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Abstract 

The following work demonstrates that chromatin regulators play far more 

pronounced roles in dynamic gene expression than they do i n steady-state. 

Histone modifications have been associated with transcription activity. However, 

previous analyses of gene expression in mutants affecting histone modifications 

show limited alteration. I systematically dissected the effects of 83 hi stone 

mutants and 119 g ene deletion mutants on gene i nduction/repression in 

response to diamide stress in yeast. Importantly, I observed far more changes in 

gene induction/repression than changes in steady-state gene e xpression. The 

extensive dynamic gene expression profile of histone mutants and gene deletion 

mutants also allowed me to identify specific interactions between histone 

modifications and chromatin modifiers. Furthermore, by combining these 

functional results with genome-wide mapping of several histone modifications in 

the same time course, I was able to investigate the correspondence between 

histone modification occurrence and function. One such observation was the role 

of Set1-dependent H3K4 methylation in the repression of ribosomal protein 

genes (RPGs) during multiple stresses. I found that proper repression of RPGs in 

stress required the presence, but not the specific sequence, of an i ntron, an 

element which is almost unique to this gene class in Saccharomyces cerevisiae. 

This repression may be related to Set1’s role in antisense RNA-mediated gene 

silencing. Finally, I found a pot ential role for Set1 in producing or maintaining 

uncapped mRNAs in cells through a mechanism that does not involved nuclear 



 vi 

exoribonucleases. Thus, deletion of Set1 in xrn1∆ suppresses the accumulation 

of uncapped transcripts observed in xrn1∆. These findings reveal that Set1, 

along with other chromatin regulators, plays important roles in dynamic gene 

expression through diverse mechanisms and thus provides a coherent means of 

responding to environmental cues. 
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INTRODUCTION 

The eukaryotic genome is packaged into chromatin, which affects virtually every 

process occurring on DNA. The basic building block of chromatin is the 

nucleosome, which comprises 147 base pairs (bp) of DNA wrapped around a 

core histone octamer containing two copies of 4 hi ghly conserved histone 

proteins H2A, H2B, H3, and H4 (Luger et al., 1997). While the packaging of DNA 

into nucleosomes overcomes the topological problem of storing a long stretch of 

DNA into the nucleus, nucleosomes also serve as barriers to many cellular 

processes by restricting access to DNA. To deal with this problem, eukaryotic 

cells have developed several approaches to relieve this constraint. Those 

approaches include: replacement of canonical histones with different histone 

variants, post-transcriptional histone modifications, and m oving or removing 

nucleosomes.  

 
Histone variants 

Histone variants have been i mplicated in playing distinct roles from canonical 

histones and helping to create specific chromatin domains for different cellular 

pathways. A nucleosome consists of two histone H3-H4 and H2A-H2B dimers. 

H2A has one hi ghly conserved variant, H2A.Z/HTZ1 in Saccharomyces 

cerevisiae. H2A.Z shares higher sequence similarity with H2A.Z from other 

species than to the canonical H2A within the same organism, suggesting H2A.Z 

plays a conserved role distinct from H2A (Talbert and Henikoff, 2010). In higher 
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eukaryotes, there are many more H2A variants such as H2A.X, H2A.Bbd, and 

macroH2A. Histone H3.3 and CENP-A have been identified as H3 variants. H3.3 

differs from the canonical H3 (H3.1 in metazoans) only by 5 amino acids. While 

H3.1 is incorporated into chromatin during replication, the variant H3.3 

incorporation can be replication-independent (Ahmad and Henikoff, 2002). 

Another example reinforces the idea that histone variants play different roles 

from canonical histones. 

 

H2A.Z was identified in mouse leukemia cells in 1980 by gel separation of acid 

extracted proteins from nuclei (West and Bonner, 1980). While H2A.Z protein is a 

highly conserved protein from yeast to human (Malik and Henikoff, 2003), it is 

only essential in certain organisms (Drosophila, Tetrahymena, and mouse) (van 

Daal and E lgin, 1992; Faast et al., 2001; Liu et al., 1996). In Saccharomyces 

cerevisiae, H2A.Z/HTZ1 is not essential but deletion of HTZ1 results in slow 

growth (Jackson and Gorovsky, 2000), chromosome instability (Carr et al., 1994; 

Krogan et al., 2004), and gene silencing defects (Meneghini et al., 2003). 

Notably, loss of H2A cannot be c omplemented by H2A.Z in Saccharomyces 

cerevisiae and Tetrahymena thermophila, suggesting H2A.Z plays a different role 

from H2A (Liu et al., 1996). Unlike H2A, H2A.Z is constitutively expressed and 

incorporated into chromatin by chromatin remodeling complexes SWR1 and 

INO80 (Luk et al., 2010; Papamichos-Chronakis et al., 2011). Interestingly, 

genome-wide studies showed that H2A.Z primarily localizes to promoters in 
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Saccharomyces cerevisiae and nucleosome-depleted region (NDR) in mammals 

(Albert et al., 2007; Nekrasov et al., 2012; Raisner et al., 2005). The crystal 

structure of a nucleosome containing H2A.Z revealed subtle destabilization of the 

interaction between the H2A.Z-H2B dimer and H3-H4 tetramer (Suto et al., 

2000). Taken together, it is believed that the incorporation of H2A.Z helps 

maintain chromatin in an “ open” state, which facilitates the binding of 

transcription factors or the recruitment of DNA repair machinery.  

 

Histone modifications 

Histone modifications affect many DNA-dependent cellular processes, such as 

transcription, chromatin assembly, DNA repair…etc (Kouzarides, 2007). The N-

terminal tails of the histones extend outside the nucleosome core and are subject 

to a variety of posttranslational modifications, including methylation, acetylation, 

phosphorylation, ubiquitylation, sumoylation, proline isomerization, ADP-

ribosylation, carbonylation, biotinylation, citrullination, β-N-glycosylation, 

crotonylation, N-formylation, propinylation, and butyrylation (Sadakierska-Chudy 

and Filip, 2014). Amino acid residues that tend to be m odified are lysine (K), 

arginine (R), serine (S), tyrosine (Y), threonine (T), glutamate (E), and pr oline 

(P). While the N-terminal tails of histones are easily accessible, recent reports 

reveal that the C-terminal and globular domains of histones can also be targeted 

for posttranslational modifications (Tessarz and K ouzarides, 2014; Xu et al., 

2005; Ye et al., 2005). To date, 130 different residues on histone proteins have 
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been found to subject to at least 15 types of post-translational modifications 

(Sadakierska-Chudy and Filip, 2014). The list of histone modifications is ever 

increasing, as mass spectrometry advances. 

 

Histone modifications are reversible and dynamic. While histone acetylation and 

phosphorylation have been known to be r eversible, histone methylation was 

thought to be i rreversible until 2004, when the first histone demethylase was 

identified by the Shi laboratory and s hattered the myth. The first histone 

demethylase, LSD1, was discovered unexpectedly. In an ef fort to detect 

polyamine oxidase activity for a m etabolic enzyme homolog named nPAO 

(nuclear polyamine oxidase), they found nPAO demethylates histone H3 that was 

dimethylated at H3K4 after switching substrates from polyamine to methylated 

histone H3 (Shi et al., 2004). More than 20 hi stone demethylases have been 

identified since 2004 and catalyze the demethylation of almost all known histone 

lysine methylation sites (Shi and Tsukada, 2013).  

 

Interestingly, histone methylation has much longer half-life comparing to histone 

acetylation and hi stone phosphorylation. The turnover rates measured by 

isotopic pulse labeling demonstrated that: acetylation has a short half-life ranging 

from 3-40 minutes, phosphorylation can last for few hours, while methylation 

turns over in a few days (Chestier and Yaniv, 1979; Jackson et al., 1975; Zee et 

al., 2010). The different turnover rates for different histone modifications are 
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believed to be critical for their biological roles. It is suggested that the high 

turnover of acetylation, rather than the presence of acetylation, facilitates 

transcription activation (Barth and Imhof, 2010). On the other hand, the long half-

life of histone methylation makes it a pot ential information carrier for passing 

down information to the next generation. 

 

Histone modifications exist in various combinations under different 

circumstances. Single residues can be modified with different modifications or 

different degrees of a specific modification, such as histone H3 lysine 4 (H3K4) 

being mono-, di-, trimethylated or acetylated (Guillemette et al., 2011; Pokholok 

et al., 2005). Furthermore, analysis by mass spectrometry reveals co-occurrence 

of various histone modifications on a s ingle histone tail. The genome-wide 

distribution and c olocalization of histone modifications based on ChIP-chip or 

ChIP-seq results confirms the complex combinations of histone marks (Liu et al., 

2005). The complexity of histone modifications is so striking that many efforts 

have been made to understand their biological roles. A well-known hypothesis, 

the “histone code”, proposed that “distinct histone modifications, on one or more 

tails, act sequentially or in combination to form a hi stone code that is read by 

other proteins to bring about distinct downstream events.” (Strahl and Allis, 2000) 

Nevertheless, the existence of the histone code has been heavily debated ever 

since. 
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Crosstalk between histone modifications 

Emerging evidence suggests the existence of “crosstalk” between histone 

modifications, where the existence of one modification influences that of the 

other histone modification (Lee et al., 2010). The simplest example would be the 

mutual exclusion of different modifications that occur on the same residue. For 

example, methylated H3K4 prevents the same residue from being acetylated. 

More complex scenarios arise when histone modifying enzymes and pr oteins 

that recognize specific modifications are involved. In the case of H3K9 

methylation and H3S10 phosphorylation, phosphorylation of H3S10 disrupts the 

interaction between H3K9 methylation and het erochromation protein HP1 

(Fischle et al., 2005). Other scenarios show trans-histone effects, where 

modifications on one h istone affect the modifications of a different histone. In S. 

cerevisiae, H2B ubiquitylation (H2Bub) by Rad6/Bre1 proteins is required to 

trigger H3K4 and H3K79 methylation by recruiting a subunit of COMPASS 

methyltransferase complex and s timulating the catalytic activity of Dot1 

methyltransferase (Weake and Workman, 2008). Subsequently, ubiquitylation of 

H2B by Ubp8p allows Ctk1 kinase to associate with DNA and permits Ctk1p to 

phosphorylate serine 2 in C-terminal domain of RNA Polymerase II (RNA Pol II) 

(Wyce et al., 2007). Set2 methyltransferase then associates with RNA Pol II CTD 

and methylates H3K36 during transcription elongation (Kizer et al., 2005). 

Histone crosstalk describes diverse interactions between histone modifications 



 7 

and confounds our ability to decipher the contribution of each individual 

modification leading to a biological consequence. 

 

Histone modifications and transcription regulation 

Transcription is one of the fundamental cellular processes affected by chromatin. 

The discovery that packaging of DNA into nucleosomes inhibits transcription both 

in vitro and in vivo suggests that the contacts between nucleosomes or DNA-

nucleosomes need t o be di srupted for transcription to occur, which could be 

accomplished by histone modifications (Han and Grunstein, 1988; Lorch et al., 

1987). Over 40 years ago, Allfrey and c olleagues made the observation that 

histone acetylation and methylation may regulate RNA synthesis (Allfrey et al., 

1964).  However, even for well-known histone modifications, such as H3K4 

trimethylation, the strongest evidence supporting this idea is the correlation 

between histone modifications and transcription rate. As a consequence, how 

histone modifications regulate transcription remains to be c omprehensively 

elucidated.  

 

Histone acetylation plays an i mportant role in transcription activation. Histone 

lysine acetylation is highly dynamic. Two enzyme families regulate the level of 

acetylation: histone acetyltransferases (HATs) and hi stone deacetylases 

(HDACs). HATs catalyze the transfer of an acetyl group to the ε-amino group of 

lysine side chain by using acetyl-CoA as coenzyme. HDACs do the opposite to 
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remove the acetyl group from lysine. Most of the acetylation sites fall within the 

N-terminal tails of histone proteins. For example, lysine 5, 8, 12, 16 and 20 of 

histone H4, lysine 9, 14, 18, and 23 of histone H3 are dominant acetylation sites. 

However, lysine residues on the global domain can also be acetylated, such as 

H3K56. HATs and HDACs are usually fairly nonspecific and modify more than 

one lysine.  

 

Genome-wide mapping of histone acetylation shows strong correlation between 

histone acetylation and transcription activity (Pokholok et al., 2005). Although 

strong correlation is established, the mechanism of how acetylation might 

promote transcription activation is less clear. It was proposed earlier that 

acetylation causes chromatin relaxation by removing the positive charges of 

lysine and t hus affecting its interaction with negatively charged DNA (Allfrey, 

1966). Supporting the hypothesis, histone acetylation has been s hown to 

facilitate the access of transcription factor to nucleosomal DNA (Lee et al., 1993; 

Nightingale et al., 1998; Vettese-Dadey et al., 1996). Nevertheless, direct 

evidence is required to validate the hypothesis. While acetylation of some sites is 

functionally redundant, acetylation of other sites has specific impact on ge ne 

expression. For example, mutants of H4K5, K8, K12 have nonspecific, 

cumulative effect on gene e xpression. On the other hand, H4K16 mutant 

specifically affects genes involved in the regulation of the silent mating type in 

budding yeast (Dion et al., 2005).  
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Histone phosphorylation is usually associated with mitosis, meiosis, and D NA 

repair. However, growing evidence indicates they may also play a r ole in 

transcription. Histone phosphorylation can occur on serine (S), threonine (T), and 

tyrosine (Y). So far, phosphorylation of residues on al l four core histones have 

been identified: H3S10, S28, T3, T11, T32, H4S1, H2AS1, H2A.XS129, and 

H2BS14. Among them, H3S10 phosphorylation is one the most heavily studied 

phosphorylation. H3S10 phosphorylation has been l inked to transcription 

activation of many genes (Hartzog and T amkun, 2007). Importantly, 

phosphorylation is also highly dynamic and responds to environmental changes. 

For example, Crosio et al. found a light pulse induced H3S10 phosphorylation in 

the suprachiasmatic nucleus of rat, accompanying with the activation of c-fos and 

c-jun genes (Crosio et al., 2000). 

 

Histone lysine methylation is involved in both transcription activation and 

repression. Of all the histone-modifying enzymes, histone lysine 

methyltransferases appear to be t he most specific. Consequently, lysine 

methylation is one of  the best-characterized modifications. Lysine methylation 

has been associated with transcription activation or repression depending on the 

methylation sites. In budding yeast, three methylation sites are linked to active 

transcription: H3K4, H3K36, and H3K79. H3K4 trimethylation, catalyzed by 

COMPASS or Set1C, is enriched in the 5’ end o f active-transcribing genes 

(Pokholok et al., 2005). Highly abundant genes tend to have high level of H3K4 
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trimethylation. The H3K4 methyltransferase, Set1, interacts with RNA Pol II 

(Dehé et al., 2006; Ng et al., 2003). However, direct evidence that demonstrates 

that H3K4 trimethylation plays a role in active transcription is still missing. On the 

other hand, Set2 associates with elongating RNA Pol II and c atalyzes H3K36 

methylation in the coding region of active genes. Subsequently, H3K36 

trimethylation in the gene body is bound b y Eaf3 which recruits deacetylase 

complex, Rpd3S. Rpd3S deacetylates the histones in the coding region and 

suppresses spurious transcription within the gene body (Carrozza et al., 2005; 

Joshi and Struhl, 2005; Keogh et al., 2005). Ninety percent of the yeast genome 

is actively transcribed and bear s H3K79 methylation catalyzed by Dot1 (van 

Leeuwen et al., 2002). This observation was extended to mammalian cells, in 

which it was demonstrated that the level of H3K79 methylation correlates with 

expression level (Steger et al., 2008). Thus, H3K79 methylation also serves as a 

mark for active transcription, perhaps due to its effect on het erochromatin 

formation by inhibiting heterochromatin protein Sir3 binding to H3K79 methylated 

nucleosome (Katan-Khaykovich and Struhl, 2005; Welsem et al., 2008). While 

S.cerevisiae has no r epressive histone mark, methylation of H3K9, K27 and 

H4K20 in higher eukaryotes is associated with transcription repression and 

heterochromatin formation. 
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Set1, H3K4 methyltransferase  

The SET domain is a 130 to 140 amino acid long domain found in, and named 

for, the Drosophila melanogaster genes Su(Var)3-9, Enhancer of zeste, and 

trithorax (Stassen et al., 1995; Tschiersch et al., 1994). SET1 was discovered in 

1997 as the Saccharomyces cerevisiae gene with the greatest similarity to SET 

domain (Nislow et al., 1997). SET1 encodes a 1080 amino acid protein with a C-

terminal SET domain. Much like other proteins bearing SET domains, Set1 

possesses histone lysine methyltransferase activity. In fact, it is the first identified 

histone H3 lysine 4 (H3K4) methyltransferase (Roguev, 2001). In S. cerevisiae, 

Set1 is the only H3K4 methyltransferase that catalyzes mono-, di-, and 

trimethylation of H3K4 (Boa et al., 2003; Briggs et al., 2001; Nagy et al., 2002). 

Therefore, deletion of SET1 results in complete loss of H3K4 methylation in vivo 

(Briggs et al., 2001; Krogan et al., 2002). Unsurprisingly, the H3 

methyltransferase activity of Set1 is dependent on an i ntact SET domain 

(Santos-Rosa et al., 2002). 

 

In addition to the C-terminal SET domain, Set1 bears two RRM (RNA recognition 

motif) domains (Roguev, 2001; Trésaugues et al., 2006). Both domains are 

highly conserved from yeast to human. RRM domains are characterized by a 

typical anti-parallel βαββαβ motif that presents 2 c onserved sequence motifs, 

RNP1 and RNP2 (Nagai et al., 1995) that are often involved in RNA recognition. 

Initially, only one RRM domain (RRM1) was identified in Set1 (Roguev, 2001). 



 12 

Mutation or deletion of Set1 RRM1 resulted in a global decrease in H3K4 

trimethylation, but not dimethylation (Fingerman et al., 2005; Schlichter and 

Cairns, 2005). It was hypothesized at the time that Set1 bound to RNAs and the 

binding was required for H3K4 trimethylation. However, the 3-D structure of Set1 

RRM1 showed this RRM1 could not bind to RNA by itself despite having a 

canonical βαββαβ fold (Trésaugues et al., 2006). Interestingly, when Tresaugues 

et al. further analyzed the SET1 sequence, they revealed a second RRM domain 

(RRM2) just downstream of RRM1. A protein construct containing both RRM1 

and RRM2 was able to bind RNA in vitro, suggesting that Set1 may indeed bind 

RNA in vivo (Trésaugues et al., 2006). However, they also found that mutations 

affecting Set1’s RNA-binding activity in vitro did not perturb H3K4 methylation 

and vice versa, suggesting that these two activities of Set1 are independent. 

Furthermore, only SET1 mRNAs have been found to co-purify with TAP-tagged 

Shg1 protein, a subunit in the Set1 complex, confirming that Set1 does not bind 

non-Set1 RNAs to promote H3K4 methylation (Halbach et al., 2009). 

 

Set1 belongs to a multi-subunit complex called COMPASS (Complex Proteins 

Associated with Set1) or Set1C (Miller et al., 2001; Roguev, 2001). The complex 

consists of Set1, Swd1, Swd2, Swd3, Bre2, Sdc1, Spp1, and Shg1. Each subunit 

specifically affects complex integrity, Set1 stability, and global H3K4 methylation. 

Set1‘s methyltransferase activity is only active in the context of COMPASS 

(Schneider et al., 2005). Set1 and the 2 WD40 repeat proteins Swd1 and Swd3 
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form the core of the complex. In the absence of the Swd1-Swd3 heterodimer, the 

amount of Set1 is greatly decreased and y east cells lose H3K4 mono-, di-, 

trimethylation (Dehé et al., 2006). The association of a B re2-Sdc1 heterodimer 

with the complex requires the SET domain. Loss of Bre2 or Sdc1 does not affect 

complex integrity but decreases trimethylation at the 5’end of active genes (Dehé 

et al., 2006; Schneider et al., 2005). Loss of Spp1, which is required for proper 

H3K4 trimethylation, reduces the amount of Set1 (Dehé et al., 2006). Among 

them, only Swd2 is essential, because it is also a subunit of the cleavage and 

polyadenylation factor (Cheng et al., 2004; Dichtl et al., 2004).  Interestingly, in 

the absence of Bre2 or Spp1, when H3K4 trimethylation is lost, the recruitment of 

COMPASS to chromatin is not affected. Consequently, it was proposed that 

removal of Bre2 or Spp1 leads to conformational changes in the complex and/or 

shifts in the active site of Set1, which results in loss of H3K4 trimethylation 

(Schneider et al., 2005).  

 

Although the set1 null mutant is viable, the mutant is defective in many aspects: 

set1∆ cells vary more in size than wild-type (WT) cells, frequently contain several 

buds and large protrusions, have thinner cell walls, and are compromised in their 

ability to recover from stationary phase. However, there is no difference in 

doubling time between set1∆ and WT cells when grown to log phase in liquid 

cultures (Nislow et al., 1997).  
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The set1 null mutant also has severe developmental defects. set1∆ homozygous 

diploids are incapable of sporulation, suggesting that meiosis is impaired (Nislow 

et al., 1997). During meiosis, one o f the early events is programmed DNA 

double-strand breaks (DSBs) that initiate meiotic homologous recombination. 

Interestingly, the regions flanking DSBs have high levels of H3K4 trimethylation 

and DSB formation at recombination hot spots is greatly reduced in set1 null 

mutant (Borde et al., 2009). This finding revealed a r ole for Set1 in meiosis. 

Deletion of Spp1 or Swd3 which lead to reduction or loss of H3K4 di- and 

trimethylation, respectively, have similar DSB phenotypes to set1∆. Spp1 was 

found to specifically associate with meiotic DSB sites in meiosis and interact with 

Mer2, an a xis-associated protein required for meiotic DSB formation 

(Sommermeyer et al., 2013). Thus it was proposed that the PHD finger of Spp1 

reads H3K4 trimethylation at recombination hot spots and promotes DSB 

formation by interacting with Mer2 and activating cleavage by DSB proteins. 

 

Set1 is the sole enzyme that catalyzes H3K4 mono-, di-, trimethylation in 

Saccharomyces cerevisiae. Interestingly, mono-, di-, and trimethylation exhibit 

distinct localized patterns in the genome. While H3K4 monomethylation is 

enriched at the 3’ end of the gene, dimethylation spreads throughout the coding 

region. Unlike mono- or dimethylation, H3K4 trimethylation marks the 5’ end of  

the gene (Li et al., 2007; Santos-Rosa et al., 2002). Interestingly, trimethylation is 

found to specifically present at the 5’ end of transcriptionally active genes (Boa et 
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al., 2003; Santos-Rosa et al., 2002). The pattern of trimethylation also correlates 

with Set1 occupancy (Ng et al., 2003). Additionally, Set1 was shown to interact 

with serine 5 phosphorylated, but not serine 2 phosphorylated, RNA Pol II (Ng et 

al., 2003). All evidence lead to the obvious hypothesis: H3K4 trimethylation is 

required for active transcription. The hypothesis was supported by early studies 

where set1∆ was shown to decrease RNA abundance in single gene and some 

genome-wide studies (Boa et al., 2003; Santos-Rosa et al., 2002). Paradoxically, 

later genome-wide analysis found that the set1∆ mutant had very limited effect on 

RNA abundance for whole genome. Only a few hundred of genes involved in 

meiosis and s porulation were derepressed in set1∆. Furthermore, another 

conflicting study found that Set1 interacts with both serine 5- and serine 2-

phosphorylated forms of RNA Pol II (Dehé et al., 2006). Therefore, the role, if 

any, that H3K4 trimethylation plays in active transcription remains an interesting, 

open question. 

 

In contrast to a r ole in transcription activation, Set1 is also involved in 

transcription repression. A reporter assay to monitor the normally silenced HML 

locus or telomeres showed that silencing was disrupted in set1∆. Importantly, the 

silencing defect in set1 mutant can be rescued by expressing the conserved SET 

domain of Set1 (Nislow et al., 1997). Chromatin immunoprecipitation assays 

show that Set1-dependent H3K4 methylation is present at the rDNA locus. Loss 

of H3K4 methylation impairs the Set1-dependent repression of RNA Pol II 
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transcription within rDNA repeats (Briggs et al., 2001; Bryk et al., 2002; 

Fingerman et al., 2005). 

 

Set1 participates in the regulation of non-coding RNAs. An antisense Ty1 cryptic 

unstable transcript (CUT) was found to silence the transcription of the Ty1 

retrotransposon and repress Ty1 mobility (Berretta et al., 2008). Ty1 antisense 

RNA is destabilized by 5’-3’ exoribonuclease Xrn1. Interestingly, deletion of 

SET1 in an xrn1∆ background restores the level of Ty1 sense RNA and slightly 

decreases Ty1 antisense RNA. It was concluded that Ty1 antisense RNA-

mediated Ty1 silencing requires Set1 (Berretta et al., 2008). Loss of Set1 was 

also found to result in a de crease of another antisense RNA, PHO84, which 

silences transcription of its own gene both in cis and in trans (Camblong et al., 

2007). This resulted in defective PHO84 trans-silencing (Camblong et al., 2009). 

Set1 has also been implicated in regulation of a new class of non-coding RNAs 

that were identified in xrn1∆ mutants and are called XUTs (Xrn1-sensitive 

unstable transcripts). Silencing of antisense XUT-containing genes requires Set1 

(van Dijk et al., 2011). Additionally, Set1 plays a role in transcriptional termination 

of snoRNAs and CUTs (Terzi et al., 2011) which are terminated via Nrd1-Nab3-

Sen1 pathway. Importantly, Nrd1 recruitment is decreased in set1∆, suggesting 

Set1 regulates early termination of snoRNAs and C UTs by elevating Nrd1 

recruitment. Set1 appears to play many roles in the regulation of non-coding 

RNAs via different mechanisms. 
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It is not uncommon for SET-containing proteins to have targets other than 

histone tails, In fact Set1 has a non-histone substrate – Dam1. Zhang et al. found 

that deletion of SET1 suppresses temperature sensitivity and chromosome loss 

in a m utant of Ipl1 Aurora Kinase, which is important for chromosome 

segregation during mitosis. Surprisingly, the suppression is not linked to H3K4 

methylation. In search of the potential substrates, Dam1, a k inetochore protein, 

was identified to be methylated by Set1. Dam1 methylation and phosphorylation 

level turns out to be c ritical for normal chromosome segregation (Zhang et al., 

2005). Hence, Set1 plays an important role in mitosis, which is independent of 

H3K4 methylation. Therefore Set1 affects many cellular activities via many 

different pathways, which may or may not be as sociated with its H3K4 

methyltransferase activity.  

 

Dynamic gene expression vs. stready-state gene expression 

Genome-wide mapping of histone modifications links modification patterns to 

gene structure and gene activity (Liu et al., 2005; Pokholok et al., 2005). Lenstra 

et al. found specific mutant effect on m RNA expression in each of the 165 

deletion mutants of chromatin regulators (Lenstra et al., 2011). Many chromatin 

complexes have been characterized using proteomic approaches or systematic 

genetic interactions (Collins et al., 2007; Krogan et al., 2006). Importantly, most 

studies focus on c hanges at steady state, a situation in which many 

compensatory and homeostatic pathways occur. 
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On the other hand, single-gene studies on c hromatin-regulating proteins have 

revealed their roles in regulating dynamic gene expression, which were 

previously masked in steady state experiments. For instance, in a t ime course 

during phosphate starvation, the induction of PHO5 was significantly delayed in a 

gcn5Δ mutant, however the final induction level of PHO5 remained unaffected 

(Barbaric, 2001). A similar observation was made in an asf1 mutant. The delay 

was due to a decrease in the rate of histone eviction (Korber et al., 2006). To 

survive, cells need to response to environmental changes promptly and properly. 

Genes need to be i nduced/repressed in a timely manner after sensing an 

environmental cue. Regulation of gene induction/repression kinetic is equally, if 

not more, important as the level of final induction/repression. Studies will need to 

monitor gene expression dynamics in order to accurately characterize the effect 

on gene expression. 

 

RNA Pol II–mediated transcription is a h ighly coordinated process, which 

requires the control of the magnitude, timing, and ac curacy of the transcripts. 

Histone modifications may regulate transcription through a variety of 

mechanisms. They may help anchor chromatin remodeling complex to the 

promoters, thus control the accessibility of DNA to transcription factors (Hassan 

et al., 2002). Additionally, histone modifications may disrupt the contacts 

between nucleosomes to assist transcription (Shogren-Knaak et al., 2006). 

Furthermore, crosstalk between different modifications may suppress spurious 
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transcription arising in the gene body during transcription (Carrozza et al., 2005). 

Hence, in order to dissect the role of individual histone modification in the 

regulation of gene expression, it is crucial to develop a method that can monitor 

gene expression dynamics and al low for a gl obal identification of histone 

crosstalk relationships. In the following chapters, I utilize a unique approach to 

globally identify interactions between histone modifications and chromatin 

regulators, based on their effects on d ynamic gene ex pression. The results 

provide a c omprehensive view of regulatory roles of histone modifications in 

gene expression and open up av enues for novel discoveries in chromatin 

pathways. 
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CHAPTER I 

Systematic dissection of roles for chromatin regulators  

in a yeast stress response 

Abstract 

Packaging of eukaryotic genomes into chromatin has wide-ranging effects on 

gene transcription. Curiously, it is commonly observed that deletion of a global 

chromatin regulator affects expression of only a limited subset of genes bound to 

or modified by the regulator in question. However, in many single-gene studies it 

has become clear that chromatin regulators often do n ot affect steady-state 

transcription, but instead are required for normal transcriptional reprogramming 

by environmental cues. We therefore have systematically investigated the effects 

of 83 histone mutants, and 119 gene deletion mutants, on induction/repression 

dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, 

we find that chromatin regulators play far more pronounced roles during gene 

induction/repression than they do in steady-state expression. Furthermore, by 

jointly analyzing the substrates (histone mutants) and enz ymes (chromatin 

modifier deletions) we identify specific interactions between histone modifications 

and their regulators. Combining these functional results with genome-wide 

mapping of several histone marks in the same time course, we systematically 

investigated the correspondence between histone modification occurrence and 
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function. We followed up on one pat hway, finding that Set1- dependent H3K4 

methylation primarily acts as a gene r epressor during multiple stresses, 

specifically at genes involved in ribosome biosynthesis. Set1-dependent 

repression of ribosomal genes occurs via distinct pathways for ribosomal protein 

genes and r ibosomal biogenesis genes, which can be s eparated based on 

genetic requirements for repression and ba sed on c hromatin changes during 

gene repression. Together, our dynamic studies provide a r ich resource for 

investigating chromatin regulation, and i dentify a s ignificant role for the 

‘‘activating’’ mark H3K4me3 in gene repression. 

Introduction 

Packaging of eukaryotic genomes into chromatin has wide- ranging effects on 

gene transcription in eukaryotes (Kornberg and Lor ch, 1999). There are two 

major ways in which cells modulate nucleosomal influences on gene expression. 

ATP-dependent chromatin remodeling machines utilize the energy of ATP 

hydrolysis to disrupt histone-DNA contacts, often resulting in nucleosome 

eviction and changed nucleosomal location or subunit composition (Clapier and 

Cairns, 2009). In addition, the highly conserved histone proteins are subject to 

multiple types of covalent modification, including acetylation, methylation, 

phosphorylation, ubiquitination, SUMOylation, and A DP-ribosylation. These 

covalent histone modifications often occur during the process of transcription, 

and in turn have many effects on transcription. Moderately well-understood 
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effects of histone modifications include epigenetic gene s ilencing, control of 

transcript structure via repression of ‘‘cryptic’’ internal promoters, control of 

splicing, and t ranscriptional activation (Kouzarides, 2007; Margueron and 

Reinberg, 2010; Rando and Chang, 2009; Rusche et al., 2003; Strahl and Allis, 

2000). Altogether, there are myriad interactions and f eedback loops between 

chromatin state and transcription. At present, the effect of most modifications on 

transcription is unclear, even for reasonably well- characterized ones. 

 

A large number of systematic genome-wide analyses have been carried out to 

characterize the complex interplay between chromatin regulation and gene  

transcription. Genome-wide mapping studies (Liu et al., 2005; Pokholok et al., 

2005) show that modification patterns are correlated with gene structure and 

gene activity levels. Genome-wide mRNA profiling has been used for over a 

decade to identify transcriptional defects in chromatin mutants (Bernstein and 

Schreiber, 2002). A recent tour de f orce from the Holstege lab examined the 

effects on gene expression of deleting each of 174 different chromatin regulators 

(Lenstra et al., 2011). Proteomic studies characterize many of the protein 

complexes that play a role in chromatin regulation (Gavin et al., 2006; Krogan et 

al., 2006). Systematic genetic interaction profiling (using growth rate as a 

phenotype) has been used to identify chromatin complexes, and to delineate 

interactions between chromatin pathways (Collins et al., 2007; Dixon et al., 2009; 

Keogh et al., 2005). Importantly, most of these genomic screens have been 
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carried out in steady-state conditions, typically in yeast actively growing in rich 

media. 

 

In contrast, single gene studies suggest that chromatin regulators have important 

roles in dynamic processes that are masked at steady-state. For instance, 

deletions of the histone acetylase Gcn5 or the histone chaperone Asf1 have little 

effect on t he eventual induction of PHO5 by phosphate starvation, but both of 

these deletions cause significant delays in PHO5 induction kinetics (Barbaric, 

2001; Korber et al., 2006). Similarly, mutation of H3K56, whose acetylation plays 

a role in histone replacement, delays PHO5 induction by slowing nucleosome 

eviction upon gene activation (Williams et al., 2008). Similar results hold for other 

classic model genes, such as the galactose-inducible GAL genes (Bryant et al., 

2008). Because steady-state gene e xpression in mutants is subject to 

widespread compensatory or homeostatic mechanisms, we reasoned that 

analysis of mutant responses to a s tressful stimulus would help reveal direct 

functions of transcriptional regulators. Thus, the dynamics of response to stimuli 

should uncover the transcriptional roles of histone-modifying enzymes and other 

chromatin regulators. We chose diamide stress in yeast as a model system, as it 

has been s hown to involve a r apid, dramatic reorganization of the yeast 

transcriptome with 602 genes induced more than 2-fold and 593 gene s 

repressed (Gasch et al., 2000). 
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Here, we carried out a time course of diamide stress in 202 yeast mutants and 

characterized gene expression changes at 170 s elected transcripts (Figure 

I.S1A–C). Importantly, analysis of thousands of genome-wide mRNA profiling 

studies shows that genes typically are co-regulated in coherent clusters (Eisen et 

al., 1998; Ihmels et al., 2004; Wapinski et al., 2007), meaning that the behavior of 

the majority of co-regulated clusters can be captured by analyzing 100–200 

transcripts. For example, analyzing mutant effects on six ribosomal protein genes 

suffices to capture the majority of mutant effects on all 250 of these genes. We 

find that the majority of chromatin regulators have greater effects on gene 

induction/repression kinetics than they do on s teady-state mRNA levels, 

confirming that dynamic studies can identify unanticipated functions for chromatin 

regulators. We show that grouping deletion mutants with similar gene expression 

defects identifies known complexes, and that joint analysis of histone mutants 

and deletion mutants associates many histone-modifying enzymes with their 

target sites. In addition to known relationships between chromatin regulators, we 

identify a number of novel connections, including a pr eviously unknown 

connection between H3K4 and H 3S10 modifications. We further carried out 

genome-wide mapping of five relevant histone modifications during the same 

stress time course (Figure I.S1D–E). By combining functional data with genome-

wide mapping data, we identify a key role for Set1-dependent H3K4 methylation 

in repression of ribosomal biogenesis genes. H3K4 methylation and H 3S10 

phosphorylation are both required for full repression of ribosomal protein genes  
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Figure I.S1 
Overview of experimental and analytical approach 
(A) For each of 202 mutants analyzed, mutant was grown to midlog, then treated 
with diamide to induce a transcriptional stress response. 
(B) Expression of 200 transcripts was analyzed by nCounter analysis, and f or 
each mutant gene expression defects relative to wild-type were calculated. 
(C) Mutants with similar gene expression profiles were clustered, identifying 
chromatin regulatory complexes and connections between chromatin regulators 
and specific histone residues. 
(D) In parallel, wild-type yeast was treated with diamide for a time course and 5 
histone modifications were mapped genome-wide using tiling microarrays. 
(E) Diamide-regulated genes were clustered to identify patterns of histone 
modifications over specific subsets of induced or repressed genes. 
(F) Combining functional data with localization data lead to a number of 
mechanistic hypotheses, one of which we investigated in greater detail. 
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(RPG) and of genes involved in rRNA maturation (RiBi), but repression of RPGs 

and RiBi genes operate via two distinct pathways downstream of these histone 

marks. Thus, the classic ‘‘activating’’ mark H3K4me3 in fact serves primarily to 

facilitate repression in budding yeast under multiple stress conditions. Together, 

these data provide a rich multi-modal view on the role of chromatin regulators in 

gene induction and r epression dynamics, and suggest that understanding the 

myriad roles of chromatin structure in gene regulation on a genome-wide scale 

will require extending mutant analyses to kinetic studies. 

Results 

Time Course Analysis of Stress Response in Chromatin Mutants 

We used nCounter technology (Geiss et al., 2008) to carry out genome-scale 

gene expression profiling. Briefly, this technology utilizes hybridization of labeled 

oligonucleotides in a flow cell to directly count individual RNA molecules, without 

any enzymatic steps, for several hundred RNAs in yeast extracts. For this 

experiment, we focused on gene e xpression during a s tress response time 

course (using the sulfhydryl oxidizing agent diamide). We used whole genome 

mRNA abundance and Pol2 localization data from prior diamide exposure time 

courses (Gasch et al., 2000; Kim et al., 2010), along with a compendium of prior 

whole genome mRNA analyses and transcript structure analyses in various 

mutants (Ihmels et al., 2004; Wapinski et al., 2007), to select 200 pr obes 

reporting on 170 t ranscripts (142 genes, of which 30 had two sense probes, as 
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well as another 28 antisense transcription units) that capture the majority of the 

different patterns of gene expression behavior in this stress. Using this probeset, 

we measured transcript abundances over a 90-min time course of diamide 

exposure (Figure I.1). Experimental replicates are highly reproducible (Table 

I.S1), and these data provide a detailed kinetic perspective on gene e xpression 

dynamics during the diamide stress response (Figure I.1A–D). 

 

We carried out identical time course experiments for 119 del etion strains for 

chromatin regulatory genes and for 83 mutants in histones H3 and H4 (Dai et al., 

2008), covering the majority of individual KRR, KRQ, KRA, RRK, and S RA 

mutants, and several H3 and H4 N-terminal tail deletions. For most mutants, we 

analyzed mRNA abundance at four time points (t = 0, 15, 45, and 90 min) as 

these time points capture the major phases of the diamide stress response. 

Figure I.1A–D show example data for wild-type yeast and three mutants in the 

HDA1/2/3 complex. The entire dataset, comprising ~1,000 experiments carried 

out for 202 mutant strains, is shown in Figure I.1F–G, with mutant time courses 

clustered according to the similarity between their effects on gene expression 

across all four time points (see also Table I.S1). 

 

Most Chromatin Mutants Have Greater Effects on Gene 

Induction/Repression Than on Steady-State Expression 

Close inspection of the cluster in Figure I.1G (Table I.S1) revealed that many of  
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Figure I.1 
Chromatin mutant effects on mRNA expression dynamics during stress.  

(A) Time course data for three genes in wild type and t hree mutant (hda1∆, 
hda2∆, and hda3∆) yeast. For each time course, data are normalized to wild type 
t = 0. Wild type time course includes nine time points after diamide addition (0, 4, 
8, 15, 22.5, 30, 45, 60, and 90 m in after diamide addition), while mutant time 
courses cover four time points (t = 0, 15, 45, 90).  
(B) Wild type stress response. Data for all 200 probes are shown as log2 fold 
change relative to t = 0, with probes ordered by hierarchical clustering (Eisen et 
al., 1998).  
(C) As in (B), but for the three indicated mutants. As in (B), data are normalized 
to wild type t = 0.  
(D) ‘‘Difference map’’ for three mutants. Here, data for the three mutants are 
normalized relative to the equivalent wild type time point. hda1∆ t = 15 i s 
compared to wt t = 15, etc. Note that many more dramatic effects on gen e 
expression are observed during diamide stress than are observed at t = 0.  
(E) Chromatin mutants have more widespread effects on gene expression during 
the stress response than during steady-state growth in YPD. Plotted are the 
fractions of (mutantxprobe) effects with increased, or decreased, expression of 
the probe in question. This number represents the fraction of all entries in the 
200 probex202 mutant matrix (for each time point) with an absolute log2 change 
in RNA abundance of greater than 0.5.  
(F–G) Entire dataset for diamide stress.  
(F) shows wild type data as in (B).  
(G) shows data for 202 indicated mutants, normalized relative to equivalent wild 
type time points as in (D). All four time points for each mutant are contiguous, 
resulting in a ‘‘striped’’ appearance for groups of mutants that specifically affect a 
subset of time points during diamide stress. Red boxes indicate large groups of 
mutants that exhibit a widespread decrease (‘‘hyporesponsive’’) or increase 
(‘‘hyperresponsive’’) in the amplitude of the overall diamide stress response. 
White box indicates an example of a subcluster expected from prior knowledge. 
Mutants in the Sir heterochromatin complex express pheromone response genes 
at low levels due t o the ‘‘pseudodiploid’’ state caused by derepression of the 
silent mating loci in these mutants. Data are also provided in Table I.S1. 
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the gene expression defects observed in these mutants were only observed 

during the stress response, but not before stress. This is apparent in Figure I.1A 

and I.1D, where many more genes exhibit different levels between wild-type and 

hda mutants at 15 a nd 45 min of the stress response than at t = 0 ( midlog 

growth). These differences include both kinetic delays in gene i nduction/ 

repression and defects in the extent of gene regulation (see below). To 

determine the generality of this phenomenon, we determined the distribution of 

mutant effects on RNA abundance at each of the four time points in the stress 

response. Many more significant gene expression changes relative to wild-type 

occur at 15 an d 45 min (,10% of probe/mutant pairwise interactions) after 

diamide addition than at t = 0 (,3.5% of pairwise interactions, Figure I.1E). As the 

yeast acclimate to the stress environment (e.g., at t = 90), the transcriptome 

reaches a new steady-state where we see fewer large mutant effects, although 

there are still more changes than at t=0. Thus, consistent with observations from 

classical model genes such as PHO5, we find that chromatin mutants have much 

more extensive effects during changes in transcription than during steady-state 

conditions. 

 

Overall Stress Responsiveness Correlates with Nucleosome Occupancy 

We sought to identify major classes of gene expression defect in various 

chromatin mutants, as a first step in eventually linking chromatin transitions to the 

genetic requirements for different chromatin regulators. Immediately apparent in 
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Figure I.1G (red boxes) are two large groups of mutants with opposing behaviors 

with respect to the stress response—mutants that appear to be transcriptionally 

‘‘hyper-responsive’’ to diamide stress and ‘‘hypo-responsive’’ mutants that exhibit 

blunted stress responses. These two major classes of mutants are also captured 

by principal component analysis (PCA) of our dataset. Here, the first principal 

component, which explains 30% of the variance in the dataset, corresponds to 

hyper- and hypo-responsive mutants (Figure I.S2A–B). Interestingly, not all 

genes induced or repressed during diamide stress were affected by hyper- or 

hypo-responsive mutants. Genes whose induction was most affected by hyper-

responsive mutants, for example, tended to be t hose with highly nucleosome-

occupied promoters in YPD (Figure I.S2C) (Field et al., 2008; Tirosh and Barkai, 

2008; Weiner et al., 2010). 

 

Hypo-responsive mutants to diamide stress included a nu mber of expected 

mutants, including deletion mutants lacking the general stress transcription 

factors Msn2 and M sn4, or with compromised coactivator complexes such as 

Swi/Snf or SAGA. Hyper-responsive mutants, conversely, included a number of 

histone deacetylases such as Hda1/2/3. Beyond acetylation/deacetylation, hyper-

responsive and hypo-responsive mutants included a variety of deletions known to 

affect histone turnover and/or occupancy. Several of these factors have 

previously been s hown to affect bulk H3 turnover (Rtt109, Cac2/Rtt106, Htz1, 

Hat1, Rsc1, and Nhp10;  
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Figure I.S2 
Hypo- and hyper-responsive mutants 
(A) Data from Figure 1 sorted by the effect of each mutant on transcriptional 
induction/repression. Mutants to the right represent “hyporesponsive” mutants 
exhibiting a blunted diamide stress response. 
(B) Representation of the first principal component of the nCounter dataset. The 
relative contribution of the first principal component is shown here in blue-yellow 
heatmap, with mutants and genes ordered as in (A). Right panel shows whether 
genes are regulated primarily by TFIID or by SAGA (Huisinga and Pugh, 2004). 
(C) Responsiveness to chromatin mutants correlates with promoter nucleosome 
occupancy. X axis shows the effects of hyper/hyporesponsive mutants on 
diamide regulation of each probe in our dataset, y axis shows average 
nucleosome occupancy (Weiner et al., 2010) for 500 bp upstream. Genes are 
colored red-green based on their induction/repression in wild-type. 
(D) Hyporesponsive histone point mutants occur at histone-DNA contact areas. 
Mutations exhibiting diminished amplitude of the diamide stress response are 
mapped on to the nucleosome crystal structure, and are shown as sphere 
models in red. All mutants in the globular domains of H3 and H4 occur at histone-
DNA contact regions. 
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(Dion et al., 2007; Imbeault et al., 2008; Kaplan et al., 2008; Lopes da Rosa et 

al., 2011; Radman-Livaja et al., 2011; Rufiange et al., 2007; Verzijlbergen et al., 

2011)) or histone levels/occupancy (Rtt109, Yta7, Rtt106, Cac2, Spt21, H3K42Q; 

(Fillingham et al., 2008; Hyland et al., 2011; Lombardi et al., 2011)). Interestingly, 

we noticed that among those histone mutants that decreased the stress 

response program, the subset of those mutations that are located in the globular 

domains of H3/H4 (as opposed to the N-terminal tails) are all situated at histone-

DNA interfaces (Figure I.S2D), which we speculate could affect nucleosomal 

stability and/or replacement dynamics. Taken together, these results support a 

model in which many chromatin regulators have roles on gl obal transcriptional 

responsiveness resulting from their overall effects on nucleosome stability. 

 

Single Cell Analysis of Chromatin Regulation of Gene Expression 

Our RNA abundance measurements provide a population-averaged view of 

chromatin effects on gene e xpression, but hide a great deal of stochastic 

behavior that can be revealed by single-cell approaches. For example, RNA data 

on hyper-responsive mutants come from many thousands of cells, meaning the 

mechanistic basis for stress hyper-responsiveness is unknown. Do hyper-

responsive mutants have a gr eater fraction of cells exhibiting diamide-driven 

gene induction (as might be obs erved if gene induction depends on c ell cycle 

stage and mutants exhibit cell cycle delays), or do al l individual cells exhibit 

greater amplitude responses? 
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We therefore extended our studies to include single cell analysis of protein 

expression using high throughput microscopy of GFP- tagged proteins in several 

key mutants. As protein stability significantly confounds measures of gene 

repression, we focused on f our diamide-induced genes, and ex amined each 

reporter in wild type and in nine deletion mutants. We conducted time-lapse 

microscopy of yeast cells during the diamide response (Figure I.2A, Methods). 

After detecting cells (average n=120 for each of 40 s trains, two biological 

replicates), we quantified the temporal profile of GFP intensity for each cell. 

Figure I.2B shows the median intensity as a function of time for one reporter in 

wild-type and s everal mutants. Importantly, we found excellent agreement 

between defects in protein induction in various hypo- and hyper-responsive 

mutants and the corresponding nCounter RNA measurements (Figure I.2C). 

 

In general, we noted that GFP induction in individual cells followed a sigmoid-like 

curve consistent with a window of stress-increased protein production followed 

by a gradual return to baseline production levels. This behavior is consistent with 

a simple model in which there is a time window of diamide-induced gene 

transcription, followed by gradual mRNA decay. We implemented a s imple 

mathematical model with cells transitioning from low expression to high 

expression and back, with a constant rate of mRNA production during the open 

window (Materials and Methods). This model is clearly oversimplified — each 

parameter covers multiple processes — but provides very good fit to the  
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Figure I.2  
Single cell analysis of mutant effects on gene induction 
(A) Sample images from a time-lapse microscope analysis of a Tsa2-GFP fusion 
reporter at the indicated times after diamide treatment. Midlog yeast cells were 
grown in a mono-cell layer on glass bottom plate coated with Concavalin-A. The 
cells are attached to the glass and thus remain at the same location in 
successive images. Shown is GFP image overlaid on t ransmitted light image 
(both at 40X magnification).  
(B) Time course fluorescence data for Pgm2-GFP for wild-type and t he four 
indicated mutants. Each curve represents median fluorescence versus time for 
responding cells of a specific strain (n ~250 +/- 100). 
(C) Protein expression recapitulates mutant effects on RNA abundance. Data are 
shown for four GFP fusions, each analyzed in 9 deletion mutants. Left panel 
shows hyper/hypo responsiveness score for the mutant in question (Figure I.S2). 
For each of the four promoters, left panel shows RNA data as in Figure I.1G, 
while right panel shows the log-ratio between median GFP expression in wild-
type and in a given mutant. 
(D) Analytical model to extract promoter “open” time and expression rate. A 
simple model in which cells transition from a low expression state to a high 
expression state was fit for each cell, resulting in three parameters – ton (time 
from diamide treatment to beginning of high expression), toff (time of return to low 
expression), and production rate during high expression. Figure shows data (red 
dots) and fit (blue curve) for a single cell expressing Pgm2-GFP. 
(E) Model accurately captures GFP expression with few parameters. Left panel 
shows the duration of the high expression state for Pgm2-GFP (wild-type) as a 
blue bar, with cells ordered by ton. Middle panel shows model predictions of 
protein levels. Right panel shows data for each cell. 
(F-H) Two hyperresponsive mutants differ in the mechanism for enhanced 
PGM2-GFP production. Histograms of single cell distributions for ton (blue) and toff 
(red) are shown for wild-type (F), yta7∆ (G), and hda2∆ (H). 
  



 40 

measured intensity profiles (Figure I.2D). Fitting the model for each cell, we can 

estimate the transcriptional time windows for individual cells as well as the rate of 

protein production during this time and examine the variability in the timing and 

speed of transcriptional response in a genetically homogenous population of cells 

(Figure I.2E). 

 

We then used the extracted parameters for individual cells to determine whether 

hyper- or hypo-responsiveness corresponded to a c hange in the responsive 

fraction of cells, a population-wide change in promoter open time, and so forth. In 

general, we found that most mutants did not affect the fraction of cells 

responding to diamide. The fraction of cells exhibiting diamide induction of GFP 

was 87±3% across all 40 strains, and no strain differed from wild-type by even 

10% of cells responding. Notably, we found that different hyper-responsive 

mutants could act at different stages in gene expression. For example, deletion 

of YTA7, which is involved in histone gene transcription and affects nucleosome 

occupancy (Fillingham et al., 2009; Lombardi et al., 2011), leads to accelerated 

promoter opening during diamide stress, whereas deletion of HDA2 

predominantly affects GFP production rate rather than promoter opening (Figure 

I.2F,G). Together, these results independently validate our RNA measurements, 

confirm that RNA changes are reflected in protein abundance, and show that, for 

the nine mutants analyzed, mutant effects on t ranscriptional response occur in 

the majority of cells rather than reflecting changes in the fraction of diamide-
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responsive cells. 

 

Similarity Between Mutant Profiles Identifies Complexes and Pathways 

Beyond the major groups of mutants that affect overall stress responsiveness 

and likely report on global histone occupancy/dynamics, we observed a w ide 

variety of gene expression effects that were specific to smaller sets of mutants. 

For example, the white box in Figure I.1G highlights the well-understood gene 

expression changes that occur in mutants related to the Sir heterochromatin 

complex—repression of mating-related genes secondary to the pseudodiploid 

state of these mutants (Rusche et al., 2003). To systematically group mutants 

according to their gene e xpression phenotypes, we calculated the correlations 

between the changes (relative to wild-type) in stress response in each mutant 

and clustered mutants according to these correlations (Figure I.3A, Table I.S2, 

Materials and Methods). We kept histone mutants and deletion mutants separate 

to allow more intuitive interpretation of clusters. 

 

Grouping deletion mutants by this method recovers a gr eat deal of known 

chromatin biology, validating our approach. In general, mutants in different 

subunits of known chromatin complexes exhibit similar defects in gene 

expression, indicating shared function. Most white boxes in Figure I.3A highlight 

a subset of clear examples, including the grouping of subunits of the Sir complex, 

the HDA1/2/3 complex, COMPASS, Cac2/Rtt106, Set3C, and the Ino80 complex. 
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Figure I.3  
Correlation matrix identifies complex membership and enzyme-substrate 
relationships 
(A) Correlation matrix for all 202 mutants. Correlation between each mutant’s 
effects on diamide stress response was calculated across the entire time course, 
and mutants were clustered by correlation coefficient. Rows and columns are 
ordered identically. Note that histone mutants and gene del etion mutants are 
kept separate, as indicated. Boxes indicate highly-correlated groups of mutants 
corresponding to known co-membership in protein complexes (eg SIR2/SIR3), 
known pathways (eg SWR1/HTZ1), novel predicted pathways (eg RPH1/CHD1), 
and expected or novel relationships between histone residues and chromatin 
regulators (eg H3K36/SET2/EAF3). 
(B) Network wiring of chromatin regulators. Genes were grouped according to 
correlations (thresholded at 0.45), and r elated genes are clustered using the 
spring embedded algorithm. Subnetworks corresponding to several complexes 
are emphasized as indicated. 
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Furthermore, several pathways were recovered. The histone variant H2A.Z 

(encoded by HTZ1) was linked to components of the Swr1 complex responsible 

for H2A.Z incorporation (Kobor et al., 2004; Krogan et al., 2003; Mizuguchi et al., 

2004), the H3K4 methylase Set1 was linked to the H2B ubiquitin ligase Bre1 

whose activity is required for K4 methylation (Hwang et al., 2003), and t he 

H3K36 methylase Set2 was linked to Eaf3, the binding partner for H3K36me3 

(Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005). 

 

In addition to known chromatin regulatory complexes and pathways, our results 

also suggest a number of hypotheses for novel chromatin pathways. For 

example, we find strong correlations between gene expression defects in 

mutants lacking the H4K16 acetylase Sas2 and those lacking the proline 

cis/trans isomerase Cpr1. Similarly, our results link the H3K36 demethylase 

Rph1 with ATP-dependent remodeler Chd1, suggesting the possibility that 

H3K36 methylation regulates Chd1 in budding yeast, an idea that finds support in 

prior studies showing that H3K36 mutants and chd1 mutants have similar genetic 

interactions in vivo (Quan and Hartzog, 2010). 

 

Analysis of histone mutations revealed similar structure. We observe two larger 

clusters that correspond to hyper- and hypo- responsive mutations (Figure I.3A, 

yellow boxes), as well as many smaller groups. Many of these groups are 

comprised of several mutations in the same residue (e.g., all three mutations in 
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H3K36 are tightly clustered together) or in the same tail (e.g., H3 tail delete and 

simultaneous K-.Q/R mutations in H3 tail lysines 4, 9, 14, 18, and 23 ). Many 

other groups of histone mutants were unanticipated and may identify functionally 

relevant nucleosomal surfaces (Dai et al., 2008) or novel examples of histone 

crosstalk (Suganuma and Workman, 2008). Below, we explore the relevance of 

one such novel connection, between H3K4A and H3S10A mutants. 

 

Many of the connections between chromatin regulatory genes observed here 

also can be ob served in systematic genetic interaction profiles, or in gene 

expression studies carried out in midlog growth conditions (Collins et al., 2007; 

Lenstra et al., 2011). A unique aspect of our study is the joint analysis of gene 

deletion mutants with histone point mutants. Many of the strongest correlations 

between deletion and histone mutants correspond to known enzyme-substrate 

and modification-binding partner relationships. For example, gene expression 

defects resulting from deletion of the H3K36 methylase Set2 were most strongly 

correlated with the defects in H3K36R and H3K36Q mutants, and w ith the 

H3K36me3-binding protein Eaf3 (Figure I.3A). 

 

Analysis of multiple different mutations of the same lysine residue can provide 

insight into the biochemical function of modifications at this residue. While both 

KRR and K RQ mutants disrupt modification-specific binding by proteins (e.g., 

bromo- and chromo domain proteins), they differ in their charge. Indeed, lysine 
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mutants for which KRR and K RQ mutants exhibited similar gene expression 

defects tend to occur at lysines with well-characterized modification-specific 

binding partners (e.g., Eaf3, Sir3). In contrast, lysines for which KRR and KRQ 

mutants had opposing effects on gene expression often were known acetylation 

substrates, although we counterintuitively observe that for these lysines the KRR 

mutations were generally correlated with deletions in histone deacetylases 

(Figure I.S3). 

 

To systematically identify relationships between chromatin factors, we identified 

significant correlations between mutants (Materials and Methods), recovering for 

example the Set2 -> H3K36R -> Eaf3 pathway (Figure I.S4A–B, Table I.S3). 

Data for all correlations above a t hreshold significance are visualized in a 

network view in Figure I.3B to show not only connections within strongly 

connected pathways but also connections between pathways. Other known 

relationships recovered this way included the association between Set1 and 

H3K4, and the association between the Sir complex and H4K16 (Figure I.S4).  

 

Furthermore, we found that Cac2, a C AF-1 subunit, and  R tt106, his  

chaperones that were strongly correlated with one  another, e  

transcriptional effects most related to the  H 4K 91R  m utant (Figure I.3A). H4K91 

acetylation is a little-studied  m odification reported to occur on newly synthesized 

histones (Ye et al., 2005), and in systematic genetic interaction studies, H4K91R  
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Figure I.S3  
Comparison of K->R and K->Q mutations 
Correlation between K->R and K->Q mutations for 23 H3/H4 lysines. Residues 
exhibiting high correlation between such several lysines whose modified state 
has a well-understood binding partner (eg H3K36me3-Eaf3, H4K16ac-Sir3). 
Conversely, residues for which R and Q mutations had anticorrelated effects on 
gene expression were generally known acetylation sites, and c ould plausibly 
report on charge-dependent chromatin transactions. 
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Figure I.S4  
Identification of chromatin pathways from correlation matrix 
(A) Identification of significant associations between mutants. QQ plot shows, for 
each mutant, the correlation with the test mutant (here, set2∆) on the x axis, with 
the theoretical distribution of correlations expected from a normal distribution on 
the y axis. Points distant from the x=y line are significant correlations. 
(B) Local cluster of mutants significantly correlated with set2∆. Data from Figure 
3A, re-clustered using only highly-correlated mutants with set2∆. 
(C-D) As in (A-B), but for H3K4A. 
(E-F) As in (A-B), for sir2∆. 
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and  m utations in the assem bly-related lysine H3K56 exhibited similar  genetic 

interactions (Dai et al., 2008). We therefore hypothesize that H4K91  acetylation 

might affect chromatin assembly by CAF-1 or Rtt106.  O ther conne   

no obvious literature precedent—the  H M G  protei        

nucleosome  positioning and dynamics at promoters (Celona et al., 2011; Dowell 

et al., 2010), was correlated  w ith the H 3R 8K  m utation (T  I.S2)—and thus 

represent  potentially       

either  m odifying e           

on one s uch observation, the surprising linkage  betw een H 3   

mutants and the H3S10A histone  mutant. 

 

Our data show that joint analysis of histone mutants with related gene deletion 

mutants can systematically link histone-modifying enzymes with their substrates, 

as well as modification-specific binding proteins to the relevant modified histone 

residue (Tables I.S2 and I.S3). 

 

Genome-Wide Histone Modification Dynamics 

We next sought to understand why only particular genes were affected by 

mutants in various chromatin regulators. One of the central questions in 

chromatin regulation is why broadly localized histone marks appear to have 

extremely localized effects on gen e expression? In other words, given that 

H3K4me3 occurs at nearly all +1 nucleosomes, why do set1∆ mutants exhibit 
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relatively minor (Guillemette et al., 2011; Lenstra et al., 2011) gene expression 

changes? Our functional results suggest that many transcriptional effects of 

chromatin mutants are masked at steady-state by feedback mechanisms, but can 

be uncovered during dynamic changes in gene e xpression. To address the 

relationship between histone mark occurrence and function in a dynamic context, 

we therefore extended our studies by carrying out genome-wide mapping of 

several histone modifications (Tables I.S4 and I.S5) during a six time point 

diamide stress time course (t = 0, 4, 8, 15, 30, and 60 min). We focused these 

experiments on t wo relatively well-characterized modifications: H3K36me3 and 

H3K4me3, and related marks H3K14ac, H3S10P, and H3R2me2a. Our mapping 

data for unstressed yeast are concordant with known aspects of modification 

localization patterns from either prior genome-wide mapping efforts (Liu et al., 

2005; Pokholok et al., 2005) or related studies (Figure I.4A, Figure I.S5). 

 

Given the surprising correlation between H3K4A and H3S10A mutants (Figure 

I.3A, Figure I.S4), we focused on how the histone modifications H3K4me3 and 

H3S10P change genome-wide during diamide stress. As noted above, H3K4me3 

occurs at the 5’ ends of transcribed genes, and genes induced during the stress 

response gained H3K4me3 over time, as expected (Figure I.4C, Figure I.S5B). 

H3S10P, which had not been mapped genome-wide in yeast, is most strikingly 

localized to, 20 kb surrounding yeast centromeres (Figure I.S5G), consistent with 

its pericentric localization by immunofluorescence in mammalian cells  
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Figure I.4  
Genome-wide histone modification changes during diamide stress 
(A) Metagene analysis of the 5 histone marks analyzed here. The indicated 
modifications were mapped genome-wide by ChIP-chip using ~250 bp resolution 
tiling microarrays, normalized to nucleosome occupancy. All genes are length-
normalized, and ChIP enrichments for the 5 marks at t=0 (eg midlog growth) are 
shown averaged for all genes. 
(B) Metagene analysis for genes grouped according to transcription rate as 
measured in Kim et al.(Kim et al., 2010), with H3S10P mapping data averaged 
for each set of genes. 
(C) Chromatin changes at all diamide-regulated genes. Genes up- or down-
regulated by over 1.8-fold (Gasch et al., 2000) are shown, with mRNA changes 
represented in orange/purple. Genes are ordered by time of change in gene 
expression (Chechik et al., 2008). Tiling microarray probes for Pol2 (Kim et al., 
2010) and for 5 histone marks were associated with gene promoters, 5’ ends, or 
3’ ends as shown in schematic underneath Pol2 panel (Dion et al., 2007). Data 
for each time course are shown as changes relative to t=0, thus representing the 
change in the modification over the time course of diamide stress. Pol2 data are 
for t=0, 15, 30, 60, and 120 minutes after diamide stress, whereas histone 
modification data were collected at t=0, 4, 8, 15, 30, and 60 minutes after 
diamide stress. Grey entries represent missing data (generally due to an 
absence of any microarray probes at the relevant genomic location). Yellow box 
highlights “paradoxical” gain of H3K4me3 at the 5’ ends of a large group of 
diamide-repressed genes. 
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Figure I.S5  

Genome-wide histone modification mapping 

(A) Genome-wide mononucleosome-resolution mapping of H3K4me3, 

H3K36me3, H3S10P, H3K14ac, and H3R2me2 was carried out by ChIP-chip 

(relative to mononucleosomal input to control for histone occupancy). All open 

reading frames are converted to a “metagene” with 6 bins reporting on 50 bp 

increments from 0 to 300 bp upstream of the TSS, and 20 bins reporting on 5% 

intervals covering the ORF. 

(B-F) Genes are broken into 4 classes according to Pol2 levels (Kim et al., 2010), 

and data for the indicated modifications is presented as in (A). 

(G) H3S10P localization to pericentric regions. All chromosomes are aligned by 

their centromere, and H3S10P mapping data is shown in red-green heatmap. 
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(Crosio et al., 2002). However, we also noted that H3S10P on chromosome arms 

was heterogeneous, and localized to coding regions with a pat tern opposite to 

that of H3/H4 turnover (Dion et al., 2007; Rufiange et al., 2007). H3S10P is 

depleted from the 5’ ends of genes, and over coding regions anticorrelates with 

transcription rate (Figure I.4B). Furthermore, during the stress response H3S10P 

levels increase over repressed coding regions, and decrease over induced 

genes, indicating that the anticorrelation between H3S10P and transcription is 

dynamic (Figure I.4C). 

 

Overall, many of the chromatin changes over stress-activated or repressed 

genes fit expectations. At stress-activated genes, promoter H3K4me3 levels 

increased while H3K36me3 increased over gene bodi es. However, we also 

observed several unexpected dynamic behaviors (e.g., increasing H3K36me3 

over the promoters of many stress-responsive genes). Furthermore, H3K14, 

whose acetylation scales with transcription rate during midlog growth (Liu et al., 

2005; Pokholok et al., 2005), was only deacetylated at a small subset of 

repressed genes during diamide stress, with most repressed genes exhibiting 

surprising minimal changes in H3K14ac (see below). 

 

Most curiously, we found that H3K4me3 levels increase at the 5’ ends of a 

substantial number of diamide-repressed genes during their repression (Figure 

I.4C, yellow box). Not only do these genes gain H3K4me3, they also gain 
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H3S10P, and as noted above H3K4 mutants and H3S10 mutants exhibit similar 

gene expression defects (Figure I.3A, Figure I.S4). Thus these marks are linked 

both functionally and in terms of dynamic localization changes. Curiously, the 

H3K4methylase Set1 and one o f the H3S10 kinases, Ipl1, also share the 

nonhistone substrate Dam1 (Zhang et al., 2005), indicating a m ore general 

connection between H3K4 and H3S10 based on shared nonhistone substrates 

for their modifying enzymes. It is unlikely that the gene e xpression defects 

observed here stem from nonhistone substrates of these enzymes as the gene 

expression changes are observed in histone point mutants as well as modifying 

enzyme deletions, but the connection is curious nonetheless. 

 

Below, we attempt to connect the changes in H3K4me3 and H3S10P localization 

with the functional effects of relevant mutants. Are the genes that are 

misregulated in K4 and S10 mutants the same genes that exhibit dynamic 

changes in these marks during stress? 

 

Set1-Dependent H3K4 Methylation Primarily Serves in Gene Repression 

Rather Than Activation 

Set1 methylates H3K4 to create a gradient over coding regions from K4me3 at 

the 5’ end to K4me1 at the 3’ end, and this methylation pattern correlates with 

transcription rate during midlog growth ((Liu et al., 2005; Pokholok et al., 2005), 

Figure I.S5B). The correlation between H3K4me3 and transcription rate leads to 
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this mark being referred to as an ‘‘activating mark,’’ yet set1∆ mutants exhibit few 

gene expression defects in midlog growth, and in fact increasing evidence points 

to a primarily repressive role for K4 methylation in yeast. set1∆ mutants exhibit 

increased basal expression of repressed genes such as PHO5 (Carvin and 

Kladde, 2004; Wang et al., 2011), and moreover exhibit widespread defects in 

repression of sense transcription by antisense transcripts (Berretta et al., 2008; 

Camblong et al., 2009; van Dijk et al., 2011; Kim and B uratowski, 2009). We 

noted in our initial gene expression dataset that set1∆ and related mutants 

showed defects in repression of ribosomal protein (‘‘RPG’’) and ribosomal 

biogenesis (‘‘Ribi’’) genes (Table I.S1). We therefore extended these results to 

whole genome mRNA profiling, finding that the major gene expression defect in 

set1∆ mutants during diamide stress is a failure to adequately repress RPG and 

Ribi genes (Figure I.5A). This result is interesting in light of prior observations 

that Set1 is required for full repression of the rRNA repeats (Briggs et al., 2001; 

Bryk et al., 2002) during steady-state growth (when a subset of rDNA repeats are 

silenced), and shows that Set1 plays a general role in repression of all aspects of 

ribosomal biogenesis. Notably, although some snoRNA genes are found in RPG 

introns, we observed Set1 effects on the majority of ribosomal protein genes, 

most of which do not carry snoRNAs in their introns, indicating that the observed 

effect is not a consequence of Set1’s known effects on termination at snoRNA 

genes (Terzi et al., 2011). 
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Figure I.5  
Set1 is predominantly a repressor 
(A) Whole genome analysis of set1∆ effects on diamide stress response. Left 
panel: gene expression data from Gasch et al (Gasch et al., 2000) for all genes 
induced or repressed at least 1.8 fold. Middle panel: Effect of set1∆ on diamide 
stress, for t=0, 15, 45, or 90 m inutes, using whole-genome microarray data. 
Genes are grouped by repressed/activated, then subsequently sorted by the 
average set1∆ effect on gene expression. Right panel: ribosomal protein (RPG) 
or ribosomal biogenesis (Ribi) GO annotations for individual genes are indicated 
as black bars. The majority of genes that repress poorly in set1∆ mutants are 
involved in ribosome biosynthesis. 
(B) Set1 functions primarily as a r epressor. Scatterplot of change in mRNA 
abundance in wild-type (x axis) or set1∆ (y axis) yeast at diamide t=45 minutes. 
There is overall excellent correlation between the two datasets except for blunted 
repression of ribosomal protein genes and r ibosomal biogenesis genes, as 
indicated. 
(C) In silico analysis of mutant effects on R PG and R ibi gene expression. 
nCounter data were averaged for RPG or Ribi genes, and for each mutant the 
difference between mutant and wild-type expression is scatterplotted for the two 
gene classes – specific mutants of interest are indicated with red circles. In 
general mutants have highly correlated effects on ex pression of these genes 
during diamide stress, with “hyporesponsive” mutants such as H3K42Q exhibiting 
diminished repression of both gene c lasses. However, a s ubset of mutants 
separate RPG from Ribi gene expression – most notably, mutants in the RPD3L 
complex (sap30∆a nd pho23∆) have no ef fect on R PG repression, but 
dramatically affect Ribi repression. 
(D) nCounter data for selected mutants with variable effects on RPG/Ribi gene 
repression. Data are shown as in Figures I.1B, D. Mutants from several 
complexes of interest are highlighted here. 
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Overall, deletion of SET1 resulted predominantly in diminished repression of 

ribosome-related genes, with very few large effects on diamide-activated genes 

(Figure I.5B, Figure I.S6A–C). Importantly, loss of Set1 had a  distinct effect on 

ribosomal gene r epression from that observed in ‘‘hypo-responsive’’ mutants. 

Comparison of a given mutant’s effects on overall gene repression to its effects 

on ribosomal gene repression identifies Set1-related and Sir2-related mutants as 

having specific defects in ribosomal gene r epression (Figure I.S6D, see also 

below). We next asked whether Set1’s role in ribosomal repression was specific 

to diamide stress. We therefore assayed gene expression of our 200 probes in 

wild type and set1∆ yeast responding to another stress response, heat shock, or 

responding to nutrient deprivation signals induced by the small molecule 

rapamycin (Hardwick et al., 1999; Humphrey et al., 2004). Each of these stress 

responses exhibited different repression kinetics of the RPG genes, yet in all 

three stresses set1∆ strains suffered defects in RPG repression (Figure I.5C). 

Thus, Set1 appears to act fairly generally as a repressor of ribosomal biogenesis 

under suboptimal growth conditions. 

 

H3K4 Methylation and H3S10 Phosphorylation Jointly Contribute to 

Ribosomal Protein Gene Repression 

Comparing set1∆ effects on mRNA abundance with modification mapping data, 

we noted that many genes repressed in a Set1-dependent manner were often 

associated with stress-induced gains in H3K4me3 and H3S10P at their 5’ ends  
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Figure I.S6 
Set1 is a ribosomal repressor during stress.  
(A) Histograms of set1Δ effects on genome-wide diamide-induced gene 
expression. Histograms are shown for all genes, for genes unaffected by diamide 
(<1.8-fold change in expression) or up- or down-regulated >1.8-fold by diamide, 
as indicated. Note that only repressed genes show substantially different 
behavior than the bulk behavior of all genes, with very few activated genes 
showing Set1 dependence.  
(B–C) As in (A), but for each individual time point of diamide treatment. Genes 
are broken into activated (B) and repressed (C) based on their maximal fold 
change during the time course.  
(D) Set1 is not a gener al hyporesponsive mutant. For all mutants analyzed by 
nCounter, the average effect on repressed genes (x-axis) is plotted against the 
effect specifically on RPG repression (y-axis). Overall effect on repression is 
calculated as the area under the curve (AUC) across the entire time course. 
General hyporesponsive mutants are found in the upper right quadrant, while 
mutants related to H3K4 methylation or the Sir complex are located above the 
diagonal, indicating specific defects in ribosomal gene repression.  
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Figure I.6  
Specific chromatin changes occur at RPG and Ribi genes during repression 
(A) Whole genome mRNA (Gasch et al., 2000), set1∆ effects on m RNA (this 
study), Pol2 mapping (Kim et al., 2010) and tiling microarray data for H3K4me3 
and H3S10P (this study) are shown for all genes sorted as in Figure 5A.  
(B) RPG and Ribi genes exhibit distinct chromatin changes during diamide 
stress. Diamide-repressed genes whose repression is diminished in set1∆ 
mutants were clustered according to their associated changes in chromatin 
marks. Tiling microarray data are shown only for 5’CDS probes for each mark. A 
clear separation can be observed between predominantly RPG genes, which 
exhibit increased 5’ H3K4me3, and decreased 5’ H3R2me2, and predominantly 
Ribi genes, which exhibit decreased 5’ H3K14ac. 
(C) Specificity of H3K4me3 gain at RPG 5’ ends. Probes corresponding to the +1 
nucleosome at RPGs were analyzed specifically, and time course data for all five 
modifications is shown as indicated. 
(D-E) Model for Set1-dependent RPG (D) and Ribi (E) repression. See main text. 
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Figure I.S7  

Specific chromatin changes associated with RPG and Ribi repression  

(A) The majority of diamide-repressed genes that gain H3K4me3 are RPGs. 

Diamide-repressed genes are sorted by the 5’ change in H3K4me3, with GO 

annotations shown in the right panel as indicated. 

(B) The majority of diamide-repressed genes that lose 5’ H3K14ac are Ribi 

genes. As in (A), but with genes sorted by 5’ change in H3K14ac. 
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(Figure I.6A, Tables I.S4 and I.S5). Focusing on the most highly Set1-dependent 

diamide-repressed genes revealed two clearly distinct clusters based on 

chromatin changes at the genes’ 5’ ends (Figure I.6B). Remarkably, we found 

that ribosomal protein genes (RPGs) were ‘‘paradoxically’’ associated with 

dramatic gains in H3K4me3 at their 5’ ends, as well as gains in H3S10P. The 

changes in H3K4me3 and H 3S10P were strongest at the +1 nucleosome but 

occurred throughout the promoters (Figure I.S7A and anal ysis not shown). 

Conversely, non-RPG ribosomal biogenesis (Ribi) genes exhibited similar 

increases in H3S10P, but modest increases in 5’ H3K4me3. Instead, these  

genes were among the relatively few diamide-repressed genes associated with 

decreases in H3K14 acetylation. Importantly, these specific modification changes 

are quite specific for the gene classes in question. RPGs encompass the majority 

of genes gaining H3K4me3 during diamide repression, whereas Ribi genes 

provide the majority of cases with H3K14 deacetylation during repression (Figure 

I.S7B–C). 

 

The distinct chromatin changes observed over RPG and R ibi genes during 

repression suggested that Set1-dependent repression of these genesets might 

operate via distinct pathways downstream of H3K4 methylation. We therefore 

sought to identify additional players in the pathways involved in repression of 

RPG and Ribi genesets. For each mutant assayed in our nCounter dataset, we 

compared the effects on di amide repression of RPGs to the effects on R ibi 
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repression (Figure I.7A). In general, mutants had similar effects on bot h gene 

classes, with globally hypo-responsive mutants such as H3K42Q failing to 

repress both RPGs and Ribi genes to similar extents. Intriguingly, we found a 

handful of mutants (several are shown in Figure I.7B) with substantially different 

effects on R PG and Ribi repression: most notably, mutants in the RPD3L 

complex (e.g., sap30∆, pho23∆) exhibit defective repression of Ribi genes, yet 

have no effect on RPG gene expression during diamide stress. These results are 

consistent with prior genome-wide studies in yeast which found that repression of 

Ribi genes in response to heat shock, H2O2, or rapamycin was defective in the 

absence of RPD3L (Alejandro-Osorio et al., 2009; Humphrey et al., 2004). 

Together, our results suggest that H3K4me3-dependent recruitment or activation 

of RPD3L (presumably via the PHD finger in Pho23; (Wang et al., 2011)) is 

required for Set1-driven repression of Ribi genes, whereas an al ternative Set1-

dependent pathway, potentially operating via Sir2 (see Discussion), represses 

RPGs. 

 

Together, these results provide strong evidence for two distinct Set1-dependent 

gene repression pathways in yeast (Figure I.7C–D). Both sets of genes require 

intact H3K4 and H 3S10 for full repression. However, stress-dependent 

repression of ribosomal biogenesis genes not only requires H3K4 methylation but 

also is dependent on the RPD3L repressor complex (which likely is recruited to 

these genes via the PHD finger in Pho23), and these genes specifically are 
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Figure I.7  

Differential regulation of RPG and Ribi genes by RPD3L.  

(A) In silico analysis of mutant effects on RPG and Ribi gene expression. 
nCounter data were averaged for RPG or Ribi genes, and for each mutant the 
difference between mutant and wild-type expression is scatterplotted for the two 
gene classes. Specific mutants of interest are indicated with red circles. In 
general mutants have highly correlated effects on ex pression of these genes 
during diamide stress, with globally hypo-responsive mutants such as H3K42Q 
exhibiting diminished repression of both gene classes. However, a subset of 
mutants separate RPG from Ribi gene expression. Most notably, mutants in the 
RPD3L complex (sap30∆ and pho23∆) have no ef fect on RPG repression, but 
dramatically affect Ribi repression.  

(B) nCounter data for selected mutants with variable effects on RPG/Ribi gene 
repression. Data are shown as in Figure I.1B,D. Mutants from several complexes 
of interest are highlighted here.  

(C–D) Model for Set1-dependent RPG (C) and Ribi (D) repression. See main 
text. 
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deacetylated during stress. In contrast, repression of ribosomal protein genes is 

delayed relative to Ribi repression, is largely unaffected by loss of the RPD3L 

complex, and f urthermore these genes are associated with increased levels of 

the ‘‘active mark’’ H3K4me3 during repression. 

 

Set1-Dependent Regulation of Antisense and Intron-Associated Transcripts 

Whereas mutants in our dataset that specifically affect Ribi gene repression 

suggested a c lear mechanistic hypothesis regarding Set1’s effects on t hese 

genes (H3K4me3-dependent recruitment of RPD3L), we observed relatively few 

mutants that disproportionately dampened RPG repression relative to Ribi 

repression. How does H3K4 methylation affect RPG expression? Our first 

hypothesis, that RPGs could be repressed via H3K4me2-dependent recruitment 

of the repressive Set3C (Kim and Buratowski, 2009), was ruled out by the 

observation that mutants in Set3C components do not  affect RPG repression 

(Figure I.7A–B). 

 

An emerging concept in Set1 regulation of yeast genes is that Set1 is required for 

repression of transcription by trans-acting antisense RNAs (Berretta et al., 2008; 

Camblong et al., 2009; van Dijk et al., 2011). Of the 28 antisense transcripts in 

our probeset, only a handful were significantly expressed above background 

during diamide stress. For example, in YPD we find that the BDH2 sense 

transcript is expressed at low levels, but its antisense is highly expressed (Figure 
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I.8A). Upon diamide treatment, the sense transcript is induced and the antisense 

is concomitantly repressed. We observed a widespread anticorrelation between 

mutant effects on s ense versus antisense transcripts (Figure I.8B). Notably, 

H3K4 methylation mutants expressed the antisense transcript at lower levels 

than wild-type in YPD, and conversely hyper-induced the sense transcript during 

diamide stress. Similar results were observed for the YTP1 sense/antisense pair 

(Table I.S1). In contrast, Set1 had l ittle effect on t he level of the antisense 

transcript at the ARO10 locus, but instead was required for full induction of the 

ARO10 sense transcript in diamide (Figure I.8C). Thus, in both cases Set1 

primarily affects one t ranscript in a sense/ antisense pair, with the specific 

transcript being regulated in each case possibly reflecting the fact that the 

ARO10 sense does not overlap the TSS of its antisense (Camblong et al., 2009), 

whereas for BDH2 the competing transcripts each overlap each other’s TSS. 

 

Many of the mutants that affect sense/antisense ratios also affected RPG 

expression, raising the question of whether expression of these classes of genes 

might be linked. However, using strand-specific q-RT-PCR we have been unable 

to find any evidence for antisense transcription of RPGs under our conditions 

(unpublished data). Instead, based on t he curious observation that antisense-

mediated repression of PHO84 in trans requires that the antisense RNA overlap 

with the PHO84 UAS (Camblong et al., 2009), we wondered whether some 

aspect of RNA structure might affect Set1-dependent repression in yeast.  



 73 

 
 
  



 74 

Figure I.8  
Set1 effects on antisense and intron-containing genes. 
(A) Anticorrelated abundance of sense and ant isense transcripts for BDH2. 
nCounter intensity values are plotted for the sense and antisense transcripts at 
this locus for wild-type and two indicated mutants.  
(B–C) Set1 skews sense-antisense ratios. Scatterplot of mutant effects on sense 
and antisense transcripts for BDH2 and ARO10. Each point in the scatterplot 
represents the change in expression from wild-type for a gi ven mutant at a 
specific time point. Here, in both cases, we highlight the effect of set1Δ at t = 15 
min. For both genes the local transcript structure as defined in Xu et al. (Xu et al., 
2009) is schematized.  
(D) Regulation of RPL16A by its intron. Expression of RPL16A was measured by 
q-RT-PCR (normalized relative to snR13), for either wild-type RPL16A or for 
yeast carrying an intronless RPL16A in its endogenous location. For both 
versions of this gene, parallel experiments were carried out in set1Δ.  
(E) Introns contribute to diamide regulation of RPGs. For the four indicated 
RPGs, the difference in diamide effects on m RNA was calculated for intron-
containing versus intronless versions of the gene, as indicated. (F) Set1 plays a 
role in RPG transcription pausing or termination. Sense strand NET-Seq data 
from Churchman et al. (Churchman and Weissman, 2011) are shown for all 
RPGs, for WT and set1Δ as indicated. The two lines near the x-axis show NET-
Seq data on the antisense strand. 
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Notably, 73% of ribosomal protein genes in yeast carry introns, and these introns 

are generally much longer than non-RPG introns (Pleiss et al., 2007a, 2007b; 

Spingola et al., 1999). Moreover, RPG introns tend to have more stable 

secondary structures, both in absolute predicted DG of folding and in DG per 

base pair (analysis not shown). 

 

We therefore asked whether RPG introns might contribute to stress-dependent 

repression of these genes. Figure I.8D shows change in expression of RPL16A, 

both for the native gene and for a c hromosomally integrated intron-lacking 

version of RPL16A. Notably, diamide repression of this gene was far weaker in 

the absence of the native intron. We obtained similar results for three of four 

intronless strains tested, although one intronless gene exhibited hyperrepression 

in response to diamide stress (Figure I.8E). We next asked whether the intronic 

contribution to RPL16A repression was in the same pathway at Set1-mediated 

H3K4 methylation. As expected from Figure I.5, we confirmed that RPL16A 

repression was dramatically diminished in the absence of Set1. Notably, loss of 

the native intron had little additional effect on repression beyond that observed in 

the set1∆ mutant (Figure I.8D), suggesting that Set1-dependent repression of 

RPGs is somehow connected to their long, potentially highly structured introns. 

Given the recent observation that RPG introns can affect RNA levels not only of 

their host genes but also of many paralogs (Parenteau et al., 2011), it will be 

interesting in future studies to determine if such trans-acting gene regulation by 
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introns is Set1-dependent. 

Discussion 

We report here a systematic functional genetic analysis of the roles for chromatin 

regulators and histone mutations in the dynamics of stress response in yeast. We 

analyzed the effects of 202 c hromatin-related mutants on di amide-dependent 

transcriptional dynamics for 170 RNAs. Importantly, we generalize prior single- 

gene observations that many chromatin regulators have broader effects on gene 

induction/repression kinetics than during steady-state growth. Furthermore, we 

combined these data with whole-genome mapping data for five histone 

modifications. Together, this dataset provides a r ich multidimensional resource 

for generating hypotheses regarding chromatin biology. 

 

Chromatin Regulation During Transcriptional Reprogramming 

A major observation in this study is that chromatin mutants have far greater 

effects on g ene expression during gene induction/repression than they do on 

steady-state gene expression in midlog growth. These results are consistent with 

observations using classic model genes such as PHO5 and GAL1-10, and 

suggest that a great deal of chromatin biology is obscured at steady-state due to 

homeostatic mechanisms that compensate for deleted chromatin regulators. 

These results also suggest that chromatin transitions may often be rate-limiting 

during transcriptional responses to the environment. 
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By grouping mutants according to their effects on gene expression, we were able 

to systematically construct chromatin regulation pathways. These analyses 

complement similar studies in which deletions are grouped by the similarity of 

their genetic interaction profiles (Collins et al., 2007), or according to their gene 

expression defects in YPD (Lenstra et al., 2011). Importantly, by analysis of gene 

expression changes during a stress response, we uncover additional interactions 

that are not observed in YPD. For example, at t = 0 Rph1 and Rpd3 effects on 

gene expression are highly correlated (R2 = 0.51), but during diamide stress they 

exhibit opposite effects on gene expression (R2 = -0.38). These correlations may 

reflect stress-specific interactions between the factors in question, or they may 

reflect pathways that operate generally under all conditions but whose effects are 

only observed during dynamic reprogramming of transcription. Furthermore, by 

jointly analyzing histone point mutants and deletions of chromatin regulators, we 

correctly assign many histone-modifying enzymes to their known substrates. We 

uncover a small number of novel connections here (such as that between Nhp6a 

and H3R8), but did not find clear connections for predicted histone-modifying 

enzymes such as Set4. We believe the failure to identify a c lear substrate for 

Set4 likely reflects the low levels of this protein in haploid yeast (Ghaemmaghami 

et al., 2003), although we cannot rule out that this enzyme primarily methylates 

nonhistone substrates, that it functions redundantly with another factor, or other 

possibilities. 
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Joint Analysis of Gene Expression Data and Genome-Wide Mapping Data 

As noted in the introduction, the disconnect between global localization of histone 

marks and t heir specific, local importance is a k ey mystery in chromatin at 

present (Rando, 2012). Here, we carried out genome-wide histone modification 

mapping to enable comparisons between the functional effects of chromatin 

mutants with the locations of relevant marks in a dynamic context. 

 

Overall, our modification mapping data were consistent with extensive prior 

knowledge about the modifications studied. However, we discovered a number of 

surprising aspects of histone modification changes during stress responses. For 

example, we found that H3K36 methylation, typically found over coding regions, 

was highly dynamic over promoters, suggesting a much more widespread role for 

this mark in regulation of open r eading frames by cryptic transcription 

(Bumgarner et al., 2009) than has been previously appreciated. We are currently 

following up on t he role for promoter-localized H3K36me3 in gene regulation. 

Similarly, while H3K14ac is correlated with transcription rate of genes during 

steady-state growth (Figure I.4, Figure I.S5; (Liu et al., 2005; Pokholok et al., 

2005)), we found that the majority of genes changing expression in response to 

diamide stress did not gain or lose H3K14ac in predictable ways. Among 

repressed genes, deacetylation occurred primarily at genes encoding ribosomal 

biogenesis factors (Figure I.S7). 
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Together, these results highlight the difficulty in understanding the function of 

specific histone modifications. Clearly, not every gene marked with H3K36me3 

requires Set2 for expression. Understanding this phenomenon, often termed 

‘‘context dependence’’ of histone modifications, is necessary for a dee per 

understanding of the biological roles for chromatin regulators (Berger, 2007; 

Rando, 2012). 

 

H3K4 Methylation and Ribosomal Gene Control 

Our systematic analyses uncovered several surprising aspects of H3K4 

methylation during diamide stress. As noted above, H3K4 methylation is 

associated with gene transcription at steady-state and t hus is considered an 

‘‘activating’’ mark, yet in budding yeast most evidence points towards H3K4 

methylation as a repressive mark. Loss of Set1 results primarily in derepression 

of midsporulation and other repressed genes during midlog growth (Carvin and 

Kladde, 2004; Guillemette et al., 2011; Lenstra et al., 2011; Wang et al., 2011). 

Set1 appears to broadly play a role in control of sense/antisense ratios (Berretta 

et al., 2008; van Dijk et al., 2011; Houseley et al., 2008), as perhaps most clearly 

demonstrated in the case of the antisense transcript for PHO84 that is capable of 

repressing sense transcription in trans (Camblong et al., 2009). We extend these 

results, identifying additional sense/antisense pairs regulated by Set1 (Figure 

I.8A–C). It remains unclear, however, what distinguishes sense/antisense pairs 

subject to Set1 regulation from those that are unaffected by Set1, although in 
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general, transcripts that overlap the promoter of their opposing partner are more 

likely to regulate the other transcript (Camblong et al., 2009). 

 

Here, we dramatically extend the list of Set1 effects on transcription, finding that 

during diamide stress Set1 is required for full repression of genes involved in 

ribosomal biosynthesis. This effect is unlikely to result from nonhistone 

substrates of Set1, as it is recapitulated in H3K4A mutants. Together with prior 

observations demonstrating a role for Set1 in rDNA silencing (Briggs et al., 2001; 

Bryk et al., 2002) during midlog growth in YPD, our results therefore identify Set1 

as a general repressor of ribosomal biogenesis, with roles in repressing rRNA, 

ribosomal protein genes, and r ibosomal biogenesis genes. Importantly, set1∆ 

mutants have no effect on RPG and Ribi gene transcription during active growth 

in YPD (Figure I.5A and (Guillemette et al., 2011; Lenstra et al., 2011)), when 

ribosomal genes are being extremely highly transcribed, meaning that the 

identification of Set1 as a broad repressor of ribosomal biogenesis could only be 

observed under stress conditions as in this study. Conversely, since a subset of 

rDNA repeats is repressed even during active growth, this enabled the discovery 

of this aspect of Set1 function in early midlog studies. 

 

Based on chromatin mapping and on functional analysis of all 202 mutants, we 

find that distinct mechanisms operate in the repression of RPGs and t he Ribi 

regulon. Ribi genes, but not RPGs, are not effectively repressed in mutants 
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affecting the RPD3L complex. Moreover, Ribi genes are specifically associated 

with loss of H3K14ac during diamide stress, but exhibit little to no gai n in 

H3K4me3. These results are consistent with a known pathway in which 

dephosphorylation of the transcriptional repressors Dot6 and T od6 leads to 

RDP3L recruitment to Ribi promoters (Alejandro-Osorio et al., 2009; Huber et al., 

2011), with binding of RPD3L component Pho23 to H3K4me3 contributing to 

either RPD3L recruitment or activity (Wang et al., 2011). The molecular details 

underlying the presumptive ‘‘bivalent’’ recruitment/activation of RPD3L by 

Dot6/Tod6 and H3K4me3 remain to be elucidated. In striking contrast, we find no 

role for RPD3L in repression of RPGs (Figure I.7A–B). Consistent with this, 

published gene expression profiles from rpd3∆ mutants in several stress 

conditions (diamide was not studied) reveal a far greater effect of Rpd3 loss on 

repression of Ribi genes than RPGs (Alejandro-Osorio et al., 2009). This raises 

the question of how Set1 contributes to RPG repression. 

 

RPG repression was not accompanied by deacetylation of H3K14, and instead 

we observed that RPG promoters paradoxically gain H3K4me3 during diamide 

repression. It is not immediately apparent what aspect of RPGs makes them 

subject to Set1-regulated repression, but it is well known that RPGs represent 

roughly half (102 of 250) of all intron-containing genes in budding yeast. Given 

the emerging picture that Set1 affects gene r egulation by antisense RNAs 

associated with promoters, we speculated that ribosomal introns and promoter-
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associated antisenses might share in common some unusual form of locally 

tethered RNA secondary structure. Ribosomal introns are longer than most other 

introns in yeast, and generally have much greater predicted RNA secondary 

structure than other introns. Consistent with the idea that RPG introns might 

contribute to Set1-dependent repression, we found that in several cases 

replacement of the native intron-containing RPG with its cDNA (in the native 

chromosomal context) abrogated repression of the RPG by diamide (Figure 

I.8D–E), suggesting that either the intronic RNA or the corresponding DNA plays 

a role in Set1-dependent repression of some RPGs. As for the downstream 

repressor, we are currently investigating the hypothesis that RPG repression 

could be mediated by the Sir heterochromatin complex. Genome-wide mapping 

studies show that Sir3 binds to RPGs (Radman-Livaja et al., 2011; Taddei et al., 

2009; Tsankov et al., 2006), and we show here that sir mutants and set1 mutants 

have similar effects on RPG repression (Figure I.7B). Moreover, in vivo selection 

studies for RNA-based repressors in yeast found a surprisingly high fraction of 

tethered RNAs could repress a r eporter gene in a Sir-dependent manner 

(Kehayova and Liu, 2007), suggesting that structured RNAs might recruit the Sir 

complex in a manner analogous to the role for lincRNAs in repressing metazoan 

genes by Polycomb recruitment (Rinn et al., 2007; Tsai et al., 2010). In this view, 

we hypothesize that ribosomal introns might serve in some sense as 

‘‘domesticated’’ lincRNAs. 
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Alternative hypotheses include the possibility that the act of splicing per se could 

play a role in Set1-dependent repression of RPGs (whose splicing is 

mechanistically distinct from non-RPG splicing; (Pleiss et al., 2007a, 2007b)) or 

that Set1 affects RPG expression by regulating Nrd1-dependent transcriptional 

termination (Terzi et al., 2011). Intriguingly, we observed in published NET-Seq 

data on RNA Pol2 localization (Churchman and Weissman, 2011) that set1∆ 

mutants exhibit lower 5’ peaks of Pol2 over RPGs during midlog growth, with 

increased Pol2 levels downstream (Figure I.8F). This decrease in 5’ Pol2 

localization is consistent with the possibility that Set1 regulates RPGs via effects 

on transcriptional termination. It is also consistent with an alternative mechanism 

in which Set1 regulates Pol2 pausing at the 5’ ends of RPGs and that the 

delayed Pol2 in wild-type cells either allows intron folding or simply keeps 5’ RNA 

physically tethered near the promoter. 

 

Future studies will be required to determine whether RPGs and ant isense-

regulated genes do i n fact operate via a c ommon mechanism, and to identify 

whether any specific aspects of RNA or RNA/DNA structures play a r ole in 

recruiting repressive complexes. 

Conclusion 

Taken together, these data show that chromatin regulators have far more effects 

on changes in gene expression than on steady-state transcription. Our approach 
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allows systematic linking of chromatin regulators in complexes and of  histone-

modifying enzymes with their substrates. Finally, we show that joint analysis of 

functional gene expression data with localization data leads to novel insights 

even into extensively studied histone modifications such as H3K4me3. 

Materials and Methods 

Yeast Strains and Growth Conditions 

Two collections of yeast mutants were used. Histone point mutants were 

described in (Dai et al., 2008), and w ere a k ind gift from Jef Boeke. Diploid 

heterozygous deletion mutants with the SGA reporter developed by (Tong et al., 

2004) were sporulated and selected to generate haploid Mata knockouts (Pan et 

al., 2004). Yeast knockout mutants were grown on s elective media (SC–Leu–

His–Arg dropout mix+G418 200 mg/L+ L-Canavanine 6 mg/L) for two rounds to 

select for the deletion and for haploids, then used in the nCounter assays. 

For Nanostring nCounter assays, each strain was grown in 80 mL YPD to mid-

log phase (OD600 between 0.4 and 0.6) in a shaking 30uC waterbath. At ‘‘time 

zero’’ cells were treated with 1.5 mM diamide (D3648, Sigma), and 3 mL samples 

of culture each were taken at t = 0 (immediately prior to diamide addition), 4, 8, 

15, 22.5, 30, 45, 60, and 90 min. Samples were immediately fixed with 4.5 mL 

cold methanol and kept in dry ice-ethanol bath throughout the time course. Cells 

in each sample were pelleted at 4,000 rpm for 2 min at 4°C, washed with 10 ml 

nuclease-free water, resuspended in 1 m L RNAlater solution (Ambion), and 
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stored at -80°C. 

 

For the histone modification mapping time course, six flasks each of 400 mL 

BY4741 cells were grown in YPD to mid-log phase shaking at 220 rpm at 30°C. 

Cells were treated with 1.5 mM diamide at time zero. At t=0, 4, 8, 15, 30, and 60 

min, cells were fixed by 1% formaldehyde, followed after 15 m in by quenching 

with 125 mM glycine. Cells were then pelleted, washed with water, and subjected 

to MNase digestion as previously described (Kaplan et al., 2008; Radman-Livaja 

et al., 2010) and immunoprecipitation (see below). 

 

nCounter Assays (Nanostring Technologies, Seattle, WA) 

Approximately 1x107 cells from individual samples were pelleted and 

resuspended in 600 m L Qiagen RLT buffer. After bead beating for 3 min, the 

supernatants were collected and 3–5 mL of the cell extracts were used for 

nCounter assays. The nCounter assays were performed as described (Geiss et 

al., 2008) with customized probes corresponding to 200 S. cerevisiae RNAs. 

 

nCounter Data Normalization 

The nCounter dataset reports on the measurement of 200 probes x 202 mutants 

x 4 time-points. We denote by Mi,j, the measurement of probe i sample j. To 

account for differences in hybridization, processing, binding efficiency, and other 

experimental variables, we used to following normalization procedure: 
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(1) Each sample was normalized relative to the average of four wild-type 

replicates taken at the same time point after diamide induction. First, 

samples were log transformed. Next, we assumed that different samples 

(WT versus mutant) could be b rought on to the same scale by a linear 

regression (assuming that in the same time point most of the genes do 

not change their expression level). This was parameterized by two real 

values bj and aj>0 corresponding to background subtraction (bj) and 

global normalization factor (aj). Specifically, aj is a multiplicative factor 

that is used to control the assay efficiency or to bring the total RNA 

counts roughly to the same levels, and b j is an addi tive factor that 

corresponds to the average background counts of each sample. We 

estimated the values of these two normalization parameters for each 

sample using linear regression and normalized the data using the 

following equation: 

𝑀�𝑖,𝑗 = 𝑏𝑗 + 𝑎𝑗𝑀𝑖,𝑗 

(2) To overcome the limitation of the log-ratio statistics for weakly expressed 

genes (increase from 50 to 100 reads is not as significant as the increase 

from 100,000 to 200,000 reads), we used the variance stabilization 

method as described in [88]. Briefly, this involves estimating a statistic Dh 

whose variance is approximately constant along the whole measurement 

scale. For highly expressed genes, Dh and the log-ratio statistic coincide. 

We estimated parameters of the statistic Dh as described by Huber et al., 
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and represented the data as pseudo-log likelihood to WT at time the 

matching time point (Figure 1, Table S1). 

 

Correlation Analysis of Expression-Profiles 

We computed a c orrelation matrix (Figure I.3A) by first concatenating the 

measurements (Dh values) for all probes at the four time points to a single vector 

for each mutant, and then computing the Pearson correlation between the 

vectors for each pair of mutants. We clustered the correlation matrix using 

hierarchical clustering with Euclidian distance metric and unw eighted average 

distance (UPGMA) linkage. Clustering was done using MATLAB 7.10 procedures 

‘‘pdist,’’ ‘‘linkage,’’ and ‘‘dendrogram.’’ 

 

To identify significant correlations between mutants we used a quantile-quantile 

plot. For a query mutant, we plotted the quantiles of its correlations vector with all 

other mutants versus theoretical quantiles from a nor mal distribution (function 

‘‘qqplot,’’ MATLAB 7.10). Values that deviate from the line y = x were considered 

significant (Figure I.S4). 

 

PCA Analysis 

Principal component analysis was applied to the map of 200 probes versus 202 

mutants using MATLAB 7.10 procedure ‘‘princomp.’’ 
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Microscopy 

To evaluate transcriptional induction in individual cells in a popul ation, we 

performed time-lapse microscopy of the induction of GFP-tagged protein. Nine 

deletion strains (hda2∆, yta7∆, spt8∆, set1∆, rph1∆, snf1∆, cac2∆, and swc3∆) 

were generated using KanMX in the BY4742 background. Four GFP-fusion 

reporters were selected (GCY1, GRE3, PGM2, and TSA2) from a library (Breker 

and Schuldiner, personal communication) based on the yeast GFP-tagging 

library (Huh et al., 2003) with an addi tional constitutive cytoplasmic mCherry 

(Genotype: xxx-GFP::HIS3, pTEF2-cherry::URA3, his3∆ leu2∆ met15∆ ura3∆ 

lyp1∆ can1∆::pMFA1- LEU2). Knockout strains were mated with GFP reporter 

strains and sporulated to generate haploid deletions carrying the GFP reporters. 

Prior to assay, strains were grown in 96-well plates to mid-log (~0.6 OD 600) in 

synthetic complete media (SC). We then transferred cells to glass bottom 

microwell plates (384 format, Matrical Biosciences) pre-treated with concavalin-A 

(incubation with solution at 0.25 mg/ml for 15 min). Cells were allowed to settle 

onto the glass surface for 30 min. We then removed the media and replaced with 

treatment media (SC with 1.5 mM diamide). 

Following induction we placed the cell on an aut omated microscope (Scan‘R 

system, Olympus) and assayed with 406 o bjective at ~10min intervals, taking 

transmitted light, mCherry, and G FP images at each time point. Images were 

analyzed using custom-made software, written in python based on the OpenCV 
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image analysis package (http://opencv.willowgarage.com/). Briefly, the procedure 

detects cells by thresholding the mCherry image and f inding contours of bright 

objects. Contours that meet gating criteria for circularity and size were 

considered cells. The procedure matched detected cells in successive images 

based on a r eciprocal closest hit procedure allowing a maximum of 5 pi xel 

movement. Since cells are adhered to the glass surface, this procedure was 

effective in following a s ingle cell. If there was a budding event, the closest-hit 

procedure returns an a mbiguous result and the match is not made. Cells that 

were traced throughout the time course were used in the further analysis steps. 

Model 

We represented each single cell time-course GFP measurements using a simple 

kinetic model. We assume that the transcription starts at a certain point following 

stimuli, termed ton, and stops at toff. Promoter behavior is represented by T(t): 

𝑇(𝑡) = �   
1 𝑡𝑜𝑛 ≤ 𝑡 ≤ 𝑡𝑜𝑓𝑓

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Only during this time interval is mRNA being transcribed; to simplify the model 

we assume that transcription occurs with a constant rate of mRNA/min, and we 

also assume a constant exponential decay rate of mRNA denoted by b. We 

present the mRNA levels as a f unction of time using the following differential 

equation: 

𝑑
𝑑𝑡 𝑅(𝑡) = 𝛼𝑇(𝑡) − 𝛽𝑅(𝑡) 



 90 

Solving this equation we obtained a logistic equation describing mRNA level over 

time after stress induction at t = 0: 

𝑅(𝑡) =

⎩
⎪
⎨

⎪
⎧

   

0 𝑡 < 𝑡𝑜𝑛
𝛼
𝛽 (1 − 𝑒−𝛽(𝑡−𝑡𝑜𝑛)) 𝑡𝑜𝑛 ≤ 𝑡 ≤ 𝑡𝑜𝑓𝑓

𝑅�𝑡𝑜𝑓𝑓� 𝑒−𝛽(𝑡−𝑡𝑜𝑓𝑓) 𝑡 >  𝑡𝑜𝑓𝑓

 

In the final step we assume that protein is the integration of the mRNA levels 

(assuming constant translation rate without degradation). We add a f inal 

parameter to account for the basal GFP level (prior to stress), solved the integral 

of R(t), and obtained the following equation: 

𝐹(𝑡) =

⎩
⎪
⎨

⎪
⎧

   

𝐴 𝑡 < 𝑡𝑜𝑛

𝐴 +
𝛼
𝛽 (𝑡 − 𝑡𝑜𝑛 −

1
𝛽 + 

1
𝛽 𝑒

−𝛽(𝑡−𝑡𝑜𝑛)) 𝑡𝑜𝑛 ≤ 𝑡 ≤ 𝑡𝑜𝑓𝑓

𝐹�𝑡𝑜𝑓𝑓� +
𝑅�𝑡𝑜𝑓𝑓�

𝛽  (1 − 𝑒−𝛽(𝑡−𝑡𝑜𝑓𝑓)) 𝑡 >  𝑡𝑜𝑓𝑓

 

To estimate the parameters for each single cell track, we used MATLAB 7.10 

function ‘‘fmincon’’ using the ‘‘active-set’’ optimization algorithm. 

 

Chromatin immunoprecipitation (ChIP) 

ChIP assays were carried out as previously described [87]. Antibodies used in 

the ChIP assays were anti-H3K36me3 (ab9050-100, Lot#412997, Abcam), anit-

H3K4me3 (04-745, Lot#NG1643014, Millipore), anti-H3K14ac (07-353, 

Lot#DAM1548623, Millipore), anti- H3S10p (04-817, Lot#NG1710274, Millipore), 

and anti- H3R2me2 (07-585, Lot#DAM1731499, Millipore). 
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Microarray Hybridization of ChIP Material 

ChIP material was amplified using the DNA linear amplification method described 

previously (Liu et al., 2003, 2005). 3 ug o f the amplified ChIP products was 

labeled via the amino-allyl methods as described on http://www.microarrays.org. 

Labeled probes (a mixture of Cy5-labeled input and C y3-labeled ChIP-ed 

material) were hybridized onto an Agilent yeast tiled oligonucleotide microarray 

(G4495A) at 65°C for 16 h  and washed as described on 

http://www.microarrays.org. The arrays were scanned at 5μ resolution with an 

Agilent scanner. Image analysis and dat a normalization were performed using 

Agilent feature extraction. 
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CHAPTER II 

H3K4 methylation is required for ribosomal protein genes to be adequately 

repressed in response to a stress. 

Abstract 

Chapter I showed that H3K4 methylation is required for ribosomal protein genes 

(RPGs) to be completely repressed during a yeast stress response. However the 

mechanism, by which a specific histone modification regulates the repression of 

a specific gene family in response to stress, remains to be el ucidated. Set1, 

H3K4 methylatransferase, has been implicated to regulate antisense-mediated 

trans-silencing. In the case of RPGs, unlike most other yeast genes, RPGs 

contain introns. Interestingly, a recent study shows introns within RPGs affect the 

expression of paralog RPGs. Given the fact that introns within RPGs tend to be 

longer and highly structured, I hypothesize that introns within RPGs act as non-

coding RNAs which regulate the repression of RPGs during stress and are 

themselves regulated by Set1. While deleting RPL16A’s intron decreased the 

repression of other RPGs, replacing RPL16A’s intron with introns from other non-

RPG genes has very limited effect on the repression of RPL16A. Taken together, 

this indicates that introns within RPGs regulate the repression of other RPGs 

during stress and they function independently of sequence.  
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INTRODUCTION 

In Chapter I, I found that Set1-dependent H3K4 methylation is required for 

adequate repression of ribosomal protein genes during stress. However, the 

underlying mechanism is still unknown. Set1 was reported to promote the 

production of PHO84 antisense RNA which suppresses PHO84 sense RNA 

(Camblong et al., 2009), suggesting Set1 plays a role in regulating antisense-

mediated trans-silencing. Most RPGs share a feature that is unique among yeast 

genes – containing introns. Introns within RPGs are usually longer than other 

introns and t end to be hi ghly structured. Notably, introns within RPGs have 

recently been shown to regulate the expression of RPGs (Parenteau et al., 

2011). More precisely, for duplicated RPGs, deletion of an i ntron in one gene  

copy affects the expression of the other. Taken together, I hypothesize that 

introns within RPGs act as non-coding RNAs regulating the expression of RPGs 

and the amount of intron is regulated by Set1-dependent H3K4 methylation 

during stress. 

 

To test the hypothesis, I deleted an intron in one of  the RPGs, RPL16A, and 

examined its effect on other genes by genome-wide gene expression 

microarrays. Surprisingly, I found not only the repression of its paralog, RPL16B, 

was defective during stress but also that of many other RPGs. The results 

support the hypothesis that introns within RPGs regulate the repression of other 

RPGs in stress. To further test if introns in RPGs act as non-coding RNAs, I 
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replaced the intron in RPL16A with an intron from another non-RPG yeast genes 

and checked the repression of intron-swapped RPL16A during stress. Previous 

studies have shown that the sequence of non-coding RNAs is crucial for its 

function (Tsai et al., 2010). Therefore, should introns within RPGs act as non-

coding RNAs their sequences matter. However, three out of the four intron-

swapped experiments showed only slight defect in the repression of intron-

swapped RPL16A during stress. Therefore the repression of RPGs can be 

achieved by a presence of an intron which does not require specific sequence. 

RESULTS 

Genes involved in ribosome biogenesis failed to fully repress during stress 

in intronless RPL16A mutant 

In order to determine the importance of RPG introns in their regulation, I deleted 

the intron in RPL16A in S.cerevisiae genome and measured RNA levels in wild-

type and intronless RPL16A mutant (RPL16A∆i) in a time course after diamide 

addition (t=0, 15, 45, 90 min), using  genome-wide gene expression microarrays. 

Based on the gene expression data, genes in the yeast genome were clustered 

into 6 groups (Figure II.1). One of these groups in particular showed a major 

defect in expression in RPL16A∆i mutant; this group showed incomplete 

repression during diamide stress response. GO analysis showed this group was 

enriched in genes involved in ribosome biogenesis. Surprisingly, deleting the 

intron in RPL16A affects not only the mRNA abundance of its paralogous gene,  
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Figure II.1 

Genome-wide gene expression analysis of intronless RPL16A effects on diamide 
stress response.  

Genome-wide gene expression data in intronless RPL16A for t=0, 15, 45, 90 min 
after diamide addition using genome-wide gene expression microarray. For each 
time course, data are normalized to wild type at the same time point. Genes are 
clustered by k-mean into 6 groups. GO analysis of one group indicated 
enrichment in genes involved in ribosome biogenesis. 
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RPL16B, but also many other genes in the same pathway. More importantly, the 

defect is consist with the observation from Chapter I where I found set1∆ mutant 

showed the same defect - failing to adequately repress genes involved in 

ribosome biogenesis. These results showed both RPL16A∆i and set1∆ share a 

similar phenotype, supporting the hypothesis that the intron in RPL16A plays a 

role in Set1-dependent RPL16A repression during stress. 

 

The repression of RPL16A during stress does not require specific 

sequence in its intron. 

I next sought to test if the repression required a specific sequence in the intron in 

RPL16A. If the RPL16A intron behaves in a similar way to long non-coding 

RNAs, then a specific sequence in long non-coding RNAs would be c ritical for 

them to form secondary structure, which is crucial for their function. To test the 

hypothesis, I decided to replace RPL16A’s intron with an intron from other non-

RPG genes so that only the sequence is changed, while the splicing remains 

unaffected. I first replaced RPL16A’s intron in the genome with the intron from 

ACT1 or MRK1, because the introns in ACT1 and MRK1 are about the same 

length as RPL16A’s intron, but have different sequence composition. RPL16A 

mRNA abundance in a di amide time course was measure by qPCR (Figure 

II.2A). While wild-type RPL16A was repressed almost 16 fold during stress, 

RPL16A∆i-ACT1intron was repressed only 8 fold, which supports the hypothesis. 

However, in the other case, RPL16A∆i-MRK1intron was repressed to the same  
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Figure II.2 

The effect on RPL16A repression of intron-replaced RPL16A during stress 

(A) The effect of the replacement of RPL16A intron with other genes’ intron on 
RPL16A repression in diamide stress response. The intron of RPL16A was 
replaced with ACT1’s intron or MRK1’s intron. WT or mutant RPL16A mRNAs 
was measured before and 45min after diamide addition by qPCR using probes 
against exon2 for total RPL16A mRNAs or exon-exon junction for spliced 
RPL16A mRNAs. 

(B) As in (A) but the intron of RPL16A was replaced with PFY1’s intron or 
NMD2’s intron.  
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level as wild-type. Due to the contradictory results, I decided to replace the intron 

in RPL16A with the intron in PFY1 or NMD2 in order to get a conclusive answer. 

Both RPL16A∆i-PFY1intron and RPL16A∆i-NMD2intron showed 15-17 fold 

repression, which was only slightly defective comparing to 22 fold repression in 

wild-type (Figure II.2B). In conclusion, three out of the four intron-replacement 

experiments showed almost wild-type level repression, suggesting the repression 

of RPL16A mRNA requires an intron regardless of the sequence of the intron. 

DISCUSSION 

I report here that deletion of the intron in one RPG attenuates the repression of 

many genes in the same pathway during stress. The effect could either be a  

direct result from the absence of the intron or a secondary effect resulted from 

the misregulated level of RPL16A mRNA caused by the absence of intron. To 

distinguish between the two possibilities, one could overexpress intronless 

RPL16A and check the repression during stress. If the level of repression were 

decreased to the same extent as intronless RPL16A driven by its own promoter, 

the result would suggest the defective repression of other RPGs is a di rect 

response from the absence of intron in RPL16A. On the other hand, if the RPGs 

were less repressed than in the original intronless RPL16A, the effect on other 

RPGs is more likely due to the level of RPL16A mRNA instead of its intron. 

 

Parenteau et al. showed that deletion of the intron in one R PG affects the 
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expression of its paralogous RPG. This is also true for most RPGs they tested. 

Surprisingly, I found that deletion of RPL16A’s intron affects many more genes 

involved in ribosome biogenesis. It would be interesting to test if this is a general 

phenomenon for most RPGs. Also, if this phenomenon is unique to introns within 

RPGs, comparing introns within RPGs to other non-RPG introns should shed 

light on the function of RPG’s introns. 

 

The finding that the presence of an i ntron is required for RPL16A repression 

during stress but not its sequence disagrees with the hypothesis. This is 

supported by three intron replacement experiments; interestingly this did not 

extend to the replacement with ACT1 intron. What differs between the ACT1 

intron and t he other introns? One study showed the ACT1 intron contains a 

promoter for an antisense RNA. Therefore, it is possible that the antisense RNA 

interferes with the repression of RPL16A whose intron was replace with ACT1 

intron. 

MATERIALS AND METHODS 

Yeast Strains and Growth conditions 

The intronless and intron-replaced RPL16A strains were constructed as follows:  

RPL16A consists of two exons and one i ntron. DNA sequence of RPL16A’s 

exon1 and exon2 were PCR amplified and cloned into a yeast vector pRS415 

using a T4 DNA polymerase dependent ligation. The ligation product of RPL16A 



 100 

exon1 and e xon2 was PCR amplified and t ransformed into BY4741. The 

endogenous RPL16A were deleted by homologous recombination using DNA 

fragments encoded URA3 gene. The URA3 gene in RPL16A locus was 

subsequently replaced with intronless RPL16A DNA fragments by homologous 

recombination. For the intron-replaced RPL16A strains, introns from non-RPG 

genes, such as ACT1, was PCR amplified from BY4741 genomic DNA and 

inserted in between RPL16A exon1 and exon2 on yeast pRS415 vector. Intron-

replaced RPL16A was amplified by PCR.  The URA3 gene in RPL16A locus in 

RPL16A deletion strain was replaced with intron-replaced RPL16A DNA 

fragments by homologous recombination. 

 

Each strain was grown in 50 mL YPD to mid-log phase (OD600 between 0.4 and 

0.6) in a shaking 30°C waterbath. At “time zero” cells were treated with 1.5 mM 

diamide (D3648, Sigma), and cells were collected at time 0, 15, 45, and 90 min. 

Total RNAs were extracted from yeast cells using bead be ating and T RIzol 

following manufacture’s instructions. 

 

Gene expression microarray 

20ug DNase I-treated total RNAs was used for cDNA synthesis with amino-allyl 

UTP and superscript II. Amino-allyl incorporated cDNAs of WT and mutant were 

incubated with Cy5 and Cy3 dyes respectively in the dark for 1 hour. Labeled 

probes (a mixture of Cy5-labeled WT and C y3-labeled mutant cDNAs) were 
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hybridized onto an Agilent yeast gene expression microarrays at 65°C for 16 h 

and washed as described on http://www.microarrays.org. The arrays were 

scanned at 5 µ resolution with an A gilent scanner. Image analysis and dat a 

normalization were performed using Agilent feature extraction. 

 

RT-qPCR 

5ug total RNAs were reverse transcribed into cDNA using random hexamers and 

superscript III. qPCR was carried out using KAPA SYBR Fast reaction mix and 

according to the manufacture’s instructions. Each sample was run in triplicate in 

three independent experiments. Two housekeeping genes were used as internal 

controls to normalize the variation in expression levels. 
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CHAPTER III 

Set1 and Xrn1 antagonistically regulate total mRNA levels in S. cerevisiae. 

Abstract 

Histone H3K4 methylation is one of the most studied histone modifications, and 

yet its function in gene expression still remains largely unknown. An interesting 

connection between Set1, the H3K4 methyltransferase, and X rn1, 5’-3’ 

exonuclease, has been reported in several studies. Set1 is found to be required 

for trans-silencing mediated by antisense RNAs, which are degraded by Xrn1. In 

addition to the relatively well-known effects of Xrn1 on no n-coding transcripts, 

Xrn1 was also recently reported to globally up-regulate total mRNA abundance. 

Given that H3K4 methylation is a global histone modification that marks active-

transcribing genes in the genome, I decided to test if loss of SET1 would 

suppress the up-regulated mRNAs in xrn1∆. Interestingly, I found that the large-

cell phenotype of xrn1∆ cells was partially suppressed in set1∆xrn1∆ double 

mutant. In addition, genome-wide analysis of mRNA abundance revealed that the 

global increase in total mRNA abundance in xrn1∆ mutants was suppressed in 

the set1∆xrn1∆ double mutant. To further understand how loss of SET1 leads to 

suppression of mRNA levels in double mutant, I assayed global mRNA levels in 

mutants including those affecting the nuclear exosome or Rat1, finding that 

neither of these factors was involved in the same pathway. Finally, I focused on 
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an unusual phenotype xrn1∆ has – accumulation of uncapped RNAs. 

Surprisingly, I found that capped mRNA abundance was maintained in both 

xrn1∆ and set1∆xrn1∆, indicating that the global gain in mRNA abundance in 

xrn1∆ that was suppressed in set1∆xrn1∆ double mutants resulted from changes 

in the levels of uncapped mRNAs. In conclusion, the results suggest Set1 plays a 

role in regulating synthesis or stability of uncapped mRNAs that are only 

revealed in the absence of the 5’ exonuclease Xrn1. 

INTRODUCTION 

Histone H3K4 methylation is a widespread histone modification that has been the 

subject of thousands of studies, yet its function in gene expression still remains 

to be elucidated. H3K4 methylation is highly conserved from yeast to human, and 

is deposited on nucleosomal histones by one or several multi-subunit complexes 

in different organisms. In S.cerevisiae, the COMPASS complex is the only H3K4 

methyltransferase, and the catalytic activity is carried out by the Set1 subunit. 

Previous studies have shown the loss of Set1 resulted in complete loss of 

histone H3K4 methylation (Briggs et al., 2001; Krogan et al., 2002). The most 

well-known feature about this mark is that it specifically marks the 5’ end of 

actively-transcribed genes in the genome (Boa et al., 2003; Santos-Rosa et al., 

2002), and levels of H3K4 trimethylation correlated with the expression level of 

the gene in question (Pokholok et al., 2005). Nonetheless, Set1 deletion has very 

limited effect on steady-state total mRNA abundance, which is inconsistent with 
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the widespread description of H3K4 methylation as playing a widespread role in 

activating gene transcription.   

 

Synthetic genetic studies in yeast have provided some insights into potential 

functions of Set1. Specifically, Set1 and X rn1 have been reported to 

antagonistically regulate antisense-mediated gene silencing (Berretta et al., 

2008; van Dijk et al., 2011). Xrn1 is 5’-3’ exonuclease which functions in 

cytoplasmic mRNA decay, and l oss of Xrn1 activity reveals a novel class of 

noncoding antisense RNAs known as XUTs (Xrn1-sensitive antisense ncRNAs).  

Interestingly, Set1 is required for silencing of genes with XUTs (van Dijk et al., 

2011). In another study, trans-silencing of Ty1 retrotransposon was disrupted 

after deleting SET1 in xrn1∆ background. Notably, Ty1 antisense RNA 

expression in xrn1∆ was partially suppressed in set1∆xrn1∆ (Berretta et al., 

2008). More recently, Sun et al. reported a gl obal increase in total mRNA 

abundance was found in xrn1∆ (Sun et al., 2013). This raises the question of 

whether this global up-regulation of mRNAs might be suppressed in set1∆xrn1∆. 

 

Here, I generated set1∆xrn1∆ double knockout mutants in S.cerevisiae. By 

examining their morphology under microscope, I found while xrn1∆ cells were 

usually large, some set1∆xrn1∆ cells were much smaller than xrn1∆ cells. More 

importantly, set1∆xrn1∆ cells grew much slower than WT or any single mutant. I 

performed RNAseq to profile gene expression genome-wide. Interestingly, I 
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found up-regulated mRNAs in xrn1∆ were suppressed in set1∆xrn1∆. The 

suppression in total mRNAs did not involve nuclear exonucleases, such as 

nuclear exosome or Rat1. Most importantly, after comparing the abundance of 

capped mRNAs to that of total mRNAs, the results showed comparable levels of 

capped RNAs in both xrn1∆ and set1∆xrn1∆, indicating the suppression was 

derived from the huge decrease in uncapped mRNAs after deleting SET1 in 

xrn1∆ background. Together, these data suggests the high level of uncapped 

mRNAs in xrn1∆ was maintained by Set1 and greatly reduced once Set1 was 

deleted in xrn1∆. 

RESULTS 

Large-cell phenotype of xrn1∆ cells was partially suppressed in set1∆xrn1∆ 

cells. 

I generated set1∆xrn1∆ double mutant yeast strain by mating set1∆ with 

xrn1∆ haploid cells and s porulating the diploid cells to get spores with correct 

genetic background. Mutant (set1∆, xrn1∆, set1∆ xrn1∆) and wild-type (WT) 

yeast cells were grown in YPD to mid-log phase and cell morphology was 

examined under microscope. As previously reported (Jorgensen et al., 2002), 

xrn1∆ cells were large, sometime mal-shaped (Figure III.1C, D). In contrast, 

consistent with prior studies we find only minor cell size and shape alterations in 

set1∆ cells (Figure III.1B). Interestingly, unlike xrn1∆ cells, set1∆xrn1∆ cells were  
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Figure III.1 

Cell morphology analysis of wild-type and mutant yeast strains. 

Yeast cells were grown in rich media to mid-log phase and taken pictures under 
microscope. 

(A) Wild-type cells 

(B) set1∆ cells  

(C) and (D) xrn1∆ cells 

(E) and (F) set1∆xrn1∆ cells. The scale bar indicates 50 μm. 



 107 

variable in sizes (Figure III.1E, F). Some double mutant cells were much smaller 

and WT-shaped comparing to xrn1∆ cells. The observation suggests the 

morphological defects in xrn1∆ cells were partially suppressed in set1∆xrn1∆ 

cells. 

 

set1∆xrn1∆ cells show additional growth defects than xrn1∆ cells. 

As xrn1∆mutants exhibit slow growth, I next asked if this slow growth phenotype 

was also suppressed in set1∆xrn1∆ cells. I grew overnight cultures of WT and 

mutant yeast cells and diluted the cultures to OD600=0.1. The diluted cultures 

started to grow at 30°C and the growth was measured by recording the 

absorption of the yeast cultures at OD600 every hour. The results showed xrn1∆ 

cells grew slower than WT while set1∆ cells grew similarly to WT cells (Figure 

III.2A). Surprisingly, set1∆xrn1∆ cells grew much slower than WT or any single 

mutant. By calculating the doubling time of each strain, I found the doubling time 

of set1∆xrn1∆ cells was ~160 minutes, which is much longer than any single 

mutant or WT (108 min) (Figure III.2B). Clearly the deletion of SET1 in 

xrn1∆ cells impaired cell growth, which suggests the mutant effect of SET1 

deletion on cell growth has long been masked in WT background and i s 

uncovered when cells lack Xrn1. 
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Figure III.2 

Growth analysis of wild-type and mutant yeast strains. 

(A) Growth curves of wild-type and mutant yeast strains were measured by 
recording optical density of yeast cultures in YPD at 600 nm. 

(B) Doubling time in minutes of wild-type and mutant yeast strains were 
calculated based on growth curves.  
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The general increase in mRNAs in xrn1∆ cells was suppressed in 

set1∆xrn1∆ cells. 

Histone H3K4 trimethylation has been shown to mark at the 5’end of active-

transcribing genes, and yet the removal of H3K4 methylation by deleting SET1 

results in very limited effects on gene expression. Given the genetic interactions 

between Set1 and X rn1 in cell morphology and gr owth rate, I next sought to 

identify whether Set1 and X rn1 affect similar target genes. A recent study 

discovered that there is a gl obal 3 f old increase in total mRNA abundance in 

xrn1∆ when total mRNAs were normalized to cell number by using an i nternal 

Schizosaccharomyces pombe (S.pombe) spike-in control (Sun et al., 2013). 

Taking a s imilar approach to enable global RNA abundance changes to be 

quantified, I freeze yeast cells after they were in mid-log phase growth. Before 

isolating polyA-RNAs, I mixed 1x108 S.cerevisiae cells with 7x105 S.pombe cells. 

RNA-seq libraries were prepared using isolated polyA-RNAs and deep 

sequenced to allow for genome-wide gene expression analysis. Consistent with 

prior studies, we find that xrn1∆ showed a gl obal increase in total 

mRNAs while, set1∆ exhibited far more subtle effects on a s ubset of specific 

mRNAs (Figure III.3). Interestingly, the global increase in total mRNAs present in 

xrn1∆ was suppressed in set1∆xrn1∆. The boxplot representing the distribution of 

fold changes to WT indicates that an average 2 fold increase in total mRNAs in 

xrn1∆ was decreased to an average WT level in set1∆xrn1∆ (Figure III.3D). This 

observation suggests Set1 plays a role in maintaining the high level total mRNAs  
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Figure III.3 

The mutant effect on genome-wide gene expression 

Genome-wide polyA-RNA abundance of wild-type and mutant yeast strains was 
measured by RNA-seq. The abundance for each gene was normalized by an 
internal S.pombe RNA control. 

(A) Scatter plot of RPKM in log2 scale for whole genome in WT vs set1∆ cells. 

(B) Scatter plot of RPKM in log2 scale for whole genome in WT vs xrn1∆ cells. 

(C) Scatter plot of RPKM in log2 scale for whole genome in WT vs 
set1∆xrn1∆ cells. 

(D) Boxplot of fold-change of polyA-RNA abundance in log2 scale for set1∆,  
xrn1∆, and set1∆xrn1∆ cells. 
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in xrn1∆. The observation that Set1 could suppress overexpression of total 

mRNAs in xrn1∆ is consistent with two potential classes of mechanism. First, it is 

possible that Set1 could protect excess mRNAs from RNA nucleases other than 

Xrn1 in xrn1∆ cells. Without Set1, these excess mRNAs would then degraded by 

other RNA nucleases in double mutant. Alternatively, Set1 could be responsible 

for a global overproduction of mRNAs which are normally degraded by Xrn1. The 

two possibilities were tested in the following experiments. 

 

Nuclear exosome complex does not degrade excess mRNAs in 

set1∆xrn1∆.  

In addition to the 5’ to 3’ exonuclease Xrn1, budding yeast also encode additional 

RNA degradation pathways. One of the primary RNA nucleases in many 

organisms including budding yeast is the nuclear exosome, which degrades 

RNAs from 3’ to 5’ end. I decided to test if Set1 function somehow antagonizes 

exosome function by deleting the core enzyme – Rrp6 – in set1∆xrn1∆ cells. The 

same approach which uses S.pombe internal control and RNA-seq was used to 

examine the effect of RRP6 deletion on total mRNAs in triple mutant 

set1∆xrn1∆rrp6∆. The fold change of total mRNAs in 7 different mutants (single, 

double, and t riple mutants) is presented in a heatmap (Figure III.4A). 

Surprisingly, set1∆rrp6∆ showed very limited changes in total mRNA abundance. 

Also, total mRNAs which increased globally in xrn1∆ were modestly suppressed 

in xrn1∆rrp6∆, instead of being further up-regulated. Most importantly, the triple  
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Figure III.4 

The effect of the deletion of RRP6 on set1∆xrn1∆ suppression 

(A) Genome-wide mRNA abundance of wild-type and mutant yeast strains was 
measured by RNA-seq. The abundance for each gene was normalized by an 
internal S.pombe RNA control. The fold changes of mRNA levels in log2 scale of 
mutant to wild-type shown as a heatmap. 

(B) Bar graph representing the whole-genome average of fold changes of mRNA 
abundance for mutant yeast strains while comparing to WT. 
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mutant, set1∆xrn1∆rrp6∆, still showed suppression of excess mRNA production 

which was comparable to the suppression in set1∆xrn1∆. These results show 

that the nuclear exosome does not play a role in Set1-dependent degradation of 

excess RNAs. Overall, the results suggest if the total mRNA suppression in 

set1∆xrn1∆ was carried out by a RNA nuclease, nuclear exosome is not the RNA 

nuclease. 

 

Rat1, nuclear paralog of Xrn1, was not the RNA nuclease that cause the 

suppression in set1∆xrn1∆.  

Since nuclear exosome was not the RNA nuclease responsible for the 

suppression, the next candidate is Rat1/Xrn2. Rat1 is homologous to Xrn1 and 

acts as a 5’ to 3’ exonuclease, but is typically localized to the nucleus rather than 

the cytoplasm, and its function can be complemented by directing Xrn1 into the 

nucleus (Johnson, 1997). Given that the lack of Xrn1 resulted in excess mRNAs, 

it makes Rat1 a potential candidate which can replace Xrn1 and degrade those 

mRNAs in set1∆xrn1∆ mutant. A similar approach was taken to test if Rat1 is the 

nuclease with some alteration. Rat1 is an essential protein, which means making 

a triple deletion mutant is impossible. Fortunately a temperature-sensitive (ts) 

allele of Rat1, rat1-1, was available, so I made a triple set1∆xrn1∆rat1-1 mutant 

along with set1∆rat1-1 and xrn1∆rat1-1 and collect RNA samples 2 hours after 

shifting to 37°C to remove functional Rat1. I also included S.pombe internal 

control and carried out RNA-seq to check RNA abundance in a genome-wide  
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Figure III.5 

The effect of the removal of Rat1 on set1∆xrn1∆ suppression 

(A) RNA samples of wild-type and m utant yeast cells was collected two hours 
after shifting the cultures to 37°C. Genome-wide mRNA abundance of wild-type 
and mutant yeast strains was measured by RNA-seq. The abundance for each 
gene was normalized by an internal S.pombe RNA control. The fold changes of 
mRNA levels in log2 scale of mutant to wild-type shown as a heatmap. 

(B) Bar graph representing the genome-wide average of fold changes of mRNA 
abundance for mutant yeast strains while comparing to WT. 
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scale. The result was presented in a heatmap showing the fold changes in total 

mRNA abundance for every gene in all mutants and a genome-wide average of 

fold-changes was shown in a bar  graph (Figure III.5). Given that rat1-1 is a ts 

mutant, although 2 hour incubation at 37°C would likely remove most functional 

Rat1, total RNAs was already suppressed before shifting to 37°C, so the 

suppression could only be r elieved if the suppression was not resulted from 

decreased RNA synthesis in set1∆xrn1∆. With an average 9 fold increase in total 

mRNA abundance in xrn1∆, total RNAs in xrn1∆rat1-1 and set1∆xrn1∆rat1-1 

were still both suppressed 5 or  6 fold comparing to xrn1∆. The results showed 

the removal of Rat1 did not affect the suppression in set1∆xrn1∆ so Rat1 is not 

the RNA nuclease. In fact, the experiments which tested if Rrp6 or Rat1 is the 

RNA nuclease argue against the hypothesis that the suppression in 

set1∆xrn1∆ involves an R NA nuclease. The negative results support another 

hypothesis that Set1 regulates transcription in xrn1∆ and after deleting SET1 

transcription was affected in set1∆xrn1∆ , which causes the suppression in total 

RNAs. 

 

Capped mRNA abundance changes in xrn1∆  are not suppressed in 

set1∆xrn1∆ double mutants 

Our triple mutant analyses argue against the hypothesis that transcripts revealed 

by loss of Xrn1 are lost in set1 mutants because Set1 is required to protect these 

transcripts from degradation. Although not definitive, the data instead suggest 
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that Set1 plays a pos itive role in transcription of excess transcripts that are 

typically degraded by Xrn1.  In order to investigate the role for Set1 in production 

of excess transcripts, we focus on an unusual phenotype of xrn1∆ yeast – the 

accumulation of excess uncapped mRNAs. Does Set1 specifically affect the 

abundance of capped or uncapped mRNAs? I modified a m ethod that was 

developed by Ni T et al. (Ni et al., 2010) that utilizes Tobacco acid 

pyrophosphatase (TAP) in order to map only capped transcripts genome-wide. 

Most reads from these libraries mapped to the 5’ end of genes, as indicated for 

HSP150 and CCW12 (Figure III.6A), confirming that this method works for 

mapping capped RNAs. Interestingly, both xrn1∆ and set1∆xrn1∆ showed up-

regulated capped RNAs (Figure III.6B). For HSP150, total RNAs increased 5 fold 

in xrn1∆ and decreased to 1.5 fold in set1∆xrn1∆, while capped RNAs only 

increased slightly in xrn1∆ and increased almost 2 fold in set1∆xrn1∆. CCW12 

behaved in a similar pattern as HSP150 but to an even greater extent. Previous 

studies have shown that most mRNAs in cells were capped (He and Jacobson, 

2001), which means for most genes, the abundance of total mRNAs is 

comparable to that of capped mRNAs. This equivalency is disrupted in the xrn1∆ 

mutant and par tially (CCW12) or mostly (HSP150) restored in the set1∆xrn1∆ 

double mutant. Comparing fold changes in total RNAs and capped RNAs 

indicates that the increased mRNAs in xrn1∆ were mostly uncapped, which is 

consistent with the literature. Surprisingly, the set1∆xrn1∆ mutant showed an  
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Figure III.6 

Single-gene analysis of set1∆xrn1∆ mutant effect on total and capped mRNAs. 

(A) The screenshot shows genome browser tracks for total RNAs (top 4 tracks) 
and capped RNAs (bottom 4 tracks) for two genes, HSP150 and CCW12. Four 
different yeast strains were shown in different color: wild-type in blue, set1∆ in 
magenta, xrn1∆ in purple, set1∆xrn1∆ in red. The level of total RNAs and capped 
RNAs was measured by RNA-seq and normalized by an internal S.pombe RNA 
control. The abundance of capped RNAs was presented by the sum of all capped 
RNAs within 250 bps upstream of ATG. 

(B) Bar graph representing the fold changes of mutant to WT in total RNAs and 
capped RNAs for HSP150 (left) and CCW12 (right). 
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increase in capped RNAs while the increase in total RNAs was greatly 

suppressed compared to xrn1∆. In other words, the suppression of mRNA 

abundance seen in the double mutant is due t o Set1 deletion preventing 

accumulation of massively upregulated uncapped RNAs in xrn1∆ mutants.  

 

The observation is true for most genes, when I compared total and c apped 

mRNA abundance between WT and mutants genome-wide. Capped RNAs were 

globally increased in xrn1∆ and set1∆xrn1∆ (Figure III.7A, B, C). The increase in 

abundance of capped mRNAs for all genes in xrn1∆ and set1∆xrn1∆ mutants are 

highly correlated (R square=0.96) (Figure III.7D). As in the single gene analysis, 

deletion of Xrn1 primarily affects uncapped RNA abundance, as most genes 

whose total expression is upregulated show only modest increases in the amount 

of capped RNA in this mutant (Figure III.7E). On the contrary, the fold changes in 

total RNAs and capped RNAs in set1∆xrn1∆ are more comparable (Figure 

III.7F&G). While total RNAs increase 9 fold on average in the xrn1∆ mutant, the 

capped RNAs increase only about 3 fold. As most mRNA in wild type cells has 

been shown to be capped, this indicates a massive increase in uncapped RNAs 

to account for an addi tional 6 fold increase in the total RNA abundance. Most 

importantly, these excess uncapped RNAs were specifically suppressed after 

deleting SET1 in xrn1∆ as set1∆xrn1∆ showed similar distribution in fold changes 

in total and capped RNA abundance. 
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Figure III.7 

Genome-wide analysis of set1∆xrn1∆ mutant effect on total and capped mRNA 
abundance. 

The level of total and capped RNAs were measured by RNA-seq and normalized 
by an internal S.pombe RNA control. The capped RNA abundance for each gene 
was presented by the sum of all capped RNAs within 250 bps upstream of ATG. 

(A) Scatter plot of capped RNA abundance in log2 for whole genome in WT vs 
set1∆ cells. 

(B) Scatter plot of capped RNA abundance in log2 for whole genome in WT vs 
xrn1∆ cells. 

(C) Scatter plot of capped RNA abundance in log2 for whole genome in WT vs 
set1∆xrn1∆ cells. 

(D) Scatter plot of capped RNA abundance in log2 for whole genome in xrn1∆ vs 
set1∆xrn1∆ cells. 

(E) Scatter plot of fold change in log2 in total RNAs vs capped RNAs in 
xrn1∆ cells. 

(F) Scatter plot of fold change in log2 in total RNAs vs capped RNAs in 
set1∆xrn1∆ cells. 

(G) Boxplot representing the fold changes in total RNAs (left three boxes) and 
capped RNAs (right three boxes) for three mutants, set1∆,  xrn1∆, and 
set1∆xrn1∆. 
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DISCUSSION 

I report here that deletion of SET1 in xrn1∆ background suppressed both the 

morphological and m RNA up-regulation phenotypes of xrn1∆, yet the 

set1∆xrn1∆ double mutant showed additional growth defect than xrn1∆. 

Suppression of the massive increase in total mRNA levels was due to a role for 

Set1 in protecting the increase in uncapped RNAs due t o Xrn1 deletion. This 

does not appear to be due to Set1 preventing degradation by other known RNA 

nuclease. However, in order to conclusively establish whether Set1’s role in 

uncapped mRNA accumulation is due to increased production of these RNAs or 

protection from degradation, it would be nec essary to measure synthesis and 

decay rates of these uncapped mRNAs.  

 

Set1 plays a role in maintaining the level of uncapped mRNAs in cells. 

Previous studies report Set1 deletion has little effect on total mRNA abundance. 

Surprisingly, here I found Set1 deletion in xrn1∆ background decreased the 

amount of total mRNAs while the level of capped mRNAs was maintained, 

suggesting uncapped mRNAs were suppressed in the double mutant. This may 

be the reason why the set1∆ mutant effect is hidden in an o therwise wild type 

background. Only when uncapped RNAs would be accumulated, in 

xrn1∆ background, is the decrease in uncapped mRNAs after deleting SET1 

distinguishable. Recent studies have identified uncapped transcripts in 
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Arabidopsis and human cells (Gregory et al., 2008; Jiao et al., 2008; Karginov et 

al., 2010; Mercer et al., 2010). It is still not clear whether these uncapped 

transcripts were capable of being recapped and translated into proteins or if they 

are intermediates in the decay process. Nonetheless, It would be interesting to 

characterize the uncapped transcripts in yeast cells and test if Set1 were 

required for their existence. 

 

Uncapped mRNAs might be functional. 

It should be not ed that while total mRNAs were suppressed in 

set1∆xrn1∆, presumably due to decrease in uncapped mRNAs, the double 

mutant actually showed additional growth defects and had s ignificantly longer 

doubling time than xrn1∆ cells. The observation suggests the additional growth 

defect may result from decrease in uncapped mRNAs. If the uncapped mRNAs 

were intermediate product in the decay process, why would reduction in 

nonfunctional, intermediate product make cells sicker? Recent research has 

identified a new  pathway – cytoplasmic recapping, in which some uncapped 

mRNAs were re-capped in the cytoplasm and translated into proteins 

(Schoenberg and Maquat, 2009). Although it is unclear whether uncapped 

mRNAs in xrn1∆ can be r e-capped and t ranslated, it is possible that the 

uncapped mRNAs in xrn1∆ contribute to cell growth. Hence, the loss of the 

uncapped mRNAs in set1∆xrn1∆ result in defective cell growth. 
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MATERIALS AND METHODS 

Yeast strains and growth conditions 

set1∆xrn1∆ double mutant was generated by mating haploid strain set1∆ with 

xrn1∆. The sporulation was carried out for the diploid yeast cells for 4 days at 

room temperature. The spores were dissected and assayed for the genetic 

background.   

 

S.cerevisiae strains were grown in YPD and S.pombe cells were grown in YES. 

When yeast cells grew to mid-log phase (OD600 between 0.4 and 0.6) at 30°C, 

yeast cultures were centrifuged for 1 minute and the media was removed. Yeast 

cells were quickly resuspend in 1ml RNAlater, frozen in liquid nitrogen and stored 

at -80 °C. 

 

RNA-seq 

Cell number of S.cerevisiae and S.pombe cells was calculated manually using 

hemocytometer. 1x108 S.cerevisiae cells were mixed with 7x105 S.pombe cells. 

Total RNAs from the mixed yeast cells were extracted from yeast cells using 

bead beating and TRIzol following manufacture’s instructions. 100 ng DNase I-

treated total RNAs were used for RNA-seq. RNA-seq was performed according 

to the dUTP 2nd strand protocol described in Levin et al., 2010 (Levin et al., 

2010). 
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Capped RNA-seq 

Capped RNA-seq was carried out following the method developed by Ni T et al., 

2010 (Ni et al., 2010) with some modifications. rRNAs from 5ug DNase I-treated 

total RNAs from the mixed yeast cells were depleted using Ribo-Zero magnetic 

gold kit (MRZY1324). 100ng rRNA-depleted total RNAs were treated with CIP 

enzyme to remove 5’ phosphates and treated with TAP (Epicentre) to remove the 

cap from mRNAs, which left 5’ phosphate at the 5’ end of mRNAs. A 5’ linker was 

ligated to TAP-treated total RNAs and reversed transcribed with random 

hexamers carrying an adapt or sequence. The cDNAs with 5’ linker and 3’  

adaptor were amplified using Illumina pair-end primers. The libraries were 

sequenced by NextSeq desktop sequencer. 
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CHAPTER IV 

CONCLUSIONS AND PERSPECTIVES 

Chromatin regulators play critical roles in regulating the kinetics of gene induction 

and repression. Out of the 202 mutants in the screen presented in Chapter I, 

most chromatin regulator mutants exhibit defects in gene i nduction and/or 

repression during stress. This observation generalizes the role of chromatin 

regulators in dynamic gene expression. Based on their responsiveness to stress, 

the mutants group into hyper- and hypo-responsive mutant clusters. The 

induction and repression of genes are delayed in hypo-responsive mutants. To 

the contrary, hyper-responsive mutants activate and repress genes too quickly or 

too much. Notably, genes whose induction was severely affected in hyper-

responsive mutants tend to have highly nucleosome-occupied promoters, 

suggesting their response to stress may result from their mutant effect on 

nucleosome stability in the promoters. 

 

The correlation matrix for the histone mutants and gene del etion mutants 

provides invaluable information for novel chromatin pathways. We compute 

correlation matrices depending on the similarity between mutant effects on 

dynamic gene expression in a stress response. Because the matrix successfully 

validates known substrate-enzyme and p rotein complex relationships, one c an 

use it to predict new interactions between histone modifications and chromatin 
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regulators. For example, H3K18R is highly correlated with H3K4A and H3S10A, 

suggesting H3K18 acetylation, H3K4 methylation, and H 3S10 phosphorylation 

may function in the same pathway. Genome-wide mapping of H3K18 acetylation 

in yeast and human cells reveals its enrichment at 5’ end of  active-transcribing 

genes (Wang et al., 2008; Weiner et al., 2015), which overlaps with H3K4 

trimethylation. These three mutants share the failure to fully repress genes 

involved in ribosome biogenesis during stress. Interestingly, a r ecent study 

showed that H3K18 deacetylation down-regulated the small ribosomal protein 

gene, RPS7, in human cancer cells (Pandey and K umar, 2015). This finding 

suggests the regulation of ribosomal protein genes (RPGs) by H3K18 acetylation 

and H3K4 trimethylation is conserved in yeast and h uman. The key question 

here is to determine if the three modifications crosstalk to one another to regulate 

RPGs.  

 

Other interesting interactions found in the correlation matrix await further 

characterization. For instance, H3K27Q is highly correlated with H3S28A 

(R2=0.66), while H3K9Q does not correlated with H3S10A. Notably, the 

functional difference between the two pairs has also been reported in literature. 

H3K9 modifications were selectively maintained by H3S10 phosphorylation in 

mitotic cells, as H3K27-S28 did not show the same pattern (Jeong et al., 2010). 

Both observations indicate there are more than one type of interactions between 

lysine-serine pairs on the histones. 
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Set1 may play a role in regulating synthesis or stability of uncapped 

mRNAs 

Total mRNA abundance in xrn1 null mutant was recently found to be globally up-

regulated. Interestingly, genome-wide analysis of mRNA abundance revealed 

loss of Set1 in xrn1 null mutant suppressed the increase in total mRNA 

abundance. Further analysis excluded the possibility that neither nuclear 

exosome nor Rat1 was involved in the same pathway. To my surprise, by 

assaying capped mRNA levels in xrn1∆ and double mutant, I found capped 

mRNAs abundance was correlated in both mutants. The observation indicates 

the gain in total mRNA abundance in xrn1∆ that was suppressed in double 

mutant was due to changes in the level of uncapped mRNAs. To conclude, the 

results suggest Set1 may function in maintaining the level of uncapped mRNAs 

by regulating the synthesis or stability of uncapped mRNAs. 

 

Direct evidence is required to show Set1 affects the level of uncapped mRNAs. 

This would require selectively isolating and sequencing these uncapped RNAs. 

Alternatively, the level of uncapped RNAs can be det ermined after depleting 

capped mRNAs by an antibody specifically recognized cap. Another critical 

question is whether the regulation of uncapped RNAs by Set1 is H3K4 

methylation-dependent. One would need to mutate H3K4 in xrn1∆ background in 

order to answer the question. 
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If uncapped RNAs were actively maintained in WT cells, this would imply that 

they have a function. Studies have shown some uncapped transcripts can be re-

capped in the cytosol and translated into proteins (Schoenberg and Maquat, 

2009). Therefore it would be enl ightening to determine the protein levels in 

xrn1∆ and set1∆xrn1∆. Since both mutants have similar level of capped mRNAs, 

the difference in protein level would indicate if uncapped RNA were capable of 

being translated. Ribosome footprinting for isolated uncapped RNAs can also be 

used to test the same idea. Set1 may affect the synthesis or stability of uncapped 

RNAs. To distinguish between the two possibilities, metabolic labeling of 

uncapped transcripts can measure their synthesis and decay rates at the same 

time. The above experiments could all be us ed to establish a r ole for Set1 in 

regulating uncapped mRNAs.      

 

Genome wide analysis of dynamic gene r egulation is a pow erful tool for 

discovering new interactions and r oles for chromatin regulators. It opens up 

several avenues for further investigation, such as the link between Chd1 and 

H3K36 methylation. While pursuing the role of Set1 in RPG regulation, I 

observed that Set1 may be involved in maintaining the level of uncapped RNAs. 

Whether this is due to a r ole in synthesis or decay has not been conclusively 

establish, although I was able to rule out a role for the most likely candidates in a 

degradation pathway. It is also unclear whether Set1 maintains uncapped mRNA 

level via its methyltransferase activity. This work shows a gener al role for 
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chromatin regulators in dynamic gene regulation that could be achieved through 

many mechanisms. 
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