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ABSTRACT 

 

The yeast SWI/SNF complex is the prototype of a subfamily of ATP-dependent 

chromatin remodeling complexes. It consists of eleven stoichiometric subunits including 

Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and 

Swp29p, with a molecular weight of 1.14 mega Daltons. Swi2p/Snf2p, the catalytic 

subunit of SWI/SNF, is evolutionally conserved from yeast to human cells. Genetic 

evidence suggests that SWI/SNF is required for the transcriptional regulation of a subset 

of genes, especially inducible genes. SWI/SNF can be recruited to target promotors by 

gene specific activators, and in some cases, SWI/SNF facilitates activator binding. 

Biochemical studies have demonstrated that purified SWI/SNF complex can hydrolyze 

ATP, and it can use the energy from ATP hydrolysis to generate superhelical torsion, 

mobilize mononucleosomes, enhance the accessibility of endonucleases to nucleosomal 

DNA, displace H2A/H2B dimers, induce dinucleosome and altosome formation, or evict 

nucleosomes. A human homolog of Swi2p/Snf2p, BRG1, is the catalytic subunit of the 

human SWI/SNF complex. Interestingly, isolated BRG1 alone is able to remodel a 

mononucleosome substrate. Importantly, mutations in mammalian SWI/SNF core 

subunits are implicated in tumorigenesis. Therefore, it remains interesting to 

characterize the role(s) of each subunit for SWI/SNF function. In this thesis project, I 

dissected SWI/SNF chromatin remodeling function by investigating the role of the SANT 

domain of the Swi3p subunit. Swi3p is one of the core components of SWI/SNF 

complex, and it contains an uncharacterized SANT domain that has been found in many 

chromatin regulatory proteins. Earlier studies suggested that the SANT domain of Ada2p 
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may serve as the histone tail recognition module. For Swi3p, a small deletion of eleven 

amino acids from the SANT domain caused a growth phenotype similar to that of other 

swi/snf mutants.  

In chapter I, I have reviewed recent findings in the function of chromatin 

remodeling complexes and discuss the molecular mechanism of their action.  

In chapter II, I characterized the role of the SANT domain of Swi3p. I found that 

deletion of the SANT domain caused a defect in a genome-wide transcriptional profile, 

SWI/SNF recruitment, and more interestingly impairment of the SANT domain caused 

the dissociation of SWI/SNF into several subcomplexes: 1) Swi2p/Arp7p/Arp9p, 2) 

Swi3p/Swp73p/Snf6p, 3) Snf5p, and 4) Swi1p. Artificial tethering of SWI/SNF onto a 

LacZ reporter promoter failed to activate the reporter gene in the absence of the SANT 

domain, although Swi2p can be recruited to the LacZ promoter. We thus demonstrated 

that the Swi3p SANT domain is critical for Swi3p function and serves as a protein 

scaffold to integrate these subcomplexes into an intact SWI/SNF complex. 

In Chapter III, I first characterized the enzymatic activity of the subcomplexes, 

especially the minimal complex of Swi2p/Arp7p/Arp9p. We found that this minimal 

subcomplex is fully functional for chromatin remodeling in assays including cruciform 

formation, restriction enzyme accessibility in mononucleosomal and nucleosomal array 

substrates, and mononucleosome mobility shift. However, it is defective in ATP-

dependent removal of H2A/H2B dimers. Moreover, we found that Swi3p and the N-

terminal acidic domain of Swi3p strongly interact with GST-H2A and H2B but not GST-

H3 or H4 tails. We purified a SWI/SNF mutant (SWI/SNF-∆2N) that lacks 200 amino 

acids within the N-terminal acidic domain of Swi3p. Intriguingly, SWI/SNF-∆2N failed to 
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catalyze ATP-dependent dimer loss, although this mutant SWI/SNF contains all the 

subunits and has intact ATP-dependent activity in enhancing restriction enzyme 

accessibility. These data help to further understand the molecular mechanism of 

SWI/SNF, and show that H2A/H2B dimer loss is not an obligatory consequence of ATP-

dependent DNA translocation, but requires the histone chaperone function of the Swi3p 

subunit. Based on these findings, we proposed a new model of the structural and 

functional organization of the SWI/SNF chromatin remodeling machinery: SWI/SNF 

contains at least four distinct modules that function at distinct stages of the chromatin 

remodeling process. 1) Swi1p and Snf5p modules directly interact with gene specific 

activators and function as the recruiter; 2) Swi2p/Arp7p/Arp9p generates energy from 

ATP hydrolysis and disrupts histone/DNA interactions; and 3) Swi3p/Swp73p/Snf6p may 

play dual roles by integrating each module into a large remodeling complex, as well as 

functioning as a histone H2A/H2B chaperone to remove dimers from remodeled 

nucleosomes.  

Chapter IV is a perspective from current work in this project. I first discuss the 

interest in further characterizing the essential role of Snf6p, based on its activation of 

LacZ reporter on its own. Using in vitro translated protein and co-IP studies, I tried to 

pinpoint the requirement of the SANT domain for SWI/SNF assembly. I found that Swi3p 

directly interacts with Swp73p, but not with other subunits. When Swi3p is first incubated 

with Swp73p, Swi3p also interacts with Snf6p, indicating that Swi3p indirectly interacts 

with Snf6p, therefore forming a subcomplex of Swi3p/Swp73p/Snf6p. This subcomplex 

can also be reconstituted using in vitro co-translation. Consistent with the TAP 

preparation of this subcomplex, partial deletion of the SANT domain of Swi3p does not 
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affect the assembly of Swi3p/Swp73p/Snf6p in vitro. However, the assembly of SWI/SNF 

complex was not detected in the presence of eight essential in vitro translated subunits 

or from co-translation of all the subunits. I have discussed the interest in further 

characterizing the histone chaperone role of the Swi3p N-terminal acidic domain and the 

role of other core subunits of SWI/SNF such as Snf6p for transcriptional regulation.  
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CHAPTER I 

 
GENERAL INTRODUCTION 

 

           Eukaryotic genomes are organized into chromatin within nuclei. The fundamental 

repeating unit of chromatin known as the nucleosome consists of ~147 bp of DNA 

wrapped around a histone octamer. Conventionally, nucleosomal assembly is initiated 

by the association of histone (H3/H4)2 tetramer with DNA after replication, followed by 

the association of one H2A/H2B dimer on each side of the tetramer (Arents, et al., 1991; 

Hansen, et al., 1991; Luger, et al., 1997a; Smith and Peterson, 2005a). High-resolution 

X-ray crystal structure of the canonical nucleosome indicates that histone-DNA 

interactions occur every 10 bp on each DNA strand and DNA-histone interaction clusters 

stabilize the structure of nucleosome. Importantly, all histone amino-termini, and in case 

of H2A, the carboxyl-terminus, protrude out of the globular region of histone octamer 

(Hayes, et al., 1991; Luger, et al., 1997a). These histone “tails” are critical for chromatin 

condensation since “tailless” histone octamers assembled on 5S nucleosomal array 

showed a chromatin condensation defect in vitro (Carruthers and Hansen, 2000). In the 

presence of linker histones, as well as through internucleosomal interactions or 

interactions with non-histone proteins, chromatin is further condensed into higher order 

chromatin fibers (Hansen, 2002) (Figure 1). Obviously, the condensation of chromatin 

creates a relatively inaccessible environment for the binding of regulatory proteins to the 

DNA template.   
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           The dynamics of the chromatin structure plays an important role in regulating 

gene expression and other DNA-dependent nuclear processes such as DNA replication, 

homologous recombination, and DNA double strand break (DSB) repair (Horn and 

Peterson, 2002). In the past decade, compelling evidence supports that two major 

classes of chromatin modifying complexes are capable of manipulating chromatin 

configuration. The first class of remodeling enzymes catalyzes posttranslational 

modifications at the histone tails through acetylation, methylation, phosphorylation, 

ubiquitination, sumolation and ADP-ribosylation (Jenuwein and Allis, 2001; Strahl and 

Allis, 2000; van Attikum and Gasser, 2005). Among these modifications, histone 

acetylation catalyzed by histone acetyltransferases (HATs) and methylation catalyzed by 

histone methyltransferases have been extensively documented. Histone acetylation 

occurs at positively charged lysine residues, which not only neutralizes the overall 

charge of histones, but also creates signals and binding sites for other regulatory factors 

such as bromodomain-containing factors (Hassan, et al., 2001). The overall histone 

acetylation level maintained by the opposing effects of histone acetyltransferase and 

histone deacetylase (HDAC) enzymes has been implicated in transcriptional activation 

or repression for many genes. Lysine acetylation not only acts at a local chromatin, but 

also influences the global chromatin structure. Generally, histone hyperacetylation is 

linked to euchromatin formation and transcriptional activation. Using analytical 

centrifugation, Shogren-Knaak et al recently showed that uniformly acetylated 

nucleosome arrays at H4 lysine 16 (H4K16) inhibited the formation of 30-nanometer-like 

condensed chromatin fibers, reflecting a role of H4K16 acetylation in chromatin 

decondensation in vivo (Shogren-Knaak, et al., 2006). In contrast, histone 
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hypoacetylation is often associated with heterochromatin regions and generally reflects 

transcriptional repression. Histone methylation had been regarded as an irreversible 

posttranslational modification that regulates both chromatin structure and epigenetic 

memory until several histone demethylases were discovered recently (Wysocka, et al., 

2005). Histone tails that are mono-, di- or tri-methylated at different lysine residues have 

been implicated in many biological processes such as heterochromatin formation, X 

chromosome inactivation, genomic imprinting and transcriptional regulation (Habu, et al., 

2006; Imhof, 2006). Histone phosphorylation at a C-terminal serine residue of H2A is 

believed to signal DNA damage and regulate DNA repair after double strand breaks 

(Morrison, et al., 2004). Taken together, histone tail modifications have been linked to 

many cellular processes involved in physiological or pathological process including 

malignancy (Jenuwein and Allis, 2001). Histone modifications within the globular region 

of histones have emerged to be an important aspect in regulating both chromatin 

structure and cellular function (Feng, et al., 2002; Han, et al., 2007; van Leeuwen, et al., 

2002). More importantly, HDAC inhibitors have been applied to develop new cancer and 

anti-parasitic chemotherapeutics (Marks and Dokmanovic, 2005; Ouaissi and Ouaissi, 

2006).  
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Figure 1. Organization of eukaryotic chromatin fibers. The fundamental unit of 

chromatin is defined as nucleosome that forms the “beads-on-a-string” chromatin 

structure. Internucleosomal interactions, linker histones and non-histone proteins 

mediate the further condensation of chromatin into 30nm fibers and higher order 

structures. Adapted from (Hansen, 2002).  
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           The second class of enzymes is known as the ATP-dependent chromatin 

remodeling complexes, which use the energy from ATP hydrolysis to change chromatin 

structure (Smith and Peterson, 2005a). Yeast SWI/SNF is the first characterized 

enzyme, originally identified from genetic screens in the budding yeast Saccharomyces 

cerevisiae as a positive regulator for the HO gene responsible for mating type switching 

(SWI), and for the SUC2 gene responsible for sucrose fermentation (Sucrose Non-

Fermenter, SNF) (Neigeborn and Carlson, 1984; Stern, et al., 1984). Each of these 

multiprotein complexes contains a helicase-like ATPase subunit that belongs to the 

helicase superfamily 2 (SF2 helicase), and is evolutionarily conserved from yeast 

(Cairns, et al., 1996c; Cote, et al., 1994) to Drosophila (Papoulas, et al., 1998), mouse, 

and human cells (Imbalzano, et al., 1994; Kwon, et al., 1994). All the ATP-dependent 

chromatin remodeling complexes possess intrinsic DNA and/or nucleosome stimulated 

ATPase activity in vitro, although they do not exhibit DNA helicase activity that catalyzes 

the separation of DNA strands (Cote, et al., 1994). Interestingly, a single amino acid 

change in the helicase-like motifs is sufficient to abolish the ATPase activity and function 

of all ATP-dependent chromatin remodeling enzymes, indicating that the ATPase activity 

is essential for the enzymatic function of these proteins. Based on the homology of the 

ATPase domain of each enzyme, the ATP-dependent chromatin remodeling complexes 

are further divided into several subclasses including SWI2/SNF2, ISWI, Mi-2/CHD, and 

INO80/SWR1 (Smith and Peterson, 2005a). 

           In recent years, tremendous work has been done to understand the function(s) 

and molecular mechanisms of the ATP-dependent chromatin remodeling complexes in 

the context of transcription, DNA replication, recombination, DNA repair (Osley, et al., 
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2007), and incorporation of histone variants (Henikoff, et al., 2004; McKittrick, et al., 

2004). However, many fundamental questions remain. For instance, how do these 

enzymes recognize their targets in vivo? How do they make the nucleosomal DNA more 

accessible to other regulatory factors? How does each subunit contribute to the function 

of chromatin remodeling machinery in vivo? Due to the association of chromatin 

remodeling with tumorigenesis (Biegel, et al., 2002; Isakoff, et al., 2005; Roberts, et al., 

2002; Sansam and Roberts, 2006), it becomes extremely important to investigate the 

function of individual genes that encode the subunits of each complex and the 

mechanism(s) of their action. In this chapter, I will outline recent findings on the 

function(s) of each subclass of the ATP-dependent chromatin remodeling enzymes in 

transcriptional regulation and discuss the molecular mechanisms, with an emphasis on 

the SWI/SNF subclass.  
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Functions of ATP-dependent chromatin remodeling complexes 

 

SWI/SNF subclass 

 

           Swi2/Snf2 family members include yeast SWI/SNF (ySWI/SNF) (Cote, et al., 

1994), RSC complexes (Cairns, et al., 1996c), Drosophila BRM-containing complexes 

(Dingwall, et al., 1995), and human SWI/SNF complexes (hSWI/SNF) that contain either 

BRG1 or hBRM as the catalytic subunit (Imbalzano, et al., 1994; Kwon, et al., 1994). 

Except for the highly homologous ATPase domain, each catalytic subunit also contains a 

C-terminal bromodomain that has been proposed to bind acetylated histone tails (Zeng 

and Zhou, 2002). Another feature of this subclass of ATP-dependent chromatin 

remodeling enzymes is that each enzyme is purified as a multiprotein complex that 

contains 8-15 stoichiometric subunits.  

           Yeast SWI/SNF complex is one of the most intensely studied ATP-dependent 

chromatin remodeling enzymes. It consists of eleven stoichiometric subunits including 

Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and 

Swp29p, with a molecular weight of 1.14 mega Dalton (Cairns, et al., 1996a; Cairns, et 

al., 1994; Cairns, et al., 1996b; Cote, et al., 1994; Peterson, et al., 1994; Smith, et al., 

2003; Treich, et al., 1995). Although the catalytic subunit of ySWI/SNF, Swi2p/Snf2p, 

has low abundance and is nonessential for cell viability, yeast SWI/SNF is important for 

transcriptional activation or repression of ~5% of yeast genes, including some inducible 

genes (Holstege, et al., 1998a). Several core subunits such as Swi2p, Swi1p, Swi3p, 

Snf5p, Swp73p, Snf6p, and actin-related proteins (Arp7p and Arp9p) are essential for 
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the function of ySWI/SNF in vivo, and are highly conserved among different species 

except for Snf6p (Mohrmann and Verrijzer, 2005) (Table 1). In contrast, other members 

of this subfamily such as yeast Sth1p, the ATPase subunit of yeast RSC complexes 

(Cairns, et al., 1996c), Drosophila BRM and human BRG1 are more abundant and 

essential for cell viability or development. Mammalian SWI/SNF also plays an essential 

role in regulating nuclear receptor function and cell growth, and mutations in BRG1, 

hBRM and hSNF5/INI1 have been implicated in cancer development (Bochar, et al., 

2000; Bultman, et al., 2000; Muchardt and Yaniv, 1999; Roberts, et al., 2002; Versteege, 

et al., 1998; Wong, et al., 2000).   

           Purified SWI/SNF complexes possess ATPase activity that is stimulated by both 

free DNA and nucleosomal DNA in vitro (Cote, et al., 1994; Kwon, et al., 1994). Although 

Swi2p/Snf2p forms a multiprotein complex in vivo, purified recombinant yeast 

Swi2p/Snf2p alone (Laurent, et al., 1993) and isolated human Snf2 (BRG1 or hBRM) 

(Phelan, et al., 1999) have ATPase activity in vitro. Interestingly, BRG1 and hBRM are 

capable of remodeling mononucleosome and nucleosomal arrays in a way similar to that 

of intact complex in vitro (Phelan, et al., 2000), although adding human Snf5 (INI1) and 

human Swi3 (BAF170/BAF155) can fully recover BRG1 activity to the level of the intact 

hSWI/SNF complex (Phelan, et al., 2000; Phelan, et al., 1999). Recombinant BRG1 and 

BAF155 (human Swi3 homolog) was also sufficient to activate EKLF activator-

dependent transcription in vitro (Kadam, et al., 2000). Taken together, the fact that the 

ATPase subunit is competent for chromatin remodeling by itself further suggests that the 

ATPase subunit is fundamental for the function of ATP-dependent chromatin remodeling 
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complex. Meanwhile, it raised the question on the precise role(s) of other subunits for 

the function of chromatin remodeling machinery in vivo.  

           One favored explanation is that non-catalytic subunits of the complex may play a 

role at a different step during transcriptional regulation in vivo (Narlikar, et al., 2002; 

Peterson, 1998), since the chromatin remodeling complexes not only act on a chromatin 

substrate, but are also required in concert with other regulatory factors during 

transcriptional activation. For instance, some components may be involved in mediating 

the binding of additional factors upstream or downstream of the chromatin remodeling 

process. In fact, biochemical studies have shown that purified yeast SWI/SNF interacts 

with several acidic activators, such as Gal4-VP16, Swi5p, Gcn4p and Hap4p (Neely, et 

al., 2002). It is believed that these interactions are mediated by partially redundant 

activity of Swi1p and Snf5p subunits (Neely, et al., 2002; Prochasson, et al., 2003). Far-

Western and GST-pull down analyses have detected the physical interaction between 

these activators and Swi1p, Swi2p, or Snf5p subunits in vitro. These observations have 

led to the recruiting model in which Swi1p and Snf5p subunits play a role in recruiting 

SWI/SNF to target promoters via direct interaction with gene-specific activators in vivo 

(Kadam, et al., 2000; Peterson and Workman, 2000; Yudkovsky, et al., 1999). In 

addition, acetylated histone tails may also recruit or stabilize SWI/SNF through the C-

terminal bromodomain of Swi2p (Hassan, et al., 2002; Zeng and Zhou, 2002). This 

recruiting model is supported by in vivo chromatin immunoprecipitation (ChIP) data 

showing that the recruitment of yeast SWI/SNF to the HO promoter depends on the 

specific activator Swi5p (Krebs, et al., 2000). In contrast, Martens and colleagues have 

shown that transcriptional activation of yeast SER3 regulatory gene 1 (SRG1) depends 
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largely on Swi2p, and deletion of other subunits of SWI/SNF does not affect SRG1 

transcriptional level (Martens and Winston, 2002; Martens, et al., 2005), probably due to 

the direct recruitment of Swi2p by an activator Cha4p. This result supports the notion 

that the recruitment of SWI/SNF by Swi1p or Snf5p may be redundant at some 

promoters when the activators directly interact with Swi2p. All these observations 

suggest that Swi2p/Snf2p may need different subunits that function at distinct steps in 

vivo, although the precise role of the majority of subunits are largely unknown. 

           Another interesting feature of the SWI/SNF subclass is that actin and actin-

related proteins (Arp) are stoichiometric components of each of the family members 

(Cairns, et al., 1998), although their role for chromatin remodeling is not fully understood 

(Boyer and Peterson, 2000; Olave, et al., 2002). Arp7p and Arp9p are shared by both 

yeast SWI/SNF and RSC complexes (Cairns, et al., 1996c), and both are essential for 

cell survival. Human SWI/SNF complex has one β-actin and one ARP (BAF53). 

Drosophila BRM-containing complexes, BAP and PBAP, also contain a conventional 

actin (BAP47) and an ARP (BAP55). Strikingly, these actin and ARPs are tightly 

associated with the catalytic subunits of each complex. For example, the association of 

actin and BAF53 with BRG1 is so strong that they can only be separated under urea-

denaturing conditions (Zhao, et al., 1998). A mutagenesis study in yeast suggested that 

actin and ARPs might directly interact with the N-terminus of the Swi2p ATPase subunit. 

Conditional viable ARP mutant analysis showed that Arp7p and Arp9p are not required 

for the assembly or enzymatic activity of RSC complex, although they might form a 

heterodimer in the complex (Szerlong, et al., 2003). In contrast, human BRG1 ATPase 

activity was inhibited by an actin-monomer inhibitor, Latrunculin B, and physical 
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association of actin and BAF53 with BRG1 appears to be required for optimal ATPase 

activity of BRG1 (Zhao, et al., 1998). Collectively, the direct interaction between actin 

and ARPs and the catalytic subunits reflects the importance of nuclear actin and ARPs 

for chromatin remodeling activity coupled with ATP hydrolysis, although further 

investigation is needed to understand the general role of actin and Arps for the function 

of this subclass of chromatin remodeling complex in vivo.  

 
 
    Table 1. Composition of SWI/SNF subclass of chromatin remodelers 
 

        
        Adapted from ref. (Mohrmann and Verrijzer, 2005). Conserved subunits are highlighted.  
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           Yeast SWI3 gene encodes one of the core subunits of SWI/SNF complex, 

although the precise role of Swi3p has not been fully characterized. It is known that 

Swi3p is essential for SWI/SNF function in vivo, since deletion of Swi3p caused severe 

swi/snf mutant phenotypes. Secondary structure prediction suggests that Swi3p contains 

several characteristic domains, including the N-terminal acidic domain, SWIRM domain, 

and a C-terminal SANT domain followed by a leucine zipper domain. Each SWI/SNF 

complex has two copies of Swi3p that may dimerize through its C-terminal leucine zipper 

domain (Smith, et al., 2003). The N-terminal acidic domain of Swi3p consists of 25% 

negatively charged glutamic acid and aspartic acid, a feature commonly found in histone 

chaperones. Recent study suggested that the SWIRM domain seems to bind both DNA 

and nucleosome in vitro, and may be important for the stability of Swi3p protein as well 

as the integrity of SWI/SNF complex (Aravind and Iyer, 2002; Da, et al., 2006).              

           The SANT domain of Swi3p is a module consisting of approximate 50 amino 

acids originally found in Swi3, Ada2, nuclear hormone receptor corepressor NcoR, and 

transcription factor TFIIIb, based on the sequence homology to the c-myb DNA binding 

domain (DBD) (Aasland, et al., 1996). However, the SANT domain does not seem to 

bind DNA. Instead, recent studies from the SANT domain of Ada2p, Swi3p and Rsc8p 

suggested that the SANT domain may serve as a histone tail recognition module that 

facilitates nucleosomal substrate binding (Boyer, et al., 2002; Boyer, et al., 2004). In 

Saccharomyces cerevisiae, the SANT domain of Ada2p is essential for the histone 

acetyltransferase (HAT) activity of Gcn5-containing SAGA complex and GST-H3 tail 

binding (Boyer, et al., 2002). Sterner et al also found that deletion of the C-terminal half 

or the SANT domain of yeast Ada2p resulted in the disassembly of SAGA complex, 



 13

probably due to abolishing Ada2p-Ada3p interaction (Sterner, et al., 2002). In contrast, 

the N-terminal half of Ada2p SANT domain is not required for SAGA complex integrity, 

but deletion significantly impaired the Gcn5p HAT activity (Sterner, et al., 2002). In 

mammalian cells, two tandem repeats of the SANT domain have been identified in 

nuclear hormone receptor corepressors NcoR, SMRT and CoREST. The N-terminal 

SANT domain of SMRT is required for histone deacetylase enzymatic activity, while the 

C-terminal SANT is important for unacetylated histone interaction (Yu, et al., 2003). In 

the case of Drosophila ISWI, a SANT and a SANT-like domain (SLIDE) are found at its 

C-terminal region. Recent X-ray crystallography showed that there is an overall negative 

charge on the surface of the helices of ISWI SANT domain, supporting the hypothesis 

that this SANT domain may be a candidate for interaction with positively charged histone 

tails (Grune, et al., 2003). In contrast, the SLIDE domain of ISWI seems to have DNA 

binding properties and is required for both the ATPase activity and nucleosome sliding 

activity of ISWI (Grune, et al., 2003). Collectively, SANT domains may in general 

mediate protein-protein interactions important for large protein complex assembly, and 

histone tail interactions to coordinate binding and the core enzymatic activity of 

chromatin remodeling complexes (Boyer, et al., 2004).  

           Yeast Swp82p, Snf6p, Swp29p and Snf11p subunits are not conserved in higher 

eukaryotes, and their function for chromatin remodeling is less clear. Genetic evidence 

supports that Swp73p and Snf6p also play critical roles for SWI/SNF function (Cairns, et 

al., 1996b; Laurent and Carlson, 1992). Although Swp82p, Swp29p and Snf11p are 

stoichiometric subunits of SWI/SNF complex, deletion of these subunits does not cause 

any swi/snf phenotypes (Cairns, et al., 1996a; Treich, et al., 1995; Wilson, et al., 2006). 
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Another interesting observation is that  mutation in transcription elongation factor Spt6p 

suppressed the requirement of SNF2 and SNF5 but not SNF6 (Laurent, et al., 1991), 

suggesting that Snf6p may have other functions beyond SWI/SNF chromatin 

remodeling.  

           One extremely interesting aspect of the chromatin remodeling field rises from 

recent observations that mutations of core components of mammalian SWI/SNF such as 

hSWI2/BRG1, hSNF5/INI1, hSWI3/BAF155, BAF180 or BAF250 are found in human 

cancer cell lines or various primary cancers (DeCristofaro, et al., 1999; Roberts and 

Orkin, 2004). SNF5 (INI1) is essential for the early embryonic development of mice, and 

heterozygosity of INI1 predisposed mice to aggressive rhabdoid cancers, indicating a 

critical role of hSNF5/INI1 involved in early development and tumor suppression in vivo 

(Klochendler-Yeivin, et al., 2002; Roberts, et al., 2000). Interestingly, human SWI/SNF 

also forms a repressor complex with the tumor suppressor Rb, SIN3, and HDAC during 

G1 phase, and represses genes that regulate G1-S transition (Kuzmichev, et al., 2002). 

In addition, the tumor suppressor BRCA1 is associated with the hSWI/SNF complex 

(Bochar, et al., 2000), and the c-Myc oncogene product physically interacts with 

hSNF5/Ini1 both in vitro and in vivo (Cheng, et al., 1999). Surprisingly, loss of 

heterozygosity of BRG1 is less common than that of INI1, and the tumors developed 

from mutations of BRG1 are different from those from hSNF5 mutation, indicating that 

hSNF5 might also play other roles independent of hSWI/SNF complex. Collectively, 

more investigation is required to fully understand the role(s) of each subunit for the 

function of SWI/SNF and how they coordinate with each other during transcriptional 
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regulation or other cellular processes. These findings may ultimately provide information 

to guide new strategies for designing cancer chemotherapeutics. 

  

ISWI subclass 

 

           Drosophila ISWI (Imitation SWItch) is the founding member of ISWI subclass 

identified based on the homology of its ATPase domain to that of BRM. In addition to the 

ATPase domain, each Iswi-like ATPase subunit contains two SANT domains that may 

play a role in histone tail binding discussed above. In contrast to SWI/SNF, the majority 

of known ISWI family members are relatively small complexes that contain only 2-4 

subunits found in Drosophila, yeast, Xenopus, mice, and human cells (Dirscherl and 

Krebs, 2004). One exception is the human SNF2H/NuRD/cohesion complex, which has 

over ten subunits, including subunits of NURD and cohesion complexes (Hakimi, et al., 

2002). None of the ISWI-containing complexes contain actin or ARPs. 

           Another characteristic of the ISWI subclass is the presence of multiple ISWI-

containing complexes in all species (listed in Table 2). Drosophila ISWI is found in three 

complexes including ACF (ATP-dependent chromatin assembly and remodeling factor), 

NURF (Nucleosome remodeling factor), and CHRAC (Chromatin accessibility complex), 

which are differentiated by the existence of other subunits. Yeast has two ISWI-related 

genes, ISWI1 and ISWI2, which encode the ATPase subunits of at least four different 

complexes, including ISW1a, ISW1b, ISW2, and yCHRAC. Xenopus ISWI is present in 

at least four ISWI complexes including xACF, xWICH, xCHRAC, and xISWI-A. Human 

ISWI-like ATPases, SNF2H and SNF2L share 86% sequence homology, and hSNF2H 
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protein has 73% of its amino acids identical to that of Drosophila ISWI (Aihara, et al., 

1998). Human ISWI-like complexes include SNF2H-containing hACF, WICH, hCHRAC, 

RSF, and SNF2H/NURD/cohesion, and SNF2L-containg hNURF complex (Dirscherl and 

Krebs, 2004).  

           The various ISWI-containing complexes show functional diversity in vivo 

(summarized in Table 2). Drosophila ISWI-containing NURF complex was first purified 

from Drosophila embryo extracts, and functions as a positive transcription factor at the 

heat shock protein 70 (Hsp70) promoter. The largest subunit of NURF, named 

NURF301, is required for the expression of homeotic genes (Badenhorst, et al., 2002; 

Tsukiyama, et al., 1995; Tsukiyama and Wu, 1995). Deuring and colleagues found that 

deletion of Drosophila ISWI caused global decondensation of male X-chromosome, 

suggesting a role of ISWI in X-chromosome structural maintenance (Deuring, et al., 

2000). A null mutation of Drosophila ISWI also caused the loss of germline stem cells, 

indicating that ISWI also plays a role in stem cell self-renewal (Xi and Xie, 2005).  

           Yeast ISWI-containing complexes are mainly involved in transcriptional 

repression. ISW1a complex appears to repress transcription at the initiation stage, 

whereas ISW1b may play a role in transcriptional elongation and termination by delaying 

RNA polymerase II release (Morillon, et al., 2005; Morillon, et al., 2003). Yeast ISW2 

complex represses transcription of early meiotic genes that depend on Ume6, which 

recruits the complex to target promoters (Goldmark, et al., 2000). In addition, DNA 

microarray analysis suggests that a yeast isw2p mutation also caused transcriptional 

derepression of many Ume6-independent genes, and probably functions in parallel with 

Sin3-Rpd3 histone deacetylase complex (Fazzio, et al., 2001). Recently, the Tsukiyama 
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group used a catalytically inactive mutant of Isw2p (K215R) to identify genome-wide 

ISW2-targeting sites and found that Isw2p also regulates tRNA genes (tDNAs). Loss of 

Isw2p disrupted the periodic pattern of Ty1 integration upstream of tDNAs, but did not 

affect transcription of tDNAs or the associated Ty1 retrotransposons (Gelbart, et al., 

2005). 

           A study by Collins and colleagues showed that depletion of human ACF1 by RNAi 

or an ACF1 mutation that interferes with the association of SNF2H impaired DNA 

replication of pericentric heterochromatin (Collins, et al., 2002). Human SNF2H and 

Williams syndrome transcription factor (WSTF) form human WICH complex that is 

recruited to the replication foci by the DNA clamp PCNA to maintain chromatin structure 

after DNA replication. RNAi-mediated depletion of WSTF or SNF2H caused abnormal 

heterochromatin formation on newly synthesized DNA (Poot, et al., 2004). Recent 

studies also showed that human SNF2H forms a nucleolar remodeling complex (NoRC) 

with bromodomain-containing protein Tip5 (TTF-I-interacting protein 5), and plays an 

important role in repressing the rDNA promoter through heterochromatin formation 

(Strohner, et al., 2001; Zhou and Grummt, 2005). Interestingly, hSNF2H co-purified and 

co-localized with cohesin and NuRD, a Mi-2/HDAC containing complex, which provides 

an example of interplay between chromatin remodeling complexes under certain 

circumstances. Human SNF2H physically interacts with human RAD21, a subunit of 

cohesin complex, suggesting a role of human ISWI in regulating sister chromatid 

cohesion and segregation (Hakimi, et al., 2002). Human NURF complex is the hSNF2L-

containing human ortholog of Drosophila NURF. Like dNURF, human NURF is also 

involved in transcriptional activation of genes, especially those involved in neuronal 
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development (Barak, et al., 2003). Taken together, the presence of multiple forms of 

ISWI-containing complexes in each organism reveals the abundance and functional 

diversity of this subclass of ATP-dependent chromatin remodeling complexes.   

           Like Swi2p/Snf2p, ISWI alone has chromatin remodeling activity (Corona, et al., 

1999) and is also able to catalyze nucleosome “sliding” in vitro (Clapier, et al., 2001). 

The role of other co-existing subunits is likely to coordinate the catalytic activity of ISWI 

during chromatin remodeling. For instance, the optimal ATPase activity and nucleosome 

sliding activity of Drosophila ISWI-containing NURF complex requires the presence of 

the largest subunit, NURF301 in vitro (Xiao, et al., 2001). Eberharter et al. also showed 

that the ACF1 subunit of the ACF complex binds the nucleosomal substrate and 

significantly stimulates the nucleosomal mobility activity of ISWI in vitro (Eberharter, et 

al., 2004). In addition, p14 and p16 subunits of CHRAC complex appear to form a 

heterodimer that transiently binds DNA to facilitate the nucleosomal sliding process 

(Eberharter, et al., 2001). As mentioned above, deletion or mutations of non-catalytic 

subunits that abolish the interaction with ISWI-like ATPase subunit also impair the in vivo 

function of the ISWI complex.          
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Table 2. Functional diversity of ISWI-subclass in different organisms 

Organisms       Complex                       No. of subunits                In vivo function(s) 

Drosophila        dACF                                   2                  nucleosome assembly, spacing             

                         dCHRAC                              4                  nucleosome assembly, spacing       

                         dNURF                                 4                  transcription activation 

 

Yeast                yISWI1a                               2                  transcription repression 

                         yISWI1b                               3                  transcription elongation, termination 

                         yISWI2                                 2                  transcription repression, “sliding” 

                         yCHRAC                              4                  heterochromatin structure 

 

Human              hACF                                   2                  nucleosome assembly, spacing 

                          hCHRAC                             4                  nucleosome assembly, spacing   

                          hWICH                                2                  heterochromatin replication, transcription 

                          hNoRC                                2                  rDNA silencing 

                          hRSF                                   2                 nucleosome assembly, spacing 

                          hSNF2H/NuRD/cohesion   10+              sister chromatid cohesion 

                          hNURF                                4                 transcription activation 

 

Xenopus            xACF                                   3                 nucleosome assembly, spacing 

                          xCHRAC                              5                 nucleosome assembly, spacing 

                          xWICH                                 2                 heterochromatin replication, transcription 

 Modified from ref. (Dirscherl and Krebs, 2004) 
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Mi-2/CHD subclass  

 

           The Mi-2/CHD ATPase subunit contains one or two chromodomains, a helicase 

domain, and a DNA binding domain. Unlike the chromodomain of heterochromatin 

protein 1 (HP1), dMi-2 chromodomain seems to bind DNA rather than methylated 

histone tails, and is essential for Mi-2 ATPase activity (Bouazoune, et al., 2002). CHD 

family members are also conserved in different organisms. In general, this subclass of 

ATP-dependent chromatin remodeling enzymes possesses both ATPase and histone 

deacetylase enzymatic activities (Tong, et al., 1998). The Xenopus Mi-2 complex 

contains the key deacetylase subunits Rpd3 and RbAp48/p46, and a substoichiometric 

amount of Sin3 (Wade, et al., 1998), suggesting a role of this complex involved in 

transcriptional repression. The human Mi-2 complex NuRD contains Mi-2β, an 

autoantigen associated with dermatomyositis, and MTA-2 that may be involved in cancer 

metastasis. Histone deacetylases, HDAC1 and HDAC2, which are components of Sin3 

corepressor complexes, are also components of human Mi-2 complex (Xue, et al., 1998; 

Zhang, et al., 1998). In addition, both human and Xenopus Mi-2 containing complexes 

contain putative methylated CpG-binding proteins (MBD family), which are also linked to 

transcriptional repression by recruiting HDACs (Wade, et al., 1999). Drosophila Mi-2 

complex has similar composition to that of vertebrate NuRD complexes, and interacts 

with several transcriptional repressors. In addition, fission yeast Saccharomyces pombe 

Chd1 homolog, Hrp1, is required for transcriptional termination either alone or in 

redundancy with Iswi1 and Iswi2 (Alen, et al., 2002).  
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INO80/SWR1 subclass  

 

           The INO80 and SWR1 complexes are a recently characterized subclass of ATP-

dependent chromatin remodeling enzymes in budding yeast (Mizuguchi, et al., 2004; 

Morrison, et al., 2004; Shen, et al., 2000). More recently, a similar multiprotein complex 

has been purified from mammalian cells that shares 8 subunits with the yeast INO80 

complex (Jin, et al., 2005b). Like SWI/SNF, INO80 and SWR1 are also multiprotein 

complexes consisting of 11-14 subunits. Interestingly, the SWR1 complex shares six 

subunits with INO80 and with the NuA4 histone acetyltransferase complex, providing 

another link between different subclasses of chromatin remodeling complexes (Kobor, et 

al., 2004). Another similarity to SWI/SNF subclass is that both INO80 and SWR1 

complexes contain Arps and actin. Yeast INO80 contains actin, Arp4p, Arp5p and Arp8p, 

while SWR1 has actin, Arp4p and Arp6p. Actin and Arp4p are required for yeast survival, 

whereas deletion of Arp5p and Arp8p are viable but lose INO80 function (Shen, et al., 

2003). Both Arp5p and Arp8p are important for the ATPase activity and chromatin 

remodeling activity of the INO80 complex (Shen, et al., 2003; Stewart, et al., 2003). 

Interestingly, deletion of the N-terminus of Ino80p resulted in a mutant complex that is 

depleted of Arp8p, Arp4p and actin, suggesting that Arp and actin proteins may 

physically interact with the N-terminus of the catalytic subunit (Shen, et al., 2003). The 

precise role of Arps and actin for this subclass of chromatin remodeling is not fully 

understood. However, studies indicate that Arp4p interacts with core histones and co-

immunoprecipitates with H2A (Harata, et al., 1999), and that Arp8p may function as a 

(H3/H4)2 tetramer chaperone (Shen, et al., 2003). In addition to actin and Arps, both 
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INO80 and SWR1 complexes contain RuvB helicase-like subunits, Rvb1 and Rvb2, 

which are essential for cell viability. Rvb1 is not required for the recruitment of Ino80 to 

target promoters, but seems to be critical for INO80 activity, probably due to loss of 

critical Arp5 from the complex in the absence of Rvb1. Rvb2 is also associated with Arp5 

in vitro in an ATP-dependent manner (Jonsson, et al., 2004). Interestingly, purified 

INO80 and SWR1 complexes are  associated with histones (Mizuguchi, et al., 2004), 

especially the histone variant H2A.Z. 

           Ino80p was first identified as a positive regulator of the structural genes of the 

phospholipid biosynthesis pathway (inositol/choline-responsive element-dependent 

genes) in vivo. The Ino80p C-terminal region shares more than 30% identity with the 

Swi2p ATPase domain. Like the catalytically inactive mutant of Swi2p (swi2K798A), 

mutation of the putative ATP-binding site at a lysine residue of Ino80 (ino80K737A) 

failed to complement ino80 null phenotype (Ebbert, et al., 1999), but retained all the 

subunits of the INO80 complex (Shen, et al., 2003). In contrast to SWI/SNF, the purified 

INO80 complex has ATP-dependent 3’ to 5’ DNA helicase activity in vitro, probably due 

to the cooperation of RuvB helicase-like subunits (Shen, et al., 2000).  

           In addition to the role in transcriptional regulation, both the INO80 and SWR1 

complexes have been implicated in double strand break (DSB) repair, although the 

precise role of both protein complexes remains to be investigated (Bao and Shen, 2007). 

Deletion of either INO80 or SWR1 caused hypersensitivity of yeast to exogenous DNA 

damaging agents such as UV, ionizing irradiation, methyl methane sulphonate (MMS) 

and hydroxyurea (Keogh, et al., 2006; Mizuguchi, et al., 2004; Shen, et al., 2000; van 

Attikum, et al., 2004). In mammalian cells, DNA double-strand breaks cause rapid 
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phosphorylation of the core histone variant H2AX at Ser139 (γ-H2AX) in megabase 

chromatin domains flanking the site of DNA damage (Rogakou, et al., 1999). Similarly in 

budding yeast, an inducible DSB causes rapid phosphorylation of H2A at the C-terminal 

Ser129, which can spread up to 50 kilobases flanking the break site (Downs, et al., 

2000). H2A phosphorylation may signal a DSB and recruit INO80 or other regulatory 

factors to the break sites probably through interactions between the Arp4 subunit and 

phospho-H2A (Cairns, 2004; Morrison, et al., 2004; Redon, et al., 2003).  Mutation of 

the H2A serine phosphorylation site has shown hypersensitivity to a wide-range of DNA-

damaging agents (Bassing, et al., 2002; Nakamura, et al., 2004).  

           In contrast to INO80, SWR1 has higher affinity for yeast histone variant Htz1 than 

for phospo-H2A. The purified SWR1 complex is capable of exchanging nucleosomal 

H2A/H2B with H2AZ/H2B dimer in vitro (Jin, et al., 2005a; Mizuguchi, et al., 2004). 

Purified H2AZ is also associated with the SWR1 complex, supporting the notion that 

SWR1 plays a role in exchange of phospo-H2A/H2B for Htz1/H2B or vice versa during 

DSB repair in vivo (Mizuguchi, et al., 2004). DNA microarray analysis showed that less 

than half of the genes regulated by SWR1 are also regulated by H2AZ, suggesting that 

Swr1 and H2AZ regulate at least a subset of common genes in vivo (Kobor, et al., 2004; 

Mizuguchi, et al., 2004). H2AZ deposition at transcriptionally active regions proximal to 

telomeres and flanking the HMR mating-type locus required Swr1p. Zhang et al. recently 

found that the SWR1 complex largely co-localized with the yeast H2A variant H2AZ, and 

was required for H2AZ deposition into chromosomes (Zhang, et al., 2005). A more 

recent study showed that deletion of INO80 caused increased incorporation of H2AZ into 

chromatin flanking the DSB site, while deletion of Swr1 eliminated the Htz1p 
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incorporation and restored H2AX-phos, suggesting that Ino80 and Swr1 may function 

antagonistically at DNA double strand break site to regulate cell cycle checkpoint 

adaptation (Papamichos-Chronakis, et al., 2006). The interest in the function of the 

INO80/SWR1 subclass in DSB repair is obviously growing.  
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Molecular mechanisms of the ATP-dependent chromatin remodeling 

enzymes 

 

           SWI/SNF complexes have been a model system to understand the molecular 

mechanisms by which ATP-dependent chromatin remodeling complexes alter chromatin 

conformation and regulate transcription. It is widely accepted that the energy from ATP 

hydrolysis is used to disrupt histone-DNA interactions within the nucleosome. 

Subsequently, SWI/SNF ATP-dependent chromatin remodeling complexes can change 

the DNase I digestion patterns, increase the sensitivity of restriction endonuclease 

digestion, and enhance activator binding to nucleosomal DNA both in vitro and in vivo. 

However, the molecular mechanism(s) by which each of the ATP-dependent chromatin 

remodeling complexes regulates chromatin structure is still under debate. For instance, 

how does each complex recognize its target properly? Is there any DNA sequence-

dependent activity of different enzymes? What is the role of each subunit in concert with 

the core enzymatic activity during remodeling? How does the chromatin remodeling 

complex mobilize nucleosomes? Is there a general mechanism shared by different 

chromatin remodeling enzymes, since all enzymes contain a highly conserved 

Swi2p/Snf2p like ATPase/helicase-like domain? 

 

Chromatin remodeling enzymes couple ATP hydrolysis to chromatin remodeling 

           The Swi2p/Snf2p ATPase domain contains seven motifs that are highly 

homologous to the helicase superfamily 2 (SF2), although purified ySWI/SNF has no 

detectable helicase activity (Cote, et al., 1994). In addition, the ATPase and chromatin 
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remodeling activity of different subclasses of the ATP-dependent chromatin remodeling 

enzymes requires distinct stimulatory factors for the catalytic activity in vitro. For 

instance, both naked DNA and nucleosomal DNA can stimulate the ATPase activity of 

the Swi2p/Snf2p and INO80 subclasses. However, Mi-2/CHD and ISWI ATPase activity 

is maximally stimulated by nucleosomal DNA rather than by naked DNA, and the histone 

H4 N-terminal domain is required for the ATPase activity and nucleosomal sliding activity 

of ISWI (Clapier, et al., 2001; Corona, et al., 1999). Interestingly, the ATPase activity of 

Swi2p/Snf2p can be completely abolished by a point mutation of a conserved lysine 

residue within the ATPase domain, therefore eliminating the function of the protein 

(Richmond and Peterson, 1996). Likewise, a recent mutagenesis study by Smith et al. 

showed that an eight-amino acid deletion within the conserved motif V of Swi2p ATPase 

domain caused severe swi2 mutant phenotypes in vivo. However, purified SWI/SNF 

complex bearing this small deletion has WT ATPase activity and ATP hydrolysis kinetics 

(Smith and Peterson, 2005b). Surprisingly, this mutant SWI/SNF failed to remodel 

nucleosomes in vitro. This observation strongly suggests that the ATP hydrolysis activity 

of Swi2p is coupled to its chromatin remodeling activity for proper function (Smith and 

Peterson, 2005b). Disruption of this function by mutations within BRG1 motif V has been 

implicated in cancer formation (Wong, et al., 2000). 

 

Molecular basis of ATP-dependent chromatin remodeling action 

           Chromatin remodeling refers to any change in the nucleosome structure by the 

action of SWI/SNF, RSC, ISWI and other chromatin remodeling enzymes. In general, 

these enzymes can cause nucleosome repositioning or “sliding”. The high resolution 
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crystal structure of the nucleosome suggests that there are over 100 histone-DNA 

interactions that stabilize the nucleosome position (Luger, et al., 1997b). Therefore, 

repositioning nucleosomes requires the disruption of many histone-DNA interactions. 

Two major models have been proposed to explain how the ATP-dependent chromatin 

remodeling complexes can mobilize nucleosomes or change the nucleosome 

configuration. In the first model, it has been argued that alteration in nucleosome 

position may be caused by the spontaneous torsional oscillation from the edge of 

nucleosomes (van Holde and Yager, 2003). Such a twist defect may be removed by a 

contrary oscillation and vanish from the nucleosome. When these distortions are 

propagated into the nucleosome, they may cause nucleosome migration one base pair 

at a time along the DNA (Langst and Becker, 2004) (Figure 2). Chromatin remodeling 

enzymes may act as a “molecular ratchet” or a “DNA twistase” that allows the twist 

defect to exit in one direction and results in DNA twist tension (van Holde and Yager, 

2003). In support of this model, these “twist-defects” have been observed in nucleosome 

crystal structures (Edayathumangalam, et al., 2005). The spontaneous fluctuations of 

nucleosomal conformation may be sufficient for transient access of proteins to 

nucleosomal DNA, probably explaining the association of transcription activators or 

repressors with target promoters prior to chromatin remodeling activity (Li, et al., 2005). 

However, the “twist-diffusion” model was questioned by observations that a DNA nick or 

gap (loss of up to 10bp), which presumably dissipate the twist tension on DNA, had no 

effect on ISWI or RSC induced nucleosome remodeling (Langst and Becker, 2001; 

Lorch, et al., 2005; Strohner, et al., 2005). In addition, introduction of a DNA branch or 

hairpin as a barrier did not affect nucleosome remodeling by SWI/SNF and Mi-2 (Aoyagi 
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and Hayes, 2002; Aoyagi, et al., 2003). Moreover, ISWI-induced nucleosome sliding was 

facilitated by nicks in the linker DNA in front of the nucleosome (Langst and Becker, 

2001).  

 

 

 

 

                    

Figure 2. Nucleosome architecture and twist-diffusion mechanism of nucleosome 
remodeling. (A) Schematic illustration of the superhelical locations (SHL) that form 
DNA-histone interaction clusters. (B) The “twist-diffusion” model of nucleosome 
mobilization. The DNA distortion initiates from the edge of a nucleosome and can be 
propagated into the nucleosome in 1-bp increment. Adapted from (Langst and Becker, 
2004) 
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          Compelling evidence has favored a DNA translocation model (Figure 3), in which 

the DNA translocase activity of chromatin remodelers can translocate DNA into the 

nucleosome and disrupt histone-DNA interactions in a stepwise manner (Kassabov, et 

al., 2003; Shundrovsky, et al., 2006; Strick and Quessada-Vial, 2006; Strohner, et al., 

2005; Zhang, et al., 2006; Zofall, et al., 2006). The step size of SWI/SNF and ISW2 are 

approximate 50 or 10 bp, respectively, probably through the formation of the DNA loop 

on nucleosome surface (Zofall, et al., 2006). Remarkably, the DNA translocation activity 

of the ATP-dependent chromatin remodeling enzymes is very similar to that of type I 

restriction enzymes, another helicase-like motor protein that does not have the helicase 

activity but is able to track along DNA (Stanley, et al., 2006). Using an optical tweezer, 

Zhang and colleagues recently observed that both SWI/SNF and RSC can translocate 

along DNA at a rate of 13 bp per second, and generate forces up to approximately 12 

pN at single molecule level, producing an average of 100 bp DNA loop on the 

nucleosomal surface (Zhang, et al., 2006). Moreover, SWI/SNF can move nucleosomes 

up to 50 bp beyond DNA ends (Kassabov, et al., 2003; Ramachandran, et al., 2003). 

The DNA translocation activity of RSC has been detected on free DNA by AFM as well 

(Lia, et al., 2006).          
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Figure 3. DNA translocation model of ATP-dependent chromatin remodeling. (i) 

Unbound state. (ii) The ATP-dependent chromatin remodeling complex (Rem) binds the 

nucleosome (Nuc) in a pocket. (iii) The ATPase/translocase subunit (Tr) engages 

nucleosomal DNA at a position flanking the dyad, forming a small bulge near the dyad. 

(iv) Subsequent processive translocation generates large intranucleosomal DNA loops 

that have three possible fates: forward propagation (resulting in nucleosome jumping), 

active reverse translocation, or DNA sliding (which may reflect the disengagement of the 

translocase subunit). Alternatively, the translocation can lead to immediate nucleosome 

sliding, as indicated by the dashed line, without large loops having been accumulated. 

(v) Following a remodeling cycle, the remodeler may release the nucleosome. Adapted 

from (Zhang, et al., 2006) 
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Altered nucleosomes are more accessible in different ways 

           The outcome of DNA translocation is believed to mobilize nucleosomes in cis 

(Narlikar, et al., 2002). This is consistent with the ability of chromatin remodeling 

complexes to increase the restriction enzyme accessibility of mononucleosomal and 

nucleosomal array substrates, and to generate fast-migrating nucleosomes in native gel 

electrophoresis. Consistently, after human SWI/SNF remodeling on a nucleosomal 

array, long stretches of free DNA and clusters of adjacent nucleosomes have been 

observed (Schnitzler, et al., 2001; Ulyanova and Schnitzler, 2005). All these 

observations support the nucleosome sliding model as a major consequence after 

chromatin remodeling by SWI/SNF, RSC and ISWI complexes in vitro (Narlikar, et al., 

2002; Whitehouse, et al., 1999; Whitehouse, et al., 2003). Interestingly, a change in 

histone octamer composition is not necessary for nucleosome repositioning in most 

cases. This notion is further supported by a recent DNA unzipping study showing that 

nucleosomes assembled onto the “601” template, which has strong nucleosome 

positioning sequence (Anderson and Widom, 2000), had overall the same nucleosome 

unzipping force (therefore same histone-DNA contacts) as that of the unremodeled 

nucleosome (Shundrovsky, et al., 2006). Additionally, dinucleosome-like remodeled 

nucleosomes had the same histone-to-DNA composition as the standard nucleosome, 

although the sensitivity to restriction enzyme digestion had changed (Schnitzler, et al., 

1998). 

           The re-association of the free DNA with the same histone octamer might be the 

molecular basis that causes the formation of DNA loop or bulge on the surface of 

nucleosome (Bazett-Jones, et al., 1999; Fan, et al., 2003). Likewise, the association of 
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the free DNA of a remodeled nucleosome with another remodeled species may explain 

the formation of slowing-migrating “dimers” after SWI/SNF chromatin remodeling (Lorch, 

et al., 1998; Schnitzler, et al., 1998; Ulyanova and Schnitzler, 2005; Ulyanova and 

Schnitzler, 2007) (Figure 4).  

 

 

                         

 

Figure 4. Dimer and altosome structure models. hSWI/SNF repositioning activity on 
normal nucleosome cores (A) can result in off the edge nucleosomes (B). Two off the 
edge nucleosomes might be stabilized as a dimer (C), or one off the edge nucleosome 
with sufficient DNA length might be stabilized as a loop mononucleosome (D). On 
polynucleosomal DNA, hSWI/SNF activity might promote release of 70 bp from one 
nucleosome (E). If this DNA is replaced by linker DNA distal to an adjacent nucleosome, 
a stable altered dinucleosome, altosome, can be formed (F). Adapted from (Ulyanova 
and Schnitzler, 2007). 

http://www.jbc.org.ezproxy.umassmed.edu/content/vol282/issue2/images/large/zbc0060783750005.jpeg
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           In other cases, yeast SWI/SNF (Gutierrez, et al., 2007; Hassan, et al., 2006; 

Owen-Hughes, et al., 1996; Whitehouse, et al., 1999) and RSC (Lorch, et al., 1999) 

complexes can induce histone octamer transfer to a free DNA accepter. The octamer 

transferring activity is conserved in human SWI/SNF as well, based on the observation 

that both the intact human SWI/SNF and isolated BRG1 subunit were able to induce 

histone octamer transfer in vitro (Phelan, et al., 2000). A recent study from the Workman 

group showed that ySWI/SNF can induce ATP-dependent nucleosome eviction and 

completely release the nucleosomal DNA. This nucleosome eviction activity seems to 

require the activation domain of an activator. When the activation domain was absent, 

SWI/SNF exclusively caused nucleosome sliding without loss of histones (Gutierrez, et 

al., 2007). Nucleosome eviction is thought to be important for SWI/SNF-dependent 

transcriptional activation at the yeast PHO5 promoter in vivo (Boeger, et al., 2004; 

Korber, et al., 2004).  

           It is notable that yeast ISW2 can also catalyze nucleosome positional changes 

through a similar mechanism to that of SWI/SNF (Zofall, et al., 2006), although ISW2 

slides nucleosomes away from DNA ends (Kassabov, et al., 2002). Interestingly, ISW2 

slides nucleosomes closer to the promoter region of target genes in vivo, which led to 

the hypothesis that ISWI might counteract the action of SWI/SNF in vivo by sliding 

nucleosomes to positions that prevent activator binding (Fazzio and Tsukiyama, 2003; 

Kassabov, et al., 2002; Moreau, et al., 2003).  

 

 

 



 34

Dimer displacement activity of chromatin remodeling complexes can be assisted 

by histone chaperones 

           Early genetic evidence showed that defects caused by mutation of SWI/SNF 

subunits were suppressed by depletion of one of the histones, histone H2A and H2B in 

vivo, which has led to the hypothesis that H2A/H2B dimer loss might be one of the 

mechanisms of SWI/SNF action in vivo (Hirschhorn, et al., 1992). Conceivably, loss of 

DNA content from the nucleosomal entry/exit sites after chromatin remodeling action 

would abolish the histone-DNA contacts that are required to stabilize the histone 

H2A/H2B dimers (Aoyagi, et al., 2002; Kassabov, et al., 2003).  

           Histone H2A/H2B dimer exchange or displacement has been studied on MMTV 

nucleosomes by the chromatin remodeling complex alone or with histone chaperones, 

leading to another mechanism by which chromatin remodeling complexes modulate 

nucleosome configuration. Bruno and colleagues observed that both yeast RSC and 

SWI/SNF complexes are able to catalyze up to 33% dimer exchange. In contrast, ISWI 

subclass, ISW1a and ISW1b showed very limited efficiency in the dimer exchange assay 

(Bruno, et al., 2003). Interestingly, Vincent et al observed up to ~73% of dimer doss at 

nucleosomes assembled on MMTV-nucleosome B DNA but not on rDNA, claiming that 

dimer loss activity of SWI/SNF might be a DNA sequence-dependent event (Vicent, et 

al., 2004). More recently, Lorch and colleagues observed that the RSC complex requires 

histone chaperone Asf1 to remove dimers, whereas Nap1 can catalyze stepwise dimer 

loss and leads to the complete disassembly of the nucleosome in vitro, reflecting the 

collaboration of histone chaperones with chromatin remodeling enzymes in dimer 

displacement (Lorch, et al., 2006). Using an AFM imaging system, Bash and colleagues 
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found that the human SWI/SNF complex can also induce dimer dissociation from 

nucleosomes (Bash, et al., 2006). Interestingly, dimer dissociation and dimer transferring 

to tetramer acceptors by the human SWI/SNF complex seems to be stimulated by a 

nuclear histone chaperone protein, nucleolin (Angelov, et al., 2006). 

           Purified SWR1 complex is capable of exchanging H2A/H2B with H2AZ/H2B 

dimers both in vitro and in vivo (Mizuguchi, et al., 2004), although it is unclear whether 

this dimer exchange activity by SWR1 is related to the histone chaperone function of Arp 

proteins within the complex (Shen, et al., 2003). Based on these observations, we infer 

that DNA translocation catalyzed by chromatin remodeling enzymes may be a 

prerequisite for the dissociation of histone H2A/H2B dimers, since loss of DNA-histone 

contacts during DNA translocation destabilized the histone dimers (Aoyagi and Hayes, 

2002; Kassabov, et al., 2003). Subsequently, histone chaperones may facilitate the 

chromatin remodeling process by removing the dimers from the remodeled nucleosomes 

(Loyola and Almouzni, 2004). 

           In summary, the ATP-dependent chromatin remodeling complexes can 

translocate nucleosomes, and cause the following changes in nucleosome configuration: 

(1) nucleosome sliding in cis; (2) DNA looping/bulging; (3) histone octamer transfer in 

trans; (4) nucleosome eviction; (5) remodeled dimer or altosome formation; (6) histone 

H2A/H2B displacement. It remains be investigated how these in vitro observations 

correlate with changes in chromatin structure in vivo. We propose that the diverse 

consequences after chromatin remodeling may reflect distinct mechanisms applied at 

different promoters in vivo. In addition, chromatin remodeling intermediates may exist 

and can be captured in biochemical studies. In this thesis, we will further investigate the 
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function(s) of core subunits of the SWI/SNF ATP-dependent chromatin remodeling 

complex, using yeast as the model system. These findings are expected to help us 

better understand the function and molecular mechanism(s) of the ATP-dependent 

chromatin remodeling enzymes.  
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CHAPTER II 
 

 
CHARACTERIZATION OF THE ROLE OF THE SANT DOMAIN 

FOR SWI/SNF FUNCTION 

 

SUMMARY 
 
           SWI/SNF superfamily members of chromatin remodeling enzymes are 

multiprotein complexes. The fact that the isolated ATPase subunit alone is active for 

chromatin remodeling has led us to question the precise role(s) of other subunits for 

chromatin remodeling. In this chapter, we investigated the essential role of the SANT 

domain of the Swi3p subunit for ySWI/SNF function. We found that swi3∆SANT caused 

a genome-wide transcriptional defect that is similar to that of ∆swi3. Swi3∆SANT 

crippled the recruitment of SWI/SNF to target promoters in both asynchronous and 

nocodazole-synchronized cells. In the absence of the Swi3p SANT domain, tethering 

SWI/SNF via LexA-Swi2p was insufficient to activate a LexAop-GAL1TATA-LacZ reporter 

gene in vivo. Surprisingly, swi3∆SANT caused dissociation of SWI/SNF into at least four 

stable subcomplexes: 1) Swi2p/Arp7p/Arp9p; 2) Swi3p/Swp73p/Snf6p; 3) Swi1p; and 4) 

Snf5p. These data indicate that the Swi3p SANT domain is critical for SWI/SNF 

assembly. Furthermore, a point mutant within the SANT domain, swi3R564E, or deletion 

of any of certain other core subunits of SWI/SNF also caused the dissociation of 
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SWI/SNF into the same subcomplexes. These observations help to dissect both the 

functional and architectural organization of SWI/SNF complex.  

 

           The data presented in this chapter are being prepared for publication. I would like 

to thank Dr. David Lambright for generating the structural image of the ISWI SANT 

domain shown in Figure 14.  
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INTRODUCTION 
 

 
           ATP-dependent chromatin remodeling enzymes were originally identified in 

budding yeast Saccharomyces cerevisiae from genetic screens for mutants defective in 

mating type switching (SWI) (Stern, et al., 1984), and mutants unable to ferment sucrose 

(Sucrose Non-Fermenter, SNF) (Neigeborn and Carlson, 1984). Yeast SWI/SNF is 

required for transcriptional regulation of many genes, especially a subset of inducible 

genes including HO, SUC2, SIC1 and INO1 (Holstege, et al., 1998b; Sudarsanam, et al., 

2000; Winston and Carlson, 1992). SWI/SNF has been a paradigm to understand the 

function of ATP-dependent chromatin remodeling complexes in transcriptional regulation 

and the molecular mechanisms of their action.   

           SWI/SNF-like chromatin remodeling complexes have been identified in higher 

eukaryotes such as Drosophila, frog, mouse, and human (Imbalzano, et al., 1994; 

Peterson, 2000). All SWI/SNF family members consist of a helicase-like catalytic subunit 

that hydrolyzes ATP. The energy from ATP hydrolysis is believed to disrupt histone-DNA 

contacts, therefore enhancing the accessibility of transcription factors to nucleosomal 

DNA before, during, or after transcriptional initiation (Fry and Peterson, 2002). Recent 

biochemical evidence has suggested that several ATP-dependent chromatin remodeling 

complexes also catalyze histone H2A/H2B dimer loss (Bruno, et al., 2003; Vicent, et al., 

2004) and nucleosome eviction (Gutierrez, et al., 2007). Both human SWI/SNF 

(Schnitzler, et al., 1998; Ulyanova and Schnitzler, 2005) and yeast RSC (Lorch, et al., 

1998) can induce the formation of stable dinucleosome-like remodeled products or 
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altosomes, indicating that SWI/SNF may use different mechanisms to manipulate 

chromatin structure under different circumstances.  

           Yeast SWI/SNF is a multiprotein complex that consists of Swi2p/Snf2p, Swi1p, 

Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and Swp29p (Table 3) 

(Cairns, et al., 1994; Cairns, et al., 1996b; Peterson, et al., 1994; Peterson and 

Herskowitz, 1992; Smith, et al., 2003; Treich, et al., 1995; Wilson, et al., 2006). Among 

the ATP-dependent chromatin remodeling complexes, several core subunits, Swi2p, 

Swi1p, Swi3p, Snf5p, and Swp73p, are highly conserved from yeast to human (Aalfs and 

Kingston, 2000; Kingston and Narlikar, 1999). Surprisingly, the catalytic subunit of 

human SWI/SNF, BRG1 or hBRM, has ATPase activity by itself and is capable of 

remodeling a mononucleosome in vitro, although addition of hSnf5/INI1 and hSwi3 

(BAF170 and BAF155) subunits can further stimulate BRG1 activity to that of the intact 

complex (Phelan, et al., 1999). Despite these studies, the function of majority of other 

subunits for ATP-dependent chromatin remodeling process remains largely unclear 

(Table 3). One possibility is that other subunits may coordinate the activity of core 

catalytic subunit with other transcription factors upstream or down stream of chromatin 

remodeling in vivo. 
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                  Table 3. Subunit composition of yeast SWI/SNF 

 

   Subunit   Gene Function       MW(Kd)     copy# 
   *Swi2         ATPase           194         1 
   *Swi1    activator binding     148         1 
   *Snf5    activator binding     103         1 
   *Swi3                           93         2 
    Swp82                          72         2 
   *Swp73                          64         1 
   *Arp7     actin-related         54         1 
   *Arp9     actin-related         53         1 
    Snf6                           38         2 
    Swp29                          27         3 
    Snf11                          18         2 

                 * Subunits highly conserved in other organisms. 

 

 

           Since SWI/SNF does not show DNA-binding sequence specificity, it is believed 

that low abundant SWI/SNF is directed to target promoters through recruitment by 

specific activators. Biochemical studies have shown that Swi1p and Snf5p may play a 

role in recruiting SWI/SNF to the promoter through direct interaction with transcriptional 

activators (Neely, et al., 2002; Prochasson, et al., 2003). This notion is partially 

supported by in vivo studies that the recruitment of yeast SWI/SNF to the HO promoter 

depends on a specific activator Swi5p (Cosma, et al., 1999; Krebs, et al., 2000). 

However, recent studies by Martens JA et al have shown that the transcription of yeast 

SER3 regulatory gene 1 (SRG1) depends largely on the catalytic subunit Swi2p in vivo, 

and deletion of other subunits such as Swi1p and Snf5p does not affect SRG1 

transcription significantly (Martens and Winston, 2002; Martens, et al., 2005). This 

discrepancy of requirement may reveal distinct mechanisms by which SWI/SNF 
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regulates transcription at different promoters, and that the recruitment of Swi2p/Snf2p is 

sufficient to activate certain promoters. Intriguingly, mutations of hSWI2/BRG1, hSNF5 

(INI1), hSWI3 (BAF155), BAF180 or BAF250 have been found in human cancer cell 

lines or primary cancers (Decristofaro, et al., 2001; DeCristofaro, et al., 1999; Grand, et 

al., 1999; Klochendler-Yeivin, et al., 2002; Roberts and Orkin, 2004). Loss of 

heterozygosity of INI1 (Snf5p homolog) predisposed mice to aggressive cancers, 

indicating an important role of SWI/SNF genes involved in tumor suppression in vivo 

(Guidi, et al., 2001; Klochendler-Yeivin, et al., 2000).  

           The presence of conserved protein domains such as the bromodomain and 

chromodomain in ATP-dependent chromatin remodeling enzymes provides a connection 

between histone modification and ATP-dependent chromatin remodeling. Additionally, 

histone tail modifications may provide binding sites for ATP-dependent chromatin 

remodeling complexes during transcriptional activation or repression (de la Cruz, et al., 

2005; Hassan, et al., 2001; Zeng and Zhou, 2002). Another conserved motif known as 

the SANT domain has stimulated some interest in understanding the function of 

chromatin remodeling complexes. The SANT domain is identified in many chromatin-

regulatory proteins such as Swi3p of SWI/SNF, Ada2p of Gcn5p-containing SAGA, 

nuclear hormone receptor corepressor NcoR, and transcription factor TFIIIb, and has 

homology to the c-myb DNA binding domain (Rein Aasland, 1996) (Figure 5). The 50-

amino acid motif is predicted to have three putative helices. Recent studies by several 

groups highlighted the important role of the SANT domains in histone tail binding (Boyer, 

et al., 2002; Boyer, et al., 2004; Grune, et al., 2003; Sterner, et al., 2002; Yu, et al., 

2003). A deletion of eleven amino acids from the SANT domain of Swi3p (swi3∆SANT) 
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failed to rescue the growth defect caused by swi3 deletion (Boyer, et al., 2002) (Figure 

6). In the case of Ada2p, the SANT domain is required for Gcn5p histone acetylation 

transferase (HAT) activity and histone H3 tail interaction (Boyer, et al., 2002; Sterner, et 

al., 2002).  Therefore, the SANT domain may serve as a histone tail-binding module that 

is required for nucleosome recognition (Boyer, et al., 2004). 

 

                                           

SWI3   527 WSKEDLQKLLKGIQEFG-ADWYKVAKNVGNKSPEQCILRFLQLPIEDKFLY  575  

ADA2    65 WGADEELQLIKGAQTLGLGNWQDIADHIGSRGKEEVKEHYLKYYLESKYYP  116  

RSC8   315 WSDQEMLLLLEGIEMYE-DQWEKIADHVGGHKRVEDCIEKFLSLPIEDNYIR 366  

ISWI   804 WTKRDFNQFIKANEKYGRDDIDNIAKDVEGKTPEEVIEYNAVFWERCTELQ  850 

BAF170 601 WTEQETLLLLEALEMY--DDWNKVSEHVGSRTQDECILHFLRLPIE       645 

BAF155 623 WTEQETLLLLEALEMYK-DDWNKVSEHVGSRTQDECILHFLRLPIE       667 

N-CoR  439 WTDHEKEIFKDKFIQHP-KNFGLIASYLERKSVPDCVLYYYLTKKN       484 

       627 WTEEEMEVAKKGLVEHG-RNWAAIAKMVGTKSEAQCKNFYFNYKRR       672 

SMRT   430 WSEQEKETFREKFMQHP-KNFGLIASFLERKTVAECVLYYYLTKKN       476 

       614 WTEEEMETAKKGLLEHG-RNWSAIARMVGSKTVSQCKNFYFNYKKR       659 

CoREST 191 WTVEDKVLFEQAFSFHGKTFHRIQQMLPDKSIASLVKFYYSWKKT        236         

       382 WTTEEQLLAVQAIRKYG-RDFQAISDVIGNKSVVQVKNFFVNYRRR       427 

c-Myb R295 WIKEEDQRVIKLVQKYG-PKRWSVIAKHLKG-RIGKQCRERWHNHLNPE    141 

                      *                                       *                                     * 
                                       Helix 1                              Helix 2                       Helix 3 
 
 
Figure 5. Sequence alignment of the SANT domains. Colored residues are highly 

conserved among SANT domains (42). Some domains were analyzed/identified with the 

Simple Modular Architecture Research Tool (SMART) program (http://smart.embl-

heidelberg.de/smart). * Three conserved tryptophan residues of c-Myb DBD.  

http://smart.embl-heidelberg.de/smart
http://smart.embl-heidelberg.de/smart
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           To further characterize the potential role of the SANT domain for SWI/SNF 

function, we first explored the genome-wide transcriptional profile in a swi3∆SANT and 

∆swi3 backgrounds using an Affymetrix gene chip. Next, we investigated whether the 

SANT domain is generally required for the recruitment of SWI/SNF to target promoters 

such as CDC6, SIC1, and HO by chromatin immunoprecipitation analysis (ChIP). 

Interestingly, swi3∆SANT crippled the recruitment of SWI/SNF to all target promoters. 

Furthermore, in the absence of an intact SANT domain, tethering SWI/SNF via LexA-

Swi2p to a chromosome-integrated LexAop-GAL1TATA-LacZ reporter failed to activate the 

transcription of the LacZ reporter gene. Finally, I purified SWI/SNF complex from 

swi3∆SANT strain, using the tandem affinity purification (TAP) technique. We found that 

deletion of the Swi3p SANT domain destabilized the SWI/SNF complex, and four distinct 

subcomplexes were purified from the swi3∆SANT strain. Swi2p was associated with 

Arp7p and Arp9p. Snf6p was associated with Swi3p and Swp73p, while Swi1p and 

Snf5p were purified as monomers. I also purified SWI/SNF complexes from strains that 

lacked either Swi1p or Snf5p, and found that SWI/SNF also dissociates into the same 

subcomplexes in these mutant strains. These data suggest a new model for the role of 

the SANT domain as a protein scaffold for SWI/SNF assembly. In addition, these results 

indicate that SWI/SNF complex is an integration of at least four distinct functional 

modules: 1) Swi2p/Arp7p/Arp9p, 2) Swi3p/Swp73p/Snf6p, 3) Swi1p, and 4) Snf5p.  
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RESULTS 

 
 
The SANT domain of Swi3p is required for SWI/SNF function and genome-

wide gene expression in vivo 

           The role of the SANT domain remains largely unclear although it was originally 

identified as a module homologous to the cMyb DNA binding domain (Aasland, et al., 

1996). Recent studies of the SANT-containing proteins, Ada2p (Boyer, et al., 2002; 

Sterner, et al., 2002), mammalian nuclear hormone receptor corepressor SMRT (Yu, et 

al., 2003), and Drosophila ISWI (Grune, et al., 2003), revealed that these SANT domains 

are involved in histone tail interactions and may coordinate core enzymatic activities 

(Boyer, et al., 2004). In the case of Swi3p (Figure 6), partial deletion or mutation of 

certain residues from the SANT domain (swi3∆SANT) caused a severe growth 

phenotype (Boyer, et al., 2002). We hypothesized that the SANT domain of Swi3p may 

be required for the binding of SWI/SNF to nucleosomal substrates through direct 

interaction with histone tails (Boyer, et al., 2002).  

           To test this hypothesis, we initially investigated the genome-wide transcriptional 

profile in the absence of the SANT domain of Swi3p. Isogenic strains of wild type (WT), 

∆swi3, and swi3∆SANT were grown for total RNA extraction and for Affymetrix DNA 

microarray analysis. Original microarray signals from Δswi3 and swi3ΔSANT strains 

were normalized to that of WT. From three independent experiments performed, only 

those genes whose expression changed 2-fold or more in all three experiments were 

selected for data analysis. Genes that changed only in one or two experiments were not 

included for initial data analysis. All signals were averaged from all three experiments for 
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comparison. Figure 7a,b represent original fluorescent signals from two independent 

chip analyses from wild type. 

 

 

 

                                     

 

 
Figure 6. Domain organization of Swi3p. Swi3p is predicted to have several domains, 

including the N-terminal 300 amino acids acidic domain, SWIRM domain, C-terminal 

SANT domain and leucine zipper domain. The SANT domain consists of ~50 amino 

acids that contain three putative helices based on the homology to the c-Myb DNA 

binding domain. Deletion of the N-terminal 11 amino acids from the putative third helix of 

the SANT domain (swi3ΔSANT) causes a severe growth phenotype (Boyer, et al., 

2002). The leucine zipper domain may mediate Swi3p dimerization.  
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           Under these stringent criteria for data analysis described above, we found that 

Swi3p regulates approximate 3% of yeast genes in the whole genome. All the genes 

upregulated or downregulated more than 2-fold by deletion of Swi3p or the SANT 

domain of Swi3p were listed in Table 4 and Table 5, respectively. Diagrams in Figure 

7c,d summarized the overlapping of genes affected more than 2-fold by deletion of swi3 

(empty oval) or deletion of the SANT domain of Swi3p (grey oval) in all three 

independent experiments. Among the 88 genes upregulated more than 2-fold by swi3 

deletion, 49 genes (56% overlap) were also upregulated by swi3ΔSANT (Figure 7c). 

From the 58 genes downregulated more than 2-fold by Δswi3, 40 genes (69% overlap) 

were also downregulated by swi3ΔSANT (Figure 7d). Only four genes downregulated in 

swi3ΔSANT were not affected in Δswi3. Consistent with the important role of the SANT 

domain (Boyer, et al., 2002), gene pools affected by swi3∆SANT were almost 

indistinguishable from those affected by Δswi3 when we compared genes changed 1.5-

fold and up (not shown). Previously, it has been shown that functional Swi2p/Snf2p is 

required for the transcriptional regulation of ~5% genes (Holstege, et al., 1998a), when 

comparing genes affected from two independent experiments. Compared to genes 

whose expression was affected by ∆swi2, we found that ~40% of these genes are also 

affected by Δswi3, suggesting that these proteins function together in the same 

SWI/SNF complex. Genes that were not detected in our data set may be caused by 

different criteria of data analysis. In other words, we used a more stringent data analysis. 

Alternatively, Swi3p may be unnecessary for some of the ATP-dependent chromatin 

remodeling activities of Swi2p/Snf2p in vivo. This data strongly suggested that 
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swi3ΔSANT behaved like a weak null allele of SWI3 and that the SANT domain is crucial 

for Swi3p function in vivo.  

                a.                                                 b. 

                 

 

                                 c.                                       d. 

                    

        2-fold up                                          2-fold down              
   (56% overlap)                                 (69% overlap) 

swi3ΔSANT
(49) 

Δswi3 (88)

swi3ΔSANT 
 (40) 

 Δswi3 (58)

4 

 

Figure 7. Affymetrix gene chip analysis. Total RNA was extracted from isogenic 

strains of WT, Δswi3, and swi3ΔSANT.  Three independent experiments were performed 

for data analysis. Original signals from Δswi3 or swi3ΔSANT were normalized to that for 

WT. (a, b) Reproducible DNA microarray signals from two independent experiments 

from WT. (c, d) Venn diagrams show total number of genes whose expression changed 

2-fold up (c) or down (d) averaged from three independent data sets. The empty oval 

represents genes whose expression changed in Δswi3. The grey oval represents the 

genes whose expression changed in swi3ΔSANT.  
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Table 4. Common genes upregulated by swi3 or swi3∆SANT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

G
YOL161C 10.27811733 4.6119605   strong similarity to members of the Srp1p/Tip1p family
Y L101C 6.746812867 3.172161033   similarity to YOL002c and YDR492w
THI 11 5.7762994 2.608154467   Thiamine biosynthetic enzyme
YNL335W 5.274972 4.307694933   identical to hypothetical protein YFL061w
YLR312C 5.260503333 3.4313662   hypothetical protein
NER020W 5.030029267 4.412910133   SAGE orf.  Characterization of the yeast transcriptome.
RTS 3 4.992031233 2.944705233   hypothetical protein
NMR044C 4.9131311 3.537257767   SAGE orf. Characterization of the yeast transcriptome. 
JEN 1 4.7672838 4.491358033   carboxylic acid transporter protein homolog
YEL045C 3.94321 2.994443333   weak similarity to cytochrome c oxidase III of T.brucei kinetoplast
PAU2 3.93894 2.697716667   member of the seripauperin protein\/gene family (see Gene_class PAU)
NEL015C 3.74177 2.4575   SAGE orf 
CAT8, DIL1 3.72261 2.22685   Zinc-cluster protein involved in activating gluconeogenic genes; related to Gal4p
ARG 3 3.523174733 2.825173667   Ornithine carbamoyltransferase
YBL065W 3.374273333 2.04787   questionable ORF
SUL2 3.373936667 2.05279   high affinity sulfate permease
ARS608 3.241896667 2.270603333   SAGE orf 
MET2 3.225873333 2.013023333   homoserine O-trans-acetylase
YDR010C 3.2187418 2.7008143   hypothetical protein
NMR067W 3.202665333 2.547319867   SAGE orf.  Characterization of the yeast transcriptome.
gGR12 3.191562133 2.394722867   complete chromosome sequence. 
YLR338W 3.156951133 2.281434467   questionable ORF
YIL015C-A 3.048296667 2.01032   strong similarity to hypothetical protein YIL102c
GAT1, NIL1 3.040113333 2.17545   activator of transcription of nitrogen-regulated genes
STR3 3.031996667 2.413773333   strong similarity to Emericella nidulans cystathionine beta-lyase
BNA 5 3.015351467 2.3069476   strong similarity to rat kynureninase
ADH5 3.0029 2.08258   alcohol dehydrogenase isoenzyme V
NDR047C 3.000873333 2.333503333   SAGE orf 
YOL114C 2.995036067 2.521193667   similarity to human DS-1 protein
PTI1 2.837843333 2.113536667   hypothetical protein
NIL005W 2.79426 2.589083333   SAGE orf 
YHR095W 2.68148 2.81173   hypothetical protein
MMP1 2.640283333 2.115793333   strong similarity to amino acid transport protein Gap1p
NNL036W 2.633703333 2.01437   SAGE orf 
MET10 2.623033333 2.0002   subunit of assimilatory sulfite reductase
gPL09 2.59815 2.040123333   complete chromosome sequence
YGL007W 2.58776 2.36344   questionable ORF
ICY2 2.547253333 2.03107   weak similarity to YMR195w
gPR12 2.543206667 3.174073333   complete chromosome sequence
YOL155C 2.5252241 2.1482835   similarity to glucan 1,4-alpha-glucosidase Sta1p and YAR066w
YOR318C 2.48528 2.38759   hypothetical protein
YOL155C 2.47221 2.017373333   similarity to glucan 1,4-alpha-glucosidase Sta1p and YAR066w
YDR542W 2.470247633 2.726105067   strong similarity to subtelomeric encoded proteins
LPE10 2.419726667 2.095543333   mitochondrial protein, strong similarity to Mrs2p, megnesium ion transporter
gKR07 2.336419733 2.223684167   complete chromosome sequence.
SHU2 2.324233333 1.998733333   Preferential Use of Neither donor locus during mating type switching.
PRR2 2.277776667 2.496296667   strong similarity to putative protein kinase NPR1
YPL261C 2.246913333 2.44691   questionable ORF
FRE 2 2.2383902 1.999410367   Ferric reductase, similar to Fre1p

ommon genes 2x UP in swi3  and SWI3*sant  strains  (49)
avg. fold up avg. fold up

ene name swi3 SWI3*sant    Description of function

O
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Table 5. Common genes downregulated by swi3 or swi3∆SANT 
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Gene name swi3 SWI3*sant    Description of function
Y L161C 10.27811733 4.6119605   strong similarity to members of the Srp1p/Tip1p family
YOL101C 6.746812867 3.172161033   similarity to YOL002c and YDR492w
THI 11 5.7762994 2.608154467   Thiamine biosynthetic enzyme
YNL335W 5.274972 4.307694933   identical to hypothetical protein YFL061w
YLR312C 5.260503333 3.4313662   hypothetical protein
NER020W 5.030029267 4.412910133   SAGE orf.  Characterization of the yeast transcriptome.
RTS 3 4.992031233 2.944705233   hypothetical protein
NMR044C 4.9131311 3.537257767   SAGE orf. Characterization of the yeast transcriptome. 
JEN 1 4.7672838 4.491358033   carboxylic acid transporter protein homolog
YEL045C 3.94321 2.994443333   weak similarity to cytochrome c oxidase III of T.brucei kinetoplast
PAU2 3.93894 2.697716667   member of the seripauperin protein\/gene family (see Gene_class PAU)
NEL015C 3.74177 2.4575   SAGE orf 
CAT8, DIL1 3.72261 2.22685   Zinc-cluster protein involved in activating gluconeogenic genes; related to Gal4p
ARG 3 3.523174733 2.825173667   Ornithine carbamoyltransferase
YBL065W 3.374273333 2.04787   questionable ORF
SUL2 3.373936667 2.05279   high affinity sulfate permease
ARS608 3.241896667 2.270603333   SAGE orf 
MET2 3.225873333 2.013023333   homoserine O-trans-acetylase
YDR010C 3.2187418 2.7008143   hypothetical protein
NMR067W 3.202665333 2.547319867   SAGE orf.  Characterization of the yeast transcriptome.
gGR12 3.191562133 2.394722867   complete chromosome sequence. 
YLR338W 3.156951133 2.281434467   questionable ORF
YIL015C-A 3.048296667 2.01032   strong similarity to hypothetical protein YIL102c
GAT1, NIL1 3.040113333 2.17545   activator of transcription of nitrogen-regulated genes
STR3 3.031996667 2.413773333   strong similarity to Emericella nidulans cystathionine beta-lyase
BNA 5 3.015351467 2.3069476   strong similarity to rat kynureninase
ADH5 3.0029 2.08258   alcohol dehydrogenase isoenzyme V
NDR047C 3.000873333 2.333503333   SAGE orf 
YOL114C 2.995036067 2.521193667   similarity to human DS-1 protein
PTI1 2.837843333 2.113536667   hypothetical protein
NIL005W 2.79426 2.589083333   SAGE orf 
YHR095W 2.68148 2.81173   hypothetical protein
MMP1 2.640283333 2.115793333   strong similarity to amino acid transport protein Gap1p
NNL036W 2.633703333 2.01437   SAGE orf 
MET10 2.623033333 2.0002   subunit of assimilatory sulfite reductase
gPL09 2.59815 2.040123333   complete chromosome sequence
YGL007W 2.58776 2.36344   questionable ORF
ICY2 2.547253333 2.03107   weak similarity to YMR195w
gPR12 2.543206667 3.174073333   complete chromosome sequence
YOL155C 2.5252241 2.1482835   similarity to glucan 1,4-alpha-glucosidase Sta1p and YAR066w
YOR318C 2.48528 2.38759   hypothetical protein
YOL155C 2.47221 2.017373333   similarity to glucan 1,4-alpha-glucosidase Sta1p and YAR066w
YDR542W 2.470247633 2.726105067   strong similarity to subtelomeric encoded proteins
LPE10 2.419726667 2.095543333   mitochondrial protein, strong similarity to Mrs2p, megnesium ion transporter
gKR07 2.336419733 2.223684167   complete chromosome sequence.
SHU2 2.324233333 1.998733333   Preferential Use of Neither donor locus during mating type switching.
PRR2 2.277776667 2.496296667   strong similarity to putative protein kinase NPR1
YPL261C 2.246913333 2.44691   questionable ORF
FRE 2 2.2383902 1.999410367   Ferric reductase, similar to Fre1p

ommon genes 2xdown in swi3  and SWI3*sant  strains  (49)
avg. fold down avg. fold down

O
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An intact SANT domain of Swi3p is required for the recruitment of SWI/SNF 

etion of the SANT domain of Swi3p causes growth defects and 

o a 

to target promoters 

           Since partial del

changes in the genome-wide transcriptional profile, we next investigated how the SANT 

domain contributes to the function of SWI/SNF in vivo. A study by Boyer et al showed 

that the SANT domain of Ada2p is required for the interaction of the Gcn5-containing 

SAGA complex with the histone H3 tails in a GST-pull down assay (Boyer, et al., 2002). 

In the case of the nuclear hormone corepressor SMRT, the N-terminal SANT domain of 

SMRT was required for histone deacetylase 3 (HDAC3) activity, whereas the C-terminal 

SANT domain interacted with non-acetylated histone tails (Yu, et al., 2003). Given that 

the SANT motif functions as a histone tail-binding module, deletion of the SANT domain 

might interfere with the binding or stability of SWI/SNF at target promoters.  

           To test whether the transcriptional defect caused by swi3ΔSANT is due t

recruitment defect of SWI/SNF at target promoters in vivo, I performed chromatin 

immunoprecipitation (ChIP) analysis on the promoters of CDC6, SIC1 and HO, known 

SWI/SNF-dependent genes. To do this, Swi2p was tagged at its C-terminus with 13 

tandem repeats of myc epitope in isogenic wild type (WT), swi3 deletion (∆swi3), and 

swi3∆SANT strains. The Myc tag does not interfere with the protein expression level 

(data not shown) or the function of Swi2p, as the myc-tagged allele did not show the 

growth defects associated with a swi2 mutant. Consistent with previous observations by 

Boyer et al (Boyer, et al., 2002), swi3ΔSANT does not affect the protein level of Swi2p 

(Figure 8). Anti-myc antibody was used to immunoprecipitate formaldehyde cross-linked 

chromatin from asynchronous cell cultures. We found that in the wild type (WT) strain, 
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Swi2-myc was associated with all the promoters tested (Figure 9, WT). In contrast, 

deletion of the Swi3p eliminated Swi2-myc recruitment, and swi3ΔSANT caused an 

approximately 60% decrease in Swi2-myc recruitment at all target promoters (Figure 9). 

Complete deletion of swi3 seemed to impair the stability of Swi2p (Peterson, et al., 

1994), which might explain the more severe recruitment defect in Δswi3 background.  

 

 

 

                                                                    

 

igure 8. Deletion of the SANT domain of Swi3p does not affect Swi2p protein expression 
level. Western blot analysis of Swi2-13Myc from whole cell lysate of isogenic WT, ∆swi3, and 

WT  ∆swi3 ∆SANT 

 

F

swi3∆SANT strains, using monoclonal anti-Myc antibody.  
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    a.           Input                    anti-myc IP                   b.                    

p is required for r
romoters. (a, c, e) Representative gels of PCR products from chromatin immunoprecipitation 

Input                     anti-myc IP              

 

 

 

 

 

 

 
Figure 9. An intact SANT domain of Swi3 ecruitment of SWI/SNF to target 
p
(ChIP) analyses from asynchronized cells. The C-terminus of Swi2p was tagged by 13 tandem 
repeats of myc epitope tag in isogenic WT, Δswi3 and swi3ΔSANT strains. A monoclonal 
antibody against myc was used for IP. Untagged WT strain served as background control. Primer 
sets from the HO, CDC6 and SIC1 promoter regions produced ~200bp DNA products. Primer 
sets from ACT1 ORF region served as internal control (gel not shown). (b, d, f) Plot showing 
relative IP% quantified from (a, c, e) gels respectively, after subtracting the untagged signal from 
IP signal, then normalized by signal from ACT1 ORF.  
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           Since several SWI/SNF dependent genes, including HO are cell cycle regulated, 

ChIP analyses were also performed in nocodazole-synchronized cells to enrich the 

recruitment signals. WT and swi3∆SANT strains were grown in YEPD rich media to 

O.D.  of 0.6, and were synchronized for two hours in the presence of 1 mM nocodazole 

at 30°C. G2/M arrest was indicated by the appearance of large buds in over 95% of the 

population. After synchronization, cells were washed and re-suspended in fresh YEPD 

media. Based on previous observations, WT cells began to exit G2/M phase 30-45 

minutes after release, and most cells entered S phase 120 minutes after release (Krebs, 

et al., 1999). Therefore, a time course over 135 minutes was taken after cells were 

released from G2/M phase for ChIP assay. As shown in Figure 10, the maximal 

recruitment of SWI/SNF was significantly enriched at the HO promoter, compared with 

ChIP signals in asynchronous cells.  In WT, SWI/SNF was recruited to the promoter ~60 

minutes after released from G2/M phase, which is consistent with the timing of HO 

transcription (Krebs, et al., 1999). Maximal recruitment of SWI/SNF was observed 

between 60-120 minutes after release from G2/M (Figure 10b, right panel and Figure 

10c). Dissociation of SWI/SNF from the promoter was observed ~120 minutes after 

release from G2/M phase in WT (Figure 10b right panel, and Figure 10c). In the absence 

of the SANT domain, recruitment of SWI/SNF to the promoter was severely impaired at 

each time point (Figure 10b left panel, and Figure 10c). The synchronized ChIP data 

supports the hypothesis that the SANT domain may be required for the binding or 

stability of SWI/SNF at the promoter region.  

 

 

600
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HO promoters in nocodazole-synchronized cells. (a) Gels represent PCR products 

Association of SWI/ SNF on HO promotor 5A region  in synchronized cells
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Figu The SANT domain of Swi3p is required for SWI/SNF re

from input DNA in synchronized ChIP analyses from the same WT (right panel) and 
swi3∆SANT (left panel) strain described in Figure 8. When sells grew to O.D.600 of 0.6, 1 
mM nocodazole (final concentration) was added directly into the media for 2 hours. After 
synchronization, cells were released into fresh YEPD media. An aliquot of cultures was 
taken from formaldehyde crosslink at times indicated at the top of each panel. (b) Gels 
showing PCR products from IP DNA of WT (right panel) and swi3∆SANT strain (left 
panel). (c)  Relative IP% quantified from gels in panel (a, b).  
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Tethering SWI/SNF to promoter via LexA-Swi2p is insufficient to activate 

LacZ reporter gene in vivo 

           Due to the strong affinity between bacterial repressor LexA DNA-binding domain 

(DBD) and its cognate DNA, fusion of LexA DBD to Swi2p, Snf6p and Swp73p activates 

the transcription a LacZ reporter gene that is under the control of a chimeric promoter 

containing LexA operator and GAL1 TATA box (Cairns, et al., 1996b; Laurent and 

Carlson, 1992). Using LexA-Swi2p and LacZ reporter system, we expected that artificial 

tethering of SWI/SNF might rescue the recruitment defect caused by the Swi3p SANT 

domain, and that transcription in this assay would not require the SANT domain of 

Swi3p. To address this possibility, I integrated this ApaI linearized LacZ reporter gene 

into the chromosome at the URA3 locus in a swi3 deletion strain (Figure 11a). High copy 

expression plasmids of LexA-SWI2 (HIS3+), SWI3 (LEU2+), or swi3ΔSANT (LEU2+) 

were co-transformed into the LacZ reporter strain. Beta-galactosidase (β-gal) activity 

assays repeatedly showed that an intact SWI/SNF complex is required for LacZ reporter 

gene activation. The ATPase activity of Swi2p is also required for beta-galactosidase 

expression since an ATPase dead mutant of Swi2p, swi2K798A, abolished 

transcriptional activation of LacZ (Figure 11b). Western blot analysis showed that 

swi2K798A protein expression level remains the same as WT Swi2p (Figure 11c). In the 

absence of Swi3p, LexA-Swi2p alone was insufficient for LacZ reporter gene activation 

(Figure 11b). Unexpectedly, tethering SWI/SNF by LexA-Swi2p in the absence of the 

SANT domain of Swi3p was not sufficient to activate the LacZ reporter. The inability of 

swi3∆SANT to activate the LacZ reporter strongly suggests that the SANT domain of 
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Swi3p may play other roles for chromatin remodeling although its nucleosome binding 

property cannot be ruled out from this tethering result.  
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Figure 11. Transcriptional activation of LacZ reporter by artificial tethering of 
SWI/SNF to the promoter requires an intact SWI/SNF. (a) Schematic of ApaI-
linearized LacZ reporter with a promoter containing 2 repeats of LexA binding sites and 
GAL1 TATA box integrated into chromosome at URA3 locus in Δswi3 strain. Arrows 
represent primer set used for PCR in ChIP analyses. (b) Representative beta-gal 
activity. High-copy expression plasmid of LexA-SWI2 (HIS+) or LexA-swi2K798A was 
co-transformed with either SWI3 (WT) or swi3∆SANT (LEU+) into the LacZ reporter 
strain. Cells were selected on SC-HIS/-LEU media for plasmid selection. Beta-gal 
activity was measured from three individual cultures. (c) Western blot analysis of LexA-
Swi2p showing equal expression of Swi2p and swi2K798A mutant from cells used for 
beta-gal analyses described above. 
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           In order to confirm that SWI/SNF was tethered by LexA-Swi2p under different 

conditions, ChIP analysis was performed to check the physical association of SWI/SNF 

at the LacZ promoter. Polyclonal antibodies against Swi2p, Swi3p or Snf6p were used 

for parallel ChIP analyses. The results suggest that SWI/SNF can be recruited to the 

promoter in the wild type strain despite that different antibodies were used for 

immunoprecipitation (WT, Figure 12), indicating that SWI/SNF complex assembly does 

not cause epitope masking in these subunits, and each antibody has similar efficiency of 

immunoprecipitation. Consistent with previous experiments on endogenous promoters, 

the recruitment of SWI/SNF to Lac Z promoter decreased in all the ChIPs in the absence 

of an intact SANT domain (ΔSANT, Figure 12). Interestingly, the Swi2p signal only 

decreased slightly, whereas Swi3p and Snf6p ChIP signals decreased more dramatically 

in the swi3∆SANT background (∆SANT, Figure 12). The difference in recruitment levels 

between different subunits of SWI/SNF led us to suspect that the stability of the 

SWI/SNF complex may be impaired in the absence of an intact SANT domain. Taken 

together, these observations suggest that the SANT domain of Swi3p appears to play a 

role other than binding the nucleosome substrate.  
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           IP:      anti-Swi2         anti-Swi3       anti-Snf6          Input 
             WT   ΔSANT        WT   ΔSANT       WT   ΔSANT        WT   ΔSANT

 
IP%:   1.1    0.8             1.1    0.3          2.0    0.2  

 
 
 
Figure 12. Recruitment of SWI/SNF subunits to LacZ promoter. Gels are 
representative PCR products of ChIP analyses. Cells used for ChIP are from the same 
cultures for beta-gal experiments described above. Polyclonal antibody against Swi2p, 
Swi3p or Snf6p were used for parallel ChIP analyses. Percentage IP was calculated at 
the bottom of each gel. 
 
 
 
 
 
The Swi3p SANT domain is required for SWI/SNF assembly 

To further characterize the essential role of the SANT domain of Swi3p, we 

purified the SWI/SNF complex from a swi3ΔSANT strain, then checked whether this 

mutant SWI/SNF impaired the chromatin remodeling activity. To do this, I TAP-tagged 

the Swi2p subunit at its C-terminus at the endogenous locus of the gene, and used a 

two-step affinity chromatography technique (Figure 13) to purify SWI/SNF complexes 

from wild type, swi3∆, and the same swi3∆SANT strain that harbors an eleven amino 

acid deletion within the SANT domain. Consistent with previous studies, purification of 

the TAP-tagged Swi2p subunit from a wild type strain yielded a SWI/SNF complex 

composed of 11 subunits, although the small subunits, Snf11p and Swp29p were not 

stained well by silver (Smith, et al., 2003; Treich, et al., 1995) (lane 1, Figure 14a). 

Surprisingly, lack of the Swi3p subunit (data not shown) or a small deletion within the 
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Swi3p SANT domain led to the disassembly of SWI/SNF complex, as only the Arp7p and 

Arp9p subunits were co-purified with Swi2p (Figure 14a, lane 2). The polypeptide at 150 

kDa position was confirmed to be a proteolytic product of Swi2p by mass spectrometry 

(data not shown). Consistent with a role for the SANT domain in SWI/SNF assembly, the 

11 amino acid deletion within the Swi3p SANT domain also altered the elution of Swi2p 

when whole cell extracts were fractionated on a Superose 6 gel filtration column (L. 

Boyer and C.L.P., unpublished results). Alterations within the SANT domain do not affect 

Swi3p expression (Boyer, et al., 2002), and thus Swi3p and an intact Swi3p SANT 

domain are required for assembly of an intact SWI/SNF complex.  
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Figure 13. Scheme for TAP-tagged SWI/SNF protein purification. TAP tag containing 

a calmodulin binding peptide (CBP) and four tandem repeats of protein A (A) was 

integrated in frame at the C-terminus of Swi2p at chromosome locus. Using two-step 

affinity chromatography (see details in materials and methods), SWI/SNF complex was 

purified from different strain background described in the text. 
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To trace the missing components of SWI/SNF, I generated TAP-SNF6, TAP-

SWI1 or TAP-SNF5 alleles in both wildtype and the same swi3∆SANT strain 

background. Tandem affinity purifications of these tagged subunits from a wildtype strain 

repeatedly led to the purification of an intact SWI/SNF complex (Figure 14a, lane 4, 6). 

In contrast, when these subunits were purified from the swi3∆SANT strain, Snf6p-TAP 

co-purified with only the Swi3p and Swp73p subunits (Figure 14a, lane 3), and Snf5p-

TAP and Swi1p-TAP appeared to purify as single polypeptides (Figure 14a, lane 5, 7). 

Mass spectrometry analyses verified the subunit composition of each putative 

subcomplex, and Figure 14b represents a Western blot to confirm the composition of WT 

and a subcomplex from the TAP-Swi2p preparation from a swi3∆SANT background 

(Figure 14b, and data not shown).  

           Since  a point mutation of a conserved residue R564E from the putative helix 3 of 

Swi3p SANT domain also caused a similar growth defect to that of swi3∆SANT (Boyer, 

et al., 2002), it is conceivable that this residue is critical for the function of the SANT 

domain, and therefore might also affect the stability of SWI/SNF complex. To test this 

idea, Swi2p or Snf6p was TAP-tagged in a strain bearing a swi3R564E mutation for 

SWI/SNF purification. As expected, swi3R564E point mutation also caused the 

dissociation of SWI/SNF in the same way as that of a swi3 deletion or swi3∆SANT (data 

not shown). The dissociation of SWI/SNF in the absence of an intact SANT domain or 

Swi3p further suggests that the SANT domain and Swi3p are critical for the assembly of 

SWI/SNF complex.  
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a. 

 

 M           WT        ∆SANT                     M               ∆SANT                     M        WT       ∆SANT                 WT      ∆SANT  

Swi2 
 
 
 
 
 
 
 
Arp7/ 
Arp9 
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  50 
 
 
 
  37 

* 
Swi3 

Swi1
Snf5 150 

100 

Swp73 
Snf6 

Swi1 
Snf5/ 
Swi3 
 
 
Swp73 
Swp82 

 TAP-Swi2                    TAP-Snf6                    TAP-Snf5                  TAP-Swi1 
Size 
kDa 

Lane:    1        2                               3                        4       5                   6      7 

 

 

b.
WB:                 Swi2           Swi1          Snf5         Swi3           Arp9          Snf6          Arp7
TAP-Swi2:   WT     ΔSANT WT      ΔSANT WT   ΔSANT WT    ΔSANT WT    ΔSANT WT    ΔSANT WT      ΔSANT

b.
WB:                 Swi2           Swi1          Snf5         Swi3           Arp9          Snf6          Arp7
TAP-Swi2:   WT     ΔSANT WT      ΔSANT WT   ΔSANT WT    ΔSANT WT    ΔSANT WT    ΔSANT WT      ΔSANT

 

 

 
Figure 14. The SANT domain of Swi3p is required for SWI/SNF assembly. (a) TAP-

Swi2p, TAP-Snf6p, TAP-Snf5p, or TAP-Swi1p proteins were purified from wild type (WT) 

or swi3∆SANT strains (∆SANT). Approximately one tenth of each preparation was 

resolved on 8-10% SDS PAGE for silver staining. M, molecular marker. Asterisk (*) 

represents Swi2p breakdown product. (b) Western blot analyses of TAP-Swi2p 

preparations purified from WT or swi3∆SANT strains, using polyclonal antibodies 

specific for subunits indicated at the top of each panel. 
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SWI/SNF is an integration of several modules  

           Since SWI/SNF dissociated into small subcomplexes in the absence of Swi3p or 

the SANT domain, and none of the subcomplexes share any subunits, we wondered 

whether the deletion of other subunits would also cause the dissociation of SWI/SNF into 

the same subcomplexes. To test this, I purified Snf5p-TAP from a ∆swi2 strain, Snf5p-

TAP from a swi1∆ strain, Snf6p-TAP from a snf5∆ strain, and Snf6p-TAP from a ∆swi3 

strain (summarized in Table 6, data not shown).  As expected from earlier studies 

(Peterson, et al., 1994), deletion of core subunit of SWI/SNF led to disassembly of 

SWI/SNF, and all of the data are fully consistent with an organization of SWI/SNF that 

involves the interdependent assembly of four distinct subcomplexes – (1) 

Swi2p/Arp7p/Arp9p, (2) Swi3p/Swp73p/Snf6p, (3) Snf5p, and (4) Swi1p.  

 

Table 6. TAP-SWI/SNF complexes from different strain background.  

Strain 

 

TAP- 

 

666 

WT 

 

667 

∆swi3 

 

669 

∆SANT 

 

575 

∆snf5 

 

119 

∆swi1 

 

678 

swi3∆4N 

 

679 

swi3∆5N 

 

694 

R564E 

 

407 

∆swi2 

 
 

1316 
 

swi3∆1N 

 
 

1317 
 

swi3∆2N 

 

Swi2 

+ 

WT 

+ 

mini 

+ 

mini 

  + 

mini 

+ 

mini 

+ 

mini 

   

 

Snf6 

+ 

WT 

+ 

No 

yield 

+ 

Swi3 

Swp73 

Snf6 

+ 

Swi3 

Swp73 

Snf6 

 + 

Swi3 

Swp73 

Snf6 

+ 

Swi3 

Swp73 

Snf6 

  + 
 

intact 

+ 
 

intact 

 

Snf5 

+ 

WT 

+ 

Snf5 

+ 

Snf5 

 No 

yield 

   + 

Snf5 

  

 

Swi1 

+ 

WT 

 + 

Swi1 
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DISCUSSION 

 

           In this part of study, I demonstrated that impairment of the SANT domain of 

Swi3p subunit changed the genome-wide transcriptional profile and crippled the 

recruitment of SWI/SNF to target promoters. However, tethering SWI/SNF via LexA-

Swi2p was unable to rescue the recruitment defect caused by deletion of the SANT 

domain in LexAop-GAL1TATA-LacZ reporter assay, indicating that the SANT domain plays 

a role other than recruitment. From a series of SWI/SNF high quality purifications by 

TAP, we found the SANT domain of Swi3p is required for the integrity of SWI/SNF 

complex. More notably, SWI/SNF complex consists of at least four subcomplexes that 

dissociate in the absence of the SANT domain or any other core subunits: 1) 

Swi2p/Arp7p/Arp9p; 2) Swi3p/Swp73p/Snf6p; 3) Swi1p; and 4) Snf5p. This result 

strongly suggests that the SANT domain of Swi3p mediates protein-protein interactions 

that are required for SWI/SNF assembly, and the subcomplexes reveal the modular 

architecture of the SWI/SNF complex. 

 

General role of SANT domains  

           Although the SANT domain was identified based on the homology to the c-myb 

DNA binding domain, in several cases it seems to bind histone tails rather than DNA 

(Boyer, et al., 2002; Boyer, et al., 2004; Ding, et al., 2004; Humphrey, et al., 2001). In 

Saccharomyces cerevisiae, the SANT domain of Ada2p is critical for histone H3 tail 

interaction (Boyer, et al., 2002). Interestingly, the C-terminal half or the whole SANT 
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domain of Ada2p is also required for the assembly of SAGA complex (Candau and 

Berger, 1996; Sterner, et al., 2002). In contrast, the N-terminal half of the SANT domain 

of Ada2p is not required for the assembly of SAGA complex, but is important for Gcn5p 

HAT activity (Sterner, et al., 2002). In mammalian cells, two tandem repeats of SANT 

domains of nuclear hormone receptor corepressors SMRT appear to have different 

functions as well. The N-terminal SANT domain of SMRT is required for histone 

deacetylase HDAC3 activity, whereas the C-terminal SANT is important for unacetylated 

histone tail interaction (Yu, et al., 2003). Drosophila ISWI also contains a SANT and a 

SANT-like domain (SLIDE) in its C-terminal region. The overall negative charge on the 

surface of the helices of ISWI SANT domain suggests that this SANT domain may be a 

candidate for interaction with positively charged histone tails (Grune, et al., 2003). 

However, the C-terminal SLIDE domain of ISWI seems to have DNA binding property, 

and is required for both DNA binding and ATPase activity of ISWI (Grune, et al., 2003). 

In this study, we found that deletion of 11 amino acids or R564E point mutation within 

the third putative helix of Swi3p SANT domain resulted in the disassembly of yeast 

SWI/SNF complex, supporting that the SANT domain of Swi3p is critical to mediate non-

histone protein-protein interactions that are required for SWI/SNF assembly. The 

important role of Swi3R564 for Swi3p function led us to speculate that this arginine 

residue may be important for the folding of the putative helical structure of the SANT 

domain. When aligned with the sequence of ISWI SLIDE domain, the arginine residue 

(R955) within the third helix of ISWI SLIDE domain likely corresponds to Swi3R564. In 

X-ray crystal structure, ISWIR955 is located at the external region of the third helix. An 

intermolecular aspartic acid (ISWID907) is in close contact with R955 and may form an 
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ionic interaction that is critical for protein folding (Figure 15). These features might help 

us to understand the importance of the third helix of Swi3p SANT domain. Taken 

together, the SANT domains may in general mediate protein-protein interactions for 

large protein complex assembly and histone tail interactions to coordinate core 

enzymatic activity of chromatin modifying complexes on nucleosomal substrates.  

           

 

 

R955

D907

R955

D907                                           

 

Figure 15. Crystal structure of ISWI SANT-like domain (SLIDE) (Grune, et al., 2003). 

Arginine residue (R955) within the third helix of SLIDE domain is in close contact with an 

aspartic acid (D907) that is buried under the helices. These opposite ionic residues 

seem to be critical for protein folding.  
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 Structural and functional organization of SWI/SNF complex  

            SWI/SNF subcomplexes were purified from whole cell extract in the presence of 

high concentration of salt (350 mM NaCl), indicating the tight association of different 

subunits within these modules. Interestingly, extreme ionic strength did not cause the 

disassembly of WT SWI/SNF complex in vitro. Like some other large protein complexes, 

SWI/SNF chromatin remodeling machinery seems to be also constituted from distinct 

stable subcomplexes. The subcomplex composition may reveal the distinct function of 

each subunit.  

           Since SWI/SNF binds both DNA and nucleosome with low affinity and without 

sequence specificity, it has been proposed that Snf5p and Swi1p subunits may be 

partially redundant recruiters that recruit SWI/SNF to promoter via direct interaction with 

acidic activators (Narlikar, et al., 2002; Peterson and Workman, 2000; Prochasson, et 

al., 2003). It is interesting to find that native Swi1p or Snf5p proteins were purified as a 

monomer when SWI/SNF is disassembled. In the absence of the SANT domain of 

Swi3p, the dissociation of Swi1p and Snf5p from SWI/SNF complex might explain the 

recruitment defect of the SWI/SNF to most target promoters, therefore resulting in 

genome-wide transcriptional defect of target genes and growth phenotype. Due to the 

important role of mammalian SWI/SNF in tumor suppression (Roberts, et al., 2002) and 

in DNA double-strand break (DSB) repair (Chai, et al., 2005; Jaskelioff, et al., 2003; 

Morrison and Shen, 2006; Park, et al., 2006), it remains very important to characterize 

the role of each subunit for SWI/SNF functions.  

           Although the contribution of actin-related proteins (ARP) in chromatin remodeling 

is unclear, the ubiquitous existence of Arp proteins in chromatin remodeling complexes  



 68

and their tight association with the catalytic subunit suggests that they are structurally 

and/or functionally important for chromatin remodeling enzymes in vivo (Peterson, et al., 

1998). It has been shown that purified INO80 complex in the absence of Arp5p or Arp8p 

is intact but has compromised ATPase activity and chromatin remodeling activity (Shen, 

et al., 2003). For yeast Swi2p, we found that it is physically associated with Arp7p and 

Arp9p when SWI/SNF falls apart in vivo, suggesting that the role of Arp proteins may be 

associated with the catalytic subunit of SWI/SNF. However, for yeast RSC complex, 

temperature sensitive mutant of Arp7p or Arp9p does not affect the assembly of RSC 

complex or the ATPase activity of RSC (Szerlong, et al., 2003). Therefore, the precise 

role of ARPs remains to be investigated.   

           Collectively, large protein complex of SWI/SNF integrates distinct functional and 

architectural modules of proteins, and each module seems to play a distinct role during 

multi-step chromatin remodeling process. The initial consequence of ATP hydrolysis by 

Swi2p is to disrupt histone-DNA contacts, which facilitates the change in nucleosome 

configuration through sliding histone octamer or nucleosome mobilization (Cote, et al., 

1998; Phelan, et al., 2000). Depending on unknown properties of DNA sequence, 

histone H2A/2B dimer loss may occur following the disruption of DNA-histone 

interactions (Bruno, et al., 2003; Vicent, et al., 2004). Conceivably, SWI/SNF chromatin 

remodeling machinery may use different mechanism to make promoter more accessible 

for the binding of other regulatory factors. Different subcomplex may be required before, 

during, or after chromatin remodeling. Although the precise role of each subcomplex 

remains to be investigated, the dissociation of SWI/SNF complex in the absence of core 

subunits would disrupt the functional coordination between these modules and may 
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cause misregulation of target genes. All of these findings provide new insight into the 

molecular architecture of SWI/SNF complex and distinct function of each gene for ATP-

dependent chromatin remodeling.  
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MATERIALS AND METHODS 

 

Yeast strains and culture. The carboxyl-terminus of Snf2p was tagged with 13 tandem 

repeats of myc tag at endogenous locus in isogenic CY666 (wildtype SWI3; WT), CY667 

(Δswi3) and CY669 (swi3ΔSANT) strain background. For ChIP analysis, each strain was 

inoculated into yeast extract-peptone medium containing 2% glucose (YEPD), and 

grown to an O.D.600 of ~ 1.0 at 30ºC. Cells were collected by centrifugation at 4 ºC. 

LexA-GAL1-LacZ (URA3+) reporter strain (CY1053) was established by integrating ApaI 

linearized LexAop-GAL1TATA-LacZ reporter gene into chromosome at URA3 locus in swi3 

deletion background. High copy expression plasmid of LexA-SWI2 (HIS3+) was co-

transformed with pRS415-SWI3 or swi3ΔSANT (LEU2+) into CY1053 and grown in 

synthetic complete media lacking amino acids leucine and histidine (SC-HIS-LEU) to 

maintain the selection for plasmids.  

 

Affymetrix Gene Chip analysis. Isogenic strains of WT, Δswi3 and swi3ΔSANT were 

inoculated and grown in YEPD rich medium to O.D.600 of ~0.8. Cells were harvested for 

“hot phenol” total RNA extraction. Fifteen micrograms of total RNA purified from RNeasy 

column (QIAGEN) was used for cDNA synthesis (Invitrogen), and cDNA was cleaned up 

by Phase-lock heavy gel-Phenol/Chloroform Extraction (QIAGEN). Biotinated cRNA was 

synthesized using synthesized cDNA as template following manufacture’s protocol 

(Enzo), and cleaned up by RNeasy column. cRNA (40 µg) was fragmented based on 

metal-induced hydrolysis in buffer containing 200 mM Tris-Acetic acid pH8.1, 500 mM 
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potassium acetate and 150 magnesium acetate in 94ºC water bath for 35 minutes. 

Hybridization and other steps were followed according to Affymetrix Gene Chip protocol. 

Three independent experiments were performed. Data analysis was based on fold 

change (up or down more than 2 fold or otherwise indicated) normalized to WT in all 

three independent experiments.  

 

Chromatin immunoprecipitation (ChIP). ChIP assays were performed based on 

protocol described by Orlando et al with minor modifications (Orlando, et al., 1997). 

Briefly, asynchronized or nocodazole-synchronized cells were crosslinked with 1% of 

formaldehyde at room temperature for 20 minutes and quenched by glycine for 5 

minutes. Equal amount of each whole cell extract was used for immunoprecipitation, 

using antibodies against myc (Santa Cruz), or polyclonal antibody against Swi2p, Swi3p 

or Snf6p (Gift from Reese lab). DNAs were sheared by sonication 10 seconds each time 

for a total of 6 times. Each sample was deproteinated in the presence of proteinase K at 

50ºC and decrosslinked at 65ºC.  Hot PCR reaction was performed in the presence of α-

32P-dCTP, using primers spanning target promoter. ACT1 ORF region primers were 

used for internal control. Relative IP percentage was quantified by ImageQuant v1.2 

(Amersham) after imaged with PhosphorImager (Molecular Dynamics).  

 

Βeta-galactosidase activity. Βeta-galactosidase (β-gal) activity was detected and 

reported in Miller units as described everywhere. Three individual colonies were selected 

from each strain. Data presented was an average of the three independent results. 

Standard deviation of each group is less than 20%. 
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TAP-SWI/SNF purification. Isogenic strains of CY666 (WT), CY667 (Δswi3) and CY669 

(swi3ΔSANT) was TAP tagged at the carboxyl-terminus of Snf2p, Swi1p, Snf5p, or 

Snf6p at endogenous locus of each gene.  Each strain was typically inoculated into six 

liters of yeast extract-peptone medium containing 2% glucose (YEPD), and grown to 

O.D.600 approximate to 2.0~3.0 at 30ºC. Cells were harvested by centrifugation at 4ºC. 

TAP-SWI-SNF complexes were purified as described previously with minor modifications 

(Puig, et al., 2001). Briefly, yeast whole cell extracts from 6-liter culture were prepared 

by bead beater (Biospec Products, INC) in cold E buffer containing 20 mM Hepes 

(pH7.5), 350 mM NaCl, 10% glycerol, 0.1% Tween-20 and protease inhibitors (2 μg/ml 

leupeptin, 1 μg/ml pepstatin, 1 mM PMSF). Cell lysate was clarified at 40,000 rpm at 4ºC 

for 1 hour (Beckman Ti45 rotor). Clear supernatant was incubated with rabbit IgG-

agarose beads (Sigma) for 2 hours at 4ºC. SWI/SNF was cleaved off the IgG-beads by 

TEV protease (Invitrogen) overnight at 4ºC, and further incubated with calmodulin affinity 

beads (Stratagene) in E buffer plus 2 mM CaCl2 for 2 hours at 4ºC. Finally, protein was 

eluted off the calmodulin beads in E buffer in the presence of 10 mM EGTA. Protein 

elute was dialyzed in E buffer in the presence of 50 μM ZnCl2. The purity and 

components of each complex was confirmed by SDS-PAGE gel electrophoresis followed 

by silver staining or Western blot analysis. For mass spectrometry analysis, each band 

was sliced off the gel after silver staining. 

 

Western blot analysis. TAP-purified SWI/SNF complexes were resolved into 8-10% 

SDS PAGE, transferred to cellulose membrane, then the membrane was blocked by 4% 

milk in TBST, and incubated with rabbit polyclonal IgG primary antibody against each 
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subunit of SWI/SNF (J. Reese lab gift) or Lex-A (Santa Crutz) overnight at 4ºC. On the 

second day, each membrane was washed 3 times with TBST and incubated with 

secondary antibody for 1 hr at 4ºC. Finally, proteins were visualized by developing the 

membrane in SuperSignal substrate (PIERCE).   
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CHAPTER III 
 

MODULAR AND FUNCTIONAL ORGANIZATION OF YEAST 

SWI/SNF COMPLEX 

 
SUMMARY 

 
Yeast SWI/SNF is a multi-subunit, 1.14 MDa ATP-dependent chromatin 

remodeling enzyme required for transcription of a subset of inducible genes. 

Biochemical studies have demonstrated that SWI/SNF can use the energy from ATP 

hydrolysis to generate superhelical torsion, mobilize mononucleosomes, enhance the 

accessibility of nucleosomal DNA, and remove H2A/H2B dimers from 

mononucleosomes. In this chapter, we characterized the ATP-dependent chromatin 

remodeling activities of a SWI/SNF subcomplex that is composed of only three subunits, 

Swi2p, Arp7p, and Arp9p. Whereas this subcomplex is fully functional in most 

remodeling assays, Swi2p/Arp7p/Arp9p is defective for ATP-dependent removal of 

H2A/H2B dimers. We identified the acidic N-terminus of the Swi3p subunit as a novel 

H2A/H2B binding domain required for ATP-dependent dimer loss. Our data indicate that 

H2A/H2B dimer loss is not an obligatory consequence of ATP-dependent DNA 

translocation, and furthermore they suggest that SWI/SNF is composed of at least four 

interdependent modules.  
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Figure 19c,d in this chapter were provided by Roser Zaurin of Dr. Miguel Beato’s 

group from the Centre for Genomic Regulation of Spain as a collaborator to confirm the 

dimer loss defect by in vitro chromatin immunoprecipitation. 

The data presented in this chapter is published in Nature Structural & Molecular 

Biology (May 2007, advance online publication).  
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INTRODUCTION 

 
The assembly of eukaryotic DNA into folded nucleosomal arrays is likely to have 

a major impact on the efficiency or regulation of nuclear processes that require access to 

the DNA sequence, including RNA transcription, DNA replication, recombination, and 

repair.  In fact, it is now generally recognized that disruption or remodeling of chromatin 

structure may be a prerequisite step for most of these nuclear DNA transactions. Two 

classes of highly conserved chromatin remodeling enzymes have been implicated in 

modulating the repressive nature of chromatin structure. The first class includes 

enzymes that covalently modify the nucleosomal histones (acetylation, phosphorylation, 

methylation, ubiquitylation, etc; reviewed by Strahl and Jenuwein) (Jenuwein and Allis, 

2001; Strahl and Allis, 2000), and the second class is composed of multi-subunit 

complexes that use the energy of ATP hydrolysis to disrupt histone-DNA interactions 

(Narlikar, et al., 2002).   

The Saccharomyces cerevisiae SWI/SNF complex is a prototype for ATP-

dependent chromatin remodeling enzymes. Yeast SWI/SNF is a multiprotein complex 

that consists of eleven subunits with a molecular weight of 1.14 mega Dalton (Cairns, et 

al., 1996b; Peterson, et al., 1994; Smith, et al., 2003). This widely conserved assembly 

is required for the inducible expression of a number of diversely regulated yeast genes 

and for the full functioning of many transcriptional activators. SWI/SNF can be recruited 

to target genes via direct interactions with gene-specific activators, and in several cases 

SWI/SNF facilitates the binding of activators to nucleosomal sites in vivo (Cosma, et al., 

1999; Neely, et al., 2002; Peterson and Workman, 2000; Prochasson, et al., 2003). In 
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vitro, the purified SWI/SNF complex is a DNA-stimulated ATPase that can use the 

energy of ATP hydrolysis to disrupt histone-DNA interactions. Although the precise 

mechanism of SWI/SNF action is not clear, recent single molecule studies have 

suggested a model in which SWI/SNF uses a DNA “pumping” mechanism to generate 

transient DNA loops on the histone octamer surface (Mihardja, et al., 2006; 

Shundrovsky, et al., 2006). This ATP-dependent DNA translocation model is consistent 

with the ability of SWI/SNF to use the energy of ATP hydrolysis to generate superhelical 

torsion, mobilize nucleosomes, and enhance nucleosomal DNA accessibility. SWI/SNF 

remodeling can also lead to the removal of one or both histone H2A/H2B dimers from a 

mononucleosome substrate, and this reaction is sensitive to the underlying sequence of 

nucleosomal DNA (Bruno, et al., 2003; Vicent, et al., 2004). Whether this dimer loss 

reaction is simply an indirect consequence of the DNA translocation reaction is not 

known. 

The catalytic subunit of yeast SWI/SNF is Swi2p/Snf2p which is the founding 

member of a subfamily of the SF2 superfamily of DNA-stimulated ATPases/helicases 

(Flaus, et al., 2006). A human homolog of Swi2p/Snf2p, BRG1, is the catalytic subunit of 

the human SWI/SNF complex, and the isolated BRG1 subunit is able to alter histone-

DNA interactions on a mononucleosome substrate (Phelan, et al., 2000; Phelan, et al., 

1999).  If the ATPase subunit is sufficient for ATP-dependent remodeling, what role(s) 

do the other subunits play? Two subunits, Swi1p and Snf5p, interact with the acidic 

activation domains of gene-specific activators, and these interactions are essential for 

recruitment of SWI/SNF to target loci (Prochasson, et al., 2003). Early studies 

demonstrated that at least four subunits of SWI/SNF are required for assembly of the 
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Swi2p/Snf2p subunit into a high molecular weight complex (Swi1p, Swi3p, Snf5p, 

Snf6p), and inactivation of these same subunits leads to phenotypes identical to those of 

a swi2 mutant (Peterson, et al., 1994; Peterson and Herskowitz, 1992).  In contrast, the 

Swp82p (Wilson, et al., 2006), Swp29p (Cairns, et al., 1996a), and Snf11p (Treich, et al., 

1995) subunits do not appear to play essential roles for SWI/SNF function in vivo.  

The Swi3p subunit of SWI/SNF contains a conserved SANT domain which 

functions as a histone N-terminal tail interaction module for yeast Ada2p (Boyer, et al., 

2002), a subunit of multiple histone acetyltransferase complexes (Grant, et al., 1997). 

Previously we demonstrated that an 11 amino acid deletion within the Swi3p SANT 

domain (swi3∆SANT) yielded swi/snf mutant phenotypes, suggesting that this domain 

plays a key role in SWI/SNF function (Boyer, et al., 2002). In chapter II, I described the 

purification of SWI/SNF from this swi3∆SANT strain, and showed that this small deletion 

leads to the dissociation of SWI/SNF into at least four subcomplexes: (1) 

Swi2p/Arp7p/Arp9p; (2) Swp73p/Swi3p/Snf6p; (3) Snf5p; and (4) Swi1p. Purification of 

SWI/SNF from strains that lack the entire Swi3p, Snf5p, or Swi1p subunits supports the 

view that these four subcomplexes define a modular organization of SWI/SNF. In this 

chapter, I characterized the function of Swi2p/Arp7p/Arp9p subcomplex, and 

demonstrated that it has robust ATPase and chromatin remodeling activities that are 

equivalent to that of intact SWI/SNF complex. The one exception, however, is that the 

Swi2p/Arp7p/Arp9p subcomplex is defective for catalyzing histone H2A/H2B dimer loss.  

We show that dimer loss requires an acidic N-terminal domain of the Swi3p subunit that 

binds specifically to histone H2A and H2B tails in vitro. These data indicate that the 
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Swi3p subunit provides a histone chaperone function that is essential for efficient 

removal of histone H2A/H2B dimers during ATP-dependent chromatin remodeling.  
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RESULTS 

 
 
The Swi2p/Arp7p/Arp9p subcomplex has ATP-dependent chromatin 

remodeling activity 

In chapter II, I found that SWI/SNF complex dissociates into 4 subcomplexes in 

the absence of the Swi3p SANT domain, and Swi2p is associated with Arp7p and Arp9p. 

Since isolated human BRG1 and hBRM has ATPase and chromatin remodeling 

activities, we expected that Swi2p/Arp7p/Arp9p subcomplex might be also having 

enzymatic activity. First, we tested both DNA and nucleosome-stimulated ATPase 

activity of each subcomplex that was purified from swi∆SANT or ∆swi3 strains. Not too 

surprising, only the Swi2p/Arp7p/Arp9p subcomplex had detectable ATPase activity, and 

its DNA-stimulated (Figure 16) and nucleosome-stimulated ATPase activity (data not 

shown) were identical to that of intact SWI/SNF. We further investigated the ATP 

hydrolysis kinetics of the Swi2p/Arp7p/Arp9p subcomplex. The initial velocities of the 

ATPase reaction were determined at different ATP concentrations from the slope of 

linear ATP hydrolysis plots. Velocities were plotted as a function of ATP substrate 

concentration and fitted into the Michaelis-Menten equation (Figure 17a). The kinetic 

parameters averaged from three independent experiments showed that intact SWI/SNF 

exhibits a Km of 231.9±32.4 µM and a Vmax of 3.1±0.2 µM/minute, and the 

Swi2p/Arp7p/Arp9p subcomplex shows a Km of 242.6±47.6 µM and Vmax of 3.0±0.2 

µM/minute (Figure 17b). These results further confirm that the ATPase activity of this 

“minimal” complex is identical to that of intact SWI/SNF. 
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Figure 16. Swi2p/Arp7p/Arp9p subcomplex has ATPase activity. (a) DNA-stimulated 

ATPase activity of intact SWI/SNF (WT) and Swi2p/Arp7p/Arp9p minimal complex 

(Minimal) by Thin Layer Chromatography (TLC) as described in Methods. Each reaction 

contained 5 nM remodeling enzyme and 1μg plasmid DNA as nucleic acid cofactor. (b) 
Quantification of fraction of ATP hydrolyzed by WT and the minimal SWI/SNF complexes 

from left panel.  
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Figure 17. ATP hydrolysis Kinetic analysis of WT and the minimal SWI/SNF 
complexes. (a) Initial velocities of each enzyme were calculated based on linear ATP 

hydrolysis at a fixed concentration of enzyme under a series of ATP concentrations from 

3.125 μM to 1000 μM. Velocities were plotted as a function of ATP concentration and 

fitted to Michaelis-Menten equation by KaleidaGraph. Plots represent the average of 

three independent experiments, with standard deviation less than 15%. (b) Kinetic 

parameters of WT and the minimal SWI/SNF complexes.  
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Swi2p/Arp7p/Arp9p is an active chromatin remodeling enzyme 

Since Swi2p/Arp7p/Arp9p has ATPase activity that is identical to that of intact 

SWI/SNF, we asked whether this subcomplex could couple ATP hydrolysis to chromatin 

remodeling. First, we tested whether the Swi2p/Arp7p/Arp9p subcomplex can generate 

superhelical torsion on a DNA substrate in an ATP-dependent reaction. Previous work 

from Owen-Hughes and colleagues indicated that the generation of superhelical torsion 

is a basic feature of ATP-dependent chromatin remodeling enzymes, and this activity is 

likely to reflect the ATP-dependent translocation of DNA (Havas, et al., 2000).  In these 

assays, we used a linear, 32P-labeled DNA template that contains an inverted AT-rich 

sequence that is extruded into a cruciform structure by ATP-dependent formation of 

superhelical torsion by remodeling enzymes (Smith and Peterson, 2005b) (Figure 18a). 

Formation of the cruciform can be detected by T4 endonuclease VII cleavage. Similar to 

previous results (Havas, et al., 2000; Smith and Peterson, 2005b), WT SWI/SNF was 

able to catalyze cruciform extrusion from naked DNA template as illustrated by the time-

dependent T4 endonuclease VII cleavage of the DNA into two small fragments (Figure 

18b, WT). Likewise, equal amounts of the Swi2p/Arp7p/Arp9p subcomplex provided 

equivalent rates of ATP-dependent cruciform formation (Figure 18b, Minimal), 

suggesting that this subcomplex is fully functional in this DNA-based remodeling 

reaction. Both WT and the minimal SWI/SNF complexes were capable of catalyzing 

cruciform protrusion on the same DNA assembled into nucleosome (Figure 18c). 
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Figure 18. Swi2p/Arp7p/Arp9p subcomplex is capable of generating superhelical 
torsion. (a) Schematic of DNA cruciform formation assay. (b) The ability to generate 
DNA superhelical torsion was tested on AvaI-linearized pXG540 template that contains 
an inverted (AT)34 repeat. Reactions containing 1.5 nM WT or the minimal SWI/SNF, 
0.1 nM 32P-labeled linearized pXG540, 3 mM ATP, 0.15 mg/ml Endo VII in a 30-μl 
reaction were incubated at 30°C for 90 minutes. An aliquot of each sample was taken at 
time points denoted, quenched, deproteinated and electrophoresed on 4% native gel. 
Data shown is representative of multiple experiments. (c) Similar cruciform formation 
analysis by WT and the minimal SWI/SNF using nucleosome assembled at linearized 
pXG540 template. 
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A hallmark of ATP-dependent remodeling enzymes is the ability to use the 

energy from ATP hydrolysis to increase restriction enzyme accessibility on 

mononucleosome or nucleosomal array substrates. To investigate the functioning of the 

Swi2p/Arp7p/Arp9p subcomplex in this type of assay, we used stepwise salt dialysis to 

reconstitute 32P-labeled nucleosomal arrays with recombinant Xenopus laevis histone 

octamers and a DNA template that consists of 11 tandem repeats of a 5S rDNA 

nucleosomal positioning (Logie and Peterson, 1999). In these arrays, the central 

nucleosome positioning sequence contains a unique SalI restriction enzyme recognition 

site that is occluded by nucleosome assembly (Logie and Peterson, 1997) (Figure 19a, 

top scheme). In the presence of intact SWI/SNF and ATP, SalI digestion kinetics was 

dramatically enhanced (WT, Figure 19a). Surprisingly, the Swi2p/Arp7p/Arp9p 

subcomplex showed equivalent activity in this assay (Minimal, Figure 19a). Similar 

results were obtained when the remodeling enzymes were present at stoichiometric or 

substoichiometric levels with respected to nucleosomes. 

Restriction enzyme accessibility assays were also performed for 

mononucleosome substrates. Mononucleosomes were reconstituted onto a 32P-labeled 

343 bp DNA fragment that harbored the “601” nucleosome positioning sequence 

(Thastrom, et al., 1999). A unique HhaI restriction enzyme site is located close to the 

nucleosomal dyad and is occluded by nucleosome assembly. In the absence of 

SWI/SNF, there was little HhaI digestion of the mononucleosome substrate, whereas 

addition of SWI/SNF and ATP led to more than 90% cleavage of nucleosomal DNA by 

60 minutes (Figure 19b). Likewise, the Swi2p/Arp7p/Arp9p subcomplex showed 

equivalent activity in this assay (Figure 19b). 
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One of the mechanisms by which SWI/SNF catalyzes chromatin remodeling is by 

mobilizing a histone octamer bidirectionally towards the ends of a DNA template 

(Kassabov, et al., 2003; Shundrovsky, et al., 2006). These end-positioned nucleosomes 

migrate faster than the original, centrally positioned species after native gel 

electrophoresis (Flaus and Owen-Hughes, 2003). The “601” mononucleosome 

substrates were also used for mobilization assays. In this case, mononucleosomes were 

remodeled by SWI/SNF or the Swi2p/Arp7p/Arp9p subcomplex, the remodeling enzyme 

was then removed by competition with unlabeled DNA, and then the nucleosome 

products were electrophoresed on a native polyacrylamide gel.  As shown in Figure 18c, 

both the intact and Swi2p/Arp7p/Arp9p subcomplexes were able to generate a faster 

migrating mononucleosome species with similar kinetics. Taken together, these different 

approaches demonstrate that the Swi2p/Arp7p/Arp9p subcomplex is a robust chromatin 

remodeling enzyme, and that the other eight SWI/SNF subunits do not contribute 

significantly to these remodeling activities. 
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Figure 19. Chromatin remodeling activity of the minimal SWI/SNF complex. (a) 
Schematic of 5S-208-11 nucleosomal array substrate on top. Plot showed fraction of 

nucleosomal DNA remains uncut over 60-minute time course in the presence of 1 nM of 

WT or the minimal subcomplexes, 2 nM nucleosomal array, 1 mM ATP, and 10 Units of 

SalI restriction enzyme. Closed diamonds, no remodeling enzyme; closed squares, WT; 

open triangles, the minimal complex. (b) Schematic of 343 bp 601-mononucleosome 

substrate on top. Reactions containing 1 nM WT or the Minimal SWI/SNF, 2 nM 

radiolabeled 601-mononucleosome, 1 mM ATP and 10 Units of HhaI restriction enzyme. 

Samples were taken at given times indicated, quenched, deproteinated, and resolved on 

8% TBE native gels. Gel shown is representative of multiple experiments. Hha I 

accessibility catalyzed by WT and the minimal SWI/SNF. (c) 601-mononucleosomal 

mobility assay. Similar reaction as in (b). Samples were taken at times indicated, 

incubated with excess dsDNA and glycerol to remove SWI/SNF, and electrophoresed on 

4% native TBE gels. Schematics to the right denote predicted nucleosome positions 

(positions have not been experimentally determined). 
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Histone H2A/H2B dimer displacement requires an intact SWI/SNF complex  

 Recent studies of Bruno and colleagues showed that SWI/SNF can catalyze the 

displacement of histone H2A/H2B dimers from a nucleosomal substrate (Bruno, et al., 

2003). Subsequently, it was shown that this dimer displacement activity is sensitive to 

the underlying sequence of the nucleosomal substrate; SWI/SNF shows potent dimer 

displacement activity with a MMTV mononucleosome, but no appreciable dimer 

displacement activity is detected when a rDNA (Vicent, et al., 2004) or “601” 

mononucleosome (Shundrovsky, et al., 2006) is used as a substrate. Interestingly, 

SWI/SNF-dependent H2A/H2B dimer displacement appears to play a key role in the 

activation of the MMTV promoter in vivo by progesterone receptor (Vicent, et al., 2004).  

 To quantify the efficiency of dimer displacement by intact and minimal SWI/SNF 

complexes, we used a strategy developed by Owen-Hughes group (Bruno, et al., 2003) 

in which  we reconstituted MMTV mononucleosomes with recombinant histone octamers 

that harbored an Oregon Green fluorescent group covalently coupled to a unique 

cysteine residue on the C-terminal tail of histone H2A (H2A-S113C). After 

electrophoresis on a 4% native polyacrylamide gel, reconstituted MMTV-

mononucleosomes migrate to a single predominant position as detected by Oregon 

Green fluorescence (Figure 20a, left panel) and ethidium bromide staining of DNA 

(Figure 20a, right panel). The fluorescence signal remained unchanged following 

incubation for 60 minutes at 30oC in the absence of SWI/SNF (Figure 20a, no enzyme) 

but the addition of SWI/SNF and ATP led to the loss of ~60% of the Oregon Green 

signal (Figure 20a, WT). Loss of Oregon green signal was also associated with the 

appearance of faster migrating, non-fluorescent MMTV-DNA species. These data are 
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consistent with the ATP-dependent removal of both histone H2A/H2B dimers, resulting 

in formation of the tetrasome particles. Strikingly, the Swi2p/Arp7p/Arp9p subcomplex 

was unable to catalyze loss of the Oregon Green fluorescence, suggesting a defect in 

dimer displacement (Figure 20a, minimal). Likewise, a time course experiment illustrated 

that intact SWI/SNF displaces significant levels of H2A within 10 minutes of incubation 

(Figure 20b, WT), but the Swi2p/Arp7p/Arp9p subcomplex showed no activity at any 

time point in this assay (Figure 20b, minimal). 

 To further investigate the ability of the Swi2p/Arp7p/Arp9p subcomplex to 

displace H2A/H2B dimers, we collaborated with Beato group who performed an in vitro 

chromatin immunoprecipitation (ChIP) analysis, using antibodies against H2A and H4 

(Vicent, et al., 2004). In this assay, MMTV mononucleosomes were incubated with 

remodeling enzymes, proteins were crosslinked with formaldehyde, histones H2A or H4 

were immunoprecipitated, and the recovery of MMTV DNA was analyzed by PCR. The 

data in Figure 20c shows that incubation with intact SWI/SNF led to the loss of ~60% of 

histone H2A in 30 minutes.  As expected, SWI/SNF action had no effect on the levels of 

histone H4 associated with MMTV sequences. In contrast, only ~27% of H2A was 

displaced by the Swi2p/Arp7p/Arp9p subcomplex. Furthermore, addition of 2-fold higher 

levels of the Swi2p/Arp7p/Arp9p subcomplex led to only ~43% loss of H2A (Figure 20d). 

Thus, in contrast to the equivalent activity of SWI/SNF and the Swi2p/Arp7p/Arpp9 

subcomplex in a variety of other remodeling assays, the minimal subcomplex is 

specifically defective in catalyzing the ATP-dependent displacement of histone H2A/H2B 

dimers.  
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Figure 20. Swi2p/Arp7p/Arp9p subcomplex is defective to catalyze histone 
H2A/H2B dimer displacement. (a) Native PAGE analysis of MMTV mononucleosome 
assembled with H2A that is labeled by Oregon green fluorescent dye at a unique 
cysteine introduced at the C-terminus. Left panel represents Oregon green signal of 
MMTV-mononucleosome on 4% native gel PAGE at time 0 and 45 minutes after 
incubation with ATP and WT or the Minimal SWI/SNF enzymes. Loss of dimers was 
indicated by the decreased fluorescent signal at mononucleosome position (schematic 
on left). Right panel shows ethidium bromide staining of the same gel on left (details in 
Methods). (b) Time course of dimer loss assay under similar condition to that described 
above. (c) Representative In vitro ChIP assay to test dimer loss. (d) Real Time-PCR to 
quantify DNA from two independent in vitro ChIPs. 
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Swi3p contains a novel histone tail binding domain 

 The inability of the Swi2p/Arp7p/Arp9p subcomplex to function efficiently in dimer 

displacement assays suggested that dimer loss is not a simple consequence of ATP-

dependent changes in histone-DNA interactions. In contrast, these data suggest that 

dimer loss might involve interactions between histones H2A/H2B and SWI/SNF subunits 

other than Swi2p, Arp7p, and Arp9p. One of the subunits missing from the minimal 

SWI/SNF complex is Swi3p, which has a 300-residue N-terminal domain that contains 

25% glutamic and aspartic acid residues.  A similar enrichment for acidic residues is a 

common feature of histone binding proteins. To test whether Swi3p binds to histones in 

vitro, we monitored the binding of 35S-labeled Swi3p to GST fusion proteins that harbor 

the N-terminal domains of each of the core histones. Strikingly, 35S-labeled Swi3p was 

quantitatively retained on resins that harbored either GST-H2A or GST-H2B but no 

binding was observed to the GST-H3 or GST-H4 resins (Figure 21a).  Likewise, the 300 

residue of the N-terminal domain of Swi3p (3N) was sufficient for GST-H2A tail binding, 

and the C-terminal ~600 residues of Swi3p also retained weaker binding activity with 

both GST-H2A and H2B (Figure 21b). Thus, the N-terminus of Swi3p appears to harbor 

a histone H2A/H2B binding domain. 
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Figure 21. Swi3p has a novel histone tail binding domain. GST-histone tail fusion 

roteins were used in GST-pulldown assays with in vitro translated 35S-labeled Swi3p 

a. 
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p

polypeptides. (a) Full length 35S-Swi3p was incubated with GST-H2A, GST-H2B, GST-

H3 or GST-H4 tails. B, bound (100%); S, unbound supernatant (15%). (b) Top panel is 

the schematic illustration of predicted domains within Swi3p. Bottom panel shows GST-

histone tails pulldown with 35S-labeled N-terminal domain (3N) or the C-terminal 

domain(C).  
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Swi3 N-terminal acidic domain is not required for SWI/SNF assembly but is 

main of Swi3p is functionally relevant to 

required for dimer displacement in vitro 

 To test whether the N-terminal acidic do

SWI/SNF remodeling activities, we TAP-purified SWI/SNF from a swi3 mutant that 

encodes a Swi3p harboring a deletion of the N-terminal 200 amino acids (swi3∆2N).  

Surprisingly, and unlike the case of the swi3∆SANT allele, removal of the first 200 

residues of Swi3p did not affect SWI/SNF assembly (Figure 22a).  The ATPase activity 

of the SWI/SNF-∆2N complex was equivalent to intact SWI/SNF (Figure 22b), and both 

complexes functioned equivalently in “601” mononucleosome restriction enzyme 

accessibility assay (Figure 23a). Thus, as expected from the analysis of the 

Swi2p/Arp7p/Arp9p subcomplex, the Swi3p N-terminal acidic domain is not required for 

ATPase or nucleosome remodeling activities of SWI/SNF.  We then tested the activity of 

SWI/SNF-∆2N for H2A/H2B dimer displacement, using the Oregon Green-H2A 

fluorescence assay. Strikingly, the 200 amino acid deletion within the Swi3p acidic 

domain eliminated the ability of SWI/SNF to displace histone H2A as monitored by loss 

of Oregon Green fluorescence (Figure 23b, ∆2N). Addition of purified GST fusion protein 

that harbors the 300 amino acids from Swi3p acidic domain was unable to rescue the 

defect in dimer loss in trans (data not shown). Likewise, addition of the 

Swi3p/Swp73p/Snf6p subcomplex to the Swi2p/Arp7p/Arp9p subcomplex did not 

reconstitute the dimer displacement activity (data not shown). These two subcomplexes 

did not stably interact with each other in vitro, suggesting that Swi3p acidic domain 

functions most effectively when stably associated with SWI/SNF complex. These data 
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indicate that the N-terminus of Swi3p functions as a novel histone interaction domain 

that plays an essential role for in vitro histone H2A/H2B displacement. 
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Figure 22. The N-terminal acidic domain of Swi3p is not required for SWI/SNF 
assembly or the ATPase activity. (a) Top panel is the schematic illustration of 

Swi3Δ2N on top panel. Bottom panel shows the silver stained gel of TAP preparation of 

SWI/SNF purified from TAP-Swi2p from WT or TAP-Snf6p from swi3Δ2N strain that 

encodes a Swi3p mutant that lacks 200-amino acids of the N-terminus (Δ 2N). M, 

molecular weight marker. (b) SWI/SNF-Δ2N complex shows DNA-stimulated ATPase 

activity similar to that of intact SWI/SNF. 
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Figure 23. The N-terminal acidic domain of Swi3p is required for displacement of 

histone dimer. (a) SWI/SNF-Δ2N complex increases restriction enzyme Hha I 

accessibility on “601” mononucleosome substrate described in Figure 18b. (b) SWI/SNF-

Δ2N complex is defective for displacement of Oregon green-labeled H2A from MMTV 

mononucleosomes. Reactions contain 30 nM fluorescent MMTV mononucleosome 

substrate and 5 nM of WT or SWI/SNF-Δ2N complex.  
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DISCUSSION 

 

Function of a minimal Swi2p/Arp7p/Arp9p remodeling subcomplex 

           Previous studies have indicated that the isolated ATPase subunits of chromatin 

remodeling enzymes are often sufficient to carry out much of the remodeling activities of 

the native, intact complex (Phelan, et al., 2000; Phelan, et al., 1999; Saha, et al., 2005).  In 

the case of the human SWI/SNF complex, the BRG1 ATPase alone has ATPase activity 

and mononucleosome remodeling activity that is ~20% of the intact complex. Addition of 

the hSnf5p and hSwi3p (BAF155/BAF170) subunits is sufficient to restore full levels of 

activity (Phelan, et al., 2000; Phelan, et al., 1999). Likewise, for the yeast RSC complex, 

the isolated Sth1p ATPase is sufficient for ATP hydrolysis activity and DNA translocation 

(Saha, et al., 2005).  In contrast, the catalytic subunit of the INO80 complex, Ino80p, is 

inactive by itself and requires the Arp5 and Arp8 subunits for ATPase activity and ATP-

dependent nucleosome mobilization (Shen, et al., 2003).  Likewise, the activities of the 

Drosophila and yeast ISWI ATPases are enhanced by the Acf1 (Eberharter, et al., 2004; 

Ito, et al., 1999) and  Itc1 subunit (Gelbart, et al., 2001), respectively. For yeast SWI/SNF, 

we found that a Swi2p/Arp7p/Arp9p subcomplex is sufficient for ATP hydrolysis and for the 

majority of ATP-dependent chromatin remodeling activities.  Since ARP7 and ARP9 are 

essential genes in yeast (Cairns, et al., 1998), and we have not been successful at 

expressing full-length Swi2p in bacteria or yeast cells, we have not been able to test 

whether Swi2p by itself is sufficient.  
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The Swi3p N-terminus contains a novel histone tail binding domain 

 The ATP-dependent depletion of histone H2A/H2B dimers by chromatin 

remodeling enzymes is a relatively new activity ascribed to these enzymes, and 

consequently this activity has not previously been tested with isolated ATPase subunits.  

Our results indicate that ATP-dependent dimer loss is not efficiently catalyzed by the 

Swi2p/Arp7p/Arp9p ATPase subcomplex, but that the Swi3p subunit must contribute an 

acidic histone binding surface.  It has been known for some time that the acidic N-terminus 

of Swi3p is not a conserved feature of human Swi3p homologs, BAF155 and BAF170, and 

thus the functional importance of this domain had not been tested. However, recently it 

was reported that the ATP-dependent dimer displacement activity of the human SWI/SNF 

complex is stimulated by the acidic protein nucleolin (Angelov, et al., 2006). These data 

suggest that human Swi3p homologs may not have conserved their acidic domains 

because SWI/SNF was able to take advantage of a functional interaction with other 

histone chaperones, such as nucleolin. 

 Our results indicate that the acidic N-terminus of Swi3p is essential for ATP-

dependent dimer loss in vitro; however, deletion of this acidic domain does not lead to 

obvious swi/snf mutant phenotypes in vivo.  For instance, strains that harbor a swi3 allele 

that encodes a 300 amino acid N-terminal truncation of Swi3p grow at wild-type rates, and 

this alteration does not lead to defects in expression of two SWI/SNF-dependent target 

genes, SUC2 and HO-lacZ (unpublished data). While these results might suggest that 

ATP-dependent dimer loss does not contribute significantly to transcriptional control in 

vivo, we believe that it is more likely that this activity may control only a small subset of 

SWI/SNF-dependent genes. Consistent with this view, it is known that ATP-dependent 
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dimer loss is highly DNA sequence-dependent, and thus it is expected that only a subset 

of remodeling events in vivo will give rise to dimer loss events. Alternatively, it is possible 

that one or more abundant histone chaperones that are present within cells may 

compensate for the lack of the Swi3p N-terminus.  

 

Dimer loss vs DNA translocation 

 Recent data from both our lab and others support a DNA translocation model for 

ATP-dependent remodeling by the SWI/SNF family of enzymes (Jaskelioff, et al., 2000; 

Saha, et al., 2005; Zhang YL, 2006). In this model, SWI/SNF binds to a single nucleosome 

within a substrate binding pocket and interacts with nucleosomal DNA near the dyad axis 

(Saha, et al., 2005; Smith, et al., 2003).  ATP-dependent DNA translocation generates a 

dynamic loop of DNA on the nucleosomal surface which has an average size of ~100 bp 

and which rapidly dissipates by a continuous or discontinuous process (Zhang, et al., 

2006). The formation of an intranucleosomal DNA loop is likely to reflect a transient 

intermediate in the process of nucleosome mobilization.  In addition, it seems likely that 

DNA loop formation may also be a prerequisite for displacement of histone H2A/H2B 

dimers, as loss of DNA-histone contacts is predicted to destabilize the histone dimers, 

making them more prone for capture by histone binding proteins such as the Swi3p acidic 

domain. If this is the case, then this may provide an explanation for why the 

Swi2p/Arp7p/Arp9p subcomplex retained some ability to “displace” H2A when an in vitro 

ChIP assay was used, but this same subcomplex was inactive for H2A displacement using 

the Oregon green assay.  The ChIP assay measures the ATP-dependent decrease in the 

ability to crosslink H2A to MMTV DNA, and destabilization of the dimers due to DNA 
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translocation may lead to decreased cross linking.  In contrast, the Oregon green assay 

requires that the dimers be completely displaced from the MMTV mononucleosome.  

Thus, dimer displacement may involve at least two distinct steps – (1) destabilization of 

the H2A/H2B dimers due to ATP-dependent intranucleosomal DNA loop formation and (2) 

H2A/H2B dimer capture by the Swi3p subunit. 
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MATERIALS AND METHODS 

 

Histone protein purification and octamer reconstitution. Xenopus histone H2A-

S113C and H3-C110A mutants were generated by site-directed mutagenesis 

(Stratagene). All the histone proteins were expressed and induced in BL21 (pLys) 

(Invitrogen). The histone inclusion bodies were prepared as described previously (Luger, 

et al., 1999). Briefly, each histone inclusion body was dissolved in unfolding buffer (7M 

Guanidine-HCl, 20 mM Tris-HCl pH7.5, 10 mM DTT) for at least 1 hour at room 

temperature. After centrifugation, the supernatant containing unfolded histones was 

subjected to Superdex-200 HR gel filtration column. Fractions containing histones were 

pooled and further purified through a cation-exchange column HiTrap SP HP 

(Pharmacia). Histone aliquots were lyophilized and stored at -80ºC.  

           For histone octamer reconstitution, equal moles of each histone was mixed in 

unfolding buffer at room temperature for 1-2 hours and subjected to dialysis against 2 

liters refolding buffer (2 M NaCl, 10 mM Tris-HCl pH7.5, 1 mM EDTA and 5 mM beta-

mercaptoethanol) with 3 changes of refolding buffer at 4ºC. Refolded histone octamer 

was purified through Superdex-200 HR gel filtration column. Fractions containing histone 

octamer were confirmed by Coomassie blue staining, then pooled, concentrated and 

stored at 4ºC until use.  

 

Reconstitution of nucleosomal arrays and mononucleosomes. DNA template of 5S-

208-11 consists of 11 tandem repeats of L. variegates 5S rDNA nucleosome positioning 

sequence with a Sal I restriction enzyme recognition site at the central region. 208-11 
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DNA templates were released from plasmids (CP589) by Not I and Hind III restriction 

enzyme digestion, and purified from agarose gel. The “601”-DNA templates contain 343 

base pairs (bp) of DNA released from plasmids (CP1024) by EcoR I and Hind III 

restriction enzyme digestion, and further purified from agarose gel. Mouse mammary 

tumor virus (MMTV) DNA template containing 350 bp of DNA with centrally located B 

nucleosome positioning sequence was purified from PCR amplification for Oregon 

Green assay. 5S-208-11 and “601” templates were end-labeled with α-32P-dCTP by 

Klenow fill-in at 37°C and purified through a Sephadex G-25 column after brief 

phenol/chloroform extraction. Nucleosomal arrays and mononucleosomes were 

assembled by stepwise dialysis in a series of NaCl in TE buffer at 4°C, with histone 

octamer-to-DNA ratio of 0.9-1.0 (Logie and Peterson, 1999).  

 

ATPase activity and kinetics study. DNA-stimulated ATPase activity of each purified 

SWI/SNF complex was carried out in a 10-μl reaction mixture containing 20 mM Tris 

(pH8.0), 5 mM MgCl2, 0.2 mM DTT, 5% glycerol, 0.1% Tween, and 100 ug/ml bovine 

serum albumin (BSA), 1 μg plasmid DNA, 100 μM cold ATP, 0.01 μCi γ-32P-ATP, and 5 

nM SWI/SNF (Logie and Peterson, 1999). Each reaction was incubated at 30ºC and 0.6 

μl of each reaction was taken at 3, 6, 10, 15 and 20 minutes time point and spotted onto 

PEI-cellulose F plate (EMD Chemicals, INC) for thin-layer chromatography (TLC) in 0.75  

M KH2PO4 (pH 3.5). The TLC plate was air-dried and imaged by PhosphoImager 

(Molecular Dynamics). The fraction of ATP hydrolyzed at each time point was quantified 

by ImageQuant v1.2 (Amersham). For ATP hydrolysis kinetics, similar reactions were 

performed in the presence of a series of different ATP concentrations varying from 3.125 
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μM to 1000 μM. Initial velocities were calculated from the slope of each linear plot of 

ATP hydrolysis by Excel (Microsoft). Velocity was plotted as a function of ATP substrate 

concentration, using KaleidaGraph v3.6 software (Synergy Software). Kinetic 

parameters were retrieved from non-linear fitting to Michaelis-Menten equation. Data 

from three independent experiments were averaged for plot with standard deviation less 

than 15%. 

 

Cruciform formation assay. The cruciform formation assay was performed in a 30-μl 

reaction containing 1X 5-50 buffer (10 mM Tris pH 8.0, 50 mM NaCl, 5 mM MgCl2, 1 mM 

DTT, 0.1 mg/ml BSA), 1.5 nM SWI/SNF, 3 mM ATP, 0.15 μg/ml endonuclease VII and 

0.1 nM 32P-labeled 3.8 kb DNA (AvaI linearized pXG540) containing an inverted (AT)34 

sequence described by Smith CL et al (Smith and Peterson, 2005b).  At each time point, 

4 μl of reaction cocktail was terminated by 4 μl 2X stop solution containing 10 mM Tris 

pH8.0, 0.6% SDS, 40 mM EDTA, 10% glycerol and 0.1 mg/ml proteinase K. Each 

quenched sample was deproteinated at 50ºC for 20 minutes, and finally resolved on 4% 

native polyacrylamide gel in 0.5XTBE. Gel was dried and imaged by PhosphoImager. 

Percentage of DNA fragment cut was quantified by ImageQuant v1.2 (Amersham).  

 

Restriction enzyme accessibility analysis. Restriction enzyme accessibility of 

SWI/SNF complexes on 5S-208-11 array or 601-mononucleosome substrate was 

performed described by Logie and Peterson (Logie and Peterson, 1997). Briefly, 30μl 

reaction cocktail containing 2 nM 5S-208-11 nucleosome arrays or 601-

mononucleosomes, 10 units of restriction enzymes (Sal I or Hha I) and 1-3 nM SWI/SNF 
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in 5-50 buffer was incubated at 30°C. At each time point, 4 μl of each reaction was taken 

and terminated by 4 μl of 2X stopping solution consisting of 1.2% SDS, 20 mM Tris (pH 

8.0), 80 mM EDTA, 10% glycerol, and 1 mg/ml proteinase K, and incubated at 50°C for 

20 minutes. DNA was extracted by phenol/chloroform. Samples were resolved on 8% 

naive polyacrylamide gel for 601 and 1% agarose gel for 5S-208-11. Gels were dried 

and imaged by PhosphorImager (Molecular Dynamics).  

 

601-mononucleosome gel mobility assay. 601-mononucleosome gel mobility was 

performed in 30-μl reaction cocktail similar to that of HhaI restriction enzyme 

accessibility assay described above. At each time point, 4 μl of each reaction was 

terminated by 4 μl of 2X quenching solution consisting 10% glycerol and 200 ng 

competitor DNA to remove SWI/SNF, quenched on ice for at least 30 min. Samples were 

resolved on a 4% native polyacrylamide gel and running in 0.5X TBE buffer. Gels were 

dried and imaged by PhosphorImager (Molecular Dynamics).  

 

Histone H2A/H2B dimer loss assay. Reconstituted Xenopus histone octamers 

containing H2A-S113C and H3-C110A were covalently labeled with Oregon Green 

(Molecular Probes) fluorescent dye as described by Bruno et al (Bruno, et al., 2003). 

Free Oregon Green dye was removed by 3 times dilution and concentration with 

10,000MW CO Centricon (VIVA SCIENCE) in labeling buffer (10 mM Tris pH7.5, 2 M 

NaCl, 0.1 mM EDTA). MMTV-mononucleosomes were reconstituted with Oregon Green 

labeled octamer and MMTV DNA templates by stepwise dialysis. H2A/H2B dimer loss 

analysis was performed in a 10 μl reaction containing 30 nM MMTV-mononucleosomes 
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and 5 nM SWI/SNF in 5-50 buffer described earlier. Reactions of the time-course 

experiments aliquots were terminated at each time point by adding 2X termination buffer 

containing 10% glycerol and 200 ng competitor DNA to remove SWI/SNF, and quenched 

on ice for 30 minutes. Samples were resolved on 4% native polyacrylamide gel run in 

0.5X TBE buffer. Oregon Green signal was detected by Kodak Imaging scanner 

(Kodak), with excitation filter of 465 nm, and emission filter of 535 nm.  

 

MMTV mononucleosomes reconstitution for in vitro ChIP assay. Mononucleosome 

templates for the in vitro Chromatin Immunoprecipitation (ChIP) assay were generated 

with a 232 bp EcoRI-BamHI fragment containing the MMTV promoter sequence (from –

221 to +1). The fragment was radiolabeled at the 5’ ends with the Klenow fragment of 

DNA polymerase and α-32P-dCTP. Mononucleosomes were reconstituted by the salt 

dialysis method as described (Vicent, et al., 2002), using recombinant X.laevis histones 

expressed in E.Coli (Luger, et al., 1999). Purification of the reconstituted material was 

subjected to glycerol gradient ultracentrifugation using a linear gradient from 10-30% 

(v/v) glycerol in 50 mM Tris-HCl (pH 8.0), 5 mM EDTA, 1 mM DTT, 0.1 mg/ml BSA. 

Centrifugation was performed in an SW60 rotor for 9h at 55,000 rpm and 4ºC. Fractions 

of 100 μl were collected from the bottom of the gradient. 

 

In vitro chromatin immunoprecipitation (ChIP) assays. Nucleosome remodeling 

reactions (10 μl) were done in 10 mM HEPES (pH 7.9), 60 mM KCl, 6 mM MgCl2, 60 μM 

EDTA, 2 mM DTT, 13% glycerol containing 20 nM of MMTV nucleosomes and 6 or 12 

nM of WT-SWI/SNF or Minimal SWI/SNF complex, in the presence of 1 mM ATP. 
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Nucleosomes were incubated for 30 minutes at 30 ºC followed by additional 30 minutes 

incubation with 250 ng of poly-dIdC as competitor. Remodeled nucleosomes were cross-

linked with 2.5% HCHO for 10 minutes at 37ºC, and the reaction was stopped by 0.1 M 

glycine (pH 7.5) for 5 minutes at room temperature. 1 ml of ChIP Immunoprecipitation 

(IP) buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-pH8.1, 167 mM 

NaCl, 1 mM PMSF, 1 μg/ml aprotinin and 1 μg/ml pepstatinA) was added and, after 

removal of an aliquot for input control (10% total volume), mononucleosomes were 

subjected to immunoprecipitation with antibodies against histones H2A or H4 (Angelov, 

et al., 2000). Before extraction with phenol/chloroform and ethanol precipitation, the 

samples were decross-linked at 65ºC. The PCRs were carried out with Taq DNA 

polymerase under standard conditions. The specific primers generate a 232 bp fragment 

of the nucleosome B of the MMTV promoter. PCR products were resolved on 1% 

agarose gels and stained with ethidium bromide. 
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CHAPTER IV       
 

 
ASSEMBLY OF THE SWI/SNF COMPLEX IN VITRO 

 

SUMMARY 
 
 

           SWI/SNF consists of at least four functionally distinct modules that are integrated 

through the SANT domain of Swi3p. In this chapter, we further investigated the important 

role of the SANT domain for SWI/SNF assembly in vitro. Using in vitro transcription 

coupled translation system, we expressed eight essential subunits of SWI/SNF in vitro, 

including Swi2p, Swi1p, Snf5p, HA-Swi3p, Swp73p, Arp7p, Arp9p, and Snf6p. A series 

of anti-HA co-immunoprecipitation analyses suggested that Swi3p strongly interacts with 

Swp73p, but not with Snf6p. Interestingly, Swi3p indirectly interacts with Snf6p when 

Swp73p was present. This result is consistent with the formation of 

Swi3p/Swp73p/Snf6p subcomplex, which is independent of the SANT domain of Swi3p. 

We tried to use Swi3p/Swp73p/Snf6p and Swi3p∆SANT/Swp73p/Snf6p subcomplexes 

to pinpoint the requirement of the SANT domain for SWI/SNF assembly, and found none 

of other subunits of SWI/SNF seemed to interact with Swi3p/Swp73p/Snf6p subcomplex. 

Moreover, SWI/SNF complex cannot be assembled from in vitro translated proteins, 

suggesting that SWI/SNF assembly may require all the eleven subunits or it is 

assembled only under physiological conditions. 
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RESULT 

 

Swi3p physically interacts with Swp73p but not Snf6p  

           For a better understanding of the intermolecular organization of SWI/SNF 

complex and the role of the SANT domain as a protein scaffold for SWI/SNF assembly, 

we have tried different strategies to reconstitute SWI/SNF complexes in vitro. Initially, I 

cloned SWI3 and swi3ΔSANT into an in vitro expression vector that contains an HA tag 

under T7 promoter. I also cloned SNF5, SWP73, ARP7 and ARP9 into a pCMX 

expression vector. Swi2p and Swi1p expression constructs are gift from Jerry Workman 

lab. Using in vitro transcription/translation (IVT) system, Swi2p, Swi1p, Snf5p, Swi3p, 

Swi3ΔSANT, Swp73p, Arp7p, Arp9p, and Snf6p proteins were translated and can be 

easily detected by 35S-methionine labeling and autoradiography (Figure 24a). Swi2p and 

Swi1p were not expressed well under the standard salt condition used for other subunits, 

but optimized translation required higher KCl concentration of 60mM and 40mM, 

respectively (Figure 24b).   
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a.                                                                      b.             
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Figure 24. In vitro translation of 35S-labeled SWI/SNF subunits. (a) Autoradiography showing 

1 μl of 35S-labeled, in vitro translated SWI/SNF subunits resolved on 8% SDS-PAGE. ∆ 

represents swi3∆SANT. (b) Optimized translation of Swi2p and Swi1p at higher KCl concentration 

of 60 mM and 40 mM, respectively.  

 

 

 

           Using in vitro translated HA-Swi3, HA-Swi3ΔSANT, and 35S-methionine labeled 

other subunits, a series of anti-HA co-IPs were performed to examine whether or not the 

SANT domain of Swi3p is required for subunit-subunit interactions. Results repeatedly 

show that Swi3p only strongly interacts with Swp73p (Figure 25a, lane 7) and weakly 

interacts with Snf5p (Figure 25a, lane 5), but no interaction was detected with most of 

the other subunits in vitro. Figure 25b shows both positive and negative controls for co-

IPs. Due to initial difficulty in expression of large proteins such as Swi2p and Swi1p, the 

N-terminus and C-terminus of Swi2p and Swi1p were also made for co-IP studies, but no 

interaction with these truncated proteins was detected (Figure 25c). Using 35S-HA-Swi3p 

alone, anti-HA antibody was able to immunoprecipitate significant amount of 35S-HA-



 110

Swi3p (positive control, Figure 25b, lane 13). Protein A beads alone showed no non-

specific affinity with 35S-HA-Swi3p (beads alone, Figure 25b, lane 15).  

              

 

a.                                                                                  b. 
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Figure 25. Swi3p directly interacts with Swp73p. (a) Anti-HA Co-IP analysis. In vitro translated 
cold HA-Swi3 (5 μl) was incubated with individual 35S-labeled in vitro translated SWI/SNF 
subunits (5 μl each) indicated in a total of 200 μl binding buffer described in Methods. Proteins 
retain on protein A beads (100%, B) or 15% of the unbound supernatant (S) were resolved on 8-
10% SDS-PAGE. Gels are dried for autoradiography. Swi3p physically interacts with Swp73p 
(lane 7) and weakly with Snf5p (lane 5). (b) Positive and negative controls of Co-IP. 35S-HA-
Swi3p was incubated with anti-HA and protein A beads as positive control (Anti-HA, lane 13) or 
with protein A beads only as negative control (background, lane 15). (c) cold HA-Swi3 or HA-
Swi3∆SANT was incubated with individual 35S-labeled truncated Swi2p or Swi1p for anti-HA co-
IP. Background binding mixture excluded anti-HA antibody. 
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Swi3p interacts with Snf6p when Swp73p is present 

            Next, I added Swp73p with Swi3p or Swi3ΔSANT, and incubated for 1 hour 

before 35 35S-Snf6p, S-Snf5p or 35S-Arp7p were added for co-IP. Interestingly, both Swi3p 

(Figure 26, lane 4) and Swi3ΔSANT (Figure 26, lane 8) interacted with Snf6p when pre-

incubated with Swp73p, suggesting that Swi3p may indirectly interact with Snf6p through 

Swp73p. No significant interaction was observed for Snf5p or Arp7p even in the 

presence of Swp73p (Figure 26). This data is fully consistent with the formation 

subcomplex of Swi3p/Swp73p/Snf6p purified from cell lysate that lacks the intact SANT 

domain of Swi3p in vivo.  

 

 

 

                                         

Swi2  Swi1    Snf5   Snf6   Swi2  Swi1  Snf5   Snf6 
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 HA-Swi3/Swp73         HA-ΔSANT/Swp73 
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Figure 26. Swi3p indirectly interacts with Snf6p through Swp73p. Co-IP assay 

under conditions similar to described above. Autoradiography showing indirect 

interaction of 35S-labeled Snf6p with cold Swi3p in the presence of cold Swp73p. Cold 

HA-Swi3p was pre-incubated with cold Swp73p before adding 35S-Snf6p and other 35S-

labeled subunits indicated on top of gel. Both Swi3p (lane 4) and swi3∆SANT (lane 8) 

indirectly interact with Snf6p when Swp73p was present.  
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            Since Swi3p/Swp73p/Snf6p and Swi3ΔSANT/Swp73p/Snf6p subcomplexes can 

be assembled in vitro, therefore we expected to use these subcomplexes to pinpoint the 

requirement of the SANT domain for SWI/SNF assembly. In similar anti-HA coIP studies, 

we used co-translated 35S-HA-Swi3p, 35S-Swp73p, and 35S-Snf6p incubated with 35S-

labeled other subunits indicated in lane 2-10 of Figure 27. Unfortunately, no interaction 

was observed between Swi3p subcomplexes and other subunits (Figure 27, Bound).  

One possible explanation is that other subunits such as Swp82p, Swp29p and Snf11p 

may be required for SWI/SNF assembly in vitro, although they are not essential for 

SWI/SNF function in vivo. Alternatively, some epitope tag may interfere with the 

intermolecular interactions that are required for SWI/SNF assembly. It is less likely that 

the SWI/SNF complex masks the HA tag on Swi3p, or decreases the epitope recognition 

by antibody, since the HA-Swi3p/Swp73p/Snf6p subcomplexes can be 

immunoprecipitated from all the co-translated reactions (Figure 27, Bound). 
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a.                                                              b. 
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Figure 27. Swi3p/Swp73p/Snf6p subcomplexes can be assembled from co-
translation. Anti-HA Co-IP. 35S-HA-Swi3p/Swp73p/Snf6p (a) or HA-

Swi3∆SANT/Swp73p/Snf6p (b) were co-translated, and incubated with individually 35S-

labeled protein under the same condition mentioned in Lane 2-10 above. No significant 

interaction was observed between individual subunits and WT or HA-

Swi3p∆SANT/Swp73p/Snf6p subcomplex. However, each IP predominantly pulls down 

three subunits that represent the formation of subcomplex of Swi3p/Swp73p/Snf6p 

from co-translation. B, 100% bound. S, 15% unbound supernatant.  
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SWI/SNF cannot be assembled from in vitro translated proteins 

           Next, we used a different strategy to assemble the SWI/SNF complex in vitro. 

TAP tagged Swi2p/Arp7p/Arp9p minimal complex that remained bound to the CAM-resin 

was used for in vitro assembly and pull down assays, in which IVT HA-Swi3p, Swp73p, 

and Snf5p were mixed with 35S-Snf6p as a probe. If SWI/SNF was assembled, the CAM-

resin should be able to pull down the entire complex and 35S-Snf6p would be detected 

by autoradiography. As a negative (or background) control, BSA-preblocked CAM-resins 

were incubated with 35S-Snf6p alone. Unfortunately, Snf6p has very high affinity with 

CAM-resin (Figure 28a), which made this strategy unrealistic (Figure 28b). At this point, 

eight (Figure 28c, lane 1-4) or six (Figure 28c, lane 5-8) subunits of SWI/SNF were co-

translated for SWI/SNF assembly. Unfortunately, none of the strategies showed the 

assembly of SWI/SNF complex in vitro. Several possibilities may explain the negative 

result of SWI/SNF assembly from IVT proteins: (1) the presence of epitope tag such as 

HA of Swi3p and Flag on Snf5p may interfere with intermolecular contacts. (2) Swp82p, 

Snf29p and Snf11p subunits may be required for the formation of intact SWI/SNF 

complex in these assays. (3) SWI/SNF assembly might be coupled with protein 

translation and protein folding under physiological conditions. 
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MATERIALS AND METHODS 

 

In vitro translation and co-IP. SNF5, HA-SWI3, HA-swi3ΔSANT, swi3-3N, SWP73, 

SNF6, ARP7, SWI1Δ4N, SWI1Δ5N, and SWI1-C’ (652 a.a) constructs were made by 

cloning PCR-amplified and restriction enzyme digested DNA fragments into T7 promoter 

ector pCMX with or without tag. All constructs were confirmed by sequencing analysis. 

All proteins were made /translation kit following 

instructions provided by Promega. For Swi2p and Swi1p, KCl was added to adjust the 

35

d into each sample for another 1 hour. Finally, protein A 

 

v

by TNT T7 in vitro coupled transcription

final KCl concentration to 40-90 mM to maximize protein expression. For 35S-labeled 

proteins, 35S-methionine was used. For unlabeled proteins (cold), cold methionine was 

added into the mixture. For co-translation, DNA constructs were mixed to a total amount 

of 2 µg DNA in 50 µl reaction.  

           For co-IP, five microliter of cold HA-Swi3p or HA-Swi3ΔSANT was mixed with 

S-labeled IVT proteins in binding buffer (20 mM Tris pH8.0, 150 mM NaCl, 0.25 mM 

EDTA, 1 mM DTT, 0.1% Triton X-100, 0.1 mg/ml BSA, 1 mM PMSF) to a final volume of 

200 µl. After incubation for 1 hour at 4ºC, 5 µl anti-HA monoclonal antibody (Convace) 

was added into the mixture and continued incubation for 2 hours at 4ºC. Then 20 µl of 

50% protein A slurry was adde

beads were spun down and 15% of supernatant was taken for unbound fraction. The 

beads were washed three times with 1 ml binding buffer and resuspended into 2X SDS 

sample buffer as fraction bound. Samples were resolved into 8-10% SDS PAGE and 

gels were dried and autoradiographed. 
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CHAPTER V       

CONCLUSIONS AND FUTURE DIRECTIONS  

this thesis work, we dissected the structural and functional organization of the 

in of Swi3p. In several cases, 

50 amino acid SANT domain that is found within many chromatin regulatory 

proteins plays a key role in funct one N-terminal tail domains 

oyer, et al., 2004). However, in the case of Swi3p, our data indicates that the SANT 

domain is cru es found that 

ne of the two SANT domains within the SMRT co-repressor is also required for HDAC 

 

 

           In 

SWI/SNF chromatin remodeling complex via the SANT doma

the small, ~

ional interactions with the hist

(B

cial for SWI/SNF assembly. Likewise, Guenther and colleagu

o

complex assembly (Guenther, et al., 2001). Structural studies of the ISWI SANT domain 

confirm earlier predictions that this domain is composed of a three alpha helical bundle 

similar to the c-myb DNA binding domain (Grune, et al., 2003). A single amino acid 

substitution or a small deletion within helix 3 of the Swi3p SANT domain yields swi/snf 

mutant phenotypes in vivo (Boyer, et al., 2002), and both alterations lead to SWI/SNF 

disassembly in vitro. Consistent with the disassembly of SWI/SNF, the 11 amino acid 

deletion within the Swi3p SANT domain leads to defects in the genome-wide gene 

expression profile similar to a complete deletion of SWI3.  

 The purification of SWI/SNF subcomplexes from multiple swi/snf deletion strains or 

from the swi3∆SANT strain strongly supports a model in which the SWI/SNF complex  is 

composed of at least four interdependent modules (Figure 29) – (1) Swi2p/Arp7p/Arp9p, 

(2) Swi3p/Swp73p/Snf6p, (3) Snf5p, and (4) Swi1p. Since inactivation of the Swp82p, 
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Swp29p, and Snf11p subunits do not lead to a loss of SWI/SNF function in vivo, the 

organization of these nonessential subunits have not been evaluated. The interdependent 

nature of these SWI/SNF subcomplexes is consistent with our previous gel filtration 

analyses of crude yeast whole cell extracts where we found that loss of any one SWI/SNF 

subunit led to similar changes in the elution of the other subunits (Peterson, et al., 1994).  

Furthermore, loss of the Swi3p subunit caused Snf6p to elute at an apparent monomer 

position (Peterson, et al., 1994), consistent with our proposed Swi3p/Swp73p/Snf6p 

subcomplex. Remarkably, each of the four subcomplexes provide distinct functions for 

SWI/SNF complex: 1) the Swi2p/Arp7p/Arp9p subcomplex provides ATP-dependent DNA 

translocation activity coupled to chromatin remodeling (Figure 29b), since it is competent 

for the majority of the chromatin remodeling activities that WT SWI/SNF has. 2) The 

Swi3p/Swp73p/Snf6p subcomplex provides histone binding activity coupled to dimer loss 

(Figure 29c), and 3) the Snf5p and Swi1p subunits provide gene targeting functions by 

interaction with acidic activation domains of gene-specific activators (Prochasson, et al., 

2003) (Figure 29a). Table 7 summarizes the ATP-dependent chromatin remodeling 

activities of the minimal complex and SWI/SNF- Δ2N.  
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Table 7. Comparison of chromatin remodeling activities of SWI/SNF complexes. 

 WT Minimal   SWI/SNF-Δ2N 

ATPase activity + + + 

Kinetics + +  

DNA superhelical torsion + +  

R.E. accessibility on 208-11 array + +  

R.E. accessibility on 601-mono + + + 

601-mononucleosome mobility + +  

MMTV-mono dimer loss + _ _ 

Minimal, Swi2p/Arp7p/Arp9p subcomplex; SWI/SNF-Δ2N, SWI/SNF complex harboring a 200 a.a.  

deletion of the N cidic domain of Swi3p. -terminal a
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Figure 29. A model for the intermolecular and functional organization of SWI/SNF. 
(a) Swi1p and Snf5p may recruit SWI/SNF to target promoters through direct interaction 

with activators (Act). (b) SWI/SNF translocates DNA and induces the formation of DNA 

loop on nucleosome surface. (c) Destabilized nucleosome may lose H2A/H2B dimer with 

the help of Swi3p, or reposition the nucleosome (sliding) (d). 
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Future directions  

          Although both genetic and biochemical studies have revealed the important 

function of the ATP-dependent chromatin remodeling complexes in modifying chromatin 

structure, regulating transcription, DNA damage repair, and other cellular processes, 

there are still many fundamental questions need to be answered. What is the precise 

role of individual subunit for chromatin remodeling? Do they have other functions 

independent of SWI/SNF complex? How does each subunit contribute to chromatin 

remodeling and transcription beyond chromatin remodeling in vivo? What is the 

molecular mechanism(s) by which SWI/SNF alters the chromatin structure in vivo? The 

observations that mutations of human SWI2/SNF2 (BRG1), hSNF5 (INI1) and human 

SWI3 homologs cause cancer emphasize the importance to completely understand the 

functions of these genes and the molecular mechanisms of the ATP-dependent 

chromatin remodeling complexes. I will discuss some interesting aspects in this project.  

 

Transcription activation of the LacZ reporter by mutant SWI/SNF complexes 

           During my thesis research, one of the interesting observations is about the role of 

different SWI/SNF mutants in transcription activation of LacZ reporter gene when 

SWI/SNF is tethered by LexA-Swi2p and LexA-Snf6p. In chapter II, I have demonstrated 

that both Swi2p catalytic activity and SWI/SNF integrity are required for LacZ reporter 

gene activation in vivo, since LexA-Swi2p alone, the catalytic mutant of Swi2p 

(swi2K798A), and swi3∆SANT are unable to activate the LacZ reporter gene. In chapter 

III, I have demonstrated that Swi3p N-terminal 200 amino acids are not required for 

SWI/SNF assembly, and purified SWI/SNF-∆2N complex has ATP-dependent chromatin 
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remodeling activity except for that it is defective for dimer loss. Therefore, we wonder if 

dimer displacement is required for LacZ gene activation. To test this, I co-transformed 

LexA-SWI2 with SWI3 or swi3∆2N into the same LacZ reporter strain described in 

chapter II, and detected the beta-gal activity from these strains. Result showed that 

SWI/SNF-∆2N is fully competent to activate the lacZ reporter gene, indicated by WT  

level of beta-gal activity (Figure 31). This data suggests H2A/H2B dimer displacement is 

not required for the LacZ promoter.  
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Figure 30. Swi3p N-terminal acidic domain is not required for LacZ reporter gene 
activation. Beta-gal assay. LexA-Swi2 (HIS3+) and SWI3 (LEU2+) or swi3∆2N were co-

transformed into the same LacZ reporter strain described in Figure 11 in chapter II. All 

transformants grew on SC-HIS-LEU plate for plasmid selection. Plots are averaged from 

three independent experiments.  
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           Genetic evidence has shown that Snf6p is also essential for yeast SWI/SNF 

function (Estruch and Carlson, 1990; Laurent, et al., 1991), although Snf6p is not 

conserved in higher eukaryotes. Interestingly, LexA-Snf6p seems to be a better activator 

than LexA-Swi2 and LexA-Snf5 to activate LacZ reporter gene (Laurent, et al., 1991). As 

showed in Figure 32, in the ∆swi3 reporter strain, LexA-Snf6p alone is sufficient to 

induce the expression of beta-galactosidase in repeated experiments. In contrast to the 

inability of LexA-Swi2 alone or LexA-swi2K798A to activate the LacZ promoter, this 

result suggests that LexA-Snf6p might play other role that is independent of Swi2p at 

least at this promoter. Alternatively, Snf6p may play a role at a step after chromatin 

remodeling by Swi2p, and may directly recruit TBP or other down-stream factors for 

transcriptional initiation. In addition, Snf6p might play a role in transcriptional elongation, 

since early genetic study showed that mutation of a Pol II transcription elongation factor 

Spt6p suppressed the mutant phenotype of Swi2p and Snf5p, but not Snf6p (Laurent, et 

al., 1991). It would be interesting to perform DNA microarray in the future to identify 

Snf6p target genes that are both Swi2p-dependent and Swi2p-independent.  
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Figure 31. Tethering LexA-Snf6 alone is sufficient to activate LacZ reporter. Beta-

gal activity assay. LexA-SNF6 (HIS3+) alone or with SWI3 (LEU2+) was transformed 

into the same LacZ reporter strain described above. All transformants grew on SC-HIS  

(for LexA-SNF alone) of SC-HIS-LEU (for LexA-SNF6 and SWI3) plate for plasmid 

selection. Three independent colonies were used to calculate the average beta-

galactosidase activity.  
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The N-terminal acidic domain of Swi3p is predicted to be intrinsically disordered 

           In chapter III, I have shown that the N-terminal acidic domain of the Swi3p subunit 

functions as a novel histone H2A/H2B binding module that is required for dimer 

displacement in vitro. Although the Swi3p N-terminal acidic domain is not conserved in 

human Swi3 homologs, the histone chaperone function of this domain may help us to 

further understand dimer displacement as a mechanism for SWI/SNF to manipulate 

chromatin structure in vivo. The fact that Swi3p N-terminus deletion allele does not 

cause a growth phenotype in YEPD rich media suggests that its function may be 

redundant with other histone chaperones. It remains interesting to test whether the 

histone chaperone role of the Swi3p N-terminal acidic domain is required under other 

growth conditions, especially under specific gene induction conditions, since dimer loss 

was observed after progesterone induced activation of MMTV promoter in human cells 

(Vicent, et al., 2004). In budding yeast, it would be interesting to check whether dimer 

loss occurs at the SUC2 promoter since deletion of either H2A or H2B suppressed the 

mutant phenotype of swi/snf (Hirschhorn, et al., 1992). 

           Formation of a proper 3-dimensional (3D) structure is critical for protein function. 

However, many proteins have large intrinsically disordered domains that are known to 

be functionally important. It has been hypothesized that the disordered regions may only 

acquire a 3D ordered structure after protein-protein interactions (Hansen, et al., 2006). 

Using bioinformatics tools, we found that the N-terminal acidic domain of Swi3p is 

predicted to be intrinsically disordered compared to other regions (Figure 32). Therefore, 

the Swi3p acidic domain may provide an example to understand the function of 

disordered structures during ATP-dependent chromatin remodeling.  
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      a. 

            

          http://genomics.eu.org/prelink/

      b. 

                

        http://www.strubi.ox.ac.uk/RONN

 
Figure 32. Prediction of intrinsic disordered region within Swi3p. (a) Intrinsic 

disorder of Swi3p is predicted by http://genomics.eu.org/prelink/.  The N-terminal 300 

amino acids are predicted to be predominantly disordered. (b) High probability of the 

intrinsic disorder of Swi3p N-terminal 300 amino acids predicted by 

http://www.strubi.ox.ac.uk/RONN. 

 

http://genomics.eu.org/prelink/
http://www.strubi.ox.ac.uk/RONN
http://genomics.eu.org/prelink/
http://www.strubi.ox.ac.uk/RONN
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APPENDIX 
 

 
List of Yeast Strains Used in Thesis Research  
CY165      MATα swi3Δ :: URA3 

CY437      MATα swi3Δ :: TRP1 

CY666      MATα swi3Δ URA3 :: SWI3 

CY667      MATα swi3Δ URA3 

CY669      MATα swi3Δ URA3 :: swi3ΔSANT  

CY675      MATα swi3Δ URA3 :: swi3R564A  

CY678      MATα swi3Δ URA3 :: swi3Δ4N’ (deletion of 400 a.a. from  N-terminus) 

CY679      MATα swi3Δ URA3 :: swi3Δ5N’ (deletion of 500 a.a. from  N-terminus) 

*CY1004   MATα swi3Δ URA3 :: SWI3 SWI2-13XMyckan

*CY1005   MATα swi3Δ URA3 SWI2-13XMyckan

*CY1006   MATα swi3Δ URA3 :: swi3ΔSANT SWI2-13XMyckan 

*CY1053   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ integrated into CY165 

*CY1054   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SWI2 HIS3 SWI3 LEU2 

*CY1055   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SWI2 HIS3 swi3ΔSANT  LEU2 

*CY1063   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SWI2 HIS3 

*CY1064   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ SWI3 LEU2 

*CY1078   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SWI2K978A HIS3 SWI3 LEU2 

*CY1079   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SWI2K978A HIS3 swi3ΔSANT   

                 LEU2 

*CY1063   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SNF6 HIS3 

*CY1080   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LexA-SNF6 HIS3 SWI3 LEU2 

*CY1081   MATα swi3Δ::URA3 LexAop-GAL1TATA-LacZ LaexA-SNF6 HIS3 swi3ΔSANT LEU2 

*CY1103   MATα swi3Δ URA3 :: SWI3 SWI2-TAPkan

*CY1104   MATα swi3Δ URA3 :: swi3ΔSANT SWI2-TAPkan

*CY1105   MATα swi3Δ URA3 SWI2-TAPkan

*CY1106   MATα swi3Δ URA3 :: SWI3 SNF6-TAPkan

*CY1107   MATα swi3Δ URA3 :: swi3ΔSANT SNF6-TAPkan

*CY1108   MATα swi3Δ URA3 SNF6-TAPkan

*CY1161   MATα swi3Δ URA3 :: swi3Δ4N’ SWI2-TAPP

kan

*CY1162   MATα swi3Δ URA3 :: swi3Δ5N’ SWI2-TAPP

kan
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*CY1163   MATα swi3Δ URA3 ::swi3Δ4N’ SNF6-TAPkan

*CY1164   MATα swi3Δ URA3 :: swi3Δ5N’ SNF6-TAPP

kan 

*CY1316   SWI3Δ1N :: URA3 integrated into CY437 (SWI3 delta N’-terminal 100 a.a.) 

*CY1317   SWI3Δ2N :: URA3 integrated into CY437 (SWI3 delta N’-terminal 200 a.a.) 

*CY1318   SWI3Δ3N :: URA3 integrated into CY437 (SWI3 delta N’-terminal 300 a.a.) 

*CY1319   TAP-SWI2 in CY1316 

*CY1320   TAP-SNF6 in CY1317 (SWI3 delta N’-terminal 200 a.a.) 

*CY1321 TAP-SWI1 IN CY666 

*CY1322   TAP-SWI1 in CY669 

*CY1323   TAP-SNF5 in CY666 

*CY1324   TAP-SNF5 in CY669  

*CY1325   TAP-SNF5 in CY119 (Δswi1) 

*CY1326    TAP-SNF5 in CY407 

*CY1327   TAP-SNF6 in CY575 (Δsnf5) 

*CY1328   TAP-SWI2 in CY694 (swi3R564E) 

*CY1340   CY1053+LexA-Swi2+pRS415-swi3Δ2N) 

*These strains are made by myself during thesis research. 
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List of Plasmids Used in This Thesis Research  

 CP310       LexAop-GAL1TATA-LacZ 

 CP430       SWI3Δ1N in RS406 (SWI3 delta N’-terminal 100 a.a.) 

 CP431       SWI3Δ2N in RS406 (SWI3 delta N’-terminal 200 a.a.) 

 CP432       SWI3Δ3N in RS406 (SWI3 delta N’-terminal 300 a.a.) 

 CP488        pLexA-SWI2 

 CP645        pLexA-SNF6 

 CP717       xenopus histone H2A 

 CP718       xenopus histone H2B 

 CP719       xenopus histone H3 

 CP720       xenopus histone H4  

 CP740        xenopus histone H2A-GST fusion 

 CP741        xenopus histone H2B-GST fusion 

 CP742        xenopus histone H3-GST fusion 

 CP743        xenopus histone H4-GST fusion 

*CP988       pRS415-SWI3 

*CP989       pRS415-swi3ΔSANT 

 CP999         pFA6a-TAP (CaM-protein A):Kan 

CP1024      “601” nucleosome positioning sequence 

 CP1035       xenopus H3-C110A 

*CP1052     pCMX-Flag-SNF5 (T7, IVT) 

*CP1058     pCMX-HA-SWI3 (T7, IVT) 

*CP1059     pCMX-HA-swi3ΔSANT (T7, IVT) 

*CP1063     pCMX-SWP73 (T7, IVT) 

*CP1064     pCMX-ARP7 (T7, IVT) 

*CP1065     pCMX-ARP9 (T7, IVT) 

 CP1071     MMTV nucleosome B positioning sequence (Beato group gift) 

*CP1101    pGEX-2TA-GST-SWI3-3N 

*CP1102     pGEX-2TA-GST-SANT (GST-SANT) 

*CP1103     pET-3A-SWI2-N’ (1-834 a.a., T7, IVT) 
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*CP1104     pCMX-SWI2-C’ (after 834a.a., T7, IVT) 

*CP1105     pCMX-SWI3-3N (N’-terminal 300a.a., T7, IVT) 

*CP1106     pCMX-SWI3-C’ (C-terminus after 3N, T7, IVT) 

*CP1107     pGEX-2TA-GST (GST expression only) 

*CP1108     pCMX-SNF6 (T7, IVT) 

*CP1109     xenopus H2A-C113A 

*CP1110     pRS415-swi3Δ2N (LEU2+) 

*CP1113    pCMX-swi1Δ4N  (deletion N’-terminal 400a.a) 

*CP1120    pCMX-Flag-Arp9 (T7, IVT) 

*These plasmids are made by myself during thesis research. 
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