyrias ®°. Porphyrias are categorized as erythroid or hepatic,

depending on the site with the highest accumulation of porphyrin precursors.

The hepatic porphyrias are characterized mainly by cutaneous photosensitivity,
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neurological symptoms, buildup of porphyrin precursors in the blood and
tissues, and excretion of porphyrins and/or their precursors in the urine and
feces. The most common form of hepatic porphyria is porphyria cutanea tarda,
which is characterized by photosensitivity and a high incidence of liver disease,
e.g. cirrhosis. The most common form of acute hepatic porphyria is acute
intermittent porphyria (AIP), for which the primary symptoms are abdominal pain
accompanied by neurological symptoms. Hormones, drugs, and nutritional
factors may induce or exacerbate porphyric attacks, which may include
muscular paralysis, seizures, respiratory failure, and eventually death 2. Table
1.1 lists the disease states associated with deficiencies of the enzymes involved

in heme biosynthesis.
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Table 1.1: Disease states related to deficiencies in heme biosynthetic

enzymes.

Enzyme Deficiency

d-aminolevulinic acid synthase
erythroid

d-aminolevulinic acid dehydratase
hepatic

Porphobilinogen deaminase
hepatic

Uroporphyrinogen lll cosynthase
erythroid

Uroporphyrinogen decarboxylase
hepatic
Coproporphyrinogen oxidase

hepatic

Protoporphyrinogen oxidase
hepatic

Ferrochelatase
erythroid

Disease and Inheritance Pattern
X-linked sideroblastic anemia
Nearly complete lack of activity, autosomal
recessive: ALAD deficiency porphyria

Heterozygous, autosomal dominant:
acute intermittent porphyria

Homozygous, autosomal recessive:
congenital erythropoietic porphyria

Heterozygous, variable: porphyria

- cutanea tarda; homozygous, autosomal

recessive: hepatoerythropoietic porphyria

Heterozygous, autosomal dominant:
hereditary coproporphyria

Heterozygous, autosomal dominant:
variegate porphyria

Heterozygous, autosomal dominant:
erythropoietic protoporphyria
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The Degradation of Heme

Catalytic heme degradation. The catalytic breakdown of heme to

bilirubin was first described by Tenhunen et al. in 1968 7. Heme degradation
is much less complicated than its biosynthesis (Figure 1.4). Heme oxygenase

(HO) [E.C. 1.14.99.3] is the fifst and rate-limiting enzyme of heme catabolism. In
- association with NADPH ferrihemoprotein reductase (NADPH-cytochrome P450
reductase) [E.C. 1.6.2.4] and in the presence of NADPH or NADH, HO catalyzes
the breakdown of heme into equimolar amounts of carbon monoxide, iron, and

the linear tetrapyrrole, biliverdin. The reductase-HO complex accepts electrons

from NADPH or NADH to maintain the heme iron in the reduced state, which is

required for the binding of molecular oxygen, and to oxidatively cleave the o-

methenyl bridge between pyrrole rings A and B of the heme molecule . In
most mammalian, but not avian species, biliverdin is subsequently reduced to
bilirubin by biliverdin reductase (BVR) [E.C. 1.3.1.24]. The enzymatic activity of
HO can be competitively inhibited by metalloporphyrins with the central iron
atom replaced by tin, cobalt, zinc, or manganese ™.

Characterization of heme oxygenase. Two isoforms of HO, HO-1 and
HO-2, transcribed from separate genes have been characterized 222. HO-1 has
been detected in most vertebrate tissues, with the highest activities in the

spleen, liver, and kidneys. Among other functions, HO-1 is thought to play a

role in regulating the amount of heme (in the regulatory heme pool) available to




Figure 1.4: The pathway for heme degradation. The first and rate-limiting
enzyme of heme degradation is heme oxygenase. The same reaction is carried
out by both isoforms, HO-1 and HO-2. The oxidation of heme requires oxygen,
NADPH ferrihemoprotein reductase, and NADPH or NADH as a source of
reducing equivalents. The reaction requires a total of 3 oxygen molecules and
6 reducing equivalents per molecule of heme that is degraded. Enzymes are

indicated in italics.
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form hemoproteins, such as the microsomal cytochromes P450, which play key
‘roles in a vast array of reactions, including steroid biogenesis and phase | drug
metabolism 2%, The HO-1 genes from rodents #2°, humans 22*** and chicken
%37 have been cloned and characterized. The chicken HO-1 protein has 296
amino acids with a predicted molecular mass of 32 Kd %. The length of the
cDNA is 1258 bases, and shares 69% identity with rat HO-1 and 76% identity
with human HO-1 cDNAs *. The region from amino acids 128 - 136 and
histidine-25 correspond to the heme binding and catalytic site, and are
conserved among HO-1 proteins from rat, human, and chicken 36:383°,

A very effective way to study the importance of a gene for cellular
metabolism and survival is to obtain a gene knockout animal, or a knockout cell
line. Recently, a strain of mice lacking the HO-1 gene has been described.
Recent studies by Poss and Tonegawa “°*' in HO-1 deficient mice have
highlighted the important metabolic and cytoprotective roles of this gene. The
mice exhibited an incapacity to modulate body iron stores properly and were
more sensitive to hepatic injury by iron, indicating that HO-1 plays an important
role ih iron utilization *°. After exposure to oxidative damage-causing agents,
such as hemin, hydrogen peroxide, or cadmium, the mice were hyperéensitive
to cytotoxicity when given additional hemin or hydrogen peroxide. When
subsequently challenged with endotoxin, HO-1 deficient mice were highly

susceptible to hepatic necrosis or death *'.

SN Na Ve k=1
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Model Systems for the Study of Heme Degradation

Current model systems. The inducibility and regulation of HO-1 have
been investigated using a number of model systems, including intact rodents,
primary cultures of rat hepatocytes and chick embryo liver cells (CELCs) 2%424
and various cell lines: Hepa, FEK,, L929, C6, HepG2, Hela, etc. 7733453 A
widely-used model that closely approximates what occurs in vivo and in
humans is that of primary cultures of chick embryo liver cells (CELCs). This
system has been characterized and used successfully by many laboratories for
investigations of numerous aspects of heme metabolism. Unlike rat
hepatocytes *>*, CELCs retain normal inducibility of ALA synthase 546555
They also retain normal inducibility and levels of expression of other heme
enzymes, such as the cytochromes P-450 /055576081 gng HO-1 182345 making
this a powerful system for the study of heme metabolism in vitro. However,
there are some limitations to this primary culture system: the cells obtained are
somewhat heterogeneous; the isolation must be repeated each week to obtain
more cultures, resulting in weekly variations and limitations on the number of
cultures that can be set up; and such primary cultures may only be used for
experiments lasting up to 5-7 days, making stable transfections impossible.

LMH hepatoma cell line. Transient transfections of primary CELCs have
provided valuable insights into the regulation of gene expression 2.

However, recent work suggested differences in HO-1 expression between
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transient and stable transfectants ?®. Since long-term transient and stable
transfections were not possible in primary cultures of CELCs, proliferating cell
lines were investigated. LMH cells are the first chicken hepatoma cell line to be
established. This cell line was derjved from an hepatocellular carcinoma
induced by feeding diethylnitrosamine to a male White Leghorn strain M
chicken *. As an immortal cell line, LMH cells provide some potential
advantages over primary cultures: continuous long-term culture, cell type
homogeneity, and a virtually endless supply. Using this cell line, Oddoux and
Grieninger ®°¢ have demonstrated normal responses and behavior with respect
to plasma protein synthesis and hormonal regulation (with the exception‘of a
defect in fibrinogen secretion), comparable to that observed in primary chicken
hepatocytes. LMH cells have also been used successfully in transfection
studies exploring regulation of the genes for chicken apolipoproteins Al and II

’°, vitellogenin Il ™', and in studies investigating insulin responsiveness 727,
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Regulation of Heme Oxygenase-1 Expression

Inducibility of heme oxygenase. Many chemical and environmental
stimuli are known to induce HO-1, including its substrate heme 277, other
metalloporphyrins (MePNs) 22°"747¢ transition metals **77:78, inflammatory
cytokines "%, prostaglandins ®®, ultraviolet light (UV) “®#5%  phorbol esters ¥,
heat shock *°*7, and other chemical initiators of cellular stress responses, such
as hydrogen peroxide %, lipopolysaccharide (LPS) 78, and sodium arsenite
(ARS) 52858920 |n contrast, HO-2 is found mainly in the brain and testis, is
unresponsive to any of the inducers of HO-1, and is essentially uninducible
21'22’28.

HO-1 has been characterized as a heat shock protein (HSP32), and
growing evidence supports a role for HO-1 in protecting cells from oxidative
stress 4#28991% - Thg protection afforded by HO-1 seems to be due to the
production of biliverdin and bilirubin, which have been shown to be potent
antioxidants ***”. The degradation of heme also leads to production-of CO,
which is hypothesized to be a signaling molecule that may upregulate cGMP
production in a manner similar to nitric oxide (NO) *8*°, Sodium arsenite causes
oxidative stress, is a potent inducer of HO-1 in many cell types and systems,
and has been described as a tumor promoting agent 8% H(O-1 most
recently has been suggested to play roles in protecting cells from oxidative

stress produced during growth and development, and in tumors, with discrete
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differences in expression observed between normal and cancerous cell types

101-106

Previous studies have defined two general mechanisms for induction of

HO-1. Heme, the heme precursor 8-aminolevulinate (ALA), and substances in

the class of phenobarbital-like drugs (e.g., phenobarbital, glutethimide, or
phenytoins) act via a heme-dependent mechanism; whereas transition metals
act by a heme-independent mechanism 1823317610718 amga and cobalt
chloride, acting by two disparate mechanisms, are potent inducers of HO-1, and
have been widely used for the characterization of HO-1 regulation 23324477109
Distinctions between the mechanisms utilized by metals, heme, and heat shock
to induce HO-1 have also been described 22527479119 Dggpite these differences,
the effects of diverse factors on HO-1 gene expression appear to be exerted
chiefly at the transcriptional level, suggesting that multiple signal transduction
pathways mediate induction of HO-1 gene transcription in response to a
multitude of cellular stimuli. :
Regulation of heme oxygenase-1 gene expression. Several cis-acting
promoter elements involved in mediating HO-1 gene expression have been
elucidated #1118 1n one study, stably transfected HO-1 reporter gene
constructs were used to locate elements required for induction of the murine
HO-1 gene by heme and heavy metals 2. Putative regulatory elements were
identified between 3.5 Kb and 12.5 Kb upstream from the transcription start site.

Evidence was presented for a basal level inducer and heme-responsive

__Advddil Y
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element located as far as 10.5 Kb upstream of the transcription start site in the
mouse HO-1 gene promoter ¥. Several potential binding sites for known
transcriptional regulators were identified in the human HO-1 promoter which
may account for induction by a variety of inducers, including heme . Other
work has located regions of the HO-1 promoter that mediate cadmium, heat
shock, hypoxia, and LPS responsiveness 272987:88113,115,116

The role of AP-1 in heme oxygenase-1 gene expression. Several recent

studies have presented evidence supporting induction of HO-1 gene
expression through the utilization of AP-1 elements present in the promoter
regions of human, murine, and avian HO-1. (For a review of the AP-1 family of
transcription factors, see Karin et al. ''"). Glutathione depletion-mediated
induction of rat HO-1 was shown to occur through AP-1 activation ', and in
human fibroblasts, depletion of glutathione induced the expression of HO-1 and
c-Fos, an AP-1 transcription factor family member *°. Inamdar et al. identified a
composite heme-responsive element that was derived from an extended AP-1
element '. Studies by Alam et al. #?**9% in murine hepatoma (Hepa) and
fibroblast (L929) cells have identified and characterized enhancer sequences in
the mouse HO-1 gene including AP-1 sites that bind c-Fos and c-Jun
heterodimers and are responsive to phorbol ester, cadmium, heme, and several
other inducers. The heme-, metal-, and arsenate responsive element identified
by Alam et al. ¥ was termed a “core B” element, which includes the recognition

sequence for the AP-1 family of transcription factors. Transcriptional activation
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of HO-1 by LPS in mouse macrophages has also been attributed to a distal 5°
AP-1 binding site located approximately 4 Kb upstream of the transcription start
site ®. Finally, Lu et al. have shown that arsenite and cobalt chloride treatments
increase binding to an AP-1 consensus element in the chicken HO-1 promoter
37120 However, the signal transduction pathways and transcription factor

complexes that target these elements have been largely unexplored.
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The Mitogen-Activated Protein (MAP) Kinases

The mitogen-activated protein (MAP) kinases are components of
signaling cascades which, in response to extracellular stimuli, target
transcription factors, resulting in the modulation of gene expression. MAP
kinases have two major distinguishing features: 1) they are activated by
phosphorylation of threonine and tyrosine residues within protein kinase
domain Xlll, and 2) they are proline-directed serine/threonine protein kinases
that require a minimum recognition sequence of Ser/Thr-Pro. The activation of
MAP kinases is performed by upstream dual-specific kinases, called MAP
kinase kinases (MAPKKSs), which are in turn phosphorylated by MAP kinase
kinase kinases (MAPKKKs). In addition, the MAP kinases can be regulated by
MAP kinase phosphatases, such that the overall response to a signal is a
i o complex balance between phosphorylation by upstream kinases and
dephosphorylation by phosphatases '2"'?2,

MAP kinases are activated under conditions similar to those that induce
HO-1 transcription, e.g., following exposure of cells to phorbol ester, cytokines,
ultraviolet light, heat shock, LPS, ceramide, and inducers of oxidative stress,
including arsenite ''**?*"%. Three major‘MAP kinase subfamilies that mediate
physiological responses have been described: Extracellular-signal regulated

kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 (a homologue of the

yeast HOG1 kinase). A comparison of the characteristics of each MAP kinase
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family and their major signaling cascade components are represented in Table
1.2. The complexity of these signaling cascades is further enriched by the
occurrence of multiple isoforms for each family. In general, growth and
proliferation signals are mediated primarily by ERK, and cellular stress signals
are mediated mainly by JNK and p38. The specificity of signaling by these
kinases, their targets, and the upstream components that mediate activation in

response to cellular stimuli have been the subject of several reviews '2"122.126,132-

138

In a recent review, Treistman presented a comparative analysis of MAP
kinase pathway targets in S. cerevisiae, D. melanogaster, C. elegans, and
mammals ". Physiological targets of the MAP kinases range from other
cytosolic kinases or membrane-bound tyrosine kinase receptors (MAPKAP-K2,
EGFR) to cytoskeletal components and nuclear transcription factors. In
particular, the AP-1 family of transcription factors has been shown to be
regulated in several ways by all three MAP kinase pathways 117139140

Extracellular-signal requlated kinase. The ERK pathway was the first of
the MAP kinases to be cloned in mammals. Components of the ERK pathway
were found to be homologous to protein kinases of the pheromone response
pathway in S. cerevisiae *'. The regulatory motif for ERK activation is Thr-Glu-
Tyr. Phosphorylation at both Thr and Tyr is required for full activation 2. Two
isoforms that are similarly regulated are commonly referred to as p42/p44

MAPK or ERK1/2. ERK1/2 is activated mainly in response to mitogenic stimuli,
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for which the activation pathway has been well-defined "', Cell surface
receptor tyrosine kinases such as the EGF and PDGF receptors activate a
signaling cascade involving the G protein Ras, the MAPKKK Raf, the MAPKK
MEK1/2, and ERK1/2, which then targets cytoskeletal proteins, other kinases, or
transcription factors (Table 1.2 and Figure 1.5) 121132134.140141.143 A gnyacific
inhibitor of MEK1/2, PD98059, has helped to more clearly delineate cellular
targets of ERK "', ERK effects changes in cellular morphology through

phosphorylation of cytoskeletal proteins, including microtubule-associated

proteins. Phospholipases that control arachidonic acid metabolism, and protein
kinases (including p90™* (RSK), for which c-fos is a substrate) are cytosolic
targets for ERK. ERK also regulates transcriptional activity through
phosphorylation of several transcription factors, including Elk-1, c-Myc, ATF-2,
C/EBPB, and STAT proteins 121122135

C-jun N-terminal kinase . The cloning of JNK helped to establish the

current model of several parallel MAP kinase cascades in mammals that

modulate physiological responses to diverse cellular stimuli. Several pathways

have been identified in yeast, but there is no known yeast homologue for JNK.
Activation of JNK occurs in response to environmental stress and inflammatory
cytokines, and is therefore also referred to as stress-activated protein kinase
(SAPK) 2142 The phosphorylation site of the JNK family is a Thr-Pro-Tyr motif.
There are several upstream activation mechanisms for JNK. Characterized

mechanisms involve Rho family low molecular weight G-proteins (Cdc42 and




Figure 1.5: Comparison of the mammalian MAP kinase cascade components.
Each MAP kinase is activated through a cascade of sequential
phosphorylations of protein kinases. The cascades are grouped by level (MAP
kinase, MAPK kinase, MAPKK kinase, etc.) to provide comparisons of the
components between the MAP kinase families. MKK4 may activate both JNK
and p38 (indicated by interrupted arrow), MKK?7 is specific for JNK only.
Downstream targets shown as transcription factors (Txn Factors) may also be
cytosolic components or other kinases (see Table 1.2 and text). For clarity, the
possible role of phosphatases in the modulation of MAP kinase activity is
indicated for JNK only, but applies to all three MAP kinase pathways. Co-
operative interaction or signal integration among the MAP kinase families may

occur in the cytosol, via activation of a kinase, or in the nucleus, through

dimerization of transcription factors activated by separate MAP kinases.
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Rac1), p21 activated kinase (PAK), MEKK1, MUK, or MLK3 (mixed lineage
kinase), MKK4 or MKK7, and JNK (Figure 1.5). JNK was discovered by and
named for its primary function, regulation of the transcription factor c-Jun.
Activation of JNK leads to the induction of apoptosis #"*°. Other transcription

factor targets of JNK include ATF2 and Elk-1.

p38 MAP kinase, homologue of HOG 1. The third MAP kinase family to ‘u....
be described is p38, the homologue of the yeast high osmolarity glycerol ‘;?
regulated MAP kinase, HOG 1. In response to environmental stress or (;,,5
inflammatory cytokines, p38 is activated by phosphorylation at the Thr-Gly-Tyr :;a

motif. The pathway of activation involves Rho family G-proteins (Cdc42/Ract),

PAK, TAK (TGFB-activated kinase) or MEKK1, MKK3 or MKK8, and p38 (Figure

1.5). Activation of p38 inhibits cell growth and promotes apoptosis. Recently, a
class of pyridinyl imidazoles (the cytokine-suppressive anti-inflammatory drugs)
were identified as specific inhibitors of the p38 family of MAP kinases "%,
These inhibitors have facilitated elucidation of the cellular effects of p38.

Primary targets for p38 are MAPKAP-K2, the Myc binding protein Max, and the

transcription factor components Elk-1, SAP-1, ATF2, and GADD153.

Signal integration by MAP kinases. Recent studies have established
mechanisms that allow integration of the ERK and p38 MAP kinase pathways.
Novel protein kinases that are activated by both ERK and p38 MAP kinases

have been described °*'®**. These kinases, termed MNK1 and MNK2, are

proposed to be a convergence point for co-operative action of the growth-factor
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regulated ERK pathway and the stress-regulated p38 pathway %' A second
example is provided by Ets transcription factors that are phosphorylated and
activated by both ERK and p38 MAP kinases 15515 Investigation of MAP kinase
involvement in the UV response of HelLa TK- and NIH3T3 cells revealed co-
operative serum response element (SRE) and ternary complex factor (TCF)
activation by ERK and p38 pathways '*. Both of these pathways were found to
be required for induction of c-fos gene transcription by UV irradiation .

Similar mechanisms may contribute to the integration of MAP kinase pathways
at the HO-1 promoter.

Activation of MAP kinases by arsenite. Arsenite has been shown to

activate MAP kinases 112157158 however, this arsenite-mediated activation has
not been linked to a cellular gene response. Two recent studies have
investigated the ability of sodium arsenite to activate MAP kinases. One study
found that arsenite activated ERK, JNK, and p38 MAP kinases in PC12 cells '3'.
A separate study in HeLa cells found that JNK and p38 MAP kinases were
activated by arsenite, however, no activation of ERK was observed ™°, The
discrepancy in MAP kinase activation by arsenite may be explained by the fact
that these two studieé were done in different cell types "%, |t is generally
acknowledged that MAP kinases can be differentially regulated by the same
stimuli in diverse cell types.

It has also been proposed that arsenite affects gene expression by

modulating the activities of transcription factor complexes bound to AP-1
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elements in the promoter regions of several genes "'®'%*%° Pytative AP-1 sites
are present in the promoter regions of mammalian %*""® and chicken HO-1
%  Since the MAP kinase signaling cascades have been shown to target AP-1

elements, they are potential mediators of the arsenite induction of HO-1 7139140,
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Research Objectives

Obiect'ive I: To establish whether LMH celis are a good model system for

the study of heme metabolism. The aim of the work reportéd here was to study
the expression and regulation of heme biosynthesis and degradation
[4,8,16,17,26,27,40] in LMH cells, comparing results to those previously found
in CELCs. Initially, growth maintenance and culture conditions were
established for LMH cells. The comparative dose-responses and time courses
of induction of HO-1 mRNA and heme oxygenase activities by heme and cobalt
chloride were characterized. In addition, a measurable response to other
treatments previously shown to increase HO-1 mRNA levels or heme
oxygenase activities in normal CELCs was demonstrated for LMH cells. During
these studies a small but significant heat shock induction of HO-1 mRNA in

CELCs was detected, which had not been described previously.

Obijective |I: To establish whether AP-1 transcription factor complex

binding sites modulate sodium arsenite induction of HO-1. The ability of

arsenite to increase transcription of endogenous HO-1, and the activity of
transfected luciferase reporter gene constructs under control of the HO-1
promoter were investigated. Transient transfection assays using reporter
constructs containing successive deletions of the cHO-1 promoter sequence
were used to identify regions involved in modulating arsenite-mediated HO-1

gene expression. HO-1 reporter constructs containing mutated AP-1 elements
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were constructed and tested for responsiveness to arsenite treatment. The
results from these experiments suggest that AP-1 elements are involved in the
sodium arsenite-mediated induction of HO-1 gene expression.

Objective llI: To establish whether the mitogen-activated kinases

modulate induction of HO-1 by arsenite. The mitogen activated protein (MAP)
kinases were good candidates as signaling molecules for controlling HO-1
expression, since many of the activators of MAP kinases also induce HO-1. In

LMH cells, the MAP kinases, ERK, JNK, and p38, were tested for activation by

treatments that were known to induce HO-1. Sodium arsenite was a highly
efficacious inducer of HO-1 and activator of all three MAP kinases. Arsenite-
mediated activation of MAP kinases and induction of endogenous HO-1 mRNA
expression were closely correlated. Therefore, arsenite was chosen to further
investigate the involvement of MAP kinases in cHO-1 gene expression.
Constitutively activated and dominant negative components of the MAP kinase
signaling pathways were utilized to delineate the roles of ERK, JNK, and p38 in
HQ-1 gene expression as measured using HO-1 promoter-driven luciferase
reporter gene constructs}. Inhibitors of the ERK and p38 signaling pathways
were also employed to further analyze the involvement of these kinases in
arsenite-mediated induction of HO-1. Results from these experiments
demonstrated roles for the ERK and p38 MAP kinase families in the sodium

arsenite-mediated induction of cHO-1.
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CHAPTER I
MATERIALS AND METHODS

Materials

General materials. Tissue culture dishes and 6 well plates were from
Corning, Corning, NY; culture flasks were from Falcon, VWR Scientific,
Bridgeport, NJ. Gelatin and fetal bovine serum were from Difco, Detroit, M.
Opti-MEM, Williams' E and Waymouth's MB 752/1 media, and
LipoFECTAMINE™ Reagent were from Life Technologies, GIBCO/BRL, Grand
Island, NY. Biliverdin and heme were from Porphyrin Products, Logan, UT.
Oligo dT (12-18 bases) was from Pharmacia, Piscataway, NJ. Iron chloride for
quantitative iron assays was from VWR Scientific, Bridgeport, NJ.
Dexamethasone was from Gensia Pharmaceuticals, Irvine, CA. Chloroform,
glycerol, isopropanol, potassium phosphate, and sodium vanadate were from
Fisher, Pittsburgh, PA. Actinomycin D, adenosine triphosphate (ATP), bovine
serum albumin (BSA), cadmium chloride, cobalt chloride, deferoxamine
mesylate (DFO), dimethylsulfoxide, EDTA, EGTA, fdrmaidehyde (87% viv),
formamide, glycylglycine, NADPH, O-nitrophenyl 3-galactopyranoside (ONPG),
penicillin, phenylimethyl sulfonylfluoride (PMSF), p-hydroxymercuribenzoic acid,
piperacillin, sodium arsenite, sodium chloride, sodium citrate, sodium dodecyl

sulfate (SDS), sodium hydroxide, streptomycin, 3,5,3"triiodo-L-thyronine, triton
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X-100, Trizma base, and trypsin were from Sigma, St. Louis, MO. Dithiothreitol
(DTT) and 4-(2-pyridylazo)resorcinol (PAR), mono sodium salt hydrate were
from Aldrich Chemical Co., Inc., Milwaukee, WI. 3,5,5-Trimethylhexanoyl
ferrocene (TMH-ferrocene) was provided as an orange powder by P. Nielsen,
Universitatskrankenhaus, Eppendorf, Hamburg, Germany. Kinase inhibitors
PD98059 and SB203580, were from CalBiochem, La Jolla, CA. Ultraspec

| RNAzol® was from Biotexc, Houston, TX. Nitrocellulose (0.45 pm) was from
Schleicher and Schuell, Keene, NH. All *P -radionucleotides were from New
England Nuclear, Boston, MA. All chemicals were of the highest purity
available.

Cells and DNA. Fertilized Barred Rock chicken eggs were from Carousel

Farms, Holliston, MA. LMH cells and the pGAD-28 plasmid were generous gifts
from D. L. Williams, Dept. of Pharmacological Sciences, SUNY-Stony Brook,
Stony Brook, NY. The rat HO-1 cDNA was a gift from S. Shibahara, Tohoku
University School of Medicine, JAPAN. The pALX plasmid containing the cDNA
of the housekeeping form of chicken ALA synthase was a gift from D. Engel,
Northwestern University, Evanston, IL. The lambda FIX Il clone containing
genomic chicken heme oxygenase-1 promoter sequence, and pCHO3.6-CAT
were provided by T. H. Lu, Division of Digestive Disease and Nutrition,
University of Massachusetts Medical Center, Worcester, MA. The pGL3 Basic
and pGL3 Control plasmids were gifts from G. Gil, Division of Digestive Disease

and Nutrition, University of Massachusetts Medical Center, Worcester, MA. The
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pPGK-Bgal plasmid was a gift from P. Dobner, Department of Molecular
Genetics and Microbiology, University‘ of Massachusetts Medical Center,
Worcester, MA. Expression vectors for signaling pathway components and
MAP kinases have been described: ERK2 **°; MEK1 ': MEKK1 162%3: JNK{ &
MLK3 '*°; MKK6 °%; Ras and Raf ', as has the expression vector for dominant
negative c-Jun (TAM67) '*®. Luciferase Assay Reagent, Wizard™ plasmid DNA
preparation kits, and the primers GLprimer2 and RVprimer3 were purchased

~ from Promega, Madison, WI. The QuickChange™ Site-Directed Mutagenesis
Kit ahd Quickhyb® hybridization solution were from Stratagene, La Jolla, CA.
DNA sequencing was performed by Dana Farber Cancer Institute, Boston, MA,
and by the Nucleic Acids Facility, University of Massachusetts Medical Center,

Worcester, MA.
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Methods

Cell culture and preparation of chemicals. Cultures of primary chick
embryo liver cells (CELCs) were freshly prepared each week by Otto
Gildemeister and Joyce Pepe as described 24446565718 | MH cells were
maintained in Waymouth's MB 752/1 complete medium (Appendix A); and
routinely passaged twice a week *. Complete and serum-free Williams’ E and
Waymouth’s media contained penicillin/streptomycin. In some experiments,
1pg/mL piperacillin was added to the culture medium. In experiments involving
both CELCs and LMH celis, cells were plated on Corning dishes 6 cm in
diameter. CELCs were prepared and plated on uncoated dishes in 5 mL
~ Williams' E complete medium (Appendix A). LMH cells were resuspended and
plated at 80% confluence in 5 mL Williams' E complete medium on dishes
coated with 0.1% (w/v) gelatin. On the day of treatment, the cells were washed
once with 5 mL of Williams' E complete medium. Preparation of and treatment
with chemicals were exactly as described for primary CELCs 2%4446:50.57.1%9,
Sodium arsenite, cadmium chloride, cobalt chloride, and heme were prepared

as described 2344656576416 Al| other chemicals were freshly prepared on the

day of treatment and added directly to the culture medium (Appendix B).
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Porphvrins assays

Fluorometric porphyrins assays. LMH cells or CELCs were prepared
and seeded into 3-cm welis in 6-well plates. On the morning of treatment,
medium was changed to Williams’ E complete. Cells were typically exposed to
~ treatments for 18 hours. From the time of treatment, all steps were carried out in
subdued lighting. The medium was removed to 12 x 75 mm culture tubes and
assayed separately. The plates were washed once with 1X PBS, and
harvested in 2 mL PBS by scraping with a rubber spatula. Cells and media
were disrupted by sonicating for 6 seconds with a sonicator (Bronson model
450, VWR Scientific, Bridgeport, NJ) equipped with a microtip (output: 2, duty
cycle: 30). Sonicates were centrifuged at 1,000 x g for 10 minutes and
aliquoted into tubes for protein determination (50 uL each) and four-side-clear 4
mL cuvettes (200 uL each) for porphyrin determinations. To extract porphyrins
ahd porphyrinogens and oxidize porphyrinogens to porphyrins, 1.8 mL of
perchloric acid (PCA)/methanol/water (5/50/50, v/viv) was added to the cuvettes.
Known amounts (50 ug/L) of uroporphyrin and coproporphyrin were assayed as
controls for standardization. A Perkin-Elmer LS 50B spectrophotometer-
fluorometer fit_ted with an R928 (red wavelength sensitive) photomultiplier was
used to measure the fluorescence at each of three wavelength
excitation/emission pairs (400 nm/595 nm, 405 nm/595 nm, and 410 nm/605
nm); excitations were measured at a slit width of 5 nm, emissions at a slit width

of 20 nm. Data were input into a Microsoft Excel worksheet that automatically
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calculated the levels of uroporphyrin, coproporphyrin, and protoporphyrin in
each sample based on the results of porphyrin standards and Grandchamp
equations "°. The amount of protein in each sample was determined by the
BCA method (See Protein assays).

High performance liquid chromatography (HPLC) porphyrins assays.
HPLC porphyrin determinations were performed on a Waters Baseline 810
HPLC System, equipped with a Shimadzu RF-551 Fluorometer with a R-928
(red sensitive) photomultiplier tube, essentially as described ''. Cells were
seeded and harvested as described for fluorometric assays. All steps were
performed under subdued lighting. Porphyrins and porphyrinogens were
extracted and oxidized from 500 pL of each sonicate with 10 pL of 10N
hydrochloric acid. The tubes were centrifuged at 1,000 x g for 10 minutes to
remove cellular debris, and 250 pL of supernatant was injected using a WISP
autoinjector apparatus. Porphyrins were separated on a C,4 reverse-phase
microbondpak column, with a gradient consisting of two solvents: A, 1:1 (viv)
0.1 M ammonium phosphate, pH 4.5, and methanol; B, 100% HPLC-grade
methanol. A linear gradient from 70% A, 30% B to 100% B was run over 7
minutes with a flow rate of 1.5 mL/minute, followed by 100% B for another 11

minutes at the same flow rate. Porphyrin standards were run every three

samples.
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Quantitative iron assays. On the day of treatment, cells werevwashed and
the medium changed to Williams’ E complete. Treatments were for 18 hours,
except for TMH-ferrocene which was for 4 hours. Cells were washed once with
1X PBS and harvested in 1 mL of PBS. A scintillation vial was weighed before
and after adding cells to obtain a wet weight for the cellular material. The vials
were placed in an 80°C oven overnight to dry. After drying, the cellular material
was split into three samples and transferred to 30 mL Kjeldahi tubes, which
were weighed before and after addition of celiular material to obtain dry weights
for each triplicate. Cells were digested by heating for 3 minutes in 1:1 (v:v)
sulfuric acid and nitric acid. Samples were transferred to 16 x 100 mm tubes,
and allowed to cool. Standards containing known quantities of iron were
prepared and assayed with the samples. Each tube received 2 mL of 0.5 M
potassium phosphate buffer, 1.75 mL of 6 M ammonium hydroxide, 100 pL of
10% hydroxylamine, 5.3 mL of Milli-Q water, and 500 uL of 0.1% 4-(2-
pyridylazo)resorcinol (PAR), mono sodium salt hydrate. Tubes were inverted
gently to mix and allowed to stand at room temperature overnight. The next
morning, the absorbance of the iron-PAR adduct was read at 500 nm on a
spectrophotometer. Suitable standards were run simultaneously to generate a
linear standard curve. The iron concentrations were calculated as pg iron/mg of
dry weight using the equation from the best-fit linear regression standard curve

and the known dry weights of the samples.
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Isolation of RNA. Total RNA was isolated using Ultraspec RNAzoI®,
following the manufacturer's protocol. The cells from one 6 cm culture dish or
irom one 3 cm well of a 6 well plate were harvested directly into 0.5 mL of
Ultraspec RNAzol® and total RNA isolated as described *. Cells were
harvested by scraping with a rubber spatula. The lysate was transferred into 1.5
mL microcentrifuge tubes, and 100 pL of chloroform was added. The tubes
were vortexed briefly and incubated on ice for at least 15 minutes. Following
centrifugation (14,000 x g at 4°C for 15 minutes), the top phase was transferred
to a new tube. -An equal volume (300 - 400 L) of isopropanol was added to
precipitate the RNA. The tubes were vortexed and incubated at -20°C for at
least 1 hour. Following centrifugation (14,000 x g for 15 minutes), the
supernatant was removed, and the pellet was washed with 0.5 mL of 75%
ethanol/DEPC-treated water. Pellets were dried in a vacuum apparatus, and
resuspended in 50 pL of DEPC-treated water for dot blots or 0.5% SDS for
Northern blots. Samples were stored at -20°C or incubated at 65°C for 45
minutes to dissolve the RNA. Nucleic acid purity was assessed by determining
the absorbance ratio at 260 nm/280 nm (1.80 or higher was required) 2. RNA
concentrations were estimated from the absorbance at 260 nrh (1 AU =40

ug/mL RNA) 72,

)
,.m_l
2

A 1
{30
ip iy
.
iy |*
::if%

.

2ug®’
,,__M“




44

Preparation of radiolabeled probes. Radiolabeled probes for detection of
mRNA for the housekeeping form of ALA synthase, chicken HO-1, and chicken

glyceraldehyde phosphate dehydrogenase (GAPDH) were synthesized by

random priming and incorporation of o*P-dCTP using the DECAprime II™ DNA

Labeling Kit from Ambion Inc., Austin, TX or the Ready-To-Go™ DNA Labeling
Beads from Pharmacia Biotech, Piscataway, NJ. The ALA synthase probe
template was a 1.7 Kb Eco Rl fragment of the pALX plasmid containing the ALA
synthase cDNA. The cHO-1 probe template was a 1.3 Kb polymerase chain
reaction (PCR) product obtained using T7 and T3 primers, with the cHO-1 cDNA
as the PCR template. The GAPDH probe template was a 530 base pair (bpj
PCR product obtained using the linearized pGAD-28 plasmid as template and
the primers GAP1: 5’- GAAAGTCGGA GTCAACGGAT TTG -3 and GAP2: 5'-
TGGCATGGAC AGTGGTCATA AGAC -3. The PCR program for HO-1 and
GAPDH probes was as follows: delay, 94°C for 3 min.; 30 cycles of: segment 1,
denaturation (94°C for 1 min. 30 sec.), segment 2, renaturation (54°C for 2
min.), segment 3, elongation (72°C for 2 min.); delay, 72°C for 10 min.; soak at

4°C. Poly-A and chicken heat shock protein 70 (HSP 70) probes we,rev end-

labeled with a**P-dCTP using the DECAprime 1™ DNA Labeling Kit from

Ambion Inc., Austin, TX. The Poly-A probe template was a 12 - 18 base
polythymidylate oligonucleotide from Pharmacia. HSP 70 was detected using
an oligonucleotide probe complementary to the plus strand of the cDNA from

base pairs 2518 to 2542 (56'— AGAGACAAAC ATCCAGAATA CAAGG —3).
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Quantitation of messenger RNA.
Northern blots After isolation, RNA was dissolved in 0.5% SDS, and

incubated at 65°C for 45 minutes. The volume of RNA required for 10 pg per
sample was calculated from the absorbance measured at 260 nm, and samples
were prepared by diluting in DEPC-treated water. HEPES buffer (Appendix A)
was added, and the samples were heated to 85°C for 15 minutes. Sample
loading dye (2 pL of 0.02% bromophenol blue) was added to each tube. The
samples were spun briefly, and 20 uL of sample or marker was loaded into
each well of a 1.2% agarose/formaldehyde gel containing ethidium bromide.
The gel was run at 80 Volts for 2 hours using 1X HEPES running buffer. The
gel was washed in DEPC-treated water 3 times for 20 minutes to remove
excess ethidium and formaidehyde, and photographed on a transilluminator.
The RNA was transferred to a nitrocellulose filter by capillary action overnight
using 20X SSC. Following transfer, the RNA was immobilized by ultraviolet
(UV) light crosslinking. The blot was prehybridized in Quickhyb® for 30 minutes
at 65°C. The blot was hybridized for 1 hour in Quickhyb® containing a
radiolabeled HO-1 probe that specifically recognized the ~1.3 Kb chicken HO-1
mMRBNA (see Preparation of radiolabeled probes), and washed with 0.1X SSC
three or four times for a total of 1 to 2 hours at 65°C to remove nonspecific
binding. The amount of specific RNA was visualized by autoradiography, and
quantitated using a Phosphorimager and Image Quant software (Molecular

Dynamics, Sunnyvale, CA). For normalization, the blot was stripped by

nnnnnn
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washing in boiling hot DEPC-treated water 3 times, allowing the water to come
to room temperature between each cycle. Blots were rehybridized with a
radiolabeled GAPDH probe that specifically recognized the ~1 .3 Kb chicken
GAPDH mRNA (see Preparation of radiolabeled probes), and GAPDH mRNA
was quantitated in the same manner as cHO-1 mRNA. The levels of HO-1
message in each lane were normalized to the levels of GAPDH message.

Dot blots. Dot blots were performed essentially as described *'. After
isolation, total RNA was resuspended in 50 plL of DEPC-treated water.
Samples were prepared for loading as follows, for three duplicate blots: 20 pL
of DEPC-treated water, 36 pL of 20X SSC, and 24 L of 37% formaldehyde
were added to 40 pL of RNA and incubated at 65°C for 15 minutes. For each
duplicate blot, 200 L of 10X SSC was added to the samples. The dot biot
apparatus was set up with two pieces of prewet Whatman 3M paper and one
sheet of prewet nitrocellulose. The wells were washed once with 10X SSC,
200 pL of each sample was loaded per dot, followed by a second wash with
10X SSC. The nitrocellulose was removed from the apparatus and the RNA
was UV-crosslinked to the membrane using a Stratalinker. Blots were
prehybridized with Quickhyb® at 65°C for 30 minutes. Each blot was hybridized
at 65°C for 1 hour in Quickhyb® containing a radiolabeled probe (see

Preparation of radiolabeled probes) previously shown by Northern blot to bind

only the mRNA of interest. After hybridization, the blots were washed with 0.1X

SSC three or four times for a total of 1 to 2 hours at 65°C to remove nonspecific
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binding. Quantitation of specific binding was performed using a
Phosphorimager and Image Quant software. The amount of specific NRNA was
normalized to total poly-A mRNA, measured on a duplicate blot probed with a
radiolabeled poly-T probe as described *” (see Preparation of radiolabeled
probes), or td GAPDH mRNA, measured on a duplicate blot probed with a

radiolabeled GAPDH probe, as described *.
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Heme oxygenase activity assays. Heme oxygenase activity was

measured by a modification of the method of Tenhunen et al. V7, as described

previously 23,46,107,169

. This assay measures the conversion of heme to biliverdin
. by a two-step reaction. In the first step heme is converted to biliverdin by heme
oxygenase (HO). In the second step, biliverdin is converted to bilirubin by
biliverdin reductase (BVR). All mammals express endogenous BVR; however,
chickens do not express this enzyme. Exogenous BVR was obtained as a
105,000 x g supernatant of a 20% homogenate of perfused rat liver as
described . Under the assay conditions, the amount of BVR added to
reactions was capable of reducing 1.5 nmoles of biliverdin/minute in a total
volume of 1 mL, enough to ensure complete conversion of all of the biliverdin
formed by HO to bilirubin.

LMH cells or CELCs were plated in 6 cm dishes as described above.
The dishes were washed twice with 1X PBS, and harvested in 0.6 mL of
Harvest Buffer (Appendix A) by scraping with a rubber spatula. Each cell
suspension was sonicated for 3 seconds using a sonicator (Bronson model
450, VWR Scientific, Bridgeport, NJ) e'quipped with a microtip (output: 2, duty
cycle: 30). A 50 ulL aliquot of the lysate was used for protein determinations.
Two sets of 16 x 100 mm culture tubes per sample were set up, one for control
and one as test. Each reaction contained 200 uL of cell sonicate (0.6-0.8 mg of

homogenate protein from CELCs or 0.4-0.6 mg of homogenate protein from

LMH cells), 70 mM potassium phosphate, pH 7.4, 5 mM deferoxamine mesylate
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- (Appendix B), BVR (20 uL of rat liver 105,000 x g supernatant), and 4 mM

- NADPH (3.96 mg/mL in 0.1 potassium phosphate) to make a final volume of 1
mL. The tubes were incubated in a 37°C shaking water bath for 5 min. The
remainder of the assay was performed in subdued lighting. Test reactions were
started by adding heme-albumin (40 uM final concentration, Appendix B) to the
test set of tubes, the control tubes recéived heme-albumin after the reaction was
stopped. After 10 minutes at 37°C, the tubes were placed in an ice bath. To
stop the reactions, 20 pL of 50 mM p-hydroxymercuribenzoic acid was added to
each tube. The tubes were mixed by vortexing. Using a spectrophotometer
(Aminco DW 2000), a split beam wavelength scan from 450 to 550 nm was
done for each sample. The rate of bilirubin formation was calculated from the

difference in absorbance at 470 nm and 540 nm. The following equation was
used to calculate the amount of biliverdin formed, as described '**": Ae 470-
540 nm =66 mM” cm™.

OD(470-540) x 1.010 mL final volume x 1000 pmole
0.066 OD/nmole bilirubin/mL x 0.2 mL init. vol. x 10 min. x mg prot/mL x 1 nmole

= pmoles bilirubin/minute x mg protein
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Subcloning. The pCHO3.6-Luc reporter plasmid was constructed by
_subcloning 3728 base pairs of the chicken HO-1 proximal promoter from a CAT
construct (pCH03.6-CAT, provided by T. H. Lu) into the pGL3 Basic plasmid
.vector, upstream of the luciferase reporter gene. The ligation junctions were
verified by sequencing.

Deletion constructs were produced by first cloning a 7.1 Kb fragment of
, 'the genomic chicken HO-1 promoter into the pGL3 basic luciferase reporter

vector, followed by restriction enzyme digestion and self-ligation of the

backbone to excise the deleted region. A lambda FIX® 1l vector containing’
approximately 12 Kilobases (Kb) of genomic chicken heme oxygenase-1 (cHO-
1) sequence, including some coding sequence and ~10.5 Kb of promoter
sequence, was digested with the restriction enzymes Xba | and Xhol. The 7.1
Kb fragment (sequence reported in Appendix E) was ligated into a pGL3 Basic

luciferase reporter vector that had been digested with the restriction enzymes

Nhe | and Xho I. The ligation mix was transformed into DH5a cells plated on

Luria Broth agar plates supplemented with 100 pg/mL of ampicillin, and
incubated overnight at 37°C. DNA minipreps for several colonies were tested
for insertion of the 7.1 Kb fragment ‘by restriction enzyme digests. Colonies that
were positive for pPCHO7.1-Luc were verified by sequencing the ligation
junctions using the commercial primers GLprimer2 and RVprimer3 (Promega).
Deletion constructs were made by digesting pCHO7.1-Luc with Miu | and the

respective enzyme for each construct (see Figure 5.1). Restriction enzyme cut
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 sites were blunted prior to ligation: for a 3’ overhang, the DNA was treated with
T4 Polymerase; for a 5’ overhang, the DNA was treated with Klenow fragment.
Following ethanol precipitation, blunt-end ligation was performed. The Xho |
sites were ligated proximal to the start of the luciferase gene. The distal

restriction enzyme site corresponding to each deletion was ligated with the Mlu |

site at -7085 bp (this numbering is relative to the 7.1 Kb fragment). Positive
colonies were identified by DNA minipreps followed by a diagnostic Xba | and
Xho | restriction enzyme digest. The ligation junctions of each deletion

construct were verified by sequencing.
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Site-directed mutagenesis. AP-1 elements located at -1578 bp, -3656
bp, and -4597 bp upstream of the cHO-1 transcription start site were mutated, as
shown in Figures 5.7 - 5.9. For each AP-1 site, two of the seven bases that
comprise the consensus AP-1 element were mutated. The two changes were
made in base pairs that disrupt the wild type palidromic structure, and would
therefore be likely to be important for transcription factor binding 7 The bases
chosen for mutagenesis have also been reported to interfere with transcription
factor binding Z¥749#7.111160 - AP-1 mutants were constructed with the
QuickChange™ Site-Directed Mutagenesis Kit using templates and PCR
primers as listed in Table 2.1. Table 2.2 lists the primer sequences. The
pCHO2.5-Luc mutants have two base-pair mutations in the AP-1 element at -
1578 bp. The pCHO4.6-Luc mutants have two base-pair mutations in the AP-1
element at -3656 bp, at -1578 bp, or at both sites. The pCHOS5.6-Luc series are
single, double, or triple mutants containing two base-pair mutations in the AP-1
elements at -4597 bp, -3656 bp, -1578 bp, at two of these sites, or at all three
sites. The PCR reactions were set up with 5 pL of 10X reaction buffer, 30 ng of
DNA template, 125 ng of each oligonucleotide primer, and 1uL of dNTP mix in a
final volume of 50 pL. Just before starting thermocycling program, 2.5 U of Pfu
DNA Polymerase was added to each reaction and 30 uL of mineral oil were
used to overlay the liquid in each tube. The PCR thermocycling program was
performed as suggested in the manufacturer’s protocol: segment 1, soak for 30

seconds at 95°C; segment 2, 14 cycles of: denaturation for 30 seconds at 95°C;

.......

e
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renaturation for 1 minute at 55°C, and synthesis for 2 min./Kb of plasmid length
(16 minutes for mutations of pCHO2.5-Luc; 20 minutes for mutations of
pCHO4.6-Luc; 23 minutes for mutations of pCHO5.6-Luc) at 68°C; segment 3,
soak at 4°C. The wild type DNA was then digested with 10 U of Dpn | for 1 hour
at 37°C. 1 - 3 pL of mutant DNA was transformed into 50 pL of supercompetent

E. coli cells as described.
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Transfections. LMH cells were plated in gelatin coated 6-well plates at a

density of 3.2 x 10° cells/well. For transfections, each well received 0.5 ug of
pSV-Bgal or pPGK-Bgal, and 0.5 - 1.0 ug of cHO-1 promoter/reporter and/or
MAP kinase plasmid DNA using LipoFECTAMINE™ (0.25ug DNA/pL of
reagent), according to the manufacturer's protocol. Total DNA transfected was
kept constant by adding pBLUESCRIPT KS Il+ plasmid DNA. Cells were
incubated at 37°C, 3% CO, for 5 hours, after which 2 mL of Waymouth's
complete medium was added. Incubation was continued overnight at 37°C, 5%
CO, for a total of 20 - 24 hours. Cells were incubated with serum-free

Waymouth's for at least 20 hours prior to treatment with selected chemicals or

harvest for assays.
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Assessment of reporter gene activity. Reporter gene expression was

_ assessed by quantitation of luciferase activity, normalized to B-galactosidase
activity, and protein content. Some experiments, in which dominant negative

- ERK kinase components were transfected, were normalized to protein content
only, because the B-galactosidase values were outside the linear range (0.2 to
2.0 absorbance units). For luciferase activities, transfected cells were washed
twice with 1X PBS, and harvested by scraping in 250 uL of glycylglycine harvest
buffer (Appendix A). Cells were lysed by three cycles of freeze-thaw (3 minutes
in liquid nitrogen followed by 3 minutes at 37°C), followed by a 10 minute
centrifugation at 14,000 x g at 4°C. The supernatant was retained, and 15 pl
aliquots of cell lysate were used for each assay. For luciferase actiVity

measurements, luminometer tubes containing lysates were placed into a e

ﬁn\nvn (=N

Monolight 2010® Luminometer (Analytical Luminescence Labs, Ann Arbor, Ml),

A

and 100 pL of Luciferase Assay Reagent was automatically injected. Relative 1]

light units produced in 10 seconds were recorded and normalized with B3- iﬁ
e
galactosidase activities and protein content. For B-galactosidase activities, 15 jL

U

g

ul of cell lysate was added to 200 pL of Z Buffer (Appendix A) and 100 uL of 5
mg/mL O-nitropheny! galactoside (ONPG) dissolved in 0.1 M potassium
phosphate, pH 7.0. The samples were mixed and incubated at 37°C for 1.5 - 2
hours. The absorbance at 420 nm was measured and used for normalization of

luciferase activities "°.
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Protein assays. Protein concentrations were measured by the
bicinchoninic acid method on a Spectronic GENESYS 2 spectrophotometer,
using BSA as standard "°. Protein content of cell lysates was calculated from
the BSA standard curve and used for calculation of heme oxygenase activity or

for normalization of luciferase activity.
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Immune complex kinase assays. Immune complex kinase activity assays

were performed as described "¢, Cells were harvested by scraping into 1.0 mL
of 1X Triton lysis buffer (TLB, Appendix A). Lysates were centrifuged at 14,000

| x g at 4°C for 15 minutes. Anti-ERK2, anti-JNK1 (Santa Cruz Biotechnology,
Inc.) or anti-p38 ' antibodies were bound to Protein G Sepharose beads (10
pL per assay) for at least 30 minutes and washed twice with 1X TLB prior to
adding cell lysates. Pre-bound antibodies were incubated with 300 uL of cell
extract in a final volume of 500 puL with 1X TLB. After mixing at 4°C for at least 3
hours, the immunoprecipitates were washed three times with 1X TLB, and once
with 1X kinase assay buffer (Appendix A). After aspiration, the kinase assay
was set up with 10 pL Protein G Sepharose beads/antibody/kinase complex, 26
uL kinase assay buffer, 2 pL of kinase substrate (2 pg of GST-Elk1 for ERK 168,

GST-ATF2 for p38 "¢, and GST-cJun for JNK '), 1 uL 1 mM ATP, 1 pL carrier-

free [y-32P] ATP (approximately 10 pCi/uL) for a final volume of 40 pL. Samples

were incubated at room temperature for 30-45 minutes. The reactions were
stopped with 3X SDS loading buffer, and 15-20uL were run on SDS-PAGE.
This method is schematically represented in Figure 2.1. Results were

visualized by autoradiography and quantitated using a Phosphorlmager and

Image Quant software (Molecular Dynamics, Sunnyvale, CA).
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Figure 2.1: Immune-Complex Kinase Activity Assays.
Treat Cells o~kinase Ab.
— w/inducer y
N
Harvest +
Spin + Protein G-
Sepharose
Beads
Add supt.
to beads
Wash
Add substrate and *ATP*
Incubate @ Rm. Temp.
|/ + SDS Loading Buffer
Run on SDS-PAGE
Dry Gel
—> DATA

Expose on film
or Phosphorimager
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Statistical analysis of data. Experiments were repeated two to four times;
except for immune complex kinase assays and Northern blots, every
experiment included at least triplicate samples for each treatment group.
Representative results from single experiments are presented. Statistical
analyses were performed with JMP 3.0.2 software (SAS Institute, Cary, NC).
Differences in mean values were assessed by ANOVA, with the Tukey-Kramer
correction for multiple pair-wise comparisons, or Dunnett's test versus a control.
For experiments with non-normally distributed data, the Wilcoxon/Kruskal-Wallis

(Rank Sums) test was used. P values <0.05 were considered significant.
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CHAPTER |ii
CHARACTERIZATION OF HEME BIOSYNTHETIC PATHWAYS IN

THE CHICKEN HEPATOMA CELL LINE, LMH

Introduction

The purpose of the studies in this chapter was to characterize porphyrin
and heme biosynthesis in a potential model cell system, LMH cells. The
accumulation of porphyrins (the constituents of the heme biosynthetic pathway)

and expression and regulation of ALA synthase (normally the rate-limiting

enzyme of heme biosynthesis) were studied.

A widely used model system for studies of the regulation of heme

metabolism is primary cultures of chick embryo liver cells (CELCs). Primary ;Lj
CELGCs retain all of the characteristics of normal hepatic function and mimic g:
human metabolism more closely than mammalian systems, such as rat. LMH Ej;f:%
cells were derived from a liver tumor dissected from a male White Leghorn };L""ﬂ‘
chicken that had been treated with intraperitoneal injections of 1‘2

|
diethyinitrosamine. Preliminary experiments were performed to investigate the

heme biosynthetic pathway in these cells, since this is a transformed cell line in
which heme metabolism had not been characterized previously. The purpose
of these studies was to ensure that the pathways of heme biosynthesis in LMH
cells were intact as compared to CELCs, and to determine if LMH cells would

be an appropriate model system for the study of heme biosynthesis.
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Results

LMH cell culture and growth rate. LMH cells were routinely passaged 1:4
or 1:6 approximately twice a week. Cells were cultured in 25 mL flasks coated
with 0.1% gelatin. It was later discovered that the cells attach and grow
normally even in the absence of gelatin. After routine culture conditions for
LMH cells had been established, their growth rate was measured by trypan blue
staining. The number of cells per plate was counted at the time of plating (0
hours), and again at 12, 24, 48, and 72 hours. The average doubling time was
calculated to be 21 hours.

Porphvrin accumulation in LMH cells versus primary CELCs. Defects in

the biosynthetic enzymes lead to accumulation of certain types of porphyrins.
Chemicals that increase the production of porphyrins, either alone or in
combination with chemicals that block steps in heme biosynthesis, were used to

analyze the response of LMH cells as compared to primary CELCs. Primary

CELCs have shown increased production of porphyrins in response to &-

aminolevulinic acid (ALA), glutethimide (Glut), and the combination of
glutethimide and ferric nitrilotriacetate (FeNTA). In Figure 3.1, LMH cells were
given exogenous ALA to increase porphyrin production. When treated with ALA
alone or in combination with the ferrochelatase inhibitor, deferoxamine (DFO),
LMH cells accumulated mainly copro- and protoporphyrins. At the

concentration tested (250 uM), DFO had little effect on porphyrin accumulation.

e
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Figure 3.1: Porphyrin accumulation in LMH cells. LMH cells were treated with

35 uM S-aminolevulinate (ALA) alone or in combination with 250 pM

deferoxamine (DFO), 50 pM giutethimide (Glut) alone or in combination with
250 pM deferoxamine or 50 uM FeNTA for 18 hours prior to harvest. Harvest
and assays were performed as described in Methods. Data represent mean +
SEM, n=3. *Significantly greater than No Treatment, P < 0.001. tSignificantly
greater than glutethimide alone, P < 0.001. §Significantly less than

glutethimide alone, P < 0.001.
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Addition of iron to CELCs by treatment with FeNTA is thought to synergize
porphyrin accumulation either by increasing cytochrome P-450 dependent
oxidation of porphyrinogen to porphyrin or by inducing HO-1 activity, thereby
reducing the size of the regulatory heme pool (See Figure 1.3)"*'. When
treated with glutethimide alone, LMH cells accumulated large quan‘tities of

uroporphyrin, and some copro- and protoporphyrin. The combination of Glut

and FeNTA produced a shift in porphyrin levels as compared to glutethimide ‘ ?
alone with a decrease in protoporphyrin and an increase in uroporphyrin. . :i |
FeNTA alone did not cause porphyrin accumulation (data not shown). ;
Surprisingly, when DFO was given in combination with glutethimide, there was En:}’
no change in porphyrin accumulation. Unlike CELCs, LMH cells did not exhibit i'““
a shift from mostly uroporphyrin, with some copro- and protoporphyrin to mostly ?
protoporphyrin in the presence of DFO. When given in combination with either A

ALA or Glut, 250 uM DFO had no effect on porphyrin accumulation in LMH cells.
Chelation of intracellular iron should remove iron from the heme
biosynthetic pathway resulting in inhibition of iron incorporation into
protoporphyrin to form heme by the final enzyme of heme biosynthesis,
ferrochelatase. This should result in an increase in protoporphyrin, with a
corresponding decrease in uro- and coproporphyrins. The lack of effect of DFO
in LMH cells was further investigated by inducing porphyrin production with
glutethimide, and then treating with increasing doses of DFO. To investigate

possible differences in iron metabolism between the two cell types, the more



accurate method of high performance liquid chromatography was used to
quantitate porphyrins. Figure 3.2 shows the lack of effect of DFO in LMH cells
versus primary CELCs. Changes in porphyrin levels (increased protoporphyrin,
" decreased uro-, 7-carboxyl-, and coproporphyrins) were observed for CELCs,
while up to 625 uM DFO caused no change in LMH celis. This lack of effect
may be due to differences in iron transporters, the presence of cellular proteins
with higher affinity for iron than DFO, or lack of uptake of DFO in LMH cells, so
that it is unable to chelate cellular iron and inhibit ferrochelatase activity.
Cellular iron accumulation. Since LMH cells exhibited a noticeable
difference in porphyrin accumulation when treated with DFO, cellular iron
accumulation was studied. Cellular iron was quantitated in LMH cells or CELCs
that had been treated with DFO, or with exogenous sources of iron, either
FeNTA or TMH-ferrocene (Figure 3.3). In untreated cells, iron contents were
similar. When treated with DFO, CELCs showed no significant change in iron
content, LMH cells had no detectable cellular iron, suggesting that LMH cells
may not be permeable to DFO, but that it may remove iron from the cells. DFO
probably penetrates into CELCs to chelate intracellular iron and remains within
the cells, resulting in iron levels similar to control values. There were slight
differences in the type of exogenous iron preferred by the two cell types, LMH

cells took up FeNTA to a greater degree than TMH-ferrocene, whereas CELCs

absorbed more TMH-ferrocene than FENTA (Figure 3.3). These results are

consistent with the hypothesis of a difference in uptake or metabolism of iron
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Figure 3.2: HPLC determination of porphyrin accumulation. Porphyrin
accumulation was measured in primary CELCs (A) and LMH cells (B) in the
presence of 50 uM glutethimide and increasing concentrations of deferoxamine.
Primary CELCs or LMH cells were treated with 50 uM glutethimide and
increasing doses of deferoxamine: 0, 125, 250, 375, 500, or 625 uM for 18
hours. Harvest and assays were as described in Methods. Di-carboxyl
porphyrin represents protoporphyrin levels, 7-carboxyl porphyrins represent
intermediates between uroporphyrin and coproporphyrin. All sample groups
represented were treated with 50 pM glutethimide to induce porphyrin
synthesis. The rising concentrations of DFO did not significantly alter the values
for total porphyrins/mg protein, data was transformed to show percent of total
porphyrins/mg protein. Data represent mean + SEM, n=3. (A) CELCs; For uro-
and 7-barboxyl porphyrins, all data points are significantly lower than
glutethimide only (0 uM), P < 0.01; for di-carboxyl (proto) porphyrins, all data
points are significantly higher than glutethimide only (0 uM), P < 0.001. (B)

LMH cells; no deferoxamine treated group was significantly different from the

glutethimide only (O uM) group.




% of Total Porphyrins/plate

% of Total Pofphyrins/plate

—o—Uro

—[= -7-COOH
--A--Copro
--©&--Di-COOH

0 100 200 300 400 500 600 700

100;

80

60

Concentration of DFO (uM)

—a—Uro

—= -7-COOH
--A-- Copro
--©& -Di-COOH

9\6\,, N

L

elieulin ;::ﬁ-—:.: Raptipltor s pieri=pi=

0 100 200 300 400 500 600 700

Concentration of DFO (uM)

69

CF
I

LR e
e ws
et e T

T
op.

2

e nd (O
B ""‘}
108

e |

i

L
L
b
oL3

af«.ﬂ‘-“‘f" ’




Figure 3.3: Cellular iron content in CELCs and LMH cells. The effects of an

on sources on cellular iron content were tested in

iron chelator and exogenous ir

ary CELCs and LMH cells were treated

primary CELCs and LMH cells. Prim

with 250 pM deferoxamine or 50 uM FeNTA for 18 hours, or 5 uM TMH-

assays were as described in

ferrocene for 4 hours prior to harvest. Harvest and

Methods. Data represent mean + SEM, n=3. *Significantly greater than all

other treatments, P < 0.01. 1Significantly different between CELCs and LMH

cells by paired t-test, P <0.001.
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between the two cell types. The differences in porphyrin and iron metabolism
were not investigated further.

Upregulation of ALA synthase mRNA. ALA synthase is the enzyme that
catalyzes the rate-limiting step in heme biosynthesis. In primary CELCs,
phenobarbital-like drugs (e.g. glutethimide) caused increased ALA synthase
activity and mRNA levels. Synergistic induction of ALA synthase mRNA was
observed in response to the combination of glutethimide and FeNTA 1.

Since ALA synthase is the key enzyme controlling production of heme,
ALA synthase mRNA levels were measured in LMH cells in }esponse to
treatments that upregulate or downregulate ALA synthase expression. ALA
synthase mRNA was quantitated in LMH cells treated with increasing doses of
glutethimide, FeNTA, or both (Figure 3.4). Glutethimide alone produced a
modest increase in ALA synthase mRNA, while FeNTA alone had no effect.
Synergism was observed in LMH cells given the combined treatment, however
higher doses than those in CELCs were required to reach maximal induction.

Downregulation of ALA synthase mBNA. Increased cellular heme leads
to decreased ALA synthase expression through several mechanisms:
decreased translocation of precursor protein into mitochondria, decreased
mRNA translation, and in rat, decreased transcription ™. A time course was
performed in LMH cells to test for decreased ALA synthase mRNA in the
presence of heme. Figure 3.5 shows that heme decreased the levels of ALA

synthase mRNA as early as 2 hours after administration in LMH cells. This

A3 &
bl 2
gz i
5 -
E 8§
=TS




73

Figure 3.4: Effects of glutethimide, FeNTA, or both, on ALA synthase mRNA
levels in LMH cells. LMH cells were exposed to increasing concentrations (0,
25, 50, 100, or 200 uM) of glutethimide, FeNTA, or the combination of
glutethifnide and FeNTA for 18 hours prior to harvest. Harvest, RNA isolation,
and quantitation were performed as described in Methods. Data represent
mean + SEM, n=3. *Significantly greater than No treatment and giutethimide
alone, P < 0.001. **Significantly greater than No treatment or FeNTA alone, P <

0.05. tSignificantly greater than No treatment and glutethimide alone, P < 0.01.
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repression was maintained throughout the 12 hour duration of the experiment.

Since the heme-dependent regulation of ALA synthase mRNA is a major
component of the normal regulation of heme biosynthesis, a side-by-side
comparison of ALA synthase mRNA levels in LMH cells versus CELCs was
performed (Figure 3.6). Heme-dependent repression of ALA synthase mRNA
was observed for both cell types. In the presence of heme, ALA synthase
mRNA levels were 28% of control in CELCs, and 64% of control in LMH cells.
The comparison indicated that both the basal and heme-repressed levels of
ALA synthase mRNA were higher in LMH cells than in CELCs. This may be due
to the differing natures of these two cell types: LMH cells are rapidly
metabolizing and have a high growth rate, whéreas primary CELCs quickly
become dormant, eventually dying within 7 - 10 days.

Requlation of ALA synthase mRNA by metalloporphyrins in LMH cells.

Finally, metalioporphyrins other than heme have regulatory effects on ALA
synthase activity and mRNA levels ***"17_ Tin mesoporphyrin and zinc
mesoporphyrin repressed ALA synthase aétivity and mRNA in primary CELCs
that had been induced with glutethimide and FeNTA ***’. Copper
protoporphyrin caused a slight incréase in induced activity and manganese
protoporphyrin was not tested “. Manganese protoporphyrin, copper
protoporphyrin, tin mesoporphyrin, zinc mesoporphyrin, and iron protoporphyrin
(heme) were tested for the ability to regulate ALA synthase mRNA levels in LMH

cells (Figure 3.7). Both concentrations of heme tested reduced ALA synthase
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Figure 3.6: Comparison of heme-dependent repression of ALA synthase
mRNA in CELCs and LMH cells. Cells were either left untreated or treated with
20 pM heme for 6 hours prior to harvest. Harvest, isolation, and quantitation of
RNA were performed as described in Methods. Data represent mean + SEM,
n=4. *Significantly different from all others, P < 0.001. tSignificantly different
from untreated LMH cells, and from Heme-treated CELCs, P < 0.01.

§Significantly different from untreated CELCs, P < 0.01.

‘.3152“
*» 11 84

:::m: :A i '3
o f‘ "y

b ks

195 ey 8K

g e
R,

TR L 4;

Pl
Lo

o mmmnug"
Vs 1y .

i
T IO mg
o mrzi“‘“ﬁgi
!

o e i 45
i

“ e g

RadD (TR

LL‘HJT&E
'“‘Zﬂ:lf 3
iy [t
:iiiﬁiilﬁ‘ﬁ

IT
o= uﬁl"'}




79

et
o

1
[

R

g

»

s

No Treatment

% e, S, s i1 s
& 5 2 Y w%nﬁw %% T T 3 %
3% §o §% R B OB q - 3 %%
= HHEaA N RN RS L
i: ¢ ox = £ : EX
1 i¥ds s B FOE R oru %% i

5

A o S R S S S 3

o+
£l
o

25
225

A

L,

a2

-+
5

o

)

S
+
A,

)
&

LMH cells

)
ot
o W

i

+
Soans
+
pese

)

o 0 e B e e
R i e oD A e e A e e e A
B T

¥
B>

uM Heme

(=]
N

25

Pk

Ry
ety
panietetetes

Primary CELCs

Eaen
e
GOSehes?

o+
o+
S

7

o,

peebiieithetee]
]
Shliaaad

R

(VNY v-Alod/vNHW 9seyjuls yv)
VNHW aseyjuAs ajeuiinasjoulwy




80

Figure 3.7: Effects of metalloporphyrins on ALA synthase mRNA levels in
LMH cells. Cells were treated with 10 uM or 20 uM heme, or 10 uM of the other
metalloporphyrins: manganese protoporphyrin, copper protoporphyrin, tin
mesoporphyrin, or zinc mesoporphyrin, for 6 hours prior to harvest. The
metalloporphyrins were dissolved in DMSO, therefore, a DMSO solvent (1 uL
per mL of culture medium) control was also included. Harvest, isolation, and

quantitation of RNA were performed as described in Methods. Data represent

mean + SEM, n=3. *Significantly less than DMSO control, P < 0.0055.
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mRNA levels in LMH cells. Manganese protoporphyrin and zinc mesoporphyrin

also decreased levels of ALA synthase mRNA. Repression by tin
mesoporphyrin was not statistically significant. No repression was observed for

copper protoporphyrin and the DMSO solvent control.
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Conclusions

LMH cells exhibited porphyrin and heme metabolism similar to that of

primary CELCs. Unlike primary rat hepatocyte cultures, LMH cells more closely

exhibit characteristics observed in primary CELCs, porphyrin accumulations are

- e

inducible and regulation of ALA synthase seems normal. :"EJ;
' - SRR

The major difference between primary CELCs and LMH cells was in the T!L;»?;

type of porphyrin that accumulated, especially in the presence of deferoxamine. njr}
There may be differences in cellular iron metabolism. In all other aspects of ‘Z"';f;;
heme biosynthesis tested, LMH cells were similar to primary CELCs, supporting SE}
the use of this cell line for studies of heme metabolism and its regulation. ,,Jw}
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CHAPTER IV

CHARACTERIZATION OF HEME OXYGENASE-1:
COMPARISON OF LMH CELLS TO PRIMARY CULTURES OF CHICK

EMBRYO LIVER CELLS
Introduction

Heme oxygenase catalyzes the degradation of heme into biliverdin,
carbon monoxide, and iron. Two forms of this enzyme, heme oxygenase-1 and
-2, have been identified; only heme oxygenase-1 (HO-1) is subject to induction
by heme, metal ions, and other chemical and physical perturbations (e.g. dfugs,
oxidants, and heat shock). Primary chick embryo liver cells (CELCs) are widely
used for the study of heme metabolism because of their ease of preparation,
low cost, and high degree of similarity to human heme metabolism.
Nonetheless, this system has some limitations: new cultures must be prepared
every week; the resulting cell populations are somewhat heterogeneous; and
cells are short-lived, limiting the feasible duration of time course and
transfection studies. LMH cells are the first chicken hepatoma cell line to be
established.

The aim of the work summarized in this chapter was to characterize the
regulation of heme oxygenase-1 in LMH cells, and to compare this regulation to

that previously described in primary CELCs 23,44,56,57,107,169,178  |njtjally, culture
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conditions which provided optimal induction of HO-1 were established. The
induction of HO-1 was then assessed by measuring changes in mRNA levels or
enzyme activities in response to several treatments, including heme, metals,
sodium arsenite, and heat shock, which have been shown to increase the
expression of heme oxygenase 2029%2°152.74858991190.178 The comparative dose-
responses and time courses of induction of HO-1 mRNA and heme oxygenase
activities by heme and cobalt chloride were characterized. In addition, LMH
cells exhibited a measurable response to other treatments previously shown to
increase HO-1 mRNA levels or heme oxygenase activities in normal CELCs.
Similarities were observed with respect to regulation of HO-1 expression in
primary hepatocytes and LMH cells. During these studies, a small but
significant heat shock induction of HO-1 mRNA in CELCs was detected. This
was the first reported measurable heat shock response of HO-1 in CELCs or
LMH cells. These experiments support the use of LMH cells as a model for the

study of HO-1 regulation.
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Results

[nitial detection of HO-1 mBNA in LMH cells. For the initial
characterization of heme degradation in the LMH cell line, HO-1 mRNA levels
were measured in response to treatments previously shown to increase these
levels in primary CELCs. To detect a response, LMH cells were treated with
heme or cobalt at concentrations and for exposure times formerly shown to

produce robust inductions in CELCs, namely, 10 uM heme for 5 hours or 75 uM

“cobalt chloride for 18 hours 246, Heme caused a 5.8-fold increase and cobalt

chloride caused a 3.8-fold increase in HO-1 mRNA leveis in LMH cells (Table

4.1). p—
By ”fp‘
Gelatin-coated dishes enhance induction in LMH cells. In previous work, ‘g
A
others have found that LMH cells required gelatin coating of culture vessels to
W 5
achieve monolayer growth . In contrast, CELCs are routinely cultured directly hmé
i
on plastic dishes 2#44556:57.5961.77.109.178 " Aftar initial studies with heme and cobalt EAJ :
jp
chloride had confirmed demonstrable increases in HO-1 mRNA levels in LMH J&ZE
R
g

cells, culture conditions were analyzed to optimize the similarities between
CELCs and LMH cells and to maximize the inducible response of LMH cells to
selected chemicals. Effects of the medium or other factors relating to the
conditions of cell cultures were tested. Although gelatin was not necessary for

growth of LMH cells, gelatin coating of dishes enhanced the responsiveness of
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Table 4.1: Effects of heme or cobalt chloride on levels of HO-1 mRNA in LMH
cells. LMH cells were treated with 10 pM heme for 5 hours or 75 pM cobalt
chloride for 18 hours prior to harvest. Harvest, isolation, and quantitation of
RNA were as described in Methods. For each sample, HO-1 mRNA was
quantitated by dot blot and normalized to total poly-A RNA measured on a
duplicate blot. Data represent mean + SEM, n=3. *Significantly greater than
No Treatment control (P < 0.0001). » ng
-
S
.. A L] rmELU nsl@
ﬂs Treatment Levels of HO-1 mRNA Fold Induction ‘
- (Arbitrary Units) ——
No Treatment 17.6+3.40 | - bl
1 Heme 102.0 +12.0* 5.8 | “Km"ﬁ | |
Cobalt Chloride 67.5t16.2* 3.8 :ﬁi%,,:; o
1"
# 19

el
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LMH cells to treatments (Figure 4.1). Accordingly, subsequent experiments
were conducted with LMH cells grown on gelatin-coated dishes.

Dose response and time course of heme and cobalt induction of HO-1
mRBNA. Next, dose-response and time course relationships for heme or cobalt
chioride treatmeht on HO-1 mRNA levels were investigated. LMH cells were
treated with increasing doses of heme for 7.5 hours (Figure 4.2A) or cobalt
chloride for 18 hours (Figure 4.2B), and HO-1 mRNA levels were measured.
The data from both treatments describe typical saturation curves. The dose of
cobalt chloride required to reach maximal response in LMH cells was found to
be slightly higher than that observed for maximal HO activity, and induction of
HO-1 mRNA or HO-1 CAT reporter constructs in CELCs 31:3:374557,
Concentrations of 220 uM heme, or 2150 uM cobalt chloride, led to maximal
increases in the amount of HO-1 mRNA in LMH cells. Differences in
concentrations required for maximal induction (e.g., for cobalt chloride) cannot
be attributed to differences in the medium, which was identical for primary
CELCs and LMH cells; the only difference in extracellular environment was the
presence of gelatin-coating for LMH cells. It is possible that gelatin may bind

some chemicals such as cobalt, making them less available to the cells.

In other systems, regulation of HO-1 expression has been shown to occur

principally at the level of transcription, unless heme oxygenase activity has

been inhibited 82824457178 - Most previous studies in CELCs quantitated heme
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=
Figure 4.1: Effects of gelatin coating of culture dishes on induction of HO-1
mRNA in LMH cells. Cells were plated on uncoated culture dishes (shaded
ESl  pars) or on dishes coated with 0.1% gelatin (hatched bars), and treated with 10

uM heme for 5 hours or with 75 pM cobalt chloride for 18 hours. Harvest,

[ :wwmun-.u‘:‘r‘
Al
&g I""“

isolation, and quantitation of RNA were performed as described in Methods.

- Data represent mean + SEM, n=3. *Significantly greater than control, (P < Y

Pl )
]

== 0.0005). tSignificantly greater than the same treatment without gelatin coating, n@

(P < 0.05). o
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Figure 4.2: Dose-response curves for induction of HO-1 mRNA by heme or

91

cobalt chloride. LMH cells were treated with the indicated concentrations of (A)

heme for 7.5 hours or (B) cobalt chloride for 18 hours. Harvest, isolation, and

quantitation of RNA were performed as described in Methods. Data represent

means + SEM, n=3.
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oxygenase activities, because the increase in activities occurred as a
consequence of increased mMRNA levels. In CELCs, heme treatment produces
a rapid initial increase in levels of heme oxygenase activities and HO-1 mRNA
levels followed by a decrease back to cohtrol levels by 12 hours 8234657178 In
contrast, following addition of cobalt chloride, an initial lag phase of about 12
hours is observed, followed by a steady increase in activities and mRNA levels
throughout the duration of the experiment 18577778109 T dglineate the temporal
response of LMH cells to treatment with heme or cobalt chloride, the induction
of HO-1 mRNA levels was studied over 24 hours. As shown in Figure 4.3A,
maximal induction was observed 6-8 hours after treatment with 20 uM heme;
HO-1 mRNA levels then decreased, reaching control levels by 24 hours. After
an initial lag phase of 8-12 hours, 200 uM cobalt chloride caused a steady
increase in HO-1 mRNA levels throughout the duration of the experiment
(Figure 4.3B). The temporal relationship between treatment and the rise in HO-
1 mRNA in LMH cells correlated well with that previously observed in CELCs.
‘For direct comparison, the effects of heme or cobalt chloride on HO-1 mRNA in
primary cultures of CELCs versus LMH cells were examined in the same
experiment. As shown in Figure 4.4, the fold of maximal induction ‘for each
treatment was similar in CELCs and LMH cells; i.e., the efficacy is similar in the

two cell types. The potency of heme is also similar among CELCs and LMH

cells, but cobalt chloride is more potent in primary CELCs.




Figure 4.3: Time course for induction of HO-1 mRNA by heme or cobalt
chloride. Prior to harvest, LMH cells, plated on gelatin-coated dishes, were

exposed to either (A) 20 pM heme or (B) 200 pM cobalt chloride for the

indicated times. Harvest, isolation, and quantitation of RNA were performed as
described in Methods. Data represent means + SEM, n=3. * No treatment

control (24h). 1This point is also a 24 hour control.
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Figure 4.4: Comparative efficacy of heme or cobalt chloride to increase levels
of HO-1 mRNA in CELCs and LMIH cells. In a single experiment, both CELCs
and LMH cells were simultaneously treated with the appropriate doses of heme
or cobalt chloride required for maximal induction for each cell type (heme, 20
uM for both cell types; cobalt chloride, 75 uM for primary CELCs and 200 puM for
LMH cells). Cells were treated with héme for 7.5 hours or with cobalt chloride
for 18 hours prior to harvest. Harvest, isolation, and quantitation of RNA were
performed as described in Methods. Data represent means + SEM, n=4. There
were no significant differences in the induction between primary CELCs and

LMH cells.
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Synergistic induction of HO-1 mRNA by alutethimide and ferric

nitrilotriacetate (FeNTA). The combination of glutethimide and FeNTA produces

a synergistic induction of HO-1 mRNA in CELCs. This induction has been
shown to be due to the interdependence of ALA synthase and HO-1 on the
levels of cellular heme “>'”. In Figure 4.5, the ability of glutethimide

+ FeNTA to produce synergistic increases in HO-1 mRNA was examined in
LMH cells. Treatment with glutethimide or the combination of glutethimide +
FeNTA increased HO-1 mRNA levels, with the highest induction at 50 uM
concentrations of each chemical. FeNTA alone had no significant effect on HO-
1 mRNA levels. In addition, synergistic induction of HO-1 mRNA was observed
at 50 pM glutethimide + 50 uM FeNTA (Figure 4.5). These data agree with
previously observed results for HO activity in CELCs 5%,

Increased heme oxygenase activity levels correlate with induction of HO-

1 mBNA. Similarities in HO-1 regulation for CELCs and LMH cells also were
observed when heme oxygenase activities were investigated. To confirm that
activities of HO-1 also were increased in LMH cells, both cell types were treated
with heme, cobalt chloride, or glutethimide + FeNTA. All treatments increased
heme oxygenase activities in a fashion similar to that observed for HO-1 mRNA
(Table 4.2). In fact, in this experiment, the heme-mediated induction of activity
was greater in LMH celis than CELCs. Glutethimide alone caused no
significant increase in heme oxygenase activity in LMH cells (11746 pmol

bilirubin/mg protein). In CELCs, induction of HO-1 mRNA has been correlated
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Figure 4.5: Effects of glutethimide, FeNTA, or the combination of glutethimide
and FeNTA on levels of HO-1 mRNA in LMH cells. LMH cells were treated with
increasing concentrations of glutethimide, ferric nitrilotriacetate, or both, for 18
hours prior to harvest. Harvest, isolation, and quantitation of RNA were
performed as described in Methods. Data represent mean + SEM, n=3.
*Significantly greater fhan no treatment control (0 uM), P<0.05; tSignificantly
greater than no treatment control, P<0.01; §Significantly greater than

glutethimide alone, P<0.05.
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Table 4.2: Comparative effects of selected chemicals on heme oxygenase
activities in primary CELCs and LMH cells. incubation times were: heme - 10 h;

cobalt chloride, and the combination of glutethimide and FeNTA - 20 h.

Concentrations were: 20 uM heme, 50 uM glutethimide + 50 uM FeNTA for both
cell types; 75 uM cobalt chloride for CELCs, and 200 pM cobalt chloride for
LMH cells. Cells were harvested and heme oxygenase activity assays were -
i
performed as described in Methods. Data represent mean + SEM, n=4. Pt
| 3
*Significantly greater than control (P < 0.0005). tSignificantly greater than Y
control (P < 0.0001). §Significantly greater than in CELCs (P < 0.01). .y
™M
b
: !
Treatment Heme Oxygenase Activity Fold Induction "’j
: (pmol bilirubin/mg prot./min) K
- Primary CELCs oo,
No Treatment 556 1.0 Tk |
Heme 273 +14* 5.0 3
Cobalt Chloride - 382 +141 7.0 e
Giut + FeNTA | 199 +9* 3.6 )
"LMH Cells
No Treatment 77 4 1.0
Heme 557 +141§ \ 7.2
Cobalt Chloride 429 1641 5.6 ‘
Glut + FeNTA 292 +25* 3.8 |
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with subsequent increases in HO-1 protein and enzyme activity 78 For both cell
types, increases in HO-1 mRNA in response to heme or cobalt chloride, and
synergy in response o glutethimide + FeNTA also correlated with observed
increases in enzyme activity levels. These data are consistent with
transcriptional regulation of HO-1 expression in both cell types. Although
apolipoprotein Il expression was reported to be decreased in LMH cells %, the
expression of several other proteins, including HO-1, was comparable in LMH
cells and CELCs ®%. The levels of HO-1 protein expréssion in LMH cells were
reported to be similar to those in CELCs, supporting the notion that LMH cells |
are a useful model not only for assessing regulation of HO-1 mRNA expression,
but also HO-1 protein and activity levels.

Effects of non-heme metalloporphyrins on HO-1 mBNA levels. Unlike

heme, some other metalloporphyrins have been shown to repress ALA |
synthase activity and to inhibit heme oxygenase in a competitive manner “*7177,
Zinc mesoporphyrin has been shown to inhibit heme oxygenase in several

" model systems for porphyria, including primary CELCs and in rats and mice
4465717717918 Tin protoporphyrin has been used in humans with acute
porphyria, in combination with intravenous heme, in an attempt to inhibit heme
oxygenase and thereby prolong the duration of heme-mediated inhibition of

ALA synthase '®®. Inhibition of HO-1 mRNA by several metalloporphyrins was

tested in LMH cells (Figure 4.6). Both concentrations of heme tested
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Figure 4.6: Effects of selected metalloporphyrins on HO-1 mRNA levels in

LMH cells. Cells were treated with 10 uM or 20 uM heme; or with 10 uM non- ﬁan
i
heme metalloporphyrin dissolved in DMSO for 6 hours prior to harvest (MP = oy
mesoporphyrins, PP = protoporphyrins). DMSO was added at not more than 1 fg:
uL per mL of medium as a solvent control. Harvest, isolation, and quantitation M.";E
of RNA was performed as described in Methods. Data represent mean + SEM, ME
n=3. *Significantly less than DMSO solvent control, P < 0.05. tSignificantly "'j“““ﬂ!-
3
greater than DMSO control, P < 0.05. g
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significantly increased HO-1 mRNA levels. No effect on HO-1 mRNA was
observed for manganese protoporphyrin (MnPP), while zinc and tin
mesoporphyrins (ZnMP and SnMP) resulted in HO-1 mRNA levels lower than
DMSO solvent control levels.

HO-1 mRNA induction measured by both Northern blot and dot blot. To

further characterize HO-1 regulation in LMH cells, additional chemicals and
stimuli were tested, whichy previously have been shown to elevate HO-1 mRNA
“levels and enzyme activities in primary CELCs and other cell culture systems
23.29.89911%% " Heme, cobalt chloride, cadmium chloride, sodium arsenite, and -
3,5,5-trimethylhexanoylferrocene (TMH-ferrocene) were each tested for their
abilities to increase the levels of HO-1 mRNA. Dot blot data are presented in
Table 4.3. LMH cells were treated with chemicals at concentrations and times
used routinely in CELCs. All treatments caused significant increases in HO-1
mRNA levels, with the highest degree of induction by arsenite. Additionally,
heme, arsenite, cobalt, cadmium, and heat shock were tested by Northern biot
(Figure 4.7) for their ability to induce HO-1 mRNA in CELCs and LMH celis. All
treatments gave similar fold inductions for both cell types. Although there have
been no previous reports of a heat shock response in primary CELCs, heat
shock significantly increased HO-1 mRNA levels in both CELCs and LMH cells.
For both cell types, increases in HO-1 mRNA measured by Northern blot were.

more pronounced than that observed by dot blot for all treatments except for
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Table 4.3: Effect of selected chemicals on levels of HO-1 mRNA in LMH cells.

Cells were treated with selected chemicals for the indicated times prior to

harvest. Concentrations of chemicals and incubation times were: heme, 20 uM
for 6 h; cobalt chloride, 200 uM for 18 h; cadmium chloride, 1.5 uM for 18 h;
sodium arsenite, 25 uM for 18h; and TMH-ferrocene, 5 uM for 4h. Harvest,
isolation, and quantitation of RNA were performed as described in Methods.
Relative amounts of mRNA were normalized to total Poly-A RNA. Data

represent mean + SEM, n=4. *Significantly greater than control (P < 0.0001).

+Significantly greater than other treatments (P < 0.0005).

-
U3 |
Levels of HO-1 mRNA | |
TREATMENT (Arbitrary Units) Fold Induction ﬂ
No Treatment 29.6+2.7 - rft%‘
Heme 106£16 * 3.6 E |
Cobalt Chloride 135+£3.6 * 45 Ty
Cadmium Chloride 123+13 * 4.2 v
Sodium Arsenite 177+4.2 *% 6.0
TMH-ferrocene 89.3+4.4 * 3.0
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Figure 4.7: Northern blot comparison of HO-1 mRNA induction by selected

treatments in CELCs and LMH cells. Prior to harvest, cells were left untreated ;';;j;:;mh
Rl
or exposed to 10 uM heme for 6 h, 75 uM sodium arsenite for 4 h, 200 uM cobalt 1“:
Fony,
chloride for 18 h, 1.5 uM cadmium chloride for 18 h, or heat shock at 43°C for 2 ,,;
h. Harvest, isolation, and quantitation of RNA was performed as described in s
Z o
Methods. A single band located at 1.3 Kb was detected with the probe specific tﬂ
!I:um{’-ti
~ for chicken HO-1. The blot was stripped and rehybridized with a probe specific -
| b
- for chicken GAPDH. HO-1 mRNA was normalized to GAPDH mRNA levels for wiedf
-
each lane. Fold inductions in CELCs and LMH cells are presented. S
U
Y
I |
N

it




108

Primary CELCs LMH Cells

g S
O E o . E : |
— el = i o — o 3 3 |
2 -E SE S e E == 0 B
=0 o © = - 50 5 2 Z ‘
cESoac | SELaT®
O O = OO O co 20 o :
OIC OO0 I OT<O0O0 T :
prans
Ty
s

HO-1 mRNA

G
oy
GAPDH mRNA =

4
[T

Ui

Al
‘!
by

14
M,

O
Fold Induction of HO-1/GAPDH mRNA ‘:11555?- .
Treatment Primary CELCs | LMH Cells ; e
None 1.0 1.0 " J
10_uM heme 10.8 5.2 it
75 uM_ARS 47.9 35.9
200 uM CoCl, 29.2 5.5
1.5 uM CdCl, 1.1 1.1

Ht Shk (43°C) 3.2 0.8
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cadmium chloride, which showed no significant induction. For dot blots, less
HO-1 mRNA may have remained bound to the membrane after washing,
resulting in decreased binding of radiolabelled probe. This may account for the
observed differences between Northern and dot blot results.

Studies in intact rats, or with other liver-derived cell lines have indicated
variation in the response of HO-1 mRNA to cobalt vs. cadmium. Recently, Alam
27 showed that HO-1 mRNA in the cell lines Hepa and L929 was not induced by
cobalt, but was markedly induced by cadmium. In LMH cells, the induction by
cobalt is not only measurable, but is at least comparable to that observed for
cadmium or heme in other systems 2771, Northern analysis indicated littie to
no induction by cadmium, but a significant induction by cobalt was observed.
Differences in minimal doses required for maximal induction may be due to cell-
specific changes in uptake or metabolism of the chemicals used, or to
differences in cell surface-to-volume ratios, as LMH cells are morphologically
different from primary CELCs. Despite the requirement for greater
concentrations of cobalt chioride in LMH cells, the pattern of induction seems to
be generally similar to that observed for CELCs when analyzed by either
Northern or dot blots.

Heat shock induction of HO-1 in CELCs and LMH cells. Although heat

shock has produced a response in rat, mouse, and some human cell lines
(Hep3B) '®, heat shock-mediated induction of HO-1 mRNA has not been

detected in other human cell lines (HepG2, Hela), macrophages, or primary
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CELCs previous to the work presented here go185186  Gince a heat shock
response was observed by Northern blot (Figure 4.7), the ability of CELCs and
LMH cells to mount & heat shock response was further investigated by following
induction of HO-1 and HSP70 mRNA levels through a 5 hour time course of
incubation at 43°C (Figure 4.8). The time courses of the heat shock responsée in
CELCs and LMH cells weré similar. Both CELGCs and LMH cells were found to
respond to heat shock with an increase in HO-1 mRNA, although the fold
increase in message levels was considerably greater in LMH cells than in
CELCs. As shown in Figure 4.8A, the results for CELCs show a slight but
significant increase in HO-1 and HSP70 mRNA levels (2.9-fold and 4.7-fold
versus no treatment (O hour) control, respectively). Peak induction of HO-1
mRNA in CELCs occurred at 2 hours and returned to basal levels by 5 hours.
Earlier results in CELCs involved only a 5 hour time point, at which time the
slight increase in HO-1 mRNA was already past. The heat shock mediated
induction in LMH cells was 9.1;fold jor HO-1 mRNA and 06.7-fold for HSP70
mRNA levels (Figure 4.8B). These results with LMH cells indicate that HO-1
mRNA induction follows the same pattern as the HSP70 mRNA, with maximal
increase observed after 2 hours of incubation at 43°C. A similar response was
seen for HO-1 mRNA in CELGCs, but for HSP70, peak mRNA levels were
observed slightly earlier, at 1 hour. Heat shock mediated induction was

.observed in both CELCs and LMH cells despite the notable absence of a

putative or functional heat shock element in the chicken HO-1 promoter.

g Jibn
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Figure 4.8: Comparison of the effects of heat shock on HO-1 and heat shock
protein 70 (HSP70) mRNA levels in CELCs and LMH cells. (A) CELCs or (B)
LMH cells were incubated at 43°C for the indicated times prior to harvest.
Harvest, isolation, and quantitation of RNA were performed as described in
Methods. Data represent mean + SEM, n=3. *Significantly greater than control
(P<0.05). tSignificantly greater than control (P<0.01). §Significantly greater

than control (P<0.005). tSignificantly greater than control (P<0.0005).
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Sodium arsenite induction of HO-1 mRNA in LMH cells. Regulation of

HO-1 gene expression has been shown to occur at the transcriptional level for
many inducers: heme, the transition metals cobalt and cadmium, and the
cellular stressor LPS. A time course was done to examine the level of
regulation by the most potent inducer of HO-1 mRNA, sodium arsenite. LMH
cells were treated with 75 uM arsenite in the presence or absence of
actinomycin D, which was used to inhibit the synthesis of nascent mRNA. HO-1
mRNA levels were quantitated and normalized to GAPDH mRNA, as measured
by both Northern and dot blots, with similar results. Data from dot blots are
illustrated in Figure 4.9. Peak induction of HO-1 mRNA by arsenite occurred at
4 hours, consistent with previous results. No arsenite-mediated induction of
HO-1 mRNA was observed when LMH cells were pretreated for 4 hours with

actinomycin D. This data is consistent with transcriptional regulation of HO-1 by

arsenite.
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Figure 4.9: Sodium Arsenite (ARS) induction of endogenous HO-1 mRNA in

LMH cells; and block by actinomycin D.- Cells were treated with 75 uM ARS for
the indicated times prior to harvest. Some plates received 1 uM Actinomycin D,
4 hours prior to treatment with sodium arsenite. Att=0, 75 uM ARS was added
directly to the medium. Plates were incubated at 37°C until harvest. Total RNA
was prepared and levels of HO-1 and GAPDH mRNAs measured as described

in Methods. Data represent mean + SEM, n=3. *Significantly greater than

control, P<0.01.
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Conclusions

The results presented in this chapter support the use of LMH cellsas a
model system for the study of HO-1 expression. LMH cells have detectable and
inducible heme oxygenase-1. Culture conditions that support robust induction
were defined. Results from all treatments tested support normal HO-1
regulation and expression in LMH cells, and provide evidence that heme
metabolism in LMH cells parallels that previously characterized in primary
CELCs. The potencies of some chemical inducers (e.g., cobalt chloride) were
lower in LMH cells. However, the efficacies and time courses were very similar
to those observed in primary CELCs. Similar increases in heme oxygenase
activities were also observed. The effects of non-heme metalloporphyrins on
HO-1 mRNA levels in LMH cells also correlated well with previous results in
CELGCs *577. Both zinc and tin mesoporphyrins caused slight decreases in
HO-1 mRNA levels in LMH cells. These data lend additional support that
control of HO-1 expression in LMH cells is similar to that observed in normal

liver cells in vivo, and in primary cultures. In addition, induction of HO-1in

response to heat shock in primary CELCs was identified for the first time.
In conclusion, LMH cells exhibit levels of heme oxygenase-1, and

mechanisms of its regulation similar to those observed in primary chicken

hepatocytes. Minor differences were observed in the efficacies of some

treatments. Although no heat shock response had previously been reported for
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chicken HO-1, induction of HO-1 mRNA was observed in response to heat

” shock in LMH cells, and for the first time, in CELCs. Actinomycin D blocked
arsenite-mediated induction of HO-1 mRNA in LMH cells. This is consistent with
a transcriptional regulation mechanism for this chemical. Other facets of

regulation of heme metabolism may be elucidated through long-term studies

and stable transfections, which are now possible using this cell line.
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CHAPTER V
CLONING AND CHARACTERIZATION OF THE CHICKEN HEME

OXYGENASE-1 PROMOTER

Introduction

As previously described, studies in which the level of HO-1 induction has
been investigated have shown that HO-1 expression is transcriptionally
regulated. Several cis-acting promoter elements involved in mediating HO-1
gene expression have been elucidated **'"'"*, In one study %, stably
transfected HO-1 reporter gene constructs were used to locate elements
required for induction of the murine HO-1 gene by heme and heavy metals.
Putative regulatory elements were identified between 3.5 Kb and 12.5 Kb
upstream from the transcription start site. Recently, evidence for a basal level
inducer and heme-responsive element located as far as 10.5 Kb upstream of
the transcription start site in the mouse HO-1 gene promoter was presented ¥'.
Other work has located regions of the HO-1 promoter that mediate cadmium;
heat shock, hypoxia, and lipopolysaccharide (LPS) responsiveness in rat,
mouse, and human HO-1 genes ##*87.88113115.115 " However, the transcription
factor complexes that target these elements have been Iargefy unexplored.

Work summarized in this chapter focused on the induction of chicken HO-

1 by the tumor promoter arsenite, which produced the greatest increases in
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levels of HO-1 mRNA and activities in LMH cells, as shown in Chapter IV. The
ability of arsenite to increase transcription of endogenous HO-1, and the activity
of transfected luciferase reporter gene constructs under control of the HO-1
promoter, was investigated using LMH cells. Regions of the cHO-1 promoter
were subcloned into a luciferase reporter vector, and tested for responsiveness
to HO-1 inducers. Transient transfection assays were used to investigate the
modulation of HO-1 transcription by arsenite. -In other systems, arsenite has
been proposed to affect gene expression by modulating the activities of
transcription factor complexes bound to AP-1 elements in the promoter regions
of several genes 11%1%%1%° Pytative AP-1 bindihg sites are present in the
promoter regions of mammalian #8111 and chicken HO-1 *. The roles of
three putative AP-1 transcription factor complex binding sites (located at -1578,
-3656, and -4597 base pairs, upstream of the transcription start site) in arsenite-

~ mediated induction of HO-1 gene expression were studied.
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Results

Construction of cHO-1 promoter-luciferase reporter plasmids.
Transcriptional regulation is mediated by the binding of transcription factors to
specific sequences in the promoter regions of genes. The recent cloning and
characterization of the genomic chicken HO-1 gene *" has aided the
development of tools to elucidate the mechanisms involved in modulating HO-1
gene expression. To facilitate the search for promoter elements involved in
arsenite induction of HO-1, a series of cHO-1 promoter-luciferase reporter
plasmids were constructed using convenient restriction enzyme recognition
sites (Figure 5.1, see Methods for details of cloning). The largest plasmid
contained a 7132 bp Xba | - Xho 1 fragment of cHO-1 promoter sequence
(including the transcription start site and some 5-UTR) cloned upstream of the
firefly luciferase reporter gene cassette in the commercially available reporter
vector, pGL3 basic. Each successive deletion plasmid contained approximately
1 Kb less of the 5’ promoter sequence than the corresponding next largest
plasmid. Appendix E contains the sequence of the 7132 bp fragment that was
cloned into pGL3 basic, and the restriction sites used to create the deletions.

Detection of basal and induced reporter plasmid luciferase activity. A test
transfection was performed using the smallest, pPCHO.TATA-Luc, and largest,

pCHO7.1-Luc, constructs to detect basal level reporter gene expression, and

heme-induced or arsenite-induced reporter gene expression. Controls were:
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Figure 5.1: HO-1 promoter-luciferase reporter constructs. Restriction enzyme
sites used for creating reporter constructs are shown in relation to the chick
heme oxygenase-1 TATA box (3 end = -26 base pairs), cHO-1 txn =
transcription start site (+1), and the Xho | cloning site (+54). Abbreviated
restriction enzyme recognition sites are designated as follows: Pl M1 (F), Pmi |
(P), Nhe | (N), Bglll (B), Eco RI (E), Tth 111 | (T). The restriction enzyme and
sequence location used to create each construct are identified beside each
representation. Sequence of the proximal promoter region has been deposited
with GenBank (Accession number U95209). For the entire 7132 bp chicken
HO-1 promoter sequence, see Appendix E. The pCHO3.6-Luc construct was
subcloned into pGL3 by ligation of a fragment taken from a chloramphenicol

acetyltransferase (CAT) reporter construct. See Methods for details of creation

of constructs. See Appendix C for a comprehensive list of plasmid constructs.
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ontransfected cells; cells that were subjected to transfection conditions,

including the transfection reagent, but received no plasmid DNA; cells that

received the pGL3 control plasmid, which contains the luciferase gene under

control of an SV40 enhancer and promoter; and cells that received the

promoterless and enhancerless vector control plasmid, pGL3 basic. Cells

transfected with pGL3 basic were left untreated or treated with heme or arsenite.

As shown in Figure 5.2, the highest normalized luciferase reporter gene activity

was observed for the positive control vector plasmid, pGL3 control. The

negative control vector, pGL3 basic, had a low basal expression which was

unaffected by heme or arsenite treatment. Activity of the minimal promoter

tment with heme or

construct, pPCHO.TATA-Luc, was not increased by trea

arsenite. Basal expression of pCHO7.1-Luc was much greater than

. pCHO.TATA-Luc or pGL3 basic. No induction over basal was observed by

heme for pPCHO7.1-Luc, however, arsenite produced a robust (8.3-fold)

increase in reporter gene activity from pCHO7.1-Luc.

eness of pCHO7.1 -Luc to cellular stressors . To

or studying HO-1 gene

Responsiv

further the usefulness of this construct as a tool f

expression under conditions of cellular stress, the effects of several chemicals

implicated in stimulating cellular stress responses were tested. The minimal

promoter construct, pCHO.TATA-Luc served as

of arsenite, cadmium, cobalt, hydro

E pCHO.TATA-Luc and the largest construct, pCHO7.1-Luc (Table 5.1). There

characterize

a negative control. The effects

gen peroxide, and LPS were tested on both

b

L8

thagt-
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Figure 5.2: Initial test for expression and induction of chicken HO-1 promoter
luciferase reporter constructs in LMH cells. Cells were transfected with no DNA,
or pGLS control, pGL3 basic, pCHO.TATA-Luc, or pCHO7.1-Luc plasmid DNA
approximately 48 hours prior to treatment. Treatments. were: 20 uM heme for 8
h or 25 uM sodium arsenite for 8 h. All transfections that received DNA also
received pPGK-Bgal plasmid DNA for normalization of luciferase activity.
Harvest and assays were performed as described in Methods. Data represent

mean + SEM, n=3. * Significantly greater than pCHO7.1-Luc, no treatment, P<

0.001.
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Table 5.1: Induction of pCHO7.1-Luc, but not pCHO.TATA-Luc by inducers of
endogenous HO-1. LMH cells were transfected with either pCHO.TATA-Luc or
pCHO7.1-Luc approximately 48 hours prior to treatments. Cells were treated as
follows: 75 pM sodium arsenite for 6 h; 1.5 uM cadmium chloride for 20 h; 200
uM cobalt chloride for 20 h; 0.5 mM hydrogen peroxide for 6 h; and 1.5 pg/mL
LPS for 20 h. Harvest and assays were performed as described in Methods.
Data représent mean + SEM. * Significantly greater than no treatment control,

P < 0.001. tSignificantly greater than all other treatments, P < 0.01.

Treatment Normalized RLU + SEM Fold Induction
pCHO.TATA-Luc

None 2410 + 88 1.0+ 0.1
Sodium arsenite 1260 + 166 0.5+ 0.1
Cadmium chloride 2550 + 99.4 1.1 £ 0.1
Cobalt chloride 1930 + 380 0.8+0.2
Hydrogen Peroxide 2540 + 251 1.1+0.1
Lipopolysaccharide 1640 + 180 | 0.7 £ 0.1
pCHO7.1-Luc

None 3350 + 246 1.0+ 0.1
Sodium arsenite 14400 + 2810 43+08*t
Cadmium chloride 7360 £ 696 22+02*
Cobalt chloride 4080 + 353 1.2+0.1
Hydrogen Peroxide 5200 + 323 16+017*
Lipopolysaccharide 3550 + 264 -~ 1.1+041
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was no significant increase in activity of pCHO.TATA-Luc in response to any

treatment tested. Sodium arsenite had the greatest effect on pCHO7.1-Luc

reporter gene expression, with a 4.3-fold increase in normalized luciferase

activity (Table 5.1). Lesser degrees of induction were observed with this

construct after exposure to hydrogen peroxide (1.6-fold) and cadmium chioride

(2.3-fold). LPS and cobalt chloride have been shown to induce HO-1 in some o

experimental systems; however, no induction was observed for LPS or cobalt #

chloride with pCHO7.1-Luc in LMH cells under these conditions. )
The lack of a response to LPS may be explained by a cell-type specific

difference; e.g., it is not known whether LMH cells have LPS receptors, which

would confer responsiveness to this chemical. In liver, the major effects of LPS

are thought to be on Kupffer cells which release cytokines that exert effects on i

the other cell types *"'®. Since LMH cells are derived from hepatocytes, they

may indeed lack the pathway that directly responds to LPS. Alternatively, the

promoter elements required for responsiveness 10 cobalt chloride and LPS may ¥

not be present in the pCHO7.1-Luc construct, or a silencer element may be §

preventing reporter gene expression.

Optimization of arsenite-mediated induction of pCHO7.1-Luc . Arsenite

potently induced both endogenous HO-1 and transiently transfected HO-1
reporter constructs in LMH cells, making this a good system for studying the

arsenite-mediated cellular stress response. Further analysis was performed on

the arsenite-induced increase in reporter gene expression in cells transfected
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with pCHO7.1-Luc. Dose response and time course experiments established

that the most effective dose for arsenite induction of reporter constructs was 75

uM and peak induction occurred at 6 hours (Figure 5.3). Therefore, these l
conditions were used to surther investigate the mechanism of sodium arsenite

induction of HO-1 gene transcription.

Induction_of transfected heme oxygenase-1 promoter luciferase reporter "

constructs by sodium arsenite. Sodium arsénite is a potent inducer of HO-1 m
mMRNA in CELCs %%, In LMH cells, 75 uM sodium arsenite gave a peak ;&
induction of HO-1 mRNA (3.9-fold) at 4 hours (Figure 4.9). The highly ‘1
reproducible, robust induction of HO-1 mRNA expression by arsenite provides a ﬁ‘
reliable system to study the promoter elements and signaling mechanisms 9 \
involved. The HO-1 promoter-luciferase reporter constructs were tested for l |
responsiveness to sodium arsenite to define regions of the promoter that may '
be responsible for the induction effects. Although arsenite induced several H
constructs, the highest folds of induction were observed for pCHO5.6-Luc and : b
pCHO7.1-Luc (Figure 5.4). 1;;; '

Identification of putative transcriptional elements potentially involved in

modulating HO-1 gene expression . The MacVector® analysis program was

used to identify putative transcription factor binding site sequences within the
cHO-1 promoter region. Many putative transcriptional elements areé present in

the proximal 7.1 Kb promoter region of the chicken HO-1 gene that was

subcloned into pGL3 basic. Figure 5.5 diagrams several potential candidates
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Figure 5.3: Dose- and time-dependence of induction of pCHO7.1-Luc by
sodium arsenite. LMH cells were transfected with pCHO?7.1-Luc plasmid DNA
approXifhater 48 h prior to treatment. Cells were treated with increasing
concentrations of arsenite for 8 hours (A), or with 75 uM arsenite for increasing
lengths of time (B). Harvest and assays were performed as described in
Methods. Luciferase activity (relative light units, RLU) was normalized to B-

galactosidase activity and protein content. Data represent mean + SEM, n=3.

*Significantly greater than control (No treatment), P<0.001.




130

40,0001
35,000
30,000
25,000 *

20,000

15,000 L

Normalized RLU
(RLU/B-gal/ug prot.)

10,000

5,000 )
ﬂ‘.

(] 20 40 60 80 100 120 140
Sodium Arsenite (uM)

35,00%

30,000

%

e

25,000

20,000

15,000

10,000

5,000] ‘_’./

0 4 8 12 16
Time (hours)

Normalized RLU
(RLU/B-gal/ug prot.)




131

Figure 5.4: Sodium arsenite induces cHO-1 promoter reporter constructs.

LMH cells were transfected with deletion construct and pPGK-Bgal plasmids

' approximately 48 hours prior to treatment. Cells that received treatment were

exposed to 75 uM sodium arsenite for 6 hours prior 10 harvest. Harvest and
assays were performed as described in Methods. Data represent mean + SEM,
n=3. *Significantly greater than no treatment and other constructs containing

less than 3.6 Kb of HO-1 promoter, P < 0.001. tSignificantly less induction than

5.6 and 7.1 Kb constructs.
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Figure 5.5: Computer generated map of putative consensus transcription
elements in the proximal 7.1 Kb of the chicken HO-1 promoter. The MacVector®
software package was utilized to search for several putative transcription factor
binding sites in the 7132 bp cHO-1 promoter sequence. The program was set
up to' search previously identified nucleic acid subsequences that were likely to
be utilized by stimuli known to modulate HO-1 gene expression. Among the
elements identified were: metal responsive element (MRE), activator protein 1
(AP-1), core B heme responsive/AP-1 element (coreB/AP-1) ¥, oncogene c-
myc/max heterodimer binding site (Myc/Max), antioxidant response element
(ARE), purine rich binding site (Pu box), cyclic AMP responsive element binding
site (CREB), an octamer site (Octamer), and a GC box binding site (Sp1). Each
element and its corresponding symbol, except for Sp1, are represented on the
right side of the figure. The Sp1 site is labeled above the promoter
representation. The deletion constructs are aligned with the element map to

allow comparison of the elements present in each construct.
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for elements that may modulate cHO-1 gene expression in response to
treatments that lead to increased transcription of HO-1 mRNA.

Some evidence has suggested that gene induction by sodium arsenite is
mediated through an AP-1 element *"*’. Guyton et al. 16 found that arsenite
treatment increased nuclear extract binding to an AP-1 element in the

GADD153 (CHOP) gene promoter. In LMH cells transfected with cHO-1

deletion constructs, increased induction by arsenite correlated with the

presence of putative AP-1 consensus sites in the distal promoter (Figure 5.4).
Several putative consensus AP-1 elements were identified in the 7135 bp
sequence of cHO-1 promoter region by the subsequence search function of the
MacVector® software program. The role of the three most proximal AP-1 sites
(located at -1578, -3656, and - 4597 bp) as transcriptional elements that
modulate HO-1 gene expression in response o arsenite was investigated by:

1) testing the effects of arsenite on both negative and positive control plasmids,
and 2) by introducing specific base pair mutations in these sites in the context of
selected reporter gene constructs.

Effects of arsenite on AP-1 control plasmid expression . Two control

plasmids were obtained to investigate transcriptional modulation by AP-1
elements in LMH cells. The negative control plasmid was GAL4-Luc, a
construct containing the luciferase gene cassette under control of the yeast

GAL4 promoter. The positive control plasmid was 4xTRE-Luc, a construct

containing the luciferase gene cassette under control of 4 consecutive TPA-

P AL e e
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responsive AP-1 elements. Each construct was transfected into LMH cells that
were left untreated or treated with arsenite or the phorbol ester, TPA, and
juciferase activity was measured (Figure 5.6). Since these constructs were
tested for activation in a chicken hepatoma cell line, the yeast GAL4 promoter
was unable to promote treatment-induced expression of the luciferase gene
(Figure 5.6). In contrast, the 4xXTRE-Luc construct was activated by both
treatments, with a 6.2 fold induction by arsenite and an 8.4 fold induction by
TPA (Figure 5.6).

Role of AP-1 sites in arsenite induction of cHO-1 reporter plasmids. The

role of an AP-1 site as a transcriptional element that may modulate HO-1 gene
expression in response to arsenite was investigated. For initial studies, the
reporter construct pPCHO2.5-Luc, which contains a single consensus AP-1
element located at -1578 base pairs, upstream of the transcription start site was
used. The role of this AP-1 site in transcriptional activation was studied by
making site-directed mutations in 2 out of 7 base pairs, as illustrated in Figure
5.7A. Two separate mutants were made and tested for their ability to be
induced by treatment with arsenite (Figure 5.7B). Both mutant 1 and mutant 2
were incapable of being induced by arsenite treatment. Common transcription
factor dimer pairs that bind to AP-1 elements are Jun/Jun, Fos/Jun, or ATF/Jun.

The role of these dimer pairs in arsenite induction of HO-1 was studied by co-

transfecting a dominant negative c-Jun with the wild type pCHO2.5-Luc. The

rthies e krniatelic
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Figure 5.6: Arsenite induction of a luciferase reporter construct driven by
exogenous AP-1 elements. LMH cells were transfected with GAL4-Luc or
4XTRE-Luc plasmid DNA for approximately 48 hours prior to treatment. Cells
were left untreated or treated with 0.1 uM TPA for 6 hours or 75 pM sodium
arsenite for 6 hours prior to harvest. Harvest and assays were performed as

described in Methods. Data represent mean + SEM, n=3. *Significantly greater

than no treatment control, P < 0.01.
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Figure 5.7: Involvement of an AP-1 element in sodium arsenite-mediated HO-
1 expression. (A), The pCHO2.5-Luc HO-1 promoter-luciferase reporter

. construct (created with the Tth 111 | site at -2519 bp of the HO-1 promoter)
contains an AP-1 site at -1578 base pairs. Site directed mutants 1and 2
contain different two-base changes, indicated in bold and underlining.
Abbreviated recognition sites are designated as follows: Tth 111 1(T), Nhe | (N),
Pmi 1 (P), Eco Rl (E). The diagram at the bottom of the figure represents the wild
type or mutant AP-1 constructs by: solid bar for wild type, or for mutants, a 1 or 2
on the bar indicating the mutation made at that location. (B), LMH cells were
transfected with wild type pCHO2.5-Luc, either alone, or in combination with
TAM67 (dominant negative c-Jun), or with mutant 1 or mutant 2, and pPGK-
Bgal. Following transfection, cells were left untreated or treated with 75 uM ARS

for 6 hours. Luciferase activities were normalized to B-galactosidase activities

and protein content. Data are presented as mean fold induction versus

untreated control + SEM, n=3. *Significantly greater than wild type, P < 0.05.
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dominant negative ¢c-Jun blocked the arsenite induction of juciferase reporter
gene activity.

To further investigate possible cooperativity among the three putative
consensus AP-1 elements, two additional reporter plasmids were mutated. The
deletion constructs, pCHO4.6-Luc, which encompasses two of the AP-1 sites
(Figure 5.8), and pCHO5.6-Luc, containing all three proximal AP-1 sites (Figure
5.9), were used as templates for single, double, or triple AP-1 mutants. The
mutations made at -1578 bp are the same as those represented in Figure 5.7A
for the pCHO2.5-Luc mutants. The two bases that were mutated in the AP-1
elements at -3656 and at -4597 bp were the same and are shown for the -3656
bp site at the top of Figure 5.8.

The pCHO4.6-Luc series of AP-1 mutants, and the resulting fold
induction of luciferase activity of each mutant in response 1o arsenite treatment
are shown in Figure 5.8. Additionally, the pCHO4.6-Luc wild type construct was
also co-transfected with a dominant negative c-Jun. The pCHO5.6-Luc series of
mutants, and resulting fold inductions by arsenite are shown in Figure 5.9.
When LMH cells were transfected with the mutant constructs and tested for

arsenite induction of luciferase activity, all mutants except for pCHO5.6mut13-
Luc had lowered activities as compared to the wild type construct (Figures 5.8
and 5.9). Some single mutations decreased arsenite reporter gene activity to a

similar extent as double mutations or the triple mutation. All three AP-1

elements were necessary for the full response to arsenite. No single AP-1
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Figure 5.8: Mutation of AP-1 sites decreases responsiveness of pCHO4.6-Luc
to arsenite. The pCHO4.6-Luc promoter reporter plasmid (created with the Pmi |
site at -4575 bp of the HO-1 promoter) was used as a template for site-directed
mutagenesis of AP-1 sites located at -3656, or -1578 bp upstream of the
transcription start site. Mutation of the AP-1 site was done by mutating two base
pairs out of seven, as indicated at the top of the figure. The mutated bases are
shown in bold and underlining. Double mutants were made by using
pCHO4.6mut3-Luc as template for mutations at -1578, which were the same as
for mutations of pCHO2.5-Luc, shown in Figure 5.7A. The bars represent the
wild type or mutant AP-1 constructs by: solid bar for wild type, or for mutants, a
1 or 2 on the bar at -1578, indicating which mutation was made at that location,
and a 1 at the -3656 site for constructs containing the mutation listed at the top
of the figure. The primers and template for each mutant plasmid are listed in
Table 2.1 in Methods. LMH cells were transfected with wild type or mutant
plasmids approximately 48 hours prior to treatment. >Additionally, one set of
transfections included wild type pCHO4.6-Luc and a dominant negative c-Jun
plasmid, TAME7. Cells were left untreated, or treated with 75 pM sodium
arsenite for 6 h. Harvest and assays were performed as described in Methods.
Fold inductions (arsenite treated versus untreated) are presented beside the
bar représenting each construct. Data represent mean + SEM, n=3.
*Significantly less than wild type, P < 0.01. tSignificantly less than wild type, P

< 0.05.
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Figure 5.9: Mutation of AP-1 sites decreases responsiveness of pCHO5.6-Luc
to arsenite. The pCHO5.6-Luc promoter reporter plasmid (created with the Pl
MI site at -5605 bp of the HO-1 promoter) was used as a template for site-
directed mutagenesis of AP-1 sites located at -1578 (mutants 1 and 2), -3656
(mutant 3), or -4597 (mutant 4) bp upstream of the transcription start site.
Mutation of each AP-1 site was done by mutating two base pairs out of the
seven consenéus bases, as indicated at the top of Figure 5.9 for the site at -
3656 bp. Mutations at -1578 bp were the same as those of pCHO2.5-Luc, as
shown in Figure 5.7A. The bars represent the wild type or mutant AP-1
constructs by: solid bar for wild type, or for mutants, & 1 or 2 on the bar at -1578,
indicating which mutation was made at that location, a 1 at the -3656 site in
constructs containing the mutation listed at the top of Figure 5.8, and a 1 at the -
4597 site in constructs containing & mutated AP-1 at this site. The primers and
template for each single, double, or triple mutant plasmid are listed in Table 2.1
in Methods. LMH cells were transfected with wild type or mutant plasmids
approximately 48 hours prior to treatment. After transfection, cells were left
untreated, or treated with 75 uM sodium arsenite for 6 h. Harvest and assays

were performed as described in Methods. Fold inductions (arsenite treated

" versus untreated) are presented beside the representation for each plasmid.

Data represent mean = SEM, n=3. *Significantly less than wild type, P < 0.05.

tSignificantly less than wild type, P < 0.01. §Significantly less than wild type, P

< 0.001.
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mu‘tation completely blocked induction by arsenite, and different combinations
of double mutations displayed similar abilities to block arsenite induction.
These data are consistent with some level of cooperativity in the response 1o
arsenite among the AP-1 elements that were tested. When one or two AP-1
elements were mutated, the remaining wild type AP-1 element(s) continued to
‘modulate at Ieast a partial response to arsenite. However, since some
activation was still observed even when all three AP-1 sites were mutated,
either there was still some binding causing activation at these sites, or other
‘transcriptional elements may also be involved in producing the full response to
arsenite. Arsenite induction of both pCHO2.5-Luc and pCHO4.6-Luc was
significantly lowered when co-transfected with dominant negative c-Jun. These

experiments implicate a role for at least one AP-1 element in the sodium

arsenite-mediated induction of HO-1 gene expression.
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Conclusions

In summary, arsenite induces both endogenous HO-1 mRNA and
transfected HO-1 promoter-driven luciferase gene expression. A series of
promoter reporter plasmids with selected deletions in the promoter region was 1
used to explbre the region of control. The results of studies using control AP-1
plasmids sUpported the hypothesis that AP-1 elements weré involved in
arsenite-mediated regulation of HO-1 expression. Experiments in which cHO-1
reporter constructs containing mutated AP-1 elements were shown 10 be less
responsive to arsenite treatment provided further evidence that arsenite
modulates HO-1 gene expression by activating AP-1 transcription factor
complexes. Together, these data implicate AP-1 as oné of the transcription
tactors that contribute to the majority' of the arsenite-mediated induction of HO-1
gene expression.

| The data presented in this chapter present a reliable model system that
was used to investigate the transcriptional control of cHO-1 gene expression by
the cellular oxidant and tumor promoter, sodium arsenite. The major findings of
this study are: sodium arsenite is a potent inducer of both endogenous HO-1
and transfected HO-1 promoter-reporter constructs, and AP-1 elements are
involved in transcriptional activation of HO-1 by arsenite. However, given the

complexity of the HO-1 promoter, and the residual activity of AP-1 mutant

constructs, it is likely that other transcription factor elements are also involved in
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the modulation of HO-1 gene transcription. Two more AP-1 elements located
further upstream were not tested by mutational analysis. These elements, as
well as other transcription factor binding sites located further upstream (beyond
the sequence of the reporter constructs tested here), may account for the lower
induction of reporter constructs as compared to endogenous HO-1 mRNA in
LMH cells. The deletion reporter constructs and subsequent mutations

described here provide useful tools for further investigations into the

transcriptional regulation of cHO-1 by many chemicals or other perturbations.
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CHAPTER VI
ROLE OF MAP KINASES IN SODIUM ARSENITE-MEDIATED

INDUCTION OF HEME OXYGENASE-1

Introduction

As previously described, HO-1 is an inducible enzyme that catalyzes
heme degradation and has been proposed to play a role in protecting cells
against oxidative stress-related injury. The induction of HO-1 by the tumor
promoter sodium arsenite was investigated in the chicken hepatoma cell line,
LMH. In the previous chapter, a cHO-1 promoter driven luciferase reporter
construct that was reproducibly induced to high levels (at least 4-fold) in
response to sodium arsenite treatment was identified. This construct, pCHO7.1-
Luc was used to investigate the role of mitogen-activated protein (MAP) kinases
in arsenite-mediated HO-1 gene expression. |

The effects of diverse factors on HO-1 gene expression appear to be
regulated at the transcriptional level, suggesting that multiple signal
transduction pathways mediate induction of HO-1 gene transcription in
response to a multitude of cellular stimuli. The MAP kinases aré

serine/threonine protein kinases that have been shown to be activated under

conditions similar to those that induce HO-1 transcription, €.9., following

exposure of cells to phorbol ester, cytokines, ultraviolet light, heat shock, LPS,
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ceramide, and inducers of oxidative stress 10123130 MAP kinases are
components of signaling cascades which, in response to extracellular stimuli,
target transcription factors, resulting in the modulation of gene expression.
Three major MAP kinase subfamilies that mediate physiological responses
were investigated: Extracellular signal regulated kinase (ERK), c-Jun N-
terminal kinase (JNK), and p38 (a homologue of the yeast HOG1 kinase).

Arsenite-mediated activation of MAP kinases 1101221811571 has been
demonstrated, however, a cellular gene response 10 this activation has not
been described. Both arsenite 37118159160 and the MAP kinase signaling
cascades ™' have been shown 10 target AP-1 elements. Data presented in
Chapter V (Figures 5.7 - 5.9) support the involvement of AP-1 in the arsenite-
mediated induction of HO-1.

In this study, transient co-transfection assays were used to investigate the
mechanism of arsenite-mediated HO-1 gene expression. In LMH cells, sodium
arsenite, cadmium and heat shock, but not heme, induced activity of the MAP
kinases extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK),
and p38. To examine whether these MAP kinases were involved in mediating
HO-1 gene expression, constitutively activated and dominant negative
components of the ERK, JNK, and p38 MAP kinase signaling pathways were
utilized. Activated components of the ERK and p38 MAP kinase signaling

pathways increased gene expression from an HO-1 promoter-driven Juciferase

reporter gene construct. A p38 inhibitor, a MEK inhibitor, and dominant
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negative components of the ERK and p38 MAP kinase pathways were able to
block nearly all of the arsenite-mediated induction of HO-1. In contrast, for the
JNK pathway, activated components were unable to induce HO-1 gene

expression, and dominant negative components were unable to block arsenite

induction. These experiments demonstrate a role for the ERK and p38 MAP

kinase families in the sodium arsenite-mediated induction of HO-1 gene

expression.
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Results

Arsenite activates MAP kinases in LMH cells. The ability of heme,

sodium arsenite, cadmium chloride, and heat shock to activate ERK, JNK, and
p38 was assessed in LMH cells. Cells were treated with 20 uM heme, a known
inducer of endogenous HO-1; 75 uM sodium arsenite, a potent inducer of both
endogenous HO-1 and HO-1 reporter gene constructs; 1.5 uM cadmium
chloride, a known metal inducer of HO-1; or exposed to heat shock (at 43°C) for
0, 30, or 60 minutes. Immune complex kinase assays were performed to detect
changes in MAP kinase activity (Figure 6.1). Treatment with sodium arsenite
increased the activity of all three MAP kinases. In contrast, cadmium and heat

shock caused only slight increases in ERK and p38 activities, and heme had no

 effect on any of the MAP kinases in LMH cells. To further characterize the

arsenite-mediated activation of the MAP kinases, a more detailed time course
was performed (Figure 6.2). The peak activation times observed for arsenite
exposure were 10 minutes for ERK, 20 minutes for p38, and 45 minutes for JNK. '

Induction of bCHO7.1-Luc by components of MAP kinase signaling

cascades. To link activation of MAP kinases with the induction of HO-1 gene

expression, several expression constructs encoding constitutively activated or
dominant negative components of the MAP kinase signaling pathways were co-

transfected with the pCHO7.1-Luc reporter construct (Figure 6.3).‘ The

constitutively activated MAP kinase components would be expected to increase
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Figure 6.1: Effects of heme, sodium arsenite, cadmium chloride, or heat shock
on MAP kinase activity in LMH cells. Cells were treated with 20 uM heme, 75
uM sodium arsenite, 1.5 uM cadmium chloride, or exposed at 43°C (heat shock)
for 0, 30, or 60 minutes prior t0 harvest. (A), Immune complex kinase assays
were performed for ERK (top), JN.K (middle), and p38 (bottom). Bands indicate
phosphorylated substrates: GST-Elk1 for ERK, GST-cJun for JNK, and GST-
ATF2 for p38. Lane 14 waé left empty, Lane 15 was a positive control (EGF
treated LMH cell lysate for ERK, and UV-treated LMH cell lysates for JNK and
p38). (B-D), Data from immune complex kinase assays were quantitated with

the aid of a Phosphorlimager and plotted as time courses of ERK, JNK, or p38

MAP kinase activation.
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.. Figure 6.3 Effect of selected MAP kinase pathway components on luciferase

reporter gene activity in LMH cells co-transfected with pCHO7.1-Luc.
Constitutive activators of ERK MAP kinase (MEK18218E-8222D and
MEK1AN3—SZ18E-8222D), JNK MAP kinase (MEKK1), and p38 MAP kinase
(MKK68207E-T21 1E) were tested for their ability to induce reporter gene
activity. Dominant negatives of the ERK pathway (MEK1 KQ?A), JNK pathway
(MEKK1 K432A), and p38 pathway (MKK6SZO7A—T21 1A) were also tested.
LMH cells were co-transfected with pCHO7.1-Luc, pPGK-Bgal, and the
indicated MAP kinase construct using LipoFECTAMlNE®. Luciferase activities
were normalized to B-galactosidase activities and protein content. Data

represent mean + SEM, n=3. *Significantly greater than control (pCHO7.1-Luc

only), P < 0.005.
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;,reporter gene activity if the downstream MAP kinases are involved in
transducing cellular signals that control HO-1 gene expression. Constitutively

‘%; activated forms of MEK1 (the kinase immediately upstream of ERK), MEKK1 (a
—kinase proposed 10 aci upstream of JNK), and MKKS6 (a kinase upstream of p38)

| were tested for their abilities to induce luciferase gene expression from

pCHO7.1-Luc. Activated MEK1 and MKKG were able to induce reporter gene
expression; while no induction was observed for MEKK1 (Figure 6.3). As
expected, all dominant negative components failed to affect basal levels of

luciferase expression from pCHO7.1-Luc.

A involvement of the ERK signaling cascade in arsenite induction of HO-1.
To investigate the role of ERK in arsenite induction of HO-1, several ERK
pathway components (Ras activated and dominant negative, Raf wild type and
activated, MEK1 activated and dominant negative, and wild type ERK2) were

~ co-transfected with pCHO7.1-Luc, then left untreated or treated with arsenite. f
the ERK pathway was important for arsenite signaling, an activated component
of the pathway would be expected to increase luciferase gene activity in the
absence of arsenite, whereas the dominant negative construct would be
expected to block the ability of arsenite to induce luciferase activity from the
reporter gene. As shown in Figure 6.4, the activated Ras, Raf, and MEK1

components all increased luciferase gene activity, in_dicating each component

led to induction of HO-1 gene expression. Dominant negative Ras and MEK1
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Figure 6.4: Effects of ERK signaling pathway components on reporter gene
activity in LMH cells co-transfected with pCHO7.1-Luc. Wild type Raf, ERK2, or
constitutive activators of Ras (Ras 61L), Raf (Raf-BXB), and the ERK pathway
(MEK1S218E-S222D) were tested for their ability to induce reporter gene
activity. Dominant negatives of Ras (Ras 17N), and the ERK pathway
(MEK1K97A) were tested for their ability to block arsenite induction of the
reporter gene. LMH cells were co-transfected with pCHO7.1-Luc, pPGK-Bgal,
and the indicated MAP kinase construct using LipoFECTAMINE®. Luciferase
activities were normalized to protein content. Data represent mean + SEM, n=3.
*Significantly greater than untreated, P < 0.01. +Significantly greater than

untreated control (pCHO7.1-Luc only), P < 0.01. §Significantly greater than

arsenite treated control, P < 0.005.
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also decreased induction by arsenite treatment. The wild type ERK2 and wild
type Raf gave results similar to the pCHO7.1-Luc only control.

A fole for ERK in arsenite-mediated HO-1 expression was suppoi‘ted by
another experiment in which ERK activity was blocked using an inhibitor
(PD98059) specific for MEK1, the kinase immediately upstream of ERK. This
inhibitor (See Appendix D for structure) has been shown to be highly specific
(ICy, of 2-7 uM) and noncompetitive with respect to the ATP binding site of
MEK1 ™. Immunoprecipitated ERK2 from cells treated with PD98059 for 30
minutes prior to receiving arsenite was incapable of phosphorylating the
substrate Elk-1. Dose response analysis of the effects of the MEK inhibitor on
ERK activity demonstrated inhibition of arsenite activation of ERK (Figure 6.5A).
The role of ERK in arsenite induction of pCHO7.1-Luc was then probed using
PD98059. As shown in Figure 6.5B, at 30 uM the inhibitor blocked
approximately 60% of the arsenite induction of the HO-1 reporter gene.

JNK MAP kinase is not implicated in arsenite induction of cHO-1.

Possible involvement of JNK in HO-1 induction by arsenite was studied by co-
transfecting components of the JNK pathway with pCHO7.1-Luc.- If JNK was an
important intermediate in the pathway to HO-1 induction, wild type constructs
would be expected either to increase luciferase reporter activity or to give
results similar to control, while dominant negative components would block the
arsenite increase in reporter gene activity. Figure 6.6 shows that wild type JNK,

MEKK1, or MLK3 resulted in luciferase gene activity levels similar to control.
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Figure 6.5: Effects of the MEK inhibitor, PD98059, on ERK activity and
arsenite-mediated induction of HO-1. LMH cells were left untreated or treated
with the indicated concentrations of MEK inhibitor. Some samples received
75uM ARS 30 minutes after addition of inhibitor. (A), Cells were harvested 10
minutes after Vaddition of ARS (40 minutes after inhibitor) and ERK activity was
measured by immune complex kinase assays. Data was quantitated with a
Phosphorimager and plotted as a dose response curve. [Insert:
Phosphorlimager scan of the kinase assay gel; M - SDS-PAGE low molecular
weight protein standard, Lane 1: No treatment, Lane 2: 75 uM ARS only, Lane
3: 10 uM PD only, Lanes 4 - 8: 75 puM ARS plus increasing concentrations of
PD (1, 5, 10, 20, 30 uM), Lane C: EGF treated LMH cell lysates as positive
control]. (B), Prior to treatment, cells were transfected with pCHO7.1-Luc, and
pPGK-Bgal. Cells were harvested 6 hours after addition of ARS (6.5 hours after
inhibitor). Luciferase activities were normalized t0 B-galactosidase activities
and protein content. Data represent mean + SEM, n=3. **Gjgnificantly less

than ARS only control, P < 0.005. *Significantly less than ARS only control, P <

0.001.

-
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Figure 6.6: Effects of JNK signaling pathway components on reporter gene
activity in LMH cells co-transfected with pCHO7.1-Luc. Wild type JNK, and
activators of the JNK kinase pathway (MEKK1 and MLK3) were tested for their
ability to indﬁce reporter gene expression. Dominant negative JNK MAP kinase
pathway components (MEKK1 K432A and MLK3 K144R) were tested for their
ability to block arsenite induction of the reporter gene. LMH cells were co-
transfected with pCHO7.1-Luc, pPGK-Bgal, and the indicated MAP kinase
construct using LipoFECTAMINE®. Luciferase activities were normalized to 8-
galactosidase activities and protein content. Data represent meén + SEM, n=3.

* Significantly greater than untreated control, P < 0.05.
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However, in contrast to the results for ERK components, arsenite treatment
continued to increase luciferase gene activity in the presence of co-transfected
dominant negative MEKK1 or MLKS.

Involvement of p38 MAP kinase in arsenite induction of the cHO-1 gene.

In Figure 6.3, an ERK component (MEK), or & p38 component (MKKS),
demonstrated the ability to induce luciferase reporter activity. To further
delineate a role for p38 in arsenite signaling, a p38 kinase specific inhibitor
(SB203580) was tested for the ability to block arsenite induction of HO-1 gene
expression. SB203580 is a pyridinyl imidazole (See Appendix D for structure)

that specifically binds to p38 kinase with a 1-1 stoichiometry, and competitively

" inhibits the binding of ATP with a K; of 21 nM and an IC, of 42 nM '*"*.- Figure

6.7A shows the effects of SB203580 on arsenite induced HO-1 mRNA levels in
LMH cells. When cells were pretreated with inhibitor at 20 uM for 30 minutes
prior to arsenite treatment, the ability of arsenite 10 increase HO-1 mRNA levels
was decreased to only 47% of the control (no inhibitor). The inhibitor alone
caused no significant change in HO-1 mRNA levels.

Since both kinase inhibitors (PD98059 for MEK in Figure 6.5B and
SB203580 for p38 in Figure 6.7A), blunted arsenite-mediated induction of HO-
1, the combined action of both the MEK and p38 inhibitors on expression of the
pCHO7.1-Luc reporter géne was further investigated (Figure 6.7B). Cells were
treated with MEK inhibitor, p38 inhibitor, or both, either alone or 30 minutes

prior to arsenite treatment. The MEK inhibitor blocked 48%, and the p33
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“igure 6.7: Effects of inhibitors of MAP kinase pathways on HO-1 gene
axpression in LMH cells. (A), LMH cells were treated with the indicated
~oncentrations of p38 kinase inhibitor (SB203580) alone, or 30 minutes prior to
addition of 75 uM ARS. Cells were harvested 4 hours after addition of ARS (4.5
hours after inhibitor). HO-1 mRBNA was quantitated on dot blots and normalized
to GAPDH. Data represent mean + SEM, n=3. *Gignificantly less than control
(ARS only), P < 0.01. (B), Prior to treatment, cells were transfected with
pCHO7.1-Luc, and pPGK-Bgal. After transfection, cells were treated with either
30 uM MEK inhibitor (PD98059), of 20 uM p38 inhibitor (SB203580), of both, 30
minutes prior to addition of 75 uM ARS. Cell lysates were harvested 6 hours
after addition of ARS (6.5 hours after inhibitor(s)). Luciferase activities were
normalized to B-galactosidase activities and protein content. Fold inductions
versus no ARS control are presehted. Data represent mean + SEM, n=3.
*Gignificantly greater than no ARS control, P < 0.005. 1Significantly less than
ARS treated pCHO7.1-Luc, P < 0.001. §Significantly less than ARS treatéd

pCHO7.1-Luc, P <0.01.
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inhibitor blocked 68% of the arsenite-mediated increase in luciferase gene
activity. This pattern of inhibition is consistent with the patterns of p33 and ERK
activation by arsenite (Figure 6.2). Because p38 is activated to a greater extent
than ERK (Figure 6.2), it is not surprising that inhibition of arsenite induction by
the p38 inhibitor was greater than by the MEK inhibitor. When added in
combination, both inhibitors also strongly inhibited (84% inhibition) the increase

in luciferase gene activity.
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Conclusions

The major findings described in this chapter are: 1) sodium arsenite
activates the MAP kinases ERK, JNK, and p38 in LMH celis; 2) activated
components of the ERK and p38 MAP kinase pathways are capable of inducing
HO-1 gene expression, while dominant negative components block arsenite
induction of HO-1; and 3) inhibitors of MEK and p38 differentially inhibit the
arsenite induction of HO-1.

Arsenite potently induced both endogenous HO-1 and transiently
transfected HO-1 reporter constructs in LMH cells, making this a good system
for studying the arsenite-mediated cellular stress response. The results
described in this chapter show that there are clear differences between the

activation pathways of arsenite and the other treatments tested (heat shock,

cadmium, and heme), since all of these conditions elicited different patterns of
MAP kinase activation (Figure 6.1).

Some researchers have proposed that heme induces HO-1 by a stress-
mediated mechanism 2248749411118 - However, in kinase assays, heme, at
concentrations that strongly induce endogenous HO-1, failed to activate any of
the MAP kinases (Figure 6.2). Therefore, since heme induces endogenous HO-
1 in LMH cells ™, it is likely to do so via a non-MAP kinase-mediated pathway.

This is consistent with the results of Cable et. al. ”°, who proposed that heme

induces HO-1 through a pathway not involving a stress-mediated mechanism.




173

In LMH cells arsenite activates ERK, JNK, and p38 (Figures 6.1 and 6.2), in
agreement with the studies done by Liu et al. in Rat-1 and PC-12 cells .
Activated components of the ERK pathway, (Ras, Raf, MEK), and an
activated component of the p38 pathway (MKK6) were able to induce luciferase
gene expression from the pCHO7.1-Luc reporter construct (Figure 6.3). In
contrast, MEKK1 and MLK3, components upstream of JNK, were not capable of
inducing expression of this HO-1 promoter-reporter construct (Figures 6.3 and

6.6). MEKK1 has been reported to activate a number of kinases, including JNK,
1B kinase, and ERK in some experimental systems (but only when

overexpressed) '*21%'°'. Since MEKK1 was unable to induce luciferase gene
expression, these pathways of activation are not likely to be involved in
mediating the arsenite induction of HO-1. Experiments involving dominant
negative components of the ERK and p38 pathways, and the inhibitors of MEK
(PD98059) and p38 (SB203580), also provided strong evidence that these two
pathways play essential roles in HO-1 gene expression in the presence of
arsenite. The combination of MEK and p38 inhibitors was unable to completely
block the arsenite induction of pCHO7.1-Luc reporter gene expression. Due to
amplification in kinase signaling pathways, a small amount of active kinase may
account for the induction observed in the presence of both inhibitors (Figure

6.7). However, arsenite signaling is complex, and may also utilize a pathway

that does not involve a phosphorylation event. These results suggest that ERK
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and p38 mediate the MAP kinase induction of HO-1, and that JNK is unlikely to
be involved.

In summary, arsenite induced MAP kinases that are involved in cellular
— responses to mitogens and cellular stressors. Disruption of the ERK or p38
MAP kinase pathways by dominant negative components or inhibitors blocked

nearly all of the arsenite-mediated induction of HO-1. In contrast, JNK did not

seem to play a role in mediating the induction of the HO-1 gene by arsenite.
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CHAPTER VII

CONCLUSIONS

Summary and Discussion

Heme metabolism and its regulation were studied in the chicken
hepatbma cell line, LMH. LMH cells exhibited regulation of ALA synthase
mRNA levels and heme biosynthesis, analogous to that observed in normal
chicken hepatocytes. Porphyrin overproduction and accumulation were
observed in response to treatment with chemicals that are routinely used for
induction in models of porphyria. HO-1 mRNA and activity levels were
characterized and correlated with those observed in primary CELCs. Some
minor differences were observed in the efficacies of cobalt and arsenite
“treatments and in the effects of iron chelation on LMH cell metabolism. For the
first time, an induction 6f HO-1 mRNA in CELCs was observed in response to
heat shock. Regulation of heme degradation by prototypic inducers and by
treatments that cause oxidative stress was studied. These data support the use
of LMH cells for further investigation into the regulation of heme metabolism.

HO-1 is induced by a wide array of chemical and physical agents.
However, very few studies have been done previously to elucidate the signaling

mechanisms utilized by these stimuli. Some evidence has suggested that at

least two separate mechanisms of induction exist, one that is heme-dependent,

B
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and another (mediated by transition metals) that is heme-independent 2 put the
exact mechanism of signal transduction from the cell surface through second
messengers 1o transcription factors and promoter elements was not delineated.

In Chapter V, HO-1 gene expression in response to sodium arsenite was
examined in detail. Studies using transfected HO-1 deletion constructs showed
that robust induction by arsenite correlated with the presence of putative AP-1
consensus sites in the distal promoter. Site-directed mutagenesis of these
elements revealed an important role for AP-1 transcription factor elements
(located at -1578, -3656, and -4597 base pairs upstream of the cHO-1
transcription start site) in the arsenite-mediated induction of HO-1.

The role of MAP kinases as mediators of the arsenite induction of HO-1
was examined. Several in\}estigators have presented evidence that arsenite
activates the MAP kinases in several cell lines si1e2 Al three MAP kinase
tamilies activate transcription factors that target AP-1 sites 17,189,140 Transfection
of LMH cells with plasmids containing constitutively activated and dominant
negative components of each MAP kinase pathway suggested that ERK and
p38, but not JNK, modulate most of the arsenite-mediated induction of HO-1.
From studies using stably transfected PC12 and transiently transfected Rat-1
cells, Liu et. al. *' suggested that the cellular response to arsenite is partially
regulated by a Ras-dependent mechanism and partially by a Ras-independent
mechanism. A response involving both the Ras-dependent ERK, and the Ras-

independent p38 pathways (as observed here) is consistent with this result.
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Additionally, the recently described MAP kinase, ERKS, is proposed to be
activated via a Ras-dependent but Raf independent pathway '*.

Several possible mechanisms through which arsenite activates both ERK
and p38 provide an explanation for cooperative activation of HO-1 gene
induction: 1) ERK and p38 may target transcription factors that bind to separate
promoter elements required for the tightly controlled expression observed for
HO-1; 2) ERK and p38 may activate transcription factors that bind to a single
promoter element; or 3) ERK and p38 may target a shared downstream kinase.
AP-1 elements are potential targets for the combined action of ERK and p38.
ERK can increase c-Fos expression in vitro, while p38 activates ATF2, and also
increases c-Fos expression. Each kinase activating one of its substrates would
lead to formation or activation of AP-1 transcription factor complexes
122.132,135,140.194,1%5 |\ a recent study by Numazawa et al., c-Fos protein expression
and ERK activation were shown to be involved in glutathione depletion-
mediated oxidative stress induction of HO-1 in human fibroblasts '°. There are
also several other putative promoter elements (Myc/Max, CREB, and STAT3
sites) present in the cHO-1 distal promoter region that may serve as targets for
transcription factors activated by MAP kinases (See Figure 5.5).

Another explanation, requiring multiple mechanisms of MAP kinase
activation for the full response to arsenite, may involve effects of this chemical
on phosphatase activities. Although evidence presented here supports a role

for ERK and p38 in HO-1 expression, these studies do not exclude the -
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possibility that the activity of one or both of these MAP kinases may be
increased through phosphatase inhibition, in addition to or instead of activation
of their upstream kinase cascades. Phosphatases have critical sulfhydryl
residues that are susceptible to the type of oxidation mediated by arsenite.
Inhibition of phosphatases may also lead to an increase in MAP kinase activity.
In a study of MAP kinase activation by arsenite, Cavigelli et al. ' suggested that
arsenite may stimulate AP-1 transcriptional activity by inhibiting a JNK

phosphatase. A model representing several possible mechanisms for induction

of HO-1 by arsenite is presented in Figure 71.
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Figure 7.1: Possible mechanisms for induction of HO-i by sodium arsenite.
Most of the arsenite-mediated inductioh of HO-1 gene expression is transduced
by the ERK and p38 MAP kinase pathways (indicated by heavy arrows).
Inhibitors that were used to elucidate ERK and p38 involvement are
represented by X's through arrows (PD98059, specific inhibitor of MEK;
SB203580, specific inhibitor of p38). MNK1/2 is a possible site for cooperation
between the ERK and p38 pathways. Also shown at the bottom of the figure are
possible mechanisms for cooperation by transcription factors activated by ERK
and/or p38.

The remainder of the arsenite signal may be transduced by several other
mechanisms as shown. Arsenite activated JNK i LMH cells, but effects on HO-
1 gene expression were not observed (light arrows). By inhibiting a MAP
kinase phosphatase (MKP) as suggested by Liu ot al ¢, arsenite may increase
MAP kinase activity (indicated by interrupted arrows, — - —). This possibility is
illustrated for the JNK pathway, but is applicable to other MAP kinases as well.
Alternatively, a signaling mechanism that does not involve MAP kinases may be
utilized (indicated by dashed arrows, ----- ). This mechanism may be
phosphorylation dependent (other protein kinases) or it may be a pathway that
is independent of phosphorylation events. The question marks represent the
unknown effects of JNK activation by arsenite (?), and possible signaling
through pathways that do not involve MAP kinases (7). @ = Phosphorylation

event.
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Future Directions

The data presented here support the use of the LMH chicken hepatoma
cell line as a good model system for studies involving the regulation of the
major enzymes involved in heme biosynthesis and degradation. Other facets of
the regulation of heme metabolism may be elucidated through long-term
studies and stable transfections, which are now possible using LMH cells.

The sequence reported in Appendix E contains 7.1 Kb of the HO-1
promoter. Several HO-1 promoter luciferase reporter gene deletion constructs
were prepared, and their responsiveness to arsenite was characterized. In
addition, three putative AP-1 elements were mutated and tested for induction by
arsenite. The plasmids and assay system developed throughout the research
presented in Chapters V and VI provide useful tools that will facilitate the
elucidation of promoter elements and signaling mechanisms utilized by the
multitude of stimuli that increase HO-1 gene expression.

Additionally, these studies link two major research fields. Research
directed at elucidating the physiological consequences of MAP kinase
activation by stress-causing stimuli has emerged concurrently with research
directed at del_ineating the larger role of 'HO-1 as a cellular stress response
protein. In particular, HO-1 has been shown to play a role in protecting cells

and tissues from oxidative stress brought about by ischemia/reperfusion 196197

hypoxia ', tissue damage '*°, hypertension 19 and physical stress *°.
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Arachidonic acid and cyclooxygenase metabolites have also been implicated
as inducers of HO-1 2. The effects of these treatments on MAP kinase
activation and phosphorylation of MAP kinase substrates also have been
elucidated recently 2°222% When considered together, these studies
conceptually link the activation of MAP kinases with induction of HO-1 as
integral players in an elaborate cellular stress responsive mechanism.

Although the data presented in Chapter VI indicate that both ERK and
p38 MAP kinases are modulators of HO-1 gene expression in response to
arsenite, the entire signaling pathway has yet to be delineated. Activity of MAP
kinases is maintained by a balance between phosphorylation by upstream
kinases and dephosphorylation by dual-specificity and tyrosine phosphatases
143204207 Therefore, MAP kinase activity may be increased either by activation of
upstream kinases or by inhibition of regulatory phosphatases. One study by
Cavigelli et al. suggested that arsenite induced JNK activity in HelLa cells by
inhibition of a JNK phosphatase ™. Further investigation into a phosphatase
inhibition mechanism for HO-1 induction is necessary to delineate the
contribution of phosphatases to arsenite induction of HO-1.

This work provides a solid foundation for further research, which may
investigate: 1) upstréam components of the pathway leading from arsenite
through MAP kinases to HO-1 gene expression, 2) other non-MAP kinase signal

transduction pathways (phosphorylation dependent or independent) that

mediate arsenite induction of HO-1, 3) other HO-1 promoter elements or targets
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of MAP kinases after activation by arsenite, and 4) a possible indirect role for

JNK in HO-1 gene expression.
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L-arginine
L-arginine-HCI
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L-cysteine
L-cysteine°2HCl
L-cysteinesHCI*H20
L-cystine°2HCI
L-glutamic acid
L-glutamine
Glycine

L-histidine
L-histidine-HC|-H20
L-isoleucine
L-leucine
L-lysine-HCl
L-methionine
L-phenylalanine
L-proline

L-serine
L-threonine
L-tryptophan
L-tyrosine°2Na°2H20
L-valine

Inorganic Salts:
CcaCli2 (anhyd.)

waymouth's mB
752/1 Medium,

powder

(mg/L)

75

60

100.26
20
150
350
50

164.1
25
50
240
50
50
50
75
40
57.66
65

90.61

williams'
Medium E (1),

powder

(mg/L)
90
50
20
30
40
40

26.07
50
292
50
15
50
75
87.46
15
25
30
10
40
10
50.65
50

200




CuS04+5H20
Fe(N03)3-9H20
KClI

KH2PO4

MgCl2 (anhyd.)
MgSO4 (anhyd.)
MnC12¢4H20
NaCl

Na2HPO4 (anhyd.)
Na2HPO4+H20
7nS04+7H20
Other Components:
D-glucose
glutathione (reduced)
hypoxanthine'Na
methyl linoleate
Phenol red
sodium pyruvate
Vitamins:
ascorbic acid
biotin

D-Ca pantothenate
choline chloride
ergocalciferol
folic acid
i-inositol
menadionée sodium
bisulfate
niacinamide
pyridoxine-HCI
riboflavin

a-tocopherol phosphate,

sodium salt
thiamine*HClI
vitamin A acetate
vitamin B12

150
80
112.56
97.67

6000
300

5000
15
29
10

17.5

0.02

250

0.4

10

0.2

216

0.0001
0.0001
400

97.67
0.0001
6800

140
0.0002

2000
0.05

0.03
10
25
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williams’ E Medium Complete was supplemented with:
1.5 uM 3,5,3'—triiodo-L-thyronine
0.76 uM dexamethasonée

200 uM glutamine

IEE S

MB 752/1 Complete Medium was supp|emented with:
100 U/mL penicillin

100 pg/mL streptomycin
10% (viv) fetal bovine seru

- waymouth’s

m (GIBCO)

purchased as a liquid from Life
ion was made.

Opti-MEM Reduced Serum Media was
No modification or supplementat

Technologies, Inc.




Buffers

Phosphate Buffered Saline (PBS):
10 mM KPi
0.15 M KCI
Adijust to pH 7.4

10X HEPES buffer:
200 mM HEPES
50 mM sodium acetate
10 mM EDTA
pHto 7.2 with NaOH
Filter to sterilize

20X SSC:
3.0 M NaCl
0.3 M sodium citrate
Adjust to pH 7.0 with 10N NaOH
Autoclave to sterilize

Harvest Buffer (HO Activity assays):
0.1 KPi,pH 7.4
20% glycerol
1.0 mM EDTA
Adijust to pH 7.4

TE Buffer:
10 mM Tris*Cl, pH 7.4,7.5,0r 8.0
1 mM EDTA, pH 8.0

Z Buffer (B-galactosidase assays):
60 mM NaHPO,* 7 H,O
40 mM NaH,PO, * HO
10 mM potassium chloride
1 mM magnesium sulfate
50 mM B-mercaptoethanol
Adjust to pH 7.0

218



Glycylglycine Harvest Buffer (lmmune com

Triton Lysis Buffer (Immune complex kinase assays):

25 mM glycylglycine, pH 7.8

15 mM magnesium sulfate

4 mM EGTA

1 mM DTT *(added just prior 10 use)

20 mM Tris, pH 7.4

137 mM NaCl

25 mM B-glycerophosphate
2 mM sodium pyrophosphate
2 mM EDTA

1 mM sodium vanadate *

- 1% Triton X-100

Kinase ASS

3X SDS Lo

10% glycerol

1 mM PMSF *

5 ug/mL leupeptin *

5 png/mL aprotinin *

2 mM benzamidine
05mMDTT”*

*(added just prior to use)

ay Buffer (lImmune com
o5 mM HEPES pH 7.4

25 mM B-glycerophosphate-Na+
25 mM magnesium chloride

0.1 mM sodium vanadate *
05mMDTT "

*(added just prior to use)

ading Buffer:

150 mM TriseCl (pH 6.8)

300 mM DTT

6 % SDS (electrophoresis grade)
0.3 % bromophenol blue

30% glycerol

plex kinase

plex kinase assays):

219

assays):

T
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Bicinchoninic Acid Protein Assay Stock Reagents:
Solution A:
161 mM sodium carbonate ¢ H20
: 5.67 mM sodium potassium tartrate
113 mM sodium bicarbonate
75 mM sodium hydroxide
3.63 mM bicinchoninic acid
pH adjusted to 11.25 with NaOH

Solution B:
160 mM cupric sulfate

Wworking reagent.
50 mL Solution A
1 mL Solution B
Mixed well, used within 1 week
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APPENDIX C: LIST OF PLASMIDS

NAME OF PLASMID

MAP Kinase, Vectors,

Contains:

and Control Plasmids

Reference or
Source:

pCMV/HA-ERK2

wild type ERK

Whitmarsh et al.'s®

pSRo/HA-JNK1

wild type JNK

Dérijard et al.'®*

S218E-S222D

pCMV5/MEK1 constitutively activated MEK1:Mansour et al.'®
S218E-5222D
pCMV5/MEK1ANS, constitutively activated MEK1 Mansour et al.'®

pCMV5/MEK1 K97A

dominant negative MEK1

Mansour et al.'®’

pCDNA3/MKK®6 constitutively activated MKK® Raingeaud et al.'®
S207E-T211E
pCDNA3/MKK6 dominant negative MKK6 Raingeaud et al.'*®
S207A-T211A
pCMV5/MEKK1 wild type MEKK1 Whitmarsh et al.'®®

pCMV5/MEKKT K432A

dominant negative MEKK1

Whitmarsh et al.'®®

pCDNA3/HA-MLK3

wild type MLK3

Teramoto et al.'®®

pCEF2/MLK3 K1 44R

dominant negative MLK3

Teramoto et al.'®®

pCDNA1/TAM67

dominant negative _c-Jun

Rapp et al.'®®

pCMV5-Ras61 L

constitutively activated Ras

Wartmann and

TPA-responsive _elements

Davis'®’
pCMV5-Ras17N dominant negative Ras Wartmann and
' Davis'®’
pCMVS-Raf-Flag epitope tagged Wartmann and
wild type Raf Davis'®’
pCMV5-Raf-BXB constitutively activated Raf iWartmann and
Davis'®’
GAL4-Luc luciferase gene driven by Roger Davis
: yeast GAL4 elements
4XTRE-Luc luciferase gene driven by 4 iRoger Davis

pBLUESCRIPT KS 11+

DNA filler in transfections

Commercial

h
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pSV-Bgal B-galactosidase w/SV40 iCommercial
promoter _
pPGK/B-gal B-galactosidase w/PGK Paul Dobner
promoter
pGL3-Control Luciferase vector w/SV40 Gregorio Gil
promoter_and enhancer Promega
pGL3-Basic Luciferase vector w/no Gregorio Gil
romoter or enhancer Promega
Chick Heme Oxygenase-1 Promoter Reporter Constructs
pCHO.TATA-Luc HO-1/luciferase reporter gene Kim Elbirt
pCHOO0.6-Luc HO-1/luciferase reporter gené Kim Elbirt
pCHO1.6-Luc HO-1/luciferase reporter gene Kim Elbirt
‘ pCHO2.5-Luc HO-1/luciferase reporter gene Kim Elbirt
: pCHO3.6-Luc HO-1/luciferase reporter gene Kim Elbirt
% pCHO4.6-Luc HO-1/luciferase reporter gene Kim Elbirt
pCHO5.6-Luc HO-1/luciferase reporter gene Kim Elbirt
HO-1/luciferase reporter gene Kim Elbirt

CHO7.1-Luc
AP-1 Mutants of pCHO-Luc Deletion Constructs

pCHO2.5mut1-Luc single AP-1_mutation Kim Elbirt
pCHO2.5mut2-Luc single AP-1_mutation Kim Elbirt
pCHO4.6mut1-Luc single AP-1 mutation Kim Elbirt
pCHO4.6mut2-Luc single AP-1_mutation Kim Elbirt
pCHO4.6mut3-Luc single AP-1_mutation Kim Elbirt
pCHO4.6mut13-Luc double AP-1 mutation Kim Elbirt
pCHO4.6mut23-Luc double AP-1 mutation Kim Elbirt
pCHO5.6mut1-Luc single AP-1_mutation Kim Elbirt
pCHO5.6mut2-Luc single AP-1_mutation Kim Elbirt
pCHO5.6mut3-Luc ” single AP-1_mutation Kim Elbirt
pCHO5.6mut4-Luc single AP-1 mutation Kim Elbirt
pCHO5.6mut13-Luc double AP-1 mutation Kim Elbirt
pCHO5.6mut14-Luc double AP-1 mutation Kim Elbirt
pCHO5.6mut24-Luc double AP-1 mutation Kim Elbirt
pCHO5.6mut34-Luc double AP-1 mutation Kim Elbirt
pCH05.6mut134-Luc triple AP-1 mutation Kim Elbirt
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APPENDIX D: STRUCTURES OF MAP KINASE INHIBITORS

PD 98059
phenyl)-oxanaphthalen-4-one,
Inhibitor of MAPK/ERK Kinase (MEK)

2-(2'-amino-3'-methoxy

7 X

/
NH (0]
B 4
/ \
N CH,
SB203580

Pyridinyl Imidazole inhibitor of p38 MAP Kinase




APPENDIX E:

In the follow
underlined.
construct (shown i

followed by construct

mutated in

labeled AP-
TATA box is underline

transcription start si
jtalicized bold type,

functional
1*mut, are

bases is in reference

2CGEGCTAGA
Mlu I-Nhe
AGCAAAGGGG
CAATGGAACC
CAGCACCTCT
CTGGAATCCT
AAAGCCCTTG
CAGGCTGAAG
CTTTGCAGTT
CTCAATACGA
TCCCGCTGTG
TGTTGACTCC
GGCCCTCATA
GCTCGTTCAA
CGCAACAGCA
GAGAAACCCC

GCTGGGGAGA

TTGAACGTGG

GTGGGCTTCC

ing sequence,
gites that defin

putative transcription facto

and underlined.

SEQUENCE OF HO-1 PROMOTER

n Figure 5.1) are 1
length in Kb in parentheses.
r binding sites

Activator protein-1 (AP-1) sites that were

gtudies of

and is labeled (+1) .
to the transcription start site =

AGCCCTCTGC

I/Xba I(7.1)

GTACGACACA

CTATTGCTCT

CACACAACCC

ACCCACAGCC

TAAGCACACA

GGGCTGTCTG

AATTTAATTC

CCCTGCCTCC

GTGCAGGGAG

CTGTGTGCCG

GGCACCGTTA

GCTGGTGAGC

AAGCAGCCCT

TTCTGAGCAA

TGGGTGCCGA

GAGAGTTGCC

TTACAGGCAG
AGCTTTTCTT
CTTCTCTTCC
CTTGTTTCCG
GGCTTTGAGC
CTGTGGGTTA
CCCTATTACT
ATCTCGCTTC
GATCTCTTAG
TAGCAGAGAG
CACTGGTGGG
GCAAGGGGGG
ACAGCAGCCA
ACCACACACA
GCCTGGGGCT

TTTTTTATTG

restriction enzyme cut site
e the end of a reporter
ndicated in bold type,
All

225

s are

are italicized

arsenite responsiveness are

d type.
underlined and

underlined and shown in bold type.
ad and shown in bol
te is shown in

The

MIlCLAT L & 2 mn 2=

Numbering of

CTGCTGCTGT

CAGAGGAAAA

RS mra A

Pu Box
GCACAAGTGC

TTTCCTACCC
TTGCATGCCA
TGCGAGTGGT
GGGTGTGCCT
ATCCTTTCCT
CACTGATGCC
CCTCAGATCC
CTGTGTTCCC
AGCATGCTGT
AAGTGAGACA
GGAGTGACTT
GTGCCTGATC

CCTGCTCATG
MRE
CACATTAAAG

TAGCCTGGAA
ACACTAATGG
TTGTGGTATG
ATCAGTTTAT
GCCAGTTACC
ACGCAGCCTG
TCAGCAAACT
TCCTTCTTTC
TTCTACCACA
AGCCAACAGC
TAAAGCAGGA
TGCTGGGAGA
TCAGTCATCT
GCACATGGGG
CTGTACGGCA

GGATTTCCTG

GAGCAAACTC

The

+1.

-7023
-6973
-6923
-6873
-6823
-6773
-6723
-6673
-6623
-6573
-6523
-6473
-6423
-6373
-6323
-6273

-6223




TTGAACCTCT
GAGAAGAGGA
CAGTGGTGCT
AGACAGGTGC
AAGAGAGTGA
GACCCAAATG
CAGTTGCTCT
TCAGCTGTCC
AGCCCTCCCG
fGGATGTGGC
ATGGTTGGAC
TCCAATGATT
CTGTTTGCTG
AGCCTGAGCT
CGCTTAGAGC
CTTTGTTCTA
GGTGACCGCT
AAGCATCCAT
CTTTTGCATG
Octamer
AACGTCCTTG
CATATTAAAA
TGGCATATCA
CACATGAAAT
CCCACATCAT

GGAAGGCTGT

GCTGAAGGAA
ATGCAGCCAT
GAGAGGAGGC
TGGCTCCTGG
GCTACCTCCT
CACATCTCAA
GAAAGGGCTC
CTGTGCATCT
AGTGGTGGAG
ACTGAGGGGC
CGGCAGATCT

Bgl IT
CCGTTGATTA

ATTTCTCCCA

PEl
CTGCAAGCGG
AGCCCCTGCT
GGAATTACAC
CCGGAGCGTG
CAAAAACCAC
TTCCGGAGTG
CGCCGGGTCA
GCTCATGAGA
GCACCACATT
TTATTTATAA

CTCATGCATC

TCTCTACCCC

CGTGTGTGTT
GTGGCCACAT
ATGGCATGGG
GGAGGTGGCT
CCCCATCCCC
TCCATAAATC
TGTGGTATCC
CCTGGTGTCA
TCGCATCCCT
ATGGTCAGTG
TAGAGGTCTT
AAAAAAAAAA
GCAGATGGCT
MI(5.6)
CAGAGGAAGC
ACACAGGACA
TGCAACCTTT
CACATGGGAG
CCTGGGAGCA
CTTGTTTITA
GATTTGCTCC
ATTTCCAIGA
Octamer
CCTCAAGGCA
AGAACAGTTA

AGCACAGAAG

ACAGGATTIT

CTGTGCCAGA
TTGCTCTCCA
GCTGAGGGCG
CCAACCCATC
TCCCCTCTGC
AGCCARAGAC
ACAGCATGTC
GACCGGGTGG
GGAGGTGTTC
AGCGCGGTGG
TTCCAACCTT
AAAACACCGA
GTAGTGCCTC
CCTCTTGCTT
CCGAACCAAA
AGCCTGACAC
CTGTGTGCAC
GGAGCATGAC
TGTAAGCTGA
TTATCTCTAA
TGTTTGGGCT
AAAAATCCCA
ATGAACCAGT
TACCCCTTGC

CATGTTGCTC

Octamer

GTGGGGAAGG
AGTGAGAGCA
CTGTGAGTCA

AP-1
CCAARATAGC

CTTGTGACCA
ATGCAAGAARA
CTCAGAGTCC
GAGCTTGGAA
AAGAACCGTG
GGATGGGCTG
AATTCTATGG
CCCCCTAAGG
GCACGTTGGC
CGCAGTGACC
CAAAGTTGTG
AGACTCACAC
ACGCGGGCTG
CAACATAGAC
AAAAAGCCAG
AAATTAAACG
GTGCAGTTCT
ACTCAAATAG
CTTCTGATTT
TGGTACACTG

TACCGTGCCA

226

-6173
-6123
-6073
-6023
-5973
-5923
-5873
-5823
-5773
-5723
-5673
-5623
-5573
-5523
~-5473
-5423
-5373
-5323
-5273
-5223
-5173
-5123
-5073
-5023

-4973

|
]
|
|




AATCTTCCTC
TGTGTGCCAG
TGTATTCAGA
TTCCCCATGA
ATCACCCGCA
GGGTTCCCAC
AGTCAGGGTC
coreB/AP-1
TGCGGCAAAG
GGCTGTTTAT
TGTTGTTCCT
AGAAATAAAC
CTCCAGCTGG
GGGTTTCGCT
CCTGAGCTGC
ATGCAGCCAC
CATGCAGGGC
CACACCTCCC
GTCCCCACCG
ACAATGCGTA
GGCACGCACG
GCTCTGTGCG
CCCCACGGGG
ATCTGTATCT
CACAATCCGT
CACAGCACGT

CTGTACGTGG

AAAGCTTTGC
Hind IIT
CTCTGAAATA
CAGTGAAGCA
GGAGCAGGAT
TCCTGGGTCA
AGATGCTGAC
ACGCCAGGCC
GGGCCCTTAG
CAGGAGGGCG
Sp T
GGCCCTGCTC
CCCAGCCCCG
GAGCCACACA
ACCTGCAGAA
GGTACAAAGT
TCGCAGCGTG
TACGTGGGGT
TGTGGCTCAC
GCACCCGGCC
TTGTAATCAC
TCCATCCCCC
GAGCAGCAGC
AGGACCCCTT
TTGATCTGGG
TCTGCCAGGG

CCTGTGGACT

GTATTGCAGC

CCTGGTARGC

AAAAGCTCCT

GGCACTCCCA

CTGTCCCAGT

GACCCTCAAA

TCATCCTTCC

ACGGGGTTTT

TTGCTGAGIC

TCCATAAGTT

TTGCACTCAC

CACCCCATCT

CCTGGGGCCA

CCCCACAGCC

CCAAAGAGGC

GCTGAGCAAC

ACAGCAGAGA

———ﬂ__—
coreB/AP-l*mut

GCTTCCTGCC
CCGTTTCTCA
CAGCACTGCA
GCGGGGGGTT
CTTGGTTTCC
CCTGTTCGGT
CGCCTGTCTC

TTGTATTCGC

TGCCGTGCTG
GGACGACCGG
TGGGACGCGC
GGAAGCAGCG
TGTTCTGTCT
GCCTACGTGC
AGTCAGGGTG

TAGCTTGCCT

Nhe I

AGACCCCAGT

CCAGCCGAAG

CGCTTCCTGC

ACCACATCCG

ATCCGTCCCC

GGTTCTCAGT

TTCGGGTTGT

CAGCCTCCTIT

CCAGCAGTGA

TGTGTGGGGT

CCCAGCAGGT
CCCTTATCCA
TTCCATCACC
TCTCTGGGGC
CAGAGGTGCC
GCTCCCACCC
TCTGCGGCGA
TTGGTAAACA
CTCTCTCCTT

TTTTCCCTCT

CAGCATGCCC
TGTGTCTCTG
GTGCCCCAGT
GGGCTCCAGC
TTCAGGGTGG
CATTCTGCTG
GCTTCTGGGC
GGCCACGTGA

MycMax/Pml
AGGTTGCAGC

AGAAATCTCC
ATCTCCTCTA
GGGTACAGTG
CCTCCCGTGC
GAGTCCTCGA
CACTTTGCTT
TGCTCCCTTC
CGCAGGGTCT
TACATCTGGA
CTGAGAACCC
CACGGCACGG
ACCGCCACAG
ACTGTGCTCC
GGGCAATAARG
CGAATTAGCA
TCACAAGTAG

CCATTACACA

227

-4923
-4873
-4823
-4773
-4723
-4673
-4623
-4573
1(4.6)
-4523
-4473
-4423
-4373
-4323
-4273
-4223
-4173
-4123
-4073
-4023
-3973
-3923
-3873
-3823
-3773
-3723

-3673




GCAAGATCTG GTTGCTGAGT CAGCCCCCCT

Bgl II(3.6)

CTGTGTCATG

L AAT LA S el s =

coreB
TGGCTGTGAC

AATGCATCAG

TCTTCTCTGG

CAGTCAGGAC

GAATCATTTA

CCTGCAATGA

TCCAGCCTGA

GGATGACCCG

TTATATCCAA

GTCCTATTCT

CATTTCCCTIT

TGAAGTCTAT

AAAGACTCAG

TATCAGCCTC

CTCAGCAGTA

TGATCAGTGA

CTGCAGAGCA

ACTGATGACA

TGGGCTTTTC

TAACCCCAAC

CCTGCTCCTA

GTGACCTTGT

GTTTCAGTCC
CAGGCGGTGC
AGCCAAATGA
GGCAGATGGT
AAGCTGTTAG
AGTTGGAAGG
ACAGGGACAC
CCCTGGGTGT
CTCCAGTGTT
CCTAAAACTC
AACAGATCCT
CCCCTGATGG
TCCGTTCCTC
ACAGGCAGAT
AGGCTGCTTC
GTCCCACACG
AAGCACAGCA
CTGGATCAAG
GCCTGCTTTC
TGGAGTGAGG
CAAATCAGGC
TGGAGGAGCT

CTCCTGTGAC

Tth 111 I(2.5)
ACACTGGAGG

AGAAGATGGA

AP-1l*mut

TCCATCAGTT
CTCCTTGCAC
GGAGCGGTGT
GTAACCAGAG

GTCCATAAAG

CCCAGCCAGG
CCCTCTTTGC
TGGCCAAGCC
TCCAGAAGGC
GGTTCTGGCT

AGGAAAATCT

Pu Box

GACTTTTAAA
CTACAGCTAC
CTCCAGGGAT
TCACTACCTA
CCCTCATTTA
GCTAAAGAGC
CAACACTGAC
TAACCCATCC
GGAGGTATTIT
ATTTATCTTC
ACACCATCCC
AAAGCAGAGA
CCAGAAAAGC

Hind
AGTTCTCCCT
AACCTGACCT

CREB
ACAAAACAGT

CACAGAGGAG

CATCCCAGGA

ACACCTCAGA

AGGTCATCTG

ATCAGGGIGC

CTGAATTCTG
Eco RI
TGGCCAAGAC

GCTGGGAAGC

AGGAGATCTT
Bgl IT
GTGAAGCCTA

TAGAATCATC
GTCCAACTCC

TCAGAGCCCC

MRE

AGAGCATCCA
TATTATAAAA
GTTTGAAATC
CTGTCCCTTT
TCCTCAGTGA
CATGACTTAA
GAGCCCATCA
CTACAAATCC
CTCCGGCACC
GGAAGCAATG
TTCAGCCCAG
ITT

CCATCTCGCT
CACAGCCTCT
CCTGGGGCAT
CGAGCTGTGC

GAAGGCAAAG

GCAAAAATAG

CCACCTCTCT
AACTTCTTTA
ATTTCCCCTT
CGATCTCCCA
CTTCTGTTGC
ACATTTTCTC
CTATCACAAA
CCCAGGCAAA
GTGCAGCCAC
CAAGTCCTCA
CAATTGCAAA
GCAAGGCCTC
CCACCTCCAG
GGTATGCTTC
CTTGGCTCTT
GCCCAGATGC

GTGATAGGAT

228

-3623

-3573

-3523

-3473
-3423
-3373
-3323
-3273
-3223
-3173
-3123
-3073
-3023
-2973
-2923
-2873
-2823
-2773
-2723
-2673
-2623
-2573
-2523
-2473

-2423




GAGAGGAARAG
GGAAAAATGT
AGGGAGGTGG
AAGTTGGAGT
ACAATGGGAT
GCAGGAAAAG
AAGCATGCAG
AATGCAGCTC
AAAGGAGGAA
CATGTAATGA
GCAGAACTAT
CACTGAAAGA
TGCTCATTTC
MRE
GCAGGACTGG
GCTTGCTTCA
AAAATAAGCA
CTCTGTAGCT
GGCTGGGAGC
CAGCCCAGCA
TCCATAGCAC
GCCAGGGGAC
GCAGTGATGG
TGCTTTCCCA

STAT3
AGCTTCCAGC

CTGCCTCCTT

GGCCTCAAGT

CTCCTCAGGA

TGAAGTCACT

TCTTCCTAGG

ACCCACTCCT

TATGGAGGAG

CTTTTGGGGA

GAAAGTCCTT

CATGGTTTAG

ATAATATCAT

AGGCTCATTG

AGTGAGAACT

AGAGCCAGAC

AACCTCTCTA

AAGACTCGGA

GTAAGTGGCC

TTAAAGAGCA

GCTGAGTAAT

CAGAGCTGTG

GGAACCCAGC

AGATAGACAG

CTTTAAGTGC

AAGCACAGAT

GTAGCTCCAG

GGCTGACGCA

ARE

TGCACAAGGG
AGAGCGGTGC
GTGACTCTAT
AAGAAGTGTC
GAGTCTCACC
GACATTTGGG
GCAGGCAGAC
AAGAAGAAAT
GGAGGGTAGG
TCAGTTTCGT
TTTTCCAGCT
GTGCTATAAG
CAGTGGCAAA
GGGGCCAAGG

CATCCCAATA

TAGGGGTAAG

GAGGTTCAGG
TGCAGTGGCA
GAGATTCTGT
CTATCTACGT
TCCCCATCTA
GCACACCTTT
GGGACAAAAG
GGAGCTGCAG
TTTTCATATT
ACCTTTCCTT
TCCCATGTCC
CACACGATGC
AATGGCACTA
GATGTTAAGG
AATATATTTT

AGCTAGCTTT

Nhe I(1.6)

GAGCAAGACA

GGAAAAGCAT

core

TTGGATGTTA
CAGGCTGCAC
GACTATGAGA
TGGCAGTAAC
CCTCTGCCCT
AAGTGCATCC
CATTGGCCTA
AACATGGATG
ATTTCACACT
CTTCCCCCCA
AAATATGGCT
CAGTGGAAAA
ATATCTTCAG
GCTTTCTCAC
ACCCTGTAGC
TGCTAGAATG

GGCTGAGTCA

CCTTCCTGAG TGTGCACAGT CGCCAGATGT

TGCGTGCACA ATCCCTCCAG GCCACTCCTA

TGTGCAGAGG ACACACGAGG CCCACCCAAA

AAGACTTCCC TTCCAGCCCA CAGCAGCAGG

CCCACACTTT TGGCTCCAAG GCAGAATTTG

GAATGATGCA TCTCTCATTC TGGTTTGCTG

ATGGAAGAGG

GGCCCCACTA

CATCTGCGGG

GCAGACAAAA CAGCAGAGCA GCCAGCAAGT

229

-2373
-2323
-2273
-2223
-2173
-2123
-2073
-2023
-1973
-1923
-1873
-1823
-1773
-1723
-1673
-1623

-1573

—
B/AP-1*mut

-1523

-1473

-1423

-1373

-1323

-1273

-1223

-1173




AGCAGGAGCA
GCTGTTGCAA
ACACCTTGGC
CGGGGGGATG
CACAGCAGGG
GAGAAAGGAA
ACATGGAAAG
AGGGACCTTT
GCCTACAGCT
CAGGAGCCTT

CCTTGTAAGG

CCTTGTCCGG

ATATCTGCAG

AGTCTCCTGC

GGCTGCTGTC

CCCACATGCC

AGCATATCCC

AATCATAGAG

AAAGGTCATC

CGATCAGACA

CTCTTCTCCA

AGCTGTTCCA

GGACGCACTC CAGCAGATCC

TGGACACAGT ACTCCAGGTG
rth 111 I(0.6)

GTCACCCCCC TCTCCCTGCT
ACACGTGGCT TTCTGGGCCG
GCCATCCATC AGTACCCCCA
GTCCCTGCTG CGCTCCCCTC
TCAGAGCTCT TCGTCCCGTG
TCTGAAGATG CTCACAGCTG

MRE

TCTAGGACAG ATGCTGCAGA
AGCAGGGGTG AATTCCTCCT
GCACAGCAGT GGGAAGGGAA

CATGAGGTCT GCGCCTGTGC

MRE/MycMax/Pml I(TATA)

CTCTCCTGTC
CCTGCCTCAG
ACACAGCAGG
CTCCTCTATC
ACGCCAATTC
TGTGCATCAG
TCATGGAATC
TGATCCAAAA
TTGAAAGGAC
GGCTGAACAG
TCCCTTGGAC
ATGTCTCTCC
AGGTCTCACA
GGCCACACTC
TGAGGGCACA
AGTTCTTTTG
CGCGAAGCAG
GGCAGCGAAG
TGGGTGATAA
AGCTGCATCC
GCCCTCCCAG

GTGCAGCGTG

TGCTCACGTG

CTAAATCAGA

TTTCCCCAAA

TGTGACAACC

ACCTCACACA

AGTACTTCTG

TGCAGACGCA

ATAGAATCAT

CCCCTGCAAT

CTTTAGATAT

CCCCAGCTCT

CATTTCTTTG

Pf1l MI
TGTACTGAGG

GCACACAGCA
CTTTGGATGC
CTGCTGGCTC
GGCAGGGCTG
GGATGTTCCT

NF-kB
CTCCCCGTGC

AACACTGACA

CCTCGTTGGT

CCGTCCCTGG

TTGCAAGAAG

GCCCGCCTGL

GAAACTATTC -

GCCCTGCATC -

CCCAGGGTAT -

CAGTGCIGCT
MRE
TTGTGTAAGG
C/EBP
CCTGTGCAGC
TTGAGTTGGA
GAACAGGAAT
TGAAGTATCC
CTCAGCCTGT
GCCCTCCTCT
GCTCCACATT
GAGGGGCAGG
TGCCCAGGAC
ATGTACAGCT
AGCTTTGAGG
ACCCCACAGT
CTTTAGAGGC
CCGGTCTCTT
GCTGAGCTGC

GGGCCGGGGG

CGTGIGCTCA
MRE

ATAAAGCTGG
TATA Box

GAGCCGGAGC CGGGTACAAA GCGCAGCGCT TCACGTCCCG GGAGCGGTGG

GAGAGCTCAA GTAAGGAAAC AACAGGGAAG CTCGAG — 3'

(+1)

Xho I

230

1123
1073
1023
-973
-923
-873
-823
=773
-723
-673
-623
-573
-523
-473
~423
-373
-323
-273
-223
-173
-123

-73

-23

+28




	Role of MAP Kinases in the Induction of Heme Oxygenase-1 by Arsenite: Studies in Chicken Hepatoma Cells: A Dissertation
	Let us know how access to this document benefits you.
	Repository Citation

	Title Page
	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Chapter I: Introduction and Objectives
	Chapter II: Materials and Methods
	Chapter III: Characterization of Heme Biosynthetic...
	Chatper IV: Characterization of Heme Oxygenase-1...
	Chapter V: Cloning and Characterization of the Chicken Heme...
	Chapter VI: Role of Map Kinases in Sodium...
	Chapter VII: Conclusions
	Bibliography
	Appendix A: Media and Buffers
	Appendix B: Preparation of Chemicals for Culture
	Appendix C: List of Plasmids
	Appendix D: Structures of Map Kinase Inhibitors
	Appendix E: Sequence of HO-1 Promoter

