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Abstract 

Skeletal muscle is a complicated and heterogeneous striated muscle tissue that serves 

critical mechanical and metabolic functions in the organism. The process of generating 

skeletal muscle, myogenesis, is elaborately coordinated by members of the protein kinase 

family, which transmit diverse signals initiated by extracellular stimuli to myogenic 

transcriptional hierarchy in muscle cells. Mitogen-activated protein kinases (MAPKs) 

including p38 MAPK, c-Jun N terminal kinase (JNK) and extracellular signal-regulated 

protein kinase (ERK) are components of serine/threonine protein kinase cascades that 

play important roles in skeletal muscle differentiation. The exploration of MAPK 

upstream kinases identified mitogen activated protein kinase kinase kinase kinase 4 

(MAP4K4), a serine/threonine protein kinase that modulates p38 MAPK, JNK and ERK 

activities in multiple cell lines. Our lab further discovered that Map4k4 regulates 

peroxisome proliferator-activated receptor γ (PPARγ) translation in cultured adipocytes 

through inactivating mammalian target of rapamycin (mTOR), which controls skeletal 

muscle differentiation and hypotrophy in kinase-dependent and -independent manners. 

These findings suggest potential involvement of Map4k4 in skeletal myogenesis.  

Therefore, for the first part of my thesis, I characterize the role of Map4k4 in skeletal 

muscle differentiation in cultured muscle cells. Here I show that Map4k4 functions as a 

myogenic suppressor mainly at the early stage of skeletal myogenesis with a moderate 

effect on myoblast fusion during late-stage muscle differentiation. In agreement, Map4k4 

expression and protein kinase activity are declined with myogenic differentiation. The 
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inhibitory effect of Map4k4 on skeletal myogenesis requires its kinase activity. 

Surprisingly, none of the identified Map4k4 downstream effectors including p38 MAPK, 

JNK and ERK is involved in the Map4k4-mediated myogenic differentiation. Instead, 

expression of myogenic regulatory factor Myf5, a positive mediator of skeletal muscle 

differentiation is transiently regulated by Map4k4 to partially control skeletal myogenesis. 

Mechanisms by which Map4k4 modulates Myf5 amount have yet to be determined.  

In the second part of my thesis, I assess the relationship between Map4k4 and IGF-

mediated signaling pathways. Although siRNA-mediated silencing of Map4k4 results in 

markedly enhanced myotube formation that is identical to the IGF-induced muscle 

hypertrophic phenotype, and Map4k4 regulates IGF/Akt signaling downstream effector 

mTOR in cultured adipocytes, Map4k4 appears not to be involved in the IGF-mediated 

ERK1/2 signaling axis and the IGF-mediated Akt signaling axis in C2C12 myoblasts. 

Furthermore, Map4k4 does not affect endogenous Akt signaling or mTOR activity during 

C2C12 myogenic differentiation.    

The results presented here not only identify Map4k4 as a novel suppressor of skeletal 

muscle differentiation, but also add to our knowledge of Map4k4 action on multiple 

signaling pathways in muscle cells during skeletal myogenesis. The effects that Map4k4 

exerts on myoblast differentiation, fusion and Myf5 expression implicate Map4k4 as a 

potential drug target for muscle mass growth, skeletal muscle regeneration and muscular 

dystrophy.       
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CHAPTER I: Introduction 

Myogenesis 

Skeletal muscle is a striated muscle tissue with complicated and heterogeneous features 

that serves multiple critical functions in the organism. Vertebrate skeletal muscle of the 

trunk and limbs originates from the somites, which are mesodermal structures that are 

located on either side of the neural tube in vertebrate embryos (201). In response to the 

signals from distinct environmental cues, somites differentiate and subdivide into two 

compartments, the dorsal dermomyotome and the ventral sclerotome. Myogenic 

precursors in the dermomyotome subsequently give rise to myotomes, which are 

responsible for the formation of the trunk and deep back muscles (130). Meanwhile, 

some of the cells from the lateral edge of the dermomyotome undergo epithelial-

mesenchymal transition and delaminate and migrate to the limb buds, where they give 

rise to limb musculature following sequential steps including myoblast specification, 

myocyte differentiation and fusion, and mature myofiber formation (50, 76).  

During murine skeletal muscle development, myoblasts are derived from two distinct 

progenitor populations and contribute to two phases of myogenesis (121). The first wave 

of mononucleated myocyte fusion into multinucleated myofibers occurs at approximately 

embryonic day 11 (E11) and is defined as primary or embryonic myogenesis, in which 

basic muscle patterning occurs. The secondary, or fetal myogenesis that occurs between 

E14.5 and E17.5 is characterized by fusion of fetal myocytes with each other, or their 

alignment and fusion with the scaffold-like primary myotubes to form secondary 
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myofibers (177). At the end of this phase, each myofiber is coated by basal lamina, 

underneath which some muscle progenitors termed satellite cells are located. Satellite 

cells normally remain quiescent in adult muscles, but they can be activated upon injury 

and aid in muscle regeneration. Satellite cell-mediated muscle regeneration is highly 

similar to developmental myogenesis, as evidenced by common transcription factors and 

molecular signals that modulate these scenarios (260, 299).  

Myogenic transcription factors 

Paired-homeobox transcription factors  

Myogenesis is elaborately controlled by intrinsic genetic hierarchies of myogenic 

transcription factors. During mouse muscle development, the precursor cells in the 

dermomyotome express paired-homeobox transcription factors pax3 and pax7, with 

preferential expression of pax3 in the dosalmedial and ventrolateral lips, and pax7 in the 

central region where satellite cells originate (101, 135). Of note, only pax3 is detected in 

the migrating cells that enter the limb bud. To support this observation, Splotch mice with 

a pax3 loss-of-function mutation fail to develop limb muscles, and no pax3-positive cells 

are detected in the limb, indicating a lack of progenitor migration to the site (66). 

Consistently, pax3-deleted mice lose all of their embryonic myofibers (121), further 

supporting that pax3 is required for normal skeletal muscle development. In contrast, 

pax7 is dispensable for embryonic or fetal myogenesis because pax7-/- mice do not 

display skeletal muscle formation defects (243). Instead, a complete absence of satellite 

cells is observed in the mutant mice (228, 243). However, Hutcheson et al. demonstrated 
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an essential role for pax7 in fetal myogenesis by ablating pax7-expressing cells from 

mouse embryos (121). Pax7 lineage deletion resulted in the loss of fetal (secondary) 

myofibers, consistent with the observation that pax7 is expressed in fetal myoblasts (22, 

119). Based on these studies, one may propose that pax3 is critical for initial myofiber 

formation, which then serves as a template for pax7-positive cells to form secondary 

fibers, and pax7 is required to maintain the satellite cell pool.     

Myogenic regulatory factors 

Pax3+pax7+ progenitors are mitotically active and cannot differentiate into myotubes 

(135), suggesting that molecules other than pax3 and pax7 are responsible for myogenic 

induction and precursor cell differentiation. The discovery of MyoD, a transcription 

factor that is able to convert mouse pluripotent mesenchymal C3H10T1/2 cells into 

fusion-capable myoblasts (68) sheds light on the molecular nature of muscle 

differentiation. Subsequent studies revealed three more transcription factors: Myf5, 

myogenin and MRF4, which are also able to induce myoblast traits in non-muscle cells 

(38-39, 83). Characterized by their collective expression in the skeletal muscle lineage, 

these four transcription factors are termed myogenic regulatory factors (MRFs). MRFs 

have a conserved basic helix-loop-helix (bHLH) DNA binding domain and relatively 

variable N-terminal and C-terminal domains to mediate transcriptional activation. The 

HLH domain also facilitates heterodimerization between MRFs and E-proteins that 

recognize the E-box consensus sequence CANNTG, which is present in many muscle-

specific gene promoters (250). 
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Myf5 is the first MRF expressed within the dermomyotome on the eighth day of mouse 

embryonic development, and its expression starts to decrease on E11 (43). In contrast, 

MyoD is expressed at approximately E10.5, and myogenin transcripts begin to 

accumulate immediately after MyoD activation (37). Two waves of MRF4 expression 

have been observed in mouse embryogenesis. The first wave occurs between E9 and 

E11.5 and the second one starts at E16 and persists through adulthood (210). Genetic 

studies in mice indicate redundant and differential roles of MRFs in myogenesis. Mice 

lacking Myf5 or MyoD have no major defects in muscle development. Myf5-null mice 

have normal skeletal muscle morphology and muscle-specific gene expression, while the 

appearance of myotome cells is delayed until MyoD is expressed (41). Similarly, 

myogenesis in Myf5-null mice is fully restored by a MyoD-expressing lineage (97, 105). 

MyoD deletion results in prolonged and elevated Myf5 expression, which functionally 

compensates for MyoD and leads to normal skeletal musculature (236). Interestingly, 

Myf5/MyoD double-null mice are completely absent of skeletal myoblasts or myofibers 

as well as myogenin expression (237). These observations indicate that Myf5 and MyoD 

play partially redundant roles in myogenic cell fate determination and myoblast 

commitment. Myogenin-mutant mice have severe defects in muscle fiber formation with 

reduced muscle-specific gene expression such as myosin heavy chain and MRF4. 

However, Myf5 and MyoD expression appears normal, and mononucleated myoblasts are 

observed in the limbs (110, 191), suggesting that myogenin is essential for committed 

myoblast differentiation and acts downstream of Myf5 and MyoD. Consistent with its 

biphasic expression pattern, MRF4 has a dual role in muscle development. Functional 
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MRF4 presence supports myotome differentiation in the Myf5/MyoD double-null mice 

(134), indicating a potential myogenic determination role that MRF4 plays as Myf5 and 

MyoD. MRF4-/- mice have normal skeletal muscle development and demonstrate strong 

myogenin up-regulation, which may compensate for the absence of MRF4 (304). 

However, MyoD/MRF4 double mutations result in a severe muscle deficiency that is 

similar to the myogenin-mutant mice (225). Thus, this upregulation of myogenin 

expression was insufficient to induce myogenesis, suggesting that MRF4 and MyoD have 

overlapping functions in myoblast differentiation. Taken together, these studies reveal a 

hierarchical relationship between MRFs whereby Myf5 locates at the top of the hierarchy 

and collaborates with MyoD in a redundant fashion to specify myoblasts, while 

myogenin and MRF4 act genetically downstream to induce myoblast differentiation and 

muscle-specific gene expression (Fig 1.1). 
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Figure 1.1  Schematic representation of skeletal myogenesis and transcriptional 
hierarchy during myogenic process. Myoblast commitment is marked by the onset of 
Myf5 and MyoD expression that is regulated by Pax3 and Pax7, which are master 
regulators of early lineage specification in muscle precursor cells. Myogenin expression 
further commits myoblasts to the myogenic program. Differentiating myogenin-positive 
myocytes align and fuse to form nascent myotubes. MRF4 is further required for the 
mature, multinucleated myotube formation. Myosin is a typical muscle structural protein 
that marks sarcomeric assembly in myotubes at the late stages of myogenesis. Satellite 
cell-mediated regenerative myogenesis is highly similar to developmental myogenesis 
with comparable myogenic process and transcriptional hierarchy.  
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Interaction of MRFs with transcriptional cofactors 

Numerous studies in muscle cell lines and animal models indicate that skeletal myotube 

formation and myogenic gene expression requires cooperation among MRFs and other 

molecules. During myogenesis, MRFs function as heterodimers with E proteins (E12, 

E47 and HEB), which are proteins that also belong to the bHLH transcription factor 

family and bind to E boxes in many muscle-specific gene promoters (148). In 

proliferating myoblasts, active Myf5/E protein or MyoD/E protein heterodimers are 

disrupted by the HLH protein Id (inhibitor of differentiation), which can form complexes 

with E proteins or MRFs through HLH domain interactions. Id proteins lack the basic 

DNA binding domain; thus, Id/E or Id/MRF heterodimers fail to bind E boxes in muscle 

promoters (53, 125). Id protein levels are decreased at differentiation onset (125), 

allowing for functional Myf5/E protein or MyoD/E protein heterodimer formation, and 

thus myogenic gene expression. 

Full activation of muscle-specific gene expression by MRFs requires their collaboration 

with myocyte enhancer factor 2 (MEF2) proteins (MEF2A-D), which belong to the 

MADS (MCM1, agamous, deficiens, SRF) family of transcription factors (25). MEF2 

proteins cannot activate muscle-specific genes on their own, but they potentiate the 

transcriptional activity of MRFs by interacting with the MRF/E protein complexes (181-

182). Consistently, the A/T rich sequence for MEF2 binding is often close to the E-box 

sequences within muscle genes (99). In addition to activating muscle structural genes, 

MEF2 proteins mediate myogenic bHLH gene expression in a positive feedback 

mechanism. Upstream signals activate Myf5 and MyoD, which cooperate with MEF2 
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proteins to induce myogenin expression (127, 298). Myogenin up-regulates MEF2 (63), 

which not only acts on the myogenin promoter to amplify gene expression (81), but also 

autoregulates its own promoter (276). Moreover, MRF4 expression requires synergistic 

function between MEF2 and MRFs such as myogenin (24, 192). All of these auto- and 

cross-regulatory interactions provide an elaborate transcriptional circuit to modulate 

myogenic differentiation. During mouse skeletal muscle development, Mef2c is the first 

member of the MEF2 family to be expressed followed by Mef2a and Mef2d (82). Mef2a 

or Mef2d homozygous mutant mice display no muscle developmental defects (216-217). 

However, skeletal muscle-specific Mef2c deletion resulted in disorganized myofibers, 

disrupted muscle structural gene expression and perinatal lethality, although embryonic 

and fetal myogenesis appear to be normal (216), indicating that MEF2C is required for 

the skeletal muscle postnatal maturation, but not early development. Notably, forced 

active MEF2 expression in mouse skeletal muscle did not trigger premature myogenic 

differentiation (217), suggesting that MEF2 was not sufficient for this process.  

Muscle-specific gene sequences are occupied by nucleosomes that consist of 146 DNA 

base pairs that are wrapped around a histone octamer in cellular chromatin. The 

condensed nucleosomal organization prevents access of transcription factors including 

MRFs and MEF2 proteins to the regulatory regions of these genes, resulting in 

transcriptional repression. Therefore, chromatin modification and remodeling are 

required to relax the chromatin and allow for transcription factor access.  
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One specific chromatin modification is acetylation, which loosens histone-DNA 

interactions. Several transcriptional co-activators in muscle including p300, a functional 

homolog of CREB-binding protein (CBP) and p300/CBP-associated factor (PCAF) have 

intrinsic histone acetyltransferase (HAT) activity; conversely, histone deacetylases 

(HDACs) repress transcription in skeletal muscle (174). MRFs and MEFs interact with 

HATs and HDACs. p300 stimulates muscle-specific gene expression by interacting with 

MyoD to potentiate its transcriptional activity in human and mouse muscle cell lines (220, 

239, 300). This enhanced MyoD-mediated gene transcription is not only because of 

chromatin acetylation and relaxation, but also because of direct acetylation at 

evolutionarily-conserved lysines on MyoD by p300 and PCAF (80, 215, 240). MyoD 

mutants that cannot be acetylated display impaired DNA target affinity, transcriptional 

activity and differentiation potential in vitro (215, 240). Mice with knock-in acetylation-

deficient MyoD mutations phenocopy MyoD-/- mice and display delayed myogenesis (80). 

p300 also interacts with MEF2 and acetylates it in skeletal muscle, resulting in enhanced 

DNA binding ability, transcriptional activity and myogenic differentiation (164, 239). 

Conversely, HDACs inhibit muscle-specific gene expression and myogenic 

differentiation by interacting with MyoD and MEF2 (162, 168, 221). Moreover, MEF2C 

activates HDAC9 expression, providing a negative feedback mechanism to prevent 

excessive MEF2 activation (104).  

In addition to acetylation, chromatin remodeling is modulated by factors that loosen 

histone-DNA interactions using energy from ATP hydrolysis. The SWI/SNF 

(switching/sucrose non-fementing) complex is an important chromatin-remodeling 
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enzyme, which consists of an ATPase subunit brahma-related gene 1 (BRG1) and BRG1-

associated factor BAF. Several studies have demonstrated that the SWI/SNF complex 

plays a crucial role in MyoD and myogenin-mediated muscle gene activation and 

myogenic differentiation (70, 198-199). On muscle gene regulatory elements, MyoD 

interacts with SWI/SNF subunit BAF60c, which recruits the catalytic subunit BRG1 to 

form a functional SWI/SNF complex in differentiating muscle cells, thereby facilitating 

chromatin remodeling and MyoD-targeted gene expression (90).   

Regulation of Myf5 Expression and Activity 

Transcriptional Control 

A complex interplay of developmental signals from various embryonic tissues accounts 

for Myf5 activation during skeletal muscle development. The Myf5 transcriptional 

regulatory region contains a large number of enhancer elements, which span 140 kb 

upstream of the Myf5 start site (42, 91). Sonic hedgehog (Shh), a signaling molecule that 

is secreted from the notochord and floor plate, induces Myf5 transcription through a Gli 

binding site in the epaxial enhancer in somite epaxial muscle progenitors, resulting in 

muscle cell lineage specification (30, 103). Myf5 is also a direct target of canonical Wnt 

signaling, in which activated β-catenin binds to the Tcf/Lef sequences immediately 

proximal to the Myf5 early epaxial enhancer and induces Myf5 expression 

spatiotemporally (29). Mice that are deficient for Wnt1 and Wnt3a, which are secreted 

from the dorsal neural tube and activate the Wnt/β-catenin signaling redundantly display 

decreased Myf5 expression and a lack of a medial dermomyotome compartment (122). In 
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mouse myogenic C2C12 cell lines, a Wnt/β-catenin signaling activator R-spondin2 

(RSPO2) up-regulates Myf5 expression and induces myogenic differentiation through the 

canonical Wnt pathway (107). Consistently, Myf5 mRNA levels are dramatically reduced 

in RSPO2-null mouse embryo limbs (107). In contrast to the Shh and Wnt-mediated 

Myf5 up-regulation, bone morphogenetic protein (BMP), which is expressed in the lateral 

plate mesoderm, inhibits Myf5 expression in Pax3-expressing dermomyotomal cells (218, 

230), and Noggin, a BMP antagonist that is up-regulated by Shh and Wnt (116, 172, 230) 

enhances Myf5 transcription (230).    

Pax3 acts genetically upstream of Myf5 during hypaxial myogenesis (13). Myf5 

expression is directly modulated by Pax3 through the limb bud enhancer, which is a 145 

bp regulatory element that contains a Pax3 consensus site (13). Pax3 also activates Myf5 

expression indirectly through up-regulating doublesex and mab-3 related transcription 

factor 2 (Dmrt2), which induces Myf5 expression by binding to the early epaxial Myf5 

enhancer in the dermomyotome, leading to the myogenic lineage determination (242).  

Several independent studies have suggested that other factors are involved in Myf5 

transcriptional activation. As mentioned above, muscle gene expression requires HAT-

mediated chromatin modification. Roth JF et al. demonstrated that p300 protein is 

essential for Myf5 induction and myogenesis in mouse and embryonic stem (ES) cells 

(234). In that study, Myf5 expression was severely compromised in mouse embryos 

lacking p300. p300-null ES cells also failed to induce Myf5 and MyoD expression (234). 

In the C2C12 cultured myogenic cell line, myoblast Myf5 expression is positively 



12 
 

 
 

regulated by the glucocorticoid receptor and AP-1 transcription factors, while protein 

kinase C (PKC) inhibits Myf5 transcription in these cells (10). In mononucleated muscle 

reserve cells, which are non-dividing satellite cell-like cells in myotube cultures, 

activation of calcineurin or its downstream target nuclear factor of activated T cells 

(NFAT) is necessary and sufficient to induce Myf5 transcription (95). However, the 

calcineurin- and NFAT-dependent Myf5 up-regulation is not detected in proliferating 

myoblast cultures, indicating that Myf5 is modulated by different pathways in distinct 

cell populations (95). This observation is consistent with the in vivo discovery that 

distinct signals differentially regulate Myf5 expression in various locations in the 

embryos.       

Post-transcriptional Control 

Myf5 is post-transcriptionally regulated through translation inhibition by microRNAs. 

Satellite cells remain quiescent in healthy adult skeletal muscles and express Myf5 and 

MyoD upon differentiation towards the myogenic lineage during muscle regeneration. 

The majority of quiescent satellite cells transcribe the Myf5 gene, which remains 

untranslated because of miRNA-31-dependent sequestration of the transcripts in 

messenger ribonuleoprotein (mRNP) complexes. Once satellite cells are activated, the 

mRNP granules are dissociated with reduced miRNA-31 binding to the gene, resulting in 

Myf5 protein accumulation and thereby myogenic differentiation initiation (62).     

Post-translational modifications modulate Myf5 abundance and transcriptional activity. 

Myf5 undergoes cell cycle-dependent proteolysis in proliferating myoblasts and non-
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muscle cells such as Xenopus eggs (78, 156). The mitotic stability of Myf5 protein is 

controlled by its phosphorylation status with a strong correlation detected between Myf5 

degradation and its extensive phosphorylation, while hyperphosphorylated Myf5 is stable 

(78). Multiple kinases such as cyclin-dependent kinase 1 (CDK1) and ERK as well as the 

phosphatase calcineurin are involved in the phosphorylation-dependent increase in Myf5 

stability (78). Myf5 is phosphorylated on serine49 and serine133 by protein kinase CK2 

in vitro (179). Mutants that cannot be phosphorylated fail to activate E-box-dependent 

reporter genes and act as dominant repressors of wild-type Myf5 (179), indicating that 

CK2-mediated Myf5 phosphorylation is essential for its transcriptional activity. One 

study by Winter B et al. revealed that Myf5 activity is suppressed by cAMP-dependent 

protein kinase (PKA) in the cAMP-induced inhibition of myogenic differentiation (288). 

Although PKA phosphorylates Myf5 in vitro, it does not affect Myf5 DNA binding 

ability, suggesting a potential mechanism by which phosphorylated Myf5 acts 

downstream of DNA binding to regulate transcriptional target gene activation (288).      

 

Role of IGF signaling in skeletal muscle differentiation and hypertrophy 

Insulin-like growth factor (IGF) signaling regulates many aspects of survival, growth, 

differentiation and metabolism in a wide range of cell types and mammalian tissues. The 

pathway is activated by the binding of IGF isoforms IGF1 or IGF2 to the IGF receptor 

(IGFR), which contains a tyrosine kinase domain that is activated by autophosphorylation 

upon ligand binding. Two primary signaling pathways have been proposed to be 
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associated with IGFR activation. One pathway involves the Ras-Raf-MEK-ERK module, 

which will be described in the following section. Alternatively, activated IGFR provides 

docking sites for insulin receptor substrate (IRS) proteins that recruit and activate 

phosphatidylinositol-3-kinase (PI3K) once phosphorylated by IGFR. PI3K 

phosphorylates membrane phospholipids, generating phosphatidylinositol (3,4)-

bisphosphate (PI(3,4)P2) and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), 

which recruits and localizes phosphoinositide-dependent kinase (PDK) and Akt to the 

inner plasma membrane surface. Co-localization of these two kinases allows PDK to 

phosphorylate Akt at multiple sites, resulting in Akt activation (150). Akt substrates 

include glycogen synthase kinase 3β (GSK3β), class O of forkhead box transcription 

factors (FoxO) and Bcl2-associated agonist of cell death (BAD), which are involved in 

protein synthesis, protein degradation and apoptosis (171). Akt also stimulates protein 

synthesis by signaling to mammalian target of rapamycin (mTOR) (147) (Fig 1.2).  

Both IGF1 and IGF2 promote myoblast proliferation and differentiation in multiple 

muscle cell lines (84, 89, 251, 268). Myoblasts begin to actively express IGF2 upon 

serum withdrawal, and autocrine IGF2 secretion is crucial for myogenic differentiation 

(89). Forced IGF1 expression in mouse skeletal muscle resulted in muscular hypertrophy 

and preserved its regenerative capacity during aging (15, 56, 88, 188). Conversely, IGF1 

or IGF1 receptor deletion caused dramatic muscle hypoplasia and severe growth 

retardation, and most of these null mice died perinatally (14, 158, 219). Similarly, 

skeletal muscle-specific IGF1R deletion or dominant negative IGF1R expression in mice 

impaired muscle development and regeneration (87, 113, 173).  
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IGF regulates mitogenesis and myogenesis through distinct signaling pathways. IGF-

induced ERK activation is mainly responsible for its mitogenic action, although the IGF-

Akt axis may be critical for proliferation as well (112, 273). The myogenic and 

hypertrophy-promoting action of IGF has been proposed to act mainly through IGF-Akt 

signaling and IGF-calcineurin signaling (Fig 1.2). In the following sections, these two 

signaling cascades will be dissected, and the components of each pathway will be 

discussed for their roles in myogenic differentiation.  
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Figure 1.2 Schematic displaying the main components in IGF-mediated signaling 
pathways that regulate skeletal muscle growth. Solid line indicates direct modification 
and dotted line indicates indirect regulation.   
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Regulation of skeletal muscle growth by IGF-Akt signaling 

IRS, PI3K and PDK1 

As mentioned above, receptor-bound IGF signals through IRS and its downstream targets 

PI3K and PDK1 to activate Akt. IRS1 disruption retards growth in mice (8), while IRS2 

deficiency leads to nearly normal growth but severe insulin resistance (289). Numerous 

studies have identified PI3K as a crucial mediator in myogenesis because IGF-induced 

myotube formation was prevented by PI3K inhibitor treatment, whereas constitutively 

active PI3K expression enhanced myogenic differentiation in the absence of IGF1 in 

muscle cell lines (126, 131, 190, 268). However, skeletal muscle-specific PI3K 

inactivation by p85 regulatory subunit deletion resulted in normal muscle size (163), as 

did the muscle-specific PDK1 knockout (185).    

Akt 

Akt is the key node in the IGF signaling cascade and mediates multiple downstream 

effectors to regulate skeletal muscle differentiation and hypertrophy. Three Akt isoforms 

have been identified, of which Akt1 and Akt2 are ubiquitously expressed in various 

tissues and Akt3 is detected in testis and brain. Evidence from an array of studies 

suggests that Akt1 and Akt2 play distinct roles during myogenesis. Akt1 levels remain 

constant during differentiation of several muscle cell lines, whereas Akt2 expression is 

up-regulated during this process (133, 235, 273). Akt1 and Akt2 are distributed 

throughout both the cytoplasm and nuclei in proliferating myoblasts. In contrast, Akt2 

translocates to myotube nuclei, whereas Akt1 is only detected in the cytoplasm (273). 
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Consistent with these observations, Akt1 appears dispensable for myogenesis but is 

required for proliferation (112, 114, 273), while Akt2 promotes myogenic differentiation 

(114, 133, 258, 273). A positive feedback regulation loop has been reported between 

Akt2 and MyoD-MEF2. Akt2 activated MyoD-MEF2 transcriptional activity and 

enhanced myogenin expression during C2C12 differentiation. Meanwhile, MyoD induced 

Akt2 transcription by binding to multiple E-box sites on the Akt2 promoter (133). Akt2 

can also phosphorylate p300 and promote the association of MyoD with p300 and PCAF 

acetyltransferases, resulting in a conformational change in the chromatin allowing access 

of MyoD to muscle-specific gene promoters (246). Moreover, prohibitin2/repressor of 

estrogen activator (PHB2/REA), a transcriptional repressor of myogenesis has been 

found to interact with Akt2, which down-regulates REA during muscle differentiation 

(114). Of note, Rotwein’s group discovered that selective elimination of Akt1 had no 

effect on proliferation but inhibited differentiation by impairing MyoD transcriptional 

activity. However, Akt2-deficient myoblasts differentiated normally and only appeared to 

have a moderate defect in maturation (235, 286). The selective control of skeletal muscle 

differentiation by Akt1 has been partially supported by the retarded growth and increased 

apoptosis phenotype in Akt1 null mice (49, 51). In contrast, Akt2 disruption in micee 

caused no growth defect but impaired glucose metabolism and insulin resistance (92). In 

adult mouse skeletal muscle, Akt activation promotes dramatic hypertrophy and prevents 

denervation-induced atrophy (23, 27, 146), indicating an additional manner by which Akt 

regulates skeletal muscle growth.        

mTOR 
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One of the best-studied downstream targets of Akt is mTOR, which is a master regulator 

of cell growth and proliferation. Akt can directly phosphorylate and activate mTOR, or 

can indirectly activate mTOR by phosphorylating and inhibiting the tuberous sclerosis 

complex (TSC) protein 1/2 complex. TSC 1/2 acts as a GTPase activating protein (GAP) 

to suppress the small G protein Ras homolog enriched in brain (Rheb) that activates 

mTOR signaling. mTOR forms two functionally and structurally distinct multiprotein 

complexes, the rapamycin-sensitive, Raptor-bound mTOR complex 1 (mTORC1) and the 

rapamycin-insensitive, Rictor-bound mTOR complex 2 (mTORC2). A major role of 

mTORC1 is to control protein synthesis through modulating two well-characterized 

substrates p70 ribosomal S6 kinase 1 (p70S6K1) and eIF4E binding protein 1 (4EBP1). 

mTORC1 activates p70S6K1, which phosphorylates the small ribosomal subunit S6 to 

initiate efficient translation of mRNAs that contain 5’-terminal oligopyrimidine tracts. 

4EBP1 phosphorylation by mTORC1 releases its inhibitory binding to eIF4E and allows 

5’-cap-dependent translation initiation. mTORC2 signals to actin organization through 

PKC and Rho family GTPases RhoA and Rac1. mTORC2 also phosphorylates and 

activates Akt (147, 280). 

An essential role of mTOR has been implicated for both skeletal muscle differentiation 

and hypertrophy (85-86, 207-208, 248). Interestingly, the myogenic function of mTOR 

during early differentiation does not require its kinase activity and involves neither of the 

downstream effectors p70S6K1 or 4EBP1 (85). Instead, mTOR regulates myogenesis by 

inducing IGF2 transcription by a kinase-independent mechanism (86). During skeletal 

myotube maturation, however, mTOR catalytic activity is crucial for the secretion of 
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unidentified factors that are required for myoblast-myotube fusion (207). IGF1-induced 

myotube hypertrophy also demands mTOR kinase activity and employs p70S6K1 as a 

downstream effector (208). A specific role of mTORC2 signaling in myogenic 

differentiation has been implied in a study where Rictor but not Raptor suppression 

reduced Akt phosphorylation and prevented C2C12 myoblast fusion (247). However, 

mouse skeletal muscles lacking Rictor are distinguishable from wild type controls with 

normal muscle size, while Raptor-deficient muscles progressively develop dystrophy (20). 

Exacerbated myopathic features were observed in skeletal muscle-specific mTOR 

depleted mice, probably because mTOR but not Raptor deficiency resulted in reduced 

dystrophin content, which is a protein complex that is essential for normal muscle 

structure and function (231). As a downstream mTOR effector, p70S6K1 depletion 

reduced muscle fiber size with unaltered myonuclei number, suggesting an atrophy 

phenotype (197).  

GSK3β 

Another effector that is involved in IGF-induced myogenic differentiation is GSK3β. 

Once inactivated by Akt phosphorylation at Ser9, GSK3β stimulates myoblast 

differentiation and fusion and increases myogenic gene expression (205, 232, 271). One 

factor that is regulated by GSK3β is NFATc3, which translocates into the nucleus and up-

regulates myogenic genes in the absence of GSK3β-mediated phosphorylation (205, 272, 

274). GSK3β inactivation by inhibitors such as LiCl also enhances NFATc3 

transcriptional activity and muscle-specific gene expression without affecting Akt 
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phosphorylation (205, 271-272), indicating that inhibiting GSK3β activity is sufficient to 

stimulate muscle differentiation independently of IGF.  

Canonical wnt/β-catenin signaling is another pathway that regulates myogenesis in a 

GSK3β-dependent manner. Under basal conditions, GSK3β and other proteins form a 

protein complex in which phosphorylated β-catenin is targeted for degradation by the 

ubiquitin-proteasome pathway. In the presence of wnt signals, the degradation complex is 

inactivated and GSK3β can no longer phosphorylate β-catenin, resulting in protein 

accumulation and its subsequent translocation into nucleus. Cytoplasmic β-catenin co-

localizes with cadherins at cell-cell contact sites and is essential for myoblast fusion and 

late stages of myogenic differentiation (124, 143, 186). Nuclear β-catenin binds to 

TCF/LEF transcription factors and induces expression of target genes such as Myf5 (107, 

261). During mouse embryogenesis, canonical wnt/β-catenin signaling is associated with 

Myf5 expression and dermomyotome formation (29, 122).   

GSK3β has been implicated in IGF-induced skeletal muscle hypertrophy (233, 262). 

Ectopic expression of a dominant negative GSK3β causes dramatic hypertrophy in 

skeletal myotubes (233), probably by preventing the inhibitory phosphorylation on 

eukaryotic initiation factor 2B (eIF2B), which promotes translation initiation and protein 

synthesis (75, 282). A recent study suggested a novel mechanism by which GSK3β 

promotes muscle growth. GSK3β phosphorylates neublin on the Z bands of myofibrils, 

thus preventing its interaction with neuronal Wiscott-Aldrich syndrome protein (N-

WASP), which is an essential factor for actin assembly. IGF-induced GSK3β inactivation 



22 
 

 
 

recruits N-WASP to the unphosphorylated neublin and promotes actin nucleation and 

actin filament elongation. Because myofiber hypertrophy is associated with enhanced 

myofibrillogenesis, it is proposed that IGF-Akt signaling regulates muscle maturation and 

hypertrophy through the GSK3β-neublin-N-WASP pathway (262).      

FoxO 

FoxO transcription factors are Akt substrates that play roles in both IGF-induced 

myoblast proliferation and differentiation. Akt phosphorylates FoxO1 at Ser256 in 

response to IGF1 and prevents its nuclear translocation. In myoblasts, FoxO1 inactivation 

reduces CDK inhibitor p27 expression, thus enhancing cell proliferation (166). During 

myogenic differentiation, however, autocrine IGF2 activates Akt, which phosphorylates 

FoxO and allows differentiation to occur (120), suggesting an inhibitory effect of FoxO 

in myogenesis. Consistently, FoxO1 loss of function partially rescued Notch-mediated 

inhibition of myogenic differentiation and increased MyoD expression by down-

regulating Hes1 (140), which suppresses myogenesis by inhibiting MyoD transcription 

(145). Of note, one study by Bois et al. suggested that FoxO1a promoted primary 

myoblast fusion by up-regulating genes involved in cell fusion and extracellular matrix 

remodeling, indicating a positive role of FoxO1 in myogenesis (28). Interestingly, in this 

study, FoxO1 regulation appeared to be independent of PI3K/Akt activity, thus providing 

a potential explanation for the controversies between this study and several others.     

In addition to controlling myogenic differentiation, FoxO transcription factors are major 

modulators of the muscle atrophy program. FoxO1 activates transcription of myostatin, 
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which is a powerful inducer of muscle atrophy in differentiated myotubes in vitro (2). 

Transgenic mice specifically overexpressing FoxO1 in skeletal muscle have reduced 

muscle mass and enhanced lysosomal proteinase cathepsin L expression (132). Another 

member of the FoxO family, FoxO3, functions as a muscle atrophy inducer by acting on 

two major protein degradation pathways, the proteasomal and autophagic-lysosomal 

pathways. Evidence for FoxO3-dependent activation of the ubiquitin-proteasome 

pathway is from the discovery that ubiquitin ligases muscle atrophy F-box (MAFbx) and 

muscle RING finger 1 (MuRF1), which are required for skeletal muscle atrophy (26, 54-

55) are transcriptional targets of FoxO3 (238, 252). FoxO3 is essential for up-regulation 

of autophagy-related genes such as LC3 (169) and is sufficient to induce autophagy in 

skeletal muscle (306), resulting in protein clearance via the autophagic-lysosomal 

pathway.   

Regulation of skeletal muscle growth by IGF-calcineurin signaling 

The calcium-dependent phosphatase calcineurin interacts with IGF signaling to regulate 

skeletal muscle differentiation and hypertrophy. Calcineurin is a serine/threonine protein 

phosphatase that is activated by calcium (94). Activated calcineurin dephosphorylates 

several substrates, including members of the nuclear factor of activated T cell (NFAT) 

transcription factor family, which translocate to the nucleus and activate tissue-specific 

genes (153). Conversely, NFATs can be deactivated and trapped in the cytoplasm 

through phosphorylation by protein kinases such as GSK3β, p38 MAPK and casein 

kinase (17, 296, 308).  
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Calcineurin and NFAT control skeletal muscle differentiation and hypertrophy. Forced 

expression of activated calcineurin enhances myotube formation (73), while calcineurin 

inhibition attenuates myogenesis with reduced myogenic gene expression (94). 

Calcineurin activity is also required for overload-induced muscle hypertrophy (79). 

However, mice that overexpress activated calcineurin in myotubes have normal muscle 

size compared with wild type controls (193), indicating that calcineurin is insufficient to 

induce skeletal muscle hypertrophy in vivo. There are three NFAT genes NFATc1, 

NFATc2 and NFATc3 that are expressed at distinct stages of myogenic differentiation (1). 

NFATc3 is mainly expressed in myoblasts and serves a specialized role in primary 

(embryonic) myogenesis when myoblasts differentiate and fuse into nascent myotubes 

(180). NFATc2 regulates myoblast-myotube fusion in secondary (fetal) myogenesis (117) 

by inducing the secretion of IL4, a fusion-stimulating cytokine that is produced by a 

subset of muscle cells (118). NFATc1 is usually found in nascent and mature myotubes, 

where it has been suggested to participate in the hypertrophic myotube formation (189, 

245).  

The sarcoplasmic reticulum (SR) stores calcium ions and releases them into the 

cytoplasm through L-type calcium channels, which are also known as dihydropyridine 

receptors (DHPR) when the muscle cell is stimulated. As a pore-conducting pathway for 

calcium ions, L-type calcium channels may affect the long-term intracellular calcium 

signaling (72). An array of studies have demonstrated that IGF activates L-type channels 

(72) and increases DHPR α1 subunit expression in skeletal muscle cells (229, 281), 

indicating a potential interaction between IGF and calcium-mediated calcineurin 
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signaling. Indeed, IGF1 induced skeletal muscle hypertrophy through IGF1-calcineurin-

NFATc1 signaling in C2C12 and L6E9 muscle cell lines (189, 245). IGF1 or activated 

calcineurin induced the expression of transcription factor GATA binding protein 2 

(GATA2), which cooperates with hypophosphorylated NFATc1 in myocyte nuclei to 

activate muscle-specific gene transcription (189).  However, it should be noted that a 

potential inhibitory role of calcineurin signaling in muscle hypertrophy has been 

proposed by Glass’s group, who showed that IGF1 and activated Akt antagonized 

calcineurin-mediated dephosphorylation and nuclear translocation of NFATc1 in C2C12 

cells (233).  

 

Role of MAPK signaling cascades in skeletal myogenesis 

Skeletal muscle development is regulated by extracellular stimuli such as growth factors 

that transmit diverse signals into cells to affect the muscle transcription program. The 

mitogen-activated protein kinase signaling modules (MAPKs) play critical roles in the 

process. The MAPK family is categorized into four major groups: c-Jun N terminal 

kinase (JNK), extracellular signal-regulated protein kinase (ERK), p38 stress activated 

protein kinase and extracellular signal-regulated protein kinase 5 (ERK5), all of which 

have been demonstrated to function in mammalian skeletal myogenesis.  
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JNK signaling and myogenesis 

The JNK signaling pathway is activated primarily by environmental stresses, 

inflammatory cytokines and growth factors. These stimuli trigger activation of MAP3Ks 

including apoptosis signal-regulating kinase (ASK), mixed-lineage kinase (MLK), 

MAP/ERK kinase kinase (MEKK) and transforming growth factor β activated kinase 1 

(TAK1), which then activate MAP2K isoforms MKK4 and MKK7 that phosphorylate 

and activate JNK. The activated JNK/SAPKs tanslocate to the nucleus where they 

regulate the activity of multiple transcription factors that are involved in inflammation, 

differentiation, survival, apoptosis and cell migration, such as c-Jun, ATF2, Elk1, 

SMAD4, p53 and NFAT (284). Distinct genes encode for proteins in the JNK family; 

JNK1 and 2 are expressed in various tissues including skeletal muscle while JNK3 is 

specifically expressed in the brain, testis and pancreas (294).  

The role of the JNK signaling pathway in skeletal myogenesis is quite controversial, 

which could be simply reflected by inconsistent assessments of JNK activity during 

myogenic differentiation between distinct studies. Several groups suggested that JNK is 

activated during C2C12 (64), L6E9 (138) and mouse primary myoblast differentiation 

(48) while others showed no alteration (48, 291) or a decrease during this process (212). 

The inhibitory role of JNK pathway in myogenesis has been demonstrated by treating L6 

myoblasts with a JNK/p38 activator anisomycin or ectopic expression of upstream kinase 

MKK7, both of which resulted in impaired myogenin expression and a cytoplasmic 

redistribution of Myf5 in the cells (176). The JNK pathway also functions negatively in 
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stimuli-mediated muscle differentiation. Transforming growth factor β (TGFβ) inhibited 

myogenic differentiation via activation of Rho family proteins Rac1 and Cdc42Hs, which 

were determined earlier to suppress myogenesis by activating JNK pathway (175-176). 

TNFα promoted myoblast proliferation and inhibited differentiation through JNK1, but 

not JNK2 activation-induced expression of leukemia inhibitory factor (LIF), a negative 

mediator of muscle differentiation (3). By using a JNK interacting protein (JIP)-derived 

JNK peptide inhibitor, Strle K et al. showed that JNK activity is required for TNFα 

antagonism of insulin-like growth factor 1 (IGF1)-enhanced muscle growth and 

differentiation (253).  

In contrast, basal JNK activity is indispensable for skeletal muscle differentiation. 

Inhibition of JNK activity by JNK inhibitor II dramatically impaired myotube formation 

of rat L6E9 muscle cells and induced apoptosis accompanied by increased c-Jun and p53 

expression, indicating that JNK is essential for muscle cell survival and differentiation 

(138). Of note, JNK activity also appears insufficient to regulate myogenesis because 

forced JNK activation by overexpressing a constitutively active JNKK had no effect on 

myogenic reporter induction in both C2C12 cells and 10T1/2 fibroblasts that had been 

converted by myoD (291), which is consistent with the unaltered JNK activity that had 

been observed in the cells.   

ERK signaling and myogenesis 

ERK was first discovered as a serine/threonine kinase that phosphorylates microtubule-

associated protein 2 (MAP2) in insulin-stimulated adipocytes and thus was named MAP2 
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kinase (MAP2K) (226). ERK was also known as MAPK, but the name was changed 

because MAPK stands for mitogen-activated protein kinase, which describes additional 

kinase groups. Boulton et al. redesignated MAPK2 as ERK1 in a DNA cloning study (34) 

and characterized two ERK1-related kinases as ERK2 and ERK3 (33). ERK1 and ERK2 

form central components in ERK signaling cascade, which is responsive to various 

extracellular stimuli such as  hormones, growth factors, chemokines, neurotransmitters 

and calcium ions to regulate survival, proliferation, differentiation, development, 

migration and malignant transformation. Despite the involvement of a wide variety of 

receptors and distinct stimuli, ERK signaling cascades usually include small GTP binding 

proteins activation such as Ras and Rap1 by guanine-nucleotide exchange factors (GEFs). 

GTP-bound Ras or Rap1 then activate the MAP3K Raf, which phosphorylates and 

activates the MAP/ERK kinase (MEK), which phosphorylates ERK1/2 (141).       

During skeletal myogenesis, ERK1/2 activity has been described to be either increased 

(48, 100) or decreased (19, 285) with differentiation. Biphasic ERK1/2 activation was 

also observed; ERK1/2 kinase activity is high in undifferentiated myoblasts, is decreased 

with differentiation onset, and increases as differentiation proceeds (291). The potential 

high activities in myoblasts and myotubes imply a dual role of ERK1/2 in muscle 

proliferation and differentiation. Evidence from multiple muscle cell lines has 

demonstrated ERK signaling to be essential for myoblast growth. Serum and growth 

factors such as basic fibroblast growth factor (bFGF) and IGF1 activate ERK1/2 and 

stimulate the mitogenic response via an ERK1/2-dependent pathway in myoblasts (59, 

129, 178, 285). ERK activity prevents cell cycle withdrawal during G1 (111) and ensures 
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the G1 to S phase transition during proliferation (129, 178), probably through up-

regulation of cyclin D (19, 59) and inhibition of cyclin-dependent kinase inhibitor p21 

expression (59).  

Because cell cycle exit is required for myogenic differentiation (4), the critical role of 

ERK1/2 in growth factor-induced proliferation indicates an inhibitory effect on 

myogenesis. Indeed, the ERK1/2 signaling pathway has been suggested to impair muscle 

differentiation by reducing p21 transcription (291), inhibiting myoD expression and 

activation (142, 149, 214, 270), and preventing MEF2 nuclear accumulation (287). 

However, several studies have controversially revealed that ERK1/2 promotes myogenic 

differentiation (100, 154). This controversy was solved using a tetracycline-repressible 

system to overexpress MAPK phosphatase 1 (MKP1), which inactivates ERK1/2 (and 

p38 MAPK and JNK) by dephosphorylation. In this study, Bennett et al. identified 

ERK1/2 as a suppressor at the early stages of differentiation but an inducer of myoblast 

fusion and myotube formation at the later stages in C2C12 cells (19). The biphasic 

requirement for ERK1/2 during myogenesis has been also detected in an independent 

study where the activity of the ERK1/2 upstream activator MEK was targeted (291). The 

stimulatory effect of the ERK1/2 cascade in late differentiation and myocyte fusion is 

likely because of enhanced myoD expression and transcriptional activity (100), increased 

p21 expression (202, 291) and ERK1/2 substrate ribosomal S6 kinase 2 (RSK2)-induced 

nuclear factor of activated T cell c4 (NFATc4) activation (52). Of note, several studies 

have claimed that the ERK signaling module is dispensable for myogenesis because 

treatment of myoblasts with a MEK1 specific inhibitor did not affect the myotube 
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formation or rescue the FGF or oncogenic Ras-induced non-myogenic phenotype (64, 93, 

285). The controversies among these studies may be explained by the distinct ERK 

signaling mediators that were targeted, different experimental conditions and methods, 

and the cell lines that were used.  

p38 MAPK signaling and myogenesis 

The p38 MAPK signaling pathway was initially identified to be activated by 

environmental stresses and pro-inflammatory cytokines. Numerous studies have since 

demonstrated additional functions of this signaling cascade in a wide range of cellular 

processes including cell cycle arrest, apoptosis, cell growth, cell mobility and 

differentiation of several cell types like adipocytes, neurons and myoblasts (137). Various 

extracellular cues such as oxidative stress, cytokines, hormones and growth factors 

stimulate diverse MAP3Ks including MEKK1-4, TAK1, ASK1/2, DLK, MLK2/3 and 

TAO1/2/3 that phosphorylate and activate MKK3, MKK4 or MKK6, which in turn 

phosphorylate and activate the p38 MAPKs. p38 MAPK substrates include transcription 

factors and protein kinases, several of which are involved in development and  

differentiation (161, 301).  

An array of independent studies has demonstrated that the p38 MAPK signaling pathway 

is an essential mediator of skeletal myogenesis. P38 MAPK activity increases 

concomitantly with myogenic differentiation in several muscle cell lines. Deliberate 

activation of p38 MAPKs by ectopic expression of constitutively active MKK6 or 

MEKK1 enhanced myotube formation and muscle-specific gene expression in cultured 
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myoblasts (45, 256, 291), while impaired muscle differentiation was detected in cells 

after p38 MAPK-specific inhibitor treatment or inhibition of upstream activators such as 

MKK3 and TAK1 (45, 64, 256, 291-292, 302). During mouse embryonic development, 

p38 MAPK activity is induced in somites. Inhibition of p38 MAPK signaling using a 

pharmacological inhibitor attenuated myotomal myogenesis in somite explants and in 

embryos in vivo (69). Interference with the p38 MAPK signaling pathway during 

Xenopus Laevis development also caused myogenic defects, further demonstrating a 

conserved and crucial function of p38 signaling modules in skeletal muscle 

differentiation  (136). Despite numerous literatures demonstrating the requirement for 

p38 MAPK activity in myogenesis, an inhibitory function for p38 MAPK signaling in 

this process has also been reported. In a study by Johnson’s group, constitutive MEKK1 

activation dramatically inhibited myotube formation in a p38 MAPK-dependent manner 

in MyoD-converted fibroblasts (203). A later study in C2C12 cells demonstrated that the 

inhibition of p38 MAPK activity at the late stages of muscle differentiation resulted in 

up-regulation of muscle-specific genes (256). Likewise, Weston et al. detected enhanced 

muscle formation by repressing p38 MAPK activity in primary limb mesenchyme 

cultures (283). There are four p38 MAPK isoforms: α, β, γ and δ. The p38α MAPK 

isoform is absolutely crucial for differentiation of primary myoblasts and cultured muscle 

cell lines, whereas a discrepancy exists for the role of other p38 MAPK isoforms in 

myogenic differentiation (151, 212, 277). By using p38 MAPK isoform-specific 

knockout mice and primary myoblasts that were isolated from them, Munoz-Canoves’s 

group discovered that p38β MAPK and p38δ MAPK are dispensable for myogenesis, and 
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p38γ MAPK is only required for optimal cell fusion in vitro, but not necessary for in vivo 

muscle development (212). However, ectopic expression of p38γ MAPK or its inactive 

mutant in C2C12 cells enhanced or impaired myotube formation respectively (151), and 

silencing any of the isoforms with siRNA inhibited C2C12 differentiation (277), 

indicating that the model systems being used should be taken into consideration.    

p38 MAPK regulates myogenic differentiation in multiple ways. First, it triggers cell 

cycle exit in muscle cell cultures, even in rhabdomyosarcoma cells (222), probably 

through CDK p21 induction (45, 64, 291, 302) and inhibition of cyclin expression as well 

as Rb phosphorylation (212-213). Of note, p38α/β MAPK was identified as a molecular 

switch to activate quiescent satellite cells, implying that p38 MAPK promotes 

proliferation during muscle regeneration. Second, the p38 pathway regulates the 

transcriptional activity of MRFs and MEF2 proteins. p38 MAPK stimulates MyoD-

dependent gene transcription indirectly (291, 302). One possible mechanism is through 

MyoD heterodimerization with E47 protein, which is induced by p38 MAPK-mediated 

E47 phosphorylation on Ser140 (160), resulting in functional MyoD binding to muscle-

specific gene promoters (148). However, MEKK1/p38 MAPK signaling may also disrupt 

MyoD/E47 association by phosphorylating E47 and abrogating myotube formation and 

muscle specific-gene transcription (203). p38 MAPK signaling may also activate MyoD 

through p38 MAPK-dependent regulation of MEF2 proteins, which associate with MyoD 

and potentiate its activity. Zester et al. demonstrated that p38 MAPK phosphorylated 

MEF2C to promote its transcriptional activity and a transcriptionally inactive MEF2C 

inhibited MyoD-dependent induction of an MCK reporter (302). Further studies have 
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revealed p38 MAPK mediated-phosphorylation of MEF2A and MEF2D, which enhances 

the transcriptional activities of the MEF2 proteins (291) and MyoD-induced late gene 

expression (211). Much evidence argued against the contribution of p38 MAPK-mediated 

MEF2 phosphorylation to MyoD function stimulation, suggesting that distinct 

mechanisms control MEF2 transcriptional activity, and that there is functional synergy 

between MyoD and MEF2 (196, 222, 291). MRF4 is another p38 MAPK substrate; 

however, its transcriptional activity is negatively regulated by p38 MAPK at the late 

stages of myogenesis, which results in selective repression of muscle-specific gene 

expression and inhibition of precocious myoblast fusion (256). p38 MAPK signaling also 

modulates myogenic differentiation through altering chromatin remodeling on myogenic 

loci. Puri’s group demonstrated that the SWI/SNF (switching/sucrose non-fermenting) 

chromatin remodeling complex is recruited to the myogenin and MCK promoters in a 

p38 MAPK pathway-dependent manner, probably through phosphorylation of the 

SWI/SNF BAF60 subunit by p38 MAPKs (249). This group further demonstrated that 

TNFα-activated p38α MAPK promoted the interaction between YY1 and PRC2 

(polycomb repressive complex 2), resulting in repressive chromatin formation on the 

Pax7 promoter, the down-regulation of which is required before differentiation occurs 

(204). One study in MyoD-converted fibroblasts indicated that p38 MAPK activity also 

facilitates RNA polymerase II recruitment and progression at late muscle-specific 

promoters, and thus enhances gene expression in a MyoD-mediated feed-forward circuit 

(211). In addition, the p38 MAPK pathway positively regulated Myf5 expression in 

Xenopus embryos to ensure normal muscle development (136).  
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Besides modulating myogenic machinery components directly, the p38 MAPK cascade 

also regulates muscle differentiation indirectly through crosstalk with other myogenic 

signaling pathways. A study supporting NFκB as an activator of muscle differentiation 

indicated that p38 MAPK induced NFκB transcriptional activity in C2C12 cells and 

increased IL6 expression, which is sufficient to promote myogenic differentiation (12). 

The p38 MAPK and ERK signaling pathways have also been suggested to antagonize 

each other because p38 MAPK activity inhibition enhanced ERK1/2 activation and vice 

versa in L6E9 muscle cells (139). This interaction could explain the opposite roles of p38 

MAPK and ERK1/2 in cell cycle withdrawal and myoblast differentiation. Another 

interesting relationship between p38 MAPK and JNK pathways has been revealed in one 

study that demonstrated that continuous proliferation was caused by sustained JNK 

activation in primary p38α MAPK-deficient myoblasts (212). Furthermore, the p38 

MAPK and PI3K/Akt/mTOR signaling pathways may crosstalk, which was suggested by 

the discovery that inhibiting any p38 MAPK or the mTOR kinase suppressed the activity 

of the other (64). It is further demonstrated in two independent studies that Akt2 is 

regulated by the p38 MAPK pathway at the protein and mRNA levels during C2C12 

differentiation (44, 98). However, one study indicated that PI3K acted upstream of 

MKK6 to mediate p38 MAPK activation (98), while another reported reciprocal 

communication between the pathways (44).  
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ERK5 signaling and myogenesis 

ERK5, also known as big MAP kinase 1 (BMK1), is the last identified MAPK member to 

date. ERK5 is activated by oxidative and osmotic stresses, certain inflammatory 

cytokines and various growth factors. The MAP3Ks MEKK2 and MEKK3 phosphorylate 

and activate MEK5, the sole upstream MAP2K that activates ERK5. A number of 

transcription factors are ERK5 substrates, including MEF2, c-Myc, c-Fos and Elk4. The 

conventional N-terminal kinase domain and the unique C-terminal transactivation domain 

of ERK5 enable it to maximally activate these transcription factors (195).   

ERK5 is abundant in skeletal muscle and heart (152, 307). Both ERK5 and MEK5 null 

mice displayed defective limb bud development and are embryonic lethal (227, 279, 295). 

Dinev et al. first identified ERK5 as a positive regulator in myogenesis in vitro (77). In 

the study, ERK5 was activated upon differentiation induction in C2C12 cells. Selective 

ERK5 pathway activation enhanced MEF2C transactivation, myogenic gene expression 

and myotube formation, while ERK5 inhibition by antisense RNA resulted in a 

differentiation-defective phenotype, indicating that ERK5 is both required and sufficient 

for myogenesis. MEK5 and ERK5 have been also demonstrated to be essential mediators 

of the pro-myogenic action of IGFII, which activates ERK5 and promotes its nuclear 

translocation (46). A recent study revealed a critical role for ERK5 in muscle cell fusion, 

suggesting a MEK5-ERK5-Sp1-Klf2/4 signaling module that is essential for the fusion 

process (259). However, no alteration of p21, MyoD or MEF2 expression was observed 

in the study, inconsistent with previous observations (46, 77).      
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Map4k4 

Mitogen activated protein kinase kinase kinase kinase (Map4k4) is a serine/threonine 

protein kinase that belongs to the germinal center kinase GCK-IV group of 

Saccharomyces cerevisiae sterile 20 protein (Ste20) kinases (74). Based on the location 

of kinase domains, Ste20 kinases are divided into two families, p21-activated kinases 

(PAK) and germinal center kinases (GCK), which are further categorized into two and 

eight subfamilies, respectively, according to their distinct structural features in the kinase 

domains and non-catalytic regions (65). Map4k4 contains a NH2-terminal kinase domain 

and a COOH-terminal regulatory domain, a feature of Ste20 kinases in the GCK family.  

Map4k4 was first identified as a mammalian serine/threonine kinase that interacts with 

the SH3 domain of the receptor tyrosine kinase adaptor protein Nck and was termed Nck-

interacting kinase (NIK) (254). Transient overexpression of Map4k4 (NIK) specifically 

activated the SAPK/JNK signaling pathway by interacting with MEKK1 through the 

regulatory domains of both proteins. The human Map4k4 ortholog, known as hepatocyte 

progenitor kinase-like/germinal center kinase-like kinase (HGK), was demonstrated later 

to activate a TAK1, MKK4/7, JNK cellular signaling cascade in 293T cells (297). Other 

studies have also suggested Map4k4 and its orthologs misshapen (msn) in Drosophila 

melanogaster and mig-15 in Caenorabditis elegansas as upstream activators of the JNK 

signaling pathway in various cell types and animal models to regulate morphogenesis, 

development and tumor growth (18, 157, 165, 206, 255). 
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Unlike Msn, which stimulates drosophila embryonic dorsal closure through a JNK 

signaling module (255), mouse Map4k4 plays an essential role in somite formation and 

presomitic mesoderm differentiation into dermomyotome in a JNK-independent manner. 

This was made evident by undisturbed mesodermal and somite development in JNK1- 

and JNK2-deficient mice (293). In this study, presomitic mesodermal cells in Map4k4 

null embryos were observed to fail to migrate away from primitive streak, and it was 

further demonstrated by another study in which Map4k4 has been shown to act upstream 

of p38 MAPK to decrease E-cadherin protein expression and prevent its inhibitory effect 

in mesoderm migration during gastrulation (309). Further studies have identified Map4k4 

as a promigratory kinase (58) and a modulator of cellular transformation, invasion and 

adhesion (106, 290). Consistently, its expression is associated with worse prognosis in 

various cancers (109, 155, 223).  

A genetic screen revealed that Map4k4 positively regulates antigen-mediated T-cell 

responses and is involved in tumor necrosis factor α (TNFα) promoter activation in Jurkat 

cells (167). Silencing Map4k4 in macrophages in vitro attenuated lipopolysaccharide 

(LPS)-induced TNFα expression independently of MAP kinase and NFκB signaling 

pathways (7), which have been demonstrated to regulate TNFα production in 

macrophages (61, 267). More interestingly, Map4k4 suppression in macrophages in vivo 

protected mice from LPS-induced lethality by inhibiting TNFα and interleukin-1β (IL-1β) 

expression (7), suggesting that Map4k4 mediates cytokine production in immune cells. 
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A role for Map4k4 in metabolic regulation of cell function and insulin action has been 

discovered and investigated in recent years. Increased Map4k4 expression was observed 

in abdominal subcutaneous tissue from obese human individuals, correlating with a 

decreased number of preadipocytes that can undergo differentiation (123). Common 

variations in Map4k4 are associated with insulin resistance and pancreatic β cell 

dysfunction in humans (241), indicating a potential role for Map4k4 in diabetes 

pathogenesis. In an RNAi-based screen for regulators of adipocyte function, Map4k4 was 

discovered to inhibit peroxisome proliferator-activated receptor γ (PPARγ) and glucose 

transporter isoform 4 (GLUT4) expression, adipogenesis and insulin-stimulated glucose 

transport (263). The Map4k4-mediated PPARγ suppression was later elucidated to be 

translational downstream of the mammalian target of rapamycin (mTOR) signaling 

pathway (102). Furthermore, TNFα signaling, which down-regulates GLUT4 expression, 

is impaired upon Map4k4 silencing in cultured adipocytes, indicating that Map4k4 is 

required for optimal TNFα action (263). Interestingly, TNFα selectively stimulates 

Map4k4 expression by activating transcription factors c-Jun and ATF2 through TNFα 

receptor 1 (TNFR1) signaling cascades (266).  

Map4k4 also functions in muscle to blunt insulin sensitivity. Map4k4 gene silencing in 

primary human skeletal muscle cells prevented TNFα-induced insulin resistance by 

impeding excessive activation of JNK and ERK signaling pathways as well as IRS-1 

phosphorylation (36). In rat pancreatic β cells, TNFα inhibits glucose-stimulated insulin 

secretion by decreasing IRS-2 expression and glucose-induced phosphorylation of Akt, 

AS160, the insulin receptor and ERK. In these cells, Map4k4 activated p70S6K, JNK, 
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p38 MAPK, and NF-κB. Map4k4 depletion rescued the β cells from the detrimental 

effects of TNFα on insulin secretion and signaling as well as p70S6K and JNK activation, 

while p38 and NF-κB phosphorylation was unaffected (35).  

 

Specific Aims 

An array of studies has identified Map4k4 as an upstream regulator of members of 

MAPK family including p38 MAPK, JNK and ERK in multiple cell lines. Furthermore, 

Map4k4 was discovered to regulate PPARγ translation through modulating 

mTOR/4EBP1 signaling pathway in cultured adipocytes. Both MAPKs and mTOR have 

been demonstrated to play important roles in skeletal muscle differentiation. mTOR is 

also a component of IGF/Akt signaling, which promotes skeletal muscle development 

and hypertrophy though regulating multiple downstream effectors including mTOR, 

GSK3β and FoxO. Given the regulatory interactions between Map4k4 and MAPKs as 

well as mTOR, and the involvement of the latter proteins in skeletal myogenesis, I aimed 

to test whether Map4k4 regulates skeletal muscle differentiation as its identified 

downstream effectors do. To address this RNAi and adenovirus-mediated overexpression 

strategy were employed for an in vitro study in murine muscle cell line C2C12. The 

specific aims of this study were:  

(1) To determine the role of Map4k4 in skeletal muscle differentiation. 

(2) To identify the signaling pathways that Map4k4 may participate in to regulate the 

myogenic process.     



 
 

CHAPTER II: Identification of Map4k4 as a novel suppressor 

of skeletal muscle 

 

Disclaimer: 

All experiments were performed by the author except for Figure 2.1A and Figure 2.3B 

which were done in collaboration with Shinya U. Amano. Figure 2.1C was done in 

collaboration with Rachel J. Roth Flach.  Anil Chawla generated the construct for Myf5 

overexpression. Dr. Diane L. Barber provided the adenoviruses expressing GFP, native 

Map4k4 and kinase-inactive Map4k4 mutant. 
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Abstract 

Myoblast differentiation into mature myotubes is a critical step in the development and 

repair of human skeletal muscle. Here we show that siRNA-based silencing of the Ste20-

like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly 

enhances expression of myogenic differentiation genes, myoblast fusion and myotube 

diameter. In contrast, adenovirus-mediated expression of native Map4k4 in C2C12 cells 

attenuates each of these processes, indicating Map4k4 is a negative regulator of 

myogenic differentiation and hypertrophy. Expressing a Map4k4 kinase-inactive mutant 

enhances myotube formation, suggesting kinase activity of Map4k4 is essential for its 

inhibition of muscle differentiation. Map4k4 regulation of myogenesis is unlikely to be 

mediated by classic MAPK signaling pathways because no significant difference in 

phosphorylation of ERK, p38 or JNK is observed in Map4k4-silenced cells. Furthermore, 

silencing of these other MAPKs does not result in a hypertrophic myotube phenotype as 

does Map4k4 depletion. Uniquely, Map4k4 silencing up-regulates the expression of 

myogenic regulatory factor Myf5, depletion of which inhibits myogenesis. Furthermore, 

Myf5 is required for enhancement of myotube formation in Map4k4-silenced cells, while 

Myf5 overexpression rescues Map4k4-mediated inhibition of myogenic differentiation. 

These results demonstrate that Map4k4 is a novel suppressor of skeletal muscle 

differentiation, acting through a Myf5-dependent mechanism.  
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Introduction 

Skeletal muscle differentiation is a highly coordinated multistep process in which 

mononucleated myoblasts first withdraw from the cell cycle in response to extracelluar 

cues, differentiate into post-mitotic myocytes (early differentiation), and subsequently 

fuse into multinucleated myotubes (late differentiation) which finally bundle to form 

mature muscle fibers (terminal differentiation). This process is elaborately controlled by 

activation of Myf5, MyoD, myogenin and MRF4, four myogenic regulatory factors 

(MRFs) belonging to a family of basic helix-loop-helix transcription factors. During 

myogenesis, MRFs are activated and operate in concert with other transcriptional 

regulators such as myocyte enhancer factor 2 (MEF2) in a coordinated manner to regulate 

the transcription of muscle-specific genes including myosin heavy chain (MyHC) and 

muscle creatine kinase (MCK) (40, 181, 200). Previous studies have confirmed Myf5 and 

MyoD as muscle determination factors that are mainly expressed in undifferentiated 

myoblasts and differentiating myocytes, while myogenin is activated in early 

differentiation (21). Mrf4 has been shown to be transiently expressed during 

somitogenesis and later fiber maturation (115), playing roles in myogenic lineage 

commitment (134) as well as myoblast fusion and differentiation (256-257).  

Mitogen-activated protein kinases (MAPKs) are components of serine/threonine protein 

kinase cascades that respond to extracellular stimuli and regulate essential cellular 

functions such as proliferation (305), differentiation (5-6, 32) and apoptosis (275). The 

MAPK family is categorized into three main groups: p38 stress activated protein kinase, 
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c-Jun N terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) 

(128), all of which have been demonstrated to be involved in mammalian skeletal 

myogenesis (141, 161). The exploration of new upstream kinases that modulate the 

downstream effector MAPKs identified mitogen activated protein kinase kinase kinase 

kinase (MAP4K4), a serine/threonine protein kinase that belongs to the germinal center 

kinase GCK-IV group of Saccharomyces cerevisiae sterile 20 protein (Ste20) kinases 

(65). Map4k4 may activate the JNK signaling pathway in some cell types and mediate 

cancer cell proliferation, apoptosis and motility (58, 157). It was found to play an 

essential role in development (293) and it has been shown to be critical for mesoderm 

migration during gastrulation by acting upstream of p38 MAPK (309). In an RNAi-based 

screen for regulators of adipocyte function, we discovered that Map4k4 down-regulates 

expression of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor 

that is essential for adipocyte differentiation and function (263). Cell size, insulin-

mediated glucose transport and triglyceride content were found to be significantly 

increased upon Map4k4 silencing in cultured adipocytes (102), indicating that Map4k4 is 

a negative regulator of insulin-stimulated lipogenesis and adipose hypertrophy.  

More recently it was found that Map4k4 also functions in muscle to enhance insulin 

sensitivity (7). Map4k4 gene silencing in primary human skeletal muscle cells prevented 

tumor necrosis factor α (TNFα)-induced insulin resistance (36). However, the role of 

Map4k4 in skeletal myogenesis has not been addressed. In the present study we used 

C2C12 murine myoblasts to investigate the function of Map4k4 on myogenic processes. 
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We demonstrate that Map4k4 acts upstream of Myf5 as a negative regulator of skeletal 

muscle differentiation.  

Materials and Methods 

Molecular biology. Mouse Myf5 clone (accession number: NM_008656) was purchased 

from Open Biosystems. The coding regions of Myf5 gene was PCR-amplified and cloned 

into pCMV plasmid carrying three N-terminal hemaggutinin (HA) tags (pCMV-3HA) to 

create a N-terminally HA-tagged Myf5 construct. Primers used to amplify PCR 

fragments of Myf5 coding region were as follows: 5’ fragment: 

CGATCGCCACGCGTATCTCGAGCTATGGACATGACGGACGGCTGCCAGTTCT

CCCCT; 3’ fragment: GCGTACGGATCCGTCGACTCATAATA 

CGTGATAGATAAGTCTGG AGCTGGAGGGTCC.  

Cell culture and transfection. Mouse C2C12 myoblasts (American Type Culture 

Collection) were cultured in growth medium (GM) consisting of Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin at 37°C with 5% CO2. To induce differentiation, 95% confluent 

cells were placed in differentiation medium (DM) consisting of DMEM with 2% horse 

serum. Multinucleated myotubes were evident after 3 days of differentiation. For siRNA 

transfection, C2C12 myoblasts cultured in growth medium were transfected with 50 pmol 

siRNA using Lipofectatmine RNAiMAX (Invitrogen) according to the manufacturer’s 

instruction for reverse transfection. Twenty-four hours later, cells were switched to DM 

and cultured for the indicated times before harvesting. To transfect siRNA in 
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differentiated myotubes, siRNA/endoporter complexes were used as described previously 

(265). Briefly, 50 pmol of siRNA was incubated with 2.5 nmol of endoporter (Gene 

Tools) in phosphate buffered saline (PBS) for 15 minutes and added to cells. All of the 

siRNA was purchased from Dharmacon (Lafayette, CO). For plasmid transfection, GM-

cultured C2C12 myoblasts were transfected with 2 µg of plasmids using Lipofectatmine 

2000 (Invitrogen) according to the manufacturer’s instruction for reverse transfection. 

Twenty-four hours later, cells were switched to DM and cultured for the indicated times 

before harvesting. 

Adenovirus infection. C2C12 myoblasts were grown until 90% confluence and were 

then infected with GFP control virus, Map4k4 wild type virus or Map4k4 D152N virus at 

the dose of 104 virus particles per cell for 18 hours in GM before differentiation. 72 hours 

post-differentiation, cells were fixed for immunofluorescence or harvested for western 

blotting. All the adenoviruses were gifts from Dr. Diane L. Barber (Department of Cell 

and Tissue Biology, University of California, San Francisco, CA)   

Myotube analysis. Myotube nuclei were counted in approximately 100 randomly chosen 

MyHC-positive cells containing three or more nuclei. Myotubes were categorized into 

three groups (3-6 nuclei, 7-15 nuclei and more than 15 nuclei per myotube) and were 

expressed as a percentage of total myotube number. The fusion index was calculated as 

the ratio of nuclei in MyHC-positive myotubes to the total number of nuclei in the field in 

five random fields. To analyze myotube diameter, five fields were chosen randomly, and 
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three myotubes were measured per field. The average diameter per myotube was 

calculated as the mean of three measurements taken along the long axis of the myotube.  

Isolation of mouse satellite cells. Satellite cells were isolated from 6-8 week old 

C57B6/J mice by FACS sorting as described previously (209). Briefly, skeletal muscles 

were digested with collagenase B (10 mg/ml, Roche) and dispase II (2.4 U/ml, Roche), 

filtered through 250, 100 and 40 µm nylon meshes successively. The resulting 

mononuclear cells were incubated with anti-mouse Integrin α7 clone 3C12 (MBL) and 

biotin anti-mouse CD34 (eBioscience) antibodies for 20 minutes and then stained with 

hoechst 33258 (sigma), PE anti-mouse CD11b (eBiosciences), PE anti-mouse CD45 

(eBiosciences), PE anti-mouse Ly-6A-E (Sca1, BD Bioscience), PE anti-rat CD31 (BD 

Bioscience), streptavidin-APC-Cy7 (BD Bioscience) antibodies. Integrin 

α7+CD34+CD31-CD11b-CD45-Sca1- cells were considered as satellite cells and sorted by 

BD FACS Aria II.    

Western blotting. Cells were solubilized with ice-cold lysis buffer (20 mM HEPES, pH 

7.2, 100 mM NaCl, 1mM EDTA, 100 mM PMSF, 0.01% Triton X-100, 1% SDS and 

Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific)) and protein 

concentrations were assessed by BCA assay (Thermo Scientific). Equal amounts of 

protein were loaded on 8.5% SDS-polyacrylamide gels and transferred to nitrocellulose 

membranes. The following antibodies were used: anti-Map4k4 (Bethyl), anti-Myf5 (sc-

20, Santa Cruz), anti-MyoD (BD biosciences), anti-Mef2C (Cell Signaling), myogenin 

F5D (Developmental Studies Hybridoma Bank (DSHB), University of Iowa), sarcomeric 
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myosin heavy chain (MHC) MF20 (DSHB, University of Iowa), anti-phospho-p38 (Cell 

Signaling), anti-total p38α (Cell Signaling), anti-phospho-p44/42 MAPK (ERK1/2) 

(Thr202/Tyr204) (Cell Signaling), anti-p44/42 MAPK (ERK1/2) (Santa Cruz), anti-

phospho-SAPK/JNK (Thr183/Tyr185) (Cell Signaling) and anti-SAPK/ JNK (Cell 

Signaling). 

Immunofluorescence microscopy. Cells grown on glass coverslips were fixed with 4% 

formaldehyde and blocked in PBS containing 2% goat serum (Invitrogen), 1% bovine 

serum albumin (Sigma), 0.1% Tween 20 and 0.05% Triton X-100 (American 

Bioanalytical) for 1 hour at room temperature. The cells were then incubated with MF20 

mAb against MHC (1:40, DSHB) for 2.5 hours and subsequently with Alexa 488 or 

Alexa 594-conjugated secondary antibody (1:200, Invitrogen) for 1 hour at room 

temperature. Cells were mounted with ProLong Gold antifade reagent with DAPI 

(Invitrogen). Images were obtained using a Zeiss Axiovert 200 inverted microscope 

equipped with a Zeiss AxioCam HR CCD camera. 

EdU incorporation test. C2C12 cells were were incubated for 1 hour with 10 uM EdU 

(Invitrogen) before harvesting. Cells were washed once with 1% BSA and 0.09% NaN3 

(FACS buffer) before fixation with Fixation/permeabilization buffer (eBioscience) and 

permeabilized with permeabilization buffer (eBioscience). EdU was chemically 

conjugated to Alexa 405 fluorophore according to the instructions of the manufacturer 

(Invitrogen). Sample data were acquired on a BD LSRII (BD Biosciences) and analyzed 

with FlowJo software (Tree Star). 
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Creatine kinase activity assay. Cells were lysed in ice-cold lysis buffer (20 mM HEPES, 

pH 7.2, 100 mM NaCl, 1mM EDTA, 100 mM PMSF, 0.01% Triton X-100 and protease 

and phosphatase inhibitor cocktail). Lysates were centrifuged at 14000 × g for 10 min at 

4°C and the supernatants were used immediately for creatine kinase (CK) activity assay. 

CK activity was measured using a spectrophotometric-based kit (Stanbio Laboratory, 

Boerne, TX, USA) according to the manufacturer’s instructions. Specific CK activity was 

calculated by normalizing to total protein content.  

Map4k4 kinase activity assay.  Cells were solubilized with ice-cold lysis buffer (50 mM 

Tris, pH 7.4, 100 mM NaCl, 5 mM EDTA, 1% NP-40, 0.1% deoxcholic acid and 

protease and phosphatase inhibitor cocktail). Cell lysates were immunoprecipitated with 

anti-Map4k4 antibody (Bethyl). Myelin basic protein (MBP) (1 µg) and 10 µCi of [γ-

32P]-ATP were added into the immunoprecipitates and incubated for 30 min at 30°C in 

kinase buffer ( 20 mM  HEPES, 10 nM MgCl2, 1 mM DTT and protease and phosphatase 

inhibitor cocktail). Samples were separated by 12% SDS-PAGE and visualized by 

autoradiography. Map4k4 kinase activities were determined by normalizing the 

radioactivity of 32P-labeled MBP to the amount of immunoprecipitated Map4k4 protein 

as detected by Western blot.  

Isolation of RNA and Real Time PCR. RNA isolation was performed according to the 

Trizol Reagent Protocol (Invitrogen). cDNA was synthesized from 1.5 μg of total RNA 

using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules CA) according to the 

manufacturer’s instructions. For real time PCR, synthesized cDNA and iQ SYBR Green 
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Supermix were run on the MyIQ Realtime PCR System (Bio-Rad) with following primer 

pairs: Map4k4 5’-CATCTCCAGGGAAATCCTCAGG-3’, Map4k4 5’-

TTCTGTAGTCGTAAGTGGCGTCTG-3’; Myf5 5’-TATGAAGGCTCCTGTATCCC-

3’, Myf5 5’-ACGTGCTCCTCATCGTCTG-3’. 36B4 was used as an internal loading 

control. Relative gene expression was determined using the ΔCt method (159).  

Statistics. The statistical significance of the differences in the means of experimental 

groups was determined by two-tailed student’s t test using Microsoft EXCEL. The data 

were presented as the means ± SEM. A p value of <0.05 was considered significant.  

Results 

Map4k4 expression and protein kinase activity are decreased during skeletal muscle 

differentiation. 

To determine whether Map4k4 may play a role in muscle differentiation, we first 

examined Map4k4 expression in primary mouse satellite cells and mature muscle fibers. 

Adult satellite cells are considered to be progenitor cells of somitic origin in skeletal 

muscle development (101). Real-Time PCR (RT-PCR) analysis revealed a 4-fold 

decrease in Map4k4 expression in mouse quadriceps compared with purified satellite 

cells isolated by fluorescence-activated cell sorting from the same mice (Fig 2.1A). We 

also investigated Map4k4 expression during differentiation of C2C12 cells, a well-

established cell line that is derived from mouse satellite cells and faithfully mimics 

skeletal muscle differentiation process in vitro. A reduction of Map4k4 protein levels was 

detected during C2C12 myogenic differentiation by Western blot, concomitant with the 
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increased expression of differentiation markers myogenin and myosin heavy chain 

(MyHC; Fig 2.1B). Furthermore, we measured Map4k4 protein kinase activity during 

C2C12 differentiation, determining it was highest in confluent myoblasts and decreased 

dramatically after 24 hours of differentiation (Fig 2.1C). These results indicated that 

Map4k4 is dynamically regulated during skeletal muscle differentiation, suggesting a 

potential role for Map4k4 in muscle development.  
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Figure 2.1 Expression and kinase catalytic activity of Map4k4 during skeletal muscle 
differentiation. (A) RT-PCR analysis of Map4k4 expression in isolated mouse satellite 
cells vs. quadriceps. Data represent mean ± SEM from three independent experiments. (B) 
Expression of Map4k4 during C2C12 myogenic differentiation.  Densitometry was 
representative of mean ± SEM from four independent experiments. (C) C2C12 myoblasts 
were incubated in differentiation medium (DM) for the indicated times. Map4k4 kinase 
activity at each time point was assessed by kinase assay and immunoblotting. Results 
represent mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.  
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Map4k4 silencing promotes skeletal muscle differentiation.  

To explore the function of Map4k4 in myogenic differentiation, we used siRNA directed 

against Map4k4 to deplete the protein kinase in C2C12 myoblasts and monitored 

morphological differences during cell differentiation. Map4k4 silencing resulted in 

significant sustained reduction of Map4k4 protein throughout differentiation and 

formation of larger myotubes after 48 hours in differentiation medium (DM) (Fig. 2.2A). 

Enhanced muscle cell fusion was observed in Map4k4-silenced cells on differentiation 

day 3, as there was a shift toward myotubes containing more nuclei per myotube (Fig. 

2.2B) and an increased fusion index (Fig. 2.2C). Map4k4 silencing also resulted in a 70% 

increase of cell diameter in day 3 myotubes (Fig 2.2D), likely due to enhanced myoblast 

fusion. Similar nuclei numbers in random microscopic fields were detected in Map4k4-

silenced myoblasts and myocytes (Fig 2.3A), excluding the possibility that the hyper-

nucleated myotubes with increased size resulted from an increased number of 

undifferentiated myoblasts available for the fusion process. 
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Figure 2.2 Map4k4 silencing promotes myotube formation in C2C12 cells. C2C12 
myoblasts were transfected with scrambled siRNA or siRNA against Map4k4. 24 h later 
the cells were transferred DM for the indicated times. (A) Top panel, knockdown 
efficiency of Map4k4 was determined by immunoblot. Bottom panels, cells were fixed 
and immunostained for MyHC and myoblast differentiation was observed by 
fluorescence microscopy (green, MyHC; blue, DAPI, 100×). Data is representative of at 
least three independent experiments. (B) Fraction of myotubes with the indicated number 
of nuclei were quantified in 100 randomly chosen myotubes after 72 h in DM. (C) The 
fusion index for day 3 myotubes was calculated from the ratio of nuclei number in 
MyHC-positive myotubes versus the total number of nuclei in one field in five random 
microscopic fields. (D) Myotube diameters were measured in day 3 myotubes. Results 
represent mean ± SEM from three independent experiments. *** p <0.001. 
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Figure 2.3 Map4k4 silencing has no effect on C2C12 myoblast proliferation. (A) 
C2C12 myoblasts were transfected with scrambled or Map4k4 siRNA. 24 hours later, the 
cells were cultured for additional 24 hours in GM or transferred to DM. Nuclei were 
counted after 24 hours in GM or 24 hours and 48 hours in DM. The values were obtained 
after counting at least 6 microscopic fields in duplicate samples. (B) C2C12 myoblasts 
were infected with adenoviruses expressing GFP, wild type Map4k4 or Map4k4 kinase-
inactive mutant D152N for 24 hours. Factions of GFP-positive cells in S phase in GM (0 
h) and in DM for 24 hours were analyzed by FACS after staining with EdU. Data 
represent mean ± SEM for triplicates in two independent experiments. 
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We further studied the differentiation program by examining the expression of muscle 

differentiation markers. No significant changes in MyoD protein levels were detected in 

Map4k4-silenced cells compared with scrambled siRNA-transfected controls during 

differentiation (Fig 2.4, A and B). However, significant transient increases in myogenin 

and Mef2C expression were detected in Map4k4-silenced cells at 16 hours and 48 hours 

of differentiation respectively (Fig 2.4, A and B). MyHC expression starts in a population 

of mononuclear myoblasts and rapidly increases with myoblast fusion during late 

myogenesis ((194) and Fig 2.4A). Map4k4 silencing enhanced MyHC expression during 

late C2C12 differentiation, although the increase was only significant at 48 hours of 

differentiation with trends toward increased expression at later time points (Fig 2.4, A 

and B). MCK activity, a later marker of skeletal muscle cell differentiation, was increased 

by 45% in Map4k4-silenced cells at day 3 of differentiation. These results suggest that 

silencing of Map4k4 enhances myotube formation and promotes skeletal myogenic 

differentiation.  
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Figure 2.4 Map4k4 silencing enhances C2C12 myogenic differentiation. C2C12 
myoblasts were transfected with scrambled or Map4k4 siRNA. Cells were transferred to 
DM 24 h after transfection and differentiated for the indicated times. (A) Expression of 
myogenic differentiation proteins was assayed by immunoblotting with the indicated 
antibodies. Data is representative of three independent experiments. (B) Densitometric 
analysis from western blot in (A). (C) Creatine kinase (CK) activities of transfected cells 
were measured after 3 days in DM. Data represent mean ± SEM from three independent 
experiments. * p < 0.05, *** p < 0.001.  
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Inhibition of myogenic differentiation by Map4k4 requires its kinase activity.  

Since suppression of Map4k4 expression enhanced skeletal muscle differentiation, we 

hypothesized that Map4k4 overexpression would have the opposite effect. To test this, 

adenoviruses expressing GFP control (AdGFP) or wildtype (wt) Map4k4 (AdMap4k4 wt) 

(16) were used to infect C2C12 myoblasts for 18 hours prior to differentiation. 

Overexpression of wt Map4k4 impeded MyHC-positive myotube formation (Fig 2.5A) 

and myoblast fusion (Fig 2.5B) within 72 hours of serum deprivation. Western blot 

analysis confirmed that the expression of Mef2c and late myogenic differentiation marker 

gene MyHC was inhibited in wt Map4k4-overexpressing cells (Fig 2.5C). We also 

assessed the effect of a Map4k4 kinase-inactive mutant on myogenic differentiation. 

C2C12 myoblasts were infected with adenoviruses expressing Map4k4 D152N, a kinase-

inactive mutant of Map4k4 (AdMap4k4 D152N) (16) and were induced to differentiate 

into myotubes for 72 hours. Interestingly, Map4k4 D152N overexpression caused the 

formation of larger myotubes and a substantial increase in myoblast fusion (Fig 2.5, A 

and B), similar to the results of the Map4k4 knockdown experiments (Fig 2.5, A and C). 

An increase in Mef2c and MyHC expression was also observed in Map4k4 D152N-

overexpressing cells (Fig 2.5C). These data suggest that the Map4k4 kinase-inactive 

mutant functions as a dominant-negative inhibitor, possibly by competing with the 

functional endogenous Map4k4 in C2C12 cells, and that Map4k4 kinase activity is 

required to repress skeletal muscle differentiation. Furthermore, Map4k4 does not 

regulate myogenic differentiation through affecting myoblast proliferation, because no 

change in the percentage of EdU-positive cells was observed in wt or kinase-inactive 
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Map4k4-overexpressing C2C12 cells (Fig 2.3B), consistent with the unaltered nuclei 

numbers in myoblasts and myocytes upon Map4k4 silencing (Fig 2.3A). 

 

 

Figure 2.5 Map4k4 kinase activity is required for its inhibition of C2C12 myogenic 
differentiation. C2C12 myoblasts were infected with adenoviruses expressing GFP, wild 
type Map4k4 or Map4k4 kinase-inactive mutant D152N and differentiated for 72h. (A) 
Cells were immunostained with anti-MyHC antibody. Images were photographed by 
fluorescence microscopy (red, MyHC; blue, DAPI, 100×). (B) Quantitative analysis of 
myogenic conversion scored by fusion index. Data represent mean ± SEM from two 
independent experiments. *** p < 0.001. (C) Immunoblot analysis of Map4k4 and 
myogenic markers. Data is representative of three independent experiments.  
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Map4k4 does not regulate myogenic differentiation through canonical MAPK 

signaling pathways.  

In other systems Map4k4 has been described as an upstream effector in JNK, ERK and 

p38 signaling pathways. These pathways are also reportedly involved in skeletal muscle 

differentiation, thus it seemed possible that Map4k4 regulates myogenic differentiation 

through these canonical MAPK pathways. To assess this hypothesis, we used siRNA to 

suppress MAPK expression separately or in combination in C2C12 myoblasts and 

monitored myogenic differentiation by visualizing MyHC-positive myotube formation. 

We posited that if Map4k4 functions upstream in the respective signaling pathway to 

regulate myogenesis, then silencing of the downstream effectors would result in a similar 

phenotype as Map4k4 silencing. However, depletion of p38α abolished myogenic 

differentiation because few p38α-silenced cells fused into multinuclear myotubes (Fig 

2.6A), consistent with the conclusion derived from previous studies that p38α is critical 

for skeletal myogenesis (64, 291, 302). Other reports have shown that basal JNK activity 

is essential for regulation of skeletal muscle differentiation and inhibition of JNK 

activation inhibited myogenesis by inducing myoblast apoptosis (138). We suppressed 

JNK1 expression in myoblasts and observed a minimal effect of JNK1 silencing on 

myotube formation under our experimental conditions. However, JNK2 or JNK1/2 

silencing in combination inhibited myogenic differentiation, as shown by reduced 

myotube formation (Fig 2.6A). ERK1/2 is essential for myoblast proliferation, and is 

inhibitory to early differentiation, but is also required for myocyte fusion. Inhibition of 

ERK activity early in myogenesis promotes differentiation, whereas later inhibition 
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impedes differentiation (291). In our study, ERK1 silencing in C2C12 myoblasts 

promoted myotube formation while knockdown of ERK2 resulted in the formation of 

smaller myotubes. Myotubes differentiated from ERK1 and ERK2 double knock down 

myoblasts had modestly decreased size compared to the ones differentiated from the 

scrambled siRNA transfected control (Fig 2.6A). These results revealed that Map4k4 

functions differently on myogenic differentiation than the canonical MAPK pathways. 

This conclusion was further confirmed by measurement of phosphorylation levels of the 

MAPKs during differentiation. No significant changes in p38α, ERK1/2 or JNK1/2 

phosphorylation were observed in Map4k4-silenced cells (Fig 2.6B), indicating that 

Map4k4 failed to regulate their activities during myogenic differentiation.  
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Figure 2.6 Map4k4 silencing does not promote skeletal muscle differentiation 
through canonical MAPK signaling pathways. C2C12 myoblasts were transfected with 
scrambled siRNA or siRNA against Map4k4, p38α, JNK1, JNK2, JNK1+JNK2, ERK1, 
ERK2 or ERK1+ERK2. Cells were transferred to DM 24 h after differentiation and 
incubated for 72h. (A) Left panels, myoblast differentiation was observed by 
immunostaining for MyHC expression (50×). Right panels, knockdown efficiency of the 
MAP kinases was determined by western blot. (B) C2C12 myoblasts were transfected 
with scrambled or Map4k4 siRNA. Cells were transferred to DM 24 h after transfection 
and incubated for the indicated times. Lysates were immunoblotted with the indicated 
antibodies. Densitometric analysis represents mean ± SEM from three independent 
experiments.  
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Map4k4 functions mainly at the early stage of myogenic differentiation.  

To investigate the stages of myogenic differentiation in which Map4k4 functions, C2C12 

cells were transfected with scrambled siRNA or siRNA targeting Map4k4 at multiple 

stages of differentiation and for variable periods of time (Fig 2.7A, right panels), and 

myotube formation was assessed on day 4 after initiation of differentiation by measuring 

the fusion index. In these experiments 90% of Map4k4 proteins were depleted in 

myotubes at this day 4 point in response to transfections of Map4k4 siRNA at the 

different time points shown (Fig 2.7B). Map4k4 silencing in myoblasts (day -1) provoked 

the most robust myotube formation (Fig 2.7A, upper left panels), as the fusion index in 

Map4k4-silenced cells was 60% higher than in the control cells on day 4 (Fig 2.7C). 

Map4k4 depletion at day 1 in myocytes that are about to enter the late stage of 

differentiation still resulted in larger myotubes and increased myoblast fusion compared 

to the control cells. However, the promotion of myotube formation was less than that 

resulted from Map4k4 silencing at earlier stages in myoblasts differentiation (Fig 2.7, A, 

middle left panels and C). When siRNA against Map4k4 was transfected into day 2 

myotubes, coincident with onset of terminal differentiation, the myotubes showed even 

smaller changes in size or fusion compared to the results obtained from Map4k4 

suppression in myoblasts and day 1 myocytes (Fig 2.7, A, lower left panels and C). These 

results indicate that Map4k4 functions in multiple stages of muscle differentiation, but 

the enhanced myotube formation observed in Map4k4-depleted cells at later stages of 

differentiation mainly results from a role that Map4k4 plays at the onset of myogenic 

differentiation. That Map4k4 apparently plays an early role in the process is also 
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consistent with the higher Map4k4 kinase activity at the early stage of muscle 

differentiation (Fig 2.1B).  

 

 

Figure 2.7 Map4k4 functions mainly at the early stage of myogenic differentiation. 
C2C12 myoblasts were transfected with scrambled or Map4k4 siRNA at different stages 
of differentiation for the indicated time periods. (A) Left panels, cells were fixed and 
immunostained for MyHC (green) after 4 days in DM (100×). Right panels, schematics 
of the time course of siRNA application. (B) Knockdown efficiency of Map4k4 was 
determined by immunoblot. (C) The fusion index was calculated by dividing the number 
of nuclei in MHC-positive cells by the total number of nuclei in that field. Data represent 
mean ± SEM from two independent experiments. ** p <0.01, *** p < 0.001. 
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Map4k4 regulates myogenic differentiation in a Myf5-dependent manner. 

Among the four myogenic regulatory factors, Myf5 and MyoD regulate the early stage of 

skeletal muscle differentiation. Because no change in MyoD expression was detected in 

Map4k4-silenced cells during differentiation (Fig 2.4, A and B), we examined expression 

Myf5 expression by RT-PCR and Western blot. In cells treated with scrambled siRNA, 

Myf5 expression increased in early differentiation, peaked at 24 hours, and then 

decreased (Fig 2.8, A and B). Map4k4 silencing increased Myf5 mRNA transcripts by 

1.4-fold within 16 hours of myogenic differentiation (Fig 2.8A). More dramatically, a 

three-fold increase in Myf5 protein levels was detected in Map4k4-depleted 

undifferentiated myoblasts and myocytes at the early stage of differentiation (Fig 2.8B).    

To determine whether the increase in Myf5 protein levels is essential for the enhanced 

myogenic differentiation that is found after Map4k4 depletion, we performed double 

knockdown experiments to suppress Map4k4 and Myf5 expression simultaneously in 

C2C12 myoblasts, and examined differentiation by microscopic analysis and Western 

blot. As expected, Map4k4 knockdown promoted myogenic differentiation and Myf5 

expression (Fig 2.9). In contrast, Myf5 silencing impeded myogenic differentiation as 

shown by reduced myotube formation (Fig 2.9A), decreased myoblast fusion (Fig 2.9B) 

and lower expression of myogenin, Mef2C and MyHC during differentiation (Fig 2.9C). 

Importantly, when compared with Map4k4 suppression alone, smaller myotubes with less 

fusion and myogenic differentiation factor expression were observed when Map4k4 and 

Myf5 were silenced simultaneously (Fig 2.9), indicating that reduced levels of Myf5 

expression partially inhibit the effects of Map4k4 silencing on myogenic differentiation.  
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Figure 2.8 Map4k4 silencing increases Myf5 expression. C2C12 myoblasts were 
transfected with scrambled or Map4k4 siRNA and transferred to DM for the indicated 
times 24 h post transfection. (A) Myf5 mRNA level was determined by Real-Time PCR. 
(B) Upper panel, Myf5 protein level was determined by immunoblot. Lower panel, 
densitometry of Myf5 as normalized to α-tubulin. Data is represented as the mean ± SEM 
of three independent experiments. * p < 0.05, ** p < 0.01.  
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Figure 2.9 Suppression of Myf5 impairs Map4k4 silencing-enhanced myogenic 
differentiation. C2C12 myoblasts were transfected with scrambled siRNA, siRNA 
against Map4k4, Myf5 or a combination of both.  (A) Cells were fixed and 
immunostained for MyHC (green) at day 3 after differentiation and myogenic conversion 
was observed by fluorescence microscopy (50× and 100×). (B) The fusion index was 
calculated for transfected cells after 3 days in DM. Results represent mean ± SEM from 
three independent experiments. *** p < 0.001. (C) Immunoblot of myogenic 
differentiation proteins. Data is representative of three independent experiments.  
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To further demonstrate that Myf5 is a downstream effector of Map4k4 signaling in the 

regulation of skeletal muscle differentiation, we overexpressed Map4k4 and Myf5 

simultaneously in C2C12 myoblasts, and examined muscle differentiation by microscopy 

and immunoblotting. Expression of native Map4k4 protein kinase inhibited C2C12 

myogenic differentiation while Myf5 expression robustly enhanced myotube formation 

(Fig 2.10, A and B) and late differentiation marker expression (Fig 2.10C). Interestingly, 

Myf5 expression significantly reversed the inhibitory effect of Map4k4 expression in 

myogenic differentiation (Fig 2.10). Based on these results, we conclude that Map4k4 

regulates skeletal myogenesis at least partially by regulating Myf5 expression. 
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Figure 2.10 Myf5 expression reverses the impaired myogenic differentiation caused 
by Map4k4. C2C12 myoblasts were transfected with empty vector or a construct 
expressing Myf5. Six h later, the cells were infected with adenoviruses expressing GFP 
or Map4k4. (A) Cells were fixed and immunostained for MyHC (red) at day 3 after 
differentiation and myogenic conversion was observed by fluorescence microscopy 
(100×). (B) The fusion index was calculated for transfected cells after 3 days in DM. 
Results represent mean ± SEM from three independent experiments. *** p < 0.001. (C) 
Immunoblot of myogenic differentiation proteins. Data is representative of three 
independent experiments. 
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Discussion 

In this study we demonstrate that Map4k4 negatively regulates C2C12 myogenic 

differentiation through a Myf5-dependent mechanism. RNAi-mediated gene specific 

silencing of Map4k4 expression or expression of a Map4k4 kinase-inactive mutant 

enhances the differentiation of C2C12 myoblasts (Fig 2.2, 2.4 and 2.5), while Map4k4 

expression inhibits this process (Fig 2.5). Map4k4 suppression results in a significant 

increase in Myf5 expression at the early stage of differentiation (Fig 2.8). Furthermore, 

silencing of Myf5 inhibits C2C12 myoblast differentiation and also suppresses the ability 

of Map4k4 silencing to enhance myotube formation (Fig 2.9). In contrast, Myf5 

expression promotes myotube formation and reverses the Map4k4-mediated myogenic 

differentiation inhibition (Fig 2.10), suggesting that Map4k4 regulates C2C12 

myogenesis at least in part through Myf5.  

We found that Map4k4 does not likely mediate myogenic differentiation via activation of 

the canonical MAPK signaling pathways, although it has been reported that Map4k4 can 

act upstream of p38 MAPK, JNK and ERK. In contrast to the dramatic enhancement of 

myotube formation upon Map4k4 silencing, a slight increase of myotube formation was 

observed in ERK1-silenced cells, while suppression of other MAPKs resulted in either no 

morphological difference or smaller myotubes. In addition, no change in levels of 

phosphorylated MAPKs were observed upon Map4k4 knockdown, which further 

suggests that the Map4k4-mediated increase in myogenesis is independent of MAPKs 

(Fig 2.6). These findings implicating signaling pathways distinct from canonical MAP 
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kinase cascades are consistent with our studies of Map4k4 signaling in other cellular 

contexts. We have previously shown that Map4k4 functions to reduce lipopolysaccharide 

(LPS)-induced TNFα expression in macrophages in a MAP kinase-independent manner. 

In that study, silencing of macrophage Map4k4 had no effect on the phosphorylation of 

p38 MAPK, ERK1/2, JNK1/2 or their substrates ATF2 or c-Jun in response to LPS (7). 

Map4k4 has also been suggested to regulate lipogenesis in cultured adipocytes 

independently of JNK signaling pathway, because JNK kinase activity remained 

unaltered upon either Map4k4 silencing or overexpression as determined by anti-

phosphorylated JNK or c-Jun antibodies and protein kinase assay (Laura Danai, 

unpublished data). These findings strongly suggest that Map4k4 may regulate cellular 

processes independently of MAPK signaling pathways. The discrepancy on the 

relationship between Map4k4 and MAPKs between our studies and others’ may result 

from differences in cell types, animal models and experimental methods that have been 

used. In fact, JNK activity regulation by Map4k4 could only be observed when both 

kinases were overexpressed in 293T cells, as it has been shown in several other studies 

(254, 297), but not when the endogenous kinases were examined in these cells (Laura 

Danai, unpublished data). Of note, we have not examined whether Map4k4 may regulate 

other p38 MAPK isoforms (β, γ and δ), which have been demonstrated to be necessary 

for C2C12 myogenic differentiation (151, 277). Further investigations are required to test 

this possibility.  

In the current study, Myf5 expression was enhanced at the early stage of myogenic 

differentiation in Map4k4-depleted myocytes (Fig 2.8). We further found that Myf5 is 
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critical for myogenic differentiation because siRNA-mediated Myf5 suppression 

significantly inhibited C2C12 myoblast differentiation (Fig 2.9), consistent with the 

observations reported in a recently published study (224). Furthermore, we found that 

silencing of Myf5 reduced the enhanced myotube formation that ensued upon Map4k4 

suppression to the same level as the scrambled siRNA control (Fig 2.9), indicating that 

Map4k4 regulates myogenic differentiation in a Myf5-dependent manner. The marked 

rescue by Myf5 overexpression of myogenic differentiation inhibition because of 

Map4k4 in myoblasts demonstrates that Map4k4 regulates skeletal muscle differentiation 

by acting upstream of Myf5. Other regulators may also be involved in the regulation of 

myogenesis by Map4k4, such as proteins related to myoblast fusion that occurs in late 

differentiation. This concept is supported by the observation that Map4k4 suppression 

during late differentiation still significantly increased myotube formation (Fig 2.7, middle 

panels).  

In human skeletal muscle, Map4K4 silencing protected against TNFα-mediated insulin 

resistance by preventing activation of JNK1/2 and ERK1/2 (36). TNFα has been 

demonstrated to inhibit skeletal muscle differentiation in several studies (3, 48, 57).  

Therefore, Map4k4 may mediate in part the inhibitory effect of TNFα on C2C12 

differentiation. When C2C12 myoblasts were differentiated with DM containing 5ng/ml 

of TNFα for 3 days, we observed a marked inhibition of myotube formation, dramatically 

reduced myogenic gene MyHC expression (~10 fold) and increased phosphorylation of 

JNK1/2. However, silencing Map4k4 in TNFα-treated cells only marginally rescued the 

inhibitory effect of TNFα on C2C12 differentiation as demonstrated by a slight increase 
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in myotube formation and MyHC expression (~1.9 fold), with no significant alteration in 

JNK1/2 phosphorylation (Fig A.1). The fact that the silencing was not complete in these 

studies makes data interpretation difficult, and cells from Map4k4 knockout mice will be 

required to address whether Map4k4 plays a role in TNFα-mediated inhibition of 

myogenic differentiation.  

The negative effect of Map4k4 on myoblast fusion suggests a potential involvement of 

Map4k4 in skeletal muscle regeneration. Muscle regeneration is a rapid and extensive 

self-renewal process relying on the presence of satellite cells, a population of quiescent, 

mononucleated stem cells that are resident in adult skeletal muscle (47, 264). Upon work 

overload or injury, satellite cells are activated, then proliferate and differentiate into 

myoblasts that either fuse to each other to create new myofibers, or fuse to existing 

damaged myofibers for repair. The fusion process in regeneration shares similar features 

to muscle cell fusion in myogenic differentiation. As Map4k4 is abundantly present in 

satellite cells (Fig 2.1) and it is able to regulate myoblast fusion in C2C12 differentiation, 

it may also mediate the fusion process in muscle regeneration. Moreover, we showed 

here that Map4k4 silencing in C2C12 myoblasts substantially increased Myf5 expression 

during early myogenic differentiation (Fig 2.8). In muscle regeneration, satellite cell 

activation is associated with Myf5 up-regulation (60) and Myf5 null mice had a 

significant delay in the regenerative process (96). These studies support Map4k4 as a 

potential regulator in skeletal muscle regeneration by regulating Myf5 expression and 

fusion in satellite cells.  
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In summary, the results of this study reveal a novel role for Map4k4 in skeletal 

myogensis and identify Myf5 as a protein that is regulated by Map4k4 to mediate 

myogenic differentiation. Given the effects that Map4k4 exerts on fusion and Myf5 

expression, Map4k4 inhibition may enhance the regenerative capacity of damaged 

muscles in trauma and degenerative diseases such as muscular dystrophies. The 

hypertrophic myotube formation induced by Map4k4 suppression also suggests that 

Map4k4 may be an attractive therapeutic target for the treatment of cachexia or 

sarcopenia. Further investigation into other Map4k4 effectors that are involved in 

myogenesis, especially muscle-specific Map4k4 substrates, will be necessary to fully 

understand the role of Map4k4 as a new signaling node in muscle development and 

function.   
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Chapter III: Map4k4 does not regulate IGF-mediated 

signaling pathways in C2C12 muscle cells 

 

Contributions: All experiments and data analysis were performed by me.  
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Abstract 

IGF signaling has profound effects on skeletal muscle size by promoting myoblast 

proliferation, differentiation and myofiber protein synthesis. siRNA-mediated silencing 

of Map4k4, a novel suppressor of myogenic differentiation, results in markedly enhanced 

myotube formation that appears identical to the hypertrophic phenotype that is caused by 

IGF signaling activation. Here we show that Map4k4 silencing does not alter IGF1-

induced effector phosphorylation including Akt, p70S6K, S6, 4EBP1 and ERK1/2 in 

C2C12 myoblasts. Map4k4 suppression neither appears to affect IGF/Akt signaling 

pathway during C2C12 myogenic differentiation, as demonstrated by unchanged 

phosphorylation of Akt and its substrates GSK3 and FoxO1 as well as mTOR substrates 

p70S6K and 4EBP1. Furthermore, no change in the expression of FoxO1 targets MAFbx 

and MURF1 was observed in Map4k4-silenced C2C12 cells during differentiation. These 

results demonstrate that Map4k4 is not involved in IGF signaling-mediated skeletal 

muscle differentiation and hypertrophy.       

Introduction 

Skeletal muscle is a dynamic tissue that can alter its size as an adaption to various 

environmental stimuli such as nutrients, hormones and exercise. Increased muscle mass 

(i.e. muscle hypertrophy) is characterized by elevated myonuclei number and myofiber 

protein content, which are mediated by molecular signaling pathways that are involved in 

myoblast proliferation, differentiation and protein metabolism. Insulin-like growth factor 

(IGF) is a potent modulator of skeletal muscle mass. Forced IGF1 expression in mouse 
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skeletal muscle resulted in increased myoblast proliferation, protein synthesis and 

significant myofiber hypertrophy (15, 56, 88, 188), while IGF1 or IGF1 receptor deletion 

caused dramatic muscle hypoplasia and severe growth retardation (14, 158, 219). An 

array of studies in multiple muscle cell lines also identified IGF1 and IGF2 as important 

inducers of myoblast proliferation and differentiation in vitro (84, 89, 251, 268). 

Signaling through the IGF receptor stimulates several different downstream intracellular 

signaling cascades including ERK1/2 and Akt signaling. IGF induced-ERK activation is 

mainly responsible for mitogenesis (59, 178), although the IGF/Akt axis is critical for 

proliferation as well (178, 273). Akt activation promotes myogenic differentiation and 

hypertrophy by targeting three major downstream kinases: mTOR, GSK3β and FoxO. 

Akt-mediated mTOR activation stimulates protein synthesis via p70S6K1 activation and 

4EBP1 inhibition. P70S6K1 phosphorylates the small ribosomal subunit S6 to initiate 

efficient mRNA translation and phosphorylated 4EBP1 releases its inhibitory binding to 

eIF4E, further allowing for the translation initiation. GSK3β phosphorylation by Akt 

inactivates this kinase, therefore abolishing the inhibitory effects of GSK3β on muscle 

differentiation and protein synthesis. Similarly, Akt-mediated phosphorylation of FoxO, a 

negative regulator of myogenesis, prevents its nuclear translocation, resulting in 

enhanced muscle differentiation and down-regulation of two atrophy-inducing, muscle-

specific ubiquitin ligases MAFbx and MuRF1, which are FoxO1 transcription targets 

(171).   
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Map4k4 is a serine/threonine protein kinase that belongs to the germinal center kinase 

GCK-IV group of Saccharomyces cerevisiae sterile 20 protein kinases (74). In an RNAi-

based screen for regulators of adipocyte function, Map4k4 was discovered to inhibit 

PPARγ expression in cultured adipocytes (263). A following study suggested that the 

PPARγ suppression by Map4k4 was at the translational level involving mTOR signaling 

(102). Map4k4 silencing activated mTOR, and increased phosphorylation of its substrate 

4EBP1 but not p70S6K. 4EBP1 phosphorylation releases its inhibitory binding to eIF4E 

and allows 5’-cap-dependent translation initiation, resulting in increased PPARγ protein 

levels and global protein synthesis rates in Map4k4-silenced adipocytes (102).  

We have recently identified Map4k4 as a novel suppressor of skeletal muscle 

differentiation (278). Map4k4 suppression by RNAi technology or kinase-inactive 

Map4k4 overexpression in C2C12 myoblasts dramatically enhanced myotubes formation 

with increased myonulcei number and myotube size (Fig 2.2 and 2.5, (278)), which 

phenocopied IGF1 or IGF2-induced myotube hypertrophy (251, 268). The Map4k4 

silencing-stimulated myotube formation was partially because of elevated Myf5 

expression, which was required for the enhancement of myotube formation in Map4k4-

silenced cells and was sufficient to rescue Map4k4-mediated inhibition of myogenic 

differentiation (Fig 2.8, 2.9 and 2.10, (278)). However, other mechanisms may contribute 

to Map4k4-mediated suppression of muscle differentiation because Myf5 silencing only 

partially impaired the Map4k4 depletion-induced myotube formation.  
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We hypothesized that Map4k4 might regulate muscle differentiation and hypertrophy 

through an IGF-mediated signaling pathway because of the high similarity between the 

muscle phenotypes caused by Map4k4 silencing and IGF induction. We were particularly 

interested in a potential role for Map4k4 in mTOR regulation because it is a downstream 

effector of IGF-Akt signaling in muscle cells and because Map4k4 suppressed the 

mTOR/4EBP1 signaling cascade in cultured adipocytes (102).    

Materials and Methods 

Cell culture and transfection. Mouse C2C12 myoblasts (American Type Culture 

Collection) were cultured in growth media (GM) consisting of Dulbecco’s modified 

Eagle’s media (DMEM) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin at 37°C with 5% CO2. To induce differentiation, 95% confluent 

cells were placed in differentiation media (DM) consisting of DMEM with 2% horse 

serum. For siRNA transfection, C2C12 myoblasts cultured in growth media were 

transfected with 50 pmol siRNA using Lipofectatmine RNAiMAX (Invitrogen) 

according to the manufacturer’s instructions for reverse transfection. Twenty-four hours 

later, cells were switched to DM and cultured for the indicated times before harvesting.  

Western blotting. Cells were solubilized with ice-cold lysis buffer (20 mM HEPES, pH 

7.2, 100 mM NaCl, 1mM EDTA, 100 mM PMSF, 0.01% Triton X-100, 1% SDS and 

Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific)), and protein 

concentrations were assessed by BCA assay (Thermo Scientific). Equal amounts of 

protein were loaded onto 8.5% SDS-polyacrylamide gels and transferred to nitrocellulose 
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membranes. The following antibodies were used: anti-Map4k4 (Bethyl), anti-phospho-

p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (Cell Signaling), anti-p44/42 MAPK (ERK1/2) 

(Santa Cruz), anti-phospho-Akt (Ser473) (Cell Signaling), anti-Akt (Cell Signaling), anti-

phospho-GSK3α/β (Ser21/9) (Cell Signaling), anti-GSK3α/β (Cell Signaling), anti-

phospho-FoxO1 (Ser256) (Cell Signaling), anti-FoxO1 (Cell Signaling), anti-phospho-

p70S6K (Thr389) (Cell Signaling), anti-p70S6K (Cell Signaling), anti-phospho-S6 

ribosomal protein (Ser240/244) (Cell Signaling), anti-S6 ribosomal protein (Cell 

Signaling), anti-phospho-4EBP1 (Thr37/46) (Cell Signaling) and anti-4EBP1 (Cell 

Signaling) antibodies. 

Isolation of RNA and Real Time PCR. RNA isolation was performed according to the 

Trizol Reagent Protocol (Invitrogen). cDNA was synthesized from 1.5 μg total RNA 

using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules CA) according to the 

manufacturer’s instructions. For real time PCR, synthesized cDNA and iQ SYBR Green 

Supermix were run on the MyiQ Real-Time PCR System (Bio-Rad) with following 

primer pairs: MAFbx forward 5’-ATGCACACTGGTGCAGAGAG-3’, MAFbx reverse 

5’-TGTAAGCACACACTGCAGGTC-3’; MuRF1 forward 5’-

ACGAGAAGAAGACTCGAGC-3’, MuRF1 reverse 5’-CTTGGCACTTGAGAGGAA-

3’. 36B4 was used as an internal loading control. Relative gene expression was 

determined using the ΔCt method. 
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Results 

Map4k4 silencing does not alter IGF1-induced ERK1/2 phosphorylation in C2C12 

myoblasts.  

IGF1 promotes myoblast proliferation by activating the ERK1/2 signaling pathway (59, 

178). To investigate whether Map4k4 regulates the IGF1-ERK1/2 signaling axis, we 

suppressed Map4k4 expression using siRNA in C2C12 myoblasts and examined IGF1-

induced ERK1/2 phosphorylation at multiple time points. IGF1 transiently activated 

ERK1/2 as indicated by the increased ERK1/2 phosphorylation at Ser202/204 within 15 

minutes of IGF1 treatment (Fig 3.1). However, no significant alteration in ERK1/2 

phosphorylation was observed in Map4k4-silenced myoblasts compared with the 

scrambled siRNA controls (Fig 3.1), suggesting that Map4k4 is not involved in IGF1-

induced ERK1/2 activation.  
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Figure 3.1 Map4k4 silencing does not alter IGF1-induced ERK1/2 phosphorylation 
in C2C12 myoblasts. C2C12 myoblasts were transfected with scrambled siRNA or 
siRNA against Map4k4. 24 h later, the cells were starved for 2 h and then treated with 
IGF1 (100ng/ml) for the indicated times. ERK1/2 phosphorylation was assessed by 
Western blotting using the indicated antibodies. A representative Western blot is shown. 
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Map4k4 silencing does not affect IGF1/Akt/mTOR signaling in C2C12 myoblasts.  

In addition to ERK1/2, IGF1 also activates Akt signaling in myoblasts. Downstream of 

Akt, several signaling branches are activated by IGF including the mTOR signaling 

pathway. Because Map4k4 selectively inhibited mTOR activity and 4EBP1 

phosphorylation in adipocytes, we aimed to determine whether Map4k4 modulates 

IGF1/Akt/mTOR signaling in muscle cells. To test this, we used Map4k4 siRNA to 

deplete its expression in C2C12 myoblasts and monitored the phosphorylation of 

downstream IGF1/Akt/mTOR signaling pathway effectors at multiple time points after 

IGF1 treatment. In the scrambled siRNA control cells, IGF1 activated Akt as early as 5 

minutes after stimulation, and this activation lasted for at least 90 minutes (Fig 3.2). 

mTOR substrate p70S6K phosphorylation was induced 5 minutes after IGF1 treatment 

and began to decrease after 60 minutes, which was similar to the p70S6K substrate S6 

ribosomal protein, which peaked at 30 minutes in IGF1-treated cells (Fig 3.2). 4EBP1 

phosphorylation was stimulated at 5 minutes, peaked at 30 minutes and began to decrease 

slightly after that (Fig 3.2). The time-dependent and sequential phosphorylation of Akt 

and downstream mTOR effectors indicated that IGF1 sufficiently activated Akt/mTOR 

signaling in C2C12 myoblasts and the time window that we chose was appropriate to 

study the role of Map4k4 in the signaling cascade. Upon Map4k4 depletion, the 

phosphorylation status of each effector remained similar compared with the scrambled 

control, implying that Map4k4 does not regulate the IGF/Akt/mTOR signaling pathway 

in C2C12 myoblasts.           
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Figure 3.2 Map4k4 silencing has no significant effect on the IGF/Akt/mTOR 
signaling pathway in C2C12 myoblasts. C2C12 myoblasts were transfected with 
scrambled or Map4k4 siRNA. 24 h later, the cells were starved for 2 h and then treated 
with IGF1 (100ng/ml) for the indicated times. IGF/Akt/mTOR signaling pathway 
activation was assayed by Western blotting using the indicated antibodies.  The data is 
representative of four independent experiments. 
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Map4k4 silencing has no impact on Akt or its downstream effector activation during 

C2C12 differentiation.  

Myoblasts begin to express IGF2 upon serum withdrawal and continuously produce IGF2 

with muscle differentiation in vitro (89). Several studies have demonstrated that 

myogenic differentiation is mediated through endogenous Akt activation that is induced 

by autocrine/paracrine IGF2 (89, 183). To assess whether Map4k4 regulates myogenesis 

through endogenous Akt signaling, C2C12 myoblasts were transfected with scrambled or 

Map4k4-targeting siRNA and Akt signaling pathway component phosphorylation was 

examined by Western blotting at multiple time points during muscle differentiation. Akt 

signaling was relatively active in the myoblasts, as demonstrated by the high Akt 

phosphorylation levels as were the downstream effectors including GSK3, FoxO1 and 

mTOR substrates p70S6K and 4EBP1 (Fig 3.3A). Serum withdrawal, a crucial step to 

induce myogenic differentiation, dramatically inactivated Akt signaling, which was 

rebounded gradually with C2C12 differentiation (Fig 3.3A). Map4k4 silencing did not 

result in any significant changes in the phosphorylation of Akt or its downstream 

effectors (Fig 3.3A). The expression of MAFbx and MURF1, two targets of the 

transcription factor FoxO1 were not altered in the Map4k4-silenced muscle cells 

compared with scrambled siRNA-treated controls (Fig 3.3B), suggesting that FoxO1 

transcriptional activity did not change upon Map4k4 suppression. These findings indicate 

that Map4k4 does not modulate myogenic differentiation through the endogenous Akt 

signaling pathway.          
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Figure 3.3 Map4k4 silencing has no impact on activation of Akt or its downstream 
effectors during C2C12 differentiation. C2C12 myoblasts were transfected with 
scrambled or Map4k4 siRNA. 24 h later, the cells were transferred to DM for the 
indicated times. (A) Activation of Akt signaling during muscle differentiation was 
determined by immunoblotting with the indicated antibodies. The data is representative 
of at least three independent experiments. (B) MAFbx and MuRF1 expression was 
assessed by real-time RT-PCR. The data represent the mean ± SEM from three 
independent experiments. 
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Discussion 

In a previous study, we identified Map4k4 as a novel suppressor of skeletal muscle 

differentiation (Chapter 2 and (278)). Map4k4 silencing in C2C12 myoblasts resulted in a 

dramatic enhancement of myotube formation that is reminiscent to the hypertrophic 

myotubes caused by IGF, which is a potent inducer of myoblast proliferation, myogenic 

differentiation and muscle hypertrophy both in vitro and in vivo. In the current study, we 

discovered that Map4k4 appeared not to be involved in two IGF signaling branches, the 

IGF/ERK1/2 signaling axis and the IGF/Akt signaling axis. No significant alterations in 

IGF-induced phosphorylation of ERK1/2, Akt or its downstream effectors were detected 

in Map4k4-silenced cells compared with the scrambled controls (Fig 3.1 and 3.2). 

Endogenous Akt signaling activity was also unchanged during myogenic differentiation 

in Map4k4-depleted muscle cells (Fig 3.3).   

Previous studies have demonstrated that IGF induces myoblast proliferation through 

activating both ERK1/2 and Akt signaling pathways. The failure to detect ERK1/2 and 

Akt phosphorylation upon Map4k4 suppression (Fig 3.1 and Fig 3.2) is consistent with 

unchanged EdU incorporation into kinase-inactive Map4k4-overexpressing C2C12 cells 

as demonstrated in Fig 2.3, further suggesting that Map4k4 does not play a role in 

myoblast proliferation.   

mTOR signaling is a key signaling branch downstream of Akt. Map4k4 silencing in 

cultured adipocytes promoted PPARγ translation and global protein synthesis via mTOR 

signaling pathway activation. However, Map4k4 silencing in C2C12 myoblasts had no 
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detectable effects on the mTOR signaling pathway during myogenic differentiation, as 

determined by unaltered phosphorylation of mTOR downstream effectors p70S6K and 

4EBP1 (Fig 3.2). Moreover, Map4k4 suppression did not enhance IGF/Akt/mTOR 

signaling in the IGF1-treated C2C12 myoblasts compared with the scrambled siRNA 

controls (Fig 3.3). These results indicate that Map4k4 may not target the canonical 

mTOR signaling pathway during skeletal muscle differentiation. Notably, the myogenic 

function of mTOR during early differentiation has been demonstrated to be kinase-

independent and involves neither of the downstream effectors p70S6K1 or 4EBP1 (85). 

Instead, mTOR induces IGF2 transcription in a kinase-independent mechanism and thus 

activates Akt signaling indirectly (86). We have preliminary data showing that Map4k4 

silencing resulted in a trend to increased IGF2 mRNA expression during C2C12 

differentiation, implying that Map4k4 may target mTOR without altering its kinase 

activity to regulate IGF2 expression and thereby myogenesis. However, this hypothesis 

contradicts with the lack of alteration in IGF/Akt signaling upon Map4k4 silencing 

during C2C12 differentiation (Fig 3.3). One possibility is that the observed IGF2 up-

regulation is only at the transcriptional level. Further investigation will be required to 

determine whether IGF2 protein content is altered in the Map4k4-silenced muscle cells.           

GSK3β phosphorylates and inactivates the eukaryotic initiation factor eIF2B, a guanine 

nucleotide exchange factor that converts the inactive GDP-bound eukaryotic initiation 

factor 2 (eIF2) to the active GTP-bound eIF2, therefore impairing mRNA translation and 

global protein synthesis (282). Insulin stimulation induces dephosphorylation of the 

eIF2B inhibitory site by phosphorylating and inactivating GSK3β at Ser9 in a PI3K-
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dependent manner, indicating that insulin (or IGF) stimulates translation through 

PI3K/Akt/GSK3β/eIF2B/eIF2 signaling independently of mTOR (282). In the present 

study, we did not detect any changes in GSK3β phosphorylation upon Map4k4 silencing 

in C2C12 muscle cells, implying that Map4k4 would not regulate protein synthesis via 

the IGF/Akt/GSK/eIF2B/eIF2 pathway. A similar result was obtained in Map4k4-

deficient mouse embryonic fibroblasts; in these cells, GSK3α/β phosphorylation 

remained unchanged from wild-type controls (Laura Danai, unpublished data). However, 

evidence from co-immunoprecipitation experiments suggested a potential interaction 

between Map4k4 and one of the eIF2 regulators in cultured adipocytes (Adilson 

Guilherme, unpublished data), therefore Map4k4 may modulate the regulator activity by 

phosphorylation and thus affecting eIF2 activity in a GSK3β-independent manner. 

Map4k4 silencing-induced muscle hypertrophic phenotype may result from eIF2 

activation-induced increases in protein accumulation. To test this hypothesis, we would 

need to determine whether Map4k4 regulates global protein synthesis in skeletal muscle. 

Further investigations are required to confirm the interaction between Map4k4 and the 

eIF2 regulator in muscle cells and determine the functional effects of the interaction. 

In the present study, we have provided evidence that Map4k4 does not regulate muscle 

differentiation by interfering with the IGF-induced ERK1/2 or Akt signaling pathways. 

However, the calcineurin/NFAT signaling pathway is also downstream of the IGF 

receptor has not been assessed. Numerous studies have revealed the positive roles of 

calcineurin and its target NFATs in skeletal muscle differentiation and hypertrophy (73, 
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79, 94, 180). An interesting future study is to determine whether Map4k4 targets the 

calcineurin signaling to regulate skeletal myogenesis.   
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CHAPTER IV:  Discussion 

We have identified Map4k4 as a novel suppressor of skeletal myogenesis. Map4k4-

mediated differentiation inhibition is not through the MAP kinase signaling pathways or 

the IGF-activated Akt signaling cascades. Instead, Map4k4 regulates Myf5 expression, 

which is the first MRF that is expressed during skeletal muscle development and marks 

the commitment of the muscle lineage. When Map4k4 was silenced in C2C12 myoblasts, 

the enhanced myotube formation was correlated with a transient increase in Myf5 

expression at the early stage of differentiation (Fig 2.2 and 2.8).  

Map4k4 and MAPKs 

Role of Myf5 in skeletal muscle differentiation 

It is unclear whether Myf5 up-regulation is a primary cause of the promoted myogenic 

differentiation because data from different studies are controversial. Early studies 

demonstrated that Myf5 induced myogenic conversion of non-muscle cells (9, 11, 39). 

Ectopic Myf5 expression in embryonic C3H10T1/2 fibroblasts resulted in multinucleated 

syncytia formation and muscle-specific gene expression (39) as well as a rapid and 

sustained increase in endogenous myogenin mRNA (108). In contrast, an antisense Myf5 

oligomer abolished IGF2-induced myogenin transcription, creatine kinase elevation and 

cell fusion in L6 muscle cells (170). Defective myotube formation was also observed in 

C2C12 myoblasts that were targeted with Myf5 antisense oligonucleotides or shRNA (71, 

224). These data suggest that Myf5 is necessary and sufficient for myogenic 
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differentiation. However, evidence from Myf5-null primary myoblasts implied an 

inhibitory role of Myf5 on myogenesis (184). These cells underwent precocious 

differentiation with attenuated proliferative ability, indicating that Myf5 was favorable 

for proliferation. In addition, Myf5 overexpression in C2C12 cells failed to increase the 

myotube fusion index, although higher expression of muscle genes including myogenin 

and MCK was observed in the transfected cells (31).  

In our study, Myf5 was a positive mediator of C2C12 differentiation. Myf5 silencing 

impaired myotube formation with a decreased fusion index and decreased muscle gene 

expression (Fig 2.9) while forced Myf5 expression significantly promoted myogenesis 

(Fig 2.10). In vivo studies have indicated a redundant relationship between Myf5 and 

MyoD (41, 97, 105, 236), and we detected an increase in MyoD protein level upon Myf5 

silencing during C2C12 differentiation (Fig 2.9C). However, up-regulated MyoD seemed 

to fail to completely compensate for the Myf5 loss in our study, because impaired 

myotube formation was still observed upon Myf5 silencing in C2C12 cells (Fig 2.9A), 

indicating that Myf5 plays an independent role in myogenic differentiation at least in 

vitro. We did not detect any significant change in MyoD expression in Map4k4-silenced 

C2C12 cells (Fig 2.4 and Fig 2.9C), but a preliminary experiment in mouse primary 

satellite cells showed that both Myf5 and MyoD expression increased upon Map4k4 

silencing during muscle differentiation, associating with enhanced myotube formation 

observed in the Map4k4-silenced cells (Mengxi Wang, unpublished data). This finding 

indicates that both Myf5 and MyoD could be the downstream effectors of Map4k4 to 

regulate myogenic differentiation in primary muscle cells. In addition, although MyoD 
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expression was unaltered upon Map4k4 suppression, its transcriptional activity may 

increase to promote myogenic differentiation. Further investigations are required to 

examine Myf5 and MyoD transcriptional activities upon Map4k4 suppression or ectopic 

expression, especially in primary satellite cells.            

Regulation of Myf5 expression by Map4k4 in C2C12 muscle cells 

A transient increase in Myf5 expression was detected upon Map4k4 silencing in C2C12 

muscle cells (Fig 2.8), suggesting that Map4k4 is a negative regulator of Myf5 expression 

during early myogenic differentiation. It is also supported by a correlation between the 

increased Myf5 expression (Fig 2.8) and reduced Map4k4 protein level as well as kinase 

activity (Fig 2.1, B and C) at earlier time points during muscle differentiation in the 

controlled cells. It is unclear why Map4k4 expression and kinase activity are decreased 

during C2C12 myogenic differentiation. Serum withdrawal might be one trigger for the 

expression down-regulation, because Map4k4 has been suggested to be a serum-response 

factor (SRF)-regulated gene in cardiac cell differentiation (303). Growth factors, 

cytokines and hormones that are abundant in fetal bovine serum are potential regulators 

of Map4k4 kinase activity, and further research is needed to find out mechanisms by 

which Map4k4 is regulated during skeletal myogenesis.   

We performed double knockdown experiments and observed that Map4k4 silencing-

induced myogenic differentiation was attenuated by Myf5 suppression (Fig 2.9), whereas 

the defective myogenesis caused by ectopic Map4k4 expression was rescued by Myf5 

activation (Fig 2.10), supporting the involvement of Myf5 in Map4k4-mediated muscle 
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differentiation. Notably, RNAi-mediated Myf5 suppression failed to completely abolish 

Map4k4 silencing-promoted muscle differentiation because the myotubes with the double 

knockdown were bigger than the one resulted from Myf5 silencing only (Fig 2.9A). On 

one hand, other downstream effectors beside Myf5 are probably also involved in Map4k4 

regulation of myogenic differentiation. On the other hand, Myf5 might not be suppressed 

as efficiently at the double knockdown condition as it was silenced alone. Satellite cells 

with complete deletion of Map4k4 and Myf5 will be better tools than C2C12 muscle cell 

line with siRNA-mediated gene suppression to determine the regulatory relationship 

between Map4k4 and Myf5 as well as their roles in muscle differentiation.  

Myf5 expression was affected by Map4k4 at both the mRNA and protein levels. The 

mechanisms by which Map4k4 modulates Myf5 activation are important directions for 

future research. There are several hypotheses that we are testing or have tested to provide 

more information on the mechanistic aspects of the relationships among Map4k4, Myf5 

and myogenesis.      

Pax3 activates Myf5 transcription during skeletal muscle development (13, 242). We 

measured Pax3 expression during C2C12 differentiation in the Map4k4-silenced cells and 

scrambled controls. Pax3 mRNA levels were relatively low in the control myoblasts as 

suggested by high Ct numbers obtained from real-time RT-PCR and decreased further 

with myogenic differentiation. Map4k4 silencing did not significantly change Pax3 

expression during myogenesis, indicating that Pax3 is probably not the cause of Map4k4 

suppression-induced Myf5 transcription at the early stage of differentiation (Fig A.2). It 
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is still possible that Map4k4 regulates Pax3 transcriptional activity to affect Myf5 

expression. Experiments such as luciferase assays would be needed to test this hypothesis.  

Myf5 is also a direct target of canonical Wnt signaling, in which activated β-catenin 

binds to Tcf/Lef sequences in the regulatory region of Myf5 promoter to induce Myf5 

expression in vivo and in vitro (29, 107, 122). A recent study discovered that R-spondin2 

(RSPO2), a Wnt/β-catenin signaling activator, induced Myf5 expression and myogenic 

differentiation via the canonical Wnt pathway in C2C12 muscle cells (107). RSPO2-

stimulated Myf5 up-regulation was impaired by treating the cells with DKK1, an 

antagonist for Wnt/β-catenin signaling that acts on LRP5/6 receptors (244). These 

findings implied a possible involvement of canonical Wnt signaling in Map4k4-mediated 

Myf5 transcription and myogenic differentiation. In fact, we detected an increase in the 

expression of RSPO family gene RSPO3 during the early stages of C2C12 differentiation 

upon Map4k4 silencing (Fig A.3A). Myoblasts treated with RSPO3 had enhanced Myf5 

mRNA and protein expression (Fig A.3, C and D), and differentiated into bigger 

myotubes with higher MyHC expression (Fig A.3B). These data indicated a potential for 

Map4k4/RSPO3/β-catenin signaling that regulates Myf5 transcription. However, Map4k4 

silencing in myoblasts failed to induce a further increase in Myf5 mRNA level upon 

RSPO3 treatment and vice versa (Fig A.2E), suggesting that Map4k4 does not regulate 

Myf5 transcription by targeting RSPO3. In addition, Map4k4 depletion did not activate a 

classic Wnt/β-catenin signaling target gene Axin2 expression in C2C12 myoblasts, while 

exogenous RSPO3 or another canonical Wnt signaling activator Wnt3a did (Fig A3.E), 

implying that Map4k4 may not regulate β-catenin activity. Consistently, no significant 
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changes of β-catenin nuclear accumulation were observed upon Map4k4 silencing in the 

basal, Wnt3a- or RSPO3- treated conditions (Fig A3.F). Based on these results, we 

believe that Map4k4-mediated Myf5 expression is Wnt/β-catenin signaling-independent. 

Although the RSPO3 transcripts were increased by Map4k4 silencing, RSPO3 protein 

levels were not measured. It is possible that RSPO3 protein levels remain unchanged in 

response to Map4k4 depletion, and other unknown effectors that negatively regulate 

Wnt/β-catenin signaling could be activated upon Map4k4 suppression, thus masking the 

promoting role of RSPO3 in the signaling pathway.  

A calcineurin/NFAT-dependent pathway can regulate Myf5 expression in skeletal muscle 

reserve cells, a group of non-dividing satellite cell-like cells in myotube cultures. The 

calcium-activated phosphatase calcineurin dephosphorylates NFAT, resulting in the 

nuclear translocation of NFAT to activate Myf5 transcription in reserve cells (95). In 

addition to controlling Myf5 expression in reserve cells, calcineurin and its target NFATs 

have been implicated to positively regulate skeletal muscle differentiation and 

hypertrophy (73, 79, 94). Different NFAT family genes are expressed at distinct stages of 

myogenic differentiation and regulate various aspects of myogenesis (1) with NFATc3 

expressed mainly in myoblasts promoting nascent myotube formation (180), while 

NFATc1 and NFATc2 are mainly found in myocytes and myotubes and are involved in 

myoblast-myotube fusion and muscle hypertrophy (117-118, 189, 245). We have 

preliminary data revealing a faster gel migration pattern of NFATc3 protein from C2C12 

myoblast cytosolic and nuclear extracts upon Map4k4 silencing, suggesting that Map4k4 

may mediate NFATc3 phosphorylation and thus nuclear translocation in myoblasts (Fig 
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A.4). However, this effect of Map4k4 silencing on NFATc3 phosphorylation and nuclear 

translocation may not be sufficient to explain the enhanced Myf5 transcriptional 

activation upon Map4k4 silencing, because NFAT has been shown to regulate Myf5 

expression only in reserve cells, but not in proliferating myoblast cultures (95). The 

regulatory interaction between Map4k4 and NFATc3 shed light on another potential 

mechanism by which Map4k4 regulates skeletal muscle differentiation. More 

experiments are required to confirm the effect of Map4k4 in NFATc3 phosphorylation 

and determine its functional outcome in myogenesis. It would also be interesting to 

determine whether the decreased NFATc3 phosphorylation observed upon Map4k4 

depletion is mediated through direct interactions between Map4k4 and NFATc3 or by 

regulating NFATc3 upstream modulators including the phosphatase calcineurin or 

kinases such as GSK3β, which phosphorylates and inactivates NFATc3 in C2C12 muscle 

cells (272). In addition, the relationship between Map4k4 and other NFAT genes (eg. 

NFATc1 and NFATc2) could be examined to determine whether Map4k4 regulates 

myoblast fusion and muscle hypertrophy in an NFAT-dependent manner. 

We have observed a modest increase in Myf5 mRNA (~1.4 fold) but an abundant 

increase (~3 fold) in Myf5 protein in Map4k4-silenced myocytes. The discrepancy 

between Myf5 mRNA and protein levels suggests the possibility that Map4k4 may 

regulate Myf5 at the translational or post-translational level. Map4k4 silencing in 

cultured adipocytes promoted PPARγ translation and global protein synthesis through 

activating mTOR/4EBP1 signaling pathway (102), thus Map4k4 may regulate Myf5 in 

the same manner. We did detect a marked increase in Myf5 protein levels in Map4k4-
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silenced C2C12 cells by western blotting (Fig 2.8). However, Map4k4 silencing in 

C2C12 myoblasts had no detectable effect on the mTOR signaling pathway during 

myogenic differentiation as determined by unaltered phosphorylation of downstream 

effectors mTOR p70S6K and 4EBP1 (Fig 3.3). Moreover, Map4k4 suppression did not 

enhance IGF/Akt/mTOR signaling in IGF1-treated C2C12 myoblasts compared with 

scrambled siRNA controls (Fig 3.2). These results suggest that Map4k4 may not be a 

regulator of the mTOR signaling pathway in skeletal muscle. It is still possible that 

Map4k4 mediates Myf5 translation through other mechanisms such as regulating 

translation initiation factor eIF2 activity, because a potential interaction between Map4k4 

and one of the eIF2 regulators has been detected in cultured adipocytes (Adilson 

Guilherme, unpublished data). Further investigations are required to determine whether 

Map4k4 interacts with the eIF2 regulator in C2C12 myocytes, and global protein 

synthesis could be examined upon Map4k4 silencing. More importantly, [35S] methionine 

incorporation studies that specifically measure radioactive amino acid incorporation into 

Myf5 protein should be conducted to ensure that the Myf5 protein level alteration is 

caused by Map4k4-mediated Myf5 translation, but not only due to the different amounts 

of Myf5 transcripts available for protein synthesis. Besides enhanced translation, the 

increased Myf5 protein content could also be because of reduced protein degradation. 

However, I could not detect a difference in Myf5 protein stability in Map4k4-silenced 

myoblasts compared with scrambled controls (Fig A.5).  
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Potential role of Map4k4 in skeletal muscle development and regeneration 

To further understand the role of Map4k4 in skeletal muscle development, we are 

deleting Map4k4 using the Cre/loxP recombination system in mice. Distinct Cre mouse 

strains including Myf5-Cre and Myogenin-Cre mice will be used to delete Map4k4 in 

committed myoblasts and differentiating myocytes respectively during myogenesis. 

Because Map4k4 suppression in C2C12 myoblasts resulted in hypertrophic myotube 

formation (Fig 2.2), skeletal muscle mass is expected to be greater in Map4k4 

flox/flox:Myf5-Cre mice compared with flox/flox controls. Map4k4 flox/flox:Myogenin-

Cre mice would display increased myofiber diameter because of enhanced fusion ability 

upon Map4k4 silencing as demonstrated in cultured muscle cells (Fig 2.7). 

The effects that Map4k4 exerts on fusion and Myf5 expression in vitro also suggest a 

potential role for Map4k4 in skeletal muscle regeneration, which is a rapid and extensive 

self-renewal process that relies on satellite cells. These cells are maintained quiescent in 

basal conditions and become activated in response to muscle damage or contraction. 

Activated satellite cells proliferate, migrate to the injury site and differentiate into 

myoblasts that fuse to restore skeletal muscle architecture. To determine the role of 

Map4k4 in skeletal muscle regeneration, Map4k4 flox/flox mice will be crossed with 

Pax7-CreERT2 mice, whose Cre recombinase expression will be induced by tamoxifen in 

Pax7-positive cells that represent satellite cells (187). Tamoxifen will be delivered by 

gavage to delete Map4k4 in satellite cells in adult Map4k4 flox/flox:Pax7-CreERT2 mice, 

and cadiotoxin will be injected into the right tibialis anterior (TA) muscle of these mice 
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to induce regeneration while uninjected left TA muscle will be used as the control. Myf5 

up-regulation is associated with satellite cell activation (60)  and Myf5 null mice display 

compromised regenerative myogenesis (96, 269), suggesting that Myf5 is a positive 

regulator of skeletal muscle regeneration. Because Map4k4 silencing enhanced myoblast 

fusion and Myf5 expression in C2C12 muscle cells, Map4k4 flox/flox:Pax7-CreERT2 mice 

with tamoxifen treatment would be expected to have improved skeletal muscle 

regenerative capacity compared with controls. However, satellite cell migration is an 

important step during muscle regeneration, and Map4k4 has been demonstrated to 

positively regulate tumor cell motility (58) and stimulate presomitic mesodermal cell 

migration in a nonautonomous manner during embryogenesis (293). Therefore, deleting 

Map4k4 in satellite cells may interfere with their proper migration to the injury site, 

resulting in impaired skeletal muscle regeneration. In addition, Map4k4 silencing was 

suggested to reduce cell proliferation in hepatocyte carcinoma cell lines (157). Although 

no effect of Map4k4 on proliferation was observed in C2C12 myoblasts (Fig 2.3), it is 

still possible that Pax7-Cre-mediated Map4k4 deletion during early regeneration would 

induce precocious differentiation of satellite cells, leading to depletion of the progenitor 

cell pool and increased formation of new muscle fibers (hyperplasia).   

Mdx mouse model is another tool to study the role of Map4k4 in skeletal muscle 

regeneration. Mdx mice lack the X-linked dystrophin gene that encodes a cytoskeletal 

protein involved in plasma membrane stabilization and signaling transduction between 

extracellular matrix and intracellular cytoskeleton (67). These mice display a persistent 

and progressive cycle of degeneration and regeneration in skeletal limb muscles and 
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represent a mouse model for human Duchenne muscular dystrophy (DMD) (67). To 

study the function of Map4k4 in regenerative myogenesis, skeletal muscle specific 

Map4k4-deficient mdx mice will be generated by crossing mdx mice with Map4k4 

flox/flox:Myf5-Cre mice, which have Map4k4 deletion in embryonic myoblasts and 

approximately 90% of satellite cells that are Myf5-postive (144). Parameters including 

skeletal muscle morphology, muscle fiber membrane integrity, fibrosis, immune cell 

infiltration, muscle strength and satellite cell proliferation and differentiation will be 

compared between the Map4k4 flox/flox:Myf5-Cre/mdx mice and the mdx controls. It is 

difficult to predict the phenotype of skeletal muscle specific Map4k4-deficient mdx mice 

considering the undetermined effects of Map4k4 on satellite cell migration and 

proliferation. I would expect to observe improved skeletal muscle regeneration and 

muscular dystrophy in the Map4k4 flox/flox:Myf5-Cre/mdx mice if Map4k4 deletion has 

no inhibitory effect on satellite cell migratory and replicative capacities.   

Conclusion 

This thesis provides evidence for a novel inhibitory function of Map4k4 in skeletal 

muscle differentiation. The repression is modulated in a Myf5-dependent manner, 

independently of Akt signaling or MAP kinases that have been identified to act 

downstream of Map4k4. Other regulators may be also involved in the Map4k4-mediated 

myogenic differentiation, and NFATc3 is proposed as a candidate. The mechanisms by 

which Map4k4 regulates Myf5 expression are not clear. Pax3 and canonical Wnt 

signaling pathway, which are well studied modulators of Myf5 transcription, appear not 
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to be involved in Map4k4-mediated Myf5 expression. It will be interesting to test 

whether Map4k4 regulates Myf5 translation in muscle cells as it affects PPARγ protein 

synthesis in adipocytes in the future. In addition, I propose that Map4k4 may regulate 

skeletal muscle differentiation, fusion and regeneration in vivo, implicating Map4k4 as a 

drug target for muscle disorders such as muscular dystrophy. I believe that the work 

described herein and my future aims will shed light on Map4k4 as a new signaling node 

in muscle development and function.   
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Appendix A 
 

 

 

Fig A.1 Map4k4 silencing marginally rescued the inhibitory effect of TNFα on 
C2C12 differentiation. C2C12 myoblasts were transfected with scrambled siRNA or 
siRNA against Map4k4. 24 h later the cells were differentiated with TNFα (5ng/ml) in 
DM for 72 h. Untreated siRNA-transfected cells were used as controls. (A) Cells were 
fixed and immunostained for MyHC and myoblast differentiation was observed by 
fluorescence microscopy. (B) Immunoblot analysis of Map4k4, myogenic markers and 
JNK activation. Data is representative of three independent experiments.  

.  
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Fig A.2 Map4k4 silencing does not change Pax3 transcription. C2C12 myoblasts were 
transfected with scrambled or Map4k4 siRNA and transferred to DM for the indicated 
times 24 h post transfection. Pax3 mRNA level was determined by Real-Time PCR. Data 
is represented as the mean ± SEM of three independent experiments. 
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Fig A.3 Map4k4 silencing does not promote Myf5 transcription through activating 
RSPO3-mediated Wnt/β-catenin signaling pathway. (A) RSPO3 expression during 
myogenic differentiation. C2C12 myoblasts were transfected with scrambled or Map4k4 
siRNA and transferred to DM for the indicated times 24 h post transfection. RSPO3 
mRNA level was determined by Real-Time PCR. (B) C2C12 myoblasts were treated with 
RSPO3 (50ng/ml) for 24 h in DM and cultured in DM without RSPO3 for another 48 h. 
Cells were fixed and immunostained for MyHC and myoblast differentiation was 
observed by fluorescence microscopy (100×). MyHC expression was also assayed by 
Western blotting. (C-D) C2C12 myoblasts were treated with different amounts of RSPO3 
as indicated for 24 h in GM. Myf5 mRNA and protein levels were detected by Real-Time 
PCR and Western blotting respectively. (E-G) C2C12 myoblasts were transfected with 
scrambled or Map4k4 siRNA. 24 h later the cells were treated with RSPO3 (50ng/ml) or 
Wnt3a (25ng/ml) in GM for 24 h. Untreated siRNA-transfected cells were used as 
controls. Myf5 expression (E) or Axin2 expression (F) was examined by Real-Time PCR. 
(G) Nuclear and cytosolic factions were prepared and analyzed for Map4k4, β-catenin, 
lamin and α-tubulin protein amounts by Western blotting. Data is represented as the mean 
± SEM of three independent experiments. * p < 0.05, ** p < 0.01. 
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Fig A.4 Map4k4 silencing results in NFATc3 dephosphorylation in C2C12 myoblasts. 
C2C12 myoblasts were transfected with scrambled or Map4k4 siRNA. 48 h later 
cytosolic and nuclear protein extracts were immunoblotted with anti Map4k4, NFATc3, 
lamin and α-tubulin antibodies. Arrows on the left illustrate the change in NFATc3 
migration due to phosphorylation status. Data is representative of two independent 
experiments. 
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Fig A.5 Map4k4 silencing does not change Myf5 protein stability. C2C12 myoblasts 
were transfected with scrambled siRNA or siRNA against Map4k4. 24 h later the cells 
were treated with cycloheximide (5 µg/ml) for the indicated times. Cell lysates were 
examined by Western blot and densitometry analysis for Myf5. Densitometry is 
representative of three independent experiments. 
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