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ABSTRACT 

Salmonella enterica subtype Typhimurium  (S. Typhimurium) is one of 

many non-typhoidal Salmonella enterica strains responsible for over one million 

cases of salmonellosis in the United States each year. These Salmonella strains 

are also a leading cause of diarrheal disease in developing countries.  Non-

typhoidal salmonellosis induces gastrointestinal distress that is characterized 

histopathologically by an influx of polymorphonuclear leukocytes (PMNs), the 

non-specific effects of which lead to tissue damage and contribute to diarrhea. 

Prior studies from our lab have demonstrated that the type III secreted 

bacterial effector SipA is a key regulator of PMN influx during S. Typhimurium 

infection and that its activity requires processing by caspase-3. Although we 

established caspase-3 activity is required for the activation of inflammatory 

pathways during S. Typhimurium infection, the mechanisms by which caspase-3 

is activated remain incompletely understood. Most challenging is the fact that 

SipA is responsible for activating caspase-3, which begs the question of how 

SipA can activate an enzyme it requires for its own activity. 

In the present study, we describe our findings that the eukaryotic 

tetraspanning membrane protein PERP is required for the S. Typhimurium-

induced influx of PMNs. We further show that S. Typhimurium infection induces 

PERP accumulation at the apical surface of polarized colonic epithelial cells, and 

that this accumulation requires SipA. Strikingly, PERP accumulation occurs in the 

absence of caspase-3 processing of SipA, which is the first time we have shown 
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SipA mediates a cellular event without first requiring caspase-3 processing. 

Previous work demonstrates that PERP mediates the activation of caspase-3, 

and we find that PERP is required for Salmonella-induced caspase-3 activation.  

Our combined data support a model in which SipA triggers caspase-3 

activation via its cellular modulation of PERP.  Since SipA can set this pathway in 

motion without being cleaved by caspase-3, we propose that PERP-mediated 

caspase-3 activation is required for the activation of SipA, and thus is a key step 

in the inflammatory response to S. Typhimurium infection. Our findings further 

our understanding of how SipA induces inflammation during S. Typhimurium 

infection, and also provide additional insight into how type III secreted effectors 

manipulate host cells. 

 

 

 

 

 

 

 

 

 

 

 



! vi!

LIST OF TABLES 

Table           Page 

1.1 Salmonella T3SS Effectors and Their Roles in Pathogenesis……..……….11 

2.1 SipA Interacting Partner Candidates…………….………………….………...52 

C.1 Densitometric Data For Chapter II……………..………………….………...157  

C.2 Densitometric Data For Chapter III………………………….………………159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! vii!

LIST OF FIGURES 

Figure             Page 

1.1. Key Intercellular Junction Complexes …………………….……………..6 
 
1.2. How SipA Triggers PMN Migration…………………………….………..26 
 
2.1. SipA and PERP Are Binding Partners…………………………………..54 
 
2.2. PERP Promotes the Inflammatory  

Response to Salmonella Infection…………………….……………...58 
 
2.3. PERP Promotes PMN Migration………………………………………...61 
 
2.4. PERP Promotes Caspase-3 Activity During 

Salmonella Infection…………………………………………………...64 
 
2.5. PERP Accumulates at the Apical Cell Surface  

In a SipA-dependent Manner…………………………………………67 
 
2.6. PERP Accumulates in the Apical Compartment  

In Response to Salmonella Infection………………………………...72 
 
2.7. PERP Punctae are Apically Located…………………………………...75 
 
2.8. Model for PERP’s Role in the Inflammatory  

Response to Salmonella Infection…………………………………...83 
 
S2.1. PERP Antibody Migration Control………….…………………………86 
 
S2.2. Expression of PERP in Mouse Colon………………………………...88 
 
S2.3. Controls for Apical Surface Biotinylation……………………………..90 
 
S2.4. Quantification of Punctate PERP Staining in  

Response to Salmonella Infection………………………………..….92 
 
S2.5. PERP Co-Localizes with Apical Recycling Endosomes……………94 
 
 
3.1. PERP Accumulation at the Apical Membrane Surface 

is Mediated by the Type Three Secretion System………………..104 
 



! viii!

3.2. PERP Accumulation Occurs Independently of Salmonella  
Invasion, and Dynamin-mediated Endocytosis……………….…….108 

 
3.3. Salmonella Induces PERP Accumulation by Triggering 

Increased Exocytosis: A Model.……………………………….……..116 
 
4.1. Endocytic and Exocytic Trafficking in Polarized Cells………....……..123 
 
4.2. Models of PERP and Caspase-3 Activation  

During Salmonella Infection…………………………………………..140 
 
B.1. PERP Knock Down Cells Are Not Invasion Deficient……………...…151 

B.2. PERP Antibody Specificity………………………………………..……..154 

 

 

  



! ix!

THIRD PARTY COPYRIGHTED MATERIAL 

Figure 1.1 Key Intercellular Junction Complexes 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 

Gastroenterology and Hepatology. Neunlist et al, 2012. Copyright 2012. 

License number: 3751641057929  License date: November, 17, 2015. 

 

  



! x!

PREFACE 
 
Parts of this thesis that have appeared in separate publications include: 

 

Chapter 1: 

Kelly N. Hallstrom, C.V. Srikanth, Terence A. Agbor, Christopher M. Dumont, 

Kristen Peters, Luminita Paraoan, James E. Casanova, Erik J. Boll and Beth A. 

McCormick. PERP, a Host Tetraspanning Membrane Protein, is Required for 

Salmonella-Induced Inflammation.  Cellular Microbiology. Volume 17, Issue 6, pp 

843-859. June 2015. 

 

 

Chapter 2: 

Kelly N. Hallstrom and Beth A. McCormick. The Type Three Secreted Effector 

SipC Regulates the Trafficking of PERP During Salmonella Infection. Submitted 

to Gut Microbes September 2015. 

 
Contributions of all authors can be found within the preface of each chapter. 

  



! xi!

TABLE OF CONTENTS 

 

Section            Page 

 

ACKNOWLEDGEMENTS……………………………………………………..iii 

ABSTRACT……………………………………………………………………..iv 

LIST OF TABLES……………………………………………………………...vi 

LIST OF FIGURES…………………………………………………………….vii 

THIRD PARTY COPYRIGHTED MATERIAL…………………….…………ix 

PREFACE……………………………………………………………………….x 

 

CHAPTER I: INTRODUCTION………………………………………….…….1 

 1.1 Salmonella Significance in Human Health……………………….1 

1.2 General Biology of the Human Intestinal Tract………………….3 

 1.3 Salmonella Utilizes its T3SS To Manipulate Host Cells………..7 

 1.4 Salmonella Exploits Inflammatory Responses………………....15 

 1.5 SipA As An Inflammatory Mediator……………………………...23 

 1.6 Thesis Summary: What Are the Host Factors 

   that Promote the SipA-Caspase-3 Activation Process? …..31 

 

Preface to Chapter II…………………………………………………………..34 

CHAPTER II: PERP, a Host Tetraspanning Membrane Protein,  
Is Required for Salmonella-Induced Inflammation……………..35 



! xii!

 
 2.1 INTRODUCTION…………………………………………………..35 

 2.2 MATERIALS AND METHODS…………………………………...38 

 2.3 RESULTS…………………………………………………………..49 

 2.4 DISCUSSION………………………………………………………77 

 

Preface to Chapter III……………………………………………………….…95 

CHAPTER III: The Type Three Secreted Effector SipC Regulates 
the Trafficking of PERP During Salmonella Infection………….96 
 
3.1 INTRODUCTION…………………………………………………..96 

 3.2 MATERIALS AND METHODS……………………………………98 

 3.3 RESULTS………………………………………………………….101 

3.4 DISCUSSION……………………………………………………...110 

 

CHAPTER IV: DISCUSSION………………………………………………...118 

 4.1 Introduction………………………………………………………...118 

4.2 PERP Accumulation Upon Salmonella Infection……………....118 

 4.3. PERP Trafficking is Mediated by the SPI-1 T3SS ……………126 

 4.4 PERP is Required for Caspase-3 Activation During  
Salmonella Infection, and Implications of PERP  
Accumulation…………………………………………….……..132 

 
4.5 PERP Promotes an Inflammatory Response to  

Salmonella Infection………………….………………….…….134 
 
 4.6 Salmonella Activates Caspase-3 via the Modulation of  

PERP Trafficking: A Model………………….………………...138 
  



! xiii!

4.7 Future Directions…………………………………………………142 
 
 4.8 Summary………….……………………….……………………...143 

 

APPENDICES 

A. Is PERP the SipA Apical Surface Receptor?…………….…………….145 

B. Baseline PERP Behavior…………………………………………………148 

C. Densitometry Data for Chapter II and Chapter III…………………...…156 

 

REFERENCES………………………………………………………………..162 

 



! 1!

CHAPTER I 

Introduction 

1.1 Salmonella Significance in Human Health 

Salmonella enterica are Gram negative facultative anaerobic bacteria that 

cause systemic and localized gastrointestinal illnesses through the contamination 

of food and water sources with fecal matter from infected hosts. Salmonella 

enterica serovar Typhi and Paratyphi cause systemic typhoid disease in humans, 

and are responsible for nearly 30 million illnesses each year in underdeveloped 

countries (Griffin and McSorley, 2011).  In comparison, there are about 2000 

non-typhoidal Salmonella enterica serovars. Serovars from this group cause 

localized gastrointestinal salmonellosis in humans, as well as in other hosts. 

Symptoms of gastrointestinal salmonellosis include nausea, vomiting, abdominal 

cramping, and diarrhea, which may contain mucus or blood. Salmonellosis is 

typically self-limiting and lasts about 3-5 days in otherwise healthy individuals, 

although those who are immunocompromised can develop systemic and fatal 

infections (Graham et al., 2000). The CDC estimates there are over 1 million 

cases of salmonellosis in the United States alone each year, making it a 

significant public health concern.  

Upon consumption of contaminated food or drinks, Salmonella bacteria 

travel through the gastrointestinal tract and colonize the intestines. Studies have 

shown that Salmonellae induce ileocolitis following colonization of the distal ileum 

(Altier, 2005). Following colonization, Salmonellae invade intestinal epithelial 
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cells and induce pathogenesis via genes encoded on Salmonella pathogenicity 

islands (SPIs). Pathogenicity islands are areas of a pathogen’s genome that are 

enriched for genes required for pathogenesis. Pathogenicity islands, which can 

be found in a variety of pathogens (Hallstrom and McCormick, 2014), are thought 

to be transmitted horizontally from pathogens. Together, Salmonella Typhi and 

non-typhoidal Salmonellae possess at least 21 SPIs (Sabbagh et al., 2010). The 

two most well-characterized are SPI-1 and SPI-2, each of which encodes 

machinery for type III secretion systems (T3SS), T3SS1 and T3SS2, 

respectively.  

The T3SS is a common virulence mechanism that is specific to Gram 

negative bacteria and is essentially a molecular syringe that evolved from the 

flagellar basal body. The T3SS basal body is embedded in the bacterial cell 

membrane. Extending outward into the extracellular space, the hollow, needle-

like channel interacts with the host cell membrane. Proteins at the tip of the 

needle, called translocases, form a translocon pore in the host cell membrane. 

Through this pore, bacterial effector proteins are translocated into the host cell. It 

is these translocated effectors that perturb host cell signaling pathways in ways 

that lead to pathogenesis. In general, SPI-1 is responsible for promoting 

Salmonella entry into intestinal epithelial cells (Bajaj et al., 1996) and SPI-2 is 

responsible for mediating intracellular Salmonella survival (Ochman et al., 1996), 

although there is some evidence for overlap between these two systems (Brawn 

et al., 2007; Lawley et al., 2006).  
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While Salmonella Typhi is a considerable public health concern, the 

remainder of this introduction will focus on non-typhoidal Salmonella (collectively 

referred to from here as Salmonellae) infections. The following sections will 

describe how Salmonella overcomes and, in some cases, subverts host 

defenses to promote its own program of pathogenesis. Of particular importance 

will be the way in which Salmonella induces and exploits inflammatory responses 

for its own survival and dissemination. 

 

1.2 General Biology of the Human Intestinal Tract 

Gut Microbiome 

The intestinal tract is colonized by the resident gut microbiome. This 

population of microbes consists of over 100 trillion organisms dominated 

largely by Lactobacillus, Bacteroides, and Firmicutes (Backhed et al., 2005). The 

gut microbiome provides colonization resistance by competing with Salmonellae 

for nutrients, and thus can help protect the host from invasion. Indeed, in mouse 

models of colitis, mice are treated with streptomycin prior to being infected with 

non-Typhi Salmonellae. Failure to do so results in a systemic illness that more 

closely resembles that of human S. Typhi infections as opposed to localized 

gastroenteritis typical of non-Typhi infection (Barthel et al., 2003b). It is inferred 

that this response is due to the antibiotic-mediated clearance of the microbiome, 

which then better enables S. Typhimurium to colonize and invade murine 
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intestinal epithelial cells. Other work has shown that the microbiome is key for 

Salmonella clearance as well (Endt et al., 2010).  

 

Epithelial Barrier 

The inner surface of the intestine is lined with a monolayer of polarized 

columnar epithelial cells. The monolayer is comprised of a variety of cell types 

that are important for the general health and function of the intestinal epithelium. 

This includes Paneth cells, which secrete antimicrobial molecules; Goblet cells, 

which produce mucins that form a protective mucus layer over the epithelium; 

enterocytes, which are involved with nutrient absorption and chloride secretion; 

entero-endocrine cells, which secrete hormones and facilitate food digestion; M, 

or microfold cells, which serve as sentinels in the small intestine; and stem cells, 

which give rise to the aforementioned cell types.  

The monolayer forms a protective barrier between the luminal 

environment and submucosa, which is regulated by intercellular junction protein 

complexes (see Figure 1.1). Protein complexes critical to maintaining epithelial 

barrier integrity include tight junctions, adherens junctions, and desmosomes.  

Barrier integrity is crucial, as it is the barrier that prevents luminal contents such 

as food, microflora, and pathogens from gaining access to the underlying tissues 

where they could potentially cause inflammation and systemic illness.  Therefore, 

transport through the monolayer is carefully regulated via tight junction 

complexes. Tight junctions seal the environment between cells referred to as the  
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Figure 1.1 Key Intercellular Junction Complexes 

 Protein complexes that are critical to maintaining epithelial barrier integrity 

include tight junctions, which seal off the paracellular space; adherens junctions 

which promote adhesion; and desmosomes, which absorb mechanical stress. 

Tight junctions are composed of claudin, occludin, junction associated molecules 

(JAM), and Coxsackievirus and Adenovirus Receptor (CAR) proteins, and are 

anchored to the actin cytoskeleton by zona occluden (ZO) proteins (Furuse et al., 

1998); (Itoh et al., 1999); (Tsukita and Furuse, 1999). A key component of 

adherens junctions is E-cadherin, which can homodimerize and thus interact with 

E-cadherin on neighboring cells to form clusters that associate with actin, thus 

promoting adhesion between cells. Desmosomes are composed of cadherins, 

which promote adhesion, and structural proteins such as desmoplakin, 

desmoglein, and plakoglobin (Hatsell and Cowin, 2001). Desmosomes help to 

absorb mechanical stress. 
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Figure 1.1 Key Intercellular Junction Complexes 

 

 

(Neunlist et al., 2013) 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 

Gastroenterology and Hepatology. Neunlist et al, 2012. Copyright 2012. 

License number: 3751641057929  License date: November, 17, 2015. 
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paracellular space and regulate passage through it in a gate-like manner (Figure 

1.1).  Tight junctions exhibit size and charge selectivity, and thus are critical 

regulators of water and ion balance in the intestines as well as overall epithelial 

barrier integrity (Turner, 2009). Adherens junctions promote adhesion, while 

desmosomes absorb mechanical stress (Figure 1.1). 

 

1.3 Salmonella Utilizes its T3SS To Manipulate Host Cells 

 Upon reaching the intestinal environment, Salmonellae process 

environmental signals that activate expression of the T3SS1 via the transcription 

factor HilA (Bajaj et al., 1996). While pH, osmolarity, and oxygen levels are 

known to regulate SPI-1 expression (Bajaj et al., 1996), oxygen appears to be 

the most important regulator of this system (Lee and Falkow, 1990); (Thompson 

et al., 2006). Salmonellae then use the effectors secreted through the T3SS1 to 

penetrate the epithelial barrier and invade intestinal epithelial cells in order to 

establish a replicative niche. 

 

Disruption of the Paracellular Pathway 

Given that the tight junction is the regulator of paracellular passage, it is 

perhaps not surprising that Salmonellae have evolved a mechanism to disrupt 

the tight junction in order to facilitate its dissemination in the host. Infection of 

cultured monolayers with Salmonella induces a loss of barrier integrity (Boyle et 

al., 2006). It was found that this is due to disruption of the tight junction primarily 
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by the activity of T3SS1 effectors SopE and SopE2. These effectors cause the 

tight junction proteins ZO-1 and occludin to accumulate in the cytoplasm as 

opposed to localizing to the lateral cell membrane (Boyle et al., 2006). SopE and 

SopE2 are both GEFs, and activate Cdc42 and Rac1 GTPases (Hardt et al.); 

(Stender et al., 2000). Upon activation, these GTPases disrupt the function and 

structure of tight junctions and promote increased paracellular movement (Braga, 

2002). The increased permeability resulting from the loss of tight junctions 

promotes bacterial translocation via the paracellular pathway to the basolateral 

surface (Kohler et al., 2007). Thus, uncoupling tight junctions is a critical way by 

which Salmonellae facilitate dissemination in the host. Evidence also shows that 

Salmonellae take advantage of transcytotic trafficking routes in M cells to reach 

the submucosal environment (Tam et al., 2008); (Jones et al., 1994). 

 It is important to note that these mechanisms of breaching the epithelial 

layer are shared across other pathogenic enterobacteria. For example, Shigella 

flexneri induces altered localization of tight junction complex components 

occludin and claudin-1, which leads to leaky epithelial barriers (Sakaguchi et al., 

2002). Shigella is also known to invade M cells (Perdomo et al., 1994). Further, 

several strains of pathogenic Escherichia coli are known to disrupt tight junctions 

and subsequently induce loss of epithelial barrier integrity by inducing loss of or 

redistribution of occludin, claudins, and ZO proteins (Thanabalasuriar et al., 

2010); (Philpott et al., 1998); (Guignot et al., 2007). Accordingly, breaching the 

epithelial barrier appears to be an important and conserved pathogenic strategy 
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for enteric bacteria. 

 

Salmonellae Utilize Epithelial Cells as Replicative Niches 

Salmonellae contain a wide array of effectors secreted through the T3SS1 

that mediate invasion via various mechanisms (Table 1.1).  Salmonellae encode 

three proteins that function as T3SS1 translocases: SipB, SipC, and SipD 

(Collazo and Galan, 1997). Absence of these proteins does not prevent effector 

secretion nor expression, but does preclude the translocation of effectors into the 

host cell (Collazo and Galan, 1997). Data indicate that the translocases facilitate 

bacterial attachment and formation of a pore in the host cell membrane (Scherer 

et al., 2000); (Lara-Tejero and Galan, 2009). The absence of SipB, SipC, or SipD 

renders Salmonella invasion-deficient, which is likely due at least in part to these 

mutants being unable to translocate effectors required for invasion (Kaniga et al., 

1995a); (Kaniga et al., 1995b); (Wood et al., 1996).  

The main mechanism for promoting Salmonella entry is via the action of 

T3SS1 effectors perturbing actin dynamics. These perturbations cause 

membrane ruffling, in which the host plasma membrane extends outward and 

around the bacterium, leading to its uptake into the cell in what becomes a 

Salmonella containing vacuole (SCV). That Salmonellae posses an array of 

effectors capable of directly or indirectly manipulating actin and plasma 

membrane dynamics provides a striking example of how Salmonellae have 
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Table 1.1 Salmonella T3SS Effectors and Their Roles in Pathogenesis 
 
A summary of T3SS effectors whose functions in Salmonella Typhimurium 

pathogenesis have been identified.   
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Table 1.1 Salmonella T3SS Effectors and Their Roles in Pathogenesis 

 

 

 

Effector Location Function T3SS 
Apparatus 

AvrA SPI-1 Downregulates Salmonella-
induced inflammation (Collier-
Hyams et al., 2002); (Ye et al., 
2007). 

1 

SipA SPI-1 Key regulator of inflammatory 
responses, including promoting 
neutrophil migration to the 
apical surface. Cooperates with 
SipC to induce actin 
rearrangements that facilitate 
Salmonella invasion. Also 
suspected to promote SCV 
formation. Undergoes cleavage 
by caspase-3 (Zhou et al., 
1999); (Wall et al., 2007); 
(Brawn et al., 2007); (Srikanth 
et al., 2010) 

1 

SipB SPI-1 Component of T3SS-1 
translocon; facilitates effector 
translocation (Kaniga et al., 
1995b); (Hayward et al., 2000) 

1 

SipC SPI-1 SPI-1 translocon component; 
facilitates effector translocation. 
Induces actin bundling to 
promote invasion. Likely 
regulator of exocyst-mediated 
trafficking to the cell surface 
(Kaniga et al., 1995b); (McGhie 
et al., 2001); (Nichols and 
Casanova, 2010) 

1 

SipD SPI-1 Component of T3SS-1 
translocon; facilitates effector 
translocation (Lara-Tejero and 
Galan, 2009) 

1 
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Table 1.1 continued 

 

 

 

SopA Downstream 
of phsA-C 

E3 ubiquitin ligase that may 
promote escape from SCV and 
promotes neutrophil migration. 
Also required during invasion 
(Wood et al., 2000); (Raffatellu 
et al., 2005); (Zhang et al., 
2006) 

1 

SptP SPI-1 Functions as a GAP, and is a 
tyrosine phosphatase. 
Reverses effects of SopE and 
SopE2 (Stebbins and Galan, 
2000) 

1 

SopE Bacteriophage Promotes membrane ruffling 
and disrupts tight junctions by 
acting as a GEF for Rac-1 and 
Cdc42 (Hardt et al., 1998a); 
(Boyle et al., 2006) 

1 

SopE2 Centisomes 
40-42 

Promotes membrane ruffling 
and disrupts tight junctions by 
acting as a GEF for Cdc42 
(Stender et al., 2000); (Boyle et 
al., 2006) 

1 

SopB SPI-5 Inositol polyphosphate 
phosphatase that promotes 
macropinocytosis, regulates 
SCV localization, and promotes 
fluid secretion (Norris et al., 
1998); (Hernandez et al., 2004) 

1 

SopD Centisome 64 Promotes invasion and fluid 
secretion (Zhang et al., 2002); 
(Raffatellu et al., 2005) 

1/2 

SspH1 Bacteriophage 
Gifsy-3 

E3 ubiquitin ligase (Rytkonen 
and Holden, 2007) 

1/2 

SpvC pSLT  A phosphothreonine lyase 
required for complete virulence 
in murine models 
(Mazurkiewicz et al., 2008) 

1/2 
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Table 1.1 continued 

 
 

  

SpiC SPI-2 Helps regulate T3SS-2 
secretion (Yu et al., 2002) 

2 

SseF SPI-2 SCV regulation (Abrahams et 
al., 2006) 

2 

SseG SPI-2 SCV positioning (Abrahams et 
al., 2006) 

2 

SspH2 SPI-12 E3 ubiquitin ligase (Quezada et 
al., 2009) 

2 

PipB2 Centisome 
60.3 

Promotes Sif extension 
(Knodler and Steele-Mortimer, 
2005) 

2 

SifA potABCD 
operon 

Sif formation and membrane 
integrity (Stein et al., 1996); 
(Beuzon et al., 2000) 

2 

SopD2 pflAB operon Sif formation and promotes 
bacterial replication in mouse 
macrophages (Jiang et al., 
2004) 

2 

SseJ Bacteriophage Negatively regulates Sifs and 
antagonizes SifA-mediated 
stability of SCV (Waterman and 
Holden, 2003); (Ruiz-Albert et 
al., 2002) 

2 

SpvB pSLT  Depolymerizes actin filaments 
in vitro (Lesnick et al., 2001) 

2 
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evolved to co-opt host signaling pathways.  

In addition to its translocation functions, SipC binds to actin and plays an 

important role in membrane ruffling by promoting actin nucleation and bundling, 

which leads to increased actin polymerization (Hayward and Koronakis, 1999). 

Although SipA is not required for invasion (Kaniga et al., 1995a), it has been 

shown that SipA works cooperatively with SipC to modulate actin (McGhie et al., 

2001). However, as SipA deficient strains of Salmonella do still induce some 

membrane ruffling (Higashide et al., 2002a), it is likely that the role of SipA in 

modulating actin dynamics is not critical, but rather auxiliary in nature.  

Other effectors promote invasion by indirectly manipulating actin 

dynamics. As mentioned earlier, the effectors SopE and SopE2 function as GEFs 

that activate Cdc42 and Rac1 GTPases, and they are required for membrane 

ruffling and invasion (Hardt et al., 1998a); (Stender et al., 2000). In addition to 

regulating the localization of tight junction components as described earlier, 

Cdc42 and Rac1 are responsible for promoting actin assembly via activities that 

lead to Arp2/3-mediated actin nucleation and polymerization.  

Once Salmonellae enter the cell, they reside in the SCV, which functions 

as a replicative niche that is critical to dissemination (Szeto et al., 2009). Here, 

functions attributed to the T3SS2 begin to dominate and promote stability of the 

SCV as well as intracellular growth. However, there are some functions attributed 

to T3SS1 effectors in early stages. For example, the T3SS1 effector SopB alters 

the lipid content of the SCV membrane and in turn excludes membrane markers 
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required for the fusion of phagosomes and lysosomes (Bakowski et al., 2010). In 

doing so, SopB is responsible for delaying the maturation of the SCV into a 

phagolysosome; thus SopB subverts normal cell processes that would otherwise 

lead to Salmonella killing by the host. Further, both SipA and SopB as well as 

T3SS2 effectors SifA, SseG, and SseF facilitate trafficking of the SCV near the 

Golgi network, which has been shown to promote bacterial replication within the 

SCV (Brawn et al., 2007); (Rodriguez-Escudero et al., 2011); (Salcedo and 

Holden, 2003).  

 To complete its life cycle, Salmonellae must escape from the host cell, 

which is mediated by the normal cell shedding process. Here, infected cells are 

extruded into the lumen and undergo an inflammatory cell death, releasing the 

once intracellular bacteria into the extracellular milieu (Knodler et al., 2010). 

Escape into the lumen enables the bacteria to invade other cells or to exit the 

host and participate in the transmission cycle.  

 

1.4 Salmonella Exploits Inflammatory Responses 

The key pathological hallmark of Salmonella invasion is an inflammatory 

response that is initiated upon recognition of pathogen associated molecular 

patterns (PAMPs) by an array of receptors. Toll-like receptors (TLRs) are key 

PAMP receptors, and are largely expressed on the basolateral surfaces of 

intestinal epithelial cells (Abreu, 2010), likely an adaptation to avoid chronic 

inflammation via recognition of gut microbiota. With regard to Gram-negative 
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bacteria, TLR4 is generally known to be a key trigger of immune responses via 

its interactions with LPS. However, TLR4 is not highly expressed in intestinal 

cells, and as a result these cells have been shown to have a low response to 

LPS (Abreu et al., 2002). However during Salmonella infection, TLR5 expressed 

at the basolateral surface detects flagellin molecules translocated across 

monolayers by the bacteria several minutes after infection, which leads to the 

production of IL-8 (Gewirtz et al., 2000). Internalized bacteria are detected by 

intracellular receptors including Nod1, which recognizes peptidoglycan from 

Gram negative bacteria, and Nod2, which recognizes peptidoglycan structures 

from both Gram negative and Gram positive bacteria. The absence of these 

receptors has been linked to reduced inflammatory responses and reduced 

cytokine production during Salmonella infection (Geddes et al., 2010). 

Upon recognition of PAMMPs, intestinal epithelial cells and infected 

monocytes release an array of cytokines that trigger a series of events that 

induce inflammatory responses, including recruiting polymorphonuclear 

leukocytes (PMNs) to the site of infection. Inflammation appears to be dependent 

on an IL-18/IL-23 axis, which is stimulated upon the host recognition of 

Salmonella, and leads to the T-cell mediated amplification of cytokine signaling 

via the activation of IFNγ (activates macrophages), IL-22 (promotes anti-

microbial responses at the epithelium), and IL-17 (promotes cytokine signaling 

leading to PMN recruitment) production (Godinez et al., 2008). Inflammatory 

signaling is further amplified as a result of the inflammatory death of extruded 
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infected intestinal cells; this process leads to the release of IL-18 at the apical 

surface (Knodler et al., 2010). The cumulative result of the signaling is the 

recruitment and activation of phagocytes and other effector cells of the immune 

system. Inflammatory signaling also induces the production and release of 

antimicrobial effector molecules such as lipocalin-2, which blocks iron uptake by 

enterobacteria; MUC4, which promotes growth of the mucus layer; and defensins 

and RegIII lectins, which target the bacterial cell membrane (Santos et al., 2009); 

(Mukherjee et al., 2014).  

The inflammatory response is histopathologically characterized by the 

influx of PMNs, otherwise referred to as neutrophils.  PMNs are phagocytic white 

blood cells among the first line of defense against pathogens in the early immune 

response. Pro-inflammatory cytokines released from infected cells induce a 

series of responses that lead to the recruitment of PMNs to the site of infection. 

These responses include vasodilation and reduced blood flow rate via TNFα, 

which promotes tethering of PMNs to the endothelium and “rolling” along the 

endothelium via loose binding with selectins. Upon activation by chemokines, 

such as IL-8, PMNs begin to express integrins, which bind tightly to ICAM 

adhesion molecules on the endothelial surface. Chemokines like IL-8 trigger 

calcium-dependent signaling pathways that cause integrins to be recycled from 

the rear of the cell to the front such that new attachments are continuously being 

formed at the leading edge, and permit migration in the direction of the 

chemokines. The production of IL-8 during Salmonella infection is mediated 
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largely by the detection of flagellin by TLR5. Some evidence indicates T3SS1 

effectors or the apparatus itself can also elicit IL-8 production (Hobbie et al., 

1997); (Hardt et al., 1998a), although other data indicates T3SS1 is dispensable 

for activation of this pathway (Gewirtz et al., 2000). TNFα from infected 

macrophages induces the expression of ICAMs.  Via formation of the 

inflammasome, infected macrophages also produce IL-18, the effects of which 

are discussed above, and IL-1β, which elevates body temperature and triggers 

the production of chemokines (Cromwell et al., 1992). 

 The tight binding mediated by the integrins allows the PMNs to 

extravasate through the endothelial wall of the blood vessels. Binding to IL-8 also 

activates PMNs and causes them to release metalloproteinases that facilitate 

their movement through the basement membrane and extracellular matrix after 

they escape the blood vessel. Once in the tissue, PMNs are then directed to the 

basolateral surface of the intestinal monolayer via Salmonella-mediated 

production of IL-8 gradients. PMNs are then further recruited to the site of 

infection at the apical surface of the intestinal epithelia via the concerted effort of 

multiple effectors.  While the process of PMN transendothelial migration is 

generally well-understood, the mechanisms governing transepithelial migration 

are still under investigation. It is generally accepted that neutrophils pass through 

the transepithelial tight junctions via mechanical force facilitated by integrin 

interactions (Nash et al., 1988). However, while it is known that the integrin 

CD11b/CD18 plays a key role in this process, its epithelial receptor (or receptors)   
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has yet to be conclusively determined (Zen et al., 2004).  

 Upon activation, PMNs also undergo degranulation, a process that leads 

to the release of anti-microbial products stored in intracellular granules. This 

includes hydrogen peroxide-mediated reactive oxygen and nitrogen species 

(ROS and RNS, respectively), which oxidize lipids and lead to cell membrane 

damage. While these serve chiefly as a defense against pathogens, their effects 

are non-targeted and non-specific and thus result in collateral damage of healthy 

intestinal cells. Damaged cells subsequently release cytokines, thus contributing 

to the overall inflammatory response at the site of infection. Tissue damage at 

the monolayer has other impacts on Salmonella infection, as discussed below. 

 The recruitment of PMNs to the site of infection procures benefits and 

costs to both the bacteria and the host. Indeed, although inflammatory responses 

are typically thought of in the context of benefitting the host, mounting evidence 

indicates that Salmonella benefits from the inflammatory response, and that 

inducing an inflammatory response is key to its pathogenic strategy. 

 

Host Benefits and Costs From PMN Migration to the Site of Infection 

 An obvious benefit to the host provided by the influx of PMNs is the control 

of Salmonella infection, as neutropenia has been shown to be a risk factor for 

systemic spread of Salmonellae (Noriega et al., 1994). However, the 

transepithelial migration of PMNs comes with costs to the host. In order to 

migrate from the basolateral surface to the apical surface, the PMNs must pass 
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through the tight intercellular spaces of the monolayer. This process is facilitated 

by the disruption of the tight junction complex as a consequence of the activities 

of SopE, SopE2, and SopB, and to some extent SipA. As discussed above, these 

effectors promote the redistribution of the tight junction components ZO-1 and 

occludin, and consequentially elicit increased permeability of intestinal cell 

monolayers (Boyle et al., 2006). With the loosening of the barrier, PMNs can 

more easily traverse the transepithelial space and reach the site of infection. 

Thus, although the concerted effort of T3SS effectors to loosen tight junctions 

benefits Salmonellae by promoting dissemination as discussed earlier, a 

consequence (to the bacteria) of barrier loss is that it promotes PMN entry to the 

site of infection. This serves as an example of how the host and Salmonellae are 

constantly evolving to subvert and adapt to each other.  

 However, the transepithelial migration of PMNs comes with costs to the 

host. The passage of PMNs through the intestinal epithelial monolayer damages 

the monolayer and causes it to become leaky and contributes to inflammation 

(Nash et al., 1987). Inflammation is also heightened by the release of damaging 

reactive oxygen species produced by PMNs in response to pathogens. 

Additionally, PMNs are inferred to contribute to the secretory diarrhea that occurs 

in response to Salmonella infection; studies have shown that 5’-AMP from PMNs 

is converted to adenosine at the epithelial cell surface, which is then bound by 

adenosine receptors at the apical membrane, leading to the synthesis of cAMP. 

Increased levels of cAMP lead to release of chloride ions into the lumen, which is 
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followed by a compensatory influx of fluid to accommodate the increased ion 

concentration (Madara et al., 1993). Further, PMNs may facilitate a diarrheal 

response as a result of the damage their migration causes to the epithelial 

barrier; studies with ligated ileal calf loops have shown that the visible 

appearance of fluid accumulation coincides with the first visible signs of barrier 

damage (Santos et al., 2001); (Zhang et al., 2003). While the diarrheal response 

can help clear Salmonellae from the gut, it can lead to dehydration if it persists. 

 

Salmonellae Benefit From PMN Migration to the Site of Infection 

While PMNs can phagocytose and kill Salmonellae, evidence suggests 

the bacteria may benefit from PMN influx. As discussed previously, the leaky 

epithelial barrier that results in part from PMN transmigration can promote 

Salmonella invasion into the subepithelial space, and promote its dissemination 

into the host (Kohler et al., 2007). Further, while the diarrheal response facilitated 

by PMNs may serve the host by helping to clear Salmonellae from the intestines, 

it also helps return Salmonellae to the environment, from which it can gain 

access to new hosts. Indeed, SopA, SopB, SopD, SopE2, and SipA have been 

shown to act together to induce diarrhea (Zhang et al., 2003), indicating that the 

induction of diarrhea is a key part of Salmonella’s pathogenic strategy.  

 

 

 



! 22!

Salmonella Benefits From Intestinal Inflammation 

 As indicated earlier, Salmonellae must outcompete the resident gut 

microbes in order to colonize the intestines. Mounting evidence in recent years 

indicates that Salmonellae are able to do so as a direct result of inducing 

inflammation.   

This hypothesis was first ventured as a result of a study showing that 

inflammation promotes Salmonella colonization. In this study (Stecher et al., 

2007), an avirulent Salmonella strain (lacking both T3SS1 and T3SS2) was able 

to overcome its colonization-deficiency in the presence of inflammatory 

conditions in mouse intestinal tracts. Ileocolitis was induced by co-infection with 

wild-type Salmonella, or by using infection-independent mouse models of colitis. 

In each of the three models, the avirulent Salmonella was able to overcome 

colonization resistance caused by the microbiota. Two follow up studies indicate 

that inflammatory responses help provide nutrients to Salmonellae and also 

reduce resident gut microbe populations.  

Winter et al (2010) showed that the NADPH-dependent oxygen radicals 

released from phagocytes (i.e., respiratory burst) during the inflammatory 

response to infection is required to oxidize thiosulfate, which is normally present 

in the gut, to tetrathionate, which can be used by Salmonellae as an alternative 

terminal electron acceptor. This study also showed that a Salmonella strain 

unable to utilize tetrathionate has a markedly reduced ability to colonize 

intestines compared to wild-type Salmonella. Therefore, the ability of Salmonella 
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to use tetrathionate during active states of intestinal inflammation provides it with 

access to a unique resource that then enables Salmonellae to outcompete the 

resident microbes and colonize the host (Winter et al., 2010).  

An additional study (Stelter et al., 2011) shows that RegIIIB, one of the 

antibacterial, membrane-damaging, lectins released in the intestinal mucosa as 

part of the inflammatory response to Salmonella infection, reduces resident 

microbe populations and enhances Salmonella colonization. This study 

confirmed that Salmonella is resistant to RegIIIB killing.  Together these 

observations support the striking hypothesis that Salmonellae posses 

mechanisms to purposely induce inflammatory responses. In doing so, 

Salmonella increases its overall fitness and thereby overcomes colonization 

resistance, which enables it to induce mechanisms that lead to its dissemination. 

 

1.5 SipA As An Inflammatory Mediator 

SipA Induces PMN Transmigration 

  Collective data from several studies indicate that SipA is a key mediator 

of Salmonella-induced inflammation. Infection of monolayers with SipA-deficient 

Salmonella induces a marked reduction in PMN transmigration  (Criss et al., 

2001a). This observation is corroborated by in vivo studies showing the loss of 

SipA results in a dramatic reduction of inflammation and tissue damage (Zhang 

et al., 2002); (Wall et al., 2007). The mechanism by which SipA induces the 

movement of PMNs from the basolateral surface to the apical surface involves 
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the activation of a signaling pathway that leads to the production and secretion of 

the chemoattractant hepoxilin A3 (HXA3). HXA3 is a metabolite of arachidonic 

acid from the 12-lipoxygenase (12-LOX) pathway, and is a neutrophil 

chemoattractant that is secreted vectorally from the apical surface of epithelial 

cells (Mrsny et al., 2004a).  

SipA first triggers the apical membrane accumulation of protein kinase C- 

(PKC)-α (Silva et al., 2004b) via a pathway dependent on the GTPase Arf6 (Criss 

et al., 2001a). Movement of PKCα to the apical membrane leads to its activation, 

which is modeled to have two consequences. First, studies by other labs show 

that PKCα activation leads to activation of caspase-3 (Reyland et al., 2000), 

which can activate a phospholipase (PLA) isoform, iPLA2 (Atsumi et al., 2000). 

Studies from our lab show that iPLA2 is activated during Salmonella infection 

(Mumy et al., 2008b). The activation of iPLA2 leads to the release of arachidonic 

acid from the cell membrane (Atsumi et al., 2000), which then enables it to be 

processed via the 12-LOX pathway into HXA3. Further, the activation of PKCα 

also leads to the phosphorylation of the scaffolding protein ezrin, which we have 

shown facilitates the apical accumulation of the multidrug resistance-associated 

transporter-2 (MRP2) (Pazos et al., 2008); (Agbor et al., 2011b). MRP2 is an 

actin-binding cassette (ABC) transporter associated with resistance to anti-

cancer drugs via its role as an efflux pump (Leslie et al., 2005). In the context of 

Salmonella infection, MRP2 facilitates the apical secretion of HXA3 (Pazos et al., 

2008). This pathway is summarized in Figure 1.2. 
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Figure 1.2 How SipA Triggers PMN Migration 
 
 The pathway by which SipA triggers PMN transepithelial migration to the 

apical surface. Asterisks indicate publications from the McCormick lab group (see 

main text). Solid lines indicate data collected as a result from Salmonella 

infection assays. Dashed lines indicate inferences supported by publications not 

involving work with Salmonella. 
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Figure 1.2 How SipA Triggers PMN Migration 
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Our studies indicated that SipA is a driving force of this pathway, as the 

absence of SipA blocks several key steps. SipA-deficient strains of Salmonella 

do not induce the movement of PKCα to the apical membrane (Silva et al., 

2004b), and they also do not induce ezrin phosphorylation (Agbor et al., 2011b). 

Further, SipA-deficient strains do not induce the movement of MRP2 to the cell 

surface (Pazos et al., 2008), and they also induce less HXA3 secretion (Pazos et 

al., 2008). Taken together, these data demonstrate that SipA is the key 

Salmonella regulator in this complex pathway that leads to PMN transepithelial 

migration to the apical surface of infected cells. 

 

SipA Does Not Require Translocation via the T3SS1 

While it is known SipA is an important inflammatory mediator, several key 

questions remain about how it functions. For example, studies describing how 

T3SSs work indicate that T3SS effectors require delivery into the host cell via the 

T3SS apparatus in order to impart their functions (Collazo and Galan, 1997); 

(Galan, 1996); (Hueck et al., 1995). However, while SipA is a T3SS effector, it is 

able to induce transepithelial migration without being translocated into host cells 

via the T3SS apparatus (Lee et al., 2000). Indeed, exogenous addition of SipA to 

the apical surface of intestinal monolayers in the absence of bacteria induces 

PMN migration in a dose-response manner (Lee et al., 2000), and also induces 

the pathway described above leading to the accumulation of MRP2 at the apical 

surface (Silva et al., 2004b). The ability of a T3SS effector to function in the 
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absence of T3SS-mediated translocation has only been reported one other time; 

the Yersinia pseudotuberculosis effector YopB induces inflammatory responses 

in the absence of a T3SS translocation channel into the host cell (Viboud et al., 

2003).  

That our understanding of how T3SSs work remains incomplete is further 

exemplified by the finding that T3SS effectors can be secreted through the 

flagellar secretion system. In order for flagella to be assembled, the flagellar 

basal body must form first in the bacterial cell membrane, from where it protrudes 

outward into the extracellular space. Flagella subunits are secreted from the 

basal body and then assemble into the flagellar apparatus.  A study in 1999 

showed that in the absence of the flagellar basal body in Yersinia enterocolitica, 

the virulence protein YplA, which functions as a phospholipase, was not secreted 

and no phospholipase activity was detected (Young et al., 1999). A later study 

confirmed that YplA can be secreted through Y. enterocolitica T3SSs and the 

flagellar secretion system (Young and Young, 2002).  

Thus, while the paradigm indicates T3SS effectors require secretion and 

translocation via T3SS machinery, it is clear that there are exceptions to these 

rules that highlight how much remains unknown about how these systems 

function. 
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Caspase-3 Is Critical to SipA’s Functions 

As shown in Figure 1.2, there is a critical role for PKCα-mediated 

activation of caspase-3 in the SipA-driven inflammatory response during 

Salmonella infection. However, recent evidence from our lab indicates a 

requirement for activated caspase-3 prior to the activation of PKCα.  

SipA is a bifunctional protein that has been shown to facilitate actin 

rearrangements during invasion and also inflammatory responses, as discussed 

previously. The C-terminus is necessary and sufficient for actin bundling (Myeni 

and Zhou, 2010). The inflammatory function of SipA has been mapped to its N-

terminus, as truncated SipA lacking its C-terminus not only induces inflammation 

in murine models of Salmonella infection, but induces more inflammation than 

does the full-length SipA protein (Wall et al., 2007). The significance of this 

observation was made apparent by the later finding that SipA harbors a caspase-

3 cleavage site, which separates the N-terminus from the C-terminus, and that 

cleavage by caspase-3 is required for SipA’s inflammatory functions (Srikanth et 

al, 2010). It was also found that SipA promotes the activation of caspase-3 as 

well as caspase-3 secretion at the apical surface, suggesting SipA is 

proteolytically processed prior to entering the host cell (Srikanth et al., 2010). 

This hypothesis was substantiated by the recovery of cleaved SipA products from 

the apical media, but not from the infected host cell cytosol (Srikanth et al., 

2010). Although caspase-3 activity is typically associated with pro-apoptotic 

signaling that leads to cell death, the increased activation of caspase-3 during 
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Salmonella infection occurred independently of apoptosis. This observation is in 

line with other reports indicating caspase-3 has roles in cell functions not related 

to apoptosis (Rosado et al., 2006), and that apoptosis of Salmonella infected 

cells does not occur for several hours post infection (Knodler et al., 2005).   

Data from (Srikanth et al., 2010) further demonstrate that caspase-3 

cleavage sites exist in other bacterial effectors, indicating this may be a common 

motif amongst these proteins. However, the mechanism by which SipA activates 

caspase-3 remains unknown. Indeed, it is perplexing that SipA is responsible for 

inducing caspase-3 activation while also requiring cleavage by caspase-3 to 

become fully functional.  

The exact reason why Salmonellae would rely on caspase-3 activity to 

activate SipA remains unclear, but doing so likely benefits Salmonellae in at least 

two ways. One is that encoding one protein with two functions that can later be 

separated saves the bacteria the energy of having to encode and regulate two 

separate proteins. Indeed, the “terminal reassortment” theory proposes that 

bifunctional effectors were once distinct proteins that over time evolved into one 

protein (Stavrinides et al.). An additional benefit to relying on caspase-3 

regulation is that SipA will only be active under the proper conditions, i.e., once 

Salmonella is present in the intestines. By relying on the host for this regulation, 

not only is Salmonella spared the energy of regulating individual SipA functions 

itself, but SipA activation is guaranteed to be timed with host invasion. 
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1.6 Thesis Summary: What Are the Host Factors that Promote the SipA-

Caspase-3 Activation Process? 

 The combined observations from Wall et al, 2007 and Srikanth et al, 2010 

indicate that caspase-3 activity is required prior to the PKCα-mediated activation 

of caspase-3, and thus indicate that SipA activates caspase-3 via an additional, 

but unknown, pathway.  Given the important role of SipA in promoting 

inflammation during Salmonella infection, we sought to identify a host factor(s) 

that promotes SipA-mediated responses via caspase-3. The goals of this 

endeavor were to address how SipA can elicit inflammation from the apical 

surface, and to improve our understanding of the SipA-caspase-3 pathway. 

Identification of an additional host member key to the inflammatory responses to 

Salmonella infection has implications for novel therapeutic strategies, as well as 

broadens our general understanding of how Salmonella infection occurs and 

indeed how T3SS effectors impart their functions. 

Initial experiments into this inquiry, as discussed in following chapters, 

indicated SipA binds to the host tetraspanning membrane protein PERP, and that 

infection with Salmonella alters PERP’s cellular location. PERP (p53 effector 

related to PMP-22) is part of a class of membrane proteins that are involved in 

such functions as apoptosis regulation (Brancolini et al., 2000), myelin regulation 

(Naef and Suter, 1999), intercellular junctions (Lee et al., 2005), and protein-

protein interactions (Wilson et al, 2002). PERP was first identified as a 

downstream effector of p53-induced apoptosis (Attardi et al., 2000), and has 
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since been found to promote epithelial barrier integrity due to its localization to 

desmosomes (Ihrie et al, 2005), regulate caspase activation (Davies et al., 2009), 

and to regulate tumorigenesis (Beaudry et al., 2010). PERP is also expressed in 

intestinal epithelial tissue (Franke et al., 2013b). To date, studies on PERP have 

been relegated largely to its functions in cancer and in epithelial barrier 

maintenance; thus exploration into functions for PERP during Salmonella 

infection has the prospect of uncovering a novel role for this protein, in addition to 

improving our understanding of how Salmonella co-opts pathways leading to 

caspase-3 activation to promote pathogenesis. 

Specific aims of this study are outlined are as follows: 

 

1) Determine the nature of the SipA and PERP Interaction 

 a. Does SipA bind to PERP during Salmonella pathogenesis? 

 b. Is PERP present on the apical surface of intestinal epithelial 

cells? 

c. Does PERP bind to other T3SS effectors? 

 

2) Does PERP regulate SipA-mediated host responses to Salmonella infection? 

  a. Is PERP required for PMN transepithelial migration? 

  b. Does PERP promote caspase-3 activation during Salmonella 

infection? 
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3) Determine How PERP Localization is Regulated During Salmonella Infection 

  a. What strategies does Salmonella employ to modulate PERP 

localization? 

  b. What Salmonella effectors regulate PERP localization?  
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CHAPTER II 
PERP, a Host Tetraspanning Membrane Protein, is Required for 

Salmonella-Induced Inflammation 
 
 
2.1 Introduction 
 

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of 

several Salmonella enterica strains responsible for over one million cases of 

gastrointestinal salmonellosis in the United States each year. The pathological 

hallmark of Salmonella-elicited enteritis is extensive intestinal inflammation, 

characterized by a substantial polymorphonuclear leukocyte (PMN) infiltrate to 

the site of infection. While PMNs are integral to innate immunity, poorly controlled 

intestinal inflammation results in extensive tissue destruction, and in some 

instances, the formation of crypt abscesses. Such PMN recruitment is 

coordinated by the epithelial release of an array of proinflammatory cytokines, 

among which are two potent PMN chemoattractants, interleukin-8 (IL-8) and 

hepoxilin A3 (HXA3). IL-8 is secreted basolaterally by epithelial cells in response 

to not only the bacterial product flagellin but also to a host of Salmonella type III 

secretion system (T3SS) effectors (e.g., SopE, SopB) that increase IL-8 gene 

expression via nuclear factor kappa B (NF-κB) ((Hobbie et al., 1997) (Hardt et al., 

1998a)).  The basolateral secretion of IL-8 establishes a stable haptotactic 

gradient across the lamina propria. This gradient serves to guide PMNs from the 

lamina propria to the subepithelium, but does not induce movement across the 

epithelium, as observed in both model epithelia  (McCormick et al., 1993) 
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(McCormick et al., 1995) and a double transgenic mouse model with the ability to 

induce the expression of human IL-8  (Kucharzik et al., 2005).  

Using an in vitro model of S. Typhimurium infection of human intestinal 

epithelial cells to study such inflammatory events occurring at the intestinal 

mucosa, we determined that subsequent PMN transit through the epithelial 

monolayer to the lumenal surface (defined as PMN transepithelial migration) is 

directed by the eicosanoid HXA3 (McCormick et al., 1998; Mrsny et al., 2004b). 

HXA3 is a potent PMN chemoattractant that is secreted apically in response to 

the Salmonella T3SS effector protein, SipA (Lee et al., 2000; McCormick et al., 

1998; Silva et al., 2004a). The key role that SipA plays in inducing epithelial 

responses resulting in the transepithelial migration of PMNs has also been 

substantiated using two distinct in vivo models of Salmonella-induced enteritis  

(Barthel et al., 2003a; Wall et al., 2007; Zhang et al., 2002). To date, the 

molecular mechanism underlying these cellular events has revealed that SipA 

activates a lipid signaling cascade that in turn activates protein kinase c (PKC)-a 

and 12-lipoxygenase (Lee et al, 2000) (Mumy et al, 2008) in a pathway 

dependent on ADP-ribosylation factor (ARF)-6 and phospholipase D (PLD) (Criss 

et al, 2001). These events ultimately lead to apical efflux of HXA3 (Pazos et al., 

2008); (Mrsny et al., 2004b); (Mumy et al., 2008a). HXA3 is an arachidonic acid-

derived hydroxy epoxide that forms a chemotactic gradient across the epithelial 

tight junction complex, which directs PMNs across the intestinal epithelium to the 

lumenal surface (Mrsny et al., 2004b), the final step in PMN recruitment to the 
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mucosal lumen. Recently, we found that SipA also triggers the activation of 

caspase-3, and that caspase-3 activity is required for the SipA-mediated influx of 

PMNs during Salmonella infection (Srikanth et al, 2010). 

While such studies have informed us of the nature of the signal 

transduction pathways induced by SipA that prompt PMN transepithelial 

migration, the way in which SipA initiates this complex cellular network remains 

undefined. Through both biochemical and genetic assessment, we have 

previously determined that T3SS-mediated translocation is not necessary for 

SipA to elicit inflammation (Lee et al., 2000), but that interaction of SipA at the 

apical surface of intestinal epithelial cells is sufficient to initiate the cellular events 

that lead to PMN transepithelial migration. Based on these observations, we 

hypothesize that SipA need not enter the epithelial cell cytosol to stimulate 

proinflammatory signal transduction pathways but rather may function 

extracellularly at the epithelial cell surface (Srikanth et al., 2010; Wall et al., 

2007). This hypothesis is also consistent with the bi-functional properties of SipA, 

which promotes gastroenteritis via two distinct functional domains that activate 

inflammation and co-regulate mechanisms of bacterial entry by exploiting 

discreet extracellular and intracellular locations, respectively (Higashide et al., 

2002b; Lilic et al., 2003; Wall et al., 2007; Zhou et al., 1999).  

To test the hypothesis that SipA modulates a host protein at the apical 

surface that triggers the induction of PMN transepithelial migration, we used a 

yeast-two-hybrid (Y2H) strategy to screen a human colonic cDNA library, and 
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identified the tetraspanning membrane protein p53 Effector Related to PMP-22 

(PERP) as a SipA binding partner. PERP was first identified as a p53 effector 

(Attardi et al., 2000), but has since been shown to play a role in development 

(Ihrie et al., 2005), caspase activation (Davies et al., 2009; Singaravelu et al., 

2009), inflammation, and cancer (Beaudry et al., 2010; Paraoan et al., 2006). 

Herein, we describe the role of PERP in promoting the SipA-dependent 

inflammatory response to S. Typhimurium infection.  

 
2.2 Materials and Methods 
 
Tissue Culture 

T84 or HCT8 polarized monolayers were grown on polycarbonate filters and 

used 6–8 days after plating. Inverted monolayers (Costar 3421) were used for 

PMN transmigration assays. Non-inverted monolayers (Costar 3421) were used 

for microscopy. For biotinylation, cells were seeded on transwells in 100 mm 

tissue culture dishes (Costar 3419). For co-immunoprecipitations and infection 

assays, cells were seeded on transwells in six-well plates (Costar 3412).   

 

Use of bacterial strains 

S. Typhimurium strains (SL1344, wild-type; EE663, SipA-deficient) were grown 

as previously described (Lee et al., 2000). One colony was grown in a shaking 

culture of LB for 6 hours at 37 C. The culture was diluted 1:1000 and grown 

overnight as a standing culture at 37 C. Morning cultures were then pelleted and 

washed once with HBSS+, then re-suspended in HBSS+ at 10x the 
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concentration of the overnight culture prior to use. SipB-deficient (∆SipB)  S. 

Typhimurium was grown in the same manner as the SipA-deficient strain (Wall et 

al, 2007). pSipA (SipA complemented, expresses HA-tagged SipA), AJK63 (SipA 

complemented, expresses high level of HA-tagged SipA), and CSM (SipA 

complement expressing SipA caspase-3 site mutant on pBH plasmid) were 

grown in the presence of 50ug/mL ampicillin. Unless otherwise indicated, cells 

were infected at an MOI of 100:1 for one hour. The pET3a-GST plasmid 

containing the GST-tagged C-terminus of SipC (Nichols and Casanova, 2010) 

was transformed into BL21 cells and maintained in the presence of 50ug/mL 

ampicillin. 

 

In vitro Infection 

HCT8 cell monolayers were infected apically with SL1344 or left non-infected in 

HBSS+ for 1 hour. The cells were then washed with HBSS+ to remove bacteria 

and lysed. Lysates were prepared in whole cell lysis buffer (150mM NaCl; 25mM 

Tris, pH 8; 1mM EDTA; 1% NP-40; 5mM Na3VO4, 20mM NaF, 0.8mM PMSF, 

and protease inhibitor cocktail). Homogenized lysate supernatants were 

normalized via Bradford Assay, boiled in loading dye supplemented with β-

mercaptoethanol, separated by SDS-PAGE, and immunoblotted for the desired 

proteins. GAPDH (Millipore) was used as a loading control where indicated.  
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PERP siRNA Construct Design 

The pSUPER vector (Oligoengine) was used to generate a PERP siRNA 

construct following methods in (Brummelkamp et al., 2002). Oligonucleotides 

contained a specific human PERP sequence (GI: 222080101: 184-765), its 

reverse complement (in italics) separated by a short spacer region, and BglII or 

HindIII restriction sites.  PERPKO_F1GATCCCC AAGATGACCTTCTGGGCAA 

TTCAAGAGA TTGCCCAGAAGGTCATCTT TTTTTGGAAA and PERPKO_R1 

AGCTTTTCCAAAAA AAGATGACCTTCTGGGCAA TCTCTTGAA 

TTGCCCAGAAGGTCATCTT GGG and for a random control sequence, 5’- 

GATCCCCCCGACAAGCTTGAATTTATTTCAAGAGAATAAATTCAAGCTTGTC

GGTTTTTGGAAA-3’ and 5’ AGCTTTTCCAAAAACCGACAAGCTTGAATTTA 

TTCTCTTGAAATAAATTCAAGCTTGTCGGGGG-3’.  

 

Transfection of HCT8 intestinal epithelial cells 

For stable PERP knockdowns, HCT8 cells were transfected with the modified 

pSUPER using Lipofectamine 2000 (Invitrogen) per manufacturer’s instructions 

in RPMI 1640 without serum (Invitrogen), incubated in RPMI with 8% v/v FBS 

then passaged into fresh media with neomycin-G418 (Sigma-Aldrich). Cells 

underwent two additional cycles of growth/passage in G418 prior to use. For 

transient PERP knockdowns, siRNA against human PERP and a non-targeting 

pool were obtained from Dharmacon. HCT8's were transfected with 20nM siRNA 

using Lipofectamine 2000 in OptiMem serum-free media for 24 hours.  
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Split Ubiquitin Yeast-Two-Hybrid Screen 

The Dual-hunter split ubiquitin yeast-2-hybrid kit was used per manufacturer’s 

instructions (Dualsystems Biotech AG).  Coding DNA for SipA was cloned into 

the BAIT plasmid (pDHB1) and transformed into yeast reporter strain NMY51. A 

human colonic cDNA library (Dualsystems Biotech AG) was transformed into the 

bait-expressing yeast per manufacturer’s protocols. For the reverse yeast-2 

hybrid assay, the coding DNA of PERP was cloned into pDHB1 while SipA was 

cloned into the PREY plasmid (pPR3-N). 

 

HA-Tagged SipA Isolation 

An overnight culture of AJK63 (Salmonella Typhimurium SL1344 expressing HA-

tagged SipA) was back-diluted then centrifuged at 6000 rpm. The supernatant 

was passed through an Amicon Centrifugal Filter Unit (Millipore UFC900324). 

We kept the concentrated volume left in the top chamber and added one tablet of 

Protease Inhibitor Complete Mini (Roche). We then prepped the HA column by 

adding 0.5mL of HA-Affinity matrix (Roche), and equilibrated per manufacturer 

instructions. The sample was then run through the column, followed by washing. 

Finally, the HA-tagged protein was eluted with 1mg/mL of HA-peptide. Samples 

were analyzed for concentration and stored at -80 C. 
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Immunoprecipitations 

Normalized lysates from T84 cells infected with AJK63 or ΔSifA/SifA-pBH 

(Salmonella Typhimurium SL1344 expressing HA-tagged SifA) were 

immunoprecipitated for HA-SipA or HA-SifA, respectfully, using Protein A/G 

Agarose Plus beads (Santa Cruz) and anti-HA or IgG isotype control antibodies 

(Abcam). The presence of PERP was determined via western blot following cell 

lysis procedures as described above. 

 

The SipC-PERP pulldowns were performed in accordance with Nichols and 

Casanova, 2010, with minor modifications. An over night culture of BL21 E. coli 

expressing the pET3a-GST plasmid containing the GST-tagged C-terminus of 

SipC was centrifuged at 6,000 RPM. The pellet was resuspended in lysis buffer 

(25mM Tris, 3mM DTT, 1mM PMSF), sonicated, and centrifuged at 14,000 RPM 

at 4 C for 1 hour. The cleared supernatants were then incubated with Glutathione 

sepharose 4B affinity matrix beads (GE Healthcare) prepared according to 

manufacturer instructions for 2 hours at room temperature. Whole cell lysates 

from HCT8 cells were then incubated with the SipC-GST-bound beads over night 

at 4C with end-over-end rotation. After washing steps with 1x PBS, the GST-

SipC protein complexes were eluted with reduced glutathione. The eluates were 

then diluted in 4X tricine loading dye, boiled, and examined via western blot for 

the presence of SipC-GST (not shown) and PERP.  
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Biotinylation 

Apical cell surface biotinylation was performed using the protocol described by 

(Agbor et al., 2011a). Following 1 hour infection, the apical surface of HCT8 

monolayers was labeled with biotin (Thermo Scientific) at 4C. Labeling of the 

basolateral surface was blocked with acetate (Thermo Scientific). The cells were 

then lysed, homogenized, normalized for protein concentration via the Bradford 

assay, and incubated with streptavidin beads overnight at 4C in order to pull 

down apically-labeled proteins. After washing, the beads were then boiled to 

release bound biotinylated apical proteins. The apical protein-enriched samples 

were then immunoblotted for PERP (Santa Cruz SC-67184). The level of PERP 

expression was quantified via densitometric analyses using FIJI. Data are 

displayed as a ratio of PERP expression from cells following infection with a 

mutant OR left non-infected compared to the level of PERP from cells following 

infection with SL1344 (WT Salmonella Typhimurium).  PERP expression 

following SL1344 infection was set to 1 for these analyses. Densitometric graphs 

displayed are of three representative experiments showing reproducible trends. 

The raw data from these analyses are shown in section C.1. 

 

For brefeldin A experiments, cells were exposed to 150uM brefeldin A in HBSS+ 

for 1 hour prior to infection (Lippincott-Schwartz et al., 1990); (Caumont et al., 

2000). The brefeldin A was then removed, and the cells were washed once prior 

to infection. For cycloheximide experiments, cells were exposed to 2mg/mL of 
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cycloheximide in HBSS+ prior to infection, a concentration previously shown to 

block protein synthesis in HCT8 cells (Thorpe et al., 1999). The cycloheximide 

was then removed, and the cells were washed once prior to infection. Blots 

displayed are of one representative experiment showing reproducible trends.  

 

PMN Transepithelial Migration Assays 

Stable PERP Knockdowns: 

PMN migration assays were carried out as described (McCormick et al., 1993) 

using p11 (PERP knockdown), and p24 (vector control) monolayers. Briefly, 

inverted monolayers were infected with SL1344 for 1 hour at the apical surface, 

or left non-infected in HBSS+ buffer.   Freshly isolated human polymorphonuclear 

leukocytes (PMNs) were then added to the basolateral surface and allowed to 

migrate to the apical surface over two hours. Where indicated, fMLP served as a 

transmigration stimulus in the absence of infection. The number of migrated 

PMNs was quantified via a colorimetric assay using myeloperoxidase as an 

indicator of the presence of PMNs. Assays were performed in triplicate and are 

presented as one replicate showing reproducible trends across at least three 

experiments. 

 

Antibody Blocking: 

PERP blocking was performed according to (Zen et al., 2004) with some 

modifications. HCT8 cells were infected at the apical surface with SL1344 for 40 
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minutes. After washing, 25ug/mL of anti-PERP (Santa Cruz), IgG control 

(Abcam), or the mitochondrial marker MTCO-1 (Abcam) were added to the 

basolateral surface for 30 minutes prior to addition of PMNs and maintained 

during migration. Where indicated, fMLP, IL-8, or LTB4 was used to induce 

migration in the absence of infection. The number of migrated PMNs was 

quantified via a colorimetric assay using myeloperoxidase as an indicator of the 

presence of PMNs. Assays were performed in triplicate and are presented as 

one replicate showing reproducible trends across three experiments.  

 

Activated caspase-3 Assay 

Following transient PERP knockdown, cells were infected for two hours then 

lysed and analyzed for caspase-3 activity via the BioVision colorimetric caspase-

3 activity assay per manufacturer's instructions (BioVision; Srikanth et al, 2010). 

Data is displayed as a percent increase in activated caspase-3 levels following 

infection compared to levels at basal state, and shows values averaged across 

three experiments. 

 

Fluorescent Wide Field Microscopy 

For examination of PERP apical accumulation, T84 monolayers were grown on 

permeable filters and infected with SL1344, EE633, CSM, pSipA, treated 

exogenously with HA-tagged SipA, or left in HBSS+ buffer (non-infected) for one 

hour. The filters were washed in 1% PBS, fixed with 1% paraformaldehyde in 
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PBS for 15 minutes, quenched with NH4Cl in PBS for 15 minutes, then 

permeabilized in 0.1% Triton in PBS for 5 minutes, with washing steps in 

between. The filters were then blocked with 5% NGS in PBS for 1 hour, followed 

by staining with primary antibody against PERP overnight at 4C. The filters were 

stained the next day with secondary Alexa Fluor 488 (Life Technologies), Alexa 

Fluor 568 (Life Technologies) and phalloidin Alexa Fluor 647 (Life Technologies) 

for 1 hour at room temperature in the dark. Filters were then mounted using 

SlowFade Gold with DAPI and maintained in the dark at 4C. 

Immunofluorescence samples were imaged using a Nikon Ti-E wide field 

fluorescent microscope (Nikon Instruments, Melville, NY) with a 60X objective 

using a Photometrics QuantEM wide field camera at room temperature. Widefield 

Z-stacks were taken with 0.4um Z slices using the filter pores to differentiate the 

basolateral from the apical surface of the monolayer.  The entire monolayer was 

imaged in this manner, with at least 5 random distinct areas imaged for each 

sample. Images were acquired with the Nikon Elements SW version 4.13 

software. Quantification of the PERP staining pattern was done with Z volume 

projections processed using the Nikon Elements SW version 4.13 software, 

encompassing the whole monolayer. Phalloidin staining was used to determine 

cell number. The level of PERP staining was quantified using FIJI to count 

punctae in each image as in (Ruck et al., 2011); (Chen et al., 2006), using four 

images per condition. Data displayed indicate average number of punctae per 

imaged field for each condition in a representative experiment. To better 
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determine apical or basolateral location of the punctae, a line was added to the Z 

projections during processing to bisect the Z volume of the monolayer. 

Designation of PERP staining in an apical compartment is in accordance with 

other reports showing staining of apical compartments (Ivanov et al., 2004); 

(Cario et al., 2002). 

  

Confocal Microscopy 

Mouse Colon Tissue: 

Sections of the proximal colons from 6 week old C57BL/6 mice were removed 

and snap frozen in OCT media, then cut into 5mm sections on glass slides.  

Sections were fixed in 4% PFA, quenched with 50mM ammonium chloride, then 

permeabilized with 0.5% triton X in PBS. Sections were then blocked with 

blocking buffer (5% normal goat serum in PBS) for one hour at room 

temperature, followed by overnight incubation with anti-PERP antibody (Abcam 

5986) in blocking buffer at 4C. The next day, the sections were washed with 

blocking buffer, then incubated with secondary Alexa Fluor 488 (Life 

Technologies) at room temperature for one hour. Sections were then washed in 

blocking buffer, mounted with SlowFade Gold with DAPI, and viewed under a 

Leica TCS SP-5 Confocal microscope (Leica Microsystems, Buffalo Grove, IL) 

using a 40x oil objective with 1x digital zoom (Leica LASAF Software, Leica 

Microsystems, Buffalo Grove, IL).  All samples were imaged as 0.2um Z stacks. 

Images were processed using FIJI (NIH, Bethesda, MD). Animals were treated in 
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accordance with institutional IACUC protocols. The image shown is of one 0.2um 

Z stack taken from one of 4 proximal colon samples. 

  

PERP and Rab25 Colocalization: 

Polarized T84 monolayers were infected with SL1344 for 1 hour and stained as 

described above for PERP with the exception that 0.2% saponin in NGS was 

used to permeabilize in place of Triton-x to help preserve endosome structures. 

Determination of PERP colocalization with Rab25 (AB32004) was performed 

using a Leica TCS SP-5 Confocal microscope (Leica Microsystems, Buffalo 

Grove, IL) using a 63x oil objective with 6x digital zoom (Leica LASAF Software, 

Leica Microsystems, Buffalo Grove, IL).  For increased resolution of PERP 

localization, the pinhole was decreased to 0.5 airy units (AU) for all imaging and 

all samples were imaged as 0.2mm Z stacks.  Images shown are representative 

of 3 images taken from random fields per sample.  Post-imaging, images were 

processed using FIJI (NIH, Bethesda, MD) with single 0.2 mm slices selected 

from the quarter most apical sections to show colocalization of Rab25 

(AlexaFluor 568, red pseudocolor) and PERP (AlexaFluor 488, green 

pseudocolor), along with F-actin (phalloidin AlexaFluor 647, blue pseudocolor) to 

show cellular structure. The level of colocalization was determined with Manders’ 

coefficient analyses in FIJI. Images and Manders’ coefficients displayed are a 

representative set from one of three experiments. 
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Data Analysis 

Data presentation is described for each experiment above. Where indicated, p 

values were calculated using the Student's t-test, and values of <0.05 were 

considered statistically significant. In cases where datasets contained more than 

two groups, one-way ANOVA analyses were performed first, followed by 

individual Student’s t-test analyses to determine which treatment groups differed 

from the control. Error bars represent standard error.  

 
2.3 Results 

PERP is a Binding Partner of SipA 

Previous studies have identified the S. Typhimurium effector SipA as an 

important mediator of the immune inflammatory response that results in PMN 

influx. The fact that our prior studies found purified SipA to directly activate this 

response has prompted us to consider whether SipA might engage a receptor at 

the host cell surface (Lee et al., 2000). Since we infer that this putative receptor 

represents the initiation site of the transcellular PMN signaling cascade, 

identification of a functional receptor will be crucial for understanding SipA's 

involvement in controlling intestinal inflammation. We used a split ubiquitin based 

Y2H (protein-protein interaction) analysis system (Dualsystems Biotech) 

(Dirnberger et al., 2008) (Stagljar et al., 1998), with full length SipA as bait and a 

human colonic cDNA-based library as prey. Approximately 4x106 transformants 

were screened and selected based on two growth reporters. Candidate 

interacting partners were then selected using a Lac-Z based colorimetric reporter  
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assay. The screen yielded seven positive clones out of which PERP was 

represented three times (Table 2.1). Using the Lac-Z reporter assay, we 

confirmed the PERP-SipA interaction in a reverse Y2H assay in which SipA was 

sub-cloned into the prey vector, and PERP of the initial screen was used as bait. 

Furthermore, we used a biochemical approach to demonstrate PERP-SipA 

interactions. Model human colonic epithelial cells were infected with a wild type 

S. Typhimurium strain expressing an HA-tagged SipA protein (AJK63). 

Immunoprecipitation of infected cell lysates with an anti-HA antibody specifically 

resulted in the pull-down of PERP, as immunoprecipitation with an isotype control 

IgG antibody yielded neither HA-SipA nor PERP (Figure 2.1A). We also 

performed the pull down with another S. Typhimurium T3SS effector, SifA, also 

tagged with HA to ensure our observation was not due to non-specific recognition 

of the HA-tag by the PERP antibody (Figure 2.1B). 

Since this data supports our contention that PERP is a SipA binding 

partner, we next examined the specificity of the PERP-SipA interaction by testing 

whether PERP binds to the Salmonella protein SipC, a component of the T3SS1 

translocon. SipC is not only required for the translocation of Salmonella effectors 

into the host cell (Collazo and Galan, 1997) and for Salmonella invasion (Myeni 

and Zhou, 2010), but also SipC and SipA are known to have cooperative roles 

during invasion (McGhie et al., 2001). As shown in Figure 2.1C, passage of 

HCT8 lysates across beads bound to the GST-labeled C-terminus of SipC 

(Nichols and Casanova, 2010) resulted in the specific pull down of PERP,  
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Table 2.1: SipA Interacting Partner Candidates 
 
Five potential SipA-binding candidates were identified from our yeast-two-hybrid 

screen. Most candidates have been identified as membrane proteins with various 

functions pertaining to cell stress and death regulation. Out of these candidates, 

PERP was the only one to be pulled out multiple times from our screen. 
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Table 2.1: SipA Interacting Partner Candidates 
 
 

SipA Interacting Partner Candidates Identified Via Y2H Screen 
Clone Gene Name Function Reference 
1. SERP1 ER Stress response Yamaguchi et al, 1999 
2.  DERP2 cell death regulation Oka et al, 2008 
3.  TMEM87 Unknown  
4. TMEM147 Interacts with nicalin-

NOMO complex 
Dettmer et al, 2010 

5. PERP* p53 effector, 
regulates Caspase-3 
activation 

Attardi et al, 2000; 
Davies et al, 2009 

*Multiple hits  
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Figure 2.1: SipA and PERP are Binding Partners 

A. T84 lysates infected with an HA-tagged SipA containing strain of S. 

Typhimurium were pulled down with IgG or anti-HA antibody, and then probed for 

PERP. Only the HA-SipA pull down samples resulted in a PERP band. B. The 

specificity of the PERP-SipA interaction was confirmed by a pull down of HA-

tagged SipA and HA-tagged SifA. Cells were infected with S. Typhimurium 

expressing HA-tagged SipA or HA-tagged SifA, or left non-infected as a non-

specific control ((-) control) and lysed.  Lysates were pulled down with anti-HA 

antibody and probed for PERP. The SipA-HA lysates resulted in a PERP band, 

while the SifA-HA lysates resulted only in a faint band of background intensity. C. 

Passage of HCT8 lysates through glutathione beads conjugated to the GST-

tagged c-terminus of SipC (“conjugated”) resulted in the specific pull down of 

PERP (“eluted”), as a passage of the lysates through non-conjugated beads fails 

to result in the pull down of PERP. 
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Figure 2.1: SipA and PERP Are Binding Partners  
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suggesting that PERP is able to interact with two Salmonella proteins that 

function during early stages of Salmonella pathogenesis and that PERP may 

have a role mediating these events. However, the precise mechanism(s) remain 

unknown. 

 

Functional Roles of PERP in the Promotion of the Inflammatory Response to 

Salmonella Infection 

 PERP is a tetraspanning membrane protein that belongs to the PMP-

22(Gas3)/EMP family (Attardi et al., 2000), which includes PMP-22 and the 

epithelial membrane proteins (EMP) 1, 2, and 3. Detection of PERP as an 

interacting partner with SipA piqued our interest given that PERP has been 

documented to regulate inflammatory signaling pathways (Beaudry et al., 2010), 

as well as to regulate the activation of caspase-3 (Singaravelu et al., 2009) 

(Davies et al., 2009). Since we have previously shown the Salmonella effector, 

SipA, induces inflammatory pathways that lead to the recruitment of PMNs to the 

site of infection, we sought to determine the extent to which PERP might also be 

involved in governing these processes during infection with S. Typhimurium 

using our in vitro PMN migration assay (see Materials and Methods).  Following 

infection, polarized colonic cell monolayers were exposed to 25ug/mL of anti-

PERP antibody, anti-MTCO-1 antibody (mitochondrial marker – used as an 

irrelevant isotype control) or IgG isotype control antibody prior to adding freshly 

isolated human peripheral blood PMNs.  



! 56!

As shown in Figure 2.2A, the presence of anti-PERP antibody decreased 

the ability of S. Typhimurium to induce PMN transepithelial migration by 90%. 

This result was specific to exposure with the PERP antibody, as treatment with 

control antibodies MTCO-1 (mitochondrial marker) and IgG (isotype control)  did 

not similarly inhibit Salmonella-induced PMN transmigration. Addition of the 

PERP antibody in the absence of a chemoattractant signal has no impact on 

PMN transmigration (Supplemental Figure 2.1).  

 As a complementary approach, we performed PMN transepithelial 

migration assays using PERP siRNA knockdown cells (p11) paired with an 

siRNA vector-control (p24). PMN transepithelial migration across the PERP 

knockdown monolayers in response to S. Typhimurium infection was reduced by 

40% as compared to the vector control cells (Figure 2.2B).  Although these 

studies suggest that PERP is involved in facilitating PMN transmigration in 

response to Salmonella infection, PERP might also play a role in other intestinal 

inflammatory conditions beyond that of Salmonella infection where PMN 

migration is a key pathological feature.   

We modeled such conditions in vitro via addition of formyl-Methionyl-

Leucyl-Phenylalanine (fMLP), a PMN chemoattractant, to our polarized 

monolayers in the absence of infection. fMLP is regularly used as a positive 

control for PMN migration, and mimics formylated peptides from bacteria.  As 

shown in Figure 2.3, PMN transepithelial migration in response to an imposed 

gradient of fMLP across cells treated with the PERP antibody (Figure 2.3A),  
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Figure 2.2: PERP Promotes the Inflammatory Response to Salmonella 

Infection 

A. Polarized HCT8 cells were infected with wild-type S. Typhimurium and then 

exposed to 25ug/mL of PERP, MTCO-1 (mitochondrial marker, control), or IgG 

(control) antibodies at the basolateral surface or left in HBSS+ buffer prior to 

addition of PMNs at the basolateral surface. Values are expressed as the 

percentage of PMN transmigration compared to PMN transmigration across 

infected cells not treated with antibodies (set to 100%) from one of three 

representative experiments performed in triplicate. B. Lines of stable PERP 

knockdown cells and control cells were generated via transfection of PERP 

siRNA (inset). Values are expressed as the percentage of PMN transmigration 

compared to PMN transmigration across infected vector control cells (set to 

100%) from one of three representative experiments performed in triplicate.  The 

PERP knockdown cells showed no defect in barrier function compared to the 

vector control cells (data not shown). Error bars represent ± standard errors and 

p values less than 0.05 according to Student’s T-test were considered statistically 

significant. 
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Figure 2.2: PERP Promotes the Inflammatory Response to Salmonella 

Infection 
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or across the PERP knockdown cells (Figure 2.3B) was reduced approximately 

90% and 35%, respectively.  

We also probed the function of PERP during PMN transmigration in 

response to other chemoattractants known to be secreted by intestinal epithelial 

cells, such as IL-8 and leukotriene B4 (LTB4).  We found that PERP-antibody 

treatment of HCT8 monolayers prior to inducing PMN transmigration through  

imposed gradients of IL-8 or LTB4 at the apical surface (see Experimental 

Procedures for details) resulted in a modest, though statistically significant 

inhibitory impact on IL-8-induced migration (Figure 2.3C), but not on LTB4-

induced migration (Figure 2.3D). Together, these results indicate PERP has a 

broad, though not universal, role in regulating PMN migration.      

The Salmonella effector protein, SipA, promotes gastroenteritis via two distinct 

functional motifs that trigger not only inflammation but also mechanisms of 

bacterial entry (Wall et al., 2007). Moreover, we also recently found that during 

infection of colonic epithelial cells, SipA is responsible for the activation of 

caspase-3 (Srikanth et al., 2010). This enzyme is essential for SipA cleavage at a 

specific recognition motif, dividing the protein into its two functional domains 

(Srikanth et al., 2010). Such studies further revealed that cleavage of the SipA 

caspase-3 motif is central for promoting proinflammatory responses, and that 

caspase-3 is required during pathogenesis given that Salmonella is less virulent 

in caspase-3 knockout (caspase-3-/-) mice (Srikanth et al., 2010). Since prior 

studies have indicated that increased levels of PERP lead to caspase-3 
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Figure 2.3: PERP Promotes PMN Migration 
 
Migration was stimulated by the addition of formyl-methionyl-leucyl-phenylalanine 

(fMLP), IL-8, or LTB4.  Presence of the PERP antibody (A) specifically reduced 

fMLP –induced PMN migration by about 90%. Similarly, migration across PERP-

knockdown monolayers (B) was reduced by about 35%. Presence of the PERP 

antibody also reduced IL-8-induced migration by about 20% (C), though had no 

impact on migration induced by LTB4 (D).  Values are expressed as the 

percentage of PMN transmigration compared to PMN transmigration across cells 

treated with chemoattractant but not with PERP antibody (set to 100%) from one 

of three representative experiments performed in triplicate. Error bars show 

standard error. p values less than 0.05 according to Student’s T-test were 

considered statistically significant. 
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Figure 2.3: PERP Promotes PMN Migration 
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activation (Davies et al., 2009), we next sought to determine the extent to which 

PERP plays a role in Salmonella-induced activation of caspase-3. 

Using a colorimetric caspase-3 bioactivity assay kit, we evaluated the 

extent to which PERP regulates caspase-3 activation in an HCT8 line of transient 

PERP-knockdown cells (Figure 2.4A) in the presence of S. Typhimurium 

infection. We observed an increase of 86.7% +/- 5.3 (standard error, p<0.05) in 

the level of S. Typhimurium -induced activated caspase-3 in the vector control 

cells compared to only a 57.8% +/- 4.5 (standard error) increase in S. 

Typhimurium -induced activated caspase-3 in the PERP knockdown cells (Figure 

2.4B). Since the partial knockdown of PERP resulted in about a 30% decrease in 

the ability of S. Typhimurium to induce caspase-3, these results indicate that 

PERP is necessary but not sufficient for caspase-3 activation during Salmonella 

infection. 

 

PERP Accumulates at the Apical Surface in a SipA-Dependent Manner 

Thus far, our observations show that during infection with S. Typhimurium, 

PERP not only plays a crucial role in governing PMN recruitment but is also 

involved with the activation of caspase-3. PERP, as a tetraspanning membrane 

protein, has also been shown to localize to desmosomes and to promote 

epithelial barrier integrity (Ihrie et al., 2005). More recently, PERP was shown to 

localize to peri- and interdesmosomal regions termed “tessellate junctions” in  
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Figure 2.4: PERP Promotes Caspase-3 Activity During Salmonella Infection 

A. PERP was transiently knocked down in HCT8 cells. A no-targeting control was 

used to confirm specificity. By this method, PERP was reproducibly knocked 

down by about 50%. B. Levels of activated caspase-3 in response to S. 

Typhimurium infection were reduced by about 30% in the PERP-knockdown 

cells. Numbers are expressed as percent of activated caspase-3 relative to 

activated caspase-3 levels in non-infected, vector control cells across three 

experiments performed in triplicate. Error bars show ± standard error. p values 

less than 0.05 according to Student’s T-test were considered statistically 

significant. 
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Figure 2.4: PERP Promotes Caspase-3 Activity During Salmonella Infection 
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stratified epithelia, as well as to desmosomes in bovine intestinal epithelium 

(Franke et al., 2013a). Consistent with this, we also observed PERP expression 

on the mucosal surface of mouse proximal colon tissue (Supplemental Figure 

2.2).  

Since aberrant localization of transmembrane proteins is linked to 

numerous human diseases, we examined whether PERP is redistributed during 

infection with S. Typhimurium. The apical surface of polarized cell monolayers 

was selectively biotinylated following infection with wild type S. Typhimurium or 

mock infection with buffer. This method permits us to identify changes in protein 

expression specifically at the apical surface in response to S. Typhimurium 

infection. As shown in Figure 2.5, PERP accumulates at the apical surface of 

polarized colonic epithelial cells in response to wild-type infection. Moreover, the 

involvement of SipA in the accumulation of PERP at the apical surface is 

evidenced by infection with the isogenic SipA-deficient strain, which results in 

less PERP accumulation at this location compared to wild type infection (Figure 

2.5A). By contrast, infection with a SipA-complemented strain correlated with 

greater PERP accumulation at the apical surface as compared to the wild type 

strain (Figure 2.5B). These results indicate SipA is necessary, though likely not 

sufficient under normal infection conditions, to induce PERP accumulation at the 

apical surface during S. Typhimurium infection. The accumulation of PERP at the 

apical surface also appears to be a directed cellular event since a similar  
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Figure 2.5: PERP Accumulates at the Apical Cell Surface In a SipA-
dependent Manner  
Polarized HCT8 monolayers were infected with wild-type (WT), SipA-deficient 

(ΔSipA), SipA-complemented (SipA+), or SipB-deficient (ΔSipB) S. Typhimurium, 

or left uninfected (-) in HBSS+ for one hour, and the apical cell surfaces were 

biotinylated, pulled down with streptavidin, and Western blotted for PERP (A-C). 

D. Whole cell lysates from non-infected and WT-infected HCT8s were probed for 

overall PERP expression. GAPDH serves as a loading control. Densitometry 

confirms a minor increase in PERP expression in response to wild-type infection. 

E. Cells were treated with 150uM of brefeldin A (BFA) for one hour or left 

untreated in HBSS+ plus DMSO (vehicle control) for one hour prior to infection. 

PERP expression at the apical surface was examined as explained for panels A-

C. F. Cells were treated with 2mg/mL of cycloheximide (cyc) for one hour or left 

untreated in HBSS+ plus DMSO (vehicle control) for one hour prior to infection. 

PERP expression at the apical surface was examined as explained for Figures A-

C. While it is noted that the basal level of PERP in Figure 5E is comparatively 

higher than the basal level of PERP in Figure 5A-C, we interpret this difference 

as normal variation seen when using different stocks of cultured HCT8 cell lines. 

Regardless of this observed difference, we are able to consistently reproduce 

results showing PERP accumulates at the apical surface in response to S. 

Typhimurium infection.  Densitometry analyses show the change in PERP 

expression induced by infection with mutant or complemented strains compared 

to the change in PERP expression induced in WT-infected cells. The level of 

PERP in WT infected cells was set to 1 for biotinylations; for Figure D, the level 

of PERP in non-infected cells was set to 1. Densitometry graphs are of three 

representative experiments showing reproducible trends. Statistics for 

densitometry across experiments can be found in Table C.1. “ND” means none 

detected. Error bars show +/- standard error. 
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Figure 2.5: PERP Accumulates at the Apical Cell Surface In a SipA-
dependent Manner  
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assessment of PERP distribution to the basolateral surface showed only a 

minute increase (Supplemental Figure 2.3A).  

Our previous results demonstrated that purified S. Typhimurium SipA 

protein could trigger the PMN migration response in the absence of the type III 

secretion and translocation factors, such as SipB and SipC, suggesting that this 

effector does not need to be translocated via the T3SS to initiate the events that 

lead to PMN transepithelial migration (Lee et al., 2000).  To examine whether 

PERP also accumulates to the apical surface in the absence of bacterially-

translocated SipA, we took a genetic approach using an isogenic ∆sipB non-polar 

deletion mutant.  This strain expresses native SipA from the chromosomal sipA 

locus and is capable of secreting effector proteins, but cannot translocate them 

into the host cell cytosol (Wall et al., 2007).  Moreover, we have previously 

reported on the secretion profile of SipA from the ∆sipB non-polar deletion strain, 

confirming that this strain secretes identical amounts of SipA compared to the 

parent wild type S. Typhimurium strain (SL1344) (Wall et al, 2007). As shown in 

Figure 2.5C and consistent with our prior studies (Lee et al., 2000) (Wall et al., 

2007); (Srikanth et al., 2010) infection with the ∆sipB non-polar deletion mutant 

failed to disrupt S. Typhimurium-mediated PERP localization to the apical 

surface. Thus, these observations provide important genetic-based evidence to 

further substantiate our contention that SipA does not need to be bacterially 

translocated into the epithelial cell cytosol but rather acts extracellularly to induce 

host cell responses, including PERP accumulation at the apical surface.  
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Because Salmonella enters host cells by a mechanism characterized by 

membrane ruffling and actin cytoskeleton rearrangements at sites of invasion, we 

further confirmed that our observation of PERP localizing to the apical surface 

was not simply due to leakage of biotin through to intercellular junctions. To 

control for this possibility, we evaluated the adherens junction protein, E-

cadherin, during infection with S. Typhimurium. As shown in Supplemental Figure 

2.3B, we failed to detect biotin labeling of E-cadherin in response to wild type S. 

Typhimurium infection, again demonstrating the specific detection of apically-

located PERP.  

Lastly, to determine whether our observations were due to redistribution of 

PERP or the result of an overall increase in protein expression in response to S. 

Typhimurium infection, we examined the total level of PERP expression in non-

infected cells compared to wild-type infected cells. As shown in Figure 2.5D we 

detected a modest increase in PERP protein expression in response to S. 

Typhimurium infection. Such an increase is minute compared to the prominent 

increase in PERP protein expression found at the apical epithelial surface in 

response to S. Typhimurium infection, indicating that the apical accumulation of 

PERP is due to its redistribution to the apical surface rather than to an increase 

in overall PERP expression. To confirm accumulation of PERP at the apical 

surface of S. Typhimurium -infected cells is not due to new protein synthesis, we 

performed the cell surface biotinylation experiments with the addition of brefeldin 

A, a drug known to block the anterograde transport of proteins from the 
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endoplasmic reticulum to the Golgi apparatus. If the apical increase of PERP 

during Salmonella infection is due to the delivery of newly synthesized PERP to 

this location, we would expect treatment with brefeldin A to block this response. 

As shown in Figure 2.5E, treatment with brefeldin A reduces the baseline amount 

of PERP at the apical surface compared to cells not treated with the drug, as 

would be expected; however, despite brefeldin A treatment, we still observed a 

considerable increase in PERP expression at the apical surface in response to 

infection. This observation was further confirmed by the failure of treatment with 

cycloheximide, which prevents new protein synthesis, to block apical 

accumulation of PERP in response to infection (Figure 2.5F). Taken together, 

these results indicate that new protein synthesis does not explain the apical 

accumulation of PERP. Rather, we propose that S. Typhimurium triggers apical 

PERP accumulation by redistributing it to the apical surface.  

 

Mechanism Governing PERP Localization 

 We have begun to examine the molecular mechanism governing the 

apical accumulation of PERP in response to S. Typhimurium infection. Using 

wide-field fluorescent microscopy, we observed that PERP exhibits a mostly 

punctate staining pattern in response to Salmonella infection (Figure 2.6A-B). 

This pattern is consistent with staining patterns of proteins found localized to 

membrane-bound vesicles (Wang et al, 2000). Given that PERP is a membrane 

protein and that it has been previously found to localize to the secretory pathway,  
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Figure 2.6: PERP Accumulates in the Apical Compartment In Response to 

Salmonella Infection 

T84 monolayers were treated with (A) buffer only (-), or infected with (B) wild type 

S. Typhimurium (WT), (C) SipA-deficient S. Typhimurium (ΔSipA), (D) SipA-

complemented S. Typhimurium (pSipA), (E) treated apically with 20ug/mL of HA-

tagged SipA (Lee et al, 2000) (+HA-SipA), or (F) S. Typhimurium expressing a 

caspase-3 site mutant SipA in the ΔSipA background (CSM). Cells were stained 

with an antibody against PERP followed by secondary conjugated to Alexa Fluor 

488 (green), and with phalloidin conjugated to Alexa Fluor 647 (projected blue). 

The volume plots imaged at 60x magnification show PERP located at the apical 

compartment, and that PERP exhibits a punctate staining pattern. The staining 

was quantified via FIJI (Supplemental Figure 2.4). There is more PERP in the 

apical compartment in response to WT infection and CSM infection compared to 

buffer-only non-infected cells. The PERP level in response to infection with the 

SipA-deficient strain is comparable to what we see in the non-infected cells, 

which is rescued by infection with the SipA-complemented strain. Exogenous 

treatment with HA-tagged SipA also induces PERP accumulation into the apical 

compartment as seen with WT S. Typhimurium infection. Bar represents 10um. 

Images are taken from one of three representative experiments showing 

reproducible trends.  
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Figure 2.6: PERP Accumulates in the Apical Compartment in Response to 

Salmonella Infection 
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we would expect it to be found in membrane-bound vesicles. The amount of 

PERP punctae was quantified with the FIJI software (Supplemental Figure 2.4), 

and found to be significantly increased in response to S. Typhimurium infection 

compared to non-infected cells. The PERP punctae were consistently found to be 

located in the apical compartment of the cells (Figure 2.7), providing further 

evidence that S. Typhimurium -induced PERP redistribution occurs at the apical 

surface (Figure 2.5).  Additionally, the increase in PERP appeared to be at least 

in part dependent on SipA, as cells infected with the isogenic SipA-mutant strain 

showed less PERP staining, a level similar to that seen in the non-infected cells 

(Figure 2.6C). Further, infection with the SipA complemented strain rescued the 

PERP staining pattern (Figure 2.6D). These data corroborate our previous 

observations in Figure 2.5 that show a role for SipA in S. Typhimurium -induced 

PERP accumulation at the apical surface. Exogenous addition of purified HA-

tagged SipA at concentrations previously shown to trigger PMN migration to the 

same degree as wild-type S. Typhimurium infection (Lee et al, 2000) also 

induced apical PERP accumulation (Figure 2.6E and Supplemental Figure 2.4), 

further indicating that extracellular SipA is capable of triggering PERP 

redistribution.  

 It has been documented that increased levels of PERP lead to caspase-3 

activation (Davies et al., 2009). Because of the finding that SipA plays a role in 

the redistribution of PERP during S. Typhimurium infection, and since we 

previously showed the proinflammatory function of SipA requires the activation of  
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Figure 2.7: PERP Punctae are Apically Located 

T84 cells were treated as indicated in Figure 2.6. The side view of the monolayer 

volume plots show the punctate staining is mostly apical (above the bisecting Z-

plane line). The um values at the top left of the images indicate the thickness of 

the respective monolayer. The location of punctae were found to be apical across 

all samples. Green color indicates PERP staining, and blue color indicates 

phalloidin staining. 
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Figure 2.7: PERP Punctae are Apically Located 
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caspase-3, we next investigated the extent to which SipA processing by 

caspase-3 is necessary to induce the redistribution and accumulation of PERP to 

the apical surface. We therefore infected polarized colonic epithelial cell 

monolayers with an isogenic S. Typhimurium ΔSipA strain complemented with 

SipA in which the caspase-3 recognition motif was changed in the key aspartic 

acid at position four to alanine (DEVD DEVA; termed caspase site mutant: 

csm-SipA), rendering SipA insensitive to caspase-3 cleavage (Srikanth et al, 

2010). As shown in Figure 2.6F, we found that the CSM-SipA strain induced a 

PERP punctate staining pattern comparable to that of wild-type Salmonella 

infection. This result suggests that SipA does not depend on caspase-3 cleavage 

to alter PERP localization, and indicates SipA is able to promote PERP 

redistribution prior to being cleaved by caspase-3. These observations build upon 

our initial report of the role of caspase-3 activity during Salmonella infection 

providing new insight into the point at which specific events in Salmonella 

infection are required to promote pathogenesis. Further, they provide the first 

mechanistic insight into how SipA promotes caspase-3 activation; we propose 

that SipA-mediated PERP redistribution to the apical surface causes PERP to 

accumulate at this location, which subsequently leads to PERP-mediated 

activation of caspase-3. 
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2.4 Discussion 

PERP is a tetraspanning membrane protein that belongs to the PMP-

22(Gas3)/EMP family (Attardi et al., 2000).  Although PERP was first reported to 

be a downstream effector of p53 (Attardi et al., 2000) more recent studies have 

found PERP to play a critical role not only in maintaining epithelial barrier 

integrity (Ihrie et al., 2005), but also in regulating genes involved in inflammation 

(Beaudry et al., 2010). In the current study, we now identify a new role for PERP 

in the pathogenesis of the enteric pathogen S. Typhimurium. Of particular 

interest, we show that PERP associates with the S. Typhimurium T3SE SipA and 

regulates PMN transmigration during infection.  

Precisely how SipA initially interacts with PERP remains to be determined 

and our current efforts are focused on understanding the biochemistry of the 

SipA-PERP interactions, including the domains responsible. Nevertheless, some 

inferences can be made based on our findings. One possibility is that PERP 

becomes part of a protein complex at the plasma membrane. We reason this to 

be the case since in addition to PERP, we also identified four other potential SipA 

binding partners that were less represented in the yeast-two hybrid screen (Table 

2.1). Tetraspanning proteins are well documented to complex with other 

tetraspanins, integrins, immunoglobulin proteins, signaling enzymes, or co-

receptors to impart a variety of functions (reviewed in (Hemler, 2001; Maecker et 

al., 1997). That we also see SipC binding to PERP suggests PERP may facilitate 

the initial interactions of T3SS1 effectors with the apical surface. However, 
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further work validating the physiological relevance of SipA and SipC binding to 

PERP is required before we can begin to understand why the binding occurs. 

That our observed functions of PERP during S. Typhimurium infection 

appear to be consistent with the reported activities of SipA in triggering intestinal 

inflammation characterized by PMN transepithelial migration raises the question 

of whether SipA subverts PERP functional activities. The fact that PERP is 

involved in facilitating PMN transmigration in response to S. Typhimurium 

infection is moreover consistent with previous studies showing that PERP 

regulates the expression of various inflammation-associated gene products 

(Beaudry et al., 2010). Among these is Chi3L1, which is expressed in inflamed 

mucosa, particularly in Crohn's disease and ulcerative colitis patients, and 

appears to promote bacterial adhesion to colonic epithelial cells (Mizoguchi, 

2006). PERP was also found to regulate Ccl20 (or MIP-3-alpha), which is 

expressed in intestinal epithelia associated with Peyer's Patches and aids in the 

attraction of natural killer cells, memory T cells, and immature dendritic cells to 

the site of inflammation (Hoover et al., 2002).  Moreover, we have also found 

PERP to be increased in both a murine model of Salmonella colitis as well as in a 

dextran sodium sulfate chemically-induced colitis; in the former, infection with the 

SipA mutant strain resulted in PERP expression levels that were similar to 

background control levels (unpublished observations; Hallstrom and McCormick). 

The molecular mechanism by which PERP supports PMN transmigration 

is still under investigation. We are exploring the possibilities that PERP interacts 
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with a ligand or receptor on the surface of PMNs in order to enable their 

transmigration to the apical surface, or activates (or de-activates) signaling 

pathways that promote PMN transmigration (Chin et al., 2008). Unpublished 

observations from our lab have also shown that PERP is able to bind to itself and 

may be expressed on PMNs. Since PERP is known to localize to desmosomes, 

this raises the interesting possibility that PERP could facilitate PMN migration by 

promoting PMN interactions with junctional proteins expressed by intestinal 

epithelial cells. Such activity, if confirmed, would indicate PERP could have a 

significant role in other intestinal inflammatory conditions beyond that of 

Salmonella infection where PMN migration is a key pathological feature. Given 

the different requirements for PERP in PMN migration (Figures 2.2 and 2.3), we 

propose PERP’s roles in mediating PMN migration may depend on the specific 

trigger.   Our proposal for how PERP mediates PMN migration in the context of 

S. Typhimurium infection is presented in the model at the end of this section. 

Our data also indicate that PERP regulates caspase-3 activation during S. 

Typhimurium infection (Figure 2.4). This observation is consistent with our 

previous studies where we identified that caspase-3-dependent processing of 

type III secreted effectors plays an important role in Salmonella pathogenesis 

(Srikanth et al, 2010). Of note, the SipA effector itself was found to be necessary 

and sufficient to promote activation of caspase-3 (Srikanth et al., 2010) in a 

process independent of the apoptotic cascades. Given that prior studies have 

shown that PERP is linked to the activation of caspase-3 (Davies et al., 2009), 
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we postulate that SipA-induced caspase-3 activity occurs through a PERP-

dependent pathway. Indeed, in addition to showing PERP is required for 

Salmonella-induced PERP accumulation at the apical surface, our data also 

shows that the SipA caspase-3 cleavage site is dispensable for PERP 

accumulation at the apical surface (Figure 2.6F), indicating that caspase-3 

cleavage of SipA and the subsequent inflammatory events mediated by cleaved 

SipA (Srikanth et al., 2010) occur after PERP redistributes to the apical surface.  

It is evident that infection with S. Typhimurium prompts the accumulation 

of PERP to the apical surface and one mechanism that may account for the 

redistribution of PERP is subversion of its trafficking pathway to the apical 

surface. This is supported by our data herein that show blocking new protein 

synthesis or blocking the delivery of newly synthesized proteins to the Golgi 

apparatus is not sufficient to block S. Typhimurium-mediated PERP accumulation 

at the apical surface. In polarized cells, the apical recycling pathway is a key 

mode of regulating trafficking to the cell surface. The endosome recycling 

pathway has long been known to facilitate the shuttling of proteins, including 

junctional proteins (Lock and Stow, 2005), back and forth from intracellular to 

membrane locations, and plays a fundamental role in maintaining cellular polarity 

(reviewed in (Golachowska et al., 2010b; Perret et al., 2005)).  Further, 

endosomal pathways are well-known to be involved and perturbed in the 

response to Salmonella infection (Dukes et al., 2006a); (Brawn et al., 2007); 

(Bakowski et al., 2007). In addition to finding that the PERP staining pattern 
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indicates it is in membrane-bound vesicles, we also observed PERP to co-

localize with the apical recycling endosome marker Rab25 (Supplemental Figure 

2.5), inviting speculation that Salmonella perturbs the cellular trafficking of PERP 

through a pathway involving the endosome recycling system. This hypothesis is 

supported by our previous studies, which demonstrate a requirement for ARF6 in 

S. Typhimurium-induced PMN transepithelial migration and localization of this 

small GTPase to the apical site of bacterial entry (Criss et al., 2001b). The nexus 

between these observations is that ARF6 is involved in the endocytosis and 

membrane recycling of a subset of membrane proteins, as well as in remodeling 

of the cortical actin cytoskeleton (D'Souza-Schorey et al., 1995); (Frank et al., 

1998); (Radhakrishna and Donaldson, 1997); (Radhakrishna et al., 1999); 

(Boshans et al., 2000). ARF6 is also highly expressed in polarized epithelial cells, 

where it localizes primarily to the apical brush border and apical early 

endosomes (Altschuler et al., 1999); (Londono et al., 1999).  

Our studies reveal a critical role for PERP in the pathogenesis of S. 

Typhimurium, and for the first time demonstrate that SipA, a type III secreted 

protein, can bind to a host protein that is present at the apical surface during 

infection.  More detailed investigations are required to further the understanding 

of the regulation underlying the SipA-mediated accumulation of PERP at the 

apical surface, including the possible role of the endosomal pathway. 

Nevertheless, we propose a model (Figure 2.8) that describes our observations 

for how PERP functions during Salmonella infection. SipA and other Salmonella  
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Figure 2.8: Model for PERP’s Role in the Inflammatory Response to 

Salmonella Infection 

A. Salmonella at the apical surface releases SipA (black and white circles) 

and other effectors (triangles). Some PERP (red M’s) is already present at the 

apical surface. 

B. T3SS effectors trigger the apical accumulation of PERP, likely through a 

pathway involving apical recycling endosomes (beige circles marked Rab25+).  

C. PERP accumulation at the apical surface causes an overall increase in PERP 

expression, which induces the activation of caspase-3 (lightning bolts). 

D. In accordance with previously published results (Srikanth et al, 2010), 

activated caspase-3 is released at the apical surface where it cleaves SipA and 

liberates its proinflammatory N-terminus. 

E. As previously described (Wall et al, 2007), the SipA N-terminus (white half 

circle) triggers pathways leading to the production and formation of HXA3 (blue 

circle), which forms a chemotactic gradient that triggers PMN transepithelial 

migration to the apical surface. 
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Figure 2.8: Model for PERP’s Role in the Inflammatory Response to 

Salmonella Infection 
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effectors direct PERP to accumulate at the apical surface, likely due to a pathway 

involving apical recycling endosomes (Figure 2.8, panels A and B). The 

increased delivery of PERP to the apical surface interferes with its normal 

trafficking route and subsequently keeps the protein out of degradation 

pathways, thereby leading to an overall increase in the amount of PERP in the 

cell. The increased PERP level triggers the activation of caspase-3, as shown in 

Figure 2.8C, and subsequent release of activated caspase-3 at the apical surface 

(Figure 2.8D). In accordance with our previously published work (Srikanth et al, 

2010), SipA is cleaved by caspase-3 at the apical surface (Figure 2.8E), thus 

liberating the pro-inflammatory N-terminal domain, which we previously show is 

responsible for the SipA-mediated inflammatory response to Salmonella 

infection, including PMN transepithelial migration (Wall et al, 2007). Therefore, 

our data support our contention that PERP, via its role in activating caspase-3, is 

the link between SipA-mediated activation of caspase-3 and SipA-mediated 

inflammatory responses. While there is still much to be learned about the role 

PERP plays in inflammatory conditions, we have now taken the first steps to 

show that this tetraspanning membrane protein plays a pivotal role in the 

pathogenesis of Salmonella infection. 

 
 
 
 
 
 



! 85!

Supplemental Data Figure S2.1: PERP Antibody Migration Control 

Polarized HCT8 monolayers were treated with the PMN chemoattractant fMLP 

(set to 100%) or left untreated, and exposed to 25ug/mL of anti-PERP antibody 

or incubated in HBSS+. Cells incubated with anti-PERP antibody only (no fMLP 

or infection) did not induce PMN transmigration, indicating treatment with anti-

PERP antibody alone does not impact PMN transmigration. Data shown are of 

one of three experiments performed in triplicate. 
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Supplemental Data Figure S2.1: PERP Antibody Migration Control 
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Supplemental Figure S2.2: Expression of PERP in Mouse Colon  

5uM cryosections of mouse proximal colon were stained for PERP (green) or 

DAPI (blue). We detect the presence of PERP throughout the tissue, including at 

the mucosal surface where epithelial cells would be exposed to Salmonella 

infection. 
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Supplemental Figure S2.2: Expression of PERP in Mouse Colon  
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Supplemental Figure S2.3: Controls for Apical Surface Biotinylation 

A. Polarized HCT8 monolayers were infected (WT) or left uninfected (-) in 

HBSS+ for one hour, and the basolateral surface was biotinylated, pulled down 

via streptavidin, and analyzed for PERP via Western blot.  B. Polarized HCT8 

monolayers were infected (WT) or left uninfected   (-) in HBSS+ for one hour, and 

the apical surface was biotinylated, pulled down via streptavidin, and analyzed 

for PERP or E-cadherin.  “WCL” refers to a whole cell lysate sample showing the 

E-cadherin band. 
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Supplemental Figure S2.3: Controls for Apical Surface Biotinylation 
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Supplemental Figure S2.4: Quantification of Punctate PERP Staining in 

Response to Salmonella Infection 

The level of PERP punctate staining was quantified with FIJI using the same size 

filter for the punctae across all samples. Data from each treatment group were 

compared to data from WT-infected cells, which was set to 100%. Student’s T 

test analyses were used to statistically evaluate data from WT samples to the 

remaining groups. WT infection induced more PERP punctae than cells left un-

treated or cells infected with the SipA-deficient strain (ΔSipA). Error bars indicate 

standard error. p values less than 0.05 were considered statistically significant. 

N.S. indicates no statistical difference between the indicated group and WT. 

Values shown are from a set of images from one of three experiments showing 

reproducible trends. 
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Supplemental Figure S2.4: Quantification of Punctate PERP Staining in !
Response to Salmonella Infection 
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Supplemental Figure S2.5: PERP Co-Localizes with Apical Recycling 

Endosomes 

T84 monolayers were treated with HBSS+ only (-) or infected with wild type 

Salmonella (WT). The cells were stained with an antibody against PERP followed 

by secondary conjugated to Alexa Fluor 488 (green pseudocolor), and with an 

antibody against Rab25 followed by secondary conjugated to Alexa Fluor 568 

(red pseudocolor). PERP and Rab25 co-localize in non-infected (C) and infected 

(F) cells (white arrows), indicating the apical recycling endosome pathway is at 

least partly responsible for PERP localization. The level of colocalization was 

determined via Manders’ coefficient analyses, where M1 refers to PERP 

comparison to Rab25 staining, and M2 refers to Rab25 comparison to PERP 

staining. Images are of one set from one of three experiments. Blue pseudocolor 

indicates phalloidin staining to show location of cells 
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Supplemental Figure S2.5: PERP Co-Localizes with Apical Recycling 

Endosomes 
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Chapter III 

The Type Three Secreted Effector SipC Regulates the Trafficking of PERP 
During Salmonella Infection. 

 

3.1 Introduction 

 Salmonella enterica subtype Typhimurium  (S. Typhimurium) is one of 

several Salmonella enterica strains responsible for over a million cases of 

salmonellosis in the United States each year, and is also a leading cause of 

diarrheal disease in developing countries. Salmonellosis is typified by 

gastrointestinal distress, including abdominal cramping, nausea, fever, vomiting, 

and most prominently, diarrhea that may contain mucus or blood.  Intestinal 

inflammation is further characterized histopathologically by a prevailing influx of 

polymorphonuclear leukocytes, the non-specific effects of which lead to tissue 

damage and also contribute to diarrhea (Madara et al., 1993).  

 Salmonella species, like other Gram-negative pathogens, have evolved a 

sophisticated virulence mechanism called a type III secretion system (T3SS), 

which is responsible for the delivery of a series of bacterial effectors into host 

cells with the capability of hijacking eukaryotic cell functions.  While the T3SS 

apparatus is highly conserved, the translocated effectors are unique proteins with 

very specialized functions central to virulence. In particular, Salmonella effector 

proteins impart a variety of effects on the host cell including triggering Salmonella 

invasion by interfering with actin dynamics (McGhie et al., 2001), and inducing 

inflammatory responses ((Lee et al., 2000); (Zhang et al., 2002); (Wall et al., 
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2007)).  

 Our prior studies have revealed that the type III secreted effector SipA is a 

key regulator of intestinal inflammation during S. Typhimurium infection and that 

it is able to impart this function in the host without being translocated into the host 

cell via the T3SS ((Lee et al., 2000); (Wall et al., 2007); (Hallstrom et al., 2015)).  

That SipA is able to carry out its proinflammatory functions without being 

translocated via the T3SS indicated to us that SipA might be modulating a host 

cell component at the apical cell surface. In line with this hypothesis, we recently 

reported that SipA binds to the mammalian tetraspanning membrane protein 

PERP, which we show accumulates at the apical surface of colonic epithelial 

cells during S. Typhimurium infection in a SipA-dependent manner (Hallstrom et 

al., 2015). PERP (p53-effector related to PMP-22) was first identified as a p53 

effector (Attardi et al., 2000), and has since been shown to have roles in 

development (Ihrie et al., 2005), caspase activation (Davies et al., 2009), and 

cancer (Paraoan et al., 2006). Functionally, we identified PERP to be involved in 

proinflammatory pathways required for S. Typhimurium-induced PMN migration, 

uncovering a previously unknown role for PERP in Salmonella pathogenesis.  

 While SipA is involved in eliciting PERP accumulation at the apical surface 

of polarized colonic epithelial cells, we noted that it is not the only S. 

Typhimurium factor to be involved. This is because infection with ΔSipA S. 

Typhimurium shows an incomplete, reduction in the level of PERP accumulation 

as compared to wild type infection (Hallstrom et al., 2015), indicating involvement 
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of another virulence factor. Since it has been previously documented that SipA 

and SipC cooperate to promote Salmonella invasion (McGhie et al., 2001), we 

examined the extent to which SipC influences PERP accumulation at the apical 

surface of colonic epithelial cells. Herein, we describe our observations that SipC 

also contributes to the accumulation of PERP at the cell surface. To date, studies 

of SipC have largely focused on its role in perturbing actin dynamics and its role 

in effector translocation during Salmonella invasion of host cells. Our study is the 

first to reveal SipC also plays a role in regulating the accumulation of a host 

membrane protein at the cell surface during S. Typhimurium infection. 

 

3.2 Materials and Methods 

Tissue Culture 

HCT8 polarized monolayers were seeded on transwells in 100 mm tissue culture 

dishes (Costar 3419) and used 6-8 days later.  

 

Use of Bacterial Strains: 

Wild type S. Typhimurium (SL1344) was grown as previously described (Lee et 

al, 2000). HilA-deficient (ΔHilA), SipC-deficient (ΔSipC), and the double 

SipA/SipC-deficient (ΔSipAΔSipC) strains are isogenic to SL1344, and were 

grown in the same manner. The pSipC and pHilA isogenic complementing strains 

were grown in the same manner in the presence of 50ug/mL ampicillin. Cells 

were infected for 1 hour at an MOI of 100:1. 
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Construction of Mutants and Complemented Strains 

The ΔSipC has been previously described (Wall et al., 2007). Despite its inability 

to translocate effectors into host cells, the ΔSipC secretes wild-type levels of 

effectors. The pSipC complemented strain was constructed by placing the whole 

SipC gene into the pBH expression vector (described in Lee et al, 2000) via the 

EcoRI and HindIII restriction digest sites. The gene with the appropriate digest 

sites was constructed via IDT. The ΔSipAΔSipC double mutant was constructed 

by replacing SipC with a chloramphenicol resistance cassette in the SipA-mutant 

strain as described in (Datsenko and Wanner, 2000). Briefly, primers were 

designed to amplify the chloramphenicol cassette from pKD3 with end regions of 

homology to the N and C termini of SipC. This method leads to replacement of 

SipC with the chloramphenicol cassette following recombination. The resulting 

PCR product was gel-purified using the QiaQuick Gel Extraction Kit (Qiagen, 

28704). The SipA deletion strain was then transformed with the pKD46 plasmid, 

which expresses the lambda Red system for recombination in the presence of 

arabinose, and then transformed with the purified PCR product via 

electroporation. Transformants were selected on chloramphenicol-containing 

media, and sequenced for verification of replacement of SipC with the 

chloramphenicol cassette.  The HilA-deficient strain has previously been 

described (vv341; (Hueck et al., 1995)). The pHilA complemented strain was 

constructed as described above for the pSipC complement, with the exception 
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that the EcoRI and KpnI sites were used. 

 

Biotinylation 

Apical cell surface biotinylation was performed using the protocol described in 

Chapter 2 (Hallstrom et al., 2015). Briefly, following infection, the apical surface 

of HCT8 monolayers was labeled with biotin (Thermo Scientific, 21335) at 4C. 

Labeling of the basolateral surface was blocked with acetate (Thermo Scientific, 

26777). The cells were then lysed, homogenized, normalized for protein 

concentration via Bradford assay, and incubated with streptavidin beads (Thermo 

Scientific, 20347) overnight at 4C in order to pull down apically-labeled proteins. 

The apically-enriched lysates were then immunoblotted for PERP (Santa Cruz, 

SC-67184). For drug treatments, cells were exposed to 1ug/mL of cytochalasin D 

(Sigma Aldrich, C8273-1MG) (Finlay et al., 1991) OR 80uM dynasore (Tocris, 

2897) ((Pietila et al., 2010); (Martinez-Argudo and Jepson, 2008)) in HBSS+, or 

DMSO in HBSS+ (vehicle control) for 1 hour prior to infection and during 

infection.  

 

Invasion Assay 

To confirm the invasion-blocking effects of cytochalasin D in the HCT8 cell line, 

we performed a gentamicin protection assay generally following the guidelines in 

(Finlay et al., 1991). Cells were pretreated with 1ug/mL of cytochalasin D or the 

vehicle (DMSO) for 1 hour prior to infection and maintained during the 1 hour 
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infection with SL1344. After washing away adherent bacteria, the cells were 

incubated with 0.1mg/mL of gentamicin for 90 minutes, then washed and lysed 

with 1% Triton X in PBS. 10-fold serial dilutions were then plated in triplicate. 

Serial dilutions of the bacterial suspension used to infect the cells were also 

plated to determine percent invasion as a result of each condition.  

 

Data Presentation 

Densitometric analyses for Western blots are presented as the results from three 

replicates showing reproducible results. Densitometric analyses for these 

experiments can be found in Table C.2.  Densitometry was performed using FIJI. 

The p-value for the invasion assay was obtained via Student’s T-test. 

 

 

3.3 Results 

Type Three Secreted Effectors Drive PERP Accumulation 

We observed that in addition to the type III secreted effector SipA other S. 

Typhimurium virulence determinants might be required to induce the full level of 

PERP accumulation at the apical surface of colonic epithelial cells observed in 

response to wild type infection (Hallstrom et al, 2015). We first considered the 

T3SS located on Salmonella pathogenicity island (SPI)-1, given that the SPI-1 

T3SS (T3SS1) is largely associated with early invasion and pathogenicity events 

(Galan, 1996).  The key regulator of this system is the transcription factor HilA, 
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without which the T3SS1 needle apparatus is not formed and the transcription of 

several T3SS1 effectors is blocked, thus rendering Salmonella invasion-deficient 

(Eichelberg and Galan, 1999). To examine the importance of the T3SS1 in PERP 

accumulation at the apical surface, we employed an apical surface biotinylation 

assay ((Strohmeier et al., 1997); (Hallstrom et al., 2015)), which allows us to 

selectively label the apical surface of polarized cells and examine changes in 

protein expression at this cellular location in response to infection. As shown in 

Figure 3.1A, infection of HCT8 colonic epithelial cells with our HilA-deficient 

strain nearly abolishes apical PERP accumulation in response to infection. 

Complementation of the HilA mutant (Figure 3.1B) also rescued the ability of S. 

Typhimurium to promote the accumulation of PERP. This result shows that 

additional key factors governing PERP accumulation at the apical surface of 

colonic epithelial cells infected with S. Typhimurium are associated with T3SS1. 

 

SipC Promotes PERP Accumulation at the Apical Surface of Colonic Epithelial 

Cells  

Since there is precedence for the T3SS1 effectors SipA and SipC 

cooperating to promote Salmonella invasion due to interference with actin 

dynamics (McGhie et al., 2001), we next examined the extent to which SipC 

functions in PERP apical accumulation during infection. To observe changes in 

PERP protein levels at the apical surface in response to infection, we compared  
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Figure 3.1: PERP Accumulation at the Apical Membrane Surface is 

Mediated by the Type Three Secretion System 

A-E: Polarized HCT8 monolayers were infected with wild-type (WT), HilA-

deficient (∆HilA), HilA complemented (pHilA), SipC-deficient (∆SipC), SipC 

complemented (pSipC), or double SipA and SipC-deficient (ΔSipAΔSipC) strains 

of Salmonella, or left uninfected (-) in HBSS+ for 1 hour. The apical cell surfaces 

were biotinylated, and whole cell lysates were pulled down with streptavidin 

beads, and Western blotted for PERP.  The level of PERP intensity in cells 

following infection with mutant strains or complemented strains was compared to 

the level of PERP intensity following WT infection to obtain a ratio of PERP 

expression. WT PERP expression level was set to 1. Densitometric 

measurements are of three representative experiments showing reproducible 

results. Error bars show +/- standard error. “ND” indicates none detected. 

Densitometric data for replicates can be found in Table C.2 
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Figure 3.1: PERP Accumulation at the Apical Membrane Surface is 

Mediated by the Type Three Secretion System 
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wild type S. Typhimurium versus an isogenic Salmonella ΔSipC strain (Wall et 

al., 2007). As shown in Figure 3.1C, the absence of SipC causes less PERP to 

accumulate at the apical surface compared to levels observed in response to wild 

type infection; complementation with a plasmid expressing SipC rescued the 

effect, confirming the result is SipC-specific (Figure 3.1D). To our knowledge, this 

represents the first time SipC has been shown to have a direct role in regulating 

the accumulation of a host membrane protein at the surface of polarized colonic 

epithelial cells during Salmonella infection. 

We next sought to determine whether SipC and SipA act via the same or 

independent pathways to induce PERP accumulation in response to S. 

Typhimurium infection. To accomplish this, we generated a ΔSipAΔSipC isogenic 

double mutant strain via replacement of SipC with a chloramphenicol resistance 

cassette (Datsenko and Wanner, 2000) in our SipA mutant strain, and then 

examined PERP accumulation employing the biotinylation assay. We reasoned 

that if SipA and SipC act via independent pathways to induce PERP 

accumulation, one would expect to see an additive effect from the double mutant 

compared to our observations with either individual mutant. However, if SipA and 

SipC were to act via the same pathway, we would envision the ΔSipAΔSipC 

double mutant not to cause any additional loss of PERP accumulation as 

compared to either individual mutant.  As shown in Figure 3.1E, we observed a 

comparable reduction in PERP accumulation from the double ΔSipAΔSipC 

mutant as compared to either single mutant (Figure 3.1C; (Hallstrom et al., 
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2015)).  This result suggests that SipA and SipC act along the same pathway to 

induce PERP accumulation to the apical surface of colonic epithelial cells during 

S. Typhimurium infection.  

 

PERP Accumulation is Due to an Exocytic Trafficking Event 

We next investigated whether PERP accumulation is dependent on actin-

mediated mechanisms associated with Salmonella invasion by treating cells with 

the actin-disrupting drug cytochalasin D. Treatment of host cells with 

cytochalasin D is well documented to reduce Salmonella invasion by blocking the 

ability of actin to polymerize and form membrane ruffles, an event that is 

mediated during Salmonella invasion via the activities of SipA and SipC among 

other effectors (Finlay et al., 1991). We confirmed this observation in the HCT8 

cell line (Figure 3.2A). Further, we inferred that if the actin-modulating activities of 

SipA and SipC were to be critical for PERP accumulation, then interfering with 

actin dynamics via cytochalasin D treatment should cause a reduction in PERP 

accumulation. Rather, we found that treatment with cytochalasin D caused an 

additional increase in PERP accumulation at the apical surface in response to S. 

Typhimurium infection (Figure 3.2B). This observation suggests that invasion of 

S. Typhimurium into host cells is not required for PERP accumulation, and also 

implies that the actin-modulating functions of Salmonella effectors, such as SipA 

and SipC, may also be dispensable for PERP accumulation. Although further 

investigation is required to achieve full understanding of the precise roles each 
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Figure 3.2: PERP Accumulation Occurs Independently of Salmonella 

Invasion, and Dynamin-mediated Endocytosis 

A. Polarized HCT8 monolayers were treated with 1ug/mL of cytochalasin D or 

DMSO only (vehicle only) prior to infection and during infection. The amount of 

invading bacteria in each condition was quantified via a gentamicin protection 

assay (see Methods). Data displayed are from one representative experiment 

performed in triplicate. 

B-C. Polarized HCT8 monolayers were treated with cytochalasin D (B) or 

dynasore (C) or with DMSO only (vehicle) prior to and during a 1 hour 

Salmonella infection. The apical cell surfaces were then biotinylated, and whole 

cell lysates were pulled down with streptavidin beads, and Western blotted for 

PERP. The level of PERP intensity in infected cells following treatment with 

either drug was compared to the level of the PERP intensity in infected cells 

treated with the vehicle to obtain a ratio of PERP expression. PERP expression 

level from infected, vehicle-treated cells was set to 1. Densitometric 

measurements are of three representative experiments showing reproducible 

results. Error bars show +/- standard error. “ND” indicates none detected. 

Densitometric data for all replicates can be found in Table C.2. 
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Figure 3.2: PERP Accumulation Occurs Independently of Salmonella 

Invasion, and Dynamin-mediated Endocytosis 
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effector plays in inducing PERP accumulation, our studies start to shed light on 

the molecular mechanisms by which PERP accumulates at the apical surface. 

 We previously reported that PERP accumulation at the apical surface of 

colonic epithelial cells infected with S. Typhimurium was likely due to a trafficking 

event involving existing cellular PERP stores, as inhibiting new protein synthesis 

did not block PERP accumulation (Hallstrom et al., 2015). Building upon this 

observation, we next sought to determine whether S. Typhimurium was 

preventing endocytosis, consequently causing PERP to accumulate at the apical 

surface, or inducing exocytosis, and thus targeting PERP-containing vesicles to 

the apical surface.   

To distinguish between these two pathways, we treated HCT8 cells with 

80uM of the dynamin-blocking drug dynasore. Dynamin is an integral part of 

clathrin-mediated endocytosis, and potentially caveolae-mediated endocytosis, 

as it functions to essentially “pinch off” newly forming vesicles (Ferguson and De 

Camilli, 2012). Dynasore is routinely used to block endocytosis at the cell surface 

(Macia et al., 2006).  If Salmonella prevents endocytosis, we would expect that 

treatment with dynasore would have no additional effect on the level of PERP 

accumulation. However, we found that blocking endocytosis alone with dynasore 

was not sufficient to induce PERP accumulation at the apical surface, and, 

moreover, that S. Typhimurium infection has an additional effect in the presence 

of this drug (Figure 3.2C). This observation supports the hypothesis that S. 

Typhimurium induces PERP accumulation via an endocytosis-independent 



! 110!

pathway. Indeed, this is supported by our cytochalasin D observations, as this 

drug has also been shown to block clathrin-mediated endocytosis at the apical 

surface of polarized epithelial cells (Gottlieb et al., 1993). As shown in Figure 

3.2B, cytochalasin D treatment alone is not sufficient to induce PERP 

accumulation. Given our previous observations that PERP co-localizes with 

apical recycling endosomes (Hallstrom et al., 2015), which transport new 

intracellular material to the surface of polarized cells (Golachowska et al., 2010a) 

we propose that S. Typhimurium causes PERP to accumulate at the apical 

surface by triggering PERP-containing vesicles to traffic to the apical surface. 

 

3.4 Discussion 

 Previous studies of SipA and SipC have mainly focused on their roles in 

regulating Salmonella invasion and inflammatory responses to infection and, in 

the case of SipC, effector translocation. Such studies have shown that both 

effectors are capable of perturbing actin dynamics in ways that promote growth 

of the host cell plasma membrane outward and around Salmonella, thus 

permitting the bacteria to invade the cell (McGhie et al., 2001). Furthermore, 

SipA, and to some extent SipC, has been shown to be a key regulator of the 

inflammatory response to Salmonella infection ((Lee et al., 2000); (Wall et al., 

2007)). However, our work investigating the role of SipC in PERP apical 

accumulation is the first to show how this effector induces the apical 

accumulation of a host transmembrane protein.    
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Our observation that PERP accumulation at the apical surface is almost 

entirely dependent on the type III secretion system is congruent with what is 

known about these systems. The type III secreted effectors promote disease by 

facilitating cell attachment and entry, suppressing the host immune/defense 

response, and modulating other aspects of host cell biology. Consequently, type 

III secreted effectors play a prominent role in bacterial pathogenesis and host-

association.  In the absence of HilA, and thus in the absence of a key regulator of 

the T3SS1 and its effectors, Salmonella invasion is significantly reduced 

(Eichelberg and Galan, 1999). It is notable that treatment with cytochalasin D in 

the presence of Salmonella does not block PERP accumulation at the cell 

surface, as cytochalasin D is known to block invasion ((Finlay et al., 1991); this 

report).  Multiple conclusions may be drawn from this observation.  First, 

although cytochalasin D treatment inhibits invasion, most likely by interfering with 

the actin polymerization required for Salmonella engulfment (Finlay and Falkow, 

1988), it does not prevent either the secretion nor translocation of type three 

secreted effectors (Akopyan et al., 2011). This observation suggests that 

invasion is dispensable for PERP accumulation as long as the effectors are still 

able to access the cell, and further supports the notion that type III secreted 

effectors, including SipA and SipC, play an active role in PERP accumulation at 

the apical surface.  

Cytochalasin D treatment is also well known to block endocytosis as 

discussed above. Therefore, our observation that cytochalasin D treatment alone 
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does not induce PERP accumulation is in agreement with our finding that 

blocking dynamin-mediated endocytosis with dynasore (Figure 3.2C) is also 

insufficient to induce PERP accumulation. From these experiments, we can infer 

that blocking endocytosis does not lead to PERP accumulation at the cell surface 

within the time frame studied. Since infecting with S. Typhimurium induces an 

additive effect on PERP accumulation in the presence of either drug, we 

postulate that S. Typhimurium does not facilitate PERP accumulation at the 

apical surface through a mechanism that disrupts its endocytic uptake. This 

assertion is consistent with previous reports indicating that Salmonella requires 

endocytic processes to invade host cells ((Pietila et al., 2010); (Martinez-Argudo 

and Jepson, 2008)). Further, we previously showed that blocking new protein 

synthesis does not prevent S. Typhimurium-induced PERP accumulation 

(Hallstrom et al., 2015). Based on these observations, we propose that S. 

Typhimurium prompts PERP redistribution to the apical surface by inducing the 

delivery of PERP-containing exocytic vesicles to the apical surface.  

In considering how exocytosis is regulated at the cell surface, involvement 

of the exocyst complex becomes a key event. The exocyst is an octomeric 

protein complex that regulates tethering of vesicles to the new membrane 

location, thus promoting their eventual fusion (Heider and Munson, 2012). This 

process becomes important at the cell surface during Salmonella infection as 

incorporation of new vesicles at the cell surface provides an extra store of 

membrane at this cellular location. This is thought to help promote the membrane 
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ruffling events that promote Salmonella engulfment into the intestinal epithelial 

cell (Nichols and Casanova, 2010). Indeed, involvement of the exocyst in 

Salmonella invasion has been demonstrated, and it is known that exocyst 

components accumulate around areas of Salmonella invasion (Nichols and 

Casanova, 2010). Furthermore, SipC likely mediates such directed accumulation 

given that this effector binds to at least three exocyst components (Nichols and 

Casanova, 2010). These observations favor the hypothesis that SipC provides a 

“docking site” for the exocyst to form and thus direct the trafficking of vesicles to 

the cell surface (Nichols and Casanova, 2010).  

Our data indicate that SipC and SipA act via the same pathway to induce 

PERP accumulation (Figure 3.1). In keeping with this, SipA can be coupled to 

exocyst trafficking as well. This is supported by reports indicating SipA induces 

the apical accumulation of the GTPase Arf6 (Criss et al., 2001a), and also GTP-

bound Arf6 directs the exocyst complex to the cell surface via its interaction with 

Sec10 (Prigent et al., 2003). Moreover, Arf6-mediated recruitment of the exocyst 

appears to be directed to areas of plasma membrane growth and remodeling 

(Prigent et al., 2003). These observations are consistent with a model for SipA 

directing the apical recruitment of Arf6 (Criss et al., 2001a), and thereafter Arf6 

eliciting exocyst recruitment to sites of apical membrane ruffling during 

Salmonella invasion.  

While we identified SipA (Hallstrom et al., 2015) and SipC to play key 

roles in PERP accumulation at the apical surface, our data indicate that at least 
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one other type III secreted effector is involved with this process. In this respect, 

the effector SopE is an interesting consideration. This effector is important for 

Salmonella invasion by acting as a guanine exchange factor (GEF) for the Rho-

GTPase Cdc42 (Hardt et al., 1998b). SopE’s activation of Cdc42 is thought to 

explain this effector’s role in promoting the cytoskeletal rearrangements that lead 

to membrane ruffling (Hardt et al., 1998b).  Of note, the exocyst member Sec3 is 

a downstream effector of Cdc42, and Exo70 likely is as well (He and Guo, 2009), 

thus connecting SopE to exocyst activity. Furthermore, Nichols and Casanova 

(2010) showed that SopE is required for the activation of RalA, a GTPase known 

to regulate exocyst activity. Nevertheless, additional experimentation is 

necessary to identify the other T3SS effector(s) responsible for PERP 

accumulation, as well as their mechanisms of action.  

In light of the above conclusions, Figure 3.3 depicts a working model for 

how we envision S. Typhimurium effectors trigger PERP accumulation at the cell 

surface. First, S. Typhimurium invades at the apical surface of colonic epithelial 

cells where SipA (red) and SipC (blue) act to trigger the formation of the exocyst 

complex (yellow) (Figure 3.3A). The exocyst complex permits the tethering (and 

thus eventual fusion) of vesicles from apical recycling endosomes containing 

Rab25 and PERP (purple M’s) to the apical surface (Figure 3.3B; (Hallstrom et 

al., 2015)). The newly recruited vesicles then fuse to the apical plasma 

membrane, as indicated by the darker shading at the apical surface in Figure 

3.3C. This fusion leads to the incorporation of PERP at the apical surface. 
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Figure 3.3: Salmonella Induces PERP Accumulation by Triggering 

Increased Exocytosis: A Model 

Panel A: Salmonella invades at the apical surface of colonic epithelial cells, 

where it secretes and translocates type III secreted effectors including SipC (blue 

dot) and SipA (red dot). These effectors trigger the formation of the exocyst 

complex (yellow dot) at the apical surface.  

Panel B. The fully formed exocyst mediates increased trafficking of vesicles from 

apical recycling endosomes containing Rab25 ((Hallstrom et al., 2015)) and 

PERP (purple M) to the cell surface, and their eventual fusion to the plasma 

membrane.  

Panel C. The fused vesicles (shaded regions), as well as PERP, become 

incorporated into the plasma membrane at the apical surface. 

Panel D: The extra membrane provided by vesicle fusion permits membrane 

ruffles to form, thus allowing for Salmonella invasion. Repeated delivery of 

vesicles causes PERP to accumulate at the apical surface. 
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Figure 3.3: Salmonella Induces PERP Accumulation by Triggering 

Increased Exocytosis: A Model 
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Additionally, with the extra store of membrane provided by the fusion of vesicles 

at the cell surface, membrane ruffling occurs thus permitting Salmonella to enter 

the cell (Figure 3.3D). As multiple bacteria infect a cell, more vesicles will traffic 

to the apical surface, thus causing an accumulation of PERP at this cellular 

location. 

Several questions remain to be asked of this model, including the identity 

of the remaining T3SS effectors responsible for PERP accumulation at the apical 

surface, as well as the timing of each event with respect to S. Typhimurium’s 

invasion strategy and overall induction of pathogenesis. Nevertheless, the data 

presented in this report suggest that S. Typhimurium exploits type three secreted 

effectors, namely SipA and now SipC, to induce exocytic trafficking events that 

lead to the accumulation of PERP at the cell surface.  
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CHAPTER IV 

Discussion 

4.1 Introduction 

The findings described herein address the question of how SipA promotes 

the caspase-3 activity that is required for inflammatory responses to S. 

Typhimurium infection. Our results from this work have led to an increased 

understanding of Salmonella pathogenesis mechanisms, and have broadened 

our understanding of the roles of PERP in the host cell. In this section, I discuss 

key findings from this project that led to a new model describing how we envision 

PERP to promote SipA-mediated inflammatory responses to Salmonella 

infection. 

 

4.2 PERP Accumulation Upon Salmonella Infection 

PERP Accumulates at the Apical Surface of Colonic Epithelial Cells 

 One of our first observations was that PERP accumulates at the apical 

surface of colonic epithelial cells in response to S. Typhimurium infection 

(Chapter 2). As discussed previously, PERP is known to localize to and help 

organize desmosomes, which are one of the key basolaterally-located 

intercellular junction complexes that help maintain epithelial barrier integrity 

(Figure 1.1). Loss of PERP from desmosomes causes displacement of other 

desmosome components and, subsequently, poor epithelial barrier integrity (Ihrie 

et al., 2005); (Nguyen et al., 2009).  That S. Typhimurium infection causes PERP 
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to accumulate at the apical surface is in keeping with observations of Salmonella 

disrupting the localization of other epithelial junction complex proteins. For 

example, the T3SS effectors SopE and SopE2, and to some extent SopB and 

SipA, disrupt the epithelial barrier by inducing mis-localization of ZO-1, occludin 

and E-cadherin, which are key tight junction components (Boyle et al., 2006). As 

disruption of the tight junction is known to facilitate bacterial translocation (Kohler 

et al., 2007), it is clear that disrupting the organization of intercellular junction 

complexes is a key pathogenic strategy of Salmonella, and indeed other 

enteropathogens as discussed in Chapter 1, that promotes bacterial 

dissemination in the host. 

It is important to note that knocking down PERP expression in the HCT8 

cell line does not appear to impact barrier function; if it did, then we would expect 

an increase in PMN migration across the PERP knockdown monolayers, when in 

fact we see a decrease. This may reflect the fact that we knock down expression 

as opposed to completely knocking out PERP as was done in the above-

mentioned desmosome study (Ihrie et al., 2005), and the level of PERP 

remaining in our cells is sufficient to keep desmosomes intact. From this 

observation, we can infer that Salmonella-induced distribution of PERP at the 

apical surface, as opposed to it being delivered to desmosomes, may not 

necessarily impact barrier function. Further, given the fact that PERP loss 

reduces PMN migration, it is likely that PERP regulates Salmonella-induced PMN 

migration in ways that do not involve its functions in maintaining epithelial 
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barrier integrity; the ways by which this may occur are discussed in later 

sections. 

 

PERP Accumulation at the Apical Surface is Due to Exocytosis 

 We found PERP is present in apical recycling endosomes (Chapter 2), 

which indicated to us that S. Typhimurium induces PERP accumulation at the 

apical surface by causing it to redistribute to this cellular location. In support of 

this hypothesis is our data showing that Salmonella-induced PERP accumulation 

at the apical surface occurs even when new protein synthesis is blocked 

(Chapter 2), and that blocking endocytosis (Chapter 3) alone is insufficient to 

induce detectable PERP accumulation at the apical surface. These data further 

show that S. Typhimurium induces additional PERP accumulation when 

endocytosis is already biochemically blocked compared to when endocytosis is 

not blocked; this observation supports the contention that S. Typhimurium 

induces PERP accumulation via a route that does not involve blocking 

endocytosis. Rather, we propose S. Typhimurium triggers PERP accumulation at 

the apical surface by driving its redistribution there via exocytic trafficking events. 

In further support of this argument, it is known that Salmonella’s invasion 

strategy requires active endocytosis. As discussed previously, Salmonellae enter 

non-phagocytic intestinal epithelial cells by triggering membrane ruffling, which 

leads to Salmonella uptake via an endocytic event called macropinocytosis. Thus 

if Salmonellae blocked endocytosis, they would not be able to enter intestinal 
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epithelial cells. Indeed, biochemically blocking endocytosis reduces Salmonella 

invasion (Pietila et al., 2010); (Finlay et al., 1991), thus highlighting the important 

role of active endocytosis in Salmonella uptake. 

However, delivery of plasma membrane to the surface of cells via exocytic 

vesicles is well-known to compensate for the loss of plasma membrane from 

endocytic events. Moreover, evidence indicates that delivery of exocytic vesicles 

to sites of Salmonella invasion supports the endocytic uptake of these bacteria 

into host cells by providing additional plasma membrane (Nichols and Casanova, 

2010). Thus, the manner by which Salmonellae hijack and utilize the endocytic 

and exocytic pathways for invasion bolsters our proposal that PERP 

accumulation at the apical surface is not due to Salmonella blocking its 

endocytosis, but rather due to Salmonella mediating its delivery to the apical 

surface via exocytic vesicles. 

 Endocytosis and exocytosis are tightly regulated events, as these 

processes are responsible for the proper localization of proteins and other 

cellular components based on the needs of the cell at any given point. While 

general mechanisms for endocytic and exocytic trafficking are comparable 

between cells, these networks take on a distinct organization in polarized cells 

(see Figure 4.1). Indeed, endocytic and exocytic events are key for maintaining 

polarity in epithelial cells; distinct apical and basolateral compartments are 

responsible for delivering and receiving cargo to and from these cellular locations 

(Golachowska et al., 2010a).  
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Figure 4.1: Endocytic and Exocytic Trafficking in Polarized Cells 

This model displays an overview of the endosomal/exocytic pathway in polarized 

cells with an emphasis on the apical routes. Newly synthesized proteins can 

travel directly (dashed lines) to the apical surface from the trans-Golgi network 

(TGN), or can be delivered directly to the common recycling endosome (CRE), 

which is a tubular compartment that sorts cargo to be delivered to the apical 

surface basolateral cargo to be delivered to the basolateral surface. Cargo from 

the plasma membrane also enters the CRE following uptake from the cell 

surface. With regard to the apical surface, cargo in vesicles first enter into apical 

early endosomes (AEE), which form as the result of the fusion of endocytic 

vesicles. Some cargo can be immediately returned to the cell surface (fast route, 

F), or enter the recycling pathway for more regulated return to the cell surface 

(slow route, S). Cargo that are not returned to the surface by either route remain 

in the early endosomes which mature into late endosomes (LE) and eventually 

lysosomes (Lys) where the cargo is degraded. Cargo that is delivered to the 

CRE, which arises from early endosomes, is then believed to be sorted laterally 

for return to the apical surface via apical recycling endosomes (ARE), which are 

also believed to be tubular. Because the recycling endosome is an additional 

step in the return of cargo to the plasma membrane surface, it is thought that this 

compartment serves as a holding pattern for cargo that requires a specific signal 

prior to its return to the surface. Whether or not recycling endosomes are distinct 

organelles, or are segregated tubule extensions of early endosomes remains up 

for debate, although the existence of recycling compartments has been 

demonstrated by the presence of specific RabGTPases, such as Rab11 and 

Rab25 as markers. Endocytosis and exocytosis at the basolateral surface (faded 

lines) are believed to occur via the same general mechanisms, although 

basolateral recycling endosomes have not yet been identified. Gray ovals joining 

the two cells indicate tight junction, adherens junction, and desmosome 

complexes. 
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Figure 4.1: Endocytic and Exocytic Trafficking in Polarized Cells 
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Recycling endosomes are inferred to arise during the maturation process 

of early endosomes (also known as sorting endosomes) (Grant and Donaldson, 

2009). These compartments play a role in regulating the rate at which cargo is 

returned to the cell surface. For example, studies show that while a portion of 

endocytosed transferrin is returned almost immediately to the cell surface via 

vesicles from early endosomes, another portion is retained in recycling 

endosomes, and return from this compartment takes several minutes depending 

on the cell type (Mayle et al., 2012). Thus recycling endosomes are thought to 

serve as a holding pattern for certain cargo that require a cellular signal to be 

returned to the cell surface, and therefore play an important role in regulating 

trafficking pathways.  

  Disruptions to the endocytosis and exocytosis pathways cause mis-

localization of cargo and can be harmful to the cell.  Thus, it is no small feat that  

Salmonellae have evolved ways of co-opting these networks in a way that does 

not immediately lead to death of the infected cell. In addition to its ability to utilize 

a cell’s endocytic and exocytic pathways to invade, Salmonellae perturb the 

endosomal-lysosomal pathway to promote its intracellular survival. After cellular 

invasion, it is known that Salmonella effectors delay maturation of the resulting 

Salmonella containing vacuole (SCV) from a phagosome into a phagolysosome 

(Brawn et al., 2007); (Bakowski et al., 2010). Doing so is crucial for the 

intracellular replication of Salmonella. Yet, despite these early impacts on these 
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pathways, apoptosis induced by Salmonella is delayed 16-24 hours post infection 

(Kim et al., 1998); (Knodler et al., 2005).  

Therefore, our inference that PERP arrives at the cell surface as a result 

of Salmonella-induced exocytosis is in agreement with Salmonella’s known 

strategies of manipulating endocytic and exocytic pathways to promote 

pathogenesis. Furthermore, our findings indicate that in addition to impacting 

vesicle formation and maturation in ways that, respectively, promote Salmonella 

uptake and intracellular survival, manipulating these pathways can conceivably 

lead to aberrant localization of proteins, such as PERP, which has the potential 

to provide additional benefits to Salmonella as discussed later. 

Our observation that PERP is found in apical recycling endosomes in 

polarized colonic epithelial cells was determined by its co-localization with 

Rab25, a marker for apical recycling endosomes in polarized cells (Wang et al., 

2000); (Casanova et al., 1999). A previous study in keratinocytes showed PERP 

is taken up into early endosomes, as demonstrated by its co-localization with the 

early endosome marker EEA1 (Nguyen et al., 2009); however, the authors of that 

study did not investigate whether PERP could be recycled back to the plasma 

membrane following its uptake. Therefore, that we find PERP localized to an 

endosomal compartment that regulates the delivery of cargo back to the cell 

surface not only supports our contention that S. Typhimurium  drives PERP 

accumulation by triggering its delivery to the apical surface, but also furthers our 

understanding of how PERP localization is regulated in the cell. Such information 



! 126!

is likely to be useful in ongoing studies governing PERP’s regulation and function 

in the context of epithelial barrier integrity and during disease states such as 

tumorigenesis (Ihrie et al., 2005); (Nguyen et al., 2009); (Beaudry et al., 2010). 

 

4.3. PERP Trafficking is Mediated by the SPI-1 T3SS  

We show that PERP apical accumulation is dependent on the SPI-1 type 

three secretion system (T3SS1), as the loss of the T3SS1 regulator, HilA, nearly 

completely abolished Salmonella-mediated PERP accumulation (Chapter 3). 

Furthermore, we found that the T3SS1 effectors SipA and SipC promote PERP 

accumulation at the apical surface (Chapter 2 and Chapter 3). This is the first 

time SipC has been shown to modulate the localization of a host transmembrane 

protein to the apical surface.  

Interestingly, although SipA and SipC have previously been shown to act 

cooperatively in promoting actin rearrangements that facilitate Salmonella entry 

(McGhie et al., 2001), our studies here suggest they do not cooperate to promote 

PERP accumulation at the apical surface and, furthermore, that they act via the 

same pathway. Based on our findings and reports from other labs, we propose 

SipA and SipC promote PERP accumulation at the apical surface by inducing 

formation of the exocyst.  

 As discussed above, our data support the contention that PERP is 

trafficked to the apical surface via an exocytic route. In order for an exocytic 

vesicle to become incorporated into the new membrane compartment, it must 
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first be tethered to the membrane. The exocyst protein complex is the key 

regulator of vesicle tethering at the plasma membrane. The exocyst has two 

plasma membrane-localized components that function as docking sites, Exo70 

and Sec3, and the remaining five components are inferred to be carried on 

vesicles arriving at the plasma membrane (Heider and Munson, 2012). Previous 

reports show that the exocyst is key for mediating delivery of cargo from 

recycling endosomes to the plasma membrane. For example, the loss of exocyst 

components sec5, sec6, and sec15 from Drosophila epithelial cells causes E-

cadherin to build up in recycling endosomes, and blocks it from being delivered 

to the plasma membrane (Langevin et al., 2005).  

A previously published report showed that SipC binds directly to one of the 

membrane components of the exocyst, Exo70. The authors also showed that 

Exo70 and other exocyst components accumulate at sites of Salmonella 

invasion. Since SipC facilitates Salmonella invasion by acting at the cell surface, 

the authors propose that SipC directs the location of Exo70, and subsequently 

the formation of the exocyst, at sites of Salmonella invasion (Nichols and 

Casanova, 2010). The authors contend that by inducing the formation of the 

exocyst at sites of invasion, Salmonella induces the increased trafficking of 

exocytic vesicles to the apical surface where they provide extra stores of 

membrane to support Salmonella uptake via macropinocytosis. Based on these 

findings, we propose SipC causes PERP to accumulate at the apical surface by  

driving the delivery of PERP-containing exocytic vesicles to sites of Salmonella 



! 128!

invasion.  

Our data presented in Chapter 3 indicate SipC and SipA act along the 

same pathway to induce PERP accumulation at the apical surface. As with SipC, 

we can connect SipA to the exocyst pathway, and we infer this is due to SipA’s 

role in mediating Arf6 localization. As discussed in Chapter 1, reports from our 

lab demonstrate that SipA directs a pathway that requires the accumulation of 

Arf6 at the apical surface (Criss et al., 2001a); (Silva et al., 2004a). Separately, it 

was shown that Arf6 binds to exocyst components Sec10 and Sec15 at sites of 

phagocytosis (Niedergang et al., 2003). Furthermore, (Prigent et al., 2003) 

showed that Arf6 recruits the exocyst to the plasma membrane, likely due to its 

interactions with Sec10. Thus the collective data from these studies support our 

proposal that SipA promotes the accumulation of Arf6 at the apical membrane, 

and this accumulation leads to Arf6-mediated exocyst formation and subsequent 

delivery of PERP-containing vesicles to sites of Salmonella invasion. 

These published observations support the argument that SipA and SipC 

can mediate vesicle delivery to the apical surface via modulation of the exocyst. 

Further, our data indicating that SipA and SipC induce PERP accumulation via 

the same pathway is in agreement with the fact that both SipA and SipC can be 

connected to modulating exocyst activity. Moreover, that SipA and SipC can both 

be connected to factors regulating exocytosis lends additional support for our 

contention that PERP accumulates at the apical surface due to its delivery in 

exocytic vesicles. It is interesting to note that if PERP is delivered to the apical 
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surface via exocytic vesicles, then we may expect to see an increase in the 

expression levels of other transmembrane proteins shuttled via exocytic vesicles 

to the apical surface in response to Salmonella infection.  

 

Is SipC’s Translocation Function Important for PERP Trafficking? 

The fact that infection with the ΔSipAΔSipC strain did not completely 

abolish PERP accumulation suggests that other T3SS1 members are required 

for this process. This argument is substantiated by our observation that infection 

with the ΔHilA strain caused an additional loss of PERP accumulation at the 

apical surface. HilA is a transcription factor that regulates T3SS1 formation and 

the activation of T3SS1 effectors (Saini et al., 2010); therefore the ΔHilA strain 

lacks the function of T3SS1 members beyond just SipA and SipC. That we see a 

requirement for multiple effectors in mediating PERP trafficking to the apical 

surface is expected, given that T3SS effectors often have overlapping and 

redundant roles. Indeed, SopB (Zhou et al., 2001), SopE (Hardt et al., 1998a) 

and SopE2 (Stender et al., 2000) have been shown to be important for actin-

rearrangements required for invasion. Redundancy ensures that important 

functions are carried out, even if one effector is missing or ineffective in a given 

host. Given that SopE has already been shown to promote the activity of the 

exocyst-associated GTPase RalA (Nichols and Casanova, 2010), we propose 

that the additional absence of SopE from the ΔHilA strain may explain why 

infection with the strain lacking HilA induces even less PERP accumulation 
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compared to infection with strains lacking SipA and/or SipC.  

While we postulate that exocyst activity is regulated specifically by T3SS1 

effectors, our data leave room for at least one additional consideration. As 

discussed, SipC has multiple roles during Salmonella pathogenesis: promoting 

Salmonella invasion via regulating actin dynamics, modulating exocyst formation, 

and translocating effectors into the host cell. If the translocation of effectors, such 

as SopE, is important for PERP accumulation, then one might expect a ΔSipC 

strain to behave functionally as a ΔHilA strain, as the absence of SipC would 

thwart delivery of the T3SS1 effectors to the interior of the host cell. However, 

this is not what we observe to take place, as the absence of SipC does not 

reduce PERP accumulation at the apical surface in response to Salmonella 

infection to the same degree as does the absence of HilA.  

One possible explanation for this is that the translocation function of SipC 

is in fact not required for PERP accumulation at the apical surface. Indeed, this is 

supported by our observations that exogenous SipA added to HCT8 cells in the 

absence of bacteria is sufficient to induce apical PERP accumulation  (Chapter 

2), indicating SipA does not require T3SS1-mediated translocation into the host 

cell to induce PERP accumulation at the apical surface. Further, if effectors have 

to be translocated into the cell to induce PERP accumulation, then we would 

expect SipB, another T3SS1 effector translocase, to be required; yet, we see 

SipB is dispensable for PERP accumulation at the apical surface (Chapter 2). 

Thus in the context of PERP accumulation, SipC’s role in modulating vesicle 
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trafficking via the exocyst may be more important than its role as a T3SS1 

translocase.  

However, that explanation does not fully address why the absence of HilA 

has a worse effect on Salmonella-induced PERP accumulation compared to the 

effect caused by the absence of SipC. If SipC’s translocase functions are not 

required for PERP accumulation, then one explanation for the difference in PERP 

accumulation seen following infection with the ΔSipC versus the ΔHilA strains is 

that the T3SS1 apparatus itself, which can form in the absence of SipC but not in 

the absence of HilA, triggers a response in the host cell that leads to PERP 

accumulation. Indeed, the T3SS1 has been shown to mediate the delivery of 

flagellin across epithelial monolayers, indicating that this machinery has roles in 

Salmonella pathogenesis separate from its functions in translocating T3SS1 

effectors into host cells (Sun et al., 2007); (Gewirtz et al., 2001).  

Nevertheless, the discrepancy seen between the ΔSipC and the ΔHilA 

strains is likely to be better understood once the remaining Salmonella T3SS1-

associated factors that promote PERP accumulation are identified. Furthermore, 

knowing which T3SS1 proteins are required to induce PERP accumulation will 

help establish the relative importance of SipC’s functions in effector translocation 

and exocyst modulation in this process. Until then, we cannot rule out the 

additional possibility that both functions are important. It is well established that 

T3SS effectors can have multiple roles in pathogenesis that are distinct from 

each other (Dean, 2011). SipC’s roles in both effector translocation and 
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Salmonella invasion have already been discussed. Further, SipA has been 

shown to stabilize actin filaments and prevent their depolymerization via its C-

terminal domain acting as a “molecular staple” (Lilic et al., 2003); its N-terminal 

end, however, has been shown to be sufficient to cause SipA-induced 

inflammatory responses (Wall et al., 2007). SopB facilitates Salmonella invasion 

by activating Cdc42 (Zhou et al., 2001), and delays SCV maturation into a 

phagolysosome by excluding maturation markers (Dukes et al., 2006b); 

(Bakowski et al., 2010). Moreover, the translocation factor, YopB, of Yersinia 

pseudotuberculosis has been shown to induce pro-inflammatory signaling 

pathways in a manner that is independent of its established pore-forming 

functions (Viboud et al., 2003).  These examples highlight the fact that one 

effector can play more than one role in a host cell either by the activity of the 

same or different functional domains. 

 

4.4 PERP is Required for Caspase-3 Activation During Salmonella Infection, 

and Implications of PERP Accumulation. 

Our study first started out with the goal of determining how SipA induces 

the activation of caspase-3 while also requiring caspase-3 cleavage to induce 

PMN transmigration. That SipA promotes activation of caspase-3 and 

simultaneously requires cleavage by this protease to be fully functional highlights 

the complexity of the signaling that occurs between SipA and the host cell. 

Indeed, a mechanism for how this may occur remained elusive, until we 
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discovered PERP is required for caspase-3 activation during S.Typhimurium  

infection (Chapter 2).  

Previous reports have shown that increased PERP expression causes 

increased levels of activated caspases, including caspase-3 (Davies et al, 2009; 

Singaravelu et al, 2009). Since the mechanism by which PERP regulates 

caspase-3 activity remains unknown, it is impossible to know which PERP-

mediated caspase-3 activation pathways are affected during Salmonella 

infection. Nevertheless, based on what is known about PERP and caspase-3 

activation, we contend that the apical accumulation of PERP is processed by the 

cell as an over-abundance of PERP; this then leads to increased activation of 

caspase-3. Indeed, examination of PERP levels in whole cell lysates following 

infection showed a modest increase in PERP levels compared to non-infected 

cells (Chapter 2). Since our data indicate that S. Typhimurium does not cause 

apical accumulation of PERP by inducing new protein synthesis, we propose that 

the increase in PERP expression in whole cell lysates is due to the redistribution 

of PERP to the apical surface, and consequential removal from its normal 

trafficking route that would carry it into degradative pathways. As a result, S. 

Typhimurium causes PERP to accumulate in the host cell.  

It is critical to note that apical PERP accumulation is dependent on SipA, 

but not dependent on the capsase-3 cleavage of SipA, as shown in Chapter 2. 

Further, we detect PERP accumulation at the apical surface after 1 hour of 

infection, yet we do not detect Salmonella-induced activation of caspase-3 until 
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after two or more hours of infection (Srikanth et al, 2010; Chapter 2). This tells us 

1) that PERP accumulation at the apical surface occurs independently of 

caspase-3 mediated SipA processing, and 2) that PERP apical accumulation can 

thus occur prior to the point at which SipA triggers activation of caspase-3. These 

combined observations support our argument that SipA-mediated modulation of 

PERP leads to caspase-3 activation. Thus, our cumulative findings provide the 

first mechanistic insight into how SipA can induce caspase-3 activation prior to 

requiring cleavage by it.  

 

4.5 PERP Promotes an Inflammatory Response to Salmonella Infection 

One of our key findings is that PERP plays a fundamental role in 

facilitating transepithelial PMN migration in response to S. Typhimurium infection 

(Chapter 2). This observation is particularly exciting because not only does it 

identify a previously unknown player in the inflammatory response to Salmonella 

infection, but it also ascribes a previously unknown function to PERP. Strikingly, 

an earlier study indicated PERP might downregulate some inflammatory 

signaling pathways in a skin carcinoma model (Beaudry et al., 2010). However, 

our work is the first to demonstrate a distinct proinflammatory function for PERP, 

and is the first to show a role for PERP in the response to a bacterial infection. 

While our data may appear to conflict with the previous report, studies have 

shown PERP’s functions to vary depending on cell type. Although PERP was first 

identified as a p53-effector of apoptosis (Attardi et al., 2000), it was later found to 
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be dispensable for p53-dependent apoptosis in certain fibroblasts, but required 

for p53-dependent apoptosis in thymocytes (Ihrie et al., 2003). Thus the specific 

roles of PERP may differ depending on the cell type being investigated. 

PERP is required for PMN transepithelial migration in response to 

bacterial signals (Salmonella and fMLP) indicating that it could be important for 

mediating PMN migration in response to bacterial infections in general. Since 

PERP is known to be expressed in a variety of epithelial tissues (epidermal 

keratinocytes and oral epithelia in mice: (Ihrie et al., 2005); bovine hepatocytes, 

human lung epithelium, bovine urogenital epithelium, bovine intestinal epithelium: 

(Franke et al., 2013b)), it would be worth exploring whether PERP is required for 

PMN transepithelial migration in responses to non-enteric infections of mucosal 

surfaces as well, such as those caused by P. aeruginosa, and S. pneumoniae. 

Such experiments would show whether PERP’s proinflammatory functions are 

restricted to Salmonella infection or to the intestinal tract, or exist throughout the 

body in response to a variety of pathogenic onslaughts. 

Intriguingly, PERP was important for PMN transepithelial migration in 

response to some signals, but not all of the ones we tested. Indeed, LTB4 and IL-

8 are both potent signaling molecules that act on PMNs to trigger their migration, 

yet PERP was dispensable for migration that occurred in response to LTB4 and 

only marginally required for migration that occurred in response to IL-8. In 

comparison, the lack of PERP caused a significant reduction in PMN 

transepithelial migration in response to fMLP. Why PERP is required for 



! 136!

migration in response to certain chemotactic signals but not others is difficult to 

ascertain at this point. The nuances of PERP activity during PMN migration 

resulting from different triggers will be better understood as we learn more about 

how PERP functions in the cell. 

With regard to how PERP promotes PMN transepithelial migration in 

response to Salmonella infection, our data support the argument that PERP does 

so by mediating caspase-3 activation. As discussed above, we show that PERP 

is required for caspase-3 activation during S. Typhimurium infection, and we 

have previously shown that caspase-3 activation is required for SipA-mediated 

inflammatory responses, including PMN transepithelial migration. Thus, we 

contend that by promoting the activation of caspase-3, PERP promotes the 

proteolytic processing of SipA that enables it to induce PMN transepithelial 

migration and other inflammatory responses. 

An additional possibility, and one that is not exclusive of a caspase-3 

mediated role, is that PERP functions as a binding partner for PMNs as they 

pass through the transepithelial space. Indeed, another desmosome component, 

JAM-C, has been proposed to function as the elusive epithelial receptor for the 

PMN integrin CD11b/CD18, which is known to be required for transepithelial 

migration (Zen et al., 2004). If PERP does function as a PMN binding partner, 

that offers one explanation of why the addition of anti-PERP antibodies causes 

such a striking reduction in Salmonella-induced transepithelial PMN migration 

(Chapter 2); they may interfere with PERP’s ability to bind to PMNs. However, 
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this possibility does not negate our findings that PERP is critical to the activation 

of caspase-3 during S. Typhimurium infection, nor does it exclude our contention 

that PERP promotes PMN transepithelial migration via its activation of caspase-

3, which then leads to activation of SipA. Indeed, it is possible that PERP could 

have multiple ways of regulating PMN transepithelial migration depending on the 

specific signal and PERP’s cellular location. In support of this hypothesis, a study 

in skin cell carcinoma indicates PERP has at least two roles in suppressing 

cancer progression: 1) inducing apoptosis and 2) mediating cell-cell adhesion 

(Beaudry et al., 2010). In that study, the loss of PERP promoted the development 

of UV-induced skin tumors and also promoted tumor progression, likely due to 

loss of desmosome stability. Thus, it would not be surprising to find that PERP 

has multiple mechanisms for modulating inflammatory responses to Salmonella 

infection as well. 

Our finding that PERP has a role in mediating PMN transepithelial 

migration broadens our understanding of PERP’s functions in the host cell, which 

to date have been limited largely to apoptosis, and epithelial barrier integrity and 

development. Given that PERP appears to be an inflammatory regulator in 

intestinal tissue, it may be worth investigating whether PERP functions in 

mediating inflammation in chronic intestinal inflammation conditions as well, such 

as Crohn’s disease and ulcerative colitis. 
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4.6 Salmonella Activates Caspase-3 via the Modulation of PERP Trafficking:  

A Model  

On the basis of the discussion of our results and current literature above, 

we present a model of how we envision Salmonella to induce caspase-3-

dependent inflammation outlined below and summarized in Figure 4.2. 

 

1. Salmonella effectors induce exocyst formation at the apical surface of 

intestinal epithelial cells (Nichols and Casanova, 2010). 

2. Vesicles containing PERP from apical endosomes traffic to the apical surface

 (Chapter 2 and Chapter 3). 

3. PERP accumulates at the apical surface by the action of Salmonella T3SS1 

effectors on the exocytic pathway (Chapter 2 and Chapter 3). 

4. Apical PERP accumulation leads to increased levels of total 

 cellular PERP, which leads to activation of caspase-3 (Chapter 2; Davies 

et al, 2009; Singaravelu et al, 2009). 

5. Activation of caspase-3 by PERP leads to proteolytic processing of SipA, and 

promotes SipA’s pro-inflammatory functions leading to transepithelial PMN 

migration (Chapter 2; Srikanth et al, 2010). 

 

 As described in Chapter 1, our earlier model indicated that caspase-3 

activity is required for the SipA-mediated activation of iPLA2, which leads to the  
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Figure 4.2: Models of PERP and Caspase-3 Activation During Salmonella 

Infection 

 
A. This model illustrates our previous understanding of how caspase-3 is 

activated and required during Salmonella infection. Previous reports indicated 

that SipA both activates caspase-3 and requires caspase-3 activity in order to 

induce inflammatory responses, including recruitment of PMNs to the apical 

surface. A more detailed discussion of this pathway can be found in Chapter 1. 

The manner by which SipA activates caspase-3 to promote its own activation has 

remained unknown. 

 

B.  The model presented here shows how the data presented herein, highlighted 

in bold boxes and arrows, addresses the question of how SipA triggers caspase-

3 activation. We showed that SipA induces PERP accumulation at the apical 

surface, which we propose leads to its accumulation within the cell. Previous 

papers show that increased PERP expression leads to increased activity of 

caspase-3, and indeed we see PERP is required for caspase-3 activation during 

S. Typhimurium infection. Strikingly, caspase-3 cleavage of SipA is NOT required 

for it to induce PERP apical accumulation, thus indicating that PERP-mediated 

caspase-3 activation occurs prior to SipA processing. This finding supports our 

model here that argues SipA-mediated redistribution and subsequent 

accumulation of PERP is the manner by which SipA induces caspase-3 

activation. 
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Figure 4.2: Models of PERP and Caspase-3 Activation During Salmonella 

Infection 
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synthesis of HXA3 (Figure 4.2a). However, our previous finding that the N-

terminus of SipA alone is capable of activating pathways that lead to HXA3 

synthesis indicated that the SipA N-terminus is liberated via caspase-3 

processing prior to the initiation of the PKCα-mediated caspase-3 activation 

cascade. We show that accumulation of PERP at the apical surface occurs 

without SipA needing to be cleaved by caspase-3. This observation supports our 

proposal that the accumulation of PERP at the apical surface provides the means 

by which activation of caspase-3 can occur prior to SipA cleavage. Thus, we 

propose that vesicle trafficking to the apical surface to support Salmonella uptake 

serves the additional purpose of facilitating SipA processing by causing PERP 

accumulation at this location, which then leads to caspase-3 activation. 

 Another inference that may be made from our new model is that there are 

at least two time points at which caspase-3 activity is required (Figure 4.2b). The 

first point is for cleavage of SipA, and the second is for the PKCα-mediated 

pathway of HXA3 production. Whether or not the pathways leading to activation 

of caspase-3 at these time points overlap or are independent of each other 

remains to be determined. However, the requirement for two caspase-3 

activation pathways may help explain why we don’t see a more drastic decrease 

in PERP-mediated caspase-3 activity during Salmonella infection in our PERP 

knockdown cells. Further, the existence of distinct early (PERP-mediated) and 

late (PKCα-mediated) caspase-3 activation pathways explains how SipA can be 

cleaved by caspase-3 prior to activating PKCα. 
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4.7 Future Directions 

 As alluded to above, many questions remain with regard to how different 

parts of our new model function and intersect. Perhaps the biggest question is 

whether SipC plays an active role in mediating caspase-3 activation during 

Salmonella infection. Indeed we infer this is the case since, like SipA, SipC 

mediates PERP accumulation at the apical surface, which we propose plays a 

role in PERP-mediated caspase-3 activation. While we have demonstrated a role 

for SipA in caspase-3 activation (Srikanth et al., 2010), a role for SipC in this 

process has yet to be examined. However, previous work from our lab shows 

that SipC is required for PMN transepithelial migration (Wall et al., 2007). This 

was surprising, given that the absence of SipA nearly completely abrogates PMN 

transepithelial migration (Lee et al., 2000). Nevertheless, the effector SopA has 

also been shown to be an important mediator of the PMN response to 

Salmonella infection (Srikanth et al., 2010) indicating that the pathways by which 

PMNs are recruited to the apical surface during Salmonella infection are complex 

and remain to be completely understood.  Therefore, a role for SipC in mediating 

caspase-3 activation is plausible, and would help explain why it is important for 

PMN responses.  

 An additional question worth pursuing is the pathway by which PERP 

triggers caspase-3 activation. Our previous study (Srikanth et al., 2010) indicated 

that increased caspase-8 activity is not detected in response to Salmonella 

infection. Thus, while a previous study indicated increased caspase-8 activation 
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was correlated with increased PERP expression (Davies et al., 2009), activation 

of caspase-8 does not appear to be the pathway by which PERP leads to 

caspase-3 activation in our system. However, caspase-3 can also be activated 

by activated caspase-9 and caspase-10. A previous study has shown a 

correlation between PERP expression and caspase-9 activation (Singaravelu et 

al., 2009), and so it is worth examining whether caspase-9 increases with 

Salmonella infection. Caspase-10 activation during Salmonella infection would 

also be worth exploring. Such experiments would not only yield a better 

understanding of how caspase-3 is activated during Salmonella infection, but 

would provide further understanding as to how PERP regulates caspase-3 

activation in general. Indeed, caspase-8 and caspase-10 are associated with the 

extrinsic apoptotic pathway whereas caspase-9 is associated with the intrinsic 

apoptotic pathway. Knowing which apoptotic pathway PERP participates in would 

help improve our general understanding how of PERP triggers apoptosis. 

 

4.8 Summary 

Our reported findings enlighten our understanding of how SipA mediates 

inflammatory responses to Salmonella infection, and provide the first mechanistic 

insight addressing how SipA can simultaneously trigger the activation of 

caspase-3 while also requiring cleavage by this enzyme to induce inflammation. 

These results build upon our current understanding of how T3SS effectors 

interact with host cells and perturb host cell signaling pathways to induce 
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pathogenesis. Moreover, our data provide insight into the functions of PERP. Our 

findings build upon previous reports indicating PERP is important for normal cell 

homeostasis and apoptosis, as we now show here that PERP is key for 

mediating inflammatory responses to S. Typhimurium infection. Indeed our 

results highlight not only what bacteria can teach us about mechanisms of 

pathogenesis, but also how they can be used as tools to provide insight into 

eukaryotic cell pathways. 
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APPENDIX A 
 

Is PERP the SipA Apical Surface Receptor? 
 

 While we found PERP can bind to SipA (Chapter 2), the physiological 

relevance of this interaction remains to be determined, and thus it is not included 

in our model in Chapter 4. Nevertheless, the finding does merit discussion here, 

as it paves the way for further investigation into whether PERP is the apical 

surface SipA receptor. 

 Finding that PERP and SipA interact was eye-opening, as this is the first 

demonstration of SipA binding to a eukaryotic membrane protein that localizes to 

the apical surface during Salmonella infection, and furthers our understanding of 

how SipA interacts with host cells during pathogenesis. Interestingly, we did not 

detect binding of PERP to SifA, a Salmonella effector protein translocated via 

T3SS2, which is the T3SS generally used to promote intracellular survival. 

However, we did detect binding between PERP and SipC (Chapter 2), which is a 

component of the T3SS1, although this was not done under infection conditions 

so the physiological relevance remains to be verified. Nevertheless, it would be 

interesting to examine whether other T3SS1 effectors are also capable of binding 

to PERP to help us better understand whether PERP’s interaction with SipA has 

a role specific to this effector’s functions, or whether there is a more universal 

role for PERP binding to T3SS1 effectors.  

 While it is tempting to speculate that PERP is an important SipA binding 

partner that promotes SipA-mediated inflammatory responses, the pathological 
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importance of PERP binding to SipA remains to be determined. Ideally, it would 

be best to mutate sites on SipA and PERP suspected to be important for the 

interaction, examine whether the interaction fails as a result, and then examine 

the physiological consequences of the failed interaction. However, while the 

structures of some regions of SipA have been determined (Lilic et al., 2003), its 

entire structure has yet to be resolved. Further, while PERP’s membrane 

domains have been mapped, its final conformation within the cell also remains to 

be determined. 

Further, our data do not exclude the hypothesis that the PERP-SipA 

interaction occurs within the host cell. Our attempts to verify the cellular location 

of this interaction via modifications to the biotinylation assay or via microscopy 

yielded inconclusive results. We suspect this may be due in part to the level of 

SipA present at the apical surface of a cell at any given point being below the 

detection level required for our methods. 

Perhaps the evidence that argues most strongly against PERP acting as 

the apical SipA receptor is the finding that SipA is required for PERP 

accumulation at the apical surface (Chapter 2). This observation is particularly 

confounding as it is difficult to imagine how SipA can simultaneously require 

binding to PERP at the apical surface and induce its apical accumulation. 

Nevertheless, Salmonella Typhi has been shown to utilize CFTR as its host cell 

receptor and to trigger accumulation of this protein to the apical surface of 

infected cells (Lyczak and Pier, 2002). Thus it is not impossible that PERP is a 
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SipA receptor, and that interaction between these two proteins induces a 

signaling cascade that leads to PERP trafficking events. Indeed, it was initially 

difficult to imagine how SipA could simultaneously require and trigger caspase-3 

activation to induce inflammatory responses, but we now have a model that 

explains how that might occur. While key questions remain regarding the 

relevance of the PERP and SipA interaction, it is important to not lose sight of the 

fact that finding such an interaction occurs serves to broaden our understanding 

of how SipA, and possibly other T3SS effectors, interact with host cells. 
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APPENDIX B 

 Baseline PERP Behavior 

Introduction 

 Since the range of PERP’s functions within the cell remain unknown, we 

thought it prudent to confirm that knocking down PERP expression did not alter 

the ability of Salmonella to invade colonic epithelial cells. If it did, this would raise 

additional questions as to how PERP regulates epithelial responses to 

Salmonella infection. The specificity of the PERP antibody was also confirmed. 

 

Materials and Methods 

Invasion assay 

Description of stable PERP knockdown design, and of invasion assay 

methods are detailed in Chapter 2. 

 

Western blotting 

Whole cell lysates from wild type HCT8 cells and HCT8 cells transfected 

with PERP siRNA, the no targeting control, or the PERP-GFP construct were 

prepared and Western blotted for PERP as described in Chapter 2. 
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Transfection 

HCT8 cells were transfected with 3ug of the PERP-GFP construct (kind 

gift from Dr. Luminita Paraoan) using Lipofectamine 2000 per the manufacturer’s 

instructions.  

 

Confocal Microscopy 

Following transfection with the PERP-GFP construct (green), cells were 

washed with PBS, then fixed in 4% PFA, quenched with 50mM ammonium 

chloride, then permeabilized with 1% triton in PBS. The cells were then blocked 

with blocking buffer (3% BFA in PBS) for one hour followed by staining with 

phalloidin AlexaFluor 647 (red), and mounting with SlowFade Gold containing 

DAPI (blue). Images of the transfected cells were collected from a Leica TCS SP-

5 Confocal microscope as described for the “PERP and Rab25 Colocalization” 

image collection in Chapter 2. Post imaging, 0.2 mm image slices were 

processed using FIJI.  

 

Results 

PERP Knockdown Cells Are Not Invasion-Defective 

 As shown in Figure B.1, knocking down PERP expression (Figure 2.2) 

does not affect the ability of Salmonella to invade the HCT8 colonic epithelial cell 

line.  
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Figure B.1: PERP Knock Down Cells Are Not Invasion Deficient 

 An invasion assay was performed on stable PERP knockdown cells and 

vector control cells. The level of Salmonella invasion is reflected as percent 

invasion compared to invasion levels in vector control cells (set to 100%). Data 

shown are of one representative of three experiments performed in triplicate. 

Error bars show +/- standard error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 151!

Figure B.1: PERP Knock Down Cells Are Not Invasion Deficient 
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PERP Antibody Specificity 

 As shown in Figure B.2A, we typically observed three bands upon staining 

for PERP via western blot. One of these corresponds to the expected molecular 

weight of PERP, 22kD.  The remaining two bands are visible at about 33kD and 

about 52kD. The identity of these two higher bands remains undetermined. 

However, as shown in Figure B.2B, the appearance of the 22kD band is reduced 

in the PERP knockdown cells, as is expected. Further, upon transfecting HCT8 

cells with a PERP-GFP construct, we observe the appearance of a band that 

runs at about the size of a band expected from the addition of a 27kD GFP tag to 

the 22kD PERP protein (Figure B.2C). 

 

Conclusions  

 That knocking down PERP expression does not impact the ability of 

Salmonella to invade colonic epithelial cells indicates that PERP is not required 

for Salmonella invasion. This is in line with our data showing that PERP is 

required for inflammatory responses (caspase-3 activation and PMN 

transmigration), which are often controlled by separate pathways from those 

controlling invasion. 

As shown in Figure B.2, the PERP antibody detects PERP. It should be 

noted that transfecting the PERP-GFP construct into HCT8 cells induced 

morphological changes in the cells that were characteristic of early signs of 
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Figure B.2: PERP Antibody Specificity 

A. Western blot of PERP from wild type whole cell HCT8 lysates showing three 

bands at 22kD, 33kD, and 52kD. 

B. Western blot of PERP from whole cell lysates of HCT8 cells transfected with a 

no targeting siRNA control, or with PERP siRNA.  

C. Western blot of PERP from lysates of wild type HCT8 cells, or HCT8 cells 

transfected with the PERP-GFP construct. Fluorescent microscopy panel shows 

cells transfected with the PERP-GFP construct (green) and stained with 

phalloidin (red) and DAPI (blue).  
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Figure B.2: PERP Antibody Specificity 
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apoptosis, including membrane blebbing (Figure B.2C, confocal image). This 

observation was previously reported (Davies et al., 2009) and is likely due to 

increased levels of PERP protein due to the presence of the PERP-GFP 

construct. Due to these changes, no experiments with this construct in the 

context of Salmonella infection were run.  
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APPENDIX C 
 

Raw Data for Densitometry 

Introduction 

Due to the inherent variability between western blots, densitometric values 

in Chapter 2 and Chapter 3 were presented as ratios of protein expression from 

one representative experiment. Presenting the values as ratios rather than in the 

raw densitometric values from each experiment allowed us to make comparisons 

across multiple experiments.  

The following tables show the raw densitometric values from three 

replicates of these experiments. These tables also show the ratios of PERP 

expression in response to infection with wild-type Salmonella compared to PERP 

expression in response to infection with mutant or complemented strains, or 

PERP expression in response to treated cells compared to non-treated cells. In 

cases where PERP was detected at the apical surface without infection, the ratio 

of PERP expression following infection compared to baseline PERP expression 

was first determined before comparing PERP expression levels following wild-

type infection versus infection with mutants or complemented strains.  The tables 

include the average, standard deviation, and standard error for the ratios across 

these experiments calculated via Prism software. Densitometric values 

expressed are values obtained after background subtraction. ND indicates no 

detectable expression. n/a indicates not applicable. Table headings indicate the 

corresponding figure in the main text.    



! 157!

 

 
C.1 Densitometric Data for Chapter 2 
 

Figure 2.2B: PERP Expression in Stable PERP Knockdown Cells 
Replicate Vector 

Control 
PERP 
Knockdown 

Ratio of PERP Expression 
(Knockdown to Vector 
Control) 

1 27.136 14.587 0.537 
2 96.5 63.5 0.658 
3 15.178 8.962 0.591 

Mean 0.595 
Standard Deviation +/- 0.061 

Standard Error +/- 0.035 
 
 
Figure 2.4A: PERP Expression in Transient PERP Knockdown Cells 
Replicate No 

Target 
Control 

PERP 
Knockdown 

Ratio of PERP Expression 
(Knockdown to No Target 
Control) 

1 64.004 34.455 0.538 
2 41.047 18.993 0.463 
3 47.087 21.151 0.449 

Mean 0.483 
Standard Deviation +/- 0.048 

Standard Error +/- 0.028 
 
 
Figure 2.5A: Apical Surface PERP Expression Following Infection with WT  
and ΔSipA Salmonella 
Replicate (-) WT Ratio of 

PERP 
Expression 
(WT to (-) ) 

ΔSipA Ratio of 
PERP 
Expression 
(ΔSipA to 
(-) ) 

Ratio of 
PERP 
Expression 
(ΔSipA to 
WT) 

1 ND 47.13 n/a 30.705 n/a 0.651 
2 6.78 74.46 10.98 42.473 6.27 0.57 
3 ND 38.39 n/a 22.694 n/a 0.591 

Mean 0.604 
Standard Deviation +/- 0.042 

Standard Error +/- 0.024 
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Figure 2.5B: Apical Surface PERP Expression Following Infection with WT and 
ΔSipA Salmonella Complemented with High-Expressing SipA pBH Plasmid 
Replicate (-) WT SipA+ Ratio of PERP Expression 

(SipA+ to WT) 
1 ND 7.303 67.907 9.3 
2 ND 10.29 77.35 7.52 
3 ND 6.847 79.228 11.57 

Mean 9.462 
Standard Deviation +/- 2.032 

Standard Error +/- 1.173 
 
 
Figure 2.5C: Apical Surface PERP Expression Following Infection with WT and  
ΔSipB Salmonella 
Replicate (-) WT Ratio of 

PERP 
Expression 
(WT to (-) ) 

ΔSipB  Ratio of 
PERP 
Expression 
(ΔSipB to 
(-) ) 

Ratio of 
PERP 
Expressio
n (ΔSipB 
to WT) 

1 ND 55.811 n/a 63.93 n/a 1.14 
2 7.648 23.655 3.09 21.088 2.76 0.89 
3 21.213 44.223 2.08 44.32 2.09 1.004 

Mean 1.011 
Standard Deviation +/- 0.125 

Standard Error +/- 0.072 
 
 
Figure 2.5D: PERP Expression from Non-Infected and WT Infected Whole Cell 
Lysates 
Replicate (-) WT Ratio of PERP 

Expression (WT to (-)) 
1 44.92 65.057 1.44 
2 55.613 71.552 1.28 
3 35.186 48.061 1.36 

Mean 1.363 
Standard Deviation +/- 0.08 

Standard Error +/- 0.046 
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C.2 Densitometric Data For Chapter 3 

Figure 3.1A: Apical Surface PERP Expression Following Infection with WT and  
ΔHilA Salmonella 
Replicate (-) WT ΔHilA  Ratio of PERP Expression 

(ΔHilA to WT) 
1 ND 51.691 1.709 0.033 
2 ND 41.993 5.406 0.129 
3 ND 24.758 3.018 0.121 

Mean 0.094 
Standard Deviation +/- 0.053 

Standard Error +/- 0.031 
 
 
Figure 3.1B: Apical Surface PERP Expression Following Infection with WT and  
ΔHilA Salmonella Complemented with HilA on the pBH Plasmid 
Replicate (-) WT pHilA Ratio of PERP Expression 

(pHilA to WT) 
1 ND 16.033 19.742 1.231 
2 ND 20.406 24.987 1.224 
3 ND 35.702 41.463 1.161 

Mean 1.206 
Standard Deviation +/- 0.0385 

Standard Error +/- 0.0223 
 
 
Figure 3.1C: Apical Surface PERP Expression Following Infection with WT and 
ΔSipC Salmonella 
Replicate (-) WT ΔSipC  Ratio of PERP Expression 

(ΔSipC to WT) 
1 ND 55.924 36.119 0.646 
2 ND 42.455 23.09 0.544 
3 ND 73.721 46.331 0.628 

Mean 0.606 
Standard Deviation +/- 0.054 

Standard Error +/- 0.031 
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Figure 3.1D: Apical Surface PERP Expression Following Infection with WT and 
ΔSipC Salmonella Complemented with SipC on the pBH Plasmid 
Replicate (-) WT pSipC Ratio of PERP 

Expression (pSipC to 
WT) 

1 ND 21.53 22.221 1.032 
2 ND 63 59.56 0.9454 
3 ND 33.288 42.489 1.27 

Mean 1.082 
Standard Deviation +/- 0.168 

Standard Error +/- 0.097 
 
 
Figure 3.1E: Apical Surface PERP Expression Following Infection with WT and 
ΔSipAΔSipC Salmonella 
Replicate X WT ΔSipAΔSipC  Ratio of PERP 

Expression 
(ΔSipAΔSipC to WT) 

1 ND 71.096 45.079 0.634 
2 ND 8.56 5.446 0.636 
3 ND 60.1 35.196 0.585 

Mean 0.618 
Standard Deviation +/- 0.028 

Standard Error +/- 0.017 
 
 
 
Figure 3.2B: Apical Surface PERP Expression Of Non-Infected (-) and WT-
Infected (WT) Cells With or Without Cytochalasin D (Cyto D) Treatment 
Replicate (-) 

DMSO 
WT  
DMSO 

(-)  
Cyto D 

WT  
Cyto D 

Ratio of PERP 
Expression 
(WT Cyto D to WT 
DMSO) 

1 ND 24.576 ND 58.626 2.385 
2 ND 11.842 ND 25.239 2.131 
3 ND 68.32 ND 102.746 1.50 

Mean 2.01 
Standard Deviation +/- 0.455 

Standard Error +/- 0.263 
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Figure 3.2C: Apical Surface PERP Expression Of Non-Infected (-) and WT-
Infected (WT) Cells With or Without Dynasore Treatment 
Replicate (-) 

DMSO 
WT 
DMSO 

(-) 
Dynasore 

WT 
Dynasore 

Ratio of PERP 
Expression 
(WT Dynasore to 
WT DMSO) 

1 ND 42.093 ND 74.937 1.78 
2 ND 42.345 ND 93.91 2.22 
3 ND 53.099 ND 112.777 2.12 

Mean 2.041 
Standard Deviation +/- 0.230 

Standard Error +/- 0.133 
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