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Ablation of retinal ciliopathy 
protein RPGR results in altered 
photoreceptor ciliary composition
Kollu N. Rao, Linjing Li, Manisha Anand & Hemant Khanna

Cilia regulate several developmental and homeostatic pathways that are critical to survival. Sensory 
cilia of photoreceptors regulate phototransduction cascade for visual processing. Mutations in 
the ciliary protein RPGR (retinitis pigmentosa GTPase regulator) are a prominent cause of severe 
blindness disorders due to degeneration of mature photoreceptors. However, precise function of 
RPGR is still unclear. Here we studied the involvement of RPGR in ciliary trafficking by analyzing the 
composition of photoreceptor sensory cilia (PSC) in Rpgrko retina. Using tandem mass spectrometry 
analysis followed by immunoblotting, we detected few alterations in levels of proteins involved in 
proteasomal function and vesicular trafficking in Rpgrko PSC, prior to onset of degeneration. We also 
found alterations in the levels of high molecular weight soluble proteins in Rpgrko PSC. Our data 
indicate RPGR regulates entry or retention of soluble proteins in photoreceptor cilia but spares the 
trafficking of key structural and phototransduction-associated proteins. Given a frequent occurrence 
of RPGR mutations in severe photoreceptor degeneration due to ciliary disorders, our results provide 
insights into pathways resulting in altered mature cilia function in ciliopathies.

Cilia are microtubule-based antenna-like extensions of the plasma membrane in nearly all cell types, 
which regulate diverse developmental and homeostatic functions, including specification of left-right 
asymmetry, cardiac development, renal function and neurosensation1,2. Cilia formation is initiated when 
the mother centriole (also called basal body) docks at the apical plasma membrane and nucleates the 
assembly and extension of microtubules in the form of axoneme. Distal to the basal body, cilia possess 
a gate-like structure called the transition zone (TZ), which is thought to act as a barrier for allowing 
selective protein cargo to enter the axoneme microtubules by a conserved process called intraflagellar 
transport3–5. Defects in cilia formation or function result in severe ciliopathies, ranging from develop-
mental disorders, including mental retardation, disruption of left-right asymmetry and skeletal defects 
to degenerative diseases, such as renal cystic diseases and retinal degeneration due to photoreceptor 
dysfunction6,7.

Photoreceptors develop unique sensory cilia in the form of light-sensing outer segment (OS). The OS, 
in addition to the ciliary membrane, consists of membranous discs loaded with photopigment rhodopsin 
and other proteins such as peripherin/rds and rod outer membrane protein ROM18,9. The region between 
the basal body and the distal cilium is called TZ or connecting cilium of photoreceptors 8–10. Defects in 
TZ structure and function result in altered trafficking of proteins to the OS, leading to photoreceptor 
degenerative diseases, such as Retinitis Pigmentosa (RP)11.

RP is a genetically and clinically heterogeneous progressive hereditary disorder of the retina12. 
X-linked forms of RP (XLRP) are among the most severe forms and account for 10–20% of inherited 
retinal dystrophies. XLRP is characterized by photoreceptor degeneration, with night blindness during 
the first or second decade, generally followed by significant vision loss by fourth decade13. Mutations in 
the ciliary protein retinitis pigmentosa GTPase regulator (RPGR) account for >70% of XLRP cases and 
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15–20% of simplex RP cases14–20. RPGR mutations are also reported in patients with atrophic macular 
degeneration, sensorineural hearing loss, respiratory tract infections, and primary cilia dyskinesia19–24.

RPGR localizes predominantly to the TZ of photoreceptor and other cilia25,26 and interacts with 
TZ-associated ciliary disease proteins26–31. Studies using animal models indicate that Rpgr ablation or 
mutation results in delayed yet severe retinal degeneration32–35. However, the precise function of RPGR 
and the mechanism of associated photoreceptor degeneration are poorly understood. In this report, 
we sought to assess the role of RPGR in ciliary trafficking by testing the effect of loss of RPGR on the 
composition of the photoreceptor sensory cilia in mice. Our results suggest that RPGR participates in 
maintaining the function of mature cilia by selectively regulating (directly or indirectly) trafficking of 
proteins involved in distinct yet overlapping pathways.

Results
Purification of photoreceptor sensory cilium (PSC).  We and others previously showed that the 
Rpgrko mice exhibit photoreceptor degeneration starting at around 6 months of age32,35. Based on this 
information, we selected two stages of Rpgrko mice to assess PSC composition: 2 months and 4 months. 
We hypothesized that (i) these stages would represent changes in protein trafficking prior to onset of 
degeneration and (ii) progression in the changes observed from 2 to 4 months of age are likely candi-
dates for true disease-associated defects. We used age-matched wild-type littermates as controls. The 
retinas were isolated and subjected to sub cellular fractionation as described in the Methods section. 
Fluorescence microscopic analysis of our PSC preparations using anti-rhodopsin and ciliary marker 
ARL13B (ADP-ribosylation Factor like 13B) showed that the fractions were relatively pure sensory cilia 
(Fig. 1). To further validate the purity of the PSC fractions, we carried out immunoblot analysis using 
antibodies against marker proteins residing in cytosol (inner segment), mitochondria, as well as in the 
cilia. As shown in Fig.  2, PSC fraction was enriched in sensory cilia proteins rhodopsin, acetylated 
α -tubulin and rod outer membrane (ROM1) protein but not in inner segment localized proteins GM130 
(Golgi marker) and Na+K+ATPase (a mitochondrial marker).

Proteomic analysis of PSC.  To test the role of RPGR in regulating protein trafficking into the cilia, 
we assessed the composition of the PSC of the Rpgrko mice as compared to wild type mice. We performed 
MS/MS analysis of the PSC at 2 months and 4 months of age (Supplementary Tables S1 and S2 online, 
respectively). Each experiment consisted of 6 retinas from wild type and 6 retinas from Rpgrko mice. 
Data are average of three biological replicates at each age. At 2 months of age, we detected 1366 proteins 
in wild type and Rpgrko PSC. At 4 months, we detected a total of 1614 proteins in wild type and Rpgrko 
PSC. As predicted, RPGR was not detected in the Rpgrko PSC.

We then analyzed our MS/MS data to identify proteins that were increased or decreased in the in the 
Rpgrko PSC as compared to wild type and categorize them based on their relative abundance. To this end, 
we applied the following criteria: (i) the average emPAI values had to be <0.5 fold if the abundance of 
the protein decreased and >2 fold if abundance increased and (ii) the number of unique peptides had to 
be greater than 3, if a protein is not detected in the other genotype. Based on these criteria, the proteins 

Figure 1.  Immunofluorescence analysis of isolated PSC: PSC was isolated from mouse retina and stained 
with anti-rhodopsin (green) and anti-ARL13B (red) antibodies. Merge shown co-localization of rhodopsin 
with the ciliary marker.
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that increased or decreased are listed in Tables  1–4. At 2 months of age, we detected 28 proteins that 
decreased in amount by less than 0.5 fold in Rpgrko PSC as compared to wild type. On the other hand, we 
detected 30 proteins at 4 months of age that showed less than 0.5-fold reduction in Rpgrko PSC. Among 
the category of proteins whose relative abundance increased by >2-fold in Rpgrko PSC at 2 months of 
age, we detected 17 proteins, whereas at 4 months of age, we found 24 proteins in Rpgrko PSC.

It is becoming clear that the TZ also acts as a size-exclusion barrier for soluble proteins36–38. 
Interestingly, soluble proteins that reduced in abundance by 0.5-fold in Rpgrko PSC decreased from 13 
out of 28 at 2 months of age (46%; average molecular weight: 51.7 kDa) to 6 out of 30 at 4 months of 
age (20%; average molecular weight of 80 kDa) (Table  5). Whereas 2 out of 17 proteins that increased 
in amount at 2 months of age (11.7%; average molecular weight of 99.5 kDa) are soluble proteins, 7 out 
of 24 proteins increased in amount at 4 months of age (~30%; average molecular weight of 99 kDa) are 
soluble proteins (Table 5). We therefore, suggest that the barrier for entry or retention of soluble proteins 
into the PSC is affected in the absence of RPGR.

Figure 2.  Purity of the PSC: PSC fraction was analyzed by SDS-PAGE and immunoblotting using indicated 
antibodies. Lane 1: total retina lysate; Lane 2: PSC. Molecular weight markers are shown in kilo Daltons 
(kDa). Enrichment of known ciliary proteins was detected whereas cytosolic proteins were undetectable in 
the PSC.
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emPAI VALUES

Identified Proteins Accession Number
Molecular 

Weight
Fold 

Change
C57  

Mean S1 S2 S3
Rpgrko  

Mean S1 S2 S3

N-myc downstream-regulated gene 1 NDRG1_MOUSE 43 kDa 0.2 0.343- 0.312, 0.411, 0.306 0.076-0.073, 0.059, 0.0966

Protein Tfg Q9Z1A1_MOUSE 43 kDa 0.2 0.343- 0.276, 0.355, 0.398 0.076- 0.071, 0.053, 0.1048

SEC14like protein 2 S14L2_MOUSE 46 kDa 0.2 0.316- 0.358, 0.275, 0.315 0.071- 0.069, 0.084, 0.06

26S proteasome nonATPase regulatory 
subunit 3 PSMD3_MOUSE 61 kDa 0.2 0.234- 0.256, 0.145, 0.301 0.0539- 0.0566, 0.038, 0.066

EH domain containing protein 4 EHD4_MOUSE 61 kDa 0.2 0.23- 0.18, 0.36, 0.15 0.053-0.051, 0.0399, 0.0686

Ubiquitin carboxyl-terminal hydrolase E9PYI8_MOUSE 52 kDa 0.3 0.44- 0.32, 0.56, 0.44 0.129-0.097, 0.250, 0.04

Golgi reassembly stacking protein 2, 
isoform CRA_c A2ATI6_MOUSE 37 kDa 0.3 0.291- 0.213, 0.442, 0.218 0.0889-0.0811, 0.0690, 

0.1166

Insulin degrading enzyme F6RPJ9_MOUSE 114 kDa 0.3 0.288- 0.251, 0.290, 0.323 0.088- 0.079, 0.080, 0.105

Septin2 SEPT2_MOUSE 42 kDa 0.3 0.257- 0.222, 0.321, 0.228 0.0793- 0.072, 0.063, 0.1022

Bardet-Biedl syndrome 4 protein 
homolog BBS4_MOUSE 58 kDa 0.4 0.315- 0.306, 0.467, 0.172 0.116- 0.107, 0.120, 0.121

Isoform 2 of Transmembrane emp24 
domain-containing protein 10 TMEDA_MOUSE 11 kDa 0.4 1.88- 1.89, 1.54, 2.21 0.698- 0.666, 0.723, 0.705

Cullin3 CUL3_MOUSE 89 kDa 0.4 0.287- 0.267, 0.345, 0.249 0.114- 0.108, 0.114, 0.12

Farnesyl pyrophosphate synthase FPPS_MOUSE 41 kDa 0.4 0.598- 0.549, 0.668, 0.577 0.264- 0.237, 0.212, 0.343

26S protease regulatory subunit 10B PRS10_MOUSE 44 kDa 0.4 0.538- 0.556, 0.413, 0.645 0.24- 0.18, 0.27, 0.27

T-complex protein 1 subunit zeta TCPZ_MOUSE 58 kDa 0.4 1.04- 1.02, 1.06, 1.04 0.469- 0.447, 0.525, 0.435

GTP-binding nuclear protein Ran RAN_MOUSE 24 kDa 0.5 1.45- 1.33, 1.59, 1.43 0.667- 0.612, 0.734, 0.655

Proliferation-associated protein 2G4 PA2G4_MOUSE 44 kDa 0.5 0.337- 0.333, 0.411, 0.267 0.156- 0.149, 0.155, 0.164

ATP-binding cassette subfamily F 
member 1 ABCF1_MOUSE 95 kDa 0.5 0.31- 0.29, 0.3, 0.34 0.145- 0.116, 0.178, 0.141

Guanine nucleotide-binding protein 
G(T) subunit gammaT1 GBG1_MOUSE 9 kDa 0.5 14.5- 13.8, 14.2, 15.5 6.8- 5.3, 6.9, 8.2

Prom1 protein Q8R056_MOUSE 94 kDa 0.5 1.04- 1.03, 1.01, 1.08 0.502- 0.489, 0.623, 0.394

Glutathione S transferase P 1 GSTP1_MOUSE 24 kDa 0.5 1.87- 1.77, 1.82, 2.02 0.933- 0.899, 0.929, 0.971

Coatomer subunit beta COPB_MOUSE 107 kDa 0.5 0.391- 0.313, 0.405, 0.455 0.197- 0.177, 0.2, 0.214

Isoform 2 of ADP ribosylation factor-
like protein 6 ARL6_MOUSE 22 kDa 0.5 2.61- 2.57, 2.16, 3.1 1.36- 1.22, 1.48, 1.38

Isoform 3 of Glyoxalase domain 
containing protein 4 GLOD4_MOUSE 31 kDa 0.5 0.667- 0.606, 0.689, 0.706 0.359- 0.348, 0.377, 0.352

Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta1 GBB1_MOUSE 37 kDa 0.5 30.9- 31.4, 30.2, 31.1 16.7- 15.9, 16.3, 17.9

Exportin2 XPO2_MOUSE 110 kDa 0.5 0.418- 0.402, 0.471, 0.381 0.226- 0.197, 0.228, 0.253

Cullin5 CUL5_MOUSE 91 kDa 0.5 0.28- 0.23, 0.3, 0.31 0.151- 0.146, 0.162, 0.145

26S proteasome non-ATPase regulatory 
subunit 1 PSMD1_MOUSE 106 kDa 0.5 0.237- 0.241, 0.209, 0.261 0.129- 0.116, 0.131, 0.14

Table 1.  Proteins with reduced abundance in PSC of Rpgrko at 2 months. S1, S2, and S3 are the three 
biological repeat samples used in the present study.

Phototransduction proteins and known ciliopathy-associated proteins in Rpgrko PSC.  
Previous studies showed a reduction in photoreceptor function in the Rpgrko mice32. We therefore, tested 
if this phenotype was due to an earlier defect in reduced translocation of selected phototransduction 
proteins to the OS. Our MS/MS analysis as well as validation by immunoblotting revealed no significant 
difference in the amount of arrestin, ROM1, and cyclic nucleotide gated channel CNGB1 in the Rpgrko 
PSC as compared to wild type mice. These results suggest that photoreceptor dysfunction in the absence 
of RPGR in mice is not likely due to a defect in the trafficking of the tested phototransduction-associated 
proteins.

Alterations in BBS-associated proteins are associated with photoreceptor dysfunction among other 
ciliopathy disorders. Our analysis revealed BBS1, BBS2, BBS5, and BBS7 in the PSC; however, their levels 
did not alter between age-matched wild type and Rpgrko PSC. Similarly, we did not detect differences in 
IFT polypeptides or associated Kinesin motor subunits in the Rpgrko PSC.
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emPAI VALUES

Identified Proteins Accession Number
Molecular 

Weight
Fold 

Change
C57  

Mean S1 S2 S3
Rpgrko  

Mean S1 S2 S3

Fascin2 FSCN2_MOUSE 55 kDa 0 0.403- 0.409, 0.41, 0.39 0

Vesicle trafficking protein SEC22a SC22A_MOUSE 35 kDa 0 0.307- 0.298, 0.311, 0.312 0

Insulin degrading enzyme IDE_MOUSE 118 kDa 0.1 0.48- 0.46, 0.59, 0.39 0.0556- 0.0601, 0.0567, 0.05

Oral facial digital syndrome 1 protein 
homolog OFD1_MOUSE 117 kDa 0.1 0.412- 0.409, 0.410, 0.417 0.0565- 0.0557, 0.0578, .056

Cullin5 CUL5_MOUSE 91 kDa 0.2 0.452- 0.448, 0.465, 0.443 0.109- 0.112, 0.098, 0.117

GTP-binding protein 1 GTPB1_MOUSE 72 kDa 0.3 0.531- 0.54, 0.529, 0.524 0.138- 0.141, 0.137, 0.136

Ubiquitin conjugating enzyme E2 O UBE2O_MOUSE 141 kDa 0.3 0.227- 0.219, 0.236, 0.226 0.0701- 0.0698, 0.0709, 
0.0696

Prolactin inducible protein PIP_HUMAN 17 kDa 0.3 1.25- 1.248, 1.252, 1.25 0.409- 0.4089, 0.412, 0.4061

Jouberin AHI1_MOUSE 120 kDa 0.3 0.335- 0.334, 0.336, 0.3349 0.111- 0.109, 0.112, 0.112

Potassium voltage gated channel 
subfamily V member 2 KCNV2_MOUSE 64 kDa 0.3 0.464- 0.467, 0.463, 0.462 0.156- 0.158, 0.157, 0.153

Protein transport protein Sec24C SC24C_HUMAN 118 kDa 0.3 0.406- 0.398, 0.411, 0.409 0.141- 0.140, 0.143, 0.14

WD repeat-containing protein 35 WDR35_MOUSE 134 kDa 0.4 0.355- 0.35, 0.3539, 0.3551 0.124- 0.125, 0.122, 0.125

Vacuolar protein sorting associated 
protein 26B VP26B_MOUSE 39 kDa 0.4 0.473- 0.471, 0.475, 0.473 0.169- 0.168, 0.170, 0.169

SH3containing GRB2-like protein 
3-interacting protein 1 SGIP1_PSAOB 88 kDa 0.4 0.42- 0.419, 0.421, 0.42 0.152- 0.153, 0.1521, 0.1509

Proliferation-associated protein 2G4 PA2G4_MOUSE 44 kDa 0.4 0.611- 0.609, 0.612, 0.612 0.233- 0.234, 0.299, 0.166

ATP-binding cassette subfamily F 
member 1 ABCF1_MOUSE 95 kDa 0.4 0.433- 0.432, 0.435, 0.432 0.177- 0.179, 0.176, 0.176

Coiled-coil and C2 domain 
containing protein 2A C2D2A_MOUSE 188 kDa 0.4 0.714- 0.709, 0.711, 0.722 0.297- 0.298, 0.297, 0.296

Nck-associated protein 1 NCKP1_MOUSE 129 kDa 0.4 0.31- 0.309, 0.311, 0.313 0.13- 0.11, 0.134, 0.146

F-actin capping protein subunit beta CAPZB_MOUSE 31 kDa 0.4 0.739- 0.74, 0.7385, 0.7385 0.33- 0.329, 0.3401, 0.3209

AP3 complex subunit mu2 AP3M2_MOUSE 47 kDa 0.5 0.474- 0.472, 0.474, 0.4746 0.216- 0.215, 0.2161, 0.2169

WD40 repeat-containing protein 
SMU1 SMU1_MOUSE 58 kDa 0.5 0.25- 0.239, 0.259, 0.252 0.114- 0.113, 0.115, 0.114

26S proteasome non-ATPase 
regulatory subunit 3 PSMD3_MOUSE 61 kDa 0.5 0.233- 0.232, 0.234, 0.2321 0.108- 0.1079, 0.1085, 

0.1076

Glutathione S transferase P 1 GSTP1_MOUSE 24 kDa 0.5 2.53- 2.529, 2.535, 2.526 1.18- 1.185, 1.178, 1.177

TBC1 domain family member TBC24_MOUSE 63 kDa 0.5 0.407- 0.411, 0.406, 0.4031 0.213- 0.211, 0.214, 0.214

Voltage-dependent anion selective 
channel protein 1 VDAC1_RAT 31 kDa 0.5 9.26- 9.248, 9.259, 9.273 4.88- 4.85, 4.91, 4.88

WD repeat containing protein 7 WDR7_MOUSE 163 kDa 0.5 0.56-0 .568, 0.557, 0.555 0.297- 0.299, 0.3, 0.292

Cytoplasmic dynein 2 heavy chain 1 DYHC2_MOUSE 492 kDa 0.5 0.769- 0.768, 0.774, 0.765 0.413- .4123, .3998, .4269

Phosducin PHOS_MOUSE 28 kDa 0.5 5.96- 5.971, 5.993, 5.916 3.2- 3.214, 3.189, 3.197

Kinesin like protein KIF1A KIF1A_MOUSE 192 kDa 0.5 0.429- .4289, .431, .4271 0.232- 0.2324, 0.2295, 
0.2241

UPF0568 protein C14orf166 homolog CN166_MOUSE 28 kDa 0.5 0.68- 0.679, 0.686, 0.675 0.37- 0.365, 0.375, 0.37

Table 2.  Proteins with reduced abundance in PSC of Rpgrko at 4 months. S1, S2, and S3 are the three 
biological repeat samples used in the present study.

Proteins with altered abundance in Rpgrko PSC.  A majority of proteins that decreased in amount 
in Rpgrko PSC at both stages belonged to the category of ubiquitin-proteasome system (UPS) and cilia 
function (Tables 1 and 2 and Supplementary Figure S1). As the UPS is enriched at the cilium and has 
been detected in the PSC in earlier proteomics analyses (discussed later)10,39, we selected PSMD3 (26 S 
proteasome non-ATPase regulatory subunit 3) and Insulin degrading enzyme (IDE) for further analy-
sis. Immunoblot analysis of PSC from wild type and Rpgrko showed a reduction in the amount of both 
PSMD3 and IDE1 in the Rpgrko PSC (Fig.  3). Total amount of these proteins did not alter, indicating 
that there was no change in the expression levels of PSMD3 and IDE in Rpgrko retina. It was recently 
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shown that proteasomal function is modulated by ciliary-centrosomal protein OFD139. As we detected 
reduced abundance of OFD1 in the Rpgrko PSC at 4 months of age, we performed immunoblot analysis 
using anti-OFD1 antibody. Our results validated the MS/MS data and showed reduced amount of OFD1 
amount in Rpgrko PSC (Fig.  3). No change in the total protein levels of OFD1 was detected in these 
analyses.

We found high representation of the category of membrane trafficking and intracellular transport 
among the proteins that were increased in Rpgrko PSC (Tables  3 and 4 and Supplementary Figure S2). 
Specifically, we detected more than 5-fold increase in IQ-domain GTPase Activating Proteins IQGAP1, 
which is predicted to be involved in intracellular trafficking and neuronal regulation40. Given a crucial 
role of small GTPases and their regulation in the maintenance of PSC28,41,42, we validated the levels of 
IQGAP1 by immunoblot analysis. We found that indeed, amount of IQGAP1 is increased in the Rpgrko 
PSC relative to the wild type (Fig. 3). No change in the total levels of IQGAP1 was detected.

Localization of altered proteins in the retina.  Although all the proteins identified in our dataset 
have been previously reported as part of the mouse PSC proteome10, the localization of IDE, PSMD3, 
OFD1 and IQGAP1 has not been examined in mammalian retina. To corroborate our findings, we per-
formed immunofluorescence analysis of these proteins using adult mouse retina. Our analysis revealed 
that in addition to the inner segment (IS) and outer plexiform layer (OPL), IDE, PSMD3, OFD1, and 

Figure 3.  Validation of selected proteins identified by MS/MS analysis. PSC from wild type (WT) and 
Rpgrko mouse retina were analyzed by SDS-PAGE and immunoblotting using indicated antibodies. Lanes 1 
and 2: total retina lysate from WT and Rpgrko mice, respectively; Lanes 3 and 4: PSC from WT and Rpgrko 
mice, respectively. Arrows indicate altered proteins in the Rpgrko PSC. Molecular weight markers are shown 
in kilo Daltons (kDa).
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IQGAP1 localize to the TZ, as determined by co-staining with ciliary markers acetylated α -tubulin 
(AcT) or detyrosinated tubulin (DeTyr) (Fig. 4 and Supplementary Figure S3). Interestingly, PSMD3 was 
also detected in the OS. Consistent with a prominent role of OFD1 at the basal body, OFD1 co-localizes 
with γ -tubulin in photoreceptor IS (Supplementary Figure S3).

We next examined the effect of loss of RPGR on the localization of these proteins. Immunofluorescence 
analysis of age-matched Rpgrko mouse retinas revealed interesting observations (Fig.  4). We found 
reduced IDE and OFD1 associated signal reduced in the TZ with a concomitant mislocalization in the IS 
and outer nuclear layer (ONL) of Rpgrko retina (Fig. 4A,B). PSMD3 staining revealed strikingly reduced 
staining in the OS and increased in TZ/IS of Rpgrko retina (Fig. 4C).

Discussion
Although RPGR is widely expressed and regulates ciliary trafficking, it is puzzling that RPGR mutations 
in humans do not result in typical cilia-associated systemic and developmental or early-onset defects. 
Rather, RPGR mutations are one of the most common causes of severe photoreceptor degenerative dis-
eases of adulthood19,43. Photoreceptor cilia are unique with respect to their demands of maintenance 
of ciliary function. They undergo periodic shedding of distal tips of cilia with concomitant renewal of 
membrane and proteins at the base. It is estimated that about 10% of the OS tips are shed each day44,45. 
This is accompanied by massive transport of opsin and other OS proteins to the cilium46,47. Hence, it 
is conceivable that maintenance of ciliary function plays a crucial role in photoreceptor health. Our 
findings suggest that RPGR is one such regulator of functional maintenance of mature photoreceptors. 
RPGR accomplishes this task by likely modulating the docking and trafficking of key proteins involved 
in proteasomal function and intracellular protein trafficking.

Selecting 2 and 4 months of age of Rpgrko mice provided a unique opportunity to ascertain defects in 
photoreceptor protein trafficking that are likely to cause photoreceptor degeneration rather than a second-
ary effect of degeneration. Earlier studies using immunofluorescence analyses had revealed mistrafficking 

emPAI VALUES

Identified Proteins Accession Number
Molecular 

Weight
Fold 

Change
C57  

Mean S1 S2 S3
Rpgrko  

Mean S1 S2 S3

Ubiquitin thio-esterase OTUB1 D3YWF6_MOUSE 28 kDa INF 0 0.565- 0.521, 0.577, 0.597

26S proteasome non-ATPase regulatory 
subunit 7 PSMD7_MOUSE 37 kDa INF 0 0.296- 0.278, 0.3, 0.31

Isoform 5 of Dynamin1like protein DNM1L_MOUSE 24 kDa 3.4 7.77- 7.31, 7.68, 8.32 26.7- 27.1, 25.7, 27.3

Isoform 1 of Gammaadducin ADDG_MOUSE 75 kDa 3 0.136- 0.145, 0.131, 
0.132 0.404- 0.399, 0.413, 0.4

Potassium/sodium hyperpolarization 
activated cyclic nucleotide gated channel 1 HCN1_MOUSE 102 kDa 2.9 0.0986- 0.0924, 

0.0999, 0.1035 0.285- 0.263, 0.278, 0.314

WD repeat containing protein 1 WDR1_MOUSE 66 kDa 2.6 0.212- 0.195, 0.225, 
0.216 0.542- 0.431, 0.558, 0.637

Isoform 2 of Disks large homolog 1 DLG1_MOUSE 100 kDa 2.5 0.101- 0.099, 0.115, 
0.089 0.253- 0.229, 0.261, 0.269

Isoform 2 of Putative tyrosine protein 
phosphatase auxilin AUXI_MOUSE 99 kDa 2.5 0.103- 0.089, 0.110, 

0.11 0.256- 0.247, 0.273,0.248

Thioredoxin related transmembrane 
protein 2 D3Z2J6_MOUSE 30 kDa 2.4 0.376- 0.352, 0.4, 

0.376 0.892- 0.886, 0.879, 0.911

Ras-related protein Rab2A RAB2A_MOUSE 24 kDa 2.4 0.939- 0.894, 1, 
0.923 2.29- 2.16, 2.88, 1.83

Serine/threonine protein phosphatase 2A 
56 kDa regulatory subunit epsilon isoform 2A5E_MOUSE 55 kDa 2.3 0.337- 0.265, 0.351, 

0.395 0.789- 0.667, 0.8, 0.9

Isoform 2 of Chondroitin sulfate 
proteoglycan 5 CSPG5_MOUSE 57 kDa 2.2 0.182- 0.166, 0.190, 

0.19 0.396- 0.382, 0.4, 0.406

Annexin A6 ANXA6_MOUSE 76 kDa 2.1 0.59- 0.46, 0.62, 0.69 1.23- 1.20, 1.37, 1.12

Isoform 3 of Neuronal cell adhesion 
molecule NRCAM_MOUSE 139 kDa 2.1 0.0969- 0.0917, 

0.099, 0.1 0.203- 0.210, 0.179, 0.22

Isoform 3 of Cell adhesion molecule 2 CADM2_MOUSE 44 kDa 2.1 0.665- 0.659, 0.7, 
0.636 1.4- 1.09, 1.6, 1.51

Vesicle-associated membrane protein 2 B0QZN5_MOUSE 18 kDa 2 2.34- 2.19, 2.86, 1.97 4.6- 3.9, 4.8, 5.1

Septin7 E9Q1G8_MOUSE 51 kDa 2 0.552- 0.592, 0.488, 
0.576 1.12- 1.08, 1.2, 1.08

Table 3.  Proteins with increased abundance in PSC of Rpgrko at 2 months. S1, S2, and S3 are the three 
biological repeat samples used in the present study.



www.nature.com/scientificreports/

8Scientific Reports | 5:11137 | DOI: 10.1038/srep11137

emPAI VALUES

Identified Proteins Accession Number
Molecular 

Weight
Fold 

Change
C57  

Mean S1 S2 S3
Rpgrko 

Mean S1 S2 S3

Collectrin TMM27_MOUSE 25 kDa INF 0 1.32- 1.28, 1.31, 1.37

Ermin ERMIN_MOUSE 32 kDa INF 0 0.979- 0.989, 0.982, 0.966

Ras GTPase activating like protein 
IQGAP2 IQGA2_MOUSE 181 kDa 8.2 0.116- 0.115, 0.120, 0.113 0.945- 0.95, 0.943, 0.942

Ras GTPase activating like protein 
IQGAP1 IQGA1_MOUSE 189 kDa 5.7 0.0731- 0.0729, 0.073, 0.0732 0.415- 0.413, 0.445, 0.387

Sarcolemmal membrane associated 
protein SLMAP_MOUSE 97 kDa 5 0.258- 0.2581, 0.259, 0.2569 1.29- 1.285, 1.295, 1.29

Na(+ )/H(+ ) exchange regulatory 
cofactor NHERF1 NHRF1_MOUSE 39 kDa 3 0.383- 0.381, 0.3829, 0.3851 1.14- 1.13, 1.15, 1.14

Integrin alpha M ITAM_MOUSE 127 kDa 3 0.223- 0.221, 0.224, 0.224 0.676- 0.675, 0.679, 0.674

Integrin alpha V ITAV_MOUSE 115 kDa 3 0.491- 0.5, 0.490, 0.483 1.5- 1.48, 1.51, 1.51

Secretory carrier associated 
membrane protein 3 SCAM3_MOUSE 38 kDa 2.9 0.278- 0.279, 0.2789, 0.2761 0.793- 0.791, 0.794, 0.794

Beta-soluble NSF attachment 
protein SNAB_MOUSE 34 kDa 2.8 0.974- .975, .9768, .9702 2.69- 2.7, 2.689, 2.681

Chondroitin sulfate proteoglycan 4 CSPG4_MOUSE 252 kDa 2.8 0.38- 0.37, 0.395, 0.375 1.05- 1.1, 1.04, 1.01

Radixin RADI_BOVIN 69 kDa 2.7 1.41- 1.399, 1.415, 1.416 3.74- 3.76, 3.749, 3.711

Podocalyxin PODXL_MOUSE 53 kDa 2.7 0.266- .265, .2657, .2673 0.716- 0.7149, 0.717, 0.7161,

Chondroitin sulfate proteoglycan 5 CSPG5_MOUSE 60 kDa 2.6 0.497-0.498, 0.495, 0.498 1.31- 1.3, 1.299, 1.331

Proteasome subunit alpha type1 PSA1_MOUSE 30 kDa 2.5 0.366- 0.365, 0.368, 0.365 0.909- 0.911, 0.908, 0.908

Sphingomyelin phosphodiesterase 2 NSMA_MOUSE 47 kDa 2.5 0.321- 0.322, 0.323, 0.319 0.799- 0.798, 0.7989, 0.8001

Gamma-soluble NSF attachment 
protein SNAG_MOUSE 35 kDa 2.4 0.428- 0.427, 0.429, 0.428 1.04- 1.038, 1.041, 1.041

Tectonin beta-propeller repeat 
containing protein 1 TCPR1_MOUSE 130 kDa 2.2 0.162- 0.163, 0.161, 0.162 0.351- 0.3509, 0.3512, 0.3509

Alpha-soluble NSF attachment 
protein SNAA_MOUSE 33 kDa 2.2 1.47- 1.465, 1.478, 1.467 3.2- 3.11, 3.25, 3.24

Myoferlin MYOF_MOUSE 233 kDa 2.1 0.135- 0.136, 0.134, 0.1349, 0.282- 0.2781, 0.28201, 
0.2878

PlexinB2 PLXB2_MOUSE 206 kDa 2.1 0.243- 0.2425, 0.244, 0.2425 0.511- 0.51, 0.513, 0.51

Vacuolar protein sorting-associated 
protein 35 VPS35_MOUSE 92 kDa 2 0.154- 0.155, 0.1529, 0.1541 0.303- 0.3, 0.299, 0.31

Ras-related protein Rab14 RAB14_HUMAN 24 kDa 2 1.22- 1.219, 1.24, 1.201 2.43- 2.41, 2.45, 2.43

CAAX prenyl protease 1 homolog FACE1_MOUSE 55 kDa 2 0.259- 0.257, 0.261, 0.259 0.53- 0.519, 0.538, 0.533

Table 4.  Proteins with increased abundance in PSC of Rpgrko at 4 months. S1, S2, and S3 are the three 
biological repeat samples used in the present study.

of opsins in Rpgrko retina at 6 months of age32. Our results indicate that loss of RPGR may not directly 
affect trafficking of opsin or other phototransduction proteins and the mislocalization of opsin observed 
in the Rpgrko retina could have been an effect of degenerating photoreceptors. Support of this hypothesis 
comes from several previous studies showing opsin mislocalization as a common phenotype across mul-
tiple gene mutations associated with retinal degeneration due to photoreceptor dysfunction48.

Membrane proteins targeted to cilia may dock at the periciliary membrane and then are loaded onto 
axonemal cargo carriers for delivery to the OS via the TZ38. However, fate of soluble proteins is not com-
pletely understood. It was reported that small soluble molecules such as GFP could equilibrate between 
inner and outer segments in frog photoreceptors49. Moreover, it was shown that arrestin and transducin 
diffuse through the TZ50–52. These findings suggest an absence of a diffusion barrier in photoreceptors, 
at least for smaller proteins. We detected a specific alteration in the levels of soluble proteins in the 
Rpgrko PSC. We found an overall increase in higher molecular weight soluble proteins at 4 months of 
age as compared to 2 months. As ciliary base is considered analogous to the nuclear pore complex and 
the role of another retinal ciliopathy protein RP2 in maintaining the function of nuclear pore proteins 
at the base of cilia53,54, it is conceivable that there is a size-exclusion barrier of soluble proteins at the 
TZ of photoreceptors. This barrier is likely maintained by RPGR and its interacting proteins. Additional 
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analyses of the effect of RPGR and its multiprotein complexes on the integrity of such a barrier should 
provide crucial insights into the precise role of TZ of cilia.

Our data point to an important role of UPS in the pathogenesis of RPGR-associated photoreceptor 
degeneration. In addition to identifying several UPS components that show varying levels in Rpgrko 
PSC as compared to wild type, validation of three proteins that are directly or indirectly involved in 
UPS provide further support to the association of the UPS in cilia-dependent XLRP pathogenesis. We 
provide four scenarios to support this hypothesis: (i) among the UPS components identified in our PSC 
proteome, PSMD3 showed reduced levels at both 2 and 4 months of age in the Rpgrko PSC. A previous 
report on the involvement of another PSMD subunit PSMD13 in modulating RPE65 levels to regulate 
retinal health further supports the role of PSMD proteins in retinal health55. Moreover, UPS dysfunction 
has been reported in several retinal degenerative diseases56. The UPS is concentrated at the PSC and 
is implicated in regulating levels of phototransduction and other PSC proteins to cope with immense 
oxidative stress in photoreceptors10. Decrease in PSMD3 levels indicates that Rpgrko photoreceptors have 
reduced ability to cope with oxidative stress that accumulates over time; (ii) the UPS regulates insulin 
signal transduction by modulating degradation of key components, such as insulin receptor substrates57. 
Insulin, in turn, can inhibit proteasome and this action is dependent upon IDE58, which is also reduced 
in the Rpgrko PSC; (iii) PSMD3 modulates insulin resistance in association with polyunsaturated fatty 
acids (PUFAs)59, which are a key component of photoreceptor OS membranes60–62; (iv) OFD1, which is 
also reduced in Rpgrko PSC, is shown to modulate proteasome function39. Given that an intronic muta-
tion in OFD1 is associated with XLRP63, we reckon that RPGR and OFD1 play overlapping roles in the 
manifestation of XLRP pathogenesis. Validation of these hypotheses warrants further investigations.

Vesicular trafficking by small GTPases in photoreceptors is critical for their function and survival28,41. 
Our analyses revealed abundant quantities of small GTPase regulators, such as IQGAP1 in the PSC 
of Rpgrko mice. IQGAPs are not only involved in intracellular trafficking, they are also implicated in 
actin-microtubule interaction and regulation of cytoskeletal dynamics. Commensurate with this, our 
analysis revealed alterations in levels of proteins belonging to the families of cytoskeleton-based vesicular 
trafficking to cilia. These results corroborate previous findings that RPGR regulates protein trafficking 
likely by modulating the activity of GTPases or regulators of GTPase activity28.

It should be noted that there is not much overlap between proteins whose abundance changes between 
2 and 4 months. We posit that the proteins that show increased abundance at 2 months in the PSC may 
not be as abundant at 4 months due to progression of disease condition and associated subtle variations 
that may affect their abundance in the PSC in Rpgrko mice. Hence, such proteins would not make the 
cutoff of the threshold in our analysis. On the other hand, proteins that show reduced abundance at 2 
months but are no longer detected at 4 months may reflect reduction in overall expression levels of such 
proteins. This would reduce to such an extent even in a wild type mouse retina that the variations are no 
longer significant in Rpgrko are and hence, do not make the cut off in our analyses.

2 months 4 months

Decreased Increased Decreased Increased

Name
MW 

(kDa) Name
MW 

(kDa) Name
MW 

(kDa) Name
MW 

(kDa)

NDRG1 43 DLG1 100 IDE 118 IQGAP1 189

S14L2 46 AUX1 99 ABCF1 95 IQGAP2 181

PSMD3 61 CC2D2A 188 SLMAP 97

EHD4 61 GSTP1 24 SNAB 34

E9PYI8 52 PHOS 28 SNAG 35

A2ATI6 37 CN166 28 SNAA 33

F6RPJ9 114 TCPR1 130

BBS4 58 AVERAGE 80 AVERAGE 99.8

FPPS 41

ABCF1 95

GBG1 9

GSTP1 24

GLOD4 31

AVERAGE 51.7 AVERAGE 99.5

Table 5.   Soluble proteins with altered in abundance in Rpgrko PSC. No predicted post-translational 
modifications to allow membrane association were detected in these proteins. MW: predicted molecular 
weight; kDa: kilo Daltons.
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Figure 4.  Localization of PSC proteins in mouse retina. Wild type (WT) and Rpgrko retinal sections were 
stained with indicated antibodies. Nuclei (blue) are stained with Hoechst. OS: outer segment; TZ: transition 
zone; IS: inner segment; ONL: outer nuclear layer; AcT: acetylated  α -tubulin. Scale bar: 10 μ m. Solid lines 
indicate the area that is stained by the respective antibody (green) in WT but not in Rpgrko retina.
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Regulators of protein trafficking, such as RPGR are involved in maintaining the structure and func-
tion of mature cilia. Such functions are specifically crucial in mature neurons, which are under immense 
oxidative stress. Defects in RPGR result in subtle but incremental insult, which result in neurodegenera-
tion. Our studies thus, provide clues to understanding pathways involved in the maintenance of mature 
cilia, which will also assist in delineating the pathogenesis of retinal degeneration in systemic ciliopathies.

Methods
Mice.  Rpgrko mice (in C57BL6/J background) were procured from Dr. Tiansen Li (National Eye 
Institute) and were characterized earlier32. Control C57BL6/J mice were obtained from The Jackson 
Laboratories (Bar Harbor, ME). Both strains of mice were reared in the same animal facility at UMASS 
Medical School. All methods were carried out in accordance with the approved guidelines. All exper-
imental protocols were approved by Institutional Animal Care and Use Committee and Institutional 
Biosafety Committee of UMASS Medical School.

Antibodies.  We procured antibodies against IDE and PSMD3 from Genetex (Irvine, CA); rhodop-
sin and IQGAP1, from EMD Millipore (Billerica, MA) and; anti-OFD1, anti-detyrosinated tubulin and 
anti-GM130 from Abcam (Cambridge, MA). Anti-acetylated α -tubulin and γ -tubulin were obtained 
from Sigma (St. Louis, MO); anti-ARL13B was obtained from Proteintech (Chicago, IL) and; Na+ K+  
ATPase was obtained from Santa Cruz (Dallas, TX). Anti-ROM1 antibody, anti-cone arrestin and 
anti-CNGB1 were gifts of Dr. Muna I. Naash (University of Oklahoma), Dr. Cheryl M. Craft (University 
of Southern California), and Dr. Martin Biel (Center for Drug Research, Institute of Pharmacology, 
Germany), respectively.

PSC preparation.  Mouse PSC was prepared essentially as described10,64. Briefly, fresh mouse eyes 
were dissected and retinas were placed in a tube with 150 μ l of 8% OptiPrep (Nycomed, Oslo, Norway) 
prepared in Ringer’s buffer (130 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl2, 1.2 mM CaCl2, 10 mM HEPES, 
pH 7.4, containing 0.02 mM EDTA) and vortexed for 1 min. The samples were centrifuged at 200 × g for 
1 min, and the supernatant containing the PSC was transferred to fresh eppendorf tube. The resultant 
pellet was dissolved in 150 μ l of 8% OptiPrep, vortexed, and centrifuged again at 200 × g for 1 min. These 
steps were repeated five times. The PSC was pooled (∼ 2 ml), overlaid on a 10–30% continuous gradient 
of OptiPrep in Ringer’s buffer, and centrifuged for 50 min at 26,500 × g. PSC were collected from second 
band (about two-thirds of the way from the top), diluted three times with Ringer’s buffer, and centrifuged 
for 3 min at 500 × g to remove the cell nuclei. The supernatant containing PSC was transferred to a new 
tube and centrifuged for 30 min at 26,500 × g. The pelleted material contained pure intact PSC.

Immunofluorescence and Immunoblotting.  For staining of the isolated PSC complex prepara-
tions, 10 μ l of the suspension was spotted on glass slides and fixed in 4% paraformaldehyde in PBS 
(pH 7.4) for 15 minutes. Mouse retina was processed for immunofluorescence as described26,65,66. For 
staining with anti-PSMD3 and anti-IDE antibodies, consistent results were obtained when retinas were 
processed using paraffin-embedding65,66. Slides containing PSC and mouse retinal sections were washed 
with PBS, permeabilized, and blocked for 1 hour with blocking solution containing 5% normal goat 
serum with 0.5% Triton X-100 in PBS in a humidifying chamber at RT. Primary antibodies were added 
and slides were incubated overnight at 4 °C. After washing three times with PBS, samples were incubated 
for 1 hour with goat anti-rabbit (or mouse) Alexa Fluor 488 nm or 546 nm secondary antibody at room 
temperature. Hoechst 33342 (Life Technologies Corp.) was diluted with PBS to final 1 μ g/mL and used to 
label the nuclei. Samples were washed with deionized water and then mounted (Fluoromount; Electron 
Microscopy Sciences, Hatfield, PA) under glass coverslips and visualized using a microscope (Leica TCS 
SP5 II laser; Leica Microsystems).

For Immunoblotting, equal amount of protein samples (50 μ g) were denatured at 95ºC for 
5 min in 10 mm Tris-HCl, pH 6.8, 4% SDS, 20% sucrose, 4% β -mercaptoethanol and separated on 
SDS-polyacrylamide gels. Proteins were transferred onto Immobilon-FL membranes (Millipore, Bedford, 
MA). Blots were blocked in 5% nonfat milk in Tris-buffered saline containing 0.1% Tween 20 (TBST) for 
30 min and labeled with the primary antibody in 5% nonfat milk prepared in TBST for overnight. The 
blots were washed with TBST and labeled with a secondary anti-mouse or anti-rabbit antibody conju-
gated to HRP and processed for chemiluminescence reaction.

Proteomic Analysis.  Analyses of three biological replicates were performed using 6 retinas each 
from wild type and Rpgrko mice (total 18 retinas from each genotype). Samples were run ~1.5 cm into 
the resolving gel of 10% minigels (BioRad, Hercules, CA) and protein-containing regions were excised, 
destained, and cut into 1 ×  1 mm pieces. Gel pieces were then placed in 1.5-ml eppendorf tubes with 1 ml 
of water for 30 min. The water was removed and 100μ l of 250 mM ammonium bicarbonate was added. 
For reduction 20 μ l of a 45 mM solution of 1, 4 dithiothreitol (DTT) was added and the samples were 
incubated at 50 C for 30 min. The samples were cooled to room temperature and alkylated by adding 20 
μ l of a 100 mM iodoacetamide solution for 30 min. Gel slices were washed twice with 1 ml water aliquots. 
The water was removed and 1 ml of 50:50 (50 mM Ammonium Bicarbonate: Acetonitrile) was placed in 



www.nature.com/scientificreports/

1 2Scientific Reports | 5:11137 | DOI: 10.1038/srep11137

each tube and samples were incubated at room temperature for 1 hr. The solution was then removed and 
200 μ l of acetonitrile was added to each tube at which point the gels slices turned opaque white. The 
acetonitrile was removed and gel slices were further dried in a Speed Vac. Gel slices were rehydrated 
in 50 μ l of 2 ng/μ l trypsin (Sigma) in 0.01% ProteaseMAX Surfactant (Promega): 50 mM Ammonium 
Bicarbonate. Additional bicarbonate buffer was added to ensure complete submersion of the gel slices. 
Samples were incubated at 37oC for 21hrs. The supernatant of each sample was then removed and placed 
in a separate 1.5 ml eppendorf tube. Gel slices were further dehydrated with 100 μ l of 80:20 (Acetonitrile: 
1% formic acid). The extract was combined with the supernatants of each sample. The samples were then 
dried down in a Speed Vac. Samples were dissolved in 25 μ l of 5% Acetonitrile in 0.1% trifluroacetic acid 
prior to injection on LC/MS/MS.

LC/MS/MS on Q Exactive.  A 3 μ l aliquot was directly injected onto a custom packed 2 cm x 100 μ m 
C18 Magic 5 μ  particle trap column. Peptides were then eluted and sprayed from a custom packed emitter 
(75 μ m x 25 cm C18 Magic 3 μ m particle) with a linear gradient from 95% solvent A (0.1% formic acid 
in water) to 35% solvent B (0.1% formic acid in Acetonitrile) in 90 minutes at a flow rate of 300 nl per 
minute on a Waters Nano Acquity UPLC system. Data dependent acquisitions were performed on a Q 
Exactive mass spectrometer (Thermo Scientific) according to an experiment where full MS scans from 
300–1750 m/z were acquired at a resolution of 70,000 followed by 12 MS/MS scans acquired under HCD 
fragmentation at a resolution of 35,000 with an isolation width of 1.2 Da.

Data Analysis.  Raw data files were processed with Proteome Discoverer (version 1.3) prior to search-
ing with Mascot Server (version 2.4) against the Uniprot_Mouse database. Search parameters utilized 
were fully tryptic with 2 missed cleavages, parent mass tolerances of 10 ppm and fragment mass toler-
ances of 0.05 Da. A fixed modification of carbamidomethyl cysteine and variable modifications of acetyl 
(protein N-term), pyro glutamic for N-term glutamine, and oxidation of methionine were considered. 
Search results were loaded into the Scaffold Viewer (Proteome Software, Inc.) for comparisons of sam-
ple results between wild type and Rpgrko PSC. Prior to additional analyses, major contaminants such as 
keratins, ribosomal and mitochondrial proteins were removed from our PSC proteome to increase the 
specificity of identified proteins.

We used previously reported stringency criteria to enrich specifically altered proteins. All MS/MS 
samples were analyzed using Mascot search engine (Matrix Science, London, UK; version 2.4.0). Mascot 
was set up to search the SwissProt_062613 database (selected for mice) with a fragment ion mass tol-
erance of 0.050 Da and a parent ion tolerance of 10.0 PPM. Scaffold (version Scaffold_4.3.4, Proteome 
Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. 
Peptide identifications were accepted if they could be established at greater than 95.0% probability by the 
Peptide Prophet algorithm67,68 with Scaffold delta-mass correction. Protein identifications were accepted 
if they could be established at greater than 95.0% probability and contained at least 3 identified peptides. 
We put false discovery rate (FDR) cutoff ~<1, which means that more than 99% of the proteins in our 
list were true proteins.

Quantitative proteomic analysis.  Spectral counting has been used for differentiating the abun-
dance of protein amount in complex mixture of different biological samples. However protein quantifi-
cation by spectral counting would be biased by length of proteins because larger proteins generate more 
spectral counts as compared to smaller proteins. For our quantitative proteomic analysis, we adopted a 
previously described method called exponentially modified protein abundance index (emPAI)69. emPAI 
is widely used method in quantitative comparative proteomics and offers approximate, label-free, relative 
quantitation of the proteins in a mixture based on protein coverage by the peptide matches in a data-
base search result. PAI (protein abundance index) of each protein was calculated by dividing number of 
observed peptides to the number of observable peptides per protein.

= / ( )PAI N N 1obsd obsbl

where Nobsd and Nobsbl are the number of unique observed peptides and the number of unique observable 
peptides per protein, respectively.

For absolute quantitation, PAI was converted to exponentially modified PAI (emPAI),

= − ( )emPAI 10 1 2PAI

which is proportional to protein content in a protein mixture. Solubility prediction of identified proteins 
was calculated using Expropriator (http://mips.helmholtz-muenchen.de/proso/proso.seam)70.

Functional Analysis.  After finding proteins, which are differently expressed, we performed pathway 
analysis by using DAVID (Database for Annotation, Visualization and Integrated Discovery) classifica-
tion system. We analyzed differential expression of proteins based on >2 fold change, for both down 
regulated and up regulated, from overall wild type and knockout datasets.

http://mips.helmholtz-muenchen.de/proso/proso.seam
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