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Abstract 
The RNA interference (RNAi) pathway in Caenorhabditis elegans is a two-

step, small RNA-mediated silencing pathway. Unlike in other organisms, Dicer 

processing of double-stranded RNA into small interfering (si) RNAs is not 

sufficient in worms to induce gene silencing. The activity of cellular RNA-

dependent RNA polymerase (RdRP) is necessary to synthesize a secondary 

pool of siRNAs, which interact with a unique class of Argonaute proteins to form 

the functional effector complexes that mediate silencing. The aims of this thesis 

were to: 1) characterize the role of RdRP family members in endogenous small 

RNA biogenesis; 2) identify the Argonaute proteins that interact with RdRP-

dependent small RNAs; and 3) investigate the biological function of RdRP-

dependent small RNA pathways in C. elegans. 

In this thesis, I describe genetic, deep sequencing, and molecular studies, 

which identify 22G-RNAs as the most abundant class of endogenous small RNA 

in C. elegans. The 22G-RNAs resemble RdRP-dependent secondary siRNAs 

produced during exogenous RNAi, in that they possess a triphosphorylated 5’ 

guanine residue and exhibit a remarkable strand bias at target loci. Indeed, I 

show that 22G-RNAs are dependent on the activity of the RdRPs RRF-1 and 

EGO-1 and function in multiple distinct endogenous small RNA pathways. 

Interestingly, I have found that RRF-1 and EGO-1 function redundantly in the 

germline to generate 22G-RNAs that are dependent on and interact with 

members of an expanded family of worm-specific Argonaute (WAGO) proteins. 
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The WAGO/22G-RNA pathway appears to be a transcriptome surveillance 

pathway that silences coding genes, pseudogenes, transposons, and non-

annotated, or cryptic, transcripts. In contrast, I have found that EGO-1 alone is 

required for the biogenesis of a distinct class of 22G-RNAs that interact with the 

Argonaute CSR-1. Surprisingly, the CSR-1/22G-RNA pathway does not appear 

to silence its targets transcripts. Instead, the CSR-1/22G-RNA pathway is 

essential for the proper assembly of holocentric kinetochores and chromosome 

segregation.  

Lastly, I show that a third endogenous small RNA pathway, the ERI 

pathway, is a two-step silencing pathway that requires the sequential activity of 

distinct RdRPs and Argonautes. In the first step of this pathway, the RdRP, RRF-

3, is required for the biogenesis of 26G-RNAs that associate with the Argonaute, 

ERGO-1. In the second step, RRF-1 and EGO-1 generate 22G-RNAs that 

associate with the WAGO Argonautes. 

This work demonstrates how several C. elegans small RNAs pathways 

utilize RdRPs to generate abundant populations of small RNAs. These distinct 

categories of small RNAs function together with specific Argonaute proteins to 

affect gene expression, to play essential roles in development, and in the 

maintenance of genome and transcriptome integrity. 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CHAPTER I 
 

General Introduction 
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RNA interference 

In 1998, Craig Mello and Andrew Fire published their landmark discovery 

that long double-stranded RNA (dsRNA) triggers potent and specific gene 

silencing in C. elegans, in a process called RNA Interference (RNAi) (Fire et al., 

1998; Rocheleau et al., 1997). Since the initial discovery, RNAi has become an 

invaluable tool to inhibit gene expression and study gene function in numerous 

biological systems, including those where genetics is intractable (Fjose et al., 

2001). Furthermore, advances in RNAi technology have developed beyond basic 

science research into a strategic tool used in biomedical drug therapeutics (He et 

al., 2009a; Milhavet et al., 2003; Shrey et al., 2009). The impact of Mello and 

Fire’s discovery was recognized in eight years when they were awarded the 

Nobel Prize in Physiology or Medicine in 2006 (Zamore, 2006). 

The work of Mello and Fire built on several previous studies, which 

collectively suggested that either sense or antisense RNA could act to silence a 

target mRNA. For example, Fire showed that transgenic C. elegans strains 

expressing either sense or antisense unc-22 RNA phenocopied the unc-22 loss-

of-function phenotype (Fire et al., 1991). Homology-dependent gene silencing 

(HDGS) was also observed by scientists attempted to enhance the pigmentation 

of petunia plants by over-expressing the enzyme required for pigment 

biosynthesis (Napoli et al., 1990; van der Krol et al., 1990). Remarkably, these 

genetically engineered transgenic plants produced flowers that lacked pigment 

altogether and were completely white or, at best, variegated in color.  This HDGS 
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phenomenon was dubbed “co-suppression”, because it resulted in the silencing 

of both the transgenic and the endogenous copies of the gene. Molecular 

analysis revealed that co-suppression was a result of post-transcriptional gene 

silencing (PTGS), because mRNA levels for the enzyme were markedly reduced 

while the rate of transcription appeared normal (de Lange et al., 1995). Thus, 

RNAi is believed to have emerged as a natural defense mechanism to protect the 

genome from invading nucleic acids, such as viruses or transposable elements 

(Baulcombe, 1999; Kumar, 2008; Ratcliff et al., 1997; Ratcliff et al., ; Schutz and 

Sarnow, 2006; Tabara et al., 1999; Voinnet et al., 1999; Wu-Scharf et al., 2000). 

Since the initial description of RNAi in C. elegans, it has become clear that 

RNAi and related silencing pathways function in a multitude of eukaryotic 

organisms including plants, trypanosomes, hydra, fungi, insects, fish and 

mammals (Caplen et al., 2001; Kennerdell and Carthew, 1998, 2000; Li et al., 

2000; Lohmann et al., 1999; Ngo et al., 1998; Romano and Macino, 1992; 

Sanchez Alvarado and Newmark, 1999; Wianny and Zernicka-Goetz, 2000). The 

fact that gene expression could be inhibited by dsRNA in diverse organisms 

implied the existence of a conserved gene silencing mechanism. Organisms use 

RNAi-related pathways to regulate development, transposon silencing and 

chromatin structure. While some small RNA pathways mediate PTGS, via 

translational repression or mRNA degradation, other pathways mediate 

transcriptional gene silencing (TGS), via chromatin remodeling and formation of 

heterochromatin (Almeida and Allshire, 2005; Buhler and Moazed, 2007; Meister 
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and Tuschl, 2004; Mochizuki and Gorovsky, 2004b; Morris, 2008; Pal-Bhadra et 

al., 2002; Pal-Bhadra et al., 2004). Surprisingly, in ciliated protozoa, small RNA 

pathways even mediate DNA elimination (Mochizuki and Gorovsky, 2004a, b; 

Yao et al., 2003). 

A number of lines of evidence suggested that RNAi and other gene 

silencing phenomena were mechanistically related, and were likely to rely on 

conserved families of proteins. First, the identification of small RNA species that 

accumulated under RNAi conditions implicated these molecules in gene silencing 

functions (Hamilton and Baulcombe, 1999; Zamore, 2001). Second, the 

characterization of these small RNAs and their generation from longer dsRNA 

implied the existence of an RNAse enzyme to generate small RNAs (Elbashir et 

al., 2001b; Zamore et al., 2000). Biochemical studies identified such an RNAse, 

which came to be known as Dicer (Bernstein et al., 2001). Third, genetic screens 

in plants, C. elegans, and N. crassa identified Argonaute proteins as key factors 

required for RNAi and related silencing phenomena (Cogoni, 2001; Tabara et al., 

1999). Subsequent biochemical and structural studies established the pivotal role 

of Argonaute proteins as the binding partners of small RNAs and effectors of 

gene silencing (Bohmert et al., 1998; Fagard et al., 2000; Tabara et al., 1999). 

Collectively, numerous elegant genetic and biochemical studies have revealed 

the molecular details of these silencing pathways. 
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Small RNAs 

Biochemical studies established that dsRNA is cleaved into 18- to 25- 

nucleotide (nt) small RNAs, which are the sequence-specific modulators of RNAi. 

Small RNAs of ~25 nt were first observed to accumulate during PTGS in plants 

(Hamilton and Baulcombe, 1999). The PTGS-associated small RNAs were of 

both sense and antisense polarities with respect to the mRNA, suggesting that 

they were not simply degradation products from the targeted mRNA (Hamilton 

and Baulcombe, 1999). Using Drosophila melanogaster syncytial blastoderm 

extracts, Sharp and colleagues developed the first in vitro RNAi system, 

demonstrating that dsRNA triggers the specific degradation of a homologous 

mRNA (Tuschl et al., 1999). In vitro experiments further showed that dsRNA is a 

precursor that is processed into 21-23 nt small RNA products and that these 

small RNAs, referred to as short interfering RNAs (siRNAs), mediate silencing 

(Elbashir et al., 2001b; Elbashir et al., 2001c; Parrish et al., 2000; Zamore et al., 

2000). Indeed, delivery of synthetic 21- or 23 nt RNA duplexes in D. 

melanogaster, plants, and vertebrate cells was capable of effectively triggering 

RNAi, indicating that siRNAs are directly involved in the RNAi process (Caplen et 

al., 2001; Elbashir et al., 2001a; Klahre et al., 2002; Lewis et al., 2002).  

Chemical alterations in the sense strand were more tolerated than 

antisense, indicating that the two strands were not functionally equivalent 

(Khvorova et al., 2003; Parrish et al., 2000). It was ultimately determined that the 

two strands possess mechanistically distinct roles in triggering silencing. Only 
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one strand of an siRNA duplex (the “guide strand”) is incorporated into the 

functional RNA-induced silencing complex, or RISC, and provides the sequence 

specificity required for silencing (Hammond et al., 2000). Loading of this guide 

strand into RISC is determined in part by thermodynamic stability of small RNA 

duplex (Khvorova et al., 2003; Schwarz et al., 2003). The other strand, called the 

passenger strand, is ultimately degraded (Nykanen et al., 2001; Schwarz et al., 

2003). 

 

Dicer 

The underlying catalytic mechanism of small RNA biogenesis was quickly 

revealed by the identification of Dicer, an RNAse III like enzyme that is capable 

of cleaving long dsRNA into siRNA duplexes and is required for RNAi  (Bernstein 

et al., 2001; Grishok et al., 2001; Hutvagner et al., 2001; Ketting et al., 2001) 

Dicer belongs to a highly conserved family of dsRNA-specific RNAses, which 

encode an N-terminal DExH/DEAH RNA helicase domain, a PAZ 

(Piwi/Argonaute/Zwille) domain, two tandem RNase III catalytic domains (RNase 

IIIa and RNase IIIb) and a dsRNA-binding domain at the C-terminus (Zhang et 

al., 2004) (Figure I-1). Some organisms, like flies and plants, possess multiple 

Dicer orthologs, while C. elegans only has one Dicer, DCR-1 (Liu et al., 2009). In 

C.elegans, the product of Dicer cleavage is a ~21 nt small RNA duplex with 3′ 

dinucleotide overhangs (which are characteristic of RNAse III enzymes) and 

each strand bearing 5′ monophosphates and 3′ hydroxyls (Elbashir et al., 2001b) 
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Figure I-1 
 
 
 

Figure I-1. Domains present in Dicing and Slicing RNAi 
Proteins 
 
(A) Protein domains of Dicer and (B) Argonautes in C. elegans 
(C) Schematic representation of of Argonaute association with small 
RNA during mRNA cleavage (adapted from (Liu and Paroo, 2010)) 
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Dicer products can vary in length. For example, in A. thaliana the activity of the 

Dicer-like proteins DCL2, DCL3 and DCL4 generate 22-, 24-, and 21- nt long 

siRNA species, respectively (Xie et al., 2004). Structural studies of Dicer suggest 

that this difference is a result of the distance between the PAZ and the catalytic 

centers of the RNase III domains, which thus acts as a molecular ruler (Gan et 

al., 2006; Ji, 2008; MacRae and Doudna, 2007).  

 

Argonautes 

The catalytic heart of the RISC effector complex is a protein of the 

Argonaute family. Argonaute proteins are an evolutionarily conserved family of 

proteins that are essential for small RNA-mediated silencing pathways. Because 

of their role as effectors in RNAi, Argonautes have been studied in many different 

organisms, including worms (C. elegans), fruit flies (D. melanogaster), yeast (S. 

pombe), plants (A. thaliana) and mammals, among others (Boisvert and Simard, 

2008; Ghildiyal and Zamore, 2009). Argonaute proteins can be further divided 

phylogenetically into the Argonaute subfamily, the Piwi subfamily, and the C. 

elegans worm-specific Argonautes (WAGO) subfamily (Boisvert and Simard, 

2008; Hock and Meister, 2008; Yigit et al., 2006). The number of Argonaute 

genes varies widely among species. The Drosophila genome encodes at least 

five distinct proteins, humans possess eight, and C. elegans encode the largest 

number, at 23, including 12 WAGOs (Hutvagner and Simard, 2008). Although 

multiple Argonaute proteins are often expressed in a single organism, many 
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proteins are functionally distinct or expressed in specific tissues, allowing them to 

interact with different classes of small RNAs, and rendering them necessary at 

different steps of small RNA silencing mechanisms (Okamura et al., 2004; Yigit 

et al., 2006).  

Argonaute proteins consist of four distinct structural domains: the N-

terminal domain, a central PAZ domain (which is also found in Dicer proteins), a 

Mid domain, and C-terminal PIWI domain (Collins and Cheng, 2006) (Figure I-

1B). Argonaute proteins interact with small RNAs in a sequence-independent 

manner via the PAZ domain, Mid domain, and PIWI domains (Collins and Cheng, 

2006) (Figure I-1C). The PIWI domain faces the PAZ domain and is structurally 

similar to RNase H enzymes; two conserved aspartates and a conserved 

histidine define the DDH motif and are essential for cleavage of mRNAs, referred 

to as “Slicer” activity. Argonautes that possess these catalytic residues cleave 

the complementary mRNA between nucleotide positions +10 and +11 of the 

respective siRNA (with the 5′-end of the guide siRNA labeled the +1 position and 

acting as the ruler to determine the position of the target mRNA cleavage) 

(Elbashir et al., 2001b; Elbashir et al., 2001c; Schwarz et al., 2004). The human 

Argonaute hAGO2, the D. Melanogaster AGO2, and the C. elegans CSR-1 have 

all been shown to possess siRNA-directed Slicer activity in vitro (Aoki et al., 

2007; Rivas et al., 2005). 
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Features of RNAi  

In C. elegans, several experimental methods can be used to trigger RNAi.  

Worms can be soaked in dsRNA solution or fed with bacteria that express 

dsRNA (Tabara et al., 1998; Timmons et al., 2001; Timmons and Fire, 1998). 

Additionally, dsRNA can be expressed in vivo via hairpin or sense and antisense 

transgenes (Timmons et al., 2003). Lastly, dsRNA can be administered by 

microinjection into the body cavity of C. elegans (Fire et al., 1998).  

The initial studies of RNAi in worms and plants described several 

noteworthy observations that are important to understanding the molecular 

mechanism of gene silencing. First, the silencing effect is systemic. In C elegans, 

injection of dsRNA into the intestine of a worm, or feeding on bacteria that 

express dsRNA, elicits an RNAi response throughout the body of the worm (Fire 

et al., 1998; Timmons et al., 2001). The ability of dsRNA to trigger a silencing 

response and spread to other cells is not unique to C. elegans (Newmark et al., 

2003; Roignant et al., 2003; Tabara et al., 1998; Voinnet, 2005; Voinnet et al., 

1998). For example, in tobacco plants, systemic silencing can spread from 

silenced stocks (root systems) to non-silenced scions (vegetative tissues) 

(Palauqui et al., 1997). These observations implicate active RNA uptake or 

transport systems in C. elegans and plants. The second key observation is that 

injection of dsRNA at a concentration of only a few molecules per cell was 

sufficient to trigger a potent RNAi response in C. elegans (Fire et al., 1998), 

indicating that RNAi is a catalytic process or that silencing signals are amplified. 
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Third, although RNAi appeared to be relatively transient, it could be transmitted 

into subsequent generations. That is, the progeny of an animal or plant exposed 

to dsRNA were also affected (Chuang and Meyerowitz, 2000; Fire et al., 1998). 

Studies aimed at investigating the systemic nature of RNAi in C. elegans 

indentified several mutants that were defective in systemic RNAi (Hunter et al., 

2006; Tijsterman et al., 2004). Two of these genes, sid-1 and sid-2, encode 

transmembrane proteins required for uptake of dsRNA (Hunter et al., 2006; 

Winston et al., 2007). A homolog of SID-1 has been identified in the human 

genome, raising the possibility of a conserved mechanism of dsRNA transport 

(Duxbury et al., 2005).  

 

Steps of RNAi in C. elegans 

In C. elegans, exogenous RNAi (exo-RNAi) requires two distinct phases, 

referred to as the initiation (or primary) phase and the maintenance (or 

secondary) phase (Grishok et al., 2000) (Figure I-2). In the primary phase, Dicer-

dependent siRNAs are loaded onto an Argonaute complex resulting in gene 

silencing that is similar to the canonical RNAi pathway, described above, which 

occurs in D. melanogaster and mammals (Ghildiyal and Zamore, 2009). 

However, in C. elegans the primary step in the pathway is not sufficient for gene 

silencing, and amplification of silencing signals is necessary to achieve gene 

silencing. Although the mechanistic details of the secondary step are  
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unknown, it is now understood that RNA-dependent RNA Polymerases (RdRP) 

amplify the silencing process by generating secondary siRNAs. These secondary 

siRNAs interact with the WAGO subfamily of Argonautes and are thought to 

promote silencing of the targeted mRNA. In addition, genes of the mutator class 

are also involved in the secondary phase of RNAi. In the sections below, I will 

discuss the known roles of these proteins in small RNA biogenesis in C. elegans, 

as well as provide links to conserved RNAi-related silencing pathways in other 

organisms.  

Genetic screens to isolate RNAi-deficient (rde) mutants were pioneered in 

C. elegans and yielded several complementation groups, including rde-1, rde-2, 

rde-3, and rde-4 (Tabara et al., 1999). Some of the mutants that were found to be 

defective for RNAi were also indentified to be part of the mutator (mut) class of 

genes, as they are defective in silencing transposons in the germline (Ketting et 

al., 1999; Tabara et al., 1999). Genes in the mut class include mut-2/rde-3, mut-

7, mut-8/rde-2, mut-9, mut-14, mut-15/rde-5 and mut-16/rde-6. Additional 

phenotypes associated with mut-class Rde mutants include elevated X 

chromosome non-disjunction (leading to a high incidence of males or Him 

phenotype), sterility at 25°C, and de-repression of normally silenced transgene 

arrays in the germline (Ketting et al., 1999; Ketting and Plasterk, 2000; Tabara et 

al., 1999).   

Subsequent analyses, examining the genetic requirements for heritability 

of RNAi, in addition to biochemical studies, elucidated that the RNAi pathway 
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acts in sequential molecular steps. RDE-4, a double-stranded RNA-binding 

protein, is required for binding to the initial trigger dsRNA (Parker et al., 2006) 

and forms a complex with Dicer, and the Argonaute RDE-1 (Grishok et al., 2000; 

Tabara et al., 1999; Tabara et al., 2002). This complex, together with the Dicer-

related helicase proteins, DRH-1 and DRH-2 (DRH-1/2), make up the recognition 

and initiation complex that is required to mount a silencing response using 

exogenous dsRNA in C. elegans (Tabara et al., 2002). 

Dicer-dependent siRNAs, referred to as primary siRNAs in C. elegans, are 

loaded onto RDE-1 (Sijen et al., 2007; Yigit et al., 2006). RDE-1 interacts with the 

targeted mRNA through the homology between the mRNA and the guide siRNA. 

RDE-1 contains the conserved catalytic residues required for RISC slicer activity 

and is thought to cleave the mRNA, although it has not yet been shown to do so 

(Aoki et al., 2007; Yigit et al., 2006). 

In C. elegans, primary siRNAs are not sufficient to elicit a silencing 

response. RdRPs play an essential role in RNAi (Table I-1). Not only are mRNAs 

targets of gene silencing, they are also used by RdRP proteins as templates for  

de novo synthesis of a secondary pool of antisense small RNAs, referred to as 

secondary siRNAs (Aoki et al., 2007; Sijen et al., 2001; Sijen et al., 2007). These 

secondary siRNAs form a distinct class of siRNAs that have a 5´ triphosphate  
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and a bias for guanosine (G) at the 5´-end (Aoki et al., 2007; Pak and Fire, 2007; 

Sijen et al., 2007). The secondary siRNAs are then loaded onto the functionally  

redundant WAGO Argonautes (Yigit et al., 2006).  

Other proteins required for RNAi, such as RDE-2 (Tops et al., 2005) RDE-

3 (a nucleotidyltransferase family member) (Chen et al., 2005), MUT-7 (an 

RNAse D 3′-5′ exonuclease) (Ketting et al., 1999) and MUT-14 (a DEAD-box 

RNA helicase) (Tijsterman et al., 2002) are not required for the initial phase of 

RNAi, but are required for the secondary phase (Grishok et al., 2000; Tops et al., 

2005). The roles of these factors have not been defined at a mechanistic level. 

 

Classes of Small RNAs in C. elegans  

Each class of small RNA can be distinguished by the mechanism of 

biogenesis, length of small RNA, composition of 5′ nucleotide, modifications on 5′ 

or 3′ nucleotides and the Argonaute proteins with which they associate (Bartel, 

2004; Ghildiyal and Zamore, 2009; Golden et al., 2008; Kim et al., 2009) (Table I-

2).  Four main classes of small RNAs have been identified in C. elegans, 

including microRNAs (miRNAs), Piwi-interacting small RNAs (21U/piRNAs) and 

the endogenous 22G- and 26G-RNAs.  

 

miRNAs 
The founding family of endogenous small RNAs, miRNAs were identified 

in C. elegans as temporal regulators of development and have since been found  
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to be a highly conserved class of small RNAs in many organisms, including 

humans (Carthew and Sontheimer, 2009; Frasch, 2008; Lee et al., 1993; Lim et 

al., 2003a; Lim et al., 2003b; Resnick et al., 2010). miRNAs regulate the 

expression of protein coding genes by binding with imperfect complementarity to 

the 3′ untranslated regions of target mRNAs to inhibit translation (Lee et al., 

1993). In some cases, when there is nearly perfect base-pairing between a 

miRNA and a target mRNA, silencing results from mRNA degradation (Bartel, 

2009; Chekulaeva and Filipowicz, 2009; Meister et al., 2004; Olsen and Ambros, 

1999). 

In animals, miRNA biogenesis requires sequential processing steps by the 

RNAse III related proteins Drosha and Dicer. Within the nucleus, primary 

miRNAs (pri-miRNAs) are processed into premature miRNAs (pre-miRNAs) by a 

DROSHA (Denli et al., 2004; Han et al., 2004; Yeom et al., 2006). Pre-miRNAs 

are exported to the cytoplasm (Yi et al., 2003) and processed by Dicer into 

mature miRNAs, which are subsequently loaded onto the miRNA-specific 

Argonautes, ALG-1 and ALG-2 in C. elegans (Grishok et al., 2001; Hutvagner et 

al., 2001; Jannot et al., 2008; Tops et al., 2006). In animals, miRNAs that reside 

within introns, known as mirtrons, are processed in a DROSHA-independent 

manner (Okamura et al., 2007; Ruby et al., 2007). Interestingly, mirtron pre-

miRNAs are generated during intron processing by the splicing machinery. 

 



 

 

19 

piRNAs 
piRNAs are a unique class of animal-specific small RNAs. In C. elegans 

piRNAs are 21nt long and are ~30nt long in other animals (Thomson and Lin, 

2009). They are highly expressed in germline cells where they are required for 

proper germline development and gametogenesis (Hartig et al., 2007; He et al., 

2009b; Klattenhoff and Theurkauf, 2008; Lau et al., 2006; Nishida et al., 2007; 

Updike and Strome, 2009). Generally originating from genomic repeats or 

transposons, piRNAs physically interact with Piwi clade of Argonaute proteins 

(Aravin and Hannon, 2008; Batista et al., 2008; Brennecke et al., 2007; Das et 

al., 2008; Girard et al., 2006; Lau et al., 2001; Vagin et al., 2006). Biogenesis of 

piRNAs is distinct from that of miRNAs, in that the accumulation of piRNAs is 

independent of Dicer activity. In Drosophila, retrotransposon-derived piRNA 

biogenesis occurs via reciprocal Slicer cleavage by two distinct PIWI Argonautes, 

Argonaute-3 (AGO3) and Aubergine (AUB). The AGO-3 sense-piRNA cleavage 

event specifies the 5′-end of the AUB associated antisense piRNAs, and the AUB 

antisense piRNA cleavage event defines the 5′-end of AGO-3 associated 

piRNAs, resulting in a so-called “ping-pong” feedback loop (Brennecke et al., 

2007; Gunawardane et al., 2007).  It is unclear how the 3′-ends of these piRNAs 

are defined, although it is known that 3′ nt is modified, possessing 2′-O-methyl 

group (Horwich et al., 2007; Saito et al., 2007). 

The C. elegans piRNAs have a bias for a 5′ monophosphorylated uracil 

(U) and are also methylated at the 3′ end (Ruby et al., 2006; Saito et al., 2007). 
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Individual piRNAs share a common upstream motif and primarily map to two 

large genomic clusters on chromosome IV (Batista et al., 2008; Ruby et al., 

2006). In C. elegans, the biogenesis of piRNAs is currently unclear, but there is 

no evidence for a “ping-pong” amplification cycle in 21U-RNA biogenesis (Batista 

et al., 2008; Das et al., 2008). 

Among the 23 Argonaute proteins encoded in C.elegans, only PRG-1 is 

essential for the biogenesis of piRNAs (Batista et al., 2008; Das et al., 2008; 

Wang and Reinke, 2008). PRG-1 is expressed in the germline throughout 

development, where it localizes to nuage-like structures called P-granules 

(Batista et al., 2008). P-granules are germ cell-specific cytoplasmic bodies that 

associated with nuclear pores and are linked to the nuclear export of nascent 

mRNA (Sheth et al., 2010).  

 

Endo-siRNAs 
Over the last several years a large number of endo-siRNAs that are 

distinct from miRNAs and piRNAs have been identified in C. elegans (Ambros et 

al., 2003; Ruby et al., 2006). These endo-siRNAs fall into two broad classes, 

based on their average size and the requirements for their biogenesis: the 22nt 

long 22G-RNAs and the 26nt long 26G-RNAs (Table I-2). Directly produced by 

the RdRPs EGO-1 and RRF-1, the 22G-RNAs possess a strong bias for a 5’ 

guanosine (G) that is triphosphorylated, and target protein coding genes, 

pseudogenes, transposable elements and noncoding regions of the genome 
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(Ambros et al., 2003; Ruby et al., 2006). The 26G-RNAs target protein coding 

genes, pseudogenes and noncoding genomic elements. Although 26G-RNAs 

possess a 5′ G that is a characteristic of RdRP products, they are 5’-

monophosphorylated, require Dicer for their production, and rely on the activity of 

a different RdRP, known as RRF-3. The data presented in this thesis serve to 

clarify the role of distinct RdRPs in these different small RNA pathways.  

 

The RNA-dependent RNA polymerases of C. elegans  

There are four RdRPs encoded in the C. elegans genome:  ego-1, rrf-1, 

rrf-2, and rrf-3 (Sijen et al., 2001) (Table I-1). Thus far, EGO-1, RRF-1, and RRF-

3 have been shown to play roles in both exogenous RNAi and endogenous small 

RNA pathways in C. elegans. A role for RRF-2 in gene silencing, if any, remains 

a mystery. 

 

EGO-1 and RRF-1 in RNAi and C. elegans development 
EGO-1 (enhancer of glp-1) was the first RdRP shown to be required for 

RNAi in C. elegans. It was identified in a screen designed to isolate genes 

required for germline proliferation (Qiao et al., 1995). EGO-1 is required for 

proper development of sperm and oocytes, and ego-1 mutants display defects in 

mitotic and meiotic germline chromosome organization and segregation (Qiao et 

al., 1995; She et al., 2009; Smardon et al., 2000). Subsequent RNAi assays in 

ego-1 mutants showed sensitivity to RNAi targeting the somatically-expressed 
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gene unc-22. In contrast, ego-1 mutants displayed varying degrees of resistance 

to dsRNA targeting germline-specific genes (Smardon et al., 2000). These 

observations suggested that EGO-1 functions specifically in germline RNAi and 

in endogenous silencing pathways in the germline that are essential for viability.  

Interestingly, the rrf-1 and ego-1 genes are tightly linked, as they are 

positioned in tandem on chromosome I with less than 1000 nt between them. 

While EGO-1 is essential for germline RNAi, studies of RRF-1 revealed that it is 

required for RNAi in the soma.  Remarkably, RRF-1 was also required for 

transitive RNAi, or the spreading of secondary siRNAs upstream of the sequence 

targeted by the dsRNA trigger (Sijen et al., 2001).  RRF-1 RdRP activity is 

dependent on its interaction with the Dicer-related helicase, DRH-3 (Aoki et al., 

2007), a paralog of the DRH-1/-2 proteins that interact with DCR-1 (Tabara et al., 

2002). Loss-of-function mutations in rrf-1, however, display no defects in fertility 

or viability (Sijen et al., 2001). 

 

RRF-3 and the ERI Pathway 

 In contrast to the Rde phenotypes exhibited in the absence of EGO-1 or 

RRF-1, loss-of-function mutations in the RdRP rrf-3 display an enhanced RNAi 

phenotype (Eri) (Simmer et al., 2002). Mutations in rrf-3 also display enhanced 

silencing of transgenes in the soma suggesting that RRF-3 functions in a 

pathway that antagonizes both the exogenous RNAi pathway and the transgene 

silencing pathway (Simmer et al., 2002). One model for the enhanced RNAi 
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phenotype is that an endogenous small RNA pathway involving RRF-3 competes 

for factors that also function in the exogenous RNAi pathway. When RRF-3 

activity is lost, the endogenous small RNA pathway is disabled, and the shared 

factors are liberated leading to increased activity in the exogenous RNAi 

pathway, i.e. enhanced RNAi. In support of this model, a sextuple wago mutant is 

defective for RNAi and fails to accumulate ERI-dependent small RNAs. In 

contrast, over-expression of two WAGOs, SAGO-1/WAGO-8 and SAGO-

2/WAGO-6, results in an enhanced RNAi phenotype (Yigit et al., 2006). These 

results suggested that the exogenous RNAi and ERI pathways converge at the 

point of WAGO activity (the effector step of both pathways) and that at the 

WAGOs are present at limiting levels. 

Proteomic studies have shown that RRF-3 interacts with Dicer in a 

putative “ERI complex.” This ERI complex possesses additional proteins, some 

of which are involved in RNAi (DRH-3 and RDE-4), as well as other factors that 

are involved specifically in the ERI pathway (ERI-1, ERI-3 and ERI-5) (Duchaine 

et al., 2006) (Figure I-3). Because of its composition, this complex is likely to be 

the ERI pathway initiation complex, akin to the RDE-1::RDE-4::DRH-1/2::DICER 

complex required for the initial steps of RNAi. Although the WAGO Argonautes 

appear to function in the downstream effector steps of both the RNAi and ERI 

pathways, two questions persisted: Which small RNAs do RRF-3 and the ERI 

complex generate? And, what is the functional equivalent of the Argonaute RDE-

1 in the ERI pathway? Both questions are discussed in detail in Chapter IV. 
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Figure I-3  
 
 

Figure I-3. ERi Pathway in C. elegans 
 
Similarly to the exo-RNAi pathway, the endogenous ERI pathway 
involves two steps of small RNA biogenesis. At the first step, 
26G-RNAs are generated through the activity of the ERI 
complex. At the second step, RNA transcripts targeted by 26G-
RNAs are used as templates by RRF-1 and/or EGO-1. 
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Briefly, clues about the function of RRF-3 and the ERI pathway came from 

the observation that rrf-3 mutants are deficient in the accumulation of several 

species of endogenous siRNAs (Duchaine et al., 2006; Lee et al., 2006). These 

particular endo-siRNAs were then used to define “ERI” class small RNAs to 

probe Argonaute mutants, including the ERI Argonaute ERGO-1, for loss of 

these same small RNAs. Like rrf-3, loss of ergo-1 leads to a depletion of the ERI 

class of 22G- and 26G-RNAs. In contrast, rde-1 mutants displayed normal levels 

of ERI class 22G- and 26G-RNAs, while multiple-fold wago mutants showed a 

loss of the ERI class 22G-RNAs, but not the ERI class 26G-RNAs. Finally, I 

demonstrated that ERGO-1 directly interacts with a set of ERI class 26G-RNAs, 

but not 22G-RNAs (see Chapter IV). Collectively, these results indicate that 

ERGO-1 serves as the primary Argonaute, interacting with 26G-RNAs in the two-

step ERI pathway, while WAGOs function with the secondary 22G-RNAs in the 

downstream steps of this pathway.   

 

RdRPs in other gene silencing pathways 

RdRPs were originally discovered as components of RNA viruses where 

they function to transcribe and replicate the viral genome in host cells. 

Subsequently, non-viral, or “cellular”, RdRPs have been found to act in gene 

silencing pathways in a wide range of eukaryotic organisms. 

The first cellular RdRP biochemically isolated and subsequently cloned 

was from tomato plants (T-RdRP) (Schiebel et al., 1993a, b). QDE-1 was the first 
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RdRP family member to be isolated in a screen for genes required for quelling, a 

form of co-suppression, in the fungus N. crassa. Shortly thereafter, RdRP 

proteins were isolated in other organisms, including A. thaliana (Dalmay et al., 

2000), D. discoideum (Martens et al., 2002), S. pombe (Volpe et al., 2002) and 

C. elegans (Sijen et al., 2001; Simmer et al., 2002; Smardon et al., 2000), and 

found to be essential in various gene silencing pathways. There are no obvious 

cellular RdRP homologues in Drosophila or mammalian genomes. However, 

Drosophila ELP-1, the largest subunit of the RNA polymerase II elongator 

complex, was recently shown to possess RdRP activity and to be required for 

RNAi and transposon silencing (Lipardi and Paterson, 2009). In addition, the 

human telomerase TERT was recently shown to interact with the mitochondrial 

RNA processing endoribonuclease RMRP, resulting in a complex with RdRP 

activity (Maida et al., 2009). The TERT-RMRP RdRP complex appears to 

negatively regulate RMRP expression by producing RMRP dsRNA that is 

processed by Dicer into AGO2-asociated siRNAs. 

In plants, the RdRP RDR6 (also known as SDE1/SGS2) functions in the 

trans-acting (TAS) pathway, which is initiated by miRNAs (Vazquez et al., 2004) 

In this pathway, RDR6 converts single-stranded TAS cleavage products into 

dsRNA that is processed by Dicer into siRNAs called trans-acting siRNAs (ta-

siRNAs). A separate RdRP complex containing RDR2 is involved in RNA-

dependent DNA methylation (RdDM) in plants (Herr et al., 2005). In the ciliated 

protozoan, T. thermophila, the RdRP, Rdr1, and Dicer, Dcr2, form a complex that 
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generates 23-24 nt small RNAs, which function in genome rearrangement and 

elimination during development (Lee and Collins, 2007),   

Extensive studies in S. pombe have shown that a sole RdRP, Rdp1, acts 

with Dicer and an Argonaute in a pathway that is required for centromeric 

heterochromatin assembly and is essential for centromere function (Buhler and 

Moazed, 2007; Verdel et al., 2004; Volpe et al., 2003). Transcripts derived from 

pericentromeric repeats are substrates for Rdp1-dependent synthesis of dsRNA 

that is processed in a concerted manner by Dcr1 to form siRNAs (Colmenares et 

al., 2007; Motamedi et al., 2004). The targeting of pericentromeric transcripts by 

Argonaute-associated siRNAs results in recruitment of heterochromatin 

modifying and binding proteins and heterochromatin formation. The work 

described in Chapter II, suggests that the RdRP EGO-1 may play a similar role in 

regulating C. elegans centromeres, albeit through a different mechanism and 

different type of endo-siRNA. 

Scope of Thesis 

 The overall goal of my thesis work was to understand the distinct and 

overlapping roles of the different cellular RdRPs (EGO-1, RRF-1 and RRF-3) in 

RNAi-related silencing pathways in C. elegans. One major objective of my project 

was to uncover endogenous small RNAs that are dependent on the activities of 

the RdRPs for their biogenesis. Along with others in the lab, I also endeavored to 

determine which Argonaute effector complexes function together with these 

distinct classes of small RNAs generated by the different RdRPs. Together, 
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these studies have led us to understand which RNA transcripts are targeted in 

different tissues in C. elegans, and have provided insights into the functional and 

biological consequences of silencing particular transcripts throughout 

development.  

 In these studies, I used a combination of biochemical, genetic, and cell 

biological approaches. In addition, the development of cutting edge molecular 

cloning strategies and techniques aimed at comprehensive analysis of nucleic 

acids on a genome-wide scale, referred to here as deep sequencing (Fox et al., 

2009; Morozova et al., 2009), have been an essential component of the studies 

detailed in this dissertation. Deep sequencing approaches have allowed us to 

analyze noncoding small RNAs to an extent that would have otherwise been 

impossible through traditional genetics and phenotypic analysis alone. By 

analyzing small RNA populations and mapping the small RNA sequences to 

specific loci within the genome, we and other researchers have identified novel 

types of small RNAs and have predicted previously unknown gene targets, thus 

elucidating the genome landscape of gene regulation by small RNAs. Through 

comparative small RNA profiling of gene silencing mutants and Argonaute 

protein-small RNA complexes, deep sequencing has become an invaluable tool 

in examining the genetic requirements for small RNA biogenesis and elucidating 

small RNA functions. 

By deep sequencing the small RNA complement from wild-type and RdRP 

mutants, I determined that the RdRPs, EGO-1 and RRF-1 are required for the 
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biogenesis of an abundant class of antisense endo-siRNAs, called 22G-RNAs.  

Through detailed molecular, genetic, and cell biology studies, we elucidated that 

EGO-1 functions in a pathway with the Argonaute CSR-1 to regulate 

chromosome segregation (Chapter II), while EGO-1 and RRF-1 function 

redundantly with the WAGOs to modulate gene expression and regulate the 

transcriptome in the germline (Chapter III).  

Through additional deep sequencing and genetic studies, I, and others, 

have determined that RRF-3 is the sole RdRP required for the production of the 

26G-RNAs. We also elucidated that 26G-RNA pathways involve a “two-step” 

mechanism, where the 26G-RNAs produced by RRF-3 lead to the production of 

22G-RNAs by EGO-1 and RRF-1 (Chapter IV). I determined that one of the 26G-

RNA pathways regulates the levels of repetitive and cryptic transcripts during 

embryogenesis. I found that the Argonaute ERGO-1 functions specifically with 

the 26G-RNAs in this pathway, while other studies have shown that the WAGOs 

interact with the 22G-RNAs.  

To conclude this thesis (Chapter V), I discuss the potential role(s) of the 

RRF-3-dependent 26G-RNAs that associate with ERGO-1 during 

embryogenesis. For instance, although I have shown that this embryonic 26G-

RNA pathway regulates the levels of repetitive and cryptic transcripts, the 

functional consequences of regulating such transcripts in the embryo are not 

understood. My published work, along with recent observations that have arisen 
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from further analysis of my data, suggest exciting roles for this pathway in 

chromosome organization, and provide testable models for future studies.  

In summary, my work has greatly advanced our understanding of how 

distinct cellular RdRPs use expressed RNA transcripts as templates to generate 

a plethora of small RNAs.  In turn, these diverse small RNAs play essential roles 

in the regulation of the transcriptome and chromosome structure throughout 

development in C. elegans.   
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CHAPTER II 

 
The Argonaute CSR-1 and Its 22G-RNA  
Cofactors Are Required for Holocentric 

Chromosome Segregation 
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balanced a ego-1 mutant strain with appropriate genetic markers to allow large-

scale selection of ego-1 homozygous mutants. She prepared large scale 
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performed small RNA extraction, purification, and preparation of cDNA libraries in 

parallel with the congenic wild-type control strain (DA1316). She also contributed 

to analyses and interpretation of deep-sequencing results. These data are 

presented in Figure II-5, Figure II-S7, and Table II-S-5. This chapter II has been 

published as "The Argonaute CSR-1 and its 22G-RNA Cofactors are Required 

for Holocentric Chromosome Segregation." *Claycomb JM, *Batista PJ, Pang 

KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, 

Ketting RF, Conte D, Jr., Mello CC. (2009); Cell Oct 2;139(1):123-34; License 

number 2374831415649. * These authors contributed equally. 
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SUMMARY 

RNAi-related pathways regulate diverse processes, from developmental timing to 

transposon silencing. Here we analyze several C. elegans factors required for 

RNAi and chromosome segregation. We show that the Argonaute CSR-1, the 

RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and 

the Tudor-domain protein EKL-1 localize to chromosomes, and are required for 

the proper alignment of the holocentric kinetochores. In the absence of these 

factors, the kinetochores appear twisted and fail to orient to opposing spindle 

poles. Deep-sequence analysis reveals that small RNAs depleted in the mutants 

and enriched in the CSR-1 immunoprecipitation (IP) complex are antisense to 

thousands of germline-expressed protein-coding genes that are distributed along 

the length of each chromosome. Interestingly, in spite of its role in 

experimentally-induced RNAi, CSR-1 does not appear to down-regulate the 

mRNA or protein levels of its endogenous targets. Instead, CSR-1 is enriched at 

target genomic loci in a small RNA-dependent manner by Chromatin IP (ChIP) 

experiments, supporting a model in which CSR-1 and its interacting small RNAs 

target protein-coding regions distributed along the length of each chromosome to 

promote the proper organization of chromatin and alignment of the holocentric 

kinetochores at metaphase. 
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INTRODUCTION 

In many organisms, centromeric regions are flanked by repetitive sequences that 

assemble into densely packed heterochromatin (Carroll and Straight, 2006; Vos 

et al., 2006). These pericentromeric heterochromatin domains are thought to play 

a role in stabilizing kinetochores, the proteinaceous structures to which spindle 

attachments are made (Cheeseman and Desai, 2008; Welburn and Cheeseman, 

2008). In plants (A. thaliana) (Kasschau et al., 2007), fission yeast (S. pombe) 

(Buhler et al., 2008; Reinhart and Bartel, 2002), and fruit flies (D. melanogaster) 

(Brennecke et al., 2007), deep-sequencing studies have identified abundant 

endogenous small RNAs derived from repetitive regions, including the 

pericentromeric heterochromatin. 

In S. pombe, transcripts generated from the repetitive pericentromeric 

regions become substrates for an RNA-dependent RNA polymerase (RdRP). 

After processing by the ribonuclease Dicer, small RNAs derived from these 

transcripts are loaded into an Argonaute complex (the RNA-induced 

transcriptional silencing complex; RITS). The RITS complex targets 

pericentromeric heterochromatin and is thought to function in a feedback loop to 

reinforce chromatin marks that stabilize centromeres during mitosis (Buhler et al., 

2007). 

Not all organisms exhibit repetitive heterochromatin domains associated 

with centromeric regions. A striking example of this is the organization of the 

holocentric chromosomes of nematodes (Dernburg, 2001). Holocentric, or 
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holokinetic, chromosomes were first described over 100 years ago, in a series of 

elegant cytological studies by Theodor and Marcella Boveri. In these classic 

studies, the large presomatic germline chromosomes of the parasitic nematode, 

Parascaris, were shown to make multiple spindle attachments along their length 

(Pimpinelli and Goday, 1989; Satzinger, 2008). Remarkably, in the somatic cells 

of the early embryo, the large germline chromosomes were observed to undergo 

fragmentation resulting in the elimination of heterochromatin and the production 

of over 40 small, euchromatic chromosomes that comprise the somatic genome. 

Despite the elimination of heterochromatin, these newly formed chromosomes 

continued to exhibit holocentric features including continuous kinetochores and 

multiple spindle attachments along their lengths (Goday et al., 1992). 

Although C. elegans chromosomes do not exhibit chromosomal 

fragmentation, they are similar to the somatic chromosomes of Parascaris in that 

they are largely euchromatic and exhibit a well-defined holokinetic structure 

(Albertson and Thomson, 1982). Despite superficial differences, the kinetochores 

of holocentric and monocentric chromosomes are assembled from a set of highly 

conserved proteins (Maddox et al., 2004), including the histone variant HCP-3/ 

CENP-A. However, unlike monocentric chromosomes, HCP-3/CENP-A is 

incorporated into nucleosomes along the entire poleward face of condensed 

holocentric chromosomes (Buchwitz et al., 1999; Nagaki et al., 2005). The 

underlying sequences required for the assembly of holokinetic centromeres, and 

the potential involvement of Argonaute/small-RNA pathways in their assembly 
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and function, have not yet been explored. 

In C. elegans, previous studies have shown that depletion of drh-3, a 

Dicer-related helicase, or csr-1, an Argonaute, result in similar anaphase bridging 

and chromosome segregation defects (Duchaine et al., 2006; Nakamura et al., 

2007; Yigit et al., 2006). Both factors are also required for RNAi (Duchaine et al., 

2006; Yigit et al., 2006), and in vitro studies suggest that DRH-3 is required for 

the synthesis of small RNAs by RdRPs, whereas CSR-1 has been shown to 

cleave complementary RNA targets when loaded with triphosphorylated small 

RNAs (Aoki et al., 2007). 

Here we have analyzed the role of DRH-3 and CSR-1 in chromosome 

segregation and have identified endogenous small RNAs that interact with CSR-

1. The CSR-1-interacting small RNAs are members of a class of endogenous 

small RNAs that are neither microRNAs nor piRNAs (Ambros and Lee, 2004; 

Ambros et al., 2003; Gu et al., 2009; Guang et al., 2008; Pak and Fire, 2007; 

Ruby et al., 2006). These abundant small RNAs (termed 22G-RNAs) are 

primarily 22 nucleotides in length, with a 5´ triphosphate and a strong bias for a 

5´ guanosine (Ambros et al., 2003; Gu et al., 2009; Ruby et al., 2006). Together 

with Gu et al. (Gu et al., 2009), we demonstrate that the CSR-1-interacting small 

RNAs comprise one of two major 22G-RNA pathways. The second 22G-RNA 

system is dependent on the worm-specific Argonautes (WAGOs) and functions to 

silence transposons, pseudogenes, and cryptic loci, as well as certain protein-

coding genes. 
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We provide evidence that EGO-1, an RdRP (Smardon et al., 2000), and 

EKL-1, a tudor-domain protein (Rocheleau et al., 2008), function along with DRH-

3 and CSR-1 to promote chromosome segregation. Together, these factors are 

required for the biogenesis of CSR-1-interacting 22G-RNAs, which, surprisingly, 

are antisense to thousands of germline-expressed genes. CSR-1 interacts with 

chromatin at its target loci but does not appear to silence mRNA or protein 

expression. We hypothesize that the role of CSR-1 in chromosome segregation 

in C. elegans is analogous to that of Ago1 in the S. pombe chromosome 

segregation pathway. However, instead of targeting repetitive pericentromeric 

heterochromatin, CSR-1 targets protein-coding euchromatic domains to promote 

their proper organization within the holocentric chromosomes of C. elegans. 
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RESULTS 

A Set of RNAi-Related Factors Required for Chromosome Segregation 
To identify additional genes that function with drh-3 and csr-1 to promote 

chromosome segregation, we examined the mutant phenotypes of genes 

previously implicated in RNAi-related pathways for evidence of chromosome 

segregation defects. We found that one of four RdRP genes, ego-1 (Smardon et 

al., 2000), and the tudor-domain-containing gene, ekl-1 (Rocheleau et al., 2008), 

exhibited defects in fertility and chromosome segregation, similar to those 

described previously for drh-3 and csr-1 (Duchaine et al., 2006; Nakamura et al., 

2007; Yigit et al., 2006). EKL-1 had been implicated in several silencing 

pathways by RNAi-based screens (Kim et al., 2005; Robert et al., 2005; 

Rocheleau et al., 2008). We found that a null allele of ekl-1(tm1599) was 

deficient for both germline and somatic RNAi and in addition caused a fully 

penetrant sterile phenotype (Figure II-S1). 

Mutation or RNAi depletion of drh-3, csr-1, ego-1, and ekl-1 resulted in a 

similar spectrum of meiotic and mitotic defects. The germlines of each mutant are 

underproliferated, with nuclei of abnormal shape and size (Duchaine et al., 2006; 

Maine et al., 2005; She et al., 2009; Vought et al., 2005) (data not shown and 

see Figure II-3E). Chromosomal abnormalities were evident in DAPI-stained 

oocytes, which occasionally possessed more than six DAPI-staining bodies 

(Figure II-1A) (Nakamura et al., 2007; She et al., 2009). One measure of  
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Figure II-1 
csr-1, ego-1, ekl-1, and drh-3 Mutants Display Chromosome 
Segregation Defects in Mitosis and Meiosis 
 
(A) Diakinetic oocyte chromosomes in wild-type and drh-3 or ego-1 

RNAi-depleted animals. Six discrete DAPI figures are observed in wild-

type, whereas greater than six figures are present in mutant oocytes.( 

 

(B) Incidence of males in wild-type (N2) and 3× Flag csr-1 rescue. 

 

(C) Viable progeny per brood in wild-type (N2), 3× Flag csr-1 rescue, 

and csr-1(tm892). 

 

(D) DAPI-stained wild-type (N2) and RNAi-depleted embryos 

undergoing the first mitotic division. Anaphase bridging is evident (white 

arrowhead). An aberrant piece of DNA is visible in ego-1 (yellow 

arrowhead). 

 

(E) Fluorescence in situ hybridization with probes for chromosome V 5S 

rDNA in wild-type and csr-1 RNAi-depleted embryos (DNA, blue; FISH 

signal, green). Left panels in each set show FISH signal alone. White 

dotted lines indicate embryo (large oval) and nuclei (circles). Yellow 

dotted lines indicate polar bodies. Images are projections of Z stacks 

through the entire embryo after deconvolution 



 

 

41 

chromosome segregation defects in the hermaphrodite germline is the proportion 

of XO male progeny, which arise via spontaneous loss of the X chromosome at a 

frequency of 0.1%–0.2% in wild-type populations (Meneely et al., 2002). We 

found that a partially rescued transgenic csr-1(tm892) strain (Figure II-S1) 

generated approximately 6% male progeny (a high incidence of males, or him, 

phenotype) (Figure II-1B). A similar him phenotype was also observed in strains 

homozygous for hypomorphic alleles of drh-3 (Gu et al., 2009). These 

observations suggest that the loss of csr-1 or drh-3 can lead to defects in 

chromosome segregation during either mitotic or meiotic divisions in the 

germline. Despite the evidence described above for chromosomal abnormalities 

in the germline, we failed to directly observe mitotic or meiotic chromosome mis-

segregation (n = greater than 100 germlines examined, data not shown). In most 

cases, the dividing nuclei exhibited either wild-type segregation or already 

contained an abnormal DNA complement. The relative paucity of abnormalities 

observed in csr-1(tm892) germlines could reflect a perdurance of maternally 

loaded CSR-1. 

In addition to the him phenotype, dead embryos were also prevalent in 

both the csr-1(tm892) rescued strain and the hypomorphic drh-3 strains (Gu et 

al., 2009). For instance, the csr-1 (tm892) rescued strain only generated 

approximately 38% viable progeny (Figure II-1C). The dead embryos produced 

by this strain arrested at various points in embryogenesis, up to approximately 
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the 100-cell stage, and accumulated nuclei with abnormal DNA content. To better 

examine chromosome morphology and segregation defects in the absence of 

csr-1, ekl-1, ego-1, and drh-3, we used DAPI as well as histone-GFP and tubulin-

GFP (Figure II-1D) in RNAi-depleted embryos. Chromosomes appeared to 

condense during prophase with wild-type timing and morphology. However, as 

the cell cycle progressed, the following defects were evident during essentially 

every cell division, beginning with the first cell division of the embryo. At 

metaphase, chromosomes failed to align into well-organized plates perpendicular 

to the long axis of the spindle. At anaphase, chromosomal bridging was evident 

in the spindle midzone (Figure II-1D), and at cytokinesis the lagging 

chromosomes were bisected by the cleavage furrow. As embryogenesis 

progressed, abnormally shaped nuclei, with greater or less than wild-type 

chromosomal complements, accumulated until cell division arrested at about the 

50-cell stage (visible in Figures II-S2, II-S3, and II-S5). 

To examine the chromosome segregation abnormalities resulting from 

loss of these RNAi factors at the molecular level, we utilized fluorescence in situ 

hybridization (FISH) with 5S rDNA probes to chromosome V. Of 32 wild-type 

embryos, only two showed aberrant FISH signals in one or more nuclei (van 

Wolfswinkel et al., 2009). In contrast, more than half (10/19) of the csr-1-depleted 

embryos displayed abnormal numbers of FISH-positive chromosomes along with 

a range of additional abnormalities including aberrantly sized and shaped nuclei 

(Figures II-1E and II-S2). 
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DRH-3, EKL-1, EGO-1, and CSR-1 Promote the Proper Organization and 
Alignment of Metaphase Chromosomes 
We next examined three related aspects of chromosome structure that are 

essential for faithful chromosome segregation: kinetochore formation, condensin 

loading, and cohesin loading. During mitotic divisions in wild-type C. elegans 

embryos, HCP-3 localizes to the poleward faces of metaphase chromosomes 

(Buchwitz et al., 1999; Oegema et al., 2001). In csr-1, drh-3, ekl-1, and ego-1 

RNAi-depleted embryos, HCP-3 was loaded onto chromosomes but was 

dramatically disorganized. Instead of poleward localization on both sides of the 

metaphase plate, HCP-3 was distributed over the metaphase chromosomes in 

an interrupted pattern that extended throughout the spindle midzone (Figures II-

2A and II-2B). This pattern could reflect a defect in chromosome alignment 

and/or compaction or could indicate that, even though HCP-3 is loaded, it is not 

targeted to the appropriate regions of the chromosome. Finally, to assess 

whether the kinetochores were fully assembled in csr-1, drh-3, ekl-1, and ego-1 

RNAi-depleted embryos, we examined the outer kinetochore protein KLP-

7/MCAK (a kinesin) and the conserved spindle checkpoint protein BUB-1 

(Oegema et al., 2001). Both were loaded onto mitotic chromosomes in the RNAi-

depleted embryos but were disrupted in a manner similar to HCP-3 (Figures II-2C 

and II-S3). 

Because the observed chromosome segregation defects could result from  
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Figure II-2.  
csr-1, ego-1, ekl-1, and drh-3 RNAi-Depleted Embryos Display 
Defects in Chromsome Organization 
 
(A) Single confocal sections showing kinetochore organization in the 

first cell division of wild-type (N2) and csr-1 RNAi-depleted embryos 

(HCP-3, red; tubulin, green; DNA, blue). 

 

(B) HCP-3/inner kinetochore disorganization frequency in wild-type 

(N2), versus ego-1 and csr-1 RNAi-depleted embryos (example 

metaphase images: HCP-3, red; DNA, green). 

 

(C) BUB-1/outer kinetochore disorganization frequency in wild-type 

(N2), versus ego-1 and csr-1 RNAi-depleted embryos (example 

metaphase images: BUB-1, red; DNA, green). 

 

(D) KLE-2/condensin disorganization frequency in wild-type (N2), 

versus ego-1 and csr-1 RNAi-depleted embryos (example metaphase 

images: KLE-2, red; DNA, green).  
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problems in chromosome condensation or cohesion, we examined the 

localization of proteins involved in these processes. Both the Condensin 

I/Condensin IDC protein CAPG-1 and the Condensin II protein KLE-2 

(Csankovszki et al., 2009), as well as the cohesins SCC-1 and SCC-3 (Mito et 

al., 2003), were loaded onto mitotic chromosomes in csr-1, drh-3, ekl-1, and ego-

1 RNAi-depleted embryos but displayed highly disorganized localization patterns, 

in a manner similar to HCP-3 (Figures II-2D and II-S3). 

 

Expression Studies Reveal Localization to P Granules and Mitotic 
Chromosomes 
To explore the role of these RNAi components in chromosome segregation, we 

examined the expression and localization patterns of DRH-3, EGO-1, EKL-1, and 

CSR-1. Western blot analyses revealed that DRH-3, EKL-1, and two isoforms of 

CSR-1 are present at all developmental stages, and that EGO-1 and CSR-1 are 

most enriched in young adults, gravid adults, and embryos (Figure II-3A) (Vought 

et al., 2005). DRH-3 and EKL-1 were detected in glp-4(bn2) adults, which fail to 

develop a germline and are thus greatly enriched in post-mitotic cells (Beanan 

and Strome, 1992). This finding is consistent with the role of DRH-3 and EKL-1in 

the biogenesis of a broader set of somatically expressed 22G-RNAs (Gu et al., 

2009). The larger CSR-1 isoform was expressed throughout larval development 

and was also present at low levels in post-mitotic populations lacking a germline. 

Quantitative real-time RT-PCR analysis of both csr-1 colocalize in the germline 
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Figure II-3 
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Figure II-3. CSR-1, DRH-3, EKL-1, and EGO-1 Are Expressed 
in the Germline 
 
(A) Western blots of developmentally staged protein lysates (left) or 

various germline mutant lysates (right) probed for EGO-1, DRH-3, EKL-

1, CSR-1 (multiple isoforms), and tubulin (as a loading control). L1, L2, 

L3, and L4 are larval stages; YA, young adults; GA, gravid adults; 

Embryos, mixed stage embryos. GA 25°C, gravid adults grown at 25°C; 

fem-1(hc17), no sperm at 25°C; fog-2(q71), enriched to 95% males by 

filtration (20°C); and glp-4(bn2), no germline at 25°C. 

 

(B) Wild-type perinuclear germline localization of DRH-3, CSR-1, and 

EGO-1 (left, yellow) (DNA, center, blue). 

 

(C) DRH-3 (left, green) colocalizes with the P granule component, PGL-

1 (center, red; DNA, blue).(D) DRH-3 and CSR-1 (left, yellow) remain 

localized to P granules in the embryonic P cell lineage (dashed circles; 

DNA, center, blue). 

 

(E) Single confocal sections of PGL-1 (red) in wild-type and csr-

1(tm892) mutant germlines through the germline surface and core. P 

granules become detached from the nuclear periphery in csr-1(tm892) 

(DNA, green; distal is to the left). 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Quantitative real-time RT-PCR analysis of both csr-1 transcripts indicated that 

their expression recapitulates the protein expression pattern (Figure S4). DRH-3, 

EGO-1, and CSR-1 colocalize in the germline with PGL-1, a previously 

characterized component of the germline nuage structures called P granules 

(Figures II-3B and II-3C) (Kawasaki et al., 1998). EKL-1 was not detected in P 

granules (data not shown). While many developmentally important factors 

transiently localize to P granules, DRH-3 and CSR-1 maintained their P granule 

localization in germ cells throughout the life cycle (Figure II-3D). As was 

previously shown for ego-1 mutants (Vought et al., 2005), mutations in ekl-1, csr-

1, and drh-3 also caused a striking disruption in the perinuclear localization of P 

granules (Figure II-3E and data not shown), indicating that these factors function 

more intimately in promoting or maintaining P granule structure and association 

with the nuclear periphery. 

As oocytes matured, EGO-1 was lost from the P granules, while DRH-3 

(Figure II-3C) and CSR-1 (Figure II-4A) maintained P granule association. In 

mature oocytes, CSR-1 (Figure II-4A) and EGO-1 both became enriched in 

nuclei, where CSR-1 was enriched on the diakinetic chromosomes. In the mitotic 

cells of embryos, each factor became enriched in prophase nuclei. As 

chromosomes condensed, DRH-3, EGO-1, and EKL-1 became enriched along 

the length of each chromosome, while CSR-1 remained nuclear (Figures II-4B–II-

4E). All four proteins exhibited robust localization around the metaphase plate 

(Figures II4F–II-4I). CSR-1 and DRH-3 displayed a pattern similar to cohesins  
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Figure II-4 
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Figure II-4. CSR-1, DRH-3, EKL-1, and EGO-1 Localize to 
Chromosomes  
 
(A) Single confocal sections of CSR-1 (left, red) in wild-type oocytes. 

CSR-1 is enriched on diakinetic chromosomes as oocytes mature 

(yellow arrowhead) and remains in some P Granules (blue arrow) 

(DNA, center, green; distal is to the left). 

 

(B–E) Single confocal sections of CSR-1  (B), DRH-3  (C), EGO-1 (D), 

and EKL-1  (E) (red) in wild-type embryo prophase/prometaphase 

(tubulin, green; DNA, blue). 

 

(F–I) Single confocal sections of CSR-1 (F), DRH-3 (G), EGO-1 (H), 

and EKL-1 (I) (red) in wild-type embryo metaphase (tubulin, green; 

DNA, blue). 

 

(J and K) Single confocal sections of EKL-1 in wild-type embryo early 

(J) and late (K) anaphase (tubulin, green; DNA, blue). 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(Mito et al., 2003), whereas EKL-1 (and to a lesser degree, EGO-1) appeared to  

be more closely associated with chromosomes in a pattern similar to kinetochore 

proteins. In fact, EKL-1 retained a robust association with chromosomes during 

anaphase, whereas the other RNAi factors became more difficult to detect 

(Figures II-4J and II-4K). Cytoplasmic localization was also detected for each 

protein. Finally, all aspects of the localization patterns were absent in each 

respective mutant background (Figure II-S5).  

We then asked whether DRH-3, EGO-1, CSR-1, and EKL-1 depend on 

each other’s wild-type activities for their expression and localization. Consistent 

with the idea that these factors function together, we found a codependence for 

proper localization both to metaphase chromosomes and to the P granules. 

Whereas western blotting demonstrated that the expression of EGO-1, CSR-1, 

and EKL-1 was undiminished in drh-3 mutants (Figure II-S5) (Gu et al., 2009), 

the localization of each protein to chromosomes at metaphase was nearly 

abolished (Table II-S1), and EGO-1 and CSR-1 lost their association with 

germline P granules. In ekl-1 and ego-1 RNAi-depleted embryos only CSR-1 

exhibited greatly reduced association with the metaphase plate and with P 

granules. Finally, DRH-3, EGO-1, and EKL-1 localized to the disrupted 

metaphase plates in csr-1 RNAi-depleted embryos, and DRH-3 and EGO-1 

associated with mislocalized P granules in csr-1 RNAi-depleted germlines. Taken 

together, these data indicate a hierarchy in the RNAi/chromosome segregation 

pathway, in which the wildtype activity of DRH-3 was necessary for the proper 
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targeting of EKL-1, EGO-1, and CSR-1 to chromosomes.  

 

CSR-1 Associates with Small RNAs that Are Antisense to Germline-
Expressed Genes 
The targets of Argonaute proteins can be deduced by analyzing the sequences 

of the Argonaute-associated small RNAs. Therefore, we recovered CSR-1 

complexes and analyzed the associated small RNAs using a deep-sequencing 

approach. CSR-1 complexes were enriched 2-fold or greater over the input 

control for a class of drh-3-, ego-1-, and ekl-1- dependent 22G-RNAs that are 

antisense to at least 4191 protein-coding genes. These gene-targeted 22G-RNAs 

collectively represented greater than 99% of all 22G-RNA reads matching loci 

with a 2-fold or greater increase in read count in the CSR-1 IP complex (Figures 

II-5A, II-5B, and II-S6 and Table II-S2). MicroRNAs, 21U-RNAs, and nearly all 

other 22G-RNA species, including those targeting transposons and other 

repetitive sequences, pseudogenes, and intergenic or nonannotated regions, 

were depleted in CSR-1 complexes (Figures II-5A and II-5B). The exceptions 

were 22G-RNAs targeting seven families of repetitive elements and 23 loci 

annotated as pseudogenes. Altogether, repeat-targeted 22G-RNAs accounted 

for only 0.25% of the total reads enriched in the CSR-1 IP complex, whereas 

pseudogene-targeted reads represented less than 0.5% (Table II-S3). 22G-RNAs 

corresponding to at least 80% of the CSR-1-  
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Figure II-5 
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Figure II-5 
Analysis of Small RNAs Enriched in CSR-1 IP Complexes 
 
(A) Line plot comparing the relative proportions of small RNA classes 

between wild-type (N2) input (left) and CSR-1 IP (right) samples (AS = 

antisense, S = sense). 

 

(B) Box and whisker plot of the relative proportion of small RNA reads 

for each locus targeted within each small RNA class, in the CSR-1 IP 

relative to input. Loci with values closer to 1 indicate enrichment of 

small RNA reads in the IP, a value of 0.5 indicates equal proportions of 

reads in the IP and input, and values closer to 0 indicate loci depleted 

of small RNA reads in the IP. Boxes contain 50% of siRNA loci 

(between the 25th and 75th percentiles), with the line inside each box 

representing the median value. Lines extending to the right of the box 

represent the most enriched value, and lines extending to the left of the 

box represent the most depleted value in the IP. X axis is relative 

proportion of reads (measured as IP value divided by input plus IP 

values for any given locus). Dotted lines indicate the values 

corresponding to 2-fold enrichment (a value of 0.66) or depletion (a 

value of 0.33). Calculations were made with small RNA cutoffs as 

described in the Supplemental Experimental Procedures. 

 

(C) Venn diagram depicting the proportion of loci that possess a 2-fold 

or greater depletion of 22G-RNAs in the glp-4(bn2) mutant that are also 

enriched 2-fold or more in the CSR-1 IP. Only loci present in both 

datasets with 25 reads per million or more are represented. 

 

(D) Box and whisker plot of the relative proportion of small RNA reads 

for each locus in the csr-1(tm892) and ego-1(om97) relative to a 

congenic wild-type strain (DA1316). Protein-coding genes (red) and 

repeat elements (blue) are represented. drh-3 and ekl-1 small RNA 

analyses are described in Gu et al. (2009). 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targeted mRNAs were strongly depleted in the glp-4(bn2) mutant (Figure II-5C) 

(Gu et al., 2009), which lacks a germline, indicating that the CSR-1 22G-RNAs 

are expressed in the germline. Finally, consistent with the involvement of the ß-

nucleotidyl transferase CDE-1 in the uridylation of CSR-1-associated 22G-RNAs, 

approximately 40% of the 22G-RNA reads enriched in the CSR-1 IP were 

extended at the 3´ end with at least one uridine (II-Figure S6) (van Wolfswinkel et 

al., 2009). 

When factors involved in Argonaute-mediated small RNA biogenesis are 

absent or nonfunctional, the corresponding small RNAs are also depleted 

(Batista et al., 2008; Grishok et al., 2001; Yigit et al., 2006). Thus, we prepared 

small RNA libraries from csr-1(tm892) and ego-1(om97) mutants and compared 

them to libraries from drh-3(ne4253) and ekl-1(tm1599) mutant populations (Gu 

et al., 2009). Consistent with the IP analysis described above, csr-1 and ego-1 

mutants were depleted for a set of 22G-RNAs that are antisense to protein-

coding genes (Figures II-5D and II-S7 and Tables II-S4 and II-S5). To be scored 

as depleted in the mutants, an arbitrary cut off of 25 reads per million in the wild-

type data set was used. As a consequence, many loci for which read counts 

were significantly increased in the IP studies above were excluded from this 

analysis. Nevertheless, approximately 900 loci exhibited 22G-RNAs that were 

dependent on csr-1, as well as on ego-1, drh-3, and ekl-1. Consistent with a 

germline origin for these 22G-RNAs, the majority were depleted in glp-4(bn2) 

animals, which lack a germline.  While the proportion of 21U-RNAs was 
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unaltered in the four mutants, microRNA populations, overall, appeared slightly 

decreased in csr-1 and ego-1, relative to the total read count, possibly due to a 

dearth of embryos in these mutant populations (Figure II-S7) (Gu et al., 2009). 

As expected, based on their broad role in 22G-RNAbiogenesis, all 22G-RNAs, 

including those targeting repetitive elements, were depleted in drh-3 and ekl-1 

samples (Gu et al., 2009). 22G-RNAs targeting repeats (including those targeting 

the seven repeat families that were enriched in CSR-1 complexes) were 

unaltered in small RNA populations from the csr-1 and ego-1 mutants (Figure II-

5D). Furthermore, those 22G-RNAs, which were not associated with, or 

dependent on CSR-1, were instead dependent on the activity of the ego-1 

paralog, rrf-1, or on a combination of ego-1 and rrf-1 activities but exhibited no 

other distinguishing biochemical properties. These remaining CSR-1-

independent 22G-RNAs, including those produced by RRF-1, engage a distinct 

family of Argonautes that mediate transposon silencing and other silencing 

activities unrelated to chromosome segregation (Gu et al., 2009). These data are 

consistent with CSR-1 IP data and suggest that csr-1 and ego-1 are specifically 

involved in the expression of a particular subset of gene-targeted 22G-RNAs. 

 

CSR-1 Targets Are Not Misregulated in csr-1 Mutants 
The genes targeted by CSR-1 22G-RNAs include numerous genes whose 

mRNAs are expressed in the germline, oocytes, and embryos. To determine if 

CSR-1 regulates its targets at the mRNA level, we performed transcriptional 
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profiling on csr-1 (tm892) mutant versus wild-type (N2) adult worms. Previous 

work demonstrated that CSR-1 is capable of degrading target mRNAs in vitro 

(Aoki et al., 2007). However, strikingly, the global profile of gene expression for 

csr-1, including the profile of CSR-1 22G-RNA targets, was very similar to that for 

wild-type (Figure II-6A and Table II-S6). Thus, CSR-1 does not downregulate its 

target mRNAs. Similar results were reported for the expression of CSR-1 targets 

in transcriptional profiling studies performed on drh-3 (Figure II=S8) (Gu et al., 

2009) and cde-1 mutants (van Wolfswinkel et al., 2009). 

With available antibodies for the protein products of several CSR-1 22G-

RNA targets, we next used immunofluorescence and western blotting to examine 

protein expression levels in csr- 1, drh-3, and cde-1 mutants. There were no 

significant changes in the protein levels of the CSR-1 22G-RNA targets we 

examined, including those of the small RNA pathway components PRG-1 and 

DCR-1; the P granule factors PGL-1, CAR-1, and CGH-1; the cohesin SCC-3; 

and the dosage-compensation factors DPY-27 and CAPG-1 (Figures II-6B and II-

S8). Together, these data suggest that CSR-1 22G-RNA complexes do not act 

globally to significantly alter target gene expression. 

 

CSR-1 Is Bound to Chromatin at 22G-RNA Target Loci 
In S. pombe, the Argonaute Ago1 associates directly with chromatin as a part of 

the RITS complex (Buhler et al., 2006; Motamedi et al., 2004). A large-scale 

proteomics study identified CSR-1 associated with fractions of sperm and oocyte  
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Figure II-6 
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Figure II-6. CSR-1 22G-RNA Complexes Bind to Target 
Genomic Loci 
 
(A) Box and whisker plot of mRNA expression from microarray 

experiments in wild-type versus csr-1(tm892) mutants. The analysis 

was done for all genes measured by the array (left) and the subset of 

only CSR-1 22G-RNA target genes (right). 

 

(B) Western blot analysis of wild-type and csr-1(tm892) protein lysates, 

probed for CSR-1 22G-RNA target proteins. EKL-1 is a loading control. 

 

(C) ChIP/quantitative real-time PCR analysis of CSR-1 enrichment at 

CSR-1 22G-RNA or WAGO-1 22G-RNA target loci. Fold enrichment is 

calculated relative to the Y47H10A.3 locus, which, like clp-3, 

Y47H10A.4, and M01G12.9, is not targeted by small RNAs. Data from a 

single, representative set of experiments are presented; error bars are 

the standard deviation from the mean of three replicates of a single 

ChIP sample. (IP with CSR-1, blue; IP with beads only/no antibody, 

red.) 

 

(D) Density of CSR-1 22G-RNA target genes on each chromosome. 

Each bar represents the numbers of genes in a 100 kb bin. (Watson 

strand, blue; Crick strand, red.) Chromosome number is as indicated. 

Scale bar represents one gene. 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chromatin (Chu et al., 2006). Using a similar method (Chu et al., 2006), we have 

determined that CSR-1 associates with chromatin in embryos (Figure II-S9). 

These observations led us to examine whether CSR-1 complexes directly bind to 

the genomic loci of the CSR-1 22G-RNA targets. 

Using chromatin immunoprecipitation (ChIP), we found an enrichment of 

CSR-1 at target loci when compared to several other genomic loci that are not 

targeted by small RNAs. RNA polymerase II was used as a positive control and 

consistently showed enrichment at many CSR-1 target loci (Figure II-S9). In 

contrast, negative control experiments using agarose beads alone (without CSR-

1 antibody) never displayed enrichment (Figures II-6C and II-S9). Of the 12 CSR-

1 22G-RNA target loci examined, 10 showed 1.5-fold or greater enrichment of 

CSR-1 binding in five or more independent experiments (Figure II-6C). 

Conversely, CSR-1 was never enriched at the targets of another germline-

expressed Argonaute, WAGO-1 (Figure II-6C). CSR-1 was not detected in 

chromatin fractions treated with RNase A (data not shown), nor did we detect 

CSR-1 enrichment by ChIP at target loci in the drh-3(ne4253) mutant, in which 

22G-RNAs are depleted (Figure II-S9). These findings indicate that CSR-1 

interacts with its target genomic loci in a 22G-RNA-dependent manner. 

Furthermore, CSR-1 22G-RNA target loci are distributed relatively uniformly 

along the chromosomes (Figure II-6D), suggesting that the CSR-1 22G-RNA 

pathway could act in a genome wide manner to influence chromosome 

segregation 
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DISCUSSION 

Here we have investigated the role of the C. elegans Argonaute CSR-1 in 

promoting proper chromosome segregation. We have shown that CSR-1 

interacts with a class of 22-nucleotide RNAs, called 22G-RNAs, which are 

antisense to at least 4191 protein-coding genes, seven repeat element families, 

and 23 pseudogenes distributed throughout the genome. A parallel study by Gu 

et al. (Gu et al., 2009) has shown that a distinct Argonaute, WAGO-1, interacts 

with a nonoverlapping set of 22G-RNAs that primarily target transposons, cryptic 

elements, and pseudogenes (see below). The biogenesis of both CSR-1- and 

WAGO-1- bound 22G-RNAs is dependent on a core set of factors, including 

DRH-3, EKL-1, an RdRP, and a ß-nucleotidyl transferase. However, WAGO-1-

associated 22G-RNAs appear to down regulate their mRNA targets, whereas 

CSR-1 22G-RNAs do not. Whole-genome microarray studies showed that the 

mRNA targets of CSR-1 22G-RNAs are not misregulated in the csr-1, drh-3, and 

cde-1 mutant backgrounds (Gu et al., 2009; van Wolfswinkel et al., 2009) 

(Figures II-6 and II-S8). In addition, immunoflourescence and western blot 

analysis on the protein products of several CSR-1 targets revealed no change in 

expression (Figures II-6 and II-S8). Based on these findings, it seems unlikely 

that perturbed expression of CSR-1 22G-RNA targets results in the observed 

chromosome segregation defects. Instead, our findings support a model in which 

the CSR-1 pathway may directly contribute to holocentric chromosome 

organization by ensuring that the expressed, euchromatic domains within the 
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genome support the proper juxtaposition and alignment of the kinetochores, 

which must span these domains (II-Figure 7). 

 

How Does CSR-1 Influence Chromosome Segregation? 
Several lines of evidence, including ChIP, chromatin isolation, and 

immunolocalization studies, indicate that CSR-1 pathway components associate 

directly with chromatin in an RNA-dependent manner. These data support a 

direct role for CSR-1 22G-RNA complexes in promoting chromosome 

segregation, perhaps through a mechanism that is similar to the Ago1 pathway 

that regulates centromere formation in S. pombe. Indeed, both the CSR-1 and 

the Ago1 pathways utilize similar components for small RNA biogenesis. These 

include a helicase, an RdRP, and a ß-nucleotidyl transferase. However, these 

pathways target dramatically different loci: the Ago1 system targets repetitive, 

pericentromeric heterochromatin, whereas the CSR-1 pathway overwhelmingly 

targets protein-coding euchromatic domains distributed throughout the genome. 

Despite this difference, perhaps the small RNAs produced in both systems 

perform analogous functions. The targeting of CSR-1 22G-RNA complexes to 

chromosomal loci in the germline could recruit chromatin modifiers that mark 

CSR-1 22G-RNA-targeted domains and provide boundaries that define the 

adjacent centromeric domains of HCP-3 incorporation. Consistent with this 

notion, a preliminary comparison indicates that the domains targeted by CSR-1 

22G-RNAs are, in large part, mutually excluded from regions that are enriched  
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Figure II-7 
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Figure II-7. Model for the Activity of the CSR-1 22G-RNA 
Pathway in Chromosome Segregation 
 
(A) 22G-RNA synthesis: In the germline, DRH-3, EGO-1, and CSR-1 

localize to perinuclear P granules, where DRH-3 and EGO-1 initiate the 

synthesis of 22G-RNAs from transcripts that are important for germline 

development and early embryogenesis. These 22G-RNAs are loaded 

onto CSR-1 and can guide the complex to its targets. 

 

(B) Initial targeting of genomic loci: In oocytes, CSR-1 22G-RNA 

complexes move into the nucleus where they target nascent transcripts, 

possibly by cleaving them. Chromatin-modifying factors may associate 

with CSR-1 complexes to promote local modification of histones at and 

near CSR-1 target loci, establishing pericentromeric chromatin domains 

(green nucleosomes). A complex containing EGO-1, DRH-3, and 

possibly EKL-1 is proposed to amplify the signal in a positive feedback 

loop, by generating more 22G-RNAs in the nucleus with the CSR-1 

22G-RNA-targeted nascent transcripts as the template. 

 

(C) Establishment and maintenance of chromatin domains: The CSR-1 

22G-RNA-dependent chromatin domains containing modified histones 

(green nucleosomes) may promote the proper binding and organization 

of other components such as condensins and cohesins in embryo 

mitotic divisions. Furthermore, these chromatin domains could help to 

both recruit and restrict the incorporation of the centromeric histone H3 

variant HPC-3/CENP-A (red nucleosomes) in chromatin domains 

adjacent to those targeted by CSR-1 22G-RNA complexes. Regions of 

the chromatin loop out and self-associate, permitting the assembly of a 

proper planar, rigid kinetochore on the poleward faces of condensed 

chromosomes. As cell divisions continue, chromatin domains could be 

maintained epigenetically, possibly even by EKL-1, thus becoming less 

reliant on CSR-1 22G-RNA activity throughout development. 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for the conserved, centromeric histone variant HCP-3/CENP-A (R. Gassmann 

and A. Desai, personal communication). Thus, like the S. pombe Ago1 system, 

the CSR-1 pathway may help to define adjacent domains of HCP-3/CENP-A 

incorporation but does so by targeting protein-coding genes rather than repetitive 

heterochromatin. 

CSR-1 22G-RNA targets are distributed relatively uniformly on each 

chromosome, as would be expected if these targets serve in the positioning or 

alignment of kinetochores along the length of each chromosome. The one 

notable exception is the X chromosome, which is depleted of genes expressed in 

the germline (Reinke et al., 2000), and which possesses fewer CSR-1 targets 

than the autosomes (~70 versus 500–900 per autosome). It is not clear how this 

lower number of CSR-1 target sites might impact X chromosome segregation. 

The X chromosome is the only chromosome whose loss is tolerated by the 

organism (resulting in spontaneous males within hermaphrodite populations). 

Indeed, the stability of the X chromosome is more than an order of magnitude 

lower than that of the autosomes (the loss of which is generally not detected in 

wild-type populations) (Meneely et al., 2002). Whatever the explanation for the 

reduced fidelity of X chromosome segregation, clearly the limited number of 

CSR-1 targets is sufficient, or there are other pathways governing segregation 

of the X chromosome. 
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P Granules and 22G-RNA Biogenesis 
CSR-1 and the other protein components of the 22G-RNA pathway localize to P 

granules. P granules are found in close apposition on the cytoplasmic face of 

nuclear pores (Pitt et al., 2000) and are thought to be sites of accumulation for 

many mature polyadenylated mRNAs (Schisa et al., 2001). The nuclear 

association of P granules is lost in csr-1, ego-1, ekl-1, and drh-3 mutant 

backgrounds, suggesting that the association of CSR-1 and its cofactors with 

mRNA targets emerging from the nuclear pore may help to drive the perinuclear 

association of P granules (Figure II-7A). Perhaps consistent with this idea, P 

granules also lose their perinuclear association in transcriptionally quiescent or 

nearly quiescent germ cells, e.g., oocytes and early embryo germ cells. 

If their initial biosynthesis occurs in P granules, 22G-RNAs may 

subsequently guide CSR-1 back to chromatin or to chromatin associated nascent 

transcripts (Figure II-7B). Because CSR-1 targets are robustly expressed in the 

maternal germline, it is possible that CSR-1 complexes initially engage nascent 

transcripts during gametogenesis. Once established, these hypothetical CSR-1-

chromatin domains could be preserved throughout embryogenesis, perhaps even 

in the absence of additional transcription (Figure II-7C). Consistent with this idea, 

we found that CSR-1-chromatin localization was most prominent in the two or 

three most mature oocytes in each gonad arm (Figure II-4A). The retention of 

CSR-1 complexes at target loci could occur through direct binding to other 

chromatin components, possibly even through EKL-1, as tudor domains have 
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been shown to interact with the methyl-arginine and -lysine moieties of histone 

tails (Taverna et al., 2007). 

 

Distinct Roles for Argonautes in RNAi and 22G-RNA Pathways 
Our studies indicate that at least two distinct germline 22G-RNA pathways with 

several overlapping core components exist in C. elegans: the CSR-1 and 

WAGO-1 pathways. Like CSR-1, WAGO-1 prominently localizes to P granules. 

However, the perinuclear distribution of P granules and chromosome segregation 

are not altered by the loss of wago-1, even within the context of a 12-fold WAGO 

mutant (composed of null alleles of wago-1 and 11 related WAGO Argonautes) 

(Gu et al., 2009). How are these Argonautes loaded with distinct 22G-RNA 

species, despite their shared localization and reliance on upstream factors? One 

attractive scenario is that mRNA targets are sorted into distinct P granule 

subcompartments, wherein the amplification of 22GRNAs takes place. Additional 

protein factors, such as CDE-1, and/or structural elements within target 

transcripts may be involved in the recognition and compartmentalization of target 

mRNAs (Gu et al., 2009). 

Recombinant CSR-1 protein has been shown to exhibit Slicer activity in 

vitro (Aoki et al., 2007), and CSR-1 has been implicated in down regulating 

genes in response to foreign dsRNA (Yigit et al., 2006). However, endogenous 

CSR-1 22G-RNA targets do not appear to be down regulated by CSR-1. CSR-1 

22G-RNAs are expressed at low levels relative to WAGO-1 22G-RNAs (Figure II-
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S10), perhaps below a threshold to trigger mRNA turnover. Consistent with this 

idea, not all WAGO-1 22G-RNA targets exhibit mRNA silencing, but those that do 

typically exhibit the highest levels of corresponding 22G-RNA accumulation (Gu 

et al., 2009). 

It is tempting to speculate that the incompletely penetrant effects of csr-1 

mutants on RNAi are indirect, perhaps arising as a consequence of the dramatic 

disruption of P granules in csr-1 mutants. There are already two distinct 

Argonaute systems implicated in the RNAi pathway, RDE-1 (Tabara et al., 1999) 

and the WAGO system (Yigit et al., 2006), and at least the WAGO-1 protein is 

localized to P granules (Gu et al., 2009). In csr-1 mutants, perhaps the 

dissociation of P granules from germ nuclei disrupts access to target mRNAs or 

other activities required for the full activity of the germline RNAi response. 

Our findings together with those of Gu et al. (Gu et al., 2009) indicate that 

the majority of the genome is targeted by Argonaute systems that provide diverse 

surveillance functions. Expressed genes are targeted by CSR-1, while classically 

heterochromatic domains including transposons and pseudogenes are targeted 

by WAGO-1. Both of these systems contribute to the physical maintenance of the 

genome by promoting, respectively, (1) chrochromosome segregation and (2) the 

suppression of mobile or otherwise potentially deleterious elements. 

Correlates of these pathways are likely to function in other nematodes 

and, indeed, could help explain the classic observations in Parascaris made by 

Theodor and Marcella Boveri more than 100 years ago (Pimpinelli and Goday, 
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1989; Satzinger, 2008). By targeting heterochromatic domains, a system 

analogous to the WAGO-1 pathway could promote chromosome fragmentation 

and the elimination of the heterochromatin in Parascaris.  This could occur via an 

Argonaute pathway similar to that which mediates chromosome fragmentation 

during macronuclear formation in Tetrahymena (Yao and Chao, 2005). By 

targeting genes, correlates of the CSR-1 22G-RNA system could ensure the 

proper higher-order assembly of the holocentric kinetochores found in diverse 

nematode species and could provide this function even after fragmentation and 

the elimination of heterochromatin as in the tiny somatic chromosomes of 

Parascaris. Additional insights into the underlying molecular mechanisms through 

which Argonaute systems promote the higher-order structure of chromosomes 

will require further study. The observation that such pathways, however different, 

exist in nematodes and fungi suggests that similar activities are likely to be 

ubiquitous in eukaryotes. 
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MATERIALS AND METHODS 

Worm Strains  

Worms were cultured according to (Brenner, 1974). Alleles used in this study are 

as follows, in order of chromosome:  LGI:  ekl-1(tm1599), ego-1(om97), drh-3(tm 

1217), glp-4(bn2), avr-14(ad1302), hT2[qIs48](I; III); LGIII: cid-1/cde-1(tm1021); 

qC1[neIs(myo-2::avr-15, rol-6(su1006), unc-22(RNAi))], LGIV:  fem-1(hc17),  csr-

1(tm892), DnT1[unc(n754dm) let](IV;V); LGV:  fog-2(q71), avr-15(ad1051), glc-

1(pk54).  Strains:  DA1316:  avr-14(ad1302)LGI; avr-15(ad1051)LGV, glc-

1(pk54)LGV; AZ212: (unc-119(ed3) ruIs32[unc-119(+) pie-1::GFP::H2B] III); 

XA3501: (unc-119(ed3) ruIs32[unc-119(+) pie-1::GFP::H2B] III; ojIs1[unc-119(+) 

pie-1::GFP::tbb-2]); WM193:  csr-1(tm892)LGIV; neIs19[pie-1::3xflag::csr-1, unc-

119(+)]; WM194:  csr-1(tm892)LGIV; neIs19[pie-1::gfp::csr-1, unc-119(+)].  

Brood Size, Viability, and him quantitations were performed as described in 

(Batista et al., 2008).   

 

Creation of csr-1 Transgenes 

GFP or 3x Flag csr-1 rescuing transgenes were first constructed in a yeast 

artificial chromosome (YAC), as described in (Rocheleau et al., 1999). The csr-1 

genomic locus was PCR amplified from these YACs and cloned into pDONR201 

(Invitrogen), then transferred to pID2.02 (D'Agostino et al., 2006) using the 

Gateway cloning system (Invitrogen). The resulting plasmids were introduced 

into unc-119(ed3) strain using biolistic transformation according to (Praitis et al., 
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2001). Transgenic strains were identified and integrated lines were crossed into 

the csr-1(tm892) background. PCR was used to identify rescued csr-1(tm892) 

animals.  Primer sequences are available upon request. Rescue levels were 

similar for all GFP and 3x Flag transgenic strains tested. 

 

RNAi 

1 mg/ml dsRNA targeting drh-3, csr-1, or ekl-1 was injected into young adult 

Bristol N2 worms. After 36–48 hr at 20°C, worms containing embryos were 

dissected and fixed for immunostaining. 

 

Antibody Generation 

A rabbit antibody, used in immunostaining, was generated against the CSR-1 

polypeptide from amino acids E462 to E987 (containing the PAZ and most of 

the PIWI domain) (Capralogics, Inc.). Additional rabbit antibodies, used in IP 

experiments, were generated and purified by Anaspec using the following 

peptides: VDYNAPKDPEFRQKYPNLKFP and QRCKDKGMHIGSYSMDQHN 

GERGSENFL. A GST-fusion protein containing an EKL-1 N-terminal fragment 

(L58 to S309) was used to generate rabbit antisera. DRH-3 and EGO-1 

antibodies are described in (Gu et al., 2009). 
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Immunostaining and Microscopy 

Gonads and embryos were excised from worms in 1x sperm salts/2mM 

levamisole on poly-L-lysine coated slides, frozen and cracked on dry ice for 

greater than 10 minutes, and fixed at –20 oC for 5 minutes each (15 minutes 

total) in each of the following, respectively: 100% Methanol, 50% Methanol/50% 

Acetone, and 100% Acetone. All sample incubations were performed in a humid 

chamber.  Samples were blocked for one hour in 1xPBS/0.1% Tween-20/3%BSA 

(PBST+BSA) at room temperature, and then incubated with primary antibody 

overnight at 4oC.  Slides were washed 3 times 10 minutes with PBST, and then 

incubated for 15 minutes in PBST+BSA.  Secondary antibodies were from 

Jackson Immunoresearch and Molecular Probes.  Incubation with secondary 

antibodies was performed for one hour in PBST+BSA at room temperature.  

Slides were washed 3 times ten minutes in PBS, and then mounted in 

Vectashield with DAPI (Vector Labs). All images were collected using a 

Hamamatsu Orca-ER digital camera mounted on a Zeiss Axioplan 2 microscope 

and with Openlab software, unless noted. 

In time-lapse microscopy, embryos from strain AZ212 and/or XA3501 

were dissected from gravid adults in M9 and placed on 2% agarose pads for 

imaging.  10 Z sections of 2µm thick were collected every 5 or 10 seconds using 

the Perkin Elmer Ultraview RS spinning disc confocal microscope system 

mounted on a Zeiss Axiovert 200M microscope. Stacks of frames from every 

time point were overlaid and compiled into time-lapse movies using the Ultraview 
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software (Perkin Elmer). Images in Figure 2A were acquired using the Leica TCS 

SP2 confocal microscope system and software. Z sections of 1µm thick were 

acquired simultaneously from embryos stained with anti-HCP-3 (Oegema et al., 

2001), anti-alpha- tubulin (Accurate Chemical and Scientific corp, clone 

YOL1/34) and DAPI.  Images in Figure 3E and 4A were acquired using the Zeiss 

LSM 700 point scanning confocal microscope attached to a Zeiss Axio Observer 

Z1 stand, with Zeiss software. Z sections of 0.8µm thick were acquired 

simultaneously from germlines stained with anti-PGL-1 (Kawasaki et al., 1998) 

and DAPI. All Images in Figure 4 (except 4A) were acquired using Solamere 

Technology Group CSU10B Spinning Disk Confocal System scan head mounted 

on a Nikon TE-2000E2 inverted microscope with a 100x Plan-APOCROMAT 

NA1.4 Oil lens and a Roper Coolsnap HQ2 camera. Metamorph software was 

used to analyze the images.  Z sections ranging from 0.1 to 0.3µm were collected 

from embryos. Quantitation of kinetochore disorganization was performed on at 

least 25-50 metaphase plates per genotype. Metaphases were counted as being 

either normal or disorganized (twisted) only. Mitotic cells were identified by their 

tubulin staining.  

 

FISH 

Embryos were dissected in egg salts with 0.1% Tween-20, followed by brief 2% 

formaldehyde fixation, permeabilization by freeze crack, and fixation for 1 min in -

20°C methanol. Slides were washed in PBST and gradually transferred to 100% 
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ethanol. Slides were dried and incubated in 2x SSC/50% formamide at 37°C for 1 

hr. The probe was sealed on the slide, DNA was denatured at 95°C for 3 min, 

and hybridization was performed overnight at 37ºC. Slides were washed in 2x 

SSC/50% formamide, 2x SSC, 1X SSC, and PBST, then counter stained with 

DAPI. 

 

Western Blot Analysis- Proteins were resolved by SDS-PAGE on Criterion 

Precast gradient gels (4%–15%, Biorad) and transferred to Hybond-C membrane 

(Amersham Biosciences). The membrane was incubated overnight at 4°C with 

anti-CSR-1 either: (i) affinity purified antibody, 1 µg/ml, (ii) Full-Length A.v. 

Polyclonal Antibody (BD Bioscience), diluted 1:1000, or (iii) anti alpha-tubulin 

(Accurate Chemical) diluted 1:2000, in PBST-5%milk solution (137 mM NaCl, 10 

mM Phosphate, 2.7 mM KCl, pH 7.4, and 5% [w/v] dried milk). The membrane 

was incubated 1 h at room temperature with HRP-conjugated secondary 

antibody (Jackson Immunoresearch) diluted 1:5,000 in PBST and then visualized 

by Western Lightening ECL Kit from Perkin Elmer. Images were collected on a 

LAS-3000 Intelligent Dark-Box (Fujifilm). 

 

Small RNA Cloning and Data Analysis 

Cloning and data analysis are as described in Batista et al. (Batista et al., 2008) 

for Terminator exonuclease (Epicenter Technologies) treated samples.  
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Analysis of deep sequencing data is as described in (Gu et al., 2009). In addition, 

for reads that did not match the C. elegans genome, the last 3´ thymine(s) 

was/were removed until a different nucleotide was the last 3´ end nucleotide 

(reads ending with a different nucleotide were not considered for analysis). 

Sequences that were at least 17 nucleotides long were blasted against the C. 

elegans genome, and included for analysis. Reads in the sense orientation for 

ribosomal and tRNA genes are considered to be degradation products and were 

not included in the analysis. For each deep-sequencing library described, basic 

statistics are listed as follows: total numbers of sequencing reads, number of 

genome-matching reads (perfect match), number of total genome matching 

reads after removal of U nucleotides at the 3´ end of non genome matching 

reads and number of reads after removal of reads considered to be degradation 

products.  CSR-1 IP: 3864681; 1347558; 1848228; 1799685.  Wild-type Input: 

5003742; 3124393; 3237929; 3193213.  DA1316 (AVR triple): 5903016; 

3295762; 3377578; 2760559.  csr-1(tm892): 5139346; 3306716; 3367248; 

2182697.  ego-1(om97):  5080570; 2773473; 2799340; 1561121.  

Small RNA reads matching unique loci (generally, those sequences 

targeting protein coding genes, pseudogenes, microRNAs, 21U-RNAs, and non-

annotated loci or introns) were first normalized to the number of times they 

matched the genome. To compare unique loci between different libraries, the 

number of reads for each locus was normalized to the total number of reads in 

the library (excluding those reads considered to be degradation products). A 
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cutoff of 25 reads per million (for protein coding genes, pseudogenes, and non-

annotated loci or introns) or 5 reads per million (for microRNAs, 21U-RNAs) was 

used to perform each analysis. In the comparison between CSR-1 IP and input or 

glp-4(bn2) versus wild-type, for each locus examined, at least one of the samples 

was required to have 25 reads per million for that locus to be included in the 

analysis. 

The analysis of transposable and repetitive elements (including simple 

repeats) is complicated by the fact that these elements generally map to many 

loci throughout the genome, with various degrees of sequence divergence. In 

addition, the number of these loci throughout the genome varies among different 

genetic backgrounds.  Thus, in the analysis of repeat elements (not including 

simple repeats), we considered the reads that match each reference element 

sequence in Repbase (Jurka et al., 2005), without normalizing each read to the 

number of times it matches the genome. Instead a simple cutoff of 25 reads per 

million for the analysis of this particular class of small RNA was used.  

For comparisons between loci targeted by 22G-RNAs enriched in the 

CSR-1 IP and loci targeted by small RNAs expressed in the germline it was 

necessary to compare two data sets, the CSR-1 IP data set (CSR-1 IP library 

compared to wild-type input library), and the glp-4(bn2), germline depleted, data 

set (glp-4(bn2) library compared to wild-type library).   Only genes, pseudogenes 

or repeat elements present in both the IP and glp-4(bn2) datasets (loci above the 

cutoff value) were included. Using these criteria, defines a set of 944 protein 
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coding genes, 3 repeat elements and 15 pseudo-genes [present at 25 reads per 

million in the CSR-1 IP and the input but absent in glp-4(bn2)]. 22G-RNAs 

targeting another 615 protein coding genes, 13 repeat elements and 53 pseudo-

genes were enriched in the CSR-1 IP datasets but were not present or did not 

meet the cutoff of 25 reads per million in the input dataset. 

 

Tiling Microarray Procedures 

Synchronous populations of wild type and csr-1(tm892) animals were grown for 

54 hours post-hatching at 20ºC on OP-50 E. coli at a density of approximately 

50,000 animals per 15cm Petri dish.  The worms were harvested as young adults 

without oocytes.  RNA extraction was performed using TRI-Reagent (MRC 

Laboratories).  Instead of pelleting and resuspending the RNA (as described in 

the TRI Reagent protocol), RNA was recovered, washed and eluted using the 

RiboPure total RNA isolation kit (Ambion).  Reverse transcritption was performed 

on 7µg of each sample using the GeneChip WT Double-Stranded cDNA 

Synthesis Kit.  The dsDNA was then purified using the GeneChip Sample 

Cleanup Module (Affymetrix) and quantified.  7.5µg of each dsDNA sample were 

used for the subsequent fragmentation and labeling reactions, using the 

GeneChip WT Double Stranded DNA Terminal Labeling Kit (Affymetrix). 

Hybridization to the arrays was made using standard Affymetrix protocols and 

reagents, and scanning was done with GeneChip Scanner 3000 7G at the 

UMass Medical School’s Genomics Core Facility. Experiments were all 
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conducted in triplicate from independent plates and sample preparations.  The 

arrays used in this study are the GeneChip C. elegans Tiling 1.0R chips from 

Affymetrix (comprising over 3.2 million perfect match/mismatch 25 nt probes 

covering the complete non-repetitive C. elegans genome with a 25 base pair 

resolution).  Detailed protocols can be found in the GeneChip Whole Transcript 

(WT) Double-Stranded Target Assay Manual from Affymetrix. Signal values for 

each array probe were calculated using Affymetrix Tiling Analysis Software 1.1.2 

(bandwidth: 30; intensities: PM/MM) with three csr-1(tm892) replicates as the 

experimental datasets and three wt replicates as the controls. Probe overlap with 

annotations was assessed using the Affymerix-provided ce4 coordinate, which 

indicates the genomic position matching the center of the array probe. Only 

genes with signal for at least 10 different probes in either the wild type or csr-

1(tm892) samples were included for analysis.  

 

Sub-cellular Fractionation/Chromatin Isolation 

Sub-cellular fractionation and chromatin isolation is as described (Chu et al., 

2006), with the following modifications: 500ml of early embryos were 

resuspended in 2 volumes of Buffer A (as described, with the addition of 1% 

SUPERNaseIN (Ambion), dounced in a Wheaton metal Dounce homogenizer 

only until nuclei were visible under the dissecting microscope, then the extracts 

were centrifuged at 1500xg for 1 min. at 4°C. The rest of the protocol was as 
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described until the isolated chromatin was resuspended in 50ml 2X SDS-PAGE 

Sample Buffer.  Western blot analysis is described above. 

For RNAse A treatment of chromatin fractions, RNAse A (50µg per ml 

lysate) was added prior to dounce homogenization.  After douncing, extracts 

were incubated for 30 minutes at room temperature to allow for RNAse A to act.  

In untreated control experiments, this room temperature incubation was also 

added to the procedure described above. 

 

Chromatin Immunoprecipitation 

Embryos were prepared by using 20% hypochlorite and extracted from gravid N2 

adults grown for 58-60 hours at 20°C. Live embryos were washed five times with 

M9 buffer, and then (when indicated, Figure 6) treated with 10mM dimethyl 3,3´-

dithiobispropionimidate (DTBP, Thermo Fisher Scientific) diluted in M9 buffer 

(50ml total volume), for 30 minutes at room temperature with rotating.  DTBP was 

quenched by the addition of 2.5ml of 2.5M glycine for 5 minutes at room 

temperature. Embryos were washed once with M9 before proceeding to 

formaldehyde cross-linking.   

Embryos were cross-linked using 2.6% formaldehyde for 30 minutes at 

room temperature (50ml total volume) followed by quenching with 2.5ml 2.5M 

glycine for 5 minutes at room temperature. Embryos were then washed three 

times with M9 buffer, once with FA buffer (50mM HEPES/KOH pH 7.5, 1mM 

EDTA, 1% Triton X-100, 0.1% sodium deoxycholate; 150mM NaCl), and frozen 
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in 500ml aliquots at − 80°C. Extracts were prepared by resuspending embryo 

pellets in 1 volume FA Buffer supplemented with protease and phosphatase 

inhibitors, followed by dounce homogenization and sonication (15x, 15sec., 15% 

output, with a power setting of 5 on a Fisher Sonic Dismembrator 550) in a 

volume of 2ml. Protein concentration was determined by Lowry method and 

3.3mg extract was used for each ChIP in a total volume of 500 µl. 10% of each IP 

was removed as input (50µl), and frozen until the next day. 

10µg (anti-RNA Pol II, Abcam, #5408) or 20µg (anti-CSR-1) of antibody or 

buffer alone (no antibody control) was added to each IP sample and incubated 

overnight at 4°C. Immune complexes were recovered using 50µl of a 50% slurry 

of protein-A/G agarose beads (Santa Cruz Biotechnology) and washed at room 

temperature with 1ml of each of the following solutions: FABuffer (2x 5 minutes), 

FA Buffer with 1M NaCl (1x 5 minutes), FA Buffer with 500mM NaCl (1x 10 

minutes), TEL (0.25M LiCl, 1% NP-40, 1% sodium deoxycholate, 1mM EDTA, 

10mM Tris-HCl, pH 8.0) (1x 10 minutes), and TE (1mM EDTA, 10mM Tris-HCl, 

pH 8.0) (2x 5 minutes).  Samples were eluted twice with 150µl elution buffer (1% 

SDS in TE with 250mM NaCl) for 15 minutes at 65°C with shaking.  Eluates were 

combined and treated with 1µl (20mg/ml) Proteinase K for 2 hours at 55°C with 

shaking.  

Input samples were thawed and treated with 10µg of RNAse A (Ambion) 

for 2 hours at room temperature, before adding 150µl of elution buffer and 

treating with 1µl Proteinase K for 2 hours at 55°C with shaking.  Then, crosslinks 
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were reversed for all samples by incubation overnight at 65°C with shaking. DNA 

was recovered by phenol chloroform extraction and ethanol precipitation.  All 

samples were resuspended in 50µl of ultrapure water and stored at -20°C. ChIP 

samples were analyzed by quantitative real-time PCR. 

 

Quantitative Real-time PCR 

Is as described in (Batista et al., 2008). For mRNA analysis:  cDNA was 

generated from 1mg C. elegans total RNA using random hexamers with 

Superscript III Reverse Transcriptase (Invitrogen).  qRT-PCR was performed on 

the ABI Prism 7500 Sequence Detection System using Applied Biosystems 

SYBR Green PCR Master mix.  Thermocycling was done for 40 cycles, reactions 

were 15ml total volume (7.5ml SYBR master mix, 0.6ml of 10mM primer, 2ml 

cDNA, 4.3ml dH20). Primer sequences are available upon request.  Expression 

levels of csr-1 isoforms are determined relative to act-3 mRNA levels. 

For ChIP analysis: qRT-PCR was performed on the ABI Prism 7500 

Sequence Detection System using Applied Biosystems FAST SYBR Green PCR 

Master mix. Thermocycling was done for 40 cycles, reactions were 15ml total 

volume (7.5ml SYBR master mix, 0.6ml of 10mM primer, 2ml Input DNA and 

4.3ml dH20 or 4ml IP DNA and 2.3ml dH20).  Primer sequences are available 

upon request.  Fold enrichment was determined relative to the control, 

Y47H10A.3, levels (This gene not appreciably targeted by small RNAs.).  Error is 

calculated as described in (Claycomb et al., 2002). 
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ACCESSION NUMBERS 

All RNA sequences extracted from Illumina reads as described were deposited 

in the NCBI’s Gene Expression Omnibus (GEO) (Edgar et al., 2002) and are 

accessible through GEO Series accession number GSE18165. Included under 

this accession number are the following data: Small RNAs that 

coimmunoprecipitate with CSR-1 and the corresponding wild-type input control, 

50 ligation dependent (TAP); and small RNA populations from csr-1(tm892), ego-

1(om97), and a congenic wild-type strain (DA1316), 5´ ligation-dependent 

(CIP/PNK). Microarray data were deposited in the NCBI’s GEO and are 

accessible through GEO Series accession number GSE18141. 
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Figure II-S1 
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Figure II-S1. RNAi deficiency of ekl-1(tm1599) and rescue of 
csr-1(tm892) 
 
(A) Somatic RNAi Deficiency of ekl-1(tm1599) homozygotes, ekl-

1(tm1599)/hT2 heterozygotes, and wild type (N2) animals fed unc-22 

RNAi food. 

 

(B) Germline RNAi Deficiency of ekl-1(tm1599) homozygotes, ekl-

1(tm1599)/hT2 heterozygotes, and otherwise wild-type animals carrying 

a pie-1::h2b::gfp transgene, fed gfp RNAi food. 

 

(C) Diagram of the csr-1 transcripts encoded by csr-1 rescuing 

transgenes. Only the long isoform possesses an epitope tag and pie-1 

regulatory sequences were used. 

 

(D) Brood size (number of embryos laid) analysis in wild type (N2), csr-

1(tm892), and 3x Flag csr-1 rescue. 

 

(E) RNAi deficiency in wild type (N2), csr-1(tm892), and 3x Flag csr-1 

rescue grown on cdk-1 RNAi food. cdk-1 RNAi produces embryos with 

a one-cell stage arrest that is distinct from the multicellular arrest of csr-

1(tm892) mutant embryos. 
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Figure II-S2 
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Figure II-S2. Fluorescence in situ hybridization with probes 
against chromosome V 
 
(A) Additional examples of Fluorescence in situ hybridization with 

probes for chromosome V in wild type (A and C) and csr-1 RNAi (B and 

D) embryos of approximately the same stage (DNA, blue; LG V FISH 

signal, green). White dotted lines indicate bondaries of the embryo. 

More than the appropriate number of FISH signals are evident in 

morphologically abnormal and aneuploid nuclei of csr-1 RNAi embryos. 

Images show projections of Z-stacks through the entire embryo, after 

deconvolution. 
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Figure II-S3 
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Figure II-S3. Localization of outer kinetochore, condensin, 
and cohesin proteins in wild type and RNAi depleted 
embryos 
 
(A) Localization of the outer kinetochore component MCAK/KLP-7 (left, 

red in merge) in wild type and csr-1 RNAi embryos. DNA was stained 

with DAPI (center, green in merge). 

 

(B) Localization of the outer kinetochore/mitotic checkpoint component 

BUB-1 (left, red in merge) in wild type and ego-1 RNAi embryos. DNA 

was stained with DAPI (center, green in merge). 

 

(C) Localization of the condensin CAPG-1 (left, red in merge) in wild 

type and drh- 3 RNAi embryos. DNA was stained with DAPI (center, 

green in merge). 

 

(D) Localization of the condensin KLE-2 (left, red in merge) in wild type 

and ego-1 RNAi embryos. DNA was stained with DAPI (center, green in 

merge). 

 

(E) Localization of the cohesin SCC-3 (left, red in merge) in wild type 

and drh-3 and csr-1 RNAi embryos. DNA was stained with DAPI 

(center, green in merge). 
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Figure II-S4 
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Figure II-S4. Quantitative real-time RT-PCR analysis of csr-1 
transcripts 
 
(A) A diagram of the two transcripts generated from the csr-1 locus, 

drawn to scale. The position of the deletion allele used in these studies 

(tm892) is marked. Scale bar is 1kb. 

 

(B) csr-1 mRNA levels of the long isoform (light gray), and the short 

isoform (dark gray) in various stages of development and germline 

mutant backgrounds, as described in Figure 3, relative to act-3 mRNA 

levels. Forward real-time primers were specific for each isoform, by the 

use of the SL1 splice leader sequence, which is added to the 5´ end of 

each csr-1 transcript, along with 6-10 nucleotides of csr-1 sequence at 

the 5´ end of either isoform. 
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Figure II-S5 
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Figure II-S5. Localization of CSR-1, EGO-1, EKL-1 and DRH-3 is 
ablated in respective mutant or RNAi-depleted embryos 
 
(A) Embryos depleted by RNAi for each of csr-1, ego-1, ekl-1, and drh-3 (as 

marked) were stained for CSR-1, EGO-1, EKL-1, or DRH-3, respectively (as 

marked, top, yellow in merge). DNA was stained with DAPI (center, blue in 

merge). At least one metaphase is observable for each embryo in (A) (yellow 

arrows). 

 

(B) Additional embryos, as in (A), but without any metaphase nuclei. 

 

(C) Western blot analysis of EGO-1, DRH-3, CSR-1, and EKL-1 in wild type, 

csr-1(tm892) mutant, or drh-3 mutant adults (drh-3(tm1217) is a null allele; 

drh- 3(ne4253) is a hypomorphic allele). 50µg of protein lysate was loaded per 

lane. 
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Figure II-S6 
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Figure II-S6. Addition of untemplated uridine to the 3’ ends of 
CSR-1 22G-RNAs 
 
(A) IP/Western blot analysis of CSR-1. 100µg of protein lysate was 
loaded for Input and Supernatant lanes. 10% of a CSR-1 IP from 5mg 
of protein lysate was loaded in the IP lane. Blots were probed with anti-
CSR-1 
 
(B) Size and first nucleotide distribution of small RNAs cloned in 
libraries from wild type (N2) Input and CSR-1 IP. Length of read is on 
the X axis, proportion of reads is on the Y axis and colors indicate the 
5´ nucleotide as shown. Inset pie charts indicated the overall proportion 
of small RNA with each nucleotide at the 5’ position. 
 
(C) Pie charts indicating the relative proportions of small RNAs with 
perfect matches to the genome (green) vs. having additional 
nucleotides added at their 3’ end for wild type (N2) Input and CSR-1 IP 
libraries using the TAP cloning method. A proportion of small RNA 
reads still did not match the genome after the removal of the additional 
3’ nucleotides (gray). 
 
(D) Line plot comparing the relative proportions of small RNA classes 
for the uridylated reads (reads that match the C. elegans genome after 
removal of uridine(s) from the 3’ end, as in (B.)), between wild-type (N2) 
Input (left) and CSR-1 IP (right) samples. (AS=antisense, S=sense) 
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Figure II-S7 
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Figure II-S7. Analysis of csr-1(tm892), ego-1(om97), and 
DA1316 small RNA libraries 
 
(A) Pie charts indicating the relative proportions of various classes of 
small RNAs in csr-1(tm892) and ego-1(om97) mutants and a congenic 
wild-type strain (DA1316). DA1316 possesses three mutations that 
render it resistant to the drug ivermectin, which is used for selection of 
uniform populations of homozygous mutant adult worms (Duchaine et 
al., 2006). 
 
(B) Size and first nucleotide distribution of small RNAs cloned in 
libraries from csr-1(tm892), ego-1(om97) mutants and DA1316. Length 
of read is on the X axis, proportion of reads is on the Y axis and colors 
indicate the 5´ nucleotide as shown. Inset pie charts indicate the overall 
proportion of small RNA with each nucleotide at the 5´ position. drh-
3(ne4253) and ekl-1(tm1599) small RNA compositions are described in 
(Gu et al., 2009), cosubmitted). 
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Figure II-S8 
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Figure II-S8 CSR-1 22G-RNA target mRNA and protein levels 
are not changed in drh-3(ne4253) or cde-1(tm1021) mutants 
 
(A) Box and whisker plot of CSR-1 target mRNA levels in the drh-

3(ne4253) mutant as compared to wild type for CSR-1 22G-RNA 

targets (left) and for all genes (right). 

 

(B) Western blot analysis of wild type and cde-1(tm1021) protein 

lysates, generated from animals grown at 25º C and probed for CSR-1 

22G-RNA target proteins. EKL-1 is not a CSR-1 target and is shown as 

a loading control. [Note that only one isoform of CSR-1 seems to be 

expressed in cde-1(tm1021) lysates] 
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Figure II-S9 
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Figure II-S9. CSR-1 association with chromatin is 22G-RNA 
dependent 
 
(A) Western blots of various amounts (as indicated) of total protein 

lysate, generated from embryos, cytoplasmic protein lysate and isolated 

chromatin (prepared according to (Chu et al., 2006) were probed for 

CSR-1, HPL-2 (one of two HP1 chromatin-binding proteins in C. 

elegans) (Couteau et al., 2002), and Tubulin. * The cytoplasmic fraction 

is invariably contaminated with nuclear content using this preparation 

method. 

 

(B) Embryo ChIP/Quantitative Real-time PCR analysis of CSR-1 and 

agarose beads alone/no antibody control enrichment at CSR-1 22G-

RNA target loci in wild type and drh-3(ne4253) embryos. These 

samples were prepared without the addition of DTBP, and are from a 

single, representative experiment. Fold enrichment is relative to 

Y47H10A.3. Error bars are standard deviation from the mean of three 

replicates of a single ChIP sample. 

 

(C) Embryo ChIP/Quantitative Real-time PCR analysis of RNA 

Polymerase II enrichment and Input control enrichment at 22G-RNA 

target loci and non-targeted control loci, as in Figure 6. These samples 

were prepared from the same extracts as those in Figure 6 and are 

from a single, representative experiment. Fold enrichment is relative to 

Y47H10A.3. Error bars are standard deviation from the mean of three 

replicates of a single ChIP sample. Many CSR-1 22G-RNA target loci 

as well as the WAGO-1 22G-RNA target, ZC247.1, are enriched for 

RNA Polymerase II binding. 
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Table II-S1 

Table II-S1. Localization of RNAi Factors in RNAi depleted  
embryos 
 
All determinations made on examination of 10-20 early embryos 
generated by RNAi to each of the factors.  ---, lack of detectable 
staining in >95% of embryos.  +, less than 25% of embryos 
counted had localization to disrupted metaphase plate (and 
embryo P granules, for DRH-3 and CSR-1).  ++, up to 75% of 
embryos counted had localization to disrupted metaphase plate 
(and embryo P granules, for DRH-3 and CSR-1).  +++, >95% of 
embryos counted had localization to disrupted metaphase plate 
(and embryo P granules, for DRH-3 and CSR-1). 
* Residual levels in P granules; all staining lost as animals age 
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CHAPTER III 
 

Distinct Argonaute-Mediated 22G-RNA  
Pathways Direct Genome Surveillance in  

the C. elegans Germline  
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Chapter III contributions. J.Vasale contributed the following to this section: She 

generated balanced RdRP double mutant (rrf-1 ego-1) strain with appropriate 

genetic markers to allow large-scale selection of RdRP double homozygous 

mutant. Also she performed small RNA extraction, purification, and preparation of 

cDNA libraries from this strain and other RdRP single mutants (ego-1 and rrf-1) 

in parallel with the congenic wild-type control strain (DA1316). She performed 

small RNA Northern blot experiments on RdRP mutant small RNA populations 

and contributed to analyses and interpretation of deep-sequencing results. These 

data are presented in Figure III-3A and B, Figure III-5B, Figure IiI-6A, and Figure 

III-S7. This chapter has been published as "Distinct Argonaute-Mediated 22G-

RNA Pathways Direct Genome Surveillance in the C. elegans Germline" 

Molecular Cell 2009, Oct 23;36(2):231-44; *Gu W, *Shirayama M, *Conte D, Jr., 

Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz 

MJ, Chen CC, Chaves DA, Duan S, Kasschau KD, Falgren N, Yates JR, 3rd, 

Mitani S, Carrington JC, Mello CC. License number 2374831415649 
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SUMMARY 

Endogenous small RNAs (endo-siRNAs) interact with Argonaute proteins to 

mediate sequence specific regulation of diverse biological processes. Here, we 

combine deep-sequencing and genetic approaches to explore the biogenesis 

and function of endo-siRNAs in C. elegans. We describe conditional alleles of the 

Dicer-related helicase, drh-3, that abrogate both RNA interference and the 

biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of 

RNA-dependent RNA polymerase (RdRP) complexes essential for several 

distinct 22G-RNA systems. We show that, in the germline, one system is 

dependent on worm-specific Argonautes, including WAGO-1, which localizes to 

germline nuage structures called P granules. WAGO-1 silences certain genes, 

transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that 

components of the nonsense-mediated decay pathway function in at least one 

WAGO-mediated surveillance pathway. These findings broaden our 

understanding of the biogenesis and diversity of 22G-RNAs and suggest 

additional regulatory functions for small RNAs. 
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INTRODUCTION 

Regulatory pathways related to RNA interference (RNAi) utilize small RNAs to 

guide the sequence-specific modulation of gene expression, chromatin structure, 

and innate immune function (Ding and Voinnet, 2007; Moazed, 2009). Small 

RNA classes can be distinguished based on a number of factors, including 

mechanism of biogenesis, mode of regulation or function, and the Argonaute 

proteins with which they interact (Ghildiyal and Zamore, 2009). Argonaute family 

members are structurally related to ribonuclease (RNase) H and bind to the ends 

of single stranded small RNAs, presenting the central residues for base pairing 

interactions with target nucleic acids (Parker et al., 2005; Song et al., 2004).  

Diverse pathways have been implicated in the biogenesis and loading of 

various small RNA species onto their respective Argonaute proteins (Siomi and 

Siomi, 2009). Double-stranded RNA (dsRNA), including the stem-loop precursors 

of miRNAs, are processed into mature 5´ monophosphorylated short RNAs by 

Dicer, an RNase IIII-like enzyme. The biogenesis of PIWI-interacting RNAs 

(piRNAs) is less well understood and appears to be independent of Dicer. In flies, 

PIWI-mediated cleavage events appear to define the 5´ ends of new piRNAs 

(Brennecke et al., 2007; Gunawardane et al., 2007), whereas 3´ end maturation 

occurs through an undefined mechanism that ultimately results in the 2´-O-

methylation of the 3´ residue (Klattenhoff and Theurkauf, 2008). In plants, fungi, 

and nematodes, silencing signals are amplified from target RNA by RdRPs. In 

some cases, RdRPs and Dicer function in a concerted manner to synthesize and 
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process dsRNA, producing siRNAs with 5´ monophosphate residues 

(Colmenares et al., 2007; Lee and Collins, 2007). In nematodes, RdRPs also 

catalyze the unprimed, de novo synthesis of 5´-triphosphorylated RNAs that 

appear to be loaded directly, without Dicer processing, onto members of an 

expanded clade of worm specific Argonautes (WAGOs) (Aoki et al., 2007; Pak 

and Fire, 2007; Sijen et al., 2007; Yigit et al., 2006). 

In plants, flies, and mammals, several classes of small RNA species are 

derived from transposable elements and repeat sequences as well as a subset of 

nonrepetitive protein-coding sequences and pseudogenes (Czech et al., 2008; 

Ghildiyal et al., 2008; Kasschau et al., 2007; Okamura et al., 2008; Tam et al., 

2008; Watanabe et al., 2008). In many cases, these small RNAs are derived from 

loci capable of dsRNA formation, including transposable elements, inverted 

repeats, and bidirectionally transcribed regions. Naturally occurring small RNAs 

are often coincident with pericentric heterochromatin and have been implicated in 

the establishment and/or maintenance of heterochromatin and in centromere 

function (Hall et al., 2003; Verdel et al., 2004). In C. elegans, endogenous small 

RNAs (endo-siRNAs) have been reported to target several hundred loci, 

including protein-coding as well as noncoding loci (Ambros et al., 2003; Lim et 

al., 2003b; Ruby et al., 2006). 

Here, we demonstrate that the Dicer-related helicase DRH-3 is essential 

for the biogenesis of RdRP-derived small RNAs in C. elegans. We have named 

these small RNAs 22G-RNAs based on their strong propensity for having a 5´ 
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guanosine (5´G) residue and a length of 22 nt. 22G-RNAs are abundantly 

expressed in the germline and are maternally deposited in oocytes. Surprisingly, 

the majority of 22G-RNAs target unique genome sequences, including ~50% of 

the annotated coding genes in C. elegans. In addition to DRH-3, we show that 

the RdRPs, RRF-1 and EGO-1, and the tudor-domain protein EKL-1 are required 

for the biogenesis of 22G-RNAs. 22G-RNAs can be divided into two major 

systems based on the associated Argonautes and their cofactors. One of these 

systems is dependent on RDE-3, MUT-7, and members of the WAGOs, including 

WAGO-1, while the second is dependent on the Argonaute CSR-1 and the 

nucleotidyl transferase CDE-1. The WAGO 22G-RNA system silences 

transposons,pseudogenes, and cryptic loci as well as certain genes, while the 

CSR-1 system functions to promote chromosome segregation (Claycomb et al., 

2009). Finally, we demonstrate a role for components of the nonsense-mediated 

mRNA decay (NMD) pathway in 22G-RNA biogenesis, although our results do 

not necessarily implicate NMD per se in 22G-RNA biogenesis. Our findings 

uncover a surprisingly rich maternal inheritance of small RNAs and raise many 

questions about the potential significance of these RNA species in the 

transmission of epigenetic information and genome surveillance. 
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RESULTS 

Novel Alleles of drh-3 Disrupt RNAi 
A previous study identified DRH-3 as a Dicer-interacting factor required for 

germline RNAi and for viability (Duchaine et al., 2006). Animals homozygous for 

the drh-3(tm1217) deletion (a putative null allele) are infertile, and RNAi targeting 

drh-3 results in a penetrant embryonic lethal phenotype with defects in 

chromosome segregation and in the production of both Dicer-dependent and 

Dicer-independent small RNA populations (Duchaine et al., 2006; Nakamura et 

al., 2007). 

Our screens for RNAi-deficient (Rde) strains identified three additional 

alleles of drh-3. The homozygous mutants bearing these non-null alleles are 

viable at 20ºC but are infertile at 25ºC. Each allele alters a distinct amino acid 

within the HELICc domain of the putative helicase (Figure III-1A), and, based on 

genetic tests, each behaves like a partial loss-of-function mutation. Consistent 

with previous work demonstrating that DRH-3 is required for germline RNAi 

(Duchaine et al., 2006), these drh-3 point mutants were defective for RNAi 

targeting the maternal gene pos-1 (Figure III-1B) and exhibited varying degrees 

of somatic RNAi deficiency. For example, the drh-3(ne3197) mutant was strongly 

resistant to RNAi targeting the somatically expressed basement membrane 

collagen let-2, while the ne4253 and ne4254 alleles are partially and fully 

sensitive, respectively (Figure III-1B). Although the drh-3 point mutants exhibit a 

range of phenotypes that increase in penetrance at 25ºC, they do not appear to  
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Figure III-1. Hypomorphic alleles of drh-3 are RNAi deficient 
and temperature sensitive 
 
A) Schematic of the drh-3 gene structure. Top panel: the conserved 

DExH and HELICc domains and the drh-3 lesions; bottom panel: the 

four missense alleles, as indicated, map the HELICc domain. 

 

B) RNAi deficient phenotypes of drh-3 mutants. The fraction of viable 

embryos produced by animals exposed to pos-1 RNAi food or the 

viability of animals reared on let-2 RNAi food at 20°C. 

 

(C and D) Brood size and Him phenotypes of drh-3 mutants at 20°C 

(dark bars) and 25°C (light bars). Mean brood size (top panel) of at 

least 10 hermaphrodites was determined by counting the number of 

embryos produced. The frequency of males among viable offspring was 

determined (bottom panel). 
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be classic temperature-sensitive mutants. Null alleles of many germline factors, 

including several RNAi-pathway genes, cause similar conditional-sterile 

phenotypes that likely reflect an underlying temperature-dependent process in 

the germline that is uncovered in these mutant backgrounds. The spectrum of 

phenotypes observed in the drh-3 point-mutant strains, including sterility, 

embryonic lethality, and high incidence of males (him) (Figures III-1C and III-1D), 

are similar to those observed for null alleles of several Mutator (Mut) class, Rde 

strains and, as observed with Mut strains, the RNAi defect associated with the 

drh-3 alleles was not affected by temperature: each allele was fully resistant to 

pos-1 RNAi at the permissive temperature of 20"C (Figure III-1A). 

To determine whether the drh-3 point mutants showed small RNA defects 

similar to the deletion mutant (Duchaine et al., 2006), small RNA populations 

were isolated and analyzed by northern blot to detect previously characterized 

endo-siRNAs (Figure III-S1). All of the previously examined DRH-3-dependent 

endo-siRNAs were dramatically reduced or undetected in the drh-3 point-mutant 

samples, while miRNA biogenesis was unaffected. These results are consistent 

with the notion that these alleles of drh-3 cause a partial loss of drh-3 function. 

 

DRH-3 Is Essential for the Biogenesis of 22G-RNAs  
In the course of analyzing the small RNA phenotypes associated with the drh-3 

mutants, we observed that a prominent small RNA species of ~22 nt was virtually 

absent in small RNA samples prepared from each of the drh-3 mutants (Figure 



 

 

114 

III-2A). A second prominent small RNA species of ~21 nt appeared to be 

unaffected in drh-3. Neither small RNA species was altered in samples prepared 

from a dcr-1(ok247) deletion mutant (Figure III-2A). Thin-layer chromatography 

experiments indicated that the 22 nt small RNAs have a 5´G and are resistant to 

terminator exonuclease, suggesting the presence of a 5´ cap or polyphosphate 

(Figure III-2B). The 21 nt small RNAs are comprised of both 5´G and 5´ uracil 

(5´U) species, the latter of which we recently identified as the 21U-RNAs, 

piRNAs, associated with PRG-1 (Batista et al., 2008). In contrast to 21U-RNAs, 

the majority of the 22 nt small RNAs were sensitive to periodate, indicating that 

the 3´ end is not modified (Ruby et al., 2006). Both 22 nt and 21 nt 5´G small 

RNAs were dramatically reduced in the drh-3 mutants, whereas 5´U small RNAs 

were unaffected. These data are consistent with the notion that the 22 nt small 

RNAs represent an abundant pool of 5´-triphosphorylated products of 

endogenous RdRP (Aoki et al., 2007; Pak and Fire, 2007; Sijen et al., 2007).  

To identify and characterize the DRH-3-dependent small RNAs on a 

genome-wide level, small RNAs between 18 and 26 nt were cloned from wild-

type and drh-3 mutant animals using a protocol compatible with cloning small 

RNAs bearing 5´ triphosphates. Illumina sequencing of wild-type and drh-3 

libraries yielded 2.34 million and 4.33 million reads that perfectly match the C. 

elegans genome, respectively. Consistent with our biochemical analyses, both 

the size distribution and first nucleotide composition of small RNAs were  
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Figure III-2. DRH-3 is required for the biogenesis of 22G-
RNAs 
 
(A) Ethidium bromide staining of small RNAs. The 22nt position is 

denoted by bracket. Note persistence of a ~21nt band in all samples. 

5.8S rRNA was used as loading control. 

 

(B) Thin-layer chromatography analysis of the first nucleotide of gel-

purified 22 and 21nt RNA, as indicated, from wild type and drh-3 mutant 

samples. Bars (right), the position of each nucleotide; “+”, treated with 

Terminator exonuclease; “-”, untreated. 

 

(C) Length and first nucleotide distribution of genome matching reads 

from wild type and drh-3 mutant small RNA libraries. Sense structural 

RNAs were excluded in the analysis. 

 

(D) Distribution of reads that match the indicated genome annotations 

sequenced in wild type and drh-3 mutant small RNA libraries. 

 

(E) Examples of small RNA distribution within rrf-1 and ama-1. The 

density of antisense reads is indicated by vertical bars above (wild-

type) or below (drh-3) the gene structure. 

 

(F) Genome-wide analysis of small RNA distribution within genes. Total 

antisense reads (y-axis) plotted according to the relative position (%) 

within all genes (x-axis; from 5´ to 3´). 
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dramatically altered in the drh-3 sample (Figure III-2C). First, wild-type reads  

peaked sharply at 21–22 nt, comprising 25% and 36% of the total reads, 

respectively. Whereas 21 nt reads had similar levels of 5´U and 5´G residues 

(11% and 10% of total reads, respectively), ~60% of 22 nt reads started with 5´G 

(~21% of total reads). Strikingly, reads with 5´G were strongly depleted from the 

drh-3 mutant sample, resulting in a dramatic enrichment of reads with 5´U. 

After removing structural RNA degradation products from the data set, 

about one-third of the wild-type reads matched to miRNAs (24.7%) and 21U-

RNAs (11%) (Figure III-2D). The most abundant class of small RNA reads from 

wild-type samples (34%) were antisense to protein-coding genes. The remaining 

small RNA reads were derived from transposons and other repetitive loci (~10%) 

as well as nonannotated loci (~20%). In contrast, the drh-3 sample was strongly 

depleted of endo-siRNAs targeting protein-coding genes, pseudogenes, repeats, 

and nonannotated loci but enriched proportionately for reads matching miRNAs 

and 21U-RNAs. Together, our biochemical and deep-sequencing data indicated 

that DRH-3 is essential for the biogenesis of an abundant class of endo-siRNAs 

expressed in C. elegans. Based on the propensity for 22 nt length and 5´G 

residue, we refer to these small RNAs as 22G-RNAs, which include what were 

previously identified as endogenous siRNAs (Ambros et al., 2003; Ruby et al., 

2006).  
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22G-RNAs Are Enriched at Transcript Termini 
While examining the distribution of 22G-RNAs targeting protein coding loci, we 

observed that 22G-RNAs were most abundant toward the 3´ end of many 

protein-coding transcripts. For example, 22G-RNAs were clearly enriched at the 

3´ ends of both rrf-1 and ama-1 transcripts in the wild-type sample and tapered 

toward the 5´ end (Figure III-2E). Interestingly, 22G-RNAs were also enriched at 

the 5´ end of rrf-1. Remarkably, the remnant of rrf-1 and ama-1 22G-RNAs that 

were cloned from drh-3 mutants mapped almost exclusively to the 3´ end of 

these loci. This pattern might be expected if RdRP initiates 22G-RNA biogenesis 

at or near the 3´ end of a transcript. 

To examine this on a larger scale, each transcript for which 22G-RNA 

reads occur in both wild-type and drh-3 mutant samples was divided into 20 

consecutive intervals of equal size. The total number of 22G-RNAs that map to 

each interval was plotted for both wild-type and drh-3. In wild-type, 22G-RNAs 

were more abundant toward both the 5´ and 3´ termini of predicted transcripts 

(Figure III-2F). This terminal distribution of 22G-RNAs represented a general 

trend for most target genes and was not caused by a few genes with a high 

number of small RNAs at either end (Figure III-S2). 

Markedly different results were obtained when this analysis was applied to 

the drh-3 mutant data. In drh-3 mutants, while 22G-RNAs were greatly depleted, 

they were not depleted uniformly across their targets (Figures III-2F and III-S2). 

The levels of 22G-RNAs within the first 15 bins (representing 75% transcript 
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length) were disproportionately depleted, resulting in a marked exponential trend 

in 22G RNA levels over the remaining 5 bins, peaking at the 3´ end. This 3´ end 

enrichment was evident for about 86% of the 22G-RNA targets. Together, these 

results raise the possibility that 22G-RNA biogenesis is initiated at the 3´ end of 

most targets, and the wild-type activity of drh-3 promotes the propagation of 22G-

RNA biogenesis by RdRP along the template RNA. 

 

Distinct Genetic Requirements for 22G-RNA 
To characterize the genetic pathways required for the biogenesis of 22G-RNAs, 

we examined a panel of RNAi-related mutants by northern blot analysis to detect 

small RNAs derived from representative abundant 22G-RNA loci. In addition, we 

performed small RNA cloning experiments to identify 22G-RNA populations that 

are enriched in the germline, soma, or oocyte (Figure III-S3, Tables III-S1 and III-

S2). This exercise revealed that most 22G-RNAs are germline expressed and/or 

maternal (Figure III-S3). As expected from our deep-sequencing experiments, we 

found that 22G-RNAs enriched in both the soma (Y47H10A.5) and germline 

(F37D6.3 and Tc1) were dependent on DRH-3. Likewise, RDE-3 and MUT-7 

were required for 22G-RNAs targeting all three loci (Figure III-3A), indicating that 

at least one aspect of the mechanism of 22G-RNA expression is shared by these 

somatic and germline loci.  

Previous work has shown that some somatic 22G-RNA loci (e.g., K02E2.6 

and X-cluster) are dependent on the ERI endo- RNAi complex as well as multiple  
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Figure III-3. Distinct requirements and genetic redundancy in 
22G-RNA pathways. 
 
(A) Northern blots of 22G-RNA expression in somatic gene Y47H10A.5, 

and germline targets F37D6.3 and Tc1 transposon in RNAi mutants. 

Loading controls: SL1 precursor and mir-66. 

 

B) Northern blots of germline 22G-RNAs in RdRP mutants. DA1316 is a 

congenic wild type control for the ego-1 and rrf-1 ego-1 mutants. 

Loading controls: SL1 precursor and mir-66. 

 

C) Coimmunoprecipitation analyses of DRH-3 from wild type and drh-3 

lysates. Total lysate (left panels) and DRH-3 immunoprecipitates (right 

panels) were analyzed by Western blot for candidate interacting 

proteins (indicated at right). The drh-3(0): the deletion allele (tm1217) 

control. Some DRH-3 protein detected in the drh-3(0) sample likely 

represents a persistence of maternal product. 
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Argonaute proteins that interact with secondary siRNAs produced by RdRP 

(Duchaine et al., 2006; Yigit et al., 2006). However, somatic 22G-RNAs derived 

from Y47H10A.5 (Figure III-3A) were independent of the ERI pathway genes rrf-3 

and ergo-1. Instead, Y47H10A.5 22GRNAs fail to accumulate in exogenous (exo-

) RNAi pathway mutants, including rde-4, rde-1, and rrf-1 as well as a derivative 

of the multiple Argonaute mutant MAGO (Yigit et al., 2006) with two additional 

Argonaute mutations (MAGO+2), suggesting that Y47H10A.5 22G-RNAs could 

be triggered by dsRNA.  

Germline 22G-RNAs appear to be independent of the exo- RNAi and ERI 

pathways. For example, mutations in dcr-1, rde-4, or ergo-1 caused no visible 

depletion in 22G-RNA populations based on ethidium bromide staining of small 

RNA (Figure III-2A) and were not required for the production of F37D6.3 or Tc1 

22G-RNAs (Figures III-3A and III-S4). These findings suggest that 22G-RNA 

biogenesis is not triggered by dsRNA at these and many other targets. Despite 

the biochemical evidence indicating that germline 22G-RNAs are the products of 

RdRP, we observed near-wild-type levels of 22G-RNAs in each of the individual 

RdRP mutants as well as in the MAGO+2 mutant (Figures III-3A and III-3B), 

suggesting additional redundancy within the respective RdRP and Argonaute 

families of proteins.  
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DRH-3, the Tudor-Domain Protein EKL-1, and Two Partially Redundant 
RdRPs Form a Core Complex Essential for 22G-RNA Biogenesis 

RRF-1 is required for RNAi in somatic tissues (Sijen et al., 2007), while 

EGO-1 is required for fertility and has been implicated in RNAi targeting some 

but not all germline-expressed genes (Smardon et al., 2000). The latter finding 

could be explained if RRF-1 is functionally redundant with EGO-1 and is 

expressed within an overlapping domain in the germline. This might also account 

for the persistence of germline 22G-RNA expression in the RdRP single mutants 

analyzed (Figure III-3). A noncomplementation screen to generate the rrf-1 ego-1 

double mutant yielded a rearrangement, neC1, that disrupts rrf-1 and results in a 

putative null allele of rrf-1 linked to the ego-1(om97) nonsense allele (Figure III-

S5). Northern blot analyses of small RNAs prepared from the rrf-1(neC1) ego-

1(om97) double mutant revealed that germline 22G-RNAs fail to accumulate in 

animals null for both rrf-1 and ego-1 (Figure III-3B), demonstrating that RRF-1 

and EGO-1 function redundantly in the germline to produce 22G-RNAs. 

Consistent with the overlapping functions of RRF-1 and EGO-1 for 

germline 22G-RNA biogenesis, both RRF-1 and EGO-1 interacted with DRH-3 in 

immunoprecipitation (IP) experiments (Figure III-3C). A recent study 

demonstrated that DRH-3 interacts with RRF-1 and is required for RdRP activity 

in vitro (Aoki et al., 2007). We previously identified DRH-3 as a component of the 

ERI complex, which includes the tudor-domain protein ERI-5 (Duchaine et al., 

2006). EKL-1 is a close homolog of ERI-5 and is required for fertility, RNAi, and 

chromosome segregation (Claycomb et al., 2009). Consistent with the 
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phenotypic similarities between drh-3, ego-1, and ekl-1 mutants (Duchaine et al., 

2006; Rocheleau et al., 2008; Vought et al., 2005), EKL-1 also interacted with 

DRH-3 (Figure III-3C). In addition, both EGO-1 and EKL-1 were among the most 

enriched proteins in DRH-3 IPs as assessed by multidimensional protein 

identification technology (MudPIT) (Figure III-S6). Although DCR-1 was detected 

in the DRH-3 IP by western blot, DCR-1 peptides were not identified in DRH-3 

IP-MudPIT experiments. Combined with our deep-sequencing data (below), 

these data suggest that DRH-3, EKL-1, and RdRP form a core RdRP complex 

that is essential for the biogenesis of 22G-RNAs in C. elegans.  

 

WAGO Family of Argonautes Function Redundantly and Interact with 
Germline 22G-RNAs 

Previously, we demonstrated that the accumulation of secondary siRNAs 

generated by RdRP is dependent upon multiple redundant WAGO proteins. The 

previously described MAGO mutant was strongly defective for RNAi and failed to 

accumulate certain endo-siRNAs (Yigit et al., 2006). However, the MAGO+2 

mutant, which includes ppw-2(tm1120) and C04F12.1(tm1637) as well as the 

MAGO mutations (Yigit et al., 2006), continued to express normal levels of 

germline 22G-RNAs targeting F37D6.3 and Tc1 (Figure III-3A), indicating that 

additional Argonautes interact with germline 22G-RNAs. 

Therefore, we generated additional combinations of mutants within the 

WAGO clade (Figure III-4A). This analysis identified other WAGO mutant 



 

 

125 

combinations with germline RNAi defects. For example, ppw-2(tm1120); 

f58g1.1(tm1019) double mutants were resistant to pos-1(RNAi), whereas the 

individual alleles are sensitive to pos-1(RNAi) (Yigit et al., 2006). A mutant 

lacking four of the branch III WAGOs, including ppw-2(tm1120), 

F55A12.1(tm2686), F58G1.1(tm1019), and ZK1248.7(tm1113), was resistant to 

germline RNAi (data not shown) but still produced normal levels of F37D6.3 

germline 22G-RNAs (Figure III-4B, Quadruple). Deletion of the branch III WAGO, 

wago-1(tm1414), resulted in a Quintuple Argonaute mutant with dramatically 

reduced germline 22G-RNAs (Figures III-4B and III-4C). Furthermore, the wago-

1(tm1414) mutant alone showed a reduction in F37D6.3 germline 22G-RNAs that 

was comparable to the Quintuple Argonaute mutant (Figure II-4C), demonstrating 

that WAGO-1 plays a key role in germline 22G-RNA function. Transgenic lines 

expressing a GFP::WAGO-1 fusion under the control of the wago-1 promoter 

revealed that WAGO-1 is expressed in the germline and localizes to perinuclear 

foci that resemble P granules (Figures III-4D and III-4E). 

Finally, we generated a strain lacking all 12 of the WAGO genes (not 

including predicted pseudogenes). This duodecuple mutant (MAGO12) is viable 

and resistant to RNAi and exhibits a high frequency of spontaneous males and 

temperature-dependent sterility at 25°C. Germline 22G-RNAs were undetectable 

by northern blot analysis in the MAGO12 strain (Figure III-4C), demonstrating a 

clear dependence of the 22G-RNAs on WAGOs. 
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Figure III-4. WAGO-1 and highly redundant WAGOs required 
for germline 22G-RNA biogenesis. 
 
(A) Phylogenetic representation of the WAGO proteins (see 

Supplementary Methods). WAGOs deleted in MAGO12 are indicated in 

red. 

(B), (C) Northern blots of F37D6.3 22G-RNAs in multiple WAGO 

mutants. Loading control: SL1 precursor (B) and tRNA staining (C).  D), 

E) Fluorescence microscopy of GFP::WAGO-1 and RFP::PGL-1, which 

colocalize to P granules in the germline. 
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WAGOs, RDE-3, and MUT-7 Are Required for Germline 22G-RNA Silencing 
Pathways 
To gain insight into the function of germline 22G-RNAs, we performed deep 

sequencing of small RNA populations from mutants with germline 22G-RNA 

defects. In addition, we generated transgenic animals that express a 3X 

FLAG::WAGO-1 fusion protein and deep sequenced the small RNAs that 

coprecipitate with WAGO-1. For each mutant, the fraction of reads matching 

coding genes, nonannotated loci, and repeat elements was reduced, with 

concomitant increases in the fraction of miRNA and 21U-RNA reads (Figure III-

S7). Conversely, the fraction of reads matching to a particular set of coding 

genes, nonannotated loci, and repeat elements were enriched in the small RNA 

library prepared from the WAGO-1 immunoprecipitate, while miRNAs and 21U-

RNAs were severely depleted (Figure III-5A).  

We next asked whether the reduction of 22G-RNAs in each mutant 

occurred globally or at particular loci. 22G-RNAs targeting protein-coding loci 

were nearly completely eliminated in the drh-3 and ekl-1 single mutants and in 

the rrf-1 ego-1 double mutant. Gene-targeted 22G-RNAs were far less likely to 

be depleted in the rde-3, mut-7, and MAGO12 mutant samples (Figure III-5B), 

with the notable exception that 22G-RNA species targeting a subset of genes 

with normally very high 22G-RNA levels were strongly depleted in each of these  
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Figure III-5 
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Figure III-5. Deep-sequence analyses identified at least two 
distinct 22G-RNA pathways in the germline. 
 
A) Graph depicting change in reads matching the indicated genome 

annotations between input and WAGO-1 IP samples. 

 

B) Change of 22G-RNAs derived from genes (red) or transposons 

(blue) in each mutant. Relative enrichment calculated as the ratio of 

mutant / (mutant + wild type) for ‘n’ genes or transposons. WAGO-1 IP 

enrichment calculated as WAGO-1IP / (WAGO-1IP + IP input). 

 

C) Venn comparison of genes depleted of 22G-RNAs (≥ 2-fold) in 

indicated mutants (loci below the lower dashed line in (B). 

 

D) The frequency of reversion of dpy-5::Tc5 as indicated (Ketting et al., 

1999). 

 

E) Quantitative RT-PCR analysis of 22G-RNA target expression in drh-

3 mutant (red) relative to wild-type (blue). WAGO and CSR-1 (gray) 

targets are indicated  
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mutants  (Figure III-S8). In contrast, 22G-RNAs were largely unaffected in an 

rde-4 mutant, which is required for ERI-class small RNAs (Duchaine et al., 2006); 

(Lee et al., 2006); J.V., W.G., and C.C.M., unpublished data). The 22G-RNAs 

depleted in the rde-3, mut-7, and MAGO12 mutants were almost completely 

overlapping (Figure III-5C and Table III-S3). Despite an overall reduction of 

22GRNA reads, a subset of 22G-RNA species was not depleted in rde-3, mut-7, 

and MAGO12 mutants (Figures III-5B and III-S8); in fact, some were increased in 

proportion. These WAGO-independent 22G-RNA populations are associated with 

and dependent upon another germline-expressed Argonaute, CSR-1 (Figure III-

S9) (Claycomb et al., 2009). The bimodal distribution of 22G-RNA loci indicates 

that at least two qualitatively distinct 22G-RNA pathways exist in the germline 

that depend on a core set of factors (DRH-3, EKL-1, and RdRP) whose small-

RNA products interact with distinct Argonautes. 

Consistent with the requirement for WAGO-pathway components in exo-

RNAi, the WAGO-associated 22G-RNAs appear to be involved in silencing their 

respective targets. Loci with the highest levels of 22G-RNAs in wild-type were 

consistently derepressed in the drh-3 mutant, as assessed by semiquantitative 

PCR with reverse transcription (qRT-PCR) (Figure III-5E) and Affymetrix tiling 

arrays (Figure III-S10). In contrast, CSR-1-associated 22G-RNAs do not appear 

to silence their targets (Claycomb et al., 2009), consistent with the biological 

distinction between these pathways. 

Previous work has shown that Tc elements are silenced in the germline by 
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an RNAi mechanism (Ketting et al., 1999; Sijen and Plasterk, 2003; Tabara et al., 

1999). Individual Repbase annotations, which include all major classes of 

transposons in C. elegans, were uniformly depleted of 22G-RNAs in drh-3, ekl-1, 

RdRP, rde-3, mut-7, and MAGO12 mutant samples, and most transposon 22G-

RNAs were enriched in the WAGO-1 IP sample (Figure III-5B). Transposon loci 

showed normal levels of 22G-RNAs in an rde-4 mutant sample (Figure III-5B) 

(Tabara et al., 1999). Thus, the transposon-silencing pathway in C. elegans 

consists of DRH-3, EKL-1, RdRPs, RDE-3, MUT-7, and multiple WAGOs, 

including WAGO-1. 

The drh-3 alleles described here display the hallmarks of Mut class, Rde 

mutants (Figure III-1). Indeed, spontaneous mutants with phenotypes that revert 

at high frequency were cloned from the drh-3 mutants, including a dpy-5::Tc5 

insertion. The frequency of reversion from Dumpy to wild-type, upon excision of 

Tc5 from dpy-5 in drh-3(ne4253), was similar to an allele of mut-7(ne4255) that 

was isolated in the same screen and almost 5-fold higher than the nonsense 

allele mut-7(pk204) (Figure III-5D). Similar results were obtained with an unc-

22::Tc1 insertion. Furthermore, Tc1 and Tc3 transcripts were derepressed in the 

drh-3 mutant (Figure III-5E), demonstrating that DRH-3 is required for transposon 

silencing.  

 

22G-RNAs and Surveillance 
Approximately 15% of 22G-RNA reads were derived from nonannotated loci and 
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were dependent on RDE-3, MUT-7, and MAGO12. These loci primarily 

correspond to unique intergenic sequences and could represent pseudogenes or 

cryptic loci that lack open reading frames and are unrecognizable by current 

bioinformatic approaches. In some cases, we could predict potential splicing 

patterns based on antisense reads spanning these nonannotated regions (Figure 

III-S11A). Consistent with this notion, 22G-RNAs derived from many loci 

annotated as pseudogenes were also depleted in rde-3, mut-7, and MAGO12 

mutants (Figure III-6A). As with annotated genes targeted by WAGO-associated 

22G-RNAs, qRT-PCR and microarray analysis demonstrated that both 

pseudogenes and cryptic loci targeted by 22G-RNAs were desilenced in the drh-

3 mutant (Figures III-6B and III-S12).  

Upon closer inspection of protein-coding loci targeted by the WAGO 

pathway, we noted that the 22G-RNA profile often did not correspond to the 

annotated gene prediction (Figure III-S11B and III-Table S4). In many cases, 

22G-RNAs mapped within predicted introns, suggesting that the corresponding 

introns were not spliced in the target RNA. In other cases, 22G-RNAs started or 

ended abruptly in the middle of the annotation and extended well upstream or 

downstream of the gene prediction, suggesting that the annotation is incomplete 

or incorrect. Lastly, we noticed a number of WAGO target genes with intron 
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Figure III-6 
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Figure III-6. WAGO-associated 22G-RNAs define a surveillance 
system. 
 
A) Enrichment or depletion of 22G-RNAs derived from ‘n’ annotated 
pseudogenes. 
 
B) Quantitative RT-PCR analysis of pseudogenes and cryptic loci targeted by 
WAGO pathway in drh-3 mutant (red) relative to wild-type (blue). 
 
C) Northern blots of 22G-RNAs in smg mutants grown at 20°C. Similar results 
were obtained with mutants grown at 25°C (not shown). Loading control: SL1 
precursor. 
 
D) Venn comparison of genes depleted of 22G-RNAs (≥2-fold) in mutants. 



 

 

136 

annotations in 3´ UTRs. Because pseudogenes and genes with 3´ UTR introns 

are expected to be targets of the NMD pathway, we asked whether 22G-RNA 

biogenesis was dependent on the PIN domain protein SMG-5, the Upf1 helicase 

SMG-2, and the phosphatidylinositolkinase SMG-1 (Anders et al., 2003; Glavan 

et al., 2006; Grimson et al., 2004; Page et al., 1999). 22G-RNAs derived from X-

cluster and K02E2.6, which has a 3´ UTR intron, were reduced in the null mutant 

smg-5(r860) and to a lesser extent in the non-null smg-2(r863) (Figure III-6C). 

K02E2.6 and X-cluster 22G-RNAs were unchanged in the temperature-sensitive 

mutant smg-1(cc546) at both permissive and nonpermissive temperatures 

(Figure III-6C). These data suggest a role for SMG-2 and SMG-5 in 22G-RNA 

biogenesis that is distinct from their recognized role in NMD and that NMD per se 

is not required for 22G-RNA biogenesis. 

Deep-sequence analysis of smg-5 mutant small RNAs revealed that SMG-

5 is required for the biogenesis of 22G-RNAs targeting 15% of WAGO-dependent 

22G-RNA target genes (Figure III-6C). Interestingly, SMG-5 was not required for 

most pseudogene-derived 22G-RNAs. Furthermore, the few published 

endogenous targets of NMD do not appear to be 22G-RNA targets. Roughly half 

of the SMG- 5-dependent 22G-RNA loci overlap with RDE-4-dependent 22G-

RNA loci (Figure III-6D), which includes both ERI-dependent and ERI-

independent 22G-RNA loci (J.V., W.G., and C.C.M., unpublished data). These 

findings indicate that multiple WAGO dependent 22G-RNA pathways exist, which 

together define a general surveillance system that silences transposons and 
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aberrant transcripts. 

 

DISCUSSION 

In this study, we have combined deep sequencing with the powerful genetics of 

C. elegans to identify and characterize an abundant class of endo-siRNAs that 

we call 22G-RNAs. In adult animals, 22G-RNAs are primarily germline expressed 

and are derived from unique sequences in the genome, including coding genes, 

transposons, pseudogenes, and nonannotated loci. Combining data from three 

small RNA libraries, including an Argonaute IP sample, we have identified 22G-

RNAs antisense to over 50% of the annotated protein-coding genes.  

DRH-3, EKL-1, and the partially redundant RdRPs, RRF-1 and EGO-1, 

form a core RdRP complex that functions in multiple 22G-RNA pathways (Figure 

III-7). RDE-3, MUT-7, and members of the WAGO clade, in particular WAGO-1, 

define a general 22G-RNA surveillance system that silences transposable 

elements and aberrant transcripts. A second pathway is dependent on CSR-1, 

which promotes kinetochore structure and chromosome segregation (Figure III-7) 

(Claycomb et al., 2009). Taken together, 22G-RNAs appear to engage targets 

that derive from both the actively expressed regions (CSR-1 associated), as well 

as the ‘‘silent’’ regions of the genome (WAGO-1 associated). These findings 

support a model in which the 22G-RNA pathways exert genome-scale 

surveillance important for maintenance of the germline. 
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Figure III-7 

Figure III-7. Model of Germlline 22G-RNA pathways 
required for genome surveillance in C. elegans 
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Dicer-Dependent versus Independent 22G-RNA Biogenesis 
It is formally possible that maternal DCR-1 is sufficient to generate primary 

siRNAs and that subsequent recruitment of the secondary RNAi machinery, 

dependent on RdRPs and WAGOs, results in a self-sustaining amplification cycle 

to produce 22G-RNAs in dcr-1 zygotic mutants. However, extensive northern blot 

experiments demonstrate that ERI-dependent 22G-RNAs and miRNAs are 

depleted in the dcr-1 mutant despite the maternal contribution of DCR-1, while 

germline 22G-RNAs are present at normal or, in some cases, elevated levels 

(Figure III-S4). Aside from miRNA and exo- RNAi complexes, the ERI complex 

appears to be the primary DCR-1 complex in C. elegans (Duchaine et al., 2006). 

We have shown that 22G-RNAs are largely independent of RDE-4, a DCR-1  

cofactor in both exo-RNAi and ERI pathways (Duchaine et al., 2006; Lee et al., 

2006; Tabara et al., 2002). Thus, we favor the model that the major 22G-RNA 

pathways are initiated in a DCR-1-independent fashion. New alleles of dcr-1 will 

be important in order to resolve this issue in the future. 

 

The Role of DRH-3 in 22G-RNA Biogenesis 
How might Dicer-independent 22G-RNA biogenesis be triggered, and what role 

does DRH-3 play in this process? A recent report has shown that drh-3 null 

mutant extracts are deficient in the in vitro synthesis of antisense small RNA by 

RRF-1 (Aoki et al., 2007). Our analysis of 22G-RNA levels in hypomorphic drh-3 

point-mutant alleles is consistent with a role for the conserved DRH-3 helicase 
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domain in 22G-RNA biogenesis. Two of the three drh-3 missense alleles alter 

highly conserved residues within the HELICc domain. The drh-3(ne4253) lesion 

(T834M) alters a residue that contacts RNA in the Vasa crystal structure; the drh-

3(ne3197) lesion (G840D) alters a residue that maps to the interface between the 

HELICc and DExH domains and coordinates the water molecule that is thought 

to be required for ATP hydrolysis (Sengoku et al., 2006). Both lesions are likely 

to abrogate ATPase and/or unwinding activity based on structural and 

biochemical studies with related proteins (Liang et al., 1994; Sengoku et al., 

2006). 

The enrichment of 22G-RNAs at the 3´ end of transcripts suggests that 

22G-RNA biogenesis begins at the 3´ end of target RNAs, followed by cycles of 

22G-RNA synthesis by RdRP and proceeding along the template toward the 5´ 

end. Interestingly, the 3´ localized 22G-RNAs are least diminished in the drh-3 

mutant, suggesting that these lesions do not prevent the initial loading of RdRP 

onto the template but rather interfere with the processivity of RdRP. DRH-3 could 

remove secondary structure from the template or facilitate transfer of the 22G-

RNA to downstream WAGOs, allowing RdRP to initiate a second round of 

synthesis at the next available C residue in the template RNA. Whatever the 

mechanism by which DRH-3 promotes 22G-RNA biogenesis, our data support 

the idea that RdRP is recruited to the 3´ end of target transcripts. Templates 

lacking a poly(A) tail are better substrates for RdRP in vitro (Aoki et al., 2007) 

suggesting that defective 3´ end formation may be one trigger for 22G-RNA 
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biogenesis. In Arabidopsis, decapped, misspliced, and misterminated transcripts 

are recognized by, and activate, the RNA-silencing machinery (Gazzani et al., 

2004; Herr et al., 2006). In fission yeast, two ß-nucleotidyl transferases, Cid12 

and Cid14, determine whether transcripts are recognized by the RdRP complex 

(Cid12) or the TRAMP/exosome complex (Cid14) (Buhler et al., 2007; Buhler et 

al., 2008; Motamedi et al., 2004). In cid14 mutants, transcripts that are normally 

turned over by the TRAMP surveillance pathway become substrates for the 

RdRP complex (Buhler et al., 2008), indicating that these pathways recognize a 

common feature. Perhaps the ß-nucleotidyl transferase RDE-3 and the 3´-to-5´ 

exonuclease MUT-7 function in an exosome-like pathway that recognizes and 

processes the 3´ end of aberrant transcripts, providing a signal that recruits the 

RdRP complex (Figure III-7) (Chen et al., 2005; Ketting et al., 1999; Lee et al., 

2006; Tabara et al., 1999). 

 

Multiple Distinct 22G-RNA Pathways 
Based on studies in other model systems, we expected a significant fraction of 

germline 22G-RNAs to be derived from transposons. Indeed, transposable 

elements are targets of 22G-RNAs. However, 22G-RNAs derived from unique 

sequences, both genic and intergenic, comprise a major fraction of the 22G-

RNAs that interact with WAGO-1. Furthermore, loci that produce the highest 

levels of 22G-RNAs appear to interact with WAGO-1 and are the most 

desilenced in the drh-3 mutant. Remarkably, CSR-1 interacts with a 
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nonoverlapping population of 22G-RNAs derived almost exclusively from protein-

coding loci (Figure III-S9) (Claycomb et al., 2009). Loci targeted by CSR-1 

produce fewer 22G-RNAs than WAGO-1 loci and are not desilenced in either csr-

1 or drh-3 mutants (Claycomb et al., 2009). These findings indicate that these 

pathways are mechanistically or functionally distinct (Figure III-7), a conclusion 

that is consistent with the genetically defined functions of CSR-1 and WAGO-1. 

Although both pathways seem to be important for an efficient response to foreign 

dsRNA (Claycomb et al., 2009; Yigit et al., 2006), it seems likely that the WAGO 

surveillance system is primarily involved, as WAGOs were shown to be limiting 

for RNAi and to interact directly with the secondary 22G-RNAs in the 

amplification cycle (Yigit et al., 2006). csr-1 mutants disrupt the perinuclear 

localization of the germline nuage (Claycomb et al., 2009) wherein WAGO-1 

resides and hence could indirectly affect WAGO-1 function by interfering with its 

proper localization within these germline structures. Further genetic and 

biochemical studies will be necessary to dissect the relative contributions of the 

WAGO-1 and CSR-1 pathways to RNAi. 

At least some of the specificity of CSR-1 and WAGO 22G-RNA pathways 

can be attributed to the involvement of distinct RdRP complexes. We have 

uncovered a role for RRF-1 in the germline, where it is redundant with EGO-1 in 

a surveillance pathway that regulates transposons, pseudogenes, and cryptic 

loci. However, EGO-1 alone is required for the 22G-RNAs that associate with 

CSR-1 (Claycomb et al., 2009). In addition, van Wolfswinkel et al. (van 
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Wolfswinkel et al., 2009) implicate the ß-nucleotidyl transferase CDE-1 as a 

specificity factor for EGO-1 in the chromosome segregation pathway, as EGO-1 

can also function with RDE-3 (a CDE-1 homolog) for the biogenesis of WAGO-

associated 22G-RNAs (Figure III-7). 

Despite clear genetic redundancy among the WAGOs, we expect that 

individual WAGOs normally function in distinct pathways (Figure III-7). Consistent 

with this idea, RDE-4 and SMG-5 are required for the biogenesis of distinct and 

overlapping subsets of WAGO-dependent 22G-RNAs. Domeier et al. (Domeier et 

al., 2000) showed that the exo-RNAi response is short-lived in smg-2, -5, and -6 

mutants. Our findings extend their work and provide molecular insight into the 

link between the NMD pathway and RNAi. Both studies connect 22G-RNA 

biogenesis to the translation apparatus and suggest that an alternative branch of 

the NMD pathway exists (Behm-Ansmant et al., 2007). Perhaps SMG proteins 

recognize a particular characteristic of 22G-RNA target transcripts and recruit the 

RdRP machinery. Our findings indicate that the signal is unlikely to be premature 

termination codons. Alternatively, NMD components could function as WAGO 

cofactors. WAGOs lack the catalytic residues important for Slicer activity and are 

not expected to cleave a target in vivo, suggesting that alternative turnover 

mechanisms are involved in silencing. It is interesting to note that the PIN 

domains of both SMG-5 and SMG-6 are structurally related to RNase H (Glavan 

et al., 2006), but only SMG-6 retains the catalytic residues important for the 

endonucleolytic cleavage that initiates NMD (Eberle et al., 2009; Huntzinger et 
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al., 2008). If WAGOs do indeed lack catalytic activity, perhaps SMG-6 could 

provide the endonuclease activity that reinforces the 22G-RNA amplification 

cycle for this set of targets. Additional complexity and bifurcation/convergence of 

WAGO-dependent 22G-RNA pathways is likely to emerge as we identify new 

factors required for 22G-RNA biogenesis.  

The Mutator phenotypes of mut-7, rde-3, and drh-3 could, in part, result 

from defects in WAGO-dependent chromatin silencing (III-7Figure 7). WAGO-

12/NRDE-3 is a nuclear WAGO required for cotranscriptional silencing (Guang et 

al., 2008) but not for the accumulation of 22G-RNAs. However, mutants that 

block the biogenesis of 22G-RNAs prevent nuclear localization of NRDE-3 and 

exacerbate derepression of NRDE-3 targets, suggesting additional WAGOs are 

involved in a parallel, posttranscriptional silencing pathway. It will be of interest in 

the future to dissect the potential role of 22G-RNAs in different chromatin 

mediated silencing pathways.  

 

Maternal Small RNAs  
In several respects, including transposon control and DCR-1- independent small 

RNA biogenesis, the WAGO 22G-RNA system is analogous to the Drosophila 

and vertebrate piRNA pathways. Furthermore, we have shown that the WAGO 

and CSR-1 22G-RNA systems are maternal and that factors involved in these 

pathways localize to germline P granules (Claycomb et al., 2009), which are 

thought to function in the repression and storage of maternal mRNAs (Rajyaguru 
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and Parker, 2009). This appears to be a common feature of germline small RNA 

pathways in animals, as PIWI family members also localize to P granules or 

nuage (Batista et al., 2008; Li et al., 2009; Malone et al., 2009). In each case, the 

localization of Argonaute proteins to P granules appears to be dependent on 

small RNA biogenesis. For the CSR-1 pathway, the P granule structure itself 

seems to be dependent on small RNA biogenesis (Claycomb et al., 2009). The 

close association between cytoplasmic P granules and nuclear pores (Pitt et al., 

2000) would allow Argonaute systems to survey the entire transcriptome as 

RNAs exit the nucleus and enter the P granule, reinforcing both the biogenesis 

and regulatory functions of small RNAs. Maternal small RNAs function in a 

number of epigenetic programs, from transposon silencing (Brennecke et al., 

2007; Tam et al., 2008; Watanabe et al., 2008) to imprinting (Davis et al., 2005) 

to the maternal-zygotic transition (Giraldez et al., 2006; Lykke-Andersen et al., 

2008). Our findings suggest that 22G-RNAs in C. elegans mirror the expression 

of many germline-expressed RNAs, including those destined for expression as 

well as silencing. Thus, 22G-RNAs and their Argonaute partners provide versatile 

regulators of both physical and epigenetic inheritance. 
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MATERIALS AND METHODS 

Worm Strains 

C. elegans culture and genetics were essentially as described (Brenner, 1974). 

 

Strains used in this study: 

The Bristol N2 strain was used as the wild-type strain. Alleles used in this study, 

grouped by chromosome: 

LGI: sago-2(tm894), smg-2(r863), ppw-1(tm914), ppw-2(tm1120), 

F55A12.1(tm2686), avr-14(ad1302), rde-3(ne3364), smg-1(cc546), smg-5(r860), 

ekl-1(tm1599), wago-1(tm1414), rrf-1(pk1417,neC1), ego-1(om97), drh-

3(tm1217, ne3197, ne4253, ne4254), hT2[qIs48](I;III), glp-4(bn2); 

LGII: Y49F6A.1(tm1127), ZK1248.7(tm1113), rrf-3(pk1426), C06A1.4(tm887), 

F58G1.1(tm1019); 

LGIII: C16C10.3(tm1200), eft-3(q145), dcr-1(ok247), qC1[neIs(myo-2::avr-15, 

rol-6(su1006), unc-22(RNAi))], mut-7 (pk204, ne4255), rde-4(ne337); 

LGIV: fem-1(hc17), M03D4.6(tm1144); 

LGV: T22H9.3(tm1186), ergo-1(tm1860), sago-1(tm1195), rde-1(ne300), avr-

15(ad1051), glc-1(pk54); 

X: R04A9.2(tm1116). 
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Strain List: 
Strain 
name 
 

Text name Genotype 

WM187 RdRP avr-14(ad1302) rrf-1(neC1) ego-1(om97)/hT2[qIs48] 
I; +/hT2 III; avr-15(ad1051) glc-1(pk54) V 

WM188 MAGO+2 

sago-2(tm0894) ppw-1(tm0914) ppw-2(tm1120) 
C04F12.1(tm1637) I; C06A1.4(tm0887) 
F58G1.1(tm1059) II; M03D4.6(tm1144) IV; sago-
1(tm1195) V 

WM189 Quadruple ppw-2(tm1120) F55A12.1(tm2686) I; 
ZK1248.7(tm1113) F58G1.1(tm1019) II 

WM190 Quintuple 
ppw-2(tm1120) F55A12.1(tm2686) 
R06C7.1(tm1414) I; ZK1248.7(tm1113) 
F58G1.1(tm1019) II 

WM191 MAGO12 

sago-2(tm894) ppw-1(tm914) ppw-2(tm1120) 
F55A12.1(tm2686) R06C7.1(tm1414) I; 
Y49F6.1(tm1127) ZK1248.7(tm1113) 
F58G1.1(tm1019) II; C16C10.3(tm1200) 
K12B6.1(tm1195) III; T22H9.3(tm1186) V; 
R04A9.2(tm1116) X 

WM192 Flag::WAGO-1 unc-119(ed3) III; neIs21[unc-119(+); 3xflag::wago-1] 
WM193 GFP::WAGO-1 unc-119(ed3) III; neIs22[unc-119(+); gfp::wago-1] 
DA1316  avr-14(ad1302) I; avr-15(ad1051) glc-1(pk54) V 
 

R06C7.1 translational fusions were created as follows: A 4.7kb NheI-SpeI DNA 

fragment released from cosmid R06C7 was inserted into the SpeI site of pBS-

KS+ (Stratagene). A BamHI site was inserted immediately after the ATG of 

R06C7.1 by site-directed mutagenesis. A fragment containing the GFP ORF from 

pPD95.75 (gift of A. Fire) or 3xFLAG was inserted into the BamHI site. Finally, a 

5.7 Kb EagI fragment containing the wild-type unc-119 gene was inserted into 

the NotI site of each plasmid. Microparticle bombardment (Praitis et al., 2001) 

was used to generate integrated lines expressing GFP::R06C7.1 or 

3xFLAG::R06C7.1. 
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Worm Culture 
For large cultures, synchronous animals were grown at 20°C for ~65-70hr 

and harvested as gravid adults. FLAG::WAGO-1 animals were grown at 24°C 

and harvested as young adults. Ooctyes were harvested from fem-1 (hc17) 

animals (propagated at 25°C for 50hr) as described (Aroian et al., 1997). glp-

4(bn2) were grown at 25oC for 50hr. drh-3(tm1217)/hT2[qIs48](I:III) and WM187 

were grown on NGM plates with 25 µg/L ivermectin at 20°C for 65-70hr. Animals 

were washed three times with M9 buffer (22mM KH2PO4, 42mM Na2HPO4, 

85mM NaCl, 1mM MgSO4), precipitated by gravity during each wash to remove 

E. coli, free embryos, and hatched L1 animals, if any, and then incubated in M9 

buffer for ~30 minutes to clear bacteria in the gut. Finally, animals were tightly 

pelleted using cold M9 buffer and either quickly frozen in a dry ice/ethanol bath 

and stored at -80°C or processed immediately for protein or RNA. 

 

Protein Immunoprecipitation 
Proteins were extracted in a stainless steel dounce using lysis buffer 

containing 25 mM Tris-Cl (pH 7.5), 0.15 M NaCl, 2.5 mM MgCl2, 0.05% Igepal, 1 

mM DTT, 1% SUPERase•In (Ambion), 0.4% phosphatase cocktail I (Sigma), 

0.4% phosphatase cocktail II (Sigma), and Mini Protease Inhibitor Cocktail (4 

Tablets/25 ml buffer, Roche), and cleared at 20,000 g for 10 min at 4°C. 

Immunoprecipitation of DRH-3 was performed as follows: ~20 mg of protein 

extract was precleared with 40 µl of Protein A/G PLUS-Agarose beads (Santa 

Cruz Biotechnologies) for 1hr at 4°C. The cleared extract was then incubated 
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with 10µl each of N-Ab and C-Ab for 1h at 4°C. Immune complexes were 

incubated with 50µl of Protein A/G PLUS-Agarose beads (Santa Cruz) at 4°C for 

1hr. Precipitated immune complexes were washed three times with ice-cold lysis 

buffer, and eluted with 2X sample buffer. A 10% sample was used for Western 

blot analysis. 

 

Western blot analysis 
Proteins were resolved by SDS-PAGE on 4-15% acrylamide gradient gels 

(Biorad) and transferred to Hybond-C Extra membrane (GE Healthcare). 

Membranes were blocked with 5% nonfat dried milk in PBST (137 mM NaCl, 2.7 

mM KCl, 10 mM Phosphate pH 7.4, 0.1% Tween-20) and incubated in the same 

buffer with primary antibodies at 4°C overnight. Membranes were washed 3 

times in PBST, incubated with HRP-conjugated secondary antibody in PBST 

(1:5,000) at room temperature for 1hr and again washed with PBST. 

Chemiluminescence was performed using the Western Lightening ECL Kit 

(Perkin Elmer) and visualized using a CCD camera and LAS-3000 Intelligent 

Dark-Box (Fujifilm). 

 

MudPIT Analysis of DRH-3 Immunoprecipitations 

The proteins eluted from DRH-3 immunoprecipitates were precipitated 

with 5 volumes of acetone. Protein pellets were washed with 5 volumes acetone 

and resusupended in digestion buffer (0.1% (w/v) Rapigest (Waters Corporation) 

in 50 mM Ammonium Bicarbonate). Samples were then reduced with TCEP 
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(Tris(2-Carboxyethyl)-Phosphine Hydrochloride), alklyated with iodoacetamide 

and digested with trypsin. Digested peptides were analyzed by LC/LC/MS/MS 

using an LTQ-Orbitrap mass spectrometer. Multidimensional chromotography 

was performed online with salt steps of 20%, 50% and 100% (MacCoss et al., 

2002). Tandem mass spectra were collected in a data-dependent manner with up 

to 5 ms2 scans performed for each initial scan (m/z range 400-1800).  

The search program Prolucid was used to match data to a database 

obtained from Wormbase (WP180). Peptide identifications were filtered using 

DTASelect program (Tabb et al., 2002). The AC fold feature of the program 

Pattern Lab (Carvalho et al., 2008) was used to compare DRH-3 IPs from wild-

type N2 and two drh-3 missense mutants (ne4253 and ne3197) to a DRH-3 IP 

from the deletion allele (tm1217). Proteins more than 5-fold enrichment in the 

non-deletion strain and a minimum p-value of 0.0001 were considered significant. 

 

Antibody generation and purification 
Antibodies used in this study include: (1) affinity-purified, anti-DRH-3 

polyclonal (see Supplementary materials); (2) anti-DCR-1 polyclonal (Duchaine et 

al.,  2006); (3) affinity-purified, anti-EKL-1 ((Claycomb  et  al.,  2009) cosubmitted); 

(4) affinity-purified, anti-RRF-1 polyclonal (see Supplementary materials); (5) 

affinity-purified, anti-EGO-1 polyclonal (see Supplementary materials); (6) anti-

FLAG M2 monoclonal (Sigma); (7) HRP-conjugated, anti-rabbit IgG secondary 

antibodies (Jackson Immunoresearch). 
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Polyclonal sera were raised in rabbits against a mixture of two N-terminal 

fragments (residues 1-222 and 125-360) and a C-terminal fragment (residues 

889-1119) to generate the sera DRH3-N-Ab and DRH3-C-Ab, respectively 

(Capralogics Inc). The recombinant proteins, each bearing the N-terminal peptide 

MGSSHHHHHHSSGLVPRGSH, were expressed in E. coli and purified on Ni-

NTA resin (QIAGEN). Antibodies were affinity-purified using the corresponding 

recombinant proteins and Affi-gel 10 (BioRad, 153-1000), as described 

(Duchaine et al., 2006). Polyclonal sera were raised against peptides for RRF-1 

(YIDNDKSSFHKPFYERQK) and EGO-1 (KSVRSSDDVQKINMRLLV) by Alpha 

Diagnostics Intl. (San Antonio, TX). Control Westerns showing specificity are 

provided Figure S6. 

 

Quantitative Real-time PCR 

Quantitative Real-time PCR (qRT-PCR) is as described (Batista et al., 

2008; Ruby et al., 2006). 100 µg RNA was digested with 20 U of DNase I 

(Ambion) at 37°C for 1 hr followed by phenol-extraction and ethanol-precipitation. 

cDNA was generated from 5µg of total RNA,  using random hexamers with 

Superscript III Reverse Transcriptase (Invitrogen). qRT-PCR was performed on 

the ABI Prism 7500 Sequence Detection System using Applied Biosystems 

SYBR Green PCR Master mix. Thermocycling was done for 40 cycles in a 15 µl 

reaction containing 7.5ul SYBR master mix, 0.3µl of 10µM primers, 2µl of cDNA, 

and 5.2ul dH2O. Primer sequences are provided in Table III-S5. Each 
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experiment was composed of triplicate wild type and drh-3 mutant samples 

respectively, with three technical replicates in the PCR reactions.  The 

expression level of each target RNA is first normalized to 18S RNA. The average 

ratio of target mRNA/18S RNA from 3 wild type samples was designated as 1 

and the standard deviation was proportionally adjusted. To quantify the change 

of RNA expression in the drh-3 mutants, the average ratio of the 3 mutant 

samples was further normalized to that of wild type samples with standard 

deviation proportionally adjusted. 

 

Microarray Analysis 

Probe signals were calculated using Affymetrix Tiling Analysis Software 

1.1.2 (bandwidth: 30; intensities: PM/MM) with three drh-3 (ne4253) replicates as 

the experimental dataset and three wild-type replicates as the control. Affymetrix 

probe coordinates (release WS170) were converted to release WS192 

coordinates using a Perl script. Gene expression values were defined as the 

geometric mean of all probe signals within a gene that had a P-value of <0.1. 

Actin was used to normalize expression values prior to comparison. 

 

Northern Blot Analysis 
Total RNA was extracted in a stainless steel dounce with TRI Reagent 

(MRC, Inc.), according to the manufacturer’s instructions, and separated using a 

Phase-Lock gel column (Eppendorf). Small RNAs less than ~200nt were 
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prepared from total RNA using mirVana™ miRNA Isolation Kit or reagents 

(Ambion, AM1560).  

For small RNA analysis, ~8µg of mirVana-enriched RNA was resolved on 

a 15% acrylamide/7M urea gel and transferred by electrophoresis to Hybond N+ 

(GE Healthcare, RPN303B) using a Trans-Blot SD (Biorad). For mRNA analysis, 

~15µg total RNA denatured with glyoxal loading buffer (Ambion Cat. No. 8551) at 

50°C for 1hr was resolved on a 1% agarose gel and transferred to Hybond N+ 

(GE Healthcare, RPN303B) membrane by capillary transfer with mild hydrolysis 

(Sambrook et al. ). For small RNA Northerns, membranes were probed with 32P-

labeled StarFire oligos (IDT) in Ultrahyb Oligo buffer (Ambion) at ~30°C. 

Northerns to detect the K02E2.6 mRNA (Duchaine et al., 2006) were probed with 

a T7-transcribed riboprobe in Ultrahyb buffer (Ambion) at 65°C. Starfire probe 

sequences are provided in Table III-S5. 

 

Biochemical analysis of small RNAs 

To analyze the 5´ nucleotide composition of small RNAs, gel-purified 21nt 

and 22nt RNAs were dephosphorylated using CIP (NEB), rephosphorylated with 

PNK (NEB) in the presence of γ-32P-ATP. 32P-labeled small RNAs were digested 

with RNase P1 (US Biological) and nucleotides were resolved on TLC plates 

(PEI-cellulose; Sigma) using 1 M LiCl, as described (Gu et al., 2009). The 3´ end 

status of gel-purified small RNA was determined by β-elimination analysis 

(Alefelder et al., 1998) 
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Small RNA cloning 
18-26 nt endogenous RNAs were purified from ~50 µg MirVana-enriched 

small RNAs using 15% PAGE/7 M urea, followed by overnight elution with buffer 

containing 10 mM Tris-Cl (pH7.5), 1 mM EDTA, and 0.3 M NaCl, and 

precipitation with 20 µg glycogen and 1 volume of isopropanol. Ethidium Bromide 

staining was used to visualize the RNA standards (18mer and 26mer RNAs) and 

the endogenous RNAs. A 5´ ligation-independent method was used to clone 

small RNAs from wild-type and glp-4 (bn2) animals. A 5´ ligation-dependent 

method was used to clone small RNAs from wild-type, drh-3(ne4253), mut-

7(pk204), rde-3(ne3364), MAGO12, ekl-1(tm1599), rrf-1(neC1) ego-1(om97), 

rde-4(ne337), and smg-5(r860). A TAP cloning method was used to clone small 

RNAs from fem-1(hc17) ooctyes. 

In the 5´ ligation independent cloning procedure, to enrich for RNAs with 

5´ triphosphate, the purified small RNAs were first incubated with 0.5 Unit/µl 

Polynucleotide Kinase (NEB, M0201L) in 40 µl reaction buffer containing 0.4 mM 

ATP and 0.5 Unit/µl SUPERase•In (Ambion) at 37°C for 1 hr, followed by phenol 

extraction and ethanol precipitation, and by incubation with 0.08 U/µl of 

Terminator 5´-Phosphate-Dependent Exonuclease (Epicenter Biotechnologies, 

TER51020) in 50 µl reaction buffer at 30°C for 45 min. The reaction was stopped 

by phenol extraction and the small RNAs were precipitated with 4 volume of 

ethanol. Small RNAs treated with Terminator exonuclease were cloned using a 
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5´ ligation independent cloning protocol essentially as described (Ambros et al., 

2003). In this method, small RNAs and 1µM of each standard (18mer GGC GTG 

TAG GGA TCC AAA and 24 mer GGC CAA CGU UCU CAA CAA TAG TG 

synthetic RNAs) were incubated with 10 µM of pre-adenylated DNA oligo 

(AppCTGTAGGCACCATCAAT/ddC/), 1 Unit/µl of SUPERase•In, 10% DMSO 

and 2 U/µl T4 RNA ligase (Takara Bio Inc., 2050A) in 10µl ligation buffer (50mM 

Tris-Cl pH7.5, 10mM MgCl2, 0.06µg/µl BSA, 10mM DTT). The 3´ ligated products 

were gel-purified as described above, and reverse transcribed in a standard 20µl 

reaction using SMART Technology (Clontech): 1) RNAs were annealed with 6 

pmole DNA RT oligo ATT GAT GGT GCC TAC AG in 9.6 µl H2O at 65°C for 5 

min and incubated on ice for 2 min; 2) the hybridized RNAs were incubated with 

1 µl PowerScript Reverse Transcriptase (Clontech Cat. PT3396-2) and 6 pmol of 

5´ template DNA oligo TCT ACA GTC CGA CGA TCG GG in 20 µl buffer 

containing 5mM MgCl2, 10mM DTT, 0.5 mM dNTP and 1 Unit/µl SUPERase•In at 

42°C for 1 hr; 3) the reaction was heat-inactivated at 85°C for 5min and small 

RNAs were digested with 0.1 U/µl RNase H at 37°C for 20 min. The cDNA was 

PCR-amplified using RT oligo and 5´ template oligo for 10~15 cylces with Ex Taq 

(Takara, RR001B) and further extended for 5~10 cycles to add Solexa linkers.  

In the 5´ ligation dependent procedure, small RNAs were incubated with 1 

U/µl Calf Intestinal Phosphatase (NEB) and 1 U/µl SUPERase•In, in buffer 3 

(NEB) at 37°C for 1hr, phenol-extracted twice, ethanol-precipitated, and then 3´ 

ligated as described above. The 3´-ligated-RNAs were phosphorylated with 1 
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U/µl Polynucleotide Kinase in buffer (NEB) containing 1 U/µl SUPERase•In and 2 

mM ATP at 37°C for 1 hr, phenol-extracted once, ethanol-precipitated, and 5´-

ligated with 2 Unit/µl T4 RNA ligase and 30 µM 5´ linker GTT CTA CAG TCC 

GAC GAT C in 10 µl 1X buffer containing 1 U/µl SUPERase•In, 0.1 µg/µl BSA 

and 10% DMSO. cDNA was synthesized using SuperScript III with the same 3´ 

RT oligo but without the 5´ template oligo. The same PCR strategy was used to 

obtain small RNA amplicons containing Solexa linkers.  

A “TAP” cloning method was used to minimize the cloning of rRNA and 

mRNA fragments that degrade during the purification of oocytes. Small RNAs 

purified from oocytes (see below) were incubated with 0.05 Unit/µl Tobacco Acid 

Pyrophosphatase (Epicenter Biotechnologies T19050) in 10 µl reaction buffer 

containing 1 Unit/µl SUPERase•In at 37°C for 1hr, followed by the phenol 

extraction and ethanol precipitation. The RNAs were then ligated and cDNA was 

amplified, as described above in the 5´ ligation dependent procedure, but without 

CIP and PNK treatment. Finally, cDNA was purified via a 10% native acrylamide 

gel, and sequenced using Illumina Genome Analyzer at UMASS CFAR and at 

Oregon State University Center for Genome Research and Biocomputing (Seo et 

al., 2004). 

To clone the oocyte small RNAs, functional ooctyes were obtained from 

fem-1 (hc17) animals as described (Aroian et al., 1997) which does not produce 

sperms and embryos at 25 oC, while accumulating lots of unfertilized oocytes.  

Therefore, the sample RNA should be free of sperm or embryonic RNAs. The 
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worms were precipitated in M9 buffer several times by gravity to remove any E. 

coli contamination. To obtain a high quality of oocytes, we only used Serotonin 

and Levamisole to induce oocyte-laying followed by purification via a 20 µm 

mesh. The oocytes were washed twice to remove cell debris and then were 

visually checked under microscope. During the whole process, we kept the 

worms intact and healthy at room temperature with gentle stirring, thus avoiding 

contamination from broken germline and somatic tissue. As a result, small RNAs 

derived from somatic target genes, such as Y47H10A.5 and C44B11.6, were 

depleted at least 20 fold in the oocyte library than in the wild type worm library. 

Furthermore, mir-35-42 family was enriched 7 fold in the oocyte than in the 

gravid adult sample, reaching ~ 70% of total miRNAs. In the mir-35-42 family, 

mir-38 was highly expressed, covering more than 1/3 of total miRNA reads in the 

oocytes. Although this profile is similar to that of miRNA in the embryos, there 

were some apparent discrepancies between the oocyte sample and embryonic 

sample because mir-41 was ~24 higher in the embryos than in the oocytes.  

Therefore, we believe we purified a highly pure oocyte RNA sample and free of 

contamination from germline and somatic tissue, sperm and embryos. 

 

FLAG::R06C7.1 IP-cloning of small RNA 

Approximately two million FLAG::R06C7.1 young adult worms grown at 

24°C were washed successively in M9, ice-cold water and ice-cold 20 mM 

Hepes-KOH (pH 7.3) plus 1mM DTT, 180 microgram/ml PMSF, 4 microgram/ml 
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Pepstatin A. The worm pellet (~1.3 ml) was suspended with the same volume of 

lysis buffer (20 mM Hepes-KOH [pH 7.3], 110 mM K-acetate, 2 mM Mg-Acetate, 

0.1% Tween 20, 0.5 % Triton X100, 1 mM DTT, 180 µ g/ml PMSF, 4 µg/ml  

Pepstatin A, complete protease inhibitor cocktail (Roche), 1/5000 of Antifoam B 

Emulsion (Sigma)) and homogenized with a dounce homogenizer. The lysate 

was cleared twice at 16,000xg for 15 minutes at 4°C. ~12mg of lysate was 

precleared by adding 250µl of Protein G magnetic beads (Roche) and rocking at 

4°C for 1hr. Precleared lysate was incubated with 10µg of anti-FLAG antibodies 

M2 (Sigma) at 4°C for 1hr. Immune complexes were capture by adding 50µl 

Protein G beads and gently rocking for 1hr at 4°C. Beads were washed with lysis 

buffer 3x15min at 4°C and once with wash buffer (100 mM Ammonium-acetate, 

0.1 mM MgCl2, 0.2 % Tween 20, pH 7.5) for 5 minutes at room temperature. 

Beads were resuspended in 50µl wash buffer and extracted with 200 µl Trizol. 

Small RNAs were precipitated with 1/10th 3M NaOAc and 3 volumes of ethanol 

in the presence of 20µg of glycogen, washed with 80% of ethanol, and 

resuspended in 20µl of water for RNA cloning. 

 

Small RNA Analyses 

All small RNA analyses were performed using custom Perl (5.8.6) scripts 

and Wormbase release WS192. The following modifications or additions were 

made to WS192: 22 mitochondrial tRNAs and 4 non-coding RNAs (ncRNAs) 

were manually repaired to complete the missing chromosome strand or 
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sequence information; mir-1829a was reannotated to the Crick strand at the 

same WS192 locus; 79 transcripts annotated as both protein coding genes and 

ncRNAs were considered as protein coding genes to avoid redundancy; the 

mature lin-4 sequence (TCCCTGAGACCTCAAGTGTGA) was added; 21U-RNAs 

were as defined (Batista et al., 2008; Ruby et al., 2006).  Finally, cDNA loci 

included in our analysis were 20186 genes, 1467 pseudogenes, 156 miRNAs, 

15915 21U-RNAs, 159 ncRNAs, 630 tRNAs, 138 snoRNAs, 21 rRNAs, 94 

snRNAs, 1 scRNA, complex repeats annotated by HMMFS and RepeatMasker, 

simple repeats including tandem and inverted repeats, and consensus repeat 

sequences annotated by RepBase 13.07.  

In the 5´-ligation-independent procedure, Solexa reads containing the 5´ 

linker sequences (GGG) at position 1-3 and a perfect match to the first 6nt of the 

3´ linker (CTGTAG) are used to extract the inserted sequences. Inserts 17-27 nt 

long were used to identify perfect matches to the C. elegans genome, cDNAs, 

introns, repeats, and transposons. A single match returned a unique genomic 

locus, which was defined by a chromosome number, the start and the end of the 

matched sequence on the chromosome, and its orientation. The genome 

analysis returned all the matches but those to exon-exon junctions, which were 

obtained through cDNA analysis using WS192 cDNA annotations. To calculate 

small RNA reads derived from a single genomic locus, the reads of a unique 

small RNA were normalized using the total genomic loci it matched (repeat-
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normalized reads), assuming that each of these loci contributes the same 

amount of this RNA.  

For 5´-ligation-dependent libraries, the same procedure was used except 

that: 1) no 5´ linker was used to extract the inserts and 2) 28-30 nt small RNAs 

were also included in the analysis. 

To compare 22G-RNAs derived from a gene, transposon, or pseudogene 

between two samples, each sample was normalized using the total number of 

reads less structural RNAs, i.e. sense small RNA reads likely derived from 

degraded ncRNAs, tRNAs, snoRNAs, rRNAs, snRNAs, and scRNAs. 

Degradation products of structural RNAs map to the sense strand, with a poorly 

defined size profile and 1st nucleotide distribution. At least twenty-five 22G-RNA 

reads per million, non-structural reads in one of the two samples was arbitrarily 

chosen as a cutoff for comparison analyses. A change of 2-fold or more between 

samples was chosen as an enrichment threshold. Because some 21U-RNAs or 

miRNAs overlap with protein coding genes, reads derived from miRNAs loci 

within a window of ±4nt and all the known 21U-RNAs were filtered out prior to 

comparison analysis. 

 

Relative distribution of small RNAs along protein coding loci 
To analyze the relative distribution of 22G-RNAs along all protein coding 

genes, each gene was divided into 20 equal bins, named bin 1 to 20 according to 

their relative distance from the 5´ end of the gene and each bin representing 5% 

of the coding potential. For gene with multiple splice forms, all the coding exons 



 

 

161 

of this gene were collapsed into one spliced genomic locus according to the 

genomic coordinates, and then the spliced locus was divided into 20 bins. 

Repeat-normalized reads of 22G-RNAs of each gene were then sample 

normalized using the total non-structural reads, and then were mapped to each 

bin. To simplify the analysis, especially for small RNAs spanning exon-exon 

junctions, 50% reads of each 22G-RNA were assigned to the start bin where the 

5´ end of the 22G-RNA was located and the rest 50% were assigned to the end 

bin where the 3´ end was located. In Wormbase WS192, 9367 genes don't have 

any annotated 3´UTRs, while 10819 genes have at least one splicing forms with 

annotated 3´ UTRs, among which 8113 genes have annotated 3´UTRs for all the 

splicing forms. Only considering genes with at least one 22G-RNAs in both drh-3 

mutant and wild-type animals, we analyzed the small RNA distribution both on 

6103 genes with 3´UTRs from 10819 3´UTR-containing genes, and on 1916 non-

3´UTR genes. The total number of reads in each bins was calculated by 

summing the corresponding bin of each gene. This was done for all the 

annotated protein-coding genes as well as those with annotated 3´UTRs and 

those without an annotated 3´UTR. To exclude the possibility that an individual 

gene could affect the overall distribution significantly, we performed a different 

but similar analysis, in which the contribution of a given gene to each of the 20 

bins was represented by the 22G-RNA percentage in each of the 20 bins along 

the gene. 
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Phylogenetic analysis 

T-Coffee was used for protein alignment (Poirot et al., 2003). Bootstrapping and 

neighbor joining methods using the Phylip software package were used to create 

the cladogram (Felsenstein, 2005). 
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Figure III-S1 
 

Figure III-S1. drh-3 Mutants Behave Like Loss-of-
Function for Endogenous Small RNA Biogenesis 
 
(A) Northern blot analyses to detect K02E2.6 mRNA and endo-

siRNAs and the tiny noncoding RNA tncR7 in wild-type and drh-3 

mutant animals. 

 

(B) Northern blot analysis of X-loci small RNAs and mir-36 

miRNA in wild-type, drh-3, and dcr- 1 mutant animals. 5S rRNA 

is shown as a loading control. 
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Figure III-S2 

Figure III-S2. The Relative Distribution of Small RNAs Along 
Protein-Coding Genes 
 
The relative fraction of antisense reads was determined along the length of 

each transcript, such that the total contribution equals 1.0. The graph 

represents the relative contribution of small RNAs for all transcripts (y axis) 

in both wild-type (diamonds) and drh-3 mutant (squares) samples at the 

relative position along all transcripts (x axis; 5´ to 3´). 
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Figure III-S3 
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Figure III-S4 

Figure III-S4. Northern Analysis of Dicer-Dependent or 
Independent Small RNAs 
 
(A) Northern analysis of miRNAs, as indicated. Wild-type worms 
were grown for 72 hr at 20°C, and dcr-1(ok247) mutants were 
grown at 20°C for 72 hr and 85 hr to deplete the maternal Dicer 
in the adult worms. SL1 precursor was used as loading control 
for all the northern blots below. Mature miRNAs and 
accumulated miRNA precursors in dcr-1(ok247) mutant were 
labeled on the right. 
 
(B) Northern analysis of Dicer-dependent 22G-RNAs (ERI target 
genes) and Dicer-independent 22G-RNAs, as indicated. 
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Figure III-S5 

Figure III-S5. Noncomplementation Screen to Generate rrf-
1 ego-1 Double Mutants 
 
The rrf-1 and ego-1 genes reside as tandem loci on chromosome I, 

separated by only ~650 bp of intergenic sequence, making it 

difficult to generate double mutants by recombination. To 

circumvent this complication, we performed an rrf-1 

noncomplementation screen to generate rrf-1 ego-1 double 

mutants. P0 animals of the indicated genotype were mutated using 

diepoxybutane. F1 progeny were selected for viability on bacteria 

expressing let-2 dsRNA to isolate candidate rrf-1 ego-1 double 

mutant chromosomes balanced by an rrf-1 mutant chromosome. 

This screen yielded a rearrangement, neC1, that disrupts rrf-1, 

resulting in a putative null allele of rrf-1 linked to the ego-1(om97) 

nonsense allele. The rrf-1(neC1) ego-1(om97) / rrf-1(0) animals are 

resistant to somatic RNAi but sensitive to germline RNAi, and 

segregate sterile rrf-1(neC1) ego-1(om97) self progeny. 
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Figure III-S6.  
Identification of DRH-3-Interacting Proteins Using MudPIT 
Analysis 
 
(A) Proteins co-immunoprecipitated with DRH-3 in wild-type and 
drh-3 mutant samples. Green boxes: protein enriched more than 
5-fold in wild-type or drh-3 mutants over drh-3 deletion strain with 
a P-value of 0.0001; gray boxes: not enriched. 
 
(B) Western blot analysis to detect RRF-1 and EGO-1 in wild-
type samples and deletion mutants as indicated. α -tubulin was 
as used as loading control. 

Figure III-S6 
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Figure III-S7 

Figure III-S7. Distribution of Small RNA Reads in 
Various Mutant Backgrounds 
 
Distribution of reads that match the indicated genome 
annotations sequenced in wild-type and mutant small RNA 
libraries. DA1316 is the congenic, wild-type control for rrf-1 ego-1 
and ekl-1 mutant libraries. 
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Figure III-S8 
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Figure III-S8. Normally Abundant 22G-RNA Loci Are Depleted in 
rde-3, mut-7, and MAGO12 Mutants and Enriched in WAGO-1 IP 
Samples 
 
(A-C) Enrichment or depletion of 22G-RNAs derived from annotated 

protein-coding loci in the rde-3 (A), mut-7 (B) and MAGO12 (C) mutant 

samples (relative to wild-type) was plotted with respect to the number of 

small RNAs derived from each gene in the wild-type sample. Loci with at 

least 10 reads per 106 total (not including structural) reads in the wild-type 

sample were analyzed. Relative enrichment was calculated as the ratio of 

mutant / (mutant + wild-type) for each feature. Values approaching 0 

indicate depletion of 22G-RNAs, while values approaching 1 indicate 

enrichment. Dotted-lines denote 2-fold enrichment (upper) and 2-fold 

depletion (lower). Germline 22G-RNA loci (left) and Somatic 22G-RNA 

loci (right) represent loci that were at least 2-fold reduced or increased, 

respectively, in the glp-4(bn2) mutant. 

 

(D) Enrichment or depletion of 22G-RNAs derived from annotated protein-

coding loci in the FLAG::WAGO-1 IP samples (relative to wild-type) was 

plotted with respect to the number of small RNAs derived from each gene 

in the FLAG::WAGO-1 input sample. Relative enrichment was calculated 

as the ratio of IP / (IP + input) for each feature. 
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Figure III-S9 
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Figure III-S9. WAGO-1 and CSR-1 Bind Distinct 22G-RNAs 
 
The enrichment or depletion of 22G-RNA protein-coding loci in the 

CSR-1 IP (Claycomb et al., 2009) was compared to the WAGO-1 IP 

(Figure S5). Loci increased 2-fold or more only in the CSR-1 IP are 

in the upper left quadrant (dark gray). Loci increased 2-fold or more 

in the WAGO-1 IP are in the lower right quadrant (light gray). Loci 

increased 2-fold or more in both IPs are in theupper right quadrant 

(white). Upper panel, germline loci; lower panel, somatic loci. 
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Figure III-S10 
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Figure III-S10. The Expression Change of WAGO 
Targets in the drh-3 Mutant Relative to Wild- Type as a 
Function of Small RNA Number 
 
Expression ratio expressed as drh-3 / (drh-3 + wild-type) was 
determined for each WAGO target, as well as for each target 
within the indicated range of small reads in the wild-type sample. 
“n” loci with a significant microarray signal were analyzed. Top 
and bottom solid lines in each category represent the highest 
and lowest values (i.e. most upregulated and most 
downregulated) respectively. The top and bottom ends of each 
box represent the 75th and 25th percentile, respectively; and the 
solid line within the box represents the median value. Dotted-
lines denote 2- fold upregulation (upper) and 2-fold 
downregulation (lower). 
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Figure III-S11 
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Figure III-S11. Examples of Nonannotated Genomic 
Loci of 22G-RNAs and R06 IP Target Loci 
 
(A) Examples of nonannotated genomic loci of 22G-RNAs 

between srbc-14 and str-125, and between btb-4 and bath-19. 

The microarray signals (upward) and small RNA profile 

(downward) are shown. For the small RNA profile, each bar 

represents the number of small RNAs at each nucleotide 

averaged across a 10 bp window. 

 

(B) Examples of 22G-RNA profiles from annotated protein-

coding loci T01A4.3, F55A3.6, and osm-3, which are enriched in 

the WAGO-1 IP. 
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CHAPTER IV 
 

Sequential Rounds of RNA-dependent RNA 
Transcription Drive Endogenous Small-RNA 

Biogenesis in the ERGO-1/Argonaute Pathway 
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Author Contributions 

 

Chapter IV contributions. J.Vasale contributed to this section via the following: 

Small RNA isolation and purification of small RNAs in RdRP mutant (single and 

multiple mutant combinations of mutants: ego-1; rrf-1, rrf-2 and rrf-3) strains as 

well as in ergo-1 mutant strain in addition to preparation of small RNA cDNA 

libraries and cloning. Performed ERGO-1 IP/Northern, Western, and IP/ small 

RNA cloning experiments, and contributed to analyses and interpretation of 

deep-sequencing results. These data are presented in Figure IV-1, Figure IV-2, 

Figure IV-3, Figure IV-4, Figure IV-5, Figure IV-S1, Figure IV-S2, Figure IV-S4, 

Figure IV-S5, Table IV-S1, Table IV-S3, and Table IV-S4. Chapter IV of this 

thesis was published as "Sequential rounds of RNA-dependent RNA 

Transcription Drive Endogenous Small-RNA Biogenesis in the ERGO-

1/Argonaute Pathway”, *Vasale JJ, *Gu W, Thivierge C, Batista PJ, Claycomb 

JM, Youngman EM, Duchaine TF, Mello CC, Conte D, Jr. (2010); Feb 23;107 

(8):3582-7 Proceedings of the National Academy of Sciences of the United 

States of America. Authors need not obtain permission for use as part of their 

dissertations 
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SUMMARY 

Argonaute proteins interact with distinct classes of small RNAs to direct 

multiple regulatory outcomes. In many organisms, including plants, fungi, and 

nematodes, cellular RdRPs use Argonaute targets as templates for amplification 

of silencing signals. Here, we show that distinct RdRPs function sequentially to 

produce small RNAs that target endogenous loci in Caenorhabditis elegans. We 

show that DCR-1, the RdRP RRF-3, and the dsRNA-binding protein RDE-4 are 

required for the biogenesis of 26-nt small RNAs with a 5′ guanine (26G-RNAs) 

and that 26G-RNAs engage the Piwi-clade Argonaute, ERGO-1. Our findings 

support a model in which targeting by ERGO-1 recruits a second RdRP (RRF-1 

or EGO-1), which in turn transcribes 22G-RNAs that interact with worm-specific 

Argonautes (WAGOs) to direct gene silencing. ERGO-1 targets exhibit a 

nonrandom distribution in the genome and appear to include many gene 

duplications, suggesting that this pathway may control over expression resulting 

from gene expansion. 

 

INTRODUCTION 

RNA interference (RNAi) is a mechanism of gene regulation directed by 

Argonaute proteins in conjunction with their sequence-specific small RNA 

cofactors. A multitude of distinct Argonaute-mediated regulatory modules have 

been identified in plants, fungi, and animals (Chapman and Carrington, 2007). In 

all of these pathways, base pair interactions between the small RNA and a target 
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molecule provide specificity, whereas the Argonaute protein, which contains a 

conserved nuclease domain, can direct silencing through target cleavage or 

through recruitment of transcriptional or posttranscriptional regulators. 

Argonaute pathways can be triggered by natural or exogenous sources of 

double-stranded (ds)RNA. The Dicer family of RNase III related enzymes 

processes dsRNA into small RNAs of 20–25 nucleotides (nt) in length (Ghildiyal 

and Zamore, 2009). For example, micro (mi)RNAs are processed from 

genomically encoded hairpins and mediate Argonaute-dependent silencing at the 

posttranscriptional level (Grishok et al., 2001; Hutvagner et al., 2001; Lee et al., 

1993). Short interfering (si) RNAs are processed from both endogenous and 

exogenous sources of dsRNA and direct Argonaute-dependent cleavage of 

target mRNAs (Ghildiyal and Zamore, 2009). siRNAs processed from primary 

dsRNA sources (for example, hairpins or convergent transcripts) are referred to 

as primary siRNAs. In fungi, plants, and nematodes, RdRPs are required for the 

amplification of silencing signals. siRNAs that are processed from dsRNA 

generated by RdRP are referred to as “secondary siRNAs.” In C. elegans, 

secondary siRNAs appear to be directly synthesized by RdRP, independently of 

DCR-1, and are loaded onto Argonautes (Aoki et al., 2007; Pak and Fire, 2007; 

Sijen et al., 2007). 

In C. elegans, two RdRPs, RRF-1 and EGO-1, are required for the 

biogenesis of an abundant class of endogenous small RNAs called 22G-RNAs 

(Gu et al., 2009), which are predominantly 22 nt in length and contain a 
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triphosphorylated 5′ guanine. Interestingly, 22G-RNAs are antisense to more 

than 50% of annotated genes (Gu et al., 2009). Two major 22G-RNA systems 

exist in C. elegans: those that interact with the Argonaute CSR-1 and those that 

interact with the expanded family of worm-specific Argonaute (WAGO) proteins 

(Claycomb et al., 2009; Gu et al., 2009). The CSR-1/22G-RNA system is 

required for the proper organization of holocentric chromosomes and is essential 

for chromosome segregation. The WAGO/22G-RNA system provides 

surveillance against transposable elements and aberrant endogenous transcripts 

(the endo- RNAi pathway) and is also required for the response to foreign dsRNA 

(the exo-RNAi pathway). 

The ERI endo-RNAi pathway was defined by mutations that result in an 

enhanced exo-RNAi response (Duchaine et al., 2006; Kennedy et al., 2004). The 

Eri phenotype appears to reflect relaxed competition for limiting RNAi factors that 

are also required for the response to exogenous dsRNA (Duchaine et al., 2006; 

Nakamura et al., 2007; Yigit et al., 2006). The RdRP RRF-3 was identified as an 

Eri mutant (Simmer et al., 2002) and as a physical interactor with Dicer and other 

proteins defined genetically as Eri factors (Duchaine et al., 2006). On the basis of 

these and other studies, it was proposed that RRF-3 produces endogenous 

dsRNA that is processed by Dicer and loaded onto the Argonaute, ERGO-1, for 

which loss-of-function also results in an Eri phenotype (Duchaine et al., 2006; 

Yigit et al., 2006). WAGOs were identified as possible secondary Argonautes in 

the ERI pathway (Yigit et al., 2006). 
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Here, we show that the ERI pathway is indeed a two-step Argonaute 

pathway and that the pathway also involves two separate rounds of RdRP-

mediated small RNA biogenesis. We show that, in embryos, ERGO-1 interacts 

with the previously described 26-nt small RNAs with a 5′ guanine (26G-RNAs) 

(Ruby et al., 2006). Furthermore, components of the ERI complex, including 

RRF-3, DCR-1, and the dsRNA-binding protein RDE-4, are required for the 

biogenesis of both 26G- and 22G-RNAs on Eri targets. In contrast, RRF-1 and 

WAGOs are required for the accumulation of 22G- but not 26G-RNAs. Hence, we 

propose that 26G-RNAs are the primary small RNAs in the ERI pathway that 

drive the downstream production of 22G-RNAs. Many ERGO-1 26G-RNA targets 

appear to be ancient duplications, suggesting that the function of this pathway 

may be to buffer the expression of rapidly expanding gene families. 

 

 

RESULTS 

 

ERGO-1 Interacts with 26G-RNAs 
Previous work identified ERGO-1 as an Argonaute that functions in the ERI 

endo-siRNA pathway (Yigit et al., 2006). To identify small RNAs that interact with 

ERGO-1, we deep sequenced small RNAs prepared from ERGO-1 

immunoprecipitation (IP) and input samples. Developmental expression studies 

indicated that ERGO-1 was primarily expressed in embryos and was virtually 
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absent from L3 and L4 larvae and young adults (lacking embryos) (Figure IV-1A 

and Figure IV-S1). Therefore, ERGO-1 IP experiments were performed using 

embryo lysates. Analyses of both size and first-nucleotide distribution of reads 

revealed that 26G-RNAs were enriched ≈2.2-fold in the ERGO- 1 IP sample over 

the input library (Figure IV-1B). Although 21- to 23- nt small RNAs with a 5′ uracil 

(5′U), including miRNAs and 21U-RNAs, were cloned at high levels, they were 

not enriched in the ERGO-1 IP sample (Figure IV-1B). The modest enrichment of 

26G-RNAs and the high background of 21U-RNAs and miRNAs is consistent 

with the low efficiency of ERGO-1 IP (Figure IV-S1). However, the interaction 

between ERGO-1 and a representative 26G-RNA appears to be specific, 

because both the expression of the 26G-RNA and its interaction with ERGO-1 

were abrogated in an ergo-1 null mutant (Figure IV-S1).
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Figure IV-1 
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Figure IV-1. ERGO-1 Interacts with 26G-RNAs in 
Embryos.  
 
(A) Expression profile of ERGO-1 protein.  

 

(B) Length and first nucleotide distribution of genome matching 

reads in Input and ERGO-1 IP small RNA libraries.  

 

(C) Enrichment or depletion of small RNAs derived from 26G-

RNA genes (white area) or nonannotated clusters (gray area) in 

the ERGO-1 IP. Small RNAs were separated by read length into 

26 nt (blue) and <26 nt (red). Values approaching 1 indicate 

enrichment of small RNA; values approaching 0 indicate 

depletion. Relative enrichment was calculated as ratio of IP/(IP + 

wild-type). “n” loci with at least 10 reads per million total reads 

(not including structural) in either the wild-type or the mutant 

sample were analyzed. The top and bottom of each box 

represent the 75th and 25th percentiles, respectively. The 

horizontal line within each box represents the median value. 

Dotted lines denote 2-fold enrichment (Upper) and twofold 

depletion (Lower). 
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ERGO-1-associated 26G-RNAs mapped to genes (23%), pseudogenes (8%), 

and nonannotated loci (64%) in proportions similar to those observed for the 

26G-RNA species present in our non-IP dataset (Figure IV-S1). Comparing these 

two datasets, 26GRNAs targeting a set of 57 genes were enriched by ≥1.5-fold in 

the ERGO-1 IP dataset (Figure IV-1C and Table IV-S1). When we examined 

each 5′G size population independently, we observed varying degrees of 

enrichment in the ERGO-1 IP. However, of the reads that matched 26G-RNA 

targets, only 24G–28G reads were enriched twofold (Figure IV-S2). The 

frequency distribution of 24G–28G reads was consistent with these populations 

being derived from 26G-RNAs (Figure IV-S2). Greater than 90% of the enriched 

24G and 25G reads represented 3′ truncations of 26G-RNAs, whereas the 27G 

and 28G reads appeared to represent terminal transferase products (Claycomb 

et al., 2009). Small RNA species, ranging from 17 to 23 nt, including 22G-RNAs 

(Gu et al., 2009), were also present, and in some cases enriched, in the IP 

dataset. The significance of this enrichment is not clear. However, because such 

reads were present at very low levels, were derived from loci that are not 

targeted by 26G-RNAs, and were not dependent on ERGO-1 (Figure IV-1 and 

Figure IV-S2). Therefore, although we cannot rule out specific interactions with 

other small RNA species, the above data strongly support the direct association 

between ERGO-1 and 26G-RNAs that are abundant during embryogenesis. 

26G-RNAs were previously shown to be 5′ monophosphorylated small 

RNAs with a 3′ modification that is resistant to oxidation by periodate (β-
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elimination) (Ruby et al., 2006). To determine whether the ERGO-1 interacting 

26G-RNAs correspond to those identified by Ruby et al. (Ruby et al., 2006), 

small RNAs purified from adult animals containing embryos were oxidized with 

periodate (β-eliminated) before cloning and deep sequencing. A second library 

was prepared in parallel from untreated small RNAs as a control and both 

libraries were prepared using a method compatible with cloning mono- or 

triphosphorylated small RNAs, i.e., 22G-RNAs (Gu et al., 2009). 

Of 2.77 million genome-matching reads in the untreated sample, 0.5% 

corresponded to potential 26G-RNAs and 2.9% to 21U-RNAs, whereas the 

majority of reads represented 22G-RNAs (Figure IV-2A). In the β -eliminated 

sample, the 26G and 21U species were enriched 8.6- and 12.3-fold, constituting 

4.3 and 35.8% of the 5.68 million genome matching reads, respectively. In both 

samples, ∼40% of 26G-RNA reads mapped antisense to coding genes (30%) or 

pseudogenes (10%). More than half (∼56%) of the reads mapped to genomic loci 

lacking any annotation (Figure IV-2B), similar to the assignment of ERGO- 1 

interacting 26G-RNAs. We identified 49 genes with antisense 26G-RNAs that 

were enriched in the β-eliminated sample over the untreated control (Tabel IV- 

S1), 48 of which were enriched at least 1.5- fold in the ERGO-1 IP (Figure IV-

S2). Analyzing deep-sequencing data across developmental time points (Batista 

et al., 2008), we observed that 26G-RNAs derived from these 48 genes were 

most abundant during embryogenesis and decrease dramatically during larval 

development (Figure IV-2C).
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Figure IV-2 

Figure IV-1. 26G-RNAs Cloned After β-elimination 
  
(A) Plot of the first nucleotide composition and length of small 

RNA reads that were sequenced in Input and β -eliminated (β-

elim) samples. (B) Pie chart indicating the assignment of 

genome-matching 26-nt reads according to genome annotation. 

(C) Expression profile of ERGO-1–dependent 26G-RNAs during 

development. Twenty six- nucleotide reads targeting 48 ERGO-

1–dependent loci were extracted from deep-sequencing data 

generated by Batista et al. (16). Plot shows reads per million in 

each developmental stage. 
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Identification of Nonannotated 26G-RNA Loci. 
 
The majority of 26G-RNAreads were derived from unique nonannotated genomic 

sequences. Despite the lack of annotation, these 26G-RNAs were in clusters and 

oriented on one strand as though antisense to an expressed transcript (Figure 

IV-3A). To further characterize these nonannotated genomic loci, 26G-RNA 

reads matching genome annotations were removed from the data and each 

chromosome strand was scanned using a 500-nt window to build and annotate 

26G-RNA clusters (See Methods). This analysis defined 147 genomic loci with a 

26G-RNA density of at least 10 reads per million (rpm) in our dataset (Table IV- 

S2). These clusters are much more extensive than recently reported clusters  

(Stoeckius et al., 2009) and appear to encompass complete transcription units 

that have not been annotated. Analysis of the ERGO-1 IP data revealed that 126 

of these loci were enriched above a threshold of 1.5-fold in the IP relative to input 

(Figure IV-1C). By visual inspection, ∼17 nonannotated 26G-RNA clusters 

appeared to extend from, or were very close to, annotated 26G-RNA genes, 

raising the possibility that these clusters may target incompletely annotated 

transcripts (Gu et al., 2009). 

In total, 26G-RNAs targeting annotated and nonannotated loci defined a 

set of ≈180 26G-target loci with read densities >10 rpm. The genomic location of 

26G-RNA targets appeared to be nonrandom. The most abundant 26G-RNA loci 

tended to map within 5 Mb of the chromosome ends (Figure IV-3A and Figure IV- 
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Figure IV-3. 26G-RNA Clusters are Targeted by 22G-
RNAs  
 
(A) Density profile of 26- nt reads along chromosome (chr) II, 

which is ∼15 Mb. C, Crick; W, Watson. Arrow indicates location 

of 26G-RNA cluster shown in B.  
 

(B) Density profile of small RNAs targeting an ∼10-kb cluster in 

adults with embryos (gravid). Twenty-six-nucleotide read density 
shown in the Lower graph represents 26GRNAs. “Total reads” 
shown in Upper graph include both 26G- and 22G-RNA reads. 
Several peaks within this cluster lack 26G-RNA reads 
(arrowheads). The majority of reads from this cluster are on the 
Watson strand (red). Reads that map to the Crick strand (green) 
in this cluster are associated with 26G-RNA reads only. The blue 
arrows above density profiles predict transcription units based on 
the observed 26G-/22G-RNA patterns at ERGO-1 targets. The 

annotated gene predictions within this ∼10-kb interval are 

illustrated above the density plots. Log2 scales are shown Right).  
 
(C) Density profiles of small RNAs targeting K02E2.6 in wild-type 
adult and ERGO-1 IP datasets. Gene structure is shown at the 
top. Reads matching the Watson strand (red) are sense reads. 
Reads matching the Crick strand (green) are antisense. “Total 
Reads” include 26G- (“26-nt Reads”) and 22G-RNAs. 26G-RNAs 

are excluded from ∼100 nt of the 5′-UTR of K02E2.6. A log2 

scale is shown (Right). 
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S3). This pattern was strikingly different from the entire set of 22G-RNA loci, 

which were more evenly distributed throughout each chromosome (Claycomb et 

al., 2009; Gu et al., 2009). Interestingly, we observed groups of 26G-RNA targets 

that were oriented in tandem in the genome. For example, a ∼10-kb region of 

chromosome II exhibited 5 different 26G-RNAloci (Figure IV-3B) that appear to 

be homologous, tandemly repeated units, suggesting that they are duplications 

that have diverged in sequence. 

Essentially all 26G-RNA targets were also targeted by 22G-RNAs (Figure 

IV-3 and Tables IV-S3 and IV-S4) (Gu et al., 2009). In fact, 22G-RNAs were 

several orders of magnitude more abundant than 26G-RNAs at many loci in 

gravid adult samples. Interestingly, 26G-RNAs but not 22G-RNAs were excluded 

from the first ∼100 nt at the 5′ end of target genes (Figure IV-3B). For example, 

26G-RNAs mapped with similar density to both the exons and the 3′-UTR of 

K02E2.6, but were absent from the 5′-UTR (Figure IIV-3B). In contrast, the entire 

K02E2.6 transcript was targeted by 22G-RNAs, including the 5′-UTR. Sense 

reads were almost exclusively derived from regions targeted by 26G-RNAs and 

rarely derived from the regions targeted only by 22G-RNAs. This differential 

small RNA pattern was also observed at virtually all 26G-RNA target loci and 

helped us to define 26G-RNA loci (See Methods). Surprisingly, 22G-RNAs 

corresponding to more than half of the 26G-RNA loci were enriched in the 

somatic tissues of adult animals (Table IV-S3), where 26G-RNAs were relatively 

depleted (Figure IV-2C). Taken together, these observations are consistent with 
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the idea that targeting by 26G-RNAs drives the secondary biogenesis of 22G-

RNAs both in the embryo and in subsequent developmental stages. 

 

26G-RNA Biogenesis Is Dependent on Components of the ERI Pathway. 
Having demonstrated that ERGO-1 interacts with 26G-RNAs, we next examined 

what other factors influence the expression of small RNAs targeting the ERGO-1 

26G-RNA loci. Consistent with our deep-sequencing data, Northern blot analysis 

using a probe for siR26-1 (Ruby et al., 2006), targeting C40A11.10, revealed 

association of this 26G-RNA with the ERGO-1 IP complex in embryo lysates 

(Figure IV-4A). We found that siR26-1 expression was abrogated by mutations in 

the ERI pathway, including ergo-1, rrf-3, rde-4, and a viable, Eri allele of dcr-

1(mg375Eri) (Pavelec et al., 2009) (Figure IV-4 A and B). The requirement for 

rde-4 in the biogenesis of 26G-RNAs was independent of its role in the exo-RNAi 

pathway, as rde-1 was not required for 26G-RNA biogenesis (Figure IV-4B). 

Among the four C. elegans RdRP genes, only rrf-3 was required for the 

expression of 26G-RNAs as determined by Northern blot analysis (Figure IV-4 

A–C and Figure IV-S4). 26G-RNA expression was unaltered in both rrf-1 and rrf-

2 mutants (Figure IV-4 A–C and Figure IV-S4). Although most 26G-RNAs were 

not detected in ego-1 mutants (Figure IV-S4), this could reflect the fact that ego-1 

mutants are sterile and thus lack embryos, which is the stage when ERGO-1-

dependent 26G-RNAs are most abundantly expressed (Figure IV-2C). As 

expected, the expression of siR26-1 was unaffected in mutants lacking WAGO-1  
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Figure IV-4 
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Figure IV-4. Genetic Requirements for 26G-RNA Expression  
 
(A) Northern blot of siR26-1 in wild-type and mutant embryos. Input (Left) and 

ERGO-1 IP (Right) samples are indicated. Loading control: mir-66.  

 

(B) Northern blot of siR26-1 in RNAi mutant (adult). The membrane was first 

hybridized to a mir-66 probe as a loading control, which could not be removed 

completely, and is indicated by the asterisk (*). All lanes shown were from the 

same membrane and exposure. Only relevant lanes are shown.  

 

(C) Northern blot of siR26-263 in the indicated RdRP mutants (adult). Loading 

control: 21U-1. All lanes were from the same membrane and exposure. Only 

the relevant lanes are shown. (D) Northern blot of siR26-1 in mutants with 

multiple WAGO deletions (MAGO and MAGO+2). Loading control: mir-66. 

Adults were used. All lanes were from the same membrane and exposure. 

Only the relevant lanes are shown. 
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and other WAGO-class Argonautes that are required for, and interact with, 22G-

RNAs (Figure IV-4D). Taken together, these findings indicate that 26G-RNA 

accumulation is dependent on components of the ERI pathway, but independent 

of several components of the exo-RNAi and 22G-RNA pathways. 

 

ERI Pathway Stimulates 22G-RNA Accumulation. 
As described above, ERGO-1-dependent 26G-RNA loci were also targeted by 

22G-RNAs. Some of our probes (siR26-1 and siR26-263) detected both 26G-

RNAs and a 22-nt RNA species, whereas the K02E2.6 probe detected only 22G-

RNAs (Figure IV-4 and Figure IV-S4) (Gu et al., 2009). The ERI-pathway genes 

rrf-3, ergo-1, rde-4, and dcr-1 were all required for expression of both the 26G- 

and 22G-RNA species at these target loci (Figure IV-4B and Figure IV-S4). In 

contrast, rrf-1 and several wago Argonautes assayed were not required for 26G-

RNA expression at these targets, but were required for 22G-RNA expression 

(Figure IV-4 C and D) (Gu et al., 2009). ERGO-1 still interacted with 26G-RNAs 

in rrf-1 mutant embryos (Figure IV-4A). Together, these data suggest that the 

expression of ERGO-1 26G-RNAs is required for the RRF-1-dependent 

biogenesis of 22G-RNAs at these loci. 

To examine the requirements of RRF-3, ERGO-1, and RRF-1 for 22G-

RNA biogenesis on a genome scale, small RNAs were cloned and deep 

sequenced from rrf-3, ergo-1, and rrf-1 mutants. Compared to our wild-type 

dataset (Gu et al., 2009), the overall distribution of small RNA classes was  
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Figure IV-5 
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Figure IV-5. The Biogenesis of 22G-RNAs Targeting 
26G-RNA Loci is Dependent on the ERI pathway.  
 
(A) Overall enrichment or depletion of 22G-RNAs targeting n 

genes in each mutant, as described in Fig. 1C.  

 

(B) Venn comparison of genes depleted of 22G-RNAs (≥2-fold) 

in indicated mutants (loci below the lower dashed line in A).  

 

(C) Enrichment or depletion of 22G-RNAs derived from n 26G 

target genes, as described in Fig. 1C.  

 

(D) Enrichment or depletion of 22G-RNAs derived from n 26G 

nonannotated clusters, as described in Fig. 1C.  

 

(E) qRT-PCR analysis of 26G target genes expressionin drh-3 

(yellow) and ergo-1 (red) mutants and wild type (blue). Error bars 

represent the standard deviation of the mean. 
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largely unaffected in each mutant (Figure IV-S5) and 22G-RNAs targeting 

annotated genes were unaffected as a whole (Figure IV-5A). However, ergo-1 

and rrf-3 mutants were depleted of 22G-RNAs targeting 87 and 101 genes, 

respectively, and were highly overlapping with 71 genes in common (Figure IV-

5B and Table IV-S4). 

Within the set of 48 annotated genes targeted by 26G-RNAs, only 40 

exhibited 22G-RNA levels that satisfied the rigorous criteria of 25 rpm in wild-type 

or mutant samples. All 40 of these genes were depleted of 22G-RNAs in both rrf-

3 and ergo-1 mutants (Figure IV-5C). Of the ∼100 nonannotated clusters that 

satisfy the 25-rpm cutoff, 90 were depleted of 22G-RNAs in both ergo-1 and rrf-3 

mutants (Figure IV-5D). Consistent with our Northern data demonstrating a role 

for RDE-4 in 26G-RNA biogenesis, virtually all of the 26G-RNA loci (38 

annotated genes and 92 nonannotated clusters) were depleted of 22G-RNAs in 

an rde-4 mutant RNA sample (Figure IV-5 C and D) (Gu et al., 2009). Together, 

these data demonstrate that the ERI endo-siRNA pathway is required for the 

expression of both 26G-RNAs and 22G-RNAs at these ERGO-1 target loci. 

 

RRF-1 and WAGOs Are Required for 22G-RNAs in the ERI Pathway. 

In the rrf-1 mutant, ∼260 genes were depleted of 22G-RNAs (Table IV-S4), 

suggesting that RRF-1 is more broadly required for 22G-RNA biogenesis. Of the 

71 loci depleted of 22G-RNAs in both rrf-3 and ergo-1 mutants, 62% were also 

RRF-1 dependent (Figure IV-5B). More significantly, 31 (78%) 26G-RNA target 
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genes were depleted of 22G-RNAs in the rrf-1 mutant dataset, all of which were 

depleted of 22G-RNAs in rrf-3 and ergo-1 mutants (Figure IV-5C). Of the genes 

that were not depleted of 22G-RNAs in the rrf-1 mutant and that satisfy our 22G-

RNA criteria for analysis, all but one was dependent on the RdRP EGO-1 

(Claycomb et al., 2009). The remaining target was not depleted of 22G-RNAs in 

either rrf-1 or ego-1, suggesting that RRF-1 and EGO-1 are redundant for 22G-

RNAs targeting this gene. In addition, 76 nonannotated clusters were depleted of 

22G-RNAs in the rrf-1 mutant (Figure IV-5D), of which 74 were also dependent 

on rrf-3, ergo-1, and rde-4. Finally, we examined deep-sequencing data from a 

mutant bearing deletions in all 12 wago genes, MAGO12 (Gu et al., 2009). 22G-

RNAs targeting 35 (88%) 26G-RNA target genes and 71 nonannotated clusters 

were depleted in the MAGO12 mutant (Figure IV-5 C and D). Thus, the 

biogenesis of 22G-RNAs at ERGO-1 target loci is dependent on rrf-1 and 

WAGOs. 

WAGO/22G-RNA pathways have been shown to silence their targets (Gu 

et al., 2009) and previous reports have indicated that the ERI pathway is an 

endogenous-silencing pathway (Duchaine et al., 2006; Pavelec et al., 2009). To 

look for silencing of the ERI targets, we used quantitative PCR after reverse 

transcription (qRT-PCR). Indeed, ERGO-1 26G-RNA targets were up-regulated 

in drh-3 and ergo-1 mutants (Figure IV-5E), both of which are required for the 

expression of 22G-RNAs targeting these loci (Figures. IV-4 and IV-5) (Gu et al., 

2009). 
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DISCUSSION 

 

Here, we have analyzed the genetic and small-RNA components of the ERI 

endogenous-RNAi pathway. We have identified Dicer-dependent 26-nt RNA 

species (26G-RNAs) as cofactors of the ERI pathway Argonaute ERGO-1. 

Components of the ERI complex, including DCR-1, the RdRP RRF-3, and the 

dsRNA-binding protein RDE-4, are required for the biogenesis of both 26G-RNAs 

and 22G-RNAs on ERI targets. A second RdRP, RRF-1, and additional WAGO 

Argonautes are required for the accumulation of 22G-RNAs (but not 26G-RNAs). 

These findings support a two-step model in which 26G-RNAs function upstream 

in the ERI pathway and drive the downstream production of 22G-RNAs (Figure 

IV-6). 

During embryogenesis, 26G-RNAs drive the biogenesis of 22G-RNAs that 

persist into later developmental stages, when ERGO-1/26G-RNAs are present at 

very low levels (Figure IV-6). Thus, 22G-RNA expression may function to 

maintain silencing through a self-sustaining amplification loop in the absence of 

further 26G-RNA expression. This possibility is also consistent with the long-

lasting silencing observed in response to exogenous dsRNA (Grishok et al., 

2000), which involves a distinct upstream Argonaute but shares with the ERI 

pathway the RRF-1-dependent secondary 22G-RNA/ WAGO pathway (Gu et al., 

2009; Yigit et al., 2006). 
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Figure IV-6 



 

 

205 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-6 Model for 26G-/22G-RNA biogenesis  

 
(A) ERGO-1/26G-RNA (gray) and WAGO/22G-RNA (red) 

expression during the C. elegans life cycle: embryo, L1–L4 larval 

stages, and adult with embryos.  

 

(B) Processive 26G-RNA biogenesis by the ERI complex and 

ERGO-1 loading. Targeting by ERGO-1 results in recruitment of 

the 22G-RNA RdRP machinery and WAGO loading. 
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In some cases, ERI pathway-dependent 22G-RNAs were derived from loci 

that were not significantly targeted by 26GRNAs. For example, the well-

characterized X-cluster is an ERI dependent 22G-RNA locus (Ambros et al., 

2003; Duchaine et al., 2006; Gu et al., 2009; Lee et al., 2006) but is not targeted 

by 26G-RNAs above the 10-rpm cutoff. However, the X-cluster shares a region of 

significant nucleotide identity with a 26GRNA- producing locus on chromosome 1 

[linkage group (LG)I]. The region of identity in the LGI locus is targeted almost 

exclusively by 22G-RNAs. These and other similar findings are consistent with a 

transitive biogenesis of 22G-RNAs downstream of 26G-RNA targeting (Sijen et 

al., 2001). 

The dependence of 26G-RNAs on components of the DCR-1/ ERI 

complex is consistent with a concerted mechanism of biogenesis (Colmenares et 

al., 2007; Duchaine et al., 2006; Lee and Collins, 2007). RNA duplexes 

generated by RRF-3 could be processed by DCR-1 to generate duplex siRNAs 

that are loaded into ERGO-1. However, several observations are not in 

agreement with 26G-RNA biogenesis via a direct, DCR-1-mediated cleavage of 

RRF-3-generated RNA duplexes. As noted by Ruby et al. (Ruby et al., 2006), the 

5′G bias of 26G-RNAs is more consistent with direct synthesis by RdRP and 

does not fit well with the thermodynamic rules thought to govern the loading of 

Dicer products into Argonaute complexes (Khvorova et al., 2003; Schwarz et al., 

2003). In addition, although sense small RNAs were cloned from 26G-RNA loci, 
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their length and position with respect to the corresponding 26G-RNAs are not 

consistent with Dicer processing. Although some phasing of 26G-RNAs was 

apparent (when the most abundant species were considered), for most loci we 

observed a highly overlapping distribution of 26G-RNAs. Rather than the phasing 

one might expect from Dicer-mediated processing, these findings are most 

consistent with cycles of 26-mer synthesis by RdRP initiating at multiple sites 

along the target mRNA. Further biochemical and genetic analyses will be 

necessary to understand the role of Dicer in the ERI pathway. 

ergo-1 mutants are viable and exhibit no overt phenotypes other than an 

enhanced sensitivity to exogenous RNAi. Indeed, ergo-1 mutants do not display 

the Him or male-specific, temperature sensitive sterile phenotypes associated 

with other Eri mutants (Pavelec et al., 2009). Instead, these male-specific 

functions depend on spermatogenesis expressed 26G-RNAs that engage two 

partially redundant Argonautes, ALG-3 and ALG-4 (Conine et al., 2010) ergo-1 

may function to regulate the exo-RNAi pathway in somatic tissues and/or may 

have other as yet undetected biological functions. Most ERGO-1 targets are not 

recognizable as genes and often reside in clusters of what appear to represent 

ancient duplications. Therefore, it is conceivable that the ERGO-1 pathway may 

function to buffer against deleterious affects arising from expression of these 

duplicated noncoding sequences. Whereas the specific biological function of the 

ERGO-1 pathway remains unclear, it provides a striking example of 
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interdependence and competition between Argonaute systems and points to the 

complexity and rapidly evolving nature of Argonaute /small-RNA networks. 
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MATERIALS AND METHODS 

Worm Culture and Strains. C. elegans culture and genetics were essentially as 

described ((Brenner, 1974)). The Bristol N2 strain was used as the wild-type 

control. Alleles used are listed by chromosome: LGI, sago-2 (tm894), ppw-1 

(tm914), ppw-2 (tm1120), avr-14 (ad1302), rrf-1 (pk1417), ego-1 (om97), 

hT2[qIs48] (I;III), C04F12.1 (tm1637), rrf-2 (pk2040); LGII, rrf-3 (pk1426), 

C06A1.4 (tm887), F58G1.1 (tm1019); LGIII, dcr-1 (mg375Eri), rde-4 (ne337); 

LGIV, M03D4.6 (tm1144); and LGV, ergo-1 (tm1860), sago-1 (tm1195), rde-1 

(ne300), avr-15 (ad1051), glc-1(pk54). 

 

Generation of ERGO-1 Antibodies. A C-terminal ERGO-1-specific peptide 

(CEVNKDMNVNEKLEGMTFV) was coupled to KLH and used to immunize four 

rabbits (Capralogics). 

 

ERGO-1 Immunoprecipitation. Using a stainless steel dounce, proteins were 

extracted from embryos in cold lysis buffer [25mMHepes-KOH(pH7.4), 10 mM 

KOAc, 2 mM Mg(OAc)2, 100 mM KCl, 1% Triton X-100, 1 mM DTT] containing 

1% SUPERase•In (Ambion), 1% Phosphatase Inhibitor Mixture 1 (Sigma), 1% 

Phosphatase Inhibitor Mixture 2 (Sigma), and Mini Protease Inhibitor Mixture 

(four tablets/ 25 mL buffer, Roche).  Lysates were cleared at 20,000 X g for 10 

min at 4°C and protein concentration was determined using the DC Protein Assay 

(Bio-Rad). Immunoprecipitation of ERGO-1 was performed by incubating 45.6 
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mg of total protein extract, at a final concentration of 3.8 mg/mL, with 10 µL of 

ERGO-1 antiserum per mg of protein for 1 hour at 4 °C. A total of 20 µL of a 50% 

slurry of Protein A Sepharose beads (GE Healthcare) was added per mg of 

protein extract, and the mixture was incubated with rocking for 1 hour at 4°C. 

Immune complexes were washed three times with cold lysis buffer followed by 

three final washes with lysis buffer lacking Triton X-100 and DTT. Ten percent of 

the beads were set aside for Western blot analysis. RNA was extracted from the 

immune complexes (∼100 µL packed protein A pellet) using 500 µL of TRI 

Reagent (MRC Reagents), according to the manufacturer’s instructions. An 

independent replicate of ERGO-I immunoprecipitation from 9.6 mg of protein was 

repeated as above, at a final concentration of 4.6 mg/mL, using 0.05% Nonidet 

P-40 and 4µl of ERGO-1 antiserum per mg of protein. 

 

Northern Blot Analysis. Small RNA Northern blots were performed as 

described (Chapter II Methods). Starfire probe sequences are provided in Table 

IV-S5. 

 

Northern Blot Analysis following ERGO-1 Immunoprecipitation. Equal 

amounts of embryo protein lysate (9.6mg) were used to extract small RNAs from 

input and ERGO-1 immunoprecipiation as described (Chapter II Methods). 

 

Radioactive Labeling of RNA Oligos.  Individual 18-, 22-, and 26-nt RNA oligos 
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were radioactively labeled with T4 Polynucleotide Kinase (New England Biolabs), 

using 30 µCi of [γ-32P] ATP (Perkin- Elmer BLU502Z250UC). Excess free 

nucleotide was removed using Micro Bio-Spin 6 Columns (Bio-Rad no. 732-

6221). 

 

Western Blot Analysis. Proteins resolved by SDS/PAGE on 4–15% acrylamide 

gradient gels (Bio-Rad) were transferred to Hybond-C Extra membrane (GE 

Healthcare). Membranes were blocked with 5% nonfat dried milk in PBST 

[137mMNaCl, 2.7mMKCl, 10mM Phosphate (pH 7.4), 0.1% Tween-20] and 

incubated at 4 °C overnight with primary antibodies diluted in the same buffer. 

Rabbit anti-ERGO-1 was diluted 1:3,000 and mouse monoclonal antitubulin 

(clone DM1A, no. T6199, Sigma) was diluted 1:5,000. Membranes were washed 

in PBST, incubated with HRP-conjugated secondary antibody in PBST (1:5,000) 

at room temperature for 1 hour, and again washed with PBST. 

Chemiluminescence was performed using the Western Lightening ECL Kit 

(Perkin-Elmer) and visualized using a CCD camera and LAS-3000 Intelligent 

Dark-Box (Fujifilm). 

 

Small RNA Purification and Cloning. Extraction of total RNA and enrichment 

for small RNA < ∼200 nt were as described (Chapter II Methods). 

 

Oxidation of Small RNA. Small RNA (∼20 µg) was oxidized using 0.2 M NaIO4 
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(periodate) in 60 µL of 0.3 M borate buffer (pH 8.6) for 10 min at room 

temperature. Excess NaIO4 was destroyed by adding 2 µL of glycerol and 

incubating for 10 min at room temperature. Oxidized RNA was desalted using a 

Bio-spin 6 column (Bio-Rad) and precipitated with 4 vol of ethanol. Small RNA 

Cloning and Sequencing. RNAs (18 to 30 nt) were gel purified and cloned using 

a 5′ ligation-dependent protocol as described (Chapter II Methods). Some small 

RNA samples were pretreated with calf-intestine phosphatase and polynucleotide 

kinase (rrf-3, ergo-1, and rrf-1) or tobacco acid pyrophosphatase (β-elimination 

and input) to make the 5′ ends of 22G-RNAs available for ligation (Gu et al., 

2009). cDNA libraries were sequenced by the University of Massachusetts 

(Worcester, MA) Deep Sequencing Core, using an Illumina Genome Analyzer II. 

 

Real-Time PCR. qRT-PCR was performed as described (Chapter II Methods). 

cDNA was generated using 5 µg of total RNA, random hexamers, and 

SuperScript III Reverse Transcriptase (Invitrogen). The expression level of each 

target RNA was normalized to gpd-2 or act-3.  Primer sequences are provided in 

Table IV-S5. 

 

Data Analysis. Small RNA sequences were processed and mapped to the C. 

elegans genome (Wormbase release WS192) as well as Repbase (13.07), 

using custom Perl scripts (Perl 5.8.6) as described (Chapter III Methods). 

Clusters were generated from 26G-RNAs that matched nonannotated genome 
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sequences, using the ERGO-1 IP dataset. 

 

26G-RNA Clusters. Clusters were generated from 26G-RNAs that matched 

nonannotated genome sequences using the ERGO-1 IP dataset, using a custom 

Perl script as follows: A 500-bp window was used to scan the Watson or Crick 

strand of each chromosome. A cluster was initiated when a window included at 

least one nonannotated 26G-RNA and was extended as long as the next window 

had at least one 26G-RNA. The 3′ end of each cluster was further extended 1 kb 

to include a potential 22G-RNA locus. Each cluster was then refined visually 

using a generic genome browser. Adjacent 26G-RNAclusters were combined 

until a 22G-RNA-only locus was encountered or a cluster was split if a 22G-RNA-

only locus was included. We analyzed 147 clusters, each with ≥10 26G-RNAs. 
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Figure IV-S1 
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Figure IV-S1. ERGO-1 expression and 26G-RNA 
analysis. 
 

 (A) Expression profile of ergo-1 mRNA by qRT-PCR analysis. 

Error bars represent the standard deviation of the mean.  

 

(B) Western blot of ERGO-1 after IP from wild-type or ergo-1 

mutant embryonic lysates. This ERGO-1 IP from wild type was 

used for the IP cloning of ERGO-1-associated small RNAs 

 

(C) Western blot of ERGO-1 IP. Independent IP of wild-type and 

ergo-1 embryos is shown, showing percentage of protein loaded 

in input, unbound supernatant, and IP fractions.  

 

(D) Northern blot of small RNA extracted from ERGO-1 IP (C), 

showing percentage of small RNA loaded and probed with 

siR26-1 and control miR-66. Radiolabeled RNA oligos were used 

as size markers. 

 

 (E) Pie chart indicating the assignment of genome-matching 

26-nt reads according to genome annotation.  

 

(F) Venn diagram of genes with 26G-RNA reads enriched in a β-

eliminated sample (49 genes) compared to those enriched in the 

ERGO-1 IP (57 genes). Only genes with 26G-RNAs ≥10 rpm and 

enriched ≥1.5-fold over untreated or input were used. 
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Fig IV-S2 
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Figure IV-S2. Analysis of 5′G Reads in ERGO-1 IP and 
Input Samples. 
 
 (A) Venn diagram of non-26G-RNA target genes with small 

RNAs enriched ≥2-fold in the ERGO-1 IP compared to the list of 

ERGO-1-dependent small RNA target genes from Table S4 

(includes 26G-RNA targets). A minimum read cutoff was not 

used to generate the ERGO-1 IP enriched list.  

 

(B) Enrichment profile of 5′G reads according to size. The 

enrichment of each size 5′G population is shown for reads 

derived from 26G-RNA target loci (solid black line with triangles) 

compared to all remaining reads (dashed gray line with squares). 

Reads were normalized to the sample size before determining 

the enrichment factor.  

 

(C) Distribution of 5′G reads derived from 26G-RNA target loci. 

Read numbers were normalized to sample size. 
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Figure IV-S3 

Figure IV-S3. Density Profile of 26-nt Reads Along Each 
C. elegans Linkage Group (LG)  
 
Reads that map to the Watson strand are indicated in red and 
reads that map to the Crick strand are indicated in green. (Scale 
bar, 5 Mb.) 
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Figure IV-S4 

Figure IV-S4. 26G-/22G-RNA Analysis in RdRP Mutants  
 
(A) Northern blot analysis of siR-263 (26G and 22G) and 

K02E2.6 (22G only) in wild-type and RdRP mutant animals. 

Loading control: let-7. 

 

(B) Northern blot analysis of siR26-1 (26G and 22G) and siR26-

342 (26G only). Loading control: let-7. 
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 Figure IV-S5  

Figure IV-S5 Distribution of Reads that Match Indicated 
Genome Annotations  

Sequenced in rrf-1, rrf-3, and ergo-1 mutants compared to N2 
(wild-type) control. 
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Table IV-S1  

Table IV-S1  
Genes Targeted by 26G-RNAs Enriched in ERGO-IP and ß-elimination  
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Chapter V 
 

General Discussion 
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Discussion and Future Directions 

In this thesis, I have described the identification and characterization of 

two classes of endogenous small RNAs that are 22nt and 26nt in length that start 

with a 5´ G, called 22G-RNAs and 26G-RNAs, respectively. The 22G-RNAs and 

26G-RNAs are distinct from other previously identified endogenous small RNAs, 

such as miRNAs and piRNAs.  Unlike miRNAs and piRNAs, the 22G- and 26G-

RNAs are produced by the activity of distinct RdRPs and they target a diverse set 

of endogenous loci, including annotated protein coding genes, transposable 

elements, pseudogenes, and nonannotated (or cryptic) loci.  The 22G-RNAs rely 

on the activity of the partially redundant RdRPs EGO-1 and RRF-1, are DICER 

independent, and possess a 5´ triphosphate. The 26G-RNAs depend on the 

RdRP RRF-3 and DICER for their production.  

Although it is unclear how exactly these small RNAs are processed into 

26-nt long species, it is clear that DICER is required for their biogenesis. 

Complete loss or mutation of the helicase domain of DICER leads to a loss of the 

26G-RNAs (Welker et al., 2010). Additionally, the 26G-RNAs possess a hallmark 

of DICER processing, 5’ monophosphate (Ruby et al., 2006), despite their initial 

production by RRF-3. These observations support a model whereby RRF-3 

synthesizes dsRNA longer than 26nt, using target transcripts as a template, and 

that this dsRNA is recognized by the ERI complex and processed into 26G-RNAs 

by DICER. The observation of low abundance small RNA species 
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complementary to 26G-RNAs (i.e. sense) that possess a 3’ 3nt overlap is 

consistent with this model. 

Using a combination of deep sequencing, molecular, genetic, and cell 

biology studies, at least two populations of 22G-RNAs were identified that 

interact with distinct Argonautes. First, the WAGO-1 associated 22G-RNAs target 

protein coding genes, repetitive elements, and cryptic loci in the germline to 

regulate target RNA expression. Second, CSR-1 interacts with a set of 22G-

RNAs that target germline-expressed protein coding genes. However, the 22G-

RNAs that function in the CSR-1 pathway do not regulate target transcript levels, 

and instead may modulate chromosomal domains that are essential for 

chromosome segregation.  

This work also demonstrated that the helicase, DRH-3 and the tudor-

domain protein, EKL-1, along with functionally redundant RdRPs, RRF-1 and 

EGO-1, form a core complex that is required for the biogenesis of nearly all 22G-

RNAs. Surprisingly, EGO-1 and RRF-1 are redundant in the germline for the 

biogenesis of WAGO-associated 22G-RNAs, which is consistent with the 

observation that ego-1 mutants were sensitive to RNAi targeting some germline 

genes. However, EGO-1 alone is required for the biogenesis of CSR-1 22G-

RNAs, and loss of ego-1 leads to germline RNAi deficiency, sterility and 

embryonic lethality.  

The work presented here suggests the existence of at least three distinct 

22G-RNA pathways: the CSR-1 pathway and two WAGO pathways. The WAGO 
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22G-RNAs can be distinguished by those that are dependent on DICER and 

those are independent of DICER. The DICER-dependent 22G-RNAs are also 

dependent on the ERI pathway, including the RdRP RRF-3. Interestingly, the ERI 

loci are not only targets of 22G-RNAs, but are additionally targeted by 26G-RNAs 

that interact with the Argonaute ERGO-1. The production of ERI-dependent 22G-

RNAs is dependent on the production of the 26G-RNAs that target these same 

loci.   

These data indicate that the ERI pathway is a two-step RdRP-dependent 

pathway that requires distinct RdRPs and Argonaute proteins at each step. The 

biogenesis of 26G-RNAs is dependent on RRF-3 and DICER and is proposed to 

be the primary step in this pathway. The 26G-RNAs interact with the Argonaute 

ERGO-1 and are thought to guide ERGO-1 to the complementary mRNA. 

ERGO-1 possesses the DDH catalytic residues required for Slicer activity and is 

predicted to mediate mRNA cleavage. This cleavage event may facilitate the 

recruitment of an RdRP complex, consisting of RRF-1 or EGO-1, which produce 

22G-RNAs. The 22G-RNAs interact with the functionally redundant set of WAGO 

Argonautes in this downstream, secondary step. Remarkably, the Eri-dependent 

22G-RNAs are maintained throughout development in somatic tissues, whereas 

ERGO-1 and its 26G-RNA cofactors are robustly expressed during 

embryogenesis. Therefore, after initiation of the ERGO-1-dependent primary 

phase, the 22G-RNA/WAGO step would provide maintenance of silencing 

throughout development. 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Loss of genes required specifically in the Eri endogenous silencing 

pathway (ERI-1, ERI-3, DCR-1, ERI-5, RRF-3) leads to temperature-sensitive 

sterility, which results from defective sperm (Conine et al., 2010; Duchaine et al., 

2006; Han et al., 2009; Kim et al., 2009; Pavelec et al., 2009). The sterility of eri 

mutants can be rescued by mating eri mutant hermaphrodites with wild-type 

males. In addition to temperature-sensitive sterility, eri mutants exhibit a high 

incidence of males (Him) phenotype and an enhanced sensitivity to exogenous 

RNAi. Interestingly, some Eri mutants do not exhibit the Him or sterile 

phenotypes (Pavelec et al., 2009; Sijen et al., 2001). One example of an eri gene 

that does not display explicit developmental defects is ergo-1. Several alleles of 

ergo-1 have been isolated and none display any obvious growth or fertility 

defects, even at increased temperatures, nor do they display a Him phenotype 

(Pavelec et al., 2009). The developmental expression pattern of ERGO-1 is 

consistent with a lack of germline defects in ergo-1 mutants, as ERGO-1 is most 

strongly expressed in embryos.  

In contrast to ergo-1 mutants, loss of the redundant Argonautes alg-3 and 

alg-4 leads to defects in both spermatocyte cell division and activation of mature 

spermatids, but does not result in an eri phenotype (Conine et al., 2010; Gent et 

al., 2009; Pavelec et al., 2009). Consistent with a role in spermatogenesis, ALG-

3 and ALG-4 are strongly expressed in the germline when sperm are produced 

(Conine et al., 2010). Although ERGO-1, ALG-3 and ALG-4 exhibit different 

aspects of the eri pathway phenotype, both rely on the activities of the shared 
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core ERI complex consisting of RRF-3, DICER, ERI-1, ERI-3, and ERI-5, 

mutants of which all display both enhanced RNAi and fertility defects. 

Recent studies have described two distinct subclasses (Class I and Class 

II) of germline-enriched 26G-RNAs in C. elegans with differential temporal and 

spatial expression profiles (Han et al., 2009). Class I specific 26G-RNAs are 

enriched in sperm and regulate genes required for spermatogenesis. Class II 

specific 26G-RNAs are enriched during oogenesis and embryogenesis and may 

regulate maternally-deposited mRNAs during development (Han et al., 2009, 

Stoeckius et al., 2009). Consistent with our findings that ERGO-1 is required for 

26G-RNAs and is expressed during embryogenesis, ergo-1 mutants display 

defects in expression of these Class II but not Class I 26G-RNAs targets (Conine 

et al., 2010; Han et al., 2009; Pavelec et al., 2009).  The expression of Class I 

26G-RNAs has been shown to be dependent on the Argonautes ALG-3 and 

ALG-4 (Conine et al., 2010; Han et al., 2009). RRF-3 and ERI-1 are required for 

the expression of both Class I and II 26G-RNAs, again providing support that the 

ERI complex is required for upstream events in these pathways (Duchaine et al., 

2006; Yigit et al., 2006). 

This work raises a number of questions about the mechanism of 26G-RNA 

biogenesis and the function of the ERGO-1 26G-RNA pathway. 1.) What are the 

molecular signatures that define a 26G-RNA target? 2.) How does the ERI 

complex find a target? 3.) What is the mechanism of 26G-RNA biogenesis? 4.) 

What is the biological role of the ERGO-1 26G-RNA pathway? In the following 
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sections I will discuss several hypotheses and experiments to address some of 

these questions and gain insight into biological functions of the ERGO-1 26G-

RNA pathway.   

 

Function of ERGO-1 Pathway 

It is intriguing that no overt phenotype is observed in ergo-1 mutants or in the 

absence of ERGO-1 associated 26G-RNAs despite evidence that this pathway is 

involved in down-regulating target gene expression. ERGO-1 orthologs are 

present in several related nematode species (C. briggsae, C. brenneri, C. 

japonica and P. pacificus) and 26 nt small RNAs are expressed in C. briggsae 

embryos (J. Claycomb, personal communication).  However, the 26G-RNA target 

loci appear to be species-specific (J. Claycomb, personal communication). These 

preliminary observations suggest that the ERGO-1 pathway may be functionally 

conserved but target different loci in each nematode species. Although it is 

possible that another Argonaute may function redundantly with ERGO-1, several 

observations argue against this possibility. For instance, both 26G-RNAs and 

associated 22G-RNAs are severely depleted in the ergo-1 mutants, suggested 

that no other Argonaute can compensate for ERGO-1 function. A second 

possibility is that there is an entire endogenous silencing pathway (and not just 

an Argonaute) that functions redundantly with respect to regulating 26G-RNA 

Class II embryonic pathway targets. Additionally, the ERGO-1 pathway could be 

involved in a genetic buffering mechanism that is required for an environmental 
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stress response, which would not be revealed or observed under normal 

laboratory conditions.   

To identify pathways that function redundantly with ERGO-1, forward 

genetic screening could be performed to identify mutants that are inviable or sick 

in the absence of ERGO-1 (a “synthetic lethal” screen).  An alternative approach 

would be to perform a genome wide RNAi screen, in the same genetic 

background, to look for synthetic phenotypes using the publicly available RNAi 

feeding library (Fraser et al., 2000; Kamath and Ahringer, 2003). There are 

several advantages of this method, including that it would enable rapid, 

systematic identification of genes that are synthetic lethal with ergo-1, thus 

eliminating the need for mapping.  

 

A Role of ERGO-1 26G-RNA Pathway in Regulating Chromosome Structure 

and Integrity? 

The majority of ERGO-1 26G-RNAs derive from nonannotated intergenic 

regions that map to within 5 Megbases (Mb) of the ends of each chromosome 

arm. Recently, these chromosomal regions have also been shown to correlate 

with enriched levels of trimethylation at histone 3 lysine 9 (H3K9) (Gu and Fire, 

2010), a histone modification that is generally associated with inactive chromatin 

(Kouzarides, 2007). 

In many organisms, Argonaute proteins have been shown to play a role in 

chromatin remodeling events, often leading to the accumulation of H3K9 
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methylation (Djupedal and Ekwall, 2009; Verdel et al., 2009). Could the role of 

the ERGO-1 26G-RNA pathway be to regulate chromatin domains required for 

the establishment (or remodeling) of heterochromatin during embryonic mitosis? 

Evidence for a role of the Eri pathway in the nucleus comes from studies 

of the WAGO Argonaute NRDE-3 (Guang et al., 2008). Over 70% of the 22G-

RNAs that associate with NRDE-3 are also directed against ERGO-1 26G-RNAs 

targets, and mutations in nrde-3 result in the increased expression of ERGO-1 

26G-RNA target RNAs. For example, both the pre-mRNA and the mRNA levels 

of the ERGO-1/26G-RNA target, E01G4.5, are upregulated in nrde-3 mutants 

(Guang et al., 2008). Localization studies of NRDE-3 demonstrated that NRDE-3 

translocates from the cytoplasm to the nucleus, and is dependent on binding to 

22G-endo-siRNAs (Guang et al., 2008). Evidence that NRDE-3 acts at the level 

of, or downstream of, endo-siRNA production is based on the observation that 

NRDE-3 nuclear localization fails to occur in eri mutants such as eri-1 and ergo-1 

(Guang et al., 2008). These observations raise the possibility that the ERGO-

1/NRDE-3 branch of the ERI pathway could be involved in regulating nuclear 

organization and even chromatin modification, such as H3K9 methylation, in 

embryos.  

Perhaps the ERGO-1 branch of the Eri pathway is required to regulate 

and stabilize chromatin domains near the ends of chromosome arms, which may 

be inherently less stable due to their repetitive nature. Somatic tissue in C. 

elegans may be refractory to such inherent chromosome end instability due to 
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the redundancy of DNA repair pathways, including homologous recombination 

(HR), non-homologous end joining (NHEJ), single-strand annealing (SSA), and a 

recently describes alternative ENJ (alt-ENJ) pathway (Pontier and Tijsterman, 

2009). Remarkably, loss of HR, NHEJ, and SSA pathways together leads to no 

apparent developmental defect (Pontier and Tijsterman, 2009). Likewise, if the 

ERGO-1 pathway also played a role in chromosome end stability, either as a part 

of one of these pathways or in an independent pathway, it may not come as a 

surprise that loss of ergo-1 does not result in an overt developmental defects. It 

would be relatively simple to test the involvement of ERGO-1 components in 

DNA repair, by using existing reporter assays to directly quantify repair in ergo-1 

pathway mutants or by creating genetic mutants between the ergo-1 pathway 

and the HR, NHEJ, and SSA pathway triple mutant.  

Although it has been shown that NRDE-3 localizes to the nucleus, and we 

have determined that the developmental expression timing of NRDE-3 and 

ERGO-1 is identical (J. Claycomb, personal communication), the localization 

pattern of ERGO-1 has not yet been determined, despite our best efforts. 

Immunolocalization experiments and studies of ergo-1::gfp localization are 

necessary to determine the subcellular site of ERGO-1 accumulation. 

Furthermore, performing ChIP for NRDE-3 and ERGO-1 will be useful in 

determining whether these Eri Argonautes directly associate with chromatin at 

their target 26G loci. In addition, we can examine histone modifications present 

at 26G-RNA target loci using a modified histone candidate ChIP approach or by 



 

 

233 

using bioinformatics to correlate existing modified histone ChIP data from the 

ModENCODE project (Celniker et al., 2009) with 26G-RNA loci throughout the 

genome. After identifying which histone modifications are present at the 26G-

RNA target loci, we can determine the contribution of the ERGO-1 pathway to the 

deposition of these modifications by performing ChIP experiments in ergo-1 

pathway mutants. 

 

What are the molecular signatures that define a 26G-RNA target?  

Many of the 26G-loci appear to be either mis-annotated genes or loci that 

altogether lack an annotation. Interestingly, when we examine the small RNA 

density profiles, we observe that there is an approximately 100nt region at the 5´ 

end of nearly all ERGO-1 target loci which is exclusively targeted by 22G-RNAs 

and devoid of 26G-RNAs. This profile is in contrast to the remainder of the length 

of target transcripts, which are targeted by both 22G-RNAs and 26G-RNAs. This 

observation begs the question as to why 26G-RNAs appear to be excluded from 

the 5´ ends of these loci? Perhaps the simplest explanation is that the 26G-RNA 

loci are preferentially expressed as different mRNA isoforms that vary at their 5´ 

region or may have distinct transcription start sites. For example, a shorter form 

expressed during embryogenesis might be used as a template for 26G-RNA 

biogenesis, while a second, longer form expressed during later stages of 

development might serve as a template for 22G-RNA biogenesis. This possibility 

could be tested by simply performing 5´ RACE (rapid amplification of cDNA ends) 
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on total RNA isolated from developmentally staged samples or by performing 

RNA in situ hybridizations to determine specific RNA expression patterns. 

Recently, we have found that the 100 nt region targeted by 22G-RNAs, but not 

26G-RNAs, appears to be conserved between 26G-RNA loci as three motifs with 

a loose consensus (Figure V-1). One interpretation is that the sequence motifs 

define a molecular signature that is necessary for identifying these specific loci 

as templates for the production of 26G-RNAs. Alternatively, the motif could 

function as a cis-regulatory element or binding site for an unidentified RNA-

binding complex that prohibits 26G-RNA but not 22G-RNA synthesis.  

To determine whether these motifs are required for 26G-RNA biogenesis, 

genomic deletions of the motifs at specific 26G-RNA loci and then mutants can 

be assayed for the production of the 26G-RNAs from that locus. In addition, 

reporter constructs driving the expression of visual maker, such as GFP, could 

be used to test if these motifs are necessary and sufficient to trigger 26G-RNA 

and 22G-RNA production. To identify proteins that binds to the motif, we could 

perform RNA pull-down experiments or RNA-based Affinity Chromatography 

followed by mass spectrometry (Tian, 2002). 

 

Final Conclusion 

These studies set the stage for future experiments aimed at answering many 

unresolved questions about 26G-RNA function and biogenesis.  Learning more  
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about the mechanism of how the RNAi machinery, specifically the ERI complex, 

is recruited to the target RNAs will be extremely informative in understanding the 

mechanism of 26G-RNA biogenesis.  Furthermore, determining how the 26G-

RNA targets are distinguished from all of the other cellular endogenous 

transcripts that are also regulated by the endogenous small RNAs will also be a 

key to understanding the biological function(s) of this pathway.  

Since the discovery of RNAi, astounding progress has been made 

regarding the study of non-coding small RNA biogenesis and function. By 

establishing a conserved mechanism of gene regulation, from repressing gene 

expression in a temporal and spatial manner, to directing epigenetic regulation 

that persists in a heritable manner, small RNAs are unmistakably seen as 

fundamental regulatory molecules that have supplanted the canonical role of 

RNA in the Central Dogma of molecular biology. It is undoubtedly the case that 

future biomedical research will reveal new and exciting insights into the diversity 

of mechanisms by which small RNAs regulate gene expression and the genome.  
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