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ABSTRACT 

piRNAs guide PIWI proteins to silence transposons in animal germ cells. 

In Drosophila, the heterochromatic piRNA clusters transcribe piRNA precursors 

to be transported into nuage, a perinuclear structure for piRNA production and 

transposon silencing. At nuage, reciprocal cycles of piRNA-directed RNA 

cleavage—catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 

(Ago3) in Drosophila—destroy the sense transposon mRNA and expand the 

population of antisense piRNAs in response to transposon expression, a process 

called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 

ensures that antisense piRNAs predominate.  

My thesis research mainly focuses on two fundamental questions about 

the piRNA production: How does the germ cell differentiate piRNA precursor 

from mRNAs for piRNA biogenesis? And what is the mechanism to impose Aub 

Ping-Pong with Ago3? For the first question, we show that the HP1 homolog 

protein Rhino marks the piRNA cluster regions in the genome for piRNA 

biogenesis. Rhino seems to anchor a nuclear complex that suppresses cluster 

transcript splicing, which may differentiate piRNA precursors from mature 

mRNAs. Moreover, LacI::Rhino fusion protein binding suppresses splicing of a 

reporter transgene and is sufficient to trigger de novo piRNA production from a 

trans combination of sense and antisense transgenes. For the second question, we 

show that Qin, a new piRNA pathway factor contains both E3 ligase and Tudor 

domains, colocalizes with Aub and Ago3 in nuage, enforces heterotypic Ping-

Pong between Aub and Ago3. Loss of qin leads to less Ago3 binding to Aub, 

futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many 
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families of mobile genetic elements are reactivated, DNA damage accumulates in 

the germ cells and flies are sterile. 
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CHAPTER I: INTRODUCTION 
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TRANSPOSON, piRNA AND GENOME STABILITY 

The genome faces external challenges, including radiation damage and virus 

integration, and internal “shocks” from transposon element jumping, which was 

first discovered by McClintock six decades ago (McClintock, 1950). Transposable 

elements occupy chromosomes from prokaryotes to eukaryotes, and in certain 

species make up most of the genome (Burns and Boeke, 2012; Finnegan, 2012; 

Slotkin and Martienssen, 2007). Although they could be useful driving forces 

during evolution, they can also lead to genome damage by creating DNA breaks, 

genome rearrangements, and insertional mutations (Demerec, 1926; Demerec, 

1927; McClintock, 1950; Klattenhoff et al., 2007). The genome must respond, 

especially for germline cells, which are dedicated to faithfully passing the genetic 

information from generation to generation. How does the germline address this 

challenge? 

In 2006, researchers identified a highly conserved small RNA based 

pathway that functions in the animal gonad to suppress transposon activity. 

Because these small RNAs associated with PIWI clade Argonaute proteins, they 

were named PIWI interacting RNAs (piRNAs) (Vagin et al., 2006; Girard et al., 

2006; Aravin et al., 2006; Grivna et al., 2006; Lau et al., 2006; Saito et al., 2006). 

Although this pathway was identified over seven years ago, we still largely do 

not know how piRNAs are produced or how they silence transposons. The 

piRNA pathway has been most extensively studied in Drosophila, largely due to 

the combination of powerful genetics and advances in high throughput 

sequencing technology. Here I will summarize our current understanding of 

piRNA biogenesis, and how these small RNAs silence transposons. 
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THE DISCOVERY OF THE piRNA PATHWAY 

Studies from Drosophila have played a leading role in defining the piRNA 

pathway. Numerous piRNA pathway genes were first identified in EMS screens 

for genome loci required for the fly fertility. These screens, which were largely 

performed in the late 1980s and early 1990s, identified several key components of 

the pathway, including spindle-E, vasa, aubergine and rhino. Individually mutating 

any of these genes disrupts egg patterning and results in the failure of embryos 

to hatch (Schupbach and Wieschaus, 1989; Schupbach and Wieschaus, 1991). In 

1997, Lin and colleagues identified one similar locus on the 2nd chromosome, 

which was indispensable for germline development and fertility for both male 

and female flies. Based on the gonad morphology defect, it was named as piwi, 

short for P-element induced wimpy testes (Lin and Spradling, 1997). It encodes 

the founding member of a sub-family of Argonaute proteins, PIWI-clade 

Argonaute, which are highly enriched in the animal germline. At the time, it was 

clear that these genes were essential for germline function, but nothing was 

known about their molecular function. 

The first piRNAs were discovered in 2001 (Aravin et al., 2001). The 

Drosophila X chromosome contains multiple copies of the “selfish” gene Stellate, 

which encodes a protein with homology to the β subunit of protein kinase CK2. 

Overexpression of this gene causes Stellate protein accumulated and assembly 

into crystals during spermatogenesis, compromising male fertility (Livak, 1984; 

Livak, 1990; Balakireva et al., 1992). It had been documented that the fly Y 

chromosome contains the Suppressor of Stellate (Su[Ste]) loci, which silence Stellate 

genes on the X chromosome (Livak, 1984; Livak, 1990; Balakireva et al., 1992). But 
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how Su[Ste] loci suppress Stellate expression was not known. In 2001, Gvozdev 

and colleagues elegantly showed that both strands of the Su[Ste] repeats are 

transcribed, and the transcripts were processed into small RNAs about 25 nt 

long. These small RNAs conveyed Stellate silencing in the spindle-E dependent 

manner (Aravin et al., 2001). Subsequent small RNA cloning revealed that these 

Su[Ste] small RNAs represent a new class of small RNAs mainly/solely 

expressed in fly ovaries and testes. Since these small RNAs mainly mapped to 

transposons and other repeat regions, they were initially named rasiRNAs, short 

for repeat associated small interfering RNAs (Aravin et al., 2003). In 2006, several 

groups independently reported that these small RNAs associate with PIWI clade 

Argonaute, and that they are produced by a mechanism distinct from the well 

studied miRNAs and siRNAs (Vagin et al., 2006; Girard et al., 2006; Aravin et al., 

2006; Grivna et al., 2006; Lau et al., 2006; Saito et al., 2006). Moreover, 

mammalian PIWI proteins bind to small endogenous RNAs with similar length, 

but unlike flies, these species mainly arise from intergenic regions devoid of 

transposons. Therefore, based on their PIWI protein binding pattern, we 

uniformly refer these animal germline specific small RNA as piRNAs (PIWI 

interacting RNAs) (Vagin et al., 2006; Girard et al., 2006; Aravin et al., 2006; 

Grivna et al., 2006; Lau et al., 2006; Saito et al., 2006). The piRNAs, PIWI proteins, 

and other factors needed for piRNA biogenesis and function that were 

previously identified as essential proteins to maintain fly fertility, form the 

piRNA pathway, which defends the germline genome from transposon 

mobilization. 

 

PIWI PROTEINS 
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To execute their functions, piRNAs must associate with PIWI clade Argonaute 

proteins, a larger family includes the proteins that mediate RNA interference and 

microRNA directed silencing. Like other Argonautes, PIWI proteins consist of 

three conserved domains: PAZ, Mid and PIWI. Though none of the PIWI 

proteins have been crystallized, the structures of related Argonautes from the 

prokaryote Thermus thermophiles, yeast, and humans predict that the Mid domain 

of PIWI proteins anchors the 5’ end phosphate of the piRNA, while the PAZ 

domain locks the 3’ end. The PIWI domain is structurally similar to RNase H, 

and contains the “DDH” catalytic triad associated with cleavage/slicer activity 

(Nakanishi et al., 2012; Elkayam et al., 2012). 

The Drosophila genome encodes three PIWI proteins: Argonuate3 (Ago3), 

Aubergine and the family founder protein, Piwi. In fly ovaries, Ago3 and Aub 

are only expressed in the germline nurse cells and reside in an electron-dense 

perinuclear structure, nuage (Figure 1.1). By contrast, Piwi protein localizes in 

the nuclei of both germline nurse cells and the somatic lineage follicle cells that 

surround the germ cells (Figure 1.1). Loss of any of the three fly PIWI proteins 

leads to transposon activation in the germline and female sterility (Wilson et al., 

1996; Cox et al., 1998; Cox et al., 2000; Saito et al., 2006; Gunawardane et al., 2007; 

Brennecke et al., 2007). In mice, the PIWI clade also comprises three PIWI 

proteins: Mili, Miwi and Miwi2. In contrast to flies, where the females are more 

sensitive to piRNA pathway mutations, the mouse PIWI proteins are essential for 

spermatogenesis and mutations do not appear to disrupt female fertility (Aravin 

et al., 2007; Aravin et al., 2008).  Similarly, the PIWI proteins are required to 

maintain fecundity in both worms and zebrafish (Batista et al., 2008; Houwing et 

al., 2007).  
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Figure 1.1. piRNA biogenesis in Drosophila ovaries.  
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From flies to mice, the PIWI proteins have a conserved post-translational 

modification, arginine symmetric di-methylation (Kirino et al., 2009; Nishida et 

al., 2009; Wang et al., 2009a; Vagin et al., 2009; Siomi et al., 2010). This 

modification is catalyzed by the methyltransferase Capsuleen (Csul, also known 

as dPRMT5 or Dart5), aided by its cofactor Valois (Vls) (Figure 1.1 and 1.2). 

Interestingly, mutating csul locus in the genome disrupts fly germline formation

(Gonsalvez et al., 2006). The methylated arginines can serve as docking sites for 

the Tudor domain, and many components of the piRNA pathway contain either 

one or more Tudor domains, such as Spn-E, Krimper, Tejas, PAPI, Vreteno, Yb, 

Brother of Yb, Sister of Yb and the founder protein Tudor. Intriguingly, although 

they all share related Tudor domains, they do not appear to function 

redundantly, since loss any single protein leads to the typical piRNA pathway 

mutation phenotypes: activation of transposons and fly sterility (Gillespie and 

Berg, 1995; Lim and Kai, 2007; Patil and Kai, 2010; Handler et al., 2011). Similar 

observations have been reported in mice (Hosokawa et al., 2007; Chen et al., 

2009; Lachke et al., 2011; Mathioudakis et al., 2012). We do not understand the 

molecular roles for most of these proteins, but studies in flies and zebrafish 

suggest that some may serve as bridges that bring two PIWI proteins together, or 

as docking sites for piRNA loading (Nishida et al., 2009; Huang et al., 2011a). In 

chapters 2 and 3 of this thesis, I will describe identification of a new piRNA 

pathway factor, Qin (also known as Kumo), which contains both E3 ligase 

domain and 5 Tudor domains, and its function in mediating piRNA production 

and transposon silencing. 

 

piRNA CLUSTERS: THE HOME OF piRNA IN THE GENOME 
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Figure 1.2. Both Aub and Ago3 contain arginine symmetric di-methylation.  
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In Drosophila ovaries, nearly 80% of the piRNAs map to transposon consensus 

sequences, making it hard to determine their genomic source. The other ~20% of 

the piRNAs that uniquely map to the genome locus are mainly derived from 

large discrete genomic loci, termed piRNA clusters (Brennecke et al., 2007). The 

top 142 piRNA clusters account for only 3.5% of the assembled fly genome, but 

produce 81% of the unique mapping piRNAs and 92% of the total piRNA 

population (Brennecke et al., 2007). These cluster regions are enriched in 

transposon remnants and ancient fragmented repeats, suggesting that they are 

the genomic memory of invading elements, likely introduced by horizontal 

transposon transfer or ancient virus infection. In flies, most of these piRNA 

clusters are located at the peri-centromeric and sub-telomeric heterochromatin 

regions of the chromosome (Brennecke et al., 2007). 

Based on the pattern of unique piRNA production, clusters fall into two 

groups: uni-strand and dual-strand. While dual-strand piRNA clusters 

convergently produce piRNAs from both genomic strands, the uni-strand 

clusters are transcribed from one strand. The 42AB piRNA cluster, named for its 

chromosomal cytological position, is the largest dual-strand cluster in Drosophila 

ovaries and produces about 30% of ovary piRNAs (Brennecke et al., 2007). The 

flamenco locus, which has been shown to actively suppress the gypsy transposon 

family in somatic follicle cells, appears to be transcribed on one genomic strand 

and produces piRNAs that are complementary to gypsy transposon family 

RNAs (Brennecke et al., 2007).  

In addition to clusters, it has been reported that a small portion of fly 

ovary piRNAs map to the 3’ UTRs of canonical mRNAs. These genic piRNAs 

have been mainly studied in the somatic follicle cells (Lau et al., 2009b; Lau et al., 
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2009a; Robine et al., 2009; Saito et al., 2009). It is unclear whether they are present 

in germline cells, and their biological functions remain to be determined. 

What distinguishes the piRNA clusters from the other non-piRNA-

producing regions is not well understood. This specificity might be due to the 

modification of histones that associate with piRNA clusters. This hypothesis is 

supported by the finding that a rapidly evolving HP1 homologue, Rhino (Rhi, 

also known as HP1D), is required for dual-strand cluster piRNA production. 

Furthermore, Rhi also appears to localize at these loci (Figure 1.1; Klattenhoff et 

al., 2009). Rhi was first discovered in 1991 as a gene that is required for fly 

fertility and egg dorsal-ventral patterning. Disrupting this gene leads to fusion of 

two dorsal appendages on the egg, a phenotype shared by almost all other 

piRNA pathway component mutations and resembles the horn of the rhinoceros 

(Volpe et al., 2001). Like other HP1 genes, rhi encodes a protein that contains 

both Chromo and Chromoshadow domains (Volpe et al., 2001). Since HP1a is 

recruited to chromatin by H3K9me3 (Danzer and Wallrath, 2004), a histone 

modification that usually marks DNA regions for gene silencing, Rhi presumably 

coats the piRNA clusters by a similar mechanism. Supporting this view, 

Lehmann and colleagues reported that Drosophila piRNA clusters are coated by 

this histone modification (Rangan et al., 2011). The same is true for the silkworm 

(Bombyx mori) piRNA clusters (Kawaoka et al., 2013). However, H3K9me3 is 

present in the genome in many more regions than piRNA clusters, and these 

non-cluster-H3K9me3-loci do not appear to bind Rhi. Therefore, H3K9me3 itself 

is not sufficient to recruit Rhi.  

 

piRNA BIOGENESIS: TRANSCRIPTION 
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While it appears that different organisms employ distinct strategies to initiate the 

piRNA precursor transcription, all appear to use RNA Polymerase II (Pol-II). In 

flies, each piRNA cluster is assumed to have one promoter at the end(s), which 

produces one long transcript that is processed into multiple piRNAs. This idea is 

primarily supported by the finding that mutating the putative flamenco cluster 

promoter drastically reduces piRNA production from the 168 kb downstream 

region (Brennecke et al., 2007). However, flam is a uni-strand cluster that appears 

to be expressed in the follicle cells, and it is unclear if germline specific dual-

strand clusters behave in the same manner. In mice, a germline specific MYB 

transcription factor family protein, A-MYB, drives piRNA production in 

pachytene stage testes (Li et al., 2013). These cluster transcripts have 5’ caps and 

3’ Poly (A) tails, typical features of Pol-II transcribed RNAs (Li et al., 2013). 

Similarly, the cluster transcript in the silkworm shares these Pol-II production 

features (Kawaoka et al., 2013).  

In contrast, the nematode C. elegans produces piRNAs, called as 21U-RNA, 

in a different way. Unlike fly or mouse piRNAs, most worm piRNA species 

appear to be derived from distinct gene-like loci (Gu et al., 2012; Cecere et al., 

2012). For each transcription unit, there is a conserved 8-mer motif at ~40 bp 

upstream of the piRNA producing site:  CTGTTTCA, which is specifically 

recognized by the Forkhead family (FKH) transcription factor to initiate the 

downstream transcription. Transcription precisely starts 2 nt upstream of the 

mature piRNA, and produces a 5’ capped piRNA precursor with the length of ~ 

26 nt (Gu et al., 2012; Cecere et al., 2012). How this longer precursor is processed 

into a mature 21U-RNA is still not clear. 
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piRNA BIOGENESIS: PRECURSOR DELIVERY 

piRNA precursors are produced in the nucleus, yet most of the processing 

machinery is enriched in the nuage, a perinuclear structure conserved from C. 

elegans to mammals. How are precursors delivered to the nuage? Studies from 

our labs showed that the DEAD box protein UAP56 is important at this 

delivering step (Figure 1.1; Zhang et al., 2012a). This protein was separately 

identified in 1997 as a component of the spliceosome in human, and named as 

56-KD U2AF65 associated protein (UAP56) (Fleckner et al., 1997), and as an 

enhancer for position effect variegation in Drosophila, and named as Hel (Eberl et 

al., 1997). Due to its essential function, loss of UAP56 leads to animal lethality. 

However, a recent study reported that a point mutation of uap56 affects only fly 

fertility and shows typical piRNA pathway defects in gurken and oskar mRNA 

localization and egg patterning (Meignin and Davis, 2008). These observations 

suggested that UAP56 could be a piRNA pathway factor. Indeed, our studies 

showed that this allele blocks piRNA production and leads to transposon over-

expression (Zhang et al., 2012a). Moreover, UAP56 physically associates with the 

piRNA cluster transcripts and forms distinct nuclear speckles that co-localize 

with the HP1 family protein Rhi. Intriguingly, UAP56-Rhi foci at the nuclear 

envelope are often juxtaposed with Vasa foci at the nuclear periphery (Zhang et 

al., 2012a). Vasa is another DEAD box protein that localizes to nuage and is 

required for germline development and piRNA production. The UAP56 point 

mutation that disrupts fertility and piRNA production also disrupts nuage 

localization of Vasa and other piRNA proteins (Zhang et al., 2012a). We have 

therefore proposed that UAP56 couples cluster transcription to the perinuclear 
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piRNA processing machinery. We currently do not know whether this protein 

conveys the same precursor delivery function in other organisms.  

Rhi localization is also dependent on Cutoff (Cuff) (Pane et al., 2011), the 

fly homolog of yeast Rai1, which interacts with the nuclear 5’–3’ exoribonuclease 

Rat1 (Kim et al., 2004). Together with the data that Rhi co-immunoprecipitated 

with Cuff, Rhi, Cuff and UAP56 may function in a common step in the nucleus 

(Figure 1.1).  

What is the mechanism that distinguishes the piRNA precursors from 

mRNAs, and directs them to the piRNA biogenesis machinery? In chapter 4, I 

will present findings suggest that Rhi anchors a nuclear complex, containing at 

least Cuff and UAP56, which actively suppresses cluster transcript splicing. We 

speculate that this block of splicing differentiates piRNA precursors from mature 

mRNAs. 

 

piRNA BIOGENESIS: PROCESSING 

We know little about how the germ cells process precursors into mature piRNAs, 

though working models propose that two distinct mechanisms generate the 

piRNAs by primary biogenesis and secondary Ping-Pong amplification 

(Brennecke et al., 2007; Gunawardane et al., 2007). The primary pathway exists in 

both somatic follicle cells, where only one PIWI protein, Piwi is expressed; and 

germline nurse cells, where all three Drosophila PIWI proteins are produced. 

Since secondary piRNA production requires two germline specific PIWI proteins, 

Aub and Ago3, which are not detectable in the follicle cells, it seems that the 

secondary pathway only functions in the germline nurse cells (Brennecke et al., 

2007; Li et al., 2009; Malone et al., 2009). Due to the simplicity and existing cell   
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culture system, the primary pathway has been more extensively studied in the 

follicle cells. It is unclear if mechanisms uncovered in these cells can be applied 

to the germline primary pathway, since the germline cells are dominated by 

dual-strand piRNA clusters while somatic lineage follicle cells and cultured cells 

derived from them are dominated by uni-strand clusters. 

The primary pathway initiates piRNA production de novo, without pre-

existing piRNAs. In the somatic follicle cells, the piRNA precursors appear to be 

delivered to the perinuclear Yb body, which contains the Tudor domain protein 

Yb and Vret, the putative RNA helicase Armitage (Armi) and the co-chaperone 

protein Shutdown (Shu) (Saito et al., 2010; Handler et al., 2011; Olivieri et al., 

2012; Zamparini et al., 2011). Based on their genetic dependency, the following 

hierarchy order has been proposed: Yb -> Armi -> Vret -> Shu (Figure 1.1 and 

1.3). Loss of any of these components results in Piwi mis-localization and 

blocking of piRNA production (Saito et al., 2010; Handler et al., 2011; Olivieri et 

al., 2012; Zamparini et al., 2011). We do not know which nuclease generates the 5’ 

end of the piRNAs. A candidate is Zucchini, a mitochondrial protein expressed 

in both germline and somatic cells (Pane et al., 2007). This protein comprises both 

a putative nuclease and phospholipase domains. Recent studies indicate that 

both mammalian Zuc (also known as PLD6 in mice) and Drosophila Zuc have 

single-stranded RNA or DNA cleavage activity in vitro (Nishimasu et al., 2012; 

Ipsaro et al., 2012). The crystallized Zuc structure illustrates that Zuc monomers 

dimerized to form a long, narrow, positivity charged catalytic groove, which 

potentially binds and cleaves precursor to generate the 5’ end of the piRNAs 

(Nishimasu et al., 2012; Ipsaro et al., 2012). Whether Zuc is the bona fide piRNA 

5’ end cleavage enzyme needs further testing. It is also unclear how Zuc,  
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Figure 1.3. piRNA production and transposon silencing in follicle cell.  
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localized to mitochondria, is coupled with the piRNA precursor processing 

machinery, either the Yb body in the follicle cell or the germline cell nuage. 

After the 5’ cleavage, the resulting piRNA intermediates appear to be 

loaded into PIWI proteins. This loading step is highly selective, for both primary 

and secondary piRNA biogenesis. In Drosophila, Aub and Piwi enriched piRNAs 

begin with uridine and are often complementary to transposon mRNAs. In 

contrast, Ago3 preferentially associates with the sense piRNAs and often bear 

adenosine at the 10th position (Figure 1.1; Brennecke et al., 2007). How this 

loading specificity is generated remains unknown. Like other small RNAs that 

are loaded into Argonaute proteins, charging PIWI proteins with piRNAs is 

facilitated by chaperone proteins. In the somatic follicle cells, the loading is likely 

performed in the Yb bodies (Olivieri et al., 2010; Saito et al., 2010). One of the Yb 

body components, Shu, is a co-chaperone protein that interacts with the Hsp90 

(encoded by the gene hsp83 in Drosophila) through its tetratricopeptide repeat 

(TPR) domain. Breaking this interaction by mutating the conserved key amino 

acids in the TPR region leads to the transposon hyper-expression and fly sterility 

(Preall et al., 2012; Olivieri et al., 2012). As a conserved protein, its mouse 

homologue, FKBP6, has been shown interact with PIWI proteins and is required 

for transposon silencing and mouse fertility. Mouse FKBP6 appears to 

specifically facilitate Miwi2 piRNA loading (Xiol et al., 2012). It is unclear if other 

co-chaperones are required to load other PIWI proteins. Interestingly, in the 

silkworm ovary-derived BmN4 cells, adding Hsp90 specific inhibitor 17-AGG 

decreases piRNA production. Moreover, in vitro studies showed that blocking 

Hsp90 function with this drug compromises PIWI protein loading specificity 

(Izumi et al., 2013). 
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The 3’ end formation completes piRNA biogenesis, yet we still do not 

know which enzyme performs this function. This may be done by a “sloppy” 

nuclease, since piRNAs often show higher heterogeneity at 3’ ends than 5’ ends 

(Brennecke et al., 2007). In vitro studies showed that loading a 50 nt long RNA 

into silkworm PIWI protein Siwi produces a ~27 nt mature piRNA (Kawaoka et 

al., 2011b). This step appears to be catalyzed by a 3’ to 5’ exonuclease, “trimmer”, 

in a Mg2+ dependent manner (Figure 1.1 and 1.4; Kawaoka et al., 2011b). 

Interestingly, it seems that the Tudor domain protein, PAPI, also assists this step. 

Depleting PAPI in the BmN4 cells leads to 3’ terminal extensions of mature 

piRNAs (Honda et al., 2013). The trimming of the 3’ end is coupled with 2’-O-

methylation, executed by the methyltransferase Hua (花, the Chinese character 

for “flower”) enhancer 1, Hen1 (Figure 1.1 and 1.4; Saito et al., 2007; Horwich et 

al., 2007). This end modification appears to be present in essentially all animal 

species, and appears to protect mature piRNA from further trimming or non-

templated tailing. 

In the germline of flies, zebrafish, silkworms and mice, primary piRNAs 

can engage in an amplification cycle to enlarge the piRNA population by 

generating secondary piRNAs (Brennecke et al., 2007; Houwing et al., 2007; 

Aravin et al, 2007; Kawaoka et al, 2009). We call this secondary piRNA pathway 

“Ping-Pong amplification” (Figure 1.1 and 1.4). In Drosophila nurse cells, this 

Ping-Pong cycle is mainly mediated by Aub and Ago3, the two germline specific 

PIWI proteins that reside in nuage (Gunawardane et al., 2007; Brennecke et al., 

2007; Li et al., 2009). The Ping-Pong model proposes that Aub, guided by a 

tightly associated antisense piRNA, pairs and cleaves a complementary 
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transposon mRNA, simultaneously destroying the transposon transcript and 

generating a new sense piRNA intermediate loaded into Ago3, possibly by the 

same loading machinery as primary piRNA. Next, the trimmer shortens the 3’ 

end and Hen1 finalizes maturation by 2’-O-methylation of the 3’ end (Saito et al., 

2007; Horwich et al., 2007). In turn, this newly generated sense piRNA guides 

Ago3 to bind and cleave an antisense piRNA precursor transcript, generating a 

new Aub bound antisense piRNA (Figure 1.1 and 1.4). This model is strongly 

supported by the high probability of a 10 nt overlap between the Ago3-bound 

sense piRNA and Aub-bound antisense piRNA (Brennecke et al., 2007). As 

predicted by this model, in vivo studies showed that removing Ago3 leads to the 

collapse of the overall piRNA pool (Li et al., 2009). This heterotypic Ping-Pong 

between Aub and Ago3 generates more antisense piRNAs than sense piRNAs. 

Each of these proteins can amplify piRNAs on its own, yet this type of single 

player Ping-Pong produces equal amounts of sense and antisense piRNAs 

(Brennecke et al., 2007; Li et al., 2009). A key question is how Ping-Pong is largely 

restricted to a two-player game in which Ago3 partners with Aub. We have 

demonstrated that a Tudor domain protein Qin, which has both an E3 ligase 

domain and 5 Tudor domains, is required to maintain this heterotypic Ping-

Pong. I will detail this story in chapters 2 and 3. 

 

piRNA MEDIATED TRANSPOSON SILENCING 

Transposons and repetitive elements occupy nearly half of the human genome 

and ~30% of the fly genome. Disrupting the piRNA pathway in the animal 

gonad results in transposon activation, DNA breaks and compromised fertility. 

In animals like worm, fly, silkworm, zebrafish and mouse, either most or some  
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Figure 1.4. Ping-Pong model.  
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piRNAs share sequence similarity with transposon transcripts (Batista et al., 

2008; Houwing et al., 2007; Brennecke et al., 2007; Kawaoka et al., 2009; Kawaoka 

et al., 2011a). Therefore, the transposon silencing function of piRNA pathway 

appears to be conserved. It seems evident that the piRNA pathway silences 

transposons at two levels: transcriptional and post-transcriptional (Figure 1.1). 

Based on the Ping-Pong model, both Aub and Ago3 posses the 

cleavage/slicer activity to amplify the piRNA pool and simultaneously post-

transcriptionally destroy transposon transcripts (Gunawardane et al., 2007; 

Brennecke et al., 2007). Specifically, antisense piRNAs guides Aub to recognize 

and cleave transposon mRNAs and antisense piRNAs that could mediate post-

transcriptional silencing are more abundant than sense piRNAs (Figure 1.4). 

Animals may therefore employ a specific mechanism to make sure the real 

“silencers”, antisense piRNAs, dominate. Interestingly, in chapters 2 and 3, I will 

show that mutations that distort this dominance are associated with transposon 

activation. However, there are several key questions that still need to be 

addressed before we can really understand this model. First, what is the 

mechanism to ensure that Ago3 is loaded with sense piRNAs while Aub is 

enriched for the antisense ones? Second, how do piRNAs associated with PIWI 

protein pair with targets? siRNAs and microRNAs use the first 2-9 nucleotides, 

the “seed sequence”, to recognize their targets. Do piRNAs have seed sequences? 

Can mismatches be tolerated? It is worth noting that in vitro studies have shown 

that one of the mouse PIWI protein, Miwi, can tolerate mismatches at the 3’ end 

starting from the 22nd nt, but not mismatches at the 5’ end, except the first 

nucleotide (Reuter et al., 2011). Whether the slicer activity of Aub and Ago3 is 

indeed needed for transposon silencing in vivo in flies is still not clear, but we do 
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know that the catalytically dead version of two mouse PIWI proteins, Mili and 

Miwi, fail to suppress the non-LTR transposon LINE-1 in mouse testes (Reuter et 

al., 2011; De Fazio et al., 2011). 

Piwi is the only PIWI protein that resides in the nucleus in Drosophila (Cox 

et al., 2000; Brennecke et al., 2007). Although it exhibits slicer activity in vitro, it 

seems this activity is dispensable in vivo, at least for transposon suppression and 

fly fertility (Sienski et al., 2012; Le Thomas et al., 2013). However, the nuclear 

localization is essential for Piwi function. A truncated Piwi protein, missing only 

the nuclear localization signal, could not be imported into nucleus. This 

trauncated Piwi can still bind piRNAs, however fails to silence the transposons 

and leads to fly sterility (Klenov et al., 2011; Sienski et al., 2012; Le Thomas et al., 

2013). Hence, Piwi may silence transposons in the nucleus at the transcriptional 

level, possibly similar to how yeast small RNAs induce heterochromatin 

formation. Indeed, a number of recent studies have demonstrated that Piwi 

suppresses several transposons in the nucleus through triggering H3K9me3 

formation, repressing transposons epigenetically. First, it has been proposed that 

Piwi may directly interact with the heterochromatin marker protein HP1a (Yin 

and Lin, 2007). Second, germline RNAi against Piwi or mutating the Piwi nuclear 

localization signal decreases H3K9me3 and HP1 occupancy at genomic 

transposon regions, as assayed by ChIP-qPCR (Wang and Elgin, 2011; Klenov et 

al., 2011). Finally, the recent work from Brennecke and colleagues showed on a 

genomic scale that depleting Piwi in the somatic follicle cells globally increases 

Pol-II occupancy and nascent mRNA transcription of transposons (Sienski et al., 

2012). Accordingly, the H3K9me3 coating at these regions drops. Interestingly, 

they also reported that another germline piRNA factor, Maelstrom (Mael), 
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actively promotes this process (Sienski et al., 2012). Upon Mael knockdown, there 

is no change in piRNA production, but a handful of transposons become more 

active. Closer examination revealed that Pol-II increases its occupancy on these 

elements. However, the H3K9me3 is still maintained at similar levels as the 

control knockdown, but becomes more broadly spread at downstream regions 

(Sienski et al., 2012). This suggests that Mael is downstream of Piwi induced 

heterochromatin formation, possibly more engaged in the silencing step. Soon 

after this study, several other labs reported that Piwi also triggers H3K9me3 

formation on a subgroup of transposon families in the germline nurse cells 

(Huang et al., 2013; Rozhkov et al., 2013; Le Thomas et al., 2013). So far, it is not 

clear whether the mammalian piRNA pathway also silences transposons by 

employing H3K9me3 coating. However, the piRNA pathway does 

transcriptionally inhibit transposon activity by mediating the DNA methylation 

at target loci in prenatal stage mouse testes. 

 

THE DIVERSIFIED FUNCTIONS OF piRNA PATHWAY  

Other than the transposon silencing function, the piRNA pathway/PIWI protein 

also plays other roles in both germline and somatic tissues. The Drosophila Piwi 

protein was originally identified as a factor to maintain the germline stem cells 

(Cox et al., 1998; Cox et al., 2000). Fly oogenesis starts from germline stem cells 

that localize to the anterior end of the germarium, surrounded by the somatic 

lineage niche cells. After each cell cycle, the asymmetric cell division generates 

two daughter cells: the one closer to the niche maintains the stemness; the other 

one undergoes differentiation and finally forms the oocyte. Because the loss of 

piwi gives rudimentary ovaries lacking developing oocytes, it was originally 
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reported as a gene required for stem cell maintenance (Cox et al., 1998; Cox et al., 

2000). However, Lai and colleagues recently re-evaluated the piwi mutants and 

based on their quantitative and careful examination, it seems that mutating piwi 

leads to a germline stem cell differentiation defect (Jin et al., 2013). Instead of 

losing germline stem cells, too many undifferentiated stem cells accumulate in 

the germarium, displaying the “germline-stem-cell-like tumor” phenotype in 

piwi mutants (Jin et al., 2013). Since disrupting other piRNA pathway factors 

does not result in a similar oogenesis defect, it suggests that Piwi uniquely “has 

gained” this extra function besides transposon silencing. It is unclear whether 

this function requires Piwi to be loaded by piRNAs. 

In Drosophila, although around 80% of piRNAs map to transposons and 

piRNA clusters, a subset of the piRNAs is derived from protein coding genes, 

mainly from 3’ UTR regions (Robine et al., 2009; Lau et al., 2009b; Saito et al., 

2009). Therefore, piRNAs could target mRNAs for silencing. For examples, the 

first discovered piRNAs, Su[Ste] piRNAs, suppress Ste mRNAs in fly testes 

(Aravin et al., 2001); piRNAs generated from the 3’UTR of traffic jam (tj) likely 

silence FasIII mRNAs (Saito et al., 2009); in fly embryo, Aub might mediate nanos 

mRNA deadenylation by binding with its 3’ UTR through imperfectly paired 

piRNAs (Rouget et al., 2010). Interestingly, these 3’UTR derived genic piRNAs 

are also found in mouse testes and Xenopus eggs, suggesting they may be 

produced by a conserved mechanism (Robine et al., 2009; Lau et al., 2009a). The 

targets for the majority of these genic piRNAs, however, are still unkown. 

In worms, the piRNA pathway also serves as a memory source to induce 

the epigenetic shutdown of nonself RNA (Lee et al., 2012; Luteijn et al., 2012; 

Shirayama et al., 2012). The mismatch(es) between piRNAs (21U RNA) and their 
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nonself targets recruits the RNA dependent RNA polymerase (RdRP). Using 

piRNA targets as the template, RdRP synthesizes another class of small RNAs 

(22G RNAs). These 22G RNAs are then loaded into the worm-specific protein, 

WAGO-9/HRDE-1, which then enters nucleus (Lee et al., 2012; Luteijn et al., 

2012; Shirayama et al., 2012). Assisted by other worm nuclear RNAi factors and 

guided by 22G RNAs, WAGO-9 epigenetically silences target transcription, 

potentially by trigging the formation of H3K9me3. Interestingly, this silencing 

state can be stably inherited across multiple generations (Lee et al., 2012; Luteijn 

et al., 2012; Shirayama et al., 2012). This phenomenon is named RNA-induced 

epigenetic silencing (RNAe). 

Besides its functions in the germline, the piRNA pathway has been 

reported to be active in neurons of at least Drosophila and the sea hare, Aplysia. 

In Aplysia, Piwi/piRNA complex likely promotes CpG methylation at the CREB2 

promoter region in neurons (Rajasethupathy et al., 2012). It seems Aub and Ago3 

are also expressed in fly brain. Loss of either protein in neurons leads to 

transposon overexpression (Perrat et al., 2013). In addition, it has been reported 

that some of the piRNA pathway genes are ectopically expressed in certain types 

of somatic tissues derived solid tumors. Interestingly, mutating these genes can 

inhibit tumor growth (Janic et al., 2010). How these genes drive cell over-

proliferation in tumors has not been determined. Finally, in the unicellular 

organism, Oxytricha, the piRNAs can protect DNA against deletions during the 

genome rearrangement (Fang et al., 2012). 
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CHAPTER II 

 

HETEROTYPIC piRNA PING-PONG REQUIRES QIN, A PROTEIN WITH 

BOTH E3 LIGASE AND TUDOR DOMAINS 
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PREFACE 

The work presented in this chapter was a collaborative effort: Jia Xu performed 

computational analysis of small RNA sequencing data. Birgit Koppetsch did 

northern blot and confocal imaging. Jie Wang analyzed the tiling microarray 

data. Cindy performed part of the fertility test. I performed the rest of the 

experiments. 
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SUMMARY 

piRNAs guide PIWI proteins to silence transposons in animal germ cells. 

Reciprocal cycles of piRNA-directed RNA cleavage—catalyzed by the PIWI 

proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster—

expand the population of antisense piRNAs in response to transposon 

expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between 

Aub and Ago3 ensures that antisense piRNAs predominate. We show that qin, a 

piRNA pathway gene whose protein product contains both E3 ligase and Tudor 

domains, co-localizes with Aub and Ago3 in nuage, a perinuclear structure 

implicated in transposon silencing. In qin mutants, less Ago3 binds Aub, futile 

Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many 

families of mobile genetic elements are reactivated, and DNA damage 

accumulates in nurse cells and oocytes. We propose that Qin enforces heterotypic 

Ping-Pong between Aub and Ago3, ensuring that transposons are silenced and 

maintaining the integrity of the germline genome. 
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INTRODUCTION 

In animals, PIWI-interacting RNAs (piRNAs) silence transposons and other 

repetitive elements (Klattenhoff and Theurkauf, 2008; Ghildiyal and Zamore, 

2009; Siomi et al., 2011). For flies, mammals, and other bilateral animals, the 

piRNA pathway protects the germline genome from DNA damage and 

mutation, ensuring that genetic information passes faithfully from generation to 

generation. 

piRNAs are typically 23–30 nucleotides (nt) long and bind to members of 

the PIWI clade of Argonaute proteins, a family that includes the proteins that 

mediate RNA interference and microRNA-directed gene regulation. The 

Drosophila PIWI clade comprises three proteins: Argonaute3 (Ago3), Aubergine 

(Aub) and Piwi. In the germline nurse cells, which support development of the 

oocyte, Ago3 and Aub reside in a perinuclear, cytoplasmic structure called 

“nuage”; Piwi resides in the nuclei of ovary germ cells and the somatic follicle 

cells that surround the germ cells (Wilson et al., 1996; Cox et al., 1998; Cox et al., 

2000; Saito et al., 2006; Gunawardane et al., 2007; Brennecke et al., 2007). 

In fly germ cells, primary piRNAs are thought to derive from discrete 

genomic loci, “piRNA clusters,” that contain complex arrays of transposon 

sequences (Brennecke et al., 2007). Reciprocal cycles of Aub- and Ago3-mediated 

RNA cleavage are thought to increase piRNA abundance by producing 

secondary piRNAs. Secondary piRNAs are disproportionately antisense to 

germline-expressed transposons (Brennecke et al., 2007; Houwing et al., 2007; 

Lau et al., 2006; Grivna et al., 2006; Aravin et al., 2006; Girard et al., 2006; Vagin et 

al., 2006). Amplification of antisense piRNAs requires both Aub and Ago3, and 

piRNA production in the germline collapses in ago3 mutants (Brennecke et al., 

2007; Li et al., 2009; Malone et al., 2009). The “Ping-Pong” model for piRNA 

amplification (Brennecke et al., 2007; Gunawardane et al., 2007) proposes that 
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Aub, guided by an antisense primary piRNA, binds to and cleaves a 

complementary transposon mRNA, simultaneously destroying the transposon 

transcript and generating a new, sense piRNA that is loaded into Ago3. The 

model envisions that sense secondary piRNA direct Ago3 to cleave an antisense 

sequence in the original piRNA precursor transcript to generate another Aub-

bound antisense piRNA (Brennecke et al., 2007; Li et al., 2009; Malone et al., 

2009). Heterotypic Ping-Pong between Aub and Ago3 produces more antisense 

piRNAs than sense, but the molecular mechanisms that bias the Ping-Pong cycle 

towards antisense remain unknown. Strikingly, the absence of Ago3 results in a 

futile, homotypic Ping-Pong cycle that generates more sense than antisense 

piRNAs, both of which bind Aub. Homotypic Aub:Aub Ping-Pong fails to silence 

all transposons, and ago3 mutant females are infertile (Li et al., 2009). 

The fly genome encodes 23 predicted Tudor domain proteins, seven of 

which have been shown to act in the piRNA pathway (Lim and Kai, 2007; Siomi 

et al., 2010; Patil and Kai, 2010; Liu et al., 2011; Zamparini et al., 2011). The 

binding of Tudor-domain proteins to di-methylarginine-modified PIWI proteins 

is conserved from flies to mammals, but its molecular function remains unknown 

(Kirino et al., 2009; Nishida et al., 2009; Wang et al., 2009a; Vagin et al., 2009; 

Siomi et al., 2010). Here, we identify a Drosophila Tudor-domain protein, Qin, 

which is required for piRNA production in the germline. The qin gene encodes 

an unusual protein with an amino-terminal E3 ligase domain and five carboxy-

terminal Tudor domains. In qin mutants, futile homotypic Aub:Aub Ping-Pong 

replaces heterotypic Ping-Pong between Aub and Ago3, activating transposon 

expression, and triggering DNA damage in the nurse cells and the oocyte. Thus, 

qin mutants phenocopy ago3 mutants, although the abundance of Ago3 is greater 

than that in ago3 heterozygotes. Qin localizes to nuage and appears to be 

required for the physical interaction of Aub with Ago3. 
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RESULTS 

qin Encodes a Protein with Five Tudor and One E3 Ligase Domain 

FlyBase (Drysdale et al., 2005) predicts that the putative transcription unit 

CG14303 encodes a protein with five Tudor domains (Figures 2.1A and 2.S1). 

Disruption of CG14303 by insertion of a piggyBac transposon 

((RB)PBacCG14303e03728; (Thibault et al., 2004)) in the largest predicted exon 

caused female sterility and produced embryos with fused or missing dorsal 

appendages (Table S1), phenotypes associated with a failure of the piRNA 

pathway (Schupbach and Wieschaus, 1989; Schupbach and Wieschaus, 1991; 

Wilson et al., 1996; Chen et al., 2007; Klattenhoff et al., 2007). Because CG14303 

mutant females produce offspring that fail to develop into adults, we named the 

gene qin, after the ancient Chinese dynasty (秦) that ended after just two 

generations. 

PBac(RB)CG14303e03728 (qin1) homozygotes produced few eggs, all of 

which display dorsal appendage defects (Table 2.S1). Similarly, only 4.3% of 

embryos from qin1/Df(3R)Excel6180 females had wild-type appendages (Table 

2.S1 and Figures 2.1A and 2.S2), suggesting that mutation of qin causes the 

observed phenotypes. The deficiency Df(3R)Excel6180, henceforth Df, removes 

qin as well as other genes (Figure 2.S2; (Parks et al., 2004)). Although qin1 is 

predicted to encode a truncated protein, qin1 behaved like a genetic null allele: 

the dorsal appendage phenotype, egg hatching, and eggs laid per day per female 

were as severe or worse in qin1 homozygotes compared to qin1/Df (Table 2.S1). 

To further verify that these defects resulted from mutation of qin, we 

attempted to rescue qin1/Df by creating a transgenic fly expressing genomic 

fragment CH322-81J04 (henceforth, gf-1; (Venken et al., 2009)), which 

encompasses CG14303 (Figure 2.1A). The gf-1 transgene failed to rescue the 
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Figure 2.1. The qin Gene and Qin protein. 

(A) qin resides on the right arm of chromosome 3, comprising two predicted 

genes separated by a 51,682 bp intron. qin encodes a protein with E3 ligase and 

Tudor domains. The blue and red bars indicate the location of probes used in 

Northern hybridization analyses.  

(B) Northern analysis of qin transcripts in ovary RNA using the red probe. 

Asterisk marks an unidentified transcript.  

(C) Agarose gel analysis of the 5ʹ′ rapid amplification of cDNA ends (RACE) 

products from control and gf-1/+ ; Df/+ ovaries.  

(D) Ovary RNA analyzed in parallel by Northern hybridization using the red 

and blue probes.
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defects in qin1/Df ovaries, eggs, and embryos (Table 2.S1 and Figure 2.2A). 

Moreover, the transgene carrying gf-1 generated a transcript that was shorter 

than wild-type qin mRNA (Figure 2.1B). To understand why gf-1 failed to rescue, 

we mapped the 5ʹ′ end of the qin mRNA by rapid amplification of cDNA ends (5ʹ′ 

RACE). The 5ʹ′ end of the qin mRNA mapped 51,682 bp upstream of CG14303, in 

the putative gene CG14306, which is predicted to encode a protein with a RING 

domain and two B-Box domains, the hallmarks of a Ubiquitin or SUMO E3 ligase 

(Figures 2.1A, 2.1C, and 2.S1). 

In control (w1118) ovaries, a Northern hybridization probe for CG14306 

detected the same size mRNA as a probe for CG14303 (Figure 2.1D). Probes for 

CG14306 and CG14303 both detected a longer RNA in qin1 whose size is 

consistent with transcription of three exons in CG14306 and five exons plus part 

of a sixth in CG14303 fused to PBac(RB)CG14303e03728, the piggyBac insertion 

that creates the qin1 allele. Neither hybridization probe detected the qin mRNA in 

ovaries from females bearing both the deficiency and PBac(RB)e01936 (qin2), a 

piggyBac insertion 5ʹ′ to the first predicted exon of CG14306 (Figures 2.1D and 

2.S3A). Consistent with qin encompassing both CG14306 and CG14303, qin2 failed 

to complement qin1 (Figure 2.S3B). Moreover, a cDNA comprising the predicted 

exons of CG14306 and CG14303 (UASp-(FLAG)3-(Myc)6-Qin, henceforth FM-Qin) 

and driven from a UASp promoter by nanos-Gal4-VP16, partially rescued the 

female sterility and dorsal appendage (Table 2.S1) and transposon silencing 

defects associated with loss of Qin (Figures 2.2A and 2.2B). The incomplete 

rescue may reflect the poor expression of nanos-Gal4-VP16 in stage 2–6 egg 

chambers (Figure 2.S3A; Ni et al., 2011) or an effect of the amino-terminal FLAG-

Myc tag on Qin function or stability. 
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Figure 2.2
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Figure 2.2. Qin Silences Transposons in Drosophila Ovaries. 

(A) Northern hybridization for Burdock mRNA.  

(B) Quantitative RT-PCR was used to measure transposon expression. Data are 

normalized to rp49 (RpL32) expression. The bars report mean ± standard 

deviation for three biological replicates.  

(C) Expression of transposons measured using whole genome tiling arrays for 

qin1/Df ovaries, relative to control (w1). The dashed line indicates equivalent 

expression in the two genotypes. The 13 transposon families whose expression 

increased > 3-fold among 3 biological replicates (false discovery rate, FDR, < 0.1) 

in qin mutants, compared to control, are marked in red.  

(D) The change in transposon expression, relative to control, was compared for 

qin and ago3 mutant ovaries.  

(E) The change in transposon expression, relative to control, was compared for 

qin and aub mutant ovaries.
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             As a final test of the idea that the qin locus comprises both CG14303 and 

CG14306, we constructed a transgenic fly bearing a 97,532 bp genomic fragment 

(gf-2, CH321-88L14) (Venken et al., 2009) encompassing all of the qin exons, as 

well as 6,602 bp 5ʹ′ to exon 1 and 32,343 bp 3ʹ′ to exon 10 (Figures 2.1A and 2.S3B). 

To facilitate detection of the predicted Qin protein encoded by gf-2, we inserted 

the EGFP coding sequence before the qin stop codon of the genomic fragment. 

Gf-2 includes part or all of the qin promoter, because transgenic flies bearing gf-2 

expressed the Qin::EGFP fusion in the germline throughout oogenesis (Figure 

2.S3C). A single copy of gf-2 partially rescued the dorsal appendage defects, low 

egg hatch rate, and the low number of eggs laid per day per fly observed for w; 

Sp/+; qin1/Df females (Table 2.S1). We conclude that the qin locus comprises the 

three exons of CG14306 and the seven exons of CG14303 joined by the removal of 

a 51,682 nt intron and that the Qin protein contains an amino-terminal E3 ligase 

domain and five carboxy-terminal Tudor domains (Figures 2.1A and 2.S1). 

Qin is Required to Protect the Germline Genome and Silence Transposons 

Defects in the piRNA pathway cause double-stranded breaks in the germline 

genome, and γH2Av, a phosphorylated histone variant, accumulates at the sites 

of DNA damage (Chen et al., 2007; Klattenhoff et al., 2007). Homozygous qin1, 

qin1/Df, and qin2/Df mutant ovaries showed many nuclear γH2Av foci (Figures 

2.3A and 2.S4), unlike control ovaries, which displayed only the expected small 

number of γH2Av foci likely to be associated with normal endoreduplication 

(Figure 2.3A) or meiotic recombination (Figure 2.S4). The increased number and 

intensity of γH2Av foci in qin mutants suggest that Qin is required for 

transposon silencing. We used whole-genome tiling microarrays to survey the 
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expression of transposons and mRNAs in qin mutant ovaries. In qin mutants, 56 

of 93 transposon families showed a 1.5- to 3-fold increase in steady-state 

transcript abundance (Figure 2.2C). The expression of another 13 transposon 

families increased more than 3-fold (False Discovery Rate, FDR, < 0.1). In 

contrast, the expression of none of the 19,987 protein coding genes detected by 

the microarray, including 613 annotated heterochromatic genes (Smith et al., 

2007), increased or decreased >3-fold at FDR < 0.1 (Figure 2.S5). We used 

quantitative RT-PCR to measure the expression of those elements that increased 

more than 3-fold with an FDR < 0.1 in the microarray data. Of the 13 such 

transposon families, 11 showed a statistically significant increase in RNA 

expression when measured by qRT-PCR (Table 2.S2). For example, expression of 

the transposon HeT-A increased 72-fold (p-value = 0.004), Springer increased 55-

fold (p-value = 0.002), and Burdock increased 41-fold (p-value = 0.006). 

The transposon families whose expression increased in qin mutants 

correspond to a subset of those transposons whose silencing requires Ago3 

(Figure 2.2D; Pearson correlation, r = 0.77, p-value < 10-16). In contrast, the 

transposons hyper-expressed in qin mutants and those activated in aub mutants 

were more weakly correlated (Figure 2.2E; r = 0.58, p-value = 1.7 × 10 9). A single 

copy transgene expressing full length qin cDNA in the germline via a UASp 

promoter driven by a nanos-Gal4-VP16 transgene restored transposon silencing 

(Figures 2.2A and 2.2B). ZAM, a transposon silenced by Piwi in the somatic 

follicle cells (Brennecke et al., 2007; Mevel-Ninio et al., 2007; Desset et al., 2008; 

Malone et al., 2009), was unaffected in qin1/qin1 and qin1/Df ovaries (Figure 2.2B). 

We also did not detect a change in the expression of blood, a transposon thought 

to be silenced in both the germline and the follicle cells (Li et al., 2009; Malone et 

al., 2009). 
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In testes, piRNAs silence the multi-copy gene Stellate, a gene whose hyper-

expression causes Stellate protein crystals to form during spermatogenesis, 

reducing male fertility (Hardy et al., 1981; Hardy et al., 1984; Balakireva et al.,

1992; Aravin et al., 2001; Vagin et al., 2006). Anti-Stellate piRNAs derive from 

transcripts from the many copies of Suppressor of Stellate (Su(Ste)) (Hardy et al., 

1984; Livak, 1984; Livak, 1990; Balakireva et al., 1992). Accumulation of Su(Ste)-

derived piRNAs requires Aub (Aravin et al., 2004) and Ago3 (Li et al., 2009), but 

not Piwi (Vagin et al., 2006). Stellate silencing also requires Qin. Stellate crystals 

accumulated in the testes of qin1/Df mutant males but not their heterozygous 

siblings (Figure 2.3B). Expression of FM-Qin cDNA in testes restored Stellate 

silencing (Figure 2.3B). 

Qin Co-localizes with Ago3 and Aub in Nuage 
To define the subcellular distribution of Qin, we examined the localization of the 

Qin::EGFP fusion encoded by the 97,532 bp genomic fragment gf-2. We detected 

EGFP fluorescence in the germline throughout oogenesis, but not in the somatic 

follicle cells (Figure 2.S3C). Together with the finding that a FM-Qin cDNA 

expressed in the germline rescued the dorsal appendage defects and sterility of 

qin mutant females and rescued Stellate silencing in males, these data suggest 

that Qin acts mainly or solely in the germline. The Qin::EGFP fusion protein 

produced by the gf-2 transgene and the epitope tagged FM-Qin produced by the 

full-length qin cDNA transgene expressed from a UASp promoter driven by 

nanos-Gal4-VP16 were both predominately cytoplasmic and localized in 

perinuclear foci typical for nuage (Figures 2.S3A and 2.S3C). Moreover, in all 

nurse cells examined (n = 30, two measurements for each nurse cell), quantitative 

fluorescence microscopy showed that Qin::EGFP co-localized with Aub and  
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Figure 2.3. Qin Colocalizes with Aub and Ago3 in Nuage. 

(A) Germline γH2Av foci, a hallmark of DNA damage, accumulated in qin and 

aub mutant ovaries. Stage 2–3 egg chambers are shown.  

(B) Stellate silencing in testes requires Qin.  

(C) Qin co-localizes with Ago3 and Aub in the nuage.  

(D) Enlarged view of the nuage of a single germline nurse cell. At right, 

quantification of the fluorescence corresponding to Qin::EGFP, Ago3, and Aub 

along the dash line drawn on the left panel. (A–C) Scale bars, 10 µm. (D) Scale 

bar, 2 µm.  
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Ago3 (Figure 2.3C and 2.3D), which have been shown previously to localize to 

nuage (Harris and Macdonald, 2001; Snee and Macdonald, 2004; Brennecke et al., 

2007; Lim and Kai, 2007). However, mutation of qin did not appear to affect the 

assembly or stability of nuage, as Aub and Ago3 all retained their perinuclear, 

punctate distribution in both qin1/Df and qin2/Df ovaries (Figure 2.S6). Neither a 

truncated Qin protein comprising the Qin E3 ligase-like domain alone nor a 

truncated Qin protein comprising the five Tudor domains but missing the E3 

ligase domain localized to nuage (Figure 2.S3A) or rescued the phenotypic 

defects observed in qin mutant ovaries (data not shown). 

Compared with qin heterozygotes, the abundance of Ago3, Aub, and Piwi 

was not significantly changed in qin mutants (Figures 2.4A and 2.S7). We did 

observe a small decrease in Ago3 abundance in the absence of Qin, but this 27% 

reduction is unlikely to explain the defects observed in qin mutants for two 

reasons. First, over-expression of Ago3 in the germline of qin mutant ovaries 

failed to rescue female sterility (hatch rate = 1.1%, n = 1,031). Second, the 

abundance of Ago3 was lower in ago3 heterozygotes than in qin1/Df ovaries, yet 

ago3/TM6B females are fertile, lay eggs with wild-type dorsal appendages, and 

silence their transposons (Li et al., 2009). 

Compared with the control strain (w1118), the abundance of Vasa increased 

in both qin heterozygous and mutant ovaries (Figures 2.4A and 2.S7), although 

its localization to nuage was not detectably altered (Figure 2.S6). Both qin 

heterozygous and mutant ovaries contained an additional Vasa isoform, likely 

phosphorylated Vasa, which has been associated with loss of transposon 

silencing and DNA damage in the germline (Ghabrial and Schupbach, 1999; 

Abdu et al., 2002; Chen et al., 2007; Klattenhoff et al., 2007). 
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The Ratio of Sense to Antisense piRNAs Increases in qin Mutants 

qin mutants show little change in the total abundance of piRNAs: the percent of 

genome-mapping, small RNA sequence reads corresponding to transposon-

derived, 23–29 nt small RNAs was essentially indistinguishable among control 

(cn1; ry506; 360,387/949,504 = 38%), qin/TM6B heterozygous (5,558,981/14,619,724 

= 38%), and qin1/Df mutant (6,064,405/16,096,174 = 38%) ovaries (Figure 2.4B and 

Table 2.S3A and 2.S3B). However, the effects of mutation of qin on the structure 

of piRNA populations can be readily detected by analyzing the fraction of 

piRNAs bearing the sense orientation (sense fraction = sense/[sense + antisense]) 

for each of the 93 transposon families for which we sequenced ≥ 100 parts per 

million (ppm) piRNA reads in both control and qin/TM6B ovaries. Mutation of 

qin increased the median sense fraction for the 93 transposon families from 0.24 

for the control ovaries to 0.33 for qin heterozygotes and 0.41 for qin1/Df mutants. 

We note that an increase in sense fraction implies a decrease in the proportion—

but not necessarily the abundance—of antisense piRNAs, those piRNAs believed 

to direct transposon silencing. 

One potential explanation for an increase in sense piRNAs in qin mutant 

ovaries is that the increased abundance of transposon transcripts directly feeds 

the production of sense piRNAs. In this view, the observed increase in the 

fraction of sense piRNAs would be a consequence, rather than the cause, of the 

loss of transposon silencing in qin mutant ovaries. To test this idea, we compared 

the change in transposon transcript abundance to the change in sense piRNA 

abundance for the 93 transposon families we analyzed (Figure 2.S8A). 

Transposon expression and sense piRNA abundance were uncorrelated, even 

when we restricted our analysis to only those 11 transposon families whose 

expression increased significantly. We conclude that increased transposon  
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Figure 2.4. Mutation of qin Decreases the Antisense Character of piRNA 

Populations. 

(A) Steady-state protein abundance in control and qin1/Df ovaries, relative to 

qin/TM6B (red dashed line). Data are mean ± standard deviation for 3 

independent biological samples.  

(B) Box plots report the change in abundance of all piRNAs mapping to 

transposons in control (cn1; ry506), qin/TM6B and qin1/Df ovaries and of the 

piRNAs associated with immunoprecipitates of each PIWI protein in qin/TM6B 

and qin1/Df ovaries.  

(C) Top: antisense piRNA abundance for each transposon family in qin1/Df 

ovaries was compared to control. Bottom: box plots report the change in piRNA 

abundance by family for each of the three groups of transposon families defined 

in the upper panel.  

(D) The piRNA sense fraction for each transposon family was compared between 

control and qin mutant ovaries.  

(E) The sense fraction for each transposon family for Aub- and Ago3-bound 

piRNAs was compared between qin heterozygous and qin1/Df mutant ovaries.  
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expression cannot explain the increased sense piRNA abundance in qin mutant 

ovaries. 

Among the 93 transposon families analyzed, 27 lost more than half their 

antisense piRNAs in qin1/Df ovaries (Figures 2.4C; analyses of each transposon 

family are available at 

http://www.umassmed.edu/zamore/datasets.aspx?linkidentifier=id&itemid=6

6736). The median abundance of antisense piRNAs for these 27 transposon 

families in qin1/Df ovaries was 32% of their median in the control, whereas the 

median sense piRNA abundance in qin1/Df ovaries was 67% of the control 

median. Consequently, the piRNA populations from these 27 transposon families 

became less antisense and more sense biased. That is, loss of antisense piRNAs 

and not gain of sense piRNAs underlies the increase in sense fraction for these 

transposon families. Of the 27 transposon families, eight were among the 11 

families that showed significantly elevated steady-state mRNA expression in 

qin1/Df compared with control ovaries (Figure 2.2C). Overall, antisense piRNAs 

from the 11 derepressed transposon families decreased more than those from the 

other 82 transposon families (p-value = 0.018, Wilcoxon rank-sum test), 

suggesting that loss of antisense piRNAs caused the transposon desilencing. This 

correlation was particularly striking for HeT-A, Burdock, TAHRE, and I element, 

whose expression increased ~40-, 38-, 21-, and 14-fold in qin mutants and whose 

antisense piRNA pools declined to only 14%, 18%, 35%, and 21% of control levels 

(Table 2.S2A). 

Of the remaining 66 transposon families, antisense piRNA abundance 

either increased or decreased by less than a factor of two for 59 families, and 

more than doubled for 7 families. While the median antisense piRNA abundance 

for these 66 families was unchanged from control, median sense piRNA 

abundance increased 2.3-fold (p-value = 5.7 × 10-10, two-tailed, paired t-test; 
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Figure 2.4C). Even for these transposons, the normal antisense bias of piRNAs 

was reduced in qin mutant ovaries. Notably, copia expression increased 23-fold 

and Transpac expression increased 14-fold in qin mutant ovaries, yet copia 

antisense piRNA abundance increased 3-fold and Transpac antisense piRNA 

abundance was unchanged, compared to cn1; ry506 control ovaries (Table 2.S2A). 

Thus, our data suggest that the ratio of sense to antisense piRNAs, not simply the 

abundance of antisense piRNAs, determines the efficacy of piRNAs in silencing 

transposons. The data also suggest that Qin acts to maintain the antisense bias of 

transposon piRNA populations. 

Indeed, 74 of the 93 transposon families we analyzed had a greater piRNA 

sense fraction (qin mutants – control > 0.05) in the ovaries of the qin mutants than 

in the control (Figure 2.4D). The proportion of sense piRNAs declined in qin 

mutants compared with control (control – qin heterozygotes > 0.05) for only 6 

transposon families (accord2, diver2, hopper, hopper2, gypsy, and gyspsy12). Among 

these, four families (accord2, diver2, hopper, hopper2) correspond to transposons 

whose sense piRNAs have been previously shown to be loaded into Aub, causing 

antisense piRNAs to accumulate in Ago3 (Brennecke et al., 2007; Li et al., 2009; 

Malone et al., 2009). It is not known if the Ago3-bound antisense piRNAs act to 

repress these elements. A fifth transposon family, gypsy, is thought to be active in 

the somatic follicle cells surrounding the oocyte where it is silenced by a 

mechanism that requires Piwi but not Aub or Ago3 (Li et al., 2009; Malone et al., 

2009). We do not currently understand the mechanism that causes the sixth 

transposon family, gypsy12, to gain antisense piRNAs in qin1/Df ovaries. 

The overall increase in the fraction of piRNAs corresponding to sense 

sequences was reflected in the sense fraction of piRNAs bound to Aub in qin 

mutant ovaries: among the 93 transposon families analyzed, the median sense 

fraction for the piRNAs co-immunoprecipitated with Aub increased from 0.31 in 
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qin heterozygotes to 0.42 in qin mutants (Figure 2.4E); the median sense fraction 

of Aub-bound piRNAs in wild-type Oregon R ovaries is 0.16 (Brennecke et al., 

2007). In contrast, the sense fraction of piRNAs bound to Piwi was essentially 

unaltered in qin mutant ovaries (Figure 2.S8B). Perhaps the excess sense piRNA 

bound to Aub in qin mutant ovaries sequesters factors needed for antisense 

piRNAs to direct transposon silencing. 

Qin is Required to Maintain Aub:Ago3 Ping-Pong 

To understand why in qin mutants the proportion of sense piRNAs increased for 

so many transposon families, we examined the frequency of Ping-Pong piRNA 

pairs among the piRNAs bound to Aub and Ago3. The first 10 nt of Ping-Pong 

piRNA pairs are complementary, evidence of piRNA amplification by reciprocal 

cycles of cleavage by PIWI proteins, typically Aub and Ago3. Our preliminary 

analysis, in which we used only piRNA sequence reads unique to Ago3, Aub, or 

Piwi immunoprecipitates detected no significant Ping-Pong between Piwi and 

Ago3, Piwi and Aub, or Piwi and itself (z-scores ≤ 2.8, i.e., p-value ≥ 0.05). 

Because so many Aub-bound species are also bound to Piwi, but Piwi 

participates so little in Ping-Pong, we analyzed the piRNAs bound to Ago3 or 

Aub, excluding only species bound to both Ago3 and Aub. In contrast to our 

previously published Ping-Pong analyses, we computed a z-score for the 

occurrence of Ping-Pong piRNA pairs using a method that is uninfluenced by 

sequencing depth (JX and ZW, manuscript in preparation). 

The Ping-Pong model for piRNA amplification suggests a simple 

explanation for the effect of mutation of qin: in qin mutants homotypic Ping-Pong 

between Aub and itself replaces heterotypic Ping-Pong between Aub and Ago3. 

Homotypic Ping-Pong, which occurs at low levels in control ovaries, is predicted 

to generate equal amounts of sense and antisense piRNAs. Thus, homotypic 



52

Ping-Pong is predicted to diminish the antisense bias of the piRNA population 

(Gunawardane et al., 2007; Brennecke et al., 2007; Malone et al., 2009). Aub:Aub 

homotypic Ping-Pong dominates in ago3 mutants, which not only disrupt piRNA 

amplification and produce fewer piRNAs overall, but also show increased 

piRNA sense fraction (Li et al., 2009). 

To test if inappropriate Aub:Aub Ping-Pong replaced productive 

Aub:Ago3 Ping-Pong in qin mutant ovaries, we calculated Ping-Pong z-scores for 

Aub:Aub, Aub:Ago3, and Ago3:Ago3 pairs, using only those piRNAs that could 

be assigned uniquely to Ago3 or Aub. In qin heterozygotes, Ping-Pong between 

Aub and Ago3 predominated (Figures 2.5A), with far more Aub:Ago3 Ping-Pong 

pairs (z-score = 25) detected than Aub:Aub (z-score = 13) or Ago3:Ago3 (z-score = 

3.9). In qin mutants, far fewer Aub-bound piRNAs showed the characteristic 10 

nt 5ʹ′ complementarity to Ago3-bound piRNAs (Aub:Ago3 z-score = 12), and 

Aub:Aub Ping-Pong emerged as the main pairing (Aub:Aub z-score = 26); 

Ago3:Ago3 Ping-Pong was lost (z-score = 1.8; Figures 2.5A and 2.S8C). 

HeT-A, Springer, Burdock, I element, Transpac, and TAHRE, six of the seven 

transposons that had the greatest increase in transposon expression, all switched 

from Aub:Ago3 Ping-Pong to Aub:Aub Ping-Pong in qin mutants (Table 2.S2B).            

Intriguingly, a single transposon family, the non-long-terminal-repeat 

retroelement Doc, was hyper-silenced in both qin and ago3 mutant ovaries. Doc 

expression decreased 2.6-fold in ago3 (Li et al., 2009) and 3.7-fold in qin, even 

though seemingly inappropriate Aub:Aub Ping-Pong increased (the Aub:Aub z-

score for Doc increased from 7.3 to 21), normally productive Aub:Ago3 Ping-

Pong decreased (the z-score decreased from 12 to 4.5), the proportion of piRNAs 

antisense to Doc declined, the abundance of antisense piRNAs for Doc was 

unchanged, and the abundance of sense piRNAs more than doubled. We do not 

currently understand why qin and ago3 mutants show enhanced Doc silencing.  
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We envision that in wild-type ovaries, piRNAs shared between Aub and 

Ago3 correspond to secondary piRNAs generated by Aub:Aub and by Aub:Ago3 

Ping-Pong, respectively. In qin mutants, Aub:Aub Ping-Pong occurs more often 

and Aub:Ago3 Ping-Pong occurs less frequently. Therefore, mutation of qin 

should decrease the number of secondary piRNAs common to Aub and Ago3. 

Consistent with this idea, the fraction of piRNAs shared between Ago3 and Aub 

declined from 37% in qin/TM6B to 13% in qin1/Df ovaries (p-value < 2.2 × 10-16, 

Fisher’s exact test). 
When Aub participates in heterotypic Ping-Pong, Aub-bound sense 

piRNAs often begin with uridine (U) but rarely contain an adenosine (A) at 

position 10. Primary piRNAs derived from cluster transcripts are believed to 

begin with U, whereas a position 10 A is the signature of a secondary piRNA 

produced by the Ping-Pong mechanism. (Aub-bound secondary piRNAs 

generated by cleavage of longer RNAs by Ago3-bound secondary piRNAs also 

typically begin with U, but cannot be distinguished from primary piRNAs on 

that basis.) We computed the nucleotide composition for all Aub- and Ago3-

bound piRNAs (Figure 2.5B and 2.S9A) and for the subset of piRNAs that had a 

Ping-Pong partner piRNA (Figure 2.5C). Aub-bound sense piRNAs were more 

likely to begin with U in qin heterozygous ovaries than in qin mutant ovaries 

(Figure 2.5B, 2.5C and 2.S9A). Conversely, Aub-bound sense piRNAs were more 

likely to have an A at position 10 in qin mutants than in heterozygotes, consistent 

with the emergence in the mutant ovaries of inappropriate Aub:Aub Ping-Pong 

that produces Aub-bound, sense secondary piRNAs. The Aub-bound putative 

secondary piRNAs did not, however, favor an initial U (Figure 2.5C). These data 

Ago3 correspond to secondary piRNAs generated by Aub:Aub and by Aub:Ago3   
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Figure 2.5. Futile Aub:Aub Homotypic Ping-Pong Prevails in qin Mutants. 

(A) Ping-Pong z-score, measuring the significance of 5ʹ′, 10 nt complementarity 

between piRNAs bound to Aub or Ago3, was calculated for Aub:Aub and 

Aub:Ago3 pairs for each transposon family for qin/TM6B and qin1/Df ovaries.  

(B) Sequence logos (Schneider and Stephens, 1990) for the first 10 nt of Aub- and 

Ago3-bound total piRNAs; Figure S9A illustrates all 29 nt.  

(C) Sequence logos for sense and antisense piRNAs co-immunoprecipitated with 

Aub and uniquely participating in Aub:Aub Ping-Pong and for piRNAs co-

immunoprecipitated with Aub or Ago3 and uniquely participating in Aub:Ago3 

Ping-Pong. Insets report the cumulative number of species required to account 

for a given percent of reads; the total number of reads composing each logo 

appears above each inset.
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Ping-Pong, respectively. In qin mutants, Aub:Aub Ping-Pong occurs more often 

and Aub:Ago3 Ping-Pong occurs less frequently. Therefore, mutation of qin 

should decrease the number of secondary piRNAs common to Aub and Ago3. 

Consistent with this idea, the fraction of piRNAs shared between Ago3 and Aub 

declined from 37% in qin/TM6B to 13% in qin1/Df ovaries (p-value < 2.2 × 10-16, 

Fisher’s exact test). 

When Aub participates in heterotypic Ping-Pong, Aub-bound sense 

piRNAs often begin with uridine (U) but rarely contain an adenosine (A) at 

position 10. Primary piRNAs derived from cluster transcripts are believed to 

begin with U, whereas a position 10 A is the signature of a secondary piRNA 

produced by the Ping-Pong mechanism. (Aub-bound secondary piRNAs 

generated by cleavage of longer RNAs by Ago3-bound secondary piRNAs also 

typically begin with U, but cannot be distinguished from primary piRNAs on 

that basis.) We computed the nucleotide composition for all Aub- and Ago3-

bound piRNAs (Figure 2.5B and 2.S9A) and for the subset of piRNAs that had a 

Ping-Pong partner piRNA (Figure 2.5C). Aub-bound sense piRNAs were more 

likely to begin with U in qin heterozygous ovaries than in qin mutant ovaries 

(Figure 2.5B, 2.5C and 2.S9A). Conversely, Aub-bound sense piRNAs were more 

likely to have an A at position 10 in qin mutants than in heterozygotes, consistent 

with the emergence in the mutant ovaries of inappropriate Aub:Aub Ping-Pong 

that produces Aub-bound, sense secondary piRNAs. The Aub-bound putative 

secondary piRNAs did not, however, favor an initial U (Figure 2.5C). These data 

suggest that the strong tendency for Aub-bound primary piRNAs to begin with 

U does not reflect an intrinsic property of Aub, but rather derives from a step in 

piRNA production before Aub loading, such as fragmentation of primary piRNA 

transcripts. 
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Aub:Ago3 Ping-Pong continues in qin mutants, but it no longer comprises 

the majority of Ping-Pong interactions. Ping-Pong between Aub and Ago3 

declined both for Aub-bound antisense piRNAs that Ping-Pong with Ago3-

bound sense piRNAs (z-score = 20.2 in qin heterozygotes; 12.5 in qin1/Df) and for 

Aub-bound sense piRNAs that Ping-Pong with Ago3-bound antisense piRNAs 

(z-score = 16.9 qin heterozygotes; 11.4 in qin1/Df). Despite the replacement in qin 

mutants of Aub:Ago3 Ping-Pong with Aub:Aub Ping-Pong as the main 

mechanism for piRNA amplification, Ago3-bound piRNAs that participate in 

Ping-Pong in qin1/Df ovaries retained their 10A signature (Figure 2.5C). That is, 

those Ago3 piRNAs—all of which are expected to be secondary piRNAs—that 

are still made in qin1/Df ovaries appear to be mainly generated by Aub-catalyzed 

RNA cleavage directed by piRNAs bearing a U at position 1, rather than by the 

Aub-bound secondary piRNAs produced by Aub:Aub Ping-Pong that bear an A 

at position 10. 

To understand why, we set out to quantify Ago3-bound tertiary piRNAs 

generated by Aub:Aub:Ago3 Ping-Pong. We readily detected Aub-bound 

piRNAs that bear an A at position 10 and Ping-Pong with Ago3-bound piRNAs. 

These Ago3-bound piRNAs would be expected to begin with U, but might also 

fortuitously contain an A at position 10, making it difficult to determine whether 

they represent the product of an Aub-bound primary piRNA (i.e., U at position 

1) or an Aub-bound secondary piRNA generated by Aub:Aub Ping-Pong (i.e., an 

A at  position 10). To avoid this ambiguity, we restricted our analysis to Ago3-

bound piRNAs that begin with U but bear a C, G, or U but not an A at position 

10. Such “1U, non-10A” piRNAs comprised ~4.9% of all Ago3-bound piRNAs 

possessing Ping-Pong partners in qin heterozygotes, but encompassed ~8.2% of 

all Ago3-bound piRNAs with Ping-Pong partners in qin1/Df mutant ovaries. We 

conclude that the increase in Aub-bound secondary piRNAs generated by 
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inappropriate Aub:Aub Ping-Pong in qin mutants leads to a corresponding 

increase in Ago3-bound tertiary piRNAs generated by Aub:Aub:Ago3 Ping-

Pong. These tertiary piRNAs do not generate a 1U signature in the Ago3 piRNA 

sequence logos, likely because most Ago3-bound piRNAs are still produced by 

Aub-bound primary piRNAs even in qin1/Df mutant ovaries. 

Association of Ago3 with Aub Requires Qin 

Ago3 co-immunoprecipitates with Aub from ovary lysate, suggesting that at 

least a fraction of Ago3 is bound to or present in a common complex with Aub 

(Nishida et al., 2009). We immunoprecipitated Aub from ovary lysate prepared 

from flies bearing a transgene expressing FLAG-Myc–tagged Ago3 (FM-Ago3), 

then measured the amount of co-immunoprecipitated FM-Ago3 by Western 

blotting using anti-FLAG antibody (Figure 2.6A). The association of Ago3 with 

Aub was not bridged by RNA: pre-incubation of the lysate with RNase A did not 

affect the co-association of FM-Ago3 with Aub (Figure 2.6B); control experiments 

demonstrated that the RNase treatment reduced miR-317 levels to background 

and reduced 2S rRNA, a highly structured RNA component of the ribosome, by 

15-fold (Figure 2.6C). Qin was required for the association of FM-Ago3 with Aub. 

Compared to qin heterozygotes, > 6-fold less FM-Ago3 co-immunoprecipitated 

with Aub in lysate from qin1/Df ovaries (mean ± standard deviation of co-

immunoprecipitated FM-Ago3 in qin mutant ovaries was 16 ± 12% of the 

heterozygous control, n = 3; Figures 2.6D, 2.S9B, 2.S9C, and 2.S9D). 
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Figure 2.6. The Association of Ago3 with Aub Requires Qin but not RNA. 

(A) Strategy for the experiments in (B–D).  

(B) Binding of Ago3 to Aub does not require RNA.  

(C) Treatment of ovary lysate with RNase A degrades both miRNAs and rRNAs 

as evidenced by the loss of miR-317 and 2S rRNA.  

(D) FM-Ago3 associates with Aub in qin/TM6B ovaries; the interaction was 

reduced in qin1/Df. After probing with anti-FLAG to detect Ago3, anti-Aub was 

used to measure the efficiency of immunoprecipitation. Figure 2.S9B presents the 

entire membrane and Figures 2.S9C and 2.S9D present two additional biological 

replicates. 
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DISCUSSION 

Compared with the 11 Drosophila piRNA pathway mutants previously subjected 

to high throughput sequencing analysis, qin is unique (Figure 2.7). Like qin, 

mutations in piwi or zucchini increase overall Ping-Pong z-score and decrease 

antisense piRNA abundance, but neither piwi nor zucchini mutants increase the 

abundance of sense piRNAs. Moreover, Piwi and Zucchini appear to function 

mainly in the somatic follicle cells, where piRNAs are not amplified by the Ping-

Pong cycle, so the increase in Ping-Pong observed in piwi and zucchini mutants 

largely reflects the loss of somatic piRNAs, rather than a direct effect on germline 

piRNAs. 

Mutation of ago3, aub, armitage, vasa, krimper, vret, rhino, spindle-E, or squash 

disrupts the Ping-Pong mechanism, with mutations in ago3, aub, vasa, krimper, 

vret, rhino, and spindle-E eliminating Ping-Pong piRNA amplification for most or 

all transposon families. We note that krimper, a Tudor-domain protein, localizes 

to nuage like Qin, but plays a very different role in piRNA biogenesis from Qin: 

Ping-Pong amplification collapses in krimper mutants, whereas mutation of qin 

dramatically increases piRNA Ping-Pong by triggering non-productive Aub:Aub 

Ping-Pong. While the overall abundance of piRNAs is preserved in qin mutant 

ovaries, piRNA antisense bias declines, largely because of an increase in the 

abundance of sense piRNAs. 

The replacement of heterotypic Aub:Ago3 Ping-Pong with homotypic 

Aub:Aub Ping-Pong in qin mutants suggests either that Qin acts to suppress 

homotypic Ping-Pong or that Qin promotes heterotypic Aub:Ago3 Ping-Pong. 

Our data cannot distinguish between these two models. Mutation of qin disrupts 

the interaction of Ago3 with Aub in ovary lysate. If Qin acts to suppress Aub 

self-association, the decrease in Ago3 bound to Aub might reflect the redirection 

of Aub from Ago3 to Aub itself. Alternatively, if Qin acts—directly or 
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Figure 2.7. Among piRNA Pathway Mutants, qin Has a Unique Effect on the 

Structure of the Ovarian piRNA Population. 

For each mutant the figure summaries the change in the abundance of antisense 

and of sense piRNAs, relative to cn; ry control ovaries; the fraction of all piRNAs 

with the sense orientation; and the Ping-Pong z-score. Box plots present the 

distribution for the 93 transposon families analyzed; outliers are not shown. 

Numbers report the median value corresponding to the thick vertical line on 

each box plot. 
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indirectly—to promote the binding of Aub to Ago3, a decrease in Qin function 

would lead to futile homotypic Ping-Pong by default, especially if the 

intracellular concentration of Aub were greater than that of Ago3. 

In contrast to the germline piRNAs of flies, which require Aub:Ago3 Ping-

Pong to silence transposons during gamete development, piRNA production in 

the somatic follicle cells of the ovaries of Drosophilidae and of piRNAs targeting 

non-repetitive sequences during the pachytene phase of mammalian 

spermatogenesis require just a single PIWI protein. These piRNA pathways 

proceed without Ping-Pong amplification (Aravin et al., 2007; Robine et al., 2009; 

Saito et al., 2009; Lau et al., 2009b; Li et al., 2009; Malone et al., 2009). We do not 

know if Qin in flies or Qin-like proteins in other species play a role in the 

production of this second type of piRNA. It is intriguing that the mouse protein 

Tdrd4 (also called RNF17) resembles Qin. Like Qin, Tdrd4 contains amino-

terminal E3 ligase motifs and five carboxy-terminal Tudor domains. While Tdrd4 

has yet to be implicated in piRNA biogenesis or function, it is required for 

normal mouse spermatogenesis and localizes to nuage (Pan et al., 2005). 

Heterotypic Ping-Pong between pairs of PIWI proteins drives the 

amplification of antisense piRNAs, the species believed to silence transposon 

expression during gamete formation in insects and likely many other 

invertebrates and during the prenatal development of the testes in mammals 

(Gunawardane et al., 2007; Brennecke et al., 2007; Aravin et al., 2008; Li et al., 

2009; Malone et al., 2009). Our data, however, suggest that the proposal that 

antisense piRNA abundance alone determines the extent of repression of 

transposon families is too simple to explain how piRNAs silence transposons. 

We find that neither normal amounts of the PIWI proteins Aub and Ago3 nor the 

organization of these proteins into nuage suffices to promote productive 

amplification of silencing-competent antisense piRNAs. Nor are near wild-type 
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levels of antisense piRNAs sufficient to ensure adequate silencing of active 

transposons during Drosophila oogenesis. Instead, effective transposon silencing 

requires that Aub partner with Ago3, rather than itself, generating more Aub-

bound antisense piRNAs than sense. We have shown here that this heterotypic 

partnership requires Qin. Key challenges for the future will be to determine how 

Qin promotes heterotypic Ping-Pong or represses homotypic Ping-Pong and 

what role its E3 ligase and Tudor domains play in this process.
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                                          EXPERIMENTAL PROCEDURES 

General Methods. Female fertility tests, tiling arrays, immunoprecipitation, 

immunoblotting, and quantitative RT-PCR were as described (Li et al., 2009). 

Small RNA data for total small RNAs in cn1; ry506 ovaries (Klattenhoff et al., 2009) 

was previously deposited in the NCBI trace archives (accession number 

SRP002060); tiling microarray data (Fig. 2, C–D) for total RNA in w1, aubHN2/QC42 

and ago3t2/t3 ovaries (Li et al., 2009; Klattenhoff et al., 2009) was previously 

deposited in the NCBI gene expression omnibus (accession number GSE14370). 

Small RNA data for Figure 2.7 was previously deposited in the NCBI trace 

archives SRP000458 (Li et al., 2009), GEO GSE15186 (Malone et al., 2009), and 

GSE30088 (Zamparini et al., 2011). Aub- and Ago3-associated small RNA data 

from Oregon R was published previously (Brennecke et al., 2007). Unless 

otherwise specified, p-values were calculated from at least three independent 

biological replicates using a two-tailed, two-sample unequal variance t-test 

(Excel, Microsoft). 

Drosophila stocks. All flies were raised at 25°C. PBac(RB)CG14303e03728 (qin1) and 

Df flies were from the Bloomington Stock Center at Indiana University; 

PBac(RB)e01936 (qin2) was from the Harvard Medical School stock center. 

P(w+mc, UASp-FM-Ago3-C2) (Chengjian Li and PDZ, unpublished) was used to 

express Ago3. 

Transgenic flies. qin was isolated from Oregon R ovary cDNA by PCR using 

primers containing attB sites (Table S4), inserted into plasmid pDONR 

(Invitrogen, Carlsbad, CA, USA), and the cDNA sequenced (GENEWIZ, 

Cambridge, MA, USA) to confirm its structure. The qin cDNA was moved from 

pDONR to pPFMW vector by recombination using Clonase II Enzyme Mix 
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(Invitrogen). Transgene constructs were established by injection (BestGene, 

Chino Hills, CA, USA) using PhiC31 integrase-mediated genomic insertion and 

the 28E7 (BDSC 9723; gf-1), attP2 (BDSC 8622; EGFP-modified gf-2), and 53B2 

(BDSC9736; UASp-FM-Qin cDNA, UASp-FM-(Tud)5 and UASp-FM-E3) fly 

strains. 

Genomic DNA fragments CH322-81J04 (gf-1) and CH321-88L14 (gf-2) were from 

the BACPAC Resources Center (Oakland, California, USA). EGFP was inserted 

into gf-2 by recombineering (Venken et al., 2009). Briefly, EGFP coding sequence 

and the kanamycin resistance gene (NPT II) were amplified by PCR from the 

plasmid pLAP (Poser et al., 2008) (gift of A. Hyman) using KOD Hot Start 

polymerase (EMD, Darmstadt, Germany). The P[acman] BAC clone for qin, 

CH321-88L14, was purified (NucleoBond BAC100 kit, Clontech, Mountain View, 

CA, USA), electroporated into SW102 cells, and positive colonies were selected 

using LB plates containing 12.5 µg/ml chloramphenicol and 10 µg/ml 

tetracycline at 32°C for 18–24 h. Positive colonies were verified by PCR, then 

recombineering was performed using the purified PCR product. Positive 

recombinants were selected on LB plates containing 25 µg/ml kanamycin, 12.5 

µg/ml chloramphenicol and 10 µg/ml tetracycline at 32°C for 24–36 h. The 

resulting Qin::EGFP BAC was identified by PCR, and then sequenced to confirm 

that the EGFP tag was in-frame with Qin.  

5ʹ′ RACE. 5ʹ′ RACE was performed with the SMARTer RACE Kit (Clontech) using 

1 µg total ovary RNA according to the manufacturer’s instructions. 

Small RNA library construction and high-throughput sequencing. RNA 

libraries were prepared as described (Li et al., 2009) except that 2S rRNA was 

depleted by hybridization using a complementary, immobilized DNA 
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oligonucleotide (5ʹ′-biotin-TCA ATG TCG ATA CAA CCC TCA ACC ATA TGT 

AGT CCA AGC A-3ʹ′). Briefly, for each library 400 µl MyOne Streptavidin C1 

Dynabeads (Invitrogen) were washed twice in 0.5× SSC (1× SSC: 150 mM sodium 

chloride, 15 mM sodium citrate, pH 7.0) at 4°C, then re-suspended in 400 µl 0.5× 

SSC. The beads were then loaded with 200 pmole DNA oligonucleotide at 4°C for 

30 min, washed once in 0.5× SSC, re-suspended in 1 ml 0.5× SSC, and then 

warmed to 65°C for 5 min. Size-selected RNA (50 µg) was incubated at 80°C for 5 

min and then added to the pre-warmed beads and incubated at 50°C for 1 h. The 

beads were removed by magnetic capture and the supernatant mixed with 3 

volumes of ethanol, 0.3 M (f.c.) sodium acetate, pH 5.2, and 1 µl (20 µg/µl) 

glycogen (Roche, Indianapolis, IN, USA). 

Co-immunoprecipitation assays. Ovaries were manually dissected from 2–4 day 

old females and homogenized in lysis buffer (100 mM potassium acetate, 6.4% 

glycerol, 30 mM HEPES-KOH, pH 7.4, 2 mM magnesium acetate, 0.1 mM EDTA, 

pH 8.0, 2 mM dithiothreitol (freshly added) containing 1 Mini, Complete, EDTA-

free Protease Inhibitor Cocktail (Roche) tablet per 10 ml. GammaBind G 

Sepharose (GE Healthcare, Piscataway, NJ, USA) was loaded with rabbit anti-

Aub polyclonal antibody (15 µl antibody per 30 µl Sepharose) at room 

temperature for 2 h, washed 5 times with lysis buffer, and then incubated with 

400 µl freshly prepared ovary lysate (5 µg/µl) rotating at 4ºC overnight. The 

supernatant was analyzed by immunoblotting to confirm Aub depletion. The 

beads were then washed twice with lysis buffer, 3 times with RIPA buffer (50 

mM Tris-HCl, pH 8.0, 150 mM NaCl, 1.0% [v/v] NP-40), and then once with lysis 

buffer. Finally, the beads were boiled in 40 µl 1× SDS-sample buffer (50 mM Tris-

HCl [pH 6.8], 2% [w/v] sodium dodecyl sulfate, 10% [v/v] glycerol, 1% [v/v] β-

mercaptoethanol, 12.5 mM EDTA, 0.02% [w/v] bromophenol blue) and resolved 
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by electrophoresis through a 7.5% SDS-polyacrylamide gel until the 50 kDa 

protein standard was nearly at the bottom of the gel. The proteins were next 

transferred to 0.45 µm PVDF membrane (Millipore, Billerica, MA, USA), and the 

blot was probed with anti-FLAG mouse monoclonal antibody (Sigma) diluted 

1:2,500 in TBST-milk (25 mM Tris-HCl pH 7.4, 3 mM KCl, 140 mM NaCl, 0.05% 

[v/v] Tween-20, 3% [w/v] non-fat dry milk), incubated overnight at 4ºC. Next, 

the membrane was washed 4 times with TBST, 5 min each, and incubated 1 h at 

room temperature with sheep anti-mouse IgG-HRP (GE Healthcare) at 1:10,000 

in TBST-milk. Then the membrane was washed four times with TBST at room 

temperature for 5 min and developed with SuperSignal West Dura Extended 

Duration Substrate (Pierce, Rockford, IL, USA). Image data were captured with 

an LAS-3000 image reader (Fujifilm, Tokyo, Japan). Afterwards, the membrane 

was re-probed with rabbit anti-Aub polyclonal antibody diluted 1:2,500 to 

determine the efficiency of immunoprecipitation. Rabbit anti-Aub polyclonal 

antibody was detected using sheep anti-mouse IgG-HRP (GE Healthcare). 

Quantitative analysis was performed using ImageGauge 4.22 (Fujifilm). 

To determine whether the interaction between Aub and FM-Ago3 was 

RNA dependent, RNase A (Sigma) (f.c. 300 ng/µl) was added to the lysate 

during the immunoprecipitation. 

Northern hybridization. Total ovary RNA (7 µg per sample) was dissolved in 

25% (v/v) deionized formamide, 3% (v/v) formaldehyde, 5% (v/v) glycerol; 

0.025% (w/v) bromophenol blue; 10 mM MOPS (pH 7.0), 2.5 mM sodium acetate, 

1 mM EDTA, resolved by electrophoresis through a 1% (w/v) agarose, 2% (v/v) 

formaldehyde gel using 20 mM MOPS; 5 mM sodium acetate; 2 mM EDTA, pH 

7.0, and transferred to a positively charged nylon membrane (Roche) by capillary 

transfer in 20× SSC. RNA was cross-linked to the membrane using 254 nm 
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ultraviolet light in a Stratalinker UV Crosslinker 2400 (Stratagene, Agilent, Santa 

Clara, CA, USA) by running the “auto crosslink” program once. The membrane 

was pre-hybridized in blocking buffer (Roche), and then incubated with DIG-

labeled antisense probes prepared and used according to the manufacturer’s 

instruction (Roche). The blot was developed using CDP-Star (Roche), and the 

image acquired using a 4000MM Image Station (Carestream, Rochester, NY, 

USA). 

Immunohistochemistry. Egg chamber fixation and antibody labeling were as 

described (Li et al., 2009) except that to detect Ago3 and Aub simultaneously, 

mouse anti-Aub monoclonal antibody (gift of M. Siomi) was used diluted 1:1,000 

and to detect FM-Qin, anti-FLAG mouse monoclonal antibody (Sigma, St. Louis, 

MO, USA) was used diluted 1:2,000. Images were processed using Leica Confocal 

Software 2.61 (Leica, Buffalo Grove, IL, USA). 

Bioinformatic analyses. Analysis was as described (Li et al., 2009) except for the 

computation of Ping-Pong z-scores. For two piRNAs that were sufficiently 

complementary to each other at a particular 5ʹ′-to-5ʹ′ distance, a score was defined 

as the product of their abundances. The Ping-Pong z-score was then the 

difference of the score at the 5ʹ′-to-5ʹ′ distance of 10 nt and the mean scores of 

background distances, divided by the standard deviation of the scores of 

background distances, defined as distances of 0–9 and 11–20 nt. Two piRNAs 

were sufficiently complementary to each other when the nucleotides 2–10 of the 

first piRNA were perfectly paired with the second piRNA and there was at most 

one mismatch among positions 1 and 11–16 of the first piRNA. Genomic 

sequence adjacent to the second piRNA was used to determine complementarity 

when the 5ʹ′-to-5ʹ′ distance was less than 16 nt. 
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Accession Numbers. Sequence data generated in this study are available via the 

NCBI trace archives (http://www.ncbi.nlm.nih.gov/Traces/) with accession 

number SRP007101. Microarray data generated in this study are available via the 

NCBI gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) as 

GSE30061. 
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Figure 2.S1
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Figure 2.S1. Sequences surrounding the 5ʹ′  and 3ʹ′  splice sites of the 51,682 nt 

qin intron and the inferred sequence of the Qin protein. 
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Figure 2.S2. Qin silences HeT-A and Burdock in Drosophila ovaries.  

(A) Df deletes the qin locus.  

(B) Quantitative-RT-PCR analysis measuring qin mRNA expression in ovaries of 

the indicated genotypes. The data were normalized to rp49 (RpL32) expression. 

The bars report mean ± standard deviation for three biological replicates.  

(C) Quantitative RT-PCR measuring HeT-A abundance in qin mutant ovaries. 

Data were normalized to rp49 (RpL32) expression. The bars report mean ± 

standard deviation for three biological replicates.  

(D) Northern hybridization measuring Burdock abundance in qin heterozygous 

(Df/TM3) and mutant ovaries.
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Figure 2.S3. Qin localization.  

(A) A nos-Gal4-VP16 transgene was used to drive expression of UASp FLAG-

Myc-tagged full-length Qin, FLAG-Myc-tagged truncated (Tudor)5 Qin lacking 

the putative E3 ligase domain, or FLAG-Myc-tagged Qin containing the E3 ligase 

domain but lacking the Tudor domains. nos-Gal4-VP16 is expressed in the 

germarium and in late, but not early, stages of oogenesis.  

(B) Diagram of the Qin::EGFP transgene containing a genomic fragment 

encompassing qin, with EGFP inserted at the Qin carboxy-terminus to allow 

detection of the intracellular localization of Qin.  

(C) Live-cell EGFP images of the intracellular distribution of Qin during 

Drosophila oogenesis. Scale bars, 10 µm. 
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Figure 2.S4. Germline γH2Av foci in qin mutant ovaries. 

In control (w1) and qin1/TM6B ovaries, γH2Av foci in the stage 2a and 2b region 

of the germarium likely correspond to the normal DNA strand breaks induced 

during meiotic recombination. In both qin1 and qin1/Df ovaries, γH2Av foci 

inappropriately persist during subsequent stages of oogenesis. Scale bars, 10 µm. 
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Figure 2.S5. Tiling microarray analysis of mRNA expression in control (w1) 

and qin1/Df ovaries.  

All of the changes detected for mRNA corresponded to FDR ≥ 0.1, suggesting 

that loss of qin has no significant effect on mRNA expression. 
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Figure 2.S6. Localization of PIWI and Vasa proteins in qin heterozygous and 

mutant ovaries.  

Scale bars, 10 µm. 
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Figure 2.S7. Abundance of PIWI and Vasa proteins in qin heterozygous and qin 

mutant ovaries.  

These data were used to generate Fig. 2.4A. 
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Figure 2.S8.  

(A) Scatter plots presenting the change in sense piRNA abundance versus 

transposon expression, analyzed by transposon family. The 11 significantly over-

expressed transposon families are marked in red.  

(B) The sense fraction of the Piwi-bound piRNAs for each transposon family was 

compared between qin heterozygotes and qin1/Df mutant ovaries.  

(C) Ping-Pong z-scores were calculated for Ago3:Ago3 pairs for qin/TM6B and 

qin1/Df ovaries.
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Figure 2.S9. Qin maintains Aub and Ago3 co-association.  

(A) Sequence logos of Aub- and Ago3-bound total piRNAs.  

(B) Complete images of the Western blots presented in Fig. 6D. 

(C and D) Additional independent replicates of the experiment in Fig. 6D.
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Table 2.S1. Quantitative Phenotypes Observed for qin Mutant Females and 
Their Embryos. 
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Table 2.S2. Mutation of qin Causes Inappropriate Transposon Expression and 
Alters piRNA Ping-Pong. 
The change in transposon mRNA abundance (mean ± standard deviation for 3 
independent experiments) between qin1/Df and w1 ovaries was measured by 
quantitative RT-PCR (A), and Ping-Pong z-score (B) was calculated from high 
throughput sequencing of small RNAs from Aub- or Ago3 immunoprecipitates. 
Antisense piRNA abundance was calculated from normalized high throughput 
sequencing data. P-values were calculated using Student’s unpaired, two-tailed 
t-test. 

A 

Transposon 
family 

Change in 
mRNA 

abundance 
p-value 

Antisense piRNA 
abundance 

relative to control 

HeT-A 72 ± 6.2 0.004 14% 
Springer 55 ± 4.5 0.002 42% 
Burdock 41 ± 5.4 0.006 18% 

I element 29 ± 4.6 0.01 21% 
copia 23 ± 3.0 0.006 300% 

Transpac 14 ± 1.3 0.003 100% 
TAHRE 6.3 ± 1.4 0.02 35% 

McClintock 3.1 ± 0.08 0.004 64% 
jockey 2.7 ± 0.36 0.006 24% 
TART 1.7 ± 0.15 0.005 47% 

R2 element 1.6 ± 0.06 0.004 29% 
micropia 1.2 ± 0.18 N.S. 278% 

Max element 0.72 ± 0.01 0.05 67% 

B 

Transposon 
family 

Ago3:Aub Ping-Pong Aub:Aub Ping-Pong 

  qin   
TM6B 

 qin1 
Df 

  qin   
TM6B 

 qin1 
Df 

I element 38 11 6.7 70 
HeT-A 12 8.1 6.6 16 

Springer 17 6.2 18 130 
Burdock 14 4.9 7.9 28 

Transpac 22 14 7.1 8.6 
TAHRE 14 5.4 9.9 21 
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Table 2.S3A. Sequencing statistics: analysis of genome-matching sequences by reads. “Reads excluding ncRNA” 
correspond to genome-matching reads after excluding annotated non-coding RNAs (ncRNAs) such as rRNA, snRNA, 
snoRNA, or tRNA. “Transposon-matching reads” correspond to small RNAs mapped to Drosophila melanogaster 
transposons. Because a single read can map to both the sense and to the antisense orientation of a transposon, the sum of 
sense and antisense transposon-matching reads can be greater than the total number of transposon-matching reads. The 
numbers in parentheses avoid this discrepancy by apportioning a value of 0.5 to sense and antisense for each read that 
maps to both orientations. IP, Immunoprecipitate. 

Ovary 
genotype 

Samp
le 

type 

Total 
reads

Reads 
perfectly 
matching 
genome 

ncRNA 
reads 

Reads 
excluding 

ncRNA 

miRNA- 
matchin

g 
reads 

Reads 
excluding 
ncRNA & 
miRNA 

23–29 nt small RNA reads 

Total 
Transposon-matching reads 

Total sense antisense

            
qin/TM6

B total 27,315,040 18,703,360 
4,083,63

6 
14,619,724 

5,833,98
6 

8,785,737 7,524,798 
5,558,981 

(5,553,421) 
1,834,654 

(1,786,085) 
3,852,821 

(3,767,336) 

qin1/Df total 29,081,496 18,535,404 
2,439,23

0 
16,096,174 

6,858,62
4 

9,237,550 7,993,876 
6,064,405 

(6,054,773) 
2,361,385 

(2,290,950) 
3,868,735 

(3,763,823) 

qin/TM6
B 

Ago3 
IP 

17,530,969 8,814,361 
2,640,42

7 
6,173,934 114,424 6,059,510 5,376,206 

4,392,867 
(4,372,622) 

3,372,343 
(3,317,483) 

1,155,786 
(1,055,139) 

Aub 
IP 

7,614,103 5,561,574 220,453 5,341,121 63,787 5,277,334 4,969,621 
3,817,326 

(3,812,952) 
1,246,987 

(1,186,581) 
2,718,355 

(2,626,371) 

Piwi 
IP 

8,145,909 6,556,897 213,633 6,343,264 54,025 6,289,239 6,124,695 
4,452,161 

(4,431,094) 
1,306,256 

(1,277,630) 
3,198,436 

(3,153,463) 

qin1/Df 

Ago3 
IP 

20,670,615 13,576,418 
2,327,96

8 
11,248,450 280,299 10,968,151 9,906,549 

8,238,924 
(8,212,667) 

6,805,366 
(6,727,862) 

1,632,017 
(1,484,806) 

Aub 
IP 

30,714,553 21,565,387 697,030 20,868,357 189,545 20,678,812 19,824,137 
15,285,770 

(15,257,765) 
6,198,355 

(5,943,238) 
9,711,498 

(9,314,526) 

Piwi 
IP 

16,581,308 10,715,339 358,527 10,356,812 113,174 10,243,638 9,952,288 
7,543,708 

(7,510,426) 
2,379,092 

(2,317,197) 
5,278,014 

(5,193,228) 
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Table 2.S3B. Sequencing statistics: analysis of genome matching sequences by species. “Species excluding ncRNA” 
correspond to genome-matching species after excluding annotated non-coding RNAs (ncRNAs) such as rRNA, snRNA, 
snoRNA, or tRNA. “Transposon-matching species” correspond to small RNAs mapped to Drosophila melanogaster 
transposons. Because a single species can map to both the sense and to the antisense orientation of a transposon, the sum 
of sense and antisense transposon-matching reads can be greater than the total number of transposon-matching reads. 
The numbers in parentheses avoid this discrepancy by apportioning a value of 0.5 to sense and antisense for each species 
that maps to both orientations. IP, immunoprecipitate. 

Ovary 
genotype 

Samp
le 

type 

Total 
species

Species 
perfectly 
matching 
genome 

ncRNA 
species 

Species 
excluding 

ncRNA 

miRNA- 
matchin

g 
species 

Species 
excluding 
ncRNA & 
miRNA 

23–29 nt small RNA species 

Total 
Transposon-matching species 

Total sense antisense

            

qin/TM6B total 8,149,381 2,587854 105,322 2,482,532 2,580 2,479,952 1,948,429 
1,247,862 

(1,237,374) 
494,183 

(476,902) 
779,334 

(760,472) 

qin1/Df total 8,949,604 2,049,973 81,995 1,967,978 2,475 1,965,503 1,520,645 
1,056,239 

(1,048,669) 
454,562 

(438,754) 
626,525 

(609,915) 

qin/TM6B 

Ago3 
IP 

6,236,108 189,191 29,854 159,337 254 159,803 126,156 
92,757 

(91,860) 
62,918 

(60,645) 
33,171 

(31,214) 

Aub 
IP 

2,564,509 1,087,079 25,358 1,061,721 601 1,061,120 953,592 
668,611 

(662,404) 
284,252 

(272,790) 
401,574 

(389,614) 

Piwi 
IP 

3,278,136 2,107,167 28,717 2,078,450 620 2,077,830 1,980,141 
1,162,524 

(1,152,541) 
451,234 

(437,945) 
729,172 

(714,596) 

qin1/Df 

Ago3 
IP 

3,786,386 187,064 19,783 167,281 345 166,936 134,817 
101,735 

(101,025) 
74070 

(71,683) 
31,594 

(29,343) 

Aub 
IP 

8,098,256 1,590,856 33,552 1,557,304 777 1,556,527 1,399,273 
1,034,143 

(1,026,431) 
480,253 

(461,553) 
583,647 

(564,878) 

Piwi 
I.P. 

6,499,081 1,999,395 33,013 1,966,382 678 1,965,704 1,847,207 
1,147,558 

(1,138,388) 
465,649 

(450,514) 
704,124 

(687,874) 
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Table 2.S4. Synthetic DNA oligonucleotides used in this study (5ʹ′-to-3ʹ′). 

For quantitative RT-PCR 

Detects Forward primer; reverse primer 

qin CTG CTG GTT GGA CTA CAC GA; GGA GGT AGA GCG CTC CTT TT 

HeT-A 
CGC GCG GAA CCC ATC TTC AGA; CGC CGC AGT CGT TTG GTG 

AGT 

blood TGC CAC AGT ACC TG ATT TCG; GAT TCG CCT TTT ACG TTT GC 

ZAM 
ACT TGA CCT GGA TAC ACT CAC AAC; GAG TAT TAC GGC GAC TAG 

GGA TAC 

I element 
TGA AAT ACG GCA TAC TGC CCC CA; GCT GAT AGG GAG TCG GAG 

CAG ATA 

Rp49 CCG CTT CAA GGG ACA GTA TCT G; ATC TCG CCG CAG TAA ACG C 

Burdock AGG GAA ATA TTT GGC CAT CC; TTT TGG CCC TGT AAA CCT TG 

TAHRE CTG TTG CAC AAA GCC AAG AA; GTT GGT AAT GTT CGC GTC CT 

Transpac GGA ACG CAC CTT CAA CAT TT; GCA AAC TCG CAT TTG TCT GA 

Copia AGC AAA CAA CCC CTC ATG TC; GCA AAC CCA ATT TGT CTC GT 

TART ACC AGG GAA AAG TGT GAA CG; GGT GCA GTG GTA TGG CTT TT 

McClintock CCC TAA TCC GTT TTC CCA AT; CTG GTC GGT TCT GGT CAA AT 

Jockey TCT GCG GTC TCC AGC TTA AT; GTT GGG CAA ATG CTA GTG GT 

R2 element ATG CTC CCG AAA CAA CAA AC; GCA CTG CAG ACT TGG TTC AA 

Springer TGA AGA GCA AGA ACC GGA GT; TCC TCC AGC AAA GCT TGT TT 

micropia CGA ATG TTA CGC GGT GTA TG; CTG GTC AGG TCC AAG GTT GT 

Max ATC TAG CCA GTC GAG GCG TA; TGG AAG AGT GTC GCT TTG TG 

For qin1 genotyping 

piggyBac-5R1 TGA CAC TTA CCG CAT TGA CA 
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piggyBac-3F1 CAA CAT GAC TGT TTT TAA AGT ACA AA 

qin1-gt-F CTT TGA GCA CAA CGA GGA CA 

qin1-gt-R AGG CGC TTC CTT GTC TGA TA 

For qin cDNA amplification 

qin-attB-F 
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GAT TGC 

CGA CGA CAG TGG AAT AAA G 

qin-attB-R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC TTA TGA TTT TTT 

CAG GAA CAT CCA ATT TTC 

(Tud)5-attB-F 
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CGT GGT TCA 

ACG GGC CAA AC  

E3-attB-R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC CTA CTG TTT 

GCC ATT GAG GAC ATG AAT AT  

For qin 5ʹ′ RACE 

qin 5ʹ′ RACE-1488 CAC GTG CAG CAT CTG AAC CAT GTA G 

For Qin::EGFP recombineering 

qin-EGFP-F 
AGC TAG TGT ATC AAT CTT TAT GTG AAA ATT GGA TGT TCC TGA 

AAA AAT CAG ATT ATG ATA TTC CAA CTA CTG 

qin-EGFP-R 
AAA TAG AAA CTG AAA ATG GCT TAC ATC ATA TGC GGC TTT AGT 

CGT AGC CTC AGA AGA ACT CGT CAA GAA G 

To generate Northern hybridization probes 

Detects Forward primer; reverse primer  

Tudor domains 

GAT TTA GGT GAC ACT ATA GAA GTG CAT TTG CGG GAT 

TTG GGT; TAA TAC GAC TCA CTA TAG GGT CGC ACT TTC 

GTC GTG TAG TCC AA 
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E3-ligase domains 

ATT TAG GTG ACA CTA TAG AAC TCT CTG CGA GAG CTG 

CTT GT; TAA TAC GAC TCA CTA TAG GTT GGG CAT TCG GTG 

ATG GAT GC 

Burdock 

GAT TTA GGT GAC ACT ATA GAT CGT GAT GTG GTT AAG 

CCG GAT GT; TAA TAC GAC TCA CTA TAG GGA GGT GTT 

CTC CCG AGG ATT TGC TT 

Rp49 
CCA AGC ACT TCA TCC GCC ACC AGT C; TAA TAC GAC TCA 

CTA TAG GTC CGA CCA CGT TAC AAG AAC TCT CA 
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CHAPTER III 

 
ANTISENSE PIRNA AMPLIFICATION, BUT NOT piRNA PRODUCTION 

OR NUAGE ASSEMBLY, REQUIRES THE TUDOR-DOMAIN PROTEIN QIN 
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from Jie Wang and Zhingping Weng. 
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SUMMARY 

PIWI-interacting RNAs (piRNAs) silence transposons and maintain germline 

genome integrity in the Drosophila melanogaster ovary. Wild-type piRNA 

production requires Qin (also known as Kumo), a protein comprising a RING 

domain, two B-Box domains and five Tudor domains. Two conflicting roles for 

Qin in piRNA function have been described. One model proposes that Qin is 

required to assemble nuage, a perinuclear structure containing many piRNA 

pathway proteins, and in qinkumo mutant ovaries, germline piRNAs are reported to 

be lost. An alternative view proposes that Qin coordinates piRNA amplification 

via reciprocal cycles of RNA cleavage directed by Aubergine- and Ago3-bound 

piRNAs. Here, we report that in multiple loss-of-function and null mutant qin 

allelic combinations, nuage remains intact, sense piRNAs increase, and antisense 

piRNAs decrease, reflecting the replacement of wild-type heterotypic with 

homotypic piRNA “Ping-Pong” cycles. We conclude that Qin acts to ensure the 

antisense bias of the piRNA amplification machinery. 
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INTRODUCTION 

Qin is required for transposon silencing by the PIWI-interacting RNA (piRNA) 

pathway (Zhang et al., 2011; Anand and Kai, 2012). Initial descriptions of qin 

mutants led to conflicting explanations for the role of Qin in piRNA biogenesis. 

One study suggested that loss of Qin causes the accumulation of sense piRNAs 

instead of antisense without altering total piRNA levels or perturbing the 

localization of Aub and Ago3 to the perinuclear nuage (Zhang et al., 2011). A 

second report concluded that both piRNAs and nuage were lost from the 

germline in qin mutants, leading to a complete failure of the piRNA pathway 

(Anand and Kai, 2012). We re-analyzed the qin alleles used in the two studies: 

qin1, qin2 (Zhang et al., 2011) and qinkumo (Anand and Kai, 2012). We conclude that 

the fundamental defect in qin mutants is not a loss of piRNAs, but rather the 

replacement of heterotypic Aub:Ago3 Ping-Pong with non-productive, 

homotypic Aub:Aub Ping-Pong. Our data suggest that the phenotypes reported 

for qinkumo homozygotes are caused by a secondary mutation unlinked to qin. 
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RESULTS AND DISCUSSION 

qinkumo likely contains a secondary mutation 

Compared with genotypically matched w1118 and qinkumo/TM3 controls, 

homozygous qinkumo mutant ovaries are small, with few egg chambers beyond 

stage 10 (Supplementary Figure 3.S1). In contrast, qin1, qin2, qinkumo in trans to a 

complete deletion of the qin locus (Df(3R)Excel6180; henceforth, Df), as well as 

qin1/qinkumo and qin2/qinkumo, all had normal ovary size and shape. 

qinkumo/qinkumo females laid almost no eggs (1 egg per female on day 2, and 

none thereafter), yet qinkumo/Df females each laid ~50 eggs per day. Typically, the 

phenotype of a strong mutant allele remains the same or worsens in trans to a 

deficiency, but qinkumo/qinkumo was more severe than qinkumo/Df. Potential 

explanations include (1) qinkumo is a neomorph; (2) the Df(3R)Excel6180 deficiency 

fails to uncover the entire qin gene; and (3) qinkumo contains a secondary mutation 

unlinked to qin. 

Our data support the idea that qinkumo is a null mutation and that 

Df(3R)Excel6180 removes all of qin: RNA-seq detected no qin mRNA in qinkumo/Df 

ovaries (Figure 3.1A). The qin1 allele results from a piggyBac transposon insertion 

and produces a truncated mRNA 4,432 nt long. As anticipated, qin1/Df ovaries 

produced a ~4400 nt RNA less than half as abundant as qin mRNA in w1118 (12 

rpkm vs. 32 rpkm). The qin deficiency extends beyond the 5ʹ′ end of qin, 

disrupting the upstream gene CG7694: CG7694 mRNA abundance was 12 rpkm 

in w1118 but only 4.2 rpkm in qin1/Df and 3.6 rpkm in qinkumo/Df. We conclude that 

both qinkumo and Df(3R)Excel6180 are null alleles of qin and that a secondary 

mutation unlinked to qin is present on the qinkumo chromosome. 

Normal nuage in qin mutants 
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Figure 3.1
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Figure 3.1. Without Qin, Ago3, Aub and Vasa still reside in nurse cell nuage. 

(A) RNA-seq data for wild-type and qin mutant ovaries.  

(B) Ago3 and Aub immunostaining or live EGFP-Vasa image in qin mutants. 

EGFP-Vasa fusion protein was expressed from a transgene using the vasa 

promoter. 
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By immunofluorescence antibody staining, Ago3 and Aub were present in nuage 

in all genotypes tested except qinkumo/qinkumo (Figure 3.1B). For example, qinkumo/Df, 

Ago3 was correctly localized to perinuclear foci in 62 of 67 nurse cells among 12 

separate egg chambers, compared with 66 of 70 in 16 separate egg chambers 

from qinkumo/TM3 flies and 96 of 102 in 20 separate egg chambers from w1118 

ovaries; Aub was present in perinuclear puncta typical of nuage in 50 of 57 nurse 

cells from nine qinkumo/Df egg chambers compared to 61 of 68 nurse cells from 

nine qinkumo/TM3 egg chambers and 90 of 98 from 20 w1118 egg chambers. Aub 

localizes to the posterior end of the oocyte in late-stage egg chambers, and this 

localization was preserved in qin mutants (Supplementary Figure 3.S2). In 

contrast, qinkumo homozygotes showed mislocalized Ago3 and Aub as previously 

reported (Figure 3.1B; (Anand and Kai, 2012)). 

To provide an independent test of whether qinkumo/Df disrupts nuage, we 

monitored the localization of GFP-Vasa, a nuage marker, in live nurse cells 

(Figure 3.1B). We detected no disruption of the localization of GFP-Vasa in qin 

mutants. We conclude that loss of Qin does not affect nuage structure in unfixed, 

living nurse cells. 

Loss of Qin has little effect on the total abundance of piRNAs but increases 

the fraction of sense piRNAs 

piRNA levels in qin1/Df ovaries are indistinguishable from controls (Zhang et al., 

2011). We used small RNA sequencing to measure piRNA abundance in qin2/Df 

and qinkumo/Df ovaries. Compared to heterozygotes, the abundance of total 

transposon-derived, 23–29 nt small RNAs in qin2/Df and qinkumo/Df changed < 4% 

(Figure 3.2A; Supplementary Tables SI and SII). Among the 93 transposon 

families with >100 ppm piRNA reads in qin1/TM6B ovaries (Zhang et al., 2011), 
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there was no significant change in median piRNA abundance relative to w1118 

controls for qin1/Df (p = 0.57, Wilcoxon test), qin2/Df (p = 0.13), or qinkumo/Df (p = 

0.33; Figure 3.2B; for additional analyses by transposon families see 

http://www.umassmed.edu/uploadedFiles/zamore/Transposon_buckets.zip). 

However, the fraction of piRNAs with the same orientation as the corresponding 

transposon sense mRNA increased: the median sense fraction (i.e., sense 

piRNAs/all piRNAs) among 93 transposon families was 0.25 for w1118 ovaries but 

0.41 for qin1/Df mutants (p = 5.2 × 10−7, Wilcoxon test), 0.37 for qin2/Df (p = 2.4 × 

10−4), and 0.38 for qinkumo/Df (p = 1.1 × 10−5; Figure 2B). 

We also measured piRNA abundance in qinkumo/qinkumo and qinkumo/TM3 

ovaries (Supplementary Tables 3.SI and 3.SII). qinkumo homozygous mutant flies, 

like other qin loss-of-function mutations, produced amounts of piRNAs similar to 

their qinkumo/TM3 siblings (Figure 3.2A). Our analysis of previously published 

deep sequencing data from homozygous qinkumo ovaries (Anand and Kai, 2012) 

also led us to conclude that there was no change in total piRNA production 

(Figure 3.2A). Moreover, the effects of qin1/Df and qinkumo/Df on piRNA 

production were highly correlated (r = 0.94), but less well correlated with 

qinkumo/qinkumo (r = 0.85, p-value < 2.2 × 10−16; Figure 3.2C and Supplementary 

Figure 3.S3A) 

All qin allelic combinations showed significant (Z > 46; p-value < 2.2 × 

10−16) Ping-Pong amplification as measured by comparing piRNA pairs 

overlapping by 10 bp to other lengths of overlap (Figure 3.2D and 

Supplementary Figure 3.S3B). Finally, we reached these same conclusions when 

normalizing the data by two alternative strategies—microRNA abundance and 

non-coding RNA abundance (Supplementary Figure 3.S4, Figure 3.S5 and Figure 

3.S6). We conclude that Qin is not required to maintain overall piRNA levels or  
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Figure 3.2
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Figure 3.2. piRNA abundance and Ping-Pong efficiency are unaltered in qin 

mutant ovaries.  

(A) piRNA length distribution. Blue, sense piRNAs; red, antisense.  

(B) Box plots reporting the change in abundance of all piRNAs mapping to 

transposons.  

(C) qin1/Df, qin2/Df and qinkumo/Df, but not qinkumo/qinkumo, affect piRNA 

production similarly. Group 1: transposon families with piRNAs amplified by 

the Ping-Pong pathway and more antisense piRNAs bound to Aub and more 

sense piRNAs bound to Ago3. Group 2: transposon families with piRNAs 

amplified by the Ping-Pong pathway and more sense piRNAs bound to Aub and 

more antisense piRNAs bound to Ago3. Group 3: transposon families expressed 

in the somatic follicle cells, predominantly antisense primary piRNAs, and little 

Ping-Pong amplification.  

(D) Box plots reporting Ping-Pong Z-score by transposon family. Z-score = 1.96 

corresponds to p-value = 0.05.
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for Ping-Pong amplification. 

Loss of qin leads to accumulation of piRNA cluster transcripts 

We used RNA-seq to measure transcript abundance in w1118, qin1/Df, and 

qinkumo/Df ovaries. Without Qin, RNA sequences mapping uniquely to the 42AB 

cluster, which is the longest piRNA cluster in flies and produces ~30% of all 

ovary piRNAs (Brennecke et al., 2007), increased from 1.5 rpkm in w1118 flies to 

2.0 rpkm in qinkumo/Df and 2.5 in qin1/Df flies (Supplementary Figure 3.S7A). We 

note that our result disagrees with the finding that transcripts from the 42AB 

cluster declined in qinkumo homozygous ovaries as measured by qRT-PCR (Anand 

and Kai, 2012). Among the 142 previously defined piRNA clusters (Brennecke et 

al., 2007), the steady-state abundance of transcripts from six clusters increased 

significantly in qin1/Df ovaries (>5-fold; q < 0.05); just one decreased significantly 

(>2-fold; q < 0.05; Supplementary Figure 3.S7B). In qinkumo/Df ovaries, the 

transcript abundance for 11 clusters increased significantly (>5-fold; q < 0.05); 

none decreased significantly (Supplementary Figure 3.S7B). 

Increased transposon expression in qin mutants 

Both qin1/Df and qinkumo/Df ovaries suffered increased transposon expression, as 

measured by RNA-seq (Supplementary Figure 3.S7B). Of the 93 transposon 

families we examined, the steady-state RNA abundance of 13 families increased 

significantly (>6-fold; q < 0.05) in qin1/Df, compared with w1118. Similarly, in 

qinkumo/Df ovaries the steady-state RNA abundance of 12 transposon families 

increased significantly (>4-fold; q < 0.05). Expression of ten transposon families 

increased significantly in both qin1/Df and qinkumo/Df ovaries (q < 0.05), including 

eight of the 11 transposons whose abundance was reported to increase 

significantly when measured using both whole-genome tiling microarrays and 

qRT-PCR (Zhang et al., 2011). Transposon expression in qin1/Df and qinkumo/Df 
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were highly correlated (r = 0.95; p-value < 2.2 × 10−16). 

We conclude that loss of qin in the fly ovary does not affect nuage 

assembly or overall piRNA abundance. Instead, loss of Qin leads to an increase 

in sense piRNAs and a decrease in antisense piRNAs. The result presented here, 

together with those reported previously (Zhang et al., 2011)are consistent with 

the loss of heterotypic Aub:Ago3 Ping-Pong in qin mutants. Without Qin, piRNA 

cluster transcripts accumulate, rather than decline. Thus, when Aub:Aub Ping-

Pong predominates (Zhang et al., 2011), Ping-Pong amplification appears to 

consume cluster transcripts less efficiently, consistent with a role for Qin in 

piRNA precursor processing. Understanding how Qin couples Aub with Ago3 to 

efficiently generate piRNAs and silence transposons remains a challenge for 

future studies.  
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EXPERIMENTAL PROCEDURES 

General Methods 

RNA isolation, small RNA library construction, sequencing data analysis and 

Immunofluorescent antibody staining were as described (Zhang et al., 2011). 

Transposon families were grouped as described (Li et al., 2009). Figures were 

generated using R, Excel (Microsoft, Redmond, WA, USA), IgorPro 

(WaveMetrics, Lake Oswego, OR, USA), Adobe Photoshop and Illustrator 

(Adobe systems, San Jose CA, USA). Ovary small RNA sequencing data sets 

previously deposited in the NCBI trace archives were GSM872307 (w1118 ovaries; 

(Zhang et al., 2012a)), SRP007101 (qin1/TM3 and qin1/Df ovaries; (Zhang et al., 

2011)), and GSE34728 (qinkumo/TM3 and qinkumo; (Anand and Kai, 2012)). Flies were 

reared at 25°C. PBac(RB)CG14303e03728 (qin1) and Df flies were from the 

Bloomington Stock Center (Indiana University); PBac(RB)e01936 (qin2) was from 

the Harvard Medical School Stock Center. qinkumo was previously described as 

kumoM41-13 (Anand and Kai, 2012). 

RNA-seq 

Strand-specific RNA-Seq libraries were prepared as described (Zhang et 

al., 2012b) and sequenced using the 100-nt paired-end protocol on a HiSeq 2000 

(Illumina). RNA-seq reads were aligned to the Drosophila melanogaster genome 

(FlyBase r5.45/dm3) using TopHat 2.0.4 (Trapnell et al., 2009), using the options 

“--bowtie1 --transcriptome-mismatches 2 --genome-read-mismatches 2 --

segment-length 50 --segment-mismatches 1 -r 800 -i 50 --solexa1.3-quals --

coverage-search.” BEDTools were used to tally reads mapped to genes, 
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transposons, or piRNA cluster transcripts (Quinlan and Hall, 2010). Data was 

normalized to the sum of the reads in the top quartile of expressed genes. DESeq 

(Anders and Huber, 2010) was used to detect changes in transcript abundance 

and calculate q-values. Rpkm calculations used a pseudo count of 0.001. 

Accession numbers 

Sequence data generated in this study are available via the NCBI trace archives 

(http://www.ncbi.nlm.nih.gov/Traces/) using accession number SRP024291. 
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Figure 3.S1. All combinations of qin mutations, except qinkumo/qinkumo, have 

normal ovary size and shape. 
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Figure 3.S2. Mutations in qin do not disrupt Ago3 and Aub localization. 
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Figure 3.S3
•, •, •: FDR < 0.05 and f.c. > 2
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Figure 3.S3.  

(A) Scatter plots analyzing sense or antisense piRNA abundance by transposon 

family. Group 1: transposon families with piRNAs amplified by the Ping-Pong 

pathway and more antisense piRNAs bound to Aub and more sense piRNAs 

bound to Ago3. Group 2: transposon families with piRNAs amplified by the 

Ping-Pong pathway and more sense piRNAs bound to Aub and more antisense 

piRNAs bound to Ago3. Group 3: transposon families expressed in the somatic 

follicle cells, predominantly antisense primary piRNAs, and little Ping-Pong 

amplification.  

(B) Normalized number of piRNA Ping-Pong pairs (pairs per million piRNAs) 

and Z-score for 10 nt overlap between piRNAs. Z-score = 1.96 corresponds to p-

value = 0.05. 
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Figure 3.S4
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Figure 3.S4. Relative piRNA abundance, normalized to microRNA abundance. 

(A) piRNA length distribution. Blue, sense piRNAs; red, antisense.  

(B) Box plots reporting the change in abundance of all piRNAs mapping to 

transposons.  

(C) qin1/Df, qin2/Df and qinkumo/Df, but not qinkumo/qinkumo, affect piRNA 

production similarly. Transposons were grouped as Figure S3A. 
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Figure 3.S5
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Figure 3.S5. Relative piRNA abundance, normalized to non-coding RNA 

(ncRNA) abundance, including 2S ribosomal RNA.  

(A) piRNA length distribution. The normalization procedure failed for the 

Anand et al., 2012 dataset because > 89% of its sequence reads are 2S rRNA. Blue, 

sense piRNAs; red, antisense.  

(B) Box plots reporting the change in abundance of all piRNAs mapping to 

transposons.  

(C) qin1/Df, qin2/Df and qinkumo/Df, but not qinkumo/qinkumo, affect piRNA 

production similarly. Transposons were grouped as Figure S3A. 
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Figure 3.S6
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Figure 3.S6. Relative piRNA abundance, normalized to non-coding RNA 

(ncRNA) abundance, excluding 2S ribosomal RNA.  

(A) piRNA length distribution. Blue, sense piRNAs; red, antisense.  

(B) Box plots reporting the change in abundance of all piRNAs mapping to 

transposons.  

(C) qin1/Df, qin2/Df and qinkumo/Df, but not qinkumo/qinkumo, affect piRNA 

production similarly. Transposons were grouped as Figure S3A. 
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Figure 3.S7
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Figure 3.S7. Loss of Qin leads to piRNA cluster transcript accumulation and 

increased transposon expression.  

(A) RNA-seq data for transcripts from the 42AB piRNA cluster.  

(B) piRNA cluster transcript and transposon RNA abundance measured by 

RNA-seq for qin mutants and wild-type ovaries. 
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Table 3.S1. Small RNA sequencing statistics: analysis of genomematching sequences by reads. “Reads excluding ncRNA”
correspond to genome-­‐matching reads after excluding annotated non-­‐coding RNAs (ncRNAs) such as rRNA, snRNA, snoRNA,
or tRNA. “Transposon-­‐matching reads” correspond to small RNAs mapped to Drosophila melanogaster transposons.

Ovary 
genotype 

Sample 
source 

Total 
reads 

Reads 
perfectly 
matching 
genome 

ncRNA 
reads 

Reads 
excluding 

ncRNA 

miRNA- 
matching 

reads 

Reads 
excluding 
ncRNA & 
miRNA 

23–29 nt small RNA reads 

Total 
Transposon-matching reads 

Total sense antisense 

            
qin2 

TM6B 
This work 19,940,733 17,280,375 2,053,821 1,5226,554 7,182,278 8,044,276 6,971,096 5,323,826 1,504,426 3,957,938 

qin2 

Df 
This work 19,104,937 16,682,386 2,164,562 14,517,824 7,196,288 7,321,536 6,242,381 4,911,725   

 

1,654,680 3,410,405 

qinkumo 
Df 

This work 39,195,465 32,468,674 2,552,780 29,915,894 9,726,714 20,189,180 18,152,468 14,592,848 5,440,035 9,526,468 

qinkumo This work 29,783,737 24,652,714 5,333,312 19,319,402 6,023,849 13,295,553 11,659,819 9,033,362 3,098,773 6,175,719 

qinkumo 
TM3 

This work 34,312,243 28,178,297 3,181,630 24,996,667 7,338,462 17,658,205 15,761,440 12,030,827 3,984,677 8,304,302 

qinkumo 
Anand et al., 

2011 
 

19,646,773 18,177,993 16,872,510 1,305,483 433,951 871,532 753,915 578,408 187,591 406,744 

qinkumo 
TM3 

Anand et al., 
2011 

19,257,310 17,419,162 16,690,006 729,156   280,889 448,267  396,484  308,896 102,496  212,096 

w1118 
Zhang et al., 

2012 
18,327,610 15,285,481 2,262,297 13,023,184 5,129,288 7,893,896 6,968,295 5,457,206 1,361,432 4,211,072 
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Table 3.S2. Small RNA sequencing statistics: analysis of genomematching sequences by species. “Species excluding
ncRNA” correspond to genome-­‐matching species after excluding annotated non-­‐coding RNAs (ncRNAs) such as rRNA, snRNA,
snoRNA, or tRNA. “Transposon-­‐matching species” correspond to small RNAs mapped to Drosophila melanogaster transposons.

Ovary 
genotype 

Source 
Total 

species

Species 
perfectly 
matching 
genome 

ncRNA 
species 

Species 
excluding 

ncRNA 

miRNA- 
matching 
species 

Species 
excluding 
ncRNA & 
miRNA 

23–29 nt small RNA species 

Total 
Transposon-matching species 

Total sense antisense

            
qin2 

TM6B 
This work 2,586,830 1,630,181 68,236 1,561,945 2,233 1,559,712 1,263,308 852,522 315,083 556,029 

qin2 
Df 

This work 2,111,801 1,306,140 65,374 1,240,766 2,211 1,238,555 962,855 689,011 289,042 416,680 

qinkumo 
Df 

This work 5,911,322 3,213,542 81,002 3,132,540 2,739 3,129,801 2,641,238 1,767,540 782,655 1,023,736 

qinkumo This work 3,400,976 1,687,991 84,030 1,603,961 2,328 1,601,633 1,298,229 856,706 344,771 530,663 

qinkumo 
TM3 

This work 5,016,587 2,724,858 76,646 2,648,212 2,448 2,645,764 2,248,510 1,435,861 589,379 875,570 

qinkumo 
Anand et al., 

2012 
584,778 425,024 30,791 394,233 947 393,286 317,933 217,364 81,627 140,273 

qinkumo 
TM3 

Anand et al., 
2012 

 

379,455 260,852 15,424 245,428 701 244,727 209,031 148,679 57,054 94,201 

w1118 
Zhang et al., 

2012 
1,896,565 842,586 50,736 791,850 1,672 790,178 650,946 448,232 153,152 304,312 
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Table 3.S3. RNA sequencing statistics.

Ovary 

genotype 

Total 

fragments

Genome-

mapping 

fragments 

 

Uniquely 

mapping 

fragments 

Gene- 

mapping 

fragments 

 

Transposon- 

mapping 

fragments 

piRNA 

cluster-

mapping 

fragments 

       

W1118 101,751,370 94,970,465 86,796,266 84,763,014 227,148 99,350 

qin1 
Df 

84,783,884 76,157,690 68,096,515 62,451,246 974,764 256,528 

qinkumo 
Df 

85,225,286 77,584,319 66,031,800 60,919,968 1,390,000 352,267 
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CHAPTER IV 

RHINO ANCHORS A NUCLEAR COMPLEX THAT SUPPRESSES piRNA 

PRECURSOR SPLICING 
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PREFACE 
 
The work presented in this chapter was a collaborative effort: Nadine Schultz 

constructed the plasmids for fly transformation and balanced the corresponding 

flies. Jie Wang mapped the high throughput sequencing reads and performed the 

splicing analysis. Swapnil Parhad cloned two small RNA libraries for Figure 4.S6. 

I did all of the rest of the experiments and analysis. 
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SUMMARY 

piRNAs guide an adaptive genome defense system that specifically silences 

transposons in the germline. Differentiating piRNA precursors from mRNAs is 

critical to this specificity. The Drospohila HP1 homolog Rhino is required for 

piRNA production. We show that Rhino binds to the dual strand clusters that 

produce germline piRNA precursors, and that binding directly correlates with 

piRNA production. Paired-end RNA sequencing indicates that most piRNA 

precursors are not spliced. However, UAP56 and Cuff encode a DEAD box 

protein and Rai1 homolog that co localize with Rhi, and rhino, cuff and uap56 

mutations that block piRNA production lead to efficient cluster transcript 

splicing at novel donor and acceptor sites. Moreover, LacI::Rhino fusion protein 

binding suppresses splicing of a reporter transgene, and is sufficient to trigger de 

novo piRNA production from a trans combination of sense and antisense 

transgenes. Rhino thus anchors a nuclear complex that suppresses cluster 

transcript splicing, which may differentiate piRNA precursors from mature 

mRNAs.  
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INTRODUCTION 
 

Transposons and other repetitive elements are major genome constituents that 

can mobilize and induce DNA breaks and insertional mutations (McClintock, 

1950; Bennetzen, 2000; Beck et al., 2010). In the germline, which transmits the 

inherited genetic complement, PIWI-interacting RNAs (piRNAs) suppress 

transposon expression and maintain genome integrity (Khurana and Theurkauf, 

2010; Siomi et al., 2011; Guzzardo et al., 2013). The 23-30 nt long piRNAs bear a 5´ 

monophosphate, a 3’ terminal 2´-O-methyl group, and bind to PIWI clade 

Argonautes (Aubergine, Piwi and Ago3 in Drosophila) (Grivna et al., 2006; Girard 

et al., 2006; Aravin et al., 2006; Vagin et al., 2006; Lau et al., 2006; Horwich et al., 

2007; Saito et al., 2007). piRNAs bound to PIWI proteins can guide sequence 

specific cleavage of complementary targets, which contributes to transposon 

silencing and generates the precursors of sense strand piRNAs that direct 

cleavage of antisense precursors and drive  a "ping-pong amplification" cycle 

(Brennecke et al., 2007; Gunawardane et al., 2007).   

The primary piRNAs that initiate this cycle are derived from large 

"piRNA clusters" composed of nested transposon fragments that generally reside 

in subtelomeric or pericentromeric heterochromatin (Brennecke et al., 2007). The 

majority of Drosophila clusters produce piRNAs from both genomic strands, and 

piRNAs mapping uniquely to these dual-strand clusters are the dominant 

species in germline cells. However, a subset of clusters produce unique piRNAs 

from only one genomic strand (uni-strand clusters). piRNAs in the somatic 

follicle cells that surround the germline are derived from uni-strand clusters 

(Brennecke et al., 2007; Malone et al., 2009). How transcripts from dual-strand 



 

135

and uni-strand clusters are distinguished from gene transcripts is not 

understood. 

 The rapidly evolving Heterochromatin Protein 1 (HP1) homolog Rhino 

(Rhi) is specifically required for production of primary piRNAs from germline 

specific dual-strand clusters (Klattenhoff et al., 2009). Here we show that Rhi 

binds specifically to clusters and that binding correlates with piRNA production.  

Significantly, we also present evidence that Rhi functions with the Rai1 related 

protein Cutoff (Cuff) and the DEAD box protein UAP56 to suppress piRNA 

precursor splicing at specific donor and acceptor sites, and that tethering a 

LacI::Rhi fusion to an intron containing transgene suppresses splicing and leads 

to Rhi spreading through the transcription unit. Tethering LacI::Rhi to a 

construct producing a single strand does not trigger piRNA production, but 

Rhino binding to a trans combination of sense and antisense transgenes leads to 

piRNA production from both genomic strands. We therefore propose that Rhino 

anchors a nuclear complex that suppresses splicing and directs the resulting 

unspliced RNAs to the piRNA biogenesis machinery. Recent studies indicate that 

stalled splicing intermediates are the precursors of transposon-silencing siRNAs 

in the pathogenic yeast Cryptococcus (Dumesic et al., 2013). Suppressed splicing 

may therefore have a conserved function in differentiating potentially 

deleterious transcripts from mature mRNAs, and direct these transcripts to the 

small silencing RNA biogenesis machinery.  
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RESULTS 

Rhino marks dual-strand piRNA clusters  

The HP1 family protein Rhino (Rhi), also referred to as HP1D, is required for 

piRNA production from dual-strand clusters, and earlier ChIP-qPCR 

experiments showed that Rhi associates with two regions in the major 42AB 

piRNA cluster (Klattenhoff et al., 2009). To determine the specificity of Rhi 

binding across the genome, we performed chromatin immunoprecipitation 

sequencing (ChIP-Seq) using anti-Rhi antibody and preimmune control 

antibody. A comparison of the unique ChIP-Seq signal and unique piRNA 

profiles revealed a striking correlation (Figure 4.1A and 4.1B), and confirmed that 

Rhi shows only background-level binding to uni-strand clusters, which dominate 

piRNA production in somatic follicle cells (Figure 4.1C and 4.S1A). To quantify 

the relationship between Rhi binding and piRNA production, we plotted fold 

enrichment for Rhi binding to chromatin by ChIP-Seq against fold reduction in 

piRNA production in rhi mutants for 142 piRNA clusters (Brennecke et al., 2007). 

Eleven piRNA clusters, including the two major uni-strand clusters (Cluster 2 

and flamenco), show no decrease in piRNA expression in rhi2/KG mutants and 

show only background Rhi binding by ChIP-Seq  (Figure 4.1C and 4.S1). Over 

the remaining 131 piRNA clusters, by contrast, Rhi binding was significantly 

correlated with fold reduction in piRNA expression in rhi mutants (Pearson 

correlation coefficient r = 0.74; P < 2.2x10-16). ChIP-Seq signal of a matched pre-

immune serum control was not correlated with piRNA expression (r = 0.19, P = 

0.03) (Figure 4.1C).   

The correlation between Rhi binding and piRNA signal raised the  
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Figure 4.1. Rhi binding correlates with piRNA production. 

(A) piRNA and Rhi ChIP-Seq signal across the right arm of chromosome 2. 

(B) piRNA and Rhi ChIP-Seq signal across the 42AB piRNA cluster, which 

produces ~ 30% of fly ovary piRNAs.  

(C) Rhi binding correlates with Rhi-dependent piRNA production. Scatter plots 

showing Rhi binding enrichment (y-axis) relative to reduction in piRNA 

production in rhi2/KG mutants (x-axis). Each point represents a distinct piRNA 

cluster. Pre-I.S. is Pre-Immune Serum.  The major germline piRNA cluster at 

42AB and the major somatic cluster (flam) are indicated in green. 
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possibility that piRNAs direct Rhi to chromatin, perhaps through a process 

analogous to siRNA guided centromeric heterochromatin assembly in S. pombe 

(Iida et al., 2008). We therefore performed Rhi ChIP-Seq on ovaries isolated from 

females mutant for armi (armi1/armi72.1), which is required for production of 

piRNAs from most dual-strand piRNA clusters (Malone et al., 2009). Rhi binding 

in armi mutant ovaries was significantly correlated with Rhi binding in the 

matched w1 background strain ovaries (r = 0.84, p < 2.2 x10-16, Figure 4.2 and 4.S1, 

shown for the 42AB cluster in Figure 4.2A). Rhi localizes to distinct foci in 

germline nurse cell nuclei (Klattenhoff et al., 2009), and our ChIP-Seq data 

suggest that the majority of these foci represent dual-strand clusters. We 

previously showed that Rhi localizes to germline nuclear foci in armi and aub 

mutants (Klattenhoff et al., 2009). We extended these localization studies to ago3, 

piwi, qin, krimp, zuc, squ and flam mutants, which encode two PIWI proteins, two 

Tudor-domain proteins, two nucleases that may generate piRNA precurosors, 

and the major uni-strand cluster in somatic follicle cells (Cox et al., 1998; Sarot et 

al., 2004; Lim and Kai, 2007; Brennecke et al., 2007; Malone et al., 2009; Li et al., 

2009; Zhang et al., 2011; Ipsaro et al., 2012). Rhi localized to distinct foci in 

germline nuclei in each of these mutant backgrounds (Figure 4.S2). These 

findings, with the ChIP-Seq data in armi mutants, suggest that Rhi localization to 

major germline clusters is independent of piRNA production.  

Rhi, Cuff and UAP56 suppress cluster transcript splicing 

Rhi co-localizes to nuclear foci with the piRNA pathway proteins Cuff and UAP 

56, mutations in rhi disrupt localization of both proteins to nuclear foci, and 

mutations in cuff and uap56 disrupt Rhi localization (Pane et al., 2011; Zhang  
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Figure 4.2. Rhi binding does not depend on the piRNA production.  

(A) Small RNA-Seq and Rhi ChIP-Seq signal across the right arm of chromosome 

2 in control (armi/CyO and w1) and armi mutants.  The 42AB cluster is indicated.   

Mutations in armi nearly eliminate piRNAs mapping to 42AB (Malone et al., 

2009), but do not reduce Rhi binding. 

(B) Scatter plot showing Rhi ChIP-Seq enrichment in armi1/72 1 mutants relative to 

w1 controls. Each dot represents a distinct piRNA cluster. 
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et al., 2012a). Cuff is related to yeast Rai1, which has been implicated in mRNA 

de-capping and degradation, and UAP56 is a nuclear DEAD box protein 

previously shown to function in splicing and mRNA export. UAP56 associates 

with cluster transcripts, and both UAP56 and Cuff are required for germline 

piRNA production (Pane et al., 2011; Zhang et al., 2012a). These observations 

suggest that Rhi, Cuff and UAP56 function at a related nuclear step in the piRNA 

biogenesis pathway.  

 Our previous qPCR studies showed that rhi mutations reduce the steady 

state level of precursor transcripts at a limited number of sites in two piRNA 

clusters, suggesting a role for Rhi in cluster transcription (Klattenhoff et al., 

2009). We therefore used strand-specific paired-end RNA sequencing (RNA-Seq) 

to characterize cluster and gene transcription in rhi, cuff and uap56 mutant 

ovaries, and in appropriate background control strains. By sequencing 100 nts 

from both ends of cloned RNA fragments, we were also able to use relatively rare 

polymorphisms in repeated sequences to map reads over a significant fraction of 

most clusters (Figure 4.3A). In apparent conflict with our earlier qPCR data 

(Klattenhoff et al., 2009), we did not see a consistent reduction in reads mapping 

to clusters (Figure 4.3S).  However, visual inspection of RNA-Seq signal 

associated with several major germline clusters, included 42AB cluster, showed 

that the reads often mapped to a small number of well-defined peaks (Figure 

4.3A), and the regions previously assayed by qPCR fall between these peaks.    

 RNA-Seq reads that cross mature splice junctions map to two genomic 

locations separated by the intron length. In genome browser views, these split 

reads produce signal profiles that are interrupted by very sharply defined gaps. 
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Close inspection of the cluster peaks in rhi, cuff and uap56 mutants showed that 

they are often interrupted by sharply defined gaps that correspond to consensus 

splice donor and acceptor sites. Figure 4.3B shows an example in the 42AB 

cluster. qPCR studies confirmed that RNAs crossing this unique donor-acceptor 

site junction increases over 100 fold in both cuff and rhi mutants (Figure 4.3C). 

The spliced peak in 42AB is in the sense orientation of a gypsy12 element that 

could be activated in the mutant strains, and increased splicing could be linked 

to activation. We therefore used qPCR to assay splicing at a putative intron in a 

chromosome 4 cluster composed of telomeric transposons, which is anti-sense to 

the transposon fragment. These studies confirmed an increase in splicing in rhi, 

cuff and uap mutants, which cannot be explained by sense strand transcription of 

the active element (not shown). These initial studies raised the intriguing 

possibility that Rhi functions with Cuff and Uap56 to actively suppress cluster 

transcript splicing.   

 To extend these observations across the transcriptome, we identified all 

split reads mapping to consensus splice donor and acceptor sites in Oregon R, w1 

and cn,bw control strains, and in rhi, cuff and uap56 mutants. We then identified 

introns that were shared between mutant and control strains and determined 

their splicing efficiency, which we defined as split reads (defining spliced RNAs) 

divided by the sum of split reads and reads crossing the corresponding splice 

sites (defining unspliced RNAs). The scatter plots in Figure 4.4 show that rhi, cuff 

and uap56 mutants do not lead to global changes in splicing efficiency at introns 

shared with control strains, including the rare shared introns mapping to piRNA 

clusters (Figure 4.4 A, 4.4B, 4.4C, 4.4D, red points). 
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Figure 4.3. Rhi and Cuff suppress splicing at the 42AB and sox102F clusters. 

(A, D).  Rhi ChIP-Seq and RNA-Seq profiles for the 42AB cluster (A) and sox102F 

locus (D) are shown. For ChIP-Seq, Rhi signal (red) is superimposed on input 

(blue). RNA-Seq is shown for Oregon R (Ore. R.) control, cuff and rhi mutants.  In 

Ore. R. controls, signal is spread over both 42AB and sox102F.  In rhi and cuff 

mutants, by contrast, signal shifts to distinct peaks (Note that data are scaled to 

avoid peak clipping). At the sox102F locus, the boundaries correspond to 

annotated splice sites in the mature somatic transcript, and de novo transcript 

assembly from these data yields the annotated gene structure (Trinity As.) 

(B) A high resolution expansion of the indicated region of 42AB shows that the 

peak is interrupted by a region with little signal, defined by very sharp 

boundaries characteristic of intron removal.  

 (C, F) qRT-PCR quantify the splicing efficiency at 42AB (C) and sox102F (F) loci. 

The diagrams show the putative introns (blue) and the position of primers 

(arrow) used to assay unspliced and spliced transcripts at 42AB (C) and sox102F 

(F). Both spliced and unspliced transcripts are amplified using the same forward 

primers. Reverse Primers for unspliced transcripts span the splice site and for 

spliced transcripts span the mature junction. Bar graphs show the ratio of spliced 

to unspliced RNAs in ovary (ov.) and carcass (ca.) in two different control strains 

(w1118 and Ore. R.) and in cuff and rhi mutants. In ovaries, splicing at 42AB and 

sox102F increases over 80 fold in both cuff and rhi mutants. The sox102F locus is 

expressed in somatic tissue present in the carcass, and the transcripts are spliced. 

(E) piRNA production from sox102F locus in Ore.R., cuff and rhi mutants.  
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Many of the prominent cluster-mapping introns in mutant ovaries do not 

appear to be utilized in control stains. Suppressed splicing of these cluster 

specific introns could be critical to piRNA biogenesis, and they would not be 

included in the analysis of splicing efficiency at shared introns. We therefore 

identified introns in each mutant that were not used in the cn,bw, w1 or Oregon R 

control strains. The three control strains share 32,273 introns, which 

overwhelmingly map to annotated genes (Figure 4.4E, open bar). Each of the 

control strains utilizes 140 to 200 genic introns that are not used in the other 

control strains. By contrast, rhi, cuff and uap56 each utilizes approximately 600 

genic introns that are not used in any of the control strains. Only 81 of these 

introns are used in all three mutants, strongly suggesting that most of the strain 

specific introns are not directly controlled by the piRNA machinery. However, 

Rhi, Cuff and UAP56 could directly or indirectly regulate splicing of the 81 

shared introns.  

 The control strains share 32,273 introns mapping to 6500 annotated genes. 

By contrast, these strains share only 5 introns that uniquely map to 142 piRNA 

clusters, and only 1 to 3 introns are specific to each of the control strains. By 

contrast, rhi, cuff and uap56 mutants utilize 27 to 81 cluster specific introns that 

are not spliced in any of the control strains, and 11 of these introns are utilized in 

all three mutants (Figure 4.4F). In addition, a significant fraction of these introns 

fall within the top 20 piRNA producing clusters (Figure 4.4G). Rhi, Cuff and 

UAP56 thus appear to suppress splicing of a subset of novel cluster mapping 

introns. Most clusters are composed of repeats and produce a significant fraction 

of transcript specific RNAseq reads that cannot be uniquely mapped to the 
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genome. Our analysis of cluster processing is therefore likely to underestimate 

the number of introns that are utilized in the mutant ovaries. Splice sites 

imbedded in repeats are also very difficult to verify by qPCR. To more rigorously 

analyze the role of Rhi and associated protein in cluster transcript processes, we 

therefore turned to a unique sequence cluster with experimentally verified splice 

sites, and to transgenic reporters.   

Rhino, Cuff and UAP56 convert a somatic protein-coding gene to a germline 

piRNA cluster 

The sox102F locus on chromosome 4 is largely composed of unique sequences. In 

somatic cells, the locus produces an experimentally verified mRNA from a 

spliced primary transcript, and the mature transcript encodes a putative 

transcription factor (Figure 4.3D). In the germline, by contrast, this locus 

produces piRNAs from both genomic strands, and mutations in rhi, cuff and 

uap56 disrupt production of these uniquely mapping piRNAs. Our ChIP-Seq 

studies also show that Rhi binds to this region (Figure 4.3D and 4.S4), and RNA-

Seq reveals RNAs from both strands, with roughly equal RNA reads in introns 

and exons, and very few split reads characteristic of splicing (Figure 4.3D and 

4.S4). The sox102F locus is therefore a protein coding gene in the soma, and a 

dual-strand piRNA cluster in the ovary. We note that piRNA abundance and 

long RNA-Seq reads in the ovary data do not obviously correlate with to the 

intron/exon structure of the somatic sox102F transcript. However, Rhi ChIP-Seq 

peaks correspond to somatic exons. These observations raise the intriguing 

possibility that Rhi recruitment to chromatin is linked to splicing signals in the 

nascent transcript. 
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Figure 4.4.  rhi, cuff and uap56 mutations do not alter global splicing efficiency, 

but lead to splicing of novel cluster introns.  

(A-D).  Scatter plots showing splicing efficiency at introns shared between the 

two indicated genotypes. Each point is one intron. Cluster mapping introns are 

in red and introns mapping outside clusters in black.   

(E-G).  Bar graphs quantifying shared and genotype specific introns.  Introns 

outside of piRNA clusters are in black, introns mapping to all clusters are in red, 

and introns mapping to the top 20 clusters are in purple.  Introns shared by the 

cn,bw, w1 and Oregon R control strains are indicated by the open bars. Mutant 

specific introns are in solid bars. For each set of bar graphs, the genotypes are 

ordered as in E, and the number of introns detected is above or within the bar.  
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 Strikingly, our RNA-Seq data show that rhi, cuff and uap56 mutations, 

which block piRNA production at sox102, also lead to a significant increase in 

splicing at the annotated somatic donor and acceptor sites (Figure 4.3D and 

Figure 4.S4). The increase in split reads is particularly pronounced in cuff 

mutants. In this background, all of the annotated introns are efficiently excised, 

and de novo transcript assembly generates an mRNA that precisely matches the 

somatic sox102F transcript (Figure 4.3D). qPCR confirmed that sox102F splicing 

efficiency increases by  80 and 200 fold increases in rhi and cuff mutants (Figure 

4.3F). uap56 mutants produce a similar, but more modest, increase in splicing 

(Figure 4.S4). The qin locus encodes a component of the cytoplasmic nuage that is 

required for piRNA amplification and transposon silencing (Zhang et al., 2011). 

In contrast to mutations in rhi, cuff and uap56, qin mutations do not increase 

splicing efficiency at sox102F (Figure 4.S4). Therefore, increased splicing is not a 

secondary consequence of transposon activation and genome destabilization.  

Significantly, the sox102F locus produces both spliced and un-spliced transcripts 

in the w1118 background strain, but no piRNAs map to the mature splice junction 

shown in Figure 4.3F, while 21 reads map to the corresponding 3´ splice site.  

Rhi, Cuff and UAP56 thus suppress splicing at sox102F, and the resulting 

unspliced transcripts appear to be preferentially processed into piRNAs.   

Rhi tethering suppresses splicing and directs complementary transcripts to the 

piRNA-processing machinery 

To determine if Rhi binding is sufficient to suppress splicing and induce piRNA 

production, we used a transgenic LacO-LacI DNA-protein binding system to 

"tether" Rhino to an ectopic locus. For these experiments, we generated 
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Figure 4.5
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Figure 4.5.  Rhi "tethering" leads to spreading through the target transcription 

unit, but does not reduce Pol-II occupancy.  

(A) Schematic diagram of the experimental design.  An inducible UASp 

promoter was used to drive expression of the DNA binding protein LacI fused to 

full length Rhi, in the presence of a reporter gene containing LacI binding sites 

(LacO) upstream of a promoter (truncated vasa promoter) that drives expression 

of the 84B alpha tubulin 5´UTR and first intron fused to EGFP with nuclear 

localization signal (NLS). PCR amplicons indicates positions assayed for Rhi and 

Pol-II binding in panel B and C.   

(B) Fold enrichment by Rhi ChIP across the reporter in the absence (grey) or 

presence of LacI::Rhi. The LacI::Rhi lead to Rhi binding through the transcription 

unit.    

(C) Fold enrichment by RNA pol-II ChIP across the reporter, bars as indicated for 

panel B. RNA polymerase binding across the transcription unit is not altered in 

the presence of the LacI::Rhi. The 42AB locus is used as a positive control for Rhi 

binding. The mocs and suUR loci are located downstream of reporter construct in 

the genome. We do not detect Rhi spreading or changes in RNA Pol-II at these 

loci. 
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transgenic flies harboring a reporter transgene containing 36 LacO DNA-binding 

sites upstream a truncated vasa promoter, which drives EGFP expression in the 

germline and in somatic follicle cells of the ovary. The transcription unit contains 

the 84B α-Tubulin 5´ UTR and first intron, followed by an exon encoding EGFP 

(Figure 4.5A). We then introduced transgenes with inducible Gal4 promoters 

controlling expression of either a LacI control or a LacI::Rhi fusion protein, and 

the nanos-Gal4-VP16 driver to induce germline expression. Target EGFP 

expression was assayed by laser scanning confocal microscopy and western 

blotting (Figure 4.6A and 4.S5). In the presence of the LacI control, strong EGFP 

signal was observed in germline nurse cells and somatic follicle cells (Figure 

4.6A). Immunolabeling confirmed that LacI was expressed only in the germline. 

Germline expression of the LacI::Rhi fusion, by contrast, silenced EGFP 

expression in the germline, but not in the follicle cells (Figure 4.6A). Rhi 

mediated EGFP silencing was confirmed by western blotting (Figure 4.S5).  

HP1a recruits the methyl transferase that modifies Histone H3 to generate 

HP1a binding sites, which induces heterochromatin spreading (Danzer and 

Wallrath, 2004). Because Rhi is an HP1a homolog, we speculated that Rhi 

tethering may lead to Rhi spreading from the LacO sites. We therefore assayed 

Rhi binding at sites through the transgene reporter using ChIP and qPCR. In the 

absence of LacI::Rhi fusion protein induction, we observed background binding 

of Rhi through the transgene. By contrast, expression of the LacI::Rhi fusion was 

linked to significant Rhi binding through the transcription unit, with the highest 

levels near the LacO binding sites (Figure 4.5B). Adaptation by the piRNA 

pathway appears to involve insertion of invading elements into clusters. We 
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speculate that Rhi spreading into these new sequences, from the surrounding 

cluster, may be required to produce new silencing piRNAs during adaptation.     

To determine if LacI::Rhi binding and Rhi spreading silences transcription, 

we used ChIP-qPCR to measure RNA Polymerase II (Pol II) binding at the target 

transgene (Figure 4.5C). Essentially identical levels of Pol II binding were 

observed in the absence or presence the LacI::Rhi fusion. Rhi tethering thus 

appears to block protein expression through a post-transcriptional mechanism. 

The increase in cluster splicing in rhi mutants led us to speculate that Rhi binding 

may suppress splicing. We therefore used qPCR to quantify splicing efficiency at 

the Tubulin intron in the target transgene. We observed a 6 fold reduction in 

splicing efficiency in the presence of the LacI::Rhi fusion (Figure 4.6B and 4.6C). 

Our analyses of piRNA cluster transcripts in rhi mutants and these transgenic 

studies, taken together, indicate that Rhi binding suppresses splicing.  

 To determine if LacI::Rhi tethering is sufficient to induce piRNA 

production, we sequenced small RNAs from ovaries carrying the target 

transgene and expressing either the LacI control or the LacI::Rhi fusion. With 

both combinations, however, we detected only very low levels of 23 to 30nt 

putative piRNAs mapping to the transgene (Figure 4.7 and 4.S6). Rhi is 

specifically required for piRNA production from dual-strand clusters, and the 

target transgene is transcribed from only one strand. We therefore contructed a 

second transgene with a promoter driving antisense expression of the target 

sequences, integrated this gene into the same chromosomal locus as the sense 

strand reporter, and generated females carrying a trans combination of sense and 

antisense reporters. Small RNA sequencing showed that expression of the 
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Figure 4.6. Tethering Rhi suppresses EGFP expression and splicing. 

(A) Germline expression of LacI (red) does not suppress EGFP expression 

(green). By contrast, expression of LacI::Rhi (red) suppresses EGFP accumulation 

in the nurse cell nuclei (green). Note that the EGFP reporter is expressed in both 

the germline and surrounding somatic follicle cells (arrows, FC).  The fusion does 

not expressed in the follicle cells, and EGFP expression in these cells is not 

reduced. The bar in the up right panel is 10 µm, and applies to all panels. 

(B) Splicing at the target locus. The diagram shows the target transgene and 

indicates that position of LacI or LacI::Rhi binding (LacO) and the primers used 

to assay both spliced and unspliced transcripts by qRT-PCR.   

(C) Bar graph showing the ratio of spliced to unspliced target in the presence of 

LacI (black) or LacI::Rhi (grey).  LacI::Rhi binding lead to a significant reduction 

in splicing efficiency (p = 0.008). 
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LacI::Rhi fusion, but not LacI, triggered production of 23 to 30nt small RNAs 

from both strands of the reporter construct, including the intron, EGFP and LacO 

binding sites (Figure 4.S6). piRNAs and endo-siRNAs  bear a 2´-O-methyl group 

at their 3’ termini, which protects them from oxidation (Horwich et al., 2007; 

Saito et al., 2007). miRNAs and non-specific RNA degradation products, by 

contrast, do not carry this modification and oxidation renders them unclonable. 

piRNAs and endo-siRNAs are therefore selectively retained in sequencing 

libraries prepared after sample oxidation. The siRNAs and piRNAs in the 

oxidation resistant pool can be distinguished by length, as the endo-siRNAs are 

21nt and the piRNAs are between 23 and 30 nt and show a characteristic normal 

distribution. As shown in Figure 4.7, LacI::Rhi tethering to the trans-combination 

of reporter genes triggered production of oxidation resistant small RNA with a 

size distribution typical of endogenous piRNAs. In the P-M hybrid dysgenesis 

system, de novo piRNAs complementary to the P-element transposon increases 

with adult female age (Khurana et al., 2011). Intriguingly, reporter specific 

piRNAs increased by two folds when flies carrying LacI::Rhi were aged from 2-4 

days to 12-14 days (Figure 4.7). Total endogenous ovary piRNAs, by contrast, did 

not change (Table 4.S1b). The primary piRNAs are produced de novo—

independent of pre-existing piRNAs and ping-pong amplification. The reporter 

specific piRNAs from opposite strands show a very weak bias toward a 10nt 

overlap, indicating that they are likely to be produced by a ping-pong 

independent mechanism. Based on these findings we conclude that LacI::Rhi 

binding and expression of complementary RNAs are sufficient to drive de novo 

production of primary piRNAs from a transgenic locus. 
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Figure 4.7
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Figure 4.7. Rhi binding to complementary transcription units triggers piRNA 

production. 

(A) Diagrams show sense strand reporter and combination of sense and anti-

sense reporters, indicating positions of LacI or LacI::Rhi binding and position 

and orientation of promoters (vasP).  

(B) Length distribution of the small RNAs mapping to the reporter constructs. 

Blue indicates sense strand species and red indicates antisense species. Z scores 

indicate the significance of the 10 nt overlap between sense and antisense 

piRNAs (Ping-Pong signature). Z-score = 1.96 corresponds to p-value = 0.05.  Too 

few piRNAs were detected with the LacI control for the Z score to be determined 

(indicated as n.d.). piRNAs carry a 3' end modified and therefore are resistant to 

oxidation. Both un-oxidized (Figure S6) and oxidized RNAs (shown) were used 

to prepare libraries for sequencing. LacI::Rhi binding to the sense strand reporter 

did not lead to significant production of oxidation resistant species between 23 

and 30 nt. By contrast, LacI::Rhi binding to the combination of sense and anti-

sense reporters trigger production of oxidation resistant species showing length 

distributions characteristic of mature piRNAs. piRNAs from opposite strands 

showed a weak bias toward a 10 nt overlap, which is typical of primary piRNAs 

produced by a ping-pong independent mechanism.  

(C) Distribution of Small RNA reads over EGFP and the LacO repeats in the 

presence of LacI or LacI::Rhi. Sense signal is in blue and anti-sense signal is in 

red. 
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DISCUSSION 

Primary piRNA production in dual-strand vs. uni-strand piRNA clusters 

The piRNA pathway has an evolutionarily conserved role in transposon control 

during germline development, and is therefore essential for transmission of the 

inherited genetic complement. In the Drosophila ovary, the majority of piRNAs 

map to transposons and cannot be assigned to specific chromosomal locations, 

but unique piRNAs are concentrated in "piRNA clusters" composed of complex 

arrays of transposon fragments that are generally localized to pericentromeric or 

subtelomeric heterochromatin (Brennecke et al., 2007). These loci fall into two 

classes, based on strand bias. Clusters that produce piRNAs from both genomic 

strands (dual-strand clusters) are dominant in the germline, while clusters that 

are expressed on only one genomic strand (uni-strand clusters) produce most of 

the piRNAs in somatic follicle cells that surround the germline (Brennecke et al., 

2007; Malone et al., 2009). Primary piRNAs from dual-strand clusters, bound to 

PIWI proteins, appear to drive a ping-pong cycle that amplifies the silencing 

RNA pool (Brennecke et al., 2007; Gunawardane et al., 2007). These primary 

piRNAs must be produced by a ping-pong independent mechanism.  Similarly, 

the piRNA derived from uni-strand clusters can't be produced by ping-pong 

amplification. The simplest model would be that the primary piRNAs from uni-

strand and dual-strand clusters are produced by a common mechanism, and that 

dual-strand clusters represent convergently transcribed uni-strand clusters. 

However, uni-strand cluster piRNA production is independent of rhi, uap56 and 

cuff, which are essential for production of piRNAs that map uniquely to dual-

strand clusters (Klattenhoff et al., 2009; Pane et al., 2011; Zhang et al., 2012a). In 

addition, here we provide data to show that Rhi-dependent piRNA production 
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from an ectopic locus requires a combination of transgenes expressing 

complementary transcripts (Figure 4.7 and 4.S6). The piRNAs produced from 

this combination of complementary target loci show a very weak bias toward a 

10-nt overlap (Figure 4.7), indicating that they are produced through a ping-pong 

independent mechanism. These findings, along with previous genetic data, 

indicate that primary piRNA production by dual-strand clusters and uni-strand 

clusters proceed by distinct mechanisms, and that dual-strand primary piRNA 

biogenesis may require complementary precursor RNAs. The role of 

complementary RNAs in the germline piRNA biogenesis pathway remains to be 

determined. 

Distinguishing piRNA cluster transcripts from mRNAs 

Mutations that disrupt piRNA production increase expression of some target 

transposons by over 200 fold and destabilize the germline genome. By contrast, 

these mutations do not alter germline gene expression and mRNAs are not 

efficiently processed into piRNAs. This remarkable specificity is presumably 

essential to both germline gene expression and efficient transposon silencing, but 

it has been unclear how the precursors of trans-silencing piRNAs are 

differentiated from the mRNAs, which must escape silencing and direct protein 

synthesis. Previous studies indicate that splicing is suppressed at transgenes 

inserted into the Drosohila X-TAS cluster, and piRNAs mapping to introns are 

produced (Muerdter et al., 2012). However, the mechanisms that suppress 

splicing and the role of this process in piRNA biogenesis have not been 

determined. Here we show that the rapidly evolving HP1 homolog Rhi, with the 

Rai1 related protein Cuff and the DEAD box protein UAP56, suppress splicing of 

piRNA precursors in the germline. This is most clearly illustrated at the sox102F 
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locus, which produces an experimentally defined spliced mRNA from one 

genomic strand in the soma, but is the source of unspliced transcripts and 

piRNAs from both genomic strands in the ovary. We show that Rhi binds to 

sox102F, is required for piRNA production by this locus, and that mutations in 

rhi, cuff and uap56 lead to efficient splicing and production of mature sox102F 

mRNAs in the germline. Significantly, we also show that tethering a LacI::Rhi 

fusion to a intron-containing reporter transgene suppresses its splicing, and that 

Rhi tethering to a trans combination of sense and antisense transgenes is 

sufficient to trigger de novo piRNA production (Figure 4.7 and 4.S6). We therefore 

propose that Rhino functions with Cuff and UAP56 to actively suppress cluster 

transcript splicing, and that the block to splicing directs cluster transcripts to the 

piRNA biogenesis machinery.  

 Defects in splicing have been linked to silencing RNA production in a 

number of systems. In Arabidopsis, mutations in splicing factors reduce siRNA 

directed DNA methylation, and splicing factors have been identified in C. elegans 

screens for RNAi components (Herr et al., 2006; Wypijewski et al., 2009; Christie 

et al., 2011; Warf et al., 2012; Zhang et al., 2013). However, in these systems, a 

specific role for splicing in silencing RNA production has not been 

demonstrated. By contrast, recent studies in the pathogenic yeast Crypotoccous 

provide compelling evidence for a direct link between stalled splicing and 

transposon silencing siRNA biogenesis (Dumesic et al., 2013). Dumesic et al. 

(2013) showed that siRNAs are produced from unspliced transposon transcripts 

and that splicing factors associate with the siRNA biogenesis machinery.  

Futhermore, intron removal reduces siRNA production and splice site mutations 

that reduce splicing efficiency increase siRNA production (Dumesic et al., 2013). 
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While the germline specific piRNAs in Drosophila and transposon silencing 

siRNA in Cryptococcus are produced by different mechanisms, these findings 

raise the intriguing possibility that suppressed splicing generates a conserved 

molecular signature that differentiates small silencing RNA precursors from 

mature mRNAs. Retrotransposons and retroviruses encode spliced transcripts 

that produce proteins needed for replication and packaging, but splicing must be 

suppressed to produce full length genomic RNAs. This novel feature of the 

retroviral life cycle could have driven the evolution of silencing systems that 

exploit stalled splicing as a molecular signature of potentially pathogenic RNAs. 



 

164

EXPERIMENTAL PROCEDURES 

General Methods.  

RNA isolation, small RNA library construction and sequencing data analysis, 

immunoblotting, immunostaining and quantitative RT-PCR were performed as 

described (Zhang et al., 2011). Figures were generated using Excel (Microsoft, 

Redmond, WA, USA), IgorPro (WaveMetrics, Lake Oswego, OR, USA), Adobe 

Photoshop and Illustrator (Adobe systems, San Jose CA, USA). Table 4.S1 reports 

the statistics for the ChIP-Seq, RNA-Seq and small RNA-Seq data generated in 

this study. Table 4.S2 reports primer sequences for ChIP-qPCR and qRT-PCR. 

PCR primers used to clone the LacI binding domain, Rhi open reading frame and 

LacO repeats are detailed along with the supplemental text. The sources of the 

published deep sequencing data used in this study are summarized in Table 4.S4. 

Table 4.S5 lists the antibody information. Unless otherwise specified, p-values 

were calculated from at least three independent biological replicates using a two-

tailed, two-sample unequal variance t-test (Excel, Microsoft). 

Drosophila stocks.  

All flies were raised at 25°C. Table 4.S3 summarizes the published fly alleles used 

in this study. Transgenic flies for tethering Rhi to EGFP locus were made as 

described in supplemental information. 

Transgenic flies for tethering Rhi to the GFP locus.  

Transgenes expressing LacI or LacI::Rhi fusion were made as follows: the 1.1 kb 

lacI binding domain from lacI-HP1 in pCas-hs-act,  provided by L. L. Wallrath 

(Li et al., 2003), was PCR amplified (Forward primer: AAA GAA TTC GCC ATG 

GTG AAA CCA GTA ACT; Reverse primer: AAA GGA TCC AAC CTT CCT 

CTT CAT C), and the 1.4 kb rhi coding sequence from the full length rhino cDNA 
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clone RE36324 (Klattenhoff et al., 2009) was PCR amplified (Forward primer: 

AAA GGA TCC GTT ATG TCT CGC AAC CAT CAG; Reverse primer: AAA 

CGC GCC GCT TTA CTT GGG CAC AAT GAT). Rhi PCR product was digested 

with BamHI/NotI and cloned into pBstII KS+ to generate pBst-Rhi. The LacI 

PCR product was digested with EcoRI and BamHI and cloned into pBst-Rhi to 

generate pBst-lacI::Rhi. The entire insert in pBst-lacI::Rhi was cut out with 

KpnI/NotI and cloned into the transformation vector pUASp to generate 

pUASp-lacI::Rhi. pUASp-lacI::Rhi was cut with BamHI to remove the rhi cDNA 

and re-circularized to yield pUASp-lacI. All intermediates and final plasmid 

clones were verified by direct sequencing. The final pUASp-lacI and pUASp-

lacI::Rhi constructs were used to make germline transgenes using standard 

protocols. 

To generate transgenic flies carrying the LacO-EGFP, XbaI was used to 

partially digest pSV2-dhfr-8.32 provided by A. S. Belmont (Robinett et al., 1996). 

A 1.2 kb XbaI fragment corresponding to 32 repeats of the 36bp Lac operon was 

cloned into pBstII KS+ to produce pBst-32mer. This clone was used to provide 

the LacO repeats that were subsequently cloned into unique restriction sites 

upstream of a truncated vasa promoter driving expression of the 84B alpha tublin 

5’UTR and first intron followed by EGFP-NLS and the tublin-3’UTR. The repeats 

were excised from pBst with SmaI/NotI, the ends were polished with Klenow 

Large Fragment and the DNA was cloned into either the 5’ Not/blunted site or 

the 3’ Bam/blunted site of the EGFP reporter construct. The following primers 

were used to amplify the partial vasa promoter from vasp-EGFP (Forward: AAA 

GGA TCC ATA TGA ATG AAT CAC TTA GG; Reverse: AAA GGA TCC GTG 

GAA TTT CCC ATT GTG C). This product was cut with BamHI and cloned into 

the unique BamHI site at the 3’ end of the reporter construct in the anti-sense 



 

166

direction to get the GFP-vaspAS-LacO construct. Due to the instability of the 

lacO repeats, all clones containing these repeat sequences were transformed into 

Max Efficiency Stbl2 chemically competent cells (Invitrogen cat#10268-019).  

Otherwise, DH5α electrocompetent cells (home made) were used. All reporter 

constructs contain the attB site and were integratred onto the attP2 site located at 

chromosome 3L-68A4. 

ChIP-Seq and data analysis. 

For Rhi ChIP-Seq, ovaries ovaries were first crosslinked with 2% formaldehyde 

for 10 minutes in Robb’s medium (100 mM HEPES pH 7.4, 55 mM sodium 

acetate, 40 mM potassium acetate, 100 mM sucrose, 10 mM glucose, 1.2 mM 

MgCl2, 1 mM CaCl2). Then the reaction was quenched by adding Glycine to 120 

mM and incubating for 5 minutes with rotation. The ovaries were then washed 

twice with TBS (50 mM Tris-HCl pH 7.5, 150 mM NaCl), and twice with ChIP 

lysis buffer (50 mM Hepes/KOH pH 7.5, 140 mM NaCl, 1% [v/v] Triton X-100, 

0.1% [w/v] Na-Deoxycholate, 0.1% [w/v] SDS). Washed ovaries were sonicated 

for 4 ×15 minutes in sonication buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl 

pH 8.0, 1 Proteinase Inhibitor tablet freshly added) with a Bioruptor Standard 

(diagenode cat# B01010001). The ovary lysate was centrifuged at 14000 rpm at 

4˚C for 15 minutes, 200 µl supernatant was saved as the input control and the 

remaining supernatant was diluted 7 fold with dilution buffer (20 mM Tris-HCl, 

167 mM NaCl, 1.2 mM EDTA, 0.01% [w/v] SDS, 1% [v/v] Triton X-100, 1 

Proteinase Inhibitor tablet freshly added). For each ChIP-Seq library, 25 µl anti-

Rhi antibody or Pre-Immune Serum(custom made, guinea pig 1943) was 

conjugated to 400 µl Dynabeads Protein A (Life technologies, cat # 10001D). The 

diluted supernatant added to the conjugated beads and incubated was at 4˚C 

overnight. The beads were then wash two time each with 1 ml Wash buffer A (20 
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mM Tris-HCl pH 8.0, 2 mM EDTA, 0.1% [w/v] SDS, 1%[v/v] Triton X-100, 150 

mM NaCl), 1 ml Wash buffer B (20 mM Tris-HCl pH 8.0, 2 mM EDTA, 0.1% 

[w/v] SDS, 1%[v/v] Triton X-100, 500 mM NaCl), 1 ml Wash buffer C (10 mM 

Tris-HCl pH 8.0, 1 mM EDTA, 1% [v/v] NP-40, 1% [w/v] Na-deoxycolate, 0.25 

M LiCl) and 1 ml Wash buffer D (10 mM Tris-HCl pH 8.0, 1 mM EDTA). The 

beads were then resuspended with 200 µl sonication buffer, an the saved input 

sample was thawed and processed in parallel with the the ChIP sample, as 

follows:  Crosslinking was reversed by adding 2 µl 5 M NaCl to the beads/input 

and incubating at 65˚C for 6 hours. Then 200 µl Tris-HCl buffer (10 mM Tris-HCl 

pH 8.5) was added to each sample. To remove RNA, 6 µl 30 mg/ml RNaseA was 

added and incubated at 37˚C for 2 hours. To digest protein, 20 µl 20 mg/ml 

Proteinase K was added and the mixture was incubated at 55 ˚C for 2 hours.  

Finally, phenol:chloroform extraction was used to purify the 

immunoprecipitated DNA, which was dissolved in 34 µl water. The sequencing 

library was constructed by sequentially performing end-repair, A-tailing, Y-

shaped adapter ligation and PCR amplification as described (Zhang et al., 2012b). 

The libraries from Oregon R. ovaries were prepared with illumina Paired End 

DNA oligos and sequenced by illumina GAII. The libraries for w1-rep1 and 

armi1/72.1-rep1 were made in parallel with illumina Paired End DNA oligos and 

sequenced by illumina HiSeq. The libraries for w1-rep2 and armi1/72 1-rep2 were 

made in parallel with illumina Multiplexing oligos and sequenced by HiSeq.  

The sequencing reads were mapped to the Drosophila melanogaster genome 

(FlyBase r5.45/dm3) using bwa-0.6.1 (Li and Durbin, 2009). All libraries were 

normalized to sequencing depth, using total genome mapping reads. For each 

library, bigwig files were generated for UCSC browser visualization. To calculate 

the Rhi binding enrichment for the piRNA cluster regions, only the reads that 



 

168

uniquely mapped to one genome position were used. The mean ppm value over 

each cluster was calculated by bigWigAverageOverBed, with a pseudo count of 

0.01. 

Bioinformatics analysis of splicing 

Strand-specific RNA-Seq libraries were made as described (Zhang et al., 2012b). 

RNA-seq reads were aligned to the genome and the transcriptome (Flybase r5.50) 

using TopHat 2.0.8 (Trapnell et al., 2009) with the parameters "-x 1000 -g 1000 --

read-mismatches 2 --read-edit-dist 2 --read-realign-edit-dist 0 --segment-length 

50 --segment-mismatches 2". Only reads mapping uniquely were considered in 

the downstream analysis. BEDTools (Quinlan and Hall, 2010)was used to count 

the fragments within a transcript or piRNA cluster, and the number of reads per 

transcript were normalized by the sequencing depth and transcript length. We 

collapsed introns detected by TopHat from six libraries (three control strains: 

Ore. R, cn,bw, w1; three mutants: rhi2/KG, cuffwm25, uap56sz/28), then we counted the 

spliced reads and the unspliced reads across the donor/acceptor sites. The 

introns with fewer than 10 spliced reads in all six libraries were discarded in the 

analysis. Splicing efficacy was calculated as the ratio reads mapping to mature 

splice junctions multiplied by two over the sum of reads to the corresponding 

donor and acceptor sites, a pseudo count 10 was used. 

Accession number. 

Sequence data generated in this study are available via the NCBI trace archives 

(http://www.ncbi.nlm.nih.gov/Traces/) using accession number SRPXXXXXX. 
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Figure 4.S1. Rhi does not bind with flamenco cluster, protein coding genes and 

transposons. 

(A) piRNA and Rhi ChIP-Seq signal across the flamenco (flam) cluster and cluster 

32, a dual-strand piRNA cluster located ~60 kb downstream of flamenco. Rhi 

binds to dual-strand cluster 32, but does not associate with flam.   

(B) Boxplots showing Rhi enrichment at protein coding genes and transposons. 

Outliers are not shown. 

(C) Scatter plot showing the correlation between Rhi ChIP-Seq in armi1/72.1 and w1 

fly ovaries. Each dot represents a piRNA cluster. A biological replicate is shown 

as Figure 2B. The armi mutations does not reduce Rhi binding. 
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Figure 4.S2
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Figure 4.S2. Most piRNA pathway mutations do not alter Rhi localization. 

The bar in the up right panel is 10 µm, and applies to all panels.  Ovaries were 

dissected from females mutant at the indicated loci, fixed and immunolabeled for 

Rhi.  Samples were imaged by laser scanning confocal microscopy. 
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Figure 4.S3
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Figure 4.S3. Loss of Rhi, Cuff or UAP56 does not affect total cluster transcript 

steady state level.  

Scatter plots comparing normalized RNA-Seq reads uniquely mapping to 

clusters in rhino2/KG, cuffwm25 and uap56sz/28 ovaries and corresponding controls. 
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Figure 4.S4. Mutations in rhi, cuff   and uap56 increase splicing at the sox102F 

locus.   

The experimenatlly determined intron-exon structure of the somatic sox102F 

transcript is shown in blue (top). Note that the gene is transcribed on the minus 

strand. Next, Rhi ChIP-Seq signal (red) is superimposed on the input control 

(dark blue).  The following 6 tracks (black) show RNA-Seq signal in Ore. R and 

w1118 controls, and in the indicated qin, cuff, rhi and uap56 mutants. The qin 

mutation, which disrupts expression of a Tudor domain protein the localizes to 

nuage (Zhang et al., 2012), does not increase splicing. By contrast, mutations in 

cuff, rhi and uap56, which encode nuclear proteins that localize to clusters, 

increase in splicing. piRNA expression for each genotype is indicated in the 

green tracks. The "mappability" of the locus, reflecting the extent of unique 

sequence, is shown at the bottom of the figure.    
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Figure 4.S5
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Figure 4.S5. Tethering LacI::Rhi, but not LacI , silences GFP protein expression.  

Top. Western blot showing LacI (green) and a tubulin control (red) expression  in 

ovaries carrying inducible LacI or LacI::Rhi fusion protein genes and an EGFP 

reporter, in the absence of Gal4 induction (-Gal4) or the presence of Gal4 

induction (+Gal4). Bottom. Parallel blot for EGFP (green) and tubulin control 

(red).  Biological triplicate data are shown. EGFP expression is only silenced 

when LacI::Rhi is expressed.      
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Figure 4.S6
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Figure 4.S6. Rhi binding and expression of complementary transcripts are 

needed to induce piRNA production.  

Length distribution of the small RNAs mapping to the GFP constructs. Un-

oxidized RNAs were used to generate libraries for sequencing. Blue, sense 

piRNAs; red, antisense.
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Table 4.S1.High throughput sequencing statistics. 

Table 4.S1a. ChIP-Seq samples.

Ovary 
genotype 

Sample 
type 

Total 
reads

Genome mapping 
reads 

Uniq genome 
mapping 

reads 

Uniq piRNA 

cluster-mapping 
reads 

Sequencing 
type  

       

Oregon R 

Input 19,690,683 19,207,681 16,953,468 185,114 Single-end 36  

Rhi-ChIP 19,188,196 16,157,556 12,789,291 648,108 Single-end 36  

Pre-immune-
serum ChIP 

17,631,445 3,743,201 3,350,336 36,292 Single-end 36  

w1 

Input-rep1 45,732,160 42,864,288 35,176,654 559,429 Single-end 50  

Rhi-ChIP-rep1 152,966,819 34,182,612 28,787,037 730,674 Single-end 50  

Input-rep2 21,118,300 19,687,920 17,038,394 222,400 Single-end 50  

Rhi-ChIP-rep2 30,298,852 25,665,877 20,886,439 757,626 Single-end 50  

armi1/72.1 

Input-rep1 130,342,282 125,148,797 106,350,666 1,732,302 Single-end 50  

Rhi-ChIP-rep1 111,639,082 64,610,367 53,827,732 1,667,665 Single-end 50  

Input-rep2 22,516,588 21,506,254 18,476,720 322,285 Single-end 50  

Rhi-ChIP-rep2 13,795,364 12,220,648 8,839,898 753,164 Single-end 50  
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Table 4.S1b. Small RNA-Seq samples. 

Small RNA sequencing statistics: analysis of genome matching sequences by reads. “Reads excluding ncRNA” 

correspond to genome-matching reads after excluding annotated non-coding RNAs (ncRNAs) such as rRNA, snRNA, 

snoRNA, or tRNA. “Transposon-matching reads” correspond to small RNAs mapped to Drosophila melanogaster 

transposons. 

EGFP Construct 

Age 

Oxidization? 

LacI/ 
LacI::Rhi 

Total 
reads 

Reads 
perfectly 
matching 
genome 

ncRNA 
reads 

Reads 
excluding 

ncRNA 

miRNA- 
matching 

reads 

Reads 
excluding 
ncRNA & 
miRNA 

23–29 nt small RNA reads 

Total 
Transposon-matching reads 

Total Sense Antisense 

LacO-Vasp-
EGFP 
(OVG) 

2-4 days 
 

Oxidized 

LacI-rep1 16,249,348 14,119,765 359,519 13,760,246 121,789 13,638,457 12,358,000 9,594,293 2,682,118 7,169,470 

LacI::Rhi-
rep1 

11,068,854 9,353,884 266,473 9,087,411 122,909 8,964,502 8,282,858 6,029,337 1654680 3410405 
 

1,739,662 4,486,354 

LacI-rep2 153,157,842 
127,489,61

1 
3,255,606 

124,234,00
5 

1,083,941 
123,150,06

4 
111,624,43

0 
86,889,772 24,302,289 64,877,410 

LacI::Rhi-
rep2 

177,409,973 
151,678,81

5 
4,367,112 

147,311,70
3 

1,929,109 
145,382,59

4 
134,368,77

4 
97,914,490 28,401,266 72,641,185 

LacO-Vasp-
EGFP/EGFP-
Vasp-LacO 
(OVG/GVO) 

 
2-4 days 

 
Oxidized 

LacI-rep1 46,380,606 40,244,084 822,685 39,421,399 156,822 39,264,577 35,219,730 27,366,611 8,755,773 19,149,566 

LacI::Rhi-
rep1 

48,735,470 41,682,162 708,211 40,973,951 180,312 40,793,639 37,315,761 28,477,289 9,319,330 19,801,667 

LacI-rep2 38,513,048 33,520,351 679,720 32,840,631 124,096 32,716,535 29,414,978 22,867,873 7,356,176 15,959,693 

LacI::Rhi-
rep2 

35,355,856 30,303,103 519,668 29,783,435 143,046 29,640,389 26,982,099 20,612,548 6,767,095 14,310,916 

LacO-Vasp-
EGFP/EGFP-

LacI-rep1 45,272,747 38,325,461 778,436 37,547,025 92,432 37,454,593 35,312,835 27,500,652 8,911,593 19,178,922 



 

184

Vasp-LacO 
(OVG/GVO) 

 
14-16 days 

 
Oxidized 

LacI::Rhi-
rep1 

43,792,021 37,701,250 800,990 36,900,260 181,314 36,718,946 33,148,612 25,666,838 8,417,116 17,785,189 

LacI-rep2 32,665,847 27,627,049 552,691 27,074,358 63,953 27,010,405 25,459,224 19,823,005 6,466,333 13,782,482 

LacI::Rhi-
rep2 

41,996,269 35,966,320 747,541 35,218,779 166,390 35,052,389 31,613,148 24,477,416 8,064,835 16,927,858 

OVG 
2-4 days 

Un-oxidized 

LacI 16,698,738 14,572,404 957,746 13,614,658 7,480,048 6,134,610 5,258,640 4,007,781 1,240,435 2,876,079 

LacI::Rhi 19,658,683 17,218,302 1,471,495 15,746,807 9,037,230 6,709,577 5,979,746 4,371,854 1,352,805 3,164,875 

OVG/GVO 
2-4 days 

Un-oxidized 

LacI 27,945,613 22,347,290 1,418,311 20,928,979 7,108,237 13,820,742 12,355,771 9,507,077 3,147,024 6,582,276 

LacI::Rhi 25,523,627 20,291,554 2,269,452 18,022,102 5,693,260 12,328,842 11,056,947 8,338,308 2,778,530 5,798,249 
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Table 4.S1c. RNA-Seq samples.

Ovary genotype Total reads
Genome-

mapping reads 

Uniquely 

mapping reads 

Gene mapping 

reads 

Transposon 

mapping reads 

piRNA 

cluster-

mapping 

reads 

 
Sequencing 

type 

        

Ore.R. 97,529,610 89,452,521 83,347,362 76,141,253 261,801 128,970 Paired-end 100 

w1-rep1 106,023,094 100,624,999 89,461,051 81,431,340 313,153 89,316 Paired-end 100 

rhi2/KG-rep1 101,764,128 90,224,659 78,162,381 66,926,117 5,206,641 387,375 Paired-end 100 

w1-rep2 71,051,534 67,979,397 64,136,391 58,685,981 979,334 129,752 Paired-end 100 

rhi2/KG-rep2 78,918,984 75,340,847 67,572,190 57,609,542 5,485,277 282,868 Paired-end 100 

cuffwm25 106,448,028 97,728,390 84,346,886 70,421,237 8,392,499 631,809 Paired-end 100 

uap5628/sz 108,230,898 100,104,694 78,541,631 70,768,111 2,724,098 141,180 Paired-end 100 
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Table 4.S2. Synthetic DNA oligonucleotides used in this study (5ʹ′-to-3ʹ′). 

For quantitative RT-PCR to measure splicing ratio 

sox102F-RT TGT CCA TGA CCA TTT CCT TG 

sox102F-Left TGC AGG TAC AGG GCC TAG TT 

sox102F-Right-

Spliced 
CTT CTA AAA AGT CAT GGG AGA GTG 

sox102F-Right-

Unspliced 
CTT TAA TTT GTT CTA GGG GAG AGT G 

42AB-RT CTG GAA AGG CGC TCC ACT AC 

42AB-Left GCA GTT GCC GTC TCT CCT T 

42AB-Right-

Spliced 
TGG GTC AAA GTG CAG CAG TTT T 

42AB-Right-

Unspliced 
CGG GAA TAT AAT CGC AGC AGTT TT 

rp49-RT CGG GAA TAT AAT CGC AGC AGT TTT 

rp49-Left CCG CTT CAA GGG ACA GTA TCT G 

rp49-Right ATC TCG CCG CAG TAA ACG C 

EGFP-RT TGC TCA GGT AGT GGT TGT CG 

EGFP-Right GAA CTT CAG GGT CAG CTT GC 

EGFP-Left-

Spliced 
ATA TGG TGA GCA AGG GCG A 

EGFP-Left-

Unspliced 
CTC ATC CAC AGG TGA GCA AG 

For ChIP-quantitative PCR 

42AB CGT CCC AGC CTA CCT AGT CA; ACT TCC CGG TGA AGA CTC 
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CT 

VT-q1 
GCG ATA GCA CAA TGG GAA AT; GGC TTG ACA AAC GTA AAA 

CGA 

VT-q2 
CAT TTG ATG TGT TAG TGG AAA ACG; GGC AAG CTG TCG ACT 

TGT G 

tubIn GGC AAG CTG TCG ACT TGT G; AAC AGC TCC TCG CCC TTG 

GFP3’ 
CGA CAA CCA CTA CCT GAG CA; ATC AGC TCG GGA TCT GAG 

TC 

GT3 AAC AGC TCC TCG CCC TTG; CCC ATC GAG CGT TGA AGT 

mocs 
TCA CTG CGG ATG GAA ACA TA; GGG GAG AGA GTG TGG TGT 

GT 

suUR 
TAG CTC GTT GTC CTC GGA GT; CAC CTC AGA ATC GTT GAG 

CA 

Table 4.S3. Published fly alleles used in this study. 

rhi2/KG (Klattenhoff et al., 2009) 

cuffwm25 (Pane et al., 2011) 

uap5628/sz (Zhang et al., 2012a) 

qinkumo/Df Zhang et al., under revision; (Anand and Kai, 2012) 

armi1/72.1 (Cook et al., 2004) 

Table 4.S4. Published high-throughput sequencing data used in this study. 

rhi2/KG-small RNA SRP002060; (Klattenhoff et al., 2009) 

armi1/72.1-small RNA GSE15186; (Malone et al., 2009) 

uap5628/sz-small RNA GSE35638; (Zhang et al., 2012a) 

cuffwm25-small RNA (Pane et al., 2011) 
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Ore.R.-small RNA SRP000458; (Li et al., 2009) 

W1118-RNA-Seq SRP024291; Zhang et al.; under revision 

qinkumo/Df-RNA-Seq SRP024291; Zhang et al.; under revision 

Table 4.S5. Antibody information. 

anti-Rhi Custom made, guinea pig 1943; 25 µl/ChIP 

anti-GFP Clontech, cat# 632460; Western blotting: 1:2000 dilution 

anti-LacI Rockland, cat# 600-401-B04; Western blotting: 1:2000 dilution 

anti-LacI US Biological, cat# L0899; Immunostaining: 1:500 dilution 

anti-Tubulin DSHB, cat# 12G10; Western blotting: 1:5000 dilution 
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SECTION V 
 
STRAND-SPECIFIC LIBRARIES FOR HIGH THROUGHPUT SEQUENCING 

OF RNA (RNA-SEQ) PREPARED WITHOUT POLY(A) SELECTION 
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SUMMARY 

High throughput DNA sequencing technology has enabled quantification of all 

the RNAs in a cell or tissue, a method widely known as RNA-Seq. However, 

non-coding RNAs such as rRNA are highly abundant and can consume >70% of 

sequencing reads. A common approach is to extract only polyadenylated mRNA; 

however, such approaches are blind to RNAs with short or no poly(A) tails, 

leading to an incomplete view of the transcriptome. Another challenge of 

preparing RNA-Seq libraries is to preserve the strand information of the RNAs. 

Here, we describe a procedure for preparing RNA-Seq libraries from 1–4 µg total 

RNA without poly(A) selection. Our method combines the dUTP/uracil-DNA 

glycosylase strategy to achieve strand specificity with AMPure XP magnetic 

beads to perform size selection. Together, these steps eliminate gel purification, 

allowing a library to be made in less than two days. We barcode each library 

during the final PCR amplification step, allowing several samples to be 

sequenced in a single lane without sacrificing read length. Libraries prepared 

using this protocol are compatible with Illumina GAII, GAIIx and HiSeq 2000 

platforms. The RNA-Seq protocol described here yields strand-specific 

transcriptome libraries without poly(A) selection that provide ~90% mappable 

sequences. Typically, more than 85% of mapped reads corresponded to protein 

coding genes, and only ~6% derive from non-coding RNAs. The protocol has 

been used to measure RNA transcript identity and abundance in tissues from 

flies, mice, rats, chickens, and frogs, demonstrating its general applicability.  
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INTRODUCTION 

Strand-specific RNA-Seq provides a powerful tool for transcriptome analysis. 

Besides measuring transcript abundance across the entire transcriptome, RNA-

Seq facilitates de novo transcript annotation and assembly, quantification of 

splice site usage, and identification of mutations or polymorphisms between 

samples (Wang et al., 2009b; Metzker, 2010; Ozsolak and Milos, 2011a). 

Ribosomal RNAs compose an overwhelming fraction of the total RNA 

population (>70%) and can occupy most of the sequencing space, leaving little 

room for investigating other transcripts (Armour et al., 2009). The most widely 

used strategy employs poly(A) selection to enrich for RNA polymerase II 

transcripts, but this strategy cannot be used to study RNAs lacking poly(A) tails 

or precursor transcripts processed into fragments that have lost their poly(A) 

tails, e.g., 7SL RNA, 7SK RNA, the 5′ fragment of Argonaute cleavage products, 

processed products of piRNA precursors, and long non-coding RNAs such as 

Kcnq1ot1 in mammals (Huang et al., 2011b). Another strategy removes rRNA by 

hybridization while retaining other non-adenylated RNAs for sequencing 

(Huang et al., 2011b). 

Although RNA can be sequenced directly, without conversion to 

complementary DNA (cDNA), current high throughput technologies for direct 

RNA sequencing have short read lengths (25–55 nt; median ~33 nt) and high 

error rates (~4%) (Ozsolak et al., 2009; Ozsolak and Milos, 2011b). Thus current 

strategies for transcriptome analysis all typically convert RNA to cDNA before 

sequencing, notwithstanding the artifacts that may result from template 

switching or structural RNA self-priming (Mader et al., 2001; Cocquet et al., 2006; 
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Chabot et al., 2008). The dUTP method, one of the leading cDNA-based 

strategies, provides excellent library complexity, strand specificity, coverage 

evenness, agreement with known annotation, and accuracy for expression 

profiling (Levin et al., 2010). In this method, the RNA is first reverse transcribed 

into cDNA:RNA using random primer. To synthesize the second cDNA strand, 

dUTP instead of dTTP is used, marking the second cDNA strand for subsequent 

degradation with uracil-DNA glycosylase (UDG) to preserve strand information 

(Parkhomchuk et al., 2009; Wang et al., 2011; Sultan et al., 2012). 

Here, we describe a protocol for preparing strand-specific RNA-Seq 

libraries that combines rRNA removal using the Ribo-Zero kit and the dUTP 

method for ensuring strand specificity (Figure 5.1). Our protocol showed 

advantage in time saved, cost and performance (Table 5.1). We replace laborious, 

time-consuming gel purification steps with AMPure XP beads, whose size-

selectivity and efficiency of DNA recovery allow the use of small amounts of 

starting RNA (Lott et al., 2011; Hawkins et al., 1994; Lis, 1980). The high 

sequencing depth of the Illumina HiSeq 2000 platform can easily generate >170 

million reads per lane, allowing multiple barcoded samples to be pooled and 

sequenced in a single lane. One common method to index a library is adding 

barcodes during adapter ligation, so that the first 5 or 6 nucleotides of each read 

is the barcode. However, this strategy sacrifices read length, can increase the 

error rates at the 5′ or 3′ ends of reads (Wang et al., 2011), can perturb the 

calibration of the Illumina base calling algorithm (the HiSeq2000 platform uses 

the first 5 nucleotides for calibration), and may lead to differential ligation 

efficiency and specificity among barcoded samples. Introducing barcodes during 
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the final PCR amplification (Figure 5.1) bypasses these problems. The barcodes 

are then read using a separate primer and additional sequencing cycles after the 

insert has been sequenced (Figure 5.2). We modified the Illumina Multiplexing 

Sample Prep oligonucleotides and used 12 barcoded primers to index 12 libraries 

at the final PCR step (Figure 5.1). Our protocol requires only 1–4 µg total RNA as 

starting material and takes no more than two days to complete. 
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Figure 5.1
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Figure 5.1. Protocol workflow. 
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Figure 5.2. Library and sequencing primer sequences.
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METHODS 

Enzymes 

TURBO DNase (2 U/µl, Ambion, Cat. No. AM2239) 

SuperScript III Reverse Transcriptase (200 U/µl, Invitrogen, Cat. No. 18080-093) 

RNase H (2 U/µl, Invitrogen, Cat. No. 18021-014) 

DNA polymerase I (10 U/µl, New England Biolabs [NEB], Cat. No. M0209L) 

T4 DNA polymerase (3 U/µl, NEB, Cat. No. M0203) 

Klenow DNA polymerase (5 U/µl, NEB, Cat. No. M0210L) 

T4 PNK (10U/µl, NEB, Cat. No. M0236L) 

Klenow 3′ to 5′ exo– (5 U/µl, NEB, Cat. No. M0212L) 

T4 DNA ligase (600 U/µl, Enzymatics, Cat. No. L603-HC-L) 

E. coli Uracil-DNA glycosylase (5 U/µl, NEB, Cat. No. M0280S) 

Phusion High-Fidelity DNA Polymerase (2 U/µl, NEB, Cat. No. M0530L) 

AccuPrime Pfx DNA Polymerase (optional, 2.5 U/µl, Invitrogen, Cat. No. 12344-

024) 

Buffers and Reagents 

Ribo-Zero magnetic kit (Epicentre, Cat. No. MRZH116) 

RNA Clean & Concentrator-5 (Zymo Research, Cat. No. R1015) 

Random primers (Hexamers, 3 µg/µl, Invitrogen, Cat. No. 48190011) 

dATP (Bio Basic, Cat. No. DD0058) 

dCTP (Bio Basic, Cat. No. DD0058) 

dGTP (Bio Basic, Cat. No. DD0058) 

dTTP (Bio Basic, Cat. No. DD0058) 
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dUTP (Bio Basic, Cat. No. DM1244) 

AMPure XP beads (Beckman Coulter, Cat. No. A63880) 

Elution Buffer for AMPure XP beads: 10 mM Tris-HCl (pH 8.5) 

Zero Blunt® TOPO® PCR cloning kit (Invitrogen, Cat. No. K2800-20) 

LB agar kanamycin plates: 1% [w/v] tryptone, 0.5% [w/v] yeast extract, 1% 

[w/v] NaCl, 1.5% [w/v] agar and 50 µg/ml kanamycin 

GoTaq Green Master Mix (Promega, Cat. No. M7122) 

TOP10 E. Coli competent cells (home-made (Chung and Miller, 1988, Nucleic 

acids research, 16, 3580-3580) or Invitrogen, Cat. No. C4040-10) 

S.O.C. medium (super optimal broth with catabolite repression): 0.5% [w/v] 

yeast extract, 2% [w/v] tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2, 10mM MgSO4 and 20 mM glucose (sterilize the glucose stock 

separately using a 0.2 µm filter, and then add it into the rest ingredients, 

which should be sterilized by autoclaving). 

70% [v/v] ethanol 

2nd strand buffer/10× NEB Buffer 2: 500 mM NaCl, 100 mM Tris-HCl (pH 7.9), 

100 mM MgCl2 and 10 mM DTT. 

10× T4 DNA ligase buffer: 500 mM Tris-HCl (pH 7.5), 100 mM MgCl2, and 100 

mM DTT, 10 mM ATP (note, ATP freshly added before use). 

100 bp DNA ladder (e.g., Fermentas, Cat. No. SM0241) 

5× First strand buffer: 250 mM Tris-HCl (pH 8.3), 375 mM KCl, 15 mM MgCl2, 50 

mM DTT. 

2× Rapid ligation buffer: 132 mM Tris-HCl (pH 7.6), 20 mM MgCl2, 2 mM DTT, 

15% PEG6000, 2 mM ATP (note, ATP freshly added before use) 

Actinomycin D (optional, Sigma, Cat. No. A1410) 
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Equipment 

Water bath or heat block 

Magnetic stand for 1.5 ml centrifuge tubes 

Bench top centrifuge for 1.5 ml centrifuge tubes (17,000 × g required) 

PCR thermal cycler 

Nanodrop or comparable low-volume spectrophotometer 

Bioanalyzer (Optional) 

37 °C Incubator 

Bench top vortexer 

DNA oligonucleotides 

Multiplexing adapters 

Adapter oligo 1: 5′-pGAT CGG AAG AGC ACA CGT CT-3′ 

Adapter oligo 2: 5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT-3′ 

PCR primers (barcode) 

Primer 1: 5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT 

TCC CTA CAC GAC GCT CTT CCG ATC T-3′ 

Primer 2 (primer with barcode, designed by combining Illumina Multiplexing 

PCR Primer 2.0 and PCR Index primer into a single primer): 

Primer 2-1: 5′-CAA GCA GAA GAC GGC ATA CGA GAT CGT GAT GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-2: 5′-CAA GCA GAA GAC GGC ATA CGA GAT ACA TCG GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 
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Primer 2-3: 5′-CAA GCA GAA GAC GGC ATA CGA GAT GCC TAA GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-4: 5′-CAA GCA GAA GAC GGC ATA CGA GAT TGG TCA GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-5: 5′-CAA GCA GAA GAC GGC ATA CGA GAT CAC TGT GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-6: 5′-CAA GCA GAA GAC GGC ATA CGA GAT ATT GGC GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-7: 5′-CAA GCA GAA GAC GGC ATA CGA GAT GAT CTG GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-8: 5′-CAA GCA GAA GAC GGC ATA CGA GAT TCA AGT GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-9: 5′-CAA GCA GAA GAC GGC ATA CGA GAT CTG ATC GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-10: 5′-CAA GCA GAA GAC GGC ATA CGA GAT AAG CTA GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-11: 5′-CAA GCA GAA GAC GGC ATA CGA GAT GTA GCC GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

Primer 2-12: 5′-CAA GCA GAA GAC GGC ATA CGA GAT TAC AAG GTG 

ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T-3′ 

M13 Forward: 5′-GTA AAA CGA CGG CCA G-3′ 

M13 Reverse: 5′-CAG GAA ACA GCT ATG AC-3′ 
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Procedure 

Ribosomal RNA (rRNA) depletion 

High quality total RNA is essential for efficient rRNA removal. For example, in 

our hands, Drosophila RNA subjected to repeated freeze-thawing or treated with 

DNase cannot be efficiently depleted of ribosomal RNA. 

1. Mix the Ribo-Zero magnetic beads by gently pipetting. For each total RNA 

sample, dispense 225 µl Ribo-Zero magnetic beads into an RNase-free 1.5 

ml centrifuge tube. 

2. Place the tube in the magnetic stand until the supernatant becomes clear, 

~1 min. 

3. With the tube still in the stand, discard the supernatant, which contains 

0.1% sodium azide (chemical hazard: dispose of according to local 

regulations). 

4. Add 225 µl RNase-free water to the tube, remove the tube from the 

magnetic stand, and mix the beads by gently pipetting. 

5. Return the tube to the magnetic stand, wait until the solution becomes 

clear, and discard the water. 

6. Resuspend the beads in 65 µl Ribo-Zero magnetic bead suspension 

solution and 1 µl RiboGuard RNase Inhibitor. Mix well by gently 

pipetting. Store the tube at room temperature until step 9. 

7. In a 1.5 ml centrifuge tube, prepare the following mix 

4 µg fresh total RNA 

4 µl Ribo-Zero “Reaction” buffer 

10 µl Ribo-Zero rRNA removal solution 
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Add water to make a 40 µl total volume. 

Store the unused Ribo-Zero rRNA removal solution and “Reaction” buffer 

at −80 °C. 

8. Gently mix the solution by pipetting and incubate at 68 °C for 10 min, 

then incubate the tube at room temperature for 5 min. 

9. Gently mix the magnetic beads from step 6 by pipetting and add the RNA 

solution from step 8 to the mixed beads. Using the same pipet tip, 

immediately mix the beads with the RNA by pipetting 10 times. Next, 

vortex the tube for 10 sec at medium speed. Finally, incubate the mixture 

at room temperature for 5 min. 

10. Vortex the tube at medium speed for 5 sec and then incubate it at 50 °C for 

5 min. 

11. After the 5 min incubation, immediately place the tube in the magnetic 

stand for 2 min. 

12. Carefully remove the supernatant, about 84 µl, to a new 1.5 ml centrifuge 

tube and place it in the magnetic stand for 1 min to get rid of the trace 

amount of leftover beads from last step. 

13. Pipette the supernatant into a new 1.5 ml centrifuge tube and add 16 µl 

water. 

Size selection and DNase treatment 

RNA Clean & Concentrator-5 is used to enrich for RNAs >200 nt, which also 

removes 5S rRNA and tRNA. 

14. Mix 100 µl RNA binding buffer with 100 µl 100% ethanol. Add this 200 µl 

mixture to the 100 µl RNA from step 13. 
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15. Transfer the buffer/ethanol/RNA mixture into a Zymo-Spin IC column in 

a collection tube. Centrifuge at 17,000 ×  g for 1 min. Discard the flow-

through. 

16. Add 400 µl RNA Wash Buffer to the column, spin at 17,000 ×  g for 1 min. 

Discard the flow-through. 

17. To degrade contaminating DNA, mix the following reagents (to handle 

multiple samples at one time, we prefer to prepare the pre-mix for easy 

operation and less pipetting variance among samples) 

 3 µl TURBO DNase (2 U/µl) 

 3 µl 10× TURBO DNase Buffer 

 24 µl RNA Wash Buffer 

and add the 30 µl mixture to the column. Incubate the column at 37 °C 

for 30 min. Centrifuge the column at 17,000 × g for 1 min, and discard 

the flow-through. 

18. Add 400 µl RNA Prep Buffer to the column, centrifuge at 17,000 × g for 1 

min, and discard the flow-through. 

19. Add 800 µl RNA Wash Buffer to the column, centrifuge at 17,000 × g for 1 

min, and discard the flow-through. 

20. Add 400 µl RNA Wash Buffer to the column, centrifuge at 17,000 × g for 1 

min, and discard the flow-through. 

21. Centrifuge the column at 17,000 × g for 2 min. 

22. To elute the RNA, replace the collection tube with a new 1.5 ml centrifuge 

tube, and then add 10 µl water to the column. Incubate at room 

temperature for 1 min and centrifuge at 17,000 × g for 1 min to collect the 

RNA/flow-through. 
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23. Take 1 µl RNA to measure the concentration using a Nanodrop 

spectrophotometer or comparable low volume instrument. Typically, the 

procedure yields 10–20 ng/µl (A260/A280 = 1.96 ~ 2.17). 

Library preparation 

1. Fragment the RNA.  At high temperature, the metal ions within the 5× 

First strand buffer will hydrolyze the RNA into short fragments. In a 0.2 

ml tube, mix 4 µl rRNA-depleted total RNA with 4 µl of 5× First strand 

buffer. Place the tube into a PCR thermal cycler pre-heated to 94 °C. 

Incubate for precisely 4 min and 50 sec. Then quickly chill the tube on ice 

for at least 1 min. 

2. To reverse transcribe the RNA into first-strand cDNA, add to the PCR 

tube: 

 1.5 µl 100 mM DTT 

 1 µl Random primer (Hexamers, 3 µg/µl) 

 7 µl water 

Incubate at 65 °C for 3 min, and then quickly chill the tube on ice for 1 

min. Next, add: 

 1 µl dNTP mixture (dATP, dCTP, dGTP, dTTP, 10 mM each) 

 0.5 µl 100 mM DTT 

 1 µl SuperScript III Reverse Transcriptase (200 U/µl) 

4 µg Actinomycin D (optional, may enhance strand specificity, 

but decrease uniformity of strand coverage (Levin et al., 

2010, #51637)) 
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Incubate at 25 °C for 5 min, then at 50 °C for 1 h. Heat at 70 °C for 15 min 

to inactive the reverse transcriptase. Finally, use 36 µl AMPure XP beads 

to purify the cDNA, eluting with 22 µl elution buffer. (A detailed protocol 

for purifying with AMPure XP beads follows this protocol.) 

3. To convert the first-strand cDNA to double-stranded cDNA incorporating 

dUTP instead of dTTP, add the following to the cDNA from step 2: 

 3 µl 2nd strand buffer/10× NEB Buffer 2 

 2 µl dUTP mixture (20 mM dUTP, 10 mM dATP, dCTP, dGTP) 

 1 µl RNase H (2 U/µl) 

 2 µl DNA polymerase I (10 U/µl) 

 0.5 µl 100 mM DTT 

Incubate at 16 °C for 2.5 h. 

After incubation, purify the double-stranded cDNA using 45 µl AMPure 

XP beads and elute the cDNA into a 1.5 ml centrifuge tube using 33 µl 

elution buffer. After this, one can continue or store the sample at −20 °C. 

4. Repair the ends of the double-stranded cDNA. DNA polymerase I, which 

is used to for second strand cDNA synthesis, uses as primers the RNA 

leftover from RNase H digestion. Consequently, the double-stranded 

cDNAs generated in step 3 have 3′ overhanging ends. Step 4 converts the 

sticky ends into blunt ends. Add the following mixture to the DNA from 

step 3: 

 5 µl 10× T4 DNA ligase buffer 

 2 µl dNTP mixture (10 mM each) 

 5 µl T4 DNA polymerase (3 U/µl) 
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 1 µl Klenow DNA polymerase (5 U/µl) 

 5 µl T4 PNK (10 U/µl) 

Incubate at 20 °C for 30 min. 

5. To establish a library with the narrow size range (200 bp to 350 bp) 

required for successful high throughput sequencing, the cDNA is purified 

using AMPure XP beads, which exploit the finding that carboxyl coated 

magnetic beads bind distinct DNA size ranges depending on Polyethylene 

Glycol (PEG) and salt concentration (Hawkins et al., 1994; Lis, 1980, 

Methods in enzymology, 65, 347; 

http://epicentral.blogspot.com/2010/06/get-rid-of-small-stuff.html, 

#4688). After end repair, mix the reaction with 35 µl AMPure XP beads 

and incubate at room temperature for 5 min. Then place the tube in the 

magnetic stand for 3 min. Transfer the supernatant into a new tube and 

discard the beads. To the new tube with the supernatant, add an 

additional 40 µl of AMPure XP beads and then follow the standard 

AMPure XP bead purification protocol, eluting the DNA with 33 µl 

elution buffer. 

6. Tail the PCR products with adenosine to facilitate adapter ligation.  We 

use Klenow fragment with D355A and E357A mutations (Klenow 3′-to-5′ 

exo–, 5 U/µl), a DNA polymerase lacking both 3′-to-5′ and 5′-to-3′ 

exonuclease activities, to add a single adenosine to the 3′ ends of the DNA. 

To the DNA from step 5, add: 

 5 µl 2nd strand buffer/10× NEB Buffer 2 

 1 µl dATP (10 mM) 
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 3 µl Klenow 3′-to-5′ exo– (5 U/µl) 

 9 µl water 

Incubate at 37 °C for 30 min. After incubation, purify the DNA using 60 µl 

AMPure XP beads; elute with 24 µl elution buffer. 

7. Add the Y-shaped adapters (Oligonucleotide sequences © 2007‐2011 

Illumina, Inc. All rights reserved.). To prepare the Y-shaped adapter, mix 

25 µl Adapter oligo 1 and oligo 2 (each at 50 µM stock concentration). Heat 

at 95 °C for 2 min, then ramp down slowly to room temperature. We 

usually heat the oligo mixture in an aluminum heat block for 2 min. Then 

remove the block from the heater and let it cool down to room 

temperature, ~30 min. Ligate the adapters to the purified double-stranded 

cDNA by adding: 

 25 µl 2× Rapid ligation buffer 

 1 µl Adapter (10 µM) 

 1.5 µl T4 DNA ligase (600 U/µl) 

Incubate at room temperature for 15 min. After incubation, use 50 µl 

AMPure XP beads to purify the DNA. Elute the DNA with 30 µl elution 

buffer. 

8. Treat with uracil-DNA glycosylase (UDG, 5 U/µl). Add 2 µl UDG to the 

DNA from step 7, and incubate at 37 °C for 30 min. 

9. PCR amplify the cDNA. Add the following mixture to the DNA from step 

8: 

 10 µl 5× HF buffer (Phusion Polymerase) 

 1 µl 10 µM PCR Primer 2 (one of the 12 to provide the barcode) 
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 1.5 µl dNTP (10 mM each) 

 0.5 µl  Phusion High-Fidelity DNA polymerase (2 U/µl) 

 5 µl water 

Incubate the tube at 98 ˚C for 40 sec, 65 ˚C for 30 sec and 72 ˚C for 30 sec. 

After the incubation, pause the PCR machine, and then add 1 µl 10 µM 

PCR Primer 1. Continue the PCR with 10 cycles of 98 °C for 10 sec, 65 °C 

for 30 sec, 72 °C for 30 sec, followed by incubation at 72 °C for 3 min. Then 

purify the library with 50 µl AMPure XP beads. Finally, elute the DNA 

with 20 µl elution buffer. 

Alternatively, the PCR can be performed using AccuPrime Pfx 

DNA Polymerase: 

 5 µl 10× AccuPrime Pfx Reaction mix 

 1 µl 10 µM PCR Primer 2 (one of the 12 to provide the barcode) 

 1 µl AccuPrime Pfx DNA Polymerase (2.5 U/µl) 

 11 µl water 

Incubate the tube at 95 ˚C for 40 sec, 65 ˚C for 30 sec and 68 ˚C for 30 sec. 

After the incubation, pause the PCR machine, and then add 1 µl 10 µM 

PCR primer 1. Continue the PCR with 10 cycles of 95 °C for 15 sec, 65 °C 

for 30 sec, 68 °C for 30 sec, followed by incubation at 68 °C for 3 min. Then 

purify the library with 50 µl AMPure XP beads. Finally, elute the DNA 

with 20 µl elution buffer.  

Quality control (optional) 

A good RNA-Seq library should have a narrow size range, retain strand 

information, and contain little RNA contamination from other species and few 
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inserts from ribosomal RNA. Because high throughput sequencing remains 

expensive and time consuming, assaying the quality of libraries before 

submitting a sample for sequencing is worthwhile, particularly when first 

establishing this workflow. Here, we provide two ways to test library quality: 

Bioanalyzer analysis and small-scale colony sequencing. Using only 1 µl of the 

library, Bioanalyzer analysis provides fast, sensitive and accurate information on 

insert size distribution. Small-scale colony sequencing provides information on 

insert identity. 

1. Bioanalyzer analysis. Run 1 µl of RNA-Seq library on the Agilent High 

Sensitivity DNA Chip to check the size distribution of the library. 

2. Small-scale colony sequencing. Mix: 

 0.5 µl RNA-Seq library  

 0.5 µl salt solution 

 0.5 µl pCRII-Blunt-TOPO 

 1.5 µl water 

Incubate at room temperature for 5 min. Pipette the reaction into 50 µl 

TOP10 E. Coli competent cells. To mix, gently tap the tube 5 times (do not 

mix by pipetting to avoid breaking the fragile cells), then incubate on ice 

for 20 min. Heat shock at 42 °C for 40 sec. Immediately chill on ice for 2 

min, and then add 200 µl room temperature S.O.C. medium. Recover the 

cells at 37 °C for 1 h with orbital shaking (200 rpm). 

3. Spread 60 µl of the bacterial suspension on an LB plate containing 50 

µg/ml kanamycin, and incubate at 37 °C overnight. 
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4. Pick 10–20 colonies from each library. Gently touch a 10 µl pipette tip to a 

single colony, and then pipet with 12.5 µl GoTaq Green Master Mix, 1 µl of 

M13 Forward and Reverse Primer mix (5 µM each) and 11.5 µl water. Run 

the following PCR program: 

 94 °C 5 min 

 94 °C 30 sec 

 55 °C 30 sec 

 72 °C 40 sec (go to step 2 for an additional 30 cycles) 

 72 °C 7 min 

 4 °C hold 

5. Run 5 µl of the PCR product on a 1.5% agarose gel to check the size and 

quality of the PCR product. Use a 100 bp DNA ladder as size markers. 

6. Sanger-sequence each PCR reaction that produces a product of a single 

length, using the M13 Reverse primer. 

Additional protocol: using AMPure XP beads to purify DNA 

1. Warm the AMPure XP beads to room temperature, mix well, and pipette 

the required volume from the stock bottle to the sample tube. 

2. Mix the beads and DNA sample by gently pipetting, and then incubate at 

room temperature for 5 min. 

3. Place the tube in the magnet stand for 5 min until the supernatant appears 

clear. 

4. Discard the supernatant. 

5. Keep the tube in the stand and add 180 µl of 70% (v/v) ethanol into the 

tube without disturbing the beads. 
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6. Wait for 30 sec and discard the ethanol supernatant. 

7. Repeat steps 5 and 6. 

8. To remove any ethanol remaining on the sides of the tube, centrifuge the 

tube at 1000 × g for 1 min. 

9. Place the tube in the magnetic stand for 30 sec, and then remove any 

residual ethanol using a 10 µl pipette. 

10.  Add the specified volume of elution buffer to the beads and pipette to 

mix. 

11.  Wait 3 min, and then place the tube in the magnetic stand for 3 min. 

12.  Use a 10 µl pipette to carefully transfer the eluted DNA to a new tube 

(sacrifice 1–2 µl to avoid carrying over any beads). 
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ANTICIPATED RESULTS 

Quality control 

Based on our experience, a good library will range in size from 300 to 500 bp, 

including 122 bp from the PCR primers plus 200–350 bp from the RNA inserts. 

Bioanalyzer analysis should show a peak at 320–330 bp (Figure 5.3A). 

Small-scale colony sequencing can reveal the size and sequence of the 

inserts and barcodes for a small but representative sample of the library. When 

preparing libraries for the first time, sequencing ~20 colonies per library serves to 

validate successful library construction. The PCR amplification products should 

be ~600 bp (244 bp from the pCRII-Blunt-TOPO vector, 122 bp from the PCR 

primers, plus the RNA insert; Figure 3B). Expect one or two colonies to lack 

inserts, giving a 366 bp PCR product (Figure 5.3B). Of the remaining 15–18 

successfully sequenced colony PCR products, one or two may derive from rRNA. 

High throughput sequencing 

The number of samples mixed in one sequencing lane depends on the genome 

size of the organism and the purpose of the research. To study low abundance 

RNAs from the repetitive region of the Drosophila genome, we usually pool four 

barcoded samples in a single lane of the HiSeq 2000 instrument, and sequence 

the libraries as 100 nt paired-end reads. We typically obtain >170,000,000 

fragments per lane. For example, in one experiment, we obtained 175,991,972 

fragments (for paired-end sequencing, each fragment has two reads, a total of 

351,983,944 reads). Among them, 349,247,868 (99.2%) reads were successfully 

sorted by the barcodes. 
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Using TopHat (Langmead and Salzberg, 2012; Trapnell et al., 2009; 

Trapnell et al., 2012) to map reads to the fly genome (parameters: tophat –i 50 –p 

24 –library-type fr-firststrand –G gene.gtf  --coverage-search --segment-length 25 

–o output_directory_name), we typically achieve 90% mappability. For example, 

for a typical library, 91.7% of reads mapped to the fly genome. Among the 

mapped reads, only 4.03% were singletons (i.e., only one of the paired fragments 

in the read mapped); both fragments mapped for the rest. Finally, more than 85% 

of mapped reads corresponded to protein coding genes, and only 6.20% derived 

from non-coding RNAs such as rRNA, tRNA, snRNA or snoRNA. We have used 

this protocol to produce libraries of similar quality from wild-type and mutant 

mouse tissues, as well tissues from wild-type rat, chicken, and frog, 

demonstrating its general applicability. 
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Figure 5.3. Anticipated results.  

(A) Bioanalyzer plot.  

(B) Agarose gel for small-scale colony sequencing. Control, a PCR reaction with 

no bacterial colony added. 
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CHAPTER VI: OPEN QUESTIONS 
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The piRNA pathway silences transposons in the germline, and is therefore 

essential to maintain germline genome stability and integrity. Due to its 

significance, tremendous effort has been made to dissect this pathway in the past 

seven years, yet still little is known about piRNA biogenesis and function. 

Moreover, for the models that have currently been proposed, most of the details 

remain to be confirmed. The research presented in this dissertation contributes to 

our understanding this pathway, but it also raises even more questions that need 

to be addressed. 

 

piRNA biogenesis 

We showed that in fly ovaries, the HP1 family protein Rhi marks piRNA 

clusters in germ cells for piRNA production. However, how Rhi is recruited to 

these regions is still largely unknown. Since HP1 coats DNA through its Chromo 

domain and the modified histone protein, H3K9me3 (Danzer and Wallrath, 

2004), Rhi may find cluster loci in a similar manner. Indeed, based on sequence 

similarity between Rhi and HP1, Rhi preserves the same amino acid residues in 

its Chromo domain as have been shown are required for HP1 and H3K9me3 

interaction. Moreover, Lehmann and colleagues have shown that piRNA cluster 

regions are enriched for this modified histone (Rangan et al., 2011). However, 

whether H3K9me3 itself is sufficient to recruit Rhi still needs to be determined.  

In Chapter 4, we showed data that suggests Rhi binds to clusters 

independent of piRNA production. This set of experiments was performed in 

armi mutants, in which the unique mapping piRNA species are eliminated. 

However, the piRNAs shared by clusters and transposon consensus, which 

ambiguously map to multiple locations on the genome, are still partially 
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preserved in this mutant (Malone et al., 2009). Therefore, we cannot rule out the 

possibility that these multiple mapping piRNAs are necessary for Rhi 

recruitment. 

While we showed that Rhi binding suppresses cluster transcript splicing, 

we still do not know how it performs this role. Most likely this is achieved by 

recruiting other factors. As an HP1 family protein, Rhi has a Chromo Shadow 

domain, which has been shown to be able to create a binding pocket by inter-

domain dimerization (Huang et al., 2006). One Rhi binding partner is Cuff, but 

whether these two proteins directly interact is not clear (Pane et al., 2011). The 

molecular function of Cuff also needs to be determined.  

How many other proteins are included in this Rhi complex? Deadlock 

may be one candidate. Recently, Hannon and colleagues have discovered that 

Deadlock is another piRNA pathway factor and forms Rhi-like foci in the 

nucleus (Czech et al., 2013). How Rhi complex couples cluster transcript with the 

potential precursor delivery protein, UAP56, is also an open question.  

To drive de novo piRNA production from GFP construct, Rhi was 

recruited upstream of partial vasa promoter by LacI-LacO Protein DNA binding. 

To our surprise, Rhi appears to spread downstream of the GFP construct. What 

drives Rhi spreading? Is transcription required? Can Rhi still initiate piRNA 

production if we “tether” it to the intron or 3’UTR region? Our data suggest that 

the GFP antisense transcription is necessary for de novo piRNA generation. To 

achieve this, we inserted the construct that transcribes antisense GFP RNA into 

the same genomic locus as the sense GFP RNA producing vector, but on different 

chromosome alleles. To what extent this design scheme can mimic the natural 

dual-strand cluster transcription is still unknown. 
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The Ping-Pong model 

Ping-Pong cycle is an attractive model to explain piRNA amplification and 

transposon posttranscriptional silencing. This model is largely supported by the 

observation of the 10 nt overlap between Aub bound antisense piRNAs, which 

often begin with uridine, and Ago3 associated sense piRNAs, that often harbor 

adenosine at their 10th position (Brennecke et al., 2007). The mechanism that 

charges Aub with primary antisense piRNAs is still not clear. But once the Aub 

loading preference is established, Qin appears to be important to maintain this 

loading bias by ensuring Aub and Ago3 heterotypic Ping-Pong. This is reflected 

by the observation that we see more sense piRNAs are loaded into Aub in qin 

mutants. It would be interesting to swap protein domains between Aub and 

Ago3 to test the idea that the original loading preference is due to the protein 

structure.  

Does the 1U bias from primary antisense piRNA drive secondary sense 

piRNA 10A preference by U:A paring? This is unlikely due to the general scheme 

of Argonaute-small RNA association, in which the first nucleotide is buried into 

the Mid domain to lock the small RNA into the protein, and barely contributes to 

target pairing (Nakanishi et al., 2012; Elkayam et al., 2012; Wee et al., 2012). 

Therefore, these nucleotide biases may also be generated by PIWI protein 

loading preferences.  

Although we found that Qin is the key protein to ensure Aub Ping-Pongs 

with Ago3, it is still obscure how Qin promotes this heterotypic Ping-Pong. A 

simple hypothesis is that Qin uses its Tudor domains as docking sites to bridge 

these two PIWI proteins together. Indeed, we observed less Ago3 associated with 

Aub when qin is mutated. However, the bridge model is unlikely to be true, 
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because a truncated Qin protein still has all five Tudor domains, but lacks the N-

terminal E3 ligase domain, fails to rescue qin mutation phenotype. Therefore, the 

E3 ligase domain of Qin is essential for its function, but its molecular function is 

still unknown.  

Why does Aub:Ago3 heterotypic Ping-Pong generate more antisense 

piRNAs than sense? This may due to one protein being a more efficient “slicer” 

than the other. Since piRNAs need to be loaded into PIWI proteins to be 

stabilized, an alternative explanation would be that Aub is more abundant at the 

steady state level than Ago3, therefore more antisense piRNAs are preserved in 

the total piRNA population. 

 

Transposon silencing 

piRNAs silence transposons in the animal germline. How this small RNA 

pathway achieves transposon suppression is still not clear. There are more than 

150 transposon families that reside in the fly genome (Kaminker et al., 2002). It 

appears they are silenced by different schemes: transcriptional or 

posttranscriptional (Ping-Pong cleavage). Are there other strategies that the 

piRNA pathway employs to put these jumping element under custody? Do 

piRNAs inhibit transposon mRNA translation? While these questions need to be 

addressed, we also need to rethink the readout for monitoring transposon 

activity. Based on the assumption that more transposase mRNA accumulation 

would lead to higher transposon jumping frequency, the transposon activity has 

been mainly gauged by measuring the transposase mRNA steady state level. 

However, this assumption is flawed. So far, there is no report to measure how 

much percent of the transposase mRNAs can be translated. Nor do we know 
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whether every transposase protein would contribute to the final transposition. 

Therefore, to decode how piRNAs silence transposons, it would be important to 

accurately measure the transposon jumping events in future studies. 

 

“Bigger” picture 

The animal germ cell employs the piRNA pathway to suppress transposon 

activity. What is the arsenal for somatic tissues to fight these “selfish” elements? 

In Drosophila, the somatic cells produce a KH-type RNA binding protein PSI, 

which can lead to mRNA alternative splicing to produce an inactive version of 

transposase for P-element, a DNA element that is silenced by the piRNA pathway 

in germline (Siebel et al., 1994; Siebel et al., 1995). However, little is known about 

how and even if other elements are silenced. It is hard to imagine that 

transposons in soma are massively active, since this would result in DNA breaks 

that would harm somatic cells in such ways as hampering the regular cell cycle 

(Goodarzi and Jeggo, 2013). Therefore, there may be a different mechanism to 

control transposons in somatic tissues. If this is true, why did animals evolve 

different schemes to cope with the same task? Is one strategy better than the 

other? 

Transposons make up a large portion of genomes in animals and plants. 

During this long co-evolving process, the host genome may have benefited from 

these “selfish parasites”. Are transposons only useful in this long-term view? For 

a single cell, the jumping events created by active transposons are most likely 

harmful. However, we certainly do not know whether all transposase mRNAs 

being transcribed or transposase proteins being translated can only contribute to 

transposon jumping. I definitely would not be surprised if the host cell has 
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already tamed or “borrowed” these transposon products for its own purposes. 

Would you? 
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