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CORRECTION

Intraflagellar transport 27 is essential for hedgehog signaling but

dispensable for ciliogenesis during hair follicle morphogenesis
Ning Yang, Li Li, Thibaut Eguether, John P. Sundberg, Gregory J. Pazour and Jiang Chen

There was an error published in Development 142, 2194-2202.

On p. 2200, Ng et al. (2012) was incorrectly cited in place of Liew et al. (2014). The corrected text and reference appear below. The authors
apologise to readers for this mistake.

IFT27 was recently shown to play a crucial role in facilitating ciliary exit of the BBSome (Eguether et al., 2014; Liew et al., 2014), and [ft27-
deficient mouse embryonic fibroblasts are unable to maintain low levels of SMO in the cilia when the Hh pathway is inactive (Eguether
et al., 2014).

Liew, G. M., Ye, F., Nager, A. R., Murphy, J. P., Lee, J. S., Aguiar, M., Breslow, D. K., Gygi, S. P. and Nachury, M. V. (2014). The intraflagellar transport protein I[FT27 promotes BBSome
exit from cilia through the GTPase ARL6/BBS3. Dev. Cell 31, 265-278.
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Intraflagellar transport 27 is essential for hedgehog signaling but

dispensable for ciliogenesis during hair follicle morphogenesis
Ning Yang', Li Li2, Thibaut Eguether3, John P. Sundberg®, Gregory J. Pazour® and Jiang Chen'*

ABSTRACT

Hair follicle morphogenesis requires precisely controlled reciprocal
communications, including hedgehog (Hh) signaling. Activation of the
Hh signaling pathway relies on the primary cilium. Disrupting
ciliogenesis results in hair follicle morphogenesis defects due to
attenuated Hh signaling; however, the loss of cilia makes it impossible
to determine whether hair follicle phenotypes in these cilia mutants
are caused by the loss of cilia, disruption of Hh signaling, or a
combination of these events. In this study, we characterized the
function of /ft27, which encodes a subunit of intraflagellar transport
(IFT) complex B. Hair follicle morphogenesis of /ft27-null mice was
severely impaired, reminiscent of phenotypes observed in cilia and
Hh mutants. Furthermore, the Hh signaling pathway was attenuated
in Ift27 mutants, which was in association with abnormal ciliary
trafficking of SMO and GLI2, and impaired processing of Gli
transcription factors; however, formation of the ciliary axoneme was
unaffected. The ciliary localization of IFT25 (HSPB11), the binding
partner of IFT27, was disrupted in /ft27 mutant cells, and /f{25-null
mice displayed hair follicle phenotypes similar to those of Ift27
mutants. These data suggest that /ff27 and Ift25 operate in a
genetically and functionally dependent manner during hair follicle
morphogenesis. This study suggests that the molecular trafficking
machineries underlying ciliogenesis and Hh signaling can be
segregated, thereby providing important insights into new avenues
of inhibiting Hh signaling, which might be adopted in the development
of targeted therapies for Hh-dependent cancers, such as basal cell
carcinoma.

KEY WORDS: Intraflagellar transport, Ift27, Hedgehog signaling,
Cilia, Hair follicle, Skin, Mouse

INTRODUCTION

The development of the skin starts with the commitment of single-
layered surface ectoderm to stratification controlled by the
transcription factor TRP63 (Candi et al., 2008, 2007), followed
by the terminal differentiation of epidermal keratinocytes (Blanpain
et al., 2006). The induction of hair follicle formation is initiated
by reciprocal interactions between epidermal keratinocytes and
folliculogenic dermal papilla cells mediated by molecular signaling
pathways, notably canonical Wnt signaling (Schmidt-Ullrich and
Paus, 2005). Further development of the hair follicle is marked by
downward growth and maturation as a result of follicular
keratinocyte proliferation and differentiation (Schmidt-Ullrich and
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Paus, 2005), which requires hedgehog (Hh) signaling (Schmidt-
Ullrich and Paus, 2005). Prior studies demonstrated that disrupting
genes involved in Hh signaling could result in complete arrest of
hair follicle development (Chiang et al., 1999; Mill et al., 2003; St-
Jacques et al., 1998; Woo et al., 2012), revealing Hh signaling as an
indispensable signaling mechanism during early stages of hair
follicle morphogenesis.

In vertebrates, the primary cilium, which is an antenna-like
cellular protrusion, serves as the venue for Hh signaling (Corbit
et al., 2005; Huangfu and Anderson, 2005; Wong et al., 2009).
When the Hh signaling pathway is inactive, Hh receptor PTCHI
occupies the ciliary membrane, suppressing SMO. Upon binding of
ligand, such as sonic hedgehog (SHH), the suppression by PTCH1
is relieved, permitting SMO to be activated (Rohatgi et al., 2007,
Wang et al., 2009a), thereby activating Gli transcription factors and
the expression of downstream target genes (Haycraft et al., 2005;
Kim et al., 2009; Tukachinsky et al., 2010). In addition, the primary
cilium is essential for the proteolytic processing of Gli factors into
transcriptional repressors in the absence of the ligand (Haycraft
et al., 2005; Huangfu and Anderson, 2005). A number of recent
studies demonstrated that disrupting cilia formation results in
developmental arrest of hair follicles by suppressing Hh signaling
(Chen et al., 2015; Dai et al., 2013, 2011; Lehman et al., 2009).
These studies confirmed the integral role of primary cilia in
mediating the epithelial-mesenchymal crosstalk required for hair
follicle morphogenesis. However, the loss of the ciliary axoneme in
these mutants made it impossible to understand whether the
attenuated Hh signaling was caused by the loss of cilia, defective
trafficking of Hh components, or a combination of both.

The assembly of the ciliary axoneme and the processing of Hh
signals require intraflagellar transport (IFT) (Huangfu et al., 2003).
IFT is an evolutionarily conserved intracellular trafficking
mechanism, which was first characterized in Chlamydomonas
reinhardtii (Kozminski et al., 1993). All IFT proteins identified in
Chlamydomonas are found in mammals (Cole and Snell, 2009;
Follit et al., 2009). The IFT system comprises IFT-A and IFT-B
protein complexes. Both IFT-A and IFT-B are essential for cilia
assembly and maintenance, as well as the transduction of molecular
signals. IFT-B seems to be more fundamental for ciliary assembly,
whereas IFT-A plays a role in retrograde transport and the entry
of some G-protein-coupled receptors into cilia (Cole et al., 1998;
Follit et al., 2009; Rosenbaum and Witman, 2002). Disrupting
subunits of IFT complexes could result in the loss of the ciliary
axoneme and attenuated Hh signaling (Houde et al., 2006; Huangfu
et al., 2003).

IFT27 belongs to the IFT-B complex (Qin et al., 2007). In
contrast to other IFT proteins, IFT27 does not have homologs in
Caenorhabditis elegans or Drosophila melanogaster, which do not
rely on primary cilia to process Hh signals, suggesting that [FT27
might possess unique roles in ciliogenesis and Hh signaling in
comparison to other IFT proteins. IFT27 is a small Rab-like GTPase
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that is capable of forming a heterodimer with IFT25 (HSPBI11)
(Bhogaraju et al., 2011; Cole, 2003; Wang et al., 2009b). In a
previous study, we discovered that IFT25 is dispensable for cilia
assembly but remains essential for the trafficking of Hh signaling
molecules in cilia (Keady et al., 2012). It is particularly intriguing to
know whether these intracellular trafficking molecules are
essential for the transduction of molecular signals in the context
of epithelial-mesenchymal interaction during the development of
multicellular organs.

Here, we examined the role of /27 during embryonic development
of the skin and found that disrupting /fi27 expression blocks hair
follicle morphogenesis. The hair follicle phenotype was associated
with attenuated Hh signaling in [f{27 mutant skin. Accordingly,
primary dermal fibroblasts isolated from /727 mutants were unable to
respond to Hh pathway activation. Interestingly, the formation of
primary cilia was unaffected in /{727 mutant cells and we found that
disrupted Hh signaling was associated with the abnormal ciliary
accumulation of SMO in [fi27 mutant cells. Moreover, the ciliary
localization of IFT25 was disrupted in [f#27 mutant cells, and [fi25
mutant mice displayed hair follicle phenotypes similar to those of
Ift27 mutants. Thus, data obtained from this study suggest that
Ifi27 and Ifi25 may operate in a molecularly and functionally
interdependent fashion during hair follicle formation through
regulating ciliary trafficking of Hh pathway components.

RESULTS

Expression of Ift27 in the mouse skin and hair follicle

To understand the relevance of Ifi27 in skin development, we
examined /fi27 expression at the transcriptional and translational
levels. Ift27 mRNA and protein were expressed throughout
embryonic skin development (supplementary material Fig. S1A;
Fig. 1A,B). Interestingly, IFT27 levels decreased significantly in
P28 skin (P<0.05), which is concomitant with the completion of
hair follicle morphogenesis and the entrance into the first hair cycle.
Furthermore, quantitative RT-PCR and in situ hybridization
demonstrated that If#227 mRNA is expressed in both epidermis and
dermis (supplementary material Fig. S1B; Fig. 1C,C’), including
follicular keratinocytes and dermal papilla cells of developing hair
follicles (Fig. 1C,C’).
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By contrast, [fi27 mRNA and protein were undetectable in hair
follicles or skin of homozygous /ft27 mutants (Fig. 1C",D,E). Thus,
the homozygous /ft27 mutants are essentially /f¢27-null mutants and
are hereafter referred as [f#27~/~. Throughout this study, phenotypes
observed in heterozygous mice (Ifi27"~) were indistinguishable
from those of wild-type littermates (data not shown), and the wild-
type littermates ([f#27*") were used as controls.

Disrupting Ift27 blocks the differentiation of follicular
keratinocytes but not epidermal keratinocytes
The dorsal skin of mutant embryos was examined for
developmental abnormalities. Hematoxylin and Eosin (H&E)
staining of E14.5 and E15.5 skin did not reveal any apparent
defects in If127~~ embryos (supplementary material Fig. S2A
and Fig. S3A). Furthermore, immunofluorescence labeling of
TRP63, KRT14, KRT1, LOR (Fig. 2B; supplementary material
Fig. S2B,C and Fig. S3B), BrdU labeling (Fig. 2C; supplementary
material Fig. S3G,H and Fig. S4A) and TUNEL assay (data not
shown) revealed normal epidermal stratification, differentiation,
proliferation and apoptosis in f#27~/~ skin throughout early (E14.5)
and late (E18.5) stages of epidermal development. The expression
levels of canonical Wnt and Notch target genes and the activation of
BMP and TGF signaling pathways were also unchanged in [fi27~/~
skin (supplementary material Fig. S4B-E). These observations
suggest that [fi27 is unlikely to be involved in embryonic
development of the epidermis. However, the E18.5 Ifi27~~ skin
displayed a striking hair follicle phenotype, in which the majority of
hair follicles were substantially reduced in size (Fig. 2A). Therefore,
we focused our investigation on the formation of hair follicles.
Classification ofthe developmental stages of hair follicles based on
morphological features described by Paus et al. (1999) revealed that
the development of hair follicles in /{27~ skin was significantly
delayed. Specifically, in E18.5 control skin, the percentage of stage
1-2, 3-4 and stage 5-6 hair follicles was 29.3+17.9%, 41.849.7% and
28.8+21.3%, respectively. In the [fi27~/~ skin, up to 90.1% of hair
follicles remained in stage 1-2 (P<0.001), whereas only 0.7%
developed beyond stage 5 (P<0.01) (Fig. 2D). Interestingly, the
number of hair follicles (irrespective of their differentiation
stages) was only slightly reduced in [f#27~/~ skin at E18.5 (P=0.11;
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Fig. 1. Ift27 is essential for hair follicle development. (A,B) Expression of IFT27 protein in mouse skin by western blotting (A) and quantification relative to
P28 (set at 1) (B). n=4; *P<0.05, ***P<0.001. (C) In situ hybridization of /ft27 transcripts in the dorsal skin of the E18.5 mouse embryo. (C’,C") Representative
stage 2 hair follicles in control (C’) and /ft27~'~ (C”) skin. Dashed lines indicate the epidermal-dermal junction. Arrows point to dermal papilla cells. IFE,

interfollicular epidermis; Der, dermis. (D,E) Expression of /ft27 mRNA (D) and protein (E) in the skin of E18.5 control (/ft27*/*) and Ift27~

Scale bars: 100 um in C; 50 ym in C’,C".

~. n.d,, not detectable.
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Fig. 2. Skin and hair follicle phenotypes of Ift27~"~ embryos. (A) Representative histology (H&E staining) of E18.5 control (/ft27"*) and Ift27~'~ dorsal skin.
(B) Expression of differentiation markers of the epidermis at E18.5. There is no apparent difference in the expression profiles of KRT1 and LOR in control and i7"~
(C) BrdU* cells in the basal layer of the interfollicular epidermis of E18.5 Ift27** and Ift27~'~. (D) Distribution of the developmental stages of hairfollicles of E18.5 dorsal
skin. A minimum of 100 hair follicles were analyzed; n>6. (E) Number of hair follicles in E15.5 and E18.5 control and /ft27~'~ dorsal skin per microscopy field (100x);
n>4. (F) BrdU" follicular keratinocytes in stage 2 hair follicles of E18.5 control and /ft27'~. (G,H) Representative images (G) and statistical analysis (H) of double
immunofluorescence labeling of AE13 (red) and KRT75 (green) of hair follicles in E18.5 control and /ft27~'~ skin. (1,J) Representative gross appearance (I) and
histology (H&E staining, J) of skin transplants at 35 days post-transplantation. *P<0.05, **P<0.01. Scale bars: 50 ym in A,B,G; 100 ymin J.

Fig. 2E), but the number of proliferating cells in /{277~ hair
follicles was markedly reduced (P<0.01; Fig. 2F; supplementary
material Fig. S4A). Thus, the data obtained so far suggested that
delayed hair follicle development in /{27~ embryos was likely to be
associated with impaired responses to mitogenic signals.
Examination of hair follicle differentiation markers, such as
KRT75 (companion cell layer) and AE13 (hair cortex),
demonstrated that 3.4+0.8 and 3.1+0.9 wild-type hair follicles
(per microscopic field) expressed these markers, respectively
(Fig. 2G,H), compared with only 0.1+0.2 and 0.2+0.2 hair
follicles in Ifi27~/~ skin (P<0.001; Fig. 2G,H). This observation
strongly suggests that delayed hair follicle development in /277~
skin is caused by abnormal follicular keratinocyte differentiation.
By contrast, the induction of hair follicle formation was
indistinguishable between Ifi27~/~ and control skin. Specifically,
the number and expression pattern of KRT17" hair germs in E15.5
Ifi277/~ skin were comparable to those in wild-type littermates
(supplementary material Fig. S3C). Moreover, the expression of
LEF1 (supplementary material Fig. S3D), a marker for the activation
of canonical Wnt signaling, and of NGFR (formerly known as
p75NTR) (supplementary material Fig. S3E), alkaline phosphatase
(AP) activity (supplementary material Fig. S3F) and the number of
BrdU™" follicular keratinocytes (supplementary material Fig. S3G,H)
were comparable in early stage control and [f#27~/~ hair follicles.
Because [f127~~ mice die shortly after birth we could not
determine whether the development of hair follicles was temporarily
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delayed or impermissible in these animals. To address this question,
dorsal skin of E18.5 Iff27~/~ mutants was transplanted onto nude
(Foxn1™) mice for further development and maturation. Ifi27~/~
skin was able to engraft. However, there was a drastic reduction in
the number of hairs in the [fi27~/~ skin (Fig. 2I). H&E staining of
tissues collected 5 weeks post-grafting confirmed that the hair
phenotype was due to the lack of hair follicles (Fig. 2J). Thus,
disrupting /ft27 blocked hair follicle development.

Hh signaling is perturbed in Ift27 " skin

The hair follicle phenotype of 27~/ mice was reminiscent of that
of Hh mutants (Chiang et al., 1999; Gat et al., 1998; Mill et al.,
2003; St-Jacques et al., 1998; Woo et al., 2012). Consistently, in situ
hybridization and quantitative RT-PCR revealed that [fi27~/~ skin
(E15.5 and E18.5) had significantly reduced expression levels
of Hh target genes, such as Glil and Ptchl, in follicular
keratinocytes and dermal papilla cells (Fig. 3A-C; supplementary
material Fig. S5A,B). Interestingly, the expression of Shh was
essentially indistinguishable between control and If#27~/~ embryos
(P=0.08; Fig. 3C; supplementary material Fig. S5C). Moreover,
western blotting revealed reduced processing of full-length GLI3
(GLI3-FL) to GLI3 repressor (GLI3-R) in skin biopsied from E18.5
Ift27 mutants (Fig. 3D), which led to an increased GLI3-FL:GLI3-R
ratio (Fig. 3D). These findings suggest that perturbation of the Hh
pathway is likely to have occurred downstream of ligand but
upstream of Gli transcription factors.
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Fig. 3. Hh signaling is attenuated in /ft27~~ skin. (A,B) In situ hybridization of Gli1 (A) and Ptch1 (B) in E18.5 control (/ft27*"") and Ift27~'~ skin; n=3. Arrows
indicate hair follicles of similar stages; arrowheads point to dermal papilla cells; dashed line delineates the epidermal-dermal junction. (C) Relative expression
levels of Gli1 and Shh in the skin of E18.5 Ift27""* and Ift27~'~ embryos by quantitative RT-PCR; n=4. (D) Expression of full-length (GLI3-FL) and repressor
(GLI3-R) forms of GLI3 in skin of E18.5 control and /ft27 mutants. (E-H) Responses of 27" and Ift27~"~ primary dermal fibroblasts to SAG treatment as
determined by the relative expression levels of Gli1 (E), Ptch1 (F), Gli2 (G) and Smo (H); n=3. (I) Representative western blotting of IFT27 and GLI1 in SAG-treated
Ift27*"" and Ift27~"~ dermal fibroblasts and quantification of GLI1; n=4. *P<0.05, **P<0.01 (two-way ANOVA and Bonferroni post-test). Scale bars: 100 pm.

To further determine how [fi27 participates in transducing
Hh signals during hair follicle development, primary dermal
fibroblasts were treated with SMO agonist (SAG) and the
expression of Hh-responsive genes examined. SAG treatment
drastically induced the expression of Hh target genes (Ptchli, Glil
and GIi2) in control cells, a response that was attenuated in [f#27~/~
cells (Fig. 3E-G,I). By contrast, the expression of Smo was
unaffected (Fig. 3H). IFT27 was essentially undetectable in
Ifi277'~ cells by western blotting (Fig. 3I). These data obtained
from primary dermal fibroblasts were consistent with in vivo
findings, thereby strengthening the idea that IFT27 participates in
Hh signaling downstream of SMO activation. Moreover, primary
dermal fibroblasts of [f#27~/~ mice demonstrated increased GLI3-
FL levels and an increased GLI3-FL:GLI3-R ratio (supplementary
material Fig. S6), suggesting that the processing of Gli transcription
factors was disrupted in Ifi27~ cells.

Formation of the ciliary axoneme is unaffected in Ift27 "~ skin
Because Hh signaling requires primary cilia and the formation of cilia
requires IFT, we speculated that /f27 might be essential for Hh
signaling by controlling ciliogenesis in follicular keratinocytes and
dermal papilla cells. Immunofluorescence labeling with a number of
ciliary markers, namely ARL13B, ADCY3 (ACIII) and acetylated
o-tubulin, revealed indistinguishable patterns of primary cilia in wild-
type and [fi27~~ skin at various developmental stages (Fig. 4A;
supplementary material Fig. S7; data not shown). Scanning electron
microscopy of primary keratinocytes isolated from control and If#27~/~
embryos also revealed primary cilia of comparable appearance
(supplementary material Fig. S8). Thus, these observations
suggested that neither the formation of the ciliary axoneme nor the
localization of ciliary membrane-associated proteins, such as ARL13B
and ADCY3, was affected in Ifi27~~ cells.

Skin transplants generated from control embryos contained an
abundance of ciliated follicular keratinocytes (supplementary
material Fig. S9A). Remarkably, cells in the epidermal
invaginations of [fi27~~ skin transplants also contained well-
ciliated keratinocytes (supplementary material Fig. S9B). These
cells are proposed to be keratinocytes that are committed to the
follicular fate but have failed to develop into hair follicles because of
disrupted Hh signaling or primary cilia formation (Chen et al., 2015;
Chiang et al., 1999; Dai et al., 2013, 2011; Gat et al., 1998; Mill
etal., 2003; St-Jacques et al., 1998). Thus, the congregation of these
ciliated keratinocytes in the epidermal invaginations of Ifi27~/~
skin transplants not only confirmed this speculation but also
strengthened our previous observation that /f#27 is essential for Hh
signaling (Fig. 3) but not for primary cilia formation (Fig. 4).

To further examine the ciliogenic potential of {1277/~ cells,
primary keratinocytes were treated with cytochalasin D (cyto D), a
compound capable of elongating the ciliary axoneme. Twenty-four
hours after cyto D treatment (0.5 uM), the number of ciliated cells
remained unchanged in both wild-type and If#27~'~ keratinocytes
(Fig. 4C) and the median length of the ciliary axoneme increased
significantly in both genotypes (P<0.0001; Fig. 4B,D).

Thus, data obtained from in vivo and in vitro experiments strongly
suggest that [ft27 does not participate in ciliogenesis or ciliary
maintenance in epidermal keratinocytes.

Ciliary localization of SMO is disrupted in Ift27"~ primary
dermal fibroblasts

To gain insight into how [fi27 regulates the Hh pathway, we
examined the ciliary localization of Hh pathway components in
primary dermal fibroblasts isolated from E18.5 mouse embryos.
Similar to what was observed in Iff27~~ keratinocytes, Ifi27~/~
primary dermal fibroblasts were capable of forming primary cilia
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Fig. 4. Ciliogenesis is unaffected in Ift27~'~ skin. (A) Inmunofluorescence
labeling of cilia and basal body by ARL13B (green) and y-tubulin (red) in E18.5
Ift27*"* and Ift27~'~ skin. Dashed lines indicate the epidermal-dermal junction.
Lower panels are magnifications of the boxed areas above. Arrows point to
ciliated dermal papilla cells. (B) Labeling of cilia and basal body (as described
in A) in primary keratinocytes after 24 h treatment with DMSO or cyto D

(0.5 uM). Three independent experiments were conducted. (C,D) Statistical
analyses of the percentage of ciliated cells (C) and of cilium length (D) in the
cyto D-treated cells described in B. NS, not significantly different (one-way
ANOVA); ***P<0.0001 (Mann-Whitney test). Scale bars: 10 ymin A; 5 pmin B.

in vitro (Figs 5 and 6). In control dermal fibroblasts, SMO is
essentially undetectable in the ciliary axoneme when the Hh
pathway in inactive (cells treated with DMSO, Fig. 5A,
upper panel). Upon pathway activation (SAG treatment), control
cells robustly accumulated SMO in the cilium (Fig. 5A,B). By
contrast, SMO abnormally accumulated in cilia of /1277~ dermal
fibroblasts even when the Hh pathway was inactive (Fig. SA, lower
panel). This suggested that the ciliary exit of SMO was defective in
11277/~ cells.

In SAG-treated control fibroblasts GLI2 accumulated at the
ciliary tip (Fig. 5C,D), which was consistent with an activated
Hh pathway as documented previously (Kim et al., 2009). By
contrast, ciliary tip accumulation of GLI2 was severely disrupted in
SAG-treated [fi27~/~ dermal fibroblast (Fig. 5C,D). This result was
not only consistent with the suppressed Hh pathway observed
in vivo and in vitro (Fig. 3) but also suggested defective trafficking
of Hh components in [fi27~/~ cells in response to Hh pathway
activation.
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Primary cilia were labeled by acetylated o-tubulin (red). (B) Statistical analysis of
SMO" primary cilia. (C) The localization of GLI2 (green) in primary cilia of primary
dermal fibroblasts as shown in A. (A,C) Signals in single and merged channels
are shown beneath mainimages. (D) Statistical analysis of intensity of GLI2 at the
ciliary tip. n>125. *P<0.05, ***P<0.001 (one-way ANOVA). Scale bars: 5 um.

IFT27 and the expression and localization of other IFT
proteins

Since the loss of [fi27 does not seem to impact ciliogenesis, we
further determined whether the expression and ciliary localization
of known ciliogenic IFT proteins are affected in [f#27~/~ cells. First,
double immunofluorescence labeling and western blotting
confirmed the loss of expression and of the ciliary localization of
IFT27 in Ifi277/~ cells (Fig. 6A,E). Subsequently, we found that
the expression patterns of IFT88 and IFT140, which belong to the
IFT-B and IFT-A complexes, respectively, were unaffected in
Ifi277~ cells (Fig. 6C,D). Specifically, IFT88 was enriched in the
axoneme and basal body, whereas IFT140 was predominantly
localized at the basal body (Fig. 6C,D). The expression level of
IFT140 was unchanged in 2277/~ cells as confirmed by western
blotting (Fig. 6E). By contrast, in [ff277~ cells the ciliary
localization of IFT25 was essentially undetectable (Fig. 6B) and
its expression was significantly reduced by 35% (Fig. 6E,F). These
data suggested that IFT27 is not required for the expression and
localization of IFT proteins that are involved in cilia formation but
selectively regulates the stability and localization of its binding
partner IFT25, which is also dispensable during cilia formation.

Ift25 mutants phenocopy the hair follicle phenotypes of
Ift27- mice

To confirm the functional relevance of IFT25 during hair follicle
formation, we examined the skin of Ifi25-null (Ifi25~/") mice
(Keady et al., 2012). As expected, Ifi25~/~ mice displayed a hair
follicle phenotype almost identical to that of /27~ mice (Fig. 7A).
Specifically, although the total number of hair follicles remained
unaffected (Fig. 7B), the hair follicles of E18.5 [f125~/~ embryos
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Scale bar: 5 um.

displayed severe developmental delay (Fig. 7A,C; P<0.01, two-way
ANOVA). These data suggested that /f#27 and Ifi25 engage in a
functional association during hair follicle morphogenesis.

DISCUSSION
Hedgehog signaling is required for the crosstalk between follicular
keratinocytes and dermal papilla cells during hair follicle
development. Activation of the Hh signaling pathway requires the
primary cilia. A number of recent studies unequivocally demonstrated
that the primary cilium is essential for hair follicle morphogenesis;
disrupting ciliogenesis results in the arrest of hair follicle
development due to disrupted Hh signaling (Chen et al., 2015; Dai
et al., 2013, 2011; Lehman et al., 2009). Thus, the formation of the
ciliary axoneme is prerequisite for its function; disrupting cilia
formation inevitably disrupts its function, including the transduction
of Hh signals. In the current study, we further dissected the ciliogenic
processes in the context of hair follicle morphogenesis, and
discovered that a subset of IFT proteins, specifically IFT27 and
IFT25, are not required for the formation and maintenance of the
ciliary axoneme but are essential for processing Hh signaling
components. These findings demonstrate that the processes required
for transducing the Hh signals may be separated from those of
ciliogenesis, and that the presence of the ciliary axoneme does not
necessarily warrant functionality.

Ifi27~~ and Ifi25~~ mice die shortly after birth due to severe
developmental abnormalities in vital organs, such as the heart,
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Fig. 7. Ift257"- embryos display defective hair follicle development similar
to Ift277"~. (A) H&E staining of E18.5 Ift25" and Ift25~'~ dorsal skin.

(B) Statistical analysis of the number of hair follicles in the dorsal skin of E18.5
Ift25"" and Ift257'~ embryos per microscopy field (100x); n=4. (C) Distribution
of developmental stages of hair follicles of E18.5 dorsal skin. A minimum of 100
hair follicles were analyzed. Scale bars: 100 um.

spinal cord and lung (Eguether et al., 2014; Keady et al., 2012).
These developmental anomalies were linked to disrupted Hh
signaling (Eguether et al., 2014; Keady et al., 2012). The
extensive phenotypic outcome in [fi277~ and Ifi25~/~ mice
suggests that this subset of IFT proteins might be widely required
in the embryonic development of complex organ systems. The
recent identification of a loss-of-function mutation in /F727 (C99Y)
in Bardet-Biedl syndrome (BBS) demonstrated that IFT27 indeed
plays an important role in human development and health
(Aldahmesh et al., 2014).

The hair follicle phenotype observed in the germline mutant
Ifi27~/~ mice is reminiscent of that previously reported for Hh and
primary cilia germline mutants (Chen et al., 2015; Chiang et al.,
1999; Dai et al., 2011; Gat et al., 1998; Mill et al., 2003; St-Jacques
et al., 1998; Woo et al., 2012). Interestingly, when Hh or ciliary
genes were disrupted in a tissue-specific fashion, i.e. in the
epidermal lineage (Dai et al., 2013) or in mesenchymal cells
(Lehman et al., 2009; Woo et al., 2012), the resultant phenotypes
were almost identical to those in germline mutants (Chen et al.,
2015; Chiang et al., 1999; Dai et al., 2011; Gat et al., 1998; Mill
et al., 2003; St-Jacques et al., 1998; Woo et al., 2012). These
findings strongly suggest that disrupting Hh signaling or cilia
formation/function in either or both tissue compartments of the hair
follicle will, individually or collectively, contribute to hair follicle
morphogenesis defects.

IFT27 and IFT25 are subunits of the IFT-B complex (Follit et al.,
2009; Rosenbaum and Witman, 2002). Direct interactions between
these two proteins have been demonstrated previously (Bhogaraju
et al., 2011; Keady et al., 2012; Wang et al., 2009b). In this study,
we further demonstrated that the stability and subcellular
localization of these proteins are required for the morphogenesis
of hair follicles, such that disrupting the expression of either of them
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could result in hair follicle morphogenesis arrest. It is worth noting
that the [fi25 and [fi27 mutant mice were able to survive to term,
whereas other IFT-B mutants, such as Ifi88*°, are unable to survive
beyond mid-gestation (Huangfu et al., 2003). The relatively mild
phenotypes in the former suggested that IFT25 and IFT27 might
have more restricted functions, such as in transducing Hh signals as
shown herein, in comparison to IFT88, which is essential for
ciliogenesis in a wide range of cell types. Interestingly, disrupting
Ift88 resulted in similar hair follicle phenotypes (Lehman et al.,
2009) to those of the Ifi25 and [fi27 mutants described herein.
Because these hair follicle phenotypes were attributed to attenuated
Hh signaling, these studies collectively suggest that the core
function of primary cilia during hair follicle morphogenesis is the
transduction of Hh signals.

The ciliogenic capability of 277/~ cells was further examined
using cyto D, which is capable of elongating the ciliary axoneme.
Ifi27~/~ dermal fibroblasts treated with cyto D showed a comparable
capacity to elongate the ciliary axoneme as control cells. Similarly,
neither the expression nor localization of known ciliogenic IFT
proteins, such as IFT88 and IFT140, nor the trafficking of ciliary
membrane-associated proteins, such as ARL13B and ADCY?3, was
affected in Ifi27~~ cells. These data suggested that [fi27 is not
involved in the machinery required for ciliary length maintenance
nor the trafficking of key ciliogenic proteins in mammalian cells.
A recent study on the flagellum of Trypanosoma brucei suggested
that IFT27 is involved in both anterograde and retrograde trafficking
(Huet et al., 2014). Whether IFT27 performs cellular functions
beyond trafficking Hh components remains to be determined in
mammalian cells.

IFT27 was recently shown to play a crucial role in facilitating ciliary
exit of the BBSome (Eguether et al., 2014; Ng et al., 2012), and
1ft27-deficient mouse embryonic fibroblasts are unable to maintain
low levels of SMO in the cilia when the Hh pathway is inactive
(Eguether et al., 2014). In this study, we further demonstrated that
suppressed Hh signaling in {27~ primary dermal fibroblasts is also
associated with abnormal accumulation of SMO in the cilium.
However, ciliary accumulation of SMO does not necessarily correlate
with pathway activation (Rohatgi et al., 2009). Thus, data obtained in
this study suggest that disrupted Hh signaling in Ifi27~~ cells may be
associated with abnormal trafficking of Hh pathway components in
the primary cilium.

The primary cilium is essential for the processing of Gli
transcription factors. It is well documented that in the absence of
Hh ligands GLI3-FL is processed to its repressor form GLI3-R,
resulting in a relatively low GLI3-FL:GLI3-R ratio (Niewiadomski
et al.,, 2014). Data obtained from this study demonstrated that
disrupting [fi27 results in an attenuated Hh pathway and,
counterintuitively, an elevated GLI3-FL level, suppressed GLI3-R
level, and increased GLI3-FL:GLI3-R ratio. We speculate that these
changes in [f#27~/~ cells do not necessarily correspond to activation
of the Hh pathway. Rather, they might merely reflect that IFT27 is
required for proper processing of GLI3-FL. These data are in line
with the well-documented observation that ligand-induced
activation of the Hh pathway, and thus the production of Gli
activators (but not GLI3-R), plays a predominant role during hair
follicle morphogenesis (Mill et al., 2003). Thus, despite the elevated
GLI3-FL level or increased GLI3-FL:GLI3-R ratio, the net outcome
of disrupting Ifi27 is Hh pathway suppression and impaired hair
follicle morphogenesis. Moreover, Hh pathway activity is
modulated by multiple phosphorylations of Gli transcription
factors (both activators and suppressors) (Niewiadomski et al.,
2014). Thus, data obtained from this study support the notion that
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Hh pathway activity may not be evaluated simplistically based on
the levels of Gli transcription factors, and that precisely controlled
processing of Gli transcription factors is an integral component of
the Hh signaling pathway.

By examining key events associated with skin and hair follicle
morphogenesis, we noticed that the effect of loss of /fi27 was
restricted to the proliferation and cytodifferentiation of follicular
keratinocytes. Stratification, proliferation and differentiation of the
interfollicular epidermis and the induction of hair germ were
unaffected in /f#27~~ mutants. These phenotypes correlated well
with related molecular signaling pathways, such as attenuated Hh
signaling and relatively normal canonical Wnt, Notch, BMP and
TGFB signaling in [f#27~/~ skin. Thus, the cell fate-specific function
of IFT27 can be attributed primarily to its function in processing Hh
signals. Whether IFT27 participates in the transduction of other
molecular signals in the skin remains to be empirically determined.

In summary, this study demonstrated an essential role of /fi27 in
mediating Hh signaling during follicular keratinocyte proliferation
and differentiation but not the differentiation program of the
interfollicular epidermis. Although the full spectrum of [fi27
functions remains to be uncovered, the rather restricted function of
IFT27 during embryonic skin development provides important
insight into a novel avenue of targeting Hh signaling, such as in the
targeted therapy for basal cell carcinoma (BCC), in which tumors not
only originate from the hair follicles but are also dependent on
hyperactive Hh signaling (Epstein, 2008; Kasper et al., 2012).
Because IFT27 is likely to mediate Hh signaling through regulating
the ciliary localization of SMO and the processing of Gli transcription
factors, targeting IFT27 might prevent the development of drug
resistance caused by acquired mutations in the SMO receptor
following Vismodegib treatment (Yauch et al., 2009).

MATERIALS AND METHODS

Generation of Ift27 "~ mice and skin transplantation

Ifi27-targeted embryonic stem cells [[fi27™m¢EUCOMMHmgu]  yore
obtained from the EUCOMM project and used to create /fi27 mutant mice
(Eguether et al., 2014). Homozygous mutants were obtained by crossing
Ifi277~ mice. Genotypes of [fi27 mutants were determined using the
following primer pairs (5’-3"): F, GGGAGATGAGGGATTCTTCC; R1,
TCCAACTCTGACTCCGTCCT; R2, CCCCCTGAACCTGAAACATA.
E15.5 and E18.5 embryos were obtained by timed mating. Full-thickness
skin transplantation was performed as previously described (Dai et al.,
2011). All procedures related to mice were approved by the IACUC of the
University of Massachusetts Medical School and Stony Brook University.

BrdU labeling and tissue processing

Bromodeoxyuridine (BrdU) labeling was performed by intraperitoneally
injecting 10 pg BrdU labeling reagent (Invitrogen) per gram body weight
2 hours prior to euthanasia. Skin specimens were obtained by removing the
full-thickness dorsal skin with surgical tools and were fixed in 10% buffered
formalin at 4°C overnight. Fixed skin specimens were processed and sectioned
for routine histology analysis. For all analyses, a minimum of three embryos
obtained from at least two different litters were examined. AP staining was
performed as previously described (Tsai et al., 2010). Specifically, frozen skin
sections were fixed in 4% paraformaldehyde, soaked in B3 buffer (0.1 M Tris
pH 9.5, 0.1 M NaCl, 0.05 M MgCl,) for 10 min, then in NBT (1:200)/BCIP
(1:267) solution (Roche) for 20 min, and imaged.

Cell culture and in vitro assays

The isolation of primary skin keratinocytes and dermal fibroblasts was
conducted as described (Marshall et al., 2005). Briefly, E18.5 skin was
digested by dispase II (Roche) to separate epidermis and dermis. Epidermis
or dermis was then digested with trypsin or collagenase, respectively, to
collect keratinocytes and dermal fibroblasts. Cells were used directly for
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skin reconstitution or cultured in vitro. Keratinocytes were cultured in
defined keratinocyte serum-free medium (Life Technologies) on collagen I-
coated tissue culture plates. Fibroblasts were cultured in Dulbecco’s
modified Eagle’s medium (4.5 g/l glucose) supplemented with 10% fetal
bovine serum and 100 U/ml penicillin and 100 U/ml streptomycin. To
examine cilia formation, cells were grown to near confluence and serum
starved for 24 h before being treated with SAG (100 nM, Calbiochem) or
cyto D (0.5 uM, Sigma) for an additional 24 h in serum-free medium.

Quantitative RT-PCR and western blotting

RNA isolation and quantitative RT-PCR analyses were performed as
described previously (Dai et al., 2013). The following probes were used for
TagMan analysis: [fi27, ABI Mm00508912_m1; Ptchl, Mm00436026_m1;
Glil, Mm00494645_ml; Gli2, Mm01293111_ml; Smo, Mm01162710_m1;
and Actb, Mm00607939_m1 (Life Technologies). Results were analyzed
using the AACt method. Relative expression levels of target genes were
determined by comparison with wild-type or treatment controls after
normalizing to B-actin.

Protein was extracted either by homogenizing skin in cold RIPA lysis
buffer (1% Triton X-100, 0.1% SDS, 50 mM Tris-HCI pH 7.4, 150 mM
NaCl, 1% sodium deoxycholate, 2 mM EDTA, 50 mM NaF) supplemented
with proteinase inhibitors or by digesting cells directly in RIPA lysis buffer.
Cell lysates were cleared by centrifugation at 13,000 g for 20 min at 4°C;
protein concentration was determined using the BCA Protein Assay Kit
(Pierce). Nuclear fractionation was conducted with the NE-PER Nuclear and
Cytoplasmic Extraction Kit (Thermo Scientific). Proteins were separated on
a NuPage gel (Life Technologies) and transferred to Hybond nitrocellulose
membranes (GE Healthcare). The following primary antibodies were
used: B-actin (1:1000; Santa Cruz, sc-47778), IFT27 [1:1000; gift of
G. Pazour, University of Massachusetts (Keady et al., 2012)], GLI1 (1:250;
clone V812, Cell Signaling, 2534S), GLI3 (1:200; R&D Systems,
AF3690), IFT25 (1:1000; Proteintech, 15732-1-AP) and IFT140 [1:500
(Uitto, 2012)]. HRP-conjugated secondary antibodies (BD Biosciences),
SuperSignal substrates (Thermo Scientific) and CL-XPosure film (Thermo
Scientific) were used for detection. Quantification of signal was performed
with ImageJ (NIH).

Immunofluorescence labeling and microscopy
Immunofluorescence labeling was performed as described previously (Dai
et al., 2013). The following primary antibodies were used: TRP63 (1:100;
Santa Cruz Biotechnology, sc-8431), KRT14 [1:1000 (Roop et al., 1987)],
KRT1 [1:500 (Roop etal., 1987)], KRT17 (1:400; Abcam, ab111446), LOR
[1:100 (Roop et al., 1987)], LEF1 (1:100; Cell Signaling, 2230), NGFR
(1:200; p75NT™® Promega, G3231), BrdU (1:20; Life Technologies,
A21304), acetylated o-tubulin (1:1000; Sigma, T6793), y-tubulin (1:500;
Abcam, ab11317 and ab11316), ARL13B (1:100; NeuroMab, #73-287),
IFT27 and IFT140 [1:200 (Keady et al., 2012)], IFT25 (1:200; Proteintech,
15732-1-AP), IFT88 (1:600; Proteintech, 23967-1-AP), SMO [1:100; gift
of R. Rohatgi, Stanford University (Rohatgi et al., 2007)], GLI2 [1:1000;
gift of J. Eggenschwiler, University of Georgia (Sperling et al., 2010)],
pSMAD1/5 (1:100; Cell Signaling, 9511s) and pSMAD2 (1:100; Cell
Signaling, 3101). Alexa Fluor-conjugated secondary antibodies (1:250)
were from Life Technologies. Sections were sealed in mounting medium
with DAPI (Vector Laboratories). Images were acquired using a Nikon 80i
fitted with a Nikon DS-QilMc camera and processed with Photoshop 5.5
CS (Adobe).

To quantify GLI2 at the ciliary tip, GLI2 fluorescence intensity in a
defined circular area (comprising 100 pixels) at the distal end of each cilium
was measured using ImagelJ. Intensity was normalized as percentage of the
median intensity of the wild-type control group. A minimum of 125 cilia
from three sets of wild-type and #1277/~ primary dermal fibroblasts were
evaluated.

In situ hybridization

In situ hybridization was carried out on formalin-fixed paraffin-embedded
tissue sections using RNAScope in situ hybridization technology
[Advanced Cell Diagnostics (Wang et al., 2012)] and custom mouse /127,
Glil, Ptchl and Shh probes as per the manufacturer’s instructions.

Scanning electron microscopy (SEM)

For SEM of cilia, primary keratinocytes isolated from E18.5 mice were fixed
overnight in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). Cells
were then post-fixed, dehydrated and gold coated through standard
procedures (Bechtold, 2000). Samples were examined on a JOEL S-
3000N scanning electron microscope (Hitachi).

Statistical analyses

All quantifications are presented as mean+s.d. Student’s r-test was used
unless stated otherwise. One-way ANOVA and two-way ANOVA were
conducted using GraphPad Prism. P<0.05 was considered statistically
significant.
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