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Abstract 

 

This thesis details my examination of several mechanisms for modulation of 

neuropeptide release via voltage-dependent and voltage-independent intraterminal 

signaling in isolated neurohypophysial terminals. The first part of this work characterizes 

depolarization-induced neuropeptide release in the absence of extracellular calcium. The 

goal of this project was to examine the relationship between depolarization-induced 

release of intracellular calcium stores and depolarization-secretion coupling of 

neuropeptides. We demonstrate that depolarization in the absence of extracellular 

calcium induced by either High K+ or electrical stimulation induces a rise in [Ca2+]i and 

subsequent neuropeptide release from Hypothalamic Neurohypophysial System (HNS) 

terminals. A portion of extracellular calcium-independent neuropeptide release is due to 

intraterminal calcium, but the remaining depolarization-induced release may be due to 

calcium-independent voltage-dependent (CIVD) release (Zhang and Zhou, 2002; Zhang 

et al., 2004; Yang et al., 2005). Nevertheless, our results clearly show that extracellular 

calcium is not necessary for depolarization-induced neuropeptide secretion from these 

CNS terminals. 

In addition, I investigated the role of internal calcium stores in mediating μ-opioid 

inhibition of voltage-gated calcium channels (VGCCs). Inhibition of VGCCs via μ-

opioid agonists has been shown to reduce neuropeptide release in response to High K+ 

stimulation of isolated terminals (Bicknell et al., 1985b; Russell et al., 1993; van 

Wimersma Greidanus and van de Heijning, 1993; Munro et al., 1994; Ortiz-Miranda et 

al., 2003; Russell et al., 2003; Ortiz-Miranda et al., 2005).  My findings show μ-opioid 
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inhibition, of VGCC and High K+-mediated rise in [Ca2+]i, are via a voltage-independent 

diffusible second-messenger targeting release of calcium from ryanodine-sensitive stores, 

possibly mediated via the cyclic ADP ribose signaling pathway.  

Furthermore, I detail a different intracellular messenger pathway mediating the κ-

opioid inhibition of VGCC and High K+-mediated rise in [Ca2+]i. In contrast to the μ-

opioid inhibition, κ-receptor activation is coupled to a voltage-dependent membrane-

delimited pathway. Inhibition of neuropeptide release via both endogenous and 

exogenous κ-opioid agonists has been extensively studied (Bicknell et al., 1985a; 

Nordmann et al., 1986a; Wammack and Racke, 1988; Munro et al., 1994; Ingram et al., 

1996; Rusin et al., 1997a). My investigation shows that the κ-inhibition of VGCC is 

voltage-dependent and is furthermore, relieved within the context of a physiological burst 

of action potentials (APs). This physiologically-evoked, activity-dependent modulation of 

VGCC and subsequent release, represents an important mechanism for short-term 

synaptic plasticity at the level of the terminals. Given the ubiquitous nature of voltage-

dependent G-protein signaling in the CNS, our results may prove important in 

understanding modulatory effects of specific bursting patterns throughout the CNS. 

In the last 30 years the neurohypophysial system has proven to be an excellent system to 

study the complexities of depolarization-secretion coupling (DSC). There have been 

many advances in our understanding of the underlying mechanisms involved and their 

physiological implications. The current work focuses on two important features of DSC; 

voltage and calcium. Although in many ways these two are intrinsically linked through 

VGCC activation, we have found that in isolated HNS terminals that is not always the 

case. We have further found that when voltage and calcium influx are linked during DSC, 
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modulation by opioids may or may not be linked to activity-dependent relief depending 

on the opioid receptor activated.  This finding has important implications in neuropeptide 

release during patterned stimulation in vivo. As I will discuss further, many factors play 

into the complexities of the regulatory mechanisms involving release. As investigations 

into this remarkable field continue, I hope to have contributed a valuable piece to the 

puzzle. 
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Chapter I 

 

 

 

Introduction 

 

 

 



Hypothalamic Neurohypophysial system 

 Magnocellular neurosecretory cells (MNC) project axons to the neurohypophysis 

where both oxytocin (OT) and arginine vasopressin (AVP) are released for systemic 

circulation. Oxytocin (OT) has been shown to be important during parturition and 

essential for milk-let down during lactation in females, in males it stimulates contractions 

of the reproductive tract aiding sperm ejaculation (Insel, 1992; Russell et al., 2003; Leng 

et al., 2005; Thackare et al., 2006) (Fig. 1.1). OT also has an emerging role as a 

natriuretic agent (Lemos et al., 2002). Behavioral studies have shown the role of oxytocin 

(OT) in modulating stress, pair-bond formation, parental behavior, social recognition, and 

important aspects of attachment (Insel, 1992; Zingg, 1996; Choleris et al., 2003; Razzoli 

et al., 2003; Bartz and McInnes, 2007; Jin et al., 2007; Campbell, 2008). Arginine 

vasopressin (AVP) plays a vital role in systemic sodium and water homeostasis as an 

antidiuretic (Gruber and Eskridge, 1986; Bourque and Oliet, 1997), it is also a potent 

vasoconstrictor (Altura and Altura, 1977; Russ et al., 1992) and, like OT, has a role in 

affiliation behaviors (Lohmeier, 2003; Caldwell et al., 2008). Various endogenous 

excitatory and inhibitory inputs project onto the magnocellular neurosecretory system at 

various levels affecting release of both oxytocin and vasopressin. Autocrine and paracrine 

effects of AVP at the dendrites and cell bodies have shown activity-dependent 

modulation (Niermann et al., 2001; Mueller et al., 2005; Bull et al., 2006; Brown et al., 

2007). Other compounds co-released with both neuropeptides also exert modulatory 

effects on somatodendritc excitability such as; ATP (Troadec and Thirion, 2002; Bull et 

al., 2006), and endogenous opioids (Leng et al., 1985; Brown et al., 2007). At the 

terminals, characteristic electrical input from OT and AVP cell bodies is associated with 
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optimum excitation-secretion coupling of their specific neurohormones. OT neurons are 

characterized by a high-frequency discharge, which occurs during suckling, triggering 

pulsatile release of OT, while AVP neurons are characterized by their asynchronous 

phasic activity (bursting) during maintained AVP release (Armstrong and Sladek, 1982; 

Poulain and Wakerly, 1982; Andrew and Dudek, 1983). Autocrine and paracrine 

modulation by AVP and OT seems unlikely at the Neurohypophysis given there are no 

known OT receptors in the terminals and the presence of AVP receptors is still debated 

(Dashwood and Robinson, 1988; Hatton et al., 1992). However, substances co-released 

with either/or AVP and OT, such as endogenous opioids (Iversen et al., 1980; Lightman 

et al., 1983; Bicknell et al., 1985b; Nordmann et al., 1986b; Bicknell et al., 1988; Zhao et 

al., 1988a; Sumner et al., 1990; Leng et al., 1994; Ortiz-Miranda et al., 2003), and ATP 

(Lemos and Wang, 2000a; Sladek and Kapoor, 2001; Troadec and Thirion, 2002; Wang 

et al., 2002a; Knott et al., 2005; Song and Sladek, 2005; Knott et al., 2007) are known to 

have significant modulatory effects on VGCC and DSC. The intraterminal mechanisms 

mediating these effects on VGCC and subsequent stimulus-secretion coupling are yet to 

be understood.  

 

Patterns of electrical stimulation inducing optimum neuropeptide release 

 As mentioned above, the optimum firing pattern for eliciting AVP and OT release 

are different (Fig. 1.2). Optimum AVP release is stimulated by an asynchronous phasic 

bursting with periods of firing and silence from 20-40 sec. with and average mean 

frequency of 10-20 Hz (Wakerley et al., 1978; Armstrong and Sladek, 1982; Cazalis et 

al., 1985; Gainer et al., 1986; Richard et al., 1997). OT discharge is preceded by a high 
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frequency burst pattern approx. 10-77 Hz for 0.9-4.7 sec. with a burst latency of 13.3 sec. 

(Lincoln and Wakerley, 1974; Armstrong and Sladek, 1982; Poulain and Wakerly, 1982; 

Andrew and Dudek, 1983).  Research exploring the possible mechanisms that connect the 

burst patterning to optimal release have been ongoing. Starting in 1971, action potentials 

were determined to be the mechanisms via which electrical impulses were transmitted 

from magnocellular neurons to the Neurohypophysis eliciting neuropeptide release 

(Dreifuss et al., 1971). These studies showed for the first time, that the total number of 

stimuli applied and the frequency of stimulation were both important for optimum 

release. Future studies confirmed these findings and further found other important 

parameters for eliciting release such as burst frequency, AP broadening, burst duration 

and interburst interval (Dutton and Dyball, 1979; Shaw et al., 1984; Jackson et al., 1991b; 

Seward et al., 1995). In the neurohypophysis, as in other systems, action potentials 

undergo a gradual broadening when elicited repetitively. The degree and rate of 

broadening is dependent on firing frequency (Gainer et al., 1986; Bourque, 1990; Jackson 

et al., 1991b). It was first believed that the phenomenon of AP broadening, which leads to 

an increased rise in [Ca2+]i per AP, was responsible for neuropeptide release facilitation in 

response to higher frequency stimulation. However, this could not be the complete 

answer, given that parameters for maximal broadening at the somata did not correlate 

with firing rates evoking maximal release from HNS terminals (Andrew, 1986; Jackson 

et al., 1991b). Furthermore, after eliminating frequency dependent changes in AP 

duration there was still a residual frequency dependent rise in [Ca2+]i (Jackson et al., 

1991b). Other considerations, such as axonal cable properties (Nordmann and Stuenkel, 

1986), changes in [K+]o  accompanying high-frequency stimulation (Leng et al., 1988a), 
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and endogenous opioid modulation (Bicknell, 1988; Bondy et al., 1988; Wammack and 

Racke, 1988) emerged as important factors in the efficiency of patterned stimulation in 

vivo. Studies done in the intact Neurohypophysis further showed that known intrinsic 

changes in intrerstitial concentrations of calcium and potassium during action potential 

activity, modulate biophysical properties of voltage-gated channels contributing to 

frequency-dependent facilitation of neuropeptide release (Marrero and Lemos, 2005).  It 

is now known that activity-dependent changes, play a vital role in translating electrical 

activity to individual terminals and modulate the spatial spread of excitation within a 

field of HNS axons (Bourque, 1991; Marrero and Lemos, 2005; Bull et al., 2006).  The 

activation of VGCC during action potential activity represents an important link in 

establishing a connection between stimulus and secretion. Therefore, one of the aims of 

my current work is to understand the activity-dependent modulation of VGCC via opioid 

receptor activation in isolated HNS terminals. 

 

Intraterminal Ca2+ stores in the Neurohypophysis  

 Initial studies of the role of internal calcium stores in isolated Neurohypophysial 

terminals during DSC were controversial (Salzberg et al., 1985; Stuenkel, 1991, 1994). 

The lack of documented effects of either caffeine or ryanodine on depolarization-induced 

release (Stuenkel, 1994) suggested there were no ryanodine-sensitive stores present in the 

Neurohypophysial terminals. However recently, spontaneous small ryanodine-sensitive 

Ca2+ release events from isolated terminals have been characterized (De Crescenzo et al., 

2004b; De Crescenzo et al., 2006). The spontaneous Ca2+ release events were termed 

syntillas, and are both ryanodine- and voltage-sensitive. Syntillas result from the 
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activation of both RyR type-1 and type-2. Presumably, the type-1 RyR confers the 

voltage-sensitivity via direct interaction with VGCC, as documented in the skeletal 

muscle (De Crescenzo et al., 2006). Similar spontaneous release events were later 

discovered in chromaffin cells with similar ryanodine sensitivity although no voltage-

dependence (ZhuGe et al., 2006). Interestingly there is only RyR type-2 and type-3 in 

chromaffin cells, supporting the hypothesis that type-1 RyR in the neurohypophysial 

terminals are linked to voltage-dependence. Both of these subclasses of ryanodine 

receptors may act on distinct pools of calcium stores in terminals modulating 

intraterminal Ca2+-sensitive processes in distinct spatio/temporal configurations triggered 

by Ca2+, cADPr, and/or voltage. Ongoing studies suggest that these ryanodine receptors 

are located in the granules and are involved in DSC modulation (McNally et al., 2006; 

2007).  

 Other HNS intraterminal stores are also present such as, the inositol- 1,4,5-

trisphosphate (IP3) calcium stores (Sabatier et al., 2004; Ludwig and Leng, 2006; Leng et 

al., 2008). Studies on isolated HNS permeabilized terminals, treatment with IP3 induced a 

242% rise above baseline AVP release (Cazalis et al., 1987a) indicating IP3 stores not 

only exist in terminals but are capable of participating in release. Immunogold labeling 

with electromagnetic imaging (EM) has confirmed the existence of IP3 receptors in HNS 

terminals (B. Salzberg personal communication). In magnocellular oxytocin neurons, IP3 

stores have been further shown to contribute to OT release in the absence of extracellular 

calcium (Richard et al., 1997). Both ryanodine and IP3 intraterminal calcium stores pose 

interesting questions regarding their physiological role during DSC, which is currently 

the focus of intense research.  
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 On the other side of the intraterminal calcium equation, several calcium extrusion 

mechanisms exist to regulate [Ca2+]i (Fig. 1.3). Regulating changes in intraterminal 

calcium due to either calcium release from stores or calcium influx, are endogenous 

buffering mechanisms such as intracellular Ca2+ binding proteins (Stuenkel, 1994), Ca2+ 

extrusion through the Ca2+ pump in the plasma membrane (Sasaki et al., 2005), Ca2+ 

uptake by mitochondria (Stuenkel, 1994; Sasaki et al., 2005) and K+-dependent Na+/Ca2+ 

exchanger (Lee et al., 2002). Therefore, as in other systems, HNS intraterminal calcium is 

tightly regulated due to its important role in eliciting and modulating DSC. 

 

Ca2+ channels contributing to neuropeptide release from isolated terminals 

 Initial characterization of the L-type voltage-gated calcium channel (VGCC) in 

isolated terminals was first published in 1989 (Lemos and Nowycky, 1989a). Studies on 

neuropeptide release in response to a depolarizing stimulus had already demonstrated the 

importance of VGCC during DSC (Nordmann et al., 1982; Dayanithi et al., 1988). 

Further research on the characterization of VGCC in isolated terminals found the 

presence of N-type, P/Q-type and R-type in the Neurohypophysis (Dayanithi et al., 1988; 

Salzberg and Obaid, 1988; Lemos and Nowycky, 1989b; Obaid et al., 1989; Fatatis et al., 

1992; Wang et al., 1993b; Wang et al., 1999a). Interestingly, OT containing terminals 

express L-, N-, and R-type VGCC while AVP containing terminals express L-, N-, and 

Q-type VGCC (Wang et al., 1991, 1992; Wang et al., 1997a; Wang et al., 1999b).  

 The relative contributions of each VGCC to release of either OT or AVP were 

measured in response to High K+-induced release of neuropeptide and analyzed with a 

radioimmunoassay (Wang et al., 1997a; Wang et al., 1999b). Results showed approx. 
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59% of either OT or AVP release was via activation of the L- and N-type calcium 

channel, Q-type represented approx 24% of AVP release and R-type approx. 35 % of OT 

release.  Interestingly, in these studies there was a component of High K+-induced release 

that was not blocked by any of the VGCC blockers. 

 

 

G-protein modulation of calcium channels 

 Regulation of VGCC by G-proteins (guanine nucleotide-binding proteins) begins 

with the activation of G-protein coupled receptors (GPCR). GPCRs interact with G-

proteins, which are membrane-associated proteins, composed of three subunits, α, β, and 

γ. Activation of the GPCR leads to a conformational change in the G-protein resulting in 

two important events. First, the Gα subunit exchanges GDP for GTP, followed by the 

dissociation of the Gα with the βγ-subunits. Both the Gα-GTP and the Gβγ are active 

signaling complexes with several possible downstream effectors.  G-protein signaling is 

terminated by the intrinsic alpha-subunit GTPase activity, catalyzing the hydrolysis of 

bound GTP to GDP + Pi. This is accelerated in situ by regulators of G-protein signaling 

(RGS) proteins, acting as GTPase-activating proteins (GAPs). Hydrolysis of the GTP 

promotes the reassembly of the inactive Gα-GDP and Gβγ trimer.  

 Several different subtypes of α, β, and γ subunits can form each of the G-protein 

trimers. More than twenty Gα subunits have been identified in mammalian systems 

(Offermanns et al., 1997). These are classified into five groups according to their 

downstream effectors (Tedford and Zamponi, 2006). Activation of adynylyl cyclase is 

targeted by Gαs and inhibition is mediated by Gαi, which include Gαo and Gαz (McCudden 
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et al., 2005). The Gαq is associated to activation of phospholipase Cβ (Rhee, 2001). The 

Gβ subunits have five known subtypes and twelve subtypes for the Gγ (Davies, 2002; 

Tedford and Zamponi, 2006). Differences in subtypes can be genetic or post-translational 

modifications resulting in >1,000 possible combinations of Gα, Gβ, and Gγ trimers.  

However, constraints on cellular and subcellular expression, as well as, thermodynamic 

binding compatibility limit the number of heterotrimeric complexes that actually exist 

(Connor and Christie, 1999; Davies, 2002; Tedford and Zamponi, 2006).  

 Trimeric G-proteins primarily involved in the modulation of voltage-gated 

calcium channels are composed of Gαi, Gαo, or Gαq (Brown and Sihra, 2008). Inhibitory 

effects have been reported to mediate the presynaptic inhibitory effects on VGCC of 

many neurotransmitters such as muscarinic receptors (Brody et al., 1997; Brody and Yue, 

2000), adrenoreceptors (McFadzean et al., 1989; Silinsky, 2004), opioid receptors (Rusin 

and Moises, 1995; Rusin et al., 1997b; Ortiz-Miranda et al., 2003), and GABAB 

receptors (Pfrieger et al., 1994). The Gα(i/o) βγ-associated subunits ubiquitously act via 

direct binding to VGCC known as a voltage-dependent membrane-delimited pathway, 

resulting in a shift in gating kinetics from “willing” to “reluctant” and thus, reduced Ca2+ 

influx during DSC (Fig. 1.4). The G-protein voltage-dependent inhibition of VGCC can 

be reversed by strong membrane depolarizations triggering dissociation of the Gβγ 

subunits from the VGCC, thus relieving inhibition of the current. Different Gβγ subunit 

complexes have been studied to quantify their ability to mediate this type of voltage-

dependent inhibition on specific types of VGCC (Garcia et al., 1998; Arnot et al., 2000; 

Ruiz-Velasco and Ikeda, 2000). These studies show a range of complex inhibitory 

interactions between the Gβγ subunit complexes and VGCC, which strongly depend on 
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experimental conditions. However, results suggest N-type voltage-dependent inhibition is 

best mediated by the Gβ1γ2 and Gβ3γ2 complexes and the P/Q-type by the Gβ4γ2 (Arnot et 

al., 2000). The Gαq has been reported to inhibit VGCC through activation of target 

diffusible second-messenger pathways (phospholipase-C PLC, and adenylate cyclase, 

AC) by the GTP-bound α-subunits (Aantaa et al., 1995; Zhou et al., 2007; Brown and 

Sihra, 2008). This type of inhibition cannot be reversed by strong membrane 

depolarizations and is thus referred to as voltage-independent G-protein modulation. 

Membrane-delimited voltage-dependent pathways and diffusible second messenger, 

voltage-independent pathways, are not mutually exclusive. For example, the muscarinic 

M1 (Meza et al., 1999; Kammermeier et al., 2000) and neurokinin 1 (Meza et al., 2007) 

receptors both inhibit the N-type VGCC via a voltage-independent Gαq mediated pathway 

concurrent with Gβγ membrane-delimited voltage-dependent interaction. Many factors 

contribute to the overall complexity of GPCR signaling. The signaling complexities 

expand the possibilities for modulation tailoring calcium influx in response to a particular 

physiological context. This results in an orchestrated response for optimum neuropeptide 

release. 

 

Mechanisms of G-protein mediated opioid effects 

 Opioid receptors are part of the G-protein coupled receptor (GPCR) family I 

subfamily IV (Davies, 2002). This classification is based on similarities within the GPCR 

amino acid sequence and the chemical nature of their ligands as determined by molecular 

cloning studies and genome data analysis. The three main types of opioid receptors (using 

the classic Greek nomenclature) are μ, κ and δ. A fourth opioid receptor (opioid receptor 
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like 1), with over 60% homology with the three previously cloned opioid receptors, has 

also been isolated (New and Wong, 2002). ORL1 is activated by nociceptin, however, it 

has a very different pharmacological profile than the other three receptors. The IUPHAR 

Nomenclature Committee has formally renamed opioid receptors μOP or MOP, δOP or 

DOP and κOP or KOP, and NOP (for ORL1), OP standing for opioid peptide family, 

although the classic Greek nomenclature for the three main receptors is still extensively 

used (Dhawan et al., 1996; Davies, 2002).  

 Opioid receptors have been found all over the peripheral and central nervous 

system and most notably modulate behaviors such as, stress, pain, reward and motivation 

(Anton, 1996; Zadina et al., 1999; Fricchione and Stefano, 2005; Fichna et al., 2007) 

amongst others. They are activated by several endogenous opioid agonists derived from 

proopiomelanocortin, proenkephalin and prodynorphin (Davies, 2002). Like other 

GPCRs, opioid receptors mediate receptor signaling via activation of heterotrimeric G-

proteins. They are all capable of interacting with the pertussis toxin-sensitive G-protein 

alpha-subunits Gαi1, Gαi2, Gαi3, Gαo1, Gαo2 and the pertussis toxin-insensitive Gαz and Gα16 

(Connor and Christie, 1999; Brown and Sihra, 2008).  The predominant effector pathway 

being inhibition of adenylyl cyclase through pertussis toxin-sensitive G-proteins, most 

likely of the Gαi/Gαo class coupled to inwardly rectifying K+ channels or voltage-gated 

Ca2+ channels (North and Williams, 1985; Piros et al., 1996; Hawes et al., 2000). It is 

generally accepted that interaction between any given opioid receptor and its effector is 

dictated more by availability of G-protein subtypes within the cell or presynaptic site, 

rather than the requirement for a specific coupling between an opioid receptor and G-

protein subtype.  
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 G-protein targeting of ionic currents involved in modulation of neurotransmitter 

release are primarily of the Go, Gq, and Gs subtypes (Brown and Sihra, 2008). The Gs 

alpha subunit is not known to mediate any opioid receptor effects unlike the Go and Gq. 

These alpha G-proteins are further associated with their respective β, γ subunits. The β, γ 

subunits can directly associate to the voltage-gated Ca2+ channel alpha1 pore forming 

complex, resulting in a gating mode shift from “willing” to “reluctant” resulting in the 

reduction of Ca2+ influx through the channel. This is also known as voltage-dependent 

inhibition mediated by a membrane-delimited signaling pathway (Zamponi and Snutch, 

1998; Endoh, 2004; Brown and Sihra, 2008). 

 Furthermore, opioid receptor activation of G-proteins can initiate intracellular 

signaling cascades involving diffusible second-messengers such as, adenylyl cyclase 

(Meng et al., 1993; Fukuda et al., 1994; Piros et al., 1995; Law et al., 2000; Kaminski, 

2004), phospholipase C (Johnson et al., 1994; Spencer et al., 1997; Law et al., 2000; 

Kaminski, 2004), and mitogen-activated protein kinases ERK1 and ERK2 (Fukuda et al., 

1996; Li and Chang, 1996; Law et al., 2000; Kim et al., 2006). Mobilization of internal 

calcium in response to activation of opioid receptors has been well documented in both 

neuronal and non-neuronal systems (for review; Samways and Henderson, 2006). 

Typically a rise in  [Ca2+]i results from the activation of a Gαq-coupled opioid receptor 

activating an inositol phosphate signaling pathway leading to release of [Ca2+]i from IP3 

stores. Ryanodine-sensitive calcium stores have also been shown to be targets of G-

protein opioid activation. Although the mechanism is not known, evidence suggests it is 

either via a calcium-induced calcium release mechanism (CICR), as a secondary effect of 

release from IP3 stores, or through activation of the cyclic ADP ribose (cADPR) signaling 
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pathway. For example, activation of the μ-opioid receptor in isolated mouse astrocytes 

elicited a release of [Ca2+]i blocked by the ryanodine–sensitive antagonist, dantrolene 

(Hauser et al., 1996). In isolated rat ventricular myocytes the rise in [Ca2+]i due to κ-

receptor activation was blocked when ryanodine-sensitive stores were depleted with 

ryanodine pretreatment (Tai et al., 1992). Opioid receptor-mediated elevations of [Ca2+]i 

may target multiple Ca2+-dependent processes important in modulating vesicular 

mobilization, priming and/or exocytosis during stimulus-evoked release. Currently, we 

are proposing a diffusible second messenger pathway for the μ-opioid receptor activation 

in isolated terminals of the Neurohypophysis, initiating release of intraterminal Ca2+ from 

ryanodine-sensitive stores via cyclic ADP ribose (cADPR) signaling pathway mediating 

the inhibition of VGCC and subsequent release (Fig.1.5).  

 

Opioid modulation of VGCC in Hypothalamic Neurohypophysial system 

 In the Neurohypophysis, like in other systems, Ca2+ influx though activation of 

presynaptic high threshold voltage-gated calcium channels is essential to induce large 

bulk neuropeptide release (Cazalis et al., 1987b; Giovannucci and Stuenkel, 1997; Wang 

et al., 1997a; Wang et al., 1999b). Endogenous opioid inputs to the magnocellular 

neurosecretory system (See Fig. 1.6) which potentially target VGCC include enkephalins 

from the pars intermedia (Rossier et al., 1980), endomorphin from the arcuate nucleus 

(Chen et al., 2004; Hui et al., 2006), met-enkephalin and dynorphin A, co-released with 

OT and AVP respectively (Bondy et al., 1988; Leng et al., 1994). Studies showed that in 

the HNS, both AVP and OT are inhibited during electrically stimulated release by opioid 

agonists (Clarke et al., 1979; Bicknell and Leng, 1981; Clarke et al., 1981; Bicknell et al., 
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1985b; Nordmann et al., 1986a; Bondy et al., 1988). Furthermore, a pure preparation of 

isolated terminals from the Neurohypophysis also showed a reduction in depolarization-

induced release of both OT and AVP in response to both μ- (Zhao et al., 1988b; Leng et 

al., 1992; Russell et al., 1995a; Ortiz-Miranda et al., 2003; Ortiz-Miranda et al., 2005) 

and κ-opioid (Bicknell et al., 1988; Bondy et al., 1988; Zhao et al., 1988a; Rusin et al., 

1997b) receptor activation. This strongly suggests that opioid inhibition of neuropeptide 

release is acting directly on the terminal receptors and not on surrounding pituicytes 

(Zhao et al., 1988c). This inhibition has been shown to target specifically, high-threshold 

voltage-gated calcium channels (Rusin et al., 1997b; Ortiz-Miranda et al., 2003; Ortiz-

Miranda et al., 2005). Unlike μ-opioid inhibition, κ-inhibition may target both OT and 

AVP release differently depending on the specific κ-receptor agonist (Zhao et al., 1988a). 

A mechanism for the net inhibition of macro calcium currents in response to either μ- or 

κ-opioid inhibition is being currently proposed (See Chapter VI). 
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Figure 1.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1.1  The hypothalamo-neurohypophysial system contains magnocellular 

neurosecretory cells which send projections down to the neurohypophysis. There 

terminals secrete arginine-vasopressin (AVP) and oxytocin (OT) into the capillary 

bed.  Figure from Lemos, 2002. 
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Figure 1.2 
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Figure 1.2 Burst Frequency is important in Neuropeptide Secretion. AVP 

and OT release are elicited through action potentials which travel down from the cell bodies 

(middle box). Both AVP and OT secretion is determined by the frequency of firing in bursts 

of action potentials. Bottom traces show OT secretion is optimized with firing frequencies 

between 65 and 100 Hz. Top traces show secretion of AVP from the neurohypophysis is 

optimized by short phasic bursts of action potentials with a mean intraburst frequency around 

10 -20 Hz. Figure adapted from Dr. Govindan Dayanithi (U. Montpellier II, France). 

 



Figure 1.3 
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Figure 1.3   Potential intracellular calcium stores.  An EM of individual terminals in 

the neurohypophysis shows organelles such as the mitochondria as well as secretory 

granules containing AVP or OT. Outlined are potential intracellular calcium stores, and 

calcium extrusion mechanisms known to be present in the HNS terminals, as well as 

pharmacological agents that block each of these.  Figure from Sasaki et al., 2005. 
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Figure 1.4 
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Figure 1.4 Depolarizing Pre-Pulse Protocol. A. Voltage protocols designed for the 

application of a depolarizing Pre-Pulse (DPP). B. The DPP was designed to knock-off 

the Gβγ subunit from direct inhibitory association to the cytoplasmic link I-II region of 

the VGCC. C. Dissociation o the Gβγ subunits relieves VGCC inhibition allowing 

increased calcium influx through the channel. Figure inspired by C.F. Barrett, Ph.D 

thesis (2001). 
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Figure 1.5 
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Figure 1.5. Membrane diffusible second-messenger signaling. Classic Gα coupling with different 

diffusible second-messenger systems. Gs and Gi/o are typically associated with the activation or inhibition, 

respectively, of adenylyl cyclase leading to changes in cAMP intracellular concentrations. Gq activation is 

characterized by activation of the phospholipase C pathway which activates IP3 receptors liberating internal 

calcium from IP3 calcium stores, diacylglicerol and protein kinase C. Gq/11 has been shown to activate the 

phospholipase A2 πατηωαψ. Α ψετ υνκνοων Γα protein mediates activation of the ADP ribose cyclase 

initiating production of cADPr and release of intracellular calcium from ryanodine-sensitive stores. Figure 

modified from Sigma Signal Transduction Catalogue (2004). 
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Figure 1.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6  The hypothalamo-neurohypophysial system contains magnocellular neurosecretory cells 

which send projections down to the neurohypophysis. Endogenous opioid inputs to the magnocellular 

neurosecretory system which potentially target VCGG include enkephalins form the pars intermedia 

(Rossier et al., 1980), endomorphin from the arcuate nucleus (Chen et al., 2004; Hui et al., 2006), met-

enkephalin (Leng et al., 1994) and dyanorphin A co-released with OT and AVP respectively (Bondy, 

1988) (A). Diagram of individual terminals in the neurohypophysis shows the presence of both κ- and µ-

opioid receptors and the respective voltage-gated calcium channels (VGCC) present in each terminal 

subtype. Also shown are organelles such as the mitochondria as well as secretory granules containing 

AVP or OT. Arrows indicate the release of AVP (co-released with Dyanorphin A) and OT (co-released 

with MetEnkephalin) along with endogenous opioid input from other systems and following κ-receptor 

activation, intraterminal arrows indicate VGCC targets (B). Modified and/or adapted from Lemos et al., 

2002, and Ortiz-Miranda, unpublished. 
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 Depolarization-secretion (DSC) coupling is thought to be exclusively dependent on 

extracellular calcium (Douglas and Poisner, 1964; Katz, 1969).  Competing theories (Parnas 

and Parnas, 1986; Zhang and Zhou, 2002; Khanin et al., 2006), however, hypothesize that 

voltage may be a key factor in initiating fast release. Recently, voltage-activated ryanodine-

sensitive Ca2+ release events (“syntillas”) have been described in neurohypophysial terminals 

(De Crescenzo et al., 2004a; De Crescenzo et al., 2006). Could mobilization of Ca2+ from 

intracellular stores by depolarization trigger neuropeptide release? We now demonstrate that 

depolarization in the absence of extracellular calcium induced by either High K+ or electrical 

stimulation can give rise to neuropeptide release from Hypothalamic Neurohypophysial 

System (HNS) terminals. Agents that block voltage-gated calcium channels (VGCCs) did not 

block this depolarization-induced release. To help determine whether intraterminal calcium 

was involved in neuropeptide release in response to High K+ in 0 mM = [Ca2+]o, increases in 

intracellular calcium were buffered by pre-incubating with Bapta-AM. This resulted in over 

50% inhibition of release by both High K+ stimulation in 0 mM [Ca2+]o, as well as in normal 

extracellular Ca2+. The remaining intraterminal calcium-independent neuropeptide release 

may be due to calcium-independent voltage-dependent (CIVD) release (Zhang and Zhou, 

2002; Zhang et al., 2004; Yang et al., 2005). Given the existence of ryanodine-and voltage-

sensitive Ca2+ stores in HSN terminals (De Crescenzo et al., 2004b; De Crescenzo et al., 
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2006) we tested whether these stores could elicit neuropeptide release. Interestingly, caffeine 

(3-20 mM) and other RyR agonists, such as ryanodine (10 μM), and imperatoxin A (10 and 

100 nM), elicited peptide release from populations of isolated HNS terminals in the absence 

of extracellular calcium. These agonists also elicited increases in intraterminal calcium as did 

High K+ in 0 mM [Ca2+]o. However, in the absence of [Ca2+]o caffeine- but not High K+-

evoked release of neuropeptide was partially inhibited by 100 μM ryanodine.  This strongly 

suggested that ryanodine-sensitive voltage-activated Ca2+ stores are not involved in High K+-

evoked (in 0 mM [Ca2+]o) release. Nevertheless, our results clearly show that extracellular 

calcium is not necessary for all depolarization-induced neuropeptide secretion from these 

CNS terminals. 
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INTRODUCTION 

 

 Calcium influx through voltage-gated calcium channels (VGCC) has had a central 

role in neurotransmitter release since studies first identified its importance in presynaptic 

function and exocytosis (Douglas and Poisner, 1964; Katz, 1969; Llinas, 1977; Silinsky, 

1985; Wojtowicz and Atwood, 1986; Augustine et al., 1987; Zucker, 1993; Berridge, 1998; 

Branchaw et al., 1998; Kasai et al., 1999; Atwood, 2006). In contrast, Ca2+ release from 

internal stores in nerve terminals is poorly understood and somewhat controversial. 

Nevertheless, mounting evidence suggests that internal Ca2+ stores contribute to presynaptic 

function. Ca2+ influx during action potentials triggers Ca2+-induced calcium release (CICR) 

from ryanodine-sensitive stores (Narita et al., 2000) and caffeine suppression of glutamate 

release can regulate synaptic transmission from retinal rod photoreceptors (Krizaj et al., 

1999). Furthermore, Ryanodine-sensitive calcium release and Ca2+/calmodulin-dependent 

kinase II (CaMKII) have been shown to be essential for post-tetanic potentiation of 

neuropeptide secretion (Shakiryanova et al., 2007). 

 The Hypothalamic-Neurohypophysial system (HNS) has proven to be a useful model 

system to study depolarization-secretion coupling (Wang et al., 1993a; Lemos, 2002). The 

peptide hormones arginine-vasopressin (AVP) and oxytocin (OT) are released from nerve 

terminals of the magnocellular neurons (MCN) of the neurohypophysis. Although it had been 

previously reported that there were no caffeine-sensitive stores in the neurohypophysis 

(Stuenkel, 1994), recent work (De Crescenzo et al., 2004a) has identified voltage-sensitive 

Ca-sparks (“syntillas”) which emanate from ryanodine-sensitive stores. In the HNS, High K+ 
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and electrical-stimulation induces peptide release from the HNS, which is not completely 

inhibited by VGCC blockers, such as toxins (Wang et al., 1999a; Wang et al., 2002a) or 

Ni2+/Cd2+ (Cazalis et al., 1987b; Stuenkel and Nordmann, 1993b; Turner and Stuenkel, 

1998). However, there has been no demonstration of a mechanism whereby depolarization, in 

the absence of Ca2+ influx, causes neuropeptide release from terminals through release of 

calcium from internal stores. Here we demonstrate that release of both AVP and OT is 

increased by depolarization in the absence of calcium influx through VGCCs. However, 

unexpectedly, this release is due, in part, to intraterminal calcium increases from ryanodine-

insensitive stores. To the best of our knowledge, this is the first direct demonstration of 

voltage-dependent yet extracellular calcium-independent neuropeptide release elicited in part 

by calcium stores within nerve terminals. 
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METHODS 

Assay for peptide release 

 The experiments were conducted on freshly dissociated Neurohypophysial NH nerve 

terminals of male Swiss Webster adult (6-8 weeks) mice (Taconic Farms, USA) unless 

otherwise stated. The mice were cervically dislocated and decapitated (as approved by the 

University of Massachusetts Medical School protocol A-1135), the brain was removed and 

the pituitary then excised. The isolated neurohypophysis was homogenized in a solution 

containing (mM); sucrose, 270; Tris-Hepes, 10 (pH 7.25); EGTA 0.2. The homogenate was 

centrifuged at 100xg for 2 min. and the resulting pellet was centrifuged at 2400 x g for 6 min. 

The final pellet contains highly purified nerve terminals. The isolated nerve terminals were 

loaded onto filters (0.45 mm Acrodisc, Gelman Scientific, Ann Arbor, MI, USA) and 

perfused at 37oC with Locke’s solution (Cazalis et al., 1987c). The modified Locke’s solution 

contains (mM): NaCl, 100; CaCl2, 0.0022; KCl, 5; N-methyl-D-glucamine (NMG)-Cl2, 45; 

MgCl2, 1; glucose, 10; HEPES, 10 (pH 7.4). Ca2+ free solution contained (mM): NaCl, 100; 

EGTA, 0.002; KCl, 5; N-methyl-D-glucamine (NMG)-Cl2, 45; MgCl2, 1; glucose, 10; 

HEPES, 10 (pH 7.4), and gave a calculated free [Ca2+] of zero. The Ca2+ free solution was 

further tested using a Ca2+ probe which determined the Ca2+ concentration in the solution to 

be below 10 nM, its lowest sensitivity reading. Fractions of perfusate were collected at 4 min. 

intervals and release was evoked by a 30-45 min. exposure to Locke’s with High K+ (45 mM 

NMG-Cl exchanged for 45 mM KCl) or ryanodine agonists, e.g. 20 mM caffeine (Sigma). A 

specific and sensitive enzyme-linked immunoassay (ELISA: Assay Designs, Inc.; Ann 

Arbor, MI) was used to determine the content of AVP and/or OT for individual terminals 
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isolated and collected as described above. The results are given as AVP or OT release per 

fraction measured. In all cases, data are reported as mean ± SEM; n being the number of 

terminals or loaded filters. Statistical analysis of differences were made with paired t-tests, 

with p≤ 0.05 considered significant. 

 

Calcium imaging 

 Freshly dissociated nerve terminals (Nordmann et al., 1987) prepared from adult 

Swiss Webster mice (De Crescenzo et al., 2004a) were incubated with 2.5 μM Fura-2 AM 

for 45 min. at 37oC and thoroughly washed with Normal Locke’s solution.  Normal Locke’s 

contained (mM): 145 NaCl, 5 KCl, 10 Hepes, 10 Glucose, 1 MgCl2 and 2.2 CaCl2, pH 7.4.  

Ca2+ free bath solution contained (mM): 145 NaCl, 5 KCl, 10 Hepes, 10 Glucose, 0.0002 

EGTA, 1 MgCl2, pH 7.4, and gave a calculated free [Ca2+] of zero. The Ca2+ free bath 

solution was further tested using a Ca2+ probe which determined the Ca2+ concentration in the 

solution to be below 10 nM, its lowest sensitivity reading. Cytosolic [Ca2+] was determined 

with ratiometric indicator fura-2 AM loaded terminals and calibrated utilizing an in-vitro 

calibration kit (Invitrogen, Carlsbad CA).  This was performed according to the method of 

(Grynkiewicz et al., 1985) with an assumed Ca2+-fura 2 KD of 200 nM, as previously 

described (Becker et al., 1989). Resting values for global cytosolic [Ca2+] in the presence and 

absence of extracellular Ca2+ were 73.3 ± 6.9 nM (n = 12) and 46.2 ± 7.5 nM (n = 8), 

respectively, and these values demonstrated a statistically significant difference (p < 0.05).  

In all cases, data are reported as mean ± SEM; n being the number of terminals. Statistical 

analyses of differences were made with paired t-tests, with p < 0.05 considered significant. 
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 Fluorescence images using Fura-2 AM as a calcium indicator were viewed with a 

Nikon Diaphot TMD microscope, using a Zeiss Plan- NEOFLUAR 100X oil immersion lens, 

and fitted with a Photometrics SenSys CCD camera. The camera was interfaced to the 

inverted microscope adapted with a Chroma 71000A Fura2 filter cube. The terminals were 

excited using a Xenon arc lamp within a Lambda DG4 high-speed filter changer (Sutter 

Instruments Incorporated, Novato,CA) with the appropriate filters (340 and 380 nm 

wavelengths). Intraterminal emission of Fura-2 Ca2+ indicator was gathered at 510 nm 

wavelength. Fluorescent images were acquired and processed with Axon Imaging 

Workbench 2.1 software (Axon Instruments, Foster City, CA). 

 

Capacitance Measurements 

 Freshly dissociated terminals (Nordmann et al., 1987) from adult Swiss Webster mice 

were plated in Normal Locke’s solution with 1.2 mM CaCl2. Tight seal “whole terminal” 

recordings were obtained using the perforated-patch configuration described above. The 

pipettes resistance ranged from 5-8 MΩ. Perforation of the terminals’ membrane was 

obtained by adding 30 μM amphotericin B (SIGMA) to the pipette solution containing (mM): 

145 Cs-gluconate, 15 CsCl, 5 NaCl, 2 MgCl2, 7 Glucose, 10 HEPES pH 7.3. The bath 

solution contained (mM): 145 NaCl, 5 KCl, 1 MgCl2, 10 HEPES, 10 Glucose, 1.2 CaCl2 or 

0.2 EGTA, pH 7.5. Capacitance measurements were obtained using the piecewise-linear 

method (Knott et al., 2007). The changes in capacitance induced by a depolarizing pulse (750 

ms duration) were measured 1 second after cessation of stimulus, in order to avoid 

interference of stimulus “end-tail” effects. These stimulus-induced capacitance changes were 

measured for isolated terminals (perforated-patch) using the piece-wise method (Neher and 
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Marty, 1982; Lindau and Neher, 1988; Gillis, 1995). Briefly, the method consists in applying 

a sinusoidal voltage of low amplitude to the sample (in order to avoid voltage-elicited 

channel currents) and obtaining the phase shift of the resultant sinusoidal current. Changes in 

this phase shift (“locked-in”) are used in a formula (computer software that emulates a lock-

in amplifier) for the determination of the capacitance changes (i.e., the capacitance that 

would cause such change of phase shift). The method is sensitive to very small changes in 

capacitance and, in practice, large baseline capacitance and resistance (series) transients must 

be compensated (i.e., null) before measuring any small capacitance change. In this particular 

case the parameters used were a sine wave of 1000 Hz at ± 25 mV (about holding potential), 

with the program reporting a capacitance averaged for every 30 points (24 µs sampling rate). 

The current was filtered at a bandwidth of 5000 Hz.   

 

 

 

 

RESULTS 

 

Depolarization- induced release of both neuropeptide and [Ca2+]i : 

To investigate whether depolarization-induced release occurs in the absence of 

extracellular calcium we first monitored hormone release in response to 50 mM KCl (High 

K+) challenges in both normal calcium (2.2 mM) Lockes (NL) and calcium-free Lockes 

buffered with 2 mM EGTA. In NL, AVP hormone release increases to 576 ± 140% above 

baseline upon High K+ challenge. In 0 mM [Ca2+]o, High K+ is still able to increase AVP 
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release 223 ± 31% above baseline (Fig. 2.1A). High K+-induced neuropeptide release in the 

absence of extracellular calcium represents 39% of the release observed in 2.2 mM [Ca2+]o. 

Previous experiments had shown that High K+ induced release occurred with 2.2 mM [Ca2+]o 

even in the presence of all known voltage-gated Ca-channel (VGCC) blockers (Wang et al., 

1997b; Wang et al., 2002a). This suggested that a fraction of the High K+-induced release 

was VGCC-independent. Furthermore, we now demonstrate that High K+-induced [Ca2+]i 

rise is only partially blocked by 100 μM Ni2+/Cd2+ (Fig.2.2), well characterized non-specific 

VGCC blockers (Salzberg et al., 1983; Cazalis et al., 1987b; Keja et al., 1991; Stuenkel and 

Nordmann, 1993b; Fisher and Bourque, 1995; Wang et al., 1999b; Luther and Tasker, 2000; 

Wang et al., 2002b; Marrero and Lemos, 2003). To test whether the release observed with 

High K+ in 0 mM [Ca2+]o was  also VGCC-independent we applied these VGCC blockers, 

Ni2+/Cd2+ at 100 μM (Fig. 2.3A&B). Changes in AVP release were quantified as percent 

release above baseline (Fig. 2.3B). Results show High K
+
 in 0 mM [Ca

2+
]o = 112.9 ± 15.2%, 

similar to High K
+
 in 0 mM [Ca

2+
]o with 100 μM Ni

2+
/Cd

2+ = 120.9 ± 26.8%. Furthermore, 

High K
+
 in 2.2 mM [Ca

2+
]o was 249.7 ± 58%, but High K

+
 in 2.2 mM [Ca

2+
]o with 100 μM 

Ni
2+

/Cd
2+

 was only 85 ± 19.1%.  No statistical significant difference was observed between 

High K+-induced release of AVP with and without these calcium channel blockers in the 

absence of extracellular calcium. There was a statistically significant difference (p<0.03), 

however, between High K
+
 in 2.2 mM [Ca

2+
]o with and without 100 μM Ni

2+
/Cd

2+
. 

Furthermore, all treatments with 100 μM Ni
2+

/Cd
2+

 (with or without [Ca2+]o) and High K+ in 

the absence of [Ca2+]o, were not statistically different (p>0.05). This suggests a common 
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VGCC-independent component to depolarization-induced release in the presence and 

absence of [Ca2+]o. 

Importantly, capacitance measurements on individual HNS terminals in 0 mM [Ca2+]o 

show an  increase in capacitance of 24.2 ± 4 fF following a 750 ms square pulse stimulus 

from -80 mV to 0 mV (Fig. 2.1B). This represents a 22.3 ± 3.6% rise in capacitance in 

comparison to the same electrical stimulation under normal calcium conditions. The 

electrical stimulation was chosen for its ability to elicit maximum calcium currents (see inset 

in Fig. 2.1B) and substantial capacitance increase of 106.6 ± 8.8 fF in 1.2 mM [Ca2+]o 

conditions (Fig. 2.1B). Calcium currents under the same 0 mM [Ca2+]o conditions were 

completely blocked (Fig. 2.1B inset). Peak capacitance measurements in the absence of 

extracellular calcium were statistically significantly different from controls (p<0.002; n=4). 

Therefore, our results demonstrate there is release of neuropeptide from both a population 

and from individual terminals in response to depolarizing stimuli in the absence of [Ca2+]o. 

 

Changes in [Ca2+]i during depolarization in the absence of [Ca2+]o : 

 To investigate whether High K+ depolarization-induced release in the absence of 

extracellular calcium is associated with intraterminal calcium changes, we monitored 

intracellular calcium concentrations in response to a High K+ challenge. Calcium imaging 

using fura-2 AM confirmed a cytosolic rise in [Ca2+]i in response to the High K+ challenge in 

0 mM [Ca2+]o  equivalent to a 150 ± 50%  rise above baseline (Fig. 2.4A) equivalent to 84.2 ± 

17.0 nM; (n=4) change in baseline [Ca2+]i.  In the presence of 100 μM ryanodine the change 

in baseline [Ca2+]i = 22.8 ± 7.2 nM; (n=4) in response to High K+ challenge in 0 mM [Ca2+]o  

which represents a 73% inhibition by the ryanodine antagonist (Fig.2.4B). This correlates 
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well with previously reported measurements of 100 μM ryanodine inhibition of global [Ca2+]i 

rise in response to 400 ms duration depolarizing pulses of 20-40 mV (De Crescenzo et al., 

2004a). Therefore, depolarization initiates a rise in intracellular calcium in the absence of 

extracellular calcium, presumably via release of Ca2+ from an intracellular store, possibly 

ryanodine-sensitive. This leads to an important question. Is the rise in [Ca2+]i necessary for  

depolarization-induced release in the absence of extracellular calcium? 

 

Buffering of [Ca2+]i during depolarization- induced release of both neuropeptide and 

[Ca2+]i in the absence of [Ca2+]o : 

 To determine if the rise in [Ca2+]i in response to High K+ is necessary for High K+ -

induced release of neuropeptide in 0 mM [Ca2+]o we buffered changes in [Ca2+]i using Bapta-

AM. High K+ -induced release of neuropeptide in 0 mM [Ca2+]o is partially inhibited by 

preincubation with the calcium chelator, Bapta-AM at 26 μM (Fig. 2.5). High K+ in 2.2 mM 

[Ca2+]o was inhibited to 47 ± 5% of control (without Bapta-AM preincubation) and High K+ 

in 0 mM [Ca2+]o was reduced to 59 ± 5% of control (without Bapta-AM preincubation) (Fig. 

2.5C). Therefore, approx. half of High K+ in 0 [Ca2+]o induced neuropeptide release is due 

directly to intraterminal calcium. Furthermore, rises in intraterminal calcium were blocked by 

98 ± 4% in High K+ in 0 mM [Ca2+]o and inhibited by 79 ± 8 % when challenged with High 

K+ in 2.2 mM [Ca2+]o (Fig. 2.6). HNS terminals pre-incubated with 26 μM Bapta-AM 

demonstrated no statistically significant (p>0.05) rise of [Ca2+]i in response to High K+ in 0 

mM [Ca2+]o with respect to baseline [Ca2+]i. There was, however, a statistically significant 

difference between the 26 μM Bapta-AM pre-incubated terminals in NL in response to High 

K+ (p<0.05). Presumably influx of Ca2+ through VGCC when in NL may saturate Bapta’s 
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ability to buffer [Ca2+]i. This however, is clearly not the case when in 0 mM [Ca2+]o. 

Therefore, persistent release of neuropeptide in response to High K+ after pre-incubation with 

Bapta-AM in 0 mM [Ca2+]o, strongly suggests there is a calcium-independent yet voltage-

dependent component to depolarization-induced extracellular Ca2+-independent release 

(ECIR). Furthermore, 41% of the depolarization-induced ECIR is intraterminal Ca2+-

dependent. The question becomes whether the intraterminal Ca2+-dependent portion of 

neuropeptide release is due to Ca2+ released from ryanodine- and voltage-sensitive stores. 

 

Effects of ryanodine agonists on neuropeptide release: 

 Since release of [Ca2+]i from intraterminal stores is partially responsible for 

depolarization-induced ECIR, we tested whether release from ryanodine-sensitive stores 

could elicit neuropeptide release in the absence of [Ca2+]o. Caffeine is a xanthine that releases 

[Ca2+]i from intracellular stores by increasing the affinity of the ryanodine receptor for 

cytoplasmic Ca2+ (Pozzan et al., 1994; Hernandez-Cruz et al., 1995). In isolated 

neurohypophysial terminals, application of caffeine evokes the release of calcium from 

intracellular stores (De Crescenzo et al., 2004b). This release is typically observed as a 

transient global increase in [Ca2+]i reminiscent of that observed with High K+ in 0 mM 

[Ca2+]o (Fig. 2.5A). Figure 2.7B quantifies the average change in [Ca2+]i in response to 20 

mM caffeine = 20.2 ± 3.1 nM; (n=7), representing a 33% rise from baseline. The High K+ in 

0 mM [Ca2+]o challenge elicited a 24.2 ± 1.9 nM; (n=7), change in [Ca2+]i which represents a 

40% rise from baseline (Fig. 2.7B). The average changes in  [Ca2+]i for the 20 mM caffeine 

as compared to the High K+ in 0 mM [Ca2+]o challenge were not statistically different (p > 
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0.05). However, both challenges were statistically different from baseline [Ca2+]i values with 

p < 3.43e-5.  

 Application of 20 mM caffeine evokes concentration-dependent hormone release 

from a population of HNS terminals (Fig.2.8). Furthermore, at the single terminal level, a 20 

mM caffeine in 0 mM [Ca2+]o challenge results in a rise in membrane capacitance of 103.0 ± 

45.6 fF, indicative of exocytotic release. This response is not dependent on VGCCs since 100 

μM Ni2+/Cd2+ had no effect on caffeine-evoked hormone release (Fig. 2.3B).  

 Repetitive challenges with 20 mM Caffeine in calcium free Normal Locke’s did not 

diminish the [Ca2+]i rises nor the hormone release response (Fig. 2.9) in 0 mM [Ca2+]o. This 

allowed for cross-comparisons between experimental approaches regardless of technical 

differences. Four 30 second applications of 20 mM caffeine, 1 min. apart increased 

neuropeptide release: 98%, 78%, 86%, and 97 % above baseline, respectively. No differences 

were observed between the release evoked by the first and last application of 20 mM 

caffeine. Prolonged application (7 min.) of 20 mM caffeine also elicited a sustained response. 

This further confirmed that the internal calcium stores in the isolated terminals are very 

difficult to deplete.  

 Caffeine is by no means the only RyR agonist capable of eliciting hormone release 

from neurohypophysial terminals. The concentration-dependent response described above 

extends to Imperatoxin A (Table 2.1), a highly specific RyR agonist (Valdivia et al., 1992).  

In our hands, Imperatoxin A is capable of inducing both a rise in intracellular calcium and an 

increase in AVP release at concentrations as low as 0.1 nM.  The activation properties of 

Imperatoxin A during its association to the RyR are known to be concentration-dependent 

(EC50=10 nM), with a fast onset and fully reversible (el-Hayek et al., 1995).  Imperatoxin A 
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showed a similar concentration-dependent response in its ability to evoke both a rise in 

intraterminal calcium and release of neuropeptide (Table 2.1). Furthermore, application of 

ryanodine at a 10 μM concentration, also elicited increases in both [Ca2+]i and basal hormone 

release (Table 2.1).  Therefore, release of [Ca2+]i from ryanodine-sensitive stores is capable 

of triggering neuropeptide release from HNS terminals. 

 

Ryanodine-sensitive Ca2+ stores do not make a significant contribution to voltage-

dependent release in the absence of [Ca2+]o 

 In some types of cells, ryanodine at higher concentrations (100 μM) can block 

caffeine-induced release of Ca2+ from ryanodine-sensitive intracellular stores (McPherson et 

al., 1991). Furthermore, caffeine has been shown to cause release of calcium from ryanodine-

insensitive stores (Schmid et al., 1990; McNulty and Taylor, 1993; Orkand and Thomas, 

1995). Therefore, to determine if the calcium released from ryanodine-sensitive stores is 

responsible for the intraterminal Ca2+-dependent potion of depolarization-induced ECIR, we 

tested the effects of an antagonist concentration of ryanodine on the caffeine- and High K+- 

induced neuropeptide release seen in the absence of extracellular calcium. Caffeine- but not 

High K+-evoked (in 0 mM [Ca2+]o) release of neuropeptide was partially inhibited, by 40 ± 

14%, in the presence of 100 μM ryanodine (Fig. 2.10B).  Previous reports (De Crescenzo et 

al., 2004a) have shown that 100 μM ryanodine inhibited the caffeine-induced rise in syntilla 

frequencies to a similar extent. However, High K+-evoked (in 0 mM [Ca2+]o) neuropeptide 

release was not statistically different (p>0.05) from High K+-evoked (in 0 mM [Ca2+]o) 

neuropeptide release in the presence of 100 μM ryanodine (Fig. 2.10B). Interestingly, we 

have shown that application of 100 μM ryanodine was able to inhibit approximately 75% of 
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the elevation of [Ca2+]i due to a High K+ challenge in 0 mM  [Ca2+]o (Fig. 2.4B). However, 

we must conclude that release of [Ca2+]i from voltage- and ryanodine-sensitive stores does 

not significantly contribute to neuropeptide release in response to High K+ in 0 mM [Ca2+]o.  

  

 

 

DISCUSSION 

 
 Our studies show that depolarization, in the absence of external calcium, elicits 

release of neuropeptide from both individual and populations of HNS terminals. This release 

of peptide hormone was triggered, at least partially, by release of calcium from intraterminal 

stores. These findings broaden our view of potential sources of presynaptic calcium and 

subsequent dependence on extracellular calcium for depolarization-secretion coupling 

(DSC). The classical precept of DSC states that depolarization of the membrane due to an 

action potential opens voltage-gated calcium channels, allowing Ca2+ ions to flow in. The 

basis of the Calcium Hypothesis (CH) is that the post-stimulation rise in intracellular 

calcium, in the vicinity of sites of exocytosis, is the sole trigger for neurotransmitter release 

(Katz, 1969; Zucker, 1993). The subsequent removal of calcium from these sites terminates 

the process. Recently work has suggested that Ca2+ is required, yet insufficient for fast 

release to occur.  This has led to an alternate Ca2+-voltage hypothesis (CVH) (Parnas et al., 

2002; Khanin et al., 2006) which proposes that membrane potential (i.e., depolarization) is 

the key step in initiating depolarization-induced exocytosis, while repolarization controls its 

termination. We, and others, have observed that High K+ and electrical stimuli induce an 

“extracellular calcium-independent” form of peptide release from the HNS, which is not 
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completely blocked by VGCC blockers, such as toxins (Wang et al., 1999a; Wang et al., 

2002a) or Ni2+/Cd2+ (Stuenkel and Nordmann, 1993b; Turner and Stuenkel, 1998). This 

coupled with the recent characterization of voltage-dependent Ca2+ syntillas (De Crescenzo et 

al., 2004a; De Crescenzo et al., 2006) led to the question: could mobilization of intracellular 

calcium stores lead to the “extracellular calcium-independent” hormone release?  

Depolarization-induced ECIR is not due to Ca2+ released from ryanodine-sensitive 

stores  

 Here we have demonstrated that in isolated HNS terminals depolarization-dependent 

release observed in 0 mM [Ca2+]o is, at least partially, due to release of intracellular Ca2+ 

from calcium stores.  To our surprise, part of this intracellular calcium-dependent release was 

shown to be ryanodine-insensitive. The remaining non-calcium yet voltage-dependent release 

could be due to changes in intracellular sodium, which has been shown to affect hormone 

release in this system (Stuenkel and Nordmann, 1993b).  Alternatively a yet unknown, 

presynaptic inhibitory autoreceptor, as proposed by (Parnas and Parnas, 1994), could be 

responsible for exclusively voltage-dependent release. However, having shown that DSC 

occurs in the absence of extracellular calcium and independent of VGCCs supports the 

general premise of the Ca2+-voltage hypothesis. Whether this process modulates or plays a 

key role in the initiation and/or the termination of physiological release during a burst of 

action potentials in the HNS remains to be proven. 

Possible physiological role of ryanodine-sensitive stores during DSC 

 Large dense-core vesicle (LDCV) release is characterized by multiple steps involving 

populations of LDCVs in differing stages of exocytotic readiness (Horrigan and Bookman, 

1994; Seward et al., 1995; Giovannucci and Stuenkel, 1997). Early experiments describe a 
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triphasic capacitance response to depolarizing stimuli of peptidergic nerve terminals 

characterized by a critical initial “threshold phase” which does not trigger hormone release 

(Seward et al., 1995).  Giovannucci and Stuenkel (1997), suggested that the activation of 

unknown Ca2+-dependent steps prepare the granules of the readily-releasable pool for 

secretion. Intraterminal calcium stores may act as pivotal modulators of the state of 

exocytotic readiness of any given terminal prior to and/or during electrical stimulation. 

Therefore, one prediction would be that experimentally elevating [Ca2+]i via release of 

intraterminal calcium would meet the threshold calcium level requirement prior to DSC. This 

could effectively amplify the subsequent depolarization-secretion response by transiently 

maximizing the number of LDCV in a primed state for release. Such receptor-independent 

potentiation due to ryanodine-sensitive calcium stores has been recently reported in rat 

hippocampal area CA1 (Li et al., 2006). These studies showed that caffeine enhances this 

form of LTP. More recently, RyR and CaMKII have been shown to be essential for post-

tetanic potentiation of neuropeptide secretion in Drosophila motor neuron terminals 

(Shakiryanova et al., 2007). In isolated HNS terminals, blocking ryanodine receptors using 

either 100 μM ryanodine or 8-Br cADPr, attenuated both the depolarization-induced release 

of OT and the rise in [Ca2+]i due to High K+, with extraterminal calcium present (Jin et al., 

2007). Although our current study shows that ryanodine receptor agonists stimulate basal 

release of neuropeptide, ryanodine-sensitive stores do not seem to play a significant role in 

depolarization-induced ECIR.  Their contribution may be limited by how much intraterminal 

calcium is present in an extraterminal calcium free environment. Under physiological 

conditions amplification of a depolarization-induced release may require calcium influx from 

VGCC to trigger CICR, thus potentiating the neuropeptide release response.  
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Other possible stores of intraterminal Ca2+ in HNS terminals 

 Release from intracellular stores in response to High K+ in calcium free medium may 

be triggered by release of calcium from inositol- 1.4,5-trisphosphate (IP3) intracellular stores 

in the HNS (Sabatier et al., 2004; Ludwig and Leng, 2006). Our results support this 

possibility given there is a portion of the [Ca2+]i rise due to High K+ stimulation in 0 mM = 

[Ca2+]o which is not blocked by antagonist concentrations of ryanodine. Furthermore, in 

permeabilized terminals, treatment with IP3 induced a 242% rise above baseline of AVP 

release (Cazalis et al., 1987a) indicating IP3 stores not only exist in terminals but are capable 

of participating in release. In magnocellular oxytocin neurons, IP3 stores have also been 

shown to contribute to OT release in the absence of extracellular calcium (Richard et al., 

1997). Other systems, such as Torpedo cholinergic synaptosomes, show increases in IP3 

production in response to a depolarizing stimulus (Carrasco et al., 1996). However, the exact 

mechanism involved in IP3 production during DSC in cholinergic synaptosomes, is still 

unknown and seems to require the presence of extracellular calcium. 

Physiological significance of depolarization-induced ECIR 

 Concurrently, voltage-dependent calcium-independent release could maintain the 

efficacy of neuropeptide release at the HNS terminals during high-frequency burst 

stimulation originating from the MNC neurons in the supraoptic and paraventricular nuclei. 

During high frequency bursts the interstitial space surrounding the HNS terminals in situ 

would be depleted of Ca2+ towards the latter part of the burst, conditions which do not favor 

calcium influx through VGCC.  Zhang and Zhou (2002) have shown in DRG somata, that 

High K+-induced exocytosis occurred in the absence of a detectable [Ca2+]i change.  They 

ascribed this as direct evidence of the existence of calcium-independent but voltage-
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dependent secretion (CIVDS). Our results demonstrate that both CIVDS and intraterminal 

calcium release can contribute to the release of neuropeptides from HNS terminals. This is 

the first time, to the best of our knowledge, that a CIVDS has been found at a peptidergic 

terminal (Zhang and Zhou, 2002; Zhang et al., 2004; Yang et al., 2005). An extracellular 

calcium-independent but voltage-dependent mechanism for release could explain the efficacy 

of release at the end of an HNS burst in situ when [K+]o would depolarize the NH terminals, 

but [Ca2+]o would normally be depleted within the NH  interstitial space (Leng and Shibuki, 

1987; Leng et al., 1988a; Marrero and Lemos, 2005). 

Conclusion 

In conclusion, our results indicate that depolarization-induced neuropeptide release is 

present in the absence of external calcium, and calcium release from ryanodine-insensitive 

internal stores is an important contributor to this release from NH terminals. We have further 

shown that in isolated HNS terminals, there is a component of depolarization-induced ECIR 

that is also independent of intraterminal Ca2+. This strongly suggests that there is a CIVD 

mechanism in HNS presynaptic structures involved in DSC. Given the in situ physiological 

conditions of most presynaptic structures in the CNS, voltage-dependent and extraterminal 

calcium-independent neuropeptide release may be an important mechanism involved in DSC 

during high frequency stimulation at many CNS terminals. 
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Figure 2.1 

A. B

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1 Effect of calcium on depolarization-induced exocytosis. A. High K+-

induced AVP neuropeptide release with and without [Ca2+]o. Fractions collected 

every 4 min. B. Capacitance measurements of single terminal in the presence 

(red) and absence (blue) of extracellular calcium stimulated with a square pulse 

of 80 mV for a duration of 750 ms. Inset shows the currents obtained from the 

actual stimulus (same color indicators). The generalized conductance changes 

(“G”) are shown for reference. Dashed gray lines represent the zero-change 

baselines. Peak capacitance measurements in the absence of extracellular 

calcium were statistically significantly different from controls (p<0.002; n=4). 
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Figure 2.2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Intraterminal calcium rise in response to depolarization in the absence of 

calcium influx through VGCC. A. Images of Fura-2 AM loaded single terminal 4 

seconds apart challenged with High K+ in 2.2 mM [Ca2+]o for 10 sec. with and without 

toxins specifically blocking VGCC: Nicardipine (1-2 mM), SNX 482 (20-30 nM), 

SNX 230 (100-200 nM) , ω-conotoxin MVIIC (100 nM) to block L-, R-, N-, and Q-

type calcium channels, respectively. Diameter of the terminal is approx. 4 μm. Control 

baseline [Ca2+]i = 96.8 ± 2.8 nM and baseline [Ca2+]i after incubation with toxins 99.4 

± 7.2 nM. B. Bar graph of change in [Ca2+]i in response to High K+ challenge in 2.2 

mM [Ca2+]o with and without incubation with VGCC blocker toxins (n=8 each). 

Asterisk (*) represents statistically significant difference (p<0.001).  

 67



 

Figure 2.3 
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Figure 2.3 AVP release in response to High K+ in [Ca2+]o=2.2 mM, High K+ in 

[Ca2+]o=0 mM, and 20 mM caffeine with and without 100 μM Ni2+/Cd2+. A. 

Release of AVP from rats in response to High K+ in 0 mM [Ca2+]o control 

(black: n=3) and in the presence of 100 μM Ni2+/Cd2+ (red: n=3). Fractions 

collected every 4 min. B. Bar Graph quantifying the effects of 100 μM Ni2+/Cd2+ 

on High K+ in 2.2 mM [Ca2+]o, High K+ in [Ca2+]o= 0 mM and 20 mM Caffeine 

in 0 mM=[Ca2+]o. Asterisk (*) represents statistically significant difference 

(p<0.02).  
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Figure 2.4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Calcium imaging in 0 mM [Ca2+]o of High K+ with and without 100 μM 

ryanodine. A. Calcium Imaging using Fura-2 AM showing intracellular calcium rise in 

response to 50 mM High K+ in the absence of extracellular calcium. Line trace points 

represent an average of intraterminal calcium concentration. Numbers correspond to 

designated time points. B. Bar graph of calcium rise as change in intraterminal calcium 

concentration (nM) of isolated terminals in 0 mM [Ca2+]o challenged with 50 mM KCl:  

Control and with 100 μM ryanodine. There was a statistically significant difference between 

Control High K+ in 0 mM [Ca2+]o and High K+ in 0 mM [Ca2+]o with 100 μM ryanodine 

(p=0.03). There is a statistical difference from baseline (p=0.02) for both treatments. Average 

baseline [Ca2+]i for all terminals = 74.9 ± 6.9 nM. Averages were calculated using the total 

number of points during the treatment and equal number of points for the baseline. Asterisk 

(*) represents statistically significant difference (p<0.05).  
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Figure 2.5 

Figure 2.5 Inhibition of AVP release with Bapta-AM pre-incubation. A. AVP release 

induced by High K+ in 2.2 mM [Ca2+]o  pre-incubated with 26 μM Bapta-AM (red line) and 

pre-incubated in carrier alone as control.  B. AVP release in High K+ in 0 mM [Ca2+]o pre-

incubated with 26 μM Bapta-AM (red line) and pre-incubated in carrier alone as control. C. 

Bar graph of Bapta-AM inhibition of High K+ with and without extraterminal calcium (n=3 

each). Averages were calculated using the total number of points during the treatment and 

equal number of points for the baseline. Asterisks (*) represent statistically significant 

differences (p<0.05).  
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Figure 2.6 

Figure 2.5   Intra-terminal Calcium rise in response to High K+ with and without pre-

incubation with Bapta-AM. A. Bar graph of change in [Ca2+]i in response to High K+ challenge 

in 0 mM [Ca2+]o with and without pre-incubation with 26 μM Bapta-AM (n=6) and with High 

K+ challenge in 2.2 mM [Ca2+]o with and without pre-incubation with 26 μM Bapta-AM (n=6). 

High K+ challenge in 0 mM [Ca2+]o with pre-incubation with 26 μM Bapta-AM is not 

statistically different from baseline. All other treatments are statistically different p<0.01 from 

baseline. B. Images of Fura-2 AM loaded single terminal 4 seconds apart challenged with High 

K+ in 0 mM [Ca2+]o for 10 sec. with and without pre-incubation with 26 μM Bapta-AM. 

Diameter of the terminal is approximately 6 μm. Control baseline [Ca2+]i = 108.3 ± 12.6 nM 

and baseline [Ca2+]i after pre-incubation with 26 μM Bapta-AM = 98.6 ± 11.3 nM. Asterisks 

(*) represent statistically significant differences (p<0.05).  
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Figure 2.7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Calcium imaging in 0 mM [Ca2+]o in response to High K+ and 

Caffeine. A. Trace representing [Ca2+]i changes taken over time (1 image/ 2 sec.) 

from a single NH terminal. B. Bar graph of changes in intraterminal calcium in 0 

mM [Ca2+]o when microperfused with High K+ or 20 mM Caffeine (n=7 for 

each). All Averages are statistically significantly different (p<3.43e-5) as 

compared to baseline. Mean baseline [Ca2+]i for all terminals = 60.4 ± 9.2 nM. 

Averages were calculated using the total number of points during the treatment 

and equal number of points for the baseline. 
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Figure 2.8 
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Figure 2.8 Caffeine-induced release of AVP. A. Release of arginine-vasopressin 

(AVP) is evoked in a dose-dependent manner by caffeine. All show similar kinetics 

of sustained release in the absence of extracellular calcium. Fractions collected 

every 4 min. B. Bar graph of Caffeine-evoked release of AVP at (mM): 3, and 12 

(n=3 each) in the absence of extracellular calcium. Averages were calculated using 

the first three points during the treatment and equal number of points for the 

baseline. Asterisk (*) represents statistically significant difference (p<0.01). 
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Figure 2.9 

 
 
 

Figure 2.9 Repetitive stimulation with 20 mM Caffeine in 0 mM [Ca2+]o  

evoked similar increases in AVP release. Fractions collected every 9 sec. 

Short blue bars represent 1 min duration, 20 mM Caffeine treatments. A 

more prolonged 7 min. application (long blue bar) evoked a sustained 

response throughout. 
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Table 2.1: Ryanodine receptor agonists trigger release of  
                           Arginine Vasopressin and [Ca2+]i. 
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Figure 2.10 
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Figure 2.10 Ryanodine (100 μM) effects on High K+- and Caffeine-induced 

AVP release in 0 mM [Ca2+]o. A. Caffeine (20mM) induced AVP release in 

the presence (red line) and absence (blue line) of 100 μM Ryanodine. B. Bar 

graph of Caffeine (20mM) and High K+ in 0 mM [Ca2+]o induced AVP 

release in the absence and presence of 100 μM Ryanodine, (n=3) and (n=6), 

respectively. Averages were calculated using the same number of points 

during the treatment as for the baseline. Asterisk (*) represents statistically 

significant difference (p<0.02). 
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Abstract 
Release of neurotransmitter is activated by influx of calcium (Katz and Miledi, 

1968). Inhibition of Ca2+ channels results in less calcium current influx into the terminal 

and presumably a reduction in transmitter release. In the neurohypophysis, Ca2+ channel 

kinetics, and the associated Ca2+ influx, is primarily controlled by membrane voltage and 

can be modulated, in a voltage-dependent manner, by G-protein subunits interacting with 

voltage-gated calcium channels (VGCC). Voltage-dependent relief of G-protein 

inhibition of VGCC is achieved with either a depolarizing square pre-pulse or by action 

potential waveforms. Both protocols were tested in the presence and absence of opioid 

agonists targeting the µ- and κ-receptors. The κ-opioid VGCC inhibition is relieved by 

such pre-pulses, suggesting that this receptor is involved in a voltage-dependent 

membrane delimited pathway. In contrast, µ-opioid inhibition of VGCC is not relieved 

by such pre-pulses, indicating a voltage-independent diffusible second-messenger 

signaling pathway. Furthermore, relief of κ-opioid inhibition during a physiological AP 

burst stimulation indicates the possibility of activity-dependent modulation in vivo. 

Differences in the facilitation of Ca2+ channels due to specific G-protein modulation 

during a burst of action potentials may contribute to the fine-tuning of Ca2+-dependent 

neurotransmitter release in other CNS synapses, as well.   
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Introduction 

 

 The hypothalamic neurohypophysial system (HNS) releases both oxytocin (OT) 

and vasopressin (AVP) neuropeptides into a capillary bed for systemic delivery. Action 

potentials from magnocellular neurons to the neurohypophysial terminals elicit secretion 

of both hormones by triggering the opening of voltage gated calcium channels (VGCC) 

leading to subsequent rise in intraterminal Ca2+ concentration (Bicknell, 1988; Lemos, 

2002). Release from neurohypophysial terminals is very sensitive to intraterminal 

calcium (Dreifuss et al., 1971; Dreifuss and Nordmann, 1974; Bicknell, 1988; Berrino et 

al., 1989; Jackson et al., 1991a; Salzberg et al., 2000; Steffensen et al., 2002). Isolated 

neurohypophysial (NH) terminals show inhibition of VGCC in the presence of either μ-

opioid agonists (Ortiz-Miranda et al., 2003; Ortiz-Miranda et al., 2005) or κ-opioid 

agonists (Rusin et al., 1997b), and inhibition of subsequent release of both oxytocin and 

vasopressin (Sumner et al., 1990; Kato et al., 1992; Russell et al., 1993). The signaling 

mechanism and modulatory importance of μ- and κ-receptor activation at these pre-

synaptic terminals and subsequent VGCC inhibition is still not well understood, however.  

 Endogenous opioids, which are secreted from both the CNS and the 

Neurohypophysis, modulate both OT and AVP secretion from the magnocellular 

neurosecretory system (Douglas et al., 1995a; Elhamdani et al., 2000). However, 

modulation via μ- and κ-opioids is neither identical nor static and displays plasticity in 

response to changes in physiological status. Co-release of dynorphin, an endogenous κ-

opioid agonist, with vasopressin from magnocellular neuron cell bodies and dendrites has 

been shown to facilitate activity-dependent modulation of vasopresinergic neurons 
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(Bourque et al., 1998; Brown and Bourque, 2004; Brown et al., 2004; Roper et al., 2004; 

Brown et al., 2006; Sabatier and Leng, 2007).  κ-opioid receptors have also been found in 

isolated terminals of the Neurohypophysis (Hamon and Jouquey, 1990; Smith et al., 

1993).  In non-synaptic structures, activation of κ-opioid receptors reduces post-spike 

depolarizing after-potentials decreasing the spontaneous firing rate of magnocellular 

neurons in-vitro and subsequent transmitter release (Inenaga et al., 1994; Brown et al., 

1999; Brown and Leng, 2000). Endogenous μ-opioid effects are associated with their 

predominant role in inhibition of oxytocin cells during pregnancy (Russell et al., 2003). 

The μ-opioid inhibition of the magnocellular neurosecretory becomes increasingly 

evident during pregnancy, but is subsequently interrupted prior to parturition allowing 

strong excitation of oxytocin cells and thus facilitates birth (Russell et al., 1995b; Russell 

et al., 2003). 

 Peak release efficiency for both oxcytocin and vasopressin is achieved via 

specific bursting modes of activity of magnocellular neurons (Bicknell and Leng, 1981; 

Poulain and Wakerly, 1982). Oxcytocin release is optimum during high frequency firing 

and vasopressin release is facilitated via an asynchronous bursting firing pattern. 

Frequency variations within a train of action potentials is a key component of both types 

of physiological bursts (Cazalis et al., 1985; Bicknell et al., 1988). Various possible 

explanations for this phenomenon have been proposed. Since repetitive firing produces 

broadening of action potentials, action potential broadening and subsequent buildup of 

residual calcium, have been proposed to explain the frequency dependence of both AVP 

and OT release (Leng and Shibuki, 1987; Muschol and Salzberg, 2000). However, a yet 

unexplained residual frequency-dependent facilitation of action potential-induced rise in 
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the intracellular Ca2+ concentration [Ca2+]i, unrelated to action potential broadening, 

remain to be explained (Jackson et al., 1991b). Furthermore, biophysical properties of the 

VGCC present in isolated terminals cannot account for the observed frequency-dependent 

facilitation (Wang et al., 1997a; Wang et al., 1999b; Lemos and Wang, 2000b). Persistent 

baseline release of AVP with its concurrent co-release of dynorphin (Bourque et al., 

1998; Brown and Bourque, 2004; Brown et al., 2004; Roper et al., 2004; Brown et al., 

2006; Sabatier and Leng, 2007), and its documented effects on action potential duration, 

post-spike excitability and reduced stimulated neuropeptide release  (Inenaga et al., 1994; 

Brown et al., 1999; Brown and Leng, 2000), could represent a tonic inhibitory regulation 

of both OT and AVP release. We propose that voltage-dependent relief of tonic κ-opioid 

mediated inhibition of VGCC may help explain the importance of specific frequency-

dependent bursting patterns in increasing efficacy of neuropeptide release. 

 Both the μ- and κ- receptors are G-protein coupled receptors can potentially 

mediate their inhibitory effects on VGCC through either a membrane-delimited or 

diffusible second-messenger pathway (Wilding et al., 1995; Kaneko et al., 1998; Soldo 

and Moises, 1998; Connor and Christie, 1999; Chen et al., 2000). A membrane-delimited 

pathway is described as G-protein activation leading to βγ subunits directly associating 

with a voltage-gated calcium channel and typically inhibiting calcium currents. This 

association is described as voltage-dependent and characterized by a slowing of 

activation kinetics of the currents, as well as attenuation of the response when preceded 

by a depolarizing pre-pulse (Dolphin, 1996; Tedford and Zamponi, 2006). As the term 

implies, all signaling components are associated with the membrane. During classic 

whole-cell patch-clamp recordings, inhibition of VGCC via a G-protein membrane-

 81



delimited pathway should be observable whether using classic or the perforated-patch 

configuration. In contrast, a voltage-independent inhibition typically involves signaling 

via a diffusible second-messenger and can be blocked by intraterminal dialysis as occurs 

during classic whole-cell patch-clamp in HNS terminals. This inhibition may only be 

observed in calcium currents recorded using the perforated-patch configuration of whole-

cell patch clamp, as is the case for μ-opioid inhibition of calcium currents in the HNS 

(Ortiz-Miranda et al., 2003; Ortiz-Miranda et al., 2005) but not for κ-opioid inhibition 

(Rusin et al., 1997b). 

 The μ- and κ-opioid receptors are heterotrimeric G-protein coupled receptors, 

capable of interacting with either pertussis toxin-sensitive and pertussis toxin–insentive 

G-proteins (Connor and Christie, 1999). N-ethylmaleimide (NEM), a sulfhydryl 

alkylating reagent, has been characterized as a blocker of specific G-protein ADP-

rybosylation, which results in termination of downstream opioid receptor signaling 

initiated by agonist binding (Ueda et al., 1990; Ueda et al., 1996). Studies show that 

treating membranes with NEM abolishes signaling downstream of G-protein activation 

by the κ-opioid agonist U50488 and μ-receptor agonist DAMGO (Allgaier et al., 1989; 

Ueda et al., 1990; Ofri and Simon, 1992; Ueda et al., 1996).   

 G-protein membrane-delimited inhibition can be relieved by pre-pulse 

depolarization in a voltage-dependent manner. Similarly, voltage-dependent disinhibition 

of calcium currents via a simulated physiological burst of action potential waveforms 

(APWs) can induce activity-dependent synaptic facilitation underlying a form of short-

term plasticity in vivo, which can presumably enhance neurotransmitter release (Currie 

and Fox, 2002; McDavid and Currie, 2006). The ability of action-potential-like 
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waveforms (APWs) to attenuate opioid-induced inhibition of VGCC has been shown in 

the NG108-15 cell line (Tosetti et al., 1999). Their results suggest that neuronal firing 

may relieve opioid inhibition of calcium currents in a frequency-dependent manner. In 

the present study we have looked at the voltage- and frequency-dependent inhibition of 

calcium currents by both the μ- and κ-opioid receptors in isolated HNS terminals. These 

calcium currents were elicited by both rectangular-pulses and APW stimulations and 

facilitation was induced utilizing varying rectangular depolarizing pre-pulses. 

Furthermore, we have studied relief of opioid inhibition on APW-elicited calcium 

currents during a simulated physiological burst of APWs.  

 

Materials and Methods 

 

Isolation of nerve endings: 

Male Sprague-Dawley rats (Taconic Farms, Germantown, NY) weighing 200–250 

g were sedated using CO2 and immediately decapitated. The neurohypophysis was 

isolated as previously described (Lemos and Nordmann, 1986; Knott et al., 2002). 

Briefly, following removal of the anterior and intermediate lobes, the neurohypophysis 

was homogenized in 270 μl of buffer at 37oC containing (in mM): 270 sucrose, 0.004 

EGTA, 10 HEPES-Tris, buffered at pH 7.25; 298–302 mOsmol/L. The solution 

containing the homogenate was plated on a 35 mm petri dish and carefully washed in 

Low-calcium Locke’s solution which consists of modified Normal Locke’s (in mM): 145 

NaCl, 2.5 KCl, 10 HEPES, 1.2 glucose, 0.8 CaCl2, 0.4 MgCl2, pH 7.4; 298–302 

mOsmol/L.  
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Electrophysiological experiments: 

The neurohypophysis was isolated and homogenized as previously described 

(Brethes et al., 1987; Brown et al., 2006).  Current recordings were obtained using the 

perforated-patch configuration on isolated HNS terminals. Using an inverted microscope 

the terminals were identified visually by their characteristic appearance, spherical shape, 

lack of nuclei, and size (5–10 μm in diameter). The pipette solution consisted of (in mM): 

145 Cs-gluconate, 15 CsCl, 2 MgCl2, 2 NaCl, 7 Glucose, 10 HEPES (pH 7.3), at 295 

mOsm. Amphotericin B at a concentration of 30 μM (SIGMA) was added as a 

perforating agent. The bath solution consisted of (mM): 145 NaCl, 5 KCl, 1 MgCl2, 10 

HEPES, 10 Glucose, 1.2 CaCl2, pH 7.5 (Normal Locke’s solution).  In all experiments 

TTX (100 nM) was added to the bath to block sodium influx via voltage-gated sodium 

channels. The pipette resistance was 5-8 MΩ. Pipettes were made of thin borosilicate 

glass (Drummond Scientific Co., Broomall, PA, USA). After perforation the terminals 

were voltage-clamped at –80 mV. Depolarization was applied every 30 seconds to 0 mV 

for 250-300 ms. The preparation was either continually perfused, via a gravity driven 

perfusion, or left in a static non-perfused bath (as noted). Agonists and antagonists were 

either applied through the gravity driven perfusion system, or added to the static bath. All 

experiments were performed at room temperature (25oC). Data was acquired, stored and 

analyzed using a Pentium I computer (Gateway) and pClamp 7 (Axon Instruments, Foster 

City, CA). Currents were corrected online using an inverted P/4 protocol. All time 

constants (τ’s) were obtained using a single exponential curve fit (Igor, Wavemetrics) on 

inward calcium currents. For the rise times (activation), the fit was made between 2 ms 
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after start of stimulus (in order to avoid transient artifacts) and 2 ms before peak (since 

between this period and peak time the “shape” of the segment is not a simple 

exponential). For calcium currents elicited by action potential waveforms, the time of 

peak was measured from the beginning of the waveform to the maximum inward currents 

(in conditions where the sodium current was blocked). 

Stimulus-induced (0.3 to 0.4 ms duration, 5-10 nA) action potentials (APs) were 

recorded from isolated neurohypophiseal terminals using the perforated-patch method 

and the fast current-clamp mode of an EPC9 amplifier (HEKA Instruments) in the 

absence of voltage-gated channel blockers. The APs were used as waveforms for voltage 

commands in voltage clamp mode on subsequent experiments with isolated terminals, 

also using the perforated-patch method. Action potentials from isolated terminals show 

frequency-dependent broadening (modulation). Inherent changes in rise time occur 

concomitant with AP broadening which are reflected in the APWs tested. Broadening 

was induced by repetitive stimulation (30 Hz or more, the plateau for broadening is 

reached at 10 Hz) at frequencies within known physiological conditions. Since action 

potentials were recorded independently, waveforms composed of bursts of modulated 

action potential (trains) were constructed artificially by joining successive action 

potentials (concatenating). In this manner, a burst consisting of gradually broadening 

action potentials (from initially-fastest to finally-slowest) was constructed having 

frequency characteristics within those observed physiologically.  
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Statistical comparisons.  

In all cases, data are reported as mean ± SEM; n being the number of terminals. 

Statistical analysis of difference was made with paired t-test, with p< 0.05 considered 

significant.  

 

Results 

 

G-protein mediated inhibition by U50488: 

 Ca2+ channel inhibition in isolated HNS terminals by κ-opioid receptor agonists, 

including U50488, has been previously shown using the “classic” whole-cell patch 

configuration (Rusin et al., 1997b) and now confirmed using the perforated-patch clamp 

mode (Fig. 3.1A). The perforated-patch configuration of the whole-cell patch-clamp 

method is typically utilized to prevent intracellular dialysis of diffusible components. The 

results show that current  inhibition by κ-receptor agonists can be observed with (Rusin et 

al., 1997b) or without intraterminal dialysis of diffusible components. In contrast current  

inhibition by the μ-opioid agonist DAMGO can be observed only using the perforated-

patch configuration (Ortiz-Miranda et al., 2003; Ortiz-Miranda et al., 2005). 

 In order to link μ- and κ-receptor inhibition of calcium currents to the activation 

of a G-protein coupled receptor by DAMGO (100 nM) and U50488 (100 nM), we tested 

both by pre-treating the terminals with 10 μM NEM for 5 min.  Functional studies of 

opioid receptor cysteine residues show that agonist binding to the receptor itself is not 

likely to be affected at 5-10 μM concentrations of NEM (Ueda et al., 1996; Ehrlich et al., 

1998). This concentration was sufficient to block all κ- and μ-opioid inhibition of 
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calcium currents (Fig. 3.1B-C) demonstrating that these responses are via a G-protein 

mediated pathway, potentially pertussis toxin-sensitive. Pertussis toxin could not be used 

given the necessity for long incubation periods that are incompatible with the lifetime of 

our isolated HNS preparation. Therefore, we have characterized the biophysical 

differences of the two pathways instead. 

Voltage-dependent inhibition is also characterized by a slowing of current 

activation kinetics. Activation time constants were measured for rectangular pulse-

elicited total calcium currents under control conditions and in the presence of either 100 

nM U50488 or 100 nM DAMGO. Activation of total calcium currents includes 

contributions from VGCC such as the N-, L-, R- and Q-type (Wang et al., 1997c; Wang 

et al., 1999b). The time for an e-fold change (τ) of activation kinetics was measured in 

the presence of either κ- or μ-opioid agonists and divided by that of the control (no 

opioid).  This was done in order to account for the variability of the measured time 

constants between samples (n =8). The ratio is expressed as a percentage difference from 

100% (i.e., 0% difference = no change, negative % difference = faster time constant, and 

positive % difference = slower time constant). Results show a 75 ± 44.2 % difference for 

U50488 and only a 1.7 ± 11.3 % difference for DAMGO. Slower activation kinetics 

during κ-opioid inhibition of calcium currents concurs with the idea that κ-opioid 

inhibition of VGCC in the HNS terminals is mediated via a membrane-delimited 

pathway.  
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Voltage-dependent vs. Voltage-independent inhibition of VGCC via μ- and κ- opioid 

agonists: 

 Given the resistance of κ-opioid inhibition to intraterminal dialysis we 

hypothesized that κ- not μ-opioid inhibition would be voltage-dependent. We tested for 

voltage-dependent inhibition by using a depolarizing pre-pulse (DPP) protocol on 

rectangular pulse-elicited Ca2+ currents. When such calcium currents are preceded within 

2-4 ms by a DPP consisting of a voltage jump from –80 mV to +100 mV with 30 ms 

duration, U50488 inhibition was completely blocked (Fig. 3.2A). DAMGO inhibition, 

however, was unaffected (Fig.3.2B). The depolarizing pre-pulse had no effect on control 

calcium currents without opioid treatment or during NEM treatment (data not shown). 

Given that short exposures of NEM may selectively block PTX-sensitive G-proteins, as 

observed in SCG neurons, it’s important to note that PTX-sensitive G-proteins have been 

shown to mediate voltage-dependent, membrane-delimited processes (Zong et al., 1995; 

Yassin et al., 1996; Jeong et al., 1999).  Therefore, results indicate that κ- but not μ-

opioid inhibition is voltage-dependent. 

  

DAMGO and U50488 inhibition of APW elicited calcium currents: 

 As mentioned above, endogenous opioids secreted from both the CNS and the 

Neurohypophysis, modulate both OT and AVP secretion from the magnocellular 

neurosecretory system (Douglas et al., 1995a; Elhamdani et al., 2000). However, calcium 

currents in-situ are not elicited by rectangular depolarizing pulses but by action potentials 

(APs). APW-elicited Ca2+ currents were thus studied to determine the effects of opioids 

on currents elicited by more physiologically relevant stimuli (See Methods). For tests 
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made with individual APs, four types of APs were chosen such that their degree of 

broadening would represent a sampling of the broadening span during a burst: from peak 

to half amplitude on the falling phase within a range of 1 to 4 ms (Fig. 3.3A). Peak 

calcium currents varied with longer duration APW (Fig.3.3B). The APW calcium 

currents where obtained using 100nM TTX to block all voltage-gated sodium channels 

and with Cs-glutamate in the pipette solution to block all K+ currents. The remaining 

currents were pharmacologically determined to be calcium currents by blocking them 

with 200 μM NiCl2/CdCl2 (Fig. 3.4). Inhibition with either κ- or μ-opioid agonists did 

not significantly change in relation to control currents of equal duration, regardless of the 

APW duration (Fig. 3.4C). Both U50488 (Fig. 3.5A) and DAMGO (Fig. 3.5B) inhibit 

APW-elicited calcium currents (APW duration was 4 ms from peak to half amplitude on 

the falling phase) to a similar extent as those elicited by rectangular pulses. Inhibition, 

expressed as percent of control current without opioid, by U50488 of APW currents (71 ± 

5%) was similar to that of rectangular pulse-elicited currents (73 ± 12%). Inhibition by 

DAMGO of APW currents (77 ± 8%) was also similar to that of rectangular pulse-

elicited currents (75 ± 9 %).  

Voltage-dependent G-protein modulation of Ca2+ currents could be relieved by 

physiologically relevant electrical activity. We thus selected the broadest APW with a 

duration of 4 ms to measure all other effects on U50488 and DAMGO inhibition of APW 

elicited calcium currents. The criterion for selecting the broadest APW was based on 

using an APW that would be most likely at the end of a train of APs (Gainer et al., 1986; 

Leng and Shibuki, 1987; Jackson et al., 1991a; Branchaw et al., 1998; Muschol and 

Salzberg, 2000; Marrero and Lemos, 2005). Presumably, this APW would see a full 
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range of frequencies preceding it and the largest accumulation of endogenous opioids 

throughout a physiological burst (Bicknell et al., 1988; Bourque, 1991; Bourque et al., 

1998).  

To assess voltage-dependent relief of µ- and κ-opioid receptor inhibition of 

voltage-gated Ca2+ channels (VGCC) elicited with a more physiological stimulus, we 

have measured opioid effects on calcium currents elicited by action potential waveforms 

with and without a rectangular DPP. A DPP similar to that applied prior to the 

rectangular test pulse was applied prior to APW elicited currents using a 2 ms interpulse 

interval, a voltage jump to +100 mV (delta +180 mV) and duration of 30 ms (Fig. 3.6). 

All stimulations were measured as percent of control current without treatment. Ca2+ 

current inhibition by U50488 (74.4 ± 39 %) disappeared after DPP (97.6 ± 5.2%) 

whereas Ca2+ current inhibition by DAMGO (88.6 ± 1.9%) increased (75.4 ± 6% after 

DPP) (Fig. 3.6). The reduction in current during DAMGO treatment following DPP is 

likely due to voltage-dependent inactivation of VGCC. To establish optimum conditions 

for quantifying U50488 and DAMGO voltage-dependent inhibition, pre-pulse amplitude, 

duration and the interpulse interval were varied (Fig. 3.7). With a DPP prepulse interval 

of 2 ms and duration of 25 ms, DPP amplitude was varied from –70 mV (were -80 mV is 

no pre-pulse) to +130 mV (delta of 20 mV). Maximum relief of U50488 inhibition was 

achieved at +90 to +130 mV. DAMGO inhibition was at no point relieved and exhibits a 

downward trend indicative of voltage-dependent inactivation. Using fixed amplitude of 

+100 mV (delta of +180 mV) and a 2 ms pre-pulse interval, DPP duration was increased 

from 1 ms to a maximal duration of 104 ms (delta of 13 ms). No relief of U50488 

inhibition occurred with a 1 ms duration DPP. However, following a 13 to 27 ms DPP, 
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inhibition by U50488 decreased and remained attenuated thereafter. In contrast, DAMGO 

inhibition was not attenuated for any of the same DDP durations. Pre-pulses to +100 mV 

(delta of +180 mV) were then used to examine the effect of increasing the interpulse 

interval from 2 to 8 msec. Maximum attenuation of U50488 inhibition was achieved at 2-

4 ms interpulse intervals. These results were used to establish optimum prepulse 

parameters (and those used thereafter, unless otherwise stated) as follows: 2 ms initial 

interpulse interval, amplitude to +100 mV, 30 ms duration, all followed by the broadest 

APW.  Opioid induced inhibition of APW-evoked currents was plotted as a percent of 

control current without opioid (Fig. 3.7). As observed for calcium currents elicited with a 

rectangular pulse, both U50488 (71 ± 5 %) and DAMGO (52.8 ± 9.5 %) inhibition of 

APW-elicited calcium currents were relieved with 10 μM application of NEM (96.1 ± 

3% and 106 ± 10.3 %, respectively) (Fig. 3.8). In contrast, control and NEM treated 

terminals showed no facilitation of APW calcium currents using identical DPP protocols.  

 

Frequency-dependent relief of kappa opioid inhibition  

 Protocols of varying frequency were designed using 1ms duration rectangular pre-

pulses, which, although similar to in vivo AP duration, were ineffective in relieving any 

inhibition (Fig. 3.9A-C). Currents decreased by DAMGO were further decreased 

progressively as DPP frequency increased (Fig. 3.9E). Similar voltage-dependent 

inactivation was observed with control and NEM treated calcium currents (data not 

shown). In contrast, inhibition by U50488 is attenuated (recovery to 100% of control) at 

10 Hz (Fig. 3.9D,E). At 50 and 100 Hz the currents remain significantly different from 

DAMGO but exhibit a similar downward trend. This is probably due to voltage-
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dependent inactivation and could reflect an inherent competing effect with DPP-induced 

relief of voltage-dependent inhibition.  

 As observed in the sample currents in fig. 3.9D, APW-elicited total calcium 

currents in the presence of U50488 show a change in activation kinetics. The time to peak 

of the AWP-elicited calcium current was measured in the presence of either κ- or μ-

opioid agonists and divided by the time to peak in its absence (control). This was done in 

order to account for the variability of the peak times between samples (n =8). The ratio 

was then expressed as a percentage difference from 100% (i.e., 0% difference = no 

change, negative % difference = decrease in time to peak, and positive % difference = 

increase in time to peak). Results show (% ± SEM) 8.8 ± 2.9 % difference for U50488, 

and -3.3 ± 6.7 % difference for DAMGO. The change in activation kinetics of the APW-

elicited current in the presence of U50-488 was smaller than those measured for 

rectangular pulse elicited currents. However, as noted by others (Park and Dunlap, 1998), 

APW-elicited currents have changing and comparatively brief activation phases which 

make kinetics more difficult to quantify and compare.  

   

κ-opioid inhibition relieved by a train of action potentials 

 The effect of action-potential-like waveforms (APWs) on U50488 κ-opioid 

inhibition of voltage-gated Ca2+ channels was investigated using a train of APs (Fig. 

3.10). The Long APW studied is present at the end of the train and compared in and out 

(individual APW) of the context of the burst. Burst-elicited example calcium currents 

under control (black) and opioid (color) conditions are presented in figure 3.11A and 

3.11B. Single Long APW currents are presented under control (no opioid) and treated 
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(either 100 nM U50488 or 100 nM DAMGO) to show inhibition of the currents in the 

same terminal without the burst effects (Fig. 3.12C and 3.12D). In the presence of 

opioids, the currents from several individual APWs of different duration are compared to 

the currents obtained from the same APWs within the simulated burst (Fig. 3.12). This 

comparison was designed to examine the opioid inhibition in and out of the context of the 

burst as a percent of control (single APW of same duration without opioid). U50488 

inhibition was significantly (* p<0.05) relieved within the burst for APs shortly after the 

middle of the burst (AP #26, Fig. 3.12A). DAMGO inhibition was not relieved regardless 

of APW duration or AP position within the burst (Fig. 3.12B). The start of relief of 

U50488 inhibition was observed with 8 APs preceding the APW-elicited current, at an 

average frequency of 100 Hz.   
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Discussion 

 
 This is the first time, to the best of our knowledge, that κ-mediated inhibition of 

VGCC in the HNS has been shown to be voltage-dependent within a burst of APs. Given 

the importance and ubiquitous nature of κ-mediated inhibition of VGCC in HNS cell 

bodies, dendrites and in terminals, the mechanism of modulation of VGCC as key 

triggers for electrically evoked release is central to understanding some of the pivotal 

events in depolarization-secretion coupling. Furthermore, we have also shown that μ-

opioid receptor inhibition is not voltage-dependent.  

Intraterminal signaling of μ- and κ-opioid receptors in HNS terminals 

The differences in mechanisms for μ- and κ-opioid receptor inhibition of VGCC 

have important physiological relevance. Oxytocin neurons are highly tuned to μ-receptor 

inhibition whereas AVP release is most sensitive to κ-receptor activation (Bicknell, 1985; 

van Wimersma Greidanus and van de Heijning, 1993; Russell et al., 1995a; Brown et al., 

2000a; Russell et al., 2003; Ortiz-Miranda et al., 2005).  In isolated terminals the 

inhibitory constraints of both μ− and κ−opioids are mirrored in the systemic output of 

both vasopressin and oxytocin in response to different physiological needs. The diffusible 

second-messenger pathway mediating μ-opioid inhibition is voltage-independent and 

therefore would remain relatively unaffected throughout the duration of an action 

potential burst (See Chapter IV). Therefore, attenuation of μ-opioid inhibition of Ca2+ 

currents must stem from either lack of agonist interaction with the receptor, receptor 

internalization/desensitization or changes in diffusible second-messenger signaling. 
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These are comparatively long-term changes in the magnocellular (MNC) neurons and 

HNS interactions in contrast to short-term relief of inhibition or facilitation observed 

during voltage-dependent κ−opioid inhibition. Given the necessary long-term inhibition 

of μ-receptors during pregnancy and, in contrast, the short-term synchronization of AVP 

activity for optimum release the transduction mechanisms of the two opioids are perfectly 

suited to modulate their specific neuropeptide target outputs in the system.  

Frequency-dependent facilitation in HNS and the role of voltage-dependent relief of 

κ-receptor inhibition 

Experiments performed on the isolated neurohypophysis have demonstrated that, 

within a certain range, the same number of pulses given at high frequency (50-100 Hz) 

induces the release of a larger amount of neuropeptide than when delivered at lower 

frequency (Dreifuss et al., 1971; Nordmann and Dreifuss, 1972). Oxytocin cells are 

known to fire within the 50-100 Hz range for periods of 0.5-2.5 sec. (Wang and Hatton, 

2005) for optimum neuropeptide secretion (Nordmann and Stuenkel, 1986). AVP 

containing cells, upon physiological demands such as hemorrhage (Poulain et al., 1977) 

or dehydration (Arnauld et al., 1975) change their pattern of firing from slow or tonic to a 

higher frequency phasic firing pattern. The exact reason why specific frequency 

stimulations optimize neuropeptide secretion is still under intense study (Lemos and 

Wang, 2000b). However, we know that appropriate timing of electrical signals is 

important in conveying an accurate physiological response, as with learning and memory 

(D'Angelo and Rossi, 1998; Matsumoto and Okada, 2002; Debanne et al., 2003; 

Thivierge et al., 2007; Caporale and Dan, 2008). Hypothetically, integration of signaling 
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from various sources for optimum response at the presynaptic juncture may require a 

systemic inhibition relieved only by the appropriate timing of electrical input.  

Voltage-dependent relief of κ-receptor inhibition in-situ 

Here we propose that neuropeptide release is potentially tonically inhibited by 

endogenous κ-opioid modulation, until electrical stimuli from MCN facilitates voltage-

dependent relief. Temporal integration of the appropriate signals from MCNs can result 

in high frequency bursting relieving VGCC from tonic voltage-dependent κ-opioid 

inhibition, thus facilitating optimum neuropeptide release (Dyball et al., 1988; Brody et 

al., 1997). This could also allow the terminals to prime release during the initial high 

frequency phase of the action potential burst, by mobilizing readily releasable pools of 

neurosecretory granules (Nowycky et al., 1998). Optimum release would result, during 

the latter part of the burst, from a combination of a larger population of immediately 

releasable granules, broader action potentials, and removal of voltage-dependent VGCC 

inhibition (Andrew, 1987; Leng et al., 1988b; Nowycky et al., 1998; Marrero and Lemos, 

2005). Oxytocin release, would completely bypass any κ-opioid voltage-dependent 

inhibitory constraints on release given its much higher frequency range of stimulation. 

Role of voltage-dependent inactivation  

 Our results show, that unlike rectangular DPPs of varying frequencies, a train of 

APWs is capable of relieving U50488 inhibition at frequencies higher than 10 Hz (Fig. 

3.9). This may be due to APW pulses having comparatively slower activation kinetics 

than rectangular pulses making them capable of unmasking all of the facilitation while 

avoiding the competing accumulation of voltage-induced Ca2+ current inactivation. 

Voltage-dependent Ca2+ current inactivation occurs with all stimulations and could 
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possibly lead to underestimating U50488 facilitation by the DPP. The possibility that the 

Gβγ subunits may actually accelerate inactivation of calcium currents during high-

frequency trains of APW has been proposed (Patil et al., 1998). However, activation of 

endogenous G-proteins has been shown, so far, to reduce both Ca2+-dependent, and 

voltage-dependent inactivation of calcium currents in different expression systems 

(Bourinet et al., 1996; McDavid and Currie, 2006). Although further studies are required 

to determine the nature of the frequency-dependent relief of inhibition, our results 

indicate there is a relationship between frequency and optimum relief from voltage-

dependent κ-opioid inhibition. The optimum frequency-dependent relief is likely a 

function of both Gβγ dissociation from and voltage-dependent inactivation of VGCC. 

AP broadening in HNS terminals 

 Nerve terminals show a progressive broadening of their action potentials when 

elicited repetitively (i.e., within a burst). The degree and rate of broadening is dependent 

on firing frequency (Gainer et al., 1986; Bourque, 1990; Jackson et al., 1991b). We 

simulated burst broadening in our burst pattern and found that disinhibition of κ-receptor 

activation progressively occurs reaching a maximum during the latter part of the burst 

during the broadest APWs. This is consistent with studies done by Brody and colleagues 

(Brody et al., 1997) that show the extent of G-protein disinhibition of P/Q-type calcium 

channels in HEK cells increases linearly with the duration of the action potential 

waveform. Although further investigation is required to determine whether a specific type 

of APW or number of previous depolarizations and/or frequency is best suited for relief 

of voltage-dependent inhibition, we have shown that relief of κ-opioid inhibition of 

VGCC in the HNS is achieved by a physiological burst of action potentials.  

 97



Conclusion 

The endogenous κ-opioid mediated inhibition of VGCC and its voltage-dependent 

modulation provides the potential for activity-dependent relief of inhibition during action 

potential trains. This physiologically-evoked, activity-dependent modulation of VGCC 

and subsequent release, represents an important mechanism for short-term synaptic 

plasticity at the level of the terminals. Given the ubiquitous nature of voltage-dependent 

G-protein signaling in the CNS, our results may prove important in understanding 

modulatory effects of specific bursting patterns throughout the CNS. 
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Figure 3.1 

 
 

Figure 3.1 N-Ethylmaleimide blocks κ- and µ-receptor mediated inhibition of 

calcium currents. A. Calcium currents of single HNS terminal under control (black), 

100 nM U50488 (blue) and wash (green) conditions using the perforated-patch 

configuration of the whole-cell patch-clamp technique. B. Same terminal under control 

(black) and 10 μM NEM with 500 nM U50488 (blue) and 10 µM NEM with 1 µM 

U50488 (light blue) conditions. C. Bar Graph summarizing average effects of opioids 

on Ca2+ current (ICa) (n=5 U50488, n=3 DAMGO). All currents in the presence of 

NEM were not statistically different from their corresponding control (p>0.05) and all 

currents in the presence of opioid agonists without NEM were statistically different 

from their corresponding control. Asterisks (*) represent statistically significant 

differences, p<0.05.  
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Figure 3.2 

Figure 3.2 DPP relieves κ- but not µ-receptor mediated inhibition of calcium 

currents. A. HNS terminal calcium currents under control (black), with 100 nM 

U50488 (blue) and with a DPP in the presence of 100 nM U50488 (green) conditions. 

B. Calcium currents under control conditions (black), with 100 nM DAMGO (pink) 

and with a DPP in the presence of 100 nM DAMGO (green) conditions. C. Bar graph 

quantifying differences as percent control without opioid or DPP from rectangular 

pulse elicited calcium currents with 100 nM U50488, 100 nM U50488 with DPP, 100 

nM DAMGO and 100 nM DAMGO with DPP. Asterisk (*) show statistical different 

(p=6.15e-5). 
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Figure 3.3 

Figure 3.3 Action Potential Waveforms obtained from NH Terminal 

Action Potentials.  A. Current waveform changes with action potential 

duration (measured from the peak to the half height of the falling phase) 

starting from the shortest recorded APW named SW2 with a duration of 1 

ms followed by two intermediate waveforms M1W2 and M2W2 with 

durations of 2.5 and 3.5 ms respectively to the longest LW2 with a 

duration of 4.5 ms. APWs illustrated have an amplitude of 55 mV and 

rising phase of 3.2 msec.  B. Peak Current normalized to maximum of 

APW-elicited calcium currents without treatment plotted as a function of 

action potential duration. C. Percent Peak control Ca2+ current with either 

κ- or µ-opioid agonist plotted as a function of APW duration. Data points 

represent means of 6 terminals.  
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Figure 3.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 Currents elicited by Action Potential Waveforms. Currents elicited 

by single action potential waveforms (Waveforms, top blue traces). The internal 

solution contained excess Cs+  (145 mM) in order to block outward potassium 

current components. The APW’s were artificially constructed to simulate action 

potentials for the same types and broadening (order of magnitude) as that observed 

in isolated terminals. The half-time (as measured from the top peak) was 0.85 and 

4.6 ms (top left and right traces, respectively). Inset shows the elimination of 

elicited calcium currents by 200 µM Cd+2/Ni+2 (blow up of rightmost record).  
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Figure 3.5 

 

Figure 3.5 κ- and µ-opioid receptor activation similarly inhibits APW- and rectangul

μ-opioid inhibition belong to the same terminal which is different from that used to test 

κ-opioid inhibition. 
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Figure 3.6 

Figure 3.6 APW-elicited Calcium Currents are also relieved by DPP of κ- but not 

µ-opioid inhibition. Sample APW-elicited calcium currents in two different terminals 

with control (black), or in the presence of their respective opioid agonist, 100 nM κ-

opioid agonist U50488 (blue) (A), and µ-opioid agonist DAMGO (pink) (B), after a 

depolarizing pre-pulse. C. Bar graph quantifying the effects of a DPP on κ- and µ-

opioid inhibition of APW elicited calcium currents. Asterisks (*) represent statistically 

significant difference (p<0.03).  

 110



Figure 3.7 
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Figure 3.7  Optimizing DPP for APW calcium currents. Opioid induced inhibition 

of APW-evoked currents plotted as a function of pre-pulse (A.&D.) AMPLITUDE, 

(B.&E.) DURATION, and (C.&F.) INTERPULSE INTERVAL. Voltage commands 

are shown in top panel. Fixed prepulse parameters (unless otherwise stated) were as 

follows: 2 ms initial interpulse interval, amplitude to +100 mV (delta of 180 mV), 30 

ms duration, Long waveform stimulation data points in all panels represent the means 

of measurements for 4-5 terminals with their respective SEM. Asterisks (*) represent 

values which are both statistically different from Ca2+ currents with opioid and no 

DPP, p<0.03 and at the same time are not statistically different from control currents 

(without opioid or DPP) p>0.05. 



 
Figure 3.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 NEM relieves both κ- and μ-opioid inhibition of action 

potential  waveform elicited Ca2+-currents.

 
 
 .  Inhibition of the APW-

elicited calcium current with 100 nM U50488 or 100 nM DAMGO was 

not statistically different (p>0.09) nor are both treatments with 5 μM 

NEM significantly different (p>0.19) from each other or from control 

peak currents (n=3 for each). Asterisks (*) represent statistically 

significant differences (p<0.02). 
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Figure 3.9 

 113

 

Figure 3.9 Frequency-dependent relief of κ-opioid inhibition.  Voltage command 

protocols of varying frequency using 1ms duration pre-pulse, stepped to +100 mV and a 2 

ms interval between the last pulse and the Long APW: A. 10 Hz, B. 50 Hz, and C. 100 Hz. 

D. Sample Long AWP elicited calcium currents under control (no opioid, no DPP), 

U50488 after 10 Hz DPP (red), U50488 after 50 Hz (green) and U50488 after 100 Hz 

(purple) DPP protocol. E. Percent of control current without treatment vs. average of 

APW elicited current with 100 nM U50488 (blue), and 100 nM DAMGO (pink). 

Asterisks (*) represent statistically significant p≤0.05 differences between U50488 

treatment and DAMGO. 



 
 

 
 
 
 
 

Figure 3.10 Waveform used for simulating action potential burst (gray). The 

waveform was applied as a relative stimulus (left voltage scale, i.e., depolarizing). 

Darkened segments within the burst waveform indicate action potential equivalents 

to the ones used individually (single action potentials) as designated by the top 

labels (See Fig. 3), with the frequencies that would correspond to their position 

within the burst (Hz, below top labels). The numbers below some of the action 

potentials (between time scale and burst) represent action potentials of a specific 

duration and illustrate their placement within the simulated burst.  

Figure 3.10 
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Figure 3.11 
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Figure 3.11 κ-opioid inhibition of APW calcium currents is relieved within a simulated 

burst. A. Calcium currents elicited by a simulated AP burst under control conditions (black 

line) and in the presence of 100 nM U50488. B. Calcium currents using the same protocol as 

in A. under control (black) or in the presence of 100 nM DAMGO (red). C.&D. Calcium 

currents elicited with a single long APW (LW2) stimulation identical to the one at the end of 

the burst under their respective control conditions (black) or in the presence of 100 nM 

U50488-blue (C) or 100 nM DAMGO-pink (D). Dotted lines are for comparison between 

same opioid modulation of APW-elicited Ca2+-current within (A&B) and outside (C&D) of 

the burst. 



Figure 3.12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12 AP-elicited Currents are relieved of κ-inhibition within a Burst. A. Bar 

Graph showing percent of control (currents without κ-opioid agonists elicited with 

identical APW duration as experimental with opioid agonist) during 100 nM U50488 

application on APW-elicited currents of differing durations within the simulated burst 

(dark blue) compared to identical APWs individually elicited Ca2+ currents (light blue). 

B. Bar Graph showing percent of control (currents without μ-opioid agonists elicited 

with identical APW duration as experimental with opioid agonist) during 100 nM 

DAMGO application on APW-elicited Ca2+ currents of differing duration within the 

simulated burst (dark pink) compared to identical APW Ca2+ currents elicited 

individually (light pink). Asterisks (*) represent no statistically significant p>0.5 

difference between treatment (U50488) and control (without opioid) conditions. 
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Abstract 
 

μ-opioid agonists do not inhibit calcium currents when recorded using the classic 

whole-cell patch-clamp configuration (Rusin et al., 1997b). However, μ-receptor 

mediated inhibition of calcium currents is consistently demonstrated using the perforated-

patch configuration (Ortiz-Miranda et al., 2003; Ortiz-Miranda et al., 2005). This strongly 

suggests that the μ-opioid receptor-signaling pathway at the terminals is sensitive to 

intraterminal dialysis and therefore mediated by a readily diffusible second messenger. 

Using perforated patch-clamp technique and ratio calcium imaging methods, we describe 

a diffusible second-messenger pathway stimulated by the μ-opioid receptor that inhibits 

voltage-gated calcium channels (VGCC) in isolated terminals from the Neurohypophysis. 

Our results show a rise in basal [Ca2+]i in response to application of 100 nM DAMGO, a 

μ-opioid receptor agonist, which is blocked by 100 nM CTOP, a μ-opioid receptor 

antagonist. Buffering DAMGO-induced changes in [Ca2+]i with Bapta-AM completely 

blocked the inhibition of both calcium currents and High K+-induced rises in [Ca2+]i due 

to μ-opioid receptor activation. Bapta-AM had no effect on κ-opioid receptor mediated 

inhibition of either calcium currents or High K+-induced rises in [Ca2+]i. Cyclic ADP-

ribose  has been characterized as the endogenous ryanodine receptor agonist (Jin et al., 

2007). Given the presence of ryanodine-sensitive stores in isolated HNS terminals (De 
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Crescenzo et al., 2004b), we tested 8Br-cADP-ribose, a competitive inhibitor of cyclic 

ADP-ribose signaling. 8Br-cADP-ribose partially relieves DAMGO inhibition of calcium 

currents and completely relieves μ-opioid inhibition of High K+-induced rises in [Ca2+]i. 

Furthermore, antagonist concentrations of ryanodine completely blocked μ-opioid 

inhibition of calcium currents and High K+-induced rises in [Ca2+]i while not affecting κ-

opioid mediated inhibition. 100 μM ryanodine also blocked μ-opioid inhibition of 

electrically evoked changes in capacitance. These results strongly suggest that a key 

diffusible second messenger mediating the μ-opioid receptor-signaling pathway at the 

terminals is intraterminal calcium released by cADPr from ryanodine-sensitive stores in 

the isolated HNS terminals. 
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Introduction 

 
 The μ-opioid inhibition of the magnocellular neurosecretory system becomes 

increasingly evident during pregnancy, and is interrupted prior to parturition allowing for 

strong excitation of oxytocin cells and thus facilitating birth (Russell et al., 1995b; 

Russell et al., 2003). Co-release of dynorphin, an endogenous κ-opioid agonist, with 

vasopressin from dendrites facilitates activity-dependent modulation of vasopresinergic 

neurons (Brown and Bourque, 2004; Brown et al., 2004; Roper et al., 2004; Brown et al., 

2006; Sabatier and Leng, 2007). Isolated hypothalamic neurohypophysial (HNS) 

terminals also demonstrate inhibition of release in the presence of either μ- or κ-agonists 

for both oxytocin and vasopressin (Sumner et al., 1990; Kato et al., 1992; Russell et al., 

1993),  VGCC are similarly inhibited (Rusin et al., 1997a; Ortiz-Miranda et al., 2003; 

Ortiz-Miranda et al., 2005). The signaling mechanism and modulatory importance of μ- 

and κ-receptor activation at these pre-synaptic terminals and subsequent VGCC 

inhibition is still not well understood however it will likely prove to be physiologically 

relevant given the importance of endogenous opioid modulation at the level of the cell 

body.  

Both the μ- and κ-opioid receptors are G-protein coupled receptors, which can 

potentially mediate inhibitory effects of opiates on VGCC through either a membrane-

delimited or diffusible second-messenger pathway (Wilding et al., 1995; Kaneko et al., 

1998; Soldo and Moises, 1998; Connor and Christie, 1999; Chen et al., 2000).  The μ-

opioid receptor signaling pathway seems to contrast sharply with that documented for the 

κ-opioid receptor in the same isolated terminals. The first indication of differences in 
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signaling mechanism emerged when it was shown that μ-opioid agonists did not inhibit 

calcium currents when recorded using the classic whole-cell patch-clamp configuration 

(Rusin et al., 1997b). However, μ-receptor mediated inhibition of calcium currents is 

consistently demonstrated using the perforated-patch configuration of the patch-clamp 

method (Ortiz-Miranda et al., 2005). This strongly suggests that the μ-opioid receptor-

signaling pathway at the terminals is sensitive to intraterminal dialysis and therefore 

mediated by a readily diffusible second-messenger. Furthermore, unlike the κ-opioid 

inhibition of VGCC, μ-opioid inhibition is not relieved with a strong depolarizing pre-

pulse (See Chapter III). 

Several diffusible second-messenger pathways can be potential candidates 

mediating μ-opioid inhibition of VGCC in the HNS. Mobilization of internal calcium in 

response to activation of opioid receptors has been well documented in both neuronal and 

non-neuronal systems (for review; Samways and Henderson, 2006). Ryanodine-sensitive 

calcium stores have been shown to be targets of G-protein opioid activation. For 

example, activation of the μ-opioid receptor in isolated mouse astrocytes elicited a 

release of [Ca2+]i blocked by the ryanodine–sensitive antagonist, dantrolene (Hauser et 

al., 1996). In isolated rat ventricular myocytes the rise in [Ca2+]i due to opioid receptor 

activation was blocked when ryanodine-sensitive stores were depleted with ryanodine 

pretreatment (Tai et al., 1992). In isolated HNS terminals we have characterized small 

ryanodine- and voltage-sensitive calcium release events, known as syntillas (De 

Crescenzo et al., 2004b). The cyclic ADP-ribose (cADPr) signaling pathway initiates a 

signaling cascade leading to activation of the ryanodine receptor in-vivo and subsequent 

release of intracellular calcium from ryanodine-sensitive stores (Galione, 1994; 
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Sitsapesan et al., 1995; Morita et al., 2002). Interestingly, recent studies have shown the 

cADPr signaling pathway has a significant role in neuropeptide release from isolated 

HNS terminals (Higashida et al., 2007; Jin et al., 2007). We propose that in HNS 

terminals, activation of the μ-opioid receptor triggers a rise in intraterminal basal 

calcium, released from ryanodine-sensitive stores possibly via activation of the cADPr 

signaling cascade. The rise in [Ca2+]i would lead to calcium-dependent inhibition of 

VGCC and subsequent inhibition of depolarization-induced neuropeptide release. 

 

 

Materials and Methods 
 

Isolation of nerve endings: 

Male Sprague-Dawley rats (Taconic Farms, Germantown, NY) weighing 200–250 

g were sedated using CO2 and immediately decapitated. The pituitary gland was isolated 

as previously described (Lemos et al., 1986; Knott et al., 2005). Briefly, following 

removal of the anterior and intermediate lobes, the posterior pituitary was homogenized 

in 270 μl of buffer at 37oC containing (in mM): 270 sucrose, 0.004 EGTA, 10 HEPES-

Tris, buffered at pH 7.25; 298–302 mOsmol/L. The solution containing the homogenate 

was plated on a 35 mm petri dish and carefully washed in Low-calcium Locke’s solution 

which consists of modified Normal Locke’s (mM): 145 NaCl, 2.5 KCl, 10 HEPES, 1.2 

glucose, 0.8 CaCl2, 0.4 MgCl2, pH 7.4; 298–302 mOsmol/L.  
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Electrophysiological experiments: 

The neurohypophysis was isolated and homogenized as previously described 

(Brethes et al., 1987; Brown et al., 2006).  Current recordings were obtained using the 

perforated-patch configuration on isolated HNS terminals. Using an inverted microscope 

the terminals were identified visually by their characteristic appearance, spherical shape, 

lack of nuclei, and size (5–10 μm in diameter). The pipette solution consisted of (in mM): 

145 Cs-gluconate, 15 CsCl, 2 MgCl2, 2 NaCl, 7 Glucose, 10 HEPES (pH 7.3), at 295 

mOsm. Amphotericin B at a concentration of 30 μM (SIGMA) was added as a 

perforating agent. The bath solution consisted of (mM): 145 NaCl, 5 KCl, 1 MgCl2, 10 

HEPES, 10 Glucose, 1.2 CaCl2, pH 7.5 Normal Locke’s.  In all experiments TTX (100 

nM) was added to the bath to block sodium influx via voltage-gated sodium channels. 

The pipette resistance was 5-8 MΩ. Pipettes were made of thin borosilicate glass 

(Drummond Scientific Co., Broomall, PA, USA). After perforation the terminals were 

voltage-clamped at –80 mV. Depolarization was applied every 30 seconds to 0 mV for 

250-300 ms. The preparation was either continually perfused, via a gravity driven 

perfusion, or left in a static non-perfused bath (as noted). Agonists and antagonists were 

either applied through the gravity driven perfusion system, or added to the static bath. All 

experiments were performed at room temperature (25oC). Data was acquired, stored and 

analyzed using a Pentium I computer (Gateway) and pClamp 7 (Axon Instruments, Foster 

City, CA). Currents were corrected online using an inverted P/4 protocol. All time 

constants (τ’s) were obtained using a single exponential curve fit (Igor, Wavemetrics) on 

inward calcium currents. For the decay time (inactivation) the fit was made between 5 ms 
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after peak (to avoid multiple exponentials) and 3 ms before the end of stimulus (to avoid 

transient artifacts).  

 

Calcium imaging 

 Freshly dissociated nerve terminals (Nordmann et al., 1987) prepared from adult 

Sprague-Dawley CD rats were incubated with 2.5 μM Fura-2 AM for 45 min. at 37oC 

and thoroughly washed with Normal Locke’s solution.  Normal Locke’s contained (mM): 

145 NaCl, 5 KCl, 10 Hepes, 10 Glucose, 1 MgCl2 and 2.2 CaCl2, pH 7.4.  Ca2+ free bath 

solution contained (mM): 145 NaCl, 5 KCl, 10 Hepes, 10 Glucose, 0.0002 EGTA, 1 

MgCl2, pH 7.4, and gave a calculated free [Ca2+] of zero. Cytosolic [Ca2+] was 

determined with ratiometric indicator fura-2 AM loaded terminals and calibrated utilizing 

an in-vitro calibration kit (Invitrogen, Carlsbad CA).  This was performed according to 

the method of (Grynkiewicz et al., 1985) with an assumed Ca2+-fura 2 KD of 200 nM, as 

previously described (Becker et al., 1989). Resting values for global cytosolic [Ca2+] in 

the presence and absence of extracellular Ca2+ were 73.3 ± 6.9 nM (n = 12) and 46.2 ± 

7.5 nM (n = 8), respectively, and these values demonstrated a statistically significant 

difference (p < 0.05).  In all cases, data are reported as mean ± SEM; n being the number 

of terminals. Statistical analyses of differences were made with paired t-tests, with p < 

0.05 considered significant. 

 Fluorescence images using Fura-2 AM as a calcium indicator were viewed with a 

Nikon Diaphot TMD microscope, using a Zeiss Plan- NEOFLUAR 100X oil immersion 

lens, and fitted with a Photometrics SenSys CCD camera. The camera was interfaced to 

the inverted microscope adapted with a Chroma 71000A Fura2 filter cube. The terminals 
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were excited using a Xenon arc lamp within a Lambda DG4 high-speed filter changer 

(Sutter Instruments Incorporated, Novato,CA) with the appropriate filters (340 and 380 

nm wavelengths). Intraterminal emission of Fura-2 Ca2+ indicator was gathered at 510 

nm wavelength. Fluorescent images were acquired and processed with Axon Imaging 

Workbench 2.1 software (Axon Instruments, Foster City, CA). 

 

Capacitance Measurements 

 Freshly dissociated terminals (Nordmann et al., 1987) from adult adult Sprague-

Dawley CD rats were plated in Normal Locke’s solution with 1.2 mM CaCl2. Tight seal 

“whole terminal” recordings were obtained using the perforated-patch configuration 

described above. The pipettes resistance ranged from 5-8 MΩ. Perforation of the 

terminals’ membrane was obtained by adding 30 μM amphotericin B (SIGMA) to the 

pipette solution containing (mM): 145 Cs-gluconate, 15 CsCl, 5 NaCl, 2 MgCl2, 7 

Glucose, 10 HEPES pH 7.3. The bath solution contained (mM): 145 NaCl, 5 KCl, 1 

MgCl2, 10 HEPES, 10 Glucose, 1.2 CaCl2 or 0.2 EGTA, pH 7.5. Capacitance 

measurements were obtained using the piecewise-linear method (Knott et al., 2007). The 

changes in capacitance induced by a depolarizing pulse (750 ms duration) were measured 

1 second after cessation of stimulus, in order to avoid interference of stimulus “end-tail” 

effects. These stimulus-induced capacitance changes were measured for isolated 

terminals (perforated-patch) using the piece-wise method (Neher and Marty, 1982; 

Lindau and Neher, 1988; Gillis, 1995). Briefly, the method consists in applying a 

sinusoidal voltage of low amplitude to the sample (in order to avoid voltage-elicited 

channel currents) and obtaining the phase shift of the resultant sinusoidal current. 
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Changes in this phase shift (“locked-in”) are used in a formula (computer software that 

emulates a lock-in amplifier) for the determination of the capacitance changes (i.e., the 

capacitance that would cause such change of phase shift). The method is sensitive to very 

small changes in capacitance and, in practice, large baseline capacitance and resistance 

(series) transients must be compensated (i.e., null) before measuring any small 

capacitance change. In this particular case the parameters used were a sine wave of 1000 

Hz at ± 25 mV (about holding potential), with the program reporting a capacitance 

averaged for every 30 points (24 µs sampling rate). The current was filtered at a 

bandwidth of 5000 Hz.   

 

Statistical comparisons.  

In all cases, data are reported as mean ± SEM; n being the number of terminals. 

Statistical analysis of difference was made with paired t-test, with p< 0.05 considered 

significant.  

 

 

Results 

 
μ- but not κ-opioid agonist elicits a rise in basal intraterminal [Ca2+]i  

To determine if intraterminal Ca2+ was part of a diffusible second-messenger 

pathway mediating opioid receptor signaling in isolated HNS terminals, we monitored 

intraterminal calcium in response to μ- and κ-opioid receptor activation. Fura-2 AM ratio 

calcium imaging of isolated HNS terminals has shown a significant inhibition of High 

K+-induced rise in [Ca2+]i when treated with either μ- or κ-agonists (Velázquez-Marrero 
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et al., in preparation; See Chapter III) (Fig.4.1). Furthrmore, pretreatment with 100 nM 

DAMGO (μ-opioid agonist) alone, in 2.2 or 0 mM [Ca2+]o, elicited a rise in basal [Ca2+]i 

(Figs. 4.1 & 4.2). This did not occur when terminals were pretreated with 100 nM 

U50488 (κ-opioid agonist), or puffed with control 0 mM [Ca2+]o Normal Lockes’ (NL) 

(Fig. 4.2A).  Application of 100 nM DAMGO in the presence of the μ-opioid receptor 

antagonist CTOP (Fig. 4.2B) blocked the DAMGO-induced rise in basal [Ca2+]i. Fura-2 

AM calcium measurements were expressed as changes in basal intraterminal calcium 

concentration; 100 nM DAMGO in 2.2 mM [Ca2+]o NL was 26.9 ± 0.8, similar to basal 

changes in 0 mM [Ca2+]o with 100 nM DAMGO (28.7 ± 5.1). Changes in [Ca2+]i due to 

100 nM U50488 were -3.3 ± 5.2, control was -2.4 ± 3.4, and 100 nM DAMGO in the 

presence of CTOP =  -1.8 ± 1.0, all in 0 mM [Ca2+]o. These applications caused an 

artifactual dip in [Ca2+]i which may be inherent factor in all treatment applications and 

could lead to an underestimation of the DAMGO-induced rise in [Ca2+]i.  Baseline [Ca2+]i 

averaged 71.6 ± 15.7 (n=4).  

 

μ- but not κ-opioid inhibition is blocked by intraterminal calcium buffering 

In order to determine if the rise in [Ca2+]i due to μ-opioid agonist application is 

essential for subsequent inhibition of VGCC, we partially buffered [Ca2+]i using Bapta-

AM and monitored the effects on both calcium currents and High K+-induced rise in 

[Ca2+]i. Empirically determined incubation periods of 5-10 min. using low concentrations 

(10 μM) Bapta-AM were followed by a brief wash. Using this procedure Bapta-AM 

buffered DAMGO-induced rises in intraterminal calcium from a 22.7 ± 2.4 nM change in 

[Ca2+]i to 0.2 ± 0.5 nM (Fig. 4.3), but without blocking High K+-induced rise in [Ca2+]i 
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(Fig.4.4). Effects on both High K+-induced rise in [Ca2+]i and calcium currents were 

measured for both μ- and κ-opioid mediated inhibition using the same concentration of 

Bapta-AM for identical incubation periods. All measurements were made as either 

changes in basal [Ca2+]i or percent of control, specifically, control measurements were 

under identical conditions without opioid treatments. Inhibition of High K+-induced rise 

in [Ca2+]i due to 100 nM DAMGO represented 54.1 ± 3.4% of control K+-induced rise in 

[Ca2+]i and 70.9 ± 2.8%  in the presence of 100 nM U50488 (Fig.4.4B). After incubation 

of 10 μM Bapta-AM, terminals exposed to 100 nM DAMGO now showed no inhibition 

(109.9 ± 12.8%) of the High K+-induced rise in [Ca2+]i,  while exposing Bapta-AM 

treated terminals to 100 nM U50488 showed no change in κ-opioid mediated inhibition 

(78.5 ± 2.8%). T-test analysis determined no statistically significant difference (p≥0.3) 

between terminals treated with 100 nM U50488, with vs. without Bapta-AM pre-

incubation. In contrast, there was a statistically significant difference (p≤0.0005) between 

terminals treated with 100 nM DAMGO, with vs. without Bapta-AM pre-incubation 

(Fig.4.4B). Baseline [Ca2+]i without Bapta-AM pre-incubation was 86.5 ± 27.5 nM and 

after pre-incubation with Bapta-AM it was 77.9 ± 12.8 nM. There was no statistical 

difference (p≥0.16) between baseline [Ca2+]i with vs. without 5 min. pre-incubation with 

10 μM Bapta-AM. 

Buffering [Ca2+]i also blocked Inhibition of calcium currents by μ- but not κ-

opioid agonists. Calcium currents treated with 100 nM DAMGO represented 82.2 ± 4.0% 

of control current and 88.7 ± 2.3% in the presence of 100 nM U50488 (Fig. 4.5). After 

pre-incubation with 10 μM Bapta-AM, 100 nM DAMGO treatment now elicited no 

inhibition, with calcium currents 98.9 ± 1.2% of control. Exposing Bapta-AM treated 
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terminals to 100 nM U50488, again showed no change in κ-mediated inhibition, with 

calcium currents at 78.8 ± 4.9% of control. T-test analysis determined no statistically 

significant difference (p≥0.09) between terminals treated with 100 nM U50488, with vs. 

without Bapta-AM pre-incubation (Fig.4.5C). There was a statistically significant 

difference (p≤0.001) between terminals treated with 100 nM DAMGO, with vs. without 

Bapta-AM pre-incubation. 

 

8Br-cADP-ribose also blocks μ-opioid inhibition of High K+-induced rise in [Ca2+]i and 

partially relieves μ-opioid inhibition of calcium currents. 

Since the μ-opioid induced rise in [Ca2+]i is essential in mediating μ-opioid 

inhibition, we then wanted to know if the cADPr pathway was part of the receptor 

intraterminal signaling. We therefore, examined the effects of the membrane-permeant 

cADPR antagonist, 8Br-cADP-ribose, on μ-opioid inhibition of both High K+-induced 

rises in [Ca2+]i (Fig. 4.6) and calcium currents (Fig. 4.7). Control High K+-induced 

changes in [Ca2+]i were 457.1 ± 13.5 nM. In the presence of 100 nM DAMGO High K+-

induced change in [Ca2+]i decreased to 392.7 ± 19.6 nM. After incubation with 100 nM 

8Br-cADP-ribose, terminals exposed to 100 nM DAMGO now showed a change in 

[Ca2+]i of 425.9 ± 11.3 nM in response to High K+, similar to those in 100 nM 8Br-

cADP-ribose without DAMGO treatment 427.2 ± 8.9 nM. T-test analysis determined no 

statistically significant difference (p≥0.43) in High K+-induced changes in basal [Ca2+]i  

between terminals treated with 100 nM 8Br-cADP-ribose, with vs. without 100 nM 

DAMGO treatment (Fig.4.6). However, there was a statistically significant difference 

(p≤0.0004) in High K+-induced changes in basal [Ca2+]i  between terminals treated with 
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vs. without 100 nM DAMGO, which were not pre-incubated with 100 nM 8Br-cADP-

ribose. Interestingly, baseline [Ca2+]i without 100 nM 8Br-cADP-ribose pre-incubation 

was 79.2 ± 4.0 nM and after pre-incubation with 100 nM 8Br-cADP-ribose was 68.9 ± 

2.8 nM; n=8, and these baselines were statistically different (p≤0.02). 

Inhibition of calcium currents due to 100 nM DAMGO was measured as percent 

of control (Fig. 4.7). As stated above, controls were measurements under identical 

conditions without opioid treatments. Calcium currents treated with 100 nM DAMGO 

represented 76 ± 3% of control current (Fig. 4.7). After pre-incubation with 100 nM 8Br-

cADP-ribose, 100 nM DAMGO treatments now showed a partial relief of inhibition, with 

calcium currents at 90 ± 2% of control. T-test analysis determined there was a 

statistically significant difference between terminals treated with 100 nM DAMGO, with 

or without 100 nM 8Br-cADP-ribose pre-incubation (p≤0.02). 

 

μ-opioid effects are blocked by 100 μM Ryanodine 

We next addressed whether the release of [Ca2+]i due to μ-opioid receptor 

activation was from ryanodine-sensitive intraterminal stores. The pharmacology of the 

ryanodine receptor indicates that 10-100 μM concentrations of ryanodine can block 

ryanodine channel activity (Coronado et al., 1994; Ehrlich et al., 1994).  Therefore, we 

tested the effects of 100 μM ryanodine on DAMGO inhibition of High K+-induced rise in 

[Ca2+]i (Fig. 4.8), calcium currents (Fig. 4.9-4.11), and electrically-induced capacitance 

changes (Fig. 4.10 & 4.11). Control High K+-induced change in basal [Ca2+]i was 219.9 ± 

21.4 nM. In the presence of 100 nM DAMGO High K+-induced change in [Ca2+]i was 

112.7 ± 8 nM which represents 51% of the control response (Fig. 4.8). After incubation 
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with 100 μM ryanodine, terminals exposed to 100 nM DAMGO now showed a change in 

[Ca2+]i of 236.8 ± 8.2 nM in response to High K+, similar to control without DAMGO 

(209 ± 13.4 nM) in the presence of 100 μM ryanodine. T-test analysis determined no 

statistically significant difference (p≥0.11) in High K+-induced changes in basal [Ca2+]i  

between control terminals in 100 μM ryanodine and those in 100 μM ryanodine treated 

with 100 nM DAMGO. There was a statistically significant difference (p≤0.01) in High 

K+-induced changes in [Ca2+]i  between terminals treated with vs. without 100 nM 

DAMGO, which were not pre-incubated with 100 μM ryanodine. Control baseline [Ca2+]i 

was 62.2 ± 11.3 nM and 76.1 ± 11.5 nM after pre-incubation with 100 μM ryanodine; 

(n=3). There was no statistical difference between baseline [Ca2+]i with vs. without 100 

μM ryanodine incubation (p≥0.05). 

Inhibition of calcium currents due to 100 nM DAMGO (Fig. 4.9) was measured 

as percent of control (Fig. 4.11). Calcium currents treated with 100 nM DAMGO were 

inhibited to 76.3 ± 1.8% of control current (Fig. 4.11). During incubation with 100 μM 

ryanodine, calcium currents treated with 100 nM DAMGO showed no significant 

inhibition at 94.6 ± 2.5% of control; (n=6). T-test analysis determined there was no 

statistically significant difference (p≥0.10) between terminals in the presence of 100 μM 

ryanodine with and without 100 nM DAMGO. Inactivation of Ca2+ currents via Ca2+-

dependent inactivation could be reflected in the time constants of inactivation of the total 

recorded currents. We therefore tested the time constants of inactivation of the Ca2+ 

currents under control (no opioid or ryanodine), 100 nM DAMGO, 100 μM ryanodine, 

and 100 μM ryanodine with 100 nM DAMGO conditions (Fig. 4.11). The results were 

plotted as percent control (no opioid or ryanodine). Calcium currents in the presence of 
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DAMGO showed slowed inactivation kinetics resulting in 133 ± 2.6% of control. These 

were statistically different from control values with p≤0.001. In the presence of 100 μM 

ryanodine they were 105.4 ± 3.9%, (statistically not different from control p≥0.77) and in 

the presence of 100 μM ryanodine and 100 nM DAMGO 96.1 ± 3.7% (also statistically 

not different from control p≥0.22; (n=3).  

Reduction of depolarization-induced neuropeptide release is presumably due to μ-

opioid receptor inhibition of VGCC. If μ-opioid inhibition of VGCC can be blocked by 

100 μM ryanodine can we also block the μ-opioid reduction in neuropeptide release? To 

address this question we monitored changes in neuropeptide release reflected as 

capacitance changes in individual terminals (See Methods). Changes in capacitance in 

perforated-patched isolated HNS terminals in response to rectangular pulse 

depolarizations are inhibited by 100 nM DAMGO (Fig. 4.10). The inhibition is almost 

completely reversed by 100 nM CTOP (data not shown) indicating it is mediated by 

activation of the μ-opioid receptor. In the presence of 100 nM DAMGO capacitance 

changes were 43.8 ± 8.2% of control without DAMGO (Fig. 4.10 & 4.11). When 

incubated in 100 μM ryanodine, capacitance changes returned to 102.9 ± 3.5% of control.  

Application of 100 nM DAMGO in the presence of 100 μM ryanodine resulted in 98.2 ± 

2.7% of control capacitance change and was statistically no different than control 

(p≥0.99) or capacitance changes in the presence of 100 μM ryanodine alone (p≥ 0.16). T-

test analysis determined there was a statistically significant difference between terminals 

with vs. without 100 nM DAMGO (p≤0.001) that were not treated with 100 μM 

ryanodine. 
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Discussion 
 

In the present study we have found that in isolated HNS terminals activation of 

the μ-opioid receptor elicits release of intraterminal Ca2+ from ryanodine-sensitive stores. 

Results show that μ-opioid inhibition of calcium currents and High K+-induced rise in 

[Ca2+]i can be blocked in the presence of antagonist concentrations of ryanodine and 

reduced by competitive inhibition of the cADPr pathway. Changes in the inactivation 

kinetics of calcium currents in the presence of μ-opioid agonists suggests that release of 

intraterminal Ca2+ can be responsible for Ca2+-dependent inactivation of VGCC. 

Furthermore, μ–opioid inhibition of neuropeptide release from individual terminals can 

also be blocked in the presence of antagonist concentrations of ryanodine. The evidence 

supports the hypothesis that μ-opioid receptor activation leads to release of Ca2+ from 

ryanodine-sensitive stores possibly via activation of the cADPr pathway leading to Ca2+-

dependent inactivation of VGCC and subsequent inhibition of DSC. 

μ-opioid effects on the magnocellular neurosecretory system 

Endogenous opioids play an important part in modulation of neuropeptide 

secretion from magnocellular neurons in the neurohypophysis (Clarke et al., 1979; 

Bicknell and Leng, 1981; Clarke et al., 1981; Bicknell et al., 1985b; Nordmann et al., 

1986a; Bondy et al., 1988). Isolated HNS terminals show a reduction in depolarization-

induced release of both OT and AVP in response to both μ- (Zhao et al., 1988b; Leng et 

al., 1992; Russell et al., 1995a; Ortiz-Miranda et al., 2003; Ortiz-Miranda et al., 2005) 

and κ-opioid (Bicknell et al., 1988; Bondy et al., 1988; Zhao et al., 1988a; Rusin et al., 

1997b) receptor activation.  
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cADPr pathway and ryanodine-sensitive stores in HNS terminals 

Oxcytocin secretion is most sensitive to μ-opioid inhibition (Wright and Clarke, 

1984; Bicknell et al., 1985a; Zhao et al., 1988b; Leng et al., 1992; Russell et al., 1995a; 

Ortiz-Miranda et al., 2005). AVP release, while responsive to μ-opioid inhibition, is less 

sensitive to lower concentrations of agonists (Ortiz-Miranda et al., 2003). Interestingly, in 

HNS terminals, blocking cADPr signaling was shown to attenuate High K+ induced rise 

in [Ca2+]i and oxcytocin release from isolated terminals (Higashida et al., 2007; Jin et al., 

2007). This strongly suggests that the cADPr pathway is present in OT terminals were μ-

opioid inhibition is most sensitive. However, the contribution of the cADPr pathway to 

the depolarization-induced response seems to contradict the current results showing 

inhibition by μ-opioid agonist mediated, at least partially, via the cADPr pathway.  

There are some important considerations, which must be addressed in order to 

interpret our current results. First, the concentration of 8-br cADPr in our study is 100 

nM as compared to 100 μM used in previous studies (Jin et al., 2007). Preliminary 

calcium imaging results done in our laboratory on rat isolated HNS terminals, shows a 

significant rise in basal [Ca2+]i in the presence of 100-300 μM concentrations of 8-Br 

cADPr. This would theoretically have the same effects as those seen for μ-opioid agonist 

activation, leading to subsequent calcium-dependent inactivation of VGCC and 

attenuated neuropeptide release. Second, in murine HNS terminals “syntillas”, are both 

ryanodine- and voltage-sensitive (De Crescenzo et al., 2004b; De Crescenzo et al., 2006). 

Syntillas result from the activation of both ryanodine-receptor (RyR) type-1 and type-2 

receptors. Presumably, the type-1 RyR confers the voltage-sensitivity via direct 

interaction with VGCC (De Crescenzo et al., 2006), as documented in skeletal muscle 
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(Schneider and Chandler, 1973; Inui et al., 1987). Inhibition of voltage-dependent release 

of calcium from ryanodine-sensitive stores may account for the inhibition of 

depolarization-induced rise in [Ca2+]i and oxytocin release observed in the presence of 

100 μM ryanodine as previously published (Jin et al., 2007). However, unlike murine 

hypothalamic nerve terminals, chromaffin cells do not display syntilla activation by 

depolarization of the plasma membrane, nor do they have type 1 RyRs (ZhuGe et al., 

2006). Furthermore, it has yet to be determined if ryanodine-sensitive stores in rat HNS 

terminals are voltage-sensitive.   

μ-opioid effects on the inactivation kinetics of calcium currents 

Calcium-dependent inactivation of VGCC is present in HNS terminals (Branchaw 

et al., 1997; Wang et al., 1999b). By saturating the calcium-dependent inactivation, μ-

opioid inhibition of VGCC results in less measurable inactivation of calcium currents 

after a stimulation pulse.  In our current model, release of calcium from ryanodine-

sensitive stores leads to calcium-dependent inactivation of VGCC. Therefore, the lack of 

the Ca2+-dependent component of inactivation during depolarization results in the slower 

rate of the remaining fraction of inactivation observed in the presence of μ-opioid agonist 

(Fig. 4.11C). 

Conclusion 

 Amplification of μ-opioid receptor activation via cADPr-mediated release of Ca2+ 

from a ryanodine-sensitive signaling cascade seems well suited for regulating OT release 

in a voltage-independent manner, during the relatively long period of gestation. It is 

during this time that endogenous μ-opioid inhibition of OT release accumulates to be 

interrupted during parturition and subsequent lactation (Russell et al., 1989; Douglas et 

 135



al., 1995b; Russell et al., 1995a; Ortiz-Miranda et al., 2003). While inhibition of VGCC 

may only be one possible role for ryanodine-sensitive stores in HNS terminals, it is 

consistent with its effects on VGCC in cardiac (Schneider and Chandler, 1973; Inui et al., 

1987) and skeletal muscle (Fabiato, 1985; Carl et al., 1995; Sun et al., 1995). Opioid-

receptor induced Ca2+ mobilization has also been observed in both mouse astrocytes 

(Hauser et al., 1996) and isolated rat ventricular myocytes (Tai et al., 1992). Intraterminal 

calcium release and its associated Ca2+ microdomains likely have a wide range of 

possible targets and subsequent effects on depolarization-secretion coupling (Berridge, 

2006; Oheim et al., 2006). Therefore, ryanodine-sensitive stores in HNS terminals may 

prove to be bimodal regulators of release depending on the physiological context. Given 

the emerging role of ryanodine-sensitive stores and the cADPr-signaling pathway in the 

CNS, our results may prove important in understanding their physiological role in 

presynaptic structures during depolarization-secretion coupling. 
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Figure 4.1 
 

 

Figure 4.1 μ-opioid agonist triggers a rise in basal [Ca2+]i preceding μ-opioid 

inhibition of High K+-induced rise in [Ca2+]i. A. Images of Fura-2 AM loaded 

single terminal approx. ten seconds apart challenged with High K+ in 2.2 mM [Ca2+]o 

for 5 sec. with and without 100 nM DAMGO. B. Plot of changes in [Ca2+]i over time 

of a different single isolated HNS terminal loaded with Fura 2 AM. High K+ (yellow-

bar) exposures for 5 sec. and DAMGO (dark pink-bar) pretreatment for 10 sec. 

followed by High K+ in the presence of 100 nM DAMGO (red-bar). 
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Figure 4.2 

Figure 4.2 Only μ-opioid agonist triggers release of calcium from 

intraterminal stores. A. Change in [Ca2+]i of isolated HNS terminals in 0 

mM [Ca2+]o in response to 100 nM U50488 (blue), 100 nM DAMGO 

(dark pink), and control treatment containing modified Normal Locke’s 

without Ca2+ (cream); n=5. B. Rise in [Ca2+]i due to 100 nM DAMGO 

application (blue) is blocked in the presence of 100 nM CTOP (dark 

pink); n=4. Asterisks (*) represent statistical differences (p<0.002). 
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Figure 4.3 
 
 

Figure 4.3 Rise in basal [Ca2+]i due to μ-opioid agonist is blocked 

when pre-incubated with Bapta-AM. Bar graph of percent increase of 

[Ca2+]i increase above baseline in the presence of 100 nM DAMGO with 

and without, a 5 min. pre-incubation with 10 μM Bapta-AM, in 2.2 mM 

[Ca2+]o. Pre-incubation with Bapta-AM completely blocks the rise in basal 

[Ca2+]i due to μ-opioid agonist. Asterisk (*) represents statistical 

difference (p<0.004) between 100 nM DAMGO and 100 nM DAMGO 

pre-treated with 10 μM Bapta-AM (n=3). 
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Figure 4.4 
Error! 

Figure 4.4 Bapta-AM relieves μ- but not κ-opioid mediated inhibition of High 

K+-induced rise in [Ca2+]i. A. Plot of changes in [Ca2+]i of a single HNS terminal 

loaded with Fura-2 AM, with and without a brief 10 μM Bapta-AM pre-incubation, 

treated with High K+, and High K+ with 100 nM DAMGO in Normal Locke’s 

solution. B. Bar graph quantifying changes in [Ca2+]i in response to High K+, and 

High K+ with 100 nM DAMGO or 100 nM U50488 with and without Bapta-AM 

pre-incubation (n=4). Asterisk (*) represents statistically significant differences 

(p<0.001). 
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Figure 4.5 
 
 
 

C. 

Figure 4.5 Bapta-AM pre-incubation relieves μ- but not κ-opioid inhibition of 

calcium currents. A. Sample calcium currents of isolated HNS terminal; control 

currents (blue), 100 nM DAMGO (red), and wash (green). B. The same isolated HNS 

terminal with the control pre-incubated in Bapta-AM (blue) trace compared to trace pre-

incubated in Bapta-AM with 100 nM DAMGO (red), and wash (green). C. Bar graph 

quantifying peak barium currents (n=4) as percent of control current without opioid. 

Asterisk (*) represents statistically significant differences (p<0.001). 
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Figure 4.6 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 cADPr antagonist relieves μ-opioid mediated inhibition of High K+-

induced rise in [Ca2+]i. A. Images of Fura-2 AM loaded single HNS terminal approx. 

ten seconds apart challenged with High K+ in 2.2 mM [Ca2+]o for 10 sec. with and 

without 100 nM DAMGO and with and without pretreatment with 8 Br-cADPr. B. Bar 

graph of change in [Ca2+]i in response to High K+ challenge with and without 100 nM 

DAMGO and with and without incubation with 100 nM 8Br-cADPr (n=8 each). 

Asterisk (*) represents statistically significant differences (p≤0.0003). 
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Figure 4.7 
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Figure 4.7 cADPr antagonist partially relieves μ-opioid inhibition of 

calcium currents. Bar graph quantifying the peak barium currents (n=5), 

as percent of control current without DAMGO. Calcium currents with 100 

nM DAMGO (pink-bar) and with 100 nM DAMGO pre-incubated with 100 

nM 8Br-cADPr (dark pink-bar). Asterisk (*) represents statistically 

significant differences (p<0.02). 

 



Figure 4.8 

 
 

Figure 4.8 Ryanodine antagonist relieves μ- but not κ-opioid mediated 

inhibition of High K+-induced rise in [Ca2+]i. A. Trace of changes in [Ca2+]i 

of a single HNS terminal with and without 100 μM ryanodine incubation 

treated with High K+, and High K+ with 100 nM DAMGO. B. Bar graph 

quantifying changes in [Ca2+]i in response to High K+, and High K+ with 100 

nM DAMGO or 100 nM U50488, with and without 100 μM ryanodine (n=7). 

Asterisk (*) represents statistically significant differences (p<0.001). 
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Figure 4.9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9. Ryanodine antagonist relieves μ-opioid inhibition of calcium 

currents. A. Sample calcium currents of isolated HNS terminal; control currents 

(black), 100 nM DAMGO (pink), and wash (green). B. The same isolated HNS 

terminal with the wash (green) trace compared to a current trace in 100 μM 

ryanodine (black), and 100 μM ryanodine with 100 nM DAMGO (yellow). 
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Figure 4.10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 Ryanodine antagonist relieves μ-opioid inhibition of depolarization-

induced exocytosis.  Capacitance measurements of single terminal in the absence (red) 

and presence (black) of 100 nM DAMGO, in the presence of 100 μM ryanodine (green), 

and of 100 μM ryanodine and 100 nM DAMGO (blue) using a square pulse of 80 mV 

for a duration of 750 ms. Inset shows the currents obtained from the actual stimulus 

(same color indicators). The generalized conductance changes (“G”) are shown for 

reference. Dashed gray lines represent the zero-change baselines. Peak capacitance 

measurements in the presence of DAMGO were statistically significantly different from 

all other treatments (p<0.002; n=5). 
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Figure 4.11 

Figure 4.11 Summary of ryanodine antagonist effects on μ-opioid inhibition. A. 

Bar graph quantifying changes in stimulus-induced capacitance (n=3) with 100 μM 

ryanodine (dark red), 100 nM DAMGO (pink), and 100 μM ryanodine with 100 nM 

DAMGO (orange), plotted as percent of control without treatment. B. Bar graph 

quantifying peak calcium currents (n=5) as percent of control peak current without 

treatment (same color indicators). C. Bar graph quantifying the inactivation time 

constants of calcium currents (n=5) as percent of control inactivation time constant 

without treatment (same color indicators). Asterisks (*) represent statistically 

significant differences (p<0.009). 
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Chapter V 

 

 

General Discussion 



For the past twenty years the Hypothalamic-Neurohypophysial System (HNS) has 

advanced our knowledge of the basic principles underlying depolarization-secretion 

coupling (DSC). The work presented in this thesis aims to expand our current 

understanding of the underlying mechanisms modulating DSC and their physiological 

implications. In this thesis I present research into both voltage-dependent and -

independent mechanisms mediating modulation of DSC. Within the category of voltage-

dependent effects on DSC, I show ground-breaking research unlinking depolarization-

induced neuropeptide release from calcium influx through voltage-gated calcium 

channels (VGCC) in presynaptic structures.  Furthermore, I show that changes in voltage 

can relieve G-protein mediated inhibition of VGCC through κ-opioid receptor activation 

that has important implications on activity-dependent modulation in vivo. Voltage-

independent interactions mediating modulation of DSC include VGCC inhibition via μ-

opioid receptor activation. This voltage-independent signaling pathway involves release 

of calcium from ryanodine-sensitive intraterminal stores. It is the first time, to my 

knowledge, that a physiological role has been determined for these recently 

characterized, ryanodine-sensitive calcium stores in isolated HNS terminals. 

The historical cornerstone of DSC was established from early research done on 

the neuromuscular junction (Katz and Miledi, 1965b, a; Miledi, 1973; Smith and 

Augustine, 1988). It was here where the calcium hypothesis gained its foothold and from 

where it has only recently been challenged. The calcium hypothesis states that electrical 

stimulation opens VGCC, triggering calcium influx from the extracellular space into the 

cytoplasm. This initiates key steps in vesicular exocytosis and release of vesicular 

content. The main point of the calcium hypothesis is that calcium is the key component 
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for initiation and termination of neurotransmitter release. While most current scientific 

research is based on this premise, recent evidence has introduced the possibility of 

neurotransmitter release being both calcium- and voltage-dependent (Parnas and Parnas, 

1986; Hochner et al., 1989; Parnas et al., 1991). Proponents of the Ca2+-voltage 

hypothesis state that not only is Ca2+ required, but membrane potential as such also plays 

a pivotal role in promoting depolarization-induced release (Parnas and Parnas, 2002). A 

depolarizing stimulus relieves a tonic inhibition of the exocytotic machinery by an 

autoinhibitory receptor. This hypothesis emerged mainly to explain the differences in the 

time course of release in the presence of [Ca2+]o where release is quickly terminated after 

depolarization despite residual high [Ca2+]i (Hochner 1989, Barrett 1979, Matzner 1988, 

Parnas 1989, Datyner, 1980, Andreu 1989). Interestingly the kinetics of extracellular 

calcium-independent release in HNS terminals are reminiscent of the latter part of release 

in the presence of extracellular calcium suggesting a biphasic response to depolarization 

(Brethes et al., 1987; Muschol and Salzberg, 2000). First an extracellular calcium-

dependent response, which leads to a peak of release is followed by a rapid decay. 

Second, a new baseline release in the continued presence of High K+ is established, 

which is independent of extracellular calcium. This second phase of sustained release 

best mimics intraterminal calcium dynamics in the presence of a sustained depolarization 

(Lindau et al., 1992; Stuenkel and Nordmann, 1993a). The existence of voltage- and 

ryanodine-sensitive calcium stores in isolated HNS terminals seemed like a potential link 

between the calcium requirement for exocytosis and voltage during High K+-induced 

release in 0 mM [Ca2+]o. Therefore, unlike the Ca2+-voltage hypothesis, I attempted to 

explain persistent depolarization-induced changes in both capacitance and neuropeptide 
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release in the absence of calcium influx through VGCC coincident with changes in 

[Ca2+]i.  

While my experiments showed that extracellular calcium is not necessary for 

depolarization-induced neuropeptide release, it was clear that ryanodine- and voltage-

sensitive internal calcium stores were not involved in eliciting such release, either. 

However, intraterminal calcium appears to play a role, but it is unclear what, if any, 

calcium stores are involved. Previously I introduced the possibility of calcium being 

released from IP3 stores known to elicit release in isolated terminals (See Chapter III – 

discussion; Fig. 5.2). While this may help explain the intraterminal calcium-dependent 

portion of the depolarization-induced release of neuropeptide in 0 mM [Ca2+]o from HNS 

terminals, a calcium-independent component remains. Interestingly, there is another step 

in the evolution of the calcium hypothesis known as the calcium-independent yet voltage-

dependent release proposed by Zhang and Zhou (2002). Their research shows persistent 

depolarization-induced changes in capacitance in the absence of extracellular or 

intracellular calcium from DRG neuronal somata. These results indicate the existence of 

Ca2+-independent but voltage-dependent vesicular secretion (CIVDS) which may be 

present in HNS terminals.  

The molecular mechanism underlying CIVDS is unknown. Zhang and Zhou 

(2002), speculate about the existence of an intrinsic plasma membrane protein capable of 

sensing the changes in transmembrane potential and responding with a conformational 

change that facilitates exocytosis of the docked vesicles in a Ca2+-independent manner. In 

fact, in pancreatic beta-cells voltage-driven conformational changes that engage the 

ion/EEEE interface of the L-type Ca2+ channel are relayed to the exocytotic machinery 
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prior to ion influx, allowing for a fast and tightly regulated process of release independent 

of Ca2+ influx or release of Ca2+ from intracellular stores (Wiser et al., 1999; Brown et 

al., 2000b; Trus et al., 2007). Therefore, given the CIVD component of depolarization-

induced ECIR in HNS terminals, future experiments will explore the connection between 

VGCCs and proteins directly linked to the exocytotic machinery.  

Alternatively, depolarization has been shown to cause changes in membrane 

tonicity (Kim et al., 2007) similar to those observed during osmotic challenges in which 

the cell or terminal swells or shrinks to accommodate changes in water flow due to 

variations in the osmotic gradient (Ishikawa et al., 1982; Cazalis et al., 1987c; Back et al., 

2000; Hussy et al., 2001). The Neurohypophysis is exquisitely tuned to such changes as 

would be predicted from vasopressin’s critical role in systemic fluid homeostasis. In HNS 

terminals hypo-osmotic challenges induce release of both vasopressin and oxytocin 

(Bacova et al., 2006). Interestingly, the kinetics of the CIVDS are not unlike calcium-

independent hypo-osmotic-induced release. Therefore, we should not underestimate the 

possibility that changes in membrane tonicity or sodium influx due to either higher 

concentrations of extraterminal potassium, such as those seen during High K+ 

stimulation, or electrical stimulation, observed during capacitance and calcium current 

recordings, may converge on sensitive osmotic regulatory mechanisms in the HNS 

underlying release.  

Membrane tonicity may not be an important factor during calcium-dependent 

neuropeptide release, given that permeablized terminals still show transient vasopressin 

secretory responses to manipulations in [Ca2+]o (Stuenkel and Nordmann, 1993a). 

However, also in permeablized terminals, addition of Na+ in the absence of Ca2+ gives 
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rise to increases in vasopressin secretion (Stuenkel and Nordmann, 1993b). Therefore, 

influx of sodium due to depolarization may contribute to neuropeptide release in the 

absence of extracellular calcium. However, it is yet to be determined if intact terminals 

may have mechanically-sensitive triggers for neuropeptide release responding to changes 

in membrane tonicity due to depolarization in the absence of [Ca2+]o.  Interestingly, there 

is a clear physiological equivalent to the High K+ in 0 mM [Ca2+]o conditions under 

which I have tested these isolated terminals. During a physiological burst, action 

potentials are translated into very high frequency stimulations due to the accumulation of 

extraterminal potassium in the interstitial space, while at the same time calcium is being 

depleted (Marrero and Lemos, 2005). Therefore, extraterminal calcium-independent yet 

voltage-dependent release of neuropeptide may serve to extend release, past the 

biophysical limits of VGCC, under the continued demands of high levels of 

physiologically relevant electrical activity. 

If ryanodine- and voltage-sensitive calcium stores in HNS terminals are not 

involved in extracellular Ca2+-independent depolarization-induced release, the question 

persists; do they serve a role during DSC? Amperometric studies have demonstrated no 

correlation between syntillas and quantal release. However, agonist concentrations of 

ryanodine show significant increases in the rate of spontaneous amperometric events, and 

inhibitory concentrations of ryanodine cause the opposite effect (McNally et. al, 2007). 

AVP and OT release from isolated terminals significantly increase in response to 

ryanodine receptor agonists (Velazquez-Marrero et. al., in preparation; See Chapter II), in 

both the absence and presence of [Ca2+]o. These data suggest that spontaneous syntillas, 

may release Ca2+ into cytosolic microdomains not associated with docked, primed 
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vesicles (Berridge, 2006; Oheim et al., 2006; ZhuGe et al., 2006). However, lack of 

coincident release of neuropeptide with syntilla events does not preclude the possibility 

that release of calcium from intraterminal stores may indirectly modulate DSC by 

increasing the probability of exocytosis from a larger readily-releasable pool of granules 

(Fig. 5.2). In HNS terminals, intraterminal calcium stores can prime vesicles for activity-

dependent neuropeptide release (Ludwig et al., 2002; Ludwig and Leng, 2006). 

Furthermore, application of either antagonist concentrations of ryanodine, or the 

competitive ryanodine receptor antagonist, 8-Br cADPR, significantly inhibit both 

depolarization-induced release of OT and its coincident rise in [Ca2+]i (Jin et al., 2007). I 

have carried out experiments measuring AVP release in response to 50 mM High K+-

induced release, which show a reproducible potentiation of the High K+-induced release 

in the presence of 20 mM Caffeine in 2.2 mM [Ca2+]o. This potentiation does not occur in 

the absence of [Ca2+]o, suggesting that calcium influx though VGCC during DSC is a 

necessary prerequisite for “syntilla” modulation of DSC. The evidence therefore suggests 

that CICR likely plays an important role in the amplification of the DSC response as it 

does in other systems (Usachev and Thayer, 1997; Kang and Holz, 2003).  

 As previously mentioned, recent studies targeting oxytocin release in isolated 

terminals of the Neurohypophysis using CD38 knockout mice, clearly shows inhibition of 

depolarization-induced OT release in CD38(-) mice, and in wild-type mice when treated 

with antagonists of the ryanodine receptor or the cADPr pathway (Higashida et al., 2007; 

Jin et al., 2007). I found similar results by calcium imaging with High K+-induced [Ca2+]i 

rise. In seeming contradiction, release of intraterminal Ca2+ from ryanodine-sensitive 

stores during application of the μ-receptor agonist leads to inhibition of VGCC and of 
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subsequent High K+-induced neuropeptide release (Velazquez-Marrero et.al, in 

preparation; See Chapter IV). However, studies show that micro-domains of calcium can 

affect specific targets via select signaling pathways. Graded activation of the ryanodine 

cADPr pathway can encompass a range of physiological responses in combination with 

activation via depolarization. Treating isolated terminals with 8-Br cADPR, a competitive 

antagonist of the ryanodine receptor, at a concentration of 100 μM significantly decreases 

both OT release and the High K+-induced rise in [Ca2+]I (Jin et al., 2007). However, a 

concentration of 100 nM does not affect either, yet effectively targets μ-opioid inhibition 

(Velazquez-Marrero et.al, in preparation; See Chapter IV). The concentration dependent 

effect of 8-Br cADPr on DSC suggests changes in cADPr and subsequent baseline [Ca2+]i 

in terminals has a biphasic effect on DSC (see Fig. 5.2). A similar phenomenon was 

observed in Xenopus oocyte nerve growth cones which respond to a known 

chemoattractant guidance cue with opposite turning behavior, depending on the level of 

cytosolic cAMP and [Ca2+]i (Ming et al., 1997; Hopker et al., 1999). Furthermore, brief 

periods of electrical stimulation of cultured Xenopus spinal neurons resulted in a marked 

alteration in the chemoattractive turning responses of the growth cone, suggesting 

depolarization may also modulate cAMP concentrations and/or [Ca2+]i (Ming et al., 

2001). Therefore, given that HNS ryanodine-sensitive calcium stores are likely Ca2+- and 

voltage-sensitive, specific holding potentials and baseline [Ca2+]i concentrations should 

be taken into consideration when interpreting their effects on both basal and stimulus-

evoked release. 

Our hypothesis states that release of calcium from ryanodine-sensitive stores leads 

to VGCC inhibition presumably via calcium-dependent inactivation (Fig. 5.1). The μ-
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opioid receptor seems to preferentially inhibit OT release by its strong inhibition of the 

R-type calcium channel (Fig. 1.6), where 79% of the isolated R-type currents was 

blocked by DAMGO (Ortiz-Miranda et al., 2005). However, it inhibits L-type by only 

15% and, N-type by 17% in OT terminals (Ortiz-Miranda et al., 2006). Research on 

calcium-dependent inactivation of the R-type calcium channel indicates there are 

hallmark Ca2+-dependent calmodulin interacting domains in the cytoplasmic loops of the 

channel indicating the possibility for calcium-dependent modulation of the channel (Pate 

et al., 2000; Liang et al., 2003). Experiments measuring inactivation rate constants of 

total channel currents in isolated HNS terminals showed slower inactivation with Ba2+ as 

compared with Ca2+ as the charge carrier for total channel currents (Wang et al., 1999b), 

indicating VGCC of HNS terminals do inactivate in a calcium-dependent manner. 

However, the isolated R-type current showed no difference in inactivation with either 

Ba2+ or Ca2+ (Wang et al., 1999b). This seemed to suggest there is no calcium-dependent 

inactivation of the R-type calcium channel in HNS terminals. Nevertheless, it is 

important to note that Ba2+ can bind to the inactivation site of certain VGCC channels, 

giving rise to Ba2+-dependent inactivation (Ferreira et al., 1997) and thus occluding any 

differences in inactivation during Ba2+ substitution. Future experiments should include 

intraterminal calcium buffering with Bapta to best address the possibility of calcium-

dependent inactivation.  

While the possibility for calcium-dependent inactivation of the R-type channel in 

the HNS may be debatable, other VGCC targeted by μ-opioid inhibition show significant 

calcium-dependent inactivation (Branchaw et al., 1997; Wang et al., 1999b). This may 

indicate that either the R-type channel is sensitive to calcium-dependent modulation (still 
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present during Ba2+ substitution as Ba2+-dependent inactivation) or AVP terminals, which 

lack R-type VGCCs, are being preferentially selected. However, significant differences in 

the rates of inactivation of calcium currents during μ-opioid inhibition support the 

involvement of a calcium-dependent process mediating inhibition. As stated in Chapter 

IV, inactivation rates decrease in μ-opioid-treated calcium currents. While these results 

are somewhat unexpected, they are consistent with previous research characterizing 

calcium-dependent VGCC inactivation in HNS isolated terminals. It is interesting to note 

that, unlike other systems, in isolated HNS terminals the time constants for calcium 

current inactivation are faster with Ba2+ substitution and intracellular Bapta when 

compared with Ca2+ (Branchaw et al., 1997). This is the opposite of what would be 

expected for calcium-dependent inactivation of VGCC. To explain these results, 

Branchaw et al. (1997), proposed a simple two-state VGCC model, where open and 

inactivated states are governed by a forward rate when the channel moves from open to 

inactive and a reverse rate when the channel moves from inactive to open. Ca2+ is 

hypothesized to inhibit both the forward and reverse rates, with a greater effect on the 

reverse rate.  

In this thesis, I show that inhibition of VGCC via μ-opioid agonist reduces the 

rate of inactivation, as expected for Ca2+-dependent inhibition where calcium’s net effect 

is increasing the rate at which inactive channels transition into an open state.  While this 

would predict facilitation of calcium influx through the channel it does not take into 

consideration other hallmarks, not yet tested during μ-opioid inhibition, of calcium-

dependent inactivation of VGCC in HNS such as Ca2+-dependent inhibition of recovery 

from inactivation, and the hallmark U-shape of a steady-state inactivation curve 
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(Branchaw et al., 1997). A simpler explanation for the slower inactivation rates in μ-

opioid treated calcium currents takes into account that calcium-dependent inactivation 

can be saturated during release of calcium from ryanodine-sensitive stores. Therefore, 

rate constants during stimulated release would lack the calcium-dependent component of 

inactivation typically elicited via calcium influx and thus seem slower than control 

currents.  

From the research and results presented in this thesis a working hypothesis 

emerges.  Action potentials reach the Neurohypophysis initiating important electrical and 

biochemical events that at different points overlap to ensure optimum efficiency of 

neuropeptide release. Once membrane potential at the terminals reaches threshold, 

initiation of APs triggers VGCC opening which allow extracellular calcium influx. These 

events trigger release of both AVP, with co-release of Dynorphin A, and OT, with co-

release of Met-Enkephalin (see Fig. 1.6). This initiates autocrine and paracrine activation 

of both the κ- and μ-opioid receptors and their respective G-protein signaling pathways. 

The κ-opioid signaling pathway catalyzes the association of the Gβγ subunits of the G-

protein coupled receptor with cytoplasmic components of VGCC triggering slower 

channel opening and consequently calcium influx (Fig. 5.1). Upon high frequency 

stimulation from the soma, activity-dependent relief of κ-opioid inhibition occurs in 

nerve terminals. Met-Enkephalin co-released from HNS terminals triggers activation of 

the μ-opioid receptor which initiates a slower response, at lower concentrations inhibiting 

OT release first. With eventual μ-opioid agonist accumulation, higher concentrations also 

target AVP release. G-protein activation initiates a diffusible second-messenger cascade, 

which is both slower than a membrane-delimited pathway and voltage-independent, 
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triggering activation of ADP-ribosyl cyclase/CD38, which synthesizes cADPr from beta-

NAD+ (Higashida et al., 2007)(Fig. 5.1 & 5.2). Cyclic ADPr then either activates or 

modulates ryanodine receptors in large dense core vesicles. This triggers subsequent 

release of calcium from ryanodine-sensitive stores followed by calcium-dependent 

inactivation of VGCC and possibly calcium-dependent activation of BK channels. 

Termination of this signaling pathway may occur by negative feedback triggered by high 

cADPr concentrations, μ-opioid receptor desensitization, and/or μ-opioid receptor 

internalization.  

In summary, with increasing frequency of electrical activity (i.e., bursts) from the 

soma, κ-opioid receptor inhibition in the terminals is attenuated and μ-opioid agonists, 

co-released with neuropeptide, accumulate in the terminal interstitial space prior to 

diffusion into the adjacent capillary bed or degradation. Subsequent changes in ionic 

concentrations in the terminal interstitial space may then trigger extracellular calcium-

independent yet voltage-dependent release of neuropeptide towards the latter phase of the 

burst. During inter-burst intervals, both μ- and κ-opioid agonist accumulation either 

diffuses away or are broken-down in the interstitial space surrounding the terminals. The 

rate of opioid dispersal and/or degradation may dictate whether subsequent stimulation 

will elicit optimum neuropeptide release. While autoinhibitory effects of co-secreted κ-

opioid agonists have been observed in the somatodendritic region (Brown et al., 2007), in 

HNS terminals I have now demonstrated the capacity for physiologically relevant 

activity-dependent relief. This represents an interesting adaptation serving the unique 

function of the terminals in the magnocellular neurosecretory system. In contrast, the 

slower, voltage-insensitive mechanism mediating μ-opioid inhibition in HNS terminals is 
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best suited for its primary role during gestation. It is during this stage that μ-opioid 

inhibition of OT release progressively increases throughout pregnancy, allowing for OT 

accumulation and OT receptor sensitization. This inhibition is interrupted during 

parturition and later during lactation where OT release from the Neurohypophysis plays a 

critical role in milk letdown. Therefore, integration of both voltage-dependent and –

independent modulatory inputs at the HNS terminals serves to fine-tune the response to 

physiologically relevant input and facilitate optimum depolarization-secretion coupling.  
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Figure 5.1 

 

 
 
 
 
 Figure 5.1 Model for Opioid modulation of VGCC. Activation of the 

κ-opioid receptor initiates Gα-protein dissociation from Gβγ subunits. Gβγ 

mediates membrane-delimited voltage-dependent inhibition of VGCC via 

direct interaction with the channel. Activation of the μ-opioid receptor 

initiates cADPR signaling, presumable via activation of ADP-rybosyl 

cyclase/CD38 complex catalyzing the conversion of NAD+ into cADPr. 

Cyclic ADPr subsequently leads to activation/modulation of ryanodine 

receptors on neurosecretory granules (NSG) in the terminals. Release of 

Ca2+ from ryanodine-sensitive stores subsequently results in Ca2+-

dependet inactivation of voltage-gated calcium channels. Figure modified 

from Lemos, 2002.  
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Figure 5.2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 Intraterminal Ca2+ regulation of neuropeptide release in HNS terminals. A. μ-opioid 

agonist binds to its receptor initiating a diffusible second-messenger cascade resulting in cADPr-induced 

release of Ca2+ from ryanodine-sensitive stores. Calcium release leads to calcium-induced inactivation 

(CDI) of voltage-gated calcium channels (VGCC). Inactivation of VGCC inhibits Ca2+ influx and 

subsequent depolarization-induced release. B. In the absence of Ca2+ influx through VGCC, depolarization 

mobilizes intraterminal Ca2+ from an unknown source, possibly IP3 stores, eliciting neuropeptide release in 

a extracellular Ca2+-independent manner. C. During depolarization, VGCC allows influx of Ca2+ from the 

extracellular space resulting in activation of ryanodine-sensitive stores via calcium-induced calcium release 

(CICR) and subsequent mobilization of granules from the releasable pool (RP) to the readily releasable 

pool (RRP) amplifying the DSC response. Figure inspired by Leng et al.(2002). 
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