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Protein Arginine Methylation and Citrullination in Epigenetic
Regulation
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‡Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
§Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States

ABSTRACT: The post-translational modification of arginine
residues represents a key mechanism for the epigenetic control of
gene expression. Aberrant levels of histone arginine modifications
have been linked to the development of several diseases including
cancer. In recent years, great progress has been made in
understanding the physiological role of individual arginine
modifications and their effects on chromatin function. The
present review aims to summarize the structural and functional
aspects of histone arginine modifying enzymes and their impact
on gene transcription. We will discuss the potential for targeting
these proteins with small molecules in a variety of disease states.

Epigenetic regulation of gene expression is essential to
eukaryotic life, and its dysregulation is involved in

numerous human diseases. This regulatory mechanism is
controlled, at least in part, by a diverse set of post-translational
modifications (PTMs) of histone proteins.1 Histone proteins
are small, basic proteins that constitute the building blocks of
nucleosomal particles. These proteins form octamers around
which the genomic DNA is spooled. Projecting out of this
nucleosomal core are unstructured lysine/arginine-rich N-
terminal tails.2 Notably, the N-terminal tails of each histone
harbor the majority of known PTMs that are critical for the
epigenetic control of gene expression. Since arginine residues
are important for DNA binding and protein−protein
interactions, it is not surprising that they are subject to
extensive modification. Currently, there are four known types
of enzymatic arginine modifications, i.e., methylation, citrulli-
nation, phosphorylation, and ADP-ribosylation,3,4 and all four
have been shown to occur on histone arginine residues.4 The
best characterized modifications, however, are arginine
methylation and citrullination. In this review, we discuss the
chemical biology of protein arginine modifications in the
epigenetic control of gene transcription, focusing on the
enzymes that catalyze protein citrullination and arginine
methylation as well as their regulatory effects on the core
histone tails and chromatin function. Additionally, we highlight
the recent progress in targeting these proteins using small
molecule inhibitors.
The Epigenetic Role of Arginine Modifications. The

Biological Effects of Histone Arginine Methylation. Protein
arginine methylation is a common post-translational mod-
ification, with many cytoplasmic and nuclear proteins being
methylated on arginines.5−7 In fact, arginine methylation

impacts numerous cellular pathways, and, when dysregulated,
human disease, particularly the development and progression of
cancer.8 This modification is mediated by a family of nine
protein arginine methyltransferases (PRMTs) that can be
grouped into three types based on their arginine methylation
products, i.e., monomethylarginine (MMA), asymmetric
dimethylarginine (ADMA), and symmetric dimethylarginine
(SDMA; for a detailed description, see below). Histone
proteins are well-established PRMT substrates for all types of
PRMTs.7 The main sites of histone arginine methylation
include H2AR3 and R11, H2BR29, R31 and R33, H3R2, R8,
R17 and R26, H4R3, R17, R19, and R23 (Figure 1). In
addition, there is evidence that arginine methylation affects not
only the histone tails but also the histone core, such as in
H3R42me2a, where it is implicated in transcriptional activation
by weakening the histone−DNA interactions.9 Typically,
asymmetric dimethylation of histones has been associated
with transcriptional activation while symmetric dimethylation is
linked to transcriptional repression.10 Here, we provide a brief
overview about individual PRMT members and their influence
on histone methylation.
PRMT1 is an essential gene product and is responsible for

the majority of ADMA modifications in mammalian cells.11 The
PRMT1 deposited methylation mark (H4R3me2a) is associated
with transcriptional activation of nuclear receptor regulated
genes.12 This coactivator activity is facilitated by the subsequent
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acetylation of the H4 tails by the histone lysine acetyltransferase
p300.12 Notably, the previous acetylation of H4 by p300
prevents the methylation by PRMT1,12 most likely by reducing
the positive charges in the remote sequences that are required
for efficient PRMT binding (see below). In addition, PRMT1
functions synergistically with CARM1 and p300 as transcrip-
tional coactivators of the tumor suppressor p53.13 Blythe and
colleagues showed that during embryonic development, β-
catenin recruits PRMT2 to distinct promoters, where it
asymmetrically dimethylates H3R8, thereby priming a genetic
program for dorsal development.14 The PRMT4/CARM1
enzyme was shown to be responsible for transcriptional
activation by the asymmetric dimethylation of H3R17 and
H3R26 and to be required for the maintenance of cellular
pluripotency15 and also muscle cell differentiation.16 Moreover,
upon growth stimulation, PRMT4 is recruited to the Cyclin E1
encoding gene promoter where it methylates histone H3 at R17
and R26 and thereby functions as a transcriptional coactivator
and likely accelerates tumor progression.17 In contrast to the
ADMA mark deposited by type I PRMTs, the symmetric
dimethylation of H4R3 by PRMT5 represents a repressive
mark that is required for the formation of DNMT3A-mediated
transcriptionally repressive DNA methylation.7,18,19 PRMT5
methylates histones H2A and H4 at R3, respectively, as well as
H3 at R2 and R8. Interestingly, the cooperator of PRMT5,
COPR5, binds to the amino terminus of histone H4 and
thereby recruits PRMT5 to preferentially methylate histone H4
at R3.20 A similar recruitment of PRMT5 to histones is also
mediated by the protein MEP50, which interacts with the
histone fold of the H3−H4 tetramer and thus promotes the
proper positioning of the substrate arginine to the catalytic
site.21 Notably, Alinari and colleagues reported that B cells

transformed with Epstein−Barr virus (EBV) show high levels of
nuclear PRMT5 and a concomitant increase in PRMT5-
mediated H4R3me2s and H4R8me2s symmetric dimethylation
marks and a decrease of the type I PRMT-dependent
asymmetric dimethylation of H4R3me2a.

22

Similar to PRMT1, PRMT6 was shown to deposit ADMA
marks on H2AR3 and H4R3, and these modifications have
been shown to be linked to transcriptional activation.23

However, PRMT6 can also asymmetrically methylate H3R2,
and this modification is associated with transcriptional
repression by blocking the recruitment of transcriptional
activators to trimethylated H3K4.24 PRMT7 mediates the
monomethylation of H2AR3 and H4R3 that are both
associated with DNA damage repair.25 The presence of these
monomethylation marks blocks the transcription of DNA
polymerase encoding genes.25

Furthermore, epigenetic regulation of gene expression by
arginine methylation goes beyond histone methylation and can
also directly impact the activity of diverse transcription factors
such as CBP,26 ERα,27 p53,28 and BRCA1,29 as well as RNA
polymerase II.30 Although, there is only limited information
available regarding the readers of the histone methylarginine
marks, it is now well established that several members of the
Tudor protein family specifically recognize methylarginine.31

For instance, the Tudor domain containing protein TDRD3
recognizes ADMA modified H3R317 and H4R3 and acts as a
transcriptional coactivator.32 It remains to be shown whether
other proteins specifically bind to methylarginines or whether
competition with other histone modifications is the primary
mode of action of these marks.

The Biological Effects of Histone Citrullination. Protein
citrullination is mediated by a family of five enzymes called
protein arginine deiminases (PADs), which hydrolyze the
arginine guanidinium into a urea group. Based on electrostatic
considerations, histone arginine citrullination best compares to
histone lysine acetylation. In both cases, the positively charged
functionalities (guanidinium group in arginine and amino group
in lysine) are converted into neutral forms (urea in citrulline
and acetamide in acetyllysine). Since histone lysine acetylation
is usually associated with an open chromatin structure that can
be accessed by RNA polymerases as well as transcription factors
and thus typically correlates with gene activation,1 a similar
trend was expected for histone arginine citrullination. Indeed, it
was recently shown that PAD4 induced citrullination of the
linker histone H1 at R54 leads to extensive chromatin
decondensation in pluripotent stem cells.33 The loosened
chromatin structure allows for the enhanced expression of
genes involved in stem cell development and maintenance such
as Klf 2, Tcl1, Tcfap2c, Kit, and Nanog.33 It was proposed that
the observed overexpression of PADs in several cancers might
induce a similar chromatin decondensation and thus promote a
stem-cell-like state.34

However, more detailed analyses regarding the functional
effects of histone citrullination reveals that this mark is
associated with both transcriptional repression and activa-
tion.35−37 It was suggested that its distinct roles on gene
expression can be mediated either by preventing activating
arginine-methylation events or by the recruitment of further
histone modifying enzymes.36,38 PAD4 was shown to
citrullinate histone H3 on arginines 2, 17, and 26, as well as
histones H2A and H4 on arginine 3, respectively (Figure
1).35,36,39 Specifically, the citrullination at H3R17 represses the
expression of estrogen receptor regulated genes.36 Moreover,

Figure 1. Sites and types of histone arginine modifications. Arginine
methylation and citrullination sites of individual histone N-terminal
tails. Abbreviations: Me, monomethylation; Me2a, asymmetric
dimethylation; Me2s, symmetric dimethylation; Cit, citrullination.
The inset on the left depicts the nucleosome core particle (PDB
code: 1AOI); DNA is colored in red, and the histone octamer is
highlighted in blue, including a protruding H3-derived histone tail that
is otherwise barely defined for the other histone proteins in the crystal
structure.
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PAD4 seems to act as a p53 corepressor by H3 citrullination at
the p21 promoter site, thereby blocking downstream gene
transcription.40 Histone H3 citrullination at the promoter
region of the pro-apoptotic tumor suppressor gene OKL38 was
shown to associate with transcriptional repression as well.41

Estrogen-induced stimulation of PAD4 induces citrullination of
H3R8 that is linked to transcriptional activation at ERα-
dependent promoters by interfering with the H3K9me3
directed binding of HP1α.42 There, it was shown that the
citrullination of H3R8 in peripheral blood mononuclear cells is
involved in the increased expression of cytokines TNFα and
IL8; the overexpression of these cytokines is associated with an
uncontrolled immune response and T-cell activation in multiple
sclerosis.42 Besides the direct effect of histone citrullination on
transcriptional regulation, the citrullination of the histone
acetyltransferase p300 was shown to enhance its coactivator
ability to stimulate gene transcription indicating a role for
nonhistone mediated epigenetic functions of protein citrullina-
tion.43

Based on cellular localization studies employing overex-
pressed PAD enzymes, PAD4 is the only isozyme located in the
nucleus and thus has been suggested to be solely responsible
for histone H2A, H3, and H4 citrullination.44 Moreover,
sequence analysis revealed that only PAD4 contains a canonical
nuclear localization signal.45 However, several recent studies
revealed that PAD2 can also reside in the nucleus, where it
citrullinates histone H3 at arginines R2, R8, R17, and
R26.37,46,47 The PAD2 catalyzed citrullination of histone H3
in EGF stimulated mammary epithelial cells has been suggested
to modulate the expression of lactation related genes during the
estrous cycle.46 In addition, stimulation of estrogen receptor α
(ERα)-positive cells with 17 β-estradiol (E2) induced PAD2
dependent citrullination of H3R26 at ERα target genes.37 This
modification leads to local chromatin decondensation, thereby
increasing the accessibility for ERα to its target sites and
consequently transcriptional activation of ERα regulated
genes.37,47 Guertin and colleagues further proposed that
PAD2 mediated citrullination at H3R26 might be a potential

Figure 2. Structure and mechanism of PRMTs. (A) Schematic representation of the PRMT catalyzed arginine methylation reactions including the
different types of PRMTs mediating these enzymatic reactions. The classification of individual PRMT members is shown on the right side. (B) The
crystal structure of dimeric PRMT1 bound to SAH and arginine (PDB code: 1OR8). The protomer on top is shown as surface representation
colored according to its electrostatic potential (negative electrostatic potentials are highlighted in red, whereas positive electrostatic potentials are
illustrated in blue). The inset on the right depicts a close up view of the PRMT1 active site residues implicated in substrate and cofactor binding as
well as catalysis.
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prognostic marker for estrogen receptor positive (ER+) tumor
development.47

Apart from the epigenetic consequences of histone
citrullination, PAD4-mediated hypercitrullination of histones
is critical for the innate immune system and the development of
inflammatory diseases such as rheumatoid arthritis (RA) and
lupus. Specifically, it was shown that PAD4 is essential for
neutrophil extracellular trap (NET) formation,48 also termed
NETosis, a specialized pro-inflammatory form of cell death that
is involved in the defense against bacterial infection.49 During
NETosis, histone hypercitrullination promotes chromatin
unraveling on such a massive scale that the chromatin complex
is extruded from the cell to form a web-like structure that
captures pathogens. These large extracellular structures of
decondensed chromatin include hypercitrullinated histone H3,
which is a key marker of this form of cell death.48,50 Notably,
aberrantly increased NETosis has been recognized as a central
player in the pathogenesis of several systemic autoimmune
diseases, including lupus and RA, as well as Alzheimer’s
disease.51−54 Interestingly, citrullination of H4R3 was also
shown to be associated with apoptosis in osteosarcoma cells
and suggested to promote apoptotic fragmentation by
increasing the accessibility of genomic DNA for DNase
attack.55

Structure and Function of Arginine Modifying
Enzymes. The Structure and Function of PRMTs. PRMTs
catalyze the transfer of a methyl group from a donor molecule,
S-adenosylmethionine (SAM), to the terminal guanidino
nitrogens of arginine residues. As mentioned above, there are
currently nine known PRMTs that can be further classified into
three distinct types according to their regiospecificity, i.e., the
generation of (i) ADMA, performed by type I enzymes, (ii)
SDMA, mediated by type II PRMTs, and (iii) MMA, which is
catalyzed by type III enzymes (Figure 2A).4,7 Notably, the
mono- or dimethylation of arginine residues does not alter the
overall positive charge on the arginine guanidinium group;
however, it affects the hydrogen bonding capabilities of this
residue.4 The availability of numerous crystal structures of type
I and type II PRMTs reveals a conserved architecture wherein
two monomers form a head-to-tail homodimer. The dimer
interface is stabilized by interactions between the catalytic
domain and the helix-turn-helix dimerization arm that
protrudes from the C-terminal β-barrel domain (Figure
2B).56−60 Notably, the known structures of all the dimethyla-
tion specific PRMTs show a central hole and two opposing
active sites that are separated by ∼3 nm. By contrast, the only
type III enzyme, PRMT7, lacks the central cavity and consists
of a monomer constituting two consecutive PRMT modules
that fold into a homodimer-like structure.61,62 The PRMT
active site contains a SAM binding pocket that consists of a
series of highly conserved sequence motifs that are critical for
SAM binding and the structural organization of the active site.
In addition, the arginine binding pocket is characterized by two
invariant glutamate residues (E144 and E153 in PRMT1),
which are located on the double E-loop and are thought to
properly align and orient the substrate guanidinium group for
nucleophilic attack.57,63

The structural determinants that dictate product selectivity
and thereby steer the formation of ADMA, SDMA, or MMA
remain unclear. However, recent biochemical studies and the
availability of high resolution crystal structures of several
PRMT members reveals striking signature features specific for
each PRMT type.56,57,59−61,64 For instance, a conserved

methionine residue (M48 in PRMT1), present in all type I
and type III enzymes, is replaced by a phenylalanine in the type
II enzyme PRMT5 (F327). It was shown that swapping this
residue from a methionine to a phenylalanine in PRMT1 led to
the slight formation of SDMA.65 The complementary experi-
ment, i.e., replacing the phenylalanine in PRMT5 to a
methionine residue, results in the generation of both ADMA
and SDMA.64 These experiments highlight the important role
that this residue plays in specifying the regiospecificity of the
PRMTs. However, the very recent demonstration that PRMT9
acts as a type II enzyme66,67 questions the general importance
of this site for product specificity, as this enzyme possesses a
methionine at this position.4 More recently, it was proposed
that subtle steric constraints, among different PRMT types, may
be important for conferring the observed product selectiv-
ity.4,61,68 In this respect, two major determinants have been
suggested. The first one consists of differences in the THW
loop-motif. This motif is only present in type I and type III
enzymes, and the critical histidine residue is thought to narrow
the substrate arginine binding pocket. In the case of type II
enzymes, the histidine is replaced with a serine (in PRMT5) or
cysteine (in PRMT9) residue that increases the available
volume to fit a methylated nitrogen atom while placing the
other nonmethylated guanidine nitrogen close to the SAM
methyl transfer site.4 This orientation is compatible with the
formation of symmetrically dimethylated arginine residues. The
second critical determinant comprises the conserved YF/YXXY
motif in the αY helix that is only found in type I PRMTs.
There, the two invariant tyrosine hydroxyl groups hydrogen
bond to one glutamate residue of the double E-loop, thereby
forming a small pocket that allows the accommodation of a
methyl group on the attacking nitrogen atom for asymmetric
dimethylation.68

Apart from the generation of different methylation products,
individual PRMTs also have distinct substrate specificities.
Typically, PRMTs prefer to methylate glycine and arginine-rich
(GAR) sequences as encountered in numerous RNA binding
proteins and the histones H2A and H4.4,6,69,70 A plausible
reason for the requirement of glycine residues is their enhanced
conformational flexibility and the ability to form β-turn-like
structures that are critical for the enzyme−substrate interaction
as shown in the crystal structure of PRMT5 bound to a histone
H4 peptide.60,71 However, the substrate specificity of PRMT5 is
not only restricted to GAR sequences as it can also
accommodate arginines within a wider spectrum of sequence
contexts.72 Notably, PRMT4 (CARM1) mainly methylates
arginine residues present within proline-, glycine-, and
methionine-rich (PGM) sequence motifs as found in several
splicing factors and histone H3.73 The type III enzyme,
PRMT7, specifically monomethylates arginines within an RXR
motif encountered in H2B and H4 (Figure 1).74 In addition,
substrate recognition in most PRMTs is drastically enhanced by
remote sequences that are typically more than 10 residues apart
from the arginine methylation site.75−77 The recognition of
distal substrate elements is mainly mediated by electrostatic
interactions. In this respect, it is interesting to note that all
PRMTs have acidic isoeletric points (pI), with typical pI values
between 5.0 and 5.3. The only exceptions are PRMT5 (pI, 5.9),
PRMT4 (pI, 6.3), and PRMT8 (pI, 6.5), which possess slightly
higher pI’s. Notably, PRMTs contain large areas of negative
electrostatic potentials located on the β-barrel domain and the
catalytic domain (Figure 2B) that are proposed to bind the
positively charged residues of the remote substrate re-
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gions.56,57,75,78 This effect is further enhanced by the presence
of dimeric PRMTs that can act as a negatively charged “sponge”
to tether the positively charged substrates close to the active
site cavity. This in turn facilitates the processive dimethylation
of arginine residues, where the remote sequence elements
anchor the substrate, while the arginine methylation site can
swing from one active site into the other thereby promoting
efficient dimethylation reactions. Evidence for such a
mechanism stems from kinetic studies that show a partially or
semiprocessive mechanism of dimethylation for PRMT1 and
PRMT6.75,79,80 Interestingly, the extent of processivity is
influenced by the substrate employed, and thus different
patterns of methylation can be obtained by the same PRMT
enzyme in a substrate-dependent manner.80 Conversely, the
type II enzyme PRMT5 uses a distributive mechanism for the
symmetric dimethylation of histone H4.81 This might be a
consequence of much slower reaction kinetics of symmetric
methylation compared to asymmetric dimethylation reactions
and a weaker interaction between the monomethylated
substrate and PRMT5.21

The Structure and Function of PADs. As mentioned above,
citrullination is the conversion of arginine into citrulline via the
hydrolysis of the guanidinium group to form the neutral urea.
In essence, an imine is replaced by a carbonyl; therefore this is
termed a deimination reaction. Protein citrullination is
mediated by the PAD enzymes (Figure 3A). There are five
human PAD isozymes that show distinct tissue distributions
and cellular localizations.4,45,82 Four of these enzymes (PADs
1−4) are catalytically active, whereas PAD6 appears to be a
pseudoenzyme with no detectable enzymatic activity.83

Interestingly, PAD activity is strictly dependent on the
availability of high concentrations of calcium (K0.5,Ca = 130−
710 μM) and the enzymes bind to five (PADs 1, 3, and 4) or

six (PAD2) calcium ions at distinct sites.84−86 Although,
calcium is not directly involved in catalysis, the recent crystal
structures of apo and calcium-bound PAD2 show that calcium
induces a series of structural rearrangements that are essential
for the formation of a catalytically competent active site.86 In
particular, the movement of the catalytically important cysteine,
C645 in PAD4 and C647 in PAD2, into the active site is
triggered by calcium. Interestingly, calcium binding itself occurs
in an ordered fashion, and residues involved in calcium
interactions are conserved across the PAD family.86

On the basis of sequence analyses and structural compar-
isons, PADs belong to the pentein superfamily that is
characterized by the pentameric arrangement of five sub-
domains around a central hollow, forming an α/β propeller.87,88

This central cavity accommodates the active site within the
catalytic domain. Besides the C-terminal catalytic domain,
PADs also contain an N-terminal domain that is further
composed of two immunoglobulin-like (Ig) subdomains
(Figure 3B). Like the PRMTs, PADs exist as homodimeric
proteins, with the individual monomers arranged in a head-to-
tail fashion such that both active site pockets are located on the
same side of the dimer.88 The active site cavity of an individual
monomer harbors all the critical residues for catalysis (Figure
3B). These residues include a strictly conserved cysteine (C645
in PAD4) that is important for nucleophilic attack onto the
central guanidinium carbon atom of the arginine substrate, as
well as two invariant aspartate residues (D350 and D473 in
PAD4), which are thought to attract and properly position the
arginine guanidinium group via electrostatic interactions. In
addition, the active site contains a histidine (H471 in PAD4)
that is important for the protonation of the ammonia leaving
group and the subsequent activation of an incoming water

Figure 3. Structure and mechanism of PADs. (A) Schematic representation of the PAD catalyzed citrullination reaction. (B) The crystal structure of
the PAD4 C645A dimer bound to the arginine mimicking substrate BAA (PDB code: 1WDA). The structure on top is colored according to domain
organization. The C-terminal catalytic domain (orange) contains the bound substrate (BAA, gray). The bound calcium ions are illustrated as purple
spheres. The inset on the right shows the PAD4 active site residues implicated in catalysis. The protomer on the bottom is shown as a surface
representation colored according to its electrostatic potential.
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molecule that ultimately cleaves the thiouronium reaction
intermediate.89

The proposed reaction mechanism, including the covalent
intermediate, is shared by other members of the guanidino-
group modifying pentein superfamily, such as dimethylarginine
dimethylaminohydrolase (DDAH) and arginine deiminases
(ADI).90,91 However, in contrast to these proteins, PADs
modify peptidyl-arginine residues.84 As a result, PADs have

evolved a more accessible active site and contain several
residues that specifically recognize the substrate peptide
backbone.92 For example, residue R374 is critical for the
formation of a bidendate hydrogen bond with two substrate
peptide carbonyls. The structures of PAD4 bound to histone
peptides reveal that substrate recognition is mainly mediated via
interactions with the substrate peptide backbone.92 As such,
there is limited sequence specificity regarding PAD4 substrate

Table 1. General Methyltransferase Inhibitors

Table 2. Inhibitors of PRMTs
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selection. In addition, and in contrast to PRMTs, substrate
recognition by the PADs does not depend on long-range
interactions originating from remote sequences in the
substrate.84 Despite limited sequence specificity, it was shown
that PAD4 bound peptide substrates adopt a β-turn-like
conformation, similar to PRMT bound substrates.92 Therefore,
the propensity of peptide substrates to adopt such kinked
conformations might dictate substrate selection in PADs.
Moreover, apart from structural constraints, PAD substrate
specificity may be regulated by the accessibility of arginine
residues in chromatin structures, through interaction of a PAD
with other proteins and by cross-talk with distinct PTMs, such
as arginine methylation. In this regard, it was claimed that
PADs can also act on methylated arginine residues.35 However,
several lines of evidence questioned the physiological relevance
of this activity and even indicated that arginine methylation
prevents arginines from being PAD substrates.36,84,93,94 Thus,

citrullination and arginine methylation are now considered to
be antagonistic modifications.4,95

Inhibitors of Arginine Modifying Enzymes. PRMT
Inhibitors. In recent years, a diverse set of PRMT inhibitors
have been discovered. The most common and general PRMT
inhibitors are S-adenosyl-L-homocysteine (SAH, 1) and
sinefungin (2). These molecules are structurally related to
SAM, and numerous biochemical and crystallographic data
confirm that they are SAM-competitive inhibitors that block
PRMT activity in the low micro- to nanomolar range (Table
1).96 SAH is the reaction product of SAM-dependent methyl
transfer reactions. Normally, it is rapidly degraded by SAH
hydrolase; however, its activity can be blocked by adenosine
dialdehyde to artificially increase the endogenous level of
SAH.97 This approach is frequently employed to study the
global effects of inhibiting cellular methyltransferases including
the PRMTs. The natural product sinefungin was originally

Table 3. Inhibitors of PADs
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isolated from Streptomyces species98 and was shown to act as a
pan-methyltransferase inhibitor similar to SAH.99

One of the first high-throughput screens to identify small
molecule inhibitors of PRMT1 was performed by the Bedford
group.100 These screening efforts led to the identification of
several compounds termed arginine methyltransferase inhibitor
(AMI). One of these small molecules, AMI-1, was shown to be
cell-permeable and to inhibit cellular PRMT1 in a concen-
tration dependent manner.100 However, most of these small
molecules were nonspecific and also inhibited protein lysine
methyltransferases. In addition, subsequent studies revealed
that AMI-1 actually does not bind to PRMTs but rather
interacts with the histone substrates via electrostatic inter-
actions, thereby preventing substrate access.101

To obtain PRMT specific inhibitors, Spannhoff et al.
employed a target-based virtual screening approach.102 The
identified compounds include the diamidine stilbamidine (3;
Table 2) and the dapsone derivative allantodapsone (4) that
both act as competitive inhibitors of the protein substrate.
Moreover, these compounds were shown to block PRMT1
methylation of H4R3 in cellular assays while having minimal
inhibitory effects on lysine methylation of H3K4.102 However,
they show limited potency and PRMT isozyme specificity.
Recently, an improved diamidine compound, furamidine (5),
was described.103 This small molecule is selective for PRMT1
with a ∼18-fold lower IC50 for PRMT1 compared to PRMT5.
Based on molecular modeling studies, the positively charged
amidinium in 5 was proposed to bind to the substrate binding
site, occupying the position of the substrate guanidinium group.
In addition, furamidine was shown to be cell permeable,
resulting in inhibition of cellular PRMT1 and a decrease in cell
proliferation in leukemia cell lines.103 However, care has to be
taken regarding the utilization of diamidine derivatives as
PRMT-specific inhibitors because they are also reported to bind
DNA with high affinity;104 as such we do not recommend their
use as PRMT inhibitors.
There are several studies on PRMT inhibitor development

strategies aimed at substrate, cofactor, and in particular partial
bisubstrate analogs.105−110 Although these compounds showed
decent inhibition, they are usually nonspecific with regard to
different PRMT isozymes. For example, one of the most potent
compounds (6), consisting of the SAM adenosine moiety
linked to a guanidinium group, shows an IC50 of 560 nM for
PRMT4 but also effectively blocks the activity of PRMT1 and
PRMT5.110 An exception is the peptide-based inhibitor C21
(7) that is composed of the first 21 residues of histone H4 and
contains a chloroacetamidine warhead instead of the substrate
arginine guanidinium group.106 This compound acts as an
irreversible inhibitor wherein the chloroacetamidine group
reacts with a hyperreactive cysteine, C101 present in the
PRMT1 active site, to form a stable thioether bond.111 Notably,
the peptide inhibitor C21 is >100-fold more potent than the
chloroacetamidine warhead containing compound Cl-amidine
(19, Table 3, discussed below).106 These data further highlight
the requirement of remote sequences, distal from the arginine
substrate site for efficient inhibitor/substrate peptide binding.
C21 shows high preference for PRMT1 over PRMT3 and
PRMT4 with an IC50 of 1.8 μM for PRMT1; however, it can
also block the activity of PRMT6 (IC50, 8.8 μM). In addition,
C21 was adapted as a chemical probe by incorporating either
fluorescein or biotin reporter tags to monitor and isolate active
PRMT1.112 On the basis of a previously identified cyanine
scaffold,113 Hu and colleagues developed a PRMT1 inhibitor

(8), denoted as E-84.114 This small molecule inhibitor blocks
PRMT1 with an IC50 of 3.4 μM and shows 6-fold selectivity
over PRMT4 and over 10- and 25-fold selectivity over PRMT5
and PRMT8. On the basis of molecular docking studies, it was
proposed that E-84 binds to the SAM binding pocket as well as
the arginine substrate binding site. In addition, this compound
slightly reduced the level of asymmetrically dimethylated
arginine in leukemia cells and displays cytotoxic activity toward
these cells.114 However, experimental evidence of target
engagement is still lacking, and it thus remains to be shown
if this compound directly interacts with PRMTs.
In recent years, several highly potent isozyme-specific and

more drug-like PRMT inhibitors have been developed. One of
these compounds, 9, represents an optimized hit derived from a
HTS approach that selectively targets PRMT3.115,116 This
compound is an allosteric inhibitor that does not bind the
active site pocket. Structural analysis revealed that 9 binds at
the PRMT3 homodimerization interface and prevents the
proper orientation of helix αY for catalysis.116 In addition, it
was shown that 9 is active in cellular assays and efficiently
blocks the PRMT3-dependent dimethylation of H4R3 with
nanomolar efficacy.116 Sack and colleagues described the
identification of two PRMT4 (CARM1) selective inhibitors,
the pyrazole derivative 10 and the indole derivative 11.117 Both
of these compounds were derived after optimization of
compounds identified from initial HTS screens.118 Detailed
structural investigations showed that these small molecule
inhibitors bind to the arginine-substrate binding cavity of
PRMT4 and require bound SAH.117 In addition to PRMT3 and
PRMT4, specific inhibitors of PRMT5 have also been
identified. The carbazole ring containing CMP5 (12) was
shown to block PRMT5 activity but did not inhibit PRMT1,
PRMT4, or PRMT7.22 This compound was predicted to
occupy the SAM binding pocket and form π−π stacking
interactions with the signature phenylalanine (F327) residue
implicated in product selectivity of PRMT5. Cellular studies
indicate that treatment of transformed B-cells, expressing high
levels of PRMT5, with CMP5 blocks Epstein−Barr virus driven
B-lymphocyte transformation while leaving normal B cells
unaffected.22 Another highly selective and even more potent
PRMT5 inhibitor was recently developed by Chan-Penebre et
al.119 This small molecule, EPZ015666 (13), is an optimized
version of a compound derived from a library of 370 000
compounds. Inhibition studies with PRMT5 revealed that
EPZ015666 is competitive with the peptide substrate, and this
was further confirmed by structural analyses.119 Similar to
PRMT4 inhibitors, it was shown that the binding affinity of
EPZ015666 for PRMT5 was greatly increased by SAM binding.
Interestingly, EPZ015666 also engages in π−π stacking
interaction, via its critical tetrahydroisoquinoline moiety, with
F327 of PRMT5 as predicted for compound CMP5. These data
highlight the potential for developing selective PRMT
inhibitors by harnessing isozyme specific differences in the
active site such as the characteristic phenylalanine residue,
F327, of PRMT5. On the basis of functional studies,
EPZ015666 reduces the level of global symmetric dimethyla-
tion in the mantle cell lymphoma (MCL) cell line Z-138.
Moreover, EPZ015666 exerts antiproliferative effects in
numerous MCL cell lines at nanomolar concentrations, and
oral administration of this compound induces antitumor activity
in different MCL xenograft mouse models.119 Very recently, a
PRMT6 specific inhibitor, EPZ020411 (14), has been
reported.120 This compound shows high potency, IC50 = 10
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nM, for PRMT6, and good selectivity over PRMT1 (12-fold)
and PRMT8 (22-fold) and excellent selectivity (>100-fold)
compared to PRMT3, PRMT4, PRMT5, and PRMT7. The
crystal structure of EPZ020411 bound to a ternary PRMT6-
SAH complex revealed that the inhibitor binds into the arginine
substrate site via its diamine side chain and the pyrazole core
structure.120

PAD Inhibitors. Since dysregulated citrullination levels have
been implicated in numerous diseases including rheumatoid
arthritis, several autoimmune diseases, as well as cancer, PADs
represent a promising target for pharmaceutical intervention.121

Thus, several small molecules have been developed that block
the activity of this enzyme class. Because of the involvement of
PADs in the development of RA, a small panel of disease
modifying antirheumatic drugs were tested for the presence of
potential PAD inhibitors.122 Interestingly, some of these
compounds showed modest PAD inhibition in the low milli-
to micromolar range. One of the most potent inhibitors was the
tetracycline derivative minocycline. Further investigations,
using different tetracycline derivatives, revealed chlortetracy-
cline (15) as a modest PAD4 inhibitor with an IC50 of ∼100
μM (Table 3).122 However, due to the weak inhibitory activity,
it is unlikely that these compounds exert inhibition of cellular
PAD4. Since the arginine guanidinium moiety is the major
contributor for efficient PAD−substrate interactions, several
guanidinium group containing compounds have also been
evaluated. In this respect, the derivatized guanidine compound
16 displays 36% inhibition of PAD4 activity at 10 μM.123

Moreover, the acylguanidine derivative 17 was shown to block
PAD3 with an IC50 of 100 nM.124 However, given that
acylguanidines have a low pKa value, typically several orders of
magnitude lower than that of guanidines, and are expected to
be poorly suited as arginine substrate mimicking inhibitors, the
strong inhibitory activity of 17 needs further validation.
Although it was hypothesized that these compounds act as
competitive inhibitors, their detailed mode of inhibition has not
been studied. The limited potency for these reversible PAD
inhibitors likely relates to the small active site pocket that only
accommodates the side chain of an arginine residue. Therefore,
the recent discovery of a distinct binding site occupied by
compounds GSK 199 and its more potent derivative GSK 484
(18) opens a promising approach to develop high affinity
reversible PAD inhibitors.125 Specifically, structural studies
revealed that these compounds bind to the solvent exchange
channel in PADs and induce large conformational changes
around the active site.125 In addition, compound 18 is a PAD4
specific inhibitor that displays at least 35-fold selectivity for
PAD4 over the other PAD isozymes. Interestingly, 18
preferentially binds a calcium-deficient form of PAD4 that
lacks calcium in the Ca2 binding site and has an IC50 value in
the nanomolar range in the absence of calcium, whereas
calcium binding decreases its potency by at least 5-fold.125

These data further highlight the dynamic nature of the PAD4
active site that fluctuates between different conformations in a
calcium dependent manner. Moreover, it further indicates that
these conformational states (calcium-deficient, inactive and
calcium-bound, active) can be targeted by distinct inhibitors
and pave the way for developing conformer-specific PAD
inhibitors. Inhibitors targeting the resting apoenzyme are of
particular interest as they stabilize the inactive conformation
that likely represents the major form inside the cell. By shifting
the equilibrium toward the inactive conformation, these
inhibitors do not directly compete with endogenous substrates

and might be better suited to prevent burst activation of PADs
such as during NETosis, triggered by massive calcium influx. In
this respect, pretreatment of stimulated mouse neutrophils with
10 μM GSK484 markedly diminished hypercitrullination of
histone H3 and NET formation, thus highlighting the biological
activity of this compound.125 Apart from these reversible
inhibitors, substantial progress has been made in developing
irreversible PAD inhibitors. One of the most widely used and
best characterized irreversible PAD inhibitors is Cl-amidine
(19), which blocks PAD4 activity with an IC50 of 5 μM.126 This
compound contains a reactive haloacetamidine warhead, as in
the PRMT inhibitor C21 (7). The positively charged
electrophilic group acts as a mimic of the substrate guanidinium
group and covalently attaches to the active site cysteine residue
(C645 in PAD4) forming a stable thioether bond.126,127 By
varying the side chain length in a Cl-amidine derivative, it was
confirmed that a three-carbon linker between the chloroaceta-
midine moiety and the amino acid backbone is most
effective.128 Notably, and in contrast to GSK484, haloacetami-
dine inhibitors require the high-calcium bound form of PAD4,
thus confirming their substrate mimicking mode of inhibition
and preference for the calcium primed conformation of
PAD4.126 Cl-amidine has been used successfully in several
preclinical models of RA,129 lupus,130 colitis,131 and even breast
cancer,132 by effectively reducing aberrant hypercitrullination
levels. To improve the potency and specificity of Cl-amidine,
several derivatives were developed. For instance, the ortho-
carboxylate containing Cl-amidine derivative 20 has a more
than 2-fold higher inhibitory activity compared to 19 but a
similar PAD isozyme selectivity profile.133 On the basis of a
peptide library approach, the fluoroacetamidine containing
compound TDFA (21) has been identified.134 The tripeptide
TDFA shows high selectivity for PAD4 compared to the other
PADs with more than 15-fold preference for PAD4 inhibition
over PAD1. Interestingly, both, 20 and 21, contain a negatively
charged carboxylate group that occupies a similar position in
PAD4-inhibitor crystal structures and is involved in direct or
water mediated interactions with the side chain amide of Q346
that might explain the increased potency of these compounds
over Cl-amidine.4,133,134 Since Cl-amidine is a polar and highly
water-soluble compound and thus exhibits poor bioavailability,
several attempts to increase its hydrophobicity have been
undertaken. For example, Wang et al. attached a diverse set of
hydrophobic groups to the amide backbone of Cl-amidine.135

One of the most potent compounds of this series, YW3−56
(22), contains an N-terminal dimethyl-naphthylamine and C-
terminal methylbenzene moiety. Yw3−56 shows similar rates of
inhibition compared to Cl-amidine, but its antiproliferative
activity toward mouse sarcoma cells was increased by a factor of
50.135 The same trend of increased cellular activity,
bioavailability, and in vivo half-life was observed with BB-Cl-
amidine (23) that possesses an N-terminal biphenyl and a C-
terminal benzimidazole group.136 Notably, using the PAD4
expressing U2OS osteosarcoma cell line, the EC50 value of BB-
Cl-amidine has been demonstrated to be 8.8 μM compared to
>200 μM for Cl-amidine.136 Biphenyl-tetrazole-tert-butyl-Cl-
amidine (24), a further apolar derivative of Cl-amidine,
preferentially inhibits PAD2.137 This compound harbors a C-
terminal tert-butyl-tetrazole group that was shown to increase
the specificity toward PAD2 over other PAD isozymes.
Employing a fluorophore labeled Cl-amidine derivative in a
fluorescence polarization HTS assay, Knuckley et al. described
the identification of streptonigrin (25) as a potent and very

ACS Chemical Biology Reviews

DOI: 10.1021/acschembio.5b00942
ACS Chem. Biol. 2016, 11, 654−668

662

http://dx.doi.org/10.1021/acschembio.5b00942


selective PAD4 inhibitor.138 Streptonigrin acts as an irreversible
inactivator of PAD4 and was shown to block PAD4 activity in
cellular studies; however, it also binds to several off targets
thereby limiting its physiological utility.138,139 Recently, Jamali
and colleagues employed a substrate-fragment discovery
approach to identify a PAD3 isozyme selective inhibitor (26)
that shows >10 selectivity for PAD3 over other PAD
enzymes.140 This compound contains a chloroacetamidine
warhead for reactivity as well as a biphenyl-hydantoin group for
selectivity.

■ CONCLUSIONS AND PERSPECTIVE
In the past decade, there has been tremendous progress in our
understanding of the epigenetic influences of histone arginine
methylation and citrullination; however, much remains to be
learned about the chemistry and biology of these fascinating
modifications. In future studies, it will be interesting to test
whether protein arginine methylation and citrullination are
reversible modifications. Although it was proposed that the
Jmjd6 protein acts as an arginine demethylase,141 subsequent
studies showed that it does not remove the methyl mark from
methylated arginine residues and actually acts as a lysine
hydroxylase.142,143 Nonetheless, the dynamic appearance and
disappearance of citrullination and arginine methylation marks
on histones hints at the existence of enzymes that might reverse
these modifications.36,144 In this respect, it will also be of great
importance to identify proteins that act as “readers” to
recognize the modified arginine residues such as the tudor
domain-containing proteins that were shown to bind
methylated arginine residues.31 Moreover, it will be interesting
to evaluate the scope and impact of other enzymatic and
nonenzymatic arginine modifications such as phosphoryla-
tion,145−147 ADPribosylation,148,149 carbonylation,150 and the
formation of arginine derived advanced glycation end
products151 on epigenetic regulation. The goal is to combine
this information with other histone PTMs to generate a map of
individual histone modifications and to delineate the underlying
crosstalk to ultimately decipher the “language” of histone
PTMs.
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