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ABSTRACT  

 

BK channels are well studied targets of acute ethanol action.  They play a 

prominent role in neuronal excitability and have been shown to play a significant 

role in behavioral ethanol tolerance in invertebrates. The focus of my work 

centers on the effects of alcohol on the BK channel and comprises studies that 

examine how subcellular location affects acute ethanol sensitivity and how 

duration of acute alcohol exposure impacts the development of rapid tolerance.  

My results also provide potential mechanisms which underlie acute sensitivity 

and rapid tolerance.   

 

I first explore BK channel sensitivity to ethanol in the three compartments 

(dendrite, cell body, and nerve terminal) of magnocellular neurons in the rat 

hypothalamic-neurohypophysial (HNS) system.  The HNS system provides a 

particularly powerful preparation in which to study the distribution and regional 

properties of ion channel proteins because the cell bodies are physically 

separated from the nerve terminals. Using electrophysiological and 

immunohistochemical techniques I characterize the BK channel in each of the 

three primary compartments and find that dendritic BK channels, similar to 

somatic channels, but in contrast to nerve terminal channels, are insensitive to 

alcohol.  Furthermore, the gating kinetics, calcium sensitivity, and iberiotoxin 

sensitivity of channels in the dendrite are similar to somatic channels but sharply 

contrast terminal channels.  The biophysical and pharmacological properties of 
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somatodendritic vs. nerve terminal channels are consistent with the 

characteristics of exogenously expressed αβ1 vs. αβ4 channels, respectively. 

Therefore, one possible explanation for my findings is a selective distribution of 

β1 subunits to the somatodendritic compartment and β4 subunits to the terminal 

compartment. This hypothesis is supported immunohistochemically by the 

appearance of distinct punctate β1 or β4 channel clusters in the membrane of 

somatodendritic or nerve terminal compartments, respectively. In conclusion, I 

found that alcohol sensitivity of BK channels within the HNS system is dependent 

on subcellular location and postulate that β-subunits modulate ethanol sensitivity 

of HNS BK channels. 

 

In the second and primary focus of my thesis I explore tolerance development in 

the striatum, a brain region heavily implicated in addiction.  Numerous studies 

have demonstrated that duration of drug exposure influences tolerance 

development and drug dependence. To further elucidate the mechanisms 

underlying behavioral tolerance I examined if BK channel tolerance was 

dependent on duration of alcohol exposure using patch clamp techniques in 

cultured striatal neurons from P8 rats. I found that  persistence of rapid tolerance 

is indeed a function of exposure time and find it lasts surprisingly long. For 

example, after a 6 hr exposure to 20 mM ethanol, acute sensitivity was still 

suppressed at 24 hrs withdrawal. However, after a 1 or 3 hr exposure period, 

sensitivity had returned after only 4 hrs. I also found that during withdrawal from 

a 6 hr but not a 3 hr exposure the biophysical properties of BK channels change 
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and that this change is correlated with an increase in mRNA levels of the alcohol 

insensitive STREX splice variant.  Furthermore, BK channel properties during 

withdrawal from a 6 hr exposure to alcohol closely parallel the properties of 

STREX channels exogenously expressed in HEK293 cells.  In conclusion I have 

established that BK channels develop rapid tolerance in striatal neurons, that 

rapid tolerance is dependent upon exposure protocol, and is surprisingly 

persistent. These findings present another mechanism underlying BK channel 

tolerance and possibly behavioral tolerance.  Since these phenomena are 

dependent on duration of drug exposure my results may find relevance in 

explaining how drinking patterns impact the development of alcohol dependence 

in humans. 
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INTRODUCTION 

Alcohol Addiction and Acquired Tolerance  

Alcohol addiction is a major socioeconomic and public health concern 

affecting millions of people worldwide.  Acquired tolerance has long been 

implicated as one of the defining characteristics of alcohol dependence by either 

permitting or causing increased levels of alcohol consumption (Kalant, 1998).  

Acquired functional tolerance refers to the physiological neuroadaptations that 

decrease the sensitivity of the central nervous system to the effects of alcohol.  

These physiological neuroadaptations are the result of a complex interaction of 

pharmacological, environmental, and behavioral factors (Suwaki et al., 

2001;Bitran and Kalant, 1991). The mechanisms underlying these 

neuroadaptations are fundamental to our understanding of addiction.  

  

There are multiple classes of tolerance that develop depending on the duration 

and pattern of exposure to the drug (Kalant, 1998). Behaviorally, tolerance can 

be classified as acute, rapid, or chronic.  Acute tolerance refers to a decrease in 

impairment within a single session of alcohol exposure on the descending limb of 

the blood alcohol level (BAL) curve when the same BAL on the ascending limb 

produces noticeable impairment (LeBlanc et al., 1975).  Rapid tolerance, on the 

other hand, refers to a reduced response to a second dose of alcohol 

administered 8-24 hrs after a first dose of alcohol (Bitran and Kalant, 1991).  

Lastly, chronic tolerance describes reduced effects of alcohol after multiple 
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drinking sessions. Tolerance to drugs can be produced by several different 

mechanisms and many studies have sought to identify the cellular targets 

underlying behavioral tolerance. Here, we focus on large conductance calcium-

activated potassium (BK) channels because of their well known role in shaping 

action potentials and their well documented responsiveness to acute alcohol 

(Dopico et al., 1999a;Dopico et al., 1998;Dopico et al., 1996)Feinberg-Zadek, 

2007, 2008;(Benhassine and Berger, 2008;Matthews et al., 2008). 

 

Large Conductance Calcium-Activated Potassium Channels  

 Large conductance calcium-activated potassium (BK) channels are 

activated both by membrane depolarization and intracellular calcium levels.  

They are characterized by their large conductance, >200 pS, and selectivity for 

potassium.  BK channels are comprised of 4 α subunits translated from a single 

gene KCNMA1 or Slo. The gene name Slo, short for Slowpoke, was derived from 

the lethargic phenotype observed when BK currents were eliminated in the flight 

muscles of Drosophila melanogaster (Elkins et al., 1986).  

 

Each α subunit has seven transmembrane domains, SO-S6, which form the pore 

of the channel and a large C-terminal tail, S7-S10 (Figure 1). Each of these 

domains have specialized functions.  The SO domain allows the α subunit to 

associate with auxiliary β subunits (Wallner et al., 1996).  The S2-S4 segment of 

the α subunit contains a series of arginine residues which comprise the voltage 
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sensor while the distal portion of the C-terminal tail contains the calcium bowl 

and two regions called regulators of conductance of K+ domain (RCK) (Bao et 

al., 2004;Bao et al., 2002).  The RCK domains contain multiple sites selective for 

calcium and other divalent cations such as magnesium.   Interestingly, the large 

C-terminal tail exceeds the length of the membrane-spanning domains, a feature 

unique to channels within the Slo family (Salkoff et al., 2006).   

 

 

Figure 1. Schematic of BK channel structure.  Seven transmembrane 

domains, S0-S6, form the pore of the channel.  The functions of the domains are 

indicated with black boxes.  The C-terminal tail containing S7-S10 contain the 

calcium sensing regions of the BK channel.  An auxiliary β subunit containing two 

transmembrane domains is shown in green.  Of the four β subunits only β2 and 

β3 have an inactivating particle.  Adapted from Orio et al., 2002. 
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Physiological Role of BK Channels 

 Large conductance calcium activated potassium (BK) channels play a 

prominent role in cellular excitability from repolarizing neuronal action potentials 

to modulating contractility in vasculature (Liu et al., 2004;Fernandez-Fernandez 

et al., 2004;Toro et al., 1998).  They are found ubiquitously throughout the brain 

and are highly conserved in mammals (Toro et al., 1998).  BK channels are 

activated by both cell membrane depolarization and increases in intracellular 

calcium (Ghatta et al., 2006), allowing them to integrate intracellular calcium 

levels and membrane voltage.  The importance of BK channel regulation 

including its expression and biophysical properties has been highlighted in 

numerous studies.  Underscoring the role of BK channels in neuronal excitability, 

missense mutations of the Slo gene in humans causes generalized epilepsy (Du 

et al., 2005). Similarly, knockout of the auxiliary BK-β4 subunit in mice also 

causes an epileptic phenotype (Brenner et al., 2005).  Illustrating their ubiquitous 

role throughout the body, mouse Slo knockout strains exhibit a variety of 

abnormal phenotypes including ataxia, hearing loss, vascular hypertension, 

overactive bladder function and erectile dysfunction (Sausbier et al., 

2004;Ruttiger et al., 2004;Sausbier et al., 2005;Thorneloe et al., 2005;Werner et 

al., 2005;Brown et al., 2008).  
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Methods to Examine the Biophysical Properties of BK Channels 

 Ion channels are often studied by measuring the ion flow or current 

through the channel pore (Hamill et al., 1981).  This is done using a variety of 

patch clamp techniques which involve forming a high resistance gigaohm seal 

between the lipid membrane of a cell and a heat polished glass pipette.  This 

seal allows one to record the activity of the channel.  Three patch clamp 

techniques are utilized to measure the current flow through single channels.   

 

The first technique is cell-attached patch clamp, in which you record channel 

activity directly after forming a gigaohm seal with the cellular membrane.  This 

allows one to record the activity of channels in the patch of membrane at the tip 

of the pipette while keeping the intracellular environment of the cell intact.  This 

technique is particularly useful to determine the effects of drugs without 

disrupting the cell.   

 

The second technique is called inside-out patch clamp.  To perform this 

technique after the gigaohm seal is formed, the recording pipette is lifted away 

from the cell, ripping off the patch.  In this scenario, the lipid membrane 

containing the channel or channels remains at the tip of the pipette with any 

associated proteins, like phosphatases or kinases, and channel activity 

subsequently recorded (Franciolini, 1986).  The inside-out patch derives it name 

from the fact that when the patch is ripped off the intracellular surface of the 
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channel is exposed to the outside.  With respect to BK channels this technique 

allows one to assess, for example, the calcium sensitivity of the channel by 

perfusing the intracellular side of the channel (where the calcium sensing 

domains reside) with a series of solutions containing different calcium 

concentrations.    

 

The third technique is called outside-out patch clamp.  In this technique, after the 

seal is formed the patch is ruptured by applying negative pressure through the 

pipette, usually by aspiration.  After rupturing the patch the pipette is excised 

from the cell. The lipid membrane reforms at the tip of the pipette such that the 

extracellular or outside surface of the ion channel is exposed to the outside of the 

pipette.  Again with respect to BK channels this technique is particularly useful to 

assess the effects of channel blockers, for example, which are known to bind to 

the extracellular side of the channel.   

 

While the techniques I’ve described above are useful to examine single channel 

currents there are also methods to examine the current flowing through an entire 

population of channels called the macroscopic current.  Macroscopic currents are 

recorded using conventional whole-cell patch clamp.  This technique is 

performed by rupturing the patch of membrane under the pipette (as in outside-

out patch clamp) after the gigaohm seal is formed.  This provides electrical 
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continuity between the pipette and the inside of the cell thereby allowing one to 

measure the current flowing through an entire population of channels.  

  

Using a combination of the aforementioned techniques the properties of BK 

channels, including calcium and voltage sensitivity, gating kinetics, and 

pharmacological attributes such as alcohol sensitivity, have been shown to vary 

significantly between tissues, neighboring cells, and even subcellular 

compartments.  From exogenous expression studies we now know that these 

physiological differences are partially due to two post-transcriptional 

mechanisms; (1) pre-mRNA splicing of the α subunit and (2) functional 

association with regulatory β subunits.       

 

Pre-mRNA Splicing of BK α Subunits 

The α subunit can undergo significant pre-mRNA splicing to yield a 

diverse complement of BK channel isoforms that differ in their functional 

properties, tissue distribution, and regulation by intracellular signaling cascades. 

The majority of alternative α splice sites reside in the large C-terminal tail (Figure 

2)(Xia et al., 2002;Krishnamoorthy et al., 2005).  Of these isoforms STREX, short 

for stress axis hormone-regulated exon, and Insertless, also called ZERO have 

been the most extensively studied.  The STREX variant contains a 59 amino acid 

insert at the X4 splice site.  This amino acid insert contains an additional protein 

kinase A (PKA) phosphorylation site (designated (P) in the figure below) which 
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has been shown to alter the channels response to PKA activators (Tian et al., 

2001).  Insertless, on the other hand, lacks an insertion at the X4 splice site (Xie 

and McCobb, 1998).  Recently, P27 also called ALCOREX has been identified 

which contains a 27 amino acid insert at the X6 splice site (Ha et al., 2000).  P27 

was coined the name ALCOREX because of its extreme sensitivity to alcohol 

(Pietrzykowski et al., 2008). 

 

Figure 2. Schematic diagram of splice sites within the BK α protein 

structure. Splice sites are designated X1-X6. Adapted from Pietrzykowski et al., 

2008. 
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Distribution of BK α Splice Site Variants 

 BK α mRNA is expressed in almost every tissue except heart atrium, 

ventricle, and septum (Behrens et al., 2000). BK channels in native tissues 

display a physiologically diverse array of phenotypes. To date, three isoforms 

have been described in neuronal tissues, Insertless, STREX, and P27 (Saito et 

al., 1997;Xie and McCobb, 1998;Ha et al., 2000;Pietrzykowski et al., 2008).  In 

mouse brain the Insertless isoform, also referred to as ZERO, is the predominant 

variant, accounting for more than 90% of total BK mRNA while the remaining 

10% is comprised mostly of STREX mRNA (Chen et al., 2005).  Additionally, in 

situ hybridization experiments performed on sections of mouse brain reveal 

STREX mRNA is detected in adult neurons particularly in the hippocampus, 

cerebellum, and olfactory bulb (Petrik and Brenner, 2007).  Furthermore, RT-

PCR experiments reveal P27 mRNA in the hippocampus, cortex, cerebellum, mid 

brain, and brain stem (Ha et al., 2000).   

 

Effects of Alcohol on Neuronal BK α Splice Site Variants   

 Slo variants are differentially sensitive to alcohol. The majority of slo 

channels are dose dependently activated by alcohol.  The exceptions include 

bovine slo which is inhibited by alcohol (Liu et al., 2006) and STREX which is 

insensitive to ethanol (Figure 3A).  Furthermore, our lab has also shown that 

between the ethanol sensitive variants, Insertless and P27 (ALCOREX), the 

degree of alcohol-induced potentiation can vary (Figure 3B).  Additionally, splice 
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site variation appears to modulate the rate at which acute alcohol tolerance 

develops.  Acute alcohol tolerance refers to a reduced effect of a drug within a 

single exposure to ethanol.  With respect to BK channels, acute tolerance means 

a reduction in alcohol-induced potentiation within a single dose of ethanol.  In the 

figure below, in the presence of 50 mM EtOH channel activity of the Insertless 

isoform increases, however, after 6 minutes of alcohol exposure channel activity 

returns to baseline.  P27 (ALCOREX), on the other hand, takes 10 minutes to 

return to baseline (Figure 3B).  

 

Figure 3. Differential response of α splice variants to acute ethanol 
exposure.  (A) Single channel currents recorded in inside-out patch clamp mode 

in the presence of 5 µM-free Ca2+ before and after exposure to 50 mM EtOH.  
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Splice site variants were exogenously expressed in HEK293 cells. (B) Plot of the 

percent change in baseline activity in response to alcohol exposure beginning at 

time 0. Adapted from Pietrzykowski et al., 2008. 

 

Moreover, our lab has also discovered that α splice variant transcripts are 

differentially regulated in response to alcohol.  We found that within the rat 

hypothalamic-neurohypophysial system (discussed later in the introduction) 

STREX mRNA relative to total BK mRNA increases in response to alcohol while 

the proportion of P27 mRNA diminishes (Figure 4).  

 

 

Figure 4.  Alcohol affects the relative proportion of specific α splice 

variants to total BK mRNA.   RT-PCR data of P27 and STREX splice variant 

mRNA levels in response to 20 mM EtOH in adult supraoptic neurons of the rat.  

Figure adapted from Pietrzykowski et al., 2008.   

 

 

 

P27 
STREX 
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Additional Pharmacological Properties of Neuronal BK α Splice Variants 

Slo channels are also differentially modulated by secondary signaling pathways.  

Many studies have shown that Slo channels are modulated by PKA, PKG, PKC, 

serine/threonine kinases, and CAMKII (Reinhart et al., 1991;Wang et al., 

1999b;Zhou et al., 2001;Zhou et al., 2002;Jin et al., 2002;Chen et al., 2005;Liu et 

al., 2006). Of these kinases, PKA modulation of Slo channels has been the most 

extensively studied.  It is well documented that BK channels containing even one 

STREX subunit per tetrameric assembly are inhibited by cyclic AMP-dependent 

phosphorylation.  In contrast, Insertless and two other non-neuronal variants (e20 

and e22) are potentiated by cyclic AMP-dependent phosphorylation providing a 

useful experimental tool to distinguish between splice variants (Figure 5) (Tian et 

al., 2001;Chen et al., 2005). 
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Figure 5. Differential regulation of BK channel activity by cyclic AMP-

dependent phosphorylation.  Channel activity is recorded in the inside-out 

patch clamp mode at +40 mV in the presence of 0.2 µM free-Ca2+ before and 

after exposure to 0.1 mM cAMP. Murine splice variants were expressed in 

HEK293 cells.  Adapted from Chen et al., 2005. 

 

Key Biophysical Properties of Neuronal BK α Splice Variants 

Neuronal splice variants display a range of biophysical properties including 

changes in calcium sensitivity and kinetics. A common way to measure the 

calcium sensitivity of BK channel current is to determine the voltage where one-

half the maximal conductance is observed (V1/2).  An increase in sensitivity is 
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reflected as a shift in V1/2 to more negative or hyperpolarized values.  Conversely, 

a decrease in calcium sensitivity is reflected as a shift in V1/2 to more positive or 

depolarized potentials. In this way it was shown that STREX channels are more 

sensitive to calcium than Insertless (ZERO) channels (Figure 6) (Xie and 

McCobb, 1998).  STREX channels also display slower rates of deactivation than 

Insertless channels (Chen et al., 2005).  Due to these properties, the STREX 

exon enhances BK channel openings relative to Insertless channels (Saito et al., 

1997;Xie and McCobb, 1998).  In contrast to the marked differences in calcium 

sensitivity and deactivation, the voltage dependence and single channel 

conductance of both Insertless and STREX channels are similar (Chen et al., 

2005;Petrik and Brenner, 2007). P27 BK channel currents have not been 

described in great detail however it has been shown that P27 currents activate 

more rapidly than channels lacking the 27 amino acid insert and this difference is 

dependent on calcium concentration (Ha et al., 2000).   

 

 

Figure 6. Differential calcium sensitivity of α splice variants.  G/Gmax curves 

were generated from macroscopic currents recorded from macro-patches in 
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inside-out patch clamp mode from a holding potential of -100 mV to +100 mV in 

the presence of 10 µM free-Ca2+.  Splice variants were expressed in Xenopus 

oocytes.  Figure adapted from Xie and McCobb, 1998. 

 

Auxiliary BK β Subunits 

 Another source of functional diversity within BK channels depends upon 

the association of α subunits with auxiliary transmembrane β subunits.  β 

subunits are glycosylated proteins that form non-covalent bonds (Garcia-Calvo et 

al., 1994;Knaus et al., 1994) with the α subunit.  Currently four β subunits, β1-4, 

have been identified from 4 different genes, KCNMB1-4.   

 

Distribution of BK β Subunits 

β subunit expression has been shown to be relatively tissue specific. 

Several studies indicate that human β1 (hβ1) subunits are primarily localized in 

smooth muscle tissue, hair cells, and some neurons (Knaus et al., 

1994;Giangiacomo et al., 1995;Jiang et al., 1999;Wanner et al., 1999).  Hβ2 

subunit expression is especially abundant in the ovaries but is only weakly 

detected in several other tissues, including the brain (Wallner et al., 

1999;Brenner et al., 2000). Similarly, Hβ3 shows the highest expression in the 

pancreas and testis with weak expression detected in the brain (Brenner et al., 

2000). In contrast to the other β subunits, β4 is highly expressed in the brain and 

only weakly detected in other tissues (Brenner et al., 2000). 
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Effects of Alcohol on Neuronal BK β-Subunit Containing Channels  

β-subunits differentially modulate the channels sensitivity to alcohol.  Acute 

challenge with physiologically relevant alcohol doses as low as 25 mM EtOH 

potentiate the activity of α or αβ4 channels expressed in HEK293 cells (Feinberg-

Zadek and Treistman, 2007).  In contrast, the baseline activity of αβ1 channels 

remains unchanged throughout acute ethanol exposure indicating these 

channels are insensitive to the drug (Figure 7)(Feinberg-Zadek et al., 2008).  

 

 

 

Figure 7.  β subunit modulation of alcohol sensitivity. BK channel activity 

recorded in inside-out patch clamp mode in the presence of 1 µM-free Ca2+ 

before and after 2 min of perfusion with 25 mM EtOH. Adapted from Feinberg-

Zadek et al., 2008. 

 

In addition to acute sensitivity β subunits also modulate the development of acute 

alcohol tolerance.  Recently our lab has discovered that α Insertless channels 

develop acute tolerance while αβ4 channels do not.  Using HEK293 cells 

expressing either α or αβ4 channels we demonstrated that both channel types 
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are acutely potentiated by 50 mM EtOH within a couple of minutes.  However, 

after 7 minutes of EtOH application, only α channel activity returns to baseline.   

In contrast, when the neuronal auxiliary β4 subunit is coexpressed with the α 

subunit, channel activity in response to alcohol remains elevated and does not 

develop acute tolerance (NPo after 3 min alcohol is 0.41 and remains potentiated 

at 8 min, NPo = 0.38) (Figure 8) (Martin et al., 2008).    

               

Figure 8.  β-subunit modulation of acute alcohol tolerance. Effect of 50 mM 

EtOH on α and αβ4 BK channels expressed in HEK293 cells.  Single channels 

were recorded in cell-attached patch clamp mode for 20 sec every minute up to 

20 min. C and O reflect the closed and open state respectively. Adapted from 

Martin et al., 2008. 
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Additional Pharmacological Properties of Neuronal BK β-Subunit Containing 

Channels 

 Another useful tool to distinguish between β subunits is their sensitivity to 

channel blockers.  Iberiotoxin and charybdotoxin are two BK channel blockers 

that were isolated from scorpion venom and bind to the external vestibule of the 

channel to block the pore (MacKinnon and Miller, 1988;Naini et al., 1996). 

Typically, both α and αβ1 channels are blocked by bath application of either 100 

nM iberiotoxin (IbTX) or charybotoxin (ChTX). The β4 subunit, on the other hand, 

uniquely confers resistance to these peptide blockers by slowing toxin 

association with the pore (Figure 9)(Behrens et al., 2000;Meera et al., 

2000;Lippiat et al., 2003).  

 

Figure 9. β-subunit modulation of iberiotoxin sensitivity. Response of hSloα 

or hSloαβ4 macroscopic currents to various concentrations of iberiotoxin.  

Macroscopic currents were recorded from outside-out macro patches in the 

presence of 10 µM free-Ca2+ before and after perfusion with iberiotoxin or 10 mM 

TEA.  Channel constructs were expressed in HEK293 cells.  Adapted from 

Lippiat et al., 2003. 
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Key Biophysical Properties of Neuronal BK β-Containing Channels 

 In addition to conferring differential sensitivity to pharmacological agents 

like alcohol and iberiotoxin, association with auxiliary β subunits has been shown 

to modulate the calcium sensitivity, activation kinetics, and gating kinetics (mean 

open and closed times) of BK channels.  Utilizing the same measure of calcium 

sensitivity described above Brenner et al. in 2000 discovered that coexpression 

of α Insertless with the β1 subunit in oocytes increased the calcium sensitivity of 

the channel such that the midpoints of the conductance/voltage relationship (V1/2) 

are shifted to more hyperpolarized values relative to α alone (no β)  (Figure 10). 

Interestingly, the β4 subunit has a much steeper calcium dependence than the 

other αβ subunit combinations showing decreased calcium sensitivity in low 

intracellular calcium concentrations and increased calcium sensitivity in higher 

calcium concentrations.  During that same year similar results were obtained with 

α, αβ1, and αβ4 channels expressed in HEK293 and CHO cells (Behrens et al., 

2000).   
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Figure 10. β-subunit modulation of calcium sensitivity. Plot of V1/2 versus log 

calcium concentrations. Currents were evoked in inside-out macro-patches 

perfused on the intracellular side with an isometric potassium and buffered 

calcium solution. Normalized conductance was measured for each test potential 

from the current amplitude taken 200 μs after repolarization to -80 mV in oocytes 

tranfected with various BK channel constructs.  Adapted from Brenner et al., 

2000. 

 

In addition to shifting calcium sensitivity, coexpression of α with either the β1 or 

β4 subunit slows activation kinetics with β4 showing the most significant slowing 

relative to α alone (Behrens et al., 2000).   Furthermore, β4-containing channels 

have slower gating kinetics than α channels alone.  Additional expression studies 

have shown that human α, αβ1, or αβ4 channels all have similar single channel 

conductances (Feinberg-Zadek and Treistman, 2007).   
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Properties of Various α Splice Variants Coexpresed with β Subunits 

 Little is known about the properties of different α splice variants 

coassembled with auxiliary β subunits.  This is further complicated by unknowns 

surrounding the exact stoichiometry of β subunits to α subunits and whether α or 

β subunits are homomeric or heteromeric.  As mentioned previously, one STREX 

α subunit in the tetrameric channel assembly is sufficient to alter the channels 

response to PKA activators from potentiation to inhibition (Tian et al., 2004) 

suggesting that certain α isoforms may present more dominant phenotypes than 

others.   Recently Petrik and Brenner coexpressed either STREX or Insertless 

isoforms with the auxiliary β4 subunit and described their properties.  

Surprisingly, the properties conferred by the individual subunits were non-

additive and sometimes completely opposite (Petrik and Brenner, 2007).  

 

BK Channels in the Hypothalamic-Neurohypophysial System 

The hypothalamic-neurohypophysial system (HNS) provides an ideal 

model system to study the acute effects of ethanol and the development of 

tolerance.  In the HNS, magnocellular and parvocelluar neurons  of the 

supraoptic nucleus (SON) send axonal projections to the posterior pituitary 

(neurohypophysis) where they  terminate in millions of nerve endings which 

release oxytocin (OXT) or arginine vasopressin (AVP) into systemic circulation 

(Morris and Pow, 1993). A schematic of the HNS system is provided in Figure 11.  

It is well known that short-term ethanol challenge reduces the release of AVP, an 
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anti-diuretic peptide hormone from the neurohypophysis contributing to the 

increased urge to urinate after drinking (Crabbe et al., 1981;Pohorecky, 

1985a;Pohorecky, 1985b). However, after chronic ethanol exposure release of 

AVP returns to baseline, providing an illustrative example of acquired tolerance 

(Knott et al., 2000;Knott et al., 2002).   

In the HNS BK channels have been identified as direct targets for ethanol 

action in the neurohypophysis (Jackson et al., 1991;Dopico et al., 1998;Chu et 

al., 1998;Knott et al., 2000;Knott et al., 2002). In addition, due to their ability to 

couple membrane potential and intracellular calcium levels, BK channels 

presumably indirectly limit calcium influx into the terminals.  For these reasons, 

BK channels in the neurohypophysis are postulated to play a role in mediating 

the effects of alcohol on peptide release.   

In addition to being acutely potentiated by alcohol, BK channels in 

terminals also develop two components of acute tolerance. First, channels show 

a reduction in potentiation which occurs within a few minutes of alcohol 

exposure.  Second, there is a reduction in current density, that occurs after 

several hours of alcohol administration (Pietrzykowski et al., 2004).  It is unknown 

whether these two components are linked by an underlying mechanism or 

whether they occur independently.  Furthermore, it is unknown how long these 

phenomena persist in the absence of the drug. 

 Interestingly, while BK channels in the neurohypophysis are acutely 

sensitive to low concentrations of alcohol, BK channels in SON cell bodies are 
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alcohol insensitive (Dopico et al., 1999b).  Furthermore, channels in these two 

subcellular compartments display differential sensitivities to channel blockers 

suggesting the two populations represent different subtypes of BK channels.  

Similar to neurohypophysial terminals, SON neurons secrete AVP and OXT 

centrally into the brain (reviewed in Ludwig and Leng, 2006). However, in 

contrast to the neurohypophysis little is known regarding the effects of alcohol on 

somatodendritic peptide release. Therefore, one of the aims of this project was to 

determine whether the effect of alcohol on BK channels, differs between the 

dendritic, somatic, and nerve terminal compartments. My data not only yielded 

information about the selective regional distribution of alcohol sensitive and 

insensitive channels in the HNS, but also has important implications for 

understanding how alcohol modulates synaptic integration.   

 

Figure 11.  Bright field image and schematic diagram of HNS system.  (A) 

Bright field to view of  HNS system. (B) Diagram of HNS shown in panel A 

showing the position of the magnocellular compartments (cell bodies, axons, and 

terminals).  Supraoptic nucleus (SON), optic chiasm (OC), optic tract (OT), 

neurohypophysis (NH).  Figure adapted from Pietrzykowski et al., 2004. 
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The Mesolimbic-Dopaminergic Pathway 

 To further explore how alcohol affects BK channels I chose to shift gears 

from the HNS system to the mesolimbic-dopaminergic pathway, a region heavily 

implicated in addiction.  The mesolimbic-dopaminergic pathway is a neural circuit 

that links the ventral tegmentum in the midbrain to the nucleus accumbens in the 

striatum and is often referred to as the “reward pathway”.  It is one of the four 

major pathways where the neurotransmitter dopamine is found.  This brain 

circuitry is activated by rewarding stimuli including food, sex and addictive drugs 

such as alcohol. The mesolimbic pathway is thought to be involved in producing 

pleasurable feeling, and is often associated with feelings of reward and desire, 

particularly because of the connection to the nucleus accumbens, which is 

associated with these states.    

 Within the striatum, BK channels play a role in modulating action 

potentials and are sensitive to alcohol (Martin et al., 2004;Martin et al., 2008).  

However, it was previously unknown whether BK channels in this region of the 

brain developed tolerance.  Therefore, another aim of my project was to 

determine whether BK channels in the nucleus accumbens developed tolerance 

and whether the persistence of tolerance was dependent on (1) duration of 

alcohol exposure and (2) continued presence of the drug.  In order to explore 

these ideas I developed a striatal culture from postnatal day 8 rat pups which 

would allow me to precisely administer and withdraw alcohol for defined periods 

of time.  
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Abstract 
Neurons are highly differentiated and polarized cells, whose various functions 

depend upon the compartmentalization of ion channels. The rat hypothalamic-

neurohypophysial system (HNS), in which cell bodies and dendrites reside in the 

hypothalamus, physically separated from their nerve terminals in the posterior 

pituitary (neurohypophysis), provides a particularly powerful preparation in which 

to study the distribution and regional properties of ion channel proteins. Using 

electrophysiological and immunohistochemical techniques we characterized the 

BK channel in each of the three primary compartments (soma, dendrite, and 

terminal) of HNS neurons. We find that dendritic BK channels, in common with 

somatic channels, but in contrast to nerve terminal channels, are insensitive to 

iberiotoxin.  Furthermore, analysis of dendritic BK channel gating kinetics 

indicates that they, like somatic channels, have fast activation kinetics, in 

contrast to the slow gating of terminal channels. Dendritic and somatic channels 

are also more sensitive to calcium and have a greater conductance than terminal 

channels. Finally, while terminal BK channels are highly potentiated by ethanol, 

somatic and dendritic channels are insensitive to the drug. The biophysical and 

pharmacological properties of somatodendritic vs. nerve terminal channels are 

consistent with the characteristics of exogenously expressed αβ1 vs. αβ4 

channels, respectively. Therefore, one possible explanation for our findings is a 

selective distribution of β1 subunits to the somatodendritic compartment and β4 

subunits to the terminal compartment. This hypothesis is supported 
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immunohistochemically by the appearance of distinct punctuate β1 or β4 channel 

clusters in the membrane of somatodendritic or nerve terminal compartments, 

respectively.  
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Introduction  

Ion channel compartmentalization between different brain regions and neuronal 

populations has been studied for many years.  Recently, technological advances 

have permitted researchers to probe the distribution of channel subtypes at a 

subcellular level.  Here we have utilized a unique system, the hypothalamic-

neurohypophysial system (HNS), which allows us to examine dendrites, cell 

bodies, and individual nerve terminals within the same population of 

magnocellular neurons (MCNs). The HNS is an ideal model system to study 

compartmentalization of channel properties because the three neuronal domains 

(dendrite, cell body, and nerve terminal) can be easily distinguished from one 

another.  The large (20-30 µm) magnocellular neurons  of the supraoptic nucleus 

(SON) send axonal projections to the posterior pituitary (neurohypophysis) where 

they each terminate in thousands of nerve endings which release oxytocin (OXT) 

or vasopressin (AVP) into systemic circulation (Morris and Pow, 1993). MCN 

dendrites, on the other hand, project toward the ventral surface of the brain 

forming a dense interlaced network that releases OXT or AVP centrally 

(Armstrong, 1995).  Morphologically, HNS axons have few if any collaterals, 

allowing them to be easily distinguished from dendrites (Theodosis, 1985).   

Large conductance calcium activated potassium (BK) channels play a prominent 

role in cellular excitability from repolarizing neuronal action potentials to 

modulating contractility in vasculature (Liu et al., 2004;Fernandez-Fernandez et 
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al., 2004;Toro et al., 1998).  They are found ubiquitously throughout the brain 

and are highly conserved in mammals (Toro et al., 1998).  BK channels are 

activated by both cell membrane depolarization and increases in intracellular 

calcium (Ghatta et al., 2006), allowing them to function as coincidence detectors 

that integrate intracellular calcium levels and membrane voltage.  BK channels 

may be homomeric or heteromeric and are composed of four seven-

transmembrane α subunits which form the selectivity pore of the channel.  

 

Currently, four β subunits (β1- β4) have been cloned and characterized. 

Association of the α subunit with various β subunits modulates channel 

properties, including kinetic behavior, voltage dependence, calcium sensitivity, 

and pharmacological attributes such as sensitivity to the channel blockers, 

iberiotoxin and charybdotoxin (Dworetzky et al., 1996;Behrens et al., 

2000;Brenner et al., 2000;Meera et al., 2000;Weiger et al., 2000;Lippiat et al., 

2003). To date, studies examining the regional distribution of BK β subunits 

indicate that they are relatively tissue specific.  β1 subunits are localized primarily 

in smooth muscle, showing less expression in the brain (Knaus et al., 

1994;Giangiacomo et al., 1995;Jiang et al., 1999;Wanner et al., 1999).  β2 

subunit expression is especially abundant in ovaries, while β3 shows the highest 

expression in the pancreas and testis.  Both β2 and β3 subunits are only weakly 

detected in other tissues, including brain (Wallner et al., 1999;Brenner et al., 
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2000). In contrast to the other β subunits, β4 is highly expressed in brain and 

only weakly detected in other tissues.   

 

On the subcellular level, few studies have attempted to describe BK channel 

distribution, characterization, and subunit composition in all three compartments 

of a neuron. Studies have described the immunolocalization of BK channels in 

the dendrites and nerve terminals of hippocampal pyramidal neurons, but did not 

biophysically characterize or identify the subunit composition of the channels 

(Sailer et al., 2006).  In another example, the biophysical properties of dendritic 

and somatic BK channels in layer 5 pyramidal neurons of the somatosensory 

cortex were identical, but did not examine channels in nerve terminals 

(Benhassine and Berger, 2005).  We have previously reported that dendritic and 

somatic BK channels in rat nucleus accumbens neurons display different 

biophysical properties, which could be explained by a predominance of BK 

β1subunits in the dendritic compartment and BK β4 subunits in the cell body 

(Martin et al., 2004). Again, due to limitations of the preparation, this study was 

unable to examine BK channels in nucleus accumbens nerve terminals.  Here, 

we focus on BK channels within HNS magnocellular neurons, and describe the 

characteristics of BK channels in each of the three major compartments of a CNS 

neuron. These findings may have particular functional significance in 

understanding how peptide release from the somatodendritic and nerve terminal 

compartments is differentially regulated (reviewed in Ludwig and Leng, 2006). 
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Materials and Methods  

Isolated SON Cell Bodies 

Adult Sprague Dawley rats (150-250 g) were decapitated, the brain removed and 

placed into a dish containing oxygenated ice-cold (4ºC) high sucrose cutting 

solution.  500 µm slices were obtained using a Vibroslicer, the SON isolated with 

the aid of a dissecting microscope, and transferred to an oxygenated (100% O2 

with constant stirring) HBSS solution containing Protease XIV from Streptomyces 

griseus (Sigma-Aldrich, St. Louis, MO) for 15 minutes.  The SON disks were then 

transferred to EBSS (holding) solution oxygenated with 95%O2/5%CO2 for 45 

minutes.    The tissue was then mechanically triturated in sodium isethionate 

solution using fire polished Pasteur pipettes with successively smaller tip 

diameters.  Dissociated cell bodies were then transferred to a 35 mm Petri dish 

placed on the stage of an inverted microscope (Nikon Diaphot).  The cells were 

allowed to settle for 15 min before perfusing with 60 ml regular Locke’s solution 

at a rate of 4 ml/min.  Electrophysiological recordings were subsequently 

obtained from either the cell body or dendrite.  In contrast to axons, which have a 

uniform width and lack any branches, dendrites were identified morphologically 

by their tapered appearance and branching (Figure 1A).    

 

Isolated Neurohypophysial Terminals 

The neurohypophysis was removed from the animal within 1 min of sacrifice and 

placed in low-calcium Locke’s solution.  To expose the neurohypophysis, the 
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pars intermedia was dissected away and discarded.  Terminals were 

homogenized in a solution containing in mM: 270 sucrose, 10 HEPES, and 1 mM 

EGTA, pH 7.3, as described in (Cazalis et al., 1987) and transferred to a 35 mM 

dish where they were allowed to settle. The terminals were then processed for 

immunohistochemistry or electrophysiology.  For electrophysiological 

measurements, dissociated terminals were identified by their spherical shape, 

approximately 5-10 µm diameter, lack of nuclei, and golden color under Hoffman 

phase-contrast optics.  Prior to ethanol challenge, the terminals were first bathed 

in low-calcium (3 µM) Locke’s solution followed by regular Locke’s solution.   

 

Single Channel Recordings 

Recording electrodes were pulled (Sutter Instruments, Novato, CA) and fire-

polished from borosilicate capillary glass (Drummond, Bromall, PA) to a final 

resistance of 4-8 MΩ.  Currents were recorded in voltage-clamp mode with a 

HEKA EPC 10 amplifier at a sampling rate of 10 kHz and low-pass filtered at 2.0 

kHz with an eight-pole Bessel filter.  Potentials and currents were digitized, 

curve-fit, measured, stored, and plotted using Patchmaster acquisition and 

analysis software (HEKA Elektronik, Lambrecht/Pfalz, Germany).   

Data analysis 

NPo values were calculated from all-points amplitude histograms by fitting the 

histogram with a sum of Gaussian functions using a Levenberg–Marquardt 

algorithm. NPo data as a function of voltage were fitted with a Boltzmann function 
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of the type: Po = (1 + exp – K(V – V0.5))–1, where K is the logarithmic potential 

sensitivity and V0.5 the potential at which Po is half-maximal. When the NPo–

voltage relationship is fitted with a Boltzmann curve, a plot of lnNPo versus 

voltage is linear at low values of Po. In this plot, the reciprocal of the slope is the 

potential needed to produce an e-fold change in NPo, which is routinely used to 

measure the voltage dependence of BK channel gating. The unitary conductance 

( ) was taken as the slope of the unitary current amplitude–voltage relationship. 

Values for unitary current were obtained from the Gaussian fit of all-points 

amplitude histograms by measuring the distance between the modes 

corresponding to the closed state and the first opening level. For all experiments, 

voltages given correspond to the potential at the intracellular side of the 

membrane. 

 Macroscopic currents were compiled by summing 100 consecutive single 

channel traces obtained by stepping the membrane of an inside-out patch from a 

holding potential of 0 mV to + 40 mV, in the presence of 10 µM free-Ca2+.  Leak 

currents were subtracted on-line. To yield the macroscopic current, traces were 

summed and the activation kinetics subsequently fit using Fitmaster software 

(HEKA Elektronik, Lambrecht/Pfalz, Germany).   

 

Ethanol and Iberiotoxin Application 

Recording electrode tips were positioned in the ‘mouth’ of the perfusion pipe 

(hematocrit tubes) to prevent contamination from solutions potentially leaking 
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from nearby tubes.  Three 20 s control traces in the presence of 5 µM free-Ca2+ 

solution were taken to determine baseline channel activity.  Ethanol or iberiotoxin 

were applied to inside-out or outside-out patches, respectively. 

Experimental Solutions 

High potassium pipette solution contained the following in mM: 135 K-Gluconate, 

1 MgCl2, 2.2 CaCl2, 15 HEPES, 4 EGTA, and 4 HEDTA. Regular Locke’s solution 

contained the following in mM: 2 KCl, 142 NaCl, 2 MgCl2, 2 CaCl2, 13 glucose, 

and 15 HEPES.  Excised patches were exposed to (in mM): 135-140 K-

gluconate, 0-4 HEDTA, 0-4 EGTA, 15 HEPES, 1 MgCl2, and 0.5-2.2 CaCl2.  

HEDTA, EGTA, and CaCl2 concentrations were adjusted to obtain the desired 

concentrations of free calcium, ranging from 1 to 25 µM free-Ca2+. Free-Ca2+ 

concentrations were determined by the Max Chelator Sliders software (C. Patton, 

Stanford University) and confirmed with a Kwik-Tip calcium probe (World 

Precision Instruments, Sarasota, FL).   

 

Immunohistochemistry 

To stain the SON, a block of brain tissue was fixed in 4% paraformaldehyde 

(PFA).  After immersion in 20% sucrose, tissue was embedded in 6% gelatin-egg 

yolk mixture and exposed to concentrated formaldehyde vapors for at least 3 

days (4ºC).  After hardening, 50 µM coronal sections were cut on a freezing 

microtome, placed in 1X PBS, and transferred to wells.   HNS terminals were 
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dissociated, as described previously, allowed to settle for 15 min on glass bottom 

culture dishes (MatTek, Ashland, MA), and fixed in 4% PFA. Both the terminals 

and SON tissues slices were then permeabilized and blocked in a solution 

containing 10% NGS, 0.1% BSA, 0.4% Triton-X 100 in PBS/0.02% sodium azide, 

pH 7.4, for 1 hr at room temperature.   

 

Permeabilized SON sections were incubated with primary antibodies to 

polyclonal anti-BK β1 (1:100; Alomone, Jerusalem, Israel) or polyclonal anti-BK 

β4 subunit (1:100; Alomone, Jerusalem, Israel) overnight at 4˚C.  After 

incubation, SON slices were rinsed and incubated for 1 hr at room temperature 

with Alexa 488-tagged anti-rabbit secondary antibody (1:300; Molecular Probes, 

Eugene, OR) for 1 hr at room temperature.  After rinsing, SON sections were 

incubated with goat anti-vasopressin (1:100, Santa Cruz Biotechnology, Santa 

Cruz, CA) for 2 hours at room temperature, rinsed, and incubated with Alexa 

594-tagged anti-goat secondary antibody.  After ample washing with PBS, SON 

tissue slices were mounted on microslides (SuperFrost Plus; VWR Scientific, 

West Chester, PA) using Prolong Antifade medium (Invitrogen, Carlsbad, CA).     

 

Permeabilized nerve terminals were incubated with primary antibodies to 

polyclonal anti-BK β1 (1:100; Alomone, Jerusalem, Israel) or polyclonal anti-BK 

β4 subunit (1:100; Alomone, Jerusalem, Israel) overnight at 4˚C.  After 

incubation, terminals were rinsed and incubated for 1 hr at room temperature 
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with Alexa 594-tagged anti-rabbit secondary antibody (1:300; Molecular Probes, 

Eugene, OR) for 1 hr at room temperature.  After rinsing, terminals were 

incubated with goat anti-vasopressin (1:100, Santa Cruz Biotechnology, Santa 

Cruz, CA) for 2 hours at room temperature, rinsed, and incubated with Alexa 

350-tagged anti-goat secondary antibody.  After after rinsing, terminals were 

incubated with mouse anti-oxytocin (1:100, a gift from Dr. H. Gainer, NIH, 

Bethesda, MD) for 2 hours at room temperature, rinsed, and incubated with 

Alexa 488-tagged anti-mouse secondary antibody for 1 hour at room 

temperature. Coverslips were placed in glass bottom culture dishes using 

Prolong Antifade medium (Invitrogen, Carlsbad, CA).    Control experiments were 

performed to insure the specificity of primary antibodies (anti-β1 and anti-β4) by 

adding commercially available blocking peptide which completely ablated 

staining.  A Zeiss Axiovert inverted microscope and Axiovision 4.5 software 

package (Carl Zeiss, Inc., Thornwood, NY) were used to acquire and deconvolve 

Z-stacks of fluorescent images, and perform subsequent analysis.  

 

Statistics 

Unless otherwise indicated, statistical significance between various groups was 

analyzed using Student’s t test (Statistica, version 5.5; StarSoft, Tulsa, OK).  All 

data are expressed as mean ± SEM, and p < 0.05 were considered to be 

statistically significant.  
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Results 

SON dendrites express functional BK channels 

Previous studies reported the presence of BK channels in SON cell bodies and 

neurohypophysial terminals of the HNS system (Wang et al., 1992;Dopico et al., 

1999b)  In order to extend the characterization of BK channels to include the 

dendritic compartment, we first confirmed that BK channels are present in the 

dendrite.  Figure 1A shows a micrograph of a micropipette placed on a dendrite. 

We assessed basic electrophysiological properties including voltage sensitivity, 

calcium sensitivity, and conductance of dendritic channels in inside-out patches.  

Dendritic single channel currents were elicited by depolarizing the membrane 

from -80 mV to +80 mV in 20 mV increments while perfusing the intracellular 

surface with 5 µM free-Ca2+. The activity of a two-channel patch recorded 

between -40 mV and +40 mV is shown in Figure 1B.  At -40 mV, the channels 

display a low open probability (NPo = 0.097) but as the membrane is depolarized 

to +40 mV the channels spend more time in the open state (NPo = 0.92).  The 

same patch was then clamped at -40 mV and the cystolic face exposed to 1, 5, 

and 10 µM free-Ca2+.   The channels are extremely calcium dependent, 

exhibiting low activity in 1 µM free-Ca2+ (NPo = 0.001), increasing activity to an 

NPo of 0.169 in the presence of 5 µM free-Ca2+, and reaching a nearly persistent 

open state in 10 µM free-Ca2+ (NPo = 0.79) (Figure 1C). Figure 1D shows a plot 

of the current amplitude vs. the membrane potential of a dendritic channel.  The 

current-voltage relationship was well-fitted with a linear regression (r = 0.99) 
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yielding a slope conductance of 261 pS. In addition, current reversed at 0 mV in 

symmetric potassium conditions, [K]i = [K]o, indicating the channel is selective for 

potassium.   These data are consistent with the known features of BK channels 

including potassium selectivity, large conductance (>180 pS), and sensitivity to 

intracellular calcium (McManus, 1991).  

 

In order to dependably compare the properties of BK channels in each of the 

three compartments, we repeated previously published characterizations of 

several BK channel parameters in the HNS cell body and nerve terminal in 

addition to those performed in the dendrite.  
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Figure 1.  Voltage and calcium dependence of dendritic BK channels of 
HNS magnocellular neurons. (A) Micrograph of a recording electrode 

positioned on the dendrite of a dissociated SON neuron. (B) Activity of two 

dendritic BK channels, recorded in inside-out patch clamp configuration in the 

presence of 5 µM free-Ca2+, increases as the membrane is depolarized.  (C) 

Traces recorded at -40 mV in the same patch as in B show the dependence of 

channel activity on intracellular calcium (1-10 µM). (D) Plot of BK channel current 

amplitude as a function of membrane potential.  A linear fit of this relationship (r = 

0.99) gave a BK channel unitary conductance of 261 pS. C and O represent the 

closed and open states, respectively.  
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Conductance 

In symmetric 135 mM K+, with the intracellular face of inside-out patches 

exposed to 5 µM free-Ca2+, the conductance of dendritic BK channels was 247.0 

± 11.2 pS, n = 7.  In contrast, under identical conditions BK channels in nerve 

terminals had a conductance of 219 ± 4.84 pS, n = 4 (Figure 2A) consistent with 

previously reported values (Pietrzykowski et al., 2004).  Values obtained for cell 

body channels, 250.7 ± 9.4 pS (n = 9) in 5 µM free-Ca2+ were very similar to 

dendritic channels. When exposed to 10 µM free-Ca2+ the conductance of 

somatic and dendritic channels was again similar, 248.3 ± 14.5 pS (n = 8) and 

254 ± 7.03 pS (n = 6), respectively (Figure 2B).   

 

Calcium Dependence   

Figure 2C shows the normalized NPo of BK channels from SON terminals, soma, 

and dendrites as a function of membrane potential. The graph shows that the 

open probability of BK channels is steeply voltage dependent. The NPo-voltage 

relationship could be well-fitted with a Boltzmann equation. Consistent with 

previous data, nerve terminal BK channels were less sensitive to 10 µM free-

Ca2+ than somatic channels (V0.5 was -8.9 ± 3.5 mV, n = 7 in terminals and -30.6 

± 3.7 mV, n = 7 in cell body).  Dendritic BK channels showed sensitivity to 10 µM 

free-Ca2+ similar to somatic channels (V0.5 was -22.5 ± 4.2 mV, n = 9) (Figure 

2C).  In addition, the voltage necessary to produce an e-fold change in open 

probability (see Methods; reciprocal of the slope of the ln(Po)-V relationship at 
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low Po) was similar for both somatic and dendritic SON channels (10.7 ± 1.5 and 

11.6 ± 1.4, respectively). In the terminals, however, the voltage necessary to 

produce an e-fold change in open probability was 24 ± 2.8 mV. Taken together, 

these data suggest a relatively homogeneous BK channel profile in the 

somatodendritic compartment, which is markedly different from the channel 

population in the nerve terminal.   

 

Because of the heavy dependence of BK channel open probability on calcium 

concentration we determined whether the similarity between dendritic and 

somatic BK channels open probability extended across a range of calcium 

concentrations. As shown in Figure 2D, the open probability of BK channels is 

steeply calcium and voltage dependent, as the calcium concentration is 

decreased the membrane must be depolarized more to produce a similar open 

probability (seen as a shift to the right). The graph shows the similarity between 

cell body and dendritic channels obtained from an examination of channel activity 

in 25 µM, 10 µM, and 5 µM free-Ca2+.  The potential at which half of the BK 

channels were open (V0.5) in 25 µM free-Ca2+
 was -65.6 ± 2.9 mV (n = 12) and -

68.7 ± 3.3 mV (n = 10) in the soma and dendrites, respectively. In 10 µM free-

Ca2+ V0.5 was -30.6 ± 3.7 mV (n = 7) and -22.5 ± 4.2 mV (n = 9) in the soma and 

dendrites, respectively.  Finally, in 5 µM free-Ca2+ V0.5 was 8.5 ± 3.7 mV (n = 8) 

and 13.1 ± 1.9 mV (n = 11) in the soma and dendrites, respectively (Figure 2D).  

In summary, we found that the NPo-voltage relationship of dendritic and somatic 
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channels is indeed very similar across a range of calcium concentrations. 

Furthermore, the NPo-voltage relationship of dendritic and somatic channels is 

different from terminal channels.    
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Figure 2. Comparison of the conductance and calcium dependence of 
somatic, dendritic, and nerve terminal BK channels.  (A) Mean conductance 

of somatic, dendritic, and nerve terminal channels measured in the presence of 5 

µM free-Ca2+.  (B) Mean conductance of somatic and dendritic channels 

measured in the presence of 5 and 10 µM free-Ca2+. (C) Normalized NPo-

Voltage relationship of SON somatic and dendritic channels compared to SON 

nerve terminal channels in 10 µM free-Ca2+ (SEM not shown to reduce clutter).  

Somatic, dendritic, and nerve terminal are shown as triangles, squares, and 

circles, respectively. (D) Plots of normalized mean NPo as a function of voltage 

at different [Ca2+]i; circles, 5 µM; squares, 10 µM; triangles, 25 µM.  Open and 

filled symbols represent soma and dendrite, respectively. The NPo-V 

relationship, fitted with a Boltzmann equation, is shifted along the voltage axis to 

more negative potentials as [Ca2+]i increases.  
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Activation kinetics differs between somatodendritic and nerve terminal BK 

channels. 

Although whole-cell patch clamp is generally used to study kinetic properties 

such as activation, we could not use this approach, because it would not have 

enabled us to independently examine BK channel properties in each region of 

the cell. Moreover, single channel records assure that our data is not 

contaminated with non-BK currents. Therefore, to study channel kinetics we 

compiled a cumulative current trace from the summation of 100 repetitively 

evoked single channel sweeps.  The resulting current trace resembles the 

classical macroscopic current recorded in whole-cell patch clamp configuration.   

The membrane of an inside-out patch was stepped from a holding potential of 0 

mV to + 40 mV in the presence of 10 µM free-Ca2+.  A typical example showing 7 

of 100 consecutive traces from somatic, dendritic, and nerve terminal channels is 

shown in Figures 3A-C.  An example of the compiled macroscopic current from 

the soma, dendrite, and nerve terminal is shown in Figures 3D-F.  In both the cell 

body and dendrite, currents were well fitted with a single exponential, τ was 3.4 ± 

1.18 ms (n = 6) in the soma and 5.7 ± 2.34 ms (n = 7) in the dendrites, 

respectively, indicating these channels have relatively fast activation kinetics.  In 

contrast, nerve terminal channels display much slower gating kinetics, τ = 22.7 ± 

4.19 ms, n = 3 consistent with previous studies (Wang et al., 1992;Dopico et al., 

1999b).  
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Figure 3.  Gating properties of nerve terminal channels differ from that of 
somatic and dendritic channels. A series of seven consecutive BK traces 

evoked by depolarizing (A) somatic, (B) dendritic, or (C) nerve terminal 

membrane patches from 0 to +40 mV.  Channel activity was recorded in 10 µM 

free-Ca2+ in an inside-out patch. Averaged currents for each compartment 

represent the aggregate of 100 individual single channel traces.  In all cases, BK 

current activation was best fit with a single exponential (see Materials and 

Methods).   
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Ethanol selectively potentiates nerve terminal but not somatodendritic BK 

channels.   

The BK channel is a well-studied target of ethanol action, and while BK channels 

in HNS terminals are highly sensitive to ethanol, exhibiting increased channel 

activity within a few minutes, BK channels in the cell body of these neurons are 

insensitive to the drug (Dopico et al., 1996;Dopico et al., 1999a).  Here, we 

examine the sensitivity of dendritic BK channels. The ethanol sensitivity of BK 

channels in proximal dendrites (20-40 µM from the soma) was examined in 

inside-out patches in the presence of 5 µm free-Ca2+ at a membrane potential of -

40 mV.  The ethanol concentrations chosen were within a clinically relevant 

range from 20 mM EtOH (resulting in intoxication) to 100 mM EtOH (lethal in 

naïve subjects) (Madeira et al., 1993;Ruela et al., 1994).  In the dendrite, the 

baseline probability of BK channel opening is low (nPo = 0.142) at -40 mV.  

During application of 50 mM EtOH, channel activity was recorded every 60 

seconds for 10 minutes.  Throughout the entire period of EtOH exposure channel 

activity remained unchanged (99 ± 14 % of control; n = 4) (Figure 4A/D).  Similar 

results were obtained with 25 and 100 mM ethanol (99 ± 19 % of control values 

(n = 4) and 107 ± 29 % of control (n = 4), respectively) (Figure 4D).  Neither 25 

nor 50 mM EtOH potentiated somatic channels (102 ± 17 % (n = 3), and 111 ± 16 

% of control (n = 3), respectively) (Figure 4B/D) further supporting the notion that 

cell body and dendrite channels are similar. In contrast, 50 mM EtOH greatly 

potentiated the activity of channels in dissociated nerve terminals (673 ± 171%, n 
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= 3), consistent with previous data (Dopico et al., 1996;Pietrzykowski et al., 2004) 

(Figure 4C/D).  We did not observe any channels that were inhibited by the drug.  

Furthermore, in control experiments there was no significant deviation in baseline 

channel activity throughout a 15 minute time period when the patches were 

perfused with an ethanol-free, 5 µm free-Ca2+ solution (data not shown).  



 50

 

 

 

Figure 4.  Ethanol (EtOH) exposure increases BK channel activity in the 
nerve terminal but not in soma or dendrite.  Traces of BK channel activity 

before and during exposure to 50 mM EtOH (Vh = -40 mV, 5 µM free-Ca2+) in (A) 

dendrite, (B) soma, or (C) nerve terminal patches.  C and O represent the closed 

and open state, respectively. (D) Plot of the effects of various EtOH 

concentrations on somatic, dendritic, and terminal BK channels.  The numbers 

within the bars represent the number of patches tested.  The asterisk indicates 

statistical significance of p < 0.01. 
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Expression of BK β subunits in the three compartments of the HNS. 

One possible explanation for these findings is a selective regional distribution of 

the auxiliary β1 subunit to the somatodendritic compartment, and β4 subunit to 

the terminal compartment.  Iberiotoxin provides a useful pharmacological tool to 

distinguish αβ4 from α or αβ1 channels.  Expression studies have shown that α 

or αβ1 BK channels are blocked by nanomolar concentrations of the scorpion 

toxins, iberiotoxin and charybdotoxin, while presence of the β4 subunit renders 

BK channels insensitive to these toxins (Hanner et al., 1998;Behrens et al., 

2000;Meera et al., 2000;Lippiat et al., 2003). To assess iberiotoxin sensitivity, 

outside-out patches held at +40 mV and were perfused with 100 nM iberiotoxin 

(IbTX) in 5 µM free-Ca2+.  IbTX strongly inhibited both dendritic channels (nPo 

decreased 81% and 75%, n =2) and somatic channels (nPo decreased 83% and 

71%, n = 2) (data not shown).   IbTX blockade of somatic channels is consistent 

with previously reported findings (Dopico et al., 1999b). In contrast, IbTX had no 

effect on BK channels in the terminal (nPo changed 0.5% and 0.2%, n = 2) (data 

not shown) consistent with previously reported findings that terminal channels 

are insensitive to blockade by the scorpion toxin, charybdotoxin (Wang et al., 

1992). These data support the notion that αβ4 channels are present in the nerve 

terminal, and absent in both the cell body and dendrite.  However, since both α 

channels and αβ1 channels are iberiotoxin sensitive we were unable to use this 

pharmacological tool to establish the selective presence of the αβ1 channel in 

the cell body and dendrite.       
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To determine whether β1 subunits were present in the somatodendritic 

compartment, we immunolabeled coronal sections of rat SON tissue with 

polyclonal antibodies to β1 or β4 and AVP neurophysin, a known marker for HNS 

neurons (Figure 5).  Magnocellular SON neurons were further identified from 

parvocellular neurons by their large size, approximately 18 to 25 µm. The 

punctate anti-β1 staining indicates that BK β1 channel clusters are located 

throughout the cell body, as well as in both proximal and distal dendrites (Figure 

5C). In contrast, surrounding regions of the brain had very low to nonexistent β1 

staining, confirming this antibody is highly specific (Figure 5A).  In contrast to the 

robust β1 staining, β4 staining in SON cell bodies and dendrites was extremely 

faint (Figure 5B) suggesting that this subunit is either absent or found in low 

quantities in this compartment.   

 

To confirm the distribution of β4 subunits to the nerve terminal we 

immunolabeled dissociated terminals with anti-β1 or anti-β4, anti-AVP 

neurophysin, and anti-OXT.  We then selected terminals ranging in size from 5-

10 μm for image analysis.  These terminals, when labeled with the same 

concentrations used to stain the SON, displayed distinct punctuate β4 clusters 

while the β1 subunit was barely detectable suggesting that β4 subunits are 

predominantly expressed in HNS nerve terminal (Figure 6).   Antibody specificity 

was appropriately controlled for by either omitting the primary antibody or 
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preabsorbing with blocking peptide.  Additionally, both the anti-β1 and anti-β4 

antibody have been show to be immunoreactive in wild-type mice, with no 

specific staining in β1- and β4- deficient mice, respectively (Grimm et al., 

2007;Piwonska et al., 2008).  

 

Figure 5.  Punctate clusters of BK β1 subunits are located in the cell body 

and peripheral processes of magnocellular neurons. 20X magnification of a 

section from fixed adult rat brain immunolabeled with (A) anti-β4 followed by 
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mouse secondary Alexa 488 conjugated antibody or (B) anti-β1 and Alexa 488 

conjugated antibody.  (C) 63X magnification of two neurons labeled with anti-β1 

and Alexa 488 conjugated antibody.  The sections in panels A-C are 

counterstained with anti-vasopressin (AVP) neurophysin and Alexa 594 

conjugated antibody.   

 

Figure 6.  BK β subunits in HNS nerve terminals. A single HNS nerve terminal 

magnified at 63X immunolabeled with (A) anti-β1 and mouse secondary Alexa 

594 conjugated antibody or (B) anti-β4 and mouse secondary Alexa 594 

conjugated antibody.  Nerve terminals are counterstained with (1) anti-

vasopressin (AVP) neurophysin and rabbit secondary Alexa 350 conjugated 

antibody and (2) anti-oxytocin (OXT) and rabbit secondary Alexa 488 conjugated 

antibody.   
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Discussion 

The data presented in this paper demonstrate: (1) the expression of functional 

BK channels in dendrites, somata, and nerve terminals of hypothalamic 

magnocellular neurons; (2) selective expression of β1 containing BK channels in 

cell body and dendrite; (3) selective expression of β4 containing BK channels in 

the nerve terminal; and (4) ethanol potentiation of nerve terminal β4 containing 

BK channels but not somatodendritic β1 containing BK channels.  

 

Regional distribution of BK β subunits in three compartments of a single 

HNS neuron 

This study has examined the characteristics of BK channel subtypes in each of 

the three compartments of a neuron (dendrite, cell body, and nerve terminal) 

utilizing the unique advantages of the hypothalamic-neurohypophysial system. In 

doing so, we discovered that in these neurons, BK channels were similar in the 

somatic and dendritic compartments.  In contrast, we observed markedly 

different BK channels in the nerve terminal.  Properties of both cell body and 

dendritic BK channels include (1) increased calcium sensitivity compared to 

nerve terminal channels, manifested as a shift in the voltage required to activate 

the channel to more hyperpolarized potentials, (2) fast activation kinetics, (3) an 

insensitivity to ethanol, and (4) blockade by iberiotoxin.  Properties of 

exogenously expressed αβ1 channels match the biophysical and 

pharmacological properties of HNS somatodendritic channels, suggesting the 
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presence of β1 in this compartment (Jiang et al., 1999;Weiger et al., 

2000;Brenner et al., 2000;Feinberg-Zadek and Treistman, 2007).  

 

Nerve terminal channels, on the other hand, display the following properties: (1) 

decreased calcium sensitivity compared to somatodendritic channels, manifested 

as a shift in the voltage required to activate the channel to more depolarized 

potentials, (2) slow activation kinetics, (3) sensitivity to ethanol, and (4) 

insensitivity to iberiotoxin blockade.   Consistent with exogenous αβ4 expression 

studies, these biophysical and pharmacological properties suggest that HNS 

nerve terminal channels contain the β4 subunit (Behrens et al., 2000;Brenner et 

al., 2000;Meera et al., 2000;Weiger et al., 2000;Feinberg-Zadek and Treistman, 

2007).  Immunostaining with antibodies to either the β1 and β4 subunit confirmed 

the regional distribution of BK αβ1 channels in the somatodendritic compartment 

and BK αβ4 channels in nerve terminals.   

 

Regional subcellular distribution of channel subtypes is not limited to BK 

channels, but has also been reported for other channel types.  For example, in 

the reticular thalamus Kv3.1 voltage gated potassium channel splice variants are 

differentially distributed such that the Kv3.1b isoform is localized to the soma and 

proximal dendrites while the Kv3.1a isoform is selectively restricted to axonal 

processes (Ozaita et al., 2002).  There are also reports that T-type calcium 

channel isoforms selectively distribute to the soma or dendrite dependent upon 
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neuronal type (McKay et al., 2006).  Interestingly, within the HNS system 

differential distribution patterns of calcium currents have also been observed. P-

type calcium current which are omega-agatoxin sensitive are expressed in the 

cell bodies of magnocellular neurons while omega-conotoxin sensitive calcium 

currents are expressed in the nerve terminal (Fisher and Bourque, 1995). The 

selectivity of ion channel distribution emphasizes their important role in cell 

polarity and neuronal specialization.  

 

A number of mechanisms may underlie the selective distribution of ion channels 

within neurons.  Several mRNA’s such as arginine vasopressin, αCAMKII, and 

MAP2 contain a dendritic localizer sequence (DLS) which targets the mRNA to 

the dendritic compartment (Blichenberg et al., 1999;Blichenberg et al., 

2001;Mohr and Richter, 2004).  An additional mechanism for controlling 

localization is through PDZ-containing anchoring proteins which target G-protein-

gated K+ channels (Kir3.2c) to the postsynaptic density in dopaminergic neurons 

of the substantia nigra (Kurachi and Ishii, 2004).  Lastly, β subunits of channels 

have also been proposed to play a role in localization.   For instance, association 

of the auxiliary β subunit with the calcium channel α1 subunit results in increased 

membrane localization (Bichet et al., 2000).   

 

Compartment-specific ethanol effects on BK channels are determined by 

regional specificity of beta subunit 
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A strong correlation between BK β subunit identity and ethanol sensitivity has 

been shown in HEK293 expression studies (Feinberg-Zadek and Treistman, 

2007) and freshly dissociated rat nucleus accumbens neurons (Martin et al., 

2004).  In medium spiny neurons the effects of EtOH on BK channels are 

regionally specific, similar to the HNS.  Interestingly, in contrast to the HNS, 

medium spiny neuron cell body BK channels are sensitive to EtOH, while 

dendritic BK channels are insensitive to the drug. In these neurons, this 

dichotomy correlates with the differential distribution of β1 and β4 subunit to the 

dendrite and soma, respectively. Likewise, we suggest that the observed 

differences in ethanol sensitivity between HNS somatodendritic and nerve 

terminal channels reflect a differential distribution of β1 and β4 subunits.  

 

A link between subunit composition and ethanol sensitivity has also been 

reported for other ion channels. For example, the effects of ethanol of P2X 

receptors are dependent upon receptor subtype, with P2X3 receptors potentiated 

and P2X4 receptors inhibited by EtOH (Davies et al., 2005).   NMDA receptor 

NR2B subunits and NR1 splice variants are also thought to confer sensitivity to 

EtOH-induced inhibition of NMDA currents (Chu et al., 1995;Kalluri and Ticku, 

1999;Peoples and Stewart, 2000;Smothers et al., 2001;Jin and Woodward, 

2006;Kash et al., 2008).   Furthermore, various AMPA and GABA receptor 

subtypes are also differentially sensitive to ethanol (Akinshola et al., 
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2003;Borghese and Harris, 2007;Jia et al., 2007;Korpi et al., 2007;Mody et al., 

2007;Olsen et al., 2007;Santhakumar et al., 2007).   

 

While we propose that regional ethanol sensitivity within magnocellular neurons 

in the HNS is conferred through subunit composition several other factors may 

also play a role.  These factors include variations in α subunit splice variants, 

regional differences in lipid bilayer composition and additional posttranslational 

modifications.   For example, expression studies in HEK293 cells indicate that 

certain α isoforms such as STREX are alcohol insensitive (Pietrzykowski et al., 

2008).  In addition, bilayer studies have shown that modulation of the lipid 

environment can alter BK channel sensitivity to ethanol (Crowley et al., 

2003;Crowley et al., 2005).  Lastly, posttranslational modifications including 

phosphorylation status of BK channels have also been shown to alter ethanol 

sensitivity (Liu et al., 2006). 

 

Functional implications 

The selective regional distribution of alcohol sensitive and insensitive channels in 

the HNS has interesting implications for synaptic integration.  The SON receives 

excitatory glutamatergic inputs from areas such as the amygdala, the 

suprachiasmatic nucleus, and the lamina terminalis (Csaki et al., 2002).  In 

addition, the SON receives inhibitory GABAergic inputs from areas such as the 

nucleus accumbens, a region known to play a role in addiction (Shibuki, 1984;Li 
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et al., 2001).  Both excitatory glutamatergic and inhibitory GABAergic inputs 

establish synaptic contact primarily on the dendrites of the SON, which generally 

comprise approximately 80% of the neuron’s surface area.  The selective 

distribution of alcohol insensitive channels to the dendritic compartment may 

suggest that the effects of alcohol on HNS neurons mediated through BK 

channels have little direct impact on the integration of dendritic electrical activity.  

Instead, the selective distribution of ethanol sensitive BK channels to the nerve 

terminal compartment suggests that the effect of alcohol on HNS neurons 

mediated through BK channels is largely confined to the nerve terminal.   

In addition to the role that nerve terminal BK channels play in mediating HNS 

responses to ethanol, somatodendritic BK channels may also indirectly contribute 

to ethanol effects, despite their apparent insensitivity to the drug. This possibility 

exists because BK channels can form heteromultimeric complexes with both 

voltage-gated calcium channels and NMDA receptors (Marrion and Tavalin, 

1998;Isaacson and Murphy, 2001).  Ethanol inhibits voltage-gated calcium 

channels and NMDA receptors thereby lowering intracellular calcium levels (Nie 

et al., 1994;Widmer et al., 1998).  As a result of BK channel activation by 

calcium, ethanol induced changes in intracellular dendritic calcium levels may be 

transduced by the associated BK channels, ultimately influencing input and 

output patterns of HNS neurons. Thus, the presence of BK channels in 

somatodendritic and nerve terminal compartments of HNS neurons, and their 
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corresponding differential sensitivity to ethanol, may play an important role in the 

response to ethanol.  

Peptide hormone release 

In the HNS, both somatodendritic and nerve terminal compartments secrete the 

peptides oxytocin (OXT) and vasopressin (AVP).  The dendrites of magnocellular 

neurons release OXT and AVP centrally into the brain, while nerve terminals 

release OXT and AVP peripherally into systemic circulation.  It is of particular 

interest that while both dendrites and nerve terminals secrete AVP and OXT, 

release from these two compartments can occur independently and is 

differentially regulated (reviewed in Ludwig and Leng, 2006).  In terminals, 

peptide release is regulated in an activity dependent manner when membrane 

depolarization elicits calcium entry through voltage-gated calcium channels 

(Wang et al., 1999a;Wang et al., 1997).  Dendritic release, on the other hand, is 

triggered not only by depolarization induced calcium entry, but also by the 

release of calcium from intracellular stores in response to the binding of AVP or 

OXT to its corresponding autoreceptor (Lambert et al., 1994;Dayanithi et al., 

1996;Ludwig et al., 2005). Our study shows that these two compartments, the 

nerve terminal and dendrite, have distinctly different BK channels with varying 

calcium sensitivities, which may contribute to differences in the regulation of 

peptide release. 
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Abstract 
 

BK channel activity is directly modulated by ethanol and plays a significant role in 

behavioral tolerance in invertebrates. We have previously shown, in 

hypothalamic neurons that BK channels develop acute tolerance to alcohol which 

occurs as a two-component process: 1) reduced potentiation to EtOH challenge 

which develops within a few minutes, and 2) a reduction in current density which 

develops over a time course of several hours. The nucleus accumbens (NAcc), a 

part of the striatum, is an important component of reward circuitry in the brain. 

Here, we use patch clamp techniques in cultured striatal neurons from P8 rats to 

examine another class of tolerance called rapid tolerance. We report that BK 

channels in these neurons also exhibit a two-component process of acute 

tolerance, and furthermore, discover that the duration of rapid tolerance is a 

function of exposure time. We found that persistence of rapid tolerance was 

surprisingly long. For example, after a 6 hr exposure to 20 mM ethanol, acute 

sensitivity was still suppressed at 24 hrs withdrawal. However, after a 1 or 3 hr 

exposure period, sensitivity had returned after only 4 hrs. We have also found 

that during withdrawal from a 6 hr but not a 3 hr exposure the biophysical 

properties of BK channels change and that this change is correlated with an 

increase in mRNA levels of the alcohol insensitive STREX splice variant.  

Furthermore, BK channel properties during withdrawal from a 6 hr exposure to 

alcohol closely parallel the properties of STREX channels exogenously 
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expressed in HEK293 cells.  Thus, we have established that acute and rapid 

tolerance occur in these neurons, that rapid tolerance is dependent upon 

exposure protocol, and is surprisingly persistent. The persistence of rapid 

tolerance may be explained by an increase in the alcohol-insensitive BK channel 

splice variant, STREX.  These findings may find relevance in explaining how 

short term exposure to alcohol impacts the development of alcohol dependence 

in humans. 
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Introduction 

Alcohol addiction is a major socioeconomic and public health concern 

contributing to over one hundred thousand deaths annually.  With more than 8 

million Americans afflicted with alcoholism, it is the third leading cause of 

preventable mortality after smoking and diet/activity patterns (Mokdad et al., 

2004). The progression to compulsive alcoholism is influenced by many factors 

such as increased craving, loss of control, and acquired tolerance.  Neural 

adaptations underlying acquired tolerance are thought to contribute to the 

development of alcoholism by either permitting or causing increased levels of 

alcohol consumption.  These adaptations mitigate the effects of alcohol such that 

higher and higher doses are required to produce the same response.  Acquired 

alcohol tolerance has long been utilized as a predictor and diagnostic of 

alcoholism (Kalant, 1998).     

 

Behaviorally, several classes of tolerance exist such as acute, rapid, and chronic 

tolerance.  Acute tolerance refers to a decrease in impairment within a single 

session of alcohol exposure on the descending limb of the blood alcohol level 

(BAL) curve when the same BAL on the ascending limb produces noticeable 

impairment (LeBlanc et al., 1975).  Rapid tolerance, on the other hand, refers to 

a reduced response to a second dose of alcohol administered 8-24 hrs after a 

first dose of alcohol (Bitran and Kalant, 1991).  Lastly, chronic tolerance 
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describes reduced effects of alcohol after multiple drinking sessions preferably 

over a period of days or weeks (Khanna et al., 1996). 

 Interestingly, our lab has found a molecular correlate for behavioral 

tolerance.  We have shown that large conductance calcium-activated potassium 

(BK) channels in the rat posterior pituitary also develop tolerance (Knott et al., 

2002).  These channels develop acute tolerance by first showing a reduction in 

potentiation which occurs within a few minutes of alcohol exposure.  BK channels 

also develop a second component of tolerance in which there is a reduction in 

current density, that occurs after several hours of alcohol administration 

(Pietrzykowski et al., 2004).  Behaviorally, BK channel activity plays a central role 

in the development of functional tolerance in invertebrates and mammals. Loss-

of-function mutations in the BK channel gene of D. melanogaster  effectively 

blocks the development of both acute and rapid tolerance suggesting that BK 

channels play a prominent role in mediating the response to alcohol (Ghezzi et 

al., 2004;Cowmeadow et al., 2005).   Further, emphasizing the importance of BK 

channels in mediating tolerance, new studies reveal that BK β4 knock-out mice 

develop tolerance to alcohol induced deficits in ambulatory activity whereas wild 

type mice do not (Martin et al., 2008). 

 However, there are many unanswered questions regarding the 

development of tolerance. One such question is whether the initiation of 

tolerance can be described by a “trigger function”, in which continued presence 

of the drug is unnecessary once the machinery of tolerance is initiated.  It is also 
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unknown if there are temporally dependent “switches” tripped by drug exposure, 

which are associated with classes of channel tolerance.  The aim of this study 

was to explore these ideas and determine if length of the initial alcohol exposure 

influences tolerance development.     
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Materials and Methods 

Primary Striatal Culture 

Cultures of dissociated rat striatal neurons were prepared using a modification of 

a previously described protocol (Leveque et al., 2000). Briefly, postnatal day 

eight Sprague-Dawley rat pups were decapitated, pup brains removed and 

immersed in ice-cold PBS. Next, striata were dissected, transferred to Hanks 

Balanced Salt Solution (Gibco, Grand Island, NY) with 10 mM HEPES, and 

dissociated using a fire-polished Pasteur pipette. Dissociated cells were 

transferred to the plating medium (a 1:1 mix of F12 nutrient mixture (Gibco) and 

DMEM medium supplemented with GlutaMAX; 2.0 mM glutamine final 

concentration), 2% fetal bovine serum (Hyclone), 2% B-27 (Gibco), 1% 

penicillin/streptomycin (Gibco). Cells in the plating medium were seeded out onto 

35 mm Petri dishes (Nunc, Rochester, NY) coated successively with 0.01% (w/v) 

poly-L-ornithine (Sigma, St. Louis, MO) and 33 µg/ml mouse laminin (Invitrogen, 

Carlsbad, CA). 24 hours after plating, the plating medium was replaced with 

serum-free medium supplemented with 2% B-27, 2.0 mM glutamine and 1% 

penicillin/streptomycin. Thereafter, the medium was replaced every 3 to 4 days. 

Neuronal cultures were maintained in a 5% CO2, humidified incubator (99% 

relative humidity) at 37˚C. All experiments were performed on neurons that were 

14-21 days in culture. 
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For initial alcohol exposures culture media was replaced with media containing 

20 mM EtOH and incubated for 1, 3, or 6 hrs.  For withdrawal periods, the dishes 

were washed 4 times with ethanol free media. Alcohol concentrations in the 

media at the end of the 1, 3, or 6 hr exposure and after washing were checked 

using a GM7Analyser (Analox Instruments Inc., MA).  Control dishes received 

media changes at the same time as the ethanol exposed dishes.  Media changes 

did not have an effect on ethanol sensitivity of the channel (data not shown).   

For electrophysiological experiments medium spiny neurons were identified by 

morphology (small to medium cell bodies and multiple thin processes) (Meredith 

et al., 1992;Meredith et al., 1995). 

 

Hek Cell Transfection 

Cells from the Human Embryonic Kidney cell line (HEK293 cells) were cultured in 

DMEM medium supplemented with 10% heat-inactivated fetal bovine serum, 1 % 

penicillin/streptomycin, and 25 mM HEPES (Invitrogen), and plated onto 25 cm2 

flasks. The cells were maintained in a 5% CO2, humidified incubator (99% 

relative humidity) at 37˚C. Prior to transfection HEK293 cells were split from 

confluent cultures and plated on 60 mm Petri dishes. For all experiments 50-70% 

confluent cells were transfected using PolyFect transfection reagent 

(Qiagen,Balencia, CA) complexed with BK α variant (BK-Insertless, BK-P27, BK-

STREX) and BK-β4 subunit (when required) cDNAs in pVAX vector (Invitrogen) 

together with the expression plasmid (πH3-CD-8) encoding the α subunit of the 



 72

human CD-8 lymphocyte surface antigen (GeneBank M12824). To identify 

transfected cells, CD-8 antibody-coated beads were used (Dynal/Invitrogen). 

Prior to electrophysiological recordings, 0.5 μL/mL of the CD-8 antibody coated 

beads were added to each culture dish for 30 min. Unattached beads were 

washed out with regular Locke’s solution and recordings obtained from clearly 

identified cells with attached beads. 

 

Electrophysiological Recordings 

Recording electrodes were pulled on a horizontal puller (Sutter Instruments, 

Novato, CA), coated with Sylgard (Dow Corning Co., Broomall, PA), and fire-

polished from borosilicate thin-wall capillary glass (Drummond, Bromall, PA) to a 

final resistance of 4-8 MΩ.  Currents were recorded in voltage-clamp mode with a 

HEKA EPC 10 amplifier at a sampling rate of 5 kHz and 10 kHz for whole cell 

and single channel recordings respectively, and low-pass filtered at 3 and 2 kHz, 

respectively. Leak currents were subtracted on-line using a conventional P/n (4) 

protocol.  In whole-cell mode, series resistance did not exceed 20 MΩ and was 

60% compensated. Potentials and currents were digitized and stored using 

Patchmaster acquisition and analysis software version 2.05 (HEKA Elektronik, 

Lambrecht/Pfalz, Germany).   

 

Single Channel recordings 
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Typical cell-attached patch clamp mode was used to assess ethanol sensitivity of 

single channels in order to maintain the intracellular milieu and secondary 

signaling pathways during recording.   Control (no alcohol) and 50 mM ethanol-

containing solutions were enclosed in 50 ml syringes and expelled from 

hematocrite tubes. Each cell was its own control. To determine baseline activity 

(defined here as open probability – NPo) before alcohol application, BK channel 

activity was recorded 3 times, 20 sec each, with 1 min intervals. For alcohol 

perfusion, the ethanol containing hemacrite tube was positioned close to the cell. 

Then, 50 mM alcohol was applied and BK channel activity recorded in 

successive blocks of 20 sec at 1 min intervals for up to 10 min.   Control 

experiments were performed  by perfusing patches with an ethanol-free solution 

for up to 15 minutes.  In control experiments there was no a significant deviation 

in baseline channel activity throughout the 15 minute time period (data not 

shown).  

 

Cell-attached patch clamp mode was also used for mean open/closed times.  In 

these experiments, BK channel activity was recorded 3 times, 20 sec each, with 

1 min intervals. For all cell-attached experiments, the voltages given represent 

the potential at the intracellular side of the membrane.   

 

To determine whether BK channels were present in the membrane of cultured 

striatal neurons we recorded single channels in the inside-out and outside-out 
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patch clamp configuration, respectively.  We recorded in these configurations to 

precisely control the free intracellular calcium concentration to which BK 

channels were exposed.  For all experiments, voltages given correspond to the 

potential at the intracellular side of the membrane. 

 

To measure the activation rate of channels in striatal culture, macroscopic 

currents were compiled by summing 100 consecutive single channel traces 

obtained by stepping the membrane of an outside-out patch from a holding 

potential of -60 mV to a potential eliciting an NPo of approximately 0.5, between 

+30 and +60mV, in the presence of 10 µM free-Ca2+ (in the recording pipette).   

Leak currents were subtracted on-line using the P/n (4) protocol. To yield the 

macroscopic current, traces were summed and the activation kinetics fit using 

Fitmaster software (HEKA Elektronik, Lambrecht/Pfalz, Germany).  The 

activation rate (ms) versus voltage was plotted and linearly fit.  The slope of the 

linear fit was used as the measure of voltage dependence.     

 

Whole-cell recordings  

Using the standard whole-cell patch clamp recording method (Hamill et al., 1981) 

from a holding potential of -60 mV, the membrane potential was depolarized to 

various potentials for 500 ms. Mean BK current amplitude was measured at BK 

current steady state, 450-490 ms after the beginning of the voltage step. The 

recording pipette routinely included in mM: 0.1 leupeptin, 12 phosphocreatine, 2 
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K-ATP, and 0.2 Na-GTP to prevent run-down of the Ca2+ current (Kittler et al., 

2005;Hainsworth et al., 2006).  The inclusion of leupeptin serves to block 

proteases while phosphocreatine and K-ATP allow the regeneration of ATP.  

When applying pharmacological agents such as 4-aminopyridine (4-AP), 

iberiotoxin (Ibtx), tetraethylammounium-chloride (TEA-CL), and 8-bromo-cAMP 

hemacrite tubes containing the appropriate solution were juxtaposed to the cell. 

   

Data analysis 

Data were analyzed using Tac X4.1.5 and TacFit X4.1.5 software (Bruxton, 

Seattle, WA).  NPo values were calculated from all-points amplitude histograms 

by fitting the histogram with a sum of Gaussian functions using a Levenberg–

Marquardt algorithm. Values for unitary current were obtained from the Gaussian 

fit of all-points amplitude histograms by measuring the distance between the 

modes corresponding to the closed state and the first opening level. The unitary 

conductance ( ) was taken as the slope of the unitary current amplitude–voltage 

relationship.  In single channel patches, durations of open and closed times were 

measured with half-amplitude threshold analysis. A maximum-likelihood 

minimization routine was used to fit curves to the distribution of open and closed 

times. Determination of the minimum number of terms for adequate fit was 

established using a standard F statistic table (significance level, P < 0.01).  

To compute G/Gmax a series of macroscopic currents were obtained in the 

presence of 1 mM 4-AP to block IA current.  Current traces were evoked from a 
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holding potential of -60 mV to +180 mV or +360 mV in 20 mV increments with 1 

or 10 µM free-Ca2+ in the recording pipette, respectively.   The conductance (G) 

is the mean amplitude taken from the sustained portion of the macroscopic 

current, 450-490 ms after the beginning of the voltage step.  Gmax is the mean 

amplitude taken at the minimum voltage that elicits maximal current.  

Depolarizing steps greater than the minimum voltage do not elicit a significant 

amount of additional current.  To calculate current density (pA/pF) in striatal 

neurons current amplitude was obtained from the sustained component of the 

macroscopic potassium current.  Macroscopic currents were evoked by stepping 

from a holding potential of -60 mV to +60 mV in Regular Locke’s solution. 

Membrane capacitance (pF) was automatically calculated in the HEKA 

patchmaster software.  

 

Experimental Solutions 

Regular Locke’s solution contained the following (in mM): 2 KCl, 142 NaCl, 2 

MgCl2, 2 CaCl2, 13 glucose, and 15 HEPES.  High potassium pipette solution 

contained (in mM): 135-140 K-gluconate, 0-4 HEDTA, 0-4 EGTA, 15 HEPES, 1 

MgCl2, and 0.5-2.2 CaCl2.  HEDTA, EGTA, and CaCl2 concentrations were 

adjusted to obtain the desired concentrations of free calcium, ranging from 1 to 

10 µM free-Ca2+. Free-Ca2+ concentrations were determined by the Sliders 

software and confirmed with a Kwik-Tip calcium probe (World Precision 

Instruments, Sarasota, FL). 
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Chemicals 

Ethanol, HEPES, and MgCl2 were obtained from American Bioanalytical (Natick, 

MA). BaCl2 and CaCl2 were from Fisher Scientific (Fair Lawn, NJ). Potassium 

gluconate, glucose, HEDTA, EGTA, TEA-chloride, 4-aminopyridine (4-AP), 

iberiotoxin, 8-bromo-cAMP, leupeptin, phosphocreatine, K-ATP, and Na-GTP 

were obtained from Sigma-Aldrich Chemical (St. Louis, MO). NaCl and KCl were 

from EM Science (Gibbstown, NJ).  

 

Reverse transcription-PCR 

Total RNA was isolated from the striatal culture dishes with Trizol (Invitrogen, 

Carlsbad, CA).  Manufacturer’s instructions were followed for RNA isolation using 

an RNeasy Protect Mini extraction kit (Qiagen, Valencia, CA) and Glycol Blue 

(Ambion, Austin, TX) to aid in the visualization of RNA precipitate. RNA quality 

(A260/280) and concentration was determined by a ND-1000 Spectrophotometer 

(NanoDrop, Wilmington, DE). After extraction, total RNA aliquots were treated 

with 20 U of RQ1 RNase-Free DNase (Promega, Madison, WI) for 15 min at 

37°C to minimize the risk of genomic DNA contamination.  First strand cDNA was 

reverse transcribed from the DNase-treated aliquots using the iScript cDNA 

Synthesis Kit (BioRad, Hercules, CA) and stored at –20°C. 
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FAM-based Real-time PCR was used to quantify expression changes of BK B1 

and STREX mRNA in treated striatal cultures compared to control cultures and 

were performed in triplicate.  β-actin mRNA is unaffected by acute and chronic 

alcohol exposure in neuronal tissue and was used as an endogenous control to 

accurately calculate mRNA expression (Nakahara et al., 2002;Newton et al., 

2005). No-reverse transcriptase (No RT) and no-template controls were routinely 

included. The following pairs of primers were used: KCNMB1, 

ATCAAGGACCAGGAAGAGCTG (5' primer) and 

CTACTTCTGAGCTGCCAAGAC (3' primer); and STREX  

AGGCGGCCCCAAGATGT (5' primer) and  

ATGCACGAGCAGTCACGCTCA (3' primer). All amplicons (the primers and 

probes) were checked for lack of secondary structure formation ensuring optimal 

PCR efficiency (IDT BioTools). Probes were synthesized to have their 5’ end 

labeled with in a 25 µL final volume, using Real Time Master Mix Probe with ROX 

(Eppendorf, Westbury, NY), on an ABI Prism 7500 PCR System (Applied 

Biosystems). The reverse-transcription reactions were performed at 42°C for 45 

min, followed by 35 cycles of PCR amplification (15 sec at 94°C, 30 sec at 56°C, 

15 sec at 72°C). To verify that the signals detected were not caused by genomic 

DNA contamination, RT-PCRs were also performed for each pair of primers 

without reverse transcriptase.    Significance was determined using one-way 

ANOVA.  
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Immunocytochemistry 

Primary striatal neurons were cultured on glass bottom culture dishes (MatTek, 

Ashland, MA) and fixed in 4% paraformaldehyde (PFA). Cultured neurons were 

then blocked in buffer containing 10% NGS, 0.1% BSA, in PBS/0.02% sodium 

azide, pH 7.4, for 1 hr at room temperature. Non-permeabilized striatal neurons 

were incubated (overnight at 4°C) with a specific monoclonal primary antibody 

(1:100, clone L18A/3, NeuroMab, UC Davis, CA) targeting the extracellular 

domain of the BK β4 channel subunit.  This antibody was generated using an 

immunogen comprising amino acids 45-167 (entire extracellular domain) of 

mouse BK-β4 (accession number NP_067427).  This antibody does not cross-

react with BK-β1, β2, or β3.   

 

After non-permeabilized cells were incubated with anti-β4 antibody the culture 

dishes were rinsed, and incubated for 1 hr at room temperature with Alexa 594-

tagged, anti-mouse secondary antibody (1:300; Molecular Probes, Eugene, OR). 

Next, sections were permeabilized with a 0.4% Triton-X solution and incubated 

with 1:100 anti- glutamate decarboxylase (GAD67), a GABAergic neuronal 

marker (Chemicon, Temecula CA; 2 hrs at room temperature) (Varea et al., 

2007).  After incubation culture dishes were rinsed and incubated for 1 hr at room 

temperature with Alexa 488-tagged anti-mouse secondary antibody (1:300; 

Molecular Probes, Eugene, OR).  Finally, cultures were co-stained with DAPI 

(1:50,000; Sigma, St. Louis, MO), a fluorescent stain that binds DNA, for 5 min 
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and thoroughly rinsed with PBS. Coverslips were then mounted using Prolong 

Gold Antifade medium (Invitrogen, Carlsbad, CA) and stored at 4°C. This 

experiment was repeated with striatal neurons that were permeabilized during 

the first blocking step.  To ensure that the anti-BKβ4 antibody detected the 

extracellular domain of the protein we expressed BK αβ4 channels in HEK293 

cells and incubated either permeabilized or non-permeabilized cells (Appendix 

A).  A Zeiss Axiovert inverted microscope and Axiovision 4.5 software package 

(Carl Zeiss, Inc., Thornwood, NY) were used to acquire Z-stacks of fluorescent 

images, deconvolve, and perform subsequent analysis.  
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Results 

Cultured striatal neurons express functional BK channels 

Previous studies reported the presence of BK channels in adult striatal neurons 

(Martin et al., 2004).  To insure that, like adult striatal neurons, cultured striatal 

neurons also expressed functional BK channels we assessed the basic 

electrophysiological properties of single BK channels, including voltage sensitivity 

and conductance, in inside-out patches. Striatal single channel currents were 

elicited by depolarizing the membrane from -80 mV to +80 mV in 20 mV 

increments while perfusing the intracellular surface with 10 µM free-Ca2+.  Striatal 

neurons were morphologically distinguished from glial cells and interneurons 

present in the culture (see Materials and Methods). The activity of a single 

channel patch recorded between -60 mV and +40 mV is shown in Figure 1B.  At -

60 mV, the channel displays a low open probability (NPo = 0.104) but as the 

channel membrane is depolarized to +40 mV the channel spends more time in 

the open state (NPo = 0.956).  Figure 1C shows a plot of the current amplitude 

vs. the membrane potential of a striatal channel.  The current-voltage relationship 

was well-fitted with a linear regression (r = 0.99) yielding a slope conductance of 

230 pS. In addition, current reversed at 0 mV in symmetric potassium conditions, 

[K]i = [K]o, indicating the channels are selective for potassium.    

 

To determine the relative contribution of BK current to the total macroscopic 

current in striatal neurons we pharmacologically dissociated the K+ current using 
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well known toxins.   Conventional whole-cell recordings of macroscopic K+ 

currents were evoked by stepping from a holding potential of -60 mV to +80 mV.  

In Figure 1D, the upper trace is the total macroscopic K+ current, recorded in 

normal Locke's solution containing 2.2 mM calcium. Addition of the IA channel 

inhibitor 4-AP (1 mM) removes the fast inactivating IA and indicates that 43 ± 5% 

of the total current is due to IA.  After blockade of IA a combined non-inactivating 

BK current and a resistant current remains (second highest trace). Perfusion with 

100 nM Iberiotoxin (Ibtx) specifically blocks BK channels leaving a 4-AP and Ibtx 

resistant current.  Blockade with Ibtx indicates that BK channel contribute to 27± 

7% of the total K+ current.  Finally, addition of 100 mM TEA-chloride, a blocker of 

voltage-dependent potassium channels, indicates that of the total K+ current, 25 

± 3% is comprised of TEA sensitive current.  Taken together these data are 

consistent with the known features of BK channels including potassium 

selectivity, large conductance (>180 pS), and sensitivity to iberiotoxin (McManus, 

1991;Lippiat et al., 2003).  
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Figure 1.  Conductance, voltage dependence, and pharmacology of BK 
channels in cultured striatal neurons.  (A) Digitally captured image of rat P8 

striatal neurons one week in culture. (B) The time spent in the open state by one 

striatal BK channel, recorded in the inside-out patch clamp configuration in the 

presence of 10 µM free-Ca2+, increases as the membrane is depolarized. C and 

O represent the closed and open states, respectively.  (C) Plot of BK channel 

current amplitude as a function of membrane potential.  A linear fit of this 

relationship (r = 0.99) gave a BK channel unitary conductance of 230 pS. (D) 

Pharmacological dissociation of the macroscopic potassium current in striatal 

neurons.  Macroscopic currents were evoked by stepping from a holding potential 

of -60 mV to +80 mV.  The upper trace is the total current, recorded in normal 
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Locke's solution containing 2.2 mM calcium. Addition of the IA channel inhibitor 4-

AP (1 mM) removes the fast inactivating IA, leaving a combined non-inactivating 

BK current and a resistant current (second highest trace). Perfusion with 100 nM 

Ibtx specifically blocks BK channels leaving a 4-AP and Ibtx resistant current.  

Finally, addition of 100 mM TEA-chloride, a blocker of voltage-dependent 

potassium channels, leaves a resistant current (lower trace). In subsequent 

figures, IA is subtracted from the macroscopic current by inclusion of 1 mM 4-AP.  
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BK channels in striatal neurons are ethanol sensitive and develop acute 

tolerance 

 Our lab has reported that BK channels in freshly dissociated NAcc cell 

bodies are ethanol sensitive (Martin et al., 2004). We have also previously 

shown, in hypothalamic neurons, that BK channels develop two components of 

acute alcohol tolerance (Pietrzykowski et al., 2004).  Similarly, in this study we 

have discovered that BK channels in cultured striatal neurons develop two 

components of acute tolerance to 50 mM EtOH, first there is a reduction in 

potentiation which occurs within a few minutes of exposure and second there a 

reduction in current density which occurs after several hours of alcohol (see 

Figure 1A, Appendix A and Figure 9).   

 

To begin to examine the phenomenon of rapid tolerance we had to determine 

which durations of alcohol exposure we would test.  Data from functional 

tolerance studies had shown that blood alcohol levels after a single IP injection of 

1.0. 1.5, or 2.0 g/kg EtOH decline to undetectable amounts after 3-6 hr (Schulteis 

and Liu, 2006).  Therefore, to determine whether duration of rapid tolerance is a 

function of initial alcohol exposure length we recorded BK channel activity (NPo) 

before and after exposure to 50 mM EtOH in a cell-attached patch from striatal 

neurons pre-exposed to 20 mM EtOH for 1, 3, or 6 hrs followed by various 

withdrawal periods.  In all patches tested, acute application of 50 mM EtOH 

immediately following pre-exposure to 20 mM EtOH for 1, 3, or 6 hr did not 
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change baseline channel activity indicating that the channels are tolerant to the 

second dose of alcohol (data not shown).    

 

In Figure 2A, baseline BK channel activity was recorded at a holding potential of  

-60 mV immediately following exposure to 20 mM EtOH for 3 hr and 4 hr 

withdrawal (NPo = 0.09).  Acute challenge with 50 mM EtOH potentiated channel 

activity (NPo = .26) indicating that 4 hrs is sufficient to recover from a 3 hr alcohol 

exposure.  Likewise, 4 hrs in ethanol free conditions was sufficient to recover 

from a 1 hr exposure to 20 mM EtOH (Figure 2D).  However, as shown in Figure 

2D neurons which were pre-exposed to 20 mM EtOH for 6 hr did not recover at 

the 4 hr  withdrawal timepoint (n-fold increase in potentiation was 1.052 ± 0.033, 

n = 8). Furthermore, the persistence of rapid tolerance was surprisingly long with 

sensitivity still suppressed at 24 hrs withdrawal (n-fold increase in potentiation 

was 0.997 ± 0.021, n = 7).   

 

Thus, we have established that indeed there is a “switch” triggered during a 6 hr 

EtOH exposure that does not occur during a 3 hr exposure resulting in persistent 

insensitivity to the drug.  The data also show that continued exposure to EtOH is 

not necessary for the maintenance of tolerance after a 3 or 6 hr exposure but that 

duration of tolerance is dependent on the length of initial alcohol exposure.   
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Figure 2.  Persistence of rapid tolerance is a function of ethanol exposure 
time.  BK channel activity (NPo) before and after exposure to 50 mM EtOH in a 

cell-attached patch from striatal neurons which were (A) pre-exposed to 20 mM 

EtOH for 3 hr and ethanol withdrawn for 4 hr, (B) pre-exposed to 20 mM EtOH for 

6 hr and ethanol withdrawn for 4 hr, or (C) pre-exposed to 20 mM EtOH for 6 hr 

and ethanol withdrawn for 24 hr.  All traces were recorded at a holding potential 

of -60 mV.  C and O represent the closed and open state, respectively.  (D) 

Scatter plot of the n-fold increase in BK channel activity after exposure to 50 MM 

EtOH in striatal neurons pre-exposed to 20 mM EtOH for 1, 3, or 6 hr (pink, 

green, and blue, respectively) followed by various periods of withdrawal.   
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There are numerous underlying mechanisms which could account for the 

persistent insensitivity to alcohol observed after 6 hr EtOH treatment.  These 

channels may have undergone (1) transcriptional changes including changes in 

subunit composition, (2) post-translational modifications including modulation by 

kinases and phosphatases, and even environmental changes like (3) lipid 

alterations.  To begin to unravel the potential mechanism underlying rapid 

tolerance we wanted to explore whether the biophysical properties of BK 

channels were different during withdrawal from a 6 versus 3 hr exposure to 

EtOH.  To do so, we characterized the calcium sensitivity, activation rate, and 

mean open and closed time of BK channel currents. 

 

There is a shift in BK channel calcium sensitivity after a 6 but not a 3 hr 

exposure to EtOH. 

BK channels are present in approximately 10% of the striatal neuron patches, 

presumably because BK channels have such a high conductance that they are 

not necessary in large quantities to have a pronounced effect on excitability.  

Therefore, to quickly gauge whether there was a change in calcium sensitivity of 

the BK current we examined the conductance-voltage (G-V) relationship of 

macroscopic currents by measuring G/Gmax.  To compute G/Gmax a series of 

macroscopic currents were obtained in the presence of 1 mM 4-AP to block IA 

current.  Current traces were evoked from a holding potential of -60 mV to +360 

mV in 20 mV increments with 1 µM free-Ca2+ in the recording pipette (Figure 3, 
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first column).  We found that there was a leftward shift in the G-V relationship 

present during withdrawal after a 6 hr but not 3 hr exposure to 20 mM EtOH, 

however, the voltage steps required to elicit Gmax were well outside of 

physiological range.  

 

Therefore, in order to determine whether there was also a leftward shift in the G-

V relationship during withdrawal from a 6 hr EtOH but not 3 hr EtOH in more 

physiologically relevant voltage ranges we evoked a series of macroscopic 

currents by stepping from a holding potential of -60 mV to +180 mV in 20 mV 

increments with 10 µM free-Ca2+ in the recording pipette (Figure 3, second 

column).   We chose 10 µM free-Ca2+ because it has been shown in rat 

chromaffin cells that BK channels are subjected to a wide range of intracellular 

calcium, the average of which is approximately 10 µM (Prakriya et al., 1996).   

Indeed we also observed a leftward shift in the G-V relationship within this 

physiologically relevant calcium and voltage range during withdrawal from 6 but 

not 3 hr EtOH.       

 

To confirm that the shift in the G-V relationship was due to a change in the BK 

channel current and not other contaminating currents present in cultured striatal 

neurons we blocked BK current with 100 nM Ibtx.  This concentration of Ibtx had 

been shown previously to specifically and effectively block BK currents (Hanner 

et al., 1998;Meera et al., 2000;Behrens et al., 2000;Lippiat et al., 2003).  Traces 
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in the third column were evoked by stepping from a holding potential of -60 mV to 

+360 mV in 20 mV increments with 10 µM free-Ca2+ in the recording pipette and 

100 nM Ibtx in the bath (Figure 3, column 3).  Using Ibtx we were able to block 

the shift in the G-V relationship we previously observed after 6 hr EtOH indicating 

the shift is mostly due to changes in the BK current. Furthermore, this shift most 

likely reflects a change in the calcium sensitivity of BK current. 
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Figure 3. BK channels contribute to the leftward shift in G-V relationship 
present during withdrawal after a 6 hr but not 3 hr exposure to 20 mM 
EtOH. (A) Representative current traces from striatal neurons which were (A) 

naïve, (B) pre-exposed to 20 mM EtOH for 3 hr and ethanol withdrawn for 24 hr, 

or (C) pre-exposed to 20 mM EtOH for 6 hr and ethanol withdrawn for 24 hr.  The 

traces in the first column were evoked by stepping from a holding potential of -60 
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mV to +360 mV in 20 mV increments with 1 µM free-Ca2+ in the recording pipette.  

Traces in the second column were evoked from a holding potential of -60 mV and 

stepped to +180 mV in 20 mV increments with 10 µM free-Ca2+ in the recording 

pipette.  Traces in the third column were evoked by stepping from a holding 

potential of -60 mV to +360 mV in 20 mV increments with 10 µM free-Ca2+ in the 

recording pipette and 100 nM Ibtx in the bath.  All macroscopic currents were 

obtained in Locke’s solution with 1 mM 4-AP to block IA current. (D) Plot of G-V 

relationship for macroscopic currents in A-C. Current was measured from the 

steady state of the macroscopic current, 450-490 ms after the beginning of the 

voltage step.  
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Gating kinetics of BK channels are different during withdrawal from 6 hr 

but not 3 hr alcohol 

 Although whole-cell patch clamp is generally used to study kinetic 

properties such as activation, we could not use this approach, because it would 

not have enabled us to independently examine BK channel properties without 

other contaminating K+ currents.  Therefore, to study channel kinetics we 

compiled a cumulative current trace from the summation of 100 repetitively 

evoked single channel sweeps.  The resulting current trace resembles the 

classical macroscopic current recorded in the whole-cell patch clamp 

configuration.   The membrane of an outside-out patch was stepped, in the 

presence of 10 µM free-Ca2+, from a holding potential of -60 mV to a voltage at 

which the probability of the channel in the open state was approximately one half, 

NPo ~ 0.5, between +30 and +60 mV.  A typical example showing 6 of 100 

consecutive traces from channels which were naïve, pre-exposed for 3 hr to 20 

mM EtOH and ethanol withdrawn for 24 hr, or pre-exposed to 6 hr 20 mM EtOH 

and ethanol withdrawn for 24 hr is shown in Figures 4A-C.  An example of the 

compiled macroscopic current from these same patches is shown in Figures 4D-

F.  All of the activation rates were fit with a single exponential, τ was 2.70 ± 0.25 

ms (n = 3) for naïve channels, 2.34 ± 0.33 ms (n = 3) for channels pre-exposed 

to 3 hr EtOH and withdrawn for 24 hr, and 19.15 ± 3.12 ms (n = 3) for channels 

pre-exposed to EtOH for 6 hr and withdrawn for 24 hr.  Although activation rate is 

also voltage dependent, we found that the voltage dependence (see Materials 
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and Methods) of naïve, 3 hr EtOH and 24 hr withdrawn, and 6 hr EtOH and 24 hr 

withdrawn channels was very similar across the voltage range tested 30 – 60 mV 

(data not shown). Therefore, we conclude that the activation rate is significantly 

slower in the patches from neurons in withdrawal from 6 hr EtOH than those 

recovering from 3 hr alcohol exposure (p < 0.01, Student’s t-test) indicating these 

channels are markedly different. 
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Figure 4.  Gating properties of BK channels differ during withdrawal after a 
6 hr but not a 3 hr exposure to 20 mM EtOH. A series of six consecutive BK 

traces evoked by depolarizing channels that were (A) naïve, (B) pre-exposed to 

20 mM EtOH for 3 hr and ethanol withdrawn for 24 hr, or (C) pre-exposed to 20 

mM EtOH for 6 hr and ethanol withdrawn for 24 hr.   Channel activity was 

recorded in an outside-out patch with 10 µM free-Ca2+ in the recording electrode.  

Averaged current accumulated from 100 traces obtained from A-C. Current 

activation was best fit with a single exponential (see Materials and Methods).  
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To further explore the difference between channels in withdrawal from 3 or 6 hr 

EtOH we examined the mean open and closed times of single channels in cell-

attached patch clamp mode.  Representative traces of single BK channels that 

were naïve, pre-exposed to 20 mM EtOH for 3 hr and ethanol withdrawn for 24 

hr, or pre-exposed to 20 mM EtOH for 6 hr and ethanol withdrawn for 24 hr are 

shown in Figure 5A-C.   Channel activity was evoked by stepping from a holding 

potential of -60 mV to a potential of  +70 mV for the traces recorded in panels A 

and B or +50 mV for the traces recorded in panel C to again yield a channel 

activity level of approximately one half, NPo ~ 0.5.  The dwell time distribution of 

single channel patches are shown in the histograms below the current traces.  All 

of the open times distribution could be well fitted with a single component 

function, with τ = 9.13 ± 1.95 ms (n = 4), 7.86 ± 0.82 ms (n = 4), and 21.49 ± 3.76 

ms (n = 3) for naïve, 3 hr EtOH/24 hr withdrawn, and 6 hr EtOH/24 hr withdrawn 

channels.  Channels present during withdrawal from 6 hr EtOH had significantly 

slower mean open times than either naïve channels or channels present during 

withdrawal from 3 hr EtOH (p < 0.05, Student’s t-test). 

 

In contrast to the open times distribution, the closed times distribution was well 

fitted with a function of two components, with τfast = 6.71 ± 1.89 ms and τslow = 

60.80 ± 9.32 ms for naïve channels, τfast = 5.52 ± 1.14 ms and τslow = 53.44 ± 

4.37 ms for channels in withdrawal for 24 hr from 3 hr EtOH, and τfast = 70.26 ± 

10.84 ms and τslow = 230.33 ± 31.49 for channels in withdrawal for 24 hr from 6 hr 
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EtOH.  These biophysical properties are summarized in Table 1 and indicate that 

BK channels present during withdrawal from 6 hr but not 3 hr EtOH are (1) more 

sensitive to calcium (indicated as a shift in V1/2 to more hyperpolarized 

potentials), (2) have a slower activation rate, and (3) have much slower open and 

closed times.      
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Figure 5.  Mean open (MOT) and closed times (MCT) of BK channels are 
different during withdrawal after a 6 hr but not a 3 hr exposure to 20 mM 
EtOH. A representative trace recorded in cell-attached patch clamp mode of a 

single BK channel that was (A) naïve, (B) pre-exposed to 20 mM EtOH for 3 hr 

and ethanol withdrawn for 24 hr, or (C) pre-exposed to 20 mM EtOH for 6 hr and 

ethanol withdrawn for 24 hr.   Channel activity was evoked by stepping from a 

holding potential of -60 mV to a potential of +70 mV for the traces recorded in 

panels A and B or +50 mV for the traces recorded in panel C.  The dwell time 

distribution of single channel patches are shown in the histograms below the 

current trace.  Durations of open or closed times were measured with half-

amplitude threshold analysis. Curves were fitted using a maximum-likelihood 

minimization routine. The open times distribution could be well fitted with a single 

component function while the closed time distribution was well fitted with a 

function of two components. 
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Given the pronounced difference in properties of BK channels during withdrawal 

from a 6 hr but not 3 hr exposure to EtOH we wanted to determine whether this 

phenomenon could be explained by a change in subunit composition.  BK 

channels are comprised of 4 α subunits and auxiliary, transmembrane β 

subunits.   Both changes in the α subunit via alternative pre-mRNA splicing or 

association with auxiliary β subunits can influence the biophysical properties and 

ethanol sensitivity of the channel (Dworetzky et al., 1994;Meera et al., 

2000;Brenner et al., 2000;Behrens et al., 2000;Weiger et al., 2000;Lippiat et al., 

2003;Petrik and Brenner, 2007;Feinberg-Zadek and Treistman, 2007).  However, 

to date only particular α splice variants and β subunits have been detected in 

neuronal tissues.  For example, in mouse brain Insertless, also referred to as 

ZERO, is the predominant variant expressed, accounting for more than 90% of 

total BK mRNA.  The remaining 10% is comprised mostly of STREX mRNA 

(Chen et al., 2005).  Similarly, β4 is the predominant beta subunit found in 

neuronal tissues while β1 and β2 are expressed to a lesser extent (Behrens et 

al., 2000).   

 

Focusing on subunit compositions that are found in neuronal tissues our lab 

utilized the HEK293 expression system to correlate subunit composition and 

ethanol sensitivity.  These studies revealed that αβ1 channels are insensitive to 

alcohol while α or αβ4 channels are potentiated (Feinberg-Zadek and Treistman, 

2007).  Similarly, the α splice variant, STREX, is insensitive to alcohol while the 
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variants, Insertless and P27 are potentiated (Pietrzykowski et al., 2008).  This led 

to the formation of two hypotheses.  During withdrawal from 6 hr EtOH but not 3 

hr EtOH treatment; (1) changes are induced in auxiliary β subunits such that 

there is a shift from EtOH-sensitive β4-containing BK channels to EtOH-

insensitive BK β1 containing channels and (2) changes are induced in α splice 

variation such that there is a shift from an EtOH-sensitive variant, Insertless or 

P27, to an EtOH-insensitive variant, STREX. 

 

Based on studies showing that αβ4 BK channels are present in the striatum 

(Martin et al., 2004;Martin et al., 2008) we initially favored our first hypothesis 

which stated that during withdrawal from a 6 hr ethanol exposure the 

predominant subtype of BK channel shifts from alcohol-sensitive β4 to alcohol-

insensitive β1 containing channels.   However, we abandoned this hypothesis 

because we found that the pharmacological properties of BK channels in rat P8 

striatal neurons were inconsistent with β4-containing channels (see Appendix A).  

Furthermore, immunolabeling results using an antibody which specifically binds 

the extracellular domain of β4 confirmed that β4-containing channels were not 

present in the membrane of striatal neurons (Appendix A).  

 

Therefore, we wanted to determine whether withdrawal from 6 hr EtOH but not 3 

hr EtOH treatment induced changes in α splice variation such that there is a shift 

from an EtOH-sensitive variant, Insertless or P27, to an EtOH-insensitive variant, 
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STREX.  In support of this hypothesis previous studies demonstrated that the 

half-maximal activation voltage (V1/2) of STREX is significantly less than 

Insertless channels (Chen et al., 2005) consistent with the shift we observe after 

6 hr EtOH and 24 withdrawal (Table 1).  To directly assess whether particular 

splice variants were present in striatal neurons we would have liked to employ 

immunocytochemical techniques, however there are no commercial antibodies 

available to detect or differentiate between specific splice variants.  Additionally, 

should commercially available antibodies exist they would be of little use 

because the majority of BK splice sites are located intracellularly in the C-

terminal tail (Xia et al., 2002;Krishnamoorthy et al., 2005).  Thus, it would still be 

problematic to prove which splice variants are functionally present in the 

phospholipid membrane.   

 

Therefore, we took a three-fold approach, albeit a more indirect approach, to 

determine whether ethanol induces changes in α splice site variation.  We first 

determined the mRNA levels of different BK channel subunits during withdrawal 

from 3 and 6 hr ethanol.  Secondly, we exogenously expressed various α splice 

site variants in HEK293 cells to describe their biophysical properties and 

compared these properties with those observed in striatal culture.  Finally, we 

used pharmacological tools to discriminate between splice variant populations 

based on their differential regulation by secondary signaling pathways (Chen et 

al., 2005). 
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During withdrawal from 6 hr but not 3 hr EtOH STREX mRNA is 

upregulated. 

 Recent data from our lab has shown that P27, Insertless, and STREX 

isoforms are present in striatal neurons.  Of these isoforms both P27 and 

Insertless are sensitive to 50 mM EtOH while STREX is alcohol insensitive 

(Pietrzykowski et al., 2008). Therefore, we postulated that naïve channels were 

comprised of alcohol sensitive variants, P27 or Insertless, and that during 

withdrawal from 6 hr alcohol exposure the predominance of channels shifts to the 

alcohol insensitive variant, STREX.  To see whether STREX was upregulated 

after alcohol treatment specific primers to STREX were designed (see Materials 

and Methods).  We also included primers for β1, another BK subunit conferring 

alcohol insensitivity which is detected at low levels in the striatum (Martin et al., 

2008) and brain (Jiang et al., 1999).  Interestingly, we found that STREX was 

upregulated after 6 hr of withdrawal 3.11 ± 0.18 fold (n = 6, experiments were 

performed in triplicate) relative to control after 6 hr but not 3 hr 20 mM EtOH 

(Figure 6).  Furthermore, we found that this upregulation was sustained 

throughout withdrawal returning to baseline after 24 hrs.  In contrast, β1 mRNA 

which was detected at very low levels in striatal culture did not vary significantly 

after 3 or 6 hr treatment (one-way Anova, p = 0.97).  
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Figure 6. STREX mRNA levels during withdrawal depend on duration of 
EtOH exposure. (A) mRNA levels in cultured striatal neurons measured by real-

time PCR with primers to the STREX α splice variant and the β1 subunit.  Six 

hours after initial pre-exposure to 6 hr 20 mM EtOH, STREX mRNA increased 

approximately three fold compared to control.  Bar graphs represent the mean ± 

SEM for six independent experiments performed in triplicate.  Statistical 

significance was determined using one-way ANOVA, a single asterisk indicates p 

< 0.05.    
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Properties of alpha splice variants in HEK293 cells 

 To further demonstrate that STREX containing BK channels were present 

in the membrane of striatal neurons during withdrawal from a 6 hr but not 3 hr 

exposure to alcohol we exogenously expressed Insertless, P27, and STREX α 

splice variants in HEK293 cells (see Methods and Materials).  We then assessed 

the variants biophysical properties including calcium sensitivity, activation rate, 

and mean open and closed times and compared these properties with those 

observed in striatal culture.  

 

Macroscopic current traces were evoked from a holding potential of -60 mV to 

+360 mV in 20 mV increments with 1 µM free-Ca2+ in the recording pipette 

(Figure 7A-C).   G/Gmax curves were generated as described previously (Figure 

7D).  After 6 hr EtOH and 24 withdrawal the half maximal activation (V1/2) is 

115.39 ± 12.84 mV (n = 9).  Similarly, Insertless and STREX have V1/2’s that are 

126.63 ± 10.11 mV (n = 7) and 117.64 ± 9.95 mV (n = 10), respectively. 

However, as shown in Figure 7G/F only the STREX variant has a slower 

activation rate (τ = 12.74 ± 2.68 ms, n = 3), longer mean open (τ = 18.23 ± 2.45 

ms, n = 5 ) and longer closed times (τfast = 55.61 ± 12.38 ms and τslow = 205.75 ± 

19.27 ms, n = 5) similar to channels present during withdrawal from 6 hrs of 

alcohol exposure.   This data is summarized in Table 1.  Therefore, our data 

suggest the properties of channels present in the membrane after 6 hr exposure 
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to ethanol and 24 hr withdrawal are consistent with the alcohol-insensitive 

STREX variant.        
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Figure 7. Biophysical properties of BK α splice variants exogenously 
expressed in HEK293 cells. Series of macroscopic BK (A) Insertless, (B) 

P27 or, (C) STREX currents evoked from a holding potential of -60 mV to 

+320 mV in 20 mV increments. (D) G-V relationship of Insertless (circles), 

P27 (triangles), and STREX (squares). Bar graph of the (E) average 

activation time constants taken at +120 mV from the macroscopic currents 

shown in panels A-C (purple) versus activation time constants for striatal BK 

currents (blue) exposed to 20 mM EtOH for 0, 3 or 6 hrs followed by 24 hr 

withdrawal (naïve, 3EtOH-24W, and 6EtOH-24W respectively) computed as 

previously described in Figure 4.  (F) mean open time constants of single 

channels expressed in HEK293 cells (purple) or in striatal culture (blue) 

recorded in cell-attached patch clamp mode at an NPo of approximately 0.5.    
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Table 1.  Summary of BK channel Properties in Striatal Culture vs. HEK293 

cells. 

 

Striatal currents are inhibited by PKA activation during withdrawal from 6 

hr EtOH but not 3 hr EtOH.   

 Alpha splice site variants are differentially regulated by secondary 

signaling pathways.  Therefore, to provide further evidence that STREX isoforms 

are present in striatal culture after 6 but not 3 hr ethanol we assessed their 

response to the PKA activator, 8-bromo-cyclic AMP.   Previous studies had 

shown previously that exogenously expressed STREX is inhibited by cAMP while 

other isoforms such as Insertless are potentiated (Chen et al., 2005).  This 

differential response is due the fact that there is an additional PKA site in the 59 

amino acid STREX insert in the C-terminal tail.  

 

Figure 8 shows macroscopic currents evoked from a holding potential of -60 mV 

to +80 mV with 1 μM free-Ca2+ in the pipette after various ethanol exposures and 

withdrawal periods.  Shown in Figure 8A and C, currents from naïve neurons or 
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neurons exposed to ethanol for 3 hr and withdrawn for 24 hrs were potentiated 

by extracellular perfusion with 250 μm 8-bromo-cAMP (41.52 ± 8.43 and 35.94 ± 

10.71 %, respectively).  In sharp contrast, currents from neurons exposed to 

ethanol for 6 hr and ethanol withdrawn for 24 hrs were markedly inhibited (32.87 

± 15.11 %) by 8-Br-cAMP (Figure 8F) consistent with studies showing that 

STREX channel activity is reduced by this agonist.  Interestingly, immediately 

following either 3 or 6 hr EtOH, application of 8-bromo-cAMP did not have a 

significant effect (4.02 ± 3.59 and 8.67 ± 6.20% respectively).  This may reflect a 

change in the phosphorylation level of BK channels induced by alcohol that 

occurs while the drug is still present.            
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Figure 8. Effect of 8-Bromo-cAMP, a PKA activator, on striatal currents after 
various exposures to 20 mM EtOH.  Macrocopic currents from neurons that are 

(A) naïve, (B) EtOH exposed for 3 hrs, (C) EtOH exposed for 3 hrs and 

withdrawn for 24 hrs, (D) EtOH exposed for 6 hrs, and (E) ethanol exposed for 6 

hrs and withdrawn for 24 hrs are shown before and after perfusion with 250 μM 

8-Br-cAMP (black and purple, respectively). All macroscopic currents were 

recorded in the presence of 1 mM 4-AP, from a holding potential of -60 mV to 

+80 mV, with 1 µM free-Ca2+ in the recording pipette. (F) Bar graph representing 

the percent change in macroscopic current after perfusion with 8-Br-cAMP.  

Numbers within the bars represent the number of patches tests.  For 3 hr EtOH, 

n = 4 and for 6 hr EtOH, n = 5.    
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Recovery pattern of BK channel current density after 6 vs. 3 hr EtOH. 

 With both RT-PCR data suggesting that STREX mRNA is upregulated and 

electrophysiological evidence indicating that striatal neurons have functional 

channels consistent with the characteristics of exogenously expressed STREX 

channels after 6 but not 3 hr EtOH, we wanted to assess whether the number of 

channels per unit membrane had changed accordingly.  Current density is 

commonly used as an indicator of the number of channels per unit membrane.  

Current density measures the amount of current flowing through a unit of 

membrane.  Since it is known that alcohol does not change the conductance of 

BK channels, a change in the current flowing through a unit membrane is 

assumed to reflect a change in the number of channels in the membrane 

(Pietrzykowski et al., 2004).  

 

Current density after 6 hr alcohol exposure exhibited a complex recovery pattern 

during withdrawal.  Normalized current density values immediately following 20 

mM EtOH exposure were first depressed (0.48 ± 0.09, n = 6), but then showed 

an overshoot within 12 hr (2.14 ± 0.24, n = 9), and did not return to baseline 

values for several days (Figure 9).  In contrast, neither 1 hr nor 3 hr of exposure 

to 20 mM EtOH elicited significant changes in current density levels during 

withdrawal.  The increase in current density during withdrawal does parallel the 

upregulation in STREX mRNA levels. However, there does appear to be a 

temporal lag between the two phenomena which may reflect the cumulative time 
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necessary for mRNA translation, protein trafficking, and insertion into the 

membrane, parameters which are currently unknown. Our lab recently 

speculated that the production of BK transcripts would be expected to take at 

least 6 hr based on the length of the BK gene and the elongation rate of 

polymerase II (Pietrzykowski et al., 2008) which could explain why STREX 

mRNA levels are 3-fold higher at the 0 withdrawal time point after 6 hr EtOH but 

current density levels do not peak until 12 hrs withdrawal.     
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Figure 9. BK channel current density displays a complex recovery pattern 
during withdrawal from 6 hr EtOH but not 3 or 1 hr EtOH.  Current density 

after 1 hr (blue), 3 hr (purple), or 6 hr (yellow) exposure to 20 mM EtOH  and 

various withdrawal periods (n = 6 – 9).  Current amplitude was obtained from the 

sustained component of the macroscopic potassium current.  Macroscopic 

currents were evoked by stepping from a holding potential of -60 mV to +60 mV 

in Regular Locke’s solution.  The asterisk denotes that p < 0.05 using the 

Student’s t-test. 
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Conclusion 

We provide evidence here that there are temporally dependent “triggered” 

switches tripped by drug exposure that underlie rapid tolerance.  We have also 

demonstrated that the machinery underlying rapid tolerance, once initiated does 

not require continued presence of the drug. Furthermore, we have shown that 

there is a swift emergence and persistence of rapid tolerance that is dependent 

on the duration of alcohol exposure.  In addition, the mechanism underlying the 

long-lasting persistence of tolerance after a 6 hr EtOH exposure may be 

explained by an increase in an alcohol insensitive BK channel isoform called 

STREX.  

 

Discussion 

Evidence for EtOH induced tolerance switches 

This work is an extension of studies indicating there is a relationship between 

EtOH exposure protocol and degree of tolerance that develops. Behavioral 

studies have shown the development of rapid tolerance after short alcohol 

exposures is dose dependent. For example, in mice and rats exposure to a 

single intraperitoneal (IP) dose of EtOH reduces motor impairment and 

hypothermic response for a second dose administered 8-24 hours after the first 

dose (Crabbe et al., 1979;Khanna et al., 1996). These studies also demonstrated 

that higher initial doses of alcohol produced the greatest degree of tolerance.  

Furthermore, by determining that the degree of rapid tolerance was roughly 
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equivalent after a single IP dose of 4 g/kg versus to two-single doses of 2 g/kg 

this study suggested that peak blood alcohol concentration is not as important as 

duration of alcohol exposure (Khanna et al., 1996).  Therefore we chose to 

directly examine how duration of alcohol exposure influences tolerance 

development on a molecular level. 

 

Numerous studies suggest the existence of alcohol triggered molecular 

“switches” that may contribute to the formation of behavioral rapid tolerance.  For 

example, many studies describe changes in biochemical pathways that outlast 

the presence of the initiating drug of abuse and therefore qualify as drug-

activated switches (Szabo and Hoffman, 1995;Pandey et al., 2001;Pandey et al., 

2003;Borlikova et al., 2006).  Examples of potential drug-activated switches 

include transcription factors such as delta fosB and CREB and secondary 

signaling molecules like PKA.  It has also recently been discovered in flies that 

CREB, which is activated by PKA, mediates upregulation of dslo during rapid 

tolerance to benzyl alcohol (Wang et al., 2007).  In addition, several studies have 

demonstrated in neurons of the nucleus accumbens that the cAMP-PKA-CREB 

signaling pathway plays a role in reinforcement of drug-seeking behavior in 

response to cocaine, opiates, and alcohol (For review see Nestler, 1994).  The 

general effect of drugs of abuse on the cAMP pathway suggests it plays a 

prominent role in drug addiction.  Here, we propose that the increased activity of 
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transcription factors like CREB lead to the upregulation in STREX mRNA we 

observe in striatal culture.   

 

In addition to studies suggesting there is a relationship between duration of drug 

exposure and tolerance development, there is specific evidence that 6 hr of drug 

exposure is critical for the development of neuroadaptations underlying addictive 

behaviors.  For example,  six hours but not one hour of daily access to self-

administered cocaine results in an escalation of cocaine self-administration 

(Ahmed and Koob, 1999).   Interestingly, since the cAMP signaling pathway is 

suggested to play such major role in drug addition, it is intriguing that 6 hr but not 

1 hr of alcohol exposure translocates the catalytic subunit of PKA from the Golgi 

area to the nucleus (Dohrman et al., 2002).  Once in the nucleus PKA is able to 

phosphorylate the transcription factor, CREB, and mediate numerous 

downstream effects.  The fact that the 6 vs 1 hr dichotomy appears to play a role 

in mediating addictive behaviors and differentially impacts the cAMP signaling 

pathway suggests that duration of exposure may be a critical factor influencing 

tolerance to all drugs of abuse.  Furthermore, the duration of alcohol intake even 

after a single drinking session may play a significant role in the accession to 

addition by influencing one’s susceptibility to transition from casual drinking to 

compulsivity. 

 

Other Mechanisms Underlying BK Channel Tolerance  
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 Here, we describe a mechanism underlying rapid tolerance to alcohol 

involving a switch in the subunit composition of BK channels.  Similar 

occurrences have also been demonstrated for other ion channels. Alcohol has 

been shown to induce alterations in the subunit composition of NMDA and GABA 

receptors during withdrawal.  For example, chronic intermittent ethanol followed 

by withdrawal induces upregulation of NR2B and NR1 subunits but not NR2A 

subunits in both cultured mouse cortical and rat hippocampal neurons (Nagy et 

al., 2003;Qiang et al., 2007).  Furthermore,   mRNA levels of the NR1 subunit 

remain elevated for 48 hours post withdrawal in rat cerebral cortex (Hardy et al., 

1999). Similarly, during ethanol withdrawal the expression of α4 subunit of 

GABA(A) receptors increases in cultured rat cerebellar granule cells (Follesa et 

al., 2001;Biggio et al., 2007). 

 

While we postulate that a switch in the subunit composition of BK channels 

underlies rapid tolerance to alcohol, this does not does preclude the possibility 

that other mechanisms do not also play a role in rapid tolerance. We know there 

are multiple mechanisms underlying acute alcohol tolerance of BK channels.  We 

have shown previously that acute tolerance involves two processes; the first 

occurs within a few minutes of alcohol exposure and involves a reduction in 

alcohol-induced potentiation while the second occurs after several hours of 

alcohol exposure and involves a reduction in channel density (Pietrzykowski et 

al., 2004).  In the course of this study, we found that BK channels in striatal 
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culture, similar to HNS channels, develop the same two components of acute 

tolerance.  

 

Recently, our lab discovered that the first component of acute tolerance, reduced 

sensitivity to alcohol, is mediated by phosphorylation.  These studies show that 

the development of tolerance in α Insertless channels can be blocked with a 

phosphatase inhibitor.  Interestingly, the lack of acute tolerance observed with 

αβ4 channels can also be reversed by applying a CaMKII inhibitor suggesting 

that phosphorylation plays a role in the development of acute tolerance in all BK 

channels regardless of subunit composition (Martin et al. 2008, IN PRESS 

PNAS).    

 

The second component of acute tolerance, reduced channel density has been 

suggested to result from an increase in channel internalization into the 

intracellular compartment (Pietrzykowski et al., 2004).  Intriguingly our lab has 

also found another mechanism underlying acute tolerance which involves 

miRNA. These studies show that within 15 minutes of alcohol exposure miR-9 

levels increase in the HNS and striatum selectively degrading BK channel 

message (Pietrzykowski et al., 2008).   Combined, these mechanisms would 

rapidly decrease the number of channels in the membrane.  Furthermore, these 

studies suggest that miR-9 mediated degradation of BK channels isoforms 

correlates with their degree of ethanol sensitivity.  For example, transcript levels 
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of P27, which form a channel highly sensitive to ethanol, are degraded to a 

greater extent than STREX transcripts, which form a channel insensitive to 

ethanol.    

 

The data presented here describe yet another mechanistic level through which 

alcohol exerts its actions on BK channels.  This mechanism involves a temporally 

dependent alcohol trigger that initiates the synthesis of new BK channel 

transcripts.  The new transcripts then code for alcohol insensitive channels which 

are subsequently inserted into the membrane during withdrawal from the drug.  It 

is unclear whether the four mechanisms; (1) phosphorylation, (2) internalization, 

(3) selective degradation of mRNA, and (4) new synthesis of transcript are linked 

by an alcohol-induced master controller or if the processes are completely 

independent.  Further studies will be required to dissociate these processes and 

their putative role in addiction.        

 

Why do so many mechanisms exist to counteract the effects of alcohol?  It is 

possibly due to the inherent unpredictability of human behavior.  The multiple 

mechanistic phases underlying tolerance allow each neuron to rapidly adapt to a 

given set of circumstances such as duration of alcohol exposure.  Each phase 

likely represents an additional homeostatic change required to maintain normal 

firing patterns.  For example, although phosphorylation quickly allows the 

channel to become insensitive to alcohol, alcohol at the same time decreases the 
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influx of calcium into the neuron (Knott et al., 2002), thereby causing BK channel 

activity to decrease.  In this hypothetical situation, there would be increased 

pressure to insert BK channels into the membrane with a greater sensitivity to 

calcium in order to restore the balance of channels regulating neuronal firing.  

This dynamic interplay would continue to change throughout alcohol exposure 

and withdrawal requiring various mechanisms to mediate different 

neuroadaptations.     
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Appendix A 

Naïve cultured striatal BK channels do not contain the auxiliary β4 subunit. 

Our lab has previously reported the pharmacological properties of BK channels in 

adult rat and mouse nucleus accumbens neurons and correlated these properties 

with the β4 subunit (Martin et al., 2004;Martin et al., 2008).  Therefore, we first 

hypothesized that alcohol sensitive BK β4-containing channels were present in 

naïve neurons and subsequently replaced with an ethanol insensitive channel in 

response to 6 hr EtOH.  Utilizing HEK293 expression systems where the 

composition of BK channels is known, BK β4-containing channels have been 

shown to possess unique pharmacological attributes.   These attributes include 

insensitivity to the BK channel blocker, iberiotoxin, combined with a lack of acute 

alcohol tolerance (Hanner et al., 1998;Meera et al., 2000;Behrens et al., 

2000;Lippiat et al., 2003;Martin et al., 2008).   In Figure 1A, BK channel activity is 

recorded at a holding potential of -60 mV, in cell-attached mode, before and after 

perfusion with alcohol.  Initially, baseline activity is low, NPo = 0.094, and 

increases in activity to NPo = 0.342 upon exposure to 50 mM EtOH. However, 

within a few minutes of alcohol exposure channel activity returns to baseline, 

NPo = 0.112. A plot of the n-fold increase in channel activity after 50 mM EtOH 

as a function of time is shown in Figure 1B. The n-fold increase in activity peaks 

at 3 minutes EtOH, 7.8 ± 2.6 fold (n = 5), and returns to baseline at 

approximately 6 minutes (n-fold increase is 1.09 ± 0.14, n = 5) indicating that BK 
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channels in naïve striatal neurons develop acute tolerance inconsistent with 

channels containing the β4-subunit.   

 

Furthermore, macroscopic K+ currents obtained in the presence of 1 mM 4-AP 

also have an iberiotoxin sensitive component.  Macroscopic currents before and 

after perfusion with 100 nM Ibtx were elicited from a holding potential of -60 mV 

and stepped to a potential of +80 mV (Figure 1C).  Cultured striatal neurons 

displayed an average of 27± 7% (n = 6) inhibition within 3 minutes Ibtx perfusion.  

Comparing the properties of BK channels in striatal culture to the known 

characteristics of exogenously expressed BK β4 channels which are insensitive 

to 100 nM Ibtx we have found that the pharmacological properties of striatal 

channels are inconsistent with β4-containing channels.   
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Figure 1.  Naïve striatal currents are iberiotoxin sensitive and develop acute 
tolerance.  (A) BK channel activity before and after perfusion with 50 mM EtOH.  

C and O represent the closed and open state respectively.  (B) Plot of the n-fold 

increase in channel activity after 50 mM EtOH.  (C) Macroscopic K+ current 

evoked, in the presence of 1 mM 4-AP from a holding potential of -60 mV to +80 

mV, before (black trace) and after (blue trace) perfusion with 100 nM Iberiotoxin 

(Ibtx).   

 

To confirm that β4-containing channels were not present in the plasma 

membrane, non-permeabilized striatal neurons were stained with a specific 

monoclonal antibody targeting the extracellular domain of the BK β4 channel 

subunit.  Since striatal neurons contain the neurotransmitter GABA, the cultures 

were then counterstained with anti-glutamate decarboxylase (GAD67), a 
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GABAergic neuronal marker, and DAPI, a fluorescent stain that binds DNA, in 

order to visualize all cells.  In non-permeabilized striatal neurons β4 staining was 

completely absent (Figure 2).  To insure that the BK β4 antibody specifically 

recognized the extracellular domain we exogenously expressed αβ4 BK 

channels in HEK293 cells and then stained HEK293 cells that were non-

permeabilized or permeabilized.  Distinct channel clusters were apparent in the 

membrane of non-permeabilized cells, whereas diffuse staining was present 

when the cells were permeabilized.  Similarly, when striatal neurons were 

permeabilized a diffuse pattern of intracellular β4 staining was observed.  This 

suggests that the β4 antibody does specifically recognize the extracellular 

domain of the protein and that this subunit is not present in the membrane of 

striatal neurons. β4, however, is present in the intracellular compartment of 

striatal neurons.   Indeed, this is not surprising given the recent finding that β4 

subunits localize to neuronal mitochondria throughout the adult rat brain and in 

cultured rat neurons (Piwonska et al., 2008).  

 



 126

 

 

 

Figure 2.  Immunolocalization of membrane bound and intracellular BK β4 

subunits in the HEK293 and striatal neurons.  In the top panels, HEK293 cells 

expressing αβ4 channels were stained with anti-β4 antibody. In both the left and 

right lower panels, two striatal neurons are shown that were serially 

immunolabeled with anti-β4, anti-GAD (a marker for GABAergic neurons), and 

DAPI (a nuclear stain).  All panels show a 63X magnification of either 

permeabilized (+ Triton-X) or non-permeabilized ( -Triton-X) cells. 
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Cumulative Discussion 

The focus of my graduate work centered on the effects of acute alcohol on the 

BK channel, an ion channel that plays a prominent role in shaping action 

potentials throughout the brain.  The body of this thesis comprised studies that 

examined (1) the dependence of acute ethanol sensitivity on subcellular location, 

(2) the dependence of rapid tolerance on duration of acute alcohol exposure, and 

(3) potential mechanisms underlying acute sensitivity and rapid tolerance.   

 

Acute Ethanol Sensitivity is Dependent on Subcellular Location 

 Differential ethanol sensitivity has been documented between tissues, 

neighboring cells, and even within neurons. The hypothalamic-neurohypophysial 

system (HNS) is a particularly intriguing system to study the dependence of 

ethanol sensitivity on subcellular location because peptide release from the 

somatodendritic and nerve terminal compartments has such markedly different 

functions.  The somatodendritic compartment secretes hormones centrally within 

the brain while the nerve terminals in the pituitary secrete hormones systemically 

into the blood.  Given that ion channels largely modulate release understanding 

the effects of alcohol on channels within different subcellular compartment has 

interesting functional implications.     

 

The data presented in this thesis examined the characteristics of BK channel 

subtypes in each of the three compartments of HNS neurons (dendrite, cell body, 
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and nerve terminal). In doing so, we discovered that both dendritic and somatic 

channels are insensitive to a range of physiological ethanol concentrations (20-

100 mM).  In contrast, BK channels in nerve terminals are highly sensitive to 

alcohol within the same range. The selective distribution of dendritic channels 

insensitive to acute EtOH may suggest that the effects of alcohol on HNS 

neurons mediated through BK channels have little direct impact on the integration 

of dendritic electrical activity.  Instead, the selective distribution of ethanol 

sensitive BK channels to the nerve terminal compartment suggests that the effect 

of alcohol on HNS neurons mediated through BK channels is largely confined to 

the nerve terminal.   

 

In addition to being the first to describe the properties, including ethanol 

sensitivity, of an ion channel in all three compartments of a neuron, I also 

provided a mechanism to explain these differences.  I found that the properties of 

HNS somatodendritic and terminal BK channels were consistent with the 

properties of exogenously expressed αβ1 and αβ4 channels, respectively. 

Furthermore, I confirmed the regional distribution of αβ1 channels in the 

somatodendritic compartment and αβ4 channels in nerve terminals by 

immunolabeling adult tissue with antibodies to either the β1 or β4 subunit.  From 

these studies within the HNS I suggest that regional ethanol sensitivity is 

modulated by β subunit composition.   
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While the HNS system provides a wonderful model to study the acute effects of 

alcohol in different subcellular compartments, I became increasingly interested in 

the phenomenon of tolerance.  I was fascinated that acquired tolerance could 

contribute to an individual’s increased consumption of a drug over time and 

ultimately lead to the compulsive drug-seeking behavior that characterizes 

addiction.  Indeed, the HNS system is also a great model system to study 

tolerance, however, aspects of BK channel tolerance development had already 

been described (Knott et al., 2002;Pietrzykowski et al., 2004).  Furthermore, 

channels in the somatodendritic compartment which are insensitive to alcohol are 

not amenable to tolerance studies.  For these reasons, to further explore how 

alcohol affects BK channels, I chose to examine channels in the striatum, a 

region of the brain heavily implicated in addiction.   

 

Persistence of Tolerance is Dependent upon Duration of Ethanol Exposure 

 Within the striatum, BK channels play a role in modulating action 

potentials and are sensitive to alcohol (Martin et al., 2004;Martin et al., 2008).  

However, it was previously unknown whether BK channels in this region of the 

brain developed tolerance.  Several classes of tolerance have been described 

such as acute, rapid, and chronic which depend on the pattern of alcohol 

exposure.  For example, acute tolerance refers to a reduced effect of the drug 

within a single drinking session (LeBlanc et al., 1975).  Rapid tolerance, on the 

other hand, refers to a reduced response to a second dose of alcohol 
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administered 8-24 hrs after a first dose of alcohol (Bitran and Kalant, 1991).  

Lastly, chronic tolerance describes reduced effects of alcohol after multiple 

drinking sessions (Khanna et al., 1996).  It is unknown whether the same 

mechanisms underlie different classes of channel tolerance or if they are 

completely unrelated.  Therefore, one of the aims of my project was to determine 

whether BK channels in striatal neurons developed acute and/or rapid tolerance.    

 

Numerous studies had suggested that the different classes of tolerance are 

linked to the concentration, pattern, and duration of alcohol exposure.  Therefore, 

an additional aim of my project was to determine whether tolerance was 

dependent on duration of alcohol exposure.  I also wanted to discover whether 

BK channel tolerance required continued presence of the drug, or whether once 

initiated by alcohol, BK channels would remain insensitive even in the absence of 

the drug.  In order to explore these ideas I developed a striatal culture from 

postnatal day 8 rat pups which would allow me to precisely administer and 

withdraw alcohol for defined durations of time.  

 

The results of these studies provide evidence that there are temporally 

dependent “triggered” switches tripped by drug exposure that underlie rapid 

tolerance.  I have demonstrated that the machinery underlying rapid tolerance, 

once initiated does not require continued presence of the drug. Furthermore, I 

have shown that there is a swift emergence and persistence of rapid tolerance 
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that is dependent on the duration of alcohol exposure.  In addition, the 

mechanism underlying long-lasting persistence of tolerance after a 6 hr EtOH 

exposure may be explained by an increase in an alcohol insensitive BK channel 

isoform called STREX.   These results yield additional insight into the molecular 

mechanisms that contribute to the formation of drug dependence.  

 

Caveats of Using Primary Cultures to Study Addiction 

 There are two major caveats that one must consider when using primary 

cell cultures.  The first is that cultured neurons do not fully represent the normal 

physiological state.  Neurons in culture lack the normal synaptic afferent and 

efferent connections that underlie learning, memory, and possibly addiction.  

Furthermore, neurons in primary cell lines undergo a great deal of stress during 

the culture process.  Despite these caveats, primary cultures are a useful 

reductionist approach to understand how particular drugs and patterns of 

exposure impact molecular machinery because they allow a level of temporal 

precision that is unavailable in vivo.    

 The second caveat of primary cell culture is that the majority of 

preparations employ embryonic or early postnatal tissues due to higher success 

rates in obtaining proliferative cells.  Therefore, another limitation of this 

preparation is that many neurons are developmentally regulated.  Therefore, if 

you are examining the effects of drugs in primary culture your results may not 

necessarily be indicative of processes occurring in an adult or adolescent animal.  
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One of the obvious disconnects between BK channels in my striatal culture and 

BK channels in adult striatal neurons is the apparent lack of the β4 subunit 

(Martin et al., 2004;Martin et al., 2008).  However, this is not entirely shocking 

given evidence that BK channels are indeed developmentally regulated.  Studies 

have shown that there are developmental differences in BK channel gating 

behavior, calcium and voltage sensitivity, and regulation by cellular signaling 

pathways (Blair and Dionne, 1985;Zhang et al., 2004). Furthermore, 

developmental shifts from charybdotoxin sensitive to charybdotoxin insensitive 

currents, a property shown to be unique to BK β4 channels, have been described 

in rat neuroepithelium (Mienville and Barker, 1996).  While I do not feel this 

diminishes the integrity of my work, there is a strong possibility that β-subunits 

modulate rapid tolerance in conjunction with changes in pre-mRNA splicing in 

adult animals.  Furthermore, my work has concretely established that duration of 

drug exposure impacts the persistence of tolerance. 

 

Addictive Behaviors are Dependent upon Drug Exposure Paradigm 

 The accession to compulsive drug use largely results from increased 

craving or drug-seeking behavior.  Underlying increased craving are 

neuroadaptations which contribute to changes in motivational state.  These 

changes in motivational state serve two purposes.  The first motivational state 

serves to decrease the aversive consequences associated with drug withdrawal 

including physical and emotional symptoms such as anxiety and depression.  
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The second motivational state is an increased drive to pursue the pleasurable 

effects of drug use (reviewed in Nestler, 1994).  Tolerance and sensitization are 

the two most commonly studied phenomena thought to contribute to the 

increased pursuit of the pleasurable effects of drugs.  Tolerance and sensitization 

decrease or increase drug effects, respectively, in response to a constant dose.  

These two phenomena increase craving and lead to the escalating patterns of 

drug use that precede complete loss of control.   

        
The primary focus of my thesis centers on the fact that addiction appears to 

relate to drug exposure paradigm.  It is well established that different patterns of 

chronic alcohol consumption yield varying degrees of behavioral alcohol 

dependence.  Recently, an animal model of alcohol addiction in which rats only 

developed compulsive drug taking when they were given alcohol ad libitum over 

a 9-month period.  These studies also demonstrated that drug dependent rats 

exhibited compulsive drug seeking after long periods of abstinence much like 

humans.  In contrast, animals given the free choice to consume alcohol for 2 

months did not develop compulsive drug intake behaviors.  Furthermore, when 

animals were forced to consume alcohol for 9-months they too did not develop 

compulsive drug-seeking behavior (Wolffgramm et al., 2000).  

There is a substantial body of evidence indicating that the development of 

tolerance is dependent on pattern of drug exposure.  For example, studies have 

shown that mice differentially develop tolerance to the stimulant effects of ethanol 

dependent on whether animals receive intermittent or continuous alcohol 
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exposure (Becker and Baros, 2006). Furthermore, these studies demonstrated 

that tolerance to stimulant effects increased with the number of chronic alcohol 

exposures as well as the total duration of exposure.  This is similar to the results 

observed in mice and rats which demonstrated that tolerance to alcohol induced 

hypothermia and motor impairment increase with higher alcohol doses as well as 

duration of exposure (Crabbe et al., 1979;Khanna et al., 1996).  The dependence 

of tolerance on pattern of drug exposure has also been described for other drugs 

such as cocaine and amphetamine and has also been shown to play a role in 

sensitization (Kokkinidis, 1984;Jones et al., 1996;Lee et al., 1998;Todtenkopf and 

Carlezon, Jr., 2006).  This suggests that pattern of drug exposure plays a 

significant role in how addiction develops to all drugs of abuse.    

 

Molecular Mechanisms Underlying Addiction 

 The quest to unravel the mechanisms underlying tolerance and 

sensitization are in the hopes that one day therapeutic interventions will be 

available that will effectively curtail craving and halt compulsive drug-seeking.  

Such potential mechanisms have been described in detail by Eric Nestler’s 

group.  Nestler’s group found that in the nucleus accumbens in response to 

chronic cocaine, alcohol, or morphine the levels of cyclic AMP and cAMP-

dependent protein kinase A increase (Terwilliger et al., 1991;Nestler, 1994). 

Moreover, the observed increases were specific to addictive drugs because other 

nonabused drugs had no effect on the cAMP-PKA system.  Interestingly, the 
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cAMP signaling pathway also increases in striatal primary cultures in response to 

chronic morphine challenge suggesting that the entire mesolimbic-dopaminergic 

pathway is not requried to mediate these effects (Hawes et al., 2006).  The fact 

that this pathway is commonly affected by several drugs of abuse suggests that 

neuroadaptations in this system play a prominent role in the motivational states 

contributing to drug abuse. 

 

In addition, many genetic factors have been shown to increase an individual’s 

likelihood of developing addiction (Bosron et al., 1993;Froehlich, 1995). 

Interestingly, the changes present in the cAMP-PKA pathway after drug exposure 

described by Nestler are also observed in naïve animals which are genetically 

predisposed to addictive behaviors.  For example, nucleus accumbens neurons 

of naïve Lewis rats have much higher levels of cAMP and PKA than Fisher rats.  

Lewis rats also self-administer alcohol, opiates, and cocaine at much higher rates 

than Fisher rats (Suzuki et al., 1988;George and Goldberg, 1989) and exhibit 

greater place preference for these drugs, a measure of drug-seeking (Guitart et 

al., 1992;Kosten et al., 1994).   

 
As described above dependency and addiction result from a mix of genetic and 

experiential factors. My data shed light on this interaction by providing both a 

potential substrate for genetic predisposition, and also an outcome of drug 

exposure (experience).  Similar to the correlation between drug-addicted rats and 

genetically predisposed rats which both have increased cAMP and PKA levels, 
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my data suggest that a greater proportion of alcohol insensitive STREX channels 

in nucleus accumbens neurons, a phenomenon induced by alcohol, may 

represent a genetic predisposition for alcoholism.  Genetic predispositions, such 

as the hypothetical increase in STREX channels I’ve described, reflect an innate 

tolerance to the effects of alcohol.  In this way, much like acquired tolerance an 

individual would be likely to consume greater amounts of the drug. Interestingly, 

STREX channels are also upregulated in response to stress, hence the name 

Stress Regulated Exon (Xie and McCobb, 1998;Lai and McCobb, 2006).  Stress 

is known to play a role in drug dependence by contributing to relapse in addicted 

subjects (Sinha, 2007;Clarke et al., 2008).  Perhaps stress also plays a role in 

drug dependence by affecting an individual’s propensity to crave drugs early in 

the addictive process.  Stress may create an experience driven genetic 

predisposition in which the number of STREX channels present throughout the 

brain is higher than in non-stressed subjects.   

 My data have shown that even short exposures to alcohol can have 

relatively long-lasting consequences.  An exposure as short as 6 hrs causes 

sustained increases in mRNA levels of STREX throughout withdrawal.  These 

channels have been shown by exogenous expression studies to be insensitive to 

alcohol (Pietrzykowski et al., 2008) and potentially explain the lack of alcohol 

sensitivity we observe during withdrawal from a 6 hr alcohol exposure.   Data 

from our lab has demonstrated that multiple mechanisms underlie BK channel 
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tolerance in the hypothalamic-neurohypophysial system and striatum.  These 

findings are summarized in Figure 2.   

 

The data presented here describe yet another mechanistic level through which 

alcohol exerts its actions on BK channels (represented in stages 4-6 of Figure 1).  

This mechanism involves a temporally dependent alcohol trigger that initiates the 

synthesis of new BK channel transcripts.  The new transcripts then code for 

alcohol insensitive channels which are subsequently inserted into the membrane 

during withdrawal from the drug.  It is unclear whether the four mechanisms; 

phosphorylation, internalization, selective degradation of mRNA, and new 

synthesis of transcript are linked by a common pathway or whether their effects 

are entirely unrelated.  Further studies will be required to dissociate these 

processes and their putative role in addiction.        
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Figure 1.  Mechanisms Underlying BK Channel Tolerance.  (1) Acute alcohol 

exposure increases BK channel activity.  Within ten minutes of alcohol exposure 

BK channels are phosphorylated and activity returns to baseline (Martin et al. 

2008, In Press PNAS). (2) Within 15 minutes of alcohol exposure miR-9 levels 

increase selectively degrading certain BK mRNA transcripts (Pietrzykowski et al., 

2008). (3)  After 3 or 6 hr of alcohol BK channel current density decreases 

reflected as a decrease in the number of channels present in the membrane 

(Pietrzykowski et al., 2004) (data shown in my dissertation). (4) Levels of STREX 

mRNA (blue) increase and remain sustained during withdrawal dependent on 

duration of alcohol exposure. (5) STREX channels (blue) are inserted in the 

membrane during withdrawal from a 6 hr exposure and underlie the alcohol 

insensitive phenotype in response to additional doses of alcohol. (6) During 

withdrawal from a 3 hr exposure to alcohol BK channels recover and are 

sensitive to ethanol (grey channels).          
 



 139

Reference List 
 

 1.  Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for 
cocaine self-administration after escalation in rats. Psychopharmacology 
(Berl) 146: 303-312. 

 2.  Akinshola BE, Yasuda RP, Peoples RW, Taylor RE (2003) Ethanol 
sensitivity of recombinant homomeric and heteromeric AMPA receptor 
subunits expressed in Xenopus oocytes. Alcohol Clin Exp Res 27: 1876-
1883. 

 3.  Armstrong WE (1995) Morphological and electrophysiological 
classification of hypothalamic supraoptic neurons. Prog Neurobiol 47: 291-
339. 

 4.  Bao L, Kaldany C, Holmstrand EC, Cox DH (2004) Mapping the BKCa 
channel's "Ca2+ bowl": side-chains essential for Ca2+ sensing. J Gen 
Physiol 123: 475-489. 

 5.  Bao L, Rapin AM, Holmstrand EC, Cox DH (2002) Elimination of the 
BK(Ca) channel's high-affinity Ca(2+) sensitivity. J Gen Physiol 120: 173-
189. 

 6.  Becker HC, Baros AM (2006) Effect of duration and pattern of chronic 
ethanol exposure on tolerance to the discriminative stimulus effects of 
ethanol in C57BL/6J mice. J Pharmacol Exp Ther 319: 871-878. 

 7.  Behrens R, Nolting A, Reimann F, Schwarz M, Waldschutz R, Pongs O 
(2000) hKCNMB3 and hKCNMB4, cloning and characterization of two 
members of the large-conductance calcium-activated potassium channel 
beta subunit family. FEBS Lett 474: 99-106. 

 8.  Benhassine N, Berger T (2005) Homogeneous distribution of large-
conductance calcium-dependent potassium channels on soma and apical 
dendrite of rat neocortical layer 5 pyramidal neurons. Eur J Neurosci 21: 
914-926. 

 9.  Benhassine N, Berger T (2008) Large-conductance calcium-dependent 
potassium channels prevent dendritic excitability in neocortical pyramidal 
neurons. Pflugers Arch. 

 10.  Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y, De 
Waard M (2000) The I-II loop of the Ca2+ channel alpha1 subunit contains 
an endoplasmic reticulum retention signal antagonized by the beta 
subunit. Neuron 25: 177-190. 



 140

 11.  Biggio F, Gorini G, Caria S, Murru L, Sanna E, Follesa P (2007) 
Flumazenil selectively prevents the increase in alpha(4)-subunit gene 
expression and an associated change in GABA(A) receptor function 
induced by ethanol withdrawal. J Neurochem 102: 657-666. 

 12.  Bitran M, Kalant H (1991) Learning factor in rapid tolerance to ethanol-
induced motor impairment. Pharmacol Biochem Behav 39: 917-922. 

 13.  Blair LA, Dionne VE (1985) Developmental acquisition of Ca2+-sensitivity 
by K+ channels in spinal neurones. Nature 315: 329-331. 

 14.  Blichenberg A, Rehbein M, Muller R, Garner CC, Richter D, Kindler S 
(2001) Identification of a cis-acting dendritic targeting element in the 
mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein 
kinase II. Eur J Neurosci 13: 1881-1888. 

 15.  Blichenberg A, Schwanke B, Rehbein M, Garner CC, Richter D, Kindler S 
(1999) Identification of a cis-acting dendritic targeting element in MAP2 
mRNAs. J Neurosci 19: 8818-8829. 

 16.  Borghese CM, Harris RA (2007) Studies of ethanol actions on 
recombinant delta-containing gamma-aminobutyric acid type A receptors 
yield contradictory results. Alcohol 41: 155-162. 

 17.  Borlikova GG, Le Merrer J, Stephens DN (2006) Previous experience of 
ethanol withdrawal increases withdrawal-induced c-fos expression in 
limbic areas, but not withdrawal-induced anxiety and prevents withdrawal-
induced elevations in plasma corticosterone. Psychopharmacology (Berl) 
185: 188-200. 

 18.  Bosron WF, Ehrig T, Li TK (1993) Genetic factors in alcohol metabolism 
and alcoholism. Semin Liver Dis 13: 126-135. 

 19.  Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW 
(2005) BK channel beta4 subunit reduces dentate gyrus excitability and 
protects against temporal lobe seizures. Nat Neurosci 8: 1752-1759. 

 20.  Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and 
functional characterization of novel large conductance calcium-activated 
potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 
275: 6453-6461. 

 21.  Brown SM, Bentcheva-Petkova LM, Liu L, Hristov KL, Chen M, Kellett WF, 
Meredith AL, Aldrich RW, Nelson MT, Petkov GV (2008) Beta-adrenergic 
relaxation of mouse urinary bladder smooth muscle in the absence of 



 141

large-conductance Ca2+-activated K+ channel. Am J Physiol Renal 
Physiol 295: F1149-F1157. 

 22.  Cazalis M, Dayanithi G, Nordmann JJ (1987) Hormone release from 
isolated nerve endings of the rat neurohypophysis. J Physiol 390: 55-70. 

 23.  Chen L, Tian L, MacDonald SH, McClafferty H, Hammond MS, Huibant 
JM, Ruth P, Knaus HG, Shipston MJ (2005) Functionally diverse 
complement of large conductance calcium- and voltage-activated 
potassium channel (BK) alpha-subunits generated from a single site of 
splicing. J Biol Chem 280: 33599-33609. 

 24.  Chu B, Anantharam V, Treistman SN (1995) Ethanol inhibition of 
recombinant heteromeric NMDA channels in the presence and absence of 
modulators. J Neurochem 65: 140-148. 

 25.  Chu B, Dopico AM, Lemos JR, Treistman SN (1998) Ethanol potentiation 
of calcium-activated potassium channels reconstituted into planar lipid 
bilayers. Mol Pharmacol 54: 397-406. 

 26.  Clarke TK, Treutlein J, Zimmermann US, Kiefer F, Skowronek MH, 
Rietschel M, Mann K, Schumann G (2008) HPA-axis activity in alcoholism: 
examples for a gene-environment interaction. Addict Biol 13: 1-14. 

 27.  Cowmeadow RB, Krishnan HR, Atkinson NS (2005) The slowpoke gene is 
necessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res 
29: 1777-1786. 

 28.  Crabbe JC, Gray DK, Young ER, Janowsky JS, Rigter H (1981) Initial 
sensitivity and tolerance to ethanol in mice: correlations among open field 
activity, hypothermia, and loss of righting reflex. Behav Neural Biol 33: 
188-203. 

 29.  Crabbe JC, Rigter H, Uijlen J, Strijbos C (1979) Rapid development of 
tolerance to the hypothermic effect of ethanol in mice. J Pharmacol Exp 
Ther 208: 128-133. 

 30.  Crowley JJ, Treistman SN, Dopico AM (2003) Cholesterol antagonizes 
ethanol potentiation of human brain BKCa channels reconstituted into 
phospholipid bilayers. Mol Pharmacol 64: 365-372. 

 31.  Crowley JJ, Treistman SN, Dopico AM (2005) Distinct structural features 
of phospholipids differentially determine ethanol sensitivity and basal 
function of BK channels. Mol Pharmacol 68: 4-10. 



 142

 32.  Csaki A, Kocsis K, Kiss J, Halasz B (2002) Localization of putative 
glutamatergic/aspartatergic neurons projecting to the supraoptic nucleus 
area of the rat hypothalamus. Eur J Neurosci 16: 55-68. 

 33.  Davies DL, Kochegarov AA, Kuo ST, Kulkarni AA, Woodward JJ, King BF, 
Alkana RL (2005) Ethanol differentially affects ATP-gated P2X(3) and 
P2X(4) receptor subtypes expressed in Xenopus oocytes. 
Neuropharmacology 49: 243-253. 

 34.  Dayanithi G, Widmer H, Richard P (1996) Vasopressin-induced 
intracellular Ca2+ increase in isolated rat supraoptic cells. J Physiol 490 ( 
Pt 3): 713-727. 

 35.  Dohrman DP, Chen HM, Gordon AS, Diamond I (2002) Ethanol-induced 
translocation of protein kinase A occurs in two phases: control by different 
molecular mechanisms. Alcohol Clin Exp Res 26: 407-415. 

 36.  Dopico AM, Anantharam V, Treistman SN (1998) Ethanol increases the 
activity of Ca(++)-dependent K+ (mslo) channels: functional interaction 
with cytosolic Ca++. J Pharmacol Exp Ther 284: 258-268. 

 37.  Dopico AM, Chu B, Lemos JR, Treistman SN (1999a) Alcohol modulation 
of calcium-activated potassium channels. Neurochem Int 35: 103-106. 

 38.  Dopico AM, Lemos JR, Treistman SN (1996) Ethanol increases the 
activity of large conductance, Ca(2+)-activated K+ channels in isolated 
neurohypophysial terminals. Mol Pharmacol 49: 40-48. 

 39.  Dopico AM, Widmer H, Wang G, Lemos JR, Treistman SN (1999b) Rat 
supraoptic magnocellular neurones show distinct large conductance, 
Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. 
J Physiol 519 Pt 1: 101-114. 

 40.  Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal 
P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-
sensitive potassium channelopathy in human epilepsy and paroxysmal 
movement disorder. Nat Genet 37: 733-738. 

 41.  Dworetzky SI, Boissard CG, Lum-Ragan JT, McKay MC, Post-Munson DJ, 
Trojnacki JT, Chang CP, Gribkoff VK (1996) Phenotypic alteration of a 
human BK (hSlo) channel by hSlobeta subunit coexpression: changes in 
blocker sensitivity, activation/relaxation and inactivation kinetics, and 
protein kinase A modulation. J Neurosci 16: 4543-4550. 



 143

 42.  Dworetzky SI, Trojnacki JT, Gribkoff VK (1994) Cloning and expression of 
a human large-conductance calcium-activated potassium channel. Brain 
Res Mol Brain Res 27: 189-193. 

 43.  Elkins T, Ganetzky B, Wu CF (1986) A Drosophila mutation that eliminates 
a calcium-dependent potassium current. Proc Natl Acad Sci U S A 83: 
8415-8419. 

 44.  Feinberg-Zadek PL, Martin G, Treistman SN (2008) BK channel subunit 
composition modulates molecular tolerance to ethanol. Alcohol Clin Exp 
Res 32: 1207-1216. 

 45.  Feinberg-Zadek PL, Treistman SN (2007) Beta-subunits are important 
modulators of the acute response to alcohol in human BK channels. 
Alcohol Clin Exp Res 31: 737-744. 

 46.  Fernandez-Fernandez JM, Tomas M, Vazquez E, Orio P, Latorre R, Senti 
M, Marrugat J, Valverde MA (2004) Gain-of-function mutation in the 
KCNMB1 potassium channel subunit is associated with low prevalence of 
diastolic hypertension. J Clin Invest 113: 1032-1039. 

 47.  Fisher TE, Bourque CW (1995) Distinct omega-agatoxin-sensitive calcium 
currents in somata and axon terminals of rat supraoptic neurones. J 
Physiol 489 ( Pt 2): 383-388. 

 48.  Follesa P, Cagetti E, Mancuso L, Biggio F, Manca A, Maciocco E, Massa 
F, Desole MS, Carta M, Busonero F, Sanna E, Biggio G (2001) Increase 
in expression of the GABA(A) receptor alpha(4) subunit gene induced by 
withdrawal of, but not by long-term treatment with, benzodiazepine full or 
partial agonists. Brain Res Mol Brain Res 92: 138-148. 

 49.  Franciolini F (1986) Patch clamp technique and biophysical study of 
membrane channels. Experientia 42: 589-594. 

 50.  Froehlich JC (1995) Genetic factors in alcohol self-administration. J Clin 
Psychiatry 56 Suppl 7: 15-23. 

 51.  Garcia-Calvo M, Knaus HG, McManus OB, Giangiacomo KM, 
Kaczorowski GJ, Garcia ML (1994) Purification and reconstitution of the 
high-conductance, calcium-activated potassium channel from tracheal 
smooth muscle. J Biol Chem 269: 676-682. 

 52.  George FR, Goldberg SR (1989) Genetic approaches to the analysis of 
addiction processes. Trends Pharmacol Sci 10: 78-83. 



 144

 53.  Ghatta S, Nimmagadda D, Xu X, O'Rourke ST (2006) Large-conductance, 
calcium-activated potassium channels: structural and functional 
implications. Pharmacol Ther 110: 103-116. 

 54.  Ghezzi A, Al Hasan YM, Larios LE, Bohm RA, Atkinson NS (2004) slo 
K(+) channel gene regulation mediates rapid drug tolerance. Proc Natl 
Acad Sci U S A 101: 17276-17281. 

 55.  Giangiacomo KM, Garcia-Calvo M, Knaus HG, Mullmann TJ, Garcia ML, 
McManus O (1995) Functional reconstitution of the large-conductance, 
calcium-activated potassium channel purified from bovine aortic smooth 
muscle. Biochemistry 34: 15849-15862. 

 56.  Grimm PR, Foutz RM, Brenner R, Sansom SC (2007) Identification and 
localization of BK-beta subunits in the distal nephron of the mouse kidney. 
Am J Physiol Renal Physiol 293: F350-F359. 

 57.  Guitart X, Beitner-Johnson D, Marby DW, Kosten TA, Nestler EJ (1992) 
Fischer and Lewis rat strains differ in basal levels of neurofilament 
proteins and their regulation by chronic morphine in the mesolimbic 
dopamine system. Synapse 12: 242-253. 

 58.  Ha TS, Jeong SY, Cho SW, Jeon H, Roh GS, Choi WS, Park CS (2000) 
Functional characteristics of two BKCa channel variants differentially 
expressed in rat brain tissues. Eur J Biochem 267: 910-918. 

 59.  Hainsworth AH, Randall AD, Stefani A (2006) Whole-cell patch clamp 
recording of voltage-sensitive Ca2+ channel currents heterologous 
expression systems and dissociated brain neurons. Methods Mol Biol 312: 
161-179. 

 60.  Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved 
patch-clamp techniques for high-resolution current recording from cells 
and cell-free membrane patches. Pflugers Arch 391: 85-100. 

 61.  Hanner M, Vianna-Jorge R, Kamassah A, Schmalhofer WA, Knaus HG, 
Kaczorowski GJ, Garcia ML (1998) The beta subunit of the high 
conductance calcium-activated potassium channel. Identification of 
residues involved in charybdotoxin binding. J Biol Chem 273: 16289-
16296. 

 62.  Hardy PA, Chen W, Wilce PA (1999) Chronic ethanol exposure and 
withdrawal influence NMDA receptor subunit and splice variant mRNA 
expression in the rat cerebral cortex. Brain Res 819: 33-39. 



 145

 63.  Hawes JJ, Narasimhaiah R, Picciotto MR (2006) Galanin attenuates cyclic 
AMP regulatory element-binding protein (CREB) phosphorylation induced 
by chronic morphine and naloxone challenge in Cath.a cells and primary 
striatal cultures. J Neurochem 96: 1160-1168. 

 64.  Isaacson JS, Murphy GJ (2001) Glutamate-mediated extrasynaptic 
inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ 
channels. Neuron 31: 1027-1034. 

 65.  Jackson MB, Konnerth A, Augustine GJ (1991) Action potential 
broadening and frequency-dependent facilitation of calcium signals in 
pituitary nerve terminals. Proc Natl Acad Sci U S A 88: 380-384. 

 66.  Jia F, Pignataro L, Harrison NL (2007) GABAA receptors in the thalamus: 
alpha4 subunit expression and alcohol sensitivity. Alcohol 41: 177-185. 

 67.  Jiang Z, Wallner M, Meera P, Toro L (1999) Human and rodent MaxiK 
channel beta-subunit genes: cloning and characterization. Genomics 55: 
57-67. 

 68.  Jin C, Woodward JJ (2006) Effects of 8 different NR1 splice variants on 
the ethanol inhibition of recombinant NMDA receptors. Alcohol Clin Exp 
Res 30: 673-679. 

 69.  Jin P, Weiger TM, Wu Y, Levitan IB (2002) Phosphorylation-dependent 
functional coupling of hSlo calcium-dependent potassium channel and its 
hbeta 4 subunit. J Biol Chem 277: 10014-10020. 

 70.  Jones SR, Lee TH, Wightman RM, Ellinwood EH (1996) Effects of 
intermittent and continuous cocaine administration on dopamine release 
and uptake regulation in the striatum: in vitro voltammetric assessment. 
Psychopharmacology (Berl) 126: 331-338. 

 71.  Kalant H (1998) Research on tolerance: what can we learn from history? 
Alcohol Clin Exp Res 22: 67-76. 

 72.  Kalluri HS, Ticku MK (1999) Effect of ethanol on phosphorylation of the 
NMDAR2B subunit in mouse cortical neurons. Brain Res Mol Brain Res 
68: 159-168. 

 73.  Kash TL, Matthews RT, Winder DG (2008) Alcohol inhibits NR2B-
containing NMDA receptors in the ventral bed nucleus of the stria 
terminalis. Neuropsychopharmacology 33: 1379-1390. 



 146

 74.  Khanna JM, Chau A, Shah G (1996) Characterization of the Phenomenon 
of rapid tolerance to ethanol. Alcohol 13: 621-628. 

 75.  Kittler JT, Chen G, Honing S, Bogdanov Y, McAinsh K, Arancibia-
Carcamo IL, Jovanovic JN, Pangalos MN, Haucke V, Yan Z, Moss SJ 
(2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to 
GABAA receptors regulates the efficacy of inhibitory synaptic 
transmission. Proc Natl Acad Sci U S A 102: 14871-14876. 

 76.  Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML (1994) Subunit 
composition of the high conductance calcium-activated potassium channel 
from smooth muscle, a representative of the mSlo and slowpoke family of 
potassium channels. J Biol Chem 269: 3921-3924. 

 77.  Knott TK, Dayanithi G, Coccia V, Custer EE, Lemos JR, Treistman SN 
(2000) Tolerance to acute ethanol inhibition of peptide hormone release in 
the isolated neurohypophysis. Alcohol Clin Exp Res 24: 1077-1083. 

 78.  Knott TK, Dopico AM, Dayanithi G, Lemos J, Treistman SN (2002) 
Integrated channel plasticity contributes to alcohol tolerance in 
neurohypophysial terminals. Mol Pharmacol 62: 135-142. 

 79.  Kokkinidis L (1984) Effects of chronic intermittent and continuous 
amphetamine administration on acoustic startle. Pharmacol Biochem 
Behav 20: 367-371. 

 80.  Korpi ER, Debus F, Linden AM, Malecot C, Leppa E, Vekovischeva O, 
Rabe H, Bohme I, Aller MI, Wisden W, Luddens H (2007) Does ethanol 
act preferentially via selected brain GABAA receptor subtypes? the current 
evidence is ambiguous. Alcohol 41: 163-176. 

 81.  Kosten TA, Miserendino MJ, Chi S, Nestler EJ (1994) Fischer and Lewis 
rat strains show differential cocaine effects in conditioned place 
preference and behavioral sensitization but not in locomotor activity or 
conditioned taste aversion. J Pharmacol Exp Ther 269: 137-144. 

 82.  Krishnamoorthy G, Shi J, Sept D, Cui J (2005) The NH2 terminus of RCK1 
domain regulates Ca2+-dependent BK(Ca) channel gating. J Gen Physiol 
126: 227-241. 

 83.  Kurachi Y, Ishii M (2004) Cell signal control of the G protein-gated 
potassium channel and its subcellular localization. J Physiol 554: 285-294. 



 147

 84.  Lai GJ, McCobb DP (2006) Regulation of alternative splicing of Slo K+ 
channels in adrenal and pituitary during the stress-hyporesponsive period 
of rat development. Endocrinology 147: 3961-3967. 

 85.  Lambert RC, Dayanithi G, Moos FC, Richard P (1994) A rise in the 
intracellular Ca2+ concentration of isolated rat supraoptic cells in response 
to oxytocin. J Physiol 478 ( Pt 2): 275-287. 

 86.  LeBlanc AE, Kalant H, Gibbins RJ (1975) Acute tolerance to ethanol in the 
rat. Psychopharmacologia 41: 43-46. 

 87.  Lee TH, Gee KR, Ellinwood EH, Seidler FJ (1998) Altered cocaine 
potency in the nucleus accumbens following 7-day withdrawal from 
intermittent but not continuous treatment: voltammetric assessment of 
dopamine uptake in the rat. Psychopharmacology (Berl) 137: 303-310. 

 88.  Leveque JC, Macias W, Rajadhyaksha A, Carlson RR, Barczak A, Kang 
S, Li XM, Coyle JT, Huganir RL, Heckers S, Konradi C (2000) Intracellular 
modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 
20: 4011-4020. 

 89.  Li DP, Pan YZ, Pan HL (2001) Acetylcholine attenuates synaptic GABA 
release to supraoptic neurons through presynaptic nicotinic receptors. 
Brain Res 920: 151-158. 

 90.  Lippiat JD, Standen NB, Harrow ID, Phillips SC, Davies NW (2003) 
Properties of BK(Ca) channels formed by bicistronic expression of 
hSloalpha and beta1-4 subunits in HEK293 cells. J Membr Biol 192: 141-
148. 

 91.  Liu J, Asuncion-Chin M, Liu P, Dopico AM (2006) CaM kinase II 
phosphorylation of slo Thr107 regulates activity and ethanol responses of 
BK channels. Nat Neurosci 9: 41-49. 

 92.  Liu P, Xi Q, Ahmed A, Jaggar JH, Dopico AM (2004) Essential role for 
smooth muscle BK channels in alcohol-induced cerebrovascular 
constriction. Proc Natl Acad Sci U S A 101: 18217-18222. 

 93.  Ludwig M, Bull PM, Tobin VA, Sabatier N, Landgraf R, Dayanithi G, Leng 
G (2005) Regulation of activity-dependent dendritic vasopressin release 
from rat supraoptic neurones. J Physiol 564: 515-522. 

 94.  MacKinnon R, Miller C (1988) Mechanism of charybdotoxin block of the 
high-conductance, Ca2+-activated K+ channel. J Gen Physiol 91: 335-
349. 



 148

 95.  Madeira MD, Sousa N, Lieberman AR, Paula-Barbosa MM (1993) Effects 
of chronic alcohol consumption and of dehydration on the supraoptic 
nucleus of adult male and female rats. Neuroscience 56: 657-672. 

 96.  Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ 
channels by co-localized Ca2+ channels in hippocampal neurons. Nature 
395: 900-905. 

 97.  Martin G, Puig S, Pietrzykowski A, Zadek P, Emery P, Treistman S (2004) 
Somatic localization of a specific large-conductance calcium-activated 
potassium channel subtype controls compartmentalized ethanol sensitivity 
in the nucleus accumbens. J Neurosci 24: 6563-6572. 

 98.  Martin GE, Hendrickson LM, Penta KL, Friesen RM, Pietrzykowski AZ, 
Tapper AR, Treistman SN (2008) Identification of a BK channel auxiliary 
protein controlling molecular and behavioral tolerance to alcohol. Proc Natl 
Acad Sci U S A. 

 99.  Matthews EA, Weible AP, Shah S, Disterhoft JF (2008) The BK-mediated 
fAHP is modulated by learning a hippocampus-dependent task. Proc Natl 
Acad Sci U S A 105: 15154-15159. 

 100.  McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, 
Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially 
distribute to somatic and dendritic compartments in rat central neurons. 
Eur J Neurosci 24: 2581-2594. 

 101.  McManus OB (1991) Calcium-activated potassium channels: regulation by 
calcium. J Bioenerg Biomembr 23: 537-560. 

 102.  Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) 
makes the large conductance, voltage- and Ca2+-activated K+ channel 
resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97: 
5562-5567. 

 103.  Meredith GE, Agolia R, Arts MP, Groenewegen HJ, Zahm DS (1992) 
Morphological differences between projection neurons of the core and 
shell in the nucleus accumbens of the rat. Neuroscience 50: 149-162. 

 104.  Meredith GE, Ypma P, Zahm DS (1995) Effects of dopamine depletion on 
the morphology of medium spiny neurons in the shell and core of the rat 
nucleus accumbens. J Neurosci 15: 3808-3820. 



 149

 105.  Mienville JM, Barker JL (1996) Immature properties of large-conductance 
calcium-activated potassium channels in rat neuroepithelium. Pflugers 
Arch 431: 763-770. 

 106.  Mody I, Glykys J, Wei W (2007) A new meaning for "Gin & Tonic": tonic 
inhibition as the target for ethanol action in the brain. Alcohol 41: 145-153. 

 107.  Mohr E, Richter D (2004) Subcellular vasopressin mRNA trafficking and 
local translation in dendrites. J Neuroendocrinol 16: 333-339. 

 108.  Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of 
death in the United States, 2000. JAMA 291: 1238-1245. 

 109.  Morris JF, Pow DV (1993) New anatomical insights into the inputs and 
outputs from hypothalamic magnocellular neurons. Ann N Y Acad Sci 689: 
16-33. 

 110.  Nagy J, Kolok S, Dezso P, Boros A, Szombathelyi Z (2003) Differential 
alterations in the expression of NMDA receptor subunits following chronic 
ethanol treatment in primary cultures of rat cortical and hippocampal 
neurones. Neurochem Int 42: 35-43. 

 111.  Naini AA, Shimony E, Kozlowski E, Shaikh T, Dang W, Miller C (1996) 
Interaction of Ca2(+)-activated K+ channels with refolded charybdotoxins 
mutated at a central interaction residue. Neuropharmacology 35: 915-921. 

 112.  Nakahara T, Hirano M, Uchimura H, Shirali S, Martin CR, Bonner AB, 
Preedy VR (2002) Chronic alcohol feeding and its influence on c-Fos and 
heat shock protein-70 gene expression in different brain regions of male 
and female rats. Metabolism 51: 1562-1568. 

 113.  Nestler EJ (1994) Molecular neurobiology of drug addiction. 
Neuropsychopharmacology 11: 77-87. 

 114.  Newton PM, Tully K, McMahon T, Connolly J, Dadgar J, Treistman SN, 
Messing RO (2005) Chronic ethanol exposure induces an N-type calcium 
channel splice variant with altered channel kinetics. FEBS Lett 579: 671-
676. 

 115.  Nie Z, Madamba SG, Siggins GR (1994) Ethanol inhibits glutamatergic 
neurotransmission in nucleus accumbens neurons by multiple 
mechanisms. J Pharmacol Exp Ther 271: 1566-1573. 

 116.  Olsen RW, Hanchar HJ, Meera P, Wallner M (2007) GABAA receptor 
subtypes: the "one glass of wine" receptors. Alcohol 41: 201-209. 



 150

 117.  Ozaita A, Martone ME, Ellisman MH, Rudy B (2002) Differential 
subcellular localization of the two alternatively spliced isoforms of the 
Kv3.1 potassium channel subunit in brain. J Neurophysiol 88: 394-408. 

 118.  Pandey SC, Roy A, Mittal N (2001) Effects of chronic ethanol intake and 
its withdrawal on the expression and phosphorylation of the creb gene 
transcription factor in rat cortex. J Pharmacol Exp Ther 296: 857-868. 

 119.  Pandey SC, Roy A, Zhang H (2003) The decreased phosphorylation of 
cyclic adenosine monophosphate (cAMP) response element binding 
(CREB) protein in the central amygdala acts as a molecular substrate for 
anxiety related to ethanol withdrawal in rats. Alcohol Clin Exp Res 27: 
396-409. 

 120.  Peoples RW, Stewart RR (2000) Alcohols inhibit N-methyl-D-aspartate 
receptors via a site exposed to the extracellular environment. 
Neuropharmacology 39: 1681-1691. 

 121.  Petrik D, Brenner R (2007) Regulation of STREX exon large conductance, 
calcium-activated potassium channels by the beta4 accessory subunit. 
Neuroscience 149: 789-803. 

 122.  Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne 
PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation 
of BK channel splice variant stability by miR-9 underlies neuroadaptation 
to alcohol. Neuron 59: 274-287. 

 123.  Pietrzykowski AZ, Martin GE, Puig SI, Knott TK, Lemos JR, Treistman SN 
(2004) Alcohol tolerance in large-conductance, calcium-activated 
potassium channels of CNS terminals is intrinsic and includes two 
components: decreased ethanol potentiation and decreased channel 
density. J Neurosci 24: 8322-8332. 

 124.  Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM (2008) Differential 
distribution of Ca(2+)-activated potassium channel beta4 subunit in rat 
brain: Immunolocalization in neuronal mitochondria. Neuroscience 153: 
446-460. 

 125.  Pohorecky LA (1985a) Effect of ethanol on urine output in rats. Alcohol 2: 
659-666. 

 126.  Pohorecky LA (1985b) Ethanol diuresis in rats: possible modifying factors. 
J Pharm Pharmacol 37: 271-273. 



 151

 127.  Prakriya M, Solaro CR, Lingle CJ (1996) [Ca2+]i elevations detected by 
BK channels during Ca2+ influx and muscarine-mediated release of Ca2+ 
from intracellular stores in rat chromaffin cells. J Neurosci 16: 4344-4359. 

 128.  Qiang M, Denny AD, Ticku MK (2007) Chronic intermittent ethanol 
treatment selectively alters N-methyl-D-aspartate receptor subunit surface 
expression in cultured cortical neurons. Mol Pharmacol 72: 95-102. 

 129.  Reinhart PH, Chung S, Martin BL, Brautigan DL, Levitan IB (1991) 
Modulation of calcium-activated potassium channels from rat brain by 
protein kinase A and phosphatase 2A. J Neurosci 11: 1627-1635. 

 130.  Ruela C, Sousa N, Madeira MD, Paula-Barbosa MM (1994) Stereological 
study of the ultrastructural changes induced by chronic alcohol 
consumption and dehydration in the supraoptic nucleus of the rat 
hypothalamus. J Neurocytol 23: 410-421. 

 131.  Ruttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, 
Knirsch M, Arntz C, Langer P, Hirt B, Muller M, Kopschall I, Pfister M, 
Munkner S, Rohbock K, Pfaff I, Rusch A, Ruth P, Knipper M (2004) 
Deletion of the Ca2+-activated potassium (BK) alpha-subunit but not the 
BKbeta1-subunit leads to progressive hearing loss. Proc Natl Acad Sci U 
S A 101: 12922-12927. 

 132.  Sailer CA, Kaufmann WA, Kogler M, Chen L, Sausbier U, Ottersen OP, 
Ruth P, Shipston MJ, Knaus HG (2006) Immunolocalization of BK 
channels in hippocampal pyramidal neurons. Eur J Neurosci 24: 442-454. 

 133.  Saito M, Nelson C, Salkoff L, Lingle CJ (1997) A cysteine-rich domain 
defined by a novel exon in a slo variant in rat adrenal chromaffin cells and 
PC12 cells. J Biol Chem 272: 11710-11717. 

 134.  Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance 
potassium channels of the SLO family. Nat Rev Neurosci 7: 921-931. 

 135.  Santhakumar V, Wallner M, Otis TS (2007) Ethanol acts directly on 
extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. 
Alcohol 41: 211-221. 

 136.  Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, 
Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, 
Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, 
Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pressure 
linked to primary hyperaldosteronism and impaired vasodilation in BK 
channel-deficient mice. Circulation 112: 60-68. 



 152

 137.  Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, 
Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer 
DP, Pedroarena CM, Storm JF, Ruth P (2004) Cerebellar ataxia and 
Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. 
Proc Natl Acad Sci U S A 101: 9474-9478. 

 138.  Schulteis G, Liu J (2006) Brain reward deficits accompany withdrawal 
(hangover) from acute ethanol in rats. Alcohol 39: 21-28. 

 139.  Shibuki K (1984) Supraoptic neurosecretory cells: synaptic inputs from the 
nucleus accumbens in the rat. Exp Brain Res 53: 341-348. 

 140.  Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry 
Rep 9: 388-395. 

 141.  Smothers CT, Clayton R, Blevins T, Woodward JJ (2001) Ethanol 
sensitivity of recombinant human N-methyl-D-aspartate receptors. 
Neurochem Int 38: 333-340. 

 142.  Suwaki H, Kalant H, Higuchi S, Crabbe JC, Ohkuma S, Katsura M, 
Yoshimura M, Stewart RC, Li TK, Weiss F (2001) Recent research on 
alcohol tolerance and dependence. Alcohol Clin Exp Res 25: 189S-196S. 

 143.  Suzuki T, Otani K, Koike Y, Misawa M (1988) Genetic differences in 
preferences for morphine and codeine in Lewis and Fischer 344 inbred rat 
strains. Jpn J Pharmacol 47: 425-431. 

 144.  Szabo G, Hoffman PL (1995) Brain-derived neurotrophic factor, 
neurotrophin-3 and neurotrophin-4/5 maintain functional tolerance to 
ethanol. Eur J Pharmacol 287: 35-41. 

 145.  Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ 
(1991) A general role for adaptations in G-proteins and the cyclic AMP 
system in mediating the chronic actions of morphine and cocaine on 
neuronal function. Brain Res 548: 100-110. 

 146.  Theodosis DT (1985) Oxytocin-immunoreactive terminals synapse on 
oxytocin neurones in the supraoptic nucleus. Nature 313: 682-684. 

 147.  Thorneloe KS, Meredith AL, Knorn AM, Aldrich RW, Nelson MT (2005) 
Urodynamic properties and neurotransmitter dependence of urinary 
bladder contractility in the BK channel deletion model of overactive 
bladder. Am J Physiol Renal Physiol 289: F604-F610. 



 153

 148.  Tian L, Coghill LS, McClafferty H, MacDonald SH, Antoni FA, Ruth P, 
Knaus HG, Shipston MJ (2004) Distinct stoichiometry of BKCa channel 
tetramer phosphorylation specifies channel activation and inhibition by 
cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 101: 11897-
11902. 

 149.  Tian L, Duncan RR, Hammond MS, Coghill LS, Wen H, Rusinova R, Clark 
AG, Levitan IB, Shipston MJ (2001) Alternative splicing switches 
potassium channel sensitivity to protein phosphorylation. J Biol Chem 276: 
7717-7720. 

 150.  Todtenkopf MS, Carlezon WA, Jr. (2006) Contribution of drug doses and 
conditioning periods to psychomotor stimulant sensitization. 
Psychopharmacology (Berl) 185: 451-458. 

 151.  Toro L, Wallner M, Meera P, Tanaka Y (1998) Maxi-K(Ca), a Unique 
Member of the Voltage-Gated K Channel Superfamily. News Physiol Sci 
13: 112-117. 

 152.  Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, 
Crespo C, Martinez-Guijarro FJ, Nacher J (2007) PSA-NCAM expression 
in the human prefrontal cortex. J Chem Neuroanat 33: 202-209. 

 153.  Wallner M, Meera P, Toro L (1996) Determinant for beta-subunit 
regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ 
channels: an additional transmembrane region at the N terminus. Proc 
Natl Acad Sci U S A 93: 14922-14927. 

 154.  Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in 
voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit 
homolog. Proc Natl Acad Sci U S A 96: 4137-4142. 

 155.  Wang G, Dayanithi G, Kim S, Hom D, Nadasdi L, Kristipati R, 
Ramachandran J, Stuenkel EL, Nordmann JJ, Newcomb R, Lemos JR 
(1997) Role of Q-type Ca2+ channels in vasopressin secretion from 
neurohypophysial terminals of the rat. J Physiol 502 ( Pt 2): 351-363. 

 156.  Wang G, Dayanithi G, Newcomb R, Lemos JR (1999a) An R-type Ca(2+) 
current in neurohypophysial terminals preferentially regulates oxytocin 
secretion. J Neurosci 19: 9235-9241. 

 157.  Wang G, Thorn P, Lemos JR (1992) A novel large-conductance Ca(2+)-
activated potassium channel and current in nerve terminals of the rat 
neurohypophysis. J Physiol 457: 47-74. 



 154

 158.  Wang J, Zhou Y, Wen H, Levitan IB (1999b) Simultaneous binding of two 
protein kinases to a calcium-dependent potassium channel. J Neurosci 19: 
RC4. 

 159.  Wang Y, Krishnan HR, Ghezzi A, Yin JC, Atkinson NS (2007) Drug-
induced epigenetic changes produce drug tolerance. PLoS Biol 5: 2342-
2353. 

 160.  Wanner SG, Koch RO, Koschak A, Trieb M, Garcia ML, Kaczorowski GJ, 
Knaus HG (1999) High-conductance calcium-activated potassium 
channels in rat brain: pharmacology, distribution, and subunit composition. 
Biochemistry 38: 5392-5400. 

 161.  Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, 
Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, 
DiStefano PS, Curtis R (2000) A novel nervous system beta subunit that 
downregulates human large conductance calcium-dependent potassium 
channels. J Neurosci 20: 3563-3570. 

 162.  Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT (2005) Erectile 
dysfunction in mice lacking the large-conductance calcium-activated 
potassium (BK) channel. J Physiol 567: 545-556. 

 163.  Widmer H, Lemos JR, Treistman SN (1998) Ethanol reduces the duration 
of single evoked spikes by a selective inhibition of voltage-gated calcium 
currents in acutely dissociated supraoptic neurons of the rat. J 
Neuroendocrinol 10: 399-406. 

 164.  Wolffgramm J, Galli G, Thimm F, Heyne A (2000) Animal models of 
addiction: models for therapeutic strategies? J Neural Transm 107: 649-
668. 

 165.  Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-
conductance calcium-activated potassium channels. Nature 418: 880-884. 

 166.  Xie J, McCobb DP (1998) Control of alternative splicing of potassium 
channels by stress hormones. Science 280: 443-446. 

 167.  Zhang Y, Joiner WJ, Bhattacharjee A, Rassendren F, Magoski NS, 
Kaczmarek LK (2004) The appearance of a protein kinase A-regulated 
splice isoform of slo is associated with the maturation of neurons that 
control reproductive behavior. J Biol Chem 279: 52324-52330. 



 155

 168.  Zhou XB, Arntz C, Kamm S, Motejlek K, Sausbier U, Wang GX, Ruth P, 
Korth M (2001) A molecular switch for specific stimulation of the BKCa 
channel by cGMP and cAMP kinase. J Biol Chem 276: 43239-43245. 

 169.  Zhou Y, Wang J, Wen H, Kucherovsky O, Levitan IB (2002) Modulation of 
Drosophila slowpoke calcium-dependent potassium channel activity by 
bound protein kinase a catalytic subunit. J Neurosci 22: 3855-3863. 

 
 


	Ethanol Sensitivity and Tolerance of Rat Neuronal BK Channels: A Dissertation
	Let us know how access to this document benefits you.
	Repository Citation

	Title Page
	Signature Page
	Abstract
	Table of Contents
	LIst Tables
	LIst of Figures
	Introduction: Alcohol Addiction and Acquired Tolerance
	Chapter I: Compartmentalized β Subunit Distribution DeterminesCharacteristics and Ethanol Sensitivity of Somatic, Dendritic,and Terminal BK Channels in the Rat CNS
	Chapter II: Persistence of Rapid Ethanol Tolerance of BK Channelsin Striatal Neurons is a Function of Exposure Time
	Cumulative Discussion
	Reference List

