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ABSTRACT 

 

 Obesity is associated with insulin resistance, dyslipidemia, and cardiovascular 

disease. The current obesity epidemic is the result of surplus energy consumption. Excess 

energy is stored in expanding adipose tissue. Adipose tissue growth entails the 

enlargement of existing adipocytes, the formation of new fat cells from preexisting 

progenitors, and the coordinated development of supporting vasculature.  Identifying 

adipocyte progenitors and the mechanism of adipose tissue expansion is crucial for the 

development of new strategies to combat obesity and its complications.  

Though important progress has been made towards understanding the 

developmental origin of adipocytes, the identities of adipocyte progenitors are still not 

completely known. The main objective of this study is to determine whether endothelial 

cells of the adipose tissue can give rise to new adipocytes. Our results indicate that 

murine endothelial cells of adipose tissue are pluripotent and can potentially give rise to 

preadipocytes. Lineage tracing experiments using the VE-Cadherin-Cre transgenic mouse 

reveal localization of reporter genes in endothelial cells, preadipocytes and white and 

brown adipocytes. Moreover, capillary sprouts from human adipose tissue, which have 

predominantly endothelial cell characteristics, are found to express Zfp423, a 

preadipocyte determination factor. In response to PPARγ activation, endothelial 

characteristics of sprouting cells are progressively lost, and cells form structurally and 

biochemically defined adipocytes. Taken together, our data support an endothelial origin 

of a population of adipocytes. The ability of the vascular endothelium to give rise to 



 xii 

adipocytes may explain how angiogenesis and adipogenesis can be temporally and 

spatially coordinated. 

Analysis of BAT and WAT revealed that adipose depots have distinct 

compositions of adipocyte progenitors.  Of the CD45-CD29+Sca1+CD24+ progenitor 

population, only 17% and 52% express VE-Cadherin in WAT and BAT, respectively. 

Our data show that the number of these specific progenitors in BAT and WAT are highly 

variable and suggest that a considerable number of adipocytes progenitors may have a 

non-endothelial cell origin. Differences in composition and types of adipocyte 

progenitors may explain the differences in the adipocytes phenotypes that we observe in 

discrete depots.  

In brief, we find that the vascular endothelium gives rise to a population of brown 

and white fat cells, and that the number of endothelial-derived adipocyte progenitors 

residing in BAT and WAT is highly variable. These results expand our current 

understanding of adipose tissue growth, and, we hope, will accelerate the development of 

treatments for obesity-related complications. 



 

1 
 

1 

CHAPTER I: Adipose Tissue in Human Health and Disease 

 

“Thou seest I have more flesh than another man, and therefore more frailty” 

William Shakespeare. Henry IV, Part I 
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Introduction 

Only recently in human history has the association between high body weight 

and poor health become readily apparent. For much of history, a combination of 

natural and artificial disasters caused mankind to be preoccupied with under-nutrition 

and disease-induced anorexia [1]. Drought, floods, blights, plagues, and human nature 

have made famine a frequent occurrence documented in ancient times through the 

writings of Plato, Thucydides, and Aristotle [2]. 

Famine has contributed to the downfall of many great civilizations [3]. The 

fall of the Roman Empire was partly attributed to famines brought on by severe 

transportation and communication challenges, which ultimately caused the deaths of 

thousands [4]. The infamous “Bread and Circuses” strategy of Roman emperors 

sprung from efforts to distribute free food in an attempt to avoid social unrest. 

Traditionally how well empires dealt with food shortage problems was directly 

correlated to their longevity [1].  

To the same extent, how well an organism deals with periods of starvation is 

tied to its survival over time. It is conceivable that an organ would evolve to meet the 

energy demands of an organism during periods of ecological instability. In humans 

and other vertebrate animals, this organ is the adipose tissue. The accumulation of 

fuel in discrete adipose depots allow for a better regulation of energy balance. First, 

adipose depots can be regulated by the central nervous system (CNS) specifically and 

efficiently via molecular signaling. Second, the adipose tissue itself can act as a 

metabolic sensor and effector by signaling to the brain [5]. Formation of a peripheral 

organ that can store fuel and interact with the CNS to meet energy needs allows an 

organism to adapt to the reality of an uncertain food supply. This work aims to 
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provide insight on the mechanism of adipose tissue growth. To give context and 

establish the importance of fat cell biology, we will briefly discuss the current obesity 

epidemic and prevailing theories regarding the role of adipose tissue in human health 

and disease. 

 

Obesity Epidemic 

Through 19th century, the significance of adipose tissue was most apparent in 

times of under-nutrition [1]. However, it is evident in the present obesity epidemic 

that adipose tissue function is also of particular importance in time of over-nutrition. 

In 2008, the World Health Organization (WHO) estimated that 1.5 billion adults 

worldwide were either obese or overweight. Obesity and overweight status are 

defined in terms of body mass index (BMI), the ratio between weight (kg) and the 

square of height (m2). Those with BMI ≥ 30 are obese and those with BMI ≥ 25 are 

overweight. According to Center for the Disease Control and Prevention (CDC), 

35.7% of adults in the US are obese (Figure 1.1). Approximately 12.5 million children 

are obese and it is forecasted that life expectancy will either decrease or no longer 

increase due to the significant disease burden associated with increase adiposity [6] 
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Figure 1.1. Rapid rise in the prevalence of obesity in the United States. Statistics 
reported by the CDC on the prevalence of obesity in adults in the US. Adapted from 
the CDC website (www.cdc.gov/obesity).  
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It is well established that obesity increases the risk of type II diabetes (T2D), 

hypertension, hyperlipidemia, ischemic heart disease and cancer [7-10]. The 

correlation between obesity and T2D is clearly mapped by epidemiological data 

(Figure 1.2).  An increase of 2 in BMI in overweight males can potentially reduce 

their lifespan by approximately one year [11-13]. Currently, our nation spend 147 

billion dollars to treat obesity-related illnesses with the poor being most affected [14]. 

Thus, the obesity epidemic, like famine is a significant social and biological crisis that 

must be addressed. 
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Obesity from an evolutionary perspective 

Thrifty genotype: There are several schools of thought regarding the cause of the 

growing obesity epidemic. In 1962, James Neel wrote a seminal paper suggesting that 

‘genetic thrift’ was the driving force behind our currently pandemic [15, 16]. He 

argued that perhaps people who were more efficient at storing energy were better 

suited for survival in times of ‘feast and famine’. According to Neel, natural selection 

would favor those with thrifty genotypes.  

The agricultural and technological revolutions drastically changed homo 

sapiens environment and lifestyle [17]. We are now able to consume more energy and 

exert less using technological advances. Furthermore, improvements in heating and 

clothing have drastically reduced our need to expend energy to keep ourselves warm 

via adaptive thermogenesis [18-21]. In the new environment, the thrifty genotype is 

maladaptive as it carries a higher risk of developing T2D. Neel pointed out that 

perhaps obesity was like sickle cell anemia, except multifaceted and is not traced to a 

single allele. Much like obesity, at some point it was evolutionarily advantageous to 

carry the sickle cell gene, however, this trait has become maladaptive in modern times 

and now leads to severe health complications [15]. 

The conceptual underpinnings of Neel’s hypothesis are true to some extent, 

because we do know that genes determine body weight and fat distribution as well as 

the development of T2D (Figure 1.3 and 1.4) [22]. Although a clear genetic link 

between obesity and T2D has been difficult to establish, certain genes have been 

implicated in both obesity and diabetes. For example, those who are homozygous for 

the affected allele of the fat-mass and obesity-related (FTO) gene are at higher risk for 
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diabetes and also at risk to be 2-3 kg heavier than those homozygous for the variant 

allele (Figure 1.5) [23-27]. 
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Figure 1.3.  Genomic Locations of Proven Signals of Nonautoimmune Forms of 
Diabetes. Signals are shown according to their location on each chromosome. Genes 
causing monogenic and selected syndromic forms of diabetes are shown to the left: 
genes implicated in maturity-onset diabetes of the young (red triangles) and those 
representing loci causal for other monogenic and syndromic forms of diabetes (green 
triangles). Common variants that have significant genomewide associations with 
multifactorial forms of diabetes are shown to the right (blue triangles); for these 
variants, the genes named within the triangles are indicative of signal position, but in 
most instances, formal proof that these are the specific genes responsible for the 
association is lacking. Adapted from McCarthy, M.I. (2010). Genomics, type 2 
diabetes, and obesity. N Engl J Med 363, 2339-2350. 
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Figure 1.4. Genomic Locations of Proven Signals of Body-Mass Index (BMI), 
Obesity, and Related Phenotypes. Signals are shown according to their location on 
each chromosome. Genes causing monogenic and selected syndromic forms of 
obesity (red triangles) are shown to the left. Common variants that have significant 
genomewide associations with BMI or multifactorial obesity are shown to the right: 
loci implicated in BMI or weight variation at the population level (solid blue 
triangles), additional loci identified in case–control analyses of extreme obesity (open 
blue triangles), and variants identified primarily because of their association with 
waist circumference or waist-to-hip ratio (solid green triangles). For the variants 
shown to the right, the genes named within the triangles are indicative of signal 
position, but in most instances, formal proof that these are the specific genes 
responsible for the association is lacking. Adapted from McCarthy, M.I. (2010). 
Genomics, type 2 diabetes, and obesity. N Engl J Med 363, 2339-2350. 
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Figure 1.5. Pathways to Type 2 Diabetes Implicated by Identified Common 
Variant Associations. Type 2 diabetes results when pancreatic beta cells are unable 
to secrete sufficient insulin to maintain normoglycemia, typically in the context of 
increasing peripheral insulin resistance. The beta cell abnormalities fundamental to 
type 2 diabetes are thought to include both reduced beta cell mass and disruptions of 
beta-cell function. Insulin resistance can be the consequence of obesity or of obesity-
independent abnormalities in the responses of muscle, fat, or liver to insulin. 
Examples of susceptibility variants that, given current evidence, are likely to 
influence predisposition to type 2 diabetes by means of each of these mechanisms are 
shown. Adapted from McCarthy, M.I. (2010). Genomics, type 2 diabetes, and obesity. 
N Engl J Med 363, 2339-2350. 
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Thrifty Phenotype: An alternative to Neel’s hypothesis is posed by David 

Barker, who argues that exposure to malnutrition in utero results in disturbances that 

lead to the impaired glucose tolerance and other metabolic syndromes [16, 28, 29].  

Epidemiological data support the Barker hypothesis. In 1944-1945, World War II 

devastated Western parts of Netherlands and famine ensued. During the Dutch famine, 

food was rationed and dairy intake dropped below 1000 calories [30]. It was found 

that fetal exposure to malnutrition during the first half of gestation resulted in 

significantly higher obesity rates in men and decreased glucose tolerance in adults [31, 

32]. Others have found that low birth-weights were associated with higher rates of 

diabetes [33-35]. Furthermore, studies in animal models involving nutrient restrictions 

and high-caloric feeding revealed that maternal and paternal health have profound and 

lasting effects on fetal endocrine function [36-38].  Several pieces of evidence suggest 

that fetal adaptation to uterine environment may negatively affect phenotype in adult 

life.   

Predator Release: Although Neel and Barker suggest different hypotheses for 

the alarming increase in obesity, they both cite adaptive mechanisms. A non-adaptive 

hypothesis has been suggested recently by John Speakman [39]. Speakman states that 

adaptive hypothesis might be flawed because a large population is still normal-weight. 

If indeed nature favored those especially efficient at storing fat, we would see high 

occurrences of obesity during historical periods of “feast.” His “predatory release” 

theory posits that the recent rise in obesity is instead due to genetic drift. In the 

‘hunter-and-gather’ days, predation selected against obese people. In the absence of 

predation, random mutations and genetic drifts could explain the rapid emergence of 

obesity [17].  
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Adipose Tissue 

The mechanism by which obesity has rapidly emerged is one of the most 

pressing public health issues of our era and is still hotly debated. However, the fact 

that it negatively impacts human health and happiness is undisputable. At the center 

of all discussions and of this body of work is the adipose tissue. There are two 

established types of adipose tissue: white adipose tissue (WAT) and brown adipose 

tissue (BAT). 

White Adipose Tissue: Excess caloric intake is stored in WAT, which is 

widely distributed in visceral and subcutaneous deposits [40]. Visceral fat depots are 

found in intra-abdominal, perigonadal and retroperitoneal regions. Subcutaneous fat 

depots are mostly found in the gluteal, inguinal and abdominal regions. Histologically, 

white adipocytes appear spherical with variable size, depending on the lipid droplet 

(unilocular) within them. Mitochondria present in white adipocytes are thin and 

elongated (Figure 1.6) [41].  

WAT has two primary functions. First, it stores energy in the form of 

triglycerides in times of surplus and releases energy in the form of fatty acids in times 

of fasting. Second, it serves as the largest endocrine organ in the body, secreting 

adipokines such as leptin and adiponectin that are vital in regulating energy balance.  

Brown Adipose Tissue: Adipose tissue is composed of not only white 

adipocytes, but also brown adipocytes, which are involved in energy expenditure 

rather than energy storage. BAT is present in the axillary, cervical, perirenal and 

periadrenal regions of newborns [42]. Although it was once thought that BAT 

becomes relatively insignificant in older people, Cypress et al. recently demonstrated 

through [18F]-2-fluoro-D-2-deoxy-D-glucose (FDG) positron emission tomography 



 

14 
 

14 

(PET) that metabolically active BAT is present in the cervical, supraclavicular, 

axillary and paravertebral regions of normal adults [43]. Others have since confirmed 

that BAT exists in human adults [19, 20, 42, 44, 45]. Histologically, brown adipocytes 

are polygonal and have many small lipid droplets (multilocular) within them. Their 

mitochondria are abundant and appear large, spherical and filled with laminar cristae 

(Figure 1.6) [41]. 

Brown adipocytes express uncoupling protein-1 (UCP-1), a 32 kDa protein 

that permits protons to leak through the inner mitochondrion membrane [46]. It 

uncouples ATP synthesis from the electron transport chain, allowing production of 

heat rather than ATP from the electrochemical gradient [47]. UCP-1 is specific to 

BAT and is entirely responsible for non-shivering thermogenesis [48]. In humans, 

BAT function is inversely correlated with obesity [21, 49], while mice genetically 

engineered to have reduced brown fat develop T2D and obesity [50, 51]. Because of 

its anti-obesity effect, induction of BAT in humans represents a potential tool in the 

prevention of obesity and its metabolic consequences  
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Figure 1.6. Histology of BAT and WAT.  Brown adipocytes are multilocular with 
abundant spherical mitochondria (A and C) and white adipocytes have unilocular 
lipid droplets and flattened mitochondria (B and D). In some WAT, there is presence 
of brown adipocytes, indicated by expression of UCP-1, distinct multilocular 
appearance and spherical mitochondria (E and F). m: mitochondria, l: lipid droplet, 
m: mitochondria, n: nucleus, cap: capillary. Modified from Frontini, A. and S. Cinti, 
Distribution and development of brown adipocytes in the murine and human adipose 
organ. Cell Metab, 2010. 11(4): p. 253-6 and Cinti, S., Transdifferentiation
properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab,
2009. 297(5): p. E977-‐86.
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Stromal Vascular Fraction of Adipose tissue: White adipocytes and brown 

adipocytes are supported by cells in the stromal vascular fraction (SVF) of the adipose 

tissue. The SVF loosely defines a population of cells isolated from adipose tissue via 

collagenase digestion. It is comprised of all non-adipocyte cells, including 

preadipocytes, autonomic nerves, vasculature, leukocytes and connective tissue. The 

SVF plays a crucial role in supporting the maintenance and expansion of the adipose 

tissue. 

Obesity and diabetes at the molecular perspective: 

At the molecular level, it is thought that adipose tissue dysfunction in obesity 

leads to insulin resistance. Although this hypothesis is still evolving, it is widely 

accepted that obesity-related insulin resistance is in part due to (1) a sequestration 

defect that leads to free fatty acid (FFA) circulation, deposition and subsequent 

disruption of insulin signaling and (2) changes in adipokine secretion that impair 

adipogenesis and decrease peripheral insulin sensitivity [52].  

Lipotoxicity: The hypothesis that FFA circulation and deposition in peripheral 

organs cause insulin resistance is supported by studies demonstrating that short-term 

FFA infusion acutely induces insulin resistance. This is further corroborated by 

findings that intra-myocyte lipid content correlate positively with insulin resistance 

better than BMI measurements [53-55]. Consistent with this conclusion is the 

observation that patients who have congenital lipodystrophies have high levels of 

circulating triglycerides and are also insulin resistant [56]. Mouse lipodystrophic 

models also show glucose impairment in the absence of fat [57, 58]. Although it is 

widely accepted, Karpe and colleagues recently challenged the hypothesis that there is 
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higher plasma concentration of FFA in cases of obesity and diabetes. They found that 

when normalized for mass, adipose tissue FFA release is decreased [59]. It was also 

noted that women tend to have higher FFA than men, however they are more insulin 

sensitive.  

Inflammation: Besides the “lipotoxic” effect, adipose tissue dysfunction can 

also lead to perturbation in adipokine secretion to cause insulin resistance. Patients 

who are obese have lower levels of plasma adiponectin, an insulin sensitizer [60, 61]. 

In the initial stages of obesity, adipocytes grow in size to accommodate excess 

nutrition. It has been found that hypertrophied adipocytes secrete higher level of 

chemo-attractants to recruit immune cells [52, 62]. Inflammation of the visceral 

adipose tissue has been correlated with insulin resistance [63]. In obese patients, 

macrophages can represent as much as 40% of cells [64]. Macrophages and 

adipocytes themselves in turn secrete inflammatory signals, such as tumor necrosis 

factor α (TNF-α) and interleukin-1β  (IL-1β). TNF-α has been show to negatively 

affect insulin substrate receptor (IRS) Ser/Thr phosphorylation, a key mediator of 

insulin signaling [52, 65].  

Beyond impairing insulin signaling, TNF-α also down-regulates peroxisome 

proliferator-activated receptor γ (PPARγ) at the transcriptional and post-translational 

levels. PPARγ is a transcription factor that is necessary and sufficient for 

adipogenesis [66]. It is required for the development and maintenance of adipose 

tissue and is important in many tissues as demonstrated by numerous knock-out 

studies (Table 1). Thus, not only does TNF-α disrupt insulin signaling, it impairs the 

formation of new healthy adipocytes to help regulate metabolism. 
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Endothelial 
cells 

Nicol et al. 2005 
[71] 
 
 
 
Kleinhenz et al, 
2009 [72] 
 
 
 
 
 
Kanda et al., 
2009 [73] 
 
 
 

Tie2Cre/ PPARγfl/fl 

 
 
 
 
Tie2Cre/ PPARγfl/fl 

 
 
 
 
 
 
Tie2Cre/ PPARγfl/fl 

 
 
 
 

HFD-induced 
hypertension 
 
 
 
Hypertensive. 
Impaired Ach-
induced NO 
production and 
vasorelaxation  
 
 
Increased insulin 
sensitivity, fasting 
plasma FFA and TG 
levels, decreased TG 
accumulation in 
skeletal muscle as 
compared to WT 
mice. Fat mass 
reduced compared to 
WT on HF diet. 

TZD did not 
improve HFD-
induced 
hypertension 
 
 
 
 
 
 

 
 
TZD failed to 
increase 
epididymal fat 
mass in knockouts 
as seen in controls. 
Also, did not lower 
plasma FFA and 
triglyceride levels, 
suggesting direct 
action on 
endothelial cells. 

 
*Table displays a limited list of models that are most relevant to this study 
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Although the mechanisms by which obesity leads to diabetes are still debated 

on the genetic and molecular levels, it is clear that the healthy adipocytes are integral 

to metabolism. It would follow that generating healthy adipocytes would be beneficial 

in at least two ways, first by sequestering free fatty acid and decreasing lipotoxicity 

and second by normalizing adipokines secretion to maintain insulin sensitivity. This 

study aims to establish the origin of new adipocytes. 

 

Adipocyte expansion:  

 Adipocytes expand either by multiplying in numbers (hyperplasia) or by 

increasing in size (hypertrophy) [74-76]. Analysis of subcutaneous fat and visceral fat 

has led many researchers to conclude that hyperplastic growth may have a protective 

effect on metabolic dysfunction [77, 78]. While increase in visceral fat seen in 

abdominal obesity is associated with metabolic disease, increase in subcutaneous fat 

seen in peripheral obesity is associated with metabolic health [79-83]. Rate of 

proliferation of precursors isolated from subcutaneous adipose tissue is higher than 

that of visceral adipose tissue, and thus it is indirectly concluded that hyperplastic 

growth is metabolically beneficial [77, 78, 84]. 

New adipocyte formation is part of physiological growth. Experiments using 

radioactive tracers revealed that new adipocytes form and die throughout life [85-87]. 

Through analyzing adipose tissue of people who were exposed to radiation during 

atomic testing, Spalding et al. estimated that the rate of adipocyte turnover is 

approximately 10% per year [88]. Mature adipocytes do not divide, thus precursors 

exist and are constantly making adipocytes and renewing themselves in the adipose 

tissue. 
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Adipocyte precursors reside in the adipose tissue vasculature [89-91]. 

Adipogenesis and angiogenesis are temporally and spatially coupled in development 

[92-95]. Studying postnatal epididymal adipose tissue, Han et al. found that 

angiogenesis precedes adipogenesis and that impairment of the VEGF/VERGFR2 

signaling pathway disrupts adipogenesis [93]. This result is further corroborated by 

findings from Kolonin and colleagues demonstrating that targeting adipose tissue 

endothelial cells with apoptotic peptide inhibited weigh gain in mice and primates fed 

high fat diet [96, 97]. It is important to note that some of the anti-obesity effect 

associated with anti-angiogenesis agents may be due to a confounding anorexic affect, 

and not to a direct effect on adipocyte growth and development. 

Although the mechanisms by which anti-angiogenic drugs decrease weight 

gain are still debated, it is clear that a close relationship exists between cells in the 

vasculature and adipocytes. There are several microscopy studies that illustrated the 

unique relationship between pericytes and adipocytes. Micrographs depict the 

juxtaposition between preadipocytes and vasculature, some suggesting that 

preadipocytes might be emerging from the vasculature [98-101].  In 1983, Hausman 

et al. showed that endothelial cells of adipose tissue in rats have many processions 

into the lumen and perivascular space. Some of these endothelial processes are 

contiguous with adipocytes [102]. These morphological evidences are suggestive of a 

pericyte-endothelial nature of preadipocytes and adipocytes [95].  

Morphological studies set the stage for the recent genetic experiments that 

have shed light on the identity of the adipocyte precursors. Development of novel 

genetic tools has allowed for the tracing of cell lineages throughout a life of the 

mouse [103, 104]. Tang et al. generated a knock-in mouse that has the tetracycline 
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transactivator (tTA) under the control of PPARγ [91]. Then they crossed the tTA-

PPARγ mouse to one that has Cre-recombinase under the control of the tetracycline 

response element (TRE). The resulting transgenic animal was then mated with two 

reporter strains, one which as an indelible LacZ signal and the other with mitotic-

sensitive GFP signal. The reporter would be active in the absence of doxycline (Dox; 

Tet-off) but would be inactive in its presence. Using these two models, the authors 

discovered that preadipocyte are present before birth, and most WAT expansion 

occurs postnatal. 

Cells FACS sorted from PPARγ-GFP mouse for the reporter signal also 

expressed Sca-1 and CD34. Using stromal vascular particulate (SVP) isolation 

techniques, the Graff laboratory found that the GFP+ cells are located near vessels 

and co-localize with cells expressing pericytes markers, NG2, SMA, and PDFGRβ 

[91]. Based on these findings, Tang et al. concluded that mural cells of the adipose 

tissue give rise to adipocytes. To test this hypothesis they made a PDFGRβ-Cre/R26R 

reporter mouse. It was found that adipocytes indeed expressed LacZ in these 

transgenic animals, further supporting a pericytic origin of new adipocytes. Tang et al. 

reported that cells expressing PDGFRβ in the vasculature of the adipose tissue have 

the capacity to undergo adipogenesis when transplanted into nude mice [91]. In 

culture, isolated PDGFRβ+ cells from WAT, but not from other tissues e.g. kidney, 

were able to undergo adipogenesis in the presence of a thiazolidinedione (TZD), a 

PPARγ agonist. Thus, the vasculature of the adipose organ not only supports the 

maintenance and expansion of adipose tissue, but also harbors cells that can 

differentiate into adipocytes.  
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An important aspect to realize is that these results do not exclude the 

possibility that endothelial cells may give rise to new adipocytes. It is reported that 

endothelial cells also express PPARγ [71-73]. PDGFRβ is also expressed in 

endothelial cells of microvasculature and is not restricted to pericytes [105-107]. Thus, 

although the Graff laboratory demonstrated that pericytes can give rise to adipocytes, 

questions remain whether cells of an endothelial lineage have the same capacity. The 

first goal of this study is to address this question using morphological and genetic 

approaches. 

Around the same time, a seminal study by Rodeheffer et al. revealed the 

identity of the early adipocyte progenitors [108]. The Friedman group used 

fluorescence-activated cell sorting (FACS) to isolate cells expressing stem cell 

markers CD29, CD34, Sca-1 and CD24 (CD24+) from the SVF. Within this 

population, they also depleted cells expressing known lineage markers: CD31, CD45 

and Ter119 (Lin-:CD24+). Approximately 50,000 of Lin-:CD24+ cells from 

ubiquitin-GFP mice were transplanted into wild-type and A-Zip lipodystrophic mice 

[58]. Although no GFP+ adipocytes were found in wild-type mice, GFP+ adipocytes 

were present in newly-formed fat pads of the A-Zip mice 12 weeks after injection of 

the CD24+ progenitors. Furthermore, these newly-formed adipocytes were able to 

improve the insulin resistance associated with the A-Zip lipodystrophic model. These 

experiments not only revealed the identity of an early progenitor population, but they 

also demonstrated the importance of the microenvironment in adipogenesis. 

With respect to diet-induced obesity, changes in the microenvironment appear 

to play an important role in regulation of adipogenesis. Rodeheffer et al. illustrated 

this with transplantation experiments involving CD24+ cells from leptin-luciferase 
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transgenic animals [108]. In this model, luciferase expression is restricted to the 

adipose tissue [109]. Two weeks after injection, wild-type mice were fed high fat diet 

for six weeks. Luciferase signal was detected in three of the eight animals injected 

with CD24+ cells and subsequently fed HFD. The development of new adipocytes 

from CD24+ precursors in A-Zip and HFD-fed animals indicates that adipose 

expansion from transplanted cells may only occur in a permissive environment. 

Rodeheffer et al. demonstrated the importance of the microenvironment and 

its role in determining cell fate. Cells in the SVF are capable of differentiating into a 

number of cell types such as osteocytes, chondrocytes, adipocytes, myocytes, and 

endothelial cells in vitro [90, 91, 108, 110-116]. Furthermore, Planat-Benard and 

colleagues demonstrated that adipocytes can be stimulated to become endothelial cells 

in culture [115]. Cellular plasticity exists and cell fate is less rigid than thought.  In 

this study, we examine whether endothelial cells arising from the aorta of mice have 

the capacity to become adipocyte, similar to cells in the adipose tissue.   

Up to date,  the seminal works on adipocyte progenitor cells have been 

focused on white adipocyte. This may be because only recently has BAT been 

discovered to be relevant to human adult health. BAT and WAT are both mesodermal 

and it was assumed that they share the same origin. However, two recent studies have 

shown that this may not be the case. The Conlon and the Spiegelman laboratories 

have found that a population of brown adipocytes is derived from a muscle-related 

En1 and Myf5 lineages [117, 118]. 

Study by Seale et al. also suggests that there are several origins of brown 

adipocytes. They noted that brown adipocytes stimulated by β-adrenergic agonists are 
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not derived from a Myf5+ lineage. The concept that multiple cell types can give rise 

to brown adipocytes is supported by experiments that show transdifferentiation of 

white and brown adipocytes under certain physiological conditions. For example, in 

the presence of cold or after treatment with β3-adrenoceptor agonist, it has been found 

that white adipocytes can transdifferentiate into brown adipocyte [119-122]. Under 

obesogenic conditions, brown adipocyte accumulate lipid and take on storage function 

like white adipocytes [123]. From an evolutionary perspective, multiple origins of 

brown adipocyte might be beneficial, as in the right physiological and 

pathophysiological conditions, pluripotent cells residing in specific organs can be 

programmed to take on function that would ensure optimal performance. 
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Recent Development: Since the work described herein began, there have been 

several important papers published by the Spiegelman’s laboratory on this subject. 

Although these studies were completed too late to directly influence the design of this 

work, their findings support our hypothesis and will be discussed. In 2010, Gupta et 

al. reported that finger protein 423 (ZFP423) is enriched in fibroblast cell lines that 

have the capacity to undergo adipogenesis (Figure 1.7) [124]. Overexpression of 

ZFP423 in NIH3T3 cells, which do not undergo adipogenesis, causes them to 

differentiate into adipocytes under permissive conditions. The ZFP423 knock-out 

mouse has diminished and irregular brown and white adipocytes. It was concluded 

that ZFP423 was an adipocyte predetermination factor.   
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Figure 1.7. The C2H2 zinc finger protein Zfp423 is enriched in preadipocytes. Oil-red-O 
(ORO) staining of preadipocyte cell lines (a) and non-adipogenic cells lines (b) at six days 
following the induction of adipogenesis with DMI. (c) Zfp423 expression in sub-confluent 
Swiss 3T3 subclones and existing preadipocyte and fibroblast cell lines. (n=3 replicates per 
cell line). In this, and other figures, bars represent mean ± standard deviation from the mean. 
(d) Western Blot of endogenous Zfp423 protein levels in fibroblast cell lines grown under 
non-differentiating conditions. Adapted from: Gupta, R.K., et al., Transcriptional control of 
preadipocyte determination by Zfp423. Nature, 2010. 464(7288): p. 619-23. 
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The Spiegelman laboratory then went on to make ZFP423GFP reporter animal 

[89]. This animal expresses GFP under a non-functional ZFP423 transgene, allowing 

for the identification of precursor cells. In their study, Gupta et al. found localization 

of ZFP423 to pericytes and endothelial cells of the adipose tissue (Figure 1.8). This 

supports the results of our experiments. Interestingly, ZFP423 is only expressed in 

endothelial cells of the adipose tissue and not in other tissues, e.g. muscle. This may 

reinforce the concept that environment controls gene expression on the molecular and 

global levels. 
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Figure 1.8. GFP+ Preadipocytes Reside in the Adipose Vasculature as a Subset of Both 
Pericytes and Capillary Endothelial Cells (A and B) Confocal images of adult inguinal 
WAT stained with antibodies recognizing GFP (red) and the endothelial cell protein CD31 
(green), with nuclei counterstained with DAPI. In (A), note the expression of GFP in mature 
adipocytes and in some blood vessels (∗). In (B), note the expression of GFP in a subset of 
perivascular cells (arrow) and in a subset of endothelial cells (arrowhead) of the blood vessel 
highlighted in (A).(C) Confocal image of developing inguinal WAT from postnatal day 4 
mice stained with antibodies recognizing GFP (red) and the endothelial cell protein CD31 
(green). Note the expression of GFP in a subset of perivascular cells (arrow) and in a strong 
subset of endothelial cells (arrowhead) even before the full development of mature adipocytes 
at this stage.(D and E) Confocal images of embryonic day 18.5 interscapular BAT stained 
with the same antibodies shown in (A)–(C). In (D), note the expression of GFP in mature 
adipocytes and in numerous perivascular cells (arrows). In (E), note the expression of GFP in 
a subset of endothelial cells (arrowhead).(F) Confocal image of skeletal muscle directly 
adjacent to the interscapular BAT shown in (D) and (E). Note the absence of GFP+ cells in 
the vasculature of this tissue. Adapted from Gupta, R.K., et al., Zfp423 expression identifies 
committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell 
Metab, 2012. 15(2): p. 230-9 
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SPECIFIC AIM 

The goal of this body of work is to further characterize the identity or 

identities of the adipocyte progenitors.  Adipose tissue expansion requires the 

enlargement of existing adipocytes, differentiation of adipocyte progenitors, and the 

development of a supporting vascular network. Evidence suggests that adipocyte 

precursors reside in the vasculature of the adipose tissue. Recently, Tang et al. have 

shown that pericytes of adipose tissue vessels give rise to adipocytes. Pericytic origin 

of adipocytes has been corroborated by other studies. However, it is not completely 

clear if endothelial and adipocytes may also share the same origin.  

It has also been established that microenvironment is crucial in adipogenesis. 

Pericytes from the kidneys are not able to undergo adipogenesis. Furthermore, 

adipocytes progenitors from the adipose tissue will not undergo adipogenesis when 

transplanted into host animals unless the environment of the recipient adipose tissue is 

conducive to the formation of new adipocytes. This brings into question whether 

progenitor cells of other organ systems can be stimulated to make new adipocytes if 

permissive conditions in vitro are established.  

We hope to contribute to the current knowledge of adipocyte progenitors. The 

specific aims of this study are: 

1. To determine whether cells of the endothelial lineage may give rise to 

new adipocytes during physiological growth.  

2. To determine whether endothelial cells arising from the aorta have the 

capacity to undergo adipogenesis. 
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CHAPTER II: Origin of white and brown adipocyte form vascular endothelium 
 
 
This chapter represents the manuscript: 
Tran, K.-V.*, Gealekman, O.*, Frontini, A.*,  Zingaretti, M. C., Morroni, M., 
Giordanom, A., Smorlesi, A., Perugini, J., De Matteis, R., Sbarbati, A., Corvera, S., 
Cinti, S. (2012) The vascular endothelium of the adipose tissue gives rise to both 
white and brown fat cells. Cell Metab. 15, 222-229.  
*These authors contributed equally 
 
This work is a collaborative effort between the Corvera and Cinti laboratories. Animal 
experiments were performed by Khanh-Van Tran and Andrea Frontini. Real-time 
PCR and FACS analysis were performed by Khanh-Van Tran. Immunohistochemistry 
was performed by Olga Gealekman. All electron microscopy were performed by the 
Cinti laboratory. 
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SUMMARY 

 Adipose tissue expansion involves the enlargement of existing adipocytes, the 

formation of new cells from committed preadipocytes, and the coordinated 

development of the tissue vascular network. Here we find that murine endothelial 

cells (EC) of classic white and brown fat depots share ultrastructural characteristics 

with pericytes, which are pluripotent and can potentially give rise to preadipocytes. 

Lineage tracing experiments using the VE-cadherin promoter reveal localization of 

reporter genes in EC, and also in preadipocytes and adipocytes of white and brown fat 

depots. Furthermore, capillary sprouts from human adipose tissue, which have 

predominantly EC characteristics, are found to express Zfp423, a recently identified 

marker of preadipocyte determination. In response to PPARγ activation, endothelial 

characteristics of sprouting cells are progressively lost, and cells form structurally and 

biochemically defined adipocytes. Together these data support an endothelial origin 

of murine and human adipocytes, suggesting a model for how adipogenesis and 

angiogenesis are coordinated during adipose tissue expansion. 

 

 

 

 

 

 

 

 

 



 

33 
 

33 

INTRODUCTION 

 The obesity epidemic associated with increased risk of type 2 diabetes have 

underscored the need to understand the relationship between excess caloric intake, 

white adipose tissue (WAT) development, and metabolic disease. Mammals, 

including humans, also have metabolically active brown adipose tissue (BAT) [20, 21, 

43], and BAT precursors can be found in adipose organ of adult humans [125]. BAT 

has anti-obesity properties, therefore the mechanisms by which brown adipocytes 

emerge under different physiological and pharmacological conditions is under 

intensive investigation. 

 

 Adipose tissue growth is mediated by adipocyte hypertrophy, but in obesity 

adipose tissue may reach 60-70% of body weight, requiring hyperplasic growth [76, 

126]. Therefore, defining the identity of adipocyte precursors is an area of intense 

interest. Markers of precursor cells giving rise to committed preadipocytes are being 

identified [124], and a population of early adipocyte progenitor cells expressing stem 

cell markers has been characterized in mouse WAT [108]. Furthermore, PPARγ 

lineage tracing studies indicate that the vascular wall of adipose tissue capillaries 

represents the niche of adipocyte precursors[91]. 

 

 Adipose tissue growth requires concomitant expansion of its capillary network 

[127, 128], but how adipocyte formation and capillary expansion are coordinated is 

unclear. The stromal-vascular fraction (SVF) cells of adipose tissue differentiate in-

vitro into either an adipogenic or a perivascular phenotype [114, 129-132], but the 

identity of these progenitor cells in-vivo is unknown. Since cells morphological 
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features are closely related to their function, a careful ultrastractural analysis during 

development could provide information on the origin and anatomical localization of 

adipose tissue precursors.  

 

VE-cadherin is required for the formation of vasculature, and is expressed 

specifically in endothelial cells (EC) of fetal and adult mice.  VE-cadherin-Cre-

dependent LacZ and eGFP reporter strains show localization of the reporters in EC of 

many tissues [133-138]. However, VE-cadherin is also expressed in sub-populations 

of hematopoietic cells before E11.5, and thus their descendants are potentially 

labelled into adulthood [136]. To circumvent this problem, mice in which VE-

cadherin-driven Cre is induced during adulthood have also been created, resulting in 

negligible excision (lower than 0.4%) in the hematopoietic lineage [134]. Lineage 

tracing with constitutive and inducible VE-cadherin driven Cre can provide 

information on the relationship between vascular and adipose cell development by 

allowing the identification of cells that express this EC gene at any point during 

embryonic and postnatal periods. 

 

An additional tool to define the relationships between newly formed 

vasculature and the genesis of new adipocytes is the use of mouse and human adipose 

tissue explants cultured ex-vivo [139, 140]. In this manuscript, we have used these 

morphological, genetic and functional approaches, and obtained evidence that EC of 

capillaries in developing WAT and BAT depots can give rise to mature adipocytes. 

Our findings will enable further studies of the biochemical and physiological cues 

controlling adipose tissue growth. 
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RESULTS AND DISCUSSION 

Ultrastructural identification of endothelial-pericytic cells as possible intermediate 

between EC and preadipocytes 

 Before birth rat (Figure 2.1A) and mouse (not illustrated) epididymal fat 

(eWAT) shows the typical features of a poorly differentiated mesenchymal tissue, 

consisting of a homogeneous population of fibroblast-like cells, often in mitosis 

(Figure 2.1A, m), in a loose connective matrix with small and sparse capillaries 

(Figure 2.1A, asterisks). In contrast, at postnatal day 6-8 (P6-8) (Figure 2.1B), well-

circumscribed areas with majority of cells identifiable as adipocytes due to the 

predominantly unilocular cytoplasmic lipid droplets (Figure 1B, yellowish colour in 

semi-thin section), are observed. These areas are delimited by fibroblast-like cells, 

and contain numerous large capillaries (Figure 2.1B, asterisks). These are about 3-fold 

larger than capillaries found in eWAT of adult animals, suggesting they have 

functions additional to oxygen and nutrient exchange. Adipogenesis appears to be 

restricted into these vasculo-adipocytic islets. Electron microscopy of these islets 

reveals dense collagen fibrils in the interstitial matrix, and thick capillary walls due to 

the presence of abundant pericytes (Figure 2.1C and D). Most of the cells located in 

the peri-capillary position of the vasculo-adipocytic islets, correspond to the cells 

described above by EM, and show nuclear staining for transcription factors widely 

considered as markers of adipogenic conversion, such as PPARγ, C/EBPα and 

C/EBPβ (Figure 2.S1A-C). These results are consistent with studies suggesting that 

pericytes are precursors of preadipocytes [91, 101]. Some EC are also positive for 

C/EBPβ (Figure 2.S1D, arrowhead), which is located upstream of PPARγ and 

C/EBPα in transcriptional control of adipogenesis [141].  
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Figure 2.1: Murine embryonic and postnatal eWAT morphology. A. eWAT depot 
at E18 composed of poorly differentiated mesenchymal cells(m = mitosis; some 
capillaries indicated with asterisk). B. eWAT at P7, where adipocytes appear 
yellowish in areas with abundant large capillaries (asterisks). C,D. Electron 
Microscope micrograph of a vasculo-adipocytic islet showing EC (e; elongated cells), 
tight junctions (tj), pericytes (p; poorly differentiated cells with glycogengranules and 
surrounded by a distinct basal membrane),preadipocytes (pa; cells with small lipid 
droplets, (L)), andglycogen granules in pericyte (arrow).  
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 In about 1-3% of vasculo-adipocytic islet capillaries, some EC exhibited novel, 

unusual features by being exposed to the capillary lumen, but also extended over a 

vicinal EC to adopt a pericytic position (Figure 2.2 A-C, endothelial-pericytic cells). 

Importantly, the junction of these cells with adjacent EC was composed of typical 

oblique tight junctions (Figure 2.2C, arrow), confirming the endothelial nature of 

these cells. EC and pericytes were sometimes joined by tight junctions between a 

protrusion of the EC crossing the basal membrane, and the complementary 

indentation in the pericyte (Figure 2.S1E). Some of the EC and endothelial-pericytic 

cells contain glycogen granules (Figure 2.2D-F, arrows), a characteristic feature of 

adipocyte progenitors [142]. Almost all pericytes (Figure 2.2D), some EC (Figure 

2.2E, arrow), and cells that are partially associated with the capillary wall and also 

abut into the interstitial space (Figure 2.2F) also contain glycogen particles. These 

data reveal a complex relationship between cells in the vasculo-adipocytic islets 

where extensive adipogenesis is ongoing, and suggest that endothelial-pericytic cells 

represent an intermediate between endothelial and preadipocyte stages (drawing in 

Figure 2.S1F). 
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Figure 2.2 Endothelial cells in pericytic position A. EC and 
pericytes of a capillary wall (asterisk indicates the capillary 
lumen). B. Enlargement of the black squared area in E 
revealing EC in endothelial-pericytic position. C. Enlargement 
of the red squared area in E highlighting typical oblique tight 
junction (arrow) joining cell in endothelial-pericytic position to 
adjacent EC. D. Example of cell in endothelial-pericytic 
position containing abundant glycogen (arrows). E. Example of 
a "pure" EC containing abundant glycogen (arrow). F. 
Example of a cell partially associated with the capillary wall 
(arrowheads) and partially abutting into the interstitial space.  
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Lineage tracing studies show an endothelial origin of adipocytes 

 Data shown above suggest that EC may be amongst the cells that give rise to 

new adipocytes. To address this hypothesis directly we used VE-cadherin promoter-

driven lineage tracing. VE-cadherin was expressed only in EC, and not in pericytes 

(red arrowhead) or adipocytes, of subcutaneous (scWAT) (Figure 2.3A) and eWAT 

(data not shown) of adult animals. Similarly, prior to adipocyte development in fetal 

and early postnatal eWAT (Figure 2.3B, C) and scWAT (not shown) of VE-cadherin-

Cre/R26R-LacZ mice, only EC were X-gal positive. In contrast, from P6-8 (Figure 

2.3D, E) to adult (Figure 2.S2A), adipocytes at different stages of lipid accumulation 

in eWAT and scWAT were also X-gal positive, indicating that VE-cadherin promoter 

was expressed at some point during adipocyte development. Control animals were 

always X-gal negative (Figure 2.S2B). To verify that the reporter was localized to the 

adipocyte cytoplasm, we used EM and observed a precise localisation of X-gal 

crystals in EC, pericytes, adipocytes (Figure 2.S2C), and preadipocytes (Figure 

2.S2D). Similar results were found using eGFP as a reporter; in developing eWAT 

adipocytes of VE-cadherin-Cre/R26R-eGFP mice, perilipin and eGFP colocalized in 

adipocytes (Figure 2.3F). Internal positive control (vessels), and other eGFP positive 

adipocytes are shown in Figure 2.S2E. These results further support the hypothesis 

that adipocytes can develop in vivo from cells of endothelial origin. 

 

 These data prompted us to investigate whether brown adipocytes might also 

have an endothelial origin. Immunohistochemistry for VE-cadherin confirmed its 

presence in EC and its absence in BAT pericytes and adipocytes (not illustrated). 

However, the interscapular region of E17-19 VE-cadherin-Cre/R26R-LacZ mice 
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showed strong X-gal staining in both EC and adipocytes (Figure 2.3G, H), while in 

the surrounding muscles only EC were stained (Figure 2.3G). The X-gal staining 

colocalized with the classical brown adipocyte marker UCP-1 (Compare Figure 2.3I 

and 2.3L). Moreover, in the developing interscapular brown fat depot (Figure 2.S3A-

B), some ECs display characteristic markers (Figure 2.S3C-E) and structural features 

(glycogen and mitochondria) of UCP-1- positive brown adipocyte precursors (Figure 

2.S3F-I). Taken together, these data strongly suggest that EC of developing WAT and 

BAT capillaries are a source of adipocyte precursors. Further evidence supporting the 

possibility that certain EC populations can give rise to adipocytes is the finding by 

Gupta et al (B. Spiegelman and R. Gupta personal communication) that pericytes and 

some EC of mouse adipose tissue express GFP driven by the promoter for Zfp423, 

which marks cells determined to form preadipocytes [124]. Moreover, PPARγ 

excision with the use of the Tie-2 promoter driven Cre-recombinase, which is 

expressed in a mosaic pattern in capillary endothelium [143], results in a decrease in 

adiposity and adipocyte size in response to rosiglitazone treatment in a manner 

dependent on endothelial, but not bone-marrow, PPARγ expression [144]. These 

findings constitute further evidence supporting the possibility that certain EC 

populations can give rise to adipocytes  
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Figure 2.3: VE-Cadherin lineage tracing in WAT and BAT. A. 
Immunohistochemical analysis on scWAT from VE-cadherin-Cre/R26Rmice 
showing the specific expression of VE-cadherin only in EC (brown), note the 
negative pericytes indicated by red arrowhead. B, C. In early neonatal eWAT only 
vasculature is X-gal positive. D, E. scWAT (D) and eWAT (E) from P7 mice 
revealing X-gal staining (arrows) in developing and mature adipocytes. F. Confocal 
microscopy of eWAT from VE-cadherin-Cre/eGFPRmice showing a single optical 
plane of adipocytes (arrows), containing eGFP (green) and perilipin (red). Some 
eGFP-negative/perilipin-positive adipocytes are also visible (L). G. X-gal positive 
staining in developing BAT, and in muscle capillaries. H. Enlargement of the squared 
area in G. I, L. X-gal (I) and UCP-1 (L) co-localization to brown adipocytes (arrows). 
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Figure 2.3  
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 A hematopoietic origin of adipocytes has been suggested [145-147]. To exclude 

the possibility that X-gal positive adipocytes originate from hematopoietic lineage, we 

complemented our studies with a tamoxifen-inducible transgenic VE-cadherin-

CreERT2 model in which cells derived from hematopoietic precursors are not labeled 

[134]. VE-cadherin-CreERT2/R26R-LacZ mice at eight weeks of age were induced by 

tamoxifen injection for five consecutive days. Three weeks later X-gal staining was 

observed in capillaries of adipose tissue, but also in numerous adipocytes distributed 

among the eWAT (Figure 2.4B, C) inguinal (E, F) and brown (H, I) depots. Number 

of X-gal positive adipocytes was lower, as compared to the results described above, 

possibly due to a lower number of adipocytes being formed during this postnatal 

expansion period, but still clearly significantly above the background observed in 

negative controls (Figure 2.4A, D, G). PPARγ agonists affect murine adipose tissue 

by increasing multilocularization of existing adipocytes and by stimulating pre-

adipocyte differentiation into mature adipocytes [122, 148]. Mice treated with 

rosiglitazone for three weeks following induction displayed numerous multilocular 

adipocytes, many of which were X-gal positive (Figure S2.3J-L). Thus, under both 

normal and stimulated adipogenesis, adipocytes arise from VE-cadherin expressing 

progenitors non-hematopoietic origin.  
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Figure 2.4. VE-Cadherin fate tracing in WAT and BAT. eWAT (B, C), scWAT (E, 
F), and BAT (H, I) adipose tissue from VE-cadherin-CreERT2-/+/R26R-/+ mice 
showing X-gal positive staining in adipocytes and EC. Adipose tissues fromVE-
cadherin-CreERT2-/-/R26R-/+control mice (A, D, G). 
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A vascular origin for white and brown adipocytes may seem to be in 

contradiction with the work of Seale et al., in which a common origin of BAT and 

skeletal muscle cells [118] was proposed. In this work, the authors found expression 

of YFP in skeletal muscle and BAT from Myf5-Cre/R26R3-YFP mice, consistent 

with both these tissues being derived from a myogenic, Myf5 expressing progenitor. 

Interestingly, De Angelis et al. have shown the existence of progenitor cells from 

embryonic dorsal aorta that express both myogenic and endothelial markers including 

Myf-5 and VE-cadherin[149]. Thus, one explanation for the results of Seale et al. and 

ours is that BAT is derived from a population of VE-cadherin positive, Myf5 positive 

cells, while muscle can be derived from Myf5 only positive cells. Alternatively, as the 

Myf-5-Cre mouse model labels multiple cell lineages from somite origin [150], other 

somite-derived cell progenitors that subsequently express VE-cadherin could in 

theory give rise to BAT. If the brown adipocyte and muscle cell fates were 

determined before the expression of VE-cadherin, lineage tracing experiments using 

the VE-Cadherin-Cre mouse model would not label myocytes.  

 

Human adipose tissue endothelial sprouts give rise to adipocytes 

 The finding that murine cells with endothelial characteristics can give rise to 

adipocytes prompted us to investigate whether human adipocytes share this origin. 

Fragments of human adipose tissue give rise to capillary sprouts when embedded in 

Matrigel, and cultured in pro-angiogenic media [139]. Classical EC ultrastructural 

features, including tight junctions, irregular nuclei and pinocytic vesicles were seen in 

cells comprising these sprouts (Figure 2.5A-D). In regions more proximal to the tissue 

explant, capillary lumens could be observed (Figure 2.5E-G), indicating that 
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angiogenic development is recapitulated ex vivo. Upon exposure to the PPARγ agonist 

rosiglitazone, many cells within the emerging capillary sprouts produced lipid 

droplets (Figure 2.5H-J). These cells displayed canonical ultrastructural features of 

white adipocytes, including a large lipid droplet, displaced nucleus, small and 

elongated mitochondria and glycogen particles distributed in the cytoplasm (Figure 

2.5K). Interestingly, these adipocytes showed tight junctions identical to those found 

in sprouting EC, and between EC and pericytes in vivo (Figure 2.5L, compare with 

Figure 2.S1). These results suggest that the processes of capillary expansion and 

adipocyte formation seen in explants ex vivo reflect those occurring in the intact 

organism.  
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Figure 2.5: Effect of rosiglitazone on angiogenic sprouts originating from human 
adipose tissue. A. Capillary outgrown after 15 days of culture in the absence of 
rosiglitazone, indicating areas distal and proximal to the embedded explants. B. 
Enlargement of area distal to the explants. C. Electron microscopy of area similar to 
that shown in B, where tight junctions can be seen to connect cells. D. Enlargement of 
tight junction found between two EC. E. Enlargement of area proximal to the explant. 
F. Electron microscopy of area similar to that shown in E, revealing lumenized 
capillaries formed by EC joined by tight junctions. G. Enlargement of area shown in F. 
H. Capillary outgrowth after 15 days in the presence of rosiglitazone. I. Enlargement 
of area distal to the explant, revealing lipid droplets in cells interspersed among the 
capillary sprouts. J. Area proximal to the explant containing cells harboring larger 
lipid droplets. K. Electron microscopy of lipid-laden cells revealing features of 
classical white adipocytes, and of EC such as the tight junction in the squared area. L. 
Enlargement of area outlined in K.  
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 We then asked whether these morphologically defined adipocytes express 

genes that confer adipocyte function. Induction of mRNAs for Glut4, adiponectin, and 

leptin, and an >100-fold increase in the expression of perilipin mRNA were observed 

(Figure 2.6A, top row) in parallel with decreased expression of EC markers; tight 

junction protein TJP-1, CD34, and KDR (Figure 2.6A, bottom row). In addition, the 

transcription factor Zfp423, considered a marker of adipocyte lineage pre-

determination[124], was detected and increased significantly in response to 

rosiglitazone (Figure 2.6B). The presence of this pre-determination marker, and the 

strong induction of genes that define adipocyte function, is consistent with the 

possibility that cells with endothelial characteristics can give rise to adipocytes in 

human adipose tissue. 

 

To further examine the relationship between endothelial and adipocyte markers at 

a single cell level, we performed immunofluorescence analysis. In the absence of 

rosiglitazone, most cells contained low or undetectable levels of perilipin (Figure 

2.6C), and high levels of von-Willebrand Factor (vWF) (Figure 2.6D). In the presence 

of rosiglitazone, majority of cells became vWF-negative (Figure 2.6F), but exhibited 

typical morphological feature of adipocytes, a perilipin-coated lipid droplets (Figure 

2.6E). Nevertheless, approximately 5% of cells containing perilipin-coated lipid 

droplets also contained vWF (Figure 2.6G). Similar cells containing lipid droplets 

were also found to express adiponectin (Figure 2.6H and I), another specific feature of 

mature adipocytes. These results are consistent with the hypothesis that adipocytes 

arise from EC, or precursors expressing EC features. In line with these observations, 

recent findings indicate that ECs can be converted into mesenchymal stem cells, 
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which can differentiate into adipocytes, chondrocytes and osteoblasts [151]. 

Furthermore, others have described that adipocytes have the potential to rapidly 

acquire an endothelial phenotype in vitro (Planat-Benard et al., 2004), raising the 

possibility that adipocytes and ECs are plastic enough to undergo inter-conversion to 

maintain a homeostatic equilibrium during adipose tissue expansion and reduction. 
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Figure 2.6: Co-expression of endothelial and adipose cell genes in human and 
mouse systems. A. Relative mRNA levels of canonical adipocyte (top row) or EC 
(bottom row) genes in capillary outgrowth from explants grown for 14 days in the 
absence (-R) or presence (+R) of rosiglitazone. B. Relative mRNA levels of the 
adipocyte pre-determination marker Zfp423. Plotted are the means and SEM of 6-8 
independent experiments. Statistical significance was assessed by non-paired, two 
tailed student t-test *=p<0.05; **=p< 0.001; C, D. In absence of rosiglitazone cells 
growing from human adipose explants are mostly perilipin-negative (green) and vWF-
positive (red). E-G. In the presence of rosiglitazone, perilipin coating around lipid 
droplets is present (E), with majority of cells becoming vWF-negative (F), and about 
5% of cells co-expressing  perilipin (green) and vWF (red) (G).H, I. Cells growing 
from adipose explants, that accumulate lipid droplets in the presence of 
rosiglitazone(I) are also adiponectin-positive (H).  
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Figure 2.6 
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Expression of VE-cadherin in adipocyte progenitors characterized by stem-cell 

markers. 

 To further examine the possibility that adipocytes and EC derived from each 

other or share a common precursor, we asked whether cells expressing adipocyte stem 

cell markers [108], were also positive for VE-cadherin (CD144). CD45- cells from the 

SVF were successively gated for the presence of CD29, CD24 and Sca1 (Figure 

2.7A). Approximately 5% and 10% of the cells in the SVF of eWAT and BAT, 

respectively, were CD45-CD29+CDC24+, and this difference was statistically 

significant (Figure 2.7B, upper panel). Approximately 17% and 52% of the CD45-

CD29+CDC24+Sca-1+ population in eWAT and BAT, respectively, were also 

positive for VE-cadherin (CD144) (Figure 2.7A), comprising 0.5% and 4% of the 

cells in the SVF of eWAT and BAT, respectively (Figure 2.7B, lower panel). The 

percentages of adipogenic stem cells expressing VE-cadherin is in line with the 

amount of endothelial-pericytic cells found in WAT by EM studies in vivo and the  

much larger proportion of VE-cadherin positive cells in BAT is consistent with its 

denser vascular network. These data support the hypothesis of an endothelial origin of 

adipocyte populations in these depots. 
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Figure 2.7. Adipocyte progenitors express VE-Cadherin (CD144) A. FACS analysis 
scheme of cells from SVF of eWAT and BAT. B. Comparison of CD45-CD29+CD24+Sca1+ 
population and CD45-CD29+CD24+Sca1+CD144+ (ASCM+) between depots. C. Gating 
strategy for experiments. **p< 0.005 and *p < 0.00005 and derived from two-tailed student t-
tests, n = 3-4. Fluorescence minus one antibody controls are in Figure 2.S4. 
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 In summary, we present morphological and genetic evidence that adipocytes in 

white and brown depots originate from cells that display endothelial characteristics. 

Further research to identify the physiological signals that determine adipocyte and/or 

EC fates will lead to a better understanding of the mechanisms responsible for 

coordinating the formation of new adipocytes with angiogenic expansion during 

adipose tissue growth.  

 

EXPERIMENTAL PROCEDURES 

Animals 

 Male Sprague Dawley rats and B6 Mice (Harlan, Udine, Italy) were studied at 

different developmental stages. At least 5 animals per group were used for 

morphological studies performed by light, confocal, electron microscopy and 

immunohistochemistry. Homozygous VE-cadherin (VE-cadherin-Cre-recombinase) 

transgenic mice were crossed to homozygous ROSA26R (R26R) reporter and ROSA-

eGFPR lines (Jackson Labs., Bar Harbor, ME; stock n. 6137, 3474 and 4077 

respectively) to reveal the activity of the Cre-recombinase by detection of LacZ and 

eGFP reporter genes. The VE-cadherin-R26R and VE-cadherin-eGFPR mice were 

studied at developmental stage E18 (± 12h) and at P6-8. Heterozygous VE-cadherin 

tamoxifen-inducible Cre-recombinase transgenic mice (VE-cadherin-CreERT2) were 

crossed to homozygous R26R reporter animals. VE-cad-CreERT2/R26R mice (8 

weeks old) were IP injected with tamoxifen (2mg/day) for five consecutive days [134]. 

After injections, mice were fed normal diet with or without rosiglitazone 

(10mg/kg/day) for three weeks. Mice were then sacrificed, and brown and white 

adipose tissue from epididymal and inguinal depots was harvested for X-gal staining. 
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Animal care and handling were in accordance with Italian Institutional Guidelines and 

the Animal Care and Use Committee at UMass Medical School. 

 

Light microscopy and immunohistochemistry 

 Mouse and rat embryos were collected after mother perfusion with 4% 

paraformaldehyde in 0.1M PB pH 7.4 and fixed by overnight immersion in the same 

solution. Each embryo was then dehydrated, paraffin embedded and oriented to be 

cross-sectioned through the interscapular region (head-neck). Newborn rats and mice 

were perfused intracardially using the same fixative; bilateral testis with peri-

epididymal fat were dissected and embedded in paraffin. Light microscopy, 

immunohistochemistry and confocal microscopy were performed using standard 

methods described in the Supplementary Methods. 

 

Electron microscopy and immuno-gold staining 

 After perfusion, small fragment of iBAT of fetal and postnatal eWAT were 

fixed in 2% glutaraldehyde – 2% paraformaldehyde in 0.1M PB pH 7.4 for at least 4 h, 

post-fixed in a solution of 1% osmium-tetroxide and - 1% potassium hexacyanoferrate 

(II), dehydrated in acetone and finally epoxy-resin embedded. Sectioning, mounting 

and examination are further described in the Supplementary Methods. 

 

X-gal staining for β-galactosidase tissue localization 

 Male E18-19 and P6-8 and adult VE-cadherin-Cre/R26R mice were fixed in 

2% paraformaldehyde, 0.25% glutaraldehyde in PBS pH 7.3 for 1 h and washed in 

PBS. Thick (500µm) cross-sections through the interscapular region (head-neck) of 
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iBAT and Ewat were stained for β-galactosidase with the chromogenic substrate X-

gal, sectioned, counterstained and imaged as described in the Supplementary 

Methods.  

 

Human adipose tissue explants 

 Human scWAT was obtained from discarded tissue of patients undergoing 

panniculectomy at UMASS Memorial Hospital. Pieces of 1mm3 were prepared and 

embedded in Growth Factor Reduced Matrigel (BD Biosciences)on 35 mm glass-

bottom culture dishes (MatTek Corporation) as described previously (Gealekman et 

al., 2011), in the absence or presence of 1 µM rosiglitazone maleate. After 14 days in 

culture immunofluorescence was performed as described previously (Gealekman et al., 

2011). Primary antibodies used are stated in the Supplementary Methods. For RT-

qPCR, the adipose tissue fragment was mechanically excised and the endothelial 

sprouts remaining in the Matrigel were isolated using Dispase II (Roche, 2.4 U/mL), 

centrifuged, and RNA extracted from the pellet using an Ambion RNA extraction kit. 

Probes used are specified in the Supplementary Methods.  

 

Fluorescence Activated Cell Sorting 

SVF from eWAT or inter-scapular brown fat pads from 8 week old mice were isolated 

as described [152], and stained with blue stain (Invitrogen) at 4°C for 20 min. Cells 

were incubated with anti-mouse CD16/CD32 (BD Biosciences) for 15 min and then 

with respective FACS antibody for 2h at room temperature. Antibodies used are 

stated in the Supplementary Methods. 
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Figure 1.S1: Morphological analysis of eWAT at P7. A-D. Nuclear staining of poorly 
differentiated cells in pericytic position (arrows), and adipocytes (L; lipid droplet), for 
transcription factors indicated in each panel. In D the nucleus of EC (indicated by 
arrowhead) also positive for C/EBPβ. E.EC joined to adjacent pericyte with a tight 
junction between a protrusion of its cytoplasm that crosses the basal membrane and the 
complementary indentation in the pericyte. The inset is an enlargement of the squared 
area. F. Hypothesis based on data shown in Figure 2 that describe developmental stages 
from endothelium to preadipocytes. 
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Figure 1.S1 
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Figure 2.S2: VE-Cadherin lineage tracing in WAT and BAT. Histological 
appearance of eWAT obtained from VE-cadherin-Cre/R23R (A) or VE-cadherin-
Cre(B)adult mice subjected to X-gal staining. C. X-gal crystals in the cytoplasm of 
EC (e), pericytes (p) and adipocytes (a) found in eWAT of 4 weeks old VE-cadherin-
Cre/R26R mice (arrows). D. Positive X-gal staining of eWAT preadipocyte (multiple 
small lipid droplets in the cytoplasm). E. eGFP localized in the vessels (V in inset), 
and adipocytes (asterisk)of VE-cadherin-Cre/eGFPR mice. n: nucleus.  
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Figure 2.S2 
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Figure 2.S3: Structural characteristic and lineage tracing support common 
origin of developing endothelial and fat cells. A. PPARγ positive staining (dark 
brown) of murine E18 brown adipocytes in interscapular BAT.B. UCP-1 
immunohistochemistry of a serial section showed in A, revealing BAT staining and 
surrounding muscle being negative. C-E. Higher magnification images highlighting 
the positive staining for transcription factors involved in BAT development (PPARγ; 
C/EBPβ; C/EBPα) all in brown adipocyte nuclei. F-G. UCP-1-immunogold staining 
(black dots) showing positive mitochondria in brown adipocytes (ba, magnification in 
the inset), as well as in poorly differentiated cells (p) in pericytic position (G is an 
enlargement of the squared area in F). H. Some endothelial cells (e) showing 
mitochondria similar to those of poorly differentiated preadipocytes, close to the 
capillary wall. I. Enlargement of the red squared area in H outlining this 
similarity(asterisk indicating the lumen of capillaries).J-L. scWAT showing the 
appearance of X-gal labeled multilocular adipocytes (arrows) in rosiglitazone-treated 
VE-cadherin-CreERT2-/+/R26R-/+ mice. 
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Figure 2.S3 
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Supplementary Figure 4: FACS gating strategy. Respective fluorescence-minus-
one plots used to define gates in FACS experiments, relating to Figure 4. 
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CHAPTER III: The microenvironment and adipogenesis 
 
 
 
Olga Gealekman performed the microscopy work described in this chapter. Khanh-
Van Tran performed the real-time PCR experiments. The study of regional differences 
between thoracic and abdominal aorta was a collaboration between the Corvera and 
Czech laboratories. Experiments were in parts designed by Timothy Fibzgibbons, 
Olga Gealekman and Khanh-Van Tran. 
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Summary: 

Previously, we have demonstrated that cells from an endothelial lineage of 

adipose tissue can give rise to adipocytes. Here we investigate whether endothelial 

cells originating from aortic rings of C57Bl/6J mice have the capacity to undergo 

adipogenesis. We find that in the presence of the PPARγ agonist, rosiglitazone, cells 

with endothelial characteristics accumulate lipid droplets, express canonical adipocyte 

markers, and secrete adipokines. Furthermore, we investigated whether cells from 

thoracic and abdominal regions of the aorta have genotypic and phenotypic 

differences. We found that progenitors from different regions of the aorta express 

different levels of developmental gene Hoxc9. Cells from these distinct areas have 

different proliferative dynamics and give rise to distinct adipocyte types.  Taken 

together, these results imply that progenitor cells from a non-adipose organ may have 

capacity to undergo adipogenesis and that microenvironment is crucial in determining 

genotype and phenotype of cells.  
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Introduction: 

 We recently found that progenitors of an endothelial cell lineage residing in 

the adipose tissue vasculature have the ability to give rise to a population of 

adipocytes [153]. There are reports of multiple stem cell niches in different organ 

systems [154-157]. In this chapter, we address the hypothesis that endothelial cells 

from aortas of mice are able to give rise to new adipocytes. 

In 1990, Nicosia and Ottinetti designed aortic ring assay to study angiogenesis 

[158].  This development provides a semi-isolated model of angiogenesis while 

preserving some of the microenvironment that is representative of the physiological 

process. Cells arising from aortic rings form tubular structures and lumenize. 

Furthermore, the time course of this process mimics in vivo process [159]. Since its 

first introduction, this method has been widely used to study the development of new 

vessels, as it bridges the gap between in vivo animal work and in vitro cell culture 

[159-162].  

In this study, we used the aortic ring assay to study progenitor cell plasticity. 

When cultured in EGM-2, vast majority of cells (over 90%) arising from the aortic 

ring express endothelial cell markers. There is also a small subset of cells (around 

5%) that express pericyte marker, SMA. In this study, we used PPARγ agonist to 

stimulate adipogenesis in cells emerging from aortic explant. In the presence of 

rosiglitazone, we observed that cells expressing endothelial markers begin to take on 

adipocyte morphology. To confirm that these cells are adipocytes, we checked for 

expression of adipocyte genes at the transcriptional and translational levels. We found 

that rosiglitazone decreases the expression of endothelial cell makers and increases 
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the expression of adipocyte markers. Furthermore, rosiglitazone-induced adipocytes 

secrete adiponectin, a hallmark adipokine. Taken together, we show that cells arising 

from the aorta of C57/Bl6 mice can give rise to functional adipocytes. 

There have been several reports that adipocytes have different characteristics 

depending where they are located in the body [83, 163-‐165]. Tchoukalova et al. 

recently demonstrated that subcutaneous femoral fat and abdominal fat have different 

proliferative dynamics. Fat accumulating in the femoral area tends to undergo 

hyperplasia, whereas fat in the upper abdominal area tends to undergo hypertrophy in 

the presence of overfeeding [84]. They attributed this observation to differences in the 

progenitor cell population.  

In this study, we aim to study preadipocyte populations between the thoracic 

and abdominal regions of the aorta. We attempt to measure the proliferative capacity 

of the precursor cells by quantifying the endothelial sprouts arising from the aortic 

rings. We also examined the expression levels of classical adipocyte genes in the 

rosiglitazone-stimulated fat cells from different regions of the aorta. Results reported 

here are very preliminary. However, our experiments show that progenitor cells from 

the thoracic and abdominal aorta express different levels of the developmental gene, 

Hoxc9. Furthermore, the adipocytes they give rise to may be distinct.  

 
Experimental Procedures: 
 
Aortic Ring Assay: C57Bl/6J mice were sacrificed and thoracic and abdominal aorta 

fragments were removed. The two fragments of aorta were then cleaned under 

dissection microscope to ensure that all associated fat and connective tissue were 

removed. The aortic fragments were washed with EGM-2 media and cut into 1 mm 
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ring segments. Each aortic ring segment was embedded in a singular well of a 96-well 

plate containing 40 µL of Matrigel (BD Discovery Labware). After aorta was 

embedded in the 96-well plate, the plate was allowed to stand for 30 min in the 37° C 

so that the Matrigel would solidify. The cells were fed with 200 µL of EGM-2 media, 

which was changed every other day. At day 7 and day 14, number of capillary 

branches forming around the periphery of the aortic ring was quantified at x100 

magnification by two independent investigators.  

 

Staining and Analysis: Pieces of aortic rings were embedded in Growth Factor 

Reduced Matrigel (BD Biosciences) in 35 mm glass-bottom culture dishes (MatTek 

Corporation), and cultured in EGM-2 media for 14 days. After 14 days in culture, 

explants were fixed in 4% Formaldehyde (Ted Pella, Inc.) in PBS for 15 min and 

permeabilized in 0.5% TX-100 in PBS for 30 min. The primary antibodies used to 

characterize the origin of cells growing from the explants were: monoclonal mouse 

eNOS (BD Pharmingen, 1:200), mouse CD31 (1:50), mouse CD34 (1:50), mouse 

monoclonal Smooth Muscle Actin (1:100), polyclonal rabbit Von Willebrand Factor 

(Dako, 1:100), monoclonal mouse Adiponectin (Peirce, 1:200), and polyclonal 

Guinea Pig Perilipin (Fitzgerald Industries International, 1:200). Secondary antibodies 

were species matched Alexa Fluor 594, and Alexa Fluor 488 (Millipore; Molecular 

probes, 1:500). Negative controls treated with irrelevant mouse IgG instead of 

primary antibody were processed simultaneously. All sections were counterstained 

with DAPI (Millipore, Molecular Probes).  
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Real-Time PCR: The mouse aorta fragments were mechanically excised and the 

endothelial sprouts remaining in the Matrigel were isolated using Dispase II (Roche, 

2.4 U/mL), centrifuged, and RNA extracted from the pellet using an Ambion RNA 

extraction kit. Probes used are specified in Table 2. 
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Western Blotting: The mouse aorta fragments were mechanically excised and the 

sprouts remaining in the Matrigel were isolated using Dispase II (Roche, 2.4 U/mL). 

Cell lysates were prepared using the Complete Lysis-M kit (Roche). Protein 

concentration was measured using the Beckman DU-640B Spectrophotometer. Equal 

amounts of protein (20 µg), and conditioned media (40 µl) were loaded, and analyzed 

by Western blot in accordance with standard procedure. Primary antibody used was 

rabbit polyclonal anti-Adiponectin (Peirce, 1:10000). Secondary was goat anti-rabbit 

(Promega). 

 

RESULTS: 

We found that in the presence of rosiglitazone, cells arising from the aorta can 

accumulate lipid droplets (Figure 3.1). The morphology of cells is no longer spindle-

like, rather they resemble multilocular fat cells. Oil-Red-O staining clearly identified 

lipid droplets in cells coming from the aorta (Figure 3.2) 
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To confirm that these cells are adipocytes and not endothelial cells 

accumulating lipid droplets, we used immunoflourescence and real-time PCR to 

check for the expression of several adipocytes and endothelial markers. We found that 

in the presence of rosiglitazone, the expression of CD31 is decreased and the 

expression pattern of CD34 is distinctly altered (Figure 3.3). Conversely, the 

expressions of adiponectin and perilipin are increased. In particular, perilipin 

expression pattern in these cells is consistent with that of an adipocyte, i.e. 

surrounding a lipid droplet. The reciprocal change in endothelial cell and adipocyte 

markers observed using immunoflourescence is consistent with real-time PCR results 

demonstrating a decrease in endothelial cell markers, VE-Cadherin, CD34 and 

VEGFR2 and an increase in adipocyte markers, Acrp30, Glut4 ,and Cidea (Figure 

3.3). We further tested cell lysates and condition media of sprouts growing from aorta 

explants for the expression and secretion of adiponectin. We confirmed that these 

rosiglitazone-induced fat cells are secreting adiponectin, a hallmark adipokine (Figure 

3.4). 
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Figure 3.3. Reciprocal changes in endothelial cell and adipocyte markers. In the 
absence of rosiglitazone, cells arising from aortic rings are positive for CD31 (A) and 
CD34 (B), but are negative for adiponectin (C) and perilipin (D). In the presence of 
rosiglitazone, expression of CD31, and CD 34 (E and F) is altered, and there is an 
increase in the expression of adiponectin and perilipin (G and H). Furthermore, 
mRNA levels of cells arising from aortic rings at day 14 in culture in the absence (I) 
and presence of rosiglitazone (J) were assessed. There is a statistically significant 
increase in adipocyte markers, Acrp30, Glut4, and Cidea, and a reciprocal decrease in 
endothelial cell markers VE-Cadherin, CD34, and VEGFR2. n=3-6, data were 
analyzed using student t-test, *p < 0.05. 
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Figure 3.3 
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Figure 3.4. Rosiglitazone-induced adipocytes express and secrete adiponectin. 
Immunofluorescent analysis of Adiponectin expression in capillary sprouts forming 
from aorta explants under control conditions (A, and B), and in the presence of 
Rosiglitazone (C - F). Positive Adiponectin specific immunostaining was observed 
only in Rosiglitazone treated cells. A, C, and E are bright light microscopy images. B, 
D, and F are merged from the images taken using UV and green spectrum filters. 
Original magnification was x630.  G. Western blot analysis of adipocyte marker 
Adiponectin in capillary sprouts growing from aorta explants under control conditions 
(-R) and in the presence of Rosiglitazone (+R). Rosiglitazone induced expression of 
Adiponectin in the cell lysates, as well, as secretion of Adiponectin into the media. 
Normal mice serum (S) was used as a positive control for Adiponectin detection. 
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We then asked if adipocyte precursors in different regions of the aorta are 

unique (Figure 3.5). Interestingly, we found that abdominal aorta has higher mRNA 

levels of Hoxc9, a homeobox gene expressed higher in WAT than BAT [163, 166]. 

Although, we found no differences between expression of Sca-1, and CD24 in these 

populations, it is clear that rosiglitazone decreases the expression of CD24 (Figure 

3.6). 
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Figure 3.5. Capillary sprouts arise from both abdominal and thoracic aorta 
fragments. Cells arising from thoracic (B) and abdominal (E) rings were analyzed in 
the absence (C and F), and in the presence of rosiglitazone (D and G). Rosiglitazone 
induced the formation of multilocular adipocytes from both segments of aorta. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

81 
 

81 

 
Figure 3.6. mRNA levels of developmental and precursor genes. Thoracic and 
abdominal regions of the aorta had different levels of expression of Hoxc9 (A). 
Although no difference in Sca-1 or CD 24 expression (B and C), we found that the 
expression of CD24 was decreased in the presence of rosiglitazone (C). 
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We also examined the growth of capillary sprouts from the thoracic and 

abdominal regions of aorta. We found that significantly lower number of capillary 

sprouts grew from the abdominal aortic rings of the mice, as compared to the thoracic 

(Figure 3.7). We further tested to see if the adipocytes stimulated to form by 

rosiglitazone in different areas of the aorta were genotypically different. We found 

that rosiglitazone increased the expression of adiponectin, Glut4, and perilipin in cells 

arising from the abdominal and thoracic aortic rings. This same trend was observed 

with Cidea and UCP-1, canonical brown adipocyte genes. However, we observed that 

adipocytes arising from the thoracic aorta had much higher expression of both Cidea 

and UCP-1 (Figure 3.8). 
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Figure 3.7. Abdominal aortic explants have less angiogenic potential. Quantitative 
analysis of angiogenic potential of abdominal and thoracic aorta explants from mice 
cultured for 14 days. Abdominal and thoracic aortas were surgically removed from 13 
weeks old C57Bl/6J mice, embedded into Matrigel, and cultured for two weeks. After 
7 and 14 days in culture number of capillary sprouts growing around perimeter of the 
aorta rings was counted by two independent investigators. Data was analyzed using 
student t-test, *p<0.05 and **p<0.001  
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Figure 3.8. Differential gene expression in rosiglitazone-induced adipocytes from 
abdominal and thoracic aortic explants. Rosiglitazone increased the expression of 
perilipin, adiponectin, Glut4, UCP-1, and Cidea in cells arising from the aorta (A and 
B). However, the up-regulation of UCP-1 and Cidea in cells from the thoracic aortic 
region was much higher than that observed in cells from the abdominal aortic region. 
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Discussion: 

Using a traditional model of angiogenesis, we found that endothelial cell 

progenitors residing in aorta can also undergo adipogenesis. This study demonstrates 

the plasticity of the progenitor population. These results are consistent with those of 

Joe et al.  who have found that stem cells from muscle can give rise adipocytes [167]. 

It is worth noting that Tang et al. found that PDGFRβ+ cells from the kidneys are not 

able to undergo adipogenesis [91]. They concluded that only mural cells from the 

adipose tissue have adipogenic capacity. Perhaps the reason for the potential 

discrepancies between our results and that of the Graff lab is the difference in the 

microenvironment in which our cells were cultured. In our aortic ring assay, the cells 

have an ex vivo surrounding, in which some of the paracrine signaling existing 

between cells of the aorta are still preserved.  

 One obvious limitation stemming from the ex vivo model is that we are not 

completely sure about the identity of the cells that give rise to newly-formed 

adipocytes. Our conclusion that cells of endothelial origin from the aorta can give rise 

to adipocytes rests on the assumption that the spindly-like cells that express 

endothelial markers in the absence of rosiglitazone are the same cells that accumulate 

lipid droplets and express adipocyte markers in its presence. It is possible that in the 

presence of rosiglitazone we activated a population of precursors distinct from the one 

that gives rise to endothelial cell. Furthermore, there is a physiological fat pad around 

the aorta. Although we have tried to remove all fat around the aorta using micro-

dissection, there is some possibility that some were left behind. Thus, what we are 

seeing might be adipocyte precursors from a non-endothelial cell lineage undergoing 

adipogenesis.  
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Although there are two clear limitations in our study, our results of the VE-

cadherin fate tracing experiment support the hypothesis that endothelial cells can give 

rise to adipocytes. In the future, we hope to use aortas from the VE-Cadherin/R26R-

eGPF mice to address this limitation.  

 Preliminary evidences from our study of thoracic and abdominal aorta show 

that precursor cells from different regions of the aorta have different genotypes and 

proliferative dynamics. Cells from the abdominal region of the aorta express higher 

levels of Hoxc9, a developmental gene that is expressed higher in WAT than BAT 

[163, 166]. In the presence of rosiglitazone, the progenitors also give rise to 

adipocytes that are unique. Adipocytes arising from the thoracic aorta have higher 

expression of UCP-1 and Cidea. This data indicate that the cells surrounding the 

thoracic aorta may have more of a “brite cell” phenotype, as opposed to a white 

adipocyte phenotype seen in fat cells surrounding the abdominal aorta [166]. Police et 

al. have reported that there are differences in aortic fat pads that may have a causative 

role in abdominal aortic aneurysm [168]. Our preliminary results support the notion 

that the adipocytes in different regions of the aorta have distinct characteristics. It was 

not our intention to study the pathogenesis of abdominal aortic aneurysm, however we 

do think that this ex vivo aortic ring model can give valuable insight to the role that 

adipocytes play in different regions of the aorta.  

Our preliminary results also show that rosiglitazone decreases the expression 

of CD24 in the cells arising from the aorta. This is consistent with the findings of 

Tang et al. that chronic rosiglitazone treatment lowers CD29, Sca-1, CD44 and CD24 

expression in progenitors cells by either depleting the precursor population or 

changing precursor dynamics [148].  
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In brief, our preliminary evidence suggests that precursor cells from an 

endothelial lineage arising from the aorta can give rise to adipocytes. The genotypes 

and proliferative dynamics of the progenitor cells from different regions of the aorta 

are distinct. Furthermore, the adipocytes that they give rise to are also unique and may 

have important physiological function.  
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CHAPTER IV: Summary and Final Thoughts 
 
 
“For animals, belonging to two most distinct lines of descent, may have become 
adapted to similar conditions, and thus have assumed a close external resemblance; 
but such resemblances will not reveal—will rather tend to conceal their blood-
relationship.” 
 
Darwin, On the Origin of Species, 1st ed., p. 427 
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Summary, limitations and future experiments:  

Chapter II: In obesity, adipose tissue growth necessitates the development of new 

adipocytes and associated supporting vasculature. Here we find that endothelial cells 

of adipose tissue display similar morphological features to pericytes, which has been 

shown to give rise to adipocytes. Fate tracing using VE-Cadherin-Cre-dependent 

reporters revealed expression of LacZ and eGFP in endothelial cells, preadipocytes 

and adipocytes of BAT and WAT.  

To examine whether our findings in mice adipose tissue translate to human 

adipose tissue, we analyzed capillary sprouts arising from human adipose explants. 

We found that capillary sprouts arising from human subcutaneous fat express Zfp423, 

a preadipocyte determination factor. In response to PPARγ activation, endothelial 

characteristics of sprouting cells are progressively lost, and cells form structurally and 

biochemically defined adipocytes. Taken together, these data reveal an endothelial 

origin of murine and human adipocytes. The ability of the vascular endothelium to 

give rise to adipocytes may explain how angiogenesis and adipogenesis can be 

temporally and spatially coordinated.  

 Our results are supported by a recent study from the Spiegelman laboratory 

which demonstrated that a subset of pericytes and endothelial cells express Zfp423, a 

marker of adipocyte pre-determination [89]. Moreover, PPARγ deletion using Tie-2-

driven Cre-recombinase results in decreased adiposity and adipocyte size in response 

to HFD-feeding and rosiglitazone treatment [144]. It is important to note that Tie-2 is 

expressed in a mosaic pattern in capillary endothelium [143]. Preferential expression 

of Tie-2 in the arteriolar endothelium may explain how some adipocytes in the 

adipose capillaries may escape PPARγ deletion to give rise to normal adipocytes. 
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However, the presence of normal adipocytes in the knockout animals may also be due 

to the presence of precursors from a non-endothelial cell lineage.  

There are reports of several distinct types of adipocytes—white, brown and 

brite. Within these categories, there are different subsets of cells that have variable 

physiological significance. Our results show that both white and brown adipocytes 

can originate from cells of endothelial origin. However, it is also clear from our FACS 

analysis that not all precursor cells express VE-Cadherin. Of the CD45-

CD29+Sca1+CD24+ progenitor population, only 17% and 52% express VE-Cadherin 

in WAT and BAT, respectively. This analysis illustrates two important points: 1) 

there are adipocyte precursors that do not originate from a VE-Cadherin+ lineage and 

2) the WAT and BAT have variable adipocyte precursor populations. Differences in 

composition and types of adipocyte progenitors may explain the difference in the 

adipocytes phenotypes that we observe in BAT and WAT. 

 Of note, we adopted a similar but altered FACS sorting scheme than that of 

the Graff laboratory to isolate adipocyte progenitors.  We were not able to analyze the 

CD34 expressing cells due to technical challenges. We also felt that because CD34 

can be expressed on both endothelial cell and adipocyte precursors, it was not 

essential for addressing the question asked in this work.  

For the purpose of our study, it was important to rule out that our observations 

are not due to adipocytes arising from a hematopoietic cell lineage, and thus was our 

rationale for negatively selecting CD45 expressing cells. However, we did not analyze 

expression of CD31 or Ter119 in the SVF population. Consequently, we are unable to 

determine what percentage of the SVF population we analyzed is made up of Ter119 

and CD31 expressing cells, which have low adipogenic potential. Interestingly, Gupta 
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et al. have found that CD31 positive cells of the adipose vasculature also express 

Zfp423, raising questions about the adipogenic potential of CD31+ endothelial cells.  

Although this study supports an endothelial origin of a population of 

adipocytes, it does not exclude a hematopoietic origin of adipocytes. VE-Cadherin is 

expressed in endothelial cells and a sub-populations of hematopoietic cells before 

E11.5, and thus descendants from both lines are potentially labelled in our study [136]. 

To decrease the tracing of hematopoietic cells, an inducible VE-Cadherin-CreERT2 

mouse model was used. Induction of Cre activity by Tamoxifen in adulthood results 

in negligible excision (lower than 0.4%) in the hematopoietic lineage [134]. However, 

this does not completely eliminate hematopoietic tracing. Furthermore, even if it was 

possible to trace only endothelial cells, our results cannot exclude the possibility that 

adipocytes can arise from a different lineage. 

A limitation of this study is that it does not conclusively identify the point at 

which either a precursor cell or an endothelial cell is programmed to differentiate into 

an adipocyte (Figure 4.1).  For example, do endothelial cells and adipocyte arise from 

a common progenitor cell that expresses VE-Cadherin? Alternative, are newly formed 

adipocytes created from endothelial cells that have divided and migrated into the 

tissue? Although, endothelial cell division and migration into extravascular space to 

be reprogrammed into a new adipocyte is plausible scenario in the case of obesity. 

The reverse situation in which an adipocyte is stimulated to become an endothelial 

cell seems unlikely. Our FACS analysis revealed that cells expressing CD29, CD34, 

Sca-1 and CD24 also express VE-Cadherin, suggesting that there is an existence of an 

early adipocyte progenitor from an endothelial lineage. However, the mechanism of 

new adipocyte formation is not yet clear. 
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Figure 4.1. Possible sequences of new adipocyte formation. A VE-Cadherin+ 
precursor may give rise to both endothelial cells and adipocytes (A), or adipocytes can 
arise from an endothelial cell that is re-programmed to become a fat cell (B).  
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A natural progression of this project would be to isolate and characterize VE-

Cadherin+ adipocyte progenitors.  These cells can be sorted by FACS using several 

potential models (Figure 4.2). If indeed endothelial cells and adipocytes share a 

common progenitor, then we should observe VE-Cadherin+ cells undergo robust 

adipogenesis. Furthermore, we can use FACS to isolate distinct VE-Cadherin+ 

populations, e.g. populations also expressing Tie-2, to determine molecular signature 

of the adipocyte precursor arising from the VE-Cadherin+ lineage. It would also be 

beneficial to measure insulin sensitivity, mitochondrial content, oxygen consumption, 

and other metabolic parameters of these VE-Cadherin-derived adipocytes, as 

compared to other adipocyte populations. Finally, we should engraft VE-Cadherin+ 

adipogenic precursor cells into lipodystrophic or diet-induced obese animals to assess 

their physiological importance. 
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Figure 4.2. Reporter models for isolation of cells from an endothelial cells lineage. 
Either VE-Cadherin reporter models (A and B) or the Tie-2-GFP mouse model can be 
used to FACS sort endothelial cells and adipocyte progenitors 
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Chapter III: We find that rosiglitazone can stimulate cells with endothelial 

characteristics originating from the aorta to undergo adipogenesis, resembling the 

phenomenon we observed in human adipose tissue explants. Rosiglitazone-induced 

adipocytes from the thoracic and the abdominal regions of the aorta display different 

characteristics; cells from the thoracic aorta express higher levels of UCP-1 and Cidea, 

traditional brown adipocyte genes. The genotypic differences observed in adipocytes 

surrounding the aorta may have important physiological implications. For example, 

inflammation of adipose tissue surrounding the abdominal aortic region may be 

involved in the pathogenesis of abdominal aortic aneurysms [168]. The aortic ring 

assay may be a valuable tool to study the role that adipocytes play in pathologies 

relating to the abdominal or thoracic aorta. 

Despite the fact that the aortic ring assay is a classical assay extensively used 

by numerous investigators to study angiogenesis ex-vivo, to the best of our 

knowledge, lineage tracing experiments to prove the endothelial origin of cells 

forming the capillary sprouts were never performed. Therefore, in order to obtain 

stronger evidence that cells of endothelial origin capable to undergo adipogenesis are 

present in other organs, aortic ring assays using VE-Cadherin-CreERT2/YFP or eGFP 

reporter mice should be performed (Figure 4.2). 

In addition, although results obtained using the ex vivo model are valuable, 

they represent an artificial process.  Cells arising from the aorta or any other organ 

systems in vivo will never be subjected to the experimental conditions that we 

imposed; thus our results may not be reflective of normal physiology. However, these 

models allow us to study the differentiation potential of cells outside of the in-vivo 
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environment and to interrogate the paracrine signaling involved that would be 

challenging to study in a live animals. 

 

On multiple origins of adipocytes: Although our study clearly shows that a population 

of adipocytes is derived from an endothelial cell lineage, it does not exclude alternate 

origins of adipocyte. As many others have shown and as supported by our FACS 

analysis, adipocytes can come from other cell lineages. Although it has been 

mentioned in Chapter II, we will briefly discuss the results of Seale et al. The 

Spiegelman laboratory showed that muscle cells and brown adipocytes are Myf5+, 

and that PRDM16 controls the switch between myocytes and fat cells phenotype 

[118]. They report that white adipocytes are not Myf5+. Thus, it is somewhat 

surprising that in our study VE-Cadherin reporters traced into white and brown 

adipocytes, but not into myocytes. One possible explanation for this is that VE-

Cadherin is expressed later in development than Myf5. In that case the brown 

adipocyte lineage and the myocyte lineage have already diverged, and thus our model 

would not have labeled myocytes. There is little evidence in the literature to 

determine the expression pattern of these two genes in relation to each other.  

It is also important to note that Myf5+ is not strictly a myocyte marker, but is 

expressed in several cell types [169]. Expression of Myf5+ has been found in neurons 

and in a population of cells from the dorsal aorta that also expresses VE-Cadherin 

[149, 170, 171]. Reports also indicate that not all muscle cells expressed Myf5 [172]. 

In this study, we detected a low level of Myf5 mRMA expression in capillary sprouts 

originating from human subcutaneous fat and mouse aorta.  However, because 



 

97 
 

97 

presence of other cells types in addition to endothelial cannot be completely excluded, 

question regarding Myf5 expression in endothelial lineage cells remains open.  

Additional explanation that would bridge our study and that of the 

Spiegelman’s group would be that brown adipocytes arise from multiple cell lineages, 

some of which are Myf5+, and some are Myf5-. Seale et al. supports this hypothesis 

by demonstrating that β-adrenergic-stimulated mutilocular adipocytes are not Myf5+.  

Reports of white fat cells taking on brown fat cell phenotype upon cold exposure 

illustrates brown fat formation from a Myf5- cell, indicating that there could be 

multiple origins of brown adipocytes.  

Others have shown that cells of a hematopoietic lineage can give rise to 

adipocytes [118, 145, 173]. Most significantly, the Majka et al. have performed fate 

tracing experiments using the LysM-Cre/R26R mouse to show a population of 

adipocytes originating from a myeloid lineage. To further support this, Sera et al. 

have shown that eGFP+ hematopoietic stem cells (HSC) give rise to adipocytes when 

engrafted into recipient mice.  It is also important to note that Zovein et al. have 

demonstrated that endothelial cells and hematopoietic cells arise from the same origin 

[135]. Thus, evidence supporting the origins of adipocytes from HSC and endothelial 

cells may not be mutually exclusive.  

Recently, Billon et al. described a population of adipocytes originating from 

the neuroectoderm.  Sox10 is highly expressed in migratory neural crest cells; 

however it is not expressed in somatic and cephalic mesoderm. Billon et al. used 

Sox10-Cre/YFP reporter mice to show that adipocytes from the jaw are derived from 

cells of the neural crest [174, 175]. Because of the great heterogeneity within and 

between fat depots [84, 123], it makes biological sense that there are multiple 
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phenotypically and genotypically different progenitors. Figure 4.3 maps conclusions 

from some of the most recent studies on adipocyte precursor cells. 
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Figure 4.3.  Model for multiple origins of adipocytes.  Neural crest cells (Sox10+) 
can give rise to white adipocytes (A). Most adipocytes are considered to be of 
mesodermal origin (B). It is reported that hematopoietic cells and endothelial cell 
have common precursor, the hemangioblast. After diverging into the hematopoietic 
lineage and endothelial lineages, cells from both lineages were found to have the 
capacity to undergo adipogenesis. Progenitor cells that are My5+ can give rise to a 
population of muscle cell and brown adipocytes, but not white adipocytes. Questions 
remain about the sequence of events by which new adipocytes are formed, and 
whether there is enough plasticity for inter-conversion in between phenotypes. 
 
 
 
 
 
 
 
 
 
 
 



 

100 
 

100 

 The current body of evidence on adipocyte progenitors suggests multiple 

origins of adipocytes. This may reflect the vital role of storing energy in the body. All 

organ systems, regardless of their function, must store nutrients to survive. The most 

efficient way to store energy is through fat. There are reports of fat storage in multiple 

cell types in the animal kingdom. For example, C. elegans stores fat in the intestinal 

epithelium and sharks store fat in the liver [40]. Perhaps it is not too surprising that 

we find multiple cell types able to take on the adipocyte phenotype in mammals. 

 The concept that several cells types can be reprogrammed to take on a 

different phenotype for the benefit of an organ has been previously demonstrated. For 

example, Morroni et al. has shown that there is reversible trandifferentiation of 

adipocyte and secretory epithelial cells of the mammary gland [176]. During 

pregnancy, adipocytes of the mammary glands can transdifferentiate into secretory 

epithelial cells. Post-lactation, these cells revert back to their initial adipocyte 

phenotype. A less drastic example of transdifferentiation is between brown and white 

adipocytes. In case of cold exposure, white adipocytes of the adipose tissue will take 

on a “brown” phenotype and express UCP-1 [119]. Pathological reprogramming is 

illustrated by the heterotrophic ossification in patients with fibrodysplasia osssificans 

progressiva. Cells that make up ectopic tissue are found to be of vascular endothelial 

origin carrying a mutation in the activin-like kinase-2 gene [151]. Although, the 

mechanisms of cellular reprogramming are mostly undiscovered, it is clear that 

physiological and pathological conditions influence cell fate. 

In obesity, the environment drives each organ to store fat. Although, the 

phenomenon of adipocytes forming in different organs from multiple cell lineages is 

not an example of convergent evolution, it may operate on the same principle within a 
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shorter time frame and on a microcosm. In order to adapt to an excess of nutrients, 

each system makes its own fat cells. This work does not conclude that every organ has 

a distinct fat cell progenitor, but rather postulates that in order to adapt to the overfed 

state, the body makes new fat cells, and that the cell lineage of the precursor is likely 

to be secondary to the immediate needs of the organ. 

 

Future directions and significance: In moving forward, we should characterize the 

VE-Cadherin+-derived adipocytes, and determine the molecular signals that drive 

them towards differentiation. Although, the developmental aspects of this study are 

engaging, the prospect of identifying the progenitor stem cells and using those stem 

cells to treat patients who are lipodystrophic or have other obesity-related 

complications is most exciting. As Rodeheffer et al. have shown, injection of a small 

population of progenitor cells can reconstitute fat pad of a lipodystrophic animal and 

correct their metabolic impairment. Identifying the population of stem cells that gives 

rise to healthy white adipocytes can have profound implication for patients suffering 

from congenital or drug-acquired lipodystrophies. 

 Brown adipose tissue has been correlated with lower BMIs and greater 

metabolic health. Generating brown fat in people may be an effective anti-obesity 

treatment. Here, we find a common precursor to both brown and white adipocytes. 

Elucidating the pathway in which white to brown conversion occurs may provide a 

strategy for combating the obesity epidemic affecting our society.  
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Appendix I: Preliminary study of adipose tissue of NSG and huNSG mice 
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Introduction: 

 Hematopoietic origin of adipocytes has been proposed by several different 

groups [145, 173, 177]. We decided to examine this hypothesis using a mouse model 

that has severe disruption of hematopoietic cell development. The Schultz and Greiner 

laboratories have developed a NOD-Scid-Gamma (NSG) animal model by generating 

an additional mutation in the interleukin-2 receptor γ-chain locus of a NOD-scid 

mouse [178]. These NSG animals do not have mature T-cells, B-cells, and natural 

killer cells. A great advantage of this model is that the NSG mice can support 

hematopoietic stem cell engraftment derived from human cord blood (huNSG). This 

allows for the presence of human HSC, and immune cells that theoretically could be 

traced with human anti-nuclear antibodies [179-182]. In this work, we asked whether 

the NSG mice and the huNSG could gain weight on high fat diet (HFD). We show 

very preliminary data that the fat pads of NSG mice increase in weight on HFD. No 

conclusions were reached regarding the huNSG mice due to technical challenges.  

 

Results and discussion: 

After one month of HFD feeding, we found that fat pads of NSG HFD-fed animals 

were increased in weight compared to the normal diet (ND) fed animals (Figure A1.1). 

This increase is a trend and not statistically significant. The same trend was not 

observed in the huNSG groups partially because some animals did not survive long 

enough for HFD effect to be analyzed. Unfortunately, we were unable to find the right 

conditions for the human anti-nuclear antibody to detect human cells. No significant 

trend was noticed in the weight of the animals (Figure A1.2). This may also be due to 

their ill health and the short time period for which they were on HFD. These results 
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are very preliminary and very little conclusions can be made. However, we would like 

to note that mice with severe impairment in hematopoietic cell lines have 

morphologically normal adipocytes and that their fat pads seems to increase in weight 

on HFD (A1.3). 
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Figure A1.2. NSG and huNSG mice on HFD. No trend was observed in weights of 
NSG and huNSG mice on normal chow diet (A and C) and high fat diet (B and D). 
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Experimental Procedures: 

NSG and huNSG mice were kindly donated by the Greiner laboratory. At 15 weeks, 

they were placed on HFD for 31 days, during which time their body weight were 

monitored. After a month on HFD, the mice were sacrificed and their fat pads were 

measured. 
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