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Behavioral/Systems/Cognitive

Hippocampal c-Jun-N-Terminal Kinases Serve as Negative
Regulators of Associative Learning

Tessi Sherrin,1* Thomas Blank,3* Cathrin Hippel,4 Martin Rayner,1,2 Roger J. Davis,5 and Cedomir Todorovic1,2

1Specialized Neuroscience Research Program, and 2Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii,
Honolulu, Hawaii 96813, 3Department of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany, 4Department of Molecular Oncology,
Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany, and 5Howard Hughes Medical Institute and Program in Molecular Medicine,
University of Massachusetts Medical School, Worcester, Massachusetts 01605

In the adult mouse, signaling through c-Jun N-terminal kinases (JNKs) links exposure to acute stress to various physiological responses.
Inflammatory cytokines, brain injury and ischemic insult, or exposure to psychological acute stressors induce activation of hippocampal
JNKs. Here we report that exposure to acute stress caused activation of JNKs in the hippocampal CA1 and CA3 subfields, and impaired
contextual fear conditioning. Conversely, intrahippocampal injection of JNKs inhibitors sp600125 (30 �M) or D-JNKI1 (8 �M) reduced
activity of hippocampal JNKs and rescued stress-induced deficits in contextual fear. In addition, intrahippocampal administration of
anisomycin (100 �g/�l), a potent JNKs activator, mimicked memory-impairing effects of stress on contextual fear. This anisomycin-
induced amnesia was abolished after cotreatment with JNKs selective inhibitor sp600125 without affecting anisomycin’s ability to
effectively inhibit protein synthesis as measured by c-Fos immunoreactivity. We also demonstrated milder and transient activation of the
JNKs pathway in the CA1 subfield of the hippocampus during contextual fear conditioning and an enhancement of contextual fear after
pharmacological inhibition of JNKs under baseline conditions. Finally, using combined biochemical and transgenic approaches with
mutant mice lacking different members of the JNK family (Jnk1, Jnk2, and Jnk3), we provided evidence that JNK2 and JNK3 are critically
involved in stress-induced deficit of contextual fear, while JNK1 mainly regulates baseline learning in this behavioral task. Together, these
results support the possibility that hippocampal JNKs serve as a critical molecular regulator in the formation of contextual fear.

Introduction
Memory formation requires a series of molecular processes,
such as posttranslational protein modification, gene expres-
sion, and probably de novo protein synthesis, leading to func-
tional and structural changes in cells of the CNS (Sutton and
Schuman, 2006; Klann and Sweatt, 2008). Consolidation
of memory is often impaired by acute stressful experiences
(Diamond et al., 2005; Sandi and Pinelo-Nava, 2007) indicat-
ing that molecular cascades elicited by stress responses inter-
fere with those involved in information processing during
learning. Conversely, stress and learning may activate overlap-
ping signaling pathways involving common protein kinases,
immediate early genes and delayed response genes (Cam-
marota et al., 2000; Meller et al., 2003; Shen et al., 2004; Sin-
dreu et al., 2007; Kozlovsky et al., 2008). Therefore, the
understanding of stress-induced molecular changes in the
brain will ultimately lead to further elucidation of mecha-
nisms underlying learning and memory.

The mitogen-activated protein kinase family (MAPKs) repre-
sents a potential target with above-mentioned stress and learning
relevant properties (Adams and Sweatt, 2002). MAPKs include
the p38, c-Jun-N-terminal kinases (JNKs) and the extracellular
signal-regulated kinases 1 and 2 (ERK1 and ERK2) (Chang and
Karin, 2001). A plethora of studies demonstrate that ERK1 and
ERK2 play a central role in the development of synaptic plasticity
underlying learning and memory (Kornhauser and Greenberg,
1997; Atkins et al., 1998; Impey et al., 1998; Schafe et al., 2000),
whereas the contribution of p38 to associative learning is margin-
ally described (Zhen et al., 2001; Rossato et al., 2006).

The role of JNKs in associative learning and memory, how-
ever, is unclear. The JNKs are encoded by at least three genes
(JNK1, -2, and -3), and the transcripts of each of these genes are
alternatively spliced to create mRNAs that encode 46 kDa and 54
kDa JNK isoforms (Gupta et al., 1995, 1996). JNKs are fully acti-
vated after phosphorylation at Thr183 and Tyr185 by MAP ki-
nase kinases (MKK4 or MKK7, respectively). Activation and/or
deactivation of JNKs pathways is regarded as a molecular switch
in stress signal transduction (Manning and Davis, 2003), and the
ability of the activated JNKs to phosphorylate numerous tran-
scription factors (Gupta et al., 1995, 1996), among other targets,
opens the possibility for the contribution of JNKs signaling path-
ways to memory formation. Considering also that various stres-
sors activate JNKs (Manning and Davis, 2003), we hypothesized a
critical involvement of JNKs in stress-induced modulation of
learning and memory.
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To address this question, we investigated whether the tempo-
rary impairment in contextual fear learning following exposure
to acute stress (Todorovic et al., 2007) is functionally linked to
changes in JNKs activity. In the current study, we first demon-
strate that increased, sustained activation of hippocampal JNKs is
responsible for the observed stress-induced impairment of con-
textual fear. Second, we demonstrate that pharmacological inhi-
bition of hippocampal JNKs pathways under baseline conditions
enhances retention of contextual fear. The latter data provide the
first evidence that hippocampal JNKs might play a role as a rate-
limiting factor during regulation of baseline associative learning.

Materials and Methods
Animals. Nine-week-old male and female C57BL/6J mice were obtained
from Jackson ImmunoResearch Laboratories. Female mice were used as
indicated. Twelve-week-old C57BL/6J wild-type, Jnk1 (Dong et al.,
1998); Jnk2 (Yang et al., 1998), and Jnk3 (Yang et al., 1997) single null
mutant male mice were bred and genotyped at the Animal Facility of the
Department of Animal Medicine, University of Massachusetts Medical
Centre. All mice were individually housed in macrolon cages and main-
tained on a 12 h light/dark cycle (lights on at 7:00 A.M.) with access to
food and water ad libitum. The number of mice used for each procedure
is provided in the respective sections. All experimental procedures were
performed in compliance with the University of Hawaii Animal Care
Committee in accordance with National Institute of Health guidelines.

Drugs. sp600125 (anthra [1,9-cd] pyrazole-6 (2H)-one), a potent and
selective JNK inhibitor, was obtained from EMD Biosciences. sp600125
inhibits JNKs (sp600125 acts as a reversible ATP-competitive JNK inhib-
itor) with an IC50 of 0.04 – 0.09 �M (Bennett et al., 2001). sp600125 is
selective for JNKs over ERKs and p38 (IC50 �10 �M). It was dissolved in
0.1% DMSO in saline. Based on the results demonstrating its ability to
downregulate phosphorylation of JNKs downstream targets c-Jun,
ATF2, and Elk1 a dose of 30 �M sp600125 was selected. The D-retro-
inverso form of JNK-inhibitor (D-JNKI1) (Dickens et al., 1997; Borsello
et al., 2003) (H-Gly-D-Arg-D-Lys-D-Lys-D-Arg-D-Arg-D-Gln-D-Arg-D-
Arg-D-Arg-D-Pro-D-Pro-D-Arg-D-Pro-D-Lys-D-Arg-D-Pro-D-Thr-D-
Thr-D-Leu-D-Asn-D-Leu-D-Phe-D-Pro-D-Gln-D-Val-D-Pro-D-Arg-D-
Ser-D-Gln-D-Asp-D-Thr-NH2) was obtained from GL Biochem. The
D-JNKI1 was initially solubilized in DMSO to make a 6.37 mM stock
solution. The same stock solution of D-JNKI1 was further diluted in saline
to obtain a final concentration of 4 or 8 �M. Anisomycin (Sigma) was used as
a potent activator of JNKs. It was first dissolved in 1 M HCl the pH subse-
quently adjusted to 7.0 with 1 M NaOH. The final concentration of 100 �g/�l
was obtained by adding 0.9% saline (Wanisch and Wotjak, 2008). Human or
rat CRF (h/rCRF) and the CRF2 antagonist antisauvagine-30 (aSvg-30) were
synthesized as described previously (Jahn et al., 2001). The peptides were
initially dissolved in 10 mM acetic acid and diluted with twofold concentrated
sterile artificial CSF (aCSF). The final pH of the peptide solutions was 7.4.
The final concentrations of h/rCRF and aSvg-30 were selected on the basis of
our previous experiments (Todorovic et al., 2007).

Cannula implantation. Double cannulae were implanted under 1.2%
avertin anesthesia (0.4 ml/mouse) and affixed to the skull with dental
cement. The injection system (C235; Plastics One) consisted of a double-
guided cannula, dummy, and a cap. Cannulae were placed in the dorsal
hippocampus (anteroposterior �1.5 mm, lateral 1 mm, depth 2 mm) or
lateral intermediate septal area (anteroposterior �1 mm, lateral 0.5 mm,
depth 3 mm) (Franklin and Paxinos, 2001). Animals were allowed to
recover for 7– 8 d before the experiments started.

Drug infusions. On the day of the experiment, mice were exposed to a
light isoflurane anesthesia, the cap and the dummy were removed and
solutions were delivered through an injector (CMA/Microdialysis)
linked to two Hamilton microsyringes with plastic tubing. The drugs
prepared in their respective vehicle (saline, aCSF) or the vehicle alone
were administered bilaterally over a 15 s time period so that a 0.25 �l
volume was injected in each side. No behavioral signs of epileptiform or
other gross electrographic abnormalities, such as exacerbated behavioral
convulsions were observed during or immediately after injections. The
cannula placement was verified for each mouse following the behavior

experiments by histological examination of the brains after methylene
blue injection (0.25 �l/site). Only data obtained from mice with correctly
placed cannulae were included in statistical analysis.

Immobilization stress. Acute stress involved taping of the mouse’s
limbs to a Plexiglas surface for 1 h in a supine position (Todorovic et al.,
2007).

Contextual fear conditioning. The fear conditioning experiments were
performed as described previously (Todorovic et al., 2007) using a
computer-controlled fear conditioning system (TSE Systems). The train-
ing (conditioning) consisted of a single trial. The mouse was exposed to
the conditioning context (180 s) followed by a foot shock (0.7 mA, 2 s,
constant current) delivered through a stainless steel grid floor. The
mouse was removed from the fear conditioning box 30 s after shock
termination to avoid an aversive association with the handling proce-
dure. Memory tests were performed 24 h after fear conditioning
[context-shock (CTX-S), paired group]. Contextual memory was tested
in the conditioning box for 180 s without shock presentation (with back-
ground noise). Freezing, defined as a lack of movement in addition to
heartbeat and respiration, was observed in 10 s intervals and was used as
an index of conditioned fear. Control groups of mice were exposed to the
context alone (3 min) (CTX group) or immediate footshock (2 s, 0.7 mA,
constant current) followed by context (3 min) during the training [im-
mediate shock (ImS) group]. The mean activity [mA context (cm/s)] and
activity bursts to the shock in the context (supplemental Table 1, avail-
able at www.jneurosci.org as supplemental material) were automatically
recorded by a photo beam system (10 Hz detection rate) and analyzed by
software developed by TSE Systems (Todorovic et al., 2007).

Hot-plate assay. Analgesia was monitored using a hot plate apparatus
(TSE Systems). Mice were individually placed on the hot plate (surface
temperature, 52°C) within a clear Plexiglas chamber and the latency in
seconds (60 s maximum) to reach the analgesic threshold was recorded.
The analgesic threshold was considered to be the latency between the
time when an animal was placed on the plate and the time when it started
licking its hindpaws or jumping.

Protein extraction and Western blot analyses. The procedure was similar
to that described before (Todorovic et al., 2009). Briefly, mice were killed
by cervical dislocation and their dorsal hippocampi were quickly dis-
sected and frozen at �80°C. Frozen tissue was lysed in RIPA buffer
containing protease and phosphatase inhibitors (Pierce). Protein sam-
ples of the cell lysates from individual mice were separated by 10% SDS-
PAGE and electrophoretically transferred to polyvinylidene difluoride
(PVDF) membranes (Immobilon-P; Millipore). Primary phospho-state-
specific antibodies were pJNKs (Thr183/Tyr185) (1:2000), pERK1/2
(Thr202/Tyr204) (1:2000), pElk1 (1:1000), pATF2 (1:1000) and p-c-Jun
(Ser-63) (1:1000), and were used in conjunction with respective pan-
antibodies to measure individual kinase (1:1000) (Cell Signaling Tech-
nology). The specificity of anti-pJNKs (Thr183/Tyr185) antibody was
confirmed in previous studies (Kuan et al., 2003; Jaeschke et al., 2006).
The immunoreactive bands were visualized by using secondary antibod-
ies conjugated to HRP (Cell Signaling Technology, 1:5000) with an ECL
Western blot detection kit (Pierce). Quantification of bands was per-
formed by using the ImageJ 1.41 software [National Institutes of Health
(NIH), Bethesda, MD]. The band density of a given phosphorylated
kinase was divided by the band density of the corresponding total protein
kinase and expressed as percentage of band densities obtained with sam-
ples from control mice.

Protein kinase assay. To determine JNK1 and JNK3 kinase activity,
dorsohippocampal lysates (500 �g total protein) were incubated with
DynaBeads Protein G (Invitrogen) for 1 h at 4°C. Using a magnet, lysates
were separated from the preclearing beads and incubated with 20 �l of
DynaBeads conjugated with mouse anti-JNK-1 antibody (clone G151-
33, PharMingen) or rabbit anti-JNK3 antibody (clone C05T, Millipore)
at 4°C for 2 h. The DynaBeads were then pelleted using a magnet and
washed 3 times with PBS containing Tween 20. Immunoprecipitated (IP)
complexes were eluted from the beads by adding 50 mM glycine, pH 2.8,
with gentle mixing for 2 min at room temperature. JNK1 and JNK3
kinase assays were performed using c-Jun fusion protein [c-Jun residues
1-79 fused with glutathione S-transferase (GST)]) (Cell Signaling Tech-
nology) as the JNK isoform substrate. To the IP complexes 50 �l of kinase
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assay buffer [containing the following (in mM): 25 Tris-HCl, pH 7.5,
5-glycerol phosphate, 2 DTT, 0.1 NaVO3, 10 MgCl2, 200 ATP, and 2 �g
of c-Jun (1-79) (c-Jun residues 1-79 fused with GST)] were added, and
incubated at 30°C for 30 min. Immunoblot analysis for c-Jun phosphor-
ylation was performed using the anti-phospho-c-Jun (Ser-63) antibody
(Cell Signaling Technology). The immunoblots were reprobed with
JNK1 and JNK3 antibodies. Light-chain-specific HRP-conjugated anti-
rabbit IgG (Cell Signaling Technology) or anti-mouse IgG (Sigma) were
used to remove masking produced by denatured IgG heavy chains. Mo-
lecular weight and densitometric calculations were performed with the
computer software ImageJ 1.41 (NIH). The specificity of JNK1 and JNK3
antibodies in mouse tissue has been described previously (Kuan et al.,
1999; Coffey et al., 2002; Brecht et al., 2005) and was further confirmed
after testing in hippocampal whole-cell lysates obtained from the corre-
sponding JNK-isoform deficient mice (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material).

c-Fos and c-Jun immunohistochemistry. Mice were anesthetized with a
1.2% avertin solution injected intraperitoneally and transcardially per-
fused with ice-cold PBS, pH 7.4, followed by 4% paraformaldehyde
(PFA) in phosphate buffer (pH 7.4, 150 ml per mouse). Immunostaining
was performed by using the standard protocol for free-floating sections
(50 �m thickness) with anti-c-Fos (Oncogene Sciences, 1:15,000) anti-
p(Ser-63)-c-Jun (Millipore, 1:400) primary antibodies. Biotinylated sec-
ondary antibodies (Vector Laboratories, 1:400) and ABC kit (Vector
Laboratories) were used for signal amplification and diaminobenzidine
(Sigma tablet set) as chromogen. A Zeiss Axioimager microscope and a
Zeiss Axio Cam HRM camera were used for the analysis and photogra-
phy of sections.

Single immunofluorescence staining and light microscopy. A similar
method as the one used for perfusion and postfixation of mice brains was
followed. A freezing microtome was used to collect serial coronal 50 �m
sections through the hippocampus of fixed brains. For single immuno-
fluorescent staining of pJNK, free-floating sections were incubated in
TBST (1� PBS containing 0.03% Triton X-100) containing 5% goat
serum and Avidin/Biotin blocking solution (Vector labs) following the
manufacturer’s protocol and then with pJNK-specific (G7) primary an-
tibody (Santa Cruz Biotechnology, 1:500) (Gdalyahu et al., 2004) in a
similar buffer solution overnight at 4°C. The sections were counter-
stained with 4,6-diamidino-2-phenylindole (DAPI) (1 mg/ml, 1:1000)
and mounted with Vectashield mounting medium (Vector Laborato-
ries). The slides were immediately analyzed under the microscope (Ax-
ioimager, Zeiss), and microphotographs were taken with a Zeiss Axio
Cam HRM with the help of the Axiovision Rel 4.5 software. We calcu-
lated relative values for immunofluorescence signals by comparison with
conventional fluorescence photomicrographs taken with identical expo-
sure times and illumination from simultaneously processed specimens.
Equally sized images from different treatment groups were analyzed us-
ing AIDA imaging software. To account for differences in background
staining intensity, two background intensity measurements lacking im-
munofluorescent profiles were taken from each section. The mean of
these two measurements constituted the background intensity. The
background intensity was then subtracted from the measured specific
signal density to provide a final intensity immunofluorescence value.
Equivalent planes of coronal sections (CA1 and CA3 subregions) were
used for comparison of animal groups. Values are expressed in arbitrary
units (mean integral density/area-background) (Fig. 1). For cell counting
in other brain regions (e.g., supplemental Fig. 2, available at www.
jneurosci.org as supplemental material) the total number of cells was
determined by the number of nuclei stained with DAPI. Cells containing
phosphorylated JNKs (pJNKs) were counted and calculated as the per-
centage of the total number of cells in the same brain region. The data are
presented as the fold increase in the percentage of cells containing pJNKs
in comparison with that found in the same region from control mice. The
same brain areas with pJNK-positive cells were chosen based on stereo-
taxic coordinates and equivalent brain areas were counted from all mice.

Double immunofluorescence staining and confocal imaging. For dou-
ble immunofluorescence staining free-floating sections were used.
Sections were first incubated in 1� TBST containing 5% goat serum
and Avidin/Biotin blocking solution (as mentioned in the single immu-

nofluorescence), and then incubated with primary antibodies overnight
at 4°C. Primary antibodies used were anti-pJNK (G7) (Santa Cruz Bio-
technology, 1:500) (Gdalyahu et al., 2004) and mouse anti-neuronal-
specific nuclear protein (NeuN) IgG (Millipore, 1:1000). The fluorescent
secondary antibodies used were biotinylated anti-rabbit (Vector Labora-
tories) and anti-mouse Alexa Fluor-555 (Invitrogen). The sections were
rinsed and incubated with Fluorescein Avidin DCS (Vector Laborato-
ries). Following rinsing, the sections were dried and mounted with
Vectashield (Vector Laboratories). Several different titers of each anti-
body were tested to determine the concentration for optimal signal-to-
noise results. Images were captured with a Zeiss LSM 510 confocal
microscope using a 20� objective lens. All confocal images were scanned
and edited using LSM 510 metasoftware (Zeiss). All presented micropho-
tographs are composites of 5 serial optical sections scanned at a regular
increment of 1 �m. Optical sections were averaged 3– 4 times to reduce
noise. Density filter, pinhole aperture, detector gain and offset were ini-
tially set within a linear range to obtain pixel densities, and then kept
constant for experimental comparisons. Signals were acquired using se-
quential line scanning. Colocalization of immunosignals was confirmed
in x, y, and z dimensions.

Statistical Analysis. The data for behavioral and molecular studies are
expressed as mean � SEM, and were analyzed using a one- and two-way
ANOVA (StatView 5.0.1 software; SAS Institute). Scheffé’s test was ap-
plied post hoc for individual between-group comparisons at the p � 0.05
level of significance.

Results
Stress-induced increase of hippocampal phospho-JNKs
causes impairment of contextual fear
C57BL/6J male mice trained immediately after 1 h of immobili-
zation stress (IS) showed significant impairment of context-
dependent fear conditioning (F(1,18) � 22.3; p � 0.05) measured
24 h later (Fig. 1a), consistent with previous findings (Todorovic
et al., 2007). One attractive transduction system for mediation of
this stress response is the JNK pathway, and activation of the JNK
isoforms (JNK1, 2, and 3) is regarded as the key molecular switch
(Davis, 2000). Western blot analysis revealed that 1 h IS increased
phosphorylation of 46 and 54 kDa JNKs (pJNKs) in the dorsal
hippocampus 0, 0.5, 1, and 3 h following 1 h IS (F(6,21) � 21.3; p �
0.05; 46 kDa) (F(6,21) � 11.3; p � 0.05; 54 kDa) (Scheffé test, p �
0.05 vs naive controls) (Fig. 1b). Moreover, when assessed 1 h
after exposure to the stressor, pJNKs were strongly upregulated in
the CA1 (Fig. 1c, left) and the CA3 (Fig. 1c, right) pyramidal cell
somata of the hippocampus with accompanied diffusion to-
ward the dendritic and axonal processes. Exposure to 1 h IS
also elevated pJNKs in the basolateral and cortical nuclei of the
amygdala, hypothalamic ventromedial and dorsomedial nu-
clei (Scheffé test, p � 0.05 vs nonstressed controls) (supple-
mental Fig. 2, available at www.jneurosci.org as supplemental
material), but did not alter the JNKs phosphorylation pattern
in lateral and medial septal areas, piriform cortex, or paraven-
tricular nucleus of the hypothalamus, among the selected ar-
eas ( p � 0.05) (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material).

It is extensively documented that effects of acute stress on
hippocampal-dependent tasks (i.e., trace eyeblink conditioning,
learned helplessness) differ between male and female rodents
(Shors, 2004). Thus, we next tested whether exposure to 1 h IS
also elicits changes in contextual fear conditioning and hip-
pocampal pJNKs in C57BL/6J female mice. Similarly to male
mice, C57BL/6J female mice exposed to 1 h IS and trained imme-
diately afterward showed significant impairment of contextual
fear (F(1,17) � 33.6; p � 0.05) (supplemental Fig. 3a, available at
www.jneurosci.org as supplemental material). Female mice dis-
played a somewhat different pattern of JNKs activation compared
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with male mice, with a small decrease in hippocampal 54 kDa
pJNKs 30 min after 1 h IS ( p � 0.05; Scheffé test), followed by
a similarly significant increase in 46 kDa JNK activation 1 and
3 h (F(6,23) � 19.1; p � 0.05; 46 kDa) and in 54 kDa JNK
activation 3 h later (F(6,23) � 9.5; p � 0.05; 54 kDa) (Scheffé
test, p � 0.05 vs naive controls) (supplemental Fig. 3b, avail-
able at www.jneurosci.org as supplemental material). Interest-
ingly, 1 h IS significantly impaired male (Todorovic et al.,
2007) but not female C57BL/6J mice in delayed tone-
dependent fear conditioning (data not shown).

Because JNKs were activated in the CA1 subregion of the hip-
pocampus, which plays a critical role in contextual fear condi-
tioning (Abel et al., 1997; Impey et al., 1998; Rampon et al., 2000;
Levenson et al., 2002), we assumed that the JNK signaling may be
involved in the formation of contextual fear associated with
stress. Thus, our next question was whether elevated phosphor-
ylation of hippocampal JNKs was functionally coupled to the
observed stress-induced memory deficit. To address this issue, we

injected JNK inhibitors bilaterally into the hippocampus, as fol-
lows. The small molecule JNK inhibitor sp600125 (30 �M; 0.25 �l
per side), cell-permeable JNK inhibitory peptide D-JNKI1 (8 �M;
0.25 �l per side) derived from JNK-interacting protein-1 (JIP1),
or saline into the CA1 subregion of the dorsal hippocampus were
injected (intrahippocampally) 5 min before 1 h IS. Mice were
trained immediately following 1 h IS (stress groups: sp-FC, JNKI-
FC). A second group of mice received identical treatment except
that the injection was performed immediately after contextual
fear conditioning (stress groups: FC-sp, FC-JNKI) (Fig. 2a). Sig-
nificant effects for treatment (F(4,80) � 6.3; p � 0.05) and stress
(F(1,80) � 44.2; p � 0.05) were revealed (via two-way ANOVA,
with treatment and stress as between-subject factors), demon-
strating that intrahippocampal injection of sp600125 or D-JNKI1
in both mouse groups exposed to 1 h IS fully rescued stress-
induced learning deficits and returned contextual conditioned
fear to baseline levels (Fig. 2a). The dose of sp600125 was selected
based on its ability to strongly reduce phosphorylation of JNKs

Figure 1. Stress-induced learning deficit is accompanied by increased phosphorylation of hippocampal JNKs. a, C57BL/6J mice subjected to 1 h immobilization stress, trained immediately
afterward and tested 24 h later for retention showed significant impairment of contextual conditioned fear (n � 10). b, Representative Western blots of phosphorylated JNKs from naive and stress
exposed mice (0 – 8 h poststress) (bottom). Densitometric analysis: The immunoblots were obtained from individual dorsohippocampal lysates isolated 0 – 8 h after exposure to stressor. p46 and
p54 correspond to the molecular weights (in kilodaltons) of the phosphorylated isoforms of mammalian JNKs (pJNKs 1-3) that are recognized by the pJNKs antibody. The relative intensity of bands
corresponding to phosphorylated p46 and p54 JNKs were determined and this value was divided by that obtained for corresponding bands (46 and 54 kDa) of total JNK1-3. Such calculated pJNKs
levels in experimental groups were then expressed as a percentage of those in naive mice. Statistically significant differences: *p � 0.05 relative to the naive mice (top) (n � 4) (top). c,
Representative photomicrographs acquired using a conventional fluorescent microscope illustrate the strong increase in pJNKs in the CA1 (left panel) and CA3 hippocampal (right panel) subfields
in mice exposed to 1 h stress; pJNKs (green), DAPI (blue). Magnification 20�. Scale bar, 400 �m.
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elective substrates, including transcriptional factors c-Jun, ATF2,
and Elk1 (Scheffé test, p � 0.05 vs saline controls) (Fig. 2b; sup-
plemental Fig. 4, available at www.jneurosci.org as supplemental
material). Interestingly, the same dose of sp600125 also tran-
siently increased phosphorylation of ERK1/2 MAPKs 5 min after
injections. The level of the unphosphorylated ERK1/2 remained
unchanged (Scheffé test, p � 0.05 vs saline) (Fig. 2b; supplemen-
tal Fig. 4, available at www.jneurosci.org as supplemental mate-
rial). Similarly, the dose for D-JNKI1 of 8 �M was chosen based on
its ability to significantly downregulate phosphorylation of c-Jun
at Ser-63 after exposure to 30 min IS (Scheffé test, p � 0.05 vs
vehicle) (Fig. 2c). It is important to note that pretraining injec-
tions of sp600125 or D-JNKI1 into the dorsal hippocampus did

not affect activity or the activity burst in response to the shock
(supplemental Table 1, available at www.jneurosci.org as supple-
mental material).

Although phosphorylation state and hence activity of JNK in
the hippocampus correlated with the stress-induced memory
deficit, it may also be that exposure to 1 h IS and/or JNK inhibi-
tors affected pain sensitivity or locomotion during fear condi-
tioning, implying that the stress-induced learning deficit might
have been due to lowered sensitivity to the foot shock or altered
locomotion. We tested the first possibility by exposing the mice
to a hot-plate test immediately after exposure to 1 h immobiliza-
tion. One hour of IS alone did not change the response latency in
the hot-plate test (F(1,18) � 1) (supplemental Fig. 5b, available at

Figure 2. Injection of JNKs inhibitors into the CA1 subregion of the dorsal hippocampus before stress exposure and immediately after training prevents stress-induced memory deficit. a,
Schematic behavioral procedure for fear conditioning and intrahippocampal injection of the JNK inhibitors, sp600125 and D-JNKI1 (left). Intrahippocampal injection of 30 �M sp600125 or 8 �M

D-JNKI1 5 min before 1 h immobilization stress (stress groups: sp-FC, JNKI-FC) resulted in reversal of contextual fear deficit. Similarly, intrahippocampal injection of JNK inhibitors immediately after
stress plus contextual fear conditioning (stress groups: FC-sp, FC-JNKI) blocked stress-induced memory deficit. Sp-FC and JNKI-FC no-stress control groups received injections 65 min before
conditioning. FC-sp and FC-JNKI no-stress control groups received injection immediately following conditioning (right). Statistically significant differences: *p � 0.05 relative to the FC-no stress
control group (n �8 –10). b, Representative immunoblots from dorsal hippocampi taken from mice at various time points after intrahippocampal injections of 30 �M sp600125. Note that injections
resulted in significantly decreased phosphorylation of JNKs substrates c-Jun (Ser-63), ATF2, and Elk1 in the dorsal hippocampus up to 1 h postinfusion. Significant increases in pERK1 (44 kDa) and
pERK2 (42 kDa) were observed 5 min after JNKs inhibition (n � 5). *p � 0.05 relative to the control mice (saline). c, Intrahippocampal injection of the selective JNKs peptide inhibitor D-JNKI1
(procedure, top, left panel) strongly decreased stress-induced phosphorylation of JNKs substrate c-Jun at Ser63 in the dorsal hippocampus. Representative Western blots of p-c-Jun (Ser-63) levels
from naive and stress-exposed mice that received intrahippocampal injection of saline or D-JNKI1 5 min before exposure to 30 min IS. The immunoblots were obtained from individual dorsohip-
pocampal lysates isolated immediately after exposure to stress (top, upper middle panel). Densitometric analysis is shown on the upper right panel: *p � 0.05 relative to the naive mice (n � 5).
Photomicrographs acquired using a light microscope show pronounced blockade of stress-induced phosphorylation of c-Jun after intrahippocampal injection of 8 �M D-JNKI1 under the same
conditions (bottom). Magnification 5�. Scale bar, 100 �m.
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www.jneurosci.org as supplemental material). Thus, stress-
induced analgesia did not mediate the stress-induced impair-
ment in retention of contextual fear. Alternatively, it may be that
mice injected with JNK inhibitors might display increased re-
sponsiveness to the foot shock serving as unconditioned stimulus
(US), which would be responsible for rescue from stress-induced
impairment of contextual fear. This possibility was rejected after
finding that intrahippocampal injections of 30 �M sp600125, 8
�M D-JNKI1, or vehicle 30 min before contextual fear did not
change reactivity toward the US (F(1,12) � 1.11; p � 0.05) (sup-
plemental Fig. 5a, available at www.jneurosci.org as supplemen-
tal material). Finally, exposure to 1 h IS did not affect locomotor
activity measured in the fear conditioning box (F(1,18) � 1.3; p �
0.05) (supplemental Table 1, available at www.jneurosci.org as
supplemental material).

Specific isoforms of hippocampal JNKs are activated in
response to stress linked to impairment of contextual fear
Which isoforms of JNK are involved in the observed stress-
induced memory deficit was revealed via use of JNK isoform null
mice. It was found that Jnk2- and Jnk3-null mice (Jnk2�/�,
Jnk3�/�) do not display stress-induced deficits of contextual fear
conditioning (main effects for genotype (F(3,56) � 13.5; p � 0.05),

stress (F(1,56) � 29.4; p � 0.05), geno-
type � stress (F(3,56) � 14.2; p � 0.05). In
contrast, the stress-induced deficit was
still evident in Jnk1-null mice (Fig. 3a). In
addition, we immunoprecipitated JNK1
and JNK3 from whole-cell lysates pre-
pared from the dorsal hippocampus of
naive mice and stressed C57BL/6J mice,
and then tested their activity using an in
vitro kinase assay with a GST-c-Jun fusion
protein as substrate. We detected a strong
increase in JNK3 activity (F(5,18) � 14.4;
p � 0.05) ( p � 0.05; Scheffé test vs naive
mice) up to the 3 h poststress (top), with-
out detectable effect of 1 h IS on JNK1
activity (bottom) (Fig. 3b). These results
indicate that the increased phospho-JNK
in dorsohippocampal neurons in re-
sponse to stress (Fig. 1) corresponds to
activation of specific isoforms. Together,
these observations support a hypothesis
that there is a strong difference between
JNK1 and JNK3 (and likely JNK2) activity
in neurons in response to stressful stimuli.

Activation of septal CRF2 mimics effects
of acute exposure to a stressor on
contextual fear conditioning and
hippocampal JNKs activation
Our previous findings showed that the
stress-induced increases of anxiety and
decreases of contextual fear are fully pre-
vented by injections of CRF2 antagonist in
the lateral septum. In addition, pharma-
cological activation of CRF2 in the lateral
septum mimics the effects of acute stress
on anxiety and memory processes
(Todorovic et al., 2007). Thus, to address
the possibility that CRF2 serves upstream
of JNK activation, our next experiment

tested whether pharmacological activation of CRF2 in the lateral
septum impaired contextual conditioned fear, and if so, whether
such impairment, as in the case of exposure to 1 h IS, was accom-
panied by elevated hippocampal pJNKs levels. For that purpose,
mice were injected with 100 ng (20 pmol; 0.25 �l per side) of
h/rCRF into the lateral septum and subjected to contextual fear
conditioning 30 min later (Fig. 4a, left). Indeed, this treatment
produced a significant impairment in the retention of contextual
fear 24 h later (F(2,21) � 22.3; p � 0.05) (Fig. 4a, right). Moreover,
intraseptal injection of 400 ng (110 pmol; 0.25 �l per side) of the
CRF2-selective antagonist aSvg-30 alone facilitated contextual
fear (Scheffé test, p � 0.05 vs aCSF controls) (Fig. 4a, right).
Paralleling the memory test results, the phosphorylation levels of
46 kDa and 54 kDa JNKs in the hippocampus increased signifi-
cantly in septal h/rCRF-injected mice 30 min after contextual fear
conditioning (Scheffé test, p � 0.05 vs aCSF) (Fig. 4b). Further-
more, memory-facilitating blockade of CRF2 in the lateral sep-
tum by aSvg-30 resulted in a decrease of hippocampal 54 kDa
pJNKs (Scheffé test, p � 0.05 vs aCSF) (Fig. 4b). This finding
suggested that during contextual fear conditioning the hip-
pocampal response to 1 h IS was mediated by septal CRF2

using the circuitry of the septo-hippocampal system (Gray and
McNaughton, 1983). Activation of septal CRF2 would then

Figure 3. Selective activation of JNK 2 and JNK3 after acute stress is responsible for stress-induced memory deficit. a, Targeted
deletion of Jnk2 and Jnk3 genes protected mice from stress-induced memory deficit. Jnk2- and Jnk3-null mice trained immediately
after 1 h immobilization stress did not display stress-induced impairment of contextual fear conditioning. As found for wild-type
mice Jnk1-null mice did show stress-induced memory deficits. The baseline level of contextual fear, unchanged in Jnk2- and
Jnk3-null mice was significantly increased in Jnk1-null compared with wild-type mice (n � 8 per group). Statistically significant
differences: *p � 0.05 vs wild-type mice. b, One hour of immobilization stress increased JNK3 kinase activity in dorsal hippocampi
at the indicated time points following stress exposure. JNK1 and JNK3 were immunoprecipitated from lysates with isoform-
selective JNK antibodies, and the activity was assessed with in vitro kinase assays using GST-c-Jun (1-79) as the substrate (left).
JNK1 kinase activity in total lysates was not affected by stress (left bottom). JNK3 showed a strong increase in activity up to 3 h after
stress (left top). Densitometric analysis: phospho c-Jun levels in experimental groups were expressed as percentage of those in
naive mice. Phospho-c-Jun was visualized by phospho-c-Jun (Ser-63) antibody and the JNK isoforms were visualized by JNK1 or
JNK3 antibodies. The double-band corresponds to mono- or biphosphorylated Jun protein. Quantified activity is displayed as
percentage of control (naive mice) activity (right) (n � 4). *p � 0.05 relative to naive mice.
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lead to activation of hippocampal JNKs, which would be re-
sponsible for stress-induced impairment of contextual fear
memory consolidation.

Further evidence supporting this hypothesis was provided by
the finding that intraseptal administration of 400 ng (110 pmol)
of aSvg-30 30 min before 1 h IS (Fig. 4c, left) completely pre-
vented stress-induced impairment of contextual fear (two-way
ANOVA: treatment, F(1,34) � 11.6; p � 0.05; stress, F(1,34) � 8.1;
p � 0.05; interaction, F(1,34) � 16.6; p � 0.05) (Fig. 4c, right). The
same treatment completely prevented stress-induced increase in
hippocampal pJNKs (Scheffé test; p � 0.05 compared with aCSF)
(Fig. 4d).

Anisomycin-induced amnesia is prevented by selective
blockade of hippocampal JNKs pathways
Our initial data (Fig. 1) suggested that exposure to 1 h IS leads to
a strong and sustained (0 –3 h) increase in hippocampal pJNKs
levels. Anisomycin is a potent activator of JNKs (Cano et al., 1994;
Hazzalin et al., 1998). The next experiment was designed to in-
vestigate whether bilateral intrahippocampal administration of
anisomycin (100 �g/�l; 0.25 �l per side) would mimic the effects
of acute stress on retention of long-term contextual fear and
hippocampal JNKs activation. As shown in Figure 5a, freezing
during a memory test 24 h after contextual fear conditioning was
significantly lower in mice injected with anisomycin into the CA1
subregion of the hippocampus 15 min before training than in

vehicle-injected controls. Thus, the anisomycin treatment suc-
cessfully produced a memory deficit 24 h after training (F(2,21) �
19.0; p � 0.05). Interestingly, a similar deficit was observed when
mice were tested 90 min (F(2,21) � 40.1; p � 0.05) and 360 min
(F(2,21) � 7.9; p � 0.05), but not when tested immediately
(F(2,21) � 1.8; p � 0.05) or 180 min (F(2,21) � 2.1; p � 0.05) after
contextual fear conditioning (Fig. 5a). Similar to pretraining,
post-training intrahippocampal administration of anisomycin
produced a memory deficit 360 min (F(2,24) � 14.64; p � 0.05)
and 24 h following training (F(2,24) � 35.34; p � 0.05) as well as a
short-term memory deficit 90 min after conditioning (F(2,24) �
5.6; p � 0.05) (Fig. 5b). Importantly, intrahippocampal applica-
tion of sp600125 (30 �M; 0.25 �l per side) 30 min before (Fig. 5a),
or immediately after (Fig. 5b) contextual conditioning com-
pletely prevented the anisomycin effect on retention of contex-
tual fear memory at all time points tested (Scheffé test; p � 0.05 vs
saline). As expected, anisomycin also caused increased phosphor-
ylation of hippocampal JNKs. Representative immunoblots in
Figure 5c demonstrated a significant increase in both 46 kDa and
54 kDa pJNKs levels after intrahippocampal injection of aniso-
mycin (F(2,9) � 29.4; p � 0.05; 46 kDa) (F(2,9) � 21.2; p � 0.05; 54
kDa). This increase was prevented by prior treatment with
sp600125 (30 �M; 0.25 �l per side) (Scheffé test; p � 0.05 vs
saline) (Fig. 5c).

To control for changes in protein synthesis, we measured
training-induced changes in c-Fos protein production in the

Figure 4. Septal CRF2-mediated modulation of contextual conditioned fear correlates with changes of hippocampal JNKs phosphorylation levels. a, Activation of CRF2 in the lateral septum by 100
ng of h/rCRF or antagonism of septal CRF2 by 400 ng of CRF2-selective antagonist aSvg-30 resulted in impairment and enhancement of contextual fear, respectively (n � 8). b, The same
pharmacological procedures triggered signal transduction changes in the hippocampus responsible for the observed impairment or enhancement of contextual fear. The phosphorylation level of
JNKs (46 and 54 kDa) increased significantly in septal h/rCRF-injected mice 0.5 h after training. Memory-facilitating blockade of CRF2 in the lateral septum after injection of aSvg-30 resulted in
decreased phosphorylation of 54 kDa JNKs. Representative immunoblots of pJNKs levels and amounts from aCSF, aSvg-30, and CRF-treated mice (0.5 h post-training) (left). Densitometric analysis:
activated kinase levels in experimental groups were expressed as percentage of those in naive mice. Before the calculation, activated kinase levels were normalized to total kinase levels. Statistically
significant differences: *p � 0.05 relative to the naive mice (n � 4) (right). c, Stress-induced impairment of context-dependent fear conditioning was fully antagonized by 400 ng (110 pmol) of
aSvg-30 per mouse injected intraseptally 30 min before immobilization (n � 7–9). d, Intraseptal injection of aSvg-30 30 min before 1 h immobilization blocked stress-induced increase of
hippocampal phospho-JNKs (46 and 54 kDa). Immunoblots were obtained from individual dorsohippocampal lysates 30 min after the end of 1 h immobilization or from respective nonstressed
control groups (left). Densitometric analysis: phosphokinase levels in experimental groups were expressed as percentage of those in aCSF-treated nonstressed mice (right) (n � 4). Statistically
significant differences: *p � 0.05 vs control (nonstressed mice � aCSF).
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presence or absence of anisomycin. [Note that the turnover rate
of c-Fos transcripts is remarkably fast: their accumulation peaks
at �30 min after the onset of neuronal activity and decreases to
background level �30 min after the offset of neuronal activity
(Takahata et al., 2009).] Such a measure, although qualitative, is
accepted as sensitive enough to determine the degree of protein
synthesis (Lamprecht and Dudai, 1996; Inda et al., 2005; Frank-
land et al., 2006; Canal et al., 2007). Immunohistochemistry for
c-Fos was performed on sections of brains removed 60 min after
the end of contextual fear conditioning (Canal and Gold, 2007).
Figure 5d shows representative photomicrographs of c-Fos
immunoreactivity in the dorsal hippocampus after vehicle, ani-
somycin or combined sp600125 and anisomycin injections. Pos-
itive c-Fos-immunoreactivity detectable after contextual fear
conditioning was essentially eliminated by intrahippocampal in-
jections of anisomycin before training, providing evidence for
effective inhibition of protein synthesis. Moreover, c-Fos immu-
nostaining remained unchanged in mice that received sp600125
before anisomycin (Fig. 5d).

The role of hippocampal pJNKs in contextual fear
conditioning under baseline conditions
To determine whether activation of JNKs plays a role in the ac-
quisition of baseline conditioned fear, we measured the phos-

phorylation of JNKs in the CA1 subregion of the dorsal
hippocampus at different time points after context-dependent
fear conditioning. Control groups consisted of naive mice, mice
exposed to the context without foot shock (CTX group, non-
shocked controls), and mice exposed to an immediate foot shock
followed by context (ImS group, nonpaired control mice). As
expected, the latter training conditions did not result in associa-
tive learning (F(3,28) � 14.9; p � 0.05) (Fig. 6a) and were therefore
used to delineate the impact of associative learning on JNKs ac-
tivation from the effects of nonassociative learning and uncondi-
tioned stress responses to foot shock. Unlike immobilization
(Fig. 1b,c), the novel context or immediate foot shock did not
upregulate pJNKs (Fig. 6d) (Scheffé test; p � 0.05), indicating
that JNKs activation depended on the type of stressor (Shen et al.,
2004). Importantly, exposure of mice to a paired presentation of
context and shock (CTX-S group, paired mice) resulted in
stimulus-, time- and region-specific increase in phosphorylation
of JNKs (Fig. 6b– d). In the CA1 hippocampal subregion 46 kDa
and to lesser extent 54 kDa pJNKs were significantly elevated
60 min after training in the CTX-S group when compared with
naive mice (Scheffé test; p � 0.05 vs naive controls) (Fig.
6b– d). Absence of pJNKs changes in the control groups indi-
cated that under these conditions, the observed effect was
specific for associative learning.

Figure 5. Inhibition of hippocampal JNKs signaling pathways rescues anisomycin-induced deficit of contextual fear. a, Effects of pretraining intrahippocampal infusions of anisomycin on
contextual fear memory tested 0, 1.5, 3, 6, and 24 h after training. The treatment impaired memory at 1.5, 6, and 24 h but not at 0 and 3 h after training. Intrahippocampal administration of
JNKs-selective inhibitor sp600125 (30 �M) prevented observed memory deficits. b, Post-training intrahippocampal infusions of anisomycin impaired contextual fear retention 1.5, 6, and 24 h after
training. Intrahippocampal injections of sp600125 (30 �M) prevented anisomycin-induced memory deficits. c, Western blot analysis indicated that intrahippocampal injection of anisomycin
produced a strong increase in JNKs phosphorylation. Pretreatment with sp600125 reduced this increase in pJNKs levels. The immunoblots were obtained from individual dorsohippocampal lysates
isolated 30 min after injections. d, Contextual fear conditioning-induced c-Fos expression following intrahippocampal administrations of either saline (left), anisomycin (middle) or coadministration
of sp600125 with anisomycin (right). The photomicrographs were taken just below the cannulae tracks. c-Fos expression following anisomycin infusion and fear conditioning was markedly reduced,
in the principal hippocampus subfields. The additional pretreatment with sp600125 did not affect c-Fos inhibition caused by intrahippocampal anisomycin treatment. Magnification 10�. Scale bar,
200 �m (top). For comparison, a CA1 subregion of the hippocampus (indicated with dashed rectangle) is shown at higher magnification (bottom). Magnification 20�. Scale bar, 400 �m (bottom).
Statistically significant differences: *p � 0.05 relative to the saline-treated mice.
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Because the increased activation of pJNK mediated a stress-
induced deficit of contextual fear, we were interested in what the
functional significance of transiently increased pJNKs following
contextual conditioning might be. As strong and prolonged (0 –3
h; Fig. 1b) activation of pJNKs under stressful conditions leads to
a memory deficit, it seemed plausible that a briefer and weaker
activation of hippocampal JNKs might limit the amount of ac-
quired memory, guarding the animal from overlearning the con-
textual fear after a single conditioning trial. To test this idea, mice
were injected intrahippocampally with JNKs inhibitors sp600125
(30 �M, 100 �M), D-JNKI1 (4 �M, 8 �M), or saline (0.25 �l per
side) immediately after contextual fear conditioning. Inhibition
of the JNK pathway resulted in enhanced contextual fear when
mice were tested 24 h later (F(4,33) � 4.13; p � 0.05) (Fig. 7a).
Moreover, in mice injected intrahippocampally with 30 �M

sp600125 (0.25 �l per side) 30 min before, immediately and 30,

60 and 180 min after contextual fear conditioning, all but the 60
min post-training group, froze significantly more when tested
24 h later than mice injected intrahippocampally with saline
(F(5,40) � 12.2; p � 0.05) (Fig. 7b). The finding that Jnk1-null
mice (Jnk1�/�), but not Jnk2�/� or Jnk3�/�, displayed increased
baseline contextual fear (Scheffé test; p � 0.05 vs wild-type litter-
mates) (Fig. 3a) indicated that the JNK1 activity negatively regu-
lates contextual fear conditioning. It should be noted that none of
the three JNK-null mouse lines displayed changes in locomotor
activity or in response to the shock when compared with their
wild-type littermates (supplemental Table 1, available at www.
jneurosci.org as supplemental material).

To further examine whether JNK1 is the predominantly acti-
vated isoform after contextual fear conditioning, we analyzed
dorsohippocampal lysates obtained 1 h after exposure to training
or control conditions [naive, CTX-S (paired), CTX alone, and

Figure 6. Contextual fear conditioning is accompanied by temporally increased JNK activity in the CA1 subregion of hippocampus. a, Mice were trained using a contextual fear conditioning
protocol and pretraining baseline freezing behavior (naive group) was compared with freezing when mice were placed in the context on testing day. b, Representative Western blot of pJNKs levels
from naive mice and context-shock (CTX-S) (0 – 8 h post-training) experimental groups (left). Densitometric analysis: phosphorylated kinase levels in experimental groups are expressed in
percentage relative to pJNK levels in naive mice. Before the calculation, pJNK levels were normalized to total kinase levels (tJNK1-3) (right). Densitometric analysis revealed significantly increased
46 kDa and 54 kDa pJNKs levels 1 h after contextual fear conditioning. No changes in total JNKs amounts were observed across experimental groups. c, Representative confocal images of pJNKs
immunoreactivity showed an increased density of pJNK-labeled cells 1 h following contextual fear conditioning only in the CA1 subregion of the hippocampus. No such changes were observed in the
corpus callosum or cortex. pJNKs (red), NeuN (green); Scale bar, 400 �m. d, Western blot analysis also provided evidence that the exposure to context only (CTX group) or immediate-shock (ImS
group) did not change hippocampal pJNK levels. The immunoblots were obtained from individual dorsohippocampal lysates isolated 1 h after training. e, Contextual fear conditioning increases JNK1
activity in the dorsal hippocampus. Total JNK1 and JNK3 were precipitated from whole-cell lysates by respective antibodies and were analyzed for kinase activity. Representative blots of c-Jun
phosphorylation by JNK1 (middle) and JNK3 (left) 1 h after fear conditioning or control conditions are shown. Dorsohippocampal lysates were obtained from naive mice or 1 h after exposure to
context only (CTX group), or immediate-shock (ImS group) and context-shock (CTX-S) experimental conditions (n � 4). Phospho-c-Jun was visualized by anti-phospho-c-Jun (Ser-63) antibody and
the JNK isoforms were visualized by JNK1 or JNK3 antibody. Quantified activity is displayed as percentage of control (naive mice) activity (right). Statistically significant differences: *p �0.05 relative
to naive mice. CA1, CA1 subregion of hippocampus; cc, corpus callosum; cx, cortex.
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ImS mouse groups]. This time point was selected because pJNKs
levels were increased in C57BL/6J mice after contextual fear con-
ditioning (Fig. 6b,c). Consistent with the Jnk1�/� data, JNK1
activity, as measured by c-Jun activation was elevated in the dor-
sal hippocampi of CTX-S mice (F(3,12) � 4.2; p � 0.05) ( p � 0.05;
Scheffé test vs naive mice). CTX alone and ImS mouse groups did
not display a similar increase in JNK1 activity. This observation
suggested learning-specific activity for JNK1. The JNK3 isoform
showed no significant change in activity under all three experi-
mental conditions (Fig. 6e). In sum, along with findings that
Jnk2�/� and Jnk3�/� mice do not display stress-induced mem-
ory deficits (Fig. 3), and that stress induces a sustained increase in
JNK3 activity, our findings that JNK1 activity is primarily respon-
sible for baseline regulation of contextual fear conditioning is in
agreement with previous studies that demonstrated preferential
involvement of JNK isoforms in basal- and stress-induced signal-
ing activity. Specifically, it has been shown that JNK1 is the pri-
mary source of the high level of basal hippocampal JNK activity,
whereas JNK2 and JNK3 are critical components of stress-
induced JNK neuronal signaling (Coffey et al., 2002; Kuan et al.,
2003; Brecht et al., 2005). Since increased levels of pJNKs were
observed only up to 1 h postconditioning, the finding that en-
hanced retention is observed even after JNKs inhibition 180 min
post-training also raised the intriguing possibility that such en-
hancement might be explained by increased activation of the
ERK pathway following JNKs inhibition. Overall, these results
open the possibility that the hippocampal JNKs pathways alone,
or acting via a dynamic crosstalk with the ERK pathway, might

serve as a limiting factor in fear conditioning under baseline
conditions.

Since sp600125 might have some off-target actions (Bain et al.,
2007), to further control for its possible nonspecific effects on
cognitive or performance factors related to baseline fear memory,
two additional experiments were conducted. First, separate
groups of mice were injected intrahippocampally with 30 �M

sp600125 or vehicle before training and tested 0, 1, 3, or 6 h
afterward. Two-way ANOVA with the drug and time as between-
subject factors revealed that mice treated with sp600125 had in-
tact short-term memory (STM) for the context 0, 1 or 3 h after
training (time: F(3,58) � 1.9; p � 0.05; drug: F(1,58) � 1; interac-
tion: F(3,58) � 3.2; p � 0.05) (Fig. 8a). Memory-enhancing effects
of JNKs inhibition were observed for the first time 6 h after fear
conditioning (Scheffé test; p � 0.05 vs saline). These results sug-
gest that the enhanced retention of contextual fear memory
observed following JNKs inhibition was not due to improved
short-term memory. Second, infusion of 30 �M sp600125 24 h
before conditioning had no effect on the expression of STM 1 h
after training, which was assessed at approximately the same time
as LTM in the previous experiment (F(1,8) � 1) (Fig. 8b). Thus, it
is unlikely that the freezing enhancement observed in the LTM
test was attributable to nonspecific effects of sp600125 on general
activity levels (i.e., hypoactivity) that might compete with normal
behavioral expression 24 h after the infusion. Taking also into
account that neither sp600125 nor D-JNKI1 altered baseline
retention of contextual fear by affecting foot shock sensitivity
(supplemental Fig. 3b, available at www.jneurosci.org as supple-
mental material) or locomotor activity (supplemental Table 1,
available at www.jneurosci.org as supplemental material), collec-
tively, these control studies strongly favor the conclusion that
JNKs inhibition enhances fear memory retention by improving
memory consolidation processes.

Discussion
We have demonstrated an increase in hippocampal JNK phos-
phorylation and function in response to environmental stimuli
that result in a strict regulation of context-dependent fear condi-
tioning. More specifically, exposure to acute stress, acting via
CRF2 in the lateral septum, caused overactivation of the hip-
pocampal JNKs pathway and a profound impairment in contex-
tual fear conditioning. To our knowledge, these data provide the
first evidence that JNK pathways play an important role during

Figure 7. Intrahippocampal administration of JNKs inhibitors sp600125 and D-JNKI1 results
in enhancement of context-dependent fear conditioning. a, Mice injected immediately after
training with JNK inhibitors sp600125 (30 or 100 �M), D-JNKI1 (4 or 8 �M) showed increased
contextual fear when assessed for conditioned freezing 24 h later (n � 7– 8). b, Separate
groups of mice were injected with 30 �M sp600125, or saline 30 min before, immediately, or 30,
60, and 180 min after contextual fear conditioning. All the groups, except sp600125 1 h post-
training group, showed enhanced contextual freezing during the memory test 24 h later (n �
8 –9). Statistically significant differences: *p � 0.05 relative to saline controls.

Figure 8. Enhancement of contextual conditioned fear produced by blockade of the hip-
pocampal JNKs signal is not attributable to nonspecific effects of sp600125 on general activity
level. a, Mice were injected into the dorsal hippocampus with 30 �M sp600125 or vehicle
(saline) immediately after contextual conditioning, and assessed for immediate postshock
freezing (0 min), short-term memory at 1 and 3 h (left panel), and presumably long-term
memory 6 h after conditioning. b, Context-dependent short-term memory in mice given intra-
hippocampal (i.h.) injection of saline 30 �M sp600125 24 h before conditioning and tested for
short-term memory 24 h later (see adjacent schematic of behavioral procedures, right) (n � 5).
Statistically significant differences: *p � 0.05 relative to saline controls.
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stress-induced impairment of associative learning. In addition,
contextual fear conditioning without prior stress exposure, pro-
duced a shorter, learning-dependent activation of JNKs in the
CA1 subregion of the dorsal hippocampus. The selective block-
ade of the JNK signal under these conditions resulted in the en-
hancement of contextual fear. Together, these findings indicate
that an optimal time window, level and type of hippocampal JNK
activation is required to fine-tune contextual fear conditioning.

Our results were also first to demonstrate that different JNK
isoforms differentially affect retention of contextual fear, both
under baseline conditions and after exposure to stress. In partic-
ular, we found that Jnk2- and Jnk3-null mice did not show stress-
induced impairment of contextual fear, while Jnk1-null mice
displayed enhanced contextual fear under stress-free baseline
conditions. Moreover, exposure to stress selectively increased
hippocampal JNK3 (and presumably JNK2) activity, whereas
contextual fear conditioning alone led to briefly elevated JNK1
activity. Overall, our data obtained from Jnk mutant mice and in
vitro kinase assays suggest that stress-induced activation of JNK2
and JNK3 may serve as a functional switch, transitioning from a
JNK1-dominated baseline state to a stress-driven phenotype
(Coffey et al., 2002; Kuan et al., 2003).

In view of previous observations reporting JNKs activation in
the adult CNS mainly after more invasive or longer lasting ma-
nipulations, such as chronic kindling epileptogenesis (Cole-
Edwards et al., 2006), inflammation (Jara et al., 2007), kainic
acid-induced excitotoxicity (Yang et al., 1997; Brecht et al., 2005),
ischemic apoptosis (Kuan et al., 2003) or in models for Alzhei-
mer’s (Morishima et al., 2001; Marques et al., 2003) and Parkin-
son’s disease (Saporito et al., 1999; Hunot et al., 2004), these acute
effects of JNKs activity might seem unexpected. However, in the
adult mouse brain the biological function of JNK signaling seems
to be integrative, interlinking various physiological responses to
stress. In support of our findings that JNKs regulate learning and
memory, JNK activation has been shown to block hippocampal
long-term potentiation (LTP) (Wang et al., 2004), and to be in-
volved in low frequency stimulation-dependent long-term de-
pression (LTD) in the dentate gyrus (Curran et al., 2003).
Furthermore, JNKs are also critically involved in synaptic AMPA
receptor trafficking (Zhu et al., 2005; Thomas et al., 2008) and
contribute to metabotropic glutamate receptor-dependent LTD
in the CA1 subregion (Li et al., 2007). These in vitro studies may
provide a functional basis for the observed effects of JNKs on
associative learning.

On the other hand, the molecular mechanisms by which JNKs
contribute to neuronal plasticity underlying learning and mem-
ory are not yet clear. Potential downstream candidates regulated
by JNKs during learning are numerous and diverse. Hippocam-
pal JNKs are localized both presynaptically and postsynaptically
in the hippocampus and can thus regulate synaptic vesicle pro-
teins such as synaptotagmin-4 (Mori et al., 2008), second mes-
senger systems such as cytosolic phospholipase A (Van Putten et
al., 2001), cytoskeletal elements (i.e., MAP2, tau) (Bogoyevitch
and Kobe, 2006), receptors such as AMPA (Zhu et al., 2005;
Thomas et al., 2008), nuclear hormone receptors (i.e., glucocor-
ticoid receptor) (Bruna et al., 2003), MAPK-activated protein
kinase (i.e., RSK2) or transcription factors, including c-Jun, an
activator protein-1 (AP-1) member, activator transcription fac-
tor (ATF-2), CREB (calcium/cAMP response element binding
protein), and Elk-1 (Gupta et al., 1995, 1996). All of these sub-
strates could potentially be targeted by JNKs during learning. It is
evident that future experiments studying these biochemical

markers during learning are necessary to understand how JNKs
contribute to memory formation.

Previous studies using acute restraint (Meller et al., 2003; Liu
et al., 2004) or forced swim stress (Liu et al., 2004; Shen et al.,
2004) have already demonstrated that exposure to acute stress
leads to significant early increase of pJNKs in various brain re-
gions (i.e., prefrontal cortex, discrete nuclei of the hypothalamus
and the amygdala) (Liu et al., 2004; Shen et al., 2004), indicating
that activation of the JNKs signaling pathway might be involved
in initiation of stress responses. Although authors reported that
two forms of acute stress yielded somewhat different regional
patterns of JNKs activation, it might have been that these differ-
ences resulted from the different rodent species and stress proce-
dures used. More importantly, such dependence of the pJNK
expression pattern on the nature, and particularly, on the relative
strength of acute stress (Liu et al., 2004) may explain why expo-
sure to immediate foot shock alone did not elevate hippocampal
pJNK levels in a manner similar to prolonged immobilization
stress. This assumption is further corroborated by data showing
selective activation of JNKs in the hippocampal formation, and in
discrete nuclei of the hypothalamus and the amygdala, which
represent brain regions that play a critical role in the induction
and regulation of stress responses (McEwen, 2007). Moreover,
that all the aforementioned studies demonstrate activation of
JNKs in the hippocampus reinforces the likelihood that JNKs
signaling is crucially involved in the formation of stress-
associated emotional memories (Liu et al., 2004; Kim et al., 2006).

We have used anisomycin as a potent agonist of JNK (Cano et
al., 1994; Hazzalin et al., 1998; Pagès et al., 2000), and with such
an approach, we corroborated our findings that both exposure to
acute stress and activation of septal CRF2 receptors results in
hippocampal JNK activation, which, in turns, leads to an impair-
ment in learning. The fact that administration of a JNK inhibitor
blocked the observed anisomycin-induced memory deficit indi-
cated a dissociation between hippocampal JNK activation and
anisomycin-induced translational arrest in the regulation of
memory formation. In other words, our experimental setting
raises the intriguing possibility that the behavioral effects elicited
by anisomycin are mainly mediated via the JNK signaling path-
way and not via inhibition of protein synthesis. Similarly, previ-
ous studies have demonstrated that noradrenergic agonists or
antagonists, when administered intracerebroventricularly before
treatment with protein synthesis inhibitor cycloheximide (Gold
and Sternberg, 1978), or when applied into the basolateral amyg-
dala (BLA) with appropriate timing relative to the abnormal BLA
noradrenergic response to anisomycin, attenuate amnesia despite
reduced protein synthesis (Canal et al., 2007). It is important to stress
that neither these studies nor our study directly challenge the exten-
sive evidence of changes in gene and protein expression patterns that
support memory consolidation (Alberini, 2008; Klann and Sweatt,
2008). What they do show is the importance of distinguishing be-
tween problems that might be raised when interpreting the results
obtained with general protein synthesis inhibitors such as anisomy-
cin (Gold, 2008; Hernandez and Abel, 2008; Rudy, 2008) and the
specific issue of the role of protein synthesis in memory formation
(Alberini, 2008; Klann and Sweatt, 2008). Additional experiments
with other protein synthesis inhibitors and protein kinase inhibitors
are needed to determine the extent to which neurochemical actions
mediate the memory deficit produced by inhibitors of global protein
synthesis and by inhibitors of specific protein phosphorylation.

As previously noted, it is well established that acute stress
activates hippocampal protein kinase pathways that are critically
involved in baseline synaptic plasticity, learning and memory
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formation (Blank et al., 2002; Revest et al., 2005). Therefore, it
was not surprising that we found a rapid and temporally specific
increase in pJNKs to occur in the CA1 subregion of the dorsal
hippocampus after paired stimuli that supported baseline con-
textual fear conditioning but not after exposure to the context or
foot shock alone. This finding is in accordance with observations
that kinases critically involved in the formation of contextual fear do
not exhibit changed activation under control conditions (Atkins et
al., 1998; Fischer et al., 2002; Sindreu et al., 2007; Isosaka et al.,
2008). However, the question may be raised as to why a specific
increase in pJNKs was not observed in mice exposed to foot shock
alone (ImS control group), since they were exposed to some con-
text prior the conditioning box. Thus, operationally, the mice
should have been subjected to contextual conditioning as well.
Although still speculative, several possibilities could be consid-
ered. First, discrete salient stimuli (i.e., tactile, auditory) that oc-
cur in the close temporal contiguity with foot shock may compete
for associative strength with contextual stimuli preceding foot
shock delivery, thereby promoting formation of a simple (uni-
modal) CS-US association that does not involve the CA1 subre-
gion of the hippocampus (Pearce and Bouton, 2001). Also, if one
assumes that the mouse cage may serve as a contextual CS in the
ImS control group, it is plausible that its representation was
formed long before exposure to immediate foot shock. Under
such a scenario, a previously established memory trace may be
retrieved during fear conditioning but not subjected to further
consolidation processing (Biedenkapp and Rudy, 2007), or alter-
natively may be stored in some other brain region that now serves
as a primary source for the retrieved information (Frankland and
Bontempi, 2005).

We also found that selective inhibition of JNK signaling re-
sulted in the enhancement of baseline contextual fear. This indi-
cated that activation of hippocampal JNKs pathways during
contextual fear conditioning in the absence of stress may serve as
a memory “break” protecting the subject from overconsolidating
conditioned fear after a single conditioning trial. Mechanistically,
studies using cultured hippocampal neurons suggest that differ-
ent JNKs, p38 and ERK1/2 may either complement or oppose
each other during synaptic depotentiation, LTD and LTP (J. J.
Zhu et al., 2002; Y. Zhu et al., 2005), thereby contributing to the
bidirectional control of synaptic strength. Moreover, it is dem-
onstrated that the memory-promoting ERK pathway (Maher et
al., 2006) and the memory-limiting JNKs pathway act in dynamic
balance in vitro, with the ERK pathway acting to inhibit the JNK
pathway and vice versa (Masuda et al., 2003; Shen et al., 2003;
Tamagno et al., 2009). For example, in cortical neurons treated
with D-JNKI1, ERK1, as well as MEK1, the ERK upstream kinase
are strongly activated (Repici et al., 2009), suggesting that inhibi-
tion of JNKs induces compensatory activation of the ERK path-
way. Whether such dynamic antagonistic crosstalk between ERK
and JNKs pathways exists in the dorsal hippocampus so that the
memory enhancing effect of JNK inhibition may also be due to
the activation of ERK pathway and not only to the reduction of
JNKs activity remains to be determined.

In conclusion, tightly regulated JNK activity is involved in
memory consolidation during associative learning under stress-
ful and baseline conditions. Characterization of the upstream
induction mechanisms and downstream targets of JNK isoforms
within the hippocampus will facilitate the delineation of the
mechanisms by and which short-term JNKs activation tran-
siently impairs memory, whereas prolonged JNKs activation may
be a contributing factor to memory deficits and even neurode-
generation (Manning and Davis, 2003).
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