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Optimizing RNA Library Preparation
to

Redefine the Translational Status of 80S Monosomes

by Erin E. Heyer

Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for
identifying and quantifying RNAs in diverse sample types. The accuracy of
conclusions drawn from these analyses depends on precise and quantitative
conversion of the RNA sample into a DNA library suitable for sequencing. Here,
we describe an optimized method of preparing strand-specific RNA deep
sequencing libraries from small RNAs and variably sized RNA fragments
obtained from ribonucleoprotein particle footprinting experiments or
fragmentation of long RNAs. Because all enzymatic reactions were optimized
and driven to apparent completion, sequence diversity and species abundance
in the input sample are well preserved.

This optimized method was used in an adapted ribosome-profiling approach to
sequence mRNA footprints protected either by 80S monosomes or polysomes
in S. cerevisiae. Contrary to popular belief, we show that 80S monosomes are
translationally active as demonstrated by strong three-nucleotide phasing of
monosome footprints across open reading frames. Most mRNAs exhibit some
degree of monosome occupancy, with monosomes predominating on upstream
ORFs, canonical ORFs shorter than ~590 nucleotides and any ORF for which
the total time required to complete elongation is substantially shorter than the
time required for initiation. Additionally, endogenous NMD targets tend to be
monosome-enriched. Thus, rather than being inactive, 80S monosomes are
significant contributors to overall cellular translation.
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Chapter I

Introduction

Translation

Gene expression is the cellular process by which genetic information is

transformed into a functional product. Genetic information - DNA - is transcribed

into RNA molecules, which are either a functional molecule on their own

(ribosomal RNA, transfer RNA, micro RNA, etc.) or an intermediary to a final

protein product (messenger RNA). In translation, each mRNA molecule is

decoded by a ribosome to assemble amino acids into a polypeptide chain. As

the polypeptide emerges from the ribosome, it folds into a functional protein.

Through this process, the ribosome is responsible for the creation of the

proteome, the collection of all proteins expressed in a cell. Translation is a highly

regulated process, as cell and tissue growth depend on protein synthesis. Our

1
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understanding of gene expression, especially the translation pathway, began to

blossom with the discovery of DNA.

Discovery of Translation Machinery and Polysomes

After the discovery of the DNA double helix in 1953 (Watson and Crick, 1953), a

considerable amount of scientific research focused on identifying the relationship

between genes and proteins, since DNA’s ability to direct protein synthesis

was not immediately apparent from its structure. By the end of the decade,

a great deal of evidence pointed to RNAs playing major roles in this process,

and the "central dogma" of molecular biology was published by Francis Crick

in 1958 (Crick, 1958). This sequence hypothesis accurately described the flow

of genetic information between the 3 major classes of polymeric biomolecules

(RNA and DNA are polynucleotides; protein is a polypeptide), stating that "once

'information' has passed into protein it cannot get out again." Impressively, this

hypothesis proved to be quite accurate, including the prediction of reverse

transcription.

The first observations of ribosomes as dense granules in electron microscopy

images were made by George Emil Palade (Palade, 1955), work for which

he would share the 1974 Nobel Prize in Physiology or Medicine. He found

these particles both in the cytoplasm and attached to endoplasmic reticulum
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membranes and identified their substance as ribonucleoprotein (Palade, 1955).

Subsequent work isolated both cytoplasmic and membrane-bound ribosomes

to identify these structures as the site of protein synthesis (Kirsch et al., 1960).

Other components of the translational machinery, such as transfer RNA (tRNA),

had been discovered a few years earlier. Then called soluble RNA or sRNA,

tRNA was shown to be the link between the 3-nt nucleic acid code and the

amino-acid building blocks of protein (Crick, 1958, Hoagland et al., 1958). The

discovery of messenger RNA (mRNA) as the template for protein synthesis

(Brenner et al., 1961, Gros et al., 1961) was the final piece of the puzzle, a

finding that came a few years after an RNA template was proposed by Francis

Crick (Crick, 1958).

However, the mechanisms controlling how these components came together to

synthesize proteins - and their relative proportions - were still unknown. Work

from James Watson’s lab (Risebrough et al., 1962) described ribosomes

sedimenting more rapidly than the canonical Escherichia coli 70S ribosome,

suggesting that the addition of mRNA to the complex caused this increased

sedimentation rate. However, the salt conditions used in these preparations also

drove the assembly of 100S ribosome complexes. Based on this data, it was

proposed that these 100S ribosomes might be the "principal sites of protein

synthesis" (Risebrough et al., 1962). Work in Alexander Rich’s lab by Jonathan

Warner and Paul Knopf (and at the same time by the labs of Alfred Gierer and
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Hans Noll) used a recently published technique of separating large molecules

through sucrose gradients (Britten and Roberts, 1960) to analyze translation on

nascent hemoglobin mRNAs in rabbit reticulocyte lysate by incorporating

radioactively-labelled amino acid into the growing polypeptide (Warner et al.,

1963). They found that the vast majority of incorporated radioactive signal

corresponded to rapidly sedimenting peaks indicative of multiple ribosomes. The

name 'polyribosome' - or polysome for short - was assigned to these structures.

Additional experiments showed that polysomes are connected by RNA, as the

addition of RNase, but not DNase, moved the signal from heavy peaks to light

peaks (Warner et al., 1963). Experiments in Hans Noll’s lab specifically

identified the connector RNA as mRNA by isolating polysomes from the livers of

rats injected with actinomycin, an antibiotic that inhibits mRNA synthesis

(Staehelin et al., 1963). In a time- and concentration- dependent manner,

ribosome aggregates were converted into 80S monomers due to the lack of

mRNA template molecules. Electron micrographs confirmed the polyribosomal

structure as "extended arrays of ribosomes connected by a strand approximately

10 A in width" (Slayter et al., 1963).

The discovery that multiple ribosomes can assemble on a single mRNA

molecule was a huge step forward for the field of translation, but the relative

ratios of tRNA and polypeptide per ribosome remained unclear. It was known

that the polypeptide chain was covalently linked to a tRNA, and the first
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proposed translation mechanism suggested that only a single tRNA was bound

by the ribosome, the polypeptide chain remaining with the ribosome through

transference from one tRNA to the next (Cannon et al., 1963). However,

experimental evidence disproved this, demonstrating that each actively

translating ribosome in a polysome binds two tRNAs (Warner and Rich, 1964).

This was measured by radioactively-labeling tRNAs and quantifying the tRNA

signal in polysomes relative to the known number of ribosomes in the polysome.

Consequently, Warner and Rich concluded that each ribosome had two

tRNA-binding sites. This was ultimately disproven by work from the labs of Hans

Knoll (Wettstein and Noll, 1965) and Knud Nierhaus (Rheinberger et al., 1981)

demonstrating that each ribosome has three tRNA binding sites.

In a relatively short amount of time, the individual components of the translation

machinery and the general manner in which they all worked together were

discovered. Building on this body of knowledge, many of the proteins involved in

translation initiation were discovered in the 1970s, using classical biochemical

techniques to isolate and reconstitute in vitro the initiation process (Fraser,

2015). Since then, technical and methodological developments have led to

many discoveries which together inform our current, high resolution structural

understanding of the ribosome and its many accessory factors.
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Translation Cycle

The translation cycle comprises four stages: initiation, elongation, termination

and ribosome recycling. The canonical translational mechanism is

cap-dependent and will be described in detail below.

The first translational stage is initiation, in which a ribosome assembles on the

first codon to be translated. The accuracy of initiation site selection is highly

regulated and crucially important, as this determines which reading frame will

be used to translate the mRNA. Before any interaction with the mRNA, however,

initiation begins with the formation of a 43S pre-initiation complex (PIC). This

structure is composed of a variety of initiation factors (eIF1, eIF1A, multisubunit

eIF3, eIF5, and the ternary complex eIF2-GTP-tRNAmet), which mutually stabilize

their binding to the 40S small ribosomal subunit (Fraser, 2015, Hinnebusch, 2014,

Jackson et al., 2010). These interactions slightly alter the conformation of the

40S subunit to encourage an open-state PIC, where tRNAmet is not fully seated

in the P-site, and the subunit can scan along an mRNA (Llácer et al., 2015). The

PIC then binds to an mRNA near the 5'-7-methylguanosine (m7G) cap with the

assistance of cap-binding complex eIF4F (cap-binding protein eIF4E, scaffold

protein eIF4G, and RNA helicase eIF4A), eIF4B, and poly(A)-binding protein.

Once bound, the PIC scans down the 5' UTR until the start codon (initiator

AUG) is recognized. As this recognition occurs, the 40S subunit adopts a closed
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conformation, blocking its migration along the mRNA, and the tRNAmet engages

fully in the P-site, forming a 48S-initiation complex. As initiation continues,

several initiation factors are released and the large 60S subunit docks, catalyzed

by eIF5B (Hinnebusch and Lorsch, 2012). This forms a complete 80S initiation

complex, containing a mRNA, initiator tRNAmet base-paired to AUG in the P-site,

and an empty A site containing the 2nd codon in the ORF (Figure 1.1). With the

recent development of ribosome profiling (see I for details), the precise mRNA

location of a ribosome can be mapped. This has demonstrated that at initiation,

the 5' and 3' edges of the S. cerevisiae ribosome protect 12 nts upstream and

12-13 nts downstream of the start codon.

This 80S structure is now poised for elongation, the second phase of translation,

in which the remainder of the codons are decoded (Figure 1.2). First, an

aminoacylated elongator-tRNA is delivered to the A-site in complex with eEF1A.

If the tRNA anticodon is able to stably base-pair with the mRNA codon in the

A-site, eEF1A is released through GTP hydrolysis and the tRNA becomes fully

seated in the A-site (Dever and Green, 2012, Voorhees and Ramakrishnan,

2013). To extend the peptide chain, the methionine delivered by the initiation

complex must form a peptide bond with the newly delivered amino acid. This

bond forms through a nucleophilic attack on peptidyl tRNA by aminoacyl tRNA,

catalyzed by the ribosomal peptidyl transferase center bringing these reactive

groups into close proximity.
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Once the peptide has been transferred to the A-site tRNA, the ribosome

undergoes a large-scale conformational change where the individual subunits

rotate relative to each other in a ratchet motion (Agirrezabala et al., 2008, Frank

and Agrawal, 2000). This structural rearrangement results in (a) the

transference of the polypeptide-carrying tRNA to the P-site and the deacylated

tRNA to the E-site and (b) an exact 3-codon movement of the mRNA to bring the

next codon into the A-site. This rearrangement occurs via a hybrid state, where

the anticodon ends of the bound tRNAs remains in the P- and A- sites, but the

acceptor ends move to the E- and P- sites, respectively (Moazed and Noller,

1989, Noeske and Cate, 2012). Elongation factor 2 catalyzes translocation by

stabilizing this rotated conformation, and the tRNAs move into the canonical E-

and P- sites. The ribosome now exists in a posttranslocation state, which recent

work has found to deviate slightly from the classic pretranslation state of the

ribosome, suggesting that additional structural rearrangements must be made

before another elongation cycle can occur (Budkevich et al., 2014). After the

E-site tRNA spontaneously dissociates and the ribosomal subunits "roll" back to

their pretranslation state, another round of peptide-bond formation can occur.

Elongation occurs over and over until the ribosome encounters a stop codon

(UAA, UGA, or UAG) in the A-site. At this point, the third phase of translation

- termination - occurs. Two release factors (eRF1 and eRF3) work together to

catalyze termination (Dever and Green, 2012, Skabkin et al., 2013). A class
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I factor, eRF1 is a tRNA-shaped protein that recognizes the stop codon and

activates release of the synthesized protein via peptide hydrolysis (Brown et al.,

2015). Additionally, eRF1 interacts with eRF3, a class II release factor that

accelerates polypeptide release.

The final step in translation is ribosome recycling, which connects translation

termination and initiation. Following polypeptide release, the mRNA and

deacylated tRNA remain bound to the 80S ribosome; all components must be

freed from this complex to restore the individual components required for

subsequent rounds of translation (Dever and Green, 2012, Nürenberg and

Tampé, 2013). The ATP-binding cassette ABCE1 dissociates posttermination

complexes into free 60S and 40S subunits, the latter still associated with mRNA

and tRNA (Pisarev et al., 2010). The manner in which mRNA and tRNA

dissociate from the 40S subunit remains unclear (Nürenberg and Tampé, 2013),

though their release is accelerated by Ligatin (also known as eIF2D), potentially

by stabilizing an open conformation of the 40S subunit which allows rapid tRNA

dissociation (Dever and Green, 2012).
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Translational Control

Regulation of Initiation

The final step of gene expression is translation of mRNA into protein, described

in detail in the previous section. This is a highly regulated process, as cells must

produce and maintain proper protein levels to function in their environment and

respond to environmental cues. Translational regulation occurs mostly through

the modulation of translation initiation, as this allows for a quicker proteomic

response to stimuli than induction of transcription. Control of initiation has

become more complex throughout evolution, illustrated by humans having an

order of magnitude more initiation factor mass than bacteria (Fraser, 2015). In

general, there are two cellular mechanisms regulating translation initiation: (a)

global control, where the overall level of translation within the cell is altered,

and (b) mRNA-specific control, where the translation of specific messages is

modulated (Gebauer and Hentze, 2004, Jackson et al., 2010).

Global translational control predominantly relies on inhibition through modulation

of initiation factor phosphorylation. In one pathway, initiation factor eIF2α is

phosphorylated, reducing the cellular amount of active initiation complex.

Typically, eIF2α leaves the 40S subunit after translation initiation and

regenerates through interaction with eIF2B. Phosphorylated eIF2α, however,

binds very tightly to eIF2B, an interaction which sequesters eIF2α and prevents
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its function in translation initiation (Van Der Kelen et al., 2009). A second

pathway prevents initiation by hindering recognition of the mRNA 5' cap, a step

that depends on the interaction between eIF4E and eIF4G. A family of

eIF4E-binding proteins (eIF4E-BPs) interact with eIF4E using the same binding

site as eIF4G, resulting in competition between eIF4E-BPs and eIF4G for eIF4E.

This competition strongly favors eIF4E-BPs once they have been

phosphorylated (Sonenberg and Hinnebusch, 2009).

Translation initiation on individual mRNAs is primarily controlled by regulatory

protein complexes binding to unique sequence elements, normally in mRNA

5' or 3' UTRs (Gebauer and Hentze, 2004). Often reversible, this binding will

inhibit translation by altering the conformation of the mRNP and preventing eIF4F

from accessing the mRNA 5' cap (Abaza and Gebauer, 2008, Jackson et al.,

2010). In addition to sequence elements, recent work in human cells had shown

that translation initiation can also be controlled by base modifications within the

RNA. A newly discovered protein, YTHDF1, interacts with N6-methyladenosine

modifications within an mRNA to recruit the translation initiation machinery,

resulting in increased translational output of the message (Wang et al., 2015).
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Upstream ORFs

One specific class of mRNA-specific translational control elements are upstream

ORFs (uORFs). Located within transcript leaders (5' UTRs), uORFs precede the

initiation codon of the canonical ORF and are defined by an initiation codon with

a downstream, in-frame stop codon. Typically, uORFs suppress translation of the

downstream ORF (Barbosa et al., 2013, Calvo et al., 2009, Morris and Geballe,

2000). In cap-dependent translation initiation (see Translation Cycle section),

the 43S pre-initiation complex scans along the 5' UTR until it encounters a start

codon. As the uORF is first, it monopolizes the ribosome, thus reducing the

efficiency of translation initiation on the downstream start codon. Upstream

ORFs also reduce protein expression levels by triggering mRNA decay (Barbosa

et al., 2013). However, uORFs can increase protein expression in response to

cellular stress (Hinnebusch, 2005) or cell cycle stage (Brar et al., 2012). In 2009,

it was predicted that roughly half of human and mouse transcripts contained a

uORF (Calvo et al., 2009). With the development of ribosome profiling, the ease

of uORF identification has grown enormously, which will enhance discoveries of

uORFs and their unique form of translational regulation.
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Nonsense-mediated mRNA Decay

Another class of cis-acting sequence elements regulating gene expression

is premature termination codons, which are recognized through a translation-

dependent process called nonsense-mediated mRNA decay (NMD). NMD mainly

functions to prevent the production of erroneous proteins by rapidly degrading

mRNAs containing premature termination codons, though it also regulates the

abundance of many endogenous transcripts (Peccarelli and Kebaara, 2014).

Discovered nearly 40 years ago in S. cerevisiae (Losson and Lacroute, 1979)

and human cells (Chang and Kan, 1979, Maquat et al., 1981), it has since been

shown to be an active mechanism of translational control in all eukaryotes.

Activation of NMD is dependent on three proteins: Upf1 (UP-Frameshift 1),

Upf2, and Upf3. Upf1 is recruited when the ribosome encounters a premature

termination codon, which differs from a normal termination codon due to its

location relative to other cis-elements (e.g., a downstream element in yeast

or an exon-junction complex in humans; Baker and Parker, 2004). Decay of

the ribosome-bound mRNA occurs once Upf1 interacts with both Upf2 and

Upf3 (Chang et al., 2007), promoting rapid degradation of the mRNA through

the recruitment of decay enzymes (Kervestin and Jacobson, 2012). Because

NMD is translation-dependent, it has been proposed that decay occurs the first

time a ribosome encounters that codon, during the initial, or pioneer, round of
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translation (Gao et al., 2005, Ishigaki et al., 2001). However, recent evidence in

S. cerevisiae has demonstrated that decay can occur on polysomes (Hu et al.,

2010) or at any point during the translation cycle (Maderazo et al., 2003).

Localization

A third type of mRNA-sequence driven regulation is the control of translation

through localization of the mRNA. By specifying the subcellular localization of an

mRNA and inhibiting translation of this message until it reaches its destination,

the cell is able to control the location of the encoded protein. Thus, the encoded

protein only functions within a discrete subcellular region. To accomplish this

targeting, a cis-acting localization sequence within the mRNA ("zipcode" or

"address") is bound by specific RNA-binding proteins. Through interaction with

other complexes, these proteins typically function in both localization and

translational repression. Localization is achieved through interactions with

molecular motors which drive the mRNP to its target location (Czaplinski and

Singer, 2006).

Translational regulation through mRNA transport is a wide-spread phenomenon,

with examples of localized mRNAs found across a wide range of eukaryotic

species. In S. cerevisiae undergoing mitosis, ASH1 mRNA is localized to the bud

tip to inhibit mating type switching in the daughter cell (Paquin and Chartrand,
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2008). In Drosophila, an impressive study demonstrated that 71% of mRNAs

expressed during embryogenesis are subcellularly localized (Lécuyer et al.,

2007). Gene expression in embryogenesis is also temporally controlled, adding

yet another layer to gene regulation. In animals, mRNA localization is used in

neuronal dendrites and axons to respond to environmental cues (see section

entitled Neurons: An Alternate Experimental System).

One specific type of mRNA localization directs mRNAs bound by ribosomes to

the endoplasmic reticulum (ER) as part of the secretory pathway. Messages are

directed to this pathway by a cis-element called the signal sequence, which is

typically located at the 5' end of the mRNA. Briefly, the encoded signal peptide

emerges first from the ribosomal exit tunnel and is recognized by signal

recognition particle (SRP), which inhibits further translation. This ribosome-SRP

complex then localizes to the ER membrane with the help of SRP receptor and

docks with the Sec61 complex. Docking releases the ribosome back into

elongation, with the nascent chain passing through the Sec61 tunnel into the

lumen of the ER, where chaperones help the protein fold into its proper

conformation (Akopian et al., 2013). As ~30% of the eukaryotic proteome traffics

through the ER, this is an incredibly common and highly regulated class of

mRNA localization (Akopian et al., 2013).
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Techniques to Study Translation

Low Throughput Techniques: Polysome Profiling, Toeprinting and
Ribosome Density Mapping

Although transcriptome analysis can act as a proxy for gene expression, mRNA

levels are often uncorrelated to the abundance of the proteins they encode

(Maier et al., 2009, Vogel and Marcotte, 2012), hindering accurate

quantifications. Other than protein degradation, this lack of correlation is likely

due to translational regulation, as two transcripts present at equimolar

concentrations can be translated at different rates. Therefore, it is necessary to

measure the mRNAs undergoing active translation to truly understand gene

expression.

To assess the translational activity of an mRNA, the metric most commonly used

is the degree of its association with ribosomes, often measured by polyribosome

profiling (Figure 1.3). This technique relies on velocity sedimentation of a

sample through a gradient of increasing sucrose concentrations (Britten and

Roberts, 1960). Sucrose gradients are fairly stable, withstanding both the

addition of sample to the top of the gradient and centrifugation at high speed.

During centrifugation, the components of the sample will separate based on

their individual sedimentation rates, which are a function of the mass, density

and shape of each molecule. Because the ribosome is such a large RNP, mRNA
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sedimentation rate is driven by the number of associated ribosomes. Sample

components of similar sedimentation rates will form bands within the gradient,

which are then collected and analyzed. It is very common for RNA to be

extracted from the gradient fractions and then analyzed by northern blotting or

quantitative PCR (or high-throughput techniques; see Microarrays and Deep

Sequencing section).

Polysome profiling reports on the average number of ribosomes associated with

a given transcript, but it offers no information as to where the ribosomes sit on

the mRNA. The first technique to identify the location of ribosomes along an

mRNA was a primer extension inhibition assay known as toeprinting (Hartz et al.,

1988, Kozak, 1998). In the eukaryotic version of this assay, in vitro translation of

an mRNA is inhibited by the addition of cycloheximide, and the mRNA is reverse

transcribed into cDNA using a radiolabeled primer. A ribosome stably bound to

an mRNA will block the movement of reverse transcriptase along this mRNA,

producing a short cDNA product. The mRNA location where reverse transcription

stopped corresponds to the 3' edge of the ribosome. The throughput for this

method is low, as only a single mRNA can be analyzed in each reaction. A

modification to this approach uses fluorescent primers and instrumentation to

automate the detection of RT fragments (Gould et al., 2005, Shirokikh et al.,

2010), simplifying the toeprinting process and improving its accuracy.
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While toeprinting reports the specific location of a ribosome, the total number of

ribosomes bound to that mRNA is unknown. A technique used to identify the

general location of multiple ribosomes along an mRNA is Ribosome Density

Mapping (RDM; Arava et al., 2005). First, polysome profiling is used to isolate

a pool of polysomal mRNAs associated with a specific number of ribosomes.

Then, the target mRNA is site-specifically cleaved by addition of an antisense

oligonucleotide and RNase H. This digested sample is separated on a second

sucrose gradient, and northern blotting is used to determine the number of

ribosomes associated with each fragment of the cleaved mRNA. Thus, RDM

results in slightly increased location sensitivity by identifying the number of

ribosomes associated with a specific portion of an mRNA. However, this process

is very low-throughput and labor intensive.

Microarrays and Deep Sequencing

Several technological advancements enabled the study of the translational

status of all mRNAs expressed in an organism, one of which was the

development of microarrays. A microarray is a slide with thousands of DNA

probes arranged across its surface, enough to probe for all known genes in a

genome. To identify RNAs in a sample, reverse transcriptase synthesizes a

cDNA library, incorporating fluorescent molecules. Then, the

fluorescently-labeled cDNA library is hybridized to the microarray. The
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appearance of fluorescent signal in a specific location identifies a specific gene

sequence, and the intensity of the signal indicates the amount of that specific

RNA in the original sample. For the study of translation, microarray analysis is

usually paired with polysome profiling to generate genome-wide maps of

ribosome occupancies and densities (for examples, see Arava et al., 2003,

Thomas and Johannes, 2007). To do this, RNA is extracted from sucrose

gradient fractions and analyzed on a microarray, inferring translational status

from the number of ribosomes with which it cosedimented during polysome

profiling.

While microarrays presented a major step forward in the ability to interrogate

all genes in a genome, the scope of analysis was limited to known genes. This

shortcoming was overcome by the development of deep sequencing (discussed

in detail in the section entitled Deep Sequencing). With this technology, the

identity of an RNA cosedimenting with ribosomes is revealed during analysis;

there is no requirement for a priori knowledge of mRNA sequence. Thus, deep

sequencing enables the characterization of novel translation substrates.

Ribosome Profiling

The advent of deep sequencing technology paved the way for a major

advancement in the study of translation: the development of ribosome



Chapter I. Introduction 23

profiling (Ingolia et al., 2009). Developed by Nicholas Ingolia and Jonathan

Weissman, ribosome profiling captures a "snapshot" of cellular translation at

sub-codon resolution. This method draws on work isolating mRNA fragments

protected from nuclease digestion by ribosomal association to identify the

bacteriophage mRNA sequence bound by initiating ribosomes (Steitz, 1969).

This footprinting by nuclease digestion was exploited by Ingolia and Weissman,

who digested S. cerevisiae cellular lysate with RNase I, an endonuclease which

cleaves after all 4 bases. The digested lysate was separated through a sucrose

gradient, collecting the 80S monosome fractions afterwards. RNA was extracted

from these fractions and loaded onto denaturing PAGE gels to size select

ribosome footprints (~28 nts in S. cerevisiae). Once these mRNA footprints were

extracted from the gel, they were constructed into deep sequencing libraries

(see global footprinting, Figure 2.1).

Through deep sequencing of these footprints, gene expression can be measured

at the translational level. Typically, an RNA-Seq library is prepared from the

same starting material, enabling normalization of footprint abundance to mRNA

abundance. The real power of ribosome profiling, however, is that ribosomal

locations throughout the transcriptome at the time of lysis can be identified. This

position information can identify the reading frame being translated and the

codons sitting in the A and P sites. For mRNAs with multiple ORFs, ribosome

profiling data enables the identification of which ORF(s) is being translated,
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enhanced by the 3-nt periodicity of ribosome footprints.

This ability was demonstrated in the original ribosome profiling paper, where non-

AUG uORF translation was found to increase sixfold during starvation (Ingolia

et al., 2009). Further work from the Weissman lab demonstrated a significant

increase in uORF translation during meiosis as well (Brar et al., 2012). Significant

uORF translation has also been found in mammalian cells (Fritsch et al., 2012,

Ingolia et al., 2011, Lee et al., 2012). Additionally, novel short ORFs (other than

uORFs) have been identified in S. cerevisiae (Smith et al., 2014) and Drosophila

S2 cells (Aspden et al., 2014) using ribosome profiling.

In addition to informing ORF annotation, ribosome profiling data has greatly

expanded our understanding of translational mechanisms. Ribosome profiling in

S. cerevisiae strains deficient for a ribosome recycling factor revealed abundant

fragments of different sizes, with short footprints (15-24 nts) protected by a

ribosome stalled at the 3' end of a truncated RNA and long footprints (40-80 nts)

protected by 2 closely stacked ribosomes that accumulate after the 1st ribosome

has stalled (Guydosh and Green, 2014). In the absence of cycloheximide, S.

cerevisiae ribosomes were found to protect ~21 nt fragments in addition to the

canonical 28 nt fragments, potentially protected by an alternative conformation

of the ribosome (Lareau et al., 2014).

In the original manuscript describing ribosome profiling, footprint signal
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aggregated across hundreds of highly-expressed genes showed a 3-fold

increase over the first 30-40 codons (Ingolia et al., 2009). This signal was

interpreted as increased ribosome occupancy, supporting the idea of a

"translational ramp" where ribosomes move more slowly through this initial

region to prevent downstream traffic jams (Shah et al., 2013, Tuller et al., 2010).

A genome-wide enrichment in low efficiency (rare) codons in this same region

suggested that footprint signal increased because of longer decoding time at

rare codons (Tuller et al., 2010). The translational ramp theory will be

specifically addressed in Chapter II in the section entitled The First Round of

Translation and Translational Ramps.

By identifying the exact mRNA locations bound by ribosomes, ribosome

profiling has fundamentally changed the way translation is studied. With this

technique, gene expression can be measured, mechanisms of translational

control can be studied, and the rate of protein synthesis and the abundance of

the encoded protein can be predicted. In the ~6 years since the ribosome

profiling method was published, this technique has revealed many features of

translation that were previously unrecognized, and will certainly continue to do

so in the future.



Chapter I. Introduction 26

Monosome Translational Status

Density gradient fractionation of cytoplasmic lysates reveals two populations of

fully assembled ribosomes: polysomes and monosomes. Polysome fractions

contain mRNAs occupied by two or more ribosomes, whereas the monosome

fraction contains mRNAs bound by a single ribosome plus "vacant couples",

wherein the large and small ribosomal subunits stably associate with no bound

mRNA (Noll et al., 1973). As initially demonstrated by Warner, Knopf and Rich in

their seminal 1963 paper (Warner et al., 1963), polysomes are sites of active

protein synthesis. Compelling evidence for this was that radioactive amino acids

incorporated into nascent peptides by rabbit reticulocyte lysate cosedimented

with a RNase-sensitive complex of comparable size to ~5 individual ribosomes

(i.e., polysomes). In the same gradient, however, almost no radioactivity

cosedimented with monosomes. This led to their reasonable conclusion that

"protein synthesis in the reticulocyte occurs only on [a polyribosome] and not on

a single ribosomal unit" (Warner et al., 1963). Further evidence for

translationally-active polysomes and translationally-inactive monosomes came

from a follow-up paper demonstrating, again in reticulocyte lysate, that 2 tRNA

molecules cosedimented with each polysomal ribosome, whereas <1 tRNA

molecule cosedimented with each monosome (Warner and Rich, 1964). This

suggested that monosome-associated mRNAs in reticulocyte extracts are
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predominated by ribosomes in the process of initiation (i.e., sitting at the start

codon with a stably-bound initiator tRNAmet in the P site, but no tRNA yet in the

A site).

The primary role of reticulocytes in vivo is to produce hemoglobin for oxygen

transport once the cell becomes a mature erythrocyte. Hemoglobin open

reading frames (ORFs) are long enough to accommodate 5-6 ribosomes each,

and α- and β- hemoglobin mRNAs account for the vast majority of all mRNA

molecules in this cell type (Bonafoux et al., 2004). Thus reticulocyte translation

is predominated by just two mRNAs evolutionarily tuned to produce massive

quantities of protein. In such a system, it would be expected that the vast

majority of radioactive amino acid incorporation would occur on polysomes

containing ~5 ribosomes each (exactly as observed over 50 years ago).

However, other cell types expressing a more diverse mRNA population with

different ORF lengths and translation efficiencies might exhibit quite different

profiles with regard to polysome and monosome translational activity. In

particular, for proteins undergoing localized translation whose optimal levels are

just a few molecules per cell or subcellular region, many ribosomes per mRNA

molecule seems unlikely. Nonetheless, the reticulocyte experiments - and others

like it (Gierer, 1963, Wettstein et al., 1963) - are the apparent basis of the

widespread notion that active translation is limited to polysome-associated

mRNA in all cell types. The corresponding belief that monosomes are
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translationally inactive is also quite common, with statements to that effect

evident in numerous publications [for examples, see (Aspden et al., 2014,

Cosgrove et al., 1982, Irier et al., 2009, Van Der Kelen et al., 2009).

Over the years, some anecdotal evidence has demonstrated that monosomes

can be translationally active. For example, RPL41A and B are primarily translated

by monosomes in S. cerevisiae (Yu and Warner, 2001). Due to their extremely

short length (78 nts), these ORFs can likely only accommodate a single ribosome.

Because the majority of canonical ORFs are much longer than 78 nts, these

data have done little to change the opinion of the field regarding monosome

translational status. The body of work presented in Chapter II challenges the

hypothesis that monosomes are translationally inactive and adapts ribosome

profiling to determine the translational status of 80S monosomes in S. cerevisiae.

This work demonstrates monosomes are translationally active and translate

specific subsets of mRNAs.

Nucleic Acid Sequencing

Ribosome profiling is dependent upon deep sequencing, which is the sequencing

of millions of different nucleic acid sequences at one time. Deep sequencing, also

called high-throughput sequencing (HTS) or next generation sequencing (NGS),

is a relatively new technology that has only been on the market for approximately
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10 years. The following sections will discuss the history of sequencing, the

technology behind deep sequencing, and the challenges of RNA sequencing.

DNA Sequencing

Before 1953, the structure of DNA was unknown. Specific components had been

identified; it was known to contain phosphates, sugars, and different amounts

of two purine (adenine and guanine) and two pyrimidine (cytosine and thymine)

bases - but not how all the building blocks fit together. Structural models had

been proposed by Linus Pauling and Robert Corey (Pauling and Corey, 1953)

and by Bruce Fraser (unpublished), but were ultimately disproven. In 1953,

James Watson and Francis Crick accurately predicted the structure of DNA

(Watson and Crick, 1953), a discovery that won them the Nobel Prize in 1962.

However, it was not until 1977 that technological development enabled the

specific identification of nucleotide order within a DNA sequence. Though

Maxam-Gilbert sequencing was the first published method (Maxam and

GILBERT, 1977), its technical complexity led to its minimal use once Sanger

sequencing was published later the same year (Sanger et al., 1977). Developed

by Frederick Sanger, this method was based upon the incorporation of

dideoxynucleotides (ddNTPs) during DNA replication. These modified

nucleotides were chain terminators, preventing subsequent base incorporation
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by DNA polymerase. Four sequencing reactions were performed at once, each

with the same sequencing primer and mixture. A minor (~1%) amount of a

single ddNTP (ddATP, ddCTP, ddGTP or ddTTP) was added to each reaction,

such that full-length product could be synthesized, but fragments would be

produced whenever the ddNTP was incorporated. Analyzing these four

reactions together (originally by denaturing gel electrophoresis of radiolabeled

DNA) allowed for sequence identification based upon the relative position of the

sequence fragments.

Technological advances, including the development of fluorescently-labeled

ddNTPs (Smith et al., 1986), eventually automated the collection of sequencing

information. Though these developments eased the technical difficulties and

increased the accuracy of Sanger sequencing, it remained the most widely

used sequencing method for ~25 years. Recently, the frequency of Sanger

sequencing has dropped precipitously, as whole gene and genome sequencing

is now typically done with deep sequencing (see section below entitled Deep

Sequencing). However, Sanger sequencing still has its place in the lab, and will

likely continue to for years to come.
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Deep Sequencing

Deep sequencing, as briefly mentioned above, refers to the massive

parallelization of a sequencing reaction similar to Sanger sequencing. At this

scale, the sequence of millions of nucleic acids can be determine at once,

allowing a broader look at genomic identity and gene expression patterns with

single nucleotide resolution. In general, sequencing machines rely on some

form of immobilization to hold the DNA sequence in one place, which allows for

imaging after each reaction cycle to identify the incorporated nucleotide. The

manner in which this is done varies between different platforms and will be

discussed below. However, one preparation step used by all common

sequencing platforms is colony amplification. This step usually occurs

immediately before or after the sample is applied to the sequencing machine

and is necessary for signal acquisition. Most detection methods used on deep

sequencing machines require a strong signal, as they are unable to detect

single molecules. Therefore, it is necessary to generate these colonies of

identical sequence (clonal colonies) which will incorporate new nucleotides en

masse, amplifying the signal.

The first successful NGS approach was 454 sequencing, which relied on

pyrosequencing technology to achieve a throughput approximately 100X over

Sanger sequencing (Margulies et al., 2005). DNA templates were amplified
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inside water droplets to form a clonal colony on a primer-coated bead, and then

each bead was deposited into a tiny well on a slide where the sequencing

reaction occurred. Base incorporation was monitored by detection of light

generated via a luciferase reaction. This reaction is dependent on the

pyrophosphate released from a dNTP molecule when it is incorporated into the

growing DNA chain. Because the readout is the same for every base, individual

solutions of A, C, T and G nucleotides are sequentially added to and removed

from the sequencing reaction.

Solexa technology was the next major player in the sequencing market, and

relied on reversible dye-terminator technology (Bentley et al., 2008).

Complementary adaptor sequences drive hybridization of the DNA sample to a

slide, after which colony amplification generates clusters containing ~500-1000

copies of each DNA sequence. In each sequencing cycle, polymerase

incorporates fluorescently-labeled nucleotides with a chain terminating blocking

agent, limiting nucleotide incorporation to one base per sequencing cycle. An

image of the slide is recorded after every sequencing cycle, after which the

chain terminator is removed so the sequencing reaction can proceed. Each

sequence is tracked by location, with the color after each sequencing cycle

identifying the incorporated base (see Figure 1.4).

Illumina purchased Solexa and their technology in early 2007, just after the
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launch of the first Solexa sequencer, and has dominated the sequencing market

ever since. In 2014, approximately 90% of the DNA sequenced was generated

on Illumina platforms (Regalado, 2014). New sequencing technologies face

the difficult task of breaking into this market, as they need to compete with

the standards of low sequencing cost/base and low error rates set by Illumina.

Though a few other platforms have made it to market, they will not be discussed

in detail, as the sequencing data in this thesis (Chapters II and III) were collected

using Illumina technology.

Challenges of RNA Sequencing

Though first used for genome sequencing, researchers quickly realized the utility

of applying deep sequencing technology to the study of gene expression. RNA

sequencing (RNA-Seq) allows the detection and quantification of all expressed

transcripts in a sample, with applications to differential expression, novel

transcript identification and alternative splicing. Researchers in all RNA fields

have benefited enormously from this technology, but it is rife with challenges,

both pre- and post- sequencing. In terms of sample preparation, all deep

sequencing platforms commonly used today only sequence DNA, so RNA must

be captured and converted to cDNA prior to sequencing. This multi-step

conversion process - called "library construction" or "library preparation" in this

thesis - append specific adaptor sequences to the cDNA and amplify the sample
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to make it viable for sequencing. These adaptor sequences facilitate attachment

to a surface [either a bead (454) or a slide (Illumina)] via hybridization to

complementary sequences bound to the sequencing surface. Second, they

provide primer sites for clonal amplification, which as discussed above is

required to amplify the detected signal from each sequencing reaction. Finally,

adaptor sequences allow for the hybridization of a sequencing primer, which is

necessary to initialize the sequencing reaction. The nucleotide sequences of

these adaptors are platform-specific and vary in length. The manner in which

these adaptor sequences can be appended to either the RNA or cDNA will be

discussed in detail in Chapter III.

One challenge during library construction is ensuring that the RNA remains

intact. As mentioned above, there are many types of RNA sequencing, and often

the length of the RNA molecule is an important piece of information. Therefore,

mRNA degradation during library construction is a major concern since RNA,

unlike DNA, is chemically unstable. Even though RNA, in many ways, is very

similar to DNA - the components are the same, both form helical structures, and

the sugar-phosphate backbones connecting individual nucleotides are virtually

identical - the presence of a 2′ hydroxyl (OH) instead of a single hydrogen atom

(H) gives RNA the ability to hydrolyze itself into fragments. This 2' OH breaks a

phosphodiester bond in the sugar-phosphate backbone through a nucleophilic

attack on a neighboring phosphorus, resulting in ester cleavage of the backbone.
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RNA auto-hydrolysis makes it challenging to work with, and special care must

be taken to maintain the integrity of the RNA sample during construction of an

RNA deep sequencing library. While this seems straightforward and obvious for

RNA researchers, it is nevertheless an important point to note when discussing

a technique where RNA length can be crucially important.

RNAs are expressed across a wide range of cellular concentrations (at least 5

orders of magnitude in eukaryotic cells; Mortazavi et al., 2008) and may only

be expressed in a specific cellular location or at a particular time (for examples,

see Lécuyer et al., 2007, Madabhushi et al., 2015). Consequently, sequencing

coverage varies considerably across transcripts. Therefore, the number of

sequencing reads required by any individual experiment will be determined by

the least abundant RNA of interest. However, the amount of signal coming

from low expression genes as a percentage of the total amount of RNA is

minuscule, due to the incredibly high expression levels of noncoding RNAs. In S.

cerevisiae, ribosomal RNA (rRNA) accounts for ~80% of the total transcriptome,

and transfer RNA accounts for ~15%, leaving only ~5% of the transcriptome to

mRNA and other noncoding RNAs (von der Haar, 2008, Warner, 1999). Thus, to

avoid wasting time and money repeatedly sequencing rRNA and tRNA, these

sequences are often avoided during library construction. One common approach

to avoid rRNA is to prepare libraries from polyA-selected RNA, while others have

attempted to deplete rRNA either before (Benes et al., 2011) or after (Archer
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et al., 2014, Zhulidov et al., 2004) library construction (see Chapter III). As tRNAs

have a specific size, it is possible to remove them from a sample by size selecting

RNAs either much smaller or larger; therefore, tRNA contamination is a relatively

minor problem for most library preparations.

After removal of rRNAs and tRNAs, sequencing is used to define the

transcriptome of each sample. In order to specifically identify which genes are

turned on, however, RNA strand information must be maintained. Some of the

first library construction methods developed for RNA captured each molecule in

a random orientation, resulting in the loss of strand information (Mortazavi et al.,

2008). While these first methods enabled amazing transcriptomic discoveries, it

quickly became clear that strand information would be crucial for complete

transcriptome identification. In addition to yielding more information about

transcription, the maintenance of strand information has recently been shown to

result in more accurate estimates of gene expression compared to unstranded

libraries (Zhao et al., 2015). This has facilitated the fascinating discoveries of the

massive amount of transcription that happens all over the human genome.

Recent work has demonstrated that antisense transcription is a ubiquitous

phenomenon (He et al., 2008, Katayama et al., 2005), though both the amount

and the full extent of its function remains to be discovered. Initial experiments

have shown that it can influence gene expression either through the act of

transcription itself, or by the noncoding RNA that is produced (Pelechano and
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Steinmetz, 2013).

It would be negligent to discuss the challenges of RNA sequencing without

briefly mentioning all the analytical work subsequent to data collection. Minimally,

sequencing reads need to be (a) trimmed and filtered for quality, (b) mapped to

the genome or built into a transcriptome to identify the set of genes expressed in

a given sample, and (c) quantified to measure expression level. However, the

required level of data analysis will depend on the organism being studied and the

biological questions being asked. This bioinformatic analysis is computationally

intensive and requires a set of coding skills not commonly found among biologists,

so it is not uncommon for data to sit unanalyzed for months - or years - before

someone with the correct set of skills is able to analyze it.

Sequence Read Length

Initial versions of 454 deep sequencing technology generated ~250,000 reads

with a 100 nt read length, enough to sequence ancient DNA samples from wooly

mammoths (Miller et al., 2008) and from Neanderthals (Green et al., 2008). This

technology was also used to sequence James Watson’s genome, which was

the first complete genome sequencing of an individual (Wheeler et al., 2008).

Technological developments have increased the read length of both 454 and

Illumina platforms, with 454’s current read length around 1 kb and Illumina’s
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maximum read length of 300 bps (though if sequencing from both ends of the

cDNA, as with paired-end sequencing, 600 bps can be sequenced). Both read

lengths fall short of the average mammalian mRNA length (~2,000 nts; Ravasi

et al., 2006). Therefore, any attempt to sequence intact mRNAs would result in

reads limited to the ends of transcripts. Thus, to completely sequence across

most mRNAs, they must be fragmented prior to library construction.

Once the fragmented RNA library has been sequenced, computational analysis

determines the identity and abundance of transcripts in the original sample. This

is often accomplished by identifying the genomic location where the RNAs were

transcribed (genome-mapping); the accuracy of this mapping depends on the

length of the sequencing read, as the probability of genomic mapping is

proportional to 1/4n, where n is the read length (Vivancos et al., 2010).

Therefore, longer read lengths are preferred. Besides genome-mapping, it is

often desirable to bioinformatically piece the RNA fragments back together to

identify the specific transcriptome of the sample. Longer read lengths are also

preferred for transcriptome assembly as they are more likely to contain an

exon-exon junction. This information is crucially important when studying

systems with alternatively splicing (Wang et al., 2008, Xing and Lee, 2006),

where multiple RNAs are encoded by the same gene with variability in the

inclusion of certain exons.
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While sequence read length typically has less of an impact on libraries prepared

from small RNAs or short mRNA fragments, it can still affect the downstream

conclusions. For most small RNA libraries, read length must be longer than the

original RNA to ensure accurate identification of the boundaries.

Sources of Bias in RNA Sequencing

As mentioned previously, RNA-Seq has redefined transcriptomic studies through

its incredibly sensitive detection of RNAs with single-nucleotide resolution.

However, any conclusions regarding the abundance of RNAs is dependent on

the sequencing data read count accurately reflecting the abundance of these

RNAs in the starting pool. Unfortunately, library construction often introduces

significant bias by altering the nucleotide content and abundances of RNA

libraries (for a review, see (Linsen et al., 2009) and Chapter III).

Most of the biases in library construction are due to enzymatic preferences.

Though there are many approaches to library construction (discussed in detail

in Protocol Design section), they all rely on enzymatic catalysis which can have

various effects on the resulting library. In brief, ligation enzymes (acting on

RNA or cDNA) have nucleotide biases which result in more efficient ligation of

certain sequence species, altering the base composition of the library. Reverse

transcriptases might incorporate the incorrect base, or have low processivity,
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producing less than full-length cDNA (see Figure 3.4). The latter would be

exacerbated by secondary structures, such as stem loops, which could impede

reverse transcription of specific sequences. PCR enzymes have biases as well,

preferentially amplifying certain sequences over others.

In addition to enzymatic bias, secondary structure can introduce bias. Sorefan

et al. (2012) demonstrated that miRNAs discovered on the Illumina platform will

fold in silico more strongly with multiple versions of Illumina adaptor sequences

than with 454 adaptor sequences. The converse was true as well; miRNAs

identified on the 454 platform fold more strongly with 454 sequencing adaptors

than Illumina adaptors. When performing this analysis, Sorefan et al. (2012)

utilized all miRNAs which had been sequenced at least once on the 454 and

Illumina platforms, but ignored read number. Thus, if a miRNA had been

sequenced on both platforms it was folded with adaptors for both platforms. This

suggests that sequence complementarity to deep sequencing adaptors has

played a role in miRNA identification, biasing miRNA discovery against the

miRNAs which do not fold with adaptors. Other studies have observed similar

structure preferences, demonstrating that ligation efficiency is enhanced by RNA

base-pairing with the adaptor sequence (Fuchs et al., 2015, Zhuang et al.,

2012). Additionally, secondary structure within a miRNA can reduce its ligation

efficiency (Hafner et al., 2011).
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Consequences of Bias in RNA Sequencing

That the relative levels of different sequences within the same library will be

under- or over- represented due to preparation bias has been known for quite

some time (Linsen et al., 2009), but the impacts of these effects are still being

determined. A few case studies, however, have suggested that these effects can

be quite significant. For example, Illumina sequencing data ranks miR-29b as

the 29th most abundant miRNA in DLD-1 cells. However, alternative libraries

constructed to minimize bias and quantitative northern blotting both rank miR-29b

as the most abundant miRNA (Sorefan et al., 2012). Similarly, in one extreme

case measuring the effect of adaptor 5' end sequence on capture efficiency,

miR-106b was captured well (>4-fold more signal) only by a single 5' terminal

sequence of the 12 sequences tested (Jayaprakash et al., 2011).

What effect can these biases have on the biological conclusions resulting from

deep sequencing data? A disfavored miRNA sequence could cause researchers

to overlook interesting miRNAs because they do not seem abundant in a

sample. miRNAs display a significant amount of tissue-specific expression, with

only ~25% expressed at a given time (Baer et al., 2013). They have become

biomarkers for many diseases; the variable expression profile of 217 human

miRNAs across cancerous tumor samples better defined the type of cancer than

the expression profile of ~16,000 mRNAs (Lu et al., 2005). Given this, their
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potential use as prognostic or diagnostic biomarkers is quite high (Rosenfeld

et al., 2008), but it will be critical to quantify them correctly. Adaptor sequence

bias can also affect the magnitude of processing error attributed to a specific

processing pathway mutation. For example, a distinguishing feature of primary

piRNAs is the bias for U at position 1 (Zhang et al., 2015). Changes in this

5' bias are indicative of piRNA processing defects, so accurately capturing the

extent of 5' U bias is important to piRNA studies. However, libraries prepared

from cells with mutations in the processing pathway showed a range of 5' U bias

(57 to >80%) depending on the sequence identity of the adaptor used in library

preparation (Jayaprakash et al., 2011).

To a lesser extent, bias can also affect libraries prepared from long RNAs. Low

complexity (often a result of excessive PCR amplification) libraries limit the

conclusions that can be made from the data, as read redundancy severely

decreases coverage depth. Variations in nucleotide composition can result in

highly non-uniform read coverage across transcripts (first noted by Mortazavi

et al. 2008). This uneven coverage hinders transcriptome assembly, and may

affect the quantification of transcript abundances (Li et al., 2013).

Biases in RNA deep sequencing libraries (whether large or small RNA)

undermine the potential sensitivity and accuracy of this technology. Therefore, it

is important to construct RNA libraries in a way that introduces as little bias as
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possible. Chapter III, entitled An optimized kit-free method for making

strand-specific deep sequencing libraries from RNA fragments, discusses

my work developing an optimized protocol for constructing RNA libraries. This

protocol works for all types of RNAs while minimizing bias at each enzymatic

step in the construction process.





Chapter II

Redefining the translational status
of 80S monosomes

Preface

The contents of this Chapter appear as they were accepted for publication at

Cell, December 2015.

Supplemental Table 3 is not provided in this thesis due to size. Please refer to

the online supplemental material.

Introduction

The cytoplasm contains two populations of ribosomes: polysomes and

monosomes. Polysomes consist of mRNAs occupied by two or more ribosomes,

45
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whereas monosomes are mix of mRNAs bound by a single ribosome plus

"vacant couples" wherein the large and small ribosomal subunits stably

associate in the absence of mRNA (Noll et al., 1973). Ample evidence from

radioactive amino acid incorporation studies indicates that the vast majority of

new peptide bonds are formed on polysomes (Noll, 2008, Warner and Knopf,

2002). Thus, polysomes are generally equated with the translationally-active

mRNA pool, with monosomes often presumed to be newly assembled at the

start codon and therefore translationally inactive (for examples, see Aspden

et al., 2014, Van Der Kelen et al., 2009). Nonetheless, some fraction of

monosomes must be translationally active. For example, the first or "pioneer"

round of translation on any newly transcribed mRNA necessarily involves

translation by a single ribosome until it has moved far enough to allow a second

ribosome to assemble at the start codon. Further, the average distance between

elongating ribosomes in Saccharomyces cerevisiae has been estimated to be

>100 nucleotides (Arava et al., 2003, Shah et al., 2013). With such spacing,

some ORFs (e.g., RPL41A and RPL41B, each 78 codons) are so short that they

should be occupied by just one ribosome (Yu and Warner, 2001). Consistent

with this, S. cerevisiae mRNAs with very short ORFs cosediment predominantly

with 80S monosomes (Arava et al., 2003). Notably, that study also revealed that

several longer ORF mRNAs known to be translationally-regulated (e.g., GCN4,

CPA1, and ICY2) are primarily monosome-associated.
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Ribosome profiling enables precise mapping of ribosome position on mRNAs

undergoing active translation (Ingolia et al., 2009). Here, we adapted this

protocol to specifically examine the translational status of 80S monosomes in S.

cerevisiae. We provide definitive evidence that the vast majority of monosomes

are in the act of elongation, not initiation. As expected, monosomes predominate

on nonsense-mediated decay (NMD) targets, including unspliced transcripts.

Transcriptome-wide, relative polysome and monosome occupancy is a function of

initiation versus total elongation time. That is, if initiation is faster than elongation,

an mRNA will be predominantly polysome-associated. Conversely, if initiation

is much slower than elongation, an mRNA will be predominantly monosome-

associated. A high initiation:elongation ratio can be driven either by ORF length

or by slow initiation rate, often indicative of translation regulation. Thus, in

addition synthesizing extremely short proteins, monosomes also translate key

regulatory proteins such as transcription factors, kinases and phosphatases.

Such regulatory factors are often transiently expressed (i.e., have short mRNA

and protein half-lives) at very low levels. Therefore, relative monosome:polysome

association may prove a useful metric for identifying and studying mRNAs subject

to negative translation regulation.
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Results

Monosome, Polysome and Global Footprinting

We took multiple precautions to ensure that the ribosome footprints we isolated

accurately reflected intracellular conditions (Figure 2.1). To minimize ribosome

movement during sample workup, we briefly incubated log phase cultures with

100 µg/ml cycloheximide prior to rapid collection by vacuum filtration and

immediate resuspension in ice-cold lysis buffer, and performed all subsequent

steps at 4◦C (Ingolia et al., 2009). To preserve polysome integrity, we lysed cells

by vortexing with glass beads rather than ball milling, as ball milling tends to

shear polysomes and thereby artificially increase the monosome fraction. We

also excluded detergent (e.g., TritonX-100) as it led to excessive foaming and

poor cell lysis. Because efficient extraction of membrane-bound polysomes

requires detergent (Potter and Nicchitta, 2002), we expected cytoplasmic

species to predominate in our lysates. Although Mg2+ concentrations up to 30

mM are often used when preparing yeast extract for polysome profiling

(Bhattacharya et al., 2010), [Mg2+] in excess of 8 mM can drive vacant couple

formation (Favaudon and Pochon, 1976); therefore, we limited total [Mg2+] to 5

mM in all experiments.

For global ribosome profiling (Figure 2.1, left), cell lysates are digested with
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RNase I prior to ribosome isolation (Ingolia et al., 2009) - consequently, the

entire ribosome population is sampled without regard to monosome or polysome

status. To generate monosome- and polysome-specific footprints, we first

separated the two populations on a 6-38% (w/v) sucrose gradient. These

gradients were centrifuged for a sufficient time to sediment the 80S monosome

peak to the middle fractions, allowing both monosomes and polysomes to be

collected with optimal separation between the two pools. These conditions also

allowed for clean separation between monosomes and 48S initiation complexes

that, although unlikely, could leave mRNA footprints upon RNase l digestion

(Aspden et al., 2014, Ingolia et al., 2014). Pooled fractions were then separately

digested with RNase I prior to loading on a second sucrose gradient (Figure 2.1,

middle and right), ensuring that any mRNA fragments obtained were bona fide

ribosome footprints and not similarly sized protected fragments originating from

non-ribosome-bound positions on the intact monosome or polysome-bound

mRNAs isolated from the first gradient. We also generated RNA-Seq libraries

from total lysate RNA extracted prior to gradient fractionation.

For both biological replicates of isolated monosomes and polysomes, ~80-90%

of uniquely mapping reads post-ncRNA removal aligned to the sacCer3 genome

(Supplemental Table 2.1), with 5,045 of 6,692 annotated ORFs having at least

10 reads in all four libraries. Scatter plots comparing either total ribosome

occupancy per ORF (reads per million mapped; RPM) or ribosome density per
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ORF (reads per kilobase per million mapped; RPKM) revealed high correlations

between biological replicates (Pearson coefficient >0.99) (Figure 2.2). Thus

our monosome- and polysome-specific ribosome profiling data were highly

reproducible and covered the vast majority (75%) of annotated ORFs.

Ribosome Position Analysis

When aggregated across all coding sequence (CDS) genes, ribosome footprints

tend to be highly enriched at ORF 5' ends and then sharply decrease before

reaching a plateau that persists throughout the remainder of the ORF (Ingolia

et al., 2009). Both metagene and aggregation plots of our global ribosome

footprints replicated these features (Figure 2.3A and B, left panels). Monosome

and polysome plots, however, were distinctly different (Figure 2.3A and B,

middle and right panels). Whereas both exhibited ORF 5' end enrichment, this

enrichment was much more pronounced for monosomes and much less

pronounced for polysomes than the global pattern. Further, the plateau was

lower for monosomes and higher for polysomes than the global plateau.

Therefore, monosomes and polysomes make distinct contributions to the global

ribosome footprint pattern.

High monosome occupancy at ORF 5' ends might suggest that a large fraction

is in the process of initiation with tRNAmet in the P-site. Because our double
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TABLE 2.1: Statistics for RiboSeq and RNASeq Libraries
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sedimentation strategy strongly disfavored free tRNA contamination in our

footprinting libraries, any tRNA fragments in our libraries likely originated from

stably-bound tRNAs. In both monosome and polysome libraries, very similar

fractions of tRNA-mapping reads (0.76-1.03% Mono; 0.62-1.08% Poly)

corresponded to tRNAmet (Table 2.2), indicating there was no major difference in

tRNAmet association between monosomes and polysomes. Further, only 7% of

monosome 28 nt reads were positioned over canonical ORF start codons,

compared to 2% for polysomes. All other 28 nt reads mapping to canonical

ORFs (93% and 98%, respectively) mapped to internal codon positions,

demonstrating that most monosomes are in the process of elongation.

Further evidence for elongating monosomes came from aggregating 28 nt read

5' end positions relative to the start codon. Both monosome and polysome

footprints exhibited the 3 nt phasing characteristic of elongating ribosomes

(Figure 2.3B and inset), and for both populations, this strong phasing continued

all the way to the stop codon (Figure 2.3C and inset). Among all 6,692 annotated

CDS genes, 5,029 (75%) had more than five 28 nt monosome footprints in each

biological replicate indicative of elongation (i.e., P-site inside the ORF). Thus,

most monosomes (93%) were in the process of elongation, with most genes

(75%) having multiple 28 nt monosome footprints within the ORF. We conclude

that the preponderance of 80S monosomes in our samples were translationally

active, and that at least a fraction of elongation events on most mRNAs occurs
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while the mRNA is occupied by a single ribosome.

A prominent difference between the monosome and polysome aggregation plots

occurs across codons 9-36 (Figure 2.3B). Whereas monosome read coverage

decreased ~3-fold over this region (5' ends at nt positions +12 to +93), polysome

read coverage remained relatively even. These same patterns were observed

when aggregation plots were limited to cytoplasmic mRNAs (see below;

Supplemental Figure 2.4C-F). Likely explanations for these different patterns are

discussed below. Another difference between the aggregation plots occurred at

ORF 3' ends, where monosome reads exhibited a slight uptick (~1.5 fold) over

the last 100 nts, while polysome reads did not (Figure 2.3C). This uptick in

monosome reads was even more pronounced in aggregation plots limited to

mRNAs that were otherwise polysome-enriched (Supplemental Figure 2.4G and

H). This signal could originate from the final ribosome on an otherwise

polysome-associated mRNA as that ribosome completes translation prior to or

coincident with mRNA degradation (Pelechano et al., 2015).

Features common to both monosome and polysome aggregation plots were:

(1) strong peaks at codons 1 and 5 (Figure 2.3B, labeled in right inset); and

(2) a four- rather than three-nucleotide gap between the last coding position

peak and final peak over the stop codon (Figure 2.3C, inset). Because the

+5 codon peak did not disappear when aggregation plots were normalized so
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TABLE 2.2: tRNA Mapping Statistics

Number of tRNA reads, binned by encoded amino acid, in each monosome and
polysome biological replicate library.
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that each gene contributed equally (Supplemental Figure 2.4A and D), it was

a general feature of our libraries and not due to any single gene or small gene

subset. Thus +5 pausing may be a general post-initiation feature in both yeast

and mammals, where it was recently attributed to exit tunnel geometry (Han

et al., 2014). The offset peak at ORF 3' ends was also apparent in normalized

aggregation plots (Supplemental Figure 2.4B and F), indicating that its generality.

This previously observed spacing (Guydosh and Green, 2014) may be due to

mRNA compaction during termination (Brown et al., 2015). Thus, with regard to

these previously characterized features at the 5' and 3' ends of ORFs, we could

detect no differences between the monosome and polysome populations.

To determine if the transcriptome-wide patterns accurately represented footprint

patterns across single genes, we next examined individual ORFs. As expected

from the metagene and aggregation plots, monosome footprints on many ORFs

predominated at and immediately downstream of the start codon, with polysome

footprints exhibiting much higher coverage across the entire ORF (e.g. SHM2 and

RHR2, Figure 2.3D and E). Other genes, however, exhibited very similar patterns

between the monosome, polysome, and global libraries. Some such genes

encoded long and abundant proteins (e.g., actin/ACT1 and RPL16B, Figure

2.3F and G). Hence, some mRNA molecules encoding even highly abundant

housekeeping genes are apparently translated by monosomes.
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Features of Monosome- and Polysome-Enriched mRNAs

We next used the differential expression package DESeq2 (Love et al., 2014) to

compute monosome versus polysome fold-enrichment for each mRNA

(monosome:polysome score). For cytoplasmic mRNAs, our data paralleled the

previous microarray estimate of ribosome number per mRNA (Arava et al.,

2003), with monosome:polysome scores increasing as estimated ribosome

number decreased (Figure 2.5A). This relationship did not exist, however, for

membrane-associated mRNAs, which were highly skewed toward monosome

occupancy (Figure 2.5B). For these mRNAs, monosome footprints accumulated

over and immediately downstream of predicted signal sequences (Figure

2.5C-D). This fits the long-standing model of ER protein import (Figure 2.5E)

where the signal sequence is first translated by a single cytoplasmic ribosome

prior to signal recognition particle (SRP) recruitment and membrane

engagement. Because membrane-associated polysomes were likely

under-sampled due to lack of detergent in our cell lysis procedure, we limited all

subsequent analyses to the 4,342 mRNAs for which no evidence exists of

membrane association (i.e., cytoplasmic mRNAs).

A major determinant of ribosome number per mRNA is ORF length (Arava et al.,

2003). Consistent with this, a scatter plot of monosome:polysome score versus

ORF length revealed a strong inverse relationship, with shorter ORFs being
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more monosome-associated than longer ORFs (Figure 2.6A). Mean and median

monosome:polysome scores of ordered bins each containing 50 genes revealed

this relationship to be particularly strong and nearly linear for ORFs ≤590 nts

(Figure 2.6B and 2.5F). Thus the shortest canonical ORFs in CDS genes tend to

be occupied by a single ribosome.

Besides short canonical ORFs, two other classes of short ORFs are sORFs

[short <300 nt ORFs in transcripts not originally annotated as protein-coding

genes; Smith et al., 2014] and uORFs [ORFs upstream of canonical ORFs;

Ingolia et al., 2009]. Both classes were strongly biased toward monosome

occupancy (Figure 2.6C). Like short canonical ORFs, sORFs exhibited a

negative correlation between ORF length and monosome:polysome read ratio;

accordingly, sORFs are likely bona fide protein-coding genes translated

predominantly by monosomes. Strikingly, a different behavior was observed for

uORFs. Consistent with all currently annotated uORFs in non-membrane genes

being <250 nts, the population as a whole was strongly biased toward

monosome occupancy (Figure 2.6C). However, no relationship was detectable

between monosome enrichment and uORF length. A likely explanation is that

uORFs, by definition, are contained within multi-cistronic mRNAs whose

cosedimentation with monosomes or polysomes is determined by the combined

ribosome occupancy on all ORFs. Consequently, any simultaneous ribosome

occupancy on multiple ORFs (even if each ORF is only occupied by a single
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ribosome) will cause the entire mRNA to cosediment with polysomes.

Nonetheless, the strong bias of uORF ribosome footprints toward monosome

cosedimentation indicates that when a ribosome is engaged on a uORF, all

other ORFs in the mRNA tend to be unoccupied.

Because sORFs and uORFs are predominantly monosome-associated, these

regions had much higher occupancy in the monosome libraries than in either the

polysome or global libraries. This enhanced detection suggested that monosome

footprinting might prove more effective for identifying new sORFs than global

ribosome footprinting, especially sORFs in monocistronic transcripts. To find

new translationally-active ORFs, we combined the two monosome libraries,

removed reads associated with previously annotated ORFs (canonical, sORFs

and uORFs) and then identified clusters of overlapping or adjacent genome-

mapping reads in the remainder. Examination of high coverage clusters revealed

that most occurred either within annotated 5' UTRs or the region immediately

upstream. One example is a uORF upstream of PCL5 (Figure 2.6D). Previously

published 5' transcript leader sequencing data (Arribere and Gilbert, 2013)

suggests the existence of alternate transcription start sites (TSSs) for PCL5.

Therefore, this uORF is likely an alternatively included element regulating PCL5

translation (Pelechano et al., 2013).

To identify features other than ORF length that affect the monosome:polysome
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score, we next considered only the 3,121 CDS genes with a canonical ORF >590

nts (Figure 2.6A). Within this set, DESeq2 identified 204 monosome-enriched

(p-adj ≤ 0.001; Figure 2.6A, purple dots) and 1009 polysome-enriched (p-adj

≤ 0.001; Figure 2.6A, orange dots) mRNAs (Table S3). To define the most

extreme set of polysome-enriched mRNAs, we also picked the 300 mRNAs

exhibiting the smallest monosome:polysome score (Figure 2.6A, dark orange

dots). The remaining 1908 mRNAs not meeting the above cutoffs formed the

’no enrichment’ set (p-adj > 0.001; Figure 2.6A, grey dots). We then compared

various features of these four gene sets (Figure 2.7; data from this paper or

previously published). Polysome-enriched genes have higher median mRNA

and protein abundances than the no-enrichment and monosome-enriched sets

(Figure 2.7A and F). Further, as also expected for highly expressed genes, the

polysome-enriched sets exhibit higher mRNA synthesis rates and longer mRNA

half-lives than either the no-enrichment or monosome-enriched set (Figure 2.7B

and C). Finally, consistent with an evolutionary pressure toward more efficient

translation, polysome-enriched mRNAs tend to have shorter 5' UTRs (Figure

2.7D) and a higher optimal codon frequency (Figure 2.7E). In short, polysome-

enriched mRNAs tend to be highly transcribed, have long mRNA half-lives, short

5' UTRs, high codon optimality, and encode highly abundant proteins.
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Monosomes, mRNA Half-Life and NMD

In the above analysis, the monosome-enriched gene set had a lower median

mRNA half-life than the no-enrichment set (Figure 2.7C; data from Presnyak

et al., 2015. One class of mRNAs expected to be monosome-enriched with

shorter than average half-lives are those subject to nonsense-mediated mRNA

decay (NMD). NMD preferentially eliminates transcripts wherein the stop codon

exists in a suboptimal context for termination (Amrani et al., 2004), and NMD

targeting is thought to occur when the first or 'pioneer' ribosome encounters this

suboptimal stop codon (Gao et al., 2005). Two previous studies independently

identified two classes of genes in S. cerevisiae whose mRNA levels depend on

NMD: (1) those with strong evidence of being 'direct' NMD targets, and (2) those

for which the evidence might indicate 'indirect' regulation by NMD (Guan et al.,

2006, Johansson et al., 2007). To facilitate our own comparative analysis, we

parsed these partially overlapping gene sets according to whether both studies

concurred on direct NMD target status (our Class A; 33 non-membrane genes

with ORF length >590 nts), a single study indicated direct NMD target status

(Class B; 144 genes), and any other gene indicated as an indirect target by

either study (Class C; 166 genes) (Supplemental Table 3). All other genes were

placed into a 'non-NMD target' bin. Consistent with expectation, global ribosome

footprint RPKM boxplots revealed that all three NMD target sets exhibited
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significantly lower overall ribosome occupancy than the non-NMD set (Figure

2.8A). This tendency toward lower ribosome occupancy was also readily

apparent in both a scatter plot of monosome versus polysome footprint RPKM

(Figure 2.8C; quantified in Figure 2.9A and 2.9B) and boxplots of

monosome:polysome scores (Figure 2.8C, inset). Unexpectedly, however, none

of the three NMD target sets was statistically different from the non-NMD set

with regard to mRNA half-life (Figure 2.8B). Thus, while NMD targets tend

toward monosome occupancy, enrichment for NMD targets does not explain the

lower median half-life of monosome-enriched mRNAs (Figure 2.7C). Consistent

with this, monosome-enriched mRNA median half-life remained significantly

lower than the no enrichment set even when all known NMD targets were

removed (Figure 2.9D). Thus, some feature other than NMD must be driving the

lower stability of monosome-enriched mRNAs.

Ribosome Occupancy on Introns

Another set of known NMD targets are intron-containing transcripts that escape

the nucleus without having been spliced (Sayani et al., 2008). Of 222 non-

membrane genes harboring an intron inside the canonical ORF, 130 had ≥10

total monosome footprints that either partially or completely overlapped the intron.

For these 130 introns, comparing the canonical ORF monosome:polysome

score to the intron monosome:polysome count ratio revealed that ribosome
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footprints in introns were highly skewed toward monosomes, regardless of ORF

monosome:polysome score (Figure 2.10A). Aggregation of 28 nt monosome

footprint 5' ends revealed strong exonic reading frame maintenance across the

first 20 intronic codons (Figure 2.10B,C and 2.11A). The sharp decrease in

aggregated counts after the first few intron positions was due to the presence

of an in-frame stop codon near the 5' end of most introns. For genes with no

early in-frame stop codon, phased monosome reads were readily observable

within the intron (ex. Figure 2.10E). In other introns, phased reads were also

apparent on one or more internal sORFs on which ribosomes likely reinitiated

after encountering the first stop codon (ex. Figure 2.10F). The presence of such

sORFs led to a decrease in phasing when all intron positions were taken into

account (Figure 2.10D and 2.11B). Taken together, these data strongly support

the idea that targeting of unspliced transcripts for NMD occurs predominantly on

monosomes. They further demonstrate that introns can harbor translationally

active sORFs, so may represent a previously unrecognized source of short

peptide translation products. As with other sORFs, ribosome occupancy on

intronic sORFs was only readily detectable in the monosome and not polysome

or global libraries. This again highlights the usefulness of monosome footprinting

for detecting low-density ribosome occupancy.
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Initiation and Elongation Times Determine Monosome
Association

For genes with canonical ORFs long enough to accommodate more than one

ribosome, why are some still predominantly monosome associated? Compared

to all 3,121 cytoplasmic CDS genes with canonical ORFs >590 nts (i.e., our

background population), mRNAs encoding kinases and transcription regulators

were overrepresented in the 204-member monosome-enriched set (Table 2.3).

Such regulatory proteins tend to be required in low copy numbers per cell.

Notably, both overall ribosome density and calculated protein output were

substantially lower for our monosome-enriched genes than all other gene sets

(Figure 2.12A and B). Many mRNAs encoding regulatory proteins are also

subject to negative translation regulation (e.g., by uORFs; see below).

Consistent with this, canonical ORFs downstream of a uORF exhibited greater

monosome enrichment than canonical ORFs not preceded by any annotated

uORF (Figure 2.12D). Thus long ORF mRNAs typically occupied by single

ribosomes tend to encode low-abundance proteins and be subject to negative

translation regulation.

By integrating fixed parameters such as average cell size and ribosome

abundance with numerous transcriptome-wide datasets (e.g., RNA-Seq,

RiboSeq, mRNA half-life, and tRNA decoding specificity), Siwiak et al. (2010)

recently established a quantitative, computational model of translation in S.
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TABLE 2.3: Gene Ontology Analysis (continued on next page)

NGR = Number of annotated genes in reference list;

TNGR = Total number of genes in reference list;

NG = Number of annotated genes in input list;

TNG = Total number of genes in input list;

Hyp = Hypergeometric pValue; Hyp* = Corrected hypergeometric pValue
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TABLE 2.3: Gene Ontology Analysis

Statistically significant gene ontology terms for monosome-enriched, polysome-
enriched, and polysome top 300 gene sets compared to the background population of

cytoplasmic mRNAs with ORFs > 590 nts.
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cerevisiae from which various statistics (e.g., initiation time = time required to

form a new 80S ribosome at the start codon; total elongation time = time

required for a ribosome to elongate through the entire ORF) were calculated for

each mRNA. In theory, the number of ribosomes occupying an mRNA should be

a function of initiation time versus total elongation time. If initiation time is

considerably longer than total elongation time, then an mRNA should on

average be occupied by zero or one ribosome, but rarely by two or more.

Consistent with this, the ratio of initiation time to total elongation time was

highest for our two monosome-enriched populations (the ORF <590 nt and ORF

>590 nt monosome-enriched sets) compared to all other gene sets (Figure

2.13C). For the ORF <590 nt set, the major driver of this ratio was short total

elongation time (Figure 2.13B) due to ORF length. Conversely, for the >590 nt

monosome-enriched set, the major driver was initiation time (Figure 2.13A).

Thus many long ORFs tend toward monosome occupancy due to slow initiation

rates.

The relationship between initiation and elongation times also leads to different

monosome and polysome footprint patterns across individual genes (Figure

2.13D and F). For mRNAs where initiation time is substantially slower than

total elongation time, any ribosome occupying that mRNA will generally be in

the process of elongation. It follows that mRNAs with extremely slow initiation

rates should be predominantly monosome-associated, with ribosome footprints
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distributed across the entire ORF (Figure 2.13F, class I). One example is BER1, a

regulator of microtubule stability involved in proper kinetochore function (Fiechter

et al., 2008). Another is GCN4, a highly studied transcription factor required

for up-regulation of amino acid biosynthesis upon starvation. Initiation on the

canonical GCN4 ORF is regulated by four uORFs; translation across a uORF

generally decreases downstream re-initiation efficiency (Hinnebusch, 2005).

The very high enrichment of all four GCN4 uORFs in the monosome libraries

(monosome:polysome counts = 9.0, 8.3, 10.5 and 6.1, respectively; Figure

2.12F) indicates a strong preference for only one GCN4 ORF (one uORF or the

canonical ORF) to be occupied at a time. Consistent with this, the canonical

ORF exhibited strong monosome enrichment (monosome:polysome counts =

3.7), with footprints distributed throughout its entire length (Figure 2.13F, class I).

Therefore, the rate-limiting step for GCN4 translation during logarithmic growth

in rich media is initiation on the canonical ORF.

Other mRNAs primarily occupied by monosomes are those on which a newly

initiated 80S lingers for an extended time either at the start codon (i.e., the

transition from initiation into elongation is extremely slow) or immediately

downstream (i.e., elongation through codons 2-9 is extremely slow) (Figure 2.3D

and 2.13F, class II). While the possibility of new initiation events occurring during

sample workup always warrants cautious interpretation of reads at ORF 5' ends

(Gerashchenko and Gladyshev, 2014), any ribosome occupancy at the
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beginning of the ORF necessarily prevents a second ribosome from assembling

over the start codon due to steric hindrance (see Figure 2.13E schematic). The

footprint pattern expected for class II genes is high monosome signal limited to

the very beginning of the ORF, combined with low polysome signal wherein the

footprint distribution exhibits a strong peak akin to the monosome peak at the

beginning of the ORF and low but even coverage across the remainder.

Examples of class II genes were readily apparent in the 204-member monosome-

enriched set. For SHM2, most of the monosome reads occurred immediately

over the start codon, with the remainder of the ORF only occupied in polysomes

(Figure 2.3D). The reason for AUG stalling on SHM2 mRNA may be the highly

suboptimal CCU proline codon (Artieri and Fraser, 2014, Gardin et al., 2014) at

position 2. Regardless of the cause, the transition from initiation to elongation is

clearly rate limiting for SHM2 translation in logarithmically growing yeast. CIT2

and GAT2 are paradigmatic examples of mRNAs for which elongation through

codons 2-9 is rate limiting for overall translation (Figure 2.13F, class II). For both,

monosome footprints were confined to the beginning of the ORF, with the rest of

the ORF only exhibiting low ribosome occupancy in the polysome libraries. Slow

transit at the beginning of an ORF might be due to highly suboptimal codons

in this region. It should be noted, however, that suboptimal codons tend to be

enriched at ORF 5' ends transcriptome-wide (Tuller et al., 2010), and when we

calculated optimal codon frequency and codon adaptation index across codons
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2-9, we found no statistically significant difference between class II genes and

any other gene set (data not shown). Consequently, we currently have no clear

explanation for slow ribosome transit across codons 2-9 in class II genes, though

codon arrangement could certainly play a role (Ciandrini et al., 2013).

At the opposite end of the spectrum with regard to initiation rate are genes

encoding high abundance proteins (Figure 2.13F, class III). Both the 1009-

member and top-300 polysome-enriched sets with ORFs >590 nts (Figure 2.6A)

are highly enriched in mRNAs encoding proteins involved in translation, RNP

biogenesis and general metabolism (e.g., amino acid biosynthesis, glycolysis)

(Table 2.3). Because each mRNA molecule must turn out massive amounts of

protein during logarithmic growth (Figure 2.12B), these genes have the shortest

initiation times (Figure 2.13A) and the highest elongation rates (i.e., codons

per second; Figure 2.12C). Their translation is limited only by the time required

to complete elongation (Figure 2.13B). Therefore, the paradigmatic footprint

pattern for this class is high and uniform density across the ORF in the polysome

libraries, with monosome reads predominating at ORF 5' ends (Figure 2.13F,

class III). For such highly translated genes (as exemplified by mRNAs encoding

ribosomal proteins; Figure 2.12E), their relative association with monosomes or

polysomes is almost entirely a function of ORF length.

In summary, the above results clearly demonstrate that the ratio of total time
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required to complete initiation and liberate the start codon for occupancy by

another ribosome versus total time required to complete elongation is a major

factor determining polysome versus monosome association. Whereas mRNAs

with long ORFs and high initiation rates tend to be translated primarily on

polysomes, mRNAs with short ORFs and/or slow initiation rates are

predominately occupied by monosomes.

Discussion

In this paper, we examined the translational status of 80S monosomes in S.

cerevisiae. Countering the widespread notion that translationally-active mRNAs

are limited to polysomes, we found ample evidence for translation elongation by

monosomes. Strong 3-nt phasing of monosome footprints at both 5' and 3' ends

of ORFs in transcriptome-wide aggregation plots indicates that monosomes can

both initiate and complete elongation. Indeed, the vast majority of monosome

footprints were located downstream of the start codon, and 75% of canonical

ORFs exhibited internal monosome occupancy. Thus, for most mRNA species,

some fraction of molecules is occupied by a single, translationally-active

ribosome. For species with short ORFs or slow initiation rates, the majority of

mRNA molecules are monosome-associated. Monosomes also predominate on

NMD targets, unspliced pre-mRNAs and mRNAs encoding low abundance



Chapter II. Monosome Translation 91

regulatory proteins. Therefore, the 80S monosome fraction should no longer be

viewed as translationally inactive. Rather, monosomes are key contributors to

the overall cellular translatome.

The First Round of Translation and Translational Ramps

When aggregated across all genes, global ribosome footprints tend to peak at

ORF 5' ends, sharply decrease across the first 30-40 codons and then gradually

reach a plateau that persists throughout the remainder of the ORF (Ingolia et al.,

2009). This pattern has been proposed to reflect an evolutionarily-conserved

'translational ramp', a region containing suboptimal codons through which newly

initiated ribosomes elongate slowly before speeding up to maximal efficiency

within the ORF body, presumably to minimize ribosome traffic jams and thereby

the energetic cost of protein synthesis (Tuller et al., 2010). Our data do not

support the translational ramp hypothesis. If all newly initiated ribosomes first

proceed slowly, the same sharp footprint drop-off at ORF 5' ends should occur

regardless of whether or not the mRNA is concurrently occupied by other

ribosomes. However, our polysome and monosome libraries displayed quite

different profiles, with polysomes almost completely lacking a ramp and

monosomes having an even more pronounced ramp than the global libraries

(Figure 2.3B, 2.4A, 2.4C-D). We conclude that the observed global ramp is

almost entirely due to the monosome component.
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Why do monosome aggregation plots display such a steep ramp at the beginning

of the ORF? When any mRNA transitions from the free mRNP pool to the

translationally-active pool, the first several codons must necessarily be translated

by a monosome. This is because a second ribosome cannot form at the start

codon until the first has moved sufficiently far into the ORF that it no longer

sterically blocks a second from assembling (Figure 2.13E). Based on the known

lengths of ribosome footprints, 10 codons is the minimum spacing between the

first elongating ribosome and a second at the AUG (i.e., codon 11 in the P

site of the first ribosome and the AUG in the P site of the second ribosome).

Upon assembly of the second ribosome, the mRNA becomes a polysome, so is

thereby removed from the monosome pool. The dramatic decrease starting after

codon 9 in the transcriptome-wide monosome aggregation plots fully supports

this minimum spacing (Figure 2.3B, 2.4A, 2.4C-D). This pattern was also clearly

present on individual mRNAs (Figure 2.3E and 2.13F, class II). We therefore

conclude that the apparent 'translational ramp' in global footprint aggregation

plots is simply due to steric constraints on assembly of multiple ribosomes at the

5' ends of ORFs.

Monosomes, NMD Targets and mRNA Half-Lives

Nonsense-mediated decay (NMD) is a cellular process that degrades both

aberrant mRNAs containing premature termination codons and regulates a
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subset of wild-type mRNAs (He et al., 2003). It has been proposed that NMD

occurs predominantly as a consequence of the first round of translation

(Culbertson and Neeno-Eckwall, 2005, Gao et al., 2005). If so, NMD substrates

should exhibit lower than average overall ribosome occupancy in global

footprinting experiments and be predominantly monosome-associated. Both

expectations proved valid for three non-overlapping sets of previously identified

NMD targets (Figure 2.8B and C, inset). Surprisingly, however, no NMD target

set was statistically different from the non-NMD set with regard to mRNA half-life

(Figure 2.8A). Consequently, a predominance of NMD targets cannot explain the

lower median mRNA half-life of the 204-member monosome-enriched gene set

compared to the no-enrichment set (Figure 2.6C). Consistent with this, removal

of all NMD targets only negligibly affected median half-lives of the

monosome-enriched, no-enrichment and polysome-enriched gene sets (Figure

2.9C and D), with the difference between the monosome-enriched and

no-enrichment median half-lives still being highly significant (p = 0.001). So why

do monosome-enriched mRNAs have shorter half-lives? Overall codon

optimality was recently shown to be the major determinant of mRNA half-life in

S. cerevisiae (Presnyak et al., 2015). However, even with the NMD targets

removed, we found no statistically significant difference between the

monosome-enriched and no-enrichment sets with regard to codon optimality

(Figure 2.9E and F). In the end, while our data do indicate a relationship
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between mRNA half-life and monosome occupancy, we have yet to find a

mechanistic explanation.

Monosomes, sORFs and Biologically-Acive Peptides

Recent work over diverse organisms has discovered the existence of thousands

of biologically-active peptides synthesized directly from sORFs rather than being

proteolytically cleaved from larger precursors (for reviews, see Chu et al., 2015,

Landry et al., 2015, Storz et al., 2014). If we are to understand the complete

repertoire of such peptides, new methods for identifying translationally-active

sORFs are required. Two recent studies expressly sought to accomplish this

by ribosome profiling (Aspden et al., 2014, Smith et al., 2014). Because both

analyses were limited to transcripts cosedimenting with polysomes, however,

only those sORFs long enough to accommodate two or more ribosomes could

be interrogated. Not surprisingly, our datasets reveal a very strong relationship

between ORF length and monosome:polysome score, with the shortest canonical

ORFs being highly monosome-enriched (Figure 2.6A and B). This same trend

exists for the S. cerevisiae sORFs identified above (Smith et al., 2014; Figure

2.6C), suggesting that identification of new sORFs is better accomplished by

monosome profiling. Our own datasets have already revealed a conserved

uORF upstream of the canonical PCL5 ORF (Figure 2.6D), as well as several

translationally-active sORFs in introns (ex. Figure 2.10F). Thus, monosome
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profiling is a highly effective method for expanding the universe of sORFs that

either serve as translational regulators (e.g., uORFs) and/or sources of new

biologically-active peptides.

Monosome Association: A Function of Initiation Versus
Elongation

In addition to transcripts with sORFs and uORFs, scores of mRNAs with

canonical ORFs were highly enriched in the monosome fraction. Some encode

high abundance species such as ribosomal proteins (RPs). Because RPs are

constantly required to produce new ribosomes during logarithmic growth, RP

mRNAs are among the most efficiently translated of all mRNAs. The two

shortest RP ORFs are both 75 nts and encode RPL41A and B. Based on the

number of ribosomes per cell and S. cerevisiae doubling time in rich media,

Warner estimated that initiation and completion of RPL41A/B translation

requires only ~2 secs. If the combined rates of elongation and termination are

faster than initiation, then, at steady state, the preponderance of short,

highly-translated mRNAs should be associated with just a single ribosome.

Consistently, both RPL41 mRNAs were previously shown to be predominantly

monosome-associated (Yu and Warner, 2001) and they were among the most

highly monosome-enriched canonical ORF transcripts in our datasets (Figure

2.6A).
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RPL41A and B illustrate the general principle that any mRNA will be

predominantly monosome-associated if the combined time required for

elongation and termination is much shorter than the time required for initiation.

Because total elongation time strongly depends on ORF length (Siwiak and

Zielenkiewicz, 2010), monosome:polysome score should be a function of ORF

length up the point where the elongation phase is of similar duration to the

initiation phase. This likely explains the steep slope and tight correlation

between mean/median monosome:polysome score and ORF length up to 590

nts (Figure 2.6B and 2.5F). Beyond this inflection point, most mRNAs are

predominantly polysome-associated because the elongation phase is now

longer than the initiation phase. Nonetheless, even among mRNAs with ORFs

>590 nts, many remained predominantly monosome-associated (our

204-member monosome gene set; Figure 2.6A). This set has significantly longer

initiation times than all other gene sets (Figure 2.13A), driving the

initiation:elongation ratio to be comparable to the ORF <590 nts gene set

(Figure 2.13C). Therefore, mRNAs with very long initiation times are

predominantly monosome-associated. Included among mRNAs with long

initiation times are those subject to negative translation regulation and those

encoding low-abundance regulatory proteins.
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Perspective

The long-standing assumption that all translation occurs on polysomes and,

therefore that 80S monosomes are translationally inactive, has had important

ramifications in multiple biological systems. For instance, studies that focus solely

on mRNAs co-sedimenting with polysomes (e.g, Aspden et al., 2014, Krishnan

et al., 2014, Reboll and Nourbakhsh, 2014, Smith et al., 2014) will severely

underestimate translational flux for mRNAs on which initiation is significantly

slower than elongation and termination. These include mRNAs with sORFs,

mRNAs with long and highly structured 5' UTRs, and those on which translation

initiation is subject to negative regulation under the particular cellular conditions

are being examined. Pre-selection of polysomes also eliminates the possibility of

identifying sORFs that are only long enough to accommodate a single ribosome.

The 'polysome-only' assumption has also served as a strong and longstanding

argument against localized translation in mature mammalian axons, where

visible polysomes are generally lacking (Holt and Schuman, 2013, Steward and

Schuman, 2003). Even in dendrites where localized translation is well

established, the polysome-only assumption leads to large discrepancies

between biochemical measurements of translation and the amount of translation

theoretically possible based only on visible polysome numbers per dendritic

spine (Ostroff et al., 2002). Our finding that mRNAs encoding key regulatory
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factors and other low-abundance proteins are predominantly translated by

monosomes in S. cerevisiae opens the possibility that monosomes are also

active in neuronal processes, where many polypeptides required for modulating

synaptic strength are required at low stoichiometries per synapse (Sheng and

Hoogenraad, 2007, Sheng and Kim, 2011). At least one of these synaptic

modulators, Arc/Arg3.1, is a natural NMD target (Bicknell et al., 2012, Giorgi

et al., 2007), and so may be preferentially monosome-associated as are S.

cerevisiae NMD targets (Figure 2.8C, inset).

Accession Numbers

All sequencing data have been deposited in NCBI’s GEO database under

accession number GSE76117.

Acknowledgements

We thank John Mattick, Martin Smith and other Mattick lab members for

bioinformatic training and guidance, and Nicholas Ingolia, Christopher Nicchitta,

Elisabet Mandon, Hakan Ozadam and other Moore lab members for helpful

discussions and critical manuscript review. This research was funded by HHMI.



Chapter II. Monosome Translation 99

Experimental Procedures

Extended Experimental Procedures are provided as Supplemental Information.

Ribosome Footprinting

BY4741 yeast were grown in YEPD, harvested at OD600 0.6 after a 2 min

cycloheximide treatment and lysed by vortexing with glass beads. For global

ribosome footprinting, 50 A260 units of clarified lysate was digested with RNase I

and separated through a 35 ml 6-38% sucrose gradient. 80S monosome

fractions were collected and RNA extracted. For monosome or polysome

footprinting, clarified lysate was separated through a 35 ml 6-38% gradient.

Fractions corresponding to either monosomes or polysomes were collected

separately; each was diluted in an equal volume of gradient buffer and

concentrated. Post-concentration, 2 A260 units of each sample were digested

with RNase I and separated through a 10.5 ml 10-50% sucrose gradient. 80S

fractions were collected and the RNA extracted as for global footprints.

RNA-Seq and Library Preparation

5 µg of total RNA from clarified lysate was depleted of rRNA prior to fragmentation

and size selection. RNA fragments (~20-45 nts) were isolated by denaturing-

PAGE for RNA-Seq; ribosome footprints (27-31 nts) were isolated in a similar

manner. All RNA fragments were converted into deep sequencing libraries using
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a modified version of our standard laboratory protocol (Heyer et al., 2015). Briefly,

a preadenylated adaptor is ligated to RNA 3' ends, after which the ligated RNAs

are reverse transcribed. The RT product is gel purified, circularized, and PCR

amplified prior to sequencing.

Mapping and Analysis of Deep Sequencing Data

Barcoded libraries were pooled and sequenced on either an Illumina HiSeq2000

(ribosome footprints) or MiSeq (RNA-Seq). Reads were parsed into appropriate

libraries by 5' barcode, and then adaptor sequences removed. Trimmed reads

were filtered for non-coding RNAs, and the remaining reads were mapped to

both the sacCer3 genome (in a splice-aware fashion) and transcriptome, with the

former being viewed on the UCSC genome browser. Uniquely mapping reads

≥25 nts (ribosome footprints) or ≥22 nts (RNA-Seq) were used for all analyses

unless otherwise indicated. Data analyses were performed using the R software

package.

Extended Experimental Procedures

Yeast Lysate Preparation

BY4741 yeast were grown under standard conditions in YEPD until OD600 ~0.6.

Cycloheximide was added to a final concentration of 100 µg/ml, followed by

2 min of additional shaking at 30◦C. Cells were collected via vacuum filtration
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over a 0.45 µm nitrocellulose filter. Collected cells were immediately scraped

off the filter and resuspended in 4 ml ice-cold lysis buffer (20 mM Tris-Cl pH

8.0, 140 mM KCl, 5 mM MgCl2, supplemented with 1 mg/ml heparin, 100 µg/ml

cycloheximide, 500 µM DTT, 1X protease inhibitor cocktail set V, EDTA-free

(Calbiochem #539137) and 1 mM PMSF). This resuspension was split equally

between 2 chilled 15 ml corex tubes each containing 1.2 ml of 425-600 µm glass

beads. Cells were lysed by vortexing on high 8x for 15 sec each, with 30-120

sec pause on ice between each cycle. Lysates were clarified by two rounds

of centrifugation: one at 13,000 x g for 10 min at 4◦C, followed by another in

eppendorf tubes at 20,000 x g for 10 min at 4◦C. Clarified lysates were then

recombined into a single tube.

Monosome and Polysome Ribosome Footprinting

Sucrose gradient solutions were prepared w/v in gradient buffer (20 mM Tris-Cl

pH 8.0, 140 mM KCl, 5 mM MgCl2, supplemented with 100 µg/µl cycloheximide

and 500 µM DTT). Gradients were poured using a Gradient Master (Biocomp). 2

ml of clarified lysate was loaded onto a 35 ml 6-38% gradient and spun for 3 hr

30 min at 27,000 rpm at 4◦C. Gradient fractions were collected using a Density

Gradient Fractionation System (Brandel #BR-188). Fractions corresponding to

either the monosome peak or polysome peaks were pooled, resulting in ~3 ml of

monosomes and ~15 ml of polysomes. To dilute the sucrose, an equal volume

of gradient buffer was added to each pool. Samples were then concentrated on
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Amicon-Ultra 100K columns (Millipore #UFC910024 and #UFC810024) by

spinning at 5,000xg for either 10 mins (monosome fractions) or 20 mins

(polysome fractions). 2 A260 units of concentrated monosome or polysome

fractions (270-370 µl total) were digested with 60 µl RNase I (3,000 U RNase I

per A260 unit RNA; Ambion #AM2294) at room temperature for 30 min with

gentle shaking at 400 rpm. Digested fractions were loaded onto a second

gradient (10.5 ml 10-50% w/v; prepared as above) and centrifuged at 35,000

rpm for 3 hr 12 min at 4◦C. Gradient fractions were collected as above, and the

monosome fractions were pooled.

Global Ribosome Footprinting

50 A260 units of clarified lysate were digested with 7.5 µl RNase I, rotating at RT

for 1 hr. Digested lysate was loaded on a 35 ml 6-38% gradient and spun for 3

hr 30 min at 27,000 rpm at 4◦C. Fractions corresponding to the 80S monosome

peak were collected and pooled as above.

Ribosome Footprint Isolation

To isolate ribosome footprints, 800 µl of pooled RNase I-digested monosome

fraction was first mixed with 1200 µl 8M guanidine-HCl. Following addition of

600 µl isopropanol, samples were incubated overnight at -20◦C. Following

centrifugation, precipitated RNA was washed 1X with 75% ethanol and

resuspended in 400 µl H2O. RNA was further purified by phenol-chloroform
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extraction, followed by ethanol precipitation and resuspension in 100 µl H2O. To

remove any remaining heparin, 100 µl of 5M LiCl; 33 mM EDTA was added to

each sample before incubating overnight at -20◦C overnight. RNA was collected

by centrifugation, washed 2X with 75% ethanol, and dried briefly at 37◦C before

resuspension in H2O (monosome and polysome samples, 20 µl; global samples,

100 µl).

Size selection of 26-32 nt RNA fragments was carried out by electrophoresis

through a 15% Urea-PAGE gel (prepared using AccuGel reagents; National

Diagnostics). RNA was eluted from gel fragments in RNA Elution Buffer (300

mM sodium acetate pH 5.2, 1 mM EDTA) plus a small amount (<100 µl) of

phenol pH 4.5 to prevent any spurious RNase-catalyzed degradation. After

an overnight incubation with constant rotation at RT, the eluate was phenol-

chloroform extracted and ethanol precipitated. The RNA pellet was resuspended

in 10 µl H20, briefly heat denatured, and dephosphorylated in MES buffer (100

mM MES-NaOH pH 5.5, 600 mM NaCl, 10 mM MgCl2, 20 mM β-mercaptoethanol,

12.5 U T4 PNK (NEB #M0201)) at 37◦C for 3 hrs. Dephosphorylated RNA was

ethanol precipitated and resuspended in 8.25 µl H2O prior to library construction.

mRNA Isolation for RNA-Seq

Total RNA was phenol extracted from the remaining undigested yeast lysate,

ethanol precipitated, and resuspended in 200 µl H2O. To remove any remaining
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heparin, the sample was reprecipitated by adding 100 µl of 5M LiCl; 33 mM

EDTA to each sample before incubating overnight at -20◦C overnight. RNA was

collected by centrifugation, washed 2X with 75% ethanol, and dried briefly at

37◦C before resuspension in 200 µl H2O.

Ribosomal RNAs were depleted from 5 µg total RNA using the Ribo-Zero

Magnetic Gold Yeast kit (Epicentre #MRZY13). Remaining RNAs were

fragmented using RNA Fragmentation Reagent (Ambion #AM8740). RNAs were

size selected for 20-45 nts and dephosphorylated as above.

Library Construction

Post-dephosphorylation, RNA fragments were prepared into deep sequencing

libraries as described in (Heyer et al., 2015) with the following modifications.

3' adaptor ligation was carried out at 16◦C overnight in a 10 µl reaction with 15%

PEG8000. Ligated RNAs were reverse transcribed with 20 pmol of RT primer

in a 30 µl reaction. Gel-purified RT product was circularized without betaine

and PCR-amplified for 8 cycles (RNA-Seq), 11 (global footprinting), or 12 cycles

(monosome or polysome footprinting).

Library Sequencing and Genome Alignment

Footprinting libraries were sequenced on an Illumina HiSeq2000 using a single-

end, 50 bp run. RNA-Seq libraries were sequenced on an Illumina MiSeq

using similar run parameters. Data were parsed by 5' barcode (Table 2.1) using
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cutadapt v1.7.1 (Martin, 2011) and an error rate of 0.2. The 3' adaptor sequence

(5'-TGGAATTCTCGGGTGCCAAGG-3') was removed using the same method.

Footprinting reads were filtered for non-coding RNAs by mapping to a file

containing sacCer3 sequences for rRNAs, tRNAs, snRNAs and snoRNAs using

Bowtie 1 (Langmead et al., 2009) with parameters "-v 3 -k 1". After this filtering,

remaining reads from each library were mapped to the sacCer3 genome using

TopHat (Trapnell et al., 2009) with arguments "-N 2 -g 20 – segment-length 12

–coverage-search –library-type fr-secondstrand –bowtie1 –max-intron- length

1500 –max-segment-intron 1500 –max-coverage-intron 1500" and providing a

GTF file to define known ORF boundaries. Only reads ≥25 nts were retained for

further analysis; size selection was performed with NGSUtils (Breese and Liu,

2013). In addition, only uniquely mapping reads were used, filtered for a

mapping score ≥10 using SAMtools (Li et al., 2009).

RNA-Seq reads were mapped as above, with a few modifications. After removing

the 3' adaptor sequence, the terminal (3' end of the read) 3 nts were removed

from all reads where a 3' adaptor sequence was not trimmed. Libraries were

filtered for ncRNAs as above, but a significant number of tRNA mapping reads

remained in the library. These reads were removed by mapping to a tRNA-only

.fasta file with an additional CCA added to the end of every tRNA sequence.

After genome-mapping, reads were limited to those ≥ 22 nts.
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Transcriptome Alignment

A sacCer3 "transcriptome" was downloaded from the UCSC Table Browser

(Karolchik et al., 2004), adding 20 nts upstream and 48 nts downstream of

annotated start and stop codons, respectively, for 5' and 3' UTRs, and

eliminating intron sequences. All reads post ncRNA removal were mapped to

this transcriptome using the TopHat parameters "-N 2 -g 20 –no-

coverage-search –library-type fr-secondstrand –bowtie1". Uniquely mapping

reads were selected by eliminating those with a flag of 16 or 272, and then

selecting those with a mapping score ≥ 25. Only reads ≥ 25 nts were retained

for further analysis.

Genome Counts and Monosome:Polysome Score

Counts per gene were calculated from genome-mapping reads using HTSeq

0.6.1 (Anders et al., 2014) with parameters "–stranded=yes –type=exon

–idattr=gene_id –mode=union". Resulting monosome and polysome counts

were fed into DESeq2 (Love et al., 2014) for quantification of enrichment in

either library. The assigned monosome:polysome score was the log2 fold

change calculated by DESeq2.

tRNA Counts

Monosome and polysome tRNA mapping reads were isolated from files

containing all previously removed noncoding RNA reads. The number of reads
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corresponding to each amino acid were counted.

Defining Cytoplasmic mRNAs

To limit our analysis to mRNAs translated in the cytoplasm, we removed genes

for which there is evidence of translation on a membrane (either ER or

mitochondrial). Lists of signal-sequence containing genes predicted by SignalP

and transmembrane-domain containing genes predicted by TMHMM were

downloaded from the Saccharomyces Genome Database (SGD;

http://www.yeastgenome.org/), and these genes were excluded from further

analysis. In addition, transcripts recently found to be translated on the

mitochondria (no cycloheximide gene set from Williams et al., 2014) were also

removed. Though not specifically removed from analysis (because they were

already identified by SignalP or TMHMM), the secretome annotation came from

Jan et al., 2014.

Determining Length Cutoff

To limit our analysis to mRNAs where a factor other than ORF length determined

monosome association, we analyzed ORFs longer than 590 nts. To determine

the 590 nt ORF length cutoff, we ordered all cytoplasmic mRNAs by ORF length,

separated them into bins of 50 genes each, and calculated the mean and median

monosome:polysome score of each bin. Above 590 nts, the difference in mean

and median from bin to bin was much larger than the <590 bins, and the Pearson
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correlation coefficient between mean monosome:polysome score and ORF

length was less than 0.95.

Outside Datasets

Other than those mentioned above, several published datasets were included in

this analysis. Data were downloaded from supplemental material and merged by

gene name with data generated in this paper. Transcription rate came from

Table S1 in Pelechano et al., 2010. Data on mRNA half-lives were downloaded

from Table S1 in Presnyak et al., 2015, using the total half life value. Protein

molecules per cell were gathered from supplemental material from

Ghaemmaghami et al., 2003. The average number of ribosomes associated with

each mRNA species was downloaded from the Data Summary for 2,128 high

confidence genes from Arava et al., 2003. Frequency of optimal codons came

from SGD (http://downloads.yeastgenome.org/curation/calculated_

protein_info/protein_properties.tab). Lists of NMD-regulated genes were

taken from He et al., 2003 and Table S2 of Guan et al., 2006. Translation

initiation and elongation times, as well as the calculated ribosome density from

the same model, came from Table S1 in Siwiak and Zielenkiewicz, 2010.

Metagene Plots

Metagene plots were created using the ngsplot package (Shen et al., 2014) with

genome-mapping reads and parameters "-R genebody –FL 30 –SE 0 –L 100
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–SS same". The flanking regions were then trimmed to represent only 50 nts.

Aggregation Plots

Transcriptome-mapping reads were filtered with NGSUtils to only include 28 nt

reads. The alignment file for these reads was converted to a BED file using

BEDTools (Quinlan and Hall, 2010), and the 5' end position of each read

determined. To calculate the distance to the start codon, 20 nts was subtracted

from the 5' end position of each read to account for the 20 nts added onto the

annotation of each ORF (see transcriptome alignment above). Read distance

from the 3' end was calculated by subtracting the length of the ORF from the

5' end position.

To create 5' end or 3' end aggregation plots, all 28 nt reads for each distance

were summed across all genes. For the RPM aggregation plots, the number

of reads at each position was normalized to the total number of 28 nt reads in

each library. For aggregation plots normalized such that each gene contributed

equally, the number of reads per transcript at each position was divided by the

total number of reads from that transcript. These fractions were then summed

across all ORFs.

The decrease over codons 9-36 in aggregation plots were calculated by

averaging the signal at positions corresponding to either codons 9 and 10 (nt

positions 12 and 15 in transcriptome mapping) or codons 35 and 36 (nt
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positions 90 and 93).

Gene Ontology Analysis

GeneCodis (http://genecodis.cnb.csic.es/) gene ontology tool was used to

identify enriched genes in the monosome and polysome gene sets (Carmona-

Saez et al., 2007, Nogales-Cadenas et al., 2009, Tabas-Madrid et al., 2012). All

cytoplasmic ORFs > 590 nts were used as the background population.

sORF and uORF Counts

sORF annotations were taken from Table S3 in Smith et al., 2014 and converted

into a BED file. uORF annotations were downloaded from SGD

(http://downloads.yeastgenome.org/published_datasets/Ingolia_2009_

PMID_19213877/track_files/Ingolia_2009_canonical_uORFs_V64.bed and

http://downloads.yeastgenome.org/published_datasets/Ingolia_2009_

PMID_19213877/track_files/Ingolia_2009_noncanonical_translated_

uORFs_V64.bed) and combined. In a strand-specific manner, these coordinates

were adjusted 12 nts upstream to allow capture of read 5' ends. To count the

number of reads mapping to these regions, the number of mapped read 5' ends

(from genome mapping above) falling within each region was counted using

BEDTools intersectBed with the "-s" option.

Intron Analysis

A BED file containing the genomic coordinates of sacCer3 annotated introns
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was downloaded from the UCSC Table Browser. Uniquely mapping reads (either

≥25 nts or only 28 nts) overlapping introns by ≥ 1 nt were identified from the

genome mapping reads (see Library sequencing and genome alignment above)

by a 2-step process. First, all reads overlapping each intron were isolated using

BEDTools intersectBed with the "-s -wo -bed" options. Second, these intron-

overlapping reads were limited to BED entries with a single block count (i.e.

exon-junction mapping reads spanning the intron are 2 block entries, and were

discarded). Genome-browser tracks were created as discussed below.

Intron reading frame was assigned as the remainder when the distance between

the ORF start and intron start (i.e., 5' splice site) was divided by 3. Thus, ’intron

reading frame’ was assigned based on the reading frame of the first intronic

nucleotide relative to the ORF start codon in the upstream exon. To combine all

’intron reading frames’ into a single ’read reading frame’ term, the 5' position of

each read was adjusted to the reading frame of the intron it overlapped.

Graphics

Genome browser tracks were generated from genome mapping reads using

SAMtools and BEDTools, normalizing for library size and splitting the reads by

strand. Images are screenshots from the UCSC Genome Browser (Kent et al.,

2002). All plots were generated in RStudio (R Core Team, 2015) using ggplot2

(Wickham, 2009) and cowplot (Wilke, 2015) packages.
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An optimized kit-free method for
making strand-specific deep

sequencing libraries from RNA
fragments

Preface

The contents of this Chapter have been published previously as:

Heyer, E. E., Özadam, H., Ricci, E. P., Cenik, C., and Moore, M. J.
(2015). An optimized kit-free method for making strand-specific deep
sequencing libraries from RNA fragments. Nucleic Acids Research,
43(1):e2

For information not contained in this chapter (i.e. supplemental tables), please

refer to the following locations:

112



Chapter III. Optimized Construction of RNA Libraries 113

NCBI: http://www.ncbi.nlm.nih.gov/pubmed/25505164

Nucleic Acids Research: http://nar.oxfordjournals.org/content/43/1/e2/

suppl/DC1

Additional protocol information can also be found on the Moore Lab website:

http://umassmed.edu/moorelab/resources/protocols/

Introduction

In cells, all RNA molecules interact with RNA binding proteins (RBPs) to form

ribonucleoprotein particles (RNPs). An ever-increasing number of

methodologies employ deep sequencing to map these protein-RNA interaction

sites transcriptome-wide. Such techniques include ultraviolet crosslinking

methods (e.g. CLIP, PAR-CLIP; Hafner et al., 2010, Ule et al., 2003) to map the

ribonucleotides directly in contact with an individual RBP and RNP footprinting

(e.g. Ribo-Seq, RIPiT-Seq; Ingolia et al., 2009, Singh et al., 2012) to map the

occupancy sites of larger complexes. Many projects in our laboratory are

focused on transcriptome-wide RNP footprint analysis (Chen et al., 2014, Ricci

et al., 2014, Singh et al., 2014). Depending on the complex being examined and

the RNA fragmentation method utilized (e.g. RNase or sonication), bound RNA

fragments can range from 10 to 200 nucleotides (nts). Therefore, we require a

strand-specific library generation method that works for diverse RNA lengths,
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faithfully preserves their relative abundances in the original sample and

excludes any contaminating DNA fragments.

Multiple commercial kits currently exist for strand-specific library preparation,

but most are intended to capture either long RNAs (e.g. RNA-Seq) or short

RNAs (e.g. miRNA-Seq), but not both. Further, commercial kits are regularly

updated with new preparation methods. Because preparation method is the

primary source of variability between deep sequencing libraries (Linsen et al.,

2009), quantitative comparisons are best done between identically generated

libraries (i.e. with a single commercial kit version). However, the expense of

commercial kits (and remaking libraries as new kits appear and older versions

are phased out) is cost prohibitive for many academic laboratories. We therefore

set out to develop an optimized, strand-specific RNA library preparation protocol

that utilizes commonly available reagents and works over a wide range of input

amounts. We also wanted an approach that can be used to capture full-length

RNP footprints as well as map sites of reverse transcriptase stalling (e.g. sites of

RNA-protein crosslinking from CLIP experiments or abasic/alkylated sites).

All current library preparation methods utilize enzymes to capture nucleic acid

fragments by appending 5' and 3' adaptor sequences. Enzymes have inherent

substrate preferences that are most significant at low substrate concentrations

(kcat/Km conditions) and at short reaction times (Fersht, 1985). For ligation
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reactions, low temperatures can favor capture of sequences capable of base

pairing with the adaptor (Sorefan et al., 2012). Low temperatures can also

disfavor capture of sequences containing internal secondary structures. Many

published library preparation protocols are suboptimal for one or more of these

factors, resulting in differential capture of small RNAs (e.g. miRNA-Seq; Bissels

et al., 2009, Hafner et al., 2011, Sorefan et al., 2012) and highly non-uniform

("peaky") coverage of long RNAs (e.g. RNA-Seq of RNA Pol II transcripts; Levin

et al., 2010). For these reasons, we decided to re-examine 5' and 3' end capture

conditions, with the goal of driving every reaction to completion.

Here, we present the detailed protocol for strand-specific RNA library preparation

currently in use in our laboratory, as well as the titration and time course data

we used to optimize each step. Also presented are deep sequencing data on

(i) the effects of time and temperature on initial 3' end capture and (ii) capture

uniformity analysis for an equimolar pool of 29 miRNAs. Taken together, these

data show that our method faithfully preserves fragment diversity and abundance

in complex starting mixtures and is minimally affected by fragment sequence or

folding potential.
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Results

Protocol Design

To generate strand-specific deep sequencing libraries, both ends of the captured

RNA must be appended to fixed sequences (adaptors) to enable primer

hybridization for amplification and sequencing. These adaptors generally

correspond to the forward and reverse primer sequences used for clonal cluster

amplification on the desired sequencing platform. All strand-specific RNA-Seq

and small RNA library preparations published to date capture the 3' end in one

of the following ways: (i) RT of full length or fragmented RNAs with oligo-dT

and/or random hexamers, or a longer DNA primer containing a 3' randomized

region (Armour et al., 2009, Cloonan et al., 2008, Kwok et al., 2013, Langevin

et al., 2013, Zhang et al., 2012); (ii) polyA tailing of RNA fragments followed by

RT with an anchored oligo-dT 3' end sequence (Ingolia et al., 2009, Linsen et al.,

2009); or (iii) direct 3' end adaptor ligation (Elbashir et al., 2001, Lau et al., 2001,

Pan and Uhlenbeck, 1992). Disadvantages of random hexamer RT include the

introduction of mutations at the point of primer hybridization plus capture biases

resulting from differential hybridization efficiencies on different sequences

(Hansen et al., 2010). Random hexamer RT is also not an option for small

RNAs. In our hands, polyA tailing of fragmented RNA samples proved
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inconsistent (data not shown). Therefore, we decided to adopt a 3' end adaptor

ligation approach widely used in the small RNA field (Lau et al., 2001) - direct

ligation of a preadenylated DNA adaptor to the 3' end of RNA fragments using

RNA ligase (Figure 3.1, Step 1). We chose to use a truncated and mutant form

of T4 RNA Ligase 2 (RNL2 Tr. K227Q) because published reports indicated it

has less substrate bias and produces fewer side products than the full-length

wild-type enzyme (Bissels et al., 2009, Viollet et al., 2011), and RNL2 is known

to be less affected by nt identity at the ligation site than T4 RNA Ligase 1

(Zhuang et al., 2012). Following 3' adaptor ligation, a highly efficient method for

appending the 5' adaptor is to reverse transcribe the RNA from the 3' adaptor

with an RT primer containing the 5' adaptor sequence at the other end and then

circularize the resulting single-stranded cDNA using CircLigase (Ingolia et al.,

2009) (Figure 3.1, Steps 2 and 4). A long flexible linker (Spacer 18, an 18-atom

hexa-ethyleneglycol spacer) is placed between the fixed adaptor sequences to

minimize structural constraints for circularization and preclude the possibility of

rolling circle PCR (Ingolia, 2010).

A common strategy for reducing deep sequencing costs is to "barcode" individual

libraries so that they can be mixed together and sequenced in a single lane.

Barcodes consist of 2–10 unique nts appended either 5' or 3' to the captured

sequences (Parameswaran et al., 2007), and ideally differ by more than 2 nts so

as to minimize incorrect library identification due to sequencing errors. Barcodes
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can be placed in one of the adaptors (Alon et al., 2011, Hafner et al., 2012)

or in the reverse PCR primer (Alon et al., 2011), or they can be ligated to the

double-stranded library post-PCR amplification (Van Nieuwerburgh et al., 2011).

Barcode incorporation immediately downstream of the forward sequencing primer

hybridization site allows both the barcode and the adjacent captured fragment

to be decoded in one single-end sequencing reaction. In theory, barcodes

can be appended to either end of the captured fragment. However, RNL2

ligation efficiency is significantly affected by the 3' adaptor sequence - therefore,

placement of the barcode at the 5' end of the 3' adaptor can result in significant

and different sequence biases dependent on the barcode (Hafner et al., 2011,

Jayaprakash et al., 2011). Because we were able to find conditions under which

cDNA circularization is quantitative (see below), we chose to place our barcodes

at the 3' end of the 5' adaptor (i.e. between the forward primer sequence and

the captured sequences). Nonetheless, to minimize any confounding effects

of varying the nt composition at the site of circularization, we introduced two

guanine residues at the 5' end of each RT primer so that the nts interacting with

CircLigase would be the same regardless of barcode.

A final consideration for making strand-specific cDNA libraries is the quantity of

starting material required. Major factors leading to material loss during library

preparation are the number of gel purification steps and the number of different

surfaces (i.e. tips and tubes) with which the sample comes in contact. Thus, we
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opted for a protocol wherein the ligation (Step 1) and RT (Step 2) were carried

out in a single tube without any cleanup or buffer exchange in between, and the

sample is only subjected to a single gel purification (Step 3) after RT.

Protocol Optimization

For optimization of each step, we used a pool of randomized RNA 24mers (N24)

to mimic the diversity of sequences in a biological sample. Ligation reactions

were visualized using 5' end 32P-labeled RNAs. RT products were visualized

by including α-32P-dCTP in the RT reaction. Circularization reactions were

visualized using either body-labeled or 5' end-labeled RT products.

Step 1 - Preadenylated 3' Adaptor Ligation

When we initiated this project, the manufacturer’s (NEB) suggested conditions

for RNL2 Tr. K227Q ligation reactions were 500 nM single-stranded RNA, 1

µM 3' adaptor, 10 U/µl enzyme and 15% w/v PEG8000 in 1x reaction buffer

at 16◦C overnight. As our goal was to create a robust protocol that could be

successfully employed over a wide range of RNA input concentrations, we set

out to explore the limits of these parameters (Figure 3.2). For all experiments

below, we pre-mixed the RNA and 3'-adaptor in water and incubated this mixture

at 65◦C for 10 min prior to enzyme addition.
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Ligation efficiency depends on successful collision of multiple components. Such

collisions can be increased by molecular crowding agents (e.g. PEG) and/or

dehydrating co-solutes (e.g. dimethyl sulfoxide; DMSO), and published 3' adaptor

ligation protocols vary with regard to PEG8000 and DMSO inclusion (Eminaga

et al., 2013, Mamanova and Turner, 2011, Munafo and Robb, 2010, Pfeffer

et al., 2005, Vivancos et al., 2010). Consistent with a recent report that 25%

PEG8000 enhances ligation efficiency (see Figure 4B in Munafo and Robb,

2010), we found that 25% PEG8000 resulted in near complete N24 ligation at

16◦C O/N (Figure 3.2A). However, increasing DMSO had no effect, regardless

of PEG8000 absence or presence (Figure 3.2B). Thus, all subsequent ligation

reactions included 25% PEG8000 but no DMSO.

We next titrated preadenylated 3' adaptor, N24 and enzyme concentrations.

Using two different N24 concentrations, near complete ligation was observed

at all adaptor concentrations above 130 nM (Figure 3.2C). At 470 nM adaptor,

ligation was highly efficient with N24 concentrations above 50 nM (Figure 3.2D)

and enzyme concentrations above 6 U/µl (Figure 3.2E). A greater dependence of

ligation efficiency on enzyme concentration at 10 nM N24 does suggest, however,

that additional enzyme will increase yields for very dilute RNA samples (Sterling

et al., 2015).

Published reports using T4 RNA ligases for library preparation employ a wide
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range of reaction times (1 h to overnight) and temperatures (5◦C–37◦C) (Ingolia

et al., 2013, Lau et al., 2001, Lee and Ambros, 2001, Lui et al., 2007, Morin

et al., 2008, Pfeffer et al., 2005, Ule et al., 2003, Vivancos et al., 2010). However,

colder temperatures should stabilize both intra- and inter-molecular secondary

structures, potentially biasing ligations against internally structured RNAs and

toward RNA sequences that partially base pair with the 3' adaptor (Hafner et al.,

2011, Sorefan et al., 2012, Zhuang et al., 2012). Higher temperatures should

alleviate these issues, but could decrease enzyme stability and increase RNA

degradation. Using our N24 pool, we assessed ligation efficiencies across a

range of incubation times and temperatures (Figure 3.2F). Both 4◦C and 37◦C

yielded poor ligation efficiencies at all incubation times. Using radioactively

labeled RNA, we determined that the lower yields at 37◦C were not due to

increased RNA degradation (data not shown); rather, the plateau reached after

2 h suggests that enzyme is unstable at 37◦C. All reactions incubated between

16◦C and 30◦C ultimately resulted in near complete ligation. However, the 16◦C

and 22◦C reactions took longer to reach completion (10–14 h) than did the 25◦C

and 30◦C reactions (4–6 h).

Based on all of the above data, we adopted the following as our standard

ligation reaction conditions: 470 nM adaptor, 50–330 nM RNA, ≥6 U/µl RNL2

K227Q, 1X RNL2 reaction buffer (from NEB: 50 mM Tris-HCl, pH 7.5 at 25◦C,

10 mM MgCl2, 1 mM DTT) plus an additional 1 mM DTT to ensure a reducing
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environment, incubated for 6 h at 30◦C and then 20 min at 65◦C (to heat inactivate

the enzyme). These conditions yield efficient ligation over the wide range of

RNA fragment lengths (Supplemental Figure 3.3) we generally obtain when

footprinting endogenous RNP complexes (Ricci et al., 2014, Singh et al., 2012,

2014).

Step 2 - Reverse Transcription

A number of high fidelity reverse transcriptases are commercially available. For

our purposes, we wanted an enzyme that produced a high yield of full-length

product with minimal side products when added directly to the

heat-inactivated/diluted 3' adaptor ligation reaction from Step 1. We tested

Accuscript (Agilent), AMV RT (Finnzymes), Superscript III (Invitrogen) and

Transcriptor (Roche) (Figure 3.4A). In all cases, ligation reactions were diluted

and supplemented with either (i) the appropriate amount of

manufacturer-supplied 5X or 10X RT buffer or (ii) the same buffer minus MgCl2

(as the Step 1 reaction already contains MgCl2, and concentrations of MgCl2

above 3 mM can inhibit RT (Gerard et al., 1997)). For all four enzymes (tested at

the manufacturer’s recommended concentration), we observed more full-length

RT product when no Mg2+ was added beyond that supplied by the diluted

ligation reaction. As SuperScript III gave the highest RT product yield, we chose

it for subsequent optimization. By varying the amount of the heat-inactivated
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Step 1 reaction in the Step 2 reaction, we determined that maximal RT product

yield was obtained when the ligation reaction constituted one-third of the final

volume of the RT reaction (data not shown). This resulted in a final MgCl2

concentration of 3.3 mM. At this 3-fold dilution, we found no inhibitory effect on

RT by the PEG8000 present in the Step 1 reaction; rather, Step 1 reactions

containing 25% PEG8000 gave the highest Step 2 yields (Figure 3.4B).

We next varied RT primer, enzyme and RNA input amounts. To maximize RT

product yield, it is important that the RT primer concentration be greater than

the 3' adaptor concentration but not excessively so, as this would favor empty

circle formation in the subsequent circularization reaction (Step 4). We observed

no advantage for RT yield when the RT primer:3' adaptor ratio was significantly

higher than 1.3:1 (Figure 3.4C). Further, all SuperScript III concentrations above

3 U/µl gave comparable product yields (Figure 3.4D). Varying the temperature

(50◦C, 55◦C and 60◦C) and time (30 min and 1 h) of the RT reactions revealed

55◦C for 30 min to be optimal (data not shown). When the input RNA was varied

between 3.3 and 133 nM, the yield of RT product increased linearly across this

range (Figure 3.4E and F). Thus, like the ligation reaction, the RT reaction proved

highly robust and amenable to library construction over a wide range of input

amounts.

Based on the above data, we adopted the following as our standard Step 2
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reaction conditions: 3-fold dilution of the heat-denatured ligation reaction from

Step 1, supplemented with 333 nM RT primer, 5.33 U/µl SuperScript III (to

ensure consistent results and allow for some variability in nucleic acid

concentration determination and enzyme activity), 50 mM Tris-HCl (pH 8.3 at

room temperature), 75 mM KCl and 5 mM DTT. This mixture is incubated at

55◦C for 30 min followed by heat inactivation at 75◦C for 15 min.

Step 3 - Gel Purification

See Experimental Procedures section.

Step 4 - Circularization

There are currently two commercially available enzymes for ssDNA

circularization: CircLigase I and II (Epicentre). We tested both at 50 nM input

ssDNA and found that CircLigase I gave much higher circularization efficiencies

(98–99%) than CircLigase II (45–61%) (Figure 3.5A). Betaine, a compound

commonly used in PCR reactions to eliminate the energy difference between

A-T and G-C base pairs, is recommended by Epicentre for use with CircLigase II.

However, as no amount of betaine improved CircLigase II efficiency to that

obtained with CircLigase I, we decided to proceed with CircLigase I.
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To explore the limits of CircLigase I performance, we tested a range of conditions.

Changing the enzyme concentration and doubling or reducing by half the reaction

volume had no significant effect on circularization efficiency (data not shown),

so we continued to use the manufacturer’s suggested conditions. A timecourse

revealed that complete circularization with 5 U/µl enzyme and 50 nM input N24

RT product required at least 2 h at 60◦C (Figure 3.5B). Titration of the N24 RT

product indicated that ligation efficiencies dropped off precipitously below 25

nM ssDNA (Figure 3.5C). This dropoff was unaffected by either increasing or

decreasing the enzyme concentration (data not shown), but was substantially

rescued by the inclusion of 1 M betaine in the circularization reaction (Figure

3.5D). In this case, as circularization of <5 nM N24 RT product could not be

detected by direct observation of the 32P-labeled substrate and product on a

gel, relative PCR product yields served as a proxy for circularization yields, with

cycle number adjusted for RNA input amount. In order to exclude the possibility

of betaine stimulating the yield of the PCR reaction instead of the circularization

reaction, we added betaine subsequent to heat inactivation of CircLigase I; under

these conditions, no betaine-dependent increase in PCR signal was observed

(data not shown).

Based on the above data, we adopted the following as our standard Step 4

reaction conditions: 1X CircLigase buffer (Epicentre), 1 M betaine, 50 µM

adenosine triphosphate, 2.5 mM MnCl2 and 5 U/µl CircLigase I in 20 µl
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containing all of the ssDNA isolated in Step 3. This mixture is incubated at 60◦C

for 3 h followed by heat inactivation at 80◦C for 10 min.

Step 5 - PCR

To eliminate another gel purification step, we decided to use a portion of the

completed and inactivated circularization reaction as direct input to PCR

amplification. Adding 1.5 µl of a heat-inactivated circularization reaction

containing ~88 nM input RT product directly to a 25 µl (final volume) PCR

reaction, we tested the following high fidelity polymerases, each using their

respective manufacturer’s supplied buffer and recommended cycling conditions

(i.e. times and temperatures) for 8 cycles: PfuUltraII (Stratagene), Herculase II

(Stratagene), Phusion (Finnzymes), KAPA HiFi (Kapa Biosystems), Advantage

HD (Clontech), PrimeSTAR Max (Clontech) and AccuPrime Pfx (Invitrogen).

Addition of DMSO, a PCR enhancing agent, did not significantly increase PCR

amplification with any enzyme, perhaps with the exception of PfuUltra II (Figure

3.6A and B). PfuUltraII, Herculase II, Phusion, PrimeSTAR Max and KAPA HiFi

all gave comparable product yields, but KAPA HiFi generated the least amount

of slower migrating side products (indicated by ∗) just above the desired product

(Figure 3.6A and B). Because of this and an independent report demonstrating

its robustness with regard to GC content (Quail et al., 2012), we decided to

proceed with KAPA HiFi.
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When preparing deep sequencing libraries, higher amounts of input DNA and low

cycle numbers are desirable to amplify the greatest number of unique species.

However, as with the RT reaction (Step 2), we were concerned that the diluted

circularization buffer might affect PCR efficiency. Therefore, we titrated the

volume of CircLigase reaction included in each PCR reaction. When this volume

was varied from 0.5 to 3.5 µl in a 15 µl PCR reaction, the PCR band intensity

increased with increasing input, but not to scale (i.e. a 2-fold increase in input

from 1 to 2 µl produced only a 1.5-fold increase in output; Figure 3.6C), likely

indicating some inhibitory effect of the CircLigase reaction on PCR efficiency.

We therefore limit the amount of added CircLigase reaction to one-fifth of the

total PCR reaction volume.

Consequences of Incomplete 3' Adaptor Ligation

Having optimized each step in the protocol (Supplementary Table 3.1), we next

wanted to assess the quality of libraries it generates. Because many published

protocols use lower 3' adaptor ligation temperatures and/or shorter incubation

times than our optimized conditions (Figure 3.2F), we also wanted to test the

effects of these variables. Therefore, we prepared seven different libraries using

our synthetic N24 pool. All libraries were prepared identically except for the

3' adaptor ligation step, for which the conditions are shown in Figure 3.2F and

Supplementary Figure 3.7A. In one library, we also included four randomized nts
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at the 5' end of the 3' adaptor (N4 adaptor) to assess whether this would reduce

3' end capture bias, as has been previously suggested (Jayaprakash et al., 2011,

Sorefan et al., 2012, Zhang et al., 2013). To eliminate possible sequencing

variability, all libraries were barcoded, mixed together and sequenced to similar

depth within a single Illumina HiSeq 2000 lane (Supplementary Figure 3.7A).

Also included in this lane was a library of random ~500 nt fragments generated

from the PhiX174 genome (~15% of total sequences); PhiX inclusion increases

the nt diversity at every position, thereby increasing the base calling accuracy

(Illumina, 2013).

To address the concern that long incubation times at higher temperatures could

lead to significant RNA hydrolysis, we first examined the lengths of the captured

sequences (Figure 3.8A). In all libraries, the majority of captured sequences

were 24 nts. As expected, however, incubation at 22◦C or 30◦C for 6 h did result

in a small decrease (<7%) in the fraction of full-length species compared to

the 20 min and 1 h incubation times (Figure 3.8A, inset I). Also as expected,

this effect was somewhat less apparent at 4◦C. Nonetheless, the impact of this

material loss must be weighed against the higher capture variability introduced

by shorter ligation times and lower temperatures (see below).

For further analysis we focused solely on full-length (24 nt) reads. Because the

number of possible sequences in a 24-nt random oligo (>1014) so vastly
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TABLE 3.1: Quickguide to Method

Initial Sample Mix

Heat 

Denature Additional Materials Incubation

Heat 

Inactivation

1. Ligation 1 µl 7 µM 3' Adaptor 

x µl RNA 

Water to 4.8 µl

65°C 10 min; 

4°C hold

1.5 µl 10X RNL2 Buffer 

7.5 µl 50% PEG8000 

0.45 µl 33 mM DTT 

0.75 µl T4 RNL2 Tr. K227Q 

30°C 6 hr 65°C 20 min

2. RT 15 µl Ligation Rxn 

1 µl 10 µM RT Primer 

2.25 µl 10 mM dNTP mix 

14.3 µl Water

65°C 5 min; 

4°C hold

 29 µl 5X FS Buffer w/o MgCl

2.25 µl 100 mM DTT 

1.2 µl SSIII                           

55°C 30 min 70°C 15 min

4. Circularization 10 µl RT Product (all) 

2 µl CircLigase I Buffer 

1 µl 1 mM ATP 

1 µl 50 mM MnCl2 

4 µl 5M Betaine 

1 µl CircLigase I              

60°C 3 4 hr 80°C 10 min

5. PCR:     Test PCR 7.5 µl KAPA 2X HiFi 

0.75 µl 10 µM PE 1.0 

0.75 µl 10 µM PE 2.0 

 3 µl Circularization Rxn 

to 15 µl Water

     Large Scale PCR 25 µl KAPA 2X HiFi 

2.5 µl 10 µM PE 1.0 

2.5 µl 10 µM PE 2.0 

3.3*Circ. Rxn volume 

used in test

to 50 µl Water

Denaturation 98°C 45 sec 

Cycling 98°C 15 sec 

65°C 30 sec 

72°C 30 sec 

Final Extension 72°C 1 min

3. Gel Purification Gel percentages and run times vary with insert length
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outnumbers the reads obtained per library (~107), unique species constituted

>99.5% of each library and >99.6% of the entire pooled data set

(Supplementary Figure 3.7A). Because each library captured a unique

sequence set, it was not possible to calculate the capture frequency for

individual species. Therefore, to assess capture bias driven by nt identity, we

measured nt frequency at each position in our captured fragments (Figure 3.8B).

Across all libraries, there was a notable enrichment in G that decreased linearly

in the 5'→ 3' direction. To determine the extent to which this might be due to

base misincorporation/miscalling at the sequencing level, we determined the

mismatch frequency in the PhiX fragments sequenced alongside our N24

libraries (Supplementary Figure 3.7B). Across all positions corresponding to our

N24 inserts, the PhiX mismatch frequency was no greater than 0.00049 for any

of the 4 nts, with G being the least frequently miscalled base (<0.00021).

Additionally, when analyzing the nt frequency per position in ribosome

footprinting libraries made with our optimized ligation conditions, we see no

3' -5' trend toward G enrichment (Supplementary Figure 3.7C). Thus, the most

likely explanation for the overabundance of G in the N24 libraries was guanosine

phosphoramidite overincorporation during oligonucleotide synthesis (Bartel and

Szostak, 1993).

Examination of Figure 3.8B reveals that the majority of interlibrary variance

occurred at the 3' termini of captured RNAs (positions 21–24). To estimate
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expected nt frequencies (Fexp) at these terminal positions, we used the observed

frequency (Fobs) data from all libraries to generate four best-fit lines (one for each

nt) through positions 5–20 (Figure 3.8B), as these internal positions should be

least affected by enzyme preference during 3' adaptor ligation and circularization.

We then used these best-fit lines to calculate expected nt counts at every nt

position for each library. Calculating the chi-square statistic allowed us to quantify

the deviation in observed nt count from expected nt count (Figure 3.8C). This

analysis revealed that the chi-square statistic at positions 21–24 decreased

in the following order: 30◦C–20 min > 4◦C–18 h > 22◦C–1 h > 30◦C–1 h >

(30◦C–6 h ~ 30◦C–6 h-N4 ~ 22◦C–6 h). That is, the libraries exhibiting the

greatest deviation from expected were those wherein 3' adaptor ligation was only

~30–85% complete (Figure 3.2F), either because of insufficient incubation time

or a suboptimal ligation temperature. For reactions that did proceed to apparent

completion (the three 6-h libraries), inclusion of four randomized nts at the 5' end

of the 3' adaptor (5' N4) had no additional benefit in reducing position 21–24

deviation compared to the fixed-sequence 3' adaptor (although see miRNA data

below).

Unexpectedly, position 22 exhibited equal or greater deviation than position 24

in all seven libraries. When comparing Fobs–Fexp for each nt, another feature

readily observable in the 30◦C–20 min library, and to a lesser extent in the

30◦C–1 h library, is a tendency toward higher GC content at positions 11–15
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(Supplementary Figure 3.9). Currently, we have no clear explanations for either

of these effects (see Discussion section), but both strengthen the point that

uneven capture is accentuated by short ligation times.

Method Validation

To assess how our optimized protocol performs on a known RNA sample, we

made libraries from 50 fmol or 1 pmol of an equimolar 29 miRNA pool previously

used to benchmark small RNA library preparation (SRR899527 and SRR899530;

Zhang et al., 2013). Barcoded libraries were generated using either the fixed or

N4 preadenylated 3' adaptor, then pooled and sequenced on a single MiSeq lane

(Table 3.2). Plotting Fobs versus Fexp (where Fexp = 1/29 = 0.0345) revealed no

recurring over- or underrepresentation pattern for any individual miRNA across

our four libraries (Figure 3.10A). Importantly, all four of our libraries exhibited

less variability than both the previous benchmark (Zhang et al., 2013) (Figure

3.10B) and a new library preparation protocol for capturing scarce miRNAs

(Sterling et al., 2015). In our libraries, the lowest CV in Fobs were obtained with

the fixed adaptor at 1 pmol input and the N4 adaptor at 50 fmol and 1 pmol

input. At 50 fmol input, however, the fixed adaptor did result in somewhat higher

variability. Therefore, the N4 adaptor may be preferable when using our protocol

to construct libraries from very low input RNA.





Chapter III. Optimized Construction of RNA Libraries 142

TABLE 3.2: miRNA Libraries

Input

1 pmol MiSeq

50 fmol

SRR899527 HiSeq 2000

SRR899530

Mapped Reads

1,044,234

1,393,238

1,389,911

676,609

715,728

1,424,004

Adaptor

Fixed

N4

Fixed

N4

Sequencing

Platform
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It has previously been noted that both secondary structure internal to individual

miRNAs and the ability of individual miRNAs to hybridize to the 3' adaptor can

affect capture efficiency (Sorefan et al., 2012, Zhuang et al., 2012). To address

this possibility, we made scatter plots of read frequency versus individual miRNA

features and calculated both slope and ρ-value for the line best fitting the data

(Supplementary Figure 3.11). (We note that a slope other than 0 is potentially

indicative of bias, with the magnitude of the slope indicating the strength of the

bias dependent on the particular feature being plotted. The ρ-value indicates

only how well the line fits the data.) These plots revealed no correlation with a

|ρ-value| > 0.5 between Fobs and GC-content, or between Fobs and the calculated

folding energies (∆G) for each miRNA alone or each miRNA co-folded with the

adaptor in any of our four libraries. We could also detect no apparent folding

energy effects in the previous benchmark libraries. With the latter samples,

however, there were readily observable trends with regard to nt composition, the

most significant being a negative correlation (mean slope m = -0.058; mean ρ

= -0.72) between Fobs and the number of U’s in the last 10 nts of each miRNA

(Supplementary Figure 3.12). This is consistent with our N24 data showing an

increased bias against U’s in the last few nts when ligation reactions conditions

are suboptimal (Supplementary Figure 3.9). The absence of the same trend in

our miRNA libraries highlights the more even coverage provided by our optimized

ligation conditions.
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Under some conditions, reverse transcriptases can exhibit terminal transferase

(TdT) activity, resulting in non-templated nt addition to cDNA 3' ends (Chen and

Patton, 2001). Examination of our miRNA libraries revealed that, while some

untemplated addition did occur, extensions were generally limited to a single nt

and these extended species were 20- to 50-fold less abundant than full-length

species (Figure 3.10C). During preparation, these samples were immediately

gel purified after RT (Supplementary Table 3.1). With one set of libraries, we

observed more extensive TdT activity when the RT reaction was maintained

at 4◦C overnight following the heat inactivation step (data not shown). This

suggests that Superscript III is not completely inactivated by the manufacturer’s

suggested heat inactivation regimen and will continue to add untemplated nts

during long, low temperature incubations.

Discussion

In this study, we set out to develop a method that yields robust strand-specific

deep sequencing libraries from diverse RNA inputs. Our method involves

3' ligation of a preadenylated adaptor followed by RT, circularization and PCR.

This approach combines features of several previously published protocols

(Ingolia et al., 2009, Lau et al., 2001, Lui et al., 2007), with modifications to

enhance capture efficiency and minimize sample loss. Our method works
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across a range of input amounts, is easy to follow, and produces a library in 2–3

days at relatively low reagent cost (<$25 per sample), all while giving the user

complete control over every step. Because the input to our method is generic

single-stranded RNA with a 3' hydroxyl, it can be used to capture many different

sized RNA footprints. Our approach can also be used to map sites of

RNA-protein crosslinking (e.g. from CLIP experiments) and other base

modifications that cause reverse transcriptase to either stall (e.g. abasic or

alykylated sites) or incorporate the wrong base (e.g. PAR-CLIP). To date,

various members of our laboratory have used this method to generate multiple

footprinting libraries for Ribo-Seq and other RNA-protein complexes, as well as

RNA-Seq libraries (Ricci et al., 2014 and unpublished results). Input fragment

sizes have ranged from 20 to 200 nts, input amounts have ranged from 400 pg

to 200 ng RNA and all resulted in highly complex libraries. Our method is highly

reproducible, with both read counts and RPKM for Ribo-Seq and RNA-Seq

biological replicates having correlation coefficients of 0.93–0.99 (Ricci et al.,

2014 and unpublished results).

One of our major goals in developing this protocol was to minimize capture

biases. We did so by identifying conditions wherein both the RNL2 and

CircLigase reactions were driven to apparent completion, thereby minimizing

ligase sequence preferences and any intra- and inter-molecular secondary

structure effects. Our analysis of the effects of time and temperature on
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3' adaptor ligation clearly indicates that incomplete ligation exacerbates capture

bias (Figures 3.2, 3.8B and 3.8C and Supplementary Figure 3.9). Nonetheless,

even under conditions where the ligation reaction appeared to proceed to

completion, apparent 3' end biases were not fully eliminated (Figure 3.8C).

Three recent papers reported that 3' end capture bias can be reduced by

including a short (2–4 nt) randomized region at the 5' end of the 3' adaptor

(Jayaprakash et al., 2011, Sorefan et al., 2012, Zhang et al., 2013). Inclusion of

degenerate nts in the adaptor also allows for identification of species that are

preferentially amplified during the PCR reaction (König et al., 2010). Although

we observed no advantage of the N4 adaptor over our fixed sequence adaptor

with 1–2 pmol N24 or miRNA pool input (Figures 3.8C, 3.10A, 3.10B and

Supplementary Figure 3.9), the N4 adaptor was clearly superior when the

miRNA pool input was lowered to 50 fmol (Figure 3.10A and B). Therefore,

using a 5' randomized adaptor is recommended.

Contrary to expectation (Sorefan et al., 2012, Zhuang et al., 2012), we could

detect no effects on N24 or miRNA capture efficiency that could be attributed to

either internal secondary structure forming propensity or the ability of captured

sequences to hybridize with the adaptor (Supplementary Figure 3.11 and data

not shown). In our N24 data, however, we did detect an unexpected nt identity

bias at the -3 position relative to the 3' adaptor ligation site (Figure 3.8C). This

is consistent with a previous report demonstrating -3 substrate bias by both
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RNL1 and RNL2 (Zhuang et al., 2012). Currently, there is no clear explanation

for this effect, as a crystal structure of RNL2 bound to substrate suggests that

RNL2 substrate specificity is dictated solely by the nts at positions -1 and -2

(Nandakumar et al., 2006). Nonetheless, our N24 data highlight the importance

of driving the 3' ligation reaction as close to completion as possible.

Following ligation, RT of the captured RNA attaches a sequence tag to the 3' end

of the RNA, allowing for PCR amplification and deep sequencing. Although the

adaptor sequences used here are for sequencing on Illumina platforms, libraries

can be prepared for any deep sequencing platform by simply modifying the 5' and

3' adaptor sequences. Our method employs a variety of RT primers that differ

only by their 5' barcode, allowing multiple samples to be sequenced on the same

flow cell lane. Barcoding the samples during the RT step minimizes opportunities

for accidental mixing or cross-contamination of samples. We currently use a set

of twelve 5-nt barcodes (see Experimental Procedures section) that were chosen

such that the first position is balanced (to increase initial base calling accuracy by

Illumina platforms) and there is no possibility for barcode misidentification, even

with two sequencing errors. After circularization, the barcode is positioned 5' to

the captured cDNA sequence, allowing for barcode identification and fragment

sequencing all in one single-end sequencing run.

Following circularization, one must determine the optimal number of PCR cycles
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for each sample. Cycle number is highly dependent on the original RNA input

amount. Our current approach is to empirically determine the correct number of

PCR cycles by gel analysis; too few cycles will result in product yield below the

sequencing input requirement; too many cycles will result in PCR jackpots that

can overwhelm the library and introduce significant bias. A recently published

qPCR approach for identifying the correct number of cycles can easily be applied

to our method (Langevin et al., 2013).

Two similar protocols for making strand-specific libraries were recently published

(Epicentre Technologies Corporation, 2012, Ingolia et al., 2012), speaking to

the overall strength of this strategy. Nonetheless, the modifications we describe

here (i.e. inclusion of 25% PEG in the 3' adaptor ligation reaction; no additional

MgCl2 in the RT reaction; a single gel purification step; inclusion of 1M betaine

in the CircLigase I reaction; and optimized times and temperatures to ensure

completion of all reactions) offer significant improvements over similar methods.

To assist the reader in implementing our protocol, we have included a short

summary of the conditions (Supplementary Table 3.1) and placed a detailed

protocol at http://www.umassmed.edu/moorelab/resources/protocols/.
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Accession Numbers

High-throughput sequencing data have been deposited in the GEO database

under accession number GSE63606.
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Experimental Procedures

Gel Analysis

All acrylamide gels were prepared using AccuGel reagents (National

Diagnostics). Ligation samples were prepared in an equal volume of 2X

denaturing load buffer (12% Ficoll Type 400-DL, 7 M Urea, 1X TBE, 0.02%

Bromophenol Blue, 0.02% Xylene Cyanol), denatured for 5 min at 95◦C and

cooled on ice prior to loading on denaturing 15% polyacrylamide (19:1)-8 M

Urea-1X TBE gels. Reverse transcription (RT) samples were diluted in one-third

volume of 3X denaturing load buffer (18% Ficoll Type 400-DL, 10.5 M Urea, 1.5X
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TBE, 0.02% Bromophenol Blue, 0.02% Xylene Cyanol), denatured for 5 min at

95 ◦C, and analyzed on 10% denaturing polyacrylamide gel electrophoresis

(PAGE) gels. Circularization reactions were prepared similarly to ligation

reactions and analyzed on 10% denaturing PAGE gels. Polymerase chain

reaction (PCR) products for gel analysis were mixed with 5X non-denaturing

load buffer (15% Ficoll Type 400-DL, 1X TBE, 0.02% Bromophenol Blue, 0.02%

Xylene Cyanol) before separation on native 8% PAGE gels. PCR products to be

sequenced were similarly prepared and analyzed on the Double Wide

Mini-Vertical system (C.B.S. Scientific) to limit the amount of heat denaturation.

Gels were either exposed to a phosphorimager screen (Amersham Biosciences)

or stained with SYBR Gold (Invitrogen) prior to visualization on a Typhoon Trio

(Amersham Biosciences). Quantifications were performed with ImageQuant (GE

Healthcare).

3' Adaptor Ligation

Indicated amounts of either 5' 32P-labeled N24 RNA oligonucleotide

(Dharmacon) or 28-mer oligonucleotide (5'-AUGUACACGGAGUCGAC

CCGCAACGCGA-3'; IDT) were ligated to preadenylated adaptor mirCat-33

(5'-rAppTGGAATTCTCGGGTGCCAAGGddC-3'; IDT) or EH-preaden

(5'-rAppNNNNTGGAATTCTCGGGTGCCAAGGddC-3'; IDT) using T4 RNL2 Tr.

K227Q (NEB) with the conditions described in this paper. Due to the high

viscosity of 50% PEG8000, we found that low retention filter tips aided
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consistent pipetting while simultaneously preventing sample

cross-contamination. Ligation efficiencies were calculated by dividing the

quantified pixel signal of ligated RNA by the total amount of RNA signal (bands

corresponding to both ligated and unligated RNA) in each lane, and multiplying

by 100.

Reverse Transcription

RT was performed with gel purified RT primers 5'-pGG-B-

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-SP18-CTCGGCATTCC

TGCTGAACCGCTCTTCCGATCT-CCTTGGCACCCGAGAATTCCA-3', where B

indicates a 5-nt barcode of sequence ATCAC, CGATG, TAGCT, GCTCC,

ACAGT, CAGAT, TCCCG, GGCTA, AGTCA, CTTGT, TGAAT or GTAGA. RT

products were detected by incorporating α-32P-dCTP in the reaction. RT

products intended for circularization were gel purified. For the data in Figures

3.5 and 3.6, we eluted the cDNA from crushed gel pieces in 300 mM NaCl, 1

mM ethylenediaminetetraacetic acid (EDTA) during an overnight incubation at

room temperature with constant rotation; eluted material was ethanol

precipitated before circularization. We have since modified our approach to

increase elution yield by eluting in TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH

8.0) and incubating at 37◦C overnight with constant rotation. With this buffer, we

can concentrate the eluate (either by butanol extraction or SpeedVac) before

precipitating the sample in a single tube.
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Circularization Efficiency and PCR Amplification

Circularization reactions were performed on gel-purified RT product as described

in the text. The single-stranded DNA input was either body-labeled with α-32P-

dCTP in the RT reaction or end-labeled in an exchange reaction with 32P-γ-ATP.

Circularized RT product was separated from non-reactive, linear RT product

on 10% denaturing PAGE gels, and the gels were exposed and quantified as

described. The amount of circularization was determined by quantifying the pixel

signal corresponding to the circularized product and dividing that value by the

total pixel signal corresponding to the circularized product plus the remaining

linear input, and multiplying by 100.

PCR amplification from the circularized RT product was performed with KAPA

HiFi Library Amplification Kit (Kapa Biosystems) according to manufacturer’s

instructions, except where otherwise noted. All PCR products were analyzed on

native 8% PAGE gels and quantified as described above. Samples to be

sequenced were excised and gel extracted as described for RT products,

precipitated and quantified by gel analysis before sample submission.

N24 Library Construction and Analysis

N24 libraries were constructed from 2 pmol of N24 RNA oligo using the optimized

conditions shown in Supplementary Table 3.1, except for the described variations

in 3' ligation conditions. In one case (22◦C 6 hr library), a minute amount of
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28-mer oligo was added. All libraries were amplified with 7 PCR cycles and gel

purified prior to sequencing on a single Illumina HiSeq2000 lane (Genewiz).

Deep sequencing data were analyzed with custom scripts unless otherwise noted.

Data were parsed into individual libraries by 5' barcode, allowing 1 mismatch.

The 3' adaptor sequence was removed from all libraries allowing 3 mismatches.

Once individual sequence reads were identified, read lengths were calculated.

All subsequent analysis utilized only 24 nt reads. For each library, we calculated

the observed nt frequencies at each of the 24 positions. To determine expected

values, we used the data across positions 5–20 from all libraries and fitted least

squares lines to the frequency pattern for each nt. The equations for the line-fits

yielded the expected nt frequencies at all 24 positions. The chi-square statistic

was calculated for each library by summing [(observed nt count - expected nt

count)2/(expected nt count)] across all four nts at each N24 position.

PhiX reads were identified if they mapped to the PhiX174 genome with a

maximum of 6 errors within the 51 sequenced nts. Mismatches were identified

and counted if the sequenced nt was different than the PhiX174 genome

sequence. Mismatch frequencies were calculated by dividing the mismatch

counts at each position by the total number of PhiX reads. For analysis of nt

distribution across ribosome footprints (Ricci et al., 2014), all 26–30 nt reads

were selected and aligned by their 3' ends; nt frequencies were calculated by
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dividing the observed nt count at each position by the total number of reads.

miRNA Library Construction and Analysis

Libraries were constructed from either 1 pmol or 50 fmol of an equimolar mix of

29 miRNAs (Zhang et al., 2013) according to the optimized conditions shown in

Supplementary Table 3.1. For each input amount, the ligation was performed

with either the fixed or N4 preadenylated 3' adaptor. Libraries were pooled and

sequenced on a single MiSeq lane. Deep sequencing data were parsed into

individual libraries by 5' barcode using cutadapt version 1.3 (Martin, 2011),

allowing 1 mismatch. Reads were mapped to reference sequences using a

custom script which (i) required that the 3' adaptor be present in the read and (ii)

only counted reads mapping to reference miRNA sequences with 0 mismatches.

Additionally, we counted the reads with 5 or fewer non-templated 5' terminal

additions and 5 or fewer 5' terminal deletions. Observed miRNA frequencies

(Fobs) were calculated using the total number of reads for each miRNA (including

5' terminal additions and subtractions). The expected frequency (Fexp) for each

miRNA is 1/29 or 0.0345. Coefficients of variation (CV) were calculated by

dividing standard deviation (miRNA counts) by the mean (miRNA counts).

Terminal transferase activity was assessed by dividing total miRNA reads in

each 5' addition bin by the total full-length miRNA reads in each library. Free

energy values from in silico folding were calculated using the Vienna RNA

Package v. 2.1.7 using the -T 30 parameter to obtain structure predictions at
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30◦C (Lorenz and Bernhart, 2011).



Chapter IV

Discussion

Monosome Translation

The work presented in Chapter II overturns a long-existing dogma that

monosomes are inactive for translation. By combining monosome enrichment

analysis with multiple genome-wide datasets, we found that monosomes

predominantly translate mRNAs with short ORFs, endogenous NMD targets and

mRNAs for which the time to initiate or translate the first portion of the ORF is

much greater than the time to elongate across the remainder of the ORF.

Implications of the Inactive Monosome Assumption

Ever since the discovery of polysomes (Warner et al., 1963), it has commonly

been assumed that monosomes are translationally inactive. This assumption is

160
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based on two pieces of data: (1) No incorporation of radioactive amino acids

was detected in monosomes (Warner et al., 1963), and (2) in experiments

measuring the number of tRNAs per ribosome, only 1 tRNA cosedimented

with 80S ribosomes (Warner and Rich, 1964). These experiments were both

performed in rabbit reticulocyte lysate, which is a very unique system in that

the in vivo role of reticulocytes is to produce hemoglobin; therefore, the vast

majority of mRNAs in reticulocyte lysate code for hemoglobin proteins. Warner

et al. were quite careful in the assessment of their data demonstrating translation

by polysomes, stating that "our experiments indicate that protein synthesis in

the reticulocyte occurs only on this structure and not on a single ribosomal unit"

(1963). However, this finding has been indiscriminately applied to translation

across all organisms, resulting in an oversimplification of the translation system:

an mRNA’s association with 0 or 1 ribosome indicates no translational activity,

while association with 2 or more ribosomes indicates translational activity.

This assumption has both limited experimental findings and resulted in

potentially inaccurate conclusions. Take, for example, the recent ribosome

profiling experiments identifying short ORFs in both S. cerevisiae and

Drosophila S2 cells (Aspden et al., 2014, Smith et al., 2014). In both cases, the

assumption that translationally active mRNAs must be associated with

polysomes resulted in experimental analysis being limited to those mRNAs

which cosediment with polysomes. Short ORFs which cosediment exclusively
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with monosomes, either due to extremely long initiation times or short ORF

lengths, were excluded from collection and data analysis. Similarly, the inactive

monosome assumption has affected conclusions drawn from comparative

polyribosome profiling. Consider an experimental setup where mRNAs are

monitored for the number of ribosomes with which they cosediment - either by

northern blotting or qPCR of RNA extracted from polysome profile fractions -

before and after a specific treatment, or across cell cycle stages. An mRNA shift

from polysomes to monosomes has typically been interpreted as a lack of

translation due to cell treatment or stage. However, we now know that this likely

reflects a decrease in translation and not a complete shutoff; that is, the

translation of this mRNA has been downregulated.

Often, we think about identifying the set of mRNAs translated during each

experimental condition or treatment, which can lead to thinking of translation

as a binary system, with the 2 possible states of translational status for each

mRNA being either on (expressed) or off (not expressed). However, we need

to think of translation as more fluid, with varying states of expression levels

that change depending on cell cycle or environment. A shift from polysomes to

monosomes indicates a decrease in protein expression but not a complete halt;

nuances in gene expression regulation may have been overlooked because of

these assumptions. As an example, a recent experiment examined translation

across the temporal scale of S. cerevisiae meiosis, identifying sets of genes
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with increased or decreased expression throughout various meiotic stages (Brar

et al., 2012). Given the sensitivity of deep sequencing and ribosome profiling,

we now have the tools to measure translation across a wide range of expression

levels.

Future Monosome Footprinting Experiments

When preparing S. cerevisiae lysate for polysome profiling, I excluded detergent

from the lysis buffer for reasons mentioned previously. However, if repeated, I

would add an additional step to fully recover ribosomes from the ER membrane

via post-lysis incubation with detergent (Seiser and Nicchitta, 2000). As a

result, both membrane-bound and cytoplasmic ribosome footprints would be

captured, generating a more accurate snapshot of total cellular translation. In

addition to adding information on the ~2400 genes S. cerevisiae genes which

are predominantly translated on membrane-bound ribosomes, quantifications for

cytoplasmic mRNAs might change as well, as work from the Nicchitta lab has

demonstrated that mRNAs encoding soluble proteins can be translated by ER-

bound ribosomes (Reid and Nicchitta, 2015). To specifically examine the role of

monosome translation on the ER, it would be interesting to perform compartment-

specific monosome- and polysome- ribosome profiling in S. cerevisiae. Previous

analysis in human cell lines showed little difference between cytoplasmic- and ER-

ribosome footprint profiles of predominantly cytoplasmic mRNAs (Jagannathan
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et al., 2014), so we might expect a similar finding in yeast. However, by teasing

apart the relative contributions of monosome- and polysome- footprinting, we

might detect a change in footprint patterns across ORFs that would depend on

the subcellular site of translation.

As part of our analysis of monosome translation, we calculated that 93% of

monosomes are translationally active. However, due to the nature of the

experiment, we cannot draw any conclusions about the percentage of

monosomes associated with mRNA (Bhattacharya et al., 2010). We expect that

some portion of the signal in the 80S monosome peak represents empty

couples, though the 5 mM MgCl2 in the lysis buffer should minimize ribosomal

subunit interaction in the absence of mRNA (see Chapter II, section entitled

Monosome, Polysome and Global Footprinting). Given the long-standing debate

regarding monosome translational status, it would be interesting to actually

quantify the percentage of monosomes that are associated with mRNA. PolyA+

selection from monosome fractions could be used to separate mRNA-bound

ribosomes from free ribosomes, followed by ribosomal RNA quantification by

northern blot or qPCR. Either an excess of oligo-dT or multiple rounds of polyA+

pulldown would be necessary to ensure that all mRNAs were removed from the

sample. This experiment may underestimate the amount of mRNA-bound

monosomes, however, since polyA+ selection will not capture mRNAs with a

short polyA tail or mRNA fragments.
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Monosome Footprinting to Identify Novel Short ORFs

As demonstrated in Figures 2.6A-C and 2.5D, monosome-associated mRNAs

are enriched for sORFs, a finding not entirely surprising since monosomes are

primarily responsible for the translation of RPL41A and B, the shortest ORFs

in S. cerevisiae (Yu and Warner, 2001). This enrichment included both short

upstream ORFs (uORFs) and novel sORFs. Since we believe this monosome

enrichment is dependent on the relationship between translation initiation time

and elongation time, we would expect monosome footprints to be enriched for

sORFs in other organisms as well.

Recently, there has been a dramatic increase in the publication of sORF papers;

seven reviews (Chu et al., 2015, Crappé et al., 2014, Eguen et al., 2015, Kemp

and Cymer, 2014, Landry et al., 2015, Ramamurthi and Storz, 2014, Storz et al.,

2014) on sORFs have been published in the last 2 years alone! Short ORFs

have been found as alternative ORFs in reference genes, though most often

are identified within previously annotated non-coding RNAs (Anderson et al.,

2015, Lauressergues et al., 2015, Ruiz-Orera et al., 2014). Thus far, the shortest

functional ORFs to be discovered are 11 amino acids long (Galindo et al., 2007).

Short ORFs are thought to play an important role in biology, as many small

molecules and small proteins often have signaling or regulatory roles. However,

most of our current knowledge about small proteins comes from short peptides
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which are enzymatically cleaved from longer precursor proteins (Crappé et al.,

2014). There is much to be learned about the function of these small peptides!

The characterization of sORFs and their encoded peptides will both expand our

knowledge of the proteome and provide critical insights into cellular biology.

However, mapping of entire proteomes is currently biased against small proteins,

due to a combination of experimental limitations and historical assumptions.

Mass-spectrometry has been used to identify protein sequences genome-wide,

but the lower limit of detection means that short proteins are underrepresented

compared to longer proteins (Ruiz-Orera et al., 2014). Additionally, historical

identification of protein-coding sequences utilized a lower limit of 100 codons, as

it is unlikely that by chance, a 300-nt genomic region will lack any stop codons

(Harrison et al., 2002). Therefore, the overall abundance of sORFs is likely

underestimated, and the assumptions used to identify ORFs need to be

revisited. Initial computational experiments have demonstrated the usefulness of

combining global ribosome footprinting data with evolutionary codon

conservation to identify novel sORFs in yeast, flies, zebrafish, mice, humans

and a plant (Bazzini et al., 2014, Crappé et al., 2013, Ruiz-Orera et al., 2014).

As monosome footprints are diluted in polysome footprints when following the

global ribosome profiling assay, sORF monosome footprints could be

overlooked due to low count numbers. Therefore, sORF identification would only

be improved with monosome footprinting data.
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Potential Applications of Polysome Footprinting

This work has focused on elucidating the translational status of monosomes;

consequently, the polysome footprinting data was largely ignored except to

provide a comparison for the monosome footprinting libraries. Our limited

analysis revealed that polysome-enriched mRNAs have higher mRNA synthesis

rates, longer half-lives, and encode highly abundant proteins, results which were

hardly surprising. There are, however, many interesting things to be learned

from polysome footprinting.

Using an approach similar to the one presented here, polysomes of various sizes

could be pooled together and analyzed (ex. 2-4 ribosomes, 4-6 ribosomes, 7+

ribosomes). Split-polysome footprinting has previously been used to identify

sORFs (Aspden et al., 2014), likely overlooking some sORFs for the reasons

presented above. Several interesting questions could be answered by dividing

the polysome pool into multiple groups. For example, would the pattern of

footprints change between a small polysome and a large polysome? From our

data, we concluded that occupancy on either monosomes or polysomes was

predominantly driven by the ratio of initiation rate to elongation rate (see Figure

2.13). What if elongation rate changed depending on the number of ribosomes

occupying an ORF? For example, a region with significant secondary structure

could slow a ribosome as it unwinds this structure, but a steady flow of ribosomes
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might prevent the structure from reforming, and as a result footprint abundance

would decrease. However, if only a few ribosomes were translating the mRNA,

the secondary structure might reform after every ribosome transits this region,

resulting in slower moving ribosomes that would create more footprints in this

region.

When calculating monosome- versus polysome-enrichment, we found a strong

relationship between monosome occupancy and ORF length for short ORFs

(Figures 2.6B and 2.5D). This changed drastically around 590 nts, but a slight

trend towards increased polysome-enrichment with longer ORFs was still visible.

Would small polysomes contain, on average, shorter ORFs than are found

in larger polysomes? To some extent this is expected, as longer ORFs can

physically accommodate more ribosomes. However, a slow initiation rate on a

long ORF could drive its association with small polysomes, while a fast initiation

rate could drive a short ORF to large polysome status.

Additionally, the difference between preferential association with small or large

polysomes might depend on cellular environment. As the cell responds to some

external queue, it could quickly ramp up translation of the proteins required to

mount a response by shifting an mRNA from a small to a large polysome. If

merely a quick response was needed, a time-course study could show a

immediate transition into large polysomes, then medium sized polysomes, then
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small polysomes or even a lack of footprinting signal if translation was

completely inhibited post-response. In contrast, an mRNA could stay in the

same polysomal pool but simply transition from inhibited ribosomes to actively

elongating ribosomes (see section entitled Comments on Technical Aspects of

Ribosome Profiling).

Neurons: An Alternate Experimental System

The work presented above was performed in S. cerevisiae for several reasons.

First and foremost, this work began soon after the original ribosome profiling

paper was published (Ingolia et al., 2009), so our experiments were based on the

methods described in that paper. Second, since S. cerevisiae is a well-studied

model organism, there is a wealth of knowledge upon which to base our potential

conclusions regarding monosome translation. Finally, S. cerevisiae is easy to

grow, so availability and abundance of sample would never be an issue. However,

our original plan for monosome footprinting was to perform the experiments in S.

cerevisiae only as a proof of concept, and move on to a higher organism to study

a "more interesting" biological system. As it turns out, the S. cerevisiae datasets

I generated held a wealth of novel findings, and I did not apply monosome

footprinting to another system. However, when first developing the hypothesis of

translating monosomes, we were attracted by the hypothesis that monosome

translation could be particularly abundant in subcellular compartments where
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only a very small amount of protein would be necessary to execute its specific

function. As neurons are a highly polarized cell, we reasoned that monosome

translation may play a role in axon and dendrite local translation. In dendrites,

local translation plays a role in maintaining synaptic function and plasticity (Perry

and Fainzilber, 2014, Steward and Schuman, 2003, Sutton and Schuman, 2006,

Wang et al., 2009). Similarly, local translation in axons enables the response to

extrinsic signals (Jung et al., 2011).

Although local translation within both dendrites and axons is now widely accepted,

the apparent lack of ribosomes in early studies on mature vertebrate axons lent

support to the assumption that axons cannot synthesize proteins. Though there

were a few reports of polysomes in axons (for review, see Twiss and Fainzilber,

2009), they were so infrequent compared to reports of dendritic translation that

they were largely ignored. Significant evidence regarding the number of dendritic

polysomes near synapses came from electron micrographs, where polysomes

were identified based on their distinct structural morphology (Ostroff et al., 2002).

Using this data, Sutton and Schuman (2006) calculated that, on average, each

dendritic spine could only have a single polyribosome, which would introduce

serious constraints to the variety of locally synthesized proteins. However, they

noted the difficulty of identifying free ribosomes in electron micrographs. So what

if a significant amount of dendritic translation happens on monosomes? As little

is known about the abundance of mRNAs or proteins in neuronal projections
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(Holt and Schuman, 2013), it is possible that a few protein molecules synthesized

by a single ribosome would effectively execute its function. Though the overall

number of protein molecules may be low, the relative concentration in such a

small subcellular region could be quite high.

In recent years, significant work has been devoted to identifying the

transcriptome of these neuronal projections (Cajigas et al., 2012, Zivraj et al.,

2010). One intriguing finding from these analyses was the abundance ( 13%) of

transmembrane and secretory protein-encoding mRNAs. Can these proteins be

translated in neurites? This could be addressed with ribosome profiling to

identify ribosome positioning across these mRNAs. The issue of secretory

pathway mRNAs in neurites aside, ribosome profiling analysis would add a

wealth of knowledge to the local translation field. However, I think it would be

much more interesting to perform monosome- and polysome- ribosome profiling

in these cellular projections (a) to measure the amount of overall translation and

(b) to determine if monosomal translation contributes significantly to the overall

amount of translation in axons and dendrites.

Such a system immediately lends itself to several types of experiments. Where

would monosome footprints be found in resting neurites, and would that profile

change upon pharmacological or chemical stimulation? Would the identity of

ribosome-associated mRNA change depending on the stimulant? One possibility
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is that the entire repertoire of translated mRNAs would change upon stimulation,

whether the translation is happening on monosomes or polysomes. On the

other hand, monosomes could be pre-loaded on certain mRNAs and merely

redistribute into the ORF once translation elongation began.

It would be fascinating to prepare monosome- and polysome- footprinting libraries

from different timepoints post-stimulation to determine how quickly translation

of individual mRNAs began and ended. If paired with RNA-Seq data, some of

the subtle interdependencies between translational control and mRNA levels

could be teased apart. If footprints for a specific message were no longer

seen after a certain amount of time, ribosome profiling data alone would be

unable to address whether ribosomes stopped translating that message or if the

mRNA was degraded. This information, however, could be provided by RNA-Seq

libraries prepared in tandem with the ribosome profiling libraries.

Comments on Technical Aspects of Ribosome Profiling

In the first iteration of the ribosome profiling protocol, footprints were isolated

by digestion with RNase I, an endoribonuclease that cleaves after every base.

Thus, the exact footprint of the ribosome could be identified. As this technique

has been applied to systems other than S. cerevisiae, however, it is not always

feasible to use RNase I for footprint isolation. For example, MNase was used
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to isolate E. coli ribosome footprints because RNase I activity is inhibited by

bacterial 30S ribosomes (Oh et al., 2011). In the Moore lab, RNase I proved

ineffective for preparing ribosome footprints from HEK293 cells, so a combination

of RNases A and T1 were used instead (Ricci et al., 2014).

These discoveries of ineffective RNase I digestion would not have been possible

without polysome profiling of the digested lysate. The absorbance trace collected

during sucrose gradient fractionation reports on the abundance of each ribosome

peak and can be used to qualitatively measure the extent of RNase digestion and

degradation. Recent work in C. elegans demonstrated that RNase I overdigestion

causes significant loss of signal in the monosome peak, presumably due to

ribosome degradation (Aeschimann et al., 2015). Thus, it is important to optimize

the RNase digestion step using polysome profiling when designing ribosome

profiling experiments in new systems. Technical developments for the isolation

of digested monosomes, such as the use of a sucrose cushion (Ingolia et al.,

2012) or a size-exclusion column (TruSeq Ribosome Profiling Kit; Epicentre), are

making ribosome profiling experiments accessible to research groups without the

capability to perform polysome profiling. While very attractive to the novice user,

as they are quicker and more straightforward than polysome profiling, blindly

digesting with a fixed concentration of RNase without any optimization is unwise.

However, after digestion optimization, these approaches would likely yield similar

results to monosome isolation on a sucrose gradient.
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The conclusions drawn from ribosome profiling are usually based on the

assumption that each ribosome footprint belonged to an actively elongating

ribosome. This is similar to the common assumption that the larger the

polysome (i.e. the more ribosomes bound to each mRNA), the greater the

protein output. However, there is no guarantee that all ribosomes captured in

ribosome profiling are actively elongating. In fact, several groups have shown

that multiple ribosomes can remain bound to an translationally-inhibited mRNA,

indicating that polysomal mRNAs can be translationally inactive (Braat et al.,

2004, Nottrott et al., 2006, Olsen and Ambros, 1999, Petersen et al., 2006). For

a ribosome leaving a footprint at any location besides the start codon, we can

definitively conclude that it was actively elongating at one point, but not

necessarily at the time of sample collection.

Consequently, what percentage of footprints originate from stalled ribosomes?

This is currently unknown, but could be measured by comparing normal ribosome

profiling data to ribosomal run-off footprinting data. In the latter experiments,

footprints are likely to be enriched at - and upstream of - stall sites, as any

ribosome upstream of the stalled ribosome is likely to accumulate behind it

(Guydosh and Green, 2014). Could there be a difference in stuck ribosomes

between monosomes and polysomes? It seems likely that stuck ribosomes

would predominantly be found in polysomes, as another ribosome could initiate

and stack behind the stalled ribosome. However, this would depend on initiation
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rate and whether the stuck ribosome sterically blocked another 80S from forming.
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Future Library Construction Methodological
Development

The RNA library construction method described here (Chapter III) was born out

of a desire to design a library construction method that minimized bias while

allowing us complete control over every step in the process. The Moore lab

was beginning to focus heavily on deep sequencing experiments and had grown

frustrated with the meager information about sample manipulations provided by

commercial library preparation kits. Therefore, we set out to design our own

method for preparing libraries from all types of RNAs, thus the internal name

"OmniPrep." We minimized the bias introduced at each construction step through

careful enzymatic choice and titration experiments to find optimal conditions for

each enzyme. In addition to measuring the bias of our optimized procedure,

we were able to demonstrate that our method introduced less bias (see Figure

3.10) than a previously published bias-minimizing protocol. However, as with any

biologically-related process, there are still aspects of this method that could be

improved, which will be discussed below.

Optimizing Removal of Unextended RT Primer

One methodological step to be further optimized is the isolation of full-length

RT product away from unextended primer, as the latter will circularize and
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contaminate PCR amplification. Currently, this step utilizes gel excision and

elution following size-selection on a denaturing-PAGE gel. However, this isolation

step is imperfect and results in carryover of unextended RT primer, which can be

more abundant than the desired RT product for very low RNA input amounts.

Our method was published back-to-back with a method (Sterling et al., 2015)

developed by Catherine Sterling - a postdoc in Victor Ambros’ lab - as we had

collaborated after discovering our that our work overlapped. Catherine’s focus

was slightly different, as her project depended on constructing miRNA libraries

from minute amounts of RNA. To increase RT product capture sensitivity, she

incorporated biotinylated dNTPs during reverse transcription and recovered her

product via incubation with streptavidin beads. Catherine was not able to detect

any bias introduced by use of biotinylated dNTPs, likely because the small biotin

molecule did not interfere with reverse transcription. Incorporating this approach

into OmniPrep could negate the gel purification of RT product, but would only be

an improvement if the ratio of extended RT product:unextended RT primer was

greater than with OmniPrep. Currently, Catherine gel purifies the circularized

RT product because of unextended RT primer contamination post-streptavidin

pull-down (personal communication, Catherine Sterling). Therefore, in order

to maximize the potential of biotinylated dNTP incorporation for RT product

isolation, the amount of contaminating unextended RT primer would need to be

significantly reduced.
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Another approach to isolating full-length RT product could utilize size-exclusion

chromatography. This chromatographic method separates molecules by size,

where larger molecules elute first due to their exclusion from pores in the column

material, and has many advantages over gel purification. First, there should be

greater recovery of sample material compared to gel purification (Kurien and

Scofield, 2002). Second, molecules of a similar size tend to fractionate in narrow

bands, enabling good sensitivity and minimal contamination with any similarly

sized RT by-products. Typically, size exclusion chromatography requires a 10%

difference in size to achieve good resolution, though single-residue resolution

can be achieved (Ellington and Pollard, 2001). This 10% size difference would

require the addition of ≥10 nts during reverse transcription; as read length >10

nts is needed to uniquely map to the genome, this would not introduce any

extra limitations to OmniPrep. Third, the RT product would stay in solution the

whole time. Finally, this type of chromatography can be automated, which would

reduce the amount of hands-on time that OmniPrep currently requires. One

potential drawback is the lack of denaturation, as secondary structure can alter

RT product elution time. The extent of this effect could vary depending upon the

cDNA sequence in the RT product, which could alter the relative abundances

within the sample. In summary, size-exclusion chromatography seems very

promising as a method of purifying full-length RT product, but some optimization

may be required.
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Approaching the problem a different way, RT product isolation would be

unnecessary if the unextended RT primer could be specifically removed after

reverse-transcription. The Preiss group has published a protocol using

Exonuclease I (ExoI) enzyme immediately after reverse transcription to degrade

unextended RT primer (Archer et al., 2014). This enzyme specifically degrades

single-stranded DNA, so this approach requires that the newly-synthesized RT

product remain hybridized to its RNA template. I briefly tested ExoI treatment

with OmniPrep and detected a slight reduction in the amount of full-length RT

product. However, these experiments were far from exhaustive and may warrant

revisiting.

Addition of Randomer Sequences to Detect PCR Jackpots

When optimizing the PCR step, we specifically chose an enzyme (KAPA HiFi)

which introduces minimal bias. The use of KAPA HiFi will reduce the chances of

PCR jackpots - individual sequences which amplify much more efficiently than

the overall sample - as this enzyme has little preference for nucleotide content.

However, we could improve OmniPrep by adding randomer DNA tags which

enable the tracking of PCR jackpots (Kivioja et al., 2011). These sequence tags

can be added to either the RNA, cDNA, or dsDNA prior to PCR amplification.

The goal is to label each molecule with a unique identifying sequence so the

amount of PCR amplification can be measured. Post-PCR amplification, if a
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read appears multiple times with the same randomer tag sequence, all reads

likely originated from the same molecule and the read count can be adjusted.

However, if a read appears multiple times with different randomer tag sequences,

those reads likely originated from individual capture events.

Error Correcting Barcodes

As discussed in Chapter III, the barcodes at the 5' end of the PCR-amplified cDNA

allow for pooled samples of multiple libraries to be separated into their component

libraries after sequencing. The barcode sequences used in OmniPrep are based

on barcodes used by Illumina in their kits and were chosen to be base-balanced

at each position across the barcode. At the time of development, sequence

read length was limiting, so the length of this in-line barcode was limited to 5 nts

to avoid negatively impacting the potential mappability of the cDNA fragment.

However, the number of libraries that can be identified by a 5-nt barcode with

a high degree of confidence - while maintaining base balance - is low. Current

high-quality read lengths have increased to the point where a longer in-line

barcode can be used without compromising the amount of information obtained

from the sample. The number of reads per lane has increased along with read

length; therefore, it is desirable to combine more samples into each sequencing

lane. In order to maintain a high level of confidence when de-multiplexing these

pooled libraries, the length and complexity of the barcode must increase as well.
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Based on combinatorics, a simple increase in the length of the barcode will

increase the number of potential barcodes. However, it is important that the

barcodes can be identified even when they contain sequencing errors. A simple

solution is to choose barcodes that cannot be converted into another barcode

even with multiple sequencing errors. A more elegant and comprehensive

approach is to utilize error-correcting barcodes, which enable the possibility of

detecting and correcting sequencing errors. The most common error-correcting

barcodes are based on either Hamming codes (Bystrykh, 2012, Hamady et al.,

2008) or Levenshtein codes (Buschmann and Bystrykh, 2013). The former is a

binary code made of data bits that are interrupted by parity bits, which are used

for a checksum function to identify substitution errors (Bystrykh, 2012). As

substitution errors are the most common errors produced by Illumina

sequencing machines (Nakamura et al., 2011), Hamming codes have become a

popular source of sequencing barcodes. However, one limitation of a Hamming

code approach is the inability to detect insertions and deletions in the linear

sequence code. This can be overcome by utilizing barcodes based on

Levenshtein codes, which are capable of correcting substitution, insertion and

deletion errors (Buschmann and Bystrykh, 2013). Either of these types of

barcodes could easily be incorporated into OmniPrep, depending on the needs

of the user and the sequencing platform being used. A simple substitution of

error-correcting barcodes for the current barcodes in the RT primers would
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result in a set of libraries that could be parsed into their component samples with

extremely high confidence.

Paired-end Sequencing Compatibility

The current OmniPrep protocol was designed with the sequences of Illumina’s

paired-end adaptors. These adaptor sequences, as the name suggests, enable

an OmniPrep-constructed library to undergo paired-end sequencing. This type

of sequencing is not ideal, however, for two reasons. First, the 5' 21 nucleotides

of the reverse read will sequence the ligation adaptor, wasting sequencing

space. Second, the quality of the reverse read will be low, because the Illumina

machines interpret incorporation of the same nucleotide across the entire slide

as an indication of error. In order for OmniPrep to be fully compatible with paired-

end sequencing, the adaptor sequences need to change. The ideal adaptor

sequences are Illumina’s multiplexing adaptors, as they work on all Illumina

platforms. Additionally, they have built-in barcodes which are read in a separate

sequencing reaction.

Initial experiments utilizing multiplex adaptor sequences resulted in multiple

RT product bands. Due to the degeneracy of these adaptor sequences, the

RT primer is able to self-prime during reverse transcription to produce spurious

products. In an attempt to minimize this effect, the length of the 3' ligation adaptor
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was extended to 29 nts and the RT primer shortened so it no longer anneals

adjacent to the RNA-DNA ligation site, but 7 nucleotides further back into the

3' adaptor. These changes should minimize RT primer self-hybridization, but

extensive experimentation will be performed to ensure that these changes do

not alter the efficiency of OmniPrep.

Measuring the Lower Limits of OmniPrep

One main goal of OmniPrep was to create a method which could accept a

wide range of RNA input amounts, as the Moore lab prepares RNA sequencing

libraries from a wide variety of samples. We tested the lower limits of our method

and detected a linear relationship between RNA input and RT product signal

across a wide range of input concentrations(3.3 nM to 133 nM input; see Figure

3.4F). However, this only reports on RNA capture and RT product synthesis for

a fixed RNA input amount. To measure capture efficiency across a wide range

of RNA expression levels within a single sample, however, would be a more

sophisticated experiment to truly measure of the robustness of OmniPrep. With

this type of RNA input, we could compare the capture efficiencies of abundant

RNAs to those of lowly expressed RNAs and test the reproducibility of capture at

the lower end of the expression range by comparing signal across experimental

replicates.
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Perspective

Undoubtedly, further enzymatic and technological developments will reduce the

already small bias that results from OmniPrep. Given that most biases originate

from RNA library construction, the development of a direct RNA sequencing

platform requiring no amplification would enable complete and bias-free profiling

of the entire transcriptome. Though significant technological developments are

necessary, it is possible that nanopore sequencing will help to realize this dream

(Ozsolak and Milos, 2011).

OmniPrep represents a significant improvement over other library generation

methods because it introduces minimal bias and works for all types of RNA. This

bias can have large affects on the sequence populations of small RNAs and

RNA footprint libraries, and the direct abundance comparison of 2 species within

the same library should be avoided. However, as these biases are systematic,

comparing abundance counts between similarly-prepared libraries should

accurately reflect the original sample differences.

The converse of this statement is also true: libraries prepared with different

construction methods will have different biases, and comparing abundance

counts between differently-prepared libraries may be inaccurate. Though

important, this point is often overlooked, especially when quantifying the

abundance of a unique RBP or RNP footprint. To determine if a specific footprint
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is enriched in a sample, the data should be normalized to RNA-Seq data made

using (a) RNA fragments roughly the same length as the footprints (Jackson and

Standart, 2015) and (b) the same library preparation method. Then, only by

comparing the footprinting libraries to the RNA-Seq libraries is it possible to

determine if a specific RNA sequence is enriched in the footprinting libraries or

simply preferentially captured and amplified during library construction. If

significantly longer RNA fragments are used to generate the control RNA-Seq

libraries, the effects of local nucleotide content on library bias will be minimized,

and the libraries will not be comparable. Unfortunately, producing

footprint-length fragments for RNA-Seq libraries often results in tRNA

contamination. As most footprints are shorter than full-length tRNA, fragmenting

RNA to these shorter lengths will also generate tRNA fragments. In my case,

preparing RNA-Seq libraries to complement ribosome profiling data resulted in a

significant amount of tRNA contamination (most of the contaminating ncRNA

sequences in the footprinting libraries were rRNA, while in the RNA-Seq libraries

more were tRNA; see Table 2.2).

Despite the abundance of publications demonstrating bias in RNA deep

sequencing library preparation, these issues are largely ignored by the field.

Many companies are producing kits for library construction, which can increase

throughput and reduce the challenges of library preparation facing a novice user.

However, development of these kits has focused on decreasing the total time of
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library preparation. Therefore, each enzymatic reaction is relatively short and

likely incomplete. It is up to the conscientious scientist to be aware of the

limitations of library preparation methods and limit data analyses to those

justified by the experimental system.
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