University of Massachusetts Medical School ## eScholarship@UMMS **GSBS** Dissertations and Theses Graduate School of Biomedical Sciences 2014-02-26 # Molecular Landscape of Induced Reprogramming: A Dissertation Chao-Shun Yang University of Massachusetts Medical School # Let us know how access to this document benefits you. Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Biochemistry Commons, Cell Biology Commons, Molecular Biology Commons, and the Molecular Genetics Commons ### **Repository Citation** Yang C. (2014). Molecular Landscape of Induced Reprogramming: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M22P5J. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/698 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu. ### MOLECULAR LANDSCAPE OF INDUCED REPROGRAMMING **A Dissertation Presented** By **Chao-Shun Yang** Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY **February 26th, 2014** **Biochemistry and Molecular Pharmacology** ### MOLECULAR LANDSCAPE OF INDUCED REPROGRAMMING A Dissertation Presented By Chao-Shun Yang | The signatures of the Dissertation Defense | Committee signify completion and approval | |--|---| | as to style and conte | ent of the Dissertation | | | Tariq M. Rana, Thesis Advisor | | |---------------|---|-----------| | | Zuoshang Xu, Member of Committee | | | | Kendall Knight, Member of Committee | | | | Jaime Rivera Pérez, Member of Committee | | | | Bing Ren, Member of Committee | | | The signature | e of the Chair of the Committee signifies that the written dissertate
the requirements of the Dissertation Committee | ion meets | | | Charles Sagerström, Chair of Committee | | | TTI : . | | · | The signature of the Dean of the Graduate School of Biomedical Sciences signifies that the student has met all graduation requirements of the school. Anthony Carruthers, Ph.D., Dean of the Graduate School of Biomedical Sciences **Department of Biochemistry and Molecular Pharmacology** February 26th 2014 ### **DEDICATION** In Memory of My Mother, Hsiu-Mei. ### **ACKNOWLEDGEMENTS** I would like to first thank my thesis adviser Dr. Rana, for giving the opportunity to work with him in the frontier of the stem cell field. He is a great model for being such a dedicated scientist with infinite passion and enthusiasm. His teaching of leaping over the fence to reach another hill of life is and will be one of my mottos, to help me face the challenges in the future as a rookie scientist. I also would like to thank my thesis committee members, Dr. Sagerström, Dr. Knight, Dr. Xu, and Dr. Rivera, for their constructive input and guidance to my research. I would like to thank Dr. Ren for technique support and helping me on thesis defense. I want to thank Louis Kan and Chia-Ying, who helped me settle down and showed me around when I came abroad for the first time. I would like to thank Christine, who is the greatest helper to take care of all the professional needs in the lab. I want to thank Joshua and Pamela, who helped me blend in and work as a team. I would like to thank past and present Rana lab members, Huricha, Katsuhiko, Jie, Zhonghan, Brett, Siobhan, Hong, Chih-Chung, Robin, Claudia, Kumi, Indrani, Jason, Tianxu, Nianwei, Veena, Ti-Chun, Kung-Yen, John, Poh, Shang, and Gati. You guys gave me so much helpful discussions and support during my thesis research. I would like to thank Tong-Young, Chun-Ting, Mike, Lisa, Suewei, Tse-Chun, Yu-Ting, Chia-Ying, Chien-Ling, Nabuqi, Alex, Fulai, Yan, Jun, Jing, Yin, and many other friends. With you guys' help and sharing, I was able to adapt the culture and enjoy my adventure here in United States. I would like to thank my lovely wife Tingting, for listening to my nonsense thoughts and crazy ideas, for always being there for me in high and low points in my life, for being such a wonderful company in every moment, and most importantly, for bringing two little angels, Rain and Shyne, to join our family. I would like to thank my dear sister Chih-Yuan, for sharing the happiness and sadness with all the gain and loss in my life. Finally, I would like to thank my dear Mother, Father, and Brother, for standing next to me for such a long time. I miss you guys very much! You shaped my life and will live forever in my heart! #### **ABSTRACT** Recent breakthroughs in creating induced pluripotent stem cells (iPS cells) provide alternative means to obtain embryonic stem (ES) cell-like cells without destroying embryos by introducing four reprogramming factors (*Oct3/4*, *Sox2*, and *Klf4/c-Myc or Nanog/Lin28*) into somatic cells. However, the molecular basis of reprogramming is largely unknown. To address this question, we employed microRNAs, small molecules, and conducted genome-wide RNAi screen, to investigate the regulatory mechanisms of reprogramming. First we showed that depleting miR-21 and miR-29a enhances reprogramming in mouse embryonic fibroblasts (MEFs). We also showed that p53 and ERK1/2 pathways are regulated by miR-21 and miR-29a and function in reprogramming. Second, we showed that computational chemical biology combined with genomic analysis can be used to identify small molecules regulating reprogramming. We discovered that the NSAID Nabumetone and the anti-cancer drug OHTM could replace Sox2 during reprogramming. Nabumetone could also replace c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPS cells. To identify the cell-fate determinants during reprogramming, we integrated a genome-wide RNAi screen with transcriptome analysis to dissect the molecular requirements in reprogramming. We found that extensive interactions of embryonic stem cell core circuitry regulators are established in mature iPS cells, including Utfl, Nr6al, Tdgf1, Gsc, Fgf10, T, Chrd, Dppa3, Fgf17, Eomes, Foxa2. Remarkably, genes with non-differential change play the most critical roles in the transitions of reprogramming. Functional validation showed that some genes act as essential or barrier roles to reprogramming. We also identified several genes required for maintaining ES cell properties. Altogether, our results demonstrate the significance of miRNA function in regulating multiple signaling networks involved in reprogramming. And our work further advanced the reprogramming field by identifying several new key modulators. ### TABLE OF CONTENTS | TITLE PAGE | ii | |--|-------| | SIGNATURE PAGE | iii | | DEDICATION | iv | | ACKNOWLEDGEMENTS | v | | ABSTRACT | vii | | TABLE OF CONTENTS | ix | | LIST OF TABLES | xvii | | LIST OF FIGURES | xviii | | LIST OF ABBREVIATIONS | xxiii | | PREFACE | xxiv | | CHAPTER I: INTRODUCTION | 1 | | Historic View of Reversing the Differentiation Process | 2 | | Acquiring ESC-like Identities by Direct Reprogramming of Somatic | 3 | | Cells | | | Advances in Methodology to Directly Induce Reprogramming in | 5 | |--|----| | Somatic Cells | | | Diverse Regulatory Functions of miRNAs Might Be a Two-Edged | 8 | | Sword for Investigating Reprogramming Mechanisms | | | Small Molecules Provide a Safe Way to Generate Induced Pluripotent | 9 | | Stem Cells | | | Mechanistic Understanding of Induced Reprogramming | 11 | | Remaining Questions and Challenges | 13 | | CHAPTER II: MICRORNAS MODULATE IPS CELL GENERATION | 19 | | Summary | 19 | | Introduction | 20 | | Results | 24 | | Inhibition of miR-21 or miR-29a Enhances Reprogramming | 24 | | Efficiency | | | c-Myc Represses Expression of miRNAs let-7a, miR-16, | 27 | |---|----| | miR-21,miR-29a, and miR-143 During Reprogramming | | | c-Myc Regulates miRNA Expression at the Transcriptional Level | 35 | | During Reprogramming | | | iPS Cells Derived via miRNA Depletion Attain Pluripotency | 38 | | Inhibiting miR-29a Down-Regulates p53 through p85a and CDC42 | 45 | | Pathways | | | Inhibition of miR-29a Enhances Reprogramming Efficiency | 50 | | through p53 Down-Regulation | | | Inhibition of miR-21 and miR-29a Decreases Phosphorylation of | 51 | | ERK1/2, but not GSK3β, to Enhance Reprogramming | | | Materials and Methods | 60 | | CHAPTER III: DISCOVERY OF NSAID AND ANTICANCER DRUGS | 60 | | AS REPROGRAMMING ENHANCERS | | | Summary | 66 | | Introduction | 67 | |---|-----| | Results | 70 | | Silencing MEF-Specific Genes Encoding Catalytic or Regulatory | 70 | | Factors Enhance iPS Cells Generation | | | The NSAID Nabumetone Enhances iPS Cell Generation | 79 | | Nabumetone can Generate iPS cells in the Absence of c-Myc | 88 | | OHTM and Nabumetone can Produce iPS cells without Sox2 | 94 | | OHTM Increases Endogenous Sox2 Expression during OKM | 95 | | Reprogramming | | | OKM+OHTM or OKM+Nabumetone iPS Cells Attain ES Identity | 95 | | and Pluripotency | | | Materials and Methods | 104 | | CHAPTER IV: TRANSCRIPTOME SIGNATURES DURING | 110 | | REPROGRAMMING | | | Summary | 110 | | Introduction | 111 | |--|-----| | Results | 114 | | Distinct Stages of Reprogramming Defined by Signature Markers | 114 | | K-means Clustering Reveals Five Distinct Gene Patterns During | 129 | | Induced Reprogramming | | | Highly Modulated Functions in Reprogramming Uncovered among | 130 | | Three Highly
Differential Groups | | | Revealing Key Molecules/Pathways in the Transitions to Different | 134 | | Stages of Reprogramming | | | Four Sorted Populations Indicate Cell-Fate Changes along with | 140 | | Induced Reprogramming Progress | | | Deeper Insight into Key Molecular Events of Reprogramming | 143 | | CHAPTER V: FUNCTIONAL DISSECTION OF THE MOLECULAR | 152 | | REQUIREMENTS OF INDUCED REPROGRAMMING | | | Results | 152 | | Genome-Wide shRNA Library Screening Identifies Key Factors in | 152 | |---|-----| | Induced Reprogramming | | | Integrating shRNA Library Screening and Transcriptome Analysis | 162 | | to Define Important Genes in Reprogramming | | | Validation of Select Targets Demonstrates a High Discovery Rate | 166 | | for Key Reprogramming Molecules | | | Pcgf6, Ruvbl2, Hcfc1, and Srsf2 Play Critical Roles in both ES Cell | 177 | | Identity and Induced Reprogramming | | | Materials and Methods | 186 | | CHAPTER VI: DISCUSSION | 197 | | MicroRNAs Serve as Key Regulators in Induced Reprogramming | 199 | | c-Myc Plays a Key Role in Establishing the Early Transition Stage | 202 | | The MEF-enriched miRNAs, miR-21, miR-29a, and let-7, Act as | 203 | | Barriers to the Initial Stage of Reprogramming | | | p53-regulated miRNA miR-34 and miR145 Play Important Roles in | 206 | |--|-----| | Reprogramming | | | EMT/MET-associated miRNAs Play Important Roles in Modulating | 209 | | the Transitional Stage of Reprogramming | | | The miR-290/302 Seed Family Plays Significant Roles during The | 210 | | Programming Progress | | | Reprogramming with miRNAs only | 215 | | The Mechanisms in miRNA Reprogramming | 217 | | Small Chemical Molecules Targeting MEF-Enriched Genes Increase | 219 | | Induced Reprogramming | | | New Life for FDA-approved Drugs in Induced Reprogramming | 219 | | Chemically Induced Reprogramming with Small Molecules | 221 | | Converging regulations of miRNAs and small molecule Nabumetone | 223 | | Probing the Molecular Mechanism of Induced Reprogramming with | 226 | | Integrative Genome-Wide Studies | | | Deeper Insight of Regulatory Networks in Reprogramming | 227 | |---|-----| | Novel Key Regulators in Maintaining ESC Identity | 230 | | Determinative Factors in Reprogramming Identified in Our | 231 | | Functional Genomics Study | | | Novel Approaches Shed Lights on the Mechanisms of Different | 233 | | Reprogramming Processes | | | Prospective Development in Induced Reprogramming | 236 | | APPENDICES | 238 | | REFERENCES | 244 | ### LIST OF TABLES | Table 3.1. Summary of Select MEF-Enriched Genes | 239 | |---|-----| | Table 3.2. List of Screened Molecules | 80 | ### LIST OF FIGURES | Figure 2.1. Inhibition of MEF-enriched microRNAs, miR-21 and miR-29a, | 25 | |---|----| | enhances reprogramming efficiency. | | | Figure 2.2. Inhibition of miR-21 enhances iPS cell reprogramming by | 28 | | OSK. | | | Figure 2.3. c-Myc is the primary repressor of MEF-enriched miRNAs | 31 | | during reprogramming. | | | Figure 2.4. Reprogramming does not induce Lin28a and Lin28b | 36 | | expression. | | | Figure 2.5. c-Myc does not affect mature miRNA processing of miR-21 and | 39 | | miR-29a during reprogramming. | | | Figure 2.6. Mouse iPS cells derived with miR-21 and miR-29a inhibitors | 42 | | are pluripotent. | | | Figure 2.7. Inhibition of miR-21 or miR-29a enhances iPS cell | 46 | |---|------------| | reprogramming by decreasing p53 protein levels and up-regulating p85 α | | | and CDC42 pathways. | | | Figure 2.8. Depleting miR-21 and miR-29a promotes reprogramming | 52 | | efficiency by down-regulating the ERK1/2 pathway. | | | Figure 2.9. Inhibition of miRNA does not alter apoptosis or proliferation | 58 | | rates during reprogramming. | | | Figure 3.1. Inhibiting mouse embryonic fibroblast (MEF)-specific genes | 7 1 | | enhances induced pluripotent stem cell (iPS Cells) reprogramming. | | | Figure 3.2. Expression profiles of selected MEF-specific genes during | 76 | | reprogramming. | | | Figure 3.3. Nabumetone significantly enhances iPS cell reprogramming by | 82 | | inhibiting COX2 | | | Figure 3.4. Specific COX2 inhibitors significantly enhance OSKM and | 86 | | OSK reprogramming. | | | Figure 3.5. Overexpression of COX2 compromises OSKM | 89 | |--|-----| | reprogramming. | | | Figure 3.6. Small molecules can generate iPS cells in the absence of c-Myc | 91 | | and Sox2 | | | Figure 3.7. Characterization of OKM+6 factor-derived iPS cells | 97 | | Figure 3.8. iPS cells derived by OKM + Nabumetone or OKM + OHTM | 100 | | acquire pluripotency | | | Figure 4.1. Dissecting key molecular mechanisms during reprograming by | 115 | | genome-wide RNAi screening and transcriptome analysis | | | Figure 4.2. shRNA library screening strategy to dissect molecular | 119 | | requirements in induced reprogramming. | | | Figure 4.3. Transcriptome analysis reveals key differential genes and | 125 | | networks during reprogramming. | | | Figure 4.4. Expression cascades of epigenetics regulators during induced | 137 | | reprogramming | | | Figure 4.5. Cdk14 and Cdkn2a/b are the gatekeepers in the initial stage of | 145 | |--|-----| | reprogramming and PRC2 complexes are the last to be restored in the | | | mature iPS cells. | | | Figure 5.1. Revealing unique sets of molecules that play critical roles | 154 | | during reprogramming by integrated analysis of shRNA library screening | | | and transcriptome profiling. | | | Figure 5.2. Revealing genes/networks critical to induced reprogramming | 158 | | by integrated analysis of shRNA library screening and transcriptome | | | profiling. | | | Figure 5.3. shRNA-identified targets play critical roles during induced | 169 | | reprogramming. | | | Figure 5.4. Functional genomic screening and transcriptome analysis | 173 | | reveal key regulators of induced reprogramming and ES cell properties. | | | Figure 5.5. Pcgf6, Srsf2, Hcfc1, and Ruvbl2 are required for maintaining | 178 | | ES cell property. | | | Figure 5.6. Model showing molecular requirements to induced | 184 | |--|-----| | reprogramming. | | | Figure 6.1. Correlation of miRNA inhibitor and small molecule effects in | 224 | | enhancing induced reprogramming. | | ### LIST OF ABBREVIATION Induced pluripotent stem cell (iPS cell) Somatic cell nuclear transfer (SCNT) Oct4, Sox2, Klf4, c-Myc (OSKM) MicroRNA (miRNA) Small interfering RNA (siRNA) miRNA inhibitor (antagomir) RNA-induced silencing complex (RISC) Embryonic stem cell (ESC) Mouse embryonic fibroblast (MEF) Mouse embryonic stem cell (MESC) Human embryonic stem cell (hESC) Non-steroidal anti-inflammatory drug (NSAID) Histone lysine methylase/methyltransferase (HKMT) Polycomb repressive complex (PRC) ### **PREFACE** This thesis comprises the following published and unpublished work. Learning the molecular mechanisms of the reprogramming factors: let's start from microRNAs. **Yang CS**, Rana TM. Mol Biosyst. 2013 Jan 27;9(1):10-7. doi: 10.1039/c2mb25088h. Epub 2012 Oct 5. Review. Discovery of non-steroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation. **Yang CS**, Lopez CG, Rana TM. Stem Cells. 2011 Oct;29(10):1528-36. doi: 10.1002/stem.717. microRNAs modulate iPS cell generation. **Yang CS**, Li Z, Rana TM. RNA. 2011 Aug;17(8):1451-60. doi: 10.1261/rna.2664111. Epub 2011 Jun 21. Illuminating the cell-fate determinants of induced reprogramming by a genome-wide RNAi Screen Yang CS, Chang KY, and Rana TM. Cell Report. 2014 (under revision). ### **CHAPTER I** #### Introduction Mouse embryonic stem cells (MESCs) were first derived from normal mouse embryos (Evans and Kaufman, 1981), and the first established mammalian cell type with the capacities to differentiate into cells from the three major germ layers. More than a decade later, human embryonic stem cells (hESCs) were successfully cultured in the lab (Thomson et al., 1998). This provided a resource to create desired cell types and tissues for regenerative therapy. However, the ethical concerns regarding human embryo acquisition and applications of human embryos are always under debate in society. Recently, a technique breakthrough provides an alternative method to obtain pluripotent cells. Yamanaka's group induced pluripotency in somatic cells (Takahashi and Yamanaka, 2006) by simply introducing four transcription factors: Oct4, Sox2, c-Myc, and Klf4 (OSKM). This technology not only provided an unlimited resource to regenerative medicine, but also opened the possibility of "customized" therapy. ### **Historic View of Reversing the Differentiation Process** For several decades, scientists have investigated how and what decides cell-fate changes during development. Since the late 19th century, it was a general belief that differentiation is an irreversible process. This central dogma was first challenged by John Gurdon in 1958; he successfully grew adult frogs from tadpole nuclei transferred into enucleated oocytes by somatic cell nuclear transfer (SCNT) (Gurdon et al., 1958). Differentiated cells re-gaining multi-potentiality were later found again in embryonal carcinoma cells (Kleinsmith and Pierce, 1964). Thirty years later, the Campbell's group (Wilmut et al., 1997) created a vertebrate clone, known as Dolly the sheep. Different groups also created mouse clones (Hochedlinger and Jaenisch, 2002; Wakayama et al., 1998). These seminal experiments showed
that somatic cells carry all the genetic information to restore the pluripotency. Several years later, Yamanaka's breakthrough led us into a new era where nuclear reprogramming can be achieved by simply transducing four transgenes (OSKM) into somatic cells (Takahashi and Yamanaka, 2006). This surprising finding prompted numerous researchers worldwide to investigate this direct reprogramming phenomenon. ### **Acquiring ESC-like Identities by Direct Reprogramming of Somatic Cells** Several methods have been developed to reprogram somatic cells, including nuclear transfer, cell fusion, and direct reprogramming by transcription factors. Among these techniques, direct reprogramming by transcription factors is a more feasible and robust method, which has been achieved in many different cell types, such as fibroblasts, keratinocytes, stomach cells, melanocytes, platelets, astrocytes, liver cells neural cells, lymphocytes, B cells, amniotic cells, cord blood cells, pancreatic β cells, and adipose tissues (Rajasingh, 2012). Initially mouse induced pluripotent stem cells (iPS cells) were first generated by using pseudo retroviruses as vehicles to deliver OSKM into somatic cells (<u>Takahashi and Yamanaka, 2006</u>). Shortly after that, human iPS cells were created with similar approaches (<u>Takahashi et al., 2007</u>). Thomson's group developed another recipe for reprogramming using Oct4, Sox2, Lin28, and Nanog, and lentiviral transduction, instead of a retroviral system (Yu et al., 2007). Those induced pluripotent stem cells (iPS cells) gain embryonic stem cell identity in about 2 weeks (mouse cells) or 6 weeks (human cells) post viral transductions. Reprogrammed cells were transformed into small compact cell colonies, resembling ESC colonies. Reprogrammed cells also express pluripotent markers, such as SSEA1 (mouse), SSEA3/4 (human), alkaline phosphatase activity (AP), and endogenous Oct4 re-activation. The transcriptome profiling of iPS cells is highly similar, if not identical, to that of ESCs. Reprogrammed cells can be cultured indefinitely, in theory, and still remain genomic integrity (normal karyotypes). The pluripotency of iPS cells has also been vigorously tested to show their ability to differentiate into various cell types derived from the three major germ layers: mesoderm, ectoderm, and endoderm. Therefore, direct reprogramming technology provides an alternative to human ESCs with no ethical concerns, and paves the road to "customized" regenerative medicine in the future, since they can be created with one's own somatic cells. This direct reprogramming technique has also worked successfully in various species (Stadtfeld and Hochedlinger, 2010), providing other possibilities to preserve extinct or endangered animals. ### Advances in Methodology to directly induce reprogramming in somatic cells Although the direct reprogramming technique is simple, there are few major roadblocks to apply this technology for therapeutic purposes. First, the reported reprogramming efficiency is low: ~0.1% in mouse cells and ~0.01% in human cells. This low efficiency is not a concern in the laboratory setting, but a higher rate might be required to create "customized" iPS cells from precious patient samples. Second, the random viral-integrations introduce the changes to the genome. Finally, the usage of oncogenes, c-Myc and Klf4 that may lead the reprogrammed cells into tumorigenesis. Therefore, a great effort has been made by numerous labs to find different methods to enhance the reprogramming efficiency or reduce/replace any transgenes. The major advantage of using a retrovirus-based delivery system (<u>Takahashi and Yamanaka</u>, 2006) is that transgenes can be delivered into cells with high efficiency. This high transduction efficiency is essential, because high expression of OSKM in recipient cells is needed to drive rare reprogramming events. When reprogrammed cells restore ESC identities, endogenous regulatory networks (LSD1/KDM1A and ZFP809) will repress transgenic OSKM by silencing retroviral long terminal regions (LTRs) (Macfarlan et al., 2011; Wolf and Goff, 2009). This is beneficial for the goals of differentiating pluripotent cells without the interference of reprogramming factors. A lentivirus-based system has also been used to generate iPS cells (Yu et al., 2007), showing broader recipient cell types for reprogramming. But lentiviral-transduced cells fail to suppress transgenes in iPS cells at higher rate, which may interfere or block the differentiation abilities of transformed cells. Although both retro- and lenti-virus based delivery systems provide high transduction efficiency, transgene integration and the use of oncogenes (Klf4 and c-Myc) are the major concerns to potential therapeutic applications of iPS cells. Therefore, non-integration delivery system have been introduced by several labs to minimize the transgene integrations. Non-integration delivery methods, such as adenovirus or plasmids only, have been shown to successfully generate iPS cells without transgene integrations (Okita et al., 2008; Stadtfeld et al., 2008b). Those successful attempts are promising to generate iPS cells without insertional mutagenesis. However, the frequency of successful iPS cell generation (~0.001 to 0.0001%) is substantially lower than that obtained with viral-integration methods (~0.1 to 0.01%). While none of iPS cells derived with retro- or lenti-viruses developed into tetraploid karyotypes, significant abnormal karyotypes were induced with adenovirus-derived iPS cells (~23% of iPS cell clones). For plasmid-only delivery approaches, the possibility of transgene integrations still cannot be ruled out, unless whole-genome sequencing is performed for each iPS cell clone. Transfecting modified mRNAs (cytidine replaced by 5-methylcytidine) expressing OSKM into recipient cells might serve as another solution for non-integrative delivery system, which shows no induction of innate immune responses and generates iPS cells in much higher efficiency (~36-fold increase) (Warren et al., 2010). But all those techniques require repetitive administration of non-integrative viruses, plasmids, or mRNAs to sustain the effective transgene dosages for reprogramming; which is at least once every other day during the reprogramming process (from 7 days to several weeks). This high demanding labor is another drawback of those non-integration delivery systems. To minimize the oncogenic integrations, Yamanaka's group further showed that iPS cells can be created by using only three factors OSK, without employing the most potent oncogene c-Myc (Nakagawa *et al.*, 2008), although with about ~10-fold lower reprogramming efficiency compared with OSKM. One alternative approach is using microRNAs as the substitutive genes to boost the reprogramming efficiency. Diverse Regulatory Functions of miRNAs Might Be a Two-Edged Sword for Investigating Reprogramming Mechanisms MicroRNAs (miRNAs) are ~22 nucleotide small non-coding RNAs that are highly conserved among species (Ambros, 2004; Bartel, 2004; Cao et al., 2008; Kim et al., 2009b; Rana, 2007a). They contain short sequences in the 5' end ("seed" regions) that direct target gene recognition of miRNA-loaded processing complexes, RISCs (RNA-induced Silencing Complexes). In mammals, miRNAs act as post-transcriptional regulators to reduce translation of target genes by either destabilizing mRNAs or blocking their translation. miRNAs have been shown to play critical roles in various physiological processes, including embryogenesis (Ambros, 2011; Subramanyam and Blelloch, 2011; Tiscornia and Izpisua Belmonte, 2010) and tumorigenesis (Esteller, 2011; Farazi et al., 2011; Kasinski and Slack, 2010; Kim et al., 2011a; van Kouwenhove et al., 2011). Mouse ESC-enriched miRNAs, miR-290 clusters, were first shown to boost reprogramming efficiency (Judson et al., 2009b), while let-7 family exert opposing roles to reprogramming progress (Melton et al., 2010). Several miRNAs of miR-290 clusters, including miR-291a-3p, miR-291b-3p, miR-295, and miR302 family (Wang et al., 2008), have been shown to associate with ES cell-specific cell cycle regulation (ESCC). These findings indicate that ESCC miRNAs may play significant roles in induced reprogramming, through regulating cell cycles (Judson et al., 2009b). The advantage of using miRNAs to induce reprogramming is that miRNAs can be introduced easily by transfection and that no genomic modification is made. But the number of miRNAs' target genes can be hundreds and the effects at the molecular level can be hard to define. This could be challenging to investigate the regulatory mechanisms of reprogramming or design other molecules for more specific targeting. ### Small Molecules Provide a Safe Way to Generate Induced Pluripotent Stem Cells Several reports have shown that chemical molecules greatly increase iPS cell formation during reprogramming. Rho-associated kinase (ROCK) inhibitor increases the clonal and reprogramming efficiency in human fibroblast reprogramming (Park et al., 2008a). Reprogramming efficiency can be boosted by ~4- to 10-fold by adding DNA methyltransferase inhibitor 5-aza-cytidine (AZA) during reprogramming (Huangfu et al., 2008; Mikkelsen et al., 2008). Many histone deacetylase (HDAC) inhibitors have been shown to improve reprogramming efficiency (Huangfu et al., 2008). Among those inhibitors, valproic acid (VPA) can even increase reprogramming efficiency by ~100-fold with OSKM (Huangfu et al., 2008). Few small molecules even show an ability to replace certain reprogramming factors, such as Sox2 replaced by BIX-01294 (Shi et al., 2008b), and Klf4 replaced by kenpaullone (Lyssiotis et al., 2009). Highly selective small molecules can also be used to reveal the important gene regulations or pathways during reprogramming. For example, PD0325901 and CHIR99021 (MEK and GSK3 pathway inhibitors respectively) have the ability to replace Sox2 and Klf4 during
reprogramming and to promote the ground state of pluripotency in iPS cells (Silva et al., 2008a). TGF-β signaling pathway also has been shown to modulate Nanog re-activation in partial iPS cells by using the inhibitor SB431542 (<u>Ichida et al.</u>, 2009; <u>Maherali and Hochedlinger</u>, 2009b). Therefore, it is promising to employ chemical molecules to develop more efficient and non-transgenic induced reprogramming methods. ### Mechanistic understanding of induced reprogramming An increasing body of evidence shows that induced reprogramming process occurs in a generally stochastic manner (Hanna et al., 2009; MacArthur et al., 2008; Yamanaka, 2009a) but that the transformed cells are able to achieve step-wise transitions at later stages of reprogramming (Brambrink et al., 2008; Sridharan et al., 2009; Stadtfeld et al., 2008a; Yamanaka, 2009a). The OSKM reprogramming factors bind their targets in a coordinated fashion (Sridharan et al., 2009) to initiate the first step of reprogramming: the transcriptional and epigenetic changes (Koche et al., 2011; Sridharan et al., 2009). Furthermore, it has been suggested that OSKM may assemble an inhibitory circuit against somatic identities prior to building up the transcriptional network of pluripotency in the later stages of the transition (Koche et al., 2011; Sridharan et al., 2009). This observation is supported by other reports showing that a number of barriers need to be overcome to reach the next steps in the transition (<u>Ho et al.</u>, 2011; <u>Plath and Lowry</u>, 2011). It has been shown that only a few markers, including Thy1, alkaline phosphatase (AP), and SSEA1, activated in sequential stages, can be used to identify cells that transform through the process of induced reprogramming, while embryonic stem cell-specific genes (Nanog, Oct4, Tert) are activated only at later stages (Brambrink et al., 2008; Stadtfeld et al., 2008a). More recent research suggests that induced reprogramming stabilization stages is a step-wise event, comprising initial, mature, and (Samavarchi-Tehrani et al., 2010). Several key cellular events have been observed during reprogramming, such as mesenchymal-to-epithelial transition (Li et al., 2010; Samavarchi-Tehrani et al., 2010) and cell-cycle modulation (Banito et al., 2009a; Hong et al., 2009; Kawamura et al., 2009b; Li et al., 2009a; Marion et al., 2009; Utikal et al., 2009). Furthermore, the epigenome is reset upon induced reprogramming (Koche et al., 2011; Maherali et al., 2007), and several epigenetic regulators play important roles in the reprogramming process (Onder et al., 2012). The cooperation of OSKM has also been considered as a critical factor to efficient reprogramming (Carey et al., 2011; Soufi et al., 2012; Sridharan et al., 2009). ## **Remaining Questions and Challenges** One of the primary obstacles to the successful application of iPS cells for medical purposes is their low reprogramming efficiency. Significant effort has been devoted to enhancing induced reprogramming efficiency as described above, including approaches focusing on the use of mRNA (Warren et al., 2010); small molecules (Ichida et al., 2009; Li and Rana, 2012; Maherali and Hochedlinger, 2009b; Nichols et al., 2009; Silva et al., 2008a; Yang et al., 2011b; Ying et al., 2008; Zhu et al., 2011); and miRNAs (Choi et al., 2011; Judson et al., 2009b; Kim et al., 2011b; Li and He, 2012; Li et al., 2011; Liao et al., 2011; Lipchina et al., 2011; Melton et al., 2010; Pfaff et al., 2011; Subramanyam et al., 2011; Yang and Rana, 2013; Yang et al., 2011a). However, none of these studies have been able to sufficiently describe the molecular mechanisms of induced cellular reprogramming. The complexity of cell types in reprogramming is major hurdle to dissect the mechanisms during the cell-fate transitions. To address those major challenges, we sought the answers by utilizing miRNAs and small molecules as tools to possibly increase the reprogramming frequency, as well as to replace oncogenes. These approaches may also shed light about specific gene targets or pathways modulating iPS cell induction. To elucidate comprehensive molecular mechanisms and to determine the functional requirements of genes during the reprogramming process, we ambitiously applied genome-wide RNAi screen and cell sorting to dissect the molecular landscape of induced reprogramming in a step-wise manner. Since microRNAs (miRNAs) modulate target genes tissue-specifically, we reasoned that distinct mouse embryonic fibroblast (MEF)-enriched miRNAs post-transcriptionally modulate proteins that function as reprogramming barriers. Inhibiting these miRNAs should influence cell signaling to lower those barriers. Therefore, we hypothesized that somatic cell-enriched miRNAs, such miR-21 and miR29, might play inhibiting roles in the reprogramming process. Here we show that depleting miR-21 and miR-29a enhances reprogramming efficiency in MEFs. We also show that p53 and ERK1/2 pathways are regulated by miR-21 and miR-29a and function in reprogramming. We further provide the first evidence that c-Myc enhances reprogramming partly by repressing MEF-enriched miRNAs, such as miR-21 and miR-29a. Our results demonstrate the significance of miRNA function in regulating multiple signaling networks involved in iPS cell reprogramming. In addition, we describe a strategy to analyze genomic datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem (ES) cells to identify genes that constitute barriers to reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific down-regulation by siRNAs of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including Wisp1, Prrx1, Hmga2, Nfix, Prkg2, Cox2, and Tgf-β3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that Nabumetone and the anti-cancer drug OHTM can replace Sox2 during reprogramming. Nabumetone was also able to replace c-Myc or Sox2 in reprogramming without compromising the self-renewal and pluripotency of derived iPS cells. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPS cell generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPS cell induction. Moreover, we attempted to dissect the molecular mechanism in step-wise manner by applying FACS to separate distinct populations, representing four critical steps from initiation to maturation of induced reprogramming. We discovered five categories of the transcriptome that change dramatically along reprogramming. Numerous genes are shown to be key players in each transitional stage from mouse embryonic fibroblast to induced pluripotent stem cells. Our data suggest that attaining SSEA1+ stages is the rate-limiting step during reprogramming. Nanog, Sall4, Esrrb, Dppa4, Dppa5a, Dnmt3b and Dnmt31 are activated in SSEA1+ cells, while more extensive interactions of embryonic stem cell core circuitry (ESCCC) regulators are established in mature iPS cells, including Utfl, Nr6a1, Tdgfl, Gsc, Fgf10, T, Chrd, Dppa3, Fgf17, Eomes, Foxa2. Remarkably, we found that genes with non-differential change play the most critical roles in the transitions of reprogramming, while analysis of differential transcriptome might not comprehensively reveal the key regulators. Functional validation showed that genes, such as *Dmbx1*, *Gsc*, *Med21*, *Hnf4g*, *Mef2c*, *Psmd9*, *Tfdp1*, *Nfe2*, *Foxn3*, *Erf*, *Cdkn2aip*, *Msx3*, *Ssbp3*, *Dbx1*, *Hoxd4*, *Lzts1*, *Arx*, *Hoxd12*, *Gtf2i*, *Nkx6-2*, *Ankrd22*, and *Hoxc10*, have essential or barrier roles to reprogramming. To further understand the mechanism of regulatory networks during reprogramming, we performed a genome wide RNAi screen and purified cellular populations during four key steps of reprogramming: We integrated genome-wide RNAi screen with step-wise transcriptome analysis to analyze the molecular requirements in induced reprogramming. We found that genes associated with cell signaling pathways (e.g., *Itpr1*, *Itpr2*, *Pdia3*, *Camk4*) constitute the major regulatory networks before cells acquire pluripotency. Activation of a specific gene set (e.g., *Utf1*, *Nr6a1*, *Tdgf1*, *Gsc*) is important to become mature iPS cells. Strikingly, a major proportion of identified RNAi targets (~53% to 70%) are non-induced or changed genes (defined as *NINCHA* group) during reprogramming, suggesting that these genes are important for reprogramming transitions. Among NINCHA genes, Dmbx1, Hnf4g, Nobox and Asb4, are essentials for reprogramming, while Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1, Arx, Gtf2i, and Ankrd22 act as roadblocks to reprogramming. We also confirmed several genes required for maintaining ES cell properties, such as Srsf2, Hcfc1, Ruvbl2, Asb4, Dmbx1, Gbx2, Gsc, Hnf4g, Klf5, L3mbtl2, Med21, Mef2c, Nobox, Pcgf6, Phox2a, Tcf15, Oct4/Pou5f1, Nanog, and Trim28. Altogether, our work advances the field by identifying several new key modulations, by combining genome-wide shRNA library screening with transcriptome analysis. #### **CHAPTER II** ## MicroRNAs modulate iPS cell generation #### **Summary** Although induced pluripotent stem cells (iPS cells) hold great promise for customized regenerative medicine, the molecular basis of reprogramming is largely unknown. Overcoming barriers that maintain cell identities is a critical step in the reprogramming of differentiated cells. Since microRNAs (miRNAs) modulate target genes tissue-specifically, we reasoned that distinct mouse embryonic fibroblast (MEF)enriched miRNAs post-transcriptionally modulate proteins that function reprogramming barriers. Inhibiting these miRNAs should influence cell signaling to lower those
barriers. Here we show that depleting miR-21 and miR-29a enhances reprogramming efficiency in MEFs. We also show that the p53 and ERK1/2 pathways are regulated by miR-21 and miR-29a and function in reprogramming. In addition, we provide the first evidence that c-Myc enhances reprogramming partly by repressing MEF-enriched miRNAs, such as miR-21 and miR-29a. Our results demonstrate the significance of miRNA function in regulating multiple signaling networks involved in iPS cell generation. These studies should facilitate development of clinically applicable reprogramming strategies. #### Introduction Embryonic stem (ES) cells can proliferate indefinitely and differentiate into all cells that form an individual. Therefore, ES cells are versatile tools for the study of early developmental processes and provide a promising source of tissues or cells useful for regenerative therapies. However, the derivation of human ES cells from embryos has been an ethical concern in the field. Recent breakthroughs in creating induced pluripotent stem (iPS) cells provide an alternative way to obtain ES-like cells without destroying embryos. iPS cells were first established by introducing four reprogramming factors (*Oct3/4*, *Sox2*, *Klf4*, and *c-Myc*) into mouse embryonic fibroblasts (MEFs) (Takahashi and Yamanaka, 2006) or human fibroblasts (Takahashi *et al.*, 2007). iPS cells have also been created following expression of *Oct3/4*, *Sox2*, *Nanog*, and *Lin28* (Yu *et al.*, 2007). Overall, iPS cells exhibit morphology, transcriptome, and pluripotency similar to that of ES cells (Okita et al., 2007; Yu et al., 2007). However, retrovirus-mediated transgene expression and extremely low efficiency remain obstacles for their therapeutic application (Geoghegan and Byrnes, 2008; Seifinejad et al., 2010; Yoshida and Yamanaka, 2010). Moreover, although the combinatorial functions (Geoghegan and Byrnes, 2008) and regulatory activity (Boyer et al., 2005; Chen et al., 2008; Kim et al., 2008; Sridharan et al., 2009) of reprogramming factors have been established, the basic molecular mechanisms of each factor during the reprogramming process remain unknown. c-Myc, one of the four reprogramming factors (4F: Oct3/4, Sox2, Klf4, and c-Myc), plays crucial roles in cell proliferation and tumor development (Pelengaris *et al.*, 2002). c-Myc is a key regulator of cytostasis and apoptosis through repression of the cyclin-dependent kinase (CDK) inhibitor p21^{Cip1} (Seoane *et al.*, 2002). By abrogating Miz-1 function and suppressing p15^{INK4b}, c-Myc plays a critical role in the immortalization of primary cells (Seoane *et al.*, 2001). Many transcriptional functions of c-Myc require cooperation with Max or Miz-1 (Wanzel et al., 2003a). As a proto-oncogene c-Myc greatly enhances reprogramming efficiency, although it is dispensable for reprogramming (Nakagawa et al., 2008; Sridharan et al., 2009). Therefore, defining molecular pathways downstream of c-Myc during reprogramming could enhance therapeutic application of iPS cells, without compromising reprogramming efficiency. c-Myc reportedly acts to maintain ES cell renewal in part by regulating microRNA (miRNA) expression (Li et al., 2009a; Smith et al., 2010). MicroRNAs are 22-nucleotide non-coding small RNAs, which are loaded into RNA-induced silencing complex (RISC) to exert a global gene-silencing function (Chu and Rana, 2007). Expression of miR-141, miR-200, and miR-429 is induced by c-Myc in ES cells to antagonize differentiation (Lin et al., 2009a). c-Myc also promotes tumorigenesis by upregulating the miR-17-92 microRNA cluster (Dews et al., 2006) or by repressing known tumor suppressors, such as the let-7 family, miR-15a/16-1, the miR-29 family, and miR-34a (Chang et al., 2008b; Chang et al., 2009a). Nonetheless, how c-Myc functions to initiate reprogramming is still unclear. Overcoming barriers securing somatic cell identity and mediated by factors such as Ink4-Arf, p53, and p21 is a rate-limiting step in reprogramming (Banito *et al.*, 2009b; Hong *et al.*, 2009; Judson *et al.*, 2009a; Kawamura *et al.*, 2009a; Marion *et al.*, 2009; Utikal *et al.*, 2009). Since miRNAs modulate target genes tissue-specifically (Farh *et al.*, 2005; Rana, 2007b), we reasoned that distinct MEF miRNAs (Mayr and Bartel, 2009) post-transcriptionally modulate proteins that function as reprogramming regulators. Inhibiting these miRNAs should influence cell signaling to lower those barriers. Here, we show that depleting the abundant miRNAs miR-21 and miR-29a in MEFs enhances reprogramming efficiency by ~2.4- to 3-fold. We also report that c-Myc represses miRNAs miR-21 and miR-29a to enhance reprogramming of MEFs. Finally we report that miR-21 and miR-29a regulate p53 and ERK1/2 pathways by indirectly down-regulating p53 levels and ERK1/2 phosphorylation during the reprogramming process. #### **Results** ### Inhibition of miR-21 or miR-29a enhances reprogramming efficiency To determine whether inhibiting MEF-specific miRNAs lowers reprogramming barriers, we first analyzed MEF-enriched miRNAs and compared their levels with those seen in mouse ES cells. As shown in Fig 1A, let-7a, miR-21, and miR-29a were highly expressed in MEFs compared with ES cells. By contrast, miR-291 was highly abundant in ES cells but absent in MEFs (Figure 2.1A). Next, we introduced miRNA inhibitors against let-7a, miR-21, and miR-29a into Oct4-EGFP MEFs (MEFs harboring Oct4-EGFP reporter) together with retroviruses expressing Oct3/4, Sox2, Klf4, and c-Myc (OSKM). At day 14 post-transduction, cells treated with miR-21 inhibitors showed a ~2.4-fold increase in reprogramming efficiency compared with a non-targeting (NT) control (Figure 2.1B). Similarly, reprogramming efficiency increased significantly by ~3-fold following inhibition of miR-29a (Figure 2.1B). Under similar miRNA-inhibitor treatments as used for miR-29a or -21 inhibition, we observed a minor effect on OSKM-reprogramming following let-7a inhibition (Figure 2.1B). Figure 2.1 Figure 2.1. Inhibition of MEF-enriched microRNAs, miR-21 and miR-29a, enhances reprogramming efficiency. - (A) miR-29a, miR-21, and let7a are highly expressed in MEFs. Total RNAs were isolated from Oct4-EGFP MEFs and mouse ES cells and resolved by gel electrophoresis. Specific radioactive-labeled probes against the indicated miRNAs were used to detect expression. U6 snRNA served as a loading control. - (B) miRNA inhibition enhances reprogramming efficiency. Oct4-EGFP MEFs were transduced with OSKM as described in the Materials and Methods. GFP-positive colonies were identified and counted by fluorescence microscopy at day 14 after transduction. GFP+ colony number was normalized to the number of anti-miR nontargeting control treatment and is reported as fold-change. Error bars, SD of three independent experiments. *P-value <0.05; **P-value <0.005. To further test whether miRNA inhibition enhances reprogramming with three factors in the absence of c-Myc, cells were transduced with the miRNA inhibitor together with OSK, which reprograms cells at much lower efficiency than OSKM (Nakagawa et al., 2008). The number of OSK-reprogrammed iPS cell colonies increased in the presence of the miR-21 inhibitor relative to treatment with OSK alone (Figure 2.2). These results demonstrate that the depletion of the MEF-enriched miRNAs miR-21 and miR-29 enhances 4F-reprogramming significantly and that blocking miR-21 moderately increases the efficiency of OSK reprogramming. c-Myc represses expression of miRNAs let-7a, miR-16, miR-21, miR-29a, and miR-143 during reprogramming Recent work indicates that the OSKM factors alter cell identity through both epigenetic and transcriptional mechanisms (Sridharan et al., 2009). Therefore, we hypothesized that OSKM reprogramming factors could down-regulate MEF-enriched miRNAs. To evaluate the potential effect of each reprogramming factor on miRNA expression, MEFs were transduced with various combinations of the OSKM factors and Figure 2.2 # Figure 2.2 # Inhibition of miR-21 enhances iPS cell reprogramming by OSK. $Inhibitors\ of\ miRNAs\ were\ introduced\ into\ Oct 4-MEFs\ during\ reprogramming\ with\ OSK.$ GFP-positive colonies were counted at various time points post-transduction. Error bars represent standard deviation of two independent experiments. subjected to Northern blot analysis (Figure 2.3A). Interestingly, Sox2 alone induced expression level of miR-21, miR-29a, and let-7a by more than two folds, compared with MEF control (Figure 2.3B, left). Klf4 also induced miR-29a and let-7a by ~1.5 and 1.8 folds, respectively (Figure 2.3B, left). With Oct3/4 overexpression only, miRNAs did not change expression level (Figure 2.3B, left). In contrast to Oct4, Sox2, and Klf4, the single factor c-Myc down-regulated expression of miR-21 and miR-29a, the most abundant miRNAs in MEFs, by ~70% of MEF control (Figures 2.3A & 2.3B, left panels). Furthermore, among various combinations of two factors (2F) shown in Figure 2.3B (middle), inclusion of c-Myc enhanced decreases in all three miRNAs, including miR-21, miR-29a, and let-7a, by ~25-80% (Figure 2.3B, middle). Similar to single-factor effect on miRNA expression, Sox2 and Oct4 together increased miR-21 and miR-29a by 1.5 fold and 2.3 fold of MEF control respectively, while OK and SK had no obvious effects on miRNA expression (Figure 2.3B, middle). Moreover, among various three-factor (3F) combinations, the expression of miRNA-21 decreased by ~70 and 78% in SKM and OKM cells, respectively, relative to expression seen in MEFs (Figure 2.3B, right). Figure 2.3 Figure 2.3 #### c-Myc is the primary repressor of MEF-enriched miRNAs during reprogramming. - (A) Northern analysis of selected miRNAs at day 5 after reprogramming. Oct4-EGFP MEFs were transduced with a single factor or various combinations of reprogramming factors, as indicated. 1F indicates one factor; 2F, two factors; 3F, three factors. OSKM indicates Oct3/4, Sox2, Klf4, and c-Myc. U6 is
used as a loading control RNA. Total RNA from embryonic stem (ES) cells serve as negative control to MEF and transduced cells. Various probes were used to detect specific miRNAs as indicated on the *right* side. miR-291 blotting is a positive control for ES RNA. - (B) Quantitative representation of miRNA expression in the presence of various reprogramming factors. Signal intensity was normalized to intensity of U6 snRNA. The expression ratio is calculated as the percentage of expression of each miRNA relative to expression in MEFs, which was arbitrarily set to 100%. Various miRNAs were quantified (from panel *A*) and indicated on the *right* side. # Figure 2.3 (continuation) (C) Real-time RT-PCR analysis of selected miRNAs in Oct4-EGFP MEFs at various time points following OSK- or OSKM-reprogramming. RNA was isolated at the indicated day after transduction for real time RT-PCR analysis. Signals were normalized to U6 and are shown as a percentage of miRNAs expressed in MEFs, which was arbitrarily set to 100. Error bars, SD of two independent experiments. Similarly, miR-29a expression decreased by ~48-70% in 3F combinations containing c-Myc (Figure 2.3B, right). Inclusion of c-Myc in 3F combinations also slightly decreased let-7a levels (Figure 2.3B, right). OSK without c-Myc had little effect on miRNA expression (Figure 2.3B, right). Therefore, these results strongly suggest that c-Myc plays an important role in regulating miRNA expression during the reprogramming. To further confirm that c-Myc is the primary factor antagonizing miRNA expression, cells were transduced with OSK with or without c-Myc, and miRNA expression was examined by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) at various time points post-transduction. In contrast to OSK, OSKM transduction greatly decreased expression of let-7a, miR-16, miR-21, miR-29a, miR-143 during reprogramming (Figure 2.3C), indicating that c-Myc plays a predominant role in regulating expression of MEF-enriched miRNAs, including the most abundant ones, let-7a, miR-21, and miR-29a. These data also suggest that c-Myc boosts reprogramming, in part, through miRNA downregulation. c-Myc regulates miRNA expression at the transcriptional level during reprogramming c-Myc has been shown to influence miRNA expression in multiple human and mouse cancer models (Chang et al., 2008b; Chang et al., 2009a) and Lin28b is one of the key intermediate modulators to posttranscriptionally regulate let-7 biogenesis (Chang et al., 2009a). Therefore, we examined whether Lin28b-mediated regulation of miRNA expression plays a role during reprogramming. To address this question, we collected reprogrammed cells at various time intervals from day 3 to 15 post transduction of reprogramming factors. RT-qPCR analysis showed that mRNA expression of Lin28a and Lin28b were undetectable in MEF and during the reprogramming process while ES cells exhibited high level of Lin28a and Lin28b expression (Figures 2.4A and 2.4B). Control marker gene expression analysis established the successful progression of reprogramming process where the levels of Thy1 and Fibrillin-2 were downregulated and Nanog and Fbox15 were upregulated (Figure 2.4C). These findings strongly suggest that c-Myc regulation of miRNAs is Lin28-independent. Figure 2.4 Figure 2.4 ## Reprogramming does not induce Lin28a and Lin28b expression. Oct4-EGFP MEF were reprogrammed with OSKM retroviruses and transduced cells were collected at various time intervals during the reprogramming progress, as indicated. Lin28a (A) and Lin28b (B) expression levels were detected by RT-qPCR analysis. ES cells served as positive control. Error bars represent standard deviation of two independent experiments. (C) Reprogramming progression is monitored by *Thy1*, *Fibrillin-2*, *Nanog*, and *Fbox15* expression. Thy1 and Fibrillin-2 are highly expressed in differentiated cell types such as MEFs. Nanog and Fbxo15 are highly expressed in pluripotent stem cells as iPS or ES cells. Gene expression level was quantified by RT-qPCR. Nanog expression level in ES cells is set to 100%, which is not shown in the plot. Error bars represent standard deviation of two independent experiments. Next, to determine whether the c-Myc effect on MEF-enriched miRNAs is post-transcriptional, we examined miRNA biogenesis by Northern blotting and quantified the amounts of pre-miRNAs and mature miRNAs. Our analysis showed that the ratio between pre-miRNA and mature miRNA in the presence of OSKM (Figure 2.5) was not changed, suggesting that the miRNA maturation process of miR-21 and miR-29a was not compromised by c-Myc during reprogramming. Altogether, these data show that the c-Myc-mediated down-regulation of miR-21 and miR-29a is Lin28a/b-independent and occurs at the transcriptional level. #### iPS cells derived via miRNA depletion attain pluripotency To investigate whether blocking miR-21 or miR-29a compromises iPS cell pluripotency, we derived iPS cells treated with miR antagomirs and evaluated them for pluripotency (Li et al., 2011). Since OSKM-derived iPS cells were already well characterized in numerous studies, we decided to thoroughly examine our OSKM/anti miR-29a and OSKM/anti miR21 iPS cells, as well as OSK/anti miR-21 clones. First, iPS Figure 2.5 Figure 2.5 c-Myc does not affect mature miRNA processing of miR-21 and miR-29a during reprogramming. Oct4-EGFP MEF were transduced with reprogramming factors, as indicated. Total RNAs were isolated at day 5 post transduction, and then were subjected to Northern blot analysis (A and B). Intensity of pre-miR and mature miR were measured and quantified by Multi Gauge V3.0 (Fujifilm). tRNAs serve as loading control. Experiments were repeated at three times and a representative blot is shown here. cells were manually picked ~2 weeks after reprogramming and were expanded to examine morphology and expression of ES-specific markers. Cells exhibited an ES-like morphology and a highly expressed Oct4-EGFP (Figure 2.6A), indicating establishment of endogenous ES cell signaling. In addition, anti-miR-derived iPS cells expressed ES cell-specific markers, including Nanog and SSEA1, and exhibited alkaline phosphatase activity (Figure 2.6A). To test whether those iPS cells showed pluripotent potential comparable to that of ES cells, those iPS cells were induced to form embryoid bodies (EBs) (Figure 2.6B) or were injected into nude mice (Figure 2.6C) and allowed to differentiate into various tissues. After 2 weeks of in vitro differentiation, typical cell types derived from all three germ layers were observed (Figure 2.6B). Teratoma tumors, formed 3 weeks after injection, were subjected to histopathologic analysis. Various tissues originating from all three germ layers (Figure 2.6C) were generated, confirming that anti-miR-derived iPS cells obtained pluripotency. To use the most stringent test of pluripotency, iPS cells were injected into embryonic day (E) 3.5 blastocysts to create chimeric mice. Mouse derived from anti miR-29a iPS cells showed a significant ~15% Figure 2.6 Figure 2.6 #### Mouse iPS cells derived with miR-21 and miR-29a inhibitors are pluripotent. - (A) Staining with ES cell markers of OSKM/anti miR-29a or miR-21 iPS cells. GFP+ colonies derived following OSKM and various miR inhibitor treatments were picked for further analysis. Representative colonies expressing the embryonic stem cell markers Nanog and SSEA1 are shown. Endogenous Oct3/4 was also activated, as indicated by the EGFP expression. Strong alkaline phosphatase (AP) activity is shown as one of the ES markers. Anti-miR NT (nontargeting) serves as miR inhibitor control. - (B) *In vitro* differentiation of OSKM/anti miR-29a or miR-21 iPS cells. Embryoid bodies were formed *in vitro* and cultured for 2 weeks. Cells were fixed and stained with anti-α fetoprotein (for mesoderm) and anti-β-tubulin III (for ectoderm). Nuclei are shown as counter stain by Hoescht staining. - (C) Teratoma formation analysis of OSKM/anti miR-29a or miR-21 iPS cells. We injected 1.5×10^6 iPS cells subcutaneously into athymic nude female mice. Tumor masses were collected at 3 weeks after injection and fixed for histopathologic analysis. # Figure 2.6 (continuation) Various tissues derived from three germ layers were identified, including gut-like epithelium and pancreatic islet-like structure (endoderm); adipose tissue, cartilage, and muscle (mesoderm); and neural tissue and epidermis (ectoderm). (D) Chimera analysis of OSKM/anti miR-29a and OSK/anti miR-21 iPS cells. Eight to 14 iPS cells were injected into E3.5 mouse blastocysts. iPS cell contribution to each chimera was estimated by assessing agouti coat color and is shown as a percentage. black coat color attributable to iPS cells (Figure 2.6D). Since OSK in combination with miR-21 inhibitors resulted in high reprogramming efficiency (Figure 2.2), we also determined the pluripotency of OSK/anti miR-21 iPS cells by chimera analysis. Mouse generated from OSK/anti miR-21 iPS cells showed ~25% black coat color (Figure 2.6D). These data show that depleting miR-21 and miR-29a had no adverse effect on pluripotency of derived iPS cells. ### Inhibiting miR-29a down-regulates p53 through p85α and CDC42 pathways To understand the mechanisms underlying miR-29a's effect on reprogramming, we first examined expression of p85 α and CDC42, which are reportedly direct targets of miR-29 in HeLa cells (Park *et al.*, 2009a). To do so, we transfected miRNA inhibitors into MEFs and analyzed p85 α and CDC42 protein expression by western blot at day 5 post-transfection. As expected, p85 α and CDC42 protein levels increased slightly following miR-29a block, whereas a let-7a inhibitor had little effect (Figures 2.7A and 2.7B). The transformation related protein 53 (Trp53 or p53) is also reportedly a direct target of p85 α and CDC42 (Park *et al.*, 2009a). Therefore, we asked whether p53 is Figure 2.7 ## Figure
2.7 Inhibition of miR-21 or miR-29a enhances iPS cell reprogramming by decreasing p53 protein levels and up-regulating p85 α and CDC42 pathways. - (A) Western analysis of expression of p53, CDC42, and p85 α following inhibition of various miRNAs. We transfected 1 \times 10⁵ Oct4-EGFP MEFs with the indicated miRNA inhibitors. Cells were harvested and analyzed 5 d later. - (B) Quantitative representation of protein expression in the presence of indicated miR inhibitors. Signal intensity was normalized to GAPDH intensity and is shown as a percentage relative to expression in control (NT) cells, which was set arbitrarily to 100. Error bars, SD of at least three independent experiments. *P-value <0.05. - (C) Immunoblot analysis of p53, CDC42, and p85 α expression following inhibition of various miRNAs and OSKM transduction. We transfected 1 × 10⁵ Oct4-EGFP MEFs with the indicated miRNA inhibitors. Cells were harvested 5 d later and analyzed by immunoblot. Signal intensity was normalized as described in *B*. Error bars, SD of at least three independent experiments.**P*-value <0.05. # Figure 2.7 (continuation) (D) Depleting miR-29a or p53 enhances reprogramming efficiency. We transfected 4×10^4 Oct4-EGFP MEFs with the indicated siRNAs and miRNA inhibitors, as well as OSKM reprogramming factors. GFP-positive cells were counted at day 12 after transduction. Error bars, SD of at least three independent experiments. **P*-value <0.05. indirectly regulated by miR-29a in MEFs as well. To test that, MEFs were transfected with miRNA inhibitors and harvested 5 d for immunoblotting to evaluate expression of p53. p53 protein levels decreased by \sim 30% (Figures 2.7A and 2.7B) following miR-29a inhibition but were not altered by the NT control or by let-7a inhibition. Significantly, depleting miR-21 also released p85 α and CDC42 protein repression, and consequently, the levels of p85 α and CDC42 increased, which resulted in down-regulation of p53 expression by \sim 25% (Figures 2.7A and 2.7B). To further confirm that p53 levels decrease with inhibition of miR-21 or miR-29a during reprogramming, we examined p53 expression at reprogramming day 5 by Western blot analysis. To initiate reprogramming we introduced miRNA inhibitors together with OSKM. Consistent with observations in MEFs alone, p53 protein levels decreased by ~25% or ~40% following miR-21 or miR-29a depletion, respectively, during reprogramming, compared with OSKM controls (Figure 2.7C). In summary, our data showed that blocking miR-29a reduced p53 protein levels by about 30%–40% through p85α and CDC42 pathways during reprogramming. In addition, depletion of miR-21 had a similar effect on both p85 α and CDC42 and lowered p53 protein levels by about 25% to about 30%. ## Inhibition of miR-29a enhances reprogramming efficiency through p53 ## down-regulation It was recently reported that p53 deficiency can greatly increase reprogramming efficiency (Banito *et al.*, 2009b; Hong *et al.*, 2009; Judson *et al.*, 2009a; Kawamura *et al.*, 2009a; Marion *et al.*, 2009; Utikal *et al.*, 2009). Since depleting miR-29a significantly decreased p53 levels and increased reprogramming efficiency by about threefold (Figure 2.1), we asked whether the effect of miR-29a knockdown is mediated primarily by p53 down-regulation. To that end, we transfected p53 siRNA and/or the miR-29a inhibitor into Oct4-EGFP MEFs together with OSKM to initiate reprogramming. Down-regulation (~80%) of p53 by small interfering RNA (siRNA) had a similar positive effect on reprogramming efficiency as did miR-29a inhibition (Figure 2.7D). We did not observe an increase in reprogramming efficiency when miR inhibitors were added in the presence of p53 siRNA (Figure 2.7D). These results suggest that inhibition of miR-29a acts, in part (see below), through down-regulation of p53 to increase reprogramming efficiency. Inhibition of miR-21 and miR-29a decreases phosphorylation of ERK1/2, but not $GSK3\beta$, to enhance reprogramming miR21 reportedly activates MAPK/ERK through inhibition of the sprouty homologue 1 (Spry1) in cardiac fibroblasts (Thum et al., 2008). Blocking MAPK/ERK activity promotes reprogramming of neural stem cells (Silva et al., 2008b) and secures the ground state of ESC self-renewal (Nichols et al., 2009; Ying et al., 2008). Therefore, we asked whether miR-21 regulates the MAPK/ERK pathway during reprogramming by evaluating ERK1/2 phosphorylation in MEFs following the introduction of miRNA inhibitors. To test that, MEFs were transfected with miRNA inhibitors and then harvested for Western blot analysis to determine the phosphorylated ERK1/2 level. Western blot analysis showed that blocking miR-21 significantly decreased by ~45% the ERK1/2 phosphorylation relative to the NT controls, while let-7a inhibitors had no effect (Figure 2.8A). Interestingly, depleting MEFs of miR-29a also significantly reduced ERK1/2 Figure 2.8 Figure 2.8 # Figure 2.8 Depleting miR-21 and miR-29a promotes reprogramming efficiency by down-regulating the ERK1/2 pathway. - (A) Western analysis of phosphorylated and total ERK1/2 following inhibition of various miRNAs in MEFs. We transfected 1×10^5 Oct4-EGFP MEFs with the indicated miRNA inhibitors, harvested 5 d later, and immunoblotted. Signal intensity normalized to actin and shown as percentage relative to expression of anti-miR NT control. Error bars, SD of three independent experiments. **P*-value <0.05; ***P*-value <0.005. - (B) Western blot analysis of Spry1 expression ratio shows that depleting miR-21 and miR-29a increases Spry1 protein levels. MEFs were transfected with various miRNA inhibitors as indicated. Cells were harvested at day 5 after transfection for Western blot analysis. Signal intensity normalized to actin and shown as described in A. Error bars, SD of three independent experiments. *P-value <0.05; **P-value <0.005. - (C) Fold-change in reprogramming efficiency following ERK1/2 or GSK3 β knock-down. We transfected 4 × 10⁴ Oct4-EGFP MEFs with the indicated siRNAs, as well as OSKM. #### Figure 2.8 (continuation) GFP-positive cells were counted 2 weeks later. Transfection with siNT serves as control for the reprogramming efficiency. Error bars, SD of three independent experiments. *P-value <0.05; **P-value <0.005. - (D) Western analysis of phosphorylated and total GSK-3 β following inhibition of various miRNAs in MEFs. We transfected 1 × 10⁵ Oct4-EGFP MEFs with the indicated miRNA inhibitors, harvested 5 d later, and analyzed by immunoblot. Signal intensity normalized as described in A. Error bars, SD of three independent experiments. - (E) Schematic representation showing that c-Myc enhances reprogramming by down-regulating the MEF-enriched miRNAs, miR-21 and miR-29a. The p53 and ERK1/2 pathways function as barriers to reprogramming, and miR-21 and miR-29a indirectly activate those pathways through down-regulating CDC42, p85α, and Spry1. The cross-talk between miR-21/p53 and miR-29a/ERK1/2 pathways is also shown. c-Myc represses expression of these miRNAs and in turn compromises induction of ERK1/2 and p53. The dotted lines indicate p53 and ERK1/2 effects on iPS generation. phosphorylation by 60% relative to the NT control (Figure 2.8A). Next we determined whether miR-21 and miR-29a affected ERK1/2 phosphorylation by altering Spry1 levels. We depleted miR-21 or miR-29a in MEFs by transfecting various miRNA inhibitors, and quantified Spry1 expression levels by immunoblotting. Our results showed that inhibiting miR-21 and miR-29a enhanced Spry1 expression levels (Figure 2.8B). Therefore, our data demonstrate that depleting miR-21 and miR-29a down-regulates phosphorylation of ERK1/2 by modulating Spry1 protein levels. To address whether ERK1/2 down-regulation enhances reprogramming efficiency, we introduced siRNAs targeting ERK1 or ERK2 into Oct4-EGFP MEFs in the course of 4F-reprogramming. Depletion of either ERK1 or ERK2 significantly enhanced the generation of mature iPS cells (Figure 2.8C). As expected, our data showed that miR-21 acts as an inducer of ERK1/2 activation in MEFs, since blocking miR-21 reduced ERK1/2 phosphorylation. Depleting miR-29a also significantly diminished ERK1/2 phosphorylation. These results strongly suggest that miR-21 and miR-29a regulate ERK1/2 activity to modulate reprogramming efficiency (Figures 2.8A–C). The GSK3ß pathway also represses ES self-renewal and reprogramming of neural stem cells (Ying et al., 2008). Depleting GSK3ß with siRNA greatly increased mature iPS cell generation (Figure 2.8C). Therefore, we asked whether miRNA depletion regulated GSK3\beta activation. Immunoblotting showed that blocking miRNAs in Oct4-EGFP MEFs had no significant effect on GSK3β activation (Figure 2.8D). We then asked whether miRNA depletion alters apoptosis or cell proliferation during reprogramming by using flow cytometry to assess cell viability and replication rate. Blocking miRNA-21, miRNA-29a, or let-7 during reprogramming with OSKM did not alter apoptosis or proliferation rates (Figure 2.9). Overall, our results demonstrate that miR-29a and miR-21 modulate p53 and ERK1/2 pathways to regulate iPS cell reprogramming efficiency (Figure 2.8E). Figure 2.9 # Figure 2.9 Inhibition of miRNA does not alter apoptosis or proliferation rates during reprogramming. - (A) Inhibitors of miRNA were introduced into Oct4-MEFs during reprogramming with OSKM. Cells were collected at 8~9 days post transduction. Apoptosis was evaluated using a PE Annexin V Apoptosis Detection Kit I (BD Pharmingen; Cat# 559763) and 7-Amino-Actinomycin (7-AAD). The signal was detected by FACS. Error bars represent standard deviation of three independent experiments. - (B) miRNA inhibitors were introduced into Oct4-MEFs during reprogramming with OSKM. Cells were collected at 8~9 days post transduction. One day before collection, cells were treated with 5-ethynyl-2'-deoxyuridine (Edu) using
Click-iT Edu Imaging Kits (Invitrogen; Cat# C10337). The signal was detected by FACS. Error bars represent standard deviation of three independent experiments. #### **Materials and Methods** #### **MEF Derivation** Oct4-EGFP MEFs were derived from the mouse strain B6;129S4-*Pou5f1*^{tm2(EGFP)Jae}/J (Jackson Laboratory; stock no. 008214) using the protocol provided on the WiCell Research Institute website (http://www.wicell.org/). Oct4-EGFP MEFs were maintained in MEF complete medium (DMEM with 10% FBS, nonessential amino acids, L-glutamine, but without sodium pyruvate). #### **Reprogramming Using Retrovirus** Reprogramming was conducted as described (<u>Takahashi and Yamanaka, 2006</u>). In brief, 4×10^4 Oct4-EGFP MEFs were transduced with pMX retroviruses to overexpress Oct4, Sox2, Klf4, and c-Myc (Addgene). Two days later, transduced Oct4-EGFP MEFs were fed with ES medium (DMEM with 15% ES-screened FBS, nonessential amino acids, L-glutamine, monothioglycerol, and 1000 U/mL LIF), and the media were changed every other day. Reprogrammed pluripotent stem cells (defined as EGFP+ iPS cell colonies) were scored by fluorescence microscopy ~2 weeks after transduction, unless otherwise stated. To derive iPS cells, EGFP+ colonies were manually picked under a stereo microscope (Leica). #### miRNA inhibitor or siRNA Transfection Inhibitors of let-7a, miR-21, and miR-29a miRNAs were purchased from Dharmacon. We transfected 4×10^4 Oct4-EGFP MEFs with Lipofectamine and inhibitors according to manufacturer's instruction (Invitrogen). Three to 5 hours later, the medium was discarded and replaced with MEF complete medium; for reprogramming, retrovirus encoding reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) was added and the medium was changed to complete medium the next day. Inhibitors or siRNAs were introduced again at day 5 after transfection/transduction, unless otherwise stated. For Northern analysis, 1×10^5 Oct4-EGFP MEFs were transfected and harvested 5 day later. Total RNA was isolated by TRIZOL (Invitrogen) and $\sim9~\mu g$ of total RNA was resolved on a 14% denaturing polyacrylamide gel (National Diagnostics). RNAs were transferred onto Hybond-XL membranes (GE healthcare), and miRNAs were detected by isotopically labeled specific DNA probes. Signal intensity was visualized by phospho-imager and analyzed using Multi Gauge V3.0 (FUJIFILM). miRNA signal intensity was normalized to that of U6 snRNA. Experiments were performed in triplicate. For Western analysis, 1×10^5 Oct4-EGFP MEFs were transfected and harvested 5 day later. Total proteins were prepared in M-PER buffer (Pierce), and equal amounts of total protein were separated on 10% SDS-PAGE gels. Proteins were transferred to PVDF membranes, and bands were detected using the following antibodies: GAPDH (Santa Cruz; catalog no. sc-20357), p53 (Santa Cruz; catalog no. sc-55476), PI3 kinase p85 (Cell Signaling; catalog no. 4257), Cdc42 (Santa Cruz; catalog no. sc-8401), p-ERK1/2 (Cell Signaling; catalog no. 9101), ERK1/2 (Cell Signaling; catalog no. 9102), p-GSK3ß (Cell Signaling; catalog no. 9323), GSK3ß (Cell Signaling; catalog no. 9315), and β-actin (Thermo Scientific; catalog no. MS-1295). Signal intensity was quantified by Multi Gauge V3.0 (FUJIFILM) and normalized to GAPDH or β-actin. Experiments were repeated three to five times. #### In Vitro Differentiation and Teratoma Formation Assay For *in vitro* differentiation, iPS cells were dissociated by trypsin/EDTA and re-suspended in EB medium (DMEM with 15% FBS, nonessential amino acid, L-glutamine) to a final concentration of 5×10^4 cells/mL. To induce EB formation, 1000 iPS cells in 20 μ L were cultured in hanging drops on inverted Petri dish lids. Three to 5 d later, EBs were collected and transferred onto 0.1% gelatin-coated six-well plates at about 10 EBs per well. Two weeks after formation of EBs, beating cardiomyocytes (mesoderm) were identified by microscopy, and cells derived from endoderm and ectoderm were identified by α -fetoprotein (R&D; catalog no. MAB1368) and neuron-specific β III-tubulin (abcam; catalog no. ab7751) antibodies, respectively. For teratoma assays, 1.5×10^6 iPS cells were trypsinized and re-suspended in 150 μ L and then injected subcutaneously into the dorsal hind limbs of athymic nude mice anesthetized with avertin. Three weeks later, mice were killed to collect teratomas. Tumor masses were fixed, dissected, and analyzed in the Cell Imaging-Histology core facility at the Sanford-Burnham Institute. #### **Chimera Analysis** iPS cell media was changed 2 hours before harvest. Trypsinized iPS cells were cultured on 0.1% gelatin-coated plates for 30 min to remove feeder cells. iPS cells were injected into E3.5 C57BL/6-cBrd/cBrd blastocysts and then transferred into pseudopregnant recipient females. After birth, the contribution of iPS cells was evaluated by pup coat color: agouti is from iPS cells. #### **Immunofluorescence and Alkaline Phosphatase Staining** iPS cells were seeded and cultured on 0.1% gelatin-coated six-well plates. Four days later, cells were fixed in 4% paraformaldehyde (Electron Microscopy Sciences; catalog no. 15710-S). For immunofluorescence staining, fixed cells were permeablized with 0.1% Triton X-100 in PBS and blocked in 5% BSA/PBS. Antibodies against SSEA-1 (R&D; catalog no. MAB2155) and Nanog (R&D; catalog no. AF2729) served as ES markers. Nuclei were visualized by Hoechst 33342 staining (Invitrogen). For alkaline phosphatase (AP) staining, fixed cells were treated with AP substrate following the manufacturer's instruction (Vector Laboratories; catalog no. SK-5100). #### **CHAPTER III** #### Discovery of NSAID and anticancer drugs as reprogramming enhancers #### **Summary** Recent breakthroughs in creating induced pluripotent stem cells (iPS cells) provide alternative means to obtain embryonic stem-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. iPS cells are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including Wisp1, Prrx1, Hmga2, Nfix, Prkg2, Cox2, and Tgf-β3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the non-steroidal anti-inflammatory drug Nabumetone and the anticancer drug 4-hydroxytamoxifen can generate iPS cells without Sox2. Nabumetone could also produce iPS cells in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPS cells. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPS cell generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPS cell induction. #### Introduction Embryonic stem (ES) cells are not only versatile tools for investigating early developmental events but provide a promising source of tissues potentially useful for regenerative therapies. Recent breakthroughs in generating induced pluripotent stem cells (iPS cells) provide alternative means to obtain ES-like cells without destroying embryos by introducing four reprogramming factors (*Oct3/4*, *Sox2*, and *Klf4/c-Myc or Nanog/* Lin28) into somatic cells (Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 2007). iPS cells share numerous traits with ES cells, such as colony morphology, transcriptome, self-renewal ability and pluripotency (Okita et al., 2007; Yu et al., 2007). Moreover, customized therapeutic applications of iPS cells have been reported (Hanna et al., 2007; Soldner et al., 2009; Staerk et al., 2010). Nonetheless, the molecular basis of reprogramming remains unclear. Reprogramming is a step-wise process moving from differentiated to ES-like stages (Brambrink *et al.*, 2008; Stadtfeld *et al.*, 2008a), a progression that can be monitored using various cellular markers. The differentiation marker, Thy1, is highly expressed in mouse embryonic fibroblasts (MEFs), and its expression in MEFs decreases within a few days of transduction with transgene Oct3/4, Sox2, Klf4, and c-Myc (denoted here 4F: OSKM). Consequently, expression of the stem cell marker SSEA1 increases, followed by activation of other ES markers, such as endogenous Nanog, Oct3/4, and X reactivation. During this process, iPS cells are enriched or selected (Hanna *et al.*, 2009). Increasing evidence indicates that the four reprogramming factors cooperatively initiate the transition of cell identity from somatic to iPS cells (Sridharan *et al.*, 2009). Based on these data, we reasoned that signature patterns of gene expression in MEFs constitute a barrier for induced reprogramming and that overcoming this barrier may be a rate-limiting step in the reprogramming process. Here, for the first time, we describe a systematic strategy to analyze genomics datasets of MEFs and mouse embryonic stem cells (MESCs) to identify barriers to reprogramming. We show that computational drug screening combined with genomics analysis can identify small molecules that regulate reprogramming. We show that down-regulation by siRNAs of a several key MEF-specific genes encoding proteins with catalytic or
regulatory functions, including Wisp1, Prrx1, Hmga2, Nfix, Prkg2, Cox2, and Tgf-β3, greatly increased reprogramming efficiency. Our drug screening results showed that: (a) the non-steroidal anti-inflammatory drug (NSAID) Nabumetone acts as a COX2 inhibitor to enhance reprogramming; (b) the anti-cancer drug OHTM can generate iPS cells without Sox2 during reprogramming by inducing endogenous Sox2 expression; and (c) Nabumetone can produce iPS cells in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPS cells. In summary, our novel strategy combines genomics and computational drug screening to identify new drugs for reprogramming potentially leading to novel therapies. #### **Results** # Silencing MEF-Specific Genes Encoding Catalytic or Regulatory Factors Enhance iPS cell Generation To determine quantitatively which genes are specifically expressed in MEF and mouse embryonic stem cells (MESCs), we conducted mRNA a microarray analysis to examine mRNA expression profiles in both cell types. We focused on MEF-specific genes encoding catalytically active or regulatory proteins based on their important roles in cellular function, and selected *Wisp1*, *Prrx1*, *Hmga2*, *Nfix*, *Prkg2*, *Cox2*, *Tgf-β3*, *Lyzs*, and *6720477E09RIK* (Figure 3.1A) for further investigation. These genes are highly expressed in MEF but not MESC (Figure 3.1A & (Mikkelsen *et al.*, 2008)) and play key roles in various biological functions (please see Table 3.1 in Appendices). We Figure 3.1 Figure 3.1 Inhibiting mouse embryonic fibroblast (MEF)-specific genes enhances induced pluripotent stem cell (iPS cell) reprogramming. - (A) Heat map representing mRNA microarray analysis of mouse embryonic stem cell (MESCs) and MEFs. Total RNA isolated from MEFs and MESCs was used for mRNA microarray analysis. The expression intensity of each gene is shown by colorimeter. Key genes encoding catalytic proteins from MEFs or self-renewal factors from MESCs were selected for further investigation. - (B) Efficient silencing of MEF-specific genes by small interfering RNAs (siRNAs). MEFs were transfected with siRNAs targeting indicated genes. Cells were harvested approximately 24 hours post-transfection for real time quantitative RT-PCR analysis. Nontargeting siRNA served as control. Error bars represent SDs of six independent experiments. - (C) Downregulation of MEF-specific genes significantly improves reprogramming. Oct4-EGFP MEFs were transduced with Oct3/4, Sox2, Klf4, and c-Myc and 5 days later # Figure 3.1 (continuation) transfected with siRNAs targeting indicated genes. Mature reprogrammed iPS cells were identified as GFP+ colonies and counted by fluorescence microscopy at days 14–16. Error bars represent SDs of three independent experiments. *, p< 0.05; **, p< 0.005. Abbreviations: MEF, mouse embryonic fibroblast; MESC, mouse embryonic stem cell; NT, nontargeting; GFP, green fluorescent protein. hypothesized that these factors may negatively regulate reprogramming from MEF to an ES-like stage by securing identities of fibroblasts and that down-regulation of these genes might enhance the reprogramming process. To test this hypothesis, we examined the effect of knockdown of these genes in Oct4-EGFP MEFs by specific siRNAs. Most genes were knocked down by at least 80% in siRNA-transfected Oct4-EGFP MEFs (Figure 3.1B), and that down-regulation persisted for at least five days post-transfection (data not shown). Since the duration of down-regulation was sufficient to exert an impact on reprogramming, we introduced the four reprogramming factors (4F or OSKM: Oct4, Sox2, Klf4, and c-Myc) into Oct4-EGFP MEFs followed by siRNA transfection five days later (Figures 3.1B & 3.1C). Two weeks later, mature reprogrammed iPS cells were identified based on EGFP-positivity and counted by fluorescence microscopy. Down-regulation of most of the MEF-specific genes encoding catalytic or regulatory factors greatly enhanced reprogramming efficiency by 2 to 6-fold (Figure 3.1C), compared with non-targeting (NT) control. The genes exhibiting barrier effects on reprogramming play distinct roles in cellular functions, such as signaling molecules (Wisp1 and Tgf-\beta3), transcriptional regulators (Prrx1, Hmga2, Nfix, and 6720477e09rik), and catalytic enzymes (Cox2 and Prkg2). Most of these identified genes are novel to reprogramming, except TGF-β pathway, which has been shown to act as a roadblock during reprogramming (Ichida et al., 2009; Maherali and Hochedlinger, 2009a). Interestingly, Lyzs depletion showed reduction of iPS cells (Figure 3.1C). In addition, we examined quantitative expression of a selected set of MEF-specific genes during the reprogramming process (Figure 3.2). All the genes analyzed decreased upon induction of reprogramming, except Cox2, which increased at the early stage of reprogramming followed by a dramatic decrease (Figure 3.2A). Expression levels of all these genes were diminished in late stage of reprogramming (Day 12 or Day 15) as in ES cells. These gene expression patterns indicate that MEF-specific molecular network will be disrupted by 4F to achieve the cell fate transitions during reprogramming. In summary, these results support the idea that MEF-specific catalytic or regulatory proteins can negatively regulate reprogramming and also suggest that it is critical to modulate diverse biological functions during transition of cell identities such as MEFs to iPS cells. Figure 3.2 ### Figure 3.2 #### Expression profiles of selected MEF-specific genes during reprogramming. - (A) Selected MEF-specific genes dramatically decrease during reprogramming, except *Cox2*. Real-time PCR analysis of a selected set of genes during reprogramming. Oct4-MEFs were transduced with OSKM to induce reprogramming. Transduced cells were collected at various time points for isolating total RNAs and real-time PCR analysis. GAPDH mRNA expression level served as internal control. Expression level of target genes was normalized to those in MEFs. MESC served as control. Error bars represent standard deviations of at least two independent experiments. - (B) Mouse embryonic stem cell (MESC)-specific genes were induced during reprogramming. Experiments were performed as described in A and served as indicators of reprogramming progress. Error bars represent standard deviations of at least two independent experiments. - (C) Differentiated markers Thy1 and Fibrillin2 were diminished during reprogramming. These data were created as described in panel A and served as indicators of # **Figure 3.2 (continuation)** de-differentiation progress. Error bars represent standard deviations of at least two independent experiments. (D) *Cox1* decreased dramatically upon induction of reprogramming. These data were created as described in panel A. Error bars represent standard deviations of at least two independent experiments. #### The NSAID Nabumetone enhances iPS cell generation Next, we developed a genomics database drug discovery strategy to identify small molecules that enhance reprogramming. To shorten the list without extensive shot-gun screening, we focused on candidate molecules that potentially either antagonized MEF-specific genes or upregulated MESC-specific/reprogramming genes (Figure 3.1A). To conducted computational screening utilizing NextBio do SO, we by (www.nextbio.com) data-mining tools to collect information from public data sources (Kupershmidt et al., 2010). NextBio provides an integrated platform to collect information from public databases, process these data using various pipelines, and then output analyzed results for customized purposes. Using highly enriched genes in either MESC or MEF (Figure 3.1A) as queries, we manually examined the information of meta-analysis and acquired 17 molecules (Table 3.2) that either negatively regulated MEF genes or positively affected MESC genes from various in vitro and in vivo studies deposited in public data base. We tested all 17 by examining alkaline phosphatase (AP) + colony formation during reprogramming while these molecules were applied. Molecules Table 3.2. List of molecules for screening | ID | Molecules | CAS# | Predicted targets | |----|---|------------|--------------------| | 1 | Nickel sulfate hexahydrate (NiSO ₄) | 10101-97-0 | WISP1, PRRX1, LYZS | | 2 | 2, 3, 7, | 1746-01-6 | TGF-β3 | | | 8-tetrachlorodibenzo-p-dioxin | | | | 3 | Nabumetone | 42924-53-8 | COX2 | | 4 | 4-hydroxytamoxifen (OHTM) | 68047-06-3 | Sox2 | | 5 | Moclobemide | 71320-77-9 | Nanog | | 6 | Lectin | | DPPA5 | | 7 | Corynanthine hydrochloride | 66634-44-4 | TDGF1 | | 8 | TGF-β | | Oct3/4 | | 9 | Acitretin | 55079-83-9 | Oct3/4 | | 10 | Retinoic acid p-hydroxyanilide | 65646-68-6 | Oct3/4 | | 11 | Diacerein | 13739-02-1 | Nanog | | 12 | Phorbol 12-myristate 13-acetate | 16561-29-8 | Nanog | | 13 | Progesterone | 57-83-0 | Nanog | | 14 | Tolazamide | 1156-19-0 | Nanog | | 15 | 15-deoxy- $\Delta^{12, 14}$ -prostaglandin J ₂ | 89886-60-2 | Klf4 | | 16 | (-)-Norepinephrine | 51-41-2 | c-Myc | | 17 | β-estradiol | 50-28-2 | c-Myc | not showing adverse effect on AP+ colony formation (data not shown) were picked for further study. To the end, we picked 6 molecules—Nabumetone, 4-hydroxytamoxifen (OHTM), Corynanthine, Moclobemide, NiSO4, and lectin—for further analysis (Figure 3.3A). To evaluate their effect on induction of mature GFP+ iPS cells, we treated OSKM-transduced Oct4-EGFP MEFs four days after transduction with each of these factors separately. Among the six, the NSAID prostaglandin-endoperoxide synthase (PTGS) and the cyclooxygenase (COX) inhibitor Nabumetone greatly increased the number of reprogrammed colonies by at least 2.8-fold (Figure 3.3B) compared with DMSO controls, while lectin showed minor but consistent improvement on iPS cell formation. Since MEFs mainly express the COX2 isozyme (verified by RT-qPCR, data not shown & (Mikkelsen et al.,
2008)), we proposed that COX2 is the primary Nabumetone target during reprogramming. To test that idea, we knocked down COX2 in Oct4-EGFP MEFs by siRNA with or without Nabumetone during reprogramming with OSKM. In the presence of control siRNA (siNT), Nabumetone alone enhanced reprogramming efficiency by more than 6-fold (Figure 3.3C) compared with DMSO Figure 3.3 Figure 3.3 #### Nabumetone significantly enhances iPS cell reprogramming by inhibiting COX2 - (A) Structures of six small molecules used in iPS cell reprogramming. Small molecules were selected by analyzing MEF and MESC genomics data as described in text. - (B) Nabumetone significantly boosts OSKM-induced reprogramming while lectin showed minor but consistent increase as well. Oct4-EGFP MEFs were transduced with OSKM and four days later treated with individual small molecules for at least 10 days. GFP+ colonies were identified as described in Fig 1. Error bars represent standard deviations of three independent experiments. * P value < 0.05; ** P value < 0.005. - (C) Nabumetone improves reprogramming through blocking COX2. Oct4-EGFP MEFs were transduced with OSKM. Four days later, cells were treated with Nabumetone or DMSO. The next day, cells were transfected with various siRNAs as indicated. GFP+ colonies were identified as described in Fig 1 at day 12 ~ 14. Error bars represent #### Figure 3.3 (continuation) standard deviations of six independent experiments. * P value < 0.05; *** P value < 0.0005. siNT serves as control. Nabu is abbreviation of Nabumetone. treatment. Transduction of cells with COX2 siRNA increased the number of GFP+ iPS cell colonies by over 5-fold compared with cells transduced with siNT control (Figure 3.3C). However, we observed no further enhancement of reprogramming efficiency in the presence of both siCOX2 and Nabumetone (Figure 3.3C), likely due to the maximal COX2 silencing effects by siRNA. To determine whether the COX2 is the main target instead of COX1, which is constitutively expressed in various tissues, we applied selective inhibitors targeting either COX1 or COX2 during reprogramming with OSKM or OSK (Futaki et al., 1994; Laneuville et al., 1994; Reddy et al., 1996). Interestingly, only the selective COX2 inhibitors, Celecoxib and NS-398, showed similar effects on iPS cell generation as Nabumetone with OSKM or OSK pluripotency factors (Figure 3.4). On the other hand, selective COX1 inhibitor, Indomethacin, showed no effect to boost reprogramming with OSKM or OSK (Figure 3.4), although COX1 greatly decreased upon induction of reprogramming (Figure 3.2D). To further investigate the role of COX2 in reprogramming, we cloned and overexpressed COX2 along with OSKM during reprogramming. Our results show that overexpression of COX2 compromised Figure 3.4 Figure 3.4 Specific COX2 inhibitors significantly enhance OSKM and OSK reprogramming. Oct4-MEFs were transduced with OSKM (A) or OSK (B) to induce reprogramming. Small molecules were applied at day $4\sim5$ post transduction. EGFP+ colony number was scored under fluorescent microscopy at two weeks post transduction. Error bars represent standard deviations of at least three independent experiments. * P value < 0.05; ** P value < 0.005. reprogramming with OSKM pluripotency factors (Figure 3.5). Overall, these results support the notion that COX2 is a barrier for reprogramming and that Nabumetone enhances reprogramming by mainly blocking COX2 activity. ## Nabumetone can generate iPS cells in the absence of c-Myc To further analyze Nabumetone reprogramming potential, we asked whether Nabumetone can replace the proto-oncogene c-Myc, which may greatly increase tumorigenesis *in vivo*. Oct4-EGFP MEFs were reprogrammed using either OSKM or OSK without c-Myc, and induced cells were treated with Nabumetone or DMSO four days later. Nabumetone treatment significantly enhanced reprogramming by OSK by ~2.5-fold as assessed at day 21 (Figure 3.6A) compared with control OSK+DMSO. This data suggests that Nabumetone not only improves OSKM reprogramming, likely by blocking COX2, but also can substitute c-Myc function in the process. Figure 3.5 Figure 3.5 # Overexpression of COX2 compromises OSKM reprogramming. A) Oct4-MEFs were transduced with OSKM to induce reprogramming. Retroviruses overexpressing *COX2* transgene were transduced one-day post OSKM transduction. EGFP+ colony number was scored under fluorescent microscopy at two weeks post transduction. Error bars represent standard deviations of at least three independent experiments. DsRED transgene served as control. Figure 3.6 Figure 3.6 ## Small molecules can generate iPS cells in the absence of c-Myc and Sox2 - (A) Nabumetone and OSK reprogram MEF. Oct4-EGFP MEFs were transduced with OSK without c-Myc and four days later treated with Nabumetone or DMSO for two weeks. Cells transduced with OSKM are shown for comparison. GFP+ colonies were identified as described in Fig. 1 at day 21. Error bars represent standard deviations of two independent experiments. * *P* value < 0.05. - (B) A pool of six molecules with OKM reprograms MEFs to iPS cells. Oct4-EGFP MEFs were transduced with OKM and treated with pool of 6 molecules, including NiSO₄, Nabumetone, OHTM, Moclobemide, Lectin, and Corynanthine, at day 4 for at least 10 days. GFP+ colonies were identified and counted as described in Fig. 1 at day 14. Error bars represent standard deviations of six independent experiments. *** *P* value < 0.0005. (C) OHTM and OKM reprogram MEFs to iPS cells. Oct4-EGFP MEFs were transduced with OKM and four days later treated with 1.25 mM OHTM at least 10 days. GFP+ colonies were counted as described in Fig. 1 at day 15~21. Error bars represent standard ## Figure 3.6 (continuation) deviations of four independent experiments. ** P value < 0.005. - (D) Nabumetone plus OKM reprograms MEFs to iPS cells. Oct4-EGFP MEFs were - transduced with OKM and four days later treated with 2.18 mM Nabumetone (Nabu) for - at least 10 days. GFP+ colonies were counted as described in Fig. 1 at day 17~21. Error bars represent standard deviations of three independent experiments. ** P value < 0.005. - (E) Sox2 expression is significantly induced by OHTM during OKM-induced - reprogramming. Oct4-EGFP MEFs were transduced with OKM and treated with OHTM four days later. Cells were harvested at indicated days (D) for real time RT-PCR analysis. β actin expression serves as an internal control. Error bars represent standard deviation of 3 independent experiments. * P value < 0.05. ## OHTM and Nabumetone can produce iPS cells without Sox2 We next asked whether the small molecules identified in our analysis can replace the need for other reprogramming factors. To do so we tested a pool of the six candidate molecules for their ability to replace any single reprogramming factor. Strikingly, the pool replaced Sox2 during reprogramming of Oct4-EGFP MEF with OKM and significantly increased reprogramming efficiency by more than 10-fold (Figure 3.6B) compared with controls. To determine which molecule(s) exerted that effect, we individually tested each of the six small molecules in OKM reprogramming protocols. We found that the anti-cancer drug OHTM significantly improved OKM-induced reprogramming, while OKM+DMSO did not produce any mature iPS cell colonies Nabumetone significantly (Figure 3.6C). Similarly, improved OKM-induced reprogramming, which showed comparable effect with OHTM (Figure 3.6D). Overall, these results indicate that either OHTM or Nabumetone can substitute Sox2 function to generate iPS cells. # OHTM increases endogenous Sox2 expression during OKM reprogramming To understand the molecular mechanism underlying OHTM's effect on reprogramming, we asked whether OHTM induces endogenous Sox2 expression. To do so, we applied OHTM or control DMSO to Oct4-EGFP MEF four days after transduction with OKM. Cells were harvested at indicated time points for total RNA isolation and real time PCR analysis (Figure 3.6E). Strikingly, endogenous Sox2 mRNA was significantly induced by 220% by OHTM in OKM-transduced cells at day 12 and by 400% at day 16 compared with OKM+DMSO controls, indicating that OHTM enhances reprogramming, at least partially, by increasing endogenous Sox2 expression. However, the direct targets of OHTM to affect Sox2 expression are not clear. ## OKM+OHTM or OKM+Nabumetone iPS cells attain ES identity and pluripotency To verify whether iPS cells derived with OKM in the presence of our pooled or individual molecules attain self-renewal and pluripotency, we analyzed iPS cells for these properties. Genomic DNAs were isolated from OKM plus the six-molecule pool (OKM+6), OKM+OHTM, or OKM+Nabumetone iPS cells to verify transgene integration by PCR analysis. OKM iPS cell clones showed no Sox2 transgene integration (Figures 3.7B and 3.7C), demonstrating OKM iPS cells could be derived with pool of six molecules, OHTM or Nabumetone alone in the absence of Sox2 transgene. When we cultured OKM iPS cells for at least one month (> 10 passages) and fixed them for immunostaining, OKM+6 and OKM+Nabumetone iPS cells exhibited ES-like dome shape morphology with a clear boundary (Figures 3.7A and 3.8A), and they highly expressed endogenous Oct3/4 (EGFP) and Nanog (Figures 3.7A and 3.8A), indicating establishment of ES-like transcriptional networks. OKM+6 iPS cells expressed SSEA1 (Figure 3.7A), and OKM+Nabumetone iPS cells also acquired the stem cell marker alkaline phosphatase (AP) (Figure 3.8A). Importantly, endogenous Sox2 expression was activated in OKM+Nabumetone iPS cells (Figure 3.8A), suggesting that a full self-renewal circuit was restored. To confirm restoration of an ES-like transcriptome, we examined mRNA expression profiles of OKM+OHTM and OKM+Nabumetone iPS cells by microarray analysis. Representative clones from OKM+OHTM iPS cells showed a high degree of similarity with ES cells, but not MEFs (Figure 3.8B), as did OKM+Nabumetone iPS clones (Figure 3.8B). Figure 3.7 Figure 3.7 ####
Characterization of OKM+6 factor-derived iPS cells - (A) iPS cells derived by OKM plus six molecules express ES cell-specific markers. Immunostaining for ES markers of OKM+6 iPS cells. OKM+6 iPS cells were grown on gelatin-coated plates and fixed for immunostaining. Representative colonies express the stem cell markers Nanog, SSEA1, alkaline phosphatase (AP), and endogenous Oct3/4 (Oct4-EGFP). Magnification is indicated. - (B) OKM+6 iPS cells are derived without a Sox2 transgene. PCR analysis of pMXs transgene (pMXs is the plasmid name followed by transgenes of interests) integration. Genomic DNA (gDNA) was isolated from two different lines (#1 and #5) of OKM+6 iPS cells. Equivalent amounts of gDNA served as template for PCR assays using primers to detect pMXs retro transgenes. OSKM iPS serves as a positive control and MESC as a negative control for transgene integration. PGK1 served as internal control. - (C) OKM+Nabumetone and OKM+OHTM iPS cells are derived without the Sox2 transgene. PCR analysis of pMXs transgene integration. Genomic DNA was isolated ## Figure 3.7 (continuation) from different cell lines, such as OSKM, OKM+OHTM, and OKM+Nabumetone iPS cells. Equivalent gDNA was used for each PCR with primers specific for each pMXs retro transgenes. OSKM iPS serves as a positive control and MESC as negative control for transgene integration. PGK1 serves as an internal control. (D) OKM+6 iPS cells can differentiate into three germ layers *in vitro*. Immunostaining for germ layer-specific differentiation markers in tissues derived from OKM+6 iPS cells. Embryoid bodies were formed *in vitro* and cultured for 2 weeks. Cells were fixed and stained with anti-AFP (endoderm) or anti-beta tubulin III (ectoderm). Beating cells derived from mesoderm are indicated by arrow. Figure 3.8 # Figure 3.8 nuclei. iPS cells derived by OKM + Nabumetone or OKM + OHTM acquire pluripotency (A) Sox2 expression is reactivated in OKM+Nabumetone iPS cells. OKM+Nabumetone (OKM+Nab) iPS cells were fixed and immunostained for ES cell markers. Representative colonies express ES cell markers Nanog, alkaline phosphatase (AP), and endogenous Oct3/4 (Oct4-EGFP). Endogenous Sox2 was also activated. Hoechst counterstain marks - (B) OKM+Nabumetone and OKM+OHTM iPS cells share transcriptional profiles similar to MES cells but not MEFs. Scatter plots show transcriptome comparison of iPS clones with ES or MEF cells. Total RNA was isolated from indicated iPS cells and subjected to mRNA microarray analysis. R² values are shown at the top of each panel. - (C) & (D) OKM+Nabumetone and OKM+OHTM iPS cells can differentiate into various cell types. Teratoma formation analysis of OKM+Nabumetone and OKM+OHTM iPS cells. 1.5X10⁶ iPS cells were injected subcutaneously into athymic nude female mice and tumor masses collected three weeks later. Histopathological analysis shows that tissues ## Figure 3.8 (continuation) derived from all three germ layers were identified, including gut-like epithelium and pancreatic islets (endoderm), adipose tissue, cartilage, and muscle (mesoderm), and neural tissue and epidermis (ectoderm). - (E) OKM+Nabumetone iPS cells contribute to chimera mice. OKM+Nabumetone iPS cells were injected into E3.5 blastocysts to create chimera mice. Seventeen days after birth, agouti coat color was used to determine OKM iPS cells contribution in chimera mice. The representative picture shows >50% contribution of OKM+Nabumetone iPS cells. - (F) OKM+Nabumetone iPS cells contribute to germline formation. OKM+Nabumetone iPS cells were injected into E3.5 blastocysts to create chimera mice. E13.5 embryos were collected from recipient mice for harvesting genital ridge. Germline transmission was determined by Oct4-EGFP expression, indicating contribution of OKM+Nabumetone iPS cells. To determine whether OKM plus small molecule-derived iPS cells show pluripotency comparable to ES cells, we first tested *in vitro* differentiation capacity. OKM+6 iPS cells were induced to form embryoid bodies (EBs) for two weeks, and then fixed for immunostaining. After two weeks of *in vitro* differentiation, cell types typical of all three germ layers were observed (Figure 3.7D). To further assess differentiation potential, OKM+OHTM and OKM+Nabumetone iPS cells were injected into nude mice and allowed to differentiate into various tissues. Teratomas, which were observed three weeks post injection, were subjected to histopathological analysis. Tissues originating from all three germ layers were generated (Figures 3.8C and 3.8D), confirming that iPS cells were pluripotent. To vigorously test pluripotency of OKM iPS cells, OKM+Nabumetone iPS cells were injected into embryonic day (E) 3.5 blastocysts to create chimera. Contributions of OKM+Nabumetone iPS cells to chimera mice were accessed by black coat color at day 17 after birth. We obtained OKM+Nabumetone iPS cells contribution up to 50% (Figure 3.8E). We next examined the germline transmission capability of OKM+Nabumetone iPS cells. By analyzing E13.5 embryos after injecting OKM+Nabumetone iPS cells into blastocysts, we found strong Oct4-EGFP expression in genital ridge (Figure 3.8F), showing germline contribution of OKM+Nabumetone iPS cells. In summary, our data demonstrate that small molecule with OKM derived iPS cells do attain ES identity and pluripotency. #### **Materials and Methods** #### **MEF Derivation** Oct4-EGFP **MEFs** derived from the strain were mouse B6;129S4-Pou5f1^{tm2(EGFP)Jae}/J (The Jackson Laboratory, Bar Harbor, Maine, USA, http://www.jax.org/; stock #008214) following the protocol on the WiCell Research Institute, Madison, WI, USA, http://www.wicell.org/ website. In brief, embryonic day 13.5 (E13.5) embryos were collected from time-mated pregnant female mice and then tested for microbial contamination. Oct4-EGFP MEFs were maintained in MEF complete medium (Dulbecco's modified Eagle's medium [For DMEM or culture medium & materials: Gibco Cell Culture, Carlsbad, CA, USA, http://www.invitrogen.com/gibco] with 10% fetal bovine serum (FBS), nonessential amino acids, L-glutamine, and no sodium pyruvate). Cells passaged fewer than five times were used for induced reprogramming. # Reprogramming by Retrovirus-Mediated Transduction of Factors Reprogramming was conducted as described (Takahashi and Yamanaka, 2006). In brief, 4×10^4 Oct4-enhanced green fluorescent protein (EGFP) MEFs were transduced with pMXs retroviruses for ectopic expression of Oct4, Sox2, Klf4, and c-Myc (Addgene). Three days later, cells were fed ESC medium (DMEM with 15% ESC-screened FBS, nonessential amino acids, L-glutamine, monothioglycerol, and 1,000 U/ml leukemia inhibitory factor (LIF)) and the media was changed every other day. Reprogrammed (EGFP+) cells were identified and scored by fluorescence microscopy 2–3 weeks post-transduction, unless otherwise stated. To derive iPS cells, EGFP+ colonies were manually picked under a stereomicroscope (Leica Microsystems, Buffalo Grove, IL, USA, http://www.leica-microsystems.com/). In the case of small molecule treatment, indicated small molecules were applied to reprogramming cells on day four post-transduction and fresh medium was added every other day for at least 2 weeks or until EGFP+ colonies appeared. #### siRNA Transfection Specific siRNAs were purchased from Dharmacon RNAi Technology, Lafayette, CO, USA. Approximately 4 × 10⁴ Oct4-EGFP MEFs were transfected with Lipofectamine/siRNAs complexes according to the manufacturer's instruction (Invitrogen, Carlsbad, CA, USA, http://www.invitrogen.com/). After 3–5 hours later, the transfection reagent was discarded and MEF complete medium was added for culturing. Gene knockdown efficiency was evaluated by semi quantitative real time polymerase chain reaction (RT-PCR). Glyceraldehydes-3-phosphate dehydrogenase (GAPDH) served as an internal control to normalize mRNA expression signals. For reprogramming, retrovirus expressing reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) were added and the medium was then changed to complete medium the next day. For overexpression of *COX2* transgene, retroviruses expressing COX2 were added 1 day after OSKM transduction. siRNAs were introduced at day 5 post-transduction. ## In Vitro Differentiation and Teratoma Formation Assay For in vitro differentiation, iPS cells were dissociated by trypsin/EDTA and re-suspended in embryoid body (EB) medium (DMEM with 15% FBS, nonessential amino acid, L-glutamine) to final concentration at 5×10^4 cells per milliliter. To induce EB formation, 1,000 iPS cells in 20 µl were cultured in hanging drops on inverted Petri dish lids. Three to five days after EB formation, EBs were collected and transferred to 0.1% gelatin-coated 6-well plates at a density of ~ 10 EBs per well. Two weeks later, beating cardiomyocytes (mesoderm) were identified microscopically. Cells derived from endoderm and ectoderm were identified by α-fetoprotein (R&D systems, Minneapolis, MN, USA, http://www.rndsystems.com/; Cat#MAB1368) and neuron-specific βΙΙΙ tubulin (Abcam, Cambridge, MA, USA, http://www.abcam.com/; Cat# ab7751) antibodies, respectively. To assay teratoma formation, 1.5×10^6 iPS cells were trypsinized and re-suspended in 150 μ l of culture medium, and then injected subcutaneously into the dorsal hind legs of athymic nude mice anesthetized with avertin. Three weeks later, mice were sacrificed to collect teratomas. Tumor masses were fixed, dissected, and analyzed in the Sanford-Burnham Medical Institute Cell Imaging-Histology Core Facility. ## **Immunofluorescence and AP Staining** iPS cells were seeded and cultured on 0.1% gelatin-coated six-well plates. After 4 days, cells were fixed with 4% paraformadehyde (Electron Microscopy Sciences, Hatfield, PA, USA, http://www.emsdiasum.com/microscopy/; Cat# 15710-S). For
immunofluorescence, fixed cells were permeabilized with 0.1% Triton X-100 in PBS and blocked with 5% BSA in PBS. SSEA-1 (R&D; Cat# MAB2155), Sox2 (R&D; Cat#MAB2018), and Nanog (R&D; Cat# AF2729) antibodies were used to detect ESC markers. Nuclei were visualized by Hoechst 33342 (Invitrogen) staining. For alkaline phosphatase (AP) staining, fixed cells were treated with AP substrate following the manufacturer's instruction (Vector Laboratories, Burlingame," CA, http://www.vectorlabs.com/order.aspx; Cat# SK-5100). ## **Microarray Analysis** Total RNAs were isolated from indicated cells using TRIZOL reagent (Invitrogen). Gene expression was detected and normalized in the Sanford-Burnham Medical institute high-throughput screening and genomics core facilities. Heat maps were created using MultiExperiment View, Boston, MA, USA, (http://www.tm4.org). Scatter plots were created using Excel. # **Meta-Analysis for Small Molecule Candidates** Select individual MEF or MESC genes served as queries to perform searches using the NextBio, Cupertino, CA, http://www.nextbio.com/ engine. The compounds identified were analyzed for specific activities, such as downregulation of the *COX2* gene by Nabumetone. Finally, 17 molecules (Table 3.2) were selected as potent inducers of MESC genes or inhibitors of MEF genes, as predicted by NextBio meta-analysis. #### **CHAPTER IV** ## **Transcriptome Signatures During Reprogramming** ## **Summary** Induced pluripotent stem (iPS) cells provide a valuable resource as an alternative to embryonic stem cells, especially in the field of regenerative medicine. To understand the mechanism of regulatory networks during reprogramming, we performed a genome wide RNAi screen and purified cellular populations during four key steps of reprogramming: We integrated genome-wide RNAi screen with step-wise transcriptome analysis to deeply analyze the molecular requirements in induced reprogramming. Our data suggest that to attain SSEA1+ stages is the rate-limiting step during reprogramming. Nanog, Sall4, Esrrb, Dppa4, Dppa5a, Dnmt3b and Dnmt3l are activated in SSEA1⁺ cells, while more extensive interactions of embryonic stem cell core circuitry (ESCCC) regulators are established in mature iPS cells, including Utfl, Nr6a1, Tdgfl, Gsc, Fgf10, T, Chrd, Dppa3, Fgf17, Eomes, Foxa2. Remarkably, we found that genes with non-differential change play the most critical roles to the transitions of reprogramming, while analysis of differential transcriptome might not comprehensively reveal the key regulators. Functional validation showed that genes, such as *Dmbx1*, *Gsc*, *Med21*, *Hnf4g*, *Mef2c*, *Psmd9*, *Tfdp1*, *Nfe2*, *Foxn3*, *Erf*, *Cdkn2aip*, *Msx3*, *Ssbp3*, *Dbx1*, *Hoxd4*, *Lzts1*, *Arx*, *Hoxd12*, *Gtf2i*, *Nkx6-2*, *Ankrd22*, and *Hoxc10*, act as essential or barrier roles to reprogramming. We also confirmed several genes required for maintaining ES cell properties, such as *Srsf2*, *Hcfc1*, *Ruvbl2*, *Asb4*, *Dmbx1*, *Gbx2*, *Gsc*, *Hnf4g*, *Klf5*, *L3mbtl2*, *Med21*, *Mef2c*, *Nobox*, *Pcgf6*, *Phox2a*, *Tcf15*, *Oct4/Pou5f1*, *Nanog*, and *Trim28*. #### Introduction Somatic reprogramming to pluripotent status can be achieved by introducing a limited number of transcription factors, including Oct4, Sox2, Klf4, c-Myc (OSKM), Nanog, and Lin28 (Takahashi *et al.*, 2007; Takahashi and Yamanaka, 2006; Yu *et al.*, 2007). Those induced pluripotent stem cells (iPS cells) highly resemble embryonic stem cells (ESCs) and hold promise to customized regenerative medicine (Grskovic et al., 2011; Jopling *et al.*, 2011; Robinton and Daley, 2012; Tiscornia *et al.*, 2011; Wu and Hochedlinger, 2011). Primary obstacles to the successful application of iPS cells for medical purposes are their low reprogramming efficiency and lack of understanding the mechanisms of reprogramming. A few markers, including Thy1, alkaline phosphatase (AP), and SSEA1, activated in sequential stages, are required to identify cells that transform through the process of induced reprogramming, while embryonic stem cell-specific genes (Nanog, Oct4, Tert) are activated at later stages (Brambrink et al., 2008; Stadtfeld et al., 2008a). Further work suggests that induced reprogramming is a step-wise event, comprising initial, mature, and stabilization stages (Samavarchi-Tehrani et al., 2010). Several key cellular observed events have been during reprogramming, such as mesenchymal-to-epithelial transition (Li et al., 2010; Samavarchi-Tehrani et al., 2010) and cell-cycle modulation (Banito et al., 2009a; Hong et al., 2009; Kawamura et al., 2009b; Li et al., 2009a; Marion et al., 2009; Utikal et al., 2009). Furthermore, the epigenome is reset upon induced reprogramming (Koche et al., 2011; Maherali et al., 2007), and several epigenetic regulators play important roles in the reprogramming process (Onder et al., 2012). The cooperation of OSKM has also been considered as a critical factor to efficient reprogramming (Carey et al., 2011; Soufi et al., 2012; Sridharan et al., 2009). Despite these efforts, we do not fully understand the molecular mechanisms of induced cellular reprogramming. Here, by isolating pure populations of cells during various stages of reprogramming and combining with genome-wide RNAi screen and transcriptome analysis, we were able to discover key genes and cellular events involved in the transitions associated with the reprogramming process. Moreover, we functionally identified the critical genes required to modulate the reprogramming process. We further validated a series of genes that either block or enhance reprogramming process. Finally, we demonstrated that Pcgf6, Ruvbl2, Srsf2, and Hcfc1 play important roles not only in inducing somatic reprogramming, but also in maintaining embryonic stem (ES) cell identity. #### **Results** ## **Distinct Stages of Reprogramming Defined by Signature Markers** To better elucidate the dynamic changes of molecular mechanisms during cellular reprogramming, we employed transcriptome analysis and shRNA library screening upon induced reprogramming in order to reveal mRNA changes of key molecules and to functionally validate their roles in a step-wise manner (Figure 4.1A). First, we established a set of markers to isolate desired cell populations in a highly heterogeneous pool of transformed/reprogrammed cells by OSKM reprogramming factors. Thy1 is highly expressed in mouse embryonic fibroblasts (MEFs) and subsequently diminishes in the progression of reprogramming, while SSEA1 is absent in MEFs, but gradually increases upon induced reprogramming (Brambrink et al., 2008; Stadtfeld et al., 2008a). Therefore, Thy1 can serve as an early-stage marker and SSEA1 can serve as a middle- and late-stage marker for assessing reprogramming progress. In addition, it has been shown that retroviral sequences are repressed in ES cells (Macfarlan et al., 2011; Wolf and Goff, 2007, 2009); thus we used the *DsRed* gene driven by retroviral LTRs as a marker to Figure 4.1 ## Figure 4.1 Dissecting key molecular mechanisms during reprograming by genome-wide RNAi screening and transcriptome analysis ## (A) Scheme of shRNA library screening strategy. ~57000 shRNAs were introduced into Thy1⁺/DsRed⁺ MEFs together with four reprogramming factors. Transduced cells were then sorted into four populations based on combinations of various markers, such as Thy1, SSEA-1, and DsRed. Isolated cells were subjected to DNA and RNA extractions for further analysis. Genomic DNA was extracted from isolated cells. Integrated shRNAs were amplified from gDNA and subject to high-throughput second-generation sequence analysis. ## (B) Bar graph showing different proportions of sorted cell populations. OSKM-reprogrammed cells were sorted according to established marker set at 2 weeks post reprogramming. Cell number was counted by flow cytometry and was plotted in percentage for each sorted population. Three independent experiments are shown here. ## Figure 4.1 (continuation) ## (C) Heat map of mRNA expression profiles during induced reprogramming. RNA samples were extracted from cell populations in (b), and then were analyzed by mRNA microarray analysis. Data was processed and visualized by using Cluster and Java TreeView respectively. Distinct expression pattern of genes are clustered and grouped into five main groups as I to V. Hierarchical tree was created by Cluster. Duplicate samples were numbered as #1 and #2. Fold changes of mRNA level compared with MEF are represented in log₂ scale. ## (D) Five distinct patterns of mRNA expression during reprogramming progress. Scheme of mRNA expression pattern of each group in (a) during reprogramming. The fold changes (log₂ value) of transcriptome in each group were illustrated on the right side of the scheme. For group I, II, and III, the maximal fold changes are shown. For group IV and V, approximately 90% of genes have fold change within +/- 1 in log₂ scale, respectively. differentiate incomplete reprogrammed cells from mature ones, as indicated by the arrows in Figure 4.2A. Collectively, we used Thy1, SSEA1, and DsRed as markers to define four stages of the reprogramming process: Thy1⁺/SSEA1⁻ for the initial stage, Thy1⁻/SSEA1⁻ for the transition stage, SSEA1⁺/DsRed⁺ for the pre-determined (early-reprogrammed) stage, and SSEA1⁺/DsRed⁻ for the mature reprogrammed stage (Figure 4.1A). To acquire a homogenous cell population for shRNA library screening and transcriptome analysis, we isolated high-purity MEFs (~98%) expressing both Thy1 and DsRed markers (Figure 4.2B) by fluorescence-activated cell sorting (FACS). We then used sorted Thy1⁺/DsRed⁺ cells as recipients and induced somatic reprogramming by transducing lentiviruses containing a whole-genome shRNA library together with retroviruses expressing OSKM (Figures 4.1A, 4.2C and 4.2D). Keeping in mind that transformed cells have a high degree of both dynamic changes and randomness
on mRNA profiles (<u>Hanna et al., 2009</u>; <u>Yamanaka, 2009a</u>), here we focused on "committed" or "trapped" cells at the end stage of reprogramming, where we Figure 4.2 # Figure 4.2 shRNA library screening strategy to dissect molecular requirements in induced reprogramming. ## (A) Reciprocal expression of DsRed and Oct4-EGFP in reprogrammed cells. DsRed was shut down where Oct4-EGFP was turned on in reprogrammed cells. DsRed and EGFP signals were detected by fluorescent microscopy. Images were taken at day 10 post induced reprogramming with OSKM. White arrows indicate reciprocal expression of DsRed and Oct4-EGFP. Scale bar denotes 100 µm. ## (B) High purity of DsRed positive cells isolated by FACS. DsRed and Thy1 double positive cells were sorted by FACS and cultured for three more days before subsequent virus transduction. DsRed signal was detected by fluorescent microscopy three days post transduction of pMXs-DsRed pseudo virus. Scale bar denotes 50 mm. ## Figure 4.2 (continuation) ## (C) Timeline of experimental procedure. Key steps of experimental design are illustrated here as timeline. Whole experiment takes ~3 weeks to complete. # (D) High transduction efficiency of lentiviral shRNA library in MEFs. DsRed⁺/Thy1⁺ MEFs were transduced with virus containing shRNA library and reprogramming factors, OSKM. shRNA library was constructed into pGIPz vectors, which constitutively express EGFP. shRNA library-transduced cells can be determined by detecting EGFP signal. DsRed and EGFP signals were detected by fluorescent microscopy. Images were taken at four days post second transduction of shRNA library. Scale bar denotes 50 mm. # (E) Cell sorting for high purity of Thy1⁺/DsRed⁺ MEFs. CF-1 MEFs were transduced with pMXs-DsRed pseudo virus three days before sorting. Antibody against Thy1 was used to detect Thy1⁺ cells. Thy1 and DsRed double positive cells were isolated by fluorescence-activated cell sorting (FACS). Purity of isolated cells # Figure 4.2 (continuation) was confirmed by flow cytometry analysis after sorting and was shown in percentage. ## (F) Four distinct cell populations sorted by FACS. Sorted DsRed⁺/Thy1⁺ cells described above were used for shRNA screening during reprogramming. Two weeks post transduction with shRNA library and OSKM, cells were sorted by FACS to acquire four populations with distinct markers, as Thy1⁺ only, Thy1⁻/SSEA1⁻, SSEA1⁺/DsRed⁺, and SSEA1⁺/DsRed⁻. Cells were first separated with magnetic beads conjugated with anti-SSEA1 antibodies (highlighted in red) to boost the recovery rate of sorting. Sorted cells were at least with > 95% purity for indicated markers, shown as percentage. believe that a more defined/stable transcriptome is established in most cells and that cell fate is unlikely to be changed further. To acquire those "committed" cell populations, we sorted the cells at 14 days post virus transduction, the putative ending point of the reprogramming process for MEFs (Figure 4.2C). Desired cell populations with high purities were isolated by stringent sorting using the marker set described above (Figure 4.2E and 4.2F), including Thy1⁺/SSEA1⁻ cells (>95% purity); Thy1⁻/SSEA1⁻ cells (>96.5% purity); SSEA1⁺/DsRed⁺ cells (~96% purity); and SSEA1⁺/DsRed⁻ cells (~99% purity). As expected, only a small portion (1%–2.5%) of transduced cells attains the two later SSEA1⁺ stages (Figure 4.1B). Of those SSEA1⁺ cells, the mature iPS cells (SSEA1⁺/DsRed⁻) compose ~0.2–0.4% of total transduced cells (Appendix 1). In contrast, a much larger proportion of cells (6.5%–9.7%) is enriched in the Thy1⁺/SSEA1⁻ stage (Figure 4.1B). Surprisingly, the majority (>80%) of the transduced cells are at the transition stage (Thy17/SSEA17) (Figure 4.1B and Appendix 1), which are neither fibroblast-like nor stem cell-like cells. The distinct distribution of this cell population suggests that dismantling somatic-molecular networks is relatively easier to achieve upon induced reprogramming, while re-establishing pluripotent networks is likely the rate-limiting step, with a higher threshold to overcome. To confirm that these sorted populations are indeed representative cellular reprograming, we isolated total RNAs from the sorted cells and conducted mRNA-microarray analysis for those samples. As expected, we found that most key regulators of ES cell core circuitry (ESCCC), including Esrrb, Nanog, Lin28a, and Sall4 (Figure 4.3A), are induced in the cells at the later stages (SSEA1⁺/DsRed⁺ and SSEA1⁺/DsRed⁻ populations). We also examined the genes involved in mesenchymal-to-epithelial transition (MET) in these four populations. Epithelial genes (Cdh1, Ocln, Krt8) are depleted in Thy1⁺/SSEA1⁻ cell population, but induced in the later stages (Figure 4.3A). In contrast, mesenchymal genes (*Snai1*, *Zeb1/2*, *Ncam1*) are highly expressed in the Thy1⁺/SSEA1⁻ population but repressed in the later stages (Figure 4.3A). Taken together, these data demonstrate that our sorted cell populations represent distinct stages along the normal induced-reprogramming process. Figure 4.3 # Figure 4.3 Transcriptome analysis reveals key differential genes and networks during reprogramming. (A) Heat map of mRNA expression profile showing key ES cell and MET regulators during induced reprogramming. Fold changes of mRNA expression from select molecules were examined for four cell populations during reprogramming. Four cell populations are indicated above the heat map. Replicate samples were labeled as #1 and #2. MEF and ESC serve as controls of two determined cell types. Fold changes of mRNA level compared with MEF are represented in log₂ scale. Gene names in black are ES cell regulators, in green are mesenchymal regulators, and in red are epithelial regulators. (B) Bar graph showing biological functions of group I, II, and III in transcriptome analysis Gene ontology analysis is performed by using IPA. Only five most significant functions for each group were shown. Probability (Fishers' Exact test) was represented as $-\log_{10}(p)$ ### Figure 4.3 (continuation) value) and shown above the bar graph. (C) Bar graph showing physiological system development and functions of group I, # II, and III in transcriptome analysis Analysis was performed as described above using IPA. Only five most significant functions for each group were shown. Probability (Fishers' Exact test) was represented as $-\log_{10}(p \text{ value})$ and shown above the bar graph. (D) Networks showing representative key genes of group I, II, and III in transcriptome analysis. Analysis was performed as described above using IPA. Only one representative network for each group was shown here. Legends are shown inside the rectangle in the lower part of the panel. (E) Scatter plots showing unique transcriptome changes between each cell populations from MEFs to iPS/ES cells. Scatter plots of mRNA expression change between each transition steps during ### Figure 4.3 (continuation) reprogramming. Correlations of transcriptome between two cell populations are shown as R square value. Genes with two-fold reduction in mRNA level are shown in greed dots, while genes with two-fold induction shown in red dots. Genes within two-fold changes shown in grey dots. Figure legends are shown on the right side of the panel. (F) Pie charts showing mRNA regulations crossing the transitions in reprogramming. Cell type transitions are indicated above each chart. Total number of differential genes (> 2 fold change) is shown above the pie charts. Number of differential genes between distinct cell populations is shown within red (up-regulated) or green (down-regulated) part in pie chart. Relative ratio of differential genes (up-regulated genes versus down-regulated genes) is shown below the pie charts. Ten most differential genes in each transition are listed next to the corresponding pie charts. Gene names in red indicated up-regulated genes and in green indicate down-regulated ones. # K-Means Clustering Reveals Five Distinct Gene Patterns During Induced Reprogramming To explore mRNA expression profiles in sorted populations, we first sought to determine the major transcriptome changes that occur during reprogramming; to identify these changes, we used k-means clustering to cluster all of the studied genes according to their expression patterns in sorted populations, finding five distinct groups (group I to V) of mRNA expression profiles along the reprogramming process (Figure 4.1C). Group-I genes gradually increase their expression level (log₂ value to 8.4) from the initial to mature stages during reprogramming (Figure 4.1D). In contrast, genes in group III exhibit significantly reduced expression (log₂ value to -8.4), even starting from the initial stage (Figure 4.1D). We found group-II genes to show a unique expression pattern in which they are first induced (log₂ value to 4.4) at the initial stage and then repressed (log₂ value to -6.7) in the subsequent stages (Figure 4.1D). Group IV and V have minor/no changes to mRNA expression, with a slight decrease ($log_2 > -1$) or increase ($log_2 < 1$), respectively, during reprogramming, as shown in Figure 4.1D. Please also see the Appendix 2 for the complete gene list of transcriptome analysis and summary. # Highly Modulated Functions in Reprogramming Uncovered Among Three Highly differential Groups To gain insight into the five distinct trends of mRNA expression described above, we performed comprehensive transcriptome analysis for each group of genes by using Ingenuity Pathways Analysis (IPA) (www.ingenuity.com), a platform that provides bioinformatics pipelines to conduct gene ontology (GO) analysis to discover over-representative genes for protein interactions, networks, and canonical pathways in sorted cells. In group I, genes involved in embryonic development (e.g., *Dnmt3b*, *Esrrb*, *Otx2*, *Fgf8*, *Tfap2c*, *Slc2a1*, *Lmnb1*, *Nes*, *Nasp*, *Klf2*, *Blm*, *Parp1Lig1*, *Nr5a2*, *Gsc*) are specifically enriched (Figure 4.3B),
indicating that many important developmental regulators are induced alongside the reprogramming process. Genes involved in cell-cycle (e.g., Mdk, Fgf8, Sgol1, Top2a, Mcm2, Aurka, Ccnb1, Zic3, Mybl2, Spc25, Cdh1) and DNA replication/recombination/repair (e.g., Mcm2, 2810417H13Rik, Hmgb2, Nasp, Parp1, Cdt1, Dbf4, Lig1, Dut, Timeless, Foxm1, Cdc6, Trp53, Fen1) are also enriched in group I (Figure 4.3C), showing increased activation among those networks. Furthermore, network analysis showed that cell death and its associated survival network (Trp53, Rad54l, Npm1, Ung, Kiaa0101) are highly up-regulated during reprogramming (Figure 4.3D). Those data suggest that under the stress of induced reprogramming, securing genome integrity by activating DNA repair pathways and cell-cycle control is a priority for cells when they respond to the massive changes induced by the four reprogramming factors described here. In addition, genes involved in cellular assembly and organization (Uhrf1, Cdt1, Cdc6, Trp53, Lbr, Hmgn5, Hmgn2, Dnmt1, Rb1, Cdc7) are also highly induced during reprogramming (Figure 4.3C), suggesting active cellular-structure remodeling. Numerous genes (e.g., Trh, Dnmt3b, Nanog, Otx2, Sall4, Zscan10, Fosb, Mdk, F2rl1, Fgf8, Dnmt3l, Olig1, Tcf15, Foxd1) involved in gene expression are enriched in group I (Figure 4.3C), suggesting that global transcriptional and translational changes happen along with the reprogramming process. In group II, genes associated with cardiovascular system development and function (e.g., *Ptn*, *Col1a1*, *Mgp*, *Vcam1*, *Slit2*, *Pdgfra*, *Cav1*, *Mmp3*, *Dcn*, *Thbs2*) are highly enriched. These genes are induced in the initial stage (Thy1⁺/SSEA1⁻) and then subsequently decrease in later stages (Figure 4.3B) during reprogramming. Interestingly, genes involved in connective tissue development and other types of cellular interaction (e.g., *Ptn*, *Col1a1*, *Mgp*, *Cyp1b1*, *Vcam1*, *Slit2*, *Thbd*, *Pdgfra*, *Cav1*, *Mmp3*, *Dcn*, *Thbs2*, *Ptx3*, *Lsp1*) are also significantly enriched in group II (Figures 4.3B, 4.3C, and 4.3D), indicating that genes modulating cell-to-cell interactions/organizations may play a temporal role in the process of induced reprogramming. In group III, where genes are repressed during the reprogramming process, genes involved in hematological system and connective tissue development are highly enriched (Figure 4.3B). Together with the findings in group II, these data indicate a cell identity change, in which genes associated with cellular reorganization become highly regulated. Interestingly, the lipid metabolism network is highly represented in this group (Figure 4.3D), suggesting changes of cellular metabolism, macromolecule biogenesis, or energy preference along the reprogramming process. In addition to those group-specific functions/networks, some have more complex regulatory patterns, which are enriched in more than one trend/group. For example, cell growth and movement, including cell-to-cell signaling, is enriched in groups I, II, and III (Figures 4.3B and 4.3C). In addition, tissue morphology or organismal survival network (Figure 4.3C) exhibits two distinct expression trends (group I and III or group I and II, respectively). Gene ontology analysis of transcriptome changes is shown in Appendix 3. Group-IV and -V genes showed no or minor changes at the mRNA level among all cell populations (Figures 4.1B and 4.1C). Those two groups cover the majority of genes, which contribute to a variety of cellular functions/networks (Appendix 3). Because changes at the mRNA expression level (log₂ within 1 to -1) are limited in these two groups, it is difficult to evaluate the influence of those genes during reprogramming without combining with other analyses. Therefore, we will discuss the importance of those genes in Group IV and V later with shRNA library screening analysis. To summarize, by analyzing mRNA profiles we were able to discover five distinct expression patterns (groups I to IV) that occur during the reprogramming process. In addition to known functions such as cell cycle and cell death, each highly regulated group (I to III) exhibits significant regulation of novel networks, including cell-to-cell interaction/organization, gene regulation, and cellular-structural organization. Revealing Key Molecules/Pathways in The Transitions to Different Stages of Reprogramming It remains poorly understood which molecular hurdles are critical to overcome for cells to make a transition from initial to mature stages of reprogramming. To address this uncertainty, we examined the transcriptome difference that exists between cell populations of every two adjacent stages along the reprogramming progress, from MEF to SSEA1⁺/DsRed⁻ cells. We found that the primary transcriptome changes (fold changes between two cell populations > +/- 1 in log_2 scale) occurred at two early transitions, MEF-to-Thy1⁺/SSEA1⁻ (1373 genes) and Thy1⁺/SSEA1⁻-to-Thy1⁻/SSEA1⁻ (1387 genes) (Figures 4.3E and 4.3F). Fewer expression changes occurred in the two later stages of the reprogramming process (312 and 283 genes in Thy1⁻/SSEA1⁻-to-SSEA1⁺/DsRed⁺ and SSEA1⁺/DsRed⁺-to-SSEA1⁺/DsRed⁻ transitions, respectively). These results showed that massive transcriptome reconstruction primarily occurs in the early stages before cells obtain an SSEA1⁺ marker, which refers committed cell populations toward pluripotency (Figure 4.3F). Our data suggest that the first two transitions may be the cell-fate-reorganizing phases, comprising the respond-to-reprogramming stress step and the de-constructing-of-somatic-networks step. Following these steps, the later two transitions are cell-fate-committing phases where ES cell-specific regulatory networks are acquired to attain pluripotent status, in the context with dominant OSKM expression (Figures 4.3E and 4.3F). Notably, the number of repressed and induced genes remains the similar, if not the same (ratio at 50:50 and 46:54), at the first two transitions (Figure 4.3F). In contrast, most differential-expression genes decrease (79%) at the Thy1⁻/SSEA1⁻-to-SSEA1⁺/DsRed⁺ transition, while others increase (61%) at the SSEA1⁺/DsRed⁺-to-SSEA1⁺/DsRed⁻ transition (Figure 4.3F). GO analysis of the differential genes at each transition suggests that it is important to modulate the genes associated with fibroblast property (Figure 4.4A) before cells reach the later two SSEA1⁺ stages. Consistently, key molecules associated with fibrotic properties, *Lyz* and *Lyzs*, are among the top 20 differentiated genes at the first two transitions (Figure 4.3F). Genes involved in embryonic stem cell pluripotency are activated starting at the Thy1⁻/SSEA1⁻-to-SSEA1⁺/DsRed⁺ transition (Figure 4.4A). Additional ES cell-specific networks are activated in the final transition from the SSEA1⁺/DsRed⁺ to SSEA1⁺/DsRed⁻ stages (Figure 4.4A). The complete lists of differential genes in each transition step can be reviewed in Appendix 4. Our data indicate that to reach the "early reprogrammed" SSEA1⁺/DsRed⁺ stage, it is important to activate many of the key players involved in embryonic stem cell core circuitry, including *Nanog, Sall4, Esrrb, Dppa4, Dppa5a, Dnmt3b, and Dnmt3l* (Figures 4.3F and 4.4B). For pre-determined cells (SSEA1⁺/DsRed⁺), in order to progress to a mature reprogrammed status (SSEA1⁺/DsRed⁻), those molecules are further induced to a higher expression level, possibly to acquire a complete pluripotent state (Figure 4.4C). Furthermore, when cells proceed from the SSEA1⁺/DsRed⁺ to SSEA1⁺/DsRed⁻ stages Figure 4.4 Exocrine System gumentary System Digestive System ingenital System Digestive System Excerne System Immune Immune Syste Immune Syste Immune Syste # Figure 4.4 Expression cascades of epigenetics regulators during induced reprogramming (A) Bar graphs showing key canonical pathways in the transition steps during reprogramming. Gene ontology analysis was performed to analyze the differential genes between indicated two cell populations. Cell type transitions are shown above each bar graph. Only five most significant pathways are shown here. Probability (Fishers' Exact test) was represented as $-\log_{10}(p \text{ value})$ and shown above each bar graph. (B) Scheme showing functional protein association networks of early-induced ES cell core circuitry (ESCCC) factors in SSEA1⁺ cell population. Predicted protein interactive network was created in STRING by using the early-induced ES cell core factors identified in transcriptome analysis. Gene names in red are induced in both Thy1⁻-to-SSEA1⁺ and SSEA1⁺-to-DsRed⁻ transitions. (C) Table listing induced genes in both $Thy1^-$ -to- $SSEA1^+$ and $SSEA1^+$ -to- $DsRed^-$ transitions. ## Figure 4.4 (continuation) The common induced genes (> 2 fold change) in both Thy1⁻-to-SSEA1⁺ and SSEA1⁺-to-DsRed⁻ transitions are listed. (D) Scheme showing the expansion of ESCCC interactive networks when cells cross the transition step from SSEA1⁺/DsRed⁺ to SSEA1⁺/DsRed⁻ stage. Predicted protein interactive networks were created in STRING by using up-regulated genes among the transitions as input. # (E) Bar graphs showing body atlas of four cell populations in reprogramming. Transcriptome of each cell population was analyzed and calculated for the positive correlations of gene expression profiles to various tissue/cell types in mouse by using NextBio platform. Sorted cell populations used for analysis are shown above each bar graph. The twenty most significant correlated cell types are listed here. Probabilities (Fishers' Exact test) are presented as in p value and shown above each bar graph. Colors of bar graph are corresponding to the cell populations shown in Figure 4.1A. (Figure 4.4D), more extensive interactions of ESCCC regulators are established, including *Utf1*, *Nr6a1*, *Tdgf1*, *Gsc*, *Fgf10*, *T*, *Chrd*, *Dppa3*, *Fgf17*, *Eomes*, *Foxa2*, and others; indicating that the final step of reprogramming is to reinforce the ES cell core circuitry. The
complete lists of common and unique genes in the last two-transition steps can be reviewed in Appendix 5. To summarize, we revealed major cellular networks based on dynamic trends of the transcriptome (Figures 4.1C and 4.1D) and on the transition steps of specific cell populations (Figures 4.3E and 4.3F). We identified key genes in highly differential groups (I, II, and II), which may serve as signature markers for reprogramming progression. We also listed numerous key differential genes for transition between distinct stages, which can be used as potential small-molecule targets to advance the reprogramming process. ## Four Sorted Populations Indicate Cell-Fate Changes Along with Induced ### **Reprogramming Progress** Because the markers used for sorting reflect the change of cell properties, we speculated that each sorted cell population might comprise certain representative cell type(s) along with the reprogramming process. To test this hypothesis, we conducted a meta-analysis by comparing our transcriptome profiles with numerous tissue types from whole body (Body Atlas analysis) using the NextBio platform (Kupershmidt *et al.*, 2010). This algorithm was designed to find correlations between genes of interest (queries) and normalized gene expression across all available tissues, cell types, cell lines, and stem cells in its library; this is accomplished by calculating mRNA expression profiles with a positive or negative correlation. Using this algorithm, we found that Thy1+/SSEA1- cells have the highest correlation (p value < $1X10^{-40}$) with cells derived from exocrine, musculoskeletal, and cardiovascular systems, which contain fibrotic cell types (Figure 4.4E). Conversely, we found SSEA1+/DsRed- cells have a very high correlation (p value < $1X10^{-130}$) with cells derived from the urogenital system, which contain germ line stem cells (Figure 4.4E). We also found that the cells with the highest correlation (p value < $1X10^{-153}$) to SSEA1+/DsRed- cells were derived from the visual system (Figure 4.4E). In addition, SSEA1+/DsRed+ cells were found to have a high correlation (p value < ~1X10⁻⁷⁰) with urogenital and visual systems, although with lower significance compared with SSEA1+/DsRed- cells; this finding supports the idea that SSEA1+/DsRed+ cells are in the "early reprogrammed/pre-determined" status before reaching full pluripotent status. We also found that cells derived from the immune system have a significant correlation with SSEA1+/DsRed+ and SSEA1+/DsRed- cells. This finding of a higher transcriptome correlation to iPS/ES cells might explain how cells derived from the circulatory system are thought to provide better somatic cell sources for efficient induced reprogramming (Cahan and Daley, 2013; Eminli *et al.*, 2009; Gonzalez *et al.*, 2011; Polo *et al.*, 2010). Interestingly, Thy1-/SSEA1- cells have low significant correlations (*p* value < 1X10⁻⁹ to 1X10⁻¹⁷) with any tissue types (Figure 4.4E), suggesting a high degree of heterogeneity of cell contents in this status (Thy1-/SSEA1-). In short, we found that cells derived from the visual, urogenital, and immune systems may serve best as the resource for efficient induced reprogramming. Thy1-/SSEA1-status might serve as the cell-fate-decisive stage prior to commitment of cell types, because of high heterogeneous tissue types with low mRNA expression correlations. Finally, we showed that cells from the visual system and immune system might serve as great resources for better efficiency of reprogramming due to high correlativity of transcriptome. # **Deeper Insight into Key Molecular Events of Reprogramming** It has been shown that several events are critical for the reprogramming process, including cell cycle regulation, epigenetics changes, and pluripotency restoring (Banito et al., 2009a; Brambrink et al., 2008; Hong et al., 2009; Kawamura et al., 2009b; Li et al., 2009a; Marion et al., 2009; Onder et al., 2012; Papp and Plath, 2013; Stadtfeld et al., 2008a; Utikal et al., 2009). However, the specifics of the molecular regulation and dynamic changes associated with these key events remain poorly understood. To obtain greater insight into these events, we first examined the mRNA expression profiles for genes associated with cell cycle regulation, including DNA damage, G1/S checkpoint, G2/M checkpoint, Cyclin regulation, and DNA replication. As shown in induced in cell populations with Thy1⁻/SSEA1⁻ markers. Those upstream regulators are in turn up-regulated further throughout the reprogramming process, up until the end of reprogramming stage (Figure 4.5A). As expected, key effector Trp53 is induced upon initiation of reprogramming. In the initial reprogramming stage, the majority of the observed mini-chromosome maintenance (MCM) helicases are already induced Thy1⁻/SSEA1⁻ cells (Figure 4.5A), suggesting that DNA replication machinery is activated early on in the reprogramming process. In contrast, senescence genes *Cdkn2a/Arf-Ink4a*, *Cdkn2b/Ink4b*, and *Cdk14* are depleted, while most effectors are greatly induced in the initial stage of reprogramming (Figure 4.5A). The main difference between the mRNA expression level of cell cycle regulators is established in the initial stage (Thy1⁺/SSEA1⁻) versus later cell populations, as indicated by the yellow rectangle in Figure 4.5A; this suggests that DNA damage and replication checkpoints may serve as gatekeepers to prevent cells with aberrant DNAs from progressing further during induced reprogramming, possibly by activating *Cdk14* and Figure 4.5 # Figure 4.5 Cdk14 and Cdkn2a/b are the gatekeepers in the initial stage of reprogramming and PRC2 complexes are the last to be restored until in the mature iPS cells. (A) Heat map of mRNA expression profiles showing distinct activation patterns for cell cycle regulators. Genes are grouped into three functional categories are shown in the right side of heat map. Genes are further clustered by K-mean clustering analysis. Distinct expression patterns are highlighted with yellow rectangle. Fold changes of mRNA level compared with MEF are represented in log₂ scale. (B) Scheme showing cell cycle regulation during induced reprogramming progress. Various regulators are shown next to the reprogramming progressing line. Three key decisive factors are enlarged and bold. Red arrows indicate incomplete induced reprogramming and green arrows indicate further reprogrammed cell populations. ### Figure 4.5 (continuation) (C) Table listing the main components of histone lysine methylase complexes and polycomb repressive complexes. Gene lists are adopted from SnapShot archive in Cell journal. (D) Heat map of mRNA expression profiles showing sequential activation patterns of histone lysine methylation modifiers/transferases (HKMTs) HKMTs mRNA expression profiles were processed as described above. Two distinct activation patterns are highlighted in yellow and blue rectangles. Genes with activation latency are highlighted in red texts. Fold changes of mRNA level compared with MEF are represented in log₂ scale. ## (E) Scheme showing sequential activations of epigenetics regulators Cell fate change is shown on the top of the scheme based on the progression of induced reprogramming. Main HKMT complexes are listed and positioned corresponding to the activation patterns in (d). Red line shows the re-establishment of epigenetic regulators. # **Figure 4.5 (continuation)** (F) Heat map of mRNA expression profiles showing sequential activation patterns # for DNA methylation regulators mRNA expression profiles of DNA methylation regulators were processed as described above. Activation of mRNA level is highlighted in yellow rectangle. Fold changes of mRNA level compared with MEF are represented in log₂ scale. *Cdkn2a/b* early as in the initial stage (Figure 4.5B). Cells have been shown to acquire significant epigenetics changes upon induced reprogramming, such as histone modifications and DNA methylations (Koche *et al.*, 2011; Maherali *et al.*, 2007). Several epigenetic regulators haven been proved to influence reprogramming efficiency, such as PRC1, PRC2, *Suv39h1*, *Yy1*, and *Dot11* (Onder *et al.*, 2012). However, the dynamics required to activate this epigenetic-modifying mechanism remains unclear with regard to transitions between reprogramming stages. We thus examined the mRNA expression profile of epigenetics regulators, including histone lysine methylase/methyltransferase (HKMT) complexes, polycomb repressive complexes (PRCs), and DNA methylation modulators (Figure 4.5C). The majority of the genes associated with HKMT complexes are induced upon initiation of the reprogramming process, as indicated by the blue rectangle in Figure 4.5D. In contrast, only a few components decrease in the majority of the stages during reprogramming, including *Suv39h2*, *Mllt3*, *Ring1*, *Pcgf1*, and *Suv420h2* (Figure 4.5D). Notably, many of the down-regulated components are involved in repressive transcriptional regulations, such as *Suv39h2*, *Ring1*, *Pcgf1*, and *Suv420h2* (Figure 4.5C). Key components of HKMT1 complexes (*Setdb1*, *Ehmt1*, and *Suv39h1*) and of HKMT2, aka Trx complexes (*Wdr5*, *Dpy30*, *Hcfc1*, *Kdm6a*), shared a similar expression profile with high induction at later stages during reprogramming (Figure 4.5D). In addition, the main components of PRC2 (*Ezh2*, *Eed*, *Suz12*, *Mtf2*) are not induced until cells reach the early-reprogrammed stage (SSEA1⁺/DsRed⁺), as indicated by the yellow rectangle in Figure 4.5D. These findings suggest that restoring the bivalent status in iPS/ES cells is one of the late events to take place in the reprogramming process (Figure 4.5E). Similarly, some known factors of PRC1, such as *Pcgf5* and *Pcgf6*, are also induced at later stages (Figure 4.5D). Consistent with histone modifiers, molecules involved in DNA methylation are induced gradually during the reprogramming process (Figure 4.5F). Thus, our results clarify a distinct
re-activating dynamics of histone modifiers in the reprogramming process. Furthermore, our data suggest that the main scaffold used for histone modifications is first established in the re-constructing stage of reprogramming (Thy1⁻/SSEA1⁻), but the complete mechanisms of histone modifications are restored in only the mature iPS/ES cells. Most importantly, our data provide deeper insight into understanding dynamic regulations of key molecular events. #### **CHAPTER V** ### **Functional Dissection of the Molecular Requirements of Induced Reprogramming** #### **Results** ### Genome-Wide shRNA Screening Identifies Key Factors in Induced Reprogramming In addition to the extensive transcriptome analysis described in Chapter IV, we also developed a genome-wide shRNA library screening to identify functionally important genes in reprogramming. To do this, we first isolated genomic DNA from sorted cells, where a genome-wide shRNA library has been introduced after induced reprogramming (shown in Figure 4.1A). Specific primers flanking the stem loop regions of shRNAs were used to amplify genome-integrated shRNAs in each cell population. To identify the enriched shRNA targets, we sequenced those amplified fragments in each sorted population by Sequencing by Oligonucleotide Ligation and Detection (SOLiD sequencing). We assumed that shRNAs targeting essential genes would be enriched in distinct cell populations, and depleting those factors by shRNAs would compromise or enhance the reprogramming progress. Based on this assumption, we aimed to identify shRNA targets that are enriched specifically in each cell population. To this end, we performed K-means clustering for identified reads from sorted populations based on the relative enrichments in different cell populations. We obtained four distinct gene clusters (A, B, C, D) enriched specifically in each cell population and one cluster (E) containing non-specific enrichments (Figure 5.1A). To further understand which reprogramming-associated modulations could be revealed through our shRNA library screening. We thus conducted a meta-analysis of those enriched hits from shRNA screening (Figure 5.1A) by using IPA software. Over-representative molecular and cellular functions were revealed by gene ontology (GO) analysis for each cluster (Figures 5.2A, 5.2B and Appendix 6). Consistent with our transcriptome analysis, we found that cell cycle regulation plays a significant role in the initial stage (Figures 5.2B, Group A), while cell death is critical to successful reprogramming (Figures 5.2B, Group D). Notably, cell-to-cell interactions are important for the initial, transition, and early reprogrammed stages (Figures 5.2B and Figure 5.1 # Figure 5.1 Revealing unique sets of molecules that play critical roles during reprogramming by integrated analysis of shRNA library screening and transcriptome profiling. (A) Heat map demonstrating specific enriched shRNA targets in distinct populations along the reprogramming process. Identified targets by shRNA reads were clustered by using Gene Cluster 3.0 and visualized with Java TreeView. Letter A to E were designated to mark five distinct clusters. Gene ontology was generated for each cluster with IPA (Ingenuity systems). Please note that reads of shRNA-identified targets are shown in log₁₀ scale. (B) Heat map illustrating mRNA expression profile of genes identified from shRNA library screening in Figure 5.1A. Genes identified by shRNA library screening were clustered into five groups and only qualified genes having reads > 1.5 (log₁₀ scale) were kept for further analysis. mRNA expression profile (Figure 4.1C) of those qualified genes was examined, clustered, and illustrated into five groups as the hits of shRNA library screening in (A). From left side to ### Figure 5.1 (continuation) right of heat map, mRNA expression trends were presented from initiation stage to maturation stage of reprogramming (upper right rectangle). Number of qualified targets from shRNA library screening are listed in the lower right rectangle. Minor or none changed genes were highlighted with yellow rectangle. Fold change of mRNA level compared with MEF was shown in log₂ scale. (C) Bar graph showing the proportion of mRNA expression profiling corresponding to shRNA-identified genes in Figure 5.1A. Genes in (B) were shown in percentage corresponding each group of shRNA-identified targets. Genes down-regulated are colored in blue, up-regulated in red, and minor changed in green. Relative ratio for each mRNA expression pattern is indicated. (D) Heat map illustrating shRNA reads of distinct mRNA expression pattern groups in Figure 4.1C. Reads from shRNA library screening were extracted and examined by using gene lists of each group from Figure 4.1C. Only qualified targets (shRNA reads > 1.5 in log₁₀ scale) #### Figure 5.1 (continuation) were kept for further analysis. Select genes was examined, clustered, and illustrated into five groups as the groups in Figure 4.1D. From left side to right of heat map, shRNA reads were presented from initiation stage to maturation stage of reprogramming as indicated above the heat maps. Number of qualified genes from mRNA microarray analysis and shRNA library screening was listed in the lower right rectangle. Genes enriched in cluster C were highlighted with purple rectangle. Genes enriched in both cluster A and B were highlighted with red rectangle. Please note that reads of shRNA library were shown in log₁₀ scale. (E) Bar graph demonstrating proportion of enriched shRNA-identified targets corresponding each mRNA expression group in Figure 4.1C. shRNA-identified genes in (D) were shown in percentage corresponding each mRNA expression group clustered in Figure 1C. Enriched shRNA targets are shown in different colors as legends shown above the chart. Figure 5.2 ## Figure 5.2 Revealing genes/networks critical to induced reprogramming by integrated analysis of shRNA library screening and transcriptome profiling. (A) Scheme showing representative networks identified by shRNA screening in each isolated cell population Qualified hits (shRNA reads > 1.5 in \log_{10} scale) were analyzed by using IPA to discover over-represented networks/functions/pathways. The six most significant networks are shown in each cell population from initial stage (Thy1⁺/SSEA1⁻) to mature stage (SSEA1⁺/DsRed⁻) during reprogramming. The size of the oval shape is proportional to the number of molecules involved in each network. Color codes denote probability (Fishers' Exact test) as in $-\log_{10}$ (p value). (B) Bar graph showing key molecular and cellular functions identified by shRNA library screening. Cluster identifications are shown on the left side of the plot. Probability (Fishers' Exact test) is shown in p value. ## Figure 5.2 (continuation) (C) Strategy scheme demonstrating the integration analysis of shRNA library screening and transcriptome data. Identified gene lists from each cluster of both data sets are used as the seeds (queries) for integrative comparison analysis. mRNA expression profiles were analyzed in correspondence with gene lists identified by shRNA screening (A to E); in contrast, enrichments of shRNA-targeted genes were examined corresponding groups in transcriptome data (I to V). Appendix 6), supporting our observation from the earlier transcriptome analysis (Figure 4.1). Similarly, the organization of cellular structures (Cellular movement/morphology/assembly and organization) significantly influences all studied cell populations (Figure 5.2B and Appendix 6). Furthermore, genes associated with cellular metabolisms (amino acid metabolism and small molecule biochemistry) are critical specifically in the "transition" stage of reprogramming. Modulation of cellular function and maintenance are critical to cells' ability to reach the later stages of reprogramming (i.e., pre-determined and mature reprogrammed stages), as shown in Figure 5.2B. The complete list of shRNA-identified genes is shown in Appendix 6. Networks associated with cell morphology and embryonic development are highly targeted in Thy1⁺/SSEA1⁻ cell populations, suggesting that those two networks play critical roles in determining the early-stage cell fate transition. Consistent with our transcriptome analysis (Figure 4.1), networks of cell survival (inflammatory response and cell death) are keys to the transition from Thy1⁺/SSEA1⁻ to Thy1⁻/SSEA1⁻ status. Similarly, genes involved in cellular structure organization and cell-to-cell interaction are also specifically targeted at the transitions from Thy1⁻/SSEA1⁻ to SSEA1⁺/DsRed⁻ populations (Figure 5.2A). We also found that genes associated with cell cycle and cancer networks are selectively targeted in mature reprogrammed cells (Figure 5.2A), suggesting the repressive roles of identified targets to reprogramming. Finally, genes associated with drug-, carbohydrate-, and lipid-metabolisms play important roles in modulating the reprogramming process (Figure 5.2A). In short, our RNAi screen was able to identify many well-known molecular and cellular functions important to reprogramming, such as cell cycle, cell death, and metabolism. In addition to the known functions, our screening data showed several novel modulations critical to induced reprogramming, including cell-to-cell communications, cellular movement, cell morphology and structural organizations. # Integrating shRNA Library Screening and Transcriptome Analysis to Define Important Genes in Reprogramming Studying cell-/tissue-specific mRNA expression profiles/changes helps to identify important genes in certain biological conditions. However, we speculated that solely examining mRNA levels during the reprogramming process might cause researchers to miss many key regulators, specifically because of the high heterogeneity of OSKM-transformed/-reprogrammed cell populations. We also wondered whether our shRNA library screening could identify certain hidden modulators masked by
noise in the heterogeneous transcriptome. To address these hypotheses, we further exploited two data sets generated from shRNA library screening and transcriptome analysis (Figure 5.2C). First, we tested whether we could recognize specific mRNA expression patterns for the identified shRNA targets. We utilized the target lists developed via shRNA library screening (Figure 5.1A) as seeds (queries) to find the expression profiles from transcriptome analysis (Figure 4.1C). To this end, we accessed five groups of mRNA expression profiles corresponding to the five clusters of shRNA-identified targets (Figure 5.1B). We did not find distinct expression patterns among those five shRNA groups (Figure 5.1B). This finding implies that mRNA expression profiling might not serve as a precise indicator/predictor to explain stage-specific functions of genes during reprogramming, although transcriptome analysis does reveal signature molecular networks at each stage of sorted cell populations. Interestingly, we found that the majority of identified shRNA targets (~53% to 70%) are not highly regulated during the reprogramming process (as indicated by the yellow rectangle in Figures 5.1B, 5.1C, and Appendix 7), suggesting that genes without significant change upon reprogramming are the most significant to the transition of reprogramming. Among those genes with expression changes, more genes are up-regulated (21.5%~34.6%) than down-regulated (6.5%~15.3%) (Figure 5.1C and Appendix 7). Notably, the proportion of down-regulated genes increases (from ~6.5% to ~13%) from group A to group D (Figure 5.1C and Appendix 7), suggesting that further suppressing the decreased genes by shRNAs is beneficial to promoting reprogramming progress. We found that the ratio of up-regulated genes is especially high in group C (SSEA1⁺/DsRed⁺) even with a low number of shRNA-identified targets in group C (Figure 5.1C and Appendix 7), indicating that induced genes play more significant roles in the transition to or from the early-reprogrammed (pre-determined) stage (SSEA1⁺/DsRed⁺). We further tested whether mRNA expression profiles could be used to predict gene functions associated with induced reprogramming. To address this question, we used a similar approach to that described above, but using gene lists from transcriptome analysis (Figure 4.1C) as queries to find specific patterns of the enriched shRNA targets. Surprisingly, we found that half of the genes in group I can be identified as shRNA targets in group E (as indicated by the orange rectangle in Figure 5.1D), suggesting that a large portion (> 50%) of induced genes have little functional influence (in group E) on the process of induced reprogramming; this is the case even though those genes are induced significantly upon induced reprogramming. As expected, more than 50% of matched genes in the mRNA group V (low changed) are identified in shRNA group E (Figure 5.1D and 5.1E), showing that a large proportion of low or un-changed genes contribute little to induced reprogramming. Furthermore, down-regulated genes, including mRNA groups II, III, and IV, matched a higher proportion of shRNA group D (~17% to 27% compared with 13%; Figure 5.1E and Appendix 7), suggesting that further depletion of those targets facilitates maturation from the SSEA1⁺/DsRed⁺ to SSEA1⁺/DsRed⁻ stages. The complete gene lists and summary of each shRNA-identified targets can be reviewed in Appendix 8. To summarize, we first integrated a genome-wide shRNA library screening with step-wise transcriptome analysis to extensively analyze the molecular mechanisms of induced reprogramming. We discovered that genes with minor expression-level changes play the most important roles during reprogramming. Our data also suggest that analysis of differential transcriptome might not comprehensively reveal the key regulators, because no shRNA-targeted groups show specific mRNA expression patterns. #### Validation of Select Targets Demonstrates a High Discovery Rate for Key #### **Reprogramming Molecules** To validate the identified targets from either transcriptome analysis or shRNA library screening, we selected several targets from both assays for testing the influence of these genes on reprogramming efficiency. To test shRNA-identified targets, we selected stage-specifically enriched targets (reads with log10 value > 1.5; Appendix 6) from the initial stage (Thy1⁺/SSEA1⁻) and the mature reprogrammed stage (SSEA1⁺/DsRed⁻). To test targets from transcriptome analysis, we selected highly induced genes in group I (Figure 4.1C). The majority of the selected genes from both assays are transcription regulators. We first focused on shRNA-identified genes with a somatic reprogramming system. We speculated that genes, which are highly targeted in specific populations, might either promote or comprise the reprogramming progress. To test this, we first examined the effects of genes selectively targeted in a Thy1⁺/SSEA1⁻ cell population (group A) on reprogramming efficiency. Those genes are involved in the various key networks described above (Figure 5.2); Two examples are shown in Figure 5.3A to 5.3D. We knocked down select targets by siRNAs at the early time point of reprogramming and examined reprogramming efficiency by scoring the Oct4-GFP positive colonies two weeks after virus transduction. Of nine selected genes, depletion of six targets (~66.7%), Dmbx1, Gsc, Med21, Hnf4g, Mef2c, and Psmd9, showed significant reduction (p value < 0.05) on reprogramming efficiency with siRNA knockdown (Figure 5.4A). Furthermore, depleting *Dmbx1*, *Gsc*, *Zeb2*, *Med21*, *Hnf4g*, and *Mef2c* (six out of nine genes) showed a greater influence on compromising reprogramming efficiency compared with Oct4 knockdown (red-dotted line in Figure 5.4A). Notably, Dmbx1- and Gsc-depleted cells showed the most evident phenotype (Figure 5.4A). As shown in Figure 5.3E, these putatively essential genes showed diverse mRNA expression patterns during the reprogramming process, again supporting the hypothesis that an mRNA expression trend might not be a precise predictor of critical functionalities to induced reprogramming. To summarize, most targets identified by our sorted shRNA-library screening act as essential players to induced reprogramming. Conversely, we also tested genes (group D) selectively targeted by shRNAs in mature reprogrammed cells (SSEA1⁺/DsRed⁻), assuming that those genes might be barriers to induced reprogramming; one example is shown as in Figures 5.3B and 5.3D. We again knocked down select targets by siRNAs at the early time point of induced reprogramming Figure 5.3 ## Figure 5.3 shRNA-identified targets play critical roles during induced reprogramming. - (A) to (D) Scheme showing representative networks identified in shRNA-group A and D - (A) and (B), shRNA-identified molecules are highlighted in green color. Non-enriched/identified molecules were shown in grey/white colors. (C) and (D), Number of reads for shRNA-identified genes are shown as heat maps corresponding (A) and (B) respectively. Number is shown in log₁₀ scale. - (E) Heat map showing mRNA expression profiling for putative essential genes to reprogramming mRNA expression change of select genes were examined during reprogramming. MEF and ESC serve as controls for two determined cell types. Replicate samples were labeled as #1 and #2. Fold change value is presented in log₂ scale. (F) Heat map showing mRNA expression profiling for putative barrier genes to reprogramming. #### Figure 5.3 (continuation) mRNA expression change of select genes were examined during reprogramming. MEF and ESC serve as controls for two determined cell types. Replicate samples were labeled as #1 and #2. Fold change value is presented in log₂ scale. (G) Western blot analysis showing overexpression of select targets from putative barriers Select genes were cloned into pMXs vector. Overexpression of those proteins were examined in 297FT cells and detected with anti-HA antibody by western blot analysis. (H) Immuno-fluorescent staining showing proper functionality of exogenous proteins during reprogramming. Transgenes were introduced into Oct4-EGFP MEFs together with four reprogramming factors OSKM. Exogenous proteins were detected with anti-HA antibody and visualized by fluorescence microscopy. Hoescht 33342 serves as counterstaining for nuclei. Scale bar denotes 25 mm. ## **Figure 5.3 (continuation)** (I) Bar graph showing fold changes of MEF reprogramming efficiency with forced-expression of barrier genes. Transgenes were introduced into Oct4-EGFP MEFs with OSKM and the same assay was conducted as in Fig. 3a to d. Probabilities (Student t-test) are shown as * p value < 0.05 and **** p < 0.00005. Figure 5.4 ## Figure 5.4 Functional genomic screening and transcriptome analysis reveal key regulators of induced reprogramming and ES cell properties. (A) Bar graph showing fold change of MEF reprogramming efficiency with depletion of various essential genes. siRNAs against select targets were introduced into Oct4-EGFP MEFs while cells were reprogrammed with OSKM. Fully reprogrammed colonies were identified and scored as EGFP positive colonies. Relative efficiency of reprogramming was calculated by normalized to none-targeting siRNA control (Control; black bar). Temporary knock-down of Oct4 by siRNA serves as positive control (green bar). Error bars denote standard error of the mean (S.E.M.), n > = 3. Red solid line marks the level of Control value and red dot line marks the cutoff value based on positive control (Oct4 knock-down). Probabilities (Student *t*-test) are shown as * p value < 0.05; *** p < 0.0005; **** p < 0.0005; ## **Figure 5.4 (continuation)** (B) Fold change of MEF reprogramming efficiency with depletion of various barrier genes. Same assay was conducted as in (E). p53 knock-down serves as positive control. Error bars denote S.E.M., $n \ge 3$. Red solid line marks the level of Control value and red dot line marks the
cutoff value. Probabilities (Student *t*-test) are shown as * p value < 0.05; *** p < 0.005; *** p < 0.0005; **** p < 0.0005. and examined reprogramming efficiency by scoring the Oct4-EGFP positive colonies. Depleting 16 out of 17 tested genes (~94%; except Gtf2e1) showed significantly improved reprogramming efficiency compared with non-targeting siRNA control (Figure 5.4B). Furthermore, knockdown of 13 genes (~76.5%) exerted at least a two-fold induction of reprogramming efficiency (marked as red dotted line in Figure 5.4B), compared with non-targeting siRNA control. Those genes are Tfdp1, Nfe2, Foxn3, Erf, Cdkn2aip, Msx3, Ssbp3, Dbx1, Hoxd4, Lzts1, Arx, Hoxd12, Gtf2i, Nkx6-2, Ankrd22, and Hoxc10. The expression profile of these potential barriers again showed no specific trend (Figure 5.3F). To further validate the roles of these barriers, we tested their influence on reprogramming by forced-expressing transgenes with OSKM. We examined the protein expression of select transgenes by western blot analysis or immunofluorescence staining (Figure 5.3G and 5.3H). As expected, overexpression of the majority of putative barriers significantly compromised reprogramming efficiency, by ~40% to 80%, compared with DsRed control (Figure 5.3I). In summary, validation results showed that our RNAi screen identified meaningful targets serving as either positive or negative regulators during reprogramming. ## Pcgf6, Ruvbl2, Hcfc1, and Srsf2 Play Critical Roles in Both ES Cell Identity and Induced Reprogramming Finally, we sought to functionally test genes from transcriptome analysis (Figures 4.1C and 4.1D). To do this, we first asked whether genes highly induced during reprogramming (group I) could also contribute to ES cell identity. Many known ES-cell regulators, such as Nanog, Esrrb, and Lin28, are clustered into group I, indicating the high functional relevance of this group. Among group-I genes, we picked a panel of transcription factors with little-known functions in embryonic stem cells for further study (Figure 5.5A). We first tested the roles of these genes in maintaining ES cell self-renewal; this was accomplished by treating Oct4-EGFP ES cells with specific siRNAs to examine the loss of pluripotency by detecting EGFP signal with flow cytometry analysis, which was conducted four days after siRNA transfection. Sixteen of 64 tested genes (25%) showed a significant reduction (Z score >2) of Oct4-EGFP signal after depletion with siRNAs (Figure 5.5A), such as Asb4, Dmbx1, Gbx2, Gsc, Hnf4g, Klf5, L3mbtl2, Med21, Figure 5.5 ## Figure 5.5 Pcgf6, Srsf2, Hcfc1, and Ruvbl2 are required for maintaining ES cell property. Five individual experiments of siRNA screening assays in Oct4-EGFP ES cells were represented. Select target Pcgf6 for further study was highlighted in red. Positive control (A) Heat map showing Z score profiling of five independent siRNA screening assays. Oct4 was highlighted in green. Z score value was shown here as in color code. (B) Microscopy images showing *Pcgf6* depletion with siRNA reduced EGFP signal in Oct4-EGFP ES cells. Oct4-EGFP ES cells were transfected with various siRNAs and EGFP signal was detected four days post transfection by fluorescent microscopy. Non-targeting siRNA serves as a negative control (Control) and *Oct4* siRNA serves as a positive control. Scale bar denotes 100 mm (C) Microscopy images showing *Pcgf6* depletion with siRNA reduced alkaline phosphatase (AP) activity in CCE ES cells. CCE ES cells were transfected with various siRNAs and alkaline phosphatase activity #### Figure 5.5A (continuation) (AP) was detected four days post transfection by using Vector Red Alkaline Phosphatase Substrate Kit I (Vector cat# SK-5100). Non-targeting siRNA serves as a negative control (Control) and *Oct4* siRNA serves as a positive control. Scale bar denotes 100 μm. #### (D) Scatter plot showing cell number counts of cells treated with various siRNAs. Oct4-EGFP ES cells were transfected as described in (A). Cell number was measured by flow cytometry four days later. *Oct4* knock-down samples serve as positive controls. Experiments have been repeated five times and only one representative example is shown here. #### (E) Heat map showing relative cell growth of ES cells treated with siRNAs. Various siRNAs were transfected into Oct4-EGFP ES cells. Four days after transfection, cell growth was measured by using CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS) kit (Promega). Relative ratio of cell growth was shown in color code. Corresponding target IDs were listed below the heat map. Select targets for further study were highlighted in red. Positive control *Oct4* was highlighted in green. ## Figure 5.5A (continuation) (F) Bar graph showing that Srsf2, Ruvbl2, and Hcfc1 are required to maintain proper cell growth in both Oct4-EGFP and CCE ES cells. Both cells were treated with indicated siRNAs and cell growth was measured five days post transfection as described above. Mef2c, Nobox, Pcgf6, Phox2a, Tcf15, Oct4/Pou5f1, Nanog, and Trim28. Among those genes and excluding siOct4 control, Pcgf6 depletion had the most significant and consistent reduction of Oct4-EGFP signal (Figure 5.5A). The requirement of Pcgf6 to maintain ES self-renewal has been further confirmed under microscopy analysis, showing that ES markers (Oct4-EGFP or alkaline phosphatase activity) diminished with Pcgf6 depletion in ES cells (Figures 5.5B and 5.5C). We also examined whether depleting those genes might influence cell number in ES cells. Oct4-EGFP ES cells were treated with siRNAs as described in Figure 5.5A, and cells were counted by flow cytometry analysis. Strikingly, down-regulation of *Srsf2*, *Hcfc1*, and *Ruvbl2* caused a consistent and severe reduction in ES cell number (Figure 5.5D), comparable to Oct4 knockdown. ES cell growth was further examined with siRNA treatments, showing that ES cells require *Srsf2*, *Hcfc1*, or *Ruvbl2* to maintain a normal growth rate (Figure 5.5E). The effect of those three genes was further confirmed in a different ES cell line (Figure 5.5F). Notably, although depletion of *Ruvbl2*, *Srsf2*, and *Hcfc1*, colony size of ES cells was smaller, cells still retained the ES property with strong Oct4-EGFP signal and alkaline phosphatase (AP) activity, in contrast to *Pcgf6*-depleted cells showing reduced EGFP signal and AP activity (Figures 5.5B and 5.5C). To summarize, the targets identified by sorted shRNA-library screening indeed play critical roles (essentials or barriers) in modulating the progress of induced reprogramming by regulating various aspects of cellular functions. Further validation with siRNAs in ES cells showed that several genes are critical to maintaining ES cell self-renewal, including *Pcgf6*, *Asb4*, *Dmbx1*, *Gbx2*, *Gsc*, *Hnf4g*, *Klf5*, *L3mbtl2*, *Med21*, *Mef2c*, *Nobox*, *Phox2a*, *Tcf15*, and *Trim28*. Among these genes, Pcgf6 plays an essential role in maintaining ES cell renewal, while *Srsf2*, *Hcfc1*, and *Ruvbl2* are critical to ES cell proliferation. Finally, Our approaches comprehensively reveal numerous novel key modulations, by combining genome-wide shRNA library screening with transcriptome analysis (Figure 5.6). Figure 5.6 Reprogramming cell populations ### Figure 5.6 #### Model showing molecular requirements to induced reprogramming. Reprogramming phases are shown on the top of the chart. The transitions between each stage are highlighted in dark yellow patches. Key molecules and functions identified by shRNA library screening are summarized and shown above the threshold line. Those identified by transcriptome analysis are shown below the threshold line. The bulges of threshold line represent the transition steps in induced reprogramming progress. The dynamics of representative functions identified by transcriptome analysis is represented in gradient red along the progression of reprogramming. Up-regulated genes are highlighted in red and down-regulated ones are in green. The corresponding-sorted cell populations are shown on the bottom of the chart. #### **Materials and Methods** #### FACS and Whole-genome shRNA Library Screening To establish a marker set for isolating four distinct cell populations in reprogramming (Figure 4.1A). First, cells were transduced with retroviruses containing pMXs-DsRed plasmids. Three days later, transduced cells were harvested and stained with phycoerythrin-Cy7 (PE-Cy7)-conjugated antibodies targeting Thy1 (25-0902, eBioscience). Thy 1 and DsRed double-positive cells (Thy 1⁺/DsRed⁺) were isolated by FACS. Isolated Thy1⁺/DsRed⁺ cells were recovered for three days before introduction of shRNA library and OSKM for induced reprogramming. Pseudo viruses expressing pGIPz-shRNA library and pMXs-OSKM were generated in 293FT and Plate-E cells, respectively. Pseudo viruses were administrated at day 0 and day 1 during reprogramming to maximize the transduction efficiency. ES cell medium was used for culturing transformed cells at day 3 post induced reprogramming. Two weeks after reprogramming, cells were harvested and dissociated with trypsin/EDTA. PE-Cy7-conjugated antibodies targeting Thy1 (25-0902, eBioscience) and Alexa Fluor®647-conjugated SSEA1 antibodies (51-8813, eBioscience) were used to detect surface markers Thy1 and SSEA1. Before isolating cells with FACS, SSEA1⁺ cells were enriched using Anti-SSEA-1 (CD15) MicroBeads (130-094-530, Miltenyi Biotec GmbH). SSEA1-enriched cells were used for sorting SSEA1⁺/DsRed⁺ and SSEA1⁺/DsRed⁻ cell populations. SSEA1-depleted cells were used for sorting Thy1⁺/SSEA1⁻ and Thy1⁻/SSEA1⁻ cell populations. The shRNA-library screening in reprogramming was independently conducted three times. Total RNAs and genomic DNAs were extracted from sorted populations for mRNA microarray analysis and SOLiD sequencing analysis. #### Oct4-EGFP Mouse Embryonic Fibroblast Derivation Oct4-EGFP MEFs were derived from the mouse strain B6;129S4-Pou5f1^{tm2(EGFP)Jae}/J (Jackson Laboratory; stock
#008214) using the protocol provided on the WiCell Research Institute website (http://www.wicell.org/). In brief, E13.5 embryos were collected from time-mated pregnant female mice. Cells isolated from embryos then were tested for microbial contamination. Oct4-EGFP MEFs were maintained in MEF complete medium (DMEM with 10% FBS, nonessential amino acids, L-glutamine, and no sodium pyruvate). Robust-growing cells (usually < 4 passages) were used for induced reprogramming. #### **Construction of Retroviral Vectors Expressing Transgenes** Complementary DNAs of select targets were amplified by using total RNAs of ES cells and inserted into retroviral vector pMXs (Addgene; http://www.addgene.org/). All transgenes in this study were tagged with HA sequence, including *Ankrd22*, *Nfe2*, *Tfdp1*, *Ssbp3*, *Lzts1*, *Dbx1*, *Pcgf6*, *Hcfc1*, *Srsf2*, *and Ruvbl2*. Retroviruses expressing transgenes were produced in ecotropic version using Plat-E cells (RV-101, Cell Biolabs) or amphotropic version using Plat-A cells (RV-102, Cell Biolabs) to transduce mouse or human somatic cells, respectively. Virus supernatant was collected at two days post transfection. Virus supernatant was added with 6 mg/ml of polybrene (Millipore) to enhance transduction efficiency. #### **Human Induced Pluripotent Stem Cell Culture** Derived human iPS cells were cultured following the protocols available on the WiCell Research Institute website (http://www.wicell.org/). Briefly, cells were grown in DMEM/F12 medium (Invitrogen; Cat# 11330-032) containing 20% knockout serum replacer (Invitrogen; Cat# 10828), 4ng/ml of human recombinant basic fibroblast growth factor (bFGF; Invitrogen; Cat# 13256-029), 1 mM L-glutamine (Invitrogen; Cat# 25030081), and 1% non-essential amino acids (Invitrogen; Cat# 11140-050). Human iPS cells were seeded on a feeder layer of mouse embryonic fibroblasts (MEF) at young passages (1 to 4). MEF were irradiated and seeded at 1.88 X 105 cells per well in a six-well plate. For the long-term process of human reprogramming, hES cell culture medium was conditioned for 24 h on MEF at 2.12 X 105 cells/ml, and bFGF was added before use. #### Immunofluorescence and Alkaline Phosphatase (AP) Staining Human iPS cells were characterized for pluripotency by staining pluripotency markers as described (Cao *et al.*, 2008). Briefly, hiPS/ES cells were fixed with 4% paraformaldehyde (Electron Microscopy Sciences; Cat# 15710-S) in PBS for 30 min at room temperature (RT), and permeabilized for 5 min at RT by treating with 0.1% Triton X-100 in PBS. Permeabilized cells were blocked with 5% goat serum in PBS for 30 min at RT. Cells were incubated for 1 h at RT with antibodies specifically targeting SSEA-4 (sc-21704, Santa Cruz), Tra-1-60 (4746, Cell Signaling), Tra-1-81 (4745, Cell Signaling), and Nanog (AF1997, R&D systems) in 1.5% goat serum in PBS at 1:500 dilutions. After washing three times with 1 ml of PBS, cells were treated with secondary antibodies (Alexa Fluor 488 and 546) diluted 1:200 in 1.5% goat serum in PBS for 1 h at RT. Cell nuclei were stained with DAPI (4',6 diamidino-2-phenylindole) in PBS. Fluorescence images were captured by fluorescence microscopy. For AP staining, fixed cells were treated with alkaline phosphatase substrate following the manufacturer's instruction (Vector Laboratories; Cat# SK-5100). #### **Western Blot Analysis** Protein expression of HA-tagged transgenes, including *Ankrd22*, *Nfe2*, *Tfdp1*, *Ssbp3*, *Lzts1*, *Dbx1*, *Pcgf6*, *Hcfc1*, *Srsf2*, *and Ruvbl2*, were tested in reprogrammed cells or iPS/ES cells. Cells transfected with transgenes were harvested and total proteins were prepared in M-PER buffer (Pierce). Equal amounts of total protein were separated on 10% SDS-PAGE gels. Proteins were transferred to PVDF membranes, and specific proteins were detected using anti-HA antibody (11867423001, Roche Applied Science). GAPDH (sc-20357, Santa Cruz) and β Actin (MS-1295, Thermo Scientific) served as loading controls. Signal of target proteins was visualized and detected with SuperSignal West Femto Chemiluminescent Substrate (34094, Thermo Scientific). #### Gene Knockdown with siRNA Transfection for Testing Reprogramming Efficiency Specific siRNAs against select targets were purchased from Dharmacon (Thermo Scientific). Before treated with retroviruses for reprogramming, 4X10⁴ Oct4-EGFP MEFs were transfected with Lipofectamine/siRNAs complexes according to the manufacturer's instruction (Invitrogen). In general, at least 25 nano molar of siRNAs in final concentration was used to effectively deplete target genes. Three to five hours later, the transfection reagent was discarded and retrovirus-containing supernatant was added for induced reprogramming. Gene knockdown efficiency was evaluated by semi-quantitative real time RT-PCR ~24 hours later (data not shown). *Gapdh* served as an internal control to normalize mRNA expression signals. Gene Knockdown with siRNA Transfection in ES cells for Examining ES cell Identity Oct4-EGFP or CCE ES cells were seeded at the concentration of 1X10⁵ cells/well in 12-well plates coated with 0.1% gelatin one day before transfection. The next day, cells were transfected with Lipofectamine/siRNAs complexes (25 ~50 nM in final concentration) as described above. Three to five hours later, the transfection reagent was discarded and ES-cell culture medium was added. Four days after transfection, Oct4-EGFP signal and alkaline phosphatase activity were examined under microscopy as described above. #### **Microarray Analysis** To analyze transcriptome changes during reprogramming, total RNAs were isolated from four sorted cell populations using TRIZOL reagent (Invitrogen). Gene expression was detected and normalized in the SBMRI HT screening and genomics core facilities. Gene clusters were created using Cluster 3.0, and heat maps were created using Java TreeView. Scatter plots were created using Excel. #### SOLiD Sequencing for Genome-wide shRNA Library Screening To acquire enriched shRNAs in each sorted cell population, primer X76 (5'-acgtcgaggtgcccgaagga-3') and M100 (5'-aagcagcgtatccacatagcgt-3') were used to amplify the integrated shRNA hairpins from isolated genomic DNAs using Phusion Hot Start DNA polymerase (#F-549, Thermo Scientific). Desired PCR products (~700bp) were purified with QIAEX II Gel Extraction Kit (20021, Qiagen). PCR products were digested with restriction enzymes EcoRI and XhoI to remove the flanking fragments. Digested PCR products (~180bp) were purified again using a QIAEX II Gel Extraction Kit. To perform SOLiD sequencing, the samples were sent to the SBMRI Analytical Genomics Core Facility. In brief, PCR products were purified again in 3% Agarose gel and purified bands were confirmed by 2100 Bioanalyzer analysis (Agilent Technologies) prior to preparation of SOLiD-sequencing amplicons. After SOLiD sequencing, the contaminated sequences with repeating nucleotides were filtered, and reads were mapped to the parental sequences of pGIPz shRNA library provided from Thermo Scientific. The mapping parameters were set to have at least 19-matched nucleotides and with only one-mismatched base pair allowed in a 25-nucleotide long context. For each sorted cell population, the numbers of mapped/filtered reads are 708,344/2,531,068 (Thy1⁺ and SSEA1⁻), 274,690/1,542,129 (Thy1⁻ and SSEA1⁻), 456,349/1,168,247 (SSEA1⁺ and DsRed⁺), and 681,455/5,187,301 (SSEA1⁺ and DsRed⁻). We consolidated several shRNA-sequencing reads to a single target, as multiple shRNAs can target the same genes. Target genes with less than 10 shRNA reads (log₁₀ <1) were considered as background noises and discarded. To discover over-representative molecules and functions in shRNA-identified targets, we set the cutoff value for shRNA reads at 1.5 in log₁₀ scale using IPA platform. Consolidated data of target genes in each sorted cell population are listed in Appendix 3. In each sorted cell population, the numbers of shRNA-identified genes are 829 (Thy1⁺ and SSEA1⁻), 784 (Thy1⁻ and SSEA1⁻), 206 (SSEA1⁺ and DsRed⁺), and 898 (SSEA1⁺ and DsRed⁻). ## High-through-put siRNAs Screening in Oct4-EGFP ES Cells To retro-transfect Oct4-EGFP ES cells in 96-well plates, Lipofectamine 2000 (L2K) and siRNA transfection complexes were first prepared in each well with a volume ratio of L2K versus siRNA (10 mM) of 0.6:1. Approximately 70 ng of siRNAs in ~15 ml of OptiMEM was used in each well coated with 0.1% gelatin. To perform siRNA retro-transfection, Oct4-EGFP ES cells were then seeded at the density of 4000-cells/150 ml/well in 96-well plates containing siRNA transfection complexes. The next day, the transfection reagent was discarded and ES-cell culture medium was used and subsequently changed every other day. To detect the Oct4-EGFP signal, four days after transfection, cells were dissociated with 0.25% trypsin for ~3 minutes and re-suspended in 200 ml of ES medium for flow cytometry analysis. ### Meta-Analysis Using IPA and NextBio Platforms To analyze transcriptome changes, normalized mRNA expression data were uploaded onto the IPA server using an IPA browser. For the four-sorted cell populations, the cut off value for fold change in log₂ scale and *p*-value were set as 1 and 0.05, respectively. Over-representative genes, networks, and pathways were identified using the IPA platform. To analyze shRNA-enriched targets in the four-sorted cell populations, the number of shRNA reads was converted into a log₁₀ scale. Gene IDs with sequencing reads were then uploaded onto the IPA server. The cut off value for shRNA-enrichment was arbitrarily set at 1.5 in log_{10} scale, and the p-value (Fishers' Exact test) was set at 0.05. Over-representative genes, networks, and pathways were identified using IPA platform. To analyze cell-type correlations of the four-sorted populations, normalized mRNA expression data were uploaded onto the NextBio server
and processed using the BodyAtlas algorithm. ### **CHAPTER VI** ### **Discussion** The new era of reprogramming was initiated by the ectopic expression of four transcription factors in somatic cells, first demonstrated by Yamanaka's group (Takahashi and Yamanaka, 2006) in mouse cells and later in human cells by Thomson's² and Yamanaka's groups. Using retroviral or lentiviral systems, these four factors, Oct4, Sox2, Klf4/Lin28, and c-Myc/Nanog (also referred to as OSKM or OSLN) can be easily introduced into somatic cells to induce reprogramming to an embryonic stem (ES) cell-like pluripotent state. The induced pluripotent stem cells (iPS cells) generated by this breakthrough technology have provided a valuable alternative resource to human embryonic stem cells (Yamanaka, 2007). However, the low efficiency of reprogramming and concerns of genetic modification by the transgenes remain major hurdles in the therapeutic application of iPS cells (Stadtfeld and Hochedlinger, 2010; Takahashi et al., 2007; Yamanaka, 2007; Yu et al., 2007). In recent years, substantial progress has been made in improving reprogramming efficiency and in substituting select transcription factors (Ho et al., 2011; Hochedlinger and Plath, 2009; Plath and Lowry, 2011; Stadtfeld and Hochedlinger, 2010). Although many windows have been opened to improve the efficiency of reprogramming and to minimize transgenic integrations into the genome, we have only just begun to understand the molecular mechanisms that control reprogramming beyond the four factors. Many studies have shown that reprogramming can be defined and achieved as a step-wise process (Brambrink et al., 2008; Sridharan et al., 2009; Stadtfeld et al., 2008a). Several genes and proteins have been identified that have greatly impacted reprogramming efficiency, including Ink4a/ARF, p53/p21 (Banito et al., 2009a; Hong et al., 2009; Kawamura et al., 2009b; Li et al., 2009a; Marion et al., 2009; Utikal et al., 2009), TGF-β (Ichida et al., 2009; Maherali and Hochedlinger, 2009b), and miRNAs (Judson et al., 2009b; Li et al., 2011; Liao et al., 2011; Lin et al., 2010; Lipchina et al., 2011; Melton et al., 2010; Pfaff et al., 2011; Subramanyam et al., 2011; Yang et al., 2011a). Despite these advances, the molecular events occurring during reprogramming remain largely unknown. Therefore, we utilized several different approaches to decipher the mechanisms underlying the induced reprogramming progress. # MicroRNAs Serve as Key Regulators in Induced Reprogramming We are the first to report that c-Myc represses MEF-enriched miRNAs, such as miR-21, let-7a, and miR-29a, during reprogramming. Depleting miR-29a with inhibitors decreased p53 protein levels most likely by releasing p85α and CDC42 repression. In addition, depleting miR-21 decreased ERK1/2 phosphorylation. Interestingly, we found that miR-21 inhibition reduced p53 protein levels and that inhibiting miR-29a also reduced ERK1/2 phosphorylation level. Both p53 and ERK1/2 signaling antagonizes reprogramming (Banito et al., 2009b; Hong et al., 2009; Judson et al., 2009a; Kawamura et al., 2009a; Marion et al., 2009; Silva et al., 2008b; Utikal et al., 2009). Blocking miR-21 and miR-29a or knockdown of p53 and ERK1/2 can enhance reprogramming efficiency. Thus, we propose that c-Myc facilitates reprogramming in part by suppressing the MEF-enriched miRNAs, miR-21 and miR-29a, which act as reprogramming barriers through induction of p53 protein levels and ERK1/2 activation. Forced expression of ES-specific miRNAs of the miR-290 family can replace c-Myc to promote reprogramming (Judson *et al.*, 2009a). c-Myc also binds the promoter region of the miR-290 cluster (Chen *et al.*, 2008; Judson *et al.*, 2009a). However, early expression of the c-Myc transgene is effective to initiate reprogramming but dispensable at the transition stage or later in mature iPS cells (Sridharan *et al.*, 2009), where miR-290 clusters start to express. Therefore, it is unlikely that c-Myc promotes early stages of reprogramming through activating the miR-290 family. We also found that expression level of MEF-enriched miRNAs, including miR-29a, miR-21, miR-143 and let-7a, decreases when c-Myc is introduced for reprogramming. c-Myc has a profound transcriptional effect (Wanzel et al., 2003a) on miRNAs in promoting tumorigenesis (Chang et al., 2008b; Chang et al., 2009a) or sustaining the pluripotency ground state (Lin et al., 2009a; Smith et al., 2010). Therefore, c-Myc repression of miRNA expression is the likely mechanism underlying reprogramming. miR-21 acts as positive mediator to enhance fibrogenic activity through the TGF-β1 (Liu et al., 2010a) and ERK1/2 (Thum et al., 2008) pathways, both of which have been shown to influence reprogramming and the ES cell ground state (Ichida et al., 2009; Nichols *et al.*, 2009; Ying *et al.*, 2008). Notably, among validated miR-29a targets, protein level of p53 is indirectly induced by miR-29a (Park *et al.*, 2009a). In addition, recent studies show that the Ink4-Arf/p53/p21 pathway compromises reprogramming, and p53 deficiency greatly enhances reprogramming efficiency (Banito *et al.*, 2009b; Hong *et al.*, 2009; Judson *et al.*, 2009a; Kawamura *et al.*, 2009a; Marion *et al.*, 2009; Utikal *et al.*, 2009). Thus these signaling pathways are likely the primary barriers to the reprogramming process. Depleting the c-Myc-targeted miRNAs, miR-21 and miR-29a, enhanced reprogramming efficiency ~2.4- to ~3-fold, suggesting that MEF-enriched miRNAs also function as reprogramming barriers. Let-7 inhibition has been recently reported to enhance reprogramming (Melton *et al.*, 2010), however, by several attempts we observed a minor effect in reprogramming when let-7 was inhibited by antagomirs. Moreover, our data showed that the induction of p53 during reprogramming was compromised by miR-29a inhibition, enhancing reprogramming efficiency. Similarly, reprogramming can be greatly promoted by either depleting miR-21 or ERK1/2. c-Myc is a major contributor to the early stage of reprogramming and is not required to sustain the process at transition and late stages (Sridharan *et al.*, 2009), indicating that c-Myc-regulated miRNAs may be employed to initiate high efficiency reprogramming. c-Myc reportedly directly binds to and represses the miR-29a promoter (Chang et al., 2008b). However, further studies are needed to understand how c-Myc regulates miR-21 expression. Our data show that c-Myc can be only partially replaced by depleting miR-21 and suggest that c-Myc has other functions in reprogramming. Thus regulation of multiple pathways or wide repression of MEF-enriched miRNAs may be required to replace c-Myc function during reprogramming. ### c-Myc plays a key role in establishing the early transition stage We demonstrated that c-Myc disturbs the fibroblastic network by inhibiting the mouse embryonic fibroblast (MEF)-enriched miRNAs, miR-21 and miR-29a, to lower the threshold for reprogramming (Yang et al., 2011a). Thus, c-Myc establishes the early molecular context of reprogramming, not only by directly interacting with promoter regions of target genes, but also by exerting inhibitory effects on somatic networks by regulating miRNAs. The cellular phenotypes associated with the reprogramming transitions have been reported in recent studies (Li et al., 2010; Samavarchi-Tehrani et al., 2010), but a clear picture of the detailed molecular events driving the transitions is still lacking. Among the four reprogramming factors, c-Myc has been shown to play the dominant role in initiating the early transitional stage (Koche et al., 2011; Sridharan et al., 2009). Expression of c-Myc alone can downregulate the expression of fibroblast-specific genes and induce the molecular context of the embryonic status within 3 days of transduction (Sridharan et al., 2009). In addition to regulating the expression of hundreds of genes, as shown in previous reports (Sridharan et al., 2009; Wanzel et al., 2003b), c-Myc regulates numerous miRNAs to promote tumorigenesis (Chang et al., 2008a; Chang et al., 2009b; Gao et al., 2009; Lotterman et al., 2008) and to maintain pluripotency in ES cells (Lin et al., 2009b; Lin et al., 2009c; Smith and Dalton, 2010; Smith et al., 2010). The MEF-enriched miRNAs, miR-21, miR-29a, and let-7, act as barriers to the # initial stage of reprogramming We previously demonstrated that the miRNA expression profile changes dramatically upon OSKM introduction into MEFs, with c-Myc playing the dominant regulatory role in this process (Yang et al., 2011a). Furthermore, we have shown that c-Myc decreases the expression of MEF-enriched miRNAs, such as miR-21 and miR-29a. c-Myc transcriptionally suppresses miR-29 expression by binding to its promoter (Mott et al., 2010), while the molecular mechanism by which c-Myc regulates miR-21 expression is still unclear. miR-21 positively regulates the TGF-β1 (Liu et al., 2010b) and MAP kinase (Thum et al., 2008) pathways, which have been shown to act as roadblocks to reprogramming (Ichida et al., 2009; Li et al., 2010; Li et al., 2011; Liao et al., 2011; Maherali and Hochedlinger, 2009b; Nichols et al., 2009; Wray et al., 2010; Yang et al., 2010; Ying et al., 2008), miR-29a has been shown to indirectly induce p53 protein levels by post-transcriptionally inhibiting CDC42 and p85a (Park et al., 2009b). Consistent with these observations, depleting miR-21 or miR-29a dramatically (2 to 3 fold) increases reprogramming efficiency, suggesting that MEF-enriched miRNAs act as barriers to reprogramming (Yang *et al.*, 2011a). We also showed that miR-21 and miR-29a modulate reprogramming by regulating phosphorylation of ERK1/2 by 45~60% through Spry1 protein expression. In addition, depletion of miR-21 and miR-29a downregulates p53 protein levels by 25~40% through elevation of CDC42/p85a expression, which consequently enhances reprogramming efficiency. These data provide evidence for new regulatory networks during
reprogramming involving c-Myc, miR-21, and miR-29a. Another abundant miRNA in MEFs, let-7, has been shown to act as a barrier to reprogramming, since depleting let-7 enhanced the reprogramming efficiency by 4.3 fold with only the OSK reprogramming factors (Melton et al., 2010). Ectopic expression of c-Myc reduces let-7a expression in MEFs during reprogramming, although to a relatively modest degree (Yang et al., 2011a). It has been reported that c-Myc represses let-7 through Lin-28b transactivation (Chang et al., 2009b); however, Lin-28b mRNA is undetectable during the early stage of reprogramming (Yang et al., 2011a), suggesting other indirect mechanisms may be involved. The let-7 family may exert negative effects on reprogramming, because they are known to repress numerous pluripotent regulators, including Myc, Hmga2, Lin-28, and Sall4 (Kim et al., 2009a; Melton et al., 2010; Park et al., 2007; Rybak et al., 2008; Sampson et al., 2007). To summarize, the MEF-enriched miRNAs, miR-21, miR-29a, and let-7a modulate various pathways to antagonize the reprogramming process. Furthermore, c-Myc has an intrinsic ability to initiate the reprogramming transition, not only by targeting the promoter regions of numerous genes, but also by inhibiting MEF-enriched miRNAs in the initial stage of reprogramming. # p53-regulated miRNA miR-34 and miR145 play important roles in reprogramming The introduction of reprogramming factors into somatic cells initiates the cellular stress response to viral infection and oncogenes. Among the stress response molecules, transformation-related protein 53 (Trp53 or p53) plays a critical role as a gate-keeper to ensure that only cells with genomic integrity will survive to reach the pluripotent status, while stochastic nuclear reprogramming is induced (Banito *et al.*, 2009a; Hong *et al.*, 2009; Kawamura *et al.*, 2009b; Li *et al.*, 2009a; Marion *et al.*, 2009; Utikal *et al.*, 2009). miR-34 has been identified as a downstream target of p53 and contributes significantly to p53-mediated cell cycle arrest and apoptosis (Chang *et al.*, 2007; He *et al.*, 2007; Raver-Shapira *et al.*, 2007). miR-34a deficiency in murine somatic cells improves the efficiency (by more than 4 fold) and kinetics (by two days earlier) of reprogramming (Choi *et al.*, 2011). Consistent with this observation, p53-induced miR-34a/b/c act as negative regulators of reprogramming, in part through the repression of pluripotency genes such as Lin28a (Jain *et al.*, 2012), Nanog, Sox2, N-Myc (Choi *et al.*, 2011), and c-Myc (Siemens *et al.*, 2011). After initiation of reprogramming, mesenchymal-to-epithelial transition (MET) is the next step towards pluripotency (Li et al., 2010; Samavarchi-Tehrani et al., 2010). Approximately 5 days after OSKM induction, transformed cells undergo dramatic morphological changes from mesenchymal-like (polarized and mono-adherent) to epithelial-like (densely packed) cells. MET is critical for somatic cells to complete the first step of de-differentiation. Interestingly, miR-34a/b/c have been shown to compromise Snail1-dependent EMT (the reverse transition to MET) in cancer cells by targeting the 3' untranslated region (UTR) of Snail1 (Kim et al., 2011b), while Snail1 and ZEB1 impose a negative feedback loop on miR-34a/b/c by binding the E-boxes of the miR-34a/b/c promoters (Siemens *et al.*, 2011). miR-34a also decreases other EMT factors, such as β-catenin, LEF1, Axin2 (Kim *et al.*, 2011b), Slug, and ZEB1 (Siemens *et al.*, 2011), and ectopic expression of miR-34a also prevents TGF-β-induced EMT (Siemens *et al.*, 2011). Therefore, short-term introduction of miR-34a/b/c may suppress the EMT in the early reprogramming process, while reprogramming factors coordinately affect MET to de-differentiate somatic cells. Since miR-34 modulate various functional pathways, miR-34 may play dual roles to secure cell integrity and promote MET in the cell-context-dependent manner. miR-145, suggested to be the direct target of p53 (Jain et al., 2012), plays critical roles to direct differentiation of ES cells (Xu et al., 2009). miR-145 has been reported to downregulate Sox2 (Liu et al., 2012), Klf4 (Jain et al., 2012), and Oct4 to promote mesoderm and ectoderm differentiation in ES cells (Xu et al., 2009). Furthermore, miR-145 promoter region is bound and repressed by Oct4 in ES cells (Xu et al., 2009), suggesting Oct4 may lift the suppression of endogenous OSK by miR-145 during reprogramming. However, regulatory networks of miR-145 during reprogramming need to be vigorously interrogated, since this hasn't been tested during the process of reprogramming. EMT/MET-associated miRNAs play important roles in modulating the transitional stage of reprogramming During the MET stage of reprogramming, pro-mesenchymal miRNAs miR-10b (Ma et al., 2007) and miR-155 (Kong et al., 2008) decrease (Li et al., 2010), and pro-epithelial miRNAs miR-205 (Gregory et al., 2008a; Wiklund et al., 2010a) and miR-429 (miR-200 family) (Burk et al., 2008; Chen et al., 2012; Chen et al., 2011b; Wellner et al., 2009) increase (Li et al., 2010; Samavarchi-Tehrani et al., 2010). miR-10b promotes EMT in cancer metastases by targeting homeobox D10 (Ma et al., 2007), and miR-10b antagomirs suppress metastases in vivo (Ma et al., 2010). miR-155 plays an important role in TGF-β-induced EMT by targeting RhoA (Kong et al., 2008), one of the key factors maintaining junction formation and stabilization (Wang et al., 2003). However, a recent report showed that miR-155 may have dual functions in modulating EMT depending on the microenvironment of the tumor (Xiang et al., 2011), suggesting that the functions of miRNAs are cell and/or tissue context-dependent. Conversely, the miR-200 family and miR-205 have been shown to positively regulate MET by targeting ZEB1 and ZEB2 (Chen et al., 2011b; Gregory et al., 2008b; Park et al., 2008b; Wiklund et al., 2010b), while ZEB1 reciprocally represses the miR-200 family (Burk et al., 2008; Wellner et al., 2009). In addition, bone morphogenetic protein (BMP), which is required for efficient reprogramming with OSKM, promotes MET and also induces expression of miR-205 and the miR-200 family during OSKM-induced reprogramming (Samavarchi-Tehrani et al., 2010). Introduction of miR-200b/c mimics synergize with OSKM to promote more efficient reprogramming (Samavarchi-Tehrani et al., 2010). Notably, c-Myc may boost reprogramming efficiency by directly inducing expression of the miR-200 family (miR-200, miR-141, and miR-429), and possibly coordinating with Klf4 to initiate MET (Chen et al., 2011a; Li et *al.*, 2010). The miR-290/302 seed family plays significant roles during the programming progress It has been shown that microRNAs maintain the murine ES property by promoting the G1-S transition of the cell cycle and that aberrant miRNA biogenesis impairs proliferation of ES cells, which accumulate in the G1 phase (Kanellopoulou et al., 2005; Murchison et al., 2005; Wang et al., 2008). The key miRNAs for these functions are the miR-290 and miR-302 clusters, which are the most abundant miRNAs in mouse and human ES cells respectively (Houbaviy et al., 2003; Landgraf et al., 2007; Suh et al., 2004). These two clusters have almost identical seed regions (miR-290/302 seed family), suggesting they have highly similar target and/or regulatory networks. In human ES cells, the miR-302 cluster is regulated by Oct4/Sox2 to post-transcriptionally modulate cyclin D1, a key regulator of cell cycle progression (Card et al., 2008; Marson et al., 2008). The miR-290/302 seed family modulates cell cycle progression by targeting diverse regulators of the cell cycle, including p21 and other inhibitors of the cyclin E/Cdk2 pathway (Wang et al., 2008). Numerous targets of the miR-302 cluster were uncovered using the photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation method (PAR-CLIP); these included modulation of BMP signaling through suppression of Tob2, Dazap2, and Slain1 (Lipchina *et al.*, 2011). miR-302a is known to target Lefty1/2, which is an agonist of the TGF-β/Nodal signaling pathway in embryogenesis (Rosa *et al.*, 2009). In mouse ES cells, the miR-290 family controls de novo methylation through Rbl2-dependent regulation of DNA methyltransferase (Dnmts) (Benetti *et al.*, 2008; Sinkkonen *et al.*, 2008). Based on these findings, it appears that the main function of the miR-290/302 seed family is to shorten the G1 phase of the cell cycle to support self-renewal, and to secure the epigenetic status that maintains the pluripotency of ES cells. During MET stage of OSKM-induced reprogramming, aggregates and colonies of reprogrammed cells become visible under low magnification microscopy as reprogrammed cells acquire epithelial cell features. These cells begin to express pluripotency markers, of which SSEA-1 is the earliest surface marker to indicate the potential iPS cells (Brambrink et al., 2008; Stadtfeld et al., 2008a). As the reprogrammed cells move towards a state of pluripotency, Nanog, Esrrb, Lin28, Dppa4, Tert, Sox2, and Oct-4 are endogenously expressed, demonstrating that the core circuit of pluripotency has been established (Brambrink et al., 2008; Samavarchi-Tehrani et al., 2010; Sridharan et al., 2009; Stadtfeld et al., 2008a). The embryonic stem cell cell-cycle-regulating (ESCC) miRNAs, the miR-302 clusters, are also expressed during the transition stage day 4 to day 7 post induced reprogramming (Kamata et al., 2010; Li et al., 2011), mainly induced by the reprogramming factor c-Myc (Judson et al., 2009b; Liao et al., 2011). Recent study has shown that the promoter of miR-302 cluster can be bound and that the expression of miR-302 can be induced by vitamin C-dependent Oct4/Jhdm1b cooperation during reprogramming (Wang et al., 2011). The biogenesis of miRNAs has been shown to be critical to efficient reprogramming, because Ago2 downregulation reduces the number of iPS cell colonies (Li et al.,
2011). Depletion of the miR-302 family reduces reprogramming efficiency in response to OSK or OSKM (Liao et al., 2011; Wang et al., 2011), suggesting that the miR-302 family plays essential roles in the reprogramming process. Ectopic expression of the miR-290 or miR-302 clusters has been shown to improve OSKM- or OSK-reprogramming (Judson et al., 2009b; Subramanyam et al., 2011) by promoting MET through inhibition of the TGF-β receptor (Li et al., 2011; Liao et al., 2011; Subramanyam et al., 2011). Recent finding (Luningschror et al., 2012) also demonstrated that miR-290 cluster maintain pluripotency by repressing nuclear factor kappa B (NF-kB) signaling pathway, which in turn restricts epithelial to mesenchymal transition in ES cells. Furthermore, the miR-290/302 seed family targets diverse functional groups to positively enhance induced reprogramming, including cell cycle regulation, (Cdkn1a, Rbl2, and Cdc2l6) and epigenetic regulation (Aof1, Aof2, Mecp1-p66, MECP2, Mbd2, and Smarcc2) (Lin et al., 2011; Subramanyam et al., 2011). Other miRNAs have been identified to enhance reprogramming. For example, miR-17/92, miR-106b/25, and miR-106a/363 clusters boost reprogramming by targeting TGF-βr2 and p21 (Li *et al.*, 2011). Notably, miR-17, miR-93, and miR-106a have also been induced during the MET stage (day 4 post reprogramming) (Chen *et al.*, 2012; Li *et al.*, 2011). Moreover, introduction of miR-106b and miR-93 miRNA mimics can promote MET to boost reprogramming efficiency (Li *et al.*, 2011). The miR-130/301/721 family, identified by miRNA screening, target the homeobox transcription factor Meox2 (also known as Gax) to achieve ~2-fold increase in reprogramming (Pfaff *et al.*, 2011). All those miRNAs (miR-17, 106a, 106b clusters, and miR-130/301/721 family) share a similar seed region with the miR-290/302 family, suggesting that an abundance of miRNAs containing the miR-290/302 seed region play significant roles in various biological functions and intrinsically act as positive regulator to reprogramming. # Reprogramming with miRNAs only A few reports have shown the great promise of inducing reprogramming with only microRNAs (miRNAs) (Anokye-Danso *et al.*, 2011; Lin *et al.*, 2008; Lin *et al.*, 2011; Miyoshi *et al.*, 2011; Warren *et al.*, 2010). The miR-290/302 seed family plays multiple roles at the ES stage (Marson *et al.*, 2008) and during the reprogramming process, and the miR-290 and miR-302 clusters are the predominant miRNA population expressed in mammalian ES cells. Therefore, the miR-290/302 seed family may have the potential to induce somatic cell reprogramming in the absence of transgenes OSKM. The reprogramming potential of the miR-302 cluster was first tested in human cancer cells, which showed that the signature properties of pluripotent stem cells are acquired in miR-iPS cells (Lin *et al.*, 2008). Following this finding, several reports demonstrated that the miR-302 cluster can reprogram various primary cell types into pluripotent stem cells (Anokye-Danso et al., 2011; Lin et al., 2011; Miyoshi et al., 2011). Among these, Morrisey's group demonstrated that miRNA-induced reprogramming is more efficient than transcription factor-mediated one in both mouse (81.5% versus 17.9%) and human somatic cells (10% versus 0.004%) (Anokye-Danso et al., 2011). But to achieve this striking efficiency, suppression or low level of Hdac2 seems to be required in both mouse and human cells (Anokye-Danso et al., 2011; Miyoshi et al., 2011). Mori's group further demonstrated that clinical-applicable iPS cells can be generated by introducing only a group of mature miRNAs (miR-200c, miR-302 family, and miR-369s), without retro-viral integration in genome (Miyoshi et al., 2011). However, this transfection-base reprogramming can only reach 0.01% reprogramming efficiency in mouse cells, and even lower (0.001%) in human cells (Miyoshi et al., 2011). The methodology of administrating miRNAs may be one of the main reasons to cause the great discrepancy of miR-induced reprogramming efficiency between Morrisey (virus transduction) (Anokye-Danso et al., 2011) and Mori (small RNA transfection) (Miyoshi et al., 2011) groups. They also used distinct combination of miRNAs for reprogramming. miR-302 cluster combined with valproic acid (VPA) treatment were employed in Morrisey's group, while miR-200c, miR-302abcd, and miR-369s were used in Mori's group. Moreover, VPA for Hdac2 suppression and miR-367 are required in Morrisey's study, but both are dispensable in Mori's one. Those inconsistencies may need to be clarified to further improve the efficiency of reprogramming and clinical applicability of iPS cells. Despite the phenomenon of miR-induced somatic reprograming, how microRNAs can perturb somatic molecular networks and then launch pluripotent regulatory networks remains unknown (Anokye-Danso *et al.*, 2011; Miyoshi *et al.*, 2011). ### The mechanisms in miRNA-only reprogramming As described above, numerous miR-290/302 seed family targets have been identified, but these molecular networks have only been shown in the ES cell context or with forced expression of reprogramming factors OSKM. Wu's group provided the molecular evidence of miRNA-only induced reprogramming by demonstrating that the miR-302 cluster reactivates Oct4 and Nanog through releasing epigenetic repression on the promoter regions by targeting lysine-specific histone demethylases 1 and 2 (AOF1/2), which regulate histone lysine 3 methylation level, and also by targeting methyl-CpG binding proteins 1 and 2 (MECP1/2), which coordinate with DNMT1-mediated gene regulations (Lin et al., 2011). However, Blelloch's group showed that only TGF-β2r was detectably changed under the same miR-only reprogramming conditions (Subramanyam et al., 2011). A change in expression of MECP2 and other known targets of miR-302 could only be detected in the presence of three or four reprogramming factors (Subramanyam et al., 2011), suggesting that the reprogramming effect of miR-302 is likely as a cell context-dependent modulator. Therefore, the miR-302 cluster may exert its reprogramming potential through distinct routes from those of Yamanaka's factors, but can induce reprogrammed cells to eventually reach a similar, if not identical, stage of pluripotency. Small Chemical Molecules Targeting MEF-Enriched Genes Increase Induced Reprogramming Based on knowledge of the reprogramming steps, we hypothesized that overcoming MEF-specific networks is the first step in the process. We observed that specific siRNA-mediated knockdown of MEF genes encoding catalytic or regulatory proteins, including Wisp1, Prrx1, Hmga2, Nfix, Prkg2, Cox2, 6720477e09rik, and Tgf-β3, significantly enhanced reprogramming. To accelerate screening of small molecules, we used a computational screening method using the NextBio data-mining framework (Kupershmidt et al., 2010) and identified six molecules, including Nabumetone, OHTM, Corynanthine, Moclobemide, NiSO4, and lectin, which function together to reprogram MEFs without Sox2. One of those factors alone, OHTM, could partially replace the Sox2 transgene during reprogramming by inducing endogenous Sox2 expression. We further showed that Nabumetone enhances reprogramming by inhibiting COX2 activity. Finally, we showed that Nabumetone also promotes reprogramming in the absence of c-Myc or Sox2 function without compromising self-renewal and pluripotency of small molecule-derived iPS cells. # **New Life for FDA-approved Drugs in Induced Reprogramming** Nabumetone is a non-steroidal anti-inflammatory drug (NSAID) clinically used primarily to treat pain and inflammation associated with osteoarthritis or rheumatoid arthritis (Hedner et al., 2004; Moore et al., 2009). Nabumetone exerts anti-inflammatory activity by inhibiting COX2 function through its metabolite 6-methoxy-2-naphthylacetic acid. Moreover, it is reported that NSAIDs compromise tumor growth in clinical cases and experimental models of cancer and also that two isoforms cyclooxygenase-1 and -2 function in a variety of pathophysiological processes, such as modulating apoptosis, angiogenesis, invasion, and carcinogenesis (Boonsoda and Wanikiat, 2008; Elrod et al., 2009; Hashitani et al., 2003; Hida et al., 2002; Hida et al., 2000; Meric et al., 2006). Preliminary in vitro and in vivo studies show that following COX inhibition, signals regulating cell proliferation and apoptosis networks, including EGFR, KRas, PI3K, JAK1, STAT3, c-jun, PCNA, TGF-β3, BAX, TUNEL, Bcl-2, c-jun, p21, p27, p53, and NM23, are widely altered in tumor cells (Axelsson et al., 2010). However, the roles of COX inhibitors in tumorigenesis remain controversial, as COX2 expression differs widely in different types of cancer cells (Meric et al., 2006). In this study, we showed that COX2 is highly expressed in MEFs and serves as a barrier to reprogramming. Therefore, further analysis is required to understand the biological function and molecular regulation of COX2 in both cancer and reprogramming biology. Tamoxifen is a standard chemotherapy used to treat primary and advanced breast cancer by blocking the estrogen receptor (ER) via its metabolites OHTM and endoxifen. OHTM activity has been addressed primarily through its effect on the ER (Brauch et al., 2009). However, we did not observe detectable levels of ER expression in MEFs (data not shown). OHTM-induced programmed cell death can reportedly be induced through ER-independent pathways in HeLa cells (Obrero et al., 2002), suggesting that other factors respond to OHTM. Moreover, 3,4-dihydroxytamoxifen, a more hydroxylated form of OHTM, can interact with both proteins and DNA (Brauch et al., 2009), suggesting the possibility of numerous targets in vivo. # **Chemically Induced Reprogramming with Small Molecules** Reprogramming of somatic cells to iPS cells by small molecules could facilitate pharmaceutical and medical applications of pluripotent stem cells (Feng *et al.*, 2009; Yamanaka,
2009b). A number of studies have identified small molecules that enhance reprogramming by targeting various pathways including TGF-β and GSK3 (Ichida *et al.*, 2009; Li *et al.*, 2009b; Liang *et al.*, 2010; Lyssiotis *et al.*, 2009; Maherali and Hochedlinger, 2009a; Mali *et al.*, 2010; Shi *et al.*, 2008a; Shi *et al.*, 2008b). Although iPS cells can be generated in the absence of Sox2 (Ichida *et al.*, 2009; Maherali and Hochedlinger, 2009a; Shi *et al.*, 2008a), only RepSox has been shown to partially induce Nanog expression in partial iPS cells (Ichida *et al.*, 2009). Here, we are the first to report that Sox2 can be induced by OHTM treatment during reprogramming. Further investigation is required to identify pathways modulated by OHTM in MEFs during reprogramming. Increasing evidence shows that overcoming the security of somatic cell identity is a critical step initiating the transition from mesenchymal to epithelial status (Li et al., 2010; Loh and Lim, 2010; Samavarchi-Tehrani et al., 2010; Silva et al., 2008b; Silva et al., 2009). This step requires large-scale regulation of opposing genes within only few days during the first 8 days of reprogramming, including *Cdh1*, *Epcam*, *Crb3*, *Ocln*, *Snail*, Slug, Zeb1, Zeb2, BMP, and TGF-β pathways (Li et al., 2010; Samavarchi-Tehrani et al., 2010). As TGF-β3 is also in our list and TGF-β3 knockdown greatly enhances reprogramming efficiency, these data support our idea that down-regulating MEF regulatory factors is an effective approach to enhance reprogramming. Furthermore, our study confirms that downregulation of MEF genes encoding catalytic factors constitutes some of the earliest steps of reprogramming and that attenuating key somatic genes is critical to enhance reprogramming efficiency. Further study is needed to reveal how the individual network of these MEF-enriched enzymes functions in the process. ### Converging regulations of miRNAs and small molecule Nabumetone OSKM-transformed cells need to overcome thresholds to initiate cell fate transitions (Figure 6.1). MEF-enriched miRNAs and genes function as barriers to induced reprogramming. With inhibitors of miRNAs or chemicals, reprogramming efficiency will be improved with lower threshold (Figure 6.1). MEF-enriched miRNAs, miR-21 and miR-29a, act as indirect positive-regulators of p53 and ERK1/2 pathways (Figure 6.2). Figure 6.1 # Figure 6.1 Correlation of miRNA inhibitor and small molecule effects in enhancing induced reprogramming # (A) Scheme showing reprogramming potential with various treatments. Threshold of reprogramming potential is represented as dotted curve line (without treatment), or solid curve line (with treatments). The major effective stages of each treatment are indicated with arrows. Reprogramming process is shown from "somatic networks" to "pluripotent networks". Nabu abbreviates Nabumetone. OHTM denotes 4-hydroxytamoxifen. # (B) Converging target of miRNA inhibitors and Nabumetone. The direct inhibitory regulations are shown in solid lines and indirect regulations are shown in dotted lines. The converging target p53 is highlighted in green. co-inhibiting miR-21 and miR-29a show little additive effect in enhancing reprogramming efficiency (data not shown). Interestingly, specific target of Nabumetone, COX2, has been shown regulating p53 expression in cancer cells and depletion of COX2 shows increased iPS cell generation. Although COX2's regulatory mechanisms of p53 are unclear, p53 might be the converging target for both miRNAs and Nabumetone during reprogramming. # Probing the Molecular Mechanism of Induced Reprogramming with Integrative Genome-Wide Studies We examined the molecular mechanism in a step-wise manner by applying FACS to a group of distinct cell populations, representing four critical steps from initiation to maturation of induced reprogramming. We first clustered genes into five categories (I–V) based on their expression patterns along the pathway to induced reprogramming. Numerous genes were shown to be key players at each transition stage from mouse embryonic fibroblast to induced pluripotent stem cells. We employed genome-wide RNAi screen to independently identify critical functionalities of molecules/pathways, which modulate the progress of induced reprogramming. Select genes were tested individually to further confirm their roles during reprogramming. The high validation rate of this two-pronged study suggests that our new strategy is highly valuable to discovering key regulatory molecules/networks in the reprogramming process. By successfully combining whole-genome shRNA library screening with FACS analysis, we were able to shed light on the molecular basis contributing to modulating induced reprogramming. # **Deeper Insight of Regulatory Networks in Reprogramming** Several transition events may prove decisive step for cells as they proceed to the next phase of induced reprogramming. For example, we showed that most key players involved in DNA damage/cell cycle regulation are activated upon induced reprogramming, consistent with previous reports (Banito et al., 2009a; Hong et al., 2009; Kawamura et al., 2009b; Li et al., 2009a; Marion et al., 2009; Utikal et al., 2009). Furthermore, cells escaping from this surveillance system showed a positive influence on reprogramming progress (Banito et al., 2009a; Hong et al., 2009; Kawamura et al., 2009b; Li et al., 2009a; Marion et al., 2009; Utikal et al., 2009). However, it is critical to resume the cell cycle by overcoming senescence for cells to leave the somatic status, which is supported by our findings that Ink4/Arf is only enriched in the initial cell population, as well as by previous findings (Banito et al., 2009a; Li et al., 2009a). The new identified gene Cdk14 may modulate the reprogramming progress by regulating cell cycle progression and cell proliferation (Shu et al., 2007). Re-entry into the cell cycle might generally boost the cell transformation and transition away from fibrotic/somatic status, but may not necessarily push cells specifically toward pluripotent status. The majority of transformed cells are "trapped" in the transition stage (Thy1/SSEA1), with divergent transcriptome showing correlations to various tissue types; this implies that cells are reset at this re-constructing phase where cells might have the potential to adopt distinct cell fates until the "right" molecular networks are further re-built. This notion is supported by recent studies (Polo et al., 2012; Shu et al., 2013) showing that re-administration of OSKM or lineage specifiers into those transitioning cells drove more cells into pluripotent or other desired states. The potential diversity of cell fates at the Thy1⁻/SSEA1⁻ stage is usually ignored, probably because the only desired cell type here is the pluripotent stem cells. But, these "transitioning" cells with high plasticity may provide a good starting point for various cell-fate inter-conversions. To reach the specific path toward pluripotency (the pre-determined stage), transitioning cells (Thy1'/SSEA1') need to activate several preliminary factors, such as *Nanog, Sall4, Esrrb, Dppa4, Dppa5a, Dnmt3b and Dnmt3l*. These "pre-determined" SSEA1⁺/DsRed⁺ cells show a strong resemblance to ES cells in the transcriptome profile but with lower expression level and incomplete induction of the majority of the key regulators in ES cells. Despite this discrepancy, this observation raises the possibility of deriving certain progenitors/adult stem cells from the SSEA1⁺/DsRed⁺ population, although vigorous tests are required to obtain practical evidence. To fully acquire pluripotency, cells will need stronger induction of the preliminary factors and will also need to further re-establish the ES core circuitry with additional activation of numerous factors, including *Utf1*, *Nr6a1*, *Tdgf1*, *Gsc*, *Fgf10*, *T*, *Chrd*, *Dppa3*, *Fgf17*, *Eomes*, *Foxa2*, and others. Upon induced reprogramming, the deconstruction of molecular networks in Thy1⁺ cells takes place in order for cells to de-differentiate to Thy1⁻ status. However, our data point to the possibility that Thy1⁺/SSEA1⁻ cells represent the cells that either developed into other cell types or failed to progress properly. Cells in this prior-determined stage might be directed further to attain the desired cell type if specific barriers are overcome. ## **Novel Key Regulators in Maintaining ESC Identity** Srsf2, Hcfc1, and Ruvbl2 play important roles in various cell types (<u>Dejosez et al.</u>, <u>2010</u>; <u>Ding et al.</u>, <u>2009</u>; <u>Xiao et al.</u>, <u>2007</u>). Furthermore, Pcgf6, Hcfc1, and Ruvbl2 have been shown to associate with epigenetic-modifying complexes (<u>Akasaka et al.</u>, <u>2002</u>; <u>Jha et al.</u>, <u>2013</u>; <u>Tyagi et al.</u>, <u>2007</u>; <u>Tyagi and Herr, 2009</u>). We found that Pcgf6, Srsf2, Hcfc1, and Ruvbl2 all play important roles in both ES cell maintenance and induced reprogramming progress. Interestingly, depletion of Pcgf6 greatly compromised self-renewal, but not cell growth, in ES cells, while Srsf2, Hcfc1, and Ruvbl2 have reciprocal effects. This finding demonstrates that those four genes may enhance reprogramming efficiency through different pathways. Determinative Factors in reprogramming Identified in Our Functional Genomics Study Somatic reprogramming with OSKM leads to great dynamic changes of transcriptome (Buganim et al., 2012; Hanna et al., 2009; MacArthur et al., 2008; Yamanaka, 2009a), while cell fate is gradually determined along the reprogramming process (Brambrink et al., 2008; Stadtfeld et al., 2008a). Distinct from previous strategies, we focused on the end stage of induced reprogramming, where molecular contents are defined/fixed in those trapped cells. From this new point of view, we are able to identify several novel modulators that influence the cell-fate decision, which might be missed by collecting transient cell types during reprogramming. Furthermore,
previous studies all focused on the genes enriched/activated in iPS/ES cells by mRNA analysis; solely analyzing transcriptome changes in this fashion may miss several important modulators at the transition steps during reprogramming, as the posttranscriptional/translational regulations also play significant roles even with little change in mRNA level. Indeed, whole-genome shRNA library screening in this study provides an unbiased method to identify those "hidden" factors in the reprogramming process, regardless of the mRNA expression change. Two important findings with similar cell sorting approaches were published by Jaenisch's lab and Hochedlinger's lab (Buganim et al., 2012; Polo et al., 2012). Jaenisch's group suggested two sequential phases (probabilistic and hierarchical phases) of induced reprogramming, which highly resembles our findings of a de-constructing/re-constructing phase and a pre-determined phase. Both studies showed that Esrrb, Nanog, and Sall4 are more reliable indicators for successful reprogramming, which is consistent with our results. More importantly, our work further advanced the field by identifying numerous novel key modulations, by combining genome-wide shRNA library screening with transcriptome analysis. In addition, our shRNA screening revealed a large number of genes that functionally contribute to induced reprogramming, such as numerous identified barrier or essential factors, regardless of the complex nature of mixed transcriptome. We thus believe that this pioneering study, which applies shRNA library screening to elucidate the reprogramming mechanism, will serve as a strong foundation for various applications in this field, such as small molecule targeting, cell-fate manipulation, and progenitor derivation. Most importantly, it will help researchers better understand the molecular basis of induced reprogramming. # New Approaches Shed Lights on the Mechanisms of Different Reprogramming **Processes** Destabilization of somatic networks is the first cellular event in reprogramming before re-construction of the ES-specific networks. In contrast to most studies that investigate the ES cell-specific genes in reprogramming, our work first focused on the function of MEF-enriched miRNAs and genes in early reprogramming process. Furthermore, to minimize the cost and effort by shotgun screening approaches, we combine genomics and computational drug screening to identify new drugs for reprogramming potentially. Focusing on the catalytic proteins enriched in MEF, we only tested limited number of small molecules to identify active chemicals in reprogramming process. Therefore, we believe that this new aspect of screening approach will inspire future studies to select potential targets predicted by bioinformatics analysis for further investigation, as opposed to large scale screening. High degree of cell complexity is the major obstacle to understand step-wise regulatory networks in reprogramming process. Therefore, we established a new system to distinguish different cell populations by using cell-fate specific markers. This system allows us to isolate the cells in transition stages, which provide more information about the cellular events step-wisely in reprogramming. We further utilized genome-wide RNAi screen to perform loss-of-function analysis. By combining cell sorting, we were able to identify gene required for each cell-fate transition. The information of temporal regulations and requirements of stage-specific genes will provide solid foundation to advance the understanding of cell-fate transitions. Furthermore, we found that cell plasticity is altered along the reprogramming process, suggesting trans-differentiation might be possible along the induced reprogramming. And epithelial cells derived from visual system show highly correlated transcriptome profiles with ES/iPS cells, providing another cell resource for efficient induced reprogramming. Transcriptome analysis is the most common way to understand the expression changes and to predict the key regulatory molecules or networks in various biological processes, including induced reprogramming. But differentially expressed genes may only serve as markers, because of insufficient functional validation. Therefore, our integrative approach creates a unique opportunity to analyze genome-wide data by RNAi screen and combining transcriptome analysis. We identified differentially expressed genes in each transition step, providing cell-fate markers from the initial to mature-reprogrammed status. In addition, the functional requirements during the cell-fate transition are also identified by RNAi screen. Surprisingly, our integrative analysis reveals that a group of genes, with little expression changes, play critical roles in each reprogramming stage. This finding raises the notion that "non-induced or changed" genes may play important roles in various physiological conditions, even though these genes are likely to be neglected in transcriptome analysis. ## **Prospective Development in Induced Reprogramming** Transcriptome changes and functional impacts of stage-specific genes are revealed in our study, but the mediators of four reprogramming factors are still unclear. This missing link between OSKM and downstream effectors is the key to understand the direct regulatory networks and pathways of reprogramming factors. To investigate that, tetracycline inducible system can be used to temporarily express each reprogramming factor and differentially expressed genes can be examined to elucidate potential mediators. Analyze the genomic binding sites of each reprogramming factor will also provide insights into the mediators during reprogramming process. To the end, we might be able to construct hierarchical regulatory pathways of each reprogramming factor and understand how this stochastic process of iPS cell generation can be directed. Generation of iPS cells with a safe and efficient way is required to expedite the clinical applications in regenerative medicine. Among various methods to create iPS cells, small molecule treatment provides a safe way with no genomic modifications. Since our genome-wide study provides wealthy information of signature markers or determinant molecules during reprogramming process, we should utilize small molecules specifically targeting identified proteins to direct the cell fate changes in higher efficiency. ## **APPENDICES** - I. Table 3.1 - II. Appendix 1. Proportion of sorted cells - III. Appendix 2. Whole genome transcriptome analysis - IV. Appendix 3. Top Biological Functions of mRNA group I to V - V. Appendix 4. Transcriptome changes in each transition step during reprogramming. - VI. Appendix 5. Common and unique gene lists for last two transition steps. - VII. Appendix 6. Genome-wide RNAi screen and analysis. - VIII. Appendix 7. Gene number and ratio in each shRNA-enriched group - IX. Appendix 8. Summary of shRNA-identified genes Table 3.1. Function Summary of Select MEF-enriched genes | Common Name | Reference Sequence | |-------------|--------------------| | WISP1 | NM_018865 | #### **Function Summary*:** This gene encodes a member of the WNT1 inducible signaling pathway (WISP) protein subfamily, which belongs to the connective tissue growth factor (CTGF) family. WNT1 is a member of a family of cysteine-rich, glycosylated signaling proteins that mediate diverse developmental processes. The CTGF family members are characterized by four conserved cysteine-rich domains: insulin-like growth factor-binding domain, von Willebrand factor type C module, thrombospondin domain and C-terminal cystine knot-like domain. This gene may be downstream in the WNT1 signaling pathway that is relevant to malignant transformation. It is expressed at a high level in fibroblast cells, and overexpressed in colon tumors. The encoded protein binds to decorin and biglycan, two members of a family of small leucine-rich proteoglycans present in the extracellular matrix of connective tissue, and possibly prevents the inhibitory activity of decorin and biglycan in tumor cell proliferation. It also attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. It is 83% identical to the mouse protein at the amino acid level. Alternative splicing of this gene generates 2 transcript variants. | Common Name | Reference Sequence | |-------------|--------------------| | PRRX1 | NM_011127 | ## **Function Summary*:** The DNA-associated protein encoded by this gene is a member of the paired family of homeobox proteins localized to the nucleus. The protein functions as a transcription co-activator, enhancing the DNA-binding activity of serum response factor, a protein required for the induction of genes by growth and differentiation factors. The protein regulates muscle creatine kinase, indicating a role in the establishment of diverse mesodermal muscle types. Alternative splicing yields two isoforms that differ in abundance and expression patterns. | Common Name | Reference Sequence | |-------------|--------------------| | HMGA2 | NM_010441 | ## **Function Summary*:** This gene encodes a protein that belongs to the non-histone chromosomal high mobility group (HMG) protein family. HMG proteins function as architectural factors and are essential components of the enhancesome. This protein contains structural DNA-binding domains and may act as a transcriptional regulating factor. Identification of the deletion, amplification, and rearrangement of this gene that are associated with myxoid liposarcoma suggests a role in adipogenesis and mesenchymal differentiation. A gene knock out study of the mouse counterpart demonstrated that this gene is involved in diet-induced obesity. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. | Common Name | Reference Sequence | |-------------|--------------------| | NFIX | NM_001081982 | ## **Function Summary**[¶]: Recognizes and
binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. | Common Name | Reference Sequence | |-------------|--------------------| | PRKG2 | NM_008926 | ## **Function Summary**§: AMP-activated protein kinase (AMPK) is a heterodimeric protein serine/threonine kinase that is composed of alpha- (catalytic) and beta/gamma- (regulatory) subunits. AMPK acts as a sensor of the energy status of cells and ensures survival at times of metabolic stress. AMPK phosphorylates many metabolic enzymes to stimulate catabolic pathways, such as ketogenesis, and inhibit anabolic pathways, such as protein synthesis. The long-term activation of AMPK increases the capacity of cells to produce ATP. AMPK is regulated by phosphorylation at the Thr-172 residue of the alpha-subunit by AMPKK and by phosphorylation by calmodulin-dependent protein kinase kinase-beta (CamKKbeta). In addition, the ratio of AMP:ATP mediates allosteric activation of the enzyme. AMPK is found throughout the body with high concentrations in metabolically active tissues such as the skeletal muscles and liver. | Common Name | Reference Sequence | |--------------|--------------------| | COX2 (PTGS2) | NM_011198 | #### **Function Summary*:** Prostaglandin-endoperoxide synthase (PTGS), also known as cyclooxygenase, is the key enzyme in prostaglandin biosynthesis, and acts both as a dioxygenase and as a peroxidase. There are two isozymes of PTGS: a constitutive PTGS1 and an inducible PTGS2, which differ in their regulation of expression and tissue distribution. This gene encodes the inducible isozyme. It is regulated by specific stimulatory events, suggesting that it is responsible for the prostanoid biosynthesis involved in inflammation and mitogenesis. | Common Name | Reference Sequence | |-------------|--------------------| | TGF-β3 | NM_009368 | #### **Function Summary*:** This gene encodes a member of the TGF- β family of proteins. The encoded protein is secreted and is involved in embryogenesis and cell differentiation. Defects in this gene are a cause of familial arrhythmogenic right ventricular dysplasia 1. | Common Name | Reference Sequence | |-------------|--------------------| | LZYS | NM_017372 | #### **Function Summary*:** C-type lysozyme (1, 4-beta-N-acetylmuramidase, LYZ) and alpha-lactalbumin (lactose synthase B protein, LA). They have a close evolutionary relationship and similar tertiary structure, however, functionally they are quite different. Lysozymes have primarily bacteriolytic function; hydrolysis of peptidoglycan of prokaryotic cell walls and transglycosylation. LA is a calcium-binding metalloprotein that is expressed exclusively in the mammary gland during lactation. LA is the regulatory subunit of the enzyme lactose synthase. The association of LA with the catalytic component of lactose synthase, galactosyltransferase, alters the acceptor substrate specificity of this glycosyltransferase, facilitating biosynthesis of lactose. | Common Name | Reference Sequence | |---------------|--------------------| | 6720477E09RIK | NM_001172121 | ## **Function Summary*:** This gene encodes an RNA-binding protein that belongs to the c-myc gene single-strand binding protein family. These proteins are characterized by the presence of two sets of ribonucleoprotein consensus sequence (RNP-CS) that contain conserved motifs, RNP1 and RNP2, originally described in RNA binding proteins, and required for DNA binding. These proteins have been implicated in such diverse functions as DNA replication, gene transcription, cell cycle progression and apoptosis. The encoded protein was isolated by virtue of its binding to an upstream element of the alpha2(I) collagen promoter. The observation that this protein localizes mostly in the cytoplasm suggests that it may be involved in a cytoplasmic function such as controlling RNA metabolism, rather than transcription. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene. - * Information is collected through NCBI RefSeq, unless otherwise stated. - ¶ Information is collected from Protein Knowledgebase in UniProt. - § Information is collected from TOCRIS bioscience (http://www.tocris.com). #### REFERENCES Akasaka, T., Takahashi, N., Suzuki, M., Koseki, H., Bodmer, R., and Koga, H. (2002). MBLR, a new RING finger protein resembling mammalian Polycomb gene products, is regulated by cell cycle-dependent phosphorylation. Genes Cells *7*, 835-850. Ambros, V. (2004). The functions of animal microRNAs. Nature *431*, 350-355. Ambros, V. (2011). MicroRNAs and developmental timing. Curr Opin Genet Dev *21*, 511-517. Anokye-Danso, F., Trivedi, C.M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P.J., Epstein, J.A., *et al.* (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376-388. Axelsson, H., Lonnroth, C., Andersson, M., and Lundholm, K. (2010). Mechanisms behind COX-1 and COX-2 inhibition of tumor growth *in vivo*. Int J Oncol *37*, 1143-1152. Banito, A., Rashid, S.T., Acosta, J.C., Li, S., Pereira, C.F., Geti, I., Pinho, S., Silva, J.C., Azuara, V., Walsh, M., *et al.* (2009a). Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23, 2134-2139. Banito, A., Rashid, S.T., Acosta, J.C., Li, S., Pereira, C.F., Geti, I., Pinho, S., Silva, J.C., Azuara, V., Walsh, M., *et al.* (2009b). Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev *23*, 2134-2139. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell *116*, 281-297. Benetti, R., Gonzalo, S., Jaco, I., Munoz, P., Gonzalez, S., Schoeftner, S., Murchison, E., Andl, T., Chen, T., Klatt, P., *et al.* (2008). A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol *15*, 268-279. Boonsoda, S., and Wanikiat, P. (2008). Possible role of cyclooxygenase-2 inhibitors as anticancer agents. Vet Rec *162*, 159-161. Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., *et al.* (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell *122*, 947-956. Brambrink, T., Foreman, R., Welstead, G.G., Lengner, C.J., Wernig, M., Suh, H., and Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151-159. Brauch, H., Murdter, T.E., Eichelbaum, M., and Schwab, M. (2009). Pharmacogenomics of tamoxifen therapy. Clin Chem *55*, 1770-1782. Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K., Klemm, S.L., van Oudenaarden, A., and Jaenisch, R. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell *150*, 1209-1222. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., and Brabletz, T. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep *9*, 582-589. Cahan, P., and Daley, G.Q. (2013). Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol. Cao, H., Yang, C.S., and Rana, T.M. (2008). Evolutionary emergence of microRNAs in human embryonic stem cells. PLoS One 3, e2820. Card, D.A., Hebbar, P.B., Li, L., Trotter, K.W., Komatsu, Y., Mishina, Y., and Archer, T.K. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28, 6426-6438. Carey, B.W., Markoulaki, S., Hanna, J.H., Faddah, D.A., Buganim, Y., Kim, J., Ganz, K., Steine, E.J., Cassady, J.P., Creyghton, M.P., *et al.* (2011). Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell stem cell *9*, 588-598. Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26, 745-752. Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., Thomas-Tikhonenko, A., and Mendell, J.T. (2008a). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet *40*, 43-50. Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., Thomas-Tikhonenko, A., and Mendell, J.T. (2008b). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet *40*, 43-50. Chang, T.C., Zeitels, L.R., Hwang, H.W., Chivukula, R.R., Wentzel, E.A., Dews, M., Jung, J., Gao, P., Dang, C.V., Beer, M.A., *et al.* (2009a). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A *106*, 3384-3389. Chang, T.C., Zeitels, L.R., Hwang, H.W., Chivukula, R.R., Wentzel, E.A., Dews, M., Jung, J., Gao, P., Dang, C.V., Beer, M.A., *et al.* (2009b). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A *106*, 3384-3389. Chen, J., Liu, J., Yang, J., Chen, Y., Ni, S., Song, H., Zeng, L., Ding, K., and Pei, D. (2011a). BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Res *21*, 205-212. Chen, J., Wang, G., Lu, C., Guo, X., Hong, W., Kang, J., and Wang, J. (2012). Synergetic Cooperation of microRNAs with Transcription Factors in iPS Cell Generation. PLoS One 7, e40849. Chen, J., Wang, L., Matyunina, L.V., Hill, C.G., and McDonald, J.F. (2011b). Overexpression of miR-429 induces mesenchymal-to-epithelial
transition (MET) in metastatic ovarian cancer cells. Gynecol Oncol *121*, 200-205. Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Orlov, Y.L., Zhang, W., Jiang, J., *et al.* (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell *133*, 1106-1117. Choi, Y.J., Lin, C.P., Ho, J.J., He, X., Okada, N., Bu, P., Zhong, Y., Kim, S.Y., Bennett, M.J., Chen, C., *et al.* (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol *13*, 1353-1360. Chu, C.Y., and Rana, T.M. (2007). Small RNAs: regulators and guardians of the genome. J Cell Physiol *213*, 412-419. Dejosez, M., Levine, S.S., Frampton, G.M., Whyte, W.A., Stratton, S.A., Barton, M.C., Gunaratne, P.H., Young, R.A., and Zwaka, T.P. (2010). Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev *24*, 1479-1484. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E.E., Lee, W.M., Enders, G.H., Mendell, J.T., *et al.* (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet *38*, 1060-1065. Ding, L., Paszkowski-Rogacz, M., Nitzsche, A., Slabicki, M.M., Heninger, A.K., de Vries, I., Kittler, R., Junqueira, M., Shevchenko, A., Schulz, H., *et al.* (2009). A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell stem cell *4*, 403-415. Elrod, H.A., Yue, P., Khuri, F.R., and Sun, S.Y. (2009). Celecoxib antagonizes perifosine's anticancer activity involving a cyclooxygenase-2-dependent mechanism. Mol Cancer Ther 8, 2575-2585. Eminli, S., Foudi, A., Stadtfeld, M., Maherali, N., Ahfeldt, T., Mostoslavsky, G., Hock, H., and Hochedlinger, K. (2009). Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet *41*, 968-976. Esteller, M. (2011). Non-coding RNAs in human disease. Nat Rev Genet 12, 861-874. Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156. Farazi, T.A., Spitzer, J.I., Morozov, P., and Tuschl, T. (2011). miRNAs in human cancer. J Pathol 223, 102-115. Farh, K.K., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P. (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science *310*, 1817-1821. Feng, B., Ng, J.H., Heng, J.C., and Ng, H.H. (2009). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell *4*, 301-312. Futaki, N., Takahashi, S., Yokoyama, M., Arai, I., Higuchi, S., and Otomo, S. (1994). NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity *in vitro*. Prostaglandins *47*, 55-59. Gao, P., Tchernyshyov, I., Chang, T.C., Lee, Y.S., Kita, K., Ochi, T., Zeller, K.I., De Marzo, A.M., Van Eyk, J.E., Mendell, J.T., *et al.* (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature *458*, 762-765. Geoghegan, E., and Byrnes, L. (2008). Mouse induced pluripotent stem cells. Int J Dev Biol *52*, 1015-1022. Gonzalez, F., Boue, S., and Izpisua Belmonte, J.C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet *12*, 231-242. Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A., Khew-Goodall, Y., and Goodall, G.J. (2008a). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol *10*, 593-601. Gregory, P.A., Bracken, C.P., Bert, A.G., and Goodall, G.J. (2008b). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle *7*, 3112-3118. Grskovic, M., Javaherian, A., Strulovici, B., and Daley, G.Q. (2011). Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10, 915-929. Gurdon, J.B., Elsdale, T.R., and Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature *182*, 64-65. Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature *462*, 595-601. Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., *et al.* (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science *318*, 1920-1923. Hashitani, S., Urade, M., Nishimura, N., Maeda, T., Takaoka, K., Noguchi, K., and Sakurai, K. (2003). Apoptosis induction and enhancement of cytotoxicity of anticancer drugs by celecoxib, a selective cyclooxygenase-2 inhibitor, in human head and neck carcinoma cell lines. Int J Oncol *23*, 665-672. He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134. Hedner, T., Samulesson, O., Wahrborg, P., Wadenvik, H., Ung, K.A., and Ekbom, A. (2004). Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis. Drugs *64*, 2315-2343; discussion 2344-2315. Hida, T., Kozaki, K., Ito, H., Miyaishi, O., Tatematsu, Y., Suzuki, T., Matsuo, K., Sugiura, T., Ogawa, M., and Takahashi, T. (2002). Significant growth inhibition of human lung cancer cells both *in vitro* and *in vivo* by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522, and conventional anticancer agents. Clin Cancer Res *8*, 2443-2447. Hida, T., Kozaki, K., Muramatsu, H., Masuda, A., Shimizu, S., Mitsudomi, T., Sugiura, T., Ogawa, M., and Takahashi, T. (2000). Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res *6*, 2006-2011. Ho, R., Chronis, C., and Plath, K. (2011). Mechanistic insights into reprogramming to induced pluripotency. J Cell Physiol 226, 868-878. Hochedlinger, K., and Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature *415*, 1035-1038. Hochedlinger, K., and Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development *136*, 509-523. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature *460*, 1132-1135. Houbaviy, H.B., Murray, M.F., and Sharp, P.A. (2003). Embryonic stem cell-specific MicroRNAs. Dev Cell *5*, 351-358. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol *26*, 795-797. Ichida, J.K., Blanchard, J., Lam, K., Son, E.Y., Chung, J.E., Egli, D., Loh, K.M., Carter, A.C., Di Giorgio, F.P., Koszka, K., *et al.* (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5, 491-503. Jain, A.K., Allton, K., Iacovino, M., Mahen, E., Milczarek, R.J., Zwaka, T.P., Kyba, M., and Barton, M.C. (2012). p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 10, e1001268. Jha, S., Gupta, A., Dar, A., and Dutta, A. (2013). RVBs are required for assembling a functional TIP60 complex. Mol Cell Biol *33*, 1164-1174. Jopling, C., Boue, S., and Izpisua Belmonte, J.C. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12, 79-89. Judson, R.L., Babiarz, J.E., Venere, M., and Blelloch, R. (2009a). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol *27*, 459-461. Judson, R.L., Babiarz, J.E., Venere, M., and Blelloch, R. (2009b). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol *27*, 459-461. Kamata, M., Liang, M., Liu, S., Nagaoka, Y., and Chen, I.S. (2010). Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 5, e11834. Kanellopoulou, C., Muljo, S.A., Kung, A.L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D.M., and Rajewsky, K. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev *19*, 489-501. Kasinski, A.L., and Slack, F.J. (2010). Potential microRNA therapies targeting Ras, NFkappaB and p53 signaling. Curr Opin Mol Ther *12*, 147-157. Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Belmonte, J.C. (2009a). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature *460*, 1140-1144. Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Izpisua Belmonte, J.C. (2009b). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature *460*, 1140-1144. Kim, H.H., Kuwano, Y., Srikantan, S., Lee, E.K., Martindale, J.L., and Gorospe, M. (2009a). HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev *23*, 1743-1748. Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S.H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell *132*, 1049-1061. Kim, M., Kasinski, A.L., and Slack, F.J. (2011a). MicroRNA therapeutics in preclinical cancer models. Lancet Oncol *12*, 319-321. Kim, N.H., Kim, H.S., Li, X.Y., Lee, I., Choi, H.S., Kang, S.E., Cha, S.Y., Ryu, J.K., Yoon, D., Fearon, E.R., *et al.* (2011b). A p53/miRNA-34 axis regulates Snail1-dependent cancer
cell epithelial-mesenchymal transition. J Cell Biol *195*, 417-433. Kim, V.N., Han, J., and Siomi, M.C. (2009b). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol *10*, 126-139. Kleinsmith, L.J., and Pierce, G.B., Jr. (1964). Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res *24*, 1544-1551. Koche, R.P., Smith, Z.D., Adli, M., Gu, H., Ku, M., Gnirke, A., Bernstein, B.E., and Meissner, A. (2011). Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8, 96-105. Kong, W., Yang, H., He, L., Zhao, J.J., Coppola, D., Dalton, W.S., and Cheng, J.Q. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28, 6773-6784. Kupershmidt, I., Su, Q.J., Grewal, A., Sundaresh, S., Halperin, I., Flynn, J., Shekar, M., Wang, H., Park, J., Cui, W., *et al.* (2010). Ontology-based meta-analysis of global collections of high-throughput public data. PLoS One *5*. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., *et al.* (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell *129*, 1401-1414. Laneuville, O., Breuer, D.K., Dewitt, D.L., Hla, T., Funk, C.D., and Smith, W.L. (1994). Differential inhibition of human prostaglandin endoperoxide H synthases-1 and -2 by nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther *271*, 927-934. Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., Blasco, M.A., and Serrano, M. (2009a). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136-1139. Li, M.A., and He, L. (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays *34*, 670-680. Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q., *et al.* (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell *7*, 51-63. Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H.R., Hayek, A., and Ding, S. (2009b). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27, 2992-3000. Li, Z., and Rana, T.M. (2012). A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nat Commun *3*, 1085. Li, Z., Yang, C.S., Nakashima, K., and Rana, T.M. (2011). Small RNA-mediated regulation of iPS cell generation. Embo J *30*, 823-834. Liang, G., Taranova, O., Xia, K., and Zhang, Y. (2010). Butyrate promotes induced pluripotent stem cell generation. J Biol Chem 285, 25516-25521. Liao, B., Bao, X., Liu, L., Feng, S., Zovoilis, A., Liu, W., Xue, Y., Cai, J., Guo, X., Qin, B., et al. (2011). MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286, 17359-17364. Lin, C.H., Jackson, A.L., Guo, J., Linsley, P.S., and Eisenman, R.N. (2009a). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28, 3157-3170. Lin, C.H., Jackson, A.L., Guo, J., Linsley, P.S., and Eisenman, R.N. (2009b). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. Embo J 28, 3157-3170. Lin, C.H., Lin, C., Tanaka, H., Fero, M.L., and Eisenman, R.N. (2009c). Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS One 4, e7839. Lin, S.L., Chang, D.C., Chang-Lin, S., Lin, C.H., Wu, D.T., Chen, D.T., and Ying, S.Y. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. Rna 14, 2115-2124. Lin, S.L., Chang, D.C., Lin, C.H., Ying, S.Y., Leu, D., and Wu, D.T. (2011). Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res *39*, 1054-1065. Lin, S.L., Chang, D.C., Ying, S.Y., Leu, D., and Wu, D.T. (2010). MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res *70*, 9473-9482. Lipchina, I., Elkabetz, Y., Hafner, M., Sheridan, R., Mihailovic, A., Tuschl, T., Sander, C., Studer, L., and Betel, D. (2011). Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 25, 2173-2186. Liu, G., Friggeri, A., Yang, Y., Milosevic, J., Ding, Q., Thannickal, V.J., Kaminski, N., and Abraham, E. (2010a). miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207, 1589-1597. Liu, G., Friggeri, A., Yang, Y., Milosevic, J., Ding, Q., Thannickal, V.J., Kaminski, N., and Abraham, E. (2010b). miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207, 1589-1597. Liu, T., Cheng, W., Huang, Y., Huang, Q., Jiang, L., and Guo, L. (2012). Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res *318*, 424-434. Loh, K.M., and Lim, B. (2010). Recreating pluripotency? Cell Stem Cell *7*, 137-139. Lotterman, C.D., Kent, O.A., and Mendell, J.T. (2008). Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle *7*, 2493-2499. Luningschror, P., Stocker, B., Kaltschmidt, B., and Kaltschmidt, C. (2012). miR-290 cluster modulates pluripotency by repressing canonical NF-kappaB signaling. Stem Cells *30*, 655-664. Lyssiotis, C.A., Foreman, R.K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L.L., Charette, B.D., Bouchez, L.C., *et al.* (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci U S A *106*, 8912-8917. Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E.G., Teruya-Feldstein, J., Bell, G.W., and Weinberg, R.A. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28, 341-347. Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature *449*, 682-688. MacArthur, B.D., Please, C.P., and Oreffo, R.O. (2008). Stochasticity and the molecular mechanisms of induced pluripotency. PLoS One *3*, e3086. Macfarlan, T.S., Gifford, W.D., Agarwal, S., Driscoll, S., Lettieri, K., Wang, J., Andrews, S.E., Franco, L., Rosenfeld, M.G., Ren, B., *et al.* (2011). Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 25, 594-607. Maherali, N., and Hochedlinger, K. (2009a). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol *19*, 1718-1723. Maherali, N., and Hochedlinger, K. (2009b). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol *19*, 1718-1723. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., *et al.* (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell stem cell *1*, 55-70. Mali, P., Chou, B.K., Yen, J., Ye, Z., Zou, J., Dowey, S., Brodsky, R.A., Ohm, J.E., Yu, W., Baylin, S.B., *et al.* (2010). Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28, 713-720. Marion, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Capetillo, O., Serrano, M., and Blasco, M.A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature *460*, 1149-1153. Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., *et al.* (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell *134*, 521-533. Mayr, C., and Bartel, D.P. (2009). Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell *138*, 673-684. Melton, C., Judson, R.L., and Blelloch, R. (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature *463*, 621-626. Meric, J.B., Rottey, S., Olaussen, K., Soria, J.C., Khayat, D., Rixe, O., and Spano, J.P. (2006). Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol Hematol *59*, 51-64. Mikkelsen, T.S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B.E., Jaenisch, R., Lander, E.S., and Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature *454*, 49-55. Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D.L., Kano, Y., Nishikawa, S., Tanemura, M., Mimori, K., Tanaka, F., *et al.* (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633-638. Moore, R.A., Derry, S., Moore, M., and McQuay, H.J. (2009). Single dose oral nabumetone for acute postoperative pain in adults. Cochrane Database Syst Rev, Mott, J.L., Kurita, S., Cazanave, S.C., Bronk, S.F., Werneburg, N.W., and CD007548. Fernandez-Zapico, M.E. (2010). Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem *110*, 1155-1164. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., and Hannon, G.J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A *102*, 12135-12140. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat
Biotechnol *26*, 101-106. Nichols, J., Silva, J., Roode, M., and Smith, A. (2009). Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development *136*, 3215-3222. Obrero, M., Yu, D.V., and Shapiro, D.J. (2002). Estrogen receptor-dependent and estrogen receptor-independent pathways for tamoxifen and 4-hydroxytamoxifen-induced programmed cell death. J Biol Chem *277*, 45695-45703. Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science *322*, 949-953. Onder, T.T., Kara, N., Cherry, A., Sinha, A.U., Zhu, N., Bernt, K.M., Cahan, P., Marcarci, B.O., Unternaehrer, J., Gupta, P.B., *et al.* (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature *483*, 598-602. Papp, B., and Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. Cell *152*, 1324-1343. Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008a). Reprogramming of human somatic cells to pluripotency with defined factors. Nature *451*, 141-146. Park, S.M., Gaur, A.B., Lengyel, E., and Peter, M.E. (2008b). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22, 894-907. D.M., Lengyel, E., and Peter, M.E. (2007). Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle *6*, 2585-2590. Park, S.Y., Lee, J.H., Ha, M., Nam, J.W., and Kim, V.N. (2009a). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol *16*, 23-29. Park, S.Y., Lee, J.H., Ha, M., Nam, J.W., and Kim, V.N. (2009b). miR-29 miRNAs Park, S.M., Shell, S., Radjabi, A.R., Schickel, R., Feig, C., Boyerinas, B., Dinulescu, Pelengaris, S., Khan, M., and Evan, G. (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2, 764-776. activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16, 23-29. Pfaff, N., Fiedler, J., Holzmann, A., Schambach, A., Moritz, T., Cantz, T., and Thum, T. (2011). miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Rep *12*, 1153-1159. Plath, K., and Lowry, W.E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet *12*, 253-265. Polo, J.M., Anderssen, E., Walsh, R.M., Schwarz, B.A., Nefzger, C.M., Lim, S.M., Borkent, M., Apostolou, E., Alaei, S., Cloutier, J., *et al.* (2012). A molecular roadmap of reprogramming somatic cells into iPS cells. Cell *151*, 1617-1632. Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., *et al.* (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28, 848-855. Rajasingh, J. (2012). Reprogramming of somatic cells. Progress in molecular biology and translational science *111*, 51-82. Rana, T.M. (2007a). Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8, 23-36. Rana, T.M. (2007b). Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8, 23-36. Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z., and Oren, M. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell *26*, 731-743. Reddy, B.S., Rao, C.V., and Seibert, K. (1996). Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res *56*, 4566-4569. Robinton, D.A., and Daley, G.Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature *481*, 295-305. Rosa, A., Spagnoli, F.M., and Brivanlou, A.H. (2009). The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell *16*, 517-527. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E.E., Nitsch, R., and Wulczyn, F.G. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol *10*, 987-993. Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H.K., Beyer, T.A., Datti, A., Woltjen, K., Nagy, A., and Wrana, J.L. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell *7*, 64-77. Sampson, V.B., Rong, N.H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., Petrelli, N.J., Dunn, S.P., and Krueger, L.J. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67, 9762-9770. Seifinejad, A., Tabebordbar, M., Baharvand, H., Boyer, L.A., and Salekdeh, G.H. (2010). Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev 6, 297-306. 729-734. Seoane, J., Le, H.V., and Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, Seoane, J., Pouponnot, C., Staller, P., Schader, M., Eilers, M., and Massague, J. (2001). TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol *3*, 400-408. Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R., and Ding, S. (2008a). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell *3*, 568-574. Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., and Ding, S. (2008b). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525-528. Shu, F., Lv, S., Qin, Y., Ma, X., Wang, X., Peng, X., Luo, Y., Xu, B.E., Sun, X., and Wu, J. (2007). Functional characterization of human PFTK1 as a cyclin-dependent kinase. Proc Natl Acad Sci U S A *104*, 9248-9253. Shu, J., Wu, C., Wu, Y., Li, Z., Shao, S., Zhao, W., Tang, X., Yang, H., Shen, L., Zuo, X., et al. (2013). Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers. Cell 153, 963-975. Siemens, H., Jackstadt, R., Hunten, S., Kaller, M., Menssen, A., Gotz, U., and Hermeking, H. (2011). miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle *10*, 4256-4271. Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T.W., and Smith, A. (2008a). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol *6*, e253. Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T.W., and Smith, A. (2008b). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol *6*, e253. Silva, J., Nichols, J., Theunissen, T.W., Guo, G., van Oosten, A.L., Barrandon, O., Wray, J., Yamanaka, S., Chambers, I., and Smith, A. (2009). Nanog is the gateway to the pluripotent ground state. Cell *138*, 722-737. Sinkkonen, L., Hugenschmidt, T., Berninger, P., Gaidatzis, D., Mohn, F., Artus-Revel, C.G., Zavolan, M., Svoboda, P., and Filipowicz, W. (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol *15*, 259-267. Smith, K., and Dalton, S. (2010). Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med *5*, 947-959. Smith, K.N., Singh, A.M., and Dalton, S. (2010). Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell *7*, 343-354. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., *et al.* (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell *136*, 964-977. Soufi, A., Donahue, G., and Zaret, K.S. (2012). Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell *151*, 994-1004. Sridharan, R., Tchieu, J., Mason, M.J., Yachechko, R., Kuoy, E., Horvath, S., Zhou, Q., and Plath, K. (2009). Role of the murine reprogramming factors in the induction of pluripotency. Cell *136*, 364-377. Stadtfeld, M., and Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes Dev *24*, 2239-2263. Stadtfeld, M., Maherali, N., Breault, D.T., and Hochedlinger, K. (2008a). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230-240. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. (2008b). Induced pluripotent stem cells generated without viral integration. Science *322*, 945-949. Staerk, J., Dawlaty, M.M., Gao, Q., Maetzel, D., Hanna, J., Sommer, C.A., Mostoslavsky, G., and Jaenisch, R. (2010). Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell *7*, 20-24. Subramanyam, D., and Blelloch, R. (2011). From microRNAs to targets: pathway discovery in cell fate transitions. Curr Opin Genet Dev *21*, 498-503. Subramanyam, D., Lamouille, S., Judson, R.L., Liu, J.Y., Bucay, N., Derynck, R., and Blelloch, R. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol *29*, 443-448. Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., *et al.* (2004). Human embryonic stem cells express a unique set of microRNAs. Dev Biol *270*, 488-498. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell *131*,
861-872. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., *et al.* (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature *456*, 980-984. Tiscornia, G., and Izpisua Belmonte, J.C. (2010). MicroRNAs in embryonic stem cell function and fate. Genes Dev *24*, 2732-2741. Tiscornia, G., Vivas, E.L., and Izpisua Belmonte, J.C. (2011). Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med *17*, 1570-1576. Tyagi, S., Chabes, A.L., Wysocka, J., and Herr, W. (2007). E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell *27*, 107-119. Tyagi, S., and Herr, W. (2009). E2F1 mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferases. Embo J 28, 3185-3195. Utikal, J., Polo, J.M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R.M., Khalil, A., Rheinwald, J.G., and Hochedlinger, K. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature *460*, 1145-1148. van Kouwenhove, M., Kedde, M., and Agami, R. (2011). MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11, 644-656. Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature *394*, 369-374. Wang, H.R., Zhang, Y., Ozdamar, B., Ogunjimi, A.A., Alexandrova, E., Thomsen, G.H., and Wrana, J.L. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science *302*, 1775-1779. Wang, T., Chen, K., Zeng, X., Yang, J., Wu, Y., Shi, X., Qin, B., Zeng, L., Esteban, M.A., Pan, G., et al. (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9, 575-587. Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J.E., Baehner, L., and Blelloch, R. (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet *40*, 1478-1483. Wanzel, M., Herold, S., and Eilers, M. (2003a). Transcriptional repression by Myc. Trends Cell Biol *13*, 146-150. Wanzel, M., Herold, S., and Eilers, M. (2003b). Transcriptional repression by Myc. Trends Cell Biol *13*, 146-150. Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., *et al.* (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-630. Wellner, U., Schubert, J., Burk, U.C., Schmalhofer, O., Zhu, F., Sonntag, A., Waldvogel, B., Vannier, C., Darling, D., zur Hausen, A., *et al.* (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol *11*, 1487-1495. Wiklund, E.D., Catts, V.S., Catts, S.V., Ng, T.F., Whitaker, N.J., Brown, A.J., and Lutze-Mann, L.H. (2010a). Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int J Cancer *126*, 28-40. Wiklund, E.D., Kjems, J., and Clark, S.J. (2010b). Epigenetic architecture and miRNA: reciprocal regulators. Epigenomics *2*, 823-840. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature *385*, 810-813. Wolf, D., and Goff, S.P. (2007). TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell *131*, 46-57. Wolf, D., and Goff, S.P. (2009). Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature *458*, 1201-1204. Wray, J., Kalkan, T., and Smith, A.G. (2010). The ground state of pluripotency. Biochem Soc Trans *38*, 1027-1032. Wu, S.M., and Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13, 497-505. Xiang, X., Zhuang, X., Ju, S., Zhang, S., Jiang, H., Mu, J., Zhang, L., Miller, D., Grizzle, W., and Zhang, H.G. (2011). miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene *30*, 3440-3453. Xiao, R., Sun, Y., Ding, J.H., Lin, S., Rose, D.W., Rosenfeld, M.G., Fu, X.D., and Li, X. (2007). Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol Cell Biol 27, 5393-5402. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J.A., and Kosik, K.S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell *137*, 647-658. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell *1*, 39-49. Yamanaka, S. (2009a). Elite and stochastic models for induced pluripotent stem cell generation. Nature *460*, 49-52. Yamanaka, S. (2009b). A fresh look at iPS cells. Cell 137, 13-17. Yang, C.-S., and Rana, T.M. (2013). Learning the molecular mechanisms of the reprogramming factors: let's start from microRNAs. Molecular bioSystems *9*, 10-17. Yang, C.S., Li, Z., and Rana, T.M. (2011a). microRNAs modulate iPS cell generation. Rna *17*, 1451-1460. Yang, C.S., Lopez, C.G., and Rana, T.M. (2011b). Discovery of nonsteroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation. Stem Cells 29, 1528-1536. Yang, J., van Oosten, A.L., Theunissen, T.W., Guo, G., Silva, J.C., and Smith, A. (2010). Stat3 activation is limiting for reprogramming to ground state pluripotency. Cell Stem Cell 7, 319-328. Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature *453*, 519-523. Yoshida, Y., and Yamanaka, S. (2010). Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122, 80-87. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920. Zhu, S., Wei, W., and Ding, S. (2011). Chemical strategies for stem cell biology and regenerative medicine. Annu Rev Biomed Eng *13*, 73-90. ## Appendix 1. Proportion of sorted cells | % | Thy1+ | Thy1-SSEA1-EA | 1+DsRed+3EA | 1+DsRed- | Total %* | |---------------|-------|---------------|-------------|----------|-------------| | Experiment #1 | 6.733 | 80.665 | 2.138 | 0.427 | 89.96257155 | | Experiment #2 | 9.738 | 80.640 | 0.870 | 0.222 | 91.47 | | Experiment #3 | 6.560 | 83.682 | 0.942 | 0.216 | 91.4 | $^{^{\}star}$ Cells were gated with stringent parameter to make sure high purity of each population was acquired (please see Supplemental Figure 1). Therefore, ~9 to 10% of cells were ommitted by gating. Appendix 2. Whole genome transcriptome analysis | 012J17Rik
0019D03Rik
0029P11Rik
m | Thy1+SSEA1-#1 Thy | 0.6191
-0.6719
0.0638
-0.9884 | 0.5112
1.5939 | 0.4278
0.8652
0.2182 | 1.2524
1.3221
0.2733
0.8835 | .1+DsRed+#2 SSEA
0.9441
0.7789
0.1513
0.7673 | 2.1685
0.7102
1.777 | 1+DsRed-#2
1.7195
0.9176
0.5898
1.5122 | |--|-------------------------------|--|--------------------------------------|-----------------------------|--|--|--|--| | 64F22Rik
01M09Rik
37M14Rik | -1.1738
0.2895
-0.125 | -0.9884
0.6891
-0.1769 | 0.4884
0.7498
1.1444 | 1.1216
0.8493 | 0.8835
1.0876
2.5187
2.206 | 0.7673
1.0728
2.2562
2.7203 | 2.0272
1.4127
1.833
1.8933 | 1.5122
1.1494
1.6215
2.5973 | | 14Rik
I3Rik
I9Rik
I3Rik | | -0.0823
-0.5937
-0.154 | 1.6142
1.3719
0.6859
1.1729 | 1.9432
1.5283
0.9799 | | 1.9213 | 1.4007 | 2.597
1.734
1.080 | | ik
ik
k | | 0.599
0.5268
-0.5045 | 0.5826
0.7848 | 1.2294
0.865
0.7754 | 1.856
0.9106
1.1835 | 1.4317
1.2371
1.0749 | 2.1286
1.1659
1.0345 | 1.850
0.867
0.973 | | | 0.1905
-0.999
-0.357 | 0.7153
-0.6133
0.5454 | 0.674
1.3424
2.8886 | 0.9887
1.0396
2.6894 | 0.8654
1.8558
2.325 | 1.1315
1.6445 | 1.0034
1.6608
1.0605 | 0.771
1.63
1.286 | | | 0.0847
1.9501 | 0.0228
1.2432
-0.159 | 0.209
1.0659
0.6039 | 0.2293
1.3872
0.5312 | 0.6678
0.8226
0.9448 | 0.4766
1.9286
0.9387 | | 1.266
2.289
1.180 | | | -1.3741
-0.0499 | | | 0.4728
0.6166 | 0.8472
0.7744 | 0.9346
0.9655 | 1.9294
1.7388
2.1507
1.3898 | | | | | -0.1602
-0.0628
0.1398 | 0.1297
1.7344
0.6326 | 0.1458
1.7446
0.8527 | 0.7843
1.8358
0.9878 | 0.9934
1.66
1.2583
1.0981 | 1.1386
1.5192
1.1251 | 1.427
1.709
1.134 | | | | 0.2603
-0.3669
0.2351 | 0.9271
0.099
0.2893 | 0.8563
0.2784
0.4829 | 1.1831
0.9579
1.3362 | 1.0981
1.0329
1.4901 | 0.6357
1.244
1.6428
2.1062
1.5901 | 0.90
1.322
2.054 | | |
-0.3965
1.4573 | -0.2378
1.8564 | 0.3215
2.3787 | 0.3071
2.1971 | 0.6864
1.3 | 0.3215
0.6704 | 2.1062
1.5901 | 1.20 | | | 0.1649
0.8917 | 0.6492
0.3393 | 0.5179
0.5281
1.1346 | 0.7505
0.8386
1.0324 | 1.3
0.9739
0.7607
1.2311
1.3236 | 0.8946
1.0448
1.3658
1.136 | 1.016
1.2324
1.8891
1.256 | 0.87
0.87
1.36 | | | -0.2742
-0.5417
0.2695 | 0.1701
-0.0896
0.9301 | 0.4902
0.3867
0.9706 | 0.8348
0.5957
1.3206 | 1.3236
1.0231
1.0693 | 1.136
0.6901
1.6279
2.2917 | 1.256
1.4082
1.477
1.8537 | 1.26
1.45
1.1 | | | -0.3013
1.5995 | -0.125
1.445 | 2.7814
0.1185 | 2.5445 | 2.8441
0.7015 | 2.2917
0.5898
1.1214
1.4599 | | 2.51:
0.87:
1.50 | | | -0.8508 | | 0.7287
0.4084 | 1.0583
0.2285 | 0.912
1.2914
1.0771 | 1.4599
1.0598 | 1.3886
1.5792
1.8031 | 1.842
1.389
0.931 | | | | | | 0.7283
0.7001 | 0.8306
0.9076
0.3581 | 1.0598
0.8804
0.9867
0.8169 | 1.8031
1.0654
1.2362
1.1071
1.9687 | 0.93
0.7:
1.41:
2.03 | | | 0.2675
0.2865
-0.9755 | 0.3318
0.1377
-0.8424 | 1.1474
0.501
-0.2614 | 1.036
0.676
0.1158 | 1.5681
0.9682
0.6657 | | 1.6716
2.4789 | 1.2 | | | -1.1069
-0.8969 | | | 0.4276
0.8225 | 0.6657
0.9364
1.3357
1.1842 | 0.9514
0.916
1.2556
1.4203 | 2.7708
1.6948
2.1207 | 2.29
1.37
1.57
0.80 | | | -1.0163
-0.8453
0.6083 | | | 0.4028
0.7573 | 0.7437
0.9354 | 1.401
0.7716
1.0563
1.1836 | 2.1207
1.0398
1.336
1.383 | 1.57
0.80
1.23
1.69 | | | | | | 0.3278
0.4285
0.1838 | | 0.537
0.7196 | 1.383
2.2084
1.6842 | 1.31 | | | | | 0.5269
0.6333 | 0.616
1.0949 | 0.7558
1.5279
0.963 | 0.4557 | 5.0636
1.3265 | 3.76:
1.23 | | | | | 0.4825
0.3345
0.2069 | 0.2728
0.3092
0.8446 | 0.7754
0.8649
0.6501
1.7368 | 0.5104
0.8892
0.9549
1.5998 | 1.4392
1.5258
1.0235
2.1934 | 0.829
1.30
1.00 | | | -1.0942
-0.1518
-0.4309 | -0.6165
0.3761 | 1.0545
1.0644
0.2392 | 1.0027
1.047
0.6328 | 1.7368
1.4656
0.7191 | 1.4855 | 2.1934
1.9239
1.1362 | 1.777
1.826
0.674 | | | | 0.4533
0.0831 | 1.0585
0.4382 | 1.2428
0.9367 | 1.4156
0.9326 | 1.4996
1.0185 | 1.9895
1.2757 | 1.638
1.208 | | | -0.2348
-0.5874
-0.7885 | | 0.5485
0.6685
-0.0372 | 0.1961
0.977
0.7902 | 0.8465
1.2194
0.6772
1.0703 | 0.7564
1.1986
0.9162 | 1.1308
1.7733
1.2743
1.1856 | 0.75
1.45
1.04
1.20 | | | -1.2162
-0.1413
-2.2481 | | 0.4834
0.6919 | 0.8376
0.807 | 1.0703
1.2967
0.8059 | 1.4045
1.0199
1.0527 | 1.1856
1.6853
1.6919 | 1.207
1.160 | | | -0.966
-1.3404 | -0.0752
-1.4337 | | 0.4865
-0.037 | 0.952
1.45
0.7655 | | 1.3711
1.8721
1.185 | 0.50
1.67 | | | | | | 0.452
0.9958
0.4346 | 1.23
0.9044 | 0.9846
0.8697
1.2773
0.5907
0.9017
1.0707 | 1.7802 | 1.15
1.55
1.03 | | | | | | 0.7808
0.7873 | 0.9169
0.7884
1.036 | 0.9017
1.0707 | 1.0552
1.0874
1.4026 | 0.97
1.2
1.33
1.06 | | | | | | 0.5304
0.6304 | 0.7527
1.0409
1.0073 | 0.4901
1.0748
1.2005 | 1.0284 | 1.06
1.40
1.34 | | | -0.4975
-0.8286
-1.6034 | | | 1.0243
0.3805
0.1262 | 0.6605
1.1462 | 1.2005
0.6298
0.6225 | 0.909
1.0209
1.2467
2.2651
1.6667 | 1.201 | | | -0.3118
0.3507 | 0.1795
0.3722 | 0.6706
0.946
1.4473 | 0.8655
0.6642
-0.7365 | 1.3001
1.1647 | 1.4227 | 1.6667
1.5031
1.4022
3.966 | 1.49
1.42
1.65 | | | -2.0346
-0.0412
-0.4147 | -0.1069
0.0637 | 0.6541
0.2587 | 0.6036
0.6695 | 2.2291
1.5922
0.8553 | 1.0544
1.6067
1.2257
0.8519 | 3.966
1.2414
1.0088 | 3.14
1.26
0.93 | | | | | 0.2884
0.9691
0.5271 | 0.2448
0.4263
0.9236 | 0.8553
0.7746
1.6542
0.741 | 0.8519
1.2045
1.0484
1.1415 | 1.9052 | 0.93
1.7
1.01 | | | 0.4091
-1.4117 | 0.7666
-0.456 | -0.2445
1.5641 | 1.4576
0.3184 | 0.4694
1.5538
0.9721 | 1.1415
1.5075
0.302 | 1.2052
0.9971
1.1715
1.3408 | 1.29
1.15
0.98 | | | | 0.3129
-0.1976 | 0.6443
0.6286 | 0.7331
0.8414 | 1.2046
1.1462 | 0.9581
1.42
1.4267 | 1.3406
0.8373 | 1.06
1.51 | | | | 0.5292
0.9345 | 0.7642
2.1699 | 0.7292
2.2593 | 1.6475
0.5827
2.6507 | 0.5176
3.0392
1.003 | 0.8923
2.1779
1.2645 | 0.62
2.64
1.09 | | | | 0.1207
0.3442
-0.4822 | 0.2511
0.8298 | | 0.761
0.9062
0.4488 | 1.003
0.8701
1.0306 | 1.2645
1.3354
1.6937 | 1.09
1.03 | | | -0.6317
0.4126 | 1.2892 | 0.4619
1.4254 | 0.8235
1.3224
0.8698 | 0.5818
1.7428
1.0913 | 0.8803
1.5636
1.1038 | 0.9721
1.7471
1.3822 | 1.06 | | | | 0.0867 | 2.9658
0.5058 | 3.0299
0.7243 | 3.095
0.7399 | 2.7778
0.8029
1.0998 | 1.956
1.2719 | 1.29
2.67
0.91 | | | | | | 0.8744
0.3878
-0.1288 | 1.1507
2.7488
1.5949 | 1.0998
1.8878
0.511 | 1.0691
5.0718
4.3595 | 1.16
4.35
2.53 | | | 0.5944
0.0798 | 0.9384
-0.0241 | 2.8878 | 1.5683 | 1.9531
0.4388 | 0.7374 | 1.5089
1.6098 | 0.83
0.98 | | | | 0.074
-0.106 | 2.4103
1.3463
1.7519 | 1.4821
0.6359 | 4.4694
0.6076 | 3.275
0.8627
1.3463 | 6.5816
1.1422
1.9612 | 5.46
0.75
1.48 | | 9Rik | -0.592
-1.7507 | -0.7244
-0.8555 | 1.7519
0.5519
0.9247 | 1.5569
1.1719
1.3273 | 1.8106
1.1915
1.3858
0.9285 | 1.1746
1.8476 | 1.9612
1.2332
1.8252
1.3558 | | | 19Rik | | | | 0.336
0.3645
-0.0979 | 0.9285
0.564
0.8828
0.8933 | 1.1007
0.4485
0.9383 | | 1.64
1.39
1.01
1.78
0.90 | | | 1.1123
0.421 | 0.6107
0.8359 | 1.0214
0.8839 | 0.5691
1.0994 | 0.8933
1.2109
1.1559 | 0.6886
1.389
0.9216 | 2.6853
1.2164
1.6923
1.2227 | 0.900
1.444
1.215 | | | 0.5488
1.1399
0.2378 | 1.0775
0.9179 | 1.4676
1.0036 | 1.4911
1.4431 | 1.258 | 1.3186 | 1.7405 | 0.97
1.26
0.9 | | | | | | 0.4157
1.0298
0.454 | 0.6408
0.9514
0.6941 | 0.7691
1.0572
0.5206
0.2325 | 1.0327
1.3488
1.1921 | 0.61 | | | | 0.1676
0.3028 | 0.0929
0.8266 | 0.9657
0.4276 | | 0.2325
1.5466
1.3355 | 1.2816 | 1.02
1.78
1.92
0.74 | | | | 0.7955
0.2633 | 0.7194
0.5224 | 1.2192
0.9259 | 1.21
1.8916
0.6954
1.2272
1.1416 | 1.3191
1.1409 | 2.8263
1.1121
1.6959
1.5071 | 0.74
1.30
1.54 | | | -0.8325
-1.9858 | -1.9594 | | 0.7718
0.4551
0.1325 | 1.6862
2.3998 | 1.5466
1.3355
1.3191
1.1409
1.2065
1.8534
1.1774 | 1.9638
4.665 | 2.29 | | | | | 0.3961
0.8201 | 0.7577
0.9273 | 1.1048
1.2765
0.7589 | 0.9786
0.9888
1.266
2.1849 | 1.4434
1.8172
1.54 | | | | -0.4038
0.687 | 0.215
0.3335 | 2.0844
0.1585 | 1.4514
-0.3326 | 0.7589
2.222
0.5148 | 1.266
2.1849
0.0804 | 2.4067
2.1744 | 0.57
2.69
1.37 | | | -0.9299
-0.5904
1.4821 | -0.9109
0.1154
1.9281 | 2.065
0.4177
1.7229 | 1.2475
0.6887
1.0317 | 2.8462
0.8628
1.4001 | 2.1533
1.0128
0.7806 | 2.4351
1.4086
1.9608 | 1.59
1.20
1.20 | | | -0.7643
0.2994 | 0.1838
0.4184 | 0.4839
0.2748 | 0.9131
0.2567 | 1.2285
0.2452 | 1.2052
0.1525 | 1.2941
1.7027 | 1.392
1.210
0.991 | | | | | -0.112 | 0.1328 | 0.9648
0.5797 | 0.1594
0.5326
0.1332 | 1.3179
3.7139
3.4481 | 3.198
2.639 | | | | | 0.4499
0.8832
0.5479 | 0.9752
0.9184
1.0284 | 1.2808
1.2574
0.9853 | 1.3111
1.0852
1.0934 | 1.8593
1.4301
1.5417 | 1.815
1.308
1.541 | | | 0.4048
-0.0713 | 0.8993
0.6406 | 2.8958
1.3222
2.1203 | 2.7016
1.2413 | 3.1717
1.4288 | 2.3015 | 1.9525
1.5317 | 2.34
1.47
1.08 | | | | 0.4118
0.6097 | 2.1203
0.8401
0.6823 | 1.6112
0.7756
1.0934 | 1.5971
1.0573
1.0568 | 1.0821
1.0039
0.8415 | 1.205
1.6266
1.1804 | 1.159 | | | -0.4355 | -0.4501
1.2621 | 1.3935 | 1.3255
1.4847 | 1.3597
1.1544 | 0.8415
1.1452
1.9245 | 1.2558
1.505 | 1.02
0.94 | | -0.6783
2.5864
-0.2265
-0.5967
0.7783 | 0.1144
0.0003
1.6104
-0.3476
0.337
0.9424 | 0.2157
0.7445
2.4108
1.5214
0.085
1.257 | 0.9234
0.9046
1.2746
1.1948
0.7204 | 0.6369
1.8074
1.8643
2.1699
0.391 | 1.0559
2.465
1.4982
2.016
0.999 | 1.0373
3.5221
1.8706
2.6466
0.7981
2.0022 | 1.0808
3.2196
1.5002
2.1383
1.063
1.3746 | 1.799
5.115
3.142
4.10
1.825
2.889
4.742 | |--|--|--|---|--|--|--|---|---| | -1.2975
0.6894
0.1642
-0.4944
-0.6374 | -1.1582
0.9918
0.4539
-0.4091
-0.4714 | -0.635
1.3931
0.4401
0.9525 | -0.2919
1.0153
0.9571
0.9175
-0.2945 | 0.5373
1.1197
0.7463
2.5935
0.9987 | 0.1895
0.8995
1.143
2.0621
0.8547 | 2.0022
3.193
1.2367
0.8438
2.159
1.3488
0.8855
1.1716 | 1.3746
2.1855
0.8063
0.5912
2.4452
1.2935 | 1.669
2.239
0.461 | | |
0.0424
0.3957
0.1289
0.4062 | 0.4112
0.4455
1.0392
0.4311 | 0.5158
0.7204
1.8809
0.8219 | 0.4782
0.9662
1.5686
0.7369 | 0.62
1.2493
2.1113
1.0292 | 0.8855
1.1716
1.59
0.7699
1.5196
1.7715 | 0.926
1.1432
2.169
1.0505 | 1.436
2.321
1.733
2.152
1.402 | | -0.2426
-0.128
-0.545
-0.4895
-1.1608 | -0.2562
-0.2975
-0.9158
-0.7021
-0.4535 | 0.1287
0.58
1.5206
1.439
1.1083 | 0.3105
1.3533
1.2722
0.9198 | 1.3297
1.8295
2.2528
1.2836 | 0.4172
1.4072
1.416
1.8605
1.2784 | 1.5198
1.7715
2.5259
2.6979
1.648
2.0892 | 1.2297
1.8761
2.0571
2.4468
1.0944 | 2.152
1.402
3.116
1.867
0.927
1.972
1.110 | | | | 0.456
0.4673
0.576 | -0.1643
0.552
0.6597
0.9349 | 1.1155
0.7898
0.727
0.9865
1.2424 | 0.4649
0.922
0.6706
0.7968
1.0902
0.7271 | 2.0892
1.2367
1.1136
0.8442
1.1311
1.6338 | 1.2792
1.2101
0.7799
1.4112
1.1836 | 2.461 | | -0.3303
-0.2333
-0.6699
-0.2258 | 0.2079
-0.1952
0.3718
0.8382 | 0.2775
0.9139
0.5822
1.4107 | 0.4907
0.0867
0.8669
1.8748 | 0.7122
1.0218
1.2809
1.9417 | 0.6834
1.3748
2.1402 | 1.6279
1.4674
2.1056 | 1.2714
1.4205
1.5872
2.1508 | 1.002
1.300
1.829
1.744
2.238
2.219 | | -0.162
-0.1693
-0.3827
-0.3501 | 0.8658
0.8494
0.8533
0.9244 | 1.3391
1.1798
1.3818
1.4777 | 1.6594
1.7539
1.6526
1.7758 | 1.7354
1.7878
1.9329
1.9578
1.847 | 1.6774
1.9464
1.9539 | 1,9025
2,0413
1,9385
1,9003
1,7432 | 1.8369
2.0383
2.1132
2.0796
1.8517 | 2.020
2.201
2.345
2.594 | | | 0.5908
0.143
0.1779
0.474 | 1.2838
0.9702
0.7433
0.404
1.1511 | 1.778
1.5633
1.4002
0.7767
0.9133
0.5471
1.1277 | 1.4165
1.1365
0.9872
1.3669 | 1.6938
1.7211
0.8764
0.6253
0.8827 | 1.7573
1.9871
1.8452
2.0106 | 1.8989
1.3835
1.1382
1.5253 | 2.020
2.201
2.345
2.594
1.786
1.337
1.935
1.683
1.907
2.124 | | -0.4352
-0.4112
1.1837
-0.2601 | 0.2436
0.5218
0.9432
0.5591
0.3812 | 0.6613
0.9207
1.5122
1.4798
1.3417 | 1.0706
1.5209 | 1.4989
1.524
1.5673
1.7499 | 0.6253
0.8627
1.3102
1.5398
0.9037
1.6808
1.7857 | 1.8523
1.5167
1.8062
2.0447
2.4073 | 1.7241
1.9287
1.3132
2.0261
1.7634 | 2.124
1.653
0.842
1.408
2.485 | | -0.5728
0.3219
0.6036
0.0677 | 0.1084
0.8777
0.5979
-0.1592 | 1.3417
1.2426
0.7424
1.4755
0.2151 | 1.3616
1.2272
0.7753
1.1231
0.5772 | 1.796
1.4747
0.9236
1.5494
0.7437 | 1.7857
1.4197
1.2059
0.9358
0.8362
0.6408
1.0728 | 2.4073
1.9185
1.7373
1.9346
1.0557 | 1.7634
1.3427
1.3598
1.4698
0.831 | 1.653
0.842
1.408
2.485
0.767
1.119
1.115
1.764
1.769
1.267 | | | 0.047
0.1394
0.6186
-0.3875 | 0.8958
0.6359
0.7333
0.7169
0.9007 | 0.5931
0.8896
0.4189
1.3089
0.4789 | 1.0945
1.0673
0.9773
0.9735
1.5861
1.0555 | 0.5469
1.5254
0.9421 | 1.65
1.2188
1.3329
1.4071
1.1644 | 0.831
1.1761
0.6589
0.7327
0.4072
1.2365 | 1.789
1.267
1.395
1.780
1.056 | | 0.662
-0.1554
-0.5097
1.0678 | 1.0299
0.2246
0.7193 | 0.946
1.1184
1.4351
1.715 | 1.6929
0.9334
0.8786
0.7205 | 0.9798 | 2.1602
0.7837
1.0257 | 1.1533
0.9344
1.7273
2.4029 | 0.7757
0.9769
1.2455
1.9374 | 2.415
1.236
2.504 | | | | 0.6627
0.4974
-0.3718
1.0044 | 0.2514
0.6727
-0.2166
0.9069 | 2.2893
1.3746
0.8627
0.8647
1.4233
0.9871 | 1.2444
1.3371
0.8365
0.6593
1.5533
1.0126 | 2.5946
1.4155
2.2106
1.8071
1.5729 | 2.0084
1.3515
1.5169
1.6256
1.2599 | 3.286
0.977
2.255
1.508 | | 0.9001
0.6119
-0.2946
0.1277 | 0.8376
0.6767
-0.1378
-0.0846 | 1.2143
1.8902
0.6511
0.838 | 1.4548
1.3844
0.5012
0.6141 | 1.4166
1.102
0.7689
1.0704 | 1.3423
0.4455
0.7086
0.7592 | 1.6266
0.2813
0.9948
1.2445 | 1.4487
0.3743
1.1503 | 2 255
1.508
1.433
1.302
3.171
1.357
1.096
1.518
2.006
2.013
2.020
1.268
1.699 | | -0.4183
-0.4342
-0.2894
-1.2214 | 0.436
-0.2699
0.4502
-0.2419 | 0.7579
0.1661
0.8538
-0.1121 | 0.8372
0.4532
1.0159
0.5322 | 1.6032
0.8603
1.3916
0.8961
1.4015 | 1.3591
0.6996
1.4478
0.9616
1.4381 | 1.5377
1.0311
1.8214
1.2708 | 1.5648
0.7751
1.6947
1.0107 | 1.518
2.006
2.013
2.020 | | -1.1937
0.0345
1.7438
0.5937 | -0.1967
-0.4366
-0.2106
-0.4198 | -0.1073
0.7116
1.2149
0.9167 | 0.358
0.6808
-0.3583
0.1991 | 0.8779
1.0934
1.8947
1.4064 | 0.8696
1.0522
0.8999
0.8548 | 1.0587
1.3301
1.9552
1.637 | 1.424
1.1875
1.2792
1.5838
1.1388 | 1.699
1.449
3.227
3.71
2.018 | | -0.4064
-0.0898
-3.1928
-0.4097 | 0.5896
0.531
-2.302
-0.2354
-0.1841 | 0.7147
0.7081
0.9743
0.9765 | 1.145
0.7509
0.3492
0.2595 | 1.5284
0.66
1.8635
1.5266
1.8629 | 1.2932
0.9592
2.0929
1.0745
2.2924 | 1.6567
0.7721
1.9703
2.2522
2.3404 | 1.6589
0.9339
2.7663
1.4324
2.4442 | 2.018
1.878
-0.392
1.272
3.183 | | -2.4713
-2.6649
-0.3439
-0.8084 | -1.7985
-1.5985
0.1663
-0.6696 | 1.2618
0.8159
0.6524
0.5583 | 0.3623
1.141
0.6524
0.5611 | 1.9796
1.8841
0.8799
1.4805
1.1393 | 2.2924
1.5445
1.8973
0.9457
1.6256
1.767 | 1.8332
1.8881
1.5108
1.2215
1.1862 | 1.6719
1.6568
1.1851
1.7748 | -0.303
0.793
1.332 | | -0.0788
-0.3965
-0.0562
0.2898
0.8454 | 0.481
0.2522
0.1064
0.5472 | 0.6944
0.4812
0.6286
0.8625 | 1.1825
0.4701
0.4854
0.074 | 1.0425
1.1696
1.0223 | 1.767
0.8846
0.7121
0.6546
0.9125 | 1.7928
2.0313
1.5512 | 1.7729
1.3742
1.5388
0.5664 | 3.244
1.43
2.419
1.465
4.772
1.773 | | -1.0655
0.1074
-1.2839
-1.2215 | 0.1124
40.0406
-1.392
0.5769 | 0.4
0.1457
0.3212
1.0742 | 0.8863
0.078
-0.1448
1.4781 | 1.5753
1.1604
0.7453
0.9986
1.6021 | 1.1782
0.2013
0.8817
2.4848 | 4,3082
1,5697
3,0425
1,5156
1,7262 | 3.6843
1.51
1.9904
1.4466
1.8575 | 1.773
2.839
2.608
2.120 | | | | -0.22/1
0.1972
0.6736
0.2295
0.7106 | 0.944
0.225
0.8052 | 0.3281
0.6282
1.1945
0.801
0.878 | 0.3677
0.8985
1.4969
1.1818
0.8974 | 1.7262
1.5176
1.0452
1.5886
1.4837
1.6044 | 1.466
1.8575
1.2639
1.0732
1.5852
1.1133
1.3245 | 2.839
2.608
2.120
2.166
2.930
1.132
1.146
3.459
1.715 | | -0.1978
-0.2729
-0.571
1.4704
0.5556 | 0.0455
0.0456
0.1484
0.601 | 0.0630
0.3193
0.5731
1.9908 | 0.316
0.7087
0.9804
1.1941
0.1214 | 0.6144
0.7839
1.1724
1.5533
0.8823 | 0.4976
1.0749
1.419
1.4202
0.4722 | 1.4573
1.2879
1.2892
1.5277
2.1173 | 1.0082
1.1955
1.2049
1.2493
1.3559 | 3.469
1.715
1.590
0.90 | | 1,1639
-0,7649
-0,7107
-0,3867 | 1.2843
-0.1668
0.1307
0.2891 | 0.9316
0.8012
0.6533
0.3791 | 1.2187
0.8924
0.823
0.5858 | 1.3728
1.3625
1.4162
0.9514 | 1.5468
1.2067
1.3476
0.9796
0.9327
1.2189 | 1.6232
1.6514
2.0276
1.6734 | 2.0074
1.4579
1.921
1.5794 | 0.90
1.409
1.359
2.471
2.240
2.40
1.520
1.900 | | -0.6473
-1.6652
-0.9508
-0.3419
0.9483 | | 0.4042
0.5821
0.9428
0.5612
0.7849 | 0.6491
0.6354
1.1849
0.7317 | 0.7808
1.1912
1.3415
0.694
1.722 | 0.9327
1.2189
1.3257
1.1427
1.3079
0.8543 | 1.2095
1.5072
1.8177
1.1297 | 1.2493
1.3016
1.6815
0.4542
2.7618 | 1.610 | | -0.2728
-0.1481
-0.0725
 | 0.2586
0.2955
-0.2598
1.3228 | 0.4793
0.6775
0.4671
1.2951 | 0.585
0.9191
0.1185
1.3822 | 0.8689
1.3295
0.8384
1.2209
0.9991 | 0.8543
1.075
0.4949
1.6794
0.9371 | 1,2294
1,7143
1,4931
1,8066
1,1703 | 0.8039
1.452
0.8786
0.9901
1.0801 | 4.582
1.224
1.483
2.282
0.697
1.69 | | | | 0.0
0.1058
0.422
0.9326
0.4042 | 0.7506
0.5842
0.6572 | 0.5991
0.5711
1.3104
1.0153
0.9771
0.5481 | | 1.703
1.594
1.5598
1.1579
1.3226
1.3197 | 1.0841
1.6487
1.4747 | 2.330
1.708
1.140 | | -0.7902
-0.3414
-1.2828
-0.6548 | -0.2221
0.2531
-0.3336
-0.2007 | 0.0985
0.195
2.3709
0.5815
0.631 | 0.4367
0.496
3.1245
0.7415 | 0.5481
0.6758
2.3335
1.321
1.1164 | 1.4259
1.1421
1.0579
0.5518
1.3629
2.4039
1.2762 | 1.3197
1.2719
1.0758
1.6967
1.7295 | 0.8032
1.0474
1.6165
1.5583
1.6543 | 1.882
3.152
1.876
0.422
2.355
1.40
1.336 | | | -0.377
0.6129
0.5383 | 0.9892
1.4535
0.3211
0.5251 | 0.7639
1.1311
1.5248
0.9334
0.154 | 1.5217
2.1442
0.6738
1.4025 | 1,501
1,7752
2,0574
0,9372
1,3266 | 1.0549
2.4559
1.3199
3.0128 | 1.4421
2.6892
0.9916
2.6371 | 1.066
1.660 | | | 0.2981
-0.1517
-0.5471
-0.156 | 0.3101
1.1889
0.862
0.3867 | 0.545
0.9613
1.1448
0.2328
0.5468 | 0.8653
1.7576
0.9987
1.2249
1.0644 | 0.6692
1.7195
0.9566
0.8197
0.9508
0.7144
| 1,418
2,4237
1,1823
2,1459
1,1493 | 1.2738
1.7351
1.1357
1.1534
0.9963 | 1.727
4.257
1.658
2.969
1.240 | | 0.3651
0.415
-1.1614 | | 0.7214
0.5883
0.7206
0.2949 | 0.4874
0.09
0.8652
0.5065 | 0.8836
2.2891
0.5608
0.9325
1.7054 | 0.0015 | 1.3818
4.5034
1.3728
1.7111
1.7438 | 0.9954
3.4946
1.0027
1.5948
1.6702 | 1.165
5.03
1.272
2.308
1.346 | | -0.4144
-0.7204
-0.3366 | 0.3774
0.2468
0.7
-0.411 | 0.8424
0.888
0.694
0.6751
0.813 | 1.0652
1.0631
0.6184
0.7819
0.5958 | 1.4137
1.2075
0.9915 | 1.0638
1.356
1.3112
1.0332
0.9633
0.934
1.8314
0.8653 | 1.7438
1.2092
1.6385
1.2087
1.1164 | 1.6702
1.3224
1.3259
0.8814
0.8032 | 1.262
0.955
1.268
1.722 | | -1.5016
0.3844
-0.3829
-0.7755 | -0.7942
0.5547
0.2869
0.094 | 0.813
1.0052
0.597
0.7589
1.0891 | 0.895
0.6281
1.149
1.8973 | 1.0835
1.7125
0.8925
1.1854
1.3989 | 1.9266 | 1.2973
1.6063
1.3667
1.3697 | 1.4348
1.4212
1.2876
1.9259 | -0.103
1.428
1.044
1.966 | | 0.4889
0.4889
-0.285
0.4049 | -0.2607
-0.0338
-0.6413
-0.1376
-0.8608 | 2.7256
0.2647
0.8798
0.3264
0.7945 | 2.2091
0.2366
1.0095
0.5821
1.1705 | 3.0643
0.7667
1.5329
0.8449 | 2.5126
1.2689
0.897
0.9629
1.323 | 1.9361
1.3666
1.5054
1.3247
1.1983
1.7434
1.3972 | 1.8543
1.4509
1.2957
1.2008
1.3138 | -0.494
2.784
1.496
1.990
1.522
2.091
1.562 | | -0.6211
-0.0782
-1.2357
-0.1527 | 0.2433
-0.0442
-0.3594
0.2482 | 0.131
0.5396
0.411
0.5251 | 0.8336
0.5283
0.7164
0.7249 | 1.045
1.0209
0.8795
1.2819
0.9628 | 1,323
1,0976
1,0363
1,1734
1,0254
1,1902 | 1.1673
1.4753 | 1.3138
1.4425
0.9414
1.2135
1.2658
0.9975 | 2.091
1.562
1.147
1.844 | | -1.3297
-0.1477
-0.2017 | -1.4311
-0.1411
-0.1699
0.1998 | 0.909
0.1003
1.249
0.6137
-0.1241 | 0.6434
0.2757
0.9343
0.3547
0.5432 | 1.0658
1.5901
2.6658
0.8844
0.8048 | 1.1902
2.0765
2.0827
0.8332
1.031
1.3057 | 0.5644
2.715
3.9957
1.3315
1.3428
4.7891 | 2.4936
2.8061
1.0846
1.1038 | 2.304
-0.186
5.958
2.060
1.174 | | -0.5018
-0.9679 | 0.0973
0.3497 | 0.7477
0.7751
0.8922 | 0.4167
0.9458
1.2029 | 2.2002
0.8713
1.4437 | 1.3057
1.1777
1.4248 | 4.7891
1.0418
1.5742 | 3.3145
1.0909
1.5565 | 3.615
0.840
1.655 | | 0.921
1.408 | 0.2179
0.68
-0.1212 | 0.4353
1.3498
1.566 | 0.802
1.2315
1.3421 | 0.6201
2.1115
1.2091 | 0.7433
0.5208
2.1455
0.9744 | 1.038
1.5808
2.209
1.2511 | 1.4001
2.5691
0.8853 | |--------------------------------|-------------------------------|----------------------------|----------------------------|--|--|--------------------------------------|--| | | 0.1011
0.1101
-0.2467 | 0.8771
0.1576
0.9277 | 1.3312
0.6394
0.6321 | 1.5407
0.8399
0.9749 | 2.0854
0.9879
0.8432 | 1.6383
0.9448
1.0294 | 2.0373
1.0278
0.8707 | | | -0.3487
-0.2057
-0.1138 | 0.9277
0.6792
0.9424 | 1.0237
0.4654 | 0.9749
0.9852
1.335 | 1.2597
1.1636 | 0.6592
1.4861 | 0.7819
1.4106 | | | 0.0823
-0.0624 | 0.0588 | -0.1464 | 0.9876
0.2345 | 0.6347 | 0.6592
1.4861
2.1274
2.2207 | 1.4814 | | | -0.6211
0.6668 | 1.2271
0.3924 | 0.7158
0.5361 | 1.6421 | 1.5824
0.7417 | 2.1628
1.1496 | 2.1552
1.0581 | | 1.0708
-0.7691 | 0.5786
1.142 | 0.8083
0.7457 | 0.7501
0.7176
0.3068 | 1.2819
1.2569
0.747
0.9493 | 1.1329
1.3893
0.7838 | 1.5885
1.185 | 1.3459
1.335
1.2762
1.2243 | | | | | 0.8962
0.5105 | | 1.5304
0.6997
0.9733 | 1.329
0.8115
1.6863 | 1.2243
1.29 | | | 0.3887
-0.3786 | 0.8703
1.5396 | 1.0014
1.3761 | 0.9877
1.1992
2.0406 | 2.3839 | 1.6863
1.5704
1.4352 | 1.3746
2.0487 | | | -0.6635
0.1545 | -0.2665
0.7905 | -0.3059
1.1186 | 1.007 | 1.1565 | 1.4352
2.6295
1.5645
1.1714 | 1.7931
1.6332
0.8858 | | | 0.1889
-0.1792 | 1.1273
1.3458 | 1.0604
0.7911 | 0.9286
1.5449 | 0.8949
1.1594 | 1.1714
0.9776
2.2407 | 0.8858
0.952
1.6534 | | | 0.0745 | 1.5237 | 1.0338
1.1443 | 0.6665
1.5758 | 0.5298
1.0743 | 1.5041
1.3578 | | | | | 0.3864
0.6079 | 0.6393
0.7257 | 1.5758
1.3975
0.5908
0.6114 | 1.0743
1.5068
1.0878
0.9635
0.9877 | 0.8306
0.7827 | 1.5209
0.9904
0.5489 | | 0.8781
-0.9884 | | 1.0848
0.3803 | 0.9655
0.6458 | 1.4513
0.7651 | 0.9877
0.9254 | 1.9796
1.2265 | 1.5113 | | | | | 0.2691
0.454 | | 0.4758
1.1502 | 1.5629 | 1.0286 | | | 0.5826
0.3543 | 0.95
1.2138 | 0.8489
0.8103 | 1.2617
1.5145
0.5183
1.7615
0.6772 | 1.1502
0.8489
0.859 | 1.6545
1.3142 | 1.1275
1.5108
1.3078
1.6018
0.9779 | | | | 0.3299
0.4526 | 0.8258
0.1362 | 0.5183
1.7615 | 0.9426
1.2413
1.0851 | 1.1496
2.264
1.1265 | 1.3078
1.6018 | | | | 0.0758
0.384 | 0.7944
0.6443 | 0.4675 | | 1.1265
1.1351
1.8515 | 0.9779
0.8861
1.5277 | | | | 0.4804
0.4052 | 0.8479
0.8732
0.8979 | 1.389
1.1111 | 1.131
1.1257
1.4772
1.0601
1.4548 | 1.6346
1.1908 | 1.5277
1.15
1.1591 | | | -0.1405
-0.1405 | 1.5402
1.2781 | 1.7044
1.8304 | 0.8988
1.4328
1.5205 | 1.4548 | 0.5702 | 1.3578 | | | 0.4567 | 0.0017 | -0.0904
0.1867 | 0.3111 | 0.655
0.8197 | 1.6458
1.8397
1.5563 | 1.3578
1.7529
0.9932
1.2639 | | | 0.5744 | 0.9668
0.2601 | 0.3508
0.8917 | 2.056
0.6584 | 1.0993
0.9904 | 3.738
1.2045 | 3.1417
1.1366 | | | | | 0.8359
0.7083 | 0.9378
1.1855 | 1.034
1.1978 | 0.8357
1.3963 | 1.0751 | | | -0.072 | 0.1396
1.6061 | 0.4978
0.9472 | 0.5918
2.0556
1.598 | 0.7799 | | 0.8876 | | | -0.2093 | 1.1987
0.1777 | 0.2761
0.2412 | 0.452 | 1.5651
0.9564
0.698 | 2.5519
2.2879
1.5108 | 2.0848
1.899
1.3876 | | | -0.1965
-0.0862 | 0.5036
1.9586 | 0.763
1.9784 | 0.9349
2.2972 | 0.6543
2.8575
1.1345 | 1.3012 | 0.9747
2.3397
0.8305 | | | | 0.8233
0.8063 | 0.7802
1.3292 | 2.2972
1.2391
1.0311 | 1.1345
1.674 | 1.7118
1.0636 | 0.8305
1.6486 | | | | | 0.4901
0.6557 | 0.8618
0.6117
0.8685
1.5171 | 1.674
1.0996
1.0181
1.1556
1.8053 | 1.6503
1.0237 | 1.6486
1.2308
1.0265 | | 0.8742 | 0.5825
0.7429 | 1.4329 | 1.0501
1.8307 | 0.8685
1.5171 | 1.1556
1.8053 | 1.6062
1.5711 | 1.4909
1.4321 | | | -0.1258
-0.7916 | 0.4051
0.4202
1.0471 | 0.4561
0.4698
0.8577 | 0.9002
1.0758
2.6072 | 0.7229
1.0925
2.0594 | 0.8844
1.7079
4.3392 | 0.9265
1.4025
3.2372
1.8663 | | | 0.2096
0.3912 | 1.0538
0.8811 | 0.8577
1.5878
0.9229 | 2.6072
1.5998
1.0558 | 2.0594
1.7233
1.2795 | 4.3392
1.6966
1.426 | 1.8663
1.2789 | | 0.9402
-0.422 | 0.9674
0.5317 | 1.8042
0.4791 | 1.4976
0.9679 | 1.9344
0.348 | 1.5552 | 1,3813
0,6363
1,0064
0,9661 | 1.776 | | | | 0.6058
0.5079 | | | | 1.0064
0.9661 | 1.2167
1.1836 | | | -0.2766
0.8143 | 1.5937
0.6612 | 1.5986
1.4431 | 2.3657
1.6366 | 1.5554
1.9101
1.9012
0.8984 | | 1.3799
2.009 | | -1.208
0.0672 | -1.1318
-0.0615 | | 0.5151
0.6698 | 1.2528 | 1.9012
0.8984 | 2.0358
1.072
1.5619 | 1.8168
0.9571 | | | 0.0353 | 1.0729
0.1191 | 0.51
0.7176 | 0.9173 | 1.0635 | 1.9107 | 0.9409
1.1551 | | | 0.2707
-0.4198 | 3.2046
1.0094 | 2.998
1.3903 | 3.8137 | 3.0044
1.8195
1.7455
3.4712
0.6328 | 2.5587
1.2442 | 2.5985
1.5254 | | -1.4068
-0.2307 | -1.196
0.5346 | 0.6644
2.066 | 0.4346
1.6397 | 1.4899
3.8453
0.5883 | 1.7455
3.4712 | 2.0387
5.2043
1.7177 | 2.1149
4.9302
1.1959 | | -0.255
-0.0716 | -0.2762
0.1699 | 0.1412 | 0.6345 | | | | 0.6042 | | -0.874
-0.7251 | -0.0298
-0.4649 | 3.099
1.3096 | 3.0624
0.9186 | 3.9763
1.5254
1.3464 | 3.4049
1.5103 | 3.4948
2.0086 | 2.9204
1.9273 | | | | -0.3353 | 0.3172
0.1803 | 0.5466 | 3.4049
1.5103
1.0617
0.7939 | 1.5611
1.214 | 1.6239
0.9944 | | | 0.7323 | 0.9912
1.7181 | 1.3464
1.1872
0.6533 | 1.3109
1.4868
1.0276
0.6968 | 1.5136
1.4115
1.0156
1.1718 | 1.454
1.4583
1.6757 | 1.4385
1.5166
0.6898
0.906 | | | 0.287 | 0.5585
1.3186 | 0.7331
1.2218 | 0.6968
1.5049 | 1.1718
1.2795 | 1,2004 | 0.9066
1.5013 | | | 0.0689 | 0.453
2.0484 | 0.4483
1.9315 | 1.5049
1.2169
0.7635 | 1.1243
0.217 | 1.902
1.5126
1.4611 | 1.5013
1.1036
0.8373 | | | -0.2251
0.3656 | 0.3054
0.4479 | 0.3448
0.7322 | 0.9917
1.1484 | 0.8391
0.8811 | 1.4611
3.733
1.2625 | 0.8373
3.3673
0.9864 | | | 0.7327
-0.122 | 0.7623
1.774 | 1.2495
1.5331 | 1.2908
0.6038
1.4037
1.3869 | 1.3577
-0.1285 | 1.9869
4.079 | 1.6999
2.5552 | | | | 0.6085
0.2071 | 1.0041
-0.0576 | 1.4037
1.3869 | 1.4252
0.7338 | 1.5377 | 1.718 | | | | 0.5504
0.8681 | 1.0257
0.9774 | 0.8023
1.2732
0.9573
1.3497 | 1.184
0.873 | 1.2698
1.4801
1.4478 | 0.7435
1.2116
0.8992 | | -0.3892
-0.0911 | 0.2967
0.1742 | 0.0537
0.9534 | 0.9947
0.9916 | 0.9573
1.3497 | 0.9757
0.7713
1.7226 | | 0.8992
1.2537 | | 2.0389
-0.3865 | 0.301 | 1.5708
0.5979 | 1.4638
0.5897 | 1.7535 | 0.7332 |
2.0438
1.0887 | 1.7703 | | | | 0.3038 | 0.433
0.8745 | | 0.6441
0.8517
0.7266 | 1.4977
0.9927
1.2627 | 1.0768
1.1548
0.8913 | | 0.0070 | 0.000 | | 0.2035 | 1.4658 | 1.7033 | 1.2627
2.2886
0.8498 | 2.4213 | | | | 0.5998
0.4171 | 0.7521
1.0408 | 0.9756
0.6677 | 1.0189
1.1078 | | 0.6491
0.807 | | -0.5955
-0.4598 | -0.644
0.0943 | -0.2749
2.9549 | -0.1741
2.4853 | 0.6086
2.9353 | 0.4437
2.6985 | 0.9311
1.9156
2.9004 | 0.807
1.3909
2.661 | | 0.1372
0.0965 | 0.0781 | | 0.171
0.6699 | 0.3826
0.8443 | 0.4298
0.8773 | | 2.661
1.1128
1.2301 | | -0.9764
-2.3377 | -0.9609
-1.2644 | 0.7226
0.2175 | 0.5382
0.7788 | 2.1799
0.8456 | 1.874
1.1291 | 1.5233
2.8443
0.9522
1.1196 | 2.1463
1.3219
0.7244 | | | | | 0.6047
0.7735 | 0.4221
1.3017
0.9944 | 0.854
1.2108
0.9524 | 1.1198
1.8476
1.0644 | 0.7244
1.4778
1.0716 | | -0.6596
-0.7885 | -0.0721
-0.0235 | 1.5065 | 1.0006 | | 0.9412 | 1.0644
1.6042
1.1837
2.1174 | 1.0716
1.2242
1.4562 | | | -0.1563
-0.8026 | 0.7318
2.0366
0.779 | 1.0081
1.8456
0.9656 | 1.3215
2.0998
1.215 | 1.227
1.9291
1.3468 | 2.1174
1.7356 | 1,931 | | 1.1574
0.4267 | 1.1857
0.4482 | 0.779
1.6702
0.7223 | 0.9656
1.4244
0.8428 | 1.215
1.4823
1.2924 | 1.3468
1.6711
1.0145 | 1.7356
0.9972
1.5213
2.1792 | 1.7023
1.4212
1.3859
1.9572 | | | 0.5986
0.228 | 0.9358
0.4561 | 0.6547
0.4673 | 1.6004
0.9764 | 1.4071 | 1.2456 | 1.9572
0.8151 | | | 0.1311
0.3304 | 3.8429
0.6591 | 2.6941
0.6362
0.863 | 4.5025
0.8252
1.0308 | 3.4988
0.7279
1.0048 | 6.7616
1.6294
1.399 | 0.8151
6.043
1.4114 | | | 0.6431 | 0.7586
0.3012 | 0.863
0.8258
1.0858 | 1.0308
0.8976
1.0031 | 1.0048
0.8042
1.1865 | 1.399
1.3967
1.2678 | 1.3945
1.1706
1.274 | | | 0.5109
0.5203 | 0.5131
0.5097 | | | 1.1865
0.8641 | | 1.274
0.8956 | | | 0.4766 | 1.0247
1.1025 | 1.3682
1.1937 | 1.3631
1.1564 | 0.8641
1.4364
1.1943 | 1.4475
1.1479 | 0.8956
1.2577
1.5412 | | -0.1865
-1.2724
-0.2793 | 0.4851
-0.114
0.5488 | 0.7273
1.2017
0.7714 | 0.9927
1.4498
1.136 | 0.8611
1.5641
0.8896 | 1.0413
1.7557
1.4853 | 1.2334
1.8127
0.8514 | 0.9481
1.752
0.8498 | | -0.279.3
-0.7774
-0.5318 | 0,1089
0,7921 | 0.5824
3.0927 | 0.9889
2.9374
0.9673 | 1.2615 | 1.6942 | 2.2438
3.5323 | 1.9612
2.8753 | | | 0.2057
0.7241 | 0.8103
0.8714 | 0.9673
0.8891 | 1.3435 | 1.3726
1.0921 | 1.7578
1.3164 | 1.6814 | | | -0.1037
-0.212 | | 0.4752
0.0367 | 0.7257
1.11
1.2183 | 0.611
0.8887 | | 0.7895
2.1664 | | 0.1668
-1.2078 | 0.1202
-0.4225 | | 0.741
0.9784 | | 1.3726
1.0921
0.611
0.8887
0.6507 | 3.0199
1.5597
0.8814 | 0.7895
2.1664
0.9785
1.0646 | | | | 0.3341
0.3609 | 0.9812
0.8439 | 0.8441
1.0175 | 1.1463
0.8144 | 1.1718 | 1.274
0.7719 | | -0.9107
-0.2248 | -0.4417
-0.1095 | 0.2202
0.0777 | 0.8252
-0.1984 | 1.0348
0.2482 | 1.0155
0.2118 | 1.4268
1.5708
1.7359 | 1.241
1.0641
1.1122 | | -2.5361
0.2899 | -1.7526
0.4278 | 1.1074
0.9125 | 0.7309 | 1.7564
0.9977
1.1347 | 1.4158
0.9813 | 1.7359
1.1864
1.0498 | 1.1122
1.3954
1.0173 | | | -0.3288
0.501 | 0.4746 | 0.762
0.3154 | | 1.2974
0.376 | 1.6447 | 1.0173
0.936
1.5337 | | | -0.3158 | 0.8112 | 1.2731
0.6456 | 1.4144
0.9
1.2776 | 1.6675
1.1241
1.8923 | 1.3224
1.3944
1.4707 | 1.5337
1.3317
1.6652 | | 0.0738 | -0.1399 | 0.898 | 1.4805
0.4339 | 1.2776
0.6579
1.4241
2.0769 | 1.8923
0.478
1.0063 | 1.4707
1.1276
2.1734 | 1.6652
0.8667
1.7352 | | -1.503 | 0.0452 | | 0.7363 | 2.0769 | 2.0634 | 2.1734
3.7995
0.8224 | 1.7352
3.174 | | 2 1110057K04Rik
2 Clc1
2 1700019G17Rik
2 1700027A23Rik | 0.2931
-0.1383
0.0565 | 0.2942
0.1705
0.1895
0.1483 | 0.584
0.3116
0.8378 | 0.3728
0.5218
0.8658
0.398 | 0.2785
0.7182
1.1037
0.3693 | 0.4827
0.8044
0.7558
0.2993 | 0.5432
0.8451
0.932
0.9143 | 0.3609
1.2136
0.5443
0.7363 | 0.5573
0.7422
0.5616
0.3482 | |--|---|---|--|---|--|---|--|--|--| | 2 170093Xc21Rik
2 1810039.15Rik
2 1810035.17Rik
2 2010107512Rik
2 Tesenc2
2 2210016.27Rik
2 221004.11Rik | | | | | 0.5359
0.7152
0.455
0.7351
0.3859
0.1847 | 0.4252
0.2975
0.5576
0.6582
0.3233 | | | | | 2 2310003C23Rik
2 2310003F16Rik
2 2310007B03Rik
2 231000BH03Rik
2 2310014L17Rik | | | | 0.2234
0.7503
0.3515
-0.1167
0.7153
0.4057 | 0.9115
0.8627
0.2018
0.6282
0.6748
0.4414 | 0.5452
0.6468
0.5673
0.4594
1.0979 | | 0.4568
0.8224
0.5809
0.6989
0.6223
0.3504 | 0.2087
1.0194
0.3063
0.7748
0.0978 | | 2 2310022A10Rik
2 2310035C23Rik
2 Kansi2
2 2310067B10Rik
2 2310079F23Rik
2 2410002C22Rik | | 0.0997
0.4034
0.6568
0.6808
0.4053 | 0.2689
0.4201
0.3826
1.3213
0.1173 | 0.3355
0.4174
0.7723
1.1316
0.3503 | 0.5087
0.4812
0.2876
1.4078
0.0979 | 0.5589
0.5911
0.8241
1.3871
0.5968 | 0.5982
0.2972
0.4744
1.0479
0.3826 | 0.8059
0.3182
0.4359
1.3915
0.4518 | 0.6499
0.3301
0.9524
0.4906
0.1283 | | 2 2410004B18Rik
2 2410042D21Rik
2 2410127L17Rik
2 2510003E04Rik
2 Cactin | | 0.3681
0.2319
-0.0618
0.2134
0.5821 | 0.6293
0.5517
1.0394
0.3101
0.2549 | 0.3203
0.5054
0.7812
0.2618
0.5727 | 0.8702
0.3866
0.6971
0.3596
0.4723 | 0.4349
0.3826
0.8642
0.0784
0.5742 | 0.903
0.3191
1.0363
0.2648
0.4977 | 0.8596
0.3744
0.8379
0.2454
0.6035 | 0.8657
1.0986
0.9438
0.63
0.6316 | | 2 2510039018Rik
2 2610027L16Rik
2 26103181002Rik
2 26103181002Rik
2 2810482009Rik
2 2810432009Rik | | | | | | 0.5196
0.5768
0.7489
0.7188
0.7202
0.2991 | | 0.7032
1.1551
0.6058
0.7153
0.6042
0.2217 | 0.949
0.9684
0.5196
0.525 | | 2 3230401D17Rik
2 4732418C07Rik
2 4833498L19Rik
2 4921501E09Rik
2 4930432K21Rik
2 4930432K21Rik | | -0.0682
0.6117
0.6217
-0.2264
0.4618 | 1.4205
0.5316
0.4272
0.428
0.837
0.851 | 0.2752
0.4391
0.3672
0.5965
0.3348
0.4945 | 0.7248
0.4863
0.3142
0.4124
1.2593
0.6519 | | | | | | 2 4930453N24Rik
2 4930455C21Rik
2 4930572305Rik
2 493140P16Rik
2 Cabet
2 4933424B01Rik
2 5730494M16Rik | 0.5384
-0.9343
-0.4178
-0.2305
-0.1108 | 0.4527
-0.011
0.2836
-0.2022
0.4738 | 0.4054
0.6845
0.9548
0.3663
0.9945 | 0.8533
1.1003
0.6472
0.588
0.6727 | 0.7501
0.7718
0.8092
0.7784
0.959 | 0.3817
1.2187
0.4556
1.0196
0.7465 | 0.6217
0.8376
0.5216
0.415
0.9945 | 0.3672
1.0069
0.9804
0.7872
0.8551 | 1.0515
-0.312
-0.2806
0.1197
0.652 | | 2 5830415F09Rik
2 5830433M19Rik
2 6030405A18Rik
2 8430406G2ZRik
2 9030025F20Rik | | 0.5546
0.2739
0.092
-0.4652
0.1017
-0.4844 |
0.4575
0.4575
1.4388
1.734
0.4268 | 0.5005
0.387
0.1502
1.723
0.7546
0.4623 | 0.3533
0.3739
0.5103
1.4594
1.7653
0.694 | 0.3157
0.2244
0.9903
0.6003
0.6013 | 0.199
0.6151
0.63
1.0213 | | | | 2 9030624J02Rik
2 9130011E15Rik
2 9430015G10Rik
2 9930023K05Rik
2 A230091H23
2 A830093424Rik | 0.3673
0.1072
-0.2108
-0.376
0.699
0.5498 | 0.3087
0.339
0.053
0.9205
0.6765 | 0.4703
0.4468
0.0753
1.1036
1.6624
0.4717 | 0.4104
0.3161
0.6043
1.3495
1.7299
0.6074 | 0.4703
0.4871
0.5902
1.0894
0.5928
0.6532 | 0.1831
0.379
0.9819
1.3113
0.5521
0.5517 | 0.2186
0.3834
0.963
0.2689
0.1347
0.4884 | 0.4072
0.5206
0.9956
1.0151
0.1409
0.724 | | | 2 A930038C07Rik
2 Aass
2 Aatf
2 Abca7
2 Abcb10
2 Abcc10 | 0.3629
0.647
0.1967
-0.3941
0.5113 | 0.3435
1.1013
0.2687
-0.2497
0.7018 | | | | 0.1473
0.8592
0.5208
0.5884
0.5071 | 0.2131
1.258
0.3797
0.2425
0.584 | 0.3868
1.0698
0.5858
0.7537
0.4954
0.3847 | | | 2 Abce1
2 Abhd2
2 Abc
2 Abc1
2 Abr1 | 0.5055
0.1722
-0.0875
-0.9712
-0.4057 | 0.496
0.0576
-0.0677
-1.0077
-0.4146 | | 0.4018
0.5608
0.5073
0.5514
0.4678 | 0.659
0.5037
0.7755
1.648
0.9639 | 0.157
0.6257
0.6257
0.4805
1.6664
0.7812 | 0.7382
0.117
1.893
0.2934 | 0.3397
0.5702
1.2233
0.4394 | | | 2 Acads
2 Acbd4
2 Acin1
2 Acot10
2 Acpp
2 Acst3 | 0.2053
0.2053
0.3017
0.0055
-1.4973
0.1002 | 0.4899
0.1996
0.418
-1.439
0.2256 | 0.314
0.3576
0.7457
0.8067
1.3153
0.2839 | 0.3531
0.3654
0.6105
0.5744
1.0455
0.3174 | 0.2071
0.4922
0.6027
0.5515
1.7463
0.3493 | 0.7071
0.4724
0.4192
0.5492
1.2352
0.5806 | | 0.3957
0.3611
0.6948
0.3719
0.6359
0.4312 | 0.6815
-0.173
0.8112
0.1432
-1.3882
0.4215 | | 2 Actn4
2 Actr1b
2 Adal
2 Adam10
2 Adam23
2 Adam87 | | 0.8239
0.5638
0.2388
0.3456
0.0388 | 0.7641
0.3574
0.2829
0.4678
0.9837
1.2536 | | | | | | | | 2 Adap1
2 Adar
2 Add3
2 Add1
2 Adipor1
2 Adipor2 | 1,7234
0,8314
0,293
0,097 | -0.1209
0.3957
0.3678
0.3287
0.0892 | 0.3659
0.9642
0.3697
0.795
0.8592 | | | 0.7612
0.0732
0.3946
0.5341
0.8334 | -0.1017
0.6177
0.3273
0.8057
0.2154 | 0.3449
0.3785
0.6975
0.6839
0.6929 | | | 2 Adds
2 Add
2 Addo
2 Addora1
2 Addra1a
2 Addra2b
2 Aebp2 | 0.8144
0.1553
0.0050
0.526
0.4736 | 0.8589
0.4713
0.2214
0.5017 | | | | | | | | | 2 Agfg1
2 Agpat9
2 Ahcd1
2 Ahcd1
2 Ahdd1 | | | | 0.2888
0.0836
0.2676
0.5775
0.4625 | 0.5574
0.4702
0.6518
0.2073
0.953 | 0.6773
0.2458
0.6421
0.4491
0.8062 | 0.6227
0.656
0.8563
0.0707
1.2073 | 0.707
0.9469
0.2899
1.0573 | 0.265
0.6955
0.1083
0.961
0.1246
0.331 | | 2 Ahsa2
2 Ahsg
2 Als93442
2 Al861453
2 Al86148
2 Al86148
2 Al91 | 0.1078
-0.4535
-0.9807
-0.1416
-0.3343
-0.2092 | 0.2715
-0.3808
0.6531
0.1109 | 0.3278
0.299
0.8229
0.7488
0.7131
0.923 | 0.8632
0.7548
0.1416
0.8432
0.8409 | 0.4472
0.806
1.3506
0.8575
0.7678
1.0743 | 0.5396
1.5905
1.7874
0.7422
0.7387
0.9951 | 0.3967
0.2074
1.4629
0.8799
0.5606 | 0.485
0.9976
1.868
0.9039
0.4936
0.6651 | | | 2 Alp
2 Akap1
2 Akap8
2 Aktis1
2 Akdivla11
2 Akdivla11
2 Akg3
2 Akg9 | 0.6285
0.254
0.2062
1.0181
0.7711 | | 0.16
0.4544
0.4939
0.7755
0.3423
0.4684 | 0.3378
0.4974
0.445
0.6145
0.0744
0.8798 | | | | 0.5782
0.5256
0.1973
0.5497
0.352
0.6029 | 0.0562
1.2104
0.2875
-0.6148
0.7225
0.0907 | | 2 Alg9
2 Alkbh5
2 Alox12e
2 Amd2
2 Amhr2
2 Amhr2 | | | | | | | | 0.4545
0.8004
0.6221
0.4401
0.3952
0.4885 | 0.381
0.3358
1.2396
0.4159
0.3605 | | 2 Anapc5
2 Ankrd13a
2 Ankrd13c
2 Ankrd17
2 Ankrd40
2 Ankrd54 | | | 0.1565
0.7636
0.8803
0.5056
0.4754 | | 0.3296
0.5519
0.5698
0.5735
0.3633 | 0.7997
0.6018
0.5871
0.5629 | | | | | 2 Ano1
2 Ano4
2 Anp32e
2 Anxa11
2 Aoah | 0.1611
-0.718
0.4096
-0.3769 | 1.1435
0.2097
0.1018
0.4808
0.3081 | 2.4576
1.9322
0.4923
0.4357
1.7633 | 2.6626
1.7881
0.7008
0.3241
1.1857 | 2,2254
1,6738
0,7331
0,3766
1,0869 | 1.7909
1.3147
0.9544
0.1531
0.1227 | 1.3307
0.8282
1.064
0.5095
0.4779 | 1.271
1.0016
0.5765
0.6309
0.3752 | -1.1918
0.7631
0.2581
-0.5106 | | 2 Ap1g1
2 Ap281
2 Ap281
2 Ap381
2 Ap381
2 Ap481 | | 0.86
0.2315
0.194
0.6008
0.4695 | 0.7132
0.5274
1.004
0.3869
0.5881 | 0.676
0.5765
0.5922
0.1528
0.8211 | 0.9437
0.922
0.5206
0.5241
0.7494 | 0.9044
0.8021
0.4202 | 1.1119
0.5804
-0.0667
0.5621
0.4578 | 0.9714
0.8782
0.2748
0.5834 | | | 2 Apds1 2 Apbb3 2 Apcs 2 Apex1 2 Apix1 2 Apir 2 Apir 2 Apir 2 Apirosec3 | | | | 0.4931
0.4807
0.2599
0.6033
0.1761
0.1401 | 0.3331
0.3462
0.5356
0.4949
0.7669
0.3061 | 0.3650
0.3573
0.4055
0.688
0.3075 | 0.4203
0.1242
1.1678
0.3889
1.2513 | 0.32
0.2359
0.7589
0.419
0.8978 | -0.2253
0.3108
0.3092
0.4073
-0.1511
0.1531 | | 2 Apobec3 2 Aqr 2 Arf 2 Arf 2 Arf 2 Arf 2 Arfap22 2 Arfapap26 2 Arfapap27 2 Arfape11 2 Ard | 0.5
1.1317
0.3865
0.1643
0.3773 | | 0.8348
0.4116
0.8263
0.6919
0.9072
0.2045 | 0.6455
0.8145
1.1601
0.3165
0.6238
0.2545 | 1.0504
0.7776
0.8414
0.7007
0.9141
0.3948 | 0.7569
0.747
0.8977
0.5379
0.4125
0.5612 | 1.0619
1.3013
0.8373
0.4046
0.323
0.3224 | 0.8495
0.9444
0.5774
0.756
0.2231
0.766 | | | 2 Arih1
2 Arih2
2 Ari4a
2 Ari6 | 0.1437
1.1042
0.2452 | 0.2142
-0.1672
-0.4856
-0.1314
-0.0511 | 0.2643
0.57
0.7542
0.6487
0.9468
0.6104 | 0.6362
0.2068
0.7141
0.3243
1.1576
0.5141 | 0.6006
0.7071
0.8964
0.3548
1.2484
0.6624 | 0.4957
0.378
0.6382
0.0743
0.7561
0.9887 | 0.4903
0.8252
0.8964
0.5057
0.4379
0.8748
1.13 | 0.5554
0.5742
0.5343
0.3046
0.9131
1.1667 | -0.3623
0.3238
0.7084
0.4748
0.0007
1.2557 | | 2 Art6ip1
2 Art6ip4
2 Armc6
2 Armc9
2 Armcy2 | -0.4423
0.2862
0.4229
1.2038
0.9578 | 0.226
0.2862
0.4942
0.3156
1.0429 | | | 1,2438
0,6014
0,453
0,3787
-0,2716
0,4437 | 0.934
0.4751
0.4926
0.4463
-0.2324
0.27.45 | 1.13
0.7283
0.7705
0.2311
1.1422
0.6573 | 1.0339
0.8144
0.5979
0.4193
0.5127 | | | 2 Armcus5 2 Armt 2 Armtl 2 Armtl 2 Armtl 2 Armtl 2 Armp12 2 Appc1a 2 Appc21 2 Arpp21 | 0.2146
0.5935
0.3144
0.223
0.1745 | 0.0759
0.5674
0.3693
0.4176 | 0.5361
1.0022
0.2956
0.4587
1.3451 | 0.2187
0.6945
0.3693
0.2244
0.8575 | 0.5638
0.7689
0.8275
0.4837
0.3943 | 0.5983
0.2783
1.0485
0.3997
0.3969 | 0.3243
0.1092
0.8094
0.4439
0.24 | 0.234
0.2146
0.4355
0.6631
0.2998
0.1592 | 0.0736
0.2673
-0.2567
0.1498
0.044 | | 2 Ardc2
2 Asah1
2 Asap2
2 Asb12 | 0.4458
1.0394
0.233
0.2172 | 0.4685
0.9877
0.1748
0.4396 | 0.1345
0.6139
1.5264
0.444 | 0.265
0.8202
1.3714
0.1673 | 0.4619
0.2298
1.6968
0.3171 | 0.5739
0.5711
1.5108
0.3762 | 0.4898
1.28
0.3243 | 0.573
-0.2761
1.4309
0.2805 | 0.9664
0.5834
-0.26
0.0848 | | 0.8231
0.1515
0.0735
0.1684 | 0.458
0.5085
0.0632
0.4021 | 0.4135
0.3982
0.4417
0.297 | 0.3991
0.5646
0.4056
0.1188 | 0.2762
0.5792
0.217
0.3943 | 0.6039
0.6759
0.2308
0.2046 | 0.4476
0.6008
0.2445
0.3109 | 0.3502
0.7133
0.4377
0.3759 | 0 | |--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---| | -0.5893
0.2812
0.6535 | -0.7711 | | 0.0682
0.303
0.2848 | 1.0922
0.6306
0.4981 | 1.2496
0.2101
0.2478 | 0.8079
0.7812
0.3858 | 1.4283
0.5742
0.2216 | 0 | | | | | | | 0.336
0.396
0.8621
0.5316 | | 0.369
0.4454
0.7747
0.4117 | | | 1.3182
-0.1215
0.7596 | | 0.789
0.3024
0.6706 | | | | | | | | 0.0971
0.9029
0.4335 | 0.1976
0.6655
0.8107 | 0.3602
0.5755
0.5803 | | | 0.2767
0.3337
0.8133 | 0.2618
0.2848
0.9432 | 0.3933
0.3626
0.9988 | | | 0.3646
0.0437
0.1224 | 0.4001
0.2457
0.3832 | 1.3746
1.1605
0.6399
0.4363 | | 0.7409
0.4104
0.5011 | 0.4496
0.5275
0.8867
0.7203 | | | | | | 0.4054
0.0872
0.246 | 0.4194
1.073
0.4659 | | 0.479
0.2885
0.3003 | 0.6982 | | | | | | | | | 0.3703
0.5838
0.3409 | 0.282
0.7007 | | 0.045
0.5289
0.1012 | | | 0.4522
-0.3709
0.4749 | 0.3489
0.0543
0.8527 | | | | | | | | | | | | | | 0.431
0.2918
0.9659 | | | | | | | | | | | | | | | 1.0751
-0.0341 | | | | 0.2896
0.1665
0.5499
0.4556 | 0.4529
0.3463
0.9889 | 0.3103
0.6763 | 0.7402
0.8054
0.8437 | | | -0.8597
1.1364
0.3686 | -0.3583
0.3202
0.2836 | 1.1015
1.3317 |
1.0625
0.6738
0.2687 | 0.8293
0.9014
0.3451 | 1.0028
0.8388
0.5037 | 0.2085
0.7917
0.8375 | | | | | | | | | 0.6824
0.5159
0.655 | 0.3424
0.9345
0.9198 | 0.4117
0.7703
0.5596 | | | | | | 0.6269
-0.0162
0.5655 | | 0.8445
0.2799
0.4647 | 0.719
1.0011
0.8894 | | | | | | | 0.7926
0.1878
0.5012 | | 0.5879
0.5971
0.2814 | 1.3108
0.4166
0.5775 | | | | | | 0.225
1.022
0.4772 | 0.3136
0.9072
0.5091 | 0.4059
1.2412
0.4525 | 0.6733
1.1675
0.282 | 0.4447
1.2394
0.1583 | 0.7
1.1477
0.2061 | | | 0.0377
0.5934
0.0857 | 0.0743
0.4507
0.152 | | 0.8014
0.5141
0.8282 | | | | | | | 0.8442
1.3122
0.2325 | | | | | | | | | | | | 0.401
0.615
0.3773 | | | | | 0.2135
0.8667
0.6231 | | | | | | | | | | 0.4712
0.7238
0.4824 | | | | 0.1187
0.3338
0.2705 | 0.4494
1.1332
1.1568 | | | | | | | | | | 0.1841
0.7948
0.2985 | 0.9946
0.2838 | 0.411
0.96
0.5136 | 1.1705
0.5993 | 0.7804
1.2335
0.4292 | 0.4438
1.2213
0.2921 | | | | | | | | | | | | | | 0.2074
0.7162
0.1003 | 0.1011
0.7776 | 0.1837
1.0114
0.8406 | 0.6018
0.3912
0.478 | 0.1778
0.1546 | 0.5075
0.2175 | 0.4685
0.531
0.0834 | | | -0.4208
1.2185 | 0.1003
0.5183
0.986 | 0.834
0.4876
1.146
1.3692 | 0.8406
0.7735
0.8147
0.9524 | 0.6186
1.0497
0.8513 | 0.752
0.4568 | 0.7882
1.2806 | | | | | 0.6158
0.197 | 1.3692
1.2236
0.5098 | | 1.0178
0.4192 | 0.8241
0.1421 | | | | | | 0.129
0.1294
0.5822 | 0.4168
0.9978 | | 0.1634
0.6482
1.0661 | 0.3595
0.1898
1.0736 | 0.415
1.1342
0.8438
0.8709 | 0.605
1.3373 | | | | | | | | 0.4854
0.6484 | 1.0784
0.0433 | 0.9786
0.1828 | | | | | | | | 0.0300
0.1509
0.004 | 0.7864
0.1232
0.9132 | | | | | | | | 0.5797
0.4335
0.6855 | 0.5845
0.0629
0.7527 | | | | | 0.7638
0.466
1.3902 | 0.6818
0.9041
0.449 | 0.5876
1.4936 | 0.666
0.8573
0.3661 | 0.3391
0.5758
1.1461 | | 0.1981
0.6664
0.7024 | 0.8494
0.449 | | | 0.3727
1.4386
0.1343 | 0.248
-0.1739
0.302 | 0.4424
1.2497
0.4638 | | | | 0.5891
0.5926
0.2837 | 0.6867
0.0124
0.2572 | | | | | | | | | | | | | | 0.5202
0.0830 | 0.6092
0.4431
1.1851 | | 0.6208
0.3135
0.8113 | 0.4246
0.894
0.2194 | | | | | -0.1593
-0.3047
-0.4394 | -0.1377
-0.2998
1.0129 | 0.4336
1.0466
0.4093 | 0.4851
1.2253
0.9153 | 0.4764
1.2588
0.2141 | 1.0241
1.0947
0.5984 | 1.0676
0.1296 | 0.3504
1.1803
0.3403 | | | | 0.2342
0.2989 | 0.3633
0.4896
0.1787 | 0.8824
0.4523
0.1131 | 0.4733
0.215 | 0.766
0.1541 | 0.8331
0.1171
0.4685
0.5694 | 0.8314
0.5245
0.5031 | | | 0.7364
0.181
0.0979 | 0.2233
0.9039
0.3035 | 0.3691
0.6765
0.6958 | 1.3624
0.4005
0.7764
0.9372 | 1.0486
0.6752
0.5897
0.8936 | 0.6367
1.0019
1.0866 | 0.5894
0.154
0.7207
0.9909 | 0.4301
0.7614
0.9597 | | | | | 0.7333
0.5649
0.2000 | 0.1373
0.3063
0.5508 | | 0.557
0.4405
0.4503 | 0.9407
0.5418
0.9919 | | | | 0.213
-0.5944
1.0679 | 0.2935
0.9855 | | | | 0.5974
0.8589
0.3221 | 0.3387
0.9165
0.3462 | 0.4337
0.8993
0.293 | | | -0.1243
-0.7117 | 0.1248
0.0876
-0.2985 | | 0.453
1.0119
0.4948 | 0.7468
0.9595
0.3812 | 0.3326
1.1397
0.3568 | 1,2609
0,7356
0,5633 | 0.887
1.165
0.5316 | | | | | | | | | | 0.1668
0.2238
0.6415 | | | 0.3834
0.1158
0.8545 | 0.088
0.0903
0.8848 | 0.3775
0.3515
1.6404 | 0.5186
0.2392
1.1933 | 0.2325
0.3727
1.1016 | 0.5132
0.1084
0.9856 | 0.1058
0.6688
0.8417 | | | | | | | 0.2815
0.3504
0.7685 | | 0.3224
0.8054
0.6383 | 1.0612
0.7772
0.5655 | 0.84
0.6056
0.683 | | | | | | | | 0.4613
0.7267
0.4093 | 0.5655
0.7501
1.1037
0.432 | 0.5095
0.8989
0.1846 | | | 0.7406
-0.2744
-0.2733 | 0.6419
-0.1163
0.7736 | 0.5486
0.934
4) 0683 | 0.8083
0.7428
-0.3879 | 0.5544
0.5667
1.0078 | 0.7885
0.4042
0.3575 | 0.4819
0.3912
2.7294 | 0.4637
0.4791
1.8909 | | | 0.5116
0.1017
0.6064 | 1.457
0.2994
0.2622 | 1.5974
0.2975
0.4221 | 1.8158
0.629
0.3786 | | | | | | | 0.9196
0.7927 | | | 0.2406
0.4254
0.1678 | | | 0.5455
0.7019
0.8926 | | | | 0.5326
0.2736
1.1138 | 0.5594
0.8898 | 0.3467
0.3748
0.6996 | 0.6402
0.2404
0.4759 | 0.7257
0.5448
0.5792 | 0.6559
0.602
0.5942 | 0.5792
0.6609
0.3438 | 0.5743
1.0958
0.3671 | | | | -0.53
0.5987
0.4921 | 1.8594
0.4228
1.044
1.3299 | 1.0811
0.4534
1.1591
0.8024 | 2.3024
1.2032 | 1.6372
0.2242
1.295 | 1.1195
0.3252
0.5209 | 0.6899
0.3852
1.5288 | | | | 0.3073
0.7228
-0.0831 | 1.3299
0.5399
0.982 | 0.4797
1.1358 | 0.8963
0.6026
0.9625 | 0.5051
0.7309
1.0153 | 0.5227
0.2108 | 0.4298
0.4865
0.8336 | | | | | | 0.3294 | | | | | | | | 0.2314
0.7498 | 0.4624
0.5002 | 0.6218
1.134 | 0.7262
0.8648 | 1.0833
0.8282 | 1.0139
0.8359 | 0.9699
0.7031 | 1.2611
0.7238 | 0.3
0.6 | |---|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|------------------------| | P | | 0.1018
0.4225
-0.1507 | 0.3194
0.351
0.6985 | 1.5052
0.3462
0.3352
0.6623 | | | | 0.1823
0.3495
0.3139
0.4916 | | | | | | | | | | | 0.7035
0.5083
0.5203
0.6704 | 0.2
-0.6
0.9 | | | | 0.3655
0.8697
0.5388 | | | | 0.7267
0.9118
0.1861
0.4442 | | 0.4161
0.9717
0.3059
0.5847 | 0.6
1.2
0.4 | | | | | | | | 0.1563
0.5224
0.7024 | 0.575
1.3161
0.5593 | | 0.1
0
0.4 | | | | | | | | | | 0.6895
0.4709
0.6839
0.4491 | 0.8
1
0.3
0.2 | | | | 0.4036
0.6438
0.1389 | 0.5391
0.743
0.1072 | 0.323
0.5949
0.2086 | 0.3032
0.6192
0.4775 | 0.9205
0.3865
0.8583 | 0.4862
0.8319
1.0407 | 0.2346
0.9387
0.7492
0.9551 | 0.1
1.1
0.2 | | | -0.245
-0.4558
0.3974 | 0.0904
0.2493 | 0.6084
0.4684
0.4287 | 0.7807
0.6223
0.499 | 0.4324
1.0964
0.6598 | 0.4154
0.5822
0.9499 | 0.2399
1.1858
0.5625 | 0.2817
1.1352
0.2847 | | | | 2.948
0.3901
0.9689 | 0.1294
0.7293
0.2779 | 3.4073
0.5229
0.5672
0.6793 | 0.5361
0.6407
0.4978 | 2.3362
0.5217
0.3415
0.46 | 0.3498
0.7241
0.854 | 1.2623
1.0198
0.9117
0.8104 | 0.4472
0.9096
0.9657 | -0.
0.
0. | | | | | 0.2923
0.4223
0.4409 | 0.5262
0.5977
0.134 | 0.3975
0.8111
0.4917 | 0.4857
0.4635
0.6482 | | | | | | 0.6089
0.2936
-0.4143 | | 0.4408
0.256
0.8271 | | 0.4278
0.5989
0.6188 | | 0.6822
0.1209
0.4371 | | | | | 1.1513
-0.1765
-0.0592 | 0.7733
-0.0484
0.5538 | | 0.8379
0.3387
0.6131 | | 0.7207
0.5622
0.2514 | 1.4916
0.1494
0.3333 | 1.0446
0.8278
0.3765 | | | | | | | | 0.7128
0.8561
0.3385
0.658 | 0.6463
0.4359
0.7873
0.8953 | 0.6959
0.7928
0.2854
0.5636 | | | | | 1.2258
-1.6384 | 0.3955
-1.415 | 1.0914 | 0.1059
0.5962
0.4971 | 0.7178
0.9939
0.9412 | 1.0819
0.3919
1.6274 | 0.7508
0.232
1.2538 | 0.6068
0.2341
1.6927 | | | | 0.1682
0.6212
1.9978 | 0.1656
0.4127
0.4416 | 0.3725
0.108
1.3313 | | | | | 0.405
0.5305
-0.0454 | -0.
-0
2 | | | | | | | | | | | | | | | 0.2763
0.2925
0.5832 | 1.2815
0.5127
0.8195 | 0.4408
0.5293
1.0107 | 0.751
0.6198
1.0129 | 0.7236
0.5902
1.2283 | 0.7033
0.3789
0.4818 | 0.9417
0.6671
1.1781 | | | | -0.0348
0.6282
-0.3899 | | | | | 0.1208
0.2516
0.7612 | | 0.3035
0.8043
0.6192 | 0 | | | -0.1852
-0.7415
-0.1661 | 0.3869
-0.1148 | | | 0.985
0.4661
0.8181 | 0.532
0.7501
0.4216
0.5851 | 1.0027
1.0878
0.4167
1.1699 | 0.9787
0.7847
0.3137
0.6146 | 0
-0 | | | | | 0.3619
0.8491
0.3466 | 0.5679
1.0502
0.3288 | | 0.6181
0.311
0.3219 | 1.1028
0.5191 | 0.6144
0.0987
0.5547 | | | | | | | 0.4108
0.3979
0.7565
0.8659 | | 0.3078
0.7656
0.6846
0.8552 | 0.2047
0.9358
1.1951
0.6735 | 0.2983
0.9328
0.9011
0.1623 | | | | -0.2193
0.8587
-0.2601 | 0.1516
0.8053 | 0.6131
0.8378
0.4348 | 0.3952
0.915
0.5228 | 0.8088
0.7445
0.7804 | 0.7012
1.2185
0.7295 | | 0.8492
0.3588
0.7197 | 1.
1.
0 | | | 0.3809
0.0727
1.651
-0.6133 | 0.2282
0.1781
0.3335
-0.6705 | 0.7566
0.5509
1.0576
0.7218 | 0.4634
0.4582
-0.1175
0.1936 | | | 0.804
0.8516
0.4741
0.2133 | 0.9016
1.1074
0.1587
0.4599 | | | | | 0.045
0.0884
-0.5007 | 0.2805
0.3442
1.1674 | 0.1052
0.4592
1.1101 | 0.7044
1.1951 | 0.1375
0.3538
1.1121 | 1.4979
0.5656
0.2253 | 0.5153
0.3727
0.7964 | | | | | 0.5171
-0.0864
-0.0864 | | | | 0.4552
0.6007 | 2.446
1.1919
0.9851 | 1.4507
0.598
1.014 | | | | | 0.4685
0.5735
0.2144 | | | 1.0799
0.4364
0.6247 | 0.9835
0.6472
0.756 | 1.2769
0.7702
0.8258 | | -0
1
0 | | | | 0.4619
-0.1939 | | 0.5314
0.755
0.5426 | 0.4488
0.7065
0.8713 | 0.7855
0.9101
0.2106 | 0.9392
0.863
0.4042 | 0.496
0.742
0.5426 | 0.
1. | | | | -0.2137
-0.1141
0.139 | 1.2117
0.2727
0.5949 |
1.1451
-0.0865
0.1147 | | 0.4485
0.1688 | 0.0963
0.7902
0.4972 | 0.36
0.4485
0.0457 | -0
0 | | | | | | | | | | 0.8681
0.1987
0.6732 | | | | | | | 0.6866
0.4703
0.2614 | 0.8527
0.9676
0.4349
1.0053 | 0.4969
0.6309
0.4474
1.3573 | 0.6891
0.7746
0.465
0.9671 | 0.5939
0.5813
1.5207 | 0.
1.
-0.
-0. | | | | | | | | | | | 0.
0. | | | | | | | | | | | | | | 0.1847
0.4523
0.2498 | 0.3015
0.5046
0.2202 | 1.3052
0.2787
0.2749 | 0.6552
0.5458
0.1826 | 1.228
0.5084
0.3932 | | | | | | | 0.3855
1.216
0.3677 | | | | | | | | | | | | | 1.003
0.3474
0.7017 | 0.7743
0.4319
0.7527 | | 1.0196
0.318
0.5276 | | | | | | 0.6696
0.2187 | 0.2297
1.0909
0.3409 | 0.3622
0.6321 | | 0.2503
0.0807
0.6092
0.3337 | 0.1742
1.0005
0.5013 | 0.4536
0.8594
0.4612 | 0.5197
0.9005
0.5352 | 0
1
0 | | | | 0.3907
0.2962
0.1203 | | | | 0.647
0.5264
0.616 | 1.3496
0.7845
0.7649
0.3806 | 1.1113
0.1263
0.5353 | | | | | 0.0959
0.1215
0.4785 | 0.3178
0.4762
0.8976 | | 0.5378
0.6993
0.5107 | | 0.5749
0.3056
0.7396 | | | | | 0.2323
0.3081
-0.5433 | 0.3765
0.3627 | 0.2489
0.6978
0.4113 | | 0.3545
0.5691
0.6518 | 0.3951
0.2249
0.9268 | 0.5942
0.6407
0.7073 | | | | | 0.4408
1.6978 | 0.3933
0.3692
1.5668
0.4851 | 0.2518
0.3231
0.5133 | 0.6132
0.2542
0.5181 | 0.107
0.5629
0.6919 | 0.3502
0.1731
0.6994 | 0.2777
0.1808
1.2791
0.9339 | 0.7986
0.0745
1.0463
0.9922 | 1 | | | | | 0.3235
0.2686
0.6148 | 0.181
0.6236
0.4889 | 0.8454
0.415
0.9213 | 0.5841
0.7577
0.8425 | 0.6739
0.3155
0.708 | 0.8165
0.6578
0.7781 | -0
0
-0 | | | | | 0.4978
0.2745
0.4073
0.1627 | 1.1052
0.2691
0.3675
-0.6625 | 0.8067
0.4174
0.5135
0.6217 | 1.2033
0.4587
0.6479
1.0379
0.7294 | | 0.6578
0.4795
0.4705
0.6283 | 0 | | | | 0.6066
0.4791
0.173 | 1.0769
0.7374
0.1391 | 0.8921
0.5038
0.2491 | 0.9265
0.7486
0.5083 | 0.7294
1.1731
0.4319 | 0.9864
1.0747
1.0758
0.2888 | 1.0288
0.8226
0.173 | C | | | | | 0.48
0.8645
0.5784
0.374 | 0.7176
0.5126
0.5819
0.500 | | 0.8097
0.5836
0.5682
0.4918 | 0.6942
1.1264
1.3237
0.2744 | | | | | | | | | | 0.6625
0.3395
0.1417 | 0.7087
0.6621
0.4945
0.6576 | | 1,1029
0,4643
0,7284 | | | 0.5577
0.3567
0.0935
1.6454 | 0.3522
0.2889
1.7211 | 0.8483
0.3526
0.7325
1.5142 | 0.6156
0.415
0.4963
1.1389 | | | | | |---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | | | | | | 0.7178
0.3415
0.2565
0.987 | | | | | 0.7568
0.131
0.4776 | 0.7786
0.7089
0.6102 | 0.9986
0.2843
0.7812 | 0.6947
0.5948
0.8005 | 1.0408
0.3088
0.9024 | | | | | | | 0,5463
0,4367
0,4459 | | | | 0.3773
0.3829
0.3854 | 0.4402
0.000
0.9897
1.1101 | 0.6736
0.4277
0.9805 | 0.7
0.737
1.365 | 0.7573
0.2102
0.9961
0.5569 | 0.7319
0.7488
1.1869 | | 0.6275
0.3958
0.6359 | | 0.4676
-0.4372
-0.0481 | 0.6055
-0.4325
0.263 | | | | | | | | | | | 0.6872
0.5216
0.3438 | 0.9156
0.8516
1.0958 | 0.6614
0.687
0.9596 | 1.1797
0.7518
1.1164 | 0.6465
1.0121
1.2416 | | 1,2597
-0,0377
0,3876 | 0.3526 | | | | | | 0.9711
0.3629
0.7471 | | 0.2779
0.4435
1.3891
0.3039 | 0.8802
0.7565
0.4134 | 0.3209
0.4577
0.8721
0.8424 | 0.2382
0.8907
0.4188
1.2498 | 0.2736
0.7114
0.892
0.7782 | 0.2538
1.0489
0.6674
0.811 | | | | | | 0.0429
0.2843
0.3429 | 0.1705
0.5217
0.4508 | | | | | | | 0.1241
0.8511
0.4011 | 0.4299
0.2368
1.1276 | | 0.914
0.5007
0.7334 | 1.0996
0.2468
0.4733 | | 0.903
0.1366
0.4128 | | | | | | | 0.6159
0.98
0.6017 | 0.1828
0.3404
1.1566 | | | | | | | | | | | | 0.1343
0.7131
-0.3549 | | | | | | 0.3514
0.9098
0.3912 | 0.298
1.0677
0.7704 | | | | | | | | | | | 0.7127
1.2915 | 0.2021
1.5483
0.306 | 0.9089
0.8289
0.3687 | 0.1882
1.1129
0.358 | | | | | | 0.2093
-0.0742
1.0431 | 0.3989
-0.0619
0.6893 | 0.7593
0.5097
0.3405 | 0.7434
0.5241 | 0.2323
0.7674
0.3674 | 0.2476
0.4909
0.6581 | 0.1184
0.7455
0.658 | 0.1167
0.6176
0.0908 | | | | 0.875
0.3472
0.6265 | 1.1416
0.2841
0.338 | 0.9965
0.426
0.7003 | 1,4545
0,3759
0,528 | 0.3584
0.3239
0.6764 | 0.9712
0.0624
0.5537 | | 0.3162
1.1917
-0.1012
0.3732 | 0.4577
0.9368
-0.0329 | | 0.4522
0.6612
0.5126 | 0.6027
1.1021 | 0.3995
0.6216
0.7245 | 0.5013
0.1375
1.279 | 0.548
0.13
1.1616 | | 0.5732
0.6362
3.8348
0.3777 | 0.1802
2.0735
0.0885 | 0.2976
3.1203
0.3858 | 0.3598
2.139
0.1438 | 0.3375
0.3375
3.1832
0.2828 | 0.1676
2.2177
0.1404 | 0.6247
2.9131
1.261 | 0.5659
2.9514
0.7072 | | | | | | | 0.0474
0.4765
0.3907 | 1.3176
0.3773
0.1868 | | | | 0.2391
0.5294
0.6907 | 0.4569
1.2365
0.3374 | | 0.2034
0.9231
0.4211 | 0.5663
0.9138
0.5042 | | | | 0.0687
-1.1641
0.3456 | 0.2949
-0.6656
0.4485 | 0.0953
1.1857
0.736 | 0.1375
1.1009
0.376 | 0.3866
1.2332
0.2561 | 0.3785
1.3753
0.5742 | 0.5803
0.6859
0.2329 | 0.4317
1.1303
0.2619 | | 0.4978
0.9258 | 0.2544
0.9261
-0.0722
0.6559 | 0.1375
0.6568
0.2503 | | | 0.3192
1.0307 | 0.8113
1.1599
0.5377 | 0.4903
1.09
0.9784 | | | | | 0.4676
0.9092 | 0.8621
1.0948 | 0.4883
1.1139
0.3985 | 0.5149
1.1219 | 0.797
1.0863
0.5488 | | 0.2646
0.8084
0.0458 | 0.4924
0.5237 | 0.428
0.9211 | | 0.3341
0.4846
0.1742 | 0.2923
0.4000
1.038 | 0.1672
1.1951
0.2199 | | | | 0.5216
0.7831
0.0447 | | | | | | 0.2058
0.2835
0.2257 | | 1.7796
2.2523
1.0688 | -0.3689
-0.1847
1.0591 | 0.5452
1.0788
0.9163 | -0.2602
-0.3895
-0.6536 | 1.1993
1.3273
0.7513 | 0.6011
0.3246
0.803 | 1.5199
2.0225
0.2208 | 1.3649
1.585
0.7241 | | 0.3953
0.6214
1.0739 | 0.2844
0.5548
0.9418 | 0.3275
0.8548
1.1926 | 0.2352
0.6629
1.1424
0.8055 | 0.2618
1.2614
0.9043 | 1.035
1.1503
0.8775
1.1881 | 0.3253
1.089
0.9397
1.3543 | 0.314
0.7583
0.83 | | | | | 0.4039
0.544
0.4332 | 0.7277
0.3809
0.5892 | 1.1881
0.402
0.4449 | 1.08
0.3268
0.79 | 0.8334
0.3729
0.606 | | | | | | | | | | | | 0.3042
0.0929
0.58 | | | | | | | | 0.739
1.359 | | 0.1868
0.5553
1.2833 | 0.2451
0.4515
0.6642 | 1.0709
0.271 | | | | | | 0.1832
0.4743
0.3997 | 0.4297
1.1276
0.1694 | 0.2746
2.1347
0.5009 | 0.2944
1.3051
0.4807 | 0.1402
0.9907
0.204 | 0.5164
0.3629
0.2301 | 0.2433
1.0931
0.4607 | | | | | | | | | | | | | | | 0.7526
0.3759
0.9261 | 0.6155
0.3122
0.6653 | 0.7422
0.4089
1.2477 | 0.6241
0.4553
1.4484 | | | 0.1277
0.3557
0.5532 | 0.5987
1.0985 | | | 0.2203
0.7554 | 1.0731
0.1781 | | | 0.8618
0.6664
0.195 | 1.0885
0.6561 | 0.1731
0.5511
0.3079 | 0.3222
0.8121
0.4518 | | | | 0.3931
0.4405
0.7473
0.2405 | | | | 0.7488
0.3307 | | | | | | | 1.4157 | 1.0291
0.4121 | 0.8058
1.9694
0.5384 | 0.3183
0.8429
0.3584 | 0.7662
1.0819
0.631 | 0.1339
0.6624
0.5137 | 0.2321
1.1667
0.5245 | | | | 0.2437
-0.5329
0.3966 | 0.3056
1.1694
0.183 | 0.5464
0.5615 | 1.2572
0.2578 | 0.8908
0.3372 | | | | 0.7205
0.6959
0.6631 | 1.7459
0.4637
0.500 | | 0.2734
0.379
0.7309 | 0.7637
0.7119
0.8285 | -0.5156
-0.4709
0.7068 | 0.6995
1.7372
0.732
0.849 | 1.4002
0.9218 | | | 0.2717
0.2353
0.3639 | 0.5476
0.9758
0.6179 | 0.3443
0.8154
0.4534 | 0.4434
1.3168
1.3238 | 0.5524
0.6394
1.5313 | 0.845
0.7547
0.805 | 0.4557
0.7476
1.7097 | | | | | 0.3517
0.2084
0.5902 | 0.4905
0.3702
0.7836 | 0.2951
0.482
0.7176 | 0.6286
0.3824
0.5591 | 0.2337
0.2578
0.8238 | | | | 0.6046
0.2652
0.4549 | 0.8751
0.0977
0.4465 | 0.9304
0.2189
0.8805 | 1.0307
0.4895
0.9683 | 1.2895
0.6812
1.3449 | 0.7588
0.7111
1.2222 | | | | 0.8332
0.4915
1.0767 | | 0.4827
0.5981
1.1086 | | | | | | | 0.5946
0.2089
0.8814 | 0.4654
0.4661
1.1622 | 0.7156
0.93 | 0.8086
0.2591
0.6846
0.9166 | 0.4618
0.2938
1.2969
0.6128 | 0.7002
0.3381
1.1113
0.5355 | | 0.0985
2.7384 | 0.0702
1.9402
0.5096 | 0.1907
1.6295
1.2001 | 0.3123
1.337
1.0245 | 0.8304
1.4505
0.9785 | 0.7803
0.6719
0.8547 | 0.8986
1.2461
0.5714 | | | 3.7539
1.2111 | 1.404
0.5477 | 2.928
1.6963 | | 0.5654
0.4284
0.5058 | 0.9973
0.1919
0.5298 | 1.3697
0.2185
0.3985 | 1.0605
0.1498
0.6757 | | | | | | | | | | | 1.1621
0.1434
0.1795
0.1911 | | | 0.5679
0.1005
0.129
0.3997 | | | | | |--|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------| |
0.2345
0.8688
0.7968
0.9632 | | | 0.4339
0.8975
0.2742
0.6495 | 0.4671
1.0552
0.5014
0.7526 | 0.5809
0.6382
0.4442
0.516 | 0.5356
1.3477
0.7132
1.2137 | 0.2776
0.6615
0.2878
0.8444 | | 0.8488
0.7946
0.0072 | | 0.3703
0.8676
0.1614 | 0.4764
0.4178
0.796 | 0.6293
1.1198
0.5684
0.4228 | 0.2477
0.5857
0.8968 | 1.2137
1.0416
1.3373
0.1207 | 0.8135
0.7357
-0.0817 | | | 0.3727
-1.0313
0.1099 | | 0.3283
0.4338
0.8481 | 0.8732
1.0804
0.8716 | 0.641
1.0517
0.7828 | 0.8981
0.9952
1.1453 | 1.2101
1.2307
0.8961 | | | 0.1853
0.4716
0.6204 | | 0.649
0.448
0.6385
0.4619 | 0.5124
0.5294
0.5438
0.9853 | 0.7307
0.4147
0.5453
1.1501 | 0.8408
1.0255
0.6044
1.1839 | 0.8347
0.3184
0.8729
0.9292 | | | | | | | 0.4051
0.4185
0.2532 | 0.8126
0.4791
0.1471
1.3809 | 0.574
0.5143
0.4544
0.6557 | | | | | | | 0.9861
0.5121
0.4506
0.7424 | 0.9609
0.7669
0.4665 | | | 1.5627
1.0284
1.6916 | 1.9015
0.9579
2.1051 | 1.6236
1.2113
0.7876 | 1.5627
0.9812
1.7773 | 1.0537
1.1217
0.6975 | 1.2662
1.018
1.1509 | 0.2614
0.4185
0.0481 | 1.0505
1.0741
1.8687 | | | | -0.0853
0.7197
0.4118 | 0.607
0.7401
0.6461 | 0.3225
0.465
0.6797
1.1399 | 0.4074
0.8243
0.636
1.3626 | 0.5247
0.5247
0.9376
0.959
0.8361 | 0.2323
0.6868
0.7494
1.3166 | | 0.5057
1.0212
0.1751
-0.1337 | 0.7825
0.6952
0.2138
0.4216 | 0.4584
1.5807
0.5273
0.4026 | 0.9393
0.5919
0.7958
0.8485 | 0.8142
1.1081
0.9204
0.5861 | 1.0855
0.5553
0.6982
0.6689 | 0.521
1.2813
0.8582 | 0.9083
0.7146
1.2699
1.0156 | | | | | | | 0.577
0.6015
0.5622 | | | | 1,233
-0,2795
0,8416 | 0.4808
-0.2765
0.3288 | 0.6286
0.826
0.9199 | 0.9722
0.6177
0.315 | | 0.59474
0.5903
0.4457 | 0.9919
0.2041
0.4792 | 0.4556
0.2052
0.0387
0.2558 | | | 0.4109
0.4902
0.352
0.7725 | | 0.5456
0.4841
0.2456
0.5513 | 0.7431
1.2005
0.56
0.819 | 0.8043
1.1195
0.464
0.3333 | 0.8029
1.2254
0.6594
0.264 | 0.9553
1.2061
0.5899
0.5771 | | | -0.1939
0.1468 | 0.2183
1.4097
0.2601 | 0.6758
0.444 | 1.012
0.6969
0.5289 | 0.4531
0.7305
0.2231 | 0.4575
0.049
0.4325 | 0.4641
0.1821
0.1634 | | | 0.0853
0.3093 | 0.7917
0.3894
0.7284
0.3465 | 0.9464
0.8331
0.4972
0.2825 | 1.1375
0.5931
0.9065
0.5876 | 0.9918
1.0985
0.5159
0.5209 | | | | | | | | | | 0.5278
0.5518
0.9221 | 0.3962
0.8136
0.6569
0.4293 | | | | | | 0.5095
0.3088
0.7952 | 0.745
0.625
0.539 | 0.3692
0.4889
0.8403
1.127 | 0.6147
0.4856
0.6801 | | 0.8251
-0.3378 | 0.143
0.8032 | | 0.6266
0.4437
0.6486
0.5644 | 1.1808
0.4486
0.6445
0.7476 | | | 1,2343
0,6121
0,7642
0,6809 | | | | | 0.3884
0.7677
-0.0661 | | 0.4722
1.0648
0.6258 | 0.6965
1.0472
0.4368 | 0.6034
1.101
0.3128
0.5988 | | 0.0984
0.3155
-0.0245 | | | | | | 0.4101
0.446
0.995 | | | 0.267
1.069
-0.0894
0.5512 | 0.3186
1.1689
-0.3059
0.4417 | | | | | | | | 0.4959
0.2912
1.3357 | 0.5785
0.0723
0.6183 | 0.7319
0.3418
1.3462 | 0.7488
0.2324
0.6407 | 0.4142
0.5688
1.4512 | | 0.1027
0.4865
1.1151 | 0.4703
0.6538
1.0676 | | | 0.1237
0.3609
0.3026
0.0565 | 0.5615
0.8016
0.7452 | 0.07469
0.5442
0.5875 | | | | 0.3433
0.6246
0.4227
0.5683 | | | | 0.3427
0.6151
0.9953
0.7393 | 0.5135
0.2449
1.1185
0.5556 | 0.3564
0.1074
0.9665
0.7497 | 0.3149
0.2132
1.0319
0.6195 | | | | | -0.6783
0.3902
0.5559 | 0.8217
0.7003 | 0.2991
0.6073
0.6801 | 0.8482
0.3064
0.9687 | 0.6356
0.8429
0.7301 | 0.5809
0.3792
1.3848 | 0.9221
0.5229
0.8714 | | | | | | | 0.225
0.3441
0.1768
0.7989 | | | | 1.5864
0.3525
0.6156
-0.6638 | 0.6433
0.2769
-0.021
-0.2448 | 1.0491
0.4744
0.8225
0.5676 | 0.0361
0.3516
0.3229
0.9117 | 0.5251
0.7084
0.5474
1.1277 | 0.2796
0.6702
0.0768
1.2075 | 0.5379
0.9456
0.6186
0.6307 | 0.1043
0.9292
0.4505
0.8989 | | -0.6121
0.2469
0.243 | -1.0816
0.5448 | | -0.2893
0.25
0.3157 | 1.66
0.3619
0.6519 | 0.7124
0.5347
0.5305 | 1.3248
0.381
0.8794 | 0.2517
0.4653
0.8063 | | | 0.8882
0.2176
0.0766 | 0.4767
0.5624
0.4345
2.257 | 0.7121
0.4644
1.3094 | 0.5671
0.5386
1.6949 | 0.481
0.481
0.938 | 1.0608
0.4734
1.1348 | 0.6844
0.374
0.7102 | | | | | 0.1230
0.2179
0.539
0.1527 | 0.3123
1.121
0.4538
0.1072 | | | | | 1.1788
-0.2844 | 0.9367
0.1517
0.2078
0.7243 | 0.8156
1.4408
0.4252
1.2267 | 0.5805
1.0532
0.5368
1.0706 | 0.868
1.3455
0.5947
1.2272 | 0.939
1.2014
0.306
1.2784 | 0.6011
0.6685
0.2214 | 0.9367
1.2811
0.4764
1.5633 | | 0.303
0.4854
-0.7399 | 0.1862
0.4466
0.1689 | 0.2106
0.4686
0.1945 | 0.0737
0.4782
0.4662 | 0.5057
0.4267
0.6863 | 0.3765
0.3366
0.6863 | 0.3011
0.4167
1.0336 | 0.3548
0.6181
0.9396 | | -0.0474
0.4623
-0.0786
0.4092 | | 0.4219
0.4219
0.5457
0.1262 | 0.3932
0.6921
0.2124 | 0.9418
0.8735
0.5269 | 0.6218
0.8825
0.2124 | 1.0336
1.4872
0.9252
1.1775
0.2748 | 1.1803
0.7925
1.0323
0.2553 | | -0.9218
0.9767
0.7294
-0.0809 | -0.4284
-0.0772
0.4825
0.372 | 0.7251
1.0231
0.1905
0.2148 | 0.8233
0.7632
0.358
0.6409 | 1.0991
0.9991
0.1287
0.1831 | | | | | | 0.6773
-0.0167
-0.153 | | | | | | | | | | | | | | | | | | 0.2175
0.2991 | | 0.729
0.4874
0.6107
0.3533 | 0.5935
0.507
1.2073
0.6468 | | 0.3317
0.7945
1.1011
0.5678 | 0.1419
0.7418
0.8184
0.9546 | | | | | | | | | | | 1.0087
0.2067 | 1.113
0.485
0.5888 | 0.3885
1.5465
1.3271
0.701 | 0.2957
1.031
1.0267
0.6814 | 0.4462
1.3106
1.1204
0.8144 | 0.1628
0.857
0.8329
0.8476 | 0.86
0.9223
1.0873
0.4203 | 0.87
0.8037
0.9485 | | | | | | | | | | | | | | 0.4439
0.4325
0.2708 | | 0.2108
0.5415
0.422 | | 0.1636
0.5129
0.743 | | | | | | | 0.9148
0.5697
0.9928
0.307 | 1.0748
0.6483
0.9554
0.2502 | | | | | | 0.3099
0.2687
0.9987
0.4202 | 0.2998
0.4157
0.7701
1.2202 | 0.5349
0.0851
0.845
0.9314 | 0.2792
0.6217
0.7462
1.1471 | 0.3622
0.42
0.7355
1.3666 | | 0.0952
-1.0809
0.2121 | | | 0.4143
0.1479
0.5317 | 0.206
0.8545
0.3405 | 0.5081
1.0366
0.4699 | 0.2325
0.6365
0.2037 | 0.2814
0.8419
0.353 | | h
hb | 0.3072
0.2213
-1.6676
0.376 | -0.1109
0.1742
-0.4386
0.043 | 0.2637
0.4989
0.6161
0.7019 | 0.0777
0.4671
1.2609
0.625 | 0.547
0.701
1.1298
0.7305 | 0.6252
0.2717
1.6108
0.3089 | 0.9633
0.8518
0.2943
0.4885 | 0.6461
0.638
0.7054
0.453 | 0
0
-2 | |---------|--|--|--|---|--|--|--|--|--------------| | | 0.6256
-0.4092
1.0302
0.1946
0.2694
0.3614 | 0.3852
-0.351
1.1073
0.1523
0.2684
0.3466 | 0.4076
2.3006
0.7607
0.4146
1.0344
0.4843 | 0.7781
0.7771
0.7071
0.2317
0.3377
0.2224 | 0.3512
1.2849
0.5637
0.5216
0.4782
0.5073 | | | | | | | 0.7092
0.299
0.7836
0.3837
0.1821
0.5198 | 0.4716
0.2832
0.4478
0.3113
0.181 | | | 0.6376
0.4588
0.7144
0.4985
1.0058 | 0.5464
0.5008
0.7292
0.5283
1.1538
0.3637 | 0.4791
0.1723
0.9465
0.3084
0.83
0.5272 | 0.6039
0.5707
0.8918
0.3479
1.3607
0.2252 | , (| | | 1.1204
0.8938
-0.7182
0.3099
0.2733
0.318 | 0.5176
0.529
-0.6307
0.3841
0.4171 | 1.1613
1.2011
8.6570
0.1936
0.5983
0.7285 | 0.4964
0.9987
0.1467
0.9603
0.6299 | 0.9548
1.3212
0.9441
0.2632
0.5514
0.7089 | 0.6725
1.0941
0.6204
1.0313
1.086 | 0.7808
0.9364
0.9133
0.6105 | 0.8477
1.1853
0.8166
0.0866
0.4311
0.4741 | | | | | -0.307
-0.3974
-0.0673
-0.0978
-0.3637 | 1,9512
0,7191
0,3684
0,1779
0,4744 | 1.2288
0.4717
0.5284
0.2428
0.4708 | 2.0062
0.8612
0.401
0.4505
0.5409 | 1.3184
0.4683
0.546
0.1779
0.5926 | 1,2235
0,7644
0,1734
0,2565
0,7678 | 1.2256
0.5589
0.3552
0.3128
0.6604 | | | | | | 0.6073
0.3119
0.4297
0.5168
0.3196
0.9501 | | 0.8593
0.3612
0.3134
0.6526
0.4895
0.5924 | 0.5354
0.5994
0.8022
0.7988
0.5499
0.5885 | 0.9128
0.4205
0.0601
0.9577
0.5656
0.2579 | 0.8788
0.4018
0.004
1.1211
0.4761
0.5506 | | | | | 0.4283
-0.3265
-0.0134
0.2803
0.9027
0.2157 | | 0.5066
0.672
0.5191
0.3896 | 0.5578
0.9253
0.6549
0.8564
0.4144 | 0.5257
0.9767
0.4308
0.7973
0.7293 | 0.6182
0.8103
0.5813
1.1002
0.655 | 0.4698
0.9914
0.4857
0.9783
0.5877 | | | | 0.4221
0.4517
1.4718
0.2333 |
0.5192
0.5898
1.0651
0.301
0.1631 | | | | 0.2884
0.3536
4.0110
0.6084
0.3819 | 0.6619
0.7074
1.2736
1.1093
0.467 | | | | | | | | | | 0.6788
0.0983
0.273
0.578
0.213
0.4435 | | 0.5843
0.3988
0.4859
0.5303
0.6547
0.3459 | | | | 0.4497
1.1607
0.4111
1.1112
0.1996
0.6440 | 0.5102
0.8834
0.1694
0.3488
0.5876 | 0.5721
1.231
0.2529
0.2952
0.3209
0.6802 | 0.4342
1.2795
0.6046
0.3608 | 0.7966
1.193
0.4054
0.6702
0.2309 | 0.5705
1.1414
1.0015
0.5195 | 0.2088
1.4724
0.6237
0.5865
0.6501 | 0.2193
1.5493
0.4526
0.8124
0.515 | | | | | 0.5116
0.1378
0.0752
0.1745 | 1.3422
0.2167
0.3302
0.7359 | | | 0.34
0.4709
0.4567
0.4184 | 1.1965
0.1622
1.0107
0.4239
0.2336 | | | | | | | | 0.6263
0.6263
0.5336
0.3569
0.3385
1.0489 | 0.5103
0.4193
0.267
0.5568
0.2281
0.957 | 0.1885
0.7847
0.5581
0.5188
0.5143
1.0066 | 0.5761
0.5038
0.3131
0.0835
0.7273 | | | | | | | 0.2535
0.4829
0.3227
0.3803
0.6298 | 0.2909
0.49
0.6272
0.5619
0.7701 | 0.2914
0.6694
0.4823
0.5773
0.6073 | 0.4956
0.7906
0.6307 | 0.0442
0.4633
0.415
0.5508
0.586 | 0.3719
0.8344
0.4584
0.5991
0.5967 | | | | | | | | | 0.5934
0.9159
0.7288
0.7207
0.6038
0.2387 | 0.3701
1.082
0.7258
0.5073
0.7837 | 0.4176
1.0985
0.5219
0.5341
0.4221 | | | | | | | 0.6768
0.5212
0.4801
0.3444
0.924 | 0.2458
0.6392
0.6357
0.4445
0.9545 | 0.56
0.6815
0.523
0.4611
1.2167 | 0.3219
0.4231
0.6221
0.8093
1.0206 | 0.6269
0.7225
0.8141
0.8196
1.0545 | | | | -0.1466
0.3706
0.2456
0.2771
0.7785
-0.4334 | 0.264
0.5463
0.5605
0.3435
1.1102
0.1908 | | 0.3441
0.6918
0.5807
0.7015
0.733
0.9028 | 0.674
1.0046
0.9219
0.8095
0.6063
0.7257 | 0.8921
0.9151
0.6297
0.8868
0.6451
0.972 | 0.4289
1.1333
0.8452
0.9316
0.9199
0.853 | 0.8542
0.7855
1.02
0.7816
0.714
0.6846 | | | | 0.489
0.9031
0.7829
0.7648
1.0121 | 0.5579
1.2079
0.8305
0.6489
1.0616 | 0.4487
0.7392
0.9087
0.7523
0.9138 | 0.6456
1.1887
0.9299
0.4963
0.9327 | 0.732
0.395
1.0096
0.7429
-0.2322 | 0.6691
0.9417
0.9873
0.565
0.1034 | 0.6055
0.2985
1.0597
1.0108
0.493 | 0.9188
0.1387
1.2487
0.8088
0.1875 | | | | | | | | | 0.471
0.2482
0.2719
0.5657
0.6309
0.2893 | 0.6145
0.0757
0.7259
0.3402
0.2572
0.4571 | 0.4358
0.6672
0.4376
0.4478
0.6644 | | | | | | | | | 0.474
0.3942
0.7386
0.5368
0.1622 | 0.6769
0.1977
1.0029
0.1017
0.287 | 0.5073
0.3764
0.5765
0.5727
0.4771 | | | | 0.7993
0.8925
0.3944
0.1897 | 0.5883
-0.1792
0.9627
0.2011
0.4771 | | 0.5228
0.765
0.4936
0.1381
0.7515 | | | 0.6822
0.374
0.4579
0.3908
1.0913 | 0.848
0.3723
0.3108
0.5139
0.7074 | | | | | | 0.7385
0.309
0.8817
0.6876
0.4962
0.4919 | | | 0.7658
0.7384
0.8167
0.3518
0.6669 | 1.5503
0.9792
0.5618
0.6628
0.6819
0.5715 | 1.1368
0.9513
0.4398
0.3743
0.6551
0.2479 | | | | | -0.4549
0.2441
0.115
0.2527 | 0.5741
0.4528
0.4708
0.4905
0.5843 | 0.4307
0.2611
0.5007
0.6878
0.5024 | 0.7951
0.4738
0.3255
0.8636
0.8513 | 0.8103
0.7667
0.5522
0.4705 | 0.629
0.249
0.5669
0.7158
1.0129
0.8218 | 0.0829
0.8732
0.4358
0.7263
0.9222 | | | | | 0.3027
0.2356
0.3874
0.4933 | 0.7236
0.1813
0.0933
0.2103
0.7931 | | | | | | | | | | | 0.1983
0.2827
0.6314 | | | | | | | | | -0.1364
0.6396
0.2233
-0.5238
0.1418 | 0.4193
0.3551
0.281
0.4301
0.6956 | 1.9185
0.3257
0.4176
0.6594
0.5085 | 1.8708
0.2047
0.3568
0.7933
0.4905 | 0.8527
0.3811
0.3959
0.8314
0.5771
1.2117 | 0.2224
0.6446
0.2199
1.3043
0.8351 | 0.0828
0.4537
0.335
1.0444
0.5626 | 0.2957
0.5538
0.4262
1.6185
0.873 | | | | 1,8448
0,866
-0,2749
0,5113
-0,1064 | 0.2502
0.4329
0.0422
0.2267
-0.2241
0.2225 | 1,4629
0,3782
0,5163
0,2692
0,3133
0,3398 | 0.2485
0.5823
-0.1155
0.2061
0.3525
0.7318 | | | | 0.3905
0.3552
0.4634
0.2843
0.48
0.8636 | | | | | 0.4748
0.0482
0.0482
0.0483
0.222 | 1.1487
1.0501
0.3753
0.5781
1.0439 | 0.9369
0.9869
0.5325
0.5317 | 0.6598
1.2177
1.0572
0.7564
0.9277
0.5591 | 0.6565
0.6363
0.8679
0.5033
0.4485 | 0.8938
0.6897
1.0845
1.0766
0.214 | 0.4927
0.7838
1.1692
0.928
0.2034 | | | | | | | 0.1136
0.7564
0.7982
0.4049
0.7452
1.0709 | 0.334
0.5872
1.0181
0.7151
0.2759
0.7448 | 0.3146
0.8369
0.7188
0.2266
0.6383
0.6655 | 0.675
0.7768
1.2832
0.7825
0.6203
0.8924 | 0.8915
1.0513
1.3176
0.2991
0.5946
0.9742 | | | | 0.5042
0.6522
0.5354
0.2336 | | | 0.7709
-0.2695
0.7814
0.8329
0.8816
0.7944 | 0.9744
0.2618
0.699
0.7314
0.6371 | 1.1092
0.1064
0.6593
1.3321
1.2046
0.6119 | 0.8924
1.3179
0.9582
0.9884
0.8421
0.8932
0.7868 | 0.5891
1.1614
1.0108
0.9859
1.2176 | | | | 0.0869
2.8405 | 1.3709 | 1.2581
2.7494 | 0.7944
0.4903
1.4044 | 1.3287
1.2818 | 0.8119
0.7233
0.787 | 0.6186
0.6028 | 0.7662
0.0366
0.5688 | | | The column | 2 Nr2f2
2 Nrarp
2 Nrgn
2 Nrtn | 1.1558
0.2731
0.2067 | 1.3219
-0.1165
0.2193 | 0.648
1.0806
0.2224 | 0.6518
0.7221
0.2317 | 0.4655
0.6081
0.2594 | 0.5441
0.8857
0.2317 | 0.3776
0.9002
0.393 | 0.6129
0.9081
0.5506 | -0.0775
-0.221
0.3248 | |--|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------| | Column | 2 Nsdhl
2 Nsmce2 | 0.3417
0.996
0.3966 | | | | | 0.5331
0.6234
0.4734 | | 0.3882
0.6143
0.7305 | 0.4887
1.0099
0.9151 | | The column | 2 Nt5c2
2 Nt5c3i | | | | | | | | 0.1237
0.4098
0.5456 | | | The column | 2 Nts
2 Nudcd2 | -1.2686
0.3996
-0.0639 | 0.2951
0.4001 | 0.8654
0.4407
0.4137 | 1.4327
0.4901
0.3062 | | | | 0.5391
0.2522
0.6971 | -0.8723
0.1002
0.9228 | | Column | 2 Nudc-ps1
2 Nudt14
2 Nudt4 | | | | | | 0.8002
0.59
0.823 | 0.865
0.2108
1.2875 | 0.3062
0.6126
0.6182
1.1128 | 0.9463
-0.0568
0.9857 | | The color | 2 Nup50
2 Nup85
2 Nup98 | | | | 0.5829
0.4031
0.5994 | 0.6693
0.8487
0.7651 | 0.875
0.7848
0.8921 | 1.1845 | 0.605
0.8384
0.6005 | 1.3316
1.0497
0.411 | | The content | 2 Nxf1 | | | | | 0.7615
0.3724
0.5422 | | 0.6692
0.2438
0.5549 | 0.9206
0.0537
0.7674 | | | | 2 Oas1d
2 Oas1g
2 Obfc2h | -0.2115
1.4863
0.3543 | -0.5894
-0.7733
0.6719 | 1.0943
1.6142
0.7788 | 0.1497
0.9373 | 0.9123
0.9166
1.0764 | 0.4106
0.4525
1.4369 | 0.3563
0.2332
1.467 | -0.1352
1.3604 | | | | 2 Ogdh | -0.4969
0.4034
0.7108 | -0.4726
-0.0681
0.9021 | | 0.2167
0.3166
0.6495 | 0.692
0.9578
0.8292 | 1.0674
0.8323 | 0.3299
1.0149
0.6827 | 0.6466
0.8922
0.946 |
1.0792
0.3388 | | Second | 2 Olfm1
2 Olfm3 | | | 0.5475
0.2316
0.3476 | 1.0864
0.4082
0.2247 | 1.4819
0.4536
0.3635 | 1.575
0.4159
0.2891 | | 0.5941
0.1875
0.2488 | -1.5613
0.324
0.2792 | | Second State | 2 Offr273
2 Offr495 | | | | | | | | | | | | 2 Offr724
2 Offr846 | | | | | | | | | | | | 2 Orai3 | 0.327
-0.296
0.6246 | 0.2697 | 0.4508
1.559
0.2001 | | | | | | | | The column | 2 Otud5 | 0.8376
0.1253
0.882
0.3401 | | | 0.6666
0.2978
-0.0421
0.5301 | | | | | | | | 2 Pabpc4
2 Pabpn1
2 Pafah2 | 0.9573
0.0510
0.086 | 0.7371
0.29
0.238 | 0.8124
0.8171
0.3113 | | | | 0.6971
0.9367
0.2559 | | | | Part | 2 Papd4
2 Papolg | 0.7468
-0.2317 | 0.5079
0.4588
-0.8743 | 0.3952
0.1661
-0.0410
1.2650 | 0.1412
0.3248
0.9204
0.8449 | 0.811
0.3248
0.3791
1 1956 | | | 0.6962
0.4356
0.7614 | 0.6344
0.8977
0.8922 | | Part | 2 Parp2
2 Pars2
2 Pbp2 | | 0.0797
0.249
0.4174 | 0.2572
0.2031
0.5103 | 0,3434
0,2825
0,9018 | 0.6065
0.4016
0.3257 | | 0.7953
0.5021
0.1162 | 0.5539
0.4066
0.2678 | 0.2305
0.4142
-0.3683 | | First | 2 Pbx2
2 Pbx3 | | | | | | | | | | | Part | 2 Pcbp1
2 Pcbp2
2 Pcrb1 | | | | | | 0.3699
0.4218
0.2531
0.1723 | 1.0295
0.7279
1.275 | | | | Final | 2 Pcf11
2 Pcdf2 | | | | | | 0.7623
0.47
0.5942 | 0.8902
0.8202
0.7739 | | | | Product | 2 Pcmtd1
2 Pcnt | | | 0.6589
0.4186
0.8917
1.0863 | 0.8927
-0.1051
0.8014
0.647 | 0.7913
0.4551
0.8146
1.0538 | 0.8385
0.2082
0.8942
0.6532 | 0.5517
0.3087
1.0657
0.9275 | | 0.7118
0.3182
0.9099
-0.2095 | | | 2 Pcsk4
2 Pcsk9
2 Pcx | 0.2156
-0.4063
0.4726 | 0.7746
0.0480
0.6738 | 0.0737
-0.2126
1.1228 | | 0.1839
0.1889
0.6445 | | | | | | Part | 2 Printa | 0.7752
1.1129
0.6086 | 1.0448
0.7746
0.8199 | 0.7856
1.525
0.4505 | 0.7464
0.6797
0.5915 | 0.809
0.7727
0.1845 | | | | | | 2 margin 1 | 2 Pdk3
2 Pdlim5 | | | 0.3955
0.6218
0.6357 | 0.2473
0.4754
0.5996 | | | | | | | Prof. | 2 Pds5b
2 Pen10 | | 0.274
0.5219
0.5106 | 0.5852
0.128
0.8705 | | 0.9401
0.4525
1.0718 | 0.7857 | 0.7105
0.7613
1.3092 | 0.7533
0.6011
1.3159 | | | Property | 2 Pes1 | | 0.3299
0.5582
0.5785 | 0.2292
0.3469
0.8964 | 0.2741
0.4362
0.7044 | 0.5521
0.3601
1.0847 | 0.6283
0.2486
1.0101 | 0.4717
0.988
0.761 | | | | 2 Prof. 200 20 | 2 Pgp
2 Pgpep1
2 Phactr4 | | | 0.2849
0.6112
0.1403 | 0.8904
0.6185
0.1804 | | 0.7743
0.6857 | 0.9936
1.0781
0.6046 | 0.6629
1.0826
0.6098 | 0.8911
0.0743
-0.1123 | | 2 PM 2 | 2 Phb2
2 Phf12 | | 0.1614
0.5388
0.5618 | 0.3596
0.4839
0.2917
0.9552 | 0.6111
0.3973
0.5045 | | 0.5722
0.692
0.5568
0.8207 | 0.9891
0.7126
1.0132 | | | | Part | 2 Phf19
2 Phf20l1
2 Phf6 | 0.1294
0.9226
0.1246 | 0.1868
0.356
0.4052 | 0.2895
0.9728
0.9931 | 0.3606
0.5076
1.3077 | | 0.605
0.3933
1.1026 | 0.5933
0.4476
1.0992 | 0.2481
0.4357
1.1682 | | | A Part | | | | | | | 0.7038
0.4249
0.2103
0.7808 | 0.4761
1.1241
0.3213
0.8949 | 0.8743
0.7526
0.3665
0.6518 | 0.7774
0.2489
1.2342 | | Property | 2 Pigt
2 Pik3c2a
2 Pik3r4 | | | 0.1017
0.3408
0.7874 | | 0.1267
0.2224
0.9426 | 1.2516
0.4458
0.337 | 0.2447
0.373
1.1313 | 0.4894
1.0052 | -0.0703
0.303
-0.1722 | | 2 Profest 1-11 1,000 1315 1-140 0.544 0.848 0.607 0.718 1.719 1.71 | 2 Pim2
2 Pinx1 | | 0.149
0.6683
0.7745 | 0.9747
0.2673
0.4609 | 0.1369
0.1384
0.9062
0.1882 | | 0.4025
0.2043
0.8814
0.427 | | 0.0843
0.5512
0.5828
0.482 | 0.9713
0.0453
0.4681 | | 2 Pixes 2 Pixes 2 Pixes 2 Pixes 2 Pixes 2 Pixes 3 Pixes 4 P | 2 Pip5k1a
2 Pipox | | 0.1238
0.4837 | 1.8039
0.673
0.6487 | 1.3195
0.3705
0.488 | 1.1443
0.8518
0.5161 | | | 0.5067
0.4205
0.4234 | | | 2 Proof | 2 Pja1
2 Pkdcc
2 Pkm
2 Pkmut1 | 0.3675
0.9211
-0.4161 | 0.7136
1.0423
0.3138 | 0.5818
0.5462
0.8514 | 0.9439
0.0979
0.734 | 0.354
0.2502
0.6625
0.6649 | 0.7829
-0.1183
0.973 | 0.2903
1.2411
1.2421 | 0.7238
0.589
0.7444 | | | 2 Place 1,000 0.0752 0.0253 0.0052 0.350 0.4002 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.00000 0.00000 0.00000 0.00000 0.00000 | 2 Pkn2
2 Pknox1
2 Pknox2 | | 0.0957
0.4708
0.495 | | | | 0.8387
0.5506 | 0.5092 | 0.7735
0.5601
0.6821 | 1.2721
0.1746
-0.1167 | | 2 Picus 1,4188 | 2 Pla2g6
2 Plaa
2 Plac1 | 0.1883
0.1089
0.3279 | | | 0.5005
0.6052
0.1433 | | 0.7934
0.4607
0.453 | | 0.6994
0.6689
0.5246 | 0.9676
1.0458
-0.0511 | | 2 Plashad | 2 Plcb4
2 Plcd3 | 0.3755
0.4185
-1.0745 | | 0.8648
0.6593
0.1798
0.3116 | 1.2788
0.3978
0.6289 | 0.9366
1.1507
0.6712
0.7347 | 1.4044 | 0.6584
0.4908
0.2377 | | | | 2 Piper 1419 0.421 0.8197 0.7188 0.8003 1.0329 0.5677 1.0483 0.6217 1.0483
0.6217 1.0483 0.621 | 2 Plekha1
2 Plekha3
2 Plekhi1 | -0.1577
0.5697
0.0727 | | | | 0.6223
0.7497
0.6945 | 0.8566
0.4602
1.1806 | 0.8509
0.4108
0.9005 | 0.5502
0.4818
0.7824 | 0.9923
0.22
0.6675 | | 2 Prought 1,0655 1,022 1,055 1,022 1,055 1,007 1,000 | 2 Plp2 | 0.4228
0.9752
-0.168 | 0.3955
0.6139
0.4214 | | 0.4924
0.6673
0.7136 | | | 0.4495
0.6935
0.5877 | 0.3
1.3298
1.0483 | | | 2 Proc | 2 Pmaip1
2 Pmm1 | 1.6207
0.4051
-0.6426 | 0.755
0.2923
-0.4475 | -0.165
0.3958
0.265 | | 0.4097
0.8967 | | | | | | 2 Pecids | 2 Pms2
2 Pnkd | | | | | | | | 0.4423
0.7565
0.28 | 1.0196
0.092
0.279 | | 2 Puls 10 10 10 10 10 10 10 1 | 2 Poc1b
2 Podxl
2 Poldip3 | -0.3357
-0.5455 | -0.1102
-0.2863 | 0.9604
0.5424 | 0.5387
1.2467
0.3097 | | 0.6722
1.1041
0.5743 | 0.5052
0.9869
0.4208 | 0.4366
1.3327
0.3759 | | | 2 Potris | 2 Pole3
2 Polh
2 Polr2d | | | | 0.3154
0.6293
0.4334 | | 0.6973
0.6029
0.529 | | | | | 2 Pau2 | 2 Polr3a
2 Pop1
2 Pou2f1 | | | | 0.3350
0.4446
0.43
0.4205 | 0.9076
0.6556
0.6898
0.5524 | 0.348
0.9658
0.3442
0.5714 | | | | | 2 Ppiligri 1.0774 1.1170 0.516 0.5002 1.118 0.5444 1.1774 0.5172 0.5172 1.1774 1.1776 0.5172 1.1774 1.1776 1.1774 1.1776 1.1775 1.1775 1.1777 1.1776 1.1777 1.1776 1.1777 1.1776 1.1777 1.1776 1.1777 1.1776 1.1777 1.1776 | 2 Ppa2
2 Ppap2a
2 Pofia3 | 0.0977
1.078
0.0352 | 0.3265
0.9193
-0.1375 | | | | 0.3922
0.6933
0.776 | 0.5204
0.3348
0.7251 | 0.492
0.3748
0.9551 | | | 2 Ppmfg - 0.0 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 | 2 Ppfibp1
2 Ppil2 | 1.0774
0.1548
-0.2721
0.5305 | 1.1176
0.0002
-0.9489
0.2314 | | 0.9662
0.2307
0.2465
0.5577 | 0.1176
0.4445
1.3959 | 0.5844
0.2512
1.2668
0.4959 | | 0.1779
0.4563
0.912
0.4207 | 0.6375
0.3028
-1.491 | | 2 Pyprids 0.552 0.511 0.552 0.551 1.133 1.027 0.9118 0.8555 2 Pyprids 0.5281 0.2314 0.0017 0.900 0.444 0.770 0.9118 0.8555 2 Pyprid0 0.2903 0.444 0.7008 0.777 0.8555 1.3355 2 Pyprid0 0.2903 0.0154 0.0255 0.5444 0.5642 0.100 | 2 Ppm1a | | | | | 0.5001
0.8163
0.7964 | 0.4058
1.3045
0.7594 | 0.3759
1.1443
0.1145 | 0.5424
1.0506
0.2609 | 0.8163
0.7947
-0.1809 | | | 2 Ppp1ca
2 Ppp1cb
2 Ppp1r10 | 0.5291
0.2993 | 0.454
0.2316
0.8843 | 0.4377
0.3617
0.3366 | 0.6592
0.6903
0.2803 | 0.8381
0.3401
0.3134 | 1.1393
0.7968
0.3025 | 1.0367
0.7787
0.5444 | 0.9118
0.6059
0.5642 | 0.8558
1.3363
0.1259 | | 2 Ppp1r12c
2 Ppp1r14d
2 Ppp1r15a | 0.2333
0.1321
2.438 | 0.5166
0.1691
1.1492 | 0.3018
0.9331
2.0277 | 0.2874
0.6626
1.0427 | 0.1952
0.9153
1.5139 | 0.5001
0.6767
0.8069 | 0.1508
0.6507
1.0252 | 0.3113
0.7068
0.9381 | 0.514
0.897
-0.664 | |--|--|---------------------------------------|---------------------------------------|---------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------| | 2 Ppp1r16a
2 Ppp1r17
2 Ppp1r1c | | 0.3632
0.1623
-0.4444 | 0.2787
0.2818
1.7054
0.3069 | 0.3544
0.303
1.5732
0.2466 | 0.5742
0.3897
1.072
0.3224 |
0.6423
0.3318
0.8714 | 0.7848
0.4384
-0.1454
0.914 | 0.6662
0.3135
0.4562
0.6059 | 0.570
11.95
-1.922 | | 2 Ppp1r2
2 Ppp1r35
2 Ppp1r8
2 Ppp2cb
2 Ppp2r1a | | 0.154
0.5637
-0.1792 | | | 0.719
0.8733
0.5781 | 0.8168
0.8718
0.3589 | 0.7236
1.2079
0.7723 | 0.7842
0.7725
0.5055 | 0.680
1.066
0.293 | | 2 Ppp2r1a
2 Ppp2r1b
2 Ppp2r2c
2 Ppp2r5c | | 0.5462
0.5443
0.1666 | | | 0.9
0.2407
0.2563
0.8358 | 0.9667
0.4364
0.2796
0.5112 | 1.2125
0.3713
0.3599
0.5151 | 0.7809
0.0201
0.2378
0.7321 | | | 2 Ppp2r5d
2 Ppp4r1
2 Prdm4 | | | | | | | | | | | 2 Prdx2
2 Prickle3
2 Prima1
2 Prkaa2 | | | | | | | 0.4211
0.0529
0.2354
0.2245 | 0.519
0.5771
1.0792 | | | 2 Prkab1
2 Prkdc
2 Prl8a9 | | | | | | 0.4155
0.5433
0.2768 | 0.5992
0.7126
0.2986 | 0.6459
0.4626
0.0468 | | | 2 Prmt5
2 Proca1
2 Prosc
2 Prpf31 | | | | | 0.3155
0.3867
0.3425 | 0.8286
0.2088
0.8985
0.6359 | 0.472
0.7384
0.4547 | 0.407
0.4272
0.4241 | | | 2 Prpf38a
2 Prpf40a
2 Prpf40b
2 Prrf1 | | | | | | 0.219
0.5547
0.3918 | | 0.4472
0.9163
0.2792 | | | 2 Prr11
2 Prr18
2 Prr3
2 Prr7 | 0.1433
-0.0843
0.7583
0.317 | 0.8553
0.4527 | 0.4788
0.8081
0.6399
-0.1167 | 0.2149
1.1361
0.5962
0.5998 | 0.6399
0.4695
0.6109 | | 0.5518
0.0519
0.6056
0.1817 | | | | 2 Prrc2a
2 Prrt3
2 Prss22 | | | | | | 0.6271
0.0418
0.5986 | 0.6734
0.49
0.7328 | | | | 2 Prss8
2 Prune
2 Prx
2 Psen1 | | 0.2529
-0.3548
0.1003 | | -0.1358
0.3208
1.0766
0.8012 | 0.9942
0.4025
1.1174
0.6959 | 0.4428
0.5646
1.052
0.7875 | 1.4534
0.3406
0.2213
0.2954 | 0.9382
-0.1514
0.9151 | | | 2 Psma3
2 Psmb10
2 Psmc1 | | 0.3163
-0.2831
0.0752 | | | 0.4219
0.0852
0.7383 | 0.5608
0.3218
0.2962 | 0.4873
0.9101
0.9207 | | | | 2 Psmd1
2 Psmd11
2 Psmd12
2 Psmd6 | 0.5453
0.1068
0.4278 | 0.8608
0.3721
0.7347 | 0.919
0.6153
0.6665
1.0978 | 0.7395
0.5047
0.3746
0.4831 | 1.0686
0.5681
0.7646
1.29 | 1.0711
0.5018
0.6716
0.5876 | 0.5864
0.93
1.5114
0.93 | 0.8988
0.3881
0.6674
0.996 | 0.78
1.272
0.885
0.388 | | 2 Psmd9
2 Psme3
2 Psmg1 | | | 0.7237
0.996
0.2195 | 0.4498
0.9592
0.6136 | 0.5953
0.9863
0.6339 | 0.5237
0.8708
0.7478 | 1.5514
1.1261 | 0.4783
1.3495
1.1171 | 0.491
-0.032
1.162 | | 2 Psmg2
2 Psors1c2
2 Psrc1
2 Ptbp1 | | | 0.2605
0.3908
0.2669
0.9152 | 0.4921
0.1309
0.7246
0.6876 | 0.5864
1.219
0.6089
0.8035 | 0.5319
0.7822
0.617
0.9971 | 0.734
1.697
0.5019
0.9477 | 0.6917
1.4142
0.618
1.1126 | | | 2 Ptges3
2 Ptk2
2 Ptms | -0.1436
0.4497
0.7754 | -0.0945
0.4571
0.6914 | 0.7478
0.1979
1.0143 | 0.6036
0.471
0.6558 | 0.8488
0.2239
0.8698 | | | 0.5086
0.5099
0.4045 | 1.19
0.211
-0.76 | | 2 Ptp4a2
2 Ptpn14
2 Ptpn21
3 Ptnrf | 0.8437
0.897
1.7276 | 0.8318
0.5937
0.9593 | 0.4458
1.1371
0.8476 | 0.1876
1.0469
0.6758
0.5278 | | 0.2356
0.8899
0.484 | 0.6106
0.6099
0.6716
0.4471 | 0.3891
0.9413
0.927 | | | 2 Piprf
2 Piprk
2 Pipru
2 Piurb
2 Pus10 | | -0.1419
-0.1442
0.3402 | 1.025
0.002
0.88 | | 0.6821
0.4452
0.8257 | 0.5907
0.8675
0.7574 | 0.6337
0.6537
0.7826 | | | | 2 Pus10
2 Pus7
2 Pvr
2 Pvrl2 | -0.1193
-0.2817
1.2531
1.5809 | 0.476
1.0097
1.1143 | 0.2954
0.3179
1.245 | 0.802
0.4521
0.8974 | 0.5862
0.4338
0.9673 | 1.07
0.7522
0.8799 | 0.7937
0.7304
0.5633
1.2867 | 0.9566
0.4878
0.8129
0.9271 | | | 2 Pvrl3
2 Pwp1
2 Qars | 0.1946
0.137
-0.1977 | 0.0820
0.2254
0.0784 | 1.2141
0.3298
0.1393 | 1.1526
0.4231
0.2935 | 1.0965
0.5408
0.4066 | 0.8988
0.4146
0.6189 | 0.2135
0.8307
0.6049 | 0.2247
0.4879
0.704 | | | 2 Qdpr
2 Rab1
2 Rab35
2 Rab3gap2 | | | | 0.5107
-0.0234
0.4207
0.2401 | | | | 1.0243
0.2715
0.3012 | | | 2 Rab4a
2 Rab5a
2 Rab7 | 0.7399
0.9203
0.3409 | 0.7921
0.317
0.2479 | 0.7318
0.7556
0.6612 | | | 0.5271
-0.0837
0.6931 | 0.7421
0.6113
0.4193 | 0.8439
0.2541
0.118 | 1.338
0.315
1.08 | | 2 Rabi9
2 Rabif
2 Rabi3
3 Rabis | 1,2093
0,2053
-0,3119 | | | | | | 0.5683
0.4738
1.0884 | 0.2158
0.1964
0.8309 | | | 2 Rabi5
2 Rac3
2 Rad17
2 Rad23a | | -0.1565
-0.5053
-0.2662 | | | 0.9096
0.6808
0.6681 | 1.6017
0.6318
0.8389 | 0.5633
0.6984
1.0771
0.7436 | 1.0267
0.614
0.6589 | 0.212
0.222
1.011
0.889 | | 2 Rad23b
2 Rad50
2 Rad51l3
2 Rad9 | 1.195
0.4045
0.2525 | 0.7745
0.2402
0.368 | 1.3111
0.3121
0.3156 | 1.1427
0.249
0.0413 | 1.3819
0.585
0.4028 | 1.11
0.2694
0.127 | 1.4249
0.3726
0.3351 | 1.2197
0.4019
0.4133 | | | 2 Raet1b
2 Raf1
2 Rai14 | 0.6434
0.1895
0.9441 | 0.8719 | | | 0.2239
0.7469
0.6309 | 1.0284
0.6458
0.0711 | 0.6131
0.8298
0.172 | 1,2276
0,7132
0,2704 | | | 2 Ralgapa2
2 Ralgps2
2 Raly
2 Ramp2 | | | | | 0.4874
0.7564
0.6448
-0.0943 | 0.3156
0.494
1.3195 | 0.2758
0.6651
0.7606 | 0.4185
0.4315
0.2677 | 0.376
0.930
1.11 | | 2 Ranbp10
2 Rap1gap2
2 Rarg | 0.1999
-1.5947
1.08 | 0.1169
-0.6804
1.0515 | 0.5054
1.8328
0.9805 | 0.2392
1.685
0.8453 | 0.5806
1.5223
0.9666 | 0.5251
1.3875
0.9076 | 0.2961
0.6892
0.9723 | 0.4714
0.9493
0.9483 | -0.177
-2.404
0.559 | | 2 Rars
2 Rb1
2 Rbak | | 0.5124
0.0938
0.3213 | 0.4955
1.8031 | 0.5321
1.5045
0.4467 | 0.4803
1.5894
0.3604 | 0.4909
1.235
0.2268 | 0.7953
0.5298
0.4075 | 0.2449
1.0656
0.2632 | 0.986
-0.711
0.233 | | 2 Rbbp7
2 Rbm12
2 Rbm14
2 Rbm15 | | 0.0005
0.3212
-0.0163
0.1963 | 0.4934
0.9059
1.3314 | | | 0.4921
0.321
0.8076 | 0.8819
0.8117
1.0754 | 0.5712
0.9195
0.9384 | 0.330
0.932
0.864 | | 2 Rbm19
2 Rbm42
2 Rbm45
2 Rbmx | | | | 0.5746
0.4154
0.7143 | 0.6469
0.4841
0.2088 | 0.7525
0.4384
0.4182 | 0.8108
0.6634
0.1797
1.8602 | 0.7152
0.361
0.4049 | | | 2 Rbmx2
2 Rce1
2 Rchv1 | | | | | | 0.3933
0.6098
0.4355 | 0.3398
0.5903
0.24 | 0.5191
0.7472
0.663 | 0.441
0.851
0.141 | | 2 Rdbp
2 Recql5
2 Rev1
2 Rexo1 | | | | | | | | | | | 2 Rexo2
2 Rffl
2 Rfng | | | | | | | | 0.1648
0.6726
0.5812 | -0.176
0.566
-0.24 | | 2 Rfx1
2 Rfx4
2 Rfxap
2 Rol2 | | | | | 0.4661
1.0058
0.5241
0.3282 | 0.6259
1.6241
0.4616
0.3895 | 0.5949
0.7667
0.4398
0.7265 | 0.9685
1.5371
0.4568
0.4884 | 1.10
-0.400
-0.026
0.337 | | 2 Rgl2
2 Rgs12
2 Rgs3
2 Rhbdd3 | | | | 0.9526
0.2622
0.5672 | | | | | | | 2 Rhbdl1
2 Rheb
2 Rhot2
2 Rhou | | | | | | | | | | | 2 Rhox6
2 Ric8b
2 Rictor | -0.1382
0.1048
1.403 | 0.1837
-0.1432
0.7845 | 0.5956
0.583
1.8391 | 0.1568
1.1221 | 1.1552
0.7202
1.3219 | 0.619
0.5513
1.116 | 1.3758
0.6704
1.1327 | 0.7874
0.7571
1.071 | 0.965
-0.064
0.353 | | 2 Riok1
2 Rnase1
2 Rnd2
2 Rnf10 | 0.7812
0.135
0.887 | 0.6363
0.9765
0.3779 | 0.732
2.4518
1.1791 | 0.7842
1.9263
0.8077
0.559 | 0.5791
1.6418
0.6704 | | | 0.5153
0.4342
0.4519 | 0.665
-1.074
1.110 | | 2 Rnf126
2 Rnf138
2 Rnf141 | 0.1274
0.8273
0.200 | | | | | 0.9272
0.3186
0.3124 | 1.2148
0.6837
0.4684 | 0.7414
0.6673
0.4946 | 0.764
1.755
0.390 | | 2 Rnf145
2 Rnf168
2 Rnf183
2 Rnf185 | | -0.066
0.2096
0.2396 | 0.4166
0.0722
0.8479 | | | | | 0.746
0.5927
0.332
0.4275 | | | 2 Rni165
2 Pegf3
2 Rnf34
2 Rnf4
2 Rnf40 | 0.8571
0.0523
0.6071 | 0.6984
0.0833
0.3581 | 0.6479
0.7628
0.3291
0.9894 | | | 0.1505
0.7589
0.2886
0.5244 | | 0.5183
0.4751
0.629 | | | 2 Rnf40
2 Rnf8
2 Rngtt
2 Rnu6 | | | | 0.5377
0.5378
0.6155 | 0.3608
0.4059
0.5084
0.756
1.0698 | 0.5165
0.5342
0.9306 | 0.5407
0.4203
0.5075
1.128 | | 0.185
0.628
0.170 | | 2 Rock2
2 Ror2
2 Rpa3 | 1.0599
0.7878
0.2107 | 0.7929
0.5575 | 1.2806
0.3665
0.1124 | 1.0546
0.2614
0.3889 | | 0.7288
0.6262
0.5248 | 1.126
0.6872
0.5543
1.1241 | | | | 2 Rpap1
2 Rpi22l1
2 Rpi29
2 Rpi36al | | | 0.2624
0.7067
0.9452 | 0.3844
0.2329
1.0318 | 0.2128
0.848
1.3555 | 0.3371
0.1673
1.2578 | 0.5765
0.5911
1.1286
0.5852 | 0.6255
0.3937
1.209 | 0.242
1.163
-2.586 | | 2 Rpi36al
2 Rpi37a
2 Rpi41
2 Rpip1 | | | | | | | | 0.6905
0.6905
0.6035
0.5189 | | | | | | | | | | | | | | | 0.2306
0.0894
0.0875 | 0.6709
0.6852
1.0821 | 0.6581
0.5178
1.0942 | 0.4519
0.7996
0.872 | 0.5321
0.699
0.9361 | 0.4934
0.9247
0.5568 | 0,4625
0,7339
0,9974 | | |--|---------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--| | | | | | | | | | | | -0.4376
-0.4376
0.8665 | -0.1488
0.3619
0.3496
1.4501 | | 0.5877
0.4336
0.5907 | | 0.5124
0.7706
0.3899
0.583 | | | | | 0.3332
0.1754 | 0.2735
0.42
0.5226 |
0.4997
0.1951
0.5348 | 0.3737
0.2795
0.4053 | 0.4306
0.3721
0.3676 | 0.242
0.5683
0.3567 | 0.6399
0.415
0.2394 | 0.7648
0.3747
0.3317 | | | -0.9939
0.591
-0.3675
1 1056 | -1.0393
0.5448
-0.0743 | 1.2839
0.0649
0.7321
0.6134 | 0.8813
0.4762 | 1.0881
0.1085
0.7609 | 2.0071
-0.1383
0.6315 | 0.5533
1.5358
0.5565
0.8387 | 1.2729
1.007
0.7212
0.6065 | | | 0.2913
0.3495
0.2807 | | | | | 0.3934
0.3582
1.0886 | 0.8164
0.7331
0.9204
1.0144 | | | | 0.8016
0.6051
0.5587 | 1.0192
0.7938 | 0.844
0.9631
0.4848 | 0.7866
0.3054
0.7237 | 1.0213
0.5997
0.7274 | | 1.0144
0.6086
0.5604 | 0.9319
0.3861
0.8059 | | | | | | 0.033
0.2319
0.635 | 0.3761
1.0812
0.8577 | 0.1718
1.15
0.8211 | 0.8594
0.5474
0.8611 | 0.401
1.159
0.563 | | | 0.3200
0.4789
0.1932
0.9498 | | | | | | 0.7546
0.2134
0.3134
0.5227 | 0.9949
0.3512
0.8438
0.5348 | | | | | | | | 0.5067
0.2982
0.9217 | 0.4566
0.6923
0.9243 | 0.524
-0.0553
0.8781 | | | | | | | | | | | | | | -0.5428 | 0.4269 | 0.5869
0.6573
0.1475 | 0.6454
0.411 | 0.5296
0.5419
0.1416
1.4518 | 0.9223
0.949
0.8644 | 0.6708
0.7255
0.5898 | | | | 0.097
0.7085
0.3856 | 1.2219
0.3341
0.3765 | 0.8181
0.6113
0.1638 | 0.8841
0.2633
0.4566 | 0.6464
0.5341
0.3838 | | 0.5681
0.3789
0.4462 | | | 0.2928
0.9675
0.4879 | | | | | 0.4216
0.3563
0.3567 | | | | | | 0.1
4.000
0.1117 | | | | | | 0.8074
0.4749
0.4731 | | | 0.4098
0.431
-1.1974
-0.084 | 0.1861
-1.2196 | | 0.4098
0.3531
-0.1754
0.5588 | 0.4888
0.4863
0.8568
0.6034 | 0.4098
0.2085
1.1384
0.4281 | 0.8137
0.6366
1.1309
1.0824 | 0.8133
0.3803
1.2795
0.570 | | | 0.8678
0.8756
2.272 | | | 0.1504
0.7
-0.9596 | | 0.3699
0.6136
-0.7624 | 0.853
0.1857
1.59 | 0.5792
0.5932
0.4593 | | | | 0.1095
0.3354
0.289 | 0.2855
0.5319
1.6164 | 0.0533
0.5237
0.6364 | | | | | | | | -0.0543
-0.134
 | 0.8801
0.3556
1.3989 | 0.9177
0.3902
1.0196 | | | | | | | 0.1646
0.341
0.1562
0.9434 | 0.2815
0.4126
0.2928 | | | | | | 0.7063
0.2279
0.6378
0.5284 | | | 0.1517
0.4808
0.5389 | 0.1627
0.6726
0.020 | | | 0.2843
0.7029 | | | 0.4507
0.4773
1.1219 | | | | -0.1362
0.8678
0.4262 | | | 0.7747
0.3226
0.4209 | 1.0126
0.2687
0.6637 | | 1.1
0.4697
0.4481 | | | | 0.1019
0.315
0.0359 | | 0.2438
0.5345
0.4208 | 0.3013
0.9914
1.0294 | 0.4301
1.0227
0.4404 | 0.5296
1.476
0.5323 | 0.6422
1.5374
0.6519 | | | | 0.1258
0.222
0.8211 | 0.82
0.4949
1.0591 | | | 0.8012
0.4968
0.362 | 0.8366
0.8366 | 0.4093
0.4093
0.07 | | | | | 0.3241
0.3424
0.4865 | 0.2679
0.4203
0.3923 | | | 0.3557
0.5005
0.6374 | 0.3414
0.4782
0.3847 | 0.6652
0.5179
0.7603 | | | 0.416
-0.1184
0.9193 | | | | | 0.1143
0.4349
0.3991 | 0.6843
0.3491
0.4844 | 0.1815
0.7853
0.2084 | | | 0.7945
0.4973
0.7779 | | | | | | | | | | | | | | | | | 0.3833
0.7211
0.4324
0.5531 | | | | | | 0.528
0.61
0.4079 | 0.3385
1.3036
0.7493 | 0.5163
1.5363
1.0711 | 0.3302
1.1983
0.5917 | | | | | | | | | | | | | | 0.3547
0.415
1.3384 | 0.4859
0.5231
0.2787 | 0.3547
0.5885
1.6315 | | 0.4981
0.3606
0.9252 | | | | | | 0.9421
0.117
0.4814 | | | | | | | 0.74
0.7532
0.8305 | | | | 0.0550
0.1435 | 0.6113
0.4657
0.5314 | 0.555
0.2824
0.2955 | | 0.7232
0.65
0.4289 | 1.0711
0.3474
0.7663 | 0.795
0.1489
0.5028 | | | 0.2315
1.4058 | 0.1989
1.3284 | 1.2525
0.1878
-0.1073 | 1.1857
0.2458
-0.1919 | | 0.1879
0.2372
0.4815 | 0.9167
1.2425 | | | | 0.6003
-0.0011
1.0345 | 0.5123
0.3136
1.3693 | | | | | 0.3835
1.1311
0.8214 | | | | 0.532
0.5686
-0.2613 | 0.8209
0.1916
0.0551 | | | | | 0.1944
0.859
0.6151 | 0.4803
0.781
0.5581 | | | 1,245
0,0012
0,3943 | 1.0642
 | | 0.2248
0.7481
0.5688 | 0.9488
0.4968 | | | 0.2852
0.5892 | | | | 0.4638
0.2275 | 0.6798
0.1862
1.2179 | 0.407
0.5365
0.4497
1.1131 | 0.3775
0.4522
1.3565 | 0.352
0.6399
1.1956 | 0.3716
0.477
0.3751
1,3183 | 0.3232
0.324
1.0452 | | | | 0.0496
-0.0505
0.4074 | 0.3959
0.4217 | 0.337
0.3219 | 0.0628
0.8908
0.2343 | 0.859
0.3668 | 1.3183
1.7207
0.8444
0.2567 | 0.9865
0.9389
0.1682 | | | 0.09/2
-0.1449
0.075 | | | 0.4244
0.444
0.3443 | 0.5288
0.5865
0.2651 | 0.4148
0.6297
0.1436 | | 0.6095
0.6082
0.4111 | | | | 0.4668
0.1523
-0.2821 | 0.6286
0.3172
0.7605 | 0.5325
0.1463
1.4121
0.9615 | 1:1009
0.5199
0.5864 | 0.5365
0.5106
1.1608 | 0.8146
0.4259 | 1.081
0.2819
1.245 | | | | 0.4643
0.6313
0.5200 | | | | 0.2743
0.064
0.4265 | | 0.6425
0.4417
0.2024 | | | | | | | 0.2312
0.2139
0.8174 | 0.3121
0.9979
0.3822 | 0.452
1.1529
0.8236 | 0.1804
0.0888
0.8433 | | | -0.0519
-1.1916
0.3496 | -0.7715
0.3157 | 0.4053
0.6359
0.4996 | 0.1881
0.7776
0.6203 | 0.5475
1.0103
0.4808 | 0.4053
0.8624
0.3939 | | | | | | | 0.8994
0.2742
0.2047
0.5792 | 0.187
0.185
0.2833 | 0.9884
0.4552
0.2141
0.4601 | 0.3017
0.4263 | | | | | | | | | | 0.918
0.416
0.8626 | 1.0864
0.395
1.158
0.7152
1.0385 | 0.8321
0.1942
0.688 | | | | | | | | | | | | | 2 Stag1
2 Stag2
2 Stard10 | 0.3934
-0.2122
0.8984 | 0.1743
-0.2664
0.5097 | 0.468
0.2763
0.8668 | 0.1458
0.1122
0.4682 | 0.4415
0.4163
0.9784 | 0.3522
0.5163
0.6474 | 0.4335
0.7812
0.855 | 0,4081
0,4552
0,5435 | 0.5935
-0.2422
-0.0908 | |---|---|---------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|---| | 2 Stard3nl
2 Stk25
2 Stk3
2 Stk35 | 0.4702
0.2958
1.1239
1.0774 | 0.8024
0.5251
1.0463
0.5894 | 0.4024
0.4474
1.1421
1.5333 | 0.515
0.3674
1.0076
1.0257 | | 0.8862
0.4172
0.7916
0.8604 | 0.8321
0.0000
0.3793
0.9209 | 0.8445
0.1581
0.4203
0.6852 | 0.5816
0.3041
-0.1761
0.9772 | | 2 Stk4
2 Stk40
2 Strap
2 Strn4 | -0.415
0.9426
-0.165
0.5194 | -0.4228
0.2052
0.1654
0.5916 | 0.1994
1.1726
0.421
0.8318 | | | 0.5131
0.2909
0.4754
0.6199 | 1.1398
0.7614
0.3914
1.0394 | | | | 2 Stt3b
2 Sugp1
2 Sumo2
2 Sun1 | | 0.3435
0.3497
0.2043
-0.0852 | 1.2082
0.4392
0.5635
0.4715 | | 1.1166
0.3845
0.5838
0.3588 | | 0.5409
0.584
0.8764
0.3992 | 0.8885
0.8314
0.8038
0.2824 | | | 2 Supt5h
2 Suv39h1
2 Suv420h1
2 Swap70 | | | 0.53
0.4692
0.9615
0.5366 | | | 0.4695
1.0037
0.3443
0.4354 | | | 0.3957
-0.0411
-0.2089
-0.0395 | | 2 Syncrip
2 Syngr2
2 Syp
2 Sypl2 | | 0.02
0.0468
0.3076
0.0782 | 0.5398
0.3635
0.5806 | 0.244
0.5571
0.7383 | | 0.2462
0.7434
0.4494
0.1981 | 0.604
0.3252
1.2159 | 0.2541
-0.0917
0.8803 | 0.2102
0.1388
0.8046 | | 2 T
2 Tac2
2 Tat12
2 Tat1d | | 0.0404
-0.2481
0.3958 | 0.8891
0.2811 | -0.0777
-0.6998
-0.4528 | 0.197
1.2928
0.4246 | -0.081
0.7485
0.1049 | 2.5608
0.8057
0.3711 | 1.8989
0.7941
0.5105 | 0.2483
-0.0649
0.3664 | | 2 Taf3
2 Taf5l
2 Taf6 | | | | | | 0.7145
0.8147
0.5854
0.6227 | 0.8029
0.7169
0.5787 | | 0.6839
0.4863 | | 2 Taf6l
2 Tars
2 Tax1bp1
2 Tbc1d1
2 Tbc1d13 | 0.3563
0.2456
1.2628 | 0.2391
0.3795
0.3058 | 0.4128
0.3338
1.2123
0.6595 | 0.4479
0.1943
0.8214
0.7573 | 0.6209
0.4242
1.2527
0.5521 | 0.3142
0.3029
0.6042
0.5462 | | | 0.3678
0.8219
-0.1618
0.6328 | | 2 Tbc1d20
2 Tbc1d22b
2 Tbc1d24 | -0.2352
1,4681
0,4266
0,1412 | 0.0848
1.2793
0.5498
-0.1543 | 0.6616
0.9389
1.3926
0.3626 | 0.7012
0.9668
1.4062
0.2682 | 0.6969
0.4518
1.3842
0.6203 | 0.7726
0.8615
1.1959
0.3911 | 0.5733
-0.0798
1.1766
0.2405 | 0.5237
0.010
1.4246
0.5361 | 0.4081
0.8262
0.2353 | | 2 Tbc1d25
2 Tbc1d8
2 Tb11xr1 | | 0.134
-0.016
-0.1965
-0.3224 | 0.5223
1.05
0.3404
0.3721 | 0.7769
0.92
0.3526
0.3692 | 0.8512
1.0576
0.4734
0.602 | 1.0653
0.749
0.5473
0.6664 | 0.7814
0.8774
0.3453
0.8928 | 0.9578
1.1145
0.247
0.8019 | | | 2 Tbrg4
2 Tcesl8
2 Tceb2
2 Tcf12
2 Tcf19 | 0.9111
0.1742
0.632 | 0.8874
0.1857
0.4002 | | | | 0.011
0.4984
0.5913 | | 0.4767
0.4472
0.5204 | | | 2 Tdf3
2 Tdf712
2 Tdhp | 1.1014
1.234
0.2933 | 0.5651
0.9398
0.5288
0.3594 | 0.4654
1.2597
0.8576
0.2314 | 0.6659
0.7964
0.2825 | 1.2603
0.6873
0.4194 | 0.5393
0.9261
0.6796
0.1745 | 1.7357
0.5254
0.4453 | 0.6883
1.2415
0.6327
0.325 | | | 2 Tctn2
2 Tctn3
2 Tead2
2 Tecr | | | | | | 0.7169
0.2772
0.591
0.4096 | 0.8904
0.1688
1.349
0.753 | 1.0906
0.4338
0.9829
0.6499 | | | 2 Terf2ip
2
Tes
2 Tex21
2 Tfap2a | 0.4054
0.6538
0.1137 | 0.0948
0.94 | 0.3434
0.6153
0.1808 | 0.5954
0.6579 | 0.3517
0.2577
0.4567 | 0.5097
0.7072
0.2981 | | 0.2873
0.2947
0.4443 | 0.408
-0.1461
0.0821 | | 2 Tfe3
2 Tfnt | 0.3654
0.4758
-0.4293 | 0.4079
-0.2988 | | | 0.5721
0.4385
0.4481 | 0.2417
0.3987
0.6556 | | 0.5371
0.4961
0.7062 | -0.083
0.0315
0.044 | | 2 Tgm1
2 Thap1
2 Thap1
2 Thop1
2 Thad1
2 Tia1 | | 0.3698
0.4173
0.4914
0.5185 | 0.4507
0.1953
1.1556
0.2338 | | 0.5602
0.6355
0.5538
0.4016 | 0.5831
1.3492
0.1795
0.5772 | 0.4589
1.4117
0.3672
0.6045 | 0.4733
1.1749
0.1529
0.4933 | | | 2 Timm17a
2 Timm8a1
2 Tiparp
2 Tjap1 | -0.7156
0.5875
0.858 | 0.102
0.2004
-0.114
0.8443 | 0.3745
0.6345
1.032
0.5481 | 0.466
1.0331
0.2127
0.6323 | | | 0.343
0.9682
0.5056
0.6783 | 0.7017
1.0165
0.2717
0.6771 | | | 2 Tjap1
2 Tjp1
2 Tje1
2 Tle1
2 Tm9sf2
2 Tm9sf4 | 0.3938
0.4311
0.7109 | 0.2435
0.611
0.5705 | | 0.5401
0.3733
0.6403 | 0.9702
-0.0541
0.6698 | 0.4952
0.4125
0.566 | 1.3366
0.4195
0.8498
0.8064 | 0.9551
0.3817
0.5816 | | | 2 Tmc4
2 Tmc7
2 Tmco1 | 0.353
1.0584 | 0.3229
0.7164 | 1.1123 | 0.0610
0.3691
0.7116 | 0.5844
0.1448
0.8466 | 0.701
0.4351
0.4043 | 0.4338
1.0453
1.1115
0.7808 | 0.6703
0.9872
0.8785 | -0.0744
0.6717
-0.2611 | | 2 Tmed2
2 Tmem120b
2 Tmem130
2 Tmem134 | | 0.7781
0.3743
-0.2361
0.3049 | 0.8181
0.2466
1.1918
0.562 | | | 0.8975
0.502
-0.0607
0.592 | 0.7808
0.6409
0.5812 | | | | 2 Tmem138
2 Tmem139
2 Tmem17
2 Tmem184c | 0.5025
-0.1762
0.226
1.0101 | | | 0.118
0.2118
0.2382
0.588 | 0.2341
0.847
0.1889
0.9272 | | | | | | 2 Tmem19
2 Tmem192
2 Tmem201
2 Tmem214 | | | | | | 0.9605
0.3165
0.5348
0.5479 | | | | | 2 Tmem33
2 Tmem35
2 Tmem41a
2 Tmem45b | 0.2302
0.6169
-0.0776 | 0.277
0.9926
0.5784 | 0.2627
1.1319
0.6392 | 0.6989
1.8128
0.925 | 0.431
0.3389
0.435 | 0.6069
0.5341
0.6895 | 0.116
-0.0631
0.7003 | 0.3192
0.4506
0.6234 | 0.3606
-0.2461
0.3743 | | 2 Tmem47
2 Tmem55a
2 Tmem60 | -1.2046
0.3232
0.5908
0.3486 | 0.3999
0.4317
0.2204 | 0.2767
1.2347
0.3157 | 0.2151
1.0594
0.2965 | 0.3756
0.946
0.2331 | 0.1847
0.6129
0.4998 | 1.0637
0.6048
0.2942 | 0.3878
0.7359
0.6903 | | | 2 Tmem63b
2 Tmem64
2 Tmem68
2 Tmem9 | 0.2241
0.7357
1.0376 | 0.4613
0.5649
0.668
0.9527 | 0.5092
1.4696
0.8579
0.4916 | 0.6888
1.6009
0.7283
0.2895 | | | | | | | 2 Tmpo
2 Tmprss5
2 Tmtc4
2 Tnfaip3 | 0.0815
-0.4992
0.1709
3.4058 | 0.0913
-0.0932
0.3528
0.8054 | 0.5182
1.4805
0.5476
2.2846 | 0.6488
1.751
0.2892
1.0688 | 0.5954
1.0755
0.3726
1.4453 | 0.8418
1.0049
0.6912 | | | | | 2 Tnfrs/10b
2 Tnfs/11
2 Tnip1
2 Tnrc18 | 0.935
0.5201
0.3837 | 0.4108
0.4722
0.0848 | 0.6779
1.3281
1.2691
0.6509 | 0.4324
0.9954
0.8613
0.4224 | 0.7205
1.0527
1.1835 | 0.4002
0.7066
0.841
0.3181 | 0.456
0.5093
0.8505 | 0.7034
0.8305
1.0233 | | | 2 Tnrc6a
2 Tob1
2 Tob2 | 0.7856
0.4976
1.1916 | 0.5827
0.1819
0.6571 | 1.0618
1.1055
0.6795 | 0.7804
0.8875
0.5214 | 1.0081
0.9252
0.415 | 0.8568
0.755
0.5 | 0.9094
0.3852 | 0.6898
1.0009
0.2992 | | | 2 Tomm34
2 Tomm6
2 Tomm7
2 Top1 | | | | | | 0.3556
0.6764
0.8152
0.2894 | 0.8014
0.734
0.5146
0.9571 | | | | 2 Top3b
2 Topors
2 Tox3
2 Toh1 | | 0.5438
0.399
-0.5309 | 0.8804
1.0224
1.245
1.901
0.5585 | 0.9385
0.4854
0.6888
0.7631 | 0.8854
1.0742
0.913
1.9614 | 0.8254
0.5014
0.176
1.0268 | 0.8377
0.9807
0.4875
1.1707 | 0.8968
0.7855
0.404
0.5576 | | | 2 Tpk1
2 Tpm3
2 Tpo | 0.8089 | 0.3479
0.6326
0.0647
0.5183 | 0.5585
1.0282
0.38
0.6675 | 0.6883
1.0001
0.5029
0.4466 | 0.6195
1.0165
0.7607
0.538 | 0.5696
1.3139
0.7644
0.206 | 0.511
1.2204
0.404
0.5489 | | | | 2 Tpp2
2 Tpm
2 Hsp90b1
2 Traf3ip2
2 Traf4 | -0.8887
-0.8882
-0.5309
-0.405 | -0.5655
0.8069
0.1948
0.9204 | | 0.8555
0.2014
0.3921
0.6653 | 1.4093
0.4358
0.6852
0.4343 | 1.6291
0.3811
0.4083
0.6254 | 0.9293
0.3897
0.2633 | 1.2403
0.392
0.305 | | | 2 Traf6
2 Trak1
2 Tram1 | 0.3711
0.1608
1.0214 | 0.3332
0.0861
0.7436 | | | | 0.2898
0.3676
1.118 | | 0.3445
0.7958
0.3899 | | | 2 Trappc8
2 Trappc9
2 Trim21
2 Trim30b | | 0.6669
0.5992
0.5222 | | | | | | 0.4188
0.4762
0.3281 | -0.2159
-0.6226
-0.3702 | | 2 Trim33
2 Trim59
2 Trip12
2 Trip6 | | 0.1662
0.2768
0.1128
0.739 | | | | 0.2075
0.5812
0.3981
0.5786 | 0.9288
1.1928
1.3532
0.3719 | 0.7714
0.8462
0.906
0.4894 | 0.7459
1.3135
1.2489
-0.1028 | | 2 Tmt2a
2 Tm53bp1
2 Tsc22d4
2 Tsen15 | 0.6351 | 0.5603
0.2902
0.5166
0.5**** | 0.2943
0.2605
0.2772 | | | | | 0.4234
0.9404
0.5053 | | | 2 Tsen2
2 Tsfm
2 Tsg101 | -0.0886
-0.0963
0.4938 | 0.3973
0.2726
0.2088 | | 0.6242
0.3197
0.7618
0.8715 | | | | | | | 2 Tsku
2 Tsn
2 Tspyl3
2 Ttc15 | 1.2958
0.5575
0.601
0.5305 | | 0.8656
0.6206
0.3709
0.8511 | 0.6484
0.5751
0.6607
0.8208 | 1.1092
0.6321
0.5233
1.0315 | | 0.6363
0.6816
0.3764
0.6778 | 0.5814
0.4373
0.1464
0.6525 | 0.2081
0.5791
0.8066
0.4722 | | 2 Ttc15
2 Ttyh1
2 Tuba1a
2 Tuba1b
2 Tubb4a | 0.6138
-0.4986
0.1793 | 0.423
0.9469
0.3034 | 0.9864
0.8388
0.2145
0.4576 | 0.8528
0.9352
0.5308
0.4473 | | 0.7628
0.6397
0.6271
0.3214 | 1.2468
1.1606
0.9833
0.839 | 1.2966
0.9871
0.6255
0.6782 | | | 2 Tubb4b
2 Tubgcp2
2 Tug1 | | | 0.7061
0.4174
0.5442
0.8922 | 0.7979
0.4822
0.0483
0.614 | | 1.0394
0.4116
0.2646 | 1.2468
1.1606
0.9833
0.839
1.0303
0.8959
0.758
0.5264
0.3671
0.7689 | 0.6713
1.1175
0.54 | | | 2 Tulp3
2 Txn1
2 Txndc12
2 Txnl4a | | | | | | 0.499
0.0515
0.2259 | | | | | 2 Txnrd1
2 Tyw1
2 U2af2
2 Uba1 | | | 0.4448
0.8875
0.5834 | | 0.6139
0.6139
0.619
0.6974 | 0.252
0.2197
1.104
0.9279 | 0.5575
0.7673
1.2387
0.6873 | | 0.7649
0.2402
0.5722
0.7534 | | 2 Ubap2l
2 Ube2dnl1 | 0.478
0.1167 | 0.3917
0.0771 | 0.7827
0.4133 | 0.5304
0.4568 | 0.9486
0.2405 | 0.7604
0.3309 | 1.1049
0.6467 | 0.8647
0.4055 | 0.5135
0.6423 | | 0.6909
0.1587 | 0.4003
0.037 | 0.1525
0.5208 | 0.1314
0.259 | 0.037
0.4954
0.436 | -0.118
0.3356
0.5465 | 0.8498
0.7362 | 0.4873
0.3822
0.2015 | | |--|---|----------------------------|----------------------------|--|----------------------------|--------------------------------------|----------------------------|--| | | 0.2966
0.8392
0.3548 | 0.5377
0.9461 | 0.5075
0.9632
0.2033 | 0.5235
1.0985
0.2378 | 0.5139
0.9193
0.4208 | 0.7055
1.1743
0.5917 | | | | | | | | | | | | | | | | | 0.5147
0.6399 | | | | | | | | 0.1068
0.0011 | | 0.2838
0.5911
0.4887 | 0.9414
0.7526
0.9211 | 0.0256
0.7949
0.4682 | 0.7641
0.5333
1.3477 | 0,4977
0,7515
0,9817 | | | 0.6204
1.5142
0.5303 | 0.6966
0.1421
0.7842 | | | | 0.4767
0.6402
0.3025 | 0.6615
1.4696
0.4033 | 0.359
1.192
0.4361 | | | | | | | 0.7637
0.547
0.3579 | 0.7771
1.2088
0.1285 | | 0.8555
0.6878
0.6789 | | | | | | | | 0.7183
0.7844
0.2303 | 0.4143
1.0418
0.9755 | 0.8209
0.8209 | | | | | 0.2462 | | | 0.642
0.6884 | | | | | 0.6685
0.7561
0.9608 | 0.2374
0.2964
0.5649 | 0.585
0.5146
1.3249 | 0.5025
0.4034
0.7909 | 0.4304
0.6124
1.0706 | 0.583
0.2483
1.0124 | | 0.4605
0.4491
1.0527 | | | | | | | 0.6259
0.279
0.481 | 0.947
0.344
0.6851 | | 0.8844
0.5585
0.5299 | | | | | | | | 0.5386
0.6944 | 0.9198
0.2986 | 0.8316
0.351 | | | | 0.2355
0.5245
-0.264 | 0.8333
0.3061
1.5882 | 0.3968
0.7315
1.836 | 0.7102
0.8331
1.5204 | 0.4265
0.7984
1.4826 | 0.92
1.1387
0.5539 | 0.7235
1.1452
0.8598 | | | 0.1185
1.2079
0.305 | | | 0.5756
0.1002
0.6727 | | 0.9213
0.64
0.8535 | 0.663
1.4443
1.0267 | 0.769
0.9037
0.933 | | | | | | | | | 0.4468
0.3391 | 0.5586
0.266 | | | | | | | | | | | | | | | | | | 0.641
0.8433 | 0.8989
1.3132
2.0275 | 0.7131
1.1225
1.5033 | | | | | | | | 0.3156
0.4936 | 0.3779
0.4246 | 0.3251
-0.0845 | | | | 0.2151
0.0224
0.0969 | | | 0.331
0.395
1.0841 | 0.7572
0.6803
1.0873 | 0.7837
0.2014
1.0247 | 0.2738
1.1662 | | | 1.4655
0.2446 | 1.0806
0.5349
0.6437 | | 0.5856
0.7335 | 1.1848
0.6763 | -0.1754
0.71 | 0.7611
1.0711 | 0.5485
0.983 | | | | | | | | 0.2458
0.4576 | 0.4077
0.6908 | 0.1805
0.4959
0.5173 | | | | 0.3427
0.3142 | 0.2728
1.0579
0.2451 | | 0.7033
0.6358 | 0.9434
0.2416
0.7474 | 1.1637
0.5195
0.7569 | 0.697
0.2027
0.7154 | | | | | | | | | 0.3984
0.9882
0.9888 | | | | | 0.4032
-0.0993 | 0.7821 | 0.8842 | | 0.201
0.1596 | 0.0883
1.1831 |
0.1654
0.681 | | | | | | | | 0.6515
0.4465
0.6951 | 0.6654
0.2583
1.0517 | 0.7528
0.2887
1.0527 | | | | | | 0.588
0.8274 | 0.6183
0.7187
0.4463 | 1.126
0.4241
0.7455 | 0.6332
1.0304
0.6193 | 0.3299
0.9481 | | | | | 0.461
0.3526 | 0.8147
0.8618 | | 0.8537
0.9847 | | 1.0576
0.9173 | | | | | | | 0.5005
0.4878
0.5368 | | | 0.1862
0.3039
0.5508 | | | | | 0.5946
0.6331 | 0.1283
0.3643 | 0.5126
0.5708 | 0.2099
0.4584
0.8502 | 0.5037
1.0092 | 0.3139
0.5841 | | | | | | | 0.8604
0.3906 | | | 0.4479
0.2805 | | | | | | 0.5449
0.4711
0.9166 | | 0.5116
0.4304
1.0972 | 0.6687
1.8736
0.5774 | 0.6238
0.8573
0.9806 | | | | 0.1084
0.4653 | 1.027
0.2216
0.5473 | 0.6321
0.609 | 0.7259
0.8716
0.8786
0.7198
0.9798 | 0.8103
1.0067
0.7605 | 0.5774
0.7404
1.1132
0.6752 | 0.835
0.8939
0.7021 | | | | | | 0.6149
0.521 | 0.9798
0.5719 | 1.2358
0.8777 | 1.3738
1.0029 | 1.225
0.8135 | | | | | | | | | 0.4437
1.1419
0.4761 | | | | | 0.6097 | | | | | | 1.0531
0.317 | | | | | | | | | | 0.5634
0.6516 | 0.6261
0.6859 | | | 0.586 | 0.766 | | | | 0.2256
0.4416 | 0.451
0.2508 | 0.5411
0.605 | | | | | | | | 0.6483
0.6513
0.8523 | 1.2733
0.8864
1.0258 | 0.9978
0.9726
0.9009 | | | | 0.0102 | 0.3041
1.0066 | | 0.1755
0.8788 | | | | | | -0.3735
-0.3735 | 0.1014 | 0.3475
1.0948 | | | | | | | | 0.9918
0.4943
0.4741 | | | | | | | | | | | | | | | 0.4034
1.153 | 0.3849
1.1096 | 0.6059
0.9905 | | | | | | | | | 0.9858
0.4488
0.8562 | 0.9433
0.5744
0.6369 | 0.3011
0.2378 | 0.9299
0.2865 | | | | | | | | | 0.1169
0.3346 | 1.0658
0.3294
0.3633 | 0.7728
0.0708
0.4262 | | | | | | | | | | | | 0.7463
0.1257
0.5581 | | | | | | 0.6984
0.7272 | 0.7771
0.5448 | 1.0139
0.5002 | 1.1491
0.2564 | 1.1827
0.4135 | | | | | | 0.3437
0.326
0.5905 | 0.8844
0.791
0.7528 | 1.1963
0.3618
0.6457 | | 1.3284
0.6489
0.6292 | | | 0.7784
0.5234
1.3062 | 0.2906
0.5996
1,1687 | | | | 0.0817
0.5516
0.8398 | 0.4169
0.3882
1.2209 | 0.2037
0.2104
0.9729 | | | 1.0096 | 0.2595
0.9581 | 0.2595
1.0715 | | | 0.4884
0.8567 | 1.2209
0.9768
1.1517 | 0.9729
0.9573
1.0391 | | | | | | | 0.2775
1.0138
0.2708 | | 0.7537
0.8762
0.1777 | | | | | 0.638
0.361 | | | | | | | | | 0.4104
0.9168 | | | | | | | | | | 0.9168
0.985
0.485
0.337 | 0.527
0.8158
0.0038 | | | | | | | | | 0.9168
0.9168
0.485
0.337
0.1083
0.6169 | 0.527
0.8158
0.0830
0.1794
0.0868 | | | | | | | | | 0.9168
0.485
0.337
0.1464
0.8169
0.1608
0.2215
0.3107 | 0.527
0.8158
0.0508
0.1794
0.0506
0.2252
0.7037
0.2918 | | | | | | | | | 4 Afg3l1
4 Aggf1
4 Agphd1
4 Agps | -0.705
0.2325
-0.2869 | 0.2356
-0.1677
0.2483 | -0.3414
0.2683
0.1797 | 0.1995
0.5507 | -0.0739
0.1918
0.219 | 0.6029
-0.0399
0.0957 | 0.0838
0.5256
0.5756 | 0.1657
0.3405
0.2282 | 1.341
0.9412
0.4879 | |---|--|-----------------------------|-----------------------------|---------------------------------------|--------------------------------------|--|--------------------------------------|--|--| | 4 Al314976
4 Al428936
4 Aimp2 | | | | | | | 0.5051
0.5797
0.7037
0.8078 | 0.3264
0.2259
0.897
0.8679 | 0.8711
1.1379
1.0218
0.9987
1.9074 | | 4 Aire
4 AK129341
4 Ak2
4 Ak4 | | | | | 0.4508
0.3026
0.1477 | 0.0525
0.9376 | 1.3606
0.6341
0.8485
0.7934 | 0.6094
0.5883
0.6657 | 1.9074
0.6847
1.3375
0.5409 | | 4 Akr1b3
4 Aldh1b1
4 Alkbh7 | -0.2967
0.1857
-0.2998 | | | | | 0.1437
0.5244
0.1481 | | 0.4416
0.4129
0.4046 | 1.5063
1.0931
1.1214 | | 4 Alpk3
4 Amdhd2
4 Amn
4 Amph
4 Amkrd10 | | | | | | | 0.4274
0.0518
0.1335
0.5891 | 0.7132
0.133 | 2.163
0.7742
1.1612
1.1117
0.9704
0.7749 | | 4 Ankrd10
4 Ankrd27
4 Ankrd6
4 Ano9 | | | | | 0.2674
0.2679
0.1787 | -0.2387
0.1121
0.0678 | | 0.3877
0.1959
0.4861 | 0.5466 | | 4 Aoc2
4 Ap3b2
4 Apitd1 | 0.1891
0.1326
-1.1027 | | | | | 0.3389
0.0729
0.3377 | | 0.5818
0.5379
0.3579 | 2.1381
0.705
1.6669
1.0434 | | 4 Appbp2
4 Arhgap19
4 Arhgap32
4 Arhgef2 | | | | | | | | 0.2971
0.3996
0.4344
0.3726 | 1.3694
0.581
1.6658
0.9422 | | 4 Arhgef2
4 Armc10
4 Armc8
4 Asf1b
4 Asns | | | | | | | 1.0836
0.4208
0.3518 | 0.4384
0.1414
0.1675 | 1.0284
1.2635
0.9701 | | 4 Atmin
4 Atp13a1
4 Atp1b2 | | | | | | 0.4215
0.2566
-0.0275 | 0.5612
0.6221
1.1725 | 0.6548
0.3864
0.8324 | 1.0183
0.8649
0.4672 | | 4 Atp5a1
4 Atp8b3
4 Atxn3
4 AU022252 | | | | | | | | 0.6805
0.3407
0.0841
0.4954 | | | 4 AU023871
4 Aven
4 AW146020
4 Azi1 | | | | | | | | 0.3797
0.0378
0.3878 | 1.1307
0.7026
0.5871 | | AZII
B3gnt5
B4galnt4
Bag4
Bard1 | | | | | | 0.3461
-0.4208
0.5986
0.5897 | 1.6201
0.7941
0.73 | 0.5732
1.1099
0.6507
0.6895 | 2.0246
0.6371
1.002 | | Bard1
Gpank1
Bax
Baz2a | | | | | 0.5285
0.3676
-0.2566 | 0.8617
0.5191
1.0429 | | 0.8471
0.8562
-0.0945 | 0.6744
1.0374
0.5974 | | bs5
C017647
C021614 | | | | | | | 0.715
0.2614
0.9044 | 0.1226
0.4365
0.5672 | 0.6196
1.0747 | | 3C031781
3C048355
3C055324
3C061212 | | | | 0.0652
0.7931
0.000
0.2003 | 0.2372
0.4852
0.5082
0.3903 | 0.0749
1.1242
0.4568
0.1319 | | 0.1816
0.7758
0.6849
0.3973 | 0.6858
0.7841
1.6471
0.505 | | BC088983
Bcas1
Bcas2 | | | | | | | | 0.3077
0.3815
0.6913 | 1.1718
2.8194
1.0498 | | Bcas3
Bccip
Bcl11a
Bcl2l11 | | | | | | 0.2419
-0.0508
0.4445 | | 0.217
0.4243
0.5738
0.5975 | 0.5859
1.4419
0.7039
0.4537 | | Bcl7a
Bdh1
Bik
Birc2 | -0.5808
-0.8906
-0.4532 | | | | | | 0.3998
0.3062
0.5068 | | | | lms1
lop1
lrca2 | | | | | | | | 0.575
0.5465
0.5284
0.3786 | 0.9283
1.0023
1.3612 | | 3rd8
3rip1
3tg3
3zw2 | | | | | | | | | 0.5351
0.3945
1.0546
0.4213 | | Bzw2
0030048B08Rik
C1qbp
Cadm1 | -0.6989
-1.1109 | | | | | 0.3807
0.2729
-0.1665 | 0.7964
0.5594
1.2774 | 0.3823
0.3731
0.537 | 0.9829
0.7223
1.0243 | | Calib2
Calica
Calicoco2
Camik2b | | | | | | | | 0.123
0.373
0.2929
0.2531 | 1.6359
1.5162
0.6474
2.8335 | | emsap3
ofa2t2
oln1 | | | | | | 0.0609
0.1629
-0.028 | | 0.6798
0.5568
0.4281 | 0.7771
1.1263
1.8485
1.4963 | | wd1
x1
bl2 | | | | | | | | 0.4641
0.2523
0.1848 | 1.3467
0.5841
1.043 | | le113
le115
le117
le120 | | | | -0.1754
0.5912
0.3819
0.2794 | | 0.3859
0.607
0.2756
0.9447 | | | 0.9557
0.7246
1.1079
0.7853 | | dc123
dc132
dc160
dc41 | | | | | | | | 0.4312
0.2659
0.1321 | 0.55
0.6768
1.3378
1.0492
0.9807 | | ic43
ic58
ic61 | | | | | | | 0.7933
0.4213
0.8593 | 0.8528
0.7232
0.9679 | 0.9807
1.2127
0.9817 | | dc77
dc92
mc | | | | | | 0.6879
1.008
0.3587 | | 0.7775
0.8588
0.3914
0.3972 | 1.2589
1.1579
0.2591
1.0491 | | cne1
cne2
cnf
ct3
ct7 | | | | | | | | 0.4984
0.4119
0.3446 | 0.1512
1.115
0.3883 | | t2bp2
tan1
tc14b | | | | | | | | 0.5802
0.3092
0.4714
0.3755 | 0.4448
0.9636
0.2137 | | e25c
e73
ea3
k10 | -0.2714
0.0823
-1.3731
0.3183 | | | | | | | 0.8623
0.6561
0.6421
40.0953 | 0.969
0.8871
0.9825
0.9362 | | k5rap2
k9
yl2
cr5 | | | | | | | | 0.2509
0.229
-0.1673 | 0.6308
0.7078
2.1304
1.0481 | | elf1
elsr3 | -0.3922
-0.4155
-0.3592
-1.6163 | | | | 0.2254
0.3808
0.295
0.8185 | 0.5338
0.5197
0.8278 | 0.3458
0.3764
1.4579
0.9299 | 0.4863
0.2802
0.9621
0.8272
0.9472 | | | enpa
enpk
enpl
enpq
ep55 | | | | | | 0.6511
0.7182
0.2705 | 1.0279
0.8205
0.4394 | 0.9472
0.947
0.1333
0.5198 | 2,0895
1,0414
1,4162
1,0989
1,9569
1,9689
0,7783
1,8272
1,2317 | | ep57l1
ep68
ep78
fdp1 | | | | | | 0.7723
0.72
0.353 | 0.7937
0.1201
1.1631 | 0.8489
0.2005
0.7022 | 1.0689
0.7783
1.8272 | | nek2 | | | | | | | | 0.0822
0.5937
0.2617
0.3075 | 1.4857
0.5062
1.1619 | | Chic1
Chma4
Chma9
Ciapin1
Cirh1a | 0.4044
0.208
-0.1055
-0.9498 | | | | | 0.1605
0.5504 | | 0.1671
0.6464
0.3831 | 0.6715
1.247
1.7418
1.0468 | | Ckap2l
Ckmt1
Clcn3 | -0.9496
-0.1823
-2.0134
-1.1967 | -1.1122
-0.988 | | | 0.4312
0.7702
0.8186 | 0.3436
0.2141
1.1548
0.7805 | 0.3411
0.6629
0.2833
0.6885 | 0.3831
0.3312
1.3505
0.6251 | 0.8018
0.9182 | | Clonkb
Clec2e
Clic6 | | | | | | 0.1394
0.1667
-0.0527
-0.0500 | 0.7984
-0.0759
0.949
0.3009 | 0.2813
-0.0624
0.3258
0.6249 | 2.2402
1.3989
0.987
1.1045 | | Olinsta
Olpt
Olpp
Olstn3 | | | | | | 0.6153
0.2374
0.5502 | | 0.5811
0.5775
0.7396 | 0.6224
1.0395
0.7672
2.1972 | | mtm8
not2
not7 | | | | | | 0.1689
0.6931
0.2718 | 1.0921
0.4326
0.4148 |
0.3116
0.7011
0.2183
0.674 | 2.1972
0.223
0.7519
0.8166 | | Ontnap2
Coil
Coil18a1
Coil9a2 | 0.5231
0.2189 | 0.1624
0.2454
1.0339 | | | | 0.4095 | 1.3834
0.5
0.8785
0.7584 | 0.7673
0.4768
0.9322 | 1.2902
0.7072
1.4478
0.8767 | | Commd1
Cops3
Coq5
Coq6 | | | | | | | | 0.3447
0.2689
0.0849 | 0.8767
0.8813
0.8282
0.852
1.1175 | | Coq/ | | | | | | | | 0.5317
0.2604
0.2666
0.4493 | 1.1175
0.9582
1.3519
1.07 | | Cox10
Cox11 | 0.3236 | 0.0954 | 0.3579 | 0.047 | 0.3657 | 0.2126 | 0.4403 | 0.2053 | 1.1499 | | | | | | | | | 0.274
0.1917
0.2975 | |-------------------------------|------------------------------|-----------------------------|--------------------------|----------------------------|-------------------------------|----------------------------|----------------------------| | | | | | | | | 0.4201
0.1028 | | | | | | | | 0.8011
1.022 | 0.4891
0.4373
1.0625 | | | | | | | 0.4744
0.5937 | 0.8414 | 0.3889 | | | | | | | | | 0.3899
0.0385
0.5205 | | | | | | | | | | 0.2809
0.7539 | 0.8748 | 0.1369
0.3624 | 0.3654
0.8755 | | | -1.0748
0.0138 | | | | | 0.7105
0.2429 | 0.8548
0.4034 | 0.957
0.078
0.897 | | | | | | | 0.4124
0.0607 | 0.3003
0.1531 | 0.4671
0.6253 | | | | | | | | -0.2822
-0.1301
-0.0445 | 1.2161
0.2462
0.4384 | | | -0.139
0.2083 | | | | | | | | | -1.3162
-0.0508
-0.0443 | | | | 0.8367
0.5185
0.6032 | | | | | | | | | | | | | | -0.8245
-0.7506 | | | | | | | | | 0.0362
0.2455 | -0.0574
0.6271 | 0.2453
0.0763 | 0.3649
0.3703 | 0.2001
0.131 | 0.5189 | | | | -1.6597
-0.4289
-0.4961 | | 0.7958
-0.0527
0.1305 | 1.061
0.2404
0.358 | 0.9777
0.3092 | 1.257
0.5103 | | | | | | | | 0.1887
0.1808 | 0.7491 | | | | | | | | | 0.6975
0.1457
0.7756 | | 0.172i
0.562i
1.07; | | | | | | | 0.1758
0.3456 | 0.2178
0.0768 | | | | | | | | | 0.2161
0.9677
0.6229 | | | | | | | | | | | | 0.1255
-0.1802
-2.1075 | 0.0641 | | -0.0573
0.5649 | 0.076
0.195 | 0.114
0.6904
1.2815 | 0.1398
0.3309
0.7012 | | | -0.5625
-0.5544 | -0.2049 | | 0.2445
0.5171 | -0.1857
0.5483 | 0.3521
0.654 | 0.1251
1.082 | 0.418
0.849 | | | | | | | 0.1685
0.3548 | 0.8368
0.8129
1.3715 | | | | | | | | 0.3267
0.1771 | 0.6512
0.3717 | | | -0.1453
-1.7711 | | | | | 0.4085
0.9228 | 1.0934
0.1803 | | | | | | | | | | | | | | | | | 0.2756
0.1146 | 0.21
1.0173 | | | | | | | | 0.2129
0.5091 | 0.8282
0.4878 | | | -0.5781
-1.4393 | | | | | | | | | | | | | | 0.7408
0.7656 | 0.9002 | | | 0.4459
0.0422 | 0.8732 | | 0.0787
0.2391 | | | | | | -1.1615
-0.2959 | | 0.7138
-0.4226 | 0.7779
0.6249 | 0.7687
0.2506 | 1.0299
0.8065 | | | | | | | | | 0.3442 | 0.2637
0.466 | 0.7738
0.6558 | | | -0.196
-1.1283
-1.1216 | | | | | | | | | -0.374 | 0.1076
0.1088 | 0.0764
0.1587 | 0.1382
0.0798 | 0.3983
0.0777 | | | | | -2.8296 | -2.3211
0.1253
-0.0874 | 1.1422
0.0092
-0.2709 | 0.4043
0.1599 | 1.3676
0.6057
0.2014 | | | | | 0.13
-1.3911 | | | | | 0.5558
0.8436 | 0.7202
0.339 | | | -0.3472
-0.9902 | | | | | 0.0821
0.1224 | 0.8703
1.3683 | 0.595
1.010 | | | | | | | 0.5908
-0.2807 | 0.7012
0.0776 | 0.134
0.794
-0.264 | | | | | | | 0.4568
0.6458 | 1.5385
0.7337 | 1.006
0.625 | | | | | | | 0.204
0.0658 | 0.9591
0.7837
1.0691 | | | | | | | | 0.1134
0.2249 | 1.6063
0.1474 | -1.16
-0.639
-0.7046 | | | | | | | 0.0977
-0.5162
0.1571
0.2232 | |--|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|---------------------------------------| | -0.7045
-1.8245
-0.5302
-0.618 | | | | | | | 0.1615
-0.0467 | | | | | | | | | 0.1472
0.214 | | -0.4598
-0.8146
-0.7382
-1.1265 | | | | | | | -0.0548
-0.0248
-0.4001 | | -1.1265
-0.5024
-1.0857 | | | | | | | 0.1386
-0.1213
-0.0879 | | -0.2249
-2.4391 | -0.4458
-1.8641
-0.5872 | | | | | | -0.1329
0.5547
-0.1493 | | -1.4737
-1.0801
-0.5895 | | | | | | | | | -1.0782
-1.9202
-1.1064 | -0.9032
-1.877
-0.2674 | | | 0.2761
0.5094
-0.4007 | 0.6983
1.3048
0.1675 | | 0.5881
0.8186
0.2436 | | -3.1422
-1.4616
-0.2362 | -2.8193
-0.8734
-0.1978 | | -0.2674
-0.4346
-0.3834 | 0.8514
-0.0855
-0.2121 | 1.0238
-0.1522
-0.2073 | 0.2162
0.1757
0.1721 | 0.9661
0.1262
-0.165 | | -0.7114
-0.4073
-1.7584 | -0.621
-0.1403
-1.1084 | -0.3982
-0.4621
-1.1865 | | | | | 0.1615
-0.1069 | | -0.9649
-0.4502
-0.7022 | | | | | | | | | -0.9427
-0.874
-0.8841 | -0.2364
-0.4744
-0.9695 | | | | | | 0.1097
0.204
-0.0362 | | | | | | | | | -0.2062
-0.2299 | | | | | | | | | -0.4429
-0.2414
0.2154 | | 0.8808
1.1579
0.4613 | | | | | | | -0.2593
0.1267
0.38 | | 0.7886
0.3695
0.7649 | -0.0418
0.4525
0.1616 | | | | | | | | 1.0131
0.5792 | 0.6107
1.138 | 0.1981
0.5548 | -0.1891
1.032 | | | | -0.0921
0.2687
0.2544 | | 1,4199
0,9164
1,8916 | 0.6407
0.845 | | | | | -0.0547
-0.1952
0.9968 | 0.1848
0.033 | | 0.6602
0.3683 | | | | | | | | | 1.1628
0.7364
0.8074 | | | | | | | | | 0.7622
0.3314
0.6976 | | | | | | | | | 0.8646
0.5547
1.6425 | 0.3059
0.7356
-0.1676 | 0.2017
0.3282
2.0982 | 0.6394 | | | | | | 0.8762
0.8124
0.8118 | | | | | | | | | | | | | | | | -0.2333
-0.0924
0.1683 | | -0.2555
1.268
0.7683 | 0.1312
1.0541
0.5986 | | | | | | 0.1659
0.3997
0.049 | | | 0.5124
0.2665
0.155 | 0.2492
0.8167 | 0.0857
-0.2262
-0.2046 | | | | | | 0.4233
0.527
1.1813 | 0.3168
0.4936
0.3114 | 1.3552
0.4454
0.8239 | | | | | | | 1.0508
1.0968
0.1672 | | | | | | | | | | | | | | | | 0.5252
-0.3529
-0.2048 | | 1,3231
0,3689
0,655 | | | | | | | | | 0.8971
0.7603
1.3881 | 0.6663
0.5117
0.1545 | 0.4409
0.098
1.1691 | | | | | | | 0.9302
1.3135
1.0265 | 0.5426
0.4965 | 1.3096 | | | | | | | 0.4757
0.571
1.1938 | | | | | | | | | 0.7409
0.9145
0.922 | 1.1315
0.8924
0.6914 | | | | | | | | 0.7702
0.7803
0.8469 | -0.2804
-0.9404 | | | | | | | | | | | | | | 0.3774
-0.3935
-0.7553 | 0.974
-0.1416 | | 0.7721
0.9787 | 0.5206
0.2991
1.0601 | 0.077
0.2445
0.4109 | 0.062 | 0.0143
0.0132
0.4005 | -0.246
-0.2784
-0.986 | | | | 0.4851
0.6101 | | | | 0.4244
-0.0467
-0.4774 | | | | | 0.6927
-0.7311
1.0578 | 0.6262
-0.0818
-1.027 | | 0.2867
0.6091 | | | | -0.1112
-0.1819 | | 0.6204
0.3377 | | | | | | | | | 0.7535
0.7635
0.1897 | | | | | 0.0709
0.4863 | -0.0673
-0.8009
-0.5497 | 0.1163
-0.6736 | | 0.5187
0.6666
1.1632 | | | | | | | | | 0.4197
1.6119 | 0.4445
1.5423 | | | | | | | | 0.999)
0.3827
0.9916 | 0.432
0.432 | | | | | | | | 1,0504
0,7328
0,5809 | 0.6502
0.3345 | 0.9809
0.0009
0.4102 | | | | | | | 0.3972
1.0346
0.5929 | | | | | | | | | 1,495
1,539
0,1861 | 0.7667
0.2346 | 0.2174
1.9062 | | | -0.2688
-0.3962
-0.5594 | 1.0128
-0.3411 | | | 0.8933
0.1821
0.9113 | | | | | | | | | 0.8177
0.4011
0.7753 | | | | | | | | | | 0.9937
0.2703
0.4698 | | | | | | | | 1.2159
0.5532
0.6052 | | | | | | | | | 1,2217
1,4868
1,2789 | | | | | | | | | 1.496
1.2322 | | | | | | | | | | | | | | | | | | 2Rik | 0.1051
0.1051
1.1556
1.6915 | 0.884
-0.6652
1.5453 | 1.4253
1.9058 | 1.3829
0.4368
0.9475 | 0.9139
1.3614
0.9814 | | | 0.3825
0.3928 | |------|--|--------------------------------------|--|---------------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------| | | 1.6506
1.6915
2.286
1.6997
0.9722
1.3777 | 1.5453
1.0732
1.1514
1.3983 | 1.397
-0.139
-0.9505 | 0.9475
0.3669
-0.2385
0.8645 | 0.9614
0.9703
-0.1624 | 0.0845
0.1185
0.4667 | 0.9091
0.3464 | 0.3189
0.1045
0.227 | | | | 0.7935
0.861
0.7487 | 0.4907
0.9293
0.5342 | 0.3442
0.9229
0.2825 | | | | 0.3829
0.6098
0.202 | | | 1,7039
2,1116
2,451
2,0354 | 0.6109
0.806
0.2332 | 0.8734
1.5842
1.5321 | | | 0.3472
0.1111 | 0.0264
0.833
0.1994 | | | | 1.0999 | 0.8452
1.5523
1.2084 | 1.8384
1.2451
1.2905 | 0.9938
0.3272
1.1665 | | | | | | | 1.042
1.5743
1.6079 | 0.5425
1.4513
0.7837 | 0.8257
1.1713
0.9977 | 0.3698
0.8733 | | | | | | | 1,4039
1,042
1,5743
1,6079
0,8342
1,2822
0,4214
1,1114
0,6482 | 0.8556
1.0417
0.4366 | 0.476
-0.2606
-0.236 | | | | | 0.5258
-0.4268
-0.3737 | | | 0.1414
0.8482
0.8755 | | | | | | | -0.5569
-0.2583 | | | 1,2526
1
1,2579
0,8125 | 0.6938
1.3384
1.3577 | | | | | | -0.4077
-0.0357 | | | 0.8125
0.5375 | 0.5179
0.1821 | | | | | | -0.2053
-0.1849 | | | 0.6033
0.9515
2.6307 | 0.4296
1.0484 | | | |
0.1405
0.1308 | 0.257
-0.0696 | -0.1692
0.0914 | | | 1.0123
1.1721 | 0.4721
0.6426 | 0.9841
0.3524 | 1.0209
0.1335 | | 0.297
-0.1657 | -1.1514
-1.1216
-0.5793 | -0.3942
-0.2104 | | | 0.8127
1.0574 | 0.1943
0.8098 | | | | | | | | | 1.1097
0.6998
0.9921 | 0.4249
0.6706 | -0.1144
1.8897
0.644 | -0.1768
1.3406
0.5064 | -0.3504
1.6226
0.4242 | | | -0.3266
-0.2154
-0.0989 | | | 0.7416
0.809 | | | | | -0.8239
-0.2835 | -0.1854
-1.1764
-0.8247 | -0.4387
-0.1633
-0.4959 | | | 0.5887
0.8824 | 0.8475
0.5494
1.1424 | -0.2692
1.7981 | -0.4194
2.4777 | | | | -0.0443
-0.4048
-1.3327 | | | 1.3851
0.3635
2.2469 | 0.9352
0.0777
1.2249 | 0.1653
0.5669
-0.6223 | -0.2957
-0.061
-0.443 | | | -0.2594
-0.2464
-0.7276 | -0.4043
-0.8897 | | | 0.4529
1.7340 | 0.3844
0.8598 | | | | -0.2328
-0.4615 | | -0.181
-0.4583 | | | 1.7346
1.1024
1.2746
1.1552 | 1.4387
0.8975
1.0642 | 1.051
0.6378 | | | | | -0.4857
0.1221 | | | 1.1952
0.7986
0.4088 | 0.178
0.1658 | | | | | | -0.661
-0.3736 | | | 1.07
0.1522
1.2088 | | | | | | | -0.0966
0.480
0.1648 | | | 0.935
0.8755 | 0.7669
0.1607
0.4697 | | | | | | -0.0334
-0.2792
-0.0777 | | | | | | -0.5456
-0.2758
-0.641 | | | | -0.3268
-0.6971
-0.3396 | | | 0.8894 | | | | | | | -0.6919
-0.294 | | | 0.5456
0.5456
2.0933
1.2475 | 0.2478
1.7634
4.3467 | 0.3105
1.1519 | -0.1439
0.5443
-1.9418 | | -0.5861
0.7837 | | -0.6628
0.9137 | | | 0.6026
1.4712 | 0.8315
0.425 | -0.237
1.0681 | -0.1575
0.2638 | -0.6101
-0.0668 | | | -0.3057
-0.8875
-0.7976 | | | 1.3332
-0.2047
1.9608 | 0.8869
0.2747
0.9163 | 0.807
1.2848
0.1844 | 0.8664
0.0433 | | | | -0.7976
-0.1261
-0.2085 | | | 0.9151
0.8422
1.1001 | 0.2584
0.1962
0.9964 | | | | | | | | | | | | | | | | 0.2201
-0.2856
0.2443 | | | 0.9819
1.5112
2.6991 | 0.5467
0.3975
1.1489 | -0.1146
-0.1686
1.4895 | | | | | -0.3207
-0.3623
-1.392 | | | 1.5971
0.2324
1.0300 | 1.1833 | 0.1489
0.1646 | -0.1412
0.6383 | | -0.2205
0.0929 | -0.2108
-1.1709 | -0.2011
-0.5716 | | | -0.8552
1.8386 | 1.6321
-0.3943
1.6472 | 0.7782
0.7549
-0.8783 | 0.5714
-0.9327 | 0.5811
-1.3212 | 0.8825
-1.6269 | | 0.1253
-0.1045 | | | | | | | | | | -0.5131
-0.1169 | | | 0.2398
1.7773
1.0694 | 0.4606
1.6139
0.3291 | | | | | | -0.7462
-0.2807
-0.2887 | | | 1.5395
0.5934
0.6788 | 1.2244
0.6095
0.4573 | | 0.2937
0.9956
0.2902 | | 0.2547
-0.249
0.0538 | -0.9427
-0.2463 | 0.0602
-0.4609
-0.1635 | | | 0.3571
0.7897
1.0729 | 0.305
1.1138
1.3973 | | | | | | -0.2425
-0.3156
-0.2821 | | | 1.4578 | 1.1711
0.1027
0.8786 | | | | | | | | | 1.575
1.5008
1.1448
1.434 | 1.2948
0.6577 | | | | | | | | | 0.2995
0.7199 | | | | | | | -0.1831
-0.3441 | | | 0.7669
1.4878
1.055 | 1.1368
1.5756 | -0.2303
-0.0019
1.1011
2.8974 | -0.3576
-0.1183
1.1662 | | | | -0.5502
-0.6534
-0.1593 | | | 0.7669
0.7669
1.4878
1.055
2.019
2.2095
0.8189 | 1.5756
2.7118
1.5903
0.294 | 2.8974
0.7963
0.514 | 2.3593
0.2555
-0.3219 | | -0.5317
-1.0107
-0.1966 | | -0.1278
-1
-0.1722 | | | 0.7934
1.7289
3.9666 | 0.4314
0.1548
2.7129 | | | -0.2024
0.0729
-0.865 | -0.3807
-0.1303
-1.0565 | -0.6728
-0.8594
-1.0155 | -0.4166
-0.1841
-0.9666 | | | 0.7934
1.7285
3.9666
2.4449
2.3193
1.1384
1.2345
2.0006
0.8449 | 1.3993
0.4812
0.6451 | 1.1896
0.305
-0.2338 | | | -0.3323
-0.0798
-0.8119 | -1.0155
-0.0764
-0.0866 | -0.2387
-0.2874 | | | 1.2345
2.0608
0.8449 | 1.1376
1.0731
0.8576 | | | | | | 0.052
-0.1886
-0.2038 | | | 0.2218 | 1.0108
0.6431 | 0.745
-0.0344
-0.6136 | | | | | 0.4513
-0.3335 | | | 1,5639
0,258 | 1.2374
1.3154
0.4271 | 1.2236
0.1084 | 0.9457 | | | | | | | 0.7237
1.3036 | 0.2285
0.5714
1.2278 | 0.4056
1.3223 | 0.4131
1.0242 | | | | 0.418 | | | 0.6125
0.8922
1.0304 | | | | | | | -0.1256
-0.0819
-0.2929 | | | | | | | | | | -0.1831
-0.7008
0.1084 | | | -0.1718
-0.1879
-0.9853 | | | | | | | -0.0377
-0.0532 | | | 0.9853
1.2185
0.372 | | | | | | | -0.3485
-0.42 | | | 0.4928
1.3292
0.8895 | | | -0.4205
-0.3765
0.501 | -0.254
-0.2271
0.0490 | -0.5808
-0.4464
0.0663 | | -0.2713
-0.5217
-0.2494 | | | -0.0476
1.7065
0.6393 | 0.3454
0.7313
0.6654 | 0.9195
-0.3174
0.984 | 0.3878
-0.1889
0.9782 | | | | 0.2579
-0.1143
0.0831 | | | 0.7979
1.0217
0.7642
0.9884 | 1.0946
0.5173
0.6025 | 0.089
0.1251
0.1629 | | | | | 0.2108
-0.6329
-0.0869 | | | | 0.4205
0.4811
1.8403 | | | 0.3355
-0.3643
-0.8536 | -0.3233
-0.2192
-1.277 | | -0.5089
-0.2744
-0.9396 | | | 1,9061
1,0696
0,8622 | 0.4737 | | | -0.1571 | -0.0723 | | 0.2338 | | 1.3566
1.6829
3.1616
1.5276 | 0.4874
0.9569
0.5896
0.4311 | 0.1777
0.4168
1.5025
0.685 | 0.3394
0.2818
-1.3
-0.7499 | 0.3348
-0.1
-0.0865
-0.2968 | 0.6036
0.0058
-1.3484
-0.2917 | -0.387
-0.3679 | 0.1885
-0.162
-1.112
-0.1039 | |---------------------------------------|--------------------------------------|--|--|--|---|---|---| | 1.6933
1.1676
1.1614 | 1.2889
1.2286
4.3869 | 1.1811
-0.3289
0.154 | | | | | | | | | | | | | | | | 0.63
1.0206
0.3408 | 0.7273
0.8185
-0.2949 | -0.3943
0.1474
1.1268 | | -0.5034
-0.3858
0.2322 | | | | | 1.1209
1.9715 | 0.4445
0.2947
0.5428
0.4973 | 0.5593 | | 0.9694
-0.3479
0.586 | | | | | -0.3042
1.3203
2.4563 | 0.6251
0.7321
1.4779 | 0.5925
1,1966 | | | | | | | 0.1048
0.5059
0.3807 | 0.1932
-0.2804
-0.0664 | 0.5675
0.5146
-0.2888 | 0.4647
-0.6602
-0.4018 | -0.0263
-0.5478
-0.5114 | -0.252
-1.0373
-0.6086 | | | | | | | | -0.8739
-0.5068
-0.8016 | | | | | -0.1692
0.6752
0.606 | | | | | -0.693
-0.4709
-1.223 | -0.7434
-1.4223
-1.1589 | | | | | | -0.2233
-0.1134
-0.4963 | -0.4057
-1.1591 | -0.2939
-0.6589
-1.4039 | -0.9679
-1.3613
-0.8634 | -0.498
-0.876
-0.836 | | 0.4043
1.2166
0.0778 | 0.2205
1.0925
0.4981 | | -0.0946
-0.6297 | -0.9336
-0.8477 | -0.6695
-1.1502 | -1.169
-0.5191
-1.4334 | | | 1.1098
1.0743 | 0.905
0.6361
0.3726 | -0.1228
-0.6805 | -0.5323
-0.4999 | -0.465
-1.2397
-1.7412 | -0.6109
-0.8475
-1.6246 | -0.6329
-1.277
-1.8224 | -0.54
-1.401 | | 0.5793
1.5442
0.8877 | 0.2633
0.5289 | -1.3021
-0.879
-0.687 | -0.9277
-1.4215 | -0.8766
-1.6888
-1.1323 | -0.9426
-1.5624
-1.2548 | -0.6272
-1.6033
-1.6802 | -0.784
-1.72 | | 1.0322 | | | -0.2235
0.0604 | | -0.3117
-0.3979 | -0.6517
-1.1774 | | | 1.2096
0.1527 | 1.3985
-0.147 | | | | -1.1029
-0.5369
-0.9191 | -0.6981
-0.9811 | | | 0.2107
0.6498 | 0.0901
0.0468 | | 0.3147
-0.7738 | | -0.3796
-0.7091 | -1.1315
-0.6609 | | | 1.0776
0.6982 | 0.5911
0.0533 | -0.6282
-0.7898 | -1.0187
-1.0952 | -0.9877
-1.5651 | -0.6843
-1.5821 | -0.6609
-0.9257
-0.8171
-1.7886
-1.2622 | -0.423
-1.577
-0.883 | | | | | -0.1349
0.2187 | | -0.3627
-0.8788
-1.1384 | -1.2022
-1.7346
-1.7147
-1.5868 | -1.708
-1.708 | | 1.0773
1.1429 | | | -0.2704
-0.8056 | -0.7592
-0.6399
-0.9355 | -0.3443
-0.9462
-0.8825 | -1.5868
-0.8575
-0.6074 | | | 0.947
0.5727
-0.129 | 1.0558
-0.0613 | 0.1816
-0.9035
0.8435 | -1.1987
-0.9838 | -0.6963
-1.6312
-0.1384 | -0.7784
-1.744
-0.5569 | -1.2156
-1.5754
-0.9306 | -0.922
-1.069
-1.837
-0.963 | | 0.5342
0.2732
2.0081 | 0.4563
0.1081
0.3151 | -0.4437
-0.262 | | -0.6859
-0.3635
-1.0433
-1.0497
-1.1522 | -0.7912
-0.6064
-1.097
-1.4904 | -0.3527
-0.8113
-1.5248 | -0.845
-0.663
-1.371 | | 1.0188
1.0608
0.7588 | 1.271
0.5978
0.5165 | | -0.513
-1.066
-0.3012 | -1.0497
-1.1522
-1.1857 | -1.4904
-1.2882
-0.9471 | -1.2204
-0.6353
-1.2053 | -1.371
-1.451
-1.084
-0.967 | | -0.2401
1.1186
0.6408 | -0.2017
0.9768
0.5485 | | | | -0.9206
-0.553 | -1.3567
-0.6622
-0.9856 | | | 0.9572
0.8152
0.9225 | 0.4288
0.3683
0.1758 | | | -0.5894
-0.7265
-0.2102 | | -0.6543
-1.0177
-0.6074 | -0.425
-0.97
-0.465 | | 1.1208
0.2549
0.2904 | | | -0.5326
-0.2594
0.1372 | | -0.713
-1.4564
-0.5474 | -0.7484
-2.0913
-1.0676 | -0.784
-1.776
-0.723 | | 0.7984
0.761 | | | | | -0.3876
-0.7362
-0.5899 | -0.9036
-0.8488
-0.7527 | | | 0.8439
0.2523
1.2178 | 0.1607
0.5294
1.0573 | -0.3464
-0.597
-0.5588 | -0.6368
-0.1102
-0.9587 | -1.0119
-0.8003
-1.4831 | -0.9709
-0.5826
-1.7822 | -0.9891
-1.1371
-1.4223 | -0.866
-1.678 | | 1.4489
1.6136
0.5115 | -0.2162
-0.4923
-0.1752 | | | -1.6423
-1.0983
-0.6121 | -1.6236
-1.3447
-0.6062 | -1.5609
-1.0288
-0.6966 | -1.666
-1.19
-0.737 | | 0.5149
1.5426
1.9853 | | | -0.7015
-0.3869
0.0781 | -0.6557
-0.5425
-0.8465
 -0.7762
-1.2838
-1.5484 | -0.8122
-1.1957
-1.9268 | -1.345
-1.663 | | 2.5647
1.5051
0.4236 | 1.8866
0.9976
0.5347 | 2.2205
-1.0137
-0.4028 | 1.3785
-1.1827
-0.8001 | -0.3312
-1.5202
-1.2332 | -1.7426
-1.6922
-1.7137
-1.6645 | -1.1957
-1.9268
-1.5324
-1.5772
-1.91
-1.8148
-0.8508 | -1.99
-1.695
-2.493
-1.786 | | 0.4334
0.2135
1.4178 | | -0.7249
-0.5697
-0.8713 | -1.3058
-0.1552
-0.8428 | -1.8679
-0.6653
-1.4188 | -1.6645
-0.6607
-1.5705 | -1.8148
-0.8508
-0.9493 | -0.116
-1.61 | | | | | | | -0.1158
0.7623
-0.9978 | -1.3243
-1.1338
-1.6901 | -0.7°
-1.196
-1.100 | | 1.4847
1.4912
0.1781 | | | -0.6181
-0.5494
-0.1171 | -0.1956
-1.3659
-0.5906 | -0.5789
-1.3531
-0.5847 | -0.7285
-1.509
-0.98 | -0.525
-1.554
-0.676 | | 0.491
1.2629
0.8576 | 0.2251
1.3234
0.1572 | | | | -0.6409
-0.8665
-0.4878 | | | | 0,4968
1,4861
1,2148
1,9487 | 0.9578
0.7687 | | | -0.7567
-1.6165
-0.7904 | -0.6451
-1.4975
-0.9595 | -0.6636
-1.4748
-1.0137 | -0.74
-1.52
-0.98 | | 1.9487
1.4283
0.9353 | 0.8135
1.5673
0.21 | -0.6454
0.7327
-0.723 | -0.9298
0.6291
-0.9132 | -1.4928
-1.1797
-0.9849 | -1.6265
-1.5656
-1.1399 | -1.5927
-1.5728
-1.0153 | -1.47
-1.59
-0.77 | | 0.1457
1.4593
0.3533 | 0.2912
1.1155
0.375 | -0.7478
-0.8216
-0.1142 | -0.8826
-0.8858
-0.0713 | -0.7652
-1.4239
-0.9902 | -0.8162
-1.6671
-0.6923 | -0.5798
-1.3162
-1.6092 | -0.40
-1.658
-1.350 | | 1.7888
1.2057
1.5768 | 1.6448
1.6846
0.9112 | -1.3238
-1.6822
-0.2011 | -1.209
-1.3712
-0.5375 | -0.9902
-1.7295
-2.4103
-1.0929
-0.9911
-0.7958 | -0.6923
-1.7609
-1.7942
-1.2584
-1.6297
-0.8264
-1.3618
-0.6712
-1.7514 | -1.6092
-1.1685
-1.4027
-1.104 | -1.312
-1.881
-1.10 | | 3.4153
1.4242
1.0539 | 1.9817
0.6087
0.2187 | 1.0004
-0.2541
0.1557 | | -0.9911
-0.7958
-0.2828 | -1.6297
-0.8264
-1.3618 | -1.6966
-0.7266
-1.1306
-0.8586 | -1.88
-1.19
-1.72
-0.90
-1.20
-0.86
-1.63 | | 1.259
1.3206
0.2119 | | | -0.1973
-0.379
-0.000 | -0.904
-1.042
-0.3172 | | -0.8586
-1.6866
-1.4298 | -0.86
-1.63
-0.65 | | 1.3034
2.863
0.5512 | -0.2893
2.4184
0.1517 | | -0.9391
-0.7818
-0.6855 | -0.51/2
-0.5946
-1.1619
-0.6029
-0.848 | -1.0667
-1.2362
-0.856 | | -0.70
-1.211
-0.744
-0.899
-0.816 | | 0.8408
0.6916
1,3924 | 0.6669
0.7523 | -0.8007
-0.3944
-0.7321 | -0.8367
-0.1092
-1.3022 | -0.848
-0.5982
-1.3311 | -1.1213
-0.7866
-1.4151 | -0.9087
-0.7392
-1.6314 | | | 0.4526
1.2224
0.463 | | -0.2809
-0.1299
-1.118 | -0.3398
-0.7057
1.088 | | -0.3236
-0.8048
-1.7039
-1.1472 | -1.023
-1.107
-1.9465
-1.0287 | -1.21
-0.83
-1.10
-1.93 | | | | | -0.7451
-0.5001
-0.2842 | -1.3379
-1.0635
-1.0732
-1.1816 | -0.9509 | | -1.24 | | | | -0.5051
-0.0558
0.1521 | -0.6949
-0.8934
-0.4447 | -1.1798
-0.7091
-0.7038
-0.917 | -1,2981
-1,2981
-1,2815
-0,6577
-0,9231
-2,9208
-0,9321
-1,3322 | -2.3265
-1.0158
-0.0757
-1.1362 | | | 0.6036
1.8728
0.6492 | 0.4657
1.6515
0.2015 | | -0.7586
-0.3732 | | -0.9231
-2.9209
-0.9321 | -0.8839
-0.6529
-1.2699 | -0.750
-1.808
-1.185
-0.770 | | | | -1.0527
0.4194
-0.3439 | -1.0165
0.3811
-0.4016 | -0.7658
-1.153
-0.2371
-1.3289 | -1.2102
-0.2541
-1.2926
-0.6949 | -0.4171
-1.2327
-1.0298 | -0.770
-0.184
-1.090 | | 0.2419
0.122
0.4978 | 0.1098
0.3006 | | | | | -1.2327
-1.0296
-0.9452
-0.9838
-0.4891 | | | 0.9304
1.0696
0.9392 | 1.0671
0.4165
0.2002 | | -0.3804
0.1327
-0.7799
-0.4267 | -1.1057
-1.0424
-1.6442
-1.8575 | -1.0729
-1.0247
-1.8464 | -0.8256
-0.338
-1.8579 | -0.72
-1.156
-0.871
-2.081 | | | 0.6436
0.1163 | -0.9277
-0.3809 | -0.8616
-0.6208 | | -1.8464
-1.6807
-0.5806 | -1.8579
-2.1222
-0.6343
-1.0268 | -1.786
-0.672 | | 1.3869
0.655 | 0.4849
0.3662 | -0.1008
-0.1625
-0.5044
-0.8132 | -1.0489
-0.7944
-0.4157
-0.9411 | -0.9418
-0.9343
-0.9655
-1.7129 | -1.6911
-0.8838
-0.9703
-1.7693 | -1.0268
-0.938
-0.6129
-1.6387 | -1.839
-0.738
-0.894
-1.658 | | 2.0848
-0.2584
0.9669
1.2878 | -0.4168
-0.4101
-4.2162 | | 0.214
-0.3049 | -1.7129
0.0902
-0.9924
-1.6093 | -1.7693
-0.1505
-0.6954
-2.157 | -1.6387
-0.4072
-1.1217
-0.2221 | -0.542
-0.84 | | 1.7271
0.6236 | 1.2167
0.9131
0.3576 | -0.2505
-0.4482 | -1.3365
-0.3353 | -1.6093
-0.6832
-0.3862 | -2.157
-1.2885
-0.9307 | -0.7348
-0.718 | -1.359
-0.869 | | 1.3265
0.961 | 0.7587 | 1,0505 | | | | -1.2095 | | | 1.6781
1.0637
1.0648
0.5119 | 1.4544
0.689
0.5228
0.4199 | | -0.5151
-0.2637
-0.6458
-0.3442 | -1.9762
-0.4493
-0.818
-0.2891
-0.8479 | -1.8905
-0.9137
-0.8732
-0.53 | -0.6288
-1.1184
-1.1556
-0.704
-0.7661
-1.4209 | -1.534
-0.89
-0.5869
-0.6645 | |--------------------------------------|--------------------------------------|--|--|---|--|--|---| | | | | -0.214
-0.2226
-0.883
-0.3345 | -0.8479
-0.1211
-0.9758
-0.6978
-0.8225 | -0.8082
-0.7578
-1.172
-0.6439 | -1.4209
-0.6272
-0.7884
-0.8843 | | | | | | | | | | | | 0.7482
0.4817
1.3555
1.299 | | -0.422
-0.6674
-1.2103 | -0.0988
-0.5484
-0.7782 | -0.7742
-0.9663
-1.2623
-0.8272 | -0.4571
-0.8289
-1.2164
-1.0625 | -1.0299
-1.2541
-1.1748
-0.8737
-0.9564 | -0.88
-1.085
-1.316
-0.931 | | 1.4041
1.9884
1.4335 | 0.8425
1.1445
1.7779
0.3872 | -0.2212
-0.1422
-0.6885
-1.2332 | -0.5074
-0.6164
-0.1813
-1.56 | -0.8272
-1.118
-0.6566
-1.7054 | -1.0625
-1.115
-1.5842
-1.8085 | -0.8737
-0.9564
-1.5271
-1.348 | -0.931
-0.994
-2.085
-1.49 | | 1.0489
1.3171
0.6593 | | -0.5834
-1.1059
-0.4073 | -0.7664
-1.3527
-0.7505 | -0.6187
-1.5709
-0.9784
-0.8695
-0.5295 | -0.776
-1.6369
-0.8377 | -0.2935
-1.5358
-1.0113
-0.9117 | -0.2540
-1.5350
-0.8470
-0.9210
-1.1500
-0.8530 | | 1.9175
0.7774
0.9134 | | -0.3336
0.4083
-0.9907
-0.8621 | -0.8969
-0.8433
-0.8432
-1.3332 | -0.8695
-0.5295
-1.153
-0.864 | -1.6369
-0.8377
-1.3077
-1.0449
-1.0246
-0.6411 | -0.9117
-1.1946
-1.2511
-0.3801 | | | 0.6304
0.1621
2.1618
1.033 | 0.5681
-0.1604
1.5419 | | -0.757
-0.1326
-0.6661 | -0.3638
-0.7987
-1.3803 | -0.8556
-0.9922
-1.3084 | -0.7627
-1.3457
-1.597 | -0.820
-0.943
-1.305
-0.834 | | 1.1681
1.0454
-0.2068 | 0.2636 | -0.3645
-0.1946 | | -0.4676
-0.3516
-0.288 | -0.6344
-1.1046
-0.8543
-0.3086 | -0.8
-0.2181
-1.0661 | | | 1.5912
0.6439
1.3446 | 1.046
1.2528
0.3958 | | -0.3203
-0.7312
-0.8528 | -0.3041
-0.9362
-1.3843
-1.0119 | -0.6435
-0.803
-1.3735 | -0.771
-0.6239
-0.9858 | -0.952
-0.799
-1.449
-0.852 | | 1.5128
1.2474
2.2397 | 0.4574
1.152
0.1406
-0.2017 | -0.7185
-0.9427
-0.1743
0.6395 | -0.3873
-0.9935
-0.4657
-0.9444 | -1.2501
-0.6987 | -0.4959
-1.3654
-0.4156
-0.9671
-0.9657 | -1.4524
-1.2999
-1.1869
-0.5079 | -0.852
-1.276
-0.760
-0.872 | | 2.2317
0.8628
0.2966 | 0.9488
0.5344
0.6764 | -0.1117
-0.2472
0.4898 | | -1.1831
-0.5434
-0.3067 | -0.9657
-0.6959
-0.3641 | -1.0149
-0.9835
-1.1479 | -1.603
-0.601
-0.62 | | 2.4813
1.4383
0.0000
1.5943 | 3.1087
0.3561
0.2386
1.6043 | | -0.3405
-0.8631
-0.48 | -1.1748
-0.9409
-0.7345
-1.5872 | -1.3587
-1.506
-0.5657
-1.5705 | -1.2654
-0.9309
-0.9926
-1.443 | -1.274
-0.92
-0.955
-1.483 | | 1.6922
0.8576
1.4763 | -0.0842
0.2742
0.8884 | 0.211
-0.1499
-0.5882 | -1.0438
-0.5125
-1.0312 | -0.27
-0.5648
-1.1028 | -1.1811
-0.6854
-1.0513 | -0.267
-0.8152
-1.242 | -1.483
-1.080
-1.103
-1.041
-0.869
-1.281
-0.854 | | 0.1851
1.5272
0.6987 | | | -0.0989
-0.723
-0.1725 | 0.1813
-1.2189
-0.8177 | -0.4744
-1.789
-0.747 | -0.7319
-1.2383
-0.9236 | -0.869
-1.281
-0.854 | | 1.1595
0.9772
0.8057
1.263 | | 0.3093
-0.911
-0.4149
-1.0122 | -0.9473
-1.103
-0.5716
-1.2525 | -1.5205
-1.9631
-0.8508
-1.2365 | -1.3331
-1.8559
-0.9463
-1.3152 | -1.4268
-2.4806
-1.3098
-1.051 | -1.772
-2.103
-1.355
-1.278 | | 0.9385
2.8697
0.3428 | 0.8351
1.5736
0.1242 | -0.5689
1.3267
-0.0808 | -1.0452
-1.2977
-0.3077 | -1.2365
-1.1818
-0.7922
-0.531
-1.4331 | -1.3152
-1.8874
-2.0899
-0.7001 | -1.4942
-0.9536
-0.8684
-0.5917 | -2.103
-1.3278
-1.389
-2.279
-1.079
-1.235
-0.953
-0.773 | | 2.1541
0.9808
0.3044 | 0.6865
0.7945
0.3997 | -0.4183
0.1659
-0.6956 | -1.1251
-0.2398
-0.8925 | |
-0.7001
-1.2947
-1.0267
-0.7255
-1.0695 | -0.5917
-1.1581
-0.6989 | -1.235
-0.953
-0.773 | | 1.2347
0.6028
1.139 | | | -0.3185
-0.8044
-0.6131 | -0.8906
-0.9355
-0.8361
-1.2527 | -1.197
-1.2547
-1.0285
-0.7623 | | | | 0.6145
1.2861 | 0.3044
-0.2158
0.9914 | -0.4051
-0.1208
-1.121 | -0.4242
-0.2263
-1.1046 | -0.5882
-0.6112
-1.5831 | -0.5777
-1.7427 | -0.8415
-0.9029
-1.1567 | -0.563
-0.723
-1.486 | | 0.4125
0.8362
0.765 | 0.1718
0.0703
0.8528 | | -0.2653
-0.9493
-0.1053 | | -0.7574
-1.0082
-0.5857 | -1.1065
-1.0984
-0.9969
-1.0691 | -1.486
-1.12
-1.163
-0.8
-0.920 | | 0.1024
0.4452
0.1362 | 0.3291
0.0986
0.1497 | | 0.6534
-0.0834
-0.4177 | | 0.164
-0.6067
-0.5878 | -0.4655
-1.2353
-0.8783
-0.8466 | | | 0.5298
1.0898
0.8523 | | | -0.7085
-0.3141
-0.8981 | -0.796
-1.3411
-1.3778 | -0.851
-1.193
-1.0526 | -0.8466
-1.686
-1.3571 | | | | | | | | -0.6356
-0.6394
-0.6395 | | | | 0.4408
0.6416
1.6498 | -0.0943
0.6642
1.0538 | -0.4067
-0.6153
-0.7972 | -0.6048
-0.4954
-1.4635 | -0.6946
-0.6079
-1.927 | -0.8091
-0.4693
-1.7942 | -0.9132
-0.2774
-0.9222 | -0.778
-0.732
-1.614 | | 1.3719
1.632
1.0746 | | | -0.5527
-0.7217
-0.3841 | -0.7921
-0.6227
-0.8152
-0.9949
-0.9296 | -0.5327
-0.75
-0.6573
-1.2312 | -0.9222
-1.0784
-1.0314
-0.9777
-0.9808
-0.9005 | -0.8070
-0.9931
-0.6951 | | 0.6802
-0.1731
1.4934 | 0.6994
0.1273
0.9567 | | -0.2426
0.2272
-0.9106 | -0.9296
-0.3378
-1.3682
-1.238 | -1.2312
-0.8814
-0.1221
-1.1633
-1.3746 | -0.9005
-0.7109
-0.7278
-1.4921 | -1.270
-0.903
-0.567
-0.840 | | 1.8628
1.0367
0.5614
0.8265 | 0.4136
0.4916
0.4000 | | -0.2931
-0.695
-0.6581 | -1.238
-0.7678
-0.7693 | -0.7776
-0.8117 | -1.4921
-0.8208
-0.3911 | -1.556
-0.951
-0.650 | | 1.5401
1.0772
1.0314 | | -0.1391
-0.774
-0.5407 | -1.3079
-0.9536
-0.9024 | -0.7678
-0.7693
-1.1524
-1.6588
-1.3593
-1.4715
-1.1266 | -1.2502
-1.9628
-1.5242
-1.2578
-1.6381 | -1.345
-1.4663
-1.3395 | -1.421
-1.598
-1.273
-1.17 | | 1,6296
0,9593
2,0977 | 0.2861
1.0289
0.7548 | | -1.0342
0.4856
-0.3079
-0.8728 | -1.1266
0.1289
-0.6191
-0.5919 | -1.6381
-0.2556
-1.0004 | -1.6258
-1.0769
-0.9414 | -1.343
-1.10
-0.612 | | 1.003
1.8091
0.9956 | -0.4446
1.4426
0.1982 | | -0.6733
-0.5693
-0.4784 | -0.7483
-1.8712
-0.7819 | -0.8064
-2.1144
-0.8034 | -0.745
-1.7494
-0.7668 | -0.741
-1.917
-0.653 | | 1,2353
0,5087
0,5172 | | | -0.3847
-0.3777
0.6298 | -1.4323
-0.644
-0.7101 | -1.8796
-0.8484
-0.4846 | -2.1269
-0.6772
-1.1146 | | | 0.5008
1.796
1.2656 | 0.1847
0.5176
0.0835 | -0.9189
-0.7362 | | -1.0769
-0.6681
0.213 | | | | | 2.4417
0.1331
0.0646 | 2.0998
0.061
0.3163 | | -0.514
-0.0243
-0.5809 | -1.4214
-0.4579
-0.6686
-1.5181 | -1.4502
-0.443
-0.5804 | -1.2474
-1.3016
-0.7975
-1.0702
-0.4815 | -1.239
-0.942
-0.710 | | 0.9034
0.6274
1.0709 | -0.8976
-0.8493
-0.3486 | -0.705
0.213
-0.3039
0.0518 | -0.6223
-1.0481
-0.0731
-0.3278 | -1.5181
-0.1968
-0.8922
-0.5649 | -1.3712
-1.0529
-0.8091
-0.7849 | | -0.710
-1.206
-0.90
-1.273
-0.616 | | 0.7117
1.6425
-0.194 | | 0.3754
-0.3903
-0.552 | 0.1726
-1.2089
0.1052 | -1.6925
-1.5454
-0.7273 | -0.6666
-1.8793
0.104 | -0.8143
-1.4583
-1.4209
-1.5208
-0.9501 | -1.273
-0.616
-0.971
-1.412
-0.847
-0.74 | | 1.2168
0.9269 | 0.8501
0.817
1.1845 | -0.6152
-0.7543
-0.8889
-1.0685 | -0.6163
-0.9354
-1.2215
-0.7175 | -0.7273
-1.334
-1.9513
-1.2332 | -0.5486
-1.3682
-2.7041
-1.0384 | -1.0732
-1.256 | | | 0.2628
1.0976 | -0.0876
0.4502
-0.1471 | 0.1808 | -0.3248
-0.2347
0.1773 | | | -0.767
-1.1802
-0.5812 | -0.607
-0.968
-0.971 | | 0.4643
0.0000
0.3153
1.2594 | | | -1.1675
0.2899
-0.2473
-0.5437 | -1.8074
-0.5055
-0.5492
-0.8112 | -1.7339
-0.4304
-0.3972
-1.0956 | -2.3859
-0.9734
-0.6396 | | | 0.9133
2.2589
0.7625 | | | -0.5437
-0.313
-1.0107
-0.6254 | -0.8112
-0.8091
-1.0654
-0.8267
-0.6198 | | | | | 0.6765
0.8015
1.7723 | 0.4443
0.802
0.9969 | -0.1615
-0.1028
-0.1903 | -0.3842
-0.2866
-0.4923 | -0.6198
-0.6557
-1.6309
-1.6371 | -0.6297
-0.7638
-0.8046
-0.6017
-1.3094
-1.769 | -0.8535
-1.1051
-1.8198
-1.7085 | -0.838
-0.828
-1.661
-1.657 | | 0.6063
1.2867
0.6677 | 0.3199
0.3219
0.3738 | -0.6321
-0.4728
-0.4524 | -1.6911
-0.4645
-0.6117
-0.4672 | -1.6371
-0.6664
-0.6248
-0.6653
-0.6308 | -0.4967
-0.5514
-0.5238 | -0.9056
-0.6085
-0.6766 | -1.657
-0.642
-0.719
-0.557 | | 0.7387
0.7498
0.0801 | | -0.5609
-0.104
-0.2142 | -0.311
0.0050
-0.598 | | -0.5161
-0.5508
-0.6542 | -0.3247
-1.1844
-0.4176 | | | 1.6549
0.3357
0.5923
0.2393 | | -0.8894
0.1128
0.5408
-0.7289 | | -0.9744
-0.5758
-0.6175
-1.6974 | -1.4075
-0.8154
-0.7223
-1.6911 | 0.2233
-0.7821
-1.648
-2.8583 | -0.317
-0.824
-1.079
-1.929 | | -0.2224
0.8108
-0.1673 | 0.2171
1.5409
0.2879 | -0.7265
-0.8193 | -0.997
-0.3021 | -1.0374
-1.0334
-1.6418
-0.9785
-0.6849 | -0.2695
-1.3512 | -0.9979
-0.0078
-0.3416 | -0.509
-0.249
-0.26 | | 0.2204
0.817
0.1578 | 0.1624
1.2292
0.0862 | | | -0.6849
-0.5595
-0.647 | -0.8774
-0.8759
-0.8759 | -0.7681
-1.6545
-1.0457 | -0.6048
-0.0580
-1.1624 | | 0.6538
1.9658 | | | -0.8831
-0.8766 | -0.668
-1.3913
-0.984 | | -0.9596
-0.9598
-0.4454 | | | | 1.0917
1.3801
1.17
-0.0905 | 0.614
0.5128
0.2627 | -0.806
-0.7357
-1.3463 | -1.2634
-0.9356
-1.4008
-0.3814 | -1.0461
-1.7944
-1.8599
-0.3983 | -1.2509
-1.7389
-1.9918
-0.3232 | -0.8828
-1.4288
-1.7209
-0.8237 | -0.7002
-1.4411
-1.8046
-0.4854 | |---|-------------------------------------|-------------------------------|--|--|--
--|---|--| | | 0.6616
1.6507
0.2578 | | | -0.6252
-0.8338
-0.5108 | -0.4922
-1.5503
-0.7233 | -0.4439
-1.4839
-0.8198 | -0.3148
-1.2313
-0.9089 | -0.5332
-0.7828
-0.8597 | | | | | | -0.4185
-0.9497
-0.228 | -0.5915
0.065
-0.9008
-0.8188 | -0.7289
-0.6639
-0.877 | -0.5142
-0.3585 | | | | 0.6883
0.3722
0.4934 | 0.7804
0.0789
0.8657 | | -0.8115
-0.4626
-0.0267 | | | -0.9085
-0.7422
-1.2537 | | | | 0.4368
1.0193
0.4203 | -0.4923
0.6866
0.2268 | -0.793
0.087
-0.1464 | -1.2569
-0.071
-0.5104 | -1.6488
-1.2848
-0.7414 | -1.8259
-1.5332
-1.0296 | -1.9645
-2.3662
-1.3969 | -1.88
-2.0329
-1.1462 | | | -0.1714
1.0989 | | | | | -0.321
-0.8115
-0.5912 | -0.9624
-0.6491
-0.701 | -1.1462
-0.7679
-0.9879
-0.2817 | | | 0.2374
1.341
1.6057 | -0.1271
1.5262 | 0.0341
-0.0941
0.6435 | -0.2179
0.0794
-1.433 | -0.3232
-1.0767
-0.1724 | -0.373
-1.0069
-0.8931 | | | | | 1.2021
0.7239
1.917 | 0.4992
0.2779
1.5991 | -0.1444
-0.7253
0.1811 | -0.6232
-1.2722
-0.2653 | -0.7358
-0.7361
-0.8764 | -0.4807
-1.235
-1.5638 | -0.5951
-0.9477
-1.6317 | -0.7812
-0.7756
-2.699 | | | 1.0527
0.5158 | 0.6208
-0.3105 | -0.5178
0.3779 | -0.8429
-0.5271 | -1.1224
-0.3078 | -0.8898
-0.7712 | -0.9717
-0.7354 | -1.0674
-0.685 | | | 0.6711
0.7638 | 0.4985
0.5107 | | -1.2115
-0.5483
-0.9032 | -1.3243
-0.8549
-1.0776 | -1.376
-0.8878
-1.1927
-0.847 | -0.2019
-0.9026
-0.7027 | | | | 0.3773
1.3071 | 0.2127
0.1554
1.5279 | | -0.4161
-0.3143
-0.4667 | -0.6569
-0.4603
-1.8167 | | -0.9712
-0.569
-1.3039 | -0.7652
-0.7306
-1.1601 | | | 1.6684
2.2767
0.8997 | 0.7307
1.4647
0.1808 | -0.2792
-0.4353
-0.4935 | -1.0208
-1.2524
-0.5349 | -0.6705
-1.3319
-1.0723
-1.0945 | -1.2656
-1.1046
-1.6561
-1.2406
-1.0525
-0.8421 | | -1.1609
-0.9937
-1.1192
-0.7382 | | | | | | -0.3635
-0.4156
-0.6218 | | | -1.0243
-1.2563
-0.4558 | | | | 1.3504
0.4866
0.1614 | | | | | | | | | | | | | -0.4695
-0.3514 | | -0.9142
-0.9581
-0.7945
-0.7483 | -0.81
-1.3851 | | | | 1.5131
0.2959 | 0.8508
-0.0704 | | -0.4873
-0.6843
0.1494 | -0.7756
-1.0846
-0.823
0.4154 | -1.095
-0.9444
0.1362 | | | | | 1.1232
0.4002
0.7746 | | | | | -0.712
-0.5814
-0.8533 | -0.6688
-0.9652
-1.1892 | | | | 1.1093
0.3694
1.6726 | 0.354
0.6505
1.2412 | -0.8767
-0.283
-0.1994 | -0.8907
-0.9013
-0.8639 | | -0.8168
-0.9785
-1.3097 | -0.9305
-0.3098
-1.2608 | -0.9538
-0.889
-1.451 | | | 0.755
1.8927 | 0.2148
1.05 | -0.7852
-0.6298 | -0.4633
-1.2493 | -1.1527
-1.2793
-0.6603
-1.0188 | -1.3097
-1.2359
-1.4906
-1.3795 | -1.2608
-1.2002
-1.4848
-2.1681 | -1.4519
-1.310
-1.528
-1.39 | | | 0.8524
0.7384 | 0.3651
0.7146 | | -0.7049
-0.8278 | -1.0188
-0.9503
-1.0354 | -1.3795
-0.7768
-1.0027
-0.7553
-0.6151 | -2.1681
-0.9006
-1.0771 | | | | | | | | | -0.7553
-0.6151
-1.1229 | -1.193
-1.3426
-0.7039 | | | | | | -0.0148
-0.3931 | | -0.4621
-0.5215
-1.1424 | -0.5679
-0.6623 | -0.6523
-0.6998 | | | | 2.0097 | -0.2254
1.2519 | -0.5591
0.0889 | -0.6941
-0.5396 | -0.4849
-0.9318
-1.8347 | -1.2263
-1.6644 | -1.3874
-1.851
-1.9871
-1.6084 | -0.64
-1.357
-1.957
-2.110
-1.750 | | | 1.9864
-0.1034
1.1409 | 0.2709
1.1483 | | -0.1757
-0.6481
-0.3219 | -1.4848
-1.5915 | -1.2263
-1.6644
-1.6442
-1.4185
-1.4908
-0.8115
-0.8223 | -1.6084
-2.3716
-1.5371 |
-1.750
-1.624
-1.428 | | | 0.8876
0.3402
0.1624 | 1.0123
-0.0254
0.0519 | | | -0.8057
-0.7939
-0.6751 | | | | | _ | 0.2617
1.157
0.5538 | 0.1604
0.8982 | | -0.1728
-0.7137
-0.4381 | -0.4359
-1.478
-0.6276 | -0.3996
-1.4243
-0.6993 | | -0.838
-1.510
-0.687 | | | | | | | | -0.6814
-0.1156 | | | | | 0.3754
0.4502
1.174 | 0.3239
-0.0452
0.8941 | | | | | | | | | 0.2013
0.8674
1.1795 | 0.0836
0.9875
1.0494 | -0.3367
-1.124
-0.0654 | -0.5135
-0.9201 | -0.6192
-1.4235
-0.7334 | -0.8209
-0.9181
-1.1461
-0.6406 | -0.7892
-0.8697
-1.1258 | | | | 0.1147
0.5105 | | | -0.2924
-0.2361 | -0.3674
-0.8444 | | | | | | 0.6233
0.1964 | | | -0.2773
-0.2205 | -1.0437
-0.2568
-0.8495 | -0.7063
-0.6385
-0.9872 | -1.4659
-0.6872 | | | | 0.9162
0.0724
0.1235 | | -0.4061 | -0.789
-0.3899
-0.5608 | | | -0.5784
-0.2887 | -0.879:
-0.679: | | | 1.3679
-0.2134
0.2402 | | -0.7733
0.6333
-0.2586 | -1.7534
0.4322
-0.3484 | -1.1914
-0.2727
-0.5075 | -1.7917
0.4766
-0.7267 | -1.777
-1.2707
-0.7452 | -1.972
-0.525
-0.579 | | | 1.0213
0.3761
0.6192 | 1.1735
0.5326
0.524 | 0.2127
-1.1285
0.0602 | -0.0519
-0.6478
0.1531 | -1.6861
-0.9177
-0.8408 | -1.7328
-1.1211
-0.751 | -2.2046
-0.8
-1.1047 | -1.685
-1.023
-0.775 | | | 0.519
0.0951
0.9141 | | | | -0.032
-0.3952
-0.5984 | -0.542
-0.5567
-1.4687 | | -0.331
-0.717
-1.56 | | | 1.0666
1.0632 | 0.691
0.791 | | -0.592
-0.0806 | | -0.9027
-1.0517
-0.8989
-0.9804 | -1.5606
-1.1085 | -1.262
-1.126 | | | 0.9339
-0.3721 | | | -0.4118
-0.4958
0.2803 | -0.987
-0.8242
-0.2727 | -0.9804 | -0.6598
-0.9419
-1.1821
-1.147 | | | | 1,9692
0,9395 | | <0.0682
-0.5472
0.1616 | -0.7944
-0.7581
-0.1386 | -1.0262
-1.2857
-0.297 | -0.9364
-1.428
-0.7382 | -1.147
-0.6703
-0.6246 | -1.013
-1.425
-0.644 | | | 1.5875
0.1925
-0.1457 | | | -0.6663
-0.0865
-0.2771 | -1.6303
-0.6119
-0.2745 | -1.9028
-0.6986
-0.5576 | -1.289
-1.0114
-0.5668 | | | | 0.6212
-0.8641 | 0.3691
-1.1767
-0.5307 | -0.744
-2.3501
-2.2402 | -1.1908
-2.186
-3.321 | -0.9783
-2.6152
-4.5334 | -0.8054
-2.6832
-4.524 | -0.5631
-2.6505
-4.5429 | -0.7528
-2.7304 | | | 0.2238
1.4304 | 0.3167
0.8143 | -0.7276
-0.8502 | -1.0005
-1.7897 | -1.9289
-3.8572 | -2.046
-3.5548 | -1.8494
-3.4955 | -1.9453
-3.635 | | | -0.2929
0.5417 | -0.6894
-0.6506 | -0.9365
-1.0961
-1.8153 | -1.0005
-1.7897
-1.0119
-1.5647
-1.8557
-0.8962 | -1.9742
-2.0177
-2.2357 | -2.521
-2.233 | -2.0864
-2.0343
-2.0839 | -2.1166
-2.3042
-2.062 | | | 1.1247
0.6835
0.5017 | 0.4957 | 0.6456
-0.569
-0.5005 | -1.4399 | -1.5638
-1.2555
-1.6502 | -2.5981
-1.8654
-1.924 | -2.9342
-2.37
-2.6079 | -3.168
-2.3647
-2.09 | | | 1.6921
0.3274
1.7713 | 0.5679
0.6249 | -2.0717
-1.5481 | -1.3562
-2.5251
-2.2703 | -1.718
-6.2268
-3.2322 | -2.3767
-6.0344
-2.81 | -2.1363
-5.8455
-2.4945 | -2.417!
-6.040;
-2.856 | | | 1.1969
1.9003 | 0.5931
1.7579 | -0.1808
-0.5189 | -1.2509
-0.4922 | -1.7597
-2.5119
-1.9149 | -2.2479
-2.002
-2.8411 | -2.2076
-2.2949
-2.7658 | -2.2431
-1.922
-2.578 | | | 0.1814
1.2863 | -0.3927
0.6814 | -2.4285
-1.164
-1.9159 | -2.077 -3.063 -1.9905 -1.6182 -2.0717 -1.7676 -1.3269 -2.1264 -1.3772 -2.2196 -0.6452 -2.2196 -1.592 -1.592 -1.592 -1.592 -0.9617 | 2.6152 4.6339 4.6339 4.6339 4.6339 4.8339 4.83747 2.0177 2.0177 4.6588 4.12568 4.12569 4.12569 4.12569 4.12 | 2,0832 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,025 4,027 4,034 | 2,895 4,404 | -2.674
-2.640 | | | -0.112
0.5333 | 0.3862
-0.6616
-0.165 | -1.9159
-0.9096
-1.8353 |
-1.6182
-2.0717
-1.7676 | -2.0687
-1.7317
-2.1911 | -2.7228
-2.2852
-2.3817 | -2.3352
-2.2685 | -2.695
-2.06
-2.216 | | | 2.4962
1.1404
2.39 | 1.6563
1.13
1.9089 | -0.663
-2.0579
-0.6652 | -1.3269
-2.1264
-1.3772 | -2.1127
-3.4499
-4.2519 | -2.0742
-3.547
-4.4574 | -2.0299
-3.6877
-3.7572 | -2.0434
-3.5130
-4.202 | | | 2.39
0.9363
1.2152
2.4392 | 0.9195
0.8744
2.4654 | -0.0649
-2.3589
-0.6779 | -0.6452
-2.2196
-0.4915 | -2.3276
-4.7328
-2.6435 | -2.9052
-4.8514
-2.3342 | -2.7855
-4.7152
-2.7248 | -3.008i
-4.36i | | | -0.4185
-0.1368 | -0.7167
-0.6404 | -0.6779
-0.8082
-1.1904
-1.4076 | -1.4049
-1.592 | -1.6834
-1.6706 | -2.635
-1.9689 | -1.957
-2.2215 | -2.422
-2.254 | | | 1.3576
2.2993
3.012 | 1.5814
2.2495 | | -1.8365
-0.9617
-1.2535 | -2.4797
-2.9494
-1.8029 | -3.0277
-2.9686
-1.9189 | -3.0329
-2.7047
-1.9189 | -2.865
-2.839
-1.739 | | | -0.4098
1.7556
1.6845 | -0.6756
0.7596
1.2842 | -0.6417
-0.9266
-1.9463
-1.4453
-2.5367
-1.5572
-2.5941
-1.7648
-1.9991
-1.5085
-0.9562
-1.8866 | -1.3334
-2.4792
-1.2935 | -2.6521
-4.7078
-3.131 | -3.0567
-4.5617
-3.5614 | -3.2903
-4.0851
-2.9946 | -2.982
-4.329
-3.282 | | | 2.4486
0.2971 | 1.6566
0.4411 | -2.5387
-1.5572 | -3.2364
-1.5469 | -4.6708
-2.3254 | -4.2423
-2.54 | -4.1977
-2.3823 | -4.335i
-2.388 | | | 0.4362
0.798 | -0.3556
0.6723
0.4584 | -2.5941
-1.7648
-1.9991 | -3.4027
-2.4863
-2.1304 | -3.7407
-3.665
-2.4165 | -3.955
-3.4546
-2.6547 | -3.276
-3.7272
-2.5552 | -3.375
-3.583
-2.547 | | | -0.2394
0.9997
0.7489 | -0.5397
0.3422
0.3601 | -1.0599
-1.5085
-0.9562 | -2.6985
-1.9154
-1.4163 | -1.5572
-2.5036
-2.1615 | -2.314
-2.6046
-2.7748 | -1.7449
-2.4139
-2.7965 | -2.2412
-2.500
-2.947 | | | -0.1992
-1.1185 | -0.9512
-0.4457
-0.5421 | -1.6866
-2.4251
-2.1346 | +1,2535
+1,3334
-2,4792
+1,2935
-1,2395
-1,2395
-1,5469
-3,3,027
-2,4863
-2,1394
-2,4863
-2,1394
-1,4163
-2,2816
-1,7386
-1,9017
+1,0582
-1,9066
-1,313
-2,7117 | -2.2974
-3.5959 | -1.9998
-3.3249 | -2.6208
-3.5035 | 2,730-4 4,035 4,035 4,035 4,035 4,04 | | | 1.3972
0.8317 | -0.5421
0.5112
-0.972 | -2.1346
-0.4131
-2.1667
-1.6437 | -1.0582
-1.9606 | -2.268
-2.2164 | -2.1463
-2.2819 | -3.0574
-2.121
-2.1896
-2.6006
-0.2376 | -2.2403
-1.8284
-2.236 | | | 1.0607 | 0.7041 | -1.6437
-0.7167 | -1.313
-2.7117 | -2.9972
-1.2445 | -3.0578
-2.1544 | -2.6008
-0.2378 | -2.4307
-1.080 | | 0.3846
0.6293
-0.1817
1,7491 | -0.8441
-0.2516
-0.3716
0.7697 | -1.4092
-1.6555
-2.5608
0.333 | -1.6646
-3.2829
-3.2387
-1.8495 | -2.2429
-2.7684
-4.423
-2.8688 | -2.5859
-3.8243
-4.0995
-2.9379 | -2.5887
-2.0748
-3.5153
-1.6083 | -2.2921
-2.9388
-3.7815
-2.3812 | | |---------------------------------------|---|--|--
--|--|--|--|--| | -0.1938
1.2109
0.3504 | -0.533
0.9568
0.2663 | -2.2109
-2.4993
-1.7113 | 3,2229 3,2237 1,3495 2,0499 1,3495 2,0499 1,3495 2,1592 1,0776 2,0771 1,7483 2,0493 2,0493 1,0786 2,0717 1,7776 2,0719 2,0719 1,0786 1,0786 1,0894
1,0894 1, | -2.7684
-4.423
-2.8966
-3.291
-4.2401
-2.8127
-3.6393
-3.5599
-2.1178
-4.8802
-3.0217
-4.1206
-2.2413
-3.6619
-2.2977
-2.2711 | -3.6498
-4.6311
-3.0672 | -2,0748 -3,5153 -1,08918 -3,0918 -3,0028 -3,7154 -4,0028 -3,7154 -4,0028 -3,7154 -4,0028 -3,7154 -4,0028 -4,0028 -4,0028 -4,0028 -4,0038 -4,00 | -2.3612
-3.2109
-3.9767
-3.0574
-3.9382
-2.7673 | | | 1.2458
1.1421
0.1675 | 0.1483 | -2.4993
-1.7113
-0.8514
-1.8387
-1.4145
-1.9098
-1.816
-3.2897
-1.4122
-2.2674
-1.6712
-1.4053
-1.3097 | -1.8076
-2.8771
-1.7483 | -3.6393
-3.5599
-2.1178 | 3,648 4,0317 3,157 3,157 3,157 3,157 4,157 | -3.7154
-2.6449
-1.6811 | -3.9382
-2.7673
-2.0084
-4.7513 | | | 1.2574
1.5484
0.7926 | 0.7126
1.3445
-0.5484 | -1.9098
-1.816
-3.2897 | -2.0993
-2.1348
-3.8005 | -4.8802
-3.9217
-4.1206 | -5.2536
-3.8778
-4.8205 | -4.5427
-3.9517
-3.2427 | -4.7513
-3.6984
-3.643 | | | 1.7156
1.5629
0.6937
2.2227 | 1.4336
1.1029
0.4307
0.7297 | -1.4122
-2.2674
-1.6712
-1.4053 | -1.7376
-3.0954
-2.3019
-2.2068 | -2.2413
-3.8619
-2.2977
-2.2711 | -2.0644
-3.9356
-2.3292
-2.245 | -2.0522
-3.8307
-1.5267
-1.6334 | -3.6984
-3.643
-1.889
-3.988
-1.8526
-2.1635 | | | 1.0164
2.3503
0.7024 | -0.057
2.1734
0.5464 | | -1.585
-1.2099
-1.5956 | -2.1688
-3.6654
-2.3824 | -2.2249
-4.9611
-2.0553 | -2.0185
-4.7903
-2.2024 | -2.1114
-5.7544
-2.4764 | | | 1,0921
1,3277
1,8338 | 0.372
0.8535
1.6559 | -1.4253
-1.0066
-0.763
-2.3726
-1.0628 | -1.6804
-1.4447
-1.8652 | -2.1688
-3.6654
-2.3824
-1.9638
-3.1562
-3.6284
-2.2668
-3.122
-2.0971
-2.3136 | -2.3311
-3.5961
-3.6854 | -2.2804
-2.918
-3.7181 | -2.442
-3.1694
-3.5825 | | | 0.1497
1.6103
2.6768 | -0.1443
1.1544
2.5018 | -1.0628
-1.4556
-0.048 | -0.0835
-1.6088 | -2.2668
-3.122
-2.0971
-2.3138 | -2.3044
-2.8673
-2.3413
-2.2231 | -2.7517
-2.8597
-1.6192
-2.2087 | -2.4682
-3.1566
-1.8229
-2.0428 | | | 0.2036
1.977
-0.2138 | -0.4856
1.2288
0.1378 | -1.2882
-1.6048
-0.9898 | -1.5761
-2.4541
-0.7286 | -1.9896
-2.9575
-5.2153 | -1.98
-3.0023
-5.3577 | -1.9394
-2.2916
-5.8888 | -2.1338
-2.5134
-4.9323 | | | 1.2422
3.1627
1.7385 | 1.0479
2.0939
0.4164 | -0.3664
-1.3009
-1.6852 | -0.7064
-2.0756
-2.3
-1.158 | -1.0996 -2.9575 -5.2153 -1.7514 -4.5165 -3.4446 -2.9729 -2.3477 -1.0569 -2.1033 -2.1033 -2.1536 -1.7316 -1.7316 -1.7359 -2.1434 -2.1530 -2.1530 | -2.3881
-4.7115
-3.3739 | -1.9133
-2.6748
-3.5189 | 2.1114
5.7544
2.4764
2.442
3.1694
3.5825
2.4682
3.1566
1.8229
2.0428
2.1338
2.5134
4.9323
2.6002
3.37034 | | | 1.8301
2.7435
0.9224 | 1.2344
0.8229
0.1844 | -1.0068
-1.7547
-0.0917 | -1.158
-1.8648
-0.8236
-0.9445 | -2.9729
-2.3477
-1.6896 | -2.0799 -2.3812 -2.3811 -2.3817 -2.3817 -2.0517 -2.0534 -4.1309 -2.5406 -2.0064 -4.1309 -2.5406 -2.1567 -2.0565 -6.4116 -2.1567 -2.2566 -3.4475 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 -2.3817 | -2.5613
-2.3326
-1.965
-2.1708
-2.2942
-3.1615
-2.0046
-3.5513
-2.2975
-1.4777
-1.7024
-3.9615
-5.7977 | 2,0017 2,3322 2,2196 2,2196 3,3234 4,3234 4,3234 4,3234 4,3237
4,3237 4, | | | 0,4975
1,0616
-0,7291 | -1.5869
0.5825 | -1.0803
-1.4206 | -1.8668
-1.5703
-2.3966 | -2.1069
-2.1043
-2.1536
-1.7087 | -2.3511
-2.9737
-2.9977
-2.0584 | -2.1706
-2.2942
-3.1615
-2.6046 | -2.2195
-2.8961
-3.3294
-2.4974 | | | | 0.1622
0.1693 | -1.4706
-1.8519
-1.3053 | -1.8532
-1.84
-1.6553
-0.9517 | -3.7947
-2.516
-1.7318 | -4.1309
-2.5406
-2.2008 | -3.5513
-2.2975
-1.4777 | -3.7688
-2.6084
-2.0837 | | | 2.7213
1.2642
0.6516 | 2.2205
0.7458
0.3855 | -1.3053
-1.0823
-1.5459
-2.6511 | -2.0314
-3.2971 | -1.8509
-2.1434
-6.3435 | -1.8825
-3.0695
-6.4116 | -1.7024
-3.9815
-5.7977 | -1.8509
-3.5702
-6.047 | | | 0.5516
1.1793
0.5237
2.1794 | 0.1664
0.7481
1.4767 | -1.2349
-0.218 | -1.2751 | -1.5637
-2.3501
-3.1321
-2.4347
-1.8623
-4.685
-2.2344
-2.2731
-2.7793
-3.476
-4.398
-4.278
-1.5645
-2.4228
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2.4244
-2 | -2.1587
-2.5295
-3.4475 | -2.3856
-1.315
-2.5827
-2.8022
-2.7733
-2.8146
-2.9239
-2.7709 | -2.333
-1.6921
-3.1125 | | | 0.1292
0.8151
1.2272 | 0.4701
0.7631
1.1887 | -1.4623
0.2818 | -0.9505
-0.9116
-1.4734
-0.6331 | -2.4346
-3.1917
-1.8623 | -2.3819
-2.6459
-2.3687 | -2.8022
-2.7733
-2.8146 | -2.3977
-3.1804
-2.4814 | | | 0.0350
0.2291
2.0076
1.2505 | -0.5858
1.059 | -2.299
-0.8679
-1.374 | -2 2397
-2 3623
-1.541
-1.3812
-1.3179
-2.8402
-1.3714
-1.6802
-1.3886
-1.1135 | -2.9344
-2.2731
-2.7978 | -2.7969
-2.2943
-2.4746 | -2.7709
-2.3219
-2.3788 | -2.9767
-2.4148
-2.4003 | | | 0.2436 | -0.3678
-0.0728
 | -1.1801
-1.6863
-1.0391 | -1.3179
-2.8402
-1.3714 | -1.7508
-3.319
-3.476 | -1.87
-3.8448
-3.9369 | -2.2246
-3.7255
-3.9118 | -2.1576
-3.8587
-3.5732 | | | 2.1149
1.5365
0.1962 | 1.408
1.9572
0.6945
-0.3442 | -3.1033
-1.0476
-0.7589 | -1.6802
-1.3886
-1.1135 | -4.398
-4.2178
-1.5645 | -4.2992
-4.5271
-1.886 | -3.7383
-4.1414
-2.5743 | -3.6661
-4.201
-2.0978 | | | 0.3076
0.1721
1.1185 | 0.5932
0.1579
0.7158 | -1.8091
-1.8796
0.1871 | -1.649
-1.6343
-0.8963 | -2.4228
-2.311
-2.4463 | -1.67
-3.8448
-3.9369
-4.2992
-4.5271
-1.886
-2.3441
-2.2839
-2.4659
-1.7836 | -2.3131
-2.5161
-2.7456 | -2.2959
-2.047
-2.721 | | | 2.1461
1.6704
1.5922 | 1.6444
1.6387
0.9192
1.6592 | 0.3922
-1.8154
0.1885 | -0.2472
-0.9781
-1.616 | -2.0306
-2.0983
-2.0521 | -2.4659
-1.7836
-2.4751
-2.6183 | -2.3219 -2.2788 -2.2248 -2.2248 -3.7255 -3.9118 -3.7383 -4.1414 -2.5743 -2.3131 -2.5159 -2.0161 -1.6378 -2.0161 -1.6946 -2.5389 -2.9152 -2.0627 | -2.2987
-2.0346
-1.9336
-2.6647 | | | 2.2699
1.3271
0.162 | 1.6592
1.0719
0.3591 | -1.4691
-0.7496 | -1.405
-1.001 | -2.0521
-1.9386
-2.7119
-2.2623 | -2.6183
-2.6282
-2.2729 | -2.5389
-2.9152
-2.0827 | -2.6647
-2.6555
-2.0928 | | | | | | | | | | -0.5335
-0.7411
-0.4864 | | | -0.934
0.117 | | | | | | | -0.2415
-0.2747
-0.4607 | | | | | | | | -0.1616
-0.5267
-0.3452 | | -0.5539
-0.3106
-0.4469 | | | | | | | | -0.0172
0.000
-0.2327 | | -0.4924
-0.1451
-0.3788 | -0.2652
-0.4985
-0.3296 | | | | | | | | -0.4955
-0.1348
-0.9668 | | -0.6289
-0.3078
-0.6389 | | | | | | | | | | -0.6302
-0.6524
-0.293 | -0.419
-0.405
-0.3298 | | | | | | | | | | -0.4984
-0.7264
-0.4351 | | | | | | | | -0.3444
-0.1098 | -0.7969
-0.6281
-1.2852 | -0.0532
-0.6171
-0.4161 | | | | | | | | | | -0.184
-0.0440
-0.6671 | | | 0.0220
0.5992
0.1238 | | | | | | | -0.6042
-0.609
-0.8929 | | | | | | | | | | -0.5531
-0.4896
-0.7337 | | | | | | | | -0.8637
-0.5799
-0.1224 | | -0.4846
-0.4749
-0.3622 | -0.4349
-0.4162
-0.5249 | | | | | | | | -0.2892
0.244
-0.7251 | | -0.745
-0.2776
-0.6212 | | | | | | | | | | -0.2977
-0.7806
-0.6738 | | | | | | | | -0.5956
-0.0160
-0.6437 | | -0.347
-0.1905
-0.5308 | | | | U.1189
0.1283
-0.426 | | -0.193
-1.0903
-0.7874 | -0.5824
-1.2111
-1.1651 | -0.6985
-1.3754
-1.0792 | -0.4138
-1.0595
-1.54 | -0.5721
-1.1323
-1.1388 | | | | | -0.4321
-0.3752
-0.9921 | -0.8855
-0.3992
-1.3518 | | -0.8552
-0.7571
-0.9964 | -1.1553
-1.3481
-1.2133 | -0.9917
-1.0807
-0.7546
-0.891 | | | | -0.0128
-0.0128
-0.3783 | -0.4966
-1.1012
-0.2101 | -0.8484
-0.9141
-0.3483 | | -0.8963
-0.6936
-0.8721 | -1.0298
-0.8417
-1.6933 | -0.891
-1.0201
-1.4079
-1.0356
-0.8757 | | | | | -0.2178
-0.4466
-0.6153
-0.9434 | -0.236
-0.8436
-0.2624
-1.299 | -0.5763
-0.8094
-0.7692
-0.9214 | -0.9571
-0.714
-1.0398 | -0.9231
-1.1243
-1.2887
-0.9977 | -1.0356
-0.8757
-0.9664
-0.9635 | | | | | -0.3848
-1.3034
-0.4656 | -0.5319
-1.28
-0.4232 | -1.6848
-1.3652
-0.8264 | -1.4745
-1.4354
-0.8691 | -1.4745
-0.9653
-1.3093 | -1.3586
-1.2569
-0.9363 | | | | -0.4233
-0.108
0.0582 | -0.9227
-1.447
-0.3033 | -0.6058
-1.5068
-0.3703 | -0.776
-1.5426
-0.9589 | -0.9069
-1.6664
-0.5521 | -0.8579
-1.5963
-1.1201 | -0.927
-1.5559
-0.8314 | | | | 0.2847
-0.4258
0.7023 | -1.0467
-0.4322
-0.4318 | -1.2373
-0.6291
-0.2561 | -1.2373
-0.5907
-0.8695 | -1.3126
-0.5914
-0.7826 | -0.8464
-1.0095
-1.1208 | -1.0551
-0.5971
-1.4003 | | | | -0.5469
0.3324 | -1.0495
-1.4556 | -1.5114
-1.4147 | -1.2971
-1.9031
-0.8915 | -1.6151
-1.3356 | -1.4524
-2.1208 | -1.2782
-1.657 | | | | -0.0204
-0.5724
-0.2131 | -1.0767
-1.6972
-0.6068
-0.9113 | -1.1043
-1.0642
-0.8834
-0.7118 | -1.1686
-1.5242
-0.7689
-1.4379 | -1.5603
-0.6787
-0.7827
-1.0599 | -0.9946
-1.2502
-0.8042
-1.2616 | -1.102
-0.7763
-0.8747
-1.3073 | |-----------------------------|-------------------------------|---|---|--
---|---|--| | | 0.3402
-0.4072
0.0468 | | -0.7556
-1.176
-0.4345 | -1,4379
-1,0948
-0,7312
-0,6037
-0,9037
-0,918
-1,4144 | -1.2353
-0.7614
-0.6805 | -1.2616
-1.391
-1.2879
-1.3406
-1.2806 | -1.3073
-1.2724
-0.8154
-0.9633
-0.7678 | | | 0.2614
-0.531
-0.1408 | -0.0200
-0.9176
-0.9028
-1.3571
-0.7172 | -0.7878
-1.1711
-0.8593 | -0.9037
-0.918
-1.4144 | -0.8205
-0.9673
-0.661 | -0.5476
-1.0049 | -0.7678
-0.694
-0.7832 | | | -0.4829
-0.0458
0.4124 | | -0.6547
-0.286
-0.8907 | | -0.8096
-1.127
-1.674 | -1.7626
-1.9382
-1.5512 | -1.151
-1.5114
-2.0048 | | | -0.2378
-0.121
0.0005 | | -0.1807
-0.6719
-0.9314 | -0.9674
-1.1572
-0.7754
-0.8203
-1.3449
-1.2419 | -0.536
-0.8309
-1.2278 | -0.8618
-1.1275
-1.3521 | -0.5634
-1.1539
-1.1265 | | | | -0.4441
-1.0265
-0.9848 | -0.0469
-0.5166
-0.4664 | -1.2419
-1.0659
-1.7347 | -0.9068
-0.4651
-1.5296 | -1.4292
-1.5994
-2.1669 | -1.0407
-0.9102
-1.6689 | | | -0.056
0.4602 | | | -0.6347
-0.9736
-1.0469 | -0.4639
-1.2212
-1.5559 | -0.8363
-1.0269
-1.5164 | -0.6568
-1.2434 | | -1.0339 | -0.1839
-0.332 | -0.562
1.4555
-1.1 | -0.5429
0.2907
-0.9609 | -0.9035
-0.9035
-1.0898 | -0.6715
-1.3814 | -0.861
-1.3056 | -0.896
-1.8691
-1.166 | | | -0.2092
-0.0633 | -0.2532
-0.4795 | 0.2339
-0.5593 | -0.5838
-1.0173 | 0.2699
-0.9011 | -1.0698
-0.9497
-1.3535
-0.9162 | 0.5384
-1.0748
-1.1563 | | | | | -0.6521
-1.2131 | | -0.7456
-1.2545 | -0.7356
-0.865
-1.0021 | -0.8138
-0.8944 | | | | | | -0.5647
-0.6286
-0.8682 | -0.5743
-0.8981
-0.758 | | | | | | -0.5737
-0.5438
-0.6755
-1.0431 | -0.8107
-0.9484
-0.9106
-1.0542 | -0.9345
-0.8692 | -1.0629
-0.9696
-0.8935 | -0.879
-0.5247
-0.9449
-1.0311 | -0.7502
-1.0201
-0.8506 | | | -0.748
-0.1982
-0.5456 | -0.585
-1.1146
0.1589 | -1.0542
-1.27
-0.098 | -1.1585
-1.8365
-0.2049 | -1.2852
-1.444
-0.192 | -1.2823
-0.9737
-1.5419 | -1.4956
-1.5038
-0.7984 | | | | -0.7799
-0.3744
-0.9662 | | | -0.4119
-1.0514
-0.8648 | -0.9038
-1.6625
-0.942 | | | | | -0.317
-0.5658
-0.7272 | | -0.9856
-0.9129
-0.8812 | -1.3901
-0.8488
-0.7788 | -1.2202
-0.9607
-1.0794 | -0.798
-1.1051
-1.0147
-0.7979 | | | | | | | | -0.9965
-0.372 | | | | | -0.7348
-0.0637
-0.2773 | -0.9097
-0.4481
-0.6008 | -1.0348
-0.9158
-0.82
-1.012 | -1.148
-1.3454
-1.1053
-1.0321 | -1.2533
-1.6801
-1.3396
-1.4993 | -1.0348
-1.7413
-1.0715 | | | | | | | -1.0321
-0.3588
-1.0143 | -1.4993
-1.3779
-1.442 | -1.196
-1.0466
-1.2558 | | | | -0.7833
-0.4159
-0.4784 | -0.6812
-0.4419
-1.0546 | -0.7765
-0.3945
-1.0429 | -0.616
-0.4927
-1.1862 | | -1.2558
-0.8108
-0.8558
-1.2121
-0.7581 | | | | | -0.235
-0.7686
-0.1928 | | -0.5772
-1.1736
-0.6194 | -1.0427
-1.4027
-1.092 | | | | | | -0.4982
-1.084
-0.9563 | -0.514
-0.749
-1.0455
-0.8458
-0.8347 | -0.4862
-1.2671 | -1.191
-1.4947 | | | | -0.4035 | | | | -1.0149
-0.9311
-0.9832
-1.1422 | -1.3666
-1.6283 | -1.262
-0.8291
-0.9611
-1.2122
-0.8251
-0.9827 | | | -0.2793
0.2181
0.7672 | | -0.6635
-0.9846
-1.2261 | -0.0009
-1.0234
-1.3944
-2.0826 | -1.1422
-1.2636
-1.8686 | | | | | | -0.8026
-0.5
-0.8665 | | -0.7965
-0.7114
-0.9838 | -0.8585
-1.1972
-1.2959 | -0.8428
-0.7645
-1.498 | | | | -0.1845
-0.1996
-0.4026 | -0.6189
-1.0799
-0.6163 | -0.4638
-0.5842
-0.7813
-0.6742 | -0.5576
-0.8412
-0.8316
-0.6688 | -0.58
-0.9632
-0.9258 | -1.044
-0.9243
-0.8684 | | | | -0.368
0.1127 | -0.566
-1.2741 | -0.6742
-1.5079
-1.0971 | -0.6688
-2.0653
-1.102 | -0.4902
-1.9936 | -1.0404
-1.1555 | -0.9878
-0.685
-1.5355
-1.0971 | | | -0.658
-0.3615 | | -0.3504
-0.9419 | -0.5699
-0.7636 | -0.7321
-0.7758 | -1.5843
-0.8387 | -1.5929
-0.9419 | | | | -0.4828
-1.0576
-0.2231 | -0.643
-1.5531
-0.36 | -1.2384
-1.7549
-0.4219 | -1.3673
-1.9641
-0.352 | -1.5108
-1.2686
-1.0361 | -1.3286
-1.7531
-0.6412 | | | | | | | | -1.1261
-0.8422
-1.0617 | | | -0.7794
0.0703
0.8856 | -0.3595
0.1368
-0.0822 | 0.0625
-0.521
-1.4256 | -2 1236 | | -0.3513
-0.7601
-1.8366 | -1.1919
-1.5457
-0.9511 | -0.5962
-1.3952
-0.9729
-1.1451 | | | | -0.5858
0.1148
-0.7049 | -0.572
-0.1998
-0.908 | -1.8291
-0.9406
-0.3786 | -0.8651
-0.6169 | -1.5435
-1.6065 | | | | -0.1563
-0.4563 | -0.7049
-0.758
0.0738 | -0.908
-0.9039
0.1668 | -0.9332
-1.1811
-0.2558 | -1.23
-0.6817 | | | | | -0.216
-0.1014
-0.7829 | -0.4959
-0.6521
-0.3928 | -0.512
-0.8414
-1.092
-0.6336 | -0.2556
-0.7961
-0.8563
-0.6798
-0.9811 | -0.7266
-0.9115
-0.8791
-0.9518 | | | | | | -0.4819
-0.7057
-0.841 | -0.6336
-0.4016
-1.089 | | -0.6564 | -0.7586
-1.0566
-0.9917
-0.7586 | | | | -0.2319
0.0716
0.1253 | -1.0882
-1.2908
-0.5904 | -1.2015
-0.6792
-0.8069 | -1.4101
-1.1868
-1.204 | -1.4291
-1.0719
-1.2101 | -1.1803
-1.1827
-1.4797 | -1.079
-1.0067 | | | | -0.4188
-0.4934
-1.0182 | -0.6951
-0.6987
-1.2178 | -0.6233
-1.3676
-1.2275 | -1.0287
-1.4207
-1.2439 | -1.2972
-1.665 | -1.2540
-1.2249
-1.2048 | | | -0.3712
0.4797 | -1.0182
-0.7976
-1.0649
-0.8377 | -1.2178
-1.4918
-1.0932 | -1.2275
-1.0166
-1.4193
-0.8135 | -1.2439
-1.5939
-1.3729 | -1.2773
-1.4918
-1.5934
-1.3712 | -1.2048
-1.1583
-1.4653 | | | | | -0.5808
-0.2749
-0.9749 | -0.7329
-0.1559
-1.0646 | -1
-0.4856
-1.1415 | -0.968
-1.1328 | -1.051
-0.8748 | | | | 0.1387
-0.4726 | | -0.439
-0.6825 | -0.6339
-0.6429 | -0.9166
-1.071 | -0.8958
-0.8927 | | | -0.1996
-0.3918 | -0.3381
-0.7896
-0.829 | -1.1198
-1.0614
-0.8934 | -0.5974
-1.126
-1.0603
-1.1017 | -1.1205
-1.3977 | -1.8092
-1.4748 | -0.8873
-1.3416
-0.9867 | | | -0.1278
-0.1653
0.0666 | -1.2255
-0.6012
-0.0521 | | | -0.8395
-0.5687
-1.9478 | -1.3471
-0.9695
-1.0409
-0.8098 | -0.7915
-0.4881
-1.5406 | | | -0.558
-0.5534 | -1.2258
-0.6033
-0.5632 | -0.9725
-1.2397
-1.0931
-0.4382 | -1.8093
-1.5465
-1.1014
-1.0281
-0.9502 | -0.5687
-1.9478
-1.7219
-1.0212
-0.9862 | -0.878
-1.6108 | -1.3994
-1.1795
-1.3121 | | | | | -0.4382
-0.7338
-0.8926
-0.6781 | -0.9502
-0.3348
-0.737 | -0.4816
-0.8859
-1.0525 | -0.9343
-0.614
-1.0086 | | | | -0.1058
-0.5206 | -0.2823
-0.2402 | -0.6781
-0.6622
-1.0357
-0.8642
-0.4484 | -0.3357
-0.7515
-1.693 | -0.8103
-1.1302
-1.9639
-0.9165 | | | | | -0.1053
-0.0606 | -0.6179
-1.1871
-0.8877 | -0.4484
-1.2645
-0.7165 | -0.6179
-1.1944 | -0.9165
-0.7765 | -1.3751
-0.9716
-0.836
-1.3975
-0.9915
-1.056
-1.3554
-1.3698
-1.247
-0.8421 | -1.5929
-0.9141
-0.9984 | | | -0.0831
-0.8689 | -0.5997
-1.0848
-0.6766
-0.5358 | -0.7765
-0.9731
-1.1544
-1.3688 | -1.3665
-0.9482
-1.297
-1.4201
-0.7472
-0.6931
-0.8138 | -0.9165
-0.7765
-1.3723
-1.1263
-1.0092
-1.4368
-0.6574 | -1.3975
-0.9915
-1.056 | -0.9984
-1.1579
-1.1039
-1.2527 | | | | | -1.3688
-0.5187
-0.5718
-0.6462 | -1.4201
-0.7472
-0.6931 | -1.4368
-0.6574
-0.5149 | -1.3554
-1.3698
-1.247 | -1.2527
-1.3762
-0.9765
-0.9528
-0.9269 | | | | -0.6815
-0.3281
-0.6334 | | | -0.6166
-1.1292
-0.8979 | -0.8421
-0.9785
-0.8827
-1.2058 | -0.9269
-1.2234
-0.8118
-0.8984 | | | 0.0495
-0.4484 | -1.0233
-1.1154 | -0.9131
-0.8979
-1.1255
-1.1764 | -1.1819
-1.3817 | -1.1292
-0.8979
-1.0264
-1.1772 | -1.2058
-1.4502 | | | | -0.2605 | | -0.3421
-0.674 | -0.7193
-1.1511
-0.6897 | -1.172
-1.3849
-1.1403
-0.895
-0.6514
-0.5739
-1.5808
-1.0105
-0.5493 | -1.208
-1.4502
-0.9476
-1.5299
-0.7845
-0.9978
-1.3242
-1.0419
-0.8849
-1.0781 | -1.165
-1.3264
-1.2118
-1.1939
-1.1365
-0.9856
-1.1426 | | | 0.0223
0.185
-0.2239 | 0.5029
-1.0671
-0.8233 | -0.7438
-0.3805
-1.4008
-1.1742 | -0.1674
-1.102
-1.2428
-1.0942
-0.6915 | -0.6514
-0.5739
-1.5808 | -0.8978
-1.3242
-1.0419 | -1.1365
-0.9886
-1.1426 | | | | | -1.1742
-0.4868
-0.7311 | -1.0942
-0.6915
-1.0874 | -1.0105
-0.5493
-1.238 | | -0.8516
-0.8385
-1.0627 | | | -0.1379
-0.0795
-0.2364 | 0.2985
-1.0136
-0.6755 | -0.1355
-0.7119
-1.0446
-1.3302 | -0.8427
-1.1247
-1.2198 | -0.5493
-1.238
-1.0607
-1.144
-1.3519
-1.3098 | -1.8919
-1.4155
-1.4159
-1.2123 | | | | | -0.6785
-0.7705
-0.6011
-0.8207 | | -0.6915
-1.0874
-0.8427
-1.1247
-1.2198
-1.0651
-0.653
-0.867
-1.6068
-0.7560 | -1.3098
-1.1221 | -1.2123
-0.5862
-0.7554 | -1.4472
-1.3771
-0.6937
-0.8117 | | | | | -0.6846
-0.8915
-0.6793 | -1.6068
-0.7569 | -1.1221
-0.8452
-1.4599
-0.9283 |
-1.6863
-0.9876 | -0.8117
-1.6392
-0.8337 | | | | | -0.1934
-0.8754
-0.7413 | -0.7569
-0.986
-1.1683
-0.7476 | -1.3073
-1.1973
-1.1362 | -1.7497
-0.9215
-0.5887 | -1.1401
-1.0712
-0.4791 | | | | | | -0.4893
-0.4814 | -0.395
-0.7485 | -1.2403
-1.5751 | -0.4791
-0.9441
-1.1645 | | 0.3788
0.1359

0.2711 | 0.113
0.3369
-0.1652
-0.4285 | -1.2839
-0.7103
-0.6391
-0.6182 | -1.409
-0.4529
-0.7576
-0.3833 | -1.5089
-1.3995
-0.8654
-0.7349 | -1.5553
-1.4645
-0.8563
-0.4956 | -1.5585
-1.2064
-0.899
-0.774 | -1.68
-1.1671
-0.9462
-0.9276 | |---|---|--|--|--|---|--|---| | -0.811
-0.2104 | | | -0.604
-0.6165
-0.8481
-0.1991 | -0.7678
-0.7678
-1.1742
-1.0364
-0.8028 | -0.6991
-0.9074
-1.2483
-0.298 | -1.2964
-1.0657
-1.2499
-1.047 | -1.1001
-1.1326
-1.4022
-0.2681 | | | -0.21
0.068
0.1251
-0.5993 | -0.271
-1.1557
-0.3947 | -0.5681
-1.1911
-0.6934
-0.126 | -1.6139
-1.1172 | -1.0489
-1.3929
-0.9724
-0.611 | -1.0329
-1.3508
-1.119
-1.048 | -1.1172
-1.5032
-1.1994
-0.9618 | | | | | | -0.2271
-1.2701
-0.7728
-0.7453
-1.058
-1.2639
-0.9155 | -1.0044
-0.9504
-0.922 | -1.5787
-1.0633 | -1.535
-0.8186
-0.9623 | | | 0.0708
0.1424
-0.0344 | -1.0367
-0.6784
-0.8008 | -1.0078
-0.7187
-0.8682
-0.747 | -1.058
-1.2639
-0.9155
-1.1793 | -1.2881
-1.1942
-1.0405 | -0.8948
-1.1736
-0.9593
-1.2439
-1.4098 | -1.058
-1.2867
-0.7693
-1.4148 | | | -0.2835
0.2923
-0.2903
-0.1735 | -0.6433
-0.9949
-0.8392
-1.396 | -0.7312
-0.5198 | -1.4605
-0.8211 | -1.428
-1.3353
-0.8185
-1.5369 | -1.2439
-1.4098
-1.328
-0.7889 | -1.2003
-1.1218 | | | 0.1355
-0.2543
0.452 | -0.9026
-0.2416
-0.7459 | -1,4402
-1,0374
-0,6896
-0,995 | -1.4154
-1.1185
-0.8861
-1.0525 | -1.5369
-1.0951
-0.6081
-0.9884 | -0.2851
-1.0522
-1.0875
-1.1105
-1.3125 | -1.1132
-1.0168
-0.7878
-0.905
-1.1236
-1.2664
-1.519 | | | -0.0819
-0.0801
-0.4615 | | -0.5472
-1.3026
-1.2613 | -0.771
-0.7826
-1.3772
-0.855 | -0.7801
-0.9138
-1.3181 | -1.1105
-1.3125
-1.2298
-1.1743 | -1.1236
-1.2664
-1.519 | | 0.3302
1.2227
0.0617 | -0.3547
0.2664
-0.2806 | -0.509
-1.6498
-0.28 | -0.7443
-2.1868
-0.383 | -0.855
-1.7074
-0.4259
-1.1513 | -0.9657
-2.1925
-0.4451
-1.0035 | 0.3682
-1.1205 | -1.3024
-0.5906
-0.6629
-1.0474 | | 0.2054
-0.0951
-0.3234 | 1.3743
0.0001
-0.282 | -1.4349
-0.4688
-0.7553 | -0.3864
-0.7976
-0.4468
-0.3872 | -1.1815
-1.4835
-0.7578
-0.9584 | -1.4221
-0.7908
-0.3525 | -1.304
-1.3572
-0.9642
-1.3403 | | | -0.1024
-0.1444
-1.081 | | -0.5666
-0.0134
-0.5935 | | -0.9597
-0.585 | -1.0027
-0.7752
-0.3422 | -1.0588
-0.9797
-1.1042 | | | | | -0.8232
-0.2918
-0.9045 | -0.3005
-0.6694
-1.2329 | -1.2388
-0.7187
-1.6753 | -0.7404
-0.875
-1.6942 | -1.0916
-0.7747
-1.2577 | -1.0153
-1.0117
-1.3331
-0.5751 | | | | -0.2093
-0.2246
-0.6819 | | | -0.6111
-1.7179
-1.1936 | | -0.5751
-1.5605
-0.9912 | | | 0.5742 | | -0.6811
-0.1929
-0.5962 | -1.3633
-0.7259
-0.7466 | -1.0447
-0.2492
-0.5122 | -1.8827
-0.7709
-0.7929 | -1.3614
-0.828
-1.0771 | | | | | | -0.7327
-0.7778
-1.1416 | -0.512
-0.8256
-1.197 | -1.1147
-0.9824
-1.2375 | -0.9064
-0.6946
-1.3147
-0.8959 | | | | | -0.7469
-0.6775 | -0.5969
-1.0906
-0.8716 | -1.197
-0.7498
-1.0406
-0.908
-1.1244 | -1.0256
-1.6142
-0.6997 | -0.8959
-1.19
-0.7057
-1.0304 | | | -0.0014
-0.3973 | -1.2412
-0.2014
-0.6963 | -0.9037
-1.1302
-0.9244
-1.0511 | -0.704
-1.1819
-0.7256
-1.0356 | -1.4224
-0.9663
-0.9378 | -1.4029
-1.2201
-0.7181 | | | | 0.2538
-0.0335
0.2945 | | -0.6759
-0.749
-0.8683 | -1.1995
-0.9209
-1.3292
-1.1093 | -1.142
-1.1741
-1.18 | -1.7904
-0.8976
-1.4114 | -1.4325
-0.8373
-1.1686 | | | | | -0.3659
0.0897
-0.9398 | -1.1093
-1.1193
-1.6302 | -1.305
-1.3901
-1.8185 | -2.3054
-1.6228
-1.7874 | -1.5195
-1.5449
-1.9228 | | -0.1537
0.2076 | -0.5788
0.068
-0.2252 | | -0.757
-0.4654
-0.4323 | -0.7392
-1.0138
-0.807 | -0.834
-0.7664
-0.7741 | -0.8102
-1.4076
-1.2971 | -0.8005
-1.1058
-0.6638 | | -2.4182
-2.604
-3.724 | -2.2033
-2.071
-1.9344
-3.2867 | -0.173
-0.3084
-0.7631 | -0.7302
-0.5242
-0.1878
-1.2771 | 0.7854
0.5093
-0.4681 | 0.3484
0.3972
-0.6164 | 0.1453
-0.2869
-0.9001 | 0.1842
0.4067
-0.9332 | | -0.741
-1.5161
-0.9687
-1.2161 | -1.1285
-1.6239
-0.8916 | | | | -0.4252
-0.5415
-0.7847 | -1.1285
-0.6143
-0.8851 | -0.9367
-0.9959
-1.0392 | | -1.1085
-0.6217 | -1.2614
-1.1033
-0.2807 | -0.7502
-1.5783
-0.9201 | -0.659
-1.3137
-0.4099 | -0.9949
-1.4818
-1.0569 | -1.1212
-1.1824
-0.7578 | -0.8695
-1.3977
-1.063 | -0.7882
-1.2972
-0.8438 | | -3.0606
-0.8222
-0.3894
-2.1331 | -2.5442
-1.0036
-0.5213 | -2.0551
-0.8509
-0.8014 | -2.1974
-0.7364
-0.6899 | -1.6818
-1.0108
-1.2414
-1.8188 | -1.3617
-0.7909
-1.3772
-1.589 | -1.1689
-0.8736
-1.8333
-1.9609 | -1.1053
-0.8253
-1.6777
-1.6321 | | -0.6505
-0.3633
-0.7885 | -1.0047
-0.429
-0.7798 | -0.8844
-0.995
-1.1689 | -0.9706
-1.0456
-1.2825 | -1.1121
-1.0117
-1.3088 | -1.0525
-1.0769
-1.4441 | -1.1121
-1.0769
-1.0489
-1.8314 | -0.9554
-1.0456
-1.4258 | | -0.3749
-0.9762
-1.1498 | -0.7798
-0.8178
-1.3425
-0.7847 | -1.3308
0.1131
-1.3714 | -1.2964
-0.7536
-1.0744 | -1.402
-0.9728
-1.2233 | -1.3719
-0.9912
-1.0326 | -1.8314
-1.6795
-0.7513 | -1.4258
-1.1805
-1.1
-0.873 | | -0.3685
-2.0503
-1.2116 | -0.4007
-2.0304
-0.5024 | -1.2577
-1.2123
-0.9658 | -0.7536
-1.0744
-0.8339
-1.248
-0.5467 | -1.2139
-0.8534
-1.0639 | -1.0114
-1.0442
-0.485 | -1.7189
-2.0767
-0.8066 | -1.1104
-1.3724
-0.6893 | | -2.4792
-1.4449 | -1.2295
-0.3346
-1.0206
-1.7327 | -0.9109
0.8582
-1.3388
-1.0073 | -1.309
1.2275
-1.4279
-1.0686 | -0.5552
0.3164
-1.24
-0.6493 | -1.249
0.0884
-1.1984
-0.7985 | -1.263
-1.0342
-1.9766
-0.3038 | -0.6011
-0.554 | | -1.5886
-1.0744
-0.8473
-1.675 | -1.0997
-0.6927
-1.0735 | -1.3246
-0.7472
0.3566 | -1.0686
-1.1854
-0.7215 | -1.2969
-0.6004
-0.0849 | -1.2545
-0.9465
0.1033 | | | | -0.119
-2.0353
-0.9148 | -0.7327
-2.4883
-1.0063 | -1.6702
-1.8674
-0.7984 | -1.4826
-2.3625
-0.6681 | -1.2794
-0.9151
-0.774 | -1.379
-1.9533
-0.8568 | -1.1627
-0.0004
-0.8855 | -1.1863
-0.8821
-0.9386 | | -2.5678
-1.5934
-0.8553 | -2.2155
-1.5221
-1.756 | -0.2545
-1.5404
-0.4444
0.3017 | -0.5265
-1.5776
-1.2116 | -0.1201
-1.3246
-0.7925
-0.5573 | -1.4059
-1.1688
-1.3071 | -1.2487
-1.2802
-1.171 | -0.3423
-0.4341
-0.7411
-2.036 | | -0.7109
-1.3887
-1.5474 | -0.8501
-1.3492
-1.3957 | -0.777
-1.5651
-1.062 | -0.7245
-1.4677
-1.3018 | -0.728
-1.2621
-0.3895 | -0.7349
-1.3825
-1.082 | -0.777
-1.1667 | -0.6806
-1.282
-0.7932 | | -1.362
-0.5541
-1.9005 | -1.4004
-0.9737
-1.8051 | -1.3046
-1.0619
-1.461
-0.9051 | -1.4253
-1.3281
-1.5017 | -1.1215
-1.4264
-1.1507 | -1.0339
-1.3092
-1.2512 | -1.0013
-1.5596
-1.6889 | -1.1186
-1.4087
-1.4992 | | -0.9577
-1.2019
-0.6339 | -0.5469
-1.0279
-0.7947 | | -0.3387
-0.4865
-0.9965
-0.7364 | | -0.5577
-0.8524
-0.7751 | -1.1168
-1.3554
-1.2458
-1.162 | -0.9471
-0.9673
-0.9895 | | -2.0297
-3.8904
-1.1578
-0.8667 | -2.9206
-0.8988
-0.884 | -0.5855
(1.0585
-1.207
-0.9098 | -0.7364
0.1303
-0.9392
-0.7384 | | | -1.162
-0.5016
-1.1764
-0.9554
-0.614 | -1.437
-0.074
-0.4662
-0.793 | | -1.6489
-1.6595
-0.6364 | -1.9198
-1.371
-0.6699 | | | | | -0.7186
-1.138 | | | | -0.5359
-0.853
-0.2175 | -1.0976
-1.1501
-0.9771
-0.7478 | -1.1177
-1.0355
-0.9221
-0.461 | -1.2569
-1.2962
-0.9053
-0.8143 | -1.2474
-1.0775
-0.9736
-0.6789 | -1.2695
-0.853
-1.1224
-0.9127 | | | -1.319
-0.9011
-1.2029
-0.506 | -0.8079
-1.036
-1.5531
-0.6724 | -2.3055
-0.5652
-0.4394 | -0.2695
-2.6321
-1.7058
-0.5813 | -0.5852
-1.8594
-1.5795
-1.0012 | -0.5408
-2.2919
-2.1471
-1.0336 | -1.23
-2.129
-1.2045 | -0.8326
-1.2835
-2.3524
-1.1904 | | -0.6251
-0.927
-1.7438 | -0.4935
-0.9855
-1.8724 | -0.798
-1.056
-1.7054 | -0.4269
-1.0117
-1.7803 | -0.6034
-1.0491
-1.7289
 -0.6182
-0.995
-1.5957 | -1 1774 | -0.963
-1.0629
-1.4034
-1.0423 | | -1.1608
-0.9492
-1.7427 | -0.4906
-0.5942
-1.3134
-1.8852
-0.9336 | | -0.5396
-0.7397 | | | -0.9818
-1.4964
-0.9494
-0.8329
-0.9164 | | | -0.9492
-1.7427
-2.0822
-1.0055
-0.6199
-1.7674
-0.7149 | -1.8852
-0.9336
-0.7261
-1.944
-0.8199 | | -0.5033
-0.692
-0.7726 | -0.2779
-0.8452
-0.6878
-1.8282 | -0.3916
-0.8093
-0.718
-1.8185 | -1.057
-1.11
-0.6902
-1.712 | -0.4613
-0.8696
-0.5182 | | | -0.8199
-0.609
-1.5213 | -1.8447
-1.016
-1.0616
-1.664 | -0.7726
-1.8647
-1.2285
-1.0057
-1.8682 | -1.8282
-0.885
-1.8661
-1.5442 | -1.056
-1.4528
-1.6671 | -1.0778
-1.8255
-1.7575 | -1.0384
-1.7648
-1.781 | | -1.5034
-0.8058
-0.7273 | | -0.2649
-0.7534
-0.7411 | -0.1424
-0.8201
-0.7764 | -0.4218
-0.8201
-0.6176 | -0.3243
-0.7499
-0.7551 | | -0.4162
-0.8826
-0.798 | | -1,8827
-1,5034
-0,8058
-0,7273
-1,4241
-0,7832
-1,5579
-1,7758
-1,671
-1,6338 | -1.1427 | -1.1297 | -1.2794
-1.0738
-1.4234 | -1.3897
-1.1058
-0.9819 | -1.341
-1.0613
-0.9137 | -1.3202
-1.0334
-1.0993
-1.5882
-1.5365
-1.6057 | -1.1664
-1.1318
-0.9485 | | -1.671
-1.6338
-2.4443 | -1.5182
-1.7257
-1.4652
-1.5781
-2.3096 | -1.6268
-1.4921
-1.0681 | -1.5511
-1.4953
-1.0385 | -1.6403
-1.4876
-1.4509
-0.5001 | -1.7186
-1.6145
-1.5311 | -1.5365
-1.6057
-0.9541 | -1.7117
-1.6807
-1.3808
0.1566 | | -2.4443
-0.8527
-1.0626
-1.0962
-0.3486 | -2.3096
-0.8288
-0.6844
-0.9928
-1.7119 | -1.0961
-1.2373
-1.7434
-1.6268
-1.4921
-1.0681
-0.7736
-1.1905
-1.5229
-2.0311 | -1.0736
-1.4234
-1.8127
-1.5511
-1.4953
-1.0365
-0.7707
-1.1178
-1.2084
-1.9136 | -0.5001
-0.7937
-1.362
-1.0899
-2.0621 | -0.8587
-1.2541
-1.08
-2.1224 | -0.9511
-0.9524
-1.3377
-1.5112
-2.0517 | -0.9719
-1.1967
-1.378 | | -1.0882
-2.0984 | -U.7246
-1.0772 | | | | -0.6489
-1.3933 | -2.0517
-1.1436
-1.1833
-1.628
-1.6122 | -2.0937
-0.5663
-1.8185 | | -1.5963
-1.5457
-1.9305 | -1.8442
-1.336
-1.8711 | -1.1285
-1.5781
-1.6338
-1.9147 | -1.4282
-1.5989
-1.4057
-1.8348 | -1.5524
-1.5908
-1.9052 | -1.8349
-1.2981
-1.9052 | -1.628
-1.6122
-1.9401 | -1.6965
-1.4307
-1.7311 | | -1.9305
-0.9607
-1.4694
-0.3717 | -0.9677
-1.6031
-0.7887
-0.9848 | -0.9087
-1.0084
-0.6896
-0.9547 | -1.8348
-1.033
-1.3524
-0.764
-0.9449 | -0.8293
-1.0564
-0.7283 | -0.7943
-1.0042
-1.1038 | -1.691
-0.9095 | | | 3 Cnfn
3 Coch | -0.9059
-1.7485 | -0.8156
-2.0465 | -0.8662
-2.0465 | -0.7667
-1.9935 | -0.699
-1.8304 | -0.7082
-1.779 | -0.908
-1.6248 | -0.8417
-1.8658 | -0.9955
-1.7132 | |-------------------------------------|---|---|---|--|--|---|--|--|-------------------------------| | 3 Col14a1
3 Cops8
3 Coro1a | -1.0478
-0.9815 | -0.8989
-0.9541 | -1.0015
-0.9851 | -1.0168
-1.2792 | -1.1518
-1.2149
-1.3489 | -0.9596
-1.38 | -1.1552
-0.9308 | -1.051
-0.9541 | -1.0384
-1.2545 | | 3 Coro1a
3 Cotl1
3 Cox6a2 | -1.3387
-2.1411
-0.52 | -1.3557
-1.9311
-1.0091 | -1.3421
-2.7469
-0.7794 | -1, 2792
-1, 2695
-2, 67
-0, 8206
-0, 4592
-0, 8425
-1, 5826
-0, 9346
-0, 8177
-0, 9285 | -1.3489
-2.1024
-0.767 | -1.2792
-2.4006
-0.9552 | -0.9308
-1.0517
-0.7938
-0.9482 | -1.2955
-1.3801
-0.9204 | -1.1255
-0.5096 | | 3 Cpped1
3 Crp
3 Csf1r | | -0.5178
-0.7214 | -0.6211
-0.7976 | | -0.5382
-0.6247 | -0.4762
-0.8531 | -1.161
-0.8637
-1.5544
-0.9867
-1.6549 | -1.0258
-0.7606 | -1.7905
-0.7606 | | 3 Csf2rb2
3 Csprs | -1.4997
-0.9754
-0.8112 | -1.493
-0.9641
-2.0412 | -1.6005
-0.9165 | -1.5826
-0.9346
-0.8177 | -1.5579
-0.9679
-0.5924 | -1.4699
-0.9419
-1.3427 | -1.5544
-0.9867
-1.6549 | -1.415
-0.931
-2.2447 | -0.895
-2.2016 | | 3 Ctnnal1
3 Ctsc | -0.8112
-1.9647
-1.2076
-1.7478
-0.9019 | -2.2794
-1.6758
-1.6176 | -0.7399
-1.9357 | -0.9285
-1.9046
-1.7759 | -0.4123
-2.5686 | -0.1136
-2.2646
-1.6148 | -2.0795
-1.7727 | -0.4183
-2.3336 | -0.2418
-2.7948
1.7093 | | 3 Ctse
3 Ctss
3 Cx3cr1 | -1.7478
-0.9019
-0.6554 | | -1.7759
-1.0673
-0.8802 | | -1.5866
-0.7995
-0.8669 | -0.9501
-0.9311 | | -1.6576
-0.8688
-0.897 | -0.8311
-0.6669 | | 3 Cxd13
3 Cxd16 | -0.9019
-0.6554
-0.7108
-0.9295
-0.6668
-1.2005
-0.983
-0.8841 | -0.7535
-0.8869
-0.7914
-0.9844 | -1.1185
-0.5409 | -1.158 | -1.2405
-1.0841 | -1.2547
-1.3994 | -0.7619
-1.244
-1.3788
-2.0333
-1.0727
-1.1968
-0.9417 | -1.112
-1.2897
-1.6486 | -1.2476
-1.1629 | | 3 Cyba
3 Cyp27a1
3 Cyp4f13 | | -0.6992
-1.4603
-0.9325
-0.9223 | -1.8655
-1.4829
-1.123 | -1.5805
-1.3584
-0.984
-0.9814 | | -1.5529
-1.3289
-0.8191
-0.8108 | -2.0333
-1.0727
-1.1968 | -1.6486
-1.4038
-0.785
-0.8562 | -2.1785
-0.8076
-0.3692 | | 3 Cyp4f18
3 Cyp4f39
3 Cysltr1 | -0.8841
-2.4334 | -0.9223
-2.1564
-1.1155 | -0.9126
-1.1955 | | -0.8369
-1.0396
-0.3687 | -0.8108
0.3328
-1.0551 | -0.9417
-1.1719
-0.969 | -0.8562
-0.2562 | -0.8623
-2.185 | | 3 Cysltr1
3 Cytip
3 Daglb | -2.4334
-1.2854
-1.1138
-0.938 | | | -1.064
-1.2158
-0.7571 | | -1.0551
-1.0564
-0.9347 | -0.969
-1.4114
-1.3676 | -0.8386
-1.2653
-1.1555 | -1.1372
-1.2981
-1.9066 | | 3 Darc
3 Dbi | -1.386
-1.1315 | -1.3366
-1.4694 | -1.5065
-1.2236 | -1.3928
-1.2535 | -1.5777
-1.2257
-1.6112 | -1.8299
-1.3938 | -0.965
-1.4114
-1.3676
-2.1266
-1.5256
-0.995 | -2.2548
-1.2884 | -2.7755
-0.3761 | | 3 Dgat2
3 Dmkn
3 Dnaic5b | -2.1232
-2.9995
-1.2683 | -1.3366
-1.4694
-1.371
-2.2985
-1.1526 | | -1.1496
-1.0775 | -1.6112
-0.0497
-0.4186 | -1.3454
-0.2889
-0.3448 | | -1.0973
-0.2381
-1.2843 | -1.3569
-3.3079
-1.1822 | | 3 Dok3
3 Dpep2
3 Dram2 | -1.3302
-1.0631
-0.8827 | -0.9269
-0.9144 | -1.3253
-0.9481 | -0.9759
-1.1035
-0.9429 | | -1.2377
-0.8129 | -1.0482
-1.3401
-1.1615
-1.3113 | -1.2309
-1.0508 | -0.6543
-0.934 | | 3 Dram2
3 Drp2
3 Dtx4 | -0.8827
-1.633
-0.4119 | -1.2107
-1.84 | -1.0044
-0.0901
-1.1325 | | -0.7867
0.2777
-0.8811 | -1.0569
-0.1845
-1.0557 | | -1.0336
-1.1036
-0.9438 | -0.6526
-1.982
-0.8424 | | 3 Edn2
3 Efcab1 | -2.4015
-0.8824
-1.5712 | -2.2273
-1.0963 | -1.502
-0.8263 | | | -0.4211
-0.4757 | -0.7014
-0.9865
-0.5768
-1.057 | -0.4877
-0.3983 | -2.15
-1.0181 | | 3 Ehd4
3 Espn
3 Ethe1 | -1.7923
-0.7606 | -1.55/3
-1.9992
-0.7199 | -0.5909
-1.6305
-1.0627 | -0.7513
-1.754
-0.8296 | | -0.6199
-0.5475
-0.6558 | | -1.0128
-0.4137
-0.6733 | -1.4919
-1.4898
-0.6964 | | 3 Fah
3 Fam110c
3 Fam126a | -1.4734
-1.8426 | -1.4045
-1.3122
-1.1483 | -1.4338
0.266 | -0.9204
-0.988 | -1.0261
-1.7435 | -0.8216
-1.4991 | -0.1408
-0.8564
-1.8995
-2.6282 | -0.9632
-1.7253 | -1.5299
-3.8434 | | 3 Fam126a
3 Fam165b
3 Fam78a | -0.7866
-0.4172
-1.6582 | -1.1483
-0.3879
-1.5315
-1.0678 | | -0.3481
-0.6328
-1.6124 | -0.792
-1.4204
-1.3674 | -0.7141
-1.1526
-1.4643 | -1.2417
-1.3044
-1.0137
-1.1231 | -1.0624
-0.8894
-1.133 | -1.6261
-1.1094
1.1191 | | 3 Fau
3 Fcgr1 | -0.9981
-0.8118 | | -0.6807
-0.7537 | | -0.7096
-0.8498 | -1.4643
-0.7132
-1.0342 | -1.1231
-0.7718 | -0.9039
-0.7477 | -0.8555
-0.7932 | | 3 Fcgr2b
3 Fcna
3 Fermt3 | -1.8034
-1.101
-1.6755 | -1.476
-1.1202
-1.6996 | -1.3678
-1.1527
-1.5232 | -1.3232
-1.0915
-1.6417
-1.5154 | -1.05
-1.1759
-1.6152 | -1.3365
-1.0329
-1.7709 | -0.7718
-1.7029
-1.1428
-1.7636
-1.5812
-0.7569 | -1.5823
-1.1202
-1.7101
-1.375 | -1.1363
-1.6451 | | 3 Fes
3 Ficn | -1.6755
-1.0692
-0.8244 | -1.6996
-1.584
-1.215
-2.1226 | -1.5562
-0.7 | | -1.3271
-0.8077 | -1.7709
-1.4498
-1.0387 | -1.5812
-0.7569 | | -1.5479
-0.3175 | | 3 Fyb
3 Gamt
3 Gbf1 | -2.0262
-0.5217
-0.7872
-0.8614 | -2.1220
-0.2842
-0.8956 | -1.9356
-1.0831
-0.8992 | -2.1193
-1.2405
-0.8188
-0.5225
-1.2074
-1.3263
-0.7604 | -1.9387
-1.5998
-0.9187
-0.8277 | -2.2224
-1.8091
-0.7838 | -2.1326
-1.5532
-1.101
-0.9117 | -2.0387
-1.6894
-1.1765 | -1.7263
-0.6752 | | 3 Gchfr
3 Gm2a
3 Gmfg | -0.8614
-0.547 | -0.5024
-0.9158
-2.4607 | -0.8699
-0.8526 | -0.5225
-1.2074
-1.3363 | -0.8277
-1.2084
-1.0075 | -0.6332
-1.1575
-0.7121 | -0.9117
-1.3017
-0.784
-1.1226 |
-0.6715
-1.1299
-0.8628 | -1.3332
-0.3793 | | 3 Gmip
3 Gna14 | -2.8351
-0.8887
-2.2488
-1.177 | -0.6221
-1.3445 | | -0.7604
0.5883 | -1.2262
0.3713 | -0.7121
-1.0115
-0.0474 | | -0.966
-0.7191 | -1.1497
-3.3179 | | 3 Gngt2
3 Gpnmb
3 Gpr146 | -1.177
-0.6914 | -1.0298
-1.4214 | -0.4449
-0.7653 | -0.5006
-1.8597
-1.2981
-1.5746 | -0.4131
-0.4807 | -0.4497
-1.9964 | -0.7342
-1.5521 | -0.5023
-2.6475 | -1.1905
-3.0288 | | 3 Gpr183
3 Gpr20 | -1.6413
-1.4232 | -1.585
-1.5454 | -1.5241
-0.7569 | | -1.0341
-1.5781
-0.2558 | -1.5678 | -1.3189
-1.4818
-0.3579 | -1.4563
-0.185 | -1.4626
-1.2399 | | 3 Gpr30
3 Gpr34
3 Gpr65 | -0.7847
-0.9878 | | -0.633
-0.8611 | -0.8898
-0.933 | -1.025
-0.9567 | -0.7847
-0.5138 | -0.9573
-0.9499 | -0.8008
-0.9636 | -1.116
-0.967 | | 3 Gramd4
3 Gm | -0.7826
-0.8062 | -0.7383
-1.2537 | -0.2595
-0.9612 | -0.469
-1.6805 | -0.3755
-1.1816 | -0.3932
-1.4309 | -0.8232
-1.5778
-1.039 | -0.6968
-1.5408 | -1.7447
-1.7263 | | 3 Gtpbp2
3 Gusb
3 H2-Ab1 | -0.6352
-0.9821
-0.8796 | -0.6757
-0.5815 | | -1.6805
-0.9261
-0.9699
-0.8994
-0.8794
-1.1246
-2.1601 | -0.9869
-1.3226 | -1.0487
-1.0799
-0.8821 | -1.039
-1.2676 | -0.9148
-1.4008 | -0.9313
-0.9445
-0.9788 | | 3 H2-Q7
3 Hcls1 | -0.0388 | -1.0321
-1.4216
-1.3339
-0.9657 | -0.651
-1.1871 | -0.8794
-1.1246 | -0.707
-1.5911 | -0.691
-1.4884 | -1.2676
-0.6318
-0.8495
-1.4714 | -0.9537
-1.4413 | -0.9432
-1.4747 | | 3 Hebp1
3 Hgfac
3 Hgsnat | -1.364
-0.88
-1.076 | -1.3339
-0.9657 | -2.2434
-0.9164 | -2.1601
-0.5265
-1.4163 | -2.3085
-0.7244 | -1.7908
-1.8803 | -2.3085
-0.7987 | -1.6776
-0.1697 | -0.2634
-1.3106
-2.4217 | | 3 Hk3
3 Hlx | -0.9116
-1.6287
-0.5804 | -0.9018
-1.5197
-0.8603
-0.8935 | -1.3957
-1.4681
-1.2292 | -1.4163
-1.5477
-1.5428 | -1.5135
-1.5192 | -1.8803
-1.6556
-1.531 | -1.4038
-1.6221
-1.5339 | -1.75
-1.3535
-1.5577 | -1.5668
-1.585 | | 3 Hmgcl
3 Hmha1
3 Hpgd | -0.9568
-1.8955
-1.0208 | -0.8935
-1.84
-1.5798 | -0.9392
-1.3386
-1.0458 | -0.9162
-1.5557
-1.7247 | -0.6723
-0.5583
-1.5199 | -0.8411
-0.557
-1.5346 | -0.6603
-0.6053
-1.3379 | -0.7593
-0.5505
-1.7247 | -0.1855
-0.7469
-1.3199 | | 3 Hpgds
3 Hr | -0.7056
-0.9658 | -1.84
-1.5798
-0.7654
-1.0924
-1.1934 | | -1.5557
-1.7247
-0.8697
-0.9487 | -0.8245
-0.8704 | -1.5346
-0.8599
-1.0283 | -0.7745
-1.1595 | -0.6426
-1.0877 | -0.6624
-1.4796 | | 3 Hs3st3a1
3 Htatip2
3 Htra1 | -1.9076
-0.6878
-0.3675 | | -0.493/
-1.0494
-1.0541 | | | -1.08
-1.0578
-1.1862 | -1.2225
-1.5735
-1.2783
-1.6192 | -1.4978
-1.3252
-1.4588 | -4.1107
-1.3674
-2.827 | | 3 Hyi
3 Ica1
3 Ifi30 | -0.6002
-1.3587
-0.882 | | -0.8029
-0.6576 | -1.6914
-1.3222
-0.2916 | | -1.1862
-0.5059 | -1.6192
-1.2053 | -1.4588
-0.6396 | -2.2968
-0.911 | | 3 lfngr1
3 ll10ra | -0.862
-0.7377
-1.1891 | -0.8864
-0.9146
-1.1534 | -1.2173
-1.0668
-1.3054 | -0.2916
-0.7846
-1.0267
-1.2393
-0.9944 | -1.0322
-1.1891 | -0.7
-0.978
-1.2393 | -1.4476
-1.2393
-1.4738 | -1.1809
-1.3126 | -2.0691
-1.3019 | | 3 II16
3 II18
3 II19 | -0.4318
-0.9773
-0.6763
-0.8841 | -0.4188
-1.1925
-1.0088
-0.8159 | -0.8953
-0.4745 | | -1.306
-0.8205 | -1.2553
-1.0418 | -1.1904 | -1.2753
-0.7588 | -1.4394
-1.8188 | | 3 II1b
3 Insig2 | | | -0.8382
-0.9732
-0.8188 | | -0.8512
-0.7724 | | -0.8487
-0.7815
-1.0069
-1.0355
-1.0299
-1.2144
-0.846
-1.6848
-1.2249 | | -0.8223
-0.5914 | | 3 Insm1
3 Iqsec3
3 Irf5 | -0.6861
-1.841
-1.0468
-0.8537
-0.9468
-1.7448 | -1.2347
-0.8268
-0.9243
-0.9691 | -0.282
-1.0366 | -1 1597 | -0.4171
-1.0811 | -0.8186
-1.0673 | -1.0355
-1.0299 | | -1.2432
-1.1597 | | 3 lrf8
3 ltga7 | -0.9468
-1.7446 | -0.9691
-1.9143
-0.8353 | -1.0979
-0.928
-1.4591 | -1.1193
-0.891
-1.2982 | -1.2884
-1.0248
-0.8964 | -1.1949
-0.9627
-1.1925 | -0.846
-1.6848 | -0.7244
-1.9385 | -0.6764
-2.8424 | | 3 Itgb4
3 Kcnab2
3 Klhl6 | -2.3818
-1.6189
-2.1296 | -1 3432 | -0.2823
-2.1294
-2.0289 | -2.0269
-1.9409 | -0.2849
-2.4833
-2.1648 | -2.4577
-2.1296 | -1.2249
-2.0316
-1.8637 | -0.1671
-2.1757
-1.6642 | -4.3112
-1.8898
-1.7713 | | 3 Klk1b24
3 Klk1b27 | | -1.8724
-1.0461
-2.3111 | -0.7225
-1.5321 | -0.59
-0.8331 | -2.4833
-2.1648
-1.2651
-1.6006 | -1.516
-1.3229 | -2.0316
-1.8637
-1.8931
-2.4332 | -1.4433
-1.5253 | -1.8806
-2.8164 | | 3 Klk1b4
3 Klk5
3 Klk6 | -2.8466
-4.4967
-4.4836
-4.6412 | -2.7077
-2.5654
-2.378 | | | | -0.4694
-0.1682
-0.1217 | -2.2711
-1.7882
-1.9537 | -0.6701
-0.2066
-0.4473 | -4.4136
-4.7904
-4.6064 | | 3 Krt16
3 Krt79 | -2.2539
-1.1611 | -2.0022
-0.8843 | -1 | | -0.3438
-0.8941 | -0.9689
-1.0214 | -1.0282
-1.0952 | -1.1048
-0.9684 | -2.6371
-0.8519 | | 3 Krtdap
3 Kynu
3 Lat2 | -2.5502
-1.4495 | -1.5255
-1.4744
-0.7379 | -0.7532
-1.3441
-0.4725 | -0.6963
-1.2612
-0.4804 | -0.3483
-1.302
-0.9447 | 0.3513
-1.4708
-0.8915 | -0.7315
-1.2925
-0.7784 | 0.1366
-1.2006
-1.0841 | -3.2196
-1.3539
-0.8351 | | 3 Lcp1
3 Lcp2 | -0.5864
-1.8545
-0.9092
-0.8331
-2.819
-1.5048 | -1.7969
-0.8883 | -1.7869
-1.0265 | -1.5726
-0.9341 | | -1.7869
-0.9377 | -1.4896
-0.8439
-0.9114 | -1.7446
-0.8676 | -1.8339
-0.9163 | | 3 Leproti1
3 Lgals7
3 Lgmn | -0.8331
-2.819
-1.5048 | -0.4697
-2.3413
-1.7785 | -0.5758
-0.3695
-1.5708 | -2.0929 | -0.66
-1.8596 | 0.2482
-2.0059 | | -0.7676
-1.8309 | -1.2407
-3.2795
-2.3286 | | 3 Lilrb4
3 Lpar3
3 Lpar6 | -1.0556
-1.8369
-2.2636
-1.5738
-3.5547
-1.4386 | -1.0951
-1.0951
-1.6873
-1.3478
-1.3581
-3.1081
-1.7798 | -1,122
-1,6904
-1,5266 | -2.0929
-1.072
-1.4513
-1.0454
-1.1382
-1.2152
-1.8583
-1.2462
-1.3917
-1.5141 | -1.1633
-1.7765
-0.8998 | -2.0059
-1.0851
-1.6935
-1.0129 | -2.1082
-1.1703
-1.6628 | -1.1703
-1.5434
-0.5041 | -1.0173
-1.6209 | | 3 Lpxn
3 Lrmp | -2.26.36
-1.5738
-3.5547 | -1.3581
-3.1081 | -1.5248
-1.6474 | -1.1382
-1.2152 | -0.8998
-1.3214
-1.1598
-1.7798 | -1.2061
-0.7697 | -1.3439
-1.9476 | -0.5041
-1.512
-1.1003
-1.6723 | -1.512
-2.1685 | | 3 Lst1
3 Ltc4s
3 Lvl1 | -1.4386
-1.2072 | -1.7798
-0.8763 | 1.5266
-1.5248
-1.6474
-1.9612
-1.338
-1.151 | -1.8583
-1.2462
-1.3917 | -1.7798
-1.3033
-1.2314 | -1.2061
-0.7697
-1.725
-1.2233
-1.2934
-1.3565
-1.0345
-1.0035 | -1.9476
-1.9479
-1.1881
-1.237 | -1.0639
-1.3642 | -1.6533
-1.0962
-1.3859 | | 3 Lypd2
3 Lypd3 | -1,2072
-1,4908
-3,3597
-3,6158 | -0.8763
-1.5932
-2.028
-3.4666 | -1.4427 | | -1.786
-1.303
-1.2314
-1.8873
-0.7673
-1.2127 | -1.3565
-1.0345 | | -1.3642
-0.82
-1.4989 | -3.8101
-3.3549 | | 3 Man2b1
3 Mapk13
3 Matn4 | -0.3702
-2.3188 | -0.778
-2.4129
-0.6896
-0.964
-0.9061 | -1.0631
-1.212
-1.2017 | -0.9905
-1.2447
-1.5891 | -1.2127
-0.1492 | -1.0035
0.081
-1.4126 | -1.316
-1.3152
-0.7674 | -1.0496
-0.5263 | -1.3248
-2.2486
-1.4749 | | 3 Mboat1
3 Mertk | -1.585
-0.7167 | -0.964
-0.9061 | -0.4261
-1.2437 | | -1.0598
-0.6968 | -0.1613 | -1.608
-0.8467
-1.2962 | -0.3021
-1.53
-1.009 | -1.7919
-1.0951 | | 3 Mfsd1
3 Mgl2
3 Mgst3 | -0.6369
-1.2444
-0.9926 | -0.6038
-1.2819
-0.7344 | -0.6006
-1.1689
-0.7132 | -1.3316
-0.7904
-0.9524
-0.8108 | | -1.3852
-1.0402
-0.8109
-0.3958 | -1.2962
-0.7978
-1.1466
-0.8785 | -1.009
-1.1721
-0.5658 | -0.9785
-1.1721
-1.62 | | 3 Mmp9
3 Msin | -1.6494
-2.5845 | -1.0977
-0.7586 | -1.7517
0.405 | -1.7578 | -1.5724 | -1.8751
0.4782 | -1.0515 | -1.3635
0.1047 | -1.3635
-3.491 | | 3 Mtap2
3 Mtus1
3 Mustn1 | | -0.6935
-0.4436
-0.2216 | -1.0704
-1.2411
-0.999 | -1.0308
-0.8868
-0.9658
-1.2017 | -0.8692
-1.3316
-1.4738 | -0.5757
-0.9107
-1.5909 | -1.0276
-1.4224
-1.6332 | -0.4101
-0.826
-1,4016 | -1.629
-0.3451
-1.5498 | | 3 Myd88
3 Myo1f | -0.2231
-2.2042 | -0.7712
-2.3417 | -1.0608
-2.096 | -1.2017
-2.328 | -1.4738
-1.6172
-2.2105
-1.1847 | -1.7016
-2.3011 | -1.0276
-1.4224
-1.6332
-1.9251
-1.8961
-1.7323
-0.9652
-1.204 | -1.9477
-2.1047 | -1.8572
0.0765 | | 3 Myo1g
3 Myzap
3 Nat1 | -1.9383
-0.761
-1.3474 | -0.8279
-1.2693 | -1.6448
-0.8918
-1.2157 | -2.328
-0.7841
-1.1027
-1.1167 | | -0.6005
-0,756 | -1./323
-0.9652
-1,204 | -0.4727
-1.0552 | -0.5128
-1.3219
-1.2573 | | 3 Nccrp1
3 Ndrg1
3 Neu1 | -4.2543
-1.1763
-1.3974 | -2.025
-2.1728
-1.8418 | -0.4928
-0.7564 | 0.844
-1.1636
-1.3806
-1.2426 | 0.4569
0.2847 | 1.3442 | 0.0658 | 0.8824
0.2933
-1.1225 | -4.6293
-2.4331 | | 3 Nire3
3 Nod1 | -0.6558
-1.3389 | -1.8418
-0.667
-1.5082 | -1.0323
-0.808 | | -0.8796
-1.1905
-0.1384 | -1.0633
-1.3835
0.0738 | -1.3081
-1.1427
-0.8366 | -1.1611 | -1.0468
-2.8662 | | 3 Nrcam
3 Nt5c3
3 Ntrk3 | -1.2071
-1.765
-0.8699 | -1.1466
-1.5303 |
| -1.1589
-0.8937
-0.7692 | -1.6764
-0.747 | -1.8189
-0.7025 | -0.6749
-1.1709
-0.684 | -0.7788
-0.9022
-0.7913 | -1.7397
-2.0518 | | 3 Nudt11
3 Nudt16 | | -1.8145
-0.8186 | -1.4214
-0.5968 | -1.2113
-0.9323 | -0.8106
-1.1853
-0.9559 | -0.6879
-0.9393 | 0.2739
-1.5921 | -0.7913
-0.1942
-0.9775
-1.3156 | -0.1175
-1.5212 | | 3 Oat
3 Odz4
3 Osbpl3 | -0.1616
-1.3538 | -0.3483
-1.2612
-1.0185 | -1.5848
-0.739
-0.7181 | -1.4415
-0.663 | -1.51
-1.022
-0.7502 | -1.4278
-0.9181
-0.8826 | -1.5921
-1.4203
-1.507
-1.4521 | -1.3156
-1.3556
-1.0881 | -1.584
-1.8986
-2.3732 | | - Caupia | -1:4218 | -1.0165 | 0.7101 | 77.4000 | -017002 | -0.0020 | -1.4021 | -1,0001 | -2:3733 | 3 3 3 | 3 Osm | | -1.917 | -1.9555 | -1.9265 | -1.7331 | -1.787 | -1.9329 | -1.6466 | -1.9201 | -1.1333 | |---|---|---|---|---|---|--|--|--|--|--| | 3 Ostf1
3 Otx1
3 P2rx4 | | -0.9103
-2.1135
-0.5432 | -0.8123
-2.1488
-0.3205 | -0.8561
-1.8664
-1.0212 | -0.7178
-1.6532
-0.8201 | -0.7183
-2.0214
-1.0845 | -0.5587
-1.8505
-0.8068 | -1.6406
-1.2707
-1.5107
-1.5104
-1.0944 | -1.0287
-1.5191
-1.3381 | -1.8952
-2.2018
-1.7865 | | 3 P2ry13
3 Palmd
3 Parm1 | | -1.0431
-0.5492
-1.4247 | -1.023
-0.7694
-1.7068 | -1.0098
-0.4637
-0.7378 | -0.955
-0.8134
-1.6548 | -1.0464
-1.6195
-1.287 | -0.7851
-1.3852
-2.0185 | -2.0375
-1.7446 |
-0.9206
-1.9544
-1.8616 | -0.9741
-2.422
-2.8259 | | 3 Pcdh20
3 Pfkfb4
3 Pfkp | | -1.0831
-0.7137
-2.7612 | -0.848
-0.4426
-1.7971 | -1.3775
-0.8931 | -1.3976
-0.7368 | -1.5137
-0.785 | -1.4991
-0.784 | | | -1.2439
-1.0323 | | 3 Pik3cd
3 Pik3ca | | -2.7612
-0.8036
-1.0754 | -1.0778 | -0.8006
-0.9821 | -0.9294
-1.2068
-0.918 | -0.7263
-1.3199 | -1.0152
-1.2359 | -0.8899
-0.696
-1.2293
-1.0332 | -0.9684
-1.3164 | -0.3551
-1.2326 | | 3 Pip4k2a
3 Pira4
3 Pkp1 | | -0.6799
-2.3076 | -1.2589
-0.8545
-0.8886
-1.3405 | | | -0.7586
-0.215 | -0.7648 | -1.0332
-0.7555
-0.9837
-1.1428 | -1.4637
-0.7555 | -1.3313
-0.7097
-2.8794 | | 3 Pla2g15
3 Plcg2
3 Plek | | -0.3767
-2.2005
-1.6417 | -0.1626
-2.0485
-2 | -1.5121
-1.7973
-2.1666 | -1.2052
-1.7719
-2.0209 | -1.7889
-1.2937
-2.1633 | -1.5524
-1.1769 | -0.4294 | -1.5019
-0.9027
-2.027 | -0.12
0.5208
-2 1699 | | 3 Plek2
3 Pmch | | -1.6417
-1.4878
-2.0351 | -1.2916
-1.76 | -0.8666
-1.3535
-0.8119 | -0.4942
-1.7863 | -0.6206
-1.9054 | -0.3615
-2.1297 | -2.214
-1.1756
-2.15
-1.2796 | -0.7059
-2.2345 | -1.2939
-2.1776 | | 3 Pon2
3 Popdc3
3 Ppp1r3c | | -0.7563
-0.9526
-0.4969 | | -0.419
-1.3746 | -1.0823
-0.1026
-1.4212 | -1.2242
-0.7009
-1.5687 | -1.0023
-0.7815
-1.5172 | -1.0013 | -1.6971
-0.8884
-1.2512 | -1.9032
-1.0039
-0.5962 | | 3 Pqlc1
3 Prkch
3 Prokr1 | _ | -0.5094
-1.827
-0.4961 | -1.1213
-1.5567
-0.8578 | -0.6211
-0.9394
-0.9156 | | -0.6587
-0.6008
-0.6862 | -0.7398
-0.8647
-1.0082 | -1.3294
-1.5797
-0.8577
-1.0413 | -1.1336
-1.0067
-1.1337 | -1.7552
-1.7969
-1.2679 | | 3 Prom2
3 Psca
3 Psmd4 | | -1.7329
-1.16 | -1.5567
-0.8578
-1.767
-1.0138
-0.9503 | | -0.8303
-0.989 | 0.4291
-0.8215
-0.7542 | 0.1452
-1.0909
-0.2939 | -0.1843
-0.9407
-1.1797 | 0.2688
-1.0391
-0.824 | -1.7983
-0.9863 | | 3 Ptpn18
3 Ptpn6 | | -1.9009
-2.4343 | -2.6357 | -2.1138
-1.2188 | -1.9463
-1.7543 | -1.7239
-0.3655 | -1.7324
-0.7253 | -1.7582
-0.1093
-0.8078 | -1.6685
-0.3942 | -1.9629
-0.6342 | | 3 Ptpre
3 Ptpro
3 Pwwp2b | | -1.0217
-1.0412
-0.5173 | -0.9258
-1.1618
-0.8957 | | -0.5604
-0.9005
-0.8556
-1.1016 | -0.3063
-1.1204
-0.8764 | -0.0883
-1.1723
-0.4718 | | -0.4011
-1.2043
-0.7869 | -2.1997
-1.0476
-1.1436 | | 3 Pygl
3 Rab11fip5
3 Rab31 | | -1.3713
-1.016
-1.0399 | -1.6343
-0.7006
-1.208 | -0.8389
-0.8393
-1.3102 | -1.1016
-0.7985
-1.064 | -0.1189
-1.7334 | -0.4737
-1.7276
-1.3784 | -0.3894
-2.6024
-1.5812 | -0.8052
-2.0389
-1.6169 | -1.5995
-2.5021
-1.5032 | | 3 Rab3il1
3 Rab8b
3 Rabac1 | | -0.1869
-1.2254 | -0.4929
-1.1762 | -1.2199 | -1.5903 | -1.2536
-1.4677
0.1165 | -1.3784
-1.6031
-0.1345 | -1.5493 | -1.3988
-0.4892 | -0.9478
-2.0771 | | 3 Rac2
3 Ramp3 | | -0.5165
-1.0139
-2.0197 | -0.5109
-1.007
-1.4599 | | -1.1587
-0.9522
-0.3077 | | -1.0584
-0.8487
-0.594 | -1.1796
-1.0458
-1.1562 | -1.239
-0.9828
-0.7899 | -1.456
-0.8899
-1.4640 | | 3 Rassl1b
3 Rassl1
3 Rassl2 | | -0.688
-0.4715 | -1.0495
-0.1648 | -1.254
-0.7168
-1.4172 | -1.481
-0.7886
-1.2997 | -1.7045
-1.3183 | -1.839
-0.9425
-1.6402 | -0.907
-1.1796
-1.0458
-1.1562
-0.977
-1.7919
-1.7095
-1.3367
-1.3659
-0.8702
-0.951 | -1.2904
-1.6292
-1.6855 | -0.394
-2.586 | | 3 Rassf4
3 Rassf5
3 Rcan1 | | -1.285
-0.0917 | -1.3935
-0.6188 | -1.4628
-1.399 | -1.461
-0.7886
-1.2997
-1.4393
-1.1844 | -1.8044
-1.1002
-1.088 | -1.6402
-1.4494
-1.4485 | -1.3367
-1.3659 | -1.4032
-1.0831 | -1.170
-0.893 | | 3 Rcan3
3 Rcsd1 | | -0.804
-0.808
-1.0792
-2.7114
-2.4538
-1.8469
-1.0933 | -0.9339
-1.1422 | | | | -0.4124
-0.7099
-0.9495
-0.7446 | -0.8702
-0.951
-0.8856 | -0.7526
-0.9479
-0.9723 | -0.354
-1.224 | | 3 Reep1
3 Rein
3 Ret | | -2.7114
-2.4538
-1.8469 | -1.922
-2.2608
-1.3023 | 0.1669
-1.7948
-1.4005 | -0.349
-1.5543
-0.9159 | -0.2437
-2.2908
-0.9444 | -0.7446
-1.9622
-0.8393 | -1.1995
-1.991
-1.2556 | -1.2419
-1.9666
-0.6562 | -2.508
-2.029
-1.580 | | 3 Retsat
3 Rnf135 | | -1.0933
-0.5706
-1.1644 | -0.5727
-0.3835 | -1.0677
-0.8315
-1.0879 | -0.489
-0.6566
-0.8761 | | -0.623
-0.8463 | -1.2556
-1.5359
-1.0655 | -1.0664
-1.1951 | -0.2090
-0.4250 | | 3 Rnpep
3 Rpl24
3 Rpl7a | | -1.6254
-2.764 | -1.5498
-1.9632 | -1.2991
-1.8309 | -1.3233
-1.6892 | -1.4774
-1.7009 | -0.8233
-1.3886
-1.5919 | -0.8259
-1.5917
-2.3962 | -1.5072
-1.6975 | -0.9785
-1.1449 | | 3 Rps9
3 Ryr3
3 S100a1 | | -1.0918
-1.415
-0.6746 | -0.7015
-1.5983
-0.8893 | | -0.8048
-1.2721
-0.3131 | -0.6149
-1.426
-0.989 | -0.6573
-1.5707
-0.4832 | -0.7597
-1.5798
-1.5745 | -0.7415
-1.6046
-0.9089 | -0.9901
-1.0887
-2.6096 | | 3 S100a16
3 Samsn1
3 Sash3 | | -0.7522
-0.9596
-1.3769 | -0.8893
-0.872
-0.9323
-1.4413 | -0.6025
-0.6298
-1.4413 | -0.6584
-0.8477 | -0.4539
-0.7177 | -0.3479
-0.9906 | | -0.5506
-0.8392 | -1.1763
-1.0063 | | 3 Sbsn
3 Scamp5 | | | -0.5135
-0.8055 | -1.3072
-0.9524 | -1.4709
-0.939
-0.8696 | -1.1055
-1.226
-1.0859 | -0.9058
-1.1419
-1.0859 | -1.0877
-1.3492
-1.2334
-1.0648
-1.3237 | -1.3320
-1.1804
-1.0464 | -1.2489
0.2511 | | 3 Scin
3 Sdcbp2
3 Sele | | -1.3745
-1.3219
-0.7558 | -1.2889
-1.8326
-0.9763 | -1.2576
-0.818
-0.5421 | -1.4178
-1.0368
-0.7189 | | -1.0859
-0.4369
-0.5901 | -0.6624
-0.8916 | -1.1972
-1.157
-0.8511 | -1.3414
-0.7565
-0.9107 | | 3 Selenbp1
3 Selplg
3 Serbl | | -1.7199
-1.1561
-0.7477
-0.6537 | -1.3391
-0.9938
-0.7685 | -0.6002
-1.2301
-0.935 | | -0.419
-0.9816
-0.6192 | -0.5341
-1.241 | -1.0504
-1.1055
-0.8933
-1.2431 | -0.7109
-1.0438
-1.2009 | -1.6238
-1.1357 | | 3 Serp1
3 Serpinb6c | | -0.6537
-0.8967
-1.4791 | -0.4848
-0.7255 | -0.7578
-1.3914 | -0.5746
-1.3667 | -0.8436
-1.3759 | -0.9658
-1.246
-1.7718 | -1.2431
-0.9394
-1.4667 | -1.1204
-1.1478 | -1.4886
1.162 | | 3 Sesn1
3 Sh3bp2
3 Sla | | | -1.5592
-0.9527
-1.5104 | -1.417
-0.2576
-1.5796 | -1.804
-0.3512
-1.6155 | -1.5888
-0.7926
-1.7323 | -0.5696
-1.7576 | -1.4867
-1.3512
-1.7833
-1.8487
-2.048 | -1.6319
-0.8682
-1.7467 | -1.4336
-1.6693 | | 3 Slc15a3
3 Slc25a45
3 Slc2a6 | | -1.69
-2.0345
-2.5867
-3.0314
-1.7213 | -1.9734
-2.4947
-2.2597 | -1.4729
-1.6111
-1.292 | -1.5522
-1.3542
-0.5003 | -1.8136
-1.4492
-1.3291 | -1.9524
-1.0308
-1.1941 | -1.8487
-2.048
-2.5216 | -1.667
-1.3454
-1.7268 | -1.942
-3.2235
-2.8931 | | 3 Slc35d3
3 Slc38a5
3 Slc40a1 | | -1.7213
-5.6064
-1.357
-1.4236 | -1.5709
-4.8942 | -0.8702
-0.0001 | -0.659
-0.1618 | -0.3493
0.4332
-1.4097 | -0.2317
0.6579
-2.018 | -0.9229
-0.6815
-0.9215 | -0.2021
0.6691 | -1.8823
-5.3905 | | 3 Slc46a3
3 Slc48a1 | | -1.4236
-0.5196 | -2.0664
-1.6399
-0.7167 | -2.2025
-0.419
-1.2067 | -1.098
-1.1867 | -0.2362
-1.3681 | -0.5616
-1.6263 | | -1.4005
-0.9362
-1.6447 | -2.4990
-0.9080
-1.5611 | | 3 Slc6a9
3 Slc7a8
3 Slurn1 | | -0.3198
-1.3608
-1.6769 | -0.5718
-1.6577
0.1573 | -1.4235
-1.4083
-0.6429 | -1.0991
-1.6821 | -1.9523
-1.6699
-1.5719
-1.0243 | -1.6295
-1.6072
-1.0573
-0.9489 | -1.7415
-1.8303
-1.4575
-2.0474 | -1.6047
-1.6337
-1.2859 | -0.773
-1.584
-2.4624 | | 3 Slurp1
3 Smap2
3 Snrpg
3 Snx21 | | -0.5423
-1.629 | | | -0.8232
-0.9568
-0.8594 | | -0.9489
-0.6633 | -2.0474
-0.9521
-0.5229
-1.4357 | -1,2859
-1,0037
-0,7592 | -0.716
-0.173 | | 3 Soat1
3 Sort1 | | -0.4704
-1.8214 | -0.3199
-1.818 | -1.2717
-1.6107 | -0.8594
-1.0408
-1.8587
-1.6891
-0.9091 | -1.0052
-1.4274 | -1.0031
-1.9083
-1.4001 | | -0.7945
-1.1703
-2.0508
-1.1564 | -0.962
-1.735 | | 3 St3gal3
3 St3gal6 | | -2.3159
-0.4724
-1.891 | -2.1021
-0.6585
-0.9366 | -1.4642
-0.9583
-0.0571 | -1.6891
-0.9091
0.1471 | -0.3473
-0.901
-0.4061 | -1.4001
-0.9358
-0.5413 | -1.0073
-1.2195
-1.7875 | -1.0332 | -2.531;
-0.572;
-5.391; | | 3 St6gal1
3 St8sia4
3 Stambo | | -2.1662
-0.6699
-0.574 | -1.5104
-0.5949
-0.6282 | -1.9504
-0.9889
-0.4246 | -1.2304
-1.0062
-0.4813 | -2.177
-0.8776
-0.4289 | -2.2547
-0.6195
-0.6394 | -0.7108
-0.8708
-1.3085 | -1.1193
-0.6233
-0.7835 | -0.91
-1.006
-1.795 | | 3 Stard8
3 Sult1a1
3 Sumo1 | | -1.8444
-0.6699
-1.091 | -1.9821
-1.2925
-1.2018 | -2.3412
-0.8966
-1.0459 | -2.3242
-1.1886
-0.9138 | -2.2078
-0.7914
-1.3538 | -2.1172
-1.4739 | -1.8607
-1.596 | -1.7928
-1.5767
-0.8571 | -0.4
-1.839 | | 3 Syt16
3 Syt11 | | -1.6387
-1.744 | -1.6208
-1.3378 | 0.1913
-0.8134 | -0.2677
-0.3605 | -0.3354
-0.0264 | | -1.0289
-1.175
-0.3266 | -1.4121
-0.0885 | -2.05
-1.793 | | 3 Tacstd2
3 Tbxas1
3 Tfap2b | | -2.3955
-0.8618
-0.4497 | -1.913
-0.681
-0.9147 | | -0.9665
-0.7288
-1.4468 | 0.9166
-0.6449
-1.4126 | -0.6474
-1.3067 |
0.3938
-0.8382
-1.1388
-1.5944 | -0.8151
-1.6214 | -1.979
-0.678
-1.53 | | 3 Tgfbrap1
3 Tha1
3 Tlr13 | | -0.5472
-1.235 | | | -1.4468
-0.8413
-0.4703
-1.1624 | -1.4126
-1.1245
-0.6433 | -1.2918
-0.6579 | -1.5944
-0.9316 | -1.3434
-0.7706 | -1.8090
-1.5360 | | 3 Tlr2
3 Tlr6 | | -0.8094
-0.279 | -1.1043
-0.7649 | -0.5729
-0.9225 | -0.9107
-0.9069 | -1.0215
-0.6934 | -1.4333
-1.0506 | -1.5786
-0.8078 | -1.5396
-0.7734 | -1.637
-0.916 | | 3 Tlr7
3 Tm6sf1
3 Tmem106a | | -1.9588
-1.083
-0.3297 | | -1.7277
-1.1338
-0.6084 | -1.5437
-1.2324
-0.8691 | -1.8355
-1.1752
-0.6006 | -1.8958
-1.1015
-0.7254 | -1.8417
-1.3381
-1.0104 | -1.8689
-1.3164
-0.7084 | -1.730
-0.940
-0.979 | | 3 Tmem184a
3 Tmem205
3 Tmem51 | | -1.3517
-0.4234
-1.5396 | -0.5031
-1.5982 | -0.3866
-0.8988
-1.7306 | -0.3194
-1.0693
-1.868
-1.1209
-1.1651
-1.0453
-1.5437
-0.7951
-0.7562
-0.9206 | -0.5426
-1.0214
-1.117 | -0.2646
-1.1385
-1.1034 | | -0.3168
-0.9655
-0.458 | | | 3 Tmem8
3 Tnfaip8l2
3 Tnfrsf25 | | -1.1606
-1.3063 | -0.9272
-1.1651 | -1.074
-1.2805 | -1.1209
-1.1651 | -1.1434
-1.2199 | -1.0876
-1.2989 | -0.8416
-1.3249 | | | | 3 Tnn
3 Tnni2 | | -0.117
-0.8562 | -0.4641
-0.8037 | -1.2753
-1.4299
-0.5957 | -1.5437
-0.7951 | -1.469
-0.3023 | -1.0626
-1.5195
-0.6722 | -0.932
-1.5648
-0.5565 | -1.5368
-0.8592 | -1.5090
-0.9900 | | 3 Trappc6a
3 Trp63
3 Trpc4 | | | -0.723
-0.505
-1.3812 | -1.0333
-0.4701
-0.3401 | | -0.9667
-1.1299
-0.2644 | -0.6037
-1.306
-0.6666 | -0.5565
-1.2215
-1.1145
-0.8445
-1.7053 | -0.9533
-1.1017
-1.0782
-1.0009 | -0.886
-1.561
-1.384 | | 3 Tspan32
3 Tspan7
3 Tspan8 | | -1, 2902
-1, 5775
-1, 5512
-2, 2221
-2, 1891
-1, 1644
-0, 9853
-0, 9387
-0, 7047 | -1.264
-2.057
-1.7376 | -0.9071
-0.2102
-0.5129 | -0.716
-0.523
-0.4508 | -1.2888
-0.4 | -0.9861
-0.1334
-0.6056 | -1.7053
-0.451
-1.6117 | -1.0009
-0.4012
-1.1003 | -1.802
-1.924
-2.518 | | 3 Tuft1
3 Txnip | | -2.1891
-1.1644 | -1.8394
-1.2318
-1.1609
-1.3304
-0.9299 | -0.1548
-1.8722 | -0.456
-1.3013 | -0.0672
-1.2314 | -0.9218
-1.0961
-1.3032 | -0.7199
-1.5002 | -0.6042
-0.6865 | -1.8113
0.2921 | | 3 Unc93b1
3 Upk1b
3 Upk3b | | -0.9853
-0.9387
-0.7047 | -1.1609
-1.3304
-0.9299 | -1.2542
-0.2946
0.144 | -1.3013
-1.1281
-1.2812
-0.9703 | -1.2314
-1.173
-1.2082
-0.9077 | -1.3032
-0.7391 | -1.3574
-1.2174
-1.2395 | -1.3032
-1.2716
-0.9424 | -1.2319
-1.8163
-0.8106 | | 3 Ush1c
3 Vamp8
3 Was | | -2.871
-0.5748
-1.5743 | -2.6904
-0.9204
-1.5364 | -1.2553
-0.7272
-1.733 | -0.3124
-0.8901
-1.5871
-0.7272 | -0.6166
-1.0996
-1.6297 | 0.1883
-1.0283
-1.6873
-0.7712 | -1.1849
-1.6377
-1.5839
-0.8248 | -0.4162
-1.376
-1.6066 | -1.7133
-2.614
-0.9318 | | 3 Xpa
3 Ydjc | _ | -0.4875
-2.2348 | | -0.6335
-1.4799 | -0.7272
-0.2391 | -0.8532
-0.8003 | -0.7712
-0.308 | | -0.9731
-0.4572 | -1.219
-0.641 | | 3 Ypel3
3 Zc3h12d
3 Zdhhc14 | | | | | -0.2391
-0.495
-0.8159
-0.9825
-0.8002 | -0.7984
-1.3372 | -0.308
-0.7899
-0.7914
-1.2245 | -1.2008
-0.7768
-1.405 N
-1.405 N
-1.2077
-2.0217
-2.0217
-2.0008
-3.1137
-3.2014
-5.0643
-3.1157
-3.2014
-5.0643
-3.1157
-3.2014
-5.0643
-3.1157
-3.2014
-5.0643
-3.1157
-3.2014
-5.126
-3.2014
-5.126
-3.2014
-5.126
-3.2014
-5.126
-3.2014
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017
-5.2017 | -0.9925
-0.7204
-1.562 | -0.760
-1.416 | | 3 Zer1
3 Msx1
3 Sepp1 | | -0.4551
0.426
-0.4497 | -0.5584
-1.2791
-1.8375 | -1.372
-0.9375 | -0.8002
-2.1951
-2.2263 | -0.8256
-1.9441
-1.863 | -0.7555
-2.3609
-2.3026 | -0.76
-1.0278
-2.0217 | -1.562
-0.9276
-1.6762
-2.2296 | -0.9716
-2.5456
-3.0419 | | 3 4732456N10Rik
3 Air1
3 Alox5ap | | -5.3298
-2.6135
-3.1739 | -0.584
-1.2791
-1.8375
-3.8625
-2.6448
-3.3657 | -4.4889
-2.5114 | -3.8129
-2.6849
-3.5277 | -1,9441
-1,863
-5,4226
-2,5995
-3,5843
-2,7986
-2,3736
-3,1941
-5,0446
-3,2599
-2,4916
-2,3152
-6,1332
-5,0651
-3,1941 | -5.4914
-2.3981 | -5.5265
-2.8006 | -5.7875
-2.5778 | -5.9081
-2.6581 | | 3 Angptl4
3 Apoc4 | | -1.8451
-2.3126 | -3.3657
-1.4122
-2.2573
-2.9518
-4.5626
-3.0281
-2.4609
-2.3356
-6.0135
-4.9382
-1.5737 | -3.8142
-3.1326
-2.3736
-3.0663
-4.7172
-3.1326
-2.4666
-2.4239
-6.0202
-5.1691
-1.6413 | -2.8223
-2.2994 | -2.7986
-2.3736 | -2.8733
-2.4445 | -2.9429
-2.4015 | -2.9918
-2.5001 | -2.4326
-2.1206
-2.2071 | | 3 Bglap
3 Bglap2
3 Bglap-rs1 | | -3.1076
-4.4347
-3.1394 | -2.9518
-4.5626
-3.0281 | -3.0663
-4.7172
-3.1326 | -3.0322
-4.94
-3.1949 | -3.1941
-5.0446
-3.2599 | -3.1569
-5.0506
-3.2234 | -3.2044
-5.0843
-3.1057 | -3.2253
-5.103
-3.0925 | -3.204
-5.044
-3.212 | | 3 Btk
3 C1qa
3 C1qb | | -2.4453
-2.3253
-6.0898 | -2.4809
-2.3356
-8.0135 | -2.4666
-2.4239
-6.0202 | -2.2887
-2.3598
-5.7714 | -2.4918
-2.3152
-6.1332 | -2.3336
-2.4166
-6.0304 | -2.273
-2.2917
-8.1332 | -2.3732
-2.3118
-6.1041 | -2.414
-2.3424
-6.0407 | | 3 C1qc
3 C3 | | -5.0684
-0.9349 | -4.9382
-1.5737 | -5.1691
-1.6413 | -4.9442
-2.4334 | -5.0651
-3.1941 | -1,2245 -0,7565 -2,3000 -2,3000 -2,3014 -2,3001 -0,6778 -2,6778 -2,6778 -2,6778 -2,2744 -2,2338 -0,0204 -2,1338 -0,0304 -1,0304
-1,0304 -1,030 | -5.1246
-3.4202 | -5.0716
-3.2649 | -5.1045
-3.6105 | | 3 Casp1
3 Ccl12
3 Ccl3 | | -3.1739
-1.8451
-2.3126
-3.1126
-3.1394
-2.4453
-2.3253
-6.088
-3.0078
-2.8729
-2.1518
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728
-2.0728 | -3.1692
-3.0673
-2.2381
-2.2908
-2.5534 | -3.1657 | -2.1951 -2.2263 -3.8129 -2.8849 -3.5277 -2.2934 -2.2934 -3.1949 -2.2887 -2.3569 -4.94 -3.1949 -2.2887 -2.3569 -2.3569 -2.3562 -2.3562 -2.3562 -2.3562 -2.3562 -2.3562 -2.3562 | -3.0747
-2.972
-2.5868
-3.6142
-2.7926
-3.533 | -3.1553
-3.0783
-2.4744 | -3.2044
-3.0384
-2.4983 | 3.274
2.9918
2.5001
3.2253
-5.103
3.0925
2.3732
2.3118
6.1041
4.0716
3.2649
2.9583
2.5051
3.452
2.4765 | -3.2333
-3.0783
-2.3116
-3.4384 | | 3 Cd19
3 Cd14
3 Cd52 | | -2.0758
-2.3502
-3.668 | -2.2908
-2.5534
-3.5298 | -2.3391
-2.9191
-2.981
-3.5488 | -3.0242
-2.6457
-3.2029 | -3.6142
-2.7926
-3.533 | -2.4744
-3.4216
-2.3128
-3.3753 | -3.2487
-2.8811
-3.4868 | -3.452
-2.4765
-3.4966 | -3.4384
-3.1004
-3.272 | | | | 5.000 | | | | | | | | -0.272 | | -2.0504
-3.315
-3.2672
-5.0184
-2.2405 | -1.7734
-3.1073
-2.9085
-4.027 | -2.3263
-2.4463
-3.2512
-0.9029
-2.0536 | -2.77
-2.7096
-1.0862
-2.2018 | -2.4104
-2.0148
-3.1518
-0.7875 | -2.3737
-1.9566
-3.2456
-0.5409
-2.3777 | -2.2836
-2.8688
-1.7313 | 2,00773 1,12498 1,2498 1,2498 1,2498 1,4108 | |--|--|--
---|---|---|---|---| | -2.2405
-1.5934
-1.2421
-4.0323
-2.4144 | -2.2736
-1.7401
-1.9073
-4.2562
-2.4005
-4.6696
-4.7439 | -2.0538
-2.4106
-1.6005
-4.1743
-2.4249
-4.7782
-4.5657
-4.1241
-3.3462
-4.1159
-2.5336
-3.3459
-3.2462 | -2 2018
-2 2685
-2 2791
-4 0144
-2 4109
-4 7571
-4 4675
-3 3917
-4 10655
-3 3917
-2 257
-3 5271
-2 2942
-1 17964
-1 20946
-2 2944
-1 30956
-2 2945
-1 30956
-1 30956 | -2.2537
-2.1747
-1.8476
-4.171
-2.2687 | -2.3777
-2.4754
-2.5174
-4.2668 | -2.2307
-2.2721
-2.5733
-4.171
-2.2437 | -2.3958
-2.4106
-2.531
-4.1063 | | -2.4144
-4.7816
-4.7785 | -2.4005
-4.6696
-4.7439 | -2.4249
-4.7262
-4.5657 | -2.4109
-4.7571
-4.4675 | -2.2687
-4.7194
-4.898 | -4.2668
-2.4858
-4.6278
-4.8042 | -2.2437
-4.7745
-4.8604 | -2.4005
-4.7026
-4.6303 | | -2.47816
-4.7785
-4.1646
-3.2646
-3.9822
-2.7853 | -4.0184
-3.203
-4.1583 | -4.1241
-3.3462
-4.1159 | -4.0655
-3.3817
-4.1583 | -3.9344
-3.2547
-4.1924 | -3.7772
-3.2514
-4.2967 | -3.8661
-3.3781
-4.2502 | -3.7642
-3.3533
-4.1041 | | -0.3553 | -4.0184
-3.203
-4.1583
-2.7189
-1.4218
-3.0958
-3.3278
-3.8837
-2.3489
-3.2335 | -2.5336
-3.3459
-3.2462 | -2.57
-3.5271
-2.9242 | -2.2667
-4.7194
-4.898
-3.9344
-3.2547
-4.1924
-2.5366
-3.2534
-3.1611 | 4 6278
4 8042
-3.7772
-3.2514
4.2967
-2.4018
-3.4577
-3.2462
-1.4355
-1.1093
-3.7914
-3.2062
-2.6653
-2.0611 | -2.2437
-4.7745
-4.8604
-3.8661
-3.3781
-4.2502
-1.9199
-3.4289
-3.3366 | -1.9637
-3.5823
-3.2529 | | -5.07
-5.07
-5.6177
-2.6215
-2.9695
-3.0514
-3.213
-2.6837
-4.0191 | -3.3278
-3.8837
-2.3489 | -1.903
-2.3997
-2.8693
-3.0571 | -1.7961
-1.3754
-2.9941 | -2.6164
-2.1698
-3.5892
-3.3724 | -1.4355
-1.1093
-3.7914 | -2.8517 | -1.1748
-1.74
-4.1853 | |
-2.9695
-3.0514
-3.213 | -2.8919
-3.1276 | -2.5248
-0.6412 | -3.0596
-2.8183
-1.1614 | -3.3724
-2.5332
-1.5627
-2.5442
-1.0506 | -3.2062
-2.6653
-2.0611 | -4.2673
-2.5294
-2.2882
-2.7737 | -2.5935
-2.6043
-2.8477 | | -2.6837
-4.0191
-2.2829 | -2.04 | 2,5168 2,2441 2,2441 3,2441 4, | | -2.5442
-1.0506
-2.1818 | -2.536
-0.9733 | -2.7145
-1.7817
-2.3663
-3.0578 | -2.6269
-1.2972
-2.2528 | | -2.2829
-2.1072
-7.2503
-5.9048
-3.6228
-3.2318
-2.6322
-2.345
-2.9148
-2.049
-2.4854
-1.5012 | -2.2396
-3.0049
-6.7799
-5.6013
-3.5261
-5.184
-3.1441
-2.5477 | -2.3268
-8.0865
-6.4742 | -2.331
-2.797
-6.0834
-5.2106
-3.4356
-5.1774
-3.0885
-2.6288
-2.4207
-2.7356
-1.9475 | -2.1818
-2.7593
-8.0645
-6.3787 | -2.1383
-3.0632
-8.3919
-6.4359
-3.6161
-5.0766
-2.16
-2.0561
-2.0916
-2.2492
-2.3299
-3.5162 | -3.0578
-8.4102
-6.4848 | -3.1325
-8.4164
-6.3173 | | -3.6228
-5.2823
-3.2318 | -3.5261
-5.184
-3.1441 | -3.5418
-4.9374
-2.9721 | -3.4356
-5.1774
-3.0885 | -3.6195
-5.2239
-3.2152
-2.6972 | -3.6161
-5.0766
-3.16 | -8.4102
-6.4846
-3.6528
-5.0736
-3.2554
-2.6422
-2.4277
-2.1318
-2.4623
-3.2554
-3.3537
-3.3037
-3.3037
-3.2557
-3.2031
-3.2537
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.2031
-3.203 | -3.5168
-4.8181
-3.252 | | -2.0322
-2.3495
-2.9148
-2.0449 | -2.3594
-2.6941
-2.2399 | -2.3762
-2.7199
-2.167 | -2.4207
-2.7356
-1.9475 | -2.4
-2.9945
-2.3101
-2.3204
-3.4371 | -2.3661
-2.6916
-2.2492 | -2.4207
-2.8737
-2.1318 | -2.3007
-2.8085
-2.48
-2.3786
-3.4076 | | -2.4854
-1.5012
-4.325 | 2.3994 2.6941 2.2399 2.6547 2.1975 4.0969 -1.6815 3.2724 2.3999 4.5738 4.2595 2.287 2.0952 2.6852 2.8112 2.4537 2.7594 2.33219 | -2.4126
-3.4647
-4.4919 | -2.431
-3.6977
-3.9853 | -2.3204
-3.4371
-4.527 | -2.3299
-3.5162
-4.4678 | -2.4663
-3.3621
-4.4953 | -2.3786
-3.4076
-4.4712 | | -4.325
-1.4732
-3.2103
-2.486 | -1.6815
-3.2724
-2.3596 | -2.8896
-3.1572
-2.1062 | 2.431 -3.6977 -3.6853 -2.4893 -2.9913 -2.046 -2.8129 -3.3406 -3.4076 -2.8256 -3.2859 -2.7755 -2.9412 -2.243 -2.2339 -2.4597 | -3.43/1
-4.527
-3.2441
-3.1475
-2.1304
-3.1012
-3.8132
-4.0446
-2.5946
-2.7804 | -4.4678 -3.1986 -3.2759 -2.0667 -3.1413 -4.0586 -3.5331 -2.7652 -3.1747 -2.7284 -3.0056 -2.5504 | -3.3997
-3.0385
-2.1662 | -3.4076
-4.4712
-2.6583
-3.0535
-2.1496
-2.7893
-3.3189
-3.8555
-2.9954 | | -3.2103
-2.486
-1.3163
-1.2081
-4.3255
-1.8714 | -1.5736
-1.61
-4.2595 | -3.1251
-3.2627
-4.3011 | -2.8129
-3.3436
-3.4076 | -3.1012
-3.8132
-4.0446 | -3.1413
-4.0586
-3.5331 | -2.5837
-3.2991
-4.3659 | -2.7893
-3.3189
-3.8555 | | -2.7518
-2.8375 | -2.287
-2.0622
-2.6828 | -2.9185
-2.5716
-2.7597 | -2.8826
-3.2859
-2.7755 | -2.5946
-2.7604
-2.7628
-2.9052
-2.5835 | -2.7652
-3.1747
-2.7284 | -3.0109
-2.7948 | -2.6014 | | -2.9884
-2.4956
-2.7126
-2.4568 | -2.8112
-2.4537
-2.7594 | -2.9052
-2.7943
-2.6929 | -2.9412
-2.5243
-2.8399 | -2.9052
-2.5835
-2.8079
-2.4276 | -3.0056
-2.5804
-2.7662
-2.3822 | -2.9918
-2.6546
-2.7594
-2.3517 | -3.0196
-2.617
-2.7158
-2.4479 | | -2.4568
-0.2683
-0.3814 | -2.3219
-0.5938
-0.3542 | -2.5448
-0.4761
-0.851 | -2.4597
-0.505
-0.6148 | -2.4276
-0.5473
-0.4779 | -2.3822
-0.6117
-0.4986 | | -2.4479
-0.5982
-0.2704 | | | -0.3939
-0.4314
-0.6016 | | | | | | -0.4127
-0.6201
-0.7361 | | -1.0776
-0.1879
-1.1035 | -1.1297
-0.4077
-0.8434 | | -0.7605
-0.6454
-0.5833 | -0.4015
-0.8794
-0.0248 | -0.4749
-0.9787
-0.2265 | -0.6847
-0.8423
-0.6955 | -0.0984
-0.8529
-0.4211 | | | | | | | | | -0.4597
-0.5651
-0.6011 | | | | | | | | | -0.7486
-0.5437
-0.5902 | | -0.9265
-0.2362
-1.1697 | -0.5645
-0.4348
-1.3249 | -0.5659
-0.8925 | | -0.5007
-0.7863
0.6697 | -0.5507
-0.766 | -0.6769
-0.7244 | -0.8618
-0.1194 | | -0.627
-1.0697 | | | | | | | | | | | | | | | | -0.5592
-0.823 | | -1.0467
-0.6898
-0.7818 | | | | | -0.2314
-0.5159
-0.7891 | | -0.3145
-0.5353
-0.6572 | | | -0.3217
-0.6994
-0.569 | | | | -0.3963
-0.7457
-0.4437 | -0.8789
-0.3846
-0.9712
-0.7364 | | | | -0.3335
-0.7963
-0.3187 | | | | | | | | | | | | | -0.7853
-0.6983
-0.2949 | | -0.8277
-0.773
-1.0591
-1.0165 | | | -0.7047
-0.5261
-0.3309 | -0.6837
-0.9445 | | | -0.8404
-0.7019
-0.0712 | | -1.0165
-0.9412
-0.3797 | | -0.3482
-0.2305
-0.8417
-0.8755
-1.0528 | | | | | | | -0.8104
-0.7163
-0.8858 | | -0.8755
-1.0528
-0.3435
-1.0157 | | | | | -0.1341
-0.6395
-0.7413 | -0.681
-0.8645
-0.6773 | -0.9261
-0.6035
-0.4669 | | | | | | | -0.4569
-0.5569
-0.7748 | | | | | | | | | | | | | | | -0.4306
-0.3132
-0.4748 | -0.2207
0.000
-0.7113 | | -0.6615
-0.3005
-0.4599 |
-0.5488
-1.0167
-1.0651 | -0.8489
-0.4582
-0.8574 | | | | | | | | | | | -0.7025
-0.4918
-0.3612 | -0.4948
-0.7403 | | | | -0.2848
-1.1077
-0.9445 | | | | | | | -0.6567
-0.5753
-0.3083 | | -0.5614
-0.7781
-0.5581 | | | | | -0.4085
-0.7351
-0.2755 | | | | | | | | | | | | | | | -0.3075
-0.811
-0.7291
-0.8283 | | | | | | | -0.6982
-0.3751
-0.3559 | | -0.4706
-0.5416 | | | | | | | | | -1.0723
-0.7514
-0.9124
-0.659 | | | -0.4109
-0.6159
-0.2516 | -0.6087
-0.3783
-1.1682 | | -0.5296
-0.5408 | -0.6079
-0.4393
-0.1802 | | | | | | | | -0.7519
-0.7537
-0.618
-0.9293 | | -0.983
-0.4841
-0.9846 | | | | | | | | -0.8245
-0.6136
-0.411 | | | | | -0.2344
-0.6232
-0.8034 | | | | | -0.9742
-0.5898
-0.3349 | | | | -0.3513
-0.6581
-0.6416 | | | | | | -0.562
-0.3444
-0.5315 | | -0.4207
-0.6786
-1.0397
-0.4098 | -0.4341
-0.5718
-0.0529 | | -0.5556
-0.3738
-0.8317 | | -0.5372
-0.4866
-0.892 | -0.6314
-1.0961
-0.7349
-0.964
-1.0448 | | | | -0.8425
-0.5157
-1.0461 | -0.8117
-0.6295
-0.219 | | -0.507
-0.4833
-0.1937 | -0.5563
-0.1187
-0.6778 | | -0.6076
-0.4695
-0.8971 | | | | | | -0.9527
-0.5014
-0.8202 | -0.848
-0.6736
-0.7874 | | | | -0.6628
-0.4885
-1.5872 | -0.5778
-0.6674
-0.9222 | | -0.8246
-0.3773 | -0.9371
-1.2672 | -0.777
-0.8559
-0.0886 | -0.543
-0.8957 | -0.9539
-0.6662 | | | -0.8643
-0.6233
-1.011
-0.8188 | 0.4768
-0.7203
-0.4663
-0.8323 | | | | | -0.6298
-0.4059 | | | -0.3536
-0.5184 | -0.4863
-0.8323
-0.9549
-0.4247 | | | -0.6377
-0.3697 | | -0.6174
-0.4448 | | -0.7975
-0.1329
-1.0891
-0.2443 | -0.123
-0.6378
-0.0913
-0.9091
-0.2018 | | | | | | | |--|--|---|--|---|---|--|------------------------------| | -0.0771
-0.0791
-1.6687 | -0.2129
-0.245
-0.3982
-1.5628 | | | | | | | | -0.0424
-0.3692
-0.0705 | -0.2264
-0.3887
-0.0771 | -0.3994
-1.057 | | | | | | | | | | | | | | | | | | -0.1814
-0.5332
0.2512 | -0.1496
-0.2929
-0.0835
-1.3199 | | | | | | | | -1.5576
-0.4426
-0.9884
0.0892 | -1,3199
-0.3547
-0.8206
-0.1165 | -0.1258
-1.7845 | -0.136
-1.4664 | -0.3331
-0.4582
-0.1292
-1.3489
-0.8379 | -0.4434
-0.4412
-0.0729
-1.3187 | -0.4708
-0.5088
-0.1808
-0.9835
-0.8745 | -0.2982
-0.6715
-0.1258
-1.013
-1.034 | -0.5626
-0.0564 | | | | | | | | -1.034
-0.426
-0.5663 | | | | -1.3372
-0.2553
-0.1442 | -0.1052
-1.1037
-0.3
-0.271 | -0.1644
-1.1769
-0.3333
-0.151 | -0.4169
-0.2626
-0.0419 | | | | 0.1847
-0.1759
-1.6231 | -0.4056
-0.1791
-1.5139 | -0.1801
-0.3491
-0.8043 | -0.4248
-0.8353
-1.9609 | -0.3603
-0.7347
-1.721 | | | | | -0.8727
-0.3008
-0.1482
-0.3706 | -0.5981
0.7546
-0.3711 | -1.0923
-0.002
-0.9436
-1.9411 | -0.0531
-0.1889
-0.837 | -1.0759
-0.1425
-0.6906 | | | | | | | -1.9411
-0.334 | | | | | | | | | | | | | -0.6642
-0.1134
-0.6483 | -0.7168
-0.5255
-0.1437
-1.1694 | | |-------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|--|--| | | | | -0.624
-0.2825
-0.1608 | -0.9035
-0.182
-0.3993 | | | | -0.3723
-0.2129
-1.5431 | -0.1718
-1.1639 | -1.2352
-0.1208
-0.3643 | -1.2881
-0.6745 | -0.2476
-0.7002
-0.5113 | 0.1161
-1.1213
-0.3508 | -1.2058
-0.1209
-0.1967 | -0.8034
-0.0827
-0.9864 | -0.3969
-0.3285
-0.825 | -0.2562
-0.8164 | | | | | | | | | | | | | | -0.8498
-0.0306
-0.0529 | -1.1897
0.0477
-0.0483 | | | | | | | | | | | | | -0.5966
-0.1839
-0.722 | -0.2869
-0.2748
-0.4059
-0.3916 | |--|------------------------------|--------------------|--|-------------------------------|-------------------------------|------------------------------|--| Color | 1 | | | | | | | | | Color | | | | | | | | | | | | | | | | | | Color | | | | | | | | | | | | | | | | | | Color | | | | | -0.328
-0.4937
-0.0855 | -0.5047
1.1818
-0.3351 | | | | | | | | | | | | Color | -0.2012
-1.1222
0.0562 | -0.5005
-0.9742 | | | | | | | Color | | | | | | | | | Color | | | | | | | | | Color | | | | | | | | | ABB | | | | | | | | | ABB | | | | | | | | | Color | | | | | | | | | | | | | | | | | | Color | | | | | | | | | 1476 1476 | | | | | | | | | Column | | | | | | | | | 1986 | | | | -1.0237
-0.1662
-0.2868 | -1.0461
-0.0738
-0.2102 | | | | April | | | | | | | | | 1071 | | | | | | | | | Table | | | | | | | | | 1.00 | | | | | | | | | 1.00 | | | | | | | | | Q-101 | | | | | | | | | Q-510 Q-520 Q-270 Q-520 Q | | | | | | | | | Color Colo | | | | | | | | | 4.1151 | | | | | | | | | Quantity | | | | | | | | | Color | | | | | | | | | California Cal | | | | | | | | | California Cal | | | | | | | | | Color | | | | | | | | | George G | | | | | | | | | \$\begin{array}{c ccccccccccccccccccccccccccccccccccc | | | | | | | | | 432 432 432 432 433 433 431 431 434 432 432 432 433
433 | | | | | | | | | 432 432 432 432 433 433 431 431 434 432 432 432 433 | -0.1068
-0.241
-0.9791 | -0.0785
-0.9988
-0.6677 | | | | | | |-------------------------------|------------------------------|-------------------------------|--|--|-------------------------------| | -0.3822
-1.3151
-0.6325 | -0.2814
-0.2216
-0.1216 | -0.081
-0.2828
-0.1995 | -0.8587
-0.3607 | | | | | | | | | | | | | | | | | | | -0.3207
-1.3459 | -0.168
-0.1951
-1.1064 | -0.6255
-0.5865
-1.383 | | -0.2058
-0.9835
-0.7742 | | | | | -0.0604
-0.2079
0.2167 | -0.12
-0.1499
-0.461 | -0.2005
-0.1268
-0.4111 | -0.1581
-0.0649
-0.4388 | -0.0558
-0.1287
-0.0824 | -0.2579
-0.1224
-0.5808 | -0.2138
-0.1371
-0.4402 | -0.234
-0.3486
-0.7075 | -0.1906
0.0588
-0.4348 | -0.0
-0.2
0.4 | |--|--|--|--|-------------------------------|--|--
--|---| | | | | | | | | -0.6669
-0.1498
-0.4814
-0.1634 | | | -0.2901
-0.1107
-1.7067
-0.2214 | -0.5114
-0.2022
-1.4056
-0.2587 | | | | | | -0.5721
-0.1608
0.5026
-0.2177 | -1.0
-0.3
-0.0 | -0.2045
-1.1087
-0.2478
-0.1948 | -1.0496
-1.8526 | 0.2163
-1.3519
-0.1256 | -0.5592
-1.2029
0.2903 | | | 0.7535
-0.631
-0.2988 | -0.7789
0.2978
-0.3678 | -0.8305
-0.246
-0.4839 | -1.2
0.9
-0.1 | -0.3413
-1.2278
-0.1889
-0.0755 | | | | | | | | | | | | | | | | | | | -0.3994
-0.2698
-0.4013 | -0.8669
-0.3052 | -0.1
-0.2
- | | | | | | | | | -0.3606
-0.3000
-0.0913
-0.4382 | -0.8
-0.8
0.4 | -0.1463
-0.0942
-1.2034
-1.0228 | | | -0.1798
0.3949
0.3541
-0.3784 | -0.1012
-0.1012
-0.8642 | | | -0.1372
0.058
0.2319
-0.5387 | -0.
-1.
-0. | -0.1687
-0.2428
-0.0814
-0.5048 | -0.2073
-0.116
-1.0618 | | | | | | | | | -0.7572
-0.2983
-0.569 | 0.0771
-0.0478
-0.5069 | | | | | -0.4451
-0.2016
-0.6322 | -0.1345
0.9886
-0.2154
0.2347 | | | | | | | | | | | | | -0.1052
-0.3884
-0.5013
-0.19 | -0.3539
-0.0469
-1.0616
-0.1513 | -0.5222
-0.538
-1.0374
-0.2108
-0.4534 | | | | | | | | | | -0.522
-0.538
-1.0374
-0.2108
-0.4554
-0.3305
-0.9231
-0.3488 | -0.3701
-0.2123
-0.4575
-0.3815
-0.4154
-0.2075
-0.205
-0.2177
-0.2287
-0.0255
-1.0287
-1.0287 | -0.3394 -0.4998 -0.4092 -0.1082 -0.1082 -0.2468 -0.2105 -0.1074 -0.263 -0.2328 -0.1918 -0.115 -0.115 | | | | | | | | | -0.7741 -0.2122 -0.4575 -0.3155 -0.3155 -0.3155 -0.3155 -0.3155 -0.3155 -0.3155 -0.3155 -0.3155 -0.3155 -0.3157 -0.315 |
0.1926
0.4926
0.4926
0.4926
0.4927
0.4927
0.4927
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0.4928
0. | | | | 0.1100
0.1100
0.1101
0.1101
0.2481
0.2484
0.2743
0.2743
0.2742
0.2493
0.2193
0.2193
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0.2493
0. | 0.5
0.2
-0.5
-0.3
-0.5
-0.2
-0.4
-0.8
-0.2
-0.1
-0.3
-0.2
-0.1
-0.3 | | | | -0.2721 -0.4772 -0.4575 -0.3115 -0.3115 -0.3115 -0.3225 -0.222 | | | | |
0.1505
0.1505
0.1505
0.2203
0.2404
0.2505
0.2505
0.2505
0.2505
0.1505
0.1505
0.1505
0.1505
0.1505
0.1505
0.1505
0.2505
0.1505
0.2505
0.1505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0.2505
0. | 0.5
0.2
0.5
0.3
0.5
0.2
0.2
0.4
0.8
0.2
0.1
0.3
0.5
0.2
0.1
0.3
0.5
0.2
0.2
0.1
0.3
0.5
0.2
0.2
0.5
0.2
0.5
0.5
0.2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | 4900145 | F158R 4900145 | G169R G169 Appendix 3. Top Biological Functions of mRNA group I to V | <u> </u> | Group# I | | | |--|-----------|-------------------------|-------------| | Name | p-value* | score = -log10(p-value) | # Molecules | | Diseases and Disorders | | | | | Cancer | 8.23E-1 | 9 18.08460016 | 256 | | Gastrointestinal Disease | 5.63E-1 | 4 13.24949161 | 127 | | Reproductive System Disease | 2.97E-0 | 8 7.527243551 | 102 | | Hematological Disease | 2.20E-0 | 7 6.657577319 | 70 | | Respiratory Disease | 2.00E-0 | 5 4.698970004 | 41 | | Molecular and Cellular Functions | | | | | DNA Replication, Recombination, and Repa | 5.42E-1 | 1 10.26600071 | 114 | | Cell Cycle | 8.04E-0 | 9 8.094743951 | 123 | | Cellular Assembly and Organization | 1.07E-0 | 7 6.970616222 | 113 | | Cellular Growth and Proliferation | 3.26E-0 | 7 6.4867824 | 192 | | Gene Expression | 1.71E-0 | 6 5.76700389 | 143 | | Physiological System Development and Funct | ion | | | | Embryonic Development | 1.20E-0 | 6 5.920818754 | 111 | | Connective Tissue Development and Funct | i 1.30E-0 | 6 5.886056648 | 57 | | Tissue Morphology | 2.66E-0 | 6 5.575118363 | 78 | | Organismal Development | 1.26E-0 | 5 4.899629455 | 97 | | Organismal Survival | 9.32E-0 | 5 4.030584088 | 95 | | | Group# II | | | |---|------------|-------------------------|-------------| | Name | p-value* | score = -log10(p-value) | # Molecules | | Diseases and Disorders | | | | | Cancer | 6.10E-37 | 36.21467016 | 275 | | Gastrointestinal Disease | 6.48E-24 | 23.18842499 | 140 | | Reproductive System Disease | 2.10E-20 | 19.67778071 | 156 | | Dermatological Diseases and Conditions | 7.99E-17 | 16.09745322 | 74 | | Inflammatory Response | 3.73E-16 | 15.42829117 | 123 | | Molecular and Cellular Functions | | | | | Cellular Movement | 7.38E-34 | 33.13194364 | 188 | | Cellular Growth and Proliferation | 1.45E-24 | 23.838632 | 239 | | Cellular Development | 9.17E-21 | 20.03763066 | 225 | | Cell Death and Survival | 4.13E-18 | 17.38404995 | 198 | | Cell-To-Cell Signaling and Interaction | 1.56E-15 | 14.8068754 | 144 | | Physiological System Development and Funct | ion | | | | Cardiovascular System Development and F | i 2.55E-37 | 36.59345982 | 153 | | Organismal Development | 2.55E-37 | 36.59345982 | 213 | | Organismal Survival | 5.99E-19 | 18.22257318 | 145 | | Immune Cell Trafficking | 3.29E-18 | 17.4828041 | 100 | | Connective Tissue Development and Funct | i 1.93E-17 | 16.71444269 | 157 | | Group | p# III | | | |---|----------|-------------------------------------|------------| | Name | p-value* | score = -log10(p-value) # Molecules | 3 | | Diseases and Disorders | | | | | Inflammatory Response | 1.04E-14 | 13.98296666 14 | 13 | | Infectious Disease | 2.44E-11 | 10.61261017 6 | 30 | | Connective Tissue Disorders | 3.09E-10 | 9.510041521 7 | 78 | | Immunological Disease | 3.09E-10 | 9.510041521 8 | 37 | | Inflammatory Disease | 3.09E-10 | 9.510041521 1.11E+0 |)2 | | Molecular and Cellular Functions | | | | | Cellular Function and Maintenance | 4.85E-17 | 16.31425826 11 | 5 | | Cellular Movement | 5.46E-15 | 14.26280736 12 | 26 | | Cell-To-Cell Signaling and Interaction | 9.54E-13 | 12.02045163 12 | 21 | | Cellular Development | 1.41E-09 | 8.850780887 12 | 29 | | Cellular Growth and Proliferation | 1.41E-09 | 8.850780887 17 | ′ 0 | | Physiological System Development and Function | | | | | Immune Cell Trafficking | 5.46E-15 | 14.26280736 10 |)4 | | Hematological System Development and Function | 4.18E-14 | 13.37882372 14 | Į1 | | Tissue Development | 9.54E-13 | 12.02045163 7 | 79 | | Tissue Morphology | 7.79E-12 | 11.10846254 10 |)3 | | Connective Tissue Development and Function | 1.92E-07 | 6.716698771 3 | 32 | | Group | p# IV | | | |---|----------|--------------------------------|--------| | Name | p-value* | score = -log10(p-value) # Mole | ecules | | Diseases and Disorders | | | | | Gastrointestinal Disease | 2.78E-04 | 3.555955204 | 44 | | Hepatic System Disease | 2.78E-04 | 3.555955204 | 22 | | Inflammatory Disease | 2.78E-04 | 3.555955204 | 23 | | Neurological Disease | 4.18E-04 | 3.378823718 | 45 | | Organismal Injury and Abnormalities | 4.18E-04 | 3.378823718 | 60 | | Molecular and Cellular Functions | | | | | Cellular Assembly and Organization | 5.99E-05 | 4.222573178 | 87 | | Cellular Function and Maintenance | 5.99E-05 | 4.222573178 | 166 | | Cellular Movement | 5.99E-05 | 4.222573178 | 51 | | Molecular Transport | 5.99E-05 | 4.222573178 | 229 | | Small Molecule Biochemistry | 1.58E-04 | 3.801342913 | 238 | | Physiological System Development and Function | | | | | Nervous System Development and Function | 5.99E-05 | 4.222573178 | 147 | | Hematological System Development and Function | 4.18E-04 | 3.378823718 | 118 | | Immune Cell Trafficking | 4.18E-04 | 3.378823718 | 47 | | Hematopoiesis | 5.58E-04 | 3.253365801 | 59 | | Humoral Immune Response | 5.58E-04 | 3.253365801 | 57 | | Cros | # \/ | | | |---|-----------|-----------------------------------|-----| | | ıp# V | | | | Name | p-value* | score = -log10(p-value) # Molecul | es | | Diseases and Disorders | | | | | Hereditary Disorder | 1.97E-08 | 7.705533774 | 187 | | Neurological Disease | 1.97E-08 | 7.705533774 | 189 | | Psychological Disorders | 1.97E-08 | 7.705533774 | 274 | | Cardiovascular Disease | 1.38E-06 | 5.860120914 | 303 | | Organismal Injury and Abnormalities | 1.80E-06 | 5.744727495 | 204 | | Molecular and Cellular Functions | | | | | Cell Signaling | 4.05E-07 | 6.392544977 | 202 | | Molecular Transport | 2.30E-06 | 5.638272164 | 970 | | Nucleic Acid Metabolism | 1.48E-04 | 3.829738285 | 171 | | Small Molecule Biochemistry | 1.48E-04 | 3.829738285 | 728 | | Lipid Metabolism | 5.46E-04 | 3.262807357 | 152 | | Physiological System Development and Function | | | | | Nervous System Development and Function | 4.29E-236 | 235.3675427 12 | 225 | | Behavior | 3.61E-04 | 3.442492798 | 213 | | Embryonic Development | 1.02E-03 | 2.991399828 2 | 208 | | Organ Development | 1.02E-03 | 2.991399828 1 | 157 | | Organismal Development | 1.02E-03 | 2.991399828 2 | 201 | ^{*}The most significant value is shown here. Appendix 4. Transcriptome changes in each transition step during reprogramming. | Appendix | 4. Transcrip | tome char | nges in each | transition s | tep during r | eprogrammii | ng. | |--------------------------------|---|-------------------------------------|---|----------------------------|--
--|---| | Gene ME | es of genes log2 >1 are h | Gene Th | y1+ to Thy1- | Gene Thy1- | to SSEA1+ | Gene DsRed | to DsRed- | | Oasl2 | 4.60087553
4.215472665
3.966645338 | Cldn11
Cldn4 | 5.576252823
4.115449761
4.082141292 | Dppa5
Dnmt3b
Krt1-17 | 2.139249635
1.877030802 | Car4
Spink3
Ent8 | 3.535718391
3.475134577
2.86847761 | | Fosb | 3.834763644
3.768288073 | KIK6
KIK5 | 4.076882713
4.032781113 | Grb7 | 1.836717754
1.792448715 | Fgf8
Gpc3
Dnmt3l | 2.771341943
2.764510157 | | Hey1 | 3.753932125 | Sic7a3 | 3.972972082
3.97177617 | Elf3 | 1.787887621 | Fgf5 | 2.749079103 | | Cxcl1 | 3.608386846
3.415339596 | Atp2a3 | | Tcfap2c | 1.779248023
1.755056051 | Sp5
Lefty2 | 2.741234944
2.732882217 | | Tnfaip3
Figf
LOC217066 | 3.405770736
3.398967219 | Klk1b27
Ngfa | 3.853710558
3.829616104 | Alox12b
Nanog | 1.737651775
1.700779056 | Gldc
Dppa4
Obx2 | 2.655727188
2.63089641 | | Iram | 3.29484073
3.284597817 | Ngfa
Trh
LOC233038 | 3.771456256
3.76157962 | Gpx2
Sall4 | 1.641000188
1.560096407 | Pitx2 | 2.588972521
2.585427961 | | Ptn
BC099439 | 3.16273614
3.044322799 | Krt2-8
Nup210 | 3.733036601
3.715904908 | Rbm35a | 1.549185456
1.510582932 | Dgkk
Cldn6 | 2.458843364
2.373803579 | | Cyp2f2
Cxcl14 | 3.012038635
3.009999817
2.949465136 | Msc
1600023A02Rik | 3.653750408
3.643498822
3.624418253 | Ly6g6c
Olig1
Col18a1 | 1.49421988
1.489832798
1.478029639 | T
Epb4.1l3 | 2.363638347
2.32983194
2.323044498 | | Acta2
Axud1 | 2.947951056 | Upp1
L1td1 | 3.480851484 | Otx2 | 1.452512205 | Dnmt3b
Lin28 | 2.297187187 | | Dot | 2.869655138
2.863048422 | Fetub
Garni4 | 3.437078874
3.427568572 | Zecan10 | 1.416764432
1.39340123 | Esrrb
Trh | 2.265173317 2.259166024 | | Nr1d1
Aebo1 | 2.840512602
2.784363008 | Tdh
Aldh3a1 | 3.414693304
3.337408162 | 2010001M09Rik | 1.393359388
1.374338893 | Nanog
Mest | 2.21432369 | | Hes1 | 2.743532588
2.738401047 | Dmrtc2
Acsbg1 | 3.304874368
3.245589271 | Dnmt3l
Lefty2 | 1.369980224
1.353996576 | Dppa5
Slc1a3 | 2.112289321
2.095532437 | | Serpina3g
Ccl2 | 2.721268173
2.69912319 | Fgfbp1
Laptm5 | 3.243909292
3.217989393 | 2410116G06Rik
Med18 | 1.330420805
1.328036103 | Smarca1
Lmyc1 | 2.075597619
2.07498704 | | Olfml3
1110032E23Rik | 2.676776953
2.663095866 | Lgals7
Krt1-17 | 3.18848082 | Rab15
Dppa4 | 1.308880376
1.286731135 | Bex4
Bex2 | 2.039343712
2.035465477 | | Mx2 | 2.641934686
2.686388794 | Npy
Krt1-14 | 3.179245629
3.174528033
3.167007518 | Prom2 | 1.261232163
1.251377225 | Mdk
Pla2g1b | 1.998026436 | | Ccl7 | 2.564685197
2.560683565 | Atp12a
BC004728 | 3.082655047 | lgsf9 | 1.236427151 | ladcc3 | 1 981711081 | | Col12a1 | 2.496155407
2.481300799 | 2200001115Rik
Msln | 2.994815465
2.989420894 | lafbo2 | 1.205860697 | lgfbp2
7420416P09Rik
Utf1 | 1.945173307
1.914516488
1.90988758 | | litm | 2.481300799
2.471992328
2.469776035 | Cth
Slc17a6 | 2.975752454
2.966553517 | Espn
Spnb3 | 1.179852876
1.178267883 | Pou3f1 | 1.902460751
1.841679183 | | Gvin1 | 2.468089052 | 1190003J15Rik | 2.960880903 | Ap1m2 | 1.178228305 | Ptn
Lefty1 | 1.802542135
1.761162538 | | ld2 | 2.456285063
2.450966221 | 1700019D03Rik
5730453H04Rik | 2.943416472
2.912480896 | Gldc
Egln3
BC013481 | 1.172292016
1.163298088 | Spp1
Nr6a1 | 1.748171049 | | Dlk1
Olfml2b | 2.448576878
2.441746309 | Reep1
Ramp3
Gna14 | 2.878262456
2.82483058 | Klk11 | 1.148183222
1.144229387 | Gsc
Sall4 | 1.734799927 | | Col6a2
Myd116 | 2.439210311
2.438000863 | Grb7 | 2.821060171
2.813765815 | Tacstd2
Krt1-19 | 1.131747057
1.128779019 | Zscan10
Chst1 | 1.722633151 | | Sepw1
Dtr | 2.421310814
2.415597443 | Acpp
ltpk1 | 2.812609175
2.731947519 | Sprr2d | 1.125130671
1.116897638 | Gbx2
Igsf4a | 1.714719873
1.709844251 | | Frmd6
Col1a1 | 2.391126315
2.390014448 | Mail
Mansc1 | 2.718587065
2.709785281
2.690578798 | Cdc20
Rbpms2 | 1.108550153
1.089267338 | 1500031H04Rik
Rbpms2
6030411F23Rik | 1.682199791
1.681931101
1.672283184 | | Itga11 | 2.388076278
2.362185186 | Arg1
E130012A19Rik | 2.675395967 | Prss19 | 1.084375163
1.078387899 | 6030411F23Rik
Fabp3 | 1.672283184 | | Mglap
Enha3 | 2.350282641
2.329562973 | Nppb
Serpinb3a | 2.650162484
2.602071746 | Rboms | 1.076038492
1.0706856 | Sox17
Car14 | 1.658211483 | | Cxcl15
C1qtnf3 | 2.319337977
2.301117908 | Lef
Tfro | 2.571861888
2.555205999 | L1td1
Gbx2 | 1.068136569
1.062887706 | LOC620807
Chrd | 1.610248135 | | G1p2 | 2.299864359
2.299268427 | 1110061N23Rik
Egln3 | 2.534863889
2.525852444 | Mapk13 | 1.062871885
1.061400545 | Glipr2
Emb | 1.598400623 | | 2310061N23Rik
BC006779 | 2.291929726
2.28802221 | Dppa5
D12Ertd553e | 2.522600846
2.515395876 | 7fn473 | 1.051225323
1.046891717 | A230098A12Rik
Ppp1r1a | 1.574341385 | | Gadd45h | 2 287823509 | Ppp1r1c
Ngfr | 2.509539283 | Tpd52 | 1.04450255 | Ptgis
Cadps2
Prf1 | | | Sfrp2
Sgk
Vcam1 | 2.276711468
2.272046468
2.269862254 | Foxd1
Corin | 2.506797404
2.491155974 | Ndrg1 | 1.042629853
1.04116331
1.025132697 | Prf1 | 1.569663364
1.551593233
1.548255279 | | Nfib | 2.269701707 | F2rl1 | 2.489364403
2.488242257 | E130306D19Rik | 1.013313183 | Tro
Fhi1 | 1.535752579 | | Mdk | 2.266936608
2.265318746 | Uhrf1
Dmkn | 2.474161717
2.46276926 | Kif22 | 1.009271851
1.008214798 | Lrig3
1700012H05Rik | 1.535554182
1.528632531 | | Spnb2 | 2.258893226
2.25281801 | E2f2
Krt1-12 | 2.455543533
2.454992152
2.453054141 | Bcl2l11
Car4 | 1.00288507
1.001021377 | Defcr-rs2
B930096L08Rik | 1.526367847
1.524453518
1.50701078 | | Gbp2
Agpt2 | 2.252271928
2.246853003 | Tle4
Cxadr | 2.39998924 | | 4.225504517
-4.155118567
3.993321071 | Tm4sf6
1700029P11Rik | 1.503734845 | | Mmp3 | 2.239661913
2.236234346 | 1300013B24Rik
Snrpn
Prkcb | 2.395235163
2.37884073 | | | Tex19
Stx3 | 1.484093673 | | Mfap4 | 2.231669554
2.2227328 | 9330186A19Rik | 2.350112323
2.349769764 | Den . | 3.586710163
3.392261157 | Snn
Gap43
Irx3 | 1.468924813 | | | 2.209453366
2.182671992 | Arhgef3
Acp6 | 2.344171887
2.341433746 | Igfbp5 -
Ptn - | 3.229591263
3.215573899 | Irx3
St6gal1 | 1.467499691 | | Slit2
Trim30 | 2.179411523
2.162323279 | Cobl
Rb1 | 2.333730078
2.321074177 | Timp2 -
Col6a1 - | 3.170181321
3.103528212 | 2610305D13Rik
BC030476 | 1.466057095
1.460260259 | | Hic1 | 2.161796437 | Rnase1
Aqp3 | 2.316332632
2.313307612 | Oan - | 3.026296744 | Nudt11 | 1.459138179 | | 1200009O22Rik
Nrp | 2.154080057
2.146064541
2.132389142 | Itgb4
Sic2a3 | 2.29812039
2.296696058 | | 3.006990944
2.970372034
2.914118871 | Gfpt2
Fgf15
Tnfrsf19 | 1.457996656
1.457547795
1.454690036 | | Grb14 | 2.12891948
2.122791894 | AU040576
Lmnb1 | 2.296162627
2.295696553 | Timp3 | 2.914118871
2.893656727
2.832773371 | Eaf17 | 1.454690036
1.442729233
1.436194151 | | Thy1
Hmox1 | 2.114904064
2.1115804 | Dpp4
Prkcz | 2.293452926 | Itgbl1 - | 2.787938493 | B3gnt5
Sall2
Arid3b | 1.427349439 | | Tmem176a | 2.104747583
2.102076647 | Akp2
S100a3 | 2.278653406
2.277775251 | Crym
Ifit3
Tnfrsf11b | 2.646496227
2.633408815 | Armcx2
6530401D17Rik | 1.413841887 | | Nfkbiz
Bd9l | 2.097686292
2.093259266 | 2810410M20Rik
H2afz | 2.269355138
2.269094274 | Ccl7 -
Col3a1 - | 2.551737387
2.538915133 | Lhx1
Tcfl5 | 1.406952769
1.398821694 | | Hoxc6 | 2.086690076 | Krt1-16 | 2.267132974 | | | Fgf10
Flt1 | 1.398667538 | | Fgf7
Fbln1 | 2.084790895
2.078852239 | Itga3
Cldn5 | 2.265657406
2.255500733
2.252185831 | Sostdc1
Thbs2 | 2.481335731
2.436880472 | Rbpms | 1.390789953
1.388988428
1.380803435 | | Cyp7b1 | 2.064403033
2.060600011 | Mcm10
Mcm5 | 2.247325077 | 1200009O22Rik
Mmp2 | -2.422741114
-2.393241115 | Foxq1
E030006K04Rik | 1.36812735 | | B230104P22Rik | 2.056472769
2.053381676 | Cldn3
Conb1 | 2.245237172
2.241524757 | Cxcl14 | 2.387383352
2.381921224 | Slc2a3
Igsf9 | 1.359019744
1.345915329 | | Fgf10
Ssbp3 | 2.04647443
2.038917874 | Mapt
Avil
6030405A18Rik | 2.227133454
2.200525506
2.193479729 | Col5a1 | 2:373880175
2:362621032
2:346972103 | Ramp2
Eomes | 1.34129342
1.340306624
1.332250187 | | Fos
Idb4 | 2.036512069
2.035425842 | Tacstd2 | 2.180366748 | Il1m - | 2.326179494 | Nptx2
2410146L05Rik | 1.332250187
1.329907883
1.322408113 | | Pri2c3 | 2.018954326
2.014033695 | Krt1-19
Rasgrp1
2310061G07Rik | 2.176111146
2.173563579 | Scarf2 -
Nedd9 - | 2.324055251
2.323480215 | 2810046M22Rik
Adam19 | 1.313947643 | | Thbd
Arhgap20
Irf7 | 2.009688389
2.008077583 | Cdca7 | 2.173064709
2.169256534 | | 2.293232662
2.262712771 | Zbtb2
Foxa2 | 1.311851022 | | Polydom | 2.007928896
2.007581342 | Tjp2
Rbm35a | 2.166039916
2.161385024 | Siti2 -
Apod - | 2.240567345
2.209461911 | Coti1
Sgk | 1.308618798 | | Gaintl4
D14Ertd668e | 1.999534539
1.997761528 | Rpp25
Sox21 | 2.161369051
2.159608479 | Oasl2 -
Scara3 - | 2.166403163
2.156997776 | Tdgf1
Acvr2b | 1.306954766 | | Gm1012
Thhe1 | 1.988372861
1.986389568 | Pdgfb
Pkp1 | 2.155898375
2.154239673 | Spon2 -
Dlk1 - | 2.144092855
2.132054147 | lgfbp5
Cntnap2 | 1.288331305 | | 2610001E17Rik
Nedd9 | 1.985265368
1.981532595 | Tofap2c
Aoah | 2.145108681
2.140186481 | | | Pnma2
Mfap2 |
1.278880442
1.271679119
1.27064759 | | Cci11
Pdofra | 1.980157728
1.977027726 | Mybl2
Gm484 | 2.135633132
2.134007669 | Sane1 - | 2.105632041
2.095222681
2.088199323 | Axin2
Phlda2 | 1.264061601 | | Zfp36
Osmr | 1.97145943
1.971386642 | Wasf1
Mbp
Mcm6 | 2.132819445
2.125823797 | Usp18 -
B220104P22Pik - | 2.087462841
2.080965534 | Fzd2
Slc27a2 | 1.261933532 | | Zcchc5
Col3a1 | 1.969211485
1.966355604 | Mcm6
AK129128 | 2.122453802
2.120477357 | Gvin1 - Ccl8 - | 2.077566685
2.049479054 | Mogat2
Whrn | 1.25358293 | | Rasi11a
Actb | 1.965784285
1.950139485 | 9030611O19Rik
Tnrc9 | 2.108649381
2.101860726 | Olfml3 -
Zfpm2 - | 2.049075992
2.019328261 | Fzd7
Mapk12 | 1.252622863
1.249317527 | | 2510004L01Rik
Fas | 1.946406794 | Bex4
Tcfap2a | 2.10150612 | Acta2 - 9030611O19Rik - | 2.014301448 | Ddx25
Dnajc6 | 1.244903953 | | Irf1
Stx3 | 1.938549032
1.935204877 | Dgka
Sic2a1 | 2.086508993 | Cav1 - | 1.993093327
-1.99143375 | Evi
Socs2 | 1.241138348 | | Mgst1
H2-T23 | 1.931808228
1.917477351 | EG638695
Sh3rf2 | 2.070055795
2.058998418 | Rbms3 | -1.96609466
1.965632128 | Mlp
2410004F06Rik | 1.234962569 | | Sdpr
Per1 | 1.917026319
1.916427897 | Efcbp1 | 2.054908341
2.052947266 | Voam1 - | 1.951828001
1.923143495 | Pknax2
lgf2bp1 | 1.226015216 | | Drpla
F2r | 1.9083589
1.90605794 | lqgap2
Nos3as
Slc9a3r1 | 2.03562391
2.034700322 | Col4a1 - | 1.912379418 | Cmya4
Prickle1 | 1.215056668 | | Lgals9 | 1.905359773
1.90512655 | Tuft1
Apcdd1 | 2.03435483
2.031520743 | Vim - | 1.898794774
1.872574929 | Lrp11 | 1.189503547 | | Gap43
1810057C19Rik
Cav1 | 1.903784685
1.900271834 | Aldoc
Nt5e | 2.031520743
2.030856249
2.008358439 | Dab2 - | 1.872574929
1.870119717
1.862177043 | Col18a1
Dpysl5
Gata6 | 1.188157494
1.187290562
1.185911971 | | Hoxc9 | 1.898948094
1.892650303 | Gng13
Zic3 | 2.008358439
1.997974217
1.996560916 | Snn1 - | 1.862046618
1.854910794 | Fgf17
Myh10 | 1.185911971
1.181718606
1.180651408 | | Srpx
6330403K07Rik | 1.891634973
1.872830364 | 2310046K01Rik | 1.992684616 | B2m - | 1.845135275 | | 1 171045541 | | Epb4.113
ldb3 | 1.868891097 | Dhx32
Tmprss5 | 1.982054801
1.979743963 | Nrp - | 1.831505534
1.831292977 | Celsr3
Stard8 | 1.162920068
1.145548071 | | H19
Sulf1 | 1.862027314
1.850574708 | Cenpa
Porcn | 1.963962227
1.961843858 | Zfp521 - | 1.829800069
1.828329873 | Fuom
Gm691 | 1.143653822
1.143443168
1.139765815 | | Rspo2
Nfkbia | 1.848668865
1.844811936 | BC065123
Pglyrp1 | 1.961157524
1.959447621 | Gbp4 -
Thbs1 - | 1.809378054
1.785495488 | Pla2g10
Mixl1 | 1.139010255 | | 6030411F23Rik
Dkk3 | 1.838617698
1.835555602 | Ndg2
1700057K13Rik | 1.951231123
1.947862377 | Sparc -
BC099439 - | 1.763908016
1.760049207 | Slc39a4
2810004A10Rik | 1.1294263
1.12500877 | | Pdgfrb
Rbms3 | 1.831877241
1.830089039 | lap
Tmem16d | 1.944790913
1.91268844 | Marcks - | 1.759386889
1.757177981 | Olig1
Rragb | 1.124901767 | | Gpc3
Toba | 1.816917318
1.81064243 | Eppk1
Cdh1 | 1.911399021 | Igfbp7 -
Cdo1 - | 1.740766538
1.740641252 | Rragb
Ndg2
Actb | 1.118857397 | | Nnmt
Slc39a13 | 1.809125462
1.803660438 | Dok2
Lrmp | 1.909108421
1.90729636 | 0610041G09Rik -
ltm2a - | 1.737292504
-1.721185011 | LOC545007
2410116G06Rik | 1.09867314 | | Ogn
AW551984 | 1.796031535
1.790920065 | Krt2-6b
AA467197 | 1.902364997
1.901077587 | LOC217066 - | 1.692807456
1.688740831 | 1110025F24Rik
Wnt8a | 1.090810288 | | Cpxm1
Serpinh1 | 1.788791317
1.787718895 | Sgne1
4632404H22Rik | 1.876040735
1.875235897 | Dkk3 -
Bicc1 - | 1.685685089
1.684100354 | Cyp7b1
D230005D02Rik | 1.08684326 | | Gbp1
Gsn | 1.779637778
1.777607579 | Ddc
Plekhf2 | 1.869320675
1.869162058 | Tgfbi -
2610001E17Rik - | 1.632680915
1.627834308 | Robo4
Slc29a4 | 1.058645995 | | Gm1010 | 1.777264692
1.772317759 | Notch4
Parp1 | 1.864629727
1.860159035 | 2810022L02Rik - | 1.604862058 | Gprasp1
Sema3f | 1.048083505 | | Pmp22
Bicc1
Reg3g | 1.771260178
1.76811329 | 1810015C04Rik
Dusp14 | 1.85634655
1.856010057 | Rgl1 -
Per2 -
Lum - | 1.596644306
1.594510484 | Fem1b
Neurl | 1.040631483 | | Den
Casp4 | 1.755555046
1.752822695 | Optn
Cd109 | 1.855000294
1.85488374 | Serping1 -
Wisp1 - | 1.587608324
1.582459994 | Sertad4
Cd40 | 1.035166854 | | Thbs2
1110019L22Rik | 1.747695683
1.746616998 | Tph1
Cte1 | 1.847815561
1.846325029 | Adamts2 - | 1.578927915
1.578927082 | Mnd1
6330403K07Rik | 1.022857716 | | 1110019L22Rik
Klf2
Myh10 | 1.748616998
1.743611552
1.740510112 | Siat10
Tmem20 | 1.833926301
1.831292977 | Dtr - | 1.578927082
1.555296719
-1.55277191 | 6330403K07Rik
Nudt10
Sqle | 1.022786532
1.019701914
1.018018389 | | Ptx3 | 1.738454883 | Pip6k1a | 1.831292977 | Cxcl12 - | 1.548090299 | Greb1 | 1.017417053 | | Ankrd50
Junb
Cxcl10
Ptpn21 | 1.73456092
1.730084273
1.728912805
1.727558035 | Tm4sf12
Syt14I
AJ427138
Hist1h2ak | 1.830652886
1.830004663
1.829015584
1.827792869 | Fas
Pmp22
Mxra8
Zyx | -1.548043873
-1.528638894
-1.524943501
-1.512759054 | Nid2
Crabp1
Enc1
H19 | 1.00863891
1.00768853
1.00699320
1.00684835 | |-------------------------------------|---|--|--|------------------------------------|--|-----------------------------------|--| | Fhi2
Adar | 1.727142512
1.723376529 | Anin
Prg
Clic3 | 1.827678235
1.827532804
1.819903385 | Cdc42ep3
Cryab
2310016C16Rik | -1.497764059
-1.480582438
-1.474642656 | Atp1b1
C130076O07Rik
Zcchc3 | 1.00192103
1.00147439 | | lgfbp5
Lsp1
Oas2 | 1.719080497
1.715582043
1.71494963 | Nsbp1
4930538D17Rik | 1.815390252
1.815111366 | Corin
Nr1d1 | -1.474642666
-1.4708348
-1.467658135 | Serpina3n
Hoxo6 | -1.83812232
-1.63637611
-1.61715985 | | Col6a1 | 1.707103399 | Chn2 | 1.813022362 | Aqp1
Col12a1 | -1.461744248 | D12Ertd553e | -1.61715985 | | En1
Hist1h2bh
Tnfrsf1a | 1.706531332
1.703901535
1.703018262 | Mtap7
Sftpd | 1.811202111
1.801066551
1.798516568 | Osr2
F2r | -1.449707733
-1.446286471
-1.425634973 | ll1m
Adh7
Pooloe | -1.5931736
-1.54359568 | | Intrst1a
Ifitm3
Nid1 | 1.703018262
1.70292122
1.700999326 | Enpp1
Rab8b
Krtdap | 1.798516568
1.798000104
1.797041729 | Tgfb1i1 | -1.425634973
-1.423749931
-1.416322886 | Pcoice
Ngfa
Klk1b27 | -1.52186452
-1.46282745
-1.45616496 | | Nati
Efs
Tom1 | 1.69780546
1.696837651 | Avpi1
Centa1 | 1.77710551
1.772161068 | D4Bwg0951e
Vsnl1 | -1.416322886
-1.405526405
-1.405256478 | Klk5 | -1.45616496
-1.45185797
-1.44544738 | | Tgfbr3 | 1.696637651
1.69384323
1.693329741 | 4930429A22Rik | 1.772161068
1.766596558
1.764520823 | Polydom
Pik3r1
Col16a1 | -1.405256478
-1.396744825
-1.391944412 | Sftpd
Klk6 | -1.44544738
-1.42984765
-1.40701884 | | Vd
Al481100 | 1 692153107 | Hist1h2ah
Gdf3
Mthfd1 | 1.747979612
1.742204562 | Pros1
Chst7 | -1 385004019 | Meox2
Rnase1
Cd109 | -1.39587119
-1.39231742 | | B2m
Hoxc10 | 1.692139847
1.691551148 | Mthtd1
Hmga1
Slc2a6 | 1.739949184 | Nr2f1 | -1.376745715
-1.375190279 | Siat10 | -1.38143765 | | Unc5c
Fst | 1.682925754
1.678071905 | Pem | 1.739447569
1.736436068 | ltga11
Mgst1 | -1.374620989
-1.369515346 | Apod
Tgfbr2 | -1.3703144
-1.3660761 | | Per2
Sphk1 | 1.677933391
1.672556502 | Hist1h2ao
Lamc2 | 1.736087405
1.725130458 | Fst
Epha3 | -1.366285321
-1.360402243 | Aldh3a1
Hbb-y | -1.35063432
-1.3447154 | | Ebf3
Twist2 | 1.671845767
1.670351078 | Ckmt1
C430004E15Rik | 1.722164489
1.721485466 | Pdgfra
Bmp15 | -1.352742418
-1.352640962 | Fmo1
D2Bwg0891e | -1.33758135
-1.33698532 | | Sfrp1
Mxra8 | 1.668432065
1.662810232 | Akr1c18 | 1.721134721 | Rnase4
Gm1012 | | Actg2
Corin | -1.30326263 | | Mest
Pkig | 1.659278789 | Gch1
1810043M15Rik | 1.720145127
1.71316257 | Cond2
Rhoj | -1.345060311
-1.344872532
-1.343954401 | Oas2
Avil | -1.2902432
-1.27109980
-1.26574249 | | Ddx58
Rgs16 | 1.651036516
1.650729978 | Tm4sf3
D9Ertd280e | 1.709197975
1.706228258 | Mme
Podh7 | -1.343954401
-1.3382803
-1.325305455 | Mrgprf
Acsbg1 | -1.26574249
-1.26553113
-1.26450508 | | Steap2
Mfap2 | 1.650466546
1.649561234 | Sod2
Pbk | 1.701972576 | Ly6c
Chst3 | -1.307140774
-1.306832493 | Msc
Slc17a6 | -1.25769562 | | Stat2
Eps8 | 1.648002895
1.645403079 | Liph
Cdca2 | 1.700439718 | Prkob
Pdgfrl | -1.306610684
-1.302214587 | Osmr
Irf2 | -1.24275013
-1.22792653 | | Pdgfrl
2310016F22Rik | 1.642516492
1.6425087 | Sap30
2010004A03Rik | 1.696570414
1.694251832 | Adora2b
Thy1 | -1.300044977
-1.294644012 | Egfr
Aim1 | -1.2265924
-1.22328822 | | Zfp36l1 | 1.641345721 | AJ427515
6330442E10Rik | 1.693991908 | | -1.290515142 | Foxd1 | | | Tap1
Mmp23 | 1.63343121
1.632026646 | Ranbp1 | 1.693279317
1.686405899 | Herpud1
D14Ertd668e | -1.286865482
-1.285940317 | Ppp1r1c
Ltf
Chara1 | -1.21739632
-1.21101219 | | Tmem98
Nfil3 | 1.630747311
1.629629832 | 2610019F03Rik
5730410E15Rik | 1.68442396
1.674514086 | Sox21
Ifi47 | -1.284876551
-1.283932467 | Nfix |
-1.20947015
-1.20578089 | | Avpr1a
Mapk6 | 1.623868408
1.620861718 | Fuom
Dutp | 1.662163981
1.660789624 | Pscd3
Anxa3 | -1.277171517
-1.272825472 | Acpp
Cond1 | -1.20307098
-1.20300226 | | Pltp
C2 | 1.620712526
1.613593789 | Cyp2s1
2410137M14Rik | 1.659869468
1.657686665 | Hey2
Pkig | -1.267913325
-1.264812949 | Col7
Cmtm7 | -1.20125820
-1.20086198
-1.19843848 | | 1810043J12Rik
AA175286 | 1.607946441 | Dpp6
Krt1-13 | 1.656347134
1.654732779 | Cyp2f2
Cdh13 | -1.261227326
-1.260112087 | Nt5e
Arl6ip5 | -1.19843848
-1.19793028 | | AA175286
Hspa1a
Atp1b1 | 1.604149521 | Krt1-13
Ripk4
Limk2 | 1.650160767
1.646844269 | Sspn
Col1a2 | -1.260112087
-1.259883092
-1.257411011 | Arl6ip5
Vamp4
Slc2a6 | -1.19793028
-1.19611714
-1.19256119 | | Ccl5
Inhba | 1.597050896
1.594281065 | Nusap1
Uon3 | 1.646780116
1.640664994 | Mmp3
Per1 | -1.255761171
-1.252517163 | Cldn5
6330442E10Rik | -1.18286405
-1.17842427 | | nnoa
.db2
Sittl2 | 1.594281065
1.59331085
1.592152026 | Hist1h2ad | 1.63648872
1.63530015 | Wisp2 | -1.252517163
-1.242775567
-1.238046754 | 0610041G09Rik | -1.17583071
-1.16975536 | | Hoxd8 | 1.59118744 | Rab25
Sfn | 1.630535983 | Fosi1
Cd248 | -1.235840231 | Tm4sf3
1700047l17Rik | -1.1611688 | | Cbfa2t1h
Zfp521 | 1.587820031
1.587514217 | Frrs1
Gngt2
Plekha6 | 1.629865137
1.627893895 | C1qtnf3
Ppap2b | -1.235080344
-1.231233855 | Prss35
D12Ertd647e | -1.1608399
-1.15642867 | | Steb1
.OC381480 | 1.586355886
1.585773231 | | 1.626126995
1.620733632 | Ppap2b
Ccm4l
Wnt5a | -1.224356136
-1.220675949 | Sspn
Olfm1 | -1.14936881
-1.14504287 | | Bmp1
Pvrl2 | 1.581033984
1.580935034 | Phc1
4930572J05Rik | 1.619887009
1.618864246 | Trim30
Gch1 | -1.218894977
-1.213815137 | Emp3
Dmrtc2 | -1.1448616
-1.1390420 | | Phida1
Csf1 | 1.578378686
1.576795875 | Hal
Ush1c | 1.617514616
1.61562555 | ld2
Fbn1 | -1.21079386
-1.205296837 | Chi3l1
Mal | -1.13720887
-1.13654727 | | Col24a1
Twist1 | 1.575036536
1.57477097 | Spink3
Ncaph | 1.609730406 | Nbl1
2510009E07Rik | -1.203974421
-1.201239305
-1.191179504 | lqgap2
Aqp3 | -1.13554122
-1.1286032 | | Sim2
Mbd5 | 1.574283732
1.572530756 | | 1.608265445 | Descrit | -1.191179504
-1.170719656 | Nov | -1 12825258 | | Firt2
Defb1 | 1.569365646
1.563860703 | 2810417H13Rik
Prx
Llalh2 | 1.605993413 | Fxyd5
Spink3
Jak2 | -1.170719656
-1.170144273
-1.169599814 | Mglap
Arbf1
1110020C13Rik | -1.12486911
-1.12405570
-1.11944411 | | Lum
Podh7 | 1.56292099
1.562758621 | A230091H23
Clcn3 | 1.603136743
1.601275834 | Itpkc
Prkcdbp | -1.161709176
-1.158300027 | Prok2
Slc38a5 | -1.11858535
-1.11462413 | | Hoxa5 | 1.562706833 | Hdac6 | 1.597982399 | Palmd | -1.155822687
-1.1527537 | Arhgdib | -1.11462413
-1.1144906
-1.11263044 | | Kng1
Prickle1 | 1.556833128
1.554944356 | 9130210N20Rik
Pga5 | 1.593491503
1.593039191 | St7
1110007C02Rik | -1.14972194 | Dbp
5730410E15Rik | -1.10677631 | | Vegfc
Fez1 | 1.554740886
1.55442232 | Sema4b
Pik3cb | 1.587708997
1.587143446 | Ednra
Mtap1b
Tcf4 | -1.146655222
-1.146028496 | Rbms1
Ptprv
Rab7l1 | -1.10167438
-1.09501311 | | Hoxd10
II31ra | 1.551134572
1.549607224 | Hist1h2an
Konk13 | 1.584495324
1.583856563 | Olfml2b | -1.145387123
-1.144728626 | Emp2 | -1.0936647
-1.0882203 | | Lox11
9330196J05Rik | 1.548440117
1.548340288 | Sema6d
Rps6ka1 | 1.581373705
1.580493643 | Kai1
Pmp | -1.142957954
-1.141281665 | Olfmi1
Dctn1 | -1.08792990
-1.08677272 | | Adamts5
Ccdc3 | 1.54415784
1.642693628 | Stk6
Stxbp2 | 1.579334576 | AU040950
Nnmt | -1.141162926
-1.139701498 | | -1.08459940
-1.08139462 | | Lphn3
Adamts2 | 1.540635469 | Kcnk1
Opct | 1.5753338
1.570433727
1.569736026 | Antxr1
Figf | | Rnase4
2610001E17Rik
Siat8b | | | Chst12
Gata6 | 1.539496675
1.539020825 | D11Ertd636e
Insm1 | 1.566569327
1.558967292 | Bmp4
Fmo1 | -1.138433395
-1.134852884
-1.134135618 | Gm484
Axud1 | -1.07962186
-1.07948932
-1.07389962 | | Timp2
Gor23 | 1.5365331
1.528717215 | Usp1
Dnmt3b | 1.548828715 | Edg2
Ucn3 | -1.132957338
-1.126091821 | Gpnmb
Mras | -1.07138463
-1.0648003 | | Usp2 | 1.527571181 | Slc28a1 | 1.546029871
1.544418422
1.543598513 | Anxa1 | -1.126091821
-1.119599552
-1.119253036 | Gngt2 | -1.06472241
-1.0625297 | | Jundm2
Steap | 1.527154895
1.522678222 | Pacs1
Pak4 | 1.543263209 | Rgs16
Anxa5 | -1.118520718 | Csprs
Rb1 | -1.05965741
-1.05897274 | | Ggcx
Calr | 1.519552611
1.515762771 | Drp2
Sh3gl2 | 1.542855107
1.53723946 | Sertad4
Ssfa2 | -1.115188938
-1.114228671 | Atp2a3
Thbd | -1.05525271 | | Thbs3
Cmya4
Sit3 | 1.515075329
1.514233675 | Prc1
2310006J04Rik | 1.528627803
1.528219989 | Ssb4
Axl | -1.11388119
-1.112991686 | Msln
Prnp
Gsdmdc1 | -1.05228764
-1.04919936 | | Htra3 | 1.513109622
1.512784943 | Elavi2
Hist1h2af | 1.52300478
1.521071947 | lgf2
Lxn | -1.112876107
-1.110991746 | Fetub | -1.04466904
-1.04195396 | | Tbxa2r
Prrx1 | 1.511725141
1.510084708 | Tk1
2310010M24Rik | 1.520363261
1.512812715 | Konab1
II11ra1 | -1.107713817
-1.101361726 | Hoxc9
Atf3 | -1.04061106
-1.03587110 | | Mapre2
D15Ertd366e | 1.508428653 | AJ256711
2310042N02Rik | 1.511859923
1.511439396 | Tsrc1
Rora | -1.094662057
-1.094609644 | Gch1
Scarb2 | | | Cd248
Col4a5 | 1.506783825
1.50513561
1.500774792 | Podxl
Hmgb2l1 | 1.505852662
1.505829924 | Rora
1110032E23Rik
Lbh | -1.088606113
-1.087240083 | Prkodbp
Enpp1 | -1.03293713
-1.03051041
-1.02377363 | | Hist1h2bn
Galnt9 | 1.500774792
1.49596618
1.494961044 | | 1.504702929
1.503432615 | Adrb2 | -1.085952701
-1.082091621 | Rab8b
Bdnf | -1.02354520
-1.02171972 | | Gpc4
1810057P16Rik | 1.493794813 | Syngr1
Abp1
Sox13 | 1.493988841 | Npr2
Bst2 | -1.081019351
-1.080170349 | Lamp2
Grina | -1.01982288
-1.0143692 | | Cugbp2 | 1.491167118 | C1qtnf1
8430408G22Rik | 1.489449214 | Igfbp6
Ctsc | -1.080170349
-1.079551299
-1.078677372 | Efna5 | -1.0143692
-1.01277164
-1.01177460 | | Gstt1
Mme | 1.490759234
1.489999557 | 8430408G22Rik
Pfkp
9930023K05Rik | 1.4836456
1.482712442 | Armox1
Ctsk | -1.078677372
-1.072084622
-1.071326447 | Cdkn1a
1810009M01Rik | -1.01177460
-1.00977525
-1.00790086 | | Crtap
Hist1h2bf | 1.487818159
1.486816867 | ltgb7 | 1.47955982
1.477478074 | lgfbp3
Axud1 | | Scara3
Ak3 | | | Oas1g
Col1a2 | 1.486330488
1.486087251 | Tmc6
Ly6g6c | 1.475320084
1.474283022 | Twist1
A230091H23 | -1.070779011
-1.069645862 | Oit1
Rims3 | -1.00257762
-1.00104961
0.99348669 | | Mif1
Tagin | 1.485595475
1.484998579 | Rims2 | 1.473931188 | Lmo4
Fcm1 | -1.06944204
-1.068261118 | Calca
Sirt1 | 0.99347687 | | Cebpb
Fblim1 | 1.484707059
1.482133001 | Lig1
8430410A17Rik
Msh6 | 1.460680165
1.459356657 | Efcbp1
Serpine2 | -1.06583199
-1.064280751 | Acas2l
Cxcl12 | 0.99176907
0.99116534 | | Plekha4
Ppap2a | 1.479845795
1.476160698 | Cltb
Nasp | 1.458747967 | Gp38
1190002H23Rik | -1.062416923
-1.062389922 | AW548124
E2f5 | 0.99093862 | | rpapza
Ltbp1
Bmp4 | 1.471787151 | BC004853
Gpx2 | 1.454031631 | Irgm
Reck | -1.061263295
-1.058712776 | 5730469M10Rik
Grip1 | 0.99000207 | | Bmp4
2810442O16Rik
Wbp5 | 1.468049831
1.46545565 | Atp1b3
Tcfcp2l2 | 1.446831582
1.444219369
1.442046233 | Irs2
Sdor | -1.058712776
-1.058137758
-1.057533764 | Grip1
Ung
Gami3 | 0.98899167
0.9823151
0.97895886 | | Rgs4 | 1.464878238 | Blm | 1.437484863 | Garni3 | -1.054654075 | Plod1 | 0.97838233 | | zd2
Copz2 | 1.462080339
1.459270288 | Adam23
Olig1
BC085271 | 1.435127465
1.430055138 | Kdelr3
Upk3b | -1.052112989
-1.051723661 | Foxa1
Foxd4 | 0.9781956
0.97738169 | | Cobil1
Armox1
Rabi4 | 1.457761081
1.457259254 | Chet3 | 1.428375996
1.427010141 | Aebp1
Copz2
Mansc1 | -1.03766562
-1.036568609 | 2210409E12Rik
H2-BI | 0.97477741
0.9737525 | | Epb4.112 | 1.455679484
1.455530683 | Suz12
Cbr2 | 1.426868322
1.426264755 | Tnfsf9 | -1.035666253
-1.032914622 | D14Ertd449e
Clic6 | 0.96774580
0.96523458 | | C1qtnf2
Ccm4l | 1.448929482
1.438620981 | Rbm38
Tm4sf11 | 1.425968395
1.425238812 | D11Lgp2e
Emp3 | -1.02988428
-1.025797081 | Cmtm8
Pdlim3 | 0.96108890
0.9606983 | | ll6st
Colec12 | 1.438269806
1.433960363 | Myo6
Vil2 | 1.423174053
1.421443626 | Saa3
Thbd | -1.023962672
-1.020772146 | Gababrbp
Pem | 0.95920973
0.95503985 | | 3px3
3330406115Rik | 1.433545988 | Dusp4
Nm | 1.42103624
1.419426994 | Gpr49
Bmp3 | -1.014780158
-1.014274131 | Agtrl1
6820449109Rik | 0.94527307
0.94421222 | | SSSU4U6I15KIK
Col4a1
Hoxb7 | 1.428250216
1.425993914 | Incenp
Ppat | 1.419232603 | Tnfrsf12a
Gm129 | -1.012270762 | 2410012C07Rik
Tal2 | 0.94421222
0.94012854
0.93973947 | | 10xd5
1933428G20Rik | 1.425993914
1.424231294
1.419892633 | Lamb3
Elmo1 | 1.416164165
1.414828519 | Defb1
Sim2 | -1.012299265
-1.010569242 | Blm | 0.93655987
0.93655987
0.93582576 | | Pftk1 | 1.419892633
1.417839394
1.41565076 | Hs3st3a1 | 1.413971963 | Adamts5 | -1.002837159
-1.001834323 | Ttyh3
Trint1 | 0.93518719 | | Sprc6a
Adoy4 | 1.41565076
1.411462045
1.411287615 | Gsta3
Posk1n | 1.413294061
1.410072561 | Tefcp2l3
Pou3f1 | 0.993724675
0.993510133 | Eras
Trp53i11 |
0.93467157
0.93462399 | | Nuak1
Ltbp3 | 1.411110924 | D830007B15Rik
4930504E06Rik | 1.409289703
1.40706932 | Ly6d
Utf1 | 0.991917654
0.986824611 | Col2a1
Rragd | 0.93011590 | | Peg3
Smtn | 1.407973321
1.40582115 | Spnb1
Stmn2 | 1.407009596
1.406139947 | Kif2c
Pem | 0.985123072
0.981208916 | Car2
Tex10 | 0.9283311
0.92653098 | | Spr124
Nab1 | 1.40411385
1.403863694 | Sic35f2
Cova1 | 1.405656263 | 2300002G24Rik
Sgol1 | 0.976132494
0.975363731 | Epb4.9
Ssb4 | 0.92453846 | | 1921505C17Rik
Fmem150 | 1.402992473 | Cdc20
Cbara1 | 1.3991674
1.39728798 | Sgol1
BC004728
Apvr2b | 0.97364542
0.97256677 | Slc7a7
Heatr1 | 0.92333023 | | xn
3hr | 1.399725373
1.397242235 | Msi2h
2410146L05Rik | 1.397140295
1.396722602 | Ripk4
BC022765 | 0.965623231
0.963128361 | Mylpf
Etsrp71 | 0.92099754
0.91897550 | | Efemp2 | 1.397242235
1.392418929
1.391082767 | Foxm1
Frat2 | 1.393501415
1.389927108 | Cldn3
Flt1 | 0.963128361
0.958338219
0.95322931 | Msx1
1110012J17Rik | 0.91624654
0.91609574 | | Faxc1
Ccnl1
1700012H17Rik | 1.391082767
1.390229141
1.389085791 | Diod3 | 1.389927108
1.386170438
1.384439777 | Apoc1
LOC233038 | 0.95322931
0.952312018
0.949623711 | 1110012J17Rik
Rasi11b
ltm2a | 0.91609574
0.91508586
0.91505012 | | Tyki | 1.388129626 | Serpinb3d
Krt1-18 | 1.383981564 | Pvrl2 | 0.949198562 | Slc29a1 | 0.91442732 | | 6030410K14Rik
Alcam | 1.386910117
1.385056073 | Ckb
Hbb-y | 1.381829871
1.37830965 | Fgf5
Apoe | 0.94079642
0.939187758 | Bmp7
2610318I01Rik | 0.91354889
0.91098673 | | Snai1
Reck | 1.381403763 | Pcdh21
4930432K21Rik | 1.376213728 1.375356713 | Cldn6
2300003P22Rik | 0.938167989 | Gpc1 | 0.90975635 | | Kif26b
Dtx3 | 1.380065361
1.379515586
1.377734526 | Rangap1
0610005K03Rik | 1.372095473 | BC018222
Olfm1 | 0.936689143
0.936285126
0.934454727 | Acat2
Siah1h | 0.90881841 | | Gpx7
Miki | 1.376711489
1.37193352 | Ppp2r2d
Pald | 1.371920201
1.370151076
1.369996535 | Zic3
Bex4 | 0.930522828
0.930184879 | 1810008K03Rik
Igfbo4 | 0.90834712
0.90769983
0.90767659 | | Tcf712 | 1.370568448 | 3110004L20Rik | 1.368793315 | II17re | 0.929258409 | Dbn1 | 0.90432663 | | Amoti2
Ube1l | 1.370256273
1.36792518 | Prps1
Golph2 | 1.368633391
1.368412997 | Pla2g10
Orc5l | 0.928848484
0.928837593 | Tmc7
Sult4a1 | 0.90046432
0.89541109 | | ll6
Gstm2 | 1.363520158
1.362507479 | Rfx2
Lad1
Chi3l1 | 1.368273032
1.36670981 | Konk5
Bex2 | 0.9272574
0.927039199 | Zxda
Fbln1 | 0.8918244
0.89132358 | | 2810410P22Rik
Gm129 | 1.360475675
1.359005309 | Mcm2 | 1.364873072
1.3640161 | Fem1b
Liph | 0.926301902
0.92589871 | Pea15
LOC634428 | 0.88972680
0.88799497 | | Ctsk | 1.357629886 | Fogr2b | 1.362040358 | Sh3gl2 | 0.923613953 | Upp1 | 0.88797338 | | Ugog | 1.356559296 | Ung | 1.359821887 | Lad1 | 0.922150583 | Cdca7 | 0.885992078 | |-----------------------------------|---|---------------------------------------|---|---|--|---|---| | Gng8
Pak3 | 1.355495554
1.355061839 | 1700019H03Rik
E430034L04Rik | 1.35856473
1.357010984 | Birc5
Cyp2s1 | 0.921352042
0.919642723 | Aard
2410081M15Rik | 0.881700687
0.880642405 | | Dnajb9
Slc24a3 | 1.351342824
1.350352172 | Jam2
D5Bwg0834e | 1.3568238
1.355480655 | Cbr2
E130016E03Rik | 0.908781978
0.908560629 | Rapgef5
Zfp41 | 0.88038855
0.880260756 | | Lmo4
Hs3st1
S100a4 | 1.345009602
1.344640719
1.341020389 | Rnaset2
Cd59a | 1.354743944
1.351361971
1.350091774 | Lefty1
Lrrc34 | 0.905784658
0.904624608
0.903104208 | Mfge8
Nope | 0.879607292
0.877972864
0.877923404 | | Smad5
Jund1 | 1.338389342
1.335703474 | Timm8a1
Hist1h2ag
Card10 | 1.349095413
1.34533795 | Krt7
Nudt5
Emb | 0.903104208
0.902492526
0.901415291 | Lpl
Gcnt1
Apac1 | 0.87731748
0.875741897 | | Btg1
Stat1 | 1.333233252
1.33009872 | 1110020C13Rik
Mta3 | 1.34188583
1.341291805 | Sico4a1
Tcf15 | 0.892494375 | Dusp6
Kif5c | 0.869048225
0.86818946 | | 1300018P11Rik
Mmp2
Wisp2 | 1.329183911
1.327669787 | Tspan7
ltpr3
2700097O09Rik | 1.341036918
1.336243376 | Rangnrf
Nup43
Atad4 | 0.890586622
0.889927481 | Gadd45a
Plcg2
Sbk | 0.866361938
0.864361862 | | Fkbp7 | 1.327094813
1.326469976 | Dedd2 | 1.336235013
1.335073471 | Mns1 | 0.888900794
0.888372669 | D0H4S114 | 0.864316402
0.862804383 | | Cd44
D4Bwg0951e
Zfp608 | 1.325130527
1.320575577
1.320333075 | Mboat2
Hist2h2ac
Slc24a6 | 1.333578455
1.331915597
1.330548203 | Marveld3
Krt42
Cstf3 | 0.88655905
0.886398605
0.886373156 | Lck
Snx10
Hist1h3d | 0.861703569
0.859956471
0.857935256 | | Apg3l
BC049816 | 1.318230318 | Top2a
Tst | 1.324073766
1.324063839 | Depdc1b
Chi3l1 | 0.886064947
0.885788943 | Fst
Syngr3 | 0.857771072
0.854931973 | | Dusp6
Angptl2
Coq10b | 1.31390992
1.313724013 | St14
Hmgb2
Ak3 | 1.323251062
1.321594485 | Cdca7
Tdgf1
Ndrl | 0.884713805
0.883462211 | Smtn
Mietth/In | 0.854222884
0.850585822 | | Bnc2 | 1.313519627
1.312169128 | Tead4 | 1.320182693
1.317464998 | Smarcad1 | 0.882388781
0.881904153
0.881897768 | Nasp
Ybx2 | 0.850072464
0.849294294 | | Sspn
Serpine2
3632413B07Rik | 1.307708556
1.307120968
1.306193626 | Cdca3
lvns1abp
Pkp2 | 1.313899721
1.313548429
1.312656906 | Stx3
Cdh1
LOC620807 | 0.881897768
0.881011964
0.877399299 | Pdlim1
Hnrph1
Ly6g6e | 0.847808084
0.846189976
0.84295629 | | H2-T17
Thsd2 | 1.305207932 | Biro5
Oas1d | 1.311245812 | Slc7a3
Psmc3in | 0.87729025
0.876496596 | Lmo2
Gpr49 | 0.842925917 | | LOC435565
Mylc2h | 1.303975425 | Uble1b
Cipp | 1.305079938
1.304569255 | 2610206B13Rik
Nusap1 | 0.871805563 | Ubtd2
En2 | 0.837855945
0.836761189 | | Dpysl3
D11Lgp2e | 1.303567558
1.303443219 | Hat1
Rad52b | 1.302454855
1.301806499 | Trib3
Ncapd2 | 0.866270478
0.863050428 | Clankb
Six1 | 0.834662268
0.833414345 | | Gns
Tsku
Isgf3g | 1.299004461
1.295756039
1.294341007 | Hus1
Ddef2
Pmm1 | 1.296166328
1.293379316
1.291359416 | KII3
Blm
C78212 | 0.860076324
0.859146402
0.858273847 | Acsl3
Spc25
5730599105Rik | 0.83298073
0.831728517
0.830760664 | | Hoxb4
A230050P20Rik | 1.293766487
1.291372638 | C130036G08
BC037006 | 1.291296476 | Prss8
Hcph | 0.854371549
0.853334387 | Gja7
Psmb10 | 0.82663764
0.824895384 | | Plau
Fhi1 | 1.289432096
1.287767898 | Csda
Gm1698 | 1.288531889
1.288244969 | Slc40a1
Konk6 | 0.852820117
0.849167925 | Tcf15
Xab1 | 0.822751658
0.818553129 | | Lamb1-1
Ppap2b | 1.287500685
1.286707235 | Rab27a
Col17a1 | 1.287834896
1.287377547
1.287031462 | Kif11
Doxr | 0.845331665
0.843753683 | Ldhc
C86987 | 0.818068053
0.816288047 | | Cdo1
Lrrc15
Ptges3l | 1.286300909
1.28608529
1.282170386 | Pold2
2700094K13Rik
Syt4 | 1.287031462
1.281529501
1.2807894 | Hmgb2l1
Msh6
Mylpf | 0.841713049
0.839464772
0.838215886 | Anxa11
Hn1I
Ube2e3 | 0.815734361
0.813723822
0.81283859 | | Hist1h2bk
Itga5 | 1.278859373 | Arl6ip1 | 1.279160389 | Hist2h2ab
Arhgef19 | 0.837527002 | 2810003C17Rik
Nap1I1 | 0.812610181
0.811939276 | | Gbp6
Parp3 | 1.278206717
1.277720703
1.276735316 | Pa2g4
2210412D01Rik
Atp2c1 | 1.27594478
1.271587328 | Calmbp1
Fignl1 | 0.836887997
0.833374646
0.830866098 | Khdc3
Tead2 | 0.811238357
0.811224131 | | 2310016C16Rik
Anxa6 | 1.275474146
1.274560837 | Ak4
2010001M09Rik | 1.27085391
1.269389901 | Dmkn
5430425C04Rik | 0.830636686
0.830349041 | Wbp5
8430415E04Rik | 0.810964511
0.810052389 | | 6530401D17Rik
Gpr153
Idb1 | 1.272354528
1.270499856
1.269914476 | Olfm1
Cdc2a
Ahr | 1.268303649
1.26787708
1.264517897 | Psors1c2
4732474A20Rik
Slc2a1 | 0.828113482
0.826851098
0.825569995 | Eml1
Moxd1 | 0.808733366
0.8069385
0.80560726 | | B4galt1 | 1.268042108
1.2686558176 | G3hn | 1.264079334
1.262012399 | Exosc5 | 0.820958785 | Asphd2
Fhod1
Dhcr24 | 0.805292456 | | Serpina3n
Pvr | 1.264204876 | Hspd1
Hap1
Heatr1 | 1.262012339
1.260005884
1.258622136 | 2610039C10Rik
5830411K18Rik
H2afx | 0.815388617
0.814606138
0.813794145 | Hey1
Trim28 | 0.805131114
0.80433824
0.804230257 | | Hoxb5
Cher2 | 1.263034406
1.262856416 | Cct3
Ncapd2
Cdo6 | 1.257784912 1.256756846 | Kntc1
Kcnk1 | 0.813629035 | Chka
Foir1 | 0.802685404 | | Tax1bp1
Pdgfc | 1.262778994
1.262038643
1.260748445 | Zc3hdc1 | 1.255908441
1.255020838 | Gylti1b
D5Ertd708e | 0.810273768
0.80934165 | 0610039P13Rik
Actl6a | 0.79783012
0.794014114 | | 2210404D11Rik
Pkd2
Pscd3 | 1.259748445
1.259410192
1.259000195 | Celsr2
Pdss1
C86302 | 1.253598289
1.253238829
1.252096559 | Eras
Nras
Esol1 | 0.805360321
0.805116071
0.804180674 | Crmp1
AA408556
A530050D06Rik | 0.79329221
0.788485827
0.78823672 | | 9030625A04Rik
Lox | 1.257943639
1.25736151 | Eif4a1
Gphn | 1.252096559
1.250785317
1.249801144 | Lin54
Ndg2 | 0.803910912
0.798432098 | Pfkl
Gjb3 | 0.787583373
0.783342194 | | Nlgn2
4933426M11Rik | 1.256357628 | H2afx
Acvr2b | 1.249545076 | Rac3
Spire2 | 0.796183308
0.795271332 | Rnf144
C130034I18Rik |
0.781937832
0.781718995 | | Meox2
Tgfb1i1 | 1.252230824
1.250450738 | Fen1
9630015D15Rik | 1.248239954
1.245531146 | Mapt
D14Ertd449e | 0.791444933
0.787968779 | Dapk2
Ezh2 | 0.781493766
0.781090248 | | Lmna
Ind5 | 1.249000256
1.248888349 | Celsr1
1500016H10Rik | 1.245163729
1.244132073 | Satb1
Pfkp | 0.784927542
0.784271309 | Rbmx
Vegfb | 0.780911449
0.780248258 | | Bdnf
ler3
lfi203 | 1.247516126
1.247369771
1.247347769 | Cd151
4732474A20Rik
Hhex | 1.238517138
1.237888758
1.237747008 | Sytl1
Zswim3
C530028I08Rik | 0.783995907
0.783309448
0.783116999 | 2310016C16Rik
2900011O08Rik
Acsl6 | 0.779951519
0.779821073
0.779801792 | | Itgbl1
Sntb2 | 1.245812723
1.245044083 | Zfp296
Pde1b | 1.233291351 | II28ra | 0.783107376 | Foxh1
2900093B09Rik | 0.77940086
0.778169266 | | Hist1h2bm
Pros1 | 1.24239285
1.242150763 | ltgb4bp
Klk10 | 1.231747683
1.231384006 | Cldn4
2200001115Rik
6330406L22Rik | 0.781837542
0.781265277
0.780247461 | Heph
Manba | 0.776522111
0.776474364
0.776181991 | | Smad6
Npr2 | 1.240858729
1.235278419 | Thoo4
Cct6a | 1.230870637
1.22883935 | Wdr31
Cdc25c | 0.779663188
0.777997233 | Thop1
Mreg | 0.771677618 | | Edg2
0610041G09Rik
Cyb5r3 | 1.234705683
1.234502307
1.234463021 | Rpa1
Pcyt1b
Catnal1 | 1.226870287
1.225369648
1.224737314 | Skp2
Cdca8
Sftpd | 0.773213134
0.772613425 | Maged2
Marcks
Tceal5 | 0.771019127
0.768352261 | | Plekhf1
ler2 | 1.234280145 | E130016E03Rik
Ptp4a3 | 1.224725936 | Krtcap3
2410081M15Rik | 0.772021849
0.771438553
0.767918522 | Vdac3
Smoc1 | 0.767735138
0.766927832
0.765087237 | | Cyr61 | 1.232943919
1.232912338 | Ptprk
Cmtm7 | 1.222793895 | Swt1
Ptk9l | 0.767918522
0.766360728
0.765773397 | 2310045A20Rik
Evx1 | 0.765087237
0.764070824
0.763404914 | | Tspan11
Hoxb2
Fgl2
Siat5 | 1.232173442
1.228451928 | D6Entd365e
Dbf4 | 1.219965684
1.219684723 | Scrib
Sox15 | 0.764187063
0.763880596 | Zfp37
Oprt | 0.761927506
0.760512929 | | Spon2 | 1.227805918
1.227170801
1.225846325 | Rad54l
3000004C01Rik | 1.218819181
1.218064803 | Gdf15
Mcm2
Slc37a1 | 0.763585012
0.762834334 | Ap3b2
Josd3
Actc1 | 0.760286668
0.759324741 | | Cyp2j9
Kifap3
Tm9sf4 | 1.224831952
1.224759436 | Nudt5
Cd59b
Ebp | 1.21702085
1.216220455
1.215736564 | Tsga2
Peg3 | 0.762567
0.762010724
0.761685583 | Cbx2
Lbr | 0.757231443
0.754824712
0.750326451 | | 2300002D11Rik
Adh1 | 1.223334928
1.222673183 | Hcph
Eno1 | 1.21548173
1.211040867 | Lig1
2310042N02Rik | 0.760435959 | Zic3
Bcat1 | 0.749269644 0.748999343 | | Smarca1
Prkr | 1.222658675
1.222392421 | Anp32e
Pdk1 | 1.210334649
1.210016024 | Ruvbl2
Gmfg | 0.758896234
0.755201166 | Slitrk5
Rnf134 | 0.748098337
0.742977796 | | Hif1a
Icam1
Jak1 | 1.221702384
1.220560893
1.219868421 | 2700055K07Rik
Chmb1 | 1.208586622
1.208399149
1.200791657 | Ccnb1
Tmprss2
1700028N11Rik | 0.754415721
0.754243586
0.752400096 | En1
Sort1 | 0.741983669
0.740720734
0.740289231 | | Igf2r
Ehbp1 | 1.219868421
1.21926632
1.218540953 | Smpd3
Sh3bgrl2
Crip2 | 1.199596499
1.197825846 | Syt9
Mif | 0.752400096
0.752205472
0.749589814 | Syn1
1700013H19Rik
4930403C10Rik | 0.739631258 | | Calm2
Pdlim2 | 1.218504156
1.216769865 | Pdxp
Tpi1 | 1.194444052
1.190762883 | U2surp
Fcho1 | 0.748914327
0.747075205 | Rnu3ip2
Bicc1 | 0.73768377
0.737681394 | | Actn1
Gulp1 | 1.21658927
1.215937399 | Aox3
Adh7
Klk24 | 1.190057829
1.189944168
1.189477799 | Biklk
G22p1 | 0.746775713
0.74620617
0.744765205 | Fkbp11
Rnf44 | 0.736611949
0.736156001 | | Col5a1
Col28a1 | 1.215214972
1.214802494 | FbI | 1.189285023 | Morc3
Fen1 | 0.744568255 | Ephb2
Csrp2 | 0.735842437
0.735819922 | | Hey2
Igfbp7
Akr1b8 | 1.211073557
1.210918937
1.209560777 | Pcna
Vnn3
G3bp2 | 1.188789764
1.185836689
1.184234801 | Gbif
Dp1I1
1110012J17Rik | 0.742310662
0.74229586
0.741138854 | Psip1
Narg1
Lrm1 | 0.73336159
0.732977816
0.730473603 | | Rab9
Toeal1 | 1.209309831 1.208008503 | Apitd1
Nfatc2ip | 1.183583411 | Rnf134
Pop5 | 0.739903717
0.737374521 | Lss
B3gnt7 | 0.726389388
0.725970587 | | Vegfb
Rbms1 | 1.207894848
1.207867227 | Nes
Domt1 | 1.183238815
1.181777918
1.181663838 | Sh3tc1
221,0006 (04Pik | 0.73586388
0.734069031
0.733242508 | Krt1-18
Pvrl2
Mtap1b | 0.725565263
0.725391292
0.725160893 | | Dusp10
Jak2 | 1.206019127
1.205916447 | 1810010N17Rik
Mapk13 | 1.181663838
1.181451255 | H2afy
Hps3 | 0.733242508
0.728173569 | Mtap1b
Tcf7 | 0.725160893
0.725035384 | | Armox2
Atxn1 | 1.203752769 | Trifsf9
Gpd2 | 1.18104495
1.180813318
1.180185039 | Inm40
Impa2
C79407 | 0.725755582
0.723913899 | Appbp1
Nup37 | 0.724641545
0.722861609 | | Ddr2
Sh3md4 | 1.201123805 | Gsta4 | 1.178351169 | 2400009B11Rik
Cde5l | 0.722946362 | Nup43
B230104P22Rik | 0.722472011 | | Rnf11
Capn6 | 1.196969824
1.196897116 | Map3k11
Kif11 | 1.176454817
1.176169405 | Gls2
Pygl
Mterf | 0.720450507
0.720057004 | Mcm3
Bing4 | 0.721941912
0.719258336 | | Inhbb
Rad23b
Cry2 | 1.196800707
1.194958252
1.193823269 | Siat8b
Cdc14b
Fignl1 | 1.175821713
1.175286613
1.174764305 | Mterf
Bxdc1
Krt2-8 | 0.719381282
0.719032303
0.717864035 | Hnrpdl
Elavi1
Rps15a | 0.719238064
0.718979026
0.71791217 | | Flot1
Tob2 | 1.191743112
1.19161376 | Prok2
Pip3ap | 1.172720536
1.171337885 | Edn2
Fmn2 | 0.715998165
0.715881993 | Gpr19
Efs | 0.717142937 0.716165076 | | Car13
Mmp11 | 1.191386365 | Npy2r
0710001E13Rik | 1.17121716 | Cdc7
Csrp2
Gtse1 | 0.714339839
0.713874592 | 2600005C20Rik
Nsf1c | 0.715116839 | | Hist2h3b
Bst2 | 1.183664841
1.181311762 | Espl1
Gnptab | 1.169925001
1.168457463 | Pold1 | 0.713290957
0.71236441 | Ngfrap1
A230050P20Rik | 0.713812985
0.7128428 | | Apbb1ip
Trib2
Serping1 | 1.181158501
1.179480456
1.179314181 | Rrm2
Bub1b
Al316787 | 1.167944637
1.165549625
1.165071918 | Phactr4
Igf2bp1
B4galt3 | 0.71233441
0.712134903
0.71183114
0.711097906 | Ligi1
Fmnl3
Fdps | 0.712168372
0.712066292
0.712023387 | | Mrgprf
Lamc1 | 1.179044314
1.178763369 | Hes6
Eif2b5 | 1.164555465
1.160941517 | Sprr1a
5730466H23Rik | 0.710030015
0.708731466 | Gm50
2410008J05Rik | 0.711128344 0.709633612 | | Wnt5a
Palld | 1.177459997 | Oact1
BC022224 | 1.158814887
1.158487127 | Ngfr
6330516O17Rik | 0.707314788
0.706739401 | D430039N05Rik
Tbx3 | 0.706364552
0.705929555 | | Nrn1
Adam12 | 1.175179601
1.173064709 | Phtf2
Pcoloe2 | 1.156860302
1.152109798 | 2700091N06Rik
Gstk1 | 0.705914848
0.705894352 | Fscn1
AK122525 | 0.705749472
0.703460687 | | Pitpnm2
Rerg | 1.171077774
1.170026517
1.168612466 | Lrrc34
Cryz
Tbc1d8 | 1.150855038
1.148660185
1.148596492 | Rad54l
Esco2
Ndc80 | 0.70586481
0.704826262
0.703987182 | 1700007G11Rik
Rbbp7
Pold3 | 0.701703134
0.701473749
0.698571041 | | Large
Hist1h2bc
Vdr | 1.168054965
1.167588653 | Tssc1
Cdca8 | 1.146802745
1.145371001 | Ddx41
Spag5 | 0.703276768
0.700439718 | Sox21
Tgif | 0.697647443
0.697507741 | | Lhfp
Mcam | 1.165466124 1.163932691 | Oit1
Mad2l1 | 1.144936281
1.144101226 | Nptx2
Mkm3 | 0.699966056
0.69945729 | Skb1
H1fx | 0.697444724 0.69637421 | | Pdzm3
Agm | 1.163453186
1.163131961 | Dyrk3
Atp6v1c1 | 1.143909411 | C86302
Ppp1r10 | 0.698693216
0.698384361 | Notch3
Nobp2 | 0.696372722
0.695501948 | | Thsd6
Hist1h3f
Vip | 1.162583026
1.162136199
1.161424404 | Nola2
Wdr6
F11r | 1.141757749
1.141479504
1.141137518 | 5330431N19Rik
Sonn1a
Kif18a | 0.694854758
0.694794696
0.694244719 | Gp38
Gbp2
Tbl2 | 0.695359452
0.695239188
0.694084223 | | Mid1
Krtd12 | 1.161424404
1.160663432
1.159496041 | Cacna2d3 | 1.141137518
1.140990101
1.140356234 | Rif18a
D130058I21Rik
Abi3 | 0.693338662 | Tbl2
Col9a2
Igf2 | 0.694084223
0.693775988
0.693568751 | | 1190002N15Rik
Tmsb10 | 1.157906578
1.157443633 | Hspb1
2610528A15Rik
Mknk2 | 1.137230053
1.135903558 | Fgf8
Sh3yl1 | 0.692252042
0.691714513
0.691463791 | Nodal
Bocip | 0.691993551
0.691975984 | | Tmem119
2700033K02Rik | 1.157022974
1.155770907 | Capn5
Acsl5 | 1.135159583
1.134106891 | Aire
Mthfd1 | 0.691161905
0.690644214 | 6720485C15Rik
4933424A10Rik | 0.690440101
0.690190835 | | Atf3
Thra
Ube2l6 | 1.155623807
1.155451976
1.155376693 | Nd
EG433923
5830411K18Pik | 1.133609087
1.133536505
1.130917117 | Timeless
Pkp2
Sp5 | 0.688751604
0.687770876
0.686371228 | Psx2
6430510M02Rik
3632413B07Rik | 0.689849073
0.689309603
0.688572765 | | Aqp4
Cxxc1 | 1.155215713 | 5830411K18Rik
BC018222
Al663987 | 1.128556035 | Taf15
Hspb1 | 0.686218485 | Zfp473 | 0.68822126 | | Rgs3
Vldlr | 1.147368144
1.147199058 | Cdc45l
OTTMUSG00000l | 1.125757418 | D11Ertd636e | 0.685140772
0.684224132 | Tmem47
Xir4a
Dek | 0.687447698 0.686106709 | | Hoxb6
Dscr5 | 1.145339363
1.144836633 | Kntc1
Dst | 1.121091817
1.120508149 | Bspry
Inpp5d
Narg2 | 0.683940503
0.683696454 | Lisch7
Pcbp3 | 0.682760551
0.681958827 | | BC063749
Apbb2
Itm2a | 1.14319059
1.142941799
1.14213363 | BC036313
Gltp
Selenbp1 | 1.12040585
1.120081722
1.119739244 |
2810417H13Rik
Al449441
BC055324 | 0.683108353
0.682337912
0.681193629 | 2010005A06Rik
Ly6e
Tex9 | 0.681049605
0.679903124
0.678964877 | | Fbln2
Timp3 | 1.14213363
1.141529762
1.140937929 | Sfrs1
1200014J11Rik | 1.116796641
1.116231071 | AU067695
Kit2 | 0.681193629
0.680893212
0.679864405 | Zc3hc1
Insl6 | 0.678670244
0.677772311 | | | | | | - | | | | | | | | | | | | | | Col16a1
Eif5
Lrig3
Cxx1c
2810022L02Rik | 1.140445755
1.139924208
1.138966886
1.138408792
1.137462422 | Pop5
Nik
Ppa1
Ppp1r9a
Nodn | 1.114845426
1.114370715
1.112769846
1.112058507
1.111884878 | 1810015A11Rik
Ung
EG243881
LIglh2
Btbd12 | 0.679644792
0.679089875
0.678071905
0.677413076
0.676575937 | Ephb1
Foxa3
Cdh3
Rtn4rl1
D430041B17 | 0.6753
0.6752
0.67416
0.67396
0.67318 | |--|---|--|---|--|---|---|---| | odhb22
bc3 | 1.136604928
1.136375003 | Kif22
Tmem46 | 1.109328411 | Sfrs2
2310061G07Rik | 0.67557994
0.675455957 | Apex1
LOC434197 | 0.6729 | | gfb1i4
10Ucla1 | 1.13606155 | lfitm6 | 1.105313544
1.103827363 | Ska3
Elmo3 | 0.674692661 | Agrn
Rad51 | 0.66803 | | 110030H18Rik | 1.135720033
1.134957341 | 5730466H23Rik
E130309D02Rik | 1.102928755 | Rhebl1 | 0.674586809
0.673771768 | Arl4c | 0.6675 | | ema3f
cm1 | 1.134092896
1.132848204 | LOC654467
0610009F02Rik | 1.102279684
1.102008512 | AB041544
Arhgap4 | 0.673236437
0.67247403 | Smarcad1
Rgs17 | 0.6674 | | rf5 | 1.131691867 | Krt42 | 1.101467639 | Ppif | 0.671013714 | Mybl2 | 0.66608 | | ih3d4
inc1 | 1.131644006
1.128196701 | Samd10
Zfp367 | 1.099665465
1.099535674 | Nr6a1
Card4 | 0.670405437
0.669566309 | Pdgfra
Apoe | 0.6659 | | lpod
Stk3 | 1.124710733 | Mif
Tek | 1.099147316 | Fntb
B3gnt7 | 0.668858727
0.66871385 | Tcfap2c
Psmb7 | 0.66434 | | 130307J07Rik
Spr64 | 1.123170797
1.120990389 | 3230401D17Rik
Ndufa4 | 1.098368745
1.096648248 | Ly6g6e
Hcfc1 | 0.668185978
0.666780029 | Cbx7
Cxx1c | 0.6637 | | Zfh4
Axot | 1.12093371
1.120398868 | Hist2h2ab
Psip1 | 1.096533795
1.095650703 | Casp2
Slc39a8 | 0.666148319
0.664815808 | Mif1
Doun1d4 | 0.6628 | | Armox3 | 1.118644496 | Gart | 1.093996899 | Top2a | 0.664642623 | BC013491 | 0.66098 | | Tnfrsf11b
Colm | 1.118540795
1.116354236 | Ddx27
Slc12a3 | 1.093652019
1.093286542 | BC027088
Phox2a | 0.664065047
0.663548341 | BC013481
Thy1 | 0.66016 | | Mbd1
1110019C08Rik | 1.114025083 | Eras
D11Ertd497e | 1.092179533 | Fzr1
BC037006 | 0.663036174
0.660109277 | 2700083E18Rik
Asna1 | 0.65896 | | Pde4d
Eif2s3y | 1 112911122 | Mos1 | 1.091716169
1.090462165 | Trh
ZBTB45 | 0.659593561 | 4922419A01Dik | 0.6574 | | Tmem66 | 1.112266232 | Sfxn1
Adrb2 | 1.089267338 | Wdr5 | 0.656999681
0.656623486 | Impa2
1810003N24Rik | | | Rhoj
EG433180 | 1.110635629
1.110131917 | Ly6f
Vrk1 | 1.088494886
1.086518429 | BC011248
Sali1 | 0.656026143
0.655665492 | Mkm1
Atp2a1 | 0.6547 | | Adam9 | 1.109636116 | Kif2c | 1.086406051
1.084764173 | Cispn | 0.65550398
0.654656377 | Sin3a | 0.6537 | | Sorcs2
P4ha3 | 1.109292145
1.107394871 | Tdg
2410015N17Rik | 1.084352327 | Akap12
Al467606 | 0.654284738 | Pdlim7
Nup133 | 0.65255 | | BC042901
S100a10 | 1.105565756 | LOC434858
Cdvl | 1.082599177 | Gbp1
Cpsf5
Adam19 | 0.654040883
0.653163614 | Gga3
Rbm12 | 0.6508 | | Arih1
Ssfa2 | 1.104150598
1.103498804 | Cdyl
Tgm3
Cd3g | 1.074305559
1.072808436 | Adam19
2610019F03Rik | 0.652208902
0.651793297 | Snrpa
Als2 | 0.6480 | | Slc9a3r2
Anxa1 | 1.103275044
1.102392645 | Gmfg
Exosc7 | 1.072366977
1.070081093 | 4931431L11Rik
Aox3 | 0.649571582
0.649262817 | Bbs5
Tgfbr1 | 0.6473
0.6470 | | Tac1 | 1.102314095 | Bex2 | 1.068171503 | 1600023A02Rik | 0.648986646 | Plekha2 | 0.6463 | | Tcf3
Calu | 1.101360146
1.100094749 | Mras
D15Ertd621e | 1.067925907
1.065765353 | DXImx50e
Alox15b | 0.648964664
0.648649357 | Mum1
Lypla3 | 0.6461 | | Rora
Pgcp | 1.09887525
1.097574648 | EG622339
Slc5a9 | 1.06570004 | Gdf3
AA408296 | 0.648569155
0.648527629 | Cbln1
Ak4 | 0.6457 | | Cald1 | 1.096753233 | Farsb | 1.064055394 | Ube2c | 0.648324562 | Tm4sf10 | 0.64508 | | 9230117N10Rik
Jag1 | 1.09609659 | Smn1
4933432P15Rik | 1.063145294 | Jtv1
Gemin4 | 0.646452529
0.645345835 | Robtb2
Tol1 | 0.64456 | | lag1
Cacna1g
Vmp14 | 1.092141013 | Chaf1b
Kif15 | 1.061015775 | Coti1
Zfp322a | 0.64455806
0.643261141 | Hist1h3e
B020018G12Rik | 0.6436 | | 2cm2 | 1.091664023 | Ris2 | 1.056603353 | Dnmt1
Pnma2 | 0.643046521 | 1810057P16Rik | 0.6404 | | Map3k12
Magee1 | 1.089958402
1.089784153 | Zfand6
Aldoa | 1.056586713
1.054529878 | Cenph | 0.642788928
0.641912242 | BC025833
Rtn2 | 0.63938 | | tgav
Rrbp1 | 1.0890433
1.079656742 | 2610510J17Rik
D830014E11Rik | 1.054072437
1.051505438 | Clon3
Txnip | 0.640815735
0.640766405 | Pgam1
Ran | 0.6387
0.6382 | | BC031853 | 1.079503969 | Mcm4 | 1.051488735 | Rad51 | 0.640354501
0.639720308 | Mfap4 | 0.6376 | | fi35
Anpep | 1.078988296
1.077595098 | Umps
Nign3 | 1.049753035 | Helz
Dyrk3 | 0.639533256 | Ptpla
Epb4.1I5 | 0.6357 | | Ppfibp1
Stk35 | 1.077416374
1.077385769 | Dner
Poldip2 | 1.049048181
1.048096005 | Lmnb2
Farsb | 0.6395216
0.639254218 | Mcm10
Ppp1cb | 0.6357 | | Nenf
Sparc | 1.077197443 | Klk7
Sfrs2 | 1.045837536
1.044547007 | Toof1
Ush1c | 0.638921849
0.638699734 | Ppp1cb
Th1i
Rem2 | 0.6344 | | zd7 | 1.076734513 | Dusp16 | 1.044238531 | 2700029E10Rik | 0.637610857 | Vtn | 0.6337 | | BC060615
Slc6a8 | 1.0751122
1.075080112 | Prmt5
Kif23 | 1.042228235
1.041115854 | Nasp
4921537D05Rik | 0.637566313
0.636357484 | Enpp2
1700052N19Rik | 0.6333
0.6333 | | Golph4
Mpp1 | 1.074572268 | Abi3
Msh2 | 1.039855989 | LOC237877
Cdsn | 0.636325592
0.634175475 | Statip1
Dapk1 | 0.632 | | Mpp1
Adamts1
Gdi1 | 1.074270611 | Fkbp4 | 1.037156414 | MGC68323 | 0.634123261
0.632204839 | Sall1
Ctxn | 0.6320 | | 2626b | 1.073713683 | Matr3
Hnrpa1
AU014645 | 1.036835055
1.035474802
1.034814771 | Bcat1
Slc28a1 | 0.632204839
0.631965001
0.631710254 | Redc2 | 0.6320
0.6316
0.6312 | | Onn3
O230005D02Rik | 1.072873035 | Lmtk2 | 1.034363903 | Pmm1
Pold3 | 0.631472465 | Pycr2
L3mbtl2 | | | Pbxip1
Pml | 1.070910764
1.070604672 | 1110021N19Rik
Deadc1 | 1.03399177
1.033601814 | D6Wsu163e
Rfx4 | 0.631318136
0.630369712 | Ndp52
Mtf2 | 0.6306 | | Ari1 | 1.069974334 | Hsd3b7 | 1.03355038 | Zic2 | 0.629782952
0.629535537 | Tulp2 | 0.6303 | | D430039N05Rik
BC025575 | 1.069634188
1.069568576 | 6530405K19
Ard1 | 1.033444983
1.032472211 | Chtf18
Tfrc | 0.628040021 | Hsd11b2
Blvrb | 0.629
0.6294 | | D1Bwg1363e
Gcap14 | 1.069395954 | Phgdhl1
Pnpo | 1.031037794 | Cse1i
P2ry5 | 0.628012596
0.626812685 | 5730436H21Rik
Pes1 | 0.6280 | | Gcap14
Cdr2
fitm1 | 1.067946152
1.067763327 | Pnpo
Mrps18b
Mcph1 | 1.03018214
1.026608469 | Ssx2ip
B130055D15Rik | 0.626373995
0.626306151 | A830059I20Rik
Sh3bgrl3 | 0.6276 | | Trim21 | 1.067337991 | Ma29 | 1.025635927 | 2610318I01Rik | 0.625107589 | Kbtbd8 | 0.626 | | Nipi1
Fkbp10 | 1.066554795 | Ppfibp2
Elmo3 | 1.02498872
1.024846729 | Kif15
Prok2 | 0.624984347
0.624835883 | Galk1
Rpl23 | 0.6254 | | Rnf144
Fzd1 | 1.06513763
1.064798368 | Rps24
BC038156 | 1.022615683
1.022532213 | 1810010N17Rik
Add3 | 0.622657024
0.620865048 | Usp39
Rpa2 | 0.6234 | | Plscr1 | 1.064745166 | Sec15l1 | 1.022186763 | 1700065O13Rik
4930547N16Rik | 0.618492124
0.616895364 | Don
C330023F11Rik | 0.6227 | | Fsti1
Spr177 | 1.063747997
1.063188493 | Pigq
Dars | 1.021904693
1.020479866 | St14 | 0.61667136 | P2ry5
1110017D15Rik | 0.6211 | | Scara3
E430036I04Rik | 1.061618193 | Pvrl3
Clspn | 1.019506012
1.019300556 | Tipin
D030056L22 | 0.616307636
0.616193825 | 1110017D15Rik
Fsd1 | 0.6204 | | 3130017101Rik
Rarg | 1.060785716
1.059989399 | Ywhaz
Luc7l | 1.017908441
1.017381062 | Gpr85
Galk1 | 0.615659298
0.615457004 | Acadm
2700063G02Rik | 0.6196 | | Rock2 | 1.059871456 | Psmc5 | 1.016939862 | Esam1 | 0.6142242 | Gtf2h4 | 0.6179 | | 4930403O06Rik
Snx9 | 1.058382517
1.057816074 | Rps6ka5
Rad51 | 1.015305629
1.015092525 | BC003277
Sssca1 | 0.613526161
0.612713556 | 4921530G04Rik
Slc6a15 | | | Epb4.1I1
Bat1a | 1.057767244 | Erh
Serbo1 | 1.015036453 | 3000004C01Rik
Pdhb | 0.612215669
0.611060455 | 0610009l22Rik | 0.616 | | Add1
Ngfb | 1.057442204 | Coro1c
Ubap2 | 1.014751125
1.013487141 | AU019823
Lsm2 | 0.610503464
0.609646764 | Fgd2
Dgat2
Tfam | 0.6162 | | Mylk
Cdkn2b | 1.056034035 | Bat1a | 1.012833885 | Slc17a6 | 0.609111779 | Clstn3 | 0.6158
0.6153 | | Cdkn2b
Cryab
Sec24d | 1.055286491 | Fubp1
Cdc25c | 1.012128192 | Mcm5
BC043301 | 0.609102921
0.60818121 | Adat1
Zfhx1b | 0.615 | | Sec24d
Smarcd3 | 1.052697423
1.051927792 | Kctd20
2410001E19Rik | 1.010507658
1.010124217 | Hist1h2ag
Hspbap1 | 0.608026058
0.607403564 | Nme3
AK129341 | 0.6143
0.6142 | | 6430411K18Rik
1810009B06Rik | 1.051292784 | Fanod2
Chaf1a |
1.00810505
1.007806143 | ltgb7 | 0.605688527
0.605541898 | Rab34
BC053749 | 0.6141 | | Frip1
dh1 | 1.050772527
1.050408341 | Rpl29 | 1.007324771 | Mrps22
Aldh5a1 | 0.605282485 | Sumo3 | 0.6132
0.6132 | | dh1
-list1h2bi | 1.049884462 | 5832424M12
Mgarp | 1.005915209 | Cdca5
Gng13 | 0.604801987
0.60442693 | Mta3
5830416A07Rik | 0.613 | | Osr2
Wsb1 | 1.044615137 | Acot8
1200006F02Rik | 1.0050829
1.004558282 | Gng13
1600016N20Rik
Wbscr27 | 0.604379955
0.603982408 | Mcm2
Hmgb2 | 0.6114 | | Fgfr2
Rab10 | 1.043068722 | Gbas
2610024G14Rik | 1.00433459
1.004230367 | Miet2h2ac | 0.603362408
0.603344659
0.603263317 | Efnb2 | 0.6109 | | er5l | 1.04198428
1.04176865 | Cons4 | 1.003959912 | Mcam
Zip296 | 0.603180359 | Pdzk1
C630028C02Rik | 0.6105 | | Nrg1
Asah1 | 1.040574743
1.039403785 | Rpo1-3
Rps6ka2 | 1.00386371
1.002608066 | Snrpa1
Rad1 | 0.602854271
0.601420122 | Irgm
Bai2 | 0.6089 | | tpkc | 1.038902483 | B230208J24Rik | 1.00080575 | Nos3as | 0.601207831 | Fmid2 | 0.6075 | | Tmem9
Adam19 | 1.037642034
1.037159509 | Parl
Atp6v1c2 | 1.000667698 | Prc1
Brp17 | 0.600328856
0.600267162 | 6720458F09Rik
Hic2 | 0.6073
0.6061 | | Fzd8
Snog | 1.034626343 | Thy1
Dlk1 | -5.218218942
-4.987309175 | Eftud2
Lin28 | 0.600154755
0.599588064 | Gyltl1b
Rgs9bp | 0.6045 | | Mospd3
N930021H16Rik | 1.034306122 | Reg1
Ptn | -4.498197744
-4.463659075 | Mad2l1
Usp37 | 0.599315782 | Mutyh
Map3k1 | 0.6027 | | list1h1c | 1.032971939 | Mmp3 | -4.206353219 | Gstp1 | 0.598044129 | 3110001D03Rik | 0.6014 | | Ahnak
Nfato4 | 1.032154443
1.031436804 | Lpl
Lum | -4.082227952
-3.830350057 | Abog1
Pri2c3 | 0.597959841
0.597515551 | BC003885
Nr5a2 | 0.6000 | | Ebf1
Map1lc3a | 1.030373649 | Serpina3g
Aebp1 | -3.803560274
-3.7208714 | Smcr7I
Trub2 | 0.596710161
0.596452674 | Psme1
Hvcn1 | 0.5999 | | loxa7 | 1.0283856
1.026526295 | Igfbp7 | -3.710233871 | Mrpl53
Ahsg | 0.596089725
0.596046 | Dnaic1
Defcr-rs7 | 0.5991 | | Opeb2
Edg3
Fulp4 | 1.026526295
1.024761653
1.022349575 | Don
Cxcl12
Adamts2 | -3.703901844
-3.700538098
-3.671241702 | Cited4 | 0.596046
0.59591847
0.594148422 | Detcr-rs7
Isl1
Thoo6 | 0.5987 | | 1933407N01Rik | 1.021737127 | Mfap4 | -3.628044483 | Mrpl10
Zfp41 | | BC006705 | 0.5984 | | Fram1 | 1.021446976
1.021286526 | Pdgfra
Col5a1 | -3.581795222
-3.574118113 | Recql4
Appat4 | 0.592967387
0.592215456 | Tcea3
Dbf4 | 0.5978 | | 4s6st1 | 1.021224289 | Cyp2f2 | -3.553736707 | 2410137M14Rik | 0.591789636 | Cdc7 | 0.5971 | | Cond2
Zfhx1a | 1.020920382
1.020602168 | Dpt
Spp1 | -3.528223333
-3.522620223 | 2310057J16Rik
Chek2 | 0.590863102
0.590517745 | Fand
Cdk2ap1 | 0.5970
0.5968 | | Rnase4
.y6e | 1.019294908
1.018960192 | Twist2
Fbln1 | -3.485713579
-3.46067425 | Tk1
Cugbp1 | 0.589705893
0.589466055 | Mid1ip1
Mrps5 | 0.5965 | | Arhgap24
Akt1s1 | 1.018820182
1.018110154 | Avpr1a
Ptx3 | -3.42607155
-3.42367546 | Cugbp1
2310002J15Rik
Elf5 | 0.588298213
0.587418152 | 2610029G23Rik
Pawr | 0.595 | | St5 | 1.016615268 | Pb/3
ltga11
LoxI1 | -3.42367546
-3.367229493
-3.364483037 | Tfam | 0.587341224 | 6430706D22Rik | 0.5949 | | Mfap5
Pcf11 | 1.016370643
1.015891373 | Bicc1 | | Tead4
Cdca2 | 0.587193358
0.586876207 | Ccnb1
AA407659 | 0.5942
0.5937 | | Tor3a
Plag1 | 1.015578142
1.015019517 | Serpinf1
Cd248 | -3.302646548
-3.245235128 | Zswim1
Ppp1r1a | 0.586185642
0.585966115 | 3110050N22Rik
BC025462 | 0.5932
0.5918 | | Ptges | 1.014950341 | Plac8 | -3.24252614
-3.198360204 | Nedd1 | 0.585633522
0.584962501 | Ppp1r2 | 0.5916 | | Rbpms
4931406C07Rik | 1.013135402 | Col16a1
Lox | -3.167208097 | Solt
Suhw2 | 0.584320304 | Hspbap1
Tmem237 | 0.5900 | | ingo2
Acvr1 | 1.012444766
1.012319357 | Col12a1
Dkk3 | -3.159188887
-3.129825282 | A630002K24
Actn2 | 0.584035617
0.583851453 | Atp6v1b2
LOC333473 | 0.590 | | Mtap1b
B930062P21Rik | 1.01210262
1.012098143 | Lsp1
Col6a2 | -3.127797104
-3.117108303 | Hist1h3d | 0.583195033
0.583041468 | Grhpr | 0.5889 | | B930062P21Rik
Wbscr24
Tmem34 | 1.010499316 | Col6a2
Cpxm1
Nrp | -3.117108303
-3.112591826
-3.065895962 | Atp1b1
Ccdc58 | 0.583041468
0.58296951
0.582820125 | Frzb
A030007L17Rik
Chaf1b | 0.588
0.5873
0.5861 | | Hand2 | 1.010108453
1.009803175 | Col1a1 | -3.055229905 | 2410015N17Rik
Dsn1 | 0.582695894 | Chrna4 | 0.5859 | | U2af1-rs2
Wnt4 | 1.009593548 | li1rl1 | -3.037389186
-3.034184938 | Vii2 | 0.581574566
0.579191713 | Kpnb3
Mif2 | 0.5858 | | Lrig1 | 1.008661971 | Copz2
Ednra | -3.034184926
-3.03030577
-2.998370756 | Zíp160
Psme4 | 0.578964274 | 2210021A15Rik | 0.5853 | | Scotin
Ifitm2 | 1.007691503
1.005019652 | LOC100034251
lfit3 | -2 992236447 | Brf2
Rem2 | 0.578435235
0.578382352 | Usp10
Ssbp1 | 0.5853 | | Nid2 | 1.004758757 | Ifit3
Gdf10 | -2.990635466 | Rabl3 | 0.577502638 | Ssbp1
Mdm1 | 0.5842 | | Al451557
Clmp | 1.002985917 | Ch25h
Col3a1 | -2.989629736
-2.984865745
-2.980878971 | C430004E15Rik
2610014H22Rik
A030007D23Rik | 0.576567852
0.576412133
0.574458064 | Lsm5
Mcm6 | 0.5836
0.5834
0.5832 | | Rtp4
Lyz | -7.25026225 | Itm2a
C1qtnf2 | -2.980878971
-2.962143312 | A030007D23Rik
Ifitm1 | 0.574356695 | Oro5l
5830415F09Rik | 0.5832 | | C1qb | -6.089765961 | Tnc | -2.944056395 | Rdbp | 0.574215693 | Pim2 | 0.5830 | | Lyzs
Laptm5 | -5.904591227
-5.617687889 | Mfap2
Fgf7 | -2.930713898
-2.897962078 | Bnip1
1500001L15Rik | 0.573541322
0.573398701 | 5330408N05Rik
Pold1 | 0.5821
0.5820 | | Slc38a5
4732456N10Rik | -5.606399084
-5.329773953 | Crabp1
Polydom | -2.887884597
-2.87544678 | Mre11a
2610009102Rik | | Snora65
Hdac1 | 0.5817 | | Mrc1 | -5.282338788 | Smarca1 | -2 872429471 | Mcm3 | 0.572350942
0.572729978
0.572357094 | Inno5f | 0.5808 | | Ms4a6d
Krt1-14 | -5.117883555
-5.070021903 | Rasi11a
Agpt2 | -2.869257361
-2.869186933 | 4933411K20Rik
Detd | 0.572285815
0.571998168 | OTTMUSG000000
Zfp90 | 0.5801 | | Clag
Clan11 | -5.068361647 | Cyp1b1 | -2.861331913 | Lisch7 | 0.571500241 | Nol9 | 0.5797 | | 13a1
cer1g
k6
k1b27
cfa | -4.781552103
-4.778519591
-4.641195877
-4.604168172
-4.496724774 | D930038M13Rik
Serpina3n
Wisp2
Thbs2
Ctsk | -2.824088415
-2.810113799
-2.796208985
-2.786828277
-2.765235722 | 2810439M11Rik
Zfp691
Banf1
Anxa9
Rpp38 | 0.570135083
0.570122009
0.569731561
0.569602865
0.569365646 | Cacna1h
Zfp87
2610036D13Rik
Top2a
Fignl1 | 0.5792033
0.5789512
0.578856
0.578806
0.5785793 | |---------------------------------------|--|--|--|--|---|--|---| | gfa
k5
glap2 | -4.483605226
-4.434730896 | Ctsk
Plf2
2310016C16Rik | -2.740740168
-2.725217934 | 1200008O12Rik
Pdvn | 0.569365646
0.569295559
0.569241283 | Fignl1
2310043K02Rik
Tmem98 | 0.5777976 | | p2a3
c6a12 | -4.406103969
-4.325453782 | Olfml3
Olfml2b | -2.724821803
-2.718443511 | Mybl2
Tjp3 | 0.568755211
0.56872186 | Pank3
Edg4 | 0.5771506 | | col4
OC233038 | -4.325014075
-4.254332744 | 6030411F23Rik
Sfrp2 | -2.716960475
-2.712015695 | Gtf2h3 | 0.568579796 | Cd25 | | | pc233036
pgr3
mr1 | -4.164597185
-4.032321287 | Gpc3
Pri2c3 | -2.686248366
-2.674436952 | E430026A01Rik
3110001D03Rik | 0.567998494
0.567593355
0.567462139 | Fkbp4
6330534C20Rik
Gstp2 | 0.5763694
0.5760293 | | 6g6c
sr2 | -4.019116057
-3.982230912 | Wisp1
Gpx3 | -2.673865223
-2.666734871 | Glrx
lgf2bp2 | 0.567231666
0.56703819 | 40424
4930506L13Rik | 0.5760006
0.5757438
0.5748382 | | 90003J15Rik
952 | -3.723996194 | Cyp7b1 | -2.654124525 | Cfdp1
Kif4 | 0.566958432
0.566489841 | Aaas
Cdc34 | 0.5746157 | | 102
ec10a
10061G07Rik | -3.622778895
-3.615799905 | Fgf10
1110032E23Rik
Hic1 | -2.634782683
-2.626682486 | Nme6
Ppp2cz | 0.5663768
0.565979397 | Gng2
2810037C14Rik | 0.5729717 | | oro1a
plap | -3.605246772
-3.559766873 | Tgfb1i1
Flt1 | -2.624490865
-2.61147363 | BC006705
Aldon | 0.565935415
0.565932953 | Catnbip1
LOC432879 | 0.5702834 | | mp
if1r | -3.554718363 | Cdkn1c
Timp2 | | 2610300B10Rik | 0.565659988 | Fubp1
4833424P18Rik | 0.5692937 | | gr2b
ip210 | -3.546680987
-3.483780271 | H19
C2 | -2.584136419
-2.578729986
-2.578375725 | Cul4b
2810408M09Rik | 0.565448282
0.565018928
0.564527876 | Corn4l
Eif4ebp1 | 0.5678447
0.5673237
0.5664936 | | 11
157 | -3.407278927
-3.397734985
-3.38256442 | Acta2 | -2 577780159 | Crsp3
6330503K22Rik
LOC245128 | 0.563940915
0.563900885 | Psme3
Ruybl1 | 0.565149
0.565092 | | 10005K03Rik
968 | -3.359687749
-3.315015312 | Gpr49
Gng8
Eln | -2.572381573
-2.565840347
-2.562888333 | lap
Hist1h2an | 0.563746385
0.563222047 | Slc25a30
LOC230872 | 0.5647477 | | c
ri3 | -3.267194932
-3.264550204 | Wnt5a
Nnmt | -2.54288973
-2.540589829 | Al847670
Pfki | 0.563092308
0.562987646 | Tmpo
6330415F13Rik | 0.5629734 | | 132321 | -3.213017696
-3.210274972 | Srpx2
Srpx | -2.528131278
-2.522456231 | Coq6
Itga7
| 0.562891264
0.562685922 | Zfp219
Cpxm1 | 0.5617144 | | nkn
t1-17 | -3.203729859
-3.192785959 | Rerg
Igfbp4 | -2.516372515
-2.514363142 | Stk6
Fbxo31 | 0.562669239
0.562218545 | Fblim1
Tmem242 | 0.5607624 | | 14
pln3 | -3 180367017 | Epb4.1I3
9130005N14Rik | -2.508572809
-2.508242418 | Atp1b2
Mcm10 | 0.561451865
0.561295503 | Eif4g2
Gemin4 | 0.5600403 | | ox5ap | -3.189102144
-3.173866794 | Ppap2b
Sdc3 | -2.480470364
-2.473828502 | Lbr
Rbi1 | 0.561265399
0.560573057 | Ppa1
Hist2h2hh | 0.5575500 | | 0004728
plap-rs1 | -3.154729298
-3.142180011
-3.139358285 | Gas6
Htra3 | -2.456252928
-2.456451768 | D2Entd750e
Klk10 | 0.560281484
0.560099524 | Ebna1bp2
2810405F18Rik | 0.5571558
0.5568799
0.5568359 | | garp
30025L02Rik | -3.06062277
-3.0514048 | Cdo1
Sparc | -2.45025844
-2.447566459 | Psx1
Ftsj | 0.559595781
0.558805495 | E2f4
Nphp4 | 0.556320 | | op1 | -3.037730389 | Prickle1 | -2.444344474 | Adorti2 | 0.558675565 | Tulp1 | 0.5555878 | | :2a6
:sp1 | -3.031423242
-3.007768974 | C1qtnf3
BC049816 | -2.439334049
-2.423052897 | BC024955
Aloxe3 | 0.558150991
0.558079207 | Hspca
Dpp3
Dtymk | 0.5555325
0.5554544 | | em2
102 | -2.988387844
-2.969528591
-2.914883386 | Sic1a3
Cav1
Cxcl1 | -2.421772333
-2.419125728 | 1190005F20Rik
Trim2
Trim59 | 0.55749682
0.557278942 | Dtymk
Dhodh
2610507B11Rik | 0.5552000
0.5549381
0.5545881 | | rf5
mp1 | -2.914817511 | Glipr2 | -2.414981562
-2.413932409 | S13h5 | 0.557132101
0.555624305 | Arrh1 | 0.5543308 | | b4
112 | -2.878118857
-2.872872333 | Lrrc15
Col6a1 | -2.407124482
-2.402176174 | 9430034D17Rik
Paox | 0.555614675
0.555481632 | Cdc6
Tpm2 | 0.5538898
0.5537657 | | sh1c
ab1 | -2.870967429
-2.837500479
-2.83507568 | Bgn
Slit2 | -2.399084786
-2.397396188 | Mutyh
3732413I11Rik | 0.555248277
0.555245795
0.555146846 | Ppif
Ppp1r14a | 0.5534415
0.5533693
0.5528594 | | nfg
xo15 | -2.829563093 | Ogn
Myh10 | -2.396091533
-2.377311544
-2.374658756 | Lrp11
Zfp96 | 0.555034345 | Igf2bp3
Plac8 | 0.5514814 | | als7
d2 | -2.819027506
-2.785250129 | Cdh3
Ckifsf3 | -2.36858332 | 5730466C23Rik
Gprk6 | 0.554659741
0.554395784 | 1200013B22Rik
Ris2 | 0.5506985 | | itub
ol7a | -2.772460132
-2.764015278 | Sema3f
Maged2 | -2.366442158
-2.36489004 | Ckn1 | 0.55427164
0.55382961 | D630023F18Rik
Slit2 | 0.5499276 | | kp
pi | -2.761247942
-2.751769198 | Aldh1l2
Tgfbr3 | -2.356968665
-2.353595025 | Trip12
Slc16a3
Godh | 0.552925025
0.552577113 | Amph
Isy1 | 0.5493887 | | robp
rep1 | -2.712550556
-2.711363571 | Mylk | -2.345906958
-2.343394637 | Bdh
Krt1-18 | 0.552296312
0.552292839 | Sic2a1
Snrpa1 | 0.548768 | | rep1
zp2
td1 | -2.711363571
-2.683684586
-2.664904445 | Igfbp3
Podn
Age1 | -2.343394637
-2.339999668
-2.334047142 | Krt1-18
C730015A04Rik
2610044O15Rik | 0.552292839
0.551864813
0.551757467 | Snrpa1
Chc1
Fanod2 | 0.5472023
0.5461065
0.545846 | | td1
dn4
seef4 | -2.634940106 | Aqp1
Mfap5
Fbln2 | -2.226008284 | 1110002N22Rik | 0.551757467
0.551475573
0.551417472 | Fanod2
Timeless
Ak2 | 0.545846
0.5458397
0.545800 | | s4a7 | -2.632268215
-2.632160233 | Gap43 | -2.318774116
-2.315926099 | Parp1
Cong1 | 0.551212269 | Serpinf1 | 0.5457814 | | p
30453H04Rik | -2.621497243
-2.604039738 | Bmp1
Nope | -2.312545796
-2.311159549 | Hist1h2ah
Cdo6 | 0.551117521
0.550916565 | Kcnh2
1700027A23Rik | 0.5453331 | | fbp1
V491445 | -2.603415264
-2.586689245
-2.58445136 | Ldb2
Pftk1 | -2.310527428
-2.289133442 | Pdk1
Rpa3
2300008B03Rik | 0.550259804
0.549491707
0.548203951 | St6galnac2
Ctsc | 0.5440625
0.5436862
0.5431025 | | sin
p3 | -2.56780778 | Fst
Igf2 | -2.28800325
-2.284795168 | 2300008B03Rik
Sephs2
6720463M24Rik | 0.547598721 | Syp
Rhobtb3 | 0.5423716 | | tdap
00023A02Rik | -2.550245818
-2.536129908 | 6330406I15Rik
Arhgap20
Slit3 | -2.28061379
-2.270089163 | Chfr | 0.54754334
0.547315214 | Kcnk5
2610510J17Rik | 0.5421393
0.5407958 | | t1-19
i | -2.507882228
-2.495634737 | Slit3
Fiaf | -2.266626392
-2.259168928 | Dops
Zw10 | 0.546710994
0.5464606 | Exosc2
2610009l02Rik | 0.5406342 | | p1r1b
imp3 | -2.486047475
-2.484083138 | Figf
Vcam1
Adamts5 | -2.256633708
-2.231138824 | Gart
Ttc3 | 0.546182654
0.546002816 | Efna4
Rab5a | 0.5396019 | | dh3a1
t2-8 | -2.47919522
-2.471272733 | Gainti4
Reg3g | -2.224721979
-2.222392421 | Sap30
Vrk3 | 0.54597513
0.545741191 | Prpf38b
lrf1 | 0.5393087
0.5392530 | | w1
eln | -2.456752518
-2.453815827 | Tnxb | -2.222205386
-2.203567171 | Hist1h2bg
Lama1 | | Rsrc2
Rasi11a | 0.5390584 | | rc
k | -2.449022118
-2.445287436 | 1500015O10Rik
D230005D02Rik | -2.202893429
-2.193151553 | Ehmt1 40422 | 0.544911553
0.544883094
0.544805374 | Pcsk9
Plekhf2 | 0.5385765
0.5384807
0.5378466 | | dh21
10061N23Rik | -2.444338056
-2.439146555 | Vegfc
Steap2 | -2.179959766
-2.179015738 | Zfp94
Bhlhb9 | 0.544504358
0.544363951 | B930076A02
Polr2i | 0.5376567 | | ph
32474A20Rik | -2.434275821
-2.433420959 | Tbxa2r
FhI1 | -2.178460813
-2.176322773 | BC060631
1810060D16Rik | 0.543035975
0.542120075 | Polr2j
D1Wsu40e
Uat8 | 0.5357148 | | apk13
dn3 | -2.421592345
-2.418225777 | Nid1
Mrvi1 | -2.173387879
-2.161700234 | Rhoc
Fdps | 0.541732449
0.541438245 | Dtx1
Dusp4 | 0.534963 | | ri2a | -2.414383957 | Mmp23 | -2.155900637
-2.141270732 | Rbm13 | 0.54141941 | Smu1 | 0.5342103 | | In2
cstd2 | -2.401533235
-2.395474488
-2.388900649 | Ube1I
Fmnl3 | -2.141270732
-2.132152495
-2.127656259 | Lck
AW544865
Nsun5 | 0.540961504
0.540798092 | Tkt
Emi4 | 0.5339258
0.5336980 | | g1
ex4
d14 | -2 286820707 | Mmp13
Efemp2
0610041G09Rik | -2.12/656259
-2.124497768
-2.118562663 | 9330161F08Rik
Tto4 | 0.54042152
0.540325973 | Mycbp
Yeats4
Rab3ip | 0.533690
0.5334998
0.5333483 | | :64 | -2.350178572
-2.349458777
-2.325326671 | 1810054O13Rik | -2.116727116 | 4833418A01Rik | 0.539835863
0.539255562
0.53921691 | Tyro3
Zranh3 | 0.532839 | | lqa
pi1 | -2.324679198 | Reck
Hs3st1 | -2.115727707
-2.101616274 | Pum2
Cenpp | 0.53921691
0.538480712
0.538144634 | AW060766 | 0.532308 | | 186
m2d | -2.317810028
-2.31585358
-2.312611766 | Mmp14
ltgbl1 | -2.098649807
-2.097170128 | Plk4
Vkorc1l1 | 0.5377953 | Dnajc2
Glrx | 0.5319375
0.5315394 | | poc4
p1 | -2.307613498 | Mmp2
Sema5a | -2.090653763
-2.086120175 | Apitd1
Fbxo27 | 0.537528232
0.536501012 | Cdca3
Clspn | 0.5311296 | | h16
86 | -2.283881191
-2.282887679 | Rgs16
1810057P16Rik | -2.08181505
-2.07604841 | BC026585
Tmo4 | 0.536389756
0.535898555 | Nudo
Rnf34 | 0.530600
0.5302514 | | :m6
try5 | -2.263767296
-2.26359697 | Lrig3
Mxra8 | -2.07571971
-2.072892161 | 2310045B01Rik
Dapp1
Sfrs7 | 0.535542947
0.53518853 | Inadi
Agps
Arhgap8 | 0.5302122 | | t1-16
na14 | -2.253855889
-2.248772826 | II11ra1
Serpine2 | -2.061694922
-2.059555324 | Usn28 | 0.534610926
0.53319153 | | 0.5295786 | | ica7
ecsf8 | -2.248063179
-2.240504717 | Ptpns1
9330196J05Rik | -2.054614363
-2.052485261 | 1810015C04Rik
Mtap7 | 0.53289148
0.532582039 | AK129302
lng1l | 0.5291092
0.5289981 | | k1 | -2.240172965
-2.235755161 | Tnfaip2 | -2.051743575 | AA408556 | 0.532556568 | Ldoc1
Slc25a15 | 0.528945
0.5288506 | | 10015A11Rik
n4sf3 | -2.234754922
-2.222059428 | Casp4
Ephb2
Ednrb | -2.050463222
-2.047010068
-2.037537616 | Ly6f
Cpsf1
Arntl2 | 0.532291279
0.532001159
0.531969413 | 5133400G04Rik
Prpf8 | 0.5283651 | | /o1f
:g2 | -2.204211193
-2.200455429 | Zocho5
Thbs1 | -2.037537616
-2.037409192
-2.035599491 | Map3k1
Hist1h2ad | 0.531220277
0.531011045 | Ddx47
Triml1 | 0.5280942
0.5278185 | | itt
fitt
Sgalt | -2.189142917 | Pdgfrl
Sema3a | -2.03279287
-2.027580809 | Atp2a3
Celsr3 | 0.530885966 | Gapd
Kif21a | 0.5273148 | | ogari
:13
nchd4 | -2.166225628
-2.151800454
-2.14998066 | Tmem119
Rspo2 | -2.02/580809
-2.026683425
-2.025415132 | Irl6
BC013491 | 0.530514717
0.530354105 | Adh5
Lag3 | 0.5257611 | | scho4
al
xd1 | -2.141074869
-2.141063667 | En1 | -2.023888307
-2.022374344 | Gloxd1
2010319C14Rik | 0.530281063
0.530210022 | Bcas1 | 0.5246287 | | ıtk | -2.141063667
-2.133071277
-2.126300187 | Mglap
Emilin2
Igfbp6 | -2.022374344
-2.021061616
-2.017100497 | 2010319C14Rik
Spc25
Adat1 | 0.530210022
0.530195048
0.529961112 | Pgm2
Nme4
Dus3l | 0.5245679
0.5243219
0.5239718 | | n3
pat2 | -2.126300187
-2.123168042
-2.113524661 | Cxcl15 | -2.01/220260 | Adat1
BC048355
LOC382010 | 0.529961112
0.529839929
0.529402768 | Aqr
Rad54l | 0.5239718 | | x1
3
00050C12Rik | -2.107528464 | Pdgfrb
Scarf2 | -2.002317583
-2.001400276
-1.995905586 | Gsta4 | 0.529394746 | Trp53bp1 | 0.5233602 | | s6ka1 | -2.107189246
-2.10364472 | Epha3
6330403K07Rik | -1.995775414 | Ris2
Hook2 | 0.528874488
0.528592097 | Rps6kl1
Ndufs4 | 0.5231950 | | :049354
10006J04Rik
10010N17Rik | -2.09836513
-2.086410419 | Tpm2
Nfkbiz | -1.991403976
-1.98948649
-1.987408423 | 1110061O04Rik
1700013H19Rik | 0.528422459
0.527975877 | Fcf1
Pwp2 | 0.5220694 | | 19 | -2.082211671
-2.075822508 | lfit2
Soros2 | -1.986033821 | Lmnb1
Al593442 | 0.527886612
0.527689427 | Ndor1
ldh1 | 0.5216365 | |
x12b
153 | -2.056435946
-2.050444499 | Jundm2
Timp3 | -1.984425595
-1.981246931 | Gstcd
5730568A12Rik | 0.527575019
0.527385225 | Dolpp1
4930538D17Rik | 0.5206120
0.520528 | | n1
10015C04Rik | -2.05030748
-2.046089643 | Fhl2
Pdlim2 | -1.977608244
-1.971099502 | Atpbd3
Syngr3
Smox | 0.527335683
0.527247003 | llf3
6430595O10Rik | 0.5203744
0.5197642 | | p3
oc1 | -2.044888956
-2.035281132 | P2ry6
Pmp22 | -1.963474124
-1.962577559 | Vars | 0.527096006
0.527061618 | Slc13a4
Src | 0.5195280 | | nch
:15a3 | -2.035084829
-2.034459471 | Adam19
Ecm1 | -1.957944546
-1.955728859 | Zbtb8
Cstf2 | 0.527050267
0.526540518 | 2310061l09Rik
Psmd12 | 0.5185167
0.5183158 | | o1b3 | -2.02969373
-2.026189524 | 5430431G03Rik
Sfrp1 | -1.948666997
-1.947603989 | Csnk2a2 | 0.526260545 | Nup62
Rgs10 | | | mt1
TMUSG000000 | -2.026169524
-2.013369846
-1.986854624 | Cugbp2
Usp18 | -1.938368131
-1.936447137 | B4gaint4
2210415M20Rik
Narg1i | 0.526240062
0.526159008
0.526133946 | Llglh2
B130017I01Rik | 0.5174714
0.5170183
0.5168938 | | m35a
12Ertd553e | -1.985769646
-1.985769646
-1.984020619 | Col18a1
Thbd | -1.936447137
-1.924730318
-1.920760079 | Narg11
Ncaph
Mip | 0.525714123
0.525587685 | Nup50
0610010K14Rik | 0.5166680 | | stnal1 | -1.964662078
-1.960935677 | Osr2
1810057C19Rik | -1.920760079
-1.911881789
-1.907512581 | Hdgfrp2 | 0.525530122
0.525538187 | Ass1
Suhw2 | 0.5156829 | | doc
7
os3as | -1.960935677
-1.958777337
-1.957516669 | 1810057C19Rik
Steap
Fzd2 | -1.907512581
-1.904241017
-1.901917924 | Narg1
Eml4
Ekho11 | 0.525289187
0.524704745
0.524372521 | 1700021C14Rik
2610507L03Rik | 0.515215
0.5150514
0.5146914 | | b25 | -1 941596274 | Fzd2
Wipi1
B930096L08Rik | -1.901917924
-1.901079918
-1.900293704 | Fkbp11
Syngr1
BC066028 | 0.52416761 | 2610507L03Rik
Ptpns1
Cdv3 | 0.5140790 | | hgef3 | -1.941117813
-1.939470385 | Inhbb | -1.898367972 | BC066028
Isg2012
Mthfd2 | 0.523994483
0.523713161 | Tcf3 | 0.5140749
0.5138381 | | yo1g
ec4n | -1.938307678
-1.930528024 | Ron3
Kdelr3 | -1.897711169
-1.888211147 | Mrpl9 | 0.523694563
0.522194135 | 1810073P09Rik
Prss19 | 0.5135273
0.5135130 | | avi2
10046K01Rik | -1.92977082
-1.920172117 | BC028528
Gstm2 | -1.883571325
-1.882947774 | Pex7
Depdo6 | 0.522167374
0.521841173 | Mvd
Ttyh1 | 0.5134058 | | im
k24 | -1.916979413
-1.911943823 | Leprel2
Palld | -1.882493026
-1.881504158 | E430034L04Rik
Adora1 | 0.52151076
0.521236903 | Catnal1
Hrsp12 | 0.513052 | | 3st3a1 | -1.907633273 | Cpz
Gpx7 | -1.876011283
-1.875501458 | BC049806
Slc35d3 | 0.521236903
0.521183471
0.520936623 | Mgarp
Sfrs2 | 0.512909
0.512862 | | pn18
l11
30406L22Rik | -1.900920226
-1.900525086
-1.895517564 | Angpti2 | -1.875501458
-1.874024459
-1.873596432 | Slc35d3
Gsg2
Apaf1 | 0.520936623
0.520717913
0.520677674 | Strs2
Serpine2
Odc1 | 0.512862
0.5128423
0.5125342 | | at10 | -1.890985414 | Rhoj
Sphk1 | -1.871906604 | Olfr1443 | 0.520530628 | Trim33 | 0.5123275 | | xbp2
frl | -1.88367283
-1.87363021 | Tagin
Col24a1 | -1.859320089
-1.856449472 | 1110004B13Rik
Tpx2 | 0.520507756
0.520214601 | Hist1h2bn
A930009M04Rik | 0.5113081
0.5109724 | | co2b1
cc1 | -1.871415794
-1.871232197
-1.866144253 | 1200002N14Rik
Nenf | -1.854295645
-1.851189399 | Lias
Pgpep1
BB114266 | 0.519924071
0.51959343 | Uhrf2
Otx1 | 0.5108097 | | kcz
f | -1.866144253
-1.861161264
-1.85451714 | Pvrl2
Carna1n | -1.850187963
-1.84841213 | BB114266
Zfp97
Nup133 | 0.519109953
0.518711419
0.518434664 | Lrpprc
Al326906
Plekha5 | 0.5104740
0.510336
0.5099491 | | p1
d52 | -1.852559209 | Col1a2
Ndn | -1.845193475
-1.842115718 | Code5 | 0.518337769 | D130058l21Rik | 0.5088670 | | Ertd280e | -1.850508126 | Vldlr | -1.838863526 | Ankrd47 | 0.518304406 | Nipsnap3b | 0.5087519 | | Rab8b
Ret
Angptl4 | -1.848639122
-1.846927848
-1.845131573 | Mx2
Pkd2
6430411K18Rik | -1.836385616
-1.83509488
-1.832773371 | Abof2
Dact2
Toea3 | 0.517674371
0.517595524
0.517233411 | Mpdz
Nfyb
Cone1 | 0.508464363
0.508452621
0.508321832 | |-------------------------------|---|---|--|--------------------------------|---|--|---| | Stard8
9030611O19Rik | -1.844400283
-1.842632019 | Cd11
1190007F08Rik | -1.832193228
-1.826080911 | 1700025B16Rik
Mrps12 | 0.517217894
0.516166176 | Ptdsr
Ric3 | 0.508253419
0.507500526 | | Insm1
Edg7 | -1.842632019
-1.84100266
-1.836912429 | Bcl11b
Gpr23 | -1.822528325
-1.818992859 | Ezh2
LOC667250 | 0.515699838
0.515669838 | Gad1
Gpr23 | 0.507500526
0.507207343
0.507189407 | | Prkch
Pak4 | -1.827009819
-1.824515473 | Gp38
Lbh | -1.815822323
-1.813687171 | Mif4gd
Ncl | 0.515552599
0.514746911 | Snapc3
Eed | 0.506959989 | | Nipsnap1
Nudt11 | -1.823574641
-1.821976354 | Ghr
Rgs10 | -1.810362531
-1.808886446 | 9430015G10Rik
C330018L13Rik | 0.514203204 | Pelo
Tial1 | 0.505613265
0.505170762 | | Sort1
Stmn2 | -1.821402697
-1.821177446 | Slc9a3r2
Msx1 | -1.806701528
-1.798012494 | Mail
Acp6 | 0.51369142
0.513357013 | Smyd5
Acrbp | 0.505062313
0.504979625 | | Espn
Acas2l | -1.792276148
-1.78447631 | Ptgis
Igf1 | -1.7937302748
-1.793738652 | D030060M11Rik
BC016226 | 0.513129756
0.512648296 | Twsg1
Grm6 | 0.504566265
0.504472583 | | Gngt2 | -1.783276939 | Apbb2 | -1.790012313 | Dlg7
2310004L02Rik | 0.512485839 | Gls2 | | | 9130213B05Rik
Cd83 | -1.778209936
-1.775784843
-1.771101934 | Pitp
BC099439 | -1.787518506
-1.785747031 | AW540478 | 0.511979796
0.511745163
0.511557435 | Lyar
BC018242
Mat2a | 0.504003931
0.504001584
0.503804273 | | Eppk1
Nt5c3
Hmab2l1 | -1.771101934
-1.765026487
-1.763431243 | Csf1
Stk17b | -1.782465623
-1.777915498
-1.776373979 | Arl6ip4
Pml
Mipep | 0.511557435
0.51123746
0.51107779 | Snrpd1
Ddx18 | 0.503804273
0.503636418
0.503474785 | | Sult4a1 | -1.758366229 | 6530401D17Rik | -1.776047065 | Stk4 | 0.510893139 | Thoc1 | 0.5024632 | | E130012A19Rik
H2-Ab1 | -1.750704729
-1.750507328
-1.748461233 | Has2
lcam1 | -1.775522591
-1.770712217 | Hist1h3c
BC027061 | 0.510780688
0.510498467 | Rab15
MGC58818 | 0.502445268
0.502094234
0.501095739 | | Coch | -1.747760797 | Lphn3
H6pd | -1.770561563
-1.768127657 | Wdhd1
1110061N23Rik | 0.510054242
0.509977786
0.509888509 | Fbxl10
Psat1
1190005l06Rik | 0.500448821 | | Pglyrp1
Itga7
Sytl1 | -1.746966986
-1.744570752
-1.743999186 | Slc39a13
Sertad4 | -1.761481874
-1.758598699 | BC017634
Ddx18 | 0.509870143 | Chek1 | 0.500090144
0.499979583 | | BC040774 | -1.743999186
-1.743847695
-1.742712788 | B130017I01Rik
Adamts1
1200009O22Rik | -1.757541956
-1.754745007
-1.753894109 | Pithd1
Eed
Ildr1 | 0.509544896
0.509524366
0.509070735 | Mphosph6
Stat4
Pls3 | 0.499842471
0.499627671
0.499208863 | | Car12
Osbpl3 | -1 738732187 | Ltbp3
Nfih | -1 747758473 | Plch2 | 0.508597675 | Trub2 | 0.499075981 | | Prom2
Slc35d3 | -1.732924429
-1.721334942 | Atf5 | -1.742170108
-1.740625441 | Cope
Bms1i | 0.507882456
0.507815807 | Shroom3
Thsd2 | 0.498966393
0.498754359 | | Selenbp1
Igfals | -1.719892081
-1.714924163 | Sdpr
Akr1b8 | -1.735926242
-1.733246937 | 1110025F24Rik
D11Ertd707e | 0.507153457
0.507087129 | Acy1
Btbd14b | 0.498432537
0.498272767 | | Tcfap2c
2310042N02Rik | -1.709188029
-1.706707773 | Man2a1
Mest | -1.728616213
-1.727920455 | Pak4
3930402F13Rik | 0.507022666
0.506861763 | Ctdp1
Arfgap1
2310057D15Rik | 0.498154548
0.497958459
0.497941594 | | BC013481
Sla | -1.697094235
-1.689972719 | Rnf144
Tbc1d2b | -1.727459014
-1.727389335 | Hdac1
3300001G02Rik | 0.506658586
0.506345493 | Lypla1 | 0.49727576 | | Pdxp
Ctsc | -1.689319457
-1.684842863 | Irgm
LOC381480 | -1.709075012
-1.707549106 | 2610019I03Rik
2600003E23Rik | 0.506305557
0.506219385 | 2010003J03Rik
Gpsm1
Rfx2 | 0.497029956
0.496487313 | | 1110021N19Rik
BC032204 | -1.676877127
-1.675505592 | Anpep
Fbn1 | -1.70576705
-1.705050352 | 5930416I19Rik
Mad2l2 | 0.506124408
0.50589093 | Zfp278 | 0.496299474
0.496132824 | | Apodd1
Cd84 | -1.674955647
-1.671041703 | Magee1
1700023M03Rik | -1.701122069
-1.7002872 | Rnf20
Qdpr | 0.505707858
0.505333425 | Bst2
Col1a1 | 0.494764692
0.494764692 | | AA467197
Mcm5 | -1.668738687
-1.665211889 | Angptl7
D430039N05Rik | -1.699490889
-1.697010444 | Fbxo42
Nudt4 | 0.505212507
0.5050697 | Gprin1
Kpnb1 | 0.494374869
0.493697443
0.493588148 | | E2f2
A130092J06Rik | -1.65971429
-1.658246927 | Tgfbi
Fkbp9 | -1.695073356
-1.69009188 | Dph2
Srfbp1 | 0.505067309
0.504355743 | Ypel1
4432409M07Rik | 0.493473485 | | Mmp9
Avil | -1.649379229
-1.648865553 | Trim30
Antxr1 | -1.685276117
-1.682900437 | Plcg2
Slc38a2 | 0.503604662
0.503583738 | Dars
BC006583 | 0.492847125 0.492598483 | | Plek
Ebi2 | -1.641724151
-1.641269942 | Chodl
Nedd9 | -1.682530897
-1.679136676 | Pobp1 | 0.503517441 | BC016423
Dscr2 | 0.492415441 | | Syt14l
Cvp2s1 | -1.638715459
-1.638362195 | Cxcl5 |
-1.678361341
-1.676168968 | Gpatch2
Psmb3 | 0.503002409
0.502875593 | Dpysl4
Cdca4 | 0.492131851 | | Mbp
Krt1-13 | -1.638130088
-1.636036685 | Hoxc9
Serpinh1 | -1.67262091
-1.672525533 | F730047E07Rik
Scrn2 | 0.502800184
0.502500341 | Hnrpf
Sirs1 | 0.491189097
0.49049827 | | Drp2
Snrpg | -1.63297675
-1.628960056 | Aoc3
Adam12 | -1.669851398
-1.665580961 | Taldo1
Sh3d1B | 0.502472903
0.502262605 | Dhx9
C77032 | 0.490399499
0.489678805 | | Hk3 | -1 628717021 | Adam12
B2m
Rarres2 | -1.665580961
-1.665200712
-1.662690866 | Sh3d1B
Cmas
Nr5a2 | 0.502262605
0.502156883
0.502009711 | Zfp334
Slc40a1 | | | Gpr65
Rpl24
Al467606 | -1.627487117
-1.625385769 | Pcdh7 | -1.662669069 | Nr5a2
Khdc3 | 0.502009711
0.501852375
0.501558704 | Cxxc1 | 0.48815812
0.487488955 | | Konab2 | -1.623126872
-1.618909833
-1.616294702 | Mapre2
Gsn | -1.661444203
-1.660614708 | Gpr20 | 0.501171836 | Cdr2
Hectd2 | 0.487320939
0.487002252 | | Cenpa
Konk1 | -1.610751182 | Nign2
Col5a2 | -1.659911689
-1.658266633
-1.657738903 | Mrps31
Porcn | 0.501141104
0.500964287
0.499665442 | Epha2
Firt3 | 0.486785543
0.486768869
0.486743155 | | Ndg2
Liph | -1.603435738
-1.602474901 | Grb14
Miki | -1.644305791 | Uqcrc1
Ppan | 0.499420948 | Usp52
Hexa | 0.486296182 | | Clec4a3
Garni4 | -1.596264177
-1.594737309 | E130203B14Rik
Sprr2k
Enc1 | -1.641335432
-1.640276934 | Oit1
Toe1 | 0.498919909
0.498649386 | Gpiap1
B430119L13Rik | 0.485931232
0.485426827 | | Ctsh
E030006K04Rik | -1.593435773
-1.593411691 | H2-T17 | -1.638833256
-1.638809787 | Fabp5
Chaf1a | 0.497793338
0.496970315 | A930034L06Rik
Zfp423 | 0.485426827
0.484991033 | | Als2
Pfdn2 | -1.588598021
-1.587202531 | Cbfa2t1h
Hoxo6 | -1.638024773
-1.636659756 | Xab1
Crsp9 | 0.496709764
0.496470476 | Slc16a3
Tardbp | 0.484603841
0.484572572 | | Oact1
Gng13 | -1.584962501
-1.57910246 | Siat4a
Rab34 | -1.619576256
-1.619212063 | Bcl7a
Hrc | 0.496190985
0.496186567 | Chga
BC030867 | 0.484512572
0.484004752 | | Cvp27a1 | -1.578189272 | Fkbp11
Tmem98 | -1.61792386
-1.617217718 | Ap2a1
Mrpl54 | 0.496093752 | Has2
Nme7 | 0.483836496
0.48378775 | | Tspan32
Krt2-6b
Was | -1.5775307
-1.575247346 | Tm4sf6
1300018P11Rik | -1.613766529
-1.60929183 | Hk2
Pias4 | 0.495935591
0.495853951
0.495805973 | Slc5a5
2310007F21Rik | 0.4835391
0.483442326 | | Lpxn
Ehd4 | -1.574259966
-1.573839122
-1.571236969 | Colec12
Pros1 | -1.608809243
-1.60853402 | Smtn
Tro53rk | 0.495584244 | Scly
Slc9a3r1 | 0.483329886
0.48322804 | | Clon3 | -1.571056899 | 3110050N22Rik | -1.606641923 | 2700097O09Rik | 0.495344189 | Eif5 | 0.482476772 | | Mapt
LOC434858 | -1.569365646
-1.562202404
-1.560704318 | Ifi47
A230050P20Rik | -1.600210495
-1.595067807 | Brp16
Sp6
D12Ertd553e | 0.494952335
0.49490788 | Pdcd7
Eif4ebp2 | 0.482435115
0.481307091
0.48096478 | | AI847670
Psmd4 | -1 557976248 | Gbp4
II31ra | -1.588070845
-1.587718366 | | 0.494783904
0.494430911 | Ints5
Sez6 | 0.480862135 | | Abi3
Brp17 | -1.55776669
-1.554190152 | Npr2
4930422J18Rik | -1.585487403
-1.584346622 | Cdo45l
Melk | 0.494416347
0.492838695 | Rpp30
Rarsi | 0.480636368
0.479653375 | | Tspan7
Cdc20 | -1.551241883
-1.550008733 | Lhfpl2
Elk3 | -1.581976172
-1.581032295 | Aytl2
Gnpda1
Ddef2 | 0.492703993
0.49268788 | 2700084L22Rik
Tuba1b | 0.479580031
0.479256707 | | Arhgap4
1810046I24Rik | -1.547396309
-1.545687352 | Arhgap24
Agrn | -1.581031449
-1.58015603 | LOC211660 | 0.492481585
0.492313213 | Chst8
Pik3r3 | 0.479099207
0.478952796 | | Arrb2
B230208J24Rik | -1.543142325
-1.539661375 | Saa3
Mfge8 | -1.57779598
-1.576534214 | Ldh1
Crlf3 | 0.491786582
0.491782774 | Cpsf1
Psors1c2 | 0.478626476
0.478047297 | | BC003277
Med18 | -1.539601967 | LOC217066
Cdkn2b | -1.573099496
-1.572558813 | Stk17b
2310033P09Rik | 0.491754447
0.491617185 | Olfml3
Wdr77 | 0.477919291
0.477869268 | | Cbr2
1700057K13Rik | -1.519227641
-1.516912187
-1.516056664 | Nfatc4
Sec24d | | Plcb4
Plagl2 | 0.491450615
0.491398089 | Krt42
Gca | | | Ppp1r9a
Lgmn | -1.516056664
-1.514850588
-1.504759251 | Crtap
Chst2 | -1.570545728
-1.569674785
-1.567271353 | Tmprss4
Lvolai1 | 0.491359783
0.491290532 | Nudc-ps1
Gdf3 | 0.47740936
0.476997491
0.476694091 | | Cd151
Zic3 | -1.503404861
-1.502985199 | Al451557
Cxcl14 | -1.560317299
-1.559928142 | 3300001P08Rik | 0.49055883
0.490056263 | LOC245128 | 0.47662093 | | Ngfr
P2ry6 | -1.50163939
-1.501239995 | Tmed3
Cxcl10 | -1.559081038
-1.551928544 | Tyms
BC037034
Klf5 | 0.489764612
0.489707824 | Mep1b
Meox1
Zswim4 | 0.476534996 | | Acpp
Lyl1 | -1.4973225
-1.490605376 | Apob48r
G1p2 | -1.551191764
-1.550302959 | Zfp11
Vrk1 | 0.489607882
0.489542936 | Aciy
Sax9 | 0.475483105
0.475104068 | | Plek2 | | 6030410K14Rik | -1.549410258 | 1810007P19Rik | 0.489083851 | Tle1 | 0.473574723 | | Sesn1
2410001E19Rik
Fah | -1.479148381
-1.473712345
-1.473356647 | Fkbp7
Gpr124 | -1.549133199
-1.546323473
-1.543674292 | Pigo
Sfrs9
Elovl6 | 0.488979718
0.488434821
0.488407429 | Atm
Dik1 | 0.473385484
0.473118173
0.472960414 | | Pi16
Cln3 | -1.4731516
-1.469420801 | Gpr153
Lgals3bp
Rasl11b | -1.542982123
-1.542949384 | C77668 | 0.488407429
0.488141605
0.487627559 | Sfpq
Mdn1
Idnk | 0.472739309
0.47270284 | | 3300001G02Rik | -1.461589838
-1.469143339 | Ptges3I | -1.542730185 | Lrmp
Eppk1 | 0.487354705 | 1110033J19Rik | 0.472702186 | | Tnfaip8l2
Prx | -1.457798071 | Sqrdl
Mpp1 | -1.540192631
-1.538144346 | Smarca4
1810019J16Rik | 0.487138548
0.487064857 | Mmp15
Dnd1 | 0.472659531
0.472602787 | | Rangap1
4930504E06Rik | -1.454027649
-1.450736873
-1.44969074 | 1110030H18Rik
Adm
Plekha2 | -1.537611116
-1.534521377 | Sorl1
Pet112l
Noc4 | 0.486999247
0.48697271
0.48623642 | Atp1b2
Pfkm
Adssl1 | 0.472187626
0.472166855
0.471953539 | | A030007L17Rik
Kynu | -1.44969074
-1.449456438 | Plekha2
BC029169 | -1.533992888
-1.533278345 | Noc4
Znrd1 | 0.48623642
0.485797321 | Adssl1
Hist1h3h | 0.471953539
0.471912021 | | Ripk4
Igfbp2 | -1.448862377
-1.448618789 | Sh3bgrl3
Sgk | -1.530747369
-1.528737155 | Dolpp1
Cenpl | 0.485684589
0.485590779 | Eif2s2
Ash2l | 0.471829533
0.47171531 | | Aldh3b1
Nt5e | -1.444930736
-1.44370911 | Col4a5
Tcea3 | -1.527247003
-1.520612089 | Tpmt
Mta3 | 0.485426827
0.485392693 | Ddah2
Srp9 | 0.471463592
0.471024027 | | Exosc7
Lst1 | -1.439258078
-1.438618051 | Gns
Smtn | -1.520200978
-1.513155195 | 2700082D03Rik
Ppp1r11 | 0.485146447
0.484156663 | Tubb4
Tmem170 | 0.470765647
0.470629825 | | Sepp1
Mcm10 | -1.436153356
-1.434468951
-1.432853595 | Adra2a
H2-T23 | -1.511284603
-1.509139287 | 1110001A07Rik
Mbp | 0.484072331
0.483565735 | Aars
Gng5
Tdrkh | 0.470390319
0.470355802
0.470142099 | | Sfxn1
EG622339 | -1.429651262 | Pea15
Lgals1 | -1.508556462
-1.50744594 | Tarbp2
2610209N15Rik | 0.483396292
0.483255728 | 4933405K07Rik | 0.469698716 | | Clm3
1200006F02Rik | -1.42412475
-1.423572498 | Micall2
Hoxd8 | -1.506865078
-1.500521211 | Grhpr
Bcl2l12 | 0.482952614
0.482424339 | Pftk1
Suz12 | 0.469485283
0.469457081 | | Gpr20
Cxadr | -1.423156232
-1.422260893 | Adoy4
Fgl2
Rhoc | -1.497289093
-1.496997591 | A630042L21Rik
Suv420h2 | 0.482074202
0.482016199 | Ankrd6
Esco2 | 0.469121472
0.468681023 | | AK129128
Ryr3 | -1.417578798
-1.415037499 | Vdr | -1.496675968
-1.496537175 | B230208J24Rik
Chchd8 | 0.48173972
0.481518141 | Nr1h2
Sp8 | 0.468591215
0.468418596 | | Klk11
Cth | -1.412798332
-1.411678487 | Angptl1
E430002G05Rik | -1.49466263
-1.491722234 | 5830468K18Rik
Ddc | 0.481146106
0.480821818 | Tmem90a
Srm | 0.467667142
0.467419407 | | Slc2a1
Syngr1 | -1 406827461 | Actn1 | -1.488852701 | Mrps5 | 0.480816386
0.480725402 | Sc4mol | 0.467413644 0.466925179 | | Neu1
Fcho1 | -1.398236953
-1.397349703
-1.391082767 | Fogrt
Zfhx1b
Lip1 | -1.487392501
-1.486630943
-1.482967728 | 1110006G06Rik
Cox15 | 0.480156419 | Stxbp2
5730410I19Rik
2410127E18Rik | 0.46662712 | | Unc93b1
Arhgap30 | -1.388962317
-1.388650733 | Lip1
Al481100
Atp1b1 | -1.481137344
-1.480997745 | Hist1h2ak
Rpl38 | 0.480062611 | Bci11a
BC057552 | 0.46614184
0.466111684 | | Dfy
Park7 | -1.38602296 | Gpo4
Plekha4 | -1.478844471 | 1110007L15Rik
5730410I19Rik | 0.479559005
0.479526226 | Rfc4
Cdc20 | 0.465223256 | | Dok2
1200013B08Rik | -1.383009003
-1.380644211
-1.376894554 | Atp8b1
Kit26b | -1.471017768
-1.463514572 | Dnajc8
Ninhl | 0.479190931
0.479114588 | Ednra
Snx8 | 0.464668267
0.464616512 | | Sain
Aovr2b | -1.374525951
-1.374101956 | Col28a1
Plau | -1.462195933
-1.459767012 | Apex1
Pdss1 | 0.479114588
0.478872475
0.478099081 | 2410016F19Rik
Klhl13 | 0.464395351
0.464264001 | | Pdk1 | | Adamts4 | -1.458343695 | Slc9a8 | 0.477832626 | Shd | 0.463699618 | | Cdca3
Pygl | -1.37334019
-1.373049818
-1.371300708
-1.369376998 | G431001E03Rik
St5
Sdk1 | -1.457483848
-1.452338321
-1.449246925 | Dok2
Psmd12 | 0.476853507
0.476795327
0.476684049 | Hebp2
E130016E03Rik | 0.462971976
0.462533523
0.462395859 | | Nptx2
Hcls1 | -1.363963315 | Cd5 | -1.448132583 | Qrsl1
Mycbp | 0.476572137 |
Reprimo
6332401O19Rik | 0.462343214 | | Arhgap9
Slc7a8 | -1.361996101
-1.360790917 | Stat2
S100a4 | -1.436905653
-1.435093168 | Mrpl28
9630048M01Rik | 0.476256241
0.4758535 | Gtf3c5
Rpa3 | 0.462307984
0.462215159 | | Gusb
Eif3s7 | -1.359199598
-1.358815304 | Emilin1
Adh1 | -1.43415221
-1.433970406 | Conf
Moce1 | 0.475546482
0.475255022
0.474939713 | Pdxp
Cer1 | 0.462162869
0.461904104
0.461766324 | | Ica1
Gpd2 | -1.358748368
-1.358733005 | LOC435565
Frmd6 | -1.4325857
-1.429259143 | 2310031L18Rik
4833426J09Rik | 0.474652356 | Tnfrsf21
Prps1 | 0.461463652 | | Slc40a1
Odz4 | -1.356971233
-1.353829589 | Epb4.1I1
BC034054 | -1.428908313
-1.42469392 | Sphk2
Nos3 | 0.474367505
0.474318437 | Hist1h4k
Stmn1 | 0.46106603 | | BC019731 | -1.3517421
-1.349471406 | Gyg1
Oasl2 | -1.424613759
-1.424147853 | 1500001M20Rik | 0.473824853
0.473591405 | 1500001M20Rik
Dtx4 | 0.460922366 0.460612703 | | Rpl38
Nat1 | -1.347584374
-1.347350692 | Irx3
Tgfb3 | -1.424041496
-1.423697837 | Vps29
2810428C21Rik | 0.473344437
0.473200525 | 3000004C01Rik
1700083M11Rik | 0.460540673
0.460447959 | | Pacs1
2410002F23Rik | -1.345927414
-1.341622922 | Sh3md4
2300002D11Rik | -1.423305115
-1.423195118 | Gfer
Wnt8a | 0.473200525
0.472767162
0.472752997 | A430005L14Rik
Hdc | 0.460303777
0.459958246 | | | -1.341622922
-1.340376494
-1.338895778 | Oat | | | | ld2 | 0.459598684 | | Cdh1 | | Ptges | -1.422493304
-1.421716152 | Rpain
Zranb3 | 0.471333708
0.47112921 | Hist1h2bf
Cox7a1 | 0.45957632
0.459251203 | | Card4
Mboat2 | -1.338726346 | ler3 | -1.421/16152 | 2141103 | 0.470050100 | Description | 0.4501007 | | Card4
Mboat2
EG638695 | -1.338726346
-1.337253826
-1.337173257 | ler3
Odz3
Pi16 | -1.419706091
-1.416450106 | Wdr21
Cenpa | 0.470953489
0.470857342 | Prss8
9430097H08Rik | 0.459168761 0.458930306 | | Card4
Mboat2 | -1.338726346
-1.337253826 | ler3
Odz3 | -1.419706091 | Wdr21 | 0.470953489 | Prss8 | 0.459168761 | | Olig1
Slc12a3
Nppb
Rcl1
Sdcbp2 | -1.329740542
-1.328150275
-1.324583634
-1.322631432
-1.321928095 | 4732435N03Rik
Zfp36
Galnt9
Nipa1
Hist1h2bj | -1.413116109
-1.412203265
-1.412160739
-1.412109217
-1.40989617 | Arpc1a
Gstm6
2610524G07Rik
Rbm14
Sdobp2 | 0.46956964
0.469485283
0.469451
0.469329644
0.468938704 | Ap4s1
2810405J04Rik
Cdc2l2
Accn2
Hrb2 | 0.458025447
0.457981024
0.457552294
0.457137783
0.456998419 | |--|--|--|---|---|---|---|---| | Usp1
BC037034 | -1.320499987
-1.318959149 | Blvrb
Slitl2 | -1.404428091
-1.403687324 | Coq5
Gm347 | 0.468781499
0.468675463 | Hmgn1
Tpd52 | 0.456422566 | | Rgs10
2810410M20Rik | -1 216252218 | Ttyh3
9230117N10Rik | -1.402220161 | AW060207
Rbp7 | 0.46865565
0.468302649 | Nol10
Psme4 | 0.455929916 | | Nup93
Zfp87 | -1.316218014
-1.31509269
-1.31253496 | Ncam1 | -1.397923478
-1.393946086
-1.393161153 | Mcm8
Rad50 | 0.468011964 | Myst4
AIR94139 | 0.455516814
0.454895817
0.45456586 | | Phtf2
Nudt5 | -1.31253496
-1.301189973
-1.298621699 | Sgcb
D0H4S114
Zfp521 | -1.393161153
-1.391721611
-1.389470835 | Myg1 | 0.467613644
0.467588021 | 2900055D14Rik | 0.454565863
0.454331166 | | Gldc | -1.297537545 | Igfbp5
Gstt1 | -1.386109257 | Tmprss13
AK122525 | 0.46719609
0.46719609 | Psmc3ip
Solt | 0.454331166
0.454258809
0.453950304 | | Sorl1
Gnpda1 | -1.293006486
-1.29180402 | Capn6 | -1.379072002
-1.37768828 | Cycs
2900045N06Rik | 0.467102632 | Pitp
Serpina3m | 0.453447623 | | Trpc4
Sema4a | -1.290248248
-1.289506617 | Irf1
2310067E08Rik | -1.375739323
-1.375422402 | Sae1
2610016F04Rik | 0.466829073
0.466256223 | Rnut1
Rhebl1 | 0.45309641
0.452236117 | | Atp5b
Cysltr1
Lamb3 | -1.288053597
-1.285402219 | Efs
Rabl4 | -1.374737345
-1.374251884 | Rfo4
Tm4sf4 | 0.466066249
0.465988687 | Kcnab2
Ttn | 0.451765533
0.451024123 | | Llglh2 | -1.283921772
-1.283874749 | A930021H16Rik
Mmp11 | -1.373507926
-1.372250331 | Ctsd
C130090K23Rik | 0.465893869
0.465756038 | Diras1
Cstf3 | 0.450797262
0.450573056 | | Msc
Eif4a1 | -1.282842887
-1.282340219 | Cxx1c
D10Ertd610e | -1.372190604
-1.36953199 | Gpr19
Mnd1 | 0.465468277
0.465373185 | Hip2
Rad1 | 0.449428157
0.449344776 | | Cte1
Pfki | -1.279194496
-1.277129125 | Ceecam1
Lynx1 | -1.369511689
-1.367116869 | B3gnt3
Plf2 | 0.465089993
0.464918648 | Plcxd1
2310057G13Rik | 0.449307401 | | Anp32a
Uhrf1 | -1.274144242 | Zfpm1
Hebp1 | -1.365181293
-1.363436303 | | 0.464868655
0.464853835 | Psmc5
A730024F05Rik | 0.448794676 | | Gm484 | -1.272437422
-1.268624706 | Meox1 | -1.361049853 | 2610029K21Rik
9530027K23Rik | 0.464542684
0.464517837 | Rbm4b | 0.448393592 | | Arhgap12
Dnajc5b | -1.268488836
-1.268309348 | Ube2l6 | -1.360738231
-1.359787639 | Lyar
9130210N20Rik | 0.464464632 | Prkra
Palld | 0.447902133 | | 9130210N20Rik
ltgb7
Al256711 | -1.267802149
-1.264354951 | ler5l
Prkr | -1.352469489
-1.35228041 | Gpx4
Cox7a1 | 0.464172562
0.464152402 | Orc1l
Tuba1a | 0.44705267
0.447016704
0.446976873 | | 1110032N12Rik | -1.262281237
-1.259633686 | Tnfrsf1a
Nrap | -1.351985329
-1.351384942 | Gtf2e2
Myl4 | 0.464049116
0.464021464 | Pank4
Hat1 | 0.446976873 | | 1300013B24Rik
BC004853 | -1.258137118
-1.257849089 | Thsd2
Lamb1-1 | -1.347729588
-1.347532319 | Irs3
A030007L17Rik | 0.4639471
0.463656204 | lgtp
2310069P03Rik | 0.445759439 | | Acot8
Glo1 | -1.257365656
-1.255816607 | Arsa
Abm1 | -1.346871393
-1.346533647 | Rabggta
Slc38a5 | 0.46333987
0.463301767 | H2afx
Sae1 | 0.445059745 | | Tpi1
Suz12 | -1.252123196
-1.250218222 | Myl4
Fzd1 | -1.343774109
-1.343671866 | Prg
Casp8 | 0.463273685
0.462753639 | Tgfbr3
Pbef1 | 0.444528796 | | LOC654467
Elmo1 | -1.248368687
-1.244668379 | Plekhf1
Lrfn3 | -1.342986405
-1.341772906 | 1110001J03Rik
Hoxa1 | 0.462719522
0.462259509 | Dhcr7
Nsbp1 | 0.444265293
0.443856336 | | Mal2 | -1.244374951 | F2r
Tspan11 | -1.333995928
-1.333926941 | Hdao6
Cnot3 | 0.461565368 | Thyn1
Fto | 0.443710864
0.443101931 | | Egr2
St14
Nusap1 | -1.242135469
-1.237440224
-1.235747928 | Colm
Gami3 | | E130012A19Rik
Taf5 | 0.461526023
0.461090843
0.461090843 | Stx6
Tir1 | 0.442964407 | | Atad3a
1300017K07Rik | -1.235237495
-1.235009858 | 1700024K14Rik
Gata6 | -1.328883434
-1.322740652
-1.321612717 | Igfals
0610010E21Rik | 0.461010924
0.460867647 | Zbed4
Mip | 0.442851988 | | Kank13 | -1.23230789 | Lrm3 | -1.318887641 | Ptdss2 | 0.46055643 | Fbxp30 | 0.442575723 | | Slc4a8
F11r | -1.231804449
-1.231460302 | Ggcx
Tnn | -1.31525203
-1.312882955 | Pla2g6
Myo1g | 0.460417403
0.460178033 | Vrk1
Anp32a | 0.442455687
0.442268483 | | Sic19a1
Mrpl46 | -1.230819781
-1.22964216 | Cebpb
Ptord | -1.310346977
-1.30848092 | Sudig1
Hax1 | 0.459629868
0.458832617 | Hspcb
BC030499 | 0.44105842
0.440312826 | | Bcap29
Ttc5 | -1.229123837
-1.228844372 | Ltbp1
Rassf5 | -1.307825695
-1.307244049 | Acsl3
Mrps10 | 0.458785395
0.458723712 | Gnb4
Zfp446 | 0.44007405
0.439944923 | | Suv420h2
Idh3a | -1.226275856
-1.225348504 | Myo7a
Fxyd5 | -1.306953251
-1.306593725 | 4933403G14Rik
Stard7 | 0.458576384
0.458572164 | Yeats2
E130012A19Rik | 0.439641253 | | Mrpi38
Lmnb1 | -1.22208293
-1.22151264 | Tpbg
Gm1012 | -1.305930825
-1.299878965 | D030013I16Rik
Fif2s3x | 0.458555044
0.458094084 | Gtf2ird1
6330579R17Rik | 0.438655892 | | Lmno1
Kif22
Plekha6 | -1.22151264
-1.221401219
-1.220424483 | Pparg
Rbms2 | -1.2996/8965
-1.299661819
-1.299027693 | Ddx25
Nme7 | 0.457930982
0.457462069 | Ythdf1
Xrcc2 | 0.438493469
0.438406472
0.4381575 | | Plekha6
Mfng
Hrmt1l2 | -1.219800908 | Nack | -1.295124306 | Klk6 | | Taf9 | 0.438074714 | | | -1.216717393
-1.216214561 | 8430417G17Rik
Angptl4 | -1.291462814
-1.28748745
-1.286727063 | Dpysl5
BC038822 | 0.457019949
0.456857675 | Fads1
Camk2b | 0.437739491
0.437504839 | | Fxyd5
Rab27a | -1.215943711
-1.214494436 | Snai1
Matn4 | -1.286567339 | 3830422K02Rik
Ndufv2 | 0.456835027
0.456726827 | Lhfpl2
Sec22b | 0.43673257 | | Hn1
Rbm13 | -1.214090353
-1.213398265 | Hsd11b1
Hexa | -1.285469111
-1.284329184 | Exosc2
Ret | 0.456470218
0.456091153 | Poir2h
Hyal1 | 0.43662135
0.436570661 | | Nras
Ednrb | -1.212789357
-1.212282634 | Plvap
Fmo3 | -1.270598513
-1.269486803 | Ctc1
Cklfsf4 | 0.455691829
0.454976245 | Serpinb6c
D5Ertd689e | 0.436502008 | | Akr7a5
Ptons1 | -1.211612428
-1.208092036 | Ebf3
Uno5c | -1 26894883 | Lmo6
Prof3 | 0.454792213
0.454559788 | Tekt1
Mcm7 | 0.436398491 | | Ptpns1
Sh3gl2
Psmc5 | -1.208092036
-1.208014775
-1.207861557 | Hist1h2bf
Cobll1 | -1.266121329
-1.26579622
-1.261549388 | Prpf3
Rfwd3
Hmgb2 | 0.454518828
0.454205118 | Sfrp2
1700001A24Rik | 0.435309894 | | Wasf1
Paf53 | -1.207821994
-1.207239559 | BC011487
Emb
| -1.260443125
-1.25985451 | 5830426105Rik
Slc11a1 | 0.454055243
0.453598381 | Mrpl18
Slc5a6 | 0.434418433
0.434277185 | | Ltc4s
C130076O07Rik | -1.207198748
-1.207090039 | Zfpm2
Emi1 | -1.259716417
-1.259633391 | 1500003D12Rik
D10627 | 0.453538927
0.453418591 | 2310057J16Rik
Rnf41 | 0.434049468 | | Blmh
Ak4 | -1.205800135
-1.20554152 | Nicn1
Meis1 | -1.257958384
-1.256835328 | A930010I20Rik
Cd59b | 0.453299856
0.453256822 | Stim1
Hspa8 | 0.433628361
0.433619778 | | BC018222 | -1.204632736 | Lhfp
2410019G02Rik | -1.256635653
-1.253909671 | 2310079N02Rik | 0.452757613
0.452512205 | Prmt5
Dbr1 | 0.433432451 | | 1600016N20Rik
Tufm | -1.203872333
-1.20344097 | Arhgdib | -1.252499378 | A930009M04Rik | 0.452480659 | F2r | 0.433293624 | | Tmem20
Bmp3 | -1.203077278
-1.202868634 | Sepw1
Codc3 | -1.251483858
-1.250827404 | Rfc5
Prkcz | 0.452153841
0.451650401 | 2410019G02Rik
Steap | 0.433221739
0.43317572 | | Tir13
Arpc5
Pop5 | -1.202868634
-1.201940105
-1.201441606 | Hp
Adam33 | -1.25007781
-1.247735269 | Aldoc
Mapk1ip1
Vgll4 | 0.451320761
0.451318973 | Prdx4
Tjp2
BC055324 | 0.432935934
0.43274895 | | Aldh1a3 | -1.19939612 | Hoxb2
2610027C15Rik | -1.24655736
-1.245346406 | Vgll4
4921528G01Rik | 0.451225807
0.451221202 | Wt1 | 0.4325857 | | LOC239102
Crip2 | -1.198404347
-1.197439772 | Stat1
Trib2 | -1.24487542
-1.244871268 | Tuba8
Agp7 | 0.451008044
0.450934156 | Pdk2
Gna-rs1 | 0.431832742 | | Crip2
Sfn
Bcl2l13 | -1.197372646
-1.193808755 | Zfp36l1
Cmya4 | -1.243569338
-1.242737691 | Aqp7
Dcun1d2
2510038A11Rik | 0.450899834 | Cpsf6
Sec23b | 0.431588676 | | Kif2c
Pdyn | -1.193673604
-1.193296751 | Cygb
Scgf | -1.240451998
-1.240162192 | Armc8
1110014D18Rik | 0.45076223
0.450714402 | Krba1
Nol | 0.431385493
0.43106145 | | Heatr1
BC067047 | -1.193079769
-1.192998636 | Pold4
Hmox1 | -1.238398673
-1.238221841 | 1810008A18Rik
G630055P03Rik | 0.450561156
0.450390292 | Cds1
BC024814 | 0.430951989 | | Tead4 | -1.192645078
-1.191586375 | Hectd2
Hist1h2bn | -1.237126456
-1.236918224 | Shprh
2310056P07Rik | 0.450390292
0.450013638
0.449560552 | LOC545013
BC088983 | 0.430834291
0.430812311
0.430609103 | | Prg
Capn5
II10ra | -1.191586375
-1.189667702
-1.189149129 | Gadd45b | -1.234725892
-1.234416115 | | 0.449535694
0.449499083 | Stc2
Stk4 | 0.430609103
0.430155975
0.42932469 | | Chordc1 | -1 188661564 | Gbp1
Fndc3b | -1.23354356 | Mreg
Rfx2 | 0.449484597 | Ddx21 | 0.429278811 | | Ckb
D7Rp2e | -1.18422466
-1.182768257 | Adam9
Rgs4 | -1.232439908
-1.232173442 | Cbs
Wdr51b | 0.449091678
0.448964095 | Sf3a3
Tsga2 | 0.429276538
0.428888102 | | Gstp2
5730593N15Rik | -1.181083386
-1.180915785 | Kcnab1
Rin2 | -1.23144567
-1.229782005 | Thumpd3
Rage
Krt20 | 0.44889715
0.448758117
0.448608649 | Mcm4
D030056L22 | 0.428742675 | | Prkcb
Ndrg1 | -1.18078872
-1.17634545 | a
Map3k12 | -1.229278807
-1.22874621 | Krt20
Fbxo30 | 0.448428763 | Syt13
lcam1 | 0.428517413 | | D6Ertd365e
Pbk | -1.175571565
-1.17554265 | 2310046G15Rik
Wbp5 | -1.228268988
-1.227096697 | Spag7
Pigf | 0.448015895
0.447890211 | Ovca2
Rpo2tc1 | 0.42821172 | | H2afy
Fuom | -1.175157309
-1.173762163 | Zfp37
Gaa | -1.225420114
-1.224895323 | Ifi30
7fp87 | 0.447823593 | Kif1a
Hist1h1b | 0.427982666 | | Ard1
Aox3 | -1.170880823
-1.169654657 | Lamp2
Alcam | -1.220580559
-1.2197477 | Zfp87
Cdk2
Atp5a1 | 0.447620394
0.447446718 | Mtch2
Zfp459 | 0.427748551 | | Tnfrsf25
Aldoa | -1.168185347
-1.166754939 | Edg3
Gulp1 | -1.21950703
-1.218444255 | 4930503L19Rik
AA589584 | 0.447230504
0.447174197 | Mrps31
E130306D19Rik | 0.427643828
0.427353263 | | Farsb | -1.166494907 | Prrx1 | -1.214266756
-1.213190429 | Slc39a4 | 0.44715506 | BC035295 | 0.427290657 | | Mrpl12
Rnpep | -1.164762558
-1.164424204 | Apbb1ip
Nbl1 | -1.213190429
-1.212484121
-1.209628993 | EG622339
Zc3hc1 | 0.44688788
0.446764372
0.446736546 | Uchl3
Lrrc15 | 0.426554792
0.426397361
0.426286794 | | Txnip
9330186A19Rik | -1.164386818
-1.164056403 | Cd2
Cish | -1.208921376 | Mrps2
Eif2b5 | 0.446688386 | Ssbp3
Nsdhl | 0.426170242 | | Pnpla2
Bex2 | -1.16216627
-1.161688851 | 2610001E17Rik
Lrrc8a | -1.203939501
-1.202389397 | Clpp
Ddx19 | 0.44652391 | Ruvbl2
Fusip1 | 0.42603335
0.425990333 | | 4632404H22Rik
Nasp
BC031593 | -1.161463423
-1.161360678
-1.161090344 | Ubtd2
Tap1
Dbn1 | -1.200716908
-1.200471803
-1.199564492 | Hist1h2ao
Dcire1b | 0.446305243
0.446225377
0.446058357 | 1200015N20Rik
Eif2b1
2310008H04Rik | 0.425844254
0.425373744 | | Pdgfb | -1 16089119 | Sepn1 | -1.19758036 | Blvrb
lggap3 | 0.445390967 | Birc5 | 0.425190216
0.425037872 | | H2afz
Cacna2d3 | -1.160776173
-1.160753356 | Ehbp1
Irf7 | -1.197013331
-1.196037842 | Sfrs1
Fanod2 | 0.445143533
0.44503224 | Gnas
Jtv1 | 0.425008189
0.424581272 | | Tmem8
Lsm8 | -1.160616224
-1.160013425 | P4ha3
Car13 | -1.196033571
-1.195866788 | Rps2
LOC381881 | 0.445015927
0.444949318 | Samd3
Notch1 | 0.424430634 | | 3010033P07Rik
Psca | -1.15999952
-1.159978889 | Ass1
Hist1h2bc | -1.192086651
-1.190366464 | 2700083E18Rik
Mpp6 | 0.444720415
0.444450227 | Wbscr22
Spic | 0.42421936 | | Dhx32
Zfhx2 | -1.159834108
-1.15782093 | E130307J07Rik
MGC41689 | -1.190237712
-1.189717728 | Psma7
Mrpl17 | 0.444376541
0.444169764 | FHOS2
Amhr2 | 0.424046694
0.423957878 | | Atp5o
Pde1b | -1.157786441
-1.157404318 | Clmp
Txndc5 | -1.189477799
-1.188916298 | BC018601 | 0.443665639 | Hrmt1l2 | 0.423734058 | | Selpi
Brp16 | -1.156119202
-1.154679578 | Podxl2 | -1.183934053
-1.183188484 | Gmcl1
2600001J17Rik
E130115E03Rik | 0.44363041
0.443214545
0.443064532 | Nxt1
4930427A07Rik
Slc6a8 | 0.423508111
0.423400972
0.423348662 | | Eif2b5
Cox7a1 | -1.153456979
-1.149867349 | Gm1010
Xpnpep2
Asah2 | -1.183188484
-1.182111517
-1.181460605 | Cldn5
LOC380705 | 0.442919817
0.442814542 | Cyp27a1
Gata2 | 0.423211431
0.423264013 | | Adssl1 | -1.149829785 | Mme | -1.180398333 | Mrps7 | 0.442635234 | LOC433182 | 0.422857004 | | Snrpd3
Slc11a1 | -1.149667105
-1.147237407 | Hist1h2bm
Cacna1h | -1.179802454
-1.179727576 | Pdcd2
Prune | 0.442395973
0.442257678 | Cdc37l1
Akap1 | 0.42266794
0.422596714 | | Ptgds2
2610024G14Rik
Ccnb1 | -1.147060893
-1.146258172
-1.138598165 | Ugog
Cyba
B230104P22Rik | -1.178838209
-1.178725284
-1.178254635 | 4933427D14Rik
B4galt4
Conc | 0.441786593
0.44164165 | Tpst1
Cdh1
Mapre2 | 0.422327535
0.422092257 | | Mrpl2 | -1.138028745 | Gaint10 | -1.177538186 | Eod | 0.441522846
0.441512063 | Mapre2
Snrpb | 0.42185149
0.421685875 | | Tmo6
Snrpn | -1.137931369
-1.137417079 | Bnc2
Nox4 | -1.177404967
-1.176376042 | 2610304G08Rik
Zfp105 | 0.441400341
0.441023152 | Slc38a2
E330018D03Rik | 0.421558464
0.42154493 | | Irf6
Dbi | -1.135283566
-1.131546068 | Gbp2
BC011468 | -1.173462609
-1.172204741 | Txnl4
2610318C08Rik | 0.44064663
0.440572591 | Rfc5
Fbxp21 | 0.421347025 | | Eif2b1
Eod | -1.131453898
-1.131377421 | Gnb5
Hist1h2bh | -1.170145479
-1.169696683 | Mrpl34
Thop1 | 0.440511568
0.440190977 | D15Bwg0669e
2610028L19Rik | 0.421182239 | | Fh1
C78212 | -1.129207659
-1.128256147 | Gpr177
Hist1h4h | -1.169299743
-1.168231555 | Zranb2
Nxt1 | 0.440117422 | 2310004L02Rik
Pdcl | 0.420225917
0.420116139
0.419791854 | | Gtf2f2 | -1.128256147
-1.127387357
-1.126508516 | Amoti2
Fmod | -1.168231555
-1.168105532
-1.167686529 | 1810021J13Rik | 0.439332161
0.439888539 | Fmn2
A930040G15Rik | 0.419783211
0.419783211
0.419778126 | | Rabggta
Rpa1 | -1.125893721 | Lmo4 | -1.166142677 | Sptic1
Gsh1 | 0.438039325 | U2af2 | 0.419642339 | | 2310069P03Rik
D830014E11Rik | -1.122956213
-1.12222032 | 1810008K03Rik
Ggta1 | -1.164237581
-1.163684898 | Pars2
MGC118250 | 0.438016063
0.43789017 | Cdk2
Minpp1 | 0.419552374
0.41917723 | | Pnma2
Fbl | -1.121990524
-1.12160718 | Thbs3
Pard6g | -1.161602159
-1.160672688 | Dnaja3
A230051G13Rik | 0.43784465
0.437762918 | Cdca8
Polrmt | 0.419050562 | | Gtf2h3
Mapk14 | -1 118639868 | Ankrd50 | -1 160194429 | Odc1 | 0.437702151 | Tofb1i1 | 0.419004219 | | Mapk14
Birc5
1500016H10Rik | -1.118630995
-1.115541253
-1.114297274 | Fez2
Kai1
Serping1 | -1.159342276
-1.158385809
-1.155447413 | Sh3glb2
Msh2
2310046K01Rik | 0.437360653 | Sparc
Pogz
BC011248 | 0.418420139 | | Deadc1 | -1.114297274
-1.114202072
-1.114009821 | Serping1
Igf2r
Fgfrl1 | -1.155447413
-1.155135983
-1.154112206 | 2310046K01Rik
Wwc1
BC085271 | 0.436873301
0.436649841
0.436580412 | BC011248
D1Bwg1363e
Tbc1d2b | 0.417923852
0.417920008
0.417644937 | | Mrps22
Pscdbp | -1.113838257 | Lrp12 | -1.153530563 | Oact1 | 0.436286811 | 1700007J06Rik | 0.417017863 | | lgsf4a
Mterf | -1.110915901
-1.109666281 | Ak5
lgsf3 | -1.151606694
-1.150578678 | Mrpl36
4930538D17Rik | 0.436039386
0.436036051 | Sema4g
Slc39a10 | 0.416985771
0.416919685 | | 2810405K02Rik
Kank6 | -1.108505466
-1.106756901 | Gng10
Calu | -1.149120061
-1.148796693 | Zfp31
Etv5 | 0.43572421
0.435590781 | 2610033C09Rik
Trim59 | 0.416733505
0.416680745 | | Slc7a5 | -1.106397556
-1.105756111 | Vkorc1 | -1.147773122
-1.147167302 | Ccar1
Rgs19 | 0.435072413
0.434976346 |
Erh
Magoh | 0.41666248 | | Rangnrf
Gale | -1.105756111
-1.104859891 | Ddit3
Ly6e | -1.146333506 | Dnajc7 | 0.434791734 | Khsrp | 0.41607833 | | Dctd
2310002J15Rik | -1.103813497
-1.103518109 | Glrx
Pdlim7 | -1.145587487
-1.144136877 | Heatr1
Zbtb17 | 0.434726443 0.434568922 | Sfrs14
lgsf11 | 0.4159818 | |--|--|--|---
--|--|---|--| | Apitd1
Ptpre | -1.102685664
-1.102304763 | Gfpt2
Tmem176a | -1.142318307
-1.140943945 | Rpel1
Hrb | 0.434495006
0.434490561 | lgsf11
Wdr31
Zfpm1 | 0.41558-
0.4152296- | | Pripre
Fcna
Matk | -1.102304763
-1.101014602
-1.099310937 | Hoxb6
Irx5 | -1.140943945
-1.140913915
-1.139041168 | LOC432879 | 0.434450203 | Slc4a3
LOC211660 | 0.41503749
0.41503749 | | Zfp96 | -1.097321252 | Inx5
Pls3 | -1.136798222 | 2810004N23Rik
Zfp639 | 0.434350974
0.434091458 | Spo11 | | | Rnaset2
Cerk | -1.096993066
-1.096168238 | Armcx3
Lypla3 | -1.13571801
-1.135463417 | Thoc4
Wdr9 | 0.434072823
0.433960363 | Hcfc1
Ltbp4 | 0.4150014 | | Serpina1e | -1.095225902 | Bfar | -1.134959536 | Acbd4 | 0.433616106 | Tmem14c | 0.41466381 | | Agpat4
A430005L14Rik | -1.095111258
-1.095068257 | 2410008J05Rik
Fzd7 | -1.13280452
-1.132530137 | lgf2bp3
Ltap | 0.433224166
0.433001915 | Usp28
Kcnip3 | 0.4141618 | | Cfap2a
0610039N19Rik | -1.093648159
-1.093282573 | D15Ertd366e
Gvin1 | -1.131935416
-1.129142902 | Cerk
Susd2 | 0.433000924 | 5730555F13Rik
Mettl9 | 0.41403304 | | Ranbp1 | -1.092560356
-1.092294916 | 2310061N23Rik | -1.129080983
-1.123772141 | Cdk8 | 0.432623311 | 2810021B07Rik | 0.4135130 | | Arhgdig
Sumo1
Ppm1b | -1.092294916
-1.091000934
-1.090810126 | Polk
2810417M05Rik
Tnfaip3 | -1 12307523 | Bid
2810407K09Rik | 0.432578349
0.43225924
0.432023611 | Copz2
Lrfn1
Wdr18 | 0.41331483 | | Ppm1b
Psma5 | -1.090810126
-1.089626039 | Tnfaip3
Ppapdc1 | -1.121121608
-1.120074331 | 9130427A09Rik
Rps2 | 0.432023611
0.431961957 | Wdr18
Ryr1 | 0.41296996 | | Shprh
1631426J05Rik | -1.089040287
-1.088247371 | Slc2a13 | -1.119121742 | Paip2 | 0.431895773
0.431853703 | Si | 0.41270869 | | 1631426JUSKIK
Chn2 | -1.087325291 | Rgs3
Zfh4 | -1.11862109
-1.117384643 | Hnrph1
Cd68 | 0.431559955 | Ard1
BC057371 | 0.41258184
0.41254794 | | Pnpo
Rbm28 | -1.087147326
-1.085675697 | Sepm
2410005K17Rik | -1.116172827
-1.115802105 | Rtn1
Ngo3a2 | 0.431525622
0.431418205 | Gal
Vangi1 | 0.41251662 | | Rpp38
Poll | -1.085154237
-1.085026816 | Dusp23 | -1.115639692
-1.112670775 | Hspcb
2310066N05Rik | 0.431352228
0.431237772 | Vangl1
2310008M10Rik
Skd3 | 0.41249062 | | Nme1 | -1.083866085 | Hspg2
Rhbdl4 | -1.112642086 | Set7 | 0.431138554 | Sca10 | 0.41242421
0.41230541 | | Eef1e1
Podh20 | -1.083156327
-1.083141235 | Lcn2
Toeal1 | -1.111518193
-1.111146964
-1.109972842 | Acpp
1700007J06Rik | 0.430985693
0.430979043 | Hist1h4m
Creld2 | 0.41230549 | | Tm6sf1
Timm50 | -1.082973042
-1.081342557 | 1200009F10Rik
Ets1 | -1.109972842
-1.108998701 | Mrps35
2700038L12Rik | 0.430911398
0.430873239 | LOC434729
Polr2e | 0.41174742 | | Psmb7 | -1.081225328 | Hes1 | -1.108872994 | Xpnpep1
5930412E23Rik | 0.430757304 | Enah | 0.41165009 | | 5730410E15Rik
2310010M24Rik | -1.081049205
-1.080861833
-1.080595159 | Tpm1
Slc41a3 | -1.106724136
-1.105103
-1.104040121 | 5930412E23Rik
Ddx47 | 0.430641507
0.430041924
0.429899831 | Rbms3
F830029L24Rik | 0.4115058 | | Pithd1
2410005K20Rik | -1.080595159
-1.080104998 | Nelf
Slo6a9 | -1.104040121 | Lgtn
Sf3b3 | 0.429899831 0.429880836 | Bxdc1 | 0.4111796 | | Rims2 | -1.079461991 | Slc44a1 | -1.103760561
-1.103039063 | Spint2 | 0.4296103 | Mmp11
Serbp1 | 0.4109155
0.41063538 | | 3C025872
Paox | -1.079170213
-1.079043433 | Pkia
6230427J02Rik | -1.102415567 | Fnbp3
Xroc1 | 0.429538484
0.429268645 | Atic
Cbr3 | 0.41038087 | | Sh3tc1 | -1.079043433
-1.078150808 | Pcdha6 | -1.10106456
-1.10057172 | Xrcc1
1700009P17Rik | 0.429167828 | BC017133 | 0.40948579 | | 1810046J19Rik
Hgfac | -1.077567435
-1.075989683 | Hist1h3f
Tmem150 | -1.099941438
-1.099438322 | Hist1h2ab
LOC381297 | 0.429036203
0.428815638 | Lig1
Fjx1 |
0.40929282
0.40927494 | | Pik3cg | -1.075387122
-1.074962058 | Kera
Trim3 | -1.098439817
-1.098195941 | 6330579B17Rik
2700084L22Rik | 0.428757362
0.428226271 | 4930424G05Rik | 0.40880554 | | Est
2410015N17Rik | | Cask | -1.006475316 | Chafth | 0.428116078 | 0610007P06Rik
Cask | | | Plod3
Ap1b1 | -1.074523786
-1.074403575 | Tbx1
4930402H24Rik | -1.095042693
-1.094940286 | Aciy
Nota2 | 0.426574191 0.426521419 | Crb3
1700012G19Rik | 0.4079306 | | Imgal
Fimm44 | -1.073681366
-1.073134705 | Slc8a1
Tspo | -1.093237479
-1.093127496 | Zfp213
Tex9 | 0.42647844
0.426463268 | Grwd1
Gemin6 | 0.40729452 | | Cfap2b | -1.070926411 | Sytl2 | -1.090689364 | Mtf2 | 0.426399801 | | | | Konk5
Atp6v1e1 | -1.069811903
-1.069724484 | 9430063L05Rik
Col23a1 | -1.088633209
-1.086804828 | Dgkz
Spc24 | 0.426392737
0.426389474 | MGC58426
Tpd52l1 | 0.4062672
0.40603469 | | es | -1.0691704 | Thsd6 | -1.084195127 | 2310005E10Rik | 0.426001857 | Tars | 0.4053150 | | Nol10
Ropepi1
Rpi27 | -1.068670811
-1.06671354 | Fas
Six1 | -1.08301405
-1.082274003 | Spire1
Nlk | 0.425727224
0.425698309 | Rnf4
Nie1 | 0.4052701
0.4052405 | | Rpl27 | -1.065954775
-1.065543186 | 2810410P22Rik
Ghn6 | -1.078727211
-1.078687297 | 1700007106Rik
2410016F19Rik | 0.425684743 0.425536418 | 3230401I01Rik
Ttc3 | 0.4050837 | | .ig1
/nn3 | -1.06377591 | Gbp6
Osmr | -1.078332759 | Eif3s4 | 0.425392499 | D930005D10Rik | 0.40443294 | | Opep2
Ela1 | -1.063062268
-1.062644937 | Noald
Pik3r1 | -1.07788551
-1.077286001
-1.07723143 | Creb3l4
Mat2a | 0.425305835
0.425246645 | Nfya
Plekhb1 | 0.40404249
0.40359399
0.4035235 | | 1810042K04Rik
.y6f | -1.06082184
-1.06015681 | Rgs17
Pofut2 | -1.07723143
-1.074829831 | Jak3
9430029K10Rik | 0.425031468 | Hemk1
Spc18 | 0.4035235 | | Abcb6 | -1.057045265 | 1110019L22Rik | -1.074106999 | Mpn | 0.424793082 | Ppid | 0.4030999 | | Jirb4
Ppp2r5e | -1.05564803
-1.05401497 | Crim2
Foxg1 | -1.0738013
-1.072709322 | Fpgs
Pkp3 | 0.424763347 0.424497829 | Klhdc2
Usp11 | 0.4021432 | | Atp6v1c2 | -1.053866872
-1.053637964 | | -1.072051493 | | 0.424384672 | .lmid5 | 0.40136256
0.4012052 | | Frap1
Phf5a | -1.052831981 | Fkbp14
Zfyve21 | -1.07180878
-1.071061657 | 3010026O09Rik
NoI1 | 0.424344543
0.424092962 | Bzrap1
Zfp608 | 0.4011189
0.4007630 | | Ebi3
mpdh2 | -1.052777031
-1.052321532 | Gpc1
Serpinb6a | -1.069383615
-1.068815779 | 5730593N15Rik
Sfn | 0.42389196 | Galt
Hmgd | | | Pus1
Sae1 | | D9Ertd392e | -1.068815779
-1.0675459 | Cacnb4 | 0.423677939
0.42365063
0.423448814 | Bcat2
C80913 | 0.40064007 | | Sbsn | -1.050150228
-1.050079287 | Itga5
Sspn
Shox2 | -1.067396069
-1.066590146 | Mrpl12
Bub1b | 0.42343994 | BC027344 | 0.4005379 | | Fpcn2
Rps3 | -1.049598797
-1.049543608 | Shox2
Kif3c | -1.066138464
-1.065691342 | Rngtt
Med19 | 0.423282615
0.423157307 | Gart
F730047E07Rik | 0.40039140 | | Sh3bgrl2
Fubb2b | | lsgf3g
lrx1 | | Eef1e1 | | Ina
Adra2a | 0.39993060 | | Col14a1 | -1.049280903
-1.04781148 | Ebf1 | -1.064273214
-1.064254542 | Plod3
Ncaph2 | 0.423023483
0.422968773 | Gas8 | 0.39985579 | | qsec3
Blvra | -1.046758099
-1.046651246 | BC025575
Glis1 | -1.061757539
-1.061126659 | Odn
Bbs5 | 0.422756592
0.422733676 | Mrpl45
2610528J11Rik | 0.3998029 | | Pmm1 | | Tle2 | -1.061051463 | 2310010M24Rik | 0.422584308 | Olfr828 | 0.39938423 | | Ppp1r10
D5Bwg0834e | -1.045082253
-1.044108352 | EG433180
Whm | -1.059027576
-1.058743791 | 3632413B07Rik
Pald | 0.422551553
0.422435774 | Sgol1
Usp14 | 0.3992311 | | Cox17
P2ry13 | -1.04395541
-1.043068722 | Scara3
Golph4 | -1.058257533
-1.05621601 | Eif4g1
4930432K21Rik | 0.422358186
0.422350845 | Eif5a
Mrpl24 | 0.3991938 | | Ptoro | -1.041177407 | Lrrk2 | -1.05399489 | Thap11
9330177P20Rik | 0.422312897 | Nip7 | 0.39884088 | | 1700093E07Rik
Vme2 | -1.039861874
-1.039676252 | Ctsb
Hyal1 | -1.053605969
-1.052514006 | 2700038C09Rik | 0.422276326
0.422069674 | Jarid1b
Snip1
Jub | 0.39874369 | | Jsp20
Mipep | -1.03736378
-1.036994207 | Git8d1
Rnf11 | -1.049680973
-1.0489096 | Magoh
lbtk | 0.421844137
0.421554644 | Jub
Rgl2 | 0.3984459 | | 1930538D17Rik | -1.036121763 | Lgals9 | -1.047460647
-1.047092708 | Stoml1 | 0.421541019 | Elovi6 | 0.39744473 | | Corin
9530090G24Rik | -1.033912635
-1.033276155 | Slco2b1
2310033K02Rik | -1.045176139 | Muc1
Gapd | 0.421091621
0.420784317 | D330028D13Rik
Tyms | 0.3974038 | | N316787
1930547N16Rik | -1.032223499
-1.032198822 | Cyhr1
1200015N20Rik | -1.044942777
-1.041994089 | Bcat2 | 0.420774922 0.420651106 | Snrpn
Cox4i2 | 0.39705466 | | Col17a1 | -1.031319763 | Cst3 | -1.040749133 | Papolg
Ttl2 | 0.420620021 | Sfrs7 | 0.39657525 | | Essc1
Cct6a | -1.031205298 | Dhrs6 | -1.040619546
-1.038628681 | Plekha7
Rdh12 | 0.420601313
0.420575683 | Hmgos1 | 0.39639720 | | vns1abp | -1.030986078
-1.030753582 | Evi
Ppbp | -1.03796785 | Chordc1
1700011111Rik | 0.420147172 | Cdh2
Rad17 | 0.39631887 | | Shf
Virpl17 | -1.030333733
-1.028982086
-1.028410667 | Zfp537
Edg2 | -1.037536616
-1.037259619 | Cstf1 | 0.41975174
0.419513289
0.419340597 | 2410017P07Rik
Tnpo1
Rnf126 | 0.39596352
0.39592863
0.3958280 | | tpr3
E130309D02Rik | -1.028410667
-1.027678452 | Kcne4
AW061290 | -1.036525876
-1.035877036 | Usp52
Sdocag1 | 0.419340597 | Rnf126
Rhpn1 | 0.3958280 | | Parp1 | -1.025819984 | 3110045G13Rik | -1.034157011
-1.033620981 | Sprr2g | 0.419225296 | Banf1 | 0.3956721
0.3953387 | | Dctn3
npp6d | -1.025358275
-1.024189466 | Sulf1
Tmem53 | -1.033457742 | Incenp
Hpcal1 | 0.418881028
0.418758665 | Tuba4
Amd2 | 0.39516286 | | Zfp259
Eno1 | -1.024039403
-1.023235278 | Rab3il1
LOC545007 | -1.022026264 | LOC216443
B3galt4 | 0.418695121
0.41846189 | Gprc5c
2610528A15Rik | 0.3040300 | | Isga2
Rhm21 | -1.023046737 | Cbr3 | -1.029781146
-1.028758993 | Hprt
SindSa4 | 0.418086343 | Brp17 | 0.3948197 | | -lpgd | -1.022811651
-1.020639766 | Camk2n1
BC051244 | -1.028569152
-1.028373711 | Mrpl14 | 0.418050019
0.417475956 | 4933425I22Rik
4930431B11Rik | 0.39473340 | | 3mx
Fm4sf12 | -1.020103887
-1.019392726 | Gmds
Mmp16 | -1.027159618
-1.026231542 | Rad9
Fkbp4 | | Fads2
Lsm2 | 0.3044033 | | Atp6v1c1 | -1.018453328 | Psmb9 | -1.025928465 | Upf1 | 0.417372418
0.417183569 | Pep4
PC057627 | 0.39414554 | | ORF9
Blm | -1.016891779
-1.016282445 | Hspa1a
4931440N07Rik | -1.025639821
-1.024305907 | Glrx2
1110032N12Rik | 0.416749897
0.416532566 | 8430427H17Rik | 0.3939999
0.39371249 | | Rab11fip5
Keo4 | -1.015952917
-1.015701315 | Sntb2
Mpdz | -1.024216237
-1.024056025 | Ethe1
Milt11 | 0.416480627
0.416270045 | H2-DMa
Nipsnap1 | 0.393626 | | Prmt3 | -1.014116921 | Twsg1
C330023F11Rik | -1.022740939 | 1110033.J19Rik | | Vgf
Cct7 | 0.39317235 | | Rac2
Etfa | -1.013939191
-1.012551557 | C330023F11Rik
Parp3 | -1.021477249
-1.021061616 | Ovol1
2810452K22Rik | 0.415741768
0.415171722 | Cct7
Psmd14 | 0.3931168 | | | -1.012021097
-1.010681027 | H2-DMa | -1.019931902
-1.019921541 | Nup37
Ptpru | 0.415037499
0.415037499 | 1200009O22Rik
1700027M21Rik | 0.39279776 | | Zdhhc12 | -1.010523313 | 1190002N15Rik
Lrp1
Pbxip1 | -1.019640425 | Xrcc2 | 0.415037499 | Mrps18b | 0.39261415 | | Mast3 | -1.010492374 | Camk1 | -1.019083546
-1.018963909 | Zfp143
Plekhf2 | 0.415037499 0.415003123 | 1500032D16Rik
Ifit2 | 0.3924632 | | Mgst3
Krt20 | | | -1.016186843
-1.014778055 | Mgst2 | 0.414559073 | 5830411K18Rik | 0.39198226 | | Mgst3
Krt20
Pdss1
1700034H14Rik | -1.010393525
-1.008859188 | Prss35 | | Dscr2
Cul2 | 0.414436251 0.414282754 | Ell3
Stm4 | 0.39189692 | | Mgst3
Krt20
Pdss1
1700034H14Rik
3C066028 | -1.008859188
-1.006484034
-1.006003082 | Dscr1l1
Nme4 | -1.014362439 | | | | | | Mgst3
Krt20
Pdss1
1700034H14Rik
9C066028
Dpp3
Ccdc53 | -1.008859188
-1.006484034
-1.006003082
-1.00551935 | Dscr1I1
Nme4
Fth1 | -1.014362439
-1.014019507 | Csrp2bp | 0.41425036 | Btg4
Tacc1 | 0.3916476 | | Mgst3
(rt20
Pdss1
1700034H14Rik
3C066028
Dpp3
Ccdc53
Pald
Supt8h | -1.008859188
-1.006484034
-1.006003082
-1.00551935
-1.004650974
-1.003506796 | Dscr1i1
Nme4
Fth1
Rgi1
Smad6 | -1.014362439
-1.014019507
-1.014015022 | Csrp2bp
Klk13
1200011O22Rik | 0.414215685 | Tacc1
Mrpl11 | 0.39157852 | | Mgst3
(rt20
Pdss1
1700034H14Rik
3C066028
Dpp3
Ccdc53
Pald
Supt3h
2610009102Rik | -1.008859188
-1.006484034
-1.006003082
-1.00551935
-1.004650974 | Dscr1I1
Nme4
Fth1 | -1.014362439
-1.014019507
-1.014015022
-1.013205539
-1.013185077
-1.01270359 | Csrp2bp
Klk13 | 0.414215685
0.414086794
0.41356821
0.413556749 | Tacc1 | 0.39157852 | | Mgst3
frt20
Pdss1
1700034H14Rik
3C066028
3pp3
Code53
Pald
Supt3h
8510009102Rik
MGC68323
qqap2 | -1.008859188
-1.006484034
-1.006003082
-1.00651935
-1.004650974
-1.002611213
-1.001636637
-1.001432666 | Dscr111
Nme4
Fth1
Rg11
Smad6
1110028E10Rik
MiF1
Ctxn | -1.014362439
-1.014019507
-1.014015022
-1.013205539
-1.013185077
-1.01270369
-1.012056018 | Csrp2bp
Klk13
1200011O22Rik
Usp39
Gbl
Nckipsd | 0.414215685
0.414086794
0.41356821
0.413556749
0.413521267 | Tacc1
Mrpl11
Limd1
Aoc3
Inpp5d | 0.3915785;
0.391417;
0.3910446;
0.3909518;
0.3909223; | |
Mgst3
(rt20)
Pdss1
1700034H14Rik
9C086028
Ppp3
Ccdc53
Pald
Supt3h
8510009102Rik
MGC88323
qgsp2
Flyh2
Out | -1.008859188
-1.006484034
-1.006003082
-1.00551935
-1.004650974
-1.003506796
-1.002611213
-1.001636637 | Dscr1l1
Nme4
Fth1
Rgl1
Smad6
1110028E10Rik
Mlf1 | -1.014362439
-1.014019507
-1.014015022
-1.013205539
-1.013185077
-1.01270359
-1.012056018
-1.012047201 | Csrp2bp
Klk13
1200011022Rik
Usp39
Gbl
Nckipsd
Pof1b | 0.414215685
0.414086794
0.41356821
0.413556749
0.413521267
0.413482033 | Tacc1
Mrpl11
Limd1
Aoc3
Inpp5d
Mrps28
Hspa5bp1 | 0.3915785;
0.391417;
0.3910446;
0.3909518;
0.3909223;
0.39087; | | Mgst3
(rt20
Pdss1
1700034H14Rik
36066028
3pp3
Pald
Supt3h
SE10009102Rik
MGC68323
qgsp2
Flyh2
Opt
Slc35f2 | -1.008859188
-1.006484034
-1.00603082
-1.00551935
-1.004650974
-1.003606796
-1.002611213
-1.001638637
-1.001325397
-1.001325397
-1.001325397 | Discriff Nme4 Fith1 Rigf1 Smad6 1110028E10Rik MiF1 Ctton Hist1h2bk Trib3 Ritbo1 | -1.014362439
-1.014019507
-1.014015022
-1.013205539
-1.013185077
-1.01270359
-1.012056018
-1.012047201
-1.011909388
-1.00882346 | Csrp2bp
Klk13
1200011O22Rik
Usp39
Gbl
Nckipsd | 0.414215685
0.414086794
0.41356821
0.413556749
0.413521267
0.413482033
0.413440714
0.413388487 | Tacc1
MrpH1
Limd1
Aoc3
Inpp5d
Mrps28
Hspa5bp1
Tmem17 | 0.39157852
0.3914177
0.3910446-
0.39095181
0.39092230
0.39078991
0.39078991 | | Mgst3
(fr20
Pdss1
(f700034H14Rik
3C066028
)pp3
Pald
Supr\$h
8810009102Rik
(MCC68323
gspp2
Fyh2
Jgt
Suc38f2
1130005N14Rik
Fdf1 | -1.008859188
-1.006484034
-1.00603082
-1.00651935
-1.004650974
-1.003506796
-1.002611213
-1.00163637
-1.001432666
-1.001325397
-1.000204218
-1
0.999713495
0.999011514 | Dscr111
Nme4
Fth1
Rgl1
Smad6
1110028E10Rik
MiF1
Ctxn
Hist1h2bik
Trib3
Rrbp1
Gpr64
Ao3m2 | -1.014362439
-1.014019507
-1.014019502
-1.013205539
-1.013205539
-1.0132055018
-1.012047201
-1.012047201
-1.01909388
-1.00802346
-1.008026141
-1.0007278649 | Csrp2bp
Klk13
1200011022Rik
Usp39
Gbl
Nckipsd
Pot1b
Pmvk
Snx12
BC040823
OTTMUSG00000X | 0.414215885
0.414086794
0.41356821
0.413556749
0.413521267
0.413482033
0.413440714
0.413388487
0.41284994
0.412738383 | Tacc1 Mrp111 Limd1 Aoc3 Inpp5d Mrps28 Hspa5bp1 Tmem17 Gpsn2 Obfc2b | 0.3915785;
0.391417;
0.3904466
0.39095181
0.3909223;
0.39078999;
0.39078999;
0.39078991
0.3908017; | | Mgst3
rfr20
24ss1
20066028
30066028
30p3
2bp3
2bp3
2bd
281009002Rik
MGC68823
ggsp2
rfyrf2
3bst 10009014Rik
Figf1
130005N14Rik
Figf1
Coxta | -1.008859188
-1.006484034
-1.00603082
-1.00551935
-1.004559974
-1.003566796
-1.002611213
-1.001636637
-1.001432686
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.000204218
-1.001325397
-1.001325397
-1.000204218
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.001325397
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.00132539
-1.0013253
-1.0013253
-1.0013253
-1 | Dscr111
Nme4
Fth1
Rgl1
Smad6
1110028E10Rik
MiF1
Ctxn
Hist1h2bik
Trib3
Rrbp1
Gpr64
Ao3m2 | -1.014362439
-1.014019507
-1.014019502
-1.013205539
-1.013205539
-1.0132055018
-1.012047201
-1.012047201
-1.01909388
-1.00802346
-1.008026141
-1.0007278649 | Carp2bp KR13 1200011022Rik Usp39 Gbl Nckipsd Pof1b Pmvk Snx12 BC040823 OTTMUSG00000 Magmas Hinten | 0.414215685
0.414096794
0.41356821
0.413566749
0.413556749
0.413521267
0.413492033
0.413440714
0.413389487
0.412738383
0.412783833
0.412783833 | Tacc1 Mrp111 Limd1 Aoc3 Inpp5d Mrps28 Hspa5bp1 Tmem17 Gpsn2 Obfc2b | 0.3915785;
0.391417;
0.3910446;
0.3909518;
0.3909223;
0.3907899;
0.3907899;
0.3906182;
0.390676; | | Mgst3 rfr20 rdss1 rds2 rdss1 rds3 rbs3 rbs3 rbs3 rbs3 rbs3 rbs3 rbs3 rb | -1.008859188
-1.006484034
-1.006003082
-1.005003082
-1.00551935
-1.004650974
-1.002612137
-1.002163667
-1.0021432586
-1.001432586
-1.001432586
-1.001325397
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204218
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.000204
-1.00 | Dscr111 Nme4 Fth1 Rg/1 Rg/1 Smad6 1110028E10Rik Mif1 Cbn Hist 112bk Trib3 Rtbp1 Gpr64 Ap3m2 Waspip Inx2 Vip | 1.014362439
1.014019507
1.014019502
1.014015022
1.013205539
1.01270359
1.01270359
1.01270359
1.012947201
1.01190938
1.008026141
1.007354549
1.007503532
1.007503532
1.007503532 | Carp2bp KR13 1200011022Rik Usp39 Gbl Nckipsd Pof1b Pmvk Snx12 BC040823 OTTMUSG00000 Magmas Hinten | 0.414215885
0.414086794
0.41356821
0.413556749
0.413556749
0.413521267
0.413482033
0.413440714
0.41284984
0.412733884
0.412738383
0.41280831
0.412255232 | Tacc1 Mrp111 Limd1 Aoc3 Inpp5d Mrps28 Hspa65p1 Tmem17 Gpsn2 Obfc2b Alox5ap LOC278097 Dbx27 | 0.3915785;
0.391417;
0.3910446;
0.3909518;
0.3909223;
0.3907899;
0.3907899;
0.3908676;
0.3908676;
0.3908676;
0.3908676; | | Mgst3 frt20 rdss1 rdss2 rdss3 rdsss3 rdsss3 rdsss3 rdsss3 rdssssa rdssssa rdssssa rdssssa rdssssa rdssssa rdssssa |
1,0064809188
1,00648003082
1,0065003082
1,0065003082
1,00650974
1,003500788
1,004650974
1,003500788
1,001452666
1,001452666
1,001452666
1,001452666
1,001525397
1,000204218
0,999701534
0,997901534
0,997901534
0,996200095
0,99620015 | Dscr111 Nms4 Fith1 Rgl1 Smad6 1110028E10Rik Mif1 Cbn Hist1h2bk Trib3 Rthp1 Gpr64 Ap3m2 Waspip Inx2 Vip Syt11 C86987 | 1.014362439
1.014019507
1.014019507
1.014015022
1.013205539
1.013185077
1.0122056018
1.0122047201
1.012047201
1.008082346
1.008082346
1.009082346
1.007735649
1.0077503532
1.007603532
1.007843397
1.007843986
1.00843398 | Csrp2bp Kk13 1200011022Rik Usp39 Gbl Nckipsd Pof1b Pmvk Snx12 BC040823 OTTMUSG00000 Magmas Hnrpm Drg1 Cabs1 Zbtb24 | 0.414215858
0.414086794
0.41356821
0.413556749
0.4135521267
0.413482033
0.413440714
0.41284994
0.412738383
0.41260831
0.412219851
0.412208292
0.41208292
0.41208292
0.41208292
0.41208292
0.41208292
0.41208292
0.41208292
0.41208292
0.41208293 | Tacc1 MrpI11 Limd1 Aoc3 Inpp5d Mrps28 Hspa85p1 Tmem17 Gpm2 Obic2b Alxx5sp LOC278097 Ddc27 Bihlb9 Krss | 0.3915785;
0.391477;
0.3910446;
0.3909518;
0.390872;
0.3907899;
0.3906182;
0.3906617;
0.3905676;
0.3905676;
0.3903546;
0.393546;
0.393546;
0.393546;
0.393546; | | Mgst3 r(r20 rdss1 r(r20) rdss1 r(r20) rdss1 r(r20) rdss1 r20 rdss2 | 1-,006489188
1-,006489034
1-,006003082
1-,00659935
1-,004650974
1-,003506796
1-,003506796
1-,00163637
1-,001436637
1-,001436637
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,001436837
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-,00143687
1-, | Dscrift Nme4 Fib1 Rgi1 Smad6 1110028E10Rik Mif1 Cbon Hat1 h2bk Trib3 Rthpt Gpi64 Ap3m2 Waspip Mif1 C86887 Vip Syf11 C86887 Vins4 | -1.014682439
-1.014019507
-1.014019507
-1.014015022
-1.013185539
-1.013185577
-1.01270599
-1.012056018
-1.012047201
-1.012047201
-1.019082348
-1.00982348
-1.00982348
-1.007545387
-1.007545387
-1.007545387
-1.007545387
-1.008876566
-1.008876566 | Csrp2bp (kl13
1200011022Rik
Usp39
Gbl
Nckipad
Porl1b
Pmvk
Six12
30040823
OTTMUSG00000
Magmas
High
Drg 1
Cabs 1
Zbb24
Metil 1 | 0.414215885
0.414086794
0.41356821
0.413556749
0.413556749
0.413521267
0.413482033
0.413440714
0.413388487
0.41224894
0.41273838
0.41220831
0.412208232
0.412082972
0.412070633
0.412070633 | Tacc1 Mpil11 Limd1 Aoc3 Inpp6d Mps28 Hspa5bp1 Tmem17 Gpsn2 Obic2b Alox5ap LOC278097 Ddx27 Bhihb9 Kras Vps33b | 0.3915785;
0.391417;
0.3910446;
0.3909518;
0.3907899;
0.3907899;
0.3906182;
0.3906816;
0.3904898;
0.3904896;
0.3904896;
0.3904896;
0.3904996;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0.3904906;
0 | | Zebhc12 Pelk1 Mgsd3 Pelk1 Mgsd3 Pelk1 Mgsd3 Pelk1 Pelk1 Pelk1 Pelk1 Pelk1 Pelk1 Pelk1 Pelk1 Pelk1 Pelk2 Pelk |
-1,006489188
-1,006489034
-1,006003082
-1,00651935
-1,00450974
-1,003506796
-1,003506796
-1,003506796
-1,00163637
-1,00143266
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432697
-1,001432 | Docrifi Nime4 Fihi Rgit Smad6 1110028E IDRIk Miti Chon Hatt N2bk Trib3 Rippi Gp64 Ap3m2 Wasapp Inco Wa | -1.014362439
-1.014019007
-1.014019007
-1.014019007
-1.014019002
-1.013185077
-1.013185077
-1.013185077
-1.013086018
-1.013086018
-1.013086018
-1.013086018
-1.013086018
-1.003082346
-1.003082346
-1.007745387
-1.007745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
-1.00745387
- | Csrp2bp (kit 3
1200011022Rik Usp39
Gbl Nckipsd
Poft b
Pmvk
Snxt2
BC040823
OTTMUSG000000
Magmas
Horpen
Drg1
Cabc1
20024
Media
Red2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt2
Scxt | 0.414215885
0.414086794
0.41356821
0.413556749
0.413556749
0.413521267
0.413482033
0.413440714
0.41284994
0.412738383
0.41220831
0.412205232
0.412070833
0.412070833
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838
0.412070838 | Tacc1 Mpil11 Limd1 Aoc3 Inpp6d Mps28 Hspa5bp1 Tmem17 Gpsn2 Obic2b Alox5ap LOC278097 Ddx27 Bhihb9 Kras Vps330 E430012M05Rik Raettb | 0.3915785
0.391417
0.3910446
0.3909518
0.390872
0.3907899
0.3907899
0.390617
0.390586
0.3904998
0.3904998
0.3904998
0.3934416
0.3895349
0.38954416
0.38954416 | | Mgst3 Krt20 Pdss1 Pdss1 BC066028 Dpp3 Code53 Pald Supt3h MGC88323 Hgsps2 Tyhr Tyhr ZOgt Sici812 Pdf1 Coxt a Kdt1 Sico2a1 Doxx Nadh |
-1,006889188
-1,006480034
-1,006003082
-1,00651935
-1,00251935
-1,00250796
-1,00250796
-1,00250796
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1,00162037
-1, | Dscr111 Nme4 Fih1 Rg11 Rg11 Smad6 Smad6 Smad6 Smad6 MH1 | -1.014682439
-1.014019507
-1.014019507
-1.014019507
-1.01205539
-1.012056018
-1.012056018
-1.012056018
-1.012056018
-1.012056018
-1.016922514
-1.006922514
-1.007546387
-1.007546387
-1.007546387
-1.007546387
-1.00742756
-1.009843986
-1.009843986
-1.009843986
-1.009843986
-1.0098475666
-1.0098475666 | Csrp2bp Kk13 1200011022Rik Usp39 Gbl Nckipsd Pof1b Pmvk Snx12 BC040823 OTTMUSG00000X Magmas Hnrpm Drg1 Cabs1 Zbtb24 Metil Poid2 | 0.414215885
0.414086794
0.41356821
0.413556749
0.413556749
0.413521267
0.41342033
0.413440714
0.412748294
0.412748294
0.412206831
0.412205232
0.412037587
0.412037587
0.412037587 | Tacc1 Mrpi11 Limd1 Aoc3 Inpp64 Mrpa28 Hspa8p1 Tmem17 Gper2 Oblos AOC39 AOC27 Billbb9 Kras Vps33b E430012M05Rik | 0.3915785;
0.391477;
0.3910446;
0.3909223;
0.3907899;
0.3907899;
0.3906876;
0.3905876;
0.3905876;
0.39035439;
0.3894116;
0.3894116;
0.3894116;
0.3894116; | Appendix 5. Common an unique gene lists for last two transition steps Common in Trys 1-605EA1 is 350A1 stockholine. Unique in Trys 1-605EA1 is 1-600A1 2410 5444,0590A Contain April 1-605EA1 is 350A1 stockholine. Unique in 150A1 Appendix 6. | Genome-wide | RNAi screen | and analysis | |-------------|-------------|--------------| | Gene
Gene | Thy1+ log10 | en and analysis Thy1minus log10 | | DsREDminus log | |----------------|------------------|---------------------------------|------------------|----------------| | sm1 | 2.4336 | 1.2165 | 0.6482 | 0.64 | | (M_162370 | 2.2827 | 0.9147 | 0.9565 | 0.82 | | (M_139331 | 2.2764 | 0.966 | 0.6482 | 0.51 | | \930024N18Rik | 2.2363 | 0.3077 | 1.55 | 0.82 | | /mn1r81 | 2.2123 | 0.8565 | 0.6482 | 0.89 | | 900092D14Rik | 2.2073 | 1.0119 | 0.5184 | 1.28 | | (M_286356 | 2.1998 | 0.7892 | 0.3323 | 1.52 | | (M_139236 | 2.1947 | | 0.6482 | 0.51 | | bxo4 | 2.1921 | 0.612 | 0.6482 | 0.64 | | (M_284180 | 2.1895 | 0.8565 | | 0.7 | | (M_155454 | 2.1895 | 0.612 | 0.8974 | 0.89 | | (M_157877 | 2.1763 | 0.3077 | 0.6482 | | | mf1 | 2.1709 | 1.0534 | 0.748 | 0.7 | | 3dpd3 | 2.1655 | 0.612 | | 0.51 | | M_161991 | 2.1458 | | 0.3323 | 0.51 | | dkn3 | 2.1458 | 1.0913 | 0.6482 | 1.05 | | M_287970 | 2.1429 | 0.3077 | 0.8291 | 0.64 | | (M_288726 | 2.14 | 0.612 | 0.6482 | | | M_142986 | 2.1371 | 0.7096 | 0.9565 | 0.51 | | 700016D06Rik | 2.1341 | 0.612 | 1.4562 | | | M_147054 | 2.1282 | 1.6757 | 0.3323 | | | M_145060 | 2.1252 | | 0.3323 | 1.23 | | ycrl | 2.1252 | 0.7892 | | 0.33 | | gf23 | 2.1252 | 0.7096 | 0.5184 | 1.52 | | 031425E22Rik | 2.1252 | 0.612 | 0.748 | 1.09 | | M 194204 | 2.116 | 0.9147 | 0.8974 | 1.00 | | M_149548 | 2.1098 | 0.3077 | 0.3323 | 0.33 | | af12 | 2.1098 | | 0.5184 | 0.7 | | is3l | 2.1067 | 0.7096 | 1.0967 | 0.7 | | M_112922 | 2.1007 | 0.612 | 0.5184 | 1.57 | | napc10 | 2.1004 | 0.3077 | 0.0104 | 0.33 | | peer5-ps1 | 2.0907 | 0.5077 | 0.5184 | | | .l182371 | 2.0907 | | 1.1701 | | | 0lfr1271 | 2.0874 | 0.3077 | 0.3323 | | | M_233260 | 2.0841 | 0.486 | 1.5056 | | | M_136829 | 2.0841 | 0.7096 | 0.6482 | 0.51 | | pink5 | 2.0841 | 0.7892 | 0.3323 | | | 6m5795 | 2.0841 | 0.7892 | 0.5184 | | | M 286906 | 2.0808 | 1.6362 | 0.6482 | 0.51 | | lbfox1 | 2.0808 | 1.0302 | | 1.47 | | llpk3 | | 0.486 | 0.3323
0.3323 | 0.95 | | | 2.0808
2.0774 | | 0.5525 | 0.93 | | M_488263 | | 0.612 | 0.3323 | | | M_112841 | 2.0774 | 0.3077 | 0.3323 | 0.64 | | Ccl21b | 2.0774 | 1.0913 | 0.3323 | 0.64 | | (M_285419 | 2.0741 | 1.0913 | | | | M_205385 | 2.0741 | 0.400 | | | | dh3b | 2.0741 | 0.486 | 0.3323 | 0.33 | | M_152998 | 2.0707 | 0.7096 | 0.5184 | 0.89 | | IM_001002783 | 2.0707 | 0.486 | | 0.51 | | M_205489 | 2.0672 | 0.8565 | 0.3323 | 0.82 | | M_154493 | 2.0672 | 0.3077 | 0.5184 | 0.33 | | aqr8 | 2.0672 | 0.3077 | 0.3323 | 0.64 | | zh2 | 2.0672 | 0.7892 | 0.748 | 0.89 | | M_148108 | 2.0638 | 0.612 | 0.3323 | | | M_129179 | 2.0638 | 0.486 | 0.3323 | 1.74 | | le3 | 2.0638 | 0.8565 | 1.0084 | 0.51 | | írt18 | 2.0638 | 0.3077 | 0.8974 | 1. | | lec1a | 2.0603 | 0.486 | 0.3323 | | | khd1 | 2.0568 | 0.3077 | | 0.33 | | ps8l3 | 2.0568 | 0.9147 | 0.748 | 0.82 | | M_194903 | 2.0532 | | 0.3323 | 1.79 | | M_149022 | 2.0532 | 0.612 | 0.3323 | 0.51 | | M_147124 | 2.0532 | 0.486 | 0.8291 | | | ls6st1 | 2.0532 | 0.3077 | 0.8974 | 0.7 | | cl2l12 | 2.0532 | | 1.4197 | 0.33 | | pp40 | 2.0496 | 1.0119 | 0.6482 | 0.95 | | ut2 | 2.0496 | 0.612 | 0.3323 | 0.51 | | M_359011 | 2.046 | 0.7096 | 0.8974 | 0.95 | | dm6b | 2.046 | 0.486 | 0.5184 | 0.64 | | m2d1 | 2.0424 | 0.486 | 0.5184 | 0.33 | | M_284944 | 2.0388 | 0.486 | | 0.33 | | M_286079 | 2.0313 | 0.7096 | 0.6482 | 1.00 | | M_147865 | 2.0276 | | 0.748 | 0.82 | | yncrip | 2.0276 | | 0.3323 | 0.7 | | 230029F24Rik | 2.0276 | 0.612 | 0.6482 | 0.7 | | .630034I12Rik | 2.0276 | 0.3077 | 0.0102 | 0.1 | | assf10 | 2.0238 | 0.3077 | 1.2611 | | | Igrn1 | 2.0238 | 1.0119 | 0.6482 | | | igiiii
inn1 | 2.0238 | 0.3077 | 0.6482 | 1.05 | | rhgap11a | 2.0238 | 0.7892 | 0.8291 | 1.05 | | | 2.0238 | 0.7092 | | | | (M_488695 | 2.02 | 0.7096 | 0.748 | 0.82 | | VAA 000005 | 0.0404 | 0.0077 | 0.0000 | 0.0074 | |--|---|--|--|--| | XM_288635
XM_142984 | 2.0161
2.0161 | 0.3077 | 0.3323
0.9565 | 0.8974
0.748 | | Vps37a | 2.0161 | 0.486 | 0.8974 | 0.8291 | | Skint9 | 2.0161 | 0.3077 | 0.5184 | 0.5184 | | Krt76 | 2.0161 | | | | | XM_145067
Nbeal1 | 2.0122
2.0122 | 0.3077
0.3077 | 0.5184 | 0.5184 | | Errfi1 | 2.0122 | 1.9216 | 0.3323 | 0.5164 | | XM_289391 | 2.0083 | 0.9147 | 0.6482 | 1.0084 | | XM_156674 | 2.0083 | 0.7096 | 0.6482 | | | Dennd2a | 2.0083 | | | | | Adrb3 | 2.0083 | 0.3077 | 0.3323 | 1.3587 | | XM_164931
Gtf2f2 | 2.0003
2.0003 | 0.612
0.486 | 0.8974 | 0.9565
0.6482 | | Cnot1 | 2.0003 | 0.400 | 0.5184 | 0.0402 | | XM_142466 | 1.9963 | 0.3077 | 0.3323 | 1.0967 | | Tsnax | 1.9963 | 0.3077 | | 1.5639 | | Prop1 | 1.9963 | 0.3077 | 0.3323 | 0.5184 | | XM_355782
XM_286351 | 1.9922
1.9922 | 0.3077
0.7096 | 0.6482 | 0.8974
0.5184 | | XM 156900 | 1.9922 | 0.7090 | | | | Rad17 | 1.9922 | 1.0119 | 0.748 | 1.0548 | | Gsta4 | 1.9922 | 0.3077 | 0.3323 | 0.5184 | | XM_161868 | 1.9881 | 0.7096 | 1.0548 | 0.8974 | | XM_144313 | 1.9881 | 0.486 | 0.5184 | 1.4197 | | XM_288245
XM_283090 | 1.9839
1.9839 | 0.7096
0.9147 | 0.5184
0.8291 | 0.748 | | XM_283090
XM_136832 | 1.9839 | 0.9147 | 1.0967 | 0.8972 | | Fam82a2 | 1.9839 | 0.3077 | 0.5184 | 0.0000 | | XM_344980 | 1.9798 | 0.3077 | 0.5184 | 0.3323 | | XM_154775 | 1.9798 | 0.612 | 0.3323 | 0.8291 | | XM_149081 | 1.9798 | 0.7096 | 0.3323 | 0.74 | | Srm
XM_164946 | 1.9798
1.9755 | 0.8565 | 1.2026
0.5184 | 0.748
0.748 | |
XM_158900 | 1.9755 | 0.966 | 0.3323 | 0.748 | | 4930578N16Rik | 1.9755 | 0.486 | 0.6482 | 1.3587 | | XM_287355 | 1.9712 | 0.3077 | 0.3323 | 0.9565 | | Sprr4 | 1.9712 | | 0.3323 | 0.6482 | | Rdh16 | 1.9712 | 0.7096 | 0.748 | 0.8291
1.2876 | | Syt4
AK009004 | 1.9669
1.9669 | 0.486 | 0.746 | 0.5184 | | Adcyap1 | 1.9669 | 1.5692 | 0.3323 | 0.6482 | | XM_286689 | 1.9626 | 0.3077 | 0.748 | 0.5184 | | XM_285793 | 1.9626 | 0.612 | 1.2611 | 0.6482 | | XM_194054 | 1.9626 | | | 0.3323 | | Lix1I
XM 286753 | 1.9626
1.9582 | 0.3077
0.3077 | 0.6482 | 1.0967
0.6482 | | XM_200733
XM_144486 | 1.9582 | 0.3077 | 0.3323 | 0.5184 | | 1700092E16Rik | 1.9582 | 0.7892 | 0.6482 | 0.8291 | | XM_165202 | 1.9537 | 0.8565 | 0.8974 | 0.3323 | | Pcdhb5 | 1.9537 | 1.3348 | 0.5184 | 0.6482 | | XM_206944
XM 146458 | 1.9492
1.9492 | 0.3077
0.3077 | 0.5184 | 0.5184 | | Olr1624 | 1.9492 | 0.7096 | 0.748 | | | Nav1 | 1.9492 | 0.486 | 0.3323 | | | Aass | 1.9492 | 0.612 | 0.748 | 0.748 | | XM_111240 | 1.9447 | 0.612 | 0.6482 | 0.5184 | | Xab2
Olfr1080 | 1.9447 | 0.8565 | 0.9565 | 0.8291 | | Difr1080
BC002163 | 1.9447
1.9447 | 0.612
0.486 | 0.8291
0.3323 | 1.2328
0.6482 | | XM_289420 | 1.9401 | 0.9147 | 0.5184 | 0.0402 | | XM_289199 | 1.9401 | 0.3077 | 0.748 | 0.8974 | | XM_197786 | 1.9401 | 0.486 | 0.6482 | 1.0548 | | XM_164466 | 1.9401 | 0.0077 | 0.3323 | 0.5184 | | Fanci
Zeb2 | 1.9401
1.9354 | 0.3077
0.486 | 0.5184
0.3323 | 0.5184
0.3323 | | | 1.9354 | 1.0534 | 0.6482 | 0.3323 | | AIVI 400342 | | | | 0.5184 | | | 1.9354 | 0.3077 | 0.748 | | | XM_357300
XM_197290 | 1.9354 | 0.3077 | 0.3323 | | | XM_357300
XM_197290
XM_146592 | 1.9354
1.9354 | 0.3077
0.7892 | 0.3323
0.748 | | | XM_357300
XM_197290
XM_146592
Slc50a1 | 1.9354
1.9354
1.9354 | 0.3077
0.7892
0.3077 | 0.3323
0.748
0.3323 | 0.3323 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405 | 1.9354
1.9354
1.9354
1.9354 | 0.3077
0.7892
0.3077
1.1584 | 0.3323
0.748
0.3323
0.5184 | 0.3323 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087 | 1.9354
1.9354
1.9354 | 0.3077
0.7892
0.3077 | 0.3323
0.748
0.3323 | 0.3323 | | XM_357300
XM_197290
XM_146592
SICSOa1
NM_175405
XM_162087
XM_139566
Tra2a | 1.9354
1.9354
1.9354
1.9354
1.9307
1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096 | 0.3323
0.748
0.3323
0.5184
0.3323
0.3323
0.748 | 0.3323
0.6482
0.3323
0.5184 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b | 1.9354
1.9354
1.9354
1.9354
1.9307
1.9307
1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.3323
0.748
0.5184 | 0.3323
0.6482
0.3323
0.5184
0.3323 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1 | 1.9354
1.9354
1.9354
1.9354
1.9307
1.9307
1.9307
1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612 | 0.3323
0.748
0.3323
0.5184
0.3323
0.3323
0.748
0.5184
0.3323 | 0.3323
0.6482
0.3323
0.5184
0.3323
0.3323 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1 | 1.9354
1.9354
1.9354
1.9354
1.9307
1.9307
1.9307
1.9307
1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748 | 0.3323
0.6482
0.3323
0.5184
0.3323
0.3323
0.829 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1
Hist1h2br | 1.9354
1.9354
1.9354
1.9354
1.9307
1.9307
1.9307
1.9307
1.9307
1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748
0.5184 | 0.3323
0.6482
0.3323
0.5184
0.3323
0.3323
0.8291 | | XM_357300
XM_197290
XM_146592
Sic50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1
Hist1h2br
Fam154a | 1.9354
1.9354
1.9354
1.9354
1.9307
1.9307
1.9307
1.9307
1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748 | 0.3323
0.6482
0.3323
0.5184
0.3323
0.3223
1.5773
0.5184 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1
Igfn1
Hist1hl2br
Fam154a
XM_283017 | 1.9354 1.9354 1.9354 1.9354 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748
0.5184
0.5184 | 0.3325
0.6482
0.3325
0.5184
0.3325
0.3325
0.8297
1.5777
0.5184 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1
Hist1h2br
Fam154a
XM_194737
XM_194737 | 1.9354 1.9354 1.9354 1.9354 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.926 1.926 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077
0.612
0.3077
0.612
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748
0.5184
0.5184
0.748 | 0.3323
0.6482
0.3323
0.5184
0.3323
0.8291
1.5773
0.5184
0.5184
0.5184 | | XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1
Hist1h2br
Fam154a
XM_283017
XM_283017
XM_194737
XM_144737
Pla2g12b | 1.9354 1.9354 1.9354 1.9354 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.926 1.926 1.926 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077
0.612
0.3077
0.612
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748
0.5184
0.748
0.3323
1.0084 | 0.332;
0.648;
0.332;
0.5184
0.332;
0.829;
1.577;
0.5184
0.5184
0.648;
1.3126 | | XM_486342
XM_357300
XM_197290
XM_146592
Slc50a1
NM_175405
XM_162087
XM_139566
Tra2a
Rnf144b
Psma1
Igfn1
Hist1h2br
Fam154a
XM_283017
XM_194737
XM_144737
Pla2g12b
Kcnip4
Grid1 | 1.9354 1.9354 1.9354 1.9354 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.9307 1.926 1.926 | 0.3077
0.7892
0.3077
1.1584
0.3077
0.612
0.7096
0.3077
0.612
0.3077
0.612
0.3077
0.612
0.3077 | 0.3323
0.748
0.3323
0.5184
0.3323
0.748
0.5184
0.3323
0.748
0.5184
0.748
0.748
0.748 | 0.6482
0.3323
0.5184
0.3323 | | XM_284140 | 1.9212 | 0.486 | | 0.5184 | |--|--|---|--|--| | XM_129420 | 1.9164 | 0.3077 | | | | Timp2 | 1.9164 | 0.7096 | 0.5184 | 0.8291 | | Serf1 | 1.9164 | 0.7892 | | 1.4003 | | Kdm4a | 1.9164 | 0.486 | 0.740 | 1.38 | | Aatk | 1.9164 | 0.486 | 0.748
0.5184 | 1.5639 | | XM_288837
XM_288313 | 1.9115
1.9115 | 1.3136
0.3077 | 0.5184 | 0.6482
0.8291 | | XM_285261 | 1.9115 | 0.7096 | 0.3323 | 1.2876 | | Olr677 | 1.9115 | 0.3077 | | 0.6482 | | Cldn13 | 1.9115 | | | 0.0402 | | XM_286726 | 1.9065 | 0.612 | | 0.5184 | | XM_285193 | 1.9065 | 0.7096 | 0.6482 | 1.0084 | | XM_155739 | 1.9065 | 1.0913 | 0.748 | 0.8291 | | XM_111108 | 1.9065 | 0.7096 | 0.5184 | 1.2611 | | Tmc2 | 1.9065 | 0.486 | | 0.8974 | | Ptprn | 1.9065 | 0.7096 | 0.3323 | 0.9565 | | Enam | 1.9065 | 0.3077 | 0.5184 | 0.3323 | | Dctn5 | 1.9065 | 0.3077 | 0.3323 | 0.6482 | | XM_288400
XM_156418 | 1.9015 | 0.7096 | 1.0967 | 0.6482 | | XM_152880 | 1.9015
1.9015 | | 0.3323 | 0.3323
0.5184 | | Hmgb1 | 1.9015 | 0.486 | 0.6482 | 1.4383 | | Cdc27 | 1.9015 | 0.486 | 0.3323 | 1.4003 | | XM_358253 | 1.8964 | 0.3077 | 0.748 | 111000 | | XM_139134 | 1.8964 | 0.486 | 0.6482 | 0.6482 | | Mrpl32 | 1.8964 | 0.7892 | 0.5184 | 1.0967 | | Gm5105 | 1.8964 | 0.486 | 0.8291 | 0.6482 | | Dhodh | 1.8964 | 0.486 | | 0.8291 | | Ang2 | 1.8964 | 0.612 | 0.3323 | 1.0548 | | XM_488731 | 1.8913 | 0.612 | 0.5184 | 0.3323 | | XM_357332 | 1.8913 | 0.486 | 0.9565 | 0.6482 | | XM_164357 | 1.8913 | 0.486 | 0.5184 | 0.5184 | | XM_149292 | 1.8913 | 0.612 | 0.3323 | 0.0004 | | Trmt61a
Ssu72 | 1.8913
1.8913 | 0.612
0.7096 | 0.6482
0.6482 | 0.8291
0.9565 | | Klhdc1 | 1.8913 | 0.486 | 0.8291 | 1.0548 | | Il1rap | 1.8913 | 0.7892 | 1.0967 | 0.8974 | | XM_287507 | 1.8861 | 0.486 | 1.0548 | 0.3323 | | XM_285807 | 1.8861 | 0.7892 | 1.0010 | 1.7918 | | XM 157008 | 1.8861 | 0.7892 | 0.5184 | 0.6482 | | XM_151335 | 1.8861 | 0.9147 | 0.8291 | 0.8974 | | XM_143018 | 1.8861 | 0.612 | 1.0084 | 0.3323 | | XM_136259 | 1.8861 | 0.7096 | 0.6482 | 0.8974 | | Mlec | 1.8861 | 0.7096 | | 0.3323 | | Dpp7 | 1.8861 | 0.400 | 0.3323 | 0.5184 | | 4932443I19Rik | 1.8861 | 0.486 | 0.5184 | 0.6482 | | XM_484838
XM_153864 |
1.8808
1.8808 | 0.612
0.612 | | 1.2611
0.6482 | | XM_147785 | 1.8808 | 0.3077 | 0.6482 | 1.4197 | | XM_143703 | 1.8808 | 0.612 | 0.3323 | 0.6482 | | XM_143286 | 1.8808 | 0.012 | | 0.8291 | | Mef2c | 1.8808 | | | 0.0201 | | Fxn | 1.8808 | | 1.4897 | | | Cldn15 | 1.8808 | 0.3077 | 0.3323 | 0.8291 | | Abcg1 | 1.8808 | 0.8565 | 0.748 | 0.8291 | | 1700018A04Rik | | 0.612 | 0.6482 | 0.3323 | | XM_288891 | 1.8755 | 0.486 | 0.8291 | 1.0967 | | XM_159798 | 1.8755 | 0.3077 | | 1.0967 | | Opn1sw | 1.8755 | 0.7892 | 0.3323 | 0.8291 | | XM_142053
Cst12 | 1.8701
1.8701 | 0.612 | 0.5184
0.5184 | 1.0967
1.6926 | | XM_287816 | 1.8646 | 0.486 | 0.3323 | 0.748 | | XM_163820 | 1.8646 | 0.612 | | 0.9565 | | Ube2b | 1.8646 | 0.3077 | | 0.6482 | | Tex28 | 1.8646 | | 1.0548 | 0.6482 | | II1f6 | 1.8646 | 0.486 | 0.5184 | 1.5056 | | AU019823 | 1.8646 | 0.3077 | 0.6482 | 0.6482 | | XM_484194 | 1.8591 | 0.7096 | 0.3323 | 0.5184 | | XM_289610 | 1.8591 | 0.486 | 0.748 | 0.3323 | | Usp40 | 1.8591 | 1.0534 | 0.8291 | 0.748 | | Hnf4g | | 0.7892 | | 0.3323 | | VM 202422 | 1.8591 | | | 0.8974
0.3323 | | XM_283133
XM_206629 | 1.8535 | 0.612 | | | | XM_206629 | 1.8535
1.8535 | 0.612
0.3077 | | | | XM_206629
Nbeal2 | 1.8535
1.8535
1.8535 | 0.3077 | | 0.748 | | XM_206629
Nbeal2
Mageb3 | 1.8535
1.8535
1.8535
1.8535 | 0.3077
0.7892 | 0.748 | 0.748
0.8291 | | XM_206629
Nbeal2 | 1.8535
1.8535
1.8535 | 0.3077 | | 0.748 | | XM_206629
Nbeal2
Mageb3
Idh1 | 1.8535
1.8535
1.8535
1.8535
1.8535 | 0.3077
0.7892 | 0.748 | 0.748
0.8291
1.0548 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6 | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535 | 0.3077
0.7892
0.7096 | 0.748
0.5184 | 0.748
0.8291
1.0548
0.748 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6
XM_136658 | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8478 | 0.3077
0.7892
0.7096
0.486
0.486
1.3929 | 0.748
0.5184
0.748
0.9565 | 0.748
0.8291
1.0548
0.748
1.2026
0.748 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6
XM_136658
Sv2b | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8478
1.8478 | 0.3077
0.7892
0.7096
0.486
0.486 | 0.748
0.5184
0.748
0.9565 | 0.748
0.8291
1.0548
0.748
1.2026
0.748
0.3323 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6
XM_136658
Sv2b
Gria3 | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8478
1.8478 | 0.3077
0.7892
0.7096
0.486
0.486
1.3929
0.486 | 0.748
0.5184
0.748
0.9565
0.3323
0.3323 | 0.748
0.8291
1.0548
0.748
1.2026
0.748
0.3323
1.2026 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6
XM_136658
Sv2b
Gria3
Atp11c | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8478
1.8478 | 0.3077
0.7892
0.7096
0.486
0.486
1.3929 | 0.748
0.5184
0.748
0.9565
0.3323
0.3323 | 0.748
0.8291
1.0548
0.748
1.2026
0.748
0.3323
1.2026
0.3323
0.748 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6
XM_136658
Sv2b
Gria3
Atp11c
AdamtsI5 | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8478
1.8478
1.8478 | 0.3077
0.7892
0.7096
0.486
0.486
1.3929
0.486 | 0.748
0.5184
0.748
0.9565
0.3323
0.3323 | 0.748
0.8291
1.0548
0.748
1.2026
0.748
0.3323
1.2026
0.3323
0.748 | | XM_206629
Nbeal2
Mageb3
Idh1
Chrna7
Abi2
Zc3h6
XM_136658
Sv2b
Gria3
Atp11c | 1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8535
1.8478
1.8478
1.8478
1.8478 | 0.3077
0.7892
0.7096
0.486
0.486
1.3929
0.486 | 0.748
0.5184
0.748
0.9565
0.3323
0.3323 | 0.748
0.8291
1.0548
0.748
1.2026
0.748
0.3323
1.2026
0.3323
0.748 | | XM 152071 | 1.8421 | 0.9147 | 0.748 | 0.748 | |-------------------------|------------------|------------------|------------------|------------------| | XM_152071
XM 144344 | 1.8421 | 0.966 | 0.748 | 0.748 | | Olfr1120 | 1.8421 | 0.3077 | | | | Nxph4 | 1.8421 | 0.3077 | 0.6482 | | | Nobox | 1.8421 | 0.2077 | 0.5184 | | | Ctps
XM_146586 | 1.8421
1.8363 | 0.3077 | 0.3323
0.3323 | | | XM_136755 | 1.8363 | 0.612 | 0.3323 | 1.8077 | | Vmn1r27 | 1.8363 | | 0.3323 | 0.3323 | | Vmn1r234 | 1.8363 | | | 1.1701 | | Rex2 | 1.8363 | 0.486 | 0.3323 | | | Pi4k2a | 1.8363 | 0.7096
0.486 | 0.6482 | 0.5184 | | Oprk1
Mthfsd | 1.8363
1.8363 | 0.486 | 0.8974
0.3323 | 0.6482
1.5357 | | Mmrn2 | 1.8363 | 0.486 | 0.5184 | 0.748 | | Meox1 | 1.8363 | | 0.5184 | 0.6482 | | XM_164457 | 1.8304 | 0.486 | 0.3323 | 1.38 | | XM_139900 | 1.8304 | 0.3077 | 0.0000 | 0.0074 | | Orc1
Kdm1a | 1.8304
1.8304 | 0.7892 | 0.3323
0.5184 | 0.8974
0.8291 | | II13ra2 | 1.8304 | 0.3077 | 0.3164 | 0.6291 | | Fads2 | 1.8304 | 1.0119 | 0.748 | 0.748 | | Cdc14a | 1.8304 | | | 1.0084 | | A630001O12Rik | 1.8304 | 0.3077 | 0.6482 | 1.0084 | | XM_287214 | 1.8244 | 0.3077 | 0.5184 | 0.5184 | | XM_286160 | 1.8244
1.8244 | 0.486 | | 0.6482 | | XM_285317
XM 161612 | 1.8244 | 0.460 | 1.4197 | | | XM_136631 | 1.8244 | 0.3077 | 1.38 | | | Panx1 | 1.8244 | 0.3077 | 0.6482 | | | XM_143381 | 1.8183 | 0.966 | 0.748 | 0.8291 | | Pigr | 1.8183 | 0.3077 | 0.3323 | 1.4733 | | Phf14
Ddb1 | 1.8183
1.8183 | 0.7892 | 1.1349 | 0.5184
0.3323 | | Acvr1b | 1.8183 | 0.486 | 0.5184 | 0.3323 | | XM 164930 | 1.8122 | 0.3077 | 0.9565 | 0.5184 | | XM_143322 | 1.8122 | 0.3077 | | 1.0548 | | XM_142248 | 1.8122 | 0.7096 | 0.5184 | 0.6482 | | Nit1 | 1.8122 | | | 0.3323 | | Ndufb5
Lman1 | 1.8122 | 0.3077 | 4.4240 | 0.5184 | | XM 287088 | 1.8122
1.8059 | 0.8565
0.486 | 1.1349
0.3323 | 0.5184 | | XM_155687 | 1.8059 | 0.3077 | 0.0020 | 1.4003 | | XM_153572 | 1.8059 | 0.612 | 0.5184 | 1.6152 | | XM_146339 | 1.8059 | 0.3077 | | | | XM_142206 | 1.8059 | 0.7096 | 0.5184 | 0.3323 | | Slc25a36
Ndufv3 | 1.8059
1.8059 | 0.3077
0.486 | 0.6482 | 0.6482
0.6482 | | Lpcat3 | 1.8059 | 0.3077 | 0.0402 | 0.5184 | | Cyp8b1 | 1.8059 | 0.7892 | 0.748 | 0.8291 | | Arrdc4 | 1.8059 | 0.8565 | | 0.5184 | | Aldh5a1 | 1.8059 | 0.7096 | 0.5184 | 1.0967 | | A130014A01Rik | 1.8059 | 0.486 | 0.5184 | 0.748 | | XM_285042
XM_156369 | 1.7996
1.7996 | 0.7096 | 0.6482
0.6482 | 0.748 | | XM_142289 | 1.7996 | 0.486
0.3077 | 0.0462 | 0.748 | | Ugcrb | 1.7996 | 0.007 | 1.0084 | 0.1 10 | | Esco2 | 1.7996 | 1.3348 | | 0.748 | | Cc2d2a | 1.7996 | 0.486 | 0.6482 | 0.8291 | | BC051070 | 1.7996 | 0.7096 | 1.2876 | 0.6482 | | 1700027J07Rik
Zfp710 | 1.7996
1.7932 | 0.486
0.612 | 0.3323
0.748 | 0.748
1.4197 | | XM_488869 | 1.7932 | 0.612 | 0.748 | 0.748 | | XM_485998 | 1.7932 | 0.3077 | 310.10.1 | 3.1-10 | | XM_288350 | 1.7932 | 0.7892 | 0.748 | 0.748 | | XM_198099 | 1.7932 | | | | | XM_151108 | 1.7932 | 0.3077 | 1.3126 | 0.5184 | | XM_144978
Tkt | 1.7932 | 0.7096 | 0.3323
0.5184 | 0.5184 | | Slc35d2 | 1.7932
1.7932 | 0.7096 | 1.1701 | 0.6482 | | Otud4 | 1.7932 | 0.966 | 0.5184 | 0.5184 | | Nudt7 | 1.7932 | 0.3077 | | 0.3323 | | Hmgcs2 | 1.7932 | 0.486 | 0.8291 | 1.0548 | | Ghrhr
C80013 | 1.7932 | 0.7096 | 0.8291 | 0.8974 | | C80913
Ankrd37 | 1.7932
1.7932 | 1.0119
0.3077 | 0.5184
1.5056 | 0.8291 | | Aadat | 1.7932 | 0.486 | 1.5050 | 0.8974 | | 4921509J17Rik | 1.7932 | 0.7096 | 0.748 | 0.6482 | | 2810030E01Rik | 1.7932 | 0.486 | 0.5184 | 0.5184 | | XM_355324 | 1.7866 | | | 0.5184 | | XM_289644 | 1.7866 | 0.7892 | 1.1349 | 0.8291 | | XM_288189
XM_284820 | 1.7866 | 1.5313 | 0.6482 | 0.0505 | | XM_284820
XM_283667 | 1.7866
1.7866 | 1.0119
0.486 | 0.6482 | 0.9565
0.5184 | | XM_144818 | 1.7866 | 0.612 | 0.8291 | 0.6482 | | | 1.7866 | 0.3077 | 0.3323 | 1.0084 | | XM_143128
Trpc3 | 1.7866 | | 0.5184 | 0.5184 | | Trankd | 4.7000 | 0.0077 | 0.5404 | 0.0074 | |----------------------------|------------------|------------------|------------------|------------------| | Trank1
Shb | 1.7866
1.7866 | 0.3077
0.3077 | 0.5184
0.3323 | 0.8974
0.6482 | | Olr1743 | 1.7866 | 0.486 | 0.3323 | 0.0402 | | Nmral1 | 1.7866 | 0.3077 | | | | NM_175119 | 1.7866 | 0.486 | 0.3323 | 0.6482 | | XM_498096 | 1.78 | | | | | XM_287935 | 1.78 | 0.3077 | 0.5184 | 0.6482 | | XM_286998 | 1.78 | 0.7892 | 0.5184
0.8291 | 0.5184 | | XM_286820
XM_162262 | 1.78
1.78 | 1.0119 | 0.6482 | 0.6482
0.6482 | | XM_159492 | 1.78 | 0.8565 | 0.6482 | 1.1349 | | XM_152291 | 1.78 | 0.0000 | 0.3323 | 111010 | | XM_149823 | 1.78 | 0.9147 | 1.3126 | 0.5184 | | Tshr | 1.78 | 0.486 | 0.5184 | 0.5184 | | Slc26a5 | 1.78 | 1.0119 | 0.8291 | 0.8291 | | Slamf1 | 1.78 | 0.7096 | 0.3323 | 0.3323 | | Pxmp3 | 1.78
1.78 | 0.7892 | 0.3323
1.1701 | 0.6482 | | NM_175693
Gja3 | 1.78 | 0.3077 | 1.1701 | 0.8291 | | Btbd3 | 1.78 | 1.0119 | 0.5184 | 0.8974 | | 1700054N08Rik | 1.78 | 0.8565 | 0.5184 | | | XM_285563 | 1.7733 | 0.612 | 1.1701 | 0.6482 | | XM_138790 | 1.7733 | 0.3077 | 0.3323 | 1.6926 | | XM_136747 | 1.7733 | 0.8565 | | 1.7495 | | Tmem38b | 1.7733 | 0.486 | | 0.748 | | Sox5 | 1.7733 | 0.7096 | 0.8974 | 0.8974 | | XM_484598
XM_283664 | 1.7665 | 1.0119 | 0.0565 | 0.5184 | | XM_283664
XM_145300 | 1.7665
1.7665 | 1.0119 | 0.9565 | 0.5184 | | Nasp | 1.7665 | 0.486 | 0.748 | 1.0967 | | XM_289037 | 1.7595 | 0.486 | 0.3323 | 0.8291 | | XM_146492 | 1.7595 | 0.612 | 0.5184 | | | XM_138116 | 1.7595 | 0.3077 | 0.3323 | 1.1349 | | XM_136854 | 1.7595 | 0.612 | 1.4562 | 0.6482 | | Unkl | 1.7595 | 0.612 | 0.5184 | 0.3323 | | Tfrc
Tbc1d5 | 1.7595 | 0.7892
0.7096 | 1.0967 | 0.5184
0.6482 | | Rnpc3 | 1.7595
1.7595 | 0.7096 | 0.5184
0.5184 | 1.38 | | Pvrl3 | 1.7595 | 0.612 |
1.0084 | 1.0548 | | Ltbp3 | 1.7595 | 0.3077 | 0.6482 | 0.3323 | | Fam33a | 1.7595 | 0.7892 | | | | Cdr2l | 1.7595 | 0.7096 | | | | Cd3g | 1.7595 | 0.9147 | 0.5184 | 0.5184 | | Ywhaz | 1.7525 | 0.3077 | 0.3323 | 0.9565 | | XM_346281
XM_286958 | 1.7525
1.7525 | 0.612 | 0.3323
0.6482 | 1.0548
0.8974 | | XM 283807 | 1.7525 | 0.486 | 0.6482 | 0.6974 | | XM_235708 | 1.7525 | 0.400 | 0.3323 | 0.5104 | | XM_111995 | 1.7525 | 0.486 | | 1.1701 | | XM_110935 | 1.7525 | 0.486 | 0.6482 | 0.5184 | | Ssh3 | 1.7525 | 0.7096 | 0.6482 | 0.5184 | | Sp110 | 1.7525 | 0.7892 | 0.6482 | 1.0084 | | Slc25a21 | 1.7525 | 0.3077 | 0.3323 | 0.748 | | Ptbp1
Pdcl3 | 1.7525
1.7525 | | 0.5184 | | | Nat8l | 1.7525 | | | | | lgf1r | 1.7525 | 0.3077 | 0.6482 | 0.5184 | | A430028G04Rik | 1.7525 | 0.612 | | 0.8291 | | 9130024F11Rik | 1.7525 | 0.3077 | 0.3323 | 0.3323 | | XM_143444 | 1.7453 | 0.612 | 0.5184 | 0.6482 | | Npc1l1 | 1.7453 | 0.612 | | 1.2611 | | Ecel1 | 1.7453 | 0.3077 | 0.3323
0.3323 | 0.9565 | | 4931407J08Rik
XM_488597 | 1.7453
1.738 | 1.0119 | 1,0548 | 0.6482
0.748 | | XM_289940 | 1.738 | 0.612 | 0.5184 | 0.8974 | | XM_289673 | 1.738 | 0.612 | 0.0101 | 0.8291 | | XM_205148 | 1.738 | 0.486 | 0.3323 | 0.6482 | | XM_158650 | 1.738 | 0.486 | | 0.9565 | | XM_153209 | 1.738 | 0.486 | 0.6482 | 0.5184 | | XM_141449 | 1.738 | 0.3077 | 0.6482 | 0.3323 | | XM_135609
P2rx6 | 1.738
1.738 | 0.3077
0.3077 | 0.748 | 1.4197
1.0084 | | Olr1307 | 1.738 | 0.3077 | 0.3323
1.2026 | 0.5184 | | NM_177072 | 1.738 | 0.612 | | | | Msh3 | 1.738 | 0.3077 | 0.6482 | 0.6482 | | Ms4a13 | 1.738 | 0.7892 | 0.6482 | 0.8291 | | Klk1b5 | 1.738 | | 0.3323 | | | XM_487652 | 1.7306 | 0.486 | 0.6482 | 0.6482 | | XM_288353 | 1.7306 | 0.8565 | 0.5184 | 0.6482 | | XM_285288
XM_156778 | 1.7306
1.7306 | 0.7096
0.7096 | 0.6482 | 0.8291
0.748 | | XM_153581 | 1.7306 | 1.2165 | | 0.746 | | Wdr60 | 1.7306 | 0.486 | 0.9565 | 0.6482 | | Per2 | 1.7306 | 0.7096 | | 0.9565 | | NM_177851 | 1.7306 | | | | | | 4 7000 | 0.400 | | 0.5404 | | Gba2
Dync2li1 | 1.7306
1.7306 | 0.486
0.7096 | 0.5184
0.8291 | 0.5184
1.0967 | | Dok4 | 1.7306 | 0.3077 | | | |--------------------------|------------------|------------------|------------------|--------------| | Crnkl1 | 1.7306 | 0.3077 | 0.3323 | 0.7 | | Ccr5
Art4 | 1.7306
1.7306 | 0.486
0.612 | 0.6482
0.748 | 1.23
0.95 | | 6330563C09Rik | 1.7306 | 0.486 | 0.5184 | 1.56 | | 6230409E13Rik | 1.7306 | 0.486 | | 0.82 | | KM_289912 | 1.7231 | 0.9147 | 0.5184 | 1.28 | | (M_285250 | 1.7231 | | | 0.7 | | (M_283445 | 1.7231 | 0.3077 | | 0.89 | | (M_197365 | 1.7231 | 0.3077 | 0.5184 | 0.64 | | (M_196678 | 1.7231 | 0.612 | 0.5184 | 0.51 | | (M_152059 | 1.7231 | 0.3077 | 0.0000 | 1.28 | | (M_147670
Vrn | 1.7231 | 0.3077 | 0.3323 | 1.07 | | rps1 | 1.7231
1.7231 | 0.486
0.8565 | 0.3323
0.3323 | 1.67
0.51 | | mem140 | 1.7231 | 0.8303 | 0.5525 | 0.51 | | iel1l2 | 1.7231 | 0.7096 | 0.6482 | 0.82 | | ash3 | 1.7231 | 0.486 | 0.3323 | 0.33 | | papdc1a | 1.7231 | 0.612 | 0.5184 | 1.43 | | cdhb2 | 1.7231 | 0.7892 | | 0.82 | | alm2 | 1.7231 | 0.3077 | | 1.63 | | IM_177154 | 1.7231 | 0.7096 | 0.5184 | 0.64 | | llrp4g | 1.7231 | 0.7096 | 0.6482 | 0.64 | | llph | 1.7231 | | 0.3323 | 0.33 | | Cont1 | 1.7231 | 0.3077 | 0.6482 | 0.64 | | asd1 | 1.7231 | 0.3077 | 0.3323 | 0.64 | | 1836003 | 1.7231 | 0.7096 | 0.3323
0.8974 | 1.09 | | 933425L06Rik
M 285954 | 1.7231
1.7154 | 0.612 | 0.8974 | 0.64 | | M_285954
M_285724 | 1.7154 | 0.3077
0.3077 | 0.6482 | 0.33 | | M_285683 | 1.7154 | 1.2913 | 0.3323 | 0.51 | | M_158203 | 1.7154 | 0.612 | 0.3323 | 0.51 | | M_154017 | 1.7154 | 0.612 | 0.9565 | 0.82 | | M_146131 | 1.7154 | 0.8565 | 0.5184 | 0.7 | | M_145383 | 1.7154 | 0.7892 | | 0.33 | | M_129620 | 1.7154 | 0.3077 | 0.748 | | | Vdr95 | 1.7154 | | | | | rim67 | 1.7154 | 0.7892 | 0.6482 | | | hap11 | 1.7154 | 0.3077 | | 0.51 | | Sm16010 | 1.7154 | 0.486 | 0.3323 | 0.33 | | gd6 | 1.7154 | 0.7096 | 0.3323 | 0.82 | | vpl | 1.7154 | 1.0534 | 0.748 | 0.64 | | lend6
ll662270 | 1.7154
1.7154 | 0.8565
0.3077 | 0.3323
1.2611 | 0.82 | | 810407C02Rik | 1.7154 | 0.3077 | 0.8291 | 0.89 | | M 286436 | 1.7076 | 0.3077 | 0.3323 | 0.03 | | M 205401 | 1.7076 | 0.612 | 0.0020 | 0.51 | | M_205333 | 1.7076 | 0.3077 | 0.3323 | | | M_195702 | 1.7076 | 0.486 | | | | M_161992 | 1.7076 | | 0.3323 | 0.82 | | M_147020 | 1.7076 | 0.3077 | 0.748 | 0.7 | | mn2r1 | 1.7076 | 0.7096 | 1.1701 | 0.82 | | 0lr1234 | 1.7076 | | 0.3323 | | | Olfr672 | 1.7076 | 0.612 | 0.8291 | 0.64 | | IM_001004175 | 1.7076 | | | 0.82 | | fna4 | 1.7076 | 0.0077 | 0.3323 | 0.7 | | Ccr2 | 1.7076 | 0.3077 | 0.748 | 1.62 | | p2a1 | 1.7076 | | | | | M_285308 | 1.6996 | 0.7000 | 0.5404 | 0.04 | | M_284766
M 196992 | 1.6996
1.6996 | 0.7096
0.8565 | 0.5184
1.2026 | 0.64
0.33 | | bck | 1.6996 | 0.3077 | 0.8974 | 0.51 | | olr2a | 1.6996 | 0.007.4 | 0,3323 | | | M_001002769 | 1.6996 | 0.612 | 1.0548 | 0.55 | | usp27 | 1.6996 | 0.612 | 0.748 | 0.33 | | sel | 1.6996 | 0.7096 | | 0.51 | | yp46a1 | 1.6996 | 0.3077 | 0.3323 | 0.64 | | M_285385 | 1.6915 | 0.3077 | 0.3323 | 1.09 | | M_196691 | 1.6915 | | 0.748 | 0.7 | | M_195729 | 1.6915 | | | 1.59 | | M_195223 | 1.6915 | 0.7892 | 0.5151 | 0.51 | | M_165310 | 1.6915 | 1.0119 | 0.5184 | 0.7 | | M_140500
M_138058 | 1.6915 | 0.3077 | 0.748 | 0.51 | | M_138058
M_136897 | 1.6915
1.6915 | 0.966 | 0.3323 | 0.33 | | M_136697
M_129229 | 1.6915 | 0.7096 | 0.5184
0.3323 | 0.7 | | M_129229
ad51ap1 | 1.6915 | 0.7096 | 0.5184 | 0.04 | | pr1 | 1.6915 | 0.3077 | 0.0104 | 0.7 | | M_488148 | 1.6832 | 0.9147 | 0.6482 | 1.00 | | M_289160 | 1.6832 | 0.0147 | 0.0402 | 1.00 | | bm33 | 1.6832 | | | | | igk | 1.6832 | | 0.3323 | | | IM_177223 | 1.6832 | 0.3077 | 1.2611 | 0.82 | | IM_175365 | 1.6832 | 0.3077 | 0.748 | 0.95 | | IM_001004165 | 1.6832 | 0.3077 | 1.0548 | 0.51 | | Nyo5a | 1.6832 | 0.486 | | 1.05
1.00 | | NM_001004165
Myo5a | | | 0.3323 | | | DC020E00 | 4.0000 | 0.7000 | 0.0004 | 0.0074 | |----------------------------|------------------|------------------|------------------|------------------| | BC030500
1700001L19Rik | 1.6832
1.6832 | 0.7892 | 0.8291 | 0.8974
0.8974 | | Zfp526 | 1.6748 | 1.1885 | 0.5184 | 0.748 | | XM_355758 | 1.6748 | 1.1584 | 0.6482 | 0.5184 | | XM_289256
XM_288628 | 1.6748
1.6748 | 0.9147
0.7892 | 0.5184 | 0.5184
0.8291 | | XM_284400 | 1.6748 | 0.9147 | 0.6482 | 0.8291 | | XM_284081 | 1.6748 | 0.7892 | 0.8291 | 1.0967 | | XM_161123 | 1.6748 | 0.9147 | 0.5184 | 0.6482 | | XM_157769
Slc10a1 | 1.6748
1.6748 | 0.7096
0.8565 | 0.5184
0.5184 | 0.8291
0.6482 | | Rabggtb | 1.6748 | 0.0505 | 0.3323 | 0.3323 | | Ppp4c | 1.6748 | 0.8565 | 1.2328 | 0.5184 | | Olfr887 | 1.6748 | 0.486 | 1.4197 | 0.3323 | | Gucy1a3
Gna11 | 1.6748
1.6748 | 0.3077
0.612 | 1.0967
0.6482 | 0.8291 | | Fras1 | 1.6748 | 0.3077 | 1.3126 | | | XM_288931 | 1.6662 | 0.7892 | 0.6482 | 1.2611 | | XM_287220 | 1.6662 | 0.3077 | 0.5184 | 0.6482 | | XM_163861
XM_160007 | 1.6662
1.6662 | 0.7892 | 0.748 | 1.0084
0.5184 | | XM_139069 | 1.6662 | 0.7892 | 011 10 | 0.5184 | | XM_136398 | 1.6662 | 0.7096 | 0.748 | 0.5184 | | Taf7 | 1.6662 | 0.7892 | 0.6482 | 1.0967 | | Rbm25
Plch2 | 1.6662
1.6662 | 0.612 | 0.3323 | 0.5184
0.3323 | | Obp1a | 1.6662 | 0.8565 | 0.748 | 0.8291 | | NM_183108 | 1.6662 | | | 0.748 | | NM_177264 | 1.6662 | 0.612 | 0.5184
0.8974 | 0.5184 | | Gpr77
Exosc9 | 1.6662
1.6662 | 0.7892
0.3077 | 0.8974 | 0.8974
0.3323 | | Eci3 | 1.6662 | 0.486 | | | | D19Bwg1357e | 1.6662 | | 0.748 | 0.748 | | Cideb | 1.6662 | 0.7096 | 0.3323 | 1.0967 | | Cdh12
Adora2b | 1.6662
1.6662 | 0.612
0.486 | 0.3323
0.748 | 0.8974 | | XM_155270 | 1.6575 | 0.100 | 1.2026 | 1.4197 | | XM_149933 | 1.6575 | 0.3077 | | 0.5184 | | XM_136197 | 1.6575 | 0.612 | 0.748 | 0.8974 | | Rft1
Pldi | 1.6575
1.6575 | 0.486 | | 0.6482
0.748 | | Piga | 1.6575 | 0.7096 | | 0.3323 | | NM_027720 | 1.6575 | 0.3077 | | | | II23r
II17rc | 1.6575
1.6575 | 0.8565 | 0.5184 | 0.5184
0.748 | | Fam132b | 1.6575 | 0.3077
0.486 | 0.5184 | 1.0967 | | Clptm1 | 1.6575 | 0.3077 | 0.3323 | 0.3323 | | Cdh24 | 1.6575 | 0.3077 | 0.3323 | 0.3323 | | 5930416I19Rik
XM 286393 | 1.6575
1.6485 | 0.612
1.0913 | 0.3323 | 0.6482
0.3323 | | XM_159854 | 1.6485 | 0.7096 | 0.8291 | 0.6482 | | XM_157854 | 1.6485 | 0.486 | 0.3323 | 0.6482 | | XM_111099 | 1.6485 | 0.7096 | | | | Rab5b
Pole2 | 1.6485
1.6485 | | | 0.5184 | | Plek | 1.6485 | 0.486 | 1.2328 | 0.0104 | | Olfr1302 | 1.6485 | 0.3077 | 0.6482 | 0.5184 | | Nudt13 | 1.6485 | 0.3077 | | 0.5184 | | Igfbp4
Hgd | 1.6485
1.6485 | 0.486
0.3077 | 0.3323
0.8291 | 1.0084 | | Dmbx1 | 1.6485 | 0.3077 | 0.5184 | | | C030013D06Rik | 1.6485 | | 0.6482 | 0.5184 | | Zfp120 | 1.6394 | 0.7892 | 0.5184 | | | XM_342286
XM_283131 | 1.6394
1.6394 | 0.3077
0.3077 | | | | XM_193686 | 1.6394 | 0.612 | 0.5184 | 0.6482 | | XM_164432 | 1.6394 | 0.3077 | 0.5184 | 0.8291 | | XM_152301 | 1.6394 | 0.7096 | 0.2000 | | | Tpst2
Setd6 | 1.6394
1.6394 | 0.3077
0.7096 | 0.3323
0.5184 | 0.3323
0.5184 | | Pla2g10 | 1.6394 | 0.612 | 0.8291 | 0.9565 | | Micall2 | 1.6394 | | 0.3323 | 0.5184 | | Glra1 | 1.6394 | 0.3077 | 0.3323 | 0.5184 | | Baiap2l1
9330155M09Rik | 1.6394
1.6394 | 0.486
0.8565 | 1.0548
0.3323 | 1.0548
0.8291 | | 4930534B04Rik | 1.6394 | 0.7892 | | 0.6482 | | XM_487912 | 1.6301 | 0.966 | 0.748 | 0.8291 | | XM_287939
XM_285813 | 1.6301 | 0.7096 | 0.6482
0.8291 | 0.748
1.0084 | | XM_285813
XM_144874 | 1.6301
1.6301 | 0.8565
0.3077 | 0.8291 | 0.5184 | | Pvalb | 1.6301 | 0.612 | | 0.6482 | | Prdm5 | 1.6301 | 0.7892 | 0.6482 | 0.6482 | | Olfr262
Obox6 | 1.6301 | 0.3077
0.9147 | 1.0084
0.8974 | 0.6482 | | Mgrn1 | 1.6301
1.6301 | 0.9147 | 0.0974 | 0.8291
0.3323 | | Gpr61 | 1.6301 | | 0.5184 | | | Dusp21 | 1.6301 | 1.0913 |
0.5184 | | | Ctnnbl1 | 1.6301 | 0.8565 | 0.5184 | 0.6482 | |----------------------------|------------------|------------------|------------------|------------------| | Cer1 | 1.6301 | 0.486 | 0.3323 | 0.3323 | | Ccdc134 | 1.6301 | 0.3077 | 0.748 | 0.8974 | | XM_357382
XM_289357 | 1.6206
1.6206 | 0.486
0.966 | 0.3323
0.5184 | 0.5184
0.8974 | | XM_287044 | 1.6206 | 0.3077 | 0.3323 | 1.5209 | | XM_197039 | 1.6206 | 0.7892 | | 0.8291 | | XM_149341 | 1.6206 | 0.9147 | 0.6482 | 0.6482 | | XM_146052
XM 140287 | 1.6206
1.6206 | | | 0.3323
1.2328 | | Tmem35 | 1.6206 | 0.486 | 0.6482 | 1.2326 | | Tmem120b | 1.6206 | 0.3077 | 0.3323 | 1.0170 | | Tmed1 | 1.6206 | 0.486 | 0.748 | | | Ssh1 | 1.6206 | 0.7892 | 0.5184 | 0.6482
0.8291 | | Spink6
Rbm46 | 1.6206
1.6206 | 0.612
0.486 | 0.3323
0.6482 | 0.8291 | | Htr2a | 1.6206 | 0.3077 | 1.4897 | 0.3323 | | Hspa12a | 1.6206 | 0.7892 | 0.5184 | 0.5184 | | Fitm1 | 1.6206 | 0.612 | 0.3323 | 0.3323 | | Defb2
Bub1 | 1.6206
1.6206 | 0.3077 | 0.5184
0.5184 | 1.2611
0.6482 | | Alkbh3 | 1.6206 | 0.612 | 0.5104 | 0.8291 | | XM_195531 | 1.6108 | 0.7096 | 0.5184 | 0.748 | | XM_154436 | 1.6108 | 0.3077 | 0.5184 | 0.8974 | | XM_142683
XM_141920 | 1.6108 | 0.486
0.486 | 0.5184 | 0.748 | | XM_141920
XM_127893 | 1.6108
1.6108 | 0.3077 | 1.4733 | | | Troap | 1.6108 | 0.3077 | 0.5184 | 0.5184 | | Sbpl | 1.6108 | | | 0.748 | | Ppp1cc | 1.6108 | 0.612 | 0.3323
0.5184 | 0.5184 | | Olfr799
Olfr1230 | 1.6108
1.6108 | 0.3077
0.7096 | 0.5184 | 0.8974
0.748 | | Oas1d | 1.6108 | 0.3077 | 0.5104 | 0.5184 | | Med21 | 1.6108 | 0.612 | 0.9565 | | | Ldhal6b | 1.6108 | | | | | Eif4g2
Col28a1 | 1.6108
1.6108 | | 0.3323 | 0.5184 | | Abcc4 | 1.6108 | 0.7096 | 0.748 | 0.5184 | | 2810007J24Rik | 1.6108 | 0.486 | 1.2026 | | | Zfp295 | 1.6009 | | | | | XM_195545
XM 195373 | 1.6009
1.6009 | 0.7096
0.486 | 0.5184 | 0.748
1.5056 | | XM_161710 | 1.6009 | 0.3077 | 0.6482 | 0.8974 | | XM_142299 | 1.6009 | | 0.748 | 0.3323 | | XM_140147 | 1.6009 | 0.486 | 0.748 | 0.3323 | | XM_137491
Vmn1r201 | 1.6009
1.6009 | 0.3077
0.612 | 0.5184
0.3323 | 1.0967
0.5184 | | Tomm22 | 1.6009 | 0.486 | 0.748 | 1.4383 | | Spag5 | 1.6009 | 0.3077 | 0.3323 | 0.8291 | | Olfr1256 | 1.6009 | 0.612 | | 0.8291 | | NM_183125
Hoxb8 | 1.6009 | 0.612 | 0.3323 | 0.8974 | | Hivep2 | 1.6009 | 0.3077
0.7096 | 0.5184 | 1.2328 | | Gsc | 1.6009 | 0.486 | 0.6482 | 0.3323 | | Foxa2 | 1.6009 | 0.612 | | 0.748 | | Cdh20 | 1.6009 | 0.612 | 0.3323 | 0.0074 | | B830007D08Rik
XM 489005 | 1.6009
1.5907 | 0.8565
0.3077 | 0.5184
1.2328 | 0.8974
0.8291 | | XM_289219 | 1.5907 | 0.486 | 0.5184 | 1.4197 | | XM_287278 | 1.5907 | | | | | XM_287013 | 1.5907 | 0.3077 | 0.5151 | 0.3323 | | XM_285464
XM_204855 | 1.5907
1.5907 | 0.3077 | 0.5184
0.3323 | 0.5184
0.3323 | | XM_164401 | 1.5907 | 0.612 | 0.5184 | 0.5323 | | XM_150641 | 1.5907 | 0.3077 | | 0.3323 | | XM_144457 | 1.5907 | 0.486 | 0.5184 | 0.8291 | | XM_137254
XM_124482 | 1.5907 | | U 3333 | 0.748 | | XM_124482
Steap2 | 1.5907
1.5907 | | 0.3323 | 0.748 | | Slc12a2 | 1.5907 | 0.3077 | 1.3363 | 0.5184 | | Ptprq | 1.5907 | 1.5313 | 0.3323 | | | Olfr954
Olfr1242 | 1.5907 | 0.9147
0.7096 | 0.6482
0.6482 | 0.5184 | | Olfml2b | 1.5907
1.5907 | 0.7096 | 0.0402 | 0.0184 | | Mfsd4 | 1.5907 | 0.612 | | 0.5184 | | Irak2 | 1.5907 | 0.3077 | | 0.3323 | | Igfbp3 | 1.5907 | 0.486 | 0.6482 | 0.748 | | Adat2
Adamts12 | 1.5907
1.5907 | 0.612
1.0119 | 0.8974
0.5184 | 0.8291
1.0084 | | Zbtb10 | 1.5802 | 1.0110 | 0.748 | 0.748 | | XM_489765 | 1.5802 | 0.8565 | 0.3323 | 0.8291 | | XM_158881 | 1.5802 | 0.7892 | 0.3323 | 1.0084 | | XM_153340
XM_145657 | 1.5802 | 0.486
0.3077 | 0.3323
0.3323 | 1.0084
0.6482 | | Usp33 | 1.5802
1.5802 | | 0.3525 | 0.6482 | | | | | | | | Suox
Rnf130 | 1.5802
1.5802 | | 0.5184 | | | Rab18 | 1.5802 | 0.8565 | 0.748 | 0.6482 | |----------------------------|------------------|------------------|------------------|------------------| | Gprc5b | 1.5802 | 1.4106 | 0.3323 | 0.3323 | | Glt6d1 | 1.5802 | 0.486 | 0.3323 | 1.0084 | | Fabp7
Chd6 | 1.5802
1.5802 | 0.612 | 0.748 | 0.5184 | | BC053393 | 1.5802 | 1.0534 | 0.6482 | 0.8291 | | Adam7 | 1.5802 | 0.3077 | 0.8974 | | | 6030422M02Rik | | 0.7000 | 4.4704 | | | Xpnpep2
XM_355803 | 1.5695
1.5695 | 0.7892 | 1.1701 | | | XM_289314 | 1.5695 | | | 0.6482 | | XM_284316 | 1.5695 | 0.3077 | | 0.6482 | | XM_165008
XM_155110 | 1.5695
1.5695 | 0.486
0.8565 | 0.6482
0.5184 | 0.3323
0.5184 | | XM_151594 | 1.5695 | 0.3077 | 0.5184 | 0.3323 | | XM_150456 | 1.5695 | 0.3077 | 0.3323 | 1.1349 | | XM_141278
Psmd9 | 1.5695
1.5695 | 0.7096 | 0.6482 | 0.748 | | Phkb | 1.5695 | 0.3077 | 0.5184 | | | Olr30 | 1.5695 | 0.486 | 0.5184 | 0.6482 | | Olfr38 | 1.5695 | | 0.3323 | | | Olfr116
NM_177121 | 1.5695
1.5695 | 0.486
1.1262 | 0.5184
0.6482 | 0.8974
0.8291 | | Mrps28 | 1.5695 | 0.3077 | 0.3323 | 0.748 | | Норх | 1.5695 | | 0.3323 | 1.0967 | | Gm3286
Frk | 1.5695 | 0.486 | 0.6482 | 0.6482 | | Frk
Col18a1 | 1.5695
1.5695 | 0.486 | 0.6482 | 1.2876 | | Ccl27a | 1.5695 | | | | | Calm2
Armc3 | 1.5695
1.5695 | | 0.3323 | 1.2611
0.5184 | | XM_285406 | 1.5585 | 0.612 | 0.3323 | 0.5184 | | Tspan9 | 1.5585 | 0.7096 | 0.5184 | 0.6482 | | Psmc2 | 1.5585 | 0.3077 | 0.5184 | 0.6482 | | Pcp2
Olfr1364 | 1.5585
1.5585 | 0.7096
0.8565 | 0.5184
0.6482 | 0.3323 | | Noc3l | 1.5585 | 0.486 | 0.5184 | 0.3323 | | NM_177641 | 1.5585 | 0.486 | 0.8291 | 1.2026 | | Hmgb3
Cabyr | 1.5585
1.5585 | 0.3077
0.3077 | 0.3323 | 0.5184 | | 2010002N04Rik | 1.5585 | 0.7892 | | 0.5184 | | Zfp493 | 1.5473 | 0.7892 | | 0.8974 | | XR_000249
XM 487706 | 1.5473
1.5473 | 0.612 | 0.5184 | 1.4562 | | XM_164674 | 1.5473 | 0.8565 | | 0.6482 | | XM_162478 | 1.5473 | | | 0.8291 | | XM_160248
XM_153404 | 1.5473
1.5473 | 1.1885 | 0.3323
0.3323 | 0.8291
0.6482 | | XM_145247 | 1.5473 | 1.0119 | 0.6482 | 0.748 | | XM_140111 | 1.5473 | 0.3077 | 0.3323 | 0.3323 | | Slx4
Slco6d1 | 1.5473
1.5473 | 0.612
0.7096 | 0.5184
0.3323 | 0.748
0.6482 | | Rfc4 | 1.5473 | 0.486 | 0.8974 | 0.8291 | | Ptprk | 1.5473 | 0.3077 | | | | Ptch1 | 1.5473 | 0.7892 | 0.0400 | 0.3323 | | Olfr745
Ncoa2 | 1.5473
1.5473 | 0.7892 | 0.6482
0.8291 | 0.8974
0.6482 | | Nans | 1.5473 | 1.0534 | 0.5184 | 0.8291 | | Grxcr2 | 1.5473 | 0.612 | | | | Glmn
Fbxl7 | 1.5473
1.5473 | 0.7096
1.0534 | 0.3323 | 0.9565 | | Ect2 | 1.5473 | 0.612 | 1.0548 | 0.3323 | | Dsg1c | 1.5473 | 0.3077 | 0.740 | 0.3323 | | D030056L22Rik
Coro2a | 1.5473
1.5473 | 0.612
0.8565 | 0.748 | 0.5184
1.1701 | | Aqp7 | 1.5473 | 0.3077 | 0.6482 | 0.5184 | | Al314278 | 1.5473 | 0.7096 | | 1.3363 | | 2610305D13Rik
XM 289586 | 1.5473
1.5357 | 0.7096
0.612 | 0.3323
0.6482 | 0.748
1.3126 | | XM_286301 | 1.5357 | 0.7096 | 0.8974 | 0.748 | | XM_283866 | 1.5357 | 0.3077 | 0.3323 | | | XM_197869
XM_145453 | 1.5357
1.5357 | 0.486
0.7096 | 0.5184 | 1.3126
0.5184 | | XM_145455
XM_145191 | 1.5357 | 0.486 | 0.3323 | 0.5184 | | XM_140162 | 1.5357 | | | | | XM_112123 | 1.5357 | 0.3077 | | | | Tomm20l
Smc2 | 1.5357
1.5357 | 0.612
1.0119 | 0.6482 | 0.5184 | | Siglech | 1.5357 | 0.7096 | 0.748 | 0.8291 | | Rpf1 | 1.5357 | 0.3077 | 0.5184 | 0.5184 | | Rfwd3
Ptchd1 | 1.5357
1.5357 | | 0.8291
0.3323 | 0.3323
0.6482 | | Poglut1 | 1.5357 | | 0.5184 | 0.8974 | | Olr772 | 1.5357 | 0.612 | 0.8974 | 0.8291 | | II12b
Gpx2 | 1.5357
1.5357 | 1.0119
0.486 | 0.5184
0.3323 | 0.6482
1.1701 | | Fhl1 | 1.5357 | 0.7096 | 0.3323 | 0.8291 | | | | | | | | Delret 15357 | Eif5a2 | 1.5357 | 0.486 | 0.8291 | 0.3323 | |--|-----------|--------|--------|--------|--------| | Asab4 Asab4 1,5357 Acacb 1,5357 Acacb 1,5357 Acacb 1,5357 Acacb 1,5357 0,5555 0,5184 0,5955
Acacb 1,5357 0,486 0,3322 0,2321 1,3333 1,5238 0,7892 1,3233 0,7892 1,3233 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,33333 1,3333 | | | | | 0.3323 | | Acach 15.957 0.5565 0.5184 0.5208 1700008(24Rit. 15.957 0.5656 0.5184 0.9565 0.9565 0. | | | 0.3077 | | 1.0548 | | Art 1.5357 | | | | | 0.3323 | | Zswim3 | | | 0.8565 | | | | XM_264960 | | | | 0.3323 | | | XM_ 2844960 XM_ 195159 1.5238 | | | 0.7000 | | | | XM_1951193 | | | | | | | XM_152906 | | | | | | | XM_151864 | | | | | | | XM_147684 XM_1439200 15.238 XM_139201 XM_139201 XM_139201 15.238 XM_112832 XM_1176985 XM_28932 XM_1176985 XM_28932 XM_11832 XM_11832 XM_118332 XM_118332 XM_118332 XM_118333 XM_1183333 XM_1183333 XM_1183333 XM_118333 XM_118333 XM_118333 XM_118333 XM_118333 XM_118333 XM_118333 | _ | | | | | | XM_139201 XM_139503 XM_112832 XM_116985 XM_116 | | | | 0.0402 | | | XM_137953 | | | | | | | XM_112832 | | | 1.0119 | 0.3323 | | | Vwc2 | _ | | 0.612 | 0.8291 | | | RSPC2 1.5238 0.8565 0.6482 0.5184 KII5 1.5238 0.7892 0.3323 0.6482 KII5 1.5238 0.3077 0.3323 0.6482 Colimi4 1.5238 0.612 0.3323 Colimi4 1.5238 0.6612 0.3323 Colimi4 1.5238 0.6612 0.3323 0.5184 CO200046101 Rik 1.5238 0.486 0.5184 0.8291 CO200046101 Rik 1.5238 0.486 0.5184 0.8291 CO200046101 Rik 1.5238 0.7086 0.6482 0.8291 TO0061A03Rik 1.5238 0.7086 0.6482 0.8291 TO0061A03Rik 1.5238 0.612 0.748 XM_287631 1.5116 0.7096 0.3322 0.8974 XM_287631 1.5116 0.7096 0.3322 0.8974 XM_284831 1.5116 0.7096 0.3323 0.5184 XM_284831 1.5116 0.7096 0.3323 0.6482 XM_284831 1.5116 0.7096 0.3323 0.6482 XM_284831 1.5116 0.7097 0.7333 0.6482 XM_284831 1.5116 0.3077 0.7333 0.6482 XM_284831 1.5116 0.3077 0.3323 0.5184 XM_28493 1.5116 0.012 0.3077 XM_142669 1.5116 0.012 0.3077 XM_1516 0.5184 XM_196837 1.5116 0.612 0.3223 0.6482 XM_19813 1.5116 0.7096 0.748 0.5184 XM_19833 1.5116 0.7096 0.748 0.5184 XM_284010 0.7096 0.748 0.5184 XM_284010 0.7096 0.748 0.5184 XM_194668 1.5116 0.3077 0.5184 XM_194668 1.0842 0.748 0.8974 XM_194668 1.0842 0.748 0.8974 XM_194668 1.0842 0.748 0.8974 XM_2250100 0.9247 2.4094 0.8974 0.6482 XM_198119 0.4531 0.4531 0.4531 0.4532 XM_194668 1.0842 0.748 0.8974 XM_286410 0.9247 2.4094 0.8974 0.6482 XM_286410 0.9247 2.4094 0.8974 0.6482 XM_198119 0.4531 0.4531 0.4532 0.5184 XM_286410 0.9247 2.4094 0.8974 0.6482 XM_198119 0.4531 0.4531 0.4531 0.4532 0.5184 XM_286410 0.9247 0.9347 0.6482 0.5184 XM_286604 0.9247 0.9347 0.6482 0.5184 XM_286604 0.9247 0.9347 0.9348 0.9394 0.5682 XM_198119 0.4531 0.4531 0.4531 0.6482 0.5184 XM_19770 0.9347 0.9348 0.9352 0.9384 XM_287504 0.9344 0.9362 0.9365 0.9382 XM_2887504 0.9346 0.3332 0.9384 XM_287554 0.9346 0.9346 0.9332 0.9365 XM_287594 0.9366 0 | _ | | | | | | NM_176985 | | | | | | | Kif5 | | | | | | | Kiff 5 | _ | | | | | | Con | | | | | | | CO30046IO1Rik | | | | | 0.5404 | | 6330678E17Rik 15238 | | | 0.486 | | | | 170000F1A03Rik XM_485773 | | | | | | | XM_485773 | | | | 0.8291 | | | XM_287631 | | | 0.612 | 0.6482 | | | XM_284831 | | | 0.7096 | | | | XM_284767 1.5116 0.3077 1.3363 0.6482 XM_283146 1.5116 0.3077 0.3323 0.6482 XM_196837 1.5116 0.3077 0.3323 0.6482 XM_142669 1.5116 1.1262 0.3323 0.6482 Olfle854 1.5116 0.612 0.3323 0.5184 NIZe1 1.5116 0.612 0.3323 0.5184 NIZe1 1.5116 0.612 0.3323 0.5184 NIZe1 1.5116 0.612 0.748 0.5184 Olfle854 1.5116 0.612 0.748 0.5184 Olfle854 0.5116 0.3077 0.5184 Olfle854 0.5184 0.5184 0.5184 0.5184 Olfle854 0.5184 0.5184 0.5184 0.5184 Olfle854 0.5184 0.5184 0.5184 0.5184 0.5184 Olfle858 0.5185 0.5184 | | | 0.7892 | 0.748 | 1.1349 | | XM_196837 | | | | | | | XM_196837 XM_142669 1.5116 Spag9 1.5116 1.1262 0.3323 0.6482 Olfr854 1.5116 0.3077 0.3323 0.5184 NZ261 1.5116 0.612 0.3323 0.5184 NZ261 1.5116 0.612 0.748 0.5184 Mpo 1.5116 0.612 0.748 0.5184 Mpo 1.5116 0.7096 0.748 0.5184 Olfr857 1.5116 0.7096 0.748 0.5184 Olfr857 0.748 0.3322 0.5184 Olfr857 0.748 0.3322 0.5184 Olfr858 0.3077 0.5482 0.3077 0.5482 0.3077 0.6482 0.5184 Olfr858 0.9565 XM_198119 0.4551 0.2488 0.748 0.8974 0.8977 0.8987 0.8987 0.8974 0.6882 Olfr858 | | | 0.3077 | 1,3363 | | | Spage | | | | | | | Olire54 1.5116 0.3077 0.3323 0.5184 Nr2e1 1.5116 0.612 0.3323 0.748 Mpo 1.5116 0.612 0.748 0.5184 Mpo 1.5116 0.7096 0.748 0.5184 Gjb3 1.5116 0.3077 0.5184 Gap8ap2 1.5116 0.3077 0.5184 Bap1 1.5116 0.3077 0.6482 4922502B01Rik 1.5116 0.3077 0.6482 4922502B01Rik 1.5116 0.3077 0.6482 XM_19819 0.4551 2.4348 0.748 0.8324 XM_198119 0.4551 2.4348 0.748 0.8974 Cdh18 0.8166 2.4094 1.2328 0.3322 XM_290100 0.9247 2.4094 1.2328 0.3322 XM_286410 0.9247 2.3898 1.4897 1.1701 XM_286410 0.9247 2.3899 0.8974 0.6482 XM_140720 0.5772 | | | | | | | NZ261 NM_001005857 NM_001005857 NM_00 | | | | | | | Mpo | | | | | 0.5104 | | Gm22 1.5116 0.486 1.0084 1.0548 Gjb3 1.5116 0.3077 0.5184 Casp8ap2 1.5116 0.3077 0.5184 Bap1 1.5116 0.3077 0.532 4922502B01Rik 1.5116 0.9147 0.6482 0.5184 4700007K09Rik 1.5116 0.9147 0.6482 0.9565 XM_198119 0.4551 2.4348 0.748 0.8974 Cdh18 0.8166
2.4094 1.2328 0.3322 XM_290100 0.9247 2.4994 0.8974 1.0084 Zip239 2.3898 1.4897 1.1701 XM_286410 0.9247 2.3879 0.8974 0.6482 Apba3 0.2640 2.3749 0.8974 0.6482 XM_17563 0.7505 2.3749 0.8974 0.6482 XM_140720 0.5772 2.3749 0.3223 0.5184 Fbx010 0.4551 2.3556 0.748 0.3322 Stat2 | _ | | | | | | Gjb3 1.5116 0.748 0.332 Fam192a 1.5116 0.3077 0.5184 Casp8ap2 1.5116 0.3077 0.3323 8p1 1.5116 0.3077 0.6482 0.5184 1700007K09Rik 1.5116 0.3077 0.6482 0.5184 XM_194658 1.0832 2.6098 0.6482 0.9565 XM_198119 0.4551 2.4348 0.748 0.9374 Cdh18 0.8166 2.4094 1.2328 0.3322 XM_290100 0.9247 2.4094 0.8974 1.0084 Zfp239 2.3898 1.4897 1.71084 Apba3 0.2846 2.3749 0.8974 1.084 XM_286410 0.9247 2.3879 0.8974 0.6482 XM_175463 0.7505 2.3749 0.5214 0.5184 XM_140720 0.5772 2.3749 0.5224 0.5184 XM_1010 0.4551 2.3566 0.748 0.3322 Daxx | | | | | | | Fam192a | | | 0.460 | | | | Bap1 1.5116 0.3077 0.6482 0.5184 4922502B01Rik 1.5116 0.9147 0.6482 0.5184 1700007K09Rik 1.5116 0.3077 0.6482 0.5184 XM_194658 1.0832 2.6098 0.6482 0.9565 XM_198119 0.4551 2.4348 0.748 0.8974 Cdh18 0.8166 2.4094 1.2328 0.3322 XM_290100 0.9247 2.4094 0.8974 1.0084 Zfp239 2.3898 1.4897 1.1701 XM_286410 0.9247 2.3879 0.8974 0.6482 Apba3 0.2846 2.3749 0.8291 0.5184 NM_175463 0.7505 2.3749 0.3233 0.5184 Fbx010 0.4551 2.3556 0.748 0.3323 Daxx 0.97 2.3415 1.4383 0.3323 Stat2 2.3374 0.3323 0.8974 Gria1 0.2846 2.3312 1.0084 0.9565 | , | 1.5116 | | | 0.5184 | | ## 4922502B01Rik | | | | | | | 1700007K09Rik 1.5116 0.3977 0.6482 XM_194658 1.0832 2.6098 0.6482 0.9565 XM_198119 0.4551 2.4348 0.748 0.8974 Cdh18 0.8166 2.4094 1.2328 0.3323 XM_290100 0.9247 2.4094 0.8974 1.0084 Zfp239 2.3898 1.4897 1.1701 XM_286410 0.9247 2.3879 0.8974 0.6482 Apba3 0.2846 2.3749 0.8291 0.5184 NM_175463 0.7505 2.3749 0.5184 0.5184 VM_140720 0.5772 2.3749 0.3323 0.5184 Fbx010 0.4551 2.3556 0.748 0.3323 Mdm1 0.2846 2.3374 0.3323 0.5184 Stat2 2.2374 0.3323 0.5184 0.3323 Stat2 5 2.2374 0.3323 0.5184 0.748 0.3323 Stat2 6 2.23374 0.3523 0.5184 <td></td> <td></td> <td>0.0011</td> <td>0.6482</td> <td></td> | | | 0.0011 | 0.6482 | | | XM_198119 0.4551 2.4348 0.748 0.8974 Cdh18 0.8166 2.4094 1.2328 0.3323 XM_290100 0.9247 2.4094 0.8974 1.0084 Zfp239 2.3898 1.4897 1.1701 XM_286410 0.9247 2.3879 0.8974 0.6482 Apba3 0.2846 2.3749 0.8291 0.5184 NM_175463 0.7505 2.3749 0.5184 0.5184 XM_140720 0.5772 2.3749 0.3323 0.5184 Fbx010 0.4551 2.3556 0.748 0.3323 Daxx 0.97 2.3415 1.4383 0.3323 Stat2 2.3374 0.3323 0.8974 Gria1 0.2846 2.3312 1.084 0.9565 XM_287554 0.2846 2.3312 1.084 0.9565 XM_488727 0.6724 2.3249 0.5184 1.7837 Pi15 1.0111 2.3185 0.748 1.1349 | | | 0.3077 | 0.6482 | | | Cdh18 0.8166 2.4094 1.2328 0.3325 XM_290100 0.9247 2.4094 0.8974 1.0084 Zfp239 2.3898 1.4897 1.1701 XM_286410 0.9247 2.3879 0.8974 0.6482 Apba3 0.2846 2.3749 0.8291 0.5184 NM_140720 0.5772 2.3749 0.3323 0.5184 Fbx010 0.4551 2.3556 0.748 0.3323 Daxx 0.97 2.3415 1.4383 0.3323 Mdm1 0.2846 2.3374 0.3323 0.8186 Stat2 2.3374 0.3323 0.8974 0.8974 Gria1 0.2846 2.3312 1.0084 0.9565 XM_28754 0.6246 2.3312 1.0084 0.9565 XM_488727 0.6724 2.3249 0.5184 1.7837 Pi15 1.0111 2.3185 0.748 1.1349 XM_152039 0.8166 2.3032 0.6482 0. | | | | | | | XM_290100 Zfp239 | | | | | 0.8974 | | XM_286410 | | | | | 1.0084 | | Apba3 0.2846 2.3749 0.8291 0.5184 NM_175463 0.7505 2.3749 0.5184 0.5184 XM_140720 0.5772 2.3749 0.3323 0.5184 Fbx010 0.4551 2.3556 0.748 0.3323 Daxx 0.97 2.3415 1.4383 0.3323 Mdm1 0.2846 2.3374 0.3323 Stat2 2.3374 0.3323 0.8974 Gria1 0.2846 2.3312 1.0084 0.9565 XM_28754 0.2846 2.3312 0.5482 0.748 XM_152039 0.8166 2.3032 0.6482 0.748 XMh110 0.8166 2.3032 0.6482 0.748 XML142770 1.0111 2.2987 0.3323 1.4003 XM_285604 2.2942 0.3323 0.6482 XM_285604 2.2942 0.3323 0.6482 XM_285604 2.2942 0.3323 0.6482 XM_143807 0.8166 < | | | | | | | NM_175463 | _ | 0.9247 | | | | | XM_140720 Pbx010 D.4551 Daxx Daxx D.97 Daxx D.23415 Daxx D.2846 D.23374 D.2846 D.23374 D.2846 D.23374 D.2846 D.23374 D.2846 D.2846 D.23312 D.2846 D.2846 D.23312 D.2848 D.2848 D.2848 D.2849 D.5184 D.6482 D.748 D.748 D.7519 D.8719 D.87 | • | 0.7505 | | | | | Daxx 0.97 2.3415 1.4383 0.3323 Mdm1 0.2846 2.3374 0.323 3 Stat2 2.3374 0.3423 0.8974 Gria1 0.2846 2.3312 1.0084 0.9565 XM_287554 0.2846 2.3312 0.6482 0.6482 XM_488727 0.6724 2.3249 0.5184 1.7837 Pi15 1.0111 2.3185 0.748 1.1349 XM_152039 0.8166 2.3032 0.6482 0.748 Klh10 0.8166 2.2987 0.3323 1.4003 XM_142770 1.0111 2.2987 0.8974 1.0548 Olfr1406 1.0486 2.2942 0.8482 0.6482 XM_285604 2.2942 0.3323 0.6482 XM_143807 0.8166 2.285 0.8291 Rab9 0.874 2.2803 0.9565 1.1701 ltpr2 0.7505 2.276 0.5184 0.5184 Tpcn1 | XM_140720 | 0.5772 | | 0.3323 | 0.5184 | | Mdm1 0.2846 2.3374 0.3323 Stat2 2.3374 0.8974 Gria1 0.2846 2.3312 1.0084 0.9565 XM_287554 0.2846 2.3312 0.6482 0.6482 XM_488727 0.6724 2.3249 0.5184 1.7837 Pi15 1.0111 2.3185 0.748 1.1349 XM_152039 0.8166 2.3032 0.6482 0.748 Klh10 0.8166 2.2987 0.3323 1.4003 XM_142770 1.0111 2.2987 0.8974 1.0548 Olfr1406 1.0486 2.2942 0.6482 XM_285604 2.2942 0.3323 NM_177579 2.2873 1.5773 1.0967 XM_143807 0.8166 2.285 0.8291 Rab9 0.874 2.2803 0.9565 1.1701 Itpr2 0.7505 2.278 0.5184 0.5184 Tpcn1 1.0486 2.2756 0.6482 0.5184 < | | | | | | | Stat2 2.3374 0.8974 Gria1 0.2846 2.3312 1.0084 0.9565 XM_287554 0.2846 2.3312 0.5482 0.5184 1.7837 XM_488727 0.6724 2.3249 0.5184 1.7837 Pi15 1.0111 2.3185 0.748 1.1349 XM_152039 0.8166 2.3032 0.6482 0.748 KlhI10 0.8166 2.2987 0.3323 1.4003 XM_142770 1.0111 2.2987 0.8974 1.0548 Olfr1406 1.0486 2.2942 0.6482 0.6482 XM_285604 2.2842 0.3323 0.6482 0.6482 XM_177579 2.2873 1.5773 1.0967 0.6482 0.8291 XM_143807 0.8166 2.285 0.8291 0.8291 Xm_143807 0.8166 2.285 0.5184 0.5184 Mpl18 0.4551 2.2756 0.6482 0.5184 Tpc1 1.0486 2.2756 | | | | | 0.3323 | | XM_287554 XM_488727 0.6724 2.3249 0.5184 1.7837 pi15 1.0111 2.3185 0.748 1.1349 XM_152039 0.8166 2.3032 0.6482 0.748 Kihi10 0.8166 2.2987 0.3323 1.4003 XM_142770 1.0111 2.2987 0.8974 1.0548 Olfr1406 1.0486 2.2942 0.6482 XM_285604 XM_285604 XM_177579 XM_143807 0.8166 2.2863 0.8291 Rab9 0.874 1.0486 2.2863 0.8291 Rab9 0.874 1.0486 2.2863 0.8291 1.701 1.0486 2.2756 0.6482 0.5184 XM_160493 0.874 2.2708 0.6482 0.5184 XM_160493 0.874 2.2708 0.748 0.6482 0.5184 XM_160493 0.874 2.2708 0.6482 0.5184 XM_287443 1.2693 0.874 2.2708 0.6482 0.5184 XM_287443 1.2693 0.874 2.2686 0.6829 0.5184 VM_287443 1.2693 0.874 2.2686 0.6829 0.5184 VM_287443 1.2693 0.6482 0.5184 VM_287443 1.2693 0.6482 0.5184 VM_287443 1.2693 0.874 2.2686 0.8291 1.0084 Ube20 1.6915 2.2666 0.3323 Nos3 2.2636 0.6482 XM_287399 0.4551 0.4551 0.5184 0.8291 0.0822 | Stat2 | | 2.3374 | | | | XM_488727 | | | | 1.0084 | | | Pi15 1.0111 2.3185 0.748 1.1349 XM_152039 0.8166 2.3032 0.6482 0.748 KlhI10 0.8166 2.2987 0.3323 1.4003 XM_142770 1.0111 2.2987 0.8974 1.0548 Olfr1406 1.0486 2.2942 0.8974 1.0548 XM_285604 2.2942 0.3323 0.6482 XM_177579 2.2873 1.5773 1.0967 XM_143807 0.8166 2.285 0.8291 Rab9 0.874 2.2803 0.9565 1.1701 ltpr2 0.7505 2.278 0.5184 0.5184 Mp118 0.4551 2.2756 0.6482 0.5184 Tpcn1 1.0486 2.2756 0.3323 0.748 XM_160493 0.874 2.2708 0.748 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube2o 1.6915 2.266 0.3323 Nos3 2.2636< | | | | 0.5184 | | | Kihi10 0.8166 2.2987 0.3323 1.4003 XM_142770 1.0111 2.2987 0.8974 1.0548 Olfr1406 1.0486 2.2942 0.3323 NM_177579 2.2873 1.5773 1.0967 XM_143807 0.8166 2.285 0.8291 Rab9 0.874 2.2803 0.9565 1.1701 tlpr2 0.7505 2.278 0.5184 0.5184 Mrpl18 0.4551 2.2756 0.6482 0.5184 Tpcn1 1.0486 2.2756 0.3323 0.748 XM_160493 0.874 2.2756 0.3323 0.748 XM_160493 0.874 2.2708 0.748 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube20 1.6915 2.266 0.3323 Nos3 0.4551 2.2666 0.3323 Nos3 0.4551 2.2666 0.3323 Nos3 0.4551 2.2666 0.3323 Nos3 0.4551 0.2587 0.5184 0.8291 Appbp2 0.3323 | _ | | | | | | XM_142770 | | | | | | | Olfr1406 1.0486 2.2942 0.6482 XM_285604 2.2942 0.3323 0.6482 NM_177579 2.2873 1.5773 1.0967 XM_143807 0.8166 2.285 0.8291 Rab9 0.874 2.2803 0.9565 1.1701 ltpr2 0.7505 2.278 0.5184 0.5184 Mpl18 0.4551 2.2756 0.6482 0.5184 Tpcn1 1.0486 2.2756 0.3323 0.748 XM_160493 0.874 2.2708 0.748 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube2o 1.6915 2.266 0.3323 Nos3 2.2636 0.6482 XM_287399 0.4551 2.2562 0.5184 Appbp2 2.2562 0.3323 | | | | | | | XM_285604 NM_177579 XM_143807 Rab9 0.8166 2.285 Rab9 0.874 1tpr2 0.7505 2.278 0.5184 0.5184 0.5184 0.5184 Xmpl18 0.4551 1.0486 2.2756 0.6482 0.5184 XM_160493 0.874 2.2708 0.748 0.5184 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 VM_287443 1.2693 2.2708 0.6482 0.5184 VM_287443 1.2693 2.2708 0.6482 0.5184 VM_287493 0.6482 0.5184 0.6291 1.0084 0.6291 0.6323 0.633 0.6482 0.6482 0.65184 0.6291 0.6915 0.6966 0.3323 0.6966 0.6968 0.6969 | | | | 0.0314 | | | XM_143807 | | | | | | | Rab9 0.874 2.2803 0.9565 1.1701 ltpr2 0.7505 2.278 0.5184 0.5184 Mrpl18 0.4551 2.2756 0.6482 0.5184 Tpcn1 1.0486 2.2756 0.323 0.748 XM_160493 0.874 2.2708 0.748 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube2o 1.6915 2.266 0.3323 Nos3 2.2636 0.6482 XM_287399 0.4551 2.2587 0.5184 0.8291 Appbp2 2.2562 0.3323 | | 0.8166 | | 1.5773 | | | Itpr2 0.7505 2.278 0.5184 0.5184 Mrpl18 0.4551 2.2756 0.6482 0.5184 Tpcn1 1.0486 2.2756 0.3323 0.748 XM_160493 0.874 2.2708 0.748 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube20 1.6915 2.266 0.3323 Nos3 2.2636 0.6482 XM_287399 0.4551 2.2587 0.5184 0.8291 Appbp2 2.2562 0.3323 | | | |
0.9565 | | | Tpcn1 1.0486 2.2756 0.3323 0.748 XM_160493 0.874 2.2708 0.748 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube2o 1.6915 2.266 0.3323 Nos3 2.2636 0.6482 XM_287399 0.4551 2.2587 0.5184 0.8291 Appbp2 2.2562 0.3323 | ltpr2 | 0.7505 | 2.278 | 0.5184 | 0.5184 | | XM_160493 0.874 2.2708 0.748 0.5184 XM_287443 1.2693 2.2708 0.6482 0.5184 XM_138422 0.874 2.2684 0.8291 1.0084 Ube20 1.6915 2.266 0.3323 Nos3 2.2636 0.6482 XM_287399 0.4551 2.2587 0.5184 0.8291 Appbp2 2.2562 0.3323 | | | | | | | XM_287443 | | | | | | | XM_138422 | | | | | | | Nos3 2.2636 0.6482
XM_287399 0.4551 2.2587 0.5184 0.8291
Appbp2 2.2562 0.3323 | | | | | | | XM_287399 0.4551 2.2587 0.5184 0.8291
Appbp2 2.2562 0.3323 | | 1.6915 | | | | | Appbp2 2.2562 0.3323 | | 0.4551 | | | 0.8291 | | Ztp943 2.2562 0.8291 0.748 | Appbp2 | | 2.2562 | | 0.3323 | | | ∠tp943 | | 2.2562 | 0.8291 | 0.748 | | II3 | 0.7505 | 2.2537 | 0.8974 | 0.748 | |----------------------------|------------------|------------------|------------------|------------------| | Sval3 | 0.874 | 2.2537 | 0.3323 | 0.6482 | | XM_163867 | 1.145 | 2.2537 | 0.8974 | 0.5184 | | XM_284980
XM_154613 | 0.6724
0.8166 | 2.2537
2.2512 | 0.6482 | 0.6482
1.2328 | | Stfa3 | 0.8166 | 2.2461 | 0.3323 | 1.4562 | | Wdr13 | 0.2846 | 2.2436 | 0.3323 | | | XM_151707 | | 2.2436 | | 0.748 | | Grpel1
Lrrc37a | 0.7505
0.5772 | 2.241
2.2359 | 0.6482 | 0.8291
1.4003 | | Tmcc3 | 0.7505 | 2.2359 | 0.8291 | 0.6482 | | Vps8 | 0.5772 | 2.2333 | 0.5184 | 0.3323 | | Ddx4 | 0.2846 | 2.2306 | 0.3323 | 0.748 | | XM_287996
Zfp14 | 0.8166 | 2.2306
2.2306 | 0.748
0.3323 | 0.6482
1.0967 | | Vmn1r208 | 0.2846 | 2.228 | 0.3323 | 0.6482 | | XM_139826 | 1.1152 | 2.228 | 0.748 | 0.6482 | | Uchl5 | 0.2846 | 2.2227
2.2173 | 0.8291 | 1.2026 | | Hif1an
Sec61a1 | 0.7505
0.4551 | 2.2173 | 0.8291
0.3323 | 1.0084
0.6482 | | Wdr52 | 0.4551 | 2.2118 | 0.5184 | 0.8974 | | XM_285447 | 0.7505 | 2.2118 | | 0.3323 | | Pfkl
XM_159819 | 0.6724
0.5772 | 2.209
2.209 | 0.3323
0.8974 | 0.748
0.748 | | XM_139619
XM_283622 | 0.7505 | 2.209 | 0.3323 | 0.748 | | XM_160677 | 0.6724 | 2.2063 | 0.3323 | 0.8974 | | XM_488274 | | 2.2035 | | 0.3323 | | Arg1
Ccdc47 | 0.5772
0.5772 | 2.2007
2.2007 | 0.3323
0.3323 | 1.2611
0.748 | | Gm4841 | 0.4551 | 2.195 | 0.5525 | 0.8291 | | XM_136496 | 0.874 | 2.195 | 0.748 | 1.2876 | | Mif | 0.4551 | 2.1921 | 0.3323 | 0.5184 | | 2700033N17Rik
NM 183095 | 0.2846
0.5772 | 2.1892
2.1892 | 0.5184 | 0.5184
0.8291 | | Taar6 | 0.4551 | 2.1863 | 0.3323 | 0.5184 | | Lcn4 | 0.5772 | 2.1834 | 1.1701 | 0.8291 | | XM_112000
Zcchc13 | 1.3106
0.6724 | 2.1834
2.1834 | 0.8291
0.5184 | 0.748 | | R3hdm2 | 0.5772 | 2.1805 | 0.3323 | 1.0967 | | Abcb1a | 0.2846 | 2.1775 | | 1.3363 | | Ankrd61 | 0.9247 | 2.1775 | 0.748 | 0.3323 | | Timm8a2
XM 111960 | 0.9247
0.4551 | 2.1775
2.1775 | 0.748
0.748 | 1.0084
1.6824 | | XM_111300
XM_155317 | 0.874 | 2.1745 | 0.8974 | 0.748 | | XM_487442 | 0.8166 | 2.1715 | 0.5184 | 1.2876 | | Ncrna00086 | 0.5772 | 2.1654 | 0.748 | 0.748 | | XM_154071
XM_157117 | 0.6724
0.7505 | 2.1654
2.1654 | 0.3323
0.748 | 1.6611
1.0967 | | Hdx | 0.2846 | 2.1624 | 1.0548 | 0.8291 | | XM_136226 | 0.4551 | 2.1593 | 1.3587 | 0.6482 | | Setd5
XM_142897 | 0.5772 | 2.1561
2.1561 | 0.748
0.8291 | 0.3323
0.8291 | | XM_144249 | 0.5772 | 2.1561 | 0.9565 | 0.6482 | | XM_158324 | 0.5772 | 2.1561 | 0.8291 | 1.3363 | | C030046E11Rik | 0.2846 | 2.153 | 0.3323 | 1.1349 | | XM_152067
XM_160027 | 0.5772
0.8166 | 2.153
2.153 | 1.0084 | 0.6482
0.748 | | 1700071K01Rik | 0.2846 | 2.1499 | 0.5184 | 0.6482 | | Dpp6 | 0.4551 | 2.1467 | 0.6482 | 0.6482 | | Ttc12 | 0.6724 | 2.1435 | 0.5184 | 0.8974 | | XM_138891
C3orf77 | 0.4551
0.2846 | 2.1435
2.1402 | 0.5184 | | | Inpp5b | | 2.1402 | | 0.5184 | | Mrpl47 | 0.5772 | 2.137 | 0.748 | 0.748 | | Tbce
Fam46a | 0.8166
0.5772 | 2.137
2.1337 | 1.0548
0.5184 | 1.5056 | | XM_157625 | 1.3106 | 2.1337 | 0.6482 | 1.5050 | | XM_288365 | 0.97 | 2.1337 | 0.748 | 1.0548 | | Zfp623 | 0.2846 | 2.1337 | | 1.1349 | | Grin1
Ireb2 | 0.2846
0.5772 | 2.1304
2.1304 | 0.3323 | 1.5056
1.0084 | | Med8 | | 2.1304 | 0.3323 | 1.4383 | | XM_138931 | 1.1152 | 2.1304 | 0.6482 | 0.5184 | | Brcc3
Kcns2 | 0.4551 | 2.1271
2.1271 | 0.5184 | 0.748
0.5184 | | Srbd1 | 0.4551 | 2.1271 | 0.3323 | 0.5184 | | Mcoln1 | 0.874 | 2.1237 | 0.748 | 0.8291 | | NM_173366 | 0.8166 | 2.1237 | 1.1701 | 0.5184 | | Kcnj15
C130030J05 | 0.4551
0.7505 | 2.1203
2.1135 | 0.3323
0.5184 | 1.4562
0.5184 | | XM_286709 | 0.7505 | 2.1135 | 0.8291 | 0.5184 | | XM_487654 | 0.2846 | 2.11 | 0.748 | | | Fam176a | 0.2846 | 2.1065 | 0.3323 | | | II34
XM_140136 | 0.2846
0.9247 | 2.1065
2.1065 | 0.748
0.748 | 1.4733
1.3126 | | Hsd17b3 | 0.5772 | 2.1005 | 1.0548 | 1.3120 | | | | 2.103 | | | | XM_285814
XM_489226 | 0.7505 | 2.103
2.0995 | 1.3587 | 0.8291
1.2026 | |------------------------|---------------------------|------------------|------------------|------------------| | Ano3 | 0.4551 | 2.0959 | 0.8291 | 0.5184 | | Slc7a6 | 1.0486 | 2.0959 | 0.6482 | 1.0967 | | LOC440248
Plagl2 | 0.2846 | 2.0923
2.0923 | 0.3323 | 1.3363 | | Abcc9 | 1.0111 | 2.0887 | 0.5184 | 0.6482 | | Cckbr | 0.4551 | 2.0887 | 1.0967 | 0.8291 | | XM_149369 | 0.4551 | 2.0887 | 0.748 | 0.6482 | | Dpcr1
Klhl2 | 0.6724
0.5772 | 2.085
2.0813 | 0.8291
0.6482 | 0.8974
0.8974 | | XM_155133 | 0.6724 | 2.0813 | 0.6482 | 1.2026 | | XM_288566 | 1.0832 | 2.0813 | 0.5184 | 1.0084 | | Cog1 | 0.2846 | 2.0776 | 0.3323 | 0.5184 | | Tmem59
XM 139042 | 0.874 | 2.0776
2.0776 | 0.5184
0.5184 | 1.2611
0.6482 | | XM_142201 | 0.7505 | 2.0776 | 0.6482 | 0.9565 | | AY358078 | 0.4551 | 2.0738 | 0.748 | 0.5184 | | Pin1-ps1 | 0.6724 | 2.0738 | 0.3323 | 0.8291 | | XM_197734
ltpr1 | 0.4551
0.2846 | 2.0738
2.07 | | 0.3323
0.5184 | | XM 147954 | 0.4551 | 2.07 | 0.3323 | 0.8291 | | Nup155 | | 2.0662 | | | | Ocln | 0.8166 | 2.0662 | 0.0400 | 0.748 | | Stbd1
Wdr44 | 0.7505
1.1152 | 2.0662
2.0662 | 0.6482
0.748 | 0.5184
1.0967 | | XM_153222 | 1.1102 | 2.0662 | 0.140 | 0.5184 | | XM_161006 | 0.5772 | 2.0662 | 0.5184 | 0.5184 | | XM_161926 | 0.7505 | 2.0662 | 0.6482 | 0.3323 | | XM_286001
XM_288357 | 0.874
0.8166 | 2.0662
2.0623 | 0.6482
0.748 | 0.8291
1.1701 | | XM_288485 | 0.5772 | 2.0623 | 0.6482 | 1.1701 | | Cst10 | 0.5772 | 2.0584 | 0.6482 | 0.5184 | | Dpys | 0.5772 | 2.0584 | | 0.5184 | | Rlim
Tgm5 | 0.874
1.145 | 2.0584
2.0584 | 0.6482
0.3323 | 0.6482
1.4562 | | XM_128922 | 0.2846 | 2.0584 | 0.3323 | 1.4302 | | XM_143314 | 0.6724 | 2.0584 | 0.6482 | 1.0548 | | Cd24a | 0.2846 | 2.0545 | 0.3323 | | | Emr4
Xdh | 0.9247
0.2846 | 2.0545
2.0545 | 0.5184 | 0.3323 | | XM 157396 | 0.4551 | 2.0545 | 0.748 | 0.748 | | 6030498E09Rik | 0.5772 | 2.0505 | 0.5184 | 0.3323 | | Ccnk | 0.7505 | 2.0505 | 0.3323 | 1.0548 | | Olfr902
Pdia3 | 0.6724 | 2.0505
2.0505 | | 0.748 | | Themis | 0.6724 | 2.0505 | 0.748 | 0.9565 | | Vmn1r195 | 0.97 | 2.0505 | 0.748 | 0.9565 | | Alox12b | 0.5772 | 2.0465 | 1.2876 | 0.8291 | | NM_175323
XM_146428 | 1.0486
1.1152 | 2.0465
2.0465 | 0.5184
0.5184 | 0.6482
0.748 | | B230219D22Rik | 0.7505 | 2.0425 | 0.6482 | 0.6482 | | Med24 | 0.7505 | 2.0425 | 0.3323 | 1.1349 | | Mettl22 | 0.7505 | 2.0425
2.0425 | 0.5184 | 1.5056 | | XM_143530
XM_356870 | 0.5772
0.6724 | 2.0425 | 0.3323
0.6482 | 1.38
0.9565 | | Rgs2 | 1.5116 | 2.0384 | 0.3323 | 0.5184 | | XM_284785 | 0.4551 | 2.0384 | 0.5184 | 0.5184 | | XM_140005 | 1.5695 | 2.0343 | | 0.5184 | | XM_207320
XM_289092 | 0.5772 | 2.0343
2.0343 | 0.3323 | 0.6482 | | FLJ38973 | 0.2846 | 2.0301 | 0.5184 | 0.0.102 | | Uck2 | 0.5772 | 2.0301 | 0.3323 | 0.9565 | | XM_138727 | 0.7505 | 2.0301 | 0.9565 | 0.8974 | | XM_288757
Galnt10 | 1.0486
0.4551 | 2.0301
2.0259 | 1.0967 | 0.5184
0.748 | | Tox | 0.7505 | 2.0259 | 0.6482 | 1.1349 | | XM_158701 | 0.2846 | 2.0259 | | 0.748 | | XM_289459 | 0.6724 | 2.0259 | 0.3323 | 0.6482 | | XM_489850
Akr1c20 | 0.5772 | 2.0259
2.0217 | | 0.5184
0.3323 | | Mtx2 | 0.7505 | 2.0217 | 0.6482 | 0.3323 | | Ttll8 | 0.2846 | 2.0217 | 0.9565 | 1.0967 | | XM_154529 | 0.8166 | 2.0217 | | 0.5184 | | XM_288366
XM_290165 | 0.2846 | 2.0217
2.0217 | 1,7754 | 0.3323
0.5184 | | Csnk2b | 1.0111 | 2.0174 | 1.0548 | 0.5184 | | XM_483933 | 0.874 | 2.0174 | 0.3323 | 0.9565 | | Abcb10 | 0.0400 | 2.0131 | 1.0548 | 1.3587 | | Impact
Nirp1a | 0.8166
0.8166 | 2.0131
2.0131 | 0.8974
0.3323 | 0.6482
0.748 | | Vmn1r32 | 0.9247 | 2.0131 | 0.748 | 0.3323 | | | 0.5772 | 2.0087 | | 0.3323 | | 1700110C19Rik | 0.0704 | 2.0087 | 0.6482 | 0.5184 | | Akr1b8 | 0.6724 | | | | | | 0.6724
0.5772
0.874 | 2.0087
2.0087 | 0.748
0.8974 | 1.1349
1.0967 | | 71-41-00 | 0.0400 | 0.0007 | 2.0000 | 4 0004 | |----------------------------|------------------|------------------|------------------|------------------| | Zbtb20
Irak1bp1 | 0.8166 | 2.0087
2.0043 | | 1.0084 | | Rbbp6 | 0.874 | 2.0043 | | 0.3323 | | Rcor2 | 0.6724 | 2.0043 | 0.5184 | 0.8974 | | Unc13b | | 2.0043 | 0.2222 | 1.0967 | | Ctsz
XM_111991 | 0.7505 | 1.9999
1.9999 | 0.3323
1.0548 | 1.0084
0.8291 | | XM_149318 | 0.5772 | 1.9999 | 0.5184 | 1.0084 | | Ccdc86 | 0.97 | 1.9954 | 0.6482 | 0.3323 | | XM_484255 | 0.7505 | 1.9954 | 0.3323 | 0.5184 | | 0610010F05Rik
XM 147461 | 1.0111
0.5772 | 1.9908
1.9908 | 0.6482 | 1.0548
0.3323 | | XM_196055 | 0.5772 | 1.9908 | 0.5184 | 0.748 | | Plxdc2 | 0.5772 | 1.9862 | 1.2026 | 0.8291 | | Wdr66 | 0.6724 | 1.9862 | 0.748 | 1.1701 | | XM_137301
XM_164596 | 0.4551
0.9247 | 1.9862
1.9862 | 0.3323
0.5184 | 0.8291
1.3126 | | Olfr1128 | 0.6724 | 1.9816 | 0.3323 | 0.5184 | | Wbp11 | 0.6724 | 1.9816 | 0.748 | 1.1349 | |
XM_143076 | 1.3106 | 1.9816 | 0.3323 | 0.8291 | | XM_165074
Adam2 | 0.6724
0.5772 | 1.9816
1.9769 | 0.8291
1.0084 | 1.2328
0.5184 | | CXorf15 | 0.2846 | 1.9769 | 1.0004 | 0.5184 | | NM_172949 | 0.4551 | 1.9769 | | | | Srpx | 0.5772 | 1.9721 | | 0.3323 | | XM_147077
XM_196466 | 0.8166 | 1.9721
1.9721 | | | | 1700061I17Rik | 0.2846 | 1.9673 | 0.5184 | 0.5184 | | Ccdc87 | 0.6724 | 1.9673 | | | | Osbpl10 | 0.7505 | 1.9673 | 0.9565 | 0.8291 | | Tspan11
XM 145639 | 0.5772
1.4449 | 1.9673
1.9673 | 0.5184
0.5184 | 1.1349
0.8291 | | XM 286939 | 0.5772 | 1.9673 | 1.4562 | 0.5184 | | Dcun1d4 | 0.4551 | 1.9625 | 0.748 | 0.748 | | Gm4910 | 0.8166 | 1.9625 | 0.5184 | 0.3323 | | Mast1
Slc9a1 | 0.4551 | 1.9625
1.9625 | 0.3323
0.5184 | 0.5184
0.5184 | | Ube2e1 | 0.2846 | 1.9625 | 0.6482 | 1.5903 | | XM_153787 | 0.2846 | 1.9625 | | 0.5184 | | XM_157802 | 0.4551 | 1.9625 | 0.6482 | 0.748 | | XM_195450
XM_205047 | 1.2238 | 1.9625
1.9625 | 0.3323 | 0.3323
0.8291 | | XM 287115 | 0.6724 | 1.9625 | 0.5184 | 0.748 | | Ddx25 | 0.6724 | 1.9576 | | 1.0967 | | Rsph6a | 0.5772 | 1.9576 | | 0.8291 | | Tor1aip2
XM 287930 | 0.6724
0.5772 | 1.9576
1.9576 | 0.3323 | 0.6482
0.6482 | | XM_288883 | 0.2846 | 1.9576 | 0.748 | 0.6482 | | Krtap13-1 | | 1.9526 | | 1.4897 | | Olr1734 | 0.4551 | 1.9526 | 0.6482 | 0.0000 | | XM_138327
XM_286315 | 0.7505 | 1.9526
1.9526 | 0.3323 | 0.3323 | | Spats2l | | 1.9476 | 0.5184 | 0.5184 | | Srp72 | 0.8166 | 1.9476 | 0.5184 | 1.38 | | Trmt5 | 0.4551 | 1.9476 | 1.2328 | 0.5184 | | Wdr59
XM_153298 | 0.6724
0.4551 | 1.9476
1.9476 | 0.3323
0.3323 | 0.748 | | XM_157269 | 0.5772 | 1.9476 | 0.748 | 1.0967 | | XM_160052 | 0.6724 | 1.9476 | 0.748 | 0.8974 | | XM_198046 | 0.4551 | 1.9476 | 0.5184 | 0.6482 | | XM_205424
Cnksr2 | 0.2846
0.97 | 1.9476
1.9425 | | 0.3323 | | Gcfc1 | 0.2846 | 1.9425 | | 0.3323 | | Ltb4r2 | | 1.9425 | 0.3323 | 1.2611 | | Tyk2 | 0.2846 | 1.9425 | 0.3323 | 4.4704 | | XM_197764
XM_287357 | 0.4551
0.2846 | 1.9425
1.9425 | 1.2026
0.3323 | 1.1701 | | BC005764 | 0.5772 | 1.9374 | 0.748 | 0.3323 | | Heatr1 | 0.97 | 1.9374 | 0.5184 | 0.9565 | | Ncoa3 | 0.5772 | 1.9374 | 0.0004 | 0.5184 | | XM_160842
Ankrd22 | 0.7505
0.2846 | 1.9374
1.9321 | 0.8291
0.3323 | 1.0084 | | Dock2 | 0.2846 | 1.9321 | 0.6482 | 0.9565 | | Naa16 | | 1.9321 | 0.3323 | 0.3323 | | Spp1 | 1.7231 | 1.9321 | 0.3323 | 0.748 | | Ak3
Emb | 0.4551 | 1.9269
1.9269 | 0.748 | 0.5184
1.5357 | | XM_288765 | 0.2846 | 1.9269 | 0.6482 | 0.5184 | | Fam167b | 0.4551 | 1.9216 | 0.3323 | 1.5056 | | Gfra2 | 0.0704 | 1.9216 | 0.3323 | 0.5184 | | XM_138742
XM_163306 | 0.6724
0.2846 | 1.9216
1.9216 | 1.2026
0.3323 | 0.3323
1.4733 | | XM_287222 | 1.6748 | 1.9216 | 0.3323 | 0.8974 | | Fcgr3 | 0.4551 | 1.9162 | 0.3323 | | | Gm4861 | 0.4551 | 1.9162 | 0.8291 | 0.6482 | | Myl6
XM_151226 | 0.2846
0.8166 | 1.9162
1.9162 | 0.3323
0.5184 | 0.6482
0.5184 | | | 0.0100 | 1.0102 | 5.5104 | 0.0,04 | | V44 405400 | 0.0400 | 4 0400 | 0.0400 | 0.0074 | |----------------------------|------------------|------------------|------------------|------------------| | XM_165182
XM_181351 | 0.8166
0.6724 | 1.9162
1.9162 | 0.6482 | 0.8974
0.5184 | | XM_288344 | 0.6724 | 1.9162 | 0.5184 | 0.6482 | | XM_289024 | 0.2846 | 1.9162 | | | | Amdhd1 | 0.6724 | 1.9107 | 0.8974 | 0.8291 | | Ccny | 0.4551 | 1.9107
1.9107 | 0.5184 | 0.748 | | Fkbp11
Klc2 | 0.4551 | 1.9107 | 0.5184 | 0.3323 | | Mageb4 | 0.4331 | 1.9107 | 0.5184 | 1.0548 | | Olfr690 | 0.0100 | 1.9107 | 0.0101 | 1100 10 | | Phospho2 | 0.5772 | 1.9107 | 0.6482 | 0.8974 | | Smpd2 | 0.97 | 1.9107 | 0.3323 | 0.8291 | | XM_112088 | 0.7505 | 1.9107 | 0.5184 | 0.6482 | | XM_140510
4921524J17Rik | 0.874
1.0111 | 1.9107
1.9052 | 0.748
0.3323 | 0.3323
0.5184 | | XM 127959 | 0.4551 | 1.9052 | 0.5184 | 0.3323 | | XM_130033 | 0.4551 | 1.9052 | 0.0104 | 0.3323 | | XM_137067 | 1.145 | 1.9052 | | 0.5184 | | XM_139608 | 0.6724 | 1.9052 | 1.2876 | 0.8291 | | XM_153721 | 0.7505 | 1.9052 | 0.3323 | 1.6719 | | XM_154525
XM_161619 | 0.7505
0.5772 | 1.9052
1.9052 | 0.5184
0.5184 | 1.4733
0.748 | | XM_286728 | 0.4551 | 1.9052 | 0.3323 | 0.748 | | XM_287668 | 0.6724 | 1.9052 | 0.6482 | 1.4897 | | XM_288193 | 0.5772 | 1.9052 | 0.5184 | 0.6482 | | A230050P20Rik | | 1.8996 | 0.9565 | 0.748 | | Kcnn1 | 0.2846 | 1.8996 | | 0.5184 | | Slc17a6 | 0.0704 | 1.8996 | 0.8291 | 0.3323 | | XM_285570
2310002L09Rik | 0.6724
0.5772 | 1.8996
1.8939 | 0.8291
0.5184 | 1.0967
1.0084 | | App | 0.4551 | 1.8939 | 0.8291 | 1.0967 | | NM_177065 | | 1.8939 | 0.5184 | 1.0084 | | XM_142475 | 0.2846 | 1.8939 | | 0.3323 | | XM_341661 | 0.2846 | 1.8939 | | 0.3323 | | 1100001G20Rik
Rnf222 | | 1.8881 | 0.8974 | 0.3323 | | XM_141259 | 0.4551
0.4551 | 1.8881
1.8881 | 0.3323
0.748 | 1.2611
0.6482 | | XM_155978 | 0.4551 | 1.8881 | 0.3323 | 0.3323 | | XM_163100 | 0.4551 | 1.8881 | 0.8291 | 0.6482 | | XM_285637 | 0.7505 | 1.8881 | 0.5184 | 0.3323 | | 5830433M19Ril | | 1.8823 | 0.5184 | 0.8291 | | Cbfa2t2 | 0.874 | 1.8823 | 0.3323 | 0.3323 | | Cox7b
Gm5068 | 0.6724
0.4551 | 1.8823
1.8823 | 0.3323
0.3323 | 0.748
0.6482 | | Ints5 | 0.4331 | 1.8823 | 0.5184 | 1.1349 | | Olig1 | 0.01 | 1.8823 | 0.0101 | 0.3323 | | Trim65 | | 1.8823 | | | | XM_165072 | 0.5772 | 1.8823 | 0.3323 | 0.748 | | XM_286539 | 1.6206 | 1.8823 | 0.0505 | 0.8974 | | XM_289039
Ccdc111 | 0.7505
0.97 | 1.8823
1.8764 | 0.9565
0.8291 | 1.1701
1.0084 | | Dnajb8 | 0.6724 | 1.8764 | 0.5184 | 1.0084 | | Hint1 | 0.7505 | 1.8764 | 0.0101 | 0.3323 | | Iqcg | 0.7505 | 1.8764 | | 0.5184 | | XM_135370 | 0.5772 | 1.8764 | 0.5184 | 1.1349 | | XM_285045 | 0.4551 | 1.8764 | 0.5184 | 1.0084 | | XM_288778 | 0.4551 | 1.8764
1.8764 | 0.5184 | 1.1349 | | XM_288875
XM_357237 | 0.4551
0.2846 | 1.8764 | 0.748
0.5184 | 0.6482 | | Klhl30 | 0.4551 | 1.8704 | 0.0104 | 0.3323 | | XM_109346 | 0.9247 | 1.8704 | | 0.8291 | | XM_285254 | 0.2846 | 1.8704 | | 0.8291 | | XM_289066 | 0.5772 | 1.8704 | 0.5184 | 0.3323 | | Agtr1b
Apln | 0.8166
0.7505 | 1.8643
1.8643 | 0.748 | 1.6272
0.748 | | BC031353 | 0.7305 | 1.8643 | 0.748 | 0.748 | | Clcn6 | 0.5772 | 1.8643 | 0.748 | 1.6029 | | Slc25a17 | | 1.8643 | | 0.3323 | | XM_152089 | 0.4551 | 1.8643 | 0.3323 | 0.748 | | XM_234130 | 0.4557 | 1.8643 | 0.3323 | 0.8291 | | Hpse
Olfm4 | 0.4551
0.6724 | 1.8581
1.8581 | 1.1701
0.6482 | 0.6482
1.5209 | | XM_161811 | 0.8166 | 1.8581 | 0.0462 | 0.8291 | | Afap1l2 | 0.5772 | 1.8519 | 0.6482 | 0.6482 | | Efhc2 | 0.9247 | 1.8519 | 1.0548 | 0.748 | | Erp44 | 0.6724 | 1.8519 | 0.5184 | 0.3323 | | Glt25d1 | 0.2846 | 1.8519 | 0.5404 | 4.0014 | | Pik3cb
Samd7 | 0.2846
0.8166 | 1.8519
1.8519 | 0.5184
0.6482 | 1.6611
0.8974 | | Samo7
XM_161927 | 0.8166 | 1.8519 | 1.2328 | 0.8974 | | XM_287229 | 0.7505 | 1.8519 | 0.5184 | 0.5184 | | Abcd1 | 0.7505 | 1.8455 | 0.3323 | 0.8291 | | Aplf | 0.6724 | 1.8455 | 0.5184 | 0.748 | | Clps | 0.5772 | 1.8455 | 0.748 | 0.9565 | | | | 1.8455 | 1.2026 | 0.8291 | | Cmtm2a | 0.8166 | 1 8/155 | | 0 3333 | | | 0.8166 | 1.8455
1.8455 | 0.6482 | 0.3323
0.748 | | Sox6 | 0.2846 | 1.8455 | 0.5184 | 0.3323 | |--------------------------------|------------------|------------------|------------------|------------------| | XM_163871
XM_285628 | 0.5772
0.5772 | 1.8455
1.8455 | 0.5184
0.3323 | 0.9565
0.5184 | | XM_286875 | 0.6724 | 1.8455 | 0.3323 | 0.5184 | | Entpd8 | 0.4551 | 1.8391 | 0.3323 | 0.5184 | | XM_139314 | 0.4551 | 1.8391 | 1.2876 | 0.6482 | | XM_143834 | 0.5772 | 1.8391 | 1.0084 | 0.5184 | | XM_157388 | 0.5772 | 1.8391 | 0.5184 | 0.5184 | | XM_163843
Gia6 | 0.2846
0.2846 | 1.8391
1.8326 | 0.6482
0.5184 | 1.1349 | | Mcm3 | 0.6724 | 1.8326 | 0.5184 | 0.8291 | | Mrps18a | 0.6724 | 1.8326 | 0.3323 | 1.2026 | | Poldip2 | | 1.8326 | 0.5184 | 0.5184 | | Ptprb | 0.6724 | 1.8326 | | 0.3323 | | Tlcd2
XM 155314 | 0.8166
0.4551 | 1.8326
1.8326 | 0.748
0.5184 | 0.8291 | | Ankrd13c | 0.4551 | 1.8259 | 0.5184 | 0.3323 | | Eya4 | 0.4551 | 1.8259 | 0.3323 | 0.5184 | | Gpld1 | 0.4551 | 1.8259 | 0.5184 | 1.38 | | Olr1242 | 0.7505 | 1.8259 | 0.5184 | 1.0548 | | Otud5 | 0.9247 | 1.8259 | 0.6482 | 1.2611 | | XM_157669
XM_289504 | 0.4551
0.4551 | 1.8259
1.8259 | 0.5184 | 0.5184 | | XM_203304
XM_357168 | 0.4001 | 1.8259 | 0.6482 | 0.5525 | | Bhlhb9 | 0.8166 | 1.8192 | 0.6482 | 0.748 | | Olr346 | 0.6724 | 1.8192 | | 0.5184 | | Scamp5 | 0.4551 | 1.8192 | | 2.2122 | | Tdpoz5 | 0.7505 | 1.8192
1.8192 | 1.4003 | 0.6482 | | XM_194911
XM_284355 | 0.2846 | 1.8192 | 0.3323 | 0.8291
1.5639 | | XM_288050 | 0.7505 | 1.8192 | 0.3323 | 0.3323 | | 4921517D21Rik | | 1.8124 | | | | Abcg8 | 0.4551 | 1.8124 | | 0.3323 | | Ccdc83 | 0.5772 | 1.8124 | 0.5184 | 0.3323 | | Prkci
Rnf5 | 0.2846
0.5772 | 1.8124
1.8124 | 0.5184 | 0.6482 | | Sacs | 0.6724 | 1.8124 | 0.3323 | 1.0548 | | XM_221212 | 0.0121 | 1.8124 | 0.5184 | | | XM_288944 | 0.6724 | 1.8124 | 0.6482 | 1.0548 | | 1300015D01Rik | | 1.8054 | 0.5184 | 0.748 | | 6330531I01Rik
9530004P13Rik | 0.4551 | 1.8054
1.8054 | 1.0548
0.6482 | 0.5184
0.3323 | | Atp5g3 | 0.2846 | 1.8054 | 0.0402 | 0.3323 | | Efcab3 | 0.4551 | 1.8054 | 0.8291 | 0.3323 | | Gm12108 | 0.4551 | 1.8054 | | 1.0967 | | Grpel2 | 0.5772 | 1.8054 | 0.5184 | 0.5184 | | Porcn
Tssc8 | 0.2846
0.4551 | 1.8054
1.8054 | 0.748 | 0.748 | | Vmn1r227 | 0.4551 | 1.8054 | 0.748 | 1.1701 | | XM 288395 | 0.5772 | 1.8054 | 0.0020 | 0.748 | | XM_487438 | | 1.8054 | | | | 4930539M17Rik | | 1.7983 | 0.3323 | 0.748 | | Pltp | 0.4551 | 1.7983 | 0.3323 | 4.0500 | | Wars
XM_196752 | 0.4551
0.5772 | 1.7983
1.7983 | 0.5184
0.6482 | 1.8589
0.5184 | | XM_130732
XM_285085 | 1.2904 | 1.7983 | 0.3323 | 1.1349 | | Adam23 | 0.6724 | 1.7912 | 0.8974 | 0.3323 | | Cd163l1 | 0.97 | 1.7912 | 0.5184 | | | Fgfr2
| 0.0047 | 1.7912 | | 0.5104 | | Pcdhb4
Psma5 | 0.9247
0.874 | 1.7912
1.7912 | 0.3323 | 0.5184
0.8291 | | Wdr55 | 0.4551 | 1.7912 | 0.5184 | 1.0548 | | XM_163503 | 0.2846 | 1.7912 | | | | XM_285502 | 0.2846 | 1.7912 | | 0.3323 | | XM_288801 | 0.8166 | 1.7912 | 0.3323 | 0.748 | | XM_292193
Adap1 | 0.5772 | 1.7912
1.7839 | 0.6482 | 1.2026 | | Krtap7-1 | 0.5112 | 1.7839 | 0.0402 | 0.6482 | | XM_160229 | 0.4551 | 1.7839 | 0.8291 | 0.6482 | | XM_206352 | 0.9247 | 1.7839 | | 1.4003 | | 5430411K18Rik | | 1.7764 | 0.6482 | 0.8291 | | Ablim1
II1f9 | 0.5772 | 1.7764
1.7764 | 0.8974 | | | Nat3 | 0.8166 | 1.7764 | 0.748 | 0.748 | | Oat | 0.5772 | 1.7764 | 0.3323 | 0.6482 | | Olfr820 | 0.2846 | 1.7764 | 0.3323 | 1.2876 | | XM_144264 | 0.4551 | 1.7764 | | 1.6272 | | XM_161895 | 0.5772 | 1.7764 | 0.0000 | 4.4760 | | XM_285386
XM_289986 | 0.2846
0.874 | 1.7764
1.7764 | 0.3323
0.6482 | 1.4733
1.3363 | | 2010107G23Rik | | 1.7689 | 0.0402 | 1.5505 | | Caps2 | 0.4551 | 1.7689 | | 0.8291 | | Fah | 0.2846 | 1.7689 | | 0.3323 | | Gm5640 | 0.5772 | 1.7689 | 0.3323 | 0.9565 | | Npat
Spry3 | 0.2846
0.4551 | 1.7689
1.7689 | 0.5184 | 0.5184
0.3323 | | Tmem9 | 0.2846 | 1.7689 | 0.6482 | 0.3323 | | - | | | | | | XM_146593 | 0.2846 | 1.7689 | | 0.6482 | |------------------------|------------------|------------------|------------------|------------------| | XM_164897
XM_286379 | 0.5772
0.8166 | 1.7689
1.7689 | | 0.3323
0.3323 | | Aif1I | 0.0100 | 1.7612 | 0.5184 | 0.8291 | | Hba-x | | 1.7612 | 0.0101 | 1.3587 | | Sertad3 | 0.7505 | 1.7612 | 0.5184 | 0.6482 | | XM_137242 | | 1.7612 | | | | XM_143387 | 0.97 | 1.7612 | 0.5184 | 0.6482 | | XM_489678 | 0.2846 | 1.7612 | 0.8974 | 0.5184 | | Zfp52 | 1 0111 | 1.7612
1.7612 | 1.2026 | 0.8974 | | Zfp862
Bop1 | 1.0111
1.6662 | 1.7534 | 0.5184 | 1.1701 | | Ccnj | 0.4551 | 1.7534 | 0.3323 | 1.1701 | | Higd1b | 1.5473 | 1.7534 | 0.0020 | 0.748 | | Mob3b | | 1.7534 | | 0.6482 | | Nlrp9a | 0.7505 | 1.7534 | 0.8974 | 1.0084 | | Sox11 | 0.2846 | 1.7534 | | | | XM_206777 | 0.4551 | 1.7534 | 0.3323 | 0.5184 | | XM_287244 | 0.4551 | 1.7534 | 0.748 | 0.5184 | | XM_287323 | 0.5772 | 1.7534 | 0.3323 | 0.5184 | | Agbl2 | 0.9247 | 1.7454 | 0.5404 | 0.5184 | | Gm4832
Olfr1461 | 0.2846
0.6724 | 1.7454
1.7454 | 0.5184
0.3323 | 0.3323
1.2328 | | Ppargc1a | 0.0724 | 1.7454 | 0.5184 | 1.2320 | | Shc2 | 0.4551 | 1.7454 | 0.6482 | 1.7124 | | XM_156861 | 0.4551 | 1.7454 | 1.3126 | 0.5184 | | XM_196628 | 0.9247 | 1.7454 | 0.748 | 0.6482 | | Cenpe | 0.5772 | 1.7373 | 1.5773 | 0.5184 | | Nf2 | 0.4551 | 1.7373 | | | | Ptprz1 | 0.5772 | 1.7373 | 0.3323 | 0.6482 | | Sbno1 | 1.0832 | 1.7373 | 0.8974 | 0.8291 | | Tmem87a
Tmprss11c | A 5770 | 1.7373 | 0.6482 | 0.748 | | XM_127049 | 0.5772
0.2846 | 1.7373
1.7373 | 0.6482 | 0.5184 | | XM_127043
XM_162911 | 0.4551 | 1.7373 | 0.0402 | 0.748 | | XM 289148 | 0.9247 | 1.7373 | 0.5184 | 0.5184 | | Antxr2 | 0.5772 | 1.729 | 0.5184 | 1.1349 | | Dlec1 | 0.4551 | 1.729 | | 0.3323 | | Smyd3 | 0.2846 | 1.729 | 1.0084 | 1.38 | | XM_161867 | | 1.729 | 0.8291 | 0.6482 | | XM_288769 | 1.145 | 1.729 | 0.3323 | 0.3323 | | XM_288787 | 0.2846 | 1.729
1.7205 | 0.6482 | 0.3323
0.5184 | | Cyp4a12b
Glipr1l2 | 0.4551 | 1.7205 | 0.3323
0.5184 | 0.5184 | | Slc22a4 | 0.6724 | 1.7205 | 0.3323 | 1.0084 | | XM_162358 | 0.2846 | 1.7205 | 0.0020 | 0.6482 | | XM_162980 | | 1.7205 | 0.3323 | 0.5184 | | XM_164043 | 0.874 | 1.7205 | 0.3323 | 1.2611 | | XM_288317 | 0.4551 | 1.7205 | | 1.6926 | | XM_288702 | 0.6724 | 1.7205 | 0.3323 | 1.7124 | | XM_289503 | 0.7505 | 1.7205 | 0.5184 | 0.8974 | | a
Fam169b | 0.6724
0.874 | 1.7119
1.7119 | 1.0084 | 0.748 | | Mfi2 | 0.074 | 1.7119 | 1.0064 | 0.740 | | NM 177014 | | 1.7119 | 0.5184 | 0.6482 | | Sgol1 | 0.2846 | 1.7119 | 1.3363 | 0.748 | | Slc38a9 | 0.5772 | 1.7119 | 0.6482 | 1.55 | | XM_143022 | 0.5772 | 1.7119 | 1.3363 | 0.748 | | XM_147435 | 0.874 | 1.7119 | 1.0548 | 0.6482 | | XM_164973 | 0.4551 | 1.7119 | 0.3323 | 0.3323 | | XM_197853 | 0.5772 | 1.7119 | 0.6482 | 0.748 | | XM_285028
XM_286123 | 0.4551
0.5772 | 1.7119
1.7119 | 0.6482
0.3323 | 1.0084
0.5184 | | 2410002I01Rik | 0.5772 | 1.7119 | 0.3323 | 0.5184 | | Braf | 0.5772 | 1.7032 | 0.3323 | 1.4562 | | Fancf | 0.7505 | 1.7032 | 0.6482 | 1.0548 | | Gm10590 | | 1.7032 | 0.3323 | 0.748 | | Ngrn | 0.6724 | 1.7032 | | 1.5903 | | Nup50 | 0.4551 | 1.7032 | | 1.2876 | | Qser1 | 0.4551 | 1.7032 | 0.5184 | | | Sema4g | 0.2846 | 1.7032 | 0.748 | 0.5184 | | Tmed2
XM_112038 | 0.2846
0.6724 | 1.7032
1.7032 | 0.5184
0.748 | 0.3323
0.6482 | | XM_157110 | 0.4551 | 1.7032 | 0.748 | 1.3587 | | Zfp426 | 0.2846 | 1.7032 | 0.3323 | | | Zfp874a | 0.5772 | 1.7032 | 0.5184 | 0.3323 | | 4930433I11Rik | 0.4551 | 1.6942 | 0.3323 | 1.0084 | | 6430598A04Rik | 0.6724 | 1.6942 | | 0.3323 | | Atp9b | | 1.6942 | | 0.3323 | | Cadps2 | | 1.6942 | | | | Cttnbp2 | 0.6724 | 1.6942 | 0.3323 | 1.8377 | | Harbi1
Hsd17b7 | 0.7505 | 1.6942
1.6942 | 0.6482 | 0.8291 | | Rfxap | 0.2846 | 1.6942 | 0.5184
0.5184 | | | Tspan5 | | 1.6942 | 0.3323 | 0.0281 | | Usp34 | 0.6724 | 1.6942 | 0.6482 | 0.6482 | | XM_127137 | | 1.6942 | | 0.5184 | | - | | | | | | XM_142047 | 0.6724 | 1.6942 | 1.3587 | 1.0967 | |------------------------|------------------|------------------|------------------|------------------| | XM_149716
XM_155802 | 0.7505 | 1.6942
1.6942 | 0.6482
0.3323 | 0.6482 | | XM_159802 | 0.7505 | 1.6942 | 0.6482 | 0.3323 | | XM_288581 | 0.874 | 1.6942 | 0.0-102 | 0.6482 | | XM_488669 | 0.8166 | 1.6942 | 0.5184 | 1.1349 | | II15ra | 0.6724 | 1.685 | 0.3323 | 1.0084 | | Olfr594 | 0.5772 | 1.685 | 0.5184 | 0.3323 | | Trhde | 1.2693 | 1.685 | 0.3323 | 0.5184 | | Xkrx | 0.8166 | 1.685 | 0.6482 | 0.8291 | | XM_130857 | 0.5772 | 1.685 | 0.3323 | 1.4197 | | XM_156276
XM_198259 | 0.5772
0.6724 | 1.685
1.685 | 0.8974
0.748 | 0.748 | | XM_288146 | 0.0724 | 1.685 | 0.3323 | 0.6482 | | XM 289360 | 1.145 | 1.685 | | 1.1701 | | 4930544O15Rik | | 1.6757 | 0.748 | 0.9565 | | Acbd7 | 0.7505 | 1.6757 | 0.3323 | | | Arfip1 | 0.2846 | 1.6757 | 0.5184 | | | Bpifb1 | | 1.6757 | 0.748 | 0.5184 | | Copb1 | 0.7505 | 1.6757 | 0.3323 | 1.0084 | | Dhrs7 | 0.2846 | 1.6757 | 0.5184 | 0.748 | | Ext1 | 0.4551 | 1.6757 | | 0.3323 | | Samd8
XM 156074 | 0.5772 | 1.6757
1.6757 | | 1.6501 | | XM_197286 | 0.4551
0.2846 | 1.6757 | | 0.748
0.5184 | | XM_207405 | 0.5772 | 1.6757 | 0.6482 | 0.5184 | | XM 284510 | 0.2846 | 1.6757 | 1.6029 | 0.6482 | | Adamts14 | 0.5772 | 1.6662 | 110020 | 0.5184 | | Agk | 0.6724 | 1.6662 | 0.5184 | 0.6482 | | Ccdc38 | 0.9247 | 1.6662 | 0.5184 | 0.6482 | | Chchd8 | 0.2846 | 1.6662 | 0.5184 | 0.5184 | | Defb15 | 1.4302 | 1.6662 | 0.5184 | 0.6482 | | Hoxa2 | 1.2238 | 1.6662 | | 0.8291 | | Nexn | 0.5772 | 1.6662 | | 0.748 | | XM_112742 | 0.4551 | 1.6662 | | 0.3323 | | XM_162896
XM_285799 | 0.6724
0.4551 | 1.6662
1.6662 | | 0.6482
0.5184 | | 1810011O10Rik | | 1.6564 | 0.748 | 0.3323 | | Akt2 | 0.2846 | 1.6564 | 0.3323 | 0.9565 | | Cldn11 | 0.4551 | 1.6564 | 0.9565 | 0.3323 | | Dmrt2 | 0.4551 | 1.6564 | 0.3323 | 0.3323 | | Gm10488 | | 1.6564 | | 0.748 | | XM_206493 | 1.0486 | 1.6564 | 0.5184 | 0.6482 | | XM_288209 | 0.2846 | 1.6564 | 0.748 | 0.6482 | | 4930438A08Rik | | 1.6464 | | 0.748 | | C9orf93 | 0.2846 | 1.6464 | 0.3323 | 0.740 | | Cnih2
Eapp | 0.874
0.4551 | 1.6464
1.6464 | 0.6482
0.3323 | 0.748
0.9565 | | Kbtbd3 | 0.7505 | 1.6464 | 0.8291 | 0.5184 | | Spint2 | 0.4551 | 1.6464 | 0.748 | 1.38 | | XM_198184 | 0.2846 | 1.6464 | 0.7 10 | 0.5184 | | XM_206831 | 0.2846 | 1.6464 | 0.5184 | 0.3323 | | XM_286605 | 0.874 | 1.6464 | 0.5184 | 0.6482 | | XM_288290 | 0.7505 | 1.6464 | 0.5184 | 1.0084 | | XM_289589 | 0.4551 | 1.6464 | 0.6482 | 0.748 | | 6430628N08Rik | | 1.6362 | 0.6482 | 0.9565 | | Ankmy1 | 0.5772 | 1.6362 | 0.5184 | 0.3323 | | Btaf1 | 0.7505 | 1.6362 | 0.6482 | 0.8291 | | Cyp2c68 | 0.2846 | 1.6362 | 0.5184 | 0.748 | | Hadha
Pla2r1 | 0.6724 | 1.6362
1.6362 | 1.38
0.3323 | 1.0548
1.4197 | | XM_155407 | 0.97 | 1.6362 | 0.6482 | 0.8291 | | XM_157542 | 0.5772 | 1.6362 | 0.5184 | | | XM_163082 | 0.6724 | 1.6362 | | 0.9565 | | XM_289321 | 0.7505 | 1.6362 | 0.748 | 0.6482 | | Actn1 | 0.6724 | 1.6257 | | | | Eed | | 1.6257 | 0.6482 | 1.6272 | | Fam57b | 0.7505 | 1.6257 | 0.748 | | | Inpp5a | 0.0704 | 1.6257 | | 0.6482 | | Rab3b | 0.6724 | 1.6257 | 0.6482 | 0.748 | | Slc36a4
XM 144125 | 1.0111 | 1.6257
1.6257 | 0.3323 | 0.3323
0.748 | | XM_144125
XM_153005 | 0.4551 | 1.6257 | | 0.748 | | XM_157855 | 1.5357 | 1.6257 | | 1.2026 | | XM_288426 | 0.2846 | 1.6257 | | | | XM_289138 | 0.2846 | 1.6257 | | 0.6482 | | XM_289445 | 0.4551 | 1.6257 | 0.3323 | 0.6482 | | Cd302 | 0.2846 | 1.615 | 0.6482 | 0.6482 | | Dhx38 | 1.0486 | 1.615 | 0.6482 | | | Fbxo21 | 0.4551 | 1.615 | 0.5184 | 0.3323 | | Igfl3 | 0.5772 | 1.615 | 0.5184 | 0.6482 | | Klk8 | 0.0040 | 1.615 | | 0.3323 | | Krt17
Nanos3 | 0.2846 | 1.615
1.615 | | 0.6482
0.3323 | | NM_009882 | 0.5772 | 1.615 | | 0.5323 | | Prkcc | 0.0112 | 1.615 | 0.5184 | 0.5184 | | Ubfd1 | 0.5772 | 1.615 | 1.2611 | | | | | | | | | Wdr61 XM_138607 XM_142658 XM_155373 XM_195270 XM_288401 XM_288741 Casp14 Efcab4a Frmd5 Lyve1 Nkx6-3 Polr2b Tmem26 Uggt1 XM_142452 XM_142452 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 Slc5a12 XM_156542 XM_156542 XM_197970 | 0.2846
0.4551
0.4551
0.6724
0.8166
0.7505
0.7505
0.6724
0.2846
0.4551
0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.5772
1.1451
0.4551
0.4551 | 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.5927 1.5927 1.5927 | 0.5184
0.3323
0.3323
0.3323
0.8291
0.5184
1.0084
1.0548
0.3323
0.5184
0.3323
0.748
0.8291
0.9565
0.5184
0.748 |
0.3323
0.3323
1.2328
0.8291
0.5184
1.6388
0.748
0.3323
0.748
0.5184
0.5184
0.5184
0.5184
0.5184 | |---|--|--|--|--| | XM_142658 XM_155373 XM_195270 XM_288401 XM_288741 Casp14 Efcab4a Frmd5 Lyve1 Nkx6-3 Polr2b Tmem26 Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 SIC5a12 XM_156542 | 0.4551
0.6724
0.8166
0.7505
0.7505
0.6724
0.2846
0.4551
0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.4551
0.97 | 1.615 1.615 1.615 1.615 1.615 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.5927 1.5927 1.5927 | 0.3323
0.323
0.8291
0.5184
1.0084
1.0548
0.3323
0.5184
0.3323
0.748
0.8291
0.9565
0.5184
0.748 | 1.2328
0.8291
0.5184
0.5184
1.6388
0.748
0.3323
0.748
0.5184
0.8291
0.8291
0.5184
0.3323 | | XM_155373 XM_195270 XM_288401 XM_288401 XM_288741 Casp14 Efcab4a Frmd5 Lyve1 Nkx6-3 Polr2b Tmem26 Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 SIC5a12 XM_156542 | 0.6724 0.8166 0.7505 0.7505 0.6724 0.2846 0.4551 0.8166 0.2846 0.6724 0.5772 0.5772 0.2846 0.6724 0.4551 0.4551 0.4551 0.97 1.145 | 1.615 1.615 1.615 1.615 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.5927 1.5927 1.5927 | 0.3323
0.8291
0.5184
1.0084
1.0548
0.3323
0.5184
0.3323
0.748
0.8291
0.9565
0.5184
0.748
0.8291 | 0.8291
0.5184
0.5184
1.6388
0.748
0.3323
0.748
0.5184
0.8291
0.8291
0.5184
0.5184 | | XM_288401
XM_288741
Casp14
Efcab4a
Frmd5
Lyve1
Nkx6-3
Polr2b
Tmem26
Uggt1
XM_142452
XM_143540
XM_154092
XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
SIC5a12
XM_156542 | 0.8166 0.7505 0.7505 0.6724 0.2846 0.4551 0.8166 0.2846 0.6724 0.5772 0.5772 0.2846 0.6724 0.4551 0.4551 0.97 1.145 | 1.615 1.615 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.5927 1.5927 | 0.5184
1.0084
1.0548
0.3323
0.5184
0.3323
0.748
0.8291
0.9565
0.5184
0.748
0.748 | 0.5184
1.6388
0.748
0.3323
0.748
0.5184
0.8291
0.8291
0.5184
0.5184
0.3323 | | XM_288741
Casp14
Efcab4a
Frmd5
Lyve1
Nkx6-3
Polr2b
Tmem26
Uggt1
XM_142452
XM_143540
XM_154092
XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
SIC5a12
XM_156542 | 0.7505
0.7505
0.6724
0.2846
0.4551
0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.4551 | 1.615 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.604 1.5927 1.5927 1.5927 | 1.0084
1.0548
0.3323
0.5184
0.3323
0.3323
0.748
0.8291
0.9565
0.5184
0.748 | 1.6388
0.748
0.3323
0.748
0.5184
0.8291
0.8291
0.5184
0.5184
0.3323 | | Casp14 Efcab4a Frmd5 Lyve1 Nkx6-3 Polr2b Tmem26 Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 SIc5a12 XM_156542 | 0.7505
0.6724
0.2846
0.4551
0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.5927
1.5927
1.5927 | 1.0548
0.3323
0.5184
0.3323
0.3323
0.748
0.8291
0.9565
0.5184
0.748
0.3323 | 0.748
0.3323
0.748
0.5184
0.8291
0.8291
0.5184
0.5184
0.3323 | | Efcab4a Frmd5 Lyve1 Nkx6-3 Polr2b Tmem26 Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 Slc5a12 XM_156542 | 0.6724
0.2846
0.4551
0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97 | 1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.5927
1.5927 | 1.0548
0.3323
0.5184
0.3323
0.3323
0.748
0.8291
0.9565
0.5184
0.748
0.3323 | 0.3323
0.748
0.5184
0.8291
0.8291
0.5184
0.3323 | | Frmd5
Lyve1
Nkx6-3
Polr2b
Tmem26
Uggt1
XM_142452
XM_143540
XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
Sic5a12
XM_156542 | 0.2846
0.4551
0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97 | 1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.5927
1.5927
1.5927 | 0.3323
0.5184
0.3323
0.3323
0.748
0.8291
0.9565
0.5184
0.748 | 0.5184
0.8291
0.8291
0.5184
0.5184
0.3323
0.5184 | | Nkx6-3 Polr2b Tmem26 Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 Slc5a12 XM_156542 | 0.8166
0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.5927
1.5927
1.5927 | 0.3323
0.3323
0.748
0.8291
0.9565
0.5184
0.748 | 0.8291
0.8291
0.5184
0.5184
0.3323 | | Polr2b Tmem26 Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 Slc5a12 XM_156542 | 0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.604
1.604
1.604
1.604
1.604
1.5927
1.5927
1.5927 | 0.3323
0.748
0.8291
0.9565
0.5184
0.748
0.3323 | 0.8291
0.5184
0.5184
0.3323
0.5184 | | Tmem26
Uggt1
XM_142452
XM_143540
XM_154092
XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
Sic5a12
XM_156542 | 0.2846
0.6724
0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.604
1.604
1.604
1.5927
1.5927
1.5927
1.5927 | 0.3323
0.748
0.8291
0.9565
0.5184
0.748
0.3323 | 0.8291
0.5184
0.5184
0.3323
0.5184 | | Uggt1 XM_142452 XM_143540 XM_154092 XM_205369 4930590J08Rik Map3k5 Mylk Ppm1h Rab34 SIc5a12 XM_156542 | 0.5772
0.5772
0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.604
1.604
1.604
1.5927
1.5927
1.5927 | 0.748
0.8291
0.9565
0.5184
0.748
0.3323 | 0.5184
0.5184
0.3323
0.5184 | | XM_143540
XM_154092
XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
Slc5a12
XM_156542 | 0.5772
0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.604
1.5927
1.5927
1.5927
1.5927 | 0.9565
0.5184
0.748
0.3323 | 0.3323 | | XM_154092
XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
SIc5a12
XM_156542 | 0.2846
0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.604
1.5927
1.5927
1.5927
1.5927 | 0.5184
0.748
0.3323 | 0.5184 | | XM_205369
4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
Slc5a12
XM_156542 | 0.6724
0.4551
0.4551
0.97
1.145 | 1.604
1.5927
1.5927
1.5927
1.5927 | 0.748
0.3323 | | | 4930590J08Rik
Map3k5
Mylk
Ppm1h
Rab34
Slc5a12
XM_156542 | 0.4551
0.4551
0.97
1.145 | 1.5927
1.5927
1.5927
1.5927 | 0.3323 | | | Map3k5
Mylk
Ppm1h
Rab34
Slc5a12
XM_156542 | 0.4551
0.4551
0.97
1.145 | 1.5927
1.5927
1.5927 | | 0.8291 | | Mylk Ppm1h Rab34 Slc5a12 XM_156542 | 0.4551
0.97
1.145 | 1.5927
1.5927 | 0.749 | | | Rab34
Slc5a12
XM_156542 | 1.145 | | 0.748 | 0.748 | | Slc5a12
XM_156542 | | | 0.748 | 0.8291 | | XM_156542 | 0.6724 | 1.5927 | 0.3323 | 0.748 | | | 0.7976 | 1.5927
1.5927 | 0.5184 | 1.38
1.6272 | | | 0.874 | 1.5927 | 0.3323 | 0.3323 | | XM_288303 | 1.4991 | 1.5927 | | 1.3126 | | XM_288419 | 0.7505 | 1.5927 | 0.5184 | 0.748 | | XM_488711 | 0.5772 | 1.5927 | 0.3323 | 0.748 | | Zfyve9
4930562A09Rik | 0.5772 | 1.5927 | 0.9201 | 1 2611 | | Ajap1 | 0.5772
0.2846 | 1.5811
1.5811 | 0.8291 | 1.2611 | | Araf | 0.5772 | 1.5811 | 0.748 | 1.2876 | | Ccne2 | 0.6724 | 1.5811 | 0.748 | 0.8974 | | Chl1 | 0.5772 | 1.5811 | | 0.8291 | | Lrp12 | 0.2046 | 1.5811 | 0.3323 | 0.5184 | | Myo1a
Slc9a8 | 0.2846
0.8166 | 1.5811
1.5811 | 0.9565 | 0.5184 | | U90926 | 0.2846 | 1.5811 | 0.0000 | 0.6482 | | XM_147129 | 0.5772 | 1.5811 | | 1.5903 | | XM_147847 | 0.8166 | 1.5811 | | 0.3323 | | XM_148981 | 0.2846 | 1.5811 | | 1.5209 | | XM_156734
XM_213342 | 0.5772
0.4551 | 1.5811
1.5811 | | 0.6482 | | XM 287549 | 0.8166 | 1.5811 | 0.6482 | 0.9565 | | Cask | 0.4551 | 1.5692 | 0.3323 | 0.5184 | | Commd1 | 0.5772 | 1.5692 | 0.6482 | 0.3323 | | Fam98b
Mcam | 0.8166 | 1.5692 | 0.8291
0.6482 | 0.9565 | | Nfxl1 | 0.2846
0.6724 | 1.5692
1.5692 | 0.748 | 1.4197
0.8291 | | NM_012059 | 0.2846 | 1.5692 | 0.6482 | 0.5184 | | NM_029417 | | 1.5692 | | 0.3323 | | Tk2 | 0.2846 | 1.5692 | 0.3323 | 0.8291 | | XM_141439 | 0.4554 | 1.5692 | 0.3323
0.748 | 4 2070 | | XM_144185
XM_149892 | 0.4551
0.2846 | 1.5692
1.5692 | 0.6482 | 1.2876 | | Apob | 0.874 | 1.5569 |
0.5184 | 0.8291 | | 9-Mar | 0.874 | 1.5569 | 0.3323 | 1.0967 | | V1ra1 | 0.6724 | 1.5569 | 0.8291 | 0.5184 | | XM_147625
XM_195001 | 0.4551 | 1.5569
1.5569 | 0.5184 | 0.748
0.8291 | | XM_288979 | 0.7505
0.4551 | 1.5569 | 0.3323 | 0.0291 | | XM_488484 | 0.2846 | 1.5569 | 0.3323 | 0.8974 | | Yrdc | | 1.5569 | | 0.3323 | | Zdhhc12 | 0.4551 | 1.5569 | 0.5184 | 0.8291 | | Cd99
Cdx2 | 0.2846
0.9247 | 1.5443 | 1.4383
0.748 | 0.9074 | | Igf2bp3 | 0.5772 | 1.5443
1.5443 | 0.748 | 0.8974 | | Krt222 | 0.4551 | 1.5443 | 1.0548 | 0.8291 | | Opn5 | 0.6724 | 1.5443 | 0.748 | 0.3323 | | XM_110990 | 0.2846 | 1.5443 | 0.6482 | 0.5184 | | XM_111879
XM_142033 | 0.6724
1.0111 | 1.5443 | 0.8974 | 0.8291 | | XM_142033
XM_145020 | 1.0486 | 1.5443
1.5443 | 0.3323 | 1.1701
0.8974 | | XM_160751 | 0.2846 | 1.5443 | 0.3323 | 0.5184 | | XM_160999 | 0.2846 | 1.5443 | 0.3323 | 0.9565 | | XM_287053 | 0.2846 | 1.5443 | 0.5184 | 0.5184 | | XM_484607 | 0.874 | 1.5443 | 0.6482 | 0.5184 | | 1110003E01Rik
1700024P12Rik | 0.2846 | 1.5313
1.5313 | 0.748
0.3323 | 1.2876
0.3323 | | 1810014F10Rik | 0.5772 | 1.5313 | 0.3323 | 0.5184 | | Camk4 | | 1.5313 | 0.3323 | | | Cbl | | 1.5313 | 0.3323 | 0.3323 | | Dkk3
Hs2st1 | 0.4551
0.4551 | 1.5313
1.5313 | 0.5184
0.6482 | 1.2328 | | Klhl31 | 0.4331 | 1.5313 | 0.0402 | 0.6482 | | Ncaph2
NM_183292 | 0.874
0.4551 | 1.5313
1.5313 | 0.3323
0.8974 | 1.0548
0.8974 | |--|---|---|--|---| | Oip5 | 0.4331 | 1.5313 | 0.3323 | 0.8974 | | Pir | 0.4551 | 1.5313 | | 0.6482 | | Tmem22 | 0.7505 | 1.5313 | 0.8291 | 1.0967 | | Tsc22d3 | 0.7505 | 1.5313 | 0.748 | 0.8974 | | XM_111753 | 0.8166
0.4551 | 1.5313 | 1.0084 | 0.748 | | XM_140592
XM_150977 | 0.4331 | 1.5313
1.5313 | 0.3323
0.5184 | 0.6482 | | XM_151045 | 0.0112 | 1.5313 | 0.0104 | | | XM_152211 | 0.874 | 1.5313 | 0.5184 | 1.2611 | | XM_204847 | 0.7505 | 1.5313 | | 0.748 | | XM_288888 | 0.2846 | 1.5313 | 0.3323 | 0.748 | | XM_289546
XM_346316 | 0.5772 | 1.5313
1.5313 | 0.5184
0.748 | 0.6482
0.8291 | | 4930504O13Rik | 0.9247 | 1.518 | 0.740 | 0.3323 | | 4931429I11Rik | 0.7505 | 1.518 | 0.5184 | 0.8974 | | Bola3 | 0.97 | 1.518 | 0.748 | 0.6482 | | Hexim1 | 0.5772 | 1.518 | | 1.38 | | Mat2b | 1.1152 | 1.518 | | 1.0084 | | Palmd
Polr3c | 0.4551
0.2846 | 1.518
1.518 | | 0.5184 | | Ptger3 | 1.0832 | 1.518 | 0.8291 | 0.5164 | | XM_130353 | 110002 | 1.518 | 0.0201 | 0.1 10 | | XM_136846 | 0.5772 | 1.518 | 1.0967 | 0.8974 | | XM_137071 | | 1.518 | | | | XM_152176 | 0.7505 | 1.518 | | 1.2026 | | XM_158745
XM_195255 | 0.7505 | 1.518
1.518 | 0.5184 | 1.4383 | | XM_206400 | 0.2846 | 1.518 | 1.3126 | 0.3323
0.3323 | | XM_284852 | 0.8166 | 1.518 | 0.748 | 1.0967 | | XM_285518 | 0.5772 | 1.518 | 0.6482 | 0.748 | | XM_286390 | 0.7505 | 1.518 | | | | XM_487037 | 0.8166 | 1.518 | | 0.748 | | 1700093K21Rik
2900040C04Rik | 0.874 | 1.5042 | 0.5184 | 0.3323 | | 2900040C04RIK
Alas2 | 0.2846
0.4551 | 1.5042
1.5042 | 1.2328 | 0.6482
1.2328 | | Gabrq3 | 0.6724 | 1.5042 | 0.5184 | 1.0967 | | NM_175288 | 0.4551 | 1.5042 | 0.5184 | 0.5184 | | Plekhf2 | 0.7505 | 1.5042 | 0.6482 | 1.0548 | | Sprr2f | 0.5772 | 1.5042 | 1.38 | 0.5184 | | Tcp11I1
Tnfrsf10b | 0.2846
0.97 | 1.5042
1.5042 | | 1.1701 | | Vmn1r74 | 0.7505 | 1.5042 | 0.5184 | 0.3323 | | Vsiq1 | 0.8166 | 1.5042 | 1.38 | 0.3323 | | XM_142194 | 0.2846 | 1.5042 | 0.3323 | | | XM_149397 | 0.2846 | 1.5042 | 0.8974 | 0.748 | | XM_154121 | 1.0111 | 1.5042 | 4.0540 | 1.0084 | | XM_163217
XM_194973 | 0.5772 | 1.5042 | 1.0548
0.5184 | 0.3323
0.5184 | | | | 1 50/2 | 0.5104 | 0.5104 | | | 0.5772 | 1.5042
1.5042 | 0.8974 | 0.3323 | | XM_283274
Zc3h14 | | 1.5042
1.5042
1.5042 | 0.8974
0.8974 | 0.3323
0.5184 | | XM_283274 | 0.5772
0.6724 | 1.5042 | | | | XM_283274
Zc3h14
XM_145646
XM_289635 | 0.5772
0.6724
0.5772
0.7505 | 1.5042
1.5042
1.2678
1.3551 | 0.8974
2.5545
2.3502 | | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik | 0.5772
0.6724
0.5772
0.7505
0.4551 | 1.5042
1.5042
1.2678
1.3551
0.9147 | 0.8974
2.5545
2.3502
2.3343 | 0.5184
0.3323 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033 | 0.5772
0.6724
0.5772
0.7505 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612 | 0.8974
2.5545
2.3502
2.3343
2.3106 | 0.5184
0.3323
1.2611 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6 | 0.5772
0.6724
0.5772
0.7505
0.4551 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612 | 0.8974
2.5545
2.3502
2.3343
2.3106
1.9994 | 0.5184
0.3323
1.2611
0.5184 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096 | 0.8974
2.5545
2.3502
2.3343
2.3106 | 0.5184
0.3323
1.2611
0.5184
1.5357 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147 | 0.8974
2.5545
2.3502
2.3343
2.3106
1.9994
1.9683 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
Myo15
Lcn3 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147 | 0.8974
2.5545
2.3502
2.3343
2.3106
1.9994
1.9683
1.9109
1.9109 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
My015
Lcn3
Olr1006 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
Myo15
Lcn3
Oir1006
Paip2b
XM_484077
Copa | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.8985 1.8857 1.8792 1.8525 1.8449 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482 | |
XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551
0.5772
0.4551
0.5772
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.8109 1.8855 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482
0.748
0.5184
0.6482 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_484077
Copa
XM_198107
Kcnn2
Zbtb40 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551
0.5772
0.4551
0.5772
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8955 1.8857 1.8792 1.8522 1.8449 1.8377 1.8229 1.18154 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482
0.748
0.748 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
My015
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.5772
0.4551
0.5772
0.4551
0.874
0.6724
0.874 | 1.5042
1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486
0.612
0.7892 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.8985 1.8857 1.8792 1.8522 1.8449 1.8377 1.8229 1.8154 1.8154 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482
0.748
0.5184
0.5184
0.5184
0.5882 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
My015
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.2846
0.5772
0.4551
0.5772
0.4551
0.5772
0.4551
0.5772 | 1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486
0.612
0.7892
0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 1.8154 1.8154 1.8157 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482
0.748
0.5184
0.6482 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
My015
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.5772
0.4551
0.5772
0.4551
0.874
0.6724
0.874 | 1.5042
1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486
0.612
0.7892 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.8985 1.8857 1.8792 1.8522 1.8449 1.8377 1.8229 1.8154 1.8154 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482
0.748
0.5184
0.5184
0.5184
0.5882 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
My015
Lcn3
OIr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld
XM_487526
Gucy2g
XM_111898
XM_111898
XM_111898 | 0.5772
0.6724
0.5772
0.7505
0.4551
0.4551
0.5772
0.5772
0.4551
0.5772
0.5772
0.5772
0.5772
0.4551
0.874
0.874
0.8724
0.873
0.874 | 1.5042
1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486
0.612
0.7892
0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 1.8154 1.8154 1.8077 1.7998 1.7998 | 0.5184
0.3323
1.2611
0.5184
1.5357
0.8291
0.5184
1.1701
0.6482
0.6482
0.6482
0.748
0.5184
0.5184
0.5184
0.5184
0.5184 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
GaInt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_484077
Copa
XM_198107
Kcnn2
Zbtb40
Palld
XM_487526
Gucy2g
XM_111898
XM_456801
Catsper3 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.6774 0.6724 0.874 0.4551 0.9247 | 1.5042
1.5042
1.2678
1.3651
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486
0.612
0.7892
0.486
0.612
0.7892 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 1.8154 1.8154 1.8157 1.8077 1.7998 1.7998 1.7998 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.748 0.5184 0.6482 0.9565 0.5184 0.5184 0.6482 0.9565 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Oir1006
Paip2b
XM_484077
Copa
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld
XM_487526
Gucy2g
XM_111898
XM_356801
Catsper3
Dusp19 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.874 | 1.5042
1.5042
1.5042
1.2678
1.3551
0.9147
0.612
0.3077
0.7096
0.9147
1.2678
0.486
0.7096
0.486
0.7892
0.486
0.612
0.7892
0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8855 1.8857 1.8792 1.8522 1.8544 1.8154 1.8077 1.8077 1.8077 1.7998 1.7998 1.7998 1.7918 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.748 0.5184 0.5184 0.5184 0.5482 0.9565 0.5184 0.8482 0.9565 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
My015
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld
XM_487526
Gucy2g
XM_111898
XM_356801
Catsper3
Dusp19
XM_483950 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.874 0.4551 | 1.5042 1.5042 1.5042 1.2678 1.3551 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.612 0.7892 0.486 0.612 0.3077 0.7892 0.7892 0.7892 0.7892 0.7892 0.7892 0.7892 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 1.8522 1.8449 1.8377 1.8229 1.8154 1.8154 1.8077 1.8077 1.7998 1.7998 1.7998 1.7918 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.748 0.5184 0.6482 0.9565 0.5184 0.6482 0.9565 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Pallid
XM_487526
Gucy2g
XM_11898
XM_356801
Catsper3
Dusp19
XM_483950
Cabin1 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.5772 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 | 1.5042 1.5042 1.5042 1.2678 1.3551 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.612 0.7892 0.486 0.9666 0.612 0.3077 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 1.8154 1.8154 1.8077 1.7998 1.7998 1.7998 1.7998 1.7918 1.7918 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.748 0.5184 0.5184 0.5184 0.8291 0.6482 0.8974 0.5184 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
My015
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld
XM_487526
Gucy2g
XM_111898
XM_356801
Catsper3
Dusp19
XM_483950 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.874 0.4551 | 1.5042 1.5042 1.5042 1.2678 1.3551 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.612 0.7892 0.486 0.612 0.3077 0.7892 0.7892 0.7892 0.7892 0.7892 0.7892 0.7892 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 1.8522 1.8449 1.8377 1.8229 1.8154 1.8154 1.8077 1.8077 1.7998 1.7998 1.7998 1.7918 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.748 0.5184 0.6482 0.9565 0.5184 0.6482 0.9565 | | XM_283274 Zc3h14 XM_145646 XM_289635 4933430L12Rik XM_197033 GaInt6 XM_282962 Foxn2 My015 Lcn3 Olr1006 Paip2b XM_484077 Copa XM_285204 XM_198107 Kcnn2 Zbtb40 Palld XM_487526 Gucy2g Gucy2g XM_111898 XM_356801 Catsper3 Dusp19 XM_483950 Cabin1 Vkorc1 Sis Tcp11 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551
0.874 0.4551 0.9247 | 1.5042 1.5042 1.5042 1.5042 1.2678 1.3551 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.966 0.612 0.3077 0.7892 0.7892 0.7096 0.7096 0.612 0.3077 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.8985 1.8857 1.8792 1.8529 1.8154 1.8377 1.8229 1.8154 1.8077 1.7998 1.7998 1.7998 1.7998 1.7918 1.7754 1.7669 1.7583 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.748 0.5184 0.5184 0.5184 0.8291 0.6482 0.8974 0.5184 | | XM_283274
Zc3h14
XM_145646
XM_289635
4933430L12Rik
XM_197033
Galnt6
XM_282962
Foxn2
Myo15
Lcn3
Olr1006
Paip2b
XM_484077
Copa
XM_285204
XM_198107
Kcnn2
Zbtb40
Palld
XM_487526
Gucy2g
XM_111898
XM_356801
Catsper3
Dusp19
XM_483950
Cabin1
Vkorc1
Sis
Tcp11
Fit1 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.874 0.4551 0.874 0.4551 0.9247 | 1.5042 1.5042 1.5042 1.5042 1.2678 1.3651 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.612 0.3077 0.7096 0.7096 0.612 0.3077 0.7096 0.612 0.3077 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 1.8154 1.8154 1.8157 1.8077 1.7998 1.7998 1.7998 1.7918 1.7918 1.7754 1.7669 1.7583 1.7583 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.748 0.5184 0.5184 0.5184 0.5184 0.6482 0.9565 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 | | XM_283274 Zc3h14 Xc3h14 XM_145646 XM_289635 4933430L12Rik XM_197033 Galnt6 XM_282962 Foxn2 Myo15 Lcn3 Olr1006 Paip2b XM_484077 Copa XM_285204 XM_198107 Kcnn2 Zbtb40 Palld XM_487526 Gucy2g XM_111898 XM_356801 Catsper3 Dusp19 XM_483950 Cabin1 Vkorc1 Sis Tcp11 Fit1 XM_285224 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.874 0.4551 0.874 0.4551 0.874 0.4551 0.874 0.4551 0.2846 0.4551 0.2846 0.4551 0.6724 0.5772 0.8166 | 1.5042 1.5042 1.5042 1.5042 1.2678 1.3551 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.612 0.7892 0.486 0.612 0.3077 0.7096 0.612 0.3077 0.7892 0.486 0.612 0.3077 0.7892 0.7096 0.612 0.3077 0.7892 0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8857 1.8792 1.8529 1.8444 1.8377 1.8229 1.8454 1.8154 1.8077 1.8077 1.7998 1.7998 1.7998 1.7918 1.7918 1.7754 1.7563 1.7583 1.7583 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.748 0.5184 0.5184 0.5184 0.5184 0.8291 0.6482 0.9565 0.5184 0.1842 0.9565 0.5184 | | XM_283274 Zc3h14 XM_145646 XM_289635 4933430L12Rik XM_197033 Galnt6 XM_282962 Foxn2 My015 Lcn3 Olr1006 Paip2b XM_484077 Copa XM_285204 XM_198107 Kcnn2 Zbtb40 Palld XM_487526 Gucy2g XM_111898 XM_356801 Catsper3 Dusp19 XM_483950 Cabin1 Vkorc1 Sis Tcp11 Fit1 Fit1 SM_285224 Amd1 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.8247 0.4551 0.8247 | 1.5042 1.5042 1.5042 1.5042 1.2678 1.3651 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.612 0.3077 0.7096 0.7096 0.612 0.3077 0.7096 0.612 0.3077 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8857 1.8792 1.852 1.8449 1.8377 1.8229 1.8154 1.8077 1.8077 1.8077 1.7998 1.7998 1.7998 1.7918 1.7918 1.7754 1.7669 1.7583 1.7583 1.7583 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.748 0.5184 0.5184 0.5184 0.5184 0.6482 0.9565 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 | | XM_283274 Zc3h14 Xc3h14 XM_145646 XM_289635 4933430L12Rik XM_197033 Galnt6 XM_282962 Foxn2 Myo15 Lcn3 Olr1006 Paip2b XM_484077 Copa XM_285204 XM_198107 Kcnn2 Zbtb40 Palld XM_487526 Gucy2g XM_111898 XM_356801 Catsper3 Dusp19 XM_483950 Cabin1 Vkorc1 Sis Tcp11 Fit1 XM_285224 | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.874 0.4551 0.9247 | 1.5042 1.5042 1.5042 1.5042 1.2678 1.3551 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.612 0.7892 0.486 0.612 0.3077 0.7096 0.612 0.3077 0.7892 0.486 0.612 0.3077 0.7892 0.7096 0.612 0.3077 0.7892 0.486 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8857 1.8792 1.8529 1.8444 1.8377 1.8229 1.8454 1.8154 1.8077 1.8077 1.7998 1.7998 1.7998 1.7918 1.7918 1.7754 1.7563 1.7583 1.7583 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.5184 0.5184 0.5184 0.5184 0.8291 0.6482 0.5184 0.8291 0.6482 0.8974 0.5184 0.1323 1.1349 | | XM_283274 Zc3h14 Xc3h14 XM_145646 XM_289635 4933430L12Rik XM_197033 Galnt6 XM_282962 Foxn2 Myo15 Lcn3 Olr1006 Paip2b XM_484077 Copa XM_285204 XM_198107 Kcnn2 Zbtb40 Palld XM_487526 Gucy2g XM_111898 XM_356801 Catsper3 Dusp19 XM_483950 Cabin1 Vkorc1 Sis Tcp11 Flt1 XM_285224 Amd1 Fn3krp | 0.5772 0.6724 0.5772 0.7505 0.4551 0.4551 0.4551 0.5772 0.2846 0.5772 0.4551 0.5772 0.4551 0.5772 0.4551 0.874 0.6724 0.874 0.4551 0.9247 1.0111 0.4551 0.8247 0.4551 0.8247 | 1.5042 1.5042 1.5042 1.5042 1.2678 1.3651 0.9147 0.612 0.3077 0.7096 0.9147 1.2678 0.486 0.7096 0.486 0.7892 0.486 0.612 0.7892 0.486 0.612 0.3077 0.7096 0.612 0.3077 | 0.8974 2.5545 2.3502 2.3343 2.3106 1.9994 1.9683 1.9109 1.9109 1.8985 1.8857 1.8792 1.8449 1.8377 1.8229 1.8154 1.8154 1.8077 1.7998 1.7998 1.7998 1.7998 1.7918 1.7754 1.7669 1.7583 1.7583 1.7583 1.7495 1.7495 1.7314 | 0.5184 0.3323 1.2611 0.5184 1.5357 0.8291 0.5184 1.1701 0.6482 0.6482 0.6482 0.748 0.5184 0.5184 0.6482 0.9565 0.5184 0.5184 0.8291 0.6482 0.8974 0.5184 0.1323 1.1349 0.8291 1.0548 | | V44 004445 | 0.074 | 0.040 | . 70 | 0.5404 | |------------------------|------------------|------------------|------------------|------------------| | XM_284445
Bdp1 | 0.874
0.9247 | 0.612
0.7892 | 1.7314
1.722 | 0.5184
0.5184 | | Nedd9 | 0.5772 | 0.612 | 1.722 | 0.6482 | | Sc5d | 1.0486 | 0.7892 | 1.722 | 0.8974 | | Kcnq1ot1 | 0.6724 | 0.3077 | 1.7026 | 0.748 | | Olfr1124
XM 141574 | 0.2846 | 1.1262
0.7892 | 1.7026
1.7026 | 0.8291
0.748 | | KIhI5 | 0.5772 | 0.8565 | 1.6926 | 1.0548 | | AI480653 | 0.5772 | 0.3077 | 1.6824 | 0.5184 | | Casr | 0.5772 | 0.7096 | 1.6824 | 1.0548 | | Ly96 | 0.2846 | 0.486 | 1.6824 | 0.6482 | | Scn1a
XM_163026 | 0.8166
0.2846 | 0.3077
0.3077 | 1.6824
1.6824 | 0.6482
0.3323 | | Olr947 | | 0.0011 | 1.6719 | 0.6482 | | Ppp2r3c | 0.8166 | 0.8565 | 1.6719 | | | XM_139794 | 1.3829 | 1.0040 | 1.6719 | 0.3323 | | XM_163178
XM_135670 | 0.7505 | 1.0913
0.612 | 1.6719
1.6611 | 0.748
0.748 | | XM 135885 | 0.7505
0.8166 | 0.486 | 1.6611 | 1.0967 | | XM_488756 | 0.5772 | 1.5313 | 1.6611 | 0.5184 | | 5830426C09Rik | | 0.7892 | 1.6501 | 0.5184 | | Alg6 | 0.6724 | 0.612 | 1.6501 | 0.8291 | | Cmtm2b
Iqub | 1.0832 | 0.612
0.7892 | 1.6501
1.6501 | 1.0967 | | Liph | 0.2846
0.2846 | 1.0534 | 1.6501 | 0.6482 | | XM_143175 | 0.2846 | 1.4752 | 1.6501 | 0.8291 | | XM_160344 | 1.1729 | 0.486 | 1.6501 | 0.3323 | | XM_287595 | 0.5772 | 0.612 | 1.6501 | 0.6482 | | 2310061C15Rik
Bmp10 | 0.4551 | 0.7096
1.0534 | 1.6388
1.6388 | 0.6482
0.5184 | | NM_174994 | 0.8166 | 0.7096 | 1.6388 | 1.2611 | | Tapbp | 0.2846 | 0.612 | 1.6388 | 1.0084 | | XM_156591 | 0.2846 | 0.612 | 1.6388 | 1.0967 | | XM_287328 | | 0.486 | 1.6388 | 0.8291 | | XM_489168
Ddit4l | 0.4551
1.0486 | 0.612
0.7892 | 1.6388
1.6272 | 0.748
0.8974 | | Gpc4 | 0.2846 | 0.7692 | 1.6272 | 0.5184 | | XM_147069 | 0.2846 | 0.7096 | 1.6272 | 0.6482 | | XM_284285 | 0.874 | 0.3077 | 1.6272 | 0.3323 | | XM_284825 | 0.6724 | 0.7892 | 1.6272 | 0.3323 | | XM_288858
Odf3l2 | 0.5772
0.874 | 0.8565
0.7096 | 1.6272
1.6152 | 0.5184
0.6482 | | Wdr33 | 0.5772 | 0.486 | 1.6152 | 0.5184 | | XM_139078 | | 0.3077 | 1.6152 | 1.7669 | | XM_142472 | 0.5772 | 0.3077 | 1.6152 | 1.1701 | | XM_195160 | 0.2846 | 1.2913 | 1.6152 | 0.8291 | | XM_283958
XM_289019 | 0.2846 | 0.612 | 1.6152
1.6152 | 0.8974
0.5184 | | Entpd1 | 0.6724 | 0.486 | 1.6029 | 1.2328 | | Mrpl15 | 0.6724 | 0.7892 | 1.6029 | 0.9565 | | Pak1 | 0.4551 | 0.486 | 1.6029 | 0.9565 | | Pgam1 | 0.6724 | 0.7096 | 1.6029 | 0.8974 | | Sucla2
XM 136410 | 0.2846 | 0.3077
0.3077 | 1.6029
1.6029 | 0.748 | | Zfp947 | 0.6724 | 0.7096 | 1.6029 | 0.3323 | | Acoxl | 1.2238 | 1.0119 | 1.5903 | 0.3323 | | lft74 | 0.6724 | 0.7096 | 1.5903 | 1.2876 | | Olfr1457
Slc16a7 | 1.1152 | 0.612 | 1.5903 | 0.5184 | | XM_111304 | 0.4551 | 0.486 | 1.5903
1.5903 | 0.5184
0.3323 | | XM_488956 | 0.4551 | 0.612 | 1.5903 | 1.38 | | BC089491 | 0.8166 | 0.486 | 1.5773 | 0.3323 | | Cxcr1 | 0.6724 | 1.0119 | 1.5773 | 0.8974 | | Gcc1
Mllt10 | 0.5772
0.9247 | 0.486
0.486 | 1.5773
1.5773 | 1.2328 | | Naip1 | 0.7505 | 0.7096 | 1.5773 | 0.6482 | | Spata7 | 1.145 | 0.3077 | 1.5773 | 0.3323 | | Spg20 | 0.5772 | 0.612 | 1.5773 | 0.6482 | | XM_129777 | 0.4551 | 1.3744 | 1.5773 | 0.5184 | | XM_145305
XM_204027 | 0.9247
0.7505 | 0.9147
0.7096 | 1.5773
1.5773 | 0.8291
1.2026 | | XM 487984 | 0.4551 | 0.7030 | 1.5773 | 0.3323 | | 2310033E01Rik | | 0.612 | 1.5639 | 1.6824 | | B230369F24Rik | | 0.7096 | 1.5639 | 0.6482 | | Ccdc138 | 0.8166
0.6724 | 0.8565 | 1.5639 | 0.5184
0.8974 | | Dchs1
Gng3 | 0.6724 | 0.612
0.3077 | 1.5639
1.5639 | 0.8974 | | Gorab | 0.2846 | 0.612 | 1.5639 | 0.8291 | | Lrrc3b | 0.5772 | 0.3077 | 1.5639 | 1.2026 | | XM_111268 | 0.6724 | 0.7892 | 1.5639 | 0.6482 | | XM_151755 | 0.2846 | 0.7892 | 1.5639 | 0.748 | | XM_284872
XM_289095 | 0.97
0.5772 | 1.2165
1.5042 | 1.5639
1.5639 | 0.5184
0.3323 | |
XM_289381 | 1.2472 | 0.486 | 1.5639 | 0.6482 | | XM_289455 | 0.2846 | 0.3077 | 1.5639 | 0.6482 | | XM_345014 | | 0.3077 | 1.5639 | 0.3323 | | Atp13a2 | 0.2846 | 0.486 | 1.55 | 0.748 | | | | | | | | D17Wsu92e | 1.0486 | 0.3077 | 1.55 | 0.3323 | |------------------------|------------------|------------------|------------------|------------------| | Dhrs11 | 1.2693 | 0.3077 | 1.55 | 0.748 | | Lrrc66
Mak16 | 0.6724
0.874 | 0.9147 | 1.55
1.55 | 0.829 | | Olfr1018 | 0.874 | 0.612 | 1.55 | 1.0967 | | Scn3a | 0.6724 | 1.0913 | 1.55 | 1.0084 | | Spnb3 | 0.2846 | 0.3077 | 1.55 | 1.7314 | | Ttc28 | 0.4551 | 1.0913 | 1.55 | 0.956 | | XM_144858
XM_162488 | 0.7505 | 0.7096 | 1.55
1.55 | 0.829 | | XM_197089 | 0.9247 | 0.7090 | 1.55 | 0.029 | | XM_286240 | 0.2846 | 0.486 | 1.55 | | | XM_486200 | 0.4551 | 0.7892 | 1.55 | 0.518 | | 2810417H13Rik | 0.8166 | 0.7892 | 1.5357 | 0.5184 | | Acer2
Chchd10 | 0.2846 | 0.3077
0.9147 | 1.5357
1.5357 | 0.6482 | | Efcab2 | 0.2846
0.4551 | 0.7892 | 1.5357 | 1.3363 | | Efr3b | 0.6724 | 0.486 | 1.5357 | 0.8974 | | Egf | | 0.486 | 1.5357 | 0.6482 | | Fam19a2 | 0.5772 | 0.7096 | 1.5357 | 0.3323 | | Fkbp1b | 0.6724 | 0.612 | 1.5357 | 1.4197 | | Neil2
Olfr514 | 1.2693 | 0.486 | 1.5357
1.5357 | 1.2328
0.6482 | | Rab5c | 0.6724 | 0.9147 | 1.5357 | 0.5184 | | Slco5a1 | 0.9247 | 0.7096 | 1.5357 | 0.6482 | | XM_110818 | | 0.612 | 1.5357 | | | XM_111481 | 0.7505 | 0.9147 | 1.5357 | 0.829 | | XM_138876 | 1.1152 | 0.486 | 1.5357 | 1.0967 | | XM_150524
XM_165060 | 0.4551
0.4551 | 0.3077 | 1.5357
1.5357 | 0.3323
0.748 | | XM_165069
XM_204981 | 0.4551 | 0.3077
0.3077 | 1.5357
1.5357 | 0.748 | | XM_285811 | 0.4551 | 3,0017 | 1.5357 | 1.0084 | | XM_288912 | | 0.3077 | 1.5357 | 0.3323 | | Atp8a1 | 0.2846 | 0.3077 | 1.5209 | 0.829 | | Atxn7l3b | 0.7505 | 0.612 | 1.5209 | 0.829 | | F3 | 0.8166 | 0.966 | 1.5209 | 0.8974 | | Klra10 | 0.8166
0.6724 | 0.3077
0.612 | 1.5209
1.5209 | 0.9568
0.829 | | Mmp25
Nmd3 | 0.7505 | 0.7096 | 1.5209 | 0.629 | | Pmpca | 0.6724 | 0.612 | 1.5209 | 0.140 | | Ptdss1 | 0.5772 | 1.5443 | 1.5209 | | | Sema4a | 0.2846 | 0.612 | 1.5209 | | | XM_125126 | | 0.3077 | 1.5209 | 0.3323 | | XM_138920
XM_139924 | 0.9247 | 0.966 | 1.5209 | 0.8974
1.6272 | | XM_139924
XM_147897 | 0.2846
0.4551 | 0.612 | 1.5209
1.5209 | 1.0272 | | XM_147037
XM_162309 | 0.4551 | 0.612 | 1.5209 | 1.5209 | | XM_287363 | | 0.3077 | 1.5209 | 0.6482 | | XM_288111 | 0.7505 | 0.3077 | 1.5209 | 0.3323 | | XM_288710 | 0.7505 | 0.3077 | 1.5209 | 0.6482 | | XM_485425 | 0 F770 | 0.3077 | 1.5209 | 0.8974 | | XM_487230
Zfp125 | 0.5772
1.0832 | 0.7096
0.8565 | 1.5209
1.5209 | 0.8974 | | Zfp764 | 1.0032 | 1.2913 | 1.5209 | 0.829 | | 2610301B20Rik | 0.4551 | | 1.5056 | 1.3363 | | BC023959 | 0.2846 | | 1.5056 | | | Bicd1 | 0.8166 | 0.486 | 1.5056 | 0.3323 | | Clenka | 0.5772 | 0.486 | 1.5056 | 1.1349 | | Crebl2
Cxcl12 | 0.2846 | 0.496 | 1.5056 | 0.748 | | Depdc1a | 0.6724
0.874 | 0.486
0.7892 | 1.5056
1.5056 | 0.332 | | Digap1 | 0.874 | 0.7096 | 1.5056 | 0.6482 | | Dnaic1 | 0.5772 | 0.3077 | 1.5056 | 0.3323 | | Esyt3 | 0.4551 | 0.612 | 1.5056 | 1.0548 | | Gfod1 | 1.0486 | 0.612 | 1.5056 | 0.332 | | Mchr1
Mtmr3 | 0.4551
0.4551 | 0.7096 | 1.5056 | 0.829
0.518 | | Olfr418-ps1 | 0.4551 | 0.7096 | 1.5056
1.5056 | 0.518 | | Olfr926 | 1.1729 | 0.9147 | 1.5056 | 0.648 | | Prr13 | 0.6724 | 0.612 | 1.5056 | 0.648 | | Rxfp4 | | 0.3077 | 1.5056 | 0.332 | | Vmn2r10 | 0.5772 | 0.7096 | 1.5056 | 1.008 | | XM_145533 | 0.2010 | 0.7096 | 1.5056 | 0.332 | | XM_160365
XM_164574 | 0.2846
1.0832 | 0.7096 | 1.5056
1.5056 | 0.897
0.648 | | XM_164574
XM_194774 | 1.0032 | 0.7096 | 1.5056 | 1.202 | | XM_195245 | 0.5772 | 0.3077 | 1.5056 | 0.6482 | | XM_196676 | 0.4551 | 1.1885 | 1.5056 | 0.518 | | XM_205191 | | 0.3077 | 1.5056 | | | XM_220047 | 0.8166 | 1.1262 | 1.5056 | 0.74 | | XM_283039 | 0.4551 | 0.486 | 1.5056 | 0.332 | | XM_285146
XM_287127 | 0.6724
0.4551 | 0.486
0.7096 | 1.5056
1.5056 | 0.8974
0.5184 | | XM_289369 | 0.4001 | 0.7096 | 1.5056 | 1.4003 | | Olr1533 | 0.2846 | 0.486 | 0.8291 | 2.4852 | | | 0.5772 | 1.0119 | 0.5184 | 2.408 | | XM_164238 | 0.5112 | 1.0110 | | | | C6orf111 | 0.4551 | | | 2.3762 | |------------------------|------------------|------------------|------------------|------------------| | Hspa13 | 0.4331 | 0.8565 | | 2.372 | | Cd209c | 1.0832 | 0.7892 | 0.5184 | 2.325 | | Plk2 | 0.6724 | 0.3077 | 0.6482 | 2.275 | | Khdrbs3
Kcnab3 | 0.2846
0.6724 | 0.7892
0.612 | 1.1701
0.748 | 2.2062
2.1672 | | XM_287689 | 1.0832 | 0.8565 | 0.3323 | 2.1569 | | Dgki | 0.6724 | 0.612 | 0.6482 | 2.1499 | | Cuta | 0.5772 | 0.486 | 1.3587 | 2.1131 | | XM_289471
Pglc3 | 0.4551
0.4551 | | | 2.1053
2.0811 | | Agpat2 | 0.7505 | 0.612 | | 2.0599 | | Fam81b | 0.9247 | 0.966 | 0.3323 | 2.0555 | | XM_286624
Amac1 | 0.5772 | 0.612
0.612 | 0.5184 | 2.0511 | | Zfp606 | 0,5772 | 0.612 | 1.6388 | 2.0422
2.0376 | | 4921517D16Rik | 1.4302 | 0.486 | | 2.033 | | XM_154982 | 0.6724 | 0.7096 | | 2.0284 | | XM_287541
XM_488610 | 0.2846
1.1991 | 1.0913 | 0.6482 | 2.0237
2.0092 | | XM 162771 | 1.1991 | 0.3077
0.486 | 0.8291 | 1.9841 | | XM_289299 | 0.4551 | 0.966 | 1.0084 | 1.9789 | | XM_285057 | 0.4551 | | 0.3323 | 1.9736 | | XM_138788 | 0.4551 | 0.612
0.966 | 0.6482 | 1.9629
1.9629 | | XM_288258
XM_196816 | 1.0111
0.7505 | 0.8565 | 0.5184
0.5184 | 1.9574 | | Aida | 0.5772 | 0.3077 | 0.6482 | 1.9519 | | Serpinb9 | 0.7505 | 0.486 | 0.8974 | 1.9519 | | Uty
XM_285213 | 0.5772
0.5772 | 0.8565 | 0.6482
0.3323 | 1.9462
1.9462 | | Coq7 | 0.5772 | 0.966 | 0.3323 | 1.9402 | | Rheb | 0.4551 | 0.612 | 1.1701 | 1.9406 | | XM_161191 | 0.7505 | 0.612 | 0.6482 | 1.9406 | | XM_284859
Pxmp2 | 0.5772
0.6724 | 0.612
0.486 | 0.8291 | 1.9348
1.923 | | Gm11837 | 0.6724 | 0.466 | 0.8291 | 1.917 | | Olfr1462 | 0.5772 | 0.7892 | 0.748 | 1.917 | | XM_287686 | 0.6724 | 0.486 | 0.3323 | 1.9109 | | Prg4
XM_288935 | 0.7505
0.7505 | 0.7892
0.9147 | 0.5184
0.6482 | 1.9048
1.9048 | | Gm5094 | 0.9247 | 0.3077 | 0.0402 | 1.8922 | | Ssbp3 | 0.2846 | | 0.748 | 1.8857 | | Tfdp1 | 0.4554 | 0.7892 | 0.3323 | 1.8792 | | XM_145092
XM_197034 | 0.4551
0.9247 | 0.7096
0.3077 | 1.2876
1.0967 | 1.8792
1.8792 | | XM_285596 | 0.4551 | 0.3077 | 0.3323 | 1.8792 | | Bag4 | 0.4551 | | 0.3323 | 1.8725 | | Fbxo43 | 0.6724 | 0.3077
0.7096 | 0.5184
0.3323 | 1.8725
1.8725 | | Fyb
Tm9sf4 | 0.2846
0.5772 | 0.7096 | | 1.8725 | | XM_198060 | 0.6724 | 1.0119 | | 1.8725 | | XM_205299 | 0.4551 | 0.3077 | 0.5184 | 1.8725 | | D3Bwg0562e
Pag1 | 0.4551
0.2846 | 0.612
0.612 | 0.5184
0.748 | 1.8658
1.8658 | | XM_141978 | 0.4551 | 0.612 | 0.3323 | 1.8658 | | XM_287199 | 0.2846 | 0.9147 | | 1.8658 | | Lipc | 0.4551 | 0.7892 | 0.3323 | 1.8589 | | XM_155926
Cyp4a10 | 0.9247 | 0.7096 | 0.5184
1.2026 | 1.8589
1.852 | | Hspa12b | 0.2846
0.6724 | 0.3077
0.612 | 0.3323 | 1.852 | | XM_206778 | 0.5772 | 0.8565 | 0.8291 | 1.852 | | AA960436 | 0.4551 | 0.612 | | 1.8449 | | NM_183305
Olfr916 | 0.5772
0.2846 | 0.7892 | 0.3323
0.8291 | 1.8449
1.8449 | | Prosc | 0.20-10 | 0.3077 | 1.3363 | 1.8449 | | XM_144247 | 0.5772 | 1.1262 | 0.5184 | 1.8449 | | XM_153532 | 0.97 | 0.7096 | 0.748 | 1.8449 | | XM_158171
XM_158434 | 0.2846 | 1.604
1.0119 | 0.5184 | 1.8449
1.8449 | | XM_287587 | 0.4551 | 0.486 | 1.5209 | 1.8449 | | Gabbr2 | 1.415 | 0.7892 | 0.3323 | 1.8377 | | Vapa
D17Wsu104e | 0.6724 | 0.612 | 0.6482 | 1.8377
1.8304 | | Ewsr1 | 0.0724 | 0.012 | 0.6482 | 1.8304 | | Gm501 | 0.5772 | 0.612 | | 1.8304 | | XM_286360 | 0.7505 | 0.3077 | 0.6482 | 1.8304 | | Cst11
Dep1 | 0.5772
0.6724 | 0.8565 | 0.3323
0.748 | 1.8229
1.8229 | | Prl7b1 | 0.6724 | 0.7892 | 0.748 | 1.8229 | | Traf5 | 0.97 | 1.0913 | 0.3323 | 1.8229 | | XM_110941 | 0.2846 | 0.486 | 0.5184 | 1.8229 | | XM_153001
XM_161053 | 0.4551
0.2846 | 0.486
0.7892 | 0.5184
0.5184 | 1.8229
1.8229 | | 2700069I18Rik | 0.6724 | 0.7692 | 0.5184 | 1.8154 | | 9430031J16Rik | 0.6724 | 0.3077 | 0.6482 | 1.8154 | | Ccdc63 | 0.5772 | 0.8565 | 0.6482 | 1.8154 | | LOC399947 | | | | 1.8154 | | Rasgef1b
Txlna | 0.5772
0.9247 | 0.8565
0.486 | 0.3323
0.6482 | 1.8154
1.8154 | |--|--|---|--|--| | XM_146493 | 0.4551 | 0.3077 | 0.0402 | 1.8154 | | XM_163115 | 0.2846 | | | 1.8154 | | 4930431N21Rik | 0.2846 | 0.7096 | 0.6482 | 1.8077 | | C87436
Cldn16 | 0.4551 | 0.612
0.486 | 0.8291 | 1.8077
1.8077 | | Olfr1344 | 1.0486 | 0.486 | 0.5184 | 1.8077 | | Sdk1 | 0.6724 | 1.0119 | 0.5184 | 1.8077 | | XM_136251 | | 0.612 | 0.5184 | 1.8077 | | XM_150357
XM_284827 | 0.2846 | 0.7096
0.7892 | 0.8974
0.6482 | 1.8077
1.8077 | | Aldh1l1 | 0.2846 | 0.7096 | 0.5184 | 1.7998 | | Bcl9 | 0.4551 | 0.7096 | 0.748 | 1.7998 | | Mex3b | 0.6724 | 0.612 | 0.3323 | 1.7998 | | Nfe2
NM_175508 | 0.2846 | 0.3077
0.3077 | 0.5184
0.5184 | 1.7998
1.7998 | | XM 196735 | 0.874
0.2846 | 0.3077 | 0.5184 | 1.7998 | | XM_286571 | 0.2846 | 0.7096 | 0.6482 | 1.7998 | | Bzw1 |
0.874 | | 0.3323 | 1.7918 | | Dbh | | 0.486
0.486 | 0.5184 | 1.7918 | | Gm12169
Nkx6-2 | | 0.612 | | 1.7918
1.7918 | | XM_151259 | 0.97 | 0.7892 | 0.3323 | 1.7918 | | XM_197469 | 0.2846 | 0.486 | 0.3323 | 1.7918 | | XM_205132 | 0.2846 | 1.2913 | 0.6482 | 1.7918 | | 2310067B10Rik
Cyp2c44 | 0.5772 | 0.7096 | 0.3323
0.748 | 1.7837
1.7837 | | Mbtd1 | 0.7505 | 0.3077 | 0.6482 | 1.7837 | | Pappa2 | 0.5772 | 0.7096 | 0.5184 | 1.7837 | | Pdc | 0.07 | 0.0077 | 0.740 | 1.7837 | | Prdx2
Rassf7 | 0.97
0.2846 | 0.3077
0.612 | 0.748
0.6482 | 1.7837
1.7837 | | Serpini2 | 0.4551 | 0.7096 | 0.8291 | 1.7837 | | XM_138851 | 0.2846 | | 0.8291 | 1.7837 | | XM_155406 | 0.7505 | 0.7096 | 1.0548 | 1.7837 | | XM_156672
XM 285339 | 0.5772
0.4551 | 0.8565
0.486 | 0.748 | 1.7837
1.7837 | | XM_289302 | 0.7505 | 0.3077 | 0.8974 | 1.7837 | | Irf2bp2 | 0.5772 | 0.486 | 0.3323 | 1.7754 | | Spdyb | 0.6724 | 0.486 | | 1.7754 | | XM_111012
XM 127178 | 0.2846
0.8166 | 0.3077
0.7096 | 0.5184
0.3323 | 1.7754
1.7754 | | XM_127176
XM_284814 | 1.4591 | 0.7090 | 0.5184 | 1.7754 | | XM_286477 | 0.2846 | | 0.3323 | 1.7754 | | XM_287844 | | 0.7096 | | 1.7754 | | XM_289078
Ceacam3 | 0.2846
0.2846 | 0.612 | 1.3363
0.6482 | 1.7754
1.7669 | | Col3a1 | 0.4551 | 0.486 | 1.2876 | 1.7669 | | Epb4.1l2 | 0.6724 | 0.3077 | 0.5184 | 1.7669 | | Mcm6 | 0.8166 | 0.7096 | 0.3323 | 1.7669 | | Nrxn1 | 0.6724 | 0.486
0.7892 | 1.0084 | 1.7669 | | XM_143688
XM_158861 | 0.5772
0.8166 | 0.7096 | 0.9565 | 1.7669
1.7669 | | XM_486079 | 0.97 | 0.8565 | 0.6482 | 1.7669 | | Zfp53 | 0.7505 | 0.7892 | | 1.7669 | | 1600002K03Rik
4930404l05Rik | 0.97 | 1.0534
0.7892 | 0.5184 | 1.7583
1.7583 | | C330027C09Rik | 0.5772 | 0.7692 | 0.6482
0.5184 | 1.7583 | | Cd300c | 0.4551 | | | 1.7583 | | Exosc7 | 0.4551 | 0.486 | 0.0175 | 1.7583 | | Gtf2i
XM_144274 | 0.2846 | 1.3744 | 0.6482 | 1.7583
1.7583 | | //IVI_1444/4 | | | | 1.7303 | | XM 195744 | | | 0.5184 | | | XM_195744
XM_206765 | 0.5772 | 0.3077 | 0.3323 | 1.7583
1.7583 | | XM_206765
XM_288755 | 0.5772
0.2846 | | | 1.7583
1.7583
1.7583 | | XM_206765
XM_288755
XM_289567 | 0.5772
0.2846
0.5772 | 0.486 | 0.3323 | 1.7583
1.7583
1.7583
1.7583 | | XM_206765
XM_288755
XM_289567
XM_487562 | 0.5772
0.2846
0.5772
0.7505 | 0.486
0.9147 | 0.3323 | 1.7583
1.7583
1.7583
1.7583
1.7583 | | XM_206765
XM_288755
XM_289567 | 0.5772
0.2846
0.5772 | 0.486 | 0.3323 | 1.7583
1.7583
1.7583
1.7583 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724 | 0.486
0.9147
0.7096 | 0.3323
0.8291
0.5184
0.5184 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724 | 0.486
0.9147
0.7096 | 0.3323
0.8291
0.5184
0.5184 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472 | 0.486
0.9147
0.7096
1.0913
0.612 | 0.8291
0.5184
0.5184
0.5184
0.6482 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472
0.5772
0.8166 | 0.486
0.9147
0.7096 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.3323
0.6482 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472
0.5772 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612 | 0.8291
0.5184
0.5184
0.5184
0.6482
0.3323 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Olr454 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472
0.5772
0.8166
0.6724
0.2846 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.3323
0.6482 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Olr454
Ppp1r12b | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472
0.5772
0.8166 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077
0.3077 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.3323
0.6482
0.5184 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Olr454 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472
0.5772
0.8166
0.6724
0.2846 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.3323
0.6482 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_025756
NM_183277
OIr454
Ppp1r12b
Thumpd3
Trim68
XM_136872 | 0.5772
0.2846
0.5772
0.7505
0.7505
0.6724
0.97
1.2472
0.5772
0.8166
0.6724
0.2846
1.2472
0.2846 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077
0.3077
0.8565
0.486
0.7096 | 0.3323
0.8291
0.5184
0.5184
0.6482
0.3323
0.6482
0.5184
1.3363
0.5184
1.0084 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_2889567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Olr454
Pp91r12b
Thumpd3
Trim68
XM_136872
XM_140535 | 0.5772 0.2846 0.5772 0.7505 0.7505 0.6724 0.97 1.2472 0.5772 0.8166 0.6724 0.2846 1.2472 0.2846 0.6724 0.8166 0.6724 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077
0.3077
0.8565
0.486
0.7096 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.323
0.6482
0.5184
1.3363
0.5184
1.0084
1.0548 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_2887567
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Olr454
Ppp1r12b
Thumpd3
Trim68
XM_136872
XM_140535
XM_149838 | 0.5772 0.2846 0.5772 0.7505 0.7505 0.6724 0.97 1.2472 0.5772 0.8166 0.6724 0.2846 1.2472 0.2846 0.6724 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077
0.3077
0.8565
0.486
0.7096 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.3323
0.6482
0.5184
1.3363
0.5184
1.0084
1.0548
0.5184 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_2889567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Olr454
Pp91r12b
Thumpd3
Trim68
XM_136872
XM_140535 | 0.5772 0.2846 0.5772 0.7505 0.7505 0.6724 0.97 1.2472 0.5772 0.8166 0.6724 0.2846 1.2472 0.2846 0.6724 0.6724 0.6724 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077
0.3077
0.8565
0.486
0.7096 | 0.3323
0.8291
0.5184
0.5184
0.5184
0.6482
0.323
0.6482
0.5184
1.3363
0.5184
1.0084
1.0548 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | XM_206765
XM_288755
XM_289567
XM_487562
Cdca2
Fetub
Hspa8
Ipo11
Lce1m
Mgea5
NM_025756
NM_183277
Oir454
Ppp1r12b
Thumpd3
Trim68
XM_136872
XM_140535
XM_149838
XM_196796 | 0.5772 0.2846 0.5772 0.7505 0.7505 0.6724 0.97 1.2472 0.5772 0.8166 0.6724 0.2846 1.2472 0.2846 0.6724 0.8166 0.6724 | 0.486
0.9147
0.7096
1.0913
0.612
0.7892
0.612
0.7892
0.3077
0.3077
0.8565
0.486
0.7096
0.3077
0.486 | 0.3323
0.8291
0.5184
0.5184
0.6482
0.3323
0.6482
0.5184
1.3363
0.5184
1.0084
1.0548
0.5184
0.9565 | 1.7583
1.7583
1.7583
1.7583
1.7583
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495
1.7495 | | VIA 040540 | | 0.400 | 0.0400 | 4 7405 | |----------------------------|------------------|------------------|------------------|------------------| | XM_343548
XM_485647 | 0.2846 | 0.486
0.3077 | 0.6482
0.8291 | 1.7495
1.7495
 | A630033H20Rik | | 0.7096 | 0.3323 | 1.7405 | | BC031781 | 0.5772 | 0.486 | 1.3126 | 1.7405 | | Dnajc25
Fan1 | 0.6724
0.5772 | 0.7892
0.7096 | | 1.7405
1.7405 | | Fbxl2 | 0.4551 | 0.7096 | 0.8291 | 1.7405 | | Sdhaf2 | 0.6724 | 0.3077 | 0.748 | 1.7405 | | Stau2 | 0.4551 | 0.3077 | 0.8291 | 1.7405 | | XM_145467
XM_159419 | 0.4551
0.874 | 1.2165 | 0.8291
0.3323 | 1.7405
1.7405 | | XM_195696 | 0.2846 | 0.7096 | | 1.7405 | | XM_289464 | 0.2846 | 0.7096 | 0.748 | 1.7405 | | XM_289515 | 0.5772 | 0.3077
0.486 | 0.3323
0.8291 | 1.7405
1.7405 | | XM_489155
1200011I18Rik | 0.2646 | 1.0534 | 0.5184 | 1.7405 | | 1700030J22Rik | 0.0100 | 0.486 | | 1.7314 | | 4931408C20Rik | | 0.9147 | | 1.7314 | | A830073O21Rik
Adamts20 | 0.5772
1.0832 | 0.7892 | | 1.7314
1.7314 | | Arhgap32 | 0.2846 | 0.612 | 1.1349 | 1.7314 | | Cdc42bpb | 1.0111 | 0.7096 | | 1.7314 | | Chmp3
Enpp5 | 0.4551
0.4551 | 0.8565
0.3077 | 0.3323
1.2611 | 1.7314
1.7314 | | Hira | 0.4331 | 0.612 | 1.2011 | 1.7314 | | Klf9 | 0.8166 | 0.7096 | | 1.7314 | | Lmbrd2 | 1.5585 | 0.3077 | | 1.7314 | | Mosc1
Palb2 | 0.8166
0.4551 | 0.3077
1.1262 | | 1.7314
1.7314 | | V1rb5 | 0.2846 | 0.486 | | 1.7314 | | XM_129976 | 0.8166 | 1.4899 | | 1.7314 | | XM_196410
XM_198073 | 0.8166
0.5772 | 0.486
1.0119 | 0.6482 | 1.7314
1.7314 | | XM 287252 | 0.3772 | 0.612 | 1.4003 | 1.7314 | | XM_287382 | 0.6724 | 0.7892 | 0.5184 | 1.7314 | | XM_289627 | 0.5772 | 0.7096 | 0.6482 | 1.7314 | | XM_485288
Btbd9 | 0.7505
0.6724 | 1.0534 | 0.748
0.6482 | 1.7314
1.722 | | Elfn2 | 0.5772 | 0.3077 | 1.1701 | 1.722 | | H2-DMa | | 0.9147 | | 1.722 | | Noxa1
Speer4d | 0.2846 | 1.2165
0.3077 | | 1.722
1.722 | | Tatdn3 | 0.2846 | 0.612 | | 1.722 | | XM_110688 | 0.9247 | 0.486 | 0.5184 | 1.722 | | XM_139179
XM_150633 | 0.5772 | 0.8565
1.2678 | 0.5184 | 1.722
1.722 | | XM 162954 | 0.3772 | 0.486 | 0.6482 | 1.722 | | XM_194678 | 0.6724 | 1.0119 | 0.8291 | 1.722 | | XM_286033 | 0.4551 | 0.7892 | | 1.722
1.722 | | XM_287622
Zfp318 | 0.4551
0.2846 | 0.3077
0.486 | | 1.722 | | 1700009N14Rik | | 0.9147 | 0.5184 | 1.7124 | | Cct4 | | 0.3077 | 0.5184 | 1.7124 | | Ddrgk1
E330034G19Rik | 0.2846 | 0.3077 | 0.5184
0.3323 | 1.7124
1.7124 | | Fam184a | 0.4551 | 0.3077 | 0.748 | 1.7124 | | Frmd3 | 0.4551 | | | 1.7124 | | Gsdmc2
Olfr1055 | | 1.1885 | 0.3323
0.8291 | 1.7124
1.7124 | | Tnfaip2 | 0.5772 | 0.3077 | 1.0084 | | | Tomm34 | | 0.3077 | 0.3323 | 1.7124 | | Ufd1I | 0.2846 | 0.3077 | 0.3323 | 1.7124
1.7124 | | Wee1
XM_131252 | 1.0111
1.1729 | 0.486
0.3077 | 0.5184
0.748 | | | XM_137022 | 0.874 | 0.612 | 0.8291 | 1.7124 | | XM_153882 | 0.6724 | 0.7096 | 0.5184 | 1.7124 | | XM_196995
XM_231462 | 0.7505 | 1.0534
0.3077 | 0.3323
1.0967 | 1.7124
1.7124 | | XM_283173 | 0.2846 | 0.3077 | 1.0307 | 1.7124 | | 1110057K04Rik | 0.2846 | 0.3077 | 0.748 | 1.7026 | | Akap17b
Arid3b | 0.874 | 0.7892 | 0.6482 | 1.7026
1.7026 | | Dnajb5 | 0.4551 | 0.3077
0.7892 | 0.3323
0.748 | 1.7026 | | Ehd4 | 0.7505 | 0.612 | 0.3323 | 1.7026 | | Gap43 | 0.4551 | 1.1262 | 0.5184 | 1.7026 | | Gm5733
Gsta1 | 0.4551 | 0.612
0.3077 | 0.5184 | 1.7026
1.7026 | | Gtf2e1 | 0.2846 | 0.486 | 0.3323 | 1.7026 | | lghm | | 0.612 | | 1.7026 | | Ikbip
Mapk13 | 0.4551
0.2846 | 0.3077 | 0.5184
0.6482 | 1.7026
1.7026 | | Mrpl51 | 0.6724 | 0.486 | 0.8291 | 1.7026 | | Myl3 | 0.5772 | | 0.5184 | 1.7026 | | NM_177106 | 0.2846
0.2846 | 0.486 | | 1.7026 | | Rasef
Trim61 | 0.2846 | 1.0119 | | 1.7026
1.7026 | | Vmn2r37 | | 0.7096 | 1.0967 | | | | | | | | | XM_137225
XM_138574 | 0.6724
0.6724 | 1.0119
0.612 | 0.5184
0.3323 | 1.7026
1.7026 | |------------------------|------------------|------------------|------------------|------------------| | XM_196154 | 0.0724 | 1.2429 | 0.5184 | 1.7026 | | XM_284930 | | 0.612 | | 1.7026 | | XM_485788 | 0.5772 | 0.7892 | | 1.7026 | | XM_489108
Zfp846 | 0.8166
0.7505 | 0.486 | | 1.7026
1.7026 | | 1700011F14Rik | | 0.9147 | 1.2328 | 1.6926 | | 4930526F13Rik | | 0.486 | | 1.6926 | | C030048B08Ril
Cdc7 | | | | 1.6926 | | Cdc7
Celf1 | 0.5772
1.0111 | 0.486 | 0.3323
0.748 | 1.6926
1.6926 | | Erlec1 | 0.2846 | 0.612 | 1.0084 | 1.6926 | | Fsd1l | 1.0486 | 0.9147 | | 1.6926 | | Gabrb3
Hoxd12 | 1.0486 | | | 1.6926
1.6926 | | Krt77 | 0.2846 | 0.9147 | 0.748 | 1.6926 | | Lzts1 | 0.2846 | 0.612 | | 1.6926 | | Nfyc | 0.8166 | 0.7096 | 0.8291 | 1.6926 | | Pola1
Ppp4r4 | 0.2846
0.874 | 0.7096
0.8565 | 0.748 | 1.6926
1.6926 | | Tspan33 | 0.2846 | 0.7096 | 0.5184 | 1.6926 | | Tstd1 | 0.97 | 0.3077 | 0.8974 | 1.6926 | | XM_150881
XM_151728 | 0.4551 | 0.612 | | 1.6926
1.6926 | | XM_151726
XM_154677 | 0.6724
0.5772 | 0.7096 | 0.5184 | 1.6926 | | XM_155816 | 0.4551 | 1.2913 | 0.748 | 1.6926 | | XM_282985 | 0.5772 | 1.0534 | 0.6482 | 1.6926 | | XM_288957
XM_487778 | 0.4551
0.2846 | | 0.5184 | 1.6926
1.6926 | | Zfp830 | 0.2846 | 0.3077 | 0.748 | 1.6926 | | Atg7 | 0.2846 | 0.486 | 0.5184 | 1.6824 | | B130021B11Rik | | 0.8565 | | 1.6824 | | C130026I21Rik
Isca2 | 1.1729
0.7505 | 0.3077
0.612 | | 1.6824
1.6824 | | Lasp1 | 0.7805 | 0.3077 | | 1.6824 | | Pi16 | 0.2846 | 0.3077 | | 1.6824 | | Poc5 | 0.7505 | 0.3077 | 0.3323 | 1.6824 | | Pus7l
Snai3 | 0.5772
0.5772 | 0.612
0.8565 | 0.748
0.6482 | 1.6824
1.6824 | | Thg1l | 0.4551 | 0.612 | 0.3323 | 1.6824 | | Vip | 0.6724 | 0.612 | 0.748 | 1.6824 | | XM_136261 | 0.8166 | 0.486 | 0.5184 | 1.6824 | | XM_143700
XM 146220 | 0.6724
0.5772 | 0.612
0.486 | 0.9565
0.5184 | 1.6824
1.6824 | | XM_146705 | 0.4551 | | 0.5184 | 1.6824 | | XM_159533 | 1.1991 | 0.7096 | 0.3323 | 1.6824 | | XM_161730
XM_162569 | 0.2846 | 0.486
0.3077 | 0.9565
0.3323 | 1.6824
1.6824 | | XM_205213 | 0.0100 | 0.7096 | 0.5184 | 1.6824 | | XM_206036 | | | | 1.6824 | | XM_286933 | 0.0040 | 1.0119 | 0.5184 | 1.6824 | | XM_288446
XM_289295 | 0.2846 | 0.3077 | | 1.6824
1.6824 | | Zdhhc11 | 1.4302 | 0.486 | | 1.6824 | | 9130401M01Ril | | | | 1.6719 | | Anxa11
Atat1 | 0.4551
0.5772 | 0.7892 | 0.748
0.5184 | 1.6719
1.6719 | | Bche | 0.4551 | 0.8565 | 0.5184 | 1.6719 | | Ctdp1 | 0.5772 | 0.3077 | | 1.6719 | | Defb3 | 0.4554 | 0.3077 | 0.748 | 1.6719 | | Dfna5
E030003E18Rik | 0.4551 | 0.486 | | 1.6719
1.6719 | | Erf | | 0.612 | | 1.6719 | | Gnat2 | 0.2846 | 0.612 | | 1.6719 | | Hint3
II33 | 0.9247
0.5772 | 0.612
1.0913 | 0.5184
0.5184 | 1.6719
1.6719 | | Map3k7 | 0.874 | 0.9147 | 0.3323 | 1.6719 | | Olr111 | 0.8166 | 0.612 | 0.6482 | 1.6719 | | Pcgf2 | 1.1152 | 0.612 | 0.748 | 1.6719 | | Pdzd9
Ppp1r9a | 0.874
0.4551 | 0.3077
0.486 | 0.748
0.3323 | 1.6719
1.6719 | | Prl3c1 | 0.6724 | 0.486 | 0.8291 | 1.6719 | | Ptgr2 | 0.6724 | 0.966 | 0.3323 | 1.6719 | | Secisbp2l | 0.4551 | 0.966 | 0.3323 | 1.6719 | | Slc15a5
Slx1b | 0.4551
0.97 | 0.3077 | 0.8291
0.3323 | 1.6719
1.6719 | | Tm9sf1 | 0.4551 | 0.7892 | | 1.6719 | | Usp12 | 0.4551 | 0.486 | 0.748 | 1.6719 | | Wdfy2 | 0.4551 | 0.0077 | 0.5184 | 1.6719 | | XM_145347
XM_145934 | 0.5772 | 0.3077
0.486 | 0.6482
0.5184 | 1.6719
1.6719 | | XM_157333 | 0.6724 | 0.7096 | 0.3323 | 1.6719 | | XM_160400 | 0.8166 | 0.3077 | 0.8974 | 1.6719 | | XM_165238
XM_204532 | 0.6724 | 0.486
0.7892 | 0.8291 | 1.6719 | | XM_286680 | 0.5772 | 0.7096 | | 1.6719
1.6719 | | | | 330 | | | | XM_288998 | 0.5772 | 0.3077 | 0.6482 | 1.6719 | |----------------------------|------------------|------------------|------------------|------------------| | XM_485871
1810026J23Rik | 0.4551 | 0.486
0.3077 | 0.3323
0.5184 | 1.6719
1.6611 | | A530065N20 | 0.8166 | 0.612 | 0.5104 | 1.6611 | | Cnr2 | 0.2846 | 0.7892 | 0.3323 | 1.6611 | | Ddx20 | 0.874 | 0.7096 | 0.6482 | 1.6611 | | Fxyd6
Glipr1 | 0.4551
0.4551 | 0.7892
0.486 | 0.748
0.3323 | 1.6611
1.6611 | | Gm815 | 0.6724 | 0.486 | | 1.6611 | | Lin52 | 0.9247 | 0.612 | 0.9565 | 1.6611 | | 11-Mar | | 1.2165 | 0.3323 | 1.6611 | | Mettl6
Nkrf | 0.4551
0.5772 | 0.612 | 0.9565
0.3323 | 1.6611
1.6611 | | NM 001002770 | | 0.8565 | | 1.6611 | | Proca1 | | 0.612 | 0.5184 | 1.6611 | | Ralgps2 | | 0.3077 | | 1.6611 | | Riok3
Vmn1r78 | 0.4551 | 0.7096
0.612 | 0.3323
0.9565 | 1.6611
1.6611 | | Wwc1 | 0.6724
0.4551 | 0.7096 | 0.9303 | 1.6611 | | XM_111754 | 0.6724 | 0.3077 | 0.748 | 1.6611 | | XM_112845 | 0.5772 | | | 1.6611 | | XM_126301 | 0.2846
0.4551 | 0.3077 | 0.9565 | 1.6611
1.6611 | | XM_139089
XM_139333 | 0.4551 | 0.3077
0.3077 | 0.3323 | 1.6611 | | XM_139717 | 0.4551 | 0.612 | | 1.6611 | | XM_139927 | 0.4551 | 1.2678 | 0.6482 | 1.6611 | | XM_151696 | 1.0832 | 0.7096 | 0.5184 | 1.6611 | | XM_156372
XM_164994 | 0.5772 | | | 1.6611
1.6611 | | XM_197443 | 1.0486 | | | 1.6611 | | XM_218013 | 1.2472 | | | 1.6611 | | XM_237458 | | 0.3077 | | 1.6611 | | XM_283968 | 0.2946 | 0.3077 | 0.3323 | 1.6611 | | XM_286476
XM_289368 | 0.2846
0.4551 | 0.612 | 1.0967
1.0548 | 1.6611
1.6611 | | Yme1I1 | 0.1001 | 1.0534 | 0.748 | 1.6611 | | Zfp84 | 0.5772 | 0.612 | 0.5184 | 1.6611 | | 4932412H11Rik | | 1.1262 | 0.3323 | 1.6501 | | AF529169
Arx | 0.6724 | 0.3077
0.486 | 0.6482
0.9565 | 1.6501
1.6501 | | Fdps | 0.2846 | 0.7096 | 0.3323 | 1.6501 | | Fmo2 | 1.3829 | 0.612 | | 1.6501 | | Hoxd4 | | 0.8565 | | 1.6501 | | Ift80
NM 177148 | 0.5772 | | | 1.6501
1.6501 | | NM 177467 | 0.4551 | 0.3077 | 0.5184 | 1.6501 | | Rad51I1 | 0.2846 | 0.3077 | | 1.6501 | | Rps19bp1 | 0.7505 | 0.7892 | | 1.6501 | | Sprr2j-ps
Steap4 | | 0.7096
0.3077 | | 1.6501
1.6501 | | Top2b | | | | 1.6501 | | Vav1 | 0.7505 | 0.3077 | 0.5184 | 1.6501 | | Wdr96 | 0.7505 | 0.612 | 1.1349 | 1.6501 | | XM_111876
XM_126817 | 0.5772 | 0.3077
0.612 | | 1.6501
1.6501 | | XM 138084 | 0.2846
0.2846 | 0.486 | 0.5184 | 1.6501 | | XM_138750 | 0.8166 |
0.486 | 0.6482 | 1.6501 | | XM_140132 | 0.4551 | 0.612 | 0.3323 | 1.6501 | | XM_143154 | 0.5770 | 0.010 | 0.8291 | 1.6501 | | XM_146374
XM_160781 | 0.5772
0.2846 | 0.612 | 1.1701
0.3323 | 1.6501
1.6501 | | XM_218601 | 0.4551 | 0.486 | | 1.6501 | | XM_223540 | | | 0.5184 | 1.6501 | | XM_289202 | 0.4554 | 1.1262 | 0.5184 | 1.6501 | | Znhit6
1700010M22Rik | 0.4551 | 0.612
0.612 | 0.5184 | 1.6501
1.6388 | | A430005L14Rik | | 0.486 | 0.6482 | 1.6388 | | A430107O13Ril | 0.2846 | 0.7096 | 0.5184 | 1.6388 | | Dbx1 | | | | 1.6388 | | Dgkg
Eif3f | 0.8166
0.6724 | 0.486
0.486 | 0.5184 | 1.6388
1.6388 | | Mtap7d2 | 0.0724 | 0.3077 | 1.1349 | 1.6388 | | Nefm | | 0.0077 | 0.3323 | 1.6388 | | NM_177902 | 0.2846 | 0.3077 | 0.6482 | 1.6388 | | Pgpep1 | 0.9247 | 0.486 | 0.5184 | 1.6388 | | Sarm1
Srsf10 | 0.2846
0.4551 | 0.3077
0.486 | 0.748
0.3323 | 1.6388
1.6388 | | Trappc10 | 0.2846 | 0.3077 | | 1.6388 | | Vegfa | 0.6724 | | 0.5184 | 1.6388 | | XM_130727 | 0.8166 | 0.612 | 0.8974 | 1.6388 | | XM_132334
XM_138713 | 0.4551 | 0.612 | | 1.6388 | | XM_138713
XM_144941 | 0.4551 | 0.3077 | 0.748 | 1.6388
1.6388 | | XM_146485 | 0.1001 | 0.3077 | 1.4003 | 1.6388 | | XM_206234 | 0.5772 | 0.7892 | 0.748 | 1.6388 | | XM_285767 | 0.5772 | 0.3077 | 0.8291 | 1.6388 | | XM_289521 | 0.7505 | 0.3077 | 0.5184 | 1.6388 | | XM_489181 | 1.1152 | 0.7892 | 0.6482 | 1.6388 | |-------------------------|------------------|------------------|------------------|------------------| | Zfp800
2900069M18Rik | 1.0832 | 0.8565
0.612 | 0.5184
0.8974 | 1.6388
1.6272 | | 4933414I06Rik | 0.6724 | 0.7892 | 0.6482 | 1.6272 | | Ankrd28 | | | 0.3323 | 1.6272 | | Arglu1
Arl6ip4 | 0.7505
1.3106 | 0.7892 | 0.5184 | 1.6272 | | Anoip4
Asxl1 | 0.4551 | 0.3077
0.612 | 0.3323 | 1.6272
1.6272 | | Bat4 | 0.6724 | 0.3077 | 0.3323 | 1.6272 | | Ccng1 | 1.4302 | 0.3077 | 0.3323 | 1.6272 | | Cd209d
Crbn | 0.7505
0.2846 | 0.3077 | 1.0084
0.3323 | 1.6272
1.6272 | | D630023F18Rik | 0.4551 | 0.612 | 0.5184 | 1.6272 | | Gm5593 | 0.5772 | 0.612 | 0.748 | 1.6272 | | Gm9776
Hist1h1t | 0.7505
0.6724 | 1.1262 | 0.6482
0.5184 | 1.6272
1.6272 | | Krtdap | 0.4551 | 1.1202 | 0.5184 | 1.6272 | | Olr422 | 1.0486 | 0.3077 | | 1.6272 | | Phyhip
Plxnb1 | 0.7505 | | 0.3323 | 1.6272
1.6272 | | Ppp4r1 | 0.7505 | 0.3077 | 0.748 | 1.6272 | | Prkrir | 0.4551 | 1.1885 | | 1.6272 | | Prl8a1 | 0.2846 | 0.486 | 0.3323 | 1.6272 | | Rhot2
Rsu1 | 0.5772
0.2846 | 0.7892
0.3077 | 0.5184
0.6482 | 1.6272
1.6272 | | Tfam | 0.6724 | | 0.3323 | 1.6272 | | Xcl1 | 1.2472 | 0.3077 | 0.8974 | 1.6272 | | XM_141964
XM_142663 | 0.2846
0.4551 | 0.612
0.612 | 0.3323
1.1701 | 1.6272
1.6272 | | XM_143134 | 0.9247 | 0.8565 | 0.748 | 1.6272 | | XM_145457 | | 0.486 | 0.3323 | 1.6272 | | XM_151703
XM_153602 | 0.4551 | | 0.3323 | 1.6272
1.6272 | | XM_153808 | 0.2846 | 1.2165 | 0.3323 | 1.6272 | | XM_157965 | 0.6724 | 0.7096 | 0.3323 | 1.6272 | | XM_160456
XM_164796 | 0.4551
0.9247 | 0.486 | 0.6482 | 1.6272
1.6272 | | XM_283269 | 0.9247 | 0.3077 | 0.0462 | 1.6272 | | XM_285260 | | | | 1.6272 | | XM_285390 | 0.2846 | 0.0505 | 0.3323 | 1.6272 | | XM_286251
XM_286509 | 0.2846
0.97 | 0.8565
0.7096 | | 1.6272
1.6272 | | XM_288203 | 5.61 | 0.7892 | 0.748 | 1.6272 | | XM_288578 | 0.7505 | 0.3077 | 0.3323 | 1.6272 | | XM_289272
XM_485248 | 0.4551 | 0.612 | 0.6482 | 1.6272
1.6272 | | Atad2 | 0.9247 | 0.3077 | 0.6482 | 1.6152 | | Dnajc1 | 0.6724 | 0.612 | 1.0084 | 1.6152 | | Eef1e1
Erbb4 | 0.2846 | 0.3077
0.486 | 0.3323 | 1.6152
1.6152 | | Fgf14 | 1.145 | 0.400 | 0.6482 | 1.6152 | | Foxn3 | | 1.3929 | | 1.6152 | | Klk5 | 0.6724 | 0.7096 | 0.3323 | 1.6152 | | Krtap3-3
Lpar1 | 0.4551 | 0.7096 | 0.748 | 1.6152
1.6152 | | Lrrc58 | 0.4551 | 0.9147 | 0.5184 | 1.6152 | | Neto2 | 0.874 | 0.486 | 0.3323 | 1.6152 | | Nup107
Oit1 | 0.4551
0.7505 | 0.3077
0.612 | 0.5184 | 1.6152
1.6152 | | Phlda2 | 0.5772 | 0.486 | 0.8291 | 1.6152 | | Ptn | 0.4551 | 0.612 | 0.3323 | 1.6152 | | Rnase10
Shd | 0.7505
0.2846 | 0.7892
1.3929 | 0.5184
0.5184 | 1.6152
1.6152 | | Smr3a | 0.6724 | 1.0913 | 0.5164 | 1.6152 | | Tbc1d2 | 0.2846 | 0.486 | | 1.6152 | | Urgcp | 0.6724 | 0.612 | 0.8291 | 1.6152 | | XM_110803
XM_142146 | 0.4551
0.5772 | 0.486
0.9147 | 0.3323
0.3323 | 1.6152
1.6152 | | XM_150452 | 0.5772 | 1.0913 | 0.8291 | 1.6152 | | XM_150607 | 0.4551 | 0.3077 | 0.6482 | 1.6152 | | XM_282998
XM_283529 | 0.5772 | 0.612 | 0.748
0.6482 | 1.6152
1.6152 | | XM_284221 | | 0.486 | | 1.6152 | | XM_285500 | 0.2846 | 0.3077 | 0.5184 | 1.6152 | | XM_286706
XM_287925 | 0.5772 | 0.3077
0.486 | 0.5184 | 1.6152 | | XM_287925
XM_290020 | 0.2846
0.2846 | 0.486 | 0.5184 | 1.6152
1.6152 | | XM_489147 | 0.8166 | 0.486 | | 1.6152 | | 4930524B15Rik | 0.5772 | 0.612 | 0.3323 | 1.6029 | | 4933434C23Rik
Ar | 1.0111
0.2846 | 0.486
0.612 | 0.5184 | 1.6029
1.6029 | | Cldn8 | 0.4551 | 0.486 | 1.1349 | 1.6029 | | Cops7b | 1.2238 | 0.3077 | 0.8974 | 1.6029 | | Edn3
Fam184b | 1.0111
0.8166 | 0.7096
0.8565 | 0.6482
0.6482 | 1.6029
1.6029 | | Gm14461 | 0.9247 | 0.7096 | 0.8482 | 1.6029 | | Gne | 0.2846 | 0.7892 | 0.6482 | 1.6029 | | | | | | | | Gpr84
Kif9 | 0.2846
0.6724 | 0.486
0.612 | 0.6482
0.5184 | 1.6029
1.6029 | |----------------------------|------------------|------------------|------------------|------------------| | Klre1 | 0.5772 | 0.3077 | 0.748 | 1.6029 | | Oc90 | 0.5772 | 0.3077 | | 1.6029 | | Olfr1317 | | 0.3077 | | 1.6029 | | Olfr608
Olfr714 | 1.1729 | 1.0913 | 0.3323 | 1.6029 | | Olr1084 | 1.1152 | 0.486 | 0.5184 | 1.6029
1.6029 | | Pbk | 0.7505 | 0.9147 | 0.8291 | 1.6029 | | Pira11 | 0.4551 | 0.3077 | 1.2026 | 1.6029 | | Plcd4 | 0.7505 | 0.8565 | 0.3323 | 1.6029 | | Ppt1
Pramel6 | 0.5772
0.8166 | 0.3077
0.486 | 0.9565
0.5184 | 1.6029
1.6029 | | Reln | 0.9247 | 0.612 | 0.5184 | 1.6029 | | Rinl | 0.5772 | 0.486 | 0.3323 | 1.6029 | | Senp5 | 0.2846 | 0.3077 | 0.6482 | 1.6029 | | Sobp
XM_150912 | 0.5772
0.7505 | | 0.3323
0.6482 | 1.6029
1.6029 | | XM 163125 | 0.5772 | 0.612 | 0.0402 | 1.6029 | | XM_164712 | 0.7505 | 0.7892 | 0.748 | 1.6029 | | XM_195002 | 0.2846 | 0.7892 | 0.5184 | 1.6029 | | XM_196719 | 0.5772 | 0.486 | 0.5184 | 1.6029 | | XM_206657
XM_284649 | 0.2846
0.2846 | 0.3077
0.486 | 0.5184
0.3323 | 1.6029
1.6029 | | XM_288600 | 0.5772 | 0.486 | | 1.6029 | | XM_487514 | 0.2846 | 0.3077 | | 1.6029 | | Zfp595 | 0.4551 | 0.486 | 0.8291 | 1.6029 | | Zfp954
2410001C21Rik | 0.874 | 0.486
0.7892 | 0.5184 | 1.6029
1.5903 | | 2810459M11Rik | | 0.7692 | | 1.5903 | | BC003266 | 0.6724 | 0.486 | 1.2026 | 1.5903 | | Ccin | 0.8166 | 0.7096 | 0.8974 | 1.5903 | | Cnst | 0.7505 | 0.612 | 0.8291 | 1.5903 | | Cryz
Ddx24 | 0.874
1.1152 | 0.612
0.486 | 0.748
0.748 | 1.5903
1.5903 | | Gm648 | 0.7505 | 0.3077 | 0.6482 | 1.5903 | | Hoxc10 | 0.4551 | 0.612 | | 1.5903 | | Msx3 | | 0.612 | 0.6482 | 1.5903 | | Ndufaf1
Npnt | 0.5772
0.4551 | 0.8565 | 0.5184 | 1.5903
1.5903 | | XM 140063 | 0.5772 | 0.3077 | 0.5184
0.3323 | 1.5903 | | XM_150312 | 0.2846 | 0.3077 | | 1.5903 | | XM_154858 | 1.1152 | 0.7892 | 0.5184 | 1.5903 | | XM_155066 | 0.6724 | 0.612 | | 1.5903 | | XM_156262
XM_194805 | 0.5772
0.7505 | 0.3077
1.2429 | 0.5184 | 1.5903
1.5903 | | XM_197577 | 0.4551 | 1.2420 | 0.0104 | 1.5903 | | XM_285452 | 0.4551 | 0.486 | | 1.5903 | | XM_285909 | 4.0000 | 0.486 | | 1.5903 | | XM_286283
XM_287316 | 1.3992
0.7505 | 0.612
0.612 | 0.3323
0.9565 | 1.5903
1.5903 | | XM_287835 | 0.7303 | 0.612 | 0.9303 | 1.5903 | | XM_288633 | 0.8166 | 0.7096 | 0.8291 | 1.5903 | | XM_289163 | 0.4551 | 0.486 | 0.3323 | 1.5903 | | XM_289443 | 0.5770 | 0.612 | 1.0548 | 1.5903 | | XM_486465
1500002O10Rik | 0.5772
0.9247 | 0.486
1.0119 | | 1.5903
1.5773 | | 2700097O09Rik | | 0.486 | | 1.5773 | | 4930468A15Rik | | 0.3077 | 0.748 | 1.5773 | | 8430410K20Rik | | 0.7892 | 0.748 | 1.5773 | | A530032D15Rik
Afmid | 0.4551 | 1.0913 | 0.6482 | 1.5773
1.5773 | | Aoc2 | 0.5772 | 0.8565 | 0.8291 | 1.5773 | | Arrb1 | 0.5772 | 0.486 | 0.0201 | 1.5773 | | Bbs10 | | 0.7096 | | 1.5773 | | Card6 | 0.4551 | 0.612 | 0.8291 | 1.5773 | | Cd300e
Cd79a | 0.97
0.2846 | 0.612
1.0119 | 0.5184 | 1.5773
1.5773 | | Cyp2a12 | 0.2040 | 1.0113 | | 1.5773 | | Fabp5 | 0.2846 | | 0.8291 | 1.5773 | | Gbx2 | 0.4551 | 1.0119 | 0.3323 | 1.5773 | | Hyal4
Ido2 | 0.4551
0.874 | 0.486
1.0534 | 0.9565 | 1.5773 | | Ido2
Kl | 0.874 | 0.486 | 0.5184 | 1.5773
1.5773 | | Matr3 | 1.0832 | 0.3077 | | 1.5773 | | Pigc | 0.2846 | 0.486 | | 1.5773 | | Pitpnm3 | 0.5772 | 1.0913 | 0.5184 | 1.5773 | | Rac2 | 0.5772 | 0.7892 | | 1.5773 | | Ret
Rfc2 | | | | 1.5773
1.5773 | | Rnf157 | 0.2846 | | | 1.5773 | | Sec31a | 0.2846 | 0.9147 | 0.8974 | 1.5773 | | Sh3pxd2a | 1.0832 | 0.612 | 0.748 | 1.5773 | | Upk1b
XM_127084 | 0.5772
0.5772 | 0.7892
0.7892 | 0.748
0.5184 | 1.5773
1.5773 | | XM_136246 | 0.7505 | 0.7692 | 0.5104 | 1.5773 | | XM_138629 | 0.5772 | 0.7096 | | 1.5773 | | | | | | | | XM_146453 | 0.5772 | 0.486 | 0.0000 | 1.5773 | |--------------------------------|------------------|------------------|------------------|------------------| | XM_146465
XM_155135 | 1.3659
0.2846 | 0.7892 | 0.3323
0.6482 | 1.5773
1.5773 | | XM_156842 | 0.4551 | 0.486 | 0.0402 | 1.5773 | | XM_157736 | 0.1001 | 0.8565 | 0.3323 | 1.5773 | | XM_161863 | 0.7505 | 0.612 | 1.0084 | 1.5773 | | XM_163735 | 1.0832 | 0.486 | 0.3323 | 1.5773 | | XM_194987 | 0.5772 | 0.7892 | 0.3323 | 1.5773 | | XM_197241
XM_197490 | 0.6724
0.9247 | 0.3077 | 0.6482 | 1.5773
1.5773 | | XM_487263 | 1.0486 | 0.8565 | 0.5184 | 1.5773 | | 2810432L12Rik | 0.4551 | 0.0000 | 0.3323 | 1.5639 | | 5830418K08Rik | 0.2846 | 0.3077 | 0.5184 | 1.5639 | | 9530026P05Rik | 0.8166 |
0.3077 | 0.5184 | 1.5639 | | Akap1 | 0.4551 | 0.9147 | 0.9565 | 1.5639 | | Arvcf
B4gaInt2 | 0.4551 | 0.7096 | 0.3323
0.6482 | 1.5639 | | Batf2 | 1.0486
0.6724 | 1.1262 | 0.5184 | 1.5639
1.5639 | | BC032203 | 0.6724 | 0.7892 | 0.8974 | 1.5639 | | Ccl11 | 0.5772 | 0.612 | 0.6482 | 1.5639 | | D330041H03Rik | 0.874 | | 0.6482 | 1.5639 | | Eya3 | | 0.8565 | 0.3323 | 1.5639 | | Frg1 | 0.7505 | 0.612 | 0.8291 | 1.5639 | | Gpr119
Gstt2 | 1.3298 | 0.7096
0.7892 | | 1.5639
1.5639 | | Klhdc5 | 0.8166 | 0.9147 | 0.3323 | 1.5639 | | Mcart1 | 0.5772 | 0.7096 | 0.3323 | 1.5639 | | Mrgprb1 | 0.874 | 0.3077 | 1.1701 | 1.5639 | | Ms4a5 | | 0.486 | | 1.5639 | | Myh7 | 0.2846 | 0.7096 | 1.0084 | 1.5639 | | NM_175479
Oxgr1 | 0.97
0.6724 | 0.7096
0.9147 | 0.5184
0.5184 | 1.5639
1.5639 | | Ppig | 0.0724 | 0.9147 | 0.5104 | 1.5639 | | Wisp2 | 0.8166 | | 0.5184 | 1.5639 | | XM_112298 | 0.8166 | 0.7892 | | 1.5639 | | XM_129867 | 0.4551 | 0.8565 | | 1.5639 | | XM_132134 | 0.7505 | 0.9147 | 0.8291 | 1.5639 | | XM_132652 | 0.4551 | 0.486 | 1.0084 | 1.5639 | | XM_134412
XM_136437 | 0.2846
0.4551 | 0.3077
0.612 | 0.3323
0.5184 | 1.5639
1.5639 | | XM_137215 | 1.2904 | 0.7892 | 0.5104 | 1.5639 | | XM_142892 | 0.4551 | 1.0913 | 0.5184 | 1.5639 | | XM_143773 | 0.6724 | 0.966 | 0.5184 | 1.5639 | | XM_144221 | 0.5772 | 0.3077 | 0.3323 | 1.5639 | | XM_144681 | 0.4551 | 0.8565 | 0.6482 | 1.5639 | | XM_151129
XM_152041 | 0.8166
0.4551 | | 0.5184
0.748 | 1.5639
1.5639 | | XM_152187 | 0.4331 | | 0.748 | 1.5639 | | XM_153881 | 0.2846 | 0.7096 | 0.748 | 1.5639 | | XM_154522 | 1.3659 | 0.486 | 0.6482 | 1.5639 | | XM_154889 | 0.4551 | 0.3077 | 0.6482 | 1.5639 | | XM_162513 | 0.7505 | 0.7096 | 0.5184 | 1.5639 | | XM_196953
XM_206756 | 0.2846 | 1.0534 | 0.6482 | 1.5639
1.5639 | | XM_285001 | 0.5772
0.5772 | 0.8565 | 0.5184
0.5184 | 1.5639 | | XM_285670 | 0.4551 | 0.3077 | 0.3323 | 1.5639 | | XM_286370 | | | | 1.5639 | | XM_286808 | 0.5772 | 1.2429 | | 1.5639 | | XM_288561 | 0.5772 | 0.486 | 0.5184 | 1.5639 | | XM_288676 | 0.5772 | 0.3077 | 0.3323 | 1.5639 | | XM_289251
XM_289330 | 0.2846 | 0.486
0.3077 | 0.5184 | 1.5639
1.5639 | | XM_289414 | 0.2846 | 0.7096 | 1.2026 | 1.5639 | | XM_290060 | 0.8166 | 0.7096 | 0.3323 | 1.5639 | | XM_356617 | 0.5772 | 0.486 | 0.8974 | 1.5639 | | XM_484644 | 0.7505 | 0.612 | | 1.5639 | | 1700028J19Rik | 0.7505 | 0.486 | 0.6482 | 1.55 | | 2310036O22Rik
4921511H03Rik | 1.2472 | 0.486 | | 1.55
1.55 | | 5730433N10Rik | 0.874 | 1.0913 | 0.3323 | 1.55 | | Accn5 | 0.6724 | 0.486 | 0.3323 | 1.55 | | Acsl6 | 0.7505 | 0.3077 | | 1.55 | | Alcam | 0.6724 | 1.0119 | | 1.55 | | Ankrd1 | 0.6724 | 0.612 | 0.5404 | 1.55 | | Azi1
C030019G06Rik | 0.2846
0.5772 | 0.7096
0.612 | 0.5184
0.3323 | 1.55
1.55 | | Cd68 | 0.6724 | 0.3077 | 0.6482 | 1.55 | | Crygs | 0.4551 | | 0.6482 | 1.55 | | Cstb | | 0.3077 | 0.5184 | 1.55 | | Fam65a | 0.6724 | 0.966 | 0.5184 | 1.55 | | Fbxw8 | 0.874 | 0.3077 | 0.6482 | 1.55 | | Fpr-rs3
G6pdx | 0.4551 | 0.3077
0.3077 | 0.3323
0.5184 | 1.55 | | Gimap8 | 0.7505
0.4551 | 0.3077 | 0.0184 | 1.55
1.55 | | Gm5482 | 0.8166 | 0.612 | 0.5184 | 1.55 | | Gsto1 | 0.7505 | 0.486 | 0.8974 | 1.55 | | Nat6 | 0.4551 | 0.7096 | 0.3323 | 1.55 | | | | | | | | Ncapg | 0.4554 | 0.3077 | | 1.55 | |--|--|--|--|---| | Ngb
Oprl1 | 0.4551
0.9247 | 0.612
0.612 | 0.3323
0.9565 | 1.55
1.55 | | Osbpl8 | 0.4551 | 0.486 | 0.5184 | 1.55 | | Plk3 | 0.4551 | 0.400 | 0.5184 | 1.55 | | Prdm15 | 0.4551 | 0.486 | 0.3323 | 1.55 | | Prkce | 0.7505 | 0.486 | 1.2026 | | | Rfc3 | 0.9247 | 0.3077 | 1.0967 | 1.55 | | Rpl11
St3gal4 | 0.97 | 0.966 | 0.5184
0.5184 | 1.55
1.55 | | TEX14 | 0.5772 | 0.7892 | 0.748 | 1.55 | | Tmem202 | 0.6724 | 0.7096 | | 1.55 | | Triml1 | 0.6724 | 0.7096 | 0.748 | 1.55 | | Ttc33 | | 0.612 | | 1.55 | | Tusc2
Ubd | 0.7505
0.8166 | 1.3136 | | 1.55
1.55 | | Vamp3 | 0.0100 | 0.486 | | 1.55 | | Vmn1r43 | 1.0111 | 0.612 | 0.6482 | 1.55 | | Vmn2r19 | 0.6724 | 0.7892 | 0.5184 | 1.55 | | XM_137032 | 0.5772 | | | 1.55 | | XM_139511 | 0.4551 | 0.3077 | 0.5404 | 1.55 | | XM_143050
XM_146303 | 0.5772
0.4551 | 0.486
0.7096 | 0.5184
0.5184 | 1.55
1.55 | | XM_158512 | 0.6724 | 0.612 | 0.8974 | 1.55 | | XM_285826 | 0.5772 | 0.7892 | 0.3323 | 1.55 | | XM_286700 | 1.1152 | 0.8565 | 0.3323 | 1.55 | | XM_287191 | 0.5772 | 0.3077 | 0.9565 | 1.55 | | XM_288318
XM_288853 | | 0.612 | | 1.55
1.55 | | XM_288853
XM_289282 | 0.874 | 0.3077 | | 1.55 | | XM_289348 | 0.5772 | 0.612 | 0.5184 | 1.55 | | XM_289482 | 0.2846 | 0.7096 | 0.3323 | 1.55 | | XM_356680 | 0.4551 | 0.3077 | 0.6482 | 1.55 | | XM_484333 | 0.2846 | | 0.3323 | 1.55 | | Zfp30
Znrf1 | 0.5772 | 0.612 | 0.6482 | 1.55
1.55 | | 1700021K19Rik | | 0.7892 | | 1.5357 | | 2810055F11Rik | 0.4551 | 0.486 | 0.5184 | 1.5357 | | Alg11 | 0.2846 | | | 1.5357 | | Apcs | 0.4554 | | | 1.5357 | | Arfgap1
C230088H06Rik | 0.4551
0.6724 | 0.3077
0.486 | | 1.5357
1.5357 | | C4b | 0.4551 | 1.2165 | | 1.5357 | | Cfl1 | 0.6724 | | 0.748 | 1.5357 | | Clcn3 | 0.4551 | 0.486 | | 1.5357 | | Cuedc1 | 0.9247 | 0.9147 | 0.6482 | 1.5357 | | | | | 0.0462 | | | Dnm1l | 0.8166 | 0.7892 | | 1.5357 | | Fhod3 | 0.8166
0.6724 | 0.7892 | 0.8291 | 1.5357
1.5357 | | | 0.8166
0.6724
0.4551 | 0.7892
0.486 | 0.8291 | 1.5357
1.5357
1.5357 | | Fhod3
Gpatch3 | 0.8166
0.6724 | 0.7892 | | 1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4 | 0.8166
0.6724
0.4551
1.0832 | 0.7892
0.486
0.486 | 0.8291 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23 | 0.8166
0.6724
0.4551
1.0832
0.2846 | 0.7892
0.486
0.486
0.612 | 0.8291
0.8974
0.3323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4 | 0.8166
0.6724
0.4551
1.0832
0.2846 | 0.7892
0.486
0.486
0.612
0.612 | 0.8291
0.8974
0.3323
0.3323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108 | 0.8166
0.6724
0.4551
1.0832
0.2846 | 0.7892
0.486
0.486
0.612 | 0.8291
0.8974
0.3323
0.3323
0.5184 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772 | 0.7892
0.486
0.486
0.612
0.612 | 0.8291
0.8974
0.3323
0.3323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846 | 0.7892
0.486
0.486
0.612
0.612
0.612 | 0.8291
0.8974
0.3323
0.3323
0.5184
0.5184
1.0548
0.3323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724 | 0.7892
0.486
0.486
0.612
0.612
0.612 | 0.8291
0.8974
0.3323
0.3323
0.5184
0.5184
1.0548
0.3323
0.6482 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486 |
0.8291
0.8974
0.3323
0.3323
0.5184
0.5184
1.0548
0.3323
0.6482
0.5184 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724 | 0.7892
0.486
0.486
0.612
0.612
0.486 | 0.8291
0.8974
0.3323
0.3323
0.5184
0.5184
1.0548
0.3323
0.6482 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486 | 0.8291
0.8974
0.3323
0.3323
0.5184
0.5184
1.0548
0.3323
0.6482
0.5184 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Kr23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869
XM_141710
XM_145862
XM_154330 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724
0.9247
0.874
0.5772 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.8565
0.3077 | 0.8291
0.8974
0.3323
0.3323
0.5184
1.0548
0.3323
0.6482
0.5184
0.6482
0.5184
0.6323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869
XM_141710
XM_145862
XM_157591 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724
0.9247
0.874
0.5772 | 0.7892
0.486
0.486
0.612
0.612
0.486
0.8565
0.8565
0.3077
0.7096 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.3323 0.6482 0.5184 0.6482 0.5184 0.6482 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869
XM_141710
XM_145862
XM_154330
XM_157591
XM_157701 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724
0.9247
0.874
0.5772
0.4551
0.5772 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.8565
0.3077
0.7096
1.2165 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.6482 0.5184 0.3323 0.5184 0.5184 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869
XM_141710
XM_145862
XM_154330
XM_157591
XM_157701
XM_160408 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724
0.9247
0.874
0.5772
0.4551
0.2846
0.2846 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.8565
0.3077
0.7096
1.2165
0.486 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3482 0.5184 0.3323 0.5184 0.3323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869
XM_141710
XM_145862
XM_154330
XM_157591
XM_157701 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724
0.9247
0.874
0.5772
0.4551
0.5772 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.8565
0.3077
0.7096
1.2165 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.6482 0.5184 0.6482 0.5184 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.5184 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3
Gpatch3
Grik2
Hcn4
Iqcf4
Krt23
Mtap4
NM_175108
Nup37
Pla2g5
Sik1
Sphk2
XM_112201
XM_140869
XM_141710
XM_145862
XM_154330
XM_157591
XM_157701
XM_160408
XM_162184 | 0.8166
0.6724
0.4551
1.0832
0.2846
0.874
1.2238
0.2846
0.5772
0.6724
0.9247
0.874
0.5772
0.4551
0.5772
0.2846
0.2846
1.0111 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.8565
0.3077
0.7096
1.2165
0.486
0.7892 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3482 0.5184 0.3323 0.5184 0.3323 | 1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357
1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_157591 XM_157591 XM_160408 XM_162184 XM_197074 XM_205294 XM_284077 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.3077
0.7096
1.2165
0.486
0.7892
0.7096
0.486
0.486 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5482 0.3323 0.5484 0.3323 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_205294 XM_284077 XM_284639 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_160408 XM_162184 XM_197074 XM_284073 XM_284073 XM_284639 XM_286314 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.2846 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.8565
0.3077
0.7096
1.2165
0.486
0.7892
0.7096
0.486
0.7892
0.7096 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5482 0.3323 0.5484 0.3323 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_205294 XM_284077 XM_284639 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 | 0.7892
0.486
0.486
0.612
0.612
0.612
0.486
0.8565
0.3077
0.7096
1.2165
0.486
0.7892
0.7096
0.486
0.486 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5482 0.3323 0.5484 0.3323 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_157591 XM_157751 XM_160408 XM_162184 XM_19074 XM_284639 XM_284631 XM_286647 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.612 0.486 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.486 0.7892 0.7892 0.3077 1.3348 | 0.8291 0.8974 0.3323 0.3323 0.5184 1.0548 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5482 0.3323 0.5184 0.3323 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869
XM_141710 XM_1545862 XM_157591 XM_157591 XM_160408 XM_157591 XM_162184 XM_197074 XM_284639 XM_284637 XM_287784 XM_287784 XM_287784 XM_287784 XM_287784 XM_287784 XM_289133 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.486 0.7892 0.3077 1.3348 0.7096 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.5184 0.6482 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_157591 XM_157591 XM_157701 XM_160408 XM_162184 XM_1905294 XM_284637 XM_284639 XM_286314 XM_287784 XM_287784 XM_287784 XM_287910 XM_289133 XM_289382 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.612 0.486 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7892 0.7096 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_11710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_205294 XM_284037 XM_284639 XM_286314 XM_286647 XM_287784 XM_287910 XM_289133 XM_289382 Xpc | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.612 0.486 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7892 0.3077 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.5184 0.6482 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_15791 XM_160408 XM_162184 XM_197074 XM_205294 XM_284077 XM_284639 XM_284631 XM_287784 XM_287784 XM_287784 XM_289133 XM_289382 Xpc Zfp944 | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.7096 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7892 0.3077 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_11710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_205294 XM_284037 XM_284639 XM_286314 XM_286647 XM_287784 XM_287910 XM_289133 XM_289382 Xpc | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.9247 0.874 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5722 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.612 0.486 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7892 0.3077 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 1.0548 0.3323 0.6482 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_205294 XM_284077 XM_284639 XM_2866314 XM_286647 XM_287784 XM_287910 XM_289133 XM_289382 Xpc Zfp944 Zp1 1810030N24Rik 4930529M08Rik | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 1.3992 0.5772 0.8166 1.1991 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7892 0.3077 1.2165 0.486 0.7892 0.3077 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.6482 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_2805294 XM_284077 XM_284639 XM_284073 XM_287784 XM_287784 XM_287784 XM_287784 XM_287910 XM_289133 XM_289382 Xpc Zfp944 Zp1 1810030N24Rik 4930529M08Rik 5830405M20Rik | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7096 0.486 0.7892 0.3077 1.3248 0.7096 0.7096 0.486 0.7892 0.3077 1.3248 0.7096 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.6482 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 | 1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_157591 XM_157701 XM_160408 XM_157701 XM_162184 XM_197074 XM_284637 XM_284077 XM_284637 XM_287910 XM_287784 XM_287910 XM_289133 XM_289382 Xpc Zfp944 Zp1 1810030N24Rik 4930529M08Rik 5830405M20Rik 6330503K22Rik | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.2846 1.0111 0.6724 0.5575 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7892 0.3077 1.2165 0.486 0.7892 0.3077 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.6482 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 | 1.5357 1.5357 1.5357 1.5357 1.5357 1.5357 1.5357 1.5357
1.5357 | | Fhod3 Gpatch3 Grik2 Hcn4 Iqcf4 Krt23 Mtap4 NM_175108 Nup37 Pla2g5 Sik1 Sphk2 XM_112201 XM_140869 XM_141710 XM_145862 XM_154330 XM_157591 XM_157701 XM_160408 XM_162184 XM_197074 XM_2805294 XM_284077 XM_284639 XM_284073 XM_287784 XM_287784 XM_287784 XM_287784 XM_287910 XM_289133 XM_289382 Xpc Zfp944 Zp1 1810030N24Rik 4930529M08Rik 5830405M20Rik | 0.8166 0.6724 0.4551 1.0832 0.2846 0.874 1.2238 0.2846 0.5772 0.6724 0.5772 0.4551 0.5772 0.2846 0.2846 1.0111 0.6724 0.5772 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 1.1991 0.2846 0.4551 | 0.7892 0.486 0.486 0.486 0.612 0.612 0.612 0.486 0.8565 0.8565 0.3077 0.7096 1.2165 0.486 0.7892 0.7096 0.486 0.7892 0.3077 1.3348 0.7096 0.7096 0.486 0.7892 0.3077 1.3248 0.7096 0.7096 0.486 0.7892 0.3077 1.3248 0.7096 | 0.8291 0.8974 0.3323 0.3323 0.5184 0.5184 0.6482 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 0.3323 0.5184 | 1.5357 | | 4-10- | 0.45 | | . 0.05=1 | 1 70 | |----------------------------|------------------|------------------|------------------|------------------| | Arl8a
Cacna1h | 0.4551 | 0.7892
0.486 | 0.8974
0.3323 | 1.5209
1.5209 | | Ccdc85a | 0.5772 | 0.466 | 0.5323 | 1.5209 | | Сре | 0.2846 | | 1.2611 | 1.5209 | | DKFZP564J086
Emilin1 | | 0.612 | 0.3323 | 1.5209 | | Gltp | 0.5772
0.4551 | 0.486
0.7096 | 0.6482
0.8974 | 1.5209
1.5209 | | Gm4825 | 0.5772 | 0.7096 | 0.5184 | 1.5209 | | Gm5444 | 0.7505 | 0.3077 | 0.3323 | 1.5209 | | Htra3
Klhl6 | 0.7505 | 0.966 | 0.748 | 1.5209 | | Krtap8-2 | 0.6724 | 0.7096
0.3077 | 0.6482 | 1.5209
1.5209 | | Ltb4r1 | 0.6724 | 0.486 | 0.748 | 1.5209 | | Mprip | 0.2846 | | 0.3323 | 1.5209 | | Obscn
Pcsk6 | 0.4551
1.0111 | 0.486
0.7096 | 0.5184 | 1.5209
1.5209 | | Pdcd1lg2 | 0.2846 | 0.7892 | 0.3323 | 1.5209 | | Plac1I | 0.4551 | 1.2165 | 0.3323 | 1.5209 | | Prl8a6 | 0.6724 | 0.966 | 0.5184 | 1.5209 | | Smap1
Sox2 | 0.6724
1.2472 | 0.3077
0.3077 | 0.3323
0.6482 | 1.5209
1.5209 | | Tgif2lx1 | 0.7505 | 0.486 | 0.0402 | 1.5209 | | Vmn1r52 | 0.4551 | 0.612 | 0.6482 | 1.5209 | | XM_110831 | 0.9247 | 0.8565 | 0.3323 | 1.5209 | | XM_110985
XM_134237 | 0.4551
1.0111 | 0.7096 | 0.3323
0.8291 | 1.5209
1.5209 | | XM_137221 | 0.6724 | 0.612 | 0.3323 | 1.5209 | | XM_138139 | 0.97 | 0.486 | | 1.5209 | | XM_138649 | 0.4551 | 0.486
0.486 | 0.5184 | 1.5209 | | XM_141865
XM_143206 | 0.7505
0.8166 | 0.7096 | 0.748
0.8291 | 1.5209
1.5209 | | XM_144417 | 0.0100 | 0.3077 | 0.0201 | 1.5209 | | XM_146363 | | 0.486 | | 1.5209 | | XM_151047 | 0.2846 | 0.7096 | 0.5184 | 1.5209 | | XM_156081
XM_158836 | 0.4551
0.8166 | 0.612 | 0.6482
0.8291 | 1.5209
1.5209 | | XM_213907 | 0.2846 | 0.7096 | 0.3323 | 1.5209 | | XM_220544 | 0.5772 | 0.486 | | 1.5209 | | XM_287521 | 0.5772 | 0.7892 | 1.0084 | 1.5209 | | XM_288438
XM_288468 | 0.4551
0.8166 | 0.486
0.612 | 0.5184 | 1.5209
1.5209 | | XM_288750 | 0.5772 | 0.012 | | 1.5209 | | XM_288845 | 0.6724 | 0.7096 | 0.6482 | 1.5209 | | XM_484058
2610027F03Rik | 0.874
0.6724 | 0.8565 | 0.748
1.0084 | 1.5209
1.5056 | | 4921517L17Rik | | 0.3077 | 0.5184 | 1.5056 | | Apobec3 | 1.145 | 0.486 | 0.6482 | 1.5056 | | Bcl2l14 | 1.0111 | 0.486 | 0.3323 | 1.5056 | | Cav2
Ccdc25 | 0.6724 | 0.7892
0.3077 | 0.3323 | 1.5056
1.5056 | | Ccdc41 | 0.97 | 0.3077 | 0.6482 | 1.5056 | | Cdkn2aip | 0.4551 | | 0.6482 | 1.5056 | | Chic2 | 0.6724 | 0.486 | 0.6482 | 1.5056 | | Chmp1a
Clpx | 0.7505
0.4551 | 0.7892
0.7096 | 0.6482 | 1.5056
1.5056 | | Ctsj | | 0.3077 | | 1.5056 | | D430032J08Rik | | 0.486 | 0.3323 | 1.5056 | | Eid3
Fam117b | 0.4551
1.3106 | 0.3077 | 0.5184
0.748 | 1.5056
1.5056 | | Fam35a | 0.5772 | 0.3077 | 0.748 | 1.5056 | | Fgd2 | 0.2846 | 0.7096 | | 1.5056 | | Gapdhs | 0.2846 | 0.3077 | 0.5184 | 1.5056 | | Gpr182
Hmgxb4 | 0.2846
0.8166 | 0.7892
0.8565 | 1.2328
0.8291 | 1.5056
1.5056 | | Hspa14 | 0.4551 | 0.3077 | 0.6482 | 1.5056 | | Itga4 | 0.8166 | 0.486 | 0.748 | 1.5056 | | Krt9 | 1.145 | 0.3077 | 0.5184 | 1.5056 | | Lrrc8a
Mest | 0.6724 | 0.7096
0.3077 | 0.3323
0.3323 | 1.5056
1.5056 | | Nid2 | 0.7505 | 0.3077 | 0.0020 | 1.5056 | | NM_176964 | 0.5772 | 0.3077 | 0.5184 | 1.5056 | | Obfc2a | 0.874 | 0.486 | | 1.5056 | | Odf3l1
Ogfod1 | 0.5772 | 0.612
0.612 | 0.748 | 1.5056
1.5056 | | Olfr1206 | 0.2846 | 1.0534 | 0.140 | 1.5056 | | Olr463 | 0.2846 | 0.3077 | 0.3323 | 1.5056 | | Pdxp | 0.4551 | 0.486 | 0.5184 | 1.5056 | | Prickle3
RGD1310270 | 0.5772 | 0.486
0.486 | 1.0548 | 1.5056
1.5056 | | Rin1 | 0.5772 | 0.3077 | 0.3323 | 1.5056 | | Sgk2 | 0.4551 | 0.3077 | 0.5184 | 1.5056 | | Sh3gl2 | 0.8166 | 0.966 | 0.748 | 1.5056 | | Slc35b1
Slc39a13 | 0.2846
0.2846 | 0.3077
0.7096 | 0.5184
0.8974 | 1.5056
1.5056 | | Slc4a7 | 0.6724 | 0.3077 | 0.748 | 1.5056 | | Spast | | 0.486 | 0.8974 | 1.5056 | | Srp9 | | | | 1.5056 | | Uba1 | | | | | | |--|----------------|--------|--------|--------|--------| | XM_112166 XM_155078 XM_155078 XM_155778 XM_155778 XM_155778 XM_155778 XM_155778 XM_155778 XM_155778 XM_155778 XM_155290 D.5772 D.5184 1.500 XM_156935 D.5772 D.5184 1.500 XM_156935 D.5772 D.5184 1.500 XM_156935 D.5772 D.5184 1.500 XM_156935 D.5772 D.5184 D.500 XM_156935 D.5772 D.5184 D.500 XM_156935 D.5772 D.5186 D.5184 D.500 XM_169391 D.5772 D.5186 D.5187 D | Tex13 | 0.4551 | 0.7096 | 0.5184 | 1.5056 | | XM_155098 | | | 0.3077 | 0.8201 | | | XM_15778 XM_157290 D.5772 D.582 XM_158035 XM_158035 XM_158033 D.5772 D.686 D.6862 D.5933 D.5772 D.686 D.6862 D.5933 D.5772 D.686 D.6862 D.5933 XM_160391 D.5772 D.686 D.6862 D.5932 XM_160391 D.5772 D.686 D.6862 D.5932 D.5932 D.5933 D.5772 D.686 D.6862 D.5932 D.5933 D.5932 D.5933 D.6863 D.5932 D.5933 D.6865 D.7865 D.6865 D.7865 D.6865 D.7865 D.6867 D.6876 D | | | | | 1.5056 | | XM_159055 | | | | | 1.5056 | | XM 1609391 0.5772 0.612 0.3323 1.500 XM 160391 0.5772 0.686 0.6482 1.500 XM 162361 0.6166 0.486 1.2026 1.500 XM 164175 0.865 0.8665 0.748 1.500 XM 164175 0.865 0.8665 0.748 1.500 XM 164175 0.866 0.7096 0.6482 1.500 XM 164176 0.866 0.7096 0.6482 1.500 XM 194974 0.7505 0.8665 0.748 1.500 XM 203293 0.2846 0.5077 0.5184 1.500 XM 203293 0.2846 0.5077 0.5184 1.500 XM 203203 0.2846 0.5077 0.5072 0.5184 1.500 XM 287062 0.5724 0.7096 0.3323 1.500 XM 284199 0.5724 0.7096 0.3323 1.500 XM 384199 0.6724 0.3077 0.748 1.500 XM 489106 0.0166 0.489 0.5184 1.500 XM 489106 0.0166 0.489 0.5184 1.500 XM 489172 0.7505 0.9147 0.748 1.500 XM 48918 0.6184 48919
0.6724 0.6729 1.500 XM 48919 0.6724 | | | | | 1.5056 | | XM_160391 XM_163502 XM_163502 XM_163502 XM_164175 XM_19474 XM_19474 XM_196709 Q_2841 Q_7096 Q_3221 1.500 XM_20323 XM_20323 Q_2846 Q_7096 Q_3221 Q_3241 Q_7096 Q_3222 XM_20323 Q_3846 Q_7096 Q_3222 Q_3847 Q_7096 Q_3222 Q_3848 Q_7096 Q_3222 Q_3848 Q_7096 Q_3222 Q_3849 Q_7096 Q_3222 Q_3849 Q_7096 Q_3222 Q_3849 Q_7096 Q_3222 Q_3849 Q_7096 Q_3222 Q_7096 Q_3222 Q_7096 Q_3222 Q_7096 Q_3222 Q_7096 Q_7 | | | | | 1.5056 | | XM (16281) XM (164175 | XM_158993 | 0.5772 | 0.612 | 0.3323 | 1.5056 | | XM_163852 XM_194974 XM_164775 SM_194974 XM_196709 0.2846 0.7096 0.4865 0.7087 0.7086 0.4842 1.509 XM_203233 0.2846 0.7077 0.7181 1.509 XM_203233 0.2846 0.7076 0.4845 1.509 XM_203233 0.2846 0.7076 0.5184 1.509 XM_227472 0.7772 0.7748 1.509 XM_287224 1.2472 0.7096 1.509 XM_288224 1.2472 0.7096 1.509 XM_381246 0.4551 0.3077 1.509 XM_489106 0.8166 0.486 0.486 0.5184 1.509 XM_489106 0.8166 0.886 0.897 XM_489106 0.8166 0.896 0.9077 1.500 0.897 1.500 XM_489106 0.8166 0.897 1.500 XM_489106 0.8166 0.81 | XM_160391 | 0.5772 | 0.486 | 0.6482 | 1.5056 | | XM_164175 XM_196709 XM_196709 0_2246 0_7096 0_6482 1_509 XM_203293 0_2246 0_7096 0_6482 1_509 XM_227472 0_5772 0_3077 0_5184 1_509 XM_227472 0_5772 0_3077 0_748 1_509 XM_227472 0_5772 0_3077 0_748 1_509 XM_287062 0_67724 0_7096 0_3323 1_509 XM_288224 1_2472 0_7096 0_3323 1_509 XM_382146 0_4551 0_3077 0_5184 1_509 XM_484199 0_6724 0_3077 1_509 XM_489972 0_7505 0_9147 0_748 1_509 XM_489972 0_7505 0_9147 0_748 1_509 XM_4899872 0_7505 0_9147 0_748 1_509 XM_489972 0_9147 0_91 | | | | 1.2026 | 1.5056 | | XM_194974 XM_196709 22448 0.7096 0.64482 1.5005 XM_203293 0.2448 0.7096 0.7096 0.6482 1.5005 XM_203293 0.2448 0.7097 0.748 1.5005 XM_203293 0.2448 0.7096 0.5772 0.7078 1.5005 XM_287224 1.2472 0.7096 1.5005 XM_288224 1.2472 0.7096 1.5005 XM_342146 0.4551 0.3077 1.5005 XM_349109 0.8166 0.486 0.486 0.5184 1.5005 XM_489100 0.8166 0.9147 0.748 1.5005 XM_489100 0.8166 0.9467 0.9147 0.748 1.5005 XM_489100 0.8166 0.9467 0.9147 0.748 1.5005 XM_489100 0.8166 0.9466 0.9511 0.3077 0.8291 1.5005 XM_489100 0.8151 0.8005 XM_489100 0.8151 0.8007 0.8151 0.8007 0.8 | | 0.4551 | 0.966 | | 1.5056 | | XM 196709 0 2448 0 .7096 0 .6482 1.505 XM 227472 0 .5772 0 .3077 0.5184 1.506 XM 227472 0 .6772 0 .3077 0.748 1.506 XM 287062 0 .6772 0 .7096 1 .3323 1.506 XM 288224 1 .2472 0 .7096 1 .3323 1.506 XM .848199 0 .67724 0 .3077 1 .508 XM .848199 0 .67724 0 .3077 1 .508 XM .848199 0 .67724 0 .3077 1 .508 XM .848199 0 .67724 0 .3077 0 .5184 1.508 XM .848199 0 .67724 0 .3077 0 .5184 1.508 XM .848199 0 .67724 0 .3077 0 .5184 1.508 XM .848199 0 .67724 0 .3077 0 .5184 1.508 XM .8489872 0 .7505 0 .9147 0 .748 1 .508 XM .8489872 0 .7505 0 .7506 0 .75 | | 0.7505 | 2.2525 | _ | | | XM_202393 XM_227272 0.5772 0.3077 0.748 1.500 XM_287062 0.6724 0.7096 0.3322 1.500 XM_288224 1.2472 0.7096 1.3322 1.500 XM_288224 1.2472 0.7096 1.3322 1.500 XM_324246 0.4561 0.5077 1.500 XM_342146 0.4561 0.5077 1.500 XM_349106 0.8166 0.486 0.5194 1.500 XM_489106 0.8166 0.486 0.5194 1.500 XM_489107 0.7505 0.9147 0.748 1.500 XM_489107 0.7505 0.9147 0.748 1.500 XM_489107 0.7505 0.9147 0.748 1.500 XM_489108 0.8166 0.486 0.5194 1.500 XM_489107 0.7505 0.9147 0.748 1.500 XM_489107 0.7505 0.9147 0.748 1.500 XM_489107 0.7505 0.9147 0.748 1.500 XM_489108 0.8161 0.9327 0.8291 1.500 ZDp877 1.3659 0.6172 1.500 ZDp877 1.3659 0.6172 1.500 XM_489108 0.8291 XM_489108 0.8291 1.500 XM_489108 0.8291 XM_489108 0.8291 XM_489 | _ | | | _ | | | XM_227762 0.6772 0.3077 0.748 1.506 XM_287062 0.6724 0.7096 0.3323 1.506 XM_281244 0.4551 0.3077 1.506 XM_342146 0.4551 0.3077 1.506 XM_3481499 0.6724 0.3077 1.506 XM_4814199 0.6724 0.3077 1.506 XM_4814199 0.6724 0.3077 1.506 XM_4814199 0.6724 0.3077 1.506 XM_489872 0.7505 0.9147 0.746 0.7506 0.746 1.506 XM_489872 0.7506 0.746 1.506 XM_489872 0.7506 0.9147 0.746 1.506 XM_489872 0.7506 0.75 | | | | | | | XM _288224 | _ | | | | | | XM_288224 | | _ | | | 1.5056 | | XM_342146 | | | | 0.0020 | 1.5056 | | XM 484199 0.6724 0.3077 1.508 0.5184 1.508 XM 4.898106 0.8166 0.486 0.5184 1.508 XM 4.898172 0.7505 0.9147 0.748 1.508 XM 4.898172 0.7505 0.9147 0.8291 1.508 21p377 1.3659 0.612 1.508 21p377 1.3659 0.612 1.508 21p377 1.3659 0.612 1.508 21p377 1.3659 0.6102 1.508 21p377 1.508 21p377 1.3659 0.6102 1.508 21p377 2 | _ | | | | 1.5056 | | XM_489872 | | | | | 1.5056 | | 2.005 0.4551 0.5077 0.8291 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5077 1.506 1.5078
1.5078 1.507 | XM_489106 | 0.8166 | 0.486 | 0.5184 | 1.5056 | | 1,0007PORRK | XM_489872 | 0.7505 | 0.9147 | | 1.5056 | | 1.506 0.5077 0.8974 0. | Zbtb9 | 0.4551 | 0.3077 | 0.8291 | 1.5056 | | 0610007P08Rik | | 1.3659 | | | 1.5056 | | 0610010F05Rik | | | 0.0011 | | 1.5056 | | 0610037L13Rik 1.6996 1.3929 1.8154 1.2876 1.054 1.110049F12Rik 1.1729 1.2429 1.2876 1.054 1.10049F12Rik 1.1729 1.2429 1.2876 1.054 1.10049F12Rik 1.0486 1.0534 1.1349 1.008 1.00016B10Rik 1.0111 1.0534 1.0548 1.948 1.90012F09Rik 1.0832 1.1262 1.3587 1.3 1.000029D12Rik 1.2472 0.8565 0.6482 1.1349 1.000012F09Rik 1.0832 1.1262 1.3587 1.3 1.000029D12Rik 1.2472 0.8565 0.6482 1.134 1.700001C19Rik 1.6485 1.4277 1.6388 1.170 1.700012P22Rik 0.97 1.0913 1.0084 0.9565 1.70018H16Rik 1.2238 1.0534 1.4897 1.5 1.700029P11Rik 0.97 0.7892 1.0967 1.233 1.5 1.000029D12Rik 1.2472 1.3126 1.3363 1.5 1.000029D12Rik 1.2472 1.4752 1.3000213Rik 0.6724 0.9147 1.0548 1.200022C00002K05Rik 1.3829 1.1885 1.1349 1.232 1.200002T3Rik 0.6724 0.9147 1.0548 1.200023C00002K05Rik 1.7595 0.612 1.1701 1.336 1.200002T3Rik 0.6724 0.9147 1.0548 0.900000000000000000000000000000000000 | | | | | | | 1110065A03Rik | | | | | 1.38 | | 1110049F12Rik | | | | | | | 1110067022Rik | | | | | | | 1200016B10RIK | | | | | | | 1.00012F09Rik | | | | | | | 1.000202D21Rik | | | | | 1.38 | | 170001C19Rik | | | | | 1.1349 | | 1,00018H16Rik | | | | | 1.1701 | | 1700029P11Rik | 1700012P22Rik | 0.97 | 1.0913 | | 0.9565 | | 1810031K17Rik | 1700018H16Rik | 1.2238 | 1.0534 | 1.4897 | 1.55 | | 1810074P20Rik | 1700029P11Rik | 0.97 | 0.7892 | 1.0967 | 1.2328 | | 220002K05Rik 1.3829 1.1885 1.1349 1.232 2210418010Rik 2.0568 1.2678 1.4733 0.956 | | | _ | | 2.0189 | | 2210418010Rik | | | | | 1.55 | | 2310002L13Rik | | | | | 1.2328 | | 231003L0RRik 1.7595 0.612 1.1701 1.336 0.956 2310057J18Rik 1.5585 0.7096 1.2026 0.956 2410004P03Rik 1.6108 1.4277 1.2026 1.267 2610008E11Rik 0.2545 2.0887 1.7918 1.577 2610019F03Rik 1.2472 0.7892 0.9565 1.312 2700099C18Rik 1.0111 0.9147 0.8291 1.473 2810011L19Rik 0.97 1.0913 1.6611 1.682 2810422O20Rik 1.0832 1.1262 1.5903 1.261 281042212Rik 1.4591 1.7764 1.6272 0.518 290064A13Rik 1.3482 1.2165 1.6388 1.358 310009E18Rik 0.97 1.5927 0.8291 1.287 3110047P20Rik 1.5238 1.4106 1.5773 1.712 3110057O12Rik 1.145 1.0119 1.2026 0.956 362451006Rik 0.9247 1.7983 1.6611 1.170 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 0.9247 1.0119 1.0084 1.222 4831410D14 1.1152 1.0913 1.4003 1.419 4831440E17Rik 1.5367 1.4899 0.8974 0.897 4833438CO2Rik 1.3659 1.4441 1.6029 1.3126 48324506M07Rik 1.4302 1.3551 4821530L21Rik 0.874 1.145 0.986 0.8924 0.897 4921530L21Rik 0.874 1.145 0.966 0.8924 0.897 4921530L21Rik 0.874 1.145 0.966 0.8291 1.380 0.897 4921530L21Rik 0.874 1.145 0.966 0.8291 1.380 0.897 4921530L21Rik 0.874 1.1262 0.748 1.574 4930424E08Rik 1.4302 1.3551 493043C12Rik 1.369 1.366 0.8291 1.366 493043C12Rik 1.369 1.366 0.8291 1.366 493043C12Rik 1.369 1.374 1.1584 0.892 493043C12Rik 1.369 1.374 1.1589 1.380 0.748 1.170 4930424E08Rik 1.145 0.966 0.8291 1.666 493043C12Rik 1.369 1.374 1.1584 0.892 493043C12Rik 1.369 1.374 1.1584 0.892 493043C12Rik 1.369 1.374 1.1584 0.892 493043C12Rik 1.369 1.366 493043C12Rik 1.369 1.366 493043C12Rik 1.369 1.366 493053E1ARik 1.0111 1.1584 0.748 0.892 493053E1ARik 1.569 1.3551 493053E70ARik 1.366 49305SENIRRIK 49305SENIRRI | | | | | | | 2310057J18Rik 1.5585 0.7096 1.2026 0.9565 2410004P03Rik 1.6108 1.4277 1.2026 1.267 2610008E11Rik 0.2846 2.0887 1.7918 1.577 2610019F03Rik 1.2472 0.7892 0.9565 1.312 2700099C18Rik 1.0111 0.9147 0.8291 1.473 2810011L19Rik 0.97 1.0913 1.6611 1.682 281042C20Rik 1.0832 1.1262 1.5903 1.261 2810442C1Rik 1.4591 1.7764 1.6272 0.518 2900064A13Rik 1.3482 1.2165 1.6388 1.358 2110009E18Rik 0.97 1.5927 0.8291 1.287 3110047P20Rik 1.5238 1.4106 1.5773 1.712 3110047P20Rik 1.5238 1.4106 1.5773 1.712 3110047P20Rik 1.5238 1.4109 1.2026 0.956 4632411B12Rik 0.9247 1.7983 1.6611 1.170 4632411D12Rik 1.7665 0.612 1.3126 0.956 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 1.5357 1.4899 0.8974 0.891 4.232 4831410D14 1.1152 1.0913 1.4003 1.418 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921506M07Rik 1.7076 1.0119 1.3363 0.897 4921532A17Rik 1.4302 1.3551 492153A17Rik 1.4302 1.3551 492153A17Rik 1.4302 1.3551 493042E08Rik 1.4302 1.3551 493042E08Rik 1.5907 1.4599 1.38 1.096 493042E08Rik 1.0486 1.2913 0.748 1.170 493042E08Rik 1.3699 1.4441 1.6029 0.748 1.5907 1.4599 1.38 1.096 493042E08Rik 1.3829 1.3136 0.829 1.394470A18 1.5907 1.4599 1.38 1.096 493042E08Rik 1.3692 1.3126 0.966 0.8291 1.664 4930430F0BRik 1.3829 1.3136 0.829 1.384 4930535E14Rik 1.0486 1.2913 0.748 1.170 493042E08Rik 1.3829 1.3136 0.829 1.384 4930436F1Rik 1.3829 1.3136 0.829 1.384 4930436F1Rik 1.3829 1.3136 0.829 1.384 4930535E14Rik 1.0486 1.2913 0.748 1.170 493042E08Rik 1.3482 1.3744 1.8589 1.358 4930436F1Rik 1.3482 1.3551 1.5209 0.956 4930430F0BRik 1.3482 1.3551 1.5209 0.956 4930430F0BRik 1.3482 1.3551 1.5209 0.956 4930545F0ARik 1.3482 1.3551 1.5209 0.956 493055F0ARik 1.6108 0.8565 1.2328 1.3564 1.3564 1.3564 1.3565 1.2328 1.3564 1.3565 1.2328 1.3564 1.3565 1.2328 1.3564 1.3565 1.2328 1.3564 1.35 | | | | | | | 2410004P03Rik | | | | | | | 2610008E11Rik | | | _ | | 1.2876 | | 2610019F03Rik 1.2472 0.7892 0.9565 1.312 2700099C18Rik 1.0111 0.9147 0.8291 1.473 2810041119Rik 0.97 1.0913 1.6611 1.682 2810422O20Rik 1.0832 1.1262 1.5903 1.261 2810442121Rik 1.4591 1.7764 1.6272 0.518 281040200E4A13Rik 0.97 1.5927 0.8291 1.267 311000F18Rik 0.97 1.5927 0.8291 1.267 311005F012Rik 1.5238 1.4106 1.5773 1.712 311005F012Rik 1.145 1.0119 1.2026 0.956 3632451006Rik 0.9247 1.7983 1.6611 1.170 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4831410D14 1.1152 1.0913 1.4003 1.419 4831440E17Rik 1.5357 1.4899 0.8974 0.897 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4831440E17Rik 1.4302 1.3551 1.807 4921530L21Rik 0.874 1.1262 0.748 1.57 4921530L21Rik 0.874 1.1262 0.748 1.15 4921530L21Rik 0.874 1.1262 0.748 1.15 4930402H05Rik 1.5907 1.4599 1.38 1.096 493042E08Rik 1.145 0.966 0.8291 1.661 493042E08Rik 1.145 0.966 0.8291 1.661 493043E12Rik 1.3829 1.3136 2.0284 1.815 493043E12Rik 1.0111 1.1584 0.8291 1.232 493043F12Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.1584 0.8291 1.232 493047C04Rik 1.0111 1.1584 0.8291 1.232 493053E14Rik 1.6108 0.7892 0.748 1.312 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930544G1Rik 1.6108 0.7892 0.748 0.8294 4930556M19Rik 0.6724 2.3496 1.9629 1.520 4930556M19Rik 0.6724 2.3496 1.9629 1.520 4930556M19Rik 0.6724 2.3496 1.9629 1.520 4930556M19Rik 0.6704 1.3833 0.8565 1.2328 1.3356 49315406H21Rik 1.145 1.0913 1.5639 1.837 4930556M19Rik 1.4861 1.5927 1.7714 1.264 4930556M19Rik 1.145 1.2904 1.4106 1.3587 1.638 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | 0.2846 | | | 1.5773 | | 2810011L19Rik | _ | 1.2472 | | | 1.3126 | | 2810422020Rik | 2700099C18Rik | | | _ | 1.4733 | | 2810442121Rik | 2810011L19Rik | 0.97 | 1.0913 | 1.6611 | 1.6824 | | 2900064A13Rik | 2810422O20Rik | 1.0832 | 1.1262 | 1.5903 | 1.2611 | | 3110009E18Rik 0.97 1.5927 0.8291 1.287 3110047P20Rik 1.5238 1.4106 1.5773 1.712 3632451006Rik 0.9247 1.7983 1.6611 1.170 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4831440D14 1.1152 1.0913 1.4003 1.418 4831440E17Rik 1.5357 1.4899 0.8974 0.897 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921506M07Rik 1.7076 1.0119 1.3363 0.897 4921530L21Rik 0.874 1.1262 0.748 1.5 4921536K21Rik 0.874 1.1262 0.748 1.5 49304024D6Rik 1.5907 1.4599 1.38 1.096 4930424E08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930447C04R | | | | | 0.5184 | | 3110047P20Rik 1.5238 1.4106 1.5773 1.712 3110057O12Rik 1.145 1.0119 1.2026 0.956 3632451O6Rik 0.9247 1.7983 1.6611
1.176 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4831440E17Rik 1.5357 1.4899 0.8974 0.897 483449E17Gik 1.5357 1.4899 0.8974 0.897 483144D14 1.152 1.0119 1.3363 0.897 483149E17Gik 1.5357 1.4899 0.8974 0.897 483149C17Rik 1.53659 1.4441 1.6029 1.312 4921530L21Rik 1.4302 1.3551 1.807 4921530L21Rik 0.874 1.1262 0.748 1.5 492153GK21Rik 1.0486 1.2913 0.748 1.17 493042H05Rik 1.0486 1.2913 0.748 1.17 493043GFRik 1.0486< | | | | | 1.3587 | | 3110057012Rik | | | | | 1.2876 | | 3632451006Rik 0.9247 1.7983 1.6611 1.170 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4831410D14 1.1152 1.0913 1.4003 1.419 4831440E17Rik 1.5357 1.4899 0.8974 0.897 4833438C02Rik 1.3659 1.4441 1.6029 1.312 492150AD07Rik 1.7076 1.0119 1.3363 0.897 492153AL2IRik 0.874 1.1262 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.170 4930424E08Rik 1.145 0.966 0.8291 1.661 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930447C04Rik 1.0111 1.1584 0.8291 1.232 493047C04Rik 1.0111 1.6942 1.1349 0.829 493055E1 | | | | | | | 4632411B12Rik 1.7665 0.612 1.3126 0.956 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4831410D14 1.1152 1.0913 1.4003 1.418 4831440E17Rik 1.5357 1.4899 0.8974 0.887 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921526M07Rik 1.7076 1.0119 1.3363 0.897 4921530L21Rik 0.874 1.1262 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.17 4930402H05Rik 1.5907 1.4599 1.38 1.096 493042E08Rik 1.145 0.966 0.8291 1.661 4930435F08Rik 2.0351 1.9673 2.1968 1.758 49304367C8Rik 1.3829 1.3136 2.0284 1.815 4930447C04Rik 1.0111 1.1584 0.8291 1.232 4930472D16Rik 1.3482 1.3744 1.8589 1.358 49305050 | | | | | | | 4732471D19Rik 0.9247 1.0119 1.0084 1.232 4831410D14 1.1152 1.0913 1.4003 1.419 4831440E17Rik 1.5357 1.4899 0.8974 0.897 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921506M07Rik 1.7076 1.0119 1.3363 0.897 4921530L21Rik 0.874 1.1262 0.748 1.5 4921530L21Rik 0.874 1.1262 0.748 1.5 4921530K21Rik 1.0486 1.2913 0.748 1.5 493042H05Rik 1.5907 1.4599 1.38 1.096 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930443G12Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.1584 0.8291 1.232 4930472D16Rik 1.6108 0.7892 0.748 1.312 4930503E14R | | | | | | | 4831410D14 1.1152 1.0913 1.4003 1.419 4831440E17Rik 1.5357 1.4899 0.8974 0.897 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921506M07Rik 1.7076 1.0119 1.3363 0.8897 492153A10Rik 1.4302 1.3551 1.807 4921536K21Rik 0.874 1.1262 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.170 493042H08Rik 1.0486 1.2913 0.748 1.170 4930424E08Rik 1.145 0.966 0.8291 1.661 4930435E12Rik 1.3829 1.3136 2.0284 1.815 493044G12Rik 1.0111 1.1584 0.8291 1.232 493047CD4Rik 1.0111 1.6942 1.1349 0.829 4930525E14Rik 1.6108 0.7892 0.748 1.312 4930506M07Rik 1.3148 1.3482 1.3744 1.8589 1.358 4930519G | | | | | | | 4831440E17Rik 1.5357 1.4899 0.8974 0.8974 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921506M07Rik 1.7076 1.0119 1.3363 0.897 4921523A10Rik 1.4302 1.3551 1.807 4921536K21Rik 0.874 1.1262 0.748 1.5 4931492H536K21Rik 1.0486 1.2913 0.748 1.17 4930402H05Rik 1.5907 1.4599 1.38 1.096 4930424E08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930447C04Rik 1.0111 1.1584 0.8291 1.232 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930512H4Rik 1.6118 0.7892 0.748 1.312 4930519G04Rik 1.3482 1.1584 0.748 0.829 4930519GO4Rik | | | | | | | 4833438C02Rik 1.3659 1.4441 1.6029 1.312 4921506M07Rik 1.7076 1.0119 1.3363 0.887 4921523A10Rik 1.4302 1.3551 1.807 4921530L21Rik 0.874 1.1262 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.170 493042H05Rik 1.0486 1.2913 0.748 1.170 493042H05Rik 1.5907 1.4599 1.38 1.096 493042F08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930447C04Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.6942 1.1349 0.829 49305472D16Rik 1.3482 1.3744 1.8589 1.358 49305008M07Rik 1.6724 1.3551 1.5209 0.956 4930510E17Rik 1.3482 1.1584 0.748 0.829 49305519Go4Rik < | | | | | 0.8974 | | 4921506M07Rik 1.7076 1.0119 1.3363 0.897 4921523A10Rik 1.4302 1.3551 1.807 4921530L21Rik 0.874 1.1262 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.17 4930402H05Rik 1.5907 1.4599 1.38 1.096 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930430F08Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.1584 0.8291 1.232 4930472D16Rik 1.0111 1.6942 1.1349 0.829 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930544D05Rik | 4833438C02Rik | | | | 1.3126 | | 4921523A10Rik 1.4302 1.3551 1.807 4921530L21Rik 0.874 1.1262 0.748 1.5 4921536K21Rik 1.0486 1.2913 0.748 1.170 4930402H05Rik 1.5907 1.4599 1.38 1.096 4930424E08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930443G12Rik 1.3811 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.1584 0.8291 1.232 4930472D16Rik 1.0111 1.6942 1.1349 0.829 4930472D16Rik 1.3482 1.3744 1.8589 1.358 493053E14Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930511 1.5209 0.956 4930519G04Rik 0.6724 1.3551 1.5209 0.956 49305410GRik 0.6724 1.3581 0.748 | 4921506M07Rik | | 1.0119 | | 0.8974 | | 4921536K21Rik 1.0486 1.2913 0.748 1.170 4930402H05Rik 1.5907 1.4599 1.38 1.096 4930424E08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930443G12Rik 1.0111 1.1584 0.8291 1.232 493047Z016Rik 1.0111 1.6942 1.1349 0.829 493047ZD16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930519G0ARik 0.6724 1.3551 1.5209 0.956 493054D05Rik 0.6724 2.3496 1.9629 1.520 4930544D05Rik 0.6724 2.3496 1.9629 1.520 4930544G11Rik 1.0111 1.0119 0.748 0.956 49 | 4921523A10Rik | 1.4302 | 1.3551 | | 1.8077 | | 4930402H05Rik 1.5907 1.4599 1.38 1.096 4930424E08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930443G12Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.6942 1.1349 0.829 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930510E1Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930519G04Rik 0.6724 1.3551 1.5209 0.956 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930544D05Rik 0.8166 1.3551 0.748 0.170 4930544G11Rik 1.0111 1.0119 0.748 0.956 4930555F03Rik 1.0111 1.0119 0.748 1.336 493 | 4921530L21Rik | 0.874 | 1.1262 | 0.748 | 1.55 | | 4930424E08Rik 1.145 0.966 0.8291 1.661 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930443G12Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.6942 1.1349 0.829 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930513E14Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 1.3482 1.3551 1.5209 0.956 4930519G04Rik 0.6724 1.3551 1.5209 0.956 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 0.829 4930544D05Rik 1.0111 1.0119 0.748 0.956 493054403Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 | | | | | 1.1701 | | 4930430F08Rik 2.0351 1.9673 2.1968 1.758 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930447C04Rik 1.0111 1.1584 0.8291 1.232 493047C04Rik 1.0111 1.6942 1.1349 0.829 493047ZD16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 0.6724 1.3551 1.5209 0.956 4930510E17Rik 1.3482 1.1584 0.748 0.829 493053F04Rik 0.8166 1.3551 0.748 1.502 493053F04Rik 0.8166 1.3551 0.748 1.170 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930559M18Rik 1.8183 0.8565 1.2328 1.336 4 | | | | | 1.0967 | | 4930435E12Rik 1.3829 1.3136 2.0284 1.815 4930443G12Rik 1.0111 1.1584 0.8291 1.232 493047C04Rik 1.0111 1.6942 1.1349 0.829 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930510E17Rik 0.6724 1.3551 1.5209 0.956 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.87 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 49305570G19Rik 0.7505 0.9147 1.0084 1.134 493059M18Rik 0.8655 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.6611 | | 4930443G12Rik 1.0111 1.1584 0.8291 1.232 4930447C04Rik 1.0111 1.6942 1.1349 0.829 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930506M07Rik 0.6724 1.3551 1.5209 0.956 4930519G04Rik 1.3482 1.1584 0.748 0.829 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544Q05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930544G11Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930595M18Rik 1.2904 1.4106 1.3587 1.638 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | 4930447C04Rik 1.0111 1.6942 1.1349 0.829 493047ZD16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930506M07Rik 0.6724 1.3551 1.5209 0.956 4930519G04Rik 1.3482 1.1584 0.748 0.829 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 493055970G19Rik 1.2904 1.4106 1.3587 1.638 4930598M18Rik 1.8183 0.8565 1.2328 1.338 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.8154 | | 4930472D16Rik 1.3482 1.3744 1.8589 1.358 4930503E14Rik 1.6108 0.7892 0.748 1.312 4930506M07Rik 0.6724 1.3551 1.5209 0.956 4930510E17Rik 1.3482 1.1584 0.748 0.828 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 493059M18Rik 1.2904 1.4106 1.3587 1.638 493059M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | | |
4930503E14Rik 1.6108 0.7892 0.748 1.312 4930506M07Rik 0.6724 1.3551 1.5209 0.956 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G1Rik 1.145 1.0913 1.5639 1.837 493054403Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930595M18Rik 1.2904 1.4106 1.3587 1.638 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | | | 4930506M07Rik 0.6724 1.3551 1.5209 0.956 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930544I03Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930595M18Rik 1.2904 1.4106 1.3587 1.638 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | | | 4930510E17Rik 1.3482 1.1584 0.748 0.829 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930554H03Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 49305970G19Rik 1.2904 1.4106 1.3587 1.638 493059M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 0.9565 | | 4930519G04Rik 0.6724 2.3496 1.9629 1.520 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930544103Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930595M18Rik 1.2904 1.4106 1.3587 1.638 4931406H21Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 0.8291 | | 4930535F04Rik 0.8166 1.3551 0.748 1.170 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G1Rik 1.145 1.0913 1.5639 1.837 4930544l03Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.135 4930595M18Rik 1.2904 1.4106 1.3587 1.638 4931406H21Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.5209 | | 4930544D05Rik 1.0111 1.0119 0.748 0.956 4930544G11Rik 1.145 1.0913 1.5639 1.837 493054103Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 493059570G19Rik 1.2904 1.4106 1.3587 1.638 4930595M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.1701 | | 4930544G11Rik 1.145 1.0913 1.5639 1.837 4930544I03Rik 1.1729 1.2165 0.748 1.336 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930570G19Rik 1.2904 1.4106 1.3587 1.638 4930595M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 0.9565 | | 4930555F03Rik 1.4861 1.5927 1.7124 1.261 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930570G19Rik 1.2904 1.4106 1.3587 1.638 4930595M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.8377 | | 4930556M19Rik 0.7505 0.9147 1.0084 1.134 4930570G19Rik 1.2904 1.4106 1.3587 1.638 4930595M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.3363 | | 4930570G19Rik 1.2904 1.4106 1.3587 1.638 4930595M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.2611 | | 4930595M18Rik 1.8183 0.8565 1.2328 1.336 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.1349 | | 4931406H21Rik 1.145 1.2913 1.1701 1.3 | | | | | 1.6388 | | | | | | | 1.3363 | | 43324 I IIVZ3KIK U.8 100 1.1883 U.8 291 1.5 | | | | | 1.38 | | | 49324 ITNZ3RIK | 0.8166 | 1.1885 | 0.8291 | 1.55 | | 4932415M13Rik
4933403F05Rik
4933407H18Rik
4933415A04Rik
4933421E11Rik
4933425O20Rik
4933425O20Rik
4933432B09Rik
5033404E19Rik
5730508B09Rik
5930438M14
6330407A03Rik
6330407J23Rik | 1.4861
1.1991
0.6724
0.874
1.1152
1.738
0.8166
1.2472 | 1.3136
1.0913
1.5313
1.2913
0.8565
1.7839 | 1.7314
0.8974
1.2026
0.6482
1.4003 | 1.0967
1.3126
1.6926
1.2026 | |--|--|--|--|--------------------------------------| | 4933407H18Rik
4933415A04Rik
4933421E11Rik
4933425020Rik
4933432B09Rik
5033404E19Rik
5730508B09Rik
5930438M14
6330407A03Rik
6330407J23Rik | 0.6724
0.874
1.1152
1.738
0.8166 | 1.5313
1.2913
0.8565
1.7839 | 1.2026
0.6482 | 1.6926
1.2026 | | 4933415A04Rik
4933421E11Rik
4933425O20Rik
4933432B09Rik
5033404E19Rik
5730508B09Rik
5930438M14
63304077A03Rik
63304077J23Rik | 0.874
1.1152
1.738
0.8166 | 1.2913
0.8565
1.7839 | 0.6482 | 1.2026 | | 4933421E11Rik
4933425020Rik
4933432B09Rik
5033404E19Rik
5730508B09Rik
5930438M14
6330407A03Rik
6330407J23Rik | 1.1152
1.738
0.8166 | 0.8565
1.7839 | | | | 4933432B09Rik
5033404E19Rik
5730508B09Rik
5930438M14
6330407703Rik
6330407J23Rik | 0.8166 | | | 1.3363 | | 5033404E19Rik
5730508B09Rik
5930438M14
6330407A03Rik
6330407J23Rik | | | 0.6482 | 1.4733 | | 5730508B09Rik
5930438M14
6330407A03Rik
6330407J23Rik | 1.2472 | 1.1262 | 1.1349 | 1.8229 | | 5930438M14
6330407A03Rik
6330407J23Rik | | 1.2678 | 1.7124 | 1.2876 | | 6330407A03Rik
6330407J23Rik | 0.2846 | 1.7373 | 1.5639 | 1.8449 | | 6330407J23Rik | 1.1991
1.2904 | 0.9147
1.0119 | 0.5184
1.0967 | 1.2611
0.8291 | | | 0.7505 | 0.966 | 1.2328 | 1.3363 | | 6720482D04 | 2.5555 | 2,4381 | 2.5531 | 2.0555 | | 6820408C15Rik | 1.1729 | 1.3348 | 0.6482 | 1.1349 | | 6820431F20Rik | 2.0496 | 2.0043 | 1.1349 | 1.38 | | 8030423J24Rik | 2.02 | 1.7983 | 1.2328 | 2.1569 | | 8430427H17Rik | 1.3829 | 0.966 | 0.6482 | 1.4003 | | 9030625A04Rik | 1.0486 | 0.7096 | 1.0967 | 1.1701 | | 9130002K18Rik | 0.7505 | 0.9147 | 1.0967 | 1.38 | | 9130004C02Rik
9230110F15Rik | 0.9247
1.1729 | 1.5927
2.0384 | 1.1349
1.2611 | 0.9565
0.8974 | | 9230110F15RIK
9330117O12 | 1.2693 | 1.1584 | 0.748 | 1.6824 | | 9330159M07Rik | 1.78 | 2.2827 | 0.8291 | 0.748 | | 9930104L06Rik | 0.97 | 0.7892 | 0.8291 | 1.7495 | | 9930111J21Rik | 1.4449 | 2.0813 | 1.2328 | 1.2876 | | A030003K21Rik | 0.97 | 0.9147 | 1.1349 | 1.7026 | | A130010C12Rik | 0.874 | 1.4277 | 1.2328 | 1.2328 | | A130030D18Rik | 0.874 | 1.0534 | 0.8291 | 0.9565 | | A130034M23Rik | 2.1004 | 2.6722 | 1.3363 | 2.8185 | | A230061C15Rik
A230072E10Rik | 1.2904 | 0.7892
1.9269 | 0.6482
1.9841 | 1.4003 | | A430110L20Rik | 2.1921
1.4449 | 1.3348 | 1.923 | 1.4562
1.6501 | | A630055G03Rik | 1.3992 | 0.612 | 1.0967 | 1.1349 | | Aadac | 2.0122 | 0.9147 | 0.5184 | 1.6824 | | Aak1 | 0.97 | 0.966 | 0.748 | 1.4897 | | AB099516 | 0.6724 | 1.0913 | 0.9565 | 1.1349 | | Abca6 | 1.0832 | 1.1262 | 1.2328 | 1.1349 | | Abcd3 | 0.97 | 1.3136 | 1.4003 | 1.1701 | | Abpb | 1.3482 | 0.9147 | 1.0548 | 0.9565 | | Abtb1
Accs | 1.3298 | 0.7096
1.4899 | 1.0967
1.4562 | 0.8291 | | Accs
Aco1 | 1.9626
1.7932 | 1.6464 | 1.0548 | 1.1349
0.748 | | Acot11 | 1.0111 | 0.7892 | 1.3126 | 1.5056 | | Acpl2 | 2.0083 | 2.1135 | 2.6908 | 2.2532 | | Actc1 | 1.2238 | 0.7096 | 1.4003 | 1.0084 | | Adam17 | 1.0111 | 0.7892 | 1.2611 | 1.0548 | | Adam5 | 1.415 | 1.0119 | 0.9565 | 0.8291 | | Adamtsl1 | 1.4991 | 1.0119 | 0.8974 | 1.7124 | | Adcy5 | 0.97 | 1.9162 | 1.4562 | 0.748 | | Add1
Add3 | 2.0388
1.3482 | 1.9673
1.9052 | 1.8449
0.5184 | 2.033
1.1349 | | Adh4 | 0.874 | 1.0534 | 1.4003 | 1.5903 | | AF067063 | 1,2904 | 2.1499 | 0.3323 | 2.2304 | | Afap1 | 1.5802 | 0.9147 | 1.2328 | 1.2611 | | Agbl1 | 1.415 | 0.9147 | 0.5184 | 1.3363 | | Agmo | 0.7505 | 1.3551 | 0.748 | 1.4003 | | Agpat6 | 1.7154 | 1.1885 | 1.3587 | 1.4197 | | Agt | 0.8166 | 0.9147 | 1.0548 | 1.0967 | | Agtrap | 1.145
1.0111 | 1.0913 | 1.2026 | 1.6824 | | Ahdc1
Ahi1 | 1.0111 | 1.1262
1.7373 | 0.9565
0.9565 | 2.0555
1.2026 | | Ahsa1 | 1.1991 | 1.1262 | 1.3363 | 0.9565 | | Al646023 | 1.8244 | 0.7096 | 0.8974 | 1.722 | | Al849053 | 0.97 | 0.7892 | 1.0967 | 1.6824 | | AK048490 | 1.6748 | 1.3929 | 0.3323 | 1.1349 | | Akap13 | 1.0832 | 1.0534 | 0.8974 | 1.0548 | | Akap7 | 3.0825 | 3.1496 | 3.1869 | 2.7425 | | Aldh3b1 | 1.2472 | 1.1885 | 1.6029 | 1.4003 | | Alg12 | 0.874
0.7505 | 1.0119 | 1.1349 | 1.2328 | | Alpk1
Als2 | 1.2693 | 2.4006
1.0119 | 1.6029
1.6611 | 1.917
1.55 | | Als2cr11 | 0.97 | 1.6464 | 1.3363 | 1.2328 | | Anapc11 | 1.1991 | 1.1262 | 0.6482 | 1.2026 | | Ank2 | 1.5116 | 1.518 | 0.8974 | 1.3363 | | Ankib1 | 0.6724 | 1.4899 | 1.2876 | 1.0548 | | Ankle2 | 1.7866 | 1.6257 | 0.9565 | 0.3323 | | Ankmy2 | 1.2238 | 1.3348 | 1.4733 | 1.0967 | | Ankrd11 | 1.9065 | 1.9162 | 2.536 | 2.1053 | | Ankrd12
Ankrd17 | 1.2904
0.4551 | 0.7096
1.3348 | 1.4383
1.4003 | 1.4003
1.4383 | | Ankrd33b | 0.6724 | 0.966 | 1.0548 | 1.6152 | | Ankrd35 | 0.874 | 2.301 | 1.3363 | 2.5956 | | Ankrd36 | 0.97 | 1.3348 | 1.38 | 0.748 | | Ankzf1 | 1.0832 | 1.3929 | 0.6482 | 1.8725 | | Ano4 | 1.2904 | 1.2913 | 1.0084 | 1.3363 | | Aoc3 | 0.7505 | 1.2165 | 1.0084 | 0.8974 | | Ap4e1 | 0.9247 | 0.8565 | 1.2611 | 1.0967 | | Apitd1 | 2.9096 | 2.7216 | 3.1556 | 2.5641 | |---|---|--------------------------------------|--------------------------------------|--------------------------------------| | Arap2 | 1.7306 | 1.8823 | 2.0974 | 1.8658 | | Arhgap20 | 1.4728 | 0.7096 | 0.748 | 1.7669 | | Arhgap39
Arhgap4 | 1.0832
1.0832 | 0.966
0.7892 | 0.8291
0.748 |
1.1701
1.2611 | | Arid5a | 1.4302 | 1.8054 | 1.5209 | 2.4085 | | Armc2 | 0.97 | 1.9862 | 1.2876 | 1.8077 | | Armc5 | 3.5825 | 3.6018 | 3.6889 | 3.4863 | | Armc7
Armcx2 | 2.1571
0.874 | 2.0174
1.2165 | 2.1839
0.748 | 1.6719
1.3587 | | Arntl2 | 1.0486 | 0.7096 | 0.8291 | 1.1701 | | Arpp21 | 1.7733 | 1.7032 | 2.275 | 1.9943 | | Arsg
As3mt | 1.3992
0.874 | 1.4752
1.4752 | 1.2876
1.3587 | 1.1349
1.0548 | | Asb3 | 0.874 | 1.0913 | 0.748 | 1.3126 | | Asph | 1.0111 | 0.7892 | 1.3363 | 1.1349 | | Atad1 | 1.1152 | 1.0119 | 1.5056 | 0.748 | | Atf7ip2
Atm | 0.874
0.9247 | 1.2165
1.7983 | 1.0084
0.6482 | 1.55
1.6152 | | Atp6v1g2 | 1.3482 | 1.6564 | 1.4897 | 1.0102 | | Atp8b3 | 0.97 | 1.0119 | 0.8974 | 0.8291 | | Atr | 1.9755 | 1.615 | 2.1569 | 1.8154 | | Atxn7l1
AU041133 | 0.5772
1.1152 | 1.0913
1.2165 | 1.2328
1.2328 | 1.4003
1.1701 | | Aurka | 1.6206 | 0.7892 | 1.4733 | 1.38 | | Aurkaip1 | 1.1991 | 1.4899 | 1.7405 | 1.2876 | | B430319H21Rik | 1.0486 | 1.0119 | 0.6482 | 1.0084 | | B4galnt3
B4galt3 | 1.7076
1.3659 | 1.5443
1.0119 | 0.8974 | 1.6611
1.5056 | | B930018H19 | 1.145 | 0.612 | 1.0548 | 1.1701 | | Baz1b | 1.8122 | 0.7892 | 1.2026 | 0.9565 | | BC017612 | 0.7505 | 1.3136 | 1.0548 | 1.2611 | | BC031181
BC043934 | 1.4861
0.97 | 1.4277
0.8565 | 1.5357
1.2026 | 1.3126
1.5639 | | BC048502 | 1.0832 | 0.9147 | 0.9565 | 1.2876 | | Bcl2l2 | 0.9247 | 0.9147 | 1.4897 | 1.2876 | | Bcl7b | 1.9963 | 0.966 | 0.8974 | 1.7026 | | Bdkrb2
Bmp4 | 0.97
0.6724 | 0.7892
0.9147 | 0.9565
1.4003 | 1.2876
1.2611 | | Bmx | 1.6575 | 1.6662 | 1.8377 | 1.2611 | | Bod1I | 1.0111 | 1.1885 | 1.3587 | 1.3126 | | Bpifb9b
Brca1 | 1.0832
1.145 | 1.4441
1.2429 | 1.2611 | 0.5184 | | Brd8 | 1.0486 | 1.0913 | 0.9565
0.5184 | 1.3363
1.7669 | | Btaf1 | 1.8913 | 0.8565 | 1.3363 | 0.8974 | | Btrc | 1.0832 | 0.966 | 1.4197 | 1.0084 | | Bub1b
Bub3 | 1.6485
0.97 | 1.2913
1.2429 | 1.2611
1.1349 | 0.8974
1.3363 | | C030014L02 | 1.3106 | 1.5443 | 1.4383 | 1.0967 | | C030034L19Rik | 1.0486 | 1.2913 | 0.9565 | 1.4197 | | C030037D09Rik | 1.2238 | 1.2165 | 0.8291 | 0.6482 | | C130074G19Rik
C1gbp | 1.2693
0.5772 | 1.0119
0.7096 | 0.8291
1.5773 | 0.8291
1.6029 | | C230053D17Rik | 1.7525 | 0.7892 | 0.3323 | 1.7314 | | C3ar1 | 1.2238 | 1.3744 | 1.0967 | 1.0548 | | Cables1 | 1.1152 | 0.7096 | 0.748 | 1.4197 | | Cad
Calb1 | 0.874
1.5802 | 0.9147
0.7892 | 1.0967
0.6482 | 1.55
1.6029 | | Caln1 | 1.3298 | 1.0119 | 1.0084 | 1.2026 | | Camk1d | 0.9247 | 1.2165 | 1.4197 | 1.3363 | | Camk2a
Camkk1 | 1.2238 | 0.9147 | 1.2026 | 0.9565
0.9565 | | Caprin1 | 1.2238
1.0486 | 1.2165
1.0119 | 1.4897
1.0548 | 1.4003 | | Car9 | 0.5772 | 1.9721 | 1.5056 | 0.8291 | | Casp12 | 1.0486 | 1.0534 | 1.1349 | 0.9565 | | Cast
Catsperg1 | 1.415
1.3829 | 2.3185
0.8565 | 1.7405
1.6029 | 1.0548
1.7405 | | Ccbe1 | 1.6301 | 1.2678 | 1.3363 | 1.7405 | | Ccdc112 | 0.7505 | 1.0119 | 0.8974 | 1.5357 | | Ccdc14 | 1.145 | 1.0119 | 1.4383 | 1.2026 | | Ccdc151
Ccdc51 | 1.6996
1.1152 | 1.1584
1.2165 | 0.9565
0.8291 | 1.0084
0.9565 | | Ccdc51
Ccdc73 | 1.1729 | 2.0995 | 1.3126 | 1.8304 | | Ccdc80 | 1.6108 | 1.7373 | 0.9565 | 1.8589 | | Ccdc88a | 1.1729 | 1.2165 | 1.38 | 0.748 | | Ccdc93
Cct6a | 1.2904
1.1729 | 1.2678
0.966 | 1.2876
1.8077 | 1.5209
1.2026 | | JULUA | 1.2472 | 1.0119 | 1.4197 | 1.0084 | | Cd177 | | 0.612 | 1.4197 | 0.9565 | | Cd177
Cd38 | 1.4449 | | | 4 2507 | | Cd38
Cd47 | 1.5357 | 1.1262 | 1.38 | 1.3587 | | Cd38
Cd47
Cd55 | 1.5357
0.8166 | 1.0119 | 0.8291 | 1.2876 | | Cd38
Cd47 | 1.5357 | | | 1.3587
1.2876
1.4733
1.7124 | | Cd38
Cd47
Cd55
Cd63
Cd79b
Cdc25a | 1.5357
0.8166
0.874
1.0486
1.2904 | 1.0119
0.9147
0.3077
1.3136 | 0.8291
0.9565
1.2611
2.0189 | 1.2876
1.4733
1.7124
1.4197 | | Cd38
Cd47
Cd55
Cd63
Cd79b | 1.5357
0.8166
0.874
1.0486 | 1.0119
0.9147
0.3077 | 0.8291
0.9565
1.2611 | 1.2876
1.4733
1.7124 | | Cdk13 | 1.1991 | 0.966 | 1.0967 | 1.5903 | |-----------------------------|------------------|------------------|------------------|------------------| | Cdk16
Cdk5 | 0.8166
1.0111 | 1.0913
1.1885 | 0.8291 | 1.7495 | | Cdk6 | 1.1729 | 0.8565 | 0.748
1.2611 | 1.0967
1.0967 | | Cdk8 | 0.9247 | 1.0534 | 0.8974 | 0.9565 | | Ceacam11 | 1.1152 | 1.6942 | 0.6482 | 1.1349 | | Ceacam12 | 0.6724 | 0.8565 | 1.2611 | 1.2611 | | Cebpa
Cecr2 | 1.8244
1.3482 | 0.8565
1.0534 | 1.0548
1.2026 | 0.8974
1.2876 | | Celsr3 | 0.874 | 1.1584 | 1.0084 | 1.8154 | | Cep120 | 1.1152 | 1.1584 | 1.5357 | 1.2611 | | Cep170 | 0.6724 | 1.2678 | 1.0967 | 1.1701 | | Cep192 | 0.9247 | 0.9147 | 1.7026 | 1.6824 | | Cfc1
Cfh | 1.0111 | 0.9147 | 1.4197 | 1.2876 | | Cflar | 0.97
1.4302 | 0.966
2.0259 | 0.9565
0.8974 | 1.0548
0.748 | | Chmp2b | 1.1991 | 1.0534 | 1.0084 | 1.9789 | | Chmp4c | 1.1729 | 1.2165 | 1.6272 | 1.6272 | | Chrdl2 | 0.7505 | 0.7096 | 1.4897 | 1.5773 | | Chrna6 | 1.0832 | 1.9052 | 1.2026 | 2.1356 | | Chsy3 | 1.7595 | 1.9721 | 0.748 | 1.1349 | | Clasp1
Clca6 | 0.7505
1.6748 | 1.4106
0.612 | 1.4897
0.6482 | 1.7669
1.5903 | | Clmn | 1.1152 | 1.2678 | 0.8291 | 1.2026 | | Clvs1 | 1.5116 | 0.612 | 1.2611 | 1.0967 | | Cml3 | 0.874 | 1.0119 | 0.8291 | 1.2876 | | Cndp1 | 1.0111 | 1.0119 | 0.9565 | 0.8974 | | Cnot4 | 1.7154 | 1.2678 | 1.55 | 1.3363 | | Cnot8
Cntnap5b | 1.3992
1.0486 | 0.9147
1.0119 | 1.1701
0.6482 | 1.0548
1.0967 | | Col10a1 | 0.8166 | 0.9147 | 0.8974 | 1.5056 | | Commd2 | 0.8166 | 1.3929 | 0.8974 | 1.3363 | | Cpb1 | 1.0832 | 1.1584 | 1.1701 | 0.8974 | | Cpeb2 | 1.145 | 1.0534 | 0.748 | 1.0084 | | Cplx2 | 1.1152 | 1.0119 | 0.8291 | 1.8857 | | Cpne3 | 1.0486 | 1.1584 | 1.4383 | 1.0084 | | Creb3l2 | 1.1152
1.7453 | 1.4277 | 1.6611
1.9406 | 1.2026
1.7669 | | Creg1
Crlf1 | 1.0111 | 1.9908
1.3744 | 0.9565 | 1.7669 | | Csde1 | 1.2472 | 1.0119 | 1.5903 | 1.2611 | | Csrnp1 | 1.4861 | 1.0119 | 1.1701 | 0.8974 | | Ctbs | 1.415 | 0.7892 | 0.748 | 1.7583 | | Ctdsp1 | 0.6724 | 1.3136 | 0.748 | 1.4003 | | Ctla4 | 1.0832 | 1.0913 | 0.9565 | 1.6029 | | Ctr9
Ctso | 1.3482
1.6206 | 1.0913
1.2913 | 1.0084
1.6029 | 0.748 | | Ctxn1 | 0.6724 | 0.7892 | 1.0967 | 1.1701
1.5903 | | Cul3 | 2.2363 | 2.4771 | 2.3178 | 2.1053 | | Cwf19l1 | 0.874 | 1.5443 | 0.8974 | 1.2876 | | Cyb5rl | 1.3298 | 1.0119 | 1.0084 | 0.748 | | Cyba | 1.3482 | | 1.4562 | 1.5357 | | Cyld | 1.3106 | 1.0119 | 0.748 | 1.0084 | | Cyp2ab1
Cyp2b23 | 0.97
0.8166 | 0.7096
1.0534 | 0.9565
1.1701 | 1.5639
1.3126 | | Cyp2b23
Cyp2c29 | 0.8166 | 1.5811 | 1.4562 | 1.7124 | | Cyp4v3 | 1.3106 | 2.3476 | 1.3126 | 1.3363 | | Cyth4 | 1.6915 | 0.486 | 1.55 | 0.748 | | D030040B21Rik | 0.9247 | 1.0913 | 1.4733 | 1.8725 | | D030051J21Rik | 1.8478 | 1.8519 | 0.748 | 0.748 | | D19Ertd386e | 0.874 | 1.5811 | 1.4733 | 1.3126 | | D5Ertd579e
D630003M21Rik | 1.0486
1.3298 | 1.0534
1.2429 | 0.9565
1.1349 | 0.8291
1.4197 | | D730003W2TRI | 0.9247 | 1.0119 | 1.1701 | 1.4197 | | D930001B02 | 1.7231 | 1.6362 | 0.5184 | 0.6482 | | D930030K17Rik | 1.2693 | 1.2678 | 1.3587 | 1.9048 | | Dab1 | 1.738 | 1.5811 | 1.5209 | 1.1349 | | Obr1 | 1.1152 | 1.2913 | 0.8974 | 0.9565 | | Dbx2 | 1.3482 | 2.0343 | 1.2026 | 1.4197 | | Ocaf12l2
Ocbld1 | 2.0238
1.2693 | 1.3551
1.4752 | 1.7837
1.3587 | 1.2328
1.2876 | | Ocst1 | 1.7231 | 0.8565 | 0.748 | 2.4868 | | Ddx10 | 1.2472 | 0.486 | 0.8291 | 1.5639 | | Ddx52 | 2.1947 | 2.1402 | 1.4897 | 2.9463 | | Defa3 | 1.7595 | 1.9052 | 2.2723 | 1.7837 | | Dennd1b | 1.1729 | 0.9147 | 0.5184 | 1.3363 | | Denr
Derl2 | 1.1729 | 1.1584 | 1.0548 | 1.4003 | | Deriz
Dgat2l6 | 1.4728
1.4449 | 1.3744
1.1885 | 2.0642
0.6482 | 1.6719
1.4562 | | Dgkk | 0.97 | 1.1885 | 1.2328 | 1.4302 | | Dhx9 | 0.2846 | 1.7983 | 1.6501 | 1.0548 | | Dido1 | 0.8166 | 1.1262 | 1.0548 | 1.4383 | | Dixdc1 | 0.6724 | 1.1885 | 1.1349 | 1.0084 | | DIc1 | 0.8166 | 0.8565 | 1.3126 | 1.2611 | | Dix3 | 1.4449 | 1.1262 | 1.0084 | 1.7837 | | Dmrta2
Dnahc7b | 1.1152
1.2904 | 1.2678
1.3136 | 0.8974
1.5903 | 1.4003
1.2328 | | | | | | | | D==1=00 | 4.0000 | 4.4500 | 4.0450 | 4.0540 | |-----------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Dnajc22
Dnch2 | 1.6009
1.7665 | 1.4599
1.3929 | 1.6152 | 1.0548
2.2031 | | Dpp10 | 1.8913 | 0.8565 | 1.4733 | 0.5184 | | Dr1 | 1.7076 | 1.4752 | 2.0467 | 1,7754 | | E130008O17Rik | 1.5695 | 2.0384 | 0.8291 | 1.1701 | | E130119H08 | 1.0111 | 1.1885 | 0.5184 | 1.9683 | | E130119H09Rik | 0.9247 | 0.8565 | 1.0548 | 1.38 | | E130309F12Rik | 0.4551 | 1.1885 | 0.9565 | 1.8077 | | E230016D10 | 1.3829 | 0.7096 | 1.5773 | 1.6272 | | E330009J07Rik | 1.415 | 0.7892 | 0.8291 | 1.1701 | | E330035G20Rik | 1.3106 | 0.966 | 1.1349 | 1.0548 | | Ear4 | 0.8166 | 1.0913 | 0.8291 | 1.2328 | | Ebf2 | 0.8166 | 0.966 | 1.1701 | 1.4733 | | Eda2r | 0.97 | 1.8455 | 0.8291 | 1.5209 | | Efna1 | 1.2238 | 1.518 | 0.748 | 1.4733 | | Egfl7 | 0.9247 | 0.966 | 0.8974 | 1.2026 | | Eif1 | 0.6724 | 1.518 | 0.5184 | 1.7754 | | Eif2s1 | 0.6724 | 1.1584 | 1.2026 | 1.1701 | | Eif4enif1 | 0.97 | 0.7096 | 1.5639 | 1.1349 | | Elavi1 | 1.2693 | 1.2165 | 1.5357 | 1.7124 | | Elavl3 | 0.9247 | 0.7096 | 0.9565 | 1.7026 | | Ell2 | 1.1991 | 1.0913 | 1.6926 | 1.5056 | | Elmo1 | 1.6206 | 2.07 | 1.7669 | 2.4819 | | Eml3 | 0.9247 | 1.3348 | 0.8291 | 1.0967 | | Eml5 | 1.0111 | 1.5811 | 1.2026 | 1.0967 | | Emp2 | 1.6996 | 1.7764 | 2.1806 | 1.5639 | | Enpp3 | 1.2904 | 1.3348 | 1.4003 | 1.1701 | | Epha8 | 2.0874 | 1.8823 | 1.3126 | 1.4383 | | Epsti1 | 1.9626 | 1.3348 | 0.6482 | 1.4197 | | Ept1 | 0.874 | 1.2429 | 0.8291 | 1.3587 | | Erbb3 | 1.0111 | 1.0534 | 0.9565 | 1.4003 | | Ercc5 | 1.7733 | 1.6662 | 0.6482 | 1.7669 | | Ermap |
0.9247 | 1.2678 | 1.0967 | 0.9565 | | Esyt2 | 1.6206 | 1.1262 | 1.1701 | 0.748 | | Etfa | 1.78 | 1.8192 | 1.9462 | 1.8304 | | Exph5 | 1.1152 | 1.6257 | 0.8291 | 1.1349 | | Ext2 | 0.8166 | 2.1304 | 1.0967 | 1.9109 | | F2rl2 | 0.6724 | 1.7534 | 1.4733 | 1.4562 | | F8 | 1.2472 | 0.8565 | 1.3126 | 1.0084 | | F830016B08Rik | 0.8166 | 0.8565 | 1.0084 | 1.2026 | | Fabp1 | 1.145 | 1.1584 | 1.2611 | 1.0967 | | Faim3 | 1.2904 | 2.1654 | 1.0967 | 1.1349 | | Fam117a | 1.0486 | 1.0534 | 0.9565 | 0.8291 | | Fam120a | 1.4991 | 0.8565 | 1.1701 | 1.2328 | | Fam120c | 1.0111 | 0.966 | 1.0967 | 1.4562 | | Fam122a | 1.6915 | 1.0119 | 0.8974 | 0.8974 | | Fam126b | 1.4728 | 0.9147 | 0.748 | 1.2876 | | Fam154b | 1.2238 | 1.3348 | 1.4897 | 1.5056 | | Fam159b
Fam26e | 0.6724
1.0486 | 1.2429
1.1584 | 0.748
0.8974 | 1.4383
1.2611 | | Fam53b | 1.1152 | 0.9147 | 1.0548 | 1.0548 | | Fam53c | | 1.4441 | | 1.5357 | | Fam71b | 1.1991
2.465 | 2.2512 | 1.1701
3.0142 | 2.3435 | | Fancd2 | 1.2693 | 1.3348 | 1.1701 | | | Farp2 | 1.4591 | 1.5811 | 1.3126 | 1.0084
1.4733 | | Fat3 | 1.7932 | 1.1584 | 1.4562 | 1.0084 | | Fbln5 | 1.0111 | 1.7454 | 1.5357 | 0.3323 | | Fbxl17 | 1.5116 | 1.0534 | 1.4197 | 1.2026 | | Fbxl21 | 1.0832 | 1.2165 | 0.8974 | 1.5357 | | Fbxo34 | 0.97 | 1.0534 | 0.9565 | 1.0967 | | Fbxo41 | 1.0832 | 1.1262 | 1.2876 | 0.6482 | | Fbxo42 | 1.1991 | 1.3551 | 1.0548 | 1.3126 | | Fem1c | 1.7932 | 1.6464 | 1.5903 | 1.7754 | | Fgf15 | 1.0111 | 0.9147 | 0.8974 | 1.3587 | | Fgf18 | 0.874 | 1.4599 | 0.748 | 1.4383 | | Fgfr1op2 | 1.1152 | 0.8565 | 1.0548 | 1.3587 | | Fh1 | 0.97 | 1.0913 | 0.9565 | 1.7583 | | Fhod1 | 0.97 | 1.0119 | 0.8291 | 1.0084 | | FignI1 | 1.1991 | 1.6257 | 0.748 | 0.9565 | | Flad1 | 1.8861 | 1.1885 | 1.4897 | 1.4197 | | Flg | 1.2904 | 2.2461 | 1.0548 | 1.6388 | | Fmnl3 | 1.0832 | 1.9999 | 0.8291 | 1.9841 | | Fmo3 | 0.4551 | 0.8565 | 1.55 | 1.5903 | | Fndc3a | 1.4302 | 1.615 | 0.8291 | 1.0548 | | Fnip2 | 1.2238 | 1.0913 | 0.5184 | 1.0967 | | Folr1 | 1.3106 | 1.0119 | 0.8974 | 1.6029 | | Foxc2 | 1.3829 | 0.7892 | 0.748 | 1.1701 | | Foxf2 | 1.5802 | 2.2919 | 1.0084 | 0.5184 | | FoxI1 | 1.7154 | 1.7373 | 1.2026 | 2.313 | | Fpr-rs4 | 0.7505 | 1.5443 | 0.8974 | 1.2328 | | Frem1 | 0.874 | 1.685 | 0.8974 | 1.3126 | | Fry | 1.2238 | 1.1584 | 1.4197 | 1.1349 | | Fstl5 | 1.3298 | 1.2165 | 0.748 | 1.38 | | Fubp3 | 1.5238 | 1.4599 | 1.7026 | 1.3587 | | | | | | | | Fus | 0.9247 | 1.1262 | 1.0548 | 1.5639 | | Fus
Fut10
G3bp1 | 0.9247
1.8059
1.8755 | 1.1262
0.8565
1.0913 | 1.0548
1.3126
1.4733 | 1.5639
0.9565
1.0967 | | G6pc | 0.5772 | 1.1584 | 1.0967 | 1.6272 | |--------------------|------------------|------------------|--------------------------|----------------------------| | Gab3 | 1.9798 | 0.9147 | 1.3126 | 0.8974 | | Gabra1 | 1.5907 | 0.9147 | 1.5357 | 0.5184 | | Gabra4 | 1.2904 | 1.0534 | 1.1349 | 1.3587 | | Gas7
Gbe1 | 1.6485
1.9164 | 1.9107
1.2678 | 0.8974
1.4562 | 0.6482
1.7918 | | Gda | 1.1152 | 0.7892 | 0.748 | 1.0967 | | Gemin6 | 0.8166 | 0.7892 | 1.1349 | 1.2328 | | Ggps1 | 1.0486 | 1.2429 | 0.5184 | 1.5209 | | Gins3
Glra2 | 0.874
1.4449 | 2.0887
1.3929 | 1.38
1.6719 | 1.2876
1.2611 | | Gm13177 | 1.6301 | 1.0534 | 0.9565 | 1.7026 | | Gm14047 | 1.4861 | 0.612 | 0.6482 | 1.6824 | | Gm281 | 1.1152 | 1.0913 | 1.2876 | 1.4197 | | Gm4423
Gm4755 | 1.5695
1.3659 | 0.7892
1.1584 | 0.748
0.5184 | 1.5903
1.2611 | | Gm4758 | 0.8166 | 1.3136 | 1.0548 | 0.8974 | | Gm4759 | 1.0832 | 0.966 | 1.2026 | 1.7754 | | Gm4890 | 1.7076 | 0.612 | 1.3587 | 0.8291 | | Gm4894
Gm5084 | 0.7505
1.3298 | 1.3551
0.8565 | 0.5184
0.8974 | 1.6719
1.6611 | | Gm5089 | 1.5802 | 1.4277 | 1.7124 | 1.4003 | | Gm5493 | 1.6575 | 1.3551 | 1.3363 | 1.2328 | | Gm550 | 1.9401 | 1.9769 | 2.0728 | 1.722 | | Gm5615 | 0.2846 | 1.5927 | 1.2328 | 1.3126 | | Gm595
Gm9 | 0.6724
1.0486 | 1.9162
1.0119 | 0.748
1.0084 | 1.7669
1.1349 | | Gm94 | 0.2846 | 0.486 | 1.7314 | 2.267 | | Gm9927 | 0.97 | 1.1262 | 1.3126 | 1.1701 | | Gmpr | 1.2904 | 1.1584 | 1.4003 | 1.3587 | | Gna12
Gnat3 | 0.5772
3.1307 | 0.7096
3.2437 | 1.38
3.4193 | 1.8154
3.2795 | | Gngt1 | 0.6724 | 1.1885 | 1.7026 | 1.0967 | | Gpbp1 | 1.3659 | 0.9147 | 1.2611 | 1.6501 | | Gpm6b | 1.2472 | 0.9147 | 0.8974 | 0.8291 | | Gpr126 | 1.0486 | 1.0913 | 1.5639 | 1.5056 | | Gpr143
Gpr151 | 1.2472
1.1991 | 0.7096
0.7892 | 1.2328
1.5639 | 1.6388
1.0084 | | Gpr31c | 1.6009 | 1.685 | 1.9462 | 1.1701 | | Gpr55 | 0.8166 | 0.8565 | 1.1701 | 1.3126 | | Gpr6 | 0.8166 | 0.966 | 1.6272 | 1.4562 | | Gpr88
Gprasp2 | 1.0111
1.5116 | 0.7892
1.1584 | 1.2328
0.6482 | 1.2876
1.3587 | | Gprc6a | 1.1729 | 0.8565 | 1.2611 | 1.5056 | | Gprin3 | 1.2472 | 0.8565 | 1.3363 | 1.0967 | | Grik4 | 0.874 | 1.0119 | 0.8974 | 1.1701 | | Grina
Grk5 | 1.6009
1.5238 | 1.2913
1.0119 | 0.8291
1.0084 | 1.5639
1.55 | | Grlf1 | 1.0486 | 1.2429 | 1.0967 | 1.3126 | | Grm1 | 1.0111 | 1.0534 | 0.748 | 0.8974 | | Grrp1 | 1.1152 | 0.8565 | 1.2876 | 1.6824 | | Gse1
Gtf2h5 | 1.3829
0.9247 | 1.5443
1.3744 | 1.7669
0.9565 | 1.7754
1.2611 | | Gtpbp5 | 1.8861 | 1.5569 | 2.077 | 1.6272 | | Gulo | 1.145 | 1.0534 | 0.748 | 1.0084 | | Gzme | 1.4591 | 1.1584 | 1.38 | 1.7837 | | H2afy
H2-M2 | 1.145 | 0.966 | 1.0548 | 1.38
1.1701 | | Hao1 | 1.0832
1.0486 | 0.8565
1.8519 | 1.2026
0.9565 | 1.1701 | | Haus3 | 1.3482 | 0.9147 | 1.0548 | 0.8291 | | Hcn1 | 0.97 | 0.966 | 1.4003 | 1.38 | | Heca | 0.9247 | 1.7032 | 0.8291 | 1.4562 | | Hecw2
Hilpda | 0.8166
1.6662 | 1.0119
1.3929 | 0.9565
1.6926 | 1.7998
1.4197 | | Hivep3 | 1.5802 | 1.0119 | 1.0548 | 1.1701 | | Hk1 | 1.3106 | 0.8565 | 1.4383 | 1.7998 | | Hmga2 | 1.6915 | 1.0119 | 1.2026 | 1.6388 | | Hmox2
Hnrnpa2b1 | 1.4991
0.874 | 1.4599
0.7892 | 0.6482
1.1701 | 0.748
1.3126 | | Hnrnpab | 1.4991 | 1.4441 | 1.8154 | 1.3126 | | Hnrnpd | 1.145 | 1.1262 | 1.1701 | 1.3363 | | Hormad1 | 1.1991 | 1.2165 | 1.38 | 1.4197 | | Hoxb1 | 1.2472 | 1.6564 | 1.4897 | 1.4897 | | Hoxc13
Hoxc6 | 1.8122
0.7505 | 1.0119
1.6564 | 1.0548
2.8443 | 0.9565
0.748 | | Hps5 | 0.6724 | 1.9425 | 1.0548 | 1.6272 | | Hscb | 1.1152 | 1.0534 | 1.4897 | 1.0967 | | Hsd17b12 | 1.9115 | 1.5042 | 1.1349 | 1.3126 | | Hsp90aa1
Hspa4l | 0.7505 | 1.2165 | 1.0084 | 1.4003
1.6388 | | Hspb7 | 0.9247
1.3659 | 0.8565
0.966 | 1.1701
1.4003 | 0.8974 | | | 1.2472 | 1.3348 | 1.0548 | 1.0967 | | Hydin | 1.4991 | 1.0534 | 1.5056 | 1.0548 | | lapp | | | | | | lapp
Idi2 | 1.3659 | 1.1262 | 1.923 | 1.2328 | | lapp | | | 1.923
0.748
1.0084 | 1.2328
1.5357
1.2328 | | lkzf5 | 1.5907 | 1.2913 | 1.3587 | 0.9565 | |------------------|------------------|------------------|------------------|------------------| | II18r1
II20ra | 0.874
1.5357 | 0.9147
0.486 | 0.8974
1.3126 | 1.1349
1.4003 | | ll21r | 1.2693 | 1.2165 | 1.3363 | 1.1349 | | II6 | 1.1152 | | 0.6482 | 1.1349 | | II6st | 1.5238 | 1.604 | 1.4197 | 1.6272 | | lmmp2l | 0.9247 | 0.7892 | 1.1349
0.8974 | 1.0967 | | Ing1
Ing5 | 1.0832
0.6724 | 1.0119
0.9147 | 1.3126 | 0.8974
1.7124 | | Inha | 1.4591 | 2.0813 | 0.3323 | 1.5209 | | Insig2 | 1.0832 | 1.0534 | 1.4383 | 0.8291 | | Ints6 | 1.0111 | 0.8565 | 0.9565 | 1.2026 | | Ipmk
Iqcb1 | 0.7505
0.7505 | 1.0534
0.9147 | 1.3587
1.3363 | 1.0548
1.4383 | | Iqch | 1.0111 | 1.0534 | 1.0967 | 0.9565 | | lqgap3 | 0.874 | 1.3929 | 1.2026 | 1.0084 | | Irak4 | 0.874 | 1.2165 | 0.8291 | 1.5773 | | Isg20l2
Itga2 | 1.7733
1.145 | 1.6757
1.2429 | 1.8985
1.6719 | 1.6824
1.5773 | | Itpkb | 0.9247 | 2.1685 | 0.8291 | 1.8304 | | Itpripl1 | 0.9247 | 1.8996 | 1.4562 | 1.3126 | | Jag2 | 1.1991 | 1.729 | 1.0084 | 0.6482 | | Jakmip1 | 1.145 | 1.2429 | 1.2328 | 0.8974 | | Kcnh3
Kcnj16 | 1.4449
1.0832 | 1.4599
1.7205 | 1.9574
0.5184 | 1.2611
1.4003 | | Kcnj6 | 1.0111 | 1.0534 | 0.8974 | 0.9565 | | Kcnk5 | 1.2904 | 1.2165 | 1.4197 | 1.0967 | | Kcnmb4 | 1.6748 | 1.7534 | 1.4003 | 1.8377 | | Kctd15 | 0.874 | 0.966 | 1.0084 | 0.9565 | | Kctd4
Kdm5c | 1.4861
0.7505 | 1.3744
1.0913 | 1.2328
0.748 | 0.9565 | | Kunsc | 1.3829 | 1.5569 | 1.5056 | 1.6824
1.0084 | | Klhdc10 | 1.145 | 1.0534 | 1.3126 | 1.4897 | | Klhl25 | 1.5802 | 1.0119 | 0.6482 | 1.7405 | | Kng1 | 0.874 | 1.0913 | 1.4003 | 1.2328 | | Krba1
Krt25 | 1.5585
1.9065 | 1.1262 | 1.2026
1.0084 | 1.3363 | | Krt35 | 1.0111 | 1.1262
0.8565 | 1.4383 | 0.8291
1.0084 | | Lair1 | 1.0486 | 0.7096 | 0.9565 | 1.2328 | | Larp1 | 1.3992 | 1.1584 | 1.8077 | 1.4562 | | Lass5 | 1.0111 | 0.966 | 1.0548 | 1.2328 | | Lax1
Lce3f | 1.1729
0.874 | 1.3348
1.8939 | 1.0967
1.2611 | 0.6482
1.3587 | | Lclat1 | 1.4861 | 1.9673 | 0.8974 | 1.4003 | | Lcmt2 | 0.6724 | 1.0534 | 1.4197 | 1.2876 | | Ldha | 1.4591 | 1.1262 | 0.8291 | 1.1349 | | Lepr | 1.3829 | 0.9147 | 0.8974 | 1.0967 | | Lgals7
Lgr6 | 1.5695
1.3298 | 1.2165 | 1.1349
1.2328 | 2.6646
1.0084 | | Lhx5 | 1.2693 | 2.0995 | 0.6482 | 1.2876 | | Lin9 | 0.9247 | 1.2165 | 0.8291 | 1.4562 | | Lingo4 | 1.0486 | 0.966 | 1.4383 | 1.0084 | | Lipk | 0.6724 | 1.5569 | 1.0548 | 1.0967 | | Lmnb1
Lmod3 | 1.0486
1.0832 | 0.8565
1.1584 | 0.8291
0.5184 | 1.5357
1.4897 | | LOC727924 | 1.1152 | 1.6464 | 0.9565 | 1.4197 | | Lpl | 1.4991 | 1.3929 | 1.4197 | 1.3587 | | Lrfn5 | 1.1729 | 1.5042 | 1.5773 | 1.2611 | | Lrguk | 0.874
1.3106 | 0.9147 | 1.1701
0.8974 | 1.0548
0.9565 | | Lrrc2
Lrrc30 | 1.0486 | 0.9147
0.9147 | 1.2026 | 1.2328 | | Lrrc39 | 1.0832 | 0.9147 | 0.748 | 1.2328 | | Lrrc40 | 1.5238 | 1.4277 | 1.722 | 1.0967 | | Lrrc52 | 1.2238 | 0.486 | 1.2876 | 1.3363 | | Lrrc61
Lrrc8d | 1.1729
1.0111 | 1.3929
1.0913 | 0.9565
0.6482 | 2.1131
1.1701 | | Lrriq3 | 1.5695 | 0.966 | 0.8974 | 1.0967 | | Lrrk2 | 1.6108 | 1.7032 | 2.275 | 1.8922 | | Lsm11 | 1.0486 | 0.7096 | 1.2026 | 1.3587 | | Lsm4 | 1.7733 | 0.9147 | 0.8974
| 1.2876 | | Ly6g5b
Lypd4 | 1.145
0.8166 | 1.0534
0.8565 | 1.7124
1.2876 | 1.2026
1.4897 | | Lyrm2 | 1.9626 | 1.9052 | 2.0189 | 1.9048 | | Lyrm5 | 0.5772 | 1.5811 | 1.5357 | 0.6482 | | Lysmd4 | 1.0111 | 1.0534 | 1.3363 | 1.2026 | | Macf1 | 0.97 | 1.1885 | 1.5639 | 1.3126 | | Mafk
Maml2 | 0.874
1.5473 | 0.8565
1.0119 | 1.4003
1.5903 | 1.2876
0.748 | | Man2a1 | 0.874 | 1.7119 | 0.8291 | 1.852 | | Map2k3 | 1.7595 | 0.9147 | 1.6824 | 0.6482 | | Mapk1ip1I | 1.145 | 1.1885 | 1.5639 | 1.0548 | | Mapk8ip3 | 1.415 | 1.4106 | 1.6719 | 1.3587 | | 10-Mar
Mark1 | 2.14
1.6832 | 1.9526
0.9147 | 0.6482
0.748 | 2.174
1.3126 | | Mau2 | 0.874 | 0.7096 | 1.3587 | 1.8077 | | Mc2r | 0.4551 | 2.0623 | 1.0084 | 1.9048 | | Mcpt1 | 1.2904 | 1.3744 | 1.6926 | 1.4562 | | | | | | | | Mdga2 | 1.3659 | 0.8565 | 1.2328 | 1.0084 | |------------------------|------------------|------------------|------------------|------------------| | Mdp1 | 1.4591 | 1.1262 | 0.3323 | 1.6719 | | Mecp2 | 1.2238 | 1.2678 | 1.2876 | 1.2611 | | Med12l | 1.8913 | 1.3136 | 1.2328 | 1.5903 | | Med18
Mei4 | 0.8166
0.7505 | 1.2678
2.1499 | 0.9565
1.55 | 0.9565
0.8291 | | Metap1 | 0.97 | 0.966 | 1.4733 | 1.0967 | | Mfsd6 | 1.1152 | 1.0534 | 1.0084 | 1.4562 | | Mfsd7b | 1.7525 | 0.7892 | 1.0084 | 1.8857 | | Mgat4a
Mipep | 0.8166
1.0832 | 1.0534
1.2678 | 0.8291
1.1349 | 1.2328
1.1701 | | Mitf | 1.3106 | 1.0913 | 0.5184 | 1.3126 | | Mki67 | 1.2472 | 1.2678 | 0.5184 | 1.5056 | | MII3 | 1.7866 | 0.612 | 0.8291 | 1.6388 | | Mlxip
Mmgt1 | 1.4728
0.874 | 1.0913
0.7096 | 0.748
1.0548 | 1.6029
1.4383 | | Mmp1a | 1.145 | 1.1262 | 1.1701 | 0.9565 | | Mob2 | 1.1991 | 1.0913 | 1.0084 | 1.1349 | | Morn4 | 0.6724 | 1.4277 | 1.3126 | 1.0967 | | Mpzl1
Mpzl3 | 1.6108
1.0832 | 1.8054
1.4599 | 0.5184
1.3587 | 1.4003
1.2026 | | Mrfap1 | 1.0486 | 1.0913 | 1.5357 | 1.6824 | | Mrgpra1 | 1.7231 | 1.1584 | 1.2876 | 0.3323 | | Mrpl30 | 1.2472 | 1.3348 | 1.3587 | 1.3587 | | Mrps15
Mrps22 | 1.2238
0.9247 | 2.2827 | 0.748 | 1.5357 | | Mrps33 | 0.9247 | 1.0913
1.0119 | 0.748
0.9565 | 1.5056
1.1701 | | Msrb2 | 1.3829 | 1.3348 | 1.6501 | 1.0084 | | Mustn1 | 0.8166 | 1.1584 | 0.6482 | 1.6029 | | Mvk | 1.0111 | 0.9147 | 0.748 | 1.6611 | | Mybpc2
Mycbp2 | 1.3992
0.9247 | 1.4441
0.7892 | 1.1349
1.1349 | 1.4197
1.5903 | | Myf6 | 2.2196 | 1.9052 | 2.077 | 1.5357 | | Myh10 | 1.2904 | 1.9216 | 0.8291 | 1.0967 | | Myt1 | 1.78 | 1.7612 | 1.8792 | 1.7026 | | Mzt1
N4bp1 | 0.6724
0.5772 | 1.3551
1.1262 | 0.8974
1.0084 | 1.8922
1.722 | | Nap1l2 | 0.874 | 0.8565 | 1.2026 | 1.1701 | | Nav3 | 1.2238 | 1.6257 | 1.2026 | 1.3126 | | Nbea | 1.5473 | 1.0913 | 1.3363 | 1.722 | | Nccrp1 | 1.9582 | 1.604 | 1.38 | 1.7837 | | Nckap5
Ncrna00085 | 2.1429
1.9015 | 1.8192
0.7892 | 1.722
0.6482 | 1.8589
1.7026 | | Ndufb4 | 1.8059 | 0.9147 | 0.6482 | 1.3126 | | Necab1 | 1.0111 | 1.1885 | 0.8974 | 1.0967 | | Nek3 | 1.0111 | 1.0534 | 1.38 | 1.0084 | | Nemf
Neurod1 | 1.8122
2.6179 | 2.1203
2.2708 | 1.2026
2.7654 | 0.9565
2.2185 | | Nfasc | 1.2238 | 1.1584 | 1.3126 | 0.9565 | | Nfe2l1 | 1.6394 | 1.5443 | 1.722 | 1.6501 | | Nfia | 0.8166 | 0.8565 | 0.9565 | 1.38 | | Nhedc1
Nhp2l1 | 1.3992
0.97 | 0.7096
0.8565 | 0.8291
0.9565 | 1.3587
1.1701 | | Nipbl | 1.2238 | 1.2165 | 0.9565 | 1.1701 | | Nipsnap1 | 1.5357 | 1.4441 | 1.4003 | 1.5209 | | Nipsnap3a | 1.0832 | 1.0913 | 1.2611 | 0.8974 | | Nipsnap3a | 0.97 | 0.8565 | 1.2026 | 1.0548 | | Nlrp10
NM_001004179 | 1.1152
0.2846 | 1.2165
1.1885 | 1.2328
1.1349 | 1.2026
1.4733 | | NM_008283 | 1.415 | 1.3136 | 1.7583 | 1.2328 | | NM_025307 | 2.046 | 1.4277 | 1.0548 | 1.1701 | | NM_025726 | 1.2472 | 1.0119 | 1.722 | 1.3363 | | NM_025743
NM_026226 | 1.1991
1.8059 | 1.2678
0.7096 | 0.6482
0.8974 | 1.0548
1.4197 | | NM_027265 | 1.145 | 1.3744 | 1.3126 | 0.5184 | | NM_028564 | 1.4591 | 0.486 | 0.748 | 1.7124 | | NM_028588 | 1.1729 | 1.2913 | 1.0084 | 1.5639 | | NM_029697
NM_030007 | 1.1729
1.0486 | 1.2165
0.8565 | 1.6926
1.7124 | 1.4733
0.9565 | | NM_138946 | 1.145 | 0.9147 | 0.748 | 1.0084 | | NM_175354 | 0.7505 | 1.0913 | 1.6029 | 1.1701 | | NM_175390 | 1.3482 | 1.2913 | 1.7405 | 1.5209 | | NM_176934 | 1.5116 | 0.9147
0.966 | 0.8974 | 0.8974 | | NM_176955
NM_177011 | 1.0486
1.4991 | 0.612 | 1.2876
1.4197 | 1.0967
1.1349 | | NM_177020 | 0.8166 | 1.0913 | 0.9565 | 1.0967 | | NM_177079 | 1.3106 | 0.966 | 1.6611 | 1.3587 | | NM_177179 | 1.1152 | 1.2165 | 1.0967 | 1.1701 | | NM_177207
NM_177858 | 1.2472
2.116 | 1.1584
0.966 | 0.6482
1.6388 | 2.3273
1.0084 | | NM_177896 | 0.8166 | 0.8565 | 0.9565 | 1.1349 | | NM_178239 | 1.9537 | 1.9052 | 2.348 | 1.9574 | | NM_183110 | 1.2693 | 2.2359 | 1.2876 | 1.5209 | | NM_183223 | 1.0111 | 1.0534
0.966 | 0.748
1.0967 | 0.8291 | | NIM 100000 | | | | | | NM_198008
NM_199318 | 0.7505
1.2472 | 1.0534 | 0.8291 | 1.4003
1.0548 | | Nom1
Nphp3 | 1.2904
1.3298 | 0.7892
1.0534 | 0.9565
1.2328 | 0.8974
1.1701 | |----------------------|------------------|------------------|------------------|------------------| | Nr0b2 | 0.874 | 0.3077 | 1.4733 | 2.3435 | | Nr1i3 | 1.0832 | 1.0119 | 1.55 | 1.7754 | | Nr2c1 | 1.0111 | 1.1584 | 1.1349 | 0.6482 | | Nr2f1
Nr2f2 | 0.6724
1.1729 | 1.3744
2.0174 | 1.1349
1.0084 | 0.9565
1.4197 | | Nrcam | 1.4449 | 1.3348 | 1.38 | 1.9289 | | Nrk | 1.2472 | 0.8565 | 0.9565 | 0.8974 | | Nrsn1 | 0.97 | 0.8565 | 1.0967 | 1.3587 | | Nsa2
Ntf5 | 1.1152
1.415 | 1.0534
0.7096 | 0.8291
0.8974 | 1.38
1.8229 | | Ntn4 | 0.4551 | 1,7689 | 1.6388 | 1.2876 | | Nudt11 | 0.7505 | 1.1262 | 0.748 | 1.5773 | | Nudt4 | 1.0111 | 0.612 | 1.1349 | 1.2328 | | Nxt1
Obfc1 | 1.2904
0.9247 | 1.4106
0.7892 | 0.8974 | 1.5639
1.1701 | | Oit3 | 0.7505 | 0.8565 | 1.3363 | 1.2026 | | Olfm3 | 1.5357 | 1.7689 | 2.4582 | 1.9574 | | Olfml2a | 1.2472 | 1.1584 | 1.0084 | 1.1349 | | Olfr108
Olfr1085 | 0.874_
0.9247 | 1.0534
0.8565 | 1.0967
1.4003 | 0.8974
1.0548 | | Olfr1099 | 0.7505 | 1.3136 | 1.3363 | 1.1349 | | Olfr1102 | 1.3829 | 1.2913 | 1.1701 | 0.8974 | | Olfr1111 | 1.145 | 0.9147 | 1.3126 | 1.0548 | | Olfr1112 | 0.874 | 1.3744 | 1.3363 | 0.8291 | | Olfr1135
Olfr1138 | 1.5116
0.6724 | 1.0119
1.5313 | 0.9565
1.3126 | 1.6388
0.8291 | | Olfr1161 | 1.6832 | 0.7096 | 0.3323 | 1.7405 | | Olfr1277 | 1.5802 | 1.3744 | 1.4733 | 1.1701 | | Olfr1320 | | 0.9147 | 1.9406 | 1.9736 | | Olfr1325
Olfr135 | 1.4591
0.97 | 2.2145
0.9147 | 1.1349
1.8449 | 1.7837
1.0084 | | Olfr1367 | 1.1991 | 0.7892 | 1.0084 | 0.8974 | | Olfr1420 | 1.5585 | 2.0813 | 2.0511 | 1.7754 | | Olfr1502 | 0.5772 | 0.8565 | 1.3126 | 1.3587 | | Olfr154 | 0.7505 | 0.9147 | 0.8974 | 1.3587 | | Olfr165
Olfr183 | 0.874 | 1.9526
2.2487 | 2.0284
0.8974 | 1.7583
1.4562 | | Olfr190 | 0.8166 | 1.0913 | 1.1349 | 0.9565 | | Olfr196 | 1.6662 | 1.3348 | 1.6152 | 1.1701 | | Olfr3 | 0.874 | 1.0913 | 1.0548 | 1.4197 | | Olfr301
Olfr350 | 1.0111
0.874 | 1.1262
1.2165 | 1.3363
1.3587 | 1.0967
0.9565 | | Olfr419 | 0.4551 | 1.6757 | 1.4003 | 1.1701 | | Olfr513 | 1.4861 | 1.1262 | 1.2328 | 0.5184 | | Olfr555 | 0.9247 | 1.0119 | 0.748 | 1.4003 | | Olfr577
Olfr655 | 0.9247
1.3659 | 0.8565
1.6257 | 0.8291
1.2876 | 1.0084
1.0084 | | Olfr716 | 1.2472 | 1.1262 | 1.2328 | 0.8974 | | Olfr724 | 0.7505 | 1.5692 | 0.748 | 1.4383 | | Olfr821 | 1.5116 | 1.4752 | 1.4562 | 1.722 | | Olfr877
Olfr934 | 0.8166
1.2693 | 1.3551 | 0.8974
1.2611 | 1.0967
1.5639 | | Olr1156 | 0.874 | 1.0534
1.1262 | 1.3587 | 1.6719 | | Olr142 | 1.8535 | 2.278 | 1.1349 | 1.6029 | | Olr145 | 0.5772 | 1.0534 | 1.0084 | 1.6152 | | Olr1568 | 2.8642 | 2.22 | 1.9841 | 1.8658 | | Olr1730
Olr237 | 0.9247
0.6724 | 0.9147
1.0534 | 1.1701
1.38 | 1.3587
1.9109 | | Olr357 | 1.3829 | 0.7892 | 0.748 | 1.6719 | | Olr461 | 1.738 | 1.0119 | 0.8974 | 1.4897 | | Olr559 | 1.3298 | 1.1885 | 1.0548 | 0.8974 | | Olr606
Olr799 | 1.1729
0.9247 | 2.0776
1.1262 | 0.6482
1.2876 | 1.3126
0.748 | | Olr87 | 1.2693 | 1.0913 | 0.6482 | 1,1701 | | Oog1 | 1.5238 | 0.7892 | 1.4733 | 1.0084 | | Oog3 | 1.6108 | 1.3551 | 1.7124 | 1.2611 | | Oog4 | 1.0832 | 1.2165
0.966 | 0.8291 | 1.55 | | Opa3
Opcml | 0.97
0.874 | 0.966 | 0.8974
1.2611 | 1.1349
1.2876 | | Osbpl5 | 0.7505 | 1.2678 | 0.8974 | 1.2328 | | P2rx3 | 1.6662 | 0.7096 | 1.0548 | 1.2876 | | P2rx5 | 1.145 | 1.1885 | 1.2328 | 1.2611 | | Pacs1
Paip2 | 0.5772
2.4409 | 2.0259
2.2873 | 1.2026
2.7764 | 1.5209
2.1806 | | Palp2
Pak2 | 0.7505 | 1.5313 | 0.748 | 1.7124 | | Pak3 | 1.0486 | 1.1584 | 0.748 | 1.0548 | | Palm3 | 1.1729 | 1.0534 | 1.4003 | 1.3363 | | Pan2 | 1.0486 | 0.966 | 0.748 | 0.8974 | | Pan3
Parp11 | 1.2904
1.0486 | 0.8565
1.1262 | 1.2328
1.1349 | 1.0548
0.8291 | | Pbrm1 | 1.6206 | 1.0119 | 0.6482 | 1.1701 | | Pcdhb13 | 0.4551 | 1.2678 | 1.4003 | 1.8304 | | Pcdhb15 | 1.2238 | 1.9216 | 0.8974 | 1.2611 | | Pck1
Pcsk2 | 1.3992 | 1.0534 | 0.8291 | 0.8974
1.5903 | | I UONZ | 1.3659 | 0.7892 | 0.8291 | 1.5903 | | Pde4d
Pdss2 | 1.5238
0.874 | 1.3929
1.8939 | 0.6482
1.7026 | 0.8291 | |------------------|------------------|------------------|------------------|------------------| | Pdxk | 1.3298 | 1.3744 | 1.7495 | 1.5056 | | Pex1 | 1.8808 | 0.7096 | 1.2026 | 1.0967 | | Pfdn4 | 0.7505 | 0.7892 | 1.5903 | 2.3081 | | Phb | 1.1152 | 1.0119 | 1.0967 | 1.2328 | | Phc2 | 1.5116 | 1.2678 | 1.3126 | 1.4733 | | Phex | 0.97 | 1.8823 | 0.748 | 1.5209 | | Phf11
Phf17 | 1.0486 | 1.0119 | 1.0084 | 1.38 | | Phf6 | 1.2238
0.9247 | 1.1885
1.1262 | 0.748
1.0548 | 1.2611
1.2026 | | Phgdh | 1.2472 | 1.5569 | 0.8974 | 1.4003 | | Pias3 | 1.7525 | 2.0343 | 0.8291 | 0.748 | | Pibf1 | 0.97 | 1.1262 | 0.8291 | 1.0967 | | Pigp | 1.2904 | 1.4441 | 1.8725 | 1.4383 | |
Pigw | 0.874 | 0.966 | 0.8974 | 1.5209 | | Pik3r1 | 0.9247 | 0.8565 | 1.5209 | 1.1701 | | Pik3r6
Pilrb1 | 0.4551
1.1152 | 1.2429
1.1584 | 1.4383
1.0084 | 1.4003 | | Pin1 | 1.1729 | 1.1262 | 1.3126 | 1.0084 | | Pja2 | 1.7996 | 1.729 | 0.8974 | 1.3126 | | Pkib | 1.8363 | 2.0465 | 2.1392 | 1.6719 | | Pla2g2d | 1.3992 | 1.1584 | 0.8291 | 0.8291 | | Plaur | 1.4302 | 0.7892 | 0.8974 | 1.4562 | | Plk4 | 0.6724 | 1.0534 | 1.0967 | 1.4562 | | Plxna4 | 0.97 | 0.9147 | 0.748 | 1.6029 | | Pole | 1.3482 | 1.1885 | 1.8229 | 1.5357 | | Polr2c | 0.97 | 0.7892 | 1.1349 | 1.0548 | | Polr2m
Pou4f2 | 1.0832
0.6724 | 1.1584
1.1584 | 1.4003
1.2611 | 1.1349
1.3126 | | Pou4f2
Pou6f1 | 2.7639 | 2.3711 | 2.4634 | 2.0284 | | Ppcdc | 0.874 | 0.8565 | 1.0548 | 1.3363 | | Ppfia1 | 1.0111 | 1.8326 | 0.5184 | 1.6926 | | Ppm1b | 0.8166 | 1.2678 | 1.2876 | 1.2876 | | Ppp1r10 | 1.5357 | 1.3551 | 1.4003 | 1.0967 | | Ppp1r13b | 1.1729 | 0.966 | 0.748 | 1.0084 | | Ppp1r14a | 1.0486 | 1.0534 | 1.2026 | 1.0084 | | Ppp1r16b | 1.4728 | 1.5927 | 1.5639 | 2.6763 | | Prf1
Prkab2 | 1.6996 | 1.8764
2.2436 | 1.3126 | 1.5639 | | Prkacb | 1.6575
1.9354 | 2.2436 | 0.748
2.6591 | 1.4197
2.2031 | | Prir | 1.1152 | 1.1584 | 1.0084 | 1.0967 | | Prmt5 | 2.0003 | 1.8192 | 2.0189 | 1.5056 | | Prmt6 | 1.0111 | 0.8565 | 0.8291 | 1.4003 | | Prmt8 | 1.0111 | 1.0119 | 1.0548 | 1.0084 | | Prpf19 | 0.7505 | 1.1262 | 0.8974 | 1.2876 | | Prpf38a | 0.6724 | 1.2429 | 1.2328 | 1.3363 | | Prr18 | 0.874 | 1.7764 | 1.0967 | 1.4562 | | Prr3
Prss34 | 0.874
0.7505 | 0.9147
0.966 | 1.0084
0.8974 | 1.4733
1.6501 | | Prss54 | 2.1222 | 1.2165 | 1.3126 | 1.0967 | | Psd3 | 2.3189 | 1.1584 | 1.0084 | 1.3587 | | Psq23 | 0.7505 | 0.612 | 1.2611 | 1.6501 | | Psme3 | 0.8166 | 1.0119 | 1.0967 | 1.0084 | | Pstpip1 | 0.8166 | 1.1262 | 0.8974 | 0.9565 | | Ptger2 | 1.4449 | 1.4106 | 1.7124 | 1.1349 | | Ptgir | 1.145 | 1.1584 | 1.5209 | 0.8974 | | Ptplb | 1.2472 | 1.0534 | 1.6719 | 1.0548 | | Ptpn1
Ptpn13 | 1.7231 | 0.7096 | 0.748 | 1.722 | | Ptpn14 | 1.4302
0.9247 | 0.966
1.0119 | 0.8974
0.748 | 0.9565
1.3587 | | Ptprd | 1.3298 | 2.0923 | 1.2876 | 1.8377 | | Ptpre | 1.0111 | 0.7892 | 0.9565 | 1.2328 | | Ptprg | 1.8363 | 0.8565 | 1.0967 | 0.9565 | | Ptprj | 1.5238 | 1.3136 | 1.1349 | 0.9565 | | Ptprn2 | 1.6206 | 1.0913 | 1.5357 | 1.2876 | | Pxdn | 0.97 | 0.8565 | 1.0548 | 1.4897 | | Qk | 0.9247 | 0.7892 | 1.6501 | 1.1349 | | Qpctl
Rab12 | 1.5585
1.8122 | 1.4277
0.7892 | 1.7495
1.3126 | 1.5639
0.8291 | | Rab2b | 0.97 | 0.9147 | 1.5903 | 0.9565 | | Rab39b | 1.9401 | 1.8455 | 1.0548 | 0.8291 | | Rab3il1 | 1.2472 | 1.4106 | 0.8974 | 0.6482 | | Rab9b | 1.5802 | 1.4441 | 2.3081 | 1.9683 | | Rad54l2 | 1.0111 | 0.966 | 1.0084 | 0.8974 | | Rage | 0.6724 | 0.8565 | 1.1349 | 1.2611 | | Ranbp1 | 1.0832 | 1.8823 | 1.0084 | 1.3587 | | Ranbp6 | 1.0111 | 0.966 | 0.8974 | 1.0084 | | Rapgef6 | 0.9247 | 0.612 | 1.4003 | 1.5056 | | Rarb | 2.1543 | 1.7454 | 1.9943 | 1.9736 | | Rars2
Rasgrf1 | 1.5238
0.97 | 2.2827
1.1584 | 0.8974
0.5184 | 1.38
1.4197 | | Rbm26 | 2.2123 | 0.9147 | 1.3126 | 1.4197 | | Rbm27 | 1.0832 | 1.4106 | 1.0084 | 1.2328 | | Rbm39 | 1.5802 | 0.486 | 0.8291 | 1.4383 | | Rbm43 | 1.0111 | 0.966 | 0.748 | 1.0548 | | Rbp4 | 1.6394 | 2.1169 | 1.9574 | 1.923 | | | | | | | | Rcn1 | 1.4302 | 0.8565 | 1.4003 | 0.8291 | |---------------------|------------------|------------------|------------------|------------------| | Rcsd1 | 1.1729 | 1.9216 | 0.8974 | 1.2328 | | Rfpl4
Rfx7 | 0.97 | 0.966
1.9862 | 0.8974
1.4383 | 1.0967 | | Rgs4 | 0.6724
1.6394 | 1.0913 | 0.6482 | 1.5209
1.3363 | | Rgs7bp | 1.8646 | 1.615 | 0.3323 | 1.4003 | | Rhbdd1 | 0.7505 | 1.5313 | 0.8291 | 1.2876 | | Rhbdd2 | 0.7505 | 2.0465 | 0.6482 | 2.0853 | | Rif1
Rin3 | 1.415
1.0486 | 1.0534
1.1262 | 0.8974
1.1701 | 1.1349
0.9565 | | Ripk2 | 1.5116 | 0.7892 | 1.2328 | 1.5773 | | Rmnd5b | 1.4728 | 0.9147 | 1.0548 | 0.8974 | | Rnase6 | 1.2693 | 0.9147 | 0.9565 | 0.8974 | | Rnf111
Rnf113a1 | 1.7154
0.4551 | 0.7892
0.9147 | 1.4897
1.2328 | 1.9841
1.6272 | | Rnf182 | 0.4551 | 1.6662 | 1.5357 | 0.8974 | | Rnf2 | 1.6206 | 1.0119 | 1.0967 | 1.3363 | | Rnf24 | 1.145 | 1.0119 | 1.0084 | 0.8974 | | Rnft2 | 1.9669 | 1.4277 | 1.4197 | 2.1638 | | Robo2
Rora | 1.0111
1.4302 | 0.7892
1.4106 | 0.8291
2.0422 | 1.55
1.6824 | | Rpgr | 0.4551 | 1.3744 | 0.9565 | 1.4897 | | Rpl15 | 0.5772 | 0.612 | 1.5639 | 1.6388 | | Rpl36a | 1.0832 | 1.4599 | 1.5056 | 1.38 | | Rpl3l | 1.3106 | 1.3136 | 0.5184 | 1.3587 | | Rpl9
Rprd2 | 1.0486
0.97 | 1.3551
0.9147 | 1.1701
0.8291 | 1.1701
1.5903 | | Rps27 | 1.3659 | 1.8054 | 1.0084 | 1.6719 | | Rps6ka5 | 1.3992 | 0.612 | 0.8291 | 1.4897 | | Rrp15 | 0.8166 | 1.9052 | 0.8291 | 1.38 | | Rsph9 | 1.8244 | 0.8565 | 0.9565 | 1.8154 | | Sag
Sall4 | 0.97 | 1.0119 | 0.6482
1.0548 | 1.1349
1.7918 | | Samd9l | 0.9247
1.1152 | 0.7892
0.7892 | 1.3126 | 1.7918 | | Sar1b | 1.5238 | 1.5811 | 0.6482 | 1.0967 | | Satl1 | 1.8964 | 1.1262 | 1.0084 | 1.4897 | | Scai | 1.3298 | 1.1584 | 1.3587 | 1.38 | | Scg5 | 1.2693 | 1.1262 | 1.4562 | 1.0548 | | Scgb1a1
Schip1 | 2.317
1.0111 | 2.0545
1.6257 | 0.9565
0.3323 | 1.9629
1.7495 | | Scml4 | 1.0111 | 1.0534 | 1.0967 | 0.748 | | Sdf2 | 1.3482 | 1.3348 | 0.9565 | 1.5773 | | Sdpr | 1.738 | 1.0534 | 1.0967 | 1.2328 | | Sdr42e1 | 0.7505 | 0.7892 | 1.2876 | 1.7583 | | Sec16a
Sec24d | 0.874
2.1709 | 0.7892
1.8881 | 0.8974
2.5828 | 1.5773
2.2588 | | Sec31b | 1.6485 | 1.5811 | 2.1773 | 1.722 | | Secisbp2 | 1.0486 | 1.2165 | 1.5209 | 1.2876 | | Sele | 0.9247 | 0.9147 | 0.748 | 1.5357 | | Sell | 0.874 | 1.0119 | 1.0548 | 0.8974 | | Sema4d
Serbp1 | 1.4302
1.4728 | 0.8565
1.1885 | 1.1349
1.0084 | 1.0548
1.2328 | | Serinc3 | 0.874 | 1.0119 | 1.2328 | 1.5209 | | Serpinb1a | 0.9247 | 0.9147 | 1.2026 | 1.3126 | | Serpinb2 | 2.1998 | 1.1262 | 0.8974 | 1.2026 | | Serpinb6a | 0.9247 | 0.7096 | 1.0084 | 1.6388 | | Sestd1
Sqcz | 1.1152
1.3298 | 1.8124
1.1584 | 1.4383
1.5357 | 1.2026
1.1701 | | Sh3pxd2b | 2.5218 | 2.3436 | 1.9574 | 2.2185 | | She | 0.9247 | 0.7096 | 1.0967 | 1.3587 | | Shprh | 1.2238 | 0.8565 | 2.1092 | 1.4197 | | Shroom3 | 1.1991 | 1.4441 | 1.2328 | 1.5056 | | Siglece
Sik3 | 1.145
1.6009 | 1.2429
1.2165 | 0.9565
1.2328 | 0.8291
1.1349 | | Sipa1l2 | 1.3659 | 1.2165 | 1.8857 | 1.1349 | | Skil | 1.1729 | 1.2165 | 1.4197 | 1.2026 | | Slc13a3 | 1.3659 | 1.2165 | 1.4733 | 1.4003 | | Slc13a4 | 1.8183 | 1.7689 | 1.722 | 1.2611 | | Slc13a5
Slc16a10 | 1.1152
1.2238 | 1.1262
1.1885 | 0.8974
1.4383 | 1.2611
1.2876 | | Slc16a13 | 1.5357 | 0.9147 | 0.6482 | 1.7495 | | Slc16a6 | 1.5695 | 1.3136 | 1.9289 | 1.1349 | | Slc17a2 | 1.2472 | 1.3551 | 1.6719 | 1.1701 | | Slc17a8 | 0.5772 | 1.0534 | 1.0084 | 1.4197 | | Slc1a5
Slc24a5 | 0.874
1.5357 | 0.8565
1.2678 | 1.2328
1.3587 | 1.1349
1.5639 | | Slc25a19 | 1.1152 | 0.7096 | 1.2611 | 1.6152 | | Slc25a22 | 1.2904 | 1.0534 | 1.4003 | 1.3126 | | Slc25a27 | 1.4728 | 1.0534 | 1.1349 | 1.2026 | | Slc30a1 | 0.8166 | 0.7892 | 1.0084 | 1.7754 | | Slc30a8 | 1.0111 | 1.0913 | 1.0548 | 1.0084 | | Slc35d3
Slc35e3 | 0.874
1.0486 | 0.966
1.6942 | 1.7754
0.6482 | 1.7124
1.4897 | | Slc35f5 | 1.2238 | 1.1584 | 1.4383 | 1.5209 | | Slc39a3 | 0.2846 | 1.7764 | 1.8154 | 2.0284 | | Slc39a8 | 1.0486 | 0.8565 | 1.0548 | 0.8974 | | Slc39a9 | 0.874 | 1.4899 | 1.1701 | 1.3126 | | Slc44a3 | 0.5772 | 1.4106 | 1.1349 | 1.4383 | |---------------------|------------------|------------------|------------------|------------------| | Slc4a3 | 1.0832 | 1.0119 | 0.748 | 1.38 | | Slc4a4 | 1.3106 | 0.8565 | 1.5903 | 0.6482 | | Slc4a7 | 0.874 | 1.0119 | 0.9565 | 1.4562 | | Slc6a15
Slc7a6os | 1.5238
1.4861 | 1.5811
1.4752 | 1.6029
1.2876 | 1.6272
1.3126 | | Slc7a7 | 1.1729 | 1.0534 | 1.2611 | 1.2026 | | Slitrk5 | 0.9247 | 0.612 | 1.1349 | 1.4733 | | Slk | 2.1191 | 1.7912 | 0.8291 | 1.4383 | | Smarcc2
Smc1b | 1.0111 | 0.966
1.2678 | 1.0084 | 1.0967 | | Smg6 | 0.97
1.2238 | 1.2429 | 1.5639
1.0967 | 1.0967
1.4003 | | Snrpd2 | 2.9675 | 2.8675 | 3.0587 | 2.5586 | | Sntn | 0.9247 | 0.9147 | 0.9565 | 1.5357 | | Snx29 | 1.5585 | 0.9147 | 1.2026 | 1.2328 | | Soat1
Sod1 | 1.415
1.6009 | 1.2913
1.604 | 1.7314
1.7918 | 1.2876
1.1349 | | Sort1 | 1.1991 | 0.8565 | 0.8974 | 1.1349 | | Sowaha | 1.2904 | 1.4106 | 1.8449 | 1.2026 | | Sox6 | 1.1991 | 0.7892 | 0.8974 | 1.0084 | | Sp2 | 2.1921 | 1.3744 | 0.748 | 2.0685 | | Spata1 | 1.0111 | 1.0913 | 0.5184 | 1.8449 | | Spata21
Spatc1 | 1.8421
1.1729 | 1.3929
1.0913 | 0.5184
1.5357 | 1.6501
1.4383 | | Spc24 | 1.1152 | 1.0913 | 0.748 | 1.3363 | | Speer3 | 0.7505 | 1.2678 | 1.3587 | 0.9565 | | Spinkl | 1.7525 | 1.5042 | 1.3587 | 1.7754 | | Spna2 | 1.3482 | 0.7892 | 1.2611 | 1.0548 | | Spock1
Spred3 | 2.1682
1.926 | 2.266
1.3929 | 2.6226
1.9289 | 1.9736
1.8304 | | Srgap2 | 0.9247 | 1.0913 | 0.8291 | 1.1701 | | Srp19 | 1.7154 | 1.5313 | 1.0967 | 1.9892 | | Srpk2 | 0.7505 | 0.966 | 1.2876 | 1.0967 | | Srsf2 | 1.2693 | 1.0119 | 1.4003 | 0.8974 | | Ssr1
St3gal1 | 1.0486
1.0832 | 1.0913
1.0119 | 0.748
0.6482 | 1.5639
1.7124 | | St6galnac3 | 1.5116 | 1.0119 | 1.1701 | 0.8291 | | St7 | 1.5907 | 1.3744 | 0.6482 | 0.748 | | Steap3 | 0.8166 | 0.612 | 1.3126 | 1.5773 | | Stim2 | 0.874 | 1.1262 | 1.4383 | 0.9565 | | Stoml3
Stx17 | 1.0111
0.9247 | 1.6362
0.612 | 0.8291
1.2328 | 1.2876
1.2876 | | Sub1 | 1.0111 | 1.5042 | 1.0548 | 0.9565 | | Sun2 | 1.2472 | 0.7096 | 0.6482 | 1.7669 | | Sycn | 1.145 | 1.2678 | 0.6482 | 1.7405 | | Syne2 | 1.0832 | 0.8565 | 1.0548 | 1.2328 | | Syt12
Tab2 | 1.2238
1.1729 | 0.966
1.1262 | 1.4733
1.4197 | 1.1349
1.0967 | | Tada2a | 1.7665 | 1.615 | 1.8229 | 1.2611 | | Taf1b | 1.1152 | 1.2678 | 1.9348 | 1.5357 | | Taf1d | 0.9247 | 1.0119 | 0.748 | 0.9565 | | Taf8 |
1.2693 | 1.1262 | 0.8974 | 1.1701 | | Tanc2
Tas2r139 | 1.0832
1.2693 | 1.2913
0.7096 | 1.4733
0.6482 | 1.1349
1.5773 | | Tbc1d30 | 0.9247 | 0.9147 | 1.5209 | 1.0548 | | Tcea3 | 1.4302 | 1.2913 | 1.6926 | 1.38 | | Tceb2 | 0.6724 | 1.1584 | 0.8291 | 1.38 | | Tchhl1 | 0.97 | 0.966 | 0.9565 | 1.4383 | | Tctex1d2
Tead2 | 1.3829
1.1991 | 0.8565
1.1584 | 0.8974
0.8291 | 1.1701
1.6611 | | Tekt4 | 1.4991 | 1.5927 | 1.852 | 1.38 | | Tex11 | 1.3106 | 1.3744 | 1.1701 | 1.5773 | | Tex21 | 1.6996 | 0.8565 | 1.5056 | 0.9565 | | Tex9 | 1.145 | 1.2165 | 0.9565 | 1.3363 | | Thada
Thnsl2 | 1.2472
1.4302 | 1.1584
1.4752 | 1.8304
1.5056 | 1.8377
1.8589 | | Thsd1 | 1.0832 | 0.7892 | 0.748 | 1.6029 | | Tigd2 | 1.2472 | 1.0119 | 1.3363 | 1.1349 | | Timd2 | 0.5772 | 1.0119 | 1.1349 | 1.4003 | | Tiparp | 0.97 | 1.2429 | 0.8974 | 1.2876 | | Tiprl
Tjap1 | 0.97
1.1152 | 1.0119
1.1885 | 0.6482
0.5184 | 1.4003
1.1349 | | Tle1 | 1.7866 | 1.5811 | 2.4386 | 1.7314 | | Tlr13 | 1.3298 | 1.1262 | 1.7405 | 1.4003 | | Tmc3 | 0.97 | 1.0534 | 1.3363 | 1.55 | | Tmc4 | 0.6724 | 1.0913 | 0.8974 | 1.9629 | | Tmco5
Tmem11 | 0.97
1.7932 | 0.966
1.0119 | 1.2328
1.5209 | 1.0548
0.5184 | | Tmem127 | 0.874 | 1.3136 | 1.3363 | 1.6824 | | Tmem129 | 0.6724 | 1.1885 | 0.748 | 1.2876 | | Tmem139 | 0.97 | 0.9147 | 1.4562 | 1.4197 | | Tmem144 | 0.9247 | 1.7764 | 1.2611 | 0.8291 | | Tmem14a
Tmem150b | 1.3829
1.0111 | 1.5811
1.0913 | 1.6388
1.4733 | 2.435
1.1701 | | Tmem150c | 1.1152 | 1.0119 | 0.9565 | 0.8974 | | Tmem167 | 0.874 | 0.966 | 1.0084 | 1.55 | | Tmem229a | 2.2268 | 2.0776 | 2.5301 | 2.1534 | | Tmem29
Tmem44 | 1.0111
0.6724 | 1.0119
1.0119 | 1.2328
1.1349 | 1.2026 | |---|------------------|------------------|------------------|------------------------------| | Tmem55a | 1.1729 | 1.8124 | 1.8377 | 1.38 | | Tmem56 | 2.1627 | 2.0301 | 2.0893 | 1.5903 | | Tmem89 | 1.0486 | 1.1584 | 1.1349 | 1.3587 | | Tmem93 | 0.4551 | 1.7119 | 1.4383 | 1.0084 | | Tmod3
Tmprss12 | 0.8166
0.9247 | 1.9162
1.8192 | 1.3587
0.5184 | 1.5773
1.6272 | | Tmprss rz
Tmtc1 | 0.9247 | 1.1262 | 1.3126 | 1.0272 | | Tmx2 | 2.5476 | 2.517 | 2.4512 | 1.9048 | | Tnfaip8l1 | 0.874 | 1.8455 | 1.3587 | 1.1701 | | Tnik | 1.0111 | 0.7096 | 0.8974 | 1.3363 | | Tnni1 | 1.4728 | 0.9147 | 0.8291 | 1.3126 | | Tnp2 | 1.1991 | 0.7892 | 0.9565 | 1.2611 | | Tns1
Tom1l2 | 0.9247 | 1.1262
1.0534 | 0.8291 | 1.3363 | | Top2a | 1.0832
0.97 | 0.8565 | 1.0084
0.9565 | 1.0084
1.4197 | | Topors | 1.1729 | 0.9147 | 1.4562 | 1.0967 | | Грd52 | 1.6748 | 0.8565 | 1.0084 | 0.9565 | | rhr =================================== | 1.415 | 1.4599 | 1.6719 | 1.3587 | | Fril | 2.0043 | 1.6257 | 1.8154 | 1.4383 | | Trim15 | 1.0832 | 1.2165 | 1.2026 | 1.1349 | | Frim31 | 1.0486 | 1.0119 | 1.5209 | 0.748 | | Trim9 | 1.8421 | 0.9147 | 1.2328 | 1.38 | | Trpv6
Tsku | 1.0111
1.9307 | 0.8565
1.9816 | 0.8291
2.1053 | 1.1349 | | rsip | 0.874 | 1.8455 | 1.1701 | 0.8974 | | Tspan32 | 1,7453 | 1.0534 | 0.8974 | 1.2611 | | Tssk1 | 1.5695 | 0.612 | 0.6482 | 1.55 | | Γtbk2 | 1.0486 | 0.7892 | 0.8291 | 1.5357 | | Γtc7b | 1.3659 | 1.1262 | 1.0084 | 1.1349 | | Γtll1 | 1.0832 | 1.2429 | 1.1349 | 1.0548 | | Ttll5 | 1.1729 | 1.3136 | 1.4003 | 1.1349 | | Ttn | 0.874 | 1.0913 | 1.4733 | 1.38 | | Txndc3
Txnl4a | 1.0486
0.7505 | 1.3348 | 0.5184
1.2328 | 1.8377 | | Jap1I1 | 1.415 | 1.6662 | 2.3906 | 1.722 | | Jba3 | 1.145 | 0.966 | 1.3126 | 1.6824 | | Jba5 | 1.5238 | 1.2913 | 1.6926 | 1.3126 | | Jbe2c | 1.0111 | 0.7892 | 1.0548 | 1.5357 | | Jbe2cbp | 1.9065 | 1.615 | 1.0548 | 1.4562 | | Jblcp1 | 1.5802 | 1.2678 | 1.0967 | 1.4733 | | Jbr2 | 2.0568 | 1.1262 | 1.2611 | 1.0548 | | Jckl1 | 0.5772 | 1.1885 | 1.2611 | 1.2026 | | Jmodl1
Jnc5a | 0.97
0.874 | 0.966
1.3551 | 1.0084
0.5184 | 0.9565
1.6152 | | Jgcrfs1 | 1.3106 | 1.2165 | 1.6152 | 1.2611 | | Urb1 | 1.3482 | 0.3077 | 1.2026 | 1.7026 | | Jros | 1.5357 | 1.0119 | 0.8291 | 1.1349 | | Jsp20 | 1.1152 | 1.0534 | 1.2026 | 1.0548 | | Jsp47 | 0.7505 | 1.1262 | 0.9565 | 0.8974 | | Utp20 | 1.145 | 0.966 | 0.8974 | 0.748 | | Jtrn | 2.6885 | 2.5264 | 2.9337 | 2.3297 | | V1re3
Vamp5 | 0.9247
1.4861 | 1.6564
0.7892 | 1.0548
1.1349 | 0.8974
1.0084 | | Vdr | 1.0832 | 0.7692 | 0.9565 | 1.1349 | | Vmn1r148 | 1.5802 | 0.8565 | 1.1349 | 1.170 | | Vmn1r222 | 1.2472 | 0.486 | 1.3126 | 1.7669 | | /mn1r235 | 1.3829 | 0.7096 | 0.6482 | 1.3126 | | /mn1r58 | 1.5473 | 1.4277 | 1.5056 | 1.4003 | | /mn1r73 | 0.4551 | 1.5927 | 1.2026 | 1.3587 | | /mn2r66 | 1.415 | 1.5042 | 1.6152 | 1.7918 | | /mn2r81
/mn2r89 | 2.1627 | 0.7892 | 1.0548
0.748 | 1.0548
1.4003 | | /nin2169
/preb3 | 1.7932
1.1991 | 0.9147
1.1885 | 1.7314 | 1.261 | | /ps13a | 1.3659 | 0.8565 | 0.9565 | 1.0084 | | /ps13b | 1.2693 | 1.518 | 1.1349 | 1.170 | | /ps29 | 1.3106 | 1.2429 | 1.0967 | 1.6029 | | /ps4b | 2.5206 | 2.6731 | 3.1482 | 2.431 | | /wa5b2 | 1.0486 | 1.1584 | 1.0967 | 1.0548 | | Vbp5 | 0.8166 | 1.0119 | 1.2328 | 1.0084 | | Vdr17 | 1.8421 | 1.8326 | 2.3906 | 1.7918 | | Vdr67
Vdr7 | 1.0486 | 2.2333 | 1.0084 | 1.0548 | | Var7
Vdr75 | 1.2238
2.3932 | 1.5569
2.312 | 0.748
2.7231 | 1.008 ⁴
2.177; | | Whamm | 0.7505 | 1.0534 | 0.8291 | 1.0084 | | Nnt16 | 0.97 | 1.0913 | 1.4562 | 1.3587 | | Vnt3 | 0.5772 | 0.486 | 1.9519 | 2.0974 | | Vtap | 1.3659 | 1.6564 | 1.0548 | 1.740 | | (bp1 | 1.2904 | 1.4752 | 0.748 | 1.650 | | (M_110945 | 0.8166 | 0.9147 | 1.0548 | 1.3126 | | (M_111036 | 1.3829 | 1.5443 | 2.0467 | 1.7669 | | KM_111056 | 1.1152 | 1.0913 | 1.1701 | 0.829 | | KM_111144 | 1.7665 | 1.2678 | 1.8449 | 1.3587 | | | | | | | | XM_111148
XM_111149 | 1.3482
1.3992 | 0.486
1.2429 | 1.1701
1.5903 | 1.170′
1.170′ | | XM_111296 | 1.3298 | 0.7892 | 0.748 | 1.1349 | |------------------------|------------------|------------------|------------------|------------------| | XM_111450 | 1.6301 | 1.8326 | 0.8291 | 1.1349 | | XM_111466 | 1.1991 | 0.7892 | 1.4562 | 0.8291 | | XM_111755 | 0.4551 | 2.209 | 1.4897 | 1.5357 | | XM_111840 | 2.6387 | 2.3934 | 1.7998 | 2.6093 | | XM_112122
XM_112187 | 1.5357
1.0832 | 1.0534
1.1584 | 0.748
1.5639 | 1.4383 | | XM_112199 | 0.9247 | 0.8565 | 0.8974 | 1.0084
1.6272 | | XM_112199
XM_112296 | 1.1991 | 1.3929 | 0.5184 | 1.4897 | | XM_112334 | 1.2472 | 1.0534 | 0.9565 | 0.6482 | | XM_112346 | 1.6394 | 1.3136 | 1.6926 | 1.4897 | | XM_112375 | 0.97 | 1.2913 | 1.1349 | 1.0548 | | XM_112379 | 1,3482 | 1.0913 | 1.0967 | 0.5184 | | XM_112423 | 0.97 | 0.7892 | 0.8291 | 1.2026 | | XM 112478 | 1.145 | 1.0534 | 0.6482 | 1.8792 | | XM_112628 | 1.8591 | 1.0119 | 1.2328 | 1.1701 | | XM_112716 | 1.145 | 1.1885 | 0.6482 | 1.3587 | | XM_112792 | 1.1152 | 1.1584 | 1.7583 | 1.6029 | | XM_126147 | 0.4551 | 0.612 | 1.5639 | 1.7837 | | XM_126924 | 0.97 | 1.604 | 0.8291 | 1.3126 | | XM_127451 | 1.7525 | 1.6757 | 2.4752 | 1.7918 | | XM_129150 | 1.1152 | 0.7892 | 1.2876 | 0.9565 | | XM_129740 | 0.8166 | 0.7096 | 1.3126 | 1.7124 | | XM_129957 | 2.0707 | 0.9147 | 1.1349 | 1.7405 | | XM_131520 | 1.2693 | 0.9147 | 0.6482 | 1.4897 | | XM_132758 | 1.0111 | 1.0913 | 0.748 | 1.5773 | | XM_132869 | 0.5772 | 1.0534 | 1.2611 | 1.2328 | | XM_133116 | 1.0486 | 0.612 | 0.8974 | 1.5209 | | XM_133516 | 1.1729 | 1.518 | 0.8974 | 1.0548 | | XM_134273 | 1.2904 | 1.2913 | 1.0548 | 1.0548 | | XM_135472 | 1.2693 | 1.0913 | 1.5209 | 1.0548 | | XM_136298 | 1.3659 | 1.2913 | 0.9565 | 1.9736 | | XM_136367 | 0.7505 | 2.1685 | 1.3363 | 1.7495 | | XM_136507 | 2.1371 | 1.5313 | 1.5056 | 1.3126 | | XM_136558 | 1.8421 | 0.7892 | 0.8974 | 1.2026 | | XM_136599 | 1.2472 | 1.9721 | 1.2876 | 1.0548 | | XM_136728 | 1.9492 | 1.2165 | 0.748 | 2.4105 | | XM_136797 | 1.6575 | 0.9147 | 1.0548 | 1.5639 | | XM_136839 | 1.5357 | 1.2913 | 0.8291 | 0.9565 | | XM_136848 | 0.5772 | 1.518 | 1.3587 | 1.2026 | | XM_136883 | 0.7505 | 0.966 | 0.9565 | 1.2876 | | XM_136884 | 1.0832 | 1.1262 | 0.6482 | 0.8974 | | XM_136902 | 1.2472 | 1.0119 | 1.2611 | 1.0548 | | XM_136930 | 1.0111 | 0.966 | 1.4733 | 1.2026 | | XM_136936 | 0.8166 | 1.0913 | 0.8291 | 0.9565 | | XM_136961
XM_136962 | 1.8059
1.2238 | 0.7096 | 1.3587
1.6029 | 1.4383
1.3126 | | XM_136963 | 1.0832 | 1.0119
1.0534 | 1.2026 | 1.1349 | | XM_137008 | 1.3106 | 0.9147 | 0.6482 | 1.5639 | | XM_137089 | 0.874 | 1.0119 | 1.0084 | 1.6272 | | XM_137005
XM_137095 | 0.97 | 0.8565 | 1.2611 | 1.0967 | | XM_137303 | 0.874 | 0.7892 | 0.9565 | 1.6611 | | XM_137336 | 1.7595 | 1.3744 | 1.4897 | 1.4897 | | XM_137424 | 1.5238 | 2.1561 | 0.8974 | 0.8974 | | XM_137575 | 1.3992 | 1.1262 | 1.1349 | 1.2328 | | XM_137576 | 1.7306 | 1.3348 | 1.6152 | 1.1701 | | XM 137597 | 1.2693 | 0.7892 | 0.6482 | 1.2328 | | XM 137860 | 2.3396 | 2.3207 | 2.2588 | 1.923 | | XM 137891 | 1.1152 | 1.0119 | 0.5184 | 1.0967 | | XM_138065 | 0.9247 | 1.0119 | 0.9565 | 1.2026 | | XM_138094 | 0.874 | 1.0534 | 0.9565 | 1.0967 | | XM_138105 | 1.8646 | 0.8565 | 1.38 | 1.1701 | | XM_138114 | 0.97 | 1.2165 | 0.8291 | 1.5209 | | XM_138163 | 0.8166 | 0.8565 | 1.9683 | 2.0934 | | XM_138179 | 0.97 | 0.8565 | 0.9565 | 1.1701 | | XM_138187 | 1.0111 | 0.8565 | 1.2876 | 1.5056 | | XM_138194 | 1.8421 | 1.1584 | 0.9565 | 1.2328 | | XM_138345 | 0.7505 | 1.0913 | 1.2026 | 1.7405 | | XM_138441 | 1.4991 | 1.0534 | 0.5184 | 1.4897 | | XM_138582 | 0.97 | 1.3136 | 0.5184 | 1.4733 | | XM_138614 | 1.2904 | 0.8565 | 1.3363 | 1.0084 | | XM_138615 | 1.3659 | 1.2429 | 1.7837 | 1.3126 | | XM_138638 | 1.145 | 0.8565 | 1.0084 | 1.1701 | | XM_138748 | 0.97 | 0.966 | 1.2328 | 1.3587 | | XM_138770 | 1.4449 | 1.0119 | 0.6482 | 1.5903 | | XM_138775 | 1.0111 | 1.7839 | 1.6824 | 1.2876 | | XM_138785 | 1.1152 | 0.7096 | 1.4197 | 1.1349 | | XM_138823 | 1.3659 | 0.966 | 0.5184 | 1.8792 | | XM_138885 | 0.97 | 0.8565 | 1.2328 | 1.5357 | | XM_138909 | 1.5238 | 0.966 | 0.8974 | 0.9565 | | XM_138910
XM_138015 | 1.145 | 0.9147 | 1.0084 | 0.8291 | | XM_138915 |
1.3659 | 1.0534 | 0.748 | 1.1701 | | XM_138950 | 1.6662 | 0.612 | 1.2026 | 0.9565 | | XM_139138
XM_139235 | 0.8166
0.8166 | 0.966
1.0119 | 1.1701
0.9565 | 1.6611
1.7314 | | XM_139235
XM_139265 | 1.2238 | 1.0119 | 0.6482 | 1.7314 | | XM_139330 | 0.7505 | 0.9147 | 1.0548 | 1.6501 | | 100000 | 3.7000 | 0.0141 | 1.0010 | 1.0001 | | XM_139357 | 0.97 | 0.7892 | 0.8291 | 1.2876 | |--|-------------------------|------------------|-----------------|------------------| | XM_139386 | 0.7505 | 0.8565 | 1.2876 | 1.2026 | | XM_139390 | 0.7505 | 1.0534 | 1.2026 | 1.1701 | | XM_139405 | 1.6575 | 1.6257 | 1.2876 | 1.7583 | | XM_139419 | 0.97 | 0.8565 | 1.4383 | 1.5056 | | XM_139487 | 1.0486 | 1.1262 | 1.55 | 1.3587 | | XM_139635 | 0.2846 | 1.6564 | 1.2328 | 1.2876 | | XM_139732 | 0.7505 | 1.1584 | 1.2328 | 1.0548 | | XM_139770 | 1.6301 | 0.966 | 0.6482 | 1.7998 | | XM_139792 | 1.0111 | 0.966 | 1.3363 | 1.5357 | | XM_139825 | 0.9247 | 1.3929 | 1.55 | 1.1701 | | XM_139878 | 0.8166 | 1.0913 | 1.0548 | 0.8974 | | XM_139952 | 1.2238 | 1.2429 | 0.5184 | 1.5056 | | XM_139988 | 1.8861 | 0.7096 | 1.3587 | 1.0084 | | XM_140059 | 1.6485 | 0.612 | 0.8291 | 1,4562 | | XM 140060 | 0.9247 | 1.3551 | 1.0967 | 0.8974 | | XM_140071 | 1.1152 | 1.0913 | 1.4897 | 1.2611 | | XM_140079 | 2.1843 | 1.8581 | 2.1839 | 1,7314 | | XM 140083 | 1.0832 | 0.9147 | 1.0548 | 1.38 | | XM_140137 | 1.1991 | 1.1584 | 0.5184 | 1.0548 | | XM_140137
XM_140175 | 2.0841 | 1.7983 | 2.2931 | 1.6388 | | | | | | | | XM_140228 | 1.2904 | 1.2429 | 1.5056 | 1.2328 | | XM_140315 | 1.0486 | 1.5443 | 1.1349 | 1.1349 | | XM_140330 | 1.4991 | 0.7096 | 1.1349 | 1.8725 | | XM_140422 | 0.7505 | 0.8565 | 1.1701 | 1.3126 | | XM_140523 | 2.046 | 1.9374 | 1.9683 | 1.4897 | | XM_140530 | 1.4728 | 1.0534 | 1.3363 | 0.5184 | | XM_140531 | 2.6958 | 2.602 | 3.063 | 2.4852 | | XM_140606 | 0.874 | 1.0119 | 0.748 | 1.1349 | | XM_140687 | 1.2472 | 1.6257 | 1.1701 | 1.5903 | | XM_140698 | 1.1729 | 1.8054 | 0.9565 | 1.4003 | | XM_140790 | 1.7231 | 1.2913 | 1.7314 | 1.2328 | | XM_140826 | 1.3106 | 1.5042 | 0.8291 | 1.2876 | | XM_141006 | 1.7306 | 1.0119 | 1.2611 | 0.5184 | | XM 141013 | 1.738 | 1.3744 | 1.8304 | 1.7405 | | XM_141156 | 1.5585 | 1.6464 | 1.7124 | 1.4562 | | XM_141313 | 1.3298 | 1.3136 | 1.2026 | 1.1349 | | XM_141706 | 0.874 | 0.8565 | 1.3126 | 1,2328 | | XM_141815 | 1.0832 | 1.0119 | 1.2611 | 0.748 | | XM 141982 | 1.0486 | 0.966 | 0.748 | 0.9565 | | XM 142009 | 1.2904 | 1.2165 | 1.5639 | 1.3363 | | XM_142021 | 1.145 | 1.1262 | 1.0084 | 1.2026 | | XM_142024 | 1.5695 | 1.7032 | 1.9289 | 1.55 | | XM_142071 | 0.97 | 1.0534 | 1.2026 | 0.8974 | | XM_142071
XM_142085 | 2.2196 | 2.1467 | 2.4668 | 2.0642 | | XM_142086 | 1.8363 | 1.9526 | 1.8922 | 1.6272 | | | | | | | | XM_142114 | 0.9247 | 0.966
1.7205 | 0.748 | 1.1701 | | XM_142190 | 2.0874 | | | 1.7026 | | XM_142235 | 1.2693 | 0.612 | 0.9565 | 1.1701 | | XM_142285 | 1.0111 | 1.4277 | 0.8974 | 1.3587 | | XM_142304 | 2.0043 | 1.8939 | 0.3323 | 1.1349 | | XM_142373 | 0.7505 | 1.518 | 1.5209 | 1.8922 | | XM_142403 | 1.3659 | 1.3348 | 1.2026 | 0.8974 | | XM_142446 | 1.1729 | 1.2165 | 1.1349 | 1.0967 | | XM_142454 | 1.2904 | 0.612 | 0.8291 | 1.6824 | | XM_142570 | 0.6724 | 0.7892 | 1.1349 | 1.8077 | | XM_142587 | 0.7505 | 1.1584 | 1.6388 | 0.8974 | | XM_142846 | 1.5585 | 1.3929 | 1.7669 | 1.38 | | XM_142855 | 1.1729 | 0.8565 | 0.6482 | 1.3587 | | XM_142931 | 1.2693 | 1.1885 | 1.1701 | 1.2026 | | XM_143027 | 1.0111 | 1.1885 | 1.2026 | 1.0548 | | XM_143109 | 1.2472 | 1.2678 | 1.2611 | 1.0084 | | XM_143117 | 1.0832 | 1.1885 | 1.1349 | 0.9565 | | XM_143132 | 1.4449 | 1.0534 | 0.6482 | 1.4897 | | XM_143147 | 0.874 | 1.1262 | 0.9565 | 1.0967 | | XM_143169 | 1.1729 | 0.7892 | 0.748 | 1.3363 | | XM_143273 | 1.3298 | 1.7119 | 1.0548 | 1.6611 | | XM_143274 | 0.8166 | 1.0119 | 0.748 | 1.2876 | | XM_143335 | 2.4636 | 3.0716 | 1.722 | 2.313 | | XM_143353 | 1.2238 | 1.0119 | 1.0548 | 1.1701 | | XM_143354 | 1.1729 | 1.0913 | 0.9565 | 1.1701 | | XM_143379 | 1.729 | 1.615 | | 1.1349 | | | | | 0.3323 | | | XM_143384 | 0.97 | 1.4441 | 1.0548 | 1.4197 | | XM_143485
XM_143516 | 0.5772 | 0.9147 | 1.0967 | 1.3587 | | XM_143516 | 0.9247 | 0.8565 | 1.2876 | 1.0967 | | XM_143644 | 0.4551 | 1.4441 | 0.8974 | 1.7124 | | XM_143708 | 2.0083 | 1.9999 | 2.2642 | 2.0422 | | XM_143716 | 1.5802 | 0.7096 | 1.0548 | 1.4383 | | XM_143850 | 1.738 | 1.1885 | 1.8077 | 1.3363 | | VIA 440000 | 1.3298 | 1.1885 | 1.1349 | 1.0548 | | XM_143860 | 0.6724 | 1.518 | 1.7754 | 1.6029 | | XM_143975 | | | 4.0540 | 1.2611 | | | 0.97 | 0.966 | 1.0548 | 1.2011 | | XM_143975 | | 0.966
1.0119 | 0.748 | 1.1349 | | XM_143975
XM_144011 | 0.97 | | | | | XM_143975
XM_144011
XM_144108 | 0.97
0.874 | 1.0119 | 0.748
1.4562 | 1.1349 | | XM_143975
XM_144011
XM_144108
XM_144231 | 0.97
0.874
1.1729 | 1.0119
1.0119 | 0.748 | 1.1349
1.0548 | | XM_144489 | 0.9247 | 0.8565 | 0.8291 | 1.134 | |------------------------|------------------|------------------|------------------|----------------| | XM_144539 | 1.145 | 1.2678 | 1.0967 | 1.134 | | XM_144659 | 1.0111 | 0.7096 | 0.9565 | 1.400 | | XM_144701 | 0.9247 | 0.8565 | 0.8291 | 1.202 | | XM_144774 | 0.97 | 0.9147 | 1.2026 | 1.170 | | XM_145066 | 0.8166 | 1.0119 | 1.5056 | 1.358 | | XM_145184 | 1.3482 | 1.3136 | 1.3126 | 0.897 | | XM_145185
XM_145256 | 1.0111
1.0486 | 1.1584 | 0.6482 | 1.590 | | XM_145282 | 1.0111 | 1.6257
1.1885 | 1.2328
0.8291 | 0.648
0.956 | | XM_145262
XM_145307 | 1.2472 | 1.5443 | 0.8974 | 0.897 | | XM_145430 | 1.5585 | 1.5569 | 2.0141 | 1.520 | | KM_145553 | 1.1729 | 1.2165 | 1.2026 | 1.799 | | KM_145608 | 1.4991 | 1.0913 | 1.0548 | 0.648 | | KM 145635 | 0.7505 | 0.8565 | 1.0084 | 1.5 | | KM_145668 | 0.9247 | 0.966 | 1.2026 | 1.577 | | KM_145676 | 1.145 | 1.1885 | 1.0967 | 1.261 | | KM_145691 | 1.145 | 0.9147 | 0.9565 | 0.829 | | (M_145805 | 0.7505 | 1.4599 | 0.5184 | 1.590 | | (M_145886 | 0.874 | 1.9576 | 1.4383 | 1.054 | | (M_145917 | 0.874 | 1.0119 | 1.0084 | 0.897 | | KM_146114 | 1.0111 | 1.0119 | 1.4003 | 1.096 | | (M_146126 | 1.1152 | 1.0119 | 1.3587 | 1.336 | | (M_146477 | 1.4728 | 1.0913 | 1.2026 | 1.638 | | (M_146491 | 1.0111 | 1.9862 | 1.5056 | 1.358 | | (M_146519 | 1.4449 | 0.9147 | 1.2026 | 0.897 | | (M_146561 | 1.2472 | 1.2165 | 1.5639 | 1.170 | | (M_146640 | 1.3992 | 1.3348 | 1.0548 | 1.5 | | M_146661 | 1.415 | 1.0913 | 1.3587 | 0.897 | | (M_146743 | 1.738 | 1.3551 | 1.5056 | 0.956 | | M_146765 | 1.6575 | 0.486 | 1.4733 | 1.473 | | (M_146929 | 1.7306 | 1.2429 | 1.38 | 1.682 | | (M_146987 | 1.6108 | 1.6942 | 1.2611 | 0.74 | | (M_147082 | 1.1991 | 1.1584 | 1.0967 | 0.518 | | (M_147444 | 0.97 | 0.966 | 1.1701 | 1.505 | | (M_147594 | 1.8304 | 1.518
1.1885 | 1.8922 | 1.577
0.74 | | (M_147866
(M_147945 | 1.1729
1.0111 | 0.966 | 1.2328
1.0084 | 0.74 | | (M_148441 | 1.0111 | 1.3929 | 1.3126 | 1.740 | | M_148582 | 0.7505 | 1.2165 | 0.748 | 1.232 | | (M_148994 | 1.1991 | 1.1584 | 1,4562 | 1.650 | | (M_149327 | 1.0111 | 0.7892 | 1.1349 | 1.134 | | (M_149413 | 0.7505 | 1.0534 | 1.1349 | 1.170 | | KM_149430 | 1.2238 | 1.2913 | 0.5184 | 1.054 | | (M_149849 | 1.8964 | 1.0119 | 1.0548 | 1.3 | | KM_150596 | 1.2472 | 1.8259 | 1.0548 | 1.202 | | (M 150759 | 1.3482 | 1.9374 | 0.6482 | 0.956 | | (M_150908 | 1.7076 | 1.1262 | 0.748 | 1.170 | | (M_151001 | 1.0832 | 1.2678 | 1.4897 | 0.829 | | (M_151013 | 1.5473 | 1.2913 | 2.0092 | 1.563 | | (M_151252 | 0.8166 | 1.2165 | 1.0548 | 1.287 | | (M_151296 | 0.8166 | 1.1262 | 0.8291 | 1.766 | | (M_151379 | 1.6394 | 0.8565 | 1.2611 | 0.648 | | M_151435 | 1.9881 | 0.8565 | 0.8291 | 1.287 | | (M_151483 | 1.4991 | 1.4899 | 1.2876 | 1.615 | | (M_151529 | 0.97 | 0.8565 | 0.8974 | 1.312 | | M_151591 | 0.8166 | 1.518 | 1.0548 | 0.956 | | M_151612 | 1.1152 | 1.1885 | 1.0967 | 1.312 | | M_151641 | 0.8166 | 1.4277 | 1.3126 | 1.438 | | M_151718 | 0.9247 | 0.7892 | 0.9565 | 1.096 | | M_151736 | 1.2904 | 1.5443 | 1.0084 | 1.872 | | M_151750 | 1.5357 | 0.9147 | 1.1701 | 0.829 | | M_151813 | 1.5116 | 0.9147 | 0.748 | 1.287 | | M_151837
M_152066 | 1.3106 | 0.8565 | 0.9565
1.2328 | 1.170 | | M_152066
M_152111 | 0.8166
1.7231 | 1.5811
2.3164 | 1.7405 | 1.791
1.822 | | M_152111
M_152202 | 1.1152 | 1.4599 | 0.748 | 1.682 | | M_152313 | 1.2238 | 1.3929 | 0.6482 | 1.872 | | M_152438 | 1.0111 | 0.7892 | 1.3587 | 1.602 | | M_152483 | 1.2472 | 1.0119 | 1.38 | 1.505 | | M_152931 | 1.0486 | 0.612 | 1.0967 | 1.300 | | M_152972 | 0.874 | 0.966 | 0.748 | 1.638 | | M_152979 | 1.145 | 1.0119 | 1.0548 | 0.897 | | M_153060 | 0.6724 | 1.0534 | 0.8974 | 1.5 | | M_153086 | 1.8304 | 1.0119 | 0.748 | 1.232 | | M_153261 | 1.3992 | 1.3348 | 1.8857 | 1.438 | | M_153290 | 1.2472 | 1.3136 | 1.1701 | 0.829 | | M_153523 | 1.1729 | 1.2678 | 1.2876 | 1.951 | | M_153553 | 1.7231 | 1.1885 | 1.0548 | 1.92 | | M_153624 | 0.8166 | 1.0534 | 1.1349 | 1.615 | | M_153706 | 2.0707 | 0.8565 | 0.8291 | 1.358 | | M_153880 | 1.4302 | 1.0119 | 1.917 | 1.650 | | M_154031 | 1.4302 | 0.7892 | 1.2026 | 0.74 | | M_154068 | 1.3992 | 0.7096 | 0.8291 | 1.438 | | M_154198 | 1.7306 | 1.1584 | 1.0084 | 1.261 | | | 4.7505 | 4 4444 | 4 0004 | 0.74 | | (M_154308
(M_154346 | 1.7525
1.1152 | 1.4441
1.0534 | 1.0084
1.1701 | 0.74
1.134 | | XM_154382 | 1.3298 | 0.7892 | 1.0084 | 0.9565 | |------------------------|------------------|------------------|------------------|------------------| | XM_154395 | 1.1729 | 0.966 | 1.2026 | 1.2026 | | XM_154471 | 1.3482 | 1.0119 | 0.8974 | 0.829 | | XM_154560 | 1.6748 | 1.0534 | 0.6482 | 1.2328 | | XM_154612 | 0.97 | 1.3929 | 1.0548 | 0.829 | | XM_154614 | 1.0486 | 1.1885 | 1.5639 | 1.4562 | | XM_154625 | 2.1972 | 0.8565 | 1.3126
0.748 | 1.2876 | | XM_154760
XM_154791 | 1.0832
1.1729 | 0.9147
1.1584 | 1.55 | 1.0548
1.0967 | | XM_154791
XM_154905 | 1.1729 | 0.966 | 1.4003 | 1.6152 | | XM_154903
XM_154981 | 2.0638 | 1.5443 | 1.1701 | 1.0132 | | XM_155091 |
1.2904 | 1.6564 | 0.8291 | 1.3126 | | XM_155119 | 1.5357 | 1.4277 | 1.4003 | 1.0084 | | XM_155150 | 1.0111 | 1.0119 | 0.748 | 1.3126 | | XM_155219 | 1.6485 | 1.518 | 2.1773 | 1.4897 | | KM_155365 | 1.2472 | 1.9625 | 1.0967 | 1.2876 | | XM_155410 | 1.1991 | 0.966 | 1.2876 | 1.0084 | | KM_155415 | 1.2693 | 1.3348 | 1.7026 | 1.9406 | | KM_155416 | 0.9247 | 1.1885 | 0.748 | 1.7837 | | (M_155473 | 1.0832 | 0.9147 | 0.8974 | 1.3363 | | KM_155669 | 1.6996 | 1.7983 | 0.8974 | 0.6482 | | KM_155748 | 1.1152 | 0.9147
0.8565 | 0.9565
0.8291 | 1.2328
1.5209 | | KM_155800
KM_155805 | 0.97
0.874 | 1.0534 | 0.9565 | 0.8974 | | (M_155852 | 1.3298 | 1.3929 | 1.4562 | 1.852 | | (M_155874 | 1.0486 | 1.0119 | 1.3363 | 1.0967 | | (M_156151 | 1.1991 | 1.6662 | 1.5209 | 1.5056 | | (M 156163 | 1.5695 | 0.8565 | 0.9565 | 1.2876 | | (M_156207 | 0.9247 | 0.7892 | 0.9565 | 1.2328 | | (M_156229 | 0.9247 | 0.9147 | 0.8291 | 1.2026 | | (M_156387 | 1.3482 | 1.1584 | 0.8974 | 1.6388 | | (M_156407 | 1.4591 | 0.7096 | 1.2611 | 1.0967 | | (M_156459 | 1.7076 | 1.8519 | 2.3343 | 2.0974 | | (M_156469 | 1.0832 | 0.9147 | 0.8291 | 1.4003 | | (M_156499 | 1.0486 | 1.2429 | 1.7583 | 1.4562 | | (M_156541 | 1.0111 | 0.8565 | 1.2328 | 1.0548 | | (M_156577 | 1.6009 | 1.4752 | 1.7583 | 1.740 | | (M_156588 | 0.9247 | 0.9147 | 0.9565 | 1.0084 | | (M_156662 | 1.1152 | 1.4106 | 1.1701 | 1.2876 | | M_156683 | 0.6724 | 0.7096 | 1.2876 | 1.6152 | | (M_156755 | 1.3106 | 1.3551 | 1.5639 | 1.38 | | (M_156764
(M_156863 | 1.5473
0.7505 | 1.1262
1.2429 | 1.0967
1.38 | 0.9569
1.0084 | | M_157041 | 1.1152 | 1.4441 | 0.8291 | 1.650 | | (M_157245 | 1.0111 | 1.2678 | 1.1349 | 1.0967 | | (M_157275 | 1.8701 | 0.966 | 0.8291 | 1.1349 | | M 157299 | 1.2693 | 1.0913 | 1.4733 | 1.2026 | | (M_157374 | 1.1729 | 1.1262 | 1.5357 | 1.5209 | | (M_157391 | 1.145 | 1.2429 | 0.5184 | 1.0967 | | (M_157481 | 0.874 | 0.7892 | 1.3587 | 1.312 | | (M_157619 | 0.97 | 1.3744 | 0.8291 | 0.956 | | M_157639 | 1.3298 | 1.1885 | 1.0967 | 1.758 | | IM_157813 | 1.0486 | 1.2678 | 1.38 | 1.054 | | M_158270 | 1.2238 | 1.2165 | 1.2876 | 1.892 | | (M_158274 | 1.8701 | 1.6662 | 2.2829 | 1.91 | | M_158492 | 0.97 | 1.1885 | 1.2026 | 0.74 | | M_158570 | 1.3659 | 0.966 | 0.8974 | 1.287 | | M_158619 | 0.97 | 0.612 | 1.3363 | 1.5 | | M_158620 | 1.3829 | 1.0534 | 1.0967 | 1.054 | | M_158738 | 1.0832
1.3298 | 1.0119 | 0.8291
1.4897 | 1.563
1.202 | | M_158798
M_158839 | 1.6832 | 1.0913
1.7689 | 2.033 | 1.5 | | M_158953 | 0.8166 | 1.3744 | 1.2611 | 1.008 | | M 158958 | 2.4013 | 1.7032 | 2.2062 | 2.: | | M_158978 | 0.8166 | 1.3136 | 1.4003 | 0.829 | | M_158981 | 3.1247 | 3.0982 | 3.6981 | 3.154 | | M_158983 | 1.3106 | 1.1885 | 1.5639 | 1.287 | | M_159156 | 1.0486 | 0.9147 | 1.2876 | 1.170 | | M_159183 | 1.8421 | 0.7892 | 1.2876 | 1.627 | | M_159605 | 0.9247 | 1.1584 | 1.2026 | 1.008 | | M_159758 | 0.8166 | 1.3744 | 2.3106 | 0.956 | | M_159792 | 1.0832 | 1.2429 | 1.4897 | 1.438 | | M_159833 | 1.8304 | 1.5927 | 0.3323 | 1.008 | | M_159867 | 1.6108 | 2.0384 | 0.748 | 0.897 | | M_159932 | 1.6394 | 0.966 | 1.6388 | 1.096 | | (M_159952 | 1.5907 | 0.486 | 0.5184 | 1.783 | | M_159966 | 1.6108 | 1.3744 | 1.2876 | 0.829 | | M_160042 | 1.0832 | 1.0119 | 1.0967 | 1.232 | | M_160046 | 0.8166 | 0.966 | 1.2026 | 1.054 | | M_160200 | 0.6724 | 0.8565 | 1.4003 | 2.023 | | (M_160472
(M_160475 | 0.97 | 0.7892 | 0.8291
2.0376 | 1.170 | | (M_160475 | 1.7932
1.5116 | 1.9052
1.3551 | 1.6926 | 1.702
1.287 | | (M_160586 | 2.4732 | 2.373 | 2.8055 | 2.177 | | M_160652 | 1.0486 | 0.9147 | 0.6482 | 1.261 | | | | 1.4441 | 1.0084 | 1.287 | | (M_160654 | 1.1991 | | | | | KM_160928 | 1.145 | 1.0119 | 1.0548 | 0.897 | |------------------------|------------------|------------------|------------------|----------------------------| | KM_161086 | 1.5116 | 0.8565 | 1.4897 | 0.829 | | KM_161119
KM_161242 | 0.97
1.0832 | 0.7892
0.966 | 1.6029
0.9565 | 1.473
0.829 | | KM_161321 | 0.8166 | 0.7892 | 1.2328 | 1.520 | | KM_161495 | 0.6724 | 1.0534 | 1.5357 | 1.336 | | KM_161596 | 1.145 | 1.3551 | 0.5184 | 1.336 | | KM 161613 | 1.3106 | 1.4752 | 0.6482 | 1.807 | | KM_161705 | 1.0486 | 1.3348 | 0.748 | 1.312 | | KM_161711 | 0.9247 | 1.2165 | 0.5184 | 1.671 | | KM_161876 | 1.3106 | 1.2165 | 0.8974 | 1.473 | | KM_161886 | 0.5772 | 1.9374 | 1.38 | 1.5 | | KM_161922 | 0.874 | 1.2678 | 1.0967 | 1.232 | | KM_161977 | 1.0111 | 0.9147 | 1.0967 | 1.134 | | KM_161990 | 1.6485 | 0.7892 | 0.8974 | 1.096 | | (M_162021 | 1.0832 | 0.966 | 1.0548 | 1.134 | | (M_162034 | 1.7665 | 1.7912 | 0.5184 | 1.336 | | (M_162120 | 0.8166 | 0.8565 | 1.0548 | 1.287 | | (M_162123 | 1.2693 | 1.2165 | 0.8974 | 1.008 | | (M_162180 | 0.6724 | 0.486 | 1.3587 | 1.766 | | M_162214 | 1.0111 | 1.3744 | 1.4197 | 1.758 | | (M_162216 | 0.874 | 1.0119 | 0.8974 | 0.897 | | M_162234 | 0.7505 | 1.1584 | 1.2328 | 1.419 | | M_162261
M_162339 | 1.1991
1.0486 | 1.1584
0.966 | 1.5639
0.6482 | 1.26 ⁻
1.489 | | M_162376 | 1.3298 | 1.3744 | 0.6482 | 0.897 | | M_162490 | 1.0486 | 1.1262 | 0.8974 | 1.520 | | M_162595 | 1.5116 | 1.6662 | 1.8725 | 1.602 | | M_162814 | 0.4551 | 1.3136 | 0.8291 | 1.438 | | M_162859 | 1.145 | 1.3551 | 1.8449 | 1.430 | | M_163113 | 1.3106 | 1.0119 | 0.9565 | 0.897 | | M_163118 | 1.0486 | 1.0119 | 1.38 | 1.202 | | M_163245 | 1.145 | 1.2429 | 0.748 | 0.897 | | M_163250 | 1.0111 | 1.0913 | 0.8974 | 1.054 | | M 163263 | 1.0832 | 0.7096 | 1.2876 | 1.054 | | M_163311 | 1.0832 | 0.9147 | 0.8291 | 0.956 | | M_163331 | 1.145 | 1.0913 | 1.1349 | 1.202 | | M_163520 | 1.3992 | 1.1584 | 1.8304 | 1.336 | | M_163566 | 1.6108 | 1.4277 | 1.5357 | 1.26 | | M_163727 | 1.3482 | 1.0913 | 0.8974 | 1.134 | | M_163859 | 1.0486 | 0.9147 | 0.8974 | 1.134 | | M_163970 | 1.2472 | 0.8565 | 1.3363 | 0.74 | | M_164132 | 1.145 | 2.1435 | 1.2876 | 0.74 | | M_164144 | 1.0111 | 1.1262 | 1.2026 | 1.008 | | M_164306 | 1.8535 | 1.3744 | 1.5903 | 1.438 | | M_164390 | 1.6996 | 1.0119 | 0.8291 | 1.287 | | M_164400 | 0.97 | 0.966 | 0.748 | 1.054 | | M_164545 | 0.8166 | 0.9147 | 1.0084 | 1.096 | | M_164557 | 1.1729 | 1.3348 | 1.38 | 0.897 | | M_164723 | 1.7595 | 1.1262 | 1.0548 | 0.897 | | M_164753
M_164789 | 1.7231
1.1729 | 1.7205
0.966 | 2.2185
0.6482 | 1.830
1.650 | | M_164839 | 1.3482 | 1.7534 | 1.2026 | 1.054 | | M_164993 | 0.7505 | 1.0119 | 0.8291 | 1.03 | | M_165019 | 0.7303 | 0.9147 | 1.2328 | 1.096 | | M_165026 | 0.9247 | 0.486 | 1.4197 | 1.520 | | M_165055 | 0.8166 | 1.3551 | 0.9565 | 1.336 | | M_165073 | 0.874 | 1.3744 | 0.6482 | 1.26 | | M_165076 | 0.6724 | 0.9147 | 1.2876 | 1.638 | | M_165150 | 1.0486 | 1.1262 | 1.1701 | 0.648 | | M_165157 | 1.8421 | 1.8881 | 1.4897 | 0.7 | | M_165188 | 1.1152 | 0.486 | 1.0084 | 1.20 | | M_165198 | 0.97 | 1.1262 | 1.4897 | 1.67 | | M_165282 | 0.8166 | 1.1885 | 1.2876 | 1.17 | | M_165297 | 1.1729 | 1.2429 | 1.0548 | 1.23 | | M_165355 | 0.97 | 1.1584 | 1.0084 | 1.13 | | M_165369 | 0.5772 | 0.966 | 1.0548 | 1.48 | | M_165384 | 1.2238 | 1.4899 | 1.55 | 1.35 | | M_193814 | 0.9247 | 0.7892 | 1.3126 | 1.43 | | M_194673 | 1.3298 | 1.2429 | 1.1701 | 0.95 | | M_194680 | 1.0832 | 1.0534 | 0.748 | 1.20 | | M_194777
M_194831 | 1.4728 | 1.5443 | 1.6824 | 1.400 | | M_194831 | 1.1729 | 0.9147 | 0.8974 | 0.956 | | M_194834
M_194879 | 1.6485 | 0.9147
1.2429 | 0.8974 | 1.054 | | M_194879
M_194897 | 1.415
1.8059 | 1.8391 | 1.0967 | 0.956
2.104 | | M_194897
M_194912 | 1.8059 | 0.7096 | 1.3587
0.8974 | 2.10
1.61 | | M_194912
M_194968 | 0.7505 | 0.8565 | 0.8974 | 1.85 | | M_194966
M_194996 | 1.0832 | 1.3929 | 1.8304 | 1.03 | | M_194996
M_195006 | 0.97 | 0.7892 | 1.0084 | 1.096 | | M_195197 | 1.2904 | 0.7892 | 1.2876 | 0.829 | | M_195224 | 0.97 | 0.966 | 0.8974 | 1.61 | | M_195256 | 0.97 | 1.2165 | 0.6482 | 1.01 | | M_195269 | 0.874 | 1.2165 | 1.2328 | 1.096 | | M_195390 | 0.874 | 1.2165 | 0.6482 | 1.63 | | | 1.0486 | 1.1885 | 1.3126 | 1.096 | | (M_195437 | 1.0400 | 1.1000 | 1.3120 | 1.000 | | XM_195544 | 0.97 | 1.1262 | 0.8291 | 1.7918 | |------------------------|------------------|------------------|------------------|------------------| | XM_195678 | 1.3829 | 0.612 | 1.0548 | 1.8792 | | XM_195745 | 1.1729 | 1.7612 | 1.4197 | 1.6029 | | XM_195748
XM_195831 | 1.6009
1.7665 | 1.8326
0.966 | 1.923
1.0084 | 1.55
0.8291 | | XM_196106 | 1.1729 | 0.486 | 1.5209 | 1.4003 | | XM_196136 | 1.0111 | 0.8565 | 0.748 | 1.2328 | | XM_196240 | 0.8166 | 0.486 | 1.4003 | 1.8449 | | XM_196478 | 0.9247 | 0.9147 | 1.0084 | 1.8377 | | XM_196607 | 1.4728 | 1.3348 | 0.8974 | 1.5209 | | XM_196722 | 2.1371 | 2.228 | 2.792 | 2.3569 | | XM_196755 | 0.6724 | 1.3929
0.612 | 0.8291 | 1.4003 | | XM_196808
XM_196824 | 1.0486
1.1729 | 1.6464 | 0.8974
1.0084 | 1.8857
1.4197 | | XM_196964 | 0.9247 | 0.9147 | 1.2026 | 1.4197 | | XM_196981 | 0.6724 | 1.0913 | 0.9565 | 1.3587 | | XM_197031 | 0.9247 | 1.0534 | 0.8291 | 0.8291 | | XM_197105 | 0.874 | 0.8565 | 0.9565 | 1.2611 | | XM_197137 | 0.8166 | 1.1584 | 1.38 | 1.3126 | | XM_197266 | 1.3829 | 0.3077 | 1.1349 | 1.7495 | | XM_197344 | 1.3992 | 0.7892 | 1.1701 | 1.3363 | | XM_197408 | 0.9247 | 0.8565 | 0.8291 | 1.1349 | | XM_197431
XM_197447 | 1.8421
0.874 | 2.0087
1.1885 | 0.6482
1.3363 | 0.8974
1.1701 | | XM_197724 | 0.7505 | 0.966 | 1.0548 | 1.2876 | | XM_197888 | 1.2238 | 1.1262 | 1.3126 | 1.7124 | | XM_197895 | 1.7453 | 1.0534 | 0.8291 | 1.8377 | | XM_197991 | 0.874 | 1.1262 | 1.1701 | 1.0967 | | XM_198071 | 1.5695 | 1.8326 | 1.6388 | 1.917 | | XM_198115 | 1.5802 | 1.0534 | 0.8974 | 0.8291 | | XM_198196 | 1.2693 | 1.0534 | 0.6482 | 0.9565 | | XM_203991 | 1.0832 | 1.0913 | 1.3587 | 1.4197 | | XM_204506 | 1.3298 | 1.0534 | 0.9565 | 0.9565 | | XM_204714 | 1.0111 | 1.5443 | 1.0084 | 1.1349 | | XM_204889
XM_205290 | 1.145
1.0486 | 0.8565
0.966 | 0.8291
1.1701 | 1.7583
0.8291 | | XM_205290
XM_205678 | 1.145 | 1.1885 | 0.3323 | 1.3126 | | XM_205682 | 0.8166 | 1.4277 | 1.38 | 1.4003 | | XM_206401 | 1.0486 |
1.0119 | 0.9565 | 1.3363 | | XM_206463 | 1.0832 | 0.612 | 1.0967 | 1.1701 | | XM_206504 | 1.2693 | 2.397 | 1.38 | 1.8377 | | XM_206658 | 0.7505 | 0.9147 | 0.9565 | 1.4897 | | XM_206785 | 1.415 | 1.518 | 1.3363 | 1.55 | | XM_206878 | 1.145 | 1.0913 | 1.4733 | 1.2328 | | XM_216180 | 1.415 | 1.5692 | 1.8229 | 1.5639 | | XM_216345
XM_216716 | 2.1486
1.6662 | 2.5183
1.4441 | 2.6202
1.7495 | 2.2957
1.1701 | | XM_216716
XM_216784 | 1.0832 | 1.1885 | 0.6482 | 1.4383 | | XM_219399 | 1.2238 | 1.1262 | 1.0548 | 1.2026 | | XM_228611 | 1.2472 | 1.4106 | 1.6272 | 1.1701 | | XM_230936 | 0.9247 | 1.0913 | 0.6482 | 1.9519 | | XM_231152 | 1.3106 | 1.2165 | 1.5357 | 1.0967 | | XM_231361 | 1.4591 | 1.8581 | 1.0084 | 0.8974 | | XM_232080 | 0.97 | 1.1885 | 0.9565 | 1.2328 | | XM_232287 | 1.0832 | 0.8565 | 1.7669 | 1.0084 | | XM_236246 | 2.3523 | 2.7448 | 2.6492 | 3.1646
1.1349 | | XM_236351
XM_236961 | 1.0111
0.8166 | 0.966
1.0534 | 0.8974
0.748 | 1.1348 | | XM_282925 | 1.0832 | 1.2429 | 1.2876 | 1.3363 | | XM 282973 | 1.4728 | 1.0534 | 1.5903 | 1.8077 | | XM_283001 | 1.2238 | 0.7096 | 1.6272 | 1.3363 | | XM_283014 | 1.0832 | 1.4752 | 0.8291 | 1.0084 | | KM_283130 | 1.0486 | 1.4277 | 1.8857 | 1.2876 | | KM_283332 | 1.0486 | 1.4441 | 1.2026 | 0.748 | | KM_283401 | 1.6485 | 1.3744 | 0.8291 | 0.6482 | | KM_283523 | 1.145 | 1.2165 | 0.5184 | 1.4562 | | KM_283932
KM_283989 | 1.8646
1.2472 | 0.7096 | 0.748
1.0548 | 1.4383
0.748 | | KM_284122 | 1.9537 | 0.9147
1.0534 | 0.8291 | 1.0084 | | KM_284222 | 1.1152 | 1.0119 | 1.1349 | 1.008 | | XM 284248 | 1.6662 | 1.0534 | 1.6029 | 0.6482 | | KM 284262 | 0.6724 | 1.685 | 1.0548 | 1.2328 | | KM_284387 | 1.2693 | 1.2913 | 1.7124 | 1.2328 | | KM_284405 | 1.8421 | 0.7892 | 1.4383 | 0.748 | | KM_284556 | 0.97 | 1.4106 | 0.748 | 1.1349 | | XM_284569 | 1.2693 | 0.612 | 0.8291 | 1.6824 | | XM_284590 | 0.9247 | 0.7892 | 1.1349 | 1.4897 | | XM_284643 | 1.8363 | 1.5692 | 1.5357 | 0.956 | | XM_284775 | 0.2846 | 1.7764 | 1.4562 | 1.3126 | | XM_284796
XM_284797 | 0.7505
0.7505 | 1.3136
1.0119 | 0.6482
0.8974 | 1.7837
1.1349 | | XM_284838 | 0.7505 | 0.966 | 1.2611 | 1.6388 | | XM_284840 | 1.5802 | 0.8565 | 0.9565 | 1.4562 | | XM_284870 | 1.1991 | 1.7764 | 1.55 | 1.4562 | | XM_284875 | 0.6724 | 2.3312 | 1.1349 | 1.7837 | | XM_284888 | 1.0486 | 0.7096 | 1.55 | 1.0548 | | / | | | | | | M_284943 | 1.1152 | 0.7892 | 1.5639 | 1.008 | |----------------------|------------------|------------------|------------------|--| | M_285066 | 2.0532 | 2.11 | 2.6469 | 2.329 | | M_285086
M_285089 | 1.7453
1.8755 | 1.7032
1.8326 | 2.0555 | 0.897
1.563 | | M_285114 | 0.6724 | 1.3348 | 1.4733 | 1.170 | | M_285127 | 0.5772 | 0.7096 | 1.7998 | 2.177 | | M_285153 | 0.8166 | 1.0913 | 1.0967 | 1.627 | | M_285195 | 1.2238 | 0.612 | 0.8974 | 1.400 | | M_285268 | 1.7453 | 1.6942 | 0.6482 | 0.648 | | M_285272 | 1.1991 | 0.966 | 1.4383 | 1.438 | | M_285283 | 2.2048 | 1.7534 | 1.8922 | 1.749 | | M_285318
M_285328 | 0.8166
0.8166 | 1.0119
1.1584 | 1.1349
1.0967 | 1.008
1.096 | | M_285543 | 1.1991 | 1.0534 | 1.2876 | 1.563 | | M_285560 | 1.2693 | 0.612 | 1.4197 | 0.956 | | M_285625 | 0.874 | 0.966 | 1.3126 | 1.054 | | M_285653 | 1.0111 | 0.3077 | 1.3363 | 1.627 | | M_285739 | 0.97 | 0.612 | 1.5773 | 1.232 | | M_285747 | 1.0111 | 0.612 | 1.1701 | 1.590 | | M_285756 | 1.2472 | 1.1885 | 1.4197 | 1.054 | | M_285789 | 2.1222 | 0.9147 | 1.2328 | 0.897 | | M_285812 | 1.3298 | 0.7096 | 0.8291 | 1.438 | | M_285819 | 1.0832 | 1.1584 | 1.6719 | 0.956 | | M_285849
M_285863 | 1.2693
1.5585 | 1.2165
2.241 | 0.8291
1.7754 | 1.232
1.72 | | M_285869 | 0.9247 | 1.1885 | 0.9565 | 1.358 | | M_285934 | 0.9247 | 0.612 | 1.2876 | 1.336 | | M_285994 | 1.0111 | 0.7892 | 1.0084 | 1.312 | | M_286045 | 0.8166 | 1.0534 | 0.8974 | 1.489 | | M_286054 | 1.1991 | 0.8565 | 1.0548 | 1.170 | | И_286063 | 0.874 | 2.1304 | 1.0084 | 1.731 | | M_286080 | 1.6009 | 2.0343 | 0.5184 | 0.956 | | M_286119 | 1.5238 | 0.8565 | 1.5773 | 1.692 | | M_286136 | 1.145 | 1.0119 | 1.2611 | 1.008 | | M_286150 | 1.2238 | 0.966 | 1.5773 | 1.008 | | M_286231 | 1.0832 | 1.1885 | 1.2876 | 1.419 | | M_286237 | 1.4591 | 1.0119 | 1.3363 | 0.648 | | M_286298 | 1.4449 | 1.3744 | 1.7495 | 1.232 | | M_286346
M_286380 | 1.1152
1.4728 | 0.8565
1.9425 | 1.4197
0.8974 | 1.858
2.369 | | M_286416 | 1.3482 | 1.7839 | 1.1349 | 0.897 | | VI_286421 | 1.0486 | 1.0534 | 0.748 | 1.170 | | M_286455 | 2.0672 | 1.2165 | 0.6482 | 1.170 | | M_286467 | 1.5695 | 1.518 | 1.4383 | 1.563 | | M_286498 | 1.2238 | 1.9576 | 1.0084 | 0.74 | | M_286524 | 1.1152 | 2.0776 | 1.2328 | 0.897 | | M_286553 | 0.7505 | 1.3744 | 1.2026 | 1.008 | | M_286564 | 1.6485 | 1.3551 | 0.5184 | 1.054 | | M_286576 | 0.8166 | 1.4599 | 0.6482 | 1.358 | | M_286596 | 0.9247 | 1.0913 | 0.6482 | 1.505 | | M_286597 | 1.2472 | 1.2429 | 1.1701 | 1.202
0.829 | | M_286602
M_286644 | 1.3298
1.3106 | 2.0343
1.2165 | 1.38
0.8974 | 1.602 | | VI_286648 | 1.6301 | 0.7892 | 1.0967 | 1.837 | | M_286655 | 1.2472 | 1.3551 | 1.2876 | 1.702 | | M_286732 | 1.3482 | 1.2165 | 1.4383 | 1.731 | | M_286736 | 1.1152 | 1.0119 | 1.2328 | 1.3 | | л_286790 | 1.4591 | 1.3551 | 1.7405 | 1.638 | | И_286819 | 1.0832 | 1.1584 | 0.748 | 0.956 | | И_286826 | 1.7665 | 0.8565 | 1.6152 | 0.518 | | Л_286832 | 1.1729 | 1.2165 | 1.1349 | 1.008 | | M_286838 | 0.5772 | 0.7096 | 1.5056 | 1.627 | | M_286861 | 0.874 | 1.2429 | 1.7026 | 0.74 | | A_286867 | 1.6996 | 1.4441 | 1.4733 | 1.312 | | Л_286876
Л 286878 | 0.97 | 1.2165 | 0.748 | 1.202 | | 1_286878
1 286894 | 0.8166
0.8166 | 1.0119
1.0534 | 0.8974
0.8291 | 1.13 ⁴
1.05 ⁴ | | л_20094
Л 286915 | 1.0486 | 0.7892 | 1.0084 | 1.202 | | л_286938 | 1.3992 | 0.7096 | 0.748 | 1.202 | | л_286959 | 0.97 | 1.1584 | 0.9565 | 1.731 | | л_286984 | 0.9247 | 1.3136 | 1.1701 | 0.897 | | л_286992 | 0.97 | 1.3929 | 0.8291 | 1.054 | | Л_286995 | 2.0532 | 0.8565 | 1.5357 | 1.096 | | И_286996 | 1.3992 | 0.7892 | 0.9565 | 1.134 | | Л_287004 | 1.8478 | 0.612 | 1.3363 | 0.956 | | M_287015 | 0.8166 | 1.1262 | 0.6482 | 1.671 | | M_287035 | 1.2472 | 0.612 | 0.8291 | 1.312 | | M_287063 | 1.1729 | 0.612 | 0.8974 | 1.844 | | M_287068 | 1.2904 | 1.3136 | 1.4733 | 1.054 | | M_287120 | 1.5802 | 1.6464 | 1.0967 | 1.766 | | M_287126
M_287133 | 0.97 | 1.3929
0.7096 | 1.5056 | 1.615
1.749 | | M_287135 | 0.6724
1.4991 | 1.4106 | 1.6388
1.5773 | 1.748 | | M_287164 | 4.2499 | 3.9118 | 3.9874 | 3.43 | | M_287198 | 1.5357 | 1.2913 | 1.9519 | 1.456 | | | 1.0001 | 1.2010 | 1.0010 | | | M_287224 | 1.1991 | 1.9908 | 1.2611 | 0.648 | | XM_287258 | 1.0486 | 0.8565 | 1.0548 | 0.956 | |------------------------|------------------|------------------|------------------|--| | XM_287285 | 1.2472 | 1.3136 | 1.2026 | 1.0967 | | XM_287310 | 1.4861 | 1.518 | 1.7495 | 1.1349 | | XM_287312 | 2.2432 | 0.7892 | 1.1349 | 1.3120 | | XM_287332 | 1.0832 | 0.9147
1.0913 | 0.8291 | 1.008 ⁴
1.008 ⁴ | | XM_287349 | 1.7932 | | 1.2026 | | | XM_287373
XM_287400 | 1.4302
2.2478 | 0.8565
2.0662 | 1.1349
1.6926 | 1.2026
2.256 | | XM_287400
XM_287407 | 0.97 | 1.0534 | 1.38 | 1.2876 | | XM_287439 | 1.1152 | 1.2165 | 1.1701 | 1.261 | | XM_287455 | 0.874 | 0.966 | 1.2328 | 1.0084 | | XM_287504 | 0.5772 | 1.3744 | 1.4197 | 0.956 | | XM_287530 | 0.9247 | 0.966 | 1.0084 | 0.956 | | XM_287625 | 0.9247 | 1.1885 | 0.8974 | 0.8974 | | XM_287650 | 0.9247 | 1.2165 | 0.748 | 1.722 | | XM_287716 | 0.97 | 1.1584 | 1.5056 | 1.4733 | | XM_287749 | 1.2693 | 1.0534 | 1.2876 | 1.3126 | | XM_287761 | 1.2472 | 1.1262 | 0.9565 | 1.3363 | | XM_287805 | 1.6996 | 1.518 | 0.6482 | 0.748 | | XM_287807 | 1.0832 | 1.0913 | 1.1349 | 1.1349 | | XM_287817 | 1.738 | 1.6942 | 1.7754 | 1.58 | | XM_287837 | 1.8122 | 1.3136 | 0.8291 | 1.6029 | | KM_287838 | 1.145 | 1.2678 | 1.3363 | 1.6388 | | XM_287845 | 1.0486 | 1.0534 | 0.9565 | 2.0853 | | XM_287946 | 0.6724 | 0.612 | 1.4562 | 1.6824 | | KM_288010 | 0.8166 | 1.1262 | 1.3363 | 1.1349 | | XM_288159 | 0.6724 | 1.1885 | 1.1701 | 0.956 | | XM_288165 | 1.7076 | 0.612 | 0.5184 | 1.6719 | | KM_288181 | 1.6485 | 1.5042 | 1.55 | 1.2026 | | KM_288186 | 2.1843 | 2.3692
1.8391 | 2.6624
2.0092 | 2.1604 | | XM_288187
XM_288194 | 1.7665
0.874 | 1.0119 | 1.4003 | 1.5056
1.4733 | | XM_288196 | 1,3106 | 0.9147 | 1.2328 | 1.2026 | | XM_288201 | 1.3829 | 0.966 | 1.1349 | 0.6482 | | XM_288202 | 1.9839 | 1.0913 | 1.55 | 0.8974 | | XM_288223 | 1.5585 | 1.4599 | 1.9048 | 1.3120 | | XM_288242 | 1.145 | 1.8054 | 2.077 | 1.38 | | XM_288256 | 0.9247 | 0.9147 | 0.8291 | 1.4003 | | XM 288279 | 1.5357 | 0.9147 | 0.5184 | 1.2876 | | XM_288284 | 0.8166 | 1.0119 | 1.1701 | 0.956 | | XM_288288 | 1.0486 | 1.1885 | 0.748 | 1.6719 | | XM_288295 | 1.3106 | 1.4899 | 1.6152 | 2.308 | | XM_288319 | 1.1991 | 1.2429 | 1.2611 | 0.8974 | | XM_288371 | 1.0111 | 2.07 | 0.8974 | 1.2328 | | XM_288375 | 0.6724 | 1.2429 | 0.9565 | 1.287 | | XM_288394 | 1.1152 | 0.612 | 0.8974 | 1.4897 | | XM_288405 | 1.8122 | 1.1262 | 0.8291 | 0.8974 | | XM_288421 | 0.7505 | 0.7892 | 1.1701 | 1.261 | | XM_288475 | 1.5907 | 1.0119 | 0.3323 | 1.7314 | | XM_288482 | 1.926 | 2.3934 | 0.9565 | 1.134 | | XM_288483 | 1.738 | 1.7612 | 1.9462 | 1.661 | | XM_288490 | 1.6301 | 1.3136 | 0.748 | 1.489 | | XM_288493 | 0.6724 | 1.5927 | 1.2611 | 0.897 | | XM_288504 | 1.415 | 1.8939 | 0.748 | 1.170 | | KM_288521 | 0.874 | 1.0913 | 1.0548 | 1.054 | | KM_288524 | 1.0111 | 0.8565 | 1.38 | 1.287 | | KM_288528 | 1.2238
0.97 | 1.3929 | 1.5056 | 1.72 | | KM_288531
KM_288537 | 2.1429 | 0.966
1.3348 | 1.1349
0.748 | 1.008-
2.120 | | KM_288547 | 0.8166 | 0.7096 | 1.5056 | 1.520 | | KM_288555 | 0.8166 | 1.7764 | 1.0967 | 1.170 | | KM_288560 | 0.7505 | 0.7892 | 1.0548 | 1.577 | | KM_288567 | 1.0111 | 0.7892 | 0.8291 | 1.400 | | (M_288602 | 1.2238 | 1.6662 | 0.8974 | 0.829 | | (M_288618 | 2.9534 | 3.3258 | 2.1872 | 3.106
 | KM_288637 | 1.5238 | 1.7032 | 1.9683 | 1.287 | | (M_288654 | 1.8964 | 0.7096 | 2.077 | 0.518 | | KM_288674 | 1.6009 | 1.5927 | 2.0511 | 1.650 | | (M_288681 | 1.5116 | 1.1885 | 0.5184 | 1.261 | | (M_288682 | 0.874 | 1.1262 | 1.7314 | 1.134 | | KM_288685 | 0.8166 | 1.2913 | 1.7124 | 0.956 | | KM_288693 | 0.5772 | 0.9147 | 1.3363 | 1.872 | | KM_288694 | 0.874 | 1.2165 | 0.748 | 1.400 | | (M_288696 | 1.0111 | 0.966 | 0.8974 | 1.563 | | KM_288742 | 1.2693 | 0.966 | 1.0548 | 0.74 | | (M_288751 | 1.738 | 1.0119 | 1.7583 | 1.232 | | KM_288763 | 1.145 | 0.612 | 0.8974 | 1.590 | | (M_288775 | 1.0832 | 1.0913 | 1.722 | 1.473 | | KM_288776 | 1.2238 | 1.0913 | 1.1701 | 1.170 | | (M_288781 | 1.0111 | 2.2708 | 0.8974 | 1.590 | | (M_288790 | 1.1152 | 0.612 | 0.8974 | 1.287 | | (M_288794 | 0.9247 | 1.2429 | 0.9565 | 1.336 | | KM_288807 | 0.97 | 2.2173 | 1.3126 | 1.999 | | KM_288813 | 1.6748 | 1.9052 | 1.3363 | 1.134 | | KM_288817 | 0.874
2.0532 | 1.1262
0.7892 | 0.6482
1.3587 | 1.336
1.791 | | XM_288819 | | | | | | XM_288867
XM_288873 | 1.1729
0.874 | 1.0534
1.2913 | 1.2026
1.1701 | 1.0084
1.2026 | |---|----------------------------|------------------|------------------|------------------| | XM_288879 | 2.0808 | 1.3136 | 1.3363 | 1.8229 | | XM 288890 | 1.8244 | 1.6757 | 2.1569 | 1.5209 | | XM_288893 | 1.2904 | 1.2165 | 1.6501 | 1.0548 | | XM_288897 | 1.145 | 1.1584 | 0.8291 | 1.3363 | | XM_288901 | 1.3298 | 1.5692 | 2.1131 | 1.8857 | | XM_288905 | 1.0486 | 0.966 | 1.0084 | 1.6824 | | XM_288950
XM_288952 | 1.7665
2.2612 | 1.6257
1.0913 | 1.5056
0.748 | 1.6926
1.7026 | | XM_288966 | 1.0111 | 1.0913 | 0.8291 | 1.1349 | | XM_288991 | 1.2238 | 1.2165 | 0.8974 | 1.6926 | | XM_289030 | 1.6009 | 1.1262 | 1.0084 | 1.852 | | XM_289038 | 1.415 | 1.3136 | 1.4003 | 1.2026 | | XM_289042 | 1.0832 | 1.2913 | 0.8291 | 1.3587 | | XM_289050 | 1.5238 | 0.9147 | 0.9565 | 1.6152 | | XM_289079
XM_289117 | 3.2494
2.0388 | 3.1509
0.612 | 3.3554 | 2.8999 | | XM_289134 | 1.0832 | 0.9147 | 1.4562
0.6482 | 1.5056
1.0548 | | XM_289151 | 1.1729 | 2.1304 | 1.6152 | 2.1428 | | XM 289166 | 1.4302 | 1.8326 | 0.6482 | 0.8291 | | XM_289171 | 1.1152 | 0.966 | 1.2876 | 1.1349 | | XM_289186 | 1.1729 | 1.2913 | 1.3126 | 1.9574 | | XM_289215 | 1.0832 | 0.8565 | 0.6482 | 1.4562 | | XM_289240 | 0.6724 | 1.9425 | 1.55 | 0.748 | | XM_289246 | 0.97 | 1.4899 | 1.1349 | 0.6482 | | XM_289264 | 1.0486 | 1.1584 | 0.748 | 1.4897 | | XM_289284
XM_289287 | 1.1152
0.97 | 1.518
1.0913 | 1.2026
1.0084 | 1.5773
1.9109 | | XM_289320 | 0.97 | 1.0119 | 1.2611 | 1.3587 | | XM 289335 | 1.8755 | 1.9162 | 1.9406 | 2.4143 | | XM_289342 | 1.2904 | 1.4599 | 1.4003 | 0.748 | | XM_289350 | 1.7076 | 2.137 | 1.0084 | 0.3323 | | XM_289354 | 1.2238 | 1.0534 | 0.8291 | 0.8974 | | XM_289407 | 0.2846 | 1.4599 | 1.2876 | 1.2611 | | XM_289424 | 1.0486 | 1.3929 | 1.722 | 1.7495 | | XM_289438
XM_289474 | 1.0111
1.2693 | 1.1262
2.2227 | 1.2611
1.0967 | 0.8291
1.2876 | | XM_289505 | 0.9247 | 1.3551 | 1.3126 | 1.0084 | | XM_289514 | 0.6724 | 0.9147 | 1.2026 | 1.4383 | | XM_289517 | 1.2238 | 1.4106 | 0.6482 | 1.3363 | | XM_289560 | 0.874 | 1.4277 | 0.6482 | 1.55 | | XM_289571 | 1.3659 | 1.9162 | 0.6482 | 1.0084 | | XM_289572 | 1.0832 | 1.2429 | 0.6482 | 1.1349 | | XM_289592 | 1.6575 | 1.2165 | 0.6482 | 0.8974 | | XM_289600 | 2.2123 | 2.1435 | 2.275 | 1.7026 | | XM_289602
XM_289616 | 0.9247
1.4302 | 1.2165
0.8565 | 0.5184
1.0084 | 1.3126
0.8974 | | XM_289632 | 0.8166 | 0.8565 | 0.8974 | 1.1349 | | XM_289643 | 1.1991 | 1.0119 | 0.748 | 1.1701 | | XM_289649 | 1.0111 | 0.9147 | 1.6501 | 0.8974 | | XM_289735 | 2.0874 | 1.7119 | 1.3587 | 1.6152 | | XM_289752 | 1.2238 | 1.3744 | 1.5357 | 0.9565 | | XM_290029
XM_290137 | 0.9247 | 0.966
1.1885 | 0.748 | 1.6501
1.2026 | | XM 290164 | 1.1991
0.7505 | 1.2165 | 0.9565
0.8291 | 1.1349 | | XM_343456 | 1.5357 | 1.3744 | 1.5639 | 1.1701 | | XM_345593 | 2.02 | 2.22 | 2.435 | 1.6824 | | XM_347206 | 0.97 | 1.6564 | 0.6482 | 1.3587 | | XM_355246 | 1.2904 | 0.7892 | 1.0548 | 0.9565 | | XM_355265 | 1.0111 | 1.1885 | 1.38 | 1.6152 | | XM_355456 | 1.6575 | 0.7892 | 1.2876 | 0.9565 | | XM_355655 | 1.1729 | 0.7892 | 1.9048 | 1.4003 | | XM_356940
XM_357883 | 0.8166
1.4302 | 0.7892
1.8259 | 1.4562
1.0084 | 1.2328
1.2876 | | XM_358915 | 2.3111 | 1.9862 | 2.0811 | 1.6152 | | XM_359319 | 0.8166 | 1.1885 | 0.8974 | 1.1701 | | XM_359409 | 1.4449 | 0.9147 | 1.5357 | 1.0084 | | XM_371313 | 0.874 | 1.5313 | 0.6482 | 1.3587 | | XM_4 | 1.4302 | 1.3348 | 1.3363 | 1.3126 | | XM_484131 | 1.0486 | 1.2429 | 0.6482 | 1.38 | | XM_484193 | 1.5357 | 1.2429 | 0.8291 | 1.2876 | | XM_484202 | 1.145 | 1.6257
1.3551 | 0.8291
1.7124 | 1.7124 | | XM_484214
XM_484250 | 1.3298
1.5238 | 0.8565 | 0.8291 | 1.1349
1.6824 | | XM_484476 | 1.2238 | 1.2429 | 1.7405 | 1.2026 | | XM_484818 | 1.3829 | 0.486 | 1.7998 | 1.2026 | | XM_484819 | 0.97 | 2.2708 | 1.2026 | 0.9565 | | XM_485061 | 2.4139 | 2.3842 | 3.2097 | 2.5012 | | | 0.97 | 0.3077 | 1.38 | 1.6029 | | XM_485180 | | 1.2429 | 1.2876 | 1.0084 | | XM_485180
XM_485292 | 1.3659 | | | | | XM_485180
XM_485292
XM_485420 | 1.7733 | | 1.3363 | 1.5209 | | XM_485180
XM_485292
XM_485420
XM_485950 | 1.7733
1.0111 | 0.612 | 0.9565 | 1.7669 | | XM_485180
XM_485292
XM_485420
XM_485950
XM_486612 | 1.7733
1.0111
1.4591 | 0.612
1.1885 | 0.9565
0.6482 | 1.7669
1.2026 | | XM_485180
XM_485292
XM_485420
XM_485950 | 1.7733
1.0111 | 0.612 | 0.9565 | 1.7669 | | XM_487610 | 1.3482 | 1.1885 | 1.4562 | 1.1349 | |------------------------|------------------|------------------|------------------|------------------| | XM_487784 | 0.9247 | 1.0913 | 1.1701 | 1.6926 | | XM_487875 | 0.8166 | 1.3136 | 1.0967 | 1.2026 | | XM_487878 | 1.0486 | 0.9147 | 0.8974
1.0084 | 0.8291 | | XM_487965
XM_488011 | 1.0832
1.1991 | 1.0119
1.3348 | 1.1349 | 0.9565
2.2124 | | XM_488044 | 1.6009 | 1.3744 | 1.3126 | 1.2611 | | XM 488111 | 1.2904 | 1.1262 | 1.7405 | 0.5184 | | XM_488203 | 0.97 | 1.0119 | 1.3363 | 0.8974 | | XM_488289 | 1.5473 | 0.966 | 1.2328 | 1.9683 | | XM_488310 | 1.4302 | 1.2165 | 1.8658 | 1.2876 | | XM 488333 | 1.0486 | 0.966 | 0.8974 | 1.0548 | | XM 488359 | 1.0486 | 0.612 | 1.2328 | 1.7405 | | XM 488393 | 0.9247 | 1,4106 | 1.55 | 1.0084 | | XM 488418 | 0.97 | 0.966 | 1.6388 | 1.2611 | | XM 488680 | 0.8166 | 0.7892 | 1,0084 | 1,4897 | | XM_488721 | 0.97 | 1.0119 | 1.0548 | 1.2328 | | XM_488738 | 0.9247 | 0.9147 | 1.0084 | 1.55 | | XM_488836 | 0.9247 | 1.3744 | 0.8291 | 1.5357 | | XM_488954 | 0.9247 | 1.0913 | 1.38 | 1.2026 | | XM_489037 | 0.97 | 0.9147 | 1.2328 | 1.0548 | | XM_489132 | 0.8166 | 1.4277 | 0.9565 | 1.0084 | | XM_489253 | 1.1729 | 1.0534 | 0.8974 | 1.0548 | | XM_489271 | 1.7665 | 1.5443 | 1.4733 | 1.1349 | | XM_489273 | 1.4728 | 1.4106 | 1.8154 | 1.3587 | | XM_489304 | 1.3829 | 2.0465 | 1.4562 | 2.1428 | | XM_489310 | 1.5907 | 1.0119 | 0.6482 | 1.0967 | | XM_489320 | 1.1152 | 1.3348 | 1.3126 | 1.1349 | | XM_489322 | 1.6996 | 1.2165 | 0.6482 | 0.8974 | | XM_489350 | 0.874 | 0.612 | 1.0967 | 1.4897 | | XM_489353 | 1.3829 | 1.8519 | 1.8229 | 1.4733 | | XM_489372 | 1.1991 | 1.0119 | 1.1349 | 1.2328 | | XM_489702 | 1.3659 | 1.0119 | 0.6482 | 1.2328 | | XM_489720 | 1.2693 | 1.3929 | 1.2876 | 1.2611 | | Yars2 | 1.6996 | 1.8259 | 1.7837 | 1.5903 | | Ylpm1 | 1.3106 | 1.1262 | 1.55 | 1.2026 | | Ywhaq | 1.6485 | 0.7892 | 1.0967 | 1.1349 | | Zap70 | 1.7306 | 1.9954 | 0.9565 | 1.6824 | | Zbed4 | 1.7525 | 1.2165 | 0.748 | 1.0084 | | Zbtb24 | 1.5907
1.1991 | 1.5443
1.3744 | 1.2611
1.7837 | 1.2328 | | Zbtb44
Zbtb6 | 1.0832 | 0.8565 | 1.4562 | 1.4897
1.0084 | | Zc3h12c | 1.4861 | 1.4277 | 1.6501 | 1.55 | | Zc3h6 | 1.1152 | 0.7892 | 0.8291 | 1.0084 | | Zcchc5 | 1.7525 | 1.729 | 0.8974 | 0.6482 | | Zcrb1 | 1.7306 | 0.9147 | 0.8974 | 1.0967 | | Zdhhc20 | 1.3106 | 1.0913 | 0.5184 | 1.6029 | | Zer1 | 1.6748 | 0.612 | 1.2876 | 0.8974 | | Zfc3h1 | 1.0486 | 0.966 | 1.38 | 1.2026 | | Zfhx3 | 0.874 | 1.3136 | 0.8974 | 1.4197 | | Zfp111 | 0.8166 | 0.612 | 1.2328 | 1.8792 | | Zfp184 | 0.5772 | 1.4277 | 1.38 | 1.4003 | | Zfp27 | 1.2693 | 0.612 | 1.3126 | 1.6152 | | Zfp326 | 0.7505 | 1.5927 | 0.5184 | 1.7998 | | Zfp365 | 1.5357 | 1.4599 | 1.6926 | 1.5639 | | Zfp397 | 1.3829 | 0.9147 | 1.1701 | 0.9565 | | Zfp422 | 1.6996 | 0.8565 | 1.1349 | 1.2328 | | Zfp451 | 0.874 | 0.7892 | 0.8974 | 1.3587 | | Zfp507 | 1.78 | 1.7912 | 0.5184 | 1.1349 | | Zfp592 | 0.874 | 0.9147 | 1.0967 | 1.4897 | | Zfp599 | 0.7505 | 2.3395 | 1.0548 | 1.55 | | Zfp612 | 0.6724 | 1.8581 | 1.3126 | 1.0967 | | Zfp647 | 1.145 | 1.0534 | 1.2328 | 1.0084 | | Zfp668 | 1.0832 | 1.0913 | 1.4003 | 1.2611 | | Zfp704 | 1.0832 | 0.7892 | 0.8291 | 1.4383 | | Zfp719 | 1.0486 | 0.9147 | 0.6482 | 1.0967 | | Zfp750 | 1.3106 | 1.1262 | 0.6482
0.5184 | 1.3587
1.1349 | | Zfp763 | 1.0111 | 1.1584
1.0913 | | | | Zfp781
Zfp788 | 1.2238
0.8166 | 1.0913 | 0.8974
0.6482 | 1.0084
1.2611 | | Zfp810 | 1.1991 | 0.612 | 1.1701 | 1.6388 | | Zfp819 | 0.7505 | 1.3744 | 1.5056 | 1.4562 | | Zfp820 | 0.7505 | 0.7096 | 1.0967 | 1.5056 | | Zfp821 | 0.9247 | 0.7892 | 0.8974 | 1.2876 | | Zfp866 | 1.1729 | 1.5569 | 0.8291 | 1.5056 | | Zfp874b | 2.0874 | 0.612 | 1.6029 | 1.6824 | | Zfp940 | 1.7733 | 1.3348 | 0.748 | 0.8291 | | Zmat1 | 0.874 | 0.966 | 1.0084 | 1.0967 | | Zmiz2 | 0.97 | 1.1885 | 0.9565 | 1.2026 | | ZNF813 | 1.3992 | 0.7892 | 0.8291 | 2.0189 | | Zscan20 | 1.2238 | 1.1584 | 0.748 | 1.2611 | | Zw10 | 0.9247 | 0.966 | 1.1349 | 1.0967 | | Zxdc | 1.1729 | 1.0534 | 1.4733 | 1.3363 | | | | | | | ### Appendix 6 Over-representative Networks in shRNA-identified to | Over-represe | ntative Networks in shRNA-identified targets | | | |--------------|---|---------|--------| |
shRNA Group | Top Diseases and Functions | Score p | -value | | | Gene Expression, DNA Replication, Recombination, and Repair, Cellular Assembly and Organization | 46 | 1E-46 | | | Embryonic Development, Organismal Development, Developmental Disorder | 43 | 1E-43 | | Α | Cancer, Hematological Disease, Immunological Disease | 41 | 1E-41 | | | Cell Morphology, Cell-To-Cell Signaling and Interaction, Cellular Function and Maintenance | 32 | 1E-32 | | | Cell Signaling, Nucleic Acid Metabolism, Cancer | 30 | 1E-30 | | | Protein Synthesis, Hematological System Development and Function, Cancer | 39 | 1E-39 | | | Cancer, Cell Death and Survival, Tumor Morphology | 39 | 1E-39 | | В | Amino Acid Metabolism, Small Molecule Biochemistry, Cell-To-Cell Signaling and Interaction | 32 | 1E-32 | | | Cellular Assembly and Organization, Cellular Function and Maintenance, Cell-To-Cell Signaling and Interaction | 30 | 1E-30 | | | Cell-To-Cell Signaling and Interaction, Cellular Growth and Proliferation, Hair and Skin Development and Function | 26 | 1E-26 | | | Cellular Movement, Cellular Function and Maintenance, Hematological System Development and Function | 33 | 1E-33 | | | Cell-To-Cell Signaling and Interaction, Cell-mediated Immune Response, Cellular Development | 28 | 1E-28 | | С | Developmental Disorder, Hereditary Disorder, Metabolic Disease | 26 | 1E-26 | | | Cellular Development, Cellular Growth and Proliferation, Embryonic Development | 26 | 1E-26 | | | Cellular Assembly and Organization, Cellular Function and Maintenance, Protein Degradation | 25 | 1E-25 | | | Cell Cycle, Connective Tissue Development and Function, Drug Metabolism | 39 | 1E-39 | | | Carbohydrate Metabolism, Small Molecule Biochemistry, Behavior | 36 | 1E-36 | | D | Connective Tissue Development and Function, Embryonic Development, Nervous System Development and Function | 35 | 1E-35 | | | Cellular Movement, Hematological System Development and Function, Hypersensitivity Response | 35 | 1E-35 | | | Lipid Metabolism, Small Molecule Biochemistry, Cellular Compromise | 33 | 1E-33 | Appendix 7. Gene number and ratio in each shRNA-enriched group | # of genes | Down U | p | None/Minor | Total | |------------|--------|-----|------------|-------| | shRNA #A | 25 | 100 | 261 | 386 | | shRNA #B | 30 | 80 | 262 | 372 | | shRNA #C | 12 | 35 | 54 | 101 | | shRNA #D | 56 | 99 | 276 | 431 | | shRNA #E | 141 | 209 | 571 | 921 | | % | Down % | Up % | None/Minor | | |----------|-----------|-----------|------------|-----| | shRNA #A | 6.4766839 | 25.906736 | 67.61658 | 100 | | shRNA #B | 8.0645161 | 21.505376 | 70.430108 | 100 | | shRNA #C | 11.881188 | 34.653465 | 53.465347 | 100 | | shRNA #D | 12.993039 | 22.969838 | 64.037123 | 100 | | shRNA #E | 15.309446 | 22.692725 | 61.997828 | 100 | Gene number and ratio in each differential group in transcriptome analysis | # of genes | shRNA#A #A&B | | shRNA #B | shRNA #C | shRNA #D | shRNA #E | Total | |------------|--------------|----|----------|----------|----------|----------|-------| | mRNA#1 | 77 | 0 | 99 | 0 | 62 | 238 | 476 | | mRNA#2 | 21 | 11 | 19 | 10 | 32 | 43 | 136 | | mRNA#3 | 14 | 0 | 19 | 8 | 31 | 41 | 113 | | mRNA#4 | 142 | 0 | 100 | 23 | 97 | 204 | 566 | | mRNA#5 | 264 | 0 | 219 | 0 | 185 | 697 | 1365 | | % | shRNA #A | #A&B | shRNA #B | shRNA #C | shRNA #D | shRNA #E | Total | | |--------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-----| | mRNA#1 | 16.176471 | 0 | 20.798319 | 0 | 13.02521 | 50 | 1 | 100 | | mRNA#2 | 15.441176 | 8.0882353 | 13.970588 | 7.3529412 | 23.529412 | 31.617647 | 1 | 100 | | mRNA#3 | 12.389381 | 0 | 16.814159 | 7.079646 | 27.433628 | 36.283186 | 1 | 100 | | mRNA#4 | 25.088339 | 0 | 17.667845 | 4.0636042 | 17.137809 | 36.042403 | 1 | 100 | | mRNA#5 | 19.340659 | 0 | 16.043956 | 0 | 13.553114 | 51.062271 | 1 | 100 | # Appendix 8. Gene properties identified in shRNA Group A Location Type(s) Type(s) Type(s) Type(s) Type(s) Type(s) Type(s) Type(s) | Log Ratio | Symbol | Entrez Gene Name | Location | Type(s) | |------------------|-------------------------|---|---------------------|-------------------------| | | TSNAX | translin-associated factor X | Nucleus | transporter | | -1.967 | SYT4 | synaptotagmin IV | | transporter | | -1.935 | SLC50A1 | solute carrier family 50 (sugar transporter), member 1 | Plasma Membrane | | | -1.881 | ABCG1 | ATP-binding cassette, sub-family G (WHITE), member 1 | | | | -1.848 | ATP11C | ATPase, class VI, type 11C | | | | -1.848 | SV2B | synaptic vesicle glycoprotein 2B | | | | -1.824 | PANX1 | pannexin 1 | | | | | PIGR | polymeric immunoglobulin receptor | | transporter | | | | | | transporter | | -1.806 | SLC25A36 | solute carrier family 25 (pyrimidine nucleotide carrier), member 36 | | transporter | | -1.793 | SLC35D2 | solute carrier family 35, member D2 | Cytoplasm | | | -1.780 | GJA3 | gap junction protein, alpha 3, 46kDa | Plasma Membrane | | | -1.780 | SLC26A5 | solute carrier family 26, member 5 (prestin) | | transporter | | | TFRC | transferrin receptor (p90, CD71) | | transporter | | -1.752 | SLC25A21 | solute carrier family 25 (mitochondrial oxoadipate carrier), member 21 | | transporter | | | NPC1L1 | NPC1-like 1 | | transporter | | -1.708 | AP2A1 | adaptor-related protein complex 2, alpha 1 subunit | Cytoplasm | transporter | | -1.675 | SLC10A1 | solute carrier family 10 (sodium/bile acid cotransporter family), member 1 | Plasma Membrane | | | -1.639 | SLC39A1 | solute carrier family 39 (zinc transporter), member 1 | | transporter | | | TMED1 | transmembrane emp24 protein transport domain containing 1 | Extracellular Space | | | -1.611 | ABCC4 | ATP-binding cassette, sub-family C (CFTR/MRP), member 4 | | | | | TOMM22 | translocase of outer mitochondrial membrane 22 homolog (yeast) | Cytoplasm | transporter | | -1.591 | SLC12A2 | solute carrier family 12 (sodium/potassium/chloride transporters), member 2 | Plasma Membrane | | | -1.591 | STEAP2 | STEAP family member 2, metalloreductase | | transporter | | -1.580 | FABP7 | fatty acid binding protein 7, brain | Cytoplasm | transporter | | -1.547 | AQP7 | aquaporin 7 | Plasma Membrane | transporter | | -1.536 | SMC2 | structural maintenance of chromosomes 2 | Nucleus | transporter | | -1.512 | GJB3 | gap junction protein, beta 3, 31kDa | Plasma Membrane | transporter | | -2.060 | CLEC1A | C-type lectin domain family 1, member A | Plasma Membrane | transmembrane receptor | | -1.891 | IL1RAP | interleukin 1 receptor accessory protein | Plasma Membrane | transmembrane receptor | | -1.854 | CHRNA7 | cholinergic receptor, nicotinic, alpha 7 (neuronal) | Plasma Membrane | transmembrane receptor | | -1.830 | IL13RA2 | interleukin 13 receptor, alpha 2 | Plasma Membrane | transmembrane receptor | | -1.780 | SLAMF1 | signaling lymphocytic activation molecule family member 1 | Plasma Membrane | transmembrane receptor | | -1.760 | CD3G | CD3g molecule, gamma (CD3-TCR complex) | | transmembrane receptor | | | IGF1R | insulin-like growth factor 1 receptor | | transmembrane receptor | | | IL17RC | interleukin 17 receptor C | | transmembrane receptor | | | IL23R | interleukin 23 receptor | | transmembrane receptor | | | PTCH1 | patched 1 | | | | | MRPL32 | mitochondrial ribosomal protein L32 | | translation regulator | | | EIF4G2 | eukaryotic translation initiation factor 4 gamma, 2 | | translation regulator | | | | eukaryotic translation initiation factor 5A2 | | | | | EIF5A2 | | | translation regulator | | | TMF1 | TATA element modulatory factor 1 | | transcription regulator | | | Taf12 | TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor | | transcription regulator | | | EZH2 | enhancer of zeste homolog 2 (Drosophila) | | transcription regulator | | -2.000 | GTF2F2 | general transcription factor IIF, polypeptide 2, 30kDa | | transcription regulator | | | PROP1 | PROP paired-like homeobox 1 | | transcription regulator | | | ZEB2 | zinc finger E-box binding homeobox 2 | | transcription regulator | | -1.916 | KDM4A | lysine (K)-specific demethylase 4A | | transcription regulator | | | Hmgb1 | high mobility group box 1 | | transcription regulator | | -1.881 | MEF2C | myocyte enhancer factor 2C | Nucleus | transcription regulator | | -1.859 | HNF4G | hepatocyte nuclear factor 4, gamma | Nucleus | transcription regulator | | -1.842 | NOBOX | NOBOX oogenesis homeobox | Nucleus | transcription regulator | | -1.836 | MEOX1 | mesenchyme homeobox 1 | Nucleus | transcription regulator | | | URI1 | URI1, prefoldin-like chaperone | | transcription regulator | | | TRANK1 | tetratricopeptide repeat and ankyrin repeat containing 1 | | transcription regulator | | -1.773 | SOX5 | SRY (sex determining region Y)-box 5 | | transcription regulator | | -1.723 | CCNT1 | cyclin T1 | | transcription regulator | | | TRPS1 | trichorhinophalangeal syndrome I | | transcription regulator | | -1.666 | TAF7 | TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 55kDa | | transcription regulator | | -1.648 | DMBX1 | diencephalon/mesencephalon homeobox 1 | | transcription regulator | | | | | | | | -1.630
-1.611 | Obox6 (includes others) | oocyte specific homeobox 6 | | transcription regulator | | | MED21 | mediator complex subunit 21 | | transcription regulator | | | FOXA2 | forkhead box A2 | | transcription regulator | | -1.601 | GSC | goosecoid homeobox | | transcription regulator | | | HIVEP2 | human immunodeficiency virus type I enhancer binding protein 2 | | transcription regulator | | | HOXB8 | homeobox B8 | | transcription regulator | | | HOPX | HOP homeobox | | transcription regulator | | -1.570 | PSMD9 | proteasome (prosome, macropain) 26S subunit, non-ATPase, 9 | | transcription regulator | | | NCOA2 | nuclear receptor coactivator 2 | | transcription regulator | | -1.536 | ASB4 | ankyrin repeat and SOCS box containing 4 | | transcription regulator | | -1.524 | KLF5 | Kruppel-like
factor 5 (intestinal) | | transcription regulator | | -1.512 | CASP8AP2 | caspase 8 associated protein 2 | | transcription regulator | | -2.146 | CDKN3 | cyclin-dependent kinase inhibitor 3 | | phosphatase | | -1.906 | PTPRN | protein tyrosine phosphatase, receptor type, N | Plasma Membrane | phosphatase | | -1.891 | SSU72 | SSU72 RNA polymerase II CTD phosphatase homolog (S. cerevisiae) | unknown | phosphatase | | -1.830 | CDC14A | CDC14 cell division cycle 14 homolog A (S. cerevisiae) | | phosphatase | | -1.752 | SSH3 | slingshot homolog 3 (Drosophila) | | phosphatase | | -1.723 | PPAPDC1A | phosphatidic acid phosphatase type 2 domain containing 1A | | phosphatase | | -1.700 | DUSP27 | dual specificity phosphatase 27 (putative) | unknown | phosphatase | | -1.675 | PPP4C | protein phosphatase 4, catalytic subunit | Cytoplasm | phosphatase | | -1.630 | Dusp21 | dual specificity phosphatase 21 | Cytoplasm | phosphatase | | -1.621 | SSH1 | slingshot homolog 1 (Drosophila) | Cytoplasm | phosphatase | | -1.611 | PPP1CC | protein phosphatase 1, catalytic subunit, gamma isozyme | Cytoplasm | phosphatase | | -1.547 | PTPRK | protein tyrosine phosphatase, receptor type, K | | phosphatase | | -2.084 | USP24 | ubiquitin specific peptidase 24 | unknown | peptidase | | -1.931 | PSMA1 | proteasome (prosome, macropain) subunit, alpha type, 1 | Cytoplasm | peptidase | | -1.886 | DPP7 | dipeptidyl-peptidase 7 | Cytoplasm | peptidase | | -1.859 | USP40 | ubiquitin specific peptidase 40 | unknown | peptidase | | -1.745 | ECEL1 | endothelin converting enzyme-like 1 | | peptidase | | | | | | | | -1.738 | KLK3 | kallikrein-related peptidase 3 | | peptidase | | -1.683 | PIGK | phosphatidylinositol glycan anchor biosynthesis, class K | Cytoplasm | peptidase | | -1.611 | TROAP | trophinin associated protein | Cytoplasm | peptidase | | -1.601 | SPAG5 | sperm associated antigen 5 | Nucleus | peptidase | | -1.591 | ADAMTS12 | ADAM metallopeptidase with thrombospondin type 1 motif, 12 | | peptidase | | -1.580 | ADAM7 | ADAM metallopeptidase domain 7 | | peptidase | | -1.580 | RNF130 | ring finger protein 130 | Cytoplasm | peptidase | | -1.580 | USP33 | ubiquitin specific peptidase 33 | Cytoplasm | peptidase | | -1.570 | XPNPEP2 | X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound | | peptidase | | -1.558 | PSMC2 | proteasome (prosome, macropain) 26S subunit, ATPase, 2 | Nucleus | peptidase | | | | | | | | -1.512
-2.434 | BAP1
ISM1 | BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase) isthmin 1 homolog (zebrafish) | Nucleus
unknown | peptidase
other | |------------------|-------------------------------------|---|--|--------------------| | -2.236 | A930024N18Rik | RIKEN cDNA A930024N18 gene | unknown | other | | -2.207 | 2900092D14Rik | RIKEN cDNA 2900092D14 gene | unknown | other | | -2.134
-2.125 | 1700016D06Rik
5031425E22Rik | RIKEN cDNA 1700016D06 gene
RIKEN cDNA 5031425E22 gene | unknown
unknown | other
other | | -2.125 | AI182371 | expressed sequence Al182371 | unknown | other | | -2.091 | Speer5-ps1 | spermatogenesis associated glutamate (E)-rich protein 5, pseudogene 1 | unknown | other | | -2.084
-2.084 | Gm16440 (includes others)
SPINK5 | predicted gene 16440 serine peptidase inhibitor, Kazal type 5 | unknown
Extracellular Space | other
other | | -2.084 | RBFOX1 | RNA binding protein, fox-1 homolog (C. elegans) 1 | Cytoplasm | other | | -2.067 | PAQR8 | progestin and adipoQ receptor family member VIII | Plasma Membrane | other | | -2.064 | KRT18 | keratin 18 | Cytoplasm | other | | -2.064
-2.057 | TLE3
EPS8L3 | transducin-like enhancer of split 3 (E(sp1) homolog, Drosophila) EPS8-like 3 | Nucleus
Extracellular Space | other
other | | -2.057 | PKHD1 | polycystic kidney and hepatic disease 1 (autosomal recessive) | Plasma Membrane | other | | -2.053 | BCL2L12 | BCL2-like 12 (proline rich) | unknown | other | | -2.046
-2.028 | KDM6B
A630034I12Rik | lysine (K)-specific demethylase 6B
RIKEN cDNA A630034I12 gene | Extracellular Space
unknown | other
other | | -2.028 | C230029F24Rik | RIKEN CDNA A030034112 gene | unknown | other | | -2.028 | SYNCRIP | synaptotagmin binding, cytoplasmic RNA interacting protein | Nucleus | other | | -2.024 | ARHGAP11A | Rho GTPase activating protein 11A | Cytoplasm | other | | -2.024
-2.024 | CNN1
RASSF10 | calponin 1, basic, smooth muscle Ras association (RalGDS/AF-6) domain family (N-terminal) member 10 | Cytoplasm
unknown | other
other | | -2.016 | KRT76 | keratin 76 | Cytoplasm | other | | -2.016 | Skint9 | selection and upkeep of intraepithelial T cells 9 | unknown | other | | -2.016
-2.012 | VPS37A
ERRFI1 | vacuolar protein sorting 37 homolog A (S. cerevisiae) ERBB receptor feedback inhibitor 1 | Cytoplasm
Cytoplasm | other
other | | -2.012 | NBEAL1 | neurobeachin-like 1 | unknown | other | | -2.008 | DENND2A | DENN/MADD domain containing 2A | unknown | other | | -2.000
-1.984 | CNOT1
FAM82A2 | CCR4-NOT transcription complex, subunit 1 | Cytoplasm | other
other | | -1.964 | SPRR4 | family with sequence similarity 82, member A2 small proline-rich protein 4 | Cytoplasm
Cytoplasm | other | | -1.967 | ADCYAP1 | adenylate cyclase activating polypeptide 1 (pituitary) | Extracellular Space | other | | -1.963 | Gm5102 | predicted gene 5102 | unknown | other | | -1.963
-1.954 | LIX1L
PCDHB4 | Lix1 homolog (mouse)-like protocadherin beta 4 | unknown
Plasma Membrane | other
other | | -1.945 | BC002163 | NADH dehydrogenase Fe-S protein 5 pseudogene | unknown | other | | -1.945 | XAB2 | XPA binding protein 2 | Nucleus | other | | -1.940
-1.935 | FANCI
A930024E05Rik | Fanconi anemia, complementation group I
RIKEN cDNA A930024E05 gene | Nucleus
unknown | other
other | | -1.935 | FAM154A | family with sequence similarity 154, member A | unknown | other | | -1.931 | HIST1H2BN | histone cluster 1, H2bn | Nucleus | other | | -1.931 | IGFN1 | immunoglobulin-like and fibronectin type III domain containing 1 | Nucleus | other | | -1.931
-1.916 | TRA2A
SERF1A/SERF1B | transformer 2 alpha homolog (Drosophila)
small EDRK-rich factor 1A (telomeric) | Nucleus
unknown | other
other | | -1.916 | TIMP2 | TIMP metallopeptidase inhibitor 2 | Extracellular Space | other | | -1.912 | Cldn13 | claudin 13 | Plasma Membrane | other | | -1.906
-1.906 | DCTN5
ENAM | dynactin 5 (p25)
enamelin | Cytoplasm
Extracellular Space | other
other | | -1.906 | TMC2 | transmembrane channel-like 2 | Plasma Membrane | other | | -1.902 | CDC27 | cell division cycle 27 homolog (S. cerevisiae) | Nucleus | other | | -1.896 | Gm5105 | predicted gene 5105 | unknown | other | | -1.891
-1.886 | KLHDC1
4932443I19Rik | kelch domain containing 1
RIKEN cDNA 4932443I19 gene | Cytoplasm
unknown | other
other | | -1.886 | MLEC | malectin | Plasma Membrane | other | | -1.881 | 1700018A04Rik | RIKEN cDNA 1700018A04 gene | unknown | other | | -1.881
-1.870 | CLDN15
Cst12 | claudin 15
cystatin 12 | Plasma Membrane
Extracellular Space | other
other | | -1.865 | C11orf57 | chromosome 11 open reading frame 57 | unknown | other | | -1.865 | TEX28 | testis expressed 28 | unknown | other | | -1.854 | ABI2 | abl-interactor 2 | Cytoplasm | other | | -1.854
-1.854 | MAGEB3
NBEAL2 | melanoma antigen family B, 3
neurobeachin-like 2 | unknown
Cytoplasm | other
other | | -1.848 | 6530415H11Rik | RIKEN cDNA 6530415H11 gene | unknown | other | | -1.848 | ADAMTSL5 | ADAMTS-like 5 | Extracellular Space | other | | -1.848
-1.842 | ZC3H6
NXPH4 | zinc finger CCCH-type containing 6 neurexophilin 4 | unknown
Extracellular Space | other
other | | -1.836 | MMRN2 | multimerin 2 | Extracellular Space | other | | -1.836 | MTHFSD | methenyltetrahydrofolate synthetase domain containing | unknown | other | | -1.836
-1.830 | ZNF41
A630001O12Rik | zinc finger protein 41 RIKEN cDNA A630001O12 gene | Nucleus
unknown | other
other | | -1.830 | ORC1 | origin recognition complex, subunit 1 | Nucleus | other | | -1.818 | DDB1 | damage-specific DNA binding protein 1, 127kDa | Nucleus | other | | -1.818
-1.812 | PHF14
LMAN1 | PHD finger protein 14
lectin, mannose-binding, 1 | unknown
Cytoplasm | other
other | | -1.812 | A130014A01Rik | RIKEN cDNA A130014A01 gene | unknown | other | | -1.806 | ARRDC4 | arrestin domain containing 4 | unknown | other | | -1.806 | LPCAT3 | lysophosphatidylcholine acyltransferase 3 | Plasma Membrane | other | | -1.800
-1.800 | 1700027J07Rik
BC051070 | RIKEN cDNA 1700027J07 gene
cDNA sequence BC051070 | unknown
unknown | other
other | | -1.800 | CC2D2A | coiled-coil and C2 domain containing 2A | unknown | other | | -1.800 | ESCO2 | establishment of cohesion 1 homolog 2 (S. cerevisiae) | Nucleus | other | | -1.793
-1.793 | 4921509J17Rik
ANKRD37 | RIKEN cDNA 4921509J17 gene
ankyrin repeat domain 37 | unknown
unknown | other
other | | -1.793 | OTUD4 | OTU domain containing 4 | unknown | other | | -1.793 | ZNF710 | zinc finger protein 710 | Nucleus | other | | -1.787 | NMRAL1 | NmrA-like family domain containing 1 | Nucleus | other | | -1.787
-1.780 | SHB
BTBD3 | Src homology 2 domain containing adaptor protein B
BTB (POZ) domain containing 3 | Cytoplasm
unknown | other
other | | -1.780 | PTCHD4 | patched domain containing 4 | unknown | other | | -1.766 | NASP | nuclear autoantigenic sperm protein (histone-binding) | Nucleus | other | | -1.760
-1.760 | CDR2L
LTBP3 | cerebellar degeneration-related protein 2-like latent transforming growth factor beta binding protein 3 | unknown
Extracellular Space | other
other | | -1.760 | PVRL3 | poliovirus receptor-related 3 | Plasma Membrane | other | | -1.760 | RNPC3 | RNA-binding region
(RNP1, RRM) containing 3 | Nucleus | other | | -1.760 | TBC1D5 | TBC1 domain family, member 5 | Extracellular Space | other | | -1.760
-1.752 | UNKL
9130024F11Rik | unkempt homolog (Drosophila)-like
RIKEN cDNA 9130024F11 gene | unknown
unknown | other
other | | -1.752 | A430028G04Rik | RIKEN cDNA 9130024F11 gene | unknown | other | | -1.752 | GTSF1 | gametocyte specific factor 1 | Cytoplasm | other | | -1.752
-1.752 | PDCL3
SP110 | phosducin-like 3
SP110 nuclear body protein | Cytoplasm
Nucleus | other
other | | -1.752 | 4931407J08Rik | RIKEN cDNA 4931407J08 gene | unknown | other | | -1.738 | BC106179 | cDNA sequence BC106179 | unknown | other | | -1.738
-1.731 | MS4A13
A530013C23Bib | membrane-spanning 4-domains, subfamily A, member 13 | unknown | other | | -1.731 | A530013C23Rik | RIKEN cDNA A530013C23 gene | unknown | other | | | | | | | | -1.731 | CRNKL1 | crooked neck pre-mRNA splicing factor-like 1 (Drosophila) | Nucleus | other | |------------------|---------------------------------|--|--------------------------------|----------------| | -1.731 | DOK4 | docking protein 4 | Plasma Membrane | other | | -1.731 | DYNC2LI1 | dynein, cytoplasmic 2, light intermediate chain 1 | Cytoplasm | other | | -1.731
-1.731 | PER2
WDR60 | period circadian clock 2
WD repeat domain 60 | Nucleus
Extracellular Space | other
other | | -1.723 | C12orf68 | chromosome 12 open reading frame 68 | Cytoplasm | other | | -1.723 | MLPH | melanophilin | Cytoplasm | other | | -1.723 | Nlrp4g | NLR family, pyrin domain containing 4G | unknown | other | | -1.723 | PALM2 | paralemmin 2 | Plasma Membrane | other | | -1.723 | PCDHB2 | protocadherin beta 2
SAM and SH3 domain containing 3 | Plasma Membrane | other | | -1.723
-1.723 | SASH3
SEL1L2 | sel-1 suppressor of lin-12-like 2 (C. elegans) | Cytoplasm
unknown | other
other | | -1.723 | TMEM140 | transmembrane protein 140 | unknown | other | | -1.715 | Al662270 | expressed sequence Al662270 | unknown | other | | -1.715 | BEND6 | BEN domain containing 6 | unknown | other | | -1.715 | EVPL | envoplakin | Plasma Membrane | other | | -1.715 | FGD6 | FYVE, RhoGEF and PH domain containing 6 | Cytoplasm | other | | -1.715 | Gm16010 | predicted gene 16010 | unknown | other | | -1.715 | SELT
THAP11 | selenoprotein T THAP domain containing 11 | Cytoplasm
Nucleus | other | | -1.715
-1.715 | TRIM67 | tripartite motif containing 17 | Cytoplasm | other
other | | -1.715 | Wdr95 | WD40 repeat domain 95 | unknown | other | | -1.708 | Vmn2r1 | vomeronasal 2, receptor 1 | Plasma Membrane | other | | -1.700 | D430018E03Rik | RIKEN cDNA D430018E03 gene | unknown | other | | -1.692 | RAD51AP1 | RAD51 associated protein 1 | Nucleus | other | | -1.683 | BC030500 | cDNA sequence BC030500 | unknown | other | | -1.683 | C5orf49 | chromosome 5 open reading frame 49 | unknown | other | | -1.683
-1.683 | D130079A08Rik
Gm9837 | RIKEN cDNA D130079A08 gene predicted gene 9837 | unknown
unknown | other
other | | -1.683 | RBM33 | RNA binding motif protein 33 | unknown | other | | -1.675 | FRAS1 | Fraser syndrome 1 | Extracellular Space | other | | -1.675 | ZNF526 | zinc finger protein 526 | unknown | other | | -1.666 | 4930479M11Rik | RIKEN cDNA 4930479M11 gene | unknown | other | | -1.666 | CDH12 | cadherin 12, type 2 (N-cadherin 2) | Plasma Membrane | other | | -1.666 | CIDEB | cell death-inducing DFFA-like effector b | Cytoplasm | other | | -1.666 | Gm14743 (includes others) | predicted gene 14743 | Extracellular Space | | | -1.666 | KIAA0020 | KIAA0020 | Nucleus | other | | -1.666
-1.658 | Rbm25
4933434M16Rik | RNA binding motif protein 25
RIKEN cDNA 4933434M16 gene | unknown
unknown | other
other | | -1.658 | CDH24 | cadherin 24, type 2 | Plasma Membrane | other | | -1.658 | CLPTM1 | cleft lip and palate associated transmembrane protein 1 | Plasma Membrane | other | | -1.658 | FAM132B | family with sequence similarity 132, member B | Extracellular Space | | | -1.658 | Pldi | polymorphic derived intron containing | unknown . | other | | -1.658 | RFT1 | RFT1 homolog (S. cerevisiae) | unknown | other | | -1.648 | IGFBP4 | insulin-like growth factor binding protein 4 | Extracellular Space | | | -1.648 | Nudt13 | nudix (nucleoside diphosphate linked moiety X)-type motif 13 | unknown | other | | -1.648
-1.639 | PLEK
BAIAP2L1 | pleckstrin
BAI1-associated protein 2-like 1 | Cytoplasm
Cytoplasm | other
other | | -1.639 | MICALL2 | MICAL-like 2 | Cytoplasm | other | | -1.639 | Zfp932 (includes others) | zinc finger protein 932 | Nucleus | other | | -1.630 | CCDC134 | coiled-coil domain containing 134 | unknown | other | | -1.630 | CTNNBL1 | catenin, beta like 1 | Nucleus | other | | -1.630 | PRDM5 | PR domain containing 5 | Nucleus | other | | -1.630 | PVALB | parvalbumin | Cytoplasm | other | | -1.621 | Defb2 | defensin beta 2 | unknown | other | | -1.621
-1.621 | FITM1
HSPA12A | fat storage-inducing transmembrane protein 1
heat shock 70kDa protein 12A | Extracellular Space
unknown | other
other | | -1.621 | RBM46 | RNA binding motif protein 46 | unknown | other | | -1.621 | Spink6 | serine peptidase inhibitor, Kazal type 6 | Extracellular Space | | | -1.621 | TMEM120B | transmembrane protein 120B | unknown | other | | -1.621 | TMEM35 | transmembrane protein 35 | unknown | other | | -1.611 | COL28A1 | collagen, type XXVIII, alpha 1 | Extracellular Space | other | | -1.611 | Sbp/Sbpl | spermine binding protein | Extracellular Space | other | | -1.601 | B830007D08Rik
CDH20 | RIKEN cDNA B830007D08 gene | unknown | other | | -1.601
-1.601 | Zfp295 | cadherin 20, type 2
zinc finger protein 295 | Plasma Membrane
unknown | other
other | | -1.591 | IGFBP3 | insulin-like growth factor binding protein 3 | Extracellular Space | other | | -1.591 | MFSD4 | major facilitator superfamily domain containing 4 | unknown | other | | -1.591 | OLFML2B | olfactomedin-like 2B | Extracellular Space | other | | -1.591 | PTPRQ | protein tyrosine phosphatase, receptor type, Q | unknown | other | | -1.580 | BC053393 | cDNA sequence BC053393 | unknown | other | | -1.580 | GLT6D1 | glycosyltransferase 6 domain containing 1 | unknown
Nucleus | other | | -1.580
-1.570 | ZBTB10
ARMC3 | zinc finger and BTB domain containing 10 armadillo repeat containing 3 | Nucleus
unknown | other
other | | -1.570
-1.570 | B930095G15Rik | RIKEN cDNA B930095G15 gene | unknown | other | | -1.570 | C87414 (includes others) | expressed sequence C87414 | unknown | other | | -1.570 | Calm1 (includes others) | calmodulin 1 | Nucleus | other | | -1.570 | COL18A1 | collagen, type XVIII, alpha 1 | Extracellular Space | | | -1.570 | MRPS28 | mitochondrial ribosomal protein S28 | Cytoplasm | other | | -1.558 | Cabyr | calcium binding tyrosine-(Y)-phosphorylation regulated | Nucleus | other | | -1.558
-1.558 | HMGB3
KIAA1432 | high mobility group box 3
KIAA1432 | Nucleus
unknown | other
other | | -1.558
-1.558 | NOC3L | nucleolar complex associated 3 homolog (S. cerevisiae) | Nucleus | other | | -1.558 | PCP2 | Purkinje cell protein 2 | Cytoplasm | other | | -1.558 | TSPAN9 | tetraspanin 9 | Plasma Membrane | other | | -1.547 | 2610305D13Rik (includes others) | RIKEN cDNA 2610305D13 gene | unknown | other | | -1.547 | Al314278 | expressed sequence Al314278 | unknown | other | | -1.547 | C9orf40 | chromosome 9 open reading frame 40 | unknown | other | | -1.547
-1.547 | CORO2A
Dsa1c | coronin, actin binding protein, 2A | Cytoplasm | other | | -1.547
-1.547 | Dsg1c
ECT2 | desmoglein 1 gamma epithelial cell transforming sequence 2 oncogene | Plasma Membrane
Nucleus | other
other | | -1.547
-1.547 | GLMN | glomulin, FKBP associated protein | Cytoplasm | other | | -1.547 | Gm7133 (includes others) | predicted gene 7133 | unknown | other | | -1.547 | GRXCR2 | glutaredoxin, cysteine rich 2 | unknown | other | | -1.547 | RFC4 | replication factor C (activator 1) 4, 37kDa | Nucleus | other | | -1.547 | SLX4 | SLX4 structure-specific endonuclease subunit homolog (S. cerevisiae) | Nucleus | other | | -1.547 | ZNF16 | zinc finger protein 16 | Nucleus | other | | -1.536 | 1700008K24Rik | RIKEN cDNA 1700008K24 gene | unknown | other | | -1.536
-1.536 | C2CD2
FHL1 | C2 calcium-dependent domain containing 2 four and a half LIM domains 1 | Cytoplasm
Cytoplasm | other
other | | -1.536 | PTCHD1 | patched domain containing 1 | Plasma Membrane | other | | -1.536 | RPF1 | ribosome production factor 1 homolog (S. cerevisiae) | Nucleus | other | | -1.536 | Siglech | sialic acid binding Ig-like lectin H | Plasma Membrane | other | | -1.536 | TOMM20L | translocase of outer mitochondrial membrane 20 homolog (yeast)-like | unknown | other | | -1.524 | 1700061A03Rik | RIKEN cDNA 1700061A03 gene | unknown | other | | -1.524 | C230013L11Rik | RIKEN cDNA C230013L11 gene | unknown | other | | -1.524 | GOLIM4 | golgi integral membrane protein 4 | Cytoplasm | other | | | | | | | | 1.524 | KIF15 | kinesin family member 15 | Nucleus | other | |------------------|-----------------------------|--|------------------------------------|--| | 1.524
1.524 | RSRC2
SCAF4 | arginine/serine-rich coiled-coil 2
SR-related CTD-associated factor 4 | unknown
Nucleus | other
other | | 1.524 | VWC2L | von Willebrand factor C domain containing protein 2-like | Extracellular Space | other | | 1.524 | ZSWIM3 | zinc finger, SWIM-type containing 3 | unknown | other | | 1.512 | 1700007K09Rik | RIKEN cDNA 1700007K09 gene | unknown | other | | 1.512 | FAM192A | family with sequence similarity 192, member A | Nucleus | other | | 1.512 | Nr2e1
SPAG9 | nuclear receptor subfamily 2,
group E, member 1 | unknown | other | | ·1.512
·1.512 | ZNF469 | sperm associated antigen 9 zinc finger protein 469 | Plasma Membrane
Nucleus | other
other | | 2.081 | ALPK3 | alpha-kinase 3 | Nucleus | kinase | | 1.916 | AATK | apoptosis-associated tyrosine kinase | Cytoplasm | kinase | | 1.881 | FXN | frataxin | Cytoplasm | kinase | | 1.836 | PI4K2A | phosphatidylinositol 4-kinase type 2 alpha | Cytoplasm | kinase | | 1.818 | ACVR1B | activin A receptor, type IB | Plasma Membrane | kinase | | 1.708
1.700 | EFNA4
TBCK | ephrin-A4 TBC1 domain containing kinase | Plasma Membrane
unknown | kinase
kinase | | 1.621 | BUB1 | | Nucleus | kinase | | 1.591 | IRAK2 | interleukin-1 receptor-associated kinase 2 | | kinase | | 1.570 | FRK | fyn-related kinase | Nucleus | kinase | | 1.570 | PHKB | phosphorylase kinase, beta | Cytoplasm | kinase | | 1.926 | GRID1 | glutamate receptor, ionotropic, delta 1 | Plasma Membrane | ion channel | | 1.926 | KCNIP4 | Kv channel interacting protein 4 | Plasma Membrane | ion channel | | 1.848
1.787 | GRIA3
TRPC3 | glutamate receptor, ionotropic, AMPA 3
transient receptor potential cation channel, subfamily C, member 3 | Plasma Membrane
Plasma Membrane | ion channel
ion channel | | 1.773 | TMEM38B | transmembrane protein 38B | Nucleus | ion channel | | 1.738 | P2RX6 | purinergic receptor P2X, ligand-gated ion channel, 6 | Plasma Membrane | ion channel | | 1.639 | GLRA1 | glycine receptor, alpha 1 | Plasma Membrane | ion channel | | 2.125 | FGF23 | fibroblast growth factor 23 | Extracellular Space | growth factor | | 1.683 | BMP3 | bone morphogenetic protein 3 | | growth factor | | 2.212 | Vmn1r81 | vomeronasal 1 receptor 81 | Plasma Membrane | G-protein coupled receptor | | 2.087 | Olfr1271/Olfr142 | olfactory receptor 1271 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | 2.042
2.008 | TM2D1
ADRB3 | TM2 domain containing 1 adrenoceptor beta 3 | Plasma Membrane | G-protein coupled receptor | | 1.949 | OR4N5 | olfactory receptor, family 4, subfamily N, member 5 | Plasma Membrane | G-protein coupled receptor | | 1.945 | Olfr1080 (includes others) | olfactory receptor 1082 | Plasma Membrane | G-protein coupled receptor | | 1.912 | Olfr1220 | olfactory receptor 1220 | Plasma Membrane | G-protein coupled receptor | | 1.876 | OPN1SW | opsin 1 (cone pigments), short-wave-sensitive | Plasma Membrane | G-protein coupled receptor | | 1.842 | Olfr1120 | | Plasma Membrane | G-protein coupled receptor | | 1.836 | OPRK1 | opioid receptor, kappa 1 | Plasma Membrane | G-protein coupled receptor | | 1.836
1.836 | Vmn1r20/Vmn1r27
Vmn1r234 | vomeronasal 1 receptor 27
vomeronasal 1 receptor 234 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | 1.793 | GHRHR | growth hormone releasing hormone receptor | Plasma Membrane | G-protein coupled receptor | | 1.787 | OR11A1 | | Plasma Membrane | G-protein coupled receptor | | 1.780 | TSHR | thyroid stimulating hormone receptor | Plasma Membrane | G-protein coupled receptor | | 1.738 | Olfr959 | olfactory receptor 959 | Plasma Membrane | G-protein coupled receptor | | 1.731 | CCR5 | chemokine (C-C motif) receptor 5 (gene/pseudogene) | Plasma Membrane | G-protein coupled receptor | | 1.708 | CCR2 | chemokine (C-C motif) receptor 2 | Plasma Membrane | G-protein coupled receptor | | 1.708
1.708 | Olfr251/Olfr898
Olfr672 | olfactory receptor 898
olfactory receptor 672 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | 1.675 | Olfr887 | olfactory receptor 887 | Plasma Membrane | G-protein coupled receptor | | 1.666 | ADORA2B | adenosine A2b receptor | Plasma Membrane | G-protein coupled receptor | | 1.666 | GPR77 | G protein-coupled receptor 77 | Plasma Membrane | G-protein coupled receptor | | 1.648 | Olfr1302 | olfactory receptor 1302 | Plasma Membrane | G-protein coupled receptor | | 1.630 | GPR61 | G protein-coupled receptor 61 | Plasma Membrane | G-protein coupled receptor | | 1.630 | Olfr262 | olfactory receptor 262 | Plasma Membrane | G-protein coupled receptor | | 1.621
1.611 | HTR2A
Olfr1230 | 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled
olfactory receptor 1230 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | 1.611 | OR6C68 | olfactory receptor, family 6, subfamily C, member 68 | Plasma Membrane | G-protein coupled receptor | | 1.601 | Olfr1256 | olfactory receptor 1256 | Plasma Membrane | G-protein coupled receptor | | 1.601 | Vmn1r188 (includes others) | vomeronasal 1 receptor 217 | Plasma Membrane | G-protein coupled receptor | | 1.591 | Olfr1242 | olfactory receptor 1242 | Plasma Membrane | G-protein coupled receptor | | 1.591 | Olfr951/Olfr954 | olfactory receptor 954 | Plasma Membrane | G-protein coupled receptor | | 1.580
1.570 | GPRC5B
Olfr116 | G protein-coupled receptor, family C, group 5, member B
olfactory receptor 116 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | 1.570 | Olfr38 | olfactory receptor 38 | Plasma Membrane | G-protein coupled receptor | | 1.570 | OR14C36 | olfactory receptor, family 14, subfamily C, member 36 | Plasma Membrane | G-protein coupled receptor | | 1.558 | Olfr1364 | olfactory receptor 1364 | Plasma Membrane | G-protein coupled receptor | | 1.547 | OR11H6 | olfactory receptor, family 11, subfamily H, member 6 | Plasma Membrane | G-protein coupled receptor | | 1.536 | Olfr1301 | olfactory receptor 1301 | Plasma Membrane | G-protein coupled receptor | | 1.512
2.192 | OR7G2
FBXO4 | olfactory receptor, family 7, subfamily G, member 2
F-box protein 4 | Plasma Membrane
Nucleus | G-protein coupled receptor
enzyme | | 2.166 | GDPD3 | glycerophosphodiester phosphodiesterase domain containing 3 | unknown | enzyme | | 2.125 | PYCRL | pyrroline-5-carboxylate reductase-like | unknown | enzyme | | 2.107 | DIS3L | DIS3 mitotic control homolog (S. cerevisiae)-like | Cytoplasm | enzyme | | 2.100 | ANAPC10 | anaphase promoting complex subunit 10 | Nucleus | enzyme | | 2.074 | IDH3B | isocitrate dehydrogenase 3 (NAD+) beta | Cytoplasm | enzyme | | 2.053
2.050 | HS6ST1
FUT2 | heparan sulfate 6-O-sulfotransferase 1
fucosyltransferase 2 (secretor status included) | Plasma Membrane
Cytoplasm | enzyme
enzyme | | 2.050 | RPP40 | ribonuclease P/MRP 40kDa subunit | Nucleus | enzyme | | 2.024 | MGRN1 | mahogunin ring finger 1, E3 ubiquitin protein ligase | Cytoplasm | enzyme | | 1.992 | Gsta4 | glutathione S-transferase, alpha 4 | Cytoplasm | enzyme | | 1.992 | RAD17 | RAD17 homolog (S. pombe) | Nucleus | enzyme | | 1.980 | SRM | spermidine synthase | Cytoplasm | enzyme | | 1.971 | Rdh1 (includes others) | retinol dehydrogenase 1 (all trans) | Cytoplasm | enzyme | | 1.949
1.949 | AASS
NAV1 | aminoadipate-semialdehyde synthase
neuron navigator 1 | Cytoplasm
Cytoplasm | enzyme
enzyme | | 1.931 | RNF144B | ring finger protein 144B | unknown | enzyme | | 1.926 | PLA2G12B | phospholipase A2, group XIIB | | enzyme | | 1.896 | Ang2 (includes others) | angiogenin, ribonuclease A family, member 2 | Cytoplasm | enzyme | | 1.896 | DHODH | dihydroorotate dehydrogenase (quinone) | Cytoplasm | enzyme | | 1.891 | TRMT61A | tRNA methyltransferase 61 homolog A (S. cerevisiae) | unknown | enzyme | | 1.865
1.854 | UBE2B
IDH1 | ubiquitin-conjugating enzyme E2B isocitrate dehydrogenase 1 (NADP+), soluble | Cytoplasm
Cytoplasm | enzyme
enzyme | | 1.854 | CTPS1 | CTP synthase 1 | Nucleus | enzyme | | 1.830 | FADS2 | fatty acid desaturase 2 | Plasma Membrane | enzyme | | 1.830 | KDM1A | lysine (K)-specific demethylase 1A | Nucleus | enzyme | | 1.812 | NDUFB5 | NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16kDa | Cytoplasm | enzyme | | 1.812 | NIT1 | nitrilase 1 | Cytoplasm | enzyme | | 1.806 | ALDH5A1 | aldehyde dehydrogenase 5 family, member A1 | Cytoplasm | enzyme | | 1.806 | CYP8B1
NDUFV3 | cytochrome P450, family 8, subfamily B, polypeptide 1 NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa | Cytoplasm | enzyme | | 1.806
1.800 | UQCRB | ubiquinol-cytochrome c reductase binding protein | Cytoplasm
Cytoplasm | enzyme
enzyme | | 1.793 | AADAT | aminoadipate aminotransferase | Cytoplasm | enzyme | | 1.793 | HMGCS2 | 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial) | Cytoplasm | enzyme | | 1.793 | NUDT7 | nudix (nucleoside diphosphate linked moiety X)-type motif 7 | Cytoplasm | enzyme | | 1.793 | TKT | transketolase | Cytoplasm | enzyme | | | | | | | | -1.752 | NAT8L | N-acetyltransferase 8-like (GCN5-related, putative) | Cytoplasm | enzyme | |------------------|-------------------------|---|--|------------------| | -1.752 | PTBP1 | polypyrimidine tract binding protein 1 | Nucleus | enzyme | | -1.752 | YWHAZ | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide | Cytoplasm | enzyme | | -1.738 | MSH3 | mutS homolog 3 (E. coli) | Nucleus | enzyme | | -1.731 | ART4 | ADP-ribosyltransferase 4 (Dombrock blood group) | Nucleus | enzyme | | -1.731 | GBA2 | glucosidase, beta (bile acid) 2 | Cytoplasm | enzyme | | -1.723 | 4933425L06Rik | RIKEN cDNA 4933425L06 gene | unknown | enzyme | | -1.723 | CASD1 | CAS1 domain containing 1 | Cytoplasm | enzyme | | -1.723 | Wrn | Werner syndrome | Nucleus | enzyme | | -1.700 | CYP46A1 | cytochrome P450, family 46, subfamily A, polypeptide 1 | Cytoplasm | enzyme | | -1.700 | DSEL | dermatan sulfate epimerase-like | Extracellular Space | | | -1.700 | POLR2A | polymerase (RNA) II (DNA directed) polypeptide A, 220kDa | Nucleus | enzyme | | -1.692 | NPR1 | natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide
receptor A) | Plasma Membrane | enzyme | | -1.683 | MYO5A | myosin VA (heavy chain 12, myoxin) | Cytoplasm | enzyme | | -1.675 | GNA11 | guanine nucleotide binding protein (G protein), alpha 11 (Gg class) | Plasma Membrane | enzyme | | -1.675 | GUCY1A3 | guanylate cyclase 1, soluble, alpha 3 | Cytoplasm | enzyme | | -1.675 | RABGGTB | Rab geranylgransferase, beta subunit | Cytoplasm | enzyme | | -1.666 | Eci3 | enoyl-Coenzyme A delta isomerase 3 | unknown | enzyme | | -1.666 | EXOSC9 | exosome component 9 | Nucleus | enzyme | | -1.666 | PLCH2 | phospholipase C, eta 2 | Cytoplasm | enzyme | | -1.658 | PIGA | phosphatidylinositol glycan anchor biosynthesis, class A | Cytoplasm | enzyme | | -1.648 | HGD | homogentisate 1,2-dioxygenase | Cytoplasm | enzyme | | -1.648 | POLE2 | polymerase (DNA directed), epsilon 2, accessory subunit | Nucleus | enzyme | | -1.648 | RAB5B | RAB5B, member RAS oncogene family | Cytoplasm | enzyme | | -1.639 | PLA2G10 | phospholipase A2, group X | Cytoplasm | enzyme | | -1.639 | SETD6 | SET domain containing 6 | Nucleus | enzyme | | -1.639 | TPST2 | tyrosylprotein sulfotransferase 2 | Cytoplasm | enzyme | | -1.630 | MGRN1 | mahogunin ring finger 1, E3 ubiquitin protein ligase | Cytoplasm | enzyme | | -1.621 | ALKBH3 | alkB, alkylation repair homolog 3 (E. coli) | Nucleus | enzyme | | -1.611 | 2810007J24Rik | RIKEN cDNA 2810007J24 gene | unknown | enzyme | | -1.611 | LDHAL6B | lactate dehydrogenase A-like 6B | Cytoplasm | enzyme | | -1.611 | Oas1d (includes others) | 2'-5' oligoadenylate synthetase 1D | Cytoplasm | enzyme | | -1.591 | ADAT2 | adenosine deaminase, tRNA-specific 2 | unknown | enzyme | | -1.580 | CHD6 | chromodomain helicase DNA binding protein 6 | Nucleus | enzyme | | -1.580 | RAB18 | RAB18, member RAS oncogene family | Cytoplasm | enzyme | | -1.580 | SUOX | sulfite oxidase | Cytoplasm | enzyme | | -1.547 | FBXL7 | F-box and leucine-rich repeat protein 7 | Cytoplasm | enzyme | | -1.547 | NANS | N-acetylneuraminic acid synthase | Cytoplasm | enzyme | | -1.536 | A1CF | APOBEC1 complementation factor | Nucleus | | | -1.536 | ACACB | acetyl-CoA carboxylase beta | Cytoplasm | enzyme
enzyme | | -1.536 | DCLRE1C | DNA cross-link repair 1C | Nucleus | enzyme | | -1.536 | GPX2 | glutathione peroxidase 2 (gastrointestinal) | Cytoplasm | | | -1.536 | POGLUT1 | protein O-glucosyltransferase 1 | Extracellular Space | enzyme | | -1.536 | RFWD3 | ring finger and WD repeat domain 3 | Nucleus | enzyme | | -1.536 | MPO | myeloperoxidase | Cytoplasm | enzyme | | -1.512 | CCL21 | chemokine (C-C motif) ligand 21 | | enzyme | | -2.077
-1.865 | IL36A | | Extracellular Space | | | -1.865
-1.630 | CER1 | interleukin 36, alpha | Extracellular Space
Extracellular Space | | | -1.630
-1.570 | | cerberus 1, cysteine knot superfamily, homolog (Xenopus laevis) | | | | -1.570
-1.536 | CCL27
IL12B | chemokine (C-C motif) ligand 27 | Extracellular Space | | | -1.536 | IL IZD | interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic lymphocyte maturation factor 2, p40) | Extracellular Space | cytokine | ## Appendix 8. Gene properties identified in shRNA Group B Location Type(s) Type(s) | Log Ratio | Symbol | Entrez Gene Name | Location | Type(s) | |--|---|---|--|---| | -2.375 | APBA3 | amyloid beta (A4) precursor protein-binding, family A, member 3 | Cytoplasm | transporter | | -2.212 | SEC61A1 | Sec61 alpha 1 subunit (S. cerevisiae) | Cytoplasm | transporter | | -2.183 | Lcn4 | lipocalin 4 | Extracellular Space | transporter | | -2.178
-2.096 | ABCB1
SLC7A6 | ATP-binding cassette, sub-family B (MDR/TAP), member 1 solute carrier family 7 (amino acid transporter light chain, y+L system), member 6 | Plasma Membrane
Plasma Membrane | transporter
transporter | | -2.096 | KLHL2 | kelch-like 2, Mayven (Drosophila) | Cytoplasm | transporter | | -2.078 | COG1 | component of oligomeric golgi complex 1 | Cytoplasm | transporter | | -2.066 | NUP155 | nucleoporin 155kDa | Nucleus | transporter | | -2.022 | MTX2 | metaxin 2 | Cytoplasm | transporter | | -2.013 | ABCB10 | ATP-binding cassette, sub-family B (MDR/TAP), member 10 | Cytoplasm | transporter | | -2.009
-1.948 | TNPO1
WDR59 | transportin 1
WD repeat domain 59 | Nucleus
unknown | transporter
transporter | | -1.900 | SLC17A6 | solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6 | Plasma Membrane | transporter | | -1.864 | SLC25A17 | solute carrier family 25 (mitochondrial carrier; peroxisomal membrane protein, 34kDa), member 17 | Cytoplasm | transporter | | -1.846 | ABCD1 | ATP-binding cassette, sub-family D (ALD), member 1 | Plasma Membrane | transporter | | -1.833 | Gja6 | gap junction protein, alpha 6 | Plasma Membrane | transporter | | -1.812
-1.805 | ABCG8
ATP5G3 | ATP-binding cassette, sub-family G (WHITE), member 8 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9) | Plasma Membrane
Cytoplasm | transporter
transporter | | -1.761 | HBZ | hemoglobin, zeta | Cytoplasm | transporter | | -1.720 | Slc22a4 | solute carrier family 22 (organic cation transporter), member 4 | Cytoplasm | transporter | | -1.703 | NUP50 | nucleoporin 50kDa | Nucleus | transporter | | -1.703 | TMED2 | transmembrane emp24 domain trafficking protein 2 | Cytoplasm | transporter | | -1.694
-1.676 | ATP9B
COPB1 | ATPase, class II, type 9B coatomer protein complex, subunit beta 1 | Cytoplasm
Cytoplasm | transporter
transporter | | -1.626 | SLC36A4 | solute carrier family 36 (proton/amino acid symporter), member 4 | unknown | transporter | | -1.593 | SLC5A12 | solute carrier family 5 (sodium/glucose cotransporter), member 12 | unknown | transporter | | -1.581 | SLC9A8 | solute carrier family 9, subfamily A (NHE8, cation proton antiporter 8), member 8 | Cytoplasm | transporter | | -1.569 | COMMD1 | copper metabolism (Murr1) domain containing 1 | Nucleus | transporter | | -1.557
-1.922 | APOB
GFRA2 | apolipoprotein B (including Ag(x) antigen) GDNF family receptor alpha 2 | Extracellular Space
Plasma Membrane | transporter
transmembrane rece | | -1.916 | FCGR2A | Fc fragment of IgG, low affinity IIa, receptor (CD32) | Plasma Membrane | transmembrane rece | | -1.846 | DMBT1 | deleted in malignant brain tumors 1 | Plasma Membrane | transmembrane rece | | -1.729 | ANTXR2 | anthrax toxin receptor 2 | Plasma Membrane | transmembrane rece | | -1.685 | IL15RA | interleukin 15 receptor, alpha | Plasma Membrane | transmembrane rece | | -1.636
-1.615 | PLA2R1
CD302 | phospholipase A2 receptor 1, 180kDa
CD302 molecule | Plasma Membrane
Plasma Membrane | transmembrane rece
transmembrane rece | | -1.604 | LYVE1 | lymphatic vessel endothelial hyaluronan receptor 1 | | transmembrane rece | | -1.581 | LRP12 | low density lipoprotein receptor-related protein 12 | | | | -1.504 | TNFRSF10A | tumor necrosis factor receptor superfamily, member 10a | Plasma Membrane | transmembrane rece | | -2.276 | MRPL18 | mitochondrial ribosomal protein L18 | Cytoplasm | translation regulator | | -2.130
-1.544 | IREB2
IGF2BP3 | iron-responsive element binding protein 2
insulin-like growth factor 2 mRNA binding protein 3 | Cytoplasm
Cytoplasm | translation regulator
translation regulator | | -2.342 | DAXX | death-domain associated protein | Nucleus | transcription regulator | | -2.337 | STAT2 | signal transducer and activator of transcription 2, 113kDa | Nucleus | transcription regulator | | -2.178 | Ankrd61 | ankyrin repeat domain 61 | Nucleus | transcription regulator | | -2.092 | PLAGL2 | pleiomorphic adenoma gene-like 2 | Nucleus | transcription regulator | | -2.042
-2.004 | MED24
RCOR2 | mediator complex subunit 24 REST corepressor 2 | Nucleus
Nucleus | transcription regulate
transcription regulate | | -1.937 | NCOA3 | nuclear receptor coactivator 3 | Nucleus | transcription regulate | | -1.932 | ANKRD22 | ankyrin repeat domain 22 | Nucleus | transcription regulator | | -1.882 | CBFA2T2 | core-binding factor, runt domain, alpha subunit 2; translocated to, 2 | Nucleus | transcription regulator | | -1.882 | OLIG1 | oligodendrocyte transcription factor 1 | Nucleus | transcription regulator | | -1.846
-1.846 | Cmtm2a
SOX6 | CKLF-like MARVEL transmembrane domain containing 2A
SRY (sex determining region Y)-box 6 | Cytoplasm
Nucleus | transcription regulate
transcription regulate | | -1.769 | NPAT | nuclear protein, ataxia-telangiectasia locus | Nucleus | transcription regulate | | -1.761 | SERTAD3 | SERTA domain containing 3 | Nucleus | transcription regulator | | -1.753 | SOX11 | SRY (sex determining region Y)-box 11 | Nucleus | transcription regulator | | -1.745 | PPARGC1A | peroxisome proliferator-activated receptor gamma, coactivator 1 alpha | Nucleus | transcription regulate | | -1.694
-1.666 | RFXAP
HOXA2 | regulatory factor X-associated protein | Nucleus
Nucleus | transcription regulate
transcription regulate | | -1.656 | DMRT2 | doublesex and mab-3 related transcription factor 2 | Nucleus | transcription regulate | | -1.636 | BTAF1 | BTAF1 RNA
polymerase II, B-TFIID transcription factor-associated, 170kDa (Mot1 homolog, S. cerevisiae) | Nucleus | transcription regulate | | -1.626 | EED | embryonic ectoderm development | Nucleus | transcription regulator | | -1.569 | NFXL1 | nuclear transcription factor, X-box binding-like 1 | Nucleus | transcription regulato | | -1.544
-1.531 | CDX2
CBL | caudal type homeobox 2 Cbl proto-oncogene, E3 ubiquitin protein ligase | Nucleus
Nucleus | transcription regulate
transcription regulate | | -1.531 | PIR | pirin (iron-binding nuclear protein) | Nucleus | transcription regulate | | -1.518 | HEXIM1 | hexamethylene bis-acetamide inducible 1 | Nucleus | transcription regulato | | -2.140 | INPP5B | inositol polyphosphate-5-phosphatase, 75kDa | Plasma Membrane | phosphatase | | -1.982 | WBP11 | WW domain binding protein 11 | Nucleus | phosphatase | | -1.937
-1.833 | LPPR3
PTPRB | lipid phosphate phosphatase-related protein type 3
protein tyrosine phosphatase, receptor type, B | unknown
Plasma Membrane | phosphatase
phosphatase | | -1.826 | EYA4 | eyes absent homolog 4 (Drosophila) | Cytoplasm | phosphatase | | -1.737 | PTPRZ1 | protein tyrosine phosphatase, receptor-type, Z polypeptide 1 | Plasma Membrane | phosphatase | | -1.626 | INPP5A | inositol polyphosphate-5-phosphatase, 40kDa | Plasma Membrane | phosphatase | | -1.593
-2.223 | PPM1H | protein phosphatase, Mg2+/Mn2+ dependent, 1H
ubiquitin carboxyl-terminal hydrolase L5 | unknown | phosphatase | | -2.223
-2.147 | UCHL5
DPP6 | dipeptidyl-peptidase 6 | Cytoplasm
Plasma Membrane | peptidase
peptidase | | -2.078 | TMEM59 | transmembrane protein 59 | Plasma Membrane | peptidase | | -2.050 | PDIA3 | protein disulfide isomerase family A, member 3 | Cytoplasm | peptidase | | -2.000 | Ctsz | cathepsin Z | Cytoplasm | peptidase | | -1.977
-1.701 | ADAM2
ADAM23 | ADAM metallopeptidase domain 2 | Plasma Membrane
Plasma Membrane | peptidase
peptidase | | -1.791
-1.791 | PSMA5 | ADAM metallopeptidase domain 23 proteasome (prosome, macropain) subunit, alpha type, 5 | Cytoplasm | peptidase
peptidase | | -1.737 | Tmprss11c | transmembrane protease, serine 11c | Plasma Membrane | peptidase | | -1.694 | USP34 | ubiquitin specific peptidase 34 | | | | -1.685 | TRHDE | thyrotropin-releasing hormone degrading enzyme | Plasma Membrane | | | -1.666 | ADAMTS14 | ADAM metallopeptidase with thrombospondin type 1 motif, 14 | Extracellular Space | | | -1.615
-1.604 | KLK8
CASP14 | kallikrein-related peptidase 8 caspase 14, apoptosis-related cysteine peptidase | Extracellular Space
Cytoplasm | peptidase
peptidase | | -1.593 | ZFYVE9 | zinc finger, FYVE domain containing 9 | Cytoplasm | peptidase | | -1.581 | MYO1A | myosin IA | Cytoplasm | peptidase | | -2.409 | CDH18 | cadherin 18, type 2 | Plasma Membrane | other | | -2.390 | ZNF239
A930012O16Rik | zinc finger protein 239 | Nucleus | other | | -2.375 | | RIKEN cDNA A930012O16 gene | unknown
unknown | other
other | | -2 227 | | | | | | -2.337
-2.318 | MDM1 | Mdm1 nuclear protein homolog (mouse) peptidase inhibitor 15 | | other | | -2.337
-2.318
-2.299 | | Matri nuclear protein nomolog (mouse) peptidase inhibitor 15 kelch-like 10 (Drosophila) | Extracellular Space
Nucleus | other
other | | -2.318
-2.299
-2.287 | MDM1
PI15
KLHL10
Gm9871 | peptidase inhibitor 15
kelch-like 10 (Drosophila)
predicted gene 9871 | Extracellular Space
Nucleus
unknown | other
other | | -2.318
-2.299
-2.287
-2.256 | MDM1
PI15
KLHL10
Gm9871
APPBP2 | peptidase inhibitor 15
kelch-like 10 (Drosophila)
pred-ciked gene 9871
amyloid beta precursor protein (cytoplasmic tail) binding protein 2 | Extracellular Space
Nucleus
unknown
Cytoplasm | other
other | | -2.318
-2.299
-2.287
-2.256
-2.256 | MDM1
P115
KLHL10
Gm9871
APPBP2
Zfp943 | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger protein 943 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown | other
other
other
other | | -2.318
-2.299
-2.287
-2.256
-2.256
-2.254 | MDM1
P115
KLHL10
Gm9871
APPBP2
Zfp943
Sval3 | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger pricein 943 seminal vesicle antigen-like 3 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown
unknown | other
other
other
other
other | | -2.318
-2.299
-2.287
-2.256
-2.256
-2.254
-2.246 | MDM1
PI15
KLHL10
Gm9871
APPBP2
Zfp943
Sval3
Gm4758 | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger protein 943 seminal vesicle antigen-like 3 predicted gene 4758 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown
unknown
unknown | other
other
other
other
other
other | | -2.318
-2.299
-2.287
-2.256
-2.256
-2.254
-2.246
-2.244 | MDM1
P115
KLHL10
Gm9871
APPBP2
Zfp943
Sval3
Gm4758
WDR13 | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger protein 943 seminal vesicle antigen-like 3 predicted gene 4758 WD repeat domain 13 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown
unknown
unknown
Nucleus | other
other
other
other
other
other | | -2.318
-2.299
-2.287
-2.256
-2.256
-2.254
-2.244
-2.244
-2.241
-2.236 | MDM1
P115
KLHL10
Gm9871
APPBP2
Zfp943
Sval3
Gm4758
WDR13
GRPEL1
LRRC37A3 (includes others) | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger protein 943 seminal vesicle antigen-like 3 predicted gene 4758 WD repeat domain 13 GrpE-like 1, mitochondrial (E. coli) leucine rich repeat containing 37, member A3 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown
unknown
unknown
Nucleus
Cytoplasm
unknown | other
other
other
other
other
other
other
other | | -2.318
-2.299
-2.287
-2.256
-2.256
-2.254
-2.244
-2.244
-2.241
-2.236
-2.236 | MDM1
P115
KLHL10
Gm9871
APPBP2
Zlp943
Sval3
Gm4758
WDR13
GRPEL1
LRRC37A3 (includes others)
TMCC3 | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger protein 943 seminal vesicle antigen-like 3 predicted gene 4758 WD repeat domain 13 GPE-like 1, mitochondrial (E. coli) leucine rich repeat containing 37, member A3 transmembrane and colled-coil domain family 3 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown
unknown
unknown
Nucleus
Cytoplasm
unknown
unknown
unknown | other | | -2.318
-2.299
-2.287
-2.256
-2.256
-2.254
-2.244
-2.244
-2.241
-2.236 | MDM1
P115
KLHL10
Gm9871
APPBP2
Zfp943
Sval3
Gm4758
WDR13
GRPEL1
LRRC37A3 (includes others) | peptidase inhibitor 15 kelch-like 10 (Drosophila) predicted gene 9871 amyloid beta precursor protein (cytoplasmic tail) binding protein 2 zinc finger protein 943 seminal vesicle antigen-like 3 predicted gene 4758 WD repeat domain 13 GrpE-like 1, mitochondrial (E. coli) leucine rich repeat containing 37, member A3 | Extracellular Space
Nucleus
unknown
Cytoplasm
unknown
unknown
unknown
Nucleus
Cytoplasm
unknown | other
other
other
other
other
other
other
other | | -2.212 | WDR52 | WD repeat domain 52 | Extracellular Space | other | |------------------|---------------------------|--|--------------------------------|----------------| | -2.201 | CCDC47 | coiled-coil domain containing 47 | Extracellular Space | other | | -2.195 | Gm4841 | predicted gene 4841 | unknown | other | | -2.189 | 2700033N17Rik | RIKEN cDNA 2700033N17 gene | unknown | other | | -2.183 | Zcchc13 | zinc finger, CCHC domain containing 13 | unknown | other | | -2.180 | R3HDM2 | R3H domain containing 2 | Nucleus | other | | -2.178 | Timm8a2 | translocase of inner mitochondrial membrane 8A2 | Cytoplasm | other | | -2.165 | Ncrna00086 | non-protein coding RNA 86 | unknown | other | | -2.162 | HDX | highly divergent homeobox | unknown | other | | -2.156 | SETD5 | SET domain containing 5 | unknown | other | | -2.153
-2.150 | KIAA1432
1700071K01Rik | KIAA1432 | unknown | other | | -2.130 | TTC12 | RIKEN cDNA 1700071K01 gene
tetratricopeptide repeat domain 12 | unknown
unknown | other
other | | -2.144 | TOPAZ1 | testis and ovary specific PAZ domain containing 1 | unknown | other | | -2.137 | MRPL47 | mitochondrial ribosomal protein L47 | Cytoplasm | other | | -2.137 | TBCE | tubulin folding cofactor E | Cytoplasm | other | | -2.134 | FAM46A | family with sequence similarity 46, member A | unknown | other | | -2.134 | ZNF623 | zinc finger protein 623 | Nucleus | other | | -2.130 | MED8 | mediator complex subunit 8 | Nucleus | other | | -2.127 | SRBD1 | S1 RNA binding domain 1 | unknown | other | | -2.114 | C130030J05 | uncharacterized protein C130030J05 | unknown | other | | -2.106 | IL34 | interleukin 34 | Extracellular Space | other | | -2.096 | ANO3 | anoctamin 3 | unknown | other | | -2.085 | Dpcr1 | diffuse panbronchiolitis critical region 1 | unknown | other | | -2.074 | Gm16440 (includes others) | predicted gene 16440 | unknown | other | | -2.074 | Pin1-ps1 | peptidylprolyl cis/trans isomerase, NIMA-interacting 1, pseudogene 1 |
unknown | other | | -2.066 | STBD1 | starch binding domain 1 | Cytoplasm | other | | -2.066
-2.058 | WDR44
CST5 | WD repeat domain 44 | Cytoplasm | other | | -2.054 | Cd24a | cystatin D
CD24a antigen | Cytoplasm
Plasma Membrane | other | | -2.050 | 6030498E09Rik | RIKEN cDNA 6030498E09 gene | unknown | other | | -2.050 | THEMIS | thymocyte selection associated | Cytoplasm | other | | -2.042 | C5orf24 | chromosome 5 open reading frame 24 | unknown | other | | -2.038 | RGS2 | regulator of G-protein signaling 2, 24kDa | Nucleus | other | | -2.026 | TOX | thymocyte selection-associated high mobility group box | Nucleus | other | | -2.013 | IMPACT | impact RWD domain protein | unknown | other | | -2.013 | NLRP1 | NLR family, pyrin domain containing 1 | Cytoplasm | other | | -2.009 | 1700110C19Rik | RIKEN cDNA 1700110C19 gene | unknown | other | | -2.009 | ZBTB20 | zinc finger and BTB domain containing 20 | Nucleus | other | | -2.004 | IRAK1BP1 | interleukin-1 receptor-associated kinase 1 binding protein 1 | unknown | other | | -2.004 | UNC13B | unc-13 homolog B (C. elegans) | Cytoplasm | other | | -1.995 | CCDC86 | coiled-coil domain containing 86 | Nucleus | other | | -1.991 | KIAA1841 | KIAA1841 | unknown | other | | -1.986 | PLXDC2 | plexin domain containing 2 | Extracellular Space | other | | -1.986 | WDR66 | WD repeat domain 66 | unknown | other | | -1.977 | TXLNG | taxilin gamma | Nucleus | other | | -1.972 | SRPX | sushi-repeat containing protein, X-linked | Cytoplasm | other | | -1.967
-1.967 | 1700061I17Rik | RIKEN cDNA 1700061117 gene | unknown | other | | -1.967 | CCDC87
OSBPL10 | coiled-coil domain containing 87 oxysterol binding protein-like 10 | Extracellular Space
unknown | other | | -1.967 | TSPAN11 | oxysterio initiality protein Pinke 10 tetraspanin 11 | unknown | other | | -1.962 | DCUN1D4 | DCN1, defective in cullin neddylation 1, domain containing 4 (S. cerevisiae) | Nucleus | other | | -1.962 | Gm4910 | predicted pseudogene 4910 | unknown | other | | -1.958 | RSPH6A | radial spoke head 6 homolog A (Chlamydomonas) | Extracellular Space | other | | -1.958 | TOR1AIP2 | torsin A interacting protein 2 | Cytoplasm | other | | -1.953 | KRTAP13-2 | keratin associated protein 13-2 | unknown | other | | -1.948 | SPATS2L | spermatogenesis associated, serine-rich 2-like | unknown | other | | -1.948 | TRMT5 | tRNA methyltransferase 5 homolog (S. cerevisiae) | unknown | other | | -1.942 | CNKSR2 | connector enhancer of kinase suppressor of Ras 2 | Plasma Membrane | other | | -1.942 | GCFC1 | GC-rich sequence DNA-binding factor 1 | Nucleus | other | | -1.937 | HEATR1 | HEAT repeat containing 1 | Nucleus | other | | -1.932 | DOCK2 | dedicator of cytokinesis 2 | Cytoplasm | other | | -1.927 | EMB | embigin | Plasma Membrane | other | | -1.922 | FAM167B | family with sequence similarity 167, member B | unknown | other | | -1.916 | Gm4861 | predicted gene 4861 | unknown | other | | -1.916 | MYL6 | myosin, light chain 6, alkali, smooth muscle and non-muscle | Cytoplasm | other | | -1.911 | CCNY | cyclin Y | Nucleus | other | | -1.911
-1.911 | KLC2
MAGEB4 | kinesin light chain 2
melanoma antigen family B, 4 | Cytoplasm
Cytoplasm | other | | -1.911 | PHOSPHO2 | phosphatase, orphan 2 | unknown | other | | -1.905 | C16orf87 | chromosome 16 open reading frame 87 | unknown | other | | -1.900 | C19orf66 | chromosome 19 open reading frame 66 | unknown | other | | -1.894 | 2310002L09Rik | RIKEN cDNA 2310002L09 gene | Cytoplasm | other | | -1.894 | App | amyloid beta (A4) precursor protein | Plasma Membrane | other | | -1.888 | 1100001G20Rik | RIKEN cDNA 1100001G20 gene | Extracellular Space | other | | -1.888 | RNF222 | ring finger protein 222 | unknown | other | | -1.882 | Gm5068 | predicted gene 5068 | unknown | other | | -1.882 | INTS5 | integrator complex subunit 5 | Nucleus | other | | -1.882 | TRIM65 | tripartite motif containing 65 | unknown | other | | -1.876 | CCDC111 | coiled-coil domain containing 111 | Extracellular Space | other | | -1.876 | DNAJB8 | DnaJ (Hsp40) homolog, subfamily B, member 8 | unknown | other | | -1.876 | IQCG | IQ motif containing G | unknown | other | | -1.870
-1.864 | KLHL30
APLN | kelch-like 30 (Drosophila)
apelin | unknown
Extracellular Space | other | | -1.864 | FAM214A | family with sequence similarity 214, member A | unknown | other | | -1.858 | OLFM4 | olfactomedin 4 | Extracellular Space | other | | -1.852 | AFAP1L2 | actin filament associated protein 1-like 2 | Cytoplasm | other | | -1.852 | EFHC2 | EF-hand domain (C-terminal) containing 2 | unknown | other | | -1.852 | GLT25D1 | glycosyltransferase 25 domain containing 1 | Cytoplasm | other | | -1.852 | SAMD7 | sterile alpha motif domain containing 7 | unknown | other | | -1.846 | CLPS | colipase, pancreatic | Extracellular Space | other | | -1.833 | MRPS18A | mitochondrial ribosomal protein S18A | Cytoplasm | other | | -1.833 | POLDIP2 | polymerase (DNA-directed), delta interacting protein 2 | Nucleus | other | | -1.833 | TLCD2 | TLC domain containing 2 | unknown | other | | -1.826 | ANKRD13C | ankyrin repeat domain 13C | Cytoplasm | other | | -1.819 | BHLHB9 | basic helix-loop-helix domain containing, class B, 9 | unknown | other | | -1.819 | Gm10696 (includes others) | TD and POZ domain containing 3 | unknown | other | | -1.819 | SCAMP5 | secretory carrier membrane protein 5 | Cytoplasm | other | | -1.812 | CCDC83 | coiled-coil domain containing 83 | unknown | other | | -1.812
-1.812 | Foxk2
SACS | forkhead box K2
spastic ataxia of Charlevoix-Saquenay (sacsin) | unknown | other | | -1.812
-1.805 | 1300015D01Rik | spastic ataxia of Charlevoix-Saguenay (sacsin) RIKEN cDNA 1300015D01 gene | Nucleus
unknown | other
other | | -1.805 | 6330531I01Rik | RIKEN CDNA 6330531I01 gene | unknown | other | | -1.805 | 9530004P13Rik | RIKEN cDNA 9530004P13 gene | unknown
unknown | other | | -1.805 | EFCAB3 | EF-hand calcium binding domain 3 | unknown | other | | -1.805 | Gm12108 | predicted gene 12108 | unknown | other | | -1.805 | GRPEL2 | GrpE-like 2, mitochondrial (E. coli) | Cytoplasm | other | | -1.805 | PORCN | porcupine homolog (Drosophila) | Cytoplasm | other | | -1.798 | 4930539M17Rik | RIKEN cDNA 4930539M17 gene | unknown | other | | -1.791 | Cd163l1 | CD163 molecule-like 1 | Plasma Membrane | other | | -1.791 | FREM2 | FRAS1 related extracellular matrix protein 2 | Extracellular Space | other | | -1.791 | Pcdhb4 | protocadherin beta 4 | Plasma Membrane | other | | -1.791 | WDR55 | WD repeat domain 55 | Nucleus | other | | -1.784 | ADAP1 | ArfGAP with dual PH domains 1 | Nucleus | other | | -1.784 | KRTAP7-1 | keratin associated protein 7-1 (gene/pseudogene) | unknown | other | | -1.776 | ABLIM1 | actin binding LIM protein 1 | Cytoplasm | other | | -1.769 | C10orf35 | chromosome 10 open reading frame 35 | unknown | other | | | | | | | | -1.769 | CAPS2 | calcyphosine 2 | unknown | other | |------------------|-----------------------------|---|--|------------------| | -1.769 | DXBay18 (includes others) | predicted pseudogene 5639 | unknown | other | | -1.769 | SPRY3 | sprouty homolog 3 (Drosophila) | Plasma Membrane | other | | -1.769
-1.761 | TMEM9
AIF1L | transmembrane protein 9 allograft inflammatory factor 1-like | Cytoplasm
Plasma Membrane | other
other | | -1.761 | Zfp52 | zinc finger protein 52 | unknown | other | | -1.761 | ZNF862 | zinc finger protein 862 | unknown | other | | -1.753
-1.753 | BOP1
CCNJ | block of proliferation 1 cyclin J | Nucleus
Nucleus | other
other | | -1.753 | HIGD1B | HIG1 hypoxia inducible domain family, member 1B | unknown | other | | -1.753
-1.753 | MOB3B
Nirp9a/Nirp9c | MOB kinase activator 3B
NLR family, pyrin domain containing 9A | unknown
unknown | other
other | | -1.745 | Gm4832 | predicted gene 4832 | unknown | other | | -1.745 | SHC2 | SHC (Src homology 2 domain containing) transforming protein 2 | Cytoplasm | other | | -1.737
-1.737 | CENPE
NF2 | centromere protein E, 312kDa
neurofibromin 2 (merlin) | Nucleus
Plasma Membrane | other
other | | -1.737 | TMEM87A | transmembrane protein 87A | unknown | other | | -1.729 | Dlec1 | deleted in lung and esophageal cancer 1 isoform DLEC1-N1 | Cytoplasm | other | | -1.720
-1.712 | GLIPR1L2
ASIP | GLI pathogenesis-related 1 like 2 agouti signaling protein | Extracellular Space
Extracellular Space | other
other | | -1.712 | Fam169b | family with sequence similarity 169, member B | unknown | other | | -1.712 | Mfi2 | antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5 | unknown | other | | -1.712
-1.712 | SGOL1
SLC38A9 | shugoshin-like 1 (S. pombe)
solute carrier family 38, member 9 | Nucleus
Extracellular Space | other
other | | -1.703 | FANCF | Fanconi anemia, complementation group F | Nucleus | other | | -1.703
-1.703 | NGRN
QSER1 | neugrin, neurite outgrowth associated glutamine and serine rich 1 | Nucleus
unknown | other
other | | -1.703 | SEMA4G | sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4G | Plasma Membrane | other | | -1.703 | Zfp874a | zinc finger protein 874a | unknown | other | | -1.703
-1.694 | ZNF426
4930433I11Rik | zinc finger protein 426
RIKEN cDNA 4930433I11 gene | Nucleus
unknown | other | | -1.694 | CADPS2 | Ca++-dependent secretion activator 2 | Plasma Membrane | other | | -1.694 | CTTNBP2 | cortactin binding protein 2 | Cytoplasm | other | | -1.694
-1.694 | HARBI1
TSPAN5 | harbinger transposase derived 1
tetraspanin 5 | Cytoplasm
Plasma Membrane | other
other | | -1.685 | XKRX | XK, Kell blood group complex subunit-related, X-linked | unknown | other | | -1.676 | ACBD7 | acyl-CoA binding domain
containing 7 ADP-ribosylation factor interacting protein 1 | unknown | other | | -1.676
-1.676 | ARFIP1
BPIFB1 | BPI fold containing family B, member 1 | Cytoplasm
Extracellular Space | other | | -1.676 | Dhrs7/LOC690226 | dehydrogenase/reductase (SDR family) member 7 | unknown | other | | -1.676
-1.666 | SAMD8
CCDC38 | sterile alpha motif domain containing 8 coiled-coil domain containing 38 | Cytoplasm
unknown | other
other | | -1.666 | COA4 | cytochrome c oxidase assembly factor 4 homolog (S. cerevisiae) | unknown | other | | -1.666 | DEFB106A/DEFB106B | defensin, beta 106A | Extracellular Space | other | | -1.666
-1.656 | NEXN
C8orf4 | nexilin (F actin binding protein) chromosome 8 open reading frame 4 | Plasma Membrane
unknown | other
other | | -1.656 | CLDN11 | claudin 11 | Plasma Membrane | other | | -1.656 | Gm4836 (includes others) | predicted gene 4836 | Cytoplasm | other | | -1.646
-1.646 | 4930438A08Rik
CCDC171 | RIKEN cDNA 4930438A08 gene coiled-coil domain containing 171 | unknown
unknown | other
other | | -1.646 | CNIH2 | cornichon homolog 2 (Drosophila) | Extracellular Space | other | | -1.646 | EAPP | E2F-associated phosphoprotein | Cytoplasm | other | | -1.646
-1.646 | KBTBD3
SPINT2 | kelch repeat and BTB (POZ) domain containing 3
serine peptidase inhibitor, Kunitz type, 2 | Extracellular Space
Extracellular Space | | | -1.636 | 6430628N08Rik | RIKEN cDNA 6430628N08 gene | unknown | other | | -1.636 | Ankmy1 | ankyrin repeat and MYND domain containing 1 | unknown | other | | -1.626
-1.626 | ACTN1
FAM57B | actinin, alpha 1 family with sequence similarity 57, member B | Cytoplasm
Cytoplasm | other
other | | -1.615 | CEBPZ | CCAAT/enhancer binding protein (C/EBP), zeta | Nucleus | other | | -1.615
-1.615 | lgfl3
KRT17 | IGF-like family member 3
keratin 17 | Extracellular Space
Cytoplasm | other
other | | -1.615 | NANOS3 | nanos homolog 3 (Drosophila) | unknown | other | | -1.615 | UBFD1 | ubiquitin family domain containing 1 | unknown | other | | -1.615
-1.604 | WDR61
Efcab4a | WD repeat domain 61 EF-hand calcium binding domain 4A | unknown
Cytoplasm | other
other | | -1.604 | FRMD5 | FERM domain containing 5 | unknown | other | | -1.604 | Nkx6-3 | NK6 homeobox 3 | unknown | other | | -1.604
-1.593 | TMEM26
C3orf20 | transmembrane protein 26
chromosome 3 open reading frame 20 | unknown
Cytoplasm | other
other | | -1.593 | Map3k5 | mitogen-activated protein kinase kinase kinase 5 | Cytoplasm | other | | -1.581
-1.581 | 4930562A09Rik
Aiap1 | RIKEN cDNA 4930562A09 gene | unknown
unknown | other | | -1.581 | CCNE2 | adherens junction associated protein 1 cyclin E2 | Nucleus | other | | -1.581 | CHL1 | cell adhesion molecule with homology to L1CAM (close homolog of L1) | Plasma Membrane | other | | -1.581
-1.581 | TRAPPC1
U90926 | trafficking protein particle complex 1
cDNA sequence U90926 | Cytoplasm
unknown | other
other | | -1.569 | FAM98B | family with sequence similarity 98, member B | unknown | other | | -1.569 | MCAM
SH3D19 | melanoma cell adhesion molecule | Plasma Membrane | other | | -1.569
-1.557 | YRDC | SH3 domain containing 19 yrdC domain containing (E. coli) | Plasma Membrane
unknown | other
other | | -1.557 | ZDHHC12 | zinc finger, DHHC-type containing 12 | unknown | other | | -1.544
-1.544 | Cd99
KRT222 | CD99 antigen
keratin 222 | unknown
unknown | other
other | | -1.531 | 1700024P12Rik | RIKEN cDNA 1700024P12 gene | unknown | other | | -1.531 | 4931440L10Rik | RIKEN cDNA 4931440L10 gene | unknown | other | | -1.531
-1.531 | Fam48b1/LOC367830
KLHL31 | family with sequence similarity 48, member B1 kelch-like 31 (Drosophila) | unknown
unknown | other
other | | -1.531 | NCAPH2 | non-SMC condensin II complex, subunit H2 | Nucleus | other | | -1.531
-1.531 | OIP5
SLC35G2 | Opa interacting protein 5 | Nucleus | other | | -1.531 | SMIM14 | solute carrier family 35, member G2
small integral membrane protein 14 | Cytoplasm
unknown | other
other | | -1.531 | Tsc22d3 | TSC22 domain family, member 3 | Nucleus | other | | -1.518
-1.518 | 4930504O13Rik
BOLA3 | RIKEN cDNA 4930504O13 gene
bolA homolog 3 (E. coli) | unknown
unknown | other
other | | -1.518 | C11orf63 | chromosome 11 open reading frame 63 | unknown | other | | -1.518 | PALMD | palmdelphin | Cytoplasm | other | | -1.504
-1.504 | C2orf74
PLEKHF2 | chromosome 2 open reading frame 74 pleckstrin homology domain containing, family F (with FYVE domain) member 2 | unknown
Cytoplasm | other | | -1.504 | Sprr2f | small proline-rich protein 2F | Cytoplasm | other | | -1.504 | TCP11L1 | t-complex 11, testis-specific-like 1 V-set and immunoglobulin domain containing 1 | Cytoplasm | other | | -1.504
-1.504 | Vsig1
ZC3H14 | v-set and immunoglobulin domain containing 1 zinc finger CCCH-type containing 14 | Plasma Membrane
Nucleus | other
other | | -2.209 | PFKL | phosphofructokinase, liver | Cytoplasm | kinase | | -2.050
-2.030 | CCNK
UCK2 | cyclin K
uridine-cytidine kinase 2 | Nucleus
Cytoplasm | kinase
kinase | | -2.017 | CSNK2B | casein kinase 2, beta polypeptide | Cytoplasm | kinase | | -1.962 | MAST1 | microtubule associated serine/threonine kinase 1 | Cytoplasm | kinase | | -1.948
-1.942 | SRP72
TYK2 | signal recognition particle 72kDa
tyrosine kinase 2 | Nucleus
Plasma Membrane | kinase
kinase | | -1.927 | AK3 | adenylate kinase 3 | Cytoplasm | kinase | | -1.894
-1.852 | PRKACA
PIK3CB | protein kinase, cAMP-dependent, catalytic, alpha phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta | Cytoplasm
Cytoplasm | kinase
kinase | | -1.852
-1.812 | PRKCI | prospnatidylinositoi-4,5-bispnospnate 3-kinase, catalytic subunit beta protein kinase C, iota | Cytoplasm
Cytoplasm | kinase
kinase | | -1.791 | FGFR2 | fibroblast growth factor receptor 2 | Plasma Membrane | kinase | | -1.666
-1.656 | AGK
AKT2 | acylglycerol kinase
v-akt murine thymoma viral oncogene homolog 2 | Cytoplasm
Cytoplasm | kinase
kinase | | -1.593 | MYLK | myosin light chain kinase | Cytoplasm | kinase | | | | | | | | -1.581 | ARAF | v-raf murine sarcoma 3611 viral oncogene homolog | Cytoplasm | kinase | |------------------|-----------------------------------|---|--|--| | -1.569 | CASK | calcium/calmodulin-dependent serine protein kinase (MAGUK family) | Plasma Membrane | kinase | | -1.569
-1.531 | TK2
CAMK4 | thymidine kinase 2, mitochondrial
calcium/calmodulin-dependent protein kinase IV | Cytoplasm
Nucleus | kinase
kinase | | -2.331 | GRIA1 | glutamate receptor, ionotropic, AMPA 1 | Plasma Membrane | ion channel | | -2.278 | ITPR2 | inositol 1,4,5-trisphosphate receptor, type 2 | Cytoplasm | ion channel | | -2.276 | TPCN1 | two pore segment channel 1 | Plasma Membrane | ion channel | | -2.130 | GRIN1
KCNS2 | glutamate receptor, ionotropic, N-methyl D-aspartate 1 | Plasma Membrane
Plasma Membrane | ion channel
ion channel | | -2.127
-2.124 | MCOLN1 | potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 mucolipin 1 | Cytoplasm | ion channel | | -2.120 | KCNJ15 | potassium inwardly-rectifying channel, subfamily J, member 15 | Plasma Membrane | ion channel | | -2.089 | ABCC9 | ATP-binding cassette, sub-family C (CFTR/MRP), member 9 | Plasma Membrane | ion channel | | -2.070 | ITPR1 | inositol 1,4,5-trisphosphate receptor, type 1 | Cytoplasm | ion channel | | -1.962
-1.900 | SLC9A1
KCNN1 | solute carrier family 9, subfamily A (NHE1, cation proton antiporter 1), member 1 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1 | Plasma Membrane
Plasma Membrane | ion channel
ion channel | | -1.864 | CLCN6 | chloride channel, voltage-sensitive 6 | | ion channel | | -1.504 | GABRG3 | gamma-aminobutyric acid (GABA) A receptor, gamma 3 | Plasma Membrane | ion channel | | -2.294 | OR10J1 | olfactory receptor, family 10, subfamily J, member 1 | Plasma Membrane | G-protein coupled receptor | | -2.228 | Vmn1r188 (includes others) | vomeronasal 1 receptor 217 | Plasma Membrane | G-protein coupled receptor | | -2.186
-2.089 | TAAR6
CCKBR | trace amine associated receptor 6 cholecystokinin B receptor | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | -2.054 | EMR4P | egf-like module containing, mucin-like, hormone receptor-like 4 pseudogene | Plasma Membrane | G-protein coupled receptor | | -2.050 | Olfr902 | olfactory receptor 902 | Plasma Membrane | G-protein coupled receptor | | -2.050 | Vmn1r188 (includes others) | vomeronasal 1 receptor 217 | | G-protein coupled receptor | | -2.013
-1.982 | Vmn1r32
Olfr1128 | vomeronasal 1 receptor 32
olfactory receptor 1128 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | -1.953 | Olfr103 | olfactory receptor 103 | Plasma Membrane | G-protein coupled receptor | | -1.942 | LTB4R2 | leukotriene B4 receptor 2 | Plasma Membrane | G-protein coupled receptor | | -1.911 | Olfr690 | olfactory receptor 690 | Plasma Membrane | G-protein coupled receptor | | -1.864 | Agtr1b | angiotensin II receptor, type 1b | Plasma Membrane | G-protein coupled receptor | | -1.846
-1.826 | OR5B17
Olfr906 | olfactory receptor, family 5, subfamily B, member 17
olfactory receptor 906 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | -1.819 | Olfr1451 | olfactory receptor 1451 | Plasma Membrane | G-protein coupled receptor | | -1.805 | Vmn1r227 | vomeronasal 1
receptor 227 | Plasma Membrane | G-protein coupled receptor | | -1.776 | Olfr820 | olfactory receptor 820 | Plasma Membrane | G-protein coupled receptor | | -1.745
-1.685 | Olfr1461
OR52E2 | olfactory receptor 1461
olfactory receptor, family 52, subfamily E, member 2 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | -1.544 | OPN5 | opsin 5 | Plasma Membrane | | | -1.518 | PTGER3 | prostaglandin E receptor 3 (subtype EP3) | Plasma Membrane | G-protein coupled receptor | | -1.504 | Vmn1r74/Vmn1r76 | vomeronasal 1 receptor 76 | | G-protein coupled receptor | | -2.356 | FBXO10 | F-box protein 10 | Cytoplasm | enzyme | | -2.280
-2.266 | RAB9A
UBE2O | RAB9A, member RAS oncogene family ubiquitin-conjugating enzyme E2O | Cytoplasm
unknown | enzyme
enzyme | | -2.264 | NOS3 | nitric oxide synthase 3 (endothelial cell) | Cytoplasm | enzyme | | -2.231 | DDX4 | DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 | Nucleus | enzyme | | -2.217 | HIF1AN | hypoxia inducible factor 1, alpha subunit inhibitor | Nucleus | enzyme | | -2.201
-2.127 | ARG1
BRCC3 | arginase, liver
BRCA1/BRCA2-containing complex, subunit 3 | Cytoplasm
Nucleus | enzyme | | -2.127 | HSD17B3 | hydroxysteroid (17-beta) dehydrogenase 3 | Cytoplasm | enzyme
enzyme | | -2.066 | OCLN | occludin | Plasma Membrane | enzyme | | -2.058 | DPYS | dihydropyrimidinase | Cytoplasm | enzyme | | -2.058 | RLIM | ring finger protein, LIM domain interacting | Nucleus | enzyme | | -2.058
-2.054 | TGM5
XDH | transglutaminase 5 xanthine dehydrogenase | Cytoplasm
Cytoplasm | enzyme
enzyme | | -2.034 | ALOX12B | arachidonate 12-lipoxygenase, 12R type | unknown | enzyme | | -2.042 | METTL22 | methyltransferase like 22 | unknown | enzyme | | -2.026 | GALNT10 | UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (GallNAc-T10) | Cytoplasm | enzyme | | -2.022
-2.022 | Akr1c20
TTLL8 | aldo-keto reductase family 1, member C20
tubulin tyrosine ligase-like family, member 8 | unknown
Extracellular Space | enzyme | | -2.022 | AKR1B10 | aldo-keto reductase family 1, member B10 (aldose reductase) | Cytoplasm | enzyme
enzyme | | -2.009 | LMO7 | LIM domain 7 | Cytoplasm | enzyme | | -2.004 | RBBP6 | retinoblastoma binding protein 6 | Nucleus | enzyme | | -1.962 | UBE2E1 | ubiquitin-conjugating enzyme E2E 1 | Cytoplasm | enzyme | | -1.958
-1.932 | DDX25
NAA16 | DEAD (Asp-Glu-Ala-Asp) box helicase 25
N(alpha)-acetyltransferase 16, NatA auxiliary subunit | Nucleus
Nucleus | enzyme
enzyme | | -1.911 | AMDHD1 | amidohydrolase domain containing 1 | Cytoplasm | enzyme | | -1.911 | FKBP11 | FK506 binding protein 11, 19 kDa | Cytoplasm | enzyme | | -1.911 | SMPD2 | sphingomyelin phosphodiesterase 2, neutral membrane (neutral sphingomyelinase) | Cytoplasm | enzyme | | -1.882
-1.876 | COX7B
HINT1 | cytochrome c oxidase subunit VIIb histidine triad nucleotide binding protein 1 | Cytoplasm
Nucleus | enzyme
enzyme | | -1.858 | HPSE | heparanase | Plasma Membrane | enzyme | | -1.852 | ERP44 | endoplasmic reticulum protein 44 | Cytoplasm | enzyme | | -1.846 | APLF | aprataxin and PNKP like factor | Cytoplasm | enzyme | | -1.839
-1.833 | ENTPD8
MCM3 | ectonucleoside triphosphate diphosphohydrolase 8 minichromosome maintenance complex component 3 | unknown
Nucleus | enzyme
enzyme | | -1.826 | GPLD1 | glycosylphosphatidylinositol specific phospholipase D1 | Cytoplasm | enzyme | | -1.826 | OTUD5 | OTU domain containing 5 | Cytoplasm | enzyme | | -1.812 | RNF5 | ring finger protein 5, E3 ubiquitin protein ligase | Cytoplasm | enzyme | | -1.798
-1.798 | PLTP
WARS | phospholipid transfer protein
tryptophanyl-tRNA synthetase | Extracellular Space
Cytoplasm | enzyme
enzyme | | -1.776 | Nat3 | N-acetyltransferase 3 | Cytoplasm | enzyme | | -1.776 | OAT | ornithine aminotransferase | Cytoplasm | enzyme | | -1.769 | FAH | fumarylacetoacetate hydrolase (fumarylacetoacetase) | Cytoplasm | enzyme | | -1.745 | AGBL2
SBNO1 | ATP/GTP binding protein-like 2
strawberry notch homolog 1 (Drosophila) | Cytoplasm
unknown | enzyme | | -1.737
-1.729 | SBNO1
SMYD3 | strawberry notch homolog 1 (Drosophila) SET and MYND domain containing 3 | unknown
Nucleus | enzyme
enzyme | | -1.720 | CYP4A22 | cytochrome P450, family 4, subfamily A, polypeptide 22 | Cytoplasm | enzyme | | -1.703 | BRAF | v-raf murine sarcoma viral oncogene homolog B1 | Cytoplasm | enzyme | | -1.694 | HSD17B7 | hydroxysteroid (17-beta) dehydrogenase 7 | Cytoplasm | enzyme | | -1.676
-1.636 | EXT1
Cyp2c40 (includes others) | exostosin 1
cytochrome P450, family 2, subfamily c, polypeptide 40 | Cytoplasm
Cytoplasm | enzyme
enzyme | | -1.636 | HADHA | hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit | Cytoplasm | enzyme | | -1.626 | RAB3B | RAB3B, member RAS oncogene family | Cytoplasm | enzyme | | -1.615 | DHX38 | DEAH (Asp-Glu-Ala-His) box polypeptide 38 | Nucleus | enzyme | | -1.615
-1.604 | FBXO21
POLR2B | F-box protein 21
polymerase (RNA) II (DNA directed) polypeptide B, 140kDa | Extracellular Space
Nucleus | enzyme
enzyme | | -1.604 | UGGT1 | UDP-glucose glycoprotein glucosyltransferase 1 | Cytoplasm | enzyme | | -1.593 | RAB34 | RAB34, member RAS oncogene family | Cytoplasm | enzyme | | -1.531 | HS2ST1 | heparan sulfate 2-O-sulfotransferase 1 | Cytoplasm | enzyme | | -1.518
-1.518 | MAT2B
POLR3C | methionine adenosyltransferase II, beta
polymerase (RNA) III (DNA directed) polypeptide C (62kD) | Cytoplasm
Nucleus | enzyme
enzyme | | -1.518 | ALAS2 | polymerase (RNA) III (DNA directed) polypeptide C (62KD) aminolevulinate, delta-, synthase 2 | Cytoplasm | enzyme | | -2.254 | II3 | interleukin 3 | Extracellular Space | cytokine | | -2.192 | MIF | macrophage migration inhibitory factor (glycosylation-inhibiting factor) | Extracellular Space | cytokine | | -1.932
-1.776 | SPP1
IL36G | secreted phosphoprotein 1
interleukin 36, gamma | Extracellular Space
Extracellular Space | cytokine
cytokine | | -1.776 | DKK3 | dickkopf 3 homolog (Xenopus laevis) | | cytokine | | | | | | | ## Appendix 8. Gene properties identified in shRNA Group C | Log Ratio | Symbol | Entrez Gene Name | Location | Type(s) | |------------------|--------------------------------|--|------------------------------------|--| | -1.898 | Lcn3 | lipocalin 3 | Extracellular Space | transporter | | -1.845 | COPA | coatomer protein complex, subunit alpha | Cytoplasm | transporter | | -1.639 | TAPBP | TAP binding protein (tapasin) | Cytoplasm
Plasma Membrane | transporter | | -1.590
-1.550 | SLC16A7
ATP13A2 | solute carrier family 16, member 7 (monocarboxylic acid transporter 2) ATPase type 13A2 | Cytoplasm | transporter
transporter | | -1.536 | SLCO5A1 | solute carrier organic anion transporter family, member 5A1 | unknown | transporter | | -1.521 | ATP8A1 | ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1 | Cytoplasm | transporter | | -1.731 | IL1RL1 | interleukin 1 receptor-like 1 | Plasma Membrane | transmembrane receptor | | -1.682
-1.627 | LY96
GPC4 | lymphocyte antigen 96
glypican 4 | Plasma Membrane
Plasma Membrane | transmembrane receptor
transmembrane receptor | | -1.521 | F3 | coagulation factor III (thromboplastin, tissue factor) | Plasma Membrane | transmembrane receptor | | -1.521 | Klra4 (includes others) | killer cell lectin-like receptor, subfamily A, member 4 | Plasma Membrane | transmembrane receptor | | -1.879 | PAIP2B | poly(A) binding protein interacting protein 2B | unknown | translation regulator | | -1.911 | FOXN2 | forkhead box N2 | Nucleus | transcription regulator | | -1.722
-1.577 | BDP1
MLLT10 | B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 10 | Nucleus
Nucleus | transcription regulator
transcription regulator | | -1.521 | Zfp125 | zinc finger protein 125 | Nucleus | transcription regulator | | -1.506 | CREBL2 | cAMP responsive element binding protein-like 2 | Nucleus | transcription regulator | | -1.506 | DEPDC1 | DEP domain containing 1 | Nucleus | transcription regulator | | -1.792
-1.603 | DUSP19
PGAM1 | dual specificity phosphatase 19
phosphoglycerate mutase 1 (brain) | Cytoplasm
Cytoplasm | phosphatase
phosphatase | | -1.506 | MTMR3 | myotubularin related protein 3 | Cytoplasm | phosphatase | | -1.521 | MMP25 | matrix metallopeptidase 25 | Extracellular Space | peptidase | | -1.521 | PMPCA | peptidase (mitochondrial processing) alpha | Cytoplasm | peptidase | | -2.334 | 4933430L12Rik
MYO15A | RIKEN cDNA 4933430L12 gene
myosin XVA | unknown | other
other | | -1.911
-1.815 | ZBTB40 | zinc finger and BTB domain containing 40 | Cytoplasm
Nucleus | other | | -1.808 | PALLD | palladin, cytoskeletal associated protein | Cytoplasm | other | | -1.775 | CABIN1 | calcineurin binding protein 1 | Nucleus | other | | -1.758 | TCP11 | t-complex 11, testis-specific | unknown | other | | -1.731
-1.722 | PRRG4
NEDD9 | proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)
neural precursor cell expressed, developmentally down-regulated 9 | Plasma Membrane
Nucleus | other
other | | -1.703 | KCNQ10T1 | KCNQ1 opposite strand/antisense transcript 1 (non-protein coding) | unknown | other | | -1.693 | KLHL5 | kelch-like 5 (Drosophila) | Extracellular Space | other | | -1.682 | XXYLT1 | xyloside xylosyltransferase 1 | unknown | other | | -1.672
-1.650 | PPP2R3C
5830426C09Rik | protein phosphatase
2, regulatory subunit B", gamma
RIKEN cDNA 5830426C09 gene | Cytoplasm
unknown | other
other | | -1.650 | IQUB | IQ motif and ubiquitin domain containing | Cytoplasm | other | | -1.627 | DDIT4L | DNA-damage-inducible transcript 4-like | Cytoplasm | other | | -1.615 | ODF3L2 | outer dense fiber of sperm tails 3-like 2 | unknown | other | | -1.615 | WDR33
2210404O09Rik/Zfp947 | WD repeat domain 33 | Nucleus | other | | -1.603
-1.603 | 2210404O09Rik/Zfp947
MRPL15 | RIKEN cDNA 2210404009 gene
mitochondrial ribosomal protein L15 | unknown
Cytoplasm | other
other | | -1.590 | IFT74 | intraflagellar transport 74 homolog (Chlamydomonas) | Cytoplasm | other | | -1.577 | GCC1 | GRIP and coiled-coil domain containing 1 | Cytoplasm | other | | -1.577 | NAIP | NLR family, apoptosis inhibitory protein | unknown | other | | -1.577
-1.577 | SELV
SPATA7 | selenoprotein V
spermatogenesis associated 7 | unknown
unknown | other
other | | -1.577 | SPG20 | spastic paraplegia 20 (Troyer syndrome) | Cytoplasm | other | | -1.564 | B230369F24Rik | RIKEN cDNA B230369F24 gene | unknown | other | | -1.564 | CCDC138 | coiled-coil domain containing 138 | unknown | other | | -1.564
-1.564 | DCHS1
GORAB | dachsous 1 (Drosophila) | Plasma Membrane | other
other | | -1.564 | LRRC3B | golgin, RAB6-interacting
leucine rich repeat containing 3B | Cytoplasm
unknown | other | | -1.550 | C6orf106 | chromosome 6 open reading frame 106 | unknown | other | | -1.550 | Dhrs11 | dehydrogenase/reductase (SDR family) member 11 | unknown | other | | -1.550
-1.550 | LRRC66
MAK16 | leucine rich repeat containing 66 | unknown
Nucleus | other
other | | -1.550 | SPTBN2 | MAK16 homolog (S. cerevisiae)
spectrin, beta, non-erythrocytic 2 | Cytoplasm | other | | -1.550 | TTC28 | tetratricopeptide repeat domain 28 | unknown | other | | -1.536 | CHCHD10 | coiled-coil-helix-coiled-coil-helix domain containing 10 | Cytoplasm | other | | -1.536 | EFCAB2 | EF-hand calcium binding domain 2 | unknown | other | | -1.536
-1.536 | EFR3B
FAM19A2 | EFR3 homolog B (S. cerevisiae) family with sequence similarity 19 (chemokine (C-C motif)-like), member A2 | unknown
Cytoplasm | other
other | | -1.536 | KIAA0101 | KIAA0101 | Nucleus | other | | -1.521 | ATXN7L3B | ataxin 7-like 3B | unknown | other | | -1.521 | NMD3 | NMD3 homolog (S. cerevisiae) | Nucleus | other | | -1.521
-1.521 | SEMA4A
ZNF764 | sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4A zinc finger protein 764 | Plasma Membrane
unknown | other
other | | -1.506 | BICD1 | bicaudal D homolog 1 (Drosophila) | Cytoplasm | other | | -1.506 | C8orf37 | chromosome 8 open reading frame 37 | unknown | other | | -1.506 | DLGAP1 | discs, large (Drosophila) homolog-associated protein 1 | Plasma Membrane | other | | -1.506
-1.506 | DNAI1
ESYT3 | dynein, axonemal, intermediate chain 1 extended synaptotagmin-like protein 3 | Extracellular Space
unknown | other
other | | -1.506 | PRR13 | proline rich 13 | Nucleus | other | | -1.506 | Vmn2r88 (includes others) | vomeronasal 2, receptor 88 | unknown | other | | -1.750 | FLT1
FN3KRP | fms-related tyrosine kinase 1 | Plasma Membrane | kinase | | -1.731
-1.603 | FN3KRP
PAK1 | fructosamine 3 kinase related protein p21 protein (Cdc42/Rac)-activated kinase 1 | unknown
Cytoplasm | kinase
kinase | | -1.815 | KCNN2 | potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2 | Plasma Membrane | ion channel | | -1.792 | CATSPER3 | cation channel, sperm associated 3 | unknown | ion channel | | -1.682 | SCN1A | sodium channel, voltage-gated, type I, alpha subunit | Plasma Membrane | ion channel | | -1.550
-1.506 | SCN3A
CLCNKB | sodium channel, voltage-gated, type III, alpha subunit chloride channel, voltage-sensitive Kb | Plasma Membrane
Plasma Membrane | ion channel
ion channel | | -1.639 | BMP10 | bone morphogenetic protein 10 | Extracellular Space | | | -1.536 | EGF | epidermal growth factor | Extracellular Space | growth factor | | -1.886 | OR6C2 | olfactory receptor, family 6, subfamily C, member 2 | Plasma Membrane | G-protein coupled receptor | | -1.703 | Olfr1124 | olfactory receptor 1124 calcium-sensing receptor | Plasma Membrane | G-protein coupled receptor | | -1.682
-1.672 | CASR
Olfr808 | calcium-sensing receptor olfactory receptor 808 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | -1.590 | OR5B3 | olfactory receptor, family 5, subfamily B, member 3 | Plasma Membrane | G-protein coupled receptor | | -1.577 | CXCR1 | chemokine (C-X-C motif) receptor 1 | Plasma Membrane | G-protein coupled receptor | | -1.550 | Olfr1018 | olfactory receptor 1018 | Plasma Membrane | G-protein coupled receptor | | -1.536
-1.506 | Olfr514
MCHR1 | olfactory receptor 514 melanin-concentrating hormone receptor 1 | Plasma Membrane
Plasma Membrane | G-protein coupled receptor
G-protein coupled receptor | | -1.506 | Olfr418-ps1 | olfactory receptor 418, pseudogene 1 | Plasma Membrane | G-protein coupled receptor | | -1.506 | OR8D2 | olfactory receptor, family 8, subfamily D, member 2 | Plasma Membrane | G-protein coupled receptor | | -1.506 | RXFP4 | relaxin/insulin-like family peptide receptor 4 | Plasma Membrane | G-protein coupled receptor | | -1.999
-1.800 | GALNT6
Gucy2q | UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) quanylate cyclase 2q | Cytoplasm
Cytoplasm | enzyme
enzyme | | -1.800 | VKORC1 | vitamin K epoxide reductase complex, subunit 1 | Cytoplasm | enzyme | | -1.758 | SI | sucrase-isomaltase (alpha-glucosidase) | Cytoplasm | enzyme | | -1.731 | AMD1 | adenosylmethionine decarboxylase 1 | Cytoplasm | enzyme | | -1.722
-1.650 | SC5DL
ALG6 | sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, S. cerevisiae)-like asparagine-linked glycosylation 6, alpha-1,3-glucosyltransferase homolog (S. cerevisiae) | Cytoplasm
Cytoplasm | enzyme
enzyme | | -1.650 | Liph | lipase, member H | unknown | enzyme | | | | | | • | | -1.603
-1.603
-1.590
-1.564 | ENTPD1
SUCLA2
ACOXL
GNG3 | ectonucleoside triphosphate diphosphohydrolase 1
succinate-CoA ligase, ADP-forming, beta subunit
acyl-CoA oxidase-like | Plasma Membrane enzyme
Cytoplasm enzyme
unknown enzyme | |--------------------------------------|-----------------------------------|---|--| | -1.504
-1.536
-1.536 | ACER2
FKBP1B | guanine nucleotide binding protein (G protein), gamma 3
alkaline ceramidase 2
FK506 binding protein 1B, 12.6 kDa | Plasma Membrane enzyme
Cytoplasm enzyme
Cytoplasm enzyme | | -1.536
-1.536 | NEIL2
RAB5C | nei endonuclease VIII-likie 2 (E. coli) RAB5C, member RAS oncogene family | Nucleus enzyme Cytoplasm enzyme | | -1.521
-1.506 | PTDSS1
GFOD1 | phosphatidylserine synthase 1
glucose-fructose oxidoreductase domain containing 1 | Cytoplasm enzyme
unknown enzyme | | -1.506
-1.650
-1.506 | TNKS2
CMTM2
Cxcl12 | tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase 2
CKLF-like MARVPLt transmembrane domain containing 2
chemokine (C-X-C motif) ligand 12 | Nucleus enzyme Extracellular Space cytokine Extracellular Space cytokine | ### Appendix 8. ## Gene properties identified in shRNA Group D | | | 6.060. | | - P | | |---|------------------|------------------|--|----------------------------|----------------------------| | | Log Ratio | | Entrez Gene Name | Location | Type(s) | | | 1.872 | TM9SF4 | transmembrane 9 superfamily protein member 4 | Cytoplasm | transporter | | | 1.823 | TRAF5 | TNF receptor-associated factor 5 | Cytoplasm | transporter | | | 1.808 | CLDN16 | claudin 16 | Plasma Membrane | transporter | | | 1.767 | NRXN1 | neurexin 1 | Plasma Membrane | transporter | | | ·1.750
·1.731 | IPO11
Slco6c1 | importin 11 | Nucleus
Blooms Mombrons | transporter | | | 1.712 | 1700009N14Rik | solute carrier organic anion transporter family, member 6c1 | Plasma Membrane
unknown | transporter | | | 1.682 | LASP1 | RIKEN cDNA 1700009N14 gene
LIM and SH3 protein 1 | Cytoplasm | transporter
transporter | | | 1.672 | TM9SF1 | transmembrane 9 superfamily member 1 | Plasma Membrane | | | | 1.639 | TRAPPC10 | trafficking protein particle complex 10 | Cytoplasm | transporter | | | 1.615 | NUP107 | nucleoporin 107kDa | Nucleus | transporter | | | 1.577 | FABP5 | fatty acid binding protein 5 (psoriasis-associated) | Cytoplasm | transporter | | | 1.577 | PITPNM3 | PITPNM family member 3 | Cytoplasm | transporter | | | 1.564 | FRG1 | FSHD region gene 1 | Nucleus | transporter | | | 1.550 | NGB | neuroglobin | Cytoplasm | transporter | | | 1.536 | ARFGAP1 | ADP-ribosylation factor GTPase activating protein 1 | Cytoplasm | transporter | | | 1.536 | NUP37 | nucleoporin 37kDa | Nucleus | transporter | | | 1.521 | GLTP | glycolipid transfer protein | Cytoplasm | transporter | | | 1.506 | SLC35B1 | solute carrier family 35, member B1 | Cytoplasm | transporter | | | 1.506 | SLC39A13 | solute carrier family 39 (zinc transporter), member 13 | Cytoplasm | transporter | | | 1.506 | SLC4A7 | solute carrier family 4, sodium bicarbonate cotransporter, member 7 | Plasma Membrane | transporter | | | 1.758 | CD300C | CD300c molecule | Plasma Membrane | transmembrane receptor | | | 1.722 | HLA-DMA | major histocompatibility complex, class II, DM alpha | Plasma Membrane | transmembrane receptor | | - | 1.703 | IGHM | immunoglobulin heavy constant mu | Plasma Membrane | transmembrane receptor |
 | 1.639 | SARM1 | sterile alpha and TIR motif containing 1 | Plasma Membrane | transmembrane receptor | | | 1.603 | Klre1 | killer cell lectin-like receptor family E member 1 | Plasma Membrane | transmembrane receptor | | | 1.603 | LILRB3 | leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 3 | Plasma Membrane | transmembrane receptor | | - | 1.577 | CD79A | CD79a molecule, immunoglobulin-associated alpha | Plasma Membrane | transmembrane receptor | | - | 1.506 | ITGA4 | integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) | Plasma Membrane | transmembrane receptor | | - | 1.792 | BZW1 | basic leucine zipper and W2 domains 1 | Cytoplasm | translation regulator | | - | 1.693 | CELF1 | CUGBP, Elav-like family member 1 | Nucleus | translation regulator | | - | 1.639 | EIF3F | eukaryotic translation initiation factor 3, subunit F | Cytoplasm | translation regulator | | - | 1.615 | EEF1E1 | eukaryotic translation elongation factor 1 epsilon 1 | Cytoplasm | translation regulator | | - | 1.886 | SSBP3 | single stranded DNA binding protein 3 | Nucleus | transcription regulator | | - | 1.879 | TFDP1 | transcription factor Dp-1 | Nucleus | transcription regulator | | - | 1.800 | NFE2 | nuclear factor (erythroid-derived 2), 45kDa | Nucleus | transcription regulator | | - | 1.792 | NKX6-2 | NK6 homeobox 2 | Nucleus | transcription regulator | | - | 1.775 | IRF2BP2 | interferon regulatory factor 2 binding protein 2 | Nucleus | transcription regulator | | - | 1.758 | GTF2I | general transcription factor Ili | Nucleus | transcription regulator | | - | 1.731 | HIRA | HIR histone cell cycle regulation defective homolog A (S. cerevisiae) | Nucleus | transcription regulator | | - | 1.731 | KLF9 | Kruppel-like factor 9 | Nucleus | transcription regulator | | | 1.703 | GTF2E1 | general transcription factor IIE, polypeptide 1, alpha 56kDa | Nucleus | transcription regulator | | - | 1.693 | HOXD12 | homeobox D12 | Nucleus | transcription regulator | | - | 1.693 | LZTS1 | leucine zipper, putative tumor suppressor 1 | Nucleus | transcription regulator | | - | 1.693 | NFYC | nuclear transcription factor Y, gamma | Nucleus | transcription regulator | | - | 1.682 | SNAI3 | snail homolog 3 (Drosophila) | Nucleus | transcription regulator | | - | 1.672 | ERF | Ets2 repressor factor | Nucleus | transcription regulator | | - | 1.672 | PCGF2 | polycomb group ring finger 2 | Nucleus | transcription regulator | | - | 1.661 | DDX20 | DEAD (Asp-Glu-Ala-Asp) box polypeptide 20 | Nucleus | transcription regulator | | - | 1.661 | NKRF | NFKB repressing factor | Nucleus | transcription regulator | | | 1.661 | WWC1 | WW and C2 domain containing 1 | Cytoplasm | transcription regulator | | - | 1.650 | ARX | aristaless related homeobox | Nucleus | transcription regulator | | - | 1.650 | E2F8 | E2F transcription factor 8 | Nucleus | transcription regulator | | | 1.650 | HOXD4 | homeobox D4 | Nucleus | transcription regulator | | | 1.650 | VAV1 | vav 1 guanine nucleotide exchange factor | Nucleus | transcription regulator | | | 1.639 | DBX1 | developing brain homeobox 1 | Nucleus | transcription regulator | | | 1.627 | ASXL1 | additional sex combs like 1 (Drosophila) | Nucleus | transcription regulator | | | 1.627 | TFAM | transcription factor A, mitochondrial | Cytoplasm | transcription regulator | | | 1.615 | FOXN3 | forkhead box N3 | Nucleus | transcription regulator | | | 1.590 | Msx3 | homeobox, msh-like 3 | Nucleus | transcription regulator | | | 1.577 | GBX2 | gastrulation brain homeobox 2 | Nucleus | transcription regulator | | | 1.550 | ANKRD1 | ankyrin repeat domain 1 (cardiac muscle) | Cytoplasm | transcription regulator | | | 1.521 | SOX2 | SRY (sex determining region Y)-box 2 | Nucleus | transcription regulator | | | 1.521 | TGIF2LX | TGFB-induced factor homeobox 2-like, X-linked | Nucleus | transcription regulator | | | 1.506 | CDKN2AIP | CDKN2A interacting protein | Nucleus | transcription regulator | | | 1.866 | LPPR4 | lipid phosphate phosphatase-related protein type 4 | Plasma Membrane | phosphatase | | | 1.750 | PPP1R12B | protein phosphatase 1, regulatory subunit 12B | Cytoplasm | phosphatase | | | 1.672 | CTDP1 | CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1 | Nucleus | phosphatase | | | 1.627 | PPP4R1
EYA3 | protein phosphatase 4, regulatory subunit 1 | unknown
Nucleus | phosphatase | | | ·1.564
·1.506 | PDXP | eyes absent homolog 3 (Drosophila) pyridoxal (pyridoxine, vitamin B6) phosphatase | Nucleus
Plasma Membrane | phosphatase
phosphatase | | | 1.784 | Pappa2 | pappalysin 2 | unknown | prospriatase | | | 1.784 | UFD1L | ubiquitin fusion degradation 1 like (yeast) | Cytoplasm | peptidase | | | 1.672 | USP12 | ubiquitin specific peptidase 12 | Cytoplasm | peptidase | | | 1.672 | VMF1I 1 | YME1-like 1 (S. cerevisiae) | Cytoplasm | peptidase | | | 1.639 | PGPEP1 | pyroglutamyl-peptidase I | Cytoplasm | peptidase | | | 1.615 | KLK5 | kallikrein-related peptidase 5 | Extracellular Space | peptidase | | | 1.603 | LOC690251/Senp5 | Sumo1/sentrin/SMT3 specific peptidase 5 | unknown | peptidase | | | 1.603 | RELN | reelin | Extracellular Space | peptidase | | | 1.550 | CSTB | cystatin B (stefin B) | Cytoplasm | peptidase | | | 1.521 | CPE | carboxypeptidase E | Plasma Membrane | peptidase | | | 1.521 | HTRA3 | HtrA serine peptidase 3 | Extracellular Space | peptidase | | | 1.521 | PCSK6 | proprotein convertase subtilisin/kexin type 6 | Extracellular Space | | | | 1.506 | CHMP1A | charged multivesicular body protein 1A | Extracellular Space | | | | 1.506 | HSPA14 | heat shock 70kDa protein 14 | Cytoplasm | peptidase | | | 1.506 | MEST | mesoderm specific transcript | Extracellular Space | | | | 2.389 | D230038C21 | uncharacterized protein D230038C21 | unknown | other | | | 2.376 | PNISR | PNN-interacting serine/arginine-rich protein | Nucleus | other | | | 2.372 | HSPA13 | heat shock protein 70kDa family, member 13 | Cytoplasm | other | | | 2.325 | Cd209c | CD209c antigen | Plasma Membrane | other | | | 2.206 | KHDRBS3 | KH domain containing, RNA binding, signal transduction associated 3 | Nucleus | other | | | 2.113 | CUTA | cutA divalent cation tolerance homolog (E. coli) | unknown | other | | | 2.081 | PQLC3 | PQ loop repeat containing 3 | unknown | other | | | 2.056 | FAM81B | family with sequence similarity 81, member B | unknown | other | | | 2.042 | SLC35G6 | solute carrier family 35, member G6 | unknown | other | | | 2.038 | ZNF606 | zinc finger protein 606 | Nucleus | other | | | 2.033 | 4921517D16Rik | RIKEN cDNA 4921517D16 gene | unknown | other | | | 1.952 | AIDA | axin interactor, dorsalization associated | Cytoplasm | other | | | 1.952 | SERPINB9 | serpin peptidase inhibitor, clade B (ovalbumin), member 9 | Cytoplasm | other | | | 1.946 | Uty | ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome | Nucleus | other | | | 1.923 | PXMP2 | peroxisomal membrane protein 2, 22kDa | Cytoplasm | other | | - | 1.917 | LOC100127983 | uncharacterized LOC100127983 | unknown | other | | | | | | | | | .905 | Prg4 | proteoglycan 4, (megakaryocyte stimulating factor, articular superficial zone protein, camptodactyly, | | other | |--------------|--|--|----------------------------------|----------------| | .892 | Gm5094 | predicted gene 5094 | unknown | other | | .872
.872 | BAG4
FBXO43 | BCL2-associated athanogene 4 F-box protein 43 | Cytoplasm
Nucleus | other
other | | .872 | FYB | FYN binding protein | Nucleus | other | | 866 | PAG1 | phosphoprotein associated with glycosphingolipid microdomains 1 | Plasma Membrane | other | | .852
.845 | HSPA12B
USB1 | heat shock 70kD protein 12B
U6 snRNA biogenesis 1 | unknown
Nucleus | other
other | | .838 | VAPA | VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa | Plasma Membrane | other | | 830 | EWSR1 | Ewing sarcoma breakpoint region 1 | Nucleus | other | | 830
823 | Gm501
CST11 | predicted gene 501
cystatin 11 | unknown
Extracellular Space | other
other | | 823 | Prl7b1 | prolactin family 7, subfamily b, member 1 | Extracellular Space | other | | 815 | 2700069I18Rik | RIKEN cDNA 2700069118 gene | unknown | other | | 815
815 | CCDC63
RASGEF1B | coiled-coil domain containing 63 RasGEF domain family, member 1B | unknown
unknown | other
other | | 815 | Txlna | taxilin alpha | unknown | other | | 808 | 4930431N21Rik | RIKEN cDNA 4930431N21 gene | unknown | other | | 808
808 | C2orf42
SDK1 | chromosome 2 open reading frame 42 sidekick cell adhesion molecule 1 | unknown
Plasma Membrane | other
other | | .800 | BCL9 | B-cell CLL/lymphoma 9 | Nucleus | other | | .792 | Gm12169 | predicted gene 12169 | unknown | other | | 784
784 | KIAA0195
MBTD1 | KIAA0195
mbt domain containing 1 | Extracellular Space
unknown | other
other | | 784 | PDC | phosducin | Cytoplasm | other | | 784 | RASSF7 | Ras association (RalGDS/AF-6) domain family (N-terminal) member 7 | unknown | other | | 784 | SERPINI2 | serpin peptidase inhibitor, clade I (pancpin), member 2 | Extracellular Space | other | | .775
.767 | SPDYE4
Ceacam3 | speedy homolog E4 (Xenopus laevis) carcinoembryonic antigen-related cell adhesion molecule 3 | unknown
unknown | other
other | | 767 | COL3A1 | collagen, type III, alpha 1 | Extracellular Space | other | | 767 | EPB41L2 | erythrocyte membrane protein band 4.1-like 2 | Plasma Membrane | other | | 767
758 | ZNF571
4930404l05Rik | zinc finger protein 571
RIKEN cDNA 4930404105 gene | Nucleus
unknown | other
other | | 758 | C19orf24 | chromosome 19 open reading frame 24 | unknown | other | | 758 | KIAA1524 | KIAA1524 | Cytoplasm | other | | .750
.750 | 1500015L24Rik
4933427E11Rik | RIKEN cDNA 1500015L24
gene | unknown
unknown | other
other | | .750
.750 | 4933427E11RIK
CDCA2 | RIKEN cDNA 4933427E11 gene
cell division cycle associated 2 | unknown
Nucleus | otner | | .750 | FETUB | fetuin B | Extracellular Space | other | | 750 | LCE1D | late cornified envelope 1D | Cytoplasm | other | | .750
.750 | PHF3
THUMPD3 | PHD finger protein 3 THUMP domain containing 3 | Nucleus
unknown | other
other | | .740 | DNAJC25 | DnaJ (Hsp40) homolog, subfamily C , member 25 | unknown | other | | 740 | SDE2 | SDE2 telomere maintenance homolog (S. pombe) | unknown | other | | .740
.740 | SDHAF2
STAU2 | succinate dehydrogenase complex assembly factor 2
staufen, RNA binding protein, homolog 2 (Drosophila) | Extracellular Space
Cytoplasm | other
other | | .731 | 4931408C20Rik | RIKEN cDNA 4931408C20 gene | unknown | other | | .731 | Adamts20 | a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 20 | unknown | other | | .731
.731 | ARHGAP32
C16orf46 | Rho GTPase activating protein 32
chromosome 16 open reading frame 46 | Cytoplasm
unknown | other
other | | .731
.731 | CHMP3 | chromosome 16 open reading frame 46 charged multivesicular body protein 3 | Unknown
Cytoplasm | otner | | .731 | Gm5545 | predicted gene 5545 | unknown | other | | .731 | KIAA1704 | KIAA1704 | unknown | other | | .731
.731 | LMBRD2
PALB2 | LMBR1 domain containing 2
partner and localizer of BRCA2 | unknown
Nucleus | other
other | | .722 | BTBD9 | BTB (POZ) domain containing 9 | unknown | other | | 722 | ELFN2 | extracellular leucine-rich repeat and fibronectin type III domain containing 2 | unknown | other | | .722
.722 | NOXA1
Speer4a (includes others) | NADPH oxidase activator 1
spermatogenesis associated glutamate (E)-rich protein 4a | unknown
Nucleus | other
other | | .722 | TATDN3 | TatD DNase domain containing 3 | Cytoplasm | other | | .722 | ZNF318 | zinc finger protein 318 | Nucleus | other | | .712
.712 | CCT4
DDRGK1 | chaperonin containing TCP1, subunit 4 (delta) DDRGK domain containing 1 | Cytoplasm
Extracellular Space | other
other | | .712
.712 | E330034G19Rik | RIKEN cDNA E330034G19 gene | unknown | otner | | .712 | FAM184A | family with sequence similarity 184, member A | Extracellular Space | other | | 712 | FRMD3 | FERM domain containing 3 | unknown | other | | .712
.712 | GSDMC
TNFAIP2 | gasdermin C
tumor necrosis factor, alpha-induced protein 2 | Cytoplasm
Extracellular Space | other
other | | 712 | TOMM34 | translocase of outer mitochondrial membrane 34 | Cytoplasm | other | | 703 | Akap17b | A kinase (PRKA) anchor protein 17B | unknown | other | | .703
.703 | ARID3B
DNAJB5 | AT rich interactive domain 3B (BRIGHT-like) DnaJ (Hsp40) homolog, subfamily B, member 5 | unknown
Cytoplasm | other
other | | .703
.703 | GAP43 | growth associated protein 43 | Plasma Membrane | otner | | 703 | IKBIP | IKBKB interacting protein | Cytoplasm | other | | 703 | MRPL51 | mitochondrial ribosomal protein L51 | Cytoplasm | other | | .703
.703 | MYL3
RASEF | myosin, light chain 3, alkali; ventricular, skeletal, slow
RAS and EF-hand domain containing | Cytoplasm
unknown | other
other | | .703 | TRIM61 | tripartite motif containing 61 | unknown | other | | 703 | ZNF846 | zinc finger protein 846 | unknown | other | | .693
.693 | 4930526F13Rik
ERLEC1 | RIKEN cDNA 4930526F13 gene
endoplasmic reticulum lectin 1 | unknown
Extracellular Space | other
other | | 693 | FSD1L | fibronectin type III and SPRY domain containing 1-like | unknown | other | | 693 | KRT77 | keratin 77 | unknown | other | | .693
.693 | PPP4R4
TSPAN33 | protein phosphatase 4, regulatory subunit 4 tetraspanin 33 | Cytoplasm
Plasma Membrane | other
other | | .693 | TSTD1 | thiosulfate sulfurtransferase (rhodanese)-like domain containing 1 | Cytoplasm | other | | .693 | ZNF830 | zinc finger protein 830 | Nucleus | other | | .682
.682 | A530032D15Rik (includes others)
B130021B11Rik | RIKEN cDNA C130026l21 gene
RIKEN cDNA B130021B11 gene | unknown
unknown | other
other | | 682
682 | ISCA2 | iron-sulfur cluster assembly 2 homolog (S. cerevisiae) | Unknown
Cytoplasm | otner | | 682 | PI16 | peptidase inhibitor 16 | Extracellular Space | other | | 682 | POC5 | POC5 centriolar protein homolog (Chlamydomonas)
pseudouridylate synthase 7 homolog (S. cerevisiae)-like | Cytoplasm | other | | 682
682 | PUS7L
VIP | pseudouridylate synthase / homolog (S. cerevisiae)-like
vasoactive intestinal peptide | unknown
Extracellular Space | other
other | | 682 | ZDHHC11B | zinc finger, DHHC-type containing 11B | unknown | other | | 672 | ANXA11 | annexin A11 | Nucleus | other | | 672
672 | C8orf76
Defb3 | chromosome 8 open reading frame 76
beta-defensin 3 | unknown
unknown | other
other | | 672 | DFNA5 | deafness, autosomal dominant 5 | Unknown
Cytoplasm | otner | | 672 | E030003E18Rik | RIKEN cDNA E030003E18 gene | unknown | other | | 672 | HINT3 | histidine triad nucleotide binding protein 3 | unknown | other | | 672
672 | PDZD9
PPP1R9A | PDZ domain containing 9
protein phosphatase 1, regulatory subunit 9A | unknown
Plasma Membrane | other
other | | 672 | Pri3c1 | protein prospriatase 1, regulatory subunit 9A
prolactin family 3, subfamily c, member 1 | Extracellular Space | other | | 672 | SECISBP2L | SECIS binding protein 2-like | unknown | other | | 672 | SLC15A5 | solute carrier family 15, member 5 | unknown | other | | 672
661 | WDFY2
C19orf52 | WD repeat and FYVE domain containing 2
chromosome 19 open reading frame 52 | unknown
unknown | other
other | | | C330011M18Rik | RIKEN cDNA C330011M18 gene | unknown | other | | 661 | | | | | | -1.661 | GLIPR1 | GLI pathogenesis-related 1 | Extracellular Space | | |------------------|--|---|----------------------------|----------------| | -1.661
-1.661 | Gm815
LIN52 | predicted gene 815 | unknown
Nucleus | other
other | | -1.661 | PROCA1 | lin-52 homolog (C. elegans) protein interacting with cyclin A1 | unknown | other | | -1.661 | RALGPS2 | Ral GEF with PH domain and SH3 binding motif 2 | unknown | other | | -1.661 | ZNF565 | zinc finger protein 565 | Nucleus | other | | -1.650 | B230317F23Rik | RIKEN cDNA B230317F23 gene | unknown | other | | -1.650 | IFT80 | intraflagellar transport 80 homolog (Chlamydomonas) | unknown | other | | -1.650
-1.650 | KIAA1024
RPS19BP1 | KIAA1024
ribosomal protein S19 binding protein 1 | unknown
Nucleus | other
other | | -1.650 | Sprr2j-ps | small proline-rich protein 2J, pseudogene | Cytoplasm | other | | -1.650 | STEAP4 | STEAP family member 4 | Plasma Membrane | other | | -1.650 | WDR96 | WD repeat domain 96 | unknown | other | | -1.650 | ZNHIT6 | zinc finger, HIT-type containing 6 | unknown | other | | -1.639
-1.639 | C1orf174
MAP7D2 | chromosome 1 open reading frame 174
MAP7 domain containing 2 | unknown
unknown | other
other | | -1.639 | NEFM | neurofilament, medium polypeptide | Cytoplasm | other | | -1.639 | Srsf10 | serine/arginine-rich splicing factor 10 | Nucleus | other | | -1.639 | ZNF800 | zinc finger protein 800 | unknown | other | | -1.627 | ANKRD28 | ankyrin repeat domain 28 | Cytoplasm | other | | -1.627
-1.627 | ARGLU1
ARL6IP4 | arginine and glutamate rich 1 ADP-ribosylation-like factor 6 interacting protein 4 | unknown
Nucleus | other
other | | -1.627 | C2orf80 | chromosome 2 open reading frame 80 | unknown | other | | -1.627 | Ccnb1/Gm5593 | cyclin B1 | Nucleus | other | | -1.627 | CCNG1 | cyclin G1 | Nucleus | other | | -1.627 | CLEC4M | C-type lectin domain family 4, member M | Plasma Membrane | other | | -1.627
-1.627 | Gm9776
HIST1H1T | predicted gene 9776
histone cluster 1, H1t | unknown
Nucleus | other
other | | -1.627 | KRTDAP | keratinocyte differentiation-associated protein | Extracellular Space | | | -1.627 | PHYHIP | phytanoyl-CoA 2-hydroxylase interacting protein | unknown | other | | -1.627 | Plxnb1 | plexin B1 | unknown | other | | -1.627 | PRKRIR | protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 rep | | other | | -1.627
-1.627 | Prl8a1
RSU1 | prolactin family 8, subfamily a, member 1 Ras suppressor protein 1 | unknown
Cytoplasm | other
other | | -1.615 | ATAD2 | ATPase family, AAA domain containing 2 | Nucleus | other | | -1.615 | DNAJC1 | DnaJ (Hsp40) homolog, subfamily C, member 1 | Nucleus | other | | -1.615 | KRTAP3-2 | keratin associated protein 3-2 | unknown | other | | -1.615 | LRRC58 | leucine rich repeat containing 58 | unknown | other | | -1.615
-1.615 | NETO2
PHLDA2 | neuropilin (NRP) and tolloid (TLL)-like 2
pleckstrin homology-like domain, family A, member 2 | unknown
Cytoplasm | other
other | | -1.615 | RNASE10 | ribonuclease, RNase A family, 10 (non-active) | Extracellular Space | other | | -1.615 | SHD | Src homology 2 domain containing transforming protein D | Cytoplasm | other | | -1.615 | Smr3a | submaxillary gland androgen regulated protein 3A | Extracellular Space | other | | -1.615 | TBC1D2 | TBC1 domain family, member 2 | Cytoplasm | other | | -1.615
-1.603 | URGCP
4933434C23Rik | upregulator of cell proliferation | Cytoplasm
unknown | other | | -1.603 | C5orf47 | RIKEN cDNA 4933434C23 gene
chromosome 5 open reading frame 47 | unknown | other
other | | -1.603 | CLDN8 | claudin 8 | Plasma Membrane | other | | -1.603 | COPS7B | COP9 constitutive photomorphogenic homolog subunit 7B (Arabidopsis) | Cytoplasm | other | | -1.603 | EDN3 | endothelin 3 | Extracellular Space | other | | -1.603 | FAM184B | family with sequence similarity 184, member B predicted gene 14461 | unknown | other | |
-1.603
-1.603 | Gm14461
Pramel6 | preferentially expressed antigen in melanoma like 6 | unknown
unknown | other
other | | -1.603 | RINL | Ras and Rab interactor-like | unknown | other | | -1.603 | SOBP | sine oculis binding protein homolog (Drosophila) | Nucleus | other | | -1.603 | Zfp954 | zinc finger protein 954 | unknown | other | | -1.603 | ZNF676 | zinc finger protein 676 | Nucleus | other | | -1.590
-1.590 | C2orf72
CCIN | chromosome 2 open reading frame 72 calicin | unknown
Cytoplasm | other
other | | -1.590 | CNST | consortin, connexin sorting protein | Cytoplasm | other | | -1.590 | Gm648 | predicted gene 648 | unknown | other | | -1.590 | HOXC11 | homeobox C11 | Nucleus | other | | -1.590 | NDUFAF1 | NADH dehydrogenase (ubiquinone) complex I, assembly factor 1 | Cytoplasm | other | | -1.590
-1.590 | NPNT
SMIM12 | nephronectin
small integral membrane protein 12 | Plasma Membrane
unknown | other
other | | -1.577 | 1500002O10Rik | RIKEN cDNA 1500002O10 gene | unknown | other | | -1.577 | 2700097O09Rik | RIKEN cDNA 2700097009 gene | Extracellular Space | other | | -1.577 | 4930468A15Rik | RIKEN cDNA 4930468A15 gene | unknown | other | | -1.577 | A530032D15Rik (includes others)
Afmid | RIKEN cDNA C130026I21 gene arylformamidase | unknown | other
other | | -1.577
-1.577 | ARRB1 | arrestin, beta 1 | unknown
Cytoplasm | other | | -1.577 | BBS10 | Bardet-Biedl syndrome 10 | unknown | other | | -1.577 | CARD6 | caspase recruitment domain family, member 6 | Cytoplasm | other | | -1.577 | CD300E | CD300e molecule | unknown | other | | -1.577
-1.577 | MATR3
RFC2 | matrin 3 replication factor C (activator 1) 2, 40kDa | Nucleus
Nucleus | other
other | | -1.577 | RNF157 | ring finger protein 157 | unknown | other | | -1.577 | SEC31A | SEC31 homolog A (S. cerevisiae) | Cytoplasm | other | | -1.577 | SH3PXD2A | SH3 and PX domains 2A | Cytoplasm | other | | -1.577
-1.564 | UPK1B
9530026P05Rik | uroplakin 1B
RIKEN cDNA 9530026P05 gene | Plasma Membrane
unknown | other
other | | -1.564 | A330008L17Rik | RIKEN cDNA 333008L17 gene | unknown | other | | -1.564 | AKAP1 | A kinase (PRKA) anchor protein 1 | Cytoplasm | other | | -1.564 | ARVCF | armadillo repeat gene deleted in velocardiofacial syndrome | Plasma Membrane | other | | -1.564 | BATF2 | basic leucine zipper transcription factor, ATF-like 2 | unknown | other | | -1.564
-1.564 | D330041H03Rik
GLTSCR1L | RIKEN cDNA D330041H03 gene
GLTSCR1-like | unknown
unknown | other
other | | -1.564 | KIAA1731 | KIAA1731 | Cytoplasm | other | | -1.564 | KLHDC5 | kelch domain containing 5 | Nucleus | other | | -1.564 | MS4A5 | membrane-spanning 4-domains, subfamily A, member 5 | unknown | other | | -1.564 | SLC25A52 | solute carrier family 25, member 52 | unknown | other | | -1.550
-1.550 | 1700028J19Rik
5730433N10Rik | RIKEN cDNA 1700028J19 gene
RIKEN cDNA 5730433N10 gene | unknown
unknown | other
other | | -1.550 | ALCAM | activated leukocyte cell adhesion molecule | Plasma Membrane | other | | -1.550 | AZI1 | 5-azacytidine induced 1 | Cytoplasm | other | | -1.550 | C030019G06Rik | RIKEN cDNA C030019G06 gene | unknown | other | | -1.550
-1.550 | C19orf43
C7orf62 | chromosome 19 open reading frame 43 | Nucleus | other | | -1.550
-1.550 | C70ff62
CD68 | chromosome 7 open reading frame 62
CD68 molecule | unknown
Plasma Membrane | other
other | | -1.550 | CRYGS | crystallin, gamma S | unknown | other | | -1.550 | FAM65A | family with sequence similarity 65, member A | Cytoplasm | other | | -1.550 | FBXW8 | F-box and WD repeat domain containing 8 | unknown | other | | -1.550
-1.550 | GIMAP8 | GTPase, IMAP family member 8 | unknown | other | | -1.550
-1.550 | Gm5482
NAT6 | predicted gene 5482
N-acetyltransferase 6 (GCN5-related) | unknown
Cytoplasm | other
other | | -1.550 | NCAPG | non-SMC condensin I complex, subunit G | Nucleus | other | | -1.550 | OSBPL8 | oxysterol binding protein-like 8 | Cytoplasm | other | | -1.550 | PRDM15 | PR domain containing 15 | Nucleus | other | | -1.550
-1.550 | RPL11
TMEM202 | ribosomal protein L11
transmembrane protein 202 | Cytoplasm
unknown | other
other | | | | | | | | | | | | | ``` TRIML1 tripartite motif family-like 1 -1.550 unknown other tetratricopeptide repeat domain 33 tumor suppressor candidate 2 ubiquitin D -1.550 -1.550 -1.550 other TTC33 TUSC2 unknown Nucleus Nucleus other VAMP3 vesicle-associated membrane protein 3 -1.550 Plasma Membrane other VAMP3 Vmn1r51 (includes others) Vmn2r19 (includes others) ZFP30 AHNAK ALG11 -1.550 -1.550 -1.550 vomeronasal 1 receptor 51 vomeronasal 2, receptor 19 ZFP30 zinc finger protein Plasma Membrane other unknown Extracellular Space other -1.536 AHNAK nucleoprotein asparagine-linked glycosylation 11, alpha-1,2-mannosyltransferase homolog (yeast) Nucleus other -1.536 unknown other asparagine-linked glycosylation 11, alpha-1,2-ma amyloid P component, serum RIKEN cDNA C230088H06 gene complement component 4B (Chido blood group) -1.536 -1.536 -1.536 APCS Extracellular Space C230088H06Rik C4B (includes others) unknown Extracellular Space other -1.536 CFL1 cofilin 1 (non-muscle) Nucleus other CUEDC1 Fhod3 GPATCH3 CUE domain containing 1 formin homology 2 domain containing 3 G patch domain containing 3 IQ motif containing F4 other other other -1.536 -1.536 unknown Nucleus -1.536 unknown -1.536 unknown other KIAA0226 Cytoplasm unknown Cytoplasm -1.536 KIAA0226 other KIAAUZ26 keratin 23 (histone deacetylase inducible) microtubule-associated protein 4 xeroderma pigmentosum, complementation group C -1.536 -1.536 -1.536 KRT23 MAP4 XPC other other other -1.536 Zfp942/Zfp944 zinc finger protein 944 unknown other -1.536 -1.521 -1.521 ZP1 4930529M08Rik 5830405M20Rik zona pellucida glycoprotein 1 (sperm receptor) RIKEN cDNA 4930529M08 gene RIKEN cDNA 5830405M20 gene Extracellular Space other unknown other -1.521 ANGEL1 angel homolog 1 (Drosophila) cDNA sequence BC026585 Extracellular Space other BC026585 -1.521 Cytoplasm other -1.521 -1.521 CCDC85A coiled-coil domain containing 85A elastin microfibril interfacer 1 unknown Extracellular Space -1.521 -1.521 Gm5444 predicted gene 5444 unknown other KLHL6 kelch-like 6 (Drosophila) unknown other -1.521 -1.521 -1.521 -1.521 myosin phosphatase Rho interacting protein placenta-specific 1-like protactin family 8, subfamily a, member 6 Cytoplasm unknown Extracellular Space PLAC1L Prl8a6 other SMAP1 small ArfGAP 1 -1.521 Cytoplasm other small ArtiGAP 1 small integral membrane protein 8 sperm antigen with calponin homology and coiled-coil domains 1 vomeronasal 1 receptor 52 -1.521 -1.521 -1.521 -1.521 SMIM8 unknown other SPECC1 Nucleus unknown other BCL2-like 14 (apoptosis facilitator) -1.506 BCL2L14 Cytoplasm other -1.506 Plasma Membrane other -1.506 -1.506 -1.506 CCDC25 CCDC41 CGN CHIC2 coiled-coil domain containing 25 unknown Extracellular Space Plasma Membrane coiled-coil domain containing 41 cingulin cysteine-rich hydrophobic domain 2 other -1.506 Plasma Membrane other -1.506 -1.506 -1.506 cysteinie-rich rydrophobic domain 2 cathepsin J RIKEN cDNA D430032J08 gene EP300 interacting inhibitor of differentiation 3 Cytoplasm unknown Cytoplasm Ctsj D430032J08Rik EID3 FAM117B other family with sequence similarity 117, member B family with sequence similarity 35, member A FYVE, RhoGEF and PH domain containing 2 HMG box domain containing 4 -1.506 -1.506 unknown other Extracellular Space FAM35A -1.506 -1.506 -1.506 Cytoplasm Nucleus Cytoplasm FGD2 HMGXB4 KRT9 LRRC8A keratin 9 other leucine rich repeat containing 8 family, member A Extracellular Space -1.506 other -1.506 -1.506 -1.506 indogen 2 (osteonidogen) outer dense fiber of sperm tails 3-like 1 2-oxoglutarate and iron-dependent oxygenase domain containing 1 prickle homolog 3 (Drosophila) NID2 Extracellular Space other unknown OGFOD1 other -1.506 PRICKLE3 unknown other -1.506 -1.506 -1.506 Ras and Rab interactor 1 signal recognition particle 9kDa testis expressed 13B zinc finger and BTB domain containing 9 Cytoplasm Cytoplasm unknown other other other RIN1 SRP9 TEX13B ZBTB9 -1.506 Nucleus other zinc finger protein 956 zinc finger protein 787 -1.506 Zfp956 unknown other -1.506 -1.506 -1.603 -2.275 ZNF787 AR PLK2 unknown Nucleus ligand-dependent nuclear receptor androgen receptor polo-like kinase 2 Nucleus -2.150 DGKI diacylglycerol kinase, iota Cytoplasm kinase -1.800 -1.731 -1.712 mex-3 homolog B (C. elegans) CDC42 binding protein kinase beta (DMPK-like) WEE1 homolog (S. pombe) MEX3B kinase CDC42BPB WEE1 Nucleus kinase WET nomolog (s. pombe) mitogen-activated protein kinase 13 cell division cycle 7 homolog (S. cerevisiae) mitogen-activated protein kinase kinase kinase 7 RIO kinase 3 diacylglycerol kinase, gamma 90kDa -1.703 MAPK13 Cytoplasm kinase -1.693 CDC7 Nucleus kinase -1.672 -1.661 -1.639 Cytoplasm unknown MAP3K7 kinase RIOK3 DGKG Cytoplasm kinase -1.615 ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) Plasma Membrane kinase -1.603 -1.603 -1.577 GNE PBK RET venora e l'unifoliata leukenna vina oncogene nomologi (avian) glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase PDZ binding kinase ret proto-oncogene Cytoplasm Cytoplasm Plasma Membrane kinase -1.550 PLK3 polo-like kinase 3 Nucleus kinase -1.550 -1.550 -1.536 PRKCE TEX14 SIK1 protein kinase C, epsilon testis expressed 14 salt-inducible kinase 1 Cytoplasm Plasma Membrane kinase Cytoplasm kinase -1.536 -1.521 SPHK2 OBSCN sphingosine kinase 2 Cytoplasm kinase obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF Cvtoplasm kinase -1.506 -2.167 -1.693 obsculint, vyosketeta talintouria alu tuiri-interacting Knoch serum/glucocorticoid regulated kinase 2 potassium voltage-gated channel, shaker-related subfamily, beta member 3 gamma-aminobutyric acid (GABA) A receptor, beta 3 Cytoplasm Plasma Membrane Plasma Membrane SGK2 kinase KCNAB3 GABRB3 ion channe ion channe FXYD domain
containing ion transport regulator 6 acid-sensing (proton-gated) ion channel family member 5 chloride channel, voltage-sensitive 3 glutamate receptor, ionotropic, kainate 2 -1.661 FXYD6 Plasma Membrane ion channe -1.550 -1.536 -1.536 ASIC5 CLCN3 GRIK2 Plasma Membrane Plasma Membrane Plasma Membrane Plasma Membrane ion channel ion channel ion channel hyperpolarization activated cyclic nucleotide-gated potassium channel 4 calcium channel, voltage-dependent, T type, alpha 1H subunit vascular endothelial growth factor A fibroblast growth factor 14 -1.536 -1.521 HCN4 Plasma Membrane ion channel CACNA1H Plasma Membrane ion channel -1.639 -1.615 -1.615 VEGFA FGF14 PTN Extracellular Space Extracellular Space Extracellular Space growth factor growth factor growth factor pleiotrophin WNT1 inducible signaling pathway protein 2 WISP2 growth factor G-protein coupled receptor G-protein coupled receptor G-protein coupled receptor -1.564 Extracellular Space -2.485 -1.917 -1.845 olfactory receptor 194 olfactory receptor 1462 olfactory receptor 916 Plasma Membrane Plasma Membrane Plasma Membrane Olfr194 Olfr1462 Olfr916 gamma-aminobutyric acid (GABA) B receptor, 2 -1.838 GABBR2 Plasma Membrane G-protein coupled receptor -1.808 -1.750 -1.740 Olfr1344 Olfr1010 A630033H20Rik olfactory receptor 1344 olfactory receptor 1010 RIKEN cDNA A630033H20 gene Plasma Membrane Plasma Membrane Plasma Membrane G-protein coupled receptor G-protein coupled receptor G-protein coupled receptor G-protein coupled receptor Plasma Membrane -1.712 -1.712 Gpr165 G protein-coupled receptor 165 Olfr1055 olfactory receptor 1055 -1.712 -1.703 -1.672 -1.661 Vmn2r32 (includes others) OR52B6 CNR2 offactory receptor 1035 vomeronasal 2, receptor 32 olfactory receptor, family 52, subfamily B, member 6 cannabinoid receptor 2 (macrophage) ``` | -1.661 | Vmn1r78 | vomeronasal 1 receptor 78 | Plasma Membrane | G-protein coupled receptor | |--|---|--|--
--| | -1.627 | Olr422 | olfactory receptor 422 | Plasma Membrane | | | -1.615 | LPAR1 | lysophosphatidic acid receptor 1 | Plasma Membrane | | | -1.603 | GPR84 | G protein-coupled receptor 84 | | G-protein coupled receptor | | -1.603 | Olfr1317/Olfr1318 | olfactory receptor 1318 | Plasma Membrane | G-protein coupled receptor | | -1.603 | Olfr608 | olfactory receptor 608 | | G-protein coupled receptor | | -1.603 | Olr1082 (includes others) | olfactory receptor 1082 | | G-protein coupled receptor | | -1.603 | OR10A2 | olfactory receptor, family 10, subfamily A, member 2 | | G-protein coupled receptor | | -1.564 | GPR119 | G protein-coupled receptor 119 | | G-protein coupled receptor | | -1.564 | MRGPRX2 | MAS-related GPR, member X2 | | G-protein coupled receptor | | -1.564 | OXGR1 | oxoglutarate (alpha-ketoglutarate) receptor 1 | | G-protein coupled receptor | | -1.550
-1.550 | Fpr-rs3
OPRL1 | formyl peptide receptor, related sequence 3
opiate receptor-like 1 | | G-protein coupled receptor | | -1.521 | LTB4R | leukotriene B4 receptor | | G-protein coupled receptor
G-protein coupled receptor | | -1.506 | GPR182 | G protein-coupled receptor 182 | | G-protein coupled receptor | | -1.506 | OR4C11 | olfactory receptor, family 4, subfamily C, member 11 | | G-protein coupled receptor | | -1.506 | OR5AP2 | olfactory receptor, family 5, subfamily AP, member 2 | | G-protein coupled receptor | | -2.060 | AGPAT2 | 1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta) | Cytoplasm | enzyme | | -1.941 | COQ7 | coenzyme Q7 homolog, ubiquinone (yeast) | Cytoplasm | enzyme | | -1.941 | Rheb | Ras homolog enriched in brain | Plasma Membrane | enzyme | | -1.859 | LIPC | lipase, hepatic | Extracellular Space | | | -1.852 | CYP4A11 | cytochrome P450, family 4, subfamily A, polypeptide 11 | Cytoplasm | enzýme | | -1.845 | PROSC | proline synthetase co-transcribed homolog (bacterial) | Cytoplasm | enzyme | | -1.800 | ALDH1L1 | aldehyde dehydrogenase 1 family, member L1 | Cytoplasm | enzyme | | -1.800 | PGAP1 | post-GPI attachment to proteins 1 | Cytoplasm | enzyme | | -1.792 | DBH | dopamine beta-hydroxylase (dopamine beta-monooxygenase) | Cytoplasm | enzyme | | -1.784 | Cyp2c44 | cytochrome P450, family 2, subfamily c, polypeptide 44 | Cytoplasm | enzyme | | -1.784 | PRDX2 | peroxiredoxin 2 | Cytoplasm | enzyme | | -1.767 | MCM6 | minichromosome maintenance complex component 6 | Nucleus | enzyme | | -1.758 | EXOSC7 | exosome component 7 | Nucleus | enzyme | | -1.750 | HSPA8 | heat shock 70kDa protein 8 | Cytoplasm | enzyme | | -1.750 | MGEA5 | meningioma expressed antigen 5 (hyaluronidase) | Cytoplasm | enzyme | | -1.750 | TRIM68 | tripartite motif containing 68 | Cytoplasm | enzyme | | -1.740 | FAN1 | FANCD2/FANCI-associated nuclease 1 | Nucleus | enzyme | | -1.740 | FBXL2 | F-box and leucine-rich repeat protein 2 | Cytoplasm | enzyme | | -1.731 | ENPP5 | ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative) | Extracellular Space | enzyme | | -1.731 | MARC1 | mitochondrial amidoxime reducing component 1 | Cytoplasm | enzyme | | -1.703 | C2orf43 | chromosome 2 open reading frame 43 | unknown | enzyme | | -1.703 | EHD4 | EH-domain containing 4 | Plasma Membrane | enzyme | | -1.703 | GSTA5 | glutathione S-transferase alpha 5 | Cytoplasm | enzyme | | -1.693 | POLA1 | polymerase (DNA directed), alpha 1, catalytic subunit | Nucleus | enzyme | | -1.682 | ATG7 | autophagy related 7 | Cytoplasm | enzyme | | -1.682 | THG1L | tRNA-histidine guanylyltransferase 1-like (S. cerevisiae) | Cytoplasm | enzyme | | -1.672 | ATAT1 | alpha tubulin acetyltransferase 1 | unknown | enzyme | | -1.672 | BCHE | butyrylcholinesterase | Plasma Membrane | enzyme | | -1.672 | GNAT2 | guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 2 | Plasma Membrane | enzyme | | -1.672 | PTGR2
SLX1A/SLX1B | prostaglandin reductase 2 | Cytoplasm | enzyme | | -1.672 | | SLX1 structure-specific endonuclease subunit homolog B (S. cerevisiae) | unknown | enzyme | | -1.661
-1.661 | METTL6
SETDB2 | methyltransferase like 6
SET domain, bifurcated 2 | unknown
Nucleus | enzyme
enzyme | | -1.650 | FDPS | farnesyl diphosphate synthase | Cytoplasm | enzyme | | -1.650 | FMO2 | flavin containing monooxygenase 2 (non-functional) | Cytoplasm | enzyme | | -1.650 | RAD51B | RAD51 homolog B (S. cerevisiae) | Nucleus | enzyme | | -1.650 | TOP2B | topoisomerase (DNA) II beta 180kDa | Nucleus | enzyme | | -1.627 | CRBN | cerebion | Cytoplasm | enzyme | | -1.627 | RHOT2 | ras homolog family member T2 | Cytoplasm | enzyme | | -1.603 | KIF9 | kinesin family member 9 | Cytoplasm | enzyme | | -1.603 | OC90 | otoconin 90 | Extracellular Space | | | -1.603 | PLCD4 | phospholipase C, delta 4 | Cytoplasm | enzyme | | -1.603 | PPT1 | palmitoyl-protein thioesterase 1 | Cytoplasm | enzyme | | -1.590 | CRYZ | crystallin, zeta (quinone reductase) | | | | -1.590 | | | Cytoplasm | enzyme | | | DDX24 | DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 | Nucleus | enzyme
enzyme | | -1.577 | AOC2 | amine oxidase, copper containing 2 (retina-specific) | | | | | AOC2
Cyp2a12/Cyp2a22 | | Nucleus | enzyme | | -1.577
-1.577
-1.577 | AOC2
Cyp2a12/Cyp2a22
HYAL4 | amine oxidase, copper containing 2 (retina-specific)
cytochrome P450, family 2, subfamily a, polypeptide 12
hyaluronoglucosaminidase 4 | Nucleus
unknown
Cytoplasm
unknown | enzyme
enzyme
enzyme
enzyme | | -1.577
-1.577
-1.577
-1.577 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2 | amine oxidase, copper containing 2 (retina-specific)
cytochrome P450, family 2, subfamily a, polypeptide 12
hyaluronoglucosaminidase 4
indoleamine 2,3-dioxygenase 2 | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm | enzyme
enzyme
enzyme
enzyme
enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL | amine oxidase, copper containing 2 (retina-specific)
cytochrome P450, family 2, subfamily a, polypeptide 12
hyaluronoglucosaminidase 4
indoleamine 2,3-dioxygenase 2
klotho | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space | enzyme
enzyme
enzyme
enzyme
enzyme
enzyme
enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC | amine oxidase, copper containing 2 (retina-specific)
cytochrome P450, family 2, subfamily a, polypeptide 12
hyaluronoglucosaminidase 4
indoleamine 2,3-dioxygenase 2
klotho
phosphatidylinositol glycan anchor biosynthesis, class C | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm | enzyme enzyme enzyme enzyme enzyme enzyme enzyme enzyme enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC
RAC2 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC
RAC2
B4GALNT2 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acety-galactosaminyl transferase 2 |
Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC
RAC2
B4GALNT2
GSTT2/GSTT2B | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC
RAC2
B4GALNT2
GSTT2/GSTT2B
MYH7 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.564 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC
RAC2
GSTT2/GSTT2B
MYH7
PPIG | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Nucleus | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.564
-1.564 | AOC2
Cyp2a12/Cyp2a22
HYAL4
IDO2
KL
PIGC
RAC2
B4GALNT2
GSTT2/GSTT2B
MYH7
PPIG
ACSL6 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.564
-1.550
-1.550 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate delpydrogenase | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Nucleus
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.564
-1.550
-1.550 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GGPD GSTO1 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprotyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GGPD GSTO1 RFC3 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprotyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Cytoplasm Cytoplasm Cytoplasm Nucleus Cytoplasm Cytoplasm Nucleus Nucleus Nucleus Nucleus Nucleus Nucleus | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GSPD GST01 RFC3 ST3GAL4 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotno phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprobly isomerase G (cytophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 | Nucleus unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Nucleus Cytoplasm Cytoplasm Cytoplasm Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprofyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 bioglutin protein ligase | Nucleus
unknown
Cytoplasm
unknown
Cytoplasm
Extracellular Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GGPD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase
long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.536 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialytransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like | Nucleus unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Nucleus Cytoplasm Nucleus Cytoplasm Sytoplasm Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 AHCYL1 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 | Nucleus unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Extracellular Space Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.536
-1.536
-1.536
-1.536
-1.536
-1.536
-1.536 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GSPD GSTO1 RFC3 ST3GAL4 ZNRF1 DNML PLA2G5 AHCYL1 ARL8A | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprotyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-silytransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A | Nucleus unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.551 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GGPD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA2G5 AHCYL1 ARLBA PDCD1LG2 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zlic and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Nucleus Cytoplasm Membrane | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.521
-1.521
-1.521
-1.521
-1.521 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GSTO1 RFC3 ST3GAL4 ZNRF1 DNM1L PLA2G5 AHCYL1 ARL8A PDCD1LG2 APOBEC3B | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Extracellular Space Cytoplasm Extracellular Space Cytoplasm Plasma Membrane Cytoplasm Plasma Membrane Cytoplasm | enzyme | |
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 AHCYL1 ARLBA PDCD1LG2 APOBEC3B CLPX | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indolearmine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprotyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B CIpX caseinolytic peptidase X homolog (E. coli) | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Cytoplasm Cytoplasm Cytoplasm Cytoplasm Cytoplasm Cytoplasm Cytoplasm Cytoplasm Nucleus Cytoplasm Nucleus Cytoplasm Space Cytoplasm Cy | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 AHCYL1 ARLBA PDCD1LG2 APOBEC3B CLPX GAPDHS | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B ClpX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Nucleus Cytoplasm Cytoplasm Cytoplasm Cytoplasm Extracellular Space Cytoplasm | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.521
-1.521
-1.521
-1.521
-1.521
-1.521
-1.506
-1.506
-1.506 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA2C5 AHCYL1 ARLBA PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyttransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2
apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B CIpX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-like 2 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Nucleus Cytoplasm Plasma Membrane Cytoplasm Cytoplasm Plasma Membrane Cytoplasm Cytoplasm Plasma Membrane Cytoplasm Cytoplasm Cytoplasm Plasma Membrane Cytoplasm Plasma Membrane Plasma Membrane Plasma Membrane | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 GGPD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA2G5 AHCYL1 ARLBA PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 SPAST | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B CIDX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-like 2 spastin | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Extracellular Space Cytoplasm Plasma Membrane Nucleus | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 AHCYL1 ARL8A PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 SPAST UBA1 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B ClpX caseinolytic peptidase X homolog (E. coli) glyceraldefryde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-likle 2 spastin ubiquithi-like modifier activating enzyme 1 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Cyto | enzyme | |
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 AHCYL1 ARLBA PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 SPAST UBA1 C19of10 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indolearmine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprofyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B CIpX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-like 2 spastin ubiquitin-like modifier activating enzyme 1 chromosome 19 open reading frame 10 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Extracellular Space Extracellular Space | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.521
-1.521
-1.521
-1.521
-1.506
-1.506
-1.506
-1.506
-1.506
-1.506
-1.506
-1.506 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNRF1 DNRF1 LA2G5 AHCYL1 ARL8A PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 SPAST UBA1 C19orf10 IL33 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactosida elapha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylthomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B CIpX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-like 2 spastin ubiquitin-like modifier activating enzyme 1 chromosome 19 open reading frame 10 interleuktin 33 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Plasma Membrane Nucleus Cytoplasm Extracellular Space Extracellular Space Extracellular Space Extracellular Space | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNM1L PLA265 AHCYL1 ARL8A PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 SPAST UBA1 C19or10 IL33 XCL1 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indolearmine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprotyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain
family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactoside alpha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylhomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B ClpX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-like 2 spastin ubiquitin-like modifier activating enzyme 1 chromosome 19 open reading frame 10 interleukin 33 chemokine (C motif) ligand 1 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Cyto | enzyme | | -1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.577
-1.564
-1.564
-1.564
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1.550
-1 | AOC2 Cyp2a12/Cyp2a22 HYAL4 IDO2 KL PIGC RAC2 B4GALNT2 GSTT2/GSTT2B MYH7 PPIG ACSL6 G6PD GST01 RFC3 ST3GAL4 ZNRF1 DNRF1 DNRF1 LA2G5 AHCYL1 ARL8A PDCD1LG2 APOBEC3B CLPX GAPDHS SH3GL2 SPAST UBA1 C19orf10 IL33 | amine oxidase, copper containing 2 (retina-specific) cytochrome P450, family 2, subfamily a, polypeptide 12 hyaluronoglucosaminidase 4 indoleamine 2,3-dioxygenase 2 klotho phosphatidylinositol glycan anchor biosynthesis, class C ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) beta-1,4-N-acetyl-galactosaminyl transferase 2 glutathione S-transferase theta 2 myosin, heavy chain 7, cardiac muscle, beta peptidylprolyl isomerase G (cyclophilin G) acyl-CoA synthetase long-chain family member 6 glucose-6-phosphate dehydrogenase glutathione S-transferase omega 1 replication factor C (activator 1) 3, 38kDa ST3 beta-galactosida elapha-2,3-sialyltransferase 4 zinc and ring finger 1, E3 ubiquitin protein ligase dynamin 1-like phospholipase A2, group V adenosylthomocysteinase-like 1 ADP-ribosylation factor-like 8A programmed cell death 1 ligand 2 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B CIpX caseinolytic peptidase X homolog (E. coli) glyceraldehyde-3-phosphate dehydrogenase, spermatogenic SH3-domain GRB2-like 2 spastin ubiquitin-like modifier activating enzyme 1 chromosome 19 open reading frame 10 interleuktin 33 | Nucleus unknown Cytoplasm unknown Cytoplasm unknown Cytoplasm Extracellular Space Cytoplasm Plasma Membrane Nucleus Cytoplasm Extracellular Space Extracellular Space Extracellular Space Extracellular Space | enzyme en |