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Abstract 

Heterologous immunity is a mechanism by which immunological memory 

within an individual, developed in response to a previous infection, plays a role in 

the immune response to a subsequent unrelated infection. In murine studies, 

heterologous immunity facilitated by cross-reactive CD8 T-cell responses can 

mediate either beneficial (protective immunity) or detrimental effects (e.g. 

enhanced lung and adipose immunopathology and enhanced viral titers) (Selin et 

al., 1998; Chen et al., 2001; Welsh and Selin, 2002; Nie et al., 2010; Welsh et al., 

2010).  Protective heterologous immunity results in enhanced clearance of virus 

during a subsequent infection with an unrelated pathogen.  Such is the case 

when mice are immunized with lymphocytic choriomeningitis virus (LCMV) and 

subsequently challenged with Pichinde virus (PV) or vaccinia virus (VACV) (Selin 

et al., 1998).  However, heterologous immunity may also mediate enhanced 

immunopathology as mice immunized with influenza A virus (IAV) and 

challenged with LCMV show increased viral titers and enhanced lung 

immunopathology (Chen et al., 2003).   

The role heterologous immunity plays during infection is not limited to the 

murine system.  In fact, there have now been several reports of enhanced 

immunopathology due to heterologous immunity during human infections, 

involving viruses such as IAV, Epstein-Barr Virus (EBV), hepatitis C virus (HCV), 

and dengue virus (DENV) (Mathew et al., 1998; Wedemeyer et al., 2001; Acierno 

et al., 2003; Nilges et al., 2003; Clute et al., 2005; Urbani et al., 2005).  
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Interestingly, in all reported cases in humans, heterologous immunity mediated 

enhanced immunopathology.   

Upon infection with EBV the clinical presentation can range from 

asymptomatic to severe, occasionally fatal, acute infectious mononucleosis  

(AIM) (Crawford et al., 2006b; Luzuriaga and Sullivan, 2010) which is marked by 

a massive CD8 lymphocytosis.  This lympho-proliferative effect in AIM was 

shown to be partially mediated by reactivation of cross-reactive IAV-M158-66 (IAV-

GIL) specific CD8 memory T-cells in HLA-A2 patients reacting to the EBV-

BMLF1280 (EBV-GLC) epitope (Clute et al., 2005). 

Interestingly, EBV infects ~90% of individuals globally by the third decade 

of life, establishing a life-long infection (Henle et al., 1969).  However, it is 

unknown why 5-10% of adults remain EBV-sero-negative (EBV-SN), despite the 

fact that the virus infects the vast majority of the population and is actively shed 

at high titers even during chronic infection (Hadinoto et al., 2009). Here, we show 

that EBV-SN HLA-A2+ adults possess cross-reactive IAV-GIL/EBV-GLC memory 

CD8 T-cells that show highly unique properties. These IAV-GIL cross-reactive 

memory CD8 T-cells preferentially expand and produce cytokines to EBV 

antigens at high functional avidity.  Additionally, they are capable of lysing EBV-

infected targets and show the potential to enter the mucosal epithelial tissue, 

where infection is thought to initiate, by CD103 expression.  This protective 

capacity of these cross-reactive memory CD8 T-cells may be explained by a 



viii

unique T-cell receptor (TCR) repertoire that differs by both organization and 

CDR3 usage from that in EBV-seropositive (EBV-SP) donors.   

The composition of the CD8 T-cell repertoire is a dynamic process that 

begins during the stochastic positive selection of the T-cell pool during 

development in the thymus.  Thus, upon egress to the periphery a naïve T-cell 

pool, or repertoire, is formed that is variable even between genetically identical 

individuals.  This T-cell repertoire is not static, as each new infection leaves its 

mark on the repertoire once again by stochastically selecting and expanding 

best-fit effectors and memory populations to battle each new infection while at 

the same time deleting older memory CD8 T-cells to make room for the new 

memory cells (Selin et al., 1999).  These events induce an altered repertoire that 

is unique to each individual at each infection. It is this dynamic and variable 

organization of the T-cell repertoire that leads to private specificity even between 

genetically identical individuals upon infection with the same pathogens and thus 

a different fate (Kim et al., 2005; Cornberg et al., 2006a; Nie et al., 2010).  It is 

this private specificity of the TCR repertoire that helps explain why individuals 

with the same epitope specific cross-reactive response, but composed of 

different cross-reactive T-cell clones, can either develop AIM or never become 

infected with EBV. 

Our results suggest that heterologous immunity may protect EBV-SN 

adults against the establishment of productive EBV infection, and potentially be 

the first demonstration of protective T-cell heterologous immunity between 
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unrelated pathogens in humans.  Our results also suggest that CD8 T-cell 

immunity can be sterilizing and that an individual’s TCR repertoire ultimately 

determines their fate during infection. 

To conclusively show that heterologous immunity is actively protecting 

EBV-SN adults from the establishment of a productive EBV infection, one would 

have to deliberately expose an individual to the virus.  Clearly, this is not an 

acceptable risk, and it could endanger the health of an individual.  A humanized 

mouse model could allow one to address this question.   

However, before we can even attempt to address the question of 

heterologous immunity mediating protection from EBV infection in humanized 

mice, we must first determine whether these mice can be infected with, and build 

an immune response to the two viruses we are studying, EBV and IAV.  We 

show here that these mice can indeed be infected with and also mount an 

immune response to EBV.  Additionally, these mice can also be infected with 

IAV.  However, at this time the immune responses that are made to these viruses 

in our established humanized mouse model are not substantial enough to fully 

mimic a human immune response capable of testing our hypothesis of 

heterologous immunity mediating protection from EBV infection. 

Although the immune response in these mice to EBV and IAV infection is 

not suitable for the testing of our model the data are promising, as the humanized 

mouse model is constantly improving.  Hopefully, with constant improvements 



x

being made there will be a model that will duplicate a human immune system in 

its entirety. 

This thesis will be divided into 5 major chapters.  The first chapter will 

provide an introduction to both general T-cell biology and also to the role of 

heterologous immunity in viral infection.  The second chapter will provide the 

details of the experimental procedures that were performed to test our 

hypothesis.  The third chapter will describe the main scientific investigation of the 

role of heterologous immunity in providing natural resistance to infection in 

human subjects.  This chapter will also consist of the data that will be compiled 

into a manuscript for publication in a peer-reviewed journal.  The fourth chapter 

will consist of work performed pertaining to the establishment of a humanized 

mouse model of EBV and IAV infection.  The establishment of this model is 

important for us to be able to show causation for protection from EBV infection 

mediated by heterologous immunity. 
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Chapter I: Introduction 

Memory CD8 T-cells are an important mediator of resistance to re-

infection by previously encountered pathogens, primarily viruses (Welsh et al., 

2004).   After viral clearance the activated effector CD8 T-cell pool begins its 

contraction phase and formation of a stable memory pool.  Memory CD8 T-cells 

in general are superior to naïve CD8 T-cells, as they have the ability to recognize 

cognate peptide-MHC (pMHC) in the peripheral tissues and exert effector 

functions, while naïve CD8 T-cells that see cognate pMHC without proper 

costimulation signals undergo peripheral tolerization (Redmond and Sherman, 

2005).  As compared to naïve CD8 T-cells, memory CD8 T-cells are maintained 

at a higher frequency due to their previous clonal expansion, mediated by IL-7 

and IL-15 with the help of CD4 cells, and can be maintained without the need for 

antigen (Surh and Sprent, 2008). Memory CD8 T-cells are also rapidly activated 

due to an open chromatin structure from the previous activation, require less 

antigen to become activated, and show a varied tissue distribution (Arens and 

Schoenberger, 2010).  Therefore, being maintained at a higher frequency than 

naïve CD8 T-cells with the ability to exert rapid effector function in response to a 

lower level of antigen puts memory CD8 T-cells at an advantage when 

challenged with a recognizable pMHC antigen 

Over the years it has become evident that CD8 T-cells can recognize 

more than one antigen.  If a CD8 T-cell can be cross-reactive and recognize 

more than one antigen, and a memory CD8 T-cell is at an advantage over naïve 



2

CD8 T-cells, then it stands to reason that a memory CD8 T-cell exposed to a 

cross-reactive epitope from an unrelated virus would preferentially become 

activated over a naïve CD8 T-cell.  This is indeed the case as our lab has 

demonstrated this phenomenon in both murine and human systems and found it 

to be a common occurrence (Welsh et al., 2010; Selin et al., 2011).  Of the 

several cross-reactive responses that have been identified there appear to be 

consequences resulting from them.  In the murine system one of the resulting 

consequences is partial protection, where prior immunity to one virus results in a 

lower viral titer when challenged with an unrelated virus as compared to naïve 

controls (beneficial).  Another consequence is that of immune-pathology following 

challenge with an unrelated virus that is distinct from naïve controls challenged 

with the same virus (detrimental).  This phenomenon of altered immunity 

resulting from cross-reactive CD8-T-cells has been coined heterologous 

immunity.   

Detrimental heterologous immunity has also been described during human 

infections.  The reports of heterologous immunity and cross-reactive CD8 T-cells 

in humans have coincided with enhanced pathology such as dengue shock 

syndrome during DENV infection, necrotizing fulminant hepatitis during HCV 

infection, and AIM during EBV infection where IAV-GIL specific memory CD8 T-

cells were shown to cross-react with EBV-GLC peptide (Mathew et al., 1998; 

Wedemeyer et al., 2001; Acierno et al., 2003; Nilges et al., 2003; Clute et al., 

2005; Urbani et al., 2005).  Although there are no direct descriptions of beneficial 
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protective heterologous immunity in humans there is some epidemiological 

evidence that shows children vaccinated with live measles virus (MV) vaccine or 

Bacille-Calmette-Guerin (BCG) have unexpectedly lower morbidity and mortality 

to other pathogens than those not vaccinated (Aaby et al., 1995; Stensballe et 

al., 2005; Farrington et al., 2009). 

The goal of this thesis was to determine if heterologous immunity and 

cross-reactive CD8 T-cells could mediate protection from viral infection in 

humans.  To determine whether heterologous immunity and cross-reactive CD8 

T-cells were mediating protection from viral infection we used EBV as our 

infection model.  Previously our lab had identified a cross-reactive CD8 T-cell 

response between IAV and EBV.  This cross-reactivity was between the HLA-A2 

restricted epitopes IAV-GIL and EBV-GLC and was found not only to occur 

during AIM but also contribute to lymphoproliferation associated with AIM (Clute 

et al., 2005).  Subsequently, we have also identified an additional cross-reactivity 

between IAV and EBV this time mediated again by IAV-GIL but cross-reacting 

with EBV-BRLF1 (EBV-YVL) (Aslan et. al. unpublished data).  We questioned 

whether these same cross-reactive patterns between IAV and EBV were capable 

of mediating protection from EBV infection.  To do this we examined EBV-SN 

adults and assessed their cross-reactive patterns compared to that of EBV-SP 

adults.  Additionally, we also examined the T-cell receptor (TCR) repertoire within 

the EBV-SN adults to determine whether there were any unique features that 

might explain why the same cross-reactive epitopes lead to AIM in some 
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individuals while protecting others from infection.  We also set out to establish a 

humanized mouse model of viral infection so as to recapitulate our finding in a 

testable model. 

This introduction is separated into two major sections.  The first section is 

an overall description of T-cell immunity.  The second half more specifically 

pertains to the biology of heterologous immunity. 

1. T-cell Immunity: 

A. Generation of the CD8 T-cell pool 

The generation of a highly diverse CD8 T-cell receptor (TCR) repertoire 

within an individual is started by somatic rearrangement of the germline encoded 

V-, D-, and J-regions within the tcrb locus and V- and J-regions of the tcra locus 

(Taghon and Rothenberg, 2008).  Mathematically it is theorized that there can be 

up to 1015 different TCR heterodimer pairs in mice. Though following negative 

and positive thymic selection which results in a massive die off of cells that either 

can not react to pMHC (positive selection) or react to strongly pMHC (negative 

selection) the actual number is estimated to be in the area of 106-108, much 

lower than theorized (Arstila et al., 1999; Casrouge et al., 2000; Nikolich-Žugich 

et al., 2004). The complementarity determinant regions (CDRs), CDR1 and 

CDR2, within the V region of the TCR have natural affinity for the major 

histocompatibility complex (MHC) molecule, while the CDR3, the region covering 

the somatic rearrangement, recognizes peptide bound to the MHC (pMHC) 

(Huseby et al., 2005; Dai et al., 2008). 
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T-cells develop in the thymus where they undergo a process known as 

positive selection.  Cells that can bind the MHC with low affinity survive the 

process by receiving survival signals, while cells that cannot bind the MHC 

undergo death by neglect (Starr et al., 2003).  At this stage of development T-

cells express both CD4 and CD8 and are referred to as double positive (DP) 

thymocytes.  DP thymocytes that have a lower affinity for pMHC-I, lose CD4 

expression and retain CD8 expression, while DP thymocytes with a higher affinity 

for pMHCII retain the expression of CD4.  This later results in the expression of 

the CD4 lineage commitment transcription factor ThPOK (Singer et al., 2008; 

Collins et al., 2009). 

DP thymocytes that survive positive selection go on to negative selection.  

During this process thymocytes that demonstrate high affinity binding to self 

pMHC are selectively deleted by receiving signals to undergo apoptosis 

(Hogquist et al., 2005).  This selection event results in the deletion of cells that 

could cause autoimmune disease in the host if they were allowed access to the 

periphery.   

After thymocytes finish negative selection they leave the thymus and 

become recent thymic emigrants with a naïve phenotype of CD62Lhigh, CCR7high, 

CD44low, and CD24+ (Tough and Sprent, 1994).  As they migrate through the 

secondary lymphoid tissues they increase the levels of their markers slightly and 

lose CD24 expression to become mature naïve T-cells (Makaroff et al., 2009).  In 

humans naïve T-cells have a half-life of 4-6 years and require IL-7 for their 
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survival (Link et al., 2007; Vrisekoop et al., 2008).  An additional necessity for 

survival of CD8 T-cells is interaction with self-pMHC-I in the periphery (Tanchot 

et al., 1997; Polic et al., 2001; Surh and Sprent, 2008; Takada and Jameson, 

2009). 

The MHC-I heavy chains are a set of 3 separate genes all of which are 

highly polymorphic.  These molecules present small peptides derived primarily 

from proteins synthesized within the cell.  The high degree of polymorphism is 

manifest within the peptide-binding groove of the MHC-I (Trowsdale, 2005).  This 

alteration of the binding groove results in variations in the anchor residues 

responsible for peptide binding and consequently a more diverse peptide pool.  

With the combination of a highly diverse peptide pool and a highly diverse TCR 

repertoire CD8 T-cells can recognize virtually any foreign protein. 

B.  T-cell Activation 

Activation of T-cells by ligation of TCR/pMHC results in an array of downstream 

signaling events.  The first event is the activation of the src family of protein 

tyrosine kinases (PTKs), primarily lck (Samelson et al., 1986; Straus and Weiss, 

1992).  These kinases then phosphorylate the homo- and hetero-dimeric CD3-

ζ, -ε, -δ, and -γ proteins within their immune-receptor tyrosine-based activation 

motifs (ITAMs).  These phosphorylation events then result in the recruitment of 

the CD3 ζ associated protein of 70kDa (ZAP-70) which subsequently activates 

the trans-membrane adapter protein linker for the activation of T-cells (LAT) by 

phosphorylation. ZAP-70 also recruits and activates the cytosolic adapter protein 
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Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76kDa 

(SLP-76) by phosphorylation (Bubeck Wardenburg et al., 1996; Zhang et al., 

1998).  The recruitment of these two molecules builds the backbone of the 

signaling complex by organizing the signaling effector molecules in the correct 

spatiotemporal order to begin the multiple signaling cascades (Smith-Garvin et 

al., 2009). 

When LAT becomes phosphorylated and activated by ZAP-70 it then 

recruits the kinases phospholipase C-γ-1 (PLCγ-1) and phosphoinositide 3-

kinase (PI3K).  Additionally, it recruits the adapter molecules growth factor 

receptor-bound protein 2 (GRB2) and GRB2-related adapter downstream of Shc 

(Gads) (Sommers et al., 2004).  SLP76 is then recruited to LAT by their mutual 

binding partner Gads and itself recruits Vav1, Nck, IL-2-induced tyrosine kinase 

(Itk), adhesion and degranulation-promoting adapter protein (ADAP) and 

hematopoietic progenitor kinase 1 (HPK1).  SLP76 also binds to PLCγ-1, which 

has already been recruited to LAT (Koretzky et al., 2006).  While LAT and SLP76 

mediate the nucleation of the signaling complex, the effector molecules that are 

recruited help to stabilize the complex (Reynolds et al., 2002; 2004; Dombroski et 

al., 2005).  The LAT/SLP76 complex ultimately results in the activation of PLCγ-1 

which hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to inositol 

1,4,5-triphospate (IP3) and diacyl glycerol (DAG).  The release of IP3 to the 

cytosol results in release of Ca2+ from the endoplasmic reticulum (ER), which in 

turn activates Ca2+-release activated Ca2+ (CRAC) channels to produce a flux in 
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Ca2+ (Lewis and Cahalan, 1995).  This increase in Ca2+, coupled with DAG 

mediated activation of protein kinase C (PKC) (which also activates NFκB), 

results in the activation and translocation to the nucleus of NFAT where it is free 

to associate with AP-1 and induce transcription of target genes, most notably IL-2 

(Ullman et al., 1990; Jain et al., 1995; Karin et al., 1997).   

The increase in Ca2+ flux is also linked to cytoskeleton restructuring 

(Burkhardt et al., 2008).  Cytoskeleton restructuring is an important part of T-cell 

activation, as treatment with actin polymerization inhibitors impedes T-cell/APC 

interaction and proper signaling (Henney and Bubbers, 1973; Holsinger et al., 

1998).  One of the primary events in the cytoskeleton restructuring is the 

polarization of the microtubular organizing complex toward the TCR/pMHC 

contacts (Kupfer et al., 1987).  This event is crucial for the formation of the 

immunological synapse (IS) where TCR and costimulation signals are thought to 

be amplified (Cemerski et al., 2008; Yokosuka et al., 2008).  Also there is a 

formation of the distal pole complex which may be important for shuttling away 

inhibitory regulatory factors from the IS (Burkhardt et al., 2008) and also may 

contribute to the polarization of signaling molecules responsible for memory 

versus effector fate decisions (Chang et al., 2007).  These signaling events are 

summarized in figure 1.1. 

In addition to TCR engagement and signaling there is also a need for 

costimulation to ensure proper T-cell activation.  The best characterized of the 

costimulation molecules is CD28.  Signaling through CD28 ultimately results in
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Figure 1.1 Schematic diagram of TCR signaling showing the separate arms and
players involved. The first panel depicts the links between adapter protein tyrosine
kinases involved in the initial signaling events and the downstream events of Ca++ flux and
Ras activation. The bottom two panels represent events involved in Ras activation and
Ca++ flux. Figure adapted from Smith-­‐Garvin et. al. T-­‐cell Activation. Annu. Rev. Immunol.
27, 591-­‐619 (2009)
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 the activation of Akt which is responsible for many activities, most notably NFκB 

activation and IL-2 production (Acuto and Michel, 2003; Narayan et al., 2006; 

Qiao et al., 2008).  In addition to CD28 there are other molecules involved in 

costimulation.  Inducible costimulator (ICOS) is a molecule which is related to 

CD28 and performs many of the same functions, but it is not involved in IL-2 

production, and it is not constitutively expressed (Hutloff et al., 1999; Coyle et al., 

2000).  Two additional costimulation molecules in the TNF receptor family are 

41BB and OX40, which both result in enhanced Akt and NFκB activation.  While 

CD28 and ICOS are important for activation, 41BB and OX40 seem to be 

important for memory formation (Watts, 2005). 

In contrast to costimulation there are also important negative regulators of 

TCR signaling.  Both CD45 and SH2 domain-containing protein tyrosine 

phosphatase (SHP1) are phosphatases which act to limit the phosphorylation 

state of the signaling complex (Hermiston et al., 2003; Stefanová et al., 2003).  

Two additional inhibitory molecules, cytotoxic T lymphocyte antigen-4 (CTLA-4) 

and programmed death-1 (PD-1), are involved in dampening TCR signaling and 

have been shown to recruit and activate SHP1.  Mice with either of these 

molecules deleted develop autoimmunity (Waterhouse et al., 1995; Nishimura et 

al., 2001).  CTLA-4 has the added property of binding to the CD28 ligands CD80 

and CD86 with a high affinity potentially sequestering them away from the 

costimulation molecule. 
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Up to this point I have been discussing CD4 and CD8 T-cells 

interchangeably.  Although CD4 cells are very important players in the immune 

system the rest of this dissertation will focus on CD8 T-cells. 

C. Acquisition of Effector Functions and Memory Formation 

Naive CD8 T-cells survey the body for infection by migrating to secondary 

lymphoid tissues and sampling antigen presenting cells (APCs), primarily 

dendritic cells (DCs), for their cognate antigen.  During an infection naïve CD8 T-

cells first come into contact with primed antigen bearing DCs within the sub-

capsular sinus or the interfollicular region of the draining lymph node (LN) 

(Hickman et al., 2008; John et al., 2009).  Under non-inflammatory conditions 

antigen recognition results in anergy or peripheral tolerance, but in the context of 

inflammation or infection antigen recognition from an APC results in a clonal 

expansion and rapid acquisition of effector functions by antigen specific T-cells 

(Steinman et al., 2003; Masson et al., 2008; Arens and Schoenberger, 2010).  

After clonal expansion and at the peak of the primary CD8 T-cell response there 

is a heterogeneous population of short lived effector cells (SLEC) defined by 

KLRG1+ CD127- which mostly die off during contraction, and a population of 

memory precursor effector cells (MPEC) defined by a KLRG1- CD127+ 

phenotype which go on to form the memory pool (Mescher et al., 2006; Parish 

and Kaech, 2009).  Single cell transfer studies have shown that a single naïve 

CD8 T-cell can differentiate into a diverse population of both effector and 

memory cells (Stemberger et al., 2007; Gerlach et al., 2010), although this 
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phenomenon has been questioned as naïve CD8 T-cells with differing amounts 

of interferon-γ (IFN-γ) transcript have been shown to maintain their differing 

transcript levels even after many rounds of division (Beuneu et al., 2010).  

Another observation during initial CD8 T-cell activation is the phenomenon of 

asymmetric cell division that ultimately results in an unbalanced segregation of 

protein degradation machinery and the T-box transcription factor T-bet between 

the two daughter cells (Chang et al., 2011).  Since it is known that an increased 

amount of T-bet forces CD8 T-cells to be more of a SLEC (Badovinac et al., 

2007a) it is thought that this asymmetric division results in a differing lineage 

decision (Chang et al., 2007).  This idea has been questioned as CD8 T-cells 

with signaling deficiencies have been shown to split T-bet evenly and still 

develop MPECs (Smith-Garvin et al., 2010). 

For a single naïve CD8 T-cell to undergo many rounds of division with one 

division occurring every 2-6 hours (Yoon et al., 2010) there would have to be a 

large need for nutrients.  It has been shown that with antigen priming CD8 T-cells 

enhance the uptake of nutrients like glucose, amino acids, and iron and also 

switch from oxidative phosphorylation to aerobic glycolysis (Vander Heiden et al., 

2009; Michalek and Rathmell, 2010).  CD28 costimulation and activation of 

mammalian target of rapamycin (mTOR) is responsible for this metabolic shift 

(Macintyre et al., 2011).  More recently it has been thought that Erk signaling 

may also contribute (Carr et al., 2010; Marko et al., 2010). 
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To attain maximal clonal expansion naïve CD8 T-cells need to receive 

signals 1 (TCR/pMHC engagement), 2 (CD28 costimulation), and 3 

(inflammatory cytokine stimulation) (Zhang and Bevan, 2011).  The inflammatory 

cytokine IL-12 effectively promotes effector cell differentiation through mTOR-

dependent T-bet induction (Takemoto et al., 2006; Badovinac et al., 2007a; Rao 

et al., 2010).  It was originally thought that IL-2 was the major player in clonal 

expansion based on in vitro studies.  However, recent in vivo studies have noted 

that clonal expansion upon initial naïve T-cell priming is only slightly decreased in 

CD8 T-cells that lack the high affinity IL-2 receptor CD25, but they do show 

functional and phenotypic alterations (Williams et al., 2006; Bachmann et al., 

2007).  These CD25 KO effectors trended towards an MPEC and T-central 

memory (Tcm) phenotype with increased CD62L and CD127 and decreased 

KLRG1.  Recently, it has become more apparent that IL-2 may be more 

important for terminal effector cell generation.  It has been shown that activated 

CD8 T-cells cultured in the presence of high IL-2 concentrations acquire superior 

effector functions and that CD8 T-cells deficient in CD25 are defective in killing 

ex vivo with a decrease in granzyme B and perforin expression (Carrio et al., 

2004; Pipkin et al., 2010).  In general CD8 T-cells are CD25high during early 

infection, but by day 3.5-5 the effector pool starts to take on a bimodal 

distribution, with CD25high cells expressing higher KLRG1 and granzyme B and 

lower CD62L and IL-2 expression (Kalia et al., 2010).  The end of the peak of the 

CD8 T-cell response brings on the contraction phase.  CD8 T-cells with a SLEC 
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phenotype that lack CD25 show a drastic decline during contraction as compared 

to WT SLECs (Mitchell et al., 2010) suggesting that IL-2 is important for the 

maintenance of SLECs during the contraction phase.  Additionally, it has been 

shown that low IL-2 signaling results in CD62Lhi memory cells (Decaluwe et al., 

2010).  These data hint that IL-2 will be found to be important for the 

maintenance of CD62L- CCR7- effector memory cells (TEM). 

IL-2 signaling through CD25 results in the activation of the transcriptional 

repressor Blimp-1, the protein product encoded by the Prdm1 gene, which in turn 

creates a negative feedback loop by inhibiting IL-2 production (Malek and Castro, 

2010).  Blimp-1 is primarily expressed by SLECs and decreases as memory is 

formed (Kallies et al., 2009; Rutishauser et al., 2009).  Blimp-1’s higher 

association with effector cells is consistent with the fact that there is a higher 

level of Blimp-1 expression during chronic infections (Shin et al., 2009).  Prdm1-/- 

CD8 T-cells exhibit normal clonal expansion, but there is a defect in their effector 

functions and SLEC differentiation (decrease in granzyme B, perforin, and 

KLRG1) resulting in an increase in MPEC markers (increase of CD127, CCR7, 

CD62L, CD27, and IL-2) (Rutishauser et al., 2009; Zhang and Bevan, 2011).  

These Prdm-/- CD8 T-cells also have a decrease in exhaustion markers PD-1, 

LAG3, CD160, and 2B4 during chronic infection (Shin et al., 2009).  Figure 1.2 

illustrates effector T-cell generation. 

After there has been sufficient activation and expansion of the effector 

subsets the effectors need to leave the secondary lymphoid tissue and enter the
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Figure 1.2. Effector T-­‐cell generation. Naïve T-­‐cells seeing their antigen in
addition to costimulation and in an inflammatory environment differentiate into
effector cells. After antigen clearance some effector cells (SLECs) undergo
apoptosis while some effector cells (MPECs) go on to form the memory pool.
Duration of antigen exposure has consequences on effector function as long
exposure results in exhaustion with high apoptosis and little to no memory pool
formation. Adapted from Arens, R & Schoenberger, S. P. Plasticity in programing
of effector and memory CD8 T-­‐cell formation. Immunol. Rev. 235, 190-­‐205
(2010)
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 peripheral tissues.  This entry into peripheral tissues is mediated by an up 

regulation of the chemokine receptor CXCR3 (Groom and Luster, 2011).  It is 

believed that CD8 cells are recruited to the sites of infection by CXCL9 and 

CXCL10 expressed by epithelial cells that have been activated by CD4 effector 

cells which have arrived previously and secreted IFNγ in the area of infection 

(Bevan, 2004; Nakanishi et al., 2009).  Interestingly, after arriving at the site of 

infection in the periphery effector CD8 T-cells continue to undergo antigen-

specific interactions that drive further proliferation and cytokine release (McGill 

and Legge, 2009; Bedoui and Gebhardt, 2011).  This phenomenon appears to 

require the recruitment of monocyte-derived DCs which continue to present 

antigen and costimulation signals (Hufford et al., 2011). 

While CD8 T-cell recognition of cognate antigen and engagement of 

effector function at the site of infection are  very important aspects of immunity, 

they create a highly inflammatory environment, which could cause collateral 

damage to surrounding tissues.  Some interesting observations have been made 

lately that suggest that CD8 T-cells may self-regulate by producing the immune-

suppressive cytokine IL-10 to help limit this collateral damage.  CD8 T-cells have 

been shown to produce IL-10 at the site of infection, but IL-10+ CD8 T-cells 

disappear after the infection is controlled (Sun et al., 2009; Palmer et al., 2010; 

Trandem et al., 2011; Zhang and Bevan, 2011).  These IL-10+ CD8 T-cells at the 

site of infection are generally better killers with higher levels of granzyme B, 

IFNγ, and TNFα.  Additionally these IL-10+ CD8 T-cells do not appear to be a 
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different lineage of effector cell, just a transient reversible state that seems to 

wane after antigen is cleared (Trandem et al., 2011).  This IL-10 production is 

activated by a combination of IL-2 from CD4 effector cells and IL-27 from an 

innate cell, most likely a neutrophil.  Blimp has also been found to be essential 

for IL-10 induction (Sun et al., 2011).  Strong and continuous TCR/MAPK 

signaling may be important for this IL-10 production as many IL-10+ CD8 T-cells 

are also CD69+, suggesting recent TCR stimulation, and this ability to produce IL-

10 seems to revert after viral clearance (Trandem et al., 2011). 

After viral clearance the activated effector CD8 T-cell pool begins its 

contraction phase and formation of a stable memory pool.  Memory CD8 T-cells 

in general are superior to naïve CD8 T-cells.  As compared to naïve CD8 T-cells, 

memory CD8 T-cells are maintained at a higher frequency due to their previous 

clonal expansion, mediated by IL-7 and IL-15 with the help of CD4 cells, and can 

be maintained without the need for antigen (Surh and Sprent, 2008). Memory 

CD8 T-cells are also rapidly activated due to an open chromatin structure from 

previous activation and are no longer restricted to peripheral blood and 

secondary lymphoid tissues as they can enter peripheral tissues (Arens and 

Schoenberger, 2010). 

The CD8 memory cells that survive the contraction phase are divided into 

two general groups know as TEM and TCM.  These two groups are based on their 

phenotypic expression of CD62L and CCR7, two molecules that are required for 

entry into the high endothelial venule of the secondary lymphoid organs (Sallusto 



18

et al., 1999).  TEM cells are defined by their low expression of CD62L and CCR7 

and primarily reside in the peripheral tissues while TCM have high expression of 

these two molecules and are primarily found within, and circulating to, lymphoid 

organs, but both can be found in the blood and spleen (Sallusto et al., 1999; 

Masopust et al., 2001).  These two populations of memory cells also vary in their 

mediation of effector functions.  TEM cells have the ability to produce effector 

functions such as cytotoxicity much more rapidly than their TCM counterparts, but 

their ability to proliferate is markedly decreased as compared to TCM cells.  

Conversely, TCM have an increased ability to proliferate when they encounter 

their antigen as compared to TEM.  A complication to the field is the debate of 

whether TEM and TCM cells are distinct lineages or whether they can undergo 

inter-conversion.  Independent laboratories have shown conflicting results.  

When a physiological level of naïve precursors are primed during an infection it 

appears that there is seldom TEM to TCM conversion, but when there are a higher 

level of precursors TEM are able to convert to TCM (Wherry et al., 2003; Badovinac 

et al., 2007b; Sarkar et al., 2007).  Other groups also suggest that TCM cells are 

able to convert to TEM (Huster et al., 2006; Marzo et al., 2007). 

Both of these populations have protective capacity when re-exposed to 

pathogen, but the context of the infection is what determines their protective 

ability.  For instance, a peripheral VACV infection requires a TEM population for 

protection while a systemic LCMV infection requires TCM (Wherry et al., 2003; 

Bachmann et al., 2005). 
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D. CD8 T-cell Immunity to EBV 

EBV infects 95% of the world population and is essentially ubiquitous 

(Henle et al., 1969).  Infection occurs by salivary contact, and the virus 

establishes infection in cells within the oropharynx (Hislop and Sabbah, 2008).  

The initially infected cell type is unclear but it is probably an epithelial cell or B-

cell residing in the oropharynx.  Productive infection results in the establishment 

of latent infection and long term shedding of the virus and is established in B-

cells that have been transformed by the virus.  Latent viral proteins induce cell 

proliferation and replication of the episomal viral genome.  The genome is 

maintained in memory B-cells, which transit between blood and oropharyngeal 

tissue where the virus can reactivate to the lytic cycle and resume viral shedding 

and infect additional B-cells (Laichalk et al., 2002). 

EBV has been associated with many malignancies of B-cells and epithelial 

cells such as Burkett’s lymphoma, Hodgkin’s lymphoma, and nasopharyngeal 

carcinoma.  EBV has also been associated with post transplant lymph-

proliferative disorder (PTLD).  Each of these malignancies expresses a differing 

repertoire of viral proteins that could be used as targets for therapeutic 

intervention (Hislop and Sabbah, 2008). 

Primary infection can result in asymptomatic infection or AIM, which is 

characterized by pharyngitis and lymphadenopathy, but can range from mild 

symptoms to very severe disease with splenomegaly, hepatomegaly, and even 

result in death.  Within the adolescent and young adult population 25% of primary 



20

infections result in AIM, and, although it is rare, young children have been 

reported to come down with AIM (Chan et al., 2003; Crawford et al., 2006b).  The 

marked expansion of CD8 T-cells during AIM was at one point thought to be 

mediated by a superantigen, as a selective expansion of Vβ6.1-3 and Vβ7 CD8 

T-cells resembled that of a S. aureus enterotoxin B mediated expansions (Smith 

et al., 1993).  This extensive Vβ restricted CD8 T-cell activation has now been 

shown to be primarily antigen specific, as only certain clones within the Vβ6.1-3 

and Vβ7 families were expanded and shown to react to EBV antigens (Callan et 

al., 1996; Maini et al., 2000).  Additionally, the majority of the activated CD8 T-

cells were found to be antigen specific by tetramer and intra-cellular cytokine 

staining for IFNγ (Callan et al., 1998; Hoshino et al., 1999; Catalina et al., 2001; 

Hislop et al., 2002).  The CD8 T-cell response reacts to both lytic and latent 

epitopes at the height of the disease.  Initial studies limited their investigation to 

peptide epitopes from the EBNA3 family and LMP2 family and concluded that 

they accounted for the majority of the CD8 T-cell response (Steven et al., 1996), 

but we now know that they account for only about 3% of the response (Hislop et 

al., 2002).  The major contributors of epitopes are the lytic proteins (Steven et al., 

1997; Callan et al., 1998; Catalina et al., 2001; Hislop et al., 2002; Woodberry et 

al., 2005b; Cameron et al., 2006) with the immediate early proteins BZLF1 and 

BRLF1 encoding peptides across a range of HLA alleles.  There are also strong 

T-cell responses to the early proteins, such as BMLF1, but only to a subset of 
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these viral products that are expressed early during infection (Pudney et al., 

2005). 

Upon resolution of the acute symptoms the expanded CD8 T-cell effector 

pool shrinks with the contraction of EBV-specific responses (Catalina et al., 2001; 

Hadinoto et al., 2007).  An interesting but un-deciphered observation is the 

differing levels of contraction of the different antigen-specific populations within 

the expanded CD8 T-cell pool, with antigen-specific populations that had a high 

frequency completely retracting while low level populations survive (Hislop et al., 

2002).  For example EBV-YVL, an epitope derived from a lytic protein, is 

immune-dominant during primary infection yet retracts to near depletion in the 

resolved infection, while EBV-CLG, an epitope derived from the latent protein 

LMP2, is absent from primary infection yet dominates in convalescence. 

The activated EBV-specific CD8 T-cells show an effector phenotype with 

up-regulation of CD38 and CD45RO, while being in cycle and showing cytolytic 

capabilities (Callan et al., 2000; Catalina et al., 2002; Dunne et al., 2002; Hislop 

et al., 2002; Soares et al., 2004).  Again the lytic versus latent protein reactive 

CD8 T-cells show differing characteristics.  Lytic protein reactive CD8 T-cells 

show a down-regulation of co-stimulation markers CD27 and CD28 while latent 

protein reactive CD8 T-cells show intermediate expression of these molecules 

(Soares et al., 2004).  There is also a switch back to CD45RA expression on the 

lytic protein reactive CD8 T-cells while the latent protein reactive CD8 T-cells 

retain CD45RO expression (Catalina et al., 2002; Hislop et al., 2002).  It has also 
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been shown that lytic reactive cells are more resistant to apoptosis, are not in 

cycle, and can be easily reactivated (Dunne et al., 2002).  It is unclear why this 

occurs.  It may be that the CD8 T-cells reactive against lytic epitopes are a more 

central memory cell and have not seen antigen since the initial infection, while 

the CD8 T-cells recognizing the latent epitopes are continually exposed to 

antigen and are in more of an effector state. 

Most EBV studies are performed on samples that have come from the 

peripheral blood.  However, lytic replication and B-cell transformation will most 

likely occur at the oropharyngeal epithelial surfaces or nearby lymphoid tissues 

(Pegtel et al., 2004).  Therefore, tonsillar tissues will be particularly informative.  

During infection there appears to be a poor recruitment of lytic reactive cells into 

the tonsillar tissues whereas latent reactive cells appear to be in the tonsil at 

similar proportions as in the blood (Hislop et al., 2005).  After resolution of 

infection 20% of the CD8 T-cells in the tonsil are reactive to EBV and there 

appears to be a 10-fold increase in latent reactive cells and a 3-fold increase in 

lytic reactive cells as compared to the blood, with most expressing CD103, an 

integrin required for entry into mucosal epithelial tissues (Hislop et al., 2005; 

Woodberry et al., 2005a). 

The question still remains why do some people get AIM and others appear 

to be asymptomatic?  Some findings have suggested that polymorphisms in the 

IL-10 promoter result in an altered outcome of disease (Helminen et al., 1999).  

One allele that resulted in higher levels of IL-10 production was found to correlate 
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with EBV-SN adults and patients with asymptomatic disease.  The other allele, 

which results in lower IL-10 production, correlated with the occurRance of AIM 

and highly correlated with severe symptoms.  Our group has shown that 

heterologous immunity and CD8 T-cell cross-reactivity between IAV and EBV 

may mediate increased pathology (Clute et al., 2005). 

E.  Characteristics of IAV infection and HLA-A2 restricted immunodominant 

IAV-GIL response 

Most of the world’s population has been infected with IAV while very 

young and have virus-specific memory CD8 T-cells.  IAV-specific memory T-cells 

can comprise 0.06-1.6% of the CD8 T-cell pool found in the blood as determined 

by whole virus stimulation (Boon et al., 2002; He et al., 2003).  After primary 

infection an increase in the number of CD8 T-cells can be found in the peripheral 

blood between days 6-14 post infection returning to baseline 21-28 days after 

infection (Wright, 2001).  The CD8 T-cell response is known to target all the viral 

proteins, but the immunodominant response is mediated against matrix 1 (M1), 

the most abundant viral protein and most highly conserved (Gotch et al., 1987; 

Man et al., 1995; Jameson et al., 1998).  All individuals who are HLA-A2 positive 

present and mount an immunodominant response to IAV-M158-66 (IAV-GIL) 

(Gotch et al., 1987; Bednarek et al., 1991; Lehner et al., 1995; Lalvani et al., 

1997; Lawson et al., 2001; Pittet et al., 2001).  The frequency of IAV-GIL 

restricted cells averages out to about 0.1% of the CD8 T-cells in the blood 

(Lehner et al., 1995; Lalvani et al., 1997; Jameson et al., 1998; Pittet et al., 
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2001).  By making point mutations in the IAV-GIL peptide it was determined that 

the central portion of the peptide was important for its recognition by IAV-GIL 

specific T-cells.  When the crystal structure of IAV-GIL bound to HLA-A2 was 

solved it was evident that IAV-GIL was unusual, as the amino acid (aa) side 

chains did not face the TCR with the AA backbone facing the solvent (Madden et 

al., 1993).  Perhaps this structure would require the TCR to interact with more of 

the MHC rather then the generic solvent exposed backbone.  It is possible that 

this unique structure is responsible for the IAV-GIL TCR repertoire being 

restricted primarily by Vβ 19 Jβ 2.7 and Vα 27 Jα 42 while having an x-arginine-

serine-x (xRSx) CDR3β motif and a CDR3α that consists of multiple glycines 

(Moss et al., 1991; Lehner et al., 1995; Naumov et al., 1998; Lawson et al., 

2001).  The IAV-GIL/HLA-A2/TCR crystal structure revealed that the TCR bound 

to the pMHC in a unique fashion (Stewart-Jones et al., 2003).  As opposed to the 

previously solved crystal structures where TCR/pMHC interactions show 

diagonal binding of the TCR, the IAV-GIL reactive TCR binds perpendicular to 

the pMHC.  Additionally, the IAV-GIL specific CD8 TCR was found to 

predominantly use the CDR3β to cover the peptide rather than a 50:50 split with 

the CDR3α.  Despite the dominant selection for Vβ 19 and Vα 27 the repertoire 

can be described as polyclonal.  Many Vβ 19 clones exist based on nucleotide 

sequences that encode the xRSx motif (Naumov et al., 2006).  There are also 

clones that express different Jβ families resulting in variability in the length of the 

CDR3 loop (Naumov et al., 2006).  By maintaining a large clonal distribution the 
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immune system is better able to adapt to any changes in the properties of the 

ligand over time and thus decrease the chances of developing viral escape 

mutants (Naumov et al., 2006).  

2. Heterologous T-cell Immunity 

A. Definition of Heterologous Immunity 

Heterologous immunity can be broadly defined as the impact of immunity 

from a previous infection on the outcome of a subsequent unrelated infection.  

Thus each new infection we experience is potentially influenced by our past 

histories of infection. The concept was first described to help explain the 

differences observed in protective immunity and immunopathology in C57Bl/6 

mice that had been immunized with one virus and later challenged with another 

virus anywhere from 6 weeks to 2 years later (Selin et al., 1998; Chen et al., 

2001; 2003).  This heterologous immunity was ultimately found to be mediated by 

cross-reactive T-cells (Brehm et al., 2002; Kim et al., 2005; Cornberg et al., 

2010a; Nie et al., 2010)(Chen et. al. in press Plos Pathogen).  However, there 

may be other mechanisms contributing to heterologous immunity such as 

macrophage activation by bacterial infection creating a short lived protection from 

other bacteria (Mackaness, 1964).  There is also the concept of original antigenic 

sin, which suggests that previous exposure to one strain of IAV diverts the 

antibody response after exposure to a second IAV strain to epitopes that are 

shared between the two strains (Fazekas de St Groth and Webster, 1966). 
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Heterologous immunity may not be as effective as homologous immunity, 

but it can help to facilitate a much attenuated infection as measured by 

decreased viral loads and increased survival rates from lethal dose (Selin et al., 

1998; Chen et al., 2001; Nie et al., 2009).  Using an adoptive transfer of immune 

splenocytes it was originally observed that both CD4 and CD8 T-cells were 

required for mediating protective immunity in LCMV immune mice challenged 

with VACV (Selin et al., 1998).  However, a selective expansion of some, but not 

all, LCMV epitope-specific CD8 T-cells during a vaccinia virus infection 

suggested that cross-reactive CD8 T-cell responses were responsible (Chen et 

al., 2001; Kim et al., 2002).  It was later found that these cells are responsible for 

mediating protective heterologous immunity by the reduction of viral titers 

(Cornberg et al., 2010a). 

Heterologous immunity can be beneficial by mediating partial protective 

immunity, but it can also lead to detrimental immunity that can manifest itself as 

greatly enhanced immunopathology, higher viral loads, or increased morbidity 

and mortality (Selin et al., 1998; Walzl, 2000; Chen et al., 2003).  These 

differential effects likely occur through multiple different mechanisms.  One 

possible mechanism is the activation of lower avidity cross-reactive memory CD8 

T-cells which may hamper the development of a new cognate high avidity CD8 T-

cell response from naïve precursors (Selin et al., 2011).  A high avidity agonist 

(cognate peptide) TCR interaction induces full activation potential of a CD8 T-cell 

including proliferation, cytokine production, and cytotoxicity.  A low avidity partial 
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agonist (cross-reactive peptide) TCR interaction requires approximately 10-100 

fold more ligand to induce similar effector functions (Sloan-Lancaster and Allen, 

1996; Hemmer et al., 1998; Kersh et al., 1998; Ding et al., 1999; Zehn et al., 

2009).  Low avidity TCR interactions may also produce different cytokines, 

altered cytokine amounts, or could be less cytolytic or proliferative (Selin et al., 

2011).  Recent studies have found that CD8 T-cells responding to low affinity 

partial agonist peptides initially undergo clonal expansion at the same rate as 

CD8 T-cells undergoing activation by agonist interactions; however, the CD8 T-

cells responding to the partial agonist leave the lymph node sooner and lose 

sustained expansion, causing them to eventually be out competed by agonist 

reactive CD8 T-cells (Zehn et al., 2009).  These differences in reactivity to 

agonist and partial agonist peptide are most likely related to differences in TCR 

signal strength perhaps mediated by ITAM usage.  Developmental studies have 

shown that negative selection is influenced by the number and specificity of the 

TCR-CD3 ITAMS activation state, suggesting that the TCR is capable of scalable 

signaling (Holst et al., 2008).  

B.  Examples of heterologous immunity in a murine infection model 

One of the first models developed that identified heterologous immunity 

was LCMV-immune C57Bl/6 mice challenged with VACV.  From this 

experimental induction of heterologous immunity there was an observation of 

both partial immune protection, as measured by a 2-log reduction in viral titer, 

and also some induction of immunopathology, as exhibited by paniculitis of the 
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visceral fat (Yang et al., 1985; Selin et al., 1998).  VACV was shown to activate 

LCMV-specific memory CD8 T-cells specific to the LCMV epitope NP205 (Chen et 

al., 2001).  Based on these results the VACV proteome was screened for 

sequence homology to LCMV NP205, and peptide sequences from two viral 

proteins, e7r and a11r, were found (Welsh et al., 2004; Cornberg et al., 2006b; 

2010a).  Both VACV epitope-specific responses provide protection to VACV 

infection, but only one, a11r, was cross-reactive with LCMV NP205 (Cornberg et 

al., 2006b; Moutaftsi et al., 2009).  Interestingly, the expansion of LCMV NP205 

specific memory CD8 T-cells cells due to VACV infection occurred only half of 

the time, while the other half of the time other LCMV-specific responses were 

expanding, including GP34 and GP118 which are Kb restricted (Kim et al., 2005; 

Cornberg et al., 2010a).  In fact, there are multiple cross-reactive CD8 T cell 

responses in LCMV-immune mice infected with VACV. VACV infection 

sometimes expands LCMV NP205-specific T cells, but other times LCMV GP34- or 

GP118-specific T cells expand upon adoptive transfer of LCMV-immune 

splenocytes into naïve mice (Kim et al., 2005).  This variability in responses is not 

due to random stochastic events but instead reflects the private specificity of the 

LCMV-immune T cell repertoire in individual mice.  This was demonstrated by 

adoptive transfer of LCMV immune splenocytes into 3 recipients from the same 

donor, which was shown to generate the same specificity of outgrowth of LCMV 

epitope-specific T cells.  However, recipients of splenocytes from a different 

donor demonstrate a different specificity. These results indicate that the private 
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specificities of the LCMV memory T-cell population dictate which cross-reactive 

epitope would be recognized. 

This cross-reactivity between LCMV and VACV has proven to provide 

partial protective immunity.  Interestingly, many immunizing viruses provide 

partial protective immunity to VACV infection including LCMV, PV, IAV, and 

MCMV, and also the bacterium BCG (Selin et al., 1998; Chen et al., 2001; 2003; 

Mathurin et al., 2009).  It is proposed that the cross-reactive T-cells that are 

mediating this protection.  CD8 T-cell lines generated from LCMV-immune mice 

and stimulated with a11r peptide were transferred into naïve mice and 

challenged with VACV.  Transfer of cell lines which demonstrated the most 

functional cross-reactive response, as measured by EC50, a measure of 

functional avidity, to both LCMV and VACV epitopes, resulted in the greatest 

level of protective immunity based on VACV titers (Cornberg et al., 2010a).   

One aspect left to determine is what type of cross-reactive response leads 

to beneficial protective versus harmful detrimental heterologous immunity.  One 

potential mediator of these differences is differential production of cytokines to 

the cross-reactive ligands.  It has been shown that IFNγ can be responsible for 

both partial protection and immunopathology (Selin et al., 1998; Chen et al., 

2001).  Additionally, it is known that TNFα is responsible for mediating paniculitis 

but not partial protection in a LCMV-immune VACV infection model (Selin et al., 

2011).   
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In order to examine a more natural route of infection an intra-nasal 

infection model was used.  Mice were immunized with LCMV and subsequently 

challenged with VACV.  This model also showed partial protection by reduction in 

viral loads and altered immunopathology in the lung (Chen et al., 2001; 2003).  

Again, pathologies did vary from mouse to mouse consistent with the idea of 

private specificity. 

A second model of heterologous immunity in the murine system is that of 

LCMV immune mice challenged with the distantly related PV.  This model 

preferentially shows partial protection, as LCMV immune mice present with a log 

lower viral titer without significant immune-pathology (Selin et al., 1998; Brehm et 

al., 2002).  The heterologous immunity associated with this model has been 

shown to be mediated by cross-reactive CD8 T-cells, more specifically LCMV 

NP205 reactive cells recognizing PV NP205, as immunization with a LCMV NP205 

mutant virus did not mediate protection (Cornberg et al., 2006a)(Chen et. al. 

2012). 

The two NP205 cross-reactive peptides have 6 of 8 amino acids in common 

and only differ in the MHC anchor site (Brehm et al., 2002).  As seen in the 

overlaid crystal structure the overall conformations of the LCMV- NP205 and PV- 

NP205 peptides bound to H2Kb are similar.  The respective H2Kb binding clefts 

adopt similar conformations with the largest difference in a specific region of the 

α2-helix.  The presence of the tyrosine hydroxyl group in position 5 of the LCMV 

peptide, instead of the phenylalanine found in the PV peptide, accounts for this 
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perturbation of the α2-helix (Chen et. al. in press Plos Pathogens).  Most of the 

CD8 T-cells that are generated to one NP205 epitope will recognize the other but 

with differing binding affinities as suggested by differing tetramer staining 

patterns (Cornberg et al., 2006a).  Surprisingly, the TCR repertoire usage 

between these two epitope specific populations is quite different.  LCMV NP205 

almost exclusively uses Vβ 16 while PV NP205 uses Vβ 5 and Vβ 16, and the Vβ 

CDR3 region is very different from that usually seen in LCMV NP205 response 

(Cornberg et al., 2006a).  The perturbation of the α2-helix most likely accounts 

for the differing TCR repertoire.  The TCR repertoire that is available for cross-

reactive expansions is established during the first infection and is unique 

between individuals and accounts for private specificity (Cornberg et al., 2006a; 

Selin et al., 2011).  During the second infection a narrow subset of the antigen 

specific CD8 T-cell memory pool is stimulated to proliferate when exposed to the 

cross-reactive antigen (Haanen et al., 1999; Cornberg et al., 2006a).  Infections 

with these two heterologous viruses, encoding very similar cross-reactive 

epitopes, induce a high frequency of an oligo-clonal set of T-cell clones that 

dominate the CD8 T-cell response.  This results in a narrowing of the LCMV/PV 

NP205 restricted TCR repertoire (Cornberg et al., 2006a; Selin et al., 2011). 

Heterologous immunity and CD8 T-cell cross-reactivity are frequently not 

reciprocal.  For instance, mice that have been immunized with VACV and then 

re-challenged with LCMV, PV, IAV, or MCMV demonstrate no protective 
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immunity or increased immunopathology (Selin et al., 1998).  This may be due to 

differences in the private specificity of the TCR repertoire. 

These data taken together begin to show a pattern or network of cross-

reactive T-cell responses to the epitopes encoded by LCMV, PV, and VACV as 

shown in figure 1.3.  It is these networks of cross-reactivities that are the 

underlying mediators of heterologous immunity.  Additionally, it is also the private 

specificity of the response to this network of cross-reactivities that determines 

one’s fate when encountering a new infection (Kim et al., 2005; Cornberg et al., 

2010b). 

The final murine model of heterologous immunity I will discuss is that of a 

respiratory intra-nasal (i.n.) model of IAV-immune mice challenged with LCMV.  

In this model there are increased virus titers and greatly enhanced pathology.  

This infection is characterized by massive lung pathology demonstrating 

consolidating mononuclear pneumonia and bronchiolization instead of a mild 

lymphocytic pneumonitis commonly seen during intranasal LCMV infection (Chen 

et al., 2003).  It was found that the increased viral titers were dependent on IAV-

specific memory CD4 T-cells and the increased immunopathology was 

dependent on IAV-specific memory CD8 T-cells.  IAV-PB1703- and -PA224 specific 

cells were cross-reactive with LCMV-GP34 and –GP276 (Wlodarczyk et. Al. 

unpublished data).  These two populations were found to be the mediators of the 

pathology. IAV strains with these epitopes mutated, peptide tolerization of IAV-

PB1703- and -PA224 specific memory cells (Redmond et al., 2005), or anti-IFNγ 
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therapies alleviated the enhanced pathologies.  These two IAV epitopes, IAV-

PB1703- and -PA224, could potentially be thought of as “pathogenic” epitopes. 

These results strongly support the usefulness of studying heterologous immunity 

in order to develop new therapies to prevent viral immunopathogeniesis and 

improve vaccine design. 

C.  Heterologous immunity during human infection 

Ultimately we as scientists want our work to translate to a better 

understanding of human disease to help advance human health. However, 

studying disease directly in humans can be very difficult and at times frustrating, 

due to ethical considerations and patient non-compliance. 

The study of protective beneficial heterologous immunity in humans can 

be particularly difficult, as a protective effect would more than likely go unnoticed. 

However, the study of enhanced immunopathology during human infection is 

easier than studying protective immunity because of its overt nature.  If cross-

reactive T cell responses are harmful to the host, their influence on the outcome 

of an infection may become more evident, perhaps resulting in an altered 

disease state.  Some infections have very different pathological outcomes 

perhaps being mediated by differences in the private specificity of their TCR 

repertoire.  These infections provide strong hints as to where one could 

investigate the roles of heterologous immunity.  Some specific examples include 

viral infections such as EBV with the associated disease AIM where it is more 

severe in young adults than in younger children.  Another example is the 
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variation in pathology within HCV infected patients.  Some patients that acquire 

HCV infection are capable of clearing the infection.  Within others the disease 

progresses to a chronic state where the virus is never cleared, and pathologies 

range from asymptomatic to fulminant necrotizing hepatitis and even death.  

Another example of an infectious disease with differing symptoms is dengue 

virus (DENV) infection.  Interestingly, all of these infections have had CD8 T-cell 

cross-reactive responses associated with their course of disease, as I will 

discuss below. 

DENV is divided up into four distinct serotypes (DENV 1-4) (Halstead, 

1989; Morens, 1994) which serologically cross-react but do not provide 

neutralizing antibody.  DENV has also been shown to encode variable CD8 T-cell 

epitopes that cross-react between the sero-types (Spaulding et al., 1999; Zivny et 

al., 1999; Mongkolsapaya et al., 2003; Bashyam et al., 2006; Beaumier et al., 

2008).  DENV infection can cause a wide array of disease presentations ranging 

from asymptomatic upward to dengue fever, dengue hemorrhagic fever, and 

dengue shock syndrome.  The more severe forms of the disease occur when an 

individual is first infected with one serotype and then later infected with an 

alternate serotype.  This phenomenon was originally thought to be mediated by 

non-neutralizing antibodies binding virus and delivering the virus to Fc receptor 

bearing cells, a process known as antibody-dependent enhancement (Halstead, 

1989), but this may be only a portion of the phenomenon.  It is believed that 

heterologous immunity and cross-reactive CD8 T-cells are contributing to this 
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pathology as well (Mathew et al., 1998).  It has been found that cross-reactive 

memory CD8 T-cells responding to the second DENV infection have a higher 

avidity to the primary antigen than the secondary antigen.  These cross-reactive 

cells expand at the expense of the secondary cognate epitope-reactive cells and 

mediating pathology (Mongkolsapaya et al., 2003; Friberg et al., 2011).  One of 

the important implications of these studies is that there may be a problem 

designing a pan-dengue serotype vaccine since primary DENV infection 

ultimately results in an increased possibility for pathogenesis upon subsequent 

cross-serotype infection. 

A second example of CD8 T-cell cross-reactivity comes from the field of 

hepatitis C virus.  Many HCV sero-negative individuals have reactivity against the 

HCV HLA-A2 restricted epitope HCV-NS31073 and a portion of the CD8 T-cells 

reactive to this epitope cross-react with an IAV-epitope, IAV-NA231 (Wedemeyer 

et al., 2001). While most HCV patients with mild disease have a diverse CD8 T-

cell pool recognizing epitopes across the HCV proteome, two patients that 

developed a CD8 T-cell response that was highly focused to only this cross-

reactive HCV-NS31073 epitope developed a rare fulminant necrotizing hepatitis 

upon HCV infection (Urbani et al., 2005).  This example of human heterologous 

immunity and cross-reactive CD8 T-cells is similar to the murine system in that 

there appears to be private specificity as only a portion of patients developed this 

focused detrimental cross-reactive response and adverse immunopathology. 



37

Heterologous immunity also may play a role during EBV infection.  EBV is 

a gamma herpes virus that infects up to 95% of the population.  It falls into the 

category of viral infections that are more severe in young adults, who 

theoretically have  more experienced large complex T-cell memory populations 

due to previous viral exposures, than in young children.  EBV infection in younger 

children usually results in an asymptomatic response. Infection in young adults 

more often results in acute infectious mononucleosis (AIM), which can vary 

greatly in severity from mild pharyngitis and lymphadenopathy, to severe 

hepatomegaly, splenomegaly, and even death.  The main characteristic of AIM is 

an acute lymphocytosis consisting primarily of activated CD8 T-cells.  These cells 

are often referred to as atypical lymphocytes, which are cytotoxic lymphocytes 

(CTLs) responding to infected B-cells and epithelial cells of the oropharynx.  

There is no evidence of increased viral load in AIM patients as compared to 

asymptomatic patients (Silins et al., 2001).  Therefore the major pathological 

feature of AIM is a massive CD8 T-cell response.  Our group has shown that 

HLA-A2 positive AIM patients have an increase in IAV-GIL reactive CD8 T-cells 

and that these cells are cross-reactive with the EBV-GLC peptide in some 

individuals (Clute et al., 2005).  Recently, our group has found that IAV-GIL 

specific cells can also be cross-reactive to another lytic EBV epitope EBV-BRLF1 

(EBV-YVL) and, interestingly, that EBV-YVL and EBV-GLC responses also show 

intra-viral cross-reactivity (Cornberg et al., 2010b).  Additionally, we have 

observed a direct correlation between the frequency of cells cross-reactive 
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between IAV-GIL/EBV-GLC and the severity of AIM, while EBV viral load does 

not correlate (Aslan et. al. unpublished data) suggesting that this particular cross-

reactive response is important in mediating the severity of AIM (Fig 1.4).  IAV-

GIL and EBV-GLC have only three of nine amino acids in common, and IAV-GIL 

and EBV-YVL share only one amino acid.  Interestingly, the TCR repertoire of 

these cross-reactive cells in AIM patients is devoid of highly dominant clonotypes 

as compared to the non-cross-reactive repertoire and is in fact rather broad 

(Clute et al., 2010).  This may be explained by less similar epitopes not having 

any high affinity clones which might dominate and narrow the response as 

appears to happen with more similar cross-reactive epitopes as described earlier 

(Cornberg et al., 2006a).  

In addition to the cross-reactive responses seen between IAV-GIL and 

EBV-GLC and –YVL we have noted other cross-reactive responses between 

these two viruses that also occur, but less frequently.  These include inter-viral 

cross-reactive responses between EBV-GLC and influenza B virus (IBV) IBV-

NP85 (IBV-KLG) and also between IAV-GIL and EBV-EBNA3a596 (EBV-SVR), 

and also intra-viral cross-reactive responses between EBV-GLC and EBV-YVL 

and EBV-GLC also reacting to EBV-LMP2329 (EBV-LLW).  Again these cross-

reactive patterns begin to form networks of cross-reactivity between the antigen 

specific responses, and each individual will have a different cross-reactive 

pattern, based on the private specificity of their TCR repertoire.  Thus the private 

specificity of each individual’s TCR repertoire will determine their reaction to 
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these antigens and will ultimately decide the outcome of the infection (Kim et al., 

2005; Cornberg et al., 2010b) (Fig 1.5). 

These data taken together suggest that heterologous immunity and cross-

reactive CD8 T-cells may be a common event during human infections.  

Additionally, these data further help explain the variability in disease outcome 

that is seen between individuals infected with the same pathogen often 

previously attributed to host genetics, pathogen dose and physiological 

conditions of the host.   

On the other hand studying protective beneficial heterologous immunity in 

humans can be particularly difficult as a protective effect would more than likely 

go unnoticed.  To study this one must rely on epidemiological studies.  One such 

study found that BCG or live measles vaccine offered decreased mortality to 

rotaviral diarrhea and other infectious pneumonias in African children (Aaby et 

al., 1995; Stensballe et al., 2005; Farrington et al., 2009).  Interestingly, 

subsequent vaccination with killed diphtheria, pertussis, and tetanus vaccine 

(DPT) can reverse these beneficial effects and also increase mortality (Aaby et 

al., 2007; Benn et al., 2009). 

An additional case where heterologous immunity may be mediating 

protection is the case of Kenyan female sex workers who are consistently HIV 

sero-negative despite the fact that they are continuously exposed to the virus 

(Fowke et al., 1996).  Intriguingly, this protection waned if the individuals left the 

trade (Jennes et al., 2006).  This may indicate that constant exposure may be a
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 protective factor.  Interestingly, there has been a report of cross-reactive CD8 T-

cells amongst HIV sero-negative individuals between IAV-GIL (IAV-M158-66) and 

HIV-gp17-GAG77-85 (Acierno et al., 2003).  Perhaps this is what is mediating 

protection from HIV infection. 

D.  The use of humanized mice to study human infection 

Due to the limitations in conducting research on humans there is a need 

for the development of an animal model, which can mimic human immunity.   The 

model of humanized mice may be able to fill this gap.  Humanized mice are mice 

that have either had human genetic elements transgenicly inserted into their 

genome or mice that have received an implantation of human tissues.  The first 

model of human cell implantation in mice came in 1983 with the discovery of a 

severe combined immunodeficiency (SCID) mutation in CB17 mice.  Human 

hematopoietic cells were able to engraft in these mice, but engraftment levels 

were low primarily because of high levels of NK cells (Shultz et al., 2011).  Later, 

SCID mice were crossed to non-obese diabetic (NOD) mice and these mice 

exhibited enhanced engraftment due to decreased levels of NK cells (Shultz et 

al., 2007; 2011).  The next major step forward was the cross of NOD/SCID mice 

to IL2 receptor common gamma chain knockout (IL2rγnull) mice to create 

NOD/SCID IL2rγnull (NSG) mice.  These mice showed even greater engraftment 

of human hematopoietic cells and also development of a fully functional human 

immune system when engrafted with hematopoietic stem cells (HSC) (Shultz et 

al., 2007).  While there are other base models of humanized mice, this model 
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seems to provide the best engraftment.  Importantly, there are even more 

improvements being made onto this base model.  Two in particular are the 

development of mice expressing the human MHC molecule HLA-A2 and a model 

that incorporates fetal human tissues.  One of the caveats of the NSG model is 

the lack of a human MHC molecule for CD8 T-cell selection.  By crossing the 

NSG mice to an HLA-A2 transgenic mouse CD8 T-cell development is improved.  

Figure 1.6 summarizes the history of the development of the humanized mouse 

model.  Even more critical for the proper development of T-cells is the presence 

of human thymic tissue.  In the BLT (bone marrow, liver, and thymus) mouse 

model NSG-HLA-A2 transgenic mice have had fetal organs placed under the 

kidney capsule followed by injection of HSCs.  A major advantage to this last 

humanized mouse model is the development of a mucosal immune system and 

an extremely high level of engraftment. These BLT mice that show marked 

increases in hematopoietic engraftment and increased immune function are a 

good model to study human viral infections and in fact have been used to 

examine HIV, DENV, malaria, EBV, and Salmonella infections (Shultz et al., 

2007; Jaiswal et al., 2009; Libby et al., 2010; Shultz et al., 2010).  As a part of my 

thesis work I will be testing the resilience of these humanized mouse models 

upon infection with EBV and IAV to determine whether they are feasible to study 

human heterologous immunity. 
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Figure 1.6. History and family tree of the development of the humanized
mousemodels. Highlighted mice and arrows show the lineage of the models
used in this study. The initial SCID mouse was crossed to the NODmouse to
create NOD/SCID. NOD/SCID then crossed to IL2rγ-­‐/-­‐ to create the NSG mouse.
NSG mice were then wascrossed to HLA-­‐A2 transgenic mice. Figure adapted by
Mike Brehm and Levi Watkin from Shultz et. al. Nature Reviews Immunology
7:118-­‐130, 2007
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E. Thesis Objectives 

The gamma-herpes virus EBV infects ~95% of individuals globally, 

establishing a life-long infection (Henle et al., 1969). However, it is unknown why 

5-10% of adults remain EBV-SN, despite the fact that the virus infects the vast 

majority of the population and is actively shed at high titers even during chronic 

infection (Hadinoto et al., 2009).  Additionally, we have previously identified 

cross-reactive responses from IAV-GIL memory CD8 T-cells directed against two 

EBV epitopes EBV-GLC and EBV-YVL.  We hypothesize that heterologous 

immunity mediated by IAV-GIL specific memory CD8 T-cells cross-reactive 

against the EBV lytic epitopes EBV-GLC and EBV-YVL can protect EBV-SN 

adults from the establishment of productive EBV infection and sero-

conversion.  This thesis will be presented in two main parts: 

Chapter III: Demonstration and characterization of IAV-GIL memory CD8 T-cells 

cross-reactive to EBV lytic epitopes EBV-GLC and EBV-YVL in 

EBV-SN adults. 

a. What are the frequencies of the IAV-GIL cross-reactive 

population in the EBV-SN adults and how do they differ from 

EBV-SP adults? 

b. What are the effector functions that are responsible for 

mediating this protection? 

c. Are there any unique features of the TCR repertoire that could 

be mediating this protection? 
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Chapter IV: Characterization of viral infection in humanized mice for the 

establishment of a murine model to test protection from EBV 

infection mediated by heterologous immunity. 

a. Can these mice become infected with EBV and IAV? 

b. Can these mice mount an efficient immune response 

comparable to a human infection? 
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Chapter II: Materials and Methods 

Heterologous Immunity Within EBV-SN Adults 

EBV-SN Donors:  The 3 male and 2 female IAV-immune, EBV-SN 

patients ages 32-55 were consented volunteers.  Positive staining with 

HLA-A2-tetramers loaded with IAV-GIL was used as an indication that 

these individuals had been exposed to influenza A virus in the past.  For 

this study, a 50 mL blood sample was provided from patients.  All 5 

patients were seronegative for IgG antibodies to EBV EBNA and EBV viral 

capsid antigen.  EBV genomic DNA was not detected in peripheral blood 

using quantitative PCR performed as previously described (Hislop et al., 

2005).  The IRB committee at UMass Medical School approved this study. 

Blood preparation and bulk T-cell culture.  PBMC were isolated using 

Ficoll-paque plus (Amersham Bioscience, Uppsala, Sweden). CD8 cells 

were isolated using the Miltenyi Biotech (Auburn, CA) MACS system and 

were cultured using our published protocol (Clute et al., 2005).  Briefly, 

CD8 lymphocytes were plated at a 5:1 ratio with 1mM peptide-pulsed 

irradiated T2 cells (ATCC #CRL-1992), which were washed before 

combining with CD8 T-cells. They were used to re-stimulate the T-cell 

lines weekly.  Cell lines were given fresh media 3-4 days after stimulation. 

HLA-A2-restricted peptides and MHC-Class I tetramers and MHC-

Class I pentamers.  The following peptides were synthesized to >90% 

purity by Biosource (Camarillo, CA):  EBV-BMLF1280-288 (GLCTLVAML), 
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EBV-BRLF1109-117 (YVLDHLIVV), EBV-EBNA3A596-604 (SVRDRLARL), 

EBV-LMP2426-434 (CLGGLLTMV), IAV-M158-66 (GILGFVFTL), IBV-NP85-94 

(KLGEFYNQMM), measles virus M50-58 (FMYMSLLGV), and human 

endogenous tyrosinase369-377 (YMNGTMSQV).  A detailed description of 

the protocol used by the tetramer facility at UMass Medical School has 

been previously published (Catalina et al., 2001).  Tetramers, a tetrameric 

complex of pMHC molecules bound to streptiavidin, were assembled 

using the above peptide sequences and were conjugated to APC (Caltag, 

Burlingame, CA). MHC-Class I pentamers, a pentameric complex of 

pMHC molecules, were purchased from Proimmune (Oxford, UK).  Both 

tetramers and pentamers are reagents capable of detecting antigen 

specific CD8 T-cell populations. 

Extracellular/Intracellular staining and cell sorting.  Cells were plated 

at 106 per well and washed with FACS buffer (PBS, 2% FCS, 1% sodium 

azide).  Tetramers were incubated at room temperature for 20 min, 

followed by an additional 20 min incubation with monoclonal antibodies 

specific for CD3 (clone UCHT1 BD), CD4 (clone RPA-T4 BD), CD8 (clone 

HIT8a bio legend), or CD103 (clone Ber-ACT8 bio legend) according to 

the manufacturer’s protocols.  Samples were fixed in FixPerm (BD) and 

read on an LSRII (BD). 

 Cells stained for intracellular IFNγ and MIP1β were permeabilized with 

cytofix/cytoperm reagent (BD) and incubated 30 min at 4oC with anti-IFNγ 
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clone B27 (BD) and anti-MIP1β clone D211351.  Samples were read on a 

LSRII (Beckman Coulter, Fullerton, CA).  Cells for sorting were incubated 

with tetramer for 40 min at room temperature in 2% FCS/PBS buffer and 

were immediately isolated unfixed using the FACS Aria cell sorter 

(Beckman Coulter, Fullerton, CA). 

CDR3 clonotype analysis.  Clonotype analysis was performed as 

previously described (Cornberg et al., 2010a).  Briefly RNA was isolated 

from tetramer-sorted cells using the Qiagen Oligotex Direct mRNA mini kit 

(Qiagen, Valencia, CA) according to the manufacturer’s protocol. cDNA 

was synthesized using the SMART RACE cDNA amplification kit from 

Clontech using the manufacturer’s protocol.  In place of the kit provided 

power-script for cDNA synthesis, Superscript III was used.  To amplify the 

TCR-β and -α specific genes the Advantage2 system was used according 

to the manufacturer’s protocol (Clonetech, Mountain View, CA).  For the 5’ 

forward primer the Universal Primer Mix from the SMART RACE cDNA 

amplification kit was used. To amplify the genes of interest a 3’ reverse 

primer specific to the TCR-β or -α region was used as reported previously 

(Brochet et al., 2008; Lefranc et al., 2009).  The PCR amplification 

program used was provided in the manufacturer’s protocol.  The resulting 

PCR product of appropriate size (~500-700 bp) was then gel purified using 

NucleoSpin Extract II kit according to the manufacturer’s protocol 

(Clonetech, Mountain View, CA).  Purified PCR product was then ligated 



50

into the pCR4 vector from the TOPO TA cloning kit (Invitrogen, Carlsbad, 

CA) according to the manufacturer’s protocol and transformed into DH5α 

E. coli from One Shot TOP10 chemically competent cells (Invitrogen, 

Carlsbad, CA), using the manufacturer’s procedures.  Colonies were then 

selected and amplified overnight for sequencing.   Amplified colonies were 

then preserved in 20% glycerol on dry ice and sent to Genewiz for 

sequencing.  Resulting sequences were then aligned using sequencher 

(Gene Codes Co. Ann Arbor, MI) and analyzed using IMGT/V-quest 

(Brochet et al., 2008; Lefranc et al., 2009). 

51Chromium release assay.  Autologous BLCLs created with either wild 

type EBV or a BZLF1 KO virus (Feederle et al., 2000) were used as target 

cells.  Cells were either untreated or treated with PMA at 10ng/ml 

overnight to induce the EBV lytic cycle.  Targets were labeled with 100mCi 

51Cr per 106 cells and the assay was performed as previously described 

(Brehm et al., 2002). Target cells were washed and plated at 2.5x104 

cells/ml.  Effector cells from CD8 T-cell lines were plated with targets at 8 

different effector-to-target ratios as indicated using 2-fold serial dilutions.  

Supernatants were then harvested and read on a MicroBeta TriLux 

scintillation counter (Perkin Elmer).  Lytic units were determined as 

previously described (F Pross and Maroun, 1984).  Briefly, lytic units are 

defined as the number of cells needed to kill x% of target cells.  For this 

study we used 15% killing of our target cells. Additionally, a portion of 
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untreated BZLF1 KO target cells were pulsed with 100mM of peptide for 1 

hour at 37 oC and the assay was conducted as stated above. 

Statistical Analysis:  Statistical analysis was performed using Prism 

version 5 (Graphpad Software Inc.).  Individual tests are indicated in figure 

legends.  Tests include Student’s T test and Simpson’s diversity index 

D=Σn(n-1)/N(N-1) where n is the number of individual clonotypes and N is 

the number of unique clonotypes (Venturi et al., 2007). 

Humanized Mice for the Study of Human Viral Infection 

Mice.  Three mouse models were used during this study.  The first 

model was of NOD.Cg-PrkdcSCIDIL2rgtmlWjl/Sz (NSG) mice that were 

developed at the Jackson Laboratory by crossing an IL2rg null 

mutation to the NOD.Cg-PrkdcSCID mouse (Shultz et al., 2005).  For the 

second model NOD.Cg-PrkdcSCIDIL2rgtmlWjlTg(HLA-A2/H2-D/B2M) 

1Dvs/Sz (NSG-HLA-A2/HHD) mice were made by backcrossing the 

(HLA-A/H2-D/B2M) transgene (Pascolo et al., 1997) from the 

NOD/ShiLtDvs-Tg(HLA/H2-D/B2M)1Dvs/J strain (Takaki et al., 2006) 

onto the NSG background (Shultz et al., 2010).  In the third model, BLT 

mice were generated by implanting 1mm3 pieces of human fetal liver 

and thymus under the kidney capsule of NSG-HLA-A2/HHD mice.  

Mice used from all three models were female. 

Purification of Human HSCs and Xenogeneic Transplantation.  For 

NSG mice HLA-A2+ cord blood samples were enriched for CD34+ 



52

HSCs by using anti-hCD34 micro-beads (Miltenyi Biotech).  For NSG-

HLA-A2/HHD mice cord blood PBMCs were depleted of T-cells using 

anti-hCD3 micro-beads (Miltenyi Biotech) and CD34+ numbers were 

calculated from precursor frequencies.  Newborn (2-3 day old) mice 

were given total body irradiation of 150cGy followed by intra-cardiac 

injection of ~3x104 CD34+ HSCs.  Mice were allowed to reconstitute for 

12-20 weeks before infection. 

Virus Preparation and Infections.  The gastric carcinoma cell line 

AGS, harboring a GFP-expressing EBV, was induced to express virus 

as previously described (Borza and Hutt-Fletcher, 2002).  Briefly EBV-

harboring AGS cells were treated with 30ng per ml of 12-o-tetra-

decanoylphorbol-13-acetate and 2.5mM sodium butyrate overnight and 

allowed to secrete virus for 4 days. Supernatants were collected and 

filtered through 0.2mm filter and stored at -80oC.  Viral titrations were 

preformed as previously described (Strowig et al., 2009).  Briefly 1x104 

Raji cells were plated and infected with two-fold dilutions of virus stock.  

After two days Raji cells were examined for GFP expression by flow 

cytometry.  One unit was defined as the amount of virus needed to 

induce 50% maximal GFP expression.  IAV x31 was cultivated in 

embryonated chicken eggs (Szretter et al., 2006).  Mice were infected 

with 100 units of EBV intra-peritoneally (i.p.) and sacrificed 6-8 weeks 

after infection.  IAV infected mice were anesthetized with 
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methoxyflurane (Metafane™) and given 50 pfu in 50µL intra-nasally.  

Mice were then harvested 4 weeks after infection. 

Flow Cytometry Analysis.  Splenocytes were plated at a 

concentration of 1x106 cells/mL and washed and stained with 

monoclonal antibodies specific for hCD45 (clone HI30 BD), hCD3 

(clone UCHT1 BD), hCD4 (clone RPA-T4 BD), hCD8 (clone HIT8a bio 

legend), and HLA-DR (clone TU36 BD) according to the 

manufacturer’s protocols.  Samples were fixed in FixPerm (BD) and 

read on an LSRII (BD). 

Intracellular Cytokine Production.  Intracellular cytokine staining was 

performed as previously described (Shultz et al., 2010).  Briefly 

splenocytes were plated at a concentration of 1x106 cells/mL in RPMI-

1640 supplemented with 10% fetal calf serum (FCS), 10mg/mL 

brefeldin A, and 10 units/mL of IL-2.  Cells were either untreated or 

stimulated with 25ng phorbol 12-myristate 13-acetate and 10mg/mL of 

Ionomycin for 5 hours at 37oC and stained with monoclonal antibodies 

mentioned above and then permeabilized with Cytofix/Cytoperm (BD). 

Cells were then stained intracellularly with monoclonal antibodies 

specific to IFNγ (clone 4S.B3 ebiosciences) and granzyme B (clone 

16G6 E??ebiosciences).  Samples were read on an LSRII (BD). 

Histological Staining.  Hematoxylin/eosin (H&E) staining was 

performed on fixed sections of liver and lung tissue from EBV and IAV 
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infected animals, respectively.  Staining was performed using standard 

procedures. 
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Chapter III: Increased frequency of high avidity, lytic, cross-reactive CD8 T-

cells in EBV sero-negative adults 

The gamma-herpes virus Epstein-Barr virus (EBV) infects ~90% of 

individuals globally, establishing a life-long infection (Henle et al., 1969).  The 

clinical presentation of EBV infection can range from asymptomatic to severe, 

occasionally fatal, acute infectious mononucleosis  (AIM) (Crawford et al., 2006b; 

Luzuriaga and Sullivan, 2010).  There is also a strong causal relationship 

between EBV infection and malignancies, including carcinomas, and Burkitt’s 

lymphoma (Luzuriaga and Sullivan, 2010).  However, it is unknown why 5-10% of 

adults remain EBV-SN, despite the fact that the virus infects the vast majority of 

the population and is actively shed at high titers even during chronic infection 

(Hadinoto et al., 2009). Here, we show that EBV-SN HLA-A2+ adults possess 

cross-reactive IAV-GIL/EBV-GLC memory CD8 T-cells that show highly unique 

properties. These IAV-GIL cross-reactive cells preferentially expand, and 

produce cytokines to, EBV antigens with high functional avidity.  Additionally they 

are capable of lysing EBV-infected targets and show the potential to enter the 

mucosal epithelial tissue where infection is thought to initiate.  They also possess 

a TCR repertoire that differs by both organization and CDR3 usage from that in 

EBV-SP donors.  Our results imply that heterologous immunity may protect EBV-

SN adults against the establishment of productive EBV infection, and thus are 

the first demonstration of protective heterologous immunity between unrelated 

pathogens in sero-negative human subjects  
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Here we question whether heterologous immunity mediated by cross-

reactive CD8 T-cells can protect EBV-SN adults from EBV infection and sero-

conversion. In murine studies, heterologous immunity facilitated by cross-reactive 

CD8 T-cell responses can mediate either beneficial (protective immunity) or 

detrimental effects (e.g., enhanced lung and adipose immunopathology) (Selin et 

al., 1998; Chen et al., 2001; Welsh and Selin, 2002; Welsh et al., 2010).  In this 

study we sought to determine if EBV-SN adults had an IAV-GIL/EBV-GLC cross-

reactive T-cell response with the potential to protect against the establishment of 

productive infection with EBV. 

A.  Characterization of EBV-SN adult donors 

For our study we procured blood samples from 5 HLA-A2+ healthy adult 

donors that were documented to be EBV sero-negative.  Three of the 5 donors 

were male and 2 were female.  The 5 donors ranged in age from 32-55 years of 

age.  One male and one female donor tested positive for CMV IgG.  Due to the 

possibility that these individuals could be EBV-SN yet still be infected with EBV, 

quantitative PCR for EBV DNA was performed on CD8 depleted PBMCs and 

found to be negative (table 1).   

To determine frequencies of IAV-GIL, EBV-GLC, and EBV-YVL reactive 

CD8 T-cells ex vivo, tetramer staining was performed on sorted CD8 T-cells from 

peripheral blood mononuclear cells (PBMCs).  IAV-GIL frequencies ranged from 

0.07-1.2% of the CD8 T-cell pool, with a mean of 0.41+/-0.42% and an MFI of 

1164+/- 23 while EBV-GLC and EBV-YVL tetramer staining, if present, was very 
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dim (Fig 3.1).  Dim EBV-GLC tetramer staining frequencies ranged from 0-0.27% 

of the CD8 T-cell pool, with a mean of 0.13+/-0.11% and an MFI of 180+/- 135.  

Dim EBV-YVL tetramer staining frequencies ranged from 0-0.08%s of the CD8 T-

cell pool, with a mean of 0.05+/-0.03% with an MFI of 384+/-542 (table 1).  

Control tyrosinase tetramer staining exhibited no staining (Fig 3.1). 

B.  Increased frequencies of IAV-GIL tetramer positive cells detected in 

EBV-SN adults 

Immunological memory is the mechanism by which an individual is protected 

from secondary infection.  In heterologous immunity immunological memory 

developed in response to one pathogen has an impact on the response to a 

secondary unrelated pathogen.  Previously we have reported that IAV-GIL 

memory CD8 T-cells have the ability to recognize EBV-GLC and participate in 

mediating AIM (Clute et al., 2005).  Here we wanted to determine the frequency 

of IAV-GIL reactive cells in EBV-SN adults directly ex vivo.  To determine the 

frequencies of IAV-GIL reactive CD8 T-cells, tetramer staining was performed on 

sorted CD8 T-cells from donor PBMCs.  Within the EBV-SN adults there was a 

significant 7-fold higher frequency of IAV-GIL tetramer+ cells detected directly ex 

vivo as compared to EBV-SP donors (EBV-SN: 0.42 +/-0.4 vs. EBV-SP: 0.06 +/-

0.03: p=0.003) (Fig 3.1). 

This increase in frequency of IAV-GIL reactive cells, some of which have 

been previously shown to be cross-reactive to EBV-GLC, suggests that the EBV-
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Donors D01 D02 D03 D04 D05 

Age 37 43 32 55 55 
Sex M M M F F 

EBV EBNA IgG - - - - - 
EBV VCA IgM - - - - - 
EBV VCA IgG - - - - - 
EBV Genome 

PCR - - NP NP NP 
CMV IgG - - + - + 
IAV-GIL 0.5 0.07 1.19 0.14 0.17 

EBV-GLC 0.03 0 0.21 0.27 0.13 
EBV-YVL 0 0.05 0.04 0.08 0.08 

Table 3.1:  EBV-SN donor characterization.  EBV-SN donor 
sex, age, sero-status, and indicated tetramer frequencies within 
the CD8 T-cell pool determined ex vivo.  EBV genome PCR 
performed on both peripheral blood and throat wash.  NP Not 
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SN donors may have a heightened sensitivity to the early EBV antigen EBV-

GLC. 

C.  IAV-GIL tetramer positive cells preferentially expand when cultured in 

the presence of EBV antigens 

Now that we had observed that there is an increase in the precursor 

frequency of the potentially cross-reactive IAV-GIL restricted CD8 T-cells, we 

next wanted to start investigating their effector functions.  Even though there was 

a relatively high frequency of IAV-GIL restricted cells within EBV-SN donors, the 

corresponding number of cells that can be recovered ex vivo is too small to be 

able to conduct functional experiments.  In order to procure enough cells we 

used an in vitro system. 

Sorted CD8 T-cells were plated at a concentration of 2.5x105 cells per ml 

with irradiated T2 feeder cells at a concentration of 5x104 cells per ml.  Feeder 

cells were coated with 1µM of indicated HLA-A2 restricted peptides.   Media were 

replaced every 3-4 days and cells were re-stimulated every 7 days.  After 3 

stimulations cells had expanded enough to use in functional assays.   

Interestingly, when sorted CD8 cells from EBV-SN adults were cultured in 

the presence of EBV lytic peptides, EBV-GLC or –YVL, the same frequency of 

IAV-GIL tetramer+ cells expanded as compared to CD8 cells cultured in the 

presence of IAV-GIL.  Importantly, feeder cells only, an irrelevant control 

tyrosinase peptide, or an unrelated viral epitope CMV-pp65 (CMV-NLV), did not 

induce expansion of IAV-GIL specific cells (Fig 3.2).  Cross-reactive IAV-GIL
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 tetramer+ cells growing in EBV-GLC or -YVL peptide-stimulated cell lines of 

EBV-SP donors are frequently observed (Clute et al., 2005; 2010; Cornberg et 

al., 2010a) (Fig 3.2a,b).  However, the IAV-GIL-specific cells from EBV-SN 

adults expanded 7- and 4-fold greater than in EBV-GLC or -YVL peptide-

stimulated cell lines from EBV-SP donors, respectively (Fig 3.2c).  Notably, IAV-

GIL specific cells had a statistically significant higher fold expansion within EBV-

SP donors than EBV-SN donors when cultured in the presence of IAV-GIL.  This 

is an artifact of the calculation due to the significantly lower starting frequency of 

IAV-GIL reactive cells present ex vivo as compared to EBV-SN donors (Fig 

3.2c). 

D.  IAV-GIL memory cells are necessary for EBV antigen mediated 

expansion  

To show that this cross-reactive EBV induced expansion of IAV-GIL 

restricted CD8 T-cells is a special feature of EBV-SN adult donors, and not an 

inherent reactivity of all IAV-GIL CD8 T-cells, CD8 T-cells from immunologically 

naïve HLA-A2+ cord-blood PBMCs were examined.  CD8 T-cells were subjected 

to the same in vitro procedure as described above. 

Antigen experienced IAV-GIL-specific CD8 T-cells appeared to be 

required for EBV-GLC or -YVL induced expansion, as expansion did not arise 

from immunologically naïve (never exposed to IAV or EBV) HLA-A2+ cord-blood 

CD8 T-cells (Fig 3.3).  As previously reported, there was a small expansion of 

IAV-GIL reactive cells from the cord blood but only in cell lines grown in the 
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presence of IAV-GIL peptide and only in response to IAV-GIL peptide and not to 

EBV-GLC or –YVL (Lawson et al., 2001).  These results imply that this strong 

proliferation in response to EBV-GLC or -YVL peptide is not an inherent property 

of all IAV-GIL reactive T-cells, but is unique to the IAV-GIL memory population in 

these EBV-SN adults. 

E.  IAV-GIL tetramer positive cells are functionally cross-reactive as 

demonstrated by cytokine production 

An additional ability of CD8 T-cell effector function is the ability to secrete 

antiviral cytokines. To further elucidate the cross-reactive effector function of the 

IAV-GIL restricted CD8 T-cells expanded by EBV lytic epitopes from EBV-SN 

adult donors, an intracellular cytokine-staining (ICS) assay was performed. 

The majority of the IAV-GIL tetramer+ cells in the IAV-GIL, EBV-GLC and 

-YVL stimulated CD8 lines from EBV-SN adults produced IFNγ  and MIP1β in 

response to IAV-GIL in (ICS) assays (Fig 3.4a,b). Remarkably, as seen with 

donor 1 (Fig 3.4a), 37% of the IAV-GIL tetramer+ cells from the IAV-GIL peptide-

stimulated line produced IFNγ in response to EBV-GLC stimulation.  In the EBV-

GLC and -YVL peptide-stimulated lines an even greater proportion, 83-88% of 

the IAV-GIL tetramer+ cells produced IFNγ in response to EBV-GLC stimulation 

(Fig 3.4a).  EBV-YVL peptide-stimulated IAV-GIL tetramer+ cells produced IFNγ, 

in the IAV-GIL, EBV-GLC and -YVL peptide-stimulated lines, however it was a 

lower proportion of cells (Fig 3.4a).  This cross-reactivity was specific and 
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restricted to these 3 epitopes, as peptide stimulation with other viral and self-

epitopes did not induce cytokine production (Fig 3.4a,b). 

These data demonstrate that IAV-GIL-specific cells from EBV-SN adults 

expanded by cognate (IAV-GIL) or cross-reactive (EBV-GLC, or –YVL) peptides 

could produce antiviral cytokines in response to EBV epitopes and were 

functionally cross-reactive. These results also suggest that the IAV-GIL-specific 

TCR repertoires in the 3 cultures may differ, as different proportions of the 

population were able to produce IFNγ to the cross-reactive ligands, EBV-GLC 

and -YVL.  

F.  IAV-GIL restricted cells have high avidity to IAV-GIL and EBV-GLC 

An additional characteristic of memory CD8 T-cells is an enrichment of 

high functional avidity cells.  CD8 T-cells with higher avidity usually result in 

increased effector function (Alexander-Miller, 2005).  

To decipher the functional avidity of these cross-reactive responses, these 

cell lines were stimulated with 10-fold serial dilutions of IAV-GIL or EBV-GLC 

peptides, and IFNγ production was measured. An effective concentration that 

resulted in 50% maximal IFNγ production (EC50) was then calculated.  

Unexpectedly, the cognate IAV-GIL functional avidity as measured by EC50 in 

the IAV-GIL lines from the EBV-SN adults was 10-fold higher (10-8.5 ± 0.4M, n=3) 

than in the EBV-SP adult lines (10-7.3 ± 0.3M, n=4) (p=0.05) (Fig 3.5a).  The EBV-

GLC functional avidity as measured by EC50 in the EBV-GLC lines from the 

EBV-SN adults was nearly 100-fold higher (10-8.6±0.3M, n=3) as compared to the 
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EBV-SP adult lines (10-7.0±0.5M, n=4)(p=0.05) (fig 3.5a). It is surprising that CD8 

T-cells with this high functional avidity did not bind EBV-GLC or EBV-YVL 

tetramer (Fig 3.5b).  However, similar findings have been shown in which antigen 

specific cells from in vitro generated cell lines are capable of producing cytokines 

in response to peptide ligands, but are unable to bind tetramers (Spencer and 

Braciale, 2000; Sabatino et al., 2011).  There may be a possibility that the EBV-

GLC and –YVL peptides are being presented by an alternate MHC.  While 

unlikely due to their HLA-A2 restriction this could be tested for by blocking EBV-

GLC pMHC-TCR interactions with a HLA-A2 blocking antibody.  If the responses 

remained then that would indicate that there may be another mechanism 

involved.  This result would not rule out heterologous immunity and cross-

reactive memory CD8 T-cells as the mechanism mediating these events, as it is 

primarily the IAV-GIL tetramer positive cells that produce cytokine in response to 

EBV-GLC and –YVL peptides (Fig 3.4). 

These data show that EBV-SN adults have EBV-GLC reactive cells with 

significantly higher functional avidity to EBV-GLC than do EBV-SP individuals, 

perhaps selected for by low dose exposure to antigen.  These data suggest that 

these EBV-GLC reactive cells may be able to protect against the establishment 

of productive EBV infection. 

G.  Cross-reactive CD8 T-cells in EBV-SN adults lyse EBV-infected and 

peptide-coated autologous BLCL targets 
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The most important hallmark of CD8 T-cell function is the ability to kill 

tumor cells and virus infected cells.  To do this a CD8 T-cell must see its antigen 

in the context of a peptide-MHC (pMHC) complex.  CD8 T-cells must be 

educated to recognize the MHC of the individual during thymic development.  

CD8 T-cells that pass thymic selection then migrate to the periphery and join the 

naïve T-cell pool.  If a CD8 T-cell interacts with a MHC other than the ones on 

which it has been selected on the cells can exert their effector function in 

response to an alloantigen.  

In order to test whether these cross-reactive IAV-GIL-specific cells from 

these EBV-SN adults could kill EBV-infected targets, and to avoid any allo-

reaction, autologous B lympho-blastoid cell lines (BLCLs) were generated from 

two of the donors. The fact that we were able to generate BLCL is evidence that 

B-cells from EBV-SN individuals can be infected with EBV.  As a control, 

infecting autologous B cells with BZLF1 KO EBV created autologous BLCLs 

incapable of presenting lytic antigens.  BZLF1 is required for reactivation from 

latent to lytic cycle and leads to the expression of the lytic proteins BMLF1 and 

BRLF1 (Feederle et al., 2000).  By using these target cells and also HLA-A2-

restricted peptide-coated autologous BZLF1-KO BLCL targets we demonstrate 

that these cross-reactive CD8 T-cells are capable of killing EBV-infected targets 

in a lytic antigen-dependent manner. CD8 T cell lines grown in the presence of 

IAV-GIL, EBV-GLC, or -YVL peptides were able to lyse WT autologous BLCL 

targets but not the BZLF1 KO autologous BLCL targets (Fig 3.6a-b).  These CD8
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 lines also lysed IAV-GIL, EBV-GLC, or -YVL peptide-loaded targets but not 

control targets (Fig 3.6c).  This ability of EBV-SN adult CTL to kill EBV-infected 

and EBV-peptide-loaded targets suggests that these IAV-GIL cross-reactive cells 

have the potential to protect against EBV infection. 

H.  IAV-GIL tetramer positive cells show potential to enter the mucosal 

epithelium 

Recent findings have suggested that effector cells in the initial site of 

infection can mediate protection from the establishment of infection, particularly 

in the mucosa (Hansen et al., 2011).  While it was long thought that EBV only 

infects memory B-cells, recent findings have shown that EBV can also infect 

epithelial cells of the tonsillar mucosa (Arvin et al., 2007).  Here we wished to 

determine whether this unique population of IAV-GIL specific cells from EBV-SN 

adults have the ability to enter the mucosal epithelium.  

To determine whether these EBV-specific cross-reactive cells could 

migrate into the site of initial viral replication, such as the linguinal and tonsillar 

mucosal epithelial tissues, tetramer+ cells were stained directly ex vivo for the 

expression of CD103, an integrin molecule associated with migration into these 

tissues (Schön et al., 1999). There was a significant 4-fold higher frequency of 

CD103 expressing (6.3±1.3%, n=3) IAV-GIL tetramer+ cells in EBV-SN adults as 

compared to EBV-SP adults (1.5±1.0%, n=5) (Fig 3.7). Also, there was a 

significant 40-fold higher frequency of CD103-expressing dim EBV-GLC 

tetramer+ cells directly ex vivo in the EBV-SN adults at 10.1±2.2% (n=3), as
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 compared to only 0.25±0.21% (n=5) of the bright EBV-GLC tetramer+ cells in 

EBV-SP adults (Fig 3.7).  These data suggest that the IAV-GIL and the dim EBV-

GLC tetramer+ cells from EBV-SN adults have the appropriate antigen display to 

enter mucosal epithelial tissues.  Antigen exposure is required for CD103 

expression of CD8 T-cells (Lee et al., 2011).  This would suggest that these EBV-

GLC reactive cells that express CD103 could be seeing continuous low level 

antigen exposure. 

I.  IAV-GIL restricted CD8 T-cells within EBV-SN adult use a different TCR β 

chain 

Due to the unique features of the IAV-GIL restricted CD8 T-cells within 

EBV-SN adult donors we next questioned whether there were any unique 

features in the IAV-GIL-specific TCR repertoire that could explain why these 

EBV-SN adults might have protective immunity.  Figure 3.8a shows a 

representative example of the well characterized IAV-GIL-specific TCR repertoire 

in a middle-aged EBV-SP donor (Lehner et al., 1995; Lawson et al., 2001; 

Naumov et al., 2008; Clute et al., 2010).  This and other EBV-SP donors typically 

have a polyclonal response restricted by a public Vβ19 usage, primarily 

expressing xRSx complementarity determining region 3 (CDR3) motif (~90% of 

clonotypes), that predominantly utilizes Jβ2.7 (Naumov et al., 2006).  Within 

EBV-SN donors, Vβ usage by IAV-GIL tetramer+ cells in the lines grown in the 

presence of IAV-GIL, EBV-GLC or -YVL antigen primarily used Vβ19, as 

demonstrated by antibody staining (data not shown) and CDR3β sequencing (Fig
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 3.8, Table 3.2).  The dominant clonotype in donor 1, rather than containing the 

common xRSx motif used by EBV-SP donors, contained a non-canonical IVGG 

motif and used an uncommon Jβ2.1 instead of the common Jβ2.7 used by EBV-

SP adults (Fig 3.8).  Unique Vβ19 TCR repertoires were observed in the other 

EBV-SN donors (Table 3.2). 

J.  EBV-SN donors have a different IAV-GIL specific TCR repertoire 

organization 

In contrast to EBV-SP donors, the CDR3β repertoire within the IAV-GIL-

restricted response from the IAV-GIL, EBV-GLC and -YVL lines from the EBV-SN 

adults was less diverse and oligo-clonal.  To quantitate the diversity of the TCR 

repertoire Simpson’s diversity index was used (Venturi et al., 2007).  The Vβ19 

CDR3β repertoire of the IAV-GIL response was significantly less diverse within 

EBV-SN adults as compared to EBV-SP adults (Fig 3.9).  

K.  IAV-GIL restricted CD8 T-cells within EBV-SN adult use different Vα 

chain 

The Vα repertoire organization in the IAV-GIL restricted T-cell population 

of EBV-SP donors was similar to that of the Vβ repertoire, in that it was highly 

diverse with no dominating clonotypes (Clute et al., 2010).  The Vα repertoire 

predominantly used Vα27, with some additional usage of Vα10, 8.6, and 34, 

most often combined with Jα42.  However, like the Vβ repertoire organization, in 

all 3 representative EBV-SN adults, the Vα repertoire was not polyclonal but 

instead was dominated by one or two clonotypes (Fig 3.10).   Interestingly, the 
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VB family JB family CDR3 amino acid sequence # of copies VB family JB family CDR3 amino acid sequence # of copies VB family JB family CDR3 amino acid sequence # of copies

BV19 BJ2.5 CASSSRSGWTQYFGPG 50 BV19 BJ2.2 CASSSRSTGELFFGEGS 23 BV19 BJ2.7 CASSIRSAYEQYFGPGT 13
BV19 BJ2.7 CASSIRSSYEQYFGPG 11 BV19 BJ2.7 CASSVRSSYEQYFGPGT 14 BV19 BJ1.5 CASSIFSNQPQHFGDGT 10
BV19 BJ2.7 CASSIRSSYEQYFGPG 11 BV19 BJ2.7 CASSSRSAYEQYFGPGT 13 BV19 BJ1.2 CASSIGHYGYTFGSGT 10
BV19 BJ1.5 CASSYYSNQPQHFGDG 7 BV19 BJ1.5 CASSIPTVSVGAQHFGDGT 12 BV19 BJ1.1 CASSIRSVAEAFFGQGT 9
BV19 BJ2.7 CASSIRSAYEQYFGPG 3 BV19 BJ2.7 CASSTRSGYEQYFGPGT 9 BV19 BJ1.1 CASSIRSGNTEAFFGQGT 7
BV19 BJ2.7 CASSIRSAYEQYFGPG 3 BV19 BJ2.1 CASSIRSTHEQFFGPGT 6 BV19 BJ2.3 CASSIVHAADTQYFGPGT 6
BV19 BJ2.7 CASSIEQYYEQYFGPG 3 BV19 BJ2.2 CASSIRSTGELFFGEGS 4 BV19 BJ1.1 CASSIRSVAEAFFGQGT 6

BV19 BJ2.3 CASSTRSTDTQYFGPG 3 BV19 BJ2.1 CASSSRSGHEQFFGPGT 4 BV19 BJ1.5 CASSTLTGGHQPQHFGDGT 5

BV19 BJ2.7 CASSIRSSYEQYFGPG 2 BV19 BJ1.5 CASSFYSNQPQHFGDGT 3 BV19 BJ2.3 CASSVRSGDTQYFGPGT 4
BV19 BJ2.7 CASSIRSSYEQYFGPG 2 BV19 BJ2.7 CASSIRSAYEQYFGPGT 2 BV19 BJ2.7 CASSIRSSYEQYFGPGT 3
BV19 BJ2.3 CASSSRSTDTQYFGPG 2 BV19 BJ2.7 CASSTRSSYEQYFGPGT 2 BV19 BJ1.2 CASSQGFYGYTFGSGT 3
BV19 BJ2.3 CASETTSTDTQYFGPG 2 BV19 BJ2.7 CASSIRSAYEQYFGPGT 2 BV19 BJ2.7 CASSIRSAYEQYFGPGT 2
BV19 BJ1.4 CASSIRSTEKLFFGSG 2 BV19 BJ1.1 CASSIRAATEAFFGQGT 2 BV19 BJ2.1 CASSIFSAGNEQFFGPGT 2
BV19 BJ1.1 CASSIRSDAEAFFGQG 2 BV19 BJ2.7 CASSIRSAYEQYFGPGT 1 BV19 BJ2.1 CASSILGASYNEQFFGPGT 2
BV19 BJ1.1 CASTHSAISEAFFGQG 2 BV19 BJ2.7 CASSIRAGVEQYFGPGT 1 BV19 BJ1.5 CASSIRSGEPQHFGDGT 2
BV19 BJ2.7 CASSIRSSYEQYFGPG 1 BV19 BJ2.7 CASSVQEGPTYEQYFGPGT 1 BV19 BJ1.2 CASSMGSYGYTFGSGT 2
BV19 BJ2.7 CASSIRSSYEQYFGPG 1 BV19 BJ2.7 CASSLRASGEQYFGPGT 1 BV19 BJ1.1 CASSIHSGGNTEAFFGQGT 2

BV19 BJ2.7 CASSIRSAYEQYFGPG 1 BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.7 CASSIRSSYEQYFGPGT 1

BV19 BJ2.7 CASSIRSAYEQYFGPG 1 BV19 BJ2.7 CASSIRSAYEQYFGPGT 1 BV19 BJ2.7 CASSIRSSYEQYFGPGT 1
BV19 BJ2.7 CASSILASYEQYFGPG 1 BV19 BJ2.7 CASSPASGSYEQYFGPGT 1 BV19 BJ2.7 CASSIRSSYEQYFGPGT 1
BV19 BJ2.7 CASSTLASYEQYFGPG 1 BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.7 CASSIRSAYEQYFGPGT 1
BV19 BJ2.7 CASSTGTSWEQYFGPG 1 BV19 BJ2.3 CASSIRSTDTQYFGPGT 1 BV19 BJ2.7 CASSIRSSYEQYFGPGT 1
BV19 BJ2.5 CASSSCSGWTQYFGPG 1 BV19 BJ2.3 CASSIRSTDTQYFGPGT 1 BV19 BJ2.7 CASSTRSAYEQYFGPGT 1
BV19 BJ2.3 CASSIRSTDTQYFGPG 1 BV19 BJ2.3 CASSTRSADTQYFGPGT 1 BV19 BJ2.7 CASSARVGNEQYFGPGT 1
BV19 BJ2.3 CASSIFQTDTQYFGPG 1 BV19 BJ2.3 CASSTIAGGTDTQYFGPGT 1 BV19 BJ2.7 CASSMRSAYEQYFGPGT 1
BV19 BJ2.2 CASSITHTGELFFGEG 1 BV19 BJ2.2 CASSSRSAGELFFGEGS 1 BV19 BJ2.5 CASSTRSQETQYFGPGT 1
BV19 BJ2.1 CASSIRSGFEQFFGSG 1 BV19 BJ2.2 CASSRRSTGELFFGEGS 1 BV19 BJ2.5 CASSARSAETQYFGPGT 1
BV19 BJ2.1 CASSIDGGNEQFFGPG 1 BV19 BJ2.1 CASSIFGLNEQFFGPGT 1 BV19 BJ2.3 CASSIRSTDTQYFGPGT 1

BV19 BJ1.2 CASSNQGPVGYTFGSG 1 BV19 BJ2.1 CASSISAGPYNEQFFGPGT 1 BV19 BJ2.3 CASSALGAGGDTQYFGPGT 1

BV19 BJ1.1 CASSIGSATEAFFGQG 1 BV19 BJ2.1 CASSILGLHEQFFGPGT 1 BV19 BJ2.3 CASSMRSTDTQYFGPGT 1
Clonotypes :30 BV19 BJ2.1 CASSMGLVSFGQFFGPGT 1 BV19 BJ2.2 CASSTRAAGELFFGEGS 1

Sequences:120 120 BV19 BJ2.1 CASSIRSSYNEQFFGPGT 1 BV19 BJ2.1 CASSIRSSYNEQFFGPGT 1

BV19 BJ2.1 CASSIKSSYNEQFFGPGT 1 BV19 BJ2.1 CASSASGRYNEQFFGPGT 1
BV19 BJ1.6 CASSIGNSPLHFGNGT 1 BV19 BJ1.5 CASSVYSNQPQHFGDGT 1

VB family JB family CDR3 amino acid sequence # of copies BV19 BJ1.6 CASSASRGEVGSPLHFGNGT 1 BV19 BJ1.2 CASSIGLYGYTFGSGT 1

BV19 BJ2.7 CASSIRSSYEQYFGPGT 10 BV19 BJ1.5 CASSVGLGQPQHFGDGT 1 Clonotypes :35
BV19 BJ2.1 CASSGRAGVEQFFGPGT 8 BV19 BJ1.5 CASSIPTVSVGAQHFGDGT 1 Sequences :106 106
BV19 BJ2.1 CASSIGTGEQFFGPGT 7 BV19 BJ1.5 CASSPRSSEPQHFGDGT 1
BV19 BJ2.7 CASSIRAAYEQYFGPGT 5 BV19 BJ1.5 CASSPGQDYQPQHFGDGT 1

BV19 BJ2.3 CASSPRSGDTQYFGPGT 5 BV19 BJ1.3 CASSTPDRGTISGNTIYFGEGS 1

BV19 BJ2.7 CASSIRSSYEQYFGPGT 4 BV19 BJ1.2 CASSPPFVGGHGYTFGSGT 1
BV19 BJ2.7 CASSIRSSYEQYFGPGT 4 BV19 BJ1.1 CASSIPATEAFFGQGT 1
BV19 BJ2.7 CASSPRSSYEQYFGPGT 4 Clonotyes:42

BV19 BJ2.7 CASSIRSSYEQYFGPGT 3 Sequences:125 !"#
BV19 BJ2.7 CASSMRSSYEQYFGPGT 3
BV19 BJ2.2 CASSISSTGELFFGPGT 3
BV19 BJ2.7 CASSIRSSYEQYFGPGT 2 VB family JB family CDR3 amino acid sequence # of copies
BV19 BJ2.7 CASSIRSSYEQYFGPGT 2 BV19 BJ2.1 CASSIRAGYEQFFGPGT 40
BV19 BJ2.7 CASSIRSSYEQYFGPGT 2 BV19 BJ1.5 CASSIRSNQPQHFGDGT 16
BV19 BJ2.7 CASSIRSSYEQYFGPGT 2 BV19 BJ2.7 CASSIRSSYEQYFGPGT 6
BV19 BJ2.7 CASSTRSSYEQYFGPGT 2 BV19 BJ1.5 CASSRRSTQPQHFGDGT 6
BV19 BJ2.7 CASSSRSSYEQYFGPGT 2 BV19 BJ2.3 CASSTSSTDTQYFGPGT 5

BV19 BJ2.5 CASSSRSGETQYFGPGT 2 BV19 BJ2.2 CASSLRSTGELFFGEGS 5

BV19 BJ2.1 CASSGQAGVEQFFGPGT 2 BV19 BJ2.2 CASSQRSTGELFFGEGS 3
BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ1.3 CASSMRSGNTIYFGEGS 3
BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.7 CASSIRSGYEQYFGPGT 2
BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.7 CASSMRSSYEQYFGPGT 2
BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.3 CASSIRSTDTQYFGPGT 2

BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.2 CASSITGGEGGELFFGEGS 2

BV19 BJ2.7 CASSIRSSYEQYFGPGT 1 BV19 BJ2.7 CASSTRSTYEQYFGPGT 1
BV19 BJ2.7 CASSTRSSYEQYFGPGT 1 BV19 BJ2.7 CASSIYRLGYEQYFGPGT 1
BV19 BJ2.7 CASSLRSSYEQYFGPGT 1 BV19 BJ2.3 CASSTWSTDTQYFGPGT 1
BV19 BJ2.7 CASSIRTSYEQYFGPGT 1 BV19 BJ2.2 CASSGRSAGELFFGEGS 1
BV19 BJ2.7 CASSSRSAYEQYFGPGT 1 BV19 BJ2.2 CASSLRSTGELFFGEGS 1
BV19 BJ2.7 CASSSRASYEQYFGPGT 1 BV19 BJ1.5 CASSRRSTQPQHFGDGT 1
BV19 BJ2.5 CASSSRSGETQYFGPGT 1 Clonotypes :18
BV19 BJ2.3 CASSSRSTDTQYFGPGT 1 Sequences :98 $%
BV19 BJ2.3 CASSPRSGDTQYFGPGT 1
BV19 BJ2.3 CASSGRGTDTQYFGPGT 1
BV19 BJ2.3 CASSTRSTDTQYFGPGT 1
BV19 BJ2.3 CASSPRSGDTQYFGPGT 1
BV19 BJ2.1 CASSIRSSVEQFFGPGT 1
BV19 BJ2.1 CASSIRSGGEQFFGPGT 1
BV19 BJ1.2 CASSIGIYGYTFGPGT 1
BV19 BJ1.1 CASSIRDGVNTEAFFGPGT 1

Clonotypes :40
Sequences :93 !"

EBV-SP IAV-GIL Line VB Usage
Donor 4 (Codja D 012)

Donor 6 (Selli D 002)

Donor 3 (Fliam)

Donor 2 (Gilko)

Donor 1 (Gilan)

Table 3.2. Clonal composition of the IAV-­‐GIL TCR beta repertoire within
EBV-­‐SP adults. 5 EBV-­‐SP donors showing the distribution of IAV-­‐GIL reactive
clones showing V-­‐β family and J-­‐β family usage, CDR3 amino acid compositions,
and number of clones detected.
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Figure 3.9: Significantly decreased diversity of the IAV-GIL specific V� 
TCR repertoire in EBV-SN as compared to EBV-SP donors as 
demonstrated by using the Simpson Diversity Index.  For these studies 
IAV-GIL tetramer+ cells were sorted from each cell line, and subjected to 
SMART-Race PCR to identify individual clonotypes by sequencing the CDR3� 
as shown in tables 3.2 and 3.3. 
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dominant clonotypes contained either Vα27 or Jα42, but not both together as 

was usually observed in the EBV-SP.   Donor 1 T-cells used predominantly 

Vα27Jα10, whereas the other two donors used Jα42 but not Vα27 (Table 3.3). 

L.  Repertoire organization coincides with differential cytokine production 

When we compared both the Vα and β TCR repertoires of the IAV-GIL-

specific cells between the 3 different epitope stimulated lines from donor 1 it was 

evident that the most dominant clonotype was identical in each line (Fig 3.8, & 

3.10). However, the EBV-YVL line did have a second dominant Vα clonotype that 

was present only at low frequency in the other two cultures. The sub-dominant 

IAV-GIL-specific Vα and β clonotypes differed significantly between the cultures, 

suggesting that each epitope could select a different group of T-cell clones. 

These differences in TCR repertoire would be consistent with the different 

patterns of functional cytokine responses in each culture upon stimulation with 

the 3 different cross-reactive ligands (Fig 3.4).  

M.  Summary 

I have therefore demonstrated that the IAV-GIL-restricted memory pool in 

EBV-SN adults possessed a highly functional cross-reactive response that 

reacted against EBV lytic antigens.  These cross-reactive T-cell responses were 

shown by their ability to proliferate and secrete protective antiviral cytokines such 

as IFNγ and MIP-1β in response to EBV lytic antigens. Additionally, CD8 T-cells 

from these EBV-SN adults were able to kill EBV-infected targets in a lytic antigen 

dependent manner, and they also killed EBV lytic antigen peptide-loaded targets.
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VB family JB family CDR3 amino acid 
sequence # of copies VA family JA family CDR3 amino acid 

sequence # of copies

!"#$ !%&'# CASSIVGGNEQFF ($ )"&* )%#+ CADVRGTGGGNKLTF ,*
!"#$ !%&'* CASSIRSSYEQYF , )"&- )%(& CAANYGGSQGNLIF #,
!"#$ !%&'* CASSIRSAYEQYF # )"&* )%,* CAGDGSSNTGKLIF *
!"#$ !%&'* CASSFDGVYEQYF # )"#+ )%,# CVVSANNNARLMF *
!"#$ !%&', CASSARATDTQYF # )"#&'( )%,* CAVRLSNTGKLIF (
!"#$ !%&', CASSGRSADTQYF # )"#( )%#+ CAMREPRRGGGGNKLTF &
!"#$ !%&'& CASSMRSTRELFF # )"#, )%$ CAASTPPGTGGFKTIF &
!"#$ !%&'# CASSIIGGYEQFF # )"#* )%,# CATCRNNNARLMF &
!"#$ !%&'# CASSIVGGNEQFF # )"&* )%(& CAGEGGGSQGNLIF #
!"#$ !%&'# CAGSIVGGNEQFF # )"&* )%(& CAAGGSQGNLIF #
!"#$ !%&'# CASSIVGGNGQFF # )"&* )%,* CAGASGSSNTGKLIF #
!"#$ !%#'# CASSSHAGGNTEAFF # )"&* )%,* CAGAPGSSNTGKLIF #
!"#. !%&'* CASSLTGSTYEQYF # )"#&'# )%-& CVPPEAGGTSYGKLTF #

Clonotyes:13 Clonotyes:13
Sequences:63 !" Sequences:79 #$

VB family JB family CDR3 amino acid 
sequence # of copies VA family JA family CDR3 amino acid 

sequence # of copies

!"#$ !%#'( CASSIFGEKLFF 32 )"&/'& )%(& CILRDLTLGGSQGNLIF ,$
!"#$ !%&'* CASSIRSAYEQYF 12 )"&* )%(& CAGGGSQGNLIF .
!"*'& !%&'* CASSLVGTGPYEQYF 2 )"&- )%(& CAGNYGGSQGNLIF -

Clonotyes:3 )",/ )%(, CAVDPSYNNNDMRF (
Sequences:46 %! )"&* )%,* CAGARGSSNTGKLIF ,

)"#,'& )%(& CAENGGGGSQGNLIF ,
)",.'& )%&, CAYRGLFYNQGGKLIF &
)"#,'& )%(& CAASGGGSQGNLIF &
)"#&', )%(& CAMSGDGGSQGNLIF #

Clonotyes:9
Sequences:67 !#

VB family JB family CDR3 amino acid 
sequence # of copies VA family JA family CDR3 amino acid 

sequence # of copies

!"#$ !%&'# CASSIVGGNEQFF -# )"&* )%#+ CADVRGTGGGNKLTF ,-
!"#$ !%&'* CASSIRSSYEQYF - )"#&'( )%,* CAVRLSNTGKLIF /
!"#$ !%#'# CASSSHAGGNTEAFF ( )"- )%#. CAETTTDRGSTLGRLYF /
!"#$ !%#'- CASSWLSNQPQHF ( )"&- )%(& CAANYGGSQGNLIF ,

!"#$ !%&'# CAGSIVGGNEQFF ( )",.'& )%-& CAYAANAGGTSYGKLTF ,

!"#$ !%&'& CASSMRSTGELFF ( )"#,'& )%(& CAENIGGGSQGNLIF &
!"#$ !%&'# CASSTYSTNEQFF # )"&- )%(& CAANYGGSQGNLIF &
!"#$ !%&'& CASSLRSSGELFF # )",- )%(+ CAGQPGTYKYIF &
!"#$ !%&'& CASSTRSSGELFF # )"#+ )%,# CVVSANNNARLMF #
!"#$ !%&'- CASSIRGSETQYF # )"#&'( )%,* CAVRLSNTGKLIF #
!"#$ !%&'* CASSPRSGGEQYF # )"#,'# )%$ CAASTPPGTGGF #

Clonotyes:11 )"#,'& )%-+ CAASIGTSYDKVIF #
Sequences:77 ## )"&* )%,* CAGDGSSNTGKLIF #

)"&* )%,* CAGASGSSNTGKLIF #
)"- )%(- CAGTPPPGGGADGLTF #
)"$'& )%#+ CALSTGGGNKLTF #
0"# )%&, CALGDRYNQGGKLIF #

VB family JB family CDR3 amino acid 
sequence # of copies Clonotyes:17

!"#$ !%&'& CASSIRSTGELFF ,# Sequences:68 !&
!"#$ !%&'* CASSIRSSYEQYF -

Clonotyes:2
Sequences:36 "!

VA family JA family CDR3 amino acid 
sequence # of copies

)"&/'& )%(& CILRDLTLGGSQGNLIF &&
)",/ )%(, CAVDPSYNNNDMRF #(
)"&* )%,* CAGTHGSSNTGKLIF .
)"#&', )%(& CAMSGHGGSQGNLIF &
)"&* )%(& CAGGGSQGNLIF &

Clonotyes:5
Sequences:48 %&

EBV-SN EBV-GLC Line VB Usage EBV-SN EBV-GLC Line VA Usage

EBV-SN Donor 1 EBV-SN Donor 1 

EBV-SN Donor 2

EBV-SN Donor 2

EBV-SN IAV-GIL Line VB Usage EBV-SN IAV-GIL Line VA Usage
EBV-SN Donor 1 EBV-SN Donor 1 

EBV-SN Donor 2 EBV-SN Donor 2
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  These cells also showed the potential to enter the mucosal epithelium where 

EBV infection initially occurs, thus potentially mediating resistance to infection 

upon exposure to EBV. 

These data strongly suggest that the characteristics of an individual’s TCR 

repertoire determines the outcome of disease when exposed to a new pathogen. 

In EBV-SP donors the IAV-GIL-specific response, while being restricted to the 

Vβ19 family, is quite diverse without dominant clones and maintains a xRSx 

CDR3B motif (Lehner et al., 1995; Lawson et al., 2001; Naumov et al., 2006; 

2008; Clute et al., 2010).  In contrast, the EBV-SN adults also maintained a Vβ19 

family restriction, but had an oligo-clonal response dominated by one clonotype 

with unique CDR3β motifs, which may have a better structure to recognize both 

antigens with higher avidity and contribute to a potent antiviral response.  
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Chapter IV: The use of humanized mice to study human EBV and IAV 

infections 

Many experimental models of infection are set up in a murine system.  

Mice are relatively inexpensive, they are genetically malleable, and there are 

many reagents available for use in their study.  However, mice are not always 

susceptible to human pathogens, and also findings in mice do not necessarily 

transfer over to be relevant to human disease.  Therefore, a model system is 

needed that has the clinically relevant human tissues and also the flexibility of an 

animal model.  By using a humanized mouse system one would potentially be 

able to conduct clinically relevant studies using pathogens that infect humans in 

a less restrictive environment without putting patients at risk.  

To conclusively show that heterologous immunity is actively protecting 

EBV-SN adults from the establishment of a productive EBV infection, one would 

have to deliberately expose an individual to the virus.  Clearly this is not an 

acceptable risk and could endanger the health of an individual.  A humanized 

mouse model could allow one to address this question.   

There have been many models of humanized mice, as was discussed 

earlier in the introduction (Fig1.6).  Here, we will be discussing mice that have 

been engrafted with human hematopoietic stem cells.  In particular we will be 

examining NOD SCID Il2rg-/- mice.  Three different models were used.  First was 

a straight NOD SCID Il2rg-/- (NSG) that was reconstituted with human CD34+ 

hematopoietic stem cells.  These mice engraft fairly well yet lack human MHC, 
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eliminating the possibility of detecting clinically relevant antigen specific T-cells. 

Additionally the T-cells that develop in these mice are not educated on a human 

MHC.  This would result in a human T-cell pool that is educated on murine MHC.  

This generates many complications.  

 The second model was a NOD SCID il2γ-/- HLA-A2 (NSG-HLA-A2/HHD) 

transgenic mouse that was reconstituted with human CD34+ hematopoietic stem 

cells.  These mice have a human MHC which will allow the human T-cells to be 

educated on human MHC, however there are no human tissues such as the 

human thymus which is important for T-cell development and appropriate positive 

and negative selection.  This model assumes that human T-cells can migrate to 

the murine thymus and develop properly.   

The third model was a NOD SCID il2γ-/- HLA-A2 transgenic mouse that 

was reconstituted with human CD34+ hematopoietic stem cells from the fetal 

liver and also was implanted with fetal thymus and fetal liver (BLT mouse).  

These mice show the most promise.  They have human tissues for the T-cells to 

be educated on and also human MHC molecules systemically for the T-cells to 

recognize. 

Since EBV is known to only infect human B-cells and mucosal epithelial 

cells we must first determine whether these mice can be infected with EBV.  

Since these mice are reconstituted with a human immune system, and should 

have human B-cells, we hypothesized that these mice would develop an infection 

and a functional immune response to the virus.  To determine the establishment 
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of infection we will be looking for an immune response.  This will also show that 

these mice are capable of mounting an immune response to EBV.  Additionally 

we also have to determine whether these mice can develop memory to IAV.  

There are mouse-adapted strains of influenza that should ensure the infectibility 

of these mice.  However, we need to determine whether they can mount an 

immune response to the virus, resolve the infection and also generate a memory 

response. 

A.  Humanized mice demonstrate pathology from viral infection by weight 

loss. 

One indicator of the establishment of an active infection and immune 

response is the onset of weight loss.  In all three murine models (NSG, NSG-

HLA-A2/HHD, and BLT) mice infected intraperitoneally (i.p.) with EBV lost weight 

as compared to uninfected controls (Fig 4.1).  In the NSG model a virus dose of 

either 100U of EBV supernatant in 100 µL or 400U of EBV supernatant in 400µL 

resulted in weight loss. Additionally, control mice that did not receive donor cells, 

but had been infected with EBV did not lose weight.  These mice would have 

lacked B-cells, the primary EBV reservoir.  These results suggest that an 

infection has occurred and the cells necessary for infection by EBV must be 

present.  EBV infection resulted in a slow progression of weight loss with only 

~10% reduction in weight.  IAV infection on the other hand, showed a rapid 

weight loss of ~20%.  These differences are probably attributable to the 

difference in viral and immune kinetics between the two viruses.  IAV is known to 
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replicate rapidly while little is known about the rate of EBV replication, particularly 

early in infection as patients with AIM are thought to have been exposed 4-6 

weeks before presentation with symptoms (Luzuriaga and Sullivan, 2010). 

B.  Splenomegaly and T-cell expansions in viral infection 

A classic hallmark of a viral infection is the expansion of lymphocytes in 

response to the infection.  EBV in particular shows an expansion of activated 

CD8 T-cells.  To determine whether our three models of humanized mice are 

producing an effective immune response to EBV infection we sought to examine 

the expansion of lymphocytes within these mice.   

Figure 4.2a shows that in NSG mice there was an onset of splenomegaly 

at 7 weeks post infection with EBV.  Note the increase in physical size of the 

spleen from a representative from each group of mice.  Next we wanted to 

determine which cell types were responsible for this increase in spleen size.  

Monoclonal antibodies directed against human and murine CD45 were used to 

identify human cells within the splenocytes.  Additionally monoclonal antibodies 

specific for CD3, CD4, CD8, and either CD19 or CD20 were used to distinguish 

T-cells from B-cells and helper T-cells from cytotoxic T-cells.  Frequencies were 

then compared to cell numbers to determine population specific cell numbers.  

As shown in Fig 4.2b mice that were infected with EBV showed an increase in 

human lymphocytes, particularly T-cells.  These data again suggest that these 

three humanized mouse models were successfully infected with EBV and were 

mounting an immune response to the infection. 



87

 

Fi
gu

re
 4

.2
.  

H
um

an
iz

ed
 m

ic
e 

sh
ow

 a
n 

in
cr

ea
se

 in
 c

el
l n

um
be

rs
 a

nd
 s

pl
en

om
eg

ly
 in

 r
es

po
ns

e 
to

 v
ir

al
 in

fe
ct

io
n.

  
a)

 
H

um
an

iz
ed

 m
ic

e 
sh

ow
 a

n 
in

cr
ea

se
 in

 s
pl

ee
n 

si
ze

 u
po

n 
in

fe
ct

io
n 

w
ith

 E
B

V
.  

A
 s

pl
ee

n 
fr

om
 a

 N
SG

 m
ou

se
 ta

ke
n 

at
 7

 w
ee

ks
 

po
st

 in
fe

ct
io

n 
w

ith
 E

B
V

 s
ho

w
ed

 a
n 

in
cr

ea
se

 in
 o

ve
ra

ll 
si

ze
.  

N
SG

-H
LA

-A
2/

H
H

D
 m

ic
e 

sh
ow

ed
 a

 s
im

ila
r 

in
cr

ea
se

 in
 s

iz
e 

(n
ot

 s
ho

w
n)

.  
B

LT
 m

ic
e 

ha
d 

a 
la

rg
er

 in
cr

ea
se

 in
 s

pl
ee

n 
si

ze
 u

po
n 

EB
V

 in
fe

ct
io

n 
(n

ot
 s

ho
w

n)
.  

In
fe

ct
io

n 
w

ith
 I

A
V

-x
31

 
sh

ow
ed

 a
 d

ec
re

as
e 

in
 s

pl
ee

n 
si

ze
 o

n 
da

y 
28

 o
f 

in
fe

ct
io

n 
(n

ot
 s

ho
w

n)
. b

-d
) 

N
SG

, N
SG

-H
LA

-A
2/

H
H

D
, 

an
d 

B
LT

 m
ic

e 
de

m
on

st
ra

te
d 

an
 e

xp
an

si
on

 o
f h

um
an

 ly
m

ph
oc

yt
es

 u
po

n 
in

fe
ct

io
n 

w
ith

 E
B

V
 p

rim
ar

ily
 c

on
si

st
in

g 
of

 T
-c

el
l e

xp
an

si
on

s 
at

 7
 

w
ee

ks
 p

os
t i

nf
ec

tio
n.

 e
) B

LT
 m

ic
e 

in
fe

ct
ed

 w
ith

 IA
V

 sh
ow

ed
 a

 d
ec

re
as

e 
in

 h
um

an
 c

el
ls

 2
8 

da
ys

 p
os

t i
nf

ec
tio

n 
 



88

In contrast to EBV infection in the humanized mice, IAV infection results in a 

lymphopenic state within the mice.  Figure 4.2e shows that there was a general 

decrease in human cells within mice infected with 50 PFU of IAV x31.  This also 

resulted in overall lower T-cell numbers in infected mice.  Although we lack viral 

titers to say for certain it appears these mice were unable to control the infection, 

as these mice had lost 20% of their weight by day 28 and appeared moribund, 

requiring euthanasia. 

C.  Increased frequency of activated CD8 T-cells during infection 

During an immune response T-cells get activated and develop effector 

functions in order to control infection.  While gaining these functions they also 

develop phenotypic markers, which enable one to identify their generation.  To 

this end we sought to identify effector functions and phenotypes in the T-cells 

within the humanized mice infected with EBV and IAV. 

In figure 4.3a we have gated on live human CD3+ cells and then looked 

at various effector markers.  In addition, we also examined the frequencies of 

CD4 and CD8 cells within the T-cell pool.  During an infection there is an 

increase in the frequency of CD8 cells as compared to CD4 cells, resulting in a 

skewed ratio of CD4 to CD8 T-cells.  As shown in figure 4.3a, during the EBV 

infection there was a shift to an increased frequency of CD8 cells as compared to 

CD4 cells at 8 weeks post infection.  Additionally, there was also an increased 

frequency of cells expressing the effector marker HLA-DR, an increased level of 

granzyme-B+ cells, and an increase of antigen-experienced cells as



89

 



90

Figure 4.3.  Humanized mice show an increase in activated T-cells when 
infected. a) NSG mice either uninfected (left column) or infected with 100 U 
EBV IP (right column) at 7 weeks post infection.  Population gated on live 
human CD3+ cells.  CD8 cells show activation by inversion of CD4:CD8 ratios, 
increased expression of HLA-DR, granzyme B, and IFN� production when 
stimulated with PMA and Ionomycin. b) Day 28 post infection of BLT mice either 
uninfected or infected with 50 PFU IAV-x31 i.n.  The first and third graphs show 
the frequencies of CD8 cells gated on live human CD3+ cells from either the 
spleen or lung as indicated.  The second and fourth graphs show the 
frequencies of activated CD8 cells as measured by their lack of CD45RA 
expression within the spleen and lung as indicated. 
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measured by IFNγ staining in response to PMA stimulation.  Figure 4.3b shows 

an increase in the frequency of CD8 cells in IAV infected mice within the spleen 

and lung at day 28 post infection.  Additionally, there was an increase in the 

frequency of effector CD8 cells (CD45RA negative cells) within the spleen and 

lungs of IAV infected mice. 

To determine whether there was an active infection and evidence of 

immune-mediated pathology in these mice histological H and E staining was 

performed on histological sections of lungs and liver of these mice.  The top row 

of figure 4.4 shows a focal mononuclear lymphocytic infiltrate within the liver of 

EBV infected mice.  Mice infected with IAV also showed pathology.  Uninfected 

mice have clear open airways, whereas mice infected with IAV show enhanced 

pathology with pneumonic consolidation, hemorrhaging, and bronchiolization.  

These pathologies show us that there was an active infection with evidence of 

immune-mediated pathology occurring within these mice. 

D.  Summary 

From the evidence put forth in this thesis it appears that the humanized 

mice were indeed becoming infected with EBV and IAV.  The mice lost weight in 

response to infection, showed an increase in T-cell activation, and showed an 

increase in immune-mediated pathology.  While the IAV infected mice showed no 

increase in total cell numbers, presumably because of an uncontrolled infection, 

the EBV infected mice did show an increase in total cell number in the spleen.
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However, using our present models the quality of the response and similarity to 

human disease observed in the humanized mouse model are not optimum.  For 

the EBV infection it would be more desirable to see a larger CD8 T-cell response 

within the mice during infection.  For the IAV infection model it would be nice to 

see the mice be able to mount an immune response and clear the virus, but 

instead they succumb to the infection.  Thus, at this time we have not developed 

the IAV model to the point that we could test our hypothesis of IAV-GIL specific 

T-cell mediated protection from EBV infection.  These data are promising as the 

humanized mouse model is constantly improving.  Hopefully, with constant 

improvements being made there will be a model that will duplicate the human 

immune system more completely. 
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Chapter V: Discussion 

Previous reports of heterologous immunity during human infections have 

focused on detrimental heterologous immunity, resulting from an altered immune 

response leading to increased and altered immunopathology (Mathew et al., 

1998; Clute et al., 2005; Urbani et al., 2005).  It is much easier to identify and 

study overt pathology than to examine the role of heterologous protective 

immunity in human infections, as a person is unlikely to come to medical 

attention when they have an asymptomatic infection.  However, many infections 

have variable outcomes ranging from asymptomatic to severe pathology, even 

death.  These severe outcomes provide hints as to where one could investigate 

the role of heterologous immunity during human infection.  Some specific 

examples include viral infections such as EBV where AIM develops in young 

adults who have large complex memory populations, while younger children are 

relatively asymptomatic (Clute et al., 2005).  Another example is the variation in 

severity of hepatitis in HCV infected patients, or the variation in outcome from 

mild fever to severe dengue hemorrhagic fever upon DENV infection (Mathew et 

al., 1998; Urbani et al., 2005).  Interestingly, these infections have had T-cell 

cross-reactive responses associated with their disease outcome.  However, in 

this thesis I demonstrated a high frequency of highly functional EBV cross-

reactive IAV-specific memory CD8 T-cells in EBV-SN individuals.  I believe this 

could be, for the first time, a description of beneficial protective heterologous 

immunity in humans, where heterologous immunity could prevent the 
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establishment of a productive EBV infection.  These results also suggest that 

memory CD8 T-cells may be able to mediate sterilizing immunity and that an 

individual’s unique TCR repertoire determines his or her fate. 

We have demonstrated that the IAV-GIL-specific memory T-cell pool in 

EBV-SN adults possesses a highly cross-reactive response that reacts against 

EBV lytic antigens.  These cross-reactive responses are shown by the ability to 

proliferate and secrete protective, antiviral cytokines such as IFNγ and MIP-1β in 

response to EBV lytic antigens. Additionally, CD8 T-cells from these EBV-SN 

adults are able to kill EBV-infected targets in a lytic antigen-dependent manner, 

and they also kill EBV lytic antigen peptide-loaded targets.  These cells, by 

expressing CD103, also showed the potential to enter the mucosal epithelium 

where EBV infection initially occurs, thus potentially mediating resistance to 

infection upon exposure to EBV. 

These data strongly suggest that the characteristic of an individual’s TCR 

repertoire determines the outcome of disease when exposed to a new pathogen. 

In EBV-SP donors the IAV-GIL-specific response, while being restricted to the 

Vβ19 family, is quite diverse, often including over 200 TCR Vβ clonotypes, 

without dominant clones and maintains a xRSx CDR3β motif (Lehner et al., 1995; 

Clute et al., 2005; Naumov et al., 2006; 2008; Clute et al., 2010).  In contrast, the 

EBV-SN adults also maintain a Vβ19 family restriction, but have an oligo-clonal 

response dominated by one clonotype with unique CDR3β motifs that may be 

better structured to recognize both antigens with higher avidity and contribute to 
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a potent antiviral response.  Additionally, the IAV-GIL specific TCR repertoire 

from AIM patients exhibits similar properties of the EBV-SP donors in that their 

IAV-GIL specific TCR repertoire is broad and very diverse (Clute et al., 2010).  

We believe it is this difference in the organization of the IAV-GIL memory CD8 T-

cell repertoire that is responsible for protecting these EBV-SN donors from the 

establishment of a productive EBV infection. 

This body of work demonstrates that heterologous immunity has the 

potential to protect individuals from infection, and it appears that it is the memory 

CD8 T-cell repertoire that is responsible for the protection.  If we could 

understand how to manipulate or control the memory CD8 T-cell repertoire, we 

could design vaccination strategies that would select for high avidity cross-

reactive memory CD8 T-cells that could protect an individual from an infection 

that he or she had never encountered.  However, great care would have to be 

taken, as a T-cell repertoire with high avidity to an antigen most likely would be 

narrow and oligo-clonal.  This would leave open the possibility for a viral escape 

mutant, which would render the vaccination strategy obsolete such as has been 

described (Cornberg et al., 2006a).  The study by Cornberg et. al. used the 

model of PV-immune mice subsequently challenged with LCMV.  This model 

results in the cross-reactive activation and expansion of memory CD8 T-cells 

specific for a relatively similar epitope (6 of 8 amino acids in common) shared 

between the two viruses, NP205.  Upon subsequent infection there was a drastic 

narrowing of the NP205 specific memory CD8 T-cell TCR repertoire.  PV immune 
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mice were infected with LCMV clone 13, a strain of LCMV that causes persistent 

infection, and 8 months after LCMV challenge, after being put under pressure by 

NP205 reactive memory cells, a viral escape mutant emerged that showed a 

mutation within the NP205 epitope.  Thus, an artificially altered repertoire could 

allow for viral escape mutants. 

From the work presented in this thesis we have shown that the IAV-GIL 

specific response within EBV-SN donors is quite distinctive when compared to 

that of EBV-SP donors.  Although the EBV-SN donor group included only five 

individuals, the demographic characteristics of this group does not appear to 

differ from our EBV-SP donors.  The EBV-SN donor’s geographical locations 

were also varied ranging from Europe to the southwestern United States, 

showing there is no environmental bias.  Thus, there are no obvious unintended 

biases within the donor pool that might suggest a genetic or geographic 

component to explain the differences in their EBV infection rate. 

The observation of an increased frequency of IAV-GIL specific memory 

cells cross-reactive with EBV was the primary indication that there might be a 

unique cross-reactive response in these individuals.  This nearly ten-fold 

increase in IAV-GIL reactive memory cells suggested that this population might 

have been reactivated on more than one occasion.  However, there is no obvious 

reason why they should have been reactivated any more than EBV-SP donors by 

exposure to IAV.  Perhaps, it is due to frequent and recent encounters with the 
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cross-reactive antigen, EBV, in the absence of a diverse EBV-specific memory 

population. 

These IAV-GIL reactive cells from EBV-SN donors can proliferate in 

response to EBV lytic antigens EBV-GLC and EBV-YVL (Fig 3.2).  These data 

imply that cross-reactive IAV-GIL memory cells from EBV-SN donors can 

become activated and divide so as to increase the size of the effector pool 

reactive against EBV antigens and go on to participate in an immune response to 

EBV infection.  Importantly, a truly naïve population of CD8 T-cells from cord 

blood does not exhibit this phenomenon of IAV-GIL specific expansion when 

cultured with EBV lytic antigens. 

These IAV-GIL cross-reactive CD8 T-cells from the EBV-SN donors can 

exert the effector function of cytokine production when stimulated with EBV 

antigens (Fig 3.4).  This is important in mediating protection from infection, as 

cytokine production is one of the most important aspects of T-cell effector 

function as cytokines manipulate the environment on which they act, rendering it 

inhospitable to virus. 

After we saw that these IAV-GIL cross-reactive cells could produce 

cytokines we next naturally wanted to know if they had a similar avidity for IAV-

GIL and EBV-GLC.  If these cross-reactive IAV-GIL memory cells from EBV-SN 

donors had a difference in functional avidity as compared to EBV-SP donors this 

may account for their unique abilities to expand and produce cytokines to the 

extent they did when grown in the presence of EBV antigens.  Remarkably, the 
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IAV-GIL cross-reactive cells from EBV-SN donors had a 1 and 2 log higher 

functional avidity to IAV-GIL and EBV-GLC, respectively than T-cells from EBV-

SP subjects.  This high functional avidity to EBV antigens may be what enables 

these cross-reactive IAV-GIL specific memory cells to mediate protection against 

EBV, and in fact mediate sterilizing immunity.  Interestingly, two independent 

groups using two different models have shown that TEM CD8 T-cells can mediate 

sterilizing protection.  One showed that TEM CD8 T-cells were generated after 

immunization of mice with radiation-attenuated Plasmodium sporozites and that 

these TEM populations correlated with protection from Plasmodium re-challenge, 

preventing a chronic infection, while Plasmodium specific Ig levels did not 

correlate with protection (Schmidt et al., 2010).  The second group showed that a 

SIV vaccine that includes rhesus cytomegalovirus (RhCMV) vectors established 

persistent, high frequency, SIV-specific TEM responses at potential sites of SIV 

replication in rhesus macaques and controlled SIV infection early after mucosal 

challenge before it establishes a chronic infection (Hansen et al., 2011).  Taken 

together these results suggest that T-cell vaccines against chronic infections 

such as EBV, malaria, and HIV may be feasible if designed correctly. 

Curiously though the IAV-GIL cross-reactive cells, despite having high 

functional avidity to EBV-GLC, do not seem to bind tetramer (Fig 3.5).  Since 

TCR/pMHC affinities are ratio of on rates and off rates, it may be that this 

interaction has a very high on rate, which could be responsible for the increased 

functional avidity, while an equally high or higher off rate could be responsible for 
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the lack of tetramer staining.  Interestingly, there have been other reports of 

antigen-specific T-cells that do not bind tetramer while being able to exert 

effector functions.  One group showed that CD8 T-cells reactive to a 

subdominant IAV epitope could not bind its tetramer when grown in the presence 

of whole virus infected stimulators, but with continued in vitro stimulation 

ultimately gained enhanced effector functions and low levels of tetramer staining 

(Spencer and Braciale, 2000).  A second group, using a complex biophysical 2D-

binding assay, demonstrated that a polyclonal MOG35-55 restricted CD4 T-cell 

population contained cells with a large range of affinities.  Even though only 8% 

of the population stained with tetramer, over 60% were reactive as measured by 

the 2D-binding assay and thus ~70% of the tetramer negative cells were antigen 

specific as measured by 2D-binding assay (Sabatino et al., 2011).  Thus, the 

tetramer, though a useful tool for defining antigen-specific T-cells, may under 

estimate some populations of T-cells, particularly cross-reactive T-cells as cross-

reactive T-cells may have a different affinity or avidity for its cross-reactive 

ligands.  Additionally a cross-reactive cell may see its alternate ligand in a 

different orientation than its cognate ligand.  Any of these may contribute to the 

different activating profiles of a cross-reactive T-cell. 

In order for CD8 T-cells to eliminate virus from the infected host they 

usually need to kill virally infected cells.  That is exactly what we see in the case 

of EBV-SN donors (Fig 3.6).  Cross-reactive cell lines generated by growth in the 

presence of either cognate IAV-GIL peptide or cross-reactive EBV-GLC peptide 
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were capable of killing EBV infected autologous BLCLs in a lytic antigen 

dependent manner.  Again this is a hallmark of CD8 T-cell effector function and 

could be what is mediating protection from infection. 

If an effector CD8 T-cell cannot make it to the site of infection than its 

abilities to kill virus-infected cells are wasted.  EBV-SN subjects’ IAV-GIL specific 

cells and cells that dimly stained with EBV-GLC tetramer ex vivo showed a 

higher level of CD103 staining as compared to EBV-SP donors. CD103 is an 

integrin molecule that has been shown to be necessary for entry into mucosal 

epithelial tissues, which is where EBV infection is thought to initiate.  We believe 

these dim EBV-GLC tetramer staining cells to be the IAV-GIL/EBV-GLC cross-

reactive CD8 T-cells because when both IAV-GIL and EBV-GLC tetramers are 

used to stain the CD8 T-cells, the dim EBV-GLC cells disappear, suggesting that 

there is a competition for the tetramers (Fig 5.1).  Presumably, these cells no 

longer stain with tetramer after in vitro stimulation due to the exposure to large 

amounts of antigen, which can cause down regulation of the TCR complex.  

These CD103 data imply that IAV-GIL specific cells from EBV-SN donors have 

the potential to enter the mucosal areas where infection initially occurs. 

Finally, we showed that the TCR repertoire within the IAV-GIL reactive cells is 

oligo-clonal.  This differs from EBV-SP donors who have a highly diverse TCR 

repertoire in response to IAV-GIL (Naumov et al., 2006).  This oligo-clonal 

structure may be a result of the high functional avidity to the cross-reactive 

antigens IAV-GIL and EBV-GLC that this population demonstrates, as this clone 
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may have out competed others to dominate the IAV-GIL specific memory pool.  

This is also the first evidence that the TCR repertoire to a certain antigen can 

determine disease outcome in humans.  If the cross-reactive IAV-GIL specific 

TCR repertoire from AIM patients are compared to that of EBV-SN donors it 

becomes clear that there is a difference in organization.  This may be why the 

AIM patients get sick and the EBV-SN donors show protection.  It may be that in 

AIM patients the broad TCR repertoire has a lower avidity to the EBV antigens.  

This could cause a broad CD8 T-cell expansion and recruitment, as these rather 

ineffective cross-reactive memory CD8 T-cells try to clear EBV, while EBV-SN 

donors with their oligo-clonal repertoire and high functional avidity are able to 

exert effector functions rapidly completely eliminating EBV before it is able to 

establish a chronic infection.  It is important to determine the composition of the 

T-cell TCR repertoire to decipher the differences that can account for disease 

progression, or in this case, the mediators of protective immunity.  If we could 

develop the technology to manipulate the T-cell repertoire we could use it to 

steer the repertoire away from a disease-mediating repertoire, such as during 

AIM, towards a more protective repertoire such as is seen within these EBV-SN 

adults. 

Another possibility that could explain the difference between protective 

heterologous immunity, as shown in this thesis, and detrimental heterologous 

immunity, as in AIM patients, may be that the IAV-GIL cross-reactive cells in the 

EBV-SN do not show a high expansion when encountering either cognate IAV-
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GIL antigen or cross-reactive EBV-GLC, -YVL antigens (Fig 3.2c).  Perhaps it is 

the ability to exert effector functions, which is seen more in TEM cells, over that of 

proliferation, which is seen more in TCM cells, that is important in mediating 

protection from infection.  Interestingly, a recent study demonstrated that this is 

indeed the case (Jiang et al., 2012).  In the study by Jiang et. al., mice with a 

localized VACV skin infection were surgically attached to uninfected mice to form 

parabiotic mice.  This allowed for circulating TCM cells to migrate to the uninfected 

mouse while resident TEM cells would remain in the tissues.  After eight weeks of 

attachment mice were surgically separated and allowed 2 weeks to recover.  

Mice were then given a skin VACV infection and viral loads within the skin were 

examined at 6, 14, and 26 days after infection.  Remarkably, the mice that 

received the primary skin infection retainined the resident TEM cells, showed 

significantly lower viral titers than the parabiotic mouse that had only the 

circulating TCM cells.  The data generated from this study show us that it is the 

TEM cell population that is primarily responsible for protection from reinfection at 

epithelial surfaces, and not TCM, which are most likely more important in 

combating systemic infections such as during LCMV infection. 

Because of the oligo-clonal nature of the α and β TCR repertoire within the 

IAV-GIL populations, which show high cross-reactive effector functions, we 

believe that the dominating clonotype encodes a highly cross-reactive TCR.  

From this study we may have defined the first cross-reactive T-cell receptor.  As 

a bonus this cross-reactive TCR may be protective in nature.  Potentially this 
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TCR, due to its high functional avidity, could be used to generate transgenic 

human T-cells for the treatment of EBV related diseases such as post transplant 

lympho-proliferative disorder (Bollard et al., 2003). 

The initial events in EBV infection are controversial.  It is generally 

accepted that EBV can infect both B-cells and also epithelial cells (Arvin et al., 

2007).  Data have shown that EBV generated from a B-cell, rather than from an 

epithelial cell, is better at infecting epithelial cells and that EBV generated from 

an epithelial cell, rather than from a B-cell is better at infecting B-cells (Borza and 

Hutt-Fletcher, 2002).  This was performed by isolating virus from either Akata-

Burrkit lymphoma cells (B-cell) or from AGS gastric carcinoma cells (epithelial 

cells).  These viruses were then used to infect either epithelial cells or B-cells.  

Viral infection was measured by western blot for B-cells or by colony 

transformation on epithelial cells.  It was found that this difference in tropism was 

being mediated by the difference in the viral attachment complex.  Virus with B-

cell tropism had trimeric attachment complex consisting of viral proteins gH-gL-

gp42, while virus with epithelial tropism had a dimeric complex consisting of gH-

gL.  This suggests that there is a cycle of EBV replication and infection between 

these two cell types.  This also suggests that the virus may need to ramp itself up 

to make the switch in tropism.  Since there is no in vivo experimental model to 

conclusively show the early events of infection we are left to speculate that 

perhaps EBV needs to first ramp up its B-cell tropism by initially infecting 

epithelial cells and then make the jump over to the B-cell pool.  Therefore, we 
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can say that B-cells are the primary reservoir of virus in persistently infected 

individuals and it is likely, although not certain, that the first cell infected in vivo is 

an epithelial cell (Arvin et al., 2007). 

When we consider all of the data we can begin to form a comprehensive 

model of what may be happening within these EBV-SN donors.  During an EBV 

infection the virus first comes and infects the tonsilar epithelial tissues (Arvin et 

al., 2007).  The virus then multiplies and accumulates, eventually managing to 

establish infection within the B-cell pool and go on to either cause disease in the 

form of AIM, or quietly slip into latency (Fig 5.2).  We propose that when EBV-SN 

donors are exposed to the virus their unique cross-reactive IAV-GIL memory 

CD8 T-cells can enter, or are already present in, the tonsillar epithelium and 

immediately kill the initially infected epithelial cells not allowing for the 

establishment of productive infection (fig 5.3). 

When one considers the fact that EBV infects over 95% of the population (Henle 

et al., 1969), and at any given time an infected individual is shedding large 

quantities of viral genome, (Hadinoto et al., 2009) the chances of never being 

exposed to the virus are slim, yet EBV-SN middle aged adults exist.  Due to the 

obvious ethical considerations of challenging an individual with virus, studying 

EBV-SN adults is a useful alternative to assess whether these donors possess 

unique cross-reactive responses that have properties that may protect them from 

EBV infection or from the establishment of productive infection. This observation 

of potentially protective cross-reactive responses in EBV-SN adults
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Figure 5.2. Route of EBV infection. The route of EBV infection begins with viral
infection of the tonsiallar epithelial cells (blue) where the virus amplifies
ultimately to high enough levels to then infect the B-­‐cell pool (yellow) and
establish infection. Normally T-­‐cells (Red) are not yet specific to EBV antigens
and do not participate until later in infection.



108

 

Figure 5.3. Proposed model for protection from EBV infection. The route of
EBV infection begins with viral infection of the tonsiallar epithelial cells (blue);
however, in EBV-­‐SN adults the cross-­‐reactive T-­‐cell pool (shaded red) is capable
of killing infected cells not allowing the amplification of virus and the
establishment of productive infection within the B-­‐cell pool.
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leads to the questions of whether this is an example of protective heterologous 

immunity and how common is protective heterologous immunity in humans?  If 

cross-reactive responses are beneficial in humans they may easily go 

undetected.  It is much more likely that cross-reactive responses would be more 

likely detected in a pathological state, where they would be more evident.  

Interestingly, the HIV and HCV fields have noted that there appears to be natural 

resistance (as demonstrated by sero-negativity) to infection in certain high-risk 

groups that are continuously exposed to these viruses (Clerici et al., 1992; 

Langlade-Demoyen et al., 1994; Barcellini et al., 1995; Fowke et al., 1996; 

Mazzoli et al., 1997; Kamal et al., 2004; Roque-Cuéllar et al., 2011).  The HIV 

field has noted that a cohort of female sex workers from Kenya had a surprisingly 

high level of HIV sero-negativity considering the fact that they were a high-risk 

group.  Interestingly, if a worker left the trade for a time and then returned the 

worker would contract the virus.  This would suggest that the constant exposure 

to the virus was contributing to the immunity.  In fact, constant exposure may be 

the key, as the HCV studies mentioned above showed HCV specific responses in 

HCV sero-negative adults whose partner was HCV sero-positive.  Interestingly, 

cross-reactive epitopes have been identified in HCV and HIV sero-negative 

individuals (Wedemeyer et al., 2001; Acierno et al., 2003).  Perhaps this may be 

the mechanism by which these high-risk individuals are resisting infection.  

These findings would also suggest that if a cross-reactive memory T-cell 

population is protecting these individuals it requires continuous antigen exposure 
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to maintain a high enough frequency and to maintain a TEM phenotype so that it 

can immediately lyse virus infected cells. 

An alternative approach to further test our hypothesis of heterologous 

immunity mediated protection by cross-reactive IAV-GIL memory CD8 T-cells 

would be to perform a prospective study.  To do this we would enroll a large 

number of individuals into the study and follow them over a long period of time.  

A perfect sample population would be to enroll incoming college freshmen.  EBV 

sero-status would initially be evaluated at enrollment and monitored over their 

course of college studies.  This population is ideal as 75% of the individuals are 

EBV-SP, leaving 25% EBV-SN (Crawford et al., 2006a).  As these students are 

mixed together the EBV-SN students would become exposed to the virus.  For 

our study we would evaluate the same metrics used through out this thesis such 

as IAV-GIL frequencies ex vivo, the ability to respond to EBV antigens by 

cytokine production and cytotoxicity, and examine the IAV-GIL TCR repertoire 

structure.  We could then group the EBV-SN subjects by patterns of cross-

reactive strength and repertoire organization and potentially predict, based on 

data from this thesis, which individuals would sero-convert or remain EBV-SN. 

In human studies we are dependent on associations and correlations as 

demonstrated here.  The humanized mouse model would be an ideal alternative 

to directly address mechanistic questions.  It would offer the flexibility of a murine 

system with the relevance of a human immune system.  The humanized mouse 

system as it stands now allows for infection with the viruses, IAV and EBV, that 
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we need to use to study the protective role of IAV memory against EBV infection, 

but in our hands the immune response that is generated is not quite up to the 

physiological standards that need to be met.  For our studies we would need to 

be able to generate a CD8 T-cell epitope specific response.  Other groups have 

demonstrated EBV infection within the humanized mouse system using the same 

models we have used and generated an epitope specific response.  However, in 

their systems they used a much higher dose of virus, which most likely accounts 

for the difference (Melkus et al., 2006; Yajima et al., 2008; Shultz et al., 2010).  

Additionally other infection systems have been developed in these humanized 

mouse models including HIV, DENV, Malaria, and Salmonella typhi.  One aspect 

that will be difficult to overcome will be the establishment of IAV memory and to 

get antigen specific cells with a correct TCR repertoire, especially with the murine 

MHC still present in the mice.  As shown above the humanized mice were not 

able to control IAV and ultimately died even at low doses with a low virulence 

IAV-strain.  While not included in this thesis, prior immunization with the peptide, 

IAV-GIL in Freud’s complete adjuvant was not enough to protect the mice from 

IAV x31 challenge.  One possible reason that the mice used in these studies 

succumbed to IAV is that our particular HLA-A2 transgenic mouse strains are 

known to be poor presenters of HLA-A2 on their cell surfaces.  This may also 

help explain why we have difficulty developing HLA-A2 restricted responses.  On 

the other hand infection with an avirulent non-mouse adapted strain was 

attempted but that elicited no response suggesting there was no infection.  As of 
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now we cannot use the humanized mouse model of infection to test our 

hypothesis of IAV-GIL mediated protection from EBV infection.  However, there 

have been rapid advances in the field of humanized mice as of late.  One such 

advance is the development of NSG mice with the transgenic expression of 

membrane-bound human stem cell factor (SCF) which results in HSC 

engraftment without the need for irradiation (Brehm et al., 2012).  I am confident 

that soon we will be able to test out our theories in a humanized mouse model. 
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