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a b s t r a c t

Cones are the primary photoreceptor (PR) cells responsible for vision in humans. They are metabolically
highly active requiring phosphoinositide 3-kinase (PI3K) activity for long-term survival. One of the
downstream targets of PI3K is the kinase mammalian target of rapamycin (mTOR), which is a key
regulator of cell metabolism and growth, integrating nutrient availability and growth factor signals. Both
PI3K and mTOR are part of the insulin/mTOR signaling pathway, however if mTOR is required for long-
term PR survival remains unknown. This is of particular interest since deregulation of this pathway in
diabetes results in reduced PR function before the onset of any clinical signs of diabetic retinopathy.
mTOR is found in two distinct complexes (mTORC1 & mTORC2) that are characterized by their unique
accessory proteins RAPTOR and RICTOR respectively. mTORC1 regulates mainly cell metabolism in
response to nutrient availability and growth factor signals, while mTORC2 regulates pro-survival
mechanisms in response to growth factors. Here we analyze the effect on cones of loss of mTORC1,
mTORC2 and simultaneous loss of mTORC1 & mTORC2. Interestingly, neither loss of mTORC1 nor
mTORC2 affects cone function or survival at one year of age. However, outer and inner segment
morphology is affected upon loss of either complex. In contrast, concurrent loss of mTORC1 and mTORC2
leads to a reduction in cone function without affecting cone viability. The data indicates that PI3K
mediated pro-survival signals diverge upstream of both mTOR complexes in cones, suggesting that they
are independent of mTOR activity. Furthermore, the data may help explain why PR function is reduced in
diabetes, which can lead to deregulation of both mTOR complexes simultaneously. Finally, although
mTOR is a key regulator of cell metabolism, and PRs are metabolically highly active, the data suggests
that the role of mTOR in regulating the metabolic transcriptome in healthy cones is minimal.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Photoreceptors (PR) are among the highest energy consuming
cells in the human body (Ames, 2000). Two reasons contribute to

the fact that PRs have such a high energy demand. First, like all
neurons PRs need large quantities of ATP to re-equilibrate light
evoked membrane potentials (Ames, 2000). Second, because PRs
shed their outer segments (OS) daily (Young, 1971) they need to
resynthesize their lost lipids and proteins. The PR-OS is so densely
packed (Bownds et al., 1971; Lisman and Bering, 1977; Young, 1971)
to optimize absorption of light photons that in average, the lipid
and protein content of a PR is 10e15� higher than that of a normal
cell (Lowry et al., 1951; Scott et al., 1988; Whikehart, 2003). Since
PRs shed approximately 10% of their OSs every day, the lipid and
protein content that needs to be re-synthesized amounts roughly to
that of a cell division per day, suggesting that the metabolic profile
of PRs should at least in part be similar to that of dividing cells.
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Dividing cells have a high glycolytic rate and diverge large
amounts of glycolytic intermediates into the pentose phosphate
pathway (PPP) to meet their anabolic needs (Vander Heiden et al.,
2009) such as NADPH production for fatty acid synthesis
(DeBerardinis et al., 2008). The high glycolytic rate is accompanied
by lactate production and secretion in the presence of ample oxy-
gen, a phenomenon known asWarburg effect (Vander Heiden et al.,
2009). Such metabolic adaptations that allow cells to proliferate are
regulated largely by mTORC1, which controls the expression of a
gene regulatory network including glycolysis, the PPP, and lipid
biosynthesis (Duvel et al., 2010). Similar to dividing cells, most of
the glucose taken up by PRs does not enter the Krebs cycle (Winkler
et al., 2004). Photoreceptors secrete large amounts of lactate
(Chertov et al., 2011; Winkler et al., 2003, 2004) in the presence of
almost arterial oxygen concentrations (Bill et al., 1983) indicating
that PRs as well have a high glycolytic flux to meet their anabolic
needs. Thus, the similarities between PR metabolism and that of
proliferating cells suggest that mTORC1 plays a central role in PRs
too.

In contrast to mTORC1, which alters its activity in response to
nutrient availability and growth factor signals, mTORC2 activity is
regulated mainly by growth factors. A key component that medi-
ates growth factor signals to both mTOR complexes is the second
messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3),
which synthesis depends on PI3K activity. A recent report showed
that loss of the p85a regulatory subunit of PI3K in cones results in
cone death over time (Ivanovic et al., 2011) and accelerates cone
death in a mouse model of retinitis pigmentosa (Rajala et al., 2013).
We showed that systemic administration of insulin, which activates
PI3K, promotes cone survival in retinitis pigmentosa (Punzo et al.,
2009). Additionally, we showed that constitutively activated
mTORC1 doubles the number of surviving cones in retinitis pig-
mentosa by increasing the expression of key metabolic mTORC1
target genes that increase NADPH production, while loss of
mTORC1 doubles the speed at which cones die during disease
(Venkatesh et al., 2015). The role of insulin/PI3K/mTOR signaling in
cones is further exemplified by the fact that patients suffering from
diabetes mellitus, which causes systemic deregulation of insulin
signaling (Zoncu et al., 2011), show reduced basal retinal insulin
signaling (Reiter et al., 2006) and visual dysfunction of rods and
cones before the onset of any clinical changes associated with
diabetic retinopathy (Jackson and Barber, 2010). While these find-
ings highlight the importance of this signaling pathway to PR
function and survival, the role of mTOR, which integrates growth
factor signals and nutrient availability, remains unexplored in non-
diseased cones. Little is known how different growth factor signals
converge and regulate the metabolic demands of one of the body's
most active cell type.

To dissect the role of the two mTOR complexes in cones we
made use of the Cre/lox (Gu et al., 1994) system by crossing a cone
specific Cre driver-line (Le et al., 2004) to a line carrying a condi-
tional knockout allele for RaptorC/C, thereby generating loss of
mTORC1 (Bentzinger et al., 2008) activity, and a line carrying a
conditional knockout allele for RictorC/C, causing loss of mTORC2
(Bentzinger et al., 2008) activity. Finally, we generated a line car-
rying both conditional alleles and the cone-specific Cre resulting in
loss of all mTOR activity. Surprisingly, neither loss of RAPTOR or
RICTOR had a significant effect on cone function and survival in
one-year-old mice. In contrast concurrent loss of RAPTOR and
RICTOR resulted in reduced cone function without affecting cone
viability at one year of age. The data shows that PI3K mediated pro-
survival signals in cones do not require mTOR activity. It further
suggests that even though PR metabolism is similar to that of
dividing cells, the metabolic transcriptome that is regulated by
mTORC1 in proliferating cells is less dependent on mTORC1 activity

in healthy cones, while loss of mTORC1 in retinitis pigmentosa
plays a crucial role in helping cones to adapt to the metabolic
deficits caused by the loss of rods. Finally, it suggests that the
reduction in PR function seen in patients suffering from diabetes
mellitus may in part be caused by simultaneous deregulation of
both mTOR complexes.

2. Material and methods

2.1. Animals

All procedures involving animals were in compliance with the
ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research. Mice were maintained on a 12-h light/dark cycle with
unrestricted access to food and water. Lighting conditions were
kept constant in all cages with illumination ranging between 10
and 15 lux depending on the level of a cage within the rack. Wild
type mice (C57Bl/6J) and the Ai9 Cre reporter line (Madisen et al.,
2010) were purchased from Jackson Laboratory. The M-opsin Cre
(M-Creþ), RaptorC/C, and RictorC/C mice have been described previ-
ously by Le et al. (2004), Bentzinger et al. (2008) and Bentzinger
et al. (2008) respectively. Genotyping was performed as described
in the original publications (Bentzinger et al., 2008; Le et al., 2004).
All mice were genotyped for the absence of the retinal degenera-
tion 8 (rd8) allele, which harbors a mutation in the Crumbs 1 gene
(Mattapallil et al., 2012).

2.2. Electroretinography (ERG) and Funduscopy

ERG was performed as described in Li et al. (2013) using the
Espion3 console in conjunction with the ColorDome (Diagnosys
LLC, Lowell, MA, USA). In brief, mice were dark-adapted overnight
for scotopic ERGs and anesthetized by an intraperitoneal injection
of a ketamine/xylazine (100 mg/kg and 10 mg/kg) mixture. One
drop of each, Phenylephrine (2.5%) and Tropicamide (1%) was
applied for pupil dilation 10 min prior to recording. Animals were
kept on a warming plate during the entire ERG procedure to
maintain the body temperature at 37 �C. The dark-adapted ERG
protocol consisted of five steps with increasing stimulus strengths
from 0.009 to 100 cd s/m2, with a mixed white light (white 6500 K)
produced by a Ganzfeld stimulator. All flashes were presented
without background illumination and constant interstimulus in-
tervals of 5 s for dim flashes and up to 30 s for bright flashes to
maintain dark adaptation. Flash frequency was 0.07 Hz for bright
flashes and up to 0.5 Hz for dim flashes. Band-pass filtering was
applied from 0.312 to 300 Hz. Averages ranged from 10 trials for
dim flashes to five trials for bright flashes. Photopic ERGs were
performed without prior dark adaptation using the anesthesia
protocol used for scotopic ERGs. Photopic ERGs were recorded after
light adaptationwith a background illumination of 34 cd/m2 (white
6500 K) for 8 min. Each recording consisted of 10 single flash of
10 cd s/m2. Five trials were averaged for single-flash responses.
Both, scotopic and photopic ERGs were performed with a gold wire
electrode. For photopic ERGs a minimum of 6 animals per time
point were used except at 12 months of age where a minimum of 5
animals were used. Scotopic ERGs were performed with a mini-
mum of 5 animals. Funduscopy was performed as described in
Venkatesh et al. (2013) utilizing the Micron III camera (Phoenix
Research Labs, Pleasanto, CA, USA).

2.3. Histological methods

Antibody stainings on retinal cryo-sections and retinal flat
mounts were performed as described previously (Punzo et al.,
2009; Venkatesh et al., 2013). Retinal flat mount images for the
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MW OPSIN expression analyses were acquired by tiling individual
images taken at 16� (Leica DM5500) over the entire retinal sur-
face area with an automated scanning stage. Retinal explants
were performed as described (Punzo et al., 2009) and retinas
were cultured for 30 min in DMEM (±insulin at 0.03 Units/ml
culture media) prior to processing the tissue for antibody stain-
ings. The following primary antibodies and concentrations were
used: mouse a-Cre (1:500) Covance (Cat# MMS-106P); rabbit a-
mw-opsin (1:300) Millipore (Cat# AB5405); goat a-sw-blue
(1:500) Santa Cruz (sc-14365); rabbit a-Cone arrestin (1:300)
Millipore (Cat# 15282); rabbit a-Cone transducin (gamma sub-
unit) (1:1000) Vadim Y. Arshavsky, Duke University, Durham, NC,
USA; rabbit a-p-AKT473 (1:1000) (Cat# 4060); rabbit a-p-Ndrg1346
(1:2000) (Cat# 5482); rabbit a-pS6235 (1:1000) (Cat# 2211);
rabbit a-raptor (1:200) (Cat# 2280); rabbit a-rictor (1:200) (Cat#
2140), all from Cell Signaling; mouse a-raptor (1:200) Millipore
(Cat# 05-1470); mouse a-rictor (1:200) Novus Biologicals (Cat#
NBP1-51645); Fluorescein labeled peanut agglutinin lectin (PNA)
(1:500) Vector Laboratories (Cat# FL-1071). All secondary anti-
bodies (donkey) were purchased from Jackson ImmunoResearch
and are purified F(ab)2 fragments that display minimal cross
reactivity to other species. Transmission Electron Microscopy
(TEM) was performed as described (Li et al., 2013). In brief, mouse
eyes were enucleated and fixed in 2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer (pH 7.2) for 20 min at RT. Then, cornea
and lens was removed and eyecups were fixed overnight at 4 �C
in the same fixative. Eyecups were washed three times with 0.1 M
sodium cacodylate buffer and postfixed in 1% osmium tetroxide/
0.1 M cacodylate buffer, dehydrated through an ethanol gradient
to 100%, and embedded in epoxy resin. Semi-thin sections (1 mm)
and ultrathin sections (70 nm) were cut with an ultramicrotome
(Leica Reichart-Jung; Leica Microsystems) and stained with tolu-
idine blue or 2% uranyl acetate and 4% lead citrate respectively.
Semi-thin sections were visualized with a Leica DM5500 micro-
scope and ultrathin sections were visualized with a transmission
electron microscope (Philips CM-10; Philips, Eindhoven, The
Netherlands).

2.4. Quantification of cone survival

Antibody staining and image acquisition was performed as
described above. Retinas were divided into 2 sectors with radiuses
of 1 mm and 1.5 mm, respectively (Fig. 6B). Cones were counted
manually in 4 squares per sector, each square measuring
40,000 mm2, to determine the average cone density per sector and
genotype (cones/mm2). Only two retinas per genotype were
analyzed as no difference was observed between the two different
genotypes.

2.5. Molecular methods

For Western blotting retinas of one month old Creþ and Cree

animals were pooled and homogenized by sonication in Ripa buffer
containing protease and phosphatase inhibitors (Roche; cOmplete:
Protease inhibitor cocktail; and PhosStop: Phosphatase inhibitor
cocktail). Protein concentration was assessed (BioRad: Protein
Assay Kit) and 10 mg of protein was loaded per lane. Proteins were
separated on a 4e20% Tris-Glycine gradient gel (BioRad) and
transferred onto a nitrocellulosemembrane. Incubationswere done
according to the recommendations of the antibody manufacturer.
Signal was detected with SuperSignal West Dura (Pierce). The
following primary antibodies were used: rabbit a-raptor (1:1000)
(Cat# 2280); rabbit a-rictor (1:1000) (Cat# 2140) both from Cell
Signaling; mouse a-b-actin (1:2000) Sigma (Cat# A5316); mouse a-
Cre (1:2000) Novagen (Cat# 69050-3); rabbit a-mw-opsin (1:300)

Millipore (Cat# AB5405); goat a-sw-blue (1:500) Santa Cruz (sc-
14365); rabbit a-Cone arrestin (1:300) Millipore (Cat# 15282);
rabbit a-Cone transducin (gamma subunit) (1:1000) Vadim Y.
Arshavsky, Duke University, Durham, NC, USA; the secondary
antibody (HRP coupled, Santa Cruz) was used at a dilution of
1:10,000. PCR analysis was performed on genomic DNA from ret-
inas of one month old Creþ and Cree animals using a standard DNA
extraction method for genotyping. PCR reactions were performed
as described by Bentzinger et al. (2008) to detect the conditional
allele with primer 1 þ 2 and the recombined allele with primers
1þ3. The presence of the Cre allele was detected as described by Le
et al. (2004).

3. Results

3.1. Raptor and Rictor are efficiently deleted in cones

To study the role of the two mTOR complexes in cones, the
Raptor (Bentzinger et al., 2008) and Rictor (Bentzinger et al., 2008)
conditional knockout alleles were crossed to a cone-specific Cre
driver-line that expresses CRE recombinase under the control of the
human medium and long wave length promoter (Le et al., 2004)
(hence referred to as M-Creþ). The new lines, M-Creþ/e_RaptorC/C,
M-Creþ/e_RictorC/C, and M-Creþ/e RaptorC/C_RictorC/C were then
backcrossed to their respective Cree parent lines RaptorC/C, RictorC/C

and RaptorC/C_RaptorC/C to generate Creþ and Cree littermates that
were used for analysis. Both conditional knockout alleles used here
have been used successfully in previous studies to address the role
of mTORC1 and mTORC2 in various tissues (Bentzinger et al., 2008;
Cybulski et al., 2009; Romanino et al., 2011; Thomanetz et al., 2013;
Venkatesh et al., 2015). Similarly, the M-Creþ line has been used
successfully to study the role of various genes in cones (Busskamp
et al., 2014; Crouse et al., 2014; Ivanovic et al., 2011; Venkatesh
et al., 2015). To verify that CRE recombinase is active in all cones
across the retina we first crossed the M-Creþ/e line to the Ai9 Cre-
reporter line (Madisen et al., 2010), which expresses tdTomato
upon CRE recombinase expression. The uniform distribution of
tdTomato in Creþ retinas (compare Fig.1A and B to Fig.1CeE) shows
that CRE recombinase is active across the entire retina suggesting
that loss of the conditional alleles should occur uniformly. To
confirm that CRE expression resulted in recombination of the
conditional knockout alleles of Raptor and Rictor, we performed a
qualitative PCR analysis with genomic DNA isolated from retinas of
one month old Creþ and Cree littermates. In both cases the
recombined alleles were identified (Fig. 1F); however, the sensi-
tivity of PCR makes it difficult to address the efficiency of
recombination.

To test for efficient recombination of the Raptor and Rictor alleles
in cones we first performed an immunoblot analyses with total
retinal extracts. The analysis revealed no appreciable decline in the
protein levels of RAPTOR and RICTOR upon loss of either gene in
cones (sFig. 1A). The result is explained by the fact that cones ac-
count for only ~3% of the total number of cells in the retina (Cepko
et al., 1996; Jeon et al., 1998), thus loss of ubiquitously expressed
proteins such as RAPTOR and RICTOR is difficult to detect by a
technique that uses whole retinal extracts. Immunofluorescence
analyses on retinal cross section with two different antibodies
directed against RAPTOR and two antibodies directed against RIC-
TOR did not reveal any specific signal either (sFig. 1B and C) making
it impossible to test for direct loss of RAPTOR or RICTOR in cones.
However, since loss of Raptor and Rictor is used to ultimately induce
loss of mTORC1 and mTORC2 activity we thought to test if kinase
activity is abolished in cones by analyzing the phosphorylation
status of their respective downstream targets. The most reliable
biomarker to assess mTORC1 activity is ribosomal protein S6. S6 is
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phosphorylated by ribosomal protein p70 S6 kinase (S6K), which is
activated by mTORC1. One recently identified biomarker for
mTORC2 activity is N-myc downstream regulated 1 (Ndrg1)
(Garcia-Martinez and Alessi, 2008; Murray et al., 2004). Ndrg1 is
directly phosphorylated by serum- and glucocorticoid-induced ki-
nase 1 (SGK1), which is directly activated by mTORC2. The only
other two mTORC2 targets known are AKT phosphorylated on
Ser473 and protein kinase C (PKC) (Guertin et al., 2006; Zoncu et al.,
2011).

To test if mTORC1 andmTORC2 kinase activity is lost in coneswe

performed immunofluorescence analyses on retinal cross sections
of wild-type mice for p-AKT473, p-NDRG1346 and p-S6235. None of
the three proteins showed any appreciable signal in PRs, while
immunoreactivity was readily detectable in the inner nuclear layer
(INL) and ganglion cell layer (GCL) (Fig. 2). This finding prompted us
to test if phosphorylation of these mTOR targets could be induced
in cones by activation of the pathway through insulin. To that end
retinas were cultured in regular DMEM media in the presence or
absence of insulin for 30min. This led to phosphorylation of NDRG1
and S6 in PRs while AKT473 phosphorylation did not change. The
finding is consistent with the negative feedback loop between
mTORC1 and mTORC2, in which S6K1, which is activated by
mTORC1, reduces mTORC2 activity towards AKT473 but not SGK1
and PKC (Dibble et al., 2009; Julien et al., 2010; Treins et al., 2010).
As expected the increase in phosphorylation of NDRG1 and S6 was
higher in retinas cultured in the presence of insulin than in retinas
cultured for 30 min in DMEM alone. However, because retinas
cultured in DMEM alone showed less phosphorylation of NDRG1
and S6 in rods, the signal in cones was muchmore apparent (Fig. 2).
Thus we performed our mTOR activity assay in retinas that were
cultured only in DMEM. As seen on retinal flat mounts deletion of
Raptor and simultaneous deletion of Raptor and Rictor completely
abolished the increase of p-S6 in cones of retinas cultured for
30 min in DMEM alone. In contrast, deletion of Rictor alone did not
abolish the p-S6 signal. Together the data indicate that Raptor was
indeed efficiently deleted in all cones (Fig. 3A). Similarly, as seen in
retinal cross section the increase in p-NDRG1 was lost in cones
upon deletion of Rictor and deletion of Rictor and Raptor but was
still present upon deletion of Raptor alone indicating that Rictorwas
also efficiently deleted in cones (Fig. 3B). Moreover, we recently
showed using the same Cre-driver line and the same Raptor and
Rictor conditional alleles that in retinitis pigmentosa loss of
RAPTOR in cones abolishes S6 phosphorylation evenwhenmTORC1
is constitutively activated. Similarly, loss of RICTOR prevents the
phosphorylation of AKT473 in cones, a phosphorylation of AKT in
cones that occurs as the disease progresses (Venkatesh et al., 2015).
In summary, the data presented in Figs. 1e3 combined with our
previously reported data suggest that Raptor and Rictor are effi-
ciently deleted in cones.

3.2. Loss of mTORC1 and mTORC2 but not mTORC1 or mTORC2
affects cone function

To evaluate cone function upon loss of Raptor and/or Rictor
electroretinography (ERG) analyses were performed over a time
period of one year. Interestingly, neither loss of Raptor or Rictor
resulted in a significant decline in cone function as seen by the
photopic b-wave recordings at one year of age (Fig. 4A, C and G).
However, in both cases there was a slight reduction in cone
function that was statistically significant prior to one year of age.
The reduction was observed at 4 months of age when Raptor was
lost and at 2 months of age when Rictor was lost. No other time
point showed a statistically significant difference between Creþ

and Cree littermates. In contrast, deletion of both Raptor and
Rictor led to a steady decline in PR function (Fig. 4E and G) and by
1 year of age the b-wave amplitude in Cree animals was 2.4 times
higher than that recorded in Creþ mice (Fig. 4H). Analyses of the
photopoic a-waves, which are a direct readout of PR function did
not show any statistically significant differences around the time
points at which loss of RAPTOR or RICTOR alone showed a decline
in the b-waves (sFig. 2A and C). This is likely due to the fact that
a-waves in mouse are rather small due to the small number of
cones. B-waves, which represent bipolar responses due to
changes in the release of glutamate by PRs, are thus a more
reliable readout for cone function as they amplify the rather small

Fig. 1. Recombination of Raptor and Rictor alleles. (A, B) Retinal flat mounts showing
Cre recombinase activity across all retinal cones by expression of tdTomato (red signal).
(A) Shows only tdTomato signal while (B) shows colocalization between tdTomato and
cone arrestin (green signal). Boxed areas below show higher magnifications demon-
strating that tdTomato is in cones as it is colocalized with cone arrestin (green signal).
(C) Cree control retina stained for cone arrestin (green signal) showing no tdTomato
signal (absence of red signal in C). (D, E) Higher magnification of an area in (C) showing
the red channel (D) for tdTomato and green channel (E) for cone arrestin separately.
The absence of signal in (D) shows that tdTomato is not expressed when Cre is not
present. (F) Qualitative PCR analysis with genomic DNA extracted from retinas of one
month old Cree and Creþ littermates and from C57Bl/6J control mice. Primers 1 þ 2
detect the conditional alleles that are absent in C57Bl/6J, while primers 1 þ 3 detect the
recombined alleles only in extracts from Creþ retinas (lane 2 and 6).
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signal of cones. In this regard, statistically significant a-wave
changes were observed upon simultaneous loss of Raptor and
Rictor (sFig. 2E) as the percentage in b-wave changes were much
more apparent upon loss of both genes. Scotopic ERG recordings
at one year of age showed a widening gap between Cree and Creþ

animals upon concurrent loss of Raptor and Rictor at the two
highest flash intensities suggesting that rod function was altered
(Fig. 4B, D and F; sFig. 2B, D and F). At the highest flash intensity
the difference was almost statistically significant (p ¼ 0.054). The
result confirms the reduction in photopic ERGs upon loss of both
alleles since at these high light intensities cones contribute to the
ERG recordings even under scotopic conditions. To test if CRE
recombinase itself had an effect on PR function, control ERGs
were performed on M-Creþ animals. Rod and cone ERG recordings
were normal at one year of age (Fig. 4A and B; sFig. 2A and B)
indicating that the phenotypes observed are not due to expres-
sion of the CRE protein in cones. In summary, the steady increase
in the ratio of the photopic b-wave amplitude over time between
Cree and Creþ animals upon simultaneous loss of Raptor and
Rictor indicates that both, mTORC1 and mTORC2, are required to
maintain cone function. This suggests that both alleles have been
efficiently recombined in cones since loss of either allele alone
does not alter the b-wave amplitude ratio between Cree and Creþ

animals over time.

3.3. Expression of cone specific proteins but not cone number is
affected upon loss of Raptor and/or Rictor

To determine if the decline in PR functionwas caused by a loss of
cones we performed a fundus analysis and an immunofluorescence
analysis on retinal cross sections at 1 year of age. The fundus
analysis showed no significant difference between Creþ and Cree

littermates of all three genotypes suggesting that the overall health
of the retina and adjacent retinal-pigmented epithelium (RPE) was
not affected (sFig. 3). The immunofluorescence analyses on retinal
cross-sections for 4 cone specific genes including cone Arrestin,
cone Transducin-g, Mw-opsin (medium wavelength opsin) and Sw-
opsin (short wavelength opsin) showed that the cone OSs staining
appeared less defined and uniform in Creþ animals when compared
to Cree control mice (Fig. 5) suggesting some OS abnormalities.
Additionally, concurrent loss of Raptor and Rictor caused also a
reduction in the expression of the 4 aforementioned proteins in
some cone OSs (Fig. 5). Because immunofluorescence is not as
quantitative we performed a western blot analysis at 1 year of age
to test if the expression of these 4 cone-specific proteins was indeed
downregulated. The immunoblot analysis showed that cone
ARRESTIN and SW-OPSIN were drastically reduced upon loss of
Raptor and Rictor and slightly reduced upon loss of Raptor alone
while TRANSDUCIN andMW-OPSIN showed only a slight reduction

Fig. 2. Immunofluorescence analysis for mTOR target genes. (AeC) Immunofluorescence analysis on retinal section of C57Bl/6J mice for p-AKT473 (A), p-NDRG1346 (B) and p-S6235
(C) (red signal) showing that most of the immunoreactivity is in the ganglion cell layer (GCL) and the inner nuclear layer (INL) and absent from the outer nuclear layer (ONL) (first
column: 50% of the PNA and nuclear DAPI signal has been removed to better visualize the protein of interest). After culturing retinas for 300 in DMEM with insulin (second column
AeC) p-NDRG1 and p-S6 levels increase in rods and cone while p-AKT remains unaffected. Culturing the retinas in DMEM alone for the same time however results in a preferential
increase of p-NDRG1 and p-S6 in cones but still leaves p-AKT unaffected (last column AeC) (green: PNA; blue nuclear DAPI; Scale bar: 25 mm).
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upon simultaneous loss of Raptor and Rictor and no reduction upon
loss of each individual allele (sFig. 4). However, there appeared no
significant loss of cones by immunofluorescence on retinal sections
between the Creþ and Cree littermate of all genotypes at 1 year of
age (Fig. 5), a result that was confirmed by an actual cone count in
all three genotypes (Fig. 6). The findings suggest that the decline in
photopic ERG recordings upon complete loss of mTOR signaling
was not due to a loss of cones but rather a reduction in the
expression of cone specific proteins combined with abnormal OS
structure.

We previously showed that treatment of wild-type mice with
rapamycin results in a dramatic reduction of ventral MW-OPSIN
expression (Punzo et al., 2009). Thus we were surprised that
MW-OPSIN was still expressed at 1 year of age even upon com-
plete loss of mTOR signaling. Normally, rapamycin inhibits the
assembly of the mTORC1 complex thereby preventing mTORC1
activity. However, prolonged exposure to rapamycin has been
shown to also affect mTORC2 activity (Lamming et al., 2012;
Robida-Stubbs et al., 2012; Sarbassov et al., 2006; Ye et al.,
2012). As the previous treatment was performed over a time
period of two weeks, the activity of both complexes could have

been downregulated. The question as to which of the two mTOR
complexes may regulate ventral MW-OPSIN expression is of in-
terest since ventral MW-OPSIN expression is also downregulated
in retinitis pigmentosa (Punzo et al., 2009), a retinal degenerative
disease where mTOR signaling is altered in cones. To test if MW-
OPSIN was lost at any other time its expression was analyzed at 1-
month intervals by immunofluorescence on dorsal and ventral
regions of the retina.

Ventral regions of the retinawere identified by the expression of
the ventrally enriched SW-OPSIN. The analysis was carried out on
retinal sections and retinal flat mounts. Loss of Raptor resulted in
ventral loss ofMW-OPSIN expression at around 3months of age and
by 6months of age ventralMW-OPISIN expressionwas restored and
was still detectable at 1 year of age (Fig. 7A, D and E). Interestingly,
loss of Rictor resulted as well in loss of ventral MW-OPSIN. In
contrast to loss of Raptor, the reduction in ventral MW-OPSIN
expression started one month later, at 4 months of age, and
continued until 8 months of age when ventral MW-OPSIN expres-
sion was restored (Fig. 7A, E and F). Concurrent loss of Raptor and
Rictor resulted in a downregulation of ventral MW-OPSIN at 2 and 3
months of age and by 4 months of age the expression was restored

Fig. 3. Verification of Raptor and Rictor loss in cones. Immunofluorescence analysis on retinal whole mounts (A) and retinal sections (B) on 1 month old animals of genotypes
indicated on top of each column (first column: Cree control of RaptorC/C). In all cases (A, B) retinas were explanted and cultured for 30 min in regular DMEM without insulin. (A)
Increased phosphorylation of S6 is not seen when Raptor is lost (2nd and 4th column in A). (B) Similarly, increased p-NDRG1 is absent in cones of animals in which Rictor has been
removed (3rd and 4th column in B) (red: p-S6 or p-NDRG1 as indicated; green: PNA; blue: SW-OPSIN in A, nuclear DAPI in B).
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(Fig. 7A and E). Control immunofluorescence analyses on M-Creþ

animals showed that while CRE is found in all cones (Fig. 7B) ventral
MW-OPSIN expression is maintained at 4 months of age (Fig. 7C)
suggesting that the loss is not due to the expression of CRE recom-
binase itself. Additionally, none of the other PR proteins tested at 1
year of age showed a ventral reduction at 4 months of age (sFig. 5),
when loss of either mTOR complexes reduces ventral MW-OPSIN
expression. In summary, the data indicates that neither mTOR
complex regulates the expression of ventral MW-OPSIN directly in
cones, suggesting that ventral loss MW-OPSIN occurs secondary to
changes in the insulin/mTOR signaling pathway.

3.4. Cone structure is affected upon loss of Raptor and/or Rictor

To further analyze the cone OS structural abnormalities seen by
immunofluorescence analyses we used transmission electron mi-
croscopy (TEM) on retinal sections of 1-year-old animals. TEM
revealed thickened cone inner segments (IS) upon loss of Raptor
and concurrent loss of Raptor and Rictor (Fig. 8). Normally, cones are
not easy identifiable in mouse by TEM (Fig. 8A); however, loss of
Raptormade it easier to identify cones even at low resolution due to
the enlarged IS (Fig. 8B). Higher magnification TEM showed that
upon loss of Raptor many cones with a thickened IS (Fig. 8C; single

Fig. 4. Photoreceptor function. (A, C, E) Photopic ERG recordings showing b-wave responses in Cree and Creþ RaptorC/C mice (A), RictorC/C mice (C), and RaptorC/C_RictorC/C mice (E).
(B, D, F) Scotopic ERG recordings showing b-wave responses at 12 months of age. Yellow bar and line in (A, B) show control ERG of 12 months old M-Creþ mice without any
conditional alleles. (G) Examples of ERG traces at 2 months and 12 months for genotypes indicated. (H) Ratio of photopic b-wave amplitudes of Cree/Creþ animals for each genetic
combination, showing that only upon loss of Raptor and Rictor, the difference in cone response between Cree and Creþ animals continuously increases over time.
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arrow) had strongly reduced OSs, both in length and width (Fig. 8C;
single arrowhead). Nonetheless, normal looking cone inner and OSs
(Fig. 8C; triple arrows and triple arrowheads respectively) as well as
enlarged cone ISs with normal cone OSs were seen (Fig. 8B; middle
arrow and triple arrowheads). In contrast to loss of Raptor, loss of
Rictor did not facilitate the identification of cones based on the
thickness of their ISs. Only occasionally were malformed cone OSs
with large vacuolar structures seen (Fig. 8D; arrowhead).

Concurrent loss of Raptor and Rictor resulted in a mixture of both
phenotypes seen upon loss of each individual gene. Some ISs were
enlarged (Fig. 8E, arrow) with small and reduced OSs (Fig. 8E,
arrowhead) as seen upon loss of Raptor alone while other OSs
looked similar to those seen upon loss of Rictor (Fig. 8F, arrowhead).

To quantify how many cones showed structural abnormalities
we analyzed cones on semi thin plastic embedded sections rather
than the ultra thin sections required for TEM. This allowed us to

Fig. 5. Cone specific genes expression at 1 year of age. Immunofluorescence analysis on retinal sections of 12 months old RaptorC/C Creþ (B, C), RictorC/C Creþ (D, E) and RaptorC/
C_RictorC/C Creþ (F, G) animals. (A) Control stainings (red signal) in Cree animals for proteins indicated on top of each column. (B, D, F) Show overlay images of nuclear DAPI in blue,
PNA in green and protein named on top of each column in red. (C, E, G) Show only red signal of rows (B, D, F) respectively. Arrows show normal cone OS morphology in control
animals while arrowheads show examples of fragmented staining in the inner outer segment area. Examples are only indicated for loss of RAPTOR (Scale bar: 50 mm).
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analyze more cones since entire cross sections can easily be
collected (sFig. 6A). Total cones were scored by the appearance of
their nuclear morphology on semi thin sections as has been
described previously (Carter-Dawson et al., 1978). The analysis
showed that upon loss of Raptor 18% of cones showed inner
segment abnormalities, 35% outer segment abnormalities and 10%
displayed both abnormalities, while upon simultaneous loss of
RAPTOR and RICTOR the number of abnormalities was 30%, 17% and
11%, respectively (sFig. 6B). The OS abnormalities seen by TEM upon
loss of RICTOR were not quantifiable by this method, as they were
not easily visualized by regular microscopy. The increase in IS width
seen in cones upon loss of Raptor (2.97 mm ± 0.37 mmSTDEV) or loss
of Raptor and Rictor (2.42 mm ± 0.38 mm STDEV) was statistically
significant when compared to Cree control mice (1.85 mm ± 0.26 mm
STDEV) (sFig. 6C). Since we were not able to identify abnormal
cones by regular light microscopy upon loss of Rictor the width of
44 random chosen IS was measured (1.87 mm ± 0.34 mm STDEV)
showing no difference from Cree control mice (sFig. 6C). In sum-
mary, while loss of Raptor or Rictor did not affect cone survival and
only moderately the expression of the cone specific genes tested at
one year of age, the structure of cone inner and OSs was affected in
both cases and upon concurrent loss of both genes. However, the
combined loss of Raptor and Rictor did not exacerbate the structural
phenotypes in cones seen upon individual loss of these genes
making it unlikely that reduced PR function upon complete loss of
mTOR activity is due to the structural changes seen in the inner and
OSs, but rather to the reduction in PR specific proteins. Because,
there were more cones with structural defects upon loss of Raptor
or concurrent loss of Raptor and Rictor than upon loss of Rictor
alone, the data suggests that for cones mTORC1 activity may be
more important than mTORC2, a finding that is paralleled by the
phenotypes seen upon individual loss of each allele in retinitis
pigmentosa (Venkatesh et al., 2015).

4. Discussion

4.1. mTORC1 and cone metabolism

In this study we set out to analyze the role of the two mTOR
complexes in cones. Surprisingly, neither mTOR complex is

required to promote cone function and survival over a time period
of one year and only concurrent loss of both complexes affects cone
functionwithout affecting viability. This is quite remarkable for the
following reasons. Photoreceptors are metabolically highly active
cells with a protein and fatty acid synthesis rate of approximately
one cell division a day. Tissues with a high metabolic rate, high
protein synthesis rate or a high cell division rate are generally quite
affected by loss of Raptor (Cloetta et al., 2013; Polak et al., 2008;
Shende et al., 2011). It is thus surprising that in cones loss of
Raptor over the period of one year did not result in a more severe
phenotype thanmorphological changes at the level of the inner and
OSs as seen by TEM. The data suggests that the metabolic tran-
scriptome that is generally controlled by mTORC1 in proliferating
cells (Duvel et al., 2010) is either independent of mTORC1 activity in
cones or its loss does not affect cone survival. In contrast, loss of
mTORC1 activity in the retinal degenerative disease retinitis pig-
mentosa is quite detrimental as cones die twice as fast in the
absence of RAPTOR, while twice as many cones survive when
mTORC1 is constitutively activated (Venkatesh et al., 2015). The
improved survival coincides with an increase in the expression of
genes that are part of the metabolic transcriptome controlled by
mTORC1. Similarly, we showed previously that stimulation of the
insulin/mTOR pathway by insulin can also prolong survival of
metabolically compromised cones in retinitis pigmentosa (Punzo
et al., 2009). Together the data suggest that while mTORC1 activ-
ity may be less important to healthy cones, is it required to balance
demand with supply when cones are metabolically challenged
during disease. It is also possible that cone metabolism is less
demanding than rod metabolism thus mTORC1 under normal
conditions may be less important to cones than to rods. Most of the
data on PR metabolism comes from studies that used rod rich
retinas, thus little is known about the metabolic demands of cones
themselves. It is thus possible that loss of Raptor in rods may have a
much more profound effect than in cones. Indeed, a recent report
showed that rapamycin has a different effect on rods versus cones
during light induced PR stress (Kunchithapautham et al., 2011). The
finding that loss of mTORC2 caused a milder phenotype than loss of
mTORC1; however, is consistent with studies in many tissues, in
which cell type specific ablation of the two complexes has been
studied (Bentzinger et al., 2008; Kellersch and Brocker, 2013). It also

Fig. 6. Cone quantification. (A) Bar graph showing the average number of cones/mm2 in Cree and Creþ animals of all three genetic combinations at 1 year of age. (B) Schematic of
retinal flat mount indicating the two sectors in which cones were counted for data in (A). The two sectors have a radius of 1 mm and 1.5 mm, respectively. In each sector cones were
counted across 4 fields each measuring 40,000 mm2. (CeF) Higher magnification of part of an area from sector 2 that was used to count cones for data in (A) showing even dis-
tribution of cones marked by PNA (green signal) across all three genotypes (DeF) in Creþ animals. The Cree control is shown in (C).
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Fig. 7. Reduction in ventral MW-OPISIN expression. (A) Table summarizing the time windows in which loss of Raptor, Rictor and loss of both cause a reduction in ventral MW-OPSIN
expression (plus sign: ventral MW-OPSIN present; minus sign: ventral MW-OPSIN absent). A total of 21 and 11 Creþ and Cree animal respectively were analyzed over time for the
RaptorC/C allele, 16 and 13 Creþ and Cree animals respectively for the RictorC/C allele, and 13 and 12 for the double loss of function respectively. (BeF) Immunofluorescence analysis on
retinal sections (BeE) and retinal whole mounts (F). (B) Example of CRE recombinase in cones at 4 months of age. (C) Four month old Creþ animals showing normal expression of
MW-OPSIN dorsally and ventrally. (D) Example of analysis performed on sections to determine the loss of MW-OPSIN ventrally. In this case MW-OPSIN is still present ventrally at 2
months of age upon loss of Raptor. (E) Examples of ventral MW-OPSIN expression at the transition time windows for the three genotypes as indicated. Number in panel indicates age
of animal in months. (F) Example of analysis performed on retinal flat mounts to corroborate findings on sections. At 5 months of age, MW-OPSIN is lost ventrally upon loss of Rictor
(blue: nuclear DAPI; green: PNA in BeD, and SW-OPSIN in F; red: MW-OPSIN in CeF, and Cre in B; magenta: SW-OPSIN in C, D).
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parallels our recently published data showing that loss of RICTOR in
cones of mice with retinitis pigmentosa did not alter the disease
progression in contrast to loss of RAPTOR (Venkatesh et al., 2015).

4.2. Cone function and morphology upon loss of mTOR signaling

The findings in this study are also surprising in that the activity
of both complexes is required to maintain PR function. Because
each complex phosphorylates a different set of target genes
redundancy between the two complexes is unlikely, suggesting
that the function of at least one target per complex has to be
compromised at the same time to affect PR function. Why PR
function is affected remains to be determined. It is unlikely that
the morphological changes in the inner and OSs alone are
responsible for the reduction in cone function, as these morpho-
logical changes did not worsen after combined loss of both com-
plexes rather both types of morphological changes were seen.
Reduced OSs were seen upon loss of RAPTOR, consistent with the
role of mTORC1 in regulating protein synthesis. Large vacuolar
structures in OSs were seen upon loss of RICTOR, consistent with
the role of mTORC2 in regulating actin polymerization (Huang

et al., 2013). The additive effect of these two morphological
changes in combination with a reduction in PR specific proteins
could explain why cone function was reduced upon loss of both
complexes. It is unlikely that the reduction in cone function was
due to the temporary loss of ventral MW-OPSIN. This is because
cone function declines only temporarily upon individual loss of
Raptor or Rictor, while it continuous to decline upon combined
loss of Raptor and Rictor. Additionally, the decline in cone function
upon loss of Rictor does not coincide with the loss of ventral MW-
OPSIN. Interestingly, in human diabetic patients PR function is
reduced before the onset of any clinical signs associated with
diabetic retinopathy (Jackson and Barber, 2010). Insulin signaling
in these patients is likely altered in all retinal cells, a result that is
supported by the findings in diabetic animal models where basal
retinal insulin receptor signaling is reduced (Rajala et al., 2009;
Reiter et al., 2006). A reduction in basal insulin signaling likely
affects both mTOR complexes at the same time in cones as well.
Our findings in which cone function is reduced only when both
complexes are affected may thus explain in part why patients with
diabetes mellitus display reduced PR function before the onset of
any clinical signs associated with diabetic retinopathy.

Fig. 8. Transmission electron microscopy analysis of inner and outer segment region at 12 months of age. (A) Cree control of RaptorC/C mice. (BeF) Images from Creþ_RaptorC/C (B, C),
Creþ_RictorC/C (D) and Creþ_RaptorC/C _RictorC/C mice (E, F). At low magnification (1450�; A, B) cone inner segments are easily identified upon loss of Raptor (arrows in B) due to the
enlargement of the inner segment. (C) Higher magnification (4600�) showing enlarged cone inner segments (single arrows) and reduced cone outer segment (single arrowheads)
next to normal cone inner segments (triple arrows) and normal cone outer segments (triple arrowheads). (D) Cone OS seen upon loss of Rictor. (E, F) The types of malformed cone
inner and OSs found in the individual mutants are also found in the double mutants (compare to C, D). (E) Shows enlarged IS (arrow) and reduced OS (arrowhead) while (F) shows
OS with large vacuoles (arrowhead).
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4.3. Loss of MW-OPSIN

The finding that loss of either complex or concurrent loss of both
complexes affects temporarily ventral MW-OPSIN expression is
intriguing for the following reasons. First, none of the other cone
specific proteins tested showed such a transient dorso-ventral
reduction. Second, these findings contrast our previous findings
in which 2 weeks of rapamycin administration was sufficient to
downregulate ventral MW-OPSIN expression (Punzo et al., 2009).
However, because in our previous experiment loss of mTORC1
signaling, and likelymTORC2 signaling due to prolonged rapamycin
treatment occurred in all cells as rapamycin administration was
systemic, our previous experiments and the ones presented in this
study are not quite the same. It is possible that in our previous
rapamycin experiment a reduction in mTOR signaling in Mueller
Glia or RPE cells could have altered the expression of signals
(secreted factors) between these cells and cones causing a rapid
loss in ventral MWOPISN expression. In such a case one would not
expect loss of ventral MW-OPSIN upon removal of mTOR signaling
in cones unless the potential signal between cones and any other
cell involves in part the insulin/mTOR pathway. This could explain
why in each loss of function case the loss of ventral MW-OPSIN
takes more time to occur and why its expression is eventually
restored as a new signaling equilibrium is established. The data
indicates that any imbalance in mTOR signaling can alter the
expression of ventral MW-OPISN.

4.4. Cone survival signals

Various growth and trophic factors, as well as their downstream
signaling pathways have been implicated in either being required
for PR survival or promoting PR survival during disease (LaVail
et al., 1998; Leveillard et al., 2004; Li et al., 2010; Mohand-Said
et al., 1998, 2000, 1997; Rajala et al., 2008; Rajala et al., 2010;
Steinberg, 1994; Streichert et al., 1999). While most growth factor
receptors have their own dedicated signaling cascademost of these
pathways alter PI3K activity, which is also an upstream kinase of
the insulin/mTOR pathway. A recent report showed that PI3K is
required for long-term cone survival (Ivanovic et al., 2011). It is
thus surprising that concurrent loss of both complexes does not
affect cone survival at one year of age, indicating that PI3K medi-
ated pro survival signals are completely independent of mTOR
signaling.

5. Conclusions

The aim of this investigation was to analyze the role of the
central kinase mTOR to cone survival and function. The present
study shows that mTOR activity is not required for cone survival,
over the period of one year in mouse suggesting that trophic
support for cones downstream of PI3K is independent of mTOR
signaling. The data further suggests that the metabolic tran-
scriptome that is generally controlled by mTORC1 in proliferating
cells is either independent of mTORC1 in healthy cones or its loss
does not affect cone survival. This contrasts the role of mTORC1
during retinal degeneration where its activity is required to
prolong their survival (Venkatesh et al., 2015). Furthermore, the
data suggests that deregulation of mTOR signaling in diabetes
may be a contributing factor to the decline in PR function seen in
patients suffering from diabetes mellitus since loss of mTOR
signaling results in a decline in cone function. Finally, the study
suggests that mTOR inhibitors used in clinical settings to treat
cancers may be quite safe for cones with regards to their survival
although reduced visual function could occur upon prolonged
treatment.
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