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Abstract 

GM1 gangliosidosis is an autosomal recessive lysosomal storage disease, caused by a 

deficiency in the enzyme β-galactosidase.  The disease affects the CNS, liver, kidney, heart 

and skeletal system, leading to severe neurodegeneration and death.  We propose to treat 

this disorder using ex vivo hematopoietic stem cell therapy.  The effectiveness of this 

therapy requires the recruitment of transduced donor cells to the CNS.  This is only found to 

occur after mice are conditioned with total body irradiation, due to the increase in CNS 

cytokine production and blood brain barrier permeability that occurs.  As the use of total 

body irradiation in pediatric patients has been linked to future developmental problems, this 

myeloablation approach is often avoided in younger patients in favor of a conditioning 

regimen using the chemotherapy drugs, busulfan and cyclophosphamide.  Whether donor 

cells can enter the CNS when a busulfan and cyclophosphamide conditioning regimen is 

used has not been determined.  In this study we plan to quantify the cytokine and blood-

brain barrier permeability increases necessary for donor cells to be recruited to the CNS 

after total body irradiation. We will then investigate whether busulfan and 

cyclophosphamide conditioning and/or the chronic neuroinflammation present in GM1 mice 

can produce similar conditions and facilitate the recruitment of donor hematopoietic stem 

cells to the CNS.  Finally we will assess whether ex vivo hematopoietic stem cell gene 

therapy is still an effective therapy when busulfan and cyclophosphamide are used for 

myeloablative conditioning. 
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Background and Significance:  

 

GM1 Gangliosidosis 

 

GM1 gangliosidosis is an autosomal recessive lysosomal storage disease caused 

by a deficiency in the enzyme β-galactosidase (β-gal) (Suzuki et al., 2001).  This enzyme 

is responsible for hydrolyzing the terminal β-galactosyl residue from GM1 gangliosides, 

glycoproteins and glycosaminoglycans.   When enzyme activity is low or absent due to a 

mutation in the β-gal gene the ganglioside GM1 and its asialo derivative GA1 accumulate 

in the lysosomes of various tissues, particularly those of the central nervous system 

(CNS) leading to severe neurodegeneration (Brunetti-Pierri and Scaglia, 2008; Suzuki et 

al., 2001). 

GM1 gangliosidosis shows phenotypic variance, even amongst members of the 

same family, with severity being correlated to how strongly enzyme activity has been 

reduced (Suzuki et al, 1978).  The disease is classified into 3 types: (1) infantile, (2) 

juvenile and (3) adult, based on the onset of symptoms (Brunetti-Pierri and Scaglia, 

2008).   In the infantile form, which is the most prevalent form, symptoms generally 

present themselves between birth and 6 months of age.  The disease progresses very 

rapidly, with severe neurodegeneration and death often occurring a few years after onset.  

While the neurological symptoms are generally the most pronounced, skeletal dysplasia 

as well as hepatosplenomegaly are often observed in GM1 patients (Suzuki et al., 2001), 
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with cardiomyopathy appearing in around a third of patients (Brunetti-Pierri and Scaglia, 

2008)). 

The only treatment currently available to patients with GM1 gangliosidosis is to 

provide supportive care and address their symptoms (Brunetti-Pierri and Scaglia, 2008).  

As this disease’s major pathology is found in the CNS and β-gal cannot cross the blood 

brain barrier (BBB), enzyme replacement therapy is not a viable option (Samoylova et al, 

2008).  Being a recessive, single gene disorder, however, GM1 gangliosidosis is an ideal 

candidate for gene therapy.  

Gene therapy can only be considered for GM1, however, due to a critical property 

of β-gal.  Like most lysosomal enzymes, β-gal can be secrete by one cell and taken up by 

another, a process known as cross correction.  As lysosomal enzymes are produced they 

are first glycosylated in the endoplasmic reticulum and then directed to the Golgi 

apparatus.  There they receive a phosphate group on the 6 position of their terminal 

mannose residue.  This modification enables the enzyme to bind to the mannose-6-

phosphate/IGF II receptor.  Binding to this receptor allows the enzyme to be transported 

through the endocytotic pathway to its destination, the mature lysosomes.  Some of the 

enzyme, however, never makes it to the lysosome and is instead redirected to the plasma 

membrane where it is secreted from the cell.  As the mannose-6-phosphate/IGF II 

receptor is found on the surface of all cells, the enzyme can then be taken up by other 

cells and directed to their lysosomes (Broekman et al 2008; Sands and Davidson 2006).  

This phenomenon of cross correction is critically important for the application of gene 

therapy to GM1 as it allows many cells to receive the necessary enzyme when 
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significantly less transduced cells are present.  Without this process gene therapy would 

be a far less attractive treatment option for lysosomal storage diseases, including GM1. 

Researchers have taken advantage of this fact, as well as the ability of the brain to 

distribute the enzyme by diffusion, axonal transport and cerebrospinal fluid flow 

(Broekman et al., 2008), and shown great success treating the neurological aspects of the 

disease in the GM1 mouse model with strategically placed intracranial injections of AAV 

vectors capable of delivering the transgene to neurons at high efficiency (Broekman et al, 

2007; Baek et al 2010). 

While this research has shown promise for treating the neurological aspects of the 

disease, it provides no therapeutic benefit to the visceral or skeletal pathologies.  This can 

be of particular importance as patients with the infantile form of the disease have died of 

cardiac failure (Suzuki et al., 2001).  To address this issue we plan to investigate a gene 

therapy strategy that provides systemic treatment of the disease. 

 

Ex vivo Hematopoietic Stem Cell Gene Therapy 

 

Ex vivo hematopoietic stem cell (HSC) gene therapy is a strategy where a 

patient’s own HSCs are collected and then transduced with a lentiviral (LV) vector in 

vitro.  The modified HSCs are then returned to the patient as a bone marrow transplant 

(BMT).  Since a LV vector will be used, the transgene will be integrated into the bone 

marrow cell’s DNA and therefore be present in every cell derived from that progenitor.  

The transduced HSCs will reconstitute the hematopoietic system and secrete the 
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necessary transgene, thereby providing systemic correction.  Recent studies in mouse 

models have shown ex vivo gene therapy using LV vectors to be a highly successful 

systemic treatment for multiple lysosomal storage diseases with neurological components 

(Visigalli et al., 2010; Gentner et al, 2010; van Til et al. 2010) as well the 

neurodegenerative disorder metachromatic leukodystrophy (Biffi et al 2004; Biffi et al 

2006).  Notably, two patients with X-Linked Adrenoloeukodystrophy (ALD), for whom a 

matched donor could not be found, were successfully treated with autologous ex vivo 

HSC gene therapy using LV vectors (Cartier et al. 2009).   

Ex vivo HSC gene therapy has previously been used to treat GM1 gangliosidosis 

in the mouse model, although a gammaretrovirus vector was used to transduce the HSCs 

(Sano et al 2005).  Vectors derived from gammaretroviruses used in previous clinical 

trials led to cases of leukemia in 5 of the patients treated, due to insertional mutagenesis 

(Hacein-Bey-Abina et al 2003; Hacein-Bey-Abina et al 2008; Howe et al 2008).  The 

increased risk of oncogenesis with gammaretroviral vectors is believed to be a result of 

their propensity to integrate near the transcription start site of actively transcribing genes 

and the presences of strong enhancers in their long terminal repeats (Cattoglio et al 2007; 

Diechmann et al 2007; Wu et al 2003).  LV vectors, however, lack the integration 

preferences observed with gammaretroviral vectors and display low genotoxicity 

(Cattoglio et al 2007; Montini et al 2006).  The use of self-inactivating LV vectors, which 

lack intrinsic enhancer activity, also obviates the later problem (Matrai et al 2010). A 

long term study in rhesus macaques found LV vectors to result in a much more favorable 

integration profile with no cases of oligoclonal expansion or oncogenesis 4 years after 
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being transplanted (Kim et al 2009).  LV vectors were also found to transduce HSC far 

more efficiently than gammaretroviral vectors (Naldini 2009).  These features make LV 

vectors the superior choice for ex vivo gene therapy.  With the successful use of this 

treatment in other disease models and the proof of principle study done in GM1 mice, we 

plan to investigate the therapeutic potential of ex vivo gene therapy for GM1 

gangliosidosis using a more clinically applicable LV vector.   

 

Effects of Total Body Irradiation 

 

As β-gal cannot cross the BBB, the success of the proposed therapy depends on 

modified donor HSCs being recruited to the CNS, where they would cross the BBB and 

permanently establish themselves in the brain parenchyma as microglia.  These cells 

could then overexpress and secrete the necessary transgene, which would be taken up by 

the surrounding cells.  Unfortunately, studies in wildtype (WT) mice have suggested that 

donor HSCs are only able to establish themselves in the CNS when it is pre-conditioned 

with radiation (Mildner et al 2007; Ajami et al 2007).  As the use of total body irradiation 

(TBI) in pediatric patients has been linked to future developmental problems (Hopewell 

1998), this myeloablation approach is often avoided in younger patients in favor of a 

conditioning regimen using the chemotherapy drugs, busulfan (Bu) and 

cyclophosphamide (Cy) (Miano et al 2001; Prasad and Kurtzberg 2010; Shi-Xia et al, 

2010).  All the above mentioned successful mouse studies used TBI as a myeloablative 

conditioning regimen.  Whether the success observed in these studies can be replicated 
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when a Bu and Cy conditioning regimen is used has not been determined and is of critical 

importance to our proposed therapy. 

The successful human clinical trial of ex vivo gene therapy in ALD patients 

mentioned above did, however, utilize a Bu and Cy conditioning regimen.  While they 

could not directly detect donor cells in the CNS, the researchers assumed that donor cells 

did establish themselves throughout the CNS based on the phenotypic success observed.  

Lysosomal storage diseases with neurological involvement have also been treated with 

allogeneic BMT using Bu and Cy for myeloablative conditioning with mixed results 

(Begley et al 2008; Krivit et al 1999; Ehlert et al 2007; Prasad and Kurtzberg 2010).  

Partial correction of the neurological phenotype occurs in certain diseases, suggesting 

that under the right conditions donor cells may be recruited to the CNS without radiation. 

These potentially important conditions and the processes that create them remain 

unknown.    

The successful ALD trial and the trials of allogenic BMT in different lysosomal 

storage diseases, where donor cells entered the CNS without radiation, differ from the 

Mildner et al study demonstrating that donor cells could not infiltrate the CNS unless 

radiation was used in two major ways:  1) Instead of sham-irradiation, a Bu and Cy 

conditioning regimen was used. 2) Instead of performing a bone marrow transplant in 

wild-type mice, the trials were performed on diseased patients.  While the interspecies 

differences could also account for the success of the trials that did not use radiation, this 

is very unlikely as evidence suggests peripheral myeloid cells are normally excluded 

from the CNS by the blood brain barrier in non-diseased humans (Cardona et al 2008; 



7

Rezai-Zadeh et al 2009), much like they are in mice.  This suggests that either the Bu and 

Cy conditioning regimen or the effects of the diseases are creating conditions in the CNS 

similar to those observed post-TBI that facilitate the recruitment of donor cells to the 

CNS.  In this study we intend to determine the conditions post-TBI that facilitate donor 

cell recruitment to the CNS and then determine whether the Bu and Cy conditioning 

regimen and/or the effects of GM1 gangliosidosis create similar conditions and facilitate 

the recruitment of donor cells to the CNS. 

 

Changes caused by Total Body Irradiation 

 

TBI causes certain physiological changes in the CNS that promote the recruitment 

of donor cells.  Primarily, TBI causes tissue damage leading to cytokine/chemokine 

induction in the CNS and an increase in BBB permeability (Diserbo et al 2002; Li et al 

2003).   

Cytokines are small cell-signaling molecules that are secreted by cells of the 

immune system, and microglia and astrocytes in the CNS.  Chemokines are a family of 

cytokines named for their ability to induce chemotaxis.   Cells with matching chemokine 

receptors generally move along a chemokine gradient to areas of higher concentration.  

Chemokines play a prominent role in the recruitment and activation of tissue infiltrating 

leukocytes (Conductier et al 2010, Yadav et al 2010). The cytokines tumor necrosis 

factor-α (TNF-α) and Interleukin-1β (IL-1β), and chemokines CCL2 (Lee et al 2010) and 

CCL5 (Mildner et al 2007) are all upregulated in the CNS post TBI.  All of these 
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cytokines have also been implicated in leukocyte recruitment to the CNS in multiple 

disease models as detailed in a later section.   

CCL2 was the first CC motif chemokine to be discovered and is one of the most 

widely studied chemokines (Conductier et al 2010). When mice that were myeloablated 

with TBI received a transplant of HSCs from a CCR2 knockout mouse, CNS recruitment 

of donor cells was very significantly reduced, suggesting its ligand CCL2 plays a critical 

role (Mildner et al 2007).  In order for leukocytes to leave the bloodstream and enter a 

tissue, they must first firmly adhere to the surface of the vascular endothelial cells that 

make up the capillary’s walls.  CCL2 is involved in the firm adhesion process (Kuziel et 

al 1997).  Specifically, CCL2 activates β1 and β2 integrins on the cell surface of rolling 

leukocytes thereby increasing their avidity to cellular adhesion molecules on the surface 

of the vascular endothelial cells that make up the blood brain barrier (Laudanna et al 

2002; Weber et al 1996).  In addition it has been suggested that CCL2 may also play a 

role in changing the shape of the infiltrating cell to allow extravasation across the BBB 

(Weber et al 1999).  Finally, along with the role it plays in recruiting leukocytes to sites 

of neuroinflammation, CCL2 also appears to alter the distribution of the tight junction 

proteins that make up the BBB and thereby cause an increase in BBB permeability 

(Dimitrijelkovic et al 2006; Stamatovic et al 2005). 

Much like CCL2, CCL5 is also involved in the chemotaxis and firm adhesion of 

leukocytes to the surface of vascular endothelial cells  (dos Santos et al 2005).  CCL5 

activates β1 integrins on the surface of leukocytes that express the CCR5 receptor 
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(Ubogu et al 2006; Weber et al 1996).  The cells that are still recruited to the CNS post-

TBI in CCR2-/- mice most likely do so in a CCL5/CCR5 dependent manner. 

TNF-α and IL-1β are pro-inflammatory cytokines that play a central role in the 

innate immune response (Montgomery et al 2011; Shaftel et al 2007).  Both cytokines are 

found to upregulate the expression of CCL2 and key cellular adhesion molecules.  TNF-α 

has also been found to upregulate CCL5 expression in human brain endothelial cells 

(Subilea et al 2009).   They both play an important role in the recruitment of leukocytes 

to the CNS in multiple disease models (Konsman et al 2007; Larochelle et al 2011; 

Montogomery et al 2011; Shaftel et al 2007).  Leukocyte infiltration of the hippocampus 

was even observed in transgenic mice that chronically overexpress IL-1β in the 

hippocampus (Shaftel et al 2007). In addition to their role as chemokine regulators, both 

TNF-α and IL-1β appear to increase blood brain barrier permeability (Larochelle et al 

2011; Shaftel et al 2007).  

While cytokine induction clearly plays a key role in the recruitment of donor cells 

to the CNS post-TBI, a study using cuprizone treatment to induce a similar localized 

increase of cytokine production in the CNS, without overtly damaging the BBB, 

demonstrated that cytokine increases alone are not sufficient (Mildner et al 2007).  In this 

study cuprizone treatment caused the production of TNF- α, CCL2 and CCL5 at levels 

comparable to those seen post-TBI, yet donor cells were not recruited to the site of 

inflammation without precondition the CNS with TBI.  This study provides strong 

evidence that an increase in BBB permeability, beyond that created by cytokines alone, is 

also required.  The cause behind the increase in BBB permeability seen after irradiation is 
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not definitively known but most likely the result of vascular endothelial cell apoptosis (Li 

et al 2003; Li et al 2004), and disruption of the endothelial cell tight junction proteins that 

maintain the BBB (Kaya et al 2004).  As increased BBB permeability has been associated 

with increased leukocyte infiltration into the CNS (Alvarez and Teale 2006), it will most 

likely be a good indicator of when donor cell will be recruited to the CNS.  

 

Busulfan and Cyclophosphamide 

 

 Whether Bu and Cy conditioning causes an induction in CNS cytokines and 

increase in BBB permeability similar to that observed post-TBI and facilitates the 

recruitment of donor cells to the CNS has not been investigated.  Bu and Cy are 

myeloablative pre-conditioning drugs that cross-link DNA, prevent cell division and 

cause apoptosis. Both have been shown to cross the BBB (Hassan, Ehrsson et al. 1996; 

Yule, Price et al. 1997), cause damage to vascular endothelial cells (Ohtani, Nakamura et 

al. 2006; Vassord, Lapouméroulie et al. 2008; Zeng, Yan et al. 2008; Zeng, Jia et al. 

2010) and lead to cases of neurotoxicity (Morgia, Mondini et al. 2004).  While cytokine 

induction in the CNS has not been assessed to my knowledge, studies have shown the 

conditioning regimen to cause cytokine increases in the serum, although these increases 

occur later and are less drastic than those caused by TBI (Xun et al 1994).  In total these 

studies suggest that Bu and Cy conditioning may cause increased cytokine production in 

the CNS and increased BBB permeability.  In this study we plan to investigate this and 
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determine whether Bu and Cy conditioning can facilitate donor cell recruitment to the 

CNS. 

 

Leukocyte Recruitment to the CNS in Neuropathologies  

 

While once considered immunologically isolated, it is now generally accepted 

that leukocytes will enter the CNS (without the need for pre-conditioning with TBI) as a 

response to certain neuropathologies such as Alzheimer’s Disease (AD) (Town et al 

2008), multiple sclerosis (MS) (Lim 2011) and West Nile Virus (WNV) encephalitis 

(Getts et al 2008), where neuroinflammation and BBB disruption occur as the disease 

progresses.  The same four cytokines involved in the recruitment of myeloid cells to the 

CNS post-TBI (CCL2, CCL5, TNF-a and IL-B) have also been implicated in these 

diseases and appear to be required for myeloid cell entry to the CNS regardless of the 

inflammatory stimuli. 

CCL2 (Sokolova et al 2009), CCL5 (Tripathy et al 2010), TNF-α and IL-1β  

(Veerhuis et al 1999) are all upregulated in the brains of AD patients.  The recruitment of 

leukocytes to the brain was found to be dependent on CCR2 expression, in a mouse 

model of AD (El Koury 2007).  Additionally, increased numbers of leukocytes are seen 

in the brain of AD mice that either constitutively express IL-1 (Shaftel et al 2007) or lack 

transforming growth factor β-SMAD2/3 signaling (Town et al 2008). Transforming 

growth factor β is known to be an immunosuppressive cytokine that can inhibit TNF-α 
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and IL-1β production (Martiney et al 1998).  Finally BBB integrity is compromised in 

AD (Bower et al 2007; Lim 2011;Ujile et al 2003). 

Chemokines also play a prominent role in the recruitment of leukocytes to the 

CNS during WNV encephalitis.  CCL5 expression is significantly upregulated in the 

CNS of mice infected with the WNV.  Furthermore, mice lacking the CCR5 receptor 

have significantly less CNS infiltration of leukocytes and reduced survival as a result 

(Glass et al 2005).  In accordance with this research, humans with a detrimental mutation 

in the CCR5 gene were found to have a greater risk of symptomatic WNV encephalitis 

(Glass et al 2006). TNF-R1-/- mice also showed decreased survival compared to wild-

type mice when infected with WNV, suggesting TNF-α may also play a role in leukocyte 

recruitment to the CNS in this disease model (Shrestha et al 2008).  Finally, CCL2 is also 

strongly upregulated during WNV infection in mice but whether it plays a role in the 

recruitment peripheral myeloid cells to the CNS (Getts 2008) or instead simply stimulates 

proliferation of leukocytes in the bloodstream (Lim et al 2010), thereby indirectly 

increasing the number of infiltrating leukocytes found in the brain, is still a matter of 

debate.  

MS is an inflammatory disease characterized by a demyelination and axonal 

degeneration.  Leukocyte infiltration of the CNS is a cardinal sign of pathogenesis and 

chemokines appear to play a key role in the process.  While researchers have found MS 

patients to have lower levels of CCL2 in their cerebral-spinal-fluid (Malmestrom et al 

2006), CCL2 is found at increased levels in active and chronic lesions (Mahad et al 

2003).  CCL2 was found to have a major role in the disease progression of experimental 
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autoimmune encephalomyelitis (EAE) in mice, as CCL2-/- mice only receive a mild case 

of the disease with drastically reduced leukocyte recruitment to the CNS (Huang et al 

2001).  The chemokine CCL5 is also found at increased levels in lesions of MS patients 

(Sorensen 1999) and in the brains of EAE mice (dos Santos 2005), although CCR5-/- 

mice are still susceptible to EAE (Tran et al 2000).  Leukocyte adhesion was significantly 

reduced in the EAE mice model if either CCL2 or CCL5 were reduced using antibodies 

(dos Santos 2005).  BBB integrity is also compromised in MS (Lim 2011) 

The same conditions that allow peripheral myeloid cells to enter the CNS in the 

neuropathologies mentioned above may also occur in GM1 gangliosidosis.  

Neuroinflammation occurs in GM1 mice as early as two months, which is four months 

before symptoms appear. TNF-α and IL-1β were found to increase as the disease 

progresses and symptoms become more severe (Jeyakumar et al 2003).  Increases in 

CCL2 and CCL5 (along with CCR5’s two other ligands CCL3 and CCL4) were also 

observed in mice at three and four months of age (Sano et al 2005).  Finally, increases in 

BBB permeability have been observed in GM1 mice at six and eight months, although 

whether BBB permeability increases occur earlier has not been examined (Jeyakumar et 

al 2003).  In this study we plan to investigate whether the increased cytokine production 

and BBB permeability observed in GM1 mice will facilitate the recruitment of donor 

cells to the CNS and allow GM1 gangliosidosis to be treated using ex vivo gene therapy 

without the use of TBI. 
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Goals of Study 

 

In this study I plan to quantify the cytokine and BBB permeability increases 

necessary for donor HSC cells to be recruited to the CNS post-TBI. I will then investigate 

whether Bu and Cy conditioning and/or the chronic neuroinflammation present in GM1 

mice can produce similar conditions and facilitate the recruitment of donor HSC cells to 

the CNS.  Finally I will assess whether ex vivo HSC gene therapy is still an effective 

therapy when Bu and Cy are used for myeloablative conditioning, given the levels of 

neuroinflammation and BBB disruption present. 

This study will clearly define the potential of ex vivo HSC gene therapy as a 

treatment for GM1 gangliosidosis.  It will also determine the myeloablative conditioning 

strategy needed for successful treatment of the disease and provide a model for 

researchers treating other neuropathologies with BMT.  Establishing how CNS cytokine 

levels and BBB permeability effect donor cell recruitment to the CNS will provide 

researchers with parameters to use to determine whether ex vivo HSC gene therapy can 

serve as an effective therapy for their disease.  Physicians may also utilize these 

parameters to determine the appropriate myeloablation strategy (Bu and Cy or TBI) 

depending on the patient’s neuroinflammatory status.  For example if a patients CNS 

cytokine levels, as measured in their cerebral spinal fluid, are high enough to facilitate the 

recruitment of donor cells to the CNS then a Bu and Cy conditioning regimen may be 

used.  If the cytokine levels are not high enough then the negative effects of TBI must be 
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weighed against the benefits of treatment to determine whether treatment, using TBI for a 

myeloablative condition regimen, should be attempted. 

 

General Hypothesis:  The CNS cytokine production and blood-brain barrier disruption 

that occur as a result of the disease will facilitate donor cell recruitment to the CNS and 

allow GM1 gangliosidosis to be treated with ex vivo hematopoietic stem cell gene 

therapy without the use of total body irradiation.  

 

Specific Aims: 

Aim 1: Determine whether Bu and Cy conditioning creates conditions in the CNS similar 

to TBI and results in the recruitment of donor cells to the CNS 

Aim 1.1:  Determine the changes in CNS cytokine production and BBB permeability that 

occur post-TBI, and how they correlate to donor cell recruitment to the CNS 

Hypothesis:  Donor cell recruitment to the CNS will be increased when donor cells are 

injected at times of increased CNS cytokine production and BBB permeability 

Rationale:  The increased production of certain cytokines (TNF-α, IL-1β, CCL2, CCL5, 

CCL4 and CCL3) and the increase in BBB permeability that occur post-TBI both play 

important roles in the recruitment of donor cells to the CNS.  Understanding when these 

changes occur post-TBI and how they correlate to donor cell recruitment will allow us to 

gauge whether other conditioning regimes may facilitate the recruitment of donor cells 

and when the optimum time post-conditioning is to inject the donor cells.  As HSCs are 

cleared from the bloodstream within a few hours after injection (Lapidot et al 2005), 
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injecting the cells at the optimum time after myeloablation will be critical for achieving 

maximal recruitment to the CNS.   The importance of this point is further emphasized by 

the finding that progenitor cells that are not normally found in the blood stream are the 

only cells capable of permanently establishing themselves in the CNS as microglia 

(Ajami et al 2007).  Finally, if TBI is found to be required, the results of these 

experiments will show the optimum time to inject the donor cells post-TBI for maximal 

CNS recruitment. 

Experimental Design: CNS cytokine production and BBB permeability will be

measured along a time course in the brain and spinal cord of both GM1 (Hahn et al

1997) and WT (C57BL/6) mice that receive a treatment of either 8.5 Gy of TBI (Sano

et al 2005) or sham-‐TBI (Table 1). The first measurement will be 4 hours after TBI,

which is when cells would normally be injected for the BMT (Han et al 2006; Hickey

et al 1992), and will be referred to as time point 0 (Figure 1a). Subsequent

measurements will be made at 4, 12, 24, 48, and 72 hours after time point 0, as well

as 7 days after. As a control cytokine levels, BBB permeability and donor cell 

recruitment will also be assessed in three mice that receive no myeloablative treatment.  

The cytokines TNF-‐α, IL-‐1β, CCL2, CCL5, and CCR5’s other two ligands CCL4 and

CCL3 will be measured using ELISA assays. BBB permeability will be measured

using sodium fluorescein dye (376 Da) and Evans Blue dye (67 kDa) simultaneously

(Hawkins and Egleton 2006; Liu et al 2009).
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Table 1
Aim 1.1: CNS cytokine levels, BBB permeability and donor cell recruitment to the

CNS post TBI
*Time points are as follows: 0, 4, 12, 24, 48, 72, hours and 7 days (Figure 1)

*As a control cytokine levels, BBB permeability and donor cells recruitment to the
CNS will be measured in three WT and three GM1 mice that receive no

myeloablative treatment

Readout Geno
type

Myelo-‐
ablation

Cells
Injected
(106/
mouse)

Time
Point
Injected

Read-‐out
Time Points

Mice
per
Time
Point

Total
mice
per
exp

BBB
permeability

β-‐gal
-‐/-‐

TBI None n/a All Time
Points

3 21

BBB
permeability

β-‐gal
+/+

TBI None n/a All Time
Points

3 21

BBB
permeability

β-‐gal
-‐/-‐

Sham None n/a All Time
Points

3 21

BBB
permeability

β-‐gal
+/+

Sham None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
-‐/-‐

TBI None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
+/+

TBI None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
-‐/-‐

Sham None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
+/+

Sham None n/a All Time
Points

3 21

Donor cells
in CNS

β-‐gal
-‐/-‐

TBI ACTβ-‐
eGFP
HSCs

All
except 0

12 hours after
injection

3 18

Donor cells
in CNS

β-‐gal
+/+

TBI ACTβ-‐
eGFP
HSCs

All
except 0

12 hours after
injection

3 18

Donor cells
in CNS

β-‐gal
-‐/-‐

Sham ACTβ-‐
eGFP
HSCs

All
except 0

12 hours after
injection

3 18

Donor cells
in CNS

β-‐gal
+/+

Sham ACTβ-‐
eGFP
HSCs

All
except 0

12 hours after
injection

3 18
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7 days48 hours 72 hours24 hours

12 hours4 hours- 4 hours
8.5 Gy TBI

Time
Point 0

Figure 1:  (a) Time point for total body irradiation (TBI) and mea-
surements post-TBI (b)  BuCy2 myeloablation treatment schedule 
and measurement time points

A.

B.

Time
Point 0

Day -2Day -3Day -7

Busulfan 4 mg/kg daily

Cyclophosphamide 
60 mg/kg daily

7 days48 hours 72 hours24 hours

12 hours4 hours

Time
Point 0

Day -4
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To test the hypothesis that increased CNS cytokine levels and BBB

permeability will lead to increased donor cell recruitment to the CNS, 106 HSCs

isolated from a male ACTβ-eGFP mice, which constitutively expresses GFP in all 

myeloid cells,will be injected into one month old female GM1 andWTmice at all the

different time points after TBI or sham-‐TBI along the time course. Twelve hours

after the cells are injected, when all cells that are going to enter the CNS should have

already been recruited there, the mice will be perfused with 1xPBS and sacrificed.

The left hemisphere will be embedded in OTC and used to assess donor cell

presence and distribution using immunohistochemistry. This hemisphere will be

cut into 20 μm sections and stained with a GFP primary antibody to identify donor

cells. The right hemisphere will be divided into the cerebrum, cerebellum and brain

stem and used to quantify donor cell presence in these regions by flow cytometry

with a 488 nm filter. Donor cell presence in the spinal cord will be quantified by

flow cytometry as well.

Prior to completing these experiments, a preliminary experiment must be

performed to confirm that almost all the cells that are going to enter the CNS will do

so within twelve hours after being injected. While HSCs are known to leave the 

bloodstream and enter tissues a few hours after being injected and the injected donor cells 

are assumed to enter the CNS at this time, this has never been proven.  HSCs are known 

to occasionally leave tissues and reenter the bloodstream briefly after their initial exit 

(Lapidot et al 2005) but not in number sufficient to account for the amount seen in the 
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brain.  While few, if any, other options exist, we still must prove that almost all the cells 

that will establish themselves in the CNS will do so within the first 12 hours after 

injection.  This point is critical for the timing of the experiment detailed above but 

modifications can be made if unexpected results are found. 

To determine when donor cells enter the brain after being injected into the 

bloodstream, 106 HSCs isolated from ACTβ-eGFP mice will be injected into both GM1 

and wild-type C57Bl/6 mice 4 hours after they receive a does of 8.5 Gy of TBI or sham-

TBI at time point 0 (Table 2).  Three mice from each of the four groups will then be 

sacrificed at 4, 12, and 24 hours after time point 0.  Serum samples will be taken before 

sacrifice to quantify the number of GFP+ donor cells present in the blood.  Donor cell 

presence and distribution will be assessed as described above.   

Expected Results: Although they will most likely peak at different times, I expect to see 

a strong increase in cytokine production for at least the first 24 hours after TBI (Lee et al 

2010). I expect BBB permeability to be increased at time point 0, peak at 24 hours and 

then decline (Yuan et al 2003; Diserbo et al 2002).  As HSCs leave the blood stream 

within a few hours, I expect my preliminary experiment to show that almost all the cells 

that will enter the CNS will do so within 12 hours from injection.   

I expect that the greatest number of donor cells will be recruited to the CNS when 

cells are injected at the time point when BBB permeability peaks, provided strong 

cytokine production also occurs.  In general, I expect to see that increased cytokine levels 

and BBB permeability will correlate with increased donor cell recruitment to the CNS, 
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Table 2
Mice groups used in preliminary experiment to determine when donor cells enter

the CNS

Readout Geno
type

Myelo-‐
ablation

Cells
Injected
(106/
mouse)

Time
Point
Injected

Read-‐out
Time Points

Mice
per
Time
Point

Total
mice
per
exp.

Donor cells
in CNS

β-‐gal
-‐/-‐

None ACTβ-‐
eGFP
HSCs

0 4, 12, 24
hours

3 9

Donor cells
in CNS

β-‐gal
+/+

None ACTβ-‐
eGFP
HSCs

0 4, 12, 24
hours

3 9
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confirming that at least one of these readouts is a good predictive parameter for 

determining when donor cells will enter the CNS.  

Potential Problems and Alternative Approaches:  If all the donor cells that are going 

to establish themselves in the CNS have not done so by the twelve hour time point, then 

donor cell recruitment to the CNS will have to be assessed at a later time point when all 

the cells have entered the CNS such as 24 hours.  If cells are found to continual enter the 

CNS past 24 hours then donor cell presence will have to be assessed at the 12 hour time 

point as a ratio of donor cells in the CNS to donor cells in the bloodstream.  

If cytokine levels and BBB permeability are found not to correlate with donor cell 

recruitment to the CNS, then other potential chemokines and cellular adhesion molecules 

will be assessed.  If no cytokines/chemokines can be found that correlate with donor cell 

recruitment to the CNS, cytokine levels and BBB permeability will not be measured in 

future experiments and donor cell entry into the CNS will be assessed empirically by 

testing all time points.  This outcome is highly unlikely though. 

 

Aim 1.2:  Determine whether myeloablation using Bu and Cy causes changes in cytokine 

levels and BBB permeability similar to those observed with TBI, and if these changes can 

facilitate donor cell recruitment to the CNS. 

Hypothesis:  Bu and Cy conditioning will cause a slight increase CNS cytokine levels 

and BBB permeability and facilitate a slight increase of donor cell recruitment to the 

CNS but not to the levels observed post-TBI 
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Rationale: As mentioned previously, Bu and Cy cause damage to vascular endothelial 

cells, which may increase BBB permeability.  Both drugs also cross the BBB and 

occasionally cause neurotoxicity, suggesting they may also cause an increase in CNS 

cytokine levels.  Determining whether Bu and Cy conditioning causes these changes and 

facilitates the recruitment of donor cells to the CNS is critical for the application of our 

proposed therapy.  If it does result in the CNS recruitment of donor cells, these 

experiments should also identify the optimum time for injecting the cells after 

conditioning. 

 Experimental Design: The effect of Bu and Cy conditioning on BBB permeability, 

cytokine induction and donor cell recruitment to the CNS will be assessed in 1 month old 

GM1 and WT mice (Table 3).  A standard Bu and Cy conditioning regimen called BuCy2 

will be used (Mengarelli, Iori et al. 2002; Gupta, Lazarus et al. 2003). This conditioning 

regime consists of 4 mg/kg of Bu given daily for four days (days -7 to -4) followed by 60 

mg/kg of Cy given daily for two days (days -3 and -2) (Figure 1b). For a BMT, donor 

cells would normally be injected 48 hours after the last dose of Cy and this will be 

denoted as time point 0.  Measurements of CNS cytokine levels and BBB permeability 

will be performed as described in aim 1.1 along the same time course for both GM1 and 

WT mice receiving either BuCy2 conditioning or 1xPBS injections.   

 To assess donor cell recruitment to the CNS after conditioning, 106 HSCs isolated

from a male ACTβ-eGFP mice will be injected at time point 0 into both GM1 and WT 

mice receiving either BuCy2 conditioning or 1xPBS injections.  If an increase in cytokine 

induction and/or BBB permeability is found at any of the other time points after time  
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Table 3
Aim 1.2: CNS cytokine levels, BBB permeability and donor cell recruitment to the

CNS post BuCy2
*time points are as follows: 0, 4, 12, 24, 48, 72, hours and 7 days (Figure 1b)

Readout Geno
type

Myelo-‐
ablation

Cells
Injected
(106 /
mouse)

Time
Point
Injected

Read-‐out
Time
Points

Mice
per
Time
Point

Total
mice
per
exp.

BBB
permeability

β-‐gal
-‐/-‐

BuCy2 None n/a All Time
Points

3 21

BBB
permeability

β-‐gal
+/+

BuCy2 None n/a All Time
Points

3 21

BBB
permeability

β-‐gal
-‐/-‐

None
1xPBS

None n/a All Time
Points

3 21

BBB
permeability

β-‐gal
+/+

None
1xPBS

None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
-‐/-‐

BuCy2 None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
+/+

BuCy2 None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
-‐/-‐

None
1xPBS

None n/a All Time
Points

3 21

Cytokine
levels

β-‐gal
+/+

None
1xPBS

None n/a All Time
Points

3 21

Donor cells
in CNS

β-‐gal
-‐/-‐

BuCy2 ACTβ-‐
eGFP
HSCs

0 and as
indicated

12 hours
after
injection

3 3-‐21

Donor cells
in CNS

β-‐gal
+/+

BuCy2 ACTβ-‐
eGFP
HSCs

0 and as
indicated

12 hours
after
injection

3 3-‐21

Donor cells
in CNS

β-‐gal
-‐/-‐

None
1xPBS

ACTβ-‐
eGFP
HSCs

0 and as
indicated

12 hours
after
injection

3 3-‐21

Donor cells
in CNS

β-‐gal
+/+

None
1xPBS

ACTβ-‐
eGFP
HSCs

0 and as
indicated

12 hours
after
injection

3 3-‐21
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point 0, donor cells will also be injected at those time points, with cell recruitment to the 

CNS being measured as described in aim 1.1 twelve hours after the injection. As a  

control cytokine levels, BBB permeability and donor cell recruitment will also be 

assessed in three mice that receive no myeloablative treatment. 

Expected Results: I expect BuCy2 conditioning to cause increases in CNS cytokine 

levels at the 48-hour, 72-hour and 7-day time points based on the observed increase in the 

serum at these times (Xun et al 1994).  These increases will not be to the degree observed 

post-TBI though. BBB permeability may increase at the 24-hour, 48-hour, and 72-hour 

time points, coinciding with damage to vascular endothelial cells observed at these times 

(Zeng et al 2010).  These increases may be sufficient to facilitate the recruitment of donor 

cells to the CNS but probably not to the level seen post-TBI.  If increased infiltration is 

observed, it should occur when cytokine levels and BBB permeability are both increased. 

Potential Problems and Alternative Approaches: If the data suggests that either 

cytokine induction or BBB permeability may peak at a point between two time points, 

further time points may be assessed before determining when to inject the donor cells.  

 

Aim 2: Determine whether donor cells are recruited to the CNS of GM1 mice as cytokine 

production and BBB permeability change with disease progression 

Hypothesis:  Donor cells will be recruited to the CNS of GM1 mice when cytokine 

production and BBB permeability increase with disease progression.   

Rationale:  Myeloid cell infiltration of the CNS, without pre-conditioning the CNS with 

TBI, has been observed in certain neurodegenerative diseases such as AD (Town et al 
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2008), MS (Lim 2011) and WNV encephalitis (Getts et al 2008), where chronic 

neuroinflammation and increased BBB permeability occur.  Given that chronic 

neuroinflammation and increased BBB permeability have both been found to occur in the 

GM1 mouse model (Jeyakumar et al 2003), myeloid cell recruitment to the CNS may 

occur to varying degrees as the disease progresses.  Determining if, when, and to what 

degree donors cells get recruited to the CNS at different time points in disease 

progression will enable us to determine when, during the course of the disease, the 

proposed therapy may be effective without TBI. 

Experimental Design:  Cytokine levels in the CNS, BBB permeability and donor cell 

recruitment to the CNS will be assessed in 1, 2, 3, 4, and 6-month-old GM1 and WT mice 

receiving either BuCy2 treatment or 1xPBS injections (Table 4).  Cytokine levels and 

BBB permeability will be measured at the time point post-BuCy2 conditioning that was 

shown to facilitate the greatest recruitment of donor cells to the CNS from the results of 

aim 1.2.  If no time point was shown to facilitate donor cell recruitment to the CNS, then 

time point 0 will be used.  Cytokine levels and BBB permeability will be measured as 

described in aim 1. 

To assess donor cell recruitment to the CNS as the disease progresses, mice will 

receive a tail vein injection of 106 cells isolate from a ACTβ-eGFP mouse at the same 

time point after BuCy2 treatment that cytokine levels and BBB permeability were 
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Table 4
Aim 2: CNS cytokine levels, BBB permeability and donor cell recruitment to the CNS

during GM1 disease progression
*For all mice receiving BuCy2 conditioning, assays will be performed at the time

point post BuCy2 that is found in aim 1.2 to results in maximal donor cell
recruitment to the CNS. Cells will also be injected at this time point with assays

being performed one week after injection.

Experiment Geno
type

Myelo-‐
ablation

Age of Mice
(months)

Cells Injected
(106/mouse)

Mice
per
Age
Group

Total
mice
per
exp.

BBB
permeability

β-‐gal
-‐/-‐

BuCy2 1, 2, 3, 4, and
6

None 3 18

BBB
permeability

β-‐gal
+/+

BuCy2 1, 2, 3, 4, and
6

None 3 18

BBB
permeability

β-‐gal
-‐/-‐

None 1, 2, 3, 4, and
6

None 3 18

BBB
permeability

β-‐gal
+/+

None 1, 2, 3, 4, and
6

None 3 18

Cytokine levels β-‐gal
-‐/-‐

BuCy2 1, 2, 3, 4, and
6

None 3 18

Cytokine levels β-‐gal
+/+

BuCy2 1, 2, 3, 4, and
6

None 3 18

Cytokine levels β-‐gal
-‐/-‐

None 1, 2, 3, 4, and
6

None 3 18

Cytokine levels β-‐gal
+/+

None 1, 2, 3, 4, and
6

None 3 18

Donor cells in
CNS

β-‐gal
-‐/-‐

BuCy2 1 and as
indicated

GFP LV
HSCs

3 3-‐18

Donor cells in
CNS

β-‐gal
+/+

BuCy2 1 and as
indicated

GFP LV
HSCs

3 3-‐18

Donor cells in
CNS

β-‐gal
-‐/-‐

None 1 and as
indicated

GFP LV
HSCs

3 3-‐18

Donor cells in
CNS

β-‐gal
+/+

None 1 and as
indicated

GFP LV
HSCs

3 3-‐18
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measured at.  Donor cell presence and distribution in the CNS will be measured as 

described in aim 1.1 twelve hours after cells are injected. 

Expected Results:  Without BuCy2 conditioning, I expect CNS cytokine production to 

begin around 1 or 2 months of age increase up to the 6-month age group. I expect an 

increase in BBB permeability to begin at 3 or 4 months and to steadily increase as the 

disease progresses.  If BuCy2 condition is found in aim 1.2 not to effect donor cell 

recruitment to the CNS, I expect donor cell recruitment to the CNS to start to occur 

around 3 or 4 months of age, when BBB permeability begins to increase and cytokines 

are strongly induced.  If BuCy2 is found to effect donor cell recruitment to the CNS, the 

effects of myeloablative conditioning may further exacerbate the neuroinflammation that 

occurs as the disease progresses allowing for even greater recruitment of donor cells in 

the CNS at 3 and 4 months and potentially earlier recruitment as well.  The degree of 

donor cell recruitment should reach levels similar to that observed post-TBI when 

cytokine and BBB permeability levels approach the levels established in aim 1.1. 

 

Aim 3:  Determine whether ex vivo HSC gene therapy using BuCy2 as a myeloablative 

conditioning regimen can provide therapeutic benefits to GM1 mice equivalent to when 

TBI is used. 

Hypothesis:  If donor cell recruitment to the CNS is found to reach levels observed with 

TBI conditioning when BuCy2 conditioning is used in pre-symptomatic mice, then the 

therapeutic effects should be similar.  
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Rationale:  While the data gathered from aims 1 and 2 will give a better picture of how 

effective the proposed therapy may be when TBI is not used, experiments still must be 

done to directly compare the actual therapeutic benefits.  The data gathered from aims 1 

and 2 should allow for optimization of both conditioning regimens so a direct comparison 

of the therapeutic benefits can be made.  If donor cell recruitment to the CNS is not found 

to occur after BuCy2 conditioning or at any point during the disease progression of GM1 

gangliosidosis, I will compare therapeutic benefits in 1 month old mice only to insure that 

similar benefits cannot occur without donor cell recruitment to the CNS. 

Experimental Design:  To compare the efficiency of the therapy when BuCy2 

conditioning is used as opposed to TBI, the therapeutic benefits of ex vivo HSC gene 

therapy will be assessed two and six months after one month old GM1 and WT mice 

receive a BMT of modified HSCs using either TBI or BuCy2 treatment as a 

myeloablative conditioning regimen. If the results of Aim 2 suggest that donor cell 

recruitment to the CNS without TBI would be increased in older GM1 mice, the 

efficiency of the therapy using either TBI or BuCy2 treatment will also be compared in 

those age group(s).  Instead of receiving donor cells from ACTβ-eGFP mice, 

experimental groups will receive HSCs isolated from C57Bl/6 mice that have been 

transduced with LV vectors (Biffi et al 2004) to deliver either 1) the β-gal transgene 

along with a GFP transgene under control of an internal ribosome entry site (IRES) or 2) 

the mCherry transgene with the GFP transgene under control of an IRES as a control.   

Therapeutic benefits will be assessed in the treatment groups listed in Table 5, with n = 5 

for each treatment group. 
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Table 5
Aim 3: Comparison of therapeutic benefits of BMT with modified HSCs when BuCy2

is used as a myeloablative conditioning regimen vs. TBI

Experiment Genotype Myeloablation Cells injected
(106/mouse)

Mice per
group

Group 1 β-‐gal -‐/-‐ BuCy2 β-‐gal + GFP HSCs 5
Group 2 β-‐gal -‐/-‐ TBI β-‐gal + GFP HSCs 5
Group 3 β-‐gal -‐/-‐ BuCy2 GFP HSCs 5
Group 4 β-‐gal -‐/-‐ TBI GFP HSCs 5
Group 5 β-‐gal -‐/-‐ BuCy2 Unmodified HSCs 5
Group 6 β-‐gal -‐/-‐ TBI Unmodified HSCs 5
Group 7 β-‐gal -‐/-‐ None None 5
Group 8 β-‐gal +/+ None None 5
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Therapeutic benefit will be assessed by the following readouts: 

1) Donor Chimerism: Donor chimerism will be assessed using fluorescence activity cell 

sorting analysis of peripheral blood cells. 

2) Donor cells in the CNS:  Donor cell presence in the CNS will be assessed as described 

in aim 1.1.  

3) β-gal production and distribution in CNS: B-gal production and distribution in the 

CNS will be assessed by performing X-gal staining on 20 µm sections (Broekman et al 

2007).  A fluorometric assay using 4-methylumbelliferyl_β_D-galactopyranoside as a 

fluorogenic substrate for β-gal (Baek, R.C. et al 2010) will be used to quantify β-gal 

production in the brain, spinal cord, liver, spleen, heart, lungs, kidneys and serum with 

this assay.  

4) Lysosomal storage:  Lysosomal storage will be assessed histologically using Filipin 

staining (Broekman, M.L.D. et al 2007).  Individual gangliosides will be purified, 

separated and then quantified by HPTLC (Broekman, M.L.D. et al 2007) 

5) Phenotypic Correction:  Neuromotor abilities will be assessed monthly.  Rotarod 

testing will be used to assess coordination and balance (Ingram et al 1981).  Open field 

testing will be used to measure activity (Holland et al 1968).  Finally, gait disturbances 

will be assessed by painting the mice’s feet and placing them in a corridor lined with 

white paper (Tilson e al 1978). 

6) Survival Analysis:  A separate set of mice (n =5) for each group will also be used for a 

survival assay.  Weights will be measured weekly and behavioral analyses will be done 



32

monthly.  Mice will be sacrificed when they have lost 20% of their maximum body 

weight. 

Expected Results:  I expect that GM1 mice that receive treatment with BuCy2 

conditioning at 1 month will not fair as well as those that receive treatment with TBI 

conditioning due to limited donor cell recruitment to the CNS.  Mice receiving treatment 

with BuCy2 conditioning at 3or 4 months, when donor cell recruitment to the CNS 

should be much higher, should fair just as well those receiving treatment with TBI. I 

expect treatment of 6 month old mice to halt disease progression, with treatment using 

BuCy2 conditioning possibly being even more effective, as it would do less injury to the 

mice’s already damaged brain.  If the BuCy2 conditioning is found to lead to the same 

amount of donor cell recruitment to the CNS as TBI in aim 1.2, then the therapeutic 

effects of each myeloablation treatment should be the same regardless of the mouse’s 

age.  

Potential Problems and Alternative Approaches:  While the therapy is unlikely to 

reverse the neurological phenotype observed in 6 month old mice, if the results of aim 2 

suggest that donor cells are recruited to the CNS at a high level at this age, a study of the 

therapeutic benefits of BMT with modified HSCs will still be done with this age group as 

the disease will most likely not be diagnosed in patients until symptoms appear and the 

ability of this therapy to halt disease progression should be addressed.  

 

Concluding Remarks:  The results of this study should determine the therapeutic 

potential of ex vivo HSC gene therapy for treating GM1 gangliosidosis.  It will also 



33

address whether conditioning regimens may affect the outcome of the therapy for GM1 

gangliosidosis, as well as the many other neuropathologies for which this approach is 

being investigated (Biffi et al 2006; Gentner et al 2010; Visigalli et al 2010).  

Understanding how conditioning regimens effect donor cell recruitment to the CNS will 

help physicians make appropriate decisions when treating neuropathologies with BMT.  

While this study does not address mechanistically how CNS cytokine induction and 

increased BBB permeability effects donor cell recruitment to the CNS, by correlating 

these readouts to donor cell recruitment in three separate processes (TBI conditioning, 

BuCy2 conditioning and neuropathology), this study should firmly establish their link to 

donor cell recruitment to the CNS.  Establishing parameters for the degree of CNS 

cytokine production and BBB permeability increase needed for the recruitment of donor 

cells to the CNS will enable researchers to predict whether ex vivo HSC gene therapy 

will be effective for treating their disease.  Physicians may also use these parameters as a 

guideline for determining the appropriate myeloablative condition regimen to use on a 

patient-to-patient basis.  Finally the results of this study may suggest means of improving 

donor cell recruitment to the CNS, such as transiently increasing BBB permeability, and 

thus open new avenues of potential research. 
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