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ABSTRACT 

Ventricular dysfunction and dilated cardiomyopathy (DCM) develop among 

untreated HIV-infected people at much higher rates than among HIV-negative 

individuals, resulting in significant contributions to morbidity and mortality. Mechanisms 

underlying development of HIV-associated cardiomyopathy (HIVCM) are as yet poorly 

understood. The well-characterized simian immunodeficiency virus (SIV) model of HIV 

infection provides a unique context for HIVCM pathogenesis studies in that SIV-infected 

rhesus monkeys develop myocardial lesions and contractile dysfunction similar to those 

described in HIV-infected people, suggesting a shared disease mechanism. 

Lymphocytic myocarditis is a commonly reported finding in AIDS patients at 

autopsy and constitutes one of several conditions known to predispose to development of 

DCM, irrespective of HIV-infection status. As lymphocytic myocarditis also occurs with 

high frequency among SIV-infected rhesus monkeys, a retrospective analysis of rhesus 

monkey cardiac tissue collected at necropsy was performed to examine viral and cellular 

correlates of lymphocytic inflammation within myocardial tissue. One subpopulation of 

macrophages, which has been reported by other groups to be associated with an anti-

inflammatory phenotype, was found to correlate inversely with lymphocytic infiltration 

and positively with numbers of virus infected cells, suggesting effects of an anti-

inflammatory cytokine production profile. 

In contrast, the detrimental effects of inflammatory cytokines on myocardial 

structure and function are well-recognized and HIV infection in general is characterized 

by chronic immune activation and inflammatory cytokine dysregulation. To further 
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investigate a role for myocardial cytokine production in development of HIVCM, a 

prospective study was conducted in which SIV-infected rhesus monkeys and uninfected 

controls were treated with recurrent administration of inactivated Mycobacterium avium 

complex bacteria (MAC). SIV-infected, MAC-treated animals rapidly developed 

significant ventricular systolic dysfunction and chamber dilatation not seen in control 

groups, suggesting an exaggerated myocardial sensitivity to exogenous antigenic 

stimulation. Concurrent treatment with the TNFα antagonist etanercept completely 

abrogated development of these changes, strongly implicating a causative role for TNFα 

in evolution of the contractile dysfunction and chamber remodeling. 

 Findings reported from the current studies suggest that characteristics of local 

myocardial macrophage populations and the myocardial tissue cytokine milieu may play 

more important roles than lymphocytic infiltration, cardiomyocyte damage, or viral 

proteins in the pathogenesis of HIVCM. 
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 1.1 Human Immunodeficiency Virus and Cardiac Disease 

Currently, an estimated 33.2 million people world-wide are infected with the human 

immunodeficiency virus (HIV), with 2.5 million new infections and 2.1 million deaths 

from AIDS in the year 2007 alone [1]. Cardiac abnormalities develop at high frequency 

in chronically HIV-infected individuals in the absence of antiretroviral therapy, a fact 

which has been recognized since the early years of the epidemic [2-27]. The spectrum 

and epidemiology of cardiac disease in HIV infection have been extensively reviewed 

[28-42], with development of ventricular dysfunction and dilated cardiomyopathy (DCM) 

being of particular clinical significance and occurring among HIV-infected people at 

much higher rates than among HIV-negative individuals [28, 30, 37, 38, 43-46]. A high 

prevalence of cardiac disease has been documented in HIV-infected populations in sub-

Saharan Africa as well as in the developed world [30, 43, 47-49], and heart disease 

appears to be a particularly significant contributor to morbidity and mortality in HIV-

infected children, where even mild alterations in left ventricular mass or myocardial 

contractility are independently and significantly associated with shortened survival [37, 

48, 50-57]. While subclinical manifestations of HIV-associated cardiomyopathy 

(HIVCM) appear to be relatively common, median survival for HIV-infected individuals 

with DCM is significantly reduced compared to HIV-infected individuals without cardiac 

dysfunction at similar stages of infection, or HIV-negative individuals with idiopathic 

DCM  [19, 58]. While the advent of highly active anti-retroviral therapy (HAART) has 

dramatically improved the lives of many HIV-infected people and recent reports suggest 

that its use may have decreased the frequency of HIV-associated myocardial disease, 
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roughly 80% of those in need of anti-retroviral drugs globally still do not have access to 

them [59, 60]. Furthermore, a recent large clinical trial demonstrated significant increases 

in the incidence of major cardiovascular disease in HIV-infected people who experienced 

CD4+ count-guided interruptions in antiretroviral therapy as compared to those on 

continuous therapy, implicating a continued role for HIV infection in development of 

heart disease which readily reemerges with breaks in therapy [61]. 

The pathogenesis of cardiomyopathy in HIV infection is poorly understood and likely 

involves a combination of host, viral, and environmental factors [62-66]. A variety of 

possible etiologies have been postulated (Table 1.1), with potential mechanisms including 

tissue damage resulting from lymphocytic myocarditis, an inflammatory process which 

has been documented at high frequencies in HIV-infected people at later stages of disease 

progression and which constitutes one of several conditions known to predispose to 

development of DCM irrespective of HIV-infection status [6, 8, 11, 13, 14, 18, 63] 

(reviewed in [67-70]). Numerous studies have attempted to draw connections between the 

lymphocytic myocarditis seen in HIV-infected individuals and development of significant 

myocardial contractile dysfunction, both with and without concurrent chamber dilatation 

[5, 6, 8, 11, 12, 20, 27].  Inflammatory infiltrates in HIV-associated myocarditis are 

consistently documented as comprised predominantly of CD8+ T cells with variable 

numbers of macrophages [12, 13, 18, 27, 71].  Myocarditis in HIV infection is itself 

frequently of unknown etiology, with many studies identifying an underlying pathogen in 

only a minority of cases, though cytomegalovirus, adenovirus, coxsackievirus B3, 

Epstein-Barr virus, Toxoplasma gondii, Mycobacterium avium complex, Candida spp., 
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Cryptococcus neoformans,  Coccidiodes immitis, Histoplasma capsulatum, Aspergillus 

spp., and Pneumocystis jiroveci have all been documented [8, 11, 13, 14, 18, 27, 41, 58, 

72-74].  

A further important potential contributor to development of HIVCM is 

proinflammatory cytokine excess resulting from effects of HIV-associated cytokine 

dysregulation [58, 75, 76]. As discussed below, the myocardium is quite sensitive to 

proinflammatory cytokine effects, which are uniformly cardiodepressant with chronic 

exposure, and associated with substantial pathologic remodeling (reviewed in [77] and 

[78]).  As chronic immune activation and cytokine dysregulation are prominent features 

of HIV-infection [79-83], and local myocardial inflammatory responses have the 

potential to further augment a proinflammatory cytokine milieu, a role for cytokine-

induced myocardial pathology in HIV-infection must be seriously considered [75].  

In evaluating whether HIV itself may play a direct role in induction of local 

myocardial inflammatory responses, contractile dysfunction, or pathologic remodeling, 

multiple investigators have detected HIV viral genome and/or viral proteins in the hearts 

of HIV-infected people [13, 27, 71, 84-87]. Numbers of intramyocardial virus-infected 

cells are consistently very low, however, and in many hearts are undetectable [12, 13, 27, 

71, 72, 84, 87]. Investigators using methods with a high degree of morphologic 

discrimination at the tissue level have in almost all cases found productive HIV infection 

to be restricted to cells within the myocardial interstitium, most consistent with 

macrophages and T cells, such that previous longstanding controversy over the potential 

for HIV to directly infect cardiomyocytes has largely been resolved [13, 71, 87]. In 
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further support of the inability of HIV-1 to infect cardiomyocytes, experimental attempts 

to infect fetal human cardiomyocytes using a wild-type HIV isolate derived from a case 

of pediatric AIDS with severe cardiomyopathy proved unsuccessful, though a VSV 

pseudotyped HIV-1 based vector demonstrated high efficiency infection of these same 

cells [88]. The rarity of HIV genome in myocardial tissue of HIV-infected people 

combined with a failure of the presence or absence of HIV-infected cells to correlate with 

the presence of inflammatory infiltrates or clinical cardiac disease suggests that direct 

infection of cells within the myocardium is unlikely to play a signficant role in the 

pathogenesis of HIV-associated cardiac disease, though this has remained controversial 

[84, 86].  

Further possible contributors to development of HIV-associated cardiac disease 

include myocardial effects of viral proteins [89-94], cardiac autoimmunity [95], drug-

related cardiotoxicities [29, 96-100], autonomic dysfunction [101-106], and micronutrient 

deficiencies, particularly in the context of wasting or chronic diarrhea [36, 43]. 

 

1.2 Cytokines and the Pathogenesis of HIV-associated Cardiomyopathy  

 Inflammatory cytokine-induced myocardial dysfunction is a well-documented 

phenomenon in multiple experimental models, is a significant contributor to 

hemodynamic compromise in sepsis, and may play a significant contributory role in 

development and progression of heart failure regardless of initiating etiology [77, 78, 

107-116]. Roles for inflammatory cytokines in cardiac dysfunction have received 

extensive attention in association with their cardiodepressant effects, demonstrated 
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contributions to myocardial remodeling, and frequent systemic elevations in the context 

of heart failure [77, 78, 115-125]. The mechanisms by which inflammatory cytokines 

generate their effects in the myocardium have been studied in some detail. Cytokine-

induced products of the sphingomyelinase pathway, nitric oxide generated by inducible 

nitric oxide synthase (iNOS), and reduced cyclic AMP response to β-adrenergic 

stimulation all appear to act as mediators of cardiodepressant effects [77, 108, 109, 126-

128]. On a molecular level, these effects result from modulation of intracellular calcium 

transport, antagonism of cyclic AMP-mediated Protein Kinase A effects, alteration of 

sensitivity of myofilaments to calcium binding, S-nitrosylation of thiol residues on 

contractile proteins, functional uncoupling of β-adrenergic receptor stimulation from 

adenylyl cyclase activity, and possibly alteration of β-adrenoreceptor internalization 

kinetics (reviewed in [77, 108]), [127].  

Inflammatory cytokine-induced pathologic remodeling yields chamber dilatation, 

myocardial hypertrophy, and fibrosis attributable to dysregulation of matrix 

metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) balances, 

increased expression of TGFβ, alterations in susceptibility to cardiomyocyte apoptosis, 

and stimulation of hypertrophic and fetal gene expression patterns [125, 128-132]. 

Experimental work in rodent models demonstrates TNFα to be strongly associated with 

pathologic remodeling, and pharmacologic antagonism of TNFα in human cardiac 

transplant recipients significantly decreases allograft hypertrophy and fibrosis, 

strengthening the implication that TNFα plays an important role in pathologic 

remodeling in vivo in humans, as well as in animal models [129, 130, 133, 134].  
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Transgenic mice with myocardial expression of TNFα comprise the most 

thoroughly studied model of inflammatory cytokine excess on the heart. These animals 

develop severe biventricular dilatation, heart failure, and premature death, with the 

rapidity of disease development dependent on gene dose [129, 134]. And while 

inflammatory cytokine excess as a primary effector has well-demonstrated adverse 

myocardial effects, circulating levels of inflammatory cytokines are also often 

secondarily elevated in humans with heart failure, a fact which may contribute to heart 

failure progression (reviewed in [78, 111, 135]).  The degree of circulating cytokine 

elevation in heart failure patients has been demonstrated to correspond to New York 

Heart Association (NYHA) functional classifications of heart failure severity [117-119, 

136, 137], and measures of myocardial systolic function [138]. Supporting a role for 

elevated circulating inflammatory cytokines in heart failure progression, healthy rats 

subjected to 15 days of continuous TNFα infusion to generate circulating levels in the 

range found in humans with end-stage chronic heart failure developed significantly 

depressed ventricular function and ventricular dilatation with structural remodeling [130].  

HIV-infection is intrinsically characterized by chronic immune activation and 

cytokine dysregulation [79-83, 139]. Exaggerated levels of inflammatory cytokine 

production by HIV-infected leukocytes or leukocytes derived from HIV-infected persons 

have been reported by multiple investigators and elevated circulating levels of TNFα and 

other proinflammatory cytokines have been documented at all stages of HIV infection 

[140-148]. These elevated levels do not appear to normalize in the face of HAART, and 

in some reports may rise after initiation of therapy [143, 146, 149, 150].   
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Numerous features suggest the likelihood of a substantial role for inflammatory 

cytokines as mediators of HIVCM. The local myocardial tissue environment has been 

demonstrated to be a rich potential source of inflammatory cytokines, with both 

cardiomyocytes and locally resident non-myocyte interstitial cell populations competent 

to produce a variety of inflammatory mediators, and heart tissue capable of generating as 

much or more TNFα per gram of tissue in response to endotoxin stimulation as liver or 

spleen [122, 126, 151-155].  Non-myocyte populations comprise up to 70% of the total 

cellular constituency of the myocardium and consist of a mixed assemblage of cell types, 

including substantial populations of dendritic cells and macrophages which can serve 

directly as targets of HIV infection [151, 156-161]. This environment represents a 

volatile setting in the context of HIV-infection. 

 

1.3 Existing Experimental Support for a Role for Cytokines in HIVCM 

Experimental work designed to examine the role of inflammatory cytokines in the 

pathogenesis of HIVCM has been limited; however, one group has demonstrated 

significantly increased myocardial TNFα immunostaining signal intensity in HIV-

infected individuals with DCM as compared to non-HIV-infected individuals with DCM, 

suggesting a role for TNFα in the HIV-associated disease process [58]. Several studies in 

murine models have gone farther, drawing connections between specific HIV proteins 

expressed in CD4+ cell contexts and development of cardiac disease. Transgenic mice 

expressing HIV-1 nef protein exclusively in CD4+ cells develop cardiac disease despite 

the presence of low numbers of HIV-1 transgene-expressing cells in the heart, and the 
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lack of a significant correlation between cardiac lesion development and levels of 

expression of the HIV-1 transgene [91]. HIV-1 transgene expression exclusively in CD4+ 

cells with low numbers of transgene positive cells in the heart mimics the distribution 

seen with natural HIV-1 infection and implicates an indirect, HIV-protein induced effect 

on levels of soluble mediators as cause of the myocardial injury. Similarly, cardiac 

disease has been generated in transgenic mice expressing simian immunodeficiency virus 

(SIV) nef protein exclusively in CD4+ cells [162].  

 

1.4 A Role for Myocardial Macrophages  

Macrophages and dendritic cells constitute cell types widely distributed 

throughout peripheral tissues including the myocardial interstitium, where they may be 

found in significant numbers [156, 157, 163-166]. These populations serve as sentinels of 

the innate immune system, sensitizing the adaptive immune system through antigen 

presentation, and significantly modulating immune responses through cytokine 

production [161, 167]. Due to expression of the appropriate receptor and co-receptors, 

both macrophages and dendritic cells may serve as direct targets of HIV infection, and 

display a variety of functional abnormalities in HIV-infected individuals, including 

elevated secretion of inflammatory cytokines, both constitutively and upon stimulation 

[80, 141, 142, 145, 148, 160, 161, 168].  Furthermore, in rodent models, dendritic cells 

have been demonstrated to serve as a critical link between cardiotropic viral infections 

and subsequent autoimmunity against myocardial antigens [169], and macrophages have 
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been identified as the major effector population in at least one model of myocardial 

autoimmunity yielding dilated cardiomyopathy, heart failure, and death [170]. 

As macrophage and dendritic cell populations are well-represented in the 

interstitial tissues of the myocardium and have been demonstrated to show significant 

dysregulation of function and inflammatory cytokine production in the context of HIV 

infection, they have strong potential to contribute to development of HIV-associated 

myocardial pathology. Increased levels of myocardial macrophage infiltration have been 

documented in human cases of HIVCM, as well as in a murine model of AIDS with 

associated cardiomyopathy [71, 171]. HIV-infected perivascular macrophages have been 

found in some instances to be associated with apoptosis of surrounding cardiomyocytes 

[94], with significant correlations present between extent of apoptosis and both TNFα 

expression and expression of the HIV viral protein gp120 [71, 94]. In addition, 

associations between extent of myocardial macrophage involvement and development of 

cardiac functional decline have been identified prospectively in a murine model of AIDS 

[171]. 

While in many contexts the actions of macrophage and dendritic cell populations 

contribute to development of inflammatory responses, in other contexts their effects may 

be tolerogenic or overtly anti-inflammatory, with the differences between these scenarios 

attributable to differences in the phenotypic subsets of cells involved [167, 172, 173].  

Immature dendritic cells have been associated with induction of peripheral tolerance, for 

instance, and non-classically activated macrophages have been associated with a variety 

of functional roles, including immunosuppression, tissue repair, and angiogenesis 
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(reviewed in [167, 172-175]). While phenotypically diverse, some subsets of non-

classically activated macrophages are typified by ineffective microbicidal activity and 

cytokine secretion profiles characteristically dominated by IL-10, TGFβ, and IL-1RA  

[167, 172-175]. Because of this, characterization of phenotypic subtypes of these cells in 

tissue has the potential to cast light on how specific subpopulations might serve either 

injurious or protective roles dependent on the particular properties of the populations 

involved. In addition to modulation of immune responses through cytokine production, 

the density, distributional characteristics, and activation phenotype of professional 

antigen presenting cells within the myocardium could well be expected to play a role in 

sensitization of the adaptive immune system to both native and exogenous antigens, a 

function which may be protective, but also has the potential to be detrimental in a tissue 

with minimal to no regenerative capacity and strictly limited functional reserve. 

 

1.5 The Simian model of HIV-associated Cardiac Disease 

Study of the pathogenesis of HIVCM in humans is limited by many factors.  

Identifying the earliest time points of development of myocardial pathology and placing 

them within the natural history of HIV infection is generally not possible; complex, 

variable, and potentially toxic medication regimens are routinely used; substantial 

variation can exist in environment and lifestyle among patients; and ethical constraints 

place strict limits on the types of sampling which may be conducted. The simian 

immunodeficiency viruses (SIV) share a close phylogenetic relationship with HIV-1 and 

induce a fatal immunodeficiency syndrome in Asian macaques that provides an important 
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model system for HIV pathogenesis studies [176, 177]. No other model system so closely 

recapitulates the interplay of virus with the immune system and consequent disease 

development seen in HIV-infection of humans. In order to study the pathogenesis of end-

organ dysfunction resulting from direct or indirect effects of chronic HIV infection, 

particularly effects that may result from early insults during the period of acute viremia 

and initial immune containment of the virus, use of an animal model is essential. The SIV 

model of HIV-infection and AIDS is well-established and provides a strong context for 

study of HIV cardiomyopathy in that myocardial functional abnormalities and histologic 

lesions similar to those documented in HIV infection are frequently seen in SIV-infected 

rhesus monkeys (Macaca mulatta), suggesting a shared disease mechanism [178, 179]. 

The SIV cardiomyopathy model was pioneered at the New England Primate Research 

Center (NEPRC), where frequent development of DCM among chronically SIV-infected 

animals was first demonstrated, establishing the utility of the model [178].  

 

1.6 Chronic SIV infection and Simian AIDS are Associated with Dilated 

Cardiomyopathy 

 Significant cardiac dysfunction and myocardial pathology have been 

demonstrated in animals chronically infected with pathogenic strains of SIV [178]. 

Among fifteen rhesus monkeys infected ≥18 months, six infected with pathogenic strains 

of SIV and 9 infected with non-pathogenic clones of SIVmac239 containing deletions of 

the nef gene (SIVmac239Δnef), animals chronically infected with pathogenic strains 

demonstrated significant decreases in global left ventricular systolic function over time as 
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indicated by marked decreases in left ventricular ejection fraction (LVEF: 43±7% 

(pathogenic) versus 61±3% (non-pathogenic)) and evidence of left ventricular dilatation 

through increases in both left ventricular end-systolic volume indices (ESVI: 16±3 

mL/m2 (pathogenic) versus 9±1 mL/m2 (non-pathogenic)) and left ventricular end-

diastolic volume indices (EDVI: 28±3 mL/m2 (pathogenic) versus 21±3 mL/m2 (non-

pathogenic)) [178]. In contrast to chronically infected animals, changes were not detected 

in an acute infection cohort of 16 age-matched young adult rhesus monkeys infected with 

either pathogenic SIVmac239 or non-pathogenic SIVmac239Δnef [178]. These animals, 

followed over a 5 week course of infection with weekly M-mode and 2D 

echocardiography, did not develop significant changes from baseline values, though 

animals infected with SIVmac239 did experience decreases in CD4+ T cell count 

consistent with effects of early pathogenic infection [178]. Furthermore, of 24 rhesus 

monkeys that died of simian AIDS in this study, 9 demonstrated myocarditis, with 

infiltrates consisting predominantly of CD3+ cells with smaller numbers of CD68+ 

macrophages. These results, which are consistent with common descriptions of the time 

course and character of cardiac pathology in HIV-infected people, suggest that the source 

of myocardial injury in HIV infection is one that either acts gradually over a prolonged 

period of time, or appears only relatively late in infection.  

Further work evaluating possible correlates of ventricular dysfunction in chronically 

SIV-infected rhesus monkeys has demonstrated induction of myocardial TNFα by 

immunohistochemistry and Western blot in animals that have histologically demonstrable 

myocardial inflammatory infiltration [180]. Quantified TNFα levels were found to have a 
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significant inverse correlation with left ventricular ejection fraction (LVEF), linking the 

elevation in TNFα to decreased ventricular systolic function in this model [180]. 

 These data were among the first to indicate that the SIV-infection model is 

associated with substantial myocardial dysfunction in later stages of infection, that this 

dysfunction appears to be common, and that elevations in myocardial TNFα in the 

context of SIV-infection may be sufficiently severe as to play a role in depression of 

ventricular systolic performance. These findings lay the groundwork for use of the SIV-

infection model to explore in vivo pathogenesis of HIV-associated cardiac dysfunction. 

 

1.7 Rationale and Objectives  

In the reported studies, potential viral and non-viral contributors to development 

of myocardial dysfunction and correlative microscopic pathology in the simian model of 

HIV infection are investigated using a combination of prospective and retrospective 

analyses.  

 As lymphocytic myocarditis is a commonly reported finding both in AIDS 

patients and chronically SIV-infected rhesus monkeys and constitutes one of several 

conditions known to predispose to development of DCM irrespective of HIV-infection 

status [68-70], initial retrospective studies focused centrally on a role for myocardial 

inflammation in evolution of cardiac pathology in SIV-infected animals, evaluating 

inflammation frequency, extent, and character, as well as determining viral, cellular, and 

histomorphologic correlates of these inflammatory infiltrates. Findings in initial work 

identified subpopulations of myocardial macrophages whose numbers correlated 
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inversely with lymphocytic infiltration and positively with numbers of virus infected 

cells, suggesting a role for these populations in modulation of the inflammatory response. 

The question of a role for myocardial cytokines in development of myocardial functional 

and structural pathology was then pursued directly in a group of longitudinally evaluated 

cohorts in an acute infection, augmented immune activation model. Use of a prospective 

model allowed monitoring of cardiac function by serial echocardiography with 

concurrent examination of circulating cytokine and chemokine levels, as well as post-

mortem assessment of cytokine levels and histomorphologic features of myocardial 

tissues to determine features correlating most closely with development of contractile 

dysfunction and chamber dilatation in SIV-infected animals.  
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Table 1.1  Possible Etiologies and Associations of HIV-Associated Cardiomyopathy* 

 

Possible Etiologies: 

Drug-related:  Zidovudine, Interferon, Foscarnet, Doxorubicin, IL-2 

 Amphotericin B, Cocaine 

Infectious:   HIV, Toxoplasma gondii, Coxsackievirus group B, Epstein  

    Barr Virus, Cytomegalovirus, Adenovirus 

Metabolic/Endocrine:  Anemia, Thyroid hormone related, Growth hormone 

related, Adrenal insufficiency, Hyperinsulinemia 

Nutritional Deficiency: Selenium, B12, Carnitine 

Cytokine-mediated:  TNFα, Nitric oxide, TGFβ, Endothelin-1 

Autoimmunity:  Anti cardiac myosin, Anti cardiac C protein 

Autonomic Dysregulation: Cardiovascular sympathovagal dysfunction 

 

Associations:  

Encephalopathy, Immunodeficiency (CD4 count < 100), Length of immunosuppression, 

HIV viral load 

 

*Table modified from [64] 
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CHAPTER II 
 

SIV-ASSOCIATED MYOCARDITIS: VIRAL AND CELLULAR CORRELATES OF 
INFLAMMATION SEVERITY 
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ABSTRACT 

Myocarditis is a common finding in HIV-infected people. Cardiac inflammatory lesions 

and functional abnormalities similar to those documented in HIV infection are frequently 

seen in SIV infection of rhesus monkeys, suggesting a shared disease mechanism. A 

retrospective analysis of cardiac tissue collected at necropsy was performed to assess 

correlates of myocardial inflammation in SIV-infected rhesus monkeys. Intramyocardial 

SIV-infected cells were identified in 7 of 21 hearts from SIV-infected animals, with viral 

protein consistently colocalizing with the macrophage marker HAM 56. Productively 

infected cells occurred in low numbers, and did not correlate with presence or quantity of 

inflammation or necrosis.  Intramyocardial CMV was identified in 6 of 21 hearts from 

SIV+ animals, but also did not correlate with presence or quantity of inflammation or 

necrosis. In contrast, T cell infiltration correlated inversely with DC-SIGN+ cell numbers, 

which occurred in significantly higher numbers in SIV+ animals with histologically 

normal myocardium than in SIV+ animals with active or borderline myocarditis or in 

uninfected controls (P < 0.001), suggesting an important immunoregulatory role for this 

population within the myocardium.



Introduction 

  Cardiac abnormalities are common in human immunodeficiency virus (HIV) 

infection, with progression to clinical disease and cardiac death documented in a small 

but significant proportion of cases [5-7, 17, 20, 27, 34, 41, 53].  Myocarditis is one of the 

most frequently recognized findings in HIV-infected individuals, with incidence rates as 

high as 52% reported [6, 8, 11, 13, 72]. While the connection between HIV-associated 

myocarditis and clinical cardiac disease is still unclear given that the majority of cases are 

subclinical, there is considerable evidence to suggest the possibility of a contributory role 

[5, 6, 8, 11, 12, 20, 27]. The etiology of the inflammatory response in this condition is 

poorly understood.  The presence of HIV-infected cells within the myocardium of some 

HIV-infected individuals has repeatedly been documented [18, 27, 84-86, 94], but the 

ability of HIV to infect cardiomyocytes remains controversial [13, 63, 71, 88], as is the 

potential relationship of intramyocardial HIV-infected cells to development of cardiac 

pathology [12, 13, 72, 84, 86]. Other opportunistic and general cardiotropic pathogens are 

identified with variable frequency, in most instances accounting for a minority of cases 

[8, 11-14, 18, 20, 27, 72, 74]. Cardiac autoantibodies have been detected with relatively 

high frequency in HIV-infected individuals with myocardial disease, suggesting a 

possible role for autoimmunity [95]. Drug-related cardiotoxicities may also play a role in 

some cases [34, 99, 100]. 

 Simian immunodeficiency viruses (SIV) are lentiviruses which are genetically 

closely related to HIV and represent the original sources from which both HIV-1 and 

HIV-2 derived [176, 177]. SIV infection of Asian macaque species produces a fatal 
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immunodeficiency syndrome with properties of disease progression very similar to those 

seen in humans with HIV infection [181-186]. The SIV model of AIDS is well-

established, and provides a strong context for study of HIV-associated myocarditis and 

cardiomyopathy due to the occurrence of cardiac morphologic and functional 

abnormalities similar to those described in HIV infection [178, 179]. Use of an animal 

model allows minimization of many confounding factors which accompany study of 

naturally occurring disease in HIV-infected human populations. 

 Goals of the present retrospective study included precise quantitation and 

characterization of inflammatory infiltrates within hearts of SIV-infected rhesus monkeys 

(Macaca mulatta) to allow objective comparison of inflammation severity between cases, 

and to allow correlations to be drawn between inflammation severity and the presence 

and number of intramyocardial virus-infected cells, as well as the size and distributional 

properties of local professional antigen presenting cell populations which could be 

expected to play a role in sensitization of the adaptive immune system to native or 

exogenous antigens within the myocardium. Two systems of quantitation were used in 

order to cross-check results, and to evaluate infiltrates not only in terms of cell numbers, 

as determined by quantitative image analysis, but also in terms of cell distribution, as 

determined by a rule-based grading schema.  
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Materials and Methods 

Animals, Case Inclusion Criteria, and Tissues.  Paraffin-embedded cardiac tissues 

from 26 rhesus monkeys (Macaca mulatta) were evaluated. Hearts from SIV-infected 

animals were selected from the pathology archives of the New England Primate Research 

Center. Hematoxylin and eosin (H&E)-stained sections were assessed to determine the 

presence or absence of lymphocytic inflammatory infiltrates, with infiltrates being 

defined as intramyocardial focal clusters comprised of 5 or more cells morphologically 

consistent with lymphocytes. Fourteen sequential cases with such infiltrates and the first 

7 cases without infiltrates were selected for further study. Hearts containing concurrent 

neutrophilic infiltrates or bacterial colonies were omitted from consideration. Cardiac 

tissues from 5 healthy, SIV-negative rhesus monkeys with no gross or histologic 

evidence of cardiac or other significant pathology were used as controls. All SIV-positive 

animals had been infected with either SIVmac251 or SIVmac239 and had been included 

in a variety of vaccine and pathogenesis studies. Post-inoculation time to euthanasia and 

necropsy ranged from 81 to 1502 days. Prior to euthanasia, all animals were housed at the 

New England Primate Research Center (NEPRC) in accordance with standards of the 

Association and Accreditation of Laboratory Animal Care and the Harvard Medical 

School Animal Care and Use Committee. All animals received complete necropsies upon 

euthanasia. 

 

Immunohistochemistry.  Formalin-fixed, paraffin-embedded tissues were sectioned at 

5μm for routine, single-label immunohistochemistry following an ABC immunostaining 
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technique as previously described [187]. Cell populations were characterized using 

antibodies specific for CD3 (rabbit polyclonal, A 0452, DakoCytomation, Carpinteria, 

CA), CD4 (clone 1F6, VP-C318, Vector Laboratories, Burlingame, CA), CD8 (clone 

1A5, VP-C325, Vector), CD68 (clone KP1, M 0814, DakoCytomation), DC-SIGN 

(polyclonal, gift of R. Doms, University of Pennsylvania, Philadelphia, PA, and clone 

120612, DZX02, R & D Systems, Minneapolis, MN), HAM 56 (clone HAM56, M0632, 

DakoCytomation), cleaved caspase 3 (polyclonal, Cell Signaling Technology, Beverly, 

MA), and Ki67 (clone MIB-1, M 7240, DakoCytomation). Intramyocardial virus was 

evaluated using antibodies against SIV nef protein (clone KK75, donor Dr. K. Kent and 

Ms C. Arnold, obtained from the NIBSC Centralised Facility for AIDS Reagents 

supported by EU Programme EVA contract (BMH4 97/2515) and the UK Medical 

Research Council), rhesus cytomegalovirus IE1 protein (polyclonal, provided by Dr. 

Peter Barry, UC Davis), and adenovirus (clone 20/11, MAB8052, Chemicon 

International, Temecula, CA). Formalin-fixed, paraffin-embedded (FFPE) splenic tissue 

from a rhesus monkey experimentally infected with SIV at the NEPRC served as positive 

control for immunohistochemical analysis of hearts for SIV nef protein. Formalin-fixed, 

paraffin-embedded jejunal tissue from an SIV infected rhesus monkey which developed 

severe adenoviral enteritis prior to euthanasia at the NEPRC served as positive control for 

adenoviral antigen. Formalin-fixed, paraffin-embedded tissue from the urinary bladder of 

an experimentally immunosuppressed cynomolgus monkey which spontaneously 

developed disseminated cytomegalovirus infection in an organ transplantation study at 

the NEPRC served as positive control for rhesus cytomegalovirus IE1 protein. Sections 
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were deparaffinized in xylene and  rehydrated through graded ethanols, followed by 

blocking of endogenous peroxidase by incubation in 3% H2O2 in phosphate buffered 

saline. Antigen retrieval in most cases consisted of microwaving in citrate buffer 

(Vector). Antigen retrieval for CD4 consisted of microwaving in EDTA buffer (Lab 

Vision, Fremont, CA), for adenovirus consisted of 5 minutes digestion with proteinase K 

(DakoCytomation), for CD8 consisted of 20 minutes pressure cooker treatment in Trilogy 

solution (Cell Marque, Hot Springs, AK), and for the DC-SIGN monoclonal consisted of 

microwaving in Tris HCl buffer (Lab Vision). Sections were incubated with primary 

antibody followed by an avidin-biotin block (Vector) to block endogenous biotin, and 

sequential incubation with biotinylated secondary antibody and horseradish peroxidase-

conjugated avidin (ABC Standard or ABC Elite, Vector), or the EnVision polymer 

system (DakoCytomation) applied according to manufacturer’s instructions. Antigen-

antibody complex formation was detected by use of 3,3’diaminobenzidine (DAB) 

chromogen (DakoCytomation) and tissues were counterstained with Mayer’s 

hematoxylin. Irrelevant primary antibodies were used in place of the test antibody as 

negative controls in all immunohistochemical studies.  

 

Grouping and Scoring.  Hearts from the 21 SIV+ cases were grouped into 3 cohorts of 7 

animals each based on application of the Dallas criteria to H&E stained sections from 

paraffin blocks containing left ventricular tissue [188]. Hearts assigned to the active 

myocarditis group had lymphocytic inflammatory infiltrates directly associated with 

regions of cardiomyocyte degeneration or necrosis, hearts assigned to the borderline 
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myocarditis group had lymphocytic infiltrates without associated cardiomyocyte 

degeneration or necrosis, and hearts assigned to the SIV normal group lacked 

inflammatory infiltrates and had no other histologic evidence of myocardial pathology. 

For each SIV-infected and control animal, sections of left ventricle were scored for 

necrosis on 2 non-serial H&E stained sections, and for immunohistochemical CD3 and 

CD68 signal according to specified distributional and quantitative parameters (Table 1). 

In brief, for each animal a single section of left ventricular tissue was scored for focal T 

cell infiltration, perivascular T cell infiltration, diffuse T cell infiltration, infiltrate-

associated macrophage involvement, and myofiber degeneration/necrosis, as defined. 

CD3 and CD68 scoring was limited to intramyocardial signal. Two composite scores 

were derived from the individual components: a total T cell infiltration score, generated 

as the sum of the 3 individual CD3 distributional scores, and a cumulative inflammation 

score, generated as the sum of the total T cell infiltration score, the necrosis score, and 

the infiltrate-associated macrophage score. Cytomegalovirus (CMV) involvement as 

detected by immunohistochemistry was scored semi-quantitatively on a 0-3 scale, with 0 

representing no positive signal, and 3 representing frequent signal.  

 

Quantitative Image Analysis.  For each SIV-infected and control animal, sections 

immunohistochemically labeled for SIV nef protein, CD3, CD68, and DC-SIGN as 

described were individually examined by use of an Olympus Vanox-S AHBS microscope 

interfaced with a Leica personal computer equipped with Leica QWin image analysis 

software (Leica Imaging Systems Ltd., Cambridge, England), via a DEI 750 charge-
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coupled device camera (Optronics, Goleta, CA). In brief, for a single section of left 

ventricular tissue from each animal, images of 20-30 random fields were captured at 200x 

magnification. The total number of DAB stained cells per field was quantitated based on 

the number of flagged foci of discrete signal occupying a minimum number of 

contiguous pixels. The number of positive cells per mm2 was calculated based on the 

known area of each field and total number of positive cells in the overall examined area. 

 

In Situ Hybridization.  In situ hybridization for SIV RNA in cardiac tissue was 

performed as previously described [189]. Briefly, tissue sections were deparaffinized and 

rehydrated in xylene and graded ethanols. Endogenous alkaline phosphatase activity was 

blocked in 5 mM levamisole (Sigma Chemical Co., St. Louis, MO). Sections were 

hydrolyzed in 0.2N HCl (Sigma), digested with proteinase K (Roche Diagnostics Corp., 

Indianapolis, IN), acetylated in acetic anhydride (Sigma), and hybridized overnight at 

50°C with digoxigenin-labeled antisense riboprobe that spans the entire genome of the 

SIVsmmPGm5.3 molecular clone of SIVsmmFGb (Lofstrand Laboratories, Gaithersburg, 

MD). Bound probe was detected by immunohistochemistry using alkaline phosphatase-

conjugated sheep anti-digoxigenin F(ab) fragments (Roche) and the chromogen nitro blue 

tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP, Roche). Sections were 

counterstained with nuclear fast red (Vector). Splenic tissue from an SIV-positive rhesus  

monkey hybridized with antisense riboprobe served as positive control. Splenic tissue 

from an SIV-negative rhesus monkey hybridized with antisense riboprobe and from an 

SIV-positive rhesus monkey hybridized with sense riboprobe served as negative controls.  
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Confocal Microscopy.  Double-label immunofluorescence confocal microscopy was 

performed on paraffin sections. Briefly, sections were routinely deparaffinized, 

rehydrated, subjected to antigen retrieval as described for single-label 

immunohistochemistry, washed in 1x phosphate-buffered saline in doubly distilled water 

with 0.2% fish skin gelatin (PBS-FSG), and blocked with 10% normal goat serum diluted 

in PBS-FSG.  Monoclonal primary  antibodies (specific for SIV nef, HAM 56, DC-

SIGN) were incubated on sections overnight. Polyclonal primary antibodies (specific for 

CD3) were incubated on sections for 30 minutes. Anti-mouse IgG1 Alexa 488 and anti-

mouse IgG2a Alexa 568, anti-mouse IgM Alexa 568, or anti-rabbit IgG Alexa 568 

secondary antibodies (Molecular Probes, Inc., Eugene, OR) were incubated for 30 

minutes on sections as appropriate for the species and isotype of primary antibody. To-

Pro3 (Molecular Probes) was incubated on sections for 5 minutes then washed with PBS. 

Confocal microscopy was performed using a Leica TCS SP laser scanning microscope 

equipped with 3 lasers (Leica Microsystems, Exton, PA). Thirty-two individual optical 

slices were collected at 512 x 512 pixel resolution. The fluorescence of individual 

fluorochromes was captured separately in a sequential mode, after optimization to reduce 

bleed-through between channels (photomultiplier tubes) using Leica software. Adobe 

Photoshop Elements 3.0 (Adobe Photosystems, San Jose, CA) was used to assign correct 

colors to 3 channels collected: Alexa 488 (green), Alexa 568 (red), and To-Pro3 (blue). 

Colocalization of antigens was demonstrated by the addition of colors. 
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Serology.  Banked sera from 50 rhesus monkeys of various ages and from various 

housing circumstances at the New England Primate Research Center were evaluated for 

the presence of anti-coxsackieviral IgG to assess the prevalence of coxsackievirus 

exposure in the Center’s rhesus population. A commercial ELISA kit with broad 

coxsackievirus serotype specificity and manufacturer-provided control sera was used 

according to manufacturer’s instructions (Serion ELISA, QED Biosciences, San Diego, 

CA).  

 

Statistical Analysis.  Linear regression analysis and statistical comparisons between 

groups were performed with commercially available software (SigmaStat 3.1, Systat 

Software, Inc., Richmond, CA). Groups were compared using the t test or Mann-Whitney 

Rank Sum Test, as appropriate. Fisher’s exact test was used to evaluate categorical data 

between groups. Probability values of P < 0.05 were interpreted as significant. Statistical 

analysis of quantitative image analysis data was performed on pooled individual data 

points collected for each animal within the evaluated groups.   
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Results 

Correlation between grading schema-derived composite scores and image analysis-

based T cell quantification  

There were no significant differences in age, sex, viral inoculum, or number of days post-

infection among the groups. AIDS-defining lesions, including disseminated opportunistic 

infections, giant cell disease, and SIV encephalitis, were present in a majority of animals 

in all SIV-infected groups at necropsy. Prevalence of AIDS diagnosis did not differ 

significantly between groups, being found in 4 of 7 cases with active myocarditis, 6 of 7 

cases with borderline myocarditis, and 5 of 7 cases with histologically normal 

myocardium. Mononuclear inflammatory infiltrates within the myocardium (Figure 2.1, 

A) were quantified using both quantitative image analysis and a rule-based grading 

schema (Table 2.1). Lymphocytic infiltrates detected with CD3 immunohistochemistry 

were scored according to focal (Figure 2.1, B), perivascular (Figure 2.1, C), and diffuse 

(Figure 2.1, D) distributions. Summation of individual, grading schema-derived 

distributional T cell scores yielded a composite total T cell infiltration score for each 

heart.  A significant correlation (P < 0.001) existed between composite T cell infiltration 

scores and values for the number of CD3+ cells/mm2 generated by quantitative image 

analysis (Figure 2.2, A). Infiltrate-associated macrophage involvement and 

cardiomyocyte degeneration and necrosis (Figure 2.1, E-F) were separately scored and 

combined with the T cell infiltration score to yield a cumulative inflammation score 

which significantly correlated with the T cell infiltration score itself (P < 0.001) and with 

image analysis values for CD3+ cells/mm2 (P = 0.003, R = 0.566) (Figure 2.2, B). The 
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pattern of significant correlations for individual grading schema derived T cell 

distribution scores was identical to that identified for image analysis derived quantitation 

of CD3+ cells, and each individual distribution score correlated significantly with image 

analysis derived T cell quantitation itself (P < 0.025). Individual T cell distributional 

scores also correlated significantly with each other (P ≤ 0.005) with the exception of the 

focal and diffuse scores (P = 0.09). In linear regression analyses examining the 

relationship between T cell infiltration and other examined parameters, the significance 

or non-significance of correlations patterned identically regardless of which T cell 

quantitation method was used for all parameters except one. The highly significant 

correlation of composite T cell infiltration scores with image analysis derived values for 

the number of CD3+ cells per unit area indicates that grading schema derived scoring may 

confidently be used as an alternate method for quantitation of inflammatory infiltrates in 

contexts where image analysis is not readily available.   

 

Quantitation and characterization of inflammatory infiltrates by group 

The amount of T cell infiltration, infiltrate-associated macrophage involvement, and 

cumulative inflammation as defined under the grading schema was determined for each 

group and compared between groups. Statistically significant elevations in T cell 

infiltration score (P < 0.05), infiltrate-associated macrophage score (P < 0.02), and 

cumulative inflammation score (P ≤ 0.03) were present in hearts with active or borderline 

myocarditis relative to SIV normal hearts and uninfected controls (Figure 2.3). 

Differences in these parameters between hearts with active myocarditis and those with 
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borderline myocarditis were not significant, nor were differences in values between SIV 

normal hearts and uninfected controls. Infiltrate-associated macrophage scores between 

the active and borderline myocarditis groups approached but did not achieve statistical 

significance (P = 0.064). Values for T cell infiltration score, CD3+ cells/mm2, cumulative 

inflammation score, and infiltrate-associated macrophage score did not differ 

significantly between animals with and without AIDS-defining lesions (all P > 0.10). 

Immunohistochemical analysis for CD8 and CD4 antigens was performed to 

further characterize the identified CD3+ cell populations. A strong predominance of CD8+ 

cells was noted in almost all cases (Figure 2.4, A), though 2 hearts had roughly equal 

numbers of CD4+ and CD8+ round cells within inflammatory foci, without an obvious 

correspondence between the CD4+ population and the CD68+ population evaluated from 

a separate section of the same tissue. CD4 signal in general was rare and, when present, 

occurred predominantly in loose distribution in the subendocardial space in a pattern also 

identified for CD68 (not shown). A minority of hearts, however, had large numbers of 

CD4+ cells with a spindloid morphology distributed throughout the myocardial 

interstitium (Figure 2.4, B). Hearts with high levels of interstitial spindloid CD4+ cells 

were unique in also having especially high numbers of interstitial DC-SIGN+ cells. 

 

Relation of cardiomyocyte necrosis to macrophage and T cell involvement  

Cardiomyocyte degeneration and necrosis were variably present among SIV+ animals 

with lymphocytic infiltrates and served as the defining criterion for inclusion in the active 

myocarditis group. Areas of necrosis were characteristically small and localized to a 
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single cardiomyocyte or directly adjacent cardiomyocytes (Figure 2.1, F). Three of 7 

hearts from the active myocarditis group also contained patchy regions of replacement 

fibrosis consistent with a process of chronic injury, a finding which was not present in 

hearts from any of the other 3 groups. A statistically significant correlation existed 

between the necrosis score and both the infiltrate-associated macrophage score (P < 

0.001, R = 0.666) and the cumulative inflammation score (P = 0.007, R = 0.517). No 

significant correlation was detected between necrosis score and either measure of T cell 

quantitation (T cell infiltration score P = 0.479, R = 0.145; CD3+ cells/mm2 P = 0.433, R 

= 0.161). 

The possibility of cardiomyocyte apoptosis as a significant contributor to 

myocardial pathology was investigated through immunohistochemical evaluation of the 

presence, frequency, and distribution of cleaved caspase 3. Cleaved caspase 3 signal was 

strong in sections of rhesus duodenum and tonsil used as positive controls, but very rare 

in hearts of all groups. Occasional cells morphologically consistent with leukocytes 

displayed strong positive signal within inflammatory foci or within the myocardial 

interstitium (not shown), but no positive signal in cells morphologically consistent with 

cardiomyocytes was identified.  

 

Intramyocardial SIV-infected cells and inflammation 

Intramyocardial SIV-infected cells were detected in 7 of the 21 hearts from SIV-infected 

animals by in situ hybridization using probes spanning the entire SIV genome. Infected 

cells were found in 3 of 7 hearts with active myocarditis, 1 of 7 hearts with borderline 
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myocarditis, and 3 of 7 hearts from the SIV normal group. SIV nef 

immunohistochemistry had a lower sensitivity than in situ hybridization, detecting only 5 

of 7 cases containing infected cells. Infected cells occurred with an interstitial distribution 

and had a compact, discrete, frequently spindloid morphology (Figure 2.4, C). Double-

label immunofluorescence confocal microscopy demonstrated consistent colocalization 

of SIV nef protein with HAM 56, indicating productive infection of macrophages (Figure 

2.4, D). A lack of colocalization of CD3 and SIV nef protein signal indicated a lack of 

productive infection of intramyocardial T cells (not shown). With one exception, 

numbers of infected cells in hearts where SIV antigen was detected were extremely low, 

ranging from <1 to 4 cells/mm2 by quantitative image analysis. A single heart within the 

SIV normal group contained substantially higher quantities of infected cells at 36 

cells/mm2, though with morphologic and distributional properties similar to those 

identified in other hearts. The quantity of SIV-infected cells per unit area was 

significantly higher among hearts from the SIV normal group than among hearts from 

either the active or borderline myocarditis groups (P < 0.04). No correlation was 

identified between the number of SIV-infected cells/mm2 and T cell infiltration score (P 

= 0.646, R = 0.106), CD3+ cells/mm2 (P = 0.742, R = 0.0821), cumulative inflammation 

score (P = 0.382, R = 0.201), necrosis score (P = 0.535, R = 0.144), infiltrate-associated 

macrophage score (P = 0.188, R = 0.299), or diffuse macrophage infiltration within the 

myocardial interstitium (CD68+ cells/mm2) as quantified by image analysis (P = 0.858, R 

= 0.0417).  
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Frequency of potentially contributory cardiotropic infections  

To evaluate the extent to which other opportunistic or general cardiotropic infections 

might contribute to induction of the myocardial inflammatory response in the hearts 

under study, specific screening was conducted for coxsackievirus, adenovirus, and 

cytomegalovirus, along with reviews of non-serial H&E stained sections for histologic 

evidence of opportunistic agents. Coxsackieviral IgG serology performed using 

manufacturer-provided controls was conducted on sera from 50 rhesus monkeys of 

various ages and housing circumstances at the New England Primate Research Center. 

Negative results were found in all cases, indicating that coxsackievirus infection is 

unlikely to play an important role among monkeys within the facility. 

Immunohistochemical screening for adenoviral antigen yielded strong, frequent signal on 

positive control tissues, but in all hearts revealed no positive signal.  Strong nuclear 

signal for rhesus cytomegalovirus IE1 protein was detected in cardiomyocytes of 6 of 21 

SIV+ animals by immunohistochemistry, with staining pattern and intensity matching that 

of positive control tissues. Cardiomyocyte CMV signal was identified in 2 hearts with 

active myocarditis and 4 hearts with borderline myocarditis, but not in any SIV normal or 

control hearts. Evidence of infection was not found in any cells other than 

cardiomyocytes. In all cases, infected cells occurred in low numbers and were not 

directly associated with inflammation or necrosis. The difference in CMV scores between 

hearts with active or borderline myocarditis as compared to SIV normal and uninfected 
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control hearts approached but did not reach statistical significance (P = 0.066).  Of 10 

animals with myocardial CMV-infected or SIV-infected cells, 3 contained both. Of these, 

2 were in the active myocarditis group, 1 was in the borderline myocarditis group. 

Cumulative inflammation scores for these 3 animals included 1 above the mean for all 

SIV+ animals as a group, 1 equal to the mean, and 1 below the mean. All of these hearts 

had very low numbers of myocardial SIV-infected cells. No correlation was detected 

between CMV score and T cell infiltration score (P = 0.853, R = 0.038), CD3+ cells/mm2 

(P = 0.640, R =0.00963), cumulative inflammation score (P = 0.520, R = 0.132), necrosis 

(P = 0.493, R = 0.141), DC-SIGN+ cells/mm2 (P = 0.226, R = 0.246), SIV+ cells/mm2 (P 

= 0.643, R = 0.107), or CD68+ cells/mm2 (P = 0.826, R = 0.0453).  

Multiple reviews of H&E stained sections by 2 individuals (JHY, KGM) revealed 

no histologic evidence of other protozoal, fungal, bacterial, or viral infections.  

 

DC-SIGN+ cells and T cell infiltration 

Distribution of DC-SIGN was evaluated as a dendritic cell marker which also labels some 

macrophage populations in both humans and macaques.[190-193] Tissue sections of left 

ventricle were immunohistochemically labeled for DC-SIGN with signal subsequently 

quantified by image analysis. DC-SIGN+ cells were identified in 23 of 26 hearts 

examined.  DC-SIGN+ cells occurred exclusively in the interstitium and perivascular 

connective tissue and were never found within inflammatory foci (Figure 2.4, E). The 

number of DC-SIGN+ cells was highly variable among samples, ranging from 0-77 

cells/mm2, and while variation in DC-SIGN+ cell numbers was found in all groups, 
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numbers of intramyocardial DC-SIGN+ cells were significantly increased in hearts of the 

SIV normal group relative to all other groups (P < 0.001) (Figure 2.5, A). DC-SIGN+ 

cells were also significantly increased in hearts from the active myocarditis group relative 

to the control group (P = 0.006); however, differences between DC-SIGN+ cell numbers 

in the active and borderline myocarditis groups, and between the borderline myocarditis 

and control groups were not significant (P = 0.113, and P = 0.220, respectively).  The 

possibility of intramyocardial proliferation of the DC-SIGN+ population being 

responsible for the dramatically higher levels of expression noted in some hearts was 

evaluated by assaying for the proliferating cell marker Ki67. Ki67 signal was detected 

among leukocytes within focal aggregates, but was not identified in more widely 

dispersed interstitial and perivascular cells consistent with the DC-SIGN+ populations 

identified.  

Hearts with high levels of T cell infiltration as quantitated by either method 

uniformly had low numbers of myocardial DC-SIGN+ cells, and among hearts from SIV-

infected animals there was a statistically significant inverse correlation between the 

number of DC-SIGN+ cells/mm2 and the T cell infiltration score (P = 0.027) (Figure 2.5, 

B).  A statistically significant direct correlation also was identified between the number 

of SIV-infected cells/mm2 and the number of DC-SIGN+ cells/mm2 (P = 0.038, R = 

0.456); however, the significance of this latter correlation depended critically on 

inclusion of the single SIV normal sample with very high numbers of myocardial SIV-

infected cells/mm2. Double-label immunofluorescence confocal microscopy 

demonstrated consistent absence of colocalization of DC-SIGN signal and SIV nef 
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protein within individual cells, indicating a lack of productive SIV infection in DC-

SIGN+ cells (Figure 2.4, F). 

Distinctness of DC-SIGN+ and CD68+ cell populations 

Distribution of CD68+ cells was evaluated to quantify macrophages, both within 

inflammatory foci and more diffusely throughout the myocardial interstitium. Quantity of 

CD68 signal was compared to image analysis derived quantification of DC-SIGN labeled 

sections of the same tissue in order to assess overall numbers and distribution of antigen 

presenting cells. CD68 immunohistochemistry revealed a population of cells with 

distribution and spindloid morphology similar to that identified for DC-SIGN, though 

CD68+ cells were also noted occurring within inflammatory foci (Figure 2.1, E). 

Myocardial CD68+ cell numbers were significantly increased in the active myocarditis 

group relative to uninfected controls (P = 0.034), and were significantly increased in the 

SIV normal group relative to the borderline myocarditis and uninfected control groups (P 

= 0.007 and P = 0.002, respectively). However, the frequency of CD68+ cells was lower 

than the frequency of DC-SIGN+ cells in sections of the same tissue, with DC-SIGN+ cell 

numbers being significantly higher in the SIV normal group (P < 0.001) (Figure 2.5, A, 

C). Linear regression analysis of the relationship of CD68+ cell frequency to DC-SIGN+ 

cell frequency demonstrated a statistically significant, but highly outlier dependent, 

correlation between the two (P = 0.020).  
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Discussion 

Quantification of infiltrates by image analysis and application of a rule-based grading 

schema provided two methods for objectively enumerating the extent and type of 

inflammation present in examined hearts, with the rule-based grading schema also 

allowing assessment of distributional patterns of infiltrates and derivation of composite 

scores incorporating multiple pathological features. The highly significant correlation of 

grading schema derived composite T cell infiltration scores with image analysis derived 

values for CD3+ cells/mm2 (P < 0.001) suggests that the inflammation grading schema 

may be used with confidence for quantitation of infiltrates in circumstances where 

computer-based image analysis is either not practical or not possible, such as in most 

clinical and diagnostic contexts. Interestingly, significant correlations from each of the 

individual distributional T cell scores did not differ from those of the image analysis 

derived quantitation of CD3+ cells per unit area, suggesting that the different 

distributional patterns identified within the tissues were not associated with different 

pathogenetic mechanisms or consequences, despite the fact that different hearts 

sometimes had pronounced differences in the distributional patterns of T cells present. 

The fact that cardiomyocyte necrosis scores lacked significant correlation with T 

cell infiltration, and that the active and borderline myocarditis groups consistently 

patterned together with regards to both the histologic characteristics of infiltrates and 

significant correlations with other examined parameters, suggests that these two groups 

represent slightly different manifestations of a single disease process. The fact that often 

only a small proportion of the infiltrates in hearts of the active myocarditis group were 
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directly associated with cardiomyocyte degeneration or necrosis further supports the 

existence of a continuum between these two groups, though the underlying cause of the 

cardiomyocyte injury and why it occurs in some cases and not others remains obscure.   

The potential role of macrophages in pathogenesis of cardiac disease in HIV 

infection has been raised as a point of interest in work by other groups [71]. In the present 

study, overall CD68+ cell numbers as quantitated throughout the myocardium by image 

analysis were not significantly different between hearts with active myocarditis and those 

which were histologically normal (Figure 2.5, C). CD68+ cell accumulation was most 

focally prominent in inflammatory cell infiltrates from hearts classified as having active 

myocarditis (Figure 2.3, B), but the fact that infiltrate-associated macrophage scores also 

correlated significantly with necrosis suggests the probability of a secondary clean-up 

response of macrophages to the presence of necrotic tissue in the context of active 

myocarditis as a possible explanation for this finding.  

 Productively SIV-infected cells were identified in 33% of the hearts from SIV+ 

animals; however, numbers of infected cells were generally very low. Productively 

infected cells were morphologically inconsistent with cardiomyocytes and consistently 

demonstrated colocalization of SIV nef protein with the macrophage marker HAM 56 

when examined by double-label immunofluorescence confocal microscopy, arguing 

against direct SIV infection of cardiomyocytes as a mechanism of myocyte injury.  The 

fact that the highest numbers of productively SIV-infected cells were found in hearts with 

histologically normal myocardium strongly argues against cardiomyocyte injury or 

secondary inflammatory reaction in response to the presence of SIV-infected leukocytes 
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within the myocardium. The finding of cardiomyocyte cytomegalovirus infection at 

relatively high frequency among the hearts with myocarditis, as has also been reported in 

several HIV-based studies [13, 18, 74], was suggestive of a possible role for CMV in the 

pathogenesis of this condition. Despite this, the lack of a significant correlation with 

either presence or quantity of inflammatory response, the fact that CMV-infected cells 

were never directly associated with regions of inflammation or necrosis, and the fact that 

most hearts with myocarditis did not contain evidence of CMV indicates that CMV 

infection is not sufficient to account for the full spectrum of cases examined. 

Furthermore, these facts taken together indicate that any role played by CMV would need 

to be indirect, possibly through induction of an autoimmune response, as has been 

documented in murine models of CMV infection [194-196]. 

 DC-SIGN+ cell numbers were dramatically increased in the SIV normal group 

compared to all other groups and showed an inverse correlation with quantity of T cell 

infiltration, suggesting an important immunoregulatory role for this population within the 

myocardium. The distribution of DC-SIGN+ cells diffusely throughout the interstitium 

and in perivascular locations suggests a surveillance function, and it may be that 

increased levels of surveillance by this cell population result in more rapid recognition 

and clearance of potential pathogens, thereby protecting against development of 

myocarditis. Conversely, the presence of significantly increased levels of local antigen 

presenting cells within the myocardium may increase the likelihood of inappropriate 

sensitization to native myocardial antigens under some circumstances, leading to 

increased likelihood of autoimmune responses. The exact identity of the DC-SIGN+ 
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population is not clear; however, the consistent lack of productive infection by SIV and 

the distinctness of this population from the CD68+ population based on quantitative 

inconsistencies between the two suggests that they are not macrophages and may well 

represent an immature dendritic cell population. Regardless of their exact identity, the 

nature of the correlations observed in these cohorts suggests that the recruitment of DC-

SIGN+ cells to the myocardium under conditions of SIV infection may play an important 

role in whether lymphocytic myocarditis develops in a given individual or not.  
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Table 2.1. Myocardial inflammation grading criteria 

_____________________________________________________________________________ 

Focal* T cell infiltration:  

0 =  no focus ≥5 CD3+ cells  

1 = 1-3 foci of ≥5<10 CD3+ cells  

2 = 4-6 foci of ≥5<10 CD3+ cells, OR 1-3 foci of ≥10<20 CD3+ cells  

3 = >6 foci of ≥5<10 CD3+ cells, OR >3 foci of ≥10<20 CD3+ cells, OR 1 or more foci of ≥20  

CD3+ cells 

 

Perivascular† T cell infiltration:  

0 = No 40x field containing ≥5 CD3+ cells associated with a single vessel 

1 = 1-2 40x fields each containing ≥5<10 CD3+ cells associated with a single vessel 

2 = ≥5<10 CD3+ cells associated with each of 3-5 vessels, OR 1 40x field containing ≥10<20  

CD3+ cells associated with a single vessel 

3 = ≥5<10 CD3+ cells associated with each of >5 vessels, OR ≥10<20 CD3+ cells associated  

with each of ≥2 vessels, OR  1 40x field containing ≥20 CD3+ cells associated with a single vessel 

 

Diffuse‡ T cell infiltration:  

0 = no 40x field with ≥8 CD3+ cells  

1 = 1-2 40x fields with ≥8<14 CD3+ cells  

2 = 3-6 40x fields with ≥8<14 CD3+ cells, OR 1-2 40x fields with ≥14<20 CD3+ cells  

3 = >6 40x fields with ≥8<14 CD3+ cells, OR 3 or more 40x fields with ≥14<20 CD3+ cells,  

OR 1 or more 40x fields with ≥20 CD3+ cells  
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Infiltrate-associated§ macrophages: 

0 = No CD68+ cells associated with any infiltrate 

1 = 1-5 CD68+ cells are present within a single infiltrate 

2 = 1-5 CD68+ cells are present within each of 2 or more infiltrates, OR >5 CD68+ cells are present  

within a single infiltrate 

3 = >5 CD68+ cells are present within each of 2 or more infiltrates 

 

Myofiber degeneration/necrosis:   

0 = none 

0.5 = 1 or more small foci cumulatively less than ¼ the size of a 40x field. 

1 = 1 or more small foci cumulatively less than ½ the size of a 40x field 

2 = 1 or more foci cumulatively greater than ½  the size of a 40x field but less than  

the size of a full 40x field 

3 = 1 of more foci cumulatively greater the size of a full 40x field 

_____________________________________________________________________________ 

 

*Focal T cell infiltrate: All CD3+ cells scored within a focus must be separated by no greater than 3 

lymphocyte diameters from another CD3+ cell within the focus. CD3+ cells within perivascular connective 

tissue are excluded from focal scoring. 

†Perivascular T cell infiltrate: All CD3+ cells scored as perivascular infiltrates must occur directly within 

perivascular connective tissue which does not overlap with any previously scored field. Infiltrates 

associated with multiple vessels (scores of 2 and above) may be in the same or different 40x fields. 

‡Diffuse T cell infiltrate: All CD3+ cells scored as diffuse infiltrates must be separated by greater than 3 

lymphocyte diameters from any focal or perivascular CD3+ infiltrate.   

§Infiltrate-associated macrophages: CD68+ cells scored as infiltrate-associated macrophages must be 

directly associated with a focal, diffuse, or perivascular lymphocytic infiltrate, as defined. 
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Figure 2.1  Myocardial infiltrates in SIV-associated myocarditis illustrating basic 

patterns evaluated under the grading schema. A: Interstitial mononuclear infiltrate with 

lymphocyte predominance and cardiomyocyte disruption (H&E) B: Predominantly focal 

aggregate of T cells (CD3 immunohistochemistry with Mayer’s hematoxylin) C:  

Perivascular T cell infiltration (CD3 immunohistochemistry with Mayer’s hematoxylin)  

D: Diffuse infiltration of T cells  without focus formation (CD3 immunohistochemistry 

with Mayer’s hematoxylin) E: Infiltrate-associated macrophage involvement (CD68  

immunohistochemistry with Mayer’s hematoxylin) F: Cardiomyocyte necrosis with 

associated inflammatory infiltrate (H&E) 
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Figure 2.1 
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Figure 2.2  Linear regressions illustrating correlations between grading schema derived T 

cell infiltration scores and image analysis based T cell quantitation, (A), and between 

grading schema derived T cell infiltration and cumulative inflammation scores, (B).  A: 

A statistically significant correlation was present between the numbers of CD3+ 

cells/mm2 as determined by image analysis and the grading schema derived composite T 

cell infiltration score, which incorporated individual scores for 3 different T cell 

distributional patterns (P < 0.001).  B: A statistically significant correlation was present 

between the image analysis derived quantitation of CD3+ cells/mm2 and the grading 

schema derived cumulative inflammation score, which incorporated the T cell infiltration 

score, the infiltrate-associated macrophage score, and the necrosis score (P = 0.003). 
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Figure 2.2 
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Figure 2.3  Distribution of T cell infiltration scores, infiltrate-associated macrophage 

scores, and cumulative inflammation scores across groups. A: T cell infiltration scores 

within the active and borderline myocarditis groups were significantly higher than within 

the SIV normal and control groups (P < 0.05). The difference in T cell infiltration scores 

between the active and borderline myocarditis groups and between the SIV normal and 

uninfected control groups was not significant. B: Infiltrate-associated macrophage scores 

within the active and borderline myocarditis groups were significantly higher than within 

the SIV normal or control groups (P < 0.02). The difference in infiltrate-associated 

macrophage scores between the active and borderline myocarditis groups and between 

the SIV normal and uninfected control groups was not significant.  C: Cumulative 

inflammation scores within the active and borderline myocarditis groups were 

significantly higher than within the SIV normal and uninfected control groups (P ≤ 0.03). 

The difference in cumulative inflammation scores between the active and borderline 

myocarditis groups and between the SIV normal and uninfected control groups was not 

significant. Boxes represent the 25th to 75th percentile of scores within each group. 

Central lines within boxes represent median values. Boxes without central lines have 

median values either equal to the box maximum (B: borderline group), or the box 

minimum (A: control group; B: active and control groups; C: control group). Active = 

active myocarditis group, borderline = borderline myocarditis group, SIV norm = SIV 

normal group, control = uninfected control group. 
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Figure 2.3 
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Figure 2.4  Immunophenotypic characterization and viral localization. A: Cells 

comprising cellular aggregates within the myocardium consisted predominantly of CD8+ 

lymphocytes. (CD8 immunohistochemistry with Mayer’s hematoxylin) B: An extensive 

interstitial spindloid CD4+ cell population was present in a small subset of SIV+ animals. 

This same subset of animals also had extremely high numbers of interstitial DC-SIGN+ 

cells. (CD4 immunohistochemistry with Mayer’s hematoxylin) C: Cells productively 

infected by SIV were characterized by compact, often spindloid morphology and 

interstitial distribution. (SIV nef immunohistochemistry with Mayer’s hematoxylin) D: 

Double-label immunofluorescence confocal microscopy for HAM 56 and SIV nef protein 

showed prominent cytoplasmic colocalization of nef protein signal with HAM 56 as 

indicated by addition of colors in the merged image (800x magnification). E: DC-SIGN+ 

cells had prominent spindloid morphology with a consistently interstitial and perivascular 

distribution. DC-SIGN+ cells were never identified within inflammatory foci. (DC-SIGN 

immunohistochemistry with Mayer’s hematoxylin) F. Double-label immunofluorescence 

confocal microscopy for DC-SIGN and SIV nef protein demonstrated a consistent lack of 

signal colocalization, indicating a lack of productive SIV infection in DC-SIGN+ cells 

(800x magnification). 
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Figure 2.4 
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Figure 2.5  Image analysis based quantitation of DC-SIGN+ and CD68+ cells. A:  DC-

SIGN+ cell numbers per unit area as measured by quantitative image analysis were 

significantly higher in the SIV normal group than in the active and borderline myocarditis 

groups or the uninfected control group  (P < 0.001). B: The grading schema derived T 

cell infiltration score was inversely correlated with the number of DC-SIGN+ cells/mm2 

(P = 0.027). C: CD68+ cell numbers per unit area as measured by quantitative image 

analysis were significantly higher in the SIV normal group than in the borderline 

myocarditis group or the uninfected control group (P = 0.007 and P = 0.002, 

respectively), and were higher in the active myocarditis group than in the uninfected 

control group (P = 0.034). Differences in CD68+ cell numbers between the active and 

borderline myocarditis groups and between the active myocarditis and SIV normal 

groups were not significant.  A, C: The number of DC-SIGN+ and CD68+ cells per unit 

area differed significantly within the SIV normal group (P < 0.001).  Boxes in (A) and 

(C) represent the 25th to 75th percentile of scores within each group. Central lines within 

boxes represent median values. Boxes without obvious central lines have median values 

visually indistinguishable from the box minimum (A, C: control group) or the box 

maximum (C: borderline group). Active = active myocarditis group, borderline = 

borderline myocarditis group, SIV norm = SIV normal group, control = uninfected 

control group. 
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Figure 2.5 
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CHAPTER III 
 

PHENOTYPIC VARIATION IN MYOCARDIAL MACROPHAGE POPULATIONS 
SUGGESTS A ROLE FOR MACROPHAGE ACTIVATION IN SIV-ASSOCIATED 

CARDIAC DISEASE 
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ABSTRACT 

Cardiac abnormalities are common in HIV-infected individuals, and have been especially 

well-documented as contributors to mortality in HIV-infected children. Underlying 

pathogenetic mechanisms responsible for myocardial disease in HIV-infection remain 

imperfectly understood.  SIV-infected rhesus monkeys develop a similar spectrum of 

cardiac lesions to those seen in HIV-infected people, providing an important model for 

pathogenesis studies. Retrospective analysis of cardiac tissue collected at necropsy from 

SIV-infected rhesus monkeys was performed to evaluate myocardial macrophage and 

dendritic cell populations as a function of previously quantitated lymphocytic 

inflammatory infiltrates and cardiomyocyte degeneration or necrosis. Variations in the 

size and phenotype of macrophage and dendritic cell populations were examined as 

possible contributors to the pathogenesis of SIV-associated inflammatory lesions. 

Macrophages labeling immunohistochemically for CD163 differed substantially from 

macrophages labeling for HAM56 in overall number, distribution across groups, 

involvement in inflammatory clusters, correlation with the DC-SIGN+ subpopulation of 

macrophages , and correlation with numbers of SIV-infected cells. CD163+ macrophages 

occurred in significantly higher numbers in uninflamed hearts from SIV-infected animals 

than in hearts from SIV-infected animals with myocarditis or uninfected controls (P< 

0.01). Numbers of CD163+ cells correlated positively with numbers of SIV-infected cells 

(P < 0.05) suggesting that the CD163+ population was associated with decreased 

inflammatory infiltration and reduced control of virus within the heart. As CD163 has 

been associated with non-classical macrophage activation and an anti-inflammatory 
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phenotype, these results suggest that a balance between classical and non-classical 

activation may affect levels of inflammatory infiltration and of myocardial virus burden. 
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Introduction 

 Currently, an estimated 38.6 million people world-wide are HIV-infected [60]. 

Cardiac abnormalities, including myocarditis and dilated cardiomyopathy, are common in 

HIV-infected individuals, and have been especially well-documented as contributors to 

mortality in HIV-infected children [28, 54]. Underlying pathogenetic mechanisms 

responsible for myocardial disease in HIV-infection remain imperfectly understood. HIV-

associated myocarditis has been a focus of interest given its high rate of occurrence, and 

the possibility that it may represent an etiologic precursor to cardiomyopathy [28, 63]. 

While recent reports suggest that use of highly active anti-retroviral therapy (HAART) 

may have decreased the frequency of HIV-associated myocardial disease, roughly 80% of 

those in need of anti-retroviral drugs globally still do not have access to them [59, 60]. 

Macrophages and dendritic cells constitute cell types which are widely distributed 

throughout peripheral tissues, serving as sentinels of the immune system and able to 

significantly modulate immune responses through cytokine production. While in some 

contexts the actions of these populations may result in the development of inflammatory 

responses, in other contexts their effects may be tolerogenic or overtly anti-inflammatory, 

with the differences between these scenarios attributable to differences in the phenotypic 

subsets of cells involved [167, 172, 173]. Immature dendritic cells have been associated 

with induction of peripheral tolerance, for instance, and non-classically activated 

macrophages have been associated with anti-inflammatory cytokine production profiles 

[172, 173]. As different subsets of macrophages and dendritic cells are capable of 

mediating profoundly different effects in tissue and previous work has demonstrated a 
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significant inverse correlation between numbers of myocardial DC-SIGN+ cells and local 

T cell infiltration in hearts from SIV-infected animals [158], it was hypothesized that 

phenotypic variations in antigen presenting cell populations within the myocardium could 

significantly affect induction of local inflammatory responses. 

 The simian immunodeficiency viruses (SIV) share a close phylogenetic 

relationship with HIV-1 and induce a fatal immunodeficiency syndrome in Asian 

macaques that provides an important model system for the study of HIV pathogenesis 

[176, 181],  Cardiac lesions and dysfunction in SIV-infection of rhesus monkeys 

(Macaca mulatta) closely match those described in HIV infection, suggesting a shared 

disease mechanism [158, 178].  Cardiomyopathy has been frequently documented among 

chronically SIV-infected rhesus monkeys, and while randomly distributed myocardial 

lymphocytic inflammatory infiltrates are frequently identified throughout the four 

chambers in these populations at necropsy, the inflammatory lesions tend to be mild with 

minimal associated necrosis [158, 178]. This suggests that factors other than direct 

myocardial damage by infiltrating inflammatory populations may be responsible for the 

development of cardiac dysfunction and raises the possibility that secreted soluble 

mediators may play a role in development of clinically significant cardiac pathology 

among HIV/SIV-infected individuals.  Macrophages and dendritic cells are important 

producers of inflammatory cytokines and chemokines, many of which have been 

demonstrated to have potent adverse effects on the heart [77, 113, 125, 134]. This is a 

point of particular relevance in HIV/SIV infection, a context intrinsically characterized 

by chronic immune activation and cytokine dysregulation [79, 81].  In the current study, 
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macrophage and dendritic cell populations are examined in archival myocardial tissue 

from SIV-infected and uninfected rhesus monkeys in which lymphocytic infiltration, 

viral involvement, and limited investigations into macrophage population sizes and 

phenotype have been previously reported [158].  Goals of the current study were to build 

on previous findings by characterizing the size, distribution, and phenotype of myocardial 

macrophage and dendritic cell populations, and to investigate a possible role for classical 

vs non-classical macrophage activation in SIV-associated myocardial inflammation. 
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Materials and Methods 

Tissue Groups.  Formalin-fixed paraffin-embedded (FFPE) cardiac tissues from 26 

rhesus monkeys (Macaca mulatta) from the pathology archives of the New England 

Primate Research Center were assessed in the present study. As previously described, 

twenty-one hearts were from SIV-infected animals, 5 were from healthy SIV-negative 

animals, and all had been  previously characterized for myocardial inflammation, 

cardiomyocyte necrosis, and myocardial viral involvement [158]. Case groupings have 

been previously described and were based on the presence or absence of lymphocytic 

infiltrates and cardiomyocyte degeneration or necrosis, in accordance with the Dallas 

criteria [158, 188]. In brief, H&E stained sections of left ventricle from SIV-positive 

animals were determined to have active myocarditis (lymphocytic infiltrates in direct 

association with cardiomyocyte degeneration or necrosis, referred to as the active group), 

borderline myocarditis (lymphocytic infiltrates with no associated cardiomyocyte 

degeneration or necrosis, referred to as the borderline group), or to be histologically 

unremarkable (referred to as the SIV normal group), with each group containing 7 hearts. 

Hearts from uninfected control animals (control group) contained no histologic lesions. A 

majority of animals in all SIV-infected groups had AIDS-defining conditions at necropsy. 

Detailed criteria used in case selection, characteristics of the animals used, and grouping 

of cases have been described previously [158]. No significant effects of gender, strain of 

viral inoculum, or number of days post infection were noted with respect to any features 

examined.  
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Immunohistochemistry.  Immunohistochemistry was performed on FFPE following an 

ABC immunostaining technique as previously described [187]. Tissues were assessed 

using antibodies specific for CD163 (clone 10D6, Lab Vision, Fremont CA), HAM 56 

(clone HAM56, DakoCytomation, Carpinteria CA), CD83 (clone 1H4b, Vector 

Laboratories, Burlingame CA), fascin (clone 55K-2, DakoCytomation), HLA-DP, DQ, 

DR (clone CR3/43, Dakocytomation), and HLA-DR (clone LN-3, Novocastra, Newcastle 

upon Tyne, United Kingdom). Sections were deparaffinized and rehydrated, followed by 

incubation in 3% H2O2 in phosphate buffered saline (PBS). Antigen retrieval consisted of 

microwaving in sodium citrate buffer (Vector) or Tris HCl buffer (Lab Vision). Sections 

were incubated with primary antibody followed by an avidin-biotin block (Vector), and 

sequential incubation with biotinylated secondary antibody and horseradish peroxidase-

conjugated avidin (ABC Standard or ABC Elite, Vector). Antigen-antibody complex 

formation was detected by use of 3,3’diaminobenzidine (DAB) chromogen 

(DakoCytomation).  Irrelevant, isotype-matched primary antibodies were used in place of 

the test antibody as negative controls in all immunohistochemical studies. 

 

Image Analysis and Scoring.  Sections immunohistochemically labeled for CD163, 

HAM56, and CD83 were examined with an Olympus Vanox-S AHBS microscope 

interfaced with a Leica personal computer equipped with Leica QWin image analysis 

software (Leica Imaging Systems Ltd., Cambridge England), via a DEI 750 charge-

coupled device camera (Optronics, Goleta, CA) [197]. In brief, for a single section of left 

ventricular tissue from each animal, images of 20-30 random fields of myocardium were 
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captured at 200x magnification. The total number of DAB stained cells per field was 

quantitated based on the number of flagged foci of discrete signal occupying a minimum 

number of contiguous pixels. The number of positive cells per mm2 was calculated based 

on the known area of each field and total number of positive cells in the overall examined 

area.  

Sections immunohistochemically labeled for HLA-DP, DQ, DR (hereafter 

referred to as “MHC class II”) and fascin were scored semiquantitatively on a 0-3 scale, 

with scores being applied blinded to group categorization of the samples. Separate scores 

were assigned for endothelial signal and for non-endothelial signal such that endothelial 

signal scores took into account only signal lining the myocardial intersitium in a pattern 

morphologically consistent with endothelium and non-endothelial signal scores took into 

account only clustered aggregations of signal not histomorphologically consistent with 

endothelium. In scoring, 0 represented no positive signal; 1 represented infrequent to rare 

signal; 2 represented moderate signal; and 3 represented extensive signal. Methods used 

for quantitation of necrosis through application of a rule-based grading schema have been 

previously described [158]. In brief, two non-serial H&E stained sections of left ventricle 

from each animal were scored on a 0-3 scale based on the cumulative area of necrosis in 

the two examined sections. Non-zero necrosis scores occurred exclusively in the active 

myocarditis group in keeping with the Dallas criteria-based definition of active vs 

borderline myocarditis. 
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Confocal Microscopy.  Confocal microscopy was performed on FFPE sections using 

primary antibodies specific for  CD163, HAM56, and HLA-DR, as described for single-

label immunohistochemistry, as well as anti-DC-SIGN (clone DCN46, BD Pharmingen, 

San Diego CA), anti-CD3 (rabbit polyclonal, DakoCytomation), anti-SIV nef (clone 

KK75, donor Dr. K. Kent and Ms C. Arnold, obtained from the NIBSC Centralized 

Facility for AIDS Reagents supported by EU Programme EVA contract (BMH4 97/2515) 

and the UK Medical Research Council), and anti-HIV-1 p24/SIV p27 (clone 183-H12-

5C, obtained through the NIH AIDS Research and Reference Reagent Program, Division 

of AIDS, NIAID, NIH: from Dr. Bruce Chesebro and Kathy Wehrly) [198-200]. Briefly, 

sections were deparaffinized, rehydrated, and subjected to antigen retrieval as for 

immunohistochemistry, washed in 1x PBS in ultrafiltered water with 0.2% fish skin 

gelatin (Sigma Aldrich, St. Louis MO) and 0.1% Triton X-100 (Sigma) (PBS-FSG-

Triton) and blocked with 10% normal goat serum diluted in PBS-FSG-Triton.  

Monoclonal primary antibodies were incubated on sections overnight. Polyclonal primary 

antibody was incubated on sections for 30 minutes. Irrelevant, isotype-matched primary 

antibodies or rabbit immunoglobulin fraction from healthy non-immunized rabbits 

(DakoCytomation) were used as irrelevant negative controls for each primary test 

antibody. Fluorochrome conjugated secondary antibodies (Molecular Probes, Eugene 

OR) were incubated on sections for 30 minutes. To-Pro3 (Molecular Probes) was 

incubated on sections for 5 minutes. Confocal microscopy was performed using a Leica 

TCS SP laser scanning microscope equipped with 3 lasers (Leica Microsystems, Exton 

PA). Colocalization of antigens was demonstrated by the addition of colors. Single- and 
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double-color positive controls were run in addition to irrelevant negative controls with 

each confocal experiment.  

As only 5 out of 21 hearts from SIV-infected animal had infected cells evident in 

the myocardium by nef immunohistochemistry and 3 of these 5 had infected cells 

occurring only in extremely low numbers, double-label experiments involving the 

antibodies SIV nef and SIV p27 were conducted using tissue from the 3 cases in which 

the largest number of SIV-infected cells had been documented by quantitative image 

analysis in previous work [158]. All specifically-labeled cells in all examined tissue 

sections were evaluated to ensure consistency of double-labeling patterns.  

 

Statistical Analysis.  Significance of differences between groups was determined using 

Kruskall-Wallis One Way ANOVA on Ranks with post-hoc pairwise comparison by 

Dunn’s test. Significance of distinctions between single paired evaluation categories was 

determined using the t-test or Mann-Whitney Rank Sum test as appropriate. Linear 

regressions were conducted to determine significance of correlations between CD163+, 

HAM56+, and CD83+ population sizes as well as endothelial and non-endothelial signal 

scores for MHC Class II and fascin (quantitation and scoring described above). 

Population quantitations and signal scores determined were further analyzed by linear 

regression with previously determined core parameters reflecting lymphocyte infiltration 

(CD3+ cells/mm2), numbers of virally infected cells (SIV nef+ cells/mm2), preliminary 

macrophage markers (DC-SIGN+ cells/mm2, CD68+ cells/mm2), and necrosis 

scores.[158] (SigmaStat 3.1, Systat Software, Richmond CA). Probability values of P < 
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0.05 were interpreted as significant. Statistical analysis of quantitative image analysis 

data was performed on pooled individual data points for each animal within evaluated 

groups.   
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Results 

Macrophage phenotype and population size varies significantly across groups 

Macrophages were enumerated and characterized using quantitative image analysis of 

sections immunohistochemically labeled for the macrophage-specific antigens CD163 

and HAM56. CD163 is a receptor which mediates endocytosis of hemoglobin-

haptoglobin complexes and has been associated with anti-inflammatory effects 

proceeding via multiple mechanisms [201, 202]. HAM56 is an as yet uncharacterized 

antigen which labels a large subset of cells of the monocyte-macrophage lineage and is 

frequently used to define tissue macrophage populations [203, 204]. Numbers of cells 

positive for each antigen were compared across the four groups: SIV active myocarditis, 

SIV borderline myocarditis, SIV normal, and uninfected controls. The number of CD163+ 

cells/mm2 varied dramatically across groups, with the highest numbers of  positive cells 

found in the hearts of SIV+ animals with histologically normal myocardium (P < 0.01), 

(Figure 3.1, A). Cells labeled for CD163 by immunohistochemistry occurred 

predominantly as individuated cells within the myocardial interstitium and perivascular 

tissue (Figure 3.2, A). While significantly higher numbers of CD163+ cells were found in 

the active group than the borderline and control groups (P < 0.01), the median number of 

CD163+ cells/mm2 in the active group (2.4 cells/mm2) was 40 times lower than that of the 

SIV normal group (96.4 cells/mm2), and maximal values in the active group (67 

cells/mm2) were less than half those of the SIV normal group (142 cells/mm2), (Figure 

3.1, A). Numbers of CD163+ cells were disproportionately increased in the active 

myocarditis group relative to the borderline group, but median values for numbers of 
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CD163+ cells/ mm2 between the active and borderline groups were essentially identical 

(2.4 positive cells/mm2 vs 3.2 positive cells/mm2, respectively). The significant 

difference between these two groups arose due to high CD163+ cell numbers in a 

minority of active myocarditis hearts that had especially low levels of T cell infiltration 

based on image analysis for CD3+ cells, suggesting a strong propensity for higher 

numbers of CD163+ cells to be associated with lower levels of lymphocytic infiltration, 

irrespective of the presence or absence of necrosis. 

Numbers of myocardial HAM56+ cells/mm2 showed less variability across groups 

than numbers of CD163+ cells, but were significantly higher in the active group than in 

any other group (P < 0.05) (Figure 3.1, B). Similar to CD163+ cells, HAM56+ cells 

occurred widely distributed within the myocardial interstitium and perivascular tissue 

(Figure 3.2, B-C). Numbers of myocardial CD163+ cells/mm2 differed significantly from 

numbers of HAM56+ cell/mm2 in evaluated hearts overall (P < 0.001), with significant 

differences in expression frequency of the two markers in the active myocarditis group (P 

< 0.01), the borderline myocarditis group (P < 0.01), and the uninfected control group (P 

< 0.01).  

 

Differences in distribution and correlations of CD163+ and HAM56+ cells 

Numbers of SIV infected cells cells/mm2 as previously determined by quantitation of 

cells labeling positive for SIV nef protein [158], correlated significantly with numbers of 

CD163+ cells/mm2 (P < 0.05, R = 0.465), but not with numbers of HAM56+ cells/mm2 (P 

= 0.833, R = 0.049). Neither CD163+ cell numbers nor HAM56+ cell numbers showed 
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significant correlations with previously quantitated numbers of CD3+ cells/mm2 or 

necrosis scores. Therefore, CD163+ macrophage populations demonstrated a significant 

relationship with numbers of virally infected cells which HAM56+ macrophage 

populations lacked, but neither population had a detectable correlation with the extent of 

myocardial inflammation or necrosis.  

Numbers of cells positive for CD163 correlated significantly with numbers of 

cells positive for all other examined macrophage markers including cells positive for 

HAM56 (P < 0.01, R = 0.512), and cells positive for the previously quantitated markers 

DC-SIGN (P < 0.001, R = 0.715) and CD68 (P < 0.05, R = 0.489). Numbers of CD163+ 

cells correlated particularly strongly with numbers of DC-SIGN+ cells, a population 

which has been previously demonstrated to have a significant inverse correlation with 

myocardial T cell infiltration in hearts from SIV-infected animals [158]. Numbers of 

HAM56+ cells also demonstrated a significant correlation with numbers of DC-SIGN+ 

cells, but the correlation was much weaker than that shown by CD163+ cells (P = 0.041, 

R = 0.403). Numbers of HAM56+ cells did not correlate significantly with numbers of 

CD68+ cells (P = 0.07, R = 0.362). 

 While both CD163+ and HAM56+ macrophages occurred predominantly in a 

dispersed distribution within the myocardial interstitium and perivascular connective 

tissue (Figure 3.2, B), marked differences were noted in the involvement of the two 

populations in focal aggregates of inflammatory cells. HAM56 signal within clusters of 

inflammatory cells was frequently extensive and strong, with only sparse CD163 signal 

in serial sections of the same clusters (Figure 3.2, D-E). The different levels of 
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involvement of these populations in such cellular aggregates suggests that HAM56+ cells 

may play a role distinct from CD163+ cells in the myocardial inflammatory response in 

SIV-infection. 

 

All myocardial SIV-infected cells and all myocardial DC-SIGN+ cells are CD163+  

Double-label confocal microscopy showed the significant correlations between CD163+ 

population size and numbers of SIV-infected cells, DC-SIGN+ cells, and HAM56+ cells 

to be due at least in part to co-expression of the evaluated markers. Double-labeling for 

SIV nef antigen and CD163 showed SIV nef signal occurring exclusively in CD163+ 

cells, though these cells constituted a minority of the total CD163+ population (Figure 

3.3, A). Double-labeling studies for SIV p27 antigen and CD163 yielded findings 

identical to those determined for nef and CD163, confirming the restriction of SIV 

infection to CD163+ cells (results not shown). Double-labeling studies for CD163 and 

DC-SIGN demonstrated DC-SIGN signal also to be consistently localized to CD163+ 

cells, though CD163+/DC-SIGN- cells were common (Figure 3.3, B). Double-labeling for 

CD163 and HAM56 demonstrated moderate numbers of cells positive for both markers in 

some hearts (Figure 3.3, C).  CD163+/HAM56+ phenotypes, CD163+/HAM56- and 

CD163-/HAM56+ phenotypes were all identified; however, with distributional frequency 

varying markedly across individual cases. 

 

Endothelial MHC class II expression correlates inversely with DC-SIGN+ cell 

numbers 
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MHC class II expression was evaluated as a marker for macrophage and dendritic cell 

activation. Strong MHC class II expression was present diffusely in many inflammatory 

clusters (Figure 3.4, A). Expression scores differed significantly across groups (P < 0.01), 

with higher scores in the active group than among uninfected controls (P < 0.05).  

Double-labeling studies examining distribution of HLA-DR and CD3 antigens resolved 

the MHC class II signal onto a set of discretely labeled cells, interspersed among T cells 

(Figure 3.4, B).  

MHC class II expression scores correlated significantly with previously 

determined numbers of myocardial CD3+ cells (P < 0.05) and scores for necrosis (P < 

0.001, R = 0.654), and by confocal microscopy showed a pattern of distribution in 

inflammatory clusters similar to that noted for HAM56 by immunohistochemistry (Figure 

3.4, B and Figure 3.2, E).  

Strong MHC class II labeling of microvascular endothelium in hearts from 

uninfected control animals was also present. Expression was variably reduced in hearts 

from SIV-infected animals, with hearts from animals of the active group in most cases 

having levels of signal indistinguishable from controls (Figure 3.4, C), but a majority of 

hearts in the SIV normal group having profound reduction or elimination of endothelial 

MHC class II signal. Differences in endothelial MHC class II scores between groups 

were significant (P < 0.05), and there was a significant inverse correlation between 

endothelial MHC class II scores and DC-SIGN+ cell numbers (P < 0.01, R = -0.517), 

suggesting a role for this population in homeostasis of MHC class II expression by 

cardiac endothelium (Figure 3.5).  
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Distribution and correlations of the dendritic cell markers CD83 and fascin 

Myocardial dendritic cell populations were evaluated using the antigens CD83 and fascin. 

Signal for CD83, an adhesion molecule of the immunoglobulin superfamily and highly 

specific marker for mature and activated dendritic cells [205, 206], and non-endothelial 

signal for fascin, a 55kD actin bundling protein expressed at high levels in mature 

dendritic cells [207], were identified almost exclusively in hearts from the two 

myocarditis groups. CD83+ cells occurred in very low numbers, both individuated in the 

myocardial interstitium and in small aggregates within clusters of inflammatory cells 

(Figure 3.6, A). CD83+ cell numbers correlated strongly with levels of T cell infiltration 

(P < 0.001, R = 0.923), (Figure 3.6, B).  

Distribution of fascin signal differed from that of CD83, with signal occurring in 

both endothelial and inflammatory-cluster-associated non-endothelial patterns which 

were separately scored. The non-endothelial signal pattern was found exclusively within 

clusters of inflammatory cells and occurred predominantly in the active myocarditis 

group (Figure 3.6, C). Non-endothelial fascin scores differed significantly across groups 

(P < 0.05), with scores being significantly higher in the active group than in the SIV 

normal group (P < 0.05). Non-endothelial fascin scores did not correlate significantly 

with numbers of myocardial CD3+ T cells (P = 0.679), but did correlate strongly with 

necrosis scores (P < 0.001, R = 0.635). Neither non-endothelial fascin scores nor CD83+ 

cell numbers correlated significantly with any of the evaluated macrophage markers, or 

with numbers of SIV infected cells. Endothelial fascin scores unlike inflammatory-
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cluster-associated fascin scores did not differ significantly across groups. However, like 

the inflammatory-cluster-associated scores, endothelial fascin scores showed a significant 

positive correlation with necrosis scores (P < 0.05, R = 0.467) and did not demonstrate 

any other significant correlations.  
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Discussion 

In hearts examined in the current study, CD163+ macrophages, which have been 

associated with an anti-inflammatory phenotype, occurred in significantly higher 

numbers in uninflamed hearts from SIV-infected animals than in hearts from SIV-

infected animals with myocarditis or uninfected controls. In addition, numbers of 

CD163+ cells showed a significant positive correlation with cell-associated myocardial 

virus burden. CD163+ macrophages have been associated with decreased lymphocyte 

activation, with inhibition of lymphocyte proliferation through release of soluble CD163 

cleaved from the membrane, and with anti-inflammatory cytokine production profiles 

[173-175, 202, 208-214]. Given this, our findings suggest that soluble mediators 

generated by the CD163+ population may have served to minimize lymphocytic 

infiltration, but possibly at the cost of increased tolerance of local viral infection. 

While overall numbers of CD163+ cells in examined hearts did not correlate 

significantly with levels of T cell involvement, the DC-SIGN+ subpopulation of CD163+ 

cells has previously been shown to correlate inversely with T cell infiltration, suggesting 

distinct functional roles for particular macrophage phenotypes within the myocardium 

[158]. Further supporting a unique role for this subpopulation was the finding of a 

significant inverse correlation between numbers of DC-SIGN+ cells and quantity of 

endothelial MHC class II signal, suggesting that secreted mediators produced by this 

population may modulate endothelial MHC class II expression.  

HAM56+ macrophages, in contrast, appeared in the highest numbers in hearts of 

animals with active myocarditis and occurred in disproportionately high numbers in the 
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inflammatory foci found exclusively in hearts of the two myocarditis groups. Hearts from 

the two myocarditis groups have been shown in previous work to contain significantly 

lower numbers of SIV-infected cells relative to hearts of the SIV normal group [158], 

suggesting that the inflammatory response present in the hearts of the myocarditis groups 

plays a role in containing local myocardial virus. However, many proinflammatory 

mediators, the secretion of which is characteristic of classically activated macrophages, 

have been shown in model systems to have significant adverse effects on the myocardium 

even in the absence of cardiomyocyte necrosis or apoptosis [77]. High levels of 

inflammatory cytokines have been demonstrated to be capable of inducing 

cardiomyopathy and heart failure in experimental models [134].These findings suggest 

that macrophages of the HAM56+/CD163- phenotype while associated with better control 

of local virus as part of a classical inflammatory response, may generate soluble 

mediators that could be associated with independent pathologic sequelae through direct 

effects on cardiomyocyte contractile function and/or hypertrophic gene expression 

patterns and through chemokine secretion attracting inflammatory cell populations into 

the tissue.  The fact that numbers of HAM56+ cells showed no significant correlation 

with measures of T cell infiltration or necrosis suggests that overall HAM56+ cell 

numbers within the myocardium are likely to be determined  by features other than 

simple responsiveness to inflammatory stimuli, though such responsiveness may be 

superimposed on effects of other factors determining steady state levels of resident 

macrophages within myocardial tissue.  
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SIV-infected cells within examined hearts were found to be uniformly CD163+, a 

finding consistent with a recent report demonstrating uniform expression of CD163 by 

SIV-infected cells in the brain, but contrasting with another report which found consistent 

downregulation of CD163 in HIV-infected macrophages in vitro [215, 216]. While 

productive SIV infection of DC-SIGN+ cell populations has been documented by other 

investigators in macaque intestinal tissue, previous work in cardiac tissue from this 

cohort has demonstrated that SIV-infected cells are consistently HAM56+ and DC-SIGN-, 

strongly suggesting that it is the CD163+/HAM56+ double-positive subpopulation which 

demonstrates productive SIV-infection, and that this population is distinct from the 

CD163+/DC-SIGN+ population [158, 217].  

In contrast to patterns identified for macrophage populations, distributional and 

correlative patterns of the activated dendritic cell markers CD83 and fascin suggest that 

they predominantly constituted reactive subsets responding to inflammation and necrosis 

present in hearts with myocarditis.  

In conclusion, the striking differences in frequency of specific macrophage 

phenotypes among groups, their different levels of involvement  directly within 

inflammatory lesions, and the prominent manifestation of a population which has been 

associated with an anti-inflammatory character in hearts lacking inflammation and with 

higher levels of myocardial virus, strongly suggests a role for macrophage phenotypic 

differences in susceptibility or protection from SIV-associated myocarditis, and raises the 

question whether myocardial macrophage populations may not also play an important 
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role in the development of cardiomyopathy through cytokine-mediated effects on the 

local tissue milieu. 
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Figure 3.1  Image analysis-based quantitation of CD163+ and HAM56+ cells by group. 

A: The number of CD163+ cells per unit area as measured by quantitative image analysis 

was significantly higher in the SIV normal and active myocarditis groups than in the 

borderline myocarditis or uninfected control groups (P < 0.01). Numbers of CD163+ cells 

per unit area were significantly higher in the SIV normal group than in the active 

myocarditis group (P < 0.01). The median number of CD163+ cells/mm2 in the SIV 

normal group (96 cells/mm2, central bar in box) was 40 times higher than the median 

number of CD163+ cells/mm2 in the active myocarditis group (2.4 cells/mm2, indicated 

by arrow). B: The number of HAM56+ cells per unit area was significantly higher in the 

active myocarditis group than in the borderline myocarditis group (P < 0.01), the SIV 

normal group (P < 0.05), or the uninfected controls group (P < 0.01). The number of 

HAM56+ cells per unit area in the SIV normal group was higher than in the uninfected 

control group (P < 0.01). Differences in numbers of HAM56+ cells per unit area between 

the borderline myocarditis and uninfected control groups were not significant. Boxes 

represent the 25th to 75th percentile of values within each group. Central lines within 

boxes represent median values. Boxes without evident central lines have median values 

visually indistinguishable from the box minimum (A: active myocarditis and control 

groups). 
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Figure 3.1 
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Figure 3.2  Immunophenotype, distribution, and morphology of macrophages within 

inflamed and uninflamed myocardium. A: CD163 cells had spindloid to occasionally 

stellate or rounded morphology and occurred predominantly as individuated cells within 

the myocardial interstitium and perivascular tissue. The frequency of positive cells varied  

across individual hearts from rare to profuse, with the highest numbers of positive cells 

occurring among hearts in the SIV normal group, in which histologic evidence of 

inflammation was absent. (CD163 immunohistochemistry with Mayer’s hematoxylin.) B: 

HAM56+ cells occurred widely distributed within the myocardial interstitium and 

perivascular connective tissue. The highest numbers of positive cells were found among 

hearts in the SIV-positive, active myocarditis group. (HAM56 immunohistochemistry 

with Mayer’s hematoxylin.) C: Morphology of HAM56+ cells ranged from elongate and 

spindled to compact and stellate. (HAM56 immunohistochemistry with Mayer’s 

hematoxylin.) D: CD163 signal was identified within myocardial clusters of 

inflammatory cells, but signal was often sparse and occurred in dramatically lower 

numbers than HAM56 signal present in serial sections of the same cluster, (compare to 

(E)). (CD163 immunohistochemistry with Mayer’s hematoxylin.) E: HAM56 signal 

within myocardial clusters of inflammatory cells was frequently extensive and strong, 

indicating the presence of a substantial macrophage population within such clusters 

(HAM56 immunohistochemistry with Mayer’s hematoxylin.)  
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Figure 3.2 
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Figure 3.3   

DC-SIGN+ cells and SIV-infected cells represent subsets of the CD163+ macrophage 

population. A: Double-label immunofluorescence confocal microscopy for CD163 and 

SIV nef protein showed productive infection of a subset of CD163+ cells. Nef+/CD163- 

cells were not identified.(CD163 and SIV nef immunofluorescence.) B: Double-label 

immunofluorescence confocal microscopy for CD163 and DC-SIGN showed delicate 

membranous colocalization of signal in a subset of spindloid interstitial cells. (CD163 

and DC-SIGN immunofluorescence.) C: Double-label immunofluorescence confocal 

microscopy for CD163 and HAM56 showed many cells positive for both CD163 and 

HAM56 signal. Signal varied from multifocal, noncolocalizing as shown, to diffusely 

colocalized (CD163 and HAM56 immunofluorescence).  
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Figure 3.3 
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Figure 3.4  Intramyocardial MHC class II expression A: Profuse MHC class II signal 

within clusters of inflammatory cells was often strong enough to significantly obscure 

nuclei of cells within the cluster. (HLA-DP, DQ, DR immunohistochemistry with 

Mayer’s hematoxylin.) B: Double-label immunofluorescence confocal microscopy 

consistently demonstrated failure of colocalization of MHC class II signal with CD3, 

instead labeling a separate population of often very numerous interspersed, discrete, CD3- 

round cells. (HLA-DR and CD3 immunofluorescence, 400x magnification.). Dispersed 

punctate to linear regions of intense 3-way colocalization not associated with the central 

inflammatory cell cluster are a product of erythrocyte autofluorescence in the myocardial 

microvasculature. C: MHC class II expression by cardiac microvascular endothelium in 

uninfected controls was profuse and strong. Expression was variably reduced in hearts 

from SIV-infected animals. Hearts from the active myocarditis group most closely 

resembled those of uninfected controls while dramatic reduction or elimination of signal 

was often found in hearts from the SIV normal group. (HLA-DP, DQ, DR 

immunohistochemistry with Mayer’s hematoxylin.)  
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Figure 3.4  
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Figure 3.5  A statistically significant inverse correlation was present between endothelial 

MHC class II scores and numbers of DC-SIGN+ cells/mm2 (P < 0.01, R = -0.517).  
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Figure 3.5 
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Figure 3.6  Morphology and distributional patterns of cells labeled with the dendritic cell 

markers CD83 and fascin and correlation of myocardial CD83+ cell numbers with T cell 

infiltration. A: CD83+ cells occurred in low numbers, being found both individuated in 

the myocardial interstitium and rarely in small aggregates within clusters of inflammatory 

cells, as shown. (CD83 immunohistochemistry with Mayer’s hematoxylin.) B: A highly 

significant correlation was present between the number of myocardial CD83+ cells/mm2 

and the number of myocardial CD3+ cells/mm2, (P < 0.001). C: Strong fascin signal was 

found within clusters of inflammatory cells, with signal typically arborizing through 

interstitial spaces between individual cells within the cluster. (fascin 

immunohistochemistry with Mayer’s hematoxylin.) 
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Figure 3.6 
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CHAPTER IV 
 

ANTIGENIC STIMULATION IN THE SIMIAN MODEL OF HIV INFECTION 
YIELDS DILATED CARDIOMYOPATHY THROUGH EFFECTS OF TNFα 
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ABSTRACT 

Objective: To investigate a role for endogenous myocardial cytokine production in 

development of HIV-associated cardiomyopathy. 

Design: Cardiomyopathy is a late-stage sequela of HIV infection. While pathogenesis of 

this condition in HIV infection is poorly defined, inflammatory cytokines are recognized 

for their detrimental effects on myocardial structure and function. HIV infection is 

characterized by chronic immune activation and inflammatory cytokine dysregulation. As 

the myocardium itself is a rich potential source of inflammatory cytokines, HIV-mediated 

cytokine dysregulation may be an important contributor to development of HIV 

cardiomyopathy. An antigenic stimulation protocol conducted in the SIV model of HIV 

infection was used to study effects of endogenous cytokine production on myocardial 

structure and function. 

Methods:  Twenty-six rhesus monkeys were assigned to treatment groups for a 35 day 

study. Animals were SIV-infected; SIV-infected and treated with killed Mycobacterium 

avium complex bacteria (MAC); SIV-infected, MAC-treated, and given the TNFα 

antagonist etanercept; or uninfected and MAC-treated. All animals were given weekly 

echocardiograms. Hearts were collected for further evaluation at euthanasia.  

Results: SIV-infected, MAC-treated animals developed significant systolic dysfunction 

(left ventricular ejection fraction (LVEF) decline of 19±2 %) and ventricular chamber 

dilatation (left ventricular end-diastolic diameter (LVEDD) increase of 26±6 %) not seen 



 90

in other groups. Concurrent treatment with etanercept prevented development of these 

changes, implicating a causative role for myocardial TNFα.  

Conclusions: SIV-infected animals develop exaggerated myocardial pathology on 

stimulation with the ubiquitous environmental agent MAC. These responses are TNFα-

dependent and may play a significant role in development of cardiomyopathy in HIV 

infection.  
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Introduction 

Ventricular dysfunction and dilated cardiomyopathy are well-documented 

sequelae of late-stage HIV infection [28, 37, 38, 53]. Factors influencing development of 

myocardial pathology in HIV infection are at present poorly defined. Hypothesized 

mechanisms have included cytokine-induced effects, tissue damage resulting from 

myocarditis, drug-induced cardiotoxicities, and effects of viral proteins [63, 76, 87, 89, 

91, 99, 100]. While current evidence suggests that highly active anti-retroviral therapy 

(HAART) has reduced the incidence of clinically significant cardiac disease among HIV-

infected people, such treatment is available to only a minority of those in need [59, 60]. 

In addition, HIV infection provides a defined venue for exploring the role of chronic 

immune activation and host inflammatory response in development and progression of 

myocardial injury, features which have relevance beyond the context of HIV-infection 

itself.  

 The myocardial tissue environment is a rich potential source of inflammatory 

cytokines, with both cardiomyocytes and local non-cardiomyocyte cell populations 

competent to produce a variety of inflammatory mediators, and heart tissue capable of 

generating as much or more TNFα per gram of tissue in response to endotoxin 

stimulation as liver or spleen [126, 151, 152, 155]. Non-myocyte populations comprise 

up to 70% of the total cellular constituency of the myocardium and consist of a mixed 

assemblage of cell types, including substantial populations of dendritic cells and 

macrophages [151, 156-159]. This represents a volatile setting in the context of HIV 
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infection, which is intrinsically characterized by chronic immune activation and 

inflammatory cytokine dysregulation [79, 81].  Inflammatory cytokine-induced 

myocardial dysfunction is a well-documented phenomenon in multiple experimental 

models, is a significant contributor to hemodynamic compromise in sepsis, and may play 

a contributory  role in development and progression of heart failure regardless of 

initiating etiology [77, 78, 113, 129, 130, 134]. Mechanisms of cytokine-induced 

contractile dysfunction are complex and multifactorial [77]. 

 Study of the pathogenesis of HIV-associated cardiomyopathy (HIVCM) in 

humans is limited by many factors. Identifying the earliest time points of development of 

myocardial pathology and placing them within the natural history of HIV infection is 

generally not possible; complex, variable, and potentially toxic medication regimens are 

routinely used; and there may be substantial variation in environment and lifestyle among 

patients.  The SIV model of HIV infection is well-established, has been extensively 

characterized, and provides a strong context for study of HIVCM in that dilated 

cardiomyopathy and histologic myocardial lesions similar to those documented in HIV 

infection are frequently seen in chronically SIV-infected rhesus monkeys, implying a 

shared pathogenesis [158, 178].  

 In the present study, an acute SIV infection model employing recurrent antigenic 

stimulation with whole, heat-killed Mycobacterium avium complex (MAC) bacteria was 

used to evaluate patterns of early SIV-associated myocardial injury. Pathogenesis studies 

focused on early time points post-infection allow evaluation of changes while viral loads 

are high, sufficient immune competence is retained to prevent opportunistic infections, 
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and effects of viral replication or viral determinants can be examined without 

complication by effects of differential disease progression. MAC bacteria are 

environmentally ubiquitous and disseminated MAC infections are among the most 

common opportunistic infections encountered in AIDS patients [218-220]. The MAC 

stimulation protocol applied represents an experimentally-induced augmentation of 

normal environmental antigenic stimulation, using an organism with a high degree of 

clinical relevance to late-stage HIV and SIV infection.  
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Materials and Methods 

Animals and Study Design.  Twenty-six male rhesus macaques (Macaca mulatta) aged 

2 to 4 years were housed at the New England Primate Research Center (NEPRC) in a 

biolevel 3 animal-containment facility in accordance with standards of the Association 

for Assessment and Accreditation of Laboratory Animal Care and Harvard Medical 

School’s Animal Care and Use Committee. Prior to initiation of experimental protocols, 

all animals tested negative for infection with simian retrovirus type D, SIV, simian T-

lymphotropic virus-1, and herpes B virus. Animals were divided into 4 cohorts for study 

over a 35 day period. Eighteen animals were subjected to infection with uncloned, 

pathogenic SIVmac251 (25ng p27 antigen in 1mL sterile phosphate buffered saline 

(PBS), IV) at day 0. Of these, 12 animals received 4 doses of heat-killed Mycobacterium 

avium complex bacteria (MAC, 107 CFU-equivalents in 1mL sterile PBS per 

administration, IV) with the first dose given at day 7, then repeated on days 12, 14, and 

21. Of the 12 SIV-infected, MAC-treated animals, 4 were treated with the TNFα 

antagonist etanercept (Enbrel™, Amgen, Thousand Oaks, CA) at 0.4mg/kg, IM every 

other day for the duration of the study. A control group of 8 SIV-uninfected animals was 

administered MAC treatments as described on the same schedule as the SIV-infected, 

MAC-treated animals. Blood drawn from all animals before virus inoculation at day 0, 

and weekly thereafter was evaluated for circulating cytokine and chemokine levels, 

peripheral T cell subset composition, and plasma viral load evaluation as appropriate. 

Echocardiograms were performed weekly, including prior to SIV inoculation on day 0, 

and prior to MAC treatments on days 7, 14, and 21. All echocardiographic studies were 



 95

conducted under ketamine sedation (10-15 mg/kg, IM). All SIV-infected animals and 4 of 

the 8 uninfected, MAC-treated animals were euthanized at the end of the study (30 mg/kg 

pentobarbital sodium, IV, followed by 2 mEq/kg potassium chloride, IV). Complete gross 

and microscopic post-mortem examinations were performed on all euthanized animals. 

Hearts were removed with myocardial tissue snap frozen and collected into formalin 

within 15 minutes of confirmation of death. 

 

Mycobacterium avium Complex (MAC) Inocula.  The MAC isolate used (no. 88415) 

was derived from a case of spontaneous disseminated mycobacterial disease in a rhesus 

monkey with simian AIDS, and retains the ability to generate disseminated infections in 

SIV-infected animals when not inactivated.[221]  Frozen stocks of the isolate were grown 

out in Middlebrook 7H9 broth at 37° C and 5% CO2 for 8 days, titered, diluted to 107 

CFU/mL in PBS, and killed by immersion in boiling water for 2 minutes. One mL of the 

heat-treated preparation was administered intravenously per animal per MAC treatment. 

The inoculum used produced no systemic signs of illness in treated animals as 

determined by clinical veterinary staff. 

 

Echocardiography.  M-mode and 2D echocardiograms were performed using a Hewlett 

Packard Image Point HX ultrasound machine and 5MHz transducer. Standard parasternal 

long and short axis views as well as standard two and four chamber apical views were 

obtained and recorded on VHS tape for later analysis using ImageView DCR (Nova 

Microsonics, Mahwah, NJ) and modified American Society of Echocardiography 



 96

volumetric analysis and regional and global wall motion scores. Heart rate was recorded 

using lead II of standard ECG. Analyses were conducted blinded to animal group 

allocations.  

 

ELISAs.  Commercial ELISA kits for soluble TNF receptors 1 and 2 (sTNFR1 and 

sTNFR2), monocyte chemoattractant protein-1 (MCP-1), and interleukin-18 (IL-18) 

(R&D Systems, Minneapolis, MN) were used on batched samples of previously frozen 

plasma according to manufacturers’ instructions. Evaluation of sTNFR2 levels in animals 

treated with etanercept was not possible due to cross-reactivity of the assay with 

etanercept itself. 

 

Western Blot.  Membrane fractions prepared using differential centrifugation of 

homogenates of snap frozen myocardial apex and semitendinosus muscle collected at 

necropsy were subjected to electrophoretic separation by SDS-PAGE, and 

electrotransferred onto PVDF membrane (Immobilon-PSQ, Millipore, Bedford, MA). 

Nonspecific protein binding was blocked and membranes were probed with primary 

antibody (anti-TNFα, AB-210-NA and clone 28410, R&D; anti-iNOS, clone 54, BD 

Biosciences, San Jose, CA). Blots were washed and incubated with secondary antibody 

conjugated to horseradish peroxidase (A5420, Sigma Aldrich, Milwaukee, WI; sc-2005, 

Santa Cruz Biotechnology, Santa Cruz, CA). Immunoreactive proteins were detected by 

chemiluminescence (PerkinElmer, Boston, MA) and exposed to X-ray film (Hyperfilm 

ECL, Amersham Pharmacia Biotech, Piscataway, NJ). Densitometric analysis of bands 
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was carried out using a Personal Densitometer SI and Image QuanNT Software 

(Molecular Dynamics, Sunnyvale, CA).  

 

Progression of SIV infection.  Plasma viral loads were determined by quantitative 

reverse transcription PCR, as described previously [222]. T cell subsets and total 

lymphocyte counts were monitored weekly throughout the study period.  

 

Histologic Examination and Immunohistochemistry.  Left and right ventricular free 

wall, interventricular septum, left and right atria, and aortic outflow tract were 

histologically examined for each animal. Immunostaining was performed as previously 

described, using an avidin-biotin complex method with diaminobenzidine (DAB, 

DakoCyomation, Carpineteria, CA) as chromogen [158]. Tissues were evaluated using 

antibodies specific for CD3 (A0452, DakoCytomation), cleaved caspase 3 (9661L, Cell 

Signaling Technology, Beverly, MA), SIV nef (clone KK75, donor Dr. K. Kent and Ms 

C. Arnold, from NIBSC Centre for AIDS Reagents supported by EU Programme EVA 

contract (QLKZ-CT-1999-00609) and the UK Medical Research Council),  HIVp24/SIV 

p27 (clone 183-H12-5C, obtained through NIH AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH: from Dr. Bruce Chesebro and Kathy Wehrly), 

rhesus cytomegalovirus IE1 protein (polyclonal, provided by Dr. Peter Barry, UC Davis), 

and adenovirus (clone 20/11, Chemicon International, Temecula, CA) [198].  
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Tissue Scoring.  Myocardial tissue was scored in a blinded fashion for lymphocytic 

infiltration using a grading schema applied to sections immunohistochemically labeled 

for CD3, as previously described [158].  

 

Statistical Analysis.  Significance of differences between groups was determined using 

One Way ANOVA and Kruskall-Wallis ANOVA on Ranks as appropriate, with post-hoc 

pairwise comparison by Holm-Sidak or Dunn’s method, respectively. Linear regressions 

were conducted to determine significance of correlations. All analyses were conducted 

with commercially available software (SigmaStat 3.1, Systat Software, Richmond CA). 

Probability values of P < 0.05 were interpreted as significant.  
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Results 

Mycobacterial Antigenic Stimulation Yields Biventricular Dilatation and 

Myocardial Dysfunction in SIV-infected Rhesus Monkeys which is Preventable by 

TNFα Blockade 

Significant biventricular chamber dilatation developed among SIV-infected, MAC-

treated animals (SIV+MAC group) by day 35 as evidenced by increased right and left 

ventricular end-diastolic and end-systolic diameters relative to baseline (P < 0.001) 

(Table 4.1). Chamber diameters of MAC-treated, uninfected controls (MAC group) also 

showed significant changes relative to baseline (P < 0.05), but these were mild and 

consistent with dilatation only in the right ventricle (Table 4.1).  Significant changes in 

chamber diameter were absent in SIV-infected animals not treated with MAC (SIV 

group) (Table 4.1). 

Significant decreases in systolic function developed in SIV+MAC animals over 

the course of the study period as identified through declines in right and left ventricular 

fractional shortening and in left ventricular ejection fraction relative to baseline values (P 

< 0.05 right ventricular change;  P < 0.001 left ventricular changes) (Table 4.1; Fig. 4.1 

C, D). Such changes were absent in animals of the SIV group, and changes in the MAC 

group while significant, were mild and limited to declines in left ventricular fractional 

shortening (P < 0.05) (Table 4.1).  In keeping with the structural and functional changes 

which occurred in members of the SIV+MAC group, a mild but statistically significant (P 

< 0.05) increase in heart rate also developed in these animals which did not occur in other 

groups (Table 4.1). Strikingly, treatment of SIV-infected, MAC-treated animals with the 
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TNFα antagonist etanercept was completely protective against development of both 

chamber dilatation and systolic dysfunction (Table 4.1).  

Different kinetics characterized the observed alterations in ventricular chamber 

size and onset of systolic dysfunction (Fig. 4.1, A-B). Indicators of ventricular chamber 

size, such as left-ventricular end-diastolic diameter (LVEDD), showed an abrupt increase 

in the SIV+MAC group at the final examined time point (Fig. 4.1, A), while indicators of 

systolic dysfunction developed gradually, becoming prominent from day 21 onward (Fig. 

4.1, B).  

Significant differences in percent change LVEDD from baseline were present 

among the test groups over the study period (P < 0.001 overall, P < 0.01 at day 35) (Fig. 

4.1, A). Percent change in LVEDD relative to baseline at day 35 differed significantly 

between the SIV+MAC group and the uninfected MAC group (P < 0.001) (Fig. 4.1, E). 

Significant differences in percent change LVEF from baseline were also present among 

test groups (P < 0.001 overall, P < 0.001 at day 28) (Fig. 4.1, B). Percent change in LVEF 

relative to baseline at day 28 differed significantly between the SIV+MAC group and 

each of the other three groups (P < 0.001 between SIV+MAC and the SIV-infected, 

MAC-treated, etanercept-treated group, P < 0.001 between SIV+MAC and the SIV 

group, and P < 0.05 between SIV+MAC and the MAC group). Percent change in LVEF 

for the MAC group at day 28 also differed significantly from percent change LVEF for 

the SIV-infected, MAC-treated, etanercept-treated group (P < 0.05), a product of the 

combined mild decrease in LVEF for the MAC group and the mild increase in LVEF for 

the etanercept-treated group. 
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Mycobacterial Antigenic Stimulation Significantly Increases Myocardial TNFα 

Levels in SIV-Infected Animals, an Effect Prevented by Etanercept Treatment 

Levels of myocardial TNFα as evaluated by densitometric analysis of western blots were 

significantly higher in hearts from animals of the SIV+MAC group than in hearts from 

animals of the SIV group (P < 0.05) (Fig. 4.2, A).  Levels of TNFα were also 

significantly higher in cardiac muscle than in skeletal muscle for animals of the 

SIV+MAC group (P < 0.05), suggesting a tissue-specific effect of the mycobacterial 

antigenic stimulation rather than a generalized systemic increase in TNFα production 

(Fig. 4.2, B). In contrast, levels of myocardial TNFα in SIV-infected, MAC-treated, 

etanercept-treated animals remained low, approximating those in skeletal muscle (Fig. 

4.2, B).  

 

Plasma sTNFR2 and IL-18 Levels at Day 14 Correlate Significantly with Changes in 

Left Ventricular Chamber Diameter while Baseline Levels of IL-18 Correlate with 

Development of Systolic Dysfunction 

In SIV-infected groups, plasma levels of both sTNFR2 and IL-18 became significantly 

elevated (P < 0.001) relative to baseline by day 14, corresponding with the occurrence of 

peak viremia (Fig. 4.3 A, B). Percent change in LVEDD at day 35 correlated significantly 

with sTNFR2 levels at every time point from day 14 forward (day 14: P = 0.005, R = 

0.578; day 21: P = 0.006, R = 0.567; day 28: P = 0.028, R = 0.479; day 35: P = 0. 018, R 

= 0.499) such that higher levels of sTNFR2 were associated with greater left ventricular 
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chamber enlargement at the final measured time point (Fig. 4.3, C).  Elevations in plasma 

IL-18 at day 14 also correlated significantly with increased LVEDD at day 35 (P < 0.05, 

R = 0.407) such that higher levels were associated with greater left ventricular chamber 

enlargement at the final measured time point (Fig. 4.3, D). In contrast, baseline IL-18 

levels correlated negatively with development of systolic dysfunction as measured by 

percent change in LVEF at day 35 (P < 0.05, R = 0.445), such that higher levels of IL-18 

at day 0 were  associated with greater preservation of systolic function at the terminal 

time point (Fig. 4.3, E).  

Neither plasma sTNFR1 nor plasma MCP-1 showed significant correlations with 

echocardiographic parameters at any time point.  

 

Inducible Nitric Oxide Synthase (iNOS) Levels, Lymphocytic Infiltration, Plasma 

Viral Load, Myocardial SIV-infected Cell Burden, and Peripheral CD4 T Cell 

Counts Show No Significant Correlations with Measures of Ventricular Chamber 

Diameter or Systolic Function  

The cardiodepressant effects of nitric oxide serve as one of the central effector 

mechanisms by which inflammatory cytokines impact cardiac function [77]. Myocardial 

iNOS levels were higher in all SIV-infected groups relative to the uninfected MAC 

control group, and this difference was statistically significant between the MAC group 

and the SIV+MAC group (P < 0.05); however, myocardial iNOS levels did not differ 

significantly among SIV-infected groups (Fig. 4.4, A) and there were no significant 



 103

correlations between iNOS levels and any examined measure of either ventricular 

chamber diameter or systolic function. 

Histologically, mild inflammatory infiltrates were present in multiple hearts, 

though cardiomyocyte necrosis was not a prominent feature in any. Quantitation of 

lymphocytic infiltrates based on rule-based scoring of CD3-labeled tissue sections [158] 

demonstrated no significant differences between groups (P > 0.1) and no significant 

correlations with any measure of systolic function or ventricular chamber diameter.   

Myocardial infected cell burden, assessed by quantitation of positive signal in 

sections immunohistochemically labeled for SIV nef and SIV p27 gag proteins, 

demonstrated infected cells within hearts of 6 of the 18 SIV-infected animals. In each 

case, SIV-infected cells were rare (1-3 per animal), were exclusively interstitial in 

location, and were morphologically consistent with lymphocytes or macrophages (Fig. 

4.4, C). All hearts were negative for adenovirus and cytomegalovirus by 

immunohistochemistry. Numbers of myocardial SIV-infected cells did not correlate 

significantly with any measure of systolic dysfunction or ventricular dilatation.   

Plasma viral load in SIV-infected groups also did not correlate significantly with 

any measure of ventricular chamber diameter or systolic function. Viral loads within the 

SIV-infected, MAC-treated, etanercept-treated group, which developed no structural or 

functional pathology, were significantly higher (P < 0.05) than in the SIV+MAC group, 

which developed significant adverse structural and functional changes (Fig. 4.4, B). 

CD4 T cell counts differed significantly among groups overall (P < 0.001), as all 

three SIV-infected groups developed significant decreases relative to the uninfected 
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MAC group over the course of the study (P < 0.01). Counts among the SIV-infected 

groups did not significantly differ however, and there were no significant correlations 

between CD4 T cell counts and any evaluated echocardiographic parameter (Fig. 4.4, D).  

Immunohistochemical staining of tissue sections for cleaved caspase 3 as an early 

indicator of apoptosis revealed infrequent staining within inflammatory cell clusters, and 

strong appropriate staining on positive control sections of ileum, but no staining of 

cardiomyocytes in any section and no correlations with any echocardiographic parameter.  
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Discussion 

In the presented model, recurrent antigenic stimulation with heat-killed, 

opportunistic mycobacteria yielded significant myocardial contractile dysfunction and 

ventricular chamber dilatation in SIV-infected animals during acute infection which was 

not seen with SIV-infection alone and was mild to absent in uninfected animals treated 

with the same stimulation protocol. While the rapidity of induction of cardiac dysfunction 

in this model differs from that seen in natural disease, the findings suggest a fundamental 

hyperresponsivity of hearts from SIV-infected animals to antigenic stimulation. The 

cardiac changes induced by antigenic stimulation in this acute SIV-infection model 

reached magnitudes similar to those previously identified in studies of dilated 

cardiomyopathy in chronic SIV infection [178], while excluding many potential 

confounders which complicate interpretation in late stage infection. Concurrent 

etanercept treatment protected SIV-infected, MAC-treated animals from development of 

pathologic myocardial changes, suggesting a critical role for TNFα in induction of these 

changes. While it is not possible to control for variation in host immune response using 

small numbers of test subjects, these findings suggest that endogenous production of 

TNFα upon antigenic stimulation in the context of SIV infection is sufficient to induce 

significant cardiac dysfunction and implies exaggerated myocardial production of and/or 

responsiveness to TNFα by SIV-infected animals. In addition, the striking difference in 

myocardial TNFα levels between SIV-infected, MAC-treated animals which received 

etanercept and those which did not implies an important role for TNFα autoinduction in 

generation of the observed elevations in SIV-infected, MAC-treated animals [223]. This 
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finding suggests that even mild hyperresponsivity in the initial TNFα response might be 

rapidly enhanced through positive feedback loops.  

As further evidence of the importance of activation of the TNF system in 

evolution of the observed changes, plasma sTNFR2 levels from day 14 onward correlated 

significantly with extent of LVEDD change at day 35, predicting chamber dilatation with 

high sensitivity. IL-18 levels at day 14 also correlated positively with extent of LVEDD 

change, but as plasma IL-18 and sTNFR2 values correlated closely with one another, 

(day 14: P < 0.001) the relationship between IL-18 and LVEDD may have simply 

reflected a connection between myocardial remodeling and the overall systemic 

inflammatory response. Nevertheless, the finding that higher levels of both sTNFR2 and 

IL-18 at day 14 correlated with increased percent change LVEDD at day 35 suggests that 

the degree of activation of the inflammatory response around the period of peak viremia, 

during which viral replication is largely uncontrolled and early components of the innate 

immune response are activated, may directly contribute to the extent of subsequent 

structural change. This suggests that immune activation, well recognized as a major 

contributor to progression of SIV and HIV infection [139], may also play an important 

role in myocardial end organ damage.  In contrast, while elevated levels of  IL-18 have 

been associated with myocardial contractile dysfunction [113, 115, 116], lower levels of 

IL-18 at baseline were associated with more severe declines in LVEF at later time points, 

suggesting that pre-infection innate immune activation state may also play an important 

role in divergent post-infection myocardial effects.  
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 In the present model of HIVCM pathogenesis, no evidence was found for a role 

played by plasma viral load, myocardial infected cell burden, peripheral CD4 T cell 

count, myocardial lymphocytic infiltration, cardiomyocyte apoptosis, or cardiomyocyte 

necrosis. While iNOS has been implicated in the impairment of myocardial function in 

inflammatory contexts [77],  myocardial iNOS levels did not differ significantly among 

SIV-infected groups in this model. Likewise, while HIV gp120 protein has been 

demonstrated to be negatively inotropic in vitro[89] and high viral loads might therefore 

be expected to be associated with alterations of contractile function, no correlations were 

identified between plasma viral load and any examined measure of ventricular chamber 

diameter or systolic function.  

Prominent myocardial pathology developed over the 35 day study period in SIV-

infected, MAC-treated animals, but not in uninfected MAC-treated controls or animals 

which were SIV-infected alone. Treatment with the TNFα blocking agent etanercept 

proved fully protective from development of myocardial pathology, indicating that 

abnormal TNFα responses to the administered mycobacterial stimulus played a critical 

role in development of the observed changes. These findings suggest that aberrant 

inflammatory cytokine responsiveness to antigenic stimulation in the context of SIV or 

HIV infection may play an important role in the pathogenesis of cardiomyopathy. As 

myocardium-specific abnormalities in the cytokine response to antigenic stimulation 

appear central to the cardiac changes documented, defining the mechanism by which this 

occurs will be critical to understanding their ultimate causation. 



Table 4.1. Cardiac Functional and Structural Parameters  

           SIV+MAC      SIV                   Etanercept   MAC 

______________________________________________________________________________________________________ 

     Day 0  Change(%)  Day 0     Change(%)  Day 0     Change(%) Day 0      Change(%) 

LVEDD* (cm)   1.8±0.06     26±6‡ 1.9±0.04      1±3    1.6±0.04     4±6  1.9±0.06   -5±2§ 

LVESD* (cm)   1.1±0.07     41±6‡ 1.1±0.08      6±7  1.0±0.08     4±9  1.1±0.05      3±4 

LVEF† (%)    75±1     -17±4‡ 76±4      -1±4  74±3        5±7  79±2    -7±4 

LVFS (%)    37±2     -20±5‡ 40±4         0±10 34±4       23±28 42±1   -11±5§  

RVEDD† (cm)   1.6±0.1     21±4‡ 1.0±0.04      -6±6  1.1±0.05       4±9  1.5±0.09      7±3§ 

RVESD† (cm)    1.0±0.05     45±10‡ 0.7±0.03     -10±7 0.7±0.06      19±12 1.0±0.05    14±6§ 

RVFS (%)    37±2    -30±11§ 29±3         17±15 36±5   -16±17  29±2    -11±6 

HR (bpm)    143±4     11±5§ 147±12     -12±12 145±16     13±17  168±7         -2±6 
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______________________________________________________________________________________________________  

SIV+MAC: SIV-infected animals treated with recurrent doses of heat-killed M. avium complex (MAC); SIV: SIV-infected 

animals not subjected to MAC treatments; Etanercept: SIV-infected, MAC-treated, etanercept-treated animals; MAC: 

uninfected, MAC-treated controls 

Day 0: Baseline value; Change(%): Percent change from baseline at day 35; All values given as mean ± standard error.  

LVEDD indicates left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVEF, left ventricular 

ejection fraction; LVFS, left ventricular fractional shortening; RVEDD, right ventricular end-diastolic diameter; RVESD, right 

ventricular end-systolic diameter; RVFS, right ventricular fractional shortening; HR, heart rate; bpm, beats per minute 

Difference between groups is significant: *P < 0.001, †P < 0.05.  

Percent change from baseline to day 35 is significant: ‡P < 0.001,   §P < 0.05 



Figure 4.1  Echocardiographic changes among study groups. (A) Animals in the 

SIV+MAC group developed abrupt, significant increases in left ventricular end-diastolic 

diameter (LVEDD) at the final examined time point which were absent in other treatment 

groups. Differences between groups were statistically significant (P < 0.001). (B) 

Animals in the SIV+MAC group developed progressive decreases in left ventricular 

ejection fraction (LVEF) which were minimal to absent in other treatment groups. 

Differences between groups were statistically significant (P < 0.001). (C) M-mode image 

from rhesus monkey with normal left ventricular function (LVEF, 80%). (D) M-mode 

image from rhesus monkey with markedly decreased left ventricular function (LVEF, 

45%). (E) Percent change in LVEDD at day 35 differed significantly across groups (P < 

0.01). Percent increase in LVEDD for the SIV+MAC group differed significantly (*) 

from baseline (P < 0.001) and from percent change LVEDD at day 35 for the uninfected 

MAC group (P < 0.001). (F) Percent change in LVEF at day 28 differed significantly 

across groups (P < 0.001). Percent decrease in LVEF at day 28 for the SIV+MAC group 

differed significantly (*) from baseline (P < 0.001), as well as from percent change LVEF 

in the SIV group (P < 0.001), the etanercept-treated group (P < 0.001), and for the MAC 

group (P < 0.05). Percent change LVEF for the MAC group at day 28 differed 

significantly (**) from percent change LVEF for the etanercept-treated group (P < 0.05). 

SIV+MAC: SIV-infected, M. avium complex (MAC)-treated group; SIV: SIV-infected 

animals not subjected to MAC treatments; SIV+MAC+Enbrel and Enbrel: SIV-infected, 

MAC-treated, etanercept-treated animals; MAC: uninfected, MAC-treated controls. 
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Figure 4.1 
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Figure 4.2  Local TNFα levels in myocardial and skeletal muscle tissue. (A) 

Myocardial TNFα levels were significantly higher in hearts from the SIV+MAC group 

(*) than in hearts from the SIV group (P < 0.05). (B) TNFα levels in cardiac muscle of 

animals from the SIV+MAC group (SIV+MAC H) were significantly higher (*) than in 

skeletal muscle from either the SIV+MAC group (SIV+MAC SM) (P < 0.05) or the SIV-

infected, MAC-treated, etanercept-treated group (Enbrel SM) (P < 0.05). TNFα levels in 

cardiac muscle of the SIV-infected, MAC-treated, etanercept-treated group (Enbrel H) 

did not differ significantly from levels in skeletal muscle derived from either group. All 

measurements conducted by densitometric analysis of western blots of myocardial and 

skeletal muscle tissue homogenates. (C) TNFα levels in cardiac muscle of animals from 

the SIV+MAC group (SIV+MAC H) exceeds that in skeletal muscle of the SIV+MAC 

group (SIV+MAC SM), cardiac muscle of the etanercept-treated group (Enbrel H), and 

skeletal muscle of the etanercept-treated group (Enbrel SM). SIV+MAC: SIV-infected, 

M. avium complex (MAC)-treated group; SIV: SIV-infected animals not subjected to 

MAC treatments; SIV+MAC H: heart muscle from SIV+MAC group; SIV+MAC SM: 

skeletal muscle from SIV+MAC group; Enbrel H: heart muscle from SIV-infected, 

MAC-treated, etanercept-treated animals; Enbrel SM: skeletal muscle from SIV-infected, 

MAC-treated, etanercept-treated animals. 
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Figure 4.2 
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Figure 4.3  Plasma sTNFR2 and IL-18 levels correlate significantly with changes in 

ventricular chamber size and systolic function. (A) Plasma sTNFR2 levels rose 

significantly from baseline (P < 0.001) in SIV-infected animals by day 14, corresponding 

to the period of peak viremia, and remained elevated thereafter. Data from etanercept-

treated animals are not included due to cross-reactivity of etanercept itself (a fusion 

protein comprised of the extracellular ligand-binding portion of sTNFR2 bound to the Fc 

portion of human IgG1) with antibodies specific for sTNFR2 in the assay. (B) Plasma IL-

18 levels rose sharply in SIV-infected animals by day 14, reaching levels significantly 

above baseline (P < 0.001), then dropped rapidly back toward pre-infection levels.  (C) 

Plasma levels of sTNFR2 at day 14 correlated significantly with percent change in 

LVEDD at day 35 (P < 0.01, R = 0.578) such that higher plasma sTNFR2 levels were 

associated with greater chamber enlargement at the final time point. (D) Plasma levels of 

IL-18 at day 14 also correlated significantly with percent change in LVEDD at day 35 (P 

< 0.05, R = 0.407), with higher plasma IL-18 being associated with greater chamber 

enlargement at the final time point. (E) Plasma IL-18 levels at day 0 correlated 

significantly with percent change in LVEF at day 35 (P < 0.05, R = 0.445), such that 

higher baseline IL-18 levels were associated with greater preservation of ejection fraction 

at the terminal time point. SIV+MAC: SIV-infected, M. avium complex (MAC)-treated 

group; SIV: SIV-infected animals not subjected to MAC treatments; SIV+MAC+Enbrel: 

SIV-infected, MAC-treated, etanercept-treated animals; MAC: uninfected, MAC-treated 

controls. 
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Figure 4.4.  Myocardial iNOS levels, plasma viral load, myocardial SIV-infected cell 

burden, and peripheral CD4 T cell count do not correlate significantly with changes 

in ventricular chamber diameter or systolic function. (A) Myocardial iNOS levels 

were significantly lower (*) in the MAC control group than in the SIV+MAC group (P < 

0.05), but did not significantly differ among SIV-infected groups and did not correlate 

with any evaluated echocardiographic parameter. (B) Plasma viral loads in the SIV-

infected, MAC-treated, etanercept-treated group, which experienced no significant 

echocardiographic changes, were significantly higher than in the SIV+MAC group, in 

which prominent structural and functional changes developed (P < 0.05). (C) SIV-

infected cells within myocardial tissue were rare and their presence and number did not 

correlate with any evaluated echocardiographic parameter (SIV nef 

immunohistochemistry with Mayer’s hematoxylin. Micron bar = 50 μm). (D) Animals in 

SIV-infected groups developed significant decreases in CD4 T cell counts relative to the 

uninfected MAC control group (P < 0.01); however, CD4 counts did not correlate 

significantly with any measure of systolic function or ventricular chamber size. 

SIV+MAC: SIV-infected, M. avium complex (MAC)-treated group; SIV: SIV-infected 

animals not subjected to MAC treatments; SIV+MAC+Enbrel and Enbrel: SIV-infected, 

MAC-treated, etanercept-treated animals; MAC: uninfected, MAC-treated controls. 
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Figure 4.4 
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5.1 Introduction 

 Understanding mechanisms and root causes of disease is necessary to guide 

intelligent design of therapies and preventative strategies. HIV-associated myocardial 

disease has been recognized since the early years of the pandemic, but has remained a 

poorly understood phenomenon with many possible contributors. Better defining features 

specific to etiology of the condition is important to optimization of efforts at prevention 

and treatment. Furthermore, HIV infection provides a defined venue for exploring 

fundamental roles for chronic immune activation and host inflammatory response in the 

development and progression of myocardial injury, features which have substantial 

relevance beyond the context of HIV-associated disease alone. 

 

5.2 Summary of Central Findings 

Cardiomyopathy and lymphocytic myocarditis have been frequently documented 

among chronically SIV-infected rhesus monkeys, providing an excellent model system 

for study of HIV-associated cardiac disease [178].  Initial studies reported here [158, 159] 

focus on identifying correlates of lymphocytic inflammation, assessing possible causes of 

the inflammation, and the likelihood of inflammation as an underlying causative factor 

for development of SIV-associated cardiomyopathy [68-70]. While inflammatory lesions 

are indeed common, careful review finds them to be typically quite mild. This finding is 

in agreement with descriptions from the HIV literature, where the mildness of lesions is 

commonly attributed to the profound immunodeficiencies which occur in late stage 

infection. Given this mild character, however, it is difficult to attribute significant 
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functional or structural consequences to the inflammation itself, particularly in the 

absence of any demonstrable association between extent of inflammation and extent of 

cardiomyocyte necrosis, cardiomyocyte apoptosis, myocardial fibrosis, contractile 

dysfunction or ventricular remodeling. This lack of association supports the hypothesis 

that factors other than direct cardiomyocyte damage resulting from infiltrating 

lymphocyte populations may be responsible for the development of cardiac dysfunction 

in HIV/SIV infection. Intramyocardial SIV-infected cells also do not appear likely to play 

any direct role in cardiac disease pathogenesis given their rarity and lack of significant 

correlations with evaluated histomorphologic or functional pathologies.  In contrast, two 

subsets of macrophages present in very high numbers throughout the myocardial 

interstitium and perivascular tissues showed significant correlations variously with extent 

of T cell infiltration, numbers of SIV-infected cells, and endothelial MHC class II 

expression, as well as having numbers which differed dramatically between SIV-infected 

groups as a function of the presence or absence of lymphocytic inflammation. The wide 

distribution of macrophage populations throughout the myocardium uniquely situates 

them to assert global effects on myocardial function via actions of secreted soluble 

mediators. Macrophages characterized by expression of the antigens DC-SIGN and 

CD163 were found in high numbers in hearts from SIV-infected animals without 

inflammation, were excluded from or occurred only in very low numbers within 

inflammatory clusters, and were positively correlated with numbers of SIV-infected cells. 

Both DC-SIGN and CD163 have been reported to be upregulated in environments rich in 

TH2-type cytokines and down-regulated in the presence of LPS or TNFα, consistent with 
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markers of non-classical activation [192, 208, 213, 224, 225]. Specifically, IL-4 and IL-

13 have been demonstrated to upregulate DC-SIGN [192, 225, 226], while IL-10 and IL-

6 upregulate CD163 [208, 213, 224]. A single report has also found upregulation of DC-

SIGN in vitro on stimulation with IL-10, and in vivo in tissue having a high IL-10/IL-12 

ratio, suggesting the possibility of a single microenvironment in which both antigens 

might be found in abundance [227]. Given that MHC class II expression has been 

reported to be down-regulated in IL-10-rich contexts [228-230], high levels of 

myocardial  IL-10 could potentially explain the correlation identified between numbers of 

DC-SIGN+ cells and loss of endothelial MHC class II [158]. In addition, IL-10-mediated 

inhibition of chemokine production [231] could account for the correlation between 

numbers of DC-SIGN+ cells and extent of T cell infiltration. There is conflicting 

evidence as to whether IL-10 enhances or inhibits HIV replication (reviewed in [231]), 

but HIV replication has been documented to be significantly enhanced in macrophages 

which have engaged in phagocytosis of apoptotic debris, an activity which incurs upon 

them a prominently anti-inflammatory phenotype [232-234].  CD163+ macrophages have 

been associated with an anti-inflammatory phenotype, including IL-10 secretion on 

ligand-binding, inhibition of lymphocyte proliferation, and decreased expression of 

lymphocyte activation markers [175, 202, 208-210].  Cross-linking of DC-SIGN, a C-

type lectin which serves as a broad-spectrum pathogen receptor (reviewed in [235]), has 

also been associated with high IL-10 production in the context of concurrent TLR2, 

TLR4, or  TNFα stimulation in vitro, significantly modulating the cellular response to 

otherwise inflammatory stimuli [236]. 
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The findings presented in the first two reports provide initial evidence that 

myocardial antigen presenting cell populations might be significantly associated with 

induction or suppression of local myocardial inflammatory responses, expression of 

antigens by local, non-leukocyte populations, and quite possibly functional effects on 

cardiomyocytes, through properties of secreted cytokines. More extensive evaluation of 

the cytokine milieu of the myocardial microenvironment will provide an important 

starting point for future work. 

Given the paucity of literature examining tissue macrophage subsets in the 

context of HIV/SIV infection, the extent to which the patterns identified in myocardium 

in current work may also characterize other tissues in HIV/SIV-infection is unknown. In 

health, certain tissues are known to contain native macrophage populations with non-

classical properties. The lamina propria of the intestine for instance, contains a large 

population of macrophages which do not produce inflammatory cytokines, do not present 

antigen, and lack many innate immune receptors, but which engage in high efficiency 

phagocytosis and microbial killing [237]. Similarly, pulmonary alveolar macrophages in 

the steady state constitutively express DC-SIGN, constitutively secrete IL-10 and 

constitutively express the IL-10 receptor, though they are capable of responding with 

vigorous inflammatory responses when appropriately stimulated [238].  

In the context of SIV infection, one group has found expansion of the 

CD163+/CD16+ monocyte population in peripheral blood, with degree of expansion 

correlating significantly with viral load [239]. Another group has found perivascular 
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macrophages in both normal and encephalitic brains from HIV- and SIV-infected 

individuals to be uniformly CD163 positive, with increased numbers of CD163+ cells 

associated with encephalitic lesions [216]. Interestingly however, in case selection for 

this study, brains that had significant lymphocytic infiltration were omitted from 

consideration (S. Westmoreland, pc) such that any potential distinction in CNS 

macrophage phenotype associated with the presence or absence of lymphocytic 

inflammation will not have been identified. To the author’s knowledge, no work aside 

from that presented here has been published which specifically examines differences in 

macrophage subsets in tissues in the context of HIV/SIV infection and the possible 

consequences of those differences. 

In the final report [240], an acute SIV infection model employing recurrent 

antigenic stimulation with whole, heat-killed Mycobacterium avium complex (MAC) 

bacteria assesses the effects of experimentally augmented immune activation on 

myocardial structure and function, in order to directly examine the possibility of a role 

for inflammatory cytokines in development of HIV/SIV-associated cardiac disease.  

 In this model, SIV-infected animals developed marked myocardial dysfunction 

and structural change in response to antigenic stimulation that was not found in controls, 

and which was preventable by concurrent administration of a TNFα antagonist. This 

fundamentally different myocardial response to systemic antigenic stimulation in SIV-

infected animals, with the appearance of delayed and progressive structural and 

functional pathology after cessation of the stimulus, was associated with myocardium-

specific elevations in TNFα that were significantly higher in antigenically stimulated 
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SIV-infected animals than in unstimulated SIV-infected animals.  Ventricular structural 

change correlated with markers of systemic immune activation as indicated by significant 

relationships between circulating plasma levels of sTNFR2 and IL-18 at the time of peak 

viremia and extent of left ventricular dilatation at the terminal time point. In contrast, 

decreases in systolic function showed a significant association not with increased 

immune activation at peak viremia, but with baseline levels of IL-18, a finding which is 

intriguing given recent studies identifying significant relationships between baseline IL-

18 levels and risk of future coronary events [241], myocardial infarction [242], and 

cardiovascular mortality [243-245], even among large cohorts of healthy men [241].   

 

5.3 Increased Risk of Disease Development in the Context of Microbial 

Co-infections 

 Findings reported here imply that significant exposure to antigens from non-

HIV/SIV microbial agents, such as occurs in later stages of HIV/SIV infection as immune 

competence fails, is likely to substantially enhance the probability of cardiac disease 

development and progression. This finding is consistent with the often noted observation 

that HIVCM is strongly associated with depressed CD4 T cell counts and advanced 

infection [30, 38, 39]. Based on experimental findings in our model, this association may 

in part be a product of TNFα-mediated myocardial hyperresponsivity to antigenic 

stimulation. 

Mycobacterium avium complex bacteria are environmentally ubiquitous and 

disseminated M. avium infection is one of the most frequent opportunistic infections in 
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both human and simian AIDS [218-220, 246]. Furthermore, primary macrophages from 

HIV-infected people have been demonstrated to produce significantly higher levels of 

both TNFα and IL-1β on stimulation with M. avium than macrophages from uninfected 

control individuals [142]. Exaggerated inflammatory cytokine production by 

macrophages from HIV-infected people on exposure to common opportunists such as M. 

avium, particularly in the face of the very high bacterial loads that develop in HIV-

infected individuals with disseminated disease, may provide one explanation for the 

common occurrence of HIV-associated cardiac disease in later stages of disease 

progression, particularly given our current evidence for myocardial TNFα autoinduction, 

as this suggests that increased systemic levels of TNFα may undergo local amplification 

within the myocardium.  

 Co-infection with pathogens other than HIV and stimulation with non-HIV 

microbial antigens has been implicated in many reports to contribute to adverse outcomes 

in the context of HIV infection, through increased susceptibility to initial infection [247, 

248], increased rate of disease progression [83, 247, 248], increasing levels of viral 

replication [142, 249-252], and overall enhanced development of further opportunistic 

infections and shortened survival [253]. Furthermore, recent investigations in a murine 

model of AIDS-associated cardiomyopathy have demonstrated that subseptic 

lipopolysaccharide (LPS) exposure resulted in cardiac dysfunction, ventricular 

hypertrophy, and ventricular chamber dilatation in infected mice, similar to our findings 

with administration of inactivated whole mycobacteria, and found these changes to be 

significantly associated with increased levels of non-focal myocardial macrophage 
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infiltration as well as increased levels of TLR4 expression, implicating a role for 

macrophage involvement and toll-like receptor signaling in development of the observed 

pathology [171]. 

 

5.4 Anti-TNFα Biologics as Therapeutic Agents: Heart Failure and HIV 

Infection 

 While usage of the TNFα antagonist etanercept clearly demonstrated the TNFα 

dependence of the myocardial changes observed in antigenically stimulated SIV-infected 

animals by preventing development of systolic dysfunction and left ventricular dilatation,  

etanercept use was also associated with significantly increased plasma viral loads, 

suggesting that interference with the TNFα response at these early time points, while 

protective to the myocardium, resulted in reduced control of viral proliferation. Use of 

anti-TNFα therapies such as etanercept has been associated with increased risk of a wide 

variety of infections [254-256], and because of this and the risk of potentially worsening 

disease progression in HIV-infected individuals, usage of anti-TNFα therapies in HIV-

infected people has been infrequently reported. Nevertheless, the majority of reports 

describing use of anti-TNFα biologics in HIV-infected people describe no significant 

changes in viral load, no clinical deterioration, and no occurrence of significant 

opportunistic infections even over periods of therapy lasting greater than 4 years [257-

264].  However, as substantial evidence suggests that devastating immunologic damage 

takes place very early post-infection [265], it is possible that etanercept treatment during 
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the early acute infection period, as in our experimental model, might be associated with 

more deleterious outcomes as a result of diminished early viral containment than perhaps 

would be seen in similarly treated individuals with established, stable infections. Given 

the small number of cases reported in the literature to this point, however, the safety of 

anti-TNFα therapies in HIV-infected individuals overall requires further evaluation. 

Numerous clinical trials evaluating the utility of anti-TNFα therapies in heart 

failure treatment have been conducted in recent years based on the considerable evidence 

in support of a role for inflammatory cytokine involvement in progression of heart 

failure. However, while small, short-term early trials yielded promising improvements in 

outcome [266, 267], large multicenter randomized double-blind trials have uniformly 

yielded disappointing results [268, 269] (reviewed in [270]). While the reasons for this 

failure are matters of ongoing debate, current evidence suggests that anti-TNFα treatment 

for existing heart failure is of no benefit and in some cases may actually worsen 

outcomes [269, 271]. Whether there are circumstances under which anti-TNFα regimens 

could be employed therapeutically to prevent development of heart failure, as is 

suggested by our experimental results, is as yet an open question. 

 

5.5 Conclusions 

The current studies report work examining potential roles for myocardial 

macrophages and inflammatory cytokines in susceptibility to HIV/SIV-associated 

myocardial pathology. Previous work examining roles for inflammatory cytokines in the 

development and progression of HIV-associated cardiac disease has been very limited, 
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and the possibility of a role for antigenic stimulation in generation of these tissue-specific 

cytokine-dependent myocardial responses has not previously been explored. Many 

possible environmental, viral, and host factors have previously been identified as possible 

contributors to development of HIV-associated cardiac disease, including direct 

myocardial infection by cardiotropic and opportunistic pathogens, anti-cardiac 

autoimmunity, drug-induced cardiotoxicity, cardiodepressant viral proteins, and 

micronutrient deficiencies, all of which may in some circumstances play contributory 

roles. Given the complexity of the many interacting features in late-stage HIV infection, 

it is unlikely that a single etiology will suffice to encompass all cases of cardiomyopathy 

that arise in affected populations. However, findings from the current studies suggest that 

characteristics of local myocardial macrophage populations and the local myocardial 

cytokine milieu may play more important roles than lymphocytic infiltration, direct 

cardiomyocyte damage, or viral proteins in the pathogenesis of HIVCM, and that the 

exaggerated levels of antigenic stimulation that occur through multipathogen exposures 

in later stages of infection may be sufficient in the HIV-infection context to yield 

progressive myocardial disease.   
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