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ABSTRACT

The Runx family of transcription factors performs an essential role in animal

development by controllng gene expression programs that mediate cell proliferation

growth and differentiation. The work described in this thesis is concerned with

understanding mechanisms by which Runx proteins support this program of gene

expression within the architectural context of the mammalian cell nucleus. Multiple

aspects of nuclear architecture are influenced by Runx2 proteins including sequence-

specific DNA binding at gene regulatory regions , organization of promoter chromatin

structure, and higher-order compartentalization of proteins in nuclear foci. This

work provides evidence for several functional activities of Run2 in relation to

architectural parameters of gene expression for the control of cell growth and

differentiation. First, the coordination of SWI/SNF mediated chromatin alterations

by Run2 proteins is found to be a critical component of osteoblast differentiation for

skeletal development. Several chromatin modifying enzymes and signaling factors

interact with the developmentally essential Runx2 C-terminus. A patent-pending

microscopic image analysis strategy invented as part of this thesis work - called

intranuclear informatics - has contrbuted to defining the C-terminal portion of

Runx2 as a molecular determinant for the nuclear organization of Run2 foci and

directly links Runx2 function with its organization in the nucleus. Intranuclear

informatics also led to the discovery that nuclear organization of Runx2 foci is

equivalently restored in progeny cells following mitotic division - a natual

perturbation in nuclear structure and function. Additional microscopic studies



revealed the sequential and selective reorganization of transcriptional regulators and

RNA processing factors during progression of cell division to render progeny cells

equivalently competent to support Runx2 mediated gene expression. Molecular

studies provide evidence that the Runx proteins have an active role in retaining

phenotype by interacting with target gene promoters through sequence-specific DNA

binding during cell division to support lineage-specific control of transcriptional

programs in progeny cells. Immunolocalization of Run2 foci on mitotic

chromosome spreads revealed several large foci with pairwise symetr on sister

chromatids; these foci co-localize with the RNA polymerase I transcription factor

Upstream Binding Factor (UBF1) at nucleolar organizing regions. A series of

experiments were carred out to reveal that Runx2 interacts directly with ribosomal

DNA loci in a cell cycle dependent manner; that Runx2 is localized to UBF foci

within nucleoli during interphase; that Runx2 attenuates rRNA synthesis; and that this

repression of ribosomal gene expression by Runx2 is associated with cell growth

inhbition and induction of osteoblast-specific gene expression. This thesis has

identified multiple novel mechanisms by which Runx2 proteins function within the

hierarchy of nuclear architecture to control cell proliferation, growth and

differentiation.
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CHAPTER I:

Embryonic development entails a complex process of spatially ordered cell

proliferation, growth, and differentiation that is established through a program of gene

expression, which is determined at both genetic and epigenetic levels. Critical aspects of

these events are controlled by master transcriptional regulators that are essential for the

formation of tissue-specific properties of the organism. Throughout the development

and life of the organism there is an intimate connection between strcture and function.

This coupling of form with function exists at all levels, from the composition and 

constrction of load bearing tissues such as bone, to the precise arrangement of the

macromolecular protein-RNA complexes that comprise the protein translational

machinery. Pertrbations in both structure and function are observed at all levels in

genetic disorders and are hallmarks of cancer. Elucidating strctue- function

relationships in the context of development and disease is fundamental to understanding

the mechanisms underlying these processes.

The work described in this thesis is concerned with mechanisms controllng cell

cycle progression, growth and differentiation, and has been pursued with the objective of

understanding the nuclear organization of the gene regulatory machinery that is central to

these processes. The working hypothesis addressed by this study is that components of

nuclear architecture, including chromatin structure and the higher-order spatial

organization of genes and cognate regulatory proteins, support the program of gene

expression for cell proliferation and diferentiation. The Runx family of proteins

established as cell fate determining transcription factors, is studied as a model system to



address several aspects of this hypothesis, including: (i) the requirements for chromatin

---

remodeling during differentiation (ii) the molecular determinants for nuclear

organzation of transcription factor domains (i. , localized concentrations of protein) in

relationship to competency for differentiation (iii) the partitioning and domain

organization of cell fate determining transcription factors during mitotic division, (iv) the

maintenance of lineage-specific gene regulation in progeny following cell division, and

(v) the delineation of heritable cell growth properties as a component of establishing cell

identity at the transcriptional level. These concepts have been studied with the central

goal of revealing connections between nuclear strcture and regulation of gene

expressIOn.

Runx Family of Transcription Factors: A Model for Gene Expression in the context 

Nuclear Architecture for Cell Growth and Diferentiation:

The Runx family of proteins is a class of transcription factors that control lineage-

commitment and phenotyic gene expression, as well as control proliferative potential of

committed progenitors (Pratap et aI. , 2003; Lian et aI. , 2004; Galindo et aI. , 2005). The

roles of the mammalian Runx proteins in establishing the identity of cells have been

determined in mouse gene ablation studies which reveal essential contributions to

hematopoiesis (Runx!), osteogenesis (Runx2), or neuronal and gastro-intestinal

development (Runx3) (Choi et aI. , 2001; Li et aI. , 2002; Komori, 2002; Inoue et aI.

2002). Furthermore, Runx exhibits properties of both tumor suppressors and

oncoproteins; and the deregulation of these factors in specific cellular
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Figure 1.1: Regulation of Osteogenic Cell Fate and Skeletal Development by the Runx2
transcription factor
Left Panel: Run2 transcription factor controls the fate of pluripotent mesenchymal stem cells with both
positive and negative modes of regulation. Runx2 has inhibitory effects on myogenesis and adipogenesis
and promotes multiple stages of chrondrogenesis and osteogenesis. Right Panel: Gene ablation studies
have revealed that Runx2 has an essential role in skeletal development through the control of osteoblast cell
maturation. In 1997, Komori and colleagues demonstrated that mice homozygous for the Runx2 null allele
have an embryonic lethal phenotye that is characterized by the complete absence of a mineralized
skeleton. The results of this study were featued on the cover of Cell.



contexts has been associated with oncogenesis and metastases (Blyth et aI., 2005).

Runl is frequently rearranged in acute myelogenous leukemia, Runx2 is implicated in

metastatic breast cancer and T-cell lymphomas and Runx3 is associated with gastrc

cancer. Runx2 normally attenuates osteoblast proliferation and promotes the

development of the mature bone cell phenotype (Figue 1. 1).

Runx factors are scaffolding proteins that integrate cell signaling pathways (e.

TGF-BetalMP and Yes/Src) and recruit chromatin modifyng enzymes (e. , HDACs

HATs, SWI/SNF, SUV39Hl) to modulate promoter accessibility within a nucleosomal

context (Figure 1.2, (Zaidi et aI. , 200la; Zaidi et aI., 2003; Taniuchi and Littan, 2004;

Vradii et aI. , 2005; Young et aI. , 2005; Sierra et aI. , 2003b; Westendorf and Hiebert

1999). At gene regulatory regions Runx proteins function as scaffolds that organize the

machinery for the activation or suppression of gene expression within punctate

subnuclear domains (Zaidi et aI. , 2005; Young et aI. , 2004). Pathological pertrbations in

the organization of these domains are linked with altered development and tumorigenesis

(Westendorf and Hiebert, 1999; Javed et aI. , 2005; Barnes et aI. , 2003; Bares et aI.

2004; Blyth et aI. , 2001; Brubaker et aI. , 2003; Cameron and Neil, 2004; !to , 2004; Neil

et aI. , 1999; Vailant et aI. , 1999; Otto et aI. , 2002; !to, 2004).

Mammalian Nuclear Architecture:

Spatial Aspects of Genome Organization: During interphase the human cell

organizes 46 chromosomes that collectively comprise roughly 3 gigabases of genome

DNA encoding an estimated 24000 protein coding genes within the confines of a
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e. g. , Osteopontin , ALP , p21 , p27

Figure 1.2 Activation and Repression of Transcription by Runx2: Runx2 associates with
DNA in a sequence-specific manner at promoter regions of target genes and interacts with co-
regulator proteins, such as hormone receptors and C/EBP transcription factors. These events
facilitate the recruitment of chromatin modifying enzymes that alter chromatin architectue 
gene promoters in manner that either promotes, or inhibits, gene transcription. Runx2 target
genes include both tissue-specific proteins, such as osteopontin and alkaline phosphatase (ALP),
and cell cycle regulatory proteins, such as p2l and p27.



1000 Ilm nuclear volume. Compaction of DNA within this nuclear volume is
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accomplished through a hierar~hy of histone-mediated molecular interactions. A histone

protein octamer (two each of his tones H2A, H2B , H3 , and H4) wraps 150bp of DNA

into the basic chromatin unit called nucleosomes (reviewed in (Horn and Peterson

2002)). Nucleosome-nucleosome interactions mediated through histone tails, and also

linker histones, develop secondary levels of compaction in the form of a 30nm chromatin

fiber. While it is understood that multiple higher levels of compaction (i. , chromonema

fiber 1 OOnm) exist, probably through histone mediated interactions, the precise size and

strctual characteristics of this organization remain elusive. Many models for

interphase - as well as mitotic - chromatin organization describe chromatin fiber loops

that are attched to a peripheral lamina or internal strctural element (i. , nuclear

matrx). These loop attachment points called Matrx Attachment Regions or Scaffold

Attchment Regions (MARs or SARs), are thought to have specific nucleotide sequences

with a propensity for unwinding and forming single-stranded DNA and often found near

the boundaries of genes (reviewed in (Kohwi and Kohwi-Shigematsu, 1995)).

Within the interphase nucleus compacted chromosomes occupy distinct regions

so-called ' terrtories , arranged radially in a non-random fashion that correlates with

chromosome size and gene content (Cremer and Cremer, 2001; Tanabe et aI., 2002).

Chromatin within terrtories in organized as 'euchromatin' (open chromatin -active

genes) or ' heterochromatin' (closed chromatin - inactive genes). Thus, within

chromosomes there is a unique positioning of some genes that relates to active versus

inactive expression states; some active genes wil loop out from chromosome terrtories.



Furhermore, as cells differentiate there are changes in the positioning of genes into

euchromatin versus heterchromatin (Arey and Fisher, 2004; Kosak and Groudine

2004). Both long-range intrachromosomal and interchromosomal interactions between

distinct genes and regulatory regions contribute to the control of gene expression

(Spilianakis et aI. , 2005; Spilianakis and Flavell, 2004). Additionally these interactions

appear to be linked with the frequency of chromosomal translocations associated with

cancer (Roix et aI. , 2003).

The compartmentalization of chromosomes and positioning of genes is achieved

in a manner that facilitates - or is facilitated by - the selective accessibility of regulatory

proteins that control gene expression, replication, and repair (Verschure et aI., 2003).

There is a continuum of higher-order chromatin organization that appears to be dependent

upon post-translational histone modifications, gene content, replication status and

transcriptional activity. These points contribute to an emerging concept that a functional

interplay exists between regulatory proteins and DNA to govern higher-order chromatin

folding and organization. A compelling question that relates to cell fate determining

regulatory proteins is how this functional interplay contributes to the regulation of gene

expression for lineage commitment and progression.

Nuclear Compartmentalization. of Regulatory Proteins: Nuclei contain many

distinct compartments (referred to often as domains, foci , speckles , microenvironments

and bodies) that are comprised of localized concentrations of proteins. Perhaps the best

known nuclear compartment is the nucleolus, where ribosomal genes reside and

ribosomal biogenesis occurs (Dimario, 2004; Dundr and Misteli, 2001; Pombo et aI.



2000). Nucleoli are readily evident using light microscopy and have served as a

paradigm for understanding the strcture and function of nuclear domains. Nucleoli

assemble following cell division from the congregation of multiple nucleolar organizing

, regions. Nucleolar formation is blocked in the presence of a RNA polymerase I inhbitor

and is temperatue sensitive, which indicates an energy dependent process that depends

on ribosomal RNA transcription. The organization of regulatory factors and nucleic acids

is heterogeneous throughout the nucleolar interior with distinct sub-compartents that

reflect sites of rRNA synthesis, rRNA processing, and ribosome biogenesis.

Furhermore , regulatory proteins rapidly exchange in and out of nucleoli, as revealed by

photobleaching studies (Louvet et aI., 2005). This result indicates that nucleolar

localization of proteins observed by fluorescence microscopy is the manifestation of a

steady-state local protein accumulation. Nucleolar function is linked with cell growth

proliferation, and differentiation, and recent work indicates that the nucleolus also plays

an important role in controlling cell-cycle , senescence and stress responses, such as DNA

damage (Dimario , 2004).

Technological advances in epifluorescence and confocal microscopy have lead to

the detailed description of many other nuclear domains with a repertoire of fuctions

including DNA replication and repair, as well as RNA splicing, processing, and

transcription (Stein et aI., 2003; Spector, 2003)). DNA replication proteins are

distributed in punctate domains within the nucleus, referred to as ' replication factories

and colocalize with nascent replicated DNA, as visualized by BrdU labeling (reviewed in

((Cook, 1999)). Several proteins , such as proliferating cell nuclear antigen (PCNA), DNA



f'r

ligase I, and DNA polymerase are localized in these foci, which undergo cyclical

assembly and disassembly and exhibit a diffuse distribution in all but the S phase of the

cell cycle. These punctate sites are thought to provide optimal localized concentrations

of regulatory protein to support the process of DNA replication.

Cellular mechanisms are in place to sense DNA damage and respond through an

array of repair pathways that depend on the nature of the damage. These processes are

linked with the formation of nuclear foci (Lisby and Rothstein, 2004). As an example

during late S , G2 and M phases of the cell cycle , repair of double-stranded DNA breaks is

mediated by a homologous recombination mechanism downstream of A TM/ A TR

signaling. BRCAlad51 and Mrell/Rad50lNs DNA repair complexes rapidly form

foci at sites of damage (Petrini and Stracker, 2003). These events involve interactions

with the phosphorylated H2AX core histone variant that integrates into nucleosomes

adjacent to sites of DSBs before the formation of repair foci. Similar to nucleolar

formation, these events are activity drven and reflect the steady state accumulation of

proteins engaged in the DNA repair process.

Speckles - also called SC35 domains - are compartents enrched in pre-

messenger RNA splicing factors, exhibiting variability in size and shape, and localized to

interchromatin regions of the nucleus (Pombo and Cook, 1996; Lamond and Spector

2003). While often these splicing . speckles are in juxtaposition with sites of active

transcription (Shopland et aI. , 2003), their specific function remains in debate. Some

evidence suggests that speckles function as storage sites of latent regulatory proteins that

can supply splicing factors to active transcription sites (Spector, 2003). This concept



arses in part from studies that show inhibition of transcription or splicing results in the

formation of enlarged speckles. Other evidence indicates that speckles have multi-

functional roles that include active RNA processing (Shop land and Lawrence, 2000).

RNA polymerase II transcription domains are distrbuted in punctate sites

throughout the nucleus. At both the fluorescence and electron microscopy levels these

domains coincide with the labeling ofnascentRNA transcription by Br-UTP , leading to

the term transcription ' factories ' (Cook , 1999; Pombo et aI. , 2000). Similar to RNA

polymerase the basal transcriptional machinery, tissue-specific transcription factors

, .

and chromatin remodeling factors also exhibit punctate distributions throughout the

nucleus (Figure 1.3) (Young et aI. , 2005; Pombo et aI. , 1998; Dundr and Misteli, 2001;

Stein et aI. , 2003; Zink et aI. , 2004).

Whle the domains containing, or comprised of, these proteins are principally

thought to reflect sites of transcriptional activity - concept supported . by a

preponderance of data - it remains formally possible that a subset of these nuclear

compartments may reflect latent protein storage sites.

The organization of the proteins domains that are observed throughout the nucleus

is often described qualitatively as punctate, with reference to the appearance 

fluorescence microscopy of many distinct nuclear foci. Recent work, which is developed

in chapter 3 of this thesis , describes and defines nuclear organization in quantitative terms

that are utilized for comparative analyses. Such work has revealed that a quantitative

signature ' of nuclear organization can be uniquely defined for regulatory proteins and



Transcription Ribosomal Biogenesis Lineage-Specific

Figure 1.3 Nuclear Organizations of Proteins and Chromosomes
Nuclear proteins exhibit distinct punctate subnuclear distributions that appear to be coupled with
unique regulatory roles. Several in situ immunofluorescence micrographs - captured by the
author in the course of this thesis work - are shown as examples: RNA Polymerase II, Runx2
SC35, and Brgl (primary calvarial cells) and UBFl (Saos- cells). The organization of
chromosomal ten-itories (human Chromosomes 1 and Chromosomes 9) is shown as revealed by in
situ hybridization (Ma et aI., 1999).



as an example, can serve as a basis for statistical classification of biological fuction

(Figure 1.4). Defining the molecular determinants that bring about these nuclear

organizational signatures remains a fundamental biological problem.

Gene Expression in the Contex of Nuclear Architecture:

Promoter Regulatory Elements: The primary level of organization in the control of gene

expression is the arrangement of regulatory motifs encoded in the genome that delineate

the promoters , enhancers , and silencers of genes (van et aI. , 2003; Stein et aI. , 2003). 

Promoter sequences define the RNA polymerase machinery that wil drve transcription

and possibly nuclear positioning of genes (e. , RNA Pol I genes at the Nucleolus). The

profile and relative proximity of binding sites within gene regulatory elements influence

the expression of a given gene in both a temporal sense - with respect to cell cycle and

developmental stage - and spatial sense - with respect to nuclear organization and

developmental tissue patterns. The repertoire of gene regulatory motifs is . a primary

determinant for responsiveness to the range of biochemical signals that are received and

processed by a cell.

Promoter Architecture and Chromatin Structure: A secondar level of gene

expression control involves chromatin strcture (Workman and Kingston, 1998; van et

aI., 2003). Chromatin organization and nucleosome positioning at gene regulatory

regions can alter accessibility of transcription factors to binding elements as well as alter

proximity between elements. Sequence-specific DNA binding proteins can interact with

gene regulatory and recruit chromatin modifyng factorsregIOns
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Figure 1.4 Discrimination of Regulatory Proteins based upon Quantitative Parameters of
Nuclear Organization
Intranuclear informatics, described in depth in Chapter 3, was used to analyze the nuclear

organization of Runx2 , SC35 , and RNA Polymerase II. Briefly, immunofluorescence image z-
planes were obtained from deconvoluted z-series images stacks for each protein: Runx2 (75
images), RNA polymerase II and SC35 (50 images each). An automated image processing
algorithm was applied to measure and compute from each image 25 parameters that collectively
describe and define nuclear organization in quantitative terms. This multivariate data set was
analyzed by canonical discriminate analysis to determine two variables (' canonical variables 1
and 2' ) that are linear combinations of the 25 parameters and that exhibit the greatest differences
in nuclear organization between the three proteins. These two canonical variables are ilustrated
in a scatter-plot that can be abstractly defined as ' nuclear organization space . Each data point
reflects the nuclear organization determined on each of the two canonical variables from a single
image of a protein (green = Runx2, blue = RNA Polymerase II, and red=SC35). By plotting the
data in this way the distinct differences in nuclear organization between the proteins emerges as
clusters of data points of the same color (i. , protein). A linear discriminate function was also
generated from the total 25 parameters. Using a cross-validation scheme the frequency with
which the function can cOITectly classify an unknown image as being one of the three proteins
was established (Runx2 = 93%, RNA Polymerase II = 84%, and SC35 = 88%). This analysis
reveals that a quantitative ' signature' of nuclear organization can be uniquely defined for
regulatory proteins, and that this signature can serve as a basis for statistical classification of
biological function



alter gene expressIOn II response to extracellular cues (Peterson and Logie, 2000;

Peterson and Workman, 2000; Hassan et aI. , 2001). Post-translational modification of

nucleosomes has emerged as an important regulatory component in this process

, (Schubeler et aI. , 2004; Berger, 2001; Jenuwein and Alls , 2001). Specific modifications

such as methylation of Histone H3 on Lysine 9, have been linked with initiating the

ordered recruitment of factors which methylate DNA at CpG sites and ultimately lead to

gene silencing (Schotta et aI. , 2004; Lachner et aI., 2003). In contrast, methylation of

Histone H3 on Lysine 4 facilitates the subsequent acetylation of nucleosomal histones 

and the activation of gene expression and may modulate the recruitment of bromodomain

containing chromatin remodeling factors (Marmorstein and Berger, 2001). There is a

growing list of histone modifications that lead to alterations in chromatin organization

and regulate gene expression. Recent work indicates that histone modifications may

provide epigenetic marks for active genes within the condensed chromosomes durng the

mitotic silencing of gene expression (Krhlak et aI. , 2001; Kouskouti and Talianidis

2005a). Gene regulation through histone modifications is linked with a fuctional

interplay between sequence-specific transcription factors and DNA-dependent ATPase

chromatin remodeling enzymes, such as the SWI/SNF complex. These chromatin

remodeling factors alter nucleosomal histone-DNA interactions and nucleosome

positioning to facilitate the recruitment of co-regulatory proteins and the formation of a

pre-initiation complex for gene transcription (Imbalzano and Xiao, 2004; Peterson and

Tamkn, 1995). Understanding how these chromatin remodeling events contrbute to

the control of cell growth and differentiation is an area of active scientific investigation.



Higher-Order Nuclear Architecture and Gene Expression: Recent work has

revealed that the spatial positioning of genes in the nucleus, local chromatin strcture at

gene regulatory regions , and the organization of proteins that regulate gene expression

are all fuctionally coupled (Moen, Jr. et aI. , 2004). Studies using artificially generated

MMTV gene constrcts and live cell imaging have revealed that alterations in gene

localization and chromatin strcture are rapidly generated within the nuclear milieu upon

gene induction (Muller et aI., 2001). Furthermore , work examining the organization of

the endogenous Beta-Globin gene locus control regions reveals that upon transcriptional

induction and cell differentiation the loci are selectively decondensed and relocalized

within the nucleus (Tolhuis et aI. , 2002; Drissen et aI. , 2004). Thus there is precedence

for developmental induction of gene expression that is accompanied by alterations in

nuclear organization of chromosomes and associated regulatory proteins within the

interphase nucleus. compelling question is how the interactions between

chromosomes and associated regulatory proteins are controlled during the nuclear

reorganization that occurs durng mitotic cell division.

Cell Cycle Dependent Aspects of Nuclear Organization:

Proliferation of cells is regulated by a complex network of growth factors

signaling pathways, transcription factors, metabolic regulators and strctural proteins.

These biochemical processes that support faithful DNA replication, mitotic spindle

assembly, and partitioning of chromosomes to progeny cells delineate the ' cell cycle

During the first divisions in the early embryo, cell cycle proceeds in a synchronous

fashion with an invariable fate (Masui and Wang, 1998). When cell fate is specified, the
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cycle becomes asynchronous and lengthens with the manifestation of so-called gap-

phases (i. , Gl and G2) between DNA synthesis and division (Gerhart et aI., 1984;

Masui and Wang, 1998; Masui and Wang, 1998; Masui, 1992). During Gl cells receive

, and integrate extracelluhlr cues that signal cell growth and determine cell cycle exit or

progression to support the tissue-level developmental program (Pardee, 1989; Galindo et

aI. , 2005). In G2 , cells acquire suffcient mass to support progeny cells (O' Farrell, 2001;

Cooper, 2004). Furthermore, Gland G2 provide checkpoints for repair of DNA damage

and replication errors as well as options for aborting the cell cycle for the apoptotic 

program of cell death (Blagosklonny and Pardee, 2002; Kastan and Bartek, 2004; Lisby

and Rothstein, 2004). The process of replication is coupled with a highly order, yet

dynamic , re-localization of newly replicated DNA as well as a reorganization of nuclear

domains comprised of replication regulatory factors (Ma et aI. , 1998).

Mitosis and cytokinesis require the concerted actions of multiple kinases

phosphatases, ubitquitin-mediated proteases and motor proteins, and are coupled with

dramatic cell morphological changes that include nuclear envelope breakdown

cytoskeletal reorganization, spindle assembly and global condensation of chromosomes.

As cells progress through mitotic division, there is a complete silencing of gene

expression, nuclear reorganization, and global chromosome condensation to faciltate the

segregation of the genetic material, associated regulatory factors, and cellular

components into progeny cells (Burke and Ellenberg, 2002; Mitchison and Salmon

2001). The organization of chromosomes and associated regulatory factors is

sequentially restored following mitosis together with the resumption of gene expression



(prasanth et aI. , 2003; Zaidi et aI. , 2003). Establishing determinants for this spatio-

temporal nuclear organization is essential to 
understanding the cellular fuction in

development and disease.

Contents of the Dissertation

Run2 proteins are a paradigm for addressing the hypothesis that components of

nuclear architecture support the program of gene expression for cell proliferation and

differentiation. Using the Runx2 model system this thesis demonstrates the

requirements for chromatin remodeling during the Runx2 dependent osteoblast

differentiation. This works establishes molecular determinants for nuclear organization

of Runx2 transcription factor domains that are coupled with competency for osteoblast

differentiation. In a series of the three final chapters this thesis reveals that the

partitioning and domain organization of Runx2 transcription factors during mitotic

division is coupled with the maintenance of lineage-specific gene regulation in progeny

cells following mitotic cell division; and that control of ribosomal gene expression and

cell growth through mitosis and in progeny cells are fundamental components of

establishing and maintaining cell identity.

Chapter A model has emerged for control of cellular differentiation that

involves the combined contribution of tissue specific transcription factors and chromatin

remodeling complexes. Several lines of evidence suggest that the recruitment of

chromatin remodeling factors may be coupled to BMP2 signaling and Runx2 mediated



gene expression for the commitment of progenitor cells into the osteogenic lineage.

Conserved from yeast to humans , SWI/SNF complexes alter chromatin strctue in an

ATP-dependent manner and provide a critical function for the regulation of gene

, expression (Workman and Kingston, 1998; Sif, 2004). Chapter 2 addresses the

requirement of SWI/SNF activity for induction of the osteoblast phenotype. The

expression of Brg 1 , an essential component of the SWI/SNF complex, was identified in

developing skeletal structures of the mouse embryo and in ex vivo osteoblast cultues.

Functional studies were then carred out to that establish the requirement of SWI/SNF for.

the initiation of Runx2-dependent BMP-2 induction of osteoblast differentiation. This

chapter demonstrates that SWI/SNF activity is required for initiating the program of gene

expression obligatory for development of the osteoblast phenotye.

Chapter This section describes a novel approach, intranuclear

informatics, to examine the nuclear organization. of protein domains from digital

mICroscopIC Images. An image-processing algorithm is developed to measure and

compute quantitative parameters that describe and define nuclear organization. The

result is a multivariable data-set that can be used for exploratory analysis techniques and

for quantitatively testing specific biological hypotheses. By the application of

intranuclear informatics this section elucidates that Runx2 nuclear organization has an

interphase ' signature ' that is restored following mitosis. Furthermore , our analysis of C-

terminal mutant proteins provides evidence that nuclear organization of Runx2 foci is

functionally linked with tissue specific gene regula.tory functions.



Chapter 4: Concomitant with transcriptional silencing, gross alterations of

nuclear organization and re-localization of regulatory complexes happen during mitosis.

fundamental question is how cells restore nuclear distrbution of tissue specific

transcription factors in progeny cells to regulate post-mitotic phenotyic gene

transcription. This concept is addressed using the Runx family of lineage-specific

transcription factors as model system. By the combined use of in situ

immunofluorescence microscopy and image quantitation, Chapter 4 documents

progressive mitotic changes in the distrbution of Runx foci and sequential re-

organization of nuclear proteins involved in gene expression. The interphase subnuclear

organization of Runx foci is selectively restored in telophase with equal partitioning of

the protein into progeny nuclei. Thus a dynamic spatial distrbution of Run transcription

factors in parallel with chromosomal partitioning to sustain balanced expression of

phenotyic genes post-mitotically.

Chapter 5: Osteogenic cell fate decisions and subsequent proliferation of

osteoprogenitor cells is controlled by Runx2 (Galindo et aI. , 2005; Lian et aI. , 2004;

Pratap et aI. , 2002; Westendorf and Hiebert, 1999; Thomas et aI. , 2004). A mechanism

must be operative that ensures Runx2 dependent regulation of this osteogenic identity

through multiple mitotic cell divisions. Chapter 5 combines mitotic cell synchronization

expression profiling, chromatin immunoprecipitation, and RNA interference to

investigate this mechanism. During mitosis Runx2 directly interacts with a novel set of

cell fate and cell cycle related target genes that exhibit distinct modifications in histone

acetylation and methylation. This works indicates that Run transcription factors



reinforce cell fate through an epigenetic mechanism that retains phenotyic gene

expression patterns following cell division

Chapter 6: This chapter describes that Runx2 is retained in large discrete foci

, that are symmetrically positioned on sister chromatids within the condensed mitotic

chromosomes. These chromosomal foci are associated with open chromatin at nucleolar

organizing regions; co-localize with the RNA polymerase I transcription factor, UBF1

and transition into nucleoli during interphase. Specific spatial and temporal changes in

the binding ofRun2 throughout rDNA repeats during cell cycle progression are revealed.

by chromatin immunoprecipitation analysis. Reduction of Runx2 levels by siRNA

activates rRNA transcription, while induction of Runx2 directly represses ribosomal

biogenesis. Furthermore , Runx2 repression of ribosomal gene expression is associated

with growth inhibition and expression of lineage-specific genes. This work establishes

that Run2 not only controls lineage commitment and cell proliferation by regulating

RNA polymerase II transcription, but also acts as a cell cycle dependent suppressor of

RNA Polymerase I mediated rRNA synthesis.



CHAPTER II:

The SWI/SNF Chromatin Remodeling Complex is Obligatory for BMP2

Induced, Runx2-Dependent Skeletal Gene Expression that Controls

Osteoblast Differentiation



ABSTRACT

Development of bone tissue requires maturation of osteoblasts from mesenchymal

precursors. BMP2 , a member of the TGF superfamily, and the Runx2 (AML3/Cbfal)

transcription factor, a downstream BMP2 effector, are regulatory signals required for

osteoblast differentiation. While Run2 responsive osteogenic gene expression has been

functionally linked to alterations in chromatin strcture, the factors that govern this

chromatin remodeling remain to be identified. Here we address the role of the SWI/SNF

chromatin remodeling enzymes in BMP2-induced, Run2-dependent development ofthe

osteoblast phenotype. For these studies we have examined, calvarial cells from wild-tye

mice and mice that are homozygous for the Runx2 null allele, as well as the C2C 12

model of BMP2 induced osteogenesis. By the analysis of micro array data we find that

several components of the SWI/SNF complex are regulated during BMP2-mediated

osteoblast differentiation. Brgl is an essential DNA dependent ATPase subunit of the

SWI/SNF complex. Thus , functional studies were carred out using a fibroblast cell line

that conditionally expresses a mutant Brgl protein, which exerts a dominant negative

effect on SWI/SNF function. Our findings demonstrate that SWI/SNF is required for

BMP2- induced expression of alkaline phosphatase, an early marker reflecting Runx2

control of osteoblast differentiation. In addition, Brgl is expressed in cells within the

developing skeleton of the mouse embryo as well as in osteoblasts ex vivo. Taken

together these results support the concept: that BMP2 mediated osteogenesis requires

Run2 and demonstrate that initiation of BMP2-induced, Runx2 dependent skeletal gene

expression requires SWI/SNF chromatin remodeling complexes.



INTRODUCTION

Bone Morphogenetic Proteins (BMP) are key regulators of bone formation.

BMP2 induction of the osteogenic phenotype is observed in several non-osseous

mesenchymal cells that include pluripotent C3H10T1/2 cells as well as NIH3T3

fibroblasts , and pre-myogenic C2C12 cells (Si et aI. , 1999; Katagiri et aI. , 1994; Wang et

aI., 1993; Ahens et aI. , 1993). BMP2 signals are directed to the nucleus through Smad

heterodimers that converge with Runx2, a transcription factor required for osteoblast

differentiation, to regulate the expression of osteogenic genes (Lee et aI. , 2000; Zaidi et

aI. , 2002b; Kobayashi et aI. , 2000; Selvamurugan et aI. , 2004a; Franceschi and Xiao

2003; !to and Miyazono, 2003). The mechanisms by which BMP2 signaling and Runx2

are integrated at gene promoters for development of the osteoblast phenotye are

minimally understood. Runx2 activation of the bone related osteoca1cin gene has been

fuctionally linked to alterations in chromatin structue (Javed et aI. , 1999). Although

Runx proteins alone lack the ability to remodel chromatin, these transcriptional regulators

interact with several factors that have chromatin remodeling activity (Javed et aI. , 2000;

Paredes et aI. , 2002; Lian and Stein, 2003; Gutierrez et aI. , 2000). Together these results

suggest that the recruitment of chromatin remodeling factors may be coupled to BMP2

signaling and Runx2 mediated gene expression for the commitment of progenitor cells

into the osteogenic lineage.

Chromatin remodeling has emerged as a fundamental parameter for control of

various physiological events, including steroid hormone and stress response, as well as

cellular differentiation (de la Serna et aI. , 2000; de la Serna et aI. , 2001; Pedersen et aI.
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2001; Kowenz-Leutz and Leutz, 1999; Muchardt and Yaniv , 1993; Chiba et aI., 1994).

Several factors alter chromatin structure by perturbing nucleosome stability or position in

an A TP-dependent manner (e. SWI/SNF complexes) or by covalently modifying

, histones (e. , histone acetyltransferase) (Workman and Kingston, 1998). A key step in

chromatin-regulated control of transcription is the ordered recruitment of chromatin

remodeling factors to gene promoters via interactions with sequence-specific

transcription factors (Hassan et aI. , 2001; Agalioti et aI. , 2000; Soutoglou and Talianidis

2002). Thus, a model has emerged for the combined contrbution of tissue specific

transcription factors and chromatin remodeling complexes to control cellular

differentiation.

Conserved from yeast to humans , SWI/SNF complexes alter chromatin .strcture

in an A TP-dependent manner and provide a critical function for the regulation of gene

expression (Workman and Kingston, 1998; Sif, 2004). These multi subunit complexes are

distinguished by their essential DNA dependent ATPase subunit, which in higher

eukaryotes is either the Brg or Brm protein (Sif et aI. , 2001; Wang et aI., 1 996b ). Recent

studies using in vitro cell differentiation models have shown that SWI/SNF complexes

support transcriptional control of myogenic , adipocytic , and myeloid differentiation (de la

Serna et aI. , 2001; Pederson, 2001; Kowenz-Leutz and Leutz , 1999).

Here we have addressed the requirement of SWI/SNF activity for induction of the

osteoblast phenotype. We first demonstrate that alkaline phosphatase (APase) is a

marker for BMP2-induced Runx2-dependent osteoblast differentiation. By analysis of

microarray profies of BMP2-induced osteoblast differentiation, we find that expression



of several SWI/SNF subunits is altered. The expression of Brgl , an essential component

of the SWI/SNF complex, was identified in developing skeletal strctures of the mouse

embryo and in ex vivo osteoblast cultues. Functional studies were then carred out to

establish the requirement of SWI/SNF for initiation of osteoblast differentiation. Our

findings demonstrate that SWI/SNF activity is required for initiating the program of gene

expression obligatory for development of the osteoblast phenotye.



MATERIALS AND METHODS

Cell Isolation and Culture Conditions

Primary mouse calvarial cells (17.5 dpc) were isolated from wild-tye and Run2 null

mice, as described in (Pratap et aI. , 2003), and maintained in a-MEM with 10% FBS and

2 mM L-Glutamine. B22 cells were previously generated which have an inducible Flag-

tagged BRGI trans gene containing a mutation in theATP binding site (Figure 2. , (de la

Serna et aI. , 2001; Khavari et aI. , 1993)). Tet-VP16 cells were generated from NIH 3T3

cells and contain a stably integrated tet-tA trans gene that encodes the Tet-VP16 regulator.

B22 cells were generated from Tet-VP16 cells and contain both the Tet-tA trans gene

(Tet-off) and the Flag-tagged BRG 1 mutant trans gene (Figue 2.5a). Mutat Brgl has

been previously shown in this cell line to associate with endogenous components of the

SWI/SNF complex, but is non-functional (Figure 2.5d), (de la Serna et aI., 2000).

Expression of the mutant trans gene is repressed in cells grown in the presence of 2 Jlg/ml

tetracycline; whereas growth in the absence of tetracycline induces expression of the

mutant protein as shown by western blot (Figure 2.5c). Both B22 and the Tet-VP16 cells

were maintained in DMEM +. 10% CS + 4 mM L-Glutaine.

Primary rat osteoblasts isolated from fetal calvarial tissue (20 dpc) were cultued under

osteogenic culture conditions essentially as described (Owen et aI. , 1990). ROS 17/2.

cells were maintained in F12 medium with 5% FBS and 2mM L-Glutamine.

Assessment of Alkaline Phosphatase Activity



For phenotypic rescue experiments Runx2 deficient calvarial cells (Komori et aI. , 1997)

were transduced with an adenovirus vector encoding human Runx2 protein under the

control of a CMV promoter or the corresponding empty vector (a kind gift from John

Robinson, Wyeth Research, Collegeville, P A). Briefly, viral particles were administered

at 50 MOl in a-MEM with 1 % FBS , incubated for 1 hat 37 C. After infection, free virus

was aspirated, and cells were washed twice in serum-free MEM. Cells were then fed

with fresh medium containing 10% FBS and, where indicated, 100 ng/ml BMP2 (a kind

gift from Dr. John Wozney, Wyeth Research, Cambridge, MA). Media was changed

every second day, with fresh BMP2 where indicated and cultured for one week. Cells

were then fixed in 2% paraformaldehyde and stained for alkaline phosphatase activity,

detected by colorimetrc reaction using a O. . Tris maleate buffer (pH8.4) containing

05% Naphthol AS-MX Phosphate disodium salt, 2.8% NN' -dimethyl formamide , and

1 % Fast Red salt (Sigma Chemical Co. ; St. Louis, MO). Staining was carred out at

C for 10 minutes (Burstone , 1962). In control experiments cells were transduced with

adenoviral particles with empty vector (data not shown).

B22 and Tet-VP16 cells were grown on collagen tye I coated plates (14 ng/mm

with media changes every second day. Where indicated 2 f.g/ml of Tetracycline was

added to suppress trans gene exptession. After four days in culture, cells reached

confluence and, where indicated, cells were grown in media containing 200 ng/ml rh-

BMP2. After 7 and 14 days in culture, cells were fixed in 2% paraformaldehyde and

stained for alkaline phosphatase activity as described above.



Real-Time PCR Analysis

B22 and Tet-VP16 control cells were grown to confluence as described above and

transduced with 200 ng/ml rh-BMP2. Total RNA was isolated from cells at the indicated

, time points using Trizol reagent (Invitrogen, Carlsbad, CA). Total RNA was purfied

using the DNA-Free RNA kit (Zymo Research Corporation, Orange CA). cDNA was

generated from purfied RNA using a reverse transcription reaction with Oligo-

primers (Invitrogen Corporation, Carlsbad, CA). cDNA was then subjected to Real-

Time PCR reaction using TaqMan chemistr (Applied Biosystems, Inc., Foster City,

CA). Primers and probes for rodent GAPDH were purchase from Applied Biosystems

Inc. and mouse alkaline phosphatase (APase) primers and probes were as follows:

(Forward 5' CTGCAGGATCGGAACGTCAA-

(Reverse 3' -CTCTTCCCACCA TCTGGGC-

FAM-MGB probe (5' CAATTAACATCGACGCTGC-

Amplicon quantities were determined relative to a standard curve generated from a serial

dilution of pooled cDNA from all samples. APase quantities were normalized to

GAPDH.

Western Blot Analysis

Total protein was isolated from primary rat calvarial osteoblasts at the indicated time in

culture. Briefly, cells were lysed on the plate by adding SDS lysis buffer (2% SDS

10 mM dithiothreitol 10% glycerol, 2 M urea, 1.0 mM phenylmethylsulfonyl fluoride

10 mM Tris-HCl pH 6. , 0.002% bromphenol blue, complete 1 x complete protease



inhibitor mixtue, Roche Molecular Biochemicals, Indianapolis, IN). Proteins were

resolved by SDS-P AGE, transferred to a Immobilon-P PVDF transfer membrane

(Milipore Corporation, Bedford MA). Blots were probed with either rabbit polyclonal

antibodies to Brgl (1 :2000; (H-70) Santa Cruz Biotechnology) or mouse monoclonal

antibody to INIl (BAF47) (1:100; B33720 Transduction Laboratories, Lexington, KY).

Appropriate HRP conjugated secondary antibodies were purchased from Santa Cru

Biotechnology, Santa Cru , CA. ECL western immunoblot detection reagent was used to

visualize proteins (Amersham Biosciences , Piscataway, NJ).

In Situ Immunofluorescence Microscopy

Mouse embryos at 18.5 dpc were fixed in paraformaldehyde embedded in paraffin , and

heads were serial sectioned at 8 11m for immunolabeling using stadard procedures.

Slides of serial sections were stained by H&E and by indirect immunofluorescence.

Antibodies for indirect immunofluorescence included rabbit anti-Brgl (1 :200; (H-70)),

rabbit anti-Run2 (1 :200; (M-70), Santa Cruz Biotechnology, Santa Cruz , CA), and

donkey anti-rabbit Alexa 488 (1 :800, Molecular Probes, Eugene, OR). DNA was

visualized by DAPI (4' , 6-diamidino- phenylindole) staining.

Primary osteoblasts isolated from mouse calvaria (18.5dpc) were grown on gelatin-coated

coverslips and processed for in situ immunofluorescence. In brief, cells were rinsed

twice with PBS and fixed in 3.7% formaldehyde in PBS for 10 minutes on ice. After

rinsing once with PBS , the cells were permeabilized in 0. 1% Triton X- IOO in PBS , and



rinsed twice with PBSA (0.5% bovine serum albumin in PBS) followed by antibody

staining. Cells were double-labeled for Run2 (green) and Brgl (red). Affnity purfied

Brgl rabbit polyclonal antibodies (1:200; (de la Serna et aI. , 2000)), Run2 monoclonal

, antibody (a generous gift from !to Y. , Institute of Molecular Cell Biology, Singapore)

(Zhang et aI., 2000a) and anti-rabbit Alexa 568 and anti-mouse Alexa 488 (1 :800

Molecular Probes , Eugene , OR) were used. To determine the degree of Runx2 and Brgl

colocalization image cross-correlation was performed essentially as described in (Gupta

et aI. , 2003). ImmUlostaining of both cells and tissue sections was recorded using an 

epifluorescence Zeiss Axioplan 2 (Zeiss Inc. , Thorwood, NY) microscope attached to a

CCD camera. Cell images were deconvoluted using Metamorph Imagig Softare

(Universal Imaging Corp. , Downngtown, P A).



RESULTS

Alkaline phosphatase expression reflects BMP2 induced and Runx2 dependent

initiation of osteoblast diferentiation

Runx2 null mice are characterized by a complete absence of bone formation due

to a defect in osteoblast differentiation (Komori et aI., 1997). Previous studies have

shown that Runx2 cooperates with BMP activated receptor Smads to induce osteoblast

differentiation (Kobayashi et aI. , 2000; Lee et aI. , 2000; Zaidi et aI. , 2002b; !to and

Miyazono, 2003; Franceschi and Xiao, 2003; Selvamurugan et aI. , 2004b). We used

Run2 null cells to determine the extent to which BMP2 signaling promotes osteoblast

differentiation in the presence or absence of Runx2, as reflected by alkaline phosphatase

(APase) activity. Primary cultues of cells isolated from the calvaria of Runx2 null and

wild-tye mouse embryos were treated with BMP2 and/or exogenously expressed Run2

for seven days and monitored daily for APase activity. APase activity was detected in

untreated wild-type calvarial cultures when cells reached confluence (Figure 2. 1) and was

stimulated in cells grown in the presence of BMP2 alone. While exogenous Run2

expression (by adenovirus infection) alone had a minimal effect on APase activity in

wild-type culture, the presence of both BMP2 and exogenous Runx2 resulted in a

synergistic induction of APase activity. In contrast, APase activity remained nearly

undetectable in Runx2 null cells, as well as in null cells grown in the presence of either

BMP2 or exogenously expressed Runx2. Notably, BMP2 treatment in combination with

exogenous Runx2 expression in Runx2 null cells resulted in a synergistic induction of
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Figure 2.1 BMP2 Signaling and Runxl Synergistically Promote Osteoblast Differentiation
The dependence of Runx2 expression for BMP2 induced alkaline phosphatase (APase) activity
was assessed using mouse calvarial cells (17.5 dpc) from wild type (WT) or Runx2 null mice.
Minimal APase activity was detected in WT cells grown for seven days in the absence of BMP2
and no expression was observed in Runx2 null cells grown under the same conditions. Induction
of APase activity is observed in WT cells treated with BMP2 (100 ng/ml) or exogenous Runx2
delivered by adenoviral vector. In contrast no induction was observed in Runx null cells for
either treatment alone. Notably, the combination of BMP2 (100 ng/ml) with exogenous Runx2
expression induced APase activity in both WT and Runx2 null cells.



APase activity (Figure 2. 1). This finding directly demonstrates that BMP2 induction of

the osteoblast phenotye requires Runx2.

BMP2 induced osteoblast diferentiation is associated with the temporal expression of

SWUSNF chromatin remodeling subunits

Chromatin remodeling is required to support developmental activation and

suppression of genes for phenotype development. Previous studies have shown that

SWI/SNF chromatin remodeling activity is essential for myeloid, adipocyte, and muscle

cell differentiation (Kowenz-Leutz and Leutz, 1999; de la Serna et aI. , 2001; Pederson

2001; Salma et aI., 2004). To gain insight into the involvement of the SWI/SNF

complex in osteogenic differentiation, we analyzed microarray gene expression data from

BMP2-induced osteoblast differentiation of premyogenic C2C12 cells. Induction of the

osteoblast phenotype in this system is reflected by the upregulation of both Runx2, within

2 hours, and APase expression, by 16 hours(Balint et aI. , 2003). We find that in response

to BMP2 treatment (300 ng/ml) there are temporal alterations in expression of Brgl

BAF53a, BAF57, BAF60a, BAF155, and BAF250 at 12 and 24 hours after BMP2

treatment (Figure 2.2). These observations provided a basis for exploration of the

hypothesis that the chromatin remodeling activity of SWI/SNF is functionally linked to

BMP2-induced osteoblast differentiation.
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Figure 2.2. Gene Microarray Analysis ofBMP2 Induced Osteoblast Differentiation Reveals
Temporal Alterations in the Expression of Components ofthe SWI/SNF Complex
Gene microarray expression data from a timecourse in which premyogenic C2C 12 cells were
induced to differentiation toward the osteogenic lineage by BMP2 treatment (Balint et aI. , 2003)
were analyzed to assess changes in mRNA accumulation for subunits of the SWI/SNF chromatin
remodeling complex. Temporal alterations were observed in the expression of each of the
SWI/SNF genes that is represented in the microarray data set. For comparison the osteogenic
induction of Runx2 as well as APase gene expression is shown. Data were normalized to the
initial time point.



SWUSNF components are expressed in the developing skeleton in vivo and in

osteoblasts ex vivo

We examined the involvement of SWI/SNF complexes durng osteogenic

differentiation initially by assessing Brgl expression in developing skeletal strctures 

vivo. Mouse embryos isolated at 18.5 days post coitum (dpc) were examined by

immunofluorescence histochemistry for the expression of Brg 1 and Run2 proteins. As

shown in figure 2.3 , both Brgl and Runx2 proteins are detectable in the nuclei of cells in

the developing exoccipital bone. This pattern of Brgl expression is consistent throughout

skeletal components, all of which were also positive for the key osteogenic regulatory

protein, Runx2. These observations are consistent with a requirement for SWI/SNF

chromatin remodeling activity to supported Run dependent skeletal gene expression.

We further find by western blot and in situ immunofluorescence analyses that Brgl and

Inil , essential components of the SWI/SNF complex , are expressed in osteoblasts ex vivo

(Figure 2.4). While the level of Inil protein remains constitutive, Brgl reproducibly

exhbits two forms with differing electrophoretic migration at the onset of cellular

multilayering and maturation, but, one form at early and late stages of differentiation.

Taken together our results suggest a functional relationship between the expression of

components of the SWI/SNF -chromatin remodeling complex and osteoblast

differentiation.
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Figure 2.3. SWI/SNF Factors Are Expressed In Developing Skeletal Structures
Mouse embryos at l8.5dpc were fixed in paraformaldehyde, embedded in paraffin, and heads
were serial sectioned at 8J.m. Slides of serial sections were stained by H&E dye (A) and by
indirect immunofluorescence (B). Labeled skeletal strctures are as follows: Exoccipital (Eo)
and Occipital Arch (Oa). Indirect immunofluorescence was performed on adjacent serial sections
for Runx2 and Brgl. The Runx2-background image shows the growth plate region of the
exoccipital bone. This image was generated by overlaying the Runx2 image with an image that
reflects sample auto-fluorescence; in this image background signal is red, auto fluorescence signal
is yellow, and specific Runx2 signal is green. Staining for Runx2 (green, lower left panel) is
from the white inset in the Runx2-background image; and staining for Brgl (red, lower right
panel) is from an adjacent serial section. (White bars: upper panel, 100 J.m; lower panel, 50 J.
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Figure 2.4. SWISNF Factors Are Expressed in Primary Osteoblasts
Normal rat diploid osteoblasts were cultured for the indicated time (days). Total protein was
isolated and western blot analysis was performed using antibodies to Brgl and INIl (left panel).
Primar osteoblasts isolated from mouse calvaria (17.5 dpc) were grown on gelatin-coated
coverslips and processed for in situ immunofluorescence. Cells were double- labeled for Runx2
(green) and Brgl (red). As shown both Runx2 and Brgl are organized in punctate subnuclear
foci, and subset of which co localize (26%), as determined by image cross-correlation analysis.
White bar is 10 /lm.



SWUSNF Complex is required for BMP2-Induced Alkaline Phosphatase gene

expression

To determine directly whether there is a role for SWI/SNF-mediated chromatin

, remodeling in BMP2 induced osteoblast differentiation, we utilized the B22 cell line that

contains a stably integrated tetracycline inducible trans gene encoding a flag-tagged Brgl

protein with a point-mutation in the ATP binding domain (Figure 2.
B). This mutant

Brgl associates with components of the SWI/SNF complex, forming catalytically non-

functional complexes (de la Serna et aI., 2000; de la Serna et aI. , 2001) (Figue 2.5C). .

Mutant Brgl protein expression reaches maximal levels within 3 days (Figure 2.
5D) after

removal of tetracycline. As a control we used the B22 parental cell line, Tet-VP16

which expresses the tetracycline responsive repressor protein. B22 cells and the parental

Tet-VP16 cell lines express equivalent levels of endogenous Run2 protein (data not
shown).

We examined BMP2-induced osteoblast differentiation in the B22 cells 
in the

absence or presence of the mutant Brgl protein, +/- tetracycline respectively. We find

that BMP2 treatment results in an induction of APase activity in cells expressing

endogenous wild-type Brgl protein (Figure 2.6A). APase expression was detectable as

early as four days following BMP2 treatment (data not shown) and increased

progressively over time in culture. By day 14 robust expression of APase was evident in

multilayered tissue-like nodules. Strikingly, the presence of the dominant negative Brg

completely blocked the induction of APase by BMP2. APase remained undetectable
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Figure 2.5. Tetracycline Inducible (Tet-Oft) Dominant Negative SWI/SNF Stable Cell Line
A. B22 cells have an inducible flag-tagged BRG 1 transgene containing a mutation in the A 
binding site (K to R). B. Tet-VP16 cells were generated from NIH-3T3 cells and contain a stably
integrated Tet-tA trans gene, which encodes the Tet-VP16 regulator. B22 cells were generated
from Tet-VP16 cells and contain both the Tet-tA trans gene and the flag-tagged BRGI mutant
transgene. C. Mutant Brgl has been previously shown in this cell line to associate with
components of the SWI/SNF complex, but is non-functional. D. Cells grown in the presence of2
ug/ml Tetracycline repress the mutant trans gene; whereas removal of Tetracycline induces
expression of the mutant protein as shown by western blot. Maximum levels of the mutant Brgl
protein are observed within three days.
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Figure 2.6. SWI/SNF Complex is Required for BMP2 Induced Alkaline Phosphatase Gene
Expression
A. and B. B22 and tet-VPl6 cells were growth on collagen type I coated plates with media
changes every second day. Where indicated 2 ug/ml of Tetracycline was added to suppress
transgene expression. After four days in culture, cells reached confluence and, where indicated
were grown in media containing 200 ngiml rh-BMP2. After 7 and 14 days in culture, cells were
fixed in paraformaldehyde and stained for alkaline phosphatase activity. B22 cells were isolated
from each treatment on days 0, 7 , and 14 to confirm by western blot the expression of the mutant-
Brgl protein (data not shown). C. B22 cells were grown and treated as described above. RNA
was extracted at the indicated time points and processed for real-time PCR analysis using primers
and probes for mouse APase and GAPDH. Amplicon quantities were determined relative to a
standard curve generated from a serial dilution of pooled cDNA from all samples (n=2). APase
quantities were normalized to GAPDH and (*) indicates undetectable APase mRNA.



even after 14 days of chronic BMP2 treatment in the presence of the mutant Brg 1 protein.

By using Tet-VPI6 cells, we confirmed that induction of the tetracycline responsive

transactivator alone did not inhbit APase activity (Figure 2.6B). We further confirmed

by quantitative RT-PCR that the inhibitory effects of the mutant Brgl protein on APase

activity occurred at the level of gene expression (mRNA) (Figure 2.6C). These findings

indicate that inhbition of SWI/SNF function does not simply delay induction of the

osteoblast phenotype but abrogates completion of the BMP2 signaling pathway. Thus

SWI/SNF chromatin remodeling activity is essential for induction of the osteogenic

lineage.



DISCUSSION

We have combined molecular, biochemical, cellular, and in vivo approaches to

demonstrate that SWI/SNF chromatin remodeling activity is obligatory for skeletal gene

expression that supports osteoblast differentiation. Our findings in Runx2 null cells show

that BMP2 mediated induction of the osteoblast phenotype requires Run2. However

BMP2 and Run2 protein are not suffcient to promote osteoblast differentiation in the

presence of a dominant negative SWI/SNF chromatin remodeling complex.

The concept that chromatin remodeling factors, including SWI/SNF, mediate

induction of the osteoblast phenotype is supported by specific modifications in chromatin

strcture that correlate with basal and vitamin D enhanced gene expression of the bone-

specific osteocalcin (OC) promoter and that require promoter binding of Runx proteins

(Javed et aI., 1999; Montecino et aI., 1996). These chromatin alterations include

nucleosome displacement and covalent histone modifications (Montecino et aI., 1996;

Shen et aI. , 2002; Sierra et aI. , 2003a), and are consistent with the involvement of ATP-

dependent chromatin remodeling as well as histone acetyltransferase activity. Runx

proteins are not competent to remodel chromatin (Gutierrez et aI. , 2002), but interact with

coregulatory proteins and chromatin remodeling factors (Gutierrez et aI. , 2002; Javed et

aI. , 1999). Thus Runx2 may have a fuctional role in directing structural alterations in

the chromatin organization of skeletal gene promoters to support osteoblast

differentiation. Runx2 null mice do not develop a mineralized skeleton and osteoblast

differentiation is compromised (Komori et aI. , 1997). Together these results predict that

the coordination of chromatin alterations is a requirement for the onset of bone fonnation.



Our findings that both Runx2 and SWI/SNF are required for BMP2 mediated induction

of osteogenic differentiation strongly support this concept.

The consequences of null mutations in different subunits of the SWI/SNF

complex have been examined in vivo. From these studies it is evident that SWI/SNF

function is required for embryonic development (Guidi et aI. , 2001; Klochendler-Yeivin

et aI. , 2000; Roberts et aI., 2000; Bultman et aI. , 2000). With regard to skeletal

development, it is known. that fourteen percent of Brg 1 null heterozygous mice exhibit

exencephaly at embryonic day 16. 18.5 (Bultman et aI. , 2000). This craniofacial defect

that is characterized in part by the absence of a calvarium (Ohyama et aI. , 1997; Bultman

et aI., 2000), supports a role for Brg 1 in skeletal formation. Also, mice that are

heterozygous for a BAF155 null allele, a subunit of the SWI/SNF complex, exhibit

exencephaly with a similar penetrance as observed for the Brgl heterozygote mice (Kim

et aI., 2001). These genetic observations further indicate a role for the SWI/SNF

chromatin remodeling complex in skeletal development. Our demonstration that

essential components of the SWI/SNF complex are expressed in developing skeletal

strctures, as well as throughout osteogenic differentiation of cells isolated from the

calvarium, is consistent with such a role.

The rules that govern functional interrelationships between chromatin remodeling

and transcriptional control of skeletogenesis remain to be comprehensively established.

However, our studies suggest that the SWI/SNF chromatin remodeling enzymes are

essential for the initiation of BMP2-induced Runx2-dependent skeletal gene expression

that is required for osteoblast differentiation.



CHATER III:

Quantitative Signature for Architectural Organization of Regulatory

Factors Using Intranuclear Informatics



ABSTRACT

Regulatory machinery for replication and gene expression is punctately organized in

supramolecular complexes that are compartmentalized in nuclear microenvironments.

Quantitative approaches are required to understand the assembly of regulatory machinery

within the context of nuclear architecture and to provide a mechanistic link with

biological control. We have developed "intranuclear informatics to quantify

fuctionally relevant parameters of spatially organized nuclear domains. Using this

informatics strategy we have characterized post-mitotic reestablishment of focal

subnuclear organization of Runx (AML/Cbfa) transcription factors in progeny cells, 

analyzing point mutations that abrogate fidelity of Runx intranuclear targeting, we

establish molecular determinants for the spatial order of Runx domains. Our novel

approach provides evidence that architectual organization of Runx factors may be

fudamental to their tissue specific regulatory function.



INTRODUCTION

The architectural organization of nucleic acids and cognate factors in subnuclear

microenvironments is linked with gene regulation, replication and repair (Stein et aI.

2000a; Stein et aI. , 2000b; Lemon and Tjian, 2000; Dundr and Misteli , 2001; IboITa and

Cook, 2002; Spector, 2003; Stein et aI., 2003). Spatio-temporal changes in this

subnuclear organization accompany cell cycle progression and cell differentiation (Ma et

aI. , 1998;, Francastel et aI. , 2000). Perturbations in subnuclear organzation have been

fuctionally related with compromised gene expression that accompanies the onset and

progression of disease (Dyck et aI. , 1994; Karpuj et aI. , 1999; McNeil et aI., 1999).

Traditionally, biological control of gene expression has been experimentally addressed by

the identification and characterization of promoter elements and cognate regulatory and

co-regulatory proteins , as well as by mechanistically defining the dynamics of chromatin

strcture and nucleosome organization. It is becoming increasingly evident that

regulatory parameters of gene expression are operative within a higher-order subnuclear

organization of nucleic acids and regulatory proteins. Observations made by

epifluorescence and confocal microscopy have provided the initial insight into assembly

of nuclear micro environments that support the combinatorial compartentalization of

regulatory factors and chromosomal domains (Cook, 1999; Stein et aI. , 2000a; Stein et

aI. , 2000b; Stein et aI., 2003; Spector, 2003). Quantitative strategies are necessary to

mechanistically associate the subnuclear organization of regulatory factors with

biological control.



Here we describe a novel approach, intranuclear informatics, to examine the

subnuclear organization of regulatory factor domains from digital microscopic images.

Intranuclear informatics utilizes parameters with biologically relevant variability to

characterize subnuclear organization. We have developed an image-processing algorithm

to acquire and evaluate these parameters of subnuclear organization. The result is a

multi variable data-set that can be used for exploratory analysis techniques and for

quantitatively testing specific biological hypotheses.

Run transcription factors provide a paradigm for compartmentalization of gene

expression and nuclear matrx association of regulatory proteins (Lian and Stein, 2003).

A conserved intranuclear targeting signal (NMTS) within the C-terminus directs Run

factors to matrx associated subnuclear sites that support transcriptional control in the

interphase nucleus (Choi et aI. , 2001; Zaidi et aI. , 200la; Zeng et aI., 1997). By the

application of intranuclear informatics we elucidate that Runx regulatory proteins exhibit

an interphase architectural signature that is restored following mitosis. Furthermore, our

analysis of NMTS mutant proteins provides evidence that architectural association of

Runx factors may be fundamental to their tissue specific gene regulatory functions.

Thus , intranuclear informatics quantitatively bridges the spatial organization of protein

domains with regulatory determinants of biological controL



MATERIALS AND METHODS

Cell Culture and Transfections

ROS 1712.8 osteosarcoma cells were maintained in F12 with PS , 2mM L-glutamine , and

5% FBS. Hela cells were maintained in DMEM with PS , 2mM L-glutamine , and 10%

FBS. Exponentially growing He La cells were transfected using with 500ng of either

HA-tagged wild-type Runx2 , an HA-tagged C-terminal deletion, or one of the five HA

tagged NMTS point mutants for 24hrs with Superfectamine (Invitrogen, San Diego , CA).

Immunofluorescence

Hela and Ros cells were grown on gelatin-coated coverslips (BD Biosciences, Lexington

KY). Cells were processed for in situ immunofluorescence as described (Javed et aI.

2000). In brief, cells were rinsed twice with ice-cold PBS and fixed in 3.

formaldehyde in PBS for 10 minutes on ice. After rinsing once with PBS , the cells were

permeabilized in 0. 1% Triton X- tOO in PBS , and rinsed twice with PBSA (0.5% bovine

serum albumin (BSA J in PBS) followed by antibody staining. Antibodies and their

dilutions used are as follows: rabbit polyclonal antibodies against Run2 (1 :200;

Oncogene , Carlsbad, CA) and rabbit polyclonal antibodies against HA-epitope (1 :500

Santa Cruz Biotechnology, Santa Cruz CA). The secondary antibodies used were either

anti rabbit or mouse Alexa 568 or Alexa 488 (1 :800 , Molecular Probes , Eugene , OR).

Image acquisition and restoration
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Immunostaining of cell preparations was recorded using a CCD camera attached

to an epifluorescence Zeiss Axioplan 2 microscope (Zeiss Inc. , Thorwood, NY). For

Runx2 interphase/telophase studies single image planes were acquired and deconvoluted

using the Metamorph Imaging Softare (Universal Imaging Corp. , Dowingtown, P A).

For NMTS mutation experiments Z-series image stacks were acquired at 0.25 micron

intervals with 67 nmpixel (xy). Restoration of images was carred out by 3-

deconvolution using a measured point-spread function as described in (Carrngton et aI.

1995). .

Image processing

We have developed an image processing algorithm which automatically performs

Image segmentation, feature extraction, and parameter computation. Our algorithm

requires the input of any number of image pairs and a text-fie , which lists the name of

the images to be analyzed. For each pair of images , one is the digital micrograph and a

second is the nuclear mask image. The nuclear mask, which is generated using

Metamorph imaging software or Adobe Photoshop (Adobe Systems Inc. , San Jose, CA),

is utilized to eliminate intensity data that is located outside the nucleus and restrct

analysis to intensity data within the nucleus. For mitosis studies we analyzed a single

image plane per cell. For NMTS mutation studies we analyzed z-section images from

deconvoluted Z-series stacks. Image segmentation is carred out using a threshold

technique, where the selected threshold is the intensity value that maximizes the number

of detectable nuclear domains. The image analysis is implemented using the MA TLAB



image processmg and statistics toolboxes (The Mathworks Inc., Natick, MA) and

Metamorph Imaging Software (Universal Imaging Corp. , Downingtown, P A).

, Image Feature Extraction

Our algorithm extracts the total number of domains within the nucleus, the size of

each domain, the location of each domain-centroid in image pixel coordinates, the

nuclear cross-sectional area and the nuclear cross-sectional perimeter from the segmented

and mask images. From these measurements we determine the following statistics for.

both domain size and nearest neighbor distances: mean, median, variance, standard

deviation, index of dispersion, coeffcient of variation, skewness , and kurtosis. The

index of dispersion and coefficient of variation are mean normalization measures of

variation and standard deviation, respectively. Skewness reflects of the degree of

asymetr in the distribution with positive values indicating right skewness and negative

values indicating left skewness. Kurtosis is a measure of the peakedness of the

distribution: positive values indicate a tall peak and negative values indicate a flat peak

(or plateau) (Norman, 2000). To assess the spatial domain randomness we measured

Euclidean nearest neighbor distances (N distance) between domain centroids. The

mean and variance of the Euclidean nearest neighbor distances between domains is

compared to a Poisson point-process of an equivalent density (i. , domains per unt

nuclear area); standard error is also measured (Clark and Evans , 1954). Expected nearest

neighbor distance parameters are corrected for edge effects (Donnelly, 1978; Sinclair

1985). The ratio of observed (Ro) to expected (Re) mean nearest neighbor distaces is
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referred to as the Clark and Evans statistic (Ro/Re.cl , clustered; Ro/Re=l , random;

RolRe::l , ordered) (Clark and Evans, 1954). We also examined the radial position of

domains within the nucleus. This statistic is determined by measuring the mean distance

from each domain centroid to the nuclear centroid (mean domain radius) and the mean

distance from the nuclear centroid position to the each perimeter pixel (mean perimeter

radius); for a circle this would be the radius. The ratio of the two values is the mean

relative domain radius. Value between 0 and 0.5 reflect a tendency for domains to be

positioned in the nuclear interior and values between 0.5 and 1 reflect a tendency for

domains to be positioned toward the nuclear periphery.

Statistical Analyses

For mitosis studies ANOV A tests were conducted on subnuclear organization data

to determine the signficance of observed differences in each parameter. Asterisks

indicate parameters with differences that are considered to be statistically signficant on a

05 level. P-values were adjusted to account for the false-discovery rate; asterisks are

indicative of this adjustment. Analysis was performed using the general linear model

(GLM) procedures in SAS/STAT (Sas Institute Inc. , Cary, NC). These statistical tests

were conducted to compare among telophase nuclei (T I and T 2) and interphase (I). 

analyzed 60 nuclei for Run2; twenty for each nucleus (see supplemental information for

the complete dataset). For NMTS studies, statistical tests were conducted to compare

among wild-type Runx2 and each of the five mutants. In total, 330 Z-sections were

analyzed, 55 for each protein from two independent experiments (see supplemental



information for the complete dataset). Five Z-sections were analyzed per cell to account

for within cell variability. Thus , the effect of NMTS mutation was assessed using a

repeated measure ANOV A at a 0.05 level.

Factor Analysis was performed on parameters of subnuclear organization for each

of the wild-type Runx and the five mutant proteins using the data obtained from 330

nuclear images. This analysis represents the observed subnuclear organzation

parameters in terms of a smaller number of uncorrelated "Factors" (or groups of

parameters) that account for most of the information contained in the complete data set.

(Norman, 2000). Factors are extracted using principal component analysis and rotated

using the varimax method. Factors scores were computed for each image and represent

the sum of the standardized subnuclear organization parameters multiplied by their

respective Factor loadings. Factor loading refers to the correlation of each subnuclear

organization parameter with a particular Factor. Factor loadings greater than 0;65 were

considered to be significant. This analysis was carred out using the Factor procedure in

SAS/STAT.

Hierarchical cluster analysis was performed on mean subnuclear organization

parameters from wild-type Runx and the five mutant proteins using the data from 330

nuclear images. Cluster analysis was performed using the Euclidean distance metrc with

complete linkage. Clusters were displayed using a dendrogram. Cluster analysis was

carred out using the cluster procedure in SAS/STAT.



v 1;

RESULTS

Intranuclear Informatics: A signature of nuclear architecture for regulatory proteins

We have developed intranuclear informatics to characterize spatially organized

protein domains within the nucleus in terms of parameters with inherent biological

variability. The conceptual framework for quantifying nuclear organization is outlined in

Figure 3. 1 and briefly described here. Alterations in size and number of protein domains

with respect to physiological conditions , cell cycle stage, and/or cellular differentiation

have been observed (Ma et aI. , 1998; Stenoien et aI. , 2001; Nielsen et aI. , 2002; Zaidi et

aI. , 2003). Intranuclear informatics exploits this variability in domain size and number

to elucidate changes between different biological conditions (Figure 3. 1). Another

prominent feature of nuclear organization is the non-random localization of chromosome

terrtories and protein domains (Noordmans et aI., 1998; Cremer and Cremer, 2001;

Shiels et aI. , 2001; Kozubek et aI. , 2002; Tanabe et aI. , 2002). Our approach employs

first-order nearest neighbor statistics , commonly used in ecological studies (Clark and

Evans, 1954; Sinclair, 1985), to characterize the spatial randomness of nuclear

microenvironments (Figure 3. 1). Finally, the radial position of regulatory machinery for

replication and transcription is functionally interrelated with the location of chromosomal

terrtories as well as chromatin strctue (Ma et aI. , 1998; Cook, 1999; Cremer and

Cremer, 2001; Tumbar and Belmont, 2001; Kozubek et aI., 2002). Intranuclear

informatics establishes the placement of regulatory foci within the context of nuclear

morphology (Figure 3. 1). Based on these biological observations , our approach
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Figure 3.1: Conceptual framework for the quantitation of subnuclear organization by
Intranuclear Informatics.

Four main groups of parameters, selected on the basis of inherent biological variabilty, are

examined. Parameters that describe domain quantity and nuclear size comprise group I (upper
left panel). Group I includes: number of domains and domain density. Parameters that describe
domain size and variabilty comprise group 2 (upper right panel). Group 2 includes: domain size
mean, median, standard deviation, variance, skewness, kurtosis, coeffcient of variation, and

index of dispersion. Parameters that describe the domain spatial randomness, which is based on
domain nearest neighbor distances, comprise group 3 (lower left panel). Group 3 includes:
domain nearest neighbor mean, median, standard deviation, variance, skewness, kurtosis
coeffcient of variation, index of dispersion, domain density, nearest neighbor distance mean and
variance expected for a random distribution, ratios between actual and expected mean and
variance, and the standard error in the nearest neighbor distances. Parameters that characterize
the radial position of domains comprise group 4 (lower right panel). Group 4 includes: mean
perimeter radius, mean domain radius, mean relative domain radius.



describes and defines intranuclear organization utilizing twenty-five parameters

evaluated from digital fluorescence microscopic images. We have developed an image-

processing and statistical algorithm to acquire measurements and compute the parameters

from any number of images. The resulting data are then analyzed to quantitatively

address specific biological questions using statistical approaches such as Factor analysis

and multivariate clustering techniques. In summary, intranuclear informatics

incorporates the principal features of intranuclear organization to provide a vehicle for

quantitatively defining nuclear structue-function interrelationships.

Intranuclear informatics reveals that the post-mitotic restoration of Runx subnuclear

domain organization is functionally conserved

The hematopoietic and osteogenic Run transcription factors are involved in

tissue-specific gene expression and support cell differentiation (Tracey and Speck, 2000;

Komori, 2002; Lutterbach and Hiebert, 2000; Lian and Stein, 2003). In the interphase

nucleus Runx proteins are associated with the nuclear matrix and are organized into

punctate domains (Zaidi et aI. 200la; Zeng et aI. 1997). These nuclear

microenvironments spatially coincide with sites of active transcription and colocalize

with several coregulatory proteins (Thomas et aI. , 2001; Javed et aI. , 2000; Lian and

Stein, 2003; Harrngton et aI. , 2002; Zaidi et aI. , 2002b; Westendorf et aI. , 2002; Kundu

et aI. , 2002; Zaidi et aI. , 2004). These observations suggest a direct link between the

activity of Runx proteins and their spatiotemporal organization within the nucleus. We

have recently demonstrated that Runxl and Run2 protein domains persist during



mitosis , and undergo spatial and temporal reorganization resulting in equal partitioning

into progeny nuclei (Zaidi et aI., 2003). These mitotic alterations reflect natual

perturbations in both nuclear structure and function and serve as a biological template for

, understanding Runx domain organization. Together, the dynamic distribution of Runx

proteins provides a model for quantitative and comparative analysis of the subnuclear

organization of regulatory proteins.

Here we have applied intranuclear informatics to understand the spatial

organization of endogenous Run2 domains in the interphase nucleus as well as 

following mitosis. Immunofluorescence microscopy confirms that the protein is

distributed in punctate subnuclear domains (Figure 3.2). We analyzed and compared

twenty- five parameters of subnuclear organization among interphase and in both

telophase nuclei. Our quantitative results show that most parameters are comparable

between interphase and telophase for Run2. As expected telophase nuclei are

significantly smaller than interphase. The number of domains is equivalent between

progeny telophase nuclei and higher in the interphase. This observation is consistent with

the mitotic partitioning ofRunx proteins (Zaidi et aI. , 2003) (Figure 3.2). We fuher find

that Runx2 domains exhibit a non-random organization with spatial order. We conclude

that the post-mitotic restoration of Runx subnuclear organization is fuctionally

conserved in progeny cells.
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Figure 3.2: Post-mitotic restoration of the spatially ordered Runx subnuclear organization
is functionally conserved.
ROS 17/2.8 osteosarcoma cells (right panel) were subjected to in situ immunofluorescence
microscopy for endogenous Runx2. Runx2 is distributed at punctate subnuclear domains
throughout the interphase and telophase nucleus (left panels). Subnuclear organization
parameters were computed from deconvoluted images for Runx2 for interphase nuclei, (I) and
both progeny telophase nuclei, denoted at random as telophase nucleus 1 , (T ) or telophase

nucleus 2 , (T ). A color map has been applied to the standardized data assigning red to higher
values and green to lower values (see supplemental infonnation 
http://jcs.biologists.org/cgi/content/full117 /21/4889/DC 1). Each increment of one reflects one
(row) standard deviation (inner left and right panels). ANOV A was perfonned to assess the
significance of observed differences between T 1. T 2, and I. Asterisks indicate statistically
significant differences based on a 0.05 level with correction for false discovery rate. Bonferroni'
multiple comparison tests were use to detennine which nuclei differed significantly at a 0.
level. In each case significant differences were observed between each telophase (T1. ) and
interphase nuclei (I), but difference were not observed between telophase nuclei. Overall mean
Clark and Evans statistics (Ro/Re) were 1.4 for Runx2 , indicating a non-random organization
with spatial order. Black bar indicates lO



Intranuclear informatics establishes molecular determinants for the spatial domain

organization of Runx transcription factors

A viable candidate for elucidating the underlying requirements for Runx domain

, organization is the nuclear matrix targeting signal (NMTS). The NMTS is a conserved

and unique Run protein motif that is necessary and suffcient for directing the protein to

matrx associated intranuclear sites (Zaidi et aI., 2001a; Zeng et aI. , 1997). Biochemical

cellular, and in vivo genetic approaches have established the requirement of the NMTS

and associated fuctions in Runx control of cell differentiation and tissue-specific.

development (Choi et aI. , 2001; Yergeau et aI. , 1997). Importantly, mutations in Run

proteins that alter subnuclear targeting are associated with skeletal disease and leukemia

(McNeil etaI. , 1999; Choi et aI. , 2001; Barseguian et aI. , 2002; Zhang et aI. , 2000b).

Our experimental strategy combines mutagenesis, microscopy, and intranuclear

informatics to understand the contrbution of the NMTS to Runx domain organization.

We examined wild-type Runx2 , a C-terminal deletion (Runx2-..C) that lacks the NMTS

as well as four NMTS point mutations, using immunofluorescence microscopy. These

mutants exhibit varyng degrees of compromised intranuclear targeting and selective

alterations in physical and functional protein-protein interactions (Zaidi et aI. , 2002b;

Zaidi et aI. , 2004), (our unpublished observations). Our intranuclear informatics analysis

was performed on deconvoluted images (n=330) from nuclei of cells expressing these

proteins. All of the Runx proteins localize to punctate domains within the nucleus

(Figure 3.3). Initial evaluation of subnuclear organization data reveals that there are

significant differences in seventeen oftwenty-five parameters , as identified by ANOV A.
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Figure 3.3: Mutation ofNMTS alters the interphase Runx subnuclear organization.
Point mutations within the Runx2 NMTS were generated using PCR-mediated mutagenesis.
Deconvoluted images were analyzed of whole cells (He La) expressing either HA-tagged wild-
type Runx2 , an HA-tagged C-terminal deletion or one of the four HA-tagged NMTS point
mutants. As shown, each of these mutants and wild-type Runx exhibits a punctate subnuc1ear
distribution (left panel). Standardized mean subnuc1ear organization data for the indicated
proteins are shown (right panel). A color map has been applied to the standardized values
assigning red to higher values and green to lower values (see supplemental information at
htt://jcs.biologists.org/cgi/content/ful1/117/21/4889/DCl). Using a repeated-measure analysis of
variance (ANOV A) we detect significant differences at a 0.05 level in 17 of 25 parameters
measured, as indicated by asterisks. Black bar indicates 10fJm.



In contrast, parameters that reflect variation in nearest neighbor distances are not

significantly altered by the mutations. These results are schematically demonstrated by a

color representation of standardized data (Figure 3.3). Collectively, our observations

. indicate that there are indeed alterations in the spatial domain organization of Run

proteins as a consequence of mutations in the NMTS.

Our analysis reveals that R398A and Y 407 A mutants share most of the properties

with the wild-type protein; except for a reduction in the domain radial positioning for the

Y 407 A mutant protein, and an increase in the domain size variability for the R398A 

mutant protein. Significant alterations in subnuclear organization were observed for the

Y 428A, Y 433A, and l\C mutations. It has been proposed that nuclear

micro environments represent the steady state local accumulation of proteins resulting

from dynamic molecular interactions providing threshold concentrations of regulatory

factors for combinatorial control (Stein et aI. , 2000a; Stein et aI. , 2000b; Misteli , 2001;

Stein et aI., 2003). Consistent with this concept, the Y 428A mutant, which has a

significant reduction in the mean and variability in domain size (Figue 3.3), fuctionally

abrogates interactions between Smad and Runx, thereby blocking integration of TGF

signals at matrx-associated subnuclear sites (Zaidi et aI., 2002b). Furhermore

impairment of Src/Y AP signaling by the Y 433A mutation correlates with a decrease in

average domain size (Figure 3.3). Similarly, deletion of the C-terminus of Runx2

abolishes interactions with several known co-regulators and results in reduced domain

size and variability (Hanai et aI. , 1999; Javed et aI. , 2000; Westendorf et aI., 2002;

Thomas et aI. , 2001) (Figure 3.3). Hence , the reduction in Runx domain size is likely to



Factor
Common Domain

Characteristic Constiuent Parameters

Mean Domain Size
Standard Devation in Domain Size
Variance in Domain Size
Skewness in Domain Size
Kurtosis in Domain Size
Coeffcient of Variation in Domain Size
Index of Dispesion in Domain Size
Mean Domain Nearest Neighbor Distnce (Observed), Ro
Median Domain Nearest Neighbor Distnce

Domain Density
Mean Domain Nearest Neighbor Distnc (Expected), Re
Variance in Domain Nearest Neighbor Distance (Expected), Ve
Variance in Domain Nearest Neighbor Distance (Observ), Vo
Standard Deviation in Domain Nearest Neighbor Distance
Coeffcient of Variation in Domain Nearest Neighbor Distance
Index of Disperson in Domain Nearest Neighbor Distnce
VoNe .

Size Properts

Packing

Spatil Randomness

Loadings

-0,
. 0,

TABLE 3.1: Factor analysis of subnuclear organization
The covariance structure between the twenty-five subnuclear organization parameters measured
on wild-tye and mutant images (n=330) indicates . that there is a large degree of correlation

between parameters (data not shown). Factor analysis was carred out to represent the observed

subnuclear organization parameters in terms of a smaller number of uncorrelated variables. The
strategy reduces the twenty-five parameters to a subset of three factors which retain the
information (variability) contained within the entire data set. In multivariate analysis

, "

Factors

reflect groups of correlated parameters that are related to a common propert of subnuclear
organization. Each of the Factors has a biological interpretation based upon the grouped
subnuclear organization parameters. We restricted our analysis to the first three Factors (referred
to as A , and C), as they reflect meaningful aspects of the domain spatial. Factor A which

represents, "domain size properties , accounts for approximately 30% of the information

describing the subnuclear organization of the wild-type Runx and mutant images (i. , 30% of the

variation). The domain size properties are highly correlated with parameters that describe the
variability in domain size and to a lesser degree the mean domain size. Factor B , which reflects

domain packing" describes 23% of the variation and is directly correlated with parameters that
characterize the mean nearest neighbor distances and inversely related to domain density.
Packing" indicates that this factor reliltes . the number of domains with the distances between

domains. Factor C , which reflects "domain spatial randomness , describes 10% of the variation

and is directly correlated with parameters that described the variability in domain nearest
neighbor distance.



be a consequence of abrogated and/or altered protein-protein interactions. We fuher find

that the NMTS may contribute to the spatial distribution of domains within the nucleus.

This is evidenced by a reduced variability in domain nearest-neighbor distances for

, Y 428A, Y 433A, and the ilC protein. In addition, the Runx2-ilC protein which has

abrogated subnuclear targeting, exhibits a significant increase in mean domain nearest

neighbor distances as well as in domain density. We conclude that NMTS mediated

intranuclear targeting is a functional determinant for the characteristic spatially ordered

distrbution of Runx domains.

Intranuclear informatics selectively discriminates between the subnuclear organization

of wild type and mutant Runx protein domains

To identify on a broader level the biological features of subnuclear organization that

are predominantly influenced by the NMTS mutations we used Factor analysis, a

multivariate analytical tool for grouping related parameters ("Factors ). Three Factors

that capture a large proportion of the biological variability and are readily interpretable

describe the domain size (Factor A), the domain packing (Factor B) and the domain

spatial randomness (Factor C) (Table 3. 1). We evaluated the subnuclear distrbution 

each protein by calculating "Factor Scores" and generated star-plots to compare wild-

tye Runx2 with each of the NMTS mutants (see Figure 3.4 legend and Methods for

details). Differences are evident in all three Factors. Our analysis of these changes

reveals that NMTS mutations have selective effects on Runx subnuclear organization

(Figure 3.4). Based upon the observed differences we can categorize the proteins into
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Figure 3.4: Discrimination between wild-type Runx2 and NMTS mutants on the basis of
domain size, packing, and spatial randomness.
To understand the subnuclear organization of the wild-type Runx protein and the five mutants, we
analyzed Factors scores, which reflect the sum of standardized subnuclear organization
parameters multiplied by respective factor loadings. Factor scores assign a value to each of the
unobservable Factors (Factor A: Domain Size Properties, Factor B: Domain Packing, and Factor
C: Domain Spatial Randomness). Using the data acquired from the 330 nuclear image sections
we computed Factor scores for wild-type and each of the mutants and analyzed star-plots of these
scores on three axes (see supplemental information 
htt://jcs.biologists.orglcgi/content/full/117/2114889/DCI). The center of the star-plot has a
value of - , the end of each axis has a value of 0. , and the mid-point on each axis is zero; these
values are in standardized units. The three mean Factor scores for each protein define the points
of a filled triangle that has been drawn to ilustrate the similarities and differences among each of
the proteins. Based upon the shape of each of the filled triangles, we can discriminate two groups
of domain organizations: one comprised of the wild-type Runx2 protein along with the Y 407 A
and R398A mutants and a second group containing Y 433A, Y 428A, and the functionally
compromised Runx2- C mutant. Differences in the shape of the triangles highlight the selective
alterations in subnuclear organization as a consequence ofNMTS mutations.



two groups. One group contains wild type Runx2, R398A and Y 407 A which exhbit

similar spatial randomness and domain packing. The second group contains the

remaining mutants with similar effects on domain packing, but selective effects on size

, and spatial randomness. While Y 428A and Y 433A mutants display similar changes in

spatial randomness , domain size alterations are common between the Y 428A mutant and

the Run2- C protein. Of all the mutants , the Runx- C protein has the most prominent

effect on the three Factors collectively. Notably, this mutant protein exhibits

compromised subnuclear targeting, fails to promote osteoblast differentiation, and has

been linked to the human disease cleidocranial dysplasia (CCD) (Choi et aI. , 2001; Zhang

et aI. , 2000b). Taken together, our analysis selectively distinguishes between wild-type

Run2 and NMTS mutant proteins based upon the three Factors of subnuclear

organization.

Intranuclear informatics quantitatively bridges the spatial organization of protein

domains with regulatory determinants of biological control

We have demonstrated that mutations in the NMTS have selective and specific

effects on the architectural signature of Runx proteins (Figures 3.3 and 3.4).

Consequently, it is important to comprehensively assimilate all the data to establish the

overall degree of domain organizational similarity among wild-type and the mutants.

Here we utilized hierarchical cluster analysis to group each protein on the basis of the

twenty-five parameters that describe and define their subnuclear organization (Figue

5). The dissimilarity between the subnuclear organization of wild-type and the
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Figure 3.5: The subnuclear organization of Runx domains is linked with subnuclear
targeting, biological function, and disease.
In order to determine the extent to which the subnuclear organization of each mutant differs from
wild-type we performed hierarchical cluster analysis using the Euclidean distance matrix and
complete linkage. Cluster organization is ilustrated using a dendrogram. Subnuclear
organization data is presented in a compressed form with a color map as described in figure 3.3.
As shown there are two main clusters: one including wild-type and one including the Runx2-
protein, which does not contain the NMTS. We find a clear parallel between this cluster
analysis and our Factor analysis, paricularly with respect to the clustering of Runx2- C with
Y 433A and Y 428A. This parallel lends strength to the observed clusters. Shown at the bottom is
a symbolic representation of the extent to which each protein associates with the nuclear matrix
as determined by biochemical fractionation and western blot analysis (i. , ranging for "

+++"

(associated) for wild-type to " " (no association for Runx2- C) (Zaidi et ai. , 2001a; Choi et ai.
2001) (and our unpublished observations). We find a correlation between subnuclear
organization and nuclear matrix association. The schematic below indicates whether a protein
wil promote differentiation or is involved in disease (i.e. , cleidocranial dysplasia) (yes, no, or not
determined (ND)).



functionally compromised Runx2.; C mutant is evident by the presence of two distinct

clusters. This mutation removes the entire C-terminus including the subnuclear targeting

signal and associated functions; homozygosity for the Runx2- allele results in

, embryonic lethality (Choi et aI. , 2001). We find that the subnuclear organization of

Y433A and Y428A mutation is similar to that of the Runx2- C mutant. This observation

is in agreement with our Factor Analysis and is consistent with the evidence that these

mutant proteins are functionally compromised and are incompetent for integrating

physiological signals, which include BMP/TGF and SrcN AP signaling (Zaidi et aI.

, .

200la; Zaidi et aI. , 2004); To provide further insight into the Runx nuclear strctue-

fuction relationships , we directly compare the hierarchical cluster arrangement with the

intranuclear targeting competency of each protein, as well as their contrbution to

development and disease. This analysis reveals a link between Runx subnuclear domain

organization and biological function. We conclude that the architectural organization of

Runx transcription factors within the nucleus is fundamental to their tissue specific

regulatory function.



CONCLUSION

Knowledge of the biochemical and genetic components of gene regulation

replication, and repair far exceeds our understanding of the integration of these processes

within the context of nuclear architecture (Stein et aI. , 2000a; Stein et aI. , 2000b; Lemon

and Tjian, 2000; Dundr and Misteli , 2001; Iborra and Cook, 2002; Spector, 2003; Stein et

aI., 2003). Here we have established a bioinformaticsapproach to describe and define

organization of protein domains within the nucleus. Intranuclear informatics provides

the quantitative platform to capture the relevant parameters of subnuclear organization

and relate them to the fundamental requirements for biological control. Using this

approach, we have demonstrated that the focal subnuclear organization of Runx proteins

is conserved in progeny cells. Our strategy has enabled us to discriminate between

functional and non-fuctional Runx proteins based, upon their domain organization

within the nucleus. Furthermore , we have identified an architectural signature of Run

transcription factors that is coupled with fidelity of intranuclear targeting. In a broader

context, intranuclear informatics can be applied to analyze subtle alterations in any

spatially organized nuclear microenvironments under normal and pathological conditions.



CHAPTER IV:

Mitotic partitioning and selective reorganization of tissue specific

transcription factors in progeny cells



ABSTRACT

post-mitotic gene expression requires restoration of nuclear organization and assembly of

regulatory complexes. The hematopoietic and osteogenic Runx (Cbfa/AML) transcription

factors are punctately organized in the interphase nucleus and provide a model for

understanding the subnuclear organization of tissue specific regulatory proteins following

mitosis. Here we have used quantitative in situ immunofluorescence microscopy and

quantitative image analysis to show that Run factors undergo progressive changes in

cellular localization durng mitosis while retaining a punctate distrbution.

comparison, the acetyl transferase p300 and acetylated histone H4 remain localized with

DNA throughout mitosis while the RNA processing factor SC35 is excluded from mitotic

chromatin. Subnuclear organization of Runx foci is completely restored in telophase and

Run proteins are equally partitioned into progeny nuclei. In contrast, subnuclear

organization of SC35 is restored subsequent to telophase. Our results show a sequential

reorganization of Runx and its co-regulatory proteins that precedes restoration of RNA

processing speckles. Thus, mitotic partitioning and spatio-temporal re-organization of

regulatory proteins together render progeny cells equivalently competent to support

phenotyic gene expression.



INTRODUCTION

In the interphase nucleus , many tissue-restrcted transcription factors are architectually

organized at punctate subnuclear sites that are associated with the nuclear matrx scaffold

(Guo et aI. , 1995; Merrman et aI. , 1995; van Steensel et aI. , 1995; Htun et aI., 1996;

McNeil et aI. , 1998; Stenoien et aI. , 1998; Tang et aI. , 1998; Cook, 1999; Verschure et

aI. , 1999; Bangs et aI. , 1998; Zeng et aI. , 1997; Zeng et aI. , 1998; Zaidi et aI. , 200la;

DeFranco , 2002; Stein et aI. , 2000b; Stenoien et aI. , 2000; Berezney, 2002; Berezneyand

Jeon 1995). These nuclear matrix associated intranuclear foci are linked to

transcriptional activation and suppression as well as contain co-reguatory proteins and

signaling molecules (Zaidi et aI. , 2002a; Zaidi et aI. , 200lb; Stein et aI. , 2000c; Wei et aI.

1998; Stein et aI. , 2002). Compromised nuclear matrx targeting and/or altered gene

dosage of regulatory proteins is associated with pathological conditions (Zhang et aI.

2000a; Choi et aI. , 2001; McNeil et aI. , 1999). Gross alteration of subnuclear organization

(Nickerson and Penman, 1992b; Hendzel et aI. , 1997; Wagner et aI. , 1986; Capco and

Penman, 1983; Fan and Penman, 1971) and re-Iocalization of regulatory complexes occur

concomitant with transcriptional silencing during mitosis (Buendia et aI., 2001; Johansen

1996; Gottesfeld and Forbes, 1997). fundamental question therefore is how cells

restore subnuclear distribution of tissue specific transcription factors in progeny cells to

regulate post-mitotic phenotypic gene transcription.

Runx (Cbfa/ AML) proteins are tissue-specific transcription factors that control

hematopoietic and osteogenic lineage commitment (reviewed in (Lund and van Lohuizen

2002)). Runx factors bind to DNA in a sequence specific manner, are targeted to



transcriptionally active subnuclear foci, and are required for maintenance of chromatin

architectue of target genes in the interphase nucleus (Ogawa et aI. , 1993; Zeng et aI.

1997; Zeng et aI. , 1998; Javed et aI. , 1999; Zaidi et aI. , 200la; Harrngton et aI. , 2002).

Pertbed subnuclear organization and/or altered physiological levels of Run proteins

are associated with genetic disorders and tumorigenesis (Otto et aI. , 1997; Zhang et aI.

2000a; McNeil et aI. , 1999; Choi et aI. , 2001; Telfer and Rothenberg, 2001). Run

protein levels persist through the proliferation of lineage-committed cells (Pratap et aI.

2003).

While the rules that govern mitotic chromosome segregation are longstanding

(Nasmyth, 2002), only a limited number of studies have addressed redistrbution of

regulatory proteins during mitosis (Mancini et aI., 1994; Nickerson and Penman, 1992a;

Reyes et aI. , 1997; Berube et aI. , 2000; Tang and Lane, 1999). By the combined use of 

situ immunofluorescence microscopy and image quantitation, here we have documented

progressive mitotic changes in the distrbution of Runx foci and sequential re-

organization of nuclear proteins involved in gene expression. The interphase subnuclear

organization of Runx foci is selectively restored in telophase with equal partitioning of

the protein into progeny nuclei. Thus we have shown a dynamic spatial distrbution of

Runx transcription factors in paralhbl with chromosomal partitioning to sustain balanced

expression of phenotypic genes post-mitotically.



MATERIALS AND METHODS

Cell Culture and Cell Synchronization.

Hematopoietic (Jurkat lymphoma) and osteogenic (Rat osteosarcoma ROS 17/2.8) cells

were maintained in F12 medium containing 5% fetal bovine serum (Gibco Life

Technology, Grand Island, NY) and RPMI medium supplemented with 10% fetal bovine

serum, respectively. ROS 17/2.8 cells were synchronized in early S phase by double

thymidine block as described elsewhere (Stein et aI., 1998) and subjected to in situ

immunofluorescence analyses.

In Situ Immunofluorescence Microscopy.

Synchronized cells, grown on gelatin-coated coverslips, were processed for in situ

immunofluorescence as described (Javed et aI. , 2000). In brief, cells were rinsed twice

with ice-cold PBS and fixed in 3.7% formaldehyde in PBS for 10 minutes on ice. After

rinsing once with PBS , the cells were permeabilized in 0. 1% Triton x- tOO in PBS , and

rinsed twice with PBSA (0.5% bovine serum albumin (BSA) in PBS) followed by

antibody staining. Antibodies and their dilutions used are as follows: rabbit polyclonal

antibodies against Runx2 (1 :200; Oncogene , Carlsbad, CA), rabbit polyclonal antibody

raised against Runxl (1 :25 , Geneka Biotechnology Inc. , Montreal , Quebec, Canada),

tetra-acetylated-histone H4 (1 :400 , 06-866 Upstate Biotechnology, Waltha.'1 , MA), p300

(1 :400, Santa Cruz Biotechnology, Carlsbad, CA) and a mouse monoclonal antibody

against SC35 (1 :200, Sigma-Aldrch, St. Louis, MO). The secondary antibodies used

were either anti mouse Alexa 568 or anti rabbit Alexa 488 (1 :800 , Molecular Probes



Eugene, OR). DNA was visualized by DAPI (4' , 6-diamidino- phenylindole) staining.

Imunostaining of cell preparations was recorded using an epifluorescence Zeiss

Axioplan 2 (Zeiss Inc. , Thorwood, NY) microscope attached to a CCD camera.

Exponentially growing Jurkat cells (6X10 ) were cytospun directly onto slides

coated with Cell- TakTM (BD Biosciences, Lexington, KY) and were then subjected to 

situ immunofluorescence analysis as described above.

Quantitative Image Analysis.

We quantitated the relative DNA and protein distribution (mitotic partitioning) in each

progeny nucleus. The amount of protein and DNA in each nucleus was measured using

image pixel intensities. The relative protein or DNA distribution between progeny nuclei

(the partition coeffcient, PC) was then expressed as the ratio of nuclear signal intensity

(PC= Il/h ,where II and h are integrated pixel intensities of each of the progeny nuclei

total protein or DNA amount per nucleus; the designation of nucleus 1 versus

nucleus 2 was randomly assigned.

We characterized Run foci in G2 and telophase nuclei in terms of size, number

and spatial organization. This analysis was carred out in three steps: image

deconvolution, determination of the pixel intensity threshold, and image binarization.

First, image deconvolution was accomplished by an un sharp mask algorithm. Pixel

intensity for image thresholding was defined as the intranuclear pixel intensity level that

maximizes the number of detectable foci. In our quantitative analysis, the image

binarization is performed by assigning the value of ' 1' to pixels with grayscale values



higher than threshold; all other pixels are assigned the value of ' . Quantitation of

nuclear foci from the binary image included determining the number (connected

components), the size in pixels (1 pixel = 0. 028 /lm and the location of each of the foci

, (centroid image coordinates). The spatial organization of intranuclear foci is expressed as

. the coefficient of variation (CV) of nearest neighbor distances. For this purose, the

Euclidean nearest neighbor distance was determined for each focal point using the

centroid coordinates. The mean (M) and standard deviation (SD) of foci nearest neighbor

distances within a single nucleus were determined and used to compute the coefficient of.

variation (CV), where CV=SD/M. The image analysis was performed using the

MA TLAB image processing toolbox (The Mathworks Inc., Natick, MA) and

Metamorph Imaging Software (Universal Imaging Corp. , Downingtown, P A).

Scatter plots were generated to ilustrate the coincidence of pixel intensities

between Runx and DNA images; each data point represents a corresponding pixel in the

Runx and DNA images. The y-axis value reflects the pixel intensity from the Run image

whereas the x-axis reflects the pixel intensity from the DNA image. Data points above

the red line are pixels that correspond to Runx foci. Intensity profiles for Run and DNA

images were generated using Metamorph Imaging Software, in which a pseudo-color

map is applied to pixel intensities , i. , red=255 , blue=O.

Statistical Analysis

Statistical computations were performed in SASiI (The SAS Institute Inc. Cary,

NC). Two-tail paired Student's t-test was used to compare differences between mean



DNA and Runx mitotic partition coeffcients. In order to measure intracellular co-

localization between proteills and DNA, the image cross-correlation analysis was

employed using Pearson s coefficient (van Steensel et aI., 1995). Analysis of variance

(ANOV A) and Tukey s multiple comparison test (a=0. 05) were performed to assess the

significance of observed differences for protein (Runx2, H4, SC35 and p300)-DNA

(DAPI) image correlations between mitotic phases, as well as for number of foci, average

size of foci , and spatial distrbution between telophase and interphase nuclei. Differences

were considered statistically signficant ifp-value was less than 0.05.



RESULTS

Osteogenic and hematopoietic Runx proteins partition equally into progeny cells.

Runx transcription factors are required for lineage commitment and retention of

phenotype (Speck et aI. , 1999; Westendorf and Hiebert, 1999). Stringent transcriptional

and translational regulation of Runx proteins indicates that the maintenance ofRun

cellular levels is critical for their biological activity. Temporal expression and regulation

of Run factors are documented during development and lineage commitment. We find

that Runx protein levels remain constant during and following cell division (data not

shown). To assess the cellular organization of the Runx regulatory proteins durng

mitosis , we examined hematopoietic Jurkat lymphoma and osteoblastic ROS 17/2. cells.

These cells express Runxl and Run2, respectively, as well as Run responsive

phenotypic genes (Rodan, 1995; Speck et aI. , 1999; Westendorf and Hiebert, 1999). In

addition, Runx 1 and Runx2 in these cells exhibit characteristic punctate subnuclear

distribution during interphase (Figure 4. , top panels). We analyzed Runx proteins in

telophase by in situ immunofluorescence microscopy. As shown in Figure 4. 1 (bottom

panels), Runxl and Runx2 are present in both telophase nuclei. We next assessed the

relative distribution of Runx proteins in progeny nuclei by measuring the ratio of the

integrated pixel intensity between post-mitotic progeny nuclei. We find that both Run

proteins are equivalently distributed between progeny nuclei. Equal segregation of DNA

as assessed by DAPI staining, serves as a biological frame of reference and supports our

conclusion that both Runx proteins are equivalently partitioned to progeny nuclei during

mitosis.
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Figure 4.1: Runx proteins parttion equivalently in progeny cells following cell division.
Jurkat lymphoma cells (A) or ROS 17/2.8 osteosarcoma cells (B) were subjected to in situ

immunofluorescence microscopy. Runxl and Runx were detected by rabbit polyclonal
antibodies followed by the incubation of cells with secondar antibodies conjugated with Alexa
488 flourochrome. Both Runxl and Runx2 were distributed at punctate subnuclear foci
throughout the interphase nucleus (top panels). A quantitative image analysis was applied to
determine the relative levels of Runx in nuclei of the telophase cells (n= 1 0; bottom panels ). We
defmed a partition coeffcient (PC) that reflects the ratio of integrated signal intensities between
progeny nuclei. Both Runx proteins exhibited a partition coefficient equivalent to that of DNA
demonstrating that these factors are equally segregated in progeny cells following cell division.
Student' s t-test was performed to assess significance of observed differences.



Runx proteins undergo dynamic alterations in distribution during mitosis and a subset

of Runx foci remains associated with chromosomes.

Runx proteins persist throughout mitosis and are equally partitioned in telophase

, (Figure 4. 1 and data not shown). We therefore examined the subcellular localization of

Runx during successive mitotic stages by in situ immunofluorescence microscopy. Our

results show that Runx proteins are distributed as punctate foci durng all stages of

mitosis (Figure 4. , see insets). Concomitant with alterations in nuclear strcture during

mitosis, a sequential change in the distrbution of Runx proteins is observed (see for.

example Figure 4.2). In contrast to interphase, these foci are no longer completely

colocalized with chromosomes during prophase. As mitosis progresses through

metaphase and anaphase, Runx foci predominantly exhibit an extra-chromosomal

localization. During the anaphase to telophase transition Run foci are redistrbuted, co-

localizing with DNA at telophase (Figure 4.2). Interestingly, both microscopic

observations (Figures 4.2 and 4.3) and image quantitation (Figue 4.3) show a subset 

Runx foci associated with chromosomes throughout mitosis. We observe similar spatio-

temporal redistribution of Runx foci during mitosis of normal diploid cells (data not

shown). Specificity of the mitotic localization and chromosomal association of tissue

specific Runx proteins is further indicated by displacement of sequence specific

transcription factors (that include Oct! , cFos, SP1, AP2, HSF, etc) from the

chromosomes (Martinez-Balbas et aI., 1995). Thus Runx proteins are organized as

punctate foci throughout mitosis and these foci are dynamically redistributed during

mitotic progression, with consequent equal partitioning of the protein in progeny cells.
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Figure 4.2: Runx foci dynamically redistribute during mitosis.
Endogenous Runx and tubulin were visualized by in situ immunofluorescence in synchronized
ROS 17/2. 8 cells at indicated stages of mitosis. Runx2 foci shown in deconvoluted images
(marked by white boxes) in the left panel are distributed throughout the cell in prophase. This
distribution of Runx2 foci changes to predominantly extra-chromosomal in metaphase and
anaphase. In telophase, Runx2 foci appear to co localize with DNA. Tubulin shows characteristic
staining throughout mitosis and serves as a marker to identify mitotic stages. The DNA
boundaries from DAPI images are drawn as white dotted lines. Specificity is demonstrated by in
situ preparations in which the primar antibody incubation was omitted (bottom panel).
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Figure 4.3: A subset of Runxl foci associate with chromosomes throughout mitosis.
Images showing mitotic redistribution of Runx2 foci were subjected to quantitative image
analysis. Intensity profies (middle panel in each mitotic stage) of images shown on the left were
generated using MetaMorph Imaging softare. A scatter plot between the signal intensities of
Runx2 (y-axis) and DNA (x-axis) indicates that Runx2 is associated with DNA in interphase and
telophase while this association decreases during prophase-metaphase and anaphase. A subset of
Runx2 foci (indicated by arrows) is associated with chromosomes during all stages of mitosis.
The red line demarcates the level above which all pixels correspond to Runx foci. The bar at the
bottom right represents the pseudocolor map for image intensity.



Post-mitotic restoration of Runx subnuclear distribution.

The organization of Runx proteins at subnuclear foci has been linked to

transcriptional control (Stein et aI. , 2000b; Stein et aI. , 2000c). Hence , we determined the

extent to which the punctate organization of Run foci is restored in telophase nuclei.

Run2 was detected by in situ immunofluorescence microscopy. Using a quantitative

approach the number and size as well as the spatial organization of subnuclear foci were

assessed (Figue 4.4). We detect equal numbers of Run2 foci in each of the telophase

progeny nuclei, and this value is half the number of foci present in 02 (Figure 4.4A).

These results are consistent with an equal mitotic partitioning of Run proteins (Figue

1). Size and spatial organzation of Runx2 foci in telophase nuclei remain equivalent to

those in G2 nuclei (Figure 4.4A). It is well established that SC35 subnuclear speckles are

associated with RNA processing (reviewed in (Shop land and Lawrence, 2000)).

Therefore , we assessed the parameters of subnuclear organization (i. , number, size and

spatial organization) for SC35. As shown in Figure 4.4B , we do not detect difference in

foci number for SC35; yet these foci are significantly smaller in telophase than G2 nuclei

and exhibit a different spatial organization. Thus, although it has been reported that

splicing activity is detectable at this time, the interphase SC35 is not completely restored

in telophase (Prasanth et aI., 2003). Taken together, these findings demonstrate 

equivalent partitioning of Runx2 foci into progeny nuclei with selective restoration of

Runx2 subnuclear organization.
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Figure 4.4: Runx2 foci are equally segregated to progeny nuclei with restoration of
subnuclear organization during telophase.
We perfonned a quantitative image analysis on telophase and G2 nuclei to assess the number and
size of Runx2 domains in parent and progeny cells. The analysis was carried out by image
deconvolution (A, left panel for detail see Materials and Methods) followed by image
thresholding and binarization to define Runx2 domains (A, right panel). The domain number (B),
size (C) and spatial organization (D) were then calculated in each of the telophase (designated as
Tl and T2) and G2 nuclei analyzed and mean values were displayed as bar graphs (n=10, nuclei).
Asterisks indicate statistically significant differences between G2 and telophase nuclei. The error
bars represent standard error of the mean (S. ). We find double the number ofRunx2 domains
in G2 nuclei compared with telophase nuclei, while the domain size and spatial distribution
remain the same. Conversely, we find equal number of SC35 foci, but these foci are smaller and
exhibit a different spatial distribution than G2 nuclei.



Sequential redistribution of nuclear proteins involved in gene expression during cell

division.

We assessed the sequential reorganization of Runx2 during mitosis relative to

other nuclear proteins that are involved in transcription and RNA processing. We first

examined the distribution of Runx co-regulatory protein p300 during cell division. In the

interphase nucleus, p300 exhibits a punctate distrbution and partially colocalizes with

Run2 (data not shown); During metaphase and anaphase, p300 foci, unlike Run2

remain predominantly localized with the chromosomes (Figure 4.5A). The interphase

subnuclear localization of p300 is restored in telophase as chromosomes de-condense.

The extent that p300 is chromosomally associated may in part be cell type or reagent

dependent (Krhlak et aI., 2001). As expected, the nucleosomal protein histone H4

remains tightly associated with chromosomes throughout mitosis (Figure 4.5B). In

contrast, the SC35 RNA processing factor is not localized with chromosomes durng

mitosis (Figure 4.5A). These results show that a sequential re-organization of Run2 and

its co-regulatory protein p300 in progeny nuclei precedes reappearance of SC35 RNA

processing speckles.

The extent to which each of these regulatory factors exhibits a spatio-temporal

relationship with DNA during mitosis was quantitated using image cross-correlation

analysis ((van Steensel et aI., 1995), Figure 4.6). Consistent with our microscopic

observations (Figures 4.2 and 4.5), p300 and histone H4 show high correlation with DNA

throughout mitosis. By comparison, Runx2 and DNA are highly co-localized only during
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Figure 4.5: Chromatin modifying factor p300 and nucleosomal protein histone H4, but not
RNA processing factor SC35, show colocalization with DNA during mitotic progression.
Chromatin modifying factor p300 (A, left panel), RNA processing protein SC35 (A, middle
panel) and tetra-acetylated histone H4 (B) were detected by in situ immunofluorescence in
synchronized ROS 17/2.8 cells at indicated stages of mitosis. Histone H4 and p300 show a
constitutive DNA localization throughout mitosis while SC35 is excluded from DNA.
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interphase and telophase, as reflected by maximal correlation coefficient. The Run2-

DNA correlation gradually decreases in prophase and metaphase and increases in

anaphase (Figure 4.6). In contrast, SC35 and DNA are weakly correlated during mitosis

(Figure 4.6). Taken together, these findings demonstrate a sequential and selective

reorganization of transcriptional regulators and RNA processing factors during

progression of cell division.
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Figure 4.6: Sequential redistribution of nuclear proteins involved in RNA synthesis and
processing following cell division.
The relationship between DNA and different nuclear proteins during mitosis was confirmed by
Pearson correlation analysis. The correlation between images intensities reflects the
colocalization of different nuclear proteins with DNA during mitotic progression. While histone
H4 and p300 are colocalized to DNA throughout mitosis, SC 35 is excluded. Runx2, in

comparison, shows a gradual decrease in chromosomal localization until cells enter anaphase. . In

telophase, Runx2 exhibits a restoration of interphase subnuclear distribution. Astericks indicates
correlations which are significantly different from interphase.



CONCLUSION

Run transcription factors provide a model for characterizing the distrbution 

regulatory proteins to progeny cells during mitosis. Runx proteins are distributed as

transcriptionally active subnuclear foci throughout the interphase nucleus that support

Run dependent integration of regulatory signals e. , BMP and Src signals (Harrngton

et aI. , 2002; Zaidi et aI. , 2002a; Zaidi et aI. , 200lb). In this study, we have demonstrated

that Runx foci persist throughout mitosis and undergo a spatio-temporal redistrbution

that results in equal partitioning of the protein into each of the progeny nuclei. Loss of

both amount and subnuclear organization of Runx proteins is associated with genetic

disorders (Choi et aI. , 2001; Zhang et aI. , 2000a; McNeil et aI. , 1999). Equal partitioning

and a complete restoration of subnuclear organization of Runx foci in telophase provides

a mechanism for maintenance of cellular levels and activity of Runx proteins following

mitosis. These findings are consistent with a requirement of Runx factors for post-

mitotic transcriptional control and assembly of multi-component complexes to regulate

Runx responsive genes. Furthermore, subnuclear organization of Run foci precedes that

of SC35 RNA processing speckles following cell division. Taken together, these findings

demonstrate a spatio-temporal partitioning and reorganization of regulatory factors that

render progeny cells equivalently competent for the resumption of tissue specific gene

expressIOn.



CHAPTER V:

Mitotic Retention of Phenotype by the Cell Fate Determining

Transcription Factor Runx2



ABSTRACT

During cell division " cessation of transcription is coupled with mitotic

chromosome condensation. A fundamental biological question is how gene expression

patterns are retained durng mitosis to ensure the phenotye of progeny cells. We suggest

that cell fate determining transcription factors provide an epigenetic mechanism for the

retention of gene expression patterns durng cell division. Runproteins are lineage-

specific transcription factors that are essential for hematopoietic, neuronal

gastrointestinal , and osteogenic cell fates. Here we show that Runx2 protein is stable

durng cell division and remains associated with chromosomes durng mitosis through

sequence-specific DNA binding. Using siRNA mediated silencing, mitotic cell

synchronization, and expression profiling, we identify Runx2 regulated genes that are

modulated post-mitotically. Novel target genes involved in cell growth and

differentiation were validated by chromatin immunoprecipitation. Importntly, we find

that during mitosis , when transcription is shut-down, Runx2 selectively occupies target

gene promoters to control mitotic histone modifications. We conclude that Runx proteins

have an active role in retaining phenotype during cell division to support lineage-specific

control of gene expression in progeny cells.



INTRODUCTION

Lineage commitment and cell proliferation are critical for normal tissue

development. Preservation of phenotype durng clonal expansion of committed cells

necessitates the faithful segregation of chromosomes and the conveyance of lineage-

specific gene regulatory machinery to progeny cells. Mitosis involves nuclear

reorganization, global chromosome condensation and transcription silencing, and occurs

concomitant with protein degradation and/or displacement of many regulatory factors

from chromosomes (Gottesfeld and Forbes , 1997; Martinez-Balbas et aI. , 1995; Muchardt 

et aI. , 1996; Prasanth et aI., 2003). One fundamental question is how cells are

programmed to sustain phenotypic gene expression patterns following cell division when

transcriptional competency is restored in progeny cells.

Cell fate is determined in response to extracellular cues by lineage-specific master

regulators that include the Runx family of transcription factors. In mammals, these

proteins are required for development of hematopoietic (Runxl), osteogenic (Runx2),

gastrointestinal and neuronal (Runx3) cell lineages (Choi et aI. , 2001; Komori et aI.

1997; Wang et aI. , 1996a; Inoue et aI. , 2002; Li et aI. , 2002; Westendorf and Hiebert

1999; Blyth et aI. , 2005). Runx factors integrate cell signaling pathways (e. , TGF-

Beta/BMP and Yes/Src) and recruit chromatin modifying enzymes (e. , HDACs , HATs

SWI/SNF , SuVar139) to modulate promoter accessibility within a nucleosomal context

(Zaidi et aI. , 200la; Zaidi et aI. , 2003; Taniuchi and Littman, 2004; Vradii et aI. , 2005;

Young et aI. , 2005; Sierra et aI. , 2003b; Westendorf and Hiebert, 1999). Run proteins

function as promoter bound scaffolds that organize the regulatory machinery for gene



expression within punctate subnuclear domains (Zaidi et aI. , 2005; Young et aI. , 2004).

Pathological perturbations in the organization of these domains are linked with altered

development and tumorigenesis (Westendorf and Hiebert, 1999; Javed et aI., 2005;

Barnes et aI. , 2003; Barnes et aI. , 2004; Blyth et aI. , 2001; Brubaker et aI., 2003;

Cameron and Neil, 2004; Ito, 2004; Neil et aI. , 1999; Vailant et aI. , 1999; Otto et aI.

2002; Ito, 2004). Temporal and spatial changes of these architecturally organized Run

domains occur durng mitosis (Zaidi et aI. , 2003).

Osteogenic cell fate, decisions and subsequent proliferation of osteoprogenitor

cells is controlled by Runx2 (Afzal et aI. , 2005; Galindo et aI. , 2005; Lian et aI. , 2004;

Pratap et aI. , 2004; Westendorf and Hiebert, 1999). A mechanism must be operative that

ensures Runx2 dependent regulation of this osteogenic identity through multiple mitotic

cell divisions. Here we have combined mitotic cell synchronization, expression profiling,

chromatin immunoprecipitation, and RNA interference to investigate this mechanism.

During mitosis Runx2 directly interacts with a novel set of cell fate and cell cycle related

target genes that exhibit distinct Runx2 dependent modifications in histone acetylation

and methylation. Our results indicate that Runx transcription factors reinforce cell fate

through an epigenetic mechanism that retains phenotypic gene expression patterns

following cell division.



MATERIALS AND METHODS

Cell Culture and Cell Synchronization.

Saos-2 osteosarcoma cells were maintained in McCoy s medium containing 15% fetal

bovine serum (FBS) (Gibco Life Technology, Grand Island, NY) plus 2mM L-glutamine

and a penicilin-streptomycin cocktail. Hela cells were maintained in DMEM plus 2mM

glutamine penicilin-streptomycin cocktail. Ros cells were maintained in F12 plus

2mM L-glutamine penicilin streptomycin cocktail with 5% FBS. Cells were blocked in

mitosis for biochemical fractionation and chromatin immunoprecipitation assays by 

adding 200ng/ml nocodazole for 24 hrs followed by shake-off of mitotic cells. For

Block-release studies Saos-2 cells were synchronized by the addition of 200ng/ml 

nocodazole for 24hrs. Cells were released by two washes in serum-free media followed

by the addition of McCoy s medium containing 15% fetal bovine serum plus 2mM L-

glutamine. Cell cycle analysis was performed by propidium iodide-stained cells

subjected to fluorescence-activated cell sorting (F ACS , UMass Medical Core Facility).

Expression Constructs

The following constrcts have been previously reported: HA-Runx2 and Xpress-Runx2

(Zaidi et aI. , 200la). The R166Q mutant of Run:2 was generated by PCR-'based site-

directed mutagenesis of the HA-Runx2 construct using the QuikChange CI Site-Directed

Mutagenesis Kit. (Statagene , Cedar Creek, TX). The following primers where utilized

for mutagenesis: Forward 5' GAG ATT TGT GGG CCA GAG CGG ACG AGG-3' and

reverse 5' CCT CGT CCG CTC TGG CCC ACA AAT CTC- Mutations were
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confirmed by sequencing with the following primer: 5' ATG CGC CCT AAA TCA CTG

AG-

Electrophoretic Mobilty Shift Assay

The upper strands (200 ng) of oligonucleotides including a Runx binding sequence were

labeled with p for 1 hat 37 C in a 50- 1 volume using T4 Polynucleotide Kinase (New

England BioLabs, Beverly, Mass.) as indicated by the manufacturer. The reaction was

stopped by heat inactivation at 65 C for 1 h. Anealing was performed by addition of a

twofold excess amount of bottom strand followed by boiling for 5 min and slow cooling

to room temperatue. The unincorporated nucleotides were removed using a quick-spin G

25 Sephadex column (Roche Molecular Biochemicals, Indianapolis, Ind.) according to

the manufactuer s instrctions. Electrophoretic mobility shift assay (EMS A) reaction

mixtures were prepared using 50 fiol of probe, 50 mM KCl, 12 mM HEPES , 1 mM

EDTA, 1 mM dithiothreitol, 12% glycerol, 2 g ofpoly(dI-dC)' poly(dI- dC) and 0 to 4ul

of IVTT protein extract protein using HA-Runx2 (R166Q) or wild-tye HA-Runx2.

Aliquots were loaded onto a 4% nondenaturng polyacrylamide geL The gels were

electrophoresed for 1.5 h at 200 V, dred, and exposed to film for autoradiography.

In Situ Immunofluorescence Microscopy.

Saos-2 and Hela cells grown on gelatin-coated coverslips , were processed for in situ

immunofluorescence using standard techniques. In brief, cells were rinsed twice with ice-

cold PBS and fixed in 3.7% formaldehyde in PBS for 10 minutes on ice. After rinsing
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once with PBS , the cells were permeabilized in 0. 1% Triton X- lOO in PBS , and rinsed

twice with PBSA (0.5% bovine serum albumin (BSA) in PBS) followed by antibody

staining. Antibodies and their dilutions used are as follows: rabbit polyclonal antibodies

against Runx2 (1 :200; M-70 Santa Cruz Biotechnology, Carlsbad, CA), rabbit polyclonal

antibody raised against the HA-epitope (1 :400; M-70 Santa Cruz Biotechnology,

Carlsbad, CA), and mouse monoclonal raised against the Xpress-epitope (1 :400; M-

Invitrogen). The secondary antibodies used were either anti mouse Alexa 594 or anti

rabbit Alexa 488 (1 :800 , Molecular Probes, Eugene, OR). DNA was visualized by DAPI 

(4' , 6-diamidino- phenylindole) staining. Immunostaining of cell preparations was

recorded using an epifluorescence Zeiss Axioplan 2 (Zeiss Inc., Thorwood, NY)

microscope attched to a CCD camera.

siRNA Knockdown Experiments

Saos-2 cells at 30 to 50% confluency were transfected using Oligofectamine (Invitrogen

Life Technologies) with small interfering RNA (siRNA) duplexes specific for human

Runx2 obtained from (QIAGEN Inc. Stanford, Calif.). For gene profiling and histone

modification studies oligos were utilized at 50nM and 25nM, respectively. The siRNA

duplexes were r(GGUUCAACGAUCUGAGAUU)d(TT). The cells were also transfected

with control siRNA duplexes specific for green fluorescent protein (GFP) or non-

silencing siRNA (QIAGEN Inc.) using the same concentrations and vehicle alone as a

controL Opti-MEM (a reduced serum medium from Invitrogen) was used to dilute the

siRNA duplexes and Oligofectamine and for transfection. After treating the cells with



102

siRNA for 4 h, the cells were supplemented with McCoy s containing 45% FBS for a

final concentration of 15% in the medium. The gene profiing siRNA experiment was

carred out for 72 h, at which time the cells were harested for total protein and RNA to

analyze the knock-down effect of Runx2 siRNA on endogenous Run2. For histone

modification studies cells were treated with siRNA for 48 hrs , incubated for an additional

24hrs in the presence of the microtubule destabilzing agent Nocodazole (100ng/ml

Sigma-Aldrch), followed by shake-off to obtain mitotic cells; parallel plates were

incubated with siRNA oligos for 72 hours without nocodazole treatment to obtain

asynchronous cells.

Gene Expression Profiing

Gene expression profiling was performed using the osteogenic and cell cycle focused

cDNA arrays according to the manufactuers GEArayTM instrctions (SuperArray

Bioscience Corporation, Frederick, MD). Briefly, total RNA was isolated from Saos-

cells at the indicated time points for cell synchronization experiments and at 72 hours for

the indicated treatments for siRNA experiments using Trizol reagent (Invitrogen

Carlsbad, CA). cDNA was generated from purified RNA using a reverse transcription

reaction (Invitrogen Corporation, Carlsbad, CA) with primers provided with GEAray

kits and p -a-dCTP. Radioactive reverse transcription cDNA products were directed

hybridized to cDNA arrays for l6hrs at 60 , washed one with 1% Sodium-Dodecyl

sulfate (SDS) and 2x Sodium Chloride-Sodium Citrate (SSC) pH 7.0 with rotation at

20rpm at 60 for 15 minutes, and once with 0.5% SDS and O. lx SSC pH 7.0 with
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rotation at 20rpm at 60 for 15 minutes. Arays were exposed to BioMax fim (Kodak)

for 48hrs and digitized for quantitation. Digital images of gene arrays were quantified

using ImageQuant TL software (GE Healthcare). Signals were background corrected

, and normalized to the average of four cyclophilin A cDNA spots. Exploratory analysis

of gene expression patterns were performed using hierarchical cluster analysis of row-

wise standardized data using dCHIP software (Li and Wong, 2001).

Chromatin Immunoprecipitation

Chromatin immunoprecipitation assays (ChIPs) were performed essentially as described

(Hovhannsyan et aI. , 2003). Briefly, asynchronously growing or mitotic cells were

crosslinked in DMEM with 1 % Formaldehyde for 10 minutes. Crosslinkng reaction was

quenched by the addition of glycine at a final concentration of 250mM for 10minutes.

Cells were scraped, pelleted and washed twice with PBS. Cell pellets were resuspended

in 2.5ml of lysis buffer (l50mM NaCl , 50mM Tris-HCl pH 8. , 1% NP- , 25uM MG-

132, and IX Complete Protease inhibitor cocktail (Roche). After 10 minutes on ice

cells were sonicated to a DNA fragment size of 500- 1000 bp as determined by Agarose

gel eletrophoresis with ethidium bromide staining. Cell debris was. pre-clear by

centrfugation at l5000rpm for 20minutes. Supernatant containing protein-DNA

complexes was aliquoted into three tubes (lml per antibody and 500ul for input DNA)

were incubated for l6hours with 3ug Rabbit polyclonal antibody directed against Runx2

(M- , Santa Cruz Biotechnology) and 3ug of Normal Rabbit IgG (Santa Cru

Biotechnology) or 4ul of Rabbit polyclonal antibodies directed against hyperacetylated
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Histone H4 or dimethyl-K4 Histone H3 (#06-946 and #07-030, respectively Upstate

Biotechnology) followed by lhour with 50ul of Protein NG conjugated Agarose beads.

Protein NG bead complexes were washed with the following buffers: low salt (20 mM

Tris-CI pH 8.1 , 150 mM NaCl, 1% Triton X- 100 , 2 mM EDTA, IX complete protease

inhbitor), high salt (20mM Tris-Cl pH 8. , 500 mM NaCl, 1% Triton X- 100, 2 mM

EDTA), LiCl (10 mM Tris-Cl pH 8. , 250 mM LiCI , 1 % deoxycholate , 1 % NP-40, ImM

EDTA) and twice in TE (10 mM Tris-Cl pH 8. , 1 mM EDTA). Protein-DNA complexes

were eluted in 1 % SDS , 100 mM NaHC03. Crosslinks were reversed by incubation for

l6hours in elution buffer and 300mM Sodium Acetate pH5.2. DNA was extracted

purfied, precipitated and resuspended in TE for qPCR. ChIP enrchment was

determined as a quantitative measure reflecting the percentage of input. Runx2 target

gene ChIP data were normalized to the non-specific PH OX gene.

Western BlotAnalysis:

Western blot analysis was performed as described previously in (Galindo et aI. , 2005).

Briefly, amounts of total cellular protein were resolved in 8 or 10% SDS-PAGE and

transferred to polyvinylidene difluoride membranes (Immobilon-P; Milipore Corp.

Bedford, MA). Blots were incubated with a 1 :2 000 dilution of each primary antibody for

hour. Mouse monoclonal antibodies specific for Lamin B (1 :2000, Zymed

Laboratories, Inc. , San Francisco , CA) and Runx2 (Zhang et aI. , 2000a) were used. In

addition, Rabbit polyclonal antibody against Histone H4 (1: 1000) and Phospho-Serl 0

Histone H3 were obtained from Upstate Biotechnology. Membranes were then
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incubated with horseradish peroxidase conjugated secondary protein bands 
were

visualized by a chemiluminescence detection kit (Perkin Elmer Life Sciences, Boston

MA).

RNA Analysis:

Total RNA was isolated from cells at the indicated time points using Trizol reagent

(Invitrogen, Carls bad, CA). Total RNA was purified using the DNA-Free RNA kit

(Zymo Research Corporation, Orange CA). cDNA was generated from purfied RNA 

using a reverse transcription reaction with random hexamer primers (Invitrogen

Corporation, Carlsbad, CA). cDNA was then subjected to Real-Time PCR reaction using

SYBR chemistr (Applied Biosystems, Inc. , Foster City, CA). Primers used are shown

in Supplementary Data. All primers for gene validation studies span exons which are

contained in all known transcripts.

Statistical Analysis:

Analysis of variance (ANOV A) was carried out to assess the significance of Runx2

knockdown on histone modifications at target gene promoters. Data were obtained from

duplicate ChIP assays using hyperacetylated Histone H4 and dimethylated-K4 Histone

H3 antibodies from asynchronous and mitotic cells. qPCR measurements were made in

duplicate for each of fourteen target genes and expressed as percentage input chromatin.

mixed models analysis was performed on log-transformed ChIP data using

SAS/Analyst (Sas Institute Inc. ) with genes (14), antibodies (2), and cell cycle stage (2)



r' /

106

incorporated as fixed effects and qPCR well position as a random effect. Separate mixed

models that were grouped by cell cycle stage were also analyzed. Multiple comparisons

using Tukey HSD correction established p-values for pairwise comparisons of significant

effects.



TABLE 5. 1: Primer Sets
Promoter Primer Sets
GENE
CDC27
CDC46
CDC6
CDK4
CYCLN 82
CYCLIN H

E2Fc6
GADD45
P 1 S,1NK4

P21,WAF
RPA3
SMAD 4
SMAD5
VEGF
Runx2

FORWARD SEQUENCE
GGTGGAGMGGATGCAGTGT
CACCTGGACCCMTCAmc
TGGCCTCTAMGGCCTGA
TGGGMCMGTGTGTTCTGG
CTCCCAMGTGCTGGGATTA
GAGTGTGTGGCTCTCCAA
GTAGAGGCAGCCAGGACTTG
TGCTTCCACCTACMGTTGC
ATAGCTCGCCACACACACAC
TGTCATTGGAGCCACAGA
CATCATCACCATCACCTGCT
ACTCCCTCAMCAGGCCTTC
AGCATCGAGMGAGCTCCA
TCACTGACTMCCCCGGMC
AGAMGmGCACCGCACT

Exon-Exon Primer SetsGENE FORWARD SEQUENCECDC27 GAGmGGTGATTCAGCTTGCCDC46 ACTTACTCGCCGAGGAGACACDC6 TGCTCTTGATCAGGCAGTTGCDK4 GACTCTGMGCCGACCAG
CYCUN82 MCCAGAGCAGCACMGTAGC
CYCUNH CCTCCAGGGCTGGMTTACTE2F6 GGAGCAGGGTCAGACCAGTA

GA0D45A GGAGGMGTGCTCAGCAMGp18 ACGTCAATGCACAATGGAp21 GACTCTCAGGGTCGACGRPA3 AGGGAGGCTGGAAGATTCSMAD ACATTGGATGGGAGGCTTCASMA5 TCTGCTTGGGmGTTGTCAVEGF CCCACTGAGGGTCCACAT

REVERSE SEQUENCE
CCCCAAGAGTGAACCAG
ACGGAGTCTCACCATCTTGC
ATGGGGAGGGMTTATGACC
GACGGATACAGGATTGCACA
AMTGGGCAMGGACATGM
TGAGCCCACACAGGTAA
TTCTCCTTCCTGTTGACG
CACCAGCTGAGAGACMCCA
AGATGATCCTGGCGGATT
AAGGGGAGGAmGACGAGT
TGCACTTGTATCGCAGCAA
ACCACATCCGGGTAATTCA
GAGTGGGACTGCCCATACAC
GCCTGCAGACATCAMGTGA
AAGCCACAGTGGTAGGCAGT

REVERSE SEQUENCE
AGGGAGACCAGAGGAMGGA
CTGCCmCCCAGACGTGTA
CCMGAGCCCTGAMGTGAC
ACATCTCGAGGCCAGTCATC
ACCCmGGAGCCACTT
CTTCAGATCTGGGTGGTTCA
TCTCAATGCCATCAGTTGC
ATCTCTGTCGTCGTCCTCGT
CTCGGGAmCCMGTTCA
GGATTAGGGCTTCCTCTTGG
CCACCACTTCCACMTTCC
TTGTGMGATCAGGCCACCT
CTGCTGTCACTGAGGCATTC
TGCATTCACATTGTTGTGC

107

Notes

EXON 4. and 5
EXON 9 and 10
EXON 10 and 11
EXON 6 and 7
EXON 2 and 3
EXON 5 and 7
EXON 6 and 7
EXON 2 and 3
EXON 3 and 4
EXON 2 and 3
EXON 3 and 5
EXON 1 and 2
EXON 5 and 6
EXON 3 and 4.
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RESULTS

Runx2 Protein is Stable During Mitosis and Associated with Mitotic Chromosomes.

Run2, a tissue-specific transcription factor that confers cell fate and lineage-

commitment, is localized to chromosomes at all stages of mitosis as determined by in situ

immunofluorescence microscopy (Figure 5. 1A). Biochemical fractionation validates the

association of Run2 with mitotic chromatin (Figure 5. 1B). To assess whether Runx2 is

metabolically stable durng mitosis, we examined protein levels in synchronized cells.

Mitotic cells were released into G 1 in the presence or absence of the protein translation

inhibitor cycloheximide. Progression into G 1 was monitored by microscopy and F ACS

analysis and inhibition of translation was verified in parallel by metabolic labeling with

S methionine. As cells exit mitosis and enter G 1 , levels of Run2 or Lamin B 1 protein

are unaffected by inhibition of translation (Figure 5. 1 C). Thus, Runx2 protein

synthesized prior to division is not turned-over and is retained at the onset of the next Gl-

phase. The stability of Run2 during mitosis and its association with mitotic

chromosomes indicate a potentially novel regulatory function for this cell fate

determinant.

Mitotic Chromosome Association of Runx2 Requires Sequence-Specifc DNA Binding.

Loss-of-function mutations that abrogate the sequence-specific DNA binding of

Runx proteins alter cell phenotype and result in cancer (e. , Acute Myelogenous

Leukemia) and other human disorders (e. , Cleidocranial Dysplasia (CCD) and Familial

Platelet Disorder) (Osato , 2004; Zhou et aI. , 1999). We hypothesized that the
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Figure 5.1: Runx2 is Stable and Associated with Chromosomes During Mitosis
A. Asynchronously growing Saos-2 cells were fixed in fonnaldehyde and prepared for in situ
immunofluorescence analysis with staining for DNA using DAPI and Runx2 using a rabbit
polyclonal antibody directed against the C-tenninal region of the protein. Mitotic cells were
identified by chromosome morphology. In mitosis Runx-2 is localized to chromosomes as well as
the spindle assembly (data not shown). B. In ROS cells arested in mitosis we assessed thelocalization of Runx2 by biochemical fractionation using standard techniques to generate soluble
chromatin associated, and insoluble protein fractions compared with whole cell protein levels.
Proteins from each fraction were analyzed by western blot using antibodies against Runx2, aswell as Lamin Bl , and Histone H4 as controls. C. Stability of Runx2 protein in mitosis was
established in a cycloheximide based cell synchronization. Saos cells were arrested at the G2/M
boundary for 24hrs and allowed to release through mitosis into G 1 by washing and re-feedingwith fresh growth media. At 0 hrs protein was isolated for western analysis. Release wasperfonned in the presence or absence of the protein translation inhibitor cycloheximide (50uglml). Inhibition of protein translation was assessed in parallel by pulse 

labeling with 
Methionine for 30 minutes prior to each time point. 

At 1 , and 6 hr timepoints protein samples
were isolated for western analysis of Runx levels and the control Lamin B 1 protein; in parallel
protein was extracted from pulse labeled plates for autoradiography and Coommasse staining.
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Figure 5.2. Runx2 Association with Mitotic Cells Requires Sequence Specific DNA Binding
A point-mutation was introduced in the conserved Runt homology domain that results in an
Arginine to Glutamine amino-acid substitution at amino-acid 166 in the MASNS-isoform of the
mouse Runx2 protein (Runx2 (R166Q)J. A. To confirm the disruption of the Runx2 protein
binding to its cognate recognition sequence electrophoretic mobilty shift assays were performed
using wild-type Runx2 and mutant Runx2 (R166Q), each generated in an IVTT reaction.
Specificity of protein-DNA complexes was established by supershift using a rabbit polyclonal
antibody against Runx2 (see arrow). Protein quantity used in the EMSA were equivalent as
determined by western blot analysis. B. Co-localization studies were performed with wild-type
Runx2 and mutant Runx2 (R166Q). Hela cells were co-transfected with wild-type Runx2 and
mutant Runx2 , which were N-terminally tagged with HA- and Xpress-epitopes, respectively. 

situ immunofluorescence was performed with DNA staining by DAPI, and indirect
immunolabeling with antibodies directed against HA and Xpress epitopes with appropriate
secondary antibodies. Mitotic cells were identified by DNA morphology. C. Control
colocalization experiments were performed using HA- and Xpress tagged wild-type proteins.



111

chromosomal association of Runx2 in mitosis involves sequence-specific protein-DNA

interactions through its conserved Runt-homology domain. To test this concept we used

site-directed mutagenesis to recapitulate a point-mutation observed in CCD that abrogates

DNA binding (Figure 5.2A). Colocalization studies using indirect immunofluorescence

microscopy reveal that the Runx2 DNA binding mutant is excluded from chromosomes

durng mitosis (Figure 5.2B). Thus, association of Runx2 protein with mitotic

chromosomes requires sequence-specific DNA binding and provides evidence that Run2

remains bound to its cognate regulatory elements within target genes.

Identifcation of Mitotically Regulated Runx2 Target Genes by Functional Genomics.

We applied a functional genomics strategy to identify mitotic targets of Run2.

Genes were selected that are sensitive to Runx2 siRNA, are mitotically controlled, and

have Runx consensus motifs in their promoters. Using cDNA arrays comprising a total

of 192 osteogenic and! or cell cycle regulatory genes , we discovered 31 genes that satisfy

these three biological criteria (Figue 5.3A-C). Independent siRNA experiments

analyzed by RT-PCR directly confirmed thatRunx2 controls expression of selected genes

(Figure 5.4A). Using chromatin immunoprecipitation assays we confirmed that at least

14 of these genes are direct Runx2 targets. Two of these genes have previously been

established as Run2 responsive (e. , p2l and VEGF) and thus validate our approach

(Westendorf et aI. , 2002; Zelzer et aI. , 2001) (Figure 5.4B). Functional classification of

these target genes (Table 5.
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Figure 5.3: Runx2 Target Gene Identification
We applied a functional genomics strategy to identify mitotic target genes ofRunx2. Genes were
selected that exhibit alterations in steady state mRNA during progress from mitosis into G 1 , that

are sensitive to Runx siRNA, and have that promoters with Runx consensus motifs. The first
two criteria were assessed by eDNA-array based gene profiling and the final criterion was
assessed through a bioinfonnatics analysis using TFSEARCH (Heinemeyer et aI. , 1998). A. Cells
were synchronized at mitosis and released into G 1 with RNA taken at 0, I. , 3 , and 6hrs for
analysis. B. siRNA knockdown of Runx2 levels was perfonned at various concentrations between
2SnM (not shown), SOnM, 100nM, and 200nM. Knockdown samples were obtain after 72 hours
of treatment with SOnM of specific Runx2 siRNA oligos, non-specific GFP targeted siRNA, and
vehicle control. C. Using cDNA arrays comprising a total of 192 osteogenic and/or cell cycle
regulatory genes from Superarray biosciences. A Venn diagram indicates the grouping of genes
arid we discovered thirt-one genes that satisfy all three criteria. Thirt-one target genes were
analyzed by hierarchical clustering based on G2/M to G 1 cell cycle expression data in D. and E.
their expression in the Runx2 knockdown experiment. The colonnap is applied to standardized
gene expression data pure blue = -3, pure white = 0 , and pure red = 3.
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Figure 5.4: Target Gene Validation
Putative Runx2 target genes identified by gene expression profiing were examined by chromatin

immunoprecipitations (ChIP). A. Fourteen genes were identified in a primary screen (data not shown) and
characterized as bona-fide targets by qPCR analysis of ChIPs in two independent duplicate experiments.

Samples were quantified relative to input and nonnalized to the non-specific immunoprecipitation of the
PHOX gene promoter. Values represent the logz difference between Runx2 specific signals and
background levels established by ChIPs with control non-immune IgG. B. The responsiveness of the
fourteen target genes to modulations in Runx2 levels were detennined in independent siRNA experiments
analyzed in duplicate by RT -qPCR with primer-sets designed against exon-exon junctions on each of the
target genes. Gene expression data are nonnalized to 28s RNA and expressed as the logz difference

between Runx2 and non-specific siRNA. Error bars reflect standard error of the mean. C. Interaction of
Runx2 with its novel target genes was assessed during mitosis by chromatin immunoprecipitations (ChIP)
assays. ChIP studies for the fourteen target genes were perfonned with pure mitotic cells isolated by

nocodazole-synchronization and mitotic shake-off in two independent experiments which were analyzed in
duplicate by qPCR. Samples were quantified relative to input and nonnalized to the non-specific

immunoprecipitation of the PHOX gene promoter. Values represent the logz difference between Runx2
specific signals and background levels established by ChIPs with control non-immune IgG. D. The

interaction of Runx2 with the promoter of its own gene was assessed by ChIP on asynchronous and mitotic
cells.



114

TABLE 5.2: Target Gene Annotation

CDC46

COC6

Cdk4

CydinB2

Cydin H

GADD45

p18/JNK4C

P21IWaf1JCIP1

RPA3

Smad4IPC4

Smad5

VEGF

GenHank Lacu Link:

Nf\CO'O'1256 996

O'06739 4174

Nf\CO'G1254 990

NM 0'00075 1019

OG4701 9133

O'01239 90'2

O'01952 1876

001924 1647

Nf\CO'78626 10'31

NI\C000389 10'26

NM-:002947 6119

NIIILO'05359 4089

NliCO'O'5903 40'90

NIIILOO'3376 7422

Descriptian
Anaphase pramatingcomplex subunit 3 , essential far cell

divsian,
Also knawn as MCM5, farms a complex with MCM2 and is
invalved in DNA replication. May have a raJe in cell divisian
Invalved in the initiatian of DNA replication, .Alsa partcipates

in checkpaint controls that ensure DNA replication is
campleted before mitasis is initiated,
Probably invO'lved in the cantral of the cell cycle.

Essential far the cantralafthe cell cycle at the G2M (mitasis)
transitian,
Involved in cell cycle control and in RNA transcriptian by RNA
palymerase II, Itsexpressian and activity are constant
throughout theceH cycle,
Inhibitor of E2F-dependent transcription Jacks the
transcriptianal activtian and packet pratein binding
domains. Appears to' regulate a subset af E2F-dependent
genes whase products are required far entry intO' the cell

cycle but not farnarmaJ cell cycle progression.
Binds to' proliferating cell nuclear antigen, Might affect PCNA
interacton with same' CDK (cell divsion protein kinase)
camplexes; stimulates DNA excisian repair in vitrO' and

inhibits entry of cells intO'S phase,
Interacts strongly with CDK6, weakly with CDK4. Inhibits cell
growth and praliferation with a carrelated dependence an
endogenaus retinablastama protein RH.
May be the impartant intermediate by which p53 mediates its
role as an inhibitor of cellular proliferation in respanse to'
DNA damage. May bind to and inhibit cyclin-dependent
kinase activity, preventing phosphorylatian af critical cyclin-
dependent kinase substrates and blockingceUcycle
progression,
Absolutely required for simian virus 40' DNA replicatian in
vitrO', It participates in a very early step in initiation. RP-A is a

single-stranded DNA-binding protein.
Common mediator of signal transducton by TGf-beta
(transforming grawth factor) superfamily; SMAD4 is the
cammon SMAD (co-SMAD). Pramotes binding ofthe
SMAD2JSMAD4IFAST-1 complex to' DNA and provides an

activation functan required far SMAD10r SliIAD2 to' stimulate
transcription. May act as a tumor suppressor.
Transcriptional modulataractivated by 8MP (bone

, marphagenetic proteins) type 1 receptar kinase,. SMAD5 is a

receptar-regulated SM,A. i,R-8MAD).

Growth factor actve in angiagenesis , vascuJagenesis and

endatheHal cell grawth. lnduces endotheHalceH proliferatian

pramotes cell migration , inhibits ap optosis and induces

permeabHizatian of blood lIessels,
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reveals that Runx2 exerts phenotye control at the transcriptional level to mediate cell

cycle progression and signaling pathways that establish competency for lineage

commitment.

Because our immunofluorescence microscopy studies indicate that Run2 binds

to mitotic chromosomes through the Runt homology sequence-specific DNA binding

domain, we tested whether Run2 associates with target genes at mitosis. Chromatin

immunoprecipitation assays were performed on prometaphase cells. Our results show

that within the condensed mitotic chromosomes, Runx2 retains association with the

promoters of nearly all of target genes examined (Figure 5AC). Furthermore, we have

established that Runx2 protein binds to the Runx2 promoter durng mitosis , suggesting a

mitotic autoregulatory function (Figure 5AD). Interestingly, in mitosis Runx2does not

associate with the Cyclin B2 target gene, which is involved in control of mitotic

progressIOn. Our findings suggest that Runx2 provides a critical regulatory fuction in

progeny cells for post-mitotic gene expression in G 

Runx2 Target Genes Exhibit Mitotic Specifc Histone Modifcations.

Recent work indicates that specific histone modifications may mark active genes II

mitosis (Kouskouti and Talianidis, 2005b). We investigated whether promoters of Runx2

target genes exhibit mitotic specific epigenetic changes that could be indicative of post-

mitotic transcriptional state. Acetylation of histone H4 and dimethylation of histone H3

on lysine 4 (K4), which are both linked with active gene



116

Ac-Histone H4 ChiP K4diMe-Histone H3 ChiP

I: 60

a. 20

. Asynchronous

II Mitsis

. Asynchronous

mMitsis

; 50

Gi 40

11 30

a. 20

t. 10

U) .. 

W 0

J:C"

--::

U) u. ..(! c
c W 
o ;: 

2 :; 

g a 

)- 

o 0

U) U. ..(! c
c W o ;: 

U) .. 
aL N C W 0

.. II C 
In 0

Cell Cycle Dependent Histone Modifcations

80 

II Mitotic Cells

60 

!. AsynChronous Cells 'i2' 'O 1! 

!- 

40 A .

20 

,:-,; 

o 0 10 20 30 40 
diMethylated K4 H3
ChiP , Percentage Input

Figure 5.5. Runx2 is Associated with Epigenetically Modifed Target Genes in Mitosis

ChIP analyses of histone modifications at the fourteen target genes were performed with
asynchronous (dark gray bars) and pure mitotic cells (light gray bars) that were

synchronized as described in Figure 4. Duplicate samples were analyzed by qPCR
quantified as a percentage of input and normalized (' median-shifted' ) for comparison

with subsequent functional experiments in Figure 6. A. Histone H4 acetylation and B.

histone H3 K4-dimethylation for the promoters of fourteen target genes promoters is

shown. Ordinate is percentage input chromatin. C. A scatterplot of H4 acetylation

(ordinate) versus H3 K4-dimethylation (abscissa) for all fourteen genes in asynchronous
cells (black triangles) and mitotic cdls (gray squares) is depicted. A least squares

regression line is shown for each population.
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expreSSIOn, were examined in both asynchronous and mitotically synchronized cells

(Figue 5.5). The majority of Runx2 responsive genes exhibit substantially decreased H4

acetylation in mitosis (Figure 5.5A). In contrast we observe a retention or selective

, increase in mitotic histone H3-K4 dimethylation compared with asynchronous cells

(Figure 5.5B). Our data show that in general histone H4 acetylation is positively linked

with histone H3 K4-dimethylation in asynchronous, but not mitotic cells (Figue 5.5C).

The reduction of histone H4 acetylation may be coupled with the shut-down of

transcription in mitosis. We propose that the persistence of basal levels ofH4 acetylation.

and constitutive histone H3-K4 dimethylation at Runx target gene promoters durng

mitosis reflects a transcriptionally poised chromatin strcture.

Runx2 affects post-translational histone modifcations at target gene promoters during

mitosis

Runx2 mediates activation and repression of gene transcription through interactions with

a diverse set of chromatin modifying enzymes. Because Runx2 associates durng mitosis

with target gene promoters that exhibit distinct histone modifications, we mechanistically

addressed whether Runx2 mediates these epigenetic alterations. We generated Run2

deficient mitotic cells using RNA interference and determined the effect on H3-

dimethylation and H4 acetylation at Runx2 regulated promoters (Figure 5.6A).

Quantitative chromatin immunoprecipitation analyses for the fourteen target genes

revealed that depletion of Runx2 protein alters promoter histone modifications

(p=0.0005); and that these effects are gene specific (p=0.0001). We
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Figure 5.6: Runx2 Affects Mitotic Histone Modifcations at Target Gene Promoters
A. The effects of Runx2 on promoter . histone modifications were assessed by combining siRNA gene
knockdown with mitotic cell synchronization. The schematic depicts the experimental strategy for
obtaining Runx2 depleted mitotic cells. Histone modifications levels at target gene promoters in mitotic
and asynchronous cells were assayed by chromatin immunoprecipitation and analyzed by qPCR. Protein
was extracted in parallel plates to validate Runx2 knockdown. Cyelin B I levels and histone H3 (S 1 0)

phosphorylation status were assessed as markers of mitosis and Lamin B 1 was used as a laading control.
Effciency of siRNA transfection ()o90%) was determned in parallel with flourophore conjugated non-
silencing siRNA oligos (data not shown). The levels of hyperacetylated histone H4 and dimethylated
histone H3 (K4) in control and Runx2 siRNA treated cells was determned in two separate ChIP assays
each analyzed in duplicate by qPCR for the enrchment of fourteen target gene promoters (not shown). A
scatterplot of H4 acetylation (ordinate) versus H3 K4-dimethylation (abscissa) for all fourteen genes in
asynchronous cells (panel B.) and mitotic cells (panel C.) treated with control (black trangles) or Runx2
siRNA (open trangles). A least squares regression line is shown for each population: control (solid line)
or Runx2 siRNA (broken line). A mixed model analysis of variance was employed to assess the
significance of observed Runx2 siRNA effects compared with control for all fourteen genes, results from
SMAD4 and CyclinB2 are shown. Multiple pairwise comparisons (Tukey s HSD) were evaluated to
detennine which effects differ significantly at a 0.05-level and to establish p-values; error bars are standard
error (n=4). Column plots show ChIP results for SMAD4 and CYCLINB2 as percentage input chromatin
(ordinate) in Runx2 and control siRNA treated (panel D.) asynchronous and (panel E.) mitotic cells.
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find an overall reduction in levels of H4 acetylation, but not H3-K4 dimethylation, at

Runx2 target gene promoters in asynchronous cells (Figure 5.6B). In contrast, durng

mitosis we find that loss ofRunx2 significantly diminishes both H3-K4 dimethylation

, and H4 acetylation at target gene promoters (Figure 5.6C). We observe the greatest

effect on histone modifications at the SMAD4 gene, which in response to Run2

knockdown exhibits decreased H3-K4 dimethylation and H4 acetylation durng mitosis

(p,0.0001), but not in asynchronous cells (Figure 5. , E). These observations are

consistent with high levels of Runx2 interaction with the SMAD4 promoter in mitosis.

and sensitivity of SMAD4 expression to Runx2 siRNA (Figure 5.4A, B). For

comparison, we do not detect Runx2 dependent histone modifications at the cyclin B2

promoter, which does not bind Runx2 during mitosis (Figure 5. , E). Taken together

our findings indicate that Runx2 contributes to the regulation of histone modifications at

target gene promoters during mitosis (Figue 5.6F).
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CONCLUSIONS

We have investigated the Runx2 transcription factor as a paradigm for

understanding mechanisms by which phenotypic control of gene expression is sustained

during mitotic division. Our results show that Runx2 interacts sequence-specifically

with mitotic chromosomes at target gene promoters and influences histone H4 acetylation

and histone H3 K4-dimethylation during mitosis. Runx2 is thought to function as a

promoter-bound scaffold for the temporal recruitment of co-activators or repressors and

associated chromatin modifying factors that establish histone modification patterns in

mitosis. Loss-of-function DNA-binding mutations in Run proteins eliminate mitotic

chromosome association and are linked with alterations in cell phenotype in multiple

human disorders. We propose that chromosomal association of Run2 in mitosis

supports epigenetic retention of phenotype during cell division to maintain lineage

identity of progeny cells.
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CHAPTER VI:

Mitotic occupancy and lineage-specific transcriptional control of

ribosomal RNA genes by the Runx2 transcription factor
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ABSTRACT

Regulation of ribosomal RNA expression supports the growth of cells and 

tightly coupled with proliferation and differentiation. Transcription factors that govern

cell identity must convey phenotypic information through successive cell divisions for

regulatory events that determine cell cycle progression or exit in progeny cells. Runx

proteins are master regulators that control cell fate during hematopoiesis (Runl),

osteogenesis (Run2), as well as gastrointestinal and neuronal development (Runx3).

Within the condensed mitotic chromosomes we find that Runx2 is retained in large

discrete foci that are symetrically positioned on sister chromatids. These chromosomal

foci are associated with open chromatin at nucleolar organizing regions , co-localize with

the RNA polymerase I transcription factor, UBF1 and transition into nucleoli during

interphase. By chromatin immunoprecipitation analysis we demonstrate that durng the

M/G GO/G , and G liS transitions there are specific spatial and temporal changes in the

binding of Runx2 throughout rDNA repeats. Reduction of Runx2 levels by siRNA

activates rRNA transcription, while induction of Runx2 directly represses ribosomal

biogenesis. Functional linkage between Runx2 and ribosomal gene expression is further

demonstrated by enhanced ribosomal RNA synthesis in primary cells from Runx2 null

mIce. Runx2 repression of ribosomal gene expression is associated with growth

inhibition and expression of lineage-specific genes. Our findings establish that Runx2

not only influences lineage commitment and cell proliferation by regulating RNA

polymerase II transcription, but also acts as a cell cycle dependent suppressor of RNA
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polymerase I mediated rRNA synthesis. Thus , Runx2 provides an important mechanistic

link between cell fate, proliferation and growth,control.
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INTRODUCTION

Cell identity is defined by the expression of tissue-specific proteins as well as

proliferative capacity and cell size. Tissue-specific gene expression reflects cell fate

determination and lineage commitment, which are controlled by master transcriptional

regulators. Proliferative capacity is mediated by oncoproteins and tuor suppressors that

regulate cell cycle progression and mitotic division. Cell proliferation in progeny cells is

tightly coupled with growth, defined as the accumulation of cell mass and size, and

requires ribosomal biogenesis. Phenotypic identity must be transmitted to progeny cells

following mitosis , and it is imperative to elucidate the mechanism that accomplishes this

fundamental biological process.

The Run proteins are a umque class of transcription factors that establish

lineage-commitment and phenotypic gene expression, as well as control proliferative

potential of committed progenitors (Blyth et aI. , 2005). Runx factors are scaffolding

proteins that integrate cell signals through the formation of gene regulatory complexes at

subnuclear micro environments (Zaidi et aI. , 200la; Zaidi et aI. , 2003). At mitosis , these

subnuclear domains and nucleoli reorganize concomitant with nuclear disassembly,

chromatin condensation and transcriptional silencing (Swedlow and Hirano, 2003;

Dimario, 2004; Hernandez-Verdun ' and Roussel, 2003; Gottesfeld and Forbes, 1997;

Spector, 2003; Zaidi et aI. , 2005; Zaidi et aI. , 2003). We have shown that Runx proteins

are present during mitosis and equally distributed between progeny cells (Zaidi et aI.

2003). Hence , Runx proteins may have the inherent ability to maintain cell identity.
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The essential roles of the mammalian Run proteins in establishing phenotyic

identity is evidenced by loss-of-function mutations that cause catastrophic defects in

hematopoiesis (Runxl), osteogenesis (Runx2), or neuronal and gastro-intestinal

, development (Run3) (Choi et aI. , 2001; Komori et aI. , 1997; Wang et aI. , 1996a; Inoue

et aI. , 2002; Li et aI. , 2002; Westendorf et aI. , 2002). Furthermore, deregulation of Run

proteins in specific cellular contexts has been associated with tumor formation and

metastases (Javed et aI. , 2005; Barnes et aI. , 2003; Brubaker et aI. , 2003; Yang et aI.

2001; Blyth et aI. , 2001; Vailant et aI. , 1999; Neil et aI. , 1999; Lund and van Lohuizen

, .

2002; !to, 2004; Cameron and Neil, 2004). Runx 1 is frequently rearranged in acute

myelogenous leukemia, Runx2 is implicated in metastatic breast cancer and T-cell

lymphomas and Runx3 is associated with gastric cancer (Barnes et aI. , 2003; Neil et aI.

1999; Blyth et aI. , 2005; Li et aI. , 2002; Barnes et aI. , 2004; Javed et aI. , 2005). Run2

normally attenuates osteoblast proliferation and promotes the development of the matue

bone cell phenotype (Coffman, 2003; Westendorf et aI. , 2002; Pratap et aI., 2003;

Thomaset aI. , 2004; Lian et aI. , 2004; Galindo et aI. , 2005). Here we demonstrate that the

lineage-specific Runx2 transcription factor controls ribosomal RNA synthesis through

interphase and mitosis. Hence, we have discovered a heritable mechanism that

coordinates ribosomal biogenesis, lineage commitment, and cell cycle progression. We

conclude that Runx2 functions at a critical mechanistic juncture that regulates cell

proliferation, growth and differentiation.
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MATERIALS AND METHODS

Cell Culture and Synchronization

Saos-2 osteosarcoma cells were maintained in McCoy s medium containing 15%

fetal bovine serum plus 2 mM L-glutamine and a penicilin-streptomycin cocktail.

MC3T3 cells were maintained in a-MEM medium containing 10% fetal bovine seru

plus 2 mM L-glutamine and a penicilin-streptomycin cocktail. Primary calvarial cells

were isolated as described in (Owen et aI. , 1990) from mice homozygous for the wild-

tye Runx2 allele , the C-terminally trncated Runx2 allele (e. , Runx2- C) (Choi et aI.

2001), and the Run2 null allele (Komori et aI. , 1997) and were maintained in a-MEM

medium containing 10% fetal bovine serum plus 2 mM L-glutamine and a penicilin-

streptomycin cocktail. Human IMR-90 fibroblasts were maintained in Basal Eagle

Medium containing 10% fetal bovine seru plus 2 mM L-glutamine and a penicilin-

streptomycin cocktail.

MC3T3 and cells blocked mitosis for chromatinSaos- were

immunoprecipitation assays and block release studies by adding 100 ng/ml nocodazole

for 18 or 24 hrs , respectively, followed by shake-off to detach mitotic cells. For block-

release studies MC3T3 cells were synchronized in mitosis as described above and either

processed for biochemical assays or washed once in serum- free medium, followed by

replating in growth media to obtain subsequent time points in G 1 for biochemical assays.

The GO/G 1 and G liS synchronizations were obtained by serum deprivation and re-

stimulation of MC3T3 cells. Quiescent cells (GO) were obtained by culturing for 48

hours in serum-free media and either processed for biochemical assays or stimulated to
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reenter the cell cycle and traverse Gl and early S phase by the addition of seru

containing growth media.

, In Situ Immunofluorescence Microscopy.

Cells grown on gelatin-coated coverslips as well as chromosome spread

preparations, were processed for in situ immunofluorescence essentially as described

(Zaidi et aI. , 200la). In brief, cells or spreads were rinsed twice with PBS and fixed in

7% formaldehyde in PBS for 10 minutes. After rinsing once with PBS , the cells were.

permeabilized in 0. 1 % Triton X- IOO in PBS , and rinsed twice with PBSA (0.5% bovine

serum albumin (BSA) in PBS) followed by antibody staining. Antibodies and their

dilutions used are as follows: rabbit polyclonal antibodies against Runx2 (1 :200; M-

Santa Cruz Biotechnology, Carlsbad, CA), Histone H3 Methylated on Lysine 9 (1: 000),

Histone H3 Methylated on Lysine 4 (1 :3000), or Histone H3 Phosphorylated on Serine 10

(1 : 1000); all histone antibodies were obtain from Upstate Biotechnology Charlottesvile

V A, and mouse monoclonal antibodies directed against Runx2 (Zhang et aI. , 2000b) and

UBFl (1 :400; F-9 Santa Cruz Biotechnology, Carlsbad, CA). The secondary antibodies

used were either anti-mouse Alexa 594 or anti-rabbit Alexa 488 (1 :800, Molecular

Probes , Eugene, OR). DNA was visualized by DAPI (4' , 6-diamidino- phenylindole)

staining. Control samples for colocalization studies were incubated with and without

Runx2 primary antibodies alone (mouse and rabbit) and both secondary antibodies (data

not shown). Chromosome spreads were generated by incubating mitotic cells in 50 mM

KCI solution for 15 minutes at room temperature following by centrifugation at 1000 rpm
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for 10 minutes onto positively charged glass slides. DNAseI hypersensitive chromatin is

labeled, essentially as described in Kerem et al (Kerem et aI. , 1984), with incorporation

of Alexa488-dUTP (Molecular Probes , Eugene , OR) by DNA Polymerase I (10 units/ml)

incorporation on DNAseI (2 units/ml) nicked chromosome spreads--5 minute incubation

with both enzymes at room temperature. Staining of cell preparations and chromosome

spreads was recorded as z-series stacks with a CCD camera attached to an

epifluorescence Zeiss Axioplan 2 (Zeiss Inc. , Thorwood, NY) microscope. Stacks were

deconvoluted using MetaMorph Imaging Software (Universal Imaging).

Immunoelecton Microscopy

Immunelectron micrscopy was performed essentially as described in Nickerson

JA et aI. (Nickerson et aI., 1990). Briefly, proliferating Saos- cells grown on

Thermanox coverslips were washed in PBS , permeabilized in 0. 1% Triton- 100 in

cytoskeletal buffer with AEBSF and VRC at 4 C; fixed in 4% paraformaldehyde

(electron microscopy grade) in the same buffer, then antibody stained for Run2 (1:100;

70 Santa Cruz Biotechnology, Carlsbad, CA). Control sections were not exposed to

the first antibody and others were stained for Lamin B 1 for comparison (data not shown).

The second antibody was linked to 5 nm gold beads. Cells were then fixed 2.

Glutaraldehyde in O. lM Cacodylate Buffer, pH7.4 , at 4 C for 1 hour, then washed in the

same buffer at 4 C. Cells were dehydrated in graded ethanol solutions with propylene

oxide as the intermediate solvent, infiltrated, then embedded in Epon and cured at 60

for 2 days. The coverslips were removed, thin sections were cut, stained with 1.4%
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uranyl acetate in 40% ethanol, post stained with lead citrate , and imaged with a Philips

CM-1O electron microscope. For whole mount analysis of nuclear matrx-intermediate

fiament preparations, Saos-2 cells were grown on gold grds coated with formvar and

, carbon before sterilization under ultraviolet light. Nuclear matrix intermediate fiament

preparations were made (He et aI. , 1990) and then fixed in formaldehyde, stained with an

anti-Runx2 polyclonal antibody, incubated with a second antibody coupled to 5 nm gold

beads , and critical point dred as described (Nickerson et aI. , 1990).

Chromatin Immunoprecipitation and Analysis

Chromatin immunoprecipitation assays (ChIPs) were performed essentially as

described (Hovhannisyan et aI. , 2003). Briefly, asynchronously growing and mitotic cells

were crosslinked with 1 % Formaldehyde in DMEM for 10 minutes. Crosslinkng

reaction was quenched by the addition of glycine at a final concentration of 250 mM

for 10 minutes. Cells were collected, pelleted and washed twice with PBS. Cell pellets

were resuspended in 2.5 ml oflysis buffer (150 mM NaCl 50 mM Tris-HCI pH 8.

1% NP- , 25 uM MG- 132, and IX CompleteCI Protease inhibitor cocktail (Roche

Indianapolis, IN). After 10 minutes on ice, cells were sonicated to a DNA fragment size

of approximately 500 bp as determined by agarose gel eletrophoresis with ethidium

bromide staining. Cell debris was pre-cleared by centrifugation at 15000 rpm for 20

minutes. Supernatant containing protein-DNA complexes was aliquoted into four tubes

(1 ml per antibody and 500 ul for input DNA) were incubated for 16 hours with 3 ug

Rabbit polyclonal antibody directed against Runx2 (M- , Santa Cruz Biotechnology), 3
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ug of Mouse monoclonal antibody directed against UBFl and 3 ug of IgG control (Santa

Cruz Biotechnology) followed by 1 hour with 50 ul of Protein AlG conjugated Agarose

beads. Protein AlG bead complexes were washed with the following buffers: low salt (20

mM Tris-Cl pH 8. , 150 mM NaCI 1% Triton X- IOO, 2 mM EDTA, IX complete

protease inhibitor), high salt (20 mM Tris-Cl pH 8. , 500 mM NaCl, 1% Triton X- 100, 2

mM EDTA), LiCI (10 mM Tris-Cl pH 8. 250 mM LiCl , 1 % deoxycholate, 1 % NP-

, ImM EDT A) and twice in TE (10 mM Tris-Cl pH 8. , 1 mM EDT A). Protein-DNA

complexes were eluted in 1 % SDS and 100 mM NaHC03. . Crosslinks were reversed by

incubation overnight in elution buffer and 300mM Sodium Acetate pH5.2. DNA then

was extracted, purified, precipitated and resuspended in TE for qPCR using primers

outline in Table 6.

ChIPs were performed on six pooled biological samples and duplicates were

analyzed using a quantitative measure that reflects the amount of genomic DNA amplicon

precipitated with a specific antibody (i. , Runx2 or UBF) relative to the non-specific

antibody (i. , normal IgG) (Wells et aI. , 2003). Samples were normalized to a non-

specific genomic DNA control; human cells (data not shown): PHOX promoter and

mouse cells: IgH enhancer, Table 6. 1. For determining the spatial occupancy profiles of

Runx2 and UBF 1 between different cell synchronies, we first computed the mean ChIP

occupancy at each rDNA primer set location across each time course. For M/G 1 this

reflects an average of 0 , 2 , 4 and 8 hours post-mitotic release; for GO/G 1 this reflects an

average of 0 , 3 , 6 , and 9 hours post serum stimulation; for G liS this reflects an average 

, 15 and 18 hours of the post serum stimulation. These time-averaged ChIP
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occupancies were spatially standardized for each cell cycle transition (i. , M/G 1 GO/G 

and G liS) by subtracting from each primer set the overall mean of all seven rDNA primer

sets and dividing this value by overall standard deviation of all seven rDNA primer sets.

, The Pearson s correlation coeffcient was computed to compare these spatial occupancy

profiles between cell cycle transitions.

Western Blot Analysis:

Run2 and cell cycle markers were analyzed by western blot analysis as described.

previously in Galindo et al (Galindo et aI. , 2005). Briefly, amounts of total cellular

protein were resolved in SDS-P AGE and transferred to polyvinylidene difluoride

membranes (Immobilon-P; Milipore Corp. , Bedford, MA). Blots were incubated with a

1 :2 000 dilution of each primary antibody for 1 hour. Rabbit polyclonal antibodies (Cdk

CdKl , cyclin A, cyclin Bl , cyclin E, and mouse monoclonal antibodies (cyclin Dl)

(Santa Cruz Biotechnology, Inc. , CA). Mouse monoclonal antibodies specific for Lamin

Bl (1:2000 , Zymed Laboratories, Inc. , San Francisco, CA), Tubulin (1:10000, Sigma)

and Runx2 (1 :2000, 22) were also used. Membranes were then incubated with

horseradish peroxidase conjugated secondary protein bands were visualized by a

chemiluminescence detection kit (Perkin Elmer Life Sciences , Boston, MA).

RNA Analysis:

Total RNA was isolated from cells at the indicated time points using Trizol

reagent (Invitrogen, Carlsbad, CA). Total RNA was purified using the DNA-Free RNA
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kit (Zymo Research Corporation, Orange CA). cDNA was generated from purified RNA

using a reverse transcription reaction with random hexamer primers (Invitrogen

Corporation, Carlsbad, CA). cDNA was then subjected to Real-Time PCR reaction using

SYBR chemistr (Applied Biosystems, Inc. , Foster City, CA). For analysis primers used

are shown in Table 1. Pre-rRNA synthesis was assessed using qPCR with primers

flankng early rRNA processing sites and analyze relative to total rRNA levels with

primers within the 28S coding region.

siRNA, AdenoviralInfection, and Transfection

IMR-90 cells were transduced with an adenovirus vector encoding mouse Run2

protein under the control of a CMV promoter or a LacZ transgene for controL Briefly,

viral particles were administered at 50 MOl in a-MEM with 1% FBS, incubated for 1

hour at 37 C. After infection, free virus was aspirated, and cells were washed twice in

serum-free media. Transfection efficiency at 24 hours was approximately 100% as

assessed by x-Gal staining and GFP fluorescence. Protein levels were monitored by

western blot at 24 and 48 hours. Cell number was also monitored in parallel experiments

through the use of a hemocytometer.

Saos-2 cells at 30 to 50%' confluency were transfected using Oligofectamine

(Invitrogen Life Technologies) with small interfering RNA (siRNA) duplexes specific for

human Runx2 obtained from QIAGEN Inc. (Stanford, Calif.) at different concentrations

50 nM. The siRNA duplexes were r(GGUUCAACGAUCUGAGAUU)d(TT). The cells

were also transfected with control siRNA duplexes specific for green fluorescent protein
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(GFP) using the same concentrations and vehicle alone as a control. Opti-MEM (a

reduced serum medium from Invitrogen) was used to dilute the siRNA duplexes and

Oligofectamine and for transfection. After treating the cells with siRNA for 4 hours , the

, cells were supplemented with McCoy s containing 45% FBS for a final concentration of

15% in the medium. The siRNA experiment was carred out for 72 hours, at which time

the cells were harvested for total protein and RNA to analyze the knock-down effect of

Runx2 siRNA on endogenous Run2 and its effect ribosomal RNA synthesis by qPCR.

MC3T3 cells at 30-40% confluency were transfected with 500 ng of MR170-BH 

reporter plasmid and 500 ng total plasmid DNA comprised either of 125 ng pcDNA-HA-

Run2 and 375 ng empty pcDNA, or 250 ng pcDNA-HA-Runx2 and 250 ng empty

pcDNA. Control experiments were conducted with 1 ug GFP expression plasmid to

monitor transfection effciency by GFP fluorescence. MR170-BH is described in Budde

and Grut (Budde and Grummt, 1999) and contains a 170 bp minimal mouse rDNA

promoter that drives expression ofa unique pUC9 vector sequence fused to a RNA

polymerase I transcriptional termination sequence. RNA and protein was harvested at 24

hours to assess reporter activity and Runx2 protein levels. Real time PCR primers were

designed against the pUC9 transcribed sequence for assessment of reporter activity.

Reporter activity as determined by qPCR was normalized to the control mitochondral

cytochrome c oxidase subunit II gene.



TABLE 6.1: Primers

Name
hrDNA1

hrDNA

hrDNA

hrDNA4

hrDNA

hrDNA

hrDNA7

mrNA1

mrDNA

mrDNA3

mrDNA4

mrDNAS

mrDNA6

mrDNA7

h28s

m28s

Species Description

Human Ribosomal DNA Repeating Unit

Principal phosphoryated glycoprotein of bone X13694

Mouse rDNA promoter/exression construct: unique nla
UC9 transcribed se uence

Enhancer elemen located in the intron upstream of V01524
the immuno lobulin amma constant re ion

CYTOCHROME b(558),BETA SUBUNIT

Human Ribosomal DNA Repeating Unit

Sequence S' to 3'

Forwrd TGTCAGGCGTTCTCGTCTC
rne MMGC MCffC

Forward GMTGCGTGCAmATCAGA
rne GTTGATAGGGCAMCGTTCG

Forward CGCCGGTGATACCACTAC
Reverne CCAGTCAACTCCCCACCT
Forwrd GCCTTAmMGTGGCTTCC
Reverne CAMTCGGCCAGCTTACT
Forwrd MGCTGGCCMTCTGATM

rne TTCCCMGTCTGGTTGA TCC
ForwrdCTCAGCCTCCCMGTAGCTG
Reverne MTCMGACCATCCTGGCTA
Forwrd AGGTGTCCGTGTCCGTGT
Reverne GGACAGCGTffCAGCMTM
Forwrd GCTTGmCTCCCGATTGC
Reverse CGCGACCACTGAGAMGT
Forwrd ffCTCTCGGTCCCTTGTMG

rne ACGGGTCAGTCAMGMMG
Forwrd CGCCGGTGATACCACTAC
Reverne CTMGCTCGCCTTAGGACAC
Forwrd ATCAGMGGTCCCGCTAGTT

rseACGGCTTMCATCCAACTC
Forwrd TCCTTCCTTCCTCCCTTC
Reverne MGGTCACCCTGGCTTACM
Forwrd ACCCTCCTCTTCCACTGCTT
Reverse GGCACCCAACGAAGTA
Forwrd GCGGTTCmCATTGACC
Reverse ACGCGCCTGGAGTCA TAC

hpre'rRNA Forwrd CCGCGCTCTACCTTACCTAC
Reverse GAGCGACCAAGGMCCATA
Forward GACmGAGGCCGAGTG
Reverse ATCTGMCCCGACTCCCm

mpre-rRNA Forwrd GCTTGmCTCCCGATTGC
Reverse CGCGMCCACTGAGAMGT
Forwrd GMCmGAGGCCGAffG
Reverse ATCTGMCCCGACTCCCm

mHistoneH4n Forwrd CCAGCTGGTGmCAMTTACA
Reverse ACCCTTGCCTAMCCCmC

mOsteopontir Forwrd. mGCTTGCCTGmGC
Reverse CAGTCACmCACCGGGAGG

hOsteopontn Forward ACACATATGATGGCCGAGGT
Reverne ATGGCCTTGTATGCACCA TT

MR170-BH Forwrd ATTCACTGGCCGTCGTTA
Reverse GGCCTCTTCGCTATTACGC

Igy Enhancer Forward TGGTGGGGCTGGACAMGTGmC Mouse
rne GCCGATCAGMCCAGMCACC

Pho(GP91) Forwrd CCMTGATTATTAGCCMmCTG Human
Reverne CA TGffGGCAGAGGTTGMTGT

Human Ribosomal DNA Repeating Unit

Human Ribosomal DNA Repeating Unit

Human Ribosomal DNA Repeating Unit

Human Ribosomal DNA Repeating Unit

Human Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Human Ribosomal DNA Repeating Unit

Human Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Ribosomal DNA Repeating Unit

Mouse Replication Dependent Histone H4 Gene

Mouse Princpal phosphorylated glycoprotein of bone

Human

nla

134

Accession Number

U13369

U13369

U13369

U1336

U13369

U13369

U13369

BK000964

BK000964

BK000964

BK000964

BK000964

BK000964

BK000964

U13369

U13369

BK000964

BK000964

AY158966

NM 009263

M66390
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RESULTS

Runx2 Foci Are Associated with Active Nucleolar Organizing Regions (NORs) 

Mitotic Chromosomes.

A dynamic intracellular reorganization of the gene regulatory machinery takes

place during mitosis. At the initiation of prophase, there is a global condensation of

chromosomes, nuclear reorganization, disassembly of nucleoli, and a silencing of

transcription. Our laboratory has previously demonstrated that the subnuclear localization

of Runx2 is also disrupted durng mitosis and restored in telophase, when transcription

resumes (Zaidi et aI. , 2003). In contrast to transcription factors that are displaced from

chromosomes and/or degraded during mitosis (Martinez-Balbas et aI. , 1995; Muchardt et

aI. , 1996; Nuthall et aI. , 2002; Prasanth et aI. , 2003), Run proteins remain stable and a

subset is associated with mitotic chromatin (Zaidi et aI. , 2003).

Using immunofluorescence microscopy of metaphase chromosome spreads, we

have made the striking observation that Runx2 is localized to large foci that are

equivalently positioned on sister chromatids (Figure 6. 1). These foci are distinct from

CENP-A foci at centromeresand are observed using multiple antibodies directed against

Runx2 as well as with a GFP-Runx2 fusion protein (data not shown). This unique focal

organization of the lineage-specific Runx2 protein on mitotic chromosomes has not

previously been documented for an RNA polymerase II transcription factor. Our findings

suggest a novel regulatory function for Runx2 in post-mitotic gene regulation at early

stages of G 1 , when cells commit to cell cycle exit or progression. These mitotic foci are

also observed for a C-terminally truncated Runx2 mutant C) that retains the
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Figure 6.1: Runx2 Localizes in Pairwise Symmetric Foci in Open Chromatin on Mitotic
Chromosomes
Mitotic chromosomes spreads were prepared for Human Saos-2 Osteosarcoma (A), Mouse
MC3T3 (B), Primary Calvarial Cells from Mice homozygous for Wild-type Runx (C) and for
the Runx2- C allele (D), and processed for immunofluorescence microscopy using antibodies
directed against the Runx2 protein. The right most column of row E through I shows the relative
intensity ofthe Runx and the indicated co- labeled image pixels across the line scan shown in the
overlay image. The Pearson s correlation coefficient, r was computed to compare the degree of
colocalization between the two signals. Human chromosome showing localization of Runx2 with
DAPI and DNAseI hypersensitive chromatin (row E, r=O.80), which is labeled by incorporation
of FITC-dUTP by DNA Polymerase I incorporation on DNAseI nicked chromosome spreads.
Spreads double labeled for Runx2 and either K4-methylated Histone H3 on human (row F
r=O.81) and mouse (row G, r=O.72) chromosomes, K9-methylated Histone H3 on human
chromosomes (row H, r=O.l6), or SIO-phosphorylated Histone H3 on mouse chromosomes (row
, r=- 12) along with DAPI staining for DNA.
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phylogenetic ally conserved Runt-homology DNA binding domain (Figure 6. 1). This

result indicates that chromosomal association is independent of Run2 C-terminal

functions , including interphase subnuclear targeting, that we have previously shown are

, essential for normal tissue development (Choi et aI. , 2001). Furhermore, a Run2 DNA

binding mutant that occurs in cleidocranial dysplasia is excluded from mitotic

chromosomes (data not shown). Thus the recruitment of Run2to its cognate motifs

which is known to support formation of open chromatin, must be necessar for its

putative mitotic function. This idea is strengthened by the observation that Run2 foci.

are in regions of open chromatin as determined by colocalization studies with antibodies

against histone modifications and DNAseI hypersensitivity assays performed on mitotic

chromosomes (Figure 6. 1).

The size and pairwise symetr nature of the mitotic Run2 foci and their

localization with decondensed chromatin suggest that Runx2 is clustered at gene-rich

chromosomal loci to perform a novel regulatory function. From a cytogenetic

perspective , our microscopic data localize Run2 to peri centromeric regions of human

and mouse chromosomes; in diploid human cells Runx2 foci are positioned on the

acrocentrc chromosomes (Figure 6.2). These regions are known to contain hundreds of

copies of ribosomal genes that are organized in tandem head-to-tail repeats (Gonzalez

and Sylvester, 2001). Our bioinformatics analyses of human and mouse rDNA loci reveal

the presence of multiple Runx consensus elements (Figure 6.2). We therefore postulated

that the in situ localization of Runx2 during mitosis reflects association with the

chromosomal loci of rDNA genes. This hypothesis
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Figure 6.2: Runx2 Functionally Interacts with rDNA Loci
Mitotic chromosomes spreads were prepared for non-transformed human diploid MCF- I0A cells (A-D and row E),
human Saos-2 osteosarcoma (row F), primar calvarial cells (row G) from wild-type Runx2 mice, and processed for
immunofluorescence microscopy using DAPI stain for DNA and antibodies directed against the Runx2 protein (green)
and UBFl (red). ChIP were performed on asynchronously growing Saos-2 (data not shown) and MC3T3 cells (H, top)
using antibodies directed against Runx2, UBFl , and normal IgG as a control. Data of duplicate samples, which cover
seven regions of the mouse rDNA repeat unit (hrDNAI-7) are shown as Runx2 or UBFl versus IgG normalized to non-
specific genomic DNA. Schematic of the mouse (H, bottom) rDNA repeat unit with Runx binding elements located
with red diamonds. Primer locations for Chromatin immunoprecipitation assays (ChIP) are shown in blue and
sequences are outlined in Table I. MC3T3 cells were transfected with a minimal mouse rDNA promoter construct, 500
ng with increasing concentrations of HA-Runx2. RNA polymerase I driven expression from the reporter was
monitored in duplicate by Real time PCR with primers directed against unique transcribed sequences on the expression
construct. Runx2 protein expression was monitored by western blot analysis along with Lamin Bl for control (I).
Transfection effciency was determined by independent transfection of GFP expression construct along with
immunofluorescence microscopy. Where indicated Saos-2 cells were transfected with vehicle control, non-specific
(NS) siRNA oligos or Runx2 siRNA oligos for 72 hrs (J). Runx2 protein expression was monitored by western blot
analysis along with Lamin B 1 for control. Pre-rRNA synthesis was monitored in duplicate by Real time PCR analysis
using primers directed against unprocessed rRNA and 28s as a measure of total rRNA. Data is expressed as (Pre-rRNA
versus 28s rRNA) x 100 , see Table I for primer sequences.



139

challenges the current model that Runx proteins determine cell fate and cell cycle

progression exclusively through control ofRNA polymerase II transcribed genes.

, The lineage-specifc transcription factor Runx2 functionally associates with rDNA

loci.

We directly examined whether Runx2 functionally interacts with rRNA genes

durng mitosis and interphase immunofluorescence analysis chromatin

immunoprecipitations, and siRNA studies. The RNA polymerase I regulatory protein.

Upstream Binding Factor 1 (UBF1) has been shown to bind directly to rDNA repeats and

its localization during mitosis is restrcted to nucleolar organizing regions, which are

mitotic precursors to interphase nucleoli (Mais et aI. , 2005; Gebrane-Younes et aI. , 1997;

Suja et aI. , 1997; Rendon et aI. , 1994; Roussel et aI. , 1993; Zatsepina et aI., 1993). In

chromosome spreads from both human and mouse. cells , we find that the Runx2 foci

coincide with the focal pattern of UBFl (Figure 6.2). We conclude that the large

symetrically positioned Run2 foci are at nucleolar organizing regions that are enrched

for spatially clustered rRNA genes.

To test at the molecular level whether Runx2 interacts with rDNA loci, we

performed chromatin immunoprecipitations with interphase (Figure 6.2) and mitotic cells

(Figure 6.5). We used antibodies directed against Runx2 and UBF1 , and designed primer

sets to amplify regions of the human and mouse rDNA repeats that are enriched in Runx

elements (Figure 6.2). In actively proliferating cells , both Runx2 and UBFl each interact

with multiple distinct segments of the rDNA repeat unit, including the transcription
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initiation regions (Figure 6.2). The interspersion of Run2 and UBFl binding events

throughout the rDNA repeat unit indicates a proximity that is consistent with the in situ

co-localization ofthe two proteins at nucleolar organizing regions.

The lineage-specific Runx transcription factors have not previously been

implicated in the RNA polymerase I mediated biosynthesis of rRNAs. Interestingly,

suppression of de novo ribosomal RNA synthesis accompanies cell differentiation in

multiple lineages (Schwartz and Nilson, 1988; Donady et aI. , 1975; Maheshwari et aI.

1993; . Donady et aI. , 1 973b), which more recently have been shown to be Run

dependent (Choi et aI. , 2001; Komori et aI. , 1997; Wang et aI. , 1996a; Inoue et aI. , 2002;

Li et aI. , 2002; Flores et aI., 1998). To establish whether Runx2 is rate-limiting for

endogenous rRNA transcription, we depleted Runx21evels using siRNA in proliferating

cells and examined rRNA synthesis. Our results clearly show that reduction of Runx2

levels stimulates rRNA transcription (Figure 6.2). Additionally, forced expression of

Runx2 inhbits expression from a minimal rRNA promoter (Figure 6.2). Taken together

our multiple lines of evidence indicate that Run2 is a bona fide regulator of ribosomal

biogenesis.
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Runx2 Associates with Nucleolar Organizing Regions during MitoticFigure 6.
Progression

Asynchronously growing Saos-2 and Primary Mouse calvarial cells (data not shown)
were fixed and processed for in situ immunofluorescence microscopy using antibodies directed
against Runx2 (green) and UBFl (red). Single image z-planes are shown from deconvoluted z-
series stacks. Cells in the stages of mitosis: Prophase, Metaphase, Anaphase, and Telophase were
identified by DNA morphology as visualized by DAPI staining. Overlay images of Runx2
UBFl and DAPI staining are shown. The inset region in overlay images is reflected below with
Runx2/DAPI overlay and UBFlIDAPI overlay images.
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Runx2 remains associated with rDNA repeats during post-mitotic nucleolar formation.

During interphase the majority of Runx2 is organized in punctate subnuclear

domains throughout the nucleus (Young et aI. , 2004; Zaidi et aI. , 200la). Yet our data

demonstrate the presence of Run2 at nucleolar organizing regions of mitotic

chromosomes that contain transcriptionally silent rDNA repeats. Combined with our

finding that Run2 controls rRNA biosynthesis , we predicted that Run2 maintains its in

situ localization with chromosomal NORs when they organize into nucleoli durng

progression from mitosis into G 

Imunofluorescence microscopy of actively proliferating cells reveals that Runx2

colocalizes with UBFl at NORs during multiple stages of mitosis (Figure 6.3).

Significant overlap between Runx2 and UBF 1 . occurs durng metaphase and anaphase

when chromosomes are maximally condensed. When ribosomal biogenesis resumes in

interphase , the rRNA transcriptional regulator UBFl is present throughout each nucleolus

and concentrates at foci, which have been shown to reflect sites of rRNA synthesis

(Roussel et aI. , 1993; Cheutin et aI. , 2002) (Figure 6.4). Runx2 exhibits a punctate

distribution throughout the nucleus, yet a subset of Run2 foci is localized in the

nucleolar periphery with UBFl foci (Figure 6.4). The presence of Runx2 in nucleoli is

evident at the ultrastructural level in,whole cells and nuclear-matrix intermediate fiament

preparations (Figure 6.4). Our demonstration that Runx2 remains associated with mitotic

NOR' s and transition to nucleoli in interphase indicates a heritable and lineage-specific

component to the regulation of rRNA synthesis.
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Figure 6.4: Runx2 is Localized to Nucleoli in
Interphase Cells

Asynchronously growing Saos- cells were

fixed and processed for in situ immunofluorescence
microscopy using antibodies directed against Runx2

(green, B) and UBFl (red, C); DNA was visualized by
DAPI staining (blue, A). An interphase cell is shown
with insets reflecting the localization of a Nucleolus.
The overlay image shows Runx2 and UBFl
colocalization, and has two inset images of a nucleolus:
one, on the lower-left, with the Runx2 and UBFl
overlay and a second, on the lower-right with Run
UBFl , and DAPI overlay (D). Proliferating Saos-
cells were permeabilized in 0.5% Triton X- IOO in
cytoskeletal Buffer before fixation in formaldehyde and
staining with an anti-Runx2 poly clonal antibody and a
second antibody coupled to 5 ru gold beads as
described (Nickerson et aI., 1990). Samples were
postfixed in glutaraldehyde, embedded in Epon

sectioned, and sections were counterstained with uranyl
acetate- lead citrate (E-G). The inset in (E) outlining a
nucleolus is shown in (F). The iner nucleolar region
that is surrounded by the inset in (F) is shown in (G).
Nuclear matrix intermediate fiament preparations of
Saos- cells were stained with an anti-Runx2
poly clonal antibody and a second antibody coupled to
5nm gold beads and processed for EM as whole-mount
preparations. An inner region of the nucleus is shown
with a portion of a nucleolus (H). The iner nucleolar
region that is surrounded by the inset in (H) is shown in
(I). Arrowheads in (G) and (I) indicate gold beads.
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Runx2 exhibits alterations in spatial association with rDNA during cell cycle

progression.

Ribosomal biogenesis is stringently regulated and occurs at a maximal rate 

proliferating cells compared with quiescent and differentiated cells (Mauck and Green

1973; Johnson et aI. , 1976; Grummt et aI. , 1976; Schwartz and Nilson, 1988; Donadyet

aI., 1975; Maheshwar et aI. , 1993; Donady et aI., 1973a). Key cell cycle transitions

influencing rRNA synthesis rates are at the Mitosis to G 1 , the GO to G 1 , and the G 1 to S

phase transitions (Voit et aI. , 1999; Voit and Grummt, 200lb; Klein and Grummt, 1999;

Li et aI. , 2005; Pliss et aI. , 2005; Junera et aI. , 1995). To determine if Runx2 occupancy

at ribosomal DNA is modulated during these transitions, we examined interaction of

Runx2 with both coding and intergenic regulatory regions of the repeat unit during the

cell cycle. Using chromatin immunoprecipitation analysis with synchronized cells , we

find specific changes in the binding of Runx2 and UBF at the rDNA locus (Figure 6.5).

For both proteins the occupancy increases during GO/G 1 and G liS , but not significantly

durng M/G 1 (Figure 6.5). Because each of these transitions is characterized by an

increase in ribosomal RNA expression (Figure 6.5), the extent of Runx2 or UBF

occupancy can not completely account for the mechanism of regulation. This

observation is consistent with the eell cycle dependent post-translational modifications

that are known to regulate UBF function but not its localization with rDNA (V oit et aI.

1999; Voit and Grummt, 200la).
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Figure 6.5: Cell cycle dependent alterations in Runx2 interactions with rDNA loci
MC3T3 cells were synchronized in mitosis (A-D) by a combination of nocodazole treatment and shake-off.

Mitotic cells (0 Hrs) were taken directly for assays after shake-off. Cells in early G 1 (2 , and 8 hrs) were obtained by
washing and replating mitotic cells in fresh growth media. Cells were synchronized in GO by serum staration for 48
hrs. GO synchronized cells were either processed for assays or restimulated with serum to obtain cells at the GO/G 

transition and the G 1/S transition. At all time points in both synchronies cells were obtained for protein, RNA, and
chromatin immunoprecipitation assays. ChIP was caried out using antibodies directed against Runx2 (A E), UBFl

F), and nonnal IgG as a control. ChIP DNA was analyzed by qPCR for seven regions (primer mrDNAI-7) of the
mouse rDNA repeat along with a control non-specific genomic DNA reaction for nonnalization, see Table I for
sequences. Data are shown as Runx2 or UBFl versus IgG and nonnalized to non-specific genomic DNA. Pre-rRNA
synthesis was monitored at each time point by qPCR (C,G). Cell synchronization was monitored by western blot of cell
cycle proteins (D I). The M/G 1 transition was defined by monitoring Cyclin B 1 levels. The GO/G 1 transition was
defined by monitoring the phosphorylation status of the Retinoblastoma protein. S-Phase was detennined by
monitoring DNA content by F ACS analysis along with replication dependent histone H4/n expression by qPCR (H).
ChIP data reflecting Runx2 and UBF occupancy at each rDNA primer set location were averaged across the M/G 1 (0-
hrs), GO/Gl (0-9 hrs), and G1/S transitions (12- 18 hrs). To establish a standardized spatial occupancy profie for each
cell cycle transition the time averaged ChIP data were then standardized between the seven rDNA primer sets. 
ilustrate Runx2 and UBF spatial occupancy in the context of the repetitive nature of the repeats three sets of
standardized spatial occupancy profies are plotted in series (1). To detennine the degree of spatial dynamics between
cell cycle stages the Pearson s correlation coeffcient was computed comparing spatial occupancy profies between
each cell cycle transition (K). Pearson s correlation coeffcients near one are consistent with a temporally static spatial
profie.
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We next examined the spatial interactions of UBFl and Run2 with the rDNA

repeat during cell cycle progression. The average occupancy of Runx2 and UBFl

proteins across the rDNA repeat unit was determined for the M/G1 , GO/G1 and GlIS

, transitions using qPCR data from the complete set of chromatin immunoprecipitations.

We find that the spatial organization of UBF is temporally static during these major

changes in rRNA synthesis with preferential binding at the enhancer and transcriptional

initiation regions (Figure 6.5). These results reflect the architectural role of UBFl 

organizing large-scale rDNA structure and suggest that this strctue is maintained during.

cell cycle (Bazett-Jones et aI. , 1994; W olffe , 1994; Mais et aI. , 2005; Stefanovsky et aI.

2001). In contrast, the rDNA occupancy of Runx2 is spatially dynamic during

progressIOn of the cell cycle. Maximal Runx2 binding shifts from within the

transcriptional initiation region during M/G 1 and G liS into the 5' transcribed region

during GO/G 1 (Figure 6.5). Additionally, Runx2 occupancy increases in intergenic

regulatory regions during the M/G 1 transition as well as in the transcription termination

regions during the G liS transition. Runx proteins are known to influence chromatin

structure as an essential component of their gene regulatory function. We propose that

Runx2 may facilitate lineage-specific and cell-cycle dependent alterations in rDNA

organization that attenuates UBF 1 activation of rRNA synthesis.
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Figure 6.6: Repression of rRNA by Runx2 is coupled with inhibition of cell proliferation and

induction of tissue-specific gene expression
Human IMR-90 fibroblasts where infected with adenoviral particles containing a CMV driven Runx2-

IRES-GFP or control LacZ transgenes. At 48 hrs, pre-rRNA synthesis and the differentiation marker

osteopontin (A) were analyzed in duplicate by qPCR, normalized to total rRNA and plotted relative to

maximum between control and Runx2 infections. Runx2 protein levels (B) and Cell number (C) were
monitored for up to 48 hrs post infection. Infection efficiency was monitored by LacZ staining and GFP

protein expression (B). Primar calvarial cells were isolated from mouse embryos (17.5 dpc) homozygous

for the wild-type Runx2 allele or the Runx2 null allele using standard procedures. Pre-rRNA synthesis and
the differentiation marker osteopontin were analyzed in duplicate by qPCR, normalized to total rRNA and

plotted relative to maximum between wild-type and null cells (D) and Runx2 protein was 
assessed by

western analysis (E).
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Runx2 repression of rRNA synthesis is associated with inhibition of cell proliferation

and induction of lineage-specifc gene expression

Our data clearly demonstrate that Runx2 functionally associates with rDNA

, repeats during cell cycle progression.
To assess the biological consequences of

modulating Runx2 levels, we examined rRNA synthesis in mesenchymal cells in which

Runx2 is ectopically expressed or in Run2 null cells (Figure 6.6). Upregulation of

Runx2 decreases pre-rRNA synthesis with a concomitant suppression of cell

proliferation. Consistent with Runx2 drven lineage progression
, this induction.

stimulates expression of the phenotypic marker osteopontin
, a Run2 target gene (Figue

6) (Sato et aI., 1998). Furthermore, osteogenic mesenchymal precursors in which

Runx2 expression has been genetically ablated exhibit enhanced rRNA synthesis

compared with wild-type counterparts (Figure 6.6). We also observe a reduction in

osteopontin expression in Runx2 null cells that are compromised in capacity for lineage

progression (Figue 6.6). We conclude that inhibition of rRNA synthesis and cell

proliferation by Runx2 is intrnsically coupled with promotion of cell lineage

commitment and retention of cell identity.
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CONCLUSION

Here we report that Runx2 dynamically and functionally associates with

ribosomal DNA loci during interphase and mitosis to regulate ribosomal rRNA synthesis.

Our data indicate that the retention of Runx2 at nucleolar organizing regions on mitotic

chromosomes provides a basis for conveying lineage-specific control of ribosomal RNA

gene expression to progeny cells. This fundamental finding has major biomedical and

biological ramifications.

It is curently appreciated that Runx proteins are fundamental gene regulatory

factors that control essential aspects of metazoan development and are associated with

human genetic disorders and cancer. The functional linkage between Runx2 control of

rRNA synthesis , proliferation, and differentiation provides insight into the tissue-specific

phenotye associated with Treacher Collins Syndrome (TCS). This syndrome is

characterized by craniofacial bone defects and growth retardation that is causally linked

with deregulated ribosome production (Valdez et aI. , 2004). Loss-of-function mutations

in Runx2 cause Cleidocranial Dysplasia (CCD), which is predominantly characterized by

craniofacial bone abnormalities including those observed in TCS (Otto et aI., 2002).

Because Runx2 controls bone development in tissues affected in TCS , the phenotypic

penetrance of the disease can now ' be . interpreted within the context of bone lineage-

restricted regulation of ribosomal biogenesis by Runx2.

The pivotal contribution of Runx in establishing and maintaining phenotye has

been attrbuted to combined roles in cell proliferation and differentiation. Our discovery

that Runx2 regulates ribosomal biogenesis, which is intricately connected with cell
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growth, represents a paradigm shifting finding. Thus, Runx2 coordinately controls

growth, proliferation, and differentiation to establish cell identity. From a broader

biological perspective lineage-specific control of ribosomal biogenesis may be 

, fundamental function of transcription factors that govern cell fate.
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GENERAL DISCUSSION

Mechanisms controlling cell cycle progression, growth and differentiation, have

been investigated in this thesis with the underlying goal to understand how the gene

regulatory machinery that are central to these processes function in the context of nuclear

organization. The Runx family of transcription factors is selected as a model system

based on three rationales: they (i.) have essential roles in cell fate determination to

support animal development; (ii.) control the activation and repression of genes that

mediate cell cycle progression and exit for differentiation; and (iii.) influence multiple

aspects of nuclear architectue: including sequence-specific DNA binding at gene

regulatory regions , organization of promoter chromatin structure, and are functionally

compartentalized in multiple foci throughout the nucleus.

The involvement of SWI/SNF chromatin remodeling complexes in Runx2-

dependent osteoblast differentiation highlights the requirement for regulation at the level

of chromatin structure in the establishment of cell phenotyic properties. Using primary

cells that are homozygous for the Run2 null allele, this work reveals that Run2 is

required for BMP2 mediated induction of the osteoblast differentiation and confirms the

findings of others (Lee et aI. , 2000; Franceschi and Xiao, 2003). This thesis extends this

concept by demonstrating that, BMP2 and Runx2 are not suffcient for osteogenic

differentiation in the presence of a dominant negative SWI/SNF chromatin remodeling

complex, which indicates that chromatin remodeling activity is critical for the induction

of osteoblast differentiation by Runx2. These results are consistent with the observation

that chromatin remodeling and activation of the bone-specific osteoca1cin (OC) promoter
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require promoter binding of Runx proteins (Javed et aI. , 1999; Montecino et aI., 1996).

Since , Runx proteins are not competent to remodel chromatin (Gutierrez et aI. , 2002), but

interact with a host of chromatin remodeling factors (Gutierrez et aI. , 2002; Javed etaI.

, 1999), these results predict that Runx2 recruits chromatin remodeling activity to skeletal

gene promoters to support osteoblast differentiation. From the developmental

perspective Runx2 null mice do not produce a mineralized skeleton (Komori et aI. , 1997).

Furthermore , it is known that approximately one-out-of-ten, mice heterozygous for either

the Brgl or BAF155 null allele exhibit craniofacial defects (Bultman et aI. , 2000; Kim et 

aI. , 2001). Together these results indicate that the coordination of SWI/SNF mediated

chromatin alterations by Runx2 proteins. is critical component of osteoblast

differentiation and skeletal development.

Several chromatin modifying enzymes and signaling factors interact with the

Runx2 C-terminus. Knock-in studies from our laboratory reveal that this portion of the

protein is essential for osteoblast differentiation and skeletal development (Choi et aI.

2001). Follow-up studies reveal that this portion of the protein is also required for the

inhibition of proliferation in osteoprogenitor cells (Pratap et aI. , 2003). The development

of novel quantitative image analysis strategies (i. e., intranuclear informatics) in this

thesis has facilitated the description and definition of nuclear organization in quantitative

terms that are utilized for comparative analyses. Such work has revealed that a

quantitative ' signature ' of nuclear organization can be uniquely defined for regulatory

proteins and, as an example, serve as a basis for statistical classification of biological

function. Application of intranuclear informatics in this thesis has lead to the discovery
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that the C-terminal portion of Runx2 provides a molecular determinant for the nuclear

organization of Runx2 foci. Multivariate statistical analyses reveal that the subnuclear

organization ofRun2 point mutants (i. , Y428A and Y433A) is similar to that of the

Runx2-L'C mutant. These mutant proteins are functionally compromised and are

incompetent for integrating physiological signals, which include BMP/TGF and

Src/Y AP signaling. These observations directly link Runx2 function with its organization

in the nucleus. Consistent with this idea, intranuclear informatics studies fuher reveal

that the organization of Runx2 proteins is conserved in progeny cells following mitotic

division.

Mitotic cell division reflects a natual pertrbation in nuclear strcture and

function. Chapters 4 , 5 , and 6 of this thesis comprise a series of studies that initiated with

the examination of Runx2 during mitosis. At the outset, two basic questions were

addressed: (i) what is fate of Runx2 foci? and (ii.) how progeny cells sustain competency

for Runx2 dependent gene expression following mitotic division? Initial experiments

were conducted with both Runxl protein (in Jurkat T-cell lymphoma cells) and Runx2

proteins in (Rat Osteosarcoma Cells). These studies revealed that in both contexts , Runx

proteins were equally partitioned to daughter cells following mitosis. Studies were

continued that focus on Runx2 protein and revealed retention of the protein throughout

all stages of mitosis. The focal organization of Runx2 was intact, but redistributed; a

subset associated with mitotic chromosomes and another subset appeared associated with

the mitotic apparatus. Localization of Runx2 with the mitotic apparatus promoted a

follow-up study, which ultimately revealed the direct association of Runx2 with tubulin
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and a working model for microtubule directed traffcking of the Run2 protein

(Pockwinse et aI. , 2005). The sequential reorganization of Runx2 proteins was assessed

relative to other nuclear proteins that are involved in transcription and RNA processing.

, These results show that a sequential re-organization of Runx2 and its co-regulatory

protein p300 in progeny nuclei precedes reappearance of SC35 RNA processing speckles.

Image cross correlation analyses were developed to quantitatively define the temporal

reorganization following mitosis. This strategy demonstrated in quantitative terms a

sequential and selective reorganization of transcriptional regulators and RNA processing.

factors during progression of cell division that render progeny cells equivalently

competent to support Runx2 mediated gene expression. It is well appreciated that durng

development asymetric cell divisions are a primary mechanism for developing diversity

in cell lineage (Roegiers and Jan, 2004). A compelling question that is relevant to the

competency of progeny cells to support Runx2 mediated gene regulation, is if and how

Run2 protein is partitioned during asymetrc cell divisions.

The association of Runx2 with mitotic chromosomes was a strking observation.

Because mitosis is a time when transcription is silenced and most transcription factors

including RNA polymerase II, are excluded from chromosomes the association of Run2

with mitotic chromosomes suggested a novel regulatory role. A series of follow-up

studies, comprising chapter 5 and 6, were carred out to determine the functional

signficance of this association. Site-directed mutagenesis was performed to establish

that mitotic chromosome localization of Runx2 requires an intact DNA-binding domain

indicating that the association involves sequence-specific binding.DNA
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Imrunolocalization studies performed on chromosome spreads revealed that mitotic

Runx2 foci are located in regions of chromatin that are hypersensitive to DNase I

digestion and enrched in histone H3 that is methylated on lysine 4; this indicates that

Run2 is associated with regions containing transcriptionally competent genes (these

observations became the underlying basis for chapter 6) and led to the hypothesis that

Runx2 retains its association with target genes durng mitosis. To test this hypothesis, a

fuctional genomics strategy was designed that utilized RNAi technology, mitotic cell

synchronization, and focused expression profiling with the goal of identifying Runx2

regulated genes that are modulated post-mitotically. This integrated approach identified

more than thirty novel target genes involved in cell growth and differentiation, all of

which were subsequently tested for Runx2 association by chromatin immunoprecipitation

assays on proliferating cells. Fourteen genes were confirmed as bona fide Runx2 targets

and were functionally validated in independent siRNA experiments. Importantly, ChIP

assays were carred out on pure mitotic cells and revealed that Runx2 remains bound to

these target gene promoters. This was the first demonstration of a cell fate determining

transcription retaining association with genes during mitosis, and these findings

suggested a mechanism for the retention of lineage-specific gene expression patterns

during mitosis. Further experiments were carred out to reveal that these fourteen genes

exhibit mitotic specific histone modifications that are indicative of the post-mitotic

transcriptional state. Importantly, functional studies revealed that Runx2 proteins control

both basal histone H4 acetylation as well as dimethylation of histone H3 lysine 4 at target

gene promoters during mitosis. Taken together these observations indicate that the
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Runx2 proteins have an active role in retaining phenotype durng cell division to support

lineage-specific control of gene expression in progeny cells. This work suggests that

cell-fate determining transcription factors program cells to sustain phenotyic gene

. expression patterns following cell division when transcriptional competency is restored in

progeny cells.

As a whole, these results have far-reaching implications to understanding the

complex roles of Runx proteins in development and cancer. Run proteins exhbit a

complex phenotype with respect to tumorigenesis that includes properties of both tuor.

suppressors as well as oncoproteins (Cameron and Neil, 2004). Insight into the

underlying mechanisms that give rise to this complexity was gained by examining the

biological functions of Run2 target genes identified in this work, notably, DNA repair

protein stability, cell cycle control signaling competency, and lineage-specific

differentiation. These results support the hypothesis that the multifaceted contributions

of Runx proteins to oncogenesis are , in part, a consequence of a direct and broad-based

influence on gene expression patterns. Preliminary analyses comparing the sensitivity of

target genes to perturbations in Runx2 levels between non-transformed fibroblasts and

tumor cell lines indicated that the directionality of control (i. , activation or repression)

by Runx2 is context dependent. It wil be interesting to determine if this dependency

correlates with the different tumorigenic properties of Runx proteins, to specific post-

translation modifications, and/or with cell-type specific expression of co-regulatory

proteins.
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A number of experimental observations made during the study of Runx2 in

mitosis have become the basis for a follow-up project in our laboratory. In the course 

the work described in Chapters 4 through 6, it was discovered that Runx2 electrophoretic

mobility is altered in mitosis and migrates at a higher molecular weight. Metabolic

labeling studies with p ortho-phosphate conducted by the author revealed that Runx2 is

hyperphosphorylated in mitosis. These observations have been extended by 

Rajgopal, a postdoctoral fellow in the Stein laboratory, to reveal that Run2 is a target of

the master mitotic kinase, Cdkl-CyclinB. manuscript describing this work is 

preparation and functional studies are being carred out to understand the signficance of

these results. Preliminary evidence indicates that this phosphorylation may be coupled

with a mitotic specific interaction of Runx2 with the peptidyl-prolyl isomerase, Pint.

Interestingly, Pin 1 modulates the mitotic strcture and function ofRNA polymerase II by

interacting with the CTD and stabilizing the Cdkl-CyclinB phosphorylation(Albert et aI.

1999; Xu et aI. , 2003). It wil be interesting to understand the role of this hyper-

phosphorylation in the mitotic control of target genes by Runx2.

By far the most serendipitous finding that has emerged in this thesis is that Runx2

controls RNA polymerase I drven ribosomal genes expression. Imunolocalization of

Runx2 foci on mitotic chromosome spreads revealed several large foci with pairwise

symetr on sister chromatids on a subset of chromosomes. Further work identified that

these foci were located at regions of active chromatin, and studies with diploid human

cells localized these foci to the short-arm of human acrocentric chromosomes where

nucleolar organization regions are known to reside. Colocalization studies revealed that

. . ""' ' -.
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Run2 chromosomal foci co-localize with the RNA polymerase I transcription factor

Upstream Binding Factor (UBFl). Furthermore, a bioinformatics analysis identified the

presence of multiple Run binding elements within regulatory regions of rRNA genes

, and chromatin immunoprecipitation (ChIP) 
analysis established that Runx2 directly

associates with ribosomal RNA genes. Reduction of Runx2 levels in human Saos-2 cells

by siRNA activated rRNA transcription, indicating that ribosomal gene production is

indeed Runx2 responsive. Both immunofluorescence as well as immunoelectron

microscopy determined that a subset of Runx2 is localized to nucleoli where ribosomal.

genes reside and ribosomal biogenesis occurs. Cell 
synchronization strategies and ChIP

assays were employed to demonstrate that the association of Runx2 with rDNA is a cell

cycle regulated process. Functional linkage between Runx2 and ribosomal gene

expression was further substantiated by demonstrating enhanced ribosomal RNA

synthesis in primary cells isolated from the calvarial tissue of 
Run2 null mice compared

with wild-type Runx2 counterparts. Notably, induction of Runx2 in uncommitted

mesenchymal cells directly repressed ribosomal biogenesis
, and this repression of

ribosomal gene expression by Run2 is associated with cell growth inhbition and

expression of osteoblast-specific genes. Taken together
, this work reveals that Run2 not

only controls osteoblast lineage commitment, but also acts as a suppressor of cell gro'wth

by inhibiting rRNA synthesis. On a molecular level , this work extends knowledge of the

regulatory functions of Runx proteins in RNA Polymerase II mediated transcription to

include also RNA polymerase 1. It is reasonable to predict that Runx proteins wil also

likely engage in RNA Polymerase III transcription. In this regard
, Myc proteins provide
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a precedence in that they have been shown to control transcription from all three

polymerases (Oskarsson and Trumpp, 2005). These findings elucidate a model by which

ribosomal biogenesis is coordinately controlled by the Run2 transcription factor to

support osteoblast differentiation and skeletal development. From a broader biological

perspective lineage-specific control of ribosomal biogenesis may be a fundamental

fuction of transcription factors that govern cell fate.
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