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ABSTRACT 
 

Small silencing RNAs function in almost every aspect of cellular biology. 

Argonaute proteins bind small RNA and execute gene silencing. The number of 

Argonaute paralogs range from 5 in Drosophila melanogaster, 8 in Homo 

sapiens to an astounding 27 in Caenorhabditis elegans. This begs several 

questions: Do Argonaute proteins have different small RNA repertoires? Do 

Argonaute proteins behave differently? And if so, how are they functionally and 

mechanistically distinct? 

 To address these questions, we examined the thermodynamic, kinetic and 

functional properties of fly Argonaute1 (dAgo1), fly Argonaute2 (dAgo2) and 

mouse Argonaute2 (mAGO2). Our studies reveal that in fly, small RNA duplexes 

sort into Argonaute proteins based on their intrinsic structures: extensively 

paired siRNA duplex is preferentially sorted into dAgo2 while imperfectly paired 

miRNA duplex is channeled into dAgo1. The sorting of small RNA is uncoupled 

from its biogenesis. This is exemplified by mir-277, which is born a miRNA but 

its extensive duplex structure licenses its entry into dAgo2. In the Argonaute 

protein, the small RNA guide partitions into functional domains: anchor, seed, 

central, 3′ supplementary and tail. Of these domains, the seed initiates binding 

to target. 

 Both dAgo2 and mAGO2 (more closely related to and a surrogate for 

dAgo1 in our studies) bind targets at astonishing diffusion-limited rates (~107–
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108 M−1s−1). The dissociation kinetics between dAgo2 and mAGO2 from their 

targets, however, are different. For a fully paired target, dAgo2 dissociates 

slowly (t½ ~2 hr) but for a seed-matched target, dAgo2 dissociates rapidly (t½ 

~20 s). In comparison, mAGO2 does not discriminate between either targets and 

demonstrates an equivalent dissociation rate (t½ ~20 min). Regardless, both 

dAgo2 and mAGO2 demonstrate high binding affinity to perfect targets with 

equilibrium dissociation constants, KD ~4–20 pM. Functionally, we also showed 

that dAgo1 but not dAgo2 silence a centrally bulged target. By contrast, dAgo2 

cleaved and destroyed perfectly paired targets 43-fold faster than dAgo1. In 

target cleavage, dAgo2 can tolerate mismatches, bulged and internal loop in the 

target but at the expense of reduced target binding affinities and cleavage rates. 

 Taken together, our studies indicate that small RNAs are actively sorted 

into different Argonaute proteins with distinct thermodynamic, kinetic and 

functional behaviors. Our quantitative biochemical analysis also allows us to 

model how Argonaute proteins find, bind and regulate their targets. 
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Chapter I: Introduction 
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A Little History About Small RNAs 
 
The phenomenon of small RNA silencing was first observed when an 

exogenously introduced transgene in plants suppressed an endogenous gene 

that bore similar sequence (Napoli et al., 1990; van der Krol et al., 1990). 

Subsequently, Fire and Mello, in a landmark paper, showed that double 

stranded RNA (dsRNA) mediated the same silencing phenomenon in C. elegans 

formally described as RNA interference (RNAi; Fire et al., 1998). Their findings 

also explained an earlier puzzling observation that either sense or antisense 

RNA injected into worms was capable of repressing gene expression (Guo and 

Kemphues, 1995). This is because the sense or antisense RNA was converted 

into dsRNA and was routed to the RNAi pathway. Since its inception, RNAi was 

found to operate in numerous species such as plants, fungi, worm, protozoa, 

fruit fly and mammalian cells (Kennerdell and Carthew, 1998; Ngo et al., 1998; 

Waterhouse et al., 1998; Hamilton and Baulcombe, 1999; Lohmann et al., 1999; 

Sanchez Alvarado and Newmark, 1999; Wianny and Zernicka-Goetz, 2000; 

Caplen et al., 2001; Elbashir et al., 2001a; Volpe et al., 2002; Wienholds et al., 

2003; Lee and Collins, 2006). Central to RNAi are small interfering RNAs (siRNA) 

processed from long dsRNAs that are introduced artificially or are virally derived 

(Fire et al., 1998; Hamilton and Baulcombe, 1999). In short, RNAi specifically 

denotes posttranscriptional regulation by siRNA that silences gene by a 

sequence homology-mediated process (Ghildiyal and Zamore, 2009). 
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Small RNAs, however, come in different flavors and the founding 

members lin-4 and let-7 were originally coined small temporal RNAs because 

their temporal expressions control developmental timings in worm (Lee et al., 

1993; Wightman et al., 1993; Reinhart et al., 2000; Pasquinelli et al., 2000). A 

flurry of search by cloning and small scale Sanger sequencing identified 

numerous species of small temporal RNAs across many organisms (Bartel, 

2004). Together with lin-4 and let-7, these small temporal RNAs were rebranded 

as microRNAs (miRNA; Lee and Ambros, 2001; Lagos-Quintana et al., 2001; Lau 

et al., 2001). Fueled by high throughput sequencing, rare species of miRNAs 

were cloned and cataloged using specific guidelines (Ambros et al., 2003). 

The advent of high throughput sequencing also ushered in the 

endogenous siRNAs (endo-siRNA; Yang and Kazazian, 2006; Ghildiyal et al., 

2008; Czech et al., 2008; Tam et al., 2008; Watanabe et al., 2008; Okamura et al., 

2008a; Okamura et al., 2008b; Chung et al., 2008). This was followed closely by 

the discovery of the germ-line specific piRNA (Aravin et al., 2001; Aravin et al., 

2006; Vagin et al., 2006; Saito et al., 2006; Girard et al., 2006; Grivna et al., 

2006; Lau et al., 2006; Batista et al., 2008; Grimson et al., 2008; Das et al., 2008). 

Both endo-siRNA and piRNA are predicted to regulate a limited number of 

protein-coding genes and were shown to target and silence transposons (Kim et 

al., 2009). In contrast, miRNAs were estimated to regulate 60% of all human 

protein coding genes (Bartel, 2009; Friedman et al., 2009). Not surprisingly,  
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Figure Legend 1.1. The guide defines the target cleavage site 

The let-7 guide (red) in the Argonaute protein (grey) binds target mRNA (black). 

Target cleavage (indicated by scissor) occurs across from nucleotide 10 (g10) 

and nucleotide 11 (g11) of the guide counting from its 5′ end.  
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small RNAs participate in numerous cellular processes such as transcription, 

assembling and maintaining chromatin structures, ensuring genome integrity 

and regulating mRNA stability. Accordingly, small RNAs function to maintain 

stem cells (Stadler and Ruohola-Baker, 2008), to promote cell differentiation (Li 

and Jin, 2009), to regulate cell proliferation (Suh and Blelloch, 2011), to fight off 

viral infection (Mlotshwa et.al., 2008) and to control cell death (Brennecke et. al., 

2003; Ghildiyal and Zamore, 2009). 

Components of Small RNA Silencing 

Small Interfering RNA: A Key Component of RNAi 

In plants, siRNAs mediate posttranscriptional silencing of viral RNAs (Hamilton 

and Baulcombe, 1999). Long dsRNA administered into fly, injected into worm, 

transfected into S2 cells or introduced in fly embryo lysate is processed into 

siRNAs by an RNase III enzyme, Dicer (Yang et al., 2000; Parrish et al., 2000; 

Hammond et al., 2000; Zamore et al., 2000; Elbashir et al., 2001b; Bernstein et 

al., 2001; Billy et al., 2001). These siRNAs are then loaded into Argonaute 

proteins, which execute RNAi (Elbashir et al., 2001a; Hammond et al., 2001; 

Hutvagner and Zamore, 2002). Biochemical studies revealed that during RNAi, 

Argonaute protein cleaves target mRNA between position 10 (t10) and position 

11 (t11) with reference to the guide siRNA (Figure 1.1; Hammond et al., 2000; 

Elbashir et al., 2001c; Elbashir et al., 2001b). The use of siRNA for gene 

silencing in mammalian cells by RNAi was an important breakthrough as it 
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bypasses the need for long dsRNA, which activates the Protein kinase R (PKR) 

response (Elbashir et al., 2001a; Williams, 1999). 

 Apart from exogenously administered siRNA, naturally occurring endo-

siRNA exists to repress both mRNA and transposons (Watanabe et al., 2006; 

Watanabe et al., 2008; Tam et al., 2008; Czech et al., 2008; Ghildiyal et al., 

2008; Okamura and Lai, 2008; Chung et al., 2008; Okamura et al., 2008a; 

Kawamura et al., 2008). These endo-siRNAs can be processed from long dsRNA 

derived from convergent transcription of overlapping genes, from a gene whose 

transcript folds into hairpin dsRNA or from the pairing between the sense and 

the antisense transcript of a pseudogene (Figure 1.2; Watanabe et al., 2006; 

Watanabe et al., 2008; Tam et al., 2008; Czech et al., 2008; Ghildiyal et al., 

2008; Okamura and Lai, 2008; Chung et al., 2008; Okamura et al., 2008a; 

Kawamura et al., 2008). 

 In fly, Dicer-2 with the help of its partner protein, R2D2 dices long dsRNA 

into siRNAs in a processive manner (Cenik et al., 2011; Welker et al., 2011). The 

siRNAs have a modal length of 21 nt that function mainly through Argonaute2 

(dAgo2; Pham et al., 2004; Lee et al., 2004b; Tomari et al., 2004a; Cenik et al., 

2011). In comparison, the biogenesis of endo-siRNAs requires in addition to 

Dicer-2, the loquacious protein isoform PD (loqs-PD; Hartig et al., 2009; 

Fukunaga et al., 2012). Dicer-2 and R2D2 also serve as the loading machinery to 

assign siRNAs into dAgo2 (Figure 1.2; Pham et al., 2004; Pham and Sontheimer, 
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2005; Tomari et al., 2004a). The analogous loading machinery for endo-siRNA is 

currently unknown. It appears that R2D2 is not required because in its absence, 

endo-siRNAs function remains unperturbed (Hartig et al., 2009). The processing 

of siRNAs by Dicer-2 and R2D2 is uncoupled from the loading of siRNAs into 

Argonaute proteins (Preall et al., 2006; Forstemann et al., 2007; Tomari et al., 

2007). The exact mechanism how Dicer-2:R2D2 complex hands over siRNA to 

dAgo2 is currently unknown. 

 The Argonaute protein receives the siRNA duplex, removes the passenger 

strand and retains the single-stranded guide to form the active enzyme (Figure 

1.2; Rand et al., 2005; Leuschner et al., 2006). The single-stranded guide strand 

in dAgo2 is then methylated on the 2′ hydroxyl group at its 3′ end by a 

methyltransferase HEN1/Pimet (Saito et al., 2007). In plants, however, HEN1 

methylates siRNAs and miRNAs prior to their loading into Argonaute proteins 

(Chen et al., 2002; Park et al., 2002; Boutet et al., 2003; Yang et al., 2006; 

Huang et al., 2009). 

MicroRNA: Tiny RNA with a Big Role in Gene Regulation 

To date, the latest released of miRBase version 19, a registry that catalogs all 

miRNAs, reports a total of 21264 precursor miRNAs hairpins that can potentially 

express 25141 mature miRNAs in human, mouse, fly, worm and in A. thaliana 

(Griffiths-Jones et al., 2006; Griffiths-Jones et al., 2008). In human, there are 

1600 precursor miRNAs hairpins and 2042 mature miRNAs entries whereas in  
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Figure 1.2 
 
 
 
 

 

 
 
Figure Legend 1.2. The three main small RNA pathways 

Adapted from Ghildiyal and Zamore, Nat. Rev. Genet., 2009. 
  

DCR 2 LOQS

DCR 2

DCR 2

RNA
Pol II

Splicing

EXP 5

pri miRNA

SAM
SAH

HEN1 AGO 1

siRNA
duplex

Long dsRNA Structured loci

siRNA pathway miRNA pathway
7m Gppp

An...AAA  

Nucleus 

 

2′OCH3
AGO2
RISC

AGO2AGO2
pre RISC

LOQS

LOQSDCR 1

AGO 1 RISC

AGO 1 preRISC

Loading
complex

miRNA miRNA* duplex

pre miRNA

Cytoplasm

Lariat
debranching

Branched
(pre mirtron)

7m Gppp

Pasha
Drosha

Drosha
cleavage

R2D2
RISC

loading
complex

DCR 2

Target Cleavage Translation repression and mRNA destabilization

piRNA pathway

SAM
SAH

HEN1

2′OCH3

Antisense piRNA precursor

3′5′

Sense piRISC

AGO3

Aub/PIWI

Exonuclease

2′OCH3 5′3′

Antisense piRISC

AGO3

Transposon mRNA

H3CO2′

+ Hsp70
Hsp90

+
Hsp70
Hsp90

C3PO

9



fly, there are 238 precursor miRNAs hairpins and 426 mature miRNA entries. 

 In mammals, 61% of miRNA genes cluster within 50 kb of one another to 

produce megaclusters (Baskerville and Bartel, 2005; Chiang et al., 2010). In 

mouse, there are four known megaclusters: one cluster on chromosome 2 with 

69 miRNA genes, one cluster on chromosome X with 18 miRNA genes and two 

clusters on chromosome 12 with 35 and 16 miRNA genes respectively 

(Calabrese et al., 2007). The remaining smaller clusters consist of an average of 

2–7 miRNA genes (Calabrese et al., 2007; Chiang et al., 2010). Approximately 

40% of miRNA genes originate from introns of annotated coding mRNAs while 

20% of miRNA genes came from introns and exons of annotated non-coding 

mRNA (Rodriguez et al., 2004; Chiang et al., 2010). These miRNAs genes are 

presumably co-transcribed with their host genes (Rodriguez et al., 2004). 

 The primary miRNA transcript (pri-miRNA) is the earliest precursor of 

miRNA. In most cases, RNA Polymerase II and in rare cases, RNA Polymerase III 

is the enzyme that transcribes pri-miRNAs (Figure 1.2; Lee et al., 2004a; Cai et 

al., 2004; Borchert et al., 2006). In the nucleus, pri-miRNAs are recognized and 

processed into precursor miRNA transcript (pre-miRNA) by the microprocessor 

complex. The microprocessor complex consists of an RNase III enzyme Drosha 

and its partner protein DGCR8 in human or Pasha in fly (Figure 1.2; Lee et al., 

2003; Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et al., 

2004; Auyeung et al., 2013). Pre-miRNAs are then exported from the nucleus 
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into the cytoplasm by exportin-5 (Figure 1.2; Zeng et al., 2005; Yi et al., 2003; 

Zeng and Cullen, 2004; Bohnsack et al., 2004; Lund et al., 2004). In the 

cytoplasm, another RNase III enzyme Dicer with its partner protein PACT or 

TRBP in human and loquacious (loqs) in fly cleaves the pre-miRNA and liberates 

the miRNA/miRNA* duplex (Figure 1.2; Jiang et al., 2005; Forstemann et al., 

2005; Saito et al., 2005; Haase et al., 2005; Lee et al., 2006). Amazingly, some 

introns are spliced and debranched directly into pre-miRNAs that are therefore 

Drosha independent (Figure 1.2). These pre-miRNAs are then exported out of 

the nucleus into the cytoplasm and similarly processed by Dicer into 

miRNA/miRNA* duplex. These intronic-derived miRNAs are called mirtrons 

(Ruby et al., 2007; Okamura et al., 2007; Berezikov et al., 2007). Ultimately, 

mature miRNA is derived from either the 5′ or the 3′ arm of the hairpin precursor 

(Bartel, 2004). 

 Unlike siRNA that is usually 21 nt, miRNA has a modal length of 22 nt. 

Unlike siRNAs that pairs extensively to target mRNA, most miRNAs exhibit 

partial sequence complementarity to their targets (Bartel, 2009). In fly, miRNA 

functions mainly via Argonaute1 (dAgo1; Okamura et al., 2004). Finally, unlike 

siRNA in dAgo2, miRNA in dAgo1 is not methylated at its 3′ end. 

Piwi-interacting RNA: Defender of the Germline 

Small RNAs bound by PIWI Argonautes are known as piRNAs, short for PIWI 

interacting RNAs (Girard et al., 2006). Currently, the detailed mechanisms of 
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piRNAs biogenesis remain unknown. They originate from piRNA clusters found 

mainly in pericentromeric heterochromatin that contain remnants of 

transposable elements (TE; Brennecke et al., 2007). Some piRNAs originate from 

the 3′ UTR of protein coding genes and from TE rooted in euchromatic regions 

of the chromosome (Brennecke et al., 2007; Saito et al., 2009; Robine et al., 

2009). Processive dicing of long dsRNA generates an siRNA population that is 

equally represented in both sense and antisense reads and demonstrates 21 nt 

phasing. In contrast, piRNA biogenesis does not require Dicer. The piRNA 

population exhibits strand bias and does not display phasing (Vagin et al., 2006). 

Compared to siRNAs and miRNAs, piRNAs are generally longer (~24–30 nt). This 

could either be due to the differences in their biogenesis or attributed to the 

protection footprints of their associated Argonaute proteins. Similar to siRNAs, 

piRNAs are methylated at their 3′ end by HEN1 (Figure 1.2; Kirino and 

Mourelatos, 2007a; Ohara et al., 2007; Kurth and Mochizuki, 2009; Kamminga et 

al., 2010; Kirino and Mourelatos, 2007b; Saito et al., 2007; Horwich et al., 2007). 

 In fly, piRNAs were first identified as products derived from the antisense 

transcripts of the Suppressor of Stellate (Su(Ste)) locus on the Y chromosome. 

These Su(Ste) piRNAs repressed the sense transcripts produced from the 

Stellate (Ste) locus on the X chromosome (Aravin et al., 2001). The piRNA 

machinery is mainly limited to gonadal tissues both in fly and animals and its 

main role is to silence selfish genetic elements and to maintain genomic integrity 

12



critical for stable transgeneration inheritance (Figure 1.2; Williams and Rubin, 

2002). Apart from understanding how piRNAs are made, current research strives 

to comprehend the functions of the abundant unique piRNA species and the 

mechanisms in which they silence their targets (Guzzardo et al., 2013). 

Argonaute Protein is the Core Effector of RNAi 

Argonaute proteins can be categorized into the Argonaute clade, the PIWI clade 

and the worm specific clade (Figure 1.3). AGO1 from Arabidopsis thaliana is the 

founding member of the Argonaute clade. The gene was isolated from an 

ethylmethanesulfonate (EMS) screen where its mutation in plants caused narrow 

leafs that resembled a squid and hence its name, Argonaute (Bohmert et al., 

1998). Genetic studies in plant, worm and fly indicated that Argonaute proteins 

are important for organismal development and for RNAi (Wilson et al., 1996; Lin 

and Spradling, 1997; Cogoni and Macino, 1997; Cox et al., 1998; Tabara et al., 

1999; Cox et al., 1998; Fagard et al., 2000; Kataoka et al., 2001; Grishok et al., 

2001; Tijsterman et al., 2002; Vastenhouw et al., 2003). 

 In vitro biochemical characterization of RNAi using Drosophila S2 cell 

extract identified the RNA-induced silencing complex (RISC) that ablated target 

mRNA in a sequence-specific manner (Hammond et al., 2000). Further analysis 

determined that RISC contains Argonaute protein (Hammond et al., 2001). 

Subsequently, Argonaute protein was shown to be the enzyme in RISC directly 

responsible for the endonucleolytic cleavage of target mRNA and is Mg2+-
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dependent (Liu et al., 2004; Song et al., 2004; Schwarz et al., 2004). 

 

Figure 1.3 
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Figure Legend 1.3. Argonaute proteins are categorized into three main 

clades by phylogeny 

Amino acid sequences of Argonaute proteins are aligned using ClustalX. Aligned 

sequences are fed into Phylip for bootstrapping, to calculate protein distance, 

and to construct consensus tree. Bootstrap percentages greater than 50% are 

indicated at the forks. Aa: Aquifex aeolicus, A. aegypti: Aedes aegypti Af: 

Archaeoglobus fulgidus At: Arabidopsis thaliana, Ce: Caenorhabditis elegans, 

Dm: Drosophila melanogaster, Hs: Homo sapiens, Kp: Kluyveromyces 

polysporus Mm: Mus musculus, Nc: Neurospora crassa, Pf: Pyrococcus furiosus, 

Sp: Schizosaccharomyces pombe, Tt: Thermus thermophilus, Twi: Tetrahymena 

Piwi Argonaute.  
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The Structure of Argonaute Protein 

Argonaute Proteins Share Similar Architecture 

Eukaryotic Argonautes consist of four distinct domains: the N-terminal, the PAZ, 

the MID, and the PIWI domains (Figure 1.4A; Carmell et al., 2002; Hutvagner and 

Simard, 2008; Cenik and Zamore, 2011). The full structures of Argonaute 

proteins with all four domains came initially from eubacteria and archaebacteria 

(Table 1.1). Ironically, the biological functions of Argonaute proteins in these 

species are still not known (Parker et al., 2004; Parker et al., 2005; Song et al., 

2004; Rivas et al., 2005; Ma et al., 2005; Yuan et al., 2006; Yuan et al., 2005; 

Rashid et al., 2007; Wang et al., 2008b; Wang et al., 2008a; Wang et al., 2009). 

Earlier attempts to solve the structures of eukaryotic Argonautes were 

successful only for the individual domains (Table 1.1; Lingel et al., 2003; Yan et 

al., 2003; Song et al., 2003; Lingel et al., 2004; Ma et al., 2004; Kiriakidou et al., 

2007; Maiti et al., 2007; Tian et al., 2011b; Simon et al., 2011; Frank et al., 2010; 

Boland et al., 2010; Frank et al., 2011; Boland et al., 2011). Recently, the full-

length structures of yeast and human AGO2 proteins were crystallized (Schirle 

and MacRae, 2012; Elkayam et al., 2012; Nakanishi et al., 2012). Comparing all 

current solved structures, archaebacterial, eubacterial and eukaryotic Argonaute 

proteins adopt similar folds. The human AGO2 structures were solved in the 

presence of the guide strands (Schirle and MacRae, 2012; Elkayam et al., 2012). 

The complete structure of mammalian Argonaute protein with both the guide  
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Table 1.1. Solved structures of Argonaute proteins 
 

Structures of Argonaute proteins 
S/N Descriptions Organisms References 
1 Argonaute2 PAZ domain 

(NMR) 
Drosophila 
melanogaster 

(Lingel et al., 
2003) 

2 Argonaute1 PAZ domain 
(NMR) 

Drosophila 
melanogaster 

(Yan et al., 2003) 

3 Argonaute2 PAZ domain (X-
Ray) 

Drosophila 
melanogaster 

(Song et al., 2003) 

4 Argonaute2 PAZ domain + 
RNA or DNA oligonucleotide 
(NMR) 

Drosophila 
melanogaster 

(Lingel et al., 
2004) 

5 PIWI Archaeoglobus 
fulgidus 

(Parker et al., 
2004) 

6 Argonaute2 PAZ domain + 
siRNA duplex (X-Ray) 

Homo sapiens (Ma et al., 2004) 

7 Argonaute protein Pyrococcus furiosus 
 

(Song et al., 2004) 

8 Argonaute protein + tungsten Pyrococcus furiosus 
 

(Rivas et al., 2005) 

9 Argonaute protein Aquifex aeolicus (Yuan et al., 2005) 
10 PIWI + siRNA guide Archaeoglobus 

fulgidus 
(Parker et al., 
2005; Ma et al., 
2005) 

11 Argonaute protein + 22 or 
26-mer siRNA 

Aquifex aeolicus (Yuan et al., 2006) 

12 Argonaute protein Aquifex aeolicus (Rashid et al., 
2007) 

13 Argonaute protein + 21 nt 
DNA guide 

Thermus 
thermophilus 

(Wang et al., 
2008) 

14 Argonaute protein + 21 nt 
DNA guide + 20 nt RNA 
target 

Thermus 
thermophilus 

(Wang et al., 
2008) 

15 Argonaute protein + 21 nt 
DNA guide + 12, 15 and 19 
nt RNA target 

Thermus 
thermophilus 

(Wang et al., 
2009) 

16 PIWI + DNA duplex Archaeoglobus 
fulgidus 

(Parker et al., 
2009) 

17 MID domain of Argonaute 
protein (QDE-2) 

Neurospora crassa (Boland et al., 
2010) 
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18 MID domain of Argonaute2  
+ nucleoside 
monophosphate 

Homo sapiens (Frank et al., 
2010) 

19 Hili PAZ (free state) and 
Hiwi1 PAZ domains + 14-mer 
RNA duplex 

Homo sapiens (Tian et al., 2011) 

20 MIWI PAZ domain + 8-mer 
RNA (NMR) 

Mus musculus (Simon et al., 
2011) 

21 MID and PIWI lobe of QDE-2 Neurospora crassa (Boland et al., 
2011) 

22 MID domain of Argonaute2 + 
cap analogues 

Homo sapiens (Frank et al., 
2011) 

23 MID domain of Argonaute1 Arabidopsis thaliana (Zha et al., 2012) 
24 Argonaute protein + RNA 

guide 
Kluyveromyces 
polysporus 

(Nakanishi et al., 
2012) 

25 Argonaute2 protein + RNA 
guide 

Homo sapiens (Schirle and 
MacRae, 2012) 

26 Argonaute2 protein + mir-
20a RNA guide 

Homo sapiens (Elkayam et al., 
2012) 
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Figure 1.4 
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Figure Legend 1.4. Predicted structure of Drosophila Ago2 

(A) The amino acid sequence of fly Ago2 is threaded using the I-TASSER online 

platform (Roy et al., 2010). The predicted structure is then superimposed onto 

the solved structure of Thermus thermophilus Argonaute with DNA guide and 

RNA target (Protein Data Bank accession code 3HO1). The additional panels 

zoom in on the seed, central and PAZ domains to reveal base pairing between 

the guide and target. (B) The functional domains of siRNA guide.  
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and target is much anticipated as it may reveal how mammalian Argonaute 

protein rearranges its structure to accommodate the target. Furthermore, it may 

disclose how mammalian Argonaute protein achieves RNA targeting specificity. 

We can predict that the Argonaute protein either makes specific contacts with 

the 2′ hydroxyl group of the ribose ring of the target RNA or that it favors an 

RNA:RNA helix of the guide:target duplex; and they are not mutually exclusive. 

The PAZ Domain Binds the 3′ end of Small RNA Guide 

The free structure of the PAZ (PIWI/Argonaute/Zwille) domain features a 

preformed deviant OB (oligonucleotide and oligosaccharide binding) fold that 

consists of a central 5-stranded β-barrel (β2–β3; β6–β8) flanked on one side by 

β1, α1, α2 and on the other by a β4, β5, α3 module (Figure 1.5; Lingel et al., 

2003; Yan et al., 2003; Song et al., 2003). 

 The β4, β5, α3 module and the central β-barrel form a cleft-like structure 

lined and stabilized by conserved aliphatic and aromatic residues. In an RNA-

bound form, these residues interact with the sugar rings of the RNA molecule by 

Van der Waals forces and stack along the faces of nucleotide bases (Lingel et al., 

2004). Electrostatic interactions were also observed between the PAZ residues 

and the non-bridging oxygen of the oligonucleotides without making specific 

contacts with base edges. This explains why the PAZ domain can bind different 

oligonucleotide sequences (Ma et al., 2004). 
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Figure 1.5 
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Figure Legend 1.5. PAZ domain of human AGO2 

The PAZ domain from human AGO2 (Protein Data Bank accession code 4F3T) 

with (top) and without (bottom) mir-20a guide (g19–g20) displayed using Pymole. 

See text for detailed descriptions.  
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 The PAZ domain binds single stranded RNA or double stranded RNA with 

3′ 2 nt overhang and has limited tolerance for bulky addition at the 3′ end of 

RNA (Ma et al., 2004; Lingel et al., 2003; Yan et al., 2003). In PIWI Argonaute, 

the RNA binding pocket of the PAZ domain widen to accommodate the 2′-O-

methyl group added to the 3′ end of piRNAs (Tian et al., 2011b; Simon et al., 

2011). The PAZ domain alone binds RNA with low micromolar affinity whereas 

the full mammalian Argonaute protein binds miRNA at low nanomolar affinity 

(Tan et al., 2009; Lima et al., 2009). Therefore, the PAZ domain is neither the 

main nor the only site that holds onto the small RNA guide (Lingel et al., 2003; 

Yan et al., 2003; Song et al., 2003; Ma et al., 2004). 

The Catalytic Residues Sit In The Highly Conserved PIWI Domain 

The general architecture of the PIWI domain is composed of central β-sheets 

closed in on both sides by α-helices similar to that observed in HIV integrase, E. 

coli RuvC, RNase H1 and RNase H2 (Figure 1.6; Yang and Steitz, 1995; Parker 

et al., 2004; Rivas et al., 2005; Nowotny, 2009). The PIWI domain is also the 

most conserved domain among Argonaute proteins and it adopts an RNase H 

fold that harbors the catalytic residues responsible for target cleavage (Figure 

1.6; Song et al., 2004; Liu et al., 2004). Target cleavage requires Mg2+ ions and 

can potentially be mediated by a two-metal-ion mechanism (Figure 1.7; Steitz 

and Steitz, 1993; Schwarz et al., 2004; Rivas et al., 2005). One Mg2+ ion 

produces the hydroxide ion from water molecule for in-line nucleophilic attack 
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Figure 1.6 
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Figure Legend 1.6. PIWI domain of human AGO2 

The PIWI domain from human AGO2 (Protein Data Bank accession code 4F3T) 

has similar folds to PIWI domain from Pyrococcus furiosus, RNase H1, RNase 

H2, HIV Integrase, and RuvC. The catalytic residues (D597, D669 and H807) in 

the PIWI domain of human AGO2 are displayed as red sticks. See text for 

detailed descriptions. Examples are taken from Nowotny, EMBO Rep, 2009. 
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Figure 1.7 
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Figure Legend 1.7. Divalent metal ions mediate cleavage at the catalytic 

site 

Two divalent metal ions positioned by three conserved aspartate residues 

facilitate target mRNA cleavage by phosphoryl transfer reaction. Metal ion X2+ 

activates a water molecule (OH−) for in-line attack on the scissile phosphate and 

makes bond contact to the pro-Rp non-bridging oxygen. Metal ion Y2+ stabilizes 

the trigonal bipyramidal arrangement of the scissile phosphate intermediate 

through bond contact with the bridging and to the pro-Sp non-bridging oxygen. 

Metal Y2+ also facilitates the departure of the oxyanion intermediate. D546 

coordinates metal ion Y2+ while D660 coordinates X2+ but D478 makes contact 

with both metal ions. For an RNA target, R = OH. In fly and human AGO2, a 

histidine residue replaces the third aspartate residue. 
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on the scissile phosphate while the other Mg2+ ion stabilizes the pentacovalent 

transition state and facilitates the leaving of the 3′ oxyanion group (Figure 1.7; 

Steitz and Steitz, 1993; Nowotny and Yang, 2009). Eventually, the cleaved RNA 

is left with a 5′ phosphate and a 3′ hydroxyl group (Martinez and Tuschl, 2004). 

 The residues in the PIWI domain make numerous contacts with the 

phosphodiester backbone of the guide strand; contacts among the protein 

residues and the nucleobases are scarce (Wang et al., 2008a). This therefore 

allows Argonaute proteins to capture RNA guides with different sequences. In 

the structure of human AGO2, residues in the PIWI domain interact with the 2′ 

hydroxyl group of the sugar moiety of the guide strand, which may explain why 

RNA instead of DNA guide is preferred. The guide strand interacts extensively 

with the PIWI and MID domains, which preorder the seed sequence (g2–g8) so 

that it can bind its target at a reduced entropic cost (Parker et al., 2009). In 

contrast, residues in the PIWI domain make minimal contact with the target thus 

allowing the target to dissociate after its cleavage (Parker et al., 2009; Ma et al., 

2005; Wang et al., 2008a). The minimal contact with target also explains why 

Argonaute protein tolerated bulged loop in the target but not in the guide strand 

(Wang et al., 2008a). 

The MID Domain Selects for Small RNA Guide 

The MID domain adopts a Rossmann-like fold with 4 alternating α-helices and 

β-strands (Figure 1.8A). The β-strands form the domain core sandwiched by the 
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Figure 1.8 
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Figure Legend 1.8. The MID and N-terminal domains flank the 5′ and 3′ end 

of the siRNA guide respectively 

(A) The 5′ phosphate of the guide nucleotide interacts with conserved residues 

of the MID domain. The first nucleotide is unpaired and is accommodated in the 

MID domain by the specificity loop. The MID domain is from human AGO2 

(Protein Data Bank accession code 4F3T). (B) The MID domain accommodates 

uracil (U) and adenine (A) as the first nucleotide of the guide strand. The 

specificity loop clashes with cytosine (C) and guanine (G) as the first nucleotide 

of the guide strand. (C) The N terminal domains blocks guide:target (g16:t16) 

pairing in Thermus thermophilus Argonaute (Protein Data Bank accession code 

3HK2). (D) Residues in N-terminal domain and linker 1 of human Ago2 required 

to separate siRNA duplex are shown as red sticks.  
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α-helices (Frank et al., 2010; Boland et al., 2010). In human AGO2, a specificity 

loop between β3 and α3 selects for guide strand that begins with either a uracil 

or an adenine but clashes with a cytosine or a guanine (Figure 1.8B; Frank et al., 

2010). The specificity loops are also present in plant Argonaute proteins and 

most likely also exist in worm and fly Argonaute proteins given that first 

nucleotide bias are observed in small RNA guides isolated from Argonaute 

proteins in these species (Lau et al., 2001; Ghildiyal et al., 2008; Montgomery et 

al., 2008; Mi et al., 2008; Ghildiyal et al., 2009). It will be interesting to test if loop 

or domain swap among Argonaute proteins alter their first nucleotide 

preferences and their small RNA repertoires in worm and fly. 

The MID and PIWI Domains Cooperate to Anchor the 5′ end of Small RNA 

Guide 

Together, the MID and the PIWI domain constitute the PIWI fold (Figure 1.4A; 

Parker et al., 2004). The interface between the MID and the basic conserved 

pocket of the PIWI domain anchors the 5′ phosphate end of the siRNA guide. 

The 5′ phosphate of the first nucleotide (g1) and the phosphodiester group 

linking the second (g2) and the third (g3) nucleotides of the guide strand are 

coordinated by magnesium (Mg2+) ions with the aid of several conserved 

residues in the PIWI fold. This configuration distorts the trajectory of g1 from the 

rest of the guide nucleotides and prevents base pairing to the corresponding t1 

target nucleotide (Figures 1.4A and 1.8A; Parker et al., 2005; Ma et al., 2005). 
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Therefore, a first nucleotide mismatch will not affect target binding and cleavage 

by Argonaute proteins (Haley and Zamore, 2004; Wee et al., 2012). Furthermore, 

bioinformatics analysis of miRNA target indicates a preference for an adenosine 

at t1 regardless of its potential to pair with g1 of the guide (Lewis et al., 2005).  

 Taking reference from the 5′ anchor, Argonaute cleaved its target across 

from g10 and g11 of the guide (Figure 1.1; Elbashir et al., 2001c; Elbashir et al., 

2001b; Haley and Zamore, 2004). In the absence of the 5′ phosphate on the 

guide strand, human AGO2 can cleave its target at the wrong site—1 nt 

upstream of the actual scissile phosphate. This suggests that the 5′ phosphate 

is required to ensure that the guide is securely attached to the MID-PIWI 

interface to prevent guide slippage so as to enforce cleavage site fidelity (Rivas 

et al., 2005). 

The N-terminal Domain Pries Open siRNA duplex  

The PIWI, the MID and the N-terminal domain form a crescent-like base (Figure 

1.8D). The PAZ domain sits above the crescent connected by a three-stranded 

antiparallel β sheet stalk that defines the linker 1 domain (Figure 1.8D). The 

Argonaute structure of Thermus thermophilus in the presence of a DNA guide 

and an RNA target revealed that the N-terminal domain prohibits base pairing 

beyond nucleotide 16 (Figure 1.8C; Wang et al., 2009). In Kluyveromyces 

polysporus Argonaute, a modeled A-form duplex appeared unobstructed by the 

N-terminal domain (Nakanishi et al., 2012). These data suggest that the extent of 
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guide:target pairing may differ among Argonaute proteins of eubacterial and of 

eukaryotes origin. 

 Biochemical analysis of N-terminal mutants suggests that the N-terminal 

domain drives duplex separation during human AGO2 assembly (Figure 1.8D; 

Kwak and Tomari, 2012). In these mutants, passenger strand cleavage was 

compromised and remained trapped in the Argonaute protein. Subsequent 

cleavage of target and the released of the sliced mRNA, however, were not 

affected. These contradictory results between passenger strand and target 

mRNA removal from Argonaute proteins suggest that passenger strand and 

target when bound to the guide strand may be topologically different. 

The Making of an Active Argonaute Protein 

RISC Assembly in Fly Consumes ATP 

The process of RISC assembly is well studied in fly (Kawamata and Tomari, 

2010). It begins when Dicer-2 uses ATP to process long dsRNA into siRNAs 

(Figure 1.2; Zamore et al., 2000; Nykanen et al., 2001). The RISC loading 

complex (RLC) that consists of Dicer-2 with the help of its partner protein R2D2 

accomplishes the loading of siRNAs into dAgo2 (Figure 1.2; Liu et al., 2003; 

Pham et al., 2004; Tomari et al., 2004a; Pham and Sontheimer, 2005). The 

processing and the loading of siRNAs into dAgo2, however, are uncoupled 

(Preall et al., 2006; Forstemann et al., 2007; Tomari et al., 2007). During loading, 

the RLC senses the thermodynamically asymmetric ends of the siRNA duplex 
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such that Dicer-2 binds the least stable end whereas R2D2 binds the more 

stable ends (Tomari et al., 2004b). This defines the orientation of the duplex 

when it gets transferred into dAgo2. The exact mechanism how the RLC hands 

over the siRNA duplex to dAgo2 is unknown. Eventually, the RNA with the less 

stable 5′ end lies closer to Dicer-2 and is retained in dAgo2 as the guide while 

the complementary passenger strand is discarded. 

 Unfortunately, there are no solved structures for mammalian Dicer or for its 

partner proteins. The general architecture of the Dicer came from electron 

micrograph (EM) that described an L-shaped particle consisting of a head, a 

body and a base with an extended arm (Figure 1.9; Lau et al., 2009; Wang et al., 

2009; Lau et al., 2012). The PAZ domain sits in the head, the RNase III domains 

localize to the end of the body that connects to the helicase domains that 

occupy the base with the protruding arm (Figure 1.9B; Lau et al., 2012). Docking 

of the Thermus thermophilus Argonaute onto the EM of Dicer suggests that 

Argonaute binds close to the body of Dicer and spans the distance between the 

head and the base regions of Dicer (Figure 1.9B; Wang et al., 2009). It will be a 

challenge to capture and to crystallize snapshots of the interactions in order to 

reveal how Dicer hands over the siRNA duplex to Argonaute proteins. 

Heat Shock Proteins Assist in RISC Assembly 

The loading of siRNA duplex into Argonaute protein requires ATP. Recent 

studies demonstrated that the heat shock chaperone machinery (hsc70/hsp90) 
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Figure 1.9 
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Figure Legend 1.9. Dicer adopts an L-shaped structure 

(A) The domains organization of fly and human Dicer (B) Electron micrograph 

indicated that Dicer adopts an L-shaped structure that may interact with 

Argonaute protein that straddles between the head and the base regions of 

Dicer (Lau et al., 2009). 
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functions in the loading process (Figure 1.2; Johnston et al., 2010; Iki et al., 

2010; Iwasaki et al., 2010; Miyoshi et al., 2010). Hsc70 and hsp90 contain 

ATPase domains that may explain why ATP is consumed during RISC assembly. 

Specific inhibitors of heat shock proteins such as geldanamycin, radicicol and 

17-N-Allylamino-17-demethoxygeldanamycin (17AAG) inhibit interactions of 

heat shock proteins with Argonaute proteins. These inhibitors also prevent 

loading of siRNA or miRNA duplex into Argonaute proteins (Roe et al., 1999; Iki 

et al., 2010; Iwasaki et al., 2010; Miyoshi et al., 2010). By contrast, these 

inhibitors did not affect processes downstream of duplex loading: preassembled 

RISC in the presence of these inhibitors retains ability to remove passenger 

strand and to perform target cleavage (Iwasaki et al., 2010; Miyoshi et al., 2010). 

While components of the heat shock protein machinery interact with the N-

terminal domain of Argonaute protein, the RNase III domains of Dicer-2 interact 

with the PIWI domain of Argonaute protein (Tahbaz et al., 2004; Tahbaz et al., 

2001). Using the energy from ATP hydrolysis, heat shock proteins may pry open 

Argonaute protein so that it can receive the siRNA duplex from the RLC. 

 In the absence of heat shock proteins, Argonaute proteins are destabilized 

and mislocalized from P-bodies and stress granules (Tahbaz et al., 2001; Pare et 

al., 2009; Johnston et al., 2010). The loss of hsp90 also perturbed piRNA 

biogenesis and mutagenic transposons became derepressed (Specchia et al., 

2010). The molecular explanations for these defects, however, are not known. 
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Future experiments will need to address if these defects stem from the failure to 

load small RNAs. At least one study suggests that an Argonaute protein free of 

small RNA guide is targeted for degradation by autophagy (Gibbings et al., 

2012). 

Passenger Strand Removal Signifies RISC Maturation 

An Argonaute protein laden with siRNA duplex is also known as a pre-RISC and 

it matures into active Argonaute protein when it removes the passenger strand 

(Rand et al., 2005; Leuschner et al., 2006). Fly and human AGO2 proteins cleave 

and remove the passenger strand efficiently (Figure 1.1). Fly Ago1 has weak 

catalytic activity and human AGO1, AGO3 and AGO4 have lost their catalytic 

activities either remove the passenger strands of perfectly paired siRNA 

duplexes inefficiently or they fail to do so. Introducing mismatches in the siRNA 

duplex weakens the stability of the duplex and facilitates the eviction of the 

passenger strand (Kawamata et al., 2009; Yoda et al., 2009). Interestingly, the 

conversion of pre-RISC to mature RISC does not consume ATP. 

 Recent studies identified Component 3 promoter of RISC (C3PO) that 

helped remove cleaved passenger strand (Liu et al., 2009). C3PO is an 

octameric complex of 6 Translin and 2 Trax modules (Figure 1.10). It is an Mg2+-

dependent endoribonuclease with conserved catalytic residues that resides on 

the lumenal side of Trax (Liu et al., 2009; Tian et al., 2011a; Ye et al., 2011). In 

addition, the Trax-Translin complex also processes pre-tRNA (Li et al., 2012). 
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Figure 1.10 
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Figure Legend 1.10. Human C3PO is an octameric complex 

The octameric structure of C3PO consists of 2 Trax (yellow and orange) and 6 

Translin subunits (green). The catalytic residues located on the Trax subunits are 

shown as red sticks and are found within the internal confines of C3PO. One 

Trax subunit that is made up of 6 α-helices is shown. 
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Most recent structural-functional insights into its role in RISC activation came 

from a close homolog of the Trax-Translin complex in Archaeoglobus fulgidus 

crystallized with bound RNA duplex (Parizotto et al., 2013). The study, however 

fails to address how the ~200 kDa mega molecular structure of C3PO that binds 

and cleaves both strand of the duplex is able to cooperate with Argonaute (~100 

kDa) and to selectively remove only the passenger strand. 

How does small RNA silencing work? 

Mechanism of RNAi: The Two State Hypothesis 

Based on both structural and biochemical data, it was proposed that Argonaute 

protein implements RNAi via a two-state model (Tomari and Zamore, 2005; 

Filipowicz, 2005). In the Argonaute protein, the 5′ phosphate of the single 

stranded guide is lodged between the interface of the MID and PIWI domain 

whereas its 3′ end is held by the PAZ domain (Figures 1.1 and 1.4A; Lingel et al., 

2003; Yan et al., 2003; Song et al., 2003; Tomari et al., 2004b; Ma et al., 2004; 

Parker et al., 2005; Ma et al., 2005). The doubly anchored guide strand is 

constrained to initiate target binding using limited base nucleotides commonly 

known as the seed sequence (Figure 1.1). 

 Seed sequence spans nucleotide 2 (g2) to nucleotide 8 (g8) measured from 

the 5′ end of the guide strand (Bartel, 2009; Haley and Zamore, 2004; Ameres et 

al., 2007; Wee et al., 2012). The binding of target only in the seed sequence 

constitutes the first state. In addition to seed pairing, base pairing in the central 
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and 3′ supplementary region of the guide are crucial for target cleavage (Elbashir 

et al., 2001c; Haley and Zamore, 2004; Schwarz et al., 2006; Wee et al., 2012). 

Accordingly, base pairing has to propagate beyond the seed and into the 3′ end 

of the guide during RNAi. In the process, the 3′ end of the guide strand is 

expelled from the PAZ domain (Wang et al., 2008a; Wang et al., 2009). This is 

because the guide strand when fully paired is most likely topologically at odds 

with it being double anchored. Structural rearrangement of the Argonaute 

protein accompanied the repositioning of the guide strand in order to 

accommodate and to position the target for cleavage (Wang et al., 2009). After 

these remodeling steps, Argonaute protein achieves the second state (Figure 

1.1). 

 Argonaute protein is a Mg2+-dependent endonuclease that cleaves target 

mRNA across from g10 and g11 of the guide strand (Figure 1.1; Elbashir et al., 

2001c; Elbashir et al., 2001b; Zamore et al., 2000; Martinez and Tuschl, 2004). 

Target cleavage generates target mRNA with 5′ phosphate and 3′ hydroxyl 

termini (Figure 1.7; Schwarz et al., 2004; Martinez and Tuschl, 2004). The 5′ 

fragment of a cleaved mRNA is removed from its 3′ hydroxyl end by the 

exosome whereas the 3′ fragment with its 5′ phosphate end is cleared by the 

XRN-1 exonuclease (Souret et al., 2004; Orban and Izaurralde, 2005; German et 

al., 2008; Chang et al., 2011). The efficient removal of cleaved target mRNA 

contributes to the proficiency of dAgo2 that undergoes multiple round of target 
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cleavage (Hutvagner and Zamore, 2002). 

Partial Base Pairing Is a Hallmark of miRNA Targeting in Mammals 

Extensive base pairing between mammalian miRNAs and their targets are rare. 

The seed sequence participates prominently in binding to five main types of 

seed-matched target sites (Figure 1.11). The miRNA seed sequence from g2–g8 

that pairs with a complementary site on the target from t2–t8 and which also 

contains an adenosine at the t1 position (t1A) is a 8mer site (g2–g8:t2–t8; t1A). A 

guide:target pairing from g2–g8:t2–t8 and without a t1A denotes the 7mer-m8 

site. A guide:target pairing, which involves g2–g7:t2–t7 and includes a t1A in the 

target represents the 7mer-A1 site. For guide:target pairing from g2–g7:t2:t7, it 

constitutes the 6mer site. Finally, in silico prediction identified the offset 6mer 

sites, g3–g8:t3–t8 that are selectively conserved above background (Friedman et 

al., 2009; Bartel, 2009). A less common miRNA target site with base pairing from 

g13–g16:t13–t16 in addition to seed pairing is termed seed plus 3′ 

supplementary pairing. In instances where the additional 3′ pairing enhances 

pairing of a mismatched seed, it is more appropriately termed seed plus 3′ 

compensatory pairing (Figure 1.11). The seed plus 3′ supplementary and the 

seed plus 3′ compensatory sites are estimated to be present in only 4.5% and 

1.4% of selectively conserved sites respectively (Friedman et al., 2009). 

 The extent of base pairing between the guide and target mRNA in part 

dictates the modes of regulation by Argonaute proteins. A partially paired siRNA 
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Figure 1.11 
 

 

Figure Legend 1.11. Different types of miRNA targeting sites 
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behaves like a miRNA and causes translational repression instead of target 

cleavage (Figure 1.12B; Doench et al., 2003; Zeng et al., 2003). Plant miRNAs 

often pair extensively to target mRNAs and result in target cleavage by 

Argonaute proteins (Rhoades et al., 2002; Llave et al., 2002; Axtell et al., 2011). 

Some extensively paired plant miRNAs, however, can also repress mRNA 

translation (Chen, 2004; Brodersen et al., 2008; Lanet et al., 2009). In contrast, 

most animal miRNAs limit target base pairing to the seed sequence and 

therefore lack sufficient base pairing to silence genes by cleavage (Figure 1.12B; 

Yekta et al., 2008; Davis et al., 2005). Instead, mammalian Argonaute proteins 

either repress translation of mRNA or destroy mRNA by recruiting the cellular 

decay machineries (Figures 1.12C and 1.12D; Valencia-Sanchez et al., 2006; 

Parker and Sheth, 2007). 

Predicting Targets of miRNA 

Functional targets in plants are predicted with high confidence because they are 

often extensively paired to plant miRNAs. In animals, limited miRNA:target base 

pairings makes functional target prediction more daunting, less straightforward 

and prone to false positive hits (Figure 1.12B; Rhoades et al., 2002; Bartel, 2009). 

The target prediction algorithms include EMBL, EIMMo, TargetScan, miRanda, 

PicTar, PITA, DIANA-microT and mirWIP (Lewis et al., 2003; Lewis et al., 2005; 

Enright et al., 2003; John et al., 2004; Kiriakidou et al., 2004; Krek et al., 2005; 

Stark et al., 2005; Miranda et al., 2006; Lall et al., 2006; Gaidatzis et al., 2007; 
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Betel et al., 2008; Hammell et al., 2008; Friedman et al., 2009). Most of the 

target prediction tools emphasized on base complementarity to the seed 

sequence (Lewis et al., 2005; Krek et al., 2005; John et al., 2004). For instance, 

TargetScan require perfect seed pairing whereas PicTar, DIANA-microT and 

miRanda permit bulges and mismatches in seed pairing but with penalties 

imposed on the overall target prediction scores (Kiriakidou et al., 2004; Krek et 

al., 2005). 

To increase prediction specificity, most algorithms consider target sites 

conservations across species. The tradeoff, however, is the loss in sensitivity, i.e. 

newly evolved miRNA targeting sites will be omitted. The free energy of binding 

(ΔGB) between the miRNA and the target mRNA also contributes to the 

prediction score. MirWip and PITA, in addition, consider the free energy required 

to unfold target structure (ΔGU) and therefore calculate the ΔΔG = ΔGB−ΔGU for 

miRNA:target pairing (Hammell et al., 2008; Kertesz et al., 2007). TargetScan 

also takes into account features that include 1) the positions of target sites in 3′ 

UTR 2) the AU content of miRNA binding sites 3) the presence of 3′ 

supplementary pairing and 4) the proximity of sites for cooperative regulation of 

target by Argonaute proteins (Doench and Sharp, 2004; Grimson et al., 2007; 

Broderick et al., 2011). The rna22 prediction tool is the most radical among all 

prediction programs. It searches for pattern in a training set of uniquely 

represented miRNAs and then uses the statistically significant patterns to 
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identify potential targets. These potential targets are paired to candidate 

miRNAs and scores assigned to miRNA:target pairs that satisfy user-defined 

threshold of ΔGB. Rna22 does not consider site conservation, does not restrict 

target search to 3′ UTR and does not depend heavily on perfect seed 

complementarity (Miranda et al., 2006). It therefore claims to be more proficient 

at identifying newly evolved miRNA target sites (Miranda et al., 2006). 

 Accounting for phylogenetic relationships among the species compared 

when identifying miRNA sites based on conservations increased the prediction 

sensitivity (Friedman et al., 2009). In mammals, for the five miRNA site types 

(Figure 1.11), the number of selectively conserved predicted target sites stands 

at ~50,000 distributed across ~10,000 genes at a conservation threshold that 

yielded the highest signal above background. Of these conserved sites, each 

miRNA family was predicted to target an average of 534 ± 25. Only 7% of the 

targeted genes have multiple sites for the same miRNA family. This implies that 

each miRNA family regulates an average of 497 ± 49 conserved targets, which 

approaches the average number of conserved sites. On average, each target 

has ~4.2 miRNA binding sites. Taken together, ~60% of the human genes are 

targeted by miRNAs and ~72% of these targeted genes have multiple binding 

sites for different miRNA families (Friedman et al., 2009). 

Silencing of mRNA by miRNA Proceeds by Multiple Mechanisms 

Initial studies in C. elegans showed that lin-4 repressed its target mRNAs lin-14 
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and lin-28 by inhibiting translational elongation (Olsen and Ambros, 1999; 

Seggerson et al., 2002). These claims were supported by the observations that 

targets remained associated with polysomes when repressed by miRNAs 

(Maroney et al., 2006; Nottrott et al., 2006; Petersen et al., 2006). These 

polysomes disassembled upon treatment with translational inhibitors (puromycin, 

hippuristanol and pactamycin) suggesting that they were translationally active 

before the repression (Maroney et al., 2006; Nottrott et al., 2006; Petersen et al., 

2006). In further support of a post initiation mechanism, miRNAs also repressed 

the cap-independent translation of mRNA that uses either the Hepatitis C virus 

(HCV) or the Cricket Paralysis virus (CrPV) internal ribosomal entry site (IRES) 

elements (Petersen et al., 2006). 

 Proponents of a translational block at the initiation step by miRNA showed 

that mRNA that incorporated IRES from encephalomyocarditis virus (EMCV) 

resisted repression by miRNA (Pillai et al., 2005; Humphreys et al., 2005). 

Inhibition by miRNAs also resulted in a shift of the repressed target mRNAs that 

resided in the polysomes fractions into the lighter fractions (Pillai et al., 2005). 

This observation therefore contradicts earlier findings that mRNAs remained 

associated to polysomes when repressed by miRNAs. To explain the 

contradictions, these presumed polysomes observed during miRNA repression 

were believed to be pseudo-polysomes. Pseudo-polysomes are not canonical 

actively translating polysomes in that they lacked the 60S subunit 
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Figure 1.12 
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Figure Legend 1.12. Argonaute proteins repress and degrade target mRNA 

Argonaute proteins bind and repress target mRNA by inhibiting the functions of 

eIF4E and eIF4A. Argonaute proteins can also recruit decapping enzymes and 

the exosome complex to destabilize mRNA targets.  
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(Thermann and Hentze, 2007; Wang et al., 2008). A more recent study showed 

that GW182 and poly(A) binding protein (PABP) are components of these 

pseudo-polysomes (Fukaya and Tomari, 2012). 

 In particular, some groups propose that translational inhibition at the 

initiation step by miRNA was m7GpppG cap-dependent (Figure 1.12C; 

Humphreys et al., 2005; Wang et al., 2006a; Wakiyama et al., 2007; Thermann 

and Hentze, 2007). In fly, dAgo2 competes with eIF4G for binding to the cap 

binding protein, eIF4E (Figure 1.12C; Iwasaki et al., 2009). The molecular 

mechanism by which this results in translational repression is not currently 

known. Interestingly, dAgo1 is found to repress translation in steps after cap 

recognition (Iwasaki et al., 2009). Subsequent work deduced and showed that 

dAgo1 and mammalian Argonaute proteins repress translation by inhibiting the 

function of eIF4A (Fukaya and Tomari, 2012; Ricci et al., 2012, Nucleic Acids 

Res; Meijer et al., 2013). eIF4A is an RNA helicase that helps unfold secondary 

structure at the 5′ UTR of mRNA to facilitate binding and scanning by small 

ribosomal subunit (Jackson et al., 2010). Interestingly, mRNAs with unstructured 

5′ UTR that obviate the need for eIF4A2 are refractory to repression by miRNAs 

(Meijer et al., 2013). 

 In addition to translational repression, miRNAs trigger decapping and 

deadenylation of mRNA (Figure 1.12D; Rehwinkel et al., 2005; Behm-Ansmant et 

al., 2006a; Giraldez et al., 2006; Wu et al., 2006; Eulalio et al., 2009b). 
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Consequently, target repression by miRNAs was shown to downregulate mRNA 

levels (Krutzfeldt et al., 2005; Wu and Belasco, 2005; Lim et al., 2005; Bagga et 

al., 2005; Giraldez et al., 2006; Wu et al., 2006; Mishima et al., 2006; 

Hendrickson et al., 2009). Accordingly, numerous studies revealed that the 

effect of reduced protein expression from repression by miRNAs could be 

mostly accounted for by a corresponding decreased in mRNA levels 

(Forstemann et al., 2007; Baek et al., 2008; Selbach et al., 2008; Guo et al., 

2010). These results implied that miRNAs act mainly to destroy mRNAs rather 

than to inhibit their translation. 

 These studies were based upon steady state measurements. Several time 

course experiments indicated that translational inhibition precedes mRNA 

degradation (Fabian et al., 2009; Bazzini et al., 2012; Djuranovic et al., 2012; 

Béthune et al., 2012). Furthermore, there is at least one example where miRNA-

repressed mRNAs are reversibly desilenced in human cells subjected to stress. 

This suggested that the repressed mRNAs are not always destined for 

degradation (Bhattacharyya et al., 2006). In conclusion, target repression by 

miRNA can operate through multiple mechanisms. The cell types, the states of 

the cells and the Argonaute protein identities are some confounding factors that 

can explain the various mechanisms observed during miRNA-mediated mRNA 

silencing. 
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Figure 1.13 
 
 
 
 
 

 
 
 
 
Figure Legend 1.13. Functional domains of GW182 
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GW182 Participates in miRNA-mediated mRNA Repression and Decay 

GW182 is the autoantigen in patients afflicted with motor and sensory 

neuropathy (Eystathioy et al., 2002). There are three paralogs in vertebrates 

termed trinucleotide repeat-containing protein (TNRC) 6A, 6B and 6C, one 

ortholog in D. melanogaster also called Gawky and two orthologs in C. elegans 

known as AIN-1 and AIN-2 (Meister et al., 2005; Schneider et al., 2006; 

Rehwinkel et al., 2005). Argonaute protein recruits GW182 after it finds and 

binds its target mRNA (Behm-Ansmant et al., 2006b). The N-terminal region of 

GW182 interacts with Argonaute protein while its C-terminal silencing domain 

functions to repress and to destroy mRNA (Figure 1.13; Till et al., 2007; 

Takimoto et al., 2009; Eulalio et al., 2009a; Chekulaeva et al., 2010). Human 

AGO2 crystallized in the presence of tryptophan identified two binding pockets 

that purportedly will bind to the N-terminal domain of GW182 that is rich in 

glycine and tryptophan (Figure 1.14; Schirle and MacRae, 2012). In contrast, 

dAgo2 that functions in RNAi does not interact with GW182 and is predicted not 

to contain the binding pockets (Iwasaki et al., 2009). 

 GW182 is a resident protein of the P-bodies and therefore P-bodies are 

also refered to as GW-bodies (Filipowicz et al., 2008). GW182 ensures proper 

localization of other resident P-bodies components (i.e. CAF1-CCR4-NOT1 

complex, DCP1, DCP2, LSm1–7, RCK/p54, XRN1) and maintains P-body 

structures (Liu et al., 2005b; Liu et al., 2005a; Sen and Blau, 2005; Behm-
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Ansmant et al., 2006a). Argonaute proteins localized to P-bodies are presumably 

the sites where mRNA repression by miRNAs occur (Liu et al., 2005a; Sen and 

Blau, 2005; Liu et al., 2005b). However, disruption of P-bodies by LSm1 and 

LSm3 depletion did not affect target repression by Argonaute protein (Eulalio et 

al., 2007). This indicates that the localization of Argonaute proteins to P-bodies 

was a consequence rather than a cause of miRNA repression (Eulalio et al., 

2007; Chu and Rana, 2006; Eulalio et al., 2009a). Of note, the persistence of 

submicroscopic foci that are functionally equivalent to P-bodies has yet to be 

ruled out. 

 The interactions between PABP that sits on the poly(A) tail and the scaffold 

protein eIF4G that lies close to the cap circularizes mRNA and stimulates its 

translation (Figure 1.12A; Jackson et al., 2010). The removal of poly(A) tail during 

miRNA-mediated repression precludes mRNA circularization, decreases 

translation efficiency and therefore scores as translational repression (Figure 

1.12). Several evidences, however, also suggested that miRNA is capable of 

repressing mRNA translation even without mediating deadenylation of the 

mRNA. First, removing GW182 impaired repression of both poly(A) containing 

and poly(A) free mRNAs (Eulalio et al., 2008; Eulalio et al., 2009b). Second, 

poly(A) free mRNA equipped instead with 3′ histone H4 stem-loop structures 

(HSL) can still be repressed by miRNA (Eulalio et al., 2009b; Braun et al., 2011; 

Chekulaeva et al., 2011). Likewise, mRNA with internal poly (A) that resists  
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Figure 1.14 
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Figure Legend 1.14. Human AGO2 contains potential GW182 binding 

pockets 

Crystal structures of human AGO2 solved in the presence of tryptophan 

residues identify two potential binding pockets for GW182 in the PIWI domain. 

Residues surrounding the two binding pockets are shown in read and blue 

sticks respectively (Schirle and MacRae, 2012). 
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deadenylation was still efficiently silenced (Fukaya and Tomari, 2011; Fukaya 

and Tomari, 2012; Ricci et al., 2012). Finally, tethering a catalytically inactive 

deadenylation complex to poly(A) free mRNA is sufficient to repress mRNA 

(Cooke et al., 2010). 

 Indeed, it was recently demonstrated that GW182 recruits CAF1-CCR4-

NOT1 complex to cause dissociation of PABP prior to the deadenylation of 

mRNA (Zekri et al., 2013). For mRNA that loses PABP from its poly(A) tail, it also 

fails to circularize and translates less efficiently. Eventually, GW182 recruits the 

decapping and the deadenylation enzymes to promote decay of the mRNA 

(Behm-Ansmant et al., 2006a; Chekulaeva et al., 2009; Braun et al., 2011; 

Fabian et al., 2009; Chekulaeva et al., 2011; Chen et al., 2009; Piao et al., 2010; 

Huntzinger et al., 2013). GW182 can interact directly with PABP and it was 

proposed that PABP is necessary to deadenylate repressed mRNA (Fabian et al., 

2009; Huntzinger et al., 2013). This claim, however, has been challenged and 

remains debatable (Fabian et al., 2009; Fukaya and Tomari, 2011). 
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Figure 1.15 
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Figure Legend 1.15. Types of miRNA targets 

Graphs depict protein expression under the control of pre-existing (right) or 

induced miRNAs (left). For B, C and D the lower black and the upper green 

dotted lines represent thresholds for functional and for excess undesirable 

protein levels respectively. For switch target in A, both thresholds coincide. The 

protein level of switch target has to be reduced below the same functional and 

undesirable level. In tuning target, the protein level is adjusted to optimal and 

functional level. Neutral target is regulated by miRNAs but the cell tolerates the 

high protein level even in the absence of miRNAs. Anti-target either looses the 

miRNA binding sites or is expressed mutually exclusively from targeting miRNAs. 

Therefore, its protein level does not change with miRNA expression. Graphs 

illustrate relative expression levels among miRNAs, proteins and the thresholds. 

Their absolute values will vary from cell to cell and is also cell-type specific. 

Graphs are adapted from Bartel and Chen, Nat. Rev. Genet., 2004.  
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A Need for Quantitative Modeling of Gene Silencing by Small RNA 

In the preceding sections, I have highlighted the biogenesis and functions of 

siRNA, miRNA and piRNA. I have also described the structures of Argonaute 

proteins and discussed how we are beginning to address and learn about the 

underlying mechanisms of gene silencing. Our understanding of small RNA 

biology, however, is incomplete without quantitative measures. Thereupon, we 

can begin by phrasing our questions in more quantitative terms. For instance, 

how fast do Argonaute proteins bind their targets? What are the cellular 

Argonaute proteins and target mRNAs concentrations? How many copies of a 

particular mRNA are repressed given a defined amount of Argonaute protein? 

How many different distinct transcripts does an Argonaute protein with a 

particular guide strand silence? The answers to these questions will teach us 

about the mechanisms of small RNA silencing. They will also reveal the extent of 

mRNA repression required to generate meaningful regulation and to elicit a 

change in cellular physiology. 

 Several models posited to explain regulation of mRNAs by miRNAs justify 

the importance and relevance of quantitative science (Figure 1.15; Bartel and 

Chen, 2004). In the first model, miRNAs reduce gene expression to 

inconsequential level and is functionally equivalent to the gene being completely 

silenced. The heterochronic genes are classical examples of such tightly 

regulated mRNAs. These genes are functionally turned on or off during different 
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development stages akin to light switches and are thus called switch targets 

(Figure 1.15A; Lee et al., 1993; Reinhart et al., 2000; Wightman et al., 1993; 

Moss et al., 1997). In the second model, mRNAs are retained and kept at 

optimal levels for cellular functions. These are termed tuning targets (Figure 

1.15B; Karres et al., 2007). In the third model, mRNA expression profile 

fluctuates in response to miRNA expression level but these changes are not 

functionally meaningful and do not produce any effect on cellular physiology. 

These are deemed neutral targets (Figure 1.15C). Finally, targets that avoid 

miRNAs by having mutually exclusive expression patterns or have lost miRNA-

binding sites totally are the anti-targets (Figure 1.15D; Farh et al., 2005; Stark et 

al., 2005). A tuning target, however can behave like a switch target. For instance, 

miRNA that tunes the level of mRNA may just be sufficient to decrease its 

concentration below the functional threshold: the cell interprets the mRNA as 

being in the off state. Therefore, quantitative values for miRNA and mRNA 

expressions, its effect on the final concentration of repressed mRNA and its 

functional threshold value are vital information to test these models. 
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Rationales and Objectives 

Different classes of small RNA and Argonaute proteins coexist in the cell. Does a 

specific class of small RNA associate with a particular Argonaute protein to 

become dedicated to specialized job? This thesis highlights work attempting 1) 

to understand if and how small RNAs are sorted into distinct Argonaute proteins 

2) to describe the mechanisms of Argonaute protein paralogs by dissecting 

quantitatively their thermodynamic and kinetic properties using dAgo1, dAgo2 

and mAGO2 as model proteins and 3) to reveal how their different mechanistic 

behaviors contribute to their specific functions. Not least, 4) to formulate a 

quantitative and reasonable model to explain how small RNA silencing functions 

in the cellular context using biochemically defined thermodynamic and kinetic 

parameters. 
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Chapter II: Drosophila microRNAs are sorted into 
functionally distinct Argonaute protein complexes 
after their production by Dicer-1 
 
 
 
 
 
 
 
 
 
 
Disclaimer 
 
This chapter was a product of a collaborative effort among the authors: Klaus 

Förstemann (KF), Michael Horwich (MH), Liang Meng Wee (Wee), Yukihide 

Tomari (YT) and Phillip Zamore (PDZ). KF and MH performed the experiments 

for figures 2.1 to 2.5. Wee and YT performed the experiments for figure 2.6. 
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SUMMARY 
 

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide distinct classes 

of RNA-induced silencing complexes (RISCs) to repress mRNA expression in 

biological processes ranging from development to antiviral defense. In 

Drosophila, separate but conceptually similar endonucleolytic pathways produce 

siRNAs and miRNAs. Here, we show that despite their distinct biogenesis, 

double-stranded miRNAs and siRNAs participate in a common sorting step that 

partitions them into Ago1- or Ago2-containing effector complexes. These 

distinct complexes silence their target RNAs by different mechanisms. MiRNA-

loaded Ago2-RISC mediates RNAi, but only Ago1 is able to repress an mRNA 

with central mismatches in its miRNA-binding sites. Conversely, Ago1 cannot 

mediate RNAi, because it is an inefficient nuclease whose catalytic rate is limited 

by the dissociation of its reaction products. Thus, the two members of the 

Drosophila Ago sub-clade of Argonaute proteins are functionally specialized, but 

specific small RNAs classes are not restricted to associate with Ago1 or Ago2. 
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RESULTS 

miR-277 is produced by Dcr-1, but loaded into Ago2  

Like all known Drosophila miRNAs, miR-277 is produced by cleavage of its 

precursor by Dcr-1 acting with Loquacious (Loqs), rather than Dcr-2, which 

generates siRNAs (Lee et al., 2004b; Forstemann et al., 2005; Jiang et al., 2005; 

Saito et al., 2005). Both siRNAs and miRNAs are proposed to be loaded into 

Argonaute-containing effector complexes from double-stranded intermediates: 

guide/passenger strand duplexes for siRNAs and miRNA/miRNA* duplexes for 

miRNAs (Hutvagner and Zamore, 2002; Miyoshi et al., 2005; Rand et al., 2005; 

Matranga et al., 2005). The miR-277/miR-277* duplex is predicted to have more 

double-stranded character than typical miRNA/miRNA* duplexes, which are 

interrupted by mismatches and internal loops (Khvorova et al., 2003; Han et al., 

2006). Thus, miR-277 has a miRNA/miRNA* duplex that resembles an siRNA. 

We asked if the resemblance of the miR-277/miR-277* duplex to an siRNA led 

to its being loaded into Ago2, rather than Ago1, in Drosophila cells. That is, is 

the biogenesis of a miRNA tightly coupled to its loading into Ago1 (Figure 2.1A)? 

Or are miRNAs, and perhaps siRNAs, sorted into distinct Ago proteins by a step 

unlinked to the Dicer that produced them (Figure 2.1B)? 

To this end, we established stable lines of S2 cells expressing GFP 

mRNA alone, with a 3′ UTR containing one or two sites fully complementary to 

miR-277 or with four 3′ UTR sites complementary to miR-277 but bearing 
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Figure 2.1 
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Figure Legend 2.1. Two models for the miRNA and siRNA pathways in 

Drosophila. 

(A) Small RNA biogenesis and RISC assembly are tightly coupled. miRNAs are 

exclusively loaded into Ago1 and siRNAs into Ago2. (B) Small RNA biogenesis 

and RISC assembly are independent. After their production, small RNA duplexes 

are proposed to be actively sorted into distinct Ago proteins solely according to 

their structures. 
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mismatches with miR-277 nucleotides 9, 10, and 11 (Figures 2.S1–2.S3). 

Surprisingly, repression of the reporter bearing two fully complementary miR-

277-binding sites required Ago2 but not Ago1 (Figure 2.1). Treating the S2 cells 

with dsRNA to deplete Ago2 by RNAi increased GFP expression ~6-fold (Figures 

2.2A and 2.2B). This agrees well with the extent of derepression observed with a 

miR-277-specific anti-sense oligonucleotide (ASO; Figure 2.S1), suggesting that 

without Ago2, the reporter is no longer repressed. Moreover, ago1(RNAi) 

increased repression of this reporter. Essentially identical data were obtained for 

a reporter containing a single miR-277-binding site (Figure 2.S3).  

Expression of the miR-277-regulated reporter also increased when the 

cells were treated with dsRNA to deplete Drosha, the enzyme that excises pre-

miRNAs from their primary transcripts or with dsRNA to deplete Dcr-1 or Loqs, 

which together convert pre-miRNA to miRNA/miRNA* duplexes (Figure 2.2A). 

RNAi directed against ago1, ago2, or drosha had no detectable effect on the 

expression of the GFP reporter lacking miR-277-binding sites. 

We note that a control dsRNA was not inert with respect to Ago2-

dependent silencing (i.e., RNAi), likely because it can compete with miR-277 for 

Ago2 loading. The idea that non-specific dsRNA can compete for Ago2 and 

other components of the Ago2-loading machinery is consistent with earlier 

reports that RNAi is a saturable process (Haley and Zamore, 2004). Thus, the 

most straightforward method to assess the significance of the effect of different 
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Figure 2.2 
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Figure Legend 2.2. Components of both the miRNA and the RNAi pathways 

are required to silence a reporter with perfect matches to miR-277. 

(A) Mean GFP fluorescence (average ± standard deviation for three or four trials). 

DsRNA-triggered RNAi was used to deplete the cells of the indicated protein. (B) 

Western blotting confirmed the extent and specificity of the RNAi-mediated 

depletion for each protein. dcr-2(RNAi) reduced the abundance of both Dcr-2 

and R2D2, as previously reported {Liu et al., 2003, Science, 301, 1921-5}, but 

r2d2(RNAi) had no detectable effect on Dcr-2 abundance. The three isoforms of 

Loqs are indicated at the right of the Loqs panel. The bands above and below 

Ago2 correspond to cross-reacting proteins characteristically detected with this 

antibody. 
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dsRNAs on miR-277-directed repression of the perfect reporter in this 

experiment is not to compare the individual specific knock-down experiments to 

the control dsRNA, but rather to compare the change in GFP expression for the 

unregulated reporter to that observed for the perfect reporter for each RNAi 

knock-down. Analyzed this way, depletion of components of the miRNA 

biogenesis pathway clearly has a significant effect on miR-277-directed 

repression of the reporter: dcr-1(RNAi), p < 0.005; drosha(RNAi), p < 0.007; 

loqs(RNAi), p < 0.028. 

Together with previously published results (Forstemann et al., 2005), our 

data therefore suggest that miR-277 is produced by the standard miRNA 

pathway, but directs repression of a perfectly matched GFP reporter through 

Ago2. 

Ago1 but not Ago2 mediates repression of mRNAs bearing bulged miR-

277-binding sites 

mRNAs containing miRNA-binding sites with perfect complementarity to 

specific miRNAs occur in animals, but are rare (Mansfield et al., 2004; Yekta et 

al., 2004; Davis et al., 2005). Instead, most miRNA are incompletely 

complementary to the mRNAs they repress. Typically, these miRNAs bind to 

multiple sites in the 3´ UTR of their targets. This mode of miRNA-directed 

repression can be recapitulated by engineering into the 3′ UTR of the reporter 

mRNA four, partially mismatched, miRNA-binding sites, each of which forms a 
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central bulge when paired to its cognate miRNA (Zeng et al., 2002; Doench et al., 

2003).  

We established stable lines of S2 cells expressing a GFP mRNA bearing 

four such sites (Figure 2.S1A). Repression of the reporter was modest, but 

required miR-277: transfection of a miR-277-specific, but not a control, ASO 

caused a small but statistically significant (p < 0.003) increase in GFP 

fluorescence (Figure 2.S1B). miR-277 is relatively abundant in S2 cells, which 

contain ~2,200 miR-277 molecules per cell (MH and PDZ, unpublished). 

Nonetheless, we wondered if the free pool of endogenous Ago1-loaded miR-

277 was insufficient to repress expression of the bulged reporter.  

We increased the expression of miR-277 by engineering stable S2 lines 

expressing both the GFP reporter and a ‘mini’ pri-miR-277 driven by the 

ubiquitin promoter. The resulting doubling of miR-277 expression caused a 

dramatic increase in the repression of the bulged GFP reporter, as evidenced by 

the more than 3-fold increase in GFP fluorescence observed when a miR-277-

specific ASO was transfected into the cells (Figure 2.3A). Compared to the 

repression of this reporter by endogenous miR-277, the exogenous miR-277 

increased repression of the bulged reporter by 230 percent (Figures 2.S1A and 

2.3A). Repression was also enhanced, but to a smaller extent, for the reporter 

bearing two perfectly complementary miR-277-binding sites. 
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Figure 2.3 
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Figure Legend 2.3.  Only components of the miRNA pathway are required to 

silence a reporter bearing four imperfectly matched miR-277 target sites. 

(A) Over-expression of miR-277 from a mini-pri-miRNA transgene increased 

repression of the miR-277-regulated perfectly matched and bulged reporters. (B) 

Mean GFP fluorescence (average ± standard deviation for three or four trials). 

DsRNA-triggered RNAi was used to deplete the cells of the indicated protein. 
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For both the reporter bearing perfectly complementary miR-277-binding 

sites and the reporter with four bulged miR-277-binding sites, miR-277 reduced 

GFP expression by reducing the stability of the reporter mRNA, rather than by 

repressing GFP translation. We used qRT-PCR to measure the steady-state 

reporter mRNA abundance (Figure 2.S4A) and FACS to measure GFP protein 

abundance (Figure 2.S4B). For each stable cell line, we measured reporter 

mRNA and protein expression after transfection with a control ASO or a miR-

277-specific ASO. Even when miR-277 was over-expressed, nearly all of the 

increased GFP protein expression observed when miR-277 was blocked could 

be accounted for by a corresponding increase in GFP mRNA expression. Figure 

2.S4C reports the relative GFP protein expression normalized to the relative GFP 

mRNA expression. In all cases, when miR-277 was inhibited the ratio of relative 

protein expression to relative mRNA expression was close to one, indicating that 

most of the miR-277-directed reporter repression reflected mRNA 

destabilization rather than translational repression. However, for the bulged 

reporter, mRNA degradation might be tightly coupled to translational repression 

and therefore be a consequence, rather than a cause, of the decrease in protein 

production. 

Silencing of the bulged reporter required Ago1 but not Ago2: ago1(RNAi) 

increased reporter expression, whereas ago2(RNAi) (Figure 2.2B) caused a small 

but statistically significant decrease in reporter expression (p < 0.008) (Figure 

77



2.3B). While RNAi directed against drosha, dcr-1, or loqs—all genes required for 

miRNA biogenesis—increased expression of the bulged reporter, dcr-2(RNAi) 

and r2d2(RNAi)—both genes required to load small RNAs into Ago2, but not 

Ago1—caused a small but statistically significant (p < 0.001 and p < 0.003, 

respectively) increase in reporter silencing. These data suggest that (1) the Ago1 

and Ago2 pathways compete for miR-277 and (2) Ago1 and Ago2 are 

functionally distinct and non-redundant, with Ago2 alone mediating small RNA-

directed silencing of perfectly complementary target mRNAs (RNAi) and Ago1 

mediating silencing of mRNAs with central mismatches in the target sites. 

miR-277 accumulation requires Ago2 

Our experiments in stable S2 reporter cell lines suggest that miR-277 is 

loaded predominantly into an Ago2-containing RISC and that Ago1 and Ago2 

compete for miR-277 in cultured Drosophila cells. Moreover, they suggest that 

miR-277 repressed the reporter to which it was fully complementary as a 

component of an Ago2-RISC, but repressed the bulged reporter as a 

component of an Ago1-RISC. Supporting this view, the cellular concentration of 

miR-277 decreased when Ago2 was depleted by RNAi, but not when Ago1 was 

depleted (Figure 2.4A). The concentration of bantam, a miRNA shown previously 

to associate with Ago1 (Okamura et al., 2004), was reduced by ago1(RNAi), but 

unaffected by ago2(RNAi). Pre-bantam RNA was unaltered by either treatment 

(Figure 2.4A), supporting the idea that the loss of bantam in ago1(RNAi) S2 cells 
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Figure 2.4 
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Figure Legend 2.4. Most endogenous miR-277 is not associated with Ago1 

in S2 cells. 

(A) Northern analysis revealed that ago2(RNAi) reduced the steady-state 

abundance of miR-277, but not bantam, whereas ago1(RNAi) decreased the 

abundance of bantam, but not pre-bantam or miR-277. (B) Western blotting 

showed that immunoprecipitation of Ago1 depleted nearly all Ago1, but little or 

no Ago2, from S2 cell cytoplasmic extract. (C) The majority of bantam, but not 

pre-bantam co-immunoprecipitated with Ago1 (Northern analysis). In contrast, 

the majority of endogenous and of over-expressed miR-277 remained in the 

supernatant, unbound by Ago1. The asterisk marks non-specific hybridization of 

the probe with 5S rRNA. T: Total input; S: Supernatant; B: Bound. 
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reflects a failure to load the miRNA into its Ago1-RISC, rather than a defect in 

pre-miRNA processing, which would cause pre-bantam to accumulate.  

Moreover, most bantam but only a minority of miR-277 is physically 

associated with Ago1 (Figures 2.4B and 2.4C). We immunoprecipitated Ago1 

using a monoclonal antibody bound to agarose beads. Western blotting with the 

same antibody demonstrated that the overwhelming majority of Ago1, but little 

or no Ago2, was depleted from the supernatant and recovered with the beads 

(Figure 2.4B). By Northern blotting, more than half of bantam, but less than a 

third of miR-277, was recovered with the beads (Figure 2.4C). 

In vivo, miR-277 is produced by Dcr-1, then loaded by Dcr-2 into Ago2 

Both dcr-1(RNAi) and dcr-2(RNAi) increased GFP expression for the reporter 

mRNA bearing two fully complementary miR-277-binding sites (Figure 2.2A). 

While the effect of dcr-1 dsRNA was anticipated, current models for the miRNA 

pathway in Drosophila do not predict a role for Dcr-2 in miRNA function. 

Moreover, dcr-2(RNAi) did not detectably alter the expression of components of 

the miRNA pathway, Dcr-1, Loqs, Drosha, or Ago1 (Figure 2.2B). We can 

imagine two explanations for the reduction in miR-277 function when Dcr-2 was 

depleted. Dcr-1 and Dcr-2 might both act in the production of miR-277, with 

each contributing to the conversion of pre-miR-277 to miR-277/miR-277* duplex. 

Alternatively, Dcr-1 alone might excise miR-277 from pre-miR-277, remanding 

the resulting miR-277/miR-277* duplex to the RISC-loading complex (RLC), 
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whose core constituent is the Dcr-2/R2D2 heterodimer and which is required to 

load siRNA duplexes into Ago2. 

To distinguish between these two explanations, we examined in adult 

flies the expression of the same GFP reporter bearing two fully complementary 

miR-277-binding sites that we used in our S2 cell experiments. The dcr-2G31R 

allele (Lee et al., 2004b) separates siRNA production from Ago2 loading because 

it selectively inactivates the nuclease function of Dcr-2. The GFP miR-277-

reporters were expressed in transgenic flies heterozygous and homozygous for 

the dcrG31R mutation. We also examined GFP reporter expression in dcr2L811fsX 

mutant flies, which produce no Dcr-2 protein and can neither produce siRNA 

duplexes nor load them into Ago2. We prepared protein extracts from adult flies 

and measured GFP expression by Western blotting and fluorescence (Figure 2.5 

and data not shown). 

By both measures, expression of the reporter bearing two perfectly 

complementary miR-277-binding sites increased significantly in homozygous 

dcr2L811fsX mutant flies, relative to that measured in extracts from their 

heterozygous siblings (Figure 2.5), corroborating our observation that expression 

of this reporter was increased in S2 cells treated with dcr-2 dsRNA (Figure 2.3A). 

However, reporter expression was unaltered in homozygous dcr-2G31R mutant 

flies, relative to their heterozygous siblings (Figure 2.5). Reporter expression 

similarly increased in flies lacking R2D2 (Figure 2.5); R2D2 acts together with 
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Figure 2.5 
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Figure Legend 2.5. In adult flies, repression of the miR-277 reporter via 

perfectly complementary sites requires the loading activity of Dcr-2 and 

R2D2, but repression via bulged sites does not. 

(A) Representative Western blotting data for α-tubulin and GFP in total lysates 

from adult flies of the indicated heterozygous (+/–) and homozygous (–/–) mutant 

genotypes. (B) The average (± standard deviation) GFP expression in 

homozygous mutant flies, relative to heterozygotes, for three (r2d2) or four trials 

of the experiment in (A). The dcr-2L811fsX mutant lacks detectable Dcr-2 protein, 

whereas the dcr-2G31R point mutant produces a Dcr-2 protein that cannot dice 

long dsRNA, but can nonetheless load siRNA and miRNA/miRNA* duplexes into 

Ago2.  
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Dcr-2 to load Ago2, but is not required for siRNA production (Liu et al., 

2003). We conclude that the requirement for Dcr-2 in miR-277-directed silencing 

of the GFP reporter bearing two fully complementary miR-277-binding sites 

reflects a role for Dcr-2 in loading miR-277 into Ago2, rather than in the 

conversion of pre-miR-277 into mature miR-277. 

In contrast to the perfectly matched reporter, the GFP reporter bearing 

four bulged miR-277-binding sites was unaltered in flies homozygous for either 

the dcr-2L811fsX null allele or the dcr-2G31R separation-of-function allele. Thus, 

repression of this reporter in vivo does not require Ago2 loading, strong support 

for our conclusion that the bulged reporter is regulated by miR-277-

programmed Ago1-RISC. In fact, we observed a small but statistically significant 

increase in the repression of the bulged reporter in flies homozygous for the 

r2d21 allele (Figure 2.5B). These data suggest that as in vitro (Tomari et al., 2007) 

and in cultured cells (see above), Ago1 and Ago2 compete in vivo for loading 

with miR-277 and that in the absence of the Ago2-loading machinery, more 

miR-277-programmed Ago1-RISC is produced. 

Ago1 cleaves target RNAs with low efficiency 

Drosophila Ago1 retains the ability to catalyze endonucleolytic cleavage of a 

perfectly matched target RNA (Okamura et al., 2004; Miyoshi et al., 2005). Thus, 

it is surprising that for the reporter bearing two perfectly complementary miR-

277-binding sites, the sub-population of miR-277 associated with Ago1 did not 
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detectably rescue the loss of silencing caused by depletion from S2 cells of 

Ago2 or the loss in adult flies of Dcr-2—a core component of the Ago2-loading 

machinery. To assess the molecular basis for the distinct functional capacities of 

Ago1 and Ago2, we analyzed in vitro the kinetics of target cleavage by each 

protein (Figure 2.6). 

In Drosophila, the structure of a small RNA duplex governs into which 

Argonaute protein—Ago1 versus Ago2—it is loaded (Tomari et al., 2007). For the 

let-7 miRNA sequence, an siRNA duplex containing let-7 as its guide strand 

loads Ago2 almost exclusively, whereas the let-7/let-7* duplex loads only Ago1. 

By adjusting the time allowed for RISC assembly, we generated approximately 

equal concentrations (4.6–4.7 nM) of Ago1- and Ago2-associated let-7. For each 

let-7-programmed RISC, we measured the rate of cleavage of a 5′ 32P-

radiolabled RNA target containing a single site with complete complementarity 

to let-7 (Figure 2.6A). 

Our data reveal two differences between Drosophila Ago1 and Ago2. First, 

Ago2 is a faster enzyme than Ago1: the initial rate of target cleavage for Ago2 

was at least 12-fold greater than that of Ago1 (Figure 2.6A). Second, Ago1, 

unlike Ago2, failed to efficiently catalyze multiple rounds of target cleavage in 

vitro, even in the presence of ATP. That is, for Ago2-RISC, the rate of target 

cleavage was the same throughout the steady-state phase of the reaction, while 

the rate of target cleavage for Ago1-RISC was biphasic (Figures 2.6A). 

86



 
Figure 2.6 
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Figure Legend 2.6. Ago1 is a poor endonuclease. 

(A) Distinct cleavage kinetics distinguish Ago1- and Ago2-RISC. At 

approximately equal enzyme concentrations, the initial velocity for Ago2-RISC 

was ~12-fold greater than that of Ago1-RISC. Cleavage by Ago2-RISC was 

linear throughout the reaction, as long as the substrate remained in vast excess, 

whereas cleavage by Ago1-RISC was biphasic, suggesting that product release 

is the rate-determining step. The RISC concentration estimated by burst 

analysis (~3.2 nM; red arrow) correlated well with that measured by 2′-O-methyl 

ASO affinity capture (~4.6 nM). (B) Pseudo-Michaelis-Menten and (C) Michaelis-

Menten analyses of Ago1- and Ago2-RISC, respectively. Michaelis-Menten 

parameters are summarized in Table 2.1. 
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Such biphasic behavior was reported previously for both Drosophila and human 

Ago2-mediated target cleavage in the absence of ATP and suggests that 

product release is rate-determining for Ago2 under these conditions (Haley and 

Zamore, 2004; Rivas et al., 2005). The first phase of the Ago1 reaction in the 

presence of ATP likely corresponds to a pre-steady state period in which most 

Ago1 proteins have not yet released the product of their first target cleavage 

event. The second phase may correspond to a steady-state period in which the 

products of target cleavage are slowly released from Ago1. Supporting this view, 

the second phase fit well to a line whose y-intercept, ~3.2 nM, was similar to the 

amount of Ago1-RISC, ~4.7 nM, measured by affinity purification using an 

immobilized 2′-O-methyl let-7 ASO.  

The difference in efficiency between Ago1- and Ago2-catalyzed target 

cleavage might reflect a difference in the rate of catalysis or in the affinity for the 

target RNA. To distinguish between these two explanations, we performed a 

kinetic analysis of Ago1- and Ago2-RISC programmed with let-7 in Drosophila 

embryo lysate. We estimated the amount of active let-7 programmed RNAi 

enzyme complex from the size of the burst for Ago1-RISC in the presence of 

ATP and for Ago2-RISC by depleting ATP after RISC assembly. In the presence 

of ATP, Ago2-RISC conforms to a simple Michaelis-Menten scheme (Haley and 

Zamore, 2004): 

Ago2-let-7 + target RNA <—> [Ago2-let-7•target RNA] —> Ago2-let-7 + cleaved target RNA 
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 In contrast, Ago1-RISC appears to follow a more complex kinetic scheme, 

even in the presence of ATP: 

Ago1-let-7 + target RNA <—> [Ago1-let-7•target RNA] —> 

[Ago1-let-7•cleaved target RNA] <—> Ago1-let-7 + cleaved target RNA 

Because Michaelis-Menten parameters are determined from the initial velocity of 

the enzyme observed at different concentrations of substrate (target RNA), we 

analyzed Ago1 as if it followed the same kinetic scheme as Ago2. This pseudo-

Michaelis-Menten analysis allows the Ago1 KM to retain the same meaning—an 

approximation of the affinity of the enzyme for its substrate—as that determined 

for Ago2. Our data (Figure 2.6B and Table 2.1) suggest that let-7-programmed 

Ago1 and Ago2 bind the let-7 complementary sequence in the target RNA with 

nearly the same affinity. In vitro, Ago1 binds its target RNAs as well as Ago2, but 

cleaves them much more slowly than Ago2. This suggests that in vivo, Ago1 is 

too inefficient to silence a perfectly matched target by endonucleolytic cleavage. 
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Table 2.1. Kinetic analysis of Drosophila Ago1- and Ago2-RISC. 
 

  

 KM 
(nM) 

Vmax 
(nM s−1) 

[RISC] 
(nM) 

kcat 
(s−1) 

kcat 
(relative) 

kcat/KM 
(nM−1 s−1) 

kcat/KM 
(relative) 

Ago1 13.3 ± 3.2 0.0096 ± 0.0013 1.9 ± 0.4 0.005 ± 0.0013 1 0.4 ± 0.1 1 

Ago2 8.4 ± 1.0 0.0125 ± 0.006 0.058 ± 0.006 0.215 ± 0.025 43 25.5 ± 4.3 64 
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DISCUSSION 

In lysates from Drosophila embryos, in cultured Drosophila S2 cells, and in adult 

flies, miRNA can be loaded into both Ago1 and Ago2. Our data suggest that 

sorting miRNAs into Ago1- and Ago2-RISC generates silencing complexes with 

distinct functional capacities: Ago1-RISC represses expression of targets with 

which its guide miRNA matches only partially, whereas Ago2 silences fully 

matched target RNAs. These differences result, in part, from the surprisingly 

different catalytic efficiencies of Ago1 and Ago2: only Ago2 catalyzes robust, 

multiple-turnover target cleavage. 

Why does Drosophila Ago1 retain its endonuclease activity? 

In mammals, only Ago2 retains the ability to catalyze guide RNA-directed 

endonucleolytic cleavage of RNA; the three other mammalian Argonaute 

proteins, Ago1, Ago3, and Ago4, lack a functional active site that is presumed to 

have been present in the evolutionarily ancestral Argonaute protein. Why then 

has Drosophila Ago1 retained any endonuclease activity at all, if it is so 

inefficient at target cleavage that it cannot measurably contribute to small RNA-

directed RNAi? One potential explanation is that the primary role of the Ago1 

endonuclease activity is to facilitate loading of Ago1-RISC. That is, the 

predominant substrate for the Ago1 endonuclease is not target RNA, but rather 

miRNA* strands, and perhaps the occasional siRNA passenger strand. Because 

miRNA* strand cleavage would occur only in cis and only once per loaded 
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Ago1-RISC, efficient, multiple-turnover cleavage of target RNA would not be 

required. 

Our data reveal an important biochemical difference between Ago2 and 

Ago1, but they do not explain the molecular basis for the inefficiency of Ago1-

directed cleavage of target RNA. We can envision two explanations for the more 

than 40-fold lower kcat of Ago1 compared to Ago2. First, the active site of Ago1 

might be less well suited to catalyzing phosphodiester bond cleavage. 

Alternatively, Ago1 might be slow to assume a catalytically active conformation. 

In this second model, the rate of a conformational rearrangement would limit the 

speed of target RNA cleavage by Ago1. Such a conformational rearrangement of 

the siRNA guide has been proposed previously for Ago2 (Filipowicz, 2005; 

Tomari and Zamore, 2005). 

Implications for the mechanism of guide strand choice 

Neither the current genome sequence of Drosophila melanogaster nor GenBank 

in its entirety contains a Drosophila mRNA with complete complementarity to 

miR-277. Why then do flies load miR-277 into Ago2-RISC? Perhaps there are—

yet unknown—viral RNAs targeted by Ago2-loaded miR-277. Such an innate 

immune response function has previously been proposed for miRNAs in 

mammals (Lecellier and Voinnet, 2004). Regardless of the biological purpose for 

loading miR-277 into Ago2, miR-277 provides an important in vivo test of the 

controversial proposal that the production of small RNA duplexes by Dicer is 
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uncoupled from the loading of Argonaute proteins (Aza-Blanc et al., 2003; 

Khvorova et al., 2003; Schwarz et al., 2003). That Dcr-2 and R2D2 act in vivo to 

load Ago2 with miR-277, a miRNA produced by Dcr-1 and Loqs, confirms 

previous in vitro data suggesting that both ends of a small RNA duplex are 

available for examination by the Ago2 loading machinery (Schwarz et al., 2003; 

Tomari et al., 2004b; Preall et al., 2006). Our results suggest that the miR-

277/miR-277* duplex dissociates from Dcr-1 after the dicing of pre-miR-277 and 

is then bound by the Dcr-2/R2D2 heterodimer, which loads it into Ago2; 

Sontheimer and colleagues reached similar conclusions about small RNA 

loading from in vitro experiments that asked if dicer processing and Ago2-

loading were coupled (Preall et al., 2006). 

We reason that Ago1 loading is also uncoupled from dicing. In all animals, 

some miRNAs are found on the 5′ and other on the 3′ arm of their pre-miRNA 

stem-loops. In contrast, the geometry of Dcr-1 with respect to the two arms of 

the pre-miRNA stem is essentially the same for all miRNAs: Dcr-1 always makes 

staggered cuts that separate the pre-miRNA loop from the miRNA/miRNA* 

duplex. If Dcr-1 were to load miRNAs directly into Ago1, without first releasing 

the miRNA/miRNA* duplex, we would expect that all miRNAs would reside on 

the same arm of the pre-miRNA stem. The simplest explanation, and one most 

consistent with the partitioning of miR-277 into both Ago1- and Ago2-RISCs, is 

that miRNA/miRNA* duplexes are released from Dicer immediately after their 
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production, then rebound by the Ago1- and Ago2-loading machineries. Such a 

model allows both the terminal thermodynamics of the miRNA/miRNA* duplex to 

determine the mature miRNA strand (rather than its position within the pre-

miRNA) and the pattern of mismatches within the duplex to determine how the 

miRNA partitions between Ago1 and Ago2. 

Why are Ago1 and Ago2 functionally specialized? 

In mammals, siRNAs produce off-target effects largely by acting like miRNAs 

(Jackson et al., 2003; Lim et al., 2005; Jackson et al., 2006). In flies, siRNAs 

loaded into Ago2 are believed to defend against viral infection (Wang et al., 

2006b; Galiana-Arnoux et al., 2006). Virus-derived siRNAs might therefore 

trigger widespread, off-target silencing of host genes as flies mount an anti-viral 

RNAi response. The partitioning of siRNAs into Ago2-RISC appears to 

circumvent this problem, because silencing by Drosophila Ago2 requires greater 

complementarity between the siRNA and its target than silencing by Ago1. It is 

tempting to speculate that a similar functional specialization among Argonaute 

proteins has gone undetected in mammals. 
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EXPERIMENTAL PROCEDURES 

Construction of cell lines with increased miR-277 expression 

A 270 nt fragment of genomic DNA encompassing the miR-277 sequence was 

PCR-amplified from S2-cell genomic DNA using the oligonucleotides 5′-GCG 

GAT CCG GTA CCT ATA CAT ATA TAA CGA GGC CTA ACG-3′ and 5′-ATG 

CGG CCG CAA AAC AGT GTC TTA CAA ACA AGT GG-3′ and cloned BamHI to 

NotI into pKF62, yielding a mini-pri-miR-277 transgene under the control of the 

ubiquitin promoter. 

Cell culture and flow cytometry 

Drosophila Schneider 2 (S2) cells were cultured at 28°C in Schneider’s medium 

(Invitrogen, Carlsbad, CA, USA) supplemented with 10% (v/v) fetal bovine serum 

(Invitrogen). GFP expression plasmids were transfected with siLentfect (see 

below) at 1 mg of plasmid per well of a 24-well plate. For selection of stable 

transformants, 20 ng of phsNeo (Steller and Pirrotta, 1985) was co-transfected 

with 1 mg each GFP reporter plasmid. Five days after transfection, cells were 

split 1:5 into medium supplemented with 1.2 mg/ml G418 (Invitrogen) and 

diluted 1:5 every 7 days into G418-containing medium for three weeks, then 

serial dilutions were plated in a 96-well plate in growth medium supplemented 

with 1% (v/v) sterile-filtered conditioned medium. After two weeks, wells with a 

single colony of cells were expanded and analyzed by flow cytometry. Cell 
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clones that produced a single peak in the flow cytometer were retained as 

reporter lines. 

For dsRNA transfection, cells were seeded at a density of 1 x 106 cells/ml 

in 24-well plates (500 ml/well) using Schneider’s medium without G418. 100 ml 

Liposome/nucleic acid complexes (prepared by incubating at room temperature 

for 45 min 1.5 ml siLentfect [BioRAD, Hercules/CA, USA] or Dharmafect 4 

[Darmacon, Lafayette, CO] and either 1 mg of dsRNA or 10 pmol of 3′ 

cholesterol-conjugated, 2′-O-methyl modified antisense-oligonucleotide [see 

Figure 2.S1B] in 100 ml Schneider’s medium without serum) were added per 

well of a 24 well plate. After 6 days, cells were analyzed by FACS (BD FACScan 

flow cytometer; Becton Dickinson, Franklin Lakes, NJ). GFP-expression was 

quantified as the arithmetic mean of fluorescence (CellQuest; Becton Dickinson). 

Anti-Dcr-1 and Ago2 antibodies 

KLH-conjugated peptides (Dcr-1: CQGLIAKKD; R2D2: CSDEYESSKDKAMD) or 

the Ago2 PAZ-domain fused to glutathione-S-transferase (Lingel et al., 2003) 

were used to immunize rabbits (Covance Research Products, Denver, PA, USA 

or ProSci, Poway, CA, USA) or chickens (Gallus Immunotech, Cary, NC, USA), 

and the antiserum affinity-purified using immobilized  peptide (Sulfolink, Pierce, 

Rockford, IL, USA) or NusA-Ago2-PAZ fusion protein (Aminolink plus, Pierce).   

Western Blotting 
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Proteins from cultured S2 cells or from hand-dissected adult fly heads and 

thoraces were extracted in PBS containing 1% Triton X-100 (Sigma, St. Louis, 

MO, USA) and protease inhibitors (Complete without EDTA, Roche Molecular 

Biochemicals, Basel, Switzerland). To quantify myc3GFP-expression in 

transgenic flies, 20 mg of total protein was resolved by electrophoresis through 

a 12% polyacrylamide/SDS gel and transferred to PVDF-membrane (Immobilon-

P, Millipore, Billerica, MA, USA) by semi-dry transfer (BioRAD, Hercules, CA, 

USA) at 20 V for 120 min in 25 mM Tris (pH 8.3), 250 mM glycine, 10% (v/v) 

methanol as anode buffer and 20 mM CAPS (pH 11.0) as cathode buffer. The 

blot was incubated for 90 min at room temperature with purified monoclonal 

anti-myc 9E10 (Sigma #M4439) diluted 1:1000 in 25 mM Tris, 137.5 mM NaCl, 

2.5 mM KCl, 0.02% (v/v) Tween-20 (Sigma) for 90 min at room temperature and 

then HRP-conjugated goat anti-rabbit secondary antibody diluted 1:1,000, then 

developed with Pierce SuperSignal West Dura kit (Pierce). HRP-conjugated 

rabbit anti-chicken secondary antibody (Gallus Immunotech), diluted 1:15,000, 

was used to detect the affinity purified anti-R2D2 chicken IgY. Western Blot 

images were acquired using a Fuji LAS-3000 (Fujifilm Life Sciences, Stamford, 

CT, USA) and quantified using ImageGauge (Fujifilm Life Sciences). α-tubulin 

was detected with DM1A antibody (Sigma #T6199) diluted 1:1,000. myc3-GFP 

western blot signals were corrected using a standard curve for created by 

diluting extract from pKF63-transgenic flies into extract from yw flies. 
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For S2 cell proteins, 50 mg total protein was resolved by electrophoresis 

through an 8% polyacrylamide/SDS gel, transferred to PVDF, incubated with 

primary antibodies (1:2,000) overnight at 4°C, and secondary antibodies for 120 

min at room temperature. Anti-Dcr-2 antibody was the kind gift of Qinghua Liu 

(Liu et al., 2003). 

Ago1 and Ago2 target cleavage kinetics 

Target cleavage reactions were performed essentially as described (Haley and 

Zamore, 2004; Haley et al., 2003). In Figure 7A, 50 nM let-7 siRNA or let-7/let-7* 

duplex was incubated with Drosophila 0–2 h embryo lysate for 2 min to program 

Ago2- (~4.7 nM) or 5 min for Ago1-RISC (~4.6 nM). In Figure 2.7B, 20 nM let-7 

siRNA or let-7/let-7* duplex was incubated with lysate for 3 min or 8 min to 

program Ago2- or Ago1-RISC. For Ago2 cleavage in Figure 7B, RISC was 

diluted 10-fold in N-ethyl maleimide (NEM) treated embryo lysate (Nykanen et al., 

2001; Haley and Zamore, 2004). let-7 siRNA assembled little or no active RISC 

in ago2414 lysate whereas let-7/let-7* was as active in ago2414 as in wild-type 

lysate, indicating that the let-7 siRNA and let-7/let-7* duplex are almost 

exclusively loaded into Ago2- and Ago1-RISC, respectively. 

RISC assembly was stopped by treatment with NEM followed by DTT to 

quench unreacted NEM for both Ago1- (Figure 2.S4A) and Ago2-RISC (Nykanen 

et al., 2001). Control experiments (Figure 2.S4B) established that the biphasic 

kinetics of Ago1-RISC in the presence of ATP were not a consequence of 

99



treatment with NEM. RISC concentration was estimated by 2′-O-methyl ASO 

affinity purification in Figure 2.6A and by the size of the pre-steady-state burst in 

Figure 6B (Haley and Zamore, 2004; Schwarz et al., 2003). The concentration of 

RNA target was 100 nM in Figure 7A and 0.5 to 100 nM in Figure 6B. Data were 

analyzed using IGOR 5 (WaveMetrics) and VisualEnzymics 2005 (Softzymics) 

software. 

Construction of reporter plasmids and RNAi trigger dsRNAs 

To create an expression vector for both cultured cells and transgenic flies, we 

PCR amplified the 3′ UTR and SV40 poly-A signal from plasmid pEGFP-N1 

(Clontech, Mountain View, CA, USA) with oligonucleotides 5´-ATC ACT CTC 

GGC ATG GAC GAG-3′ and 5′-GTG AAT TCA TAC ATT GAT GAG TTT GGA C-

3′ and inserted the resulting PCR product into pUbi-Casper2 (a kind gift of Dr. 

Siu Ing The) using the NotI and EcoRI restriction sites, creating vector pKF60. 

For the GFP-insert, we transferred a BamHI-NotI fragment from pEGFP-N1 

(Clontech) into pBluescript (Stratagene, La Jolla, CA, USA) cut with BamHI/NotI, 

creating pKF20. Subsequently, we annealed the oligos 5′-CAT GGA ACA AAA 

ACT TAT TTC TGA AGA AGA CTT GGG-3′ and 5′-CAT GCC CAA GTC TTC TTC 

AGA AAT AAG TTT TTG TTC -3′, encoding a myc-tag, and ligated this DNA-

fragment into NcoI-cut pKF20. After sequencing, one clone was selected that 

contained a triple insertion in the correct orientation (pKF30). From this plasmid, 

the myc3-GFP-sequence was transferred as a BamHI-NotI-fragment into pKF60, 

100



resulting in plasmid pKF62. To remove an XbaI-site from the pCASPER2 

polylinker, pKF62 was cut with XbaI, the ends treated with Klenow polymerase 

(New England Biolabs, Ipswitch, MA, USA), and the vector was re-ligated, 

creating pKF63. This plasmid was transformed into dam/dcm negative bacteria 

(strain GM2163, New England Biolabs), which rendered a second XbaI-site in 

the 3′-UTR, adjacent to the NotI-site, cleavable. To insert the miR-277 target 

sites, we annealed oligos 5′-GGC CTG TCG TAC CAG ATA GTG CAT TTA CAG 

TGT CGT ACC AGA TAG TGC ATT TA-3′ and 5′-CTA GTA AAT GCA CTA TCT 

GGT ACG ACA CTG TAA ATG CAC TAT CTG GTA CAG CA-3′ for the two 

perfectly matched sites, and oligos 5′-GGC CTG TCG TAC CAG AGG ATG CAT 

TTA CAG TGT CGT ACC AGA GGA TGC ATT TAT GTC GTA CCA GAG GAT 

GCA TTT ACA GTG TCG TAC CAG AGG ATG CAT TTA -3′ and 5′-CTA GTA 

AAT GCA TCC TCT GGT ACG ACA CTG TAA ATG CAT CCT CTG GTA CGA 

CAT AAA TGC ATC CTC TGG TAC GAC ACT GTA AAT GCA TCC TCT GGT 

ACG ACA-3′ for the four bulged sites, then ligated the DNA fragments into NotI-

XbaI-cut pKF63, creating pKF67 and pKF68, respectively. 

These pCASPER2-derived expression plasmids were used both for the 

generation of stable S2-cell lines and for the P-element-mediated genetic 

transformation of Drosophila melanogaster (Rubin and Spradling, 1982). 

Constructs to make dsRNA directed against GFP, dcr-1, dcr-2, loqs and 

drosha were described previously (Forstemann et al., 2005). Templates for the 
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synthesis of dsRNA directed against ago1 and ago2 were generated by T/A-

cloning PCR products generated using the oligonucleotides 5′-CGC ACC ATT 

GTG CAT CCT AAC GAG-3′ and 5′-GGG GAC AAT CGT TCG CTT TGC GTA-3′ 

for ago2 and 5′-ATT TGA TTT CTA TCT ATG CAG CCA-3′ and 5′-GCC CTG 

GCC ATG GCA CCT GGC GTA-3′ for ago1 into the modified Litmus28i vector 

described previously (Forstemann et al., 2005). The template for producing 

dsRNA-targeting r2d2 was generated by PCR using oligonucleotides 5′-CGT 

AAT ACG ACT CAC TAT AGG CAT ACA CGG CTT GAT GAA GGA TTC-3′ and 

5′-CGT AAT ACG ACT CAC TAT AGG TTG CTT GTG CTC GCT ACT TGC-3′. 

Templates for in vitro transcription were generated by PCR-amplification of each 

plasmid construct using a single primer corresponding to the T7 promoter (5′-

CGT AAT ACG ACT CAC TAT AGG-3′) and dsRNA for knock-down was 

generated as described in (Haley et al., 2003). 
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Figure 2.S1 
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Figure Legend 2.S1. Regulation of GFP reporter expression in cultured 

Drosophila S2 cells by endogenous miR-277. 

Clonally derived stable cell lines were generated that expressed control GFP 

unregulated by miR-277, GFP bearing two miR-277-complementary sites in its 

3′ untranslated region (UTR), and GFP bearing in its 3′ UTR four miR-277-

complementary sites, each containing three mismatches to miR-277 at 

nucleotides 9, 10 and 11, producing a ‘bulge.’ Each cell line was transfected 

with a cholesterol conjugated 2′-O-methyl modified, antisense oligonucleotide 

(ASO) complementary to miR-277 or to an unrelated luciferase sequence. In 

cultured cells and in vivo, ASOs inhibit the function of miRNAs to which they are 

complementary, relieving repression of their mRNA targets (Krutzfeldt et al., 

2005; Meister et al., 2004; Hutvagner et al., 2004}. As a control, the unregulated 

GFP reporter cell line was transfected with GFP dsRNA. GFP expression was 

quantified by flow cytometry. (A) Representative FACS profiles from a single 

experiment. (B) The average ± standard deviation for the mean fluorescence 

recorded in three trials. P-values were calculated using a two-sample T-test 

assuming equal variances. 
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Figure 2.S2 
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Figure Legend 2.S2. siRNA, siRNA-binding-site, and antisense 

oligonucleotide (ASO) structures. 

(A) Structure of the miR-277-binding sites in 3′ UTR of the perfectly 

complementary or the partially complementary GFP reporter mRNAs. (B) 

Structure of the 3′-cholesterol conjugated, 2′-O-methyl modified, antisense 

oligonucleotides (ASOs) used as a control (luciferase-specific) or used to inhibit 

miR-277 expression in cultured S2 cells. Every ribose 2′ hydroxyl in each ASO 

was replaced with a methoxy group. 
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Figure 2.S3 
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Figure Legend 2.S3. Endogenous miR-277-programmed Ago2, not Ago1, 

represses a GFP reporter containing a single, perfectly complementary site 

in its 3′  UTR. 

At left, clonally derived S2 cells bearing the GFP reporter were transfected with 

the indicated antisense oligonucleotide (ASO), including an ASO complementary 

to miR-277. At right, the cells were transfected with dsRNA corresponding to the 

indicated gene. Each bar represents the average ± standard deviation for three 

independent experiments. 
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Figure 2.S4 
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Figure Legend 2.S4. miR-277 regulates reporter mRNA steady state 

abundance. 

Inhibition of miR-277 by a specific ASO increased both the mRNA abundance 

(A) and the production of GFP protein (B) for the perfect and bulged GFP 

reporters, but not the unregulated control, even when additional miR-277 

(”+miR-277”) was expressed from a transgene.  After 72 hrs, mRNA abundance 

was measured by qRT-PCR and GFP protein expression measured by FACS 

analysis.  Three replicate transfections were performed for the cell line 

containing the 4x bulged reporter and expressing additional miR-277; single 

transfections were performed for all other cell lines. For qRT-PCR, total RNA 

was extracted from ~107 cells with Trizol (Invitrogen, Carlsbad, CA). Reverse 

transcription was performed with Superscript II (Invitrogen) according to the 

manufacturer’s instructions, using gene specific primers (forward primer and 

RT/reverse primer) for the GFP and RP49 coding regions: 5′-CCG CTT CAA 

GGG ACA GTA TCT G-3′ and 5′-ATC TCG CCG CAG TAA ACG C-3′ for RP49; 

5′-TGT CGG GCA GCA GCA C-3′ and 5′-AAC GGC ATC AAG GTG AAC TTC-3′ 

for GFP.  Relative GFP mRNA abundance was calculated using the 2-ΔΔCt 

method. Values were normalized to the no treatment control. Error bars 

represent the standard deviation of three PCR replicates. For the 4x 

bulge+miR277 sample, error bars represent standard deviation of the means of 

three independent transfection experiments. (C) miR-277 does not affect the 
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ratio of reporter GFP protein to RNA.  For each cell line tested, the ratio of the 

mean GFP fluorescence to the relative GFP mRNA abundance is shown, 

normalized to the no treatment control. 
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Figure 2.S5 
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Figure Legend 2.S5. N-ethyl maleimide (NEM) inactivates assembly of 

Ago1-RISC, but does not alter the kinetics of Ago1-mediated target 

cleavage. 

(A) Ago1 was programmed with let-7 in vitro using 50 nM let-7/let-7* duplex, 

then the reaction treated with NEM at the indicated time. Unreacted NEM was 

quenched with DTT. The relative amount of Ago1-RISC assembled was then 

determined by measuring the rate of cleavage of 50 nM target RNA containing a 

single let-7-complementary site. (B) 50 nM let-7/let-7* duplex was incubated 

with embryo lysate for 60 min to program Ago1-RISC, then the reaction treated 

with NEM, followed by DTT. As a control, DTT was added before the NEM. The 

cleavage of 200 nM target RNA by let-7-programmed Ago1-RISC was then 

assayed. Both reactions displayed the burst kinetics characteristic of Ago1-

mediated target cleavage.
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Chapter III: Argonaute Divides Its RNA Guide Into 
Domains with Distinct Functions and RNA-Binding 
Properties 
 
 
 

 
 
 
Disclaimer 
 
This chapter was made possible from a joint effort among the authors: Liang 

Meng Wee (Wee), Fabián Flores-Jasso (FF), William Salomon (WES) and Phillip 

Zamore (PDZ). FF with the help of WES devised the oligocapture-based method 

to purify fly Ago2 and mouse AGO2 from extracts. 
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SUMMARY 

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) guide Argonaute 

proteins to silence mRNA expression. Argonaute binding alters the properties of 

an RNA guide, creating functional domains. We show that the domains 

established by Argonaute—the anchor, seed, central, 3′ supplementary, and tail 

regions—have distinct biochemical properties that explain the differences 

between how animal miRNAs and siRNAs bind their targets. Extensive 

complementarity between an siRNA and its target slows the rate at which fly 

Argonaute2 (Ago2) binds to and dissociates from the target. Highlighting its role 

in antiviral defense, fly Ago2 dissociates so slowly from extensively 

complementary target RNAs that essentially every fully paired target is cleaved. 

Conversely, mouse AGO2, which mainly mediates miRNA-directed repression, 

dissociates rapidly and with similar rates for fully paired and seed-matched 

targets. Our data narrow the range of biochemically reasonable models for how 

Argonaute-bound siRNAs and miRNAs find, bind, and regulate their targets. 
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RESULTS 

To determine how siRNA:target pairing affects Ago2 function, we systematically 

altered the sequence of an siRNA whose guide strand corresponds to the let-7 

miRNA. We measured the rate of cleavage of a target RNA that was fully 

complementary to let-7 for 45 variants of the siRNA. (Figure 3.S1). The use of a 

common target eliminated the influence on Ago2 activity of target site 

accessibility (Brown et al., 2005; Ameres et al., 2007; Long et al., 2007; Tafer et 

al., 2008). 

Of 26 overlapping dinucleotide mismatches, 22 reduced the rate of target 

cleavage by Drosophila Ago2 (Figure 3.S1). To understand why some 

mismatches were tolerated but others were not, we determined the Michaelis-

Menten parameters, KM and kcat, for 59 siRNA:target combinations comprising 

seven single-nucleotide mismatches, 21 dinucleotide mismatches, a contiguous 

g17–g21 mismatch, and 30 fully complementary siRNA:target pairs (Figures 

3.1A, 3.1B and Table 3.S1). Each siRNA was assembled into Ago2-RNA-

induced silencing complex (RISC) in Drosophila embryo lysate. Half the 

assembly reaction was used to measure the initial rates of cleavage for a 

mismatched target and half for a fully complementary target (Figures 3.1A and 

3.S2). Because the RISC concentration was identical for the two targets, the 

change in kcat attributable to the mismatches corresponded to mismatched 
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Figure 3.1 
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Figure Legend 3.1. Drosophila Ago2 Divides an siRNA into Functional 

Domains 

(A) Kinetic analysis scheme. (B) siRNAs (red) were used with a single target RNA 

to examine the effect of mismatches (green) on target cleavage. A fully 

complementary target analyzed in parallel for each siRNA was used to calculate 

the change (mismatched target/fully complementary target) in KM (C) and kcat (D). 

Mismatched bases are indicated in boxes. Gray: mismatches that disrupt seed 

pairing. Data are mean ± S.D. for ≥3 independent experiments. No cleavage was 

detected for g11g12 dinucleotide mutations (AA, UU, UA, and UC) or a UCU 

trinucleotide mutation at g15–g17. See also Figures 3.S1–3.S3 and Tables 3.S1 

and 3.S2.  
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Vmax/fully complementary Vmax; similarly, the change in KM equaled mismatched 

KM/fully complementary KM. 

A g1 Mismatch Does Not Alter KM or kcat 

In early studies of fly Ago2, a mismatch between siRNA nucleotide g1 and the 

corresponding t1 position of its target did not impair target cleavage (Haley and 

Zamore, 2004). Subsequent studies of archaeal (Ma et al., 2005; Parker et al., 

2005) and eubacterial (Wang et al., 2008b; Wang et al., 2008a; Wang et al., 

2009) Argonautes revealed that binding of the siRNA 5′ phosphate to Argonaute 

forces the first nucleotide to be unpaired (Ma et al., 2005; Parker et al., 2005; 

Wang et al., 2008b). Consistent with these findings, a g1C:t1A mismatch had no 

detectable effect on the KM or kcat of fly Ago2 (Figures 3.1C and 3.1D). 

The Seed Sequence Behaves Like a Small Helix 

Seed sequence mismatches increased KM (Figure 3.1C). The effect of 

mismatches on KM was not constant across the seed (Figure 3.1C); mismatches 

at the center of the seed (g4g5) increased KM 82-fold, while the flanking 

dinucleotide mismatches (g2g3; g3g4; g5g6; and g6g7) increased KM 11- to 27-

fold. These data suggest that base pairs g4:t4 and g5:t5 lie at the center of a six 

or seven nucleotide RNA helix, because central mismatches should disrupt 

coaxial stacking more than mismatches closer to the ends of the helix. 

Dinucleotide and single mismatches at the seed periphery (g1g2; g7g8 and g8) 
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had the smallest effect, increasing KM 1.5- to 3.5-fold. The small effect of 

peripheral seed mismatches helps explain how miRNAs can regulate their 

targets through some imperfectly seed-matching sites (Ha et al., 1996; Yekta et 

al., 2004) and through an “offset 6mer seed,” in which seed pairing begins at g3 

and extends to g8 (Friedman et al., 2009). 

Dinucleotide mismatches in the seed were generally accompanied by a 

small increase in kcat; central mismatches caused the greatest effect (e.g., 2.8-

fold for a g4g5:t4t5 mismatch). Thus, seed mismatches decreased target 

binding but enhanced enzyme turnover, perhaps by accelerating release of the 

3′ fragment of the cleaved target (Figure 3.1D). 

Central Mismatches Perturb kcat 

Target cleavage requires that the center of the siRNA pair with its substrate 

(Elbashir et al., 2001c; Holen et al., 2002; Amarzguioui et al., 2003; Ding et al., 

2003; Haley and Zamore, 2004). Central pairing positions the scissile phosphate 

of the target near the amino acid side chains that catalyze cleavage (Ma et al., 

2005; Parker et al., 2005). Structures of eubacterial Argonaute bound to a DNA 

guide paired to RNA targets of different lengths suggest that base pairing at the 

center of the guide moves the three catalytic residues—and, presumably, the 

Mg2+ they bind—closer to the target (Wang et al., 2009). For yeast Argonaute, 

the rearrangement brings a fourth conserved glutamate into the catalytic site 
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(Nakanishi et al., 2012). For fly Ago2, mismatches spanning g8 to g12 all 

reduced target cleavage, albeit to widely varying extents (Figures 3.1D and 3.S1). 

While single-nucleotide mismatches at g8 or g9 had little effect on KM or 

kcat, a g8g9 dinucleotide mismatch reduced kcat by 93-fold (Figure 3.1D). 

Dinucleotide mismatches at g8g9 had a similar effect on kcat for a luciferase-

targeting siRNA (Figures 3.S3A–3.S3C; p-value = 1.7 × 10−8; two-tailed, unpaired 

Student’s t-test). The effects on kcat of dinucleotide mismatches at g9g10 (5.0-

fold reduction) and g10g11 (16-fold reduction) were more modest (Figure 3.1D). 

We saw no target cleavage for a g11g12 dinucleotide mismatch. (Our assay can 

detect ~500-fold decrease in kcat.) Mismatches at positions g9g10 or g10g11 did 

not alter KM. Our data support the idea that central pairing enables Ago2 to 

achieve a catalytically competent conformation but contributes little to target 

binding. 

Only a Subset of 3′ Base Pairs Contribute to KM or kcat 

Target pairing 3′ to the center of the small RNA has been proposed to enable 

Argonaute to achieve a catalytically competent conformation (Haley and Zamore, 

2004). Consistent with this view, a dinucleotide mismatch at g12g13 reduced kcat 

16-fold, while dinucleotide mismatches at g14g15, g15g16, g16g17, or g17g18, 

as well as a single mismatch at g15, reduced kcat 1.5- to 9.4-fold (Figure 3.1D). 

Similarly, a g15g16 dinucleotide mismatch in a luciferase-targeting siRNA 
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decreased kcat 7.6-fold, compared to a fully matched target RNA (Figure 3.S3). A 

dinucleotide mismatch at g13g14 however, did not decrease kcat (Figure 3.1D). 

We do not know why this dinucleotide mismatch alone among the six had no 

detectable effect. We note that this atypical dinucleotide mismatch (CC:AA) lies 

between a GG:CC (g11g12) dinucleotide and G:C pair (g15). These flanking base 

pairs may mitigate the helical disruption caused by the intervening 

pyrimidine:purine dinucleotide mismatch. 

The effect on KM of dinucleotide mismatches from g12 to g17 was 

qualitatively similar to mismatches in the seed sequence (Figure 3.1C). Pairing to 

miRNA bases g13–g16 (“3′ supplementary base pairing”) is a computational 

hallmark of a high confidence miRNA-binding site (Brennecke et al., 2005; 

Grimson et al., 2007; Bartel, 2009; Friedman et al., 2009). We observed a small 

but significant increased in KM for dinucleotide mismatches at g13g14 (3.6-fold, 

p-value = 0.022), g14g15 (4.2-fold, p-value = 0.017) and g15g16 (3- to 4-fold, p-

value = 6.6 × 10−3) and for a single-nucleotide mismatch at g16:t16 (3.4-fold, p-

value = 4.7 × 10−3; Figure 3.1C and Table 3.S1). A g15g16 dinucleotide 

mismatch also increased the KM of the luciferase siRNA by 12-fold (p-value = 7.6 

× 10−4; Figure 3.S3B). Notably, the 7 nucleotide seed of this siRNA is predicted 

to pair more weakly with its target (ΔGseed(25°C) = −7.7 kcal mol−1) than the seed of 

the let-7 siRNA (ΔGseed(25°C) = −11.2 kcal mol−1). Weaker seed pairing likely makes 

3′ supplementary base pairing more important (Brennecke et al., 2005). 
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Mismatches at the center of the g12–g17 region had the greatest effect 

on KM, with a g14g15 dinucleotide mismatch increasing KM 4.2-fold. Likely the 

g14g15 base pairs lie at the center of a small RNA helix, much as the g4g5 base 

pairs do for the seed. 

The siRNA 3′ End Contributes Little to KM or kcat 

The g17:t17 base pair marks the end of the 3′ supplementary binding site: a 

single nucleotide mismatch at g17 and dinucleotide mismatches at g18g19 and 

g19g20 caused no significant change in KM or kcat. A g17g18 dinucleotide 

mismatch decreased kcat by 2.2-fold (p-value = 0.037) while a g17–g21 

contiguous mismatch decreased kcat by 1.9-fold (p-value = 0.024), but neither 

had an effect on KM. In contrast, a trinucleotide mismatch within the 3′ 

supplementary region (g15–g17) completely inhibited target cleavage (Figures 

3.1C, 3.1D and 3.S1). 

Notably, a dinucleotide mismatch at g20g21 caused a modest increase in 

both KM (1.9-fold, p-value = 1.7 × 10−3) and kcat (1.6-fold, p-value = 6.9 × 10−3), 

consistent with earlier suggestions that terminal mismatches facilitate product 

release from plant and animal RISC (Tang et al., 2003; Haley and Zamore, 2004). 

We conclude that the final four nucleotides of the small RNA guide—the “tail”—

form base pairs only after the target RNA is cleaved. 
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Mismatches that Reduce kcat Reflect a Defect in Catalysis 

Mismatches that reduce kcat could reflect a defect in catalysis, product release, 

or regeneration of RISC to an active state. For these mismatches, we measured 

the initial rate of target cleavage (v0) under conditions of enzyme excess. When 

[E] > [S], v0 is largely uninfluenced by product release or enzyme regeneration 

because most RISCs cleave just a single molecule of target. 

All mismatches that reduced the multiple turnover cleavage rate also 

decreased the rate when [E] > [S] (Figure 3.2 and Table 3.S1). Thus, a defect in 

the catalytic step suffices to explain the reduced kcat. In fact, the effects of 

mismatches were greater when [E] > [S] than when [E] << [S], suggesting that 

the deleterious effect of mismatches on the inherent rate of target cleavage is 

partially offset by a favorable effect of mismatches on steps present only when 

each RISC catalyzes many successive rounds of target cleavage (Table 3.S1, 

relative kcat/relative v0). In other words, mismatches inhibited catalysis but 

promoted product release or enzyme regeneration. This was most pronounced 

for mismatches in the seed and 3′ supplementary region (Table 3.S1, relative 

kcat/relative v0), favoring the idea that mismatches in these domains promote 

product release, just as they facilitate the release of miRNA* from pre-Ago1-

RISC in flies and humans (Tomari et al., 2007; Kawamata et al., 2009; Yoda et al., 

2009). 
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Figure 3.2 
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Figure Legend 3.2. Mismatches that Impair kcat Disrupt Catalysis but 

Promote Turnover 

Target cleavage with [S] < [E]. Initial rates, v0, for mismatched (gray) and fully 

complementary targets (black) were determined by fitting the data to a single 

exponential. Table 3.S1 lists the change in initial rates (mismatched vs. fully 

complementary). Data are mean ± S.D. for at ≥3 independent experiments.  
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The Standard Rules for RNA Base Pairing Apply to RISC 

Might Ago create a special environment for seed base paring? To test if the 

standard rules for RNA base pairing apply, we used the change in KM between 

mismatched and fully complementary siRNA:target pairs to calculate the free 

energy cost of mismatches in the seed. We compared this to the cost predicted 

by nearest neighbor analysis (Xia et al., 1998). 

First, we tested whether nearest neighbor values determined in 1 M 

sodium, pH 7.0 (Schroeder and Turner, 2009), changed in our more 

physiological conditions, 100 mM potassium, 4 mM magnesium, pH 7.4. Values 

obtained in our conditions agreed well with the published data (Figures 3.S4A 

and 3.S4B and Table 3.S3). Second, an increase in KM may reflect an increase in 

kcat, because KM = (koff + kcat)/kon. For mismatches in the seed and 3′ 

supplementary regions, we detected no correlated changes between KM and kcat, 

justifying our use of the change in KM as a surrogate for relative KD. 

The free energy cost, ΔΔG25°C, calculated from the change in KM for both 

seed (r = 0.93, p-value = 4.1 × 10−4) and 3′ supplementary (r = 0.76, p-value = 2.0 

× 10−3) mismatches correlated well with the values predicted by the nearest 

neighbor values for RNA base pairing (Figures 3.S4C and 3.S4D). Thus, the 

relative contributions of each base pair in RISC are similar to those in an 

RNA:RNA duplex. 
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Ago2 Reduces the Affinity of a Guide RNA for Its Target 

A key obstacle to measuring the binding affinity of Ago2-RISC has been the 

inability to purify Ago2 bound to a single siRNA guide sequence. We recently 

developed a simple and efficient method for purifying mature RISC assembled in 

Drosophila embryo lysate or mouse embryonic fibroblast S100 lysate (Figures 

3.3A and 3.3B; Flores-Jasso et al., 2013). (Mouse and human AGO2 are 99% 

identical.) We used nitrocellulose filter binding to measure the binding affinity of 

both fly Ago2-RISC and mouse AGO2-RISC purified by this procedure (fly, 

Figures 3.3–3.5; mouse, Figure 3-6). RISC concentration was determined by 

quantitative Northern hybridization and pre-steady state analysis (Figures 

3.S5A–3.S5C). To block cleavage, the target RNA contained a phosphorothioate 

linkage flanked by 2′-O-methyl ribose at positions t10 and t11 (Figures 3.S5D 

and 3.S5E). Stoichiometric titration showed that 0.81 fly Ago2-RISC and 1.4 

mouse AGO2-RISCs bound each molecule of target, consistent with one RISC 

per target (Figures 3.3C, 3.6A, and 3.6B). 

Fly Ago2- and mouse AGO2-RISC bound tightly to a fully complementary 

RNA (Figures 3.3D and 3.6C). Our KM data and published Argonaute structures 

(Wang et al., 2009) suggest that 16–17 base pairs form between the guide and 

the target RNAs, yet the binding affinity of fly Ago2-RISC (KD = 3.7 ± 0.9 pM, 

mean ± S.D.; ΔG25°C ~−16 kcal mol−1) and mouse AGO2-RISC (KD = 20 ± 10 pM, 

mean ± S.D.; ΔG25°C ~−15 kcal mol−1; see below) for a fully complementary target 
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Figure 3.3 
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Figure Legend 3.3. Fly Ago2-RISC Binding 

RISC was assembled and then purified using a partially complementary, 

tethered 2′-O-methyl oligonucleotide (A). Purified Ago2-RISC was then used in 

filter-binding assays (B). (C) Stoichiometric binding titration of target RNA with 

increasing amounts of purified fly Ago2-RISC. Data are mean ± S.D. (D) 

Equilibrium binding assays. Data are mean ± S.D. for 15 independent 

experiments using three preparations of fly Ago2-RISC. (E) Kinetics of purified 

fly Ago2-RISC using a 29 nt fully complementary target RNA. Data are mean ± 

S.D. for three independent experiments. (F) Dissociation rate for a fully 

complementary target RNA. See also Figures 3.S4, 3.S5 and Table 3.S3.  
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was comparable to that of a 10 bp RNA:RNA helix. Thus, Argonaute functions to 

weaken the binding of the 21 nt siRNA to its fully complementary target: without 

the protein, the siRNA, base paired from positions g2 to g17, is predicted to 

have a KD ~3.0 × 10−11 pM (ΔG25°C = −30.7 kcal mol−1). Argonaute raises the KD of 

the 16 bp RNA:RNA hybrid by a factor of >1011. 

KM is not KD 

The KD measured in our binding assay (3.7 ± 0.9 pM) was ~270-fold smaller than 

the KM (1.0 ± 0.2 nM) determined using purified fly Ago2 (Figure 3.3E). By 

definition, KM = (koff + kcat)/kon. When kcat << koff, KM ~ KD. To understand why KM 

so dramatically underestimates the affinity of fly Ago2 for a fully complementary 

target, we measured koff directly (Figure 3.3F). For fly Ago2-RISC, the 

dissociation rate constant, koff = 8.8 × 10−5 s−1, was much slower than the 

turnover rate, kcat = 6.1 × 10−2 s−1. Consequently, KM ~ kcat/kon. Hence, for fly 

Ago2-RISC, KM is not KD. 

In contrast, the KD for mouse AGO2 (20 ± 10 pM) was only ~5-fold smaller 

than the KM (0.10 ± 0.06 nM), because for mouse the dissociation rate (koff = 7.7 

× 10−4 s−1), is comparable to kcat (8.1 × 10−4 s−1; Figures 3.6C and 3.6D). For 

mouse AGO2-RISC, KM ~ KD. 

We used a competition assay to determine the contributions to binding of 

the anchor, seed, central, 3′ supplementary and tail regions of the siRNA. For 
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the fully complementary let-7 target, this assay gave values similar to those 

measured in the direct binding assay: 10 ± 1 pM (Figure 3.4 and Table 3.S4) 

versus 3.7 ± 0.9 pM (Figure 3.3D) for fly and 36 ± 5 pM (Figure 3.6E and Table 

3.S4) versus 20 ± 10 pM (Figure 3.6C) for mouse. Binding was specific: a non-

complementary luciferase RNA target competed ~1600-fold less well for fly 

Ago2 (Figure 3.4) and ~100-fold less efficiently for mouse AGO2 (Figure 3.6E). 

Single-stranded sequences flanking the RISC-binding site in a target RNA have 

been reported to have no effect on the KM of human AGO2-RISC (Ameres et al., 

2007), and we detected no difference in binding between a 28 nt (KD = 3.9 ± 0.9 

pM) and a 21 nt (KD = 3.6 ± 0.7 pM) competitor for fly Ago2 (Figure 3.4 and Table 

3.S4). 

The Fly Ago2 Seed Does not Tolerate GU Wobble Pairs 

GU wobble pairs between miRNAs and their targets have been reported to be 

tolerated, and some miRNA target prediction algorithms permit GU wobbles 

even in the seed (John et al., 2004; Miranda et al., 2006; Kertesz et al., 2007). 

We measured the effect of seed GU wobble pairs on target binding by fly Ago2-

RISC (Figure 3.4). A GU wobble at g4 decreased KD by 30-fold; two GU wobbles 

(g2, g8) decrease KD 40-fold (Figure 3.4). Two GU wobbles at the center of the 

seed (g4, g5) reduced binding 370-fold, and four GU wobbles (g2, g4, g5, g8) 

decreased binding 470-fold. We conclude that GU wobbles behave like 
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Figure 3.4 
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Figure Legend 3.4. Fly Ago2-RISC Equilibrium Competition 

The equilibrium dissociation constant of fly Ago2-RISC for the competitor, 

relative to that of a fully complementary target, is reported as the mean Krel ± 

S.D. for ≥3 independent experiments. Data are mean ± S.D. See also Table 3.S4.  
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mismatches and are not tolerated in the seed. Our data explain earlier reports 

that GU wobbles interfere with Argonaute function (Doench and Sharp, 2004; 

Brennecke et al., 2005; Grimson et al., 2007) and suggest that GU pairs in the 

seed should not be allowed by miRNA target prediction algorithms. 

Just Two-Thirds of siRNA Nucleotides Contribute to Binding for Fly Ago2 

Mismatches at g1, g8g9, or g10g11 had little or no effect on binding. Likewise, a 

target lacking phosphorothioate and 2′-O-methyl modifications but mismatched 

with the siRNA from positions g9–g11 bound with an affinity similar to that of the 

fully complementary, modified RNA (Krel = 1.0–1.3; Figure 3.4). A target 

complementary to only siRNA nucleotides g2–g16 bound just 11-fold less tightly 

than a target with complete, 21 nt complementarity. In contrast, a g4g5 

dinucleotide mismatch in the seed weakened binding 600-fold; a g15g16 

mismatch in the 3′ supplementary region reduced binding 250-fold (Figure 3.4). 

Thus, more than a third of the nucleotides in an siRNA guide make little or 

no contribution to target binding. Supporting this view, a target RNA 

complementary to only g2–g8 (the seed) and g12–g17 (extended 3′ 

supplementary pairing) bound nearly as tightly as the fully complementary RNA 

(Krel = 2.0 ± 0.2; Figure 3.4). Yet, a target complementary only to the seed and 

the 3′ supplementary region (g2–g8; g13–g16) bound 43-fold less tightly than 

the fully complementary target; a target complementary only to the seed bound 
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Figure 3.5 
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Figure Legend 3.5. Fly Ago2-RISC Binds Seed-Matched Targets at the Rate 

of Diffusion 

(A) Binding and dissociation was analyzed for target RNAs (left) that were 

complementary (black) to the entire siRNA (red), the seed (green), the seed plus 

3′ supplementary region (blue), or positions g2–g10 (gray). Asterisk: 32P-

radiolabel; subscript “m”: 2′-O-methyl ribose; “ps”: phosphorothioate linkage. 

(B) Dissociation rates for the RNAs in (A). Data are mean ± S.D. For the 

dissociation rate curve for the fully complementary RNA, see Figure 3.3F. See 

also Figure 3.S6.  
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80 times less tightly. Direct binding measurements yielded essentially the same 

results as the competition assay (Figure 3.5A). While the seed and 3′ 

supplementary regions supply much of the energy used by RISC to bind targets, 

nucleotides adjacent to the 3′ supplementary region also contribute to binding 

for fly Ago2-RISC. 

For Fly Ago2-RISC, a 7 nt Seed Binds Better than a 6mer 

Computational analysis in flies suggested that in the absence of 3′ 

supplementary pairing, 7 nt (g2–g8) but not 6 nt (g2–g7) seed complementarity 

can distinguish authentic miRNA-binding sites from chance complementarity 

(Brennecke et al., 2005), unlike in mammals, where both types of seed-matching 

sites have predictive power (Lewis et al., 2005). Intriguingly, fly Ago2-RISC 

bound a 6mer seed-matching target 2-fold less tightly than the 7mer seed 

(Figure 3.4). Since most miRNAs function through Ago1 in flies, it remains to be 

tested whether Ago1 behaves similarly. 

Mouse AGO2 is Optimized for miRNA Regulation, not RNAi 

Like fly Ago2, competition assays performed with mouse AGO2-RISC showed 

that central (g10g11) and terminal mismatches (g20g21) had no detectable 

effect on binding, whereas g4g5 seed mismatches reduced binding 40-fold 

(Figure 3.6E). Surprisingly, g15g16 mismatches did not impair binding for mouse 

AGO2-RISC (Krel = 1.4 ± 0.6; Figure 3.6E). Moreover, direct binding assays found 
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Figure 3.6 
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Figure Legend 3.6. Mouse AGO2-RISC is Specialized for miRNA Regulation 

(A) Binding and dissociation analyses for target RNAs that were complementary 

(black) to the entire siRNA (red), the seed (green) or the seed plus 3′ 

supplementary region (blue). (B) Stoichiometric binding titration with increasing 

amounts of mouse AGO2-RISC. (C) Equilibrium binding (left) and dissociation 

assays (right). Data are mean ± S.D. for ≥3 independent experiments. (D) 

Kinetics of purified mouse AGO2-RISC using a 28 nt fully complementary target. 

Data are mean ± S.D. for three independent experiments fitted to the quadratic 

equation for tight binding. (E) The equilibrium dissociation constant of mouse 

AGO2-RISC for the competitor, relative to that of a fully complementary target, 

is reported as the mean Krel ± S.D. for ≥3 independent experiments.  

141



no substantive difference in affinity between a seed-matching (KD = 26 ± 2 pM) 

and a fully complementary target (20 ± 10 pM; Figure 3.6C). We did observe a 

small but significant (p-value = 3.2 × 10−4) increase in affinity for a target with 

seed and 3′ supplementary pairing (KD = 13 ± 1 pM), compared to the seed 

alone. The modest contribution of the 3′ supplementary region to target binding 

helps explain why in mammals less than 5% of evolutionarily conserved, 

predicted miRNA-binding sites include conserved 3′ pairing (Friedman et al., 

2009). We conclude that seed complementarity and, to a far lesser extent, 3′ 

supplementary base pairing, provide all the binding energy tethering mouse 

AGO2-RISC to its targets. Our data suggest that evolution has optimized 

mammalian AGO2 for miRNA-based regulation. In contrast, fly Ago2 binds far 

more tightly to fully complementary targets than to those matching only the seed, 

as might be expected for an enzyme responsible for binding and destroying viral 

and transposon transcripts. 

Essentially Every Target that is Fully Paired to Fly Ago2-RISC is Cleaved 

To understand the molecular basis for the difference between mouse and fly 

Ago2-RISC, we measured the rate of dissociation of let-7-programmed fly 

Ago2-RISC for several prototypical RNA targets (Figure 3.5A). 

Fly Ago2-RISC dissociated slowly from a fully complementary target: koff 

= 8.8 × 10−5 s−1, corresponding to a half-life (t½) ~2.2 hr (Figure 3.3F). Given that 
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kcat for let-7-programmed fly Ago2-RISC was 6.1 × 10−2 s−1 (t½ ~11 s), essentially 

every fly Ago2-RISC that binds a target will slice it rather than dissociate from 

the uncleaved RNA (Figure 3.3E). 

RISC dissociated far more rapidly from targets paired to the seed 

sequence (g2–g8) or the seed plus the 3′ supplementary region (g13–g16): koff = 

4.5 × 10−2 s−1 (t½ ~15 s) for seed-matched and koff = 3.6 × 10−2 s−1 (t½ ~19 s) for 

seed plus 3′ supplementary pairing (Figure 3.5B). Such rapid dissociation from 

partially paired targets may minimize titration of RISC by seed-matching off-

targets. Intriguingly, fly Ago2-RISC dissociated more slowly from a target that 

paired with an extended seed-match (g2–g10; koff = 2.6 × 10−2 s−1, t½ ~27 s) than 

from a target complementary to both the seed and 3′ supplementary region 

(Figure 3.5B). 

Mouse AGO2-RISC often Dissociates before It Cleaves 

Mouse AGO2-RISC dissociated ~90-fold more slowly from a seed-matched 

target (koff = 5.1 × 10−4 s−1; t½ ~23 min) than fly Ago2. Moreover, the mouse AGO2 

dissociation rate constants for targets matching the seed, seed plus 3′ 

supplementary region (koff = 4.6 × 10−4 s−1; t½ ~25 min), and the entire RNA guide 

(koff = 7.7 × 10−4 s−1; t½ ~15 min) were quite similar (Figure 3.6C), consistent with 

their similar KD values. Given that the kcat for purified mouse AGO2-RISC was 8.1 
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× 10−4 s−1 (t½ ~14 min; Figure 3.6D), a fully complementary target is as likely to 

dissociate as to be cleaved. 

Our data also suggest that in both flies and mammals, the typical 

miRNA:Argonaute complex is in rapid equilibrium between the target-bound and 

unbound states, explaining why RNA-binding proteins can compete with 

miRNAs for overlapping binding sites (Bhattacharyya et al., 2006; Huang et al., 

2007; Kedde et al., 2007; Elcheva et al., 2009; Takeda et al., 2009; Goswami et 

al., 2010; Jafarifar et al., 2011; Toledano et al., 2012). 

miRNAs in RISC Find Their Targets at Rates That Approach That of 

Diffusion 

We used our experimentally determined KD and koff to calculate kon (= koff /KD), the 

bimolecular association rate constant for RISC binding its target. For both fly 

and mouse AGO2-RISC, kon for targets matching only the seed and the seed 

plus the 3′ supplementary region were similar: kon (seed) = 2.1 × 108 M−1 s−1 and 

kon (seed plus 3′ supplementary) = 3.1 × 108 M−1 s−1 for fly Ago2; kon (seed) = 2.0 

× 107 M−1 s−1 and kon (seed plus 3′ supplementary) = 3.6 × 107 M−1 s−1 for mouse 

AGO2. These rates suggest that miRNA-programmed Argonautes find their 

target RNAs near the limits of macromolecular diffusion (Hammes and Schimmel, 

1970; Berg and von Hippel, 1985). 

For fly Ago2-RISC, a dinucleotide mismatch that disrupts seed pairing 

(g4g5) reduced kon (= kcat + koff/KM) by ~30-fold (Table 3.S1) and increased koff by 
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~40-fold (kon = 7.0 × 105 M−1 s−1; koff = 3.6 ± 0.9 × 10−3 s−1; Figures 3.S6A and 

3.S6B). The KD value (5.2 nM) calculated from these kon and koff values agrees 

well with the KD (2.3 ± 0.6 nM) measured by equilibrium competition experiments 

(Figure 3.4 and Table 3.S4). Our data provide strong support for the idea that in 

flies seed pairing must precede the formation of base pairs between the target 

and the 3′ half of the siRNA. 

Base Pairing Beyond the Seed Proceeds at a Slower Rate for Fly Ago2-

RISC 

In contrast, the calculated kon (kon = 2.4 × 107 M−1 s−1) for fly Ago2-RISC binding a 

fully complementary target is >10 times slower than for a seed-matching target. 

For fully complementary targets in flies, (kcat + koff)/KM approximates kon and 

should reflect the rate at which RISC attains a catalytically active conformation, 

i.e., pairing from g2 to g17. Calculating kon from enzyme kinetics yields a similar 

value: 6.0 × 107 M−1 s−1 (Figure 3.3E). Taken together, our data suggest that seed 

pairing occurs more rapidly than the subsequent propagation of base pairs 

across the center of the siRNA and through the 3′ supplementary region. 

We imagine that complete base pairing to fully complementary targets 

requires conformational rearrangement of the siRNA within fly Ago2-RISC. 

Structural studies of eubacterial and eukaryotic Argonautes support this idea. 

They reveal a conformational rearrangement of the protein near the center of the 
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guide when it is extensively paired to its target and release of its 3′ end from the 

PAZ domain of Argonaute (Wang et al., 2009; Boland et al., 2011). In this view, 

cleavage of a target by fly Ago2-RISC is not limited by the search for a 

complementary sequence among the RNAs in a cell, but rather by the rate at 

which the siRNA, bound to Argonaute, can form an additional ~8 base pairs 

beyond the seed. 

In contrast, mouse AGO2-RISC associates with a fully paired target at a 

rate (kon = 3.6 × 107 M−1 s−1) indistinguishable from seed (kon = 2.0 × 107 M−1 s−1) 

or seed plus 3′ supplementary pairing (kon = 3.6 × 107 M−1 s−1). The association 

rate derived from enzyme kinetics corroborates these measurements: kon = (koff + 

kcat)/ KM = 2.0 × 107 M−1 s−1 (Figure 3.6D). Thus, fly Ago2 binds rapidly through its 

seed, then completes pairing of its 3′ bases more slowly, while mouse AGO2 

binds seed matching targets more slowly, so that the rate of propagating the 

helix to the 3′ half of the guide does not limit the rate of target cleavage. 

Centrally Bulged Sites 

Centrally bulged siRNAs are often used to model miRNA function in cultured 

mammalian cells (Zeng et al., 2002; Doench and Sharp, 2004; Broderick et al., 

2011). This approach typically uses an asymmetric 3 × 2 internal loop at g9–g11. 

While we have not measured the binding of 3 × 2 asymmetric internal loops, our 

results with 3 × 3 symmetric internal loops are likely to be similar. Compared to 
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naturally occurring, seed-match sites, centrally bulged sites bind RISC 80-fold 

more tightly for fly Ago2 (Figure 3.4), suggesting an explanation why centrally 

bulged sites require a lower concentration of RISC to mediate reporter 

repression (Broderick et al., 2011). 

While a target with g9–g11 mismatch bound fly Ago2-RISC as tightly as a 

fully complementary RNA (KD = 3.0 ± 1.0 pM; Figure 3.4 and Table 3.S4), the 

mechanism of binding is clearly different from the fully paired target: its 

measured koff value of 1.1 ± 0.1 × 10−3 s−1 and calculated kon value of 3.1 × 108 

M−1 s−1 are ≥ 5–13-fold faster than the fully complementary target (Figures 3.S6A 

and 3.S6B). We propose that the g9–g11 mismatch bypasses an energetically 

unfavorable rearrangement that occurs for a fully complementary target RNA. 

Interestingly, the crystal structure of eubacterial Argonaute shows that both 

ends of the guide remain anchored in the presence of a g10g11 mismatch 

(Wang et al., 2008a). 
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DISCUSSION 

Argonaute divides a small RNA guide into anchor, seed, central, 3′ 

supplementary, and tail functional domains (Figure 3.7). Nucleotides in the 

anchor (g1) and tail (g18–g21) facilitate Argonaute loading and help secure the 

siRNA or miRNA guide to Argonaute after the passenger or miRNA* strand has 

been removed. But these terminal domains are unlikely to base pair with a target 

RNA, even when pairing is predicted by their sequences. In contrast, central 

base pairing (g9–g12) between the guide and target is required for efficient 

target cleavage. Mismatches in this central region prevent RISC from attaining a 

catalytically competent conformation. For fly Ago2-RISC, achieving this 

conformation takes more time than seed pairing alone. Our data show that 

nearly every fly Ago2-RISC that reaches this conformation cleaves its RNA 

target rather than releasing it. For mouse AGO2-RISC, a slow catalytic rate often 

allows the target to escape before being sliced. 

In contrast, most miRNA:Argonaute complexes rapidly bind to and 

dissociate from their RNA targets via their seed. Even when RISC binds a target 

through both its seed and 3′ supplementary regions, it dissociates nearly as 

rapidly as for seed-only binding. Thus, the properties of RISC are essentially the 

same for both the typical seed-only and the less common seed plus 3′ 

supplementary pairing targets. That the rates of association and dissociation are 

so similar for these two binding modes suggests that pairing between a target 
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Figure 3.7
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Figure Legend 3.7. Model for RISC Function 

(A) Loading of an siRNA or miRNA into Argonaute creates distinct functional 

domains in the RNA guide. (B) A model for RISC binding and cleavage of target 

RNA. See also Figure 3.S7.  
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and the 3′ supplementary region of a miRNA does not require winding the target 

RNA around the guide, side-stepping the topological problem that must be 

solved for siRNAs to direct RISC to cleave a target. 

The finding that miRNAs use so little of their sequence to identify their 

regulatory targets surprised the biological community (Wightman et al., 1993; 

Reinhart et al., 2000; Lai, 2002). Our data show that miRNA-programmed RISC 

binds with a strength and binding site size similar to those of high affinity RNA-

binding proteins (e.g., Hall and Stump, 1992; Zamore et al., 1999; Zearfoss et al., 

2011; Wright et al., 2011). It is siRNA-programmed RISC whose behavior should 

surprise us: it binds highly complementary targets far less tightly than a 

comparable antisense RNA, because Argonaute reduces the contribution of 

most of its nucleotides to target binding. 

What do the physical properties of RISC teach us about its cellular 

function? miRNAs and siRNAs are typically present in cells at dramatically 

different concentrations. For example, in flies in which the white gene is silenced 

by RNAi, the abundance of all antisense white siRNAs combined is less than 

that of any of 29 most abundant miRNAs (Ghildiyal et al., 2008). Previously, the 

ability of siRNAs to function at low abundance has been ascribed to the catalytic 

nature of RNAi (Fire et al., 1998; Montgomery et al., 1998; Hutvagner and 

Zamore, 2002). To achieve a concentration 10-fold greater than the KD for 

siRNA-like binding (3.7 pM for fly Ago2-RISC) would require only ~5 molecules 
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of RISC in ovarian terminal filament cells (~200 µm3; Schneider, 1972) and ~11 

molecules in a cultured S2 cell (~500 µm3; Sarikaya et al., 2012). Thus, even for 

Argonaute proteins with no endonuclease activity, small numbers of molecules 

of RISC can repress highly complementary targets; endonuclease activity is only 

needed when a small amount of RISC must repress a larger amount of target. 

The combination of high affinity and catalytic turnover helps explain why the 

siRNA-directed RNAi pathway provides an effective defense against viral 

infection in plants and invertebrate animals (Hamilton and Baulcombe, 1999; 

Wilkins et al., 2005; Galiana-Arnoux et al., 2006; Wang et al., 2006b). 

Animal miRNAs nearly always repress their targets by binding rather than 

endonucleolytic cleavage. This explains why animal cells express miRNAs at 

such high levels. Recent data suggest that only the most abundant cellular 

miRNAs mediate target repression (Mullokandov et al., 2012). Our data provide 

a biochemical explanation for this observation. 

Consider two abundant miRNAs in a cultured HeLa cell (~5,000 µm3; 

Cohen and Studzinski, 1967; Milo et al., 2010): miR-21 (4nM; Lim et al., 2003) 

and the let-7 miRNA family, nine highly related miRNAs sharing a common seed 

sequence (~3 nM; Cole et al., 2009). Both miRNAs are present at a 

concentration greater than the KD we measured for seed matched targets for fly 

(~210 pM) or mouse (~27 pM) Ago2-RISC. Assuming a mean target mRNA 

abundance of 10 molecules per cell and 50 different mRNA targets per miRNA, 
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miR-21 and let-7 each regulate ~500 (170 pM) total target mRNA molecules per 

HeLa cell (Friedman et al., 2009). Under these conditions, nearly every miR-21 or 

let-7 target mRNA (~95–99%) with an accessible seed match will be bound by 

the complementary miRNA-programmed RISC (Figure 3.S7). 

Target repression by miRNAs can be reduced by the presence of 

competitor RNAs containing miRNA binding sites that titrate miRNA-RISC away 

from the mRNAs it regulates (Arvey et al., 2010; Garcia et al., 2011; Mukherji et 

al., 2011). The fundamental properties of RISC make specific predictions about 

how the activity of specific miRNAs can be inhibited by the expression of these 

competitor transcripts. The effect of such competitor RNAs reflects the 

concentration of both the miRNA and miRNA-binding sites (Ebert and Sharp, 

2012), as well as the affinity of miRNA-RISC for those sites. For abundant 

miRNAs such as miR-21 or the let-7 family, the expression of competitor RNAs 

containing miRNA binding sites—even highly complementary binding sites—will 

have little impact on the regulation of their target genes in flies or mammals. 

Doubling the expression of mRNAs repressed by miR-21, for example, would 

require ~7.8 nM seed only competitor and ~4.0 nM fully paired competitor for fly 

Ago2-RISC. For mouse AGO2-RISC, it would still require ~7.7 nM seed only 

competitor and ~7.2 nM of the fully paired competitor. Taken together, this 

translates to ~22,400 copies of seed only competitor and ~12,000–21,700 

copies of fully paired competitor (Figure 3.S7). If the competitor contained one 
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miRNA-binding site, it would comprise 12–50% of all the mRNA in the cell (Islam 

et al., 2011). 

In contrast, doubling the expression of the mRNA targets for an 

intermediate (mir-93; ~140 pM) or a low abundance miRNA (mir-24; 7.3 pM) 

would require just 600–800 additional seed-matching sites (Figure 3.S7). For 

mir-93 whose abundance confers the ability to bind to ~60% of all potential 

targets, the competitor must be as abundant as the sum of all the target mRNAs 

(~500 copies). Low abundance miRNAs like mir-24 are unlikely to contribute 

much biologically meaningful regulation, since they are present at a 

concentration less than their KD for seed-matching targets in both flies and 

mammals: < 4% of miR-24 targets are expected to be bound by the miRNA at 

any given time. Using the conservative assumption that every bound miRNA-

RISC completely represses an mRNA target, miR-24 is predicted to reduce the 

expression of the average seed-matched target by <4% (Figure 3.S7). 

Thus, the proposal that “competing endogenous RNAs” (“ceRNAs”) 

sequester miRNAs, de-repressing the authentic targets of that miRNA (Salmena 

et al., 2011), applies only to a small subset of miRNAs whose cellular 

concentration and target abundance meet a narrow range of values. The 

miRNAs with the largest impact on gene expression—the most abundant 

miRNAs—are not predicted to be regulatable by endogenous, transcribed seed-

matched competitor transcripts. Consistent with this view, viral and 
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experimental inhibition of specific miRNA function by transcribed RNA requires 

the use of extensively complementary miRNA binding sites that recruit a cellular 

pathway that actively degrades the targeted miRNA (Ebert et al., 2007; Loya et 

al., 2009; Ameres et al., 2010; Xie et al., 2012). Absent this target-directed, 

catalytic destruction of miRNAs, RNAs of ordinary abundance are unlikely to 

compete with mRNAs for binding abundant, biologically functional miRNAs. 
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EXPERIMENTAL PROCEDURES 

General Methods 

Target cleavage reactions were performed as described (Haley et al., 2003; 

Haley and Zamore, 2004) except using 4 mM Mg2+. Cleavage targets (Table 

3.S2) were prepared by in vitro transcription and capping (Haley et al., 2003). 

For binding, synthetic RNAs were 3′ 32P-radiolabeled. 

Binding, Competition, and Dissociation Assays 

Ago2-RISC was assembled with let-7 siRNA in 0–2 hr embryo lysate or S100 

from immortalized Ago2−/− MEFs expressing mouse AGO2 (O'Carroll et al., 2007). 

Binding reactions were at 25°C for 1 hr; protein-RNA complexes were captured 

on nitrocellulose and unbound RNA on Nylon membranes under vacuum and 

washed with ice-cold buffer. Competition reactions were at 25°C for 1 hr 

(mouse) or 6 hr (fly). For koff, Ago2-RISC was incubated with 32P-radiolabeled 

RNA target for 1 hr, then competitor RNA was added and dissociation measured. 

Kinetics 

Target cleavage reactions were performed as described (Haley et al., 2003; 

Haley and Zamore, 2004) except using 4 mM Mg2+. For each siRNA duplex, 

guide position 1 (g1) was unpaired from the corresponding base in the 

passenger strand to ensure efficient loading of the guide strand into Ago2 

(Schwarz et al., 2003; Khvorova et al., 2003; Forstemann et al., 2007; Tomari et 
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al., 2007). let-7 is not present in the Drosophila embryo lysate used in our 

studies. For multiple-turnover reactions, 20 nM siRNA duplex was incubated 

with 0–2 hr Drosophila embryo lysate at 25°C for 3 min to assemble fly Ago2-

RISC; for single-turnover reactions, 50 nM siRNA duplex was incubated with 

embryo lysate for 90 min to assemble more fly Ago2-RISC (Haley and Zamore, 

2004). Subsequently, Ago2 assembly was inactivated by cooling the reaction to 

4°C for 3 min and adding 1.0 mM (f.c.) N-ethylmaleimide (NEM). After 10 min, 

1.2 mM (f.c.) DTT was added to quench unreacted NEM. RISC concentration 

was adjusted by dilution in NEM-treated embryo lysate (Haley et al., 2003). 

Control experiments demonstrated that target cleavage required Ago2. Single-

turnover reactions employed 0.1, 0.5 or 1 nM (f.c.) target RNA. Pre-steady state 

experiments were performed in 100 mM potassium acetate, 18 mM HEPES (pH 

7.4), 3 mM magnesium acetate, 5 mM DTT, 0.01% (v/v) IGEPAL CA-630, 0.01 

mg/ml baker’s yeast tRNA using 100 nM substrate (f.c) at 25°C. For each time 

point, an aliquot of the reaction was quenched in 200 mM Tris-HCl (pH 7.5), 25 

mM EDTA (pH 8.0), 300 mM NaCl, 2% (w/v) sodium dodecyl sulfate, 2 µg/µl 

Proteinase K and 0.2 µg/µl glycogen carrier. All samples were resolved by urea-

denaturing polyacrylamide gel electrophoresis (Haley et al., 2003). Gels were 

dried, exposed to image plates, and then scanned and analyzed using an FLA-

5000 or FLA9000 (GE Healthcare Bioscience, Pittsburgh, PA) and Image Gauge 

4.22 software (Fujifilm, Tokyo). 
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siRNAs and target RNAs 

Synthetic siRNA duplexes (Dharmacon, ThermoFisher Scientific, Lafayette, CO; 

Sigma-Aldrich Corp, St. Louis, MO) were deprotected, phosphorylated and gel 

purified (Table 3.S2A). RNA targets (Table S2B) were prepared by in vitro 

capping and transcription (Haley et al., 2003). Briefly, DNA transcription 

templates were generated by PCR (Table 3.S2C) from pGL2-Control vector 

(Promega, Madison, WI). RNA was transcribed with T7 RNA polymerase and gel 

purified. Next, 150 pmol RNA was incubated for 1.5 hr at 37°C in a 40 µl 

reaction containing 1.25 µM 32P α-GTP (Perkin Elmer, Waltham, MA), 25 U 

guanylyl transferase (Epicentre, Madison, WI), 40 U RNase inhibitor (Promega, 

Madison, WI), 125 µM S-adenosylmethionine, 50 mM Tris-HCl (pH 8.0), 6 mM 

KCl and 1.25 mM MgCl2. Next, 15 U guanylyl transferase, 1.2 mM GTP, a 

concentration in excess of the RNA substrate and greater than the KM of the 

enzyme (Myette and Niles, 1996), 120 µM S-adenosylmethionine were added 

and incubation continued for 1.5 hr. Capped RNA was gel purified, and small 

aliquots were frozen in liquid nitrogen and stored at −80°C. Target RNAs were 

radiolabeled with 0.1 mM [5′-32P] cytidine-3′,5′-bisphosphate, 0.5 U/µl T4 RNA 

ligase (Ambion, Life Technologies, Grand Island, NY), 0.3 U/µl SUPERase•In 

(Ambion) 10% (v/v) dimethylsulfoxide at 4°C overnight. RNA was gel purified and 

concentration determined by absorbance at 260 nm. 
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Measurement of ΔG of Base Pairing by Hyperchromicity Analysis 

RNA hyperchromicity analyses were performed in 100 mM KCl, 18 mM sodium 

cacodylate (pH 7.4) and 4 mM MgCl2. Equimolar amounts of the two RNAs were 

used for each duplex. Control experiments established that none of the 

individual RNA strands contained stable intramolecular structure. Absorbance at 

260 nm was measured every 0.5°C from 10°C to 80°C at a heating rate of 1°C 

min−1 using a DU 640 spectrophotometer with a high performance temperature 

controller (Beckman Coulter, Indianapolis, IN). Data were fit to a two-state model 

using Meltwin (McDowell and Turner, 1996; Schroeder and Turner, 2009). 

Nearest Neighbor Analysis 

ΔG25°C = −RT ln(1/KM), where R = 1.987 cal K–1mol–1 and T = 298.15K. Error was 

propagated using the quadratic sum of the partial uncertainties (Taylor, 1997). 

Theoretical ΔG25°C was calculated based on nearest neighbors values and from 

using RNAstructure 5.3 (Xia et al., 1998; Reuter and Mathews, 2010). The seed 

was taken to correspond to g2–g8, and 3′ supplementary pairing to correspond 

to g12–g17. 

Binding, Competition, and Dissociation Assays 

Fly Ago2-RISC was assembled for 90 min with let-7 siRNA (5′-pUGA GGU AGU 

AGG UUG UAU AGU-3′) using 0–2 hr embryo lysate. Mouse AGO2-RISC was 

assembled for 90 min with let-7 siRNA using S100 extract. The S100 extract 
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was obtained from Ago2–/– mouse embryonic fibroblasts (MEFs) immortalized 

with SV40 large T-antigen that stably over-expressed mouse AGO2 (O'Carroll et 

al., 2007). Briefly, MEF cells were grown to confluence in 5% CO2 at 37°C in 

DMEM (Invitrogen, Life Technologies) supplemented with 15% fetal bovine 

serum (PAA Laboratories, Inc., Dartmouth, MA) and 50 U/ml penicillin and 

streptomycin (Invitrogen, Life Technologies). S100 extract was prepared as 

described (Dignam et al., 1983) except that the cell pellet was washed three 

times in ice-cold PBS and once in buffer A that contains 10 mM HEPES–KOH 

(pH 7.9), 10 mM potassium acetate, 1.5 mM magnesium acetate, 0.5 mM DTT 

and EDTA-free protease inhibitor cocktail. Then, the pellet is resuspended in 

twice its volume with buffer A and incubated on ice for 20 minutes. This allows 

the cells to swell and subsequently lysed (with 20 strokes) using a Dounce 

homogenizer and a tight pestle (B type) on ice. The homogenate was 

centrifuged gently at 2,000 x g to remove nuclei and cell membranes. Next, 0.11 

volume (that of the clarified supernatant from the low speed centrifugation) of 

buffer that consists of 300 mM HEPES-KOH (pH 7.9), 1.4 M potassium acetate, 

30 mM magnesium acetate, 0.5 mM DTT and EDTA-free protease inhibitor 

cocktail was added. This was immediately followed by ultracentrifugation at 

100,000 × g at 4 °C for 20 min where the supernatant constitutes the S100 

extract. Ice-cold 80% (w/v) glycerol is then added to the S100 extract to achieve 

a 13% (w/v) final glycerol concentration. Finally, the S100 extract was, aliquoted, 
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frozen in liquid nitrogen, and stored at −80 °C. The protein concentration of the 

S100 extract was ~3–4 mg/ml. Assembled Ago2-RISC was captured with a 5′ 

biotinylated 2′-O-methyl-modified oligonucleotide that pairs with g2–g8 and 

g13–g16 of let-7 seed (5′-Biotin-AUA GAC UGC GAC AAU AGC CUA CCU CCG 

AAC G-3′) and eluted using a DNA oligonucleotide bearing four 2′-O-methyl 

modifications (m; 5′-GGmU AmGG CTA TmUmG TCG CAG TCT AT-3′ (Flores-

Jasso et. al., 2013). Fly Ago2-RISC eluate was further purified using Superdex 

200 HR 10/300 GL (GE Healthcare Bioscience, Pittsburgh, PA) size exclusion 

column. Mouse AGO2-RISC eluate was subsequently purified using Mono S 

5/50 GL (GE Healthcare) cationic exchanger. Column purified fly Ago2-RISC was 

concentrated by centrifugation (3,000 × g; Amicon Ultra-0.5 ml, Millipore, 

Billerica, MA) in 100 mM potassium acetate, 18 mM HEPES (pH 7.4), 3 mM 

magnesium acetate, 5 mM DTT, 0.01% (v/v) IGEPAL CA-630, 0.01 mg/ml 

baker’s yeast tRNA (equilibration buffer). Column purified mouse AGO2-RISC 

was dialyzed using a 3 ml Slide-A-Lyzer cassette (Pierce, ThermoFisher 

Scientific) in equilibration buffer supplemented to a final concentration of 20% 

glycerol (v/v). Finally, mouse AGO2-RISC is concentrated by centrifugation. 

Binding reactions were incubated at 25°C for 1 hr. RNA binding was measured 

by capturing protein-RNA complexes on Protran nitrocellulose membrane 

(Whatman, GE Healthcare Bioscience, Pittsburgh, PA) and unbound RNA on a 

Nylon XL membrane (GE Healthcare Bioscience) using a Bio-Dot apparatus (Bio-
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Rad, Hercules, CA). After applying the sample under vacuum, membranes were 

washed with ice-cold equilibration buffer. Membranes were air-dried and signals 

detected by phosphorimaging. Competition reactions were incubated at 25°C 

for 1 (mouse AGO2-RISC) or 6 hr (fly Ago2-RISC). To measure dissociation rate 

constants, 0.5–5 nM Ago2-RISC was incubated with 0.5 nM 32P-radiolabeled 

RNA target for 1 hr, then 50 nM or 500 nM competitor RNA was added and 

dissociation measured by filter-binding. 

Measuring the Concentration of Purified Ago2-RISC 

RNA guide was extracted from Ago2-RISC and resolved along with 

concentration standards by 15% denaturing polyacrylamide gel electrophoresis. 

RNA was transferred from the gel to Hybond-NX membrane (Amersham 

Biosciences, Piscataway, NJ) at 20 V for 1 hr, cross-linked to the membrane 

with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Pall and Hamilton, 2008), 

and probed as described to detect the guide and standards (Table 3.S2A; 

Ameres et al., 2010; Han et al., 2011). 

Data Analysis and Kinetic Modeling 

When [E] << [S], time courses were fit to y = mx + b; when [S] < [E], time courses 

were fit to y = y0 + Ae−kx, where the initial rate, v0 = Ak (Lu and Fei, 2003). Initial 

rates measured at different substrate concentrations were fit to the Michaelis-
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Menten model using Visual Enzymics 2008 (Softzymics, Princeton, NJ) for Igor 

Pro 6.11, 

 

 

 

 

or to the Morrison quadratic equation for tight binding, 

 

 

 

 

using Igor Pro 6.11 (WaveMetrics, Lake Oswego, OR). The rate of product 

formation was determined separately for each replicate, and significance 

determined using Student’s two-tailed, two-sample, equal variance t-test (Excel, 

Microsoft, Seattle, WA). R 2.14.0 software was used for other statistical analyses. 

To obtain the enzyme concentration by pre-steady state analysis, data were fit 

using non-linear least square regression in Igor Pro 6 to the burst and steady 

state equation, 
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where F(t) is target cleaved with time, E is the enzyme concentration, a and b are 

rate constants according to the following scheme, 

 

 

Because KD < [RNA target], all binding data were fit to 

 

where f is fraction target bound, [ET] is total enzyme concentration, [ST] is total 

RNA target concentration, and KD is the apparent equilibrium dissociation 

constant. 

For competition assays, the apparent equilibrium dissociation constant, 

KC, for the competitor RNAs was obtained by fitting the data to the normalized 

quadratic solution of the Lin and Riggs equation (Lin and Riggs, 1972; Weeks 

and Crothers, 1992), 
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KC

"
#$

%
&'
( [ET ]+ [ST ]+ KD + KD[CT ]

KC

"
#$

%
&'

2

( 4([ET ][ST ])

2[ST ]
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where Θ is the fraction target bound in the presence of competitor RNA, [CT], 

with an apparent dissociation constant of KC. To obtain the dissociation rate 

constant, koff, data were fit to f = e−kofft; t½ = ln(2)/koff . 

Berkeley Madonna 8.3.18 (www.berkeleymadonna.com/index.html) was 

used to model target derepression of miRNA-RISC by target competitors for 

high (human miR-21), intermediate (human miR-93) and low (human miR-24) 

abundance miRNAs. The concentration of miR-21 RISC (4 nM) was calculated 

using the reported abundance of ~12,000 copies per HeLa cell, assuming a 

maximum cell volume of 5,000 µm3 (Lim et al., 2003; Moran et al., 2010). The 

concentrations of miRNA-RISC for miR-93 and miR-24 were calculated, relative 

to miR-21, based on published ratios of sequencing reads (Cole et al., 2009). 
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Figure 3.S1 
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Figure Legend 3.S1. Target Cleavage by let-7-Programmed Fly Ago2-RISC, 

Related to Figure 3.1 

Red, mismatched targets; Black, fully complementary. Substrate was in excess 

over enzyme (S = 50 nM, E ~3 nM). 
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Figure 3.S2 
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Figure Legend 3.S2. Michaelis-Menten Kinetics of Fly Ago2-RISC Using 

Compensatory Targets, Related to Figure 3.1 

(A) Relative KM for fly Ago2-RISC comparing the individual fully complementary 

targets for all the let-7 derivatives to the original fully complementary target for 

the parental let-7 siRNA guide. Values that differed significantly (p-value <0.05) 

from the parental let-7 target are highlighted in red. 

(B) As in (A) but for relative Vmax. 

(C) Values for the KM of mismatched let-7 variant siRNAs relative to the KM of the 

parental let-7 for its fully complementary target RNA. 

Values are reported as mean ± standard deviation for three independent 

experiments. 
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Figure 3.S3 
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Figure Legend 3.S3. Fly Ago2-RISC Loaded With Luciferase siRNA, Related 

to Figure 3.1 

(A) Scheme for a Renilla reniformis luciferase siRNA (red) pairing with its targets. 

(B) Michaelis-Menten parameters for luciferase siRNA for mismatched targets, 

relative to the corresponding fully complementary target RNA. Mean KM and kcat 

values (± standard deviation) are from eight independent experiments. P-values 

calculated using two-tailed Student’s t-test. 

(C) Target cleavage by fly Ago2-RISC loaded with luciferase siRNA using 

enzyme (left) and substrate excess (right). Initial rates are reported to the right of 

each curve. Data represent mean ± standard deviation for four independent 

experiments. 
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Figure 3.S4 
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Figure Legend 3.S4. Base Pairing in Fly Ago2-RISC Obeys the Standard 

Rules for RNA, Related to Figure 3.3 

(A) RNA duplexes used to measure the effect of mismatches on the strength of 

base pairing under standard RNAi reaction conditions. 

(B) Van’t Hoff plots for the RNA duplexes in (A). CT is the total single-strand RNA 

concentration. 

(C,D) Comparison of the ΔΔG25°C derived from KM and the ΔΔG25°C calculated by 

nearest neighbor analysis between fully complementary targets and targets with 

mismatches in the seed, positions g2–g8 (C) and in the g12–g18 region (D). 

(E) Change in kcat/KM for all mismatches introduced into the let-7 siRNA guide. 

Values are mean ± standard deviation. 
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Figure 3.S5 
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Figure Legend 3.S5. Purified Fly Ago2-RISC Binds a Fully Complementary 

Target RNA Tightly and Specifically, Related to Figure 3.3 

(A) Quantitative Northern hybridization to detect the let-7 siRNA guide strand 

present in purified fly Ago2-RISC and to detect the corresponding let-7 RNA 

concentration standards. Above, the gel image quantified to yield the graph 

below. PSL (background subtracted) are the units reported by the 

phosphorimager. 

(B) Pre-steady-state “burst” kinetics to determine the amount of active let-7 

RISC present in five independent preparations of purified fly Ago2-RISC. Values 

are mean ± standard deviation. 

(C) Concentrations of fly Ago2-RISC obtained by quantitative Northern 

hybridization and pre-steady-state kinetics for the five independent preparations 

in (A) and (B). 

(D) Time course of cleavage by fly Ago2-RISC using modified (blue) and 

unmodified (green) target RNA. A subscript “m” denotes 2′-O-methyl ribose; “ps” 

indicates a phosphorothioate linkage. 

(E) Cleaved target (product) generated with time for the reactions shown in (D). 
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Figure 3.S6 
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Figure Legend 3.S6. Mismatches Promote Target Dissociation, Related to 

Figure 3.5 

(A) Target RNA bearing a g4g5:t4t5 mismatch (black) or g9–g11:t9–t11 

mismatch (grey). An asterisk indicates the position of the 32P-radiolabel; the 

subscript “m” indicates 2′-O-methyl ribose; “ps” indicates a phosphorothioate 

linkage.  

(B) Dissociation rate curves for the targets shown in (A). 

Data represent mean ± standard deviation for three independent experiments. 
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Figure 3.S7 
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Figure Legend 3.S7. Modeling Target Repression by miRNA, Related to 

Figure 3.7 

(A) Reaction equations and rates. 

(B) Predicted seed match or fully complementary (grey) competitor 

concentrations required to relieve 50% of repression by Ago2-RISC. Simulations 

used the kon and koff values measured for fly (left panels) or mouse AGO2 (right 

panels). We assume every bound miRNA-RISC fully represses its target. Insets 

show concentration of target bound with and without competitor.
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Table 3.S1. Michaelis-Menten parameters for target cleavage by Drosophila Ago2-RISC (mean ± S.D.; n ≥ 3 except n = 2 

for mismatch positions marked with an asterisk). 

let–7-programmed Ago2-RISC 

 Mismatched target Fully complementary 
target    

Mismatch 
position KM (nM) Vmax 

(nMs−1) KM (nM) Vmax 
(nMs−1) 

relative kcat 
relative KM

 

Single–turnover 
relative v0, 

       mismatched        
fully complementary 

relative kcat 
relative v0 

g1 (C:A) 17 ± 8 0.22 ± 0.09 17 ± 5 0.23 ± 0.08 0.99 ± 0.34 NA NA 
g1-g2 (CU:AC) 42 ± 5 0.80 ± 0.10 26 ± 12 0.63 ± 0.20 0.72 ± 0.37 NA NA 
g2-g3 (UC:CU) 250 ± 10 0.48 ± 0.12 23 ± 10 0.24 ± 0.05 0.17 ± 0.08 NA NA 
g3-g4 (UC:UC) 320 ± 40 0.35 ± 0.24 31 ± 8 0.21 ± 0.14 0.15 ± 0.06 NA NA 
g4-g5 (UC:CC) 2400 ± 300 0.63 ± 0.15 32 ± 11 0.23 ± 0.04 0.035 ± 0.015 NA NA 
g5-g6 (UC:CA) 1100 ± 100 0.27 ± 0.02 51 ± 20 0.28 ± 0.02 0.041 ± 0.012 NA NA 
g6-g7 (CU:AU) 390 ± 70 0.55 ± 0.03 15 ± 3 0.18 ± 0.03 0.11 ± 0.03 NA NA 

g7-g8 (UC:UC) 88 ± 60 0.023 ± 
0.008 24 ± 8 0.27 ± 0.08 0.024 ± 0.009 0.0035 ± 0.0011 23 ± 7 

g8 (U:C) 74 ± 15 0.43 ± 0.10 49 ± 1 0.47 ± 0.05 0.59 ± 0.14 0.61 ± 0.06 1.5 ± 0.3 

g9 (C:A) 30 ± 10 0.15 ± 0.04 16 ± 5 0.079 ± 
0.016 0.84 ± 0.64 0.80 ± 0.01 2.4 ± 0.7 

g8-g9 (UC:CA) 6.0 ± 1.6 0.0018 ± 
0.0006 15 ± 2 0.23 ± 0.03 0.025 ± 0.015 0.0052 ± 0.0017 2.1 ± 1.3 

g9-g10 (CU:AU) 17 ± 6 0.021 ± 
0.005 20 ± 7 0.11 ± 0.04 0.23 ± 0.08 0.052 ± 0.008 3.8 ± 1.1 

g10-g11 (UC:UC) 8.3 ± 1.2 0.0069 ± 
0.0003 8 ± 1 0.11 ± 0.00 0.062 ± 0.005 0.016 ± 0.001 4.0 ± 0.4 
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g12-g13 (UC:CA) 34 ± 18 0.017 ± 
0.007 20 ± 4 0.28 ± 0.06 0.037 ± 0.014 0.0068 ± 0.0013 9.2 ± 2.6 

g13-g14 (CC:AA) 68 ± 23 0.23 ± 0.05 19 ± 3 0.14 ± 0.02 0.47 ± 0.16 0.25 ± 0.02 6.9 ± 1.0 
g15 (U:C) 12 ± 4 0.11 ± 0.02 7 ± 1 0.17 ± 0.03 0.36 ± 0.09 NA NA 
g16 (G:G)* 13 ± 7 0.24 ± 0.06 4.3 ± 1.6 0.15 ± 0.03 0.60 ± 0.11 NA NA 
g16 (G:A)* 14 ± 1 0.21 ± 0.01 4.3 ± 1.6 0.15 ± 0.03 0.38 ± 0.16 NA NA 
g16 (C:A) 7.0 ± 2.8 0.15 ± 0.01 3.4 ± 1.7 0.12 ± 0.02 0.54 ± 0.12 NA NA 

g14-g15 (CU:AC) 36 ± 10 0.018 ± 
0.002 10 ± 6 0.10 ± 0.01 0.042 ± 0.020 0.0071 ± 0.0011 25 ± 4 

g15-g16 (UC:CA) 20 ± 9 0.011 ± 
0.004 6.7 ± 6.1 0.11 ± 0.04 0.027 ± 0.016 0.0045 ± 0.0010 24 ± 9 

g15-g16 (AG:CA) 20 ± 14 0.064 ± 
0.024 5.4 ± 1.2 0.17 ± 0.02 0.11 ± 0.07 0.033 ± 0.000 12 ± 5 

g17 (U:U) 23 ± 4 0.25 ± 0.08 12 ± 4 0.19 ± 0.06 0.67 ± 0.32 NA NA 

g16-g17 (CU:AU) 22 ± 10 0.049 ± 
0.006 6.9 ± 5.1 0.15 ± 0.01 0.086 ± 0.030 0.031 ± 0.001 10 ± 2 

g17-g18 (UC:UA) 19 ± 8 0.053 ± 
0.019 12 ± 6 0.11 ± 0.03 0.27 ± 0.06 0.037 ± 0.007 12 ± 3 

g18-g19 (CU:AU) 33 ± 16 0.17 ± 0.03 22 ± 12 0.21 ± 0.05 0.45 ± 0.40 NA NA 
g19-g20 (UC:UC) 19 ± 9 0.45 ± 0.26 13 ± 8 0.35 ± 0.20 0.79 ± 0.32 0.73 ± 0.03 1.8 ± 0.2 
g20-g21 (UC:CA) 29 ± 1 0.52 ± 0.03 16 ± 3 0.33 ± 0.05 0.82 ± 0.22 NA NA 

g17-g21 
(UCUCC:UAUCA) 15 ± 7 0.053 ± 

0.016 11 ± 5 0.10 ± 0.03 0.34 ± 0.19 NA NA 

Parental let-7 NA NA 25 ± 6 0.19 ± 0.04 NA NA NA 
 

Renilla reniformis luciferase siRNA-programmed Ago2-RISC 

g4 (G:A) 1700 ± 800 0.27 ± 0.11 55 ± 20 0.39 ± 0.08 0.021 ± 0.019 0.021 ± 0.007 30 ± 21 

g8g9 (UA:CG) 31 ± 15 0.068 ± 
0.029 55 ± 20 0.39 ± 0.08 0.31 ± 0.38 0.023 ± 0.015 6.8 ± 6.9 
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g15g16 (AU:GC) 660 ± 430 0.058 ± 
0.023 55 ± 20 0.39 ± 0.08 0.011 ± 0.015 0.0021 ± 0.0013 62 ± 65 
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Table 3.S2A, related to Figure 3.1. Synthetic siRNAs used in this study. 

Description 
 

Sequence 
(seed, guide, passenger, altered sequences) 

let-7 guide strand sequence. Completely 
complementary to perfect target pUGAGGUAGUAGGUUGUAUAGU 

Passenger strand to let-7 guide and 
creates frayed siRNA with UC mismatch at 

g1 of preceding guide strand 
pUAUACAACCUACUACCUCCUU 

Passenger strand to let-7 guide and 
creates frayed siRNA with UU mismatch at 

g1 of preceding guide strand 
pUAUACAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g1g2:t1t2 when paired to 

let-7 perfect target 
pCUAGGUAGUAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUACUACCUAUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g2g3:t2t3 when paired to 

let-7 perfect target 
pUUCGGUAGUAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUACUACCGAUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g3g4:t3t4 when paired to 

let-7 perfect target 
pUGUCGUAGUAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUACUACGACUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g4g5:t4t5 when paired to 

let-7 perfect target 
pUGAUCUAGUAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUACUAGAUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g5g6:t5t6 when paired to 

let-7 perfect target 
pUGAGUCAGUAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUACUGACUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g6g7:t6t7 when paired to 

let-7 perfect target 
pUGAGGCUGUAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUACAGCCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g7g8:t7t8 when paired to 

let-7 perfect target 
pUGAGGUUCUAGGUUGUAUAGU 
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Passenger strand to preceding guide pUAUACAACCUAGAACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g8g9:t8t9 when paired to 

let-7 perfect target 
pUGAGGUAUCAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUGAUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g9g10:t9t10 when paired to 

let-7 perfect target 
pUGAGGUAGCUGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCAGCUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g9g10:t9t10 when paired to 

let-7 perfect target 
pUGAGGUAGGCGGUUGUAUAGU 

Passenger strand to preceding  guide pUAUACAACCGCCUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g10g11:t10t11 when paired 

to let-7 perfect target 
pUGAGGUAGUUCGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACGAACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g10g11:t10t11 when paired 

to let-7 perfect target 
pUGAGGUAGUCAGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACUGACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g11g12:t11t12 when paired 

to let-7 perfect target 
pUGAGGUAGUAAAUUGUAUAGU 

Passenger strand to preceding guide pUAUACAAUUUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g11g12:t11t12 when paired 

to let-7 perfect target 
pUGAGGUAGUAUUUUGUAUAGU 

Passenger strand to preceding guide pUAUACAAAAUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g11g12:t11t12 when paired 

to let-7 perfect target 
pUGAGGUAGUAUAUUGUAUAGU 

Passenger strand to preceding guide pUAUACAAUAUACUACCUCUUU 
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Modified let-7 guide strand that creates 2 nt 
mismatches at g11g12:t11t12 when paired 

to let-7 perfect target 
pUGAGGUAGUAUCUUGUAUAGU 

Passenger strand to preceding guide pUAUACAAGAUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g12g13:t12t13 when paired 

to let-7 perfect target 
pUGAGGUAGUAGUCUGUAUAGU 

Passenger strand to preceding guide pUAUACAGACUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g13g14:t13t14 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGCCGUAUAGU 

Passenger strand to preceding guide pUAUACGGCCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g14g15:t14t15 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUCUUAUAGU 

Passenger strand to preceding guide pUAUAAGACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g15g16:t15t16 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUUCAUAGU 

Passenger strand to preceding guide pUAUGAAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g15g16:t15t16 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUAGAUAGU 

Passenger strand to preceding guide pUAUCUAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g16g17:t16t17 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUGCUUAGU 

Passenger strand to preceding guide pUAAGCAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g17g18:t17t18 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUGUUCAGU 

Passenger strand to preceding guide pUGAACAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g18g19:t18t19 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUGUACUGU 
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Passenger strand to preceding guide pAGUACAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g19g20:t19t20 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUGUAUUCU 

Passenger strand to preceding guide pAAUACAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 2 nt 
mismatches at g20g21:t20t21 when paired 

to let-7 perfect target 
pUGAGGUAGUAGGUUGUAUAUC 

Modified let-7 guide strand that creates 1 nt 
mismatch at g1:t1 when paired to let-7 

perfect target 
pCGAGGUAGUAGGUUGUAUAGU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g14:t14 when paired to let-7 

perfect target 
pUGAGGUAGUAGGUCGUAUAGU 

Passenger strand to preceding guide pUAUACGACCUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g15:t15 when paired to let-7 

perfect target 
pUGAGGUAGUAGGUUUUAUAGU 

Passenger strand to preceding guide pUAUAAAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g15:t15 when paired to let-7 

perfect target 
pUGAGGUAGUAGGUUAUAUAGU 

Passenger strand to preceding guide pUAUAUAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g16:t16 when paired to let-7 

perfect target 
pUGAGGUAGUAGGUUGGAUAGU 

Passenger strand to preceding guide pUAUCCAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g16:t16 when paired to let-7 

perfect target 
pUGAGGUAGUAGGUUGCAUAGU 

Passenger strand to preceding guide pUAUGCAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g17:t17 when paired to let-7 

perfect target 
pUGAGGUAGUAGGUUGUUUAGU 
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Passenger strand to preceding guide pUAAACAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g9:t9 when paired to let-7 

perfect target 
pUGAGGUAGCAGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCUGCUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g10:t10 when paired to let-7 

perfect target 
pUGAGGUAGUUGGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACCAACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g11:t11 when paired to let-7 

perfect target 
pUGAGGUAGUAAGUUGUAUAGU 

Passenger strand to preceding guide pUAUACAACUUACUACCUCUUU 

Modified let-7 guide strand that creates 1 nt 
mismatch at g12:t12 when paired to let-7 

perfect target 
pUGAGGUAGUAGAUUGUAUAGU 

Passenger strand to preceding guide pUAUACAAUCUACUACCUCUUU 

Modified let-7 guide strand that creates 3 nt 
mismatches at g15–g17:t15–t17 when 

paired to let-7 perfect target 
pUGAGGUAGUAGGUUUCUUAGU 

Passenger strand to preceding guide pUAAGAAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 4 nt 
mismatches at g14–g17:t14–t17 when 

paired to let-7 target 
pUGAGGUAGUAGGUCUCUUAGU 

Passenger strand to preceding guide pUAAGAGACCUACUACCUCUUU 

Modified let-7 guide strand that creates 5 nt 
mismatches at g17–g21:t17–t21 when 

paired to let-7 perfect target 
pUGAGGUAGUAGGUUGUUCUCC 

Passenger strand to preceding guide pAGAACAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 6 nt 
mismatches at g16–g21:t16–t21 when 

paired to let-7 perfect target 
pUGAGGUAGUAGGUUGCUCUCC 

Passenger strand to preceding guide pAGAGCAACCUACUACCUCUUU 
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Modified let-7 guide strand that creates 7 nt 
mismatches at g15–g21:t15–t21 when 

paired to let-7 perfect target 
pUGAGGUAGUAGGUUUCUCUCC 

Passenger strand to preceding guide pAGAGAAACCUACUACCUCUUU 

Modified let-7 guide strand that creates 8 nt 
mismatches at g14-g21:t14–t21 when 

paired to let-7 perfect target 
pUGAGGUAGUAGGUCUCUCUCC 

Passenger strand to preceding guide pAGAGAGACCUACUACCUCUUU 

Renilla reniformis luciferase derived siRNA 
guide strand pAUAGCUAUAAUGAAAUGCCUU 

Passenger strand to preceding guide pGGCAUUUCAUUAUAGCUACUU 

RNA that is exactly complementary to let-7 
guide used as Northern probe pACUAUACAACCUACUACCUCA 

  

Description Sequence 

7 nt target strand for RNA melt pCUACCUC 

9 nt target strand for RNA melt pUACUACCUC 

10 nt target strand for RNA melt pCUACUACCUC 

  
Description 

 
 

Sequence 
(m, 2′-O-methyl ribose; ps; phosphorothioate; 

complementary to guide; mismatch) 

Complete complementary target to let-7 pGAUACUAUACAACmCpsmUACUACCUCAACCU 

Complete complementary target to let-7 
(unmodified and cleavable) pGAUACUAUACAACCUACUACCUCAACCU 
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21 nt complete complementary target to 
let-7 pACUAUACAACmCpsmUACUACCUCA 

Target complementary to let-7 with g9–
g11:t9–t11 central internal loop pGAUACUAUACAACAGUCUACCUCAACCU 

Target to let-7 with g2–g21 
complementarity pGAUACUAUACAACmCpsmUACUACCUCUACCU 

Target to let-7 with g1–g19 
complementarity pGAUUAUAUACAACmCpsmUACUACCUCAACCU 

Target to let-7 with g4g5:t4t5 seed internal 
loop pGAUACUAUACAACmCpsmUACUAAAUCAACCU 

Target to let-7 with g8g9:t8t9 central 
internal loop pGAUACUAUACAACmCpsmUUAUACCUCAACCU 

Target to let-7 with g10g11:t10t11 central 
internal loop pGAUACUAUACAACmGpsmAACUACCUCAACCU 

Target to let-7 with g15g16:t15t16 
3′ supplementary region internal loop pGAUACUAUCGAACmCpsmUACUACCUCAACCU 

Target to let-7 with g2–g16:t2–t16 
complementarity pGAUUAGCCACAACmCpsmUACUACCUCAACCU 

Target to let-7 with g9–g21:t9–t21 
complementarity pGAUACUAUACAACmCpsmUAGAUGGAGAAAAU 

Target to let-7 with seed only pairing (g2–
g8:t2–t8) pGAAAAAAAAAAAAmApsmAUCUACCUCUAAAU 

Target to let-7 with seed + 3′ 
supplementary pairing (g2–g8:t2–t8; g13–

g16:t13–t16) 
pGAAAAAAAACAAAmApsmAUCUACCUCUAAAU 

Target to let-7 with extended seed pairing 
(g2–g10:t2–t10) pGAAAAAAAAAUUAmApsmUACUACCUCUAAAU 

Target to let-7 with seed + extended 3′ 
supplementary pairing (g2–g8:t2–t8; g12–

g17:t12–t17) 
pGAAAAAUUACAACmApsmAUCUACCUCUAAAU 
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Target to let-7 with centered pairing (g4–
g15:t4–t15) pGAUGGAAACCAACmCpsmUACUACCAGUACCU 

Perfect target to Renilla reniformis 
luciferase pGAUAAGGCAUUUCmApsmUUAUAGCUAUACCU 

Target to let-7 with 1 GU wobble in the 
seed at g4 pGAUACUAUACAACmCpsmUACUACUUCAACCU 

Target to let-7 with 1 GU wobble in the 3′ 
supplementary region at g15 pGAUACUAUAUAACmCpsmUACUACCUCAACCU 

Target to let-7 with 2 GU wobble in the 
seed at g2 and g8 pGAUACUAUACAACmCpsmUAUUACCUUAACCU 

Target to let-7 with 2 GU wobble in the 
seed at g4 and g5 pGAUACUAUACAACmCpsmUACUAUUUCAACCU 

Target to let-7 with 4 GU wobble in the 
seed at g2, g4, g5 and g8 pGAUACUAUACAACmCpsmUAUUAUUUUAACCU 
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Table 3.S2B, related to Figure 3.1. DNA oligonucleotides used in this study. 

Description 
 
 

Sequence 
(siRNA pairing site, 

change from let-7 complementary target) 

Forward primer containing T7 promoter consensus 
sequence for making DNA template used in 
transcription of let-7 based targets. 

GCG TAA TAC GAC TCA CTA TAG GGT CAC 
ATC TCA TCT ACC TCC 

Reverse primer for making let-7 guide perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making let-7 passenger strand 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTA TAC AAC CTA CTA CCT CTT TAT CCA 
GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g1g2:t1t2 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TCT AGG TAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g2g3:t2t3 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTT CGG TAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g3g4:t3t4 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG TCG TAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g4g5:t4t5 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG ATC TAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g5g6:t5t6 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGT CAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 
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Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g6g7:t6t7 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG CTG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g7g8:t7t8 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TTC TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g8g9:t8t9 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAT CAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making first compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g9g10:t9t10 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG CTG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making second compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g9g10:t9t10 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG GCG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making first compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g10g11:t10t11 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TTC GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making second compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g10g11:t10t11 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TCA GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making first compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g11g12:t11t12 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAA ATT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for second complementary target to 
p21- modified let-7 guide strand that creates 2 nt 
mismatches at g11g12:t11t12 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAT TTT GTA TAG TAT CCA 
GAG GAA TTC ATT ATC AGT G 
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Reverse primer for making third compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g11g12:t11t12 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAT ATT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making fourth compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g11g12:t11t12 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAT CTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g12g13:t12t13 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG TCT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g13g14:t13t14 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GCC GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g14g15:t14t15 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTC TTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making first compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g15g16:t15t16 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT TCA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making second compensatory 
target to modified let-7 guide strand that creates 2 
nt mismatches at g15g16:t15t16 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT AGA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g16g17:t16t17 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GCT TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g17g18:t17t18 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTT CAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 
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Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g18g19:t18t19 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTA CTG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g19g20:t19t20 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTA TTC TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 2 nt 
mismatches at g20g21:t20t21 when paired to let-7 
perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTA TAT CAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g1:t1 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TCG AGG TAG TAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g14:t14 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTC GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making first compensatory 
target to modified let-7 guide strand that creates 1 
nt mismatch at g15:t15 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT TTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making second compensatory 
target to modified let-7 guide strand that creates 1 
nt mismatch at g15:t15 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT ATA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for first compensatory target to 
p21-976 modified let-7 guide strand that creates 1 
nt mismatch at g16:t16 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GGA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making second compensatory 
target to modified let-7 guide strand that creates 1 
nt mismatch at g16:t16 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GCA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 
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Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g17:t17 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTT TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g9:t9 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG CAG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g10:t10 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TTG GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g11:t11 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAA GTT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 1 nt 
mismatch at g12:t12 when paired to let-7 perfect 
target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG ATT GTA TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 3 nt 
mismatches at g15–g17:t15–t17 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT TCT TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 4 nt 
mismatches at g14–g17:t14–t17 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTC TCT TAG TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 5 nt 
mismatches at g17–g21:t17–t21 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GTT CTC CAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 6 nt 
mismatches at g16–g21:t16–t21 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT GCT CTC CAT 
CCA GAG GAA TTC ATT ATC AGT G 
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Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 7 nt 
mismatches at g15–g21:t15–t21 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTT TCT CTC CAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making compensatory target to 
modified let-7 guide strand that creates 8 nt 
mismatches at g14–g21:t14–t21 when paired to let-
7 perfect target 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TTG AGG TAG TAG GTC TCT CTC CAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making complementary target to 
Renilla reniformis luciferase derived siRNA guide 
strand 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TAT AGC TAT AAT GAA ATG CCT TAT CCA 
GAG GAA TTC ATT ATC AGT G 

Reverse primer for making target to Renilla 
reniformis luciferase derived siRNA guide strand 
with 1 nt mismatch at g4:t4 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TAT ATC TAT AAT GAA ATG CCT TAT CCA 
GAG GAA TTC ATT ATC AGT G 

Reverse primer for making target to Renilla 
reniformis luciferase derived siRNA guide strand 
with 2 nt mismatches at g8g9:t8t9 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TAT AGC TAG CAT GAA ATG CCT TAT 
CCA GAG GAA TTC ATT ATC AGT G 

Reverse primer for making target to Renilla 
reniformis luciferase derived siRNA guide strand 
with 2 nt mismatches at g15g16:t15t16 

CCC ATT TAG GTG ACA CTA TAG ATT TAC ATC 
GCG TTG AGT GTA GAA CGG TTG TAT AAA 
AGG TAT AGC TAT AAT GAA CGG CCT TAT 
CCA GAG GAA TTC ATT ATC AGT G 
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Table 3.S2C, related to Figure 3.1. RNA transcripts used in this study. 

Description 
 

Sequence 
(siRNA pairing site, change from let-7 complement) 

Transcript with perfect target site 
to let-7 guide strand 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with perfect target site 
to let-7 passenger strand 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU AAA GAG 
GUA GUA GGU UGU AUA ACC UUU UAU ACA ACC GUU 
CUA CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU 
AAA UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g1g2:t1t2 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACU ACC UAG ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g2g3:t2t3 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACU ACC GAA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g3g4:t3t4 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACU ACG ACA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g4g5:t4t5 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUCCCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACU AGA UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g5g6:t5t6 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACU GAC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 
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Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g6g7:t6t7 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU ACA GCC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g7g8:t7t8 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU AGA ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g8g9:t8t9 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCU GAU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g9g10:t9t10 when paired to let-7 
perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCA GCU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

First transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g10g11:t10t11 when paired to let-
7 perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CCG CCU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Second transcript with 
compensatory target site to let-7 
guide strand that creates 2 nt 
mismatches at g10g11:t10t11 
when paired to let-7 perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CGA ACU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

Third transcript with 
compensatory target site to let-7 
guide strand that creates 2 nt 
mismatches at g10g11:t10t11 
when paired to let-7 perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA CUG ACU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 

First transcript with compensatory 
target site to let-7 guide strand 
that creates 2 nt mismatches at 
g11g12:t11t12 when paired to let-
7 perfect target 

GGG UCA CAU CUC AUC UAC CUC CCG GUU UUA AUG AAU 
ACG AUU UUG UAC CAG AGU CCU UUG AUC GUG ACA AAA 
CAA UUG CAC UGA UAA UGA AUU CCU CUG GAU ACU AUA 
CAA UUU ACU ACC UCA ACC UUU UAU ACA ACC GUU CUA 
CAC UCA ACG CGA UGU AAA UCU AUA GUG UCA CCU AAA 
UGG G 
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Table 3.S3, Related to Figure 3.3. Thermodynamic parameters from optical melts of RNA duplexes. TM values are for 

1.0 × 10−4 M total single-strand concentration. 

 TM
−1 versus ln(CT/4) Average of Individual Fits Nearest Neighbor 

Prediction 

Guide:Target 
Duplex 

ΔG25°C 
(kcal mol−1) 

ΔH 
(kcal mol−1) 

ΔS 
(cal K−1 mol−1) 

TM 
(°C) 

ΔG25°C 
(kcal mol−1) 

ΔH 
(kcal mol−1) 

ΔS 
(cal K−1 mol−1) 

TM 
(°C) 

ΔG25°C 
(kcal 

mol−1) 

ΔH 
(kcal 

mol−1) 

ΔS 
(cal K−1 
mol−1) 

TM 
(°C) 

  ||||| 
CUCCAUCp −8.7 ± 0.3 −50 ± 8 −150 ± 30 39 ± 0 −8.8 ± 0.3 −54 ± 6 −150 ± 20 40 ± 1 −8.5 −48 −130 39 

||||||| 
CUCCAUCp −12 ± 1 −71 ± 7 −200 ± 20 52 ± 0 −12 ± 1 −62 ± 7 −170 ± 20 53 ± 1 −12 −66 −180 55 

   |||||| 
CUCCAUCAUp −9.8 ± 0 −73 ± 1 −210 ± 0 40 ± 0 −10 ± 0 −64 ± 0 −180 ± 0 42 ± 0 −8.3 −50 −140 37 

|||||| ||| 
CUCCAUCAUCp −15 ± 0 −100 ± 1 −300 ± 0 51 ± 0 −14 ± 0 −99 ± 2 −280 ± 10 51 ± 0 −13 −77 −220 52 

 |||||||| 
CUCCAUCAUp −14 ± 0 −82 ± 2 −230 ± 10 56 ± 0 −14 ± 0 −76 ± 1 −210 ± 0 57 ± 0 −13 −69 −190 58 

||||||||| 
CUCCAUCAUp −18 ± 0 −106 ± 3 −290 ± 10 61 ± 0 −17 ± 0 −93 ± 1 −260 ± 0 62 ± 0 −16 −84 −230 64 
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Table 3.S4, Related to Figure 3.5 and Figure 3.7. Equilibrium competition 

parameters for fly Ago2-RISC and mouse AGO2-RISC (mean ± S.D.; n = 3). 

let–7-programmed, affinity-purified Drosophila melanogaster Ago2-RISC 

Target KC (pM) Krel KD(adjusted) (pM) 

28 nt complete 
complementarity 10 ± 1 1.0 ± 0.2 4.0 ± 1.0 

21 nt complete 
complementarity 9.0 ± 0 1.0 ± 0.1 4.0 ± 1.0 

28 nt unmodified g9–g11 
central internal loop 9.0 ± 2.0 1.0 ± 0.2 3.0 ± 1.0 

g2–g21 complementary 8.7 ± 0.8 1.0 ± 0.1 4.0 ± 1.0 

g4g5 mismatches in 
seed (5.6 ± 0.8) x 103 600 ± 100 (2.3 ± 0.7) x 103 

g8g9 central internal 
loop 13 ± 1 1.3 ± 0.2 5.0 ± 2.0 

g10g11 central internal 
loop 7.6 ± 0.4 1.0 ± 0.1 3.1 ± 0.9 

g15g16 mismatches 
in 3′ supplementary 

region 
(2.4 ± 0.3) × 103 250 ± 40 (1.0 ± 0.3) × 103 

g2–g16 complementary (1.1 ± 0.1) × 102 11 ± 2 40 ±10 

g9–g21 complementary (2.3 ± 0.2) × 103 240 ± 40 (1.0 ± 0.3) × 103 

Seed only (g2–g8) (7.3 ± 0.9) × 102 100 ± 10 (3.0 ± 0.9) × 102 
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Seed plus 
g13–g16 3′ 

supplementary 
(4.1 ± 0.4) × 102 43 ± 7 (1.7 ± 0.5) × 102 

Extended seed (g2–g10) (5.1 ± 0.6) × 102 53 ± 9 (2.1 ± 0.6) × 102 

Seed plus extended 
g12–g17 3′ 

supplementary 
19 ± 1 2.0 ± 0.2 8.0 ± 2.0 

6 nt seed (g2–g7) (1.6 ± 0.2) × 103 170 ± 30 (7 ± 2) × 102 

Non-complementary 
luciferase target (1.5 ± 0.1) × 104 1600 ± 200 (6.0 ± 2.0) × 103 

1 GU wobble (g4) in 
seed (2.9 ± 0.8) × 102 30 ± 9 (1.2 ± 0.5) × 102 

1 GU wobble (g15) 
in 3′ supplementary 

region 
60 ± 5 6.3 ± 0.9 24 ± 7 

2 GU wobbles 
(g2, g8) in seed (3.8 ± 0.3) × 102 40 ± 5 (1.5 ± 0.5) × 102 

2 GU wobbles 
(g4, g5) in seed (3.5 ± 0.5) × 103 370 ± 70 (1.4 ± 0.5) × 103 

4 GU wobbles 
(g2, g4, g5, g8) in seed (4.5 ± 0.1) × 103 470 ± 60 (1.8 ± 0.5) × 103 

let–7-programmed, affinity-purified Mus musculus AGO2-RISC 

Target KC (pM) Krel KD(adjusted) (pM) 

28 nt complete 
complementarity 36 ± 5 1.0 ± 0.2 20 ± 10 
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g10g11 central internal 
loop 80 ± 30 2.2 ± 0.8 50 ± 30 

g15g16 mismatches 
in 3′ supplementary 

region 
50 ± 20 1.4 ± 0.6 30 ± 20 

g1–g19 complementary 70 ± 10 2.0 ± 0.4 40 ± 20 

Seed only (g2–g8) 50 ± 10 1.5 ± 0.3 30 ± 20 

Seed plus 
g13–g16 3′ 

supplementary 
34 ± 5 1.0 ± 0.2 20 ± 10 

g4g5 mismatches in 
seed (1.3 ± 0.7) × 103 40 ± 20 (1.0 ± 0.6) × 103 

Non-complementary 
luciferase target (3.2 ± 0.8) × 103 100 ± 30 (2.0 ± 1.0) × 103 
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Chapter IV: Argonaute Exhibits Selective 
Tolerance for Mismatches, Bulge and Internal 
Loops 
 
 
 
 
 
 
 
Disclaimer 
 
This chapter has not been published. 
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SUMMARY 

Argonaute protein divides its small RNA guide into functional domains: anchor, 

seed, central, 3′ supplementary and tail. The anchor and tail domains secure the 

guide strand to the Argonaute, while the central and 3′ supplementary regions 

facilitate target cleavage by a catalytically competent Argonaute. The seed 

sequence specifies the target and initiates binding. For some types of targets, 3′ 

supplementary pairing enhances target binding. Accordingly, seed mismatches 

in the seed or 3′ supplementary domain decrease binding affinity to target. We 

find that increasing the number of GC base pairs compensates for these 

mismatches. We also examined the effect on Argonaute activity of nucleotide 

insertions in the target sequence complementary to each domain of the guide 

strand. We find that Drosophila Argonaute2 exhibits remarkable resilience for 

insertions in the target sequence complementary to the seed: target cleavage 

could be detected for a small RNA guide paired with a fully complementary 

target RNA containing as many as six nucleotides inserted in the seed-matching 

sequence. In contrast, insertions in the target across from the central or 3′ 

supplementary domains abolished target cleavage. Further experiments will 

address how nucleotide insertions perturb the thermodynamic and kinetic 

properties of Argonaute proteins. Our findings highlight the tolerance of 

Argonaute for target mismatches or internal nucleotide insertions, and suggest 
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that Argonaute proteins may bind more types of target sequences than 

previously appreciated. 
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RESULTS 

A GC-rich Seed Reduces the Assembly of Drosophila Ago2-RISC 

Seed sequence GC-content has been suggested to influence RISC activity 

(Doench and Sharp, 2004; Ui-Tei et al., 2008; Garcia et al., 2011). To test this 

idea directly, we synthesized let-7-GC, a variant of the let-7 siRNA in which four 

A or U seed nucleotides were changed to G or C (Figure 4.1A). To distinguish 

the effects of altering seed sequence from altering seed thermodynamic stability, 

we synthesized let-7-IC, in which G residues at positions 4 and 6 were replaced 

with inosine (I). I:C pairs are slightly less thermodynamically stable than A:U 

pairs. We also tested two additional let-7 variants: let-7-A, in which position 5 of 

the let-7-GC siRNA was changed from C to A and let-7-AI in which the seed 

sequence changes of let-7-IC and let-7-A were combined (Figure 4.1A). 

let-7-AI and let-7-A cleaved their fully matching targets at a rate 

comparable to that of the parental let-7 siRNA, whereas let-7-GC and let-7-IC 

cleaved more slowly (Figure 4.1B, left panel). When the reactions were 

performed at lower RISC concentration, differences in cleavage efficiencies 

were more noticeable: let-7 had the fastest initial rate followed by let-7-AI, let-7-

A, let-7-IC and then let-7-GC (Figures 4.S1A and 4.S1B). The passenger strands 

of the siRNA did not cleave their complementary targets; therefore all siRNAs 

retained their thermodynamic asymmetry, loading only the let-7 strand as guide 

(Figures 4.1B and 4.S1B). 
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Figure 4.1 
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Figure Legend 4.1. The seed is sensitive to base pairing disruption 

(A) Pairing schematics of let-7 based seed modified siRNAs. The top shows 

pairing between the parent let-7 guide strand and its perfect target. At the 

bottom are aligned pairings of seed modified siRNAs to compensatory (left) and 

mismatched (right) targets. (B) Time course target cleavage by Ago2 against 

compensatory or perfect (left panel, solid circles) and mismatched targets (right 

panel, open circles) under condition where [E]<[S]. Ago2 concentrations are 

indicated to the immediate right of the second panel. All data points are from 3 

independent experiments ± one standard deviation. (C) Similar to (B) except that 

experiment was conducted when [S]<[E]. (D) Left panel displays initial velocities 

for compensatory targets (colored solid bars) and mismatched (open bar) for 

reactions in (B) normalized to that of the parent let-7 against its perfect target 

(solid black bar). The rates were corrected for the concentrations of Ago2 

assembled by each siRNA duplex. Right panel displays the initial velocities of 

mismatched targets normalized to the initial velocities of compensatory targets 

for reactions shown in (C). (E) Panels depict the change in KM (vertical axis) 

against the change in kcat (horizontal axis) for mismatched targets relative to their 

compensatory targets.  
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The rate of target cleavage could reflect the affinity of RISC for its 

target—believed to be determined largely by the seed sequence, RISC 

concentration or both. To test whether the let-7 variant siRNAs differed in their 

abilities to assemble into dAgo2, we determined the concentration of mature 

dAgo2-RISC for each siRNA. During assembly of dAgo2-RISC, the siRNA 

passenger strand is destroyed (Matranga et al., 2005; Rand et al., 2005; 

Leuschner et al., 2006; Kawamata et al., 2009; Yoda et al., 2009). Thus, the 

difference in abundance of guide and passenger strands after incubation in 

Drosophila embryo lysate reflects the amount of guide loaded into dAgo2 and 

thus the concentration of mature dAgo2-RISC (Figures 4.S1C and 4.S1D). The 

concentration of active RISC assembled differed among the siRNA variants; let-

7-GC and let-7-IC assembled only one-quarter as much RISC as the parent let-

7 siRNA (Figures 4.1B and 4.1C). After adjusting the initial rates of cleavage for 

each siRNA to reflect the concentration of dAgo2-RISC assembled, all siRNAs 

cleaved their fully matching target RNA at rates comparable to or faster than the 

parent let-7 siRNA (Figure 4.1D, left). These data suggest that high GC seed 

sequences reduce the efficiency of dAgo2-RISC assembly that might provide an 

explanation for an earlier report that linked high overall GC content to poor 

siRNA activity (Ui-Tei et al., 2004; Reynolds et al., 2004). 
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Table 4.1. Michaelis-Menten parameters of Drosophila Ago2-RISC (mean ± 
standard deviation; n ≥ 3 except *, where n = 2). 

let–7 siRNA and targets 

 
Mismatched 

target 
Compensatory 

target 
   

Position 
(Mismatch) 

KM 
(nM) 

Vmax 
(nMs−1) 

KM 
(nM) 

Vmax 
(nMs−1) 

 

Δkcat          

ΔKM
 

 

Single-
turnover 

Δv0 

Δkcat            

Δv0 

 

let-7-GC 
(C:U) 

169 ± 
43 

0.237 ± 
0.075 

52 ± 
11 

0.0600 ± 
0.0071 

1.228 ± 
0.078 

2.01 ± 
0.29 

2.00  ± 0.31 

let-7-IC 
(C:U) 

136 ± 
15 

0.172 ± 
0.074 

173 ± 
13 

0.1800 ± 
0.0057 

0.89 ± 
0.51 

1.64 ± 
0.29 

0.64  ± 0.26 

let-7-A (A:G) 940 ± 
180 

0.42 ± 
0.13 

33.1 ± 
9.8 

0.137 ± 
0.027 

0.101 ± 
0.038 

0.05517 ± 
0.00028 

55 ± 13 

let-7-AI 
(A:G) 

1090 ± 
310 

0.37 ± 
0.17 

43 ± 
20 

0.41 ± 
0.24 

0.042 ± 
0.040 

0.0159 ± 
0.0060 

98 ± 76 

let-7-3′-GC 
(CC:UU) 

23.9 ± 
7.0 

0.135 ± 
0.026 

32 ± 
14 

0.061 ± 
0.028 

2.5 ± 2.2 
0.073 ± 
0.011 

35 ± 13 

let-7-3′-I 
(CC:UU) 

20.7 ± 
6.0 

0.053 ± 
0.024 

20.7 ± 
6.4 

0.132 ± 
0.035 

0.38 ± 
0.12 

0.0816 ± 
0.0092 

4.8 ± 1.1 

let-7-3′-A 
(AA:GG) 

28 ± 13 
0.086 ± 
0.012 

18.3 ± 
3.5 

0.07000 
± 

0.00033 

0.83 ± 
0.29 

0.283 ± 
0.023 

4.36 ± 0.69 

let-7-3′-AI 
(AA:GG) 

7.5 ± 
3.7 

0.0053 
± 

0.0019 

22.8 ± 
8.3 

0.200 ± 
0.098 

0.090 ± 
0.019 

0.00889 ± 
0.00078 

3.19 ± 0.57 

Parental let-
7 

NA NA 25.1 ± 
5.8 

0.189 ± 
0.041 

NA NA NA 
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The Seed has Limited Tolerance for Mismatches 

The extensive interaction between the phosphodiester backbone of the RNA 

guide and the Argonaute protein in the seed sequence imposes a geometric 

constraint on the nucleotide. The enclosed Argonaute limits the available space 

for bases of the guide RNA to flip out of the helix. This may sensitize Argonaute 

to mismatches in the seed (Parker et al., 2005; Ma et al., 2005; Wang et al., 

2008a). A pyrimidine-pyrimidine (g5C:t5U) mismatch in the seed of let-7-GC 

increased KM 3.3-fold (p-value = 9.9 x 10−3)—i.e., reduced binding affinity—but 

simultaneously increased kcat 4.0-fold (p-value = 0.015)—i.e., accelerated 

enzymatic turnover (Figure 4.1E). The increase in kcat suggests that g5C:t5U 

mismatch amidst the GC-rich seed of let-7-GC may enhance product release 

just as dinucleotide seed mismatches in let-7 improve turnover (Figure 3.1D). 

let-7-IC binds its complementary target with reduced affinity with a KM of 

173 ± 13 nM—6.8-fold greater than the KM for let-7 against its perfect matching 

target. This is comparable to the KM of 136 ± 15 nM in the presence of g5C:t5U 

mismatch (Table 4.1). This indicates that let-7-IC has as weak a seed pairing as 

when g5C:t5U mismatch was introduced. Moreover, the introduction of g5C:t5U 

mismatch did not alter the kcat of let-7-IC (Figure 4.1E). Taken together, the 

modest effect of g5C:t5U mismatch renders a Δkcat/ΔKM value of 0.89 ± 0.51. In 

addition, the initial velocities normalized to enzyme concentrations indicate that 

let-7-IC is more proficient at target cleavage than the parent let-7: the weaker 
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seed pairing of let-7-IC confers better turnover of dAgo2-RISC (Figure 4.1D). In 

all, a single pyrimidine-pyrimidine g5C:t5U mismatch in let-7-GC and let-7-IC 

were well accommodated by dAgo2. 

With a purine-purine (g5A:t5G) mismatch, Michaelis-Menten analysis 

indicates a larger decrease in binding affinity than a g5C:t5U mismatch. For let-

7-A, KM increased by 30-fold (p-value = 1.3 × 10−6) and for let-7-AI, KM increased 

by 37-fold (p-value = 1.3 × 10−5) relative to their compensatory targets (Figure 

4.1E). In contrast, for let-7-A, kcat increased by 3.0-fold (p-value = 7.4 × 10−4) and 

for let-7-AI, kcat did not change significantly (Figure 4.1E). The 3.0-fold increase 

in kcat for let-7-A underscores the earlier notion that mismatch in the seed 

facilitates product dissociation (Figure 3.1D). In the case of let-7-AI, despite its 

fully complementary seed pairing, target binding with inosines:cytosine base 

pairing is weak and may be efficient at product release and thus g5A:t5G 

mismatch did not further increase kcat (Figure 4.1E). 

Having inosines (let-7-AI) in lieu of guanosines (let-7-A) exacerbated 

impaired target cleavage caused by a g5A:t5G mismatch: let-7-AI cleaves 3.7-

fold slower than let-7-A (p-value = 0.0020) when [S] < [E] and 8.4-fold slower (p-

value = 0.035) when [E] << [S] (Figures 4.1B–4.1D). The presence of G:C pairs 

that flank the g5A:t5G mismatch reduces the disruption to seed base pairing. 

Consequently, let-7-A has a Δkcat/ΔKM value of 0.1 ± 0.04 whereas let-7-AI has a 

lower Δkcat/ΔKM value of 0.04 ± 0.04. We conclude that dAgo2 tolerates 
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purine:purine mismatches in the seed sequence less well than 

pyrimidine:pyrimidine mismatches and that more stable G:C base pairs flanking 

the site of the mismatch better compensate for non-complementary positions 

than do weaker A:U or I:C pairs. 

More Stable 3′ Base Pairing Slows dAgo2 Turnover 

Target cleavage by dAgo2 requires nearly continuous base pairing from the 

seed to guide position 17. Early experiments in plants and animals suggested 

that extensive guide:target base pairs in the 3′ half of a miRNA or siRNA slowed 

target cleavage, likely because dissociation of the 3′ fragment of the target from 

dAgo2 was rate determining (Haley and Zamore, 2004; Tang et al., 2003). Our 

detailed analysis supports this idea. We analyzed four let-7 variants bearing 

changes that varied the pairing strength of the nucleotides participating in 3′ 

supplementary pairing between the siRNA and its target RNA. In let-7-3′-GC, G 

and C replaced six A or U nucleotides from g13–g19; let-7-3′-I was the same as 

let-7-3′-GC except that nucleotides g14 and g17 were I; let-7-3′-A was the same 

as let-7-3′-GC except that nucleotides g15 and g16 were A; let-7-3′-AI was the 

same as let-7-3′-GC except that nucleotides g14 and g17 were I and g15 and 

g16 were A (Figure 4.2A). All four siRNAs assembled roughly equal amounts of 

dAgo2-RISC (Figures 4.2B and 4.2C). 
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Figure 4.2 
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Figure Legend 4.2. GC-rich base pairing in 3′ region of siRNA limits 

turnover of Ago2-RISC 

(A) Pairing schematics of let-7 based 3′ supplementary region modified siRNAs. 

The top shows pairing between the parent let-7 guide strand and its perfect 

target. The bottom depicts aligned pairings of modified siRNAs to compensatory 

(left) and mismatched (right) targets. (B) Time course of target cleavage by 

Ago2-RISC of fully matched (left panel, filled circles) and mismatched targets 

(right panel, opened circles) under conditions where [E]<[S]. RISC 

concentrations are indicated to the right of the second panel. All data points are 

derived from 3 independent experiments ± one standard deviation. (C) Similar to 

(B) except that experiment is conducted when [S]<[E]. (D) Left panel displays 

initial velocities for compensatory (colored solid bars) and mismatched (open 

bar) targets for reactions in (B) normalized to that of the parent let-7 against its 

perfect target (solid black bar). The rates were corrected for the concentrations 

of Ago2 assembled by each siRNA duplex. Right panel displays the initial 

velocities of mismatched targets normalized to the initial velocities of 

compensatory targets for reactions shown in (C). (E) Panels depict the change in 

KM (vertical axis) against the change in kcat (horizontal axis) for mismatched 

targets relative to their compensatory targets.  
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The amount of product produced per unit time per molecule of enzyme 

for the siRNAs against their compensatory targets when [E] << [S] revealed rates 

that indeed differ based on the strength of 3′ supplementary pairing. The rates, 

relative to that of the parent let-7, were 0.16 for let-7-3′-GC (p-value = 1.0 × 

10−4), 0.40 for let-7-3′-I (p-value = 1.3 × 10−3), 0.41 for let-7-3′-A (p-value = 2.3 × 

10−3) and 0.67 for let-7-3′-AI (p-value = 0.032; Figure 4.2D, left panel, solid 

colored bars). A similar order of cleavage competence among the siRNAs was 

observed from initial rates obtained with less dAgo2 assembled (Figures 4.S2A 

and 4.S2B). From Michaelis-Menten kinetics, the KM values among the parent 

let-7 and modified siRNAs were comparable, indicating that the disparate 

cleavage rates were not caused by the differences in target binding affinities 

(Table 4.1). Under conditions where [S] < [E], however, the initial rates for all 

siRNAs were broadly similar (Figure 4.2C, left panel). This indicates that the first 

cycle of event from target binding until and including the catalytic step 

proceeded at similar rates across all siRNAs, unaffected by the strength of base 

pairing in the 3′ region. Taken together, the data point to steps after catalysis 

such as product release or enzyme regeneration that contributed to the different 

cleavage rates observed under multiple turnover cleavage reactions. This is best 

exemplified by let-7-3′-GC being the least efficient siRNA when [E]<<[S] and the 

simplest explanation is that extensive GC base pairing in the 3′ region of the 
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siRNA guide binds the cleaved product tightly, slows its released and limits 

recycling of dAgo2.  

Supporting this view, weakening base pairing in the 3′ region of the 

siRNA guide should facilitate product release and “rescue” the slow cleavage 

under multiple turnover reaction, which we tested with mismatch at g15g16. 

Expectedly, g15g16:t15t16 mismatch in all 3′ variant siRNAs reduced the 

cleavage rates under substrate limiting condition that promote single turnover 

reaction: an observation that agrees with earlier findings that guide-target 

pairing in the 3′ region is necessary for target cleavage (Figure 3.1D; Haley and 

Zamore, 2004; Schwarz et al., 2006). Accordingly, the initial rates for all modified 

siRNAs with g15g16:t15t16 mismatch were reduced significantly in comparisons 

with rates for their compensatory targets (Figures 4.2C and 4.2D, right panels). 

In contrast, the initial rates for all siRNAs with g15g16:t15t16 mismatch 

improved—at varying degrees—relative to their compensatory targets when the 

ratio of substrate to enzyme concentration increased to allow for multiple cycles 

of target cleavage (Figures 4.2C–4.2D, 4.S2A and 4.S2B). 

To elaborate, the g15g16:t15t16 mismatch in let-7-3′-GC reduced the 

initial rate by 14-fold (p-value = 3.1 x 10−5) when [E]>[S]. Then, when [E]<[S], the 

initial rates between mismatched and compensatory targets became 

comparable and when [E]<<[S], the initial rate for mismatched target was 3.9-

fold greater (p-value = 0.0011) than that of the compensatory target (Figure 

218



4.S2C). Moreover, Michaelis-Menten analysis of let-7-3′-GC with g15g16:t15t16 

mismatch showed no change in KM while kcat increased by 2.5-fold (p-value = 

0.0026) relative to its compensatory target (Figure 4.2E and 4.S2D–4.S2F). 

Taken together, g15g16:t15t16 mismatch in let-7-3′-GC disrupted catalysis and 

reduced the cleavage rate. However, under multiple cycle of cleavage, the 

reduced rate was offset by enhanced dAgo2-RISC turnover. For maximal 

activity under enzyme limited conditions, dAgo2 must satisfy pairing in the 3′ 

region sufficient for cleavage and must not compromise efficient enzymatic 

turnover. Finally, between let-7-GC that pairs with a GC-rich seed and let-7-3′-

GC that pairs with a GC-rich 3′ supplementary site, let-7-3′-GC exhibits a slower 

steady state rate (Figures 4.S2G–4.S2I). In fact, the burst kinetics of let-7-GC are 

comparable to that of the parent let-7. Taken together, these data suggest that 

GC-rich 3′ supplementary pairing but not GC-rich seed pairing limit turnover of 

dAgo2-RISC. 

A Stable 3′ Base Pairing Accommodates Purine-Purine Mismatches 

Given that strong flanking base pairs can partially stabilize a purine-purine 

mismatch in the seed, we investigate whether the same is also true in the 3′ 

supplementary binding site. Under both conditions where [E]<<[S] and [S]<[E], 

let-7-3′-AI with purine-purine mismatches cleaved 6.3–14-fold slower than let-7-

3′-GC and let-7-3′-I with pyrimidine-pyrimidine mismatches at g15g16:t15t16 
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(Figures 4.2B and 4.2C). Michaelis Menten kinetics indicated that kcat for let-7-3′-

AI is 31-fold lower than the kcat of let-7-3′-GC and 11-fold lower than the kcat of 

let-7-3′-I with g15g16:t15t16 mismatch (Figure 4.2E). Relative to its 

compensatory target, g15g16:t15t16 mismatch in let-7-3′-AI diminished the 

cleavage rate by 74-fold (p-value = 3.1 x 10−3) when [E]<<[S] (Figures 4.2B and 

4.2D) and 110-fold (p-value = 1.2 x 10−6) when [S]<[E] (Figures 4.2C and 4.2D). In 

comparison, let-7-3′-A tolerates the same purine-purine g15g16:t15t16 

mismatch and exhibited kcat that is only1.6-fold lower than the kcat of let-7-3′-GC 

but 1.9-fold higher than the kcat of let-7-3′-I (Figures 4.2B–4.2E). Relative to its 

compensatory target, g15g16:t15t16 mismatch in let-7-3′-A gave a comparable 

cleavage rate when [E]<<[S] but reduced cleavage rate 3.6-fold (p-value = 7.3 x 

10−5) when [S]<[E] (Figures 4.2B–4.2D). The ability to handle the g15g16:t15t16 

mismatch by let-7-3′-A could be attributed to the imino hydrogen bonded G:A 

base pairs flanked at both ends by Watson-Crick G:C base pairs (Xia et al., 

1997). 

Indeed, between let-7-3′-A and let-7-3′-AI that differed only in the base 

pairs flanking the g15g16:t15t16 mismatch, the stronger G:C base pairs bestow 

on let-7-3′-A 68-fold (p-value = 5.8 x 10−4) higher initial rates when [E]<<[S] and 

39-fold (p-value = 1.9 x 10−7) higher activity when [S]<[E] than the weaker I:C 

base pairs in let-7-3′-AI (Figure 4.2D). For that reason, KM or kcat did not change 

for let-7-3′-A whereas kcat declined 35-fold (p-value = 0.026) for let-7-3′-AI 
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(Figure 4.2E). Consequently, let-7-3′-A registered a Δkcat/ΔKM value of 0.83 ± 

0.29 while let-7-AI exhibited almost 10-fold lower Δkcat/ΔKM value of 0.090 ± 

0.019 (Table 4.1). Like the seed, the more stable G:C base pairs flanking the site 

of the mismatch better compensate for non-complementary positions than do 

the weaker I:C pairs. 

In contradiction to earlier findings that the 3′ region serves as ancillary 

binding site, none of the modified siRNAs that contained g15g16 target 

mismatches led to significant increased in KM (Figure 4.2E). A plausible 

explanation is that the surrounding G:C base pairs, that extend 3–4 nucleotides 

on both sides of the mismatches, can stabilize pairing and prevent any minimal 

increase in KM. The adjoining G:C base pairs however were not sufficient to avert 

the decrease in catalysis, which most likely resulted from perturbed pairing 

geometry at g15g16:t15t16. Taken together, G:C base pairing in the 3′ region of 

the siRNA guide protects against a decrease in target binding affinity and 

buffers against catalytic insult due to mismatches. 

Fly Ago2 Tolerates Bulge Loops in the Target Selectively 

Unpaired nucleotides on one strand of a double helix constitute a bulge loop. 

Argonaute protein interacts with the seed region of the guide strand more 

extensively than with the target. Accordingly Argonaute proteins tolerate a bulge 

loop on the target but not on the guide strand in the seed region (Wang et al., 

2008a). To study the effect of a bulge loop on Argonaute activity in detail, we
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Figure 4.3 
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Figure Legend 4.3. Ago2-RISC tolerates bulge loop in guide and target 

selectively 

(A) Pairing schematics of let-7 to its perfect target (top). The bottom depicts 

pairings of let-7 to target with 2, 4 or 6 nucleotides bulge loops between t10t11. 

There exist at least 2 possible pairing profiles between let-7 and targets with a 

bulge loop. (B) Normalized target cleavage of Ago2-RISC against targets with 

bulge loops at various positions. (C) Pairing schematics of let-7 with an 

adenosine bulge between g15g16 to its compensatory target (top) and to targets 

having 2, 4 or 6 nucleotides bulge loops between t15t16. (D) Similar to (B) 

except against let-7 guide with adenosine bulge. Target cleavage is conducted 

under conditions where [E]<[S]. All data points are derived from 3 independent 

experiments ± one standard deviation.  
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introduced a 2, 4 or 6-nucleotide bulge loops at various positions on the target 

(Figures 4.3A and 4.3B). The cleavage activities of dAgo2 under multiple 

turnover condition where [E]<[S] are scored for various target bulge loops and 

normalized against that of a perfect target (Figure 4.3B). 

 Bulge loops placed between t10 to t15 inhibit dAgo2 cleavage. A bulge 

loop in the middle of the seed region or between t16t17 was tolerated but 

reduced dAgo2 activities by ~2-fold (Figure 4.3B). In contrast, a bulge loop 

positioned between t19t20 did not affect target cleavage by dAgo2. In fact, a 

modest but significant increase in target cleavage was observed when 

compared to the perfect target (p-value < 1.0 x 10−3). This agrees with earlier 

observations that mismatches in the tail region of the guide promote turnover 

(Figure 3.1D; Tang et al., 2003; Haley and Zamore, 2004; Wee et al., 2012). The 

effects of 2, 4 or 6 nucleotides bulge loops placed between t4t5, t16t17 and 

t19t20 on target cleavage were similar (Figure 4.3B). In sum, dAgo2 tolerates 

bulge loops in the seed, 3′ supplementary and tail regions but not in the central 

region. 

Fly Ago2 Demonstrates Limited Tolerance to Single Bulge in the Guide 

Strand 

A single adenosine bulge positioned between g4–g16 impaired or reduced 

dAgo2 cleavage activities to ~20% that of a perfect target (Figure 4.3C and 

4.3D). In the presence of a compensatory target, full cleavage activity of dAgo2 
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was restored. A guide bulge in the tail region between g16g17 and g19g20, 

however, had no effect on dAgo2 cleavage (Figure 4.3D). For guide bulge that 

reduced dAgo2 activities, pairing to targets with bulge loops across the guide 

bulge, with the exception of the seed region, did not rescue cleavage activity 

(Figure 4.3D). In fact, increasing the bulge loop from 2 to 6 nucleotides between 

t16t17 resulted in incremental decrease in dAgo2 activity most likely an effect of 

increased stearic hindrance. 

Placing a two-nucleotide bulge loop across the single adenosine bulge 

between g4g5 restored dAgo2 activity almost to that of a perfect target (Figure 

4.3D). The pairing to a target with two-nucleotide bulge we reasoned shifted the 

single nucleotide bulge to the target strand that was originally on the guide 

strand when paired to a perfect target. Increasing the target bulge loop to 4 and 

6 nucleotides did not restore dAgo2 cleavage most likely due to stearic effect 

(Figure 4.3D). 

Bulge Loop in Target did not Alter the Molecular Ruler that Defines 

Cleavage Site 

Fly Ago2 cleaves its target across from g10g11 of the guide. The 5′ end of the 

guide strand defines the start of the molecular ruler (Elbashir et al., 2001c; Haley 

and Zamore, 2004). The 5′-phosphate secures the guide on the Argonaute 

scaffold and without the 5′-phosphate, dAgo2 exhibits less precision in where it 

cuts its target (Rivas et al., 2005). To find out if a bulge loop in the seed region 
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affects the cleavage position, we subjected a series of short 5′ P32 cap-labeled 

targets with incremental bulge nucleotides to cleavage by dAgo2. These targets 

and their products are resolved in a denaturing gel to identify the cleavage sites 

(Figure 4.4A and 4.4B). 

 Amazingly, dAgo2 cleaved at the same site—across from g10 and g11 of 

the guide strand—despite the targets having 2, 4 or 6 nucleotides inserted 

between t4t5 (Figure 4.4B). As a trade-off, cleavage activity is diminished as the 

bulge was increased from 2 to 6 nucleotides (Figure 4.4B). Expectedly, an 

adenosine bulge in the guide strand between g4g5 abrogates dAgo2 cleavage. 

In the presence of target with bulge loop, however, we were able to rescue 

target cleavage. Likewise, cleavage activities were decreased with increased 

loop size (Figure 4.4B). As proposed earlier, a target bulge converts the 

detrimental guide bulge to an innocuous mismatched pair and permits cleavage 

(Figure 4.3D). Furthermore, the adenosine bulge in the guide strand meant that 

an additional nucleotide is included within the region of the molecular ruler. 

Therefore, the predicted cleavage site is now shifted 1 nt downstream of the 

original site. Indeed, with a bulge loop in the guide, dAgo2 generated a product 

that is 20 nt in length—one nt longer than the canonical product (Figures 4.4A 

and 4.4B). 
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Figure 4.4 
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Figure Legend 4.4. Ago2-RISC retains the same cleavage site with target 

bulge loop in the seed region 

(A) Pairing schematics of let-7 to target with 2, 4 or 6 nucleotides bulge loops 

between t4t5 (left). On the right, it shows pairing between let-7 with an 

adenosine bulge between g4g5 to target with 2, 4 or 6 nucleotides bulge loops 

between t4t5. (B) Denaturing polyacrylamide gel that shows the cleavage 

products for guide:target interactions depicted in (A) after 30 sec or 1 min. OH: 

Base hydrolysis, A: RNaseA digestion. On the right of the gel, it shows where 

the guide binds the target.  
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Bulge Loop in the Seed Region of the Target has Minimal Effect on KM  

The seed initiates target binding and mismatches in the seed reduces the 

binding affinity of Argonaute protein for its target (Figure 3.1C; Haley and 

Zamore, 2004; Bartel, 2009; Ameres et al., 2007; Wee et al., 2012). Let-7 

microRNA and members of the family were shown to bind imperfectly to their 

endogenous target in Caenorhabditis elegans, forming mismatches, bulges and 

loopouts (Reinhart et al., 2000; Slack et al., 2000; Lin et al., 2003; Vella et al., 

2004; Grosshans et al., 2005; Johnson et al., 2005). To understand how bulges 

in the seed will affect target binding by Argonaute proteins, we measured the 

Michaelis-Menten constant when a 2-nucleotide bulge loop was introduced 

between t4t5 and t15t16 (Figure 4.5A). 

 A target bulge loop at t4t5 increased KM by 2.1-fold (p-value = 0.018) and 

decreased kcat by 3.3-fold (p-value = 4.1 ×  10−4) relative to the perfect target 

(Figure 4.5A). When the target bulge loop at t4t5 is placed across the guide 

bulge loop at g4g5, KM increased by 6.1-fold, (p-value = 1.1 ×  10−3) whereas kcat 

showed no significant change with respect to the compensatory target (Figure 

4.5A). We do not know why a different effect on kcat was observed between seed 

target bulge with and without the guide bulge. We speculate that the absence of 

an effect on kcat might be offset by an increased in product release when the 

occurrence of the guide and target bulge created a mismatched pairing in the 

seed (Figures 3.1D and 4.5A). Finally, a target bulge loop placed between t16t17  
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Figure 4.5 
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Figure Legend 4.5. Target bulge loop increases KM and reduces kcat 

moderately 

(A) Michaelis-Menten kinetics of let-7 to target with 2 nucleotides bulge loop 

between t4t5 (left panel); at t16t17 (middle panel) and t4t5 with a guide bulge at 

g4g5 (right panel). (B) Michaelis-Menten kinetics of let-7 to its perfect or 

compensatory target. All data points are derived from 3 independent 

experiments ± one standard deviation. (C) Model of how fly Ago2-RISC finds, 

binds, cleaves and releases its bulge loop targets. 
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exhibited no change in KM but kcat dropped by 4.5-fold (p-value = 9.2 ×  10−4) 

(Figure 4.5A). In sum, dAgo2 endures a 2-nucleotide target bulge in the seed 

with minimal effects on its target binding affinity and cleavage rate. By contrast, 

placing a 2-nucleotide target bulge in the 3′ supplementary region between 

t16t17 did not perturb target binding but it had a strong effect on target 

cleavage activity. This agrees with earlier observation that 3′ supplementary 

pairing generates the ideal geometry for target cleavage to transpire (Figure 

3.1D; Haley and Zamore, 2004; Schwarz et al., 2006; Wee et al., 2012). 

Conclusion 

The extent of target complementarity of guide to target RNA determines how 

well Argonaute proteins find, bind and regulate the target RNA. In this chapter, 

we show that the presence of GC base pairs that create a more stable 

guide:target mRNA interaction moderate the effect of mismatches that increase 

KM (lower binding affinity) and reduce kcat (lower target cleavage efficiency) of 

dAgo2 for its target mRNA. The presence of GC base pairs, however, can also 

reduce the rate of product release and therefore the turnover of dAgo2. In 

addition, we also demonstrate that dAgo2 tolerates a bulge loop introduced in 

the target but not in the guide. This observation agrees with structural data that 

show more extensive interactions between Argonaute protein and the guide 

RNA than between Argonaute protein and the target mRNA (Wang et al., 2008a; 

Elkayam et al., 2012). A bulge loop placed in the center of the seed region in the 
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target was tolerated by dAgo2 that exhibits a modest 2-fold increase in KM but a 

more severe 3.5-fold decrease in kcat. Furthermore, dAgo2 maintains the precise 

cleavage site on the target in the presence of the seed bulge loop. Future 

experiments will need to determine the mechanism how a bulge loop in the seed 

can affect the rate of catalysis that occurs in the central region of the guide (Wee 

et al., 2012). Furthermore, we need to address how the guide:target duplex is 

placed in the Argonaute protein in the presence of the bulge loop. Is the bulge 

loop extruded out into the solvent exposed side of the Argonaute protein? Will 

this solvent exposed bulge loop be accessible? The answer to the preceding will 

have a greater implication given that bulge nucleotide has been reported to 

function as protein:RNA contact site (Peattie et al., 1981). 
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Figure 4.S1 
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Figure Legend 4.S1. siRNA with high GC content in the seed buffers the 

effect of mismatches but are selected against for RISC loading 

(A) Time course cleavage of compensatory, perfect (left panel, solid circles) and 

mismatched targets (right panel, opened circles). Data points are means ± 

standard deviations for 3 independent experiments. (B) Bar graph shows initial 

velocities for (A) normalized to rate of let-7 against its perfect target (black bar). 

Normalized rates for compensatory targets are solid bars and for mismatched 

targets, opened bars. To the right are normalized cleavage rates by passenger 

strands against their compensatory targets. The data represent averages of 

three independent experiments ± standard deviation. P-values were calculated 

using two-tailed Student’s t-test assuming equal variances. (C) Ago2-RISC was 

assembled with siRNA duplexes that were either guide or passenger strand 

labeled at the 5′ end. Guide strand incorporated into Ago2-RISC was stabilized 

while cleaved passenger strand was degraded. Quantifying the difference in 

abundance between guide and passenger strands gives guide-loaded active 

Ago2-RISC concentration. (D) On the left are titrated standards and on the right 

are gel-resolved 5′ end labeled guide and passenger strands from 3 

independent assembly reactions. 
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Figure 4.S2 
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Figure 4.S2 
 

  

3′…CCAACUCCAUCAUCCGCGGCGCCACUU…5′  
   5′ pUGAGGUAGUAGGCGCCGCGGU 3′I I I II I I II I I I II I II I I II

12 20

8

6

4

2

0
4003002001000

2

80

[S
ubstrate] nM

time, sec

[ta
rg

et
 c

ea
ve

d]
, n

M

3′…CCAACUCCAUCAUCCGCUUCGCCACUU…5′  
   5′ pUGAGGUAGUAGGCGCCGCGGU 3′I I I II I I II I I I II I II II

12 20

8

6

4

2

0
4003002001000

2

80

[S
ubstrate] nM

[ta
rg

et
 c

ea
ve

d]
, n

M

time, sec

-4

0

4

x1
0

-3  

0.12

0.08

0.04

0
806040200

n
ta

 v
e

oc
ty

, n
M

s-1

Residuals

[substrate], nM

KM  31.5 ± 13.3 nM

Vmax  60.8 ± 28.3 pMs 1

KM  23.9 ± 7.0 nM

Vmax  135.5 ± 26.4 pMs 1

D

E

F

238



Figure 4.S2 
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Figure Legend 4.S2. High GC base pairing in 3′ supplementary region of 

siRNA guide restricts turnover of Ago2-RISC 

 
(A) Time course of cleavage against compensatory, perfect (left panel, solid 

circles) and mismatched targets (right panel, opened circles). Data points are 

means ± standard deviations for at least 3 independent experiments. (B) Bar 

graph shows the initial velocities for (A) normalized to that of parental let-7 

against its perfect target (black bar). Normalized initial velocities for 

compensatory targets are represented by solid bars and that of mismatched 

targets by opened bars. P-values were calculated using a two-tailed Student’s t-

test assuming equal variances. (C) Normalized initial velocities for let-7-GC 

against mismatched or compensatory targets from 3 independent experiments ± 

propagated errors. P-values were calculated using a two-tailed Student’s t-test. 

(D) Target cleavage by Ago2-RISC with GC-rich base pairing in the 3′ region of 

the siRNA at different substrate concentrations were fitted to single exponential 

kinetics. The plot shows data points derived from 4 independent sets of 

experiments ± one standard deviation. (E) Target cleavage by Ago2-RISC with 

GC-rich base pairing and g15g16:t15t16 mismatch in the  3′ region of the siRNA 

at different substrate concentrations were fitted to the logistic function. The plot 

shows data points derived from 3 independent sets of experiments ± one 

standard deviation. (F) Michaelis-Menten kinetics of initial rates from (D) and (E). 

All data points are derived from 5 independent experiments ± one standard 
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deviation. (G) Standard curve for ATP concentrations. (H) ATP concentrations of 

assembled and unassembled lysates were determined from the standard curve 

in (A) for pre (left) and post-ATP depleted samples (right). (I) Burst kinetics of let-

7, let-7-GC and let-7-3′-GC against their perfect or compensatory targets per 

nM Ago2-RISC (A) in the presence of excess targets and minimal ATP ([ATP] ≤ 

0.1 µM).
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Chapter V: Conclusions, Discussion and Future 
Directions 
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Perspectives 

Small RNA bound to Argonaute protein regulates gene expression by sequence-

based homology. Despite its name as small RNA, it has big role in almost every 

aspect of cellular processes. We can categorize small RNAs into siRNA, miRNA 

and piRNA that associate with specific Argonaute proteins with distinct 

functions. How these small RNAs distribute into different Argonaute proteins 

and the detailed thermodynamic, kinetic and functional behaviors of various 

Argonaute proteins, however, were not well studied. These gaps in our 

understanding led to an incomplete overall perception of gene regulation by 

small RNAs and their underlying mechanisms. We began to address this 

problem by studying dAgo1 and mAGO2 that function mainly in the miRNA 

pathway and dAgo2 that participates primarily in the siRNA pathway. The 

following sections in this chapter summarize our work, highlight the progress 

made in the field and examine some of the future challenges. 

Small RNAs Sort into Fly Argonaute Proteins with Distinct Roles 

In Chapter II, we demonstrated that small RNAs are actively sorted between 

dAgo1 and dAgo2. The loading of small RNAs into Argonaute proteins is 

independent of how they are synthesized. Instead, the duplex structures of small 

RNAs determine how they are allocated into either dAgo1 or dAgo2. In terms of 

functional consequences, we and others revealed that dAgo1, but not dAgo2 

repressed a centrally bulged target (Forstemann et al., 2007; Okamura et al., 
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2009). A separate study, however, contradicts this finding and showed that both 

dAgo1 and dAgo2 can repress translation of centrally bulged mRNA but by 

different mechanisms (Iwasaki et al., 2009). Unfortunately, a quantitative 

comparison of the efficiency of translational repression in vivo between dAgo1 

and dAgo2 has not been conducted. Therefore, whether dAgo2 result in 

meaningful translational repression in vivo is still an open question. 

 On the other hand, dAgo2 whose main role is to eliminate foreign RNA 

during an antiviral response cleaves a perfect target ~43-fold faster than dAgo1 

(Wang et al., 2006b; Forstemann et al., 2007). Taken together, these data 

suggest that in fly: 1) small RNAs are actively sorted into their specific 

Argonaute hosts and 2) dAgo1 and dAgo2 have evolved differently to perform 

specific tasks: dAgo1 for the miRNA pathway and dAgo2 for the siRNA pathway 

(Okamura et al., 2004). 

Determinants and Effects of Small RNA Sorting 

Duplex structure of small RNA 

In fly, Dicer-2/R2D2 complex acts as gatekeeper that shuttles highly paired 

duplex into dAgo2. This is because Dicer-2/R2D2 shows higher binding affinity 

to a perfectly paired duplex than to a mismatched duplex (Tomari et al., 2007). 

When viewed with respect to the 5′ end of the guide strand, base pairing at 

position 9 is critical to license its entry into dAgo2 (Ghildiyal et al., 2009; 

Okamura et al., 2009). In contrast, an siRNA duplex with central mismatches is 
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preferentially loaded into dAgo1 (Tomari et al., 2007). Similarly in C. elegans, a 

perfectly paired duplex is channeled into RDE-1 that performs RNAi whereas a 

duplex with central mismatches gets routed to ALG-1 and ALG-2 that function in 

miRNA regulation (Steiner et al., 2007). All 4 human Argonaute proteins, however, 

show no preferences for small RNA duplex structures (Meister et al., 2004; Liu et 

al., 2004; Yoda et al., 2009; Czech and Hannon, 2011). This may be because the 

loading of small RNA duplexes into human Argonaute proteins is Dicer 

independent (Betancur and Tomari, 2012). 

 It is tempting to suggest that the sorting process may have coevolved with 

the biochemical characteristics of the Argonaute protein. When a pre-RISC 

converts into a mature RISC, it discards the passenger strand. Fly Ago2 is a 

robust slicer and can easily cleave an extensively paired duplex and renders it 

single stranded. On the contrary, dAgo1, C. elegans ALG-1, ALG-2 and the four 

human Argonaute proteins that have relatively weaker catalytic activities than 

dAgo2 may benefit from a mismatched duplex: the passenger strand can easily 

dissociate without cleavage (Kawamata et al., 2009; Yoda et al., 2009). 

First Nucleotide Identity of Small RNA 

 The first nucleotide identity of the small RNA guide influences its sorting 

into Argonaute protein (Mi et al., 2008; Tomari et al., 2007; Forstemann et al., 

2007; Steiner et al., 2007; Ghildiyal et al., 2009; Czech et al., 2009; Okamura et 

al., 2009; Ameres et al., 2011). A close analysis of small RNAs bound to fly 
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Argonaute proteins revealed a first nucleotide bias. Fly Ago1 selects for small 

RNA that begins with uridine while dAgo2 selects for small RNA that starts with 

cytidine (Ghildiyal et al., 2009; Okamura et al., 2009; Ameres et al., 2011). 

Likewise, different plant Argonaute proteins prefer different first nucleotide 

bases (Mi et al., 2008). For instance, plant AGO1 selects for uridine, AGO2 and 

AGO4 select for adenosine while AGO5 selects for cytidine (Mi et al., 2008; 

Frank et al., 2012). The phenomenon of first nucleotide selection is supported 

and explained by structural studies of human AGO2. The specificity loop in the 

MID domain of human AGO2 can accommodate only uridine and adenine but 

discriminates against cytidine and guanosine as the first nucleotide of the guide 

(Frank et al., 2010; Elkayam et al., 2012). 

Length of Small RNA 

Argonaute proteins associate with small RNAs with distinct length. Fly Ago1 

binds preferentially 22 nt small RNA whereas fly Ago2 binds 21 nt small RNA 

(Ameres et al., 2011). Likewise, plant AGO1 associates with 21–22 nt small RNA 

while AGO4, AGO5, AGO6 and AGO9 select for 24 nt small RNAs (Vazquez et al., 

2008; Mallory and Vaucheret, 2010; Wu et al., 2010; Chellappan et al., 2010). 

Regardless, plant AGO1 and AGO4 exhibit similar binding affinities for 21 nt and 

24 nt small RNAs. In plant, different Dicer isoforms produce small RNAs of 

different lengths (Voinnet, 2009). Furthermore, the sorting of the 21 nt and the 24 

nt small RNA correlates instead with the Dicer isoforms that make them (Wu et 
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al., 2010). Therefore, in plant, Dicer determines the length of small RNA and may 

dictate its sorting into Argonaute protein. It is not known if Dicer or the length of 

small RNA governs its sorting into distinct human or fly Argonaute proteins. 

 After loading into Argonaute proteins, small RNAs are subjected to further 

modifications. Small RNA loaded into dAgo2 is 2′-O-methylated at its 3′ end and 

is therefore protected from nucleases activities (Li et al., 2005; Pelisson et al., 

2007; Horwich et al., 2007; Saito et al., 2007). By contrast, small RNA guides in 

dAgo1, mAGO2 and human AGO2 are not modified. In the presence of an 

extensively paired target, these unprotected small RNA guides get tailed and 

trimmed; and may be destabilized and removed from the Argonaute proteins 

(Ameres et al., 2010; Cazalla et al., 2010; Ameres et al., 2011). As a result, post-

loading modification contributes to the final repertoire of Argonaute-associated 

small RNAs. 

 During the development of mammalian nervous system, miRNAs are 

preferentially loaded into human AGO2. Concomitantly, these miRNAs are 

trimmed but are also protected from extensive nuclease digestions by the 

Argonaute protein. The functional significance of these shorter miRNAs, 

however, is not known (Juvvuna et al., 2012). At least in plants, the 22 nt but not 

the 21 nt small RNA guides confer RDR6-dependent synthesis of secondary 

small RNAs (Wang et al., 2011; Cuperus et al., 2010). Furthermore, PIWI, Ago3 

and Aubergine in fly associate with piRNA whose length is longer than that of 

247



siRNA ad miRNA (Guzzardo et al., 2013). The longer piRNA may reflect the 

different protection footprints offered by the PIWI clade Argonaute proteins. This 

argues that the distinct length of small RNA may result as a consequence and 

not a cause of sorting into specific Argonaute protein. 

Different Argonautes: Different Functional Output 

The seed sequence of the guide determines the target but the Argonaute protein 

can decide if and how the target is to be silenced. To illustrate, in plants, 

swapping a uridine for an adenosine as the first nucleotide redirects a miRNA 

from AGO1 to AGO2. Unlike AGO1, AGO2 with the same miRNA fails to silence 

its target genes (Mi et al., 2008). Likewise, in fly, dAgo1 and dAgo2 regulates 

imperfectly paired versus perfectly paired targets differently despite having the 

same miRNA loaded (Forstemann et al., 2007; Okamura et al., 2009; Iwasaki et 

al., 2009). Therefore, small RNA sorting adds an additional layer of control to 

gene silencing: both the identities of small RNA guides and Argonaute proteins 

matter. 

Argonaute Proteins are Eager Target Seekers 

Of note, mAGO2 is more similar to dAgo1 (74%) and to all four human 

Argonaute proteins (79%–99%) than to dAgo2 (30%) based on amino acid 

sequence identities (Table 5.1). In Chapter III, we assessed the performance of 

dAgo2 in target cleavage when subjected to differently paired targets by Henri-
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Table 5.1. Amino acid sequence identity matrix of Argonaute proteins. The percentage amino acid sequence 

identities shared among Argonaute proteins were calculated using Clustal2.1. 
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Michaelis-Menten kinetics. We also determined quantitatively how dAgo2 and 

mAGO2 (a surrogate for dAgo1) bind and cleave their targets. In summary, our 

results revealed that Argonaute protein establishes functional domains in the 

small RNA guide: the anchor, the seed, the central, the 3′ supplementary and 

the tail domains. These domains determine how the Argonaute protein finds, 

binds and regulates its target. Our studies revealed that the seed region initiates 

target binding and both dAgo2 and mAGO2 bind their target with high picomolar 

affinity. 

 The preordering of the seed reduces the entropic penalty for guide target 

pairing and primes the Argonaute protein for target binding with an astounding 

bimolecular association rate (~107–108 M−1s−1) that is close to being diffusion-

limited (Parker et al., 2009; Wee et al., 2012; Berg and von Hippel, 1985; 

Hammes and Schimmel, 1970). By comparison, the association rate for naked 

7mer RNA-RNA duplex is at least 10-fold slower (~106 M−1s−1; Cisse et al., 2012). 

Fly Ago2 Behaves and Functions Differently from Mouse AGO2 

When bound to a perfect target, dAgo2 exhibits slow dissociation kinetics with a 

t½ of ~2 hr. Compared to a t½ of ~11 s for target cleavage, it suggests that 

dAgo2 always cleaves and destroys the target it binds. In contrast, for a seed-

matched or a centrally bulged target—typical of miRNA binding site—dAgo2 

dissociates from the target rapidly (seed-matched target: t½ ~15 s and centrally 

bulged target: t½ ~10 min). This may in part explains why dAgo2 fails to regulate 
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centrally bulged targets: dAgo2 cannot remain stably bound to generate 

meaningful repression (Forstemann et al., 2007). The upside is that dAgo2 will 

only associate briefly but dissociate rapidly from all possible ~1800, 7mer seed 

binding sites calculated based on the size of the fly transcriptome (~30 MB; 

Daines et al., 2011). Therefore, these fortuitous sites will not severely distract 

dAgo2 from its authentic and extensively paired target sites. Furthermore, the 

very low equilibrium dissociation constant (KD = 4 pM) of dAgo2 for a perfect 

target indicates that dAgo2 can bind even a single molecule of viral RNA in a cell 

volume of ~1000 µm3 (~2 pM). In short, dAgo2 is optimized to function in 

antiviral defense: it hunts and eliminates perfectly paired viral RNA efficiently 

(Wang et al., 2006b; Nayak et al., 2010). 

 In contrast, mAGO2 demonstrates similar dissociation rates towards both 

seed-matched and perfectly matched targets (t½ ~15–25 min). For a seed-

matched target, mAGO2 (dissociation t½ ~23 min) remains more stably bound 

than dAgo2 (t½ ~15 s). The lackluster cleavage activity of mAGO2 (t½ ~14 min) 

suggests that a fully paired target has equal chance to be cleaved or to escape. 

This piece of data implies that for most genes that mAGO2 and perhaps dAgo1 

silenced, the main route is not by target cleavage. The immediate goal therefore 

is to test if dAgo1 behaves similarly to mAGO2. If we assumed that dAgo1 

behaves like mAGO2, we have to explain why mAGO2/dAgo1 (average 

dissociation t½ ~20 min) can repress a target with multiple centrally bulged sites 

251



Figure 5.1
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Figure Legend 5.1. Cellular localization and function of Argonaute proteins 

Argonaute proteins function mostly in the cytoplasm but their roles in the 

nucleus are recently being recognized. In the cytosol, Argonaute proteins are 

either free in solution or are closely associated with the cellular membrane 

network, P-bodies, and stress granules. However, we still do not understand if 

these different cellular localizations represent different populations of Argonaute 

proteins with distinct functions. During target silencing, there may be more 

unidentified modulators that inhibit or promote Argonaute protein activity. Finally, 

few studies have addressed how the activities of Argonaute proteins terminate 

and how these enzymes turnover. Note that the cellular structures and 

molecules are not drawn to scale. 
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whereas dAgo2 that dissociates only two times faster (t½ ~10 min) does not 

(Forstemann et al., 2007; Wee et al., 2012). There are least four explanations. 

First, dAgo1 and dAgo2 are simply structurally and therefore functionally 

different. Second, Argonaute proteins need to stay on their targets for at least 

10 min to elicit functional regulation. Third, our dissociation rate measurements 

are limited to a single target site and may underestimate the duration that 

Argonaute proteins can stay bound to target mRNA with multiple sites as a 

result of cooperative interactions. Finally, perhaps only dAgo1/mAGO2 but not 

dAgo2 can bind and interact in a cooperative fashion (see next section). 

The KD of mAGO2 for a seed-matched target (26 pM) is similar to that for 

a perfect target (20 pM). This suggests that mAGO2 may not utilize all bases of 

the guide for pairing given a fully complementary target: mAGO2 limits paring to 

the seed. Therefore, we can predict that there will be no selective pressure for 

target sites to maintain base pairing beyond the seed sequence. Indeed, most 

predicted miRNA targets show only seed complementarity (Lai and Posakony, 

1998; Bartel, 2009). Only less than 5% of preferentially conserved targets of 

miRNAs contained 3′ supplementary pairing in addition to seed pairing 

(Friedman et al., 2009). Finally, unlike siRNAs in dAgo2, miRNAs loaded into 

mAGO2 or dAgo1 are not 3′ methylated and are thus not protected from tailing 

and trimming and destabilization when paired to a perfect target (Ameres et al., 

2010; Cazalla et al., 2010). Collectively, these observations suggest that mAGO2 
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and dAgo1 are not designed to regulate fully complementary targets and they 

behave and function differently from dAgo2. 

Cooperativity among Argonaute Proteins 

Our binding studies of dAgo2 and mAGO2 utilized target mRNAs with a single 

binding site (Wee et al., 2012). A miRNA-RISC, however, represses target in a 

cooperative fashion (Doench and Sharp, 2004; Broderick et al., 2011). On 

average, each mRNA target possesses 4.2 target sites in its 3′ UTR and is often 

complementary to multiple miRNA families (Friedman et al., 2009). This opens 

up the possibility that the assembly of multiple Argonaute proteins on a single 

mRNA accompanies effective mRNA repression. An intriguing challenge is to 

identify the step(s) during miRNA targeting responsible for the observed 

cooperative effect on target repression. An immediate achievable goal is to see 

if we can detect cooperative binding by Argonaute proteins to mRNA targets 

with multiple binding sites. Alternatively, target binding is non-cooperative but 

rather Argonaute proteins cooperate to repress target directly or they cooperate 

to recruit downstream protein factors for the task (Figure 5.1). Equally 

importantly, we need to test if cooperativity works for all Argonaute proteins or 

is limited to a subset that is known to function in the miRNA pathway such as 

dAgo1 and mAGO2. Of note, cooperativity with regard to multicomponent 

assembly is a common theme in cellular biology (Williamson, 2008). 
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Argonaute Proteins Bind Noncanonical Targets 

Is a perfect seed pairing compulsory for Argonaute protein to bind and regulate 

its target? An earlier study surveyed bulged and internal loops in target 

repression by mAGO2 and human AGO2 and incorporated their results to 

predict imperfectly paired miRNA targets (Kiriakidou et al., 2004). The study, 

however, transfected high nanomolar concentration of siRNA into the cell, which 

is non-physiological and failed to account for the final cellular RISC 

concentrations. In Chapter IV, our preliminary results showed that dAgo2 

tolerates mismatches, bulged and internal loops in the seed with moderately 

reduced target binding affinities or target cleavage rates. In our target cleavage 

readout with dAgo2 that necessitates extensive guide:target base pairings, 

these highly paired duplex may compensate for the mismatches, bulged and 

internal loops. That said, how our observations with dAgo2 translate to target 

regulations by dAgo1 or mAGO2 without extensive target pairing has not been 

vigorously tested. 

By means of HITS-CLIP (High-throughput sequencing of RNAs isolated 

by crosslinking immunoprecipitation) in mouse brain samples, it was discovered 

that ~27% of all Argonaute:mRNA interactions do not involve perfect seed 

match to miRNA (Figure 5.1; Licatalosi et al., 2008; Chi et al., 2009). In a follow 

up study that focused on mir-124:target interactions, it was found that ~15% of 

mir-124 targets formed a G bulged in the target across from position 5 and 6 of 
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the guide strand (Figure 5.1; Chi et al., 2012). The effect on KD of mouse 

Argonaute proteins for these seed bulged targets remains to be determined. For 

highly abundant miRNA such as mir-124, its cellular concentration may still be 

greater than the KD for the seed bulged target. That said, Argonaute proteins are 

expected to find, bind and leads to regulation of seed bulged targets. If binding 

to non-canonical targets, the number of functional miRNA targets may increase 

beyond those that fulfill the criterion of perfect seed pairing. 

In an extreme example, mAGO2 binds target even without miRNA in 

mouse embryonic stem cells (Leung et al., 2011). It is not known how mAGO2 

binds target mRNAs without the help of miRNAs. It is not hard to imagine that 

Argonaute protein itself or through its interacting protein binds to these mRNAs 

independent of miRNAs. These targets may also reflect artifacts produced 

during crosslinking. Functional studies suggest otherwise. Among targets that 

associate with Argonaute proteins with and without miRNAs, a G-rich motif is 

enriched. On its own, the G-motifs do not cause target repression. The G-motif, 

however, enhances target repression by miRNAs that bind to neighboring 

targeting sites (Leung et al., 2011). 

Location, location, location! Where Do Argonaute Proteins Function? 

Argonaute Proteins and the Membrane System 

The small RNA pathways are intricately linked to the cellular membrane network 

in the cytoplasm. Earlier studies described mAGO2 as GERp95 (Golgi ER 
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protein 95 kDa) because it associated with the endoplasmic reticulum (ER) or 

the Golgi apparatus depending on cell-type (Figure 5.1; Cikaluk et al., 1999; 

Tahbaz et al., 2001). Neither was mAGO2 present within the lumen of the 

membrane system nor was it a transmembrane protein. Instead, it was 

proposed to be a peripheral membrane protein that exhibited high tolerance to 

trypsin/chymotrypsin digestion even in the presence of membrane disrupting 

detergent (Cikaluk et al., 1999). Interestingly, it was recently shown that human 

AGO2 loaded with small RNA was resistant to digestion by thermolysin at a 

concentration that digested non-loaded human AGO2 completely (Elkayam et al., 

2012). This suggests that membrane-associated protease resistant mAGO2 may 

be small RNA-bound and active. 

 Early endosomes mature into MVB (multivesicular bodies) with defined 

intraluminal vesicles (Figure 5.1). This process requires the ESCRT (endosomal 

sorting complex required for transport) factors. The mature MVB either fuses 

with lysosome to degrade its cargo or it fuses with the plasma membrane to 

recycle its contents (Hanson and Cashikar, 2012). ESCRT mutants in Drosophila 

that cannot make MVB impair gene silencing by dAgo1. In contrast, blocking 

MVB turnover stimulates silencing by dAgo1 (Lee et al., 2009). Together, these 

findings suggest that miRNA functions in fly require MVB. Likewise, target 

repression in cultured monocytes by human AGO2 necessitates MVB formation 

(Gibbings et al., 2009). 
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 It was found that the presence of MVB promotes loading of small RNAs 

into Argonaute proteins (Lee et al., 2009). Given that RISC assembly employs 

heat shock proteins, it will be interesting to find out if heat shock proteins 

concentrate at MVB (Czech and Hannon, 2011). MVB are also closely 

associated with GW-bodies, which are presumably the sites of actions of 

Argonaute proteins (Lee et al., 2009; Gibbings et al., 2009). Currently, it is not 

known if MVB and GW-bodies are functionally linked. It is also not known if the 

functions of Argonaute proteins are restricted to these membrane structures or 

associated GW-bodies. 

P-bodies and Stress Granules Join the Fray 

GW-bodies lack P-bodies components and were claimed to be distinct from P-

bodies (Gibbings et al., 2009). However, GW-bodies and P-bodies are often 

assumed equivalent and are used synonymously (Filipowicz et al., 2008). There 

is therefore a need to characterize the components and to standardize the 

definitions of these subcellular structures. Here, I assume that GW-bodies and 

P-bodies are equivalent subcellular structures (Figure 5.1). 

 Translational inhibition causes Argonaute proteins to appear in P-bodies 

and stress granules (Leung et al., 2006). Intriguingly, heat shock proteins are 

also needed for the synthesis of P-bodies and stress granules (Matsumoto et al., 

2011). One study showed that Argonaute protein localizes to P-bodies without 

the need for miRNAs and they turnover slowly. By contrast, Argonaute protein 
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localized to stress granule required miRNAs and they turnover rapidly (Leung et 

al., 2006). Further studies must address whether Argonaute proteins in P-bodies 

and stress granules are functionally distinct as reflected by their different 

turnover kinetics (Leung et al., 2006). 

 Most Argonaute proteins are dispersed in the cytoplasm with only a 

meager ~1.3% localized to P-bodies (Leung et al., 2006). The freely dispersed 

Argonaute proteins may reflect the starting population that is highly dynamic, 

capable of moving at the rate of diffusion to find their targets. Upon target 

binding and during target repression, these Argonaute proteins may then 

coalesce into visible P-bodies and stress granules. Given that target repression 

by Argonaute did not required its localization to the P-bodies (Eulalio et al., 

2007; Chu and Rana, 2006), the freely dispersed sub-microscopic structure may 

also be Argonaute:target complexes that are functionally equivalent to those 

found in P-bodies but are simply below the limit of detection. 

 Single molecule tracking of Argonaute protein using labeled miRNA 

identified at least 2 distinct populations of Argonaute proteins with different 

intracellular mobility in the cytosol (Pitchiaya et al., 2012). The two populations 

were believed to correspond to the faster diffusing monomeric Argonaute:target 

complex and slower higher order multimeric Argonaute:target complexes in P-

bodies. Unfortunately, the current setup did not have sufficient time resolution to 

distinguish the rapidly diffusing target-free Argonaute protein from free unloaded 
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miRNAs (Pitchiaya et al., 2012). In a separate study using HEK293 cells, 

Argonaute proteins were found to exist as different complexes in the nucleus 

and in the cytoplasm (Figure 5.1). The nuclear Argonaute is derived from the 

cytoplasmic pool, is smaller and demonstrates faster diffusion rate (Ohrt et al., 

2008). In light of these data, several immediate questions come to mind. What 

constitutes the different Argonaute-RISC populations? Are they assembly 

intermediates? Are their functions distinct? What are their detailed kinetic 

properties? Do their different kinetic behaviors support their specific roles? The 

ultimate goal is to be able to correlate kinetically distinct Argonaute proteins to 

their components, functions and localizations. 

Does Argonaute protein moonlight in the nucleus? 

Argonaute proteins are present in the nucleus and they function in the nucleus 

too. The best studied is Argonaute1 in Schizosaccharomyces pombe (SpAgo1) 

that silences genes cotranscriptionally at centromeres, telomeres and the 

mating-type loci (Noma et al., 2004; Buhler et al., 2006). SpAgo1 with Tas3 and 

Chp1 forms the RITS complex that targets nascent transcript to silence the gene 

in a Dicer and RdRP-dependent manner (Verdel et al., 2004; Motamedi et al., 

2004). The RITS complex then recruits the CLRC complex that deposits histone 

H3 lysine-9 methylation (H3K9me), a repressive mark, which is bound by Swi6 

(Drosophila HP1 homolog; Bannister et al., 2001; Hall et al., 2002; Volpe et al., 

2002; Hong et al., 2005; Horn et al., 2005; Jia et al., 2005; Li et al., 2005; Thon et 
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al., 2005; Bayne et al., 2010). Swi6 helps spread and maintain the H3K9me 

heterochromatic mark (Nakayama et al., 2001). Chp1 can also bind H3K9me to 

enhance localization of RITS and CLRC complexes to the silenced loci to 

reinforce and to propagate the repressive mark. 

 In C. elegans, a nuclear Argonaute protein NRDE1 associates with 

endogenous siRNA and trimethylates H3K9 to direct nuclear gene silencing

(Buckley et al., 2012). Another C. elegans Argonaute protein NRDE3, shuttles 

into the nucleus when it is loaded with a small RNA guide. In the nucleus, it 

binds nascent transcripts and silences gene expression by inhibiting Pol II 

occupancy and activity (Guang et al., 2008; Guang et al., 2010). NRDE3 is not 

equipped with catalytic residues and therefore does not silence a gene by 

endonucleolytic cleavage. In contrast, the worm Argonaute protein, CSR-1 

exhibits cleavage activity in vitro but it does not cleave its perfectly matched 

target in vivo (Aoki et al., 2007). Transcriptional profiling of csr-1 mutant worm 

shows no significant difference in global gene expression to wild type worm 

suggests that CSR-1 does not degrade its target genes (Claycomb et al., 2009). 

Instead, CSR-1 functions to organize chromosomal domains to ensure proper 

chromosomal segregation (Claycomb et al., 2009; van Wolfswinkel et al., 2009). 

It is puzzling why Argonaute proteins that retain conserved catalytic residues 

and can cleave perfectly paired targets in vitro do not appear to function by 

cleavage in vivo. 
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 PIWI Argonautes in fly contain catalytic residues and can cleave 

extensively paired target mRNAs (Gunawardane et al., 2007). The nuclear 

localized PIWI protein, however, silences transposons independent of its slicer 

activity (Gunawardane et al., 2007). Instead, PIWI established repressive 

chromatin marks to silence genes transcriptionally much like the way SpAgo1 

represses the repeat elements in fission yeast (Sienski et al., 2012; Rozhkov et 

al., 2013; Le Thomas et al., 2013; Huang et al., 2013). It is not clear if PIWI, like 

the RITS complex in yeast, is responsible for recruiting deacetylation and 

methylation enzymes to modify histone tails. Nor is it well understood if PIWI 

recruits HP1 (heterochromatin protein 1), a Swi6 homolog, to bind methylated 

histone. 

 Chromatin insulators are protein-DNA barriers that function to restrict the 

spread of silent chromatin or to prevent enhancer-promoter interactions (Van 

Bortle and Corces, 2013). In D. melanogaster, a zinc-finger DNA binding protein, 

CTCF together with CP190 bind the Fab-8 DNA element of the Abd-B locus in 

the bithorax complex to form an insulator element (Gerasimova et al., 2007). The 

association among thousands of these insulator elements creates higher order 

looping of chromosomes and establishes a limited number of nuclear foci 

termed insulator bodies. Drosophila Ago2 but not Dicer-2 is required to make 

these insulator bodies (Figure 5.1). Moreover, the catalytic activity of dAgo2 is 

dispensable in generating insulator bodies. These findings reveal a nuclear role 
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of dAgo2 to form higher order chromosomal structure without the need for small 

RNAs and is independent of its canonical RNAi function (Moshkovich et al., 

2011). In conclusion, data from yeast, worm and fly indicate that Argonaute 

proteins do function in the nucleus. 

Modulators of Argonaute Proteins 

Numerous proteins interact directly with Argonaute proteins to modulate their 

functions. For example, GW182 binds to Argonaute protein and assists in 

miRNA-mediated gene silencing (Rehwinkel et al., 2005; Till et al., 2007; Eulalio 

et al., 2008). The human GW182 ortholog, TNRC6A assists to shuttle Argonaute 

protein between the nucleus and the cytoplasm (Nishi et al., 2012). In fission 

yeast, two proteins Arb1 and Arb2 inhibit the release of the passenger strand 

and keep the siRNA double-stranded in Argonaute (Buker et al., 2007). Arb1 and 

Arb2 therefore prevent the formation of active Argonaute proteins. In C. elegans, 

the TRIM-NHL protein, NHL-2 interacts with Argonaute protein and enhances 

repression of target mRNA (Hammell et al., 2009). Belle (vasa paralog) identified 

in an RNAi screen is shown to be required for gene silencing. Belle associates 

with both dAgo1 and dAgo2 in S2 cell lysate. In the eye cells of fly that lacks 

belle, RNAi fails to occur (Zhou et al., 2008; Pek and Kai, 2011). In Tetrahymena, 

Giw1p senses the mature state of the Argonaute protein Twi1p and Gwi1P help 

localize mature Twi1p to the nucleus to initiate DNA elimination (Noto et al., 

2010). The Tudor family of proteins interacts with Argonaute proteins of the PIWI 
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Table 5.2. Argonaute interacting proteins 
 
Protein Type of protein Function References 
Belle/DDX
3 

DEAD-box RNA 
helicase 

1) Interacts with RNAi 
components (DmAgo1, 
DmAgo2, FMRP and VIG) and 
is required for RNA silencing 
2) Required for cell viability 
and germline development 
3) Interacts with Ago2 to 
localize hCAP-H/Barr to 
chromosome and promote 
chromosome segregation 

(Johnstone et 
al., 2005; 
Zhou et al., 
2008; Pek 
and Kai, 
2011) 

RpL5, 
RpL11, 
RpL21, 
RpS7, 
RpL22, 
and Rp49 

Ribosomal protein Interacts with Ago2, VIG and 
FMR 

(Ishizuka et 
al., 2002; 
Zhou et al., 
2008) 

dFXR Drosophila 
homolog of FMRP 
(Fragile X Mental 
Retardation 
Protein); RNA 
binding protein 
that contains KH 
(hnRNP K 
Homology) domain 
and RGG box 

Function in RNAi. Actual 
mechanism unknown. RNAi 
slightly impaired when protein 
is knocked down 

(Caudy et al., 
2002; 
Ishizuka et 
al., 2002) 

VIG RNA binding 
protein that 
contains a RGG 
box 

Function in RNAi. Actual 
mechanism unknown. RNAi 
slightly impaired when protein 
is knocked down 

(Caudy et al., 
2002) 

p68 DEAD-box 
helicase 

Direct interaction with 
Argonaute has not been 
shown. Present in a complex 
with Argonaute and dFMRP. 
Requires for RNA silencing 

(Ishizuka et 
al., 2002) 

RNA 
helicase 
A/ 
DHX9/ND
HII 

DEAH-box RNA 
helicase 

Requires for RISC assembly (Robb and 
Rana, 2007) 

RCK/p54 DEAD-box RNA Interacts with human Ago1 (Chu and 
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helicase and Ago2. Functions in 
miRNA mediated translational 
repression 

Rana, 2006) 

Hsp90 Heat shock 
protein 

Assembles RISC; stabilizes 
Argonaute protein; targets 
human Ago2 to stress 
granules and p-bodies; its 
absence affects piRNA level 
and causes transposon 
derepression 

(Tahbaz et al., 
2001; Pare et 
al., 2009; 
Specchia et 
al., 2010; Iki 
et al., 2010; 
Iwasaki et al., 
2010; Miyoshi 
et al., 2010) 

GW182/G
awky 

Glycine and 
tryptophan (GW) 
repeats containing 
protein. Paralogs 
in vertebrates 
includes 
TNRC6A/GW182, 
TNRC6B, and 
TNRC6C 

Interacts with Argonaute 
proteins and mediates 
translational repression and 
degradation of mRNA targets 

(Ding et al., 
2005; 
Schneider et 
al., 2006; Liu 
et al., 2005; 
Jakymiw et 
al., 2005; 
Rehwinkel et 
al., 2005) 

NHL-2, 
TRIM32, 
Brat/Mei-
P26 

TRIM-NHL protein Brat and Mei-P26 binds 
drosophila Ago1; Mei-P26 
inhibits miRNA pathway to 
regulate cell proliferation. 
NHL-2 interacts with worm 
Argonaute proteins, ALG-1 
and ALG-2 and facilitates 
miRNA:target interaction. 
TRIM32 binds mouse AGO1 
and increases miRNA activity. 

(Neumuller et 
al., 2008; 
Hammell et 
al., 2009; 
Schwamborn 
et al., 2009) 

Arb1 and 
Arb2 

 Inhibits passenger strand 
removal from siRNA duplex 
bound by yeast Ago1, 
therefore inhibiting Ago1 
maturation and slicing activity. 
Required for heterochromatin 
assembly in yeast. 

(Buker et al., 
2007) 

Gemin3 
and 
Gemin4 

DEAD-box 
helicase 

Exists as Gemin3-Gemin4-
Argonaute complex. Function 
unknown. 

(Hutvagner 
and Zamore, 
2002; 
Mourelatos et 
al., 2002) 
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clade and is required for gametogenesis in fly and mouse. Currently, not much is 

known about the mechanistic roles of Tudor proteins in these processes (Lim 

and Kai, 2007; Vagin et al., 2009; Nishida et al., 2009; Zhang et al., 2011; Anand 

and Kai, 2011). 

There are also several examples of RNA binding proteins that bind in the 

vicinity of the miRNA binding sites either to promote or to antagonize Argonaute 

activities (Bhattacharyya et al., 2006; Kedde et al., 2007; Elcheva et al., 2009; 

Goswami et al., 2010; Kedde et al., 2010; Jafarifar et al., 2011; Toledano et al., 

2012). Mechanistically, these RNA binding proteins can bind to Argonaute 

protein and deter its interaction with target mRNAs (Bhattacharyya et al., 2006). 

By having close or overlapping binding sites to that of the miRNA, the RNA 

binding proteins may physically obstruct and preclude Argonaute binding 

(Kedde et al., 2007; Elcheva et al., 2009; Goswami et al., 2010; Jafarifar et al., 

2011). Alternatively, these RNA binding proteins can create highly structured 

target mRNAs that discourage Argonaute binding or promote Argonaute 

dissociation. By contrast, these RNA binding proteins can also increase 

accessibility of the miRNA target sites to Argonaute proteins (Kedde et al., 2010). 

Biochemical and genomic screens in C elegans and in D. melanogaster 

uncovered many other proteins that interact with Argonaute proteins or are 

implicated in small RNA silencing (Table 5.2; Mourelatos et al., 2002; Hutvagner 

and Zamore, 2002; Caudy et al., 2002; Ishizuka et al., 2002; Caudy et al., 2003; 
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Meister et al., 2005; Kim et al., 2005; Duchaine et al., 2006; Hock et al., 2007; 

Zhou et al., 2008). In addition, by means of comparing and clustering proteins 

with similar phylogenetic profiles across 86 eukaryotic genomes, a set of 60 

candidate proteins in C. elegans were identified that may functions in small RNA 

silencing pathway (Tabach et al., 2013). Currently, the precise molecular roles of 

these candidate interacting proteins are still mysteries. 

Argonaute Beware! Decoys Among Real Targets 

The concept of target decoy was first observed in plants where a target 

mimic binds and sequesters miRNA away from its canonical target thus relieving 

it from repression (Franco-Zorrilla et al., 2007). In animals, pseudogenes are 

proposed to be the doppelgänger of canonical targets that serve as target 

decoys for miRNAs (Seitz, 2009). Subsequently, the concept of target decoys 

was recast as the prevalent and pervasive networks of competitive endogenous 

RNAs (ceRNA; Poliseno et al., 2010; Salmena et al., 2011; Tay et al., 2011; 

Karreth et al., 2011). In the ceRNA hypothesis, ceRNAs along with the canonical 

targets are predicted to share common miRNA binding sites and therefore are 

believed to communicate with one another by means of shared miRNA 

regulators. The biggest flaw of the ceRNA hypothesis, elegant as it may seem, is 

that it lacks sound and quantitative experimental proof. It is at odds with 

fundamental facts on mRNA and miRNA concentrations and the principles 

governing mRNA regulation by miRNA. To elaborate, it was claimed that 
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PTENP1 acts as the target decoy of PTEN mRNA (Poliseno et al., 2010). In the 

cell line that was used to test the ceRNA hypothesis, PTENP1 is present at ~1% 

that of PTEN thus making it highly incapable to effectively sequester all miRNAs 

away from PTEN (Ebert and Sharp, 2010; Ebert and Sharp, 2012). Furthermore, 

only the few most highly abundant miRNAs are functional in the cells 

(Mullokandov et al., 2012). To effectively compete with canonical target for the 

abundant and functional miRNAs would require that all transcripts in the cell be 

used as target decoys (Wee et al., 2012). This is highly questionable! 

To gain further insight into the biological relevance of target decoy, we 

modelled target repression by high, intermediate and low abundance miRNAs 

using our biochemically-defined target binding parameters of Argonaute 

proteins in Chapter III. In the model, we assume that each miRNA has 50 

different targets and each target is present in 10 copies, which is equivalent to a 

total of ~500 targets in the cell. For high abundance miRNAs such as let-7 and 

mir-21 (~20, 000 copies; ~3–4 nM in a HeLa cell volume of 5000 µm3), nearly 

every molecule of its seed-matched targets (~95–99%) are bound and repressed. 

To achieve 50% derepression of these seed-matched targets of let-7 or mir-21, 

a staggering ~22,000 copies of target decoys is required. This assumes that 

each target decoy has one miRNA-binding site. Twenty-two thousand copies of 

target decoys is equivalent to 50% of all mRNAs in the cell (Islam et al., 2011). 

Therefore, the idea that target decoys also known as ceRNAs exist to bind and 
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titrate these abundant miRNAs away from the real targets seems highly 

improbable. 

In the other extreme, only ~380 copies of target decoys are required to 

attain 50% derepression of real targets of low abundance miRNA (7.3 pM) such 

as mir-24. Our model indicates that mir-24 at such low abundance only binds 

<4% of all targets and therefore seems unlikely to contribute to meaningful 

repression of target mRNAs. This leaves us with miRNA of intermediate 

abundance (~140 pM) such as mir-93. At this cellular concentration, mir-93 

elicits 60% target repression. Moreover, the cell needs only to produce ~500 

copies of target decoys to counteract the target repression of mir-93 by 50%. 

Taken together, our model suggests that target decoy is functionally relevant 

only for miRNAs and targets whose cellular concentrations satisfy a limited 

range of values: miRNAs whose abundance contribute to functional repression 

and can be quenched by reasonable amount of target decoys. 

Intriguingly, nature has figured out a way to inhibit highly abundant 

miRNAs using circular RNAs (Salzman et al., 2012). Two reports identified target 

decoys of mir-7 in neuronal tissues that exist as circular RNAs. Amazingly, each 

circular decoy harbors seventy-four mir-7 binding sites. Among these sites, 63 

are conserved binding sites for mir-7 in at least 1 out of the 32 vertebrate 

species compared (Memczak et al., 2013). Present at ~280 molecules per cell 

(~0.09 nM in a cell volume of 5000 µm3), it is capable of binding to a total upper 
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limit of 20,000 copies of mir-7. Being circular, these target decoys have their 

ends protected and rendered unavailable to the cellular mRNA decay machinery 

as well (Memczak et al., 2013; Hansen et al., 2013). Furthermore, none of the 

partially paired target sites demonstrate base pairings beyond position 12 of the 

guide strand thus restricting target cleavage by Argonaute proteins to the 

minimum. These circular RNA decoys are therefore able to quench even the 

most abundant miRNAs in the cells while retaining great stability. 
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Conclusions 

In this thesis, we characterized the thermodynamics, kinetics and functions of 

Argonaute proteins to learn more about the mechanisms of small RNA silencing. 

Argonaute proteins are core effectors that capture and divide small RNA guides 

into functional domains. In turn, the sequences of small RNAs are like address 

codes that pilot Argonaute proteins to targets with complementary base 

sequences. Argonaute proteins are robust enzymes that tolerate mismatches, 

bulged and internal loops in target mRNA. This increases the number of 

potential targets in addition to those predicted based on perfect seed pairing to 

the small RNA guide. An additional level of flexibility and complexity involves 

active sorting of small RNA guides into distinct Argonaute proteins with defined 

kinetic and binding properties. Therefore, small RNA guide dictates not only 

which targets are being regulated and also how these targets are regulated. Our 

quantitative analysis of the binding and cleavage kinetics of Argonaute proteins 

provide mechanistic explanation as to how and why dAgo2 is designed to 

achieve RNAi whereas dAgo1/mAGO2 is devised to accomplish miRNA-based 

target repression. Finally, using biochemically established binding parameters, 

we can propose a reasonable model to explain how Argonaute proteins find, 

bind and regulate their targets. 

We also discussed some main issues that still need to be addressed: 1) 

What other factors modulate Argonaute functions and how do they achieve it 
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mechanistically? 2) Where do Argonaute proteins regulate their targets in the 

cell? 3) Are there different populations of Argonaute proteins that can be 

categorized based on their distinct thermodynamic and kinetic behaviors, their 

locations and interacting modulators? 4) How do Argonaute proteins interact 

and work with other intracellular components? i.e. subcellular structures, target 

decoys and RNA binding proteins. 5) Can we delineate the temporal order from 

RISC assembly to when it executes its function in the cell? 6) Will the temporal 

information correlate with distinct cellular kinetics and locations of Argonaute 

proteins? Overcoming these challenges and answering these questions will 

extend our understanding of these remarkable biological innovations. 
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Future Directions 

KM is not a good reflection of KD 

Our current model for fly Ago2 that binds and cleaves a perfect target is given 

by  

 

where fly Ago2 being the enzyme, E binds its substrate, S to form the 

enzyme:substrate complex, ES before cleaving the substrate to give free 

enzyme E and the cleaved product, P (Forstemann et al., 2007). The association 

rate constant is denoted by k1, the dissociation rate constant by k−1 and the 

catalytic rate is given by kcat. Accordingly the Henri-Michaelis-Menten constant, 

KM is given by 

 

        (1) 

And 

 

        (2) 

 

In the event that kcat << k−1, the definition of KM reduces to k−1/k1. This will be 

equivalent to the equilibrium dissociation constant, KD. 
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We showed that the KM of fly Ago2 for a perfect target is 25 ± 6 nM while 

its kcat is 0.02–0.06 s−1. In our recent binding studies, we demonstrated that fly 

Ago2 binds a perfect target at a KD = 3.7 ± 0.9 pM. We measured an off-rate, k−1 

of 8.8 x 10−5 s−1 and a calculated on-rate, k1 of 2.4 x 107 M−1s−1. From the 

definition of KM (equation 1), we can also calculate k1 given by kcat/KM (equation 

2) since k−1 is very small and we arrive at a similar k1 value of 5.9 x 107 M−1s−1. Of 

note, kcat>>k−1 and KD is at least 6000-fold smaller than KM. Therefore KM is not 

equal to KD! 

kcat and kon vary for different mismatches 

We can rewrite equation 1 as follows, 

 

 

        (4) 

 

If both kcat and k1 values do not change for all the different mismatched targets 

tested (Figure 3.1), we expect that a plot of KM against KD will correlate with a y-

intercept at kcat/k1 (equation 4). In this scenario, changes in KM strictly reflect 

changes in k−1 with a gradient of 1/k1 (equation 4). In our survey of mismatched 

pairing between guide and target, kcat and kon were altered either alone or in 

combination across all mismatches tested (Figures 3.1 and 5.2 and Appendix II). 

Therefore KM does not correlate with KD or with Vmax/kcat (Figure 5.2).  
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Figure 5.2 
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Figure Legend 5.2. Changes in kcat and kon changes KM 

(A) Domains of the siRNA guide (B) KM versus KD (C) KM versus Vmax. On the 

assumption that the concentration of fly Ago2-RISC assembled is the same for 

every siRNA, the KM versus kcat plot will have the same distribution of data points. 
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Binding of a perfect target involves at least two distinct steps 

For a seed-only target, fly Ago2 binds 10-fold faster than a perfect target with an 

on-rate, k1 = 2.1 x 108 M−1s−1. Also for a seed-only target, fly Ago2 dissociates 

faster with a k−1 value of 0.045 s−1. As such, we can rewrite our kinetic model as 

 

 

 

In this model, ES complex refers to the seed binding step and ES* refers to the 

complex that is fully paired and restructured and is therefore competent to 

cleave target mRNA. According to this model, we can calculate the value of k2 = 

0.006–0.018 s−1 (Appendix III). Compared to the kcat for target cleavage of 0.02–

0.06 s−1, it suggests that k2 is either smaller than or similar to kcat and is 

predicted to be the rate limiting step for fly Ago2 in target cleavage. This rate-

limiting step includes both the propagation of base pairing beyond the seed and 

the structural rearrangement of fly Ago2. 

Refining the kinetic model for Drosophila Ago2 in target cleavage 

We can further refine our kinetic model to represent a more realistic mechanism 

for target cleavage by fly Ago2. As such, we shall incorporate the rates that 

describe product release. Here, I will highlight two possible models as follow, 
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In this first model, product is released only when fly Ago2 reverts to its inactive 

conformation E. We also assume that the steps for seed binding and for product 

release are in rapid equilibrium with a dissociation rate constant KS and KP 

respectively. 

 

 

 

The second model (above) predicts that product release can occur while fly 

Ago2 is still in its active state E*. In this model, the steps for seed binding and 

the reversion of active fly Ago2 into its inactive form are in rapid equilibrium with 

dissociation rate constants KS and KP respectively. Accordingly, for the first 

model, we can show that 
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And for the second model, 

 

 

 

 

 

 

 

 

Each model provides unique solutions for KM and kcat in the absence of 

product and therefore offers the potential in future studies to distinguish which 

model (if any) most clearly predicts experimental behavior. The more complete 

solutions for these schema (Appendix IV and V) indicate that product may 

interact either E or E* in different ways. This indicates that product inhibition 

studies may provide an additional tool to test these models. 

Drosophila Ago2 prefers single-stranded RNA to double-stranded RNA 

The binding of RNA by Argonaute protein can be described by a thermodynamic 

cycle (Figure 5.3). There are two routes that will lead to the final state of 

Argonaute protein bound to both guide and target mRNA. In the first path, 

Argonaute protein is first loaded with guide RNA with an equilibrium constant K4 

and then binds its target with an equilibrium constant K3 (Figure 5.3).  
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Figure 5.3 

 

 
 
 
 
Figure Legend 5.3. Thermodynamic cycle for RNA binding by fly Ago2 
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Alternatively, guide RNA binds the target mRNA with an equilibrium constant K1 

before associating with Argonaute protein with an equilibrium constant K2 

(Figure 5.3). The overall thermodynamic to form the final state is independent of 

the paths taken and hence K1K2 = K3K4. In terms of free energies, both pathways 

must sum up to the same amount: ΔG1 + ΔG2 = ΔG3 + ΔG4. 

Case Study: Fly Ago2 

Fly Ago2 binds a perfect target with a KD of 4 pM. This corresponds to ΔG3 = 

−15 kcalmol−1 at 25°C (ΔG = −RTln1/KD). In the absence of Argonaute protein, a 

fully paired guide and target RNA has a free energy of −31 kcalmol−1. This, 

however, is an overestimate of the free energy of binding when the duplex is 

incorporated into Argonaute protein given that only ~two-thirds of the base 

nucleotide in the guide is used for target binding (Figure 3.4). Given that seed 

(g2–g8) and extended 3′ supplementary pairing (g12–g17) gives almost the same 

binding affinity as a perfect target, we assume that the free energy of binding of 

guide and target in the absence of Argonaute protein would be more accurate 

reflected by just seed and extended 3′ supplementary pairing (Figure 3.4). To 

obtain the overall binding free energy for such pairing, we calculate the free 

energy of seed pairing ΔG(seed) = −11.5 kcalmol−1 and for extended 3′ 

supplementary pairing ΔG(3′ supplementary) = −5.3 kcalmol−1 and sum them to arrive at 
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ΔG1 ≅ −17 kcalmol−1. When calculating ΔG(seed) and ΔG(3′ supplementary), the initiation 

penalties are included. 

 Currently, we do not have free energy data of fly Ago2 for single-stranded 

guide or for double-stranded RNA. We can, however, make certain predictions. 

Given that ΔG1 + ΔG2 = ΔG3 + ΔG4 and that ΔG1 = −31 kcalmol−1 and ΔG3 = −15 

kcalmol−1 we expect that ΔG2 (the binding of duplex RNA) will be energetically 

less favorable than ΔG4 (the binding of single-stranded guide). This is at least 

true for Thermus thermophilus Argonaute protein for single-stranded and 

double-stranded DNA (personal communication with Samson Jolly). The KD of 

Thermus thermophilus Argonaute protein for single-stranded and double-

stranded DNA are 0.5 nM (ΔG4 = −12.7 kcalmol−1) and 40 nM (ΔG3 = −10.8 

kcalmol−1). The less favorable loading of RNA duplex will also explain why its 

loading into Argonaute proteins requires assistance from hsp90/hsc70 and ATP 

(Johnston et al., 2010; Iki et al., 2010; Iwasaki et al., 2010; Miyoshi et al., 2010). 

Moreover, the loading of duplex that remains fully paired is probably 

discouraged given that ~two-thirds of the guide nucleotides are used in pairing 

(see above). 
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Appendix I: Equations and Derivations 
 
 
 
 
 
 

Binding Equilibrium 
 
Quadratic (Morrison) Equation for Tight Binding 
 
Henri-Michaelis-Menten Kinetics 
 
Briggs Haldane Steady State Kinetics 
 
Henri-Michaelis-Menten Kinetics with Limited Substrate 
 
Henri-Michaelis-Menten Kinetics for Tight Binding Substrate 
 
Competitive Inhibition 
 
Non-Competitive Inhibition 
 
Uncompetitive Inhibition 
 
Quadratic Equations for Competitions 
 
Dissociation Rate Constant 
 
Dissociation Half-Time 
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BINDING EQUILIBRIUM 
 
Given the following binding scheme, 
 
 
 
 
 
Where E = free enzyme, S = free substrate, k1 is the bimolecular rate constant 
with unit M−1s−1 and k−1 is the unimolecular dissociation rate constant with unit 
s−1. Assuming a pure reversible binding reaction, the rate of formation of ES 
complex can be written as, 
 
 
 
 
At equilibrium, 
 
 
 
 
 
 
 
 
 
 
 
 
 
And KD is defined as the equilibrium dissociation rate constant. According to the 
law of mass action, the total enzyme concentration (ET) is the sum of the free 
enzyme concentration (E) and the enzyme:substrate complex (ES) where 
 
 
 
 
Therefore the free enzyme concentration can be defined as 
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From the following equation, 
 
 
 
Substituting for E, we have   
 
 
 
 
 
 
 
 
 
 
 
 
Expressing ES relative to ET, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When KD = [S], 
 
 
 
 
 
In other words, KD defines the substrate concentration at which half the total 
enzyme concentration exists as ES complex. This assumes that S is present in 
excess such that free S = initial S concentration (ST). 
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Quadratic Equation for Tight Binding 
 
 
From the same binding scheme as above, 
 
 
 
 
Similarly at equilibrium, 
 
 
 
In the event of tight binding, however, E ≠ ET and S ≠ ST such that 
 
 
 
 
 
 
We can rewrite the equation at equilibrium as 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the quadratic solution to the equation in the form of  
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And that the solution of x is given by 
 
 
 
 
 
 
Where  
 
 
 
 
 
 
 
 
Therefore, 
∞ 
 
 
 
 
 
There should only be one solution to [ES] and we can rationalize to arrive at one 
out of two the possible solutions. At very low binding affinity, i.e. KD = ∞, [ES] 
approaches 0 because it would be unlikely to form ES complex. Following this 
reasoning, we should expect the signage to be a minus sign instead of a plus 
sign. Therefore the solution can be rewritten as 
 
 
 
 
 
 
Expressing as f: the ratio of ES to total substrate concentration, ST—as in filter 
binding—we can recast the equation as 
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HENRI-MICHAELIS-MENTEN KINETICS 
 

The scheme is an extension of the binding equilibrium where ES complex can 
be converted to free enzyme E and the formation of product P such that 
 
 
 
 
 
The Michaelis-Menten equation derived in 1913 is based on several 
assumptions that were used in the Henri’s equation in 1903. Henceforth, it is 
also known as the Henri-Michaelis-Menten equation. These assumptions are 
 

1) The enzyme (E) is a catalyst 
2) Only a single substrate (S) is present and forms only a single 

enzyme:substrate complex 
3) Reciprocally, the enzyme:substrate complex (ES) can break down in a 

reverse reaction to form the starting free enzyme and substrate 
4) Substrate is present in excess such that the free substrate concentration 

at time t is equivalent to its initial concentration 
5) The interaction between free enzyme and free substrate is very rapid, 

hence the derivation of the equation is said to assume rapid equilibrium 
6) In contrast, the conversion of enzyme:substrate complex into free 

enzyme and product (P) is slow and therefore is the rate limiting step 
7) The measurements is taken at early time points and therefore the reverse 

reaction of product with the free enzyme is negligible 
 
The rapid equilibrium also known as quasi-equilibrium assumptions meant that 
only the early components are in equilibrium. i.e. 
 
 
 
 
Based on the law of mass action, 
 
 
 
Also at equilibrium, 
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Such that 
 
 
 
 
 
The rate of the reaction is given by 
 
 
 
 
 
Dividing the velocity equation by ET, 
 
 
 
 
 
 
With rearrangement and substituting for free E (equilibrium equation), 
 
 
 
 
 
 
 
 
 
 
 
 
At maximum enzyme concentration, ET, 
 
 
 
 
 
 
Finally, we arrive at the Henri-Michaelis-Menten equation 
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BRIGGS-HALDANE STEADY STATE KINETICS 
 
The Briggs-Haldane kinetic is a modified version of the Henri-Michaelis-Menten 
kinetic where a steady state instead of a rapid equilibrium approach is assumed 
 
 
 
 
Likewise, we can define the rate of formation of ES complex as 
 
 
 
 
 
Similarly, assuming the S is in excess and that free S = ST, then at equilibrium 
 
 
 
 
 
 
 
 
Substituting E, and rearranging the equation, 
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And that 
 
 
 
 
 
Note that KM from steady state approach of Briggs Haldane ≠ KS from the rapid 
equilibrium approach of Henri-Michaelis-Menten. 
 
Substituting for KM, the equation assumes a final form of 
 
 
 
 
 
 
The velocity of the reaction can be interpreted as the function of enzyme 
concentration and the efficiency at which the enzyme makes the product 
determined by k2. k2 is the new kinetic parameter and in Henri-Michaelis-Menten 
kinetics is also known as the kcat. That said, 
 
 
 
 
or 
 
 
 
 
 
 
And when all enzyme are converted to ES complex, we should expect maximum 
velocity for product formation, therefore 
 
 
 
 
 
We can rewrite the equation in the final form as 
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This will describe a reaction curve with the shape of a rectangular hyperbola, 
where Vmax limits the maximum velocity and KM defines the substrate 
concentration at which reaction will proceed at half maximal velocity. For 
instance, when KM = [S], 
 
 
 
 
 
 
Alternatively, we can view the equation as a product between Vmax and the 
fraction of ES complex relative to ET (see equilibrium binding in earlier section) 
except that the KD is being replaced by KM. 
 
 
 
 
 
Intuitively, this means that the velocity of the reaction is determined by the 
percentage of total enzyme (determined by [S] and KM) multiply by the velocity of 
product formation if all enzymes were available (Vmax). 
 
 
It is also important to stress that KD ≠ KM. 
 
 
 
 
 
 
 
 
However, if we assume rapid equilibrium, such that k2 << k−1, then KM ~ KD 
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Michaelis-Menten kinetics with limited substrate 
 
At high [S], the reaction can be view as a pseudo first order reaction. As 
mentioned earlier, 
 
 
 
Therefore, at high [S], the reaction rate can be viewed solely as a function of [ES], 
where we can eliminate the S term. The rate constant is defined by k2 with unit 
of s−1. From here onwards, I will refer k2 as kcat. 
 
In contrast, when substrate is limiting, from 
 
 
 
 
We get

 
Replacing the kinetic constant, such that 
 
 

 
kS is the second-order specificity rate constant with unit of M−1s−1 {1983, Arch 
Biochem Biophys, 224, 732-40}.

It follows that, 
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HENRI-MICHAELIS-MENTEN KINETICS FOR TIGHT 
BINDING SUBSTRATE 

 
The principle for deriving the quadratic equation for Henri-Michaelis-Menten 
kinetics is similar to that of the tight binding reaction at equilibrium (see above). 
When we have tight binding, we violate the assumption that free substrate 
remains unchanged i.e. in excess. Likewise, we begin with the following kinetic 
scheme,  

 
 
 
At equilibrium, 
 
 
 
 
Such that  
 
 
 
 
To account for the changed in free enzyme and free substrate concentration, 
where  
 
 
 
 
 
 
 
We rewrite the change of [ES] at equilibrium as 
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With rearrangement, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This takes the form of the quadratic solution for [ES], where 
 
 
 
 
 
 
 
Given that velocity of the reaction is given by 
 
 
 
 
Replacing the solved solution of [ES], 
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Also, we know that 
 
 
 
 
 
 
 
Another form of the velocity equation is given by 
 
 
 
 
 
 

 
 

This is known as the velocity equation for tight binding or the Morrison quadratic 
equation for tight binding {Morrison, 1969, Biochim Biophys Acta, 185, 269-86}. 
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COMPETITIVE INHIBITION 
 
 
In the following scheme, 
 
 
 
 
 
 
 
We can define the equilibrium dissociation constant for the two reactions as 
 
 
 
 
 
 
 
The rate of reaction is give by 
 
 
 
 
Divide both sides of the rate equation by ET gives 
 
 
 
 
 
 
Defining [ES] and [EI] complex in terms of free E and S, 
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The rate equation will be  
 
 
 
 
 
 
Rearranging the equation, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Defining 
 
 
 

 
Our final equation will be 
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Alternatively, we can derive the velocity equation starting from the equation 
 
 
 
 
From the law of mass action, 
 
 
 
 
And that 
 
 
 
 
 
 
 
 
The equation for mass action is now written as  
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Therefore, 
 
 
 
 
 
 
And that 
 
 
 
 
 
 
where 
 
 
 
 
 
 
Competitive inhibitors increase the KM of the enzyme:substrate reaction denoted 
by K1. The final apparent KM is represented by KI. Vmax remains unchanged.  
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NON-COMPETITIVE INHIBITION 
 
In non-competitive inhibition the kinetic scheme is described as follow, 
 
 
 
 
 
 
 
 
Likewise, the reaction rate for enzyme: substrate is given by 
 
 
 
 
Dividing both sides of the equation by ET, we get 
 
 
 
 
 
 
We can also define the following variables 
 
 
 
 
 
 
 
 
 
 
 
 
The rate equation is now 
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With rearrangement, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming that the dissociation rate constants of inhibitor to free enzyme, E and 
the enzyme:substrate complex, ES are the same such that K2 = K4 = KI, we can 
rewrite the equation as 
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Defining 
 
 
 
 
 
We arrive at the final rate equation, 
 
 
 
 
 
 
Therefore, in non-competitive inhibition, KM = K1 for enzyme:substrate reaction 
remains unchanged but the maximum velocity is reduced to Vmax(app). 
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UNCOMPETITIVE INHIBITION 
 
In uncompetitive inhibition, the model is such that 
 
 
 
 
 
Similarly, the velocity equation for enzyme:substrate reaction is given by 
 
 
 
 
With the following variables define as 
 
 
 
 
 
 
 
We can express the velocity equation as 
 
 
 
 
 
 
 
 
 
With rearrangement, 
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Redefining K2 as KI, we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With  
 
 
 
 
 
 
 
 
The final rate equation is 
 
 
 
 
 
 
Therefore, in uncompetitive inhibition, both Vmax and KM = K1 is changed in the 
presence of inhibitors and are reflected as Vmax(app) and K1(app). 
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QUADRATIC EQUATIONS FOR COMPETITIONS 
 
Give the following scheme, 
 
 
 
 
 
 
 
 
Where A, B and X represent protein, labeled canonical target and unlabeled 
competitive target. KD(AB) is the equilibrium dissociation constant for the protein 
for its target whereas KD(AX) is the equilibrium dissociation constant for the 
protein for the competitor target. 
 
We also know that 
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Rearranging the equation, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Substitute the expression for [A] into the equation that defines KD(AB), 
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Expressing in terms of [AB], 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At subnanomolar KD(AB) and KD(AX), we have to account for free [B] and free [X] 
and the equation has to be recast as follow, 
 
 
 
 
 
 
 
 
 
 
 
 
 
To simplify the equation, we assume that [XT] >> [AX], i.e. KD(AX) is >> KD(AB) {Lin 
and Riggs, 1972, J Mol Biol, 72, 671-90}, 
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If we let 
 
 
 
 
 
Where Θ represents the fraction of protein:labeled RNA [AB] complex to the total 
labeled target [BT]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rearranging the equation, 
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Again, Θ can be solved using the quadratic solution, 
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From this earlier equation, 
 
 
 
 
 
 
When X = X1/2 such that it is the concentration of unlabeled competitor target 
RNA that causes half maximal binding between protein A and labeled RNA B, i.e. 
Θ = ½, and we can rewrite the above equation as 
 
 
 
 
 
 
 
 
With arrangement of the equation, we can calculate KD(AX), the equilibrium 
dissociation of unlabeled competitor RNA to protein A given that we know the 
equilibrium dissociation of labeled target RNA to protein A KD(AB). 
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Alternatively, we can also express the equation in terms of X1/2, also known as 
the IC50, 
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DISSOCIATION RATE CONSTANT 
 
 
For the following scheme, 
 
 
 
 
Assuming that after we drive assembly of ES complex, we allow it to decay with 
time, we can express the dissociation of ES complex with time into free E and S 
as 
 
 
 
 
 
For the dissociation experiment, we can prevent the formation of new ES from 
free E and S by adding competitor to quench either free component. We also 
ensure that the competitor will not affect how ES dissociates, we can simplify 
the above equation to  
 
 
 
 
 
 
Rearranging the equation, 
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We get 
 
 
 
Expanding and simplifying the equation, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By comparison, 
 
 
 
 
 
This means that at t = x, the fraction of [ES] complex relative to the starting total 
[ES] complex at t = 0, is described by an single exponential curve with a 
dissociation rate constant k−1.  
 
 
In the event that complex formed at time zero is not equal to 1 and product 
dissociation can never be zero at infinite time, the dissociation curve can be 
normalized and fitted by the following equation, 
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DISSOCIATION HALF-TIME 
 
 
We can derive the half-time (x½) for a dissociation event. Using the above 
example, it is the time required for half the ES complex to dissociate into free E 
and free S. From 
 
 
 
 
 
 
When [ES]x = ½[ES]0, x = x½ 
 
 
 
 
 
Solving for x½, 
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Appendix II: Drosophila Argonaute2 kinetics and 
thermodynamics 

 
 
Scenario 1: Perfect target of let-7 siRNA guide 
 
 
KM = 1 nM (Purified) and 25 nM (Lysate) 
kcat = 0.06 s−1 (Purified) and 0.02–0.06 s−1 (Lysate) 
KD = 4 pM (Purified) 
koff = 8.8 x 10−5 s−1 (Purified) 
kon = 2.0 x 107 M−1s−1 or 6.0 x 107 M−1s−1 (Purified; calculated from KD and koff and 
calculated from kcat/KM) 
 
 
Since 
 
 
 
 
 
Based on kcat, kon and koff measurement, KM calculated for purified dAgo2 is given 
by 
 
 
 
 
 
 
 
 
 
 
 
 
 
This agrees with the KM obtained for purified dAgo2 in Michaelis-Menten kinetics. 
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Scenario 2: Target of let-7 siRNA guide with g4g5 mismatch 
 
 
KM = 2415 nM (Lysate) and predicted is 96.6 nM for purified (based on perfect 
target above) 
kcat = 0.2–0.6 s−1 (Lysate) 
KD = 2.3 nM (Purified) 
koff = 3.6 x 10−3 s−1 (Purified) 
kon = 1.6 x 106 M−1s−1 (Purified; calculated from KD and koff) 
 
 
Based on kcat, kon and koff measurement, KM calculated for purified dAgo2 is given 
by 
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Scenario 3: Target of let-7 siRNA guide with g10g11 mismatch 
 
 
KM = 8 nM (Lysate for g10g11 mismatch therefore an overestimate) and 
predicted is 0.32 nM for purified (based on perfect target above) 
kcat = 2.0 x 10−3 s−1 or 6.0 x 10−3 s−1 (Lysate) 
KD = 4 pM (Purified) 
koff = 1.1 x 10−3 s−1 (Purified) 
kon = 2.8 x 108 M−1s−1 (Purified; calculated from KD and koff) 
 
 
Based on kcat, kon and koff measurement, KM calculated for purified dAgo2 is given 
by 
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Scenario 4: Target of let-7 siRNA guide with g15g16 mismatch 
 
 
KM = 20 nM (Lysate) and predicted is 0.8 nM for purified (based on perfect target 
above) 
kcat = 0.01 s−1 (Lysate) 
KD = 1 nM (Purified; based on g15g16 mismatches) or 85 pM (Purified; based on 
g2–g10 base pairing) 
koff = 2.6 x 10−2 s−1 (Purified; based on g2–g10 base pairing) 
kon = 2.6 x 107 M−1s−1 (Purified; calculated from KD and koff) or 3.1 x 108 M−1s−1 
 
Based on kcat, kon and koff measurement, KM calculated for purified dAgo2 is given 
by 
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Kinetic and thermodynamic parameters for 4 different scenarios. 

 
 
 
 

 Perfect Target g4g5 
mismatch 

g10g11 
mismatch 

g15g16 
mismatch 

KM (nM); 
Lysate 

25 2415 8 20 

KM (nM); 
Purified 
dAgo2 

1 96.6 
(predicted) 

0.32 0.8 

kcat (s
−1) 0.06 0.2 2.0 x 10−3 0.01 

KD (nM) 4 x 10−3 2.3 4 x 10−3 1 
koff (s

−1) 8.8 x 10−5 3.6 x 10−3 1.1 x 10−3 2.6 x 10−2 
kon   

(M−1s−1) 
5.0 x 107 1.6 x 106 2.8 x 108 2.6 x 107 

Calculated 
KM (nM) 

1 127 0.01 1.4 
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Appendix III: Drosophila Ago2 has at least one 
rate-limiting step after seed pairing 

 
 

Given the following reaction scheme, 
 
 
 
 
 
At steady state, 
 
 
 
 
 
 
 
 
Rearranging the equation to get [ES], 
 
 
 
 
 
 
 
The rate of the reaction is given by 
 
 
 
 
 
 
Which when we substitute for [ES] gives, 
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where 
 
 
 
 
 
Units of kon = M−1s−1; kcat = s−1; koff = s−1 
 
Therefore the units for kobs is 
 
 
 
 
 
 
 
 

Scenario 1: koff << kcat 
 
 
From 
 
 
 
 
We can simplify the equation to 
 
 
 
 
 

This means that when the reaction is very efficient, i.e. kcat is so large that the 

formation of product occurs much faster than the dissociation of the ES 

complex i.e. koff is so small. In this case, the rate of the reaction is limited by how 

fast the substrate binds the enzyme indicated by kon. 
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Scenario 2: koff >> kcat 
 
From 
 
 
 
 
 
The equation can be recast as 
 
 
 
 
 
 
 
 
 
 
 

Therefore, in this case, the reaction rate is defined by how fast the enzyme and 

substrate make successful contact, the stability of the E:S complex (dissociation 

constant: KD) and the catalytic rate (kcat). 

 
To calculate the rate of the second step, kcat, we rearrange the equation as 

follows, 
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The unit for kcat is, 
 
 
 
 
 
 
 
For fly Ago2, using binding data for seed-only and a perfect target as follow, we 
can calculate a predicted value for kcat, 
 
kon(seed): 2.1 x 108 M−1s−1 
koff(seed): 0.045 s−1 
kobs = kon(fully paired): 2.4 x 107 M−1s−1 or 5.9 x 107 M−1s−1 
 
Therefore, putting all the variables to calculate kcat, 
 
 
 
 

 

 

 

 

Alternatively, 
 
 
 
 
 
 
 
 
The kcat value derived from target cleavage by purified fly Ago2 is 0.06 s−1 (Figure 

3.3E; Fly Ago2 in embryo lysate, kcat = 0.018–0.06 s−1). As comparison, the kcat 

value calculated from binding data (above) is smaller than or similar to the 

catalytic rate measured by target cleavage. This suggests that base pairing 

beyond the seed or structural rearrangement of fly Ago2 into an active enzyme 

is rate limiting. 
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Appendix IV: Kinetic Model of RNAi by Drosophila 
Argonaute2  

 
Given the following reaction model, 

E: enzyme (dAgo2); E*: activated enzyme; S: substrate (mRNA target) and P: 
product (cleaved mRNA target).
 
To simplify the derivation of the rate equation, we assume segments A and B are 
in rapid equilibrium with dissociation equilibrium constant KS and KP. The 
conversion among segments A and B are at steady states with rate constants k1, 
k−1, k2, k−2, k3, k−3. 
 
For each segment, we can define the fraction of enzyme that is free (E) and the 
fraction that is in complex with substrate (ES or E*S) or product (E*P). 
 
For segment A, 
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And the fraction of enzyme:product (EP) complex fA2 is given by 
 
 
 
 
 
 
 
For segment B. 
 
The fraction of activated enzyme:substrate (E*S) complex, fB1 is given by 
 
 
 
 
 
 
 
And the fraction of activated enzyme:product (E*P) complex, fB2 is given by 
 
 
 
 
 
 
 
 
With these definitions, we can simply the reaction scheme to the following, 
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And the ratio of B to ET as 
 
 
 
 
 
where 
 
 
 
 
Defining the rate limiting step, 
 
 
 
 
Therefore, 
 
 
 
 
 
 
 
This is equivalent to 
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Expanding the terms further, 
 
 
 
 
 
 
 
 
 
 
Simplifying the equation, 
 
 
 
 
 
 
 
 
Rearranging the equation and grouping the S and P terms, 
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Further simplification leads to, 
 
 

 
 

 
 

 
We can rewrite the equation as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scenario 1: When P = 0, as we are measuring reaction at very early timepoints. 
 
The rate equation can be simplify to 
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Rearranging the equation, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, 
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Appendix V: Kinetic Model of RNAi by Drosophila 
Argonaute2 

 
Given the following reaction model, 

 
E: enzyme (dAgo2); E*: activated enzyme; S: substrate (mRNA target) and P: 
product (cleaved mRNA target).
 
To simplify the derivation of the rate equation, we assume segments A and B are 
in rapid equilibrium with dissociation equilibrium constant KS and KP. The 
conversion among segments A, B and C are at steady states with rate constants 
k1, k−1, k2, k−2, k3, k−3. 
 
For each segment, we can define the fraction of enzyme that is free (E) and the 
fraction that is in complex with substrate (ES or E*S) or product (E*P). 
 
For segment A, 
 
The fraction of free enzyme fA1 is given by 
 
 
 
 
And the fraction of ES complex is given by fA2 = 1−fA1 is given by 
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Likewise, for segment B. 
 
The fraction of free activated enzyme E*, fB1 is given by 
 
 
 
 
And the fraction of E*P complex is given by fB2 = 1−fB1 is given by 
 
 
 
 
 
Finally for segment C, 100% are in E*S complex, i.e. fC =1. With these definitions, 
we can simply the reaction scheme to the following, 
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And the ratio of B to ET, 
 

 
 
 
 
 

 
And the ratio of C to ET, 

Where ET = A + B + C 
 
 
 
 
Defining the rate limiting step, 
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Substituting [E*S] as C gives 
 
 
 
 
 

 

 
Replacing for fA1, fA2, fB1 and fB2, 
 

 

 
 
Simplifying the equation, 
 
 
 

 
Grouping the P and S terms together, 
 
 

 

 
Expanding the term DA and DB gives, 
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Expanding gives 
 

 

 
 
Group the S and P terms together, 
 
 

 

 
 
And simplifying, 
 
 

 

 
 
Replacing the terms to give, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

v
k

2
E

T

=

[S]
K

S

k
1
k

3
+ [P]

K
P

k!2
k!3

+ [S]
K

S

[P]
K

P

k
1
k!2

k!1
k

3
+ k

2
k

3
+ [S]

K
S

k!1
k

3
+ [S]

K
S

k
2
k

3
+ k

2
k!3

+ k!1
k!3

+ [P]
K

P

k
2
k!3

+ [P]
K

P

k!1
k!3

+ [S]
K

S

k
1
k

2
+ [S]

K
S

k
1
k

3
+ [S]

K
S

[P]
K

P

k
1
k

2
+ [P]

K
P

k!1
k!2

+ [P]
K

P

k!2
k!3

+ [S]
K

S

[P]
K

P

k!1
k!2

+ [S]
K

S

[P]
K

P

k
1
k!2

  

v
k

2
E

T

=

[S]
K

S

k
1
k

3
+ [P]

K
P

k!2
k!3

+ [S]
K

S

[P]
K

P

k
1
k!2

k!1
k

3
+ k

2
k

3
+ k

2
k!3

+ k!1
k!3

+ [S]
K

S

k!1
k

3
+ [S]

K
S

k
2
k

3
+ [S]

K
S

k
1
k

2
+ [S]

K
S

k
1
k

3
+ [P]

K
P

k
2
k!3

+ [P]
K

P

k!1
k!3

+ [P]
K

P

k!1
k!2

+ [P]
K

P

k!2
k!3

+ [S]
K

S

[P]
K

P

k
1
k

2
+ [S]

K
S

[P]
K

P

k!1
k!2

+ [S]
K

S

[P]
K

P

k
1
k!2

v
k
2
E

T

=

[S]
K

S

k
1
k
3
+ [P]
K

P

k!2k!3 +
[S]
K

S

[P]
K

P

k
1
k!2

k!1k3
+ k

2
k
3
+ k

2
k!3 + k!1k!3( )+ [S]

K
S

k!1k3
+ k

2
k
3
+ k

1
k
2
+ k

1
k
3( )+ [P]

K
P

k
2
k!3 + k!1k!3 + k!1k!2 + k!2k!3( )+ [S]

K
S

[P]
K

P

k
1
k
2
+ k!1k!2 + k

1
k!2( )

  

N
S
= k

1
k

3

N
P
= k!2

k!3

N
SP

= k
1
k!2

Const = k!1
k

3
+ k

2
k

3
+ k

2
k!3

+ k!1
k!3

Coeff
S
= k!1

k
3
+ k

2
k

3
+ k

1
k

2
+ k

1
k

3

Coeff
P
= k

2
k!3

+ k!1
k!3

+ k!1
k!2

+ k!2
k!3

Coeff
SP

= k
1
k

2
+ k!1

k!2
+ k

1
k!2

v

k
2
E

T

=

[S]
K

S

N
S
+ [P]

K
P

N
P
+ [S]

K
S

[P]
K

P

N
SP

Const + [S]
K

S

Coeff
S
+ [P]

K
P

Coeff
P
+ [S]

K
S

[P]
K

P

Coeff
SP

384



Scenario 1: When P = 0, as we are measuring reaction at very early time points. 
 
The rate equation can be simplify to 
 
  
 
 
 
 
 
Rearranging the equation, 
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RNA-binding proteins are critical effectors of gene expression.

They guide mRNA localization, translation, and stability, and

potentially play a role in regulating mRNA synthesis. The

structural basis for RNA recognition by RNA-binding proteins is

the key to understand how they target specific transcripts for

regulation. Compared to other metazoans, nematode genomes

contain a significant expansion in several RNA-binding protein

families, including Pumilio-FBF (PUF), TTP-like zinc finger

(TZF), and Argonaute-like (AGO) proteins. Genetic data suggest

that individual members of each family have distinct functions,

presumably due to sequence variations that alter RNA-binding

specificity or protein interaction partners. In this review, we

highlight example structures and identify the variable regions

that likely contribute to functional divergence in nematodes.
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Introduction
RNA regulation is pervasive and impacts nearly every

aspect of gene expression. RNA molecules function as

both regulators and targets in diverse pathways to ensure

appropriate decoding of the genome. RNA-binding

proteins are central to this form of regulation. They act

as effectors of RNA stability and translation efficiency,

they guide transcripts to defined locations within a cell,

they control the fidelity of gene decoding, and they

function as cofactors to promote the activity of functional

and structural RNA molecules.

The facile genetics, defined cellular lineage, and ease of

observation have made the nematode Caenorhabditis ele
gans a popular model to study RNA regulatory mechan-

isms. A scan of the C. elegans and other nematode genomes

reveals a surprising expansion of putative RNA-binding

protein relative to other metazoans. For example, the

RNA-binding protein Pumilio discovered in flies

has two homologs in humans but 11 homologs in C. elegans
[1,2]. The CCCH-type tandem zinc finger (TZF) family,

typified by the mammalian protein tristetraprolin (TTP),

has 16 members in worms [3 6]. Finally, there are 27

Argonaute homologs in C. elegans, including a clade of

worm-specific Argonautes (WAGOs) [7,8].

It is not clear why RNA-binding protein families have

expanded in nematodes. Forward and reverse genetic

experiments indicate that many play distinct roles in

germline development, gametogenesis, and early embry-

ogenesis, where the regulation of maternal RNAs plays a

primary role. In this review, we outline representative

structures from the PUF, TZF, and AGO families, and

highlight data that identify the basis for specialized

function in the expanded set of nematode homologs.

The PUF family
PUF proteins in nematode germline development

The fem 3 binding factor (FBF) was the first Pumilio

homolog identified in C. elegans [2]. Pumilio and FBF

together comprise the founding members of the PUF

family of RNA-binding proteins. FBF is encoded by two

nearly identical genes, fbf 1 and fbf 2. Together, they act

to maintain the population of progenitor cells in the distal

region of the germline and promote the switch from

spermatogenesis to oogenesis at the onset of adulthood

[2,9] (Figure 1). FBF binds in a sequence-specific fashion

to the 30 untranslated region (UTR) of several messenger

RNAs, including fem 3 and gld 1 [10]. GLD-1 and FEM-3

promote spermatocyte differentiation, and GLD-1 pro-

motes entry into meiosis [11 13]. FBF represses trans-

lation of gld 1 mRNA in the distal end of the germline,

and it represses translation of gld 1 and fem 3 mRNA in

developing oocytes [2,9].

Nine additional puf genes, termed puf 3 to puf 12, are

present in the C. elegans genome. Most have distinct

biological functions defined by phenotypic differences,

mRNA target specificity, or expression pattern. Three of

these genes puf 5, puf 6, and puf 7 are redundantly

required for embryonic viability and oocyte maturation

[14]. They prevent premature translation of glp 1 mRNA

in oocytes. PUF-8 promotes mitosis in germline progeni-

tor cells, similar to FBF, but binds to RNA with different

sequence specificity and as such likely regulates a dis-

tinct set of target mRNAs. PUF-9 regulates hunchback-

like (hbl 1) mRNA in the hypodermis and ventral nerve

cord [15]. RNAi screens reveal important roles for PUF-

3, PUF-4, PUF-11, and PUF-12 in oogenesis and early

embryonic development, but their critical mRNA targets

have not been identified [16,17]. In the following
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sections, we review a recently published crystal structure

of FBF and highlight biochemical experiments that

define differences in RNA recognition in this family

[18��].

Biochemical insights into PUF binding specificity

Wickens and co-workers have dissected the RNA-binding

properties of several PUF proteins [10,19��,20,21]. The

consensus sequence recognized by FBF, termed the FBF

binding element (FBE), is 50-UGURNNAUA-30 [10].

The FBE is nine nucleotides in length and is partially

degenerate at three positions. FBEs are present in the 30-
UTR of fem 3, gld 1, and numerous other mRNAs

regulated by FBF in the germline. Mutation of the

FBE in the 30-UTR of fem 3 leads to derepression of

FEM-3 and failure to switch from spermatogenesis to

oogenesis [11].

PUF-8 and PUF-9, on the other hand, recognize an eight

nucleotide consensus identical to that bound by human

Pum1 (50-UGUANAUA-30) termed the Nanos Response

Element (NRE) [21,22]. The NRE is similar to the FBE

but is a single nucleotide shorter. This difference is

critical, as FBF discriminates between these two

elements by more than 30-fold. Intriguingly, the speci-

ficity of PUF-8 can be converted to that of FBF by

swapping a 64-amino acid fragment in the middle of

the PUF domain, demonstrating that this region is critical

for specificity.

PUF-5 and PUF-6/7 recognize a longer, partially degen-

erate consensus motif termed the PUF-5 binding

element (5BE: 50-CyCUGUAyyyUGU-30, where y is a

pyrimidine) [20]. PUF-11 binds three sets of RNA tar-

gets, 50-CUGUGAAUA-30, 50-CUGUANAAUA-30 and

306 Nucleic acids

Figure 1

Anatomy of C. elegans hermaphrodite reproduction. (a) A single gonad arm from a hermaphrodite worm is shown. The gonad is highlighted in false

color. The distal arm of the germline contains mitotically dividing progenitor cells (red). There is a transition (orange) from mitosis to meiosis concurrent

with a transition from a single celled state to a syncytial region (blue). Meiotic nuclei recellularize, first to form spermatocytes in the L4 larval stage that

are stored in the spermatheca (yellow), and then switch to form oocytes (purple) at the onset of adulthood. (b) Pattern of the first two cellular divisions

after fertilization. The anterior and posterior poles are marked. (c) Pattern of division and early lineage of embryogenesis. Several founder cells are

established early in embryogenesis that go on to form different tissues in the adult. Adapted with permission from [50].
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50-NUGUNAAAUA-30, suggesting multiple modes of

RNA recognition through a mechanism that is not

immediately apparent [19��]. Clearly, these experiments

show that the nematode PUF family has diverged to

expand the repertoire of sequences recognized by the

PUF domain. Recent crystal structures begin to address

the molecular basis for this variance.

Crystal structures of PUF proteins

The first structures of a PUF domain, including Droso
phila Pumilio and human Pum1, were determined inde-

pendently in 2001 [23,24]. The structures revealed an

architecture of eight repeat motifs comprising three alpha

helices. The repeats pack against one another to form an

extended curved structure that vaguely resembles a

banana. A subsequent structure of human Pum1 bound

to RNA demonstrates that the concave surface comprises

the RNA-binding interface, where each repeat recognizes

a single nucleotide (Figure 2a) [22]. The amino acids that

face the concave surface define the nucleotide specificity

at each repeat, which has been reviewed previously [25].

This architecture immediately suggests a model where

PUF proteins bind to RNA with modular specificity, such

that changing the order of the repeats could modify RNA-

binding specificity. Several experiments with chimeric

PUF proteins support this model and suggest that this

domain is particularly amenable to protein engineering

[19��,20,21].

All of the nematode PUF proteins comprise eight repeats,

but many bind to a consensus element that contains more

than eight nucleotides. To gain insight into the structural

basis for recognition of longer elements by this domain,

Hall and co-workers crystallized FBF-2 in complex with

six different RNA sequences, including four naturally

occuring sites [18��]. This study reveals that FBF has an

elongated structure with less curvature relative to other

PUF domain proteins (Figure 2b). This elongated struc-

ture enables a single base to flip out and point away from

the protein without affecting interactions with the other

eight nucleotides. Thus, a slight variance of the curvature

of the overall structure, governed by repeats 4 6, has a

profound impact on the RNA-binding specificity.

It is possible that curvature-driven base flipping accounts

for the multiple modes of RNA recognition by PUF-11

[19��]. Each mode contains two conserved regions, in-

cluding a UGU trinucleotide and an element comprising

AAAUA. These may represent eight ‘core’ interactions

with this protein. Each mode contains an insertion of one

Nematode RNA-binding proteins Kaymak, Wee and Ryder 307

Figure 2

Crystal structures of PUF domain proteins bound to RNA. (a) The structure of human Pum1 bound to the NRE. Each PUF repeat specifies a single

nucleotide [22]. (b) Structure of C. elegans FBF bound to the FBE, similar to the NRE but containing an additional nucleotide [18��]. Here, the reduced

curvature of the protein enables recognition of a nine nucleotide consensus with an eight repeat PUF domain. One nucleotide flips away from the

binding surface of the protein, and eight form interactions with each repeat. The region of the protein that confers FBF like specificity when swapped

into PUF 8 is shown in red.
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or more nucleotides into a distinct position within this

core. If the inserted nucleotides flip out, a model similar

to FBF would resolve the multiple modes of binding. The

incomplete degeneracy of the inserted nucleotides may

be partially explained by differential stacking free energy

with neighboring nucleotides. A similar model could be

proposed for PUF-5/6/7, where eight nucleotides are

specified unambiguously, and five more nucleotides are

partially degenerate [20]. More structural work is needed

to assess this hypothesis and define the basis for the

variance in PUF specificity. It is also important to assess

whether conformational flexibility contributes to binding

specificity.

TTP-like CCCH tandem zinc finger proteins
TZF proteins in C. elegans early embryogenesis

TTP is a mammalian RNA-binding protein that regulates

the immune response by promoting the turnover of the

mRNA encoding the pro-inflammatory cytokine TNF-

alpha [26,27]. TTP is an AU-rich element (ARE) binding

protein, which coordinates the stability of mRNAs con-

taining extended repeats of UAUU in their 30 UTRs.

TTP has two CX8CX5CX3H zinc finger motifs. Each

motif binds to a single UAUU repeat [28].

There are several TTP paralogs in the C. elegans genome,

many of which are required for worm fertility. A cascade

of TZF proteins, including OMA-1/2, MOE-3, MEX-5/6,

MEX-1, POS-1, and PIE-1, guide the progression from

the oocyte to embryo. OMA-1/2 and MOE-3 are partially

redundant factors that promote oocyte maturation, and

inhibit embryonic gene expression before fertilization [4

6,29]. MEX-5 and MEX-6 are required for anterior pat-

terning in the early embryo [5]. They are translated from

maternally supplied mRNA shortly after fertilization, and

migrate to the anterior of the embryo before the first

cellular division. POS-1, PIE-1, and MEX-1 are also

translated after fertilization, but accumulate in the

posterior of the embryo in a pathway that depends upon

MEX-5/6 anterior localization [30,31]. All three proteins

are required for posterior patterning and segregation of

germline and somatic lineages, but have non-redundant

functions [4,29]. In addition to these well-studied

examples, there are eight additional TZF genes in the

C. elegans genome. DCT-13 and possibly Y116A8C.20

promote germline tumor formation in a sensitized genetic

background, while CCCH-1, CCCH-2, CCCH-5,

F38C2.7, Y116A8C.19, and C35D6.4 have no known

function [32].

NMR structure of a TZF family protein

Only one structure of a TZF protein has been determined

to date. Wright and co-workers determined the solution

structure of the Tis11D bound to the RNA sequence 50-
UUAUUUAUU-30 (Figure 3) [33]. Tis11D is a mamma-

lian paralog of TTP that regulates mRNA stability in

response to growth factors [3]. It binds to RNA with

identical specificity to TTP. The structure reveals that

each CX8CX5CX3H finger motif independently recog-

nizes the four nucleotide sequence UAUU. A conserved

motif with the sequence (R/K)YKTEL lies upstream of

the first cysteine of each finger. This region makes

numerous contacts with the RNA. These are primarily

composed of hydrogen bonds between the protein back-

bone and the Watson Crick edges of the bases, and van

der Waals interactions that specify the shape of the base at

each position. In addition, the side chains of two con-

served aromatic amino acids form stacking interactions

between adjacent RNA bases at two positions within each

finger. These amino acids are essential for high affinity

binding, and may contribute to specificity through differ-

ential stacking propensity. This structure has thus far

provided our only glimpse into RNA recognition by this

class of RNA-binding proteins, and as such serves as the

primary frame of reference for the interpretation of

experiments for related factors.

Biochemical insights into nematode TZF binding

specificity

In most cases, the RNA-binding activity of nematode

TZF proteins has not been investigated in detail. The

two exceptions are MEX-5 and POS-1, which bind to

RNA but with different specificity compared to TTP,

Tis11D, and each other [34,35]. MEX-5 binds with high

affinity but relaxed specificity to any uridine rich

sequence, including polyuridine. This contrasts with

TTP which binds >80-fold more tightly to AREs than

polyuridine. POS-1 binds with high affinity to a consensus

sequence termed the POS-1 recognition element (PRE:

50-UA(U2–3)RD(N1–3)G-30, where R is any purine, D is A,

G, or U, and N is any base). Compared to TTP binding

sequence, the PRE is more degenerate and specifies

three purines instead of two.

In Tis11D, three contiguous amino acids in each finger

form an adenosine recognition pocket: glutamate, leu-

cine, and the first cysteine of the CCCH motif (Figure 3)

[33]. The glutamate side chain accepts a hydrogen bond

from the exocyclic amine of the adenosine. The leucine

and the cysteine are conserved in both MEX-5 and POS-

1, but the glutamate is not. In MEX-5, the analogous

amino acids are arginine in the first finger and a lysine in

the second. Mutating both to glutamate confers TTP-like

specificity to MEX-5, suggesting they are critical speci-

ficity determinants [35]. In POS-1, an alanine and a valine

occupy the analogous positions. It is not clear how these

amino acids contribute to the differences in POS-1 speci-

ficity, or how this protein specifies three purines com-

pared to two. Structural data are needed to resolve this

problem. One nematode TZF protein, CCCH-1, has two

glutamate residues in the analogous position similar to

TTP. The rest have basic residues, small hydrophobic

residues, or some combination thereof. It is expected that

CCCH-1 will bind to RNA with TTP-like specificity, and
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that the others will bind to RNA with hybrid specificity,

but this has not been experimentally demonstrated.

The worm Argonaute proteins
Biological functions of nematode Argonaute proteins

Argonautes are the primary effectors of small RNA silen-

cing pathways, which have been the subject of intense

investigation [36]. Twenty-seven Argonaute genes are

annotated in the C. elegans genome. These fall into three

paralogous groupings: first, similar to Arabidopsis thaliana
AGO1; second, similar to Drosophila melanogaster PIWI;

third, WAGOs [37]. Some Argonaute proteins catalyze the

cleavage of target RNAs recognized by small RNA

guides. Others function in the regulation of mRNA

translation in the microRNA pathway. And some are

implicated in transcriptional gene silencing through

modification of chromatin state.

The large number and apparent diversity of nematode

Argonautes suggests a high degree of specialization or

functional overlap. Canonical RNA interference trig-

gered by exogenous double strand RNA (dsRNA) is

mediated by RDE-1 [7]. Endogenously encoded siR-

NAs, which are proposed to control cellular homeostasis,

are loaded into ERGO-1 [8]. SAGO-1 and SAGO-2

(members of the WAGO clade) are proposed to function

in a systemic amplification mechanism, absent in flies

and mammals, that leads to silencing of sequences

upstream from loci targeted by primary small RNAs

[8,38 40]. ALG-1 and ALG-2 load microRNAs required

for the temporal regulation of pattern formation during

development [41]. The PIWI clade member PRG-1 loads

21U-RNAs and is required for germline maintenance and

fertility [42]. More recently, WAGO-1 was shown to

repress specific genes, transposons, pseudogenes, and
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Figure 3

NMR structure of human Tis11D bound to RNA [33]. Each zinc finger domain independently recognizes the sequence UAUU through a combination of

base specific hydrogen bonding interactions and stacking interactions driven by aromatic side chains. The inset shows recognition of adenosine in the

N terminal finger. Three amino acids (blue), glutamate, leucine, and cysteine, come together to form an adenosine (violet) recognition pocket. The

exocyclic amine hydrogen bonds with the glutamate side chain and the backbone carbonyl of the leucine. In MEX 5, the glutamate is replaced with an

arginine (red), which is proposed to flip away from the adenosine and form nonspecific interactions with the backbone of adjacent nucleotides [35].
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cryptic loci in conjunction with a class of guide sequences

termed the 22G-RNAs [43], and CSR-1 was shown to

target euchromatic domains of the genome to enforce

appropriate assembly of kinetochores and to facilitate

segregation of the holocentric chromosomes [44��,45].

Several additional Argonautes do not have clearly deli-

neated function.

Argonaute structure

Eukaryotic Argonautes consist of four domains: the N-

terminal, PAZ, MID, and PIWI domains [37]. A series of

recent crystal structures of Argonaute-like RNA endonu-

cleases from hyperthermophilic bacteria begin to define

the basis for guide and target recognition as well as the

mechanism of site-specific cleavage [46��,47]. As pre-

dicted, the structure shows that the 50 monophosphate

of the single stranded guide is lodged between the inter-

face of the MID and PIWI domain while the 30 end is held

by the PAZ domain (Figure 4) [46��]. Target association is

proposed to occur in two steps. First, the seed region of

the guide pairs to the target [48]. Pairing is limited to the

seed because of the ‘doubly anchored’ conformation of

the guide. Once seed pairing is achieved, the helix lead-

ing to dissociation of the 30 end of the guide from the PAZ

domain. This remodeling step positions the target adja-

cent to the metal-coordinated catalytic residues in the

PIWI domain required for target cleavage. A minimum of

15 contiguous base pairs is necessary to mediate the

remodeling event, which explains why most micro-

RNAs which typically recognize their targets through

incomplete pairing do not guide cleavage of their

mRNA targets [48].

Implications for nematode-specific Argonautes

The features of the bacterial Argonaute structures shed

light on the function of WAGOs. WAGOs involved in

systemic silencing lack the residues that coordinate the

divalent metal ion required for target cleavage. This

suggests that they do no regulate their RNA targets by

guide-directed cleavage [8]. However, they do load

guide sequences that are at least in principle capable

of completely base pairing with their target RNAs. It is

not known if these proteins direct a two-step recog-

nition process to bind to their RNA targets. If not, then

complementarity between the 30-end of the guide and

the target RNA may be dispensable for function,

increasing the number of potential targets as well as

increasing the opportunity for off target effects. If so,

310 Nucleic acids

Figure 4

Crystal structure of a Thermus thermophilus DNA dependent RNA endonuclease related to eukaryotic Argonaute proteins [46��]. The structure shows

the protein bound to a DNA guide (green) and a target RNA (violet). The 50 monophosphate end of the guide is anchored in a cleft between the MID and

the PAZ domains. Nucleotides 2 8, which comprise the seed, are exposed on the surface of the protein complex and as such are positioned for

substrate recognition. Pairing of the 30 end of the guide with the target RNA aligns the scissile phosphate (red sphere) with the catalytic residues in the

protein. The inset shows the guide target interaction in the absence of protein for clarity.
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then cleavage-independent RNA silencing must be

possible in a conformation that includes significant

pairing between the guide and the target.

In contrast, CSR-1 is capable of guide-directed RNA

cleavage in worm extracts, implying but not proving that

cleavage activity plays a role in its biological function

[44��]. The guide RNAs recognized by CSR-1 harbor a 50-
triphosphate moiety. It is not clear how CSR-1 preferen-

tially accommodates a triphosphate moiety in place of the

canonical 50-monophosphate. The 50-triphosphate group

enhances cleavage activity in extracts relative to the

identical sequence with a 50-monophosphate, suggesting

the 50-triphosphate moeity functions in some aspect of

target cleavage [49]. More work is needed to delineate the

basis for 50-end discrimination by CSR-1.

Concluding remarks
The function of RNA-binding proteins is dictated by

their structure. For RNA-binding protein families where

a common domain has evolved new binding specificity, it

is important to understand how structural changes define

the basis for novel function. While genetics and bio-

chemical experiments can identify the critical sequence

elements, they cannot in most cases address how these

elements contribute to novel function in a mechanistic

sense. Thus, it is important to continue to put effort

into structural studies beyond the first structure in an

RNA-binding protein family. Structural experiments can

provide key insights needed to understand biological

function.
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