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ABSTRACT 

The double-stranded RNA-binding protein Staufen has been implicated in various post-

transcriptional gene regulatory processes. Here we demonstrate that the 

Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with 

microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of 

let-7 family microRNA mutants, a hypomorphic allele of dicer and a lsy-6 microRNA 

partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a 

target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3’ 

untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries 

reveals no dramatic change in the levels of microRNAs, or other small RNA populations 

between wild type and stau-1 mutant, with the exception of certain endogenous siRNAs 

in the WAGO pathway. The modulation of microRNA activity by STAU-1 does not seem 

to be associated with the previously reported enhanced exogenous RNAi (Eri) 

phenotype of stau-1 mutants since eri-1 exhibits the opposite effect on microRNA 

activity. Altogether, our results suggest that STAU-1 negatively modulates microRNA 

activity downstream of biogenesis, possibly by competing with microRNAs for binding 

on the 3’ untranslated region of target mRNAs.  

 

INTRODUCTION 

MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that post-

transcriptionally regulate gene expression primarily through binding to the 3’ 

untranslated region (3’UTR) of target mRNAs, and inhibiting translation and/or mRNA 

stability (He and Hannon 2004). MiRNAs are usually transcribed into primary transcripts 
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(pri-miRNAs) from independent genes by RNA polymerase II. Pri-miRNAs are 

processed into hairpin structured precursor miRNAs (pre-miRNAs) by Drosha-DGCR8 

complex in the nucleus, and then pre-miRNAs are exported into cytoplasm and further 

processed by Dicer to generate the ~21 nucleotide-long mature miRNAs (Krol et al. 

2010). The seed sequence (nucleotides 2-7) of a mature miRNA dictates the specificity 

of miRNA’s recognition on target mRNAs, therefore, miRNAs with the same seed 

sequence are grouped into a family and are predicated to potentially share the same set 

of target mRNAs (Bartel 2009).  

MiRNAs exert their repression on mRNAs through the assembly of miRNA-induced 

silencing complex (miRISC) on the 3’UTR of target mRNAs. MiRISC is a 

ribonucleoprotein complex with a miRNA-specific Argonaute (AGO) protein loaded with 

a mature miRNA and a AGO binding partner GW182 protein (Fabian and Sonenberg 

2012). Besides AGO and GW182, other RNA-binding proteins have been shown to 

affect miRNA activity through biogenesis, such as the case of LIN-28 (Viswanathan and 

Daley 2010), miRISC activity, as for NHL-2 (Hammell et al. 2009) and target site 

accessibility, as shown for Pumilio, HuR and Dnd1 (Nolde et al. 2007; Kedde et al. 

2010; Bhattacharyya et al. 2006; Tominaga et al. 2011; Kundu et al. 2012; Young et al. 

2012; Kedde et al. 2007). 

Staufen is a conserved double-stranded RNA-binding protein that contains five 

double-stranded RNA-binding domains, and that was first identified in Drosophila to 

regulate mRNA localization and translation (oskar in oocytes, bicoid in embryos and 

prospero in neuroblasts) (St Johnston et al. 1991; Li et al. 1997; Broadus et al. 1998). 

For example, Staufen binding to the 3’UTR of bicoid and prospero mRNAs is required 
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for their localization (Ferrandon et al. 1994; 1997; Shen et al. 1997). In mammalian 

neurons, Staufen homologs (Staufen1 and Staufen2) are also known to regulate mRNA 

transport and the activation of localized mRNA translation (Köhrmann et al. 1999; 

Kiebler et al. 1999). Two groups have shown that Staufen1 can bind to long-range 

duplexes in the 3’UTR of mRNAs (Ricci et al. 2014; Sugimoto et al. 2015). Besides 

regulating mRNA localization and translation, mammalian Staufen can also mediate 

mRNA decay through interaction with the nonsense medicated decay regulator Upf1 

(Park and Maquat 2013). In Caenorhabditis elegans (C. elegans), there is only one 

Staufen homolog, stau-1, and it has been shown to have high binding affinity for double-

stranded RNA in vitro. STAU-1 is expressed at all developmental stages in C. elegans 

and partial loss-of-function mutants (stau-1(tm2266) and stau-1(q798)) exhibit 

phenotypes that include enhanced transgene silencing, enhanced exogenous RNAi and 

mild germline defects (LeGendre et al. 2013).  

Previous studies demonstrate that miRISC components and miRNAs are present in 

Staufen-containing RNA granules (Barbee et al. 2006; Peredo et al. 2014), which 

indicates that Staufen might affect the miRNA pathway, perhaps by influencing miRNA 

biogenesis and/or function. Here we report genetic evidence that C. elegans STAU-1 

exerts activity in opposition to certain miRNAs; we show that loss of function for stau-1 

genetically suppresses the phenotypes of mutants in several distinct miRNA genes and 

a miRNA biogenesis factor. Further, our small RNA sequencing data show that STAU-1 

does not have any significant effect on the levels of mature miRNAs, indicating that 

Staufen can inhibit the activity of miRNAs downstream of miRNA biogenesis. Finally, we 
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report data suggesting that Staufen-mediated opposition of miRNA activity acts via the 

3’UTR of miRNA target mRNAs. 

 

MATERIALS AND METHODS 

Nematode methods and phenotypic analysis  

C. elegans were cultured on nematode growth media (NGM) (Brenner 1974) and fed 

with E. coli HB101. All the C. elegans strains used in this study are listed in Table S11. 

Synchronized populations of developmentally staged worms were obtained by standard 

methods (Stiernagle 2006).  

For heterochronic phenotype analysis, gravid adult animals raised at 20°C were 

placed on NGM plates seeded with E. coli HB101 at 20°C, unless otherwise noted, and 

their progeny were scored at the young adult stage for adult lateral alae formation and 

seam cell number. Nomarski DIC microscopy was used to score alae formation, and 

fluorescence microscopy with the maIs105 [col-19::gfp] or wIs51 [scm::gfp] transgenes 

to mark lateral hypodermal cell nuclei were used to score seam cell number. 

The ASE neuron phenotype was scored by the expression of otIs114 [lim-6::gfp] 

(ASEL marker) in the larvae of each genotype under Zeiss SteREO Discovery.V12 

microscope (Hammell et al. 2009). 

 

Targeted genome editing by CRISPR/Cas9 

In order to generate stau-1 null mutants, we adapted previously described co-CRISPR 

strategies (Kim et al. 2014; Arribere et al. 2014) with our modifications. Wild type 

animals (N2) were injected with a mixture containing 40ng/µl eft-3::cas9 vector, 35ng/µl 
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unc-22 sgRNA vector, 35ng/µl dpy-10 sgRNA vector, 35ng/µl stau-1 sgRNA-1 vector, 

35ng/µl stau-1 sgRNA-2 vector and 15ng/µl sur-5::gfp vector. The sequences for stau-1 

sgRNAs are: GGATGGAGTGATGATAGTAC (sgRNA-1) and 

TACGGATCTGGCAGATACTT (sgRNA-2). F1 worms exhibiting any of the dumpy 

and/or twitching phenotypes, and/or sur-5::gfp expression were picked individually to 

plates and allowed to produce F2 progeny. These F1 animals were lysed in 10µl single-

worm lysis buffer (50mM KCl, 10mM Tris-HCl pH 8.2, 2.5mM MgCl2, 0.45% NP-40, 

0.45% Tween-20, 0.01% Gelatin, 60 ng/µl proteinase K) at 60°C for 1 hour, and PCR 

reactions were performed with primers (TCCTTCAATCGATGTGGCCAA and 

TGGCTCACATTTTGTTAAACGACA) and the sequence of PCR products was 

determined using Sanger sequencing. Both of the two mutations recovered were from 

CRISPR/Cas9 editing events by sgRNA-1. 

 

Western blot analysis 

For STAU-1 western blots, samples were prepared from populations of mixed stage 

embryos and synchronized L4 stage larvae grown on E. coli HB101 at 20°C. Animals 

were washed off plates with M9 buffer and flash frozen in liquid nitrogen. Lysates were 

prepared by resuspending samples in lysis buffer (25mM HEPES pH7.5, 100mM NaCl, 

0.25mM EDTA, 0.1% NP-40, 2mM DTT, PhosSTOP (Roche), Protease inhibitor 

(Roche)) and homogenized with a Branson SLPe sonicator. Lysates were centrifuged at 

164,000rpm for 15 minutes at 4°C and the supernatants were collected. BioRad Protein 

Assay Dye Reagent Concentrate (Cat# 500-0006) was used to measure the protein 

concentration. 80µg of protein were used for the immunoblot analysis. STAU-1 was 



8 

recognized by an anti-serum generated in Dr. Marvin Wickens laboratory (LeGendre et 

al. 2013) at 1:1000 dilution, gel loading was calibrated by re-probing blots with anti-α-

tubulin antibody (Sigma-Aldrich Cat# T6074) at 1:20000 dilution. 

 

RNA extraction and small RNA cDNA cloning  

Wild type (N2) and stau-1(tm2266) young adults were collected and flash frozen in 

liquid nitrogen. Three biological replicates were analyzed for each strain. Total RNA was 

extracted using Trizol reagent (Invitrogen). 20µg of total RNA for each sample was used 

to isolation small RNA populations. RNA samples were run on 15% PAGE/urea gel and 

small RNA populations were isolated from the gel with the size range from 18 nucleotide 

(nt) to 26 nt. A previously published small RNA cloning protocol (Sterling et al. 2015) 

was used to generate cDNA libraries with the following modifications: 1) 3’ ligation 

reactions were performed at 4°C overnight; 2) 100 units of Superscript III Reverse 

Transcriptase were used for first-strand cDNA synthesis for each sample and the 

Reverse Transcriptase reaction was performed at 42°C for 90 minutes. The Sterling et 

al. (2015) protocol involves only one RNA ligation to the 3’ end of the RNA, and hence 

recovers RNA species regardless of 5’ end structure. 

 

Computational analysis of small RNA libraries 

cDNA libraries were sequenced on the Ion Torrent (Proton) instrument according to 

manufacturer's protocols. Sequencing files in FastQ formats were processed using the 

Cutadapt method (version 1.2.1) (Martin 2011) to remove the adapter sequences with 
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the following options -e 0.25 -g ATTGATGGTGCCTACAG -a 

GATCGTTCGGACTGTAGATC. 

Sequence files were split into libraries according to barcode sequences, and reads 

shorter than 16 nt were removed. For each library, reads with identical sequences were 

combined and the combined count was saved in Fasta files. Reads were then aligned to 

the C. elegans genome (WormBase release WS215) using bowtie (Langmead et al. 

2009) with arguments, -v 3 -f -B 1 -a–best –strata. Alignments were then filtered based 

on the length of the reads and the number of mismatches as follows: for sequence 

lengths 16-17, 18-19, 20-24, or >24: zero, one, two, or three mismatches were allowed, 

respectively. 

Annotations of coding genes, transposons, tRNAs, rRNAs, piRNAs, and miRNAs 

were obtained from WormBase (release WS215) and miRBase (Griffiths-Jones et al. 

2008) (Release 20). An in-house developed code was used to analyze the mapping 

results. To assign read counts to the miRNA sequences, we considered all reads that 

mapped to the miRNA genomic loci starting within -5 to +5 nucleotides of the annotated 

5’ end of mature miRNAs. For all the other small RNA species and genomic features 

(e.g. coding genes and transposons), we counted all reads that mapped within the 

annotated region in sense and anti-sense orientations separately.  

For endo-siRNA analysis, we considered all reads that mapped anti-sense to the 

5'UTR, coding exons and 3'UTR regions of each annotated gene. Annotations of target 

genes in the CSR-1, WAGO, ALG-3/4, and ERGO-1 pathways were downloaded from 

(Lee et al. 2012).  
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Differential expression analysis was performed using edgeR package in R 

(Robinson et al. 2010). 

 

RESULTS 

STAU-1 functionally modulates the activity of several miRNAs. 

In order to identify modulators of miRNA activity, we established a panel of worm strains 

containing mutations designed to produce sensitized genetic backgrounds with 

compromised activity of specific miRNA families or miRNA biogenesis factors. There 

are three categories of mutations in these sensitized genetic backgrounds: 1) null 

mutations of a subset of genes encoding a miRNA family; 2) hypomorphic (non-null 

partial loss-of-function) mutations of a particular miRNA; 3) hypomorphic mutations of a 

miRNA biogenesis factor or miRISC component. One essential feature of the sensitized 

genetic backgrounds is that these mutants all have partially penetrant phenotypes. This 

feature allows the identification of either positive or negative modulators of miRNA 

activity by testing for enhancement or suppression, respectively, of these sensitized 

phenotypes after genetic or RNAi knockdown of candidate gene activity.  

The first sensitized genetic backgrounds we investigated were the let-7 family 

miRNA mutants. C. elegans let-7 family miRNAs (including let-7, mir-48, mir-84 and mir-

241) function semi-redundantly in controlling the developmental timing of certain stage-

specific hypodermal seam cell fates. Loss of let-7 family miRNAs results in reiterations 

of early larval seam cell division patterns at later stages, and seam cells in these 

mutants also fail to properly differentiate adult specific cuticular structures (called adult 

alae) at the young adult stage (Figure 1A). Three of the let-7 family miRNAs (mir-48, 
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mir-84 and mir-241) are expressed starting at the L2 stage and function to regulate the 

L2 stage proliferative seam cell division, while the let-7 miRNA is strongly upregulated 

from the L3 stage to control the larval-to-adult transition of seam cells (Reinhart et al. 

2000; Abbott et al. 2005). These heterochronic let-7 family miRNA mutant phenotypes 

are easily quantified by using microscopy to measure the formation of adult alae and to 

score the number of seam cells in young adults.  

To test if STAU-1 modulates let-7 family miRNA activity, we used two mutant strains 

(mir-48 mir-241(nDf51) and let-7(n2853)) that both have partially penetrant 

heterochronic phenotypes with gaps in adult alae and increased number of seam cells 

at the young adult stage. mir-48 mir-241(nDf51) mutant has two let-7 family miRNAs 

removed while let-7(n2853) is a strong loss-of-function mutation at the seed region of 

let-7 mature miRNA (Reinhart et al. 2000). Although the stau-1 loss-of-function mutant 

does not exhibit any developmental timing defects in an otherwise wild type genetic 

background, we observed that both stau-1(tm2266) and stau-1(q978) significantly 

suppresses the heterochronic phenotypes of the mir-48 mir-241(nDf51) mutant (Figure 

1B and C). Since stau-1(tm2266) and stau-1(q978) have similar effect on the 

phenotypes of mir-48 mir-241(nDf51) animals, we focused only on stau-1(tm2266) for 

further analysis. Besides suppressing the heterochronic phenotypes of mir-48 mir-

241(nDf51) animals, stau-1(tm2266) also exerts significant suppression on the 

heterochronic adult alae phenotype of let-7(n2853) animals (Figure 1B). We interpret 

this suppression of heterochronic phenotypes of let-7 family miRNA mutants by stau-1 

loss of function to suggest that loss of stau-1 function causes an increase in the activity 
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of the remaining let-7 family miRNAs. These results indicate that STAU-1 acts as a 

negative modulator of let-7 family miRNA biogenesis or activity.   

The second sensitized genetic background we tested is a dicer (dcr-1) hypomorphic 

allele, bp132. This mutation causes a single amino acid change in RNase III domain of 

DCR-1 and has been previously shown to have developmental timing defects as 

indicated by increased number of seam cells and failure to form complete adult alae at 

the young adult stage (Figure 1A). The phenotypes of this partial loss-of-function mutant 

dcr-1(bp132) are stronger at 15°C and can be suppressed by a point mutation that 

alters the sequence of the lin-4 miRNA precursor (Lee et al. 1993; Wightman et al. 

1993; Ren and Zhang 2010), indicating that the dcr-1(bp132) phenotypes reflect 

partially compromised lin-4 biogenesis. We found that stau-1(tm2266) suppresses both 

adult alae and seam cell phenotypes of this dcr-1(bp132) mutant at 15°C (Figure 1D 

and E), suggesting that STAU-1 exerts a negative modulation of lin-4 biogenesis or 

activity. 

The third sensitized genetic background that we employed is a lsy-6 miRNA 

hypomorphic mutant. lsy-6 is known to regulate the asymmetric cell fate decision in the 

ASE neurons (Johnston and Hobert 2003). The null allele of lsy-6 causes a highly 

penetrant cell fate transformation phenotype where the ASEL neuron adopts the cell 

fate of the ASER neuron, which is detected by loss of expression of the ASEL marker 

lim-6. The lsy-6(ot150) allele is a non-null (hypomorphic) point mutation 111 nt 

upstream of the lsy-6 hairpin, which disrupts a cis-regulatory element required for lsy-6 

expression. The lsy-6(ot150) animals exhibit a weak phenotype with ~20% penetrance 

(Sarin et al. 2007) (Figure 1F). stau-1(tm2266) animals do not exhibit any ASE neuron 



13 

cell fate defects since all the animals have lim-6 expression only in the ASEL neurons, 

yet the phenotype of lsy-6(ot150) animals is significantly suppressed by stau-1(tm2266) 

(Figure 1G). These results that loss-of-function of stau-1 can potentiate the activity of 

lsy-6 suggest that the role of STAU-1 as a negative modulator of miRNA activity is not 

restricted to miRNAs of the heterochronic pathway.  

 

stau-1 null mutants have the similar effect on miRNA activity as the partial loss-

of-function mutants.  

The stau-1 mutants available so far are partial loss-of-function mutants that remove 

either the second (tm2266) or the fourth (q798) double-stranded RNA-binding domain 

(Figure 2A). Therefore, to test the effect of stau-1 null mutants on miRNA activity and to 

determine if stau-1 may have additional functions, we carried out CRISPR/Cas9 

experiments to generate null mutants of stau-1. The guide RNA was designed to target 

the first exon of stau-1 and we screened for frame-shift mutations that lead to premature 

stop codons. Two independent mutations were isolated: ma327, an 11 base-pair 

insertion, and ma346, a 5 base-pair deletion, both of which generate early premature 

stop codons (Figure 2A and B).  

To confirm that ma327 and ma346 mutations are null alleles, we tested for 

expression of STAU-1 protein in these mutant animals. We performed western blot 

analysis of wild type and stau-1 mutant embryos and L4 stage larvae using an anti-

serum generated against the fourth double-stranded RNA-binding domain of STAU-1 

(LeGendre et al. 2013) (Figure 2C). stau-1(q798) animals lacking the fourth double-

stranded RNA-binding domain was used as negative control, and stau-1(tm2266) 
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mutation results in a truncated STAU-1 protein recognizable by the anti-serum. In the 

embryos, we only observed full-length and truncated STAU-1 in wild type animals and 

stau-1(tm2266) mutant respectively, whereas neither stau-1(ma327) nor stau-1(ma346) 

embryos contained any detectable STAU-1 protein. In the L4 stage samples, there are 

non-specific bands close to the size of the truncated STAU-1 in the western blot, but the 

stau-1(ma327) and stau-1(ma346) mutants have the same band pattern as the negative 

control. Therefore, the stau-1 alleles ma327 and ma346 generated in this study appear 

to be null alleles.  

Next, we sought to characterize the phenotypes of these stau-1 null alleles. 

Homozygous mutants of either ma327 or ma346 are viable, however, similar to tm2266 

and q798, these animals exhibit a 4 hour delay in larval development at 20°C and they 

are smaller in size compared to wild type animals at the young adult stage (Figure S1). 

Furthermore, to test if the stau-1 null mutants also suppress phenotypes of miRNA 

mutants, we crossed the null alleles into the let-7 family mutant mir-48 mir-241(nDf51). 

As expected, both of these null alleles significantly suppress the adult alae and seam 

cell phenotypes of mir-48 mir-241(nDf51) animals (Figure 2D and E). Interestingly, 

neither stau-1(ma327) nor stau-1(ma346) animals exhibit any heterochronic defects in 

an otherwise wild type genetic background (Figure 2D and E), indicating that the let-7 

family hyperactivity that would be resulted from the loss of STAU-1 appears to be below 

threshold to elicit a precocious developmental timing phenotype.  

Since the effects of these stau-1 null alleles on let-7 family miRNA activity is similar 

to the effect of stau-1(tm2266), subsequent studies were conducted using stau-

1(tm2266). 
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STAU-1 does not dramatically affect mature miRNA levels. 

To investigate the mechanism on how stau-1 modulates miRNA activity, we first 

performed small RNA high-throughput sequencing analysis of wild type and stau-

1(tm2266) animals at the young adult stage. Three replicate samples were sequenced 

for each genotype and all the replicates yielded more than 5,000,000 reads, with ~80% 

of the reads mapping to C. elegans genome. Since the small RNA cloning technique we 

used is not dependent on the structure of the 5’ nucleotide of the RNA (Sterling et al. 

2015), we were able to examine STAU-1’s effect on diverse small RNA populations, 

including miRNAs, piRNAs and endogenous siRNAs. Based on the reads distribution 

data of small RNA populations, we did not observe any dramatic difference between 

wild type and stau-1(tm2266) animals (Figure 3A). 

Furthermore, we focused our analysis on the levels of mature miRNAs. In our 

sequencing data, we identified a total of 239 miRNAs, however, only 12 miRNAs were 

significantly changed in stau-1(tm2266) compared to wild type animals (5 upregulated 

and 7 downregulated) (Figure 3B and C, Table S1 and S2). None of the miRNAs that 

are differentially expressed in stau-1(tm2266) animals is known to be able to contribute 

to the phenotypes we observed earlier. Additionally, since the precocious expression of 

let-7 at the L2 stage, rather than the overexpression at the young adult stage, could 

affect the developmental timing phenotypes (Vadla et al. 2012), we therefore looked into 

the mature miRNA levels at the L2 stage. Similarly, no significant change in mature 

miRNA levels was detected in either stau-1(tm2266) or stau-1(q798) animals compared 

to wild type animals (Figure S2). Consistent with these results, we did not observe any 
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significant change in the protein levels of two miRNA biogenesis factors (DCR-1 and 

ALG-1 (a C. elegans AGO)) in several stau-1 mutants (Figure S3). Therefore, we 

conclude that the modulation of STAU-1 on miRNA activity is downstream of miRNA 

biogenesis.  

 

STAU-1 does not dramatically affect other small RNA populations. 

Since stau-1 mutants exhibit enhanced RNAi and transgene silencing phenotypes 

(LeGendre et al. 2013), we examined if there is any change in other small RNA 

populations between wild type and stau-1(tm2266) animals. Besides miRNAs, C. 

elegans also possesses several classes of endogenous siRNAs (endo-siRNAs) and 

piRNAs. Since different functional classes of endo-siRNAs are loaded into distinct 

Argonaute proteins and endo-siRNAs in Argonaute CSR-1, WAGO, ALG-3/4 and 

ERGO-1 were previously identified (Lee et al. 2012), we mapped our sequencing reads 

to these annotations and carried out differential gene expression analysis (Figure 4A-D, 

Table S3-8).  Of all these endo-siRNA categories, the most changes we observed were 

several WAGO endo-siRNAs that may function to maintain the silencing of “non-self” 

transcripts in C. elegans germline (Shirayama et al. 2012) (Figure 4B, Table S6). STAU-

1 does not seem to simply promote biogenesis of endo-siRNAs in the WAGO pathway 

since cases of upregulation and downregulation of endo-siRNAs were evident in stau-

1(tm2266) animals (Figure 4B). The final class of small RNAs we analyzed was piRNAs, 

and there is no dramatic change in the piRNA levels between wild type and stau-

1(tm2266) animals as well (Figure 4E, Table S9 and S10).  
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The modulation of miRNA activity by stau-1 mutations is likely independent of 

their enhanced RNAi phenotype. 

C. elegans stau-1 mutants have been shown to exhibit an enhanced RNAi (Eri) 

phenotype, indicating that STAU-1 negatively modulates one or more RNAi pathways. 

This suggests the possibility that STAU-1’s negative modulation of miRNA activity we 

have shown here could reflect a common underlying effect of STAU-1 on small RNA 

silencing more broadly. In that case, one might expect other Eri mutants might also 

exhibit enhanced miRNA activity. Because stau-1 mutants had been shown to interact 

genetically with eri-1 (LeGendre et al. 2013), we tested if eri-1 loss-of-function could 

affect the heterochronic phenotypes of mir-48 mir-241(nDf51) animals. Interestingly, 

loss-of-function of eri-1 enhanced the adult alae and seam cell defects of mir-48 mir-

241(nDf51) animals (Figure 5), which is opposite to the suppression caused by stau-1 

mutation. Therefore, the modulation of miRNA activity by STAU-1 is unlikely to be 

simply the result of a general enhancement of RNA interference. 

 

STAU-1 may act through the 3’UTR of miRNA targets to modulate miRNA activity. 

Staufen has been shown to promote the translation of its target mRNAs (Micklem et al. 

2000; Dugré-Brisson et al. 2005; Ricci et al. 2014), suggesting that the negative effect 

of STAU-1 on miRNA activity shown here could reflect its role in promoting the 

translation of miRNA target mRNAs, either by binding to 3’UTR sequences (perhaps at 

or near miRNA binding sites), or conversely, to other regions of the mRNAs (such as 

5’UTR and/or coding sequences). To investigate whether STAU-1 could oppose miRNA 

activity relatively directly, via the 3’UTR sequences of the target mRNAs, we utilized 
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mutants of the heterochronic miRNA, lin-4, and its primary target, lin-14 (Lee et al. 

1993; Wightman et al. 1993).   

The 3’UTR of lin-14 possesses several lin-4 and let-7 family miRNA target sites 

(Figure 6A). The first strain we tested was lin-4(e912); lin-14(n179) which has a null 

mutation of lin-4 and a point mutation in lin-14, and this double mutant exhibits a 

temperature sensitive heterochronic phenotype. At permissive temperature (15°C), lin-

4(e912); lin-14(n179) animals exhibit a partially penetrant phenotype (~30% animals 

have gaps in the adult alae) and can be considered a sensitized genetic background, 

and stau-1(tm2266) significantly suppresses the adult alae phenotype of lin-4(e912); lin-

14(n179) animals (Figure 6B). This indicates that STAU-1 could modulate the activity of 

lin-14 possibly through let-7 family miRNAs or mir-237 (the other member of lin-4 family 

miRNAs in C. elegans).  

Next, we used another lin-14 mutant strain lin-14(n355n679). n355 is a breakpoint 

mutation in the 3’UTR of lin-14, which results in the removal of most lin-14 3’UTR 

including all the lin-4 and let-7 family miRNA binding sites (Shi et al. 2013). In 

combination with another point mutation (n679) that partially compromises LIN-14 

function, the phenotype of lin-14(n355n679) is similar to lin-4(e912); lin-14(n179) 

animals. However, we failed to observe any suppression by stau-1(tm2266) on the adult 

alae phenotype on lin-14(n355n679) animals (Figure 6C). These data suggest that 

STAU-1 may modulate miRNA activity through the 3’UTR of miRNA targets. 

 

DISCUSSION 
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The double-stranded RNA-binding protein Staufen has been characterized as a master 

regulator of mRNA localization and translation in many metazoan species (Roegiers 

and Jan 2000). Staufen is known to positively regulate translation upon localization 

through interactions with structured regions of mRNAs (3’UTR, coding sequences and 

5’UTR) and various partner proteins and/or ribosomes (Ferrandon et al. 1994; Micklem 

et al. 2000; Dugré-Brisson et al. 2005; Ricci et al. 2014). Besides such positive roles in 

gene expression, Staufen can also negatively regulate gene expression by recruiting 

the nonsense-mediated decay factor Upf1 to the 3’UTR of mRNAs to trigger mRNA 

degradation (Park and Maquat 2013). Because of these alternative positive or negative 

roles in post-transcriptional regulation of mRNA activity, we predicted that Staufen could 

be expected to potentially interact functionally with miRNA-mediated repression of 

mRNA targets, and could exert either promotion or inhibition of miRNA activity. 

In this study, we found that loss of function Staufen (stau-1) mutations in C. elegans 

can suppress the phenotypes of miRNA partial loss of function, indicating that STAU-1 

inhibits miRNA activity. This suggests that, at least with respect to the miRNAs whose 

functions we examined here, STAU-1 engages its translational enhancer function, 

rather than its mRNA decay activity. We show that stau-1 loss of function mutation does 

not appreciably affect the levels of mature miRNAs; in particular, there was no 

detectable change, in stau-1 mutants, of the levels of the lin-4, let-7, and lsy-6 miRNAs 

whose function we monitored phenotypically in our genetic interaction experiments. This 

strongly suggests that STAU-1 likely opposes the activity of these miRNAs 

independently of their biogenesis or turnover, and perhaps may act by binding to their 

target mRNAs. Consistent with a model where STAU-1 can modulate miRNA activity by 
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binding to the 3’UTR of miRNA targets, our data show that the 3’UTR of a miRNA 

target, lin-14, is required for STAU-1-mediated modulation of lin-14 heterochronic 

phenotypes. 

Various possible molecular mechanisms could be the basis for an opposition of 

miRNA repression by STAU-1. STAU-1 bound to target mRNA could oppose miRNA 

activity by exerting an independent translational activation (Figure 7A), or perhaps also 

by directly inhibiting the binding (Figure 7B) or efficacy (Figure 7C) of miRISC. It should 

be noted that a target site occlusion model for STAU-1 (Figure 7B) would be similar to 

the action attributed to other 3’UTR binding proteins (Pumilio, HuR and Dnd1) that can 

apparently affect miRNA target accessibility by binding at or near miRNA sites (Fabian 

and Sonenberg 2012).  

All the models proposed here (Figure 7) involve a hypothetical physical interaction of 

STAU-1 with miRNA targets. Accordingly, one would predict that the miRNA target 

mRNAs that likely contribute to the phenotypes we observed here (lin-14, hbl-1, lin-41 

and cog-1) should be recoverable associated with STAU-1 immunoprecipitated from 

worms of the appropriate developmental stage (embryo for cog-1; L1 for lin-14, L2 for 

hbl-1, and L4/adult for lin-41). We have not tested for these mRNA associations by 

immunoprecipitation, but a previous study (LeGendre et al. 2013) did recover the let-7 

target lin-41 as enriched in a STAU-1 RNA Immunoprecipitation (RIP) experiment using 

extracts of C. elegans adults, supporting the model that STAU-1 could interact with 

miRNA targets. LeGendre et al (2013) did not recover cog-1, lin-14, or hbl-1 in their RIP 

experiments, but this is perhaps not unexpected since larval stage extracts were not 

tested. Consistent with the hypothesis that STAU-1 could interact with the 3’UTRs of 
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these genes by binding to regions of double-stranded RNA (dsRNA) secondary 

structure to potentiate miRNA activity, these 3’UTRs contain numerous regions 

predicted to form dsRNA structures, and many of the miRNA complementary sites 

reside at or near the structured regions (Figure S4). However, the identification of 

STAU-1 binding sites in C. elegans is needed to fully test this hypothesis. 

Our small RNA sequencing data indicate that stau-1 loss of function mutation does 

not affect miRNA biogenesis in general, despite having clear effects on the 

developmental phenotypes of certain miRNA mutants. Importantly, the levels of the 

particular miRNAs responsible for those phenotypes were unchanged in stau-1 mutants. 

However, we did not examine levels of these miRNAs in specific cell types, therefore, it 

is possible that STAU-1 could modulate miRNA biogenesis or stability cell type-

specifically, and we might not have detected cell type-specific changes of those 

miRNAs in our RNA samples extracted from whole animals. Indeed, our sequencing 

data contain a hint that the abundance of some miRNAs could be affected by STAU-1; 

11 miRNAs exhibited at least 2-fold change in levels in the stau-1 mutant compared to 

wild type animals (Figure 3C). In such cases, perhaps STAU-1, through its double-

stranded RNA-binding activity, can associate with secondary structure elements in 

miRNA primary transcripts and/or precursors and modulate their processing into mature 

miRNAs.  

Prompted by the finding from a previous study that C. elegans stau-1 mutants exhibit 

an enhanced RNAi (Eri) phenotype, and interact genetically with eri-1 mutation 

(LeGendre et al. 2013), we tested whether an eri-1 mutation, similarly to stau-1, could 

suppress let-7 family miRNA mutant’s heterochronic phenotypes. Surprisingly, eri-



22 

1(mg366); mir-48 mir-241(nDf51) mutant exhibited enhanced heterochronic 

phenotypes, which is the opposite from the effect of stau-1. First of all, this finding 

indicates that the modulation of miRNA activity by STAU-1 is unlikely to stem simply 

from an enhanced exogenous RNAi pathway, otherwise, we would have expected that 

eri-1(mg366), like stau-1(loss-of-function), should suppress mir-48 mir-241(nDf51) 

mutant phenotypes. Rather, these findings, particularly the opposite effects of different 

Eri loci on let-7 family miRNA phenotypes, suggest important, but as yet 

uncharacterized, interactions among RNAi and miRNA pathways in C. elegans. ERI-1 is 

known to be an exonuclease and important for the production of siRNAs in C. elegans 

(Kennedy et al. 2004), and a few studies have examined miRNA levels in eri-1 loss of 

function context with mixed results, perhaps reflecting differences amongst 

experimental systems, and/or the particular miRNAs assayed (Lee et al. 2006; 

Duchaine et al. 2006; Pavelec et al. 2009; Thomas et al. 2012). It is clear that further 

studies are needed to characterize the mechanisms by which ERI-1 affects miRNA 

activity. 

Interestingly, we did not observe any overt miRNA gain-of-function phenotypes for 

stau-1 mutations in an otherwise wild type genetic background, as might be expected 

for loss of a potent miRNA inhibitor. Rather, the stau-1 mutants’ miRNA phenotypes 

were only detected in sensitized genetic backgrounds with compromised miRNA 

activity. These findings suggest a modulatory effect of STAU-1 on miRNA activity and 

underscore the importance of miRNA pathways in conferring robustness to biological 

systems. The modulatory role of STAU-1 on miRNA activity could perhaps be important 

in refining the post-transcriptional regulation of important miRNA targets and to 
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modulate the efficacy of miRNAs in response to physiological and environmental 

signals. 

In conclusion, our study demonstrates that the RNA-binding protein STAU-1 

negatively modulates miRNA activity downstream of miRNA biogenesis, possibly by 

interacting with the 3’UTR of miRNA targets. These findings reveal an expanded suite of 

RNA regulatory roles for STAU-1; besides regulating mRNA localization, translation and 

decay, Staufen also can exert post-transcriptional gene regulation through its 

engagement with miRNA targets. It should be noted that our results to date indicate that 

STAU-1 can inhibit the activity of let-7 family, lsy-6, and perhaps lin-4 miRNAs, but 

further studies are required to test for similar roles of STAU-1 in opposing the activity of 

other miRNAs; moreover, we should not rule out the possibility that STAU-1 could 

promote the activity of certain other miRNAs, for example through its known role in 

mediating mRNA decay (Park and Maquat 2013).  
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FIGURE LEGENDS 

Figure 1 Loss of function for stau-1 suppresses the phenotypes associated with 

mutations of genes encoding miRNAs, or DCR-1, a miRNA biogenesis factor. (A) 

Diagrams of seam cell V lineage in wild type (N2), let-7(n2853), mir-48 mir-241(nDf51); 
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mir-84(n4037) and dcr-1(bp132) animals. L1 to L4 are the four larval stages in C. 

elegans post-embryonic development. The three horizontal lines indicate adult alae 

formation. (B) Adult alae and (C) seam cell phenotypes of stau-1 mutants in wild type 

and let-7 family miRNA mutants’ background. (D) Adult alae and (E) seam cell 

phenotypes of stau-1(tm2266) in combination with dcr-1(bp132). The experiment with 

dcr-1(bp132) was carried out at 15°C. (F) A diagram of C. elegans larvae illustrating the 

ASE neuron phenotype of miRNA lsy-6 mutants. The GFP expression in ASEL neuron 

is driven by lim-6 promoter.  lsy-6(0) indicates the null allele of lsy-6; lsy-6(ot150) is a 

partial loss-of-function mutation. (G) ASE neuron phenotype of stau-1(tm2266) and 

double mutant of stau-1(tm2266); lsy-6(ot150). * p < 0.05, ** p < 0.01, *** p < 0.001, 

N.S. not significant, chi-square test for adult alae phenotype and ASE neuron 

phenotype, two-tailed t-test for seam cell phenotype. 

 

Figure 2 Characterization of stau-1 null alleles. (A) A diagram of protein domains and 

mutations of STAU-1 used in this study. The five double-stranded RNA-binding domains 

(dsRBDs) are illustrated as grey boxes. The deletions in stau-1(tm2266) and stau-

1(q798) (LeGendre et al. 2013) are shown by brackets. The positions of ma327 and 

ma346 mutations are indicated. (B) Nucleotide changes of stau-1(ma327) and stau-

1(ma346) mutants. All the sequences shown here are in the beginning of stau-1’s first 

exon. The ATG start codon is in green. The sgRNA sequence is highlighted in blue and 

the PAM sequence is in red. The inserted sequence in ma327 is in orange and lower 

case. The premature termination codons in ma327 and ma346 are 89 and 65 amino 

acids downstream from the N terminus respectively. (C) Western blots of STAU-1 and 
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α-tubulin in wild type and stau-1 mutants. Both mix stage embryos and L4 stage animals 

were used for this experiment. There are non-specific bands in the L4 stage blot. (D) 

Adult alae and (E) seam cell phenotypes of the stau-1 null mutants at the L4 and the 

young adult stage in wild type and mir-48 mir-241(nDf51) background. * p < 0.05, ** p < 

0.01, *** p < 0.001, N.S. not significant, chi-square test for adult alae phenotype and 

two-tailed t-test for seam cell phenotype. 

 

Figure 3 STAU-1 does not significantly affect mature miRNA levels. (A) Read 

distribution of small RNAs mapped to C. elegans genome in wild type and stau-

1(tm2266) animals. All the anti-sense reads are endo-siRNA reads since C. elegans 

endo-siRNAs are mapped anti-sense to various regions of different gene transcripts (Gu 

et al. 2009). Most of reads in “other” were mapped to the sense strand of protein coding 

genes. (B) Differential gene expression analysis of miRNAs between wild type and stau-

1(tm2266) animals. (C) List of miRNAs whose levels are significantly affected in stau-

1(tm2266) animals. (g), miRNA guide strand. (p), miRNA passenger strand. 

 

Figure 4 The effects of STAU-1 on small RNA pathways other than miRNAs. 

Comparisons between wild type and stau-1(tm2266) animals of expression of endo-

siRNAs (A-D) associated with the CSR-1 (A), WAGO (B), ALG-3/4 (C), and ERGO-1 

pathways (D), and piRNAs (E).  

 

Figure 5 ERI-1 positively modulates let-7 family miRNA’s activity. (A) Adult alae and (B) 

seam cell phenotype of eri-1(mg366) in combination with mir-48 mir-241(nDf51). * p < 



34 

0.05, ** p < 0.01, *** p < 0.001, N.S. not significant, chi-square test for adult alae 

phenotype and two-tailed t-test for seam cell phenotype. 

 

Figure 6 The 3’UTR of lin-14 is required for modulation of lin-14 gain-of-function 

phenotypes by stau-1 mutation. (A) Diagrams of C-terminal end of lin-14 gene in wild 

type, lin-14(n719) and lin-14(n355n679). The black boxes represent exons and the 

white boxes represent 3’UTRs. The dotted box indicates the region of 3’UTR deleted in 

lin-14(n355n679). The predicated lin-4 family (green lines) and let-7 family (red lines) 

target sites are indicated and the target site predication was obtained from TargetScan 

(Lewis et al. 2005; Jan et al. 2011). (B) Adult alae phenotype of lin-4(e912); lin-14(n179) 

and lin-4(e912); lin-14(n179) stau-1(tm2266) animals. (C) Adult alae phenotype of lin-

14(n355n679) and lin-14(n355n679) stau-1(tm2266) animals. * p < 0.05, ** p < 0.01, *** 

p < 0.001, N.S. not significant, chi-square test for adult alae phenotype and two-tailed t-

test for seam cell phenotype. 

 

Figure 7 Alternative models for STAU-1-mediated modulation of miRNA activity wherein 

STAU-1 is proposed to bind to miRNA targets, for example via 3’ UTR double-stranded 

RNA secondary structure. The previously-described translational activation function of 

Staufen could oppose, and hence inhibit the net potency of, miRNA-based translational 

repression (A); STAU-1 could also affect miRNA activity by binding at (or close to) the 

miRNA binding site and hence inhibiting miRISC binding (B) or activity (C). Blue 

rectangles are STAU-1 proteins and red ovals are AGO proteins. The red single 

stranded nucleic acids in AGO proteins represent miRNAs and red lines on mRNAs are 
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miRNA binding sites. Brown curves are newly synthesized protein peptides from the 

mRNAs. 
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