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Abstract 

Breast cancer is one of the most prevalent cancers in the world. Each year, over 

400,000 women die from breast cancer world wide and metastasis is the main cause of 

their mortality. Tumor cell invasion into the adjacent tissue is the first step in the 

multistep process of cancer metastasis and it involves multiple protein changes. The 

α6β4 integrin, a transmembrane heterodimeric laminin receptor is associated with poor 

prognosis in many tumor types, including breast cancer. Src family kinase (SFK) activity 

is elevated in many cancers and this activity also correlates with invasive tumor behavior.  

The α6β4 integrin can stimulate SFK activation and promote cancer invasion, however 

the mechanism by which it does so is not known.  In the current study, I provide novel 

mechanistic insight into how the α6β4 integrin selectively activates the Src family kinase 

member Fyn in response to receptor engagement.  Specifically, the tyrosine phosphatase 

SHP2 is recruited to α6β4 and its catalytic activity is stimulated through a specific 

interaction of its N-terminal SH2 domain with pY1494 in the β4 subunit.  Importantly, 

both catalytic and non-catalytic functions of SHP2 are required for Fyn activation by 

α6β4.  Fyn is recruited to the α6β4/SHP2 complex through an interaction with phospho-

Y580 in the C-terminus of SHP2.  In addition to activating Fyn, this interaction with 

Y580-SHP2 localizes Fyn to sites of receptor engagement, which is required for α6β4-

dependent invasion. Moreover, the selective activation of Fyn, but not Src, requires the 

palmitoylation modification of Fyn on its N-terminus. Of clinical relevance, phospho-

Y580-SHP2 and phospho-Y418-SFK could be used as potential biomarkers of invasive 

breast cancer because their expression are elevated in high-grade breast tumors.  
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Breast cancer is one of the most prevalent cancers in the world and it is the second 

leading cause of cancer related death in western women. Each year, over 400,000 women 

die from breast cancer [1-2]. With the development of early primary breast tumor 

detection technology, like mammographic screening, the mortality rate has decreased in 

recent years. However, if the malignant lesion has progressed from a localized primary 

tumor to metastatic disease, the survival rate and prognosis of breast cancer patient 

remains very poor. As with most malignant tumors, metastasis is the main cause of 

mortality in breast cancer patients [2].  

Traditionally, cancer metastasis is viewed as a late acquired event in 

tumorigenesis.  A series of steps happen from cancer cells breaking through the basement 

membrane, traveling through the circulatory system, surviving in a distant organ and 

forming a metastatic lesion. During this process, tumor cells go through constant genetic 

changes. Tumor cells with suitable genetic changes will be selected by different 

environments on their way to a distal organ and eventually get a chance to form a distal 

metastasis. In recent years, this model has been challenged by the studies of both mouse 

and human mammary tumors using gene expression profiling techniques [3-5]. The new 

findings indicate that a tumor’s metastatic ability may be acquired at a much earlier stage 

of tumorigenesis. The metastatic capacity might be an inherent characteristic of breast 

cancer [6]. This new model will deepen our understanding of tumor metastasis 

mechanisms and give a better prognosis prediction for breast cancer patients. 
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Despite the argument of different mechanisms by which tumor cells metastasize, 

one thing that remains valid is that once a tumor cell becomes disseminated from its 

original organ, the detection, treatment and cure of cancer becomes more difficult.  

Invasion into the adjacent tissue is the first step in the multistep process of cancer 

metastasis. Migratory capacity coupled with extracellular matrix proteolysis and 

remodeling abilities are required for cancer cells to break through the basement 

membrane which under normal conditions holds the epithelial cells in place. For my 

thesis research project, I have been interested in deciphering the mechanisms by which 

breast cancer cells become invasive. 

Integrin family molecules 

Since their first recognition about 3 decades ago, the integrin family of receptors 

have been the most studied and understood cell surface adhesion receptors [7]. Integrins 

mediate the transmembrane connections of the cytoskeleton to the extracellular matrix, 

such as collagen, laminin and fibronectin,  as well as play some roles in certain cell-cell 

adhesion [7]. Integrins have multifaceted functions in development, immune responses 

and cancer development and they have been intensively studied over the past several 

decades [8]. 

Integrins exist only in metazoans. No integrin homologs have been found in 

prokaryotes or plants [9]. Integrins are heterodimeric cell surface receptors which are 

composed of one α and one β subunit. Both of these subunits are one time transmembrane 

molecules and they interact with each other through non-covalent bonds. Only two α 
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subunits and one β subunit have been detected in C. elegans and five α and two β 

subunits in Drosophila [10]. Researchers have identified a more complicated set of 

integrins in vertebrates [8]. In mammalian cells, 18 α and 8 β integrin subunits assemble 

into 24 different integrins. Distinct combinations of α and β subunits determine integrin 

ligand specificity (Figure 1-1).  Specific integrin expression patterns determine which 

ECM molecules cells can bind and therefore what kind of mechanical or biochemical 

changes that will be transfered to the inside of the cell to affect cell behavior[11]. Data 

from integrin knockout mice suggest that each integrin has a distinct and nonredundant 

function since each integrin knockout phenotype is different from each other [8] (Table 

1-1). 

The main function of integrins is to mediate adhesion of the cells to the 

extracellular matrix (ECM) or to adjacent cells by connecting various components of the 

ECM to the actin cytoskeleton (α6β4 is an exception, which connects the ECM to the 

intermediate cytoskeleton). In response to ligand binding, integrins cluster and form a cell 

membrane structure called focal adhesions (FAs).  Focal adhesions are dynamic protein 

complexes through which not only mechanical forces but also regulatory signals are 

transmitted. The assembly and disassembly of FAs are essential in cell migration. Small 

and unstable structures called focal complexes are initially formed in the leading edge of 

migratory cells. These focal complexes rarely have an opportunity to mature and they 

dissemble as the lamellipodium withdraws when the cell migrates on the ECM. Besides 

integrins, focal complexes also consist of adaptor proteins, such as talin and paxillin. As 

some focal complexes mature to FAs, more proteins, such as zyxin, will be recruited to 
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the complexes. Focal Adhesion Kinase (FAK) is a cytoplasmic tyrosine kinase which is 

implicated in transmitting signals from multiple cell surface receptors including integrins 

to regulate complex cell functions, such as cell survival and cell cycle progression [12-

13]. FAK is localized to FA through directly interacting with β-integrins or indirectly 

interacting with integrin associated proteins, such as paxillin and talin [14-17]. Increased 

FAK expression and FAK activation have also been implicated in cancer progression [18-

20]. An essential role of FAK is to regulate the cycle of formation and disassembly of FA 

for efficient cell migration and invasion [21]. Appropriately localized FAK can rescue the 

phenotype of motility deficient FAK-null cells [22]. FAK regulates FA turnover through 

at least three mechanisms. FAK regulates Rho-GTPases and Arf GTPases by physically 

interacting with GAP proteins Graf or ASAP1, respectively. The inhibition of GTPase 

activity is associated with the re-arrangement of the actin cytoskeleton and the 

disassembly of focal adhesions [14, 23-24]. FAK can also inhibit Rho-GTPase activity by 

regulating the tyrosine phosphorylation of p190RhoGAP [25]. Thirdly, the calcium-

dependent protease calpain might be involved in the dissociation of FAs since many FA 

components are known to be calpain substrates and inhibition of calpain results in defects 

in FA and ECM dissociation [26]. FAK functions as a scaffolding protein in binding 

calpain to target calpain proteolytic activity to focal adhesion sites [27].  

 
Besides their roles in cell-ECM and cell-cell adhesion, integrins are also 

important in triggering complex signal transduction events. It has been well accepted that 

integrin initiated signaling pathways are essential for cells to survive and avoid apoptosis. 

Integrin triggered signaling pathways are similar to those stimulated by growth factor 
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receptors. Integrins can activate multiple signaling pathways by themselves. However, 

they also cooperate with growth factor receptors and growth factor stimulated signaling 

pathways also regulate integrin signals [28-29]. Moreover, integrin signaling is required 

for the full capacity of growth factor stimulated signaling events [30]. Such examples 

include integrin αVβ3 cross-talk with the IGF-1 receptor [31], integrin αVβ3 interaction 

with the TGFβ type II receptor [32], integrin α5β1 cooperation with the EGF receptor [30],  

and laminin binding integrin interaction with the c-Met receptor [33].  

One of the most significant characteristics of integrin signaling is that the 

receptors signal bi-directionally, which means that integrins mediate both outside-in and 

inside-out signaling. Many integrins do not present on the cell surface in a constitutively 

active state. They exist in either a low-affinity conformation or a high-affinity 

conformation, which some researchers call an OFF or ON state, respectively. In an “OFF 

state”, the integrin neither binds its ligand nor does it signal [8]. When integrins bind to 

their extracellular ligands, they recruit adaptor proteins to their cytoplasmic tails to 

initiate downstream signaling cascades. Also, conformational changes modify their 

interaction with the actin cytoskeleton. This is termed outside-in signaling. On the other 

hand, binding with cellular adaptor proteins, such as talin and kindlin, or to the 

cytoskeleton will change the integrin conformation to a higher affinity state for 

extracellular matrix, which is termed as inside-out signaling [8, 34].  
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Integrin α6β4 

The α6β4 integrin was first identified by two research groups independently more 

than 20 years ago [35-36]. It is expressed mainly on the basal surface of most epithelial 

cells. The α6β4 integrin has also been detected in a few other cell types, such as 

fibroblasts, Schwann cells, and thymocytes [37]. Unlike the α6 subunit, which can 

dimerize with either the β1 or β4 subunit, β4 can only form a cell surface heterodimeric 

receptor with the α6 subunit [8]. This is the reason why some researchers in the field refer 

to α6β4 as β4 for simplicity. Two characteristics make α6β4 different from all other 

integrins. Firstly, the α6β4 integrin links laminins in the basement membrane to the 

intermediate filament cytoskeleton instead of the actin cytoskeleton of the cell. Secondly, 

unlike other integrin subunits, β4 has an unusually long cytoplamic tail, which is about 

1000 amino acids long instead of around 50 amino acids. This long cytoplasmic tail 

confers α6β4 its unique roles among integrin family molecules [8, 38]. The structure of 

the cytoplasmic tail of the β4 subunit is characterized by two pairs of Type III fibronectin 

repeats separated by a connecting segment [39]. Multiple serine and tyrosine residues on 

the β4 tail have been reported to be crucial for α6β4 functions [40-43].  

α6β4 has a central role in hemidesmosome structural organization in normal 

epithelial cells. It is essential in the dynamic process of assembly and disassembly of 

hemidesmosomes as well [44]. It is the intrinsic role of α6β4 in the formation and 

breakdown of hemidesmosomes that determines its main function in maintaining the 

integrity of epithelia, especially the outermost layer of the epidermis [38], as well as in 
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regulating cell migration under both physiological and pathological conditions [44]. 

Hemidesmosomes (HD) are multiprotein complexes on the basal surface of the epithelial 

cell. They visually look like half desmosomes by electron microscopy. HDs use integrins 

to link cells to the extracellular matrix. α6β4 knockout mice result in the loss of 

hemidesmosomes and hence the loss of stable adhesion of epithelia [45-47]. Without 

α6β4 expression, although the morphology of the skin looks normal, the epidermis is very 

easy to detach from the underlying basement membrane in response to mechanical stress 

due to the lack of hemidesmosome fomation. This observation mimics the symptoms of 

human PA- JEB patients (Pyloric atresia associated with junctional epidermolysis bullosa: 

a rare inherited disorder characterized by pyloric stenosis and blistering of the skin) 

carrying either α6 or β4 subunit mutations whose skins are fragile and form blisters easily 

[48-50].  

Laminin is the major ECM component that interacts with the α6β4 integrin. 

Besides α6β4, other integrins have also been reported to interact with laminin, such as 

α6β1, α3β1 and α7β1 [51-52]. Like α6β1, α6β4 interacts with multiple different laminin 

isoforms. Laminin-332 (previously called laminin-5) is the most important and preferred 

natural ligand of α6β4 [53-56]. Several studies suggest that the processing of laminin-332 

is involved in HD formation. In normal epithelia, α6β4 interacts with the processed form 

of laminin-332 to secure the formation of stable HDs. Mature HD can only be formed on 

the processed laminin-332. When cells need to migrate, unprocessed laminin-332 is 

secreted by the cell to interact with α3β1 since it has a higher affinity for the unprocessed 

laminin-332 compared to α6β4 [51, 57]. Indeed, underneath the leading edge of 
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migratory cells, the unprocessed form of laminin-332 is present [58]. By using this 

strategy, cells adjust their turnover of the rigid HD structures to regulate their stable 

adhesion or migratory status.  Several studies also suggest that HD formation may be 

independent of the laminin interaction with α6β4 integrin. They argue that HDs can be 

formed entirely through the interaction of the β4 cytoplasmic tail with plectin, which 

connects β4 to the intermediate filament cytoskeleton. One piece of evidence to support 

this possibility is that expressing a β4 mutant that is unable to interact with laminin 

doesn’t block the formation of structurally normal HDs containing all the essential HD 

components [59-62]. Consistent with the idea that the β4/plectin interaction is crucial for 

HD formation, patients with β4 mutants which are deficient in binding plectin or plectin-

deficient mice both show less robust HDs and fragile skin [63-66]. Therefore HD 

formation is likely to be driven from both outside laminin-332 and inside plectin 

interactions with α6β4, respectively.  

Integrin α6β4 and cancer progression 

Besides its well established roles in maintaining epithelial integrity, many studies 

have revealed a strong correlation between the α6β4 integrin and solid tumor progression 

including tumor initiation, survival, and especially invasion and metastasis [38, 67-68]. 

Despite the loss of hemidesmosomes in most tumors, α6β4 integrin expression persists in 

many epithelial-derived tumors [38, 69]. The persistent and even higher expression level 

of α6β4 and its cell surface redistribution correlate with more malignant and aggressive 

cancers [70-71]. De novo expression of the β4 subunit increases the invasive capacity of 
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β4-deficient rectal and breast carcinoma cells [72-73]. Moreover, abrogation of β4 

expression by siRNA results in decreased invasion in metastatic breast carcinoma cells 

[74]. The mechanisms that underlie α6β4 integrin dependent cancer cell motility are 

likely the same as those employed by normal epithelial cells under some physiological 

conditions, like wound healing [38]. In transformed cells, engagement of the α6β4 

integrin stimulates the activation of several signaling molecules including 

phosphatidylinositol-3 kinase (PI3K), MAPK, NFAT, NFkB and Src family kinases 

(SFKs) [73, 75-78]. A core enzyme activated by the α6β4 integrin to promote invasion is 

PI3K. In turn, PI3K activates downstream targets, such as the small GTP binding protein 

Rac, to promote cancer cell invasion [73]. A dual role hypothesis explains how an 

adhesion receptor switches to a signaling competent molecule to promote cancer 

progression [38]. When cancer cells undergo malignant transformation, factors in the 

tumor mircroenvironment mobilize the α6β4 integrin from the rigid hemidesmosome 

structures to the more dynamic part of the cell surface. Upon release from HDs, the α6β4 

integrin switches from interacting with the intermediate filament cytoskeleton to the actin 

cytosleleton in the leading edges of the cell, such as in lamellae and filopodia. Moreover, 

the released α6β4 integrin will incorporate into certain cell surface microdomains where 

it will interact with growth factor receptors and other signaling molecules to promote cell 

motility as a signaling competent molecule [38, 68]. The mechanism by which α6β4 is 

released from HDs involves the tumor microenviroment induced phosphorylation of a 

group of serine residues (S1356, S1360, and S1364) on the β4 cytoplasmic tail [41, 79].  

In contrast to the growth factor stimulated phosphorylation of this group of serine 
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residues, a constitutively phosphorylated serine residue (S1424) has also been reported to 

be involved in mobilizing  α6β4 to the signaling platforms [80].  

Integrins are constitutively endocytosed and then recycled or degraded [81-82]. 

Disruption of integrin endocytosis and recycling impairs cell spreading and migration, 

and remodeling of ECM components [83-84]. The ability of cells to redeploy integrins on 

their surface may be important for both normal epithelial cells and invasive cancer cells 

to migrate. This provides one potential mechanism by which α6β4 is mobilized from 

HDs to the more dynamic leading edges of invasive cancer cells to promote cancer 

invasion. Clathrin-mediated endocytosis has been associated with the turn-over of several 

integrins including α6β1, α5β1, αvβ3 and αvβ6 [85-86]. In contrast, α6β4 is associated 

with lipid rafts which suggests that caveolin might be involved in endocytosis of α6β4 

[87-88].  A recent study has provided evidence that ARRDC3, an arrestin family member 

which is preferentially lost in a subset of breast cancers, is involved in regulating α6β4 

internalization [89]. This study has shown that ARRDC3 interacts with β4 to facilitate 

α6β4 internalization, ubiquitination and ultimate degradation. ARRDC3 controls breast 

cancer progression by negatively regulating α6β4 expression level [89].  

Normal epithelial cells and endothelial cells require a solid substratum to grow 

[90-91]. Without growth factor and ECM proteins, cells tend to go through anoikis, a 

form of programmed cell death.  However, cancer cells gain the ability to survive in the 

absence of growth factor and matrix attachment.  This anchorage-independent growth of 

cells is one of the hallmarks of carcinogenesis. The α6β4 integrin has been reported to 

influence the survival of breast cancer cells through activation of the PI3K/AKT 
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signaling pathway in p53 mutant cell lines [92]. This result has been further confirmed by 

the observation that α6β4-dependent survival was blocked in WT-p53 cancer cells since 

AKT was cleaved by the p53-dependent activation of caspase-3 [92-93]. Besides the 

intrinsic ability of activating PI3K/AKT to promote cancer survival, α6β4 also regulates 

cancer cell survival by providing ligands to either growth factor receptors or integrin 

receptors. Studies have shown that α6β4 mediated breast cancer survival is dependent on 

α6β4 induced VEGF production [94-95]. These studies also revealed that α6β4 regulates 

VEGF expression at the translational level through regulating the mTOR/eIF-4E pathway 

[94]. Like regulating growth factor VEGF secretion, α6β4 is also involved in autocrine 

stimulation of its own ligand laminin-332 to sustain anchorage-independent cell survival 

in 3-dimensional cultures [96]. The mechanism by which laminin-332 ligated α6β4 

promotes cancer cell survival is through the activation of Rac GTPase /NF-kB signaling 

[97].  

While α6β4 contributions to tumor progression, such as promoting tumor survival, 

migration, and invasion, have been known for some time, it is only recently that attention 

has been drawn to the fact that α6β4 is also involved in the initiation of tumors. Using 

antibodies to block either the α6β4 integrin or its ligand laminin-332 abolished the ability 

of genetically modified human keratinocytes to form tumors in immune-deficient mice. 

Moreover, keratinocyes isolated from patients with blistering skin were unable to form 

tumors since they are deficient in either the β4 subunit or laminin-332. However, 

restoring the β4 subunit or laminin-332 genes conferred the cells’ tumorigenic ability 
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[98]. This finding is substantiated by multiple studies in the field. Depletion of α6β4 by 

siRNA reduces breast cancer growth both in vitro and in vivo [99-100]. Overexpression 

of the β4 subunit transforms rodent fibroblasts and induces tumorigenesis in nude mice 

[101]. Deletion of part of the β4 subunit cytoplasmic tail results in a decrease in 

mammary tumorigenesis [102]. Taken together, α6β4 not only promotes cancer 

progression but also is involved in a much earlier tumor initiation stage. 

Lipid rafts and tetraspanin (4 times transmembrane superfamily protein) enriched 

microdomains are two kinds of cell surface microdomains that have been reported to be 

involved in α6β4 signaling functions. Lipid rafts are cell surface microdomains enriched 

with cholesterol, glycosphingolipids and signaling proteins. Lipid rafts are more tightly 

packed and organized than the surrounding lipid bilayer and they may float freely in the 

cell membrane [103]. With a concentration of signaling molecules, lipid rafts function as 

platforms in signal transduction. By recruiting regulatory molecules to or excluding them 

from lipid rafts, the cell is provided with a way to regulate its signaling events. Studies 

have shown that palmitoylation of the β4 proximal region (C732, C736, C738, C739, 

C742) is required for α6β4 to incorporate into lipid rafts and stimulate signaling 

pathways since mutation of these cysteine residues blocks both events [87]. Tetraspanin 

enriched microdomains (TEMs) are cell surface complexes consisting of multi-

tetraspanins and non-tetraspanin proteins (including growth factor receptors) which 

interact with each other laterally. This distinct characteristic confers TEMs with another 

name, tetraspanin webs [104]. In contrast to the α6β4/lipid raft model, studies from 



14 
 

another group have shown that multiple tetraspanins can be palmitoylated on their 

membrane proximal region and instead of incorporating into lipid rafts, palmitoylated 

α6β4 integrins integrate into tetraspanin webs to make them signaling competent [52].   

It is natural to hypothesize that the signaling capacity of α6β4 is dependent on 

interaction with its ligand. Indeed, studies show that some breast cancer cells ligate α6β4 

and activate the Rac/NF-kB signaling pathway by autocrine laminin-332 [97]. However, 

ligand-independent α6β4 stimulation of signaling and invasion in colorectal cancer cells 

has also been reported [72]. Moreover, an extracellular domain deleted β4 mutant retains 

its signaling capacity and cell migration and invasion promoting ability [105-106]. 

Similar results have been observed when antibodies are applied to block α6β4 dependent 

adhesion to its ligand [107]. Since the signaling functions of α6β4 are generally 

attributed to the long cytoplasmic tail of the β4 subunit and it doesn’t have any intrinsic 

enzymatic activity, an adaptor model has been proposed to explain how α6β4 functions 

as a signaling molecule. This model suggests that upon redistribution into the leading 

edges of migratory cells, α6β4 interacts with growth factor receptors to mediate growth 

factor induced signaling events. Interactions between α6β4 and growth factor receptors, 

such as erbB2, Met, and Ron, have been reported [42, 105, 108].  

As mentioned before, phosphorylation of serine residues in the β4 subunit 

cytoplasmic tail contributes to the regulation of α6β4-mediated HD disassembly and cell 

adhesion. In contrast, phosphorylation of tyrosine residues is mainly responsible for α6β4 

dependent signaling events to influence carcinogenesis and tumor progression [43]. At 
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least six tyrosine residues (Y1257, Y1422, Y1440, Y1494, Y1526 and Y1642) have been 

identified to participate in signaling in the β4 cytoplasmic tail [109-110]. Y1494 in the β4 

subunit cytoplasmic domain is a key mediator of α6β4-dependent signaling because 

mutation of Y1494 inhibits the ability of α6β4 to stimulate PI3K, MAPK and SFK 

activation [76]. Moreover, mutation of Y1494 significantly reduces α6β4-dependent 

cancer invasion [111]. Y1494 is localized within an immune T cell inhibitory motif 

(ITIM) which has been characterized as  a canonical binding site for Src-homology-2 

(SH2) domain-containing protein-tyrosine phosphatase-1 (SHP1) and SHP2 [112]. 

However, SHP tyrosine phosphatase involvement in α6β4-dependent signaling and 

cancer cell invasion are not well understood.  

SHP2 and Cancer Progression 

SHPs, the SH2 domain containing protein tyrosine phosphatases, are a family of 

non-transmembrane phosphatases. There are two types of SHPs in vertebrates which are 

SHP1 and SHP2. Only one SHP ortholog is present in Drosophila and C. elegans, 

Corkscrew and Ptp-2, respectively. The invertebrate SHPs seem to have primarily the 

SHP2 like roles suggesting that SHP2 is evolutionally more conserved and SHP1 evolved 

later in vertebrates [113]. Mammalian SHPs have two SH2 domains on their N-termini, 

which are called N-SH2 or C-SH2, reflecting their relative position to each other. A 

central classic PTP domain (protein tyrosine phosphatase domain) is followed by a short 

C-terminal tail containing two tyrosine residues that have been implicated in regulating 

SHP funtion. In between the two C-terminal tyrosine residues is a proline rich domain 
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whose functions are unknown [114]. (Figure 1-2a) SHP2 is expressed ubiquitously in 

mammalian cells whereas SHP1 expression is more restricted to lympho-hematopoietic 

cells [113-114]. Although they have highly homologous sequences and structures, the 

two mammalian SHPs have non-redundant functions. For cells which express high levels 

of both SHP1 and SHP2, losing either of the SHPs has dramatically different 

consequences to the cell [114]. SHP1 null mice die about 2-3 weeks after birth due to 

sterile inflammations affecting multiple viscera [115]. Homozygous deletion of Exon 2 or 

Exon 3  of SHP2  in mice results in embryonic lethality [116]. 

In non-stimulated cells, SHP2 assumes a closed conformation and its phosphatase 

activity is suppressed by an intramolecular inhibitory interaction between the N-SH2 

domain (the backside of its p-Tyr binding pocket) and the PTP domain (the catalytic 

surface of PTP domain). In response to growth factor stimulation, SHP2 is recruited to 

phosphorylated tyrosine residues in RTKs or adaptor proteins through its N-SH2 domain. 

This releases the auto-inhibitory interactions of SHP2 to expose its PTP domain and 

activate its phosphatase activity [114, 117]. The C-SH2 may also be involved in the 

regulation of SHP2 phosphatase activity since bisphosphorylated ligands that engage both 

the N-SH2 and C-SH2 provide a higher stimulatory effect on SHP2 phosphatase activity 

[118]. The crystal structure of SHP2 reveals that the C-SH2 has minimal interactions with 

the PTP domain, which suggests the p-Tyr binding pocket of C-SH2 is ready to bind its 

ligand even when SHP2 is in a closed conformation [118]. It is suggested that SHP2 uses 

its C-SH2 to survey the cell for the bisphosphorylated binding ligand. Upon interaction 

between C-SH2 and p-Tyr, the increase of the local concentration of p-Tyr will release 
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SHP2 auto-inhibition by engaging the N-SH2 [114]. SHP2 PTP activity is regulated not 

only by its SH2 domains. It has been reported that the tyrosine residues Y542 and Y580 

(human sequences) on the short C-terminal tail also have an effect on its PTP activity. 

Non-hydrolyzable p-Tyr 542 or p-Tyr 580 mimetics each stimulate SHP2 phosphatase 

activity by 2 to 3 fold. From mutagenesis and protease-resistance studies, it has been 

suggested that p-Tyr 542 engages the N-SH2 intramolecularly, whereas p-Tyr 580 

interacts with C-SH2 [119].  Earlier studies, including the crystal structure studies, 

showed that C-SH2 has no physical interaction with the PTP domain or any effects on 

SHP2 phosphatase activity. Therefore, the functions of Y542, Y580, and the C-SH2 

domain in regulating SHP2 phosphatase activity are still quite controversial.  

Deregulated protein tyrosine phosphorylation is involved in tumor progression.  

Gain of function mutations of protein tyrosine kinases (PTKs) and/or PTK 

overexpression are responsible for their oncogenic functions. Therefore, PTPs have long 

been expected to be tumor suppressors. However, few, if any PTP have been reported to 

be a tumor suppressor [113]. As the first recognized proto-oncogene in the PTP family, 

SHP2 has been reported to be a positive (signaling enhancing) regulator downstream of 

multiple growth factor receptors and cytokine receptors. In contrast, SHP1 plays largely a 

negative regulatory role in signal transduction pathways to suppress cellular activation 

[120]. This notion has been substantiated by the finding that mutation of SHP1 partially 

rescues the haematopoietic defect caused by SHP2 mutation. This study suggests that 

SHP1 and SHP2 have opposite regulatory effects in the same signaling pathways [121]. 
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Recently it has been reported that SHP2 may also have tumor suppressor functions in 

hepatocellular carcinogenesis through downregulation of inflammatory signaling [122]. 

SHP2 is encoded by PTPN11. Germ line mutations in PTPN11 cause about 50% 

of Noonan Syndrome (NS), which is an autosomal dominant disorder featuring abnormal 

facial structures, short stature and cardiac defects [123]. Somatic mutations of SHP2 

cause many forms of childhood and adult leukemia (JMML, AML, ALL, etc) and solid 

tumors, including lung cancer, colon cancer, and melanoma [124]. In the majority of NS 

and tumors, the SHP2 mutations affect the N-SH2 and PTP autoinhibitory interaction 

faces resulting in “activated SHP2 mutants”. Low levels of SHP2 activity are associated 

with NS, whereas high levels are associated with neoplastic dieases [124]. SHP2 plays 

essential roles downstream of multiple RTK, cytokine and integrin receptors. The main 

function of SHP2 as a positive regulator is to activate and sustain the Erk MAPK 

signaling pathway. The oncogenic effects of SHP2 are thought to be mainly through 

activation of the Ras-Erk signaling pathway as some NS patients and cancer patients 

lacking PTPN11 mutations show gain of function mutations in Kras. It is known that 

SHP2 signals upstream of Ras [114, 125]. However the exact mechanisms by which 

SHP2 activates MAP kinases and the direct substrate(s) of SHP2 are still not completely 

understood [114]. SHP2 has also been implicated in PI3K, JNK, and NF-kB activation 

[126-129].  

Another important role of SHP2 is to regulate Src Family Kinase (SFK) activation. 

In their short regulatory C-tails, SFKs have a critical negative regulatory residue Y529 
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(human Src as an example). pY529 mediates an intramolecular inhibitory interaction with 

its SH2 domain, which keeps 90-95% of SFKs in an inactive conformation under basal 

conditions [130]. For full SFK activation, Y529 must be dephosphorylated and Y418 

must be autophosphorylated. Some cytoplasmic PTPs, including SHP2, PTP1B, and 

some transmembrane enzymes, including PTPα, PTPε and PTPλ, are candidate 

phosphatases for Y529 dephosphorylation [131]. It remains possible that SHP2 might 

activate SFKs by directly dephosphorylating p-Y529. However there is currently no 

evidence for a direct dephosphorylation mechanism. Rather, Neel et al have provided 

evidence that SHP2 regulates pY529 dephosphorylation and Src activation by an indirect 

dephosphorylation mechanism in response to multiple growth factor receptor activation 

and β1 integrin clustering. Y529 of Src can be phosphorylated by Csk (C-terminal Src 

Kinase) [132].  To phosphorylate the inhibitory residue Y529, Csk is recruited through its 

SH2 domain to  phosphorylated PAG (phosphoprotein associated with glycosphingolipid-

enriched microdomains), which is a transmembrane glycoprotein. Then the membrane-

recruited Csk can phosphorylate the membrane-associated SFK and inhibit its activity. 

By dephosphorylating the Csk-binding tyrosine in PAG, SHP2 abolishes the recruitment 

of Csk to SFK and prevents Y529 phosphorylation [133]. Another group has proposed a 

similar mechanism. They demonstrated that SHP2 promotes Src activation by 

dephosphorylating another Csk-docking protein, Paxillin, which is a focal adhesion-

associated adaptor protein [15, 134]. Although most of SHP2 functions require its PTP 

activity, studies have shown that SHP2 does have some PTP independent functions [135-

136]. One study shows that SHP2 can activate Src independently of its catalytic function 
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by binding directly to the SH3 domain of Src and disrupting an intramolecular interaction 

that interferes with the catalytic domain [135].  

SFKs and Cancer Progression 

The cytosolic Src Family Kinases (SFKs) are frequently activated in human 

cancers, and they play important roles in regulating cell proliferation, migration and 

survival [131, 137]. There are at least 9 SFKs: Src, Fyn, Yes, Lck, Blk, Fgr, Hck, Lyn 

and Yrk. All 9 SFKs are approximately  60 kd, with Src being 60 kd and Fyn being 59 kd 

[138]. All of the SFKs are highly homologous to each other and share the same structure 

and same mechanism of activation [139]. At their N-termini, SFKs contain a short 

membrane-targeting SH4 domain that can be differentially modified by lipids, followed 

by a unique domain which determines the specificity of each SFK member, followed by 

an SH3 domain, an SH2 domain, a linker region, a protein-tyrosine kinase domain and a 

short C-terminal tail that contains the critical negative regulatory residue Y529 (Figure 1-

3) [139]. Two intramolecular interactions keep 90-95% of Src in an inactive 

conformation under basal conditions in vivo. One is the phospho-Y529 mediated 

intramolecular interaction with the SH2 domain. The other is the interaction between the 

SH3 domain and the proline rich motif in the linker region [130]. For full activation, 

Y529 must be dephosphorylated and Y418 located in the kinase domain must be 

autophosphorylated (Figure 1-2). Among all SFKs, Src is the most studied member and 

the involvement of Src in solid and hematologic malignancies has long been established 

[140-141]. Human breast cancer cells expressing constitutively active Src exhibit 

increased bone metastasis, while those expressing a  kinase-dead mutant of Src show 
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decreased bone and lung metastasis in a mouse model [142]. The observation that Src 

expression increases with tumor progression suggests that Src is more involved in tumor 

invasion and metastasis than in tumor onset [143-146]. Like the α6β4 integrin, elevated 

Src activity can be used as a predictor for poor prognosis in cancer patients [147]. Taken 

together, these observations indicate a strong correlation between elevated Src kinase 

activity and breast cancer invasion and metastasis.  

Although much progress has been made on the contributions of Src to tumor 

initiation and progression, less is known about other SFKs. Fyn was identified in 1986 

and it is mainly associated with T-cell and neuronal signaling pathways. Therefore, much 

of the earlier work has focused on its roles in immune and neuronal systems [138, 148-

149]. It has been established in recent years that Fyn, like Src, is also involved in 

tumorigenesis. Fyn is overexpressed in various solid tumors including squamous cell 

carcinoma and melanoma [138]. Overexpression of Fyn in NIH3T3 fibroblasts results in 

a prominent morphological change and increased anchorage-independent growth, which 

is a hallmark of carcinogenesis [150]. Studies have also shown that Fyn expression is 

upregulated in the progression from normal prostate epithelia to prostate cancer whereas 

other SFKs, like Src, Lyn, Fgr, and Hck, are either not significantly upregulated or only 

weakly upregulated [151]. Depending on the different model systems studied, specific 

SFK member(s) may play more important roles in carcinogenesis than other SFKs. 

As with Src, Fyn also plays a mutifaceted role in the process of tumorigenesis, 

including promoting cell growth, inhibiting cell apoptosis and promoting cell migration 

and invasion [151]. Inhibition of Fyn by expressing a kinase dead Fyn significantly 
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reduced the primary tumor size in invasive oral squamous cell carcinoma [152]. 

Knocking down Fyn, together with Src and Yes, results in a decrease in EGF stimulated 

AKT activation, which is known to be implicated in tumor cell growth and to have 

antiapoptotic effects [153].  

Besides functioning downstream of growth factor receptors, Fyn and other SFKs 

have also been implicated in mediating integrin initiated signals to regulate cell shape and 

motility. Both Fyn and Src have been shown to coimmunoprecipitate with FAK [154], 

and Fyn phosphorylates FAK at Y861 and Y925 [155]. FAK then autophosphorylates 

itself at Y397 [151]. The FAK and SFK complex is essential in regulating cell shape, 

motility and invasion by affecting a number of downstream signaling molecules 

including AKT, NF-KB and the Rho family of small GTPases [151]. Interactions 

between Fyn and Rho family GTPases control the morphological differentiation of 

oligodendrocytes [156]. Another study showed that Fyn promotes Stem Cell Factor 

stimulated Rac GTPase activity [157].  

Rational for my Thesis Research Work 

Breast cancer is one of the most prevalent cancers in the world and it is the second 

leading cause of cancer related death in western women. Metastasis is the main cause of 

the mortality in breast cancer patients. Src family kinase activity is elevated in many 

cancers including breast cancer and this activity correlates with aggressive tumor 

behavior.  The α6β4 integrin, which is also associated with poor prognosis in many 

tumor types, can stimulate SFK activation. Y1494 in the β4 subunit is involved in α6β4–



23 
 

dependent activation of SFKs and tumor invasion. Y1494 is localized in the canonical 

SHP2 binding ITIM motif, suggesting that SHP2 may play a role in the α6β4–dependent 

activation of SFKs and tumor invasion.  

My thesis research focuses on deciphering the mechanisms by which α6β4 

promotes cancer cell invasion. I am interested in the molecular mechanisms by which β4 

recruits and activates SHP2 and in turn SHP2 recruits and activates SFKs. I am also 

interested in the contributions of SHP2 and SFKs to breast cancer invasion. 
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Figure 1-1. The mammalian integrin receptor family 

Integrins are cell surface heterodimeric receptors. 18α and 8β subunits form 24 distinct 
integrins. The different combination of α and β subunits determines the integrin ligand 
specificity.  The expression of β2 and β7 integrins are restricted to white blood cells. The 
expression of α4 and α9 and β2- β8 are restricted to chordates. In contrast, the receptors for 
laminins and RGD containing ligands are more ancient and expressed throughout 
metazoans.  

 

Reference: Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 
2002.110(6): p.673-687 
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Figure 1-2.  Structure and regulation of Src homology-2 (SH2) domain-containing 
phosphatases (SHPs) 
 
(a). Schematic of a typical member of the SHP subfamily, indicating the two SH2 domains (N-
SH2 and C-SH2), catalytic protein-tyrosine phosphatase (PTP) domain and C-terminal tail.  
(b). In the basal state, SHPs are largely inactive, because the ‘backside loop’ of the N-SH2 is 
inserted into the catalytic cleft. This results in mutual allosteric inhibition, with the N-SH2 
inhibiting the PTP domain and the PTP domain contorting the Tyr–P peptide-binding pocket of 
the N-SH2 on the opposite surface. The C-SH2 is left unperturbed, with its Tyr–P peptide-binding 
pocket in a conformation suitable for binding an appropriate ligand. The C-SH2 probably has the 
primary targeting function to most SHP-binding proteins.  
(i) In the first mechanism of SHP activation, a SHP-binding protein (BP) containing two Tyr–P 
sites (pY) – one that can bind to the C-SH2 and another that can bind the N-SH2 – comes into 
contact with the SHP. The C-SH2 is engaged first by its Tyr–P ligand. The resultant increase in 
local concentration of the ligand for the N-SH2 overcomes mutual allosteric inhibition, resulting 
in binding of the N-SH2 to its Tyr–P ligand, opening of the enzyme and activation.  
(ii) A second mechanism for SHP activation via intramolecular binding of phosphorylated C-tail 
tyrosyl residues: phosphorylated Tyr542 (Tyr542–P) can bind to the N-SH2, whereas Tyr580–P 
can bind to the C-SH2. 
 
Reference: Neel, B.G., The “SHP”ing news: SH2 domain-containing tyrosine phosphatses in cell 
signaling. Trends Biochem Sci, 2003. 28(6): p. 284-293  
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Figure 1-3.  General linear protein structure and activation of Fyn and the Src 
Family Kinases  
 
(a). Schematic of a typical member of the SFKs, indicating the five domains and two 
important kinase activity regulatory tyrosine residues. 
(b). Model of SFK activation mechanism. In the inactive state, SFKs are largely inactive, 
because of two intramolecular inhibitory interactions.  
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Table 1-1. Integrin gene knockout mice phenotypes 

Reference: Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 
2002.110(6): p.673-687 
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CHAPTER II. SHP2 Interacts with the β4 Subunit to Mediate α6β4 

Integrin-Dependent Breast Carcinoma Cell Invasion 

 

 

 

 

Parts of this chapter represent work published as:    

SHP2 mediates the localized activation of Fyn downstream of the α6β4 integrin to  

promote carcinoma invasion 

Yang, X.Q., Dutta, U., Shaw, L.M. 

Department of Cancer Biology, University of Massachusetts Medical School, Worcester, 

Massachusetts, 01605 

Mol. Cell Biol.  Nov. 2010; 30 (22): 5306-17 

 

Intrinsic signaling functions of the β4 integrin intracellular domain 

Medeck, K.D., Yang, X.Q., Taglienti, C.A., Shaw, L.M., Mercurio, A.M. 

Department of Cancer Biology, University of Massachusetts Medical School, Worcester, 

Massachusetts, 01605 

J. Biol. Chem.  Oct. 2007; 282 (41):30322-30 

 

Figure 2-4 D: The experiment was carried out by Udayan Dutta, Ph.D. 
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Abstract 

The α6β4 integrin, a cell surface laminin receptor, is associated with poor patient 

prognosis and reduced survival in many human cancers, including breast cancer. 

Considerable interest in understanding how this integrin is regulated and how it functions 

to promote tumor progression has been given to this unique integrin. In normal tissues, 

the α6β4 integrin plays a major role in maintaining the integrity of epithelia by binding to 

laminins in the basement membrane and regulating the assembly of hemidesmosomes on 

the basal epithelial cell surface. In pathophysiological conditions such as wound healing 

and invasive cancer, the stable adhesive interactions of the α6β4 receptor are disrupted. 

The α6β4 integrin is converted to a signaling competent receptor that promotes dynamic 

adhesion and invasion. However, the molecular mechanism by which α6β4 promotes 

cancer invasion is not fully understood. Both SFKs (cytosolic tyrosine kinases) and SHP2 

(a cytosolic tyrosine phosphatase) have been implicated in α6β4-dependent cancer 

invasion. In the current study, I investigated the mechanism by which SFKs are activated 

in a SHP2-dependent manner in response to α6β4 stimulation and determined the 

molecular mechanism by which β4 recruits and activates SHP2.  
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Introduction 

Expression of the α6β4 integrin, a laminin receptor, is associated with poor 

patient prognosis and reduced survival in many human cancers [158]. For this reason, 

there is considerable interest in understanding how this integrin is regulated and how it 

functions to promote tumor progression. In normal tissues, the α6β4 integrin plays a 

major role in maintaining the integrity of epithelia by binding to laminins in the basement 

membrane and regulating the assembly of hemidesmosomes on the basal epithelial cell 

surface [159-160]. In pathophysiological conditions such as wound healing and cancer, 

the stable adhesive interactions of the α6β4 receptor are disrupted by phosphorylation of 

the β4 cytoplasmic domain, converting α6β4 to a signaling competent receptor that 

promotes dynamic adhesion and invasion [38]. Phosphorylation of the β4 subunit 

cytoplasmic domain on serine residues contributes to the dynamic adhesive functions of 

the receptor by disrupting interactions with hemidesmosomal proteins that regulate stable 

adhesion [41-42], whereas phosphorylation on tyrosine residues appears to mediate 

cooperation with growth factor signaling pathways and invasion in carcinoma cells [40]. 

In transformed cells, engagement of the α6β4 integrin stimulates the activation of 

several signaling molecules including phosphatidylinositol-3 kinase (PI3K), mitogen 

activated protein kinases (MAPK), NFkB and Src family kinases (SFKs) [76-78, 161].  In 

earlier studies, Y1494 in the β4 subunit cytoplasmic domain was identified as an 

important mediator of α6β4-dependent signaling by demonstrating that mutation of 

Y1494 inhibits the ability of α6β4 to stimulate PI3K, MAPK and SFK activation [76, 
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111].  Restoration of both PI3K and SFK signaling, but not MAPK signaling, rescues 

invasion in tumor cells expressing Y1494F-β4, indicating that PI3K and SFK signaling 

pathways cooperate downstream of Y1494 to promote α6β4-dependent invasion [76].  

Y1494 is localized within an immunoreceptor T cell inhibitory motif (ITIM), a canonical 

binding site for Src-homology-2 (SH2) domain-containing protein-tyrosine phosphatase-

1 (SHP1) and SHP2 [112]. Examination of a chimeric receptor containing the 

extracellular domain of TrkB and the transmembrane and cytoplasmic domains of the β4 

subunit demonstrated that SHP2 binds to and is activated by sequences in the β4 

cytoplasmic domain in response to dimerization [162]. Moreover, Y1494 is one of three 

tyrosine residues, along with Y1257 and Y1440, that mediate the interaction of SHP2 

with the β4 subunit cytoplasmic domain in response to c-Met signaling [163]. 

Importantly, SHP2 is essential for the activation of SFKs by both the chimeric TrkB/β4 

receptor and when the β4 subunit functions as a signaling adaptor for c-Met [162-163].  

However, the mechanism by which SHP2 activates SFKs in response to α6β4 

engagement has not been studied.  

In the current study, I investigated the involvement of SHP2 in the α6β4-

dependent activation of SFKs and determined the molecular mechanism by which β4 

recruits and activates SHP2.  
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Materials and Methods 

Cell lines, Antibodies and Reagents. MDA-MB-435 cells expressing wild type and 

mutant β4 subunits were generated and maintained as described previously [111, 161]. 

MDA-MB-231 human breast carcinoma cells were obtained from the Lombardi Breast 

Cancer Depository (Georgetown University) and maintained in RPMI medium containing 

10% FBS.   

The following antibodies were used: SHP2 (cat. #sc280), SFK (cat. #sc8056), 

from Santa Cruz Biotechnology, Inc; Phospho-Y418 Src (cat. #44660G) from Invitrogen; 

β4 subunit (439-9B) from R. Falcioni (Regina Elena Cancer Institute), cytoplasmic 

domain polyclonal antiserum from A. Mercurio (UMass Medical School); pY1494-β4 

from ECM Biosciences (cat.# IP1281); α6 subunit (2B7) from A. Mercurio; actin (cat. 

#A2066) from Sigma; anti-rat (cat. #112-005-003) and anti-mouse (cat. #115-005-003) 

IgG from Jackson ImmunoResearch.  

Calpeptin (cat. #0334 0051), Calpastatin Peptide (cat. #208902), ALLN (cat. 

#208719) and PP2 (Cat. # 529573) were obtained from Calbiochem.  Matrigel (cat. 

#356237) was obtained from BD Biosciences and murine laminin-1 from Trevigen (cat. 

#3400-010-01) or Stemgent (cat. # 06-0002). WT and mutant SHP2 constructs and SHP2 

shRNA in the pSUPER retroviral vector were gifts from B. Neel (Ontario Cancer 

Institute, Toronto). SHP2 SH2-GST fusion constructs were gifts from Dr. Eugene Chin 

(Brown University) [126].   
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Integrin clustering. Cells were serum starved overnight in medium containing 0.1% 

BSA.  Cells were trypsinized and washed before being resuspended at a concentration of 

2X106 cells/ml and incubated for 30 minutes with or without integrin-specific antibodies 

(2μg/ml) in medium containing 0.1% BSA. The cells were washed once and added to 

plates which had been coated overnight with either anti-mouse or anti-rat IgG (100 μg/10 

cm plate), laminin (550 μg/10 cm plate) or BSA (1%). Chemical inhibitors were added to 

the cells for 10 minutes prior to plating the cells in the coated plates.  After incubation at 

37oC for 30 minutes, the cells were washed once with PBS and lysed in a 20 mM Tris 

buffer, pH 7.4, containing 10% glycerol, 136 mM NaCl, 10% NP-40, 5mM EDTA, 1 mM 

sodium orthovanadate (Na3VO4) and complete protease inhibitor cocktail (Roche) (Lysis 

Buffer A).  

Immunoprecipitations and immunoblots. Cell extracts containing equivalent amounts 

of total protein were incubated for 3 hrs or overnight at 4°C with antibodies. Either 

protein A or protein G conjugated sepharose beads were added and incubated for an 

additional 1-2 hrs.  Immune complexes were resolved by SDS-PAGE and transferred to 

nitrocellulose membranes for immunoblotting [76].  

SHP2 in vitro tyrosine phosphatase assay.  SHP2 phosphatase activity was measured in 

vitro using the PTP Assay Kit-1 from Upstate Biotechnology. Cells were extracted in 

Lysis Buffer A without phosphatase inhibitors.  Cell extracts containing equivalent 

amounts of total protein were incubated overnight with SHP2-specific Abs and protein G 

sepharose beads.  The beads were washed four times with 10 mM Tris-HCl, pH 7.4 and 
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then resuspended in the same buffer with a tyrosine phosphopeptide (0.1mM) and 

incubated with gentle agitation for 1 hr at 37oC. The reaction was terminated by the 

addition of malachite green.  SHP2 phosphatase activity was measured in a microtiter 

plate reader at 620nm following the manufacturer’s instructions.  

2D invasion assay.  Matrigel invasion assays were performed using 6.5 mm Transwell 

chambers (8 μm pore size; Costar) [76]. Matrigel, purified from the Englebreth-Holm-

Swarm tumor, was diluted in cold distilled water, added to the Transwells (5ug/well), and 

dried in a sterile hood. The Matrigel was then reconstituted with medium for an hour at 

37oC before the addition of cells.  Cells (0.5 x 105) were resuspended in serum-free 

DMEM containing 0.1% BSA and added to each well.  Conditioned NIH-3T3 medium 

was added to the bottom wells of the chambers. After 5 hours, the cells that had invaded 

to the lower surface of the filters were fixed in methanol for 10 minutes.  The fixed 

membranes were mounted on glass slides using Vectashield mounting medium 

containing 4',6-diamidino-2-phenylindole (Vector Laboratories, Burlingame, CA). 

Invasion was quantified by counting the number of stained nuclei in five independent 

fields in each Transwell.   

3D Matrigel invasion assay.  A base layer of Matrigel (200 µl/well) was overlaid in 

duplicate wells of a 24-well dish with 1.0 x 104 cells suspended in 300 µL of a 2:1 

mixture of PBS and Matrigel. The Matrigel was overlaid with complete serum-containing 

medium (0.5 ml/well), which was changed every 3 days. Images were captured with 

SPOT image analysis software (Molecular Diagnostics).  
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Statistics.  All data are represented as a mean +/- (standard error or standard deviation).  

All statistical analyses were performed using the unpaired Student’s t-test.   
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Results 

The α6β4 integrin activates SFKs and this activation requires SHP2 

Research from other groups has shown that in HGF stimulated cells, α6β4 

functions as an adaptor to activate Src [163]. A chimeric receptor containing the 

extracellular domain of TrkB and the transmembrane and cytoplasmic domains of the β4 

subunit demonstrated Src can be activated by sequences in the β4 cytoplasmic domain in 

response to BDNF dimerization [162]. I sought to determine if ligation of α6β4 activates 

SFKs by engaging the intact α6β4 receptor. For this purpose, I examined SFK activation 

in response to Ab mediated ligation of either α6β1, in mock transfected MDA-MB-435 

cells, or α6β1 and α6β4 in MDA-MB-435 cells that had been transfected with the full-

length β4 integrin subunit. Although engagement of α6β1 with an α6 Ab stimulated SFK 

activation, the level of SFK activation in response to α6β4 ligation was markedly higher 

(Fig. 2-1, A). In the presence of calpeptin, a SHP2 phosphatase inhibitor, α6β4-

dependent activation of SFKs was inhibited, whereas α6β1-dependent activation of SFKs 

was unaffected by the inhibition of SHP2 (Fig. 2-1, A). These results indicate that the 

mechanisms by which α6β1 and α6β4 activate SFKs are distinct. The α6β4-dependent 

activation of SFKs was also examined in the presence of ALLN and a peptide derived 

from calpastatin that is a calpain-specific inhibitor [164]. Neither ALLN nor the 

calpastatin peptide inhibited SFK activation in response to ligation of the α6β4 integrin, 

demonstrating that the reduction in SFK activation observed using calpeptin resulted 

from SHP-2 inhibition (Fig. 2-1, B). Furthermore, stable expression of an shRNA against 
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SHP2 to reduce SHP2 protein levels also inhibited SFK activation significantly in 

response to antibody-mediated ligation of α6β4 (Fig. 2-1, C). I further confirmed that 

α6β4 engagement activates SFKs and this activation of SFKs is SHP2-dependent using 

MDA-MB-231 cells which endogenously express α6β4. When compared with cells 

expressing vector alone (EV), SFK activation in response to α6β4 ligation in cells 

expressing DN-SHP2 (DN) was significantly impaired.  For comparison, SFK activation 

was inhibited completely when SHP2 expression was suppressed by shRNA-mediated 

knockdown (KD) (Fig. 2-1, D), as I had observed in MDA-MB-435/WT-β4 cells (Fig. 2-

1, C). For cells that stably express the catalytically inactive  DN-SHP2, the exogenously 

expressed SHP2 mutant was expressed at approximately equivalent levels as endogenous 

SHP2, as evidenced by the slower migrating band of the HA-tagged DN-SHP2 mutant 

(Fig. 2-1, D). 

SHP-2 phosphatase activity is stimulated by α6β4 engagement and 
required for SFK activation 

The fact that calpeptin, a SHP2 phosphatase activity inhibitor and the 

phosphatase-dead DN-SHP2 effectively diminished α6β4 dependent activation of SFKs 

suggested that SHP2 phosphatase activity is involved in SFK activation. (Fig. 2-1, A,B, 

and D). Structural analysis of SHP2 has revealed that the N-SH2 domain forms contacts 

with the catalytic domain and in doing so, blocks access of substrates to the active site 

[118].  This inactive state switches to an active state upon binding of a phosphopeptide to 

the N-SH2 domain [165]. To determine if ligation of α6β4 promotes SHP2 activity, 

SHP2 in vitro phosphatase assays were performed after α6β4 ligation.  Engagement of 
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α6β4 increased SHP2 phosphatase activity by approximately 65% in MDA-MB-

435/WT-β4 cells, but had no effect on Mock-transfected cells that do not express the 

α6β4 receptor (Fig. 2-2, A).  A 2-fold induction of phosphatase activity was also 

observed upon ligation of endogenous α6β4 in MDA-MB-231 cells, and this increase 

was inhibited by expression of the catalytically inactive, substrate trapping SHP2 mutant 

(C459S-SHP2) that functions in a dominant negative manner (Fig. 2-2, B) [166].  

β4 and SHP2 interact with each other endogenously 

In response to c-Met signaling, SHP2 interacts with the β4 subunit as assayed by 

Far Western blotting in Cos7 cells, and by coimmunoprecipitation in response to HGF 

stimulation in both GTL16 and FG2 cells [163]. SHP2 also coimmunoprecipitates with a 

chimeric protein containing the β4 transmembrane and cytoplasmic domains [162]. To 

demonstrate an endogenous interaction between SHP2 and the α6β4 receptor in response 

to ligation, extracts from cells adherent to laminin were immunoprecipitated with either 

non-specific IgG (IgG) or β4-specific Abs and immunoblotted for SHP2.  Adhesion to 

laminin stimulated the association of SHP2 with α6β4, which was not observed in the 

non-specific IgG control IP (Fig. 2-3). Total cell lysates were immunoblotted with either 

β4 or SHP2 Abs to show equal IP input. Total cell lysates were also immunoblotted with 

either p-SFK (Y418) or total SFK Abs as a positive control to confirm that laminin did 

stimulate SFK activation. 
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Phosphorylation of Y1494 is required for the interaction of β4 and 
SHP2 

To determine if Y1494 in the β4 subunit cytoplasmic domain plays a role in the 

recruitment of SHP2 to the α6β4 integrin in response to receptor ligation and if this 

binding stimulates SHP2 phosphatase activity, the phosphorylation of Y1494 was 

assessed.   Ligation of α6β4 with either laminin-1, α6-specific Abs or β4-specific Abs 

stimulated phosphorylation of Y1494 (Fig. 2-4, A, B, C).  To investigate if 

phosphorylation of Y1494 is required for the binding of SHP2 to the β4 subunit, 

biotinylated peptides corresponding to 14 amino acids of the β4 cytoplasmic domain 

surrounding Y1494 and the ITIM binding motif were synthesized (Fig. 2-4, D; ITIM 

underlined).  Phosphotyrosyl was incorporated into the Y1494 site of one of the peptides 

to determine the importance of tyrosine phosphorylation of Y1494 for binding.  These 

peptides were used to pull down SHP2 from cell extracts of MDA-MB-231 human breast 

carcinoma cells, which express the α6β4 integrin and SHP2 endogenously. SHP2 was 

precipitated from the cell extracts by the phosphorylated β4 peptide, but not by the non-

phosphorylated peptide (Fig. 1B). Importantly, mutation of Y1494 inhibited the increase 

in SHP2 phosphatase activity in response to receptor ligation (Fig. 2-2, A). These results 

suggest that phosphorylation of Y1494 is required for the interaction of β4 and SHP2 

interaction and this interaction stimulates SHP2 phosphatase activity.  
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Intact Y1494 and Y1440 are required for stable β4-SHP2 interaction, 
activation of SFKs and α6β4-dependent invasion 

SHP2 contains two SH2 domains in the N-terminus of the protein that mediate its 

interactions with phospho-tyrosyl residues to recruit the phosphatase to signaling 

complexes and activate the catalytic activity [114]. To determine how SHP2 interacts 

with the β4 subunit, SHP2 GST fusion proteins containing both SH2 domains (GST-N-C-

SH2), the N-terminal SH2 domain (GST-N-SH2), or the C-terminal SH2 domain (GST-

C-SH2) and GST alone were affinity purified with glutathione-Sepharose beads, and their 

expression was confirmed by immunoblotting (Fig. 2-5, A). The ability of SHP2-GST 

fusion proteins to pull-down the β4 subunit from cell extracts of MDA-MB-435 cells that 

were transfected with the WT-β4 subunit (WT-β4) was examined. To increase the 

phosphorylation of the β4 cytoplasmic domain, the cells were treated briefly with a 

sodium orthovanadate/hydrogen peroxidase (Na3VO4/H2O2) mixture.  Phosphorylation of 

the β4 subunit is markedly increased in the presence of Na3VO4/H2O2 [111].   All three 

SHP2/SH2-GST fusion proteins pulled down the full length WT-β4 subunit from cell 

extracts of treated cells (Fig. 2-5, B), indicating that both SH2 domains of SHP2 engage 

the β4 subunit.  To identify the specific tyrosine residues in the β4 subunit that interact 

with SHP2, I next assessed the ability of the SHP2-GST fusion proteins to pull down β4 

subunits containing point mutations to phenylalanine at Y1494 (Y1494F-β4), 

Y1494/1257 (Y1494/1257F) or Y1440 (Y1440F-β4).  These tyrosines had been 

previously implicated in the interaction of SHP2 with α6β4 in response to c-Met 

stimulation using Far Western analysis [163].  Mutation of Y1494 reduced significantly 
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the binding of only the GST-N-SH2 fusion protein to the β4 subunit, suggesting that N-

SH2 interacts with β4 subunit through phosphorylated Y1494. When Y1257 was mutated 

in combination with Y1494F, the pull-down pattern didn’t change. This finding is 

consistent with our earlier observation that Y1257 plays a minimal role in α6β4-

dependent breast cancer cell invasion [111]. Mutation of Y1440 reduced significantly the 

binding of both individual SH2 domains (Fig. 2-5, B). Diminished binding of the N-SH2 

domain to Y1440F-β4 likely reflects the dependence of Y1494 phosphorylation on an 

intact Y1440 (Fig 2-5, C).  Although the double N-C-SH2 domains were capable of 

pulling down the mutant Y1440F β4 subunit, the relative level of binding of this mutant 

subunit was significantly diminished compared with WT binding when total β4 

expression levels were normalized (Fig. 2-5, D). These GST pull down data suggest that 

both tyrosine 1494 and tyrosine 1440 are required for the recruitment of SHP2 to the β4 

subunit.  

In support of the GST pull-down data (Fig. 2-5, B), mutation of either Y1494 or 

Y1440 alone inhibited the ability of SHP2 to co-immunoprecipitate with α6β4 after 

adhesion to laminin (Fig. 2-6, A). To assess further the importance of intact Y1494 and 

Y1440 in the α6β4-dependent activation of SFKs, cells expressing WT-β4, Y1440F-β4 

and Y1494F-β4 were evaluated for SFK activation after engagement of the α6β4 receptor 

by adhesion to laminin (Fig. 2-6, B) or clustering with α6-specific antibodies (Fig. 2-6, 

C). Mutation of either Y1440 or Y1494, which prevents recruitment and activation of 

SHP2, inhibited the ability of α6β4 to promote SFK activation. Furthermore, mutation of 
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either Y1440 or Y1494 in the β4 subunit cytoplasmic domain also impairs the ability of 

α6β4 to promote carcinoma invasion (Fig. 2-6, D).  
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Discussion 

In this study, I demonstrated that SHP2 is required for the α6β4-dependent 

activation of SFKs. SHP2 interacts with β4 endogenously in response to α6β4 integrin 

engagement and its phosphatase activity is stimulated upon recruitment to α6β4. The β4 

subunit recruits and activates SHP2 through a double intermolecular interaction: pY1494 

(β4) interaction with N-SH2 (SHP2) and pY1440 (β4) interaction with C-SH2 (SHP2).  

Both Y1494 and Y1440 in the β4 subunit are essential for stable interactions between β4 

and SHP2, as well as SFK activation. Moreover, intact Y1494 and Y1440 in the β4 

subunit cytoplasmic tail are required for α6β4-dependent invasion. Taken together, these 

results reveal that SHP2 is required for in the α6β4-dependent activation of SFKs and 

identify the molecular mechanism by which β4 recruits and activates SHP2 to promote 

breast cancer cell invasive ability. 

Y1494 in the β4 subunit was originally identified as a potential regulator of 

signaling from the α6β4 integrin based upon its localization within a consensus-binding 

motif for the SH2-domain containing tyrosine phosphatases SHP1 and SHP2 [111-112].   

Although it has been known for some time that mutation of Y1494 significantly impairs 

α6β4-dependent invasion, the mechanism by which this tyrosine residue controls 

invasion had not been clearly elucidated [111].  Mutation of Y1494 diminishes the 

activation of both PI3K and SFK signaling pathways, which cooperate to promote 

invasion by α6β4 [76, 111].  Activation of PI3K is mediated through the insulin receptor 

substrate (IRS) adaptor proteins or through cooperation with growth factor receptors [38, 
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111]. In a previous study that investigated the function of the β4 subunit as a signaling 

adapter for the c-Met receptor, Y1494 was identified as one of three tyrosine residues that 

were required for SHP2 interaction with the β4 subunit in response to hepatocyte growth 

factor stimulation to promote anchorage-independent growth [163].  In this model system, 

Y1440 was identified as the major binding site, with minor contributions from Y1257 and 

Y1494 [163]. I have now demonstrated specific roles for Y1440 and Y1494 in the 

adhesion-dependent recruitment of SHP2 to the α6β4 receptor, and have also identified a 

unique role for Y1494 in the activation of SHP2 catalytic activity, through its selective 

binding to the N-SH2 domain of SHP2.  When Y1494 is not phosphorylated, SHP2 

phosphatase activity is not increased by α6β4 ligation, likely because the N-SH2 domain 

remains bound to the catalytic cleft and blocks substrate access.  Binding of the N-SH2 

domain to pY1494 is required to stimulate signaling downstream of SHP2 in response to 

α6β4 engagement.  

There is relatively little information regarding the connection of SHP2 with solid 

tumor progression, although many of the upstream growth factor and integrin receptors 

that signal through SHP2 have been implicated in cancer [113]. Activating mutations in 

SHP2 have been identified in 35% of juvenile myelomonocytic leukemias (JMML), but 

the incidence of mutations in solid tumors is infrequent [167-168].  The majority of the 

JMML mutations disrupt the N-SH2 inhibitory interaction with the catalytic domain to 

increase basal phosphatase activity [169].  Interestingly, JMML patients lacking SHP2 

mutations have either deletion of the NF-1 gene or activating Ras mutations, suggesting 
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an important role for SHP2 in the activation of Ras signaling in these tumors [168]. SHP2 

regulates Ras signaling through the negative regulation of RasGAP recruitment to 

signaling complexes, thereby leading to sustained Ras activation and downstream MAPK 

signaling [170-171]. Activation of SHP2 in response to engagement of α6β4 through 

Y1494 could mimic activating SHP2 mutations to stimulate Ras signaling and promote 

tumor progression [119-120].  In support of this possibility, mutation of Y1494 

diminishes α6β4-dependent activation of MAPK signaling, which prevents anchorage-

independent growth in vitro and tumor growth in vivo [76].   Therefore, in addition to 

regulating SFK activation to promote invasion, the α6β4-dependent recruitment and 

activation of SHP2 is likely to contribute to multiple signaling pathways that promote 

tumor progression. 

In summary, in nonstimulated cells, both SHP2 and SFKs are inactive because of 

their intramolecular inhibitory interactions. Upon engagement of the α6β4 integrin, the 

tyrosine residues in the β4 cytoplasmic domain are phosphorylated. The β4 tail recruits 

SHP2 through an interaction of its C-SH2 domain with pY1440 and its N-SH2 with 

pY1494, respectively. α6β4 activates SHP2 catalytic activity through the interaction of its 

N-SH2 domain with pY1494. The stable interaction between β4 and SHP2 is essential for 

activating downstream signaling molecules, such as the SFKs (Fig. 2-7). 
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Figure 2-1. The α6β4 activates SFK and this activation of SFKs requires SHP2 

(A) MDA-MB-435 cells that had been transfected with the β4-integrin subunit (β4) or 
empty vector (mock) were incubated without or with an α6-specific antibody in either the 
absence or presence of 50 μg/ml calpeptin (CP). Cells were allowed to adhere to anti-
mouse IgG coated plates for 30 min. Cell extracts that contained equivalent amounts of 
total protein were immunoblotted for tyrosine 418-phosphorylated Src pSFK (Tyr-418) or 
total SFK. (B) MDA MB-435 cells transfected with the β4 subunit and either empty 
vector alone (pSUPER), a vector expressing a scrambled shRNA (scr), or a vector 
expressing an shRNA for SHP-2 (SHP-2) were incubated without or with an α6-specific 
antibody. Cells were allowed to adhere to anti-mouse IgG-coated plates for 30 min. Cell 
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extracts that contained equivalent amounts of total protein were immunoblotted for 
tyrosine 418-phosphorylated SFK, total SFK, or total SHP-2. (C)  
MDA-MB-231 cells stably expressing either empty vector (EV), HA tagged dominant 
negative SHP2 (DN) or SHP2-shRNA (KD) were maintained in suspension or incubated 
with β4-specific antibodies and allowed to adhere to anti-mouse IgG-coated plates for 30 
minutes. Aliquots of cell lysates containing equivalent amounts of total protein were 
immunoblotted with antibodies specific for phospho-Y418 of SFK, total SFK, SHP2 or 
actin (upper panel). The data shown in the graph represents the mean (+/- SD) of three 
independent experiments that were quantified by densitometry. (lower panel) *, P ≤ 0.04; 
**, P≤ 0.01. (D) MDA-MB-435 cells transfected with the β4 subunit were incubated 
without (IgG) or with an α6-specific Ab in either the absence or presence of 50 μg /ml 
calpeptin (CP), 50 μM ALLN or 5 μM calpastatin peptide (CS) and allowed to adhere to 
anti-mouse IgG coated plates for 30 min. Equal amounts of total protein from cell 
extracts were then immunoblotted for tyrosine 418 phosphorylated SFK, or total SFK. 

 

 

 

 

 

 

 

 

 

 

 



48 
 

0

0.5

1

1.5

2

2.5

R
el

at
iv

e 
S

H
P

2 
ac

tiv
ity *

β4 :     - +              - +

EV DN-SHP2

IP: SHP2 

B:  SHP2 

231

B.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IP: SHP2 

B:  SHP2 

β4 :     - +              - +             - +

R
el

at
iv

e 
S

H
P

2 
ac

tiv
ity

**

WT-β4Mock Y1494F-β4

435

A.

 

 

Figure 2-2. SHP-2 phosphatase activity is stimulated in response to α6β4 ligation 

(A) MDA-MB-435 cells transfected with the vector alone (Mock), WT-β4, or Y1494F-β4 
were incubated with or without β4-specific Abs and allowed to adhere to anti-mouse IgG-
coated plates. Aliquots of cell lysates were immunoprecipitated with SHP2-specific Ab-
conjugated agarose beads. The immune complexes were incubated with phosphotyrosyl 
peptides to assay phosphatase activity. One-tenth of the total immune complex was 
immunoblotted to determine the input. The data shown represent the mean (±the standard 
deviation) of three independent experiments. **, P ≤0.005.  (B) MDA-MB-231 cells 
stably expressing either the empty vector (EV) or dominant negative SHP2 (DN-SHP2) 
were incubated with or without β4-specific Abs and allowed to adhere to anti-mouse IgG-
coated plates. Aliquots of cell lysates were immunoprecipitated with SHP2-specific Ab-
conjugated agarose beads. The immune complexes were incubated with phosphotyrosyl 
peptides to assay phosphatase activity. One-tenth of the total immune complex was 
immunoblotted to determine the input. The data shown represent the mean (±the standard 
deviation) of three independent experiments. *, P ≤0.004.  
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Figure 2-3. Endogenous interaction of β4 and SHP2 

MDA-MB-435/WT-β4 cells were allowed to adhere to BSA (-) or laminin 1 (+)-coated 
plates for 30 min. Aliquots of cell lysates were immunoprecipitated with nonspecific IgG 
or β4-specific Abs and immunoblotted with Abs specific for SHP2 and β4. Total cell 
lysates were immunoblotted with SHP2- and β4-specific Abs (input). Total cell lysates 
were also immunoblotted with p-SFK(Y418) and total SFK Abs 
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Figure 2-4. phosphorylation of Y1494 is required for β4 and SHP2 interaction  

(A) MDA-MB-435 cells transfected with WT-β4 were serum starved overnight and 
allowed to adhere to either BSA or lminin coated plates for 30 minutes. Aliquots of cell 
lysates containing equivalent amounts of total protein were immunoblotted with 
antibodies specific for phospho-Y1494 of the β4 subunit and total β4 expression levels. 
(B) MDA-MB-435 cells transfected with either WT-β4 or Y1494F-β4 were maintained in 
suspension or incubated with α6-specific antibodies and allowed to adhere to anti-mouse 
IgG coated plates for 30 minutes. Aliquots of cell lysates containing equivalent amounts 
of total protein were immunoblotted with antibodies specific for phospho-Y1494 of the 
β4 subunit.  The phospho-immunoblot was stripped and reprobed for total β4 expression 
levels. (C) MDA-MB-435 cells transfected with either WT-β4 or Y1494F-β4 were 
maintained in suspension or incubated with β4-specific antibodies and allowed to adhere 
to anti-Rat IgG coated plates for 30 minutes. Aliquots of cell lysates containing 
equivalent amounts of total protein were immunoblotted with antibodies specific for 
phospho-Y1494 of the β4 subunit.  The phospho-immunoblot was stripped and reprobed 
for total β4 expression levels. (D) MDA-MB-231 cell lysates containing equivalent 
amounts of total protein were incubated with biotinylated peptides bound to streptavidin-
coated beads and immunoblotted with SHP2-specific antibodies. 
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Figure 2-5. SHP2 interacts with Y1494 through its N-SH2 domain and Y1440 
through C-SH2 domain  

(A) SHP2 GST fusion proteins containing both SH2 domains (GST-N-C-SH2), the N-terminal 
SH2 domain (GST-N-SH2), or the C-terminal SH2 domain (GST-C-SH2) and GST alone were 
affinity purified with glutathione-Sepharose beads, and their expression was confirmed by 
western blotting. (B) Cell extracts from MDA-MB-435/WT-β4, MDA-MB 435/Y1494F-β4, 
MDA-MB 435/Y1494/1257F-β4, and MDA-MB-435/Y1440F-β4 transfectants left untreated or 
treated with Na3VO4-H2O2 to increase tyrosine phosphorylation were incubated with the SHP2-
GST fusion proteins and then immunoblotted with a β4-specific antiserum. WT-β4, MDA-MB-
435 cells transfected with the WT β4 subunit; Y1494F-β4, MDA-MB-435 cells transfected with 
the Y1494F mutant β4 subunit; Y1494/1257F-β4, MDA-MB-435 cells transfected with the 
Y1494/1257F mutant β4 subunit;Y1440F-β4, MDA-MB-435 cells transfected with the Y1440F 
mutant β4 subunit. (C) MDA-MB-435 cells transfected with either WT-β4, Y1494F-β4, 
Y1494/1257F-β4 or Y1440F-β4  were incubated with α6-specific antibodies and allowed to 
adhere to anti-mouse IgG coated plates for 30 minutes. Aliquots of cell lysates containing 
equivalent amounts of total protein were immunoblotted with antibodies specific for phospho-
Y1494 of the β4 subunit.  The phospho-immunoblot was then stripped and reprobed for total β4 
expression levels. (D) Cell extracts from MDA-MB-435/WT-β4, MDA-MB 435/Y1494F-β4, 
MDA-MB 435/Y1494/1257F-β4, and MDA-MB-435/Y1440F-β4 transfectants left untreated or 
treated with Na3VO4-H2O2 to increase tyrosine phosphorylation were incubated with the GST-N-
S-SH2 fusion proteins and then immunoblotted with a β4-specific antiserum.  
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Figure 2-6. Intact Y1494 and Y1440 are required for stable β4-SHP2 interaction, 
activation of SFKs and α6β4-dependent invasion 

(A) MDA-MB-435 cells transfected with either WT-β4, Y1494F-β4, Y1494/1257F-β4 or 
Y1440F-β4 were serum starved overnight and then allowed to adhere to laminin 1-coated 
plates for 30 min. Equal aliquots of cell lysates were immunoprecipitated with β4-
specific Abs and immunoblotted with Abs specific for SHP2 and β4. Total cell lysates 
were also immunoblotted with SHP2 Abs. (B) MDA-MB-435 cells transfected with WT- 
β4, Y1494F- β4, Y1257F, Y1494F- β4, or Y1440F- β4 were serum starved overnight and 
then allowed to adhere to laminin-coated plates for 30 minutes. Aliquots of cell lysates 
were immunoblotted with Abs specific for pY418-SFK. The pY418-SFK immunoblots 
were stripped and reprobed for total SFK expression. (C) MDA-MB-435 cells transfected 
with WT- β4, Y1494F- β4, or Y1440F- β4 were incubated with or without α6-specific 
Abs and allowed to adhere to anti-mouse IgG -coated plates. Aliquots of cell lysates were 
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immunoblotted with Abs specific for pY418-SFK and total SFK. (D) MDA-MB-435 cells 
transfected with WT-β4, Y1494F-β4, Y1257/1494F-β4, or Y1440F-β4 were assayed for 
the ability to invade Matrigel using a Transwell assay chamber. The data shown represent 
the mean (± the standard deviation) of five independent invasion assays performed in 
duplicate. ***, P< 0.0001.  
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Figure 2-7. Schematic of SHP2 interaction with β4 subunit 

In the inactive state, both SHP2 and SFK are inactive because of intramolecular 
inhibitory interactions. Upon engagement of the α6β4 integrin with its ligand laminin 
(active state), the tyrosine residues in the β4 cytoplasmic domain are phosphorylated. The 
β4 tail recruits SHP2 through an interaction of its C-SH2 domain with pY1440 and 
activates SHP2 catalytic activity through the interaction of its N-SH2 domain with 
pY1494.  
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CHAPTER III. SHP2 Recruits and Activates Fyn to Mediate α6β4-
Dependent Breast Carcinoma Cell Invasion 
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Abstract  

The cytoplasmic tyrosine phosphatase SHP2 plays critical roles in regulating a 

variety of cellular processes including cell growth, differentiation, cell spreading, and 

oncogenic transformation. Gain of function mutations of SHP2 are a cause of Noonan 

syndrome as well as some forms of leukemia. An important role of SHP2 is to regulate 

Src Family Kinase (SFK) activation. Several mechanisms have been proposed to explain 

how SHP2 mediates SFK activation, including mechanisms involving direct or indirect 

SHP2 phosphatase activity and phosphatase-independent activity. In the current study, I 

show that both catalytic and non-catalytic functions of SHP2 are required for SHP2-

dependent activation of the SFK, Fyn by the α6β4 integrin. Moreover, I identify p-Y580-

SHP2 and p-Y418-SFK as novel molecular markers for invasive breast cancer and 

demonstrate the importance of this α6β4/SHP2/Fyn signaling pathway for carcinoma 

invasion.   
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Introduction 

The α6β4 integrin is unique amongst the integrin family of adhesion molecules in 

that it has a very long cytoplasmic tail, which is responsible for α6β4-dependent signaling 

events [38]. In addition to its roles in promoting cell survival, promoting cell cycle 

progression, regulating gene transcription and regulating protein translation, the α6β4 

integrin has been recognized to be an important regulator of migration and invasion [38, 

109]. It is likely that α6β4 uses similar signaling mechanisms to promote both normal 

epithelial cell and invasive cancer cell migration and invasion. A core enzyme which is 

important for α6β4-dependent cancer invasion is PI3K [73]. PI3K further activates 

downstream effectors such as Akt, Rac and mTOR to promote cancer cell migration, 

invasion and survival [38]. The α6β4 integrin has also been reported to function as an 

adaptor to cooperate with the c-MET receptor to activate SFKs [163]. Data from our own 

lab has shown that α6β4-dependent cancer invasion occurs through combined activation 

of both PI3K and SFKs. In previous work, I established that the tyrosine phosphatase 

SHP2 is recruited to the β4 cytoplasmic tail and that the α6β4-dependent activation of 

SFKs requires SHP2.  

The cytoplasmic tyrosine phosphatase SHP2 plays critical roles in regulating a 

variety of cellular processes including cell growth, differentiation, cell cycle, cell 

spreading, and oncogenic transformation. SHP2 contains two tandem SH2 domains, 

which function as phospho-tyrosine binding domains and mediate the interaction of 

SHP2 with its binding partners or substrates. Following the two SH2 domains are a 

classic PTP domian and a short C-terminal tail. Gain of function mutations of SHP2 are a 
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cause of  Noonan syndrome as well as some forms of leukemia [114]. The greatest 

sequence divergence between SHP1 and SHP2 occurs in their C-terminal tails. Various 

truncation experiments have shown that the C-tail of the SHPs may regulate their 

phosphatase activity. However, this concept is still quite controversial. Truncation of the 

last 35 amino acids markedly enhance SHP1 phosphatase activity, whereas truncation of 

the last 60 amino acids has no effect on its phosphatase activity in an in vitro assay [172-

173]. Located on the C-tail of SHPs are tyrosine residues, serine residues, and a proline-

rich domain which may play some role in the function of SHPs [120]. Both SHP1 and 

SHP2 have been reported to undergo tyrosine phosphorylation on their C-tail, however 

the significance of this tyrosine phosphorylation is unclear. Two models have been 

proposed for the function of tyrosine modification on SHPs C-terminal tail. 

Phosphorylated tyrosine residues may serve as binding sites to recruit SH2 domain 

containing proteins, such as Grb-2 and SHIP. Tyrosine phosphorylation may also directly 

regulate SHP  phosphatase activity [120].  

 Src Family Kinases are nonreceptor tyrosine kinases which are present in all 

metazoan cells. SFKs are prototypical modular signaling proteins comprised of a lipid 

modifed N-terminus followed by SH3, SH2, and tyrosine kinase domains, and a short C-

terminal regulatory tail. SFKs are involved in many receptor tyrosine kinase and integrin 

signaling pathways in a variety of tumor types including breast cancer [140]. Elevated 

SFK activity correlates strongly with breast cancer invasion and metastasis and these 

kinases are frequently activated in human cancers [174].  Given the parallels between 

α6β4 expression and SFK activation in cancer and my previous data demonstrating that 
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α6β4 activates SFKs in a SHP2-dependent manner, further investigation of the 

mechanism by which α6β4 activates this pathway is warranted.  In this study, I sought to 

elucidate the molecular mechanism by which engagement of α6β4 activates SFKs, and  

the significance of the β4/SHP2/SFK signaling axis for tumor progression.   
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Materials and Methods 

Cell lines, Antibodies and Reagents. MDA-MB-435 cells expressing wild type and 

mutant β4 subunits were generated and maintained as described previously [111, 161]. 

MDA-MB-231 human breast carcinoma cells were obtained from the Lombardi Breast 

Cancer Depository (Georgetown University) and maintained in RPMI medium containing 

10% FBS.   

The following antibodies were used: phospho-Y542 SHP2 (cat. #3751) and 

phospho-Y580 SHP2 (cat. #3754) from Cell Signaling; SHP2 (cat. #sc280), SFK (cat. 

#sc8056), Src (cat. #sc-19), Fyn (cat. #sc-16) and Yes (cat. #sc-14) from Santa Cruz 

Biotechnology, Inc; Phospho-Y418 Src (cat. #44660G) from Invitrogen; β4 subunit (439-

9B) from R. Falcioni (Regina Elena Cancer Institute), cytoplasmic domain polyclonal 

antiserum from A. Mercurio (UMass Medical School); pY1494-β4 from ECM 

Biosciences (cat.# IP1281); α6 subunit (2B7) from A. Mercurio; HA (cat.# 11867423001) 

from Roche; actin (cat. #A2066) from Sigma; anti-rat (cat. #112-005-003) and anti-

mouse (cat. #115-005-003) IgG from Jackson ImmunoResearch.  

Calpeptin (cat. #0334 0051), Calpastatin Peptide (cat. #208902), ALLN (cat. 

#208719) and PP2 (Cat. # 529573) were obtained from Calbiochem.  Matrigel (cat. 

#356237) was obtained from BD Biosciences and murine laminin-1 from Trevigen (cat. 

#3400-010-01) or Stemgent (cat. # 06-0002). WT and mutant SHP2 constructs in the 

pSUPER retroviral vector were gifts from B. Neel (Ontario Cancer Institute, Toronto).  

Human Fyn siRNA was obtained from Qiagen (cat. # SI02659545). 
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Integrin clustering. Cells were serum starved overnight in medium containing 0.1% 

BSA.  Cells were trypsinized and washed before being resuspended at a concentration of 

106 cells/ml and incubated for 30 minutes with or without integrin-specific antibodies 

(2μg/ml) in medium containing 0.1% BSA. The cells were washed once and added to 

plates which had been coated overnight with either anti-mouse or anti-rat IgG (100 μg/10 

cm plate), laminin (550 μg/10 cm plate) or BSA (1%). Chemical inhibitors were added to 

the cells for 10 minutes prior to plating the cells in the coated plates.  After incubation at 

37oC for 30 minutes, the cells were washed once with PBS and lysed in a 20 mM Tris 

buffer, pH 7.4, containing 10% glycerol, 136 mM NaCl, 10% NP-40, 5mM EDTA, 1 mM 

sodium orthovanadate (Na3VO4) and complete protease inhibitor cocktail (Roche) (Lysis 

Buffer A).  

Immunoprecipitations and immunoblots. Cell extracts containing equivalent amounts 

of total protein were incubated for 3 hrs or overnight at 4°C with antibodies. Either 

protein A or protein G conjugated sepharose beads were added and incubated for an 

additional 1-2 hrs.  Immune complexes were resolved by SDS-PAGE and transferred to 

nitrocellulose membranes for immunoblotting [76].  

SHP2 in vitro tyrosine phosphatase assay.  SHP2 phosphatase activity was measured in 

vitro using the PTP Assay Kit-1 from Upstate Biotechnology. Cells were extracted in 

Lysis Buffer A without phosphatase inhibitors.  Cell extracts containing equivalent 

amounts of total protein were incubated overnight with SHP2-specific Abs and protein G 

sepharose beads.  The beads were washed four times with 10 mM Tris-HCl, pH 7.4 and 



62 
 

then resuspended in the same buffer with a tyrosine phosphopeptide (0.1mM) and 

incubated with gentle agitation for 1 hr at 37oC. The reaction was terminated by the 

addition of malachite green.  SHP2 phosphatase activity was measured in a microtiter 

plate reader at 620nm following the manufacturer’s instructions.   

2D invasion and adhesion assays.  Matrigel invasion assays were performed using 6.5 

mm Transwell chambers (8 μm pore size; Costar) [76]. Matrigel, purified from the 

Englebreth-Holm-Swarm tumor, was diluted in cold distilled water, added to the 

Transwells (5ug/well), and dried in a sterile hood. The Matrigel was then reconstituted 

with medium for an hour at 37oC before the addition of cells.  Cells (0.5 x 105) were 

resuspended in serum-free DMEM containing 0.1% BSA and added to each well.  

Conditioned NIH-3T3 medium was added to the bottom wells of the chambers. After 5 

hours, the cells that had invaded to the lower surface of the filters were fixed in methanol 

for 10 minutes.  The fixed membranes were mounted on glass slides using Vectashield 

mounting medium containing 4',6-diamidino-2-phenylindole (Vector Laboratories, 

Burlingame, CA). Invasion was quantified by counting the number of stained nuclei in 

five independent fields in each Transwell.   

Laminin adhesion assays were performed in multiwell tissue culture plates (11.3 

mm diameter). The plates were coated overnight at 4oC with 0.2 ml of PBS containing 

murine laminin-1 (20ug/ml).  The wells were then washed with PBS and blocked with 

RPMI containing 0.1% BSA.  Cells (105) were resuspended in blocking buffer and added 

to the protein coated wells.  After a 60 minute incubation at 37oC, the wells were washed 
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three times, fixed for 15 minutes with methanol, and stained with a 0.2% solution of 

crystal violet in 2% ethanol.   After washing, the crystal violet stain was solubilized with 

a 1% solution of SDS and adhesion was quantitated by measuring the absorbance at 

595nm  [111].  

3D Matrigel invasion assay.  A base layer of Matrigel (200 µl/well) was overlaid in 

duplicate wells of a 24-well dish with 1.0 x 104 cells suspended in 300 µL of a 2:1 

mixture of PBS and Matrigel.  The Matrigel was overlaid with complete serum-

containing medium (0.5 ml/well), which was changed every 3 days. Images were 

captured with SPOT image analysis software (Molecular Diagnostics). 

Tumor extraction.  Frozen tumors were homogenized at 4 °C in T-PER tissue protein 

extraction reagent (Pierce Biotechnology, Inc.), containing 1 mM sodium orthovanadate, 

10 mM NaF, and protease inhibitors (Complete mini; Roche Applied Science).  

Statistics.  All data are represented as a mean +/- (standard error or standard deviation).  

All statistical analyses were performed using the unpaired Student’s t-test.   
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Results 

Y542 of SHP2 is phosphorylated in response to α6β4 engagement, while 
Y580 is constitutively phosphorylated 

There are two tyrosines in the C-terminal tail of SHP2 that can regulate SHP2 

catalytic activity and can also serve in a non-catalytic capacity as binding sites for 

intermolecular interactions [120]. Although some progress has been made in recent years 

in understanding how phosphorylation of these tyrosines contributes to SHP2 function, 

the detailed molecular mechanisms by which phosphorylation of these residues impacts 

SHP2 catalytic activity and function remain controversial and are likely to be determined 

by the specific upstream stimulus [119, 175].  To determine if either Y542 or Y580 are 

phosphorylated in response to α6β4 ligation, the phosphorylation status of these tyrosine 

residues was examined in two metastatic carcinoma cell lines, MDA-MB-231 and MDA-

MB-435.  Phosphorylation of Y542 increased in response to α6β4 ligation using either 

α6- or β4-specific Abs or its physiological ligand laminin to engage the receptor (Fig. 3-1, 

A-C). In contrast, Y580 was constitutively phosphorylated in both cell lines and the 

phosphorylation level did not increase in response to α6β4 ligation.   

SFK phosphorylates Y542, but not Y580 of SHP2, in a positive feed-
back loop 

Y564 in the C-terminal tail of SHP1, which is equivalent to Y580 in SHP2, is 

phosphorylated by the SFK member Lck [176].  Moreover, Src is capable of 

phosphorylating SHP1 in an in vitro kinase assay [177].  Therefore, I sought to determine 

if SFKs participate in a feedback loop to regulate SHP2 function by phosphorylating 
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either Y542 or Y580 in the C-terminal tail.  The phosphorylation of Y542 in response to 

α6β4 ligation was completely blocked by the SFK inhibitor PP2 in MDA-MB-435/WT-

β4 cells, but the constitutive phosphorylation of Y580 was not altered (Fig. 3-2, A). 

Inhibition of SHP2 phosphatase activity by calpeptin diminished SFK activation, similar 

to expression of DN-SHP2 (Fig. 2-1, D), and caused a corresponding decrease in the 

phosphorylation of Y542 (Fig. 3-2, A). As controls for the specificity of calpeptin’s 

inhibition of SHP2, calpain-specific inhibitors did not diminish the phosphorylation of 

Y542 (Fig. 3-2, B). 

Since Y1494 and Y1440 in the β4 subunit are both essential for β4-SHP2 

interaction and activation of SFKs (Fig. 2-6, A-C), I next evaluated the contribution of 

Y1494 and Y1440 to the phosphorylation of Y542 and Y580 in the SHP2 C-terminal tail. 

Mutation of either Y1494 or Y1440 blocked the phosphorylation of Y542 in response to 

α6β4 ligation with α6 Abs (Fig. 3-3, A) or adhesion to Laminin-1 (Fig. 3-3, B). The 

diminished phosphorylation of Y542 correlated with the decreased activation of SFKs, 

which further supports that SFKs phosphorylate Y542 in SHP2 in a feed-back loop (Fig. 

3-2, A).  

Y580 in SHP2 is required for SFK activation by the α6β4 integrin 

To understand the functional significance of phosphorylation of Y542 and Y580 

in the C-terminus of SHP2 with regard to SFK activation by the α6β4 integrin, MDA-

MB-231 cells that stably express HA-tagged Y542F-SHP2, Y580F-SHP2 and 

Y542F/Y580F-SHP2 mutants were generated (Fig. 3-4, A).  All of the mutants were 
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expressed at a similar level to that of HA-tagged WT-SHP2 (Fig. 3-4, B).  As was 

observed for endogenous SHP2, WT-SHP2 and the Y542F-SHP2 mutant were 

constitutively phosphorylated on Y580 (Fig. 3-4, B).  Moreover, ligation of α6β4 

stimulated the phosphorylation of Y542 in exogenously expressed WT-SHP2 and in the 

Y580F-SHP2 mutant (Fig. 3-4, C).  However, the level of Y542 phosphorylation was 

significantly diminished when Y580 was mutated, suggesting that phosphorylation of 

Y580 contributes to the SFK-dependent phosphorylation of Y542 (Fig. 3-4, C). Next I 

evaluated the contribution of the SHP2 C-terminal tyrosines to α6β4-dependent SFK 

activation.  Mutation of Y542 resulted in a modest reduction in activation in response to 

α6β4 ligation (Fig. 3-4, D).  In contrast, mutation of Y580 either alone or in combination 

with Y542 significantly diminished SFK activation (Fig. 3-4, D) as quantified by 

densitometry (Fig. 3-4, E). 

Y542 and Y580 in the SHP2 C-terminal tail have been reported to be involved in 

the regulation of SHP2 phosphatase activity [120]. To determine if these tyrosine 

residues play a role in regulating α6β4-dependent SHP2 phosphatase activity and if 

SHP2 phosphatase activity correlates with SFK activation, in vitro phosphatase assays 

were performed after ligation of α6β4 by β4-specific Abs.  Mutation of Y542 and Y580 

individually reduced the phosphatase activity of SHP2, whereas the activity of the double 

Y542F/Y580F mutant was equivalent to that observed for WT-SHP2 (Fig. 3-5).  This 

finding mimics a previous report that deletion of the SHP1 C-terminal tail activates the 

catalytic activity of the phosphatase [172]. The inability of the double mutant, which 

retains phosphatase activity, to activate SFKs suggests that Y580 may contribute to α6β4-
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dependent SFK activation by a mechanism that is independent of its regulation of SHP2 

catalytic activity.  

Y580 is required for the physical interaction of SHP2 and Fyn 

Y580 in SHP2 is localized within a binding motif that is recognized by the SH2-

domains of several SFK members (Scansite).  Therefore, we sought to determine if SHP2 

and SFKs physically interact with each other and if this interaction is regulated by α6β4 

engagement.  In MDA-MB-231 cells, pan-SFK Abs co-immunoprecipitated SHP2 in the 

absence of α6β4 ligation and the SFK-SHP2 interaction increased upon ligation of the 

receptor (Fig. 3-6 A). MDA-MB-231 cells express only the SFK member Fyn, whereas 

MDA-MB-435 cells express both Src and Fyn.  Neither cell line expresses the SFK 

member Yes (Fig. 3-6, B).  To determine if there is specificity in the binding of SFKs to 

SHP2, antibodies that selectively recognize individual family members were used for the 

immunoprecipitations.  SHP2 co-immunoprecipitated with Fyn from both cell lines, but 

no interaction was observed with Src in the MDA-MB-435/WT-β4 cells, indicating that 

Fyn, but not Src, is recruited to SHP2 downstream of α6β4 (Fig. 3-6, C-E).  To 

investigate further the contribution of Y542 and Y580 to the interaction of SHP2 with 

Fyn, HA-specific antibodies were used to immunoprecipitate exogenously expressed 

SHP2 proteins after ligation of α6β4. Fyn co-immunoprecipitated with WT-SHP2 and 

also with the Y542F-SHP2 mutant.  However, mutation of Y580 prevented the 

interaction of SHP2 with Fyn (Fig. 3-6, F, upper panel). The reverse immunoprecipitation 

using Fyn antibodies revealed a similar requirement for an intact Y580 to pull down 
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SHP2 (Fig. 3-6, F, lower panel).  In contrast, a GST fusion protein containing the tandem 

SH2 domains of SHP2 failed to pull down Fyn, indicating that the interaction of Fyn with 

SHP2 is independent of these domains (data not shown). Therefore, Y580 is required for 

the physical interaction of SHP2 and Fyn in response to α6β4 engagement. This 

observation is consistent with the finding that mutation of Y580 either alone or in 

combination with Y542 significantly diminished SFK activation (Fig. 3-4, D, E). 

Fyn is the SFK that phosphorylates Y542 in SHP2 

The specific involvement of Fyn in α6β4-dependent signaling was investigated 

using siRNA to suppress Fyn expression. Cells transfected with Fyn-specific siRNA 

showed diminished phosphorylation of Y542-SHP2 in response to α6β4 engagement (Fig. 

3-7, A). To investigate further, MDA-MB-231 cells that stably over-expresse either HA-

tagged WT-Fyn or DN-Fyn were generated. HA-tagged Fyn is evidenced by the slower 

migrating bands in the Western blots (Fig. 3-7, B). Both HA-tagged WT-Fyn and DN-

Fyn were expressed at approximately two to three fold higher levels compared to 

endogenous Fyn. In response to α6β4 ligation, HA-tagged WT-Fyn was activated as 

evidenced by phosphorylation of Y418, and Y542-SHP2 phosphorylation levels 

increased correspondingly. In contrast, the activation of Fyn, and in turn the 

phosphorylation of Y542-SHP2, were completely blocked in DN-Fyn transfectants 

suggesting that Fyn is indeed the SFK which is involved in these α6β4 signaling events 

(Fig. 3-7, B). 
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Palmitoylation is required for α6β4-dependent SHP2-Fyn interaction 

Covalent attachment of long saturated fatty acids to proteins influences protein 

localization and function. The most common fatty acid modifications of proteins is 

myristoylation and palmitoylation, which make proteins more hydrophobic and increase 

membrane localization. Palmitoylation of the β4 subunit localizes α6β4 to a tetraspanin-

rich cell surface microdomain [52]. Src can be modified on its N-terminus by 

myristoylation, whereas Fyn can be both myristoylated and palmitoylated [178-180]. 

Different lipid modifications may localize membrane bound molecules to distinct cell 

surface mircrodomains therefore conferring on the cell a way to selectively activate target 

molecules. To test the hypothesis that palmitoylation of Fyn is required for activation by 

α6β4, HA-tagged palmitoylation deficient Fyn (C3, 6S) was overexpressed in MDA-MB-

231 cells. The C3,6S mutant Fyn is not activated by α6β4 ligation as evidenced by the 

lack of an increase of in Y418 phosphorylation and a markedly decreased induction of 

Y542-SHP2 phosphorylation. The small increase in SHP2 phosphorylation observed in 

the palmitoylation deficient Fyn mutant cells most likely is due to the activation of 

endogenous Fyn. In both α6β4 ligated and non-ligated cells, Fyn and SHP2 are 

phosphorylated at a higher level compared to WT-Fyn transfectants in the cells 

expressing C3,6S-Fyn, which may be explained by the much higher expression level of 

C3, 6S-Fyn than WT-Fyn (Fig. 3-8, A). To further investigate the hypothesis that 

palmitoylation of Fyn is required for its activation by α6β4, reverse co-

immunoprecipitations were performed. HA tagged WT-Fyn, but not palmitoylation 
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deficient Fyn, co-immunoprecipitated with SHP2 in response to α6β4 engagement (Fig. 

3-8, B, C).  

A positive role for the α6β4-SHP2-SFK pathway in tumor invasion 

The α6β4 integrin promotes tumor cell invasion and SFK activation is required 

for this α6β4-dependent function [76, 161].  Mutation of either Y1440 or Y1494 in the 

β4 subunit cytoplasmic domain inhibits SHP2 recruitment, SFK activation and also 

impairs the ability of α6β4 to promote carcinoma invasion (Fig. 2-6).  To evaluate the 

overall importance of SHP2 and the contributions of the C-terminal Tyrosine residues for 

carcinoma invasion, MDA-MB-231 cells expressing WT-SHP2 and SHP2 mutants were 

assayed for their invasive potential using Transwell invasion chambers.  Expression of 

WT-SHP2 increased invasion, and expression of DN-SHP2 decreased invasion, when 

compared with cells expressing empty vector (Fig. 3-9, A). Expression of Y542F-SHP2, 

Y580F-SHP2 and Y542F/Y580F-SHP2 mutants also increased invasion above the level 

observed for the vector control cells.   However, the invasion was significantly lower for 

all three of the mutant cell lines when compared with WT-SHP2 expressing cells.  

Previous studies have implicated SHP2 in the regulation of cell adhesion and spreading, 

which could influence invasive potential [181].  To determine if changes in cell adhesion 

could explain the differences in cell invasion that were observed for SHP2 mutant 

expressing cells, the cells were also assayed for their adhesion to laminin-1 substrates.   

As shown in Fig. 3-9 B, all of the cell lines adhered to laminin at equivalent levels.  
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To investigate the contribution of SHP2 to invasion in a 3D-assay that more 

accurately reflects the tumor microenvironment, cells were embedded within a Matrigel 

matrix.  When grown in a 3D matrix, non-invasive cells form round, compact colonies, 

whereas invasive cells exhibit a stellate, invasive morphology.  Cells expressing WT-

SHP2 formed very diffuse, invasive colonies, as we had observed previously for parental 

MDA-MB-231 and MDA-MB-435/WT-β4 cells (Fig. 3-9, C) [76].  In contrast, cells 

expressing Y542F-SHP2, Y580F-SHP2 and Y542F/Y580F-SHP2 formed progressively 

less invasive colonies, with the double Y542F/Y580F-SHP2 expressing cells being the 

least invasive of the SHP2 C-terminal tyrosine-mutant cell lines.  Moreover, expression 

of DN-SHP2 completely inhibited invasion in the 3D-Matrigel matrix and the colonies 

formed by cells expressing this catalytically inactive SHP2 mutant were similar in 

morphology to parental MDA-MB-231 cells that were grown in the presence of the SFK 

inhibitor PP2 (Fig. 3-9, C) and to MDA-MB-435/Y1494F-β4 cells [76].  Taken together, 

the 2D and 3D invasion assays demonstrate that the ability of α6β4 to recruit and activate 

SHP2 and to activate Fyn are essential for the α6β4 integrin to optimally promote 

invasion. 

Palmitoylation of Fyn is required for invasion 

Fyn plays a mutifaceted role in the process of tumorigenesis, including promoting 

cell growth, inhibiting cell apoptosis and promoting cell migration and invasion [151]. To 

evaluate the contribution of palmitoylation of Fyn to tumor cell invasion, MDA-MB-231 

cells transfected with either empty vector or the indicated HA-tagged Fyn constructs were 

assayed for their ability to invade Matrigel using both 2-D and 3-D Matrigel invasion 
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assays. WT-Fyn significantly increased cell invasion in both assays. WT-Fyn transfected 

cells showed a more invasive phenotype as they formed invasive colonies much earlier 

compared to empty vector control cells (Fig. 3-10, B).  However this increase in invasion 

was not observed in the  palmitoylation deficient Fyn (C3, 6S) transfectants (Fig. 3-10, A, 

B). Therefore, palmitoylation of Fyn is required for appropriate localization of Fyn to the 

cell surface microdomain to promote cancer cell invasion. 

A positive correlation between p-Y580-SHP2, p-SFK and tumor grade 
in human breast cancer 

 My in vitro studies implicate Y580-SHP2 as an important regulator of Fyn 

activation and carcinoma invasion downstream of the α6β4 integrin. To determine if this 

α6β4/SHP2/Fyn signaling pathway is active in vivo, I assessed the phosphorylation status 

of Y580-SHP2 and Y418-SFK in tumors that were generated using MDA-MB-435 cells 

expressing empty vector, WT-β4 or Y1494F-β4 [76]. Phosphorylation of Y418-SFK is 

enhanced significantly in tumors that express α6β4 and this activation is dependent upon 

Y1494, which is required for SHP2 recruitment and activation (Fig. 3-11, A, B) [76].  

Y580-SHP2 phosphorylation correlates with pY418-SFK, as it is also enhanced by 

expression of α6β4 and suppressed by mutation of Y1494 (Fig. 3-11, A, B). Additionally, 

I compared the phosphorylation status of Y580-SHP2 in human Grade I and Grade III 

breast tumors.  Grade III tumors are poorly differentiated and generally have a higher risk 

of metastasis than well-differentiated, Grade I tumors [182].  Tumor extracts were 

immunoblotted for pY580-SHP2 and pY418-SFK and phosphoprotein levels were 

normalized to total protein expression.  The levels of Y580-SHP2 phosphorylation and 



73 
 

pY418-SFK were markedly higher in Grade III tumors than in Grade I tumors (Fig. 3-11, 

C, D), supporting a potential role for this signaling pathway in the more aggressive 

behavior of these tumors.  Taken together, these results support a potential role for this 

SHP2/Fyn signaling pathway in the more aggressive behavior of tumors that express 

α6β4.  

 

 

 

 

 

 

 

 

 

 

  



74 
 

Discussion 

In this study, I identified a novel mechanism by which SHP2 mediates the 

selective activation of Fyn by the α6β4 integrin and demonstrate the importance of this 

α6β4/SHP2/Fyn signaling pathway for carcinoma invasion.  Engagement of the α6β4 

integrin promotes the interaction of SHP2 with the β4 subunit cytoplasmic domain. Fyn, 

but not Src, is recruited to SHP2 through phospho-Y580 in the C-terminus of SHP2, and 

this interaction requires palmitoylation of Fyn, and is necessary for the activation of Fyn 

downstream of α6β4.  Upon activation, Fyn phosphorylates SHP2 on Y542, creating a 

positive feedback loop that contributes to sustained SHP2 signaling. Both α6β4 mutants 

that cannot recruit and activate SHP2 and SHP2 mutants that cannot recruit and activate 

Fyn have diminished abilities to promote breast carcinoma invasion.   In vivo, pY580-

SHP2 and pY418-SFK levels are increased in tumors that express the α6β4 integrin, and 

this activation is dependent upon Y1494.  Taken together, these results reveal how the 

α6β4 integrin localizes Fyn activation to promote breast carcinoma invasion and identify 

pY580-SHP2 and pY1494-β4 as potential indicators of invasive potential. 

I  have identified that the SHP2-dependent activation of Fyn by α6β4 requires the 

recruitment of Fyn to pY580 in the SHP2 C-terminal tail.  SFK activation is regulated 

through intramolecular interactions that are controlled by phosphorylation at inhibitory 

and stimulatory sites [131].  Phosphorylation of the C-terminal tail (Y528 in human Fyn) 

inhibits activation by promoting an interaction of the N-terminal SH2 domain with this 

site.  Dephosphorylation of the inhibitory tyrosine can disrupt this interaction and 
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promote auto-phosphorylation in the activation loop (Y417 in human Fyn) to enhance 

catalytic activity. A number of studies have investigated the role of SHP2 in SFK 

activation and both direct and indirect mechanisms have been reported. In response to 

growth factor stimulation, phosphorylation of the inhibitory Y527 in the C-terminus of c-

Src diminishes through a SHP2-dependent decrease in the recruitment of Csk kinase to 

the membrane domains where Src is localized. The transmembrane glycoprotein PAG 

and the focal adhesion protein paxillin, which are substrates of SHP2, have been 

implicated in this recruitment of Csk [133-134].  SHP2 has also been reported to activate 

Src independently of its catalytic function by binding directly to the SH3 domain of Src 

and disrupting an intramolecular interaction that interferes with the catalytic domain 

[135].  I did not observe any changes in phosphorylation of the inhibitory C-terminal 

tyrosine of Fyn in response to α6β4 engagement (data not shown).  However, recruitment 

of Fyn to Y580 in the C-terminus of SHP2 via its SH2 domain would disrupt the 

intramolecular inhibition to allow autophosphorylation of the activation loop, even in the 

presence of persistent phosphorylation of the Fyn C-terminus [183].  Although my data 

support that the catalytic activity of SHP2 contributes to Fyn activation in response to 

α6β4 engagement, the reduced ability of the C-terminal double Y542F/Y580F mutant 

that retains full phosphatase activity to stimulate Fyn activation demonstrates that the 

physical interaction of SHP2 and Fyn is also essential for optimal activation of this 

pathway in response to α6β4 engagement.   

In previous studies, the ability of the α6β4 integrin to activate Fyn was shown to 

be dependent upon palmitoylation of the membrane proximal region of the β4 subunit [52, 
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87]. However, the direct link between Fyn and the α6β4 receptor remained an open 

question.  Fyn is also palmitoylated, which provides a mechanism to localize Fyn in the 

plasma membrane in proximity to the α6β4 integrin, where it can mediate signals at sites 

of adhesive contacts to promote motility and invasion [178]. The potential importance of 

this localization is underscored by the fact that Src is not palmitoylated, and therefore 

does not localize to the membrane domains containing α6β4, and it is not activated by 

this integrin receptor [178].  My current data confirms that different lipid modifications 

on the N-terminus of SFKs are responsible for selective activation of certain SFK over 

others. My data also demonstrate that localization to membrane domains alone is not 

sufficient for Fyn activation because the recruitment of Fyn to pY580-SHP2 is required 

to activate Fyn in response to α6β4 engagement. My data also support a positive Fyn 

feedback loop that mediates the phosphorylation of Y542 in the C-terminus of SHP2 to 

increase SHP2 catalytic activity.  

The fact that mutation of Y542 did not significantly reduce Fyn activation by 

α6β4, but did diminish invasion, provides evidence that additional SHP2 substrates are 

likely to cooperate with Fyn to enhance α6β4-dependent invasion. Interestingly, Fyn and 

SHP2 inversely regulate the activity of some signaling molecules that contribute to tumor 

invasion.  For example, Fyn phosphorylates and activates p190RhoGap to inactivate the 

small GTP-binding protein RhoA, whereas SHP2 dephosphorylates p190RhoGAP, 

thereby maintaining RhoA in an active GTP-bound state to stimulate downstream 

effectors [166, 184-185].  RhoA can directly influence cell motility and invasion through 
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its regulation of the actin cytoskeleton, and the ability of RhoGTPases to cycle between 

active and inactive states is essential for this function [186].  Engagement of the α6β4 

integrin activates RhoA to promote lamellae formation and migration [187]. The 

formation of an active SHP2/Fyn complex would allow for the dynamic regulation of 

RhoA downstream of α6β4.  Additional common downstream targets of Fyn and SHP2 

that are likely to be important for promoting invasion include the focal adhesion 

components p130Cas and paxillin [188].  

Phosphatase-dead, dominant-negative SHP2, Y542 and Y580 mutant SHP2 all 

significantly decreased tumor cell invasion (Fig. 3-9). The phosphatase dead SHP2 

mutant completely blocked tumor cell invasion as shown in both 2D and 3D invasion 

assays. Y542 and Y580 mutants decreased tumor invasion, but to a lesser extent when 

compared with the phosphatase dead SHP2 mutant. These findings suggest that SHP2 

phosphatase activity may contribute more to tumor invasion than the tyrosine residues on 

the SHP2 C-terminal tail. The distinct morphology of the SHP2 mutant cell colonies in 

3D could be explained by different tumor cell survival. However, based on the similar 

size of the colonies, it is likely that the SHP2 mutant cells are alive. Therefore, we 

believe that the differences in morphology amongst the SHP2 transfectants are due to the 

different invasive ability of the cells (Fig. 3-9 C).  

In the two invasive breast cancer cell lines I used for my thesis research, Y542 is 

phosphorylated by Fyn in response to α6β4 engagement, while Y580 phosphorylation 

level is not affected by α6β4 involvement, and is not a target of SFKs. However, in the 
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orthotopic mouse tumors, Y580 phosphorylation seems to be affected by the presence of 

WT α6β4 (Fig. 3-11 A). This finding can be explained by the fact that the in vivo  

microenvironment of the tumor cells is much more complicated than in vitro stimulations, 

such as laminin clustering and Ab-mediated α6β4 engagement. The same set of tumor 

samples have shown that WT-β4 tumors are associated with a more aggressive and 

malignant phenotype [76]. This is consistent with our model that p-Y580-SHP2 and p-

Y418-SFK positively correlate with worse patient prognosis and could be used as 

diagnostic markers. Moreover blots from human breast tumor lysates confirmed that this 

hypothesis is valid in the set of samples we tested (Fig. 3-11 C).  

SFKs are expressed and activated in many tumor types and numerous studies have 

demonstrated that SFK activity is associated with poor patient outcomes [174].  In breast 

cancer, a Src-responsive gene signature that reflects active Src signaling has recently 

been found to be tightly associated with latent bone metastasis, and Src promotes growth 

and survival in the bone microenvironment [189].  Breast tumors that express α6β4 have 

increased angiogenesis and enhanced metastasis when compared with tumors that either 

lack expression of this integrin receptor or express a mutant Y1494F-β4 subunit [76, 105, 

190]. The α6β4 integrin, which is also associated with poor prognosis in many tumor 

types, can stimulate SFK activation, however the mechanism by which it does so was not 

known.  In the current study, I provide novel mechanistic insight into how the α6β4 

integrin selectively activates the Src family member Fyn in response to receptor 

engagement. Both catalytic and non-catalytic functions of SHP2 are required for Fyn 
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activation by α6β4. Specifically, the tyrosine phosphatase SHP2 is recruited to α6β4 and 

its catalytic activity is stimulated through a specific interaction of its N-terminal SH2 

domain with pY1494 in the β4 subunit. Fyn is recruited to the α6β4/SHP2 complex 

through an interaction with phospho-Y580 in the C-terminus of SHP2.  In addition to 

activating Fyn, this interaction with Y580-SHP2 localizes Fyn to sites of receptor 

engagement, which is required for α6β4-dependent invasion. Palmitoylation modification 

of Fyn on its N-terminus confers on Fyn the ability to be selectively activated by α6β4 

engagement over other SFKs. The enhanced phosphorylation of Y580-SHP2 and Y418-

SFK in human orthotopic breast tumors that express WT-β4, and the dependence of this 

SFK activation on Y1494, supports the involvement of an α6β4/SHP2/Fyn signaling 

pathway in carcinoma invasion and tumor progression. 
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Figure 3-1. Y542 of SHP2 is phosphorylated in response to α6β4 engagement, while 
Y580 is constitutively phosphorylated 

Cells were incubated with or without integrin-specific antibodies and allowed to adhere 
to anti-mouse IgG-coated plates or laminin-1 coated plates.  Aliquots of cell lysates were 
immunoblotted with antibodies specific for the indicated phospho-proteins.  The 
phospho-immunoblots were stripped and reprobed for total protein expression levels.  (A) 
MDA-MB-231 cells were ligated with (+) or without (-) β4-specific Abs.  (B) MDA-MB-
435/WT-β4 cells were ligated with (+) or without (-) α6-specific Abs.  (C) MDA-MB-
435/WT-β4 cells were allowed to adhere to laminin-1 coated plates for the indicated time 
periods. 
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Figure 3-2.  SFKs phosphorylate Y542, but not Y580, of SHP2 in a positive feed-
back loop  

(A) MDA-MB-435 cells that were transfected with WT-β4 or empty vector (Mock) were 
ligated with α6-specific antibodies in the absence or presence of the SHP2 inhibitor 
calpeptin (CP; 50μg/ml) or the SFK inhibitor PP2 (10uM). (B) MDA-MB-435/WT-β4 
cells were ligated with α6-specific antibodies in the absence or presence of calpeptin (CP; 
50μg/ml), ALLN (50μM) or calpastatin peptide (CS; 5μM).  
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Figure 3-3. Intact Y1494 and Y1440 of β4 subunit are essential for α6β4-dependent 
phosphorylation of Y542-SHP2 by SFKs  

(A) MDA-MB-435 cells that were transfected with WT-β4 or Y1494F-β4 were ligated 
with α6-specific antibodies in the absence or presence of the SHP2 inhibitor calpeptin 
(CP; 50μg/ml) or the SFK inhibitor PP2 (10uM). (B) MDA-MB-435 cells transfected 
with either WT-β4, Y1494F-β4, Y1257/1494F-β4 or Y1440F-β4 were serum starved 
overnight and then allowed to adhere to laminin coated plates. Aliquots of cell lysates 
were immunoblotted with antibodies specific for pY542-SHP2 or pY418-SFK. The 
pY542-SHP2 and pY418-SFK immunoblots were stripped and reprobed for total SHP2 
or SFK expression, respectively.    
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Figure 3-4 Y580 in SHP2 is required for SFK activation by α6β4 signaling pathway 

(A) Schematic representation of HA tagged SHP2 Y542/Y580 mutants. (B) Aliquots of cell 
extracts from MDA-MB-231 cells stably expressing the HA-tagged SHP2 constructs were 
immunoblotted with antibodies specific for pY580-SHP2 and HA.  The phospho-immunoblot 
was stripped and reprobed for total SHP2 levels.  (C) MDA-MB-231 cells stably expressing HA-
tagged SHP2 constructs were incubated with β4-specific antibodies and allowed to adhere to anti-
mouse IgG-coated plates. Aliquots of cell lysates were immunoprecipitated with HA-specific 
antibodies and immunoblotted with antibodies specific for pY542-SHP2. The phospho-
immunoblot was stripped and reprobed for total SHP2 expression levels. (D) MDA-MB-231 cells 
stably expressing the HA-tagged SHP2 constructs were incubated with (+) or without (-) β4-
specific antibodies and allowed to adhere to anti-Rat IgG-coated plates.  Aliquots of cell lysates 
were immunoblotted with antibodies specific for pY418-SFK or Actin. The phospho-immunoblot 
was stripped and reprobed for total SFK expression levels. The data shown in the graph represent 
the mean (+/- SD) of three independent experiments that were quantified by densitometry. *, p < 
0.03 . 
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Figure 3-5. Y580-SHP2 contributes to SFK activation independent of its regulation 
of SHP2 phosphatase activity 

MDA-MB-231 cells stably expressing HA-tagged SHP2 constructs were incubated with 
β4-specific antibodies and allowed to adhere to anti-mouse IgG-coated plates. Aliquots of 
cell lysates were immunoprecipitated with HA-specific antibodies and the immune 
complexes were incubated with phosphotyrosyl peptides to assay phosphatase activity. 
1/10 of the total immune complex was immunoblotted to determine input.  The data 
shown represent the mean (+/- SD) of 3 independent experiments. *, p < 0.04; **, p < 
0.005 . 
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Figure 3-6. Y580-SHP2 is required for the physical interaction of SHP2 and Fyn 

(A) MDA-MB-231 cells were incubated with or without β4-specific antibodies and 
allowed to adhere to anti-mouse IgG-coated plates. Aliquots of cell lysates were 
immunoprecipitated with non-specific IgG (IgG) or SFK antibodies and immunoblotted 
with antibodies specific for SHP2. The immunoblot was stripped and reprobed for total 
SFK expression levels.  Total cell lysates were also immunoblotted with SHP2-specific 
antibodies (SHP2 input). (B) Aliquots of cell lysates were immunoblotted with antibodies 



86 
 

specific for Src, Fyn, Yes and Actin. 231, MDA-MB-231 cells; 435-β4, MDA-MB-435 
cells transfected with WT-β4.  (C, D and E) MDA-MB-231 and MDA-MB-435/WT-β4 
cells were incubated with integrin-specific antibodies and allowed to adhere to anti-
mouse IgG-coated plates.  Aliquots of cell lysates were immunoprecipitated with either 
non-specific IgG (IgG) or antibodies that specifically recognize Fyn or Src and 
immunoblotted with antibodies specific for SHP2. The immunoblot was stripped and 
reprobed for total Fyn or Src expression levels, respectively.  Total cell lysates were also 
immunoblotted with SHP2-specific antibodies (SHP2 input).  (F) MDA-MB-231 cells 
stably expressing HA-tagged SHP2 constructs were incubated with β4-specific antibodies 
and allowed to adhere to anti-mouse IgG-coated plates. Aliquots of cell lysates were 
immunoprecipitated with Abs that recognize either HA- or Fyn and immunoblotted with 
antibodies that recognize either Fyn (HA-IP) or SHP2 (Fyn-IP). The immunoblots were 
stripped and reprobed for total HA or Fyn expression levels, respectively. Total cell 
lysates were also immunoblotted with SHP2- and Fyn- antibodies (Input).  
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Figure 3-7. Fyn is the SFK that phosphorylates Y542 in SHP2 in response to α6β4 
engagement  

 (A) MDA-MB-231 cells were transfected with siRNA specific for either luciferase (Luc) 
or human Fyn for 48 hrs.  Cells were incubated with or without α6-specific antibodies 
and allowed to adhere to anti-mouse IgG-coated plates.  Aliquots of cell lysates were 
immunoblotted with antibodies specific for Fyn, pY542-SHP2 or Actin. The phospho-
immunoblot was stripped and reprobed for total SHP2 expression. (B) MDA-MB-231 
cells stably expressing the HA-tagged Fyn constructs were incubated with (+) or without 
(-) α6-specific antibodies and allowed to adhere to anti-mouse IgG-coated plates.  
Aliquots of cell lysates were immunoblotted with antibodies specific for pY542-SHP2 or 
pY418-SFK. The phospho-immunoblot was stripped and reprobed for total SHP2 or SFK 
expression levels, respectively. 
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Figure 3-8. Palmitoylation is required for the α6β4-dependent SHP2-Fyn interaction  

(A) MDA-MB-231 cells stably expressing HA-tagged Fyn constructs were incubated 
with (+) or without (-) α6-specific antibodies and allowed to adhere to anti-mouse IgG-
coated plates.  Aliquots of cell lysates were immunoblotted with antibodies specific for 
pY542-SHP2 or pY418-SFK. The phospho-immunoblots were stripped and reprobed for 
total SHP2 or SFK expression levels, respectively. (B, C) MDA-MB-231 cells stably 
expressing HA-tagged Fyn constructs were incubated with α6-specific antibodies and 
allowed to adhere to anti-mouse IgG-coated plates. Aliquots of cell lysates were 
immunoprecipitated with Abs that recognize either HA or SHP2 and immunoblotted with 
antibodies that recognize either SHP2 (HA-IP) or Fyn (SHP2-IP). The immunoblots were 
stripped and reprobed for total HA or SHP2 expression levels, respectively. Total cell 
lysates were also immunoblotted with SHP2, Fyn and HA antibodies (Input).  
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Figure 3-9. A positive role for the α6β4-SHP2-SFK pathway in tumor invasion 

(A) MDA-MB-231 cells transfected with either empty vector or the indicated HA-tagged 
SHP2 constructs were allowed to adhere to laminin-1 coated wells for 1 h at 37°C.  After 
washing, cells were fixed, stained with crystal violet, and quantified by measuring 
absorbance at 595nm.  The data shown represent the mean (+/- SD) of three independent 
assays performed in triplicate. (B) MDA-MB-231 cells transfected with either empty 
vector or the indicated HA-tagged SHP2 constructs were assayed for their ability to 
invade Matrigel using a Transwell assay chamber. The data shown represent the mean 
(+/- SD) of three independent invasion assays performed in duplicate. *, p < 0.02; **, p < 
0.008.  (C) Representative images captured at 20X magnification of MDA-MB-231 cells 
transfected with the indicated HA-tagged SHP2 constructs or incubated in the presence of 
PP2 and grown for 10 days in 3D Matrigel culture.  
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Figure 3-10. Palmitoylation of Fyn is required for invasion  

(A) MDA-MB-231 cells transfected with either empty vector or the indicated HA-tagged 
Fyn constructs were assayed for their ability to invade Matrigel using a Transwell assay 
chamber. The data shown represent the mean (+/- SD) of three independent invasion 
assays performed in duplicate. *, p≤0.04. ; **,  p<0.006; #, p≤0.05. (B) Representative 
images captured at 20X magnification of MDA-MB-231 cells transfected with the 
indicated HA-tagged Fyn constructs after 7 days in 3D Matrigel culture. 
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Figure 3-11. A positive correlation between p-Y580-SHP2, p-SFK and tumor grade 
in human breast cancer 

(A) Aliquots of tumor extracts from Mock, WT-β4 and Y1494F-β4 derived tumors were 
immunoblotted with antibodies specific for pY580-SHP2 and pY418-SFK. The immunoblots 
were stripped and reprobed for total SHP2 and SFK expression levels.  (B) The data shown in the 
graphs represent the mean levels of pY580-SHP2/SHP2 and pY418-SFK/SFK that were 
quantified by densitometry for each tumor type (n=6 for each tumor type). *, p < 0.003; **, p < 
0.0004; ***, p < 0.02. (C) Aliquots of tumor extracts from Grade I (n = 6) and Grade III (n = 6) 
human breast tumors containing equivalent amounts of total protein were immunoblotted with 
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antibodies specific for pY580-SHP2, pY418-Src and actin. The phospho-immunoblots were 
stripped and reprobed for total SHP2 and Src expression levels, respectively. (D) The data in 
figure (C) were quantified by densitometry for each tumor grade. *, p < 0.03. 
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Besides its well established roles in maintaining the integrity of epithelia, the 

α6β4 integrin has been recognized for its important functions in tumorigenesis, such as 

promotion of tumor cell migration, invasion, survival, and stimulation of angiogenesis 

[38, 191-192]. α6β4-dependent tumor initiation and progression occurs through 

activation of multiple signaling pathways, such as the α6β4-dependent activation of PI3K 

[73]. Another example is the SFK-mediated phosphorylation of the large cytoplasmic tail 

of β4, recruitment of Shc and activation of Ras and MAPK [87, 193-194]. The α6β4 

integrin may play its multifaceted role in tumor progression through regulating different 

signaling pathways. A recent study by our lab has shown that α6β4 regulates anchorage-

independent growth through activation of the extracellular signal-regulated kinase 

signaling pathway, and it regulates invasion through combined activation of PI3K and a 

SFK [76]. As a core enzyme activated by the α6β4 integrin, PI3K has been extensively 

studied. PI3K is a lipid kinase that phosphorylates the D3 position of inositol lipids to 

form the products PI-3-P, PI-3,4-P2, and PI-3,4,5-P3 in response to many different 

stimuli. Upon generation, these second messengers bind and recruit signaling molecules 

to the plasma membrane to interact with other regulatory and effector molecules [195]. 

The α6β4-dependent activation of PI3K is likely to be through an indirect manner 

because the lack of a p85 (PI3K regulatory subunit) binding motif in the β4 cytoplasmic 

tail [73]. Several indirect molecular mechanisms have been proposed including the 

involvement of Insulin Receptor Substrate proteins (IRS1 and IRS2), the localization of 

α6β4 into lipid rafts and association of α6β4 with specific growth factor receptors which 

are known to activate PI3K [87, 111]. A recent study has shown that the α6β4 integrin 
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regulates ErbB3 expression at the translational level. The increased ErbB2/ErbB3 

heterodimer formation stimulates the PI3K/AKT signaling axis to promote tumor survival 

[191]. In contrast, although it has been known that SFKs are involved in α6β4 signaling 

events for some time, less is known about how SFKs are activated by α6β4 at the 

molecular level. Y1494 in the β4 cytoplasmic tail plays essential roles in α6β4 

tumorigenesis functions. Mutation of this tyrosine residue to phenylalanine inhibited the 

α6β4-dependent activation of PI3K, as well as tumor invasion and survival [111]. The 

importance of Y1494 in the β4 cytoplasmic domain has also been demonstrated by the 

fact that mutation of Y1494 significantly decreased the overall tyrosine phosphorylation 

level in the β4 subunit upon α6β4 engagement implying that Y1494 might function as a 

master tyrosine residue in α6β4 signaling events [111]. The importance of Y1494 has 

also been highlighted by its involvement in binding a crucial cytosolic tyrosine 

phosphatase SHP2 [112, 162-163]. 

In the current study, I identified a novel molecular mechanism by which SHP2 

mediates the selective activation of a Src Family Kinase, Fyn, in response to α6β4 

integrin engagement and demonstrated the importance of this α6β4/SHP2/Fyn signaling 

pathway for carcinoma invasion.  Upon engagement of the α6β4 integrin, Y1494 and 

Y1440 in the β4 subunit cytoplasmic domain interact with the N-SH2 and C-SH2 

domains of SHP2, respectively. The Y1494 and N-SH2 interaction stimulates the 

catalytic activity of SHP2. Constitutively phosphorylated Y580 in the C-terminus of 

SHP2 is required for recruitment of Fyn, but not Src, to the α6β4/SHP2 signaling 
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complex, and this interaction is necessary for the activation of Fyn downstream of α6β4.  

Moreover, activated Fyn phosphorylates SHP2 on Y542 in a positive feedback manner. 

Palmitoylation modification on the N-terminus of Fyn, but not Src, localizes Fyn to the 

same cell surface microdomain as α6β4 and is responsible for the selective activation of 

Fyn instead of other SFKs. The intact α6β4-SHP2-Fyn signaling axis is required for 

α6β4-dependent breast carcinoma invasion since blocking any step results in diminished 

cancer cell invasive abilities (Fig. 4-1). More importantly, my in vivo data suggest that 

pY580-SHP2 and pY418-SFK levels are increased in tumors that express the α6β4 

integrin, and this activation is dependent upon Y1494. Also in a subset of human breast 

tumor samples, pY580-SHP2 and pY418-SFK levels positively correlate with tumor 

grades suggesting that both of these markers may be potential indicators of breast cancer 

invasive potential. 

Six tyrosine residues (Y1257, Y1422, Y1440, Y1494, Y1526 and Y1642) in the 

β4 cytoplasmic tail have been identified to participate in signaling [109-110, 163]. SFKs, 

such as Fyn and Yes, or other receptor tyrosine kinases, phosphorylate five major 

tyrosine residues (Y1422, Y1440, Y1494, Y1526 and Y1642) in the β4 signaling domain 

[87, 111, 193]. The phosphorylated tyrosine residues mediate recruitment and activation 

of downstream signaling events. For example, phospho-Y1526 mediates recruitment of 

Shc and activation of Ras-ERK signaling [193]. Y1257 and Y1494 have been identified 

to be located within canonical SHP2 binding ITIM motifs [111]. Y1440 is embedded 

within a degenerate consensus SHP2 binding motif [163]. My GST pull-down data 



97 
 

suggests that Y1494 and Y1440 in the β4 subunit interact with N-SH2 and C-SH2 of 

SHP2, respectively, whereas Y1257 plays a minimal role, if any, in β4-SHP2 interaction 

(Fig. 2-5, B). Y1440F mutant β4 loses not only interaction with C-SH2, but also N-SH2 

(Fig. 2-5, B, lowest panel). This could be explained by the fact that Y1494 

phosphorylation and interaction with N-SH2-SHP2 requires intact Y1440 (Fig. 2-5, C). A 

two-step phosphorylation event might be the case. Y1440 may first get phosphorylated in 

response to α6β4 ligation and then some conformational changes happen in the β4 

subunit to expose Y1494 for further phosphorylation, which may or may not be by the 

same tyrosine kinase as phosphorylates Y1440. This two step phosphorylation is 

supported by the mechanism by which SHP2 is recruited and activated. SHP2 uses its C-

SH2 to survey the cell for a bisphosphorylated binding ligand. Upon interaction between 

C-SH2 and p-Tyr, the increase of the local concentration of p-Tyr will release SHP2 

auto-inhibition between its N-SH2 and PTP domain [114]. Therefore, Y1440F β4 can’t 

recruit SHP2 to the α6β4 integrin in the first place as well as a loss in phosphorylation in 

Y1494. This hypothesis has been further supported by co-immunoprecipitation assays in 

response to laminin ligation. Loss of either intact Y1440 or Y1494 impairs the stable 

interaction between β4 and SHP2 (Fig. 2-6, B). Moreover, the Y1494F mutant β4 can’t 

activate SHP2 phosphatase activity (Fig. 2-2, A), suggesting that upon recruitment to 

phospho-Y1440 by its C-SH2, SHP2 still needs to engage its N-SH2 with phospho-

Y1494 to disrupt its intramolecular interaction and get activated. To further confirm this 

model, SHP2 in vitro phosphatase assays should be performed using Y1440F cells. No 

significant increase of SHP2 phosphatase activity should be expected in these cells. 
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Furthermore, if a phospho-Y1440 antibody becomes commercially available, western 

blotting can be performed to show that Y1440 indeed gets phosphorylated in response to 

α6β4 engagement as does Y1494 (Fig. 2-4, A,B,C). In response to HGF stimulation, the 

Trusolino group has reported that Y1257, Y1440 and Y1494 are necessary for efficient 

β4 and SHP2 coimmunoprecipitation, with Y1440 being the major binding site for SHP2 

[163]. These data confirm the importance of Y1494 and Y1440 in the β4/SHP2 physical 

interaction. However, in this paper they didn’t explain how three tyrosine residues 

interact with two SH2 domains in SHP2. The difference between my data and theirs may 

be explained by the distinct cell system and different stimulation to the cells. The 

insignificance of Y1257 in α6β4-mediated signaling pathways is further confirmed by 

the fact that mutation of this tyrosine residue didn’t affect α6β4 dependent breast cancer 

cell invasion or total cellular tyrosine phosphorylation levels [111].  

Intact Y1440 and Y1494 in the β4 subunit are not only essential for stable β4-

SHP2 interaction and α6β4-dependent signaling events (Fig. 2-6, A,B,C; Fig. 3-3, B), but 

also for α6β4-dependent invasion (Fig. 2-6, D). In response to laminin clustering and 

antibody-mediated α6β4 ligation, the activation level of Fyn was significantly reduced in 

both Y1494F-β4 and Y1440F-β4 transfected cells. In fact, the reduction of Fyn activation 

in Y1440F cells is even higher than that in Y1494F cells. However, 2-D invasion assays 

showed that the invasive ability of Y1440F-β4 mutant cells is significantly higher than 

that of both Y1494F and Y1494/1257F-β4 cells (1440 vs 1494: P<0.006; 1440 vs 

1494/1257: P<0.003).  In our earlier studies, we found that in contrast to Y1494F-β4 
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mutant cells, which are deficient in activating PI3K/AKT signaling pathway, Y1440F 

cells maintain PI3K activation to some extent compared to WT-β4 cells in response to 

α6β4 stimulation (data not shown), which could explain their higher invasive potential. 

Singly mutating Y1494 affects α6β4-dependent invasion more than Y1440 does, 

suggesting that Y1494 is the most important tyrosine residue in the β4 subunit to promote 

cell invasion. This notion is substantiated by 3-D invasion assays showing that Y1494F-

β4 cells form round, very compact colonies when embedded in Matrigel, whereas 

Y1440F cells form roundish colonies, however the edges of those colonies are not as 

smooth as those formed by Y1494F cells (Fig 4-2) [76]. It has been reported that 

phospho-Y1440 and phospho-Y1442 are essential in SH2-mediated interaction with Shc 

to activate the MAPK signaling pathway. In this study, phospho-Y1440 was identified to 

be the primary binding motif for Shc [193]. This result implies that besides involvement 

in activating Fyn to regulate cell invasion, Y1440 might be important in regulating other 

cell signaling events, such as proliferation and cell cycle progression. 

Y542 in the SHP2 C-terminal tail is a substrate of Fyn, which was demonstrated 

by the reduction of phospho-Y542 in β4 mutant transfected cells (Fig. 3-3, B), by both 

SHP2 and SFK chemical inhibitors and Fyn siRNA treated cells (Fig. 3-2; Fig. 3-7, A), as 

well as in DN-Fyn stably transfected cells (Fig. 3-7, B). Phospho-Y542 and phospho-

Y580 have been reported to function as adaptors to recruit SH2 domain containing 

molecules, such as Grb2 and SHIP [196-201]. I examined the potential interactions 

between SHP2 and either Grb2 or SHIP2 by coimmunoprecipitation. No physical 
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interaction was detected in the coIP assay (data not shown). However, these results don’t 

exclude the possibility that phospho-Y542 may function as an adaptor to recruit other 

unknown SH2 domain containing signaling molecules. Upon phosphorylation, Y542 in 

the SHP2 C-terminal tail has also been reported to regulate SHP2 phoshphatase activity. 

Using non-hydrolysable phospho-tryrosine mimics to substitute both Y542 and Y580 in 

the SHP2 C-terminal tail, studies have shown that the non-hydrolysable tyrosine mimics 

stimulated SHP2 phosphatase activity through a mechanism involving phospho-Y542/N-

SH2 and phospho-Y580/C-SH2 intramolecular interactions. They also showed that a 

single Y542 substitution is enough to stimulate SHP2 activity and activate MAPK 

signaling in living cells [119]. Another group reported a similar result that non-

hydrolysable phospho-Y536 (Y542-SHP2 equivalent) and phospho-Y564 (Y580-SHP2 

equivalent) in the SHP1 C-terminal tail stimulates SHP1 phosphatase activity with Y536 

being more potent than Y564 [202]. In my study, in vitro phosphatase assays were 

performed to determine if tyrosine residues in the SHP2 C-terminal tail play a role in 

regulating α6β4-dependent SHP2 phosphatase activity. Mutation of Y542 and Y580 

individually reduced the phosphatase activity of SHP2, implying that both Y542 and 

Y580 are involved in regulating SHP2 phosphatase activity. However, the activity of the 

double Y542F/Y580F mutant was equivalent to that observed for WT-SHP2 (Fig. 3-5).  

This finding mimics a previous report that deletion of the SHP1 C-terminal tail activates 

the catalytic activity of the phosphatase [172]. Moreover, a possible explanation for the 

maintenance of high phosphatase activity in the double Y542F/Y580F mutant SHP2 may 

involve the phosphorylation of serine or threonine residues in the SHP2 C-terminal tail. 
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Phosphorylation on both serine and threonine residues have been detected and the 

phosphorylation levels increase in response to EGF stimulation in PC12 

phaeochromocytoma cells [203]. Another group has shown that upon phosphorylation on 

threonine residues, but not on serine residues, SHP2 phosphatase activity decreased [204].  

This raises the possibility that the double Y542F/Y580F mutant SHP2 may have lost its 

phosphorylation on serine and/or threonine residues, which keep SHP2 phosphatase 

activity in check upon phosphorylation.  

Upon recruitment to the α6β4 integrin, SHP2 phosphatase activity is stimulated 

(Fig. 2-2). However, SHP2 phosphatase activity is not directly involved in the activation 

of Fyn in response to α6β4 ligation because the double Y542F/Y580F mutant which 

retains almost the same level of phosphatase activity compared to WT-SHP2 was unable 

to activate Fyn (Fig. 3-4, D, E; Fig.3-5). Similarly, mutation of Y542 significantly 

diminished SHP2 phosphatase activity but didn’t reduce Fyn activation by α6β4 (Fig. 3-4, 

D, E; Fig.3-5). Moreover, although Y542-SHP2 mutant cells maintained a high level of 

Fyn activation, they showed a low SHP2 phosphatase activity and defective invasion 

suggesting that additional SHP2 substrates are likely to cooperate with Fyn to enhance 

α6β4-dependent invasion (Fig. 3-4, D, E; Fig.3-5; Fig. 3-9). Therefore, both SHP2 

catalytic and non-catalytic functions play a role in α6β4 signaling pathways. This notion 

is supported by the fact that SHP2 functions in both catalytic-dependent and independent 

manners in interleukin-3 stimulated hematopoietic cells [136]. One potential SHP2 

substrate that may be important for invasion is the Rho GTPase [73, 166]. To discover 
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SHP2 substrate/substrates in response to α6β4 engagement, both HA-tagged WT-SHP2 

and substrate trapping SHP2 (C459S-SHP2) can be expressed and assayed for their 

ability to pull down substrates. The substrate trapping SHP2 should interact with, but not 

dephosphorylate, its substrates in response to α6β4 engagement, and therefore maintain 

interactions when compared with WT-SHP2. SHP2 substrates can then be identified by 

Mass-spectrometry. If the C459S-SHP2 doesn’t trap its substrate, more substrate-trapping 

SHP2 mutants have been reported that might be more potent candidates, such as T466A-

SHP2 and D425A/Q506A-SHP2 [166, 205].  

Two mechanisms by which SHP2 activates SFKs have been reported. One 

mechanism involves SHP2 directly or indirectly dephosphorylating SFKs on their 

negative regulatory residue Y529 (human Src as an example). SHP2 phosphatase activity 

is required in this mechanism. A second mechanism involves SHP2 activating Src 

independently of its catalytic function by binding directly to the SH3 domain of Src and 

disrupting the intramolecular inhibitory interaction that interferes with the catalytic 

domain [135]. In my study, no decrease on phospho-Y528 Fyn was detected by Western 

Blotting (data not shown). This negative result could be due to the fact that only a small 

pool of Fyn is dephosphorylated and this decrease is not strong enough to show on 

Western Blotting. To test this hypothesis, coimmunoprecipitation using SHP2 Antibodies 

can be performed. Phospho-Y529-Src antibody would be used to detect any 

phosphorylation change in this SFK inhibitory tyrosine site.  
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My data suggests that intact Y580 in the SHP2 C-terminal tail is essential for the 

α6β4-dependent activation of Fyn (Fig. 3-6, F). The potential mechanism by which SHP2 

activates Fyn is that phospho-Y580 of SHP2 is used to interact with the SH2 domain of 

Fyn. This interaction releases the intramolecular inhibitory interaction between the SH2 

domain of Fyn and phospho-Y527 and activates Fyn. However, it is also possible that 

SHP2 doesn’t directly interact with Fyn. There may be intermediate molecule/molecules 

between SHP2 and Fyn and phospho-Y580 is actually required for recruiting these 

intermediate molecules. To test this hypothesis, GST tagged Fyn could be generated in 

vitro and a GST pull-down assay could be performed using α6β4 stimulated cell lysates. 

If GST-Fyn pulls down SHP2, a direct interaction between SHP2 and Fyn could be 

further confirmed by using a more definitive technique-FRET (Fluorescence Resonance 

Energy Transfer). The strength of FRET microscopy is that it shows whether two proteins 

interact with each other directly in response to certain stimulation in live cells. If Fyn and 

SHP2 don’t interact directly, a whole SHP2 coimmunoprecipitation sample could be sent 

for Mass-Spectrometry analysis followed by protein domain analysis (using website, such 

as http://scansite.mit.edu/ ) to find a potential protein which might interact with SHP2 in 

a phospho-Y580 dependent manner.  

The α6β4 integrin promotes breast cancer invasion through combined activation 

of PI3K and Fyn [43, 73, 76, 162]. Both Src and Fyn have been reported to be involved in 

tumor migration and invasion. The selective activation of Fyn in response to α6β4 

ligation is through differential N-terminal lipid modification of the SFKs and differential 

cell surface microdomain localization. The importance of this localization is underscored 

http://scansite.mit.edu/
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by the fact that Src is not palmitoylated, and therefore does not localize to the membrane 

domains containing both α6β4 and Fyn, and it is not activated by this integrin receptor 

[178]. My data confirms this hypothesis by demonstrating that in palmitoylation deficient 

Fyn overexpressing cells, not only the signaling events induced by ligating α6β4 integrin 

were blocked, but also the cells’ invasive ability (Fig. 3-8, 3-10). All of the SFKs are 

highly homologous to each other and share the same structure and same mechanism of 

activation [139]. To further confirm that differential lipid modification on the N-terminus 

is responsible for α6β4-dependent selectivity of Fyn activation, a mutant Src can be 

generated that is palmitoylated on its N-terminus. This mutant Src would be expected to 

be able to be recruited to the β4 signaling complex as we have observed for Fyn. Another 

strategy to test this hypothesis would be to perform an N-terminus domain-swapping 

experiment. A chimeric protein with the Fyn N-terminus and Src body and C-terminal tail 

should be expected to be recruited to the α6β4/SHP2 signaling complex in response to 

α6β4 engagement. Similar experiments have been carried out by the Giancotti lab 

showing that in 293T cells, α6β4 coimmunoprecipitates with Fyn, but not Src.  In 

contrast, mutation of the two cysteine residues required for palmitoylation (Fyn-C3, 6S) 

reduced the association of Fyn with α6β4 significantly. Moreover, when a chimeric 

protein comprising the N-terminus of Fyn with Src (Fyn1-13/ Src14-533) were expressed, 

the Fyn–Src chimera interaction with α6β4 increased greatly compared to Src [206]. 

Although these data were generated in 293T fibroblasts, which do not normally express 

α6β4 integrin endogenously, the data support the hypothesis that palmitoylation on the 
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Fyn N-terminus determines its colocalization with α6β4 integrin and its selective 

activation. In the same 293T system, they also reported that only the membrane proximal 

portion of the cytoplasmic domain of β4 (aa854–aa1183) is required for association with 

Fyn [206]. This is not what I have observed in my study. Firstly, in epithelial derived 

breast carcinoma cells, which endogenously express the α6β4 integrin, SHP2 functions to 

recruit Fyn to α6β4 (Fig. 2-1). Secondly, mutation of Y1440 and Y1494 in the β4 subunit 

diminishes the activation of Fyn suggesting that the membrane proximal portion of the 

cytoplasmic domain of β4 is not the only region essential in binding/activating Fyn (Fig 

2-6, B, C). 

To specify the exact contributions of distinct SFKs has been extremely difficult 

because all of the commercially available p-Y418 Src antibodies crossreact with at least 

activated Fyn and Yes. Some researchers even believe that these antibodies crossreact 

with all active SFKs [138]. This is the reason that some earlier work by our lab and other 

groups reported that Src is activated by the α6β4 integrin to promote cancer invasion [76, 

162]. When both constitutively active PI3K and Src are expressed in the Y1494F-β4 

mutant transfected cells, the invasive ability of these cells increased significantly [76]. 

This result is consistent with the fact that both Src and Fyn have a pro-invasion capacity 

[138, 140]. Treating WT-β4 expressing cells with both the PI3K inhibitor Ly294002, and 

the SFK inhibitor PP2, greatly reduced the cells’ invasive ability. PP2 is known to inhibit 

almost all SFKs including Src and Fyn [76]. Therefore, the α6β4-dependent  breast 

cancer invasion is through combined activation of PI3K and Fyn [43].  
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Both the α6β4 integrin and Fyn have been reported to be palmitoylate-modified 

on their N-termini [52, 87, 178]. The palmitoylated α6β4 integrin localization in cell 

surface microdomains has been under debate. Some researchers believe that 

palmitoylation modification is required for localizing α6β4 in lipid rafts where other 

palmitoylated signaling proteins, such as some G proteins, H-Ras and SFKs are 

concentrated [87]. Other researchers argue that the palmitoylated α6β4 doesn’t associate 

with lipid rafts at all, instead it incorporates into Tetraspanin enriched microdomains 

(TEMs) [52]. In either case, it seems that palmitoylation modification is essential for the 

α6β4 integrin to be relocalized on the cell surface with its targets to function properly. 

This has been substantiated by my data showing that palmitoylation deficient Fyn 

transfected cells lost not only their signaling function, but also their ability to promote 

cancer cell invasion in response to α6β4 engagement (Fig. 3-8; Fig. 3-10). Since Fyn can 

be both myristoylated and palmitoylated on its N-terminus, the palmitoylation deficient 

Fyn used in my study should still be recruited to the cell surface, but not into the same 

microdomain as α6β4. This underscores the importance of being localized in close 

vicinity for them to function properly [178-180].  

The cell surface laminin receptor α6β4, the cytosolic tyrosine phosphatase SHP2 

and the tyrosine kinase Fyn have all been implicated in tumor initiation and progression. 

Each of them makes an attractive cancer therapy target [38, 68, 110, 114, 120, 138]. In 

my current study, I have identified a novel mechanism for the SHP2-dependent activation 

of Fyn by α6β4 ligation. Blocking each step of the α6β4-SHP2-Fyn signaling axis 

inhibited the α6β4-dependent tumor invasion (Fig. 2-6, D; Fig. 3-9; Fig.3-10). This 
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implies that further studies on antibody mediated or chemical mediated blocking of this 

signaling pathway to inhibit cancer cell invasion are greatly needed. Of clinical relevance, 

phospho-Y580-SHP2 and phospho-Y418-SFKs are potential biomarkers of invasive 

breast cancer because their expression is elevated in high-grade breast tumors (Fig. 3-11, 

C, D).  
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Figure 4-1. Schematic of α6β4-SHP2-Fyn signaling  

In the “Inactive” state, the α6β4 integrin and Fyn are localized in proximity in the 
membrane through their palmitoylation. However, neither Fyn nor SHP2 are active 
because of intramolecular inhibitory interactions. Upon engagement of the α6β4 integrin 
with its ligand laminin (“Active” state), the β4 cytoplasmic domain is phosphorylated, 
which recruits SHP2 through an interaction of its C-SH2 domain with pY1440 and 
activates SHP2 catalytic activity through the interaction of its N-SH2 domain with 
pY1494.  Fyn is recruited to the complex and activated upon binding of its SH2 domain 
to pY580 in the SHP2 C-terminal domain.  Although SHP2 phosphatase activity is 
required for Fyn activation, the specific SHP2 substrates involved are unknown. The 
localized activation of this α6β4/SHP2/FYN signaling pathway promotes carcinoma 
invasion. The selective activation of Fyn over Src is due to colocalization of pamitoylated 
α6β4 integrin and Fyn. Black star symbol, phosphorylation event. 
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Figure 4-2. 3D invasion assay of β4 mutant cells 

Representative images captured at 20X magnification of MDA-MB-435 cells transfected 
with the indicated β4 mutant constructs for 10 days in 3D Matrigel culture. 
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