
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2009-08-11 

Regulation of BACH1/FANCJ Function in DNA Damage Repair: A Regulation of BACH1/FANCJ Function in DNA Damage Repair: A 

Dissertation Dissertation 

Jenny X. Xie 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Amino Acids, Peptides, and Proteins Commons, Enzymes and Coenzymes Commons, 

Genetic Phenomena Commons, and the Neoplasms Commons 

Repository Citation Repository Citation 
Xie JX. (2009). Regulation of BACH1/FANCJ Function in DNA Damage Repair: A Dissertation. GSBS 
Dissertations and Theses. https://doi.org/10.13028/95cm-wn54. Retrieved from 
https://escholarship.umassmed.edu/gsbs_diss/435 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1009?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/934?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/924?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/95cm-wn54
https://escholarship.umassmed.edu/gsbs_diss/435?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F435&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


REGULATION OF BACH1/FANCJ FUNCTION IN DNA 

DAMAGE REPAIR 

 

 

 

 

 

A Dissertation Presented 

 

By 

 

Jenny Xie 

 

 

Submitted to the Faculty of the 

University of Massachusetts Graduate School of Biomedical Sciences, Worcester 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

August 11, 2009 

 





II 
 

Table of Content 

 

Table of Contents         II                         

List of Figures         IV 

Acknowledgements        VII 

Statement of contribution       IX 

Abstract          X 

 

Chapter I: Introduction         

 DNA Damage Response       1 

 Breast Cancer Susceptibility Gene 1 (BRCA1) and Cancer  6 

 The function of BRCA1 in DDR      7 

 BRCA1 domains and interacting proteins    8 

 Identification of BACH1 and its link to Cancer    10 

 Function of BACH1 in DDR      14 

 MMR pathway and Cancer       17 

 Function of MMR pathway in DDR     18 

 Concluding remarks        22 

 

Chapter II: The FANCJ/MLH1α interaction is required for correction of the 

ICL-response in FA-J cells 

 Abstract         23 

 Introduction         24 

 Results         27 

 Discussion         37 

 Figures         44 

 Materials and Methods       56 

 Acknowledgements        63 

 

Chapter III: The MLH1 mutation links FANCJ to colon cancer and insight 

towards directed therapy 

 Abstract         64 



III 
 

 Introduction         65 

 Results         68 

 Discussion         74 

 Figures         77 

 Materials and Methods       83 

 

Chapter IV: Critical role for BRCA1 binding to FANCJ to suppress lesion 

tolerance 

 Abstract         86 

 Introduction         87 

 Results         89 

 Discussion         95 

 Figures         99 

 Materials and Methods       110 

 Acknowledgements        112 

 

Chapter V: Final thoughts and Future directions    113 

Appendix          121 

Reference          129 

 

  

 

 

 

 

 

 

 

 



IV 
 

List of Figures 

Chapter I 
 
Figure 1-1: Cartoon of the FA pathway      11 
 
Figure 1-2: Established BRCA1/BACH1 interaction and functions 13 
 
Figure 1-3: Cartoon illustration of the Mismatch Repair Pathway  21 
 
 
Chapter II 
 
Figure 2-1: The FANCJ/BRCA1  interaction is dispensible for   44 
correction of the 4N DNA accumulation defect in FA-J cells 
 
Figure 2-2: FANCJ interacts with the MMR proteins MLH1 and PMS2 45 
 

Figure 2-3: FANCJ helicase domain associates with the MutLα   46 

complex independent of BRCA1 and through a direct interaction  
with MLH1 
 
Figure 2-4: PMS2 facilitates the FANCJ interaction with the MLH1 48  
C-terminus 
 
Figure 2-5: Expression of FANCJ residues 128-158 disrupt the  49  
FANCJ/MLH1 interaction to generate ICL-sensitivity 
 
Figure 2-6: MLH1 binding to FANCJ is essential to correct FA-J  50  
cells 
 

Figure 2-7: Model depicting how FANCJ and MutLα proteins  52  

function to mediate the ICL response 
 
Supplemental Figure 2-S8:  FANCJ/MLH1 interaction is intact in FA 53   
cells 
 

Supplemental Figure 2-S9: MutLα complex is downstream of   54 

FANCD2 monoubiquitination and MLH1-deficient cells do not  
have enhanced ICL-sensitivity 
 
Supplemental Figure 2-S10: The K141/142A FANCJ mutant   55 
maintains robust helicase activity 
 
 



V 
 

Chapter III 
 
Figure 3-1: FANCJ deficiency enhances MNU-resistance in a  77  
MGMT dependent manner 
 
Figure 3-2: When MGMT is active, FA-J cells are uniquely   78 
resistant to MNU and restoration of sensitivity requires FANCJ  
helicase and MLH1 binding activities 
 
Figure 3-3: FANCJ enhances the damage response and complex  79 
formation of MMR proteins 
 
Figure 3-4: MLH1 L607H mutant is defective for FANCJ binding  80 
 
Supplemental Figure 3-S5: MLH1 binding to FANCJ is essential   81 
to correct the rescue the MMC sensivitiy of the FA-J cells 
 
Supplemental Figure 3-S6: FANCJ enhances MMR complex   82 
formation in response to Melphalan 
 
 
Chapter IV 
 
Figure 4-1: FANCJS990A, as compared to FANCJWT, promotes a   99 
distinct DNA damage response in FA-J cells 
 
Figure 4-2: FANCJS990A reduces homologous recombination   100 
following DSBs in FA-J cells 
 
Figure 4-3: FANCJS990A enhances polη foci, and FANCJ is   101 
required for robust UV-induced polη foci in U2OS cells 
 
Figure 4-4: FANCJS990A promotes ICL resistance in a    102 
polη-dependent manner 
 
Figure 4-5: FANCJS990A depends on Rad18, but not Rev1 or   103 
Rad54 to promotes ICL resistance 
 
Figure 4-6: FANCJS990A requires MLH1 binding to promote   104 
polη-dependent bypass 
 
Supplemental 4-S7: FANCJS990A similar to FANCJWT restores   105 
normal ICL response in FA-J cells 
 



VI 
 

Supplemental 4-S8: FANCJS990A, as compared to FANCJWT show  106 
similar cell cycle distribution in response to DNA damage 
 
Supplemental 4-S9: Exogenous FANCJ binds to similar levels   107 
of BRCA1 as endogenous FANCJ, and unlike over-expression of 
FANCJS990A, FANCJK52R over-expression resulted in MMC sensitivity 
 
Supplemental 4-S10: Suppression of Rad18, Rev1, and Rad54 are  108 
not toxic to vector and FANCJS990A reconstituted FA-J cells 
 
Supplemental 4-S11: FANCJS990A promotes UV resistance in   109 
polη-dependent manner 
 
 
Chapter V 
 
Table 5-1: Characterization of FANCJ mutants    114 
Figure 5-1:  FANCJ functions in multiple repair pathways and         120 
its interaction with BRCA1 is critical for regulating the DDR   
Appendix 
 
Appendix Figure 1: 80% of mammalian FANCJ is unbound to   124 
BRCA1 
 
Appendix Figure 2: FANCJ is modification by acetylation on   125 
lysine 1249 
 
Appendix Figure 3: Hyper and Hypo acetylated FANCJ both   126 
correct the MMC sensitivity and cell cycle defect of FA-J cells 
 

Appendix Figure 4: Hyper-acetylated FANCJ promotes Pol η   127 

dependent bypass, whereas hypo-acetylated FANCJ promotes  
Rad54 dependent repair 
 

 

 

 

 

 



VII 
 

Acknowledgements 

 

 I would like to thank my mentor Dr. Sharon Cantor for her guidance and 

continuous encouragement.  The most important step of my graduate career was 

finding the perfect lab and the mentor.  I was very fortunate to have joined Dr. 

Cantor’s lab and to have the opportunity to work and to learn from her.  When I 

first joined the lab, I though Sharon was extremely smart thus, also very 

intimidating.  She constantly engages the lab in scientific conversions regarding 

new publication, new methods, and new ideas.  Although at the time, I thought 

those conversions were intimidating, I now find them very stimulating.  Through 

those conversions, she has taught me how to answer scientific questions, 

analyze current literatures, and formulate my own scientific questions.  In 

addition, she has showed me that being successful in science is not just about 

intelligence, but also about confidence and perseverance.   I’m a better scientist 

and a stronger person because of my mentor Sharon, and for that I am grateful. 

 I would like to thank my parents and my fiancé.  My parents have given up 

so much for me and have provided me with constant encouragement and 

endless support.  Being scientists themselves, my parents were the first person 

to introduce me to science and to encourage my interest in science.  My fiancé 

has always been there to listen and offer advice. There are not enough words in 

the world to describe my thanks to them and I definitely could not have done this 

without them.  



VIII 
 

I would like to thank my lab members Min, Rachel, Shu, Shawna, and Tim. 

They are my second family and were always there to help and listen. Last, I 

would also like to thank all of my friends for their cheerful conversions and 

emotional support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

Statement of Contribution 

 

 The work presented in Chapter 2 was collaboration with research 

associate Ming Peng and previous graduate student Rachel Flynn.  The 

publication that resulted from this collaboration was a second author paper with 

Min and Rachel as co-first authors.  The work presented in Chapter 4 was 

collaboration with Rachel Flynn and Shu Wang, a previous post-doc in Dr. 

Cantor’s lab.  The potential publication will be a co-first author paper between 

Rachel, Shu and myself.  Min also contributed to the chromatin 

immunoprecipitation experiment in Chapter 3 and the sensitivity assay in Chapter 

4.  Our collaborator Dr. Robert Brosh preformed the in vitro ELISA and helicase 

assays in Chapter 2. In addition, another collaborator Dr. Jianyuan Luo 

performed the in vitro acetylation assay in Chapter 5.      

 

 

 

 

 

 

 

 

 



X 
 

Regulation of BACH1/FANCJ function in DNA damage repair 

 

ABSTRACT 

 

 The DNA damage response (DDR) pathway is a complicated network of 

interacting proteins that function to sense and remove DNA damage.  Upon 

exposure to DNA damage, a signaling cascade is generated. The damage is 

either removed, restoring the original genetic sequence, or apoptosis is activated.   

In the absence of DDR, cells are unable to effectively process DNA damage.  

Unprocessed DNA damage can lead to chromosomal changes, gene mutations, 

and malignant transformation.  Thus, the proteins involved in DDR are critical for 

maintaining genomic stability.   

 One essential DDR protein is the BRCA1 Associated C-terminal Helicase, 

BACH1.  BACH1 was initially identified through its direct association with the 

BRCT domain of the Breast Cancer Associated Gene, BRCA1.   Similar to 

BRCA1, germline mutations in BACH1were identified in patients with early onset 

breast cancer.  Interestingly, the disease-associated mutations in BACH1 were 

shown to have altered helicase activity in vitro, providing a direct link between 

BACH1 helicase activity and disease development.   The correlation between 

BACH1 and cancer predisposition was further confirmed by the identification of 

BACH1 as the cancer syndrome Fanconi anemia (FA) gene product, FANCJ.  

Similar to other FA proteins, suppression of FANCJ leads to decreased 
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homologous recombination, enhanced sensitivity to DNA interstrand crosslinking 

(ICL) agents, and chromosomal instability.   

In an effort to further understand the function of FANCJ in DDR, FANCJ 

was shown to directly associate with the mismatch repair (MMR) protein MLH1.  

This interaction is facilitated by lysines 141 and 142 within the helicase domain of 

FANCJ.  Importantly, the FANCJ/MLH1 interaction is critical for ICL repair.  

Furthermore, in an attempt to dissect the binding site of FANCJ on MLH1, we 

discovered an HNPCC associated MLH1 mutation (L607H) that has intact 

mismatch repair, but lacks FANCJ interaction.  In contrast to the MLH1 

interaction, the FANCJ/BRCA1 interaction was not required for correcting the 

cellular defects in FANCJ null cells.  Thus, in an effort to understand the 

functional significance of the FANCJ/BRCA1 interaction, we discovered that 

FANCJ promotes Pol η dependent translesion synthesis (TLS) bypass when 

uncoupled from BRCA1.  In this thesis, we provide evidence suggesting that 

FANCJ and MLH1 are functionally linked and that the interaction of these 

proteins is critical for repair choice.    
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CHAPTER I 

 

 

INTRODUCTION 

 

 

DNA Damage Response 

Approximately 30,000 DNA lesions are generated spontaneously in a 

mammalian cell per day (Lindahl and Barnes, 2000).  These lesions can interfere 

with normal DNA replication and transcription, thus detecting and processing 

such lesions is of critical importance to maintain genomic stability.  Mammalian 

cells have evolved a complex DNA damage response (DDR) network for 

detecting DNA lesions, initiating cell cycle checkpoints, repair pathways, and/or 

apoptosis.  Unprocessed DNA damage can lead to chromosomal changes, gene 

mutations, and malignant transformation.  Not surprisingly, cancer susceptibility 

is intimately linked to mutations in the DDR genes which can either be inherited 

or acquired during an organism’s lifetime.   

The DDR is a network of interacting pathways that are activated by DNA 

damage.  DNA damage stems from endogenous sources, such as cellular 

metabolic byproducts including reactive oxygen species, base hydrolysis, and 

cytosine deamination (Lindahl and Barnes, 2000).  Exogenous sources of DNA 

damage arise from environmental factors including ionizing radiation (IR) and 

ultraviolet (UV) radiation (Friedberg E, 2006). Damaging agents give rise to a 

wide range of DNA adducts including oxidation, alkylation, and hydrolysis of 

bases (Friedberg E, 2006).  These types of DNA adducts when processed can 
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generate DNA lesions including base-base mismatches, single stranded breaks 

(SSB), double stranded breaks (DSBs), and covalent linkages of opposite 

strands of DNA called interstrand cross links (ICLs) (Friedberg E, 2006).   

The DDR network is responsible for recognizing and processing DNA 

lesions.  Proteins involved in DDR are categorized as sensors, mediators, 

transducers, and effectors (Niida and Nakanishi, 2006).  Sensor proteins are 

responsible for recognizing DNA damage.  Although the identities of sensor 

proteins are not well characterized there are several possible candidates 

including proteins of the 9-1-1 complex (Rad9, Rad1, and Hus1), Rad17, and the 

mismatch repair proteins (Duckett et al., 1996; Longhese et al., 1998; Melo and 

Toczyski, 2002; Paulovich et al., 1998; Yamada et al., 1997; Zhang et al., 2002).  

Once DNA lesions are recognized, mediator and transducer proteins are 

recruited to facilitate downstream repair signaling.  Mediator proteins facilitate 

DNA damage signaling by promoting interactions between components of the 

DDR pathway.  Most mediator proteins contain BRCA1 carboxyl terminal (BRCT) 

domains, which function as protein-phosphoprotein interaction modules (Manke 

et al., 2003; Yu et al., 2003). Transducer proteins affect the activity of 

downstream proteins through regulation of phosphorylation and de-

phosphorylation.   Kinases including Ataxia telangiectasia mutated (ATM), ataxia 

telangiectasia and Rad-3-related (ATR), Chk1, and Chk2 are well characterized 

transducer proteins.  These transducer proteins phosphorylate many effectors in 

the sequence context of Serine-Glutamine (S/Q) or Threonine- Glutamine (TQ) 
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(Niida and Nakanishi, 2006).  Once activated, effector proteins initiate the 

activation of cell cycle checkpoints.    

In response to DNA damage, DDR network can arrest cells in the G1/S, 

intra-S, or G2/M phases to allow time for lesion repair.   The G1/S checkpoint can 

occur at the end of G1 phase, just before the entry into S-phase.  This checkpoint 

is a decision step for determining whether a cell should duplicate its DNA, arrest, 

or enter apoptosis.   Once cells have passed the G1/S checkpoint they enter a 

synthesis (S) phase, where replication occurs.  There is an intra-S phase 

checkpoint, which is activated by stalled replication forks.  This checkpoint is 

important for preventing damaged DNA from going through replication.  The 

G2/M checkpoint is at the end of G2 phase, just before entry into mitosis.  At this 

checkpoint, the cell has to ensure it is ready for mitosis by confirming there is no 

unrepaired damage that escaped the previous two cell cycle checkpoints 

(Kaufmann and Paules, 1996).   These three checkpoints are critical for efficient 

repair and for maintaining the fidelity of the genome.   

Mammalian cells have evolved multiple pathways to repair a wide range of 

DNA lesions including base excision repair (BER), mismatch repair (MMR), 

nucleotide excision repair (NER), homologous recombination (HR), and non-

homologous end-joining (NHEJ) (Hakem, 2008).   Activation and recruitment of 

these repair pathways is dependent on the type of damage.  BER functions to 

repair small base distortions in the genome.  MMR functions to repair base-base 

mismatches and small insertion or deletion loops.  NER functions to repair bulky 
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adducts generated by, for example, UV damage.  HR functions to repair DSBs by 

promoting strand exchange using a homologous template.  When DSBs occur 

during the G1 phase, cells can also utilize the error prone pathway, NHEJ, which 

directly ligates broken DNA ends together.   

Replication blocking lesions can also recruit the post replication repair 

(PRR) pathway to bypass lesions.  DNA lesions, such as ICLs that cannot be 

accommodated into the active sites of the replicative polymerases in S phase are 

extremely dangerous due to their ability to block the replication fork.  Prolonged 

stalling can lead to collapsed replication forks resulting in the formation of DSBs 

and/or chromosomal rearrangements, which activate apoptosis(Lee and Myung, 

2008).  To prevent prolonged DNA replication fork stalling, the PRR pathway is 

used to bypass the lesion.  PRR is generally error prone; it allows the bypass of 

DNA lesions to prevent cell death at the expense of increased mutation 

frequency.  Mutations are avoided in normal cells since the bypassed lesions can 

be repaired later in the G2 phase using an error free repair mechanism (Lee and 

Myung, 2008).   

In mammalian cells, the most well characterized PRR lesion bypass 

pathway is the translesion synthesis (TLS) pathway.  The TLS pathway utilizes 

error prone polymerases to bypass DNA lesions.  These TLS polymerases are 

characterized by low fidelity, low processivity, lack of proofreading activity, lack of 

exonuclease activity, and non-restrictive active sites.  Compared with normal 

replication polymerases, these TLS polymerases can accommodate bulky 
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lesions (Lehmann et al., 2007; Prakash et al., 2005; Waters et al., 2009).   Due to 

the mutagenic ability of the TLS polymerases, the activation of the TLS pathway 

is highly regulated.  Studies from mammalian cells have revealed a link between 

the recruitment of TLS polymerases and the ubiqutin modification of proliferating 

cell nuclear antigen (PCNA).  PCNA exists as a homotrimeric doughnut-shaped 

clamp structure that encircles the DNA and functions as a processivity factor for 

DNA polymerases.  PCNA can be modified by monoubiquitination and 

polyubiqutination.  These modifications facilitate the switch between error-prone 

and error-free repair pathways.  PCNA monoubiqutination is carried out by the 

E2 Ub conjugating enzyme Rad6 and the E3 Ub ligase Rad18 at the Lysine (K) 

164 residue of PCNA (Hoege et al., 2002).  PCNA polyubiquitination is carried 

out by E2 Ub conjugating enzymes Ubc13 and Mms2 along with the E3 Ub 

ligases, SHPRH and HLTF (Frampton et al., 2006; Hofmann and Pickart, 1999; 

Motegi et al., 2006; Ulrich and Jentsch, 2000; Unk et al., 2006).  

Polyubiquitination occurs at K164 via a non-canonical K63 Ub linkage (Frampton 

et al., 2006; Hofmann and Pickart, 1999; Ulrich and Jentsch, 2000).  

Ubiquitination modifications of PCNA are critical for switching repair pathways 

depending on the cell cycle and the type of lesion to avoid activation of apoptosis 

and generation of mutations.     

In this dissertation, I dissected the role of key DDR proteins including 

Breast Cancer Susceptibility Gene 1 (BRCA1), its direct partner the BRCA1 

Associated C-terminal Helicase (BACH1), and the mismatch repair (MMR) 
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protein, MLH1.  These proteins function in complexes and loss of their function 

may have drastic consequences for DDR and genomic integrity.  Moreover 

BACH1 interacts with both BRCA1 and MLH1 (Cantor et al., 2001; Peng et al., 

2007). Thus, understanding the function of BACH1/BRCA1 and BACH1/MLH1 

interactions in DDR has been the goal of my work.  

 

Breast Cancer Susceptibility Gene 1 (BRCA1) and Cancer 

BRCA1 was the first gene identified to associate with hereditary breast, 

ovarian and fallopian tube cancers.  BRCA1 was mapped to the long arm of 

chromosome 17, in the interval of 17q12-21 (Hall et al., 1990).  It contains 24 

exons that encode a protein of 1,863 amino acids.  Mutations in BRCA1 and the 

other hereditary breast cancer associating gene, BRCA2 account for 45% of all 

families with multiple cases of breast cancer, and up to 90% of all families with 

both breast and ovarian cancers.  Mutation in a single copy of BRCA1 confers 

breast cancer susceptibility with a 90% life-time risk of developing cancer (Couch 

and Weber, 1996).  Notably, development of cancer requires the inactivation of 

the second copy of BRCA1.  Although mutations in BRCA1 are not commonly 

found in sporadic breast and ovarian cancers, the BRCA1 promoter is often 

methylated in the tumors.  Thus, BRCA1 may also contribute to the prevention of 

sporadic breast cancer (Esteller et al., 2000; Wiley et al., 2006; Wilson et al., 

1999).   
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The function of BRCA1 in DDR 

 BRCA1 is a critical DNA damage repair protein that functions in DSB 

repair. The first indication that BRCA1 functioned in DSB repair came from the 

finding that BRCA1 deficient cells were highly sensitive to DSBs and exhibited 

chromosomal instability (Shen et al., 1998; Xu et al., 1999).   In addition, BRCA1 

was shown to interact and colocalize with the critical HR protein Rad51 in nuclear 

foci (Scully et al., 1997).  Unlike BRCA2, which has a direct role with Rad51 in 

HR, BRCA1 functions upstream of the pathway at the branch point of gene 

conversion (GC) and single-strand annealing (SSA), which are two mechanisms 

of DSB repair (Stark et al., 2004). Thus in BRCA1 deficient cells, both GC and 

SSA are reduced (Moynahan et al., 1999; Moynahan et al., 2001a; Stark et al., 

2002). 

 In addition to its repair function, BRCA1 also functions in DNA damage 

induced G2/M and intra-S phase checkpoint activation.  G2/M checkpoint 

activation requires the phosphorylation of CDC2 kinase and its 

dephosphorylation by the phosphatase CDC25C, initiates mitosis.  BRCA1 

regulates this checkpoint at multiple levels.  First, BRCA1 is required for the 

activation of Chk1 kinase which functions to inhibit the CDC25C activity (Yarden 

et al., 2002).  Second, BRCA1 is required for the expression of 14-3-3 proteins 

which form a complex with CDC25C and exclude it from the nucleus (Yarden et 

al., 2002).  Third, BRCA1 is also required for the expression of WEE1 and 

GADD45 (Mullan et al., 2001; Xu et al., 2001; Yarden et al., 2002).  Both function 



8 
 

to prevent CDC2-CylinB complex formation, thus, preventing the initiation of 

mitosis (Mullan et al., 2001; Xu et al., 2001; Yarden et al., 2002).   The function of 

BRCA1 in intra-S checkpoint requires its phosphorylation on serine (S) 1387 by 

ATM, but is less well characterized compared to the G2/M checkpoint (Tibbetts et 

al., 2000; Xu et al., 2001).  In addition to the well defined functions of BRCA1 in 

DSB repair and cell cycle checkpoint regulation, it may also function in global 

genomic repair (GGR), chromatin remodeling, and transcription-coupled repair 

(Bochar et al., 2000; Gowen et al., 1998; Harkin et al., 1999; Hartman and Ford, 

2002).   

 

BRCA1 domains and interacting proteins 

Elucidation of BRCA1 function has also come from identification and 

characterization of BRCA1-associated proteins.  In fact, BRCA1 has been 

reported to interact directly or indirectly with nearly one hundred proteins.   Many 

of BRCA1-interacting proteins have been reported to bind to the BRCA1 RING 

domains, these include the BRCA1 associated RING domain 1 (BARD1), the 

BRCA1 associated protein 1 (BAP1), and UbcH5c (Brzovic et al., 2003; Jensen 

et al., 1998; Wu et al., 1996).  These proteins function to facilitate the BRCA1 E3 

ubiquitin ligase activity.   On the other hand, CtBP-interacting protein (CtIP), 

BACH1, and Abraxas interact with BRCA1 through the BRCT domains (Cantor et 

al., 2001; Wang et al., 2007; Wong et al., 1998; Yu et al., 1998).  It follows that a 

mediator protein, such as BRCA1 binds and recruits DDR proteins in response to 
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DNA damage.  Most likely these proteins are bridged together by BRCA1 to 

facilitate the DNA damage induced cell cycle checkpoint activation and repair.  

 In addition to its interaction with individual DDR proteins, BRCA1 was also 

linked to the Fanconi anemia (FA) pathway.  The FA pathway consists of 13 

complementation groups (FA-A, FA-B, FA-C, FA-D1, FA-D2, FA-E, FA-F, FA-G, 

FA-I, FA-J, FA-L, FA-M, and FA-N) and is divided into upstream proteins, 

FANCD2/FANCI, and downstream proteins (Figure 1-1).   The upstream proteins 

include FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and 

FANCM.  These eight proteins form the FA core complex, which is 

phosphorylated and activated by ATR in response to DNA damage.  Once 

activated, the FA core complex translocates to chromatin and is recruited to sites 

of break.  The E3 ligase, FANCL, of the core complex works in concert with the 

E2 subunit UBE2T and facilitates the monoubiquitination of FANCD2 on lysine 

561 and 523, respectively (Longerich et al., 2009; Machida et al., 2006; Meetei et 

al., 2003; Smogorzewska et al., 2007).  Once monoubiquitinated, FANCD2 and 

FANCI form a heterodimer and translocate to chromatin, where they are recruited 

to nuclear foci containing BRCA1 and downstream FA proteins (Taniguchi and 

D'Andrea, 2006).  Mutations in BRCA1 have not been linked to FA, thus it is not 

an official FA protein.  However, BRCA1 is indirectly linked to the FA pathway on 

multiple levels.  First, BRCA1 not only co-localizes with FANCD2 and FANCI in 

nuclear foci, but also regulates their ability to form damage induced foci (Garcia-

Higuera et al., 2001).  Second, BRCA1 facilitates the relocalization of FANCD2 to 
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sites of stalled replication forks (Vandenberg et al., 2003). Third, BRCA1 

interacting partners were identified as downstream FA proteins (Litman et al., 

2005).  Downstream FA proteins include FANCD1, FANCN, and FANCJ.  All 

three groups were later identified as BRCA2, PALB2, and BACH1 respectively.   

The intimate connection between the FA and the BRCA pathway again 

demonstrated the overlapping nature and complexity of the DDR network.  

 

Identification of BACH1 and its link to Cancer 

 BACH1 was identified through its direct association with BRCA1.  In an 

effort to understand the contribution of BRCT sequences to BRCA1 function, 

GST fusion BRCT motifs (GST-BRCT) were generated (Figure 1-1) (Cantor et al., 

2001).  In a far western experiment, a protein of ~130 kDa was detected with the 

GST-BRCT probe that was labeled by in vitro phosphorylation with protein kinase 

A.  Furthermore, GST-BRCT probes containing clinically relevant point mutants, 

P1749R and M1775R, reduced or failed to bind to the130 kDa protein 

respectively.  Subsequently, the130 kDa protein was charaterized using  

microcapillary reverse phase HPLC and nanoelectrospray tandem mass 

spectrometry (MS/MS).  The 130 kDa protein contained 1249 residues and its N-

terminal 888 residues revealed strong homology to the DEAH helicase family.  In 

addition, the 130 kDa protein also contains seven helicase motifs that are 

characteristic of the DEAH helicase family.  Unlike DEAH helicases, the 130 kDa 

protein also contains a C-terminal region that shares 39% homology with the 
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Figure 1-1: Cartoon of the FA pathway. The FA pathway is composed of core 
complex proteins, FANCD2/FANCI, and downstream proteins.  In response to 
damage, FANCD2 and FANCI are monoubiquitinated by the FA core complex 
and form a heterodimer.  The FANCD2/FANCI heterodimer translocates to 
chromatin where it colocalizes with BRCA1 and the downstream proteins, 
FANCJ/BACH1, FANCD1/BRCA2, and FANCN/PalB2.  The FA pathway is 
critical for interstrand crosslink repair (ICL) and maintaining genomic stability. 
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synaptonemal complex protein 1 (SCP1) (Schmekel et al., 1996).  Given the 

interacting domain on BRCA1 and its helicase domains, the 130 kDa protein was 

named BACH1 for BRCA1 associated C-terminal helicase.  

In addition to the interacting domain of BACH1 on BRCA1, the Serine 990 

(S990) phosphorylation on BACH1 was shown to be critical for its interaction with 

BRCA1 (Yu et al., 2003).  The residue following S990 is a Proline (P) and 

phosphorylation of sites containing SP is usually regulated by cyclin-dependent 

kinases.   Although BACH1 expression is stable throughout the cell cycle, S990 

is phosphorylated only from S to G2/M phase (Yu et al., 2003).   Thus, the 

interaction of BACH1 and BRCA1 is cell cycle regulated.                 

The interaction with BRCA1 suggested that BACH1 could also be linked to 

hereditary breast cancer.  Consistent with this idea, germ-line mutations in 

BACH1were identified in patients with early onset breast cancer (Cantor et al., 

2001).  Also, mutations in BACH1 enhanced breast cancer risk two fold (Walsh 

and King, 2007).  Interestingly, the disease-associated mutations in BACH1 were 

shown to alter its helicase activity in vitro, providing a direct link between BACH1 

helicase activity and disease development (Cantor et al., 2004).  In addition to 

hereditary breast cancer, BACH1 is also associated with the FA syndrome 

(Levitus et al., 2005b; Litman et al., 2005).   
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Figure 1-2: Established BRCA1/BACH1 interaction and functions. BACH1 is 
a 5’ to 3’ DNA helicase with seven helicase motifs (I to VI), and it interacts with 
BRCA1 through the BRCT domain.  In addition, the BRCA1 and BACH1 
interaction is also dependent on the S990 phosphorylation on BACH1located in 
its C-terminal domain (red region).   Both BRCA1 and BACH1 are critical DNA 
damage response proteins and are both associated with hereditary breast cancer.  
Furthermore, the interaction of BRCA1 and BACH1 is also critical for DNA 
damage repair and tumor suppression.    
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Function of BACH1 in DDR 

The most obvious clue to BACH1 function was that its amino acid 

sequence was homologous to DNA helicases.  Furthermore, in vitro helicaes 

assay demonstrated that BACH1 unwound DNA in the 5’ to 3’ direction.  BACH1 

requires the presence of at least 15 nucleotides at the 5’ ssDNA tail to initiate 

DNA unwinding (Gupta et al., 2005).  In addition, BACH1 also preferentially binds 

and unwinds forked duplex DNA substrates (Gupta et al., 2005). Furthermore, 

BACH1 also unwinds recombination intermediates, the three-stranded D-loop 

structure (Gupta et al., 2005).  These in vitro results suggest that BACH1 

functions at the DNA replication fork and in DSB repair.   

Given the direct interaction of BACH1 with BRCA1 experiments were 

designed to assess whether BACH1 functioned in DDR akin to BRCA1.  In 

response to DNA damage, BACH1 displayed a BRCA1 like nuclear foci pattern, 

colocalized with γ-H2AX, and was modified by phosphorylation (Peng et al., 

2006).  What’s more, BACH1 functioned similar to BRCA1, in response to DSBs 

(Litman et al., 2005).  Specifically, overexpression of a helicase inactive BACH1 

mutant (BACH1K52R), disrupted DSB repair (Cantor et al., 2001). In addition, 

BACH1 deficient cells were sensitive to DSBs.   Furthermore, BACH1 depleted 

cells had reduced DSB repair by HR induced by the site-specific I-SceI 

endonuclease (Litman et al., 2005).   However, unlike BRCA1, BACH1 deficient 

cells had normal Rad51 foci formation (Litman et al., 2005).  BACH1 was recently 

shown to destabilize Rad51 nucleoprotein filaments and inhibit the DNA strand 
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exchange activity of the Rad51 recombinase (Sommers et al., 2009).  The 

mechanistic function of BACH1 in DSB repair remains elusive, but due its ability 

to unwind Rad51nucleoprotein filaments, BACH1 may either function to exit the 

repair process or monitor homologous strand exchange.      

In addition to DSB repair, BACH1 also functions in ICL repair.  ICLs can 

be introduced into DNA either endogenously during cellular metabolism through 

the acidification of nitrites, or exogenously by agents such as, melphalan, 

cisplatin, and mitomycin C (MMC).  ICLs are extremely toxic due to their ability to 

inhibit DNA replication, transcription, and segregation resulting from the 

impediment of DNA strand separation.  The first indication that BACH1 

functioned in ICL repair came from the finding that BACH1 deficient cells were 

extremely sensitive to MMC (Litman et al., 2005).  In addition, BACH1 deficient 

cells underwent MMC-induced chromosome instability resulting in chromosome 

breaks, quadriradial, and tri-radial chromosomes (Litman et al., 2005).  These 

phenotypes provided the first evidence for a potential link between BACH1 and 

the FA pathway.  Subsequent experiments demonstrated that BACH1 did not 

affect the monoubiquitination status of FANCD2 and BACH1 is the FA gene 

product, FANCJ (Levitus et al., 2005b; Litman et al., 2005).   The function of 

FANCJ in ICL repair required its helicase and MLH1 binding activities, but not 

BRCA1 binding (Peng et al., 2007).  Thus, the contribution of BRCA1 binding to 

the function of FANCJ in ICL repair remains elusive.  Further complicating our 

understanding of FANCJ’s function is that the function of FANCJ in double 
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stranded break repair (DSBR) is potentially not conserved between species.  For 

example, in mammalian cells, FANCJ was shown to be critical for DSB repair.  

However, in chicken DT40 cells, FANCJ was shown to function independent of 

BRCA1and HR (Bridge et al., 2005).  FANCJ in chicken DT40 cells lacks the 

binding domain required for BRCA1 interaction, thus FANCJ may still function in 

mammalian HR, but requires the interaction of BRCA1.  Whether FANCJ 

functions independent of BRCA1 remains to be determined in mammalian cells.  

Besides its repair function, BACH1 is also involved in the activation of 

intra-S phase checkpoint.   In S phase, FANCJ increased its association with 

chromatin and the interaction with BRCA1 was enhanced (Kumaraswamy and 

Shiekhattar, 2007).  In addition, the DNA dependent ATPase activity of FANCJ 

was also activated (Kumaraswamy and Shiekhattar, 2007).  All together, these 

data suggest that FANCJ functions in S-phase.  The function of FANCJ in intra-

S-phase checkpoint came from the finding that depletion of FANCJ exhibited an 

elevated S-phase accumulation in response to aphidicolin treatment, which 

triggers an intra-S-phase response in a phosphoinositide-3-kinase-related protein 

kinase (PIKK) dependent manner (Greenberg et al., 2006).  In response to IR, 

normal cells have a 50-60% reduction in deoxynucleotide uptake, whereas, 

FANCJ suppressed cells have a less extensive diminution in DNA synthesis 

(Greenberg et al., 2006).  The IR induced intra-S-phase checkpoint requires the 

inhibition of DNA synthesis at late firing sites of replication initiation, which are 

partly controlled by blocking the loading of Cdc45.  Furthermore, FANCJ interacts 
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with a critical intra-S phase checkpoint protein TopBP1, which plays an essential 

role in the loading of Cdc45.  FANCJ forms a DNA damage induced complex with 

TopBP1, BRCA1, and BARD1 (Greenberg et al., 2006).  This super-complex 

formation was impaired in the absence of FANCJ or when FANCJ cannot interact 

with BRCA1.  The function of this super-complex was suggested to prevent 

TopBP1 dependent Cdc45 loading in response to DNA damage.  Thus, in 

FANCJ depleted cells, Cdc45 remains at the replication origin and cells enter 

mitosis.  Altogether the data implicate that FANCJ functions in the DDR.  How 

DDR is affected by the contribution of FANCJ binding to BRCA1 or MLH1 is less 

clear.   

 

MMR pathway and Cancer 

 MLH1 is a MMR protein that functions in DNA mismatch repair.  Mutations 

in MMR genes are associated with hereditary nonpolyposis colon cancer 

(HNPCC).  HNPCC accounts for 5% of all colorectal cancer cases.  It is an 

autosomal-dominant inherited cancer predisposition syndrome caused by 

mutations in MMR genes, mutS homolog 2 (MSH2), mutS homolog 6 (MSH6), 

mutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2), and 

postmeiotic segregation increased 1(PMS1).  Mutations in MSH2 and MLH1 

account for 90% of all HNPCC cases.  In addition to HNPCC, somatic mutations 

of MMR genes and epigenetic silencing of MLH1 expression have been observed 

in many sporadic cancers.   
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Function of MMR pathway in DDR 

The MMR pathway is best characterized for its ability to recognize and 

repair DNA mismatches (Figure 1-3).  DNA mismatches can occur during DNA 

replication and recombination due to erroneous insertions, deletions, and mis-

incorporation of bases.   Conversely, DNA mismatches can also occur upon 

exposure to DNA methylating agents such as, N-methyl-N-nitrosourea (MNU) 

and N-methyl-N-nitro-N-nitrosoguanidine (MNNG).  MNU and MNNG are SN1 

type (unimolecular nucleophilic substitution) agents, they generate a variety of 

DNA adducts.  However, the most mutagenic adduct is O6-methylguanine (O6-

MeG).  O6-MeG is initially repaired by a direct reversal process using the 

methylguanine methyltransferase (MGMT) enzyme.  During replication, 

unrepaired O6-MeG is perceived as an adenine (A) thus, it is paired with thymine 

(T), resulting in O6-MeG:T mismatch.  The DNA mismatch is sensed and 

processed by the MMR pathway.  Sensing of DNA mismatches is mediated by 

one of the two heterodimers of the E. coli homologs, MutSα, and MutSβ.  MutSα 

is composed of MSH2 and MSH6, whereas MutSβ is composed of MSH2 and 

MSH3 (Jiricny, 2006).  Once a lesion is sensed, MutS heterodimers recruit the 

MutL homolog MutLα, which is composed of MLH1 and PMS2.  MutSα and 

MutLα form a stable complex to initiate cell signaling and repair.   

MMR dependent checkpoint activation has been controversial.   There are 

two contradicting models for MMR dependent checkpoint activation.  First, the 

futile DNA repair cycle model suggests that MMR proteins only have one function, 
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DNA repair (Karran, 2001; Wang and Edelmann, 2006).  Thus activation of the 

G2/M checkpoint is a consequence of DSBs generated by multiple attempts to 

repair O6-MeG:T mismatches.  Since MMR pathway only repairs the mismatch 

on the newly synthesized strand, thus MGMT would be required to remove the 

mismatch completely.  In the absence of MGMT, MMR processing of O6-MeG:T 

mismatches results in the excision and re-synthesis of the strand containing T.  

Since O6-MeG lesions would remain on the template strand, a T would be 

reinserted opposite the O6-MeG during the next round of replication, thus, this 

would result in a futile cycle of repair.  This futile cycle of repair could eventually 

lead to replication fork arrest and DSB formation (Wang and Edelmann, 2006).   

The direct signaling model suggests that MMR proteins have two distinct 

functions, repair and signaling (Fishel, 2001; Kat et al., 1993).   This model 

suggests that the MutSα complex functions as a DNA damage sensor to activate 

a downstream signaling cascade involving ATR and Chk1.  There is multiple 

evidence supporting the direct signaling model.  First, MutSα binds to the O6-

MeG:T mismatch with higher affinity compared to O6-MeG:C or the G:T 

mismatch (Yoshioka et al., 2006).  In addition, ATR/ATRIP also preferentially 

interacted with the O6-MeG:T mismatch, but not with the G:T mismatch. 

(Yoshioka et al., 2006).  The DNA-protein complex assembled with the O6-

MeG:T mismatch, but not the G:T mismatch, result in the phosphorylation of 

Chk1 (Yoshioka et al., 2006).  Second, genetic evidence for the direct signaling 

model was provided with the discovery of “separation of function” mutants.  
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Missense mutations in the ATPase domain of MSH2 and MSH6 ablated their 

ability to perform mismatch repair, but did not affect their ability to activate cell 

cycle checkpoint and apoptosis in response to O6-MeG lesions (Lin et al., 2004; 

Yang et al., 2004).  

Similar to other DDR pathways, MMR also functions with additional repair 

proteins such as, PCNA and exonuclease-1 (EXO1), for efficient repair and 

signaling.  MSH2, MLH1, MSH6, and MSH3 all interact with PCNA (Bowers et al., 

2001; Clark et al., 2000; Flores-Rozas et al., 2000; Gu et al., 1998; Kleczkowska 

et al., 2001; Lee and Alani, 2006; Umar et al., 1996).  These interactions are 

critical for the DNA mismatch induced MutSα and MutLα complex formation.  In 

addition, PCNA was suggested to localize with MMR proteins to the newly 

synthesized DNA.  Recently, MutLα was identified to contain PCNA/replication 

factor C (RFC) dependent endonuclease activity (Kadyrov et al., 2006).  This 

endonuclease activity is located in the PMS2 subunit and it is critical for 3’ nick-

directed MMR because no helicase has yet been identified and EXO1 is a 5’-3’ 

exonuclease (Erdeniz et al., 2007; Li, 2008).    

MMR proteins can also signal for apoptosis when the lesion is too severe 

to repair.  MMR proteins are linked to the activation of apoptosis through p53 

dependent and independent mechanisms.  In response to methylating damage, 

activation of p53 and its phosphorylation on S15 is MMR dependent (Duckett et 

al., 1999).  The stabilization of the functional homologue of p53, p73 may involve 
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Figure 1-3: Cartoon illustration of the Mismatch Repair Pathway.  The 
mismatch repair pathway is responsible for recognizing and repairing DNA 
mismatches, which could be generated by exogenous DNA methylating agents.  
In response to methylation damage, adducts such as O6-MeG are generated and 
through processing these adducts results in O6-MeG:T mismatch.  The 
MSH2/MSH6 heterodimer recognizes the mismatch and recruits the MLH1/PMS2 
heterodimer to initiate checkpoint, repair, and/or apoptosis.                                  
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MMR proteins.  Specifically, PMS2 directly associates and stabilizes p73 

(Shimodaira et al., 2003).  Overall, MMR proteins are critical for mutation 

avoidance and for tumor suppression.  Although the mammalian MMR pathway 

is well characterized, there could still be additional proteins required.  The 

interaction between FANCJ and MLH1 predicts a potential role for FANCJ in the 

MMR pathway.  

 

Concluding remarks 

 DDR involves many repair proteins and is a complex network of pathways 

that function together to coordinate and repair DNA damage to maintain genomic 

stability and suppress tumor formation.  My focus was to understand the function 

of critical DDR proteins including BRCA1, FANCJ, and MLH1.  FANCJ was 

originally discovered as a BRCA1 interacting protein, the subsequent novel 

connection to MLH1 links FANCJ to the MMR pathway.  Thus, the goal of this 

thesis was to understand the significance of BRCA1/ FANCJ /MLH1 interactions 

in DDR. First, what is the functional relevance of FANCJ /MLH1 interaction in the 

ICL response?  Second, what is the functional relevance of FANCJ /MLH1 

interaction in MMR?  Third, does BACH1 function independent of BRCA1?  
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CHAPTER II 

The FANCJ/MutLα interaction is required for correction of the ICL-response 

in FA-J cells 

 

Abstract 

 

FANCJ was first linked to hereditary breast cancer through its direct 

interaction with BRCA1. FANCJ was also recently identified as a Fanconi anemia 

(FA) gene product, establishing FANCJ as an essential tumor suppressor.  

Similar to other FA cells, FANCJ-null (FA-J) cells accumulate 4N DNA content in 

response to DNA interstrand crosslinks (ICLs).  This accumulation is corrected by 

re-introduction of wild-type FANCJ.  Here, we show that FANCJ interacts with the 

mismatch repair complex MutLα, composed of PMS2 and MLH1.  Specifically, 

FANCJ directly interacts with MLH1 independent of BRCA1 through its helicase 

domain.  Genetic studies reveal that FANCJ helicase activity and MLH1 binding, 

but not BRCA1 binding, are essential to correct the FA-J cells ICL-induced 4N 

DNA accumulation and sensitivity to ICLs. These results suggest that the 

FANCJ/MutLα interaction, but not the FANCJ/BRCA1 interaction, is essential for 

establishment of a normal ICL-induced response.  The functional role of the 

FANCJ/MutLα complex demonstrates a novel link between FA and MMR and 

predicts a broader role for FANCJ in DNA damage signaling independent of 

BRCA1.  
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Introduction 

In the absence of DNA repair proteins, cell cycle checkpoints and/or DNA 

damage repair pathways are not properly activated.  This inability to actively 

respond to DNA damage can lead to massive chromosomal damage and even 

cell death.  In some cases, mutations in DNA repair proteins can contribute to 

multiple cancer syndromes.  Studies on the genetic causes of the cancer-prone 

syndrome Fanconi anemia (FA) revealed that gene mutations associated with 

hereditary breast cancer were also associated with FA.  For example, the 

hereditary breast cancer gene, BRCA2 was shown to be the gene defect in the 

FA-D1 patient complementation group, revealing that BRCA2 was FANCD1 

(Howlett et al., 2002).  Likewise, FANCJ (formally called BACH1/BRIP1) was 

identified as the gene defective in the FA-J patient complementation group 

(Levitus et al., 2005a; Levran et al., 2005; Litman et al., 2005), and was initially 

linked to hereditary breast cancer.  This link was based on its direct binding to 

BRCA1 and through the identification of two breast cancer patients with 

mutations in FANCJ, which also altered its helicase activity in vitro (Cantor et al., 

2004; Cantor et al., 2001).  This connection was furthered by the finding that 



25 
 

FANCJ (BRIP1) mutations confer a two-fold increase in the risk of developing 

breast cancer (Seal et al., 2006).  

While other FA genes have not been linked to breast cancer, the network 

of at least 13 genes (designated FANCA to FANCN ) are critical for maintaining 

chromosomal integrity (Thompson, 2005).  Although the molecular function of 

these proteins is not clear, several gene products, including FANCA, B, C, E, F, 

G, H, L, and M, form a nuclear core complex (the FA core complex), that is 

required for monoubiquitination of FANCD2.  The FA proteins BRCA2/FANCD1, 

PALB2/FANCN and FANCJ are not required for this event and are considered 

downstream of FANCD2 monoubiquitination.  Nevertheless, all FA proteins 

contribute to processing interstrand-cross-links (ICLs) (Thompson, 2005). 

Consequently, in the absence of FA proteins, ICL-treatment leads to reduced 

cell viability and an accumulation of cells with a 4N DNA content representing 

cells in either late S or G2/M, and has been referred to as a G2/M arrest (Akkari 

et al., 2001).  This ICL-induced cell cycle progression defect and sensitivity to 

ICLs is restored upon re-introduction of the missing FA gene (Chandra et al., 

2005; Dutrillaux et al., 1982; Heinrich et al., 1998; Kaiser et al., 1982; Kupfer 

and D'Andrea, 1996; Kupfer et al., 1997; Sala-Trepat et al., 2000).  However, the 

FA-related function or associated partners required for a proper ICL-response is 

not known.  

Consistent with other FA cells, FANCJ-null (FA-J) cells have an ICL-

induced cell cycle progression defect that can be corrected upon re-introduction 
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of wild-type (WT) FANCJ cDNA (Litman et al., 2005).  This cell cycle progression 

defect has also been described as a prolonged G2/M arrest (Miglierina et al., 

1991) or 4N DNA content accumulation (Akkari et al., 2001).  The cause of this 

ICL-response in FA cells is not presently understood, but thought to involve 

delayed repair and/or failure to restart replication (Thompson et al., 2005).  Unlike 

the majority of FA proteins, FANCJ has defined domains.  Specifically, FANCJ 

binds directly to BRCA1 (Cantor et al., 2001) and FANCJ is a DNA helicase 

(Cantor et al., 2004). Dissecting the importance of these domains could further 

our understanding of how FA proteins function in an ICL-induced response.  

Attempts to define the functions of FANCJ domains in the ICL-response have 

been limited to chicken DT40 cells where the FANCJ /BRCA1 interaction is not 

conserved (Bridge et al., 2005).  If FANCJ operates independent of BRCA1 for a 

particular ICL-response function, a remaining question will be whether FANCJ 

forms a complex with other proteins independent of BRCA1 to perform that 

function.  

Here, we investigated whether FANCJ helicase activity or the FANCJ 

interaction with two distinct proteins was required for restoring FANCJ’s ICL-

response.  Specifically, we identified that FANCJ interacts with the MutL 

mismatch repair complex, independent of BRCA1.  Our findings demonstrate for 

the first time that the FANCJ /MLH1 interaction is as critical as FANCJ helicase 

activity for restoring a normal cell cycle progression and resistance of FA-J cells 

to ICLs.  In contrast, the FANCJ /BRCA1 interaction is dispensable for 
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normalizing the response of FA-J cells to ICLs, suggesting that FANCJ functions 

in distinct complexes to facilitate multifaceted DNA repair functions.  

 

Results 

FANCJ functions independently of BRCA1 to correct FA-J null cells 

 We had previously shown that introduction of WT FANCJ cDNA into FA-J 

cells corrects the ICL-induced cell cycle progresssion defect (Litman et al., 2005).  

However, it is unclear how FANCJ contributes to the ICL-response to restore the 

FA pathway especially given that FANCJ’s role in the FA pathway appears to be 

independent of BRCA1, at least in chicken cells (Bridge et al., 2005).  To verify 

and extend this finding, we addressed whether FANCJ binding to BRCA1 was 

required to correct the ICL-induced cell cycle progression defect in FA-J cells. 

We reconstituted FA-J cells with vector, WT, or the S990A FANCJ construct that 

is ablated for BRCA1 binding (Yu et al., 2003) (Figure 2-1C).  Both WT and 

S990A versions of FANCJ corrected the ICL-induced cell cycle progression 

defect observed in FA-J cells compared to vector alone (Figure 2-1A and B).  

These data support the finding that FANCJ operates independent of BRCA1 to 

correct FA-J cells.  

 

FANCJ is physically linked to the MutLα complex  

Since FANCJ binding with BRCA1 was not required to correct the ICL-

induced cell cycle progression defect in FA-J cells, we set out to identify 
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additional FANCJ interacting partners that may function with FANCJ in this ICL-

induced response.  A WT double-tagged FANCJ construct was used to create a 

stable line of HeLa S3 cells.  Using a two-step immunoaffinity strategy, the 

double-tagged FANCJ was sequentially immunopurified (Nakatani and Ogryzko, 

2003).  Interacting proteins co-purifying with the double-tagged WT FANCJ were 

eluted and visualized by silver stain. FANCJ migrated at the expected ~140KD 

size as well as a single larger species that appears to derive from the vector 

(Figure 2-2A). Individual bands were excised from the gel and analyzed by mass 

spectrometry (LC-MS/MS).  As expected, FANCJ co-purified with BRCA1 that 

was identified as the 250kD band.  Unique partners were identified, including the 

MMR proteins, MLH1 and PMS2, which form the MutLα heterodimer (Schofield 

and Hsieh, 2003) (Figure 2-2A).  Western blot analyses using specific antibodies 

confirmed the presence of these proteins (Figure 2-2B). To determine whether 

the MutLα complex associated with the native FANCJ protein, MCF7 cell extracts 

were immunoprecipitated (IP) with FANCJ antibodies (Abs) E67 and E47, and 

the presence of coprecipitating MLH1, PMS2, and BRCA1 proteins were 

evaluated by Western blot (Figure 2-2C).  While FANCJ Ab precipitated the 

MutLα complex in the MCF7 cells, a MutLα complex was not precipitated with 

preimmune Abs (PI) or with FANCJ Abs in 293T cells, which lack expression of 

the MutLα complex (Trojan et al., 2002).  Moreover, FANCJ was not precipitated 

with the MLH1 Ab in FA-J cells, which lack expression of FANCJ, unless FANCJ 

was re-introduced (Figure 2-2D).  In contrast, a FANCJ/MLH1 interaction was 
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readily detected in other FA cell lines irrespective of gene correction, such as FA-

A, FA-D1 and FA-D2 (Supplemental Figure S2-8).  Furthermore, the interaction 

between FANCJ and the MutLα complex was stable in HeLa cells in the 

presence or absence of DNA damage (Figure 2-2E).  

 

The helicase domain of FANCJ binds directly to MLH1 independent of 

BRCA1 

MLH1 was previously reported to be part of a BRCA1 complex (Greenberg 

et al., 2006; Wang et al., 2000), therefore, we examined whether BRCA1 

mediated the interaction between FANCJ and the MutLα complex.   First, we 

noted that unlike FANCJ, BRCA1 was not readily detected in an MLH1 

precipitation (Figure 2-2C).  Next, we addressed whether FANCJ precipitated 

with the MutLα complex in BRCA1-deficient cells.  Expression of BRCA1 was 

stably suppressed in MCF7 cells by a shRNA vector, as previously demonstrated 

(Litman et al., 2005).  In cells expressing both a control shRNA specific to eGFP 

or an shRNA specific to BRCA1, FANCJ antibodies efficiently co-precipitated the 

two components of the MutLα complex (Figure 2-3A), suggesting that FANCJ 

binds the MutLα complex independent of BRCA1.  In support of this finding, the 

helicase domain of FANCJ was required for MLH1 binding while a C-terminal 

region of FANCJ was required for BRCA1 binding (Figure 2-3B).  To further 

assess the nature of the FANCJ/MLH1 interaction, we incubated recombinant 

FANCJ or BRCA1 with MLH1 that had been translated in vitro.  MLH1 and 
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FANCJ were precipitated by their corresponding Abs, and their interactions were 

analyzed by Western blot.  FANCJ and MLH1 proteins were co-precipitated with 

both FANCJ and MLH1 IPs, whereas BRCA1 was robustly precipitated only in 

the FANCJ IP (Figure 2-3C).  A direct interaction between FANCJ and MLH1 was 

confirmed by ELISA assay using purified recombinant proteins.  FANCJ bound 

MLH1 in a protein concentration dependent manner (Figure 2-3D).  Furthermore, 

the interaction of FANCJ and MLH1 was demonstrated to be DNA-independent 

as evidenced by the similar colorimetric signal observed for FANCJ/MLH1 

interaction in the presence of ethidium bromide (EtBr) or DNaseI (Figure 2-3E).  

These results suggest that FANCJ makes direct contacts with MLH1, 

independent of BRCA1 or PMS2. 

 

PMS2 contributes to the FANCJ/MLH1 interaction in vivo  

 Given that MLH1 forms a heterodimer with PMS2, we next assessed 

whether PMS2 binding to MLH1 contributed to the MLH1/FANCJ interaction in 

vivo.  To address this possibility, we tested the ability of different MLH1 

constructs to precipitate FANCJ in the absence or presence of PMS2.  WT full-

length MLH1 and several MLH1-myc fusion proteins of varying length were 

generated and transiently transfected into MutLα-null 293T cells. To determine 

which of these MLH1 fragments were expressed and/or co-IPed FANCJ, MLH1 

was precipitated from cell lysates with either myc or MLH1 Abs.  While co-
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transfecting PMS2 with MLH1 did not alter the expression of MLH1, the ability of 

FANCJ to form a complex with MLH1 was enhanced.  With the addition of PMS2, 

FANCJ precipitated with the MLH1 constructs N2, C2, and C3, which in the 

absence of PMS2 had failed to precipitate FANCJ (Figure 2-4A).  Thus, in the 

presence of PMS2, only one of the two MLH1-FANCJ interacting domains (478-

508)(D1) or (736-744)(D2) was required (see Figure 2-4C) suggesting that PMS2 

facilitates the MLH1/FANCJ interaction.  PMS2 stability is dependent on the 

MLH1 C-terminus (Mohd et al., 2006); not surprisingly, we found that ablation of 

a C-terminal region of MLH1 (703-725) reduced both PMS2 expression and 

FANCJ binding (Figure 2-4B).  

 

MutLα functions downstream of FANCD2 monoubiquitination  

 To appreciate the physiological significance of a FANCJ/MutLα interaction, 

we next, addressed whether the MutLα complex functioned with FANCJ in the FA 

pathway.  We had previously shown that in FANCJ deficient cells, DNA damage 

induced FANCD2 monubuiquitination was intact (Litman et al., 2005).  Similarly, 

we found that incubation of MutLα deficient cells (HCT116 and HEC-1A) with 

hydroxyurea (HU), lead to efficient FANCD2 monoubiquitination (Supplemental 

Figure S2-9A), suggesting that similar to FANCJ, MutLα functions downstream of 

FANCD2.   
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Given that suppression of MMR proteins has been reported to reduce the 

survival of cells upon ICL-treatment, (Aquilina et al., 1998; Fiumicino et al., 2000), 

we next asked whether similar to FANCJ deficiency, MutLα deficiency also 

sensitizes cells to ICLs.  First, we suppressed MutLα using siRNA reagents in 

MCF7 cells vs. a luciferase control. Second, we reconstituted HCT116 cells null 

for MutLα with vector or MutLα expressing cDNAs.  In both experiments, there 

was no measurable change in ICL sensitivity in the presence or absence of 

MutLα expression (Supplemental Figure S2-9B and data not shown).  Given that 

MMR proteins bind and process ICLs (Duckett et al., 1996; Yamada et al., 1997; 

Zhang et al., 2002), activate multiple DNA damage-induced checkpoints, such as 

intra S and G2/M (4N) arrest (Brown et al., 2003; Cejka et al., 2003), and 

participate in the repair of ICLs by promoting recombination (Zheng et al., 2006), 

we considered that MutLα-suppression could bypass ICL-sensitivity through loss 

checkpoint (Cejka et al., 2003) and/or by activating default non-recombination 

based repair pathways as reported (Zheng et al., 2006).  Thus, we considered 

that to unmask function of MutLα in the ICL-response with FANCJ, it would be 

necessary to selectively ablate the MLH1/FANCJ interaction, while maintaining 

other MLH1 functional interactions (i.e. PMS2 binding). 
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Disruption of the native MLH1/FANCJ interaction generates ICL-sensitivity  

To define the domain on FANCJ required for MLH1 binding, we generated 

several FANCJ-myc fusion proteins of varying length and expressed them in 

MCF7 cells (Figure 2-5A and E). To determine which of these FANCJ fragments 

were expressed and/or co-IPed MLH1, FANCJ was precipitated from cell lysates 

with myc antibodies (Abs).  Full-length FANCJ and FANCJ expression constructs 

including the FANCJ N-terminal amino acid residues 1-145 precipitated MLH1 

(Figure 2-5A and C). These results suggested that FANCJ N-terminal residues 1-

145 were required for binding to MLH1.  To assess whether residues in this 

region were sufficient for MLH1 binding, we inserted FANCJ residues 128-158 

within the eGFP gene sequence to create an eGFP-fusion protein.  In contrast to 

eGFP alone, the eGFP-FANCJ fusion protein readily co-precipitated MLH1 

(Figure 5B), suggesting that FANCJ 128-158 was sufficient for MLH1 binding.  

Furthermore, expression of the eGFP-FANCJ fusion protein in cells perturbed the 

formation of the native FANCJ/MLH1 interaction as determined by both FANCJ 

and MLH1 IP and Western blot experiments (Figure 2-5D) confirming that this 

region of FANCJ was essential for mediating the MLH1 interaction.   

Next, we addressed whether expression of the 128-158 FANCJ-eGFP 

fusion protein and the resulting perturbation of the native FANCJ/MLH1 

interaction would render cells sensitive to ICLs.  MCF7 cells were transfected 

with vectors expressing either the 128-158 FANCJ-eGFP fusion protein or eGFP 
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alone, plated, and treated with increasing concentrations of Mitomycin C (MMC).  

The overall trend upon expression of the 128-158 FANCJ-eGFP fusion protein 

was reduced cellular survival compared to expression of the eGFP control, 

despite some variability between experiments (Figure 2-5E).  While the 

enhanced sensitivity was consistent with the possibility that a FANCJ/MLH1 

interaction was required for ICL-repair, we considered that binding of the fusion 

protein to MLH1 might have altered additional MLH1 functions not specific to 

FANCJ.  Thus, we sought to identify a method to ablate the FANCJ/MLH1 

interaction without altering native MLH1 protein or being reliant on transfection 

efficiency to disrupt the native FANCJ/MLH1 interaction.   

 

Lysines 141 and 142 of FANCJ are required for the FANCJ/MLH1 interaction 

Given that mutational analysis revealed that FANCJ co-precipitated with 

MLH1 except when FANCJ residues 140-145 were absent (Figure 2-5A and C), 

we assessed the importance of these residues for binding MLH1 within the 

context of the full-length FANCJ protein. Thus, we generated three independent 

FANCJ mutant constructs that converted lysine 141 and 142 to alanine 

(K141/142A), glutamine 143 to a glutamic acid (Q143E), or serine 145 to an 

alanine (S145A).  While the WT FANCJ and all three mutant versions were 

expressed and efficiently co-precipitated BRCA1, the K141/142A version 

demonstrated a dramatic reduction in the co-precipitation of MLH1 (Figure 2-6A) 

suggesting that these two lysines were required for MLH1 binding.  
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We considered that the K141/142A mutation in FANCJ could have not 

only disrupted MLH1 binding, but also FANCJ helicase activity. Thus, we 

generated recombinant versions of WT (Cantor et al., 2004) and the K141/142A 

FANCJ proteins to assess whether this mutant version was enzymatically active.  

The recombinant K141/142 FANCJ protein was detected as a single Coomassie 

stained band analyzed by SDS-PAGE that co-migrated with the WT FANCJ 

recombinant protein (Supplemental Figure S2-10A and D).  The DNA unwinding 

activity of K141/142A FANCJ on a forked duplex DNA substrate was compared 

to unwinding activity of WT FANCJ.  Both K141/142A FANCJ and WT FANCJ 

were found to be proficient in unwinding whereas K52R FANCJ, as previously 

demonstrated, failed to unwind the forked duplex substrate (Gupta et al., 2005) 

(Supplemental Figure S2-10B).  Furthermore, K141/142A FANCJ and WT 

FANCJ unwound the forked duplex substrate in a protein concentration 

dependent manner achieving 90% of unwound substrate at the highest helicase 

concentration tested (Supplemental Figure S2-10C).  Thus, the K141/142 mutant 

only disrupts MLH1 binding, but not FANCJ helicase activity. 

 

FANCJ function depends on MLH1 binding to correct FA-J cells 

Next, we tested the ability of K141/142A FANCJ cDNA to correct the cell 

cycle progression defect in FA-J cells.  We used retroviral infection to stably 

infect FA-J cells with cDNA encoding the vector, WT, K141/142A, or K52R 

Flag/HA-tagged FANCJ constructs, which expressed similarly (Figure 2-6A).  
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Moreover, an MLH1 IP demonstrated that the MLH1/PMS2 complex was intact in 

FA-J cells and was able to precipitate the reconstituted FANCJ (Figure 2-2D).  As 

in MCF7 cells, in FA-J cells MLH1 co-IPed with WT FANCJ, but was dramatically 

reduced in the K141/142A mutant FANCJ (Figure 2-6A).  FA-J cells containing 

vector, WT, K52R, or K141/142A FANCJ were treated with melphalan to induce 

ICLs as described (Litman et al., 2005).  The proportion of vector-containing FA-J 

cells with 4N DNA content increased after melphalan treatment, similar to 

previous experiments.  As before the proportion of WT FANCJ-containing FA-J 

cells with 4N DNA content (~30%) was about half that of vector-containing cells 

(~70%).  We found that cells containing the catalytically inactive FANCJ helicase 

(K52R) failed to correct the 4N accumulation defect (~66%).  Likewise, the 

proportion of K141/142A FANCJ-containing FA-J cells with 4N DNA content 

(~68%) resembled that of vector-containing FA-J cells, suggesting that 

introduction of K141/142A FANCJ did not correct the cell cycle progression 

defect in FA-J cells (Figure 2-6B). These data suggest that the FANCJ/MLH1 

interaction is essential for restoration of the FA pathway in FA-J cells.    

To further confirm and examine the importance of FANCJ binding to MLH1 

for the ICL-induced response, we assessed whether FANCJ binding to MLH1 

was required for FANCJ to correct the ICL-induced sensitivity of FA-J cells.  

However, the ability of WT FANCJ to correct the ICL sensitivity of FA-J cells had 

not been previously reported.  Thus, we first tested and confirmed that re-

introduction of WT FANCJ corrected the ICL-sensitivity of FA-J cells treated with 
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MMC.  The vector reconstituted FA-J cells were more sensitive to MMC than the 

WT FANCJ reconstituted cells with an IC50 of 250mM and ~ 900mM MMC, 

respectively (Figure 2-6C).  In contrast to WT, both the K141/142A, and K52R 

FANCJ reconstituted FA-J cells were sensitive to ICLs with an IC50 of less than 

250mM MMC.  Moreover, the K141/142A FANCJ reconstituted FA-J cells were 

more sensitive than the vector or K52R FANCJ reconstituted FA-J cells (P< 0.01).  

As before, the S990A FANCJ corrected the ICL-response similar to WT.  

Although the correction of the ICL sensitivity was greater with the S990A FANCJ 

than with the WT FANCJ, at 250mM MMC the values were not significantly 

different (with P-values between 0.0027-0.22) (Figure 2-6C).  These findings 

clearly demonstrate that both FANCJ helicase activity and FANCJ binding to 

MLH1 are required for FANCJ to functionally correct the ICL sensitivity of FA-J 

cells.     

 

Discussion 

In this study, we addressed whether FANCJ helicase activity or different 

FANCJ complexes are essential for FANCJ’s function in the ICL response.  

Specifically, we have shown that FANCJ forms a complex with the MutLα  

heterodimer, which is composed of the mismatch repair proteins MLH1 and 

PMS2.  FANCJ directly interacts with MLH1 independent of BRCA1, and this 

DNA-independent interaction is within the FANCJ helicase domain, C-terminal to 

nucleotide binding box 1, and includes lysines 141 and 142. This is the first 
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report that demonstrates that a direct interaction between FANCJ and MLH1 is 

as essential for the ICL-induced response as the FANCJ helicase activity.  

Furthermore, our data suggest that formation of a FANCJ/BRCA1 complex is not 

required for normalization of the ICL-induced response in FA-J cells.  

The question remains as to how FANCJ or mismatch repair proteins 

function in the ICL-response.  Following exposure to ICLs, ATR is activated and 

initiates a signal cascade through the phosphorylation of downstream substrates 

ultimately leading to checkpoint activation, DNA damage repair, and/or apoptosis.  

Intriguingly, MMR proteins were recently proposed to act as direct sensors of 

DNA methylation and initiate the intra S-phase checkpoint by helping to recruit 

ATR-ATRIP to sites of DNA damage (Yoshioka et al., 2006).  Furthermore, 

mismatch repair proteins have been implicated in sensing and processing ICLs.  

In particular, the MutSβ complex was shown to bind to intrastrand crosslinks 

produced by cisplatin (Duckett et al., 1996; Yamada et al., 1997), and the MutSβ 

complex was shown to be involved with the removal of ICLs produced by 

psoralen (Zhang et al., 2002).  Furthermore, in the absence of MMR signaling 

ICL-repair proceeded in an alternate pathway promoting a non-recombination 

dependent mechanism (Zheng et al., 2006).  Our study now suggests that MLH1 

binding to FANCJ is functionally important for the ICL-induced response, as 

disruption of the native FANCJ/MLH1 interaction reduced cell survival following 

ICL treatment.  Moreover, FANCJ K141/142A mutant, defective in MLH1 binding, 

fails to correct FA-J cells.  The finding that MLH1-deficiency did not generate 
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gross changes in the cellular survival following ICLs may stem from the loss of 

both MMR DNA damage repair and signaling.  In fact, the loss of DNA damage 

signaling and the subsequent repair is essential in establishing the resistance of 

MMR-deficient cells to DNA methylation (O'Brien and Brown, 2006).  The 

multiplicity of MMR functions in the DNA damage response has been recently 

uncovered through separation-of-function mutations (O'Brien and Brown, 2006).  

Here, we attempted a similar approach to dissect the role of MLH1 and 

FANCJ in the ICL-response.  Three approaches were attempted to selectively 

ablate the FANCJ/MLH1 interaction in vivo.   In one of these approaches, we 

attempted to generate an MLH1 mutant that lacked FANCJ binding.  While MLH1 

and FANCJ bind directly in vitro, the interaction is facilitated by PMS2 in vivo. In 

the absence of PMS2, FANCJ binding to MLH1 requires two MLH1 C-terminal 

domains D1 (478-508) and D2 (736-744).  However, in the presence of PMS2, 

only one of these domains was required.  Moreover, both the region on MLH1 

(703-725) required for FANCJ binding in the presence of PMS2 is also essential 

for PMS2 stabilization.  The complexity of the MLH1/PMS2/FANCJ interaction 

confounded attempts to selectively ablate the FANCJ/MLH1 interaction through 

MLH1 mutagenesis.  Fortunately, the binding of MLH1 to FANCJ was less 

complex and therefore, the FANCJ/MLH1 interaction could be selectively 

disrupted by both mutagenesis and peptide disruption.  We found that disruption 

of this complex caused defects in the ICL-response, consistent with the 

MLH1/FANCJ interaction being required for ICL-repair.   
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Conceivably, for ICL repair, mismatch repair complexes including MutLα, 

mobilize or regulate FANCJ helicase activity to unwind DNA in the vicinity of the 

DNA damage to facilitate repair processes.  Thus, disruption of FANCJ helicase 

activity or MLH1 binding could interfere with ICL-response.  In support of this 

possibility, the MLH1 homologue in E. coli, MutL binds the DNA helicase UvrD 

gene product Helicase II (Hall et al., 1998; Spampinato and Modrich, 2000) and 

stimulates its helicase activity (Dao and Modrich, 1998; Yamaguchi et al., 1998).  

However, we did not detect an effect of the MutLα complex, inhibitory or 

stimulatory, on FANCJ catalyzed unwinding of a forked duplex, 5’ flap, or 

Holliday Junction substrate (data not shown).  It is possible that regulation of 

FANCJ helicase activity by MLH1 may require additional MMR proteins and/or 

that the physical interaction between FANCJ and MLH1 serves a non-catalytic 

role in mediating the ICL-response.   

 Alternatively, the catalytic activity of FANCJ may serve an entirely different 

purpose (see Figure 2-7).  For example the FANCJ helicase activity could serve 

to displace MutLα from DNA. This type of model has also been proposed for 

other helicases.  For example, the Srs2 helicase is proposed to displace a 

checkpoint protein to facilitate checkpoint exit (Vaze et al., 2002).  If true, in the 

absence of FANCJ (FA-J cells), or in FA-J cells with a catalytically inactive 

FANCJ and/or a FANCJ mutant that lacks MLH1 binding, the MutLα complex 

would fail to be displaced from DNA.  As such, the MutLα complex would be 

stuck or take longer to be displaced from DNA leading to a prolonged G2/M 



41 
 

arrest and/or delay in the completion of repair.  In support of this model, ICL 

treatment of FA-J cells reconstituted with vector, K52R, or K141/142A FANCJ 

constructs demonstrate both hyper-G2/M arrest and -sensitivity to ICLs.  

Furthermore, peptide perturbation of the MLH1/FANCJ interaction in MCF7 cells 

lead to enhanced ICL-sensitivity.  

 This proposed role for FANCJ in displacing MutLα is also not at odds with 

the finding that suppression of the MutLα complex in MCF7 cells did not lead to 

MMC sensitivity (Supplemental Figure S2-9).  It has been reported that in the 

absence of MMR signaling there is a reduced G2/M arrest following DNA 

damage (O'Brien and Brown, 2006) and compensating non-recombination repair 

pathways are engaged (Zheng et al., 2006).  The expectation from these findings 

would be that MMR-deficient cells would have a normalized sensitivity to ICLs 

due to the defective checkpoint and compensation by alternative mechanisms of 

repair (see model in Figure 2-7). Ultimately, it will be critical to establish whether 

a FANCJ/MLH1 complex facilitates ICL-repair by promoting homologous 

recombination or other repair functions.  While ablation of BRCA1 binding to 

FANCJ may not affect the ability of FANCJ to correct the defective response of 

FA-J cells, the timing or mechanism of repair may be altered.  Thus, it is 

important to consider that the FA-J cells lacking the FANCJ/BRCA1 interaction 

resist the ICL-induced 4N arrest and sensitivity through an alternative 

mechanism perhaps by checkpoint avoidance.  Experiments are currently 

underway to investigate this possibility. 
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 While MMR proteins are essential to elicit a G2/M arrest, it is presently 

unclear as to how this arrest is overcome.  In cells lacking the active FANCJ 

helicase and/or a FANCJ/MLH1 interaction, diffusion of the MutLα complex from 

DNA may lead to an eventual exit from this G2/M arrest.  In contrast this exit may 

not be achieved in FA-J cells expressing the K52R FANCJ, if the MutLα complex 

is locked on the DNA by the inactive helicase.  It follows that a complete failure to 

re-enter the cell cycle, as opposed to a slower entry, would be more toxic to cells.  

Consistent with this, we found that the FA-J K52R expressing cells are short lived 

in tissue culture and forced expression of K52R FANCJ in other cell lines is not 

stable (data not shown). 

 Given that the FANCJ/MutLα interaction is intact in other FA cells, including 

FA-A, FA-D2, and FA-D1 (Supplemental Figure S2-8), loss of this complex is not 

a general feature of FA cells.  However, it remains to be determined whether 

additional FA-MMR interactions are altered.  Moreover, similar to FANCJ 

deficiency, MLH1 deficiency does not affect the ATR-mediated FANCD2 

monoubiquitination (Supplemental Figure S2-9) (Andreassen et al., 2004); 

(Bridge et al., 2005; Levitus et al., 2004; Litman et al., 2005), suggesting that the 

FANCJ/MLH1 interaction is not essential for FA-pathway activation.  Interestingly, 

we find that deletions in the MLH1 C-terminus (703-725), which are important for 

maintaining the stability of PMS2 (Mohd et al., 2006) also disrupted the 

FANCJ/MLH1 interaction.  This finding has implications for MLH1 clinical 

mutations identified in colon cancer patients, potentially linking MLH1 function not 
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only to PMS2, but also to FANCJ. 

 In conclusion, these studies have provided the first evidence for a role of 

the FANCJ/MutLα complex in the ICL induced response.  This work extends the 

already implicated role of MMR proteins in the ICL-response.  Further study of 

the role of FANCJ, BRCA1, and MMR proteins in this process should advance 

the understanding of how ICL-induced responses are regulated to preserve 

genomic integrity.   
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Figure 2-1: The FANCJ/BRCA1 interaction is dispensible for correction of 
the 4N DNA accumulation defect in FA-J cells.  A) FA-J cells were 
reconstituted with vector, WT or S990A and were either left untreated or treated 
with melphalan and the percentage of cells with 4N DNA content  was analyzed 
by FACS.  B) The percent of cells with 4N DNA content after ICL-treatment was 
averaged for each cell line from four independent experiments with standard 
deviation (SD) indicated by error bars. C)FANCJ expression was analyzed in 

whole cell extracts (WCE) by immunoblot.  β-actin serves as a loading control for 

the WCE samples. B) Immunoprecipitations with FANCJ (E67) were analyzed by 
Western blot with the noted Abs. 
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Figure 2-2: FANCJ interacts with the MMR proteins MLH1 and PMS2. A) 

Silver-stained gel of the WT FANCJ (F) compared to a Vector (V) purified 

complexes from HeLa S3 cells by consecutive Flag and HA purification steps 

(Flag/HA). Identified unique bands are indicated and FANCJ is observed as two 

species, the 140kD band is labeled. B) Western blot detection of Flag/HA purified 

FANCJ complexes. C) Immunoprecipitations with either FANCJ (E67 or E47) or 

MLH1 Abs from MCF7 or 293T cells were analyzed by Western blot with the 

noted Abs.  D) Western blot shows the presence of the indicated proteins from 

MLH1 IPs from FA-J cells reconstituted with vector or WT FANCJ.   E) HeLa cells 

were either left untreated or treated with 1mM hydroxyurea (HU) for 24hr or 

2.4ug/mL MMC for 1hr.  HeLa cell lysates were immunoprecipitated with 

preimmune (PI) or FANCJ Abs followed by Western blot analysis with the noted 

Abs.  
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Figure 2-3: FANCJ helicase domain associates with the MutLα complex 

independent of BRCA1 and through a direct interaction with MLH1. A) 

MCF7 cells were stably infected with a lentivirus encoding shRNA for either 

eGFP or BRCA1.  FANCJ IP was performed followed by Western blot for the 

indicated proteins. B) MCF7 cells were transiently transfected with pCDNA3 

vectors containing no insert (-), full length FANCJ (FL), helicase domain including 

amino  acid residues 1-882 (HD) or C-terminus including residues 882- 1249 (CT) 

of FANCJ, then immunoprecipitated with the Myc Ab (9E10). Arrows designate 

the respective FANCJ myc-tag species.  Immunoglobulin (IgG) is shown. C) 

Western blot of the indicated IP experiments in which in vitro translated MLH1 

was incubated with recombinant FANCJ or BRCA1 proteins. D) Purified 

recombinant MLH1 or BSA was coated onto ELISA plates.  Following blocking 

with 3% BSA, the wells were incubated with increasing concentrations of purified 

recombinant FANCJ (0-40 nM) for 1 hr at 30 oC, and bound FANCJ was detected 

by ELISA using a rabbit polyclonal Ab against FANCJ followed by incubation with 

secondary horseradish peroxidase (HRP)-labeled antibodies and OPD substrate.  

Data points are the mean of three independent experiments performed in 

duplicate with SD indicated by error bars. E) ELISA was performed as described 

in Panel D using 4.9 nM FANCJ alone or in the presence of EtBr (50 ug/ml) or 

DNaseI (2 ug/ml).  BSA (3%) was used as a control instead of MLH1 during the 

coating step. 
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Figure 2-4: PMS2 facilitates the FANCJ interaction with the MLH1 C-

terminus.  A) MLH1 or Myc (9E10) IP experiment were performed from 293T 

cells that were transfected with vector alone (V), full-length MLH1 (WT), or MLH1 

species alone or in combination with PMS2 (C1-C3, N1, N2).  IP products were 

analyzed by Western blot with FANCJ, PMS2 and MLH1 Abs. B) MLH1 IP 

experiment were performed from 293T cells that were transfected with vector 

alone (V), full-length MLH1 (WT), or MLH1 species in combination with PMS2 

(C4-C7).  IP products were analyzed by Western blot with FANCJ, PMS2 and 

MLH1 Abs. C) Schematic representation of the MLH1/FANCJ dimer domains (D1, 

D2) and the region between 703-725 is highlighted as an essential element for 

maintaining the MLH1/PMS2/FANCJ complex.    
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Figure 2-5: Expression of FANCJ residues 128-158 disrupt the FANCJ/MLH1 

interaction to generate ICL-sensitivity. A) Myc (9E10) IP experiments were 

performed from MCF7 cells that were transfected with vector alone (-), full-length 

FANCJ (FL), and the different FANCJ constructs (A-G) shown in C, followed by 

Western blot with MLH1, and Myc Abs. The asterisk denotes the migration of the 

different myc-tagged FANCJ species.  B)  Myc IP experiments were performed 

from MCF7 cells that were transfected with either eGFP empty vector or the 128-

158 FANCJ-eGFP constructs followed by Western blot with the indicated Abs.  C) 

The different FANCJ constructs are shown with a positive (+) or negative (-) to 

indicate binding to MLH1.  E) MCF7 cells transfected with vector alone or the 

128-158 FANCJ-eGFP construct, treated with increasing concentrations of MMC 

and incubated for 4-5days.  Cell growth was measured by ATP content.  Three 

independent representative experiments are shown and depicted by red, yellow, 

and blue lines.  Solid lines represent cells transfected with empty-eGFP vector 

and hatched lines represent cells transfected with 128-158-eGFP vector.   
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Figure 2-6: MLH1 binding to FANCJ is essential to correct FA-J cells. A) Myc 

IP experiments were performed from MCF7 cells that were transfected with 

vector alone (-), FL, V, Q143E, S145A, and K141/142A FANCJ constructs, 

followed by Western blot with the indicated Abs. FA-J cells were reconstituted 

with empty vector, WT, K141/142A, or K52R FANCJ vectors and FANCJ 

expression was analyzed by whole cell extracts, β-actin serves as a loading 

control for the WCE samples. Western blot shows the presence of the indicated 

proteins from FANCJ IPs from FA-J cells reconstituted with vector, WT, or 

K141/142A FANCJ.  B) FA-J cell lines reconstituted with empty vector, WT, 

K141/142A, or K52R FANCJ were either left untreated or treated with melphalan.  

The percent of cells with 4N DNA content after ICL-treatment was averaged for 

each cell line from four independent experiments with standard deviation (SD) 

indicated by error bars.  C, D) FA-J cells reconstituted with vector, WT, 

K141/142A, K52R, or S990A FANCJ were seeded on 24 well plates and 

incubated overnight under normal growth conditions.  The cells were then treated 

with the indicated doses of MMC and incubated for eight days.  On the final day, 

the cells were counted and the percentage of live cells was calculated.  

Experiments were performed in triplicate and a representative graph is shown.  

The IC50 dose for the FA-J vector (250nM) was compared for all mutants and 

error bars represent the standard deviation.MLH1 binding to FANCJ requires 

lysine residues 141 and 142.  
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Figure 2-7: Model depicting how FANCJ and MutLα proteins function to 

mediate the ICL response.  A) The normal ICL-response is proposed to include 

MMR proteins.  This is supported by the findings that the MMR machinery has 

been shown to specifically bind crosslinked DNA adducts (Duckett et al., 1996; 

Yamada et al., 1997; Zhang et al., 2002), mediate ICL-recombination repair 

(Zheng et al., 2006), and induce a G2/M arrest (Cejka et al., 2003).  Furthermore, 

MMR proteins including the MutLα complex, similar to BRCA1 and FANCJ are 

essential for recombination processes (de Wind et al., 1995; Jasin, 2002; Litman 

et al., 2005; Mohindra et al., 2002).  B) The ICL-response without MutLα is 

predicted to lead to an ICL-response through a MMR-independent non-

recombination based mechanism with a minimal G2/M arrest so that ICL-

sensitivity is normalized.  C) ICL-repair without functional FANCJ is predicted to 

be directed to recombination as in A, but generate a prolonged G2/M arrest due 

to absent or dysfunctional FANCJ protein.  In the absence of FANCJ protein, 

helicase activity, or MLH1 binding, FANCJ is unable to displace MutLα from 

recombination intermediates and consequently, the MutLα complex remains 

stuck or tethered to DNA longer delaying the exit from the G2/M arrest and 

enhancing ICL-sensitivity.  
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Supplemental Figure S2-8: FANCJ/MLH1 interaction is intact in FA cells. FA 

cells were lysed in 150mM NETN and lysates were normalized.  

Immunopreciptations were performed using FANCJ Ab (E47) and precipitates 

were analyzed by Western blot using FANCJ and MLH1 specific Abs. 
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Supplemental Figure S2-9: MutLα complex is downstream of FANCD2 

monoubiquitination and MLH1-deficient cells do not have enhanced ICL-

sensitivity.  A) HCT116, HEC-1A, and HeLa cells were either left untreated or 

treated with 1 mM hydroxyurea (HU) for 24 hours, lysed with 600mM NETN, and 

analyzed by Western blot with the indicated Abs. Both long (L) and short (S) 

forms of FANCD2 are noted. B) MCF7 cells transfected with control siRNA (Luc) 

or MLH1 siRNA were seeded in a 96-well plate and incubated 

overnight.  Transfected cells were treated with increase concentrations of MMC 

and incubated for 4 days.  Cell survival was analyzed by ATP content. The graph 

on the left is a representative experiment from 3 independent 

experiments.  Whole cell extracts from the MCF7 transfected cells were analyzed 

by Western blot using the specified antibodies. 
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Supplemental Figure S2-10: The K141/142A FANCJ mutant maintains robust 

helicase activity.  A) Recombinant K141/142A FANCJ protein was 

immunoprecipitated with Flag antibodies and eluted using Flag peptide.  The 

purity of the protein sample was visualized by Coomassie stain and arrow 

denotes both WT and K141/142A FANCJ species B) Helicase reactions (20 µl) 

were performed by incubating the indicated concentrations of WT, K141/142A, or 

K52R FANCJ as with 0.5 nM forked duplex DNA substrate at 30 oC for 15 min in 

the presence of ATP (2 mM) under standard helicase assay conditions as 

described under “Materials and Methods.”  The duplex substrate runs at the top 

of the gel and the unwound DNA fragment runs below as shown. Filled triangle, 

heat-denatured DNA substrate control. A phosphorimage of a typical gel is 

shown.  C) Quantitative helicase data represent the mean of at least three 

independent experiments with standard deviation (SD) indicated by error bars.  

Open squares, FANCJ-WT; filled squares, FANCJ-K141/142A.  D)  Recombinant 

WT, K141/142A, and K52R proteins used in B were separated by SDS-PAGE 

and analyzed by Western blot using FANCJ specific antibodies. 
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Materials and methods 

Cell lines  

HeLa, MCF7, 293T and HeLa S3 cells were grown in DMEM supplemented with 

10% fetal bovine serum and penicillin/streptomycin (100 U/mL each). FA-J 

(EUFA30-F) cells were cultured as previously described (Litman et al., 2005).  

HCT116 cells were grown in McCoy’s 5A medium supplemented with 10% fetal 

bovine serum and penicillin/streptomycin (100 U/mL each).  Hi5 insect cell were 

grown in Grace’s Insect Media supplemented with 10% Fetal Bovine Serum and 

1% genetemycin at 28C without C02. FA-J cells were infected with the pOZ 

retroviral vector (Nakatani and Ogryzko, 2003) containing no insert, WT, 

K141/142A, or K52R FANCJ inserts, or with the lentiviral vector pLentiV5 

(Invitrogen) vector, containing no insert, WT, or S990A FANCJ inserts.  Stable 

FA-J pOZ cell lines were generated by sorting pOZ infected cells with anti-IL-2 

magnetic beads (Dyna Beads) and expanding IL-2 positive cells.   Stable FA-J 

pLenti cell lines were generated through blasticidin selection (7ug/mL). 

 

Purification of a FANCJ complex 

A FANCJ complex was purified from nuclear extracts (NE) derived from ~8 X109 

HeLa cells stably expressing the double tagged-FANCJ by two step 

immunoaffinity chromatography according to the standard method (Nakatani and 

Ogryzko, 2003).  Flag-HA double purified material was electrophoresed in 3-8% 
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Tris-Acetate Gel (Invitrogen). Individual Silver-stained bands were excised and 

subsequently analyzed by Mass spectrometry (Genomine Inc., South Korea). 

 

Immunoprecipitations, immunoblotting and antibodies  

Cells were harvested and lysed in 150mM NETN lysis buffer (20 mM Tris [pH 

8.0], 150 mM NaCl, 1 mM EDTA, 0.5% NP-40, 1 mM phenylmethylsulfonyl 

fluoride, 10μg/ml leupeptin, 10μg/ml aprotinin) for 30 min on ice. Cell extracts 

were clarified by centrifugation.  The cell lysates were boiled in SDS loading 

buffer.  For immunoprecipitation assays cells lysates were incubated with protein-

A beads and either FANCJ (E67 or E47), MLH1 (BD Bioscience) or Myc (9e10) 

Abs at 4°C for 2 hr.  Beads were subsequently washed and boiled in SDS 

loading buffer.  Proteins were separated using SDS-PAGE and electrotransferred 

to nitrocellulose.  Membranes were blocked in 5% milk PBS/tween and incubated 

with primary Ab for 1hr.  Abs for Western blot analysis included anti-MLH1 (BD 

Bioscience,1:500), anti-PMS2 (BD Biosciences 1:200), anti-BRCA1(ms110, 

hybridoma cell,1:3), anti-FANCJ (Monoclonal pool 2G7, 2C10,1B4), anti-

FANCD2 (Fanconi Anemia Research Foundation), and Myc (9E10, hybridoma 

cell, 1:3). Membranes were washed, then incubated with horseradish peroxidase-

linked secondary antibodies (Amersham,1:5000), and detected by 

chemiluminescence (Amersham). 

 

ICL-induced 4N accumulation assay and sensitivity assay  
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FA-J reconstituted with either vector, WT FANCJ, K141/142A FANCJ, K52R 

FANCJ, or S990A FANCJ were either treated with 0.5 µg/ml of melphalan (Sigma) 

or left untreated and incubated for 65 hr. Cells were fixed with 90% methanol in 

PBS and were then incubated 10 min with PBS containing 30 u/ml DNase-free 

RNase A and 50 µg/ml propidium iodide. 1 x 104 cells were analyzed using a 

FACs Calibur instrument (Becton-Dickinson, San Jose, CA). Aggregates were 

gated out and the percentage of cells with 4N DNA content was calculated using 

Modfit software. 

The FA-J cells reconstituted with either vector, WT FANCJ, K141/142A 

FANCJ, K52R FANCJ, or S990A FANCJ were seeded on 24 well plates 1000 

cells/well and incubated overnight. The cells were either left untreated or treated 

with increasing doses of MMC for 1hr and incubated for 8 days.  Finally, the cells 

were collected by trypsinization and counted using a hemacytometer.  The 

percentage of live cells at each concentration was calculated using the untreated 

controls as the baseline growth. 

MCF7 cells transfected with either empty vector or the 128-158 FANCJ 

eGFP construct were seeded at 500 cells/well in 96-well plates and incubated 

overnight.  The cells were either left untreated or treated with increasing 

concentrations of MMC for 1hr and incubated 4-5 days.  The percentage of live 

cells was calculated by ATP content as previously described (Litman et al.2005).  
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Plasmid construction and in vitro translation  

The WT and S990A FANCJ pLentiviral vectors were a gift of J. Chen (Yu et al., 

2003). The pCDNA3-myc.his vector (Invitrogen) was digested by Not1/Apa1 and 

different FANCJ fragments generated by PCR and digested Not1 and Apa1 were 

inserted. Primers are available upon request. The WT FANCJ pOZ-FH vector 

was generated by PCR cloning.  Specifically, 5’ Xho1 and a 3’ Not1 restriction 

sites were added by using primers: 5'-3' 

CGCTCGAGGCCACCATGTCTTCAATGTGGTCTGAATATACAATT and 5'-3' 

CAGCGGCCGCCTTAAAACCAGGAAACATGCCTTTATT.  The PCR product 

was digested XhoI and NotI and subcloned into the pOZ-FH vector. The K52R, 

S990A, and K141/142A pOZ vectors were generated with the QuickChange Site-

Directed Mutagenesis Kit (Stratagene, La Jolla, CA) by using the FANCJ-pOZ as 

a template and the following primers: (K52R) 5'-3' 

CCCACAGGAAGTGGAAGGAGCTTAGCCTTAGCC and 5'-3' 

GGCTAAGGCTAAGCTCCTTCC-ACTTCCTGTGGG; (S990A)5’-3’ 

TCCAGATCCACAGCCCCAACTTTCAAC and 5’-3’ 

GTTGAAAGTTGGGGCTGTGGATCTGGA. (K141/142A)  5'-3' 

GCAAAGTTATCTGCT GCGGCACAGGCATCCATATAC and 5'-3' 

GTATATGGATGCCTGTGCCGCAGCAGATAACTTTGC. The same set of 

primers were used to generate the K141/142 A-pCDNA3 and K141/142 A-

pVL132 by using the WT FANCJ pCDNA3myc.his (Cantor et al., 2001) and 
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pVL132Flag tagged (Cantor et al., 2004) constructs respectively.  The Q143E 

and S145A pCDNA3 were generated with the QuickChange Site-Directed 

Mutagenesis Kit(Stratagene, La Jolla, CA) by using the following primers: 

(Q143E)5’-3’  GCTGCAAAGTTATCTGCTAAGAAAGAGGCATC CATATACAG 

and 5’-3’ CTGTATATGGATGCCTCTTTCTTAGCAGATAACTTTGCAGC; or 

(S145A) 5’-3’ TCTGCTAAGAAACAGGCAGCCATATACAGAGAT GAA and 5’-3’  

TTCATCTCTGTATATGGCTGCCTGTTTCTTAGCAGA.  All DNA constructs 

were confirmed by DNA sequencing. MLH1 protein was synthesized in vitro by 

coupled transcription and translation using the T7 Quick-coupled TnT kit 

(Pormega) and MLH1 pCDNA3 vector as a template (Plotz et al., 2003) gift of 

Guido Plotz (Homburg/Saar, Germany).  The WT-MLH1 pcDNA3 vector 

(Invitrogen) was digested Not1/Apa1 and different MLH1 fragments were 

generated by PCR and digested Not1 and Apa1 products were inserted.  Primers 

are available upon request. 

The FANCJ fragment (amino acids 128-158) was generated by PCR.  An 

eGFP expression vector was created by subcloning PCR fragments of eGFP into 

pcDNA3.1 (Invitrogen, Carlsbad, California) (gift of Dr. Andrew Kung) to create 

new unique restrictions sites within the active loop of eGFP. The annealed 

FANCJ fragment and the empty eGFP pCDNA3 vector were digested with 

BamH1 and EcoR1 restriction enzymes for 1hr at 37.  The FANCJ fragment and 

eGFP pCDNA3 vector were ligated using Quick ligase (NEB) for 1hr at room 

temperature. Primers covered FANCJ sequence from 128-158Aa.   
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ELISA studies  

Purified recombinant 

Carbonate buffer (0.016 M Na2CO3, 0.034 M NaHCO3, pH 9.6) and added to 

appropriate wells of a 96-well microtiter plate (50μl/well), which was incubated at 

4 oC.  3% Bovine serum albumin (BSA) was used in the coating step for control 

reactions.  The samples were aspirated, and the wells were blocked for 2 hr at 30 

oC with Blocking buffer (phosphate buffered saline, 0.5% Tween 20 and 3% BSA).  

The procedure was repeated.  Purified recombinant FANCJ protein was diluted in 

Blocking buffer, and the indicated concentrations were added to the appropriate 

wells of the ELISA plate (50μl/well), which was incubated for 1 hr at 30 oC.  For 

EtBr or DNaseI treatment, 50μg/ml EtBr or DNaseI (2μg/ml) was included in the 

incubation with FANCJ during the binding step in the corresponding wells.  The 

samples were aspirated, and the wells were washed five times before addition of 

rabbit polyclonal anti-FANCJ antibody (Sigma, B-1310) that was diluted 1: 5,000 

in Blocking buffer.  Wells were then incubated at 30 oC for 1 hr.  Following three 

washings, horseradish peroxidase-conjugated anti-rabbit secondary antibody (1: 

5,000) was added to the wells, and the samples were incubated for 30 min at 30 

oC.  After washing five times, any FANCJ bound to the immobilized MLH1 was 

detected using OPD substrate (Sigma).  The reaction was terminated after 3 min 

with 3 N H2SO4, and absorbance readings were taken at 490 nm. 
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Recombinant protein and helicase assays   

Hi5 cells were infected with pVL132 K141/142A FANCJ and incubated for 72 hr.  

Cells were collected, lysed in Insect Lysis Buffer (Roche) containing protease 

inhibitors (Roche) for 30 min at 4C, and subsequently cleared by centrifugation.  

The WT, K52R, and K141/142A FANCJ proteins were purified as previously 

described (Cantor et al., 2004).  Briefly, K141/142A FANCJ-Flag was 

immunoprecipitated with 50 µl of FlagM2 conjugated beads for 2 hr at 40C.  

Beads were washed three times in 500 mM NETN [500mM NaCl, 0.5% NP-40, 

1mM EDTA and 20 mM Tris-HCL (pH8.0)] followed by a final wash with 150 mM 

NETN and K141/142A FANCJ protein was eluted twice using 3x Flag peptide.  

Elutions were pooled and dialyzed overnight in storage buffer.  Helicase assay 

reaction mixtures (20 µl) contained 40 mM Tris-HCl (pH 7.6), 25 mM KCl, 5 mM 

MgCl2, 2 mM dithiothreitol, 2% glycerol, 100 ng/µl BSA, 2 mM ATP, 10 fmol of 

the specified duplex DNA substrate (0.5 nM DNA substrate concentration), and 

the indicated concentrations of FANCJ helicase.  Helicase reactions were 

initiated by the addition of FANCJ and then incubated at 30 oC for 15 min.  

Reactions were quenched in the presence of a 10-fold excess of unlabeled 

oligonucleotide with the same sequence as the labeled strand to prevent 

reannealing and products resolved on nondenaturing 12% (19:1 acrylamide: 

bisacrylamide) polyacrylamide gels and quantitated as previously described 

(Gupta et al., 2005). 
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CHAPTER III 

 

An MLH1 mutation links BACH1/FANCJ to colon cancer and  

insight towards directed therapy 

 

 

Abstract 

 

 

Defects in DNA mismatch repair (MMR) proteins are the primary cause for 

hereditary non-polyposis colon cancer (HNPCC).  Mutations in MMR genes, such 

as MLH1 or MSH2 often disrupt mismatch repair and/or signaling.  Mammalian 

mismatch repair is not predicted to require a DNA helicase. Thus, we considered 

whether MMR-signaling required the direct interaction between MLH1 and the 

BRCA1-associated FANCJ helicase.  We found that in response to DNA damage, 

FANCJ promotes MMR complex formation. As such, FANCJ-deficient cells have 

delayed apoptosis and greater resistance to O6-methylguanine through 

methylation reversal.   Intriguingly, loss of the FANCJ/MLH1 interaction was 

identified in the HNPCC mutant, MLH1L607H that is proficient in mismatch repair. 

This link between FANCJ and colon cancer suppression provides insight towards 

directed therapies as cancers lacking the MLH1/FANCJ interaction are likely to 

be uniquely sensitive to DNA crosslinking agents. 
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Introduction 

In the absence of DNA repair proteins, cell cycle checkpoints, and/or DNA 

damage, repair pathways are not properly activated.  This inability to actively 

respond to DNA damage can lead to chromosomal instability, cell death, or 

cancer. The same DNA repair deficiencies that can cause cancer can also make 

them resistant to DNA-damaging agents used as chemotherapy agents.  For 

example, loss of mismatch-repair (MMR) proteins is associated with hereditary 

nonpolyposis colon cancer (HNPCC) (O'Brien and Brown, 2006) and with 

resistance to the cytotoxicity of many therapeutic agents.  In MMR-mutant cells 

DNA damage can accumulate without triggering cell death, i.e., cells become 

tolerant or resistant as cells “ignore” DNA damage and continue to replicate 

damaged DNA (Branch et al., 1993; Kat et al., 1993). These replicating cells not 

only resist DNA damage-induced arrest and avoid apoptosis, but also have a 

greatly enhanced mutation frequency.  Thus, MMR-deficient cells often have a 

mutator phenotype, i.e., genetic information is lost (Schofield and Hsieh, 2003). 

This alteration of DNA sequences, which occurs in highly repetitive regions such 

as microsatellite DNA, is termed microsatellite instability (MSI).  

MMR-mutant cells are especially resistant to alkylating agents, such as N-

methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), 

which generate methylation at O6 in guanine of DNA to form O6-methylguanine 

(O6-meG) (Jiricny, 2006).  In MMR-proficient cells recognition of DNA 

methylation, which resembles DNA mismatches, is mediated by the heterodimer 
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MutSα (MSH2 and MSH6) (O'Brien and Brown, 2006). The MutSα complex 

recruits the heterodimer MutLα (MLH1 and PMS2), which is also essential for 

functional MMR signaling and repair.  Once mismatches or DNA damage is 

detected, MMR proteins signal a checkpoint response, repair, and/or apoptosis 

(Hawn et al., 1995).  MMR-processing of DNA methylation fails to repair DNA 

and consequently drives apoptosis.   

The MMR-induced apoptosis following DNA methylation has been 

proposed to evolve from one of two mechanisms.  First, MMR proteins are 

hypothesized to facilitate misguided attempts to repair DNA methylation, 

ultimately leading to more severe secondary lesions, such as double strand 

breaks (Karran, 2001).  Thus, in the absence of MMR proteins, cells escape 

these secondary lesions and death.  Second, MMR proteins function in signaling 

that is hypothesized to promote checkpoint and apoptosis (Karran, 2001).  

Following DNA methylation damage, both the MutSa and MutLa complexes are 

required to recruit and activate the checkpoint kinase, ATR (Yoshioka et al., 

2006). In support of the essential role of MMR signaling, separation-of-function 

mutants that are repair defective, but intact for signaling undergo DNA 

methylation-induced apoptosis. In contrast, reduced levels of expression of MMR 

can support repair, but not signaling.  In this case, cells are microsatellite stable 

(MSS), but DNA methylation-induced apoptosis is reduced and cells are more 

tolerant to DNA damage (O'Brien and Brown, 2006). 

 Loss of DNA damage repair, checkpoint functions, and cancer are also 
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associated with defects in the BRCA1-associated helicase FANCJ (also known 

as BACH1/BRIP1) (Peng et al., 2006). FANCJ mutations were identified not only 

in patients with breast cancer (Cantor et al., 2001), but also in patients with the 

cancer prone disease Fanconi anemia (FA) (Litman et al., 2005). FANCJ-null FA 

cells are sensitive to DNA damage and undergo an abnormal checkpoint 

response.  We previously demonstrated that FANCJ interacts directly to MLH1 

and this interaction was as important as FANCJ’s helicase activity for restoring a 

normal DNA damage response to FANCJ-null cells (Peng et al., 2007).  Given 

that the FANCJ/MLH1 interaction is critical for a normal DNA damage response, 

conceivably loss of this interaction could be associated with cancer and/or the 

development of DNA damage resistance.    

 Here, we uncover that FANCJ potentiates MMR complex formation in 

response to DNA damage.  As such, FANCJ-deficiency delays MMR-induced 

apoptosis.  This delay facilitates O6MeG resistance through MMR-independent 

methylation reversal by methyl guanine methyltransferase (MGMT).   

Furthermore, loss of the FANCJ/MLH1 interaction is associated with hereditary 

colon cancer.  Specifically, the leucine(L) to histidine (H) change at  position 607 

MLH1 ablates MLH1 binding to FANCJ.  Expression of the MLH1L607H point 

mutant generates sensitivity to DNA interstrand crosslinks links (ICLs), but 

resistance to DNA methylation. We suggest, therefore; that a delay in checkpoint 

and/or apoptotic responses could explain the HNPCC familial cancers, such as 

MLHL607H, characterized as microsatellite stable (MSS) and with intact repair.  
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This previously unknown link between FANCJ, MMR signaling, and colon cancer 

suppression also provides insight towards directed therapy as such cancers are 

likely to be uniquely sensitive to ICLs. 

 

Results 

FANCJ-deficiency does not resemble MMR-deficiency 

Unlike prokaryotic MMR in which a DNA helicase is required, mammalian 

MMR has been reconstituted in vitro without a DNA helicase (Dzantiev et al., 

2004).  Thus, as a starting point, we tested the idea that the FANCJ helicase 

could participate in MMR-signaling.  In particular, MNU treatment generates 

O6MeG lesions that when processed by MMR-signaling generates a robust 

G2/M checkpoint, apoptosis, and reduced cell survival.  These outcomes are 

reduced if O6MeG lesions are instead reversed by the O6-methylguanine-DNA 

methyltransferase (MGMT).  Thus, we inhibited MGMT by treating cells with O6-

benzylguanine (O6-BZG).  To examine if FANCJ functions in MMR-signaling, we 

sought to directly compare FANCJ-deficient cells with MMR-deficient cells. 

Western blot confirmed that shRNA reagents targeted FANCJ and MLH1 

proteins in MCF7 breast cancer cells (Figure 3-1A).  FANCJ-depletion did not 

alter the expression of the MutLα complex (Figure 3-1A).  In contrast, shRNA-

targeting MLH1 suppressed both MLH1 and PMS2 confirming reports that MLH1 

stabilizes PMS2 (Figure 3-1A).  Consistent with a role for MLH1 in the DNA 

methylation induced G2/M checkpoint, MLH1-depleted cells had a reduced 
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number of cells accumulating with 4N DNA content ~4-fold by 72 and 96h post-

MNU as compared to non-silencing control cells (Figure 3-1B).  In contrast to 

MLH1-depletion, FANCJ-depletion did not dramatically alter the MNU induced 

G2/M checkpoint (Figure 3-1B).  Furthermore, unlike MLH1-depletion, which 

dramatically enhanced the number of surviving colonies, FANCJ-depletion had 

no effect on MNU-induced colony survival as compared to cells treated with non-

silencing siRNAs (Figure 3-1C).  Together, these findings demonstrated that 

MMR signaling in response to O6MeG lesions was not affected by FANCJ-

depletion.  

 

FANCJ-deficiency measurably alters the MNU response when MGMT is 

active 

To fully characterize the consequences of FANCJ-depletion on the 

O6MeG-induced response, we also performed experiments without inhibiting 

MGMT. With MGMT active, maximal apoptosis was achieved by 72h post-MNU, 

whereas the apoptosis in MGMT inhibited cells continued to climb from 72 to 96h 

(Figure 3-1D).  Consistent with reduced apoptosis, cells with active MGMT 

formed colonies when treated with 150 ug/ml MNU, a dose that eliminated 

MGMT inactivated cells (Figure 3-1E).  While depletion of MLH1 reduced 

apoptosis irrespective of MGMT activity, depletion of FANCJ only had a 

measurable effect on apoptosis in MGMT-active cells ~2 fold as compared to 

non-silencing controls.  This decreased apoptosis also correlated with enhanced 
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colony survival ~2 fold as compared to non-silencing controls (Figure 3-1D and 

E).  In fact, the colony survival in MLH1- or FANCJ-depleted MCF7 cells was 

similar with MGMT active (Figure 3-1E).  

To confirm these findings, we analyzed growth in response to MNU in 

non-colony forming fibroblasts either proficient- (2822 cell line) or null- (FA-J 

EUFA30F cell line) for FANCJ (Litman et al., 2005).  Asynchronous growing cells 

were plated at equal numbers, left untreated, or treated with increasing doses of 

MNU for 0.5 h and 5-7 days later surviving cells were counted. With MGMT-

active, FANCJ-null FA-J cells had a greater percent growth at all doses of MNU 

as compared to normal fibroblasts (Figure 3-2A) or other FA cell lines, FA-C 

(PD331) or FA-G (PD352) (Figure 3-2B).   Reconstitution of the missing wild-type 

FANCJ in FA-J cells restores a normal DNA interstrand crosslink response 

(Litman et al., 2005) (Figure 3-2C and Supplemental Figure S3-5).  If FANCJ-

deficiency generated enhanced growth due to an abnormal MNU response, we 

reasoned that re-introduction of wild-type FANCJ should restore MNU sensitivity 

and reduced growth.  As before, with MGMT inhibited, the presence or absence 

of FANCJ had no effect on MNU sensitivity (Figure 3-2C).  With MGMT active, 

however, wild-type FANCJ, as compared to vector reconstituted FA-J cells had a 

reduced percent growth following MNU treatment (Figure 3-2C).  In contrast, the 

presence or absence of wild-type FANCD2 in FA-D2 cells did not affect the 

percent growth following MNU treatment (Figure 3-2D).  Together, these results 

implicate that FANCJ-null cells as compared to other FA cells have a unique 
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tolerance to MNU when MGMT is active that is reversed upon re-introduction of 

wild-type FANCJ. 

 

FANCJ function is linked to MMR 

To further understand how FANCJ could function in the response to MNU, 

we addressed whether the FANCJ/MLH1 interaction and/or helicase activity was 

required to restore MNU sensitivity to FA-J cells.  FA-J cells were also 

reconstituted with the FANCJ mutants, FANCJK141/142A, which is ablated for MLH1 

binding (Peng et al., 2007) or FANCJK52R,  which is enzyme inactive (Cantor et al., 

2004).  The proteins were expressed similarly to wild-type FANCJ (Figure 3-2C). 

Unlike reconstitution with wild-type, however, FANCJK52R, and FANCJK141/142A 

reconstitution did not reduce growth in response to MNU (Figure 3-2C), 

consistent with the idea that both MLH1 binding and helicase activities are 

required for FANCJ to restore a normal MNU response.  

Based on our findings, we reasoned that FANCJ-deficiency could enhance 

MNU resistance due to reduced MMR- and/or enhanced MGMT-function.  If 

FANCJ functions to promote MMR-function only, we reasoned that FANCJ-

deficiency should not affect resistance to other DNA damaging agents that are 

not processed by MMR.  In particular, MMR selectively processes O6-MeG 

lesions, generated by MNU or MNNG, but not lesions generated by methyl 

methanesulfonate (MMS) or N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea 

(CCNU) (Kaina et al., 2007).  If FANCJ normally only reduces MGMT-function, 
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FANCJ-deficiency should enhance resistance to CCNU, which generates DNA 

methylation that is reversed by MGMT.  Similar to MNU-, MNNG-treatment 

generated greater sensitivity in FA-J cells reconstituted with wild-type FANCJ as 

compared to vector, whereas MMS-treatment did not generate differential 

sensitivity (Figure 3-3A and B).  In contrast, FA-J cells were sensitive to CCNU 

and reconstitution of wild-type FANCJ enhanced resistance (Figure 3-3C). 

Together, these results implicate that FANCJ-deficiency affects MMR-signaling, 

not MGMT function. 

Conceivably, loading or translocation of MMR proteins on damaged 

chromatin could be potentiated by a DNA helicase, such as FANCJ. To pursue 

this idea, an MNU-induced MMR chromatin complex was examined in the FA-J 

cells reconstituted with vector or wild-type FANCJ.  Following MNU-treatment, 

the FA-J cells were collected and the chromatin bound MMR proteins were 

examined by immunoprecipiation of MSH6 as described (Hidaka et al., 2005).  

While the amount of MMR proteins in the cellular extracts was similar between 

vector and wild-type FA-J cells, a more robust MMR complex was detected in the 

wild-type FANCJ expressing FA-J cells (Figure 3-3D).  Likewise, the MMR 

complex formation in response to other DNA damaging agents, such as 

melphalan and cisplatin was enhanced by reconstitution of wild-type FANCJ 

(Supplemental Figure S3-6). Together, this data suggests that DNA damage 

induced MMR complexes are more robust when FANCJ is present.  
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MLH1 clinical mutant L607H disrupts FANCJ binding and alters DNA 

damage responses 

    Could FANCJ loss of function be associated with HNPCC? To assess this 

idea, we sought to identify if any MLH1 missense mutations altered MLH1 

binding to FANCJ. We previously demonstrated that the MLH1 amino acids 478 

to 744 were required to bind FANCJ, but also PMS2 (Figure 3-4A) (Peng et al., 

2007).  As such, deletion mutants of MLH1 in this region disrupted both FANCJ 

and PMS2 binding.  Thus, 13 different MLH1 clinical mutants targeting the region 

of 478 to 744 that were proficient for PMS2 binding were screened for ability to 

bind FANCJ.  Wild-type or mutant MLH1 constructs were co-transfected with 

PMS2 into 293T or HCT116 cells that are null for the MutLα complex. MLH1 

antibody precipitation revealed that most of the MLH1 mutants precipitated PMS2 

and FANCJ similar to wild-type MLH1.  However, mutation of MLH1 at amino 

acid 607, from leucine to histidine (MLH1L607H), ablated the FANCJ interaction as 

compared to wild-type MLH1 that bound FANCJ when precipitated from either 

293T or HCT116 cells (Figure 3-4B and C). The HNPCC associated MLH1L607H 

mutant has normal mismatch repair activity and cells from afflicted patients do 

not show MSI, making it unclear as to how this mutation affects MMR function 

(Takahashi et al., 2007).   

    Our previous data demonstrated that loss of the FANCJ/MLH1 interaction 

generates ICL sensitivity similar to FANCJ-null cells (Peng et al., 2007) 

consistent with this interaction being important for some aspect of the interstrand 
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crosslink DNA damage response.   Thus, we tested if re-introduction of vector, 

wild-type, or MLH1L607H mutant, that lacks FANCJ binding affected ICL or MNU 

sensitivity in HCT116 colon cancer cells.  HCT116 cells were co-transfected with 

PMS2 and vector, wild-type, or MLH1L607H and expression was determined by 

Western blot (Figure 3-4C).  To maintain expression of transfected plasmids at a 

level at which wild-type MLH1 reproducibly restored DNA methylation sensitivity, 

cells were plated 24-30h post transfection, treated with MMC or MNU, and the 

percent growth was assessed five days later.  HCT116 cells with vector or wild-

type MLH1 had a similar sensitivity to MMC, unlike with MLH1L607H that enhanced 

MMC-sensitivity (Figure 3-4D). Moreover, the MLH1L607H failed to restore MNU 

sensitivity as compared to wild-type MLH1 (Figure 3-4E).  Likewise, the 

functional affects of a defective MLH1/FANCJ-interaction was not apparent when 

MGMT was inhibited (Figure 3-4F).  Thus, the clinical MLH1L607H mutant 

resembles the FANCJK141/142A mutant in which ICL sensitivity is enhanced and 

MNU sensitivity is reduced. 

 

Discussion 

The complex role of MMR proteins in the DNA damage response has 

complicated efforts to dissect the key function (s) required for tumor suppression.  

Furthermore, MMR-associated HNPCC tumors have heterogeneous defects and 

levels of MSI or no MSI.  Here, we identify an HNPCC MSS-associated 

MLH1L607H mutation that is intact for mismatch repair, but lacks FANCJ binding. 
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Our data suggest an indirect role for FANCJ in the MMR pathway based on the 

finding that FANCJ and MMR function in O6MeG-signaling was distinct.  First, 

FANCJ-depletion, unlike MLH-depletion has normal G2/M accumulation.  Second, 

the dramatic MNU-resistance generated by MLH1-depletion in MGMT-inactivated 

cells was not generated by FANCJ-depletion.  Thus, in the absence of FANCJ 

cells can initiate processing, checkpoint activation, and undergo cell death, 

however; the time to these events appear to be delayed.  With this delay, the 

MMR-independent methylation reversal by MGMT likely has time to enhance 

DNA methylation resistance.  Thus, a delay in MMR-signaling could be yet 

another mechanism linked to cancer and/or chemoresistance.  

Our findings further demonstrate a functional relationship between FANCJ 

and MLH1 in the DNA damage response. Similar to the DNA crosslink response, 

we found that the DNA methylation response required FANCJ helicase and 

MLH1 binding activities. Why does loss of the MLH1/FANCJ interaction enhance 

DNA crosslink, but reduce O6MeG sensitivity?  Most likely, the normal response 

to these DNA damaging agents fails without FANCJ binding to MLH1.  Thus, the 

MMR response that promotes MNU-induced apoptosis or ICL-induced 

checkpoint, repair, and recovery are delayed.  This delay is useful when there is 

a competing pathway that promotes survival, such as MGMT.  Consistent with 

this point, when MGMT is inactivated, the delay in MMR signaling is insufficient 

to enhance resistance because the O6MeG lesions are inevitably processed by 

MMR.  Likewise, in response to ICLs, in which reversal by MGMT or other means 
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is not available, the delay in MMR signaling more likely interferes with repair or 

recovery.   

Our data implicate that FANCJ contributes to MMR signaling by 

potentiating the DNA damage induced accumulation of MMR complexes on 

chromatin. Whether FANCJ facilitates loading, translocation of, or stabilizes 

MMR complexes on chromatin is not clear.  Loss of FANCJ or the FANCJ/MLH1 

interaction may not overtly limit mismatch repair activity given that patients with 

the MLH1L607H are characterized as microsatellite stable (MSS) (Barnetson et al., 

2008) and mismatch repair activity for this mutant is similar to wild-type MLH1 

(Takahashi et al., 2007).  It is possible, however, that the delayed MMR-signaling 

in L607H patient cells might provide a selective advantage in the initial stages of 

tumorigenesis or under high mutation stress enhance the mutation frequency. 

Conceivably, more DNA damage could be tolerated without activating the MMR-

induced checkpoint.  This lowered checkpoint barrier could enhance genomic 

instability and cancer. 
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Figure 3-1:  FANCJ deficiency enhances MNU-resistance in a MGMT 

dependent manner.  A) Western blot analysis of MCF7 cells stably expressing 

shRNA reagents targeting control, MLH1, or FANCJ is shown with the indicated 

Abs. B) DNA content was analyzed by FACs at the indicated times or C) colony 

survival was determined in the MCF7 cell lines after treatment with indicated 

dose of MNU in the presence of the MGMT inhibitor O6-BZG. D) Apoptosis was 

assessed by annexin V staining in the stable MCF7 cell lines treated with MNU in 

the presence or absence of O6-BZG. E) Colony survival was re-assessed in the 

absence of O6-BZG (MGMT-active) in the stable MCF7 cell lines and graphed as 

percent survival. 
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Figure 3-2.  When MGMT is active, FA-J cells are uniquely resistant to MNU 

and restoration of sensitivity requires FANCJ helicase and MLH1 binding 

activities. A) Percent growth of fibroblast cells (2822), FANCJ-null FA-J (2833), 

B) FA-J (EUFA39F), FA-C, or FA-G was assessed following MNU treatment. C) 

Western blot analysis was performed on the FA-J (EUFA39F) cells stably 

reconstituted with vector, FANCJWT, FANCJK52R or FANCJK141/142A with the 

indicated Abs. The percent growth following MNU treatment was scored in the 

FA-J cell lines with MGMT inhibited or active, as noted. D) Western blot analysis 

and percent growth following MNU treatment was assessed on FA-D2 (PD20) 

cells reconstituted with vector or FANCD2.   
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Figure 3-3: FANCJ enhances the damage response and complex formation 

of MMR proteins.  A) The percent growth was assessed following MNNG, B) 

MMS or C) CCNU in the FA-J cells reconstituted with vector or FANCJWT. D) 

Western blot analysis was used to analyze MMR proteins in chromatin extracts 

or chromatin MMR protein complex formation following immunoprecipitation with 

Ab to MSH6 as shown with the indicated Abs.  
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Figure 3-4.  MLH1 L607H mutant is defective for FANCJ binding.  A) Cartoon 

shows FANCJ and PMS2 binding region on MLH1.  B) Western blot analysis 

following MLH1 immunoprecipitation from 293T (MutLα deficient) cells 

transfected with PMS2 and distinct MLH1 constructs. C) Western blot analysis of 

extracts or following immunoprecipitations with MLH1 or FANCJ Abs from 

HCT116 (MutLα deficient) cells transfected with PMS2 and vector, wild-type (WT) 

MLH1, or MLH1 L607H mutant. β-Actin served as a loading control.  D) The 

percent growth of the transfected HCT116 cells described above was assessed 

following MMC, E) MNU with MGMT, F) or MNU with MGMT inhibited.  
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Supplemental Figue S3-5. MLH1 binding to FANCJ is essential to correct the 
rescue the MMC sensivitiy of the FA-J cells. FA-J (EUFA39F) were stably 
reconsituted with vector, FANCJWT, or FANCJK141/142A, and percent growth was 
assessed following MMC treatment 

 

 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

Supplemental Figure S3-6. FANCJ enhances MMR complex formation in 
response to Melphalan.  FA-J cells stably reconstituted with vector or FANCJWT 
were treated with Cisplain or Melphalan.  Cells were collected 24 or 48hs later 
and chromatin fraction was isolated (Masih et al., 2008).  Western blot analysis 
was used to analyze MMR proteins in chromatin extracts or following 
immunoprecipitation with Ab to MSH6 as shown with the indicated Abs. 
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Material and Methods 

Cell lines  

MCF7 and 293T cells were grown in DMEM supplemented with 10% fetal bovine 

serum and penicillin/streptomycin (100U/mL each). HCT116 cells were grown in 

McCoy’s 5A medium supplemented with 10% fetal bovine serum and 

penicillin/streptomycin (100U/mL each). FA and fibroblast cell lines were cultured 

as previously described (Litman et al., 2005).  FA-J cells were infected with the 

POZ retroviral vector (Nakatani and Ogryzko, 2003) containing no insert, 

FANCJWT, FANCJK52R, and FANCJK141/142A pCDNA-3myc-6xhis and POZ vectors 

described previously (Peng et al., 2007). 

 

Immunoprecipitation, Western blot and antibodies 

Cells were harvested, lysed, and processed for Western blot analysis as 

described previously (Peng et al., 2007). Abs used for immunoprecipitation and 

Western blot assays include FANCJ Ab, monocolonal pool (1A3, 2G7 and IG5) 

(Cantor et al., 2001) and polyclonal, E67 (Cantor et al., 2004), β-actin (Sigma), 

MLH1 (BD Bioscience), PMS2 (BD Biosciences), MSH6 (BD Biosciences), and 

Myc (9E10).  To prepared chromatin extracts FA-J cell lines were prepared as 

described (Hidaka et al., 2005).  Briefly cells were left untreated or treated with 

1mM MNU for 1h, washed, and incubated 24h.  The cells were treated with 

hypotonic buffer containing digitonin, collected, and sonicated.  
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Cell cycle progression assay  

MCF7 stable cell lines were either left untreated or treated with 20mM of O6-BZG 

for 2hrs followed by 1mM of MNU.  1hr post MNU treatment, cells were returned 

to regular growth media also containing O6-BZG for 72 or 96 hr. G2/M 

accumulation was assayed as described (Litman et al., 2005). 

 

Viability Assays 

FA-J reconstituted cells were seeded on 6 well plates 24hr later treated with 

increasing dose of MNU (1hr serum free), MMS (1hr, serum free), MNNG 

(continuous treatment) or CCNU (1hr, serum free).  After incubation for 4 to 5 

days, the percent growth was measured photometrically in a model 3550 

microplate reader (Perkin Elmer) as the relative growth (in luciferase units) using 

the Cell Titer glo-viability assay (Promega).  For quantification the luciferase units 

of each well were normalized to those obtained from untreated cells assumed to 

yield 100% cell survival, and was normalized to those obtained from a well 

without any cells, assumed to yield 0%.   HCT116 cells were transiently 

transfected with Fugene 6 and 24-30h after transfection, cells were seeded onto 

6-well plates at 1000 cells per well, incubated overnight, and then treated with 

increasing dose of MNU (1hr serum free), or MMC. Ten days post-treatment, 

cells were counted to determine percent survival.  To suppress MGMT, FA-J 

reconstituted or transiently transfected HCT116 cells were preincubated with 
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20mM of O6-BZG for 2hr followed by MNU treatment.  1hr post MNU treatment, 

cells were re-incubated in regular media supplemented with 20mM of O6-BZG.    

 

Annexin V and PI Staining 

MCF7 cells expressing shLuc, shMLH1, shBACH1 were plated in 60mm plates 

24hr later treated with increasing dose of 1mM MNU (1hr serum free).   

Cells were collected at 72 and 96hs and stained with Annexin V-FITC (5ul/10^6 

cells) and propidium iodide (50ug/ml).  Incubated for 15mins at room tempature 

in the dark and analyzed by FACs.  To suppress MGMT, MCF7 cells were 

preincubated with 20mM of O6-BZG for 2hr followed by MNU treatment.  1hr post 

MNU treatment, cells were re-incubated in regular media supplemented with 

20mM of O6-BZG.    
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CHAPTER IV 

 

Critical role for BRCA1 binding to FANCJ to suppress lesion tolerance 

 

Abstract 

 

BRCA1 and the DNA helicase FANCJ (also known as BACH1 or BRIP1) 

have common functions in breast cancer suppression and DNA repair.  However, 

the functional significance of the direct BRCA1/FANCJ interaction remains unclear. 

Here, we have discovered that BRCA1 regulates FANCJ function.   When FANCJ 

and BRCA1 association is ablated the DNA damage repair mechanism is 

dramatically altered.  Specifically, a FANCJ protein that cannot be phosphorylated 

at serine (S) 990 or bind BRCA1 inhibits DNA repair via homologous 

recombination and promotes polη-dependent bypass.  Furthermore, the polη-

dependent bypass promoted by FANCJ requires the direct binding to the 

mismatch repair (MMR) protein, MLH1. Together, our findings implicate that in 

human cells BRCA1 binding to FANCJ is critical to regulate DNA repair choice and 

promote genomic stability.  Moreover, unregulated FANCJ function likely promotes 

cancer and chemoresistance. 
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Introduction 

BRCA1 function and tumor suppression depend on the BRCA1 C-terminal 

(BRCT) region, which contains two discrete domains called BRCT repeats.  

Mutations in the BRCT domains result in defective DNA damage repair, such as 

failure to induce cell cycle checkpoints and sensitivity to DNA double-stranded 

breaks (DSBs) and interstrand cross-links (ICLs) (Kim and Chen, 2008).  These 

BRCTs also mediate the direct binding of BRCA1 to the FANCJ DNA helicase 

(also known as FANCJ/BRIP1) (Cantor et al., 2001).  FANCJ phosphorylation at 

serine 990 is required to mediate the BRCT-FANCJ interaction (Yu et al., 2003), 

and a serine to alanine mutation S990A ablates this interaction. Similar to 

BRCA1, mutations in FANCJ have been associated with hereditary breast cancer 

(Cantor et al., 2001; Seal et al., 2006).  In addition, FANCJ is mutated in the rare 

childhood disease, Fanconi anemia (FA), within the FANCJ (FA-J) patient 

complementation group (Chandra et al., 2005; Levitus et al., 2005b; Levran et al., 

2005; Litman et al., 2005).  

It has been proposed that the FA pathway maintains genomic integrity by 

coordinating at least two DNA repair mechanisms.  One of these mechanisms is 

homologous recombination (HR), a typically error-free DNA-repair mechanism 

that uses the homologous sequence in a sister chromatid for repair.  HR is critical 

to repair DSBs, which can form at the ICL following replication fork collapse.  

Defects in HR characterize BRCA1-, FANCJ-, and BRCA2-deficient cells (Litman 

et al., 2005; Moynahan et al., 1999; Moynahan et al., 2001b).  Evidence also 
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suggests that the FA pathway promotes ICL resolution by a mechanism 

engaging the error-prone translesion synthesis (TLS) polymerases.  Supporting 

this possibility, fewer TLS-like point mutations are present in the genome of FA 

cells (Patel and Joenje, 2007).  Moreover, the TLS polymerases REV1 and REV3 

function with the FA protein FANCC to promote ICL resistance (Niedzwiedz et al., 

2004).  Consequently, the FA pathway has been proposed to coordinate both 

TLS and HR to resolve DNA ICLs as well as other DNA lesions thereby limiting 

the severity of mutagenesis (Hinz et al., 2006; Niedernhofer et al., 2005; Patel 

and Joenje, 2007).  

Current models predict that TLS can function independent of HR.  This 

pathway often does not repair lesions, but facilitates lesion tolerance or bypass 

(Dronkert and Kanaar, 2001).  In particular, polη has been implicated in 

recombination-independent repair of ICLs generated by mitomycin C (MMC) 

(Zheng et al., 2003) as well as in the cellular tolerance to cisplatin (Albertella et 

al., 2005).  Due to the unique structure of its active site, polη replicates through 

cross-linked DNA (Alt et al., 2007).  Depending on the lesion bypassed, TLS can 

be mutagenic or error-free.  For example, polη bypasses ultraviolet light (UV)-

induced thymidine-thymidine dimers in an error-free manner and bypasses intra-

strand crosslinks and ICLs, once unhooked, in an error-prone manner (Prakash 

et al., 2005; Zheng et al., 2003). Depending on the type and severity of DNA 

damage, TLS is activated by a RAD6-RAD18 dependent PCNA 

monoubiquitination (Kannouche and Lehmann, 2004) that loads different TLS 
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polymerases in a lesion specific manner (Barbour and Xiao, 2003; Papouli et al., 

2005).  

Given that both FANCJ and BRCA1 are critical for HR, genomic stability, 

breast cancer suppression, and cross-link resistance (Cantor and Andreassen, 

2006), we hypothesized that these two proteins likely function together in DNA 

repair.  However, recent studies support independent functions.  In particular, the 

DNA cross-link sensitivity of FANCJ-null chicken and FANCJ-null patient (Bridge 

et al., 2005; Peng et al., 2007) cells was rescued with mutant versions of FANCJ 

that cannot interact with BRCA1.  This finding leads one to wonder what is the 

functional role for the BRCA1-FANCJ interaction.  

Here, we identify that when uncoupled from BRCA1, FANCJ functions to 

inhibit HR and promote polη-dependent bypass.  As such, FA-J patient cells 

expressing the BRCA1-interaction defective mutant, FANCJS990A resist DNA 

damage by UV and ICLs in a polη-dependent manner. Furthermore, FANCJS990A 

requires the MLH1 interaction to promote TLS and retain ICL resistance. 

Together, our data implicate that in human cells BRCA1 binding to FANCJ is 

critical to regulate DNA repair and bypass mechanisms to promote genomic 

stability.   

 

Results 

The DNA damage response is altered in the absence of FANCJ binding to 

BRCA1 
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The mechanism for restored ICL resistance in FA-J cells expressing 

FANCJS990A or FANCJWT could be distinct.  The restored ICL resistance in FA-J 

cells expressing FANCJS990A could have resulted from a reduction or disruption of 

the ICL-induced checkpoint response.  To test these possibilities, we 

reconstituted FANCJ-null FA-J cells with vector, FANCJWT, or the BRCA1-

interaction defective mutant FANCJS990A (Yu et al., 2003) and functional 

expression was confirmed by Western blot and restored ICL resistance (Figure 4-

1A, C, and Supplemental Figure S4-7A). Next, the FA-J stable cell lines were 

treated with half the dose of melphalan (0.25 mg/ml) used previously (Peng et al., 

2007) and analyzed at different times after treatment.  Interestingly, the 

maximum G2/M accumulation in the FANCJS990A -reconstituted FA-J cells was 

~25%, as compared to FANCJWT at ~40% (Figure 4-1B).  Fewer FA-J cells 

accumulated at G2/M at all times when they were reconstituted with FANCJS990A 

than when reconstituted with FANCJWT or vector (Figure 4-1B and Supplemental 

Figure S4-7B).  However, the growth of untreated cells was not measurably 

different (Supplemental Figure S4-7C). Thus, FANCJS990A reduced, but did not 

eliminate, the melphalan-induced G2/M accumulation. 

To further assess whether FANCJS990A, as compared to FANCJWT, 

promoted a distinct DNA damage repair mechanism, the reconstituted FA-J cells 

lines were treated with different forms of DNA damage.  FANCJS990A -

reconstituted FA-J cells were slightly more resistant to cisplatin, but dramatically 

more resistant to ultraviolet (UV) irradiation than FANCJWT-reconstituted FA-J 
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cells.  In contrast, FANCJS990A were more sensitive than FANCJWT or vector-

reconstituted FA-J cells to zeocin, which induces double strand breaks (DSBs) 

(Delacote et al., 2007) (Figure 4-1C).  Together, these findings suggest that the 

DNA damage response is distinct when FANCJ binds or does not bind BRCA1. 

 

FANCJS990A reduces RAD51 foci and HR  

 The zeocin sensitivity could suggest reduced double strand break repair 

(DSBR) when FANCJ is uncoupled from BRCA1.  Formation of DSBs 

corresponds with nuclear γ-H2AX foci formation.  Treatment with zeocin induced 

the formation of γ-H2AX foci to the same extent in FANCJWT and FANCJS990A -

reconstituted FA-J cells as detected by immunofluorescence (Figure 4-2A and B).  

In contrast, RAD51 foci were not similarly detected (Figure 4-2A and C).  As 

compared to untreated cells, at 12 h post-zeocin treatment RAD51 foci were 

induced ~5 fold in FANCJWT, as compared to ~3.5 fold in vector and 2~fold in 

FANCJS990A reconstituted FA-J cells (Figure 4-2C). To rule out the possibility that 

zeocin differentially affected the FA-J cell lines and the number of cells in S-

phase, in which RAD51 foci are most prominent, we measured cell-cycle 

distributions and found no significant differences (Supplemental Figure 4-8A). 

Consistent with the possibility that HR was reduced as a result of more 

unbound FANCJ, we found that expression of FANCJS990A in U2OS cells also 

reduced HR, as found for the helicase inactive FANCJK52R, 4.5- and 3-fold, 

respectively, compared to that in U2OS cells with FANCJWT or vector (Figure 4-
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2D).  FANCJ species were expressed similarly (Figure 4-2D). FANCJWT 

precipitated similar ratio of BRCA1 as endogenous FANCJ and as expected the 

FANCJS990A did not precipitate BRCA1 (Supplemental Figure 4-9A).  Despite 

reduced HR due to expression of FANCJS990A or FANCJK52R, only U20S cells 

expressing FANCJK52R were sensitive to ICLs (Supplemental Figure 4-9B). 

Together, these data suggest that expression of FANCJS990A in U20S or FA-J 

cells reduced RAD51-based HR, but not crosslink resistance.  

 

FANCJ affects DNA damage-induced polη foci formation 

We hypothesized that resistance to ICLs could be mediated by an HR-

independent mechanism such as translesion synthesis (TLS), which can facilitate 

bypass of both unhooked ICLs and UV lesions (Kannouche and Lehmann, 2004; 

Nojima et al., 2005). In particular, in human cells the TLS polymerase polη can 

carry out bypass of cisplatin and UV lesions (Vaisman et al., 2000), (Alt et al., 

2007), (Kannouche et al., 2001).  Following UV irradiation polη forms nuclear foci 

(Kannouche et al., 2001) (Figure 4-3A). Thus, we examined whether expression 

of FANCJ influenced TLS by examining UV-induced polη foci formation in U2OS 

cells in which expression of FANCJS990A reduced HR.  U2OS cells stably 

expressing vector, FANCJWT, or FANCJS990A were transfected with the eGFP-

polη fusion protein, UV irradiated, and analyzed for fluorescent polη foci. We 

were unable to examine how the helicase inactive affected polη because 

FANCJK52R failed to express stably and transient co-expression with polη was 
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toxic.  Expression of FANCJS990A did not affect the number of polη foci in 

untreated cells, but in UV-irradiated cells expressing FANCJS990A or FANCJWT, 

~30% more cells with eGFP-polη foci were found than in the vector control 

(Figure 4-3A).  

If FANCJ normally functions in the UV-induced activation of polη, UV-induced 

polη foci should be less robust in cells deficient in FANCJ.  To test this 

hypothesis, cells were co-transfected with eGFP-polη and -siRNA targeting luc, 

FANCJ, or Rad18.  Subsequently, transfected cells were UV irradiated and 

assessed for polη foci (Figure 4-3B). To rule out the possibility that DNA damage 

differentially affects the number of cells in S-phase, in which polη foci are most 

prominent (Kannouche et al., 2001), we measured cell-cycle distributions before 

and after UV or MMC in control or FANCJ over-expressed cells and found no 

significant changes (Figure 4-2B).  As expected, Rad18-depletion reduced the 

number of cells positive for polη foci (Watanabe et al., 2004) by ~4-fold. 

Depletion of FANCJ reduced the number of cells positive for polη foci by ~2-fold 

(Figure 4-3B). Together, it appears that UV induced polη foci formation is 

reduced with FANCJ depletion, whereas FANCJ over-expression enhanced this 

outcome.  

 

FANCJS990A promotes polη dependent bypass 

In contrast to UV, MMC-treated cells showed few cells with polη foci, 

suggesting that repair of ICLs do not readily activate polη. However, when cells 
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expressed FANCJS990A, cells with polη foci were readily observed (Figure 4-3A) 

suggesting that FANCJS990A enhances TLS in response to ICLs.  Based on these 

findings, we hypothesized that UV and ICL resistance in FA-J cells expressing 

FANCJS990A was accomplished through a mechanism that involved polη. To 

address this possibility, the FA-J cells lines were transfected with siRNA targeting 

luc or polη (Figure 4-4A).  Compared to FANCJWT reconstituted cells, 

suppression of polη reduced the viability of FANCJS990A reconstituted cells by 

30%, while the viability of vector reconstituted cells was not changed (Figure 4-

4B).  Consistent with FANCJS990A promoting polη dependent TLS, polη-depletion 

uniquely reversed the MMC and UV resistance of FA-J cells expressing 

FANCJS990A, but not FANCJWT or vector FA-J cell lines (Figure 4-4C and D). 

Similar to polη-depletion, Rad18-depletion reversed the ICL resistance of FA-J 

cells expressing FANCJS990A, whereas vector and FANCJWT expressing FA-J 

cells were unaffected (Figure 4-5A and B).  In contrast, Rad54- or Rev1-depletion 

did not affect FA-J cells expressing FANCJS990A, FANCJWT, or vector FA-J cell 

lines (Figure 4-5A and B).  Suppression of Rad18, Rev1, and Rad54 did not 

cause any change in viability of the stable J cells (Supplemental Figure S4-10).  

Interestingly, stable over-expression of FANCJS990A in U2OS cells also promoted 

UV resistance in a polη dependent manner (Supplemental Figure S4-11).  

Together, these results implicate that in response to DNA damage, FANCJS990A 

promotes polη dependent bypass.  
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FANCJS990A requires MLH1 binding to promote polη-dependent bypass  

Previously, we identified that FANCJWT binds directly to MLH1 and this 

interaction is required for FANCJ to promote ICL resistance (Peng et al., 2007). 

MLH1 binds directly to the FANCJ helicase domain through lysines 141 and 142.  

To address whether the MLH1 interaction with FANCJS990A was also required for 

ICL resistance, we replaced lysines 141 and 142 of FANCJ with alanines, which 

ablates MLH1 binding (Peng et al., 2007).  FA-J cells were reconstituted with this 

triple mutant FANCJS990AK141/142A, FANCJS990A, FANCJK141/142A, vector, or 

FANCJWT.  Expression and ablation of MLH1 and/or BRCA1 binding was 

confirmed by Western blot (Figure 4-6A and B). In contrast to FANCJS990A, 

FANCJS990AK141/142A reconstituted FA-J cells were sensitive to MMC (Figure 4-6C), 

suggesting that FANCJS990A promotes polη dependent TLS in a MLH1 dependent 

manner (Figure 4-6D). 

 

Discussion 

In this study, we explore the possibility that FANCJ binding to BRCA1 is 

important for DNA repair in mammalian cells.  This possibility was proposed 

based on their direct binding and common functions in breast cancer 

suppression, HR, and crosslink repair.  We provide data that support this 

hypothesis by demonstrating that uncoupling FANCJ from BRCA1 alters the DNA 

damage response.  Specifically, (1) cells expressing unbound FANCJ 
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(FANCJS990A), unlike FANCJ that can bind BRCA1, are sensitive to DSBs, (2) 

have reduced RAD51-based HR, (3) survive cross-link DNA damage with a 

reduced G2/M accumulation and (4) dependence on the TLS polymerase polη.  

These data suggest that FANCJ has anti-recombination and TLS functions that 

are normally regulated by BRCA1 binding. Moreover, we find that the BRCA1-

bound or unbound FANCJ requires its MLH1 interaction to promote crosslink 

resistance.   

FANCJ likely has a complex role in HR: it is required for HR when bound 

to BRCA1 and inhibits HR when unbound to BRCA1. If FANCJ functioned only 

as an anti-recombinase depletion of FANCJ would be expected to enhance HR.  

Instead, FANCJ-depletion reduces HR, similar to BRCA1-depletion (Litman et al., 

2005).  Further indicating a positive role for FANCJ in HR, reconstitution of 

FANCJ in FA-J cells enhances the appearance of DNA damage induced RAD51 

foci (Figure 4-2A).  One possibility is that the BRCA1-bound FANCJ functions to 

prevent other proteins from disrupting HR, such as anti-recombination helicase 

BLM (Bugreev et al., 2007).  Instead, when unbound to BRCA1, FANCJ could 

also disrupt HR by unwinding recombination structures.  In particular, 

recombinant FANCJ unwinds D-loops, but not other recombination structures 

such as holiday junctions (Gupta et al., 2005). BRCA1 is critical for RAD51 foci 

and HR (Bhattacharyya et al., 2000; Moynahan et al., 1999). Perhaps the 

requirement for BRCA1 is that in its absence, the anti-recombinogenic function of 

FANCJ is unleashed. 
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Conceivably, the anti-recombination activity of FANCJS990A could indirectly 

enhance TLS.  For example, the yeast helicase Srs2 promotes TLS by binding 

PCNA and antagonizing HR (Papouli et al., 2005) (Barbour and Xiao, 2003).  

Similar to Srs2, FANCJ colocalizes at sites of replication arrest with PCNA and 

has been shown to translocate DNA, unwind D-loops (Dupaigne et al., 2008; 

Gupta et al., 2005) and displace RAD51 (Sommers et al., 2009).  Moreover, the 

structurally and functionally related Srs2 homologue UvrD binds the MLH1 

homologue, MutL (Mechanic et al., 2000). MutL helps to load and activate the 

UvrD helicase. Perhaps, FANCJ localization or the ability to unwind DNA also 

requires its MLH1 interaction.  In the absence of MLH1 binding, FANCJ may not 

function properly, thus may fail to promote both TLS and HR.  Conceivably, 

FANCJ could enhance TLS by not only limiting recombination, but also by 

potentiating TLS.  For example, FANCJ could limit negative regulators of TLS, 

such a MMR, which detect mismatches generated by mutagenic pathways.  This 

scenario could explain why FANCJ binding to MLH1 is required for TLS (Figure 

4-5D).  

Together, these findings imply that reduction or loss of BRCA1 binding to 

FANCJ could enable cells to survive toxic chemotherapies and provide a 

possible route to chemoresistance.  If true, targeting FANCJ or polη bypass could 

reverse ICL resistance in such cancers.  Likewise, a possible route to cancer in 

BRCA1-mutation carriers could result from excess unbound FANCJ and 

mutagenic bypass.  Perhaps, this is why FANCJ amplification is also linked to 
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malignancy (Eelen et al., 2008; Sinclair et al., 2003). In fact, loss of BRCA1 

binding to FANCJ could evolve from mutations in either gene, or from loss of 

DNA-damage signaling components that regulate the association of these two 

proteins.  Future studies are needed to clarify the signaling pathways that 

participate in regulating the switch between BRCA1-bound and -unbound FANCJ.  
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Figure 4-1. FANCJS990A, as compared to FANCJWT, promotes a distinct DNA 

damage response in FA-J cells.  (A) FANCJ-null FA-J cells were reconstituted 

with vector, FANCJWT, or FANCJS990A, lysates were analyzed by immunoblot with 

the indicated Abs. (B) The FA-J cell lines were treated constitutively with 

0.25μg/ml melphalan, collected at the indicated times, and analyzed by FACS to 

determine the percentage of cells in G2/M.  Data represent mean ± SD for 3 

independent experiments. Asterisk indicates significant difference with melphalan 

treated FA-J vector reconstituted (P< 0.05, unpaired t-test) (C) The FA-J cells 

expressing vector, FANCJWT, or FANCJS990A were plated at low density, treated 

with the indicated doses of cisplatin, UV, or zeocin, and allowed to grow for 5-8 

days. The cells were then collected and counted to analyze percent growth. Data 

represent mean percent ± SD of growth from 3 independent experiments.  
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Figure 4-2. FANCJS990A reduces homologous recombination following DSBs 
in FA-J cells. (A) The FA-J cell lines were treated with 12.5μg/ml of zeocin and 
immunoflourescence was performed with γ-H2AX and RAD51 Abs.  (B) The γ-
H2AX and (C) RAD51 foci were quantitated based on a cell being positive (>10) 
foci per 300 DAPI positive cells from 3 independent experiments. Asterisk 
indicates significant difference with zeocin treated FA-J vector reconstituted (P< 
0.05, unpaired t-test). (D) DR-U2OS cells were co-transfected with the I-Sce-1 
endonuclease and vector, FANCJWT, FANCJS990A, or FANCJK52R, collected and 
either lysed and immunoprecipitated followed by immunoblot with the indicated 
Abs or analyzed by FACS.  The percentage of GFP-positive cells is based on 
that in the vector control. 

 

 

 



101 
 

Figure 4-3. FANCJS990A enhances polη foci, and FANCJ is required for 

robust UV-induced polη foci in U2OS cells. (A) U2OS cells stably expressing 

vector, FANCJS990A, or FANCJWT were transfected with eGFP-polη and either 

collected for immunoblot with the indicated Abs or UV irradiated with indicated 

dose with 4h incubation or treated with 250nM MMC with incubation at varying 

times.  Cells were assessed for eGFP-polη foci by autofluorescence (green 

staining as shown in untreated and UV-treated cells is shown as in figure). Data 

represent the mean percent ± SD cells positive (>10) green foci per 300 Dapi 

positive cells from 3 independent experiments.  (B) U2OS cells were co-

transfected with siRNA for luc, FANCJ, or Rad18 and eGFP-polη and either 

collected for immunoblot with the indicated Abs or UV irradiated and assessed 

for eGFP-polη foci as in (A). Asterisk indicates significant difference (P< 0.05, 

unpaired t-test). 
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Figure 4-4. FANCJS990A promotes ICL resistance in a polη-dependent 
manner.   FA-J cells stably expressing vector, FANCJWT, or FANCJS990A were 
transfected with siRNA to luc or polη  (A) Expression of polη was determined by 
immunoblot with the indicated Abs (B) Toxicity of polη knockdown was 
determined in vector or FANCJS990A cells normalized to FANCJWT reconstituted 
cells (C) Stable FA-J cells were treated with MMC or (D) UV and allowed to grow 
for 5-8 days. The cells were then collected and counted to analyze percent 
growth. Data represent mean percent ± SD of growth from 3 independent 
experiments.  
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Figure 4-5. FANCJS990A depends on Rad18, but not Rev1 or Rad54 to 
promotes ICL resistance.  FA-J cells stably expressing vector, FANCJWT, or 
FANCJS990A were transfected with siRNA to luc, Rad18, Rev1, or Rad54 
incubated for 48h. (A) Cells were treated with the indicated doses of MMC and 
allowed to grow for 5-8 days. The cells were then collected and counted to 
analyze percent growth. Data represent mean percent ± SD of growth from 3 
independent experiments.  (B) Cells were collected and lysed for immunoblot 
with the indicated Abs. 
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Figure 4-6. FANCJS990A requires MLH1 binding to promote polη-dependent 
bypass.  (A) FA-J cells stably expressing vector, FANCJWT, FANCJS990A, or 
FANCJK141/142A were collected and immunoprecipitated with anti-FANCJ and 
blotted with the indicated Abs. (B) FA-J cells stably expressing vector, FANCJWT, 
FANCJS990A, FANCJK141/142A, or FANCJK141/142A/S990A were either collected for 
immunoblot with the indicated Abs or (C) treated with the indicated doses of 
MMC and allowed to grow for 5-8 days. The cells were then collected and 
counted to analyze percent growth. Data represent mean percent ± SD of growth 
from 3 independent experiments. (D) Model shown summarizes observations of 
this study.  FANCJ when uncoupled from BRCA1 promotes polη dependent TLS 
in a manner that requires MLH1 binding.  Dotted line to MMR is added as a 
discussion point.  To promote TLS, FANCJ could limit negative regulators of TLS, 
such a MMR. 
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Supplemental Figure S4-7. FANCJS990A similar to FANCJWT restores normal 

ICL response in FA-J cells.  (A) The FA-J cells expressing vector, FANCJWT, or 

FANCJS990A were plated at low density, treated with the indicated doses of MMC 

and allowed to grow for 8 days. Percent growth were assessed and data 

represent mean percent ± SD of growth from 3 independent experiments. (B) 

Stable FA-J cells were treated constitutively with 0.25ug/ml melphalan, collected 

at the indicated times, and analyzed by FACS to determine cell cycle distribution. 

(C) Proliferation rate were also determine. 

 

 

 

 

 

 

 



106 
 

Supplemental Figure S4--8. FANCJS990A, as compared to FANCJWT show 

similar cell cycle distribution in response to DNA damage.   (A) The FA-J 

cells expressing vector, FANCJWT, or FANCJS990A were treated with 12.5ug/ml 

zeocin, cells were collected 12hs later and analyzed by FACS to determine the 

cell cycle distribution.  Data represent mean ± SD for 3 independent experiments. 

(B) U2OS cells stably expressing vector, FANCJWT, or FANCJS990A were treated 

with UV or MMC and collected at the indicated time points and analyzed by 

FACS to determine the percentage of cells in G2/M. 
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Supplemental Figure S4-9. Exogenous FANCJ binds to similar levels of 
BRCA1 as endogenous FANCJ, and unlike over-expression of FANCJS990A, 
FANCJK52R over-expression resulted in MMC sensitivity.  (A) MCF7 cells un-
transfected or transfected with vector, FANCJWT, or FANCJS990A were 
immunoprecipitated with anti-FANCJ  or Myc respectively, and blotted with the 
indicated Abs. (B) U2OS or HeLa cells stably expressing vector, FANCJWT, 
FANCJS990A or FANCJK52R were treated with 500nM or 10nM MMC respectively.  
Cells were grown for 5-8 days, collected and counted to analyze percent survival. 
Data represent mean percent ± SD of growth from 3 independent experiments. 
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Supplemental Figure S4-10. Suppression of Rad18, Rev1, and Rad54 are not 
toxic to vector and FANCJS990A reconstituted FA-J cells.  FA-J cells stably 
expressing vector, FANCJWT, or FANCJS990A were transfected with siRNA to luc, 
Rad18, Rev1, or Rad54 incubated for 48h. Cells were allowed to grow for 5-8 
days, then collected and counted to analyze percent growth. Toxicity was 
calculated by dividing vector reconstituted or FANCJS990A reconstituted cells over 
FANCJWT reconstituted cells.  
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Supplemental Figure S4-11. FANCJS990A promotes UV resistance in polη-
dependent manner.  U2OS cells stably expressing vector, FANCJWT, or 
FANCJS990A were transfected with siRNA to Luc or polη and incubated for 24hrs.  
Cells were collected and lysed for immunoblot with the indicated Abs, or plated at 
low density, treated with UV, and allowed to grow for 5 days.  The cells were then 
collected and counted to analyze percent growth.  Data represent mean percent 
± SD of growth from 3 independent experiments. 
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Materials and methods 

Cell culture 

U2OS cells were cultured in Dulbecco’s modified Eagle medium (DMEM) 

supplemented with 10% fetal bovine serum and antibiotics. Stable cells were 

selected with 20mg/ml G418. FA-J (EUFA30-F) fibroblasts were cultured in 

DMEM supplemented with 15% fetal bovine serum and antibiotics. FA-J cells 

were infected with pOZ vectors and selected as before (Peng et al., 2007).   

 

Cell growth and G2/M accumulation assays 

U2OS cells were transfected using Fugene or Lipofectamine for co-transfection 

with siRNA.  Reagents for siRNA for polη, Rev1, Rad18, Rad54, and luciferase 

(luc) were obtained from Dharmacon.  The FANCJ siRNA reagent was described 

previously (Litman et al., 2005). At 24 h after transfection, cells were seeded into 

6-well plates at 1,500-3,000 U2OS cells/well.  Stable FA-J cells infected with pOZ 

(Peng et al., 2007) vectors were seeded into 6-well plates at 8,000 cells /well.  

Seeded cells were incubated overnight and left untreated or treated with MMC 

(Sigma) for 1 h, UV (Stratalinker), cisplatin (Sigma) for 4h, and zeocin (Invitrogen) 

for 1h. Cells were counted after 5-8 days using a hemocytometer.  Percent 

growth was calculated as (treated cells/untreated cells) X 100.  G2/M 

accumulation was assayed as described (Litman et al., 2005), but at 0.25μg/ml 

melphalan. 
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Immunoprecipitation, Western blot, and antibodies  

Cells were harvested and prepared for immunoprecipitation and Western blot as 

described (Litman et al., 2005). Immunoprecipitation Abs included FANCJ (E67) 

or Myc (9e10). Antibodies for Western blot analysis included BRCA1 (ms110) 

and FANCJ monoclonal (2G7 and 2C10) (Cantor et al., 2001) or polyclonal E67 

(Cantor et al., 2004). Additionally, β-actin (Sigma), Rad18 (Santa cruz), Rev1 (H-

300, Santa cruz), polη (Abcam), and Rad54 (Abcam) Abs were used.  

 

DNA constructs 

The FANCJWT, FANCJK52R, FANCJK141/142A and FANCJS990A pCDNA-3myc-6xhis 

and pOZ vectors have been described previously (Cantor et al., 2001; Peng et al., 

2007).  The eGFP-polη construct was described previously (Kannouche et al., 

2001). The FANCJK141/142AS990A pOZ vector was generated with the QuickChange 

Site-Directed Mutagenesis kit (Stratagene) using our published primers (Cantor 

et al., 2001; Peng et al., 2007). 

 

Immunofluorescence  

FA-

incubated 12h and processed for immunoflourescence as described (Cantor et 

al., 2001). Antibodies included RAD51 (Santa Cruz 1:200) and γ-H2AX (Upstate 

1:500). Visualization of eGFP-polη foci was as described (Kannouche et al., 

2001). In brief, U2OS cells were transfected with eGFP-polη, incubated for 
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overnight, seeded on cover slips, incubated overnight, and treated for 4 h with 

UV or for 24 h and 48 h with 250nM MMC.  Foci counting experiments were 

conducted blind to the counter and in triplicate as the number of cells with 10 or 

more foci.  

 

Homologous recombination  

U2OS pDR-GFP cells were obtained from Maria Jasin (Pierce et al., 1999) and 

1.8 X 105 cells were seeded per well in 6-well plates and incubated overnight.  

The cells were transfected with 0.5μg of pCDNA3, FANCJWT, FANCJS990A, or 

FANCJK52R -Sce1 using Fugene.  Transfected cells were 

incubated for 72 h, collected by trypsinization, and analyzed by FACS.  The 

percentage of green positive cells was calculated using Flow Jo software.  
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CHAPTER V 

 

FINAL THOUGHTS AND FUTURE DIRECTIONS 

 

Due to the constant threat to the DNA posed by environmental 

carcinogens and metabolic byproducts, DDR genes are extremely important for 

maintaining the genomic integrity.  Not surprisingly, mutations in DDR genes are 

associated with persistent DNA damage and cancer predisposition.  For example, 

mutations in the DDR gene, FANCJ, are associated with various types of cancers.  

FANCJ directly associates with other DDR genes including BRCA1 and MLH1.  

Both genes pose critical functions in the DDR pathway, thus, I sought to further 

characterize the functional relevance of FANCJ/BRCA1 and FANCJ/MLH1 

interactions in DDR.        

In this thesis work, I have described several new FANCJ functions.  First, I 

have demonstrated that FANCJ interacts with the MutLα complex heterodimer, 

which is composed of MLH1 and PMS2.   FANCJ directly interacts with MLH1 

independent of BRCA1, and PMS2 functions to stabilize this interaction (Figure 

2-3 and 2-4).  This interaction is facilitated by lysines 141 and 142 within the 

helicase domain on FANCJ, C-terminal to the nucleotide binding box 1.  

Importantly, the interaction between FANCJ and MLH1 is critical for ICL repair 

(Table 1).  Second, I discovered an HNPCC associated-MLH1 mutation, 

MLH1L607H that is intact for mismatch repair, but lacks the FANCJ interaction.  
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Cells defective in the FANCJ/MLH1 interaction can initiate mismatch processing, 

checkpoint activation, and cell death; however, the progression of these events 

appears to be delayed.  Third, I have demonstrated that FANCJ promotes error-

prone bypass of ICLs when uncoupled from BRCA1.  Specifically, cells 

expressing the BRCA1-interaction defective mutant, FANCJS990A are sensitive to 

DSBs and have reduced Rad51-based HR (Table 5-1).   Resistance to UV and 

ICLs requires the post-replicative repair (PRR) pathway, including Rad18 and 

TLS polymerase, Polη (Table 5-1).   In addition, the MLH1 and BRCA1 binding 

defective FANCJ is sensitivity to MMC, suggesting that the interaction of MLH1 is 

required for FANCJS990A to promote Polη dependent TLS (Table 5-1 and Figure 

5-1).  Taken together my data suggests that FANCJ functions in multiple repair 

pathways and its interaction with BRCA1 is critical for regulating the DDR (Figure 

5-1).  These observations further our understanding of the significance of FANCJ 

in genome maintenance and tumor suppression. 

 

Table 5-1.  Characterization of FANCJ mutants.  

 

MMC 
sensitivity HR Assay Rad51 foci UV sensitivity Polη foci 

Vector 
Hyper 

sensitivity Normal Reduced Sensitive Normal 

WT Normal Normal Normal Sensitive Normal 

S990A Normal Reduced Reduced Resistance Increased 

K141/142A 
Hyper 

sensitivity NA NA NA NA 

S990A/K141/142A 
Hyper 

sensitivity NA NA NA NA 
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The FANCJ/MLH1 complex plays a critical role in ICL response, but the 

specific function remains unclear.  The requirement of this interaction is 

demonstrated by the finding that cells expressing FANCJK141/142A are sensitive to 

ICL agents and have a prolonged G2/M accumulation.  In addition, the MLH607 

mutant selectively generates sensitivity to ICLs as compared to cells that lack 

MLH1 or express wild-type MLH1.  What’s more, expression of a peptide that 

disrupts the FANCJ/MLH1 interaction enhances the sensitivity of cells to ICLs.  

Evidence is also accumulating that MMR proteins function in the ICL 

response.  In particular, MMR proteins have been shown to act as sensors to find 

DNA damage, recruit ATR, and activate checkpoint responses (Yoshioka et al., 

2006).  This MMR function is most clear in response to methylated DNA, as 

opposed to ICLs.  In support of the possibility that MMR proteins sense ICLs, 

MutSβ has been shown to bind ICLs in vitro (Duckett et al., 1996; Yamada et al., 

1997; Zhang et al., 2002).  Likewise, my data implicate that FANCJ facilitates 

MMR binding to methylated DNA, with less affect on MMR following ICLs.  One 

possibility is that FANCJ unwinding or translocating on the DNA could serve to 

drive the accumulation of a robust MMR complex.  Here, migration of MMR away 

from the O6-MeG lesion is critical so that new MMR proteins can load and repair 

can commence.  In contrast, when a fork is blocked at an ICL, a MMR complex 

may not be required for repair.  Instead, MMR could direct repair choice and/or 

regulate the fidelity of repair. Here, the FANCJ enzyme activity could be required 

to facilitate these processes and/or displace MMR so that replication can resume. 
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In future experiments, it will be important to address whether FANCJ can strip 

MMR proteins as it was shown to strip Rad51 from DNA (Sommers et al., 2009). 

It will also be critical to analyze how MMR proteins respond to ICLs in FA-J cells 

or in FA-J cells expressing FANCJWT, FANCJK141/142A, and FANCJK52R proteins.   

How could cancer evolve from delayed MMR-signaling?  Given that all 

patients with the MLH1L607H are characterized as microsatellite stable (MSS) and 

have normal MMR function, suggest that the mechanism of tumorgenesis is 

unique compared to other HNPCC associated MLH1 mutations.  The MLH1L607H 

is not the only MLH1 mutant with unique mechanism of tumorgenesis, the 

sporadic colorectal cancer associated MLH1D132H mutant have normal MMR and 

very low MSI (Lipkin et al., 2004).  Lipikin et al. based on structural analysis, 

predicted that the MLH1D132H mutant will attenuate ATPase activity but not 

eliminated thus the MMR complex is trapped in a transition state due to defect in 

ATP hydrolysis.  The predicted defect of the MLH1D132H mutant, suggests that 

cells expressing this mutant protein in response to DNA methylating agents may 

also have a defect in cell cycle signaling such as prolonged checkpoint activation.  

Most HNPCC patients are characterized and defined by the microsatellite 

instability (MSI) and MMR defective, thus patients with MLH1 mutations such as 

MLH1L607H could be under represented due to their unique phenotypes.     

Although MMR is highly conserved from E.coli to humans, the requirement 

of a helicase for mammalian MMR has not been demonstrated.  Mammalian 

MMR proteins directly associate with multiple helicases including, WRN, BLM 
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and FANCJ.  WRN interacts with MMR complexes including, MutSα, MutSβ, and 

MutLα (Saydam et al., 2007).  The MutSα complex stimulates WRN helicase 

activity on forked structures with a 3’-singled-stranded arm (Saydam et al., 2007).  

In addition, the MutSα complex also enhances the unwinding activity of WRN in 

the presence of G:T mismatch in the DNA duplex ahead of the fork (Saydam et 

al., 2007). BLM like FANCJ also directly associates with MLH1 (Pedrazzi et al., 

2001).  The interaction of all three helicases with MMR proteins were 

characterized as unimportant for MMR, but since mammalian DDR is more 

complicated compared to E.coli there could be a functional redundancy.  WRN, 

BLM and FANCJ should be suppressed simultaneously to avoid functional 

redundancy thus to determine if helicases are required for the mammalian MMR 

pathway. 

FANCJ likely has a complicated role in ICL repair regulated by its binding 

with BRCA1, it promotes error-free repair and suppresses error-prone bypass 

when bound to BRCA1.  As indicated by our results, when unbound to BRCA1, 

FANCJ promotes Pol η dependent TLS.  Pol η is one of the most well 

characterized TLS polymerases in mammalian cells due to its association with 

the cancer-prone syndrome known as xeroderma pigmentosum variant (XPV).  

XPV patients have increased incidence of skin cancer due to increased mutation 

frequency caused by sunlight exposure.  Sunlight is a natural source of UV 

damage which can be bypassed by Pol η in a relatively error-free manner, thus in 

the absence of polymerase η other TLS polymerases may bypass UV lesions in 
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an error-prone manner (Johnson et al., 1999; Waters et al., 2009).  In contrast to 

UV lesion bypass, the bypass of ICLs by Pol η is error prone (Zheng et al., 2003).  

To further confirm that FANCJS990A expressing cells are promoting TLS bypass of 

ICLs compared to the FANCJWT expressing cells, mutation frequencies should be 

measured using the SupF mutagenesis assay.  Compared to FANCJWT 

expressing cells, FANCJS990A expressing cells should have a higher ICL induced 

mutation frequency and lower UV induced mutation frequency.   

How FANCJ promotes Pol η dependent TLS is still a question.  Pol η 

directly interacts with PCNA through the C-terminal PCNA-binding motif (PIP 

box), and this interaction is enhanced by the monoubiquitination of PCNA 

(Kannouche et al., 2004).  Although PCNA in not required for the localization of 

Pol η to stalled replication forks but, it is required for the accumulation of Pol η 

foci in response to DNA damage (Nikolaishvili-Feinberg et al., 2008).  In addition 

to PCNA, Pol η also interacts with Rad18 which functions upstream of PCNA, 

thus in its absence, PCNA does not get monoubiquitinated (Watanabe et al., 

2004).  Our data indicate that when FANCJ is suppressed, Pol η foci 

accumulation in response to UV is greatly reduced similar to Rad18 suppression.  

This suggested that FANCJ functions upstream of Pol η similar to Rad18 and 

PCNA.  Whether FANCJS990A affects PCNA monoubiquitination or interaction with 

Rad18 remains to be determined.  

The FANCJS990AK141/142A expressing cells are sensitive to ICL inducing 

agents compared to the FANCJS990A expressing cells (Table 5-1).  How is MLH1 
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interaction contributing to the ability of FANCJS990A to promote TLS bypass.  Pol 

η is among the lowest fidelity DNA polymerases on undamaged DNA and its 

bypass of most DNA lesions is mutagenic (Avkin and Livneh, 2002; de Padula et 

al., 2004; Kozmin et al., 2003; Lee and Pfeifer, 2008; Matsuda et al., 2000; 

Prakash et al., 2005).  While MMR proteins repair nucleotide misincorporations 

by normal replicative polymerases, they also recognize nucleotide 

misincorporations induced by TLS, resulting in either removal or activation of 

apoptosis (Wang et al., 1999; Young et al., 2004).  As such, cells deficient in a 

TLS polymerase, Rev3 dies of massive apoptosis (Van Sloun PP, 2002).  This 

apoptosis is alleviated by MMR deficiency, suggesting that MMR proteins are 

critical for TLS associated apoptosis activation.  BRCA1 mutant cells are 

resistant to DNA the methylating agent, 6-TG and are defective in 6-TG induced 

cell cycle activation (Yamane et al., 2007).  All together, these data suggest that 

FANCJS990A may function to strip MMR proteins from TLS induced DNA 

mismatches thus blocking apoptosis activation.  FANCJS990AK141/142A expressing 

cells lack the interaction with MMR proteins thus FANCJ is unable to strip MMR 

proteins resulting in apoptosis activation.  Although FANCJS990AK141/142A 

expressing cells bypass ICLs, but eventually die from MMR dependent TLS 

associated apoptosis. 

In conclusion, the work presented in this thesis demonstrated a new 

mechanism of tumorgenesis by FANCJ that is regulated by its interactions with 

different partners (Figure 5-1).   Thus, cancers associated with mutations in 
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BRCA1, FANCJ or MLH1 could be due to multiple mechanisms including loss of 

HR, loss of MMR, loss of checkpoint control, and gain of TLS.  These new 

findings raise the need to develop more cancer screens to determine the 

mechanism of tumorgenesis and more specific cancer therapies that will target 

the needs of each patient.  It is our hope that the work presented in this thesis 

has promoted further understanding of tumor development and treatment.      

 

Figure 5-1.  FANCJ functions in multiple repair pathways and its interaction 
with BRCA1 is critical for regulating the DDR.  FANCJ when bounded to 
BRCA1 promotes Rad51 dependent homologous recombination (HR) repair.  
However, FANCJ when uncoupled from BRCA1 promotes Polη dependent TLS 
which is regulated by PCNA monoubiqutination.  The ability of FANCJ to promote 
both HR and TLS requires its interaction with the MutLα heterodimer.  The choice 
between HR and TLS can be disrupted by the over-expression unbound FANCJ, 
which blocks HR and promotes TLS.         
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APPENDIX 
 

In mammalian cells, 80 percent of FANCJ is unbound to BRCA1, thus 

raising the question of how is the “free” FANCJ regulated (Appendix Figure 1).  

Human TLS polymerase POLQ which contains tandem helicase and polymerase 

domains functions to remove the lagging strand at the replication fork providing a 

loading site for other TLS polymerase (Seki et al., 2003).  FANCJ may also 

promote the loading of Pol η by removing unwanted DNA or proteins from the 

replication fork.  The helicase activity of FANCJ could be important to remove 

proteins, based on the finding that FANCJK52R expressing cells are sensitive to 

ICL inducing agents.  Regulation of FANCJ helicase activity could prevent 

unwanted promotion of TLS.  Helicase activity of a protein can be regulated on 

multiple levels including protein interactions and posttranslational modifications.  

The contributions of BRCA1 or MLH1 interaction to FANCJ’s helicase activity 

need to be further investigated.  There are multiple types of posttranslational 

modifications such as, phosphorylation, ubiquitination, sumolytion and acetylation.  

All of these modifications affect protein functions, interestingly; acetylation has 

been shown to affect the activity of many helicases including WRN and MCM.  In 

addition, BRCA1 has been shown to associate with the acetyltransferase 

CBP/p300 and the deacetylase HDAC1 and HDAC2.   These interactions also 

occur at the BRCT domain of BRCA1.  All together, evidences suggested that 

FANCJ may be acetylated and this process could be facilitated by the BRCA1 

interaction. 
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The ability for FANCJ to get acetylated was investigated using in vivo and 

in vitro assays.  First, myc tagged FANCJ was co-transfected with increasing 

dose of CBP into 293T cell, FANCJ was immunoprecipitated with anti-myc 

antibody and immunoblotted with anti-AcK antibody (A).  We found that FANCJ 

was acetylated in a CBP dose dependent manner (Appendix Figure 2A).  Next, in 

vitro acetylation assays were performed by incubating the recombinant histone 

acetyltransferease (HAT) domains of p300 with the recombinant C-terminal 

domain of FANCJ in the presence of 3H-acetyl-CoA.  Recombinant C-terminal 

domain of p53 was also included as a positive control.  The product of the 

reactions were separated by SDS-PAGE and analyzed by autoradiography.   

Results indicated that FANCJ is acetylated and this acetylation occurred within 

the C-terminal domain of FANCJ (Appendix Figure 2B).  To more precisely map 

the domain of FANCJ acetylation, myc tagged FANCJ C-terminal truncation 

mutants were co-transfected with CBP into 293T cells.  The nucleotides 1239 

to1249 appear to be important for FANCJ acetylation (Appendix Figure 2C).  

Acetylations  usually occur on lysine (K) residues, there are three lysines 

between nucleotide 1239 and 1249.  All three lysine were mutated to arginine (R) 

individually using quick change and subsequently co-transfected with CBP into 

293T cells.  K1249 appears to be the dominate site for FANCJ acetylation 

(Appendix Figure 2C).     

To determine the effect of acetylation status on the function of FANCJ, in 

addition to being mutated to R, K1249 was also mutated to glutamine (Q) which 
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structurally resembles the acetylated state.  FANCJ null cells were reconstituted 

with vector, FANCJWT, FANCJK1249R or FANCJK1249Q and expression was 

confirmed by Western blot (Appendix Figure 3A).  Acetylation modification has 

been shown to also affect protein localization, so reconstituted cell lines were 

plated, damaged with MMC and stained with FANCJ and BRCA1.  Compared to 

FANCJWT reconstituted cells, the co-localization of FANCJ and BRCA1 in 

response to DNA damage in FANCJK1249R or FANCJK1249Q reconstituted cells was 

similar (Appendix Figure 3B).  Next, reconstituted cell lines were treated with 

MMC or melphalan and measure for survival or G2/M acculumation.   Compared 

to vector reconstituted cells, FANCJWT, FANCJK1249R or FANCJK1249Q 

reconstituted cells were all able to rescue the ICL sensitivity and the ICL induced 

prolonged G2/M accumulation of the FANCJ null cells (Appendix Figure 3C and 

D).  This resulted suggested that despite the acetylation status of FANCJ, it is 

still able to resolve ICLs as efficiently as the FANCJWT.   We know that FANCJ 

can process ICLs either by HR or TLS as indicated by the function of FANCJS990A 

thus; we treated reconstituted cells with different DNA damage agents to 

determine the effect of FANCJ acetylation on repair choice.  Similar to 

FANCJS990A, FANCJK1249R also promotes Pol η dependent TLS bypass as 

indicated by the UV and MMC sensitivity (Appendix Figure 4A and C).  In 

contrast, FANCJK1249Q promotes exclusively Rad54 dependent HR repair as 

indicated by Zeocin and MMC sensitivity (Appendix Figure 4B and C).   Overall, 

these data indicated that the acetylation modification of FANCJ appears to be 
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another level of regulation in addition to BRCA1 binding in the choice between 

HR and TLS.  Endogenous acetylation of FANCJ and the contribution of BRCA1 

to FANCJ acetylation still require further investigation.   
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Appendix Figure 1. 80% of mammalian FANCJ is unbound to BRCA1.  A) 
Schematic representation of the epitope of FANCJ antibodies E87 and E67.  Due 
to the epitope specificity of E87, it only immunoprecipitates FANCJ that is 
unbounded to BRCA1.  B) Lysates from U2OS cells were immunoprecipitated 
with E87 antibody followed by E67, and blotted with the indicated Abs. Percent of 
bounded and unbounded FANCJ were graphed in a bar graph.      
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Appendix Figure 2.  FANCJ is modification by acetylation on lysine 1249.  A) 
FANCJ were co-transfected into 293T cells with varies concentrations of CBP.   
FANCJ were imminopricipitated from the lysates were with the Myc Ab and 
blotted with the indicated Abs.  B) Recombinate GST tagged FANCJ-CT (888-
1249) were incubated with the recombinate histone acetyltransferease (HAT) 
domains of p300 in the presence of 3H-acetyl-CoA.  Recombinant GST tagged 
p53-CT and empty vector was also included as a controls.  The product of the 
reactions were separated by SDS-PAGE and analyzed by autoradiography.  C) 
Varies mutant constructs of FANCJ were co-transfected with CBP into 293T cells. 
FANCJ were imminopricipitated from the lysates were with the Myc Ab and 
blotted with the indicated Abs.    
 

 

 

 



127 
 

 

Appendix Figure 3.  Hyper and Hypo acetylated FANCJ both correct the MMC 
sensitivity and cell cycle defect of FA-J cells. A) FANCJ-null FA-J cells were 
reconsituted with vector, FANCJWT, FANCJK1249R, and FANCJK1249Q, lysates were 
analyzed by immunoblot with the indicated Abs. B) Stable FA-J cells were 
treated with 50nM of MMC and stained with the indicated Abs. C) Stable FA-J 
cells were treated with increasing dose of MMC, and allowed to grow for 8 days.  
The cells were collected and counted to analyze percent growth.  Data represent 

mean percent ± SD of growth from 3 independent experiments. D)  Stable FA-J 

cells were treated with 0.25ug/ml melphalan, collected at the indicated times, and 
analyzed by FACS to determine the percentage of cells in G2/M.  Data represent 

mean percent ± SD 3 from 3 independent experiments. 
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Appendix Figure 4.  Hyper-acetylated FANCJ promotes Pol η dependent 

bypass, whereas hypo-acetylated FANCJ promotes Rad54 dependent 
repair.  A) FANCJ cells stably expressing vector, FANCJWT, FANCJK1249R, and 

FANCJK1249Q were transfected with siRNA to Luc, Pol η, and Rad54.  Cells were 

treated with A) UV, B) Zeocin or C) MMC and allowed to grow for 5-8 days.  The 
cells were then collected and counted to analyze percent growth.  Data represent 

mean percent ± SD of growth from 3 independent experiments. 
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