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ABSTRACT 

 

 Variation in the sequence of T cell epitopes between dengue virus (DENV) 

serotypes is believed to alter memory T cell responses during second heterologous 

infections contributing to pathology following DENV infection. We identified a highly 

conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein, NS126-34. We 

predicted higher frequencies of NS126-34-specific CD8
+
 T cells in PBMC from individuals 

undergoing secondary, rather than primary, DENV infection due to the expansion of 

memory CD8
+
 T cells. We generated a tetramer against this epitope (B57-NS126-34 TET) 

and used it to assess the frequencies and phenotype of antigen-specific T cells in samples 

from a clinical cohort of children with acute DENV infection established in Bangkok, 

Thailand. High tetramer-positive T cell frequencies during acute infection were seen in 

only 1 of 9 subjects with secondary infection. B57-NS126-34-specific, other DENV 

epitope-specific CD8
+
 T cells, as well as total CD8

+
 T cells, expressed an activated 

phenotype (CD69
+
 and/or CD38

+
) during acute infection. In contrast, expression of CD71 

was largely limited to DENV-specific CD8
+
 T cells. In vitro stimulation of CD8

+
 T cell 

lines, generated against three different DENV epitopes, indicated that CD71 expression 

was differentially sensitive to stimulation by homologous and heterologous variant 

peptides with substantial upregulation of CD71 detected to peptides which also elicited 

strong functional responses. CD71 may therefore represent a useful marker of antigen-

specific T cell activation. 
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 During the course of our analysis we found substantial binding of B57-NS126-34 

TET to CD8
-
 cells. We demonstrated that the B57-NS126-34 TET bound KIR3DL1, an 

inhibitory receptor on natural killer (NK) cells. NK sensitive target cells presenting the 

NS126-34 peptide in the context of HLA-B57 were able to dampen functional responses of 

only KIR3DL1
+
 NK cells. Analysis of the activation of an NK enriched population in our 

Thai cohort revealed peak activation during the critical time phase in patients with severe 

dengue illness, dengue hemorrhagic fever, compared to people with mild illness.  

 Our data identified CD71 as biologically useful marker to study DENV-specific 

CD8
+
 T cell responses and highlighted the role of viral peptides in modulating NK cell 

activation through KIR-MHC class I interactions during DENV infection. 
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CHAPTER I 

INTRODUCTION 

 

A. Dengue Virus 

Dengue virus (DENV), a member of the family Flaviviridae, genus Flavivirus, 

consists of four distinct serotypes numbered 1-41, 2 with ~70% identity in both the 

nucleotide and amino acid sequences3. DENV is an enveloped, positive-sense ribonucleic 

acid (RNA) virus with three structural proteins (capsid [C], membrane [M], envelope [E]) 

and seven nonstructural (NS) proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). The 

RNA genome is translated as a single polyprotein, which is co- and post-translationally 

modified by NS2B-NS34, 5.  

The DENV virion is comprised of a nucleocapsid formed by the structural protein 

C, containing the viral genome, surrounded by a viral envelope which contains the 

structural proteins precursor form of (pr) M and E. The immature prM is later cleaved in 

the Golgi apparatus by the convertase furin into pr and M proteins6. This cleavage results 

in a conformational change of the E protein, and the generation of mature infectious 

virions7, 8. Even after cleavage pr binds to E at acidic pH, preventing membrane fusion7, 9.  

Cellular entry of DENV is thought to occur in multiple ways, depending on the 

cell type and available receptors. Direct fusion of virus to the cell membrane, clathrin-

mediated endocytosis10-16, E-mediated binding of virus to both lectin-type receptors 

(dendritic cell-specific intercellular adhesion molecule-3-grabbing non-intergrin [DC-

SIGN] and liver/lymph node specific ICAM-3 grabbing non-integrin [L-SIGN])17, 18 and 
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aminoglycan-type adhesion molecules19 are possible mechanisms of viral entry. Virus 

tropism for DC-SIGN or L-SIGN can be modified through variation in N-linked 

glycosylation of E20, 21. Dejnirattisai et al. demonstrated that differences in glycosylation 

patterns between mosquito and human cells switch the tropism of DENV from DC-SIGN 

expressing cells, such as dendritic cells (DCs) and macrophages, to L-SIGN expressing 

cells, such as liver sinusoidal endothelial cells22.  

In vitro studies have demonstrated that many cell types can be infected by DENV, 

although confirming in vivo targets of DENV infection is difficult due to limitations in 

the types of tissue samples available from humans with dengue disease. Previous reports 

suggest B cells, monocytes, endothelial cells, and DCs as sites of viral replication in vivo, 

with monocyte lineage cells as the primary targets of infection23, 24. DENV has also been 

detected in hepatocytes, perivascular cells in the brain, and endothelial cells of the spleen 

when such tissues have been collected from fatal cases25. However, DENV fatalities 

generally occur after the initial febrile illness, when viremia has been resolved, and 

therefore may not be reflective of viral replication during the early stages of infection26. 

Once a cell is infected, the NS proteins are responsible for viral replication, viral 

translation, and suppression of innate antiviral responses. While our understanding of the 

exact functions of these seven NS proteins has advanced greatly over the last decade, 

their roles have not been fully elucidated. NS2A, NS3, NS4A, and the NS5 proteins are 

known to be involved in replication and translation27. NS3, in addition to participating as 

a serine proteinase with NS2B, functions as an RNA helicase and RNA triphosphatase28, 29. 

NS5 stimulates and modulates the enzymatic activities of NS330. NS2A, NS4A, NS4B, 
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and NS5 are involved in suppression of the innate immune response by suppressing type I 

interferon (IFN) production or signaling31-34. This suppression of the type I IFNs, IFN-

α/β, maintains high levels of viral replication.  

While the function of NS1 is not fully elucidated, it may be involved in viral 

replication35. NS1 is secreted from infected cells, based on its glycosylation status36, and 

its presence in serum has been used to diagnose DENV infection37-39. During DENV 

infection NS1 can exist in monomeric, dimeric or hexameric forms40. Levels of NS1 in 

plasma correlate with disease severity41-43
, and soluble and cell-associated NS1 have been 

reported to activate the complement cascade44. Avirutnan et al. found high levels of NS1 

and the complement protein C5a in pleural fluids of patients with dengue shock 

syndrome (DSS)44. Additionally, antibodies formed against NS1 may be cross-reactive 

with important human hemostatic proteins leading to hemostatic disruption when cross-

reactive antibodies bind fibrinogen, thrombocytes, endothelial cells, and human clotting 

factors45-48.  

 

B. Dengue Virus Infections: The Global Burden, Clinical Picture, and Vaccine 

Strategies 

i. Global Burden 

 It is believed that DENV originally circulated in monkeys via a sylvatic 

transmission cycle and jumped to humans over 200 years ago49. While monkeys can be 

infected, they no longer play a role in the transmission cycle of most DENV strains 

detected in the human population49. A fifth serotype was recently identified which does 



4 

not yet appear to have sustained transmission in humans.50 The first reports of dengue 

may have been as early as 1635 when a dengue-like epidemic was recorded in 

Martinique51
, and in 1780 there was a well described outbreak of “bilious fever” in 

Philadelphia which was likely caused by DENV52.  

 DENV is transmitted to humans through mosquitoes, primarily via the vector 

Aedes aegypti but it can also be transmitted by Aedes albopictus53. Aedes aegypti are 

found primarily in residential areas, breed commonly in water that has accumulated in 

man-made containers, and primarily feed on humans53. Eradication programs began in 

1947 to eliminate Aedes aegypti in the Western hemisphere and have changed the global 

picture of DENV and yellow fever virus (YFV). While the initial eradication efficiency 

varied between countries, many areas have subsequently been re-infested by Aedes 

aegypti51. In the last decade, the territory of Aedes aegypti has continued to spread with 

the appearance of DENV in many South American countries51.  

 Efforts have continued to limit the breeding of Aedes mosquitoes primarily 

through education aimed at reducing standing water in urban areas. Despite these efforts, 

however, the continued increase in the number of DENV cases suggests increased 

transmission of the virus. DENV is now endemic in over 100 tropical and subtropical 

countries, and the number of reported infections in these countries has increased over the 

last few years. In 2010, 2.3 million cases of DENV infection were reported to the World 

Health Organization (WHO)53. In 2013, Bhatt et al. estimated that 390 million people 

become infected each year with DENV of which 96 million are clinically apparent 
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cases54. Increased urbanization is a major factor proposed to explain the increase in 

dengue cases. 

ii. Clinical Picture 

Dengue is an acute infection with no reports of chronic cases. While serotype and 

strain differences in virulence appear to exist, all serotypes have the same transmission 

cycle and cause similar clinical symptoms during acute infection55. DENV infection 

causes a broad spectrum of clinical symptoms ranging from inapparent to acute febrile 

illness, to a more severe clinically significant change in hemodynamics. While DENV 

infection can be determined serologically, the classification of dengue disease severity 

relies on criteria established by the WHO, which has recently undergone extensive 

changes. The goal of the new classification system was to improve identification of 

patients with severe disease in an attempt to limit DENV mortality. This new 

classification refers to clinically apparent cases of dengue as either probable or 

laboratory-confirmed dengue, dengue with warning signs, or severe dengue49. The 

benefits of this new system have yet to be demonstrated and many research groups still 

use the old system for classifying patients56. For the purpose of the work presented here, 

the 1997 WHO classification system, which categorizes dengue patients as having 

inapparent illness, uncomplicated dengue fever (DF), dengue hemorrhagic fever (DHF), 

or DSS, will be used57.  

 The majority of DENV infections are subclinical. Of clinically significant 

infections, most present as an acute febrile illness, DF, while only approximately 3% of 

DENV- infected patients develop DHF53. DHF is characterized by high fever, plasma 
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leakage, thrombocytopenia, and bleeding tendency, which are coincident with the 

resolution of fever and viral clearance58-60. Hepatomegaly is also present in over 90% of 

Thai children with DHF 57. The presence and extent of pleural effusion, an indication of 

plasma leakage, can be measured using chest X-ray57. Shock is a rare but serious 

complication of plasma leakage and is known as DSS. Currently, medical therapy for 

dengue disease is purely supportive. 

iii. Vaccine Strategies 

 The earliest vaccines against DENV infection were developed in the 1940s, but 

concerns about vaccine purity stopped further development even though these vaccines 

produced neutralizing antibodies and appeared to provide protection against subsequent 

infection61. In the 1980s, the Walter Reed Army Institute of Research (WRAIR) 

developed an attenuated live DENV vaccine that was based on viruses isolated from 

patients61. Several of these viruses were discontinued during clinical trials due to 

unacceptable reactogenicity in humans. The attenuated DENV strains which WRAIR 

proceeded with for phase I testing were sold to GlaxoSmithKline61 who completed Phase 

II trials.  

 Sanofi Pasteur is now testing a YFV-DENV chimeric tetravalent vaccine that is in 

phase III clinical trials. These chimeras replace some of the YFV structural proteins with 

those of DENV. YFV live-attenuated vaccine was chosen as the backbone for the 

chimeras due to its immunogenicity and ability to induce long term immunity62. One 

chimeric flavivirus vaccine, for Japanese encephalitis virus (JEV), has been licensed and 

is currently in use63. The phase II trial of Sanofi Pasteur’s dengue vaccine showed two to 
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three fold increases in anti-DENV antibodies against DENV-1, -2, -3, and -4. While 

protection was observed to DENV-1, -3, -4 the efficacy of the vaccine against DENV-2 

was poor64. A number of other candidate dengue vaccines built off various platforms are 

also in clinical trials65-67. Live-attenuated vaccines have also been developed by the 

National Institute of Allergy and Infectious Diseases (NIAID) via deletions in the 3′ 

untranslated region of the DENV genome68.  

 All of the DENV vaccines currently in clinical trials aim to induce protective 

immunity to all four DENV serotypes in the hope of eliminating the possibility of 

immunopathology following DENV infection in a partially-immune host. DENV vaccine 

trials are complicated by pre-existing immunity both to DENV and to other circulating 

flaviviruses or previous flavivirus vaccines such as the YFV vaccine and the JE vaccine, 

which are routinely given in many DENV-endemic areas. 

 

C. Risk Factors for Developing Severe Disease in Humans 

A number of risk factors for developing severe disease have been identified 

epidemiologically, including weight, age, nutritional status, viral strain, and immunologic 

genotypes, as well as, most strikingly, a subsequent DENV infection with a second 

serotype69-71. Early studies of DENV infection linked secondary infection with a 

heterologous serotype to a final outcome of DHF and this pattern has continued to hold 

true58, 72-76. Additionally, it has been suggested that the sequence of infecting serotypes 

modulates the risk of developing DHF77-80.  
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The potential for strain variants to affect virulence was highlighted in 1981 when 

epidemic DHF appeared suddenly in the Americas following a change in the predominant 

circulating strain of DENV-281, 82. The possibility of a new serotype being introduced 

raises concerns about the possibility of epidemics in already endemic areas with an 

increased burden of DHF cases50. 

The elevation of soluble factors in the serum of DENV-infected patients is 

thought to play a role in DENV pathogenesis. The few tissue samples obtained from 

patients who succumbed to DHF show no endothelial damage. The rapid onset and 

recovery from plasma leakage in most individuals with severe dengue, support the model 

that soluble factors, rather than direct damage by immune cells, alter the ability of 

endothelial cells to form an effective barrier83
. This hypothesis has been further supported 

by work that demonstrates that cytokines, such as tumor necrosis factor-alpha (TNF-α), 

which are produced in response to DENV infection, can affect the barrier integrity of 

cultured endothelial cell monolayers84-86. Coagulation and endothelial markers, including 

von Willebrand factor, plasminogen activator inhibitor, and tissue factor are other soluble 

factors that have been associated with more severe disease87
.  

Human leukocyte antigen (HLA) class I genotype has been associated with 

dengue disease severity in a number of studies. However, the specific associations vary 

between ethnic populations88-91. A number of other immune-related genes including TNF, 

lymphotoxin alpha (LTA), lymphotoxin beta (LTB), have also been linked to dengue 

disease severity. These larger groupings are referred to as extended haplotypes. The 
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existence of the extended haplotypes can make it difficult to narrow down which immune 

gene is crucial for protection or pathogenesis epidemiologically. 

The major histocompatibility complex (MHC) class I-related chains A/B 

(MICA/B) have been associated with particular disease outcomes for DENV92-94. These 

proteins are upregulated in cells under stress and are ligands for an activating receptor on 

natural killer (NK) cells95.  

The combination of host health and genetic risk factors, combined with the timing 

of plasma leakage in DHF, suggests a role for the adaptive immune response in the 

pathogenesis of DENV infection. The very pronounced risk of DHF in patients 

undergoing a secondary infection has focused most effort on understanding how the 

adaptive immune response could contribute to disease severity. The variety of risk factors 

and the variation between populations suggests that many factors contribute to the 

outcome for DENV patients and that the same clinical endpoint can be reached in many 

ways.  

 

D. Adaptive Immune Responses to Dengue Virus 

While only a percentage of DENV infections are clinically apparent, the global 

burden of DENV is high. With the incidence of DHF on the rise, the underlying 

determinants of DHF remain a central question of DENV research. Infection with one 

DENV serotype provides lifelong immunity to that serotype but not to the other three 

serotypes of DENV96. Moreover, patients undergoing a second infection with a different 

serotype are at increased risk for developing DHF69, 70, 97. Protection against homologous 
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infection, in combination with some newer data generated from mouse models discussed 

below, suggest that the adaptive immune response likely plays an important role in viral 

clearance and the subsequent protection against re-infection. However, the association of 

DHF with secondary infection and the timing of DHF symptoms after the peak of viremia 

also implicate the adaptive immune response in DHF pathogenesis. Both antibodies and 

T cells have been proposed to contribute to the development of severe dengue disease98. 

i. Role of Antibodies in Dengue Pathogenesis 

Antibodies to DENV can mediate a number of activities in vitro67. Some 

antibodies are able to neutralize the virus but enhance virus uptake at higher dilutions, 

while other antibodies do not neutralize the virus but are also able to bind to the virus and 

Fcy I and II receptors, and mediate more efficient entry into the host cell99, 100. This more 

efficient viral entry mediated by viral antibodies is referred to as antibody dependent 

enhancement (ADE)101. DENV-specific antibodies of the appropriate subclasses bound to 

dengue antigens on the infected cell membrane can bind to complement proteins and 

promote complement-dependent lysis (CDL) of infected cells and contribute to antibody-

dependent cellular cytotoxicity (ADCC) of infected cells102, 103.  

After a large outbreak of dengue in Thailand in 1980, a study of antibody 

responses in children hospitalized with dengue found that all of the patients with DSS had 

antibody responses consistent with previous DENV infection69. This observation suggests 

that sub-neutralizing levels of cross-reactive anti-DENV antibodies that were generated 

during a previous infection increased the risk of developing DHF69, 104
. Follow-up studies 

suggested that non-neutralizing antibodies, via ADE, may enhance viral load and immune 
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activation during DENV infection69, 105-107. However, Libraty et al. did not find any 

correlation between the ADE activity of maternal antibodies in DENV-infected infants 

and the development of DHF, though they did find protection from symptomatic DENV 

in infants with high levels of maternal antibodies108.  

ADE may facilitate virus entry and initiate intracellular antiviral responses109. 

However, ADE-mediated virus entry has also been reported to down-regulate the RIG-

I/MDA5 signaling pathway leading to decreased production of type I IFNs110, 111. Hence, 

the effects of ADE on DENV pathogenesis may not be limited to increasing viral burden 

by increasing the number of infected cells, but may also act by dampening innate and 

downstream adaptive immune responses, allowing for more robust viral replication97.  

While ADE can be observed in vitro, demonstrating ADE in vivo in humans is 

more challenging. In mice, passive transfer of low doses of cross-reactive anti-DENV 

antibodies enhanced DENV infection and features of lethal disease. Mutation of the 

antibody to prevent FcγR binding eliminated these effects112. However, in contrast to 

human disease, lethal features of murine disease, such as vascular leakage, occurred 

during viremia rather than post-viremia. Huang et al. established the first mouse model 

with post-viremia disease. They found thrombocytopenia following infection with 

DENV-2 correlated with the development of anti-platelet antibodies in these mice113. As 

noted earlier, human antibodies to DENV that are cross-reactive with human endothelial 

cells and human clotting factors have been reported to play a role in the hemostatic 

changes observed in patients who develop DHF45.  
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ii. Role of T cells in Dengue Pathogenesis 

Global T cell expansion, expansion of epitope-specific T cells, and markers of T 

cell activation have been assessed during acute DENV infection in an attempt to elucidate 

how T cells may contribute to disease severity. The results of these studies have varied 

based on study design, ethnic group, and the epitope being studied (Table 1.1 and Table 

1.2). Other factors, such as virus strain, quality of care, and consistency of diagnosis may 

have contributed to the variability between these studies.  

 Studies of total CD8
+ T cell responses during DENV infection have shown higher 

frequencies of CD8
+
 T cells expressing CD69, and higher levels of immune activation 

markers, such as in individuals with DHF as compared to those with DF 87, 114-116. Not all 

groups, however, have observed such a pattern of CD8
+
 T cell activation. Dung et al. 

reported no evidence of CD8
+
 T cell activation, as measured by expression of CD38, 

HLA-DR, and Ki-67, in the peripheral blood of patients until after capillary leakage had 

begun; they concluded that CD8
+
 T cells do not play a primary role in DENV 

pathogenesis, but suggested that T cell activation may amplify DENV pathogenesis117
. 

Increased levels of cytokines, which are secreted in vitro by DENV-specific CD8
+
 T 

cells118-120, have been found in patients with mild disease, and some were increased to 

higher levels in severe DENV disease, including IFN-γ, interleukin (IL)-6, IL-8, IL-10, 

IL-18, and TNF-α121-128.  
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Table 1.1. Dengue CD8
+
 T cell association studies  

Study 
Locationa 

# of 
Subjectsb 

Timing of 
Enrollmentc 

DF vs. DHFd; 

P vs. Se 

Timing of 
Acute 

Samplesf 

Timing of 
Convalescent 

Samplesg
 

HLA-
Typing 
Done? 

Thailand 
1999122 
 

51 children within 72hrs 
of fever 
onset 

29 DF 
22 DHF 

22 P 
29 S 

study day 2 
and 1 day 

after 
defervescence 

NONE NO 

Evaluated total CD4
+
 T cell, CD8

+
 T cell, NK cell, and γδ T cell responses during acute illness.   

FINDINGS: Increased expression of CD69 in DHF compared to DF 

Thailand 
2002129 
 

10 children within 72hrs 
of fever 
onset 

5 DF 
5 DHF 

1 P 
9 S 

during illness 
& 8 to 11 days 

after study 
entry 

6 months 
1 year 
2 year 
3 year 

YES 

Evaluated CD8
+
 T cell responses to the HLA-B07 restricted epitope NS3222-231 

FINDINGS: higher freq of B7-NS3222-231 TET
+
CD8

+
 T cells in DHF pts 

Thailand 
2003114 
 

19 children  5 DF 
14 DHF 

19 S 

4 times during 
acute illness 

Fever day -2, 
-1,0,+1 

14 days after 
defervescence 

YES 

Evaluated CD8
+
 T cell responses to the HLA-A11 restricted epitope NS3133-142 

FINDINGS: higher freq of A11-NS3133-142 TET
+
 T cells in DHF pts 

Vietnam 
2005130 
 

48 adults  48 S day of 
admission, 

study day 3, 
study day 5 

2 weeks, 1 
month post 
admission 

 

Evaluated T cell responses to 260 overlapping peptide antigens from DENV-2. Data on hemoconcentration 
during dengue was available for 24 pts 

FINDINGS: IFN-γ ELISPOT responses weakly correlated with hemoconcentration, but not disease severity. 

Thailand 
2006131 
 

13 children  13 DF 
10 DHF 

1 P 
12 S 

during illness 
& 8 to 11 days 

after study 
entry 

6 months YES 

Evaluated responses to the HLA-A24 restricted epitope NS3556-564 

FINDINGS: percentage of TET
+
 CD8

+
 T cells correlate with DHF and DHF severity. 
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Vietnam  
2008116 
 

75 Infants 
<18 mos. 
with acute 

dengue 
 

192 healthy 
infants 

Healthy with 
no DENV 

IgM at birth. 

Serum at 
birth 6, 9, 

12 moths or 
enrolled at 
one of the 
above time 

points. 

2 DF 
67 DHF 
6 DSS 

75 P 

daily for 4 
days during 

hospitalization 

10 to 14 days 
after hospital 

discharge 

YES 

Evaluated CD8
+
 T cell activation in acute dengue using the activation marker CD69. In HLA-A11

+
 

subjects NS3133-142  

FINDINGS: CD69
+
CD8

+
 T cells were significantly, but transiently, increased in DHF. Found 

measurable frequencies of NS3133-142 TET
+
CD8

+
 T cells only in convalescence. 

Vietnam 
2008117 
 

103 children 
23 controls 

2 studies: 

1) Pts 
enrolled 

w/in 72 hrs 
of fever 
onset 

2) Pts 
enrolled 

w/in 7 days 
of illness 

86 DF 
17 DHF 

30 P 
73 S 

daily during 
acute illness 

2-3 wks after 
presentation 

 

Evaluated plasma leakage within 24 hrs of defervescence. Studied CD8
+
 T cell responses by 

measuring expression of Ki-67, CD38, HLA-DR and frequencies of TET
+
 cells (NS3133-142) 

FINDINGS: Peak TET
+ CD8

+
 T cell frequencies after plasma leakage commenced. 

Thailand 
2010132 
 

40 children  18 DF 
22 DHF 

40 S 

 2 weeks  

Evaluated the function of CD8+ T cells in response to peptide stimulation.  

FINDINGS: DHF patients had decreased frequencies of CD107a
+
 CD8

+
 T cells and increased 

frequencies of TNF-α and IFN-γ producing CD8
+
 T cells following stimulation. 

Thailand 
2010133 
 

33 children pre-illness 
(with bleed) 

17 s.c. 
10 Symp 

w/in 7 days of 
onset of 

symptoms 

>15 days YES 

Evaluated pre-illness responses between subclinical or symptomatic secondary infection. 

FINDINGS: Higher frequencies of DENV-specific TNF-α, IFN-γ producing T cells in children who 
developed subclinical infection. 
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Thailand 
2011134 
 

44 children  25 DF 
19 DHF 
 
17 P 
27 S 

daily during 
acute illness 
and 1 week 

after 
defervescence 

6 month 
1 year 
2 years 

YES 

Evaluated CD8
+
 T cell responses to the HLA-A11 restricted epitope NS3133-142 

FINDINGS: no correlation between frequency of TET
+
CD8

+
 T cells and disease severity 

Sri Lanka 
2012135 
 

24 adults 
5 controls 

 24 healthy 
seropositive 

   

Evaluated ex-vivo responses to peptides from each of the four DENV serotypes to determine serotype 
specific T cells . 

FINDINGS: All immune donors responded to at least two DENV serotypes. Eight individuals 
responded to DENV-4 peptides even though no DENV-4 had been previously reported in Sri Lanka 

 
a Study location and reference 

b Number of subjects enrolled in the study, divided into dengue patients and healthy controls when 

applicable, noted if the study is of children or adult subjects. 
c When patients were enrolled in the study 

d Number of subjects with DF versus DHF(or DSS as noted),  

e Number of subjects with Primary (P) versus secondary (S) DENV infection 

f Timing of collections of samples taken during acute dengue illness 

g Timing of collection of samples taken following dengue illness  

s.c.=subclinical. Symptomatic=some studies simply classified subjects as symptomatic. 
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Table 1.2. Dengue genetic association studies  

Study Locationa # of Subjectsb DF vs. DHFc;    P vs. Sd 

Thailand 200289 263 children      149 DF               54 P 
     114 DHF          209 S 

FINDINGS: Associated HLA-A*203 and HLA-B*52 with DF, HLA-A*207 and 
HLA-B*51 with DHF, HLA-B*44, B*62, B*76, and B*77 with protection from 
developing clinical disease 

India 2007136 197 pts 
100 controls 

      90 DF             109 P 
      75 DHF            78 S 
      32 DSS 

FINDINGS: Associated TAP1 333 ILE/VAL and HPA1a/a1 and HPA2a/2b 
with DHF. 

Thailand 200990 435 children       65 s.c               69 P 
    229 DF             301 S 
    142 DHF 

FINDINGS: Associated TNF-238A together with HLA-B*48 or B*57 with DHF 

Vietnam 201194 2008 DSS 
2018 controls 

 2008 DSS 

FINDINGS: Found MICB and PLCE1 to be susceptibility loci for susceptibility 
to DSS 

Jamaica 2011137 50 dengue 
177 healthy 

   45 DF 
     5 DHF 

FINDINGS: Found that HLA-A*24 associated with DF 

Cuba 201192 104 adults    68 DF 
   36 DHF 

FINDINGS: Found that MICA*008 and MICB*008 associate with 
susceptibility to illness but greater likelihood of DF then DHF. 

Brazil 2012138 109 pts    67 DF 
   42 DHF 

FINDINGS: Associated HLA-A*01 with DHF 

Brazil 2013139 104 pts 
172 controls adults 

 

FINDINGS: Associated KIR2DS1, KIR2DS5, KIR2DL5,KIR3DS1-Bw4, 
KIR3DL1-Bw4, KIR2DL1-C2, KIR2DS1-C2, KIR2DL3-C1/C1 with dengue 

Brazil 2013140 187 pts with DENV-3 120 DF                 66 P  
  67 DHF             121 S 

FINDINGS: Associated HLA-B*44 with DHF in patients with DENV-3 
a Study location and reference 
b Number of subjects enrolled in the study, divided into dengue patients and healthy controls when 

applicable, noted if the study is of children or adult subjects. 
c Number of subjects with DF vs DHF(or DSS as noted),  
d Number of subjects with Primary (P) versus secondary (S) DENV infection s.c.=subclinical. 
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HLA class I allele associations with dengue disease severity have been reported 

by a number of epidemiological studies providing additional support for a role for CD8
+
 

T cells in contributing to clinical outcome88-91. Stephens et al. found that, in the Thai 

population, HLA-A*0207, B*51, B*46, and A*11 associate with DHF susceptibility, 

while HLA-A*0203, B*52, B*44, B*62, B*76, and B*77 associate with DF89
. An 

extended HLA haplotype that included TNF-4 and LTA-3 alleles together with HLA-

B*48 and HLA-B*57 was more prevalent in patients with secondary DHF compared to 

the general Thai population 90
. Recently, Hertz et al. demonstrated that higher HLA class 

I binding scores for DENV proteomic regions that are conserved among flaviviruses 

correlates with protection from DHF supporting a role for CD8
+
 T cells in protective 

responses to DENV infection141.  

Recent studies have used peptide-MHC (pMHC) tetramers to investigate the 

kinetics of expansion and activation of DENV-specific CD8
+
 T cells during acute DENV 

infection and convalescence. However, there are a limited number of CD8
+
 T cell 

epitopes which have been identified (Table 1.3). Friberg et al., looked at frequencies of 

an HLA-A11 restricted epitope NS3133-142 in subjects with DF versus those with DHF; 

patients with all four DENV serotypes were represented. They found A11-NS3133-142-

specific T cell expansion did not correlate with disease severity134. A similar lack of 

association between the frequency of A11-NS3133-142-specific T cells and disease severity 

was reported in two studies in Vietnam116, 117. A strength of these studies is the 

information on clinical profile, viral isolation and HLA typing in individuals with 

primary and secondary DENV infection 116, 117, 134.   
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Table 1.3 CD8
+
 T cell epitopes recognized by virus-specific CD8

+
 T cells 

Protein Amino acidsa Sequenceb MHCc Reference 
C 22-31 RVSTVQQLTK A03/11 142 

107-115 CLIPTAMAF B15 143 
107-115 MLIPTAMAF B35 143 

prM 133-141 FTILAFLAH B35 126 
E 211-219 FFDLPLPWT A02 144 

297-306 MSYSMCTGKF B35 143 
414-422 ILGDTAWDF B07 130 

NS2a 198-206 ATGPILTLW B58 143 
NS2b 52-60 ELERAADVK A03/11 142 

97-106 ILIRTGLLVI A0201/24 142 
NS3 25-32 RIKQKGIL B08 142 

64-74 RIEPSWADVK A03/11 142 
71-79 SVKKDLISY B62 145 

112-120 AIKRGLRTL A02/24 142 
130-144 GTSGSPIIDKK A11.1 114 
176-184 NPEIEDDIF B35 143 
194-203 HPGAGKTKRY B35 143 
222-230 APTRVVAAE B07 146 
235-243 AMKGLPIRY B62 145 
291-300 DPASIAARGY B35 143 
422-431 RVIDPRRCMK A03/11 142 
500-508 TPEGIIPTL B35 147 
521-530 GEFRLRGEQR B40 143 
528-537 GEARKTFVEL B40 143 
555-564 INYADRRWCF A24 130 
606-614 MALKDFKEF B35 143 

NS4a 56-64 LLLGLMILL A02 144 
55-64 LLLLTLLATV A02/24 142 

NS4b 6-13 LEKTKKDL B08 142 
23-32 TETTILDVDL B53 143 
40-48 TLYAVATTI A02 148 
49-58 TPMLRHTIEN B07 143 
69-77 IANQATVLM B35 143 

92-100 VPLLAIGCY B35 143 
111-119 VLLLVTHYA A02 144 
119-128 AIIGPGLQAK A03/11 142 
181-189 LLLMRTSWA A02 144 
198-206 ATGPILTLW B58 143 



19 

 
 
 
 
 
 
 
 
 

a Sequence positions vary slightly between strains. 
b Sequence as reported by the cited reference. These sequences do not necessarily reflect the 
minimal epitope. As sequences vary between serotypes and strains these epitopes may not 
represent the sequence found in prevalent circulating strains. 
c HLA restriction was not confirmed in all studies and some were based on peptide binding 
predictions. 

Adapted from Mathew et al. Future Microbiol. 2014 

 

 

  

NS5 182-190 VLNPYMPSV A02/24 142 
291-299 WHYDQDHPY B35 143 
329-337 KPWDVIPMVT B55 118 
343-351 DTTPFGQQR A68 143 
373-382 VMGITAEWLW B53 143 
375-383 KITAEWLWK A03/11 142 
389-398 KPRICTREEF B07 143 
393-402 TPRMCTREEF B07/35 143 
563-571 KLAEAIFKL A02/24 142 
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While peak tetramer frequencies during acute infection did not appear to correlate 

with disease severity based on these studies, other studies have reported higher 

frequencies of DENV-specific T cells in patients with DHF 2 weeks131, 132 and 6 

months129 post-infection. Differences between these study cohorts such as, timing of 

sample collection and differences in infection history (e.g., serotype of primary and 

secondary infection) may explain the differences in results between these studies. These 

findings are limited by the small number of samples tested during capillary leakage, the 

inability to look at CD8
+
 T cell responses at sites of infection outside the blood, and the 

processing and freezing of samples often required which could eliminate cells of interest 

from the sample. However, the lack of a correlation with disease severity, and the timing 

of peak TET
+
 T-cell frequencies in early convalescence rather than at the time of plasma 

leakage, suggest that the frequency of A11-NS3133-142 TET
+
 T cells may not be the 

principal determinant of disease. Data from Friberg et al. suggest that responses to other 

epitopes, such as the B7 restricted epitope NS3222-230, may contribute to disease severity 

to a greater extent than the response to NS3133-142
134. 

Other characteristics of the DENV-specific T cell response, such as the quality of the 

effector response, may be more important than the quantity of epitope-specific cells144. 

Evaluating the quality of effector responses in peripheral blood mononuclear cell 

(PBMC) samples obtained from dengue patients can be difficult. Many groups have used 

the expression of surface markers such as CD69, CD38, HLA-DR, in an attempt to 

identify qualitative differences in T cell responses. In the study by Friberg et al. no 

significant correlations were seen between the expression of CD38 (a marker of 
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activation) or phenotypic markers on A11-NS3133-142-specific T cells and disease 

severity134. It appears that neither the quantity nor the quality of responses to NS3133-142 

associated with disease severity117, 134.  

Studies focused on DENV-specific T cells have found varying levels of cytokine 

production and cytotoxic activity in CD8
+
 T cells. The production of IFN-γ, TNF-α, and 

macrophage inflammatory protein 1β (MIP-1β) by CD8
+
 T cells was dependent on the 

peptide sequence of the stimulating epitope which typically varies between DENV 

serotypes118, 120, 144. Stimulation of CD8
+
 T cell lines with peptides from different 

serotypes of the same epitope has highlighted how strikingly different cytokine and 

cytolytic responses can be to peptides that vary even by a single amino acid120. Simmons 

et al. demonstrated significant IFN-γ responses to 47 DENV-2 peptides in PBMC of 

Vietnamese patients during secondary DENV infection, though they found only a weak 

correlation with the extent of plasma leakage130
. Most recently, Duangchinda et al. 

showed higher frequencies of TNF-α and/or IFN-γ -producing CD8
+ T cells in response 

to DENV peptides in PBMC collected during acute dengue illness from patients with 

DHF versus those with DF132
. These studies suggest that not only high levels of T cell 

activation but also the effector response may contribute to DENV pathogenesis. 

iii. Role of T cells in Protection against Dengue Virus Infections 

 Very few studies have examined the role of T cells in the protection of DENV 

infections. Determining the role of CD8
+
 T cells in protecting humans from DENV 

infection and subsequent dengue disease is complicated by the need for PBMC to be 
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collected prior to infection and limited by the inability to manipulate CD8
+
 T cells in 

human subjects. Therefore, whether CD8
+
 T cells contribute to protection against DENV 

infection and dengue disease remains unknown, though several studies have assessed the 

T-cell frequencies and responses in PBMC collected prior to a secondary DENV 

infection.  

 Mangada et al. compared the T-cell responses of the pre-secondary infection 

PBMC responses of patients who were hospitalized during their subsequent DENV 

infection to those of patients who were not hospitalized149. IFN-γ production in response 

to the infecting serotypes was significantly more common among patients who were not 

hospitalized. In a study performed by Hatch et al. the level of CD8
+
 T-cell activity in pre-

illness PBMC was compared between subjects who subsequently developed a subclinical 

secondary DENV infection who had a symptomatic secondary infection133. They found 

higher frequencies of cytokine-producing (TNF-α, IFN-γ, IL-2) CD8
+
 T cells in patients 

who did not develop symptomatic infection. Gunther et al. studied cellular immune 

responses in recipients who received a candidate tetravalent vaccine and were 

subsequently challenged with infectious DENV. They found that in vitro IFN-γ responses 

mediated by DENV-specific CD8
+
 T cells in the peripheral blood were associated with 

protection against fever and/or viremia150.  

 It is not completely clear how these findings of higher cytokine producing 

potential in patients who go on to develop mild cases of dengue can be reconciled with 

the studies discussed above which found higher levels of many of the same cytokines, 

such as IFN-γ and TNF-α, in subjects with DHF than in subjects with DF. Comparison of 
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these studies is complicated by differences in the make-up of the cohorts and differences 

in how cytokines were evaluated, either as measured levels in patients’ serum or as the 

potential of PBMC to produce these cytokines. There is a need for study cohorts which 

can address all of the above observations simultaneously.  

Though the majority of T cell studies have been performed using samples 

obtained from human clinical cohorts, mouse models have also been used to study T cell 

responses to DENV. These models have significant limitations, however, a number of 

studies in mice have highlighted the importance of T cells in protection from DENV. 

Immunization of IFN-α/β receptor knockout mice with either CD8
+
 or CD4

+
 T cell 

epitopes enhanced viral clearance151, 152. Additionally, depletion of CD8
+
 T cells but not 

CD4
+
 T cells in mice resulted in higher viral loads151, 152 and negated protection against a 

lethal strain provided by prior immunization153, 154. 

 There is no single metric to identify a protective CD8
+
 T cell response. 

Nevertheless, it is clear that some CD8
+
 T cell responses will be protective and other 

CD8
+
 T cell responses likely contribute to dengue pathogenesis. The generation of 

multifunctional T cells with high-quality responses may be protective, while the 

generation of T cells with lesser-quality responses is considered suboptimal155. The 

presence of cross-reactive DENV-specific CD8
+
 T cells, which have been shown to have 

quantitative and qualitative differences in degranulation and cytokine responses to variant 

peptides131, 144, suggest the possibility that CD8
+
 T cells with multi-functional responses 

to the primary infection will mount lesser-quality responses to a secondary infection.  
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iv. Characterization of CD8
+
 T Cells by Flow Cytometry 

A number of cell surface markers have been used to characterize the phenotype 

and function of CD8
+
 T cells. Before a T cell encounters antigen and becomes activated, 

it is considered a “naïve” T cell expressing CD45RA and CCR7, the latter of which 

allows these cells to traffic into lymph nodes156. After encountering antigen, activated T 

cells downregulate expression of CCR7 and CD45RA, and new markers become 

prominent. Some of the markers used to identify activated T cells include Ki-67, HLA-

DR, CD69, and CD38. Ki-67 is a marker of cell proliferation present in the nucleus only 

during cell cycling157
. HLA-DR is expressed on cycling cells158

. CD69 and CD38 are 

upregulated on activated CD8
+
 T cells159-161

. CD69 may function as a costimulatory 

receptor to enhance proliferation of activated T cells162, 163, though T cells were shown to 

proliferate normally in CD69
-/-

 mice164. CD38 is thought to have many functional roles 

for T cells including transmission of activating signals leading to increased intracellular 

Ca2+
 and cytokine production165-167. 

 After resolution of infection some activated T cells will go on to become memory 

cells. Memory T cells are typically grouped into central or effector memory pools based 

on their phenotype. CD45RA can reappear on memory T cell populations so it cannot be 

used alone to identify naïve T cells156. Another marker used to identify memory T cells is 

CD57. CD57 was thought to be a marker of T cell senescence, but recent work 

demonstrated that CD57
+
 CD8

+
 T cells are capable of expansion168, contain high levels of 

granzyme and perforin, and have the ability to produce high levels of cytokines168. In 

neuroinvasive West Nile virus (WNV) infection in humans, an increased percentage of 
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CD45RA
+
CD57

+
 T cells was observed, compared to those whose WNV infection was not 

neuroinvasive169, suggesting that CD57
+
 T cells may play a role in flavivirus 

immunopathology.  

While Ki-67 is used to mark proliferating cells, detecting its expression requires 

permeabilization of the cells, which can affect staining of surface markers170. The 

transferrin receptor, CD71, is also thought to be upregulated on dividing cells since iron 

is necessary for cell division171. For T cells, CD71 has an additional role participating in 

T cell receptor (TCR) signaling. CD71 is rapidly trafficked to the immune synapse and 

participates in the phosphorylation of TCRζ172. Hence, CD71 should also mark T cells 

that have recently encountered antigen. The expression of CD71 on T cells has yet to be 

studied in acute viral infections. CD71 has, however, been used as a marker of activation 

when studying CD8
+
 T cell responses to tumors173, 174, CD8

+
 phenotypes in persistent 

cytomegalovirus (CMV)175, and human immunodeficiency virus (HIV)176. CD71 has also 

been used as a marker of CD8
+
 T cell proliferation in a mixed lymphocyte reaction177. 

 

E. Animal Models of Dengue 

 The lack of a reliable animal model for studying DENV pathogenesis has limited 

the study of how early immunological responses may affect the outcome of DENV 

infection178. Without an animal model of pathogenesis it has also been difficult to study 

individual factors that contribute to dengue pathogenesis. Current studies of factors 

potentially affecting DENV infection outcomes can only be done using ex vivo samples 

from acutely ill human subjects, or using in vitro cell culture models. While there is not 
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an animal model of pathogenesis, there are a number of animal models of DENV 

infection each with significant limitations179, 180.  

 DENV does not establish viremia in wild-type mice. IFN-α/β receptor-deficient 

mice can be infected, but only a limited number of adapted DENV strains cause disease 

in these animals disease occurs during viremia181. More recently, humanized mice have 

been used to overcome deficiencies in other mouse models. While these mice do become 

viremic and develop disease that mimics human dengue illness182, human immune 

responses need to be improved183, 184. Additionally, each type of humanized mouse model 

has its own limitation(s) with respect to the development of a functional human immune 

system.  

 Non-human primates, including several species of monkeys, have also been used 

to study DENV infection, ADE, and candidate DENV vaccines185-190. Viral replication, 

neutralizing antibodies, and T cell responses have been routinely observed, but there is 

only limited evidence of disease or hematologic abnormalities191-193. Non-human 

primates have been used with some success to study responses to tetravalent vaccines, 

demonstrating protection against subsequent infections, and allowing the study of 

vaccines that are too reactogenic to be studied in humans194-196. However, the use of non-

human primate models involves significant costs. 

 

F. Innate Responses to Dengue Virus 

 Elucidating the role of the innate immune system in either the resolution of 

DENV infections or pathogenesis of dengue disease is challenging. DENV, like other 
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single-stranded (ss)RNA viruses, activates the innate immune system through recognition 

by toll-like receptors (TLRs) 3, 7, and 8, retinoic acid-inducible gene I (RIG-I), and 

melanoma differentiation-associated protein 5 (MDA5)197. However, as noted earlier, the 

DENV proteins NS2A, NS4A, NS4B, and NS5 can prevent the production and/or 

signaling of type I IFNs31-34. Cytokines associated with T cells, such as IFN-γ and TNF-α, 

can also be produced by innate cells, such as monocytes, DCs, and NK cells, during 

DENV infection198, 199. While innate responses to DENV are probably important and may 

contribute to disease, these innate responses are not well understood. Innate responses are 

early responses that are often well underway when patients appear at the clinic. The study 

of innate immune responses in human subjects would therefore likely require samples 

taken before they become symptomatic. 

 Antigen presenting cells (APCs) are a key component of the innate immune 

system and are targets of DENV infection leading to cytokine production, cell activation, 

and maturation199-201. The production of interleukin (IL)-6, IL-8, inducible protein (IP)-

10, and TNF-α by DENV-infected monocytes has been reported to correlate with 

maximum virus production201. Interestingly, infection of DCs by DENV can lead to 

impaired DC maturation and subsequently decreased T cell proliferation, suggesting that 

innate immune responses are crucial to the development of some adaptive T cell 

responses202.  

i. NK Responses to Dengue Virus Infection 

 NK cells also play a role in the innate response to DENV infection. Kurane et al. 

identified a sub-population of NK cells which lysed DENV-infected target cells in the 
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presence of an anti-DENV antibody203. They observed heterogeneity in the NK cell 

population, but the mechanism by which NK cells recognized DENV-infected cells was 

not identified203. Subsequent research identified CD16
+
 NK cells as being responsible for 

antibody-mediated cytotoxicity204. Yoshida et al. transiently depleted tamarins of CD16
+
 

NK cells and saw no significant effect on the plasma levels of DENV or the immune 

response to DENV as assessed by the presence of anti-DENV antibodies205. However, 

they conducted this experiment in animals undergoing a primary infection, and did not 

address whether CD16
-
 NK cells may play a role in controlling viremia during acute 

DENV infection. Other studies have noted the activation of NK cells during acute DENV 

infection. Azeredo et al. linked increased frequencies of NK cells during acute DENV 

infection with mild dengue disease206
. They reported expression of the activation markers 

CD69, HLA-DR, and CD38 on NK cells during acute DENV infection. In contrast, 

Green et al. found higher frequencies of circulating NK cells expressing CD69 among 

children who developed DHF compared to those with mild disease115. Kuo et al. found 

elevated serum levels of liver enzymes AST in 93% and ALT in 82% of dengue patients 

in their cohort. Based on these data Sung et al. used a mouse model of DENV infection to 

determine which cell types might be responsible for this liver damage. They found that 

NK cell infiltration of the liver peaked one day following infection while CD8 T cell 

infiltration peaked five days following infection207. 

ii. Upregulation of MHC Class I following Dengue Virus Infection  

 One possible mechanism by which DENV-infected cells might escape lysis by 

NK cells is mediated by inhibitory receptors which bind MHC class I on the surface of 
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infected cells. Flaviviruses, including DENV, have been reported to upregulate MHC 

class I expression208-210. Which is in contrast to most other viral infections that 

downregulate MHC class I211. Libraty et al. reported upregulation of MHC class I on 

DENV-infected DCs and even more upregulation on uninfected bystander DCs present in 

the infected culture212. Warke et al. showed that DENV-infected muscle satellite cells 

decrease MHC class I expression while bystander cells increase MHC class I 

expression213. The mechanism by which flaviviruses upregulate MHC class I expression 

is not known. Several possible mechanisms have been proposed, including increased 

transporter associated with antigen processing (TAP)-mediated209 peptide translocation 

into the endoplasmic reticulum (ER)214 and increased HLA promoter activity210. Work 

with WNV has shown increased nuclear factor-κB (NFκB) activity leading to increased 

MHC transcription in infected cells215. These studies suggest that MHC class I expression 

may vary in response to DENV infection through multiple mechanisms and perhaps can 

vary based on cell type, the HLA genotype of the infected individual, and infectious 

burden per cell. DENV infection can also trigger activation of NK cells by upregulating 

the expression of activating ligands in response to the stress of viral infection. 

Additionally, the flavivirus E protein may activate NK cells directly through binding to 

the activating receptor NKp44216.  

 The understanding of NK cell function has expanded dramatically since these 

studies of NK cell responses to DENV were performed. Of special note are the discovery 

of NK cell memory217-221 and our expanded understanding of how NK cells interact with 

the adaptive immune response, which are discussed further below.  
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G. Overview of NK Cell Responses to Acute Viral Infections 

 NK cells were first identified in the 1970s as ‘non-specific’ lymphocytes capable 

of killing cancer cells and virally-infected cells222-224. While NK cells are part of the 

lymphocyte lineage, they are usually considered a member of the innate immune system. 

As our understanding of NK cells has improved, however, it has become increasingly 

clear that NK cell responses to viral infections are more complicated than initially 

recognized and have characteristics consistent with both innate and adaptive immune 

responses.  

 NK cells are CD3
-
 lymphocytes identified by CD56 and CD16 expression and can 

be CD56
+ and/or CD16

+ 225. Human NK cells are very heterogeneous, with each cell 

carrying a number of different activating and inhibitory receptors on their surface (Table 

1.4), which work in concert to control the response to any given stimulus. A number of 

surface markers have been used to classify NK cells. CD57 marks fully mature NK cells 

that are highly cytotoxic but proliferate less robustly226. CD69 and CD38 are markers of 

activation upregulated on activated NK cells. However, they also function as activating 

receptors that can further promote proliferation and activation of NK cells227-232. While 

these receptors mark the ability of NK cells to respond to a given stimulus, they do not 

necessarily provide information about the current activation status of the cell. 

 NK cell activation requires signaling through multiple receptors, with the 

exception of signaling through CD16 (Figure 1.1)233, 234. CD16 provides a strong 

activating signal to NK cells and can independently activate NK cells even in the 

presence of inhibitory signals234. Inhibitory receptors are thought to be particularly 
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important in the development of NK cells by “licensing” NK cells to respond to 

activating signals received later on235. The strength of an inhibitory signal is proportional 

to the strength of the response to subsequent activating signals236. A major set of 

inhibitory receptors important for NK cell licensing are the killer cell immunoglobulin-

like receptors (KIRs). While only some KIR ligands are known, all are thought to be 

class I MHCs (Table 1.4).  

 Epidemiological studies of immunological events, including responses to 

infectious diseases, autoimmune diseases, multiple miscarriages, and tumor responses, 

have implicated KIR/MHC interactions in protective or pathological roles237-243. Studies 

of hepatitis C virus (HCV) highlight this possibility for protective or pathologic 

relationships during a viral infection. In Brazil, HLA-C and its associated KIRs have 

been linked epidemiologically to the development of liver damage in HCV patients244, 245. 

In contrast, in a study in Puerto Rico of intravenous drug users at high risk for contracting 

HCV, the presence of HLA-C1 and KIR2DS4 and KIR2DL2 and/or KIR2DL3 were 

found to highly correlate with being HCV negative246. One of the most well studied 

relationships between a KIR and an HLA molecule is the interaction of KIR3DL1 and 

HLA-B57 which is associated with long-term non progression in HIV infected 

individuals237, 247-253. Further details are provided in Chapter IV. 

 NK cell responses are affected by previous stimulation, either through 

modification of the receptor repertoire or of the sensitivity of the receptors, and the 

interplay between signals from different receptors. O’Leary et al. demonstrated that NK 
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Table 1.4: Known activating and inhibitory NK cell receptors and their 
ligands 

Receptora Ligandb Functionc Reference 

KIR2DL1 HLA-Cw4 Inhibitory 254, 255 
KIR2DL2 HLA-Cw3 Inhibitory 254, 255 
KIR2DL3 HLA-Cw3 Inhibitory 254, 255 

KIR2DL4 HLA-G 
Activating? 
Inhibitory? 256, 257 

KIR2DL5A/B unknown Inhibitory  
KIR2DS1 HLA-C Activating 258 
KIR2DS2 HLA-C Activating 258 
KIR2DS3 HLA-C Activating  
KIR2DS4 HLA-Cw4 Activating 259 
KIR2DS5 unknown Activating  
KIR3DL1 HLA-Bw4 Inhibitory 247 

KIR3DL2 
HLA-B27, HLA-A3, HLA-

A11 
Inhibitory 260, 261 

KIR3DL3 HLA-Cw4 Inhibitory  
KIR3DS1 HLA-Bw4? Activating  

CD94-NKG2A HLA-E Inhibitory 262 

2B4 CD48 
Activating or 

Inhibitory, 
coreceptor 263, 264 

LILRB1 HLA class I Inhibitory 265 
CD16 IgG Activating 266 

CD94-NKG2C HLA-E Activating 262, 267 
CD94-NKG2E HLA-E Activating 267 

NKG2D MICA, MICB, ULBP Activating 268 
NKp30 Unknown Activating 269 

NKp44 
DENV protein E, viral 

hemagglutinins 
Activating 216, 270 

NKp46 unknown Activating 271 

CD161 LLT1 
Activating and 

Inhibitory 272, 273 
CD38 CD31 Activating 229, 230, 232 

a Receptor present on the surface of NK cells 
b Ligand(s) bound by the NK cell receptor 
c
 Functional effect of receptor signaling in NK cells 
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cells are responsible for delayed type hypersensitivity responses to haptens in sensitized 

mice for up to four weeks218. Strikingly, this hypersensitivity was transferred to an 

unsensitized host through adoptive transfer of NK cells220, 221. Viral antigens can also 

induce recall responses by NK cells that can protect against subsequent viral challenge217-219. 

These findings suggest that NK cells are capable of altered responses for a period of time 

following infection. Notably, this NK cell “memory” is not the classic, recombination-

based memory that is the hallmark of adaptive immunity.  

 NK cells have also been implicated in shaping the adaptive response to viral 

infections in a number of ways including promoting maturation or elimination of DCs, 

perforin-dependent elimination of CD8
+
 T cells, and cytokine production274. It is unclear 

whether NK cell lysis of DCs only affects virally-infected cells or is in fact a mechanism 

of immune modulation. The most extensive work on the potential of NK cells to 

modulate T cell responses directly or indirectly, apart from lysing virally-infected cells, 

was done by Waggoner et al.275, 276.  

 Waggoner et al. used the model of lymphocytic choriomeningitis virus (LCMV), 

which is not susceptible to direct control by NK cells as evidenced by the lack of change 

in viral replication in mice devoid of CD4
+
 and CD8

+
 T cells following NK cell 

depletion. Normally high dose LCMV clone 13 infection results in minimal pathology 

and establishment of chronic infection, medium dose challenge results in substantial 

pathology and 23% mortality, and low dose challenge results in minimal pathology and 

clearance of LCMV. Waggoner et al. showed that depletion of NK cells prior to high 

dose infection with LCMV clone 13 led to severe immunopathology and death, rather 
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than the chronic infection established in the presence of NK cells275. In the presence of 

NK cells and high levels of antigen CD8
+ T cells become exhausted minimizing their 

damage. This CD8
+
 T cell exhaustion was governed indirectly by NK cell-mediated 

depletion of CD4
+
 T cells. The authors later investigated how depletion of NK cells after 

the establishment of chronic infection affected CD8
+
 T cell responses, immunopathology, 

and viral levels. They found that delayed NK cell depletion resulted in increased CD8
+
 T 

cell activity and resolution of infection with minimal immunopathology. This work 

suggests that altering NK cell responses in patients with chronic infection may improve 

the clinical outcome. Waggoner et al. also showed that depletion of NK cells even as late 

as day 10 or day 13 following high dose infection improved disease outcomes. The data 

suggest that NK cells continue to participate in immune modulation well after initial 

infection, when NK cells are traditionally thought to be active. This is important for the 

treatment of human patients with acute or chronic infections, as they typically present to 

clinic well after the initial infection, and any therapeutic intervention therefore needs to 

modulate outcomes at later time points.  

 Another group demonstrated that rapid innate control of virus can prevent the 

development of an adaptive response to viral infection277. While this interplay between 

adaptive and innate immune systems can be very important for certain viral infections 

that are well controlled by NK cells this is not truly NK cell control or modification of 

the adaptive response. NK cells can also directly kill activated CD4
+
 and CD8

+
 T cells 

through a perforin-mediated mechanism277. Lastly, NK cells are important contributors to 

the overall cytokine profile of the antiviral innate immune response, which subsequently 



36 

directs T cell responses278. These studies demonstrate that multiple mechanisms exist by 

which NK cells can directly shape adaptive immune responses. 

 NK cells can also alter DC responses to infection and promote DC maturation279-281. 

Additionally, NK cells can lyse immature DCs, this lysis was decreased if DCs where 

matured by exposure to a strong stimulant such as LPS prior to incubation with NK 

cells282. Ferlazzo et al demonstrated that while both immature and mature DCs, as 

assessed by the expression of CD80, CD86, CD83, and HLA-DR, were able to upregulate 

the expression of CD69 on NK cells, only NK cells co-cultured with mature DCs gained 

the ability to autolyse immature DCs283. NK cell contact-mediated lysis of immature DCs 

is mediated by the upregulation of ligands for NK cell activating receptors such as 

NKp30 on immature DCs284. This interplay between DCs and NK cells functions to 

mature DCs and remove DCs which have not fully matured but this relationship may be 

altered in chronic infections like HIV285. Alter et al. showed that high levels of IL-10 lead 

to increased susceptibility of mature DCs to NKG2D-dependent elimination by NK 

cells286. Interestingly, poor NK cell activity leads to poor maturation of DCs and a 

reduced ability of NK cells to eliminate immature DCs287, 288. This provides another 

mechanism by which NK cells may affect the adaptive immune response to an acute viral 

illness such as DENV.  
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H. Thesis Objectives 

 An individual’s HLA haplotype has been linked to shifts in the probability of 

developing DHF during a secondary infection. Extended human HLA haplotypes 

containing TNF-4 and LTA-3, together with HLA-B*48, HLA-B*57, and HLA-

DPB1*0501, were detected only in patients with secondary DHF90. This thesis sought to 

characterize CD8
+
 T cell responses in HLA-B57

+
 individuals to a highly conserved 

DENV epitope during primary and secondary infection in order to better understand how 

a conserved epitope affects CD8
+
 T cell responses and dengue disease outcome.  

 

We hypothesized that:  

Responses to a highly conserved, HLA-B57 restricted, epitope NS126-34 lead to 

stronger CD8
+
 T cell responses following secondary heterologous DENV infection 

since the epitope sequence would be identical to that seen in primary infection.  

 

During the course of the dissertation we found binding of a B57-NS126-34 TET to CD8
-
 

cells which lead us to additionally hypothesize that: 

HLA-B57 molecules expressing the conserved epitope NS126-34 bind the inhibitory 

receptor KIR3DL1 on NK cells. 
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This Thesis assessed CD8
+
 T cell and NK cell responses over the course of DENV 

infection in donors with mild and severe dengue illness and characterized the binding of 

an inhibitory receptor KIR3DL1 with HLA-B57 expressing a highly conserved NS1 

epitope. 

 

The work is presented in two parts: 

 

Chapter III: CD8
+
 T cell Responses to a Novel DENV Epitope During Acute Primary and 

Secondary DENV Infection. 

Questions: 

1. Are tetramer frequencies in PBMC obtained from patients during acute secondary 

DENV infection higher compared to frequencies in PBMC from patients obtained 

during acute primary DENV infection? 

2. Does activation of tetramer positive cells in secondary DENV infection vary in 

timing or quality from the activation of tetramer positive cells in primary DENV 

infection? 

3. Are peak frequencies of tetramer positive cells different in patients with DHF 

compared to DF? 

4. Is the total CD8
+
 T cell population more activated in patients with DHF? 
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Chapter IV: The B57-NS126-34 TET Interacts with the Inhibitory Receptor KIR3DL1 on 

NK cells.  

Questions: 

1. Does the B57-NS126-34 TET bind KIR3DL1? 

2. Does the binding of the B57-NS126-34 TET to KIR3DL1 result in a physiologically 

functional interaction and subsequent inhibition of KIR3DL1
+
 NK cells? 

3. Are B57-NS126-34 TET
+
 NK cells activated during DENV infection? How does 

this compare to the activation of the total NK cell population during DENV 

infection?  
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CHAPTER II 

MATERIALS AND METHODS 

  

A. Study Subjects and Blood Samples.  

The study design for patient recruitment and collection of blood samples has been 

reported in detail elsewhere59, 129, 146, 289. Briefly, the subjects enrolled were Thai children 

6 months to 14 years of age with acute febrile illnesses (<72hrs) diagnosed as DF or DHF 

according to WHO 1997 guidelines57. Serology and virus isolation were used to confirm 

acute DENV infections, and primary and secondary infections were distinguished based 

on serologic responses59. For donors undergoing a secondary infection it is not always 

possible to accurately determine what the previous serotype(s) were. Blood samples were 

obtained daily during acute illness, once in early convalescence, and at 6 month to 1 year 

intervals during late convalescence. Informed assent and/or consent was obtained from 

each subject and/or his/her parent or guardian and the study was approved by the 

Institutional Review Boards of the Thai Ministry of Public Health, the Office of the U.S. 

Army Surgeon General and the University of Massachusetts Medical School (UMMS).  

The samples were numbered relative to the day of defervescence (designated 

Fever Day 0). Days prior to or after defervescence were designated fever days -1, -2, etc. 

or +1, +2, etc. Serologic HLA class I typing was performed on blood from immune Thai 

donors or healthy UMMS subjects for use as HLA-B57
+
 dengue-naive controls. HLA 

typing was performed at UMMS or the Department of Transfusion Medicine, Siriraj 
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Hospital, as previously described 89, 146. PBMC were isolated by density gradient 

centrifugation, cryopreserved, and stored at 70°C. 

 

B. Healthy Donors and Blood Samples 

 Blood samples were obtained from healthy donors at UMMS. Serologic HLA 

class I typing was performed at UMMS. PBMC were isolated by density gradient 

centrifugation, cryopreserved, and stored at -180oC 

 

C. Generation of Peptides 

 Peptides were purchased from 21st Century Biochemicals (Marlboro, MA) at 

>90% purity or BioSynthesis (Lewisville, TX) at >95% purity (Table 2.1). 

 

D. Peptide-MHC Tetramers. 

Peptide-MHC tetramers (pMHC TETs) were generated at the UMMS and the 

NIAID Tetramer Cores. The different pMHC multimers (Table 2.3) were conjugated to 

fluorochromes (APC-A11-NS3133-142 TET or Qdot605-A11-NS3133-142 TET, PE-B57-

NS126-34 TET, APC A2-E213-221 TET, PE-B57-TW10n TET, APC-TW10 TET). pMHC 

TETs were also generated by Dr. David Price (Cardiff Institute of Infection & Immunity, 

Cardiff, UK) and Dr. Geraldine O’Connor (National Cancer Institute, Bethesda, MD) 

(APC and PE B57-NS126-34 TET) 
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E. Viruses Used  

 Vero cells were infected with viruses at an approximate multiplicity of infection 

of 0.5-1 plaque forming unit (PFU) per cell and cultured in minimal essential medium 

containing 2% fetal calf serum (FCS). After approximately seven days, supernatants were 

collected and concentrated using ultracentrifugation. DENV virus strains were titered 

using a modified plaque assay290. 

 

F. Generation of Monocyte Derived Dendritic Cells 

 Dendritic cells (DCs) were generated from CD14
+
 monocytes isolated from 

PBMC by magnetic bead enrichment for CD14
+
 cells (MACS, Miltenyi Biotec, Auburn, 

CA) followed by culture with IL-4 (500U/mL) and GM-CSF (800U/mL) in Rosewell 

Park Memorial Institute cell culture medium (RPMI-1640) with 10% Fetal Bovine Serum 

(FBS), hence forth referred to as RPMI-10, at 37oC for 7 days as previously reported199. 

 

G. Dengue Virus Infection Protocol 

 DCs, were washed with serum-free RPMI-1640, and then DENV (serotype/strain 

as noted, Table 2.2) was added at a multiplicity of infection (MOI) of 1, 5, or 10, with 

just enough serum-free media to cover the well. After 1.5 hours incubation at 37oC, 

RPMI-10 was added to fill the well. When required the percentage of DENV-infected 

cells was determined by flow cytometry using intracellular staining with an antibody 

against DENV E or prM protein (Table 2.3). 
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Table 2.1. Peptides generated for T and NK cell studies 

Epitope Origina Sequence(s) HLAb

E213-221 DENV-1 
DENV-2 
DENV-3 
DENV-4 

FLDLPLPWT 
FLDLPLPWL 
FFDLPLPWT 
FFDLPLPWL 

A2 

NS126-34 DENV 1-4 HTWTEQYKF B57 

NS3133-

142 

DENV-1 
DENV-2 

DENV-3,4

GTSGPIVNRE 
GTSGSPIVDR 
GTSGSPIIN 

A11 

LF9 Self LSSPVTKSF B57 

TW10 
TW10n 

HIV TSTLQEQIGW 
TNTLQEQIGW 

B57 
B57 

a
 Origin of the epitope listed 

b HLA restriction of the epitope listed 
 

 

Table 2.2. Strains of DENV used for infections 

Serotype Strain 
DENV-1 BRP 04-00 

DENV-2 16681 

S-16803 

DENV-3 CH53489 

DENV-4 341750 
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H. Generation of B-Lymphoblastoid Cell Lines 

 B-lymphoblastoid cell lines (B-LCLs) were established by infecting PBMC from 

the donor with Epstein–Barr virus obtained from an infected marmoset cell line (B95-8) 

that was purchased from the American Tissue Culture Collection (ATCC). CpG 

(2.5µg/mL) was added to PBMC and cells were cultured with RPMI-10. 

 

I. Generation and Maintenance of CD8
+
 T Cell Lines 

 T cells were cultured with complete RPMI-10 media or TexMACS media 

(Miltenyi Biotec, Auburn, CA) supplemented with 50U/mL recombinant human (rh)IL-2 

(BD Biosciences). T cell lines were generated by stimulating PBMC with either DENV, 

at an MOI of 1, or 10g/ml peptide in the presence of 5ng/mL IL-7 (Peprotech). After 

one week, T cells were seeded at 10 cells per well in a 96 well plate and re-stimulated. T 

cells were restimulated every other week with 0.1µg/mL αCD3 (12F6, Dr. Johnson 

Wong, Harvard University, Cambridge, MA) with 50U/mL IL-2 and PBMC, irradiated 

with 3500rads, used as allogeneic feeders.  

 

J. Cytotoxicity Assay 

Cytotoxicity assays were performed as previously described 146. Briefly, HLA-

B57
+
 B-lymphoblastoid cell line (BLCLs) target cells were labeled with radio-labeled 

chromium (51Cr) and pulsed with 10µg/mL of the indicated peptides or infected with 

recombinant vaccinia viruses, expressing DENV proteins, at an MOI of 5. Primary DCs 

from HLA-B57
+
 healthy individuals were generated and infected with DENV-1-4 at a 
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MOI of 5. Peptide-pulsed or DENV-infected target cells were cultured with T cells at an 

effector-to-target ratio of 10:1. After 4 hours, supernatants were harvested and the 51Cr 

content was measured using a gamma counter (Cobra™ II auto-gamma®, Packard 

Instrument Company, Downers Grove, IL). Percent specific lysis was calculated as 

follows: % lysis =(experimental 51Cr release – minimum 51Cr release)/(maximum 51Cr 

release – minimum 51Cr release)x100. 

 

K. Peptide Stimulation of CD8
+
 T Cell Lines.  

At day 16 of culture approximately 2×105 CD8
+
 T cells were cultured with 2×104 

HLA matched B-LCLs at 37°C for 0–24 hours. The B-LCLs were pre-incubated for 30 

minutes with peptide at the concentrations indicated (0.01µg/mL to 10µg/mL). Cells 

were washed in phosphate buffered saline (PBS) and stained with antibodies to CD8, 

CD19, CD69, CD38, and CD71 for 30 minutes at 4o C (Table 2.3). Finally, cells were 

washed and placed in BD Stabilizing Fixative™ (BD Biosciences) diluted 1:3 and kept at 

4oC for analysis. 

 

L. Intracellular Cytokine Staining of CD8
+
 T cells.  

2x105
 CD8

+
 T cells were mixed with 2x104 HLA-matched BLCLs and peptide or 

PHA in the presence of anti-CD107a antibodies and BD Golgi Stop/Golgi Plug™ for 6hrs. 

Cells were washed in PBS and stained with 1µL of 1:80 dilution of the dead cell marker 

LIVE/DEAD® Green (Molecular Probes, Invitrogen Corp.). Cells were washed with 

FACS Buffer (PBS/2%FBS/0.1% sodium azide) and incubated with surface antibodies to 
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CD3, CD8, and CD19 and incubated at 4°C for 30 minutes (Table 2.3). The cells were 

washed with 2mL of FACS buffer and then fixed and permeabilized using BD 

Cytofix/CytoPerm™ for 20 minutes at 4°C. The cells were washed with 1mL of BD 

Perm Wash buffer™ in preparation for intracellular staining. The antibodies to IFN-γ, 

TNF-α and MIP-1β (Table 2.3) were added and incubated at 4°C for 30 minutes. Cells 

were then washed with 1mL BD Perm Wash Buffer™, fixed with 100µL of BD 

Stabilizing Fixative™ (BD Biosciences) diluted 1:3, and kept at 4°C until flow analysis. 

Data were collected on a BD FACSAria™ and analyzed using FlowJo version 10.  

 

M. Assessment of Degranulation of KIR3DL1
+
 Versus KIR3DL1

-
 NK cells   

1.5x106 PBMC were mixed with 3x105 721.221 target cells in the presence of 

anti-CD107a antibodies and BD Golgi Stop ™ for 6 hours. Cells were washed in PBS and 

stained with 1µL of 1:80 dilution of the dead cell marker LIVE/DEAD® Green 

(Molecular Probes, Invitrogen Corp.). Cells were washed with FACS Buffer and 

incubated with surface antibodies specific for CD3, CD16, CD56, KIR3DL1, CD14, and 

CD19 (Table 2.3) and incubated at 4°C for 30 minutes. Cells were then washed with 1mL 

FACS Buffer and fixed with 100µL of BD Stabilizing Fixative (1:3) and kept at 4°C until 

flow analysis. Data were collected on a BD FACSAria™ and analyzed using FlowJo 

version 10.  
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N. Binding of pMHC TETs to KIR3DL1 Transfected Cell lines 

 These analyses were performed by Dr. Geraldine O’Connor at National Cancer 

Institute, Bethesda, MD as reported elsewhere291. Briefly, HEK 293 cells were 

transfected with FLAG-tagged constructs of KIR3DL*001, *005, or *015. Anti-FLAG 

antibody was used to verify KIR3DL1 expression. Transfected cells were pre-incubated 

with 10µg/µl blocking DX9 antibody or control IgG. Cells were then stained with 0.25µg 

of TET (B57-NS126-34 or B57-LF9).  

 

O. KIR3DL1
+
 NK Cell Depletion and B57-NS126-34 TET Staining 

 PBMC were isolated from blood drawn from KIR3DL1
+
 healthy subjects. PBMC 

were depleted of KIR3DL1
+
 cells by magnetic bead depletion (MACS, Miltenyi Biotec, 

Auburn, CA). KIR3DL1-depleted PBMC were washed with FACS Buffer and incubated 

with B57-NS126-34 TET for 50 minutes at 4oC. After incubation, the cells were washed 

with 1mL FACS Buffer, fixed with 100µL BD Cytofix (diluted 1:4) and kept at 4oC until 

flow analysis. Data were collected on a BD FACSAria™ and analyzed using FlowJo 

version 10. 

 

P. Blocking of B57-NS126-34 TET Binding Using an Anti-KIR3DL1 Antibody 

 PBMC from a KIR3DL1
+
 donor were washed in PBS and stained with 1µL of 

1:80 dilution of the dead cell marker LIVE/DEAD® Green (Molecular Probes, Invitrogen 

Corp.). Cells were washed with FACS Buffer and stained with either the anti-

KIR3DL1/KIR3DS1 antibody Z27 or B57-NS126-34 TET for 20 minutes at 4oC. Then 
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B57-NS126-34 TET or Z27 was added to the cells stained with Z27 or B57-NS126-34 TET 

respectively, was added and incubated for an additional 20 minutes at 4oC. The surface 

antibodies CD3, CD16, CD56, CD14 and CD19 were then added and incubated for 30 

minutes at 4oC. The PBMC were washed with FACS buffer, resuspended in BD 

Stabilizing Fixative (1:3), and kept at 4oC until flow analysis. Data were collected on a 

BD FACSAria™ and analyzed using FlowJo version 10. 

 

Q. Flow Cytometry for the Identification of CD8
+
 T Cells in Thai Study Cohort 

PBMC  

Cryopreserved PBMC were thawed and washed in RPMI before resting in RPMI-

10 at 37°C for 2 hours. Cells were washed in PBS and stained with 1µL of 1:80 dilution 

of the dead cell marker LIVE/DEAD® Green (Molecular Probes, Invitrogen Corp.). Cells 

were then washed with FACS Buffer (PBS/2% FBS/0.1% sodium azide) and incubated 

with 0.5-2µL pMHC tetramer for 20 minutes at 4°C. Monoclonal antibodies specific for 

CD3 (UCHT1), CD8, CD45RA, CCR7, CD69, CD38, CD57, CD71, CD28 or CD56, 

CD19, and CD14 were then added to the cells and incubated at 4°C for an additional 30 

minutes (Table 2.3). Cells were washed and fixed with BD Stabilizing Fixative™ (1:3) 

(BD Biosciences) and kept at 4oC until flow analysis. Data were collected on a BD 

FACSAria™ and analyzed using FlowJo version 10 (Tree Star) and Gemstone (Verity 

House, Topsham, ME). 
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R. Flow Cytometry for the Identification of NK Cells in Healthy Donor PBMC 

 Cryopreserved PBMC were thawed and washed in RPMI before resting in RPMI-

10 at 37°C for 2 hours. After incubation, the PBMC were washed in PBS and stained 

with 1µL of 1:80 dilution of the dead cell marker LIVE/DEAD® Green (Molecular 

Probes, Invitrogen Corp.) at RT for 20 minutes. Cells were then washed with FACS 

Buffer (PBS/2% FBS/0.1% sodium azide) and incubated with 0.5-2µL pMHC tetramer 

for 20 minutes at 4°C. Monoclonal antibodies specific for CD3 (OKT3), CD16, CD56, 

KIR3DL1, CD161, NKp30, NKp46, NKG2D, CD19, and CD14 were then added to the 

cells and incubated at 4°C for an additional 30 minutes (Table 2.3). Cells were washed 

and fixed with BD Stabilizing Fixative™ (1:3) and stored at 4oC until flow analysis. Data 

were collected on a BD FACSAria™ and analyzed using FlowJo version 10. 

 

S. Statistical Analysis 

 The Mann-Whitney rank sum test was used to compare two groups for variables 

that were not normally distributed. We used a cutoff of p < 0.05 for statistical 

significance. P values <0.1 but >0.5 identified non-significant trends. All statistical 

analyses were performed using GraphPad Prism 6 (La Jolla, CA, USA).  
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Table 2.3: Antibodies used for flow cytometry studies  

Marker Clone Manufacturer Fluorochrome 
CD3 UCHT1 

 
OKT3 

BD Biosciences 
Biolegend 
Biolegend 

V500 
BV510 
BV510 

CD8 SK1 Invitrogen PE-alexafluor610 
CD45RA HI100 BD Pharmingen APC-H7 
CCR7 150503 BD Horizon V450 
CD69 CH/4, 

FN50 
Invitrogen, 
BioLegend 

PE-Cy5.5,  
BV650 

CD38 HB7 eBioscience eFluor®650NC 
CD57 HCD57 BioLegend PerCP/Cy5.5 ( Lightening Link) 
CD71 OKT9 

CY1G4 
eBioscience 
Biolegend 

PE-Cy7 (Lightening Link) 
APC 

CD28 CD28.2 BioLegend AlexaFluor700 
CD56 B159 BD Biosciences AlexaFluor700 
CD19 HIB19 BD Biosciences FITC 
CD14 HCD14 BioLegend FITC 
CD107a H4A3 

H4A3 
BD Biosciences 
Biolegend 

FITC 
BV421 

MIP-1β D21-1351 BD Biosciences PE 
TNF-α MAb11 BD Biosciences APC 
IFN-γ B27 BD Biosciences AlexaFluor 700 
CD56 HCD56 BioLegend BV711 
CD16 3G8 BD Horizon APC-H7 
NKp30 P30-15 BioLegend APC 
NKp46 9E2 BioLegend BV421 
CD161 HP-3G10 BioLegend BV605 
NKG2D 1D11 BD  PE-CF594 
KIR3DL1 DX9 Beckman Coulter 

Biolegend 
PE 
PE 

KIR3DL1/S1 Z27 Beckman Coulter APC 
HLA-A,B,C W6/32 BD 

BioLegend 
PE, FITC, APC 
PE 

HLA-B57 BIH0243 One Lambda PE-NeutrAvidin                        
(Life Technologies) 

DENV E  
           prM 

3H5 
2H2 

Millipore PE, FITC, Alexa647 (indirect 
staining or conjugated in lab,) 
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CHAPTER III 

CD8
+
 T CELL RESPONSES TO A NOVEL DENGUE VIRUS EPITOPE DURING 

ACUTE PRIMARY AND SECONDARY DENGUE VIRUS INFECTION 

 

 Several studies have reported associations between specific HLA class I alleles 

and DENV disease severity; these epidemiological links support a role for CD8
+
 T cells 

in contributing to clinical outcome88-91. Extended human MHC haplotypes containing 

TNF-4 and LTA-3, together with HLA-B*48, HLA-B*57, and HLA-DPB1*0501, were 

detected only in patients with secondary DHF 90. HLA-B57 has also been associated with 

slow progression following HIV infection, the clearance of acute HCV infection 292-294 

and with a number of type 2 idiosyncratic adverse drug reactions 295, 296. The relative 

ability of HLA-B57 to control HIV infection correlated with unique peptide-binding 

characteristics that affect thymic development of CD8
+
 T cells 297. A larger proportion of 

the naïve repertoire of T cells restricted by HLA-B57 recognized HIV viral epitopes 

compared to other HLA alleles. We identified a highly conserved HLA-B57 restricted 

DENV epitope and utilized PBMC from HLA-B*57 
 subjects who were undergoing an 

acute DENV infection to investigate the role of HLA-B57-restricted CD8
+
 T cells in 

contributing to the pathogenesis of dengue disease.  

 

A. Identification of a Highly Conserved HLA-B57-Restricted Dengue Virus Epitope 

We previously identified HLA-B57-restricted CD8
+
 T cell lines, which 

recognized the DENV NS1 or NS2a protein, using convalescent PBMC from a Thai 
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patient with DF 146. As shown in Figure 3.1A, two representative T cell lines, 3C11 and 

3F2, lysed autologous B-LCLs infected with a recombinant vaccinia virus expressing the 

DENV-2 NS1/2a proteins. We used pools of overlapping peptides from the NS1 protein 

and identified a minimal 9mer epitope recognized by these T cell lines corresponding to 

aa 26-34 (HTWTEQYKF) (Figure 3.1 B, C). Restriction of this epitope by HLA-B57 was 

confirmed by cytotoxicity assays using partially HLA-matched B-LCLs (data not shown). 

We determined the degree of conservation of NS126-34 using the FLAVIdB database 

(http://cvc.dfci.harvard.edu/flavi/); this epitope had >99% sequence identity across >2600 

sequences from all four serotypes of DENV. Comparison to previously identified CD8
+
 

DENV epitopes indicated that this was the only epitope with such a high degree of 

similarity (Table 3.1).  

T cell lines lysed DENV-infected primary dendritic cells from an HLA-B57
+
 

individual (one of four T cell lines shown) (Figure 3.1D) indicating that this epitope can 

be recognized by T cells in the context of DENV infection. Differences in percent 

specific target cell lysis likely reflect differences in the percentage of DCs that were 

infected with each serotype. 

For ex vivo analysis of epitope-specific T cells, we obtained an HLA-

B*5701/NS126-34 tetramer (B57-NS126-34 TET). We confirmed the specificity of this 

tetramer by showing binding to the DENV-specific T cell line 3C11, but not to an HLA-

B57-restricted HIV-specific T cell line. The DENV-specific T cell line did not bind a 

previously described HIV-B57 tetramer (TW10-Gag; TSTLQEQIGW) (Figure 3.1E).  
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Figure 3.1. Identification of the HLA-B57-restricted DENV epitope. (A) Cell lines 3C11 and 
3F2, generated from PBMC of donor KPP94-037, were used in a 51Cr release assay using B-
LCLs infected with vaccinia virus recombinants expressing DENV-2 NS1/2a as target cells. 
(B) 51Cr release assay using B-LCLs pulsed with peptide pool 1A and individual 15 mer 
peptides covering pool 1A of NS1. (C) Identification of the minimal 9mer epitope NS126-34 
recognized by cell line 3C11. (D) Lysis of DENV-infected DCs by B57-NS126-34-specific cell 
line 3F11. (E) Validation of B57-NS126-34 TET staining using a B57-NS126-34-specific T cell line 
and an HIV gag-specific HLA-B57-restricted T cell line. 
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B. Detection of B57-NS126-34 TET
+
CD8

+
 T Cells in PBMC Collected 

During Acute Dengue Virus Infection  

We hypothesized that HLA-B57 restricted, NS126-34-specific CD8
+
 T cells would 

be preferentially expanded during secondary infection since the epitope sequence would 

be identical to that seen in primary infection. To address this hypothesis multi-parameter 

flow cytometry was used to analyze CD8
+
 T cell responses in PBMC samples from HLA-

B*57
+
 Thai children with primary or secondary DENV infection 289. 

We used this B57-NS126-34 TET together with activation and phenotypic markers 

and performed a longitudinal analysis of B57-NS126-34-specific T cells in PBMC from 

HLA-B*57
+
 subjects. We tested samples obtained at multiple time points during and after 

acute DENV infection from eleven HLA-B*57
+
 children, two with primary and nine with 

secondary DENV infection (Table 3.2). 

Each experiment included PBMC from a healthy subject and PBMC from an 

HLA-B*57
+
 DENV-naïve subject as a negative control (Figure 3.2 A). As a TET

+
 control 

for each experiment, we also included healthy (DENV-naïve) donor PBMC spiked with a 

T cell line specific for the NS126-34, NS3133-142, or E213-221 epitope (Figure 3.2 B). Figure 

3.3A shows our gating strategy. Figures 3.3B and 3.3C show tetramer frequencies for two 

subjects over time. Subject KPP94-037 had a very high frequency of B57-NS126-34-

specific T cells reaching ~20% at fever day +7. Frequencies of B57-NS126-34-specific T 

cells in subject CHD06-029 were more representative of the staining observed in the 

remaining donors. Expansion of B57-NS126-34 TET
+
 T cells during infection with 

contraction during convalescence was detected in PBMC from every dengue subject 
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tested. Peak frequencies ranged from 0.5- 20% (Figure 3.3D). Only subject KPP94-037 

with secondary DENV infection had high B57-NS126-34-specific T cell frequencies 

(Figure 3.3D). Excluding this subject, frequencies of B57-NS126-34 TET
+
 T cells were not 

higher in those with secondary infection compared to primary infection (Figure 3.3D). 

We used tetramers for two other DENV CD8 T cell epitopes (A11-NS3133-142 TET 

or A2-E213-221 TET) to compare the frequencies of TET
+
 cells in subjects who were HLA-

B*57
+
 and HLA*A11

+
 or HLA*A2

+
 (Figure 3.3E). T cell frequencies were similar for all 

epitopes in PBMC from the 7 subjects tested.  
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TABLE 3.2: Clinical, viral and immunogenetic profiles of the Thai study 
cohort subjects 

Donor  Serologya Serotypeb Diagnosisc MHC- Class I  

CHD95-039 P DENV-1  DF  HLA-A1,11 HLA-B56,57  

CHD06-029  P DENV-3  DF  HLA-A2,11 HLA-B57,46  

CHD01-058  S DENV-2  DHF-1  HLA-A33,34 HLA-B57,75 

CHD01-018  S DENV-2  DF  HLA-A2,33 HLA-B57,46  

CHD01-050  S DENV-2  DHF-3  HLA-A1,11 HLA-B57,60  

KPP94-037 S DENV-2  DF  HLA-A1,11 HLA-B46,57  

KPP94-041 S DENV-1  DHF-3  HLA-A1,207 HLA-B54,57 

CHD02-073 S DENV-1  DHF  HLA-A1,11 HLA-B57,60  

CHD00-054  S unknown  DHF-2  HLA-A203 HLA-B46,57  

CHD05-023  S DENV-1  DF  HLA-A2,24 HLA-B46,57  

CHD06-092 S DENV-4  DHF-2  HLA-A1,33 HLA-B57,35  
 

a Primary (P) versus secondary (S) infection as determined by IgM/IgG ratios59  
b Of current infection. Unknown=could not be determined 
cAccording to WHO guidelines 1997; DF = dengue fever, DHF = dengue hemorrhagic fever 

grades 1-3  
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Figure 3.2. Tetramer staining controls. (A) PBMC from DENV naïve HLA-B57
+
, A2

+
, or A11

+
 

individuals were stained with B57-NS126-34 TET, A2-E213-221 TET, or A11-NS3133-142 TET. (B) PBMC 
spiked with the appropriate epitope-specific cell line was stained with B57-NS126-34 TET, A2-E213-

221 TET, or A11-NS3133-142 TET. 
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Figure 3.3. Expansion of DENV specific T cells during acute infection. (A) Gating strategy used to 

identify TET
+
CD8

+
 T cells started by selecting cells within the lymphocyte gate as defined by forward and 

side scatter profiles followed by gating for singlet cells. Live CD14
-
CD19

-
 cells were next selected by 

exclusion of the viability marker LIVE/DEAD® Green along with αCD14-FITC and αCD19-FITC. CD8
+
 T cells 

were identified by CD8 expression. (B) Kinetics of B57-NS126-34 TET
+
 frequencies in PBMC from donor 

KPP94-037 and (C) donor CHD06-029 over the course of acute illness and convalescence. (D) B57-NS126-

34 TET
+
CD8

+
 T cell frequencies versus fever day in PBMC from study subjects. Symbols distinguish subjects 

with primary (n=2, grey symbols) versus secondary (n=9, black symbols) DENV infections and lines 
distinguish those with DF (n=6, black line) versus DHF (n=5, dashed line). (E) PBMC from subjects who 
were also HLA*A2- or HLA*A11-positive (n=6) were stained with A2-E213-221 TET or A11-NS3133-142 TET. 
Two of these subjects had primary infections (grey symbols) and one subject had DHF (dashed line). Fever 
Day is defined from the day of defervescence (Fever Day 0).  
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C. Antigen-Specific CD8
+
 T Cells Are Activated during Acute Dengue Virus 

Infection 

Using antibodies to CD69 and CD38, we analyzed CD8
+
 T cell activation over the 

course of acute dengue illness. CD69
+
CD8

+
 T cells were present early in acute illness 

with the peak frequencies (10.7%-46.3% of CD8
+
 T cells) occurring at or before fever 

day 4 (Figure 3.4A, B). Peak frequencies of B57-NS126-34 TET
+
CD69

+
 cells (Figure 

3.4C) and A2-E213-221 TET
+
CD69

+
 or A11-NS3133-142 TET

+
CD69

+
 cells (Figure 3.4D) 

were 10.5%-48.5% and 15.4-50.3% of TET
+
 T cells, respectively. CD38 expression 

peaked later than CD69 expression, on fever days 1 and 0 (Figure 3.4E). Frequencies of 

CD38
+
 cells in the total CD8

+
 population were between 2.45%-57.3%. Peak frequencies 

of B57-NS126-34 TET
+
CD38

+
 cells (Figure 3.4F) and A2-E213-221 TET

+
CD38

+
 or A11-

NS3133-142 TET
+
CD38

+
 cells (Figure 3.4G) were 15.8%-92.4% and 10%-77.8% of TET

+
 

T cells, respectively. The pattern of CD38 and CD69 expression on all TET
+
 T cells 

followed the same pattern as the expression on the total CD8
+
 population.  
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Figure 3.4. Antigen-specific T cells are highly activated during acute DENV infection and 

early convalescence. (A) Representative staining of CD69 and CD38 on total CD8
+
 T cells 

during acute infection and in convalescence from 1 subject. (B and E) Staining of CD69 and 

CD38 on total CD8 cells, (C and F) B57-NS126-34 TET
+
 T cells and A11-NS3133-142 TET

+
 or (D and 

G) A2-E213-221 TET
+
 T cells over the course of acute DENV infection and convalescence, 

respectively. PBMC from 11 subjects with primary (grey symbols) or secondary (black symbols) 
infection and DF (black lines) or DHF (dashed lines) were tested. 
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D. Assessment of CD57-Expression during Acute Dengue Virus Infection  

 We assessed CD57 expression, a marker of cell exhaustion and cytokine 

dysregulation, on total CD8 T cells and DENV-specific T cells. Figure 3.5A shows 

representative staining of CD57 on PBMC from a subject 6 months following infection. 

On average 15.6% of CD8 T cells expressed CD57 in PBMC from these donors. This 

expression varied only slightly over the course of DENV infection and was similar during 

acute infection and at six months and one year post-infection (Figure 3.5B). The mean 

frequency of B57-NS126-34 TET
+
 T cells expressing CD57 was 24.0% (Figure 3.5C). In 3 

of 11 donors the frequency of CD57
+
B57-NS126-34 TET

+
 cells was higher during acute 

infection than at the six months and/or one year time point. The mean frequency of 

CD57
+
 A11-NS3133-147 TET

+
 or A2-E213-221 TET

+
 T cells was 29.5% of TET

+
 T cells 

(Figure 3.5D).  
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Figure 3.5. CD57 expression varies only slightly during DENV infection. (A) Representative 

staining of CD57 on total CD8
+ T cells from one donor. (B) Staining of CD57 on total CD8

+
 T 

cells, (c) B57-NS126-34 TET
+ cells and (D) A11-NS3133-142 TET

+
 or A2-E213-221 TET+ T cells over the 

course of acute DENV infection and convalescence. PBMC from 11 subjects with primary (grey 
symbols) or secondary (black symbols) infection and DF (black lines) or DHF (dashed lines) were 
tested. 
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E. Increased Frequencies of CD71-Expressing Cells in the Dengue Virus-Specific 

B57-NS126-34 TET
+
, A11-NS3133-147 TET

+
 and A2-E213-221 TET

+
 CD8

+
 T Cell 

Populations 

 We assessed CD71 expression, a marker associated with cell cycle activity 298, on 

total CD8 T cells and DENV-specific T cells. Figure 3.6G shows representative staining 

of CD71 on PBMC from a subject during acute infection. CD71 expression was low on 

total CD8
+
 T cells with a mean frequency of 2.1% during acute illness (fever day -4 

through fever day +3) (Figure 3.6A). In contrast, the mean frequency of B57-NS126-34 

TET
+
 T cells expressing CD71 was 18.4% and of A11-NS3133-147 TET

+
 or A2-E213-221 

TET
+
 T cells was 12.2% during acute illness (Figure 3.6B, C). The mean frequencies of 

CD71-expressing cells during acute illness were statistically significantly higher in the 

CD8
+ 

DENV-specific T cells compared to the total CD8
+
 population (p <0.0001, Table 

3.3). There were no statistically significant differences in CD71 expression between the 

B57-NS126-34 TET
+
 and the A11-NS3133-147/A2-E213-221-specific T cell populations.  

The peak frequency, as determined for each donor during acute illness, of CD71
+ 

DENV-specific CD8 T cells was also significantly higher than that of the total CD8
+
 T 

cells (p <0.005). Frequencies of CD71
+
 DENV-specific T cells remained higher 

compared to the total CD8 T cell population 1 year following infection (Figure 3.6A, B, 

C) (p <0.0001). While frequencies of CD71
+
 DENV-specific CD8 T cells were high at 

days 180 and 365, frequencies were lower than the peak CD71 frequencies during acute 

infection in most donors. Interestingly, mean and peak frequencies of CD38 expression 
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during acute illness were significantly higher than during convalescence in B57-NS126-34 

TET
+
, but not A11-NS3133-147 TET

+
/ A2-E213-221 TET

+
, T cells. CD69 expression was 

minimally increased only in A11-NS3133-147 TET
+
 T cells (Figure 3.4 and Table 3.3). We 

also compared the geometric mean fluorescence intensity (gMFI) of CD71 expression 

between populations (Figure 3.6D, E, F) and again found statistically significant 

differences in the intensity of CD71 staining on the CD71
+
 cells during acute illness 

between the DENV-specific populations and total CD8
+
 T cells (p<0.05).  

 Due to the variations in CD71 expression between populations in the Thai study 

cohort we wanted to know more about the kinetics of CD71 expression in response to the 

NS126-34 epitope. We stimulated the B57-NS126-34-specific T cell line, 3C11, with 

different concentrations of the NS126-34 peptide and measured the intensity of CD71 

expression. Figure 3.6H shows representative staining of CD71 expression on cell line 

3C11 at 24 hours after stimulation with peptide. We detected CD71 upregulation as early 

as 1 hr post stimulation with the peptide and the MFI of CD71 expression depended both 

on the concentration of peptide and the duration of incubation (Figure 3.6I).   
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Figure 3.6. CD71 expression on total CD8
+
 and DENV-specific CD8

+
 T cells. Frequency of 

CD71
+
 cells in (A) total CD8

+
 cells, (B) B57-NS126-34 TET

+
 T cells and (C) A11-NS3133-142 TET

+
 or 

A2-E213-221 TET
+
 T cells over the course of acute DENV infection and convalescence. MFI of 

CD71 expressed on CD71
+
 (D) CD8+ cells, (E) B57-NS126-34 TET

+
 T cells and (F) A11-NS3133-142 

TET
+
 or A2-E213-221 TET

+
 T cells over the course of acute DENV infection and convalescence. (G) 

Representative staining of CD71 on CD8
+
 T cells at fever day -2 from a subject with primary 

infection. (H) Representative staining of CD71 on a CD8
+
 T cell line 24 hours after stimulation 

with (black) or without (NS, grey) peptide stimulation. (I) CD71 expression of a B57-NS126-34-
specific cell line following stimulation with 10, 1, 0.1 and 0.01µg/mL NS126-34 peptide 
HTWTEQYKF.   
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Table 3.3: Statistical analysis of activation markers on CD8
+
 T cells 

Mean frequency = average frequency of CD69, CD38 and CD71 positive cells for all times points between 
fever day -4 to fever day +3. 
Peak frequency = average of the peak frequency of CD69, CD38 and CD71 between fever day -4 to fever 
day +3. 
N.S. = not significant 
a p-values determined using Mann-Whitney 

   

 Populations compared CD69a CD38a CD71a 

Mean 
frequency 

Total CD8
+
 vs.  

B57-NS126-34 TET
+ N.S. 0.0017 <0.0001 

Total CD8
+
 vs.  

A11-NS3133-142 TET
+
/A2-E213-221 TET

+ N.S. N.S. <0.0001 

B57-NS126-34 TET
+

 vs.  
A11-NS3133-142 TET

+
/A2-E213-221 TET

+ N.S. N.S. N.S. 

Peak 
frequency 

Total CD8
+
 vs.  

B57-NS126-34 TET
+ N.S. 0.0115 0.0021 

Total CD8
+
 vs.  

A11-NS3133-142 TET
+
/A2-E213-221 TET

+ 0.04 N.S. 0.0005 

B57-NS126-34 TET
+

 vs.  
A11-NS3133-142 TET

+
/A2-E213-221 TET

+ N.S. N.S. N.S. 
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F. CD71, CD69, CD107a and Cytokine Expression in Epitope-Specific T Cell Lines 

Since the NS126-34 epitope is highly conserved with only rare variants, we next 

assessed CD71 expression on other DENV-specific cell lines where epitope variants are 

more common. We used a well characterized A11-NS3133-147 epitope-specific cell line 

10C11, which was cross-reactive for the pD1 and pD3/4 variant peptides but did not 

recognize the pD2 variant in tetramer staining and ICS assays 120. We stimulated 10C11 

with three variant peptides for 6 hrs and evaluated the expression of CD107a, CD69, and 

CD71 (Figure 3.7A). We detected similar CD69 upregulation following stimulation with 

the pD1 and pD3/4 variant peptides. CD107a staining was more uniform following 

stimulation with the pD3/4 variant compared to the pD1 variant. A higher frequency of 

the 10C11 cell line upregulated CD71 following stimulation with the pD3/4 variant 

compared to the pD1 variant peptide (Figure 3.7A). We did not detect CD69, CD107a or 

CD71 upregulation after stimulation with the pD2 variant of the A11-NS3133-147 epitope. 

We also stimulated the A2-E213-221 epitope-specific cell line P1A07, generated 

from an HLA-A*207 subject with secondary DENV-2, with four peptide variants. Cell 

line P1A07 had similar upregulation of CD69 following stimulation with all four peptide 

variants (Figure 3.7B). In contrast, there was stronger upregulation of CD71 and CD107a 

with the pD1 and pD2 variants compared to the pD3 and pD4 variant peptides (Figure 

3.7B). We found the largest production of TNF-α and IFN-γ following stimulation with 

pD1 and pD2 variants and significant production following stimulation with the pD4 

variant (Figure 3.7C) which mirrored CD71 and CD107a expression patterns. MIP-1β 

production was upregulated with pD4 ≈ pD1 > pD2 variant peptide stimulation. The pD3 
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variant peptide did not induce cytokine production (Figure 3.7C). Together, our data 

using cell lines suggest that CD71 expression was differentially sensitive to stimulation 

by homologous and heterologous variant peptides. 
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Figure 3.7. CD71 expression and effector functions on epitope-specific T cell lines. 
CD107a, CD69 and CD71 expression after in vitro stimulation of cell line (A) 10C11 for 6 hrs with 
10µg/mL A11-NS3133-142 variant peptides pD1, pD2, and pD3/4 and cell line (B) P1A07 for 6 hrs 
with 10µg/mL A2-E213-221 variant peptides pD1, pD2, pD3, and pD4. NS= no peptide stimulation. 
C) Intracellular cytokine staining (ICS) of cell line P1A07 with variant peptides pD1, pD2, pD3, 
and pD4 at 10µg/mL. NS= no peptide as the negative control. Data are displayed as histograms 
with the gMFI of each parameter listed.  
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G. Probability State Modeling of CD69, CD38, and CD71 Expression during Acute 

Dengue Virus Infection 

 We used Gemstone probability state modeling software designed for automated 

analysis of high dimensional flow cytometry data (see Appendix A), to assess the 

expression and progression of phenotypic markers on total CD8 and B57-NS126-34 TET
+
 

T cells. As with traditional gating of data, singlet, live CD14
-
CD19

-
, CD8

+
 T cells were 

selected for modeling. Modeling of CD8
+
 T cells was initiated based on the known 

expression patterns of CD8, CCR7 and CD45RA. Data events were ordered into 3 

populations: Naïve T cells (CCR7
+
, CD45RA

+
), Central Memory & Effector Memory T 

cells (CM/EM
-
 CCR7

+
, CD45RA

-
/ CCR7

-
,CD45RA

-
), and Effector T cells (EF

-
 CCR7

-
, 

CD45RA
+
). Expression patterns of co-related markers on these T cell subsets were 

revealed as colored ribbons of relative fluorescence intensity on the y-axis versus linear 

progression on the x-axis where the frequency of each subcategory can be read. The 

width of the ribbon represents the coefficient of variation (cv) of staining of that marker 

and is determined for every 1% along the x-axis. Figure 3.8 shows a representative 

Gemstone analysis of CD8
+
 T cells from subject KPP94-037. Naïve T cells had high 

uniform expression of CD8 (thin green band), while memory T cells had a wider, 

generally lower range of CD8 expression (broader green band) (panel A). We observed a 

higher MFI of CD69 (dark blue band) and CD38 (mustard band) staining on memory 

cells with the highest expression on CM/EM cells (panel B). Consistent with other 

publication Gemstone analysis highlighted the presence of a CD57
high

 population 

exclusive to the EF subset in all subjects (data not shown)299.  
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 Black boxes drawn at the same point along the x-axis in panels A, B and C at 

fever day 0 identified a subset of cells that were CD45RA
-
, CCR7

low/-
 (panel A), CD69

low
, 

CD38
+/high

, CD71
+
, CD57- (panel B) and show that B57-NS126-34 TET

+
 T cells on this day 

fall into this phenotype (panel C). Panel C shows the B57-NS126-34 TET
+
 T cells aligned 

along the x-axis. B57-NS126-34 TET
+
 T cells were predominantly associated with a 

CM/EM phenotype (red) as early as fever day 0 and were divided between the CM/EM 

(red) and EF (yellow) populations during convalescence (Figure 3.8C).  
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Figure 3.8 Probability state modeling reveals novel phenotypes of CD8
+
 T cells during 

acute DENV infection. (A) The progression of CD8 (green), CD45RA (dark blue) and CCR7 
(light blue), (B) the progression of CD69 (blue), CD38 (orange), CD57 (pink), and CD71 (purple) 

expression on the total CD8
+
 T cells in PBMC obtained from subject KPP94-037 over the course 

of acute DENV infection and convalescence. (C) B57-NS126-34 TET
+
 populations can be 

visualized along this progression over the course of infection. The cells highlighted within the 
black boxes (fever day 0) in Panel A are the same cells highlighted by this box in Panels B and C.
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H. Discussion 

We analyzed the frequency, kinetics, and phenotype of T cells specific for a novel 

HLA-B57-restricted epitope, B57-NS126-34, over the course of acute DENV infection. 

Alignment of over 2610 strains of DENV from all four serotypes revealed >99% 

sequence identity in the epitope. This conservation led us to hypothesize that it might be 

an important target for DENV control in HLA-B*57-positive individuals. Variation in the 

sequence of T cell epitopes between DENV serotypes has been shown to influence the 

effector functions of DENV-specific memory T cells120, 300. Since the sequence of this 

epitope in a secondary DENV infection would be identical to the sequence from an 

earlier primary DENV infection, we predicted that PBMC from donors with secondary 

DENV infection would have particularly strong secondary CD8
+
 T cell responses to the 

B57-NS126-34 epitope. While we detected B57-NS126-34 TET
+
 T cells in all subjects tested, 

their frequencies in subjects with secondary infections were not higher than in subjects 

with primary infections, with one exception. Frequencies of B57-NS126-34 TET
+
 T cells 

were similar to those of A11-NS3133-142 TET
+
 and A2-E213-221 TET

+
 T cells in the same 

subjects and to the frequencies of A11-NS3133-142 TET
+
 T cells reported elsewhere114, 134. 

One donor had a peak frequency of B57-NS126-34 TET
+
CD8

+
 T cells at day 180. While 

we may have missed the peak frequency during acute illness a second subclinical 

infection at the 6 month time point cannot be ruled out. 

One possible explanation for the lower-than-expected frequency of TET
+
 cells 

could be differential processing and presentation of this epitope between the four DENV 

serotypes. Differential processing of HIV epitopes has been shown to result in striking 
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differences in cytolytic (CTL) recognition301. We demonstrated that B57-NS126-34-

specific cell lines were able to lyse cells infected with any of the four DENV serotypes in 

vitro. Whether there is differential processing of the four serotypes for this epitope in 

vivo is unknown. Alternatively, a yet unidentified factor may dampen the activation of 

B57-NS126-34 TET
+
 T cells during a second infection. 

Previous studies have used a number of cell surface markers to phenotype CD8
+
 T 

cells in DENV infection 114, 115, 117, 129, 134. We included a diverse panel of surface markers 

including CD57 and CD71 which have not previously been studied in CD8
+
 T cell 

responses to DENV infection. The timing of expression of CD69 in this cohort was 

consistent with previous reports 115. While Akondy et al. reported that CD38, HLA-DR, 

and Ki-67 are specific markers of activation when present in combination, there were a 

significant proportion of cells that expressed only CD38 302. Friberg et al. found a lower 

intensity of CD38 expression on influenza TET
+
 cells compared to A11-NS3133-142 TET

+
 

cells during DENV infection 134. The findings of Akondy et al. and Friberg et al., suggest 

that the intensity of CD38 staining correlates with the specificity of activation and that 

bystander cells which are activated become CD38
+
, but not CD38

high
. The high frequency 

of CD38 expression in our T cell population is consistent with the finding that CD38 is 

expressed on bystander T cells.  

Our study is the first to assess CD71 (transferrin receptor) expression on CD8
+ T 

cells in the context of an acute viral illness. Over the course of DENV infection we 

observed upregulation of CD71 predominantly on DENV-specific CD8
+
 T cells and not 

on total CD8
+
 T cells. This was in contrast to CD69 and CD38 expression, which was 
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similar between B57-NS126-34 TET
+
 T cells, A2-E213-221 TET

+
 or A11-NS3133-142 TET

+
 T 

cells and total CD8
+
 T cells during acute DENV infection. Gemstone analysis reveals that 

the CD71 was expressed on the total CD8
+
 T cell population and was concentrated on 

naïve and EF memory cells. The subtle variations in staining intensity seen in the 

Gemstone ribbon plots suggest a low base level of expression on these populations. These 

differences cannot be resolved using traditional dot plots. CD71 is required for DNA 

synthesis and cell division and is upregulated on dividing cells 171, 298, 303. Upon cell 

activation, CD71 is recruited to the immunological synapse coincident with upregulation 

of surface CD71 172. Salmeron et al. demonstrated that CD71 plays a role in the 

phosphorylation of TCRζ chain following CD3 and CD28 stimulation 304, and anti-CD71 

mAb abrogates CTL responses to alloantigens 305. Upregulation of CD71 on DENV-

specific T cells may therefore indicate that these cells had a more productive activation 

and are more cytolytic. Our data suggest that CD71
hi

 expression more accurately 

identifies DENV-specific T cells compared to expression of CD69 and/or CD38, with 

significant differences in both frequency and MFI of CD71 expression between the total 

CD8
+
 T cell population and the DENV-specific populations. Previous in vitro work 

showed upregulation of CD71 following αCD3 or mitogen stimulation 306, 307. We are the 

first to show robust expression of CD71 on T cell lines after peptide stimulation in vitro. 

Unlike CD69, the extent of CD71 upregulation was dependent on the peptide variant used 

and for the most part matched CD107a expression. These in vitro experiments showing 

that that CD71 expression varies in parallel to CD107a expression based on the peptide 

sequence used to trigger activation support our ex vivo observation that CD71 is a more 
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specific marker of activation and suggest that CD71 expression may reflect qualitatively 

different signaling in the T cell response to DENV infection. 

We noted high levels of CD71 in B57-NS126-34 TET
+

 and A11-NS3133-147 TET
+
/ 

A2-E213-221 TET
+
 T cell populations in many donors at days 180 and 365 after the acute 

infection. We have similarly found that antigen-specific cell lines have marked levels of 

CD71 2 to 3 weeks after in vitro culture (data not shown). Gemstone analysis suggests 

that the EF subset of memory cells have slightly higher baseline levels of CD71 but 

further studies are needed to confirm these findings.  

Our study population, although small, included subjects with primary and 

secondary DENV infections, DF and DHF, and each of the four DENV serotypes. This 

small sample size precluded comparing the magnitude of B57-NS126-34-specific T cells 

during primary and secondary infections. Previous work has provided conflicting data on 

the role of CD8
+
 T cells in the development of severe dengue disease and has focused 

heavily on responses to the HLA-A11-restricted NS3133-142 epitope 114, 117. The number of 

consecutive blood draws at early time points during illness and consistency of patient 

care during acute illness are important strengths of this cohort. Additionally, our data 

suggest that even within 72hrs of fever onset immune responses are well underway, and 

therefore potentially important early events may not have been captured. 

We found modestly increased frequencies of HLA-B57-restricted NS1-specific T 

cells in PBMC from the majority of Thai donors with secondary DENV infection. The 

absence of a stronger B57-NS126-34-specific response leads us to believe that other factors 

may be involved in influencing the magnitude of the response to this highly conserved 
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epitope. The finding of a novel and distinct phenotype (CD71
+
) in these epitope-specific 

T cells suggests that many of the CD69
+
 and CD38

+
 CD8

+
 T cells are in fact bystander 

cells that were not activated by direct interaction with their antigen and merits further 

investigation. 

 

I. Chapter Summary 

 We identified a highly conserved 9aa epitope on the NS1 protein recognized by 

HLA-B57-restricted T cells. We hypothesized that B57-NS126-34-specific CD8
+
 T cells 

would be preferentially expanded during secondary DENV infection since the epitope 

sequence would be identical to that seen in primary infection. Using PBMC samples from 

Thai children with primary or secondary DENV infection 289, we found that frequencies 

of B57-NS126-34 TET
+
 T cells were elevated during acute DENV infection but only one 

subject out of nine with secondary DENV infection had particularly high frequencies of 

B57-NS126-34 TET
+
 T cells (~20% of CD8

+
 T cells). Consistent with previous studies, 

expression of the activation markers CD69 and CD38 was upregulated on the total CD8
+
 

T cell population as well as on DENV-specific T cells. In contrast, the expression of the 

transferrin receptor CD71 was significantly upregulated on B57-NS126-34 TET
+
, A2-E213-221 

TET
+
 and A11-NS3133-142 TET

+
 CD8

+
 T cells, but not on total CD8

+
 T cells. In vitro 

studies demonstrated that, while stimulation with homologous and heterologous peptides 

induced similar levels of CD69 expression, the intensity of CD71 expression was 

differentially sensitive to variant peptide stimulation. This suggests that CD71 may be a 

more specific marker of activation than CD69 or CD38.  
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 The lack of preferential expansion of B57-NS126-34-specific T cells, despite the 

conservation of this epitope across all four DENV serotypes, suggests that as yet 

unidentified factors may be involved in shaping the T cell responses to DENV.  
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CHAPTER IV 

THE B57-NS126-34 TETRAMER INTERACTS WITH THE INHIBITORY 

RECEPTOR KIR3DL1 ON NK CELLS 

 

 KIR3DL1 is an inhibitory receptor on NK cells present in >90% of the world’s 

human population308. KIR3DL1 has three extracellular domains and a long cytoplasmic 

tail with an immunoreceptor tyrosine-based inhibition motif (ITIM). KIRs are 

stochastically expressed. The percentage of NK cells carrying KIR3DL1 varies between 

individuals, ranging from approximately 5-40%309
, and KIR3DL1 is expressed primarily 

on the CD56dim subset of NK cells310. There are currently 92 identified alleles of 

KIR3DL1 which code for 62 allotypes311-313 that can be divided into three categories: 

those that are retained intracellularly (*004), those that are expressed at low levels, and 

those that are expressed at high levels250, 252 which can be measured via flow cytometry 

using the monoclonal antibody DX9 by the shift in MFI of the positive NK cells. The 

ligands for KIR3DL1 are MHC class I molecules containing the HLA-Bw4 motif, which 

include HLA-B27, HLA-B57, and some of the HLA-A allotypes such as HLA-A24247, 314. 

The interaction between KIR3DL1 and HLA-B57 has been extensively explored for other 

viral infections, and this has given us some insight into the possible role the interaction 

may have on NK cell responses during DENV infections.  

 In epidemiological studies, the presence of both KIR3DL1 and HLA-B57 has 

been associated with slower progression to AIDS in HIV patients. Individuals with 

KIR3DL1
hi

 expressing alleles are even less likely to progress from HIV to AIDS, 
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possibly due to a stronger inhibitory signal during development of NK cells315. KIR3DL1 

and HLA-B57 interact at position 80 of HLA-B57 along with position 8 or 9 of the 

presented peptide and the D2 area of KIR3DL1247. Because of the involvement of peptide 

in the binding interaction Fadda et al proposed that the peptide could alter binding 

affinity250. Studies that have examined the binding of KIR3DL1 to HLA-B57 loaded with 

a variety of peptides have shown that single amino acid changes in the peptide can 

completely abolish KIR3DL1 binding to the HLA-B57-peptide complex250, 291. Peptide 

specificity has been reported for KIR3DL1 binding to other HLA-Bw4 alleles316 as well 

as for other KIR/HLA pairs including HLA-A11 and KIR3DL2260, 317, 318. To date the 

effects of different HLA-B57-bound peptides on the function of NK cells have not been 

reported for KIR3DL1
+
 NK cells although such functional differences have been reported 

for other KIR/HLA interactions319. Recently, O’Connor et al., used PBMC from 

KIR3DL1
+ individuals to evaluate how peptide sequence affects B57 TET binding to 

primary human NK cells291. They observed great variation in TET binding based on 

single aa changes consistent with what has been observed using KIR3DL1 

transfectants250, 291. 

 The absence of MHC binding to NK cells is thought to trigger a loss of NK cell 

inhibition resulting in the activation of NK cells. This is known as the ‘missing self’ 

hypothesis320. As our understanding of NK cells has evolved it has become clear that the 

absence of MHC by itself is not sufficient to trigger activation of NK cells but the 

presence of activating ligands is also required233, 234 (Figure 1.1). Inhibitory receptors are 

thought to be particularly important in the development of NK cells by “licensing” NK 
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cells to respond to activating signals received later on235. Licensed NK cells have 

increased sensitivity to these activating stimuli though most activating stimuli are still 

insufficient to overcome inhibitory signals, when these are also present The interaction 

between HLA-B57 and KIR3DL1 is thought to protect HIV patients by increasing NK 

cell activity against virally infected cells that have down-regulated MHC class I 

expression, thereby more quickly controlling viral replication and giving the adaptive 

immune system time to develop protective responses252, 253, 321. While the KIR3DL1
+
 

subset of NK cells is expanded during acute HIV infection253, the incubation of HIV-

infected CD4
+
 T cells with KIR3DL1

+
 NK cells inhibited NK cell function322. The exact 

means by which the presence of KIR3DL1 is protective in HIV infection thus has yet to 

be fully elucidated.  

 Rhesus macaques have also been used to study the role of KIRs in SIV infection. 

Colatonio et al published the first report of TET binding to NK cells. They described 

binding of a Mamu-A1*00201 TET to NK cells in rhesus macaques. They demonstrated 

that a Mamu-A1*00201 TET was likely binding to NK cells via KIR3DL05 by showing 

that incubating lymphocytes from KIR3DL05
+
 rhesus macaques with NK target cells 

expressing Mamu-A1*00201 suppressed the degranulation only of Mamu-A1*00201 

TET
+ NK cells323. 

 The role of KIR3DL1 in shaping the NK cell response in HLA-Bw4
+
 individuals 

has yet to be investigated in flaviviral infections. Since the importance of NK cells in 

shaping the development of the adaptive immune response to viral infections is becoming 

better understood, we were interested in exploring the effect that genetics may play in 
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shaping NK cell responses and subsequently what their effect was on the adaptive 

immune response to DENV infection.  

 During our investigation of human CD8
+
 T cell responses to a highly conserved 

HLA-B57-restricted DENV epitope (Chapter III), we observed substantial binding of the 

B57-NS126-34 TET to an NK enriched population. We hypothesized that the B57-NS126-34 

TET was binding to NK cells via the known HLA-B57 binding partner KIR3DL1. 

Staining of a KIR3DL1 transfectant cell line confirmed that B57-NS126-34 TET bound 

KIR3DL1. Consistent with the function of an inhibitory KIR, incubation of healthy donor 

PBMC with HLA-B57-expressing, NS126-34-pulsed target cells suppressed the 

degranulation of only the KIR3DL1
+
 NK cells. Both self and viral peptides have been 

shown to modify recognition of target cells by NK cells and modify NK cell function324-326. 

Furthermore, staining of PBMC from our cohort of Thai children with acute DENV 

infection revealed marked activation of NK-enriched cells only in HLA-B57
+
 patients 

who developed DHF (6 DHF of 11 total subjects Table 3.2). The differences in NK cell 

activation between patients with DF and those with DHF implicate NK cells in the 

pathogenesis of severe dengue disease. 

 

A. Binding of the B57-NS126-34 TET to CD8
-
 Cells in PBMC from Dengue Patients 

 While studying the responses of CD8
+
 T cells to the HLA-B57-restricted epitope 

NS126-34 (HTWTEQYKF), discussed in Chapter III, we observed binding of the B57-

NS126-34 TET to CD8
-
 cells (Figure 4.1A). In order to evaluate if this binding was specific 

to B57-NS126-34 we stained PBMC from a convalescent time point in two subjects from 
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our study cohort with a known tetramer of HLA-B57 complexed with a known HIV 

epitope TW10n (TSNLQEQIGW) reported not to bind KIR3DL1 in vitro250. We saw 

minimal binding of the B57-TW10n TET to CD8
-
 cells (Figure 4.1B), indicating that our 

DENV TET, B57-NS126-34, was likely binding via KIR3DL1 in a peptide dependent 

manner. We next looked at the frequency of B57-NS126-34 TET staining in CD8
-
 cells 

over the course of acute DENV infection in our Thai study cohort (Figure 4.1C). Since 

our staining panel on clinical samples was developed to phenotype CD8
+
 T cells and did 

not include NK cell-specific markers, we first confirmed that the live CD3
-
CD8

-
CD14

-

CD19
-
 population predominantly comprised NK cells. Using convalescent samples from 

9 study subjects with sufficient cells available (Figure 4.2), we found that on average 

75% of CD3
-
CD8

-
CD14

-
CD19

- cells were CD56
+
, hereafter referred to as “NK-enriched” 

cells. The frequency of B57-NS126-34
 TET staining in the NK-enriched cells varied over 

the course of DENV infection in PBMC from HLA-B57
+
 individuals, and for a number 

of subjects the frequency was the lowest around Fever Day 0 (Figure 4.1C).  
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Figure 4.1. Binding of the B57-NS126-34 TET to non-CD8 cells in Thai study cohort PBMC. (A) 

Binding of B57-NS126-34 TET or (B) B57-Tw10n TET to CD3
-
CD8

-
CD14

-
CD19

-
 “NK-enriched” cells 

at the 1 year time point from two HLA-B57
+
 subjects. (C) Frequency of B57-NS126-34 TET

+
 in the 

NK-enriched population (CD3-CD8-CD14-CD19-) over the course of acute DENV illness and at 

convalescent time points from the HLA-B57
+
 Thai study cohort.  
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Figure 4.2. CD3
-
CD8

-
CD14

-
CD19

- cells are predominantly NK cells. (A) Gating strategy used in 

the identification of CD3
-
CD8

-
CD14

-
CD19

-
 cells. (B) Percentage of CD3

-
CD8

-
CD14

-
CD19

- 
cells 

which are CD56 and/or CD16 positive. 
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B. Binding of the B57-NS126-34 TET to KIR3DL1 

We speculated that binding of B57-NS126-34 TET to NK cells in PBMC of Thai 

donors was mediated through KIR3DL1. To test this hypothesis, we first tested whether 

the B57-NS126-34 TET binding to NK cells could be blocked by pre-incubating PBMC 

with an anti-KIR3DL1/S1 antibody. In a representative experiment pre-incubation with 

KIR3DL1/S1 antibody reduced B57-NS126-34 TET binding from 1.07% to 0.064% on 

total PBMC, although binding was not completely eliminated (Figure 4.3A,B- totals for 

two top quadrants). Depletion of KIR3DL1
+
 cells from PBMC also reduced the binding 

of B57-NS126-34 TET to PBMC, in the representative experiment shown from 2.14% to 

0.7% (Figure 4.4A,B-totals for two top quadrants). The results suggest that KIR3DL1 

interacts with the B57-NS126-34 TET resulting in the binding observed in all HLA-B57
+
 

Thai study subjects.  

We next used KIR3DL1 transfectant cell lines to confirm the interaction between 

B57-NS126-34 and KIR3DL1. An HLA-B57 TET loaded with a well-described self 

peptide LF9 (LSSPVTKSF) (grey line) was used as a positive control. We found robust 

binding of B57-NS126-34 to KIR3DL1 transfectant cell lines (black line). Both the B57-

NS126-34 and B57-LF9 TETs bound all three alleles of KIR3DL1 that were tested: 

*001,005,015 (Figure 4.5). Pretreatment of the cells with anti-KIR3DL1 antibody, DX9, 

blocked binding of both tetramers to all three alleles of KIR3DL1 (dashed lines) (Figure 

4.5). The data indicate that the DENV NS1 B57-NS126-34 TET binds KIR3DL1, a known 

inhibitory receptor on NK cells. 
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Figure 4.3. Anti-KIR3DL1 antibody blocks binding of B57-NS126-34 TET. (A) PBMC pre-
incubated with anti-KIR3DL1 antibody for 30 min at 4oC then with B57-NS126-34 TET for 50 min at 
4oC. (B) PBMC pre-incubated with B57-NS126-34 TET for 50 min at 4oC then anti-KIR3DL1 
antibody for 30 min at 4oC. One representative experiment of five experiments is shown. 

 

 

 
Figure 4.4. Depletion of KIR3DL1+ cells decreases B57-NS126-34 TET binding. (A) PBMC 

stained with B57-NS126-34 TET. (B) PBMC depleted of KIR3DL1
+
 cells by MACS and then stained 

with the B57-NS126-34 TET. One representative experiment of three experiments is shown. 
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Figure 4.5. B57-NS126-34 TET staining on KIR3DL1 transfectants. Histograms showing B57-
NS126-34 TET (black) as well as B57-LF9 TET (grey) binding (solid lines) to (A) an untransfected 
cell line, (B) KIR3DL1*001, (C) KIR3DL1*005, and (D) KIR3DL1*015 transfected cell lines. 
Binding of B57-NS126-34 TET and B57-LF9 TET in the presence of a KIR3DL1 blocking antibody 
DX9 is shown (dashed lines). 
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C. Expression of KIR3DL1 on NK Cells in the HLA-B57
+
 Thai Study Cohort and 

Healthy Donor PBMC. 

 Because we did not have KIR typing data available for all subjects we next sought 

to assess KIR3DL1 expression on peripheral blood NK cells in PBMC from our Thai 

study cohort as well as healthy individuals. Due to the limited availability of PBMC from 

acute illness, we used PBMC collected at a convalescent time point to determine the 

expression of KIR3DL1 in these subjects using the DX9 antibody. We detected 

KIR3DL1
+
 CD56

+
 NK cells in most subjects at frequencies that were consistent with 

frequencies reported elsewhere309 (3.95% to 16% of CD56
+
 NK cells, Figure 4.6A). Two 

subjects tested had no detectable KIR3DL1 staining (Figure 4.6C). The intensity of 

KIR3DL1 staining varied between subjects. Based upon this staining pattern we found 

that seven donors were homozygous KIR3DL1
hi

 and two donors were homozygous 

KIR3DL1
low (CHD02-073, KPP94-041).  

 In order to ascertain if B57-NS126-34
 TET bound was bound to NK cells and assess 

if KIR3DL1 staining intensity or frequency affected B57-NS126-34 TET binding we 

obtained PBMC from twelve healthy donors, we confirmed were KIR3DL1
+
 or 

KIR3DL1
-
 by staining (Figure 4.6B), and stained the PBMC with either anti-KIR3DL1 or 

B57-NS126-34 TET (Figure 4.6C, D, data not shown). We found that the frequency of 

TET
+
 cells varied between donors; there were no obvious associations between the 

frequency or intensity of staining of the TET
+
 cells and the frequency or brightness of 

KIR3DL1 staining. Of these twelve healthy UMMS donors, two individuals were 
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KIR3DL1 negative by DX9 staining; we saw very low frequencies of B57-NS126-34 TET
+
 

NK cells (Figure 4.6C).  

 Extended phenotyping of the B57-NS126-34 TET
+
 NK cells was performed for 

PBMC from multiple donors to confirm that this population was consistent with NK cells 

and evaluate whether they could be associated with a particular phenotype. Figure 4.7 

shows representative staining from one donor with the B57-NS126-34 TET
+
 NK cells (red 

dots) overlaid on the total NK cell population. Extended phenotyping of B57-NS126-34 

TET
+
 NK cells in these healthy donors revealed no differences in the expression of the 

NK cell receptors CD161, NKp30, NKp46, and NKG2D between B57-NS126-34 TET
+
 NK 

cells and the rest of the CD56dim NK cells. B57-NS126-34 TET
+
 NK cells are 

phenotypically similar to total NK cells, but do not appear to occupy a subset identified 

by these markers.  
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Figure 4.6. KIR3DL1 staining on PBMC from healthy donors and Thai study cohort 
subjects. (A) Gating strategy for the identification of CD56+ and/or CD16+ NK cells. (B) 

Frequency of KIR3DL1
+
 cells in the NK cell population of Thai Donors. (C) Frequency of 

KIR3DL1
+
 cells in the NK cell population of healthy donors. (D) Staining with anti-KIR3DL1 and 

B57-NS126-34 TET of PBMC from a KIR3DL1
-
 donor. (E) Binding of anti-KIR3DL1 or B57-NS126-34 

TET to NK cells from a KIR3DL1
+
 donor  
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Figure 4.7. Expression of NK cell markers on B57-NS126-34 TET
+

 cells. The expression of 
CD161, NKp30, NKp46, NKG2D in the total NK cell population (zebra plot), with B57-NS126-34 

TET
+

 NK cells overlaid (red dots). The expression pattern of CD161, NKp30, NKp46, NKG2D is 

consistent between the B57-NS126-34 TET
+
 NK cells and the total NK cell population. 
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D. Binding of HLA-B57-NS126-34 to KIR3DL1 Results in Functional Inhibition of 

KIR3DL1
+
 NK Cells 

 Having demonstrated that B57-NS126-34 TET bound KIR3DL1 on NK cells, we 

next wanted to determine whether this interaction resulted in functional inhibition of 

KIR3DL1
+
 NK cells. In order to answer this question we used the NK-sensitive target 

cell line 721.221 (221), 221 cells stably transfected with HLA-A2 (221-A2), or with 

HLA-B57 pulsed with NS126-34 peptide (221-B57-NS126-34) to assess activation of NK 

cells. PBMC from KIR3DL1
+
HLA-B57

+
 healthy subjects were mixed with these target 

cells at an E:T of 5:1, and degranulation of NK cells assessed by CD107a expression was 

used to measure activation (Figure 4.8). CD107a expression was detected predominantly 

on the CD56dim
 NK cells, but some CD56bright NK cells also expressed CD107a. Figure 

4.8A shows the response of KIR3DL1
+
 NK cells in a representative experiment, where 

stimulation with 221 or 221-A2 resulted in 33.73% and 32.57% of KIR3DL1
+
 NK cells 

expressed CD107a (right top and bottom quadrants), respectively, but stimulation with 

221-B57-NS126-34 resulted in only 12.74% of KIR3DL1
+
 NK cells expressing CD107a. 

Approximately 18% of KIR3DL1
-
 NK cells expressed CD107a when stimulated with 

221, 221-A2, or 221-B57-NS126-34. This experiment was performed 5 times resulting in 

an average of 46% lower frequency of CD107a expression on KIR3DL1
+
 NK cells when 

stimulated by 221-B57-NS126-34, the same pattern was observed following stimulation 

with 221-B57 (data not shown) . As expected the “licensed” or KIR3DL1
+
 NK cells 

responded more robustly to stimulation with 221 than the KIR3DL1
-
 NK cells, of which 
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only a portion are licensed by other KIRs, and the activation of only the KIR3DL1
+
 NK 

cells was inhibited by the presence of B57-NS126-34. A CTL assay using a CD8
+
 T cell 

line, 3C11, specific for NS126-34 confirmed that, following peptide pulsing, NS126-34 was 

presented by 221-B57 cells (data not shown). 

 Since our antibody panel used for staining of PBMC from the Thai study cohort 

did not include CD107a, we also examined other markers of activation on NK cells 

(CD69, CD71, and CD38) included in the staining of Thai study cohort PBMC. In an 

attempt to relate the expression of these activation markers to the in vivo stimuli the NK 

cells may receive during dengue we incubated PBMC from healthy KIR3DL1
+
B57

+
 

subjects with stimuli known to activate NK cells via multiple pathways: K562 cells, 

721.221 cells, P815 cells with anti-CD16, or IL-12 and IL-18. We examined the 

expression of CD69, CD71 (Figure 4.9), and CD38 (data not shown) on NK cells 24 

hours later. We found that CD38 was highly expressed on unstimulated NK cells and 

therefore was not a useful marker of activation in these experiments. Upregulation of 

CD69 and CD71 was observed on the KIR3DL1
-
 NK cells following stimulation with 

K562, 221, 221-B57-NS126-34, and IL12/18 (Figure 4.9A, B), but only CD69 was 

upregulated following activation via the CD16 receptor (Figure 4.9A, B). A similar 

pattern of activation in response to the different stimuli was observed on the KIR3DL1
+
 

NK cells though the response of these licensed NK cells was more robust than that of the 

KIR3DL1
-
 NK cell population resulting in higher MFIs of CD69 and CD71 expression 

with two exceptions (Figure 4.9C, D). However, KIR3DL1
+
 NK cells were inhibited in 

the presence of 221-B57-NS126-34 when compared with their response to 221  
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Figure 4.8. Inhibition of KIR3DL1
+
 NK cells by HLA-B57-NS126-34. PBMC were incubated for six 

hours with anti-CD107a antibody either alone (N.S.) or in the presence of NK cell target lines 
721.221 (221), 221-B57 pulsed with NS126-34 (221-B57-NS126-34), or 221-A2. Degranulation of (A) 

KIR3DL1
+
 NK cells was compared to that of (B) KIR3DL1

-
 NK cells. Only degranulation of 

KIR3DL1
+
 NK cells was inhibited in the presence of 221-B57-NS126-34. No inhibition of KIR3DL1

+
 

NK cells was observed when HLA-B57 was replaced with HLA-A2 (221-A2). One representative 
experiment of five experiments is shown. 
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Figure 4.9. Activation of NK cells through multiple pathways. Expression of CD69 and CD71 

on the KIR3DL1
-
 (A and B) and KIR3DL1+ (C and D) NK cells respectively. PBMC were = either 

(1) unstimulated or incubated with target cell lines K562 or 221 (2, 3), target cell line 221 
transfected with HLA-B5701 (4), anti-CD16 (5), or IL-12 and IL-18 (6). CD69 and CD71 
expression was assessed 24 hours later.  
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(Figure 4.9C, D) and they had less CD71 expression in response to IL12/18 (Figure 

4.9D). The expression of CD69, but not the expression of CD71, paralleled expression of 

CD107a.  

 

E. Activation of NK Cells by Autologous DCs Infected with Dengue Virus 

 Flaviviruses have long been reported to increase class I expression on infected 

cells208-210; therefore, we expected an abundance of NS126-34 peptide to be presented on 

virally infected cells during DENV infection. We wanted to determine specifically 

whether HLA-B57 was upregulated by DENV infection. We infected primary monocyte-

derived (mo) DCs from two HLA-B57
+
 individuals with DENV-2 16681 (MOI=10) and 

forty-eight hours later, we examined HLA-B57 expression. We found increased levels of 

HLA-B57 expression in the infected culture (Figure 4.10A). Based on intracellular 

staining with antibody to DENV E, we found that the upregulation of HLA-B57 

expression occurred predominantly on bystander (uninfected) cells in the infected culture 

(Figure 4.10C). There was no change in the expression of HLA-B57 on the DENV-

infected DCs (Figure 4.10C). Additionally, we demonstrated earlier that DENV infection 

of DCs resulted in presentation of the NS126-34 peptide in the context of HLA-B57, as a 

CD8
+
 T cell line specific for B57-NS126-34 lysed virus-infected DCs (Figure 3.1D). 

 Our previous data indicated that 221-B57 cells were able to inhibit the activation 

of KIR3DL1
+
 cells and that the peptide NS126-34 did not disrupt this inhibition (Figure 4.8 

and 4.9); however, we wanted to determine whether the level of HLA-B57 expressed 

following DENV infection of DCs was able to maintain inhibition in the midst of the 
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other signals being received. As mentioned in Chapter I.I., many of the NK cell activating 

ligands have yet to be identified and the ligands responsible for NK recognition of 

DENV-infected cells are not known. Therefore, our ability to assess expression of 

activating ligands following DENV-infected was limited. We decided to focus on the 

activation profile of NK cells by measuring the expression of CD107a, CD69, and CD71. 

We used DENV-infected DCs as a model for what NK cells might encounter early after 

DENV infection327.  

 We incubated PBMC from a healthy KIR3DL1
+
/HLA-B57

+
 subject for 24 hrs 

with autologous DCs that were uninfected (Figure 4.10B) or infected with DENV-2 

16681 48 hrs before (Figure 4.10C). To investigate the effect of DC derived cytokines on 

NK cell functional responses, we included tubes where PBMC were added to DCs 

without replacing the media (i.e., with conditioned media) or where the media was 

replaced with fresh media (i.e., without conditioned media). NK cells, including 

KIR3DL1
+
 NK cells, were strongly activated in the presence of DENV-infected DCs as 

assessed by the increase in CD107a, and CD69 expression (Figure 4.11). NK cell 

activation was lower in DENV-infected cultures with conditioned media than in DENV-

infected cultures without conditioned medium (Figure 4.11-4,5), but the conditioned 

media did not alter the pattern of the response. The data suggest that cytokines have an 

affect on all NK cell responses to DENV and that the cytokine milieu produced by 

DENV-infected moDCs serve to dampen NK cell responses.  

 It has been shown that variations in the quantity of matching MHC class I seen by 

KIR
+
 NK cells affects their functional set point328. To test whether the increase in 
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expression of HLA-B57 seen on DCs in DENV infected cultures affects the 

responsiveness of KIR3DL1
+
 NK cells we transferred PBMC, by gentle pipetting, from 

culture with infected DCs to culture with uninfected DCs for the last 6 hours of co-

culture (Figure 4.11-6). We found increased expression of CD107a, CD69, CD38, and 

CD71 on KIR3DL1
+
 (Figure 4.11G-I), KIR3DL1

-
 (Figure 4.11D-F) and total NK cells 

(Figure 4.11A-C) compared with the levels of expression after co-culture only with 

DENV infected DCs. Only minimal expression of CD71 was observed on the total NK 

cell population, the KIR3DL1
-
 NK cells and the KIR3DL1

+
 NK cells following 

incubation with DENV-infected DCs. The data suggest that NK cells can adjust to 

increased levels of MHC class I expression as a new set point, even in a short time 

(18hrs), and subsequently see lower levels of expression as the release of the inhibitory 

signal. The consistency of the increase in response across all NK cells also highlight the 

extent to which other inhibitory receptor/MHC class I pairs may play a role in NK cell 

responses to DENV infection. 
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Figure 4.10. Upregulation of MHC-I on DCs following DENV infection for 48 hours. (A) 
Histogram showing expression of HLA-B57 on all DCs in DENV infected culture versus an 
uninfected culture. (B,C) HLA-B57 expression versus DENV-2 infection showing DCs in (B) 
uninfected culture or (C) infected culture. 
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Figure 4.11. Activation of NK cells by DENV-infected DCs. Expression of CD107a, CD69, and 

CD71 on the total NK cell populations (A, B, C) KIR3DL1
-
 NK cell populations (D, E, F) or 

KIR3DL1
+
 NK cell populations (G, H, I) respectively. PBMC were (1) unstimulated or stimulated 

with (2) uninfected DCs or (3) DENV-infected DCs without the DC conditioned media , (4) 
uninfected DCs or (5) infected DCs with the DC conditioned media for 24hrs , (6) DENV-infected 
DCs with the conditioned media for 18hrs then incubated for 6hrs with uninfected DCs. One 
representative experiment of three experiments is shown. 
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F. Activation of NK-Enriched Cells Correlates with Disease Severity 

 Now that we had explored the activation of NK cells in vitro, we were interested 

in looking further at the activation of NK cells during and after acute dengue in PBMC 

from the HLA-B57
+
 Thai study cohort. Due to limited sample availability we were 

unable to use an NK cell-specific panel to assess NK cell activation in PBMC from the 

Thai study cohort. Therefore, we evaluated activation profiles by assessing levels of 

CD69, CD38 and CD71 on NK-enriched populations using the data generated from 

staining of the HLA-B57
+
 Thai study cohort PBMC with the CD8

+
 T cell panel described 

in chapter III. CD69, an early marker of NK cell activation, was elevated early in disease 

but remained relatively high at convalescent time points (Figure 4.12A). We observed no 

difference in the level of CD69 on the B57-NS126-34 TET
+ NK-enriched cells (black lines) 

or the total NK-enriched populations (red lines) from donors with DF (solid lines) versus 

DHF (dashed lines) (Figure 4.12A). CD71 expression was elevated around fever day 0, 

the day of defervescence, with expression predominately on B57-NS126-34 TET
+
 NK-

enriched cells (Figure 4.12B). CD71 expression was slightly elevated in subjects with 

DHF (Figure 4.12B). While CD71 expression did not segregate based on clinical 

diagnosis of DF or DHF, it was statistically significantly higher (p<0.01, Mann-Whitney) 

in the B57-NS126-34 TET
+
 NK-enriched cells compared to total NK-enriched cells. 

CD57, a marker of NK cell maturity, remained consistent during and after acute dengue 

with no apparent differences between the B57-NS126-34 TET
+
 or total NK-enriched cells, 

nor between NK-enriched cells from subjects with DF or DHF (Figure 4.12C) 
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 CD38 expression was elevated on NK cells in PBMC during acute illness, 

decreased during early convalescence, and remained expressed on up to 40% of NK-

enriched cells 1 year after infection (Figure 4.12E). However, when we stratified CD38 

expression into CD38
hi

 and CD38
low

 we saw a very different pattern emerge (Figure 

4.12F,G). Figure 4.10D is a representative flow cytometry plot of PBMC from Fever Day 

+1 and Fever Day +180 in one donor to demonstrate the distinction between CD38
hi and 

CD38
low

 expression. CD38
low expression followed the same pattern as CD69 expression 

on NK cells. In contrast, CD38
hi

 expression peaked at fever day +1 and returned to 

baseline at 1 year post-infection. The peak of CD38
hi

 expression was between fever day 0 

and +1 on total NK-enriched cells as well as on B57-NS126-34 TET
+ NK cells in most 

subjects, both those with DF and those with DHF. Some subjects whose disease was 

classified as DF did not have appreciable frequencies of CD38
hi

 NK cells. Higher 

frequencies of CD38hi-expressing cells were seen in subjects who had DHF compared to 

those who had DF (p=0.0571, Mann-Whitney).  

 We found that peak expression of CD71
+
 on B57-NS126-34 TET

+
 NK-enriched 

cells coincided with peak CD38
hi

 expression at fever day 0. This suggests that NK cells, 

especially in donors who developed DHF, are activated coincident with the clearance of 

viremia and therefore may play a role in dengue pathogenesis. The decreasing expression 

of CD69 suggests that we catch only the end of the early phase of NK cell activation 

following DENV infection in these subjects. The difference in expression of surface 

activation markers on the NK-enriched population between the first phase of activation 

seen in these donors, prior to fever day 0, and the second phase of activation, around 
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Figure 4.12. Expression of surface activation markers over the course of acute DENV 
illness. (A) The expression of CD69 (B) the expression of CD71 (C) the expression of CD57. The 

B57-NS126-34 TET
+ NK-enriched cells from each donor at each time point are in grey for donors 

undergoing a primary infection and black for donors undergoing a secondary infection. Patients 
are also denoted as having been diagnosed with DF (solid lines) or DHF (dashed lines). The 
average surface expression of these markers on the total NK-enriched population for donors 
diagnosed with DF are shown using a solid red line and for those diagnosed with DHF using a 
dashed red line. 
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Figure 4.12 continued. Expression of surface activation markers over the course of acute 

DENV illness. (D) Representative CD38 staining showing the gating of CD38
hi
 versus CD38

low
 on 

the NK cell population. (E) The expression of CD38 (F) CD38
hi
 and (G) CD38

low
. The B57-NS126-

34 TET
+ NK-enriched cells from each donor at each time point are in grey for donors undergoing a 

primary infection and black for donors undergoing a secondary infection. Patients are also 
denoted as having been diagnosed with DF (solid lines) or DHF (dashed lines). The average 
surface expression of these markers on the total NK-enriched population for donors diagnosed 
with DF are shown using a solid red line and for those diagnosed with DHF using a dashed red 
line. 
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fever day 0, suggest there is something mechanistically or qualitatively different in how 

these NK cells are being activated at these two time points.  

 

G. Discussion 

 In addition to innate immune control of virus infections, variations in early NK 

cell responses may have profound effects on the subsequent development of the adaptive 

immune response. The interplay between NK cells and dendritic cells is dynamic and can 

shape adaptive immune responses to an infection274, 286, 329. Alternatively, a very rapid 

NK cell response which quickly eliminates a pathogen may leave only low levels of 

antigen available for presentation to CD8
+
 T cells, therefore decreasing the likelihood of 

developing a strong adaptive immune memory response277. NK cells have been 

implicated in the regulation of T cell responses during viral infections, potentially acting to 

prevent pathological responses to high viral loads by attenuating T cell activation275, 276, 330. 

These effects may be particularly relevant for DENV infection if NK cell responses affect 

the quality of T cell memory which develops during a primary infection, because of the 

strong epidemiological link between secondary infection and increased risk of DHF.  

 In this chapter, we identified an interaction between a DENV-specific B57-NS126-34 

TET and KIR3DL1, an inhibitory receptor on NK cells. We found that B57-NS126-34 TET 

bound to NK cells in PBMC from all Thai study cohort subjects and from every 

KIR3DL1
+
 healthy donor. We were particularly interested in investigating the possible 

role of KIR3DL1
+
 NK cells in DENV pathogenesis due to the many associations of Class 

I MHCs and KIRs with both beneficial and detrimental outcomes during various viral 
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infections244, 245, 331-335 and the development of autoimmune diseases241, 243, 336, 337. The 

interaction between HLA-B57 and KIR3DL1 has been extensively studied in the context 

of HIV248, 250, 252, 253, 322, 338. Following the initial recognition that HLA-B57
+
 individuals 

were more likely to be long term non-progressors, it was additionally recognized that 

HLA-B57
+ individuals who were also KIR3DL1

+
 or KIR3DS1

+
 were even more likely to 

be long term non-progressors than individuals who are only HLA-B57
+321, 338.  

 We saw a striking activation phenotype of B57-NS126-34 TET
+ NK-enriched cells 

in our ex vivo analysis of Thai PBMC. Our in vitro data suggest that these TET
+
 cells 

represent a subset of KIR3DL1
+
 NK cells in these donors. Differences between the total 

NK-enriched population and B57-NS126-34 TET
+
 NK-enriched cells may reflect a role for 

the interaction between KIR3DL1 and B57-NS126-34 in modulating NK cell responses. 

Peak frequencies of CD38
hi

 and CD71
+
 NK cells were detected around defervescence 

(fever day 0), coincident with the peak activation of CD8
+
 T cells and the critical period 

when patients are at increased risk of plasma leakage. In support of a role in disease 

pathogenesis, CD38
hi

 NK-enriched cells were present in higher frequencies in PBMC 

from donors whose disease was classified as DHF than those classified as having DF. 

This difference approached statistical significance (p=0.0571) but the small cohort 

limited the power of the study. Although NK cells are usually considered to be activated 

early in acute viral infections, our data suggest that a subset of NK cells may be activated 

late in DENV infection in patients who develop DHF.  
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 Our study of NK cell responses during DENV infection in this cohort was limited 

by sample availability, which prevented us from using an NK cell-specific panel to 

further investigate our observations. Additionally, the investigation of innate immune 

responses in clinical samples is limited by the delay between the mosquito bite that 

initiates viral infection in the study subject and their presentation to the hospital likely 

after many early immune responses are already underway. Many studies in mice with 

acute viral infections have shown that initial NK cell activation occurs in the first 3 

days339, 340. Patients with DENV typically present to the clinic more than a week 

following the mosquito bite that initiated the infection53, 341.  

The complexity of the NK cell receptor repertoire, the number of unknown 

ligands, and the timing of sample collection in children undergoing acute DENV 

infection, made it challenging to dissect the NK cell interaction with DENV-infected 

cells ex vivo. We therefore designed a series of in vitro experiments to complement our ex 

vivo studies and provide further insight into the interaction between DENV and inhibitory 

receptors on NK cells. 

 NK cells can be activated by a variety of stimuli; we used target cell lines devoid 

of MHC class I expression (K562, 721.221), signaling via the CD16 receptor (P815 with 

anti-CD16 antibody), and stimulation with cytokines (IL-12 plus IL-18) to examine the 

activation of NK cells in vitro via multiple pathways. Activation of NK cells by each of 

these pathways resulted in degranulation, as detected by an increase in CD107a, but we 

found subtle differences in the expression of surface activation markers especially CD71. 

CD71 was highly expressed on the B57-NS126-34 TET
+
 NK cells in PBMC of Thai 
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children with dengue at Fever Day 0 (the day of Defervescence). The in vitro data 

suggest that only certain stimuli can trigger CD71 expression and that the B57-NS126-34 

TET
+
 NK-enriched cells may have been activated by exposure to cells with reduced 

MHC class I expression or by exposure to IL-12 and IL-18, or by a combination of these 

stimuli near the time of defervescence. Both IL-12 and IL-18 have been measured in 

patients during acute DENV infection. Higher levels of IL-18 have been reported in 

patients with dengue with warning signs compared to patients with dengue without 

warning signs342. IL-18 levels have also been shown to be increased in patients with 

DHF127. IL-12 levels, on the other hand, have been reported to be lower in patients with 

dengue compared to healthy controls342, with very little IL-12 production in patients with 

DHF127. The findings of a CD38
hi

 population, while very clear as a distinct population in 

ex vivo staining, was not observed after any in vitro stimulation. The expression of 

CD38
hi

 on in vitro stimulated cells may require more time or a more complex 

combination of activation signals. 

  The functional response of KIR3DL1
+
 NK cells to the target cell line 721.221 was 

inhibited by transfecting the target cell line with HLA-B57 and pulsing with NS126-34 

peptide did not disrupt this inhibition. In contrast, KIR3DL1
-
 NK cells remained 

unaffected by the presence of B57-NS126-34. Self-peptides binding to HLA-B57 are also 

known to mediate inhibition of KIR3DL1
+
 NK cells, making it challenging to 

conclusively demonstrate the role of the DENV NS126-34 peptide in mediating the 

inhibition. However, we demonstrated that the NS1 peptide was presented on the surface 
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of 221-B57 cells as a T cell line lysed only peptide-pulsed target cells. Our experiments 

suggest that the NS126-34 peptide does not disrupt inhibition of KIR3DL1
+
 NK cells.  

 We did not observe early activation of NK cells during acute DENV infection in 

our Thai study cohort. However, stimulation for 24hrs by DENV-infected DCs did 

activate NK cells. The data suggest that early in DENV infection activating signals on 

target cells may overwhelm any inhibitory signals the NK cells is receiving. As 

mentioned previously, we likely missed this phase of NK cell activation in the PBMC 

collected for our analysis.  

 Consistent with other reports about effects of DENV infection on MHC class I 

expression208, 210, 214, we found that HLA-B57 was upregulated on DCs in response to 

infection with DENV; however, this upregulation appeared to be limited to bystander 

DCs (DENV antigen-negative DCs in the infected cell culture). This is in contrast to the 

work by Hershkovitz et al. showing that the NS proteins are sufficient to upregulate 

MHC class I208. It is possible that the mechanism of upregulation of MHC class I during 

DENV infection is cell type specific; however work by Libraty et al. showing 

upregulation of DENV infected DCs and a greater extent of upregulation on bystander 

DCs212 suggests that something other than cells type is responsible for our observations. 

It is possible that the burden of DENV per cell affects the level of MHC on infected cells.  

 High levels of HLA-B57 expression during DENV infection could create a strong 

inhibitory environment for KIR3DL1
+
 NK cells. Even though upregulation of HLA-B57 

appears not to occur on DENV infected cells circulating NS1 may be taken up by 

bystander cells and NS126-34 may be cross presented on MHC class I. While we were 
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unable to look exclusively at the effect of NS126-34 peptide on the function of KIR3DL1
+
 

NK cells, our data demonstrate that the presentation of NS126-34 by HLA-B57 molecules 

does not disrupt the inhibition of KIR3DL1
+
 NK cells. . KIR3DL1

+
 NK cell activation is 

controlled by a balance of signals which appear to be skewed in favor of activation 48hrs 

after DENV infection of DCs despite the increased expression of HLA-B57. To 

determine whether the environment of DENV-infected DCs alters NK cell responses 

toward healthy DCs, we transferred NK cells from culture with DENV-infected DCs to 

culture with uninfected DCs. Under these conditions, we observed an increase in the 

expression of the activation markers CD69 and CD71. Perhaps the in vitro data give 

some insight into the factors affecting activation of NK cells in children in vivo at Fever 

Day 0 when viremia has been cleared59. NK cells which have been in a DENV-induced 

environment for a week or more now see APCs returning to a healthy state. We predict 

that NK cells are more susceptible to activation as MHC class I levels return to normal 

following resolution of DENV viremia.  

 

H. Chapter Summary 

 B57-NS126-34 TET
+
 NK cells were identified in HLA-B57

+
 donors during acute 

DENV infection and at convalescent time points. We showed that HLA-B57 complexed 

with the DENV NS126-34 peptide (B57-NS126-34) interacts with KIR3DL1 and that this 

interaction resulted in inhibition of KIR3DL1
+
 NK cells. While NK cells are typically 

considered to be activated early in acute infection in response to virally infected cells we 

observed peak activation of a subset of NK cells coincident with viral clearance. The 
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frequency of this activated population correlated with the development of DHF. This is 

the first study to examine the role KIRs play in the pathogenesis of DENV infection and 

suggests that late activation of NK cells may contribute to the development of DHF.  

 The data set a frame-work for future research which should aim to take a fresh 

look at the role of NK cells in DENV infection. Phenotyping studies using an NK cell-

specific antibody panel that include other KIR/HLA interactions, more prevalent in the 

Thai population, should be pursued. As animal models of dengue improve, it may be 

possible to investigate the role that NK cell responses to DENV play in shaping CD8
+
 T 

cell responses.  
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CHAPTER V 

FINAL SUMMARY AND IMPLICATIONS 

 

A. Thesis Summary 

 We identified a HLA-B57 DENV epitope (NS126-34) conserved across all four 

serotypes of DENV. We hypothesized that CD8
+
 T cell responses to the NS126-34 epitope 

would be more robust in secondary infection compared to responses to the more 

commonly encountered non-conserved epitopes since the CD8
+
 T cells would encounter 

the identical sequence during a second DENV infection for the NS126-34 epitope (Table 

2.1). We used PBMC obtained during acute dengue and convalescence from a cohort of 

hospitalized children in Thailand to evaluate CD8
+
 T cell responses to the highly 

conserved HLA-B57 restricted epitope (NS126-34) and when possible compare NS126-34-

specific responses to other DENV epitope-specific CD8
+
 T cell responses. We expected 

to find increased frequencies of B57-NS126-34 TET
+
CD8

+
 T cells compared to frequencies 

of A11-NS3133-142 TET
+
CD8

+
 T cells or A2-E213-221 TET

+
CD8

+
 T cells in all subjects 

undergoing secondary dengue. We also expected that activation of B57-NS126-34-specific 

T cells during secondary DENV-infection would be more consistent and occur more 

rapidly than activation of A11-NS3133-142 or A2-E213-221-specific T cells. However, we 

observed high frequencies of B57-NS126-34 TET
+
CD8

+
 T cells in only one of the nine 

donors in our cohort undergoing a secondary DENV infection.  

 Despite the lack of selective-expansion of B57-NS126-34-specific CD8
+
 T cells 

during secondary infection we did observe activation of CD8
+
 T cells in all donors. We 
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found peak expression of CD38 on CD8
+
 T cells in PBMC from all donors at fever day 0 

when patients are at risk for developing plasma leakage. The CD8
+
 T cells in PBMC from 

subjects undergoing a secondary DENV infection showed similar expression of the 

activation markers CD69, CD38, and CD71 on the B57-NS126-34 TET
+
 and the A11-

NS3133-142 TET
+
 /A2-E213-221 TET

+
 (epitopes which vary between serotypes, Table 2.1) 

populations.  

 Unlike CD69 and CD38, CD71 was mainly expressed on DENV-specific CD8
+
 T 

cells, suggesting that CD71 may be a more reliable marker of specific T cell activation. 

Follow-up studies in vitro highlighted the specificity of CD71 with expression varying 

only slightly even with very low peptide concentrations when CD8
+
 T cells were 

stimulated with homologous peptides, but revealing greatly diminished expression when 

CD8
+
 T cells were stimulated with heterologous peptides. We observed no clear measure 

which differentiated T cell responses in HLA-B57
+
 patients with DF apart from those 

with DHF. This could be, in part, due to the low number of HLA-B57
+
 study subjects 

available. Alternatively, it is possible that CD8 T cell responses, while contributing to the 

overall response to DENV infection were not responsible for the development of dengue 

pathology in this cohort. As with all human studies which predominantly rely on PBMC 

it is also possible that the CD8
+
 T cells of interest migrate into tissues during acute illness 

and we thus are unable to reveal any important difference between CD8
+
 T cell responses 

in subjects with DF and DHF. 
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We observed binding of the B57-NS126-34 TET to CD8
-
 cells in all HLA-B57

+
 

subjects from our Thai cohort and all healthy donors who were HLA-B57
+
KIR3DL1

+
 and 

showed that this binding was to the inhibitory receptor KIR3DL1. We found a distinct 

difference in the response of the NK-enriched cells in patients with DF versus DHF, with 

CD38
hi

 NK-enriched cells more frequent in subjects with DHF (p=0.057). Peak 

expression of CD38
hi

 on NK-enriched cells was coincident with peak expression of CD38 

on T cells, occurring at fever day 0. The data suggest that the activation of subsets of NK 

cells may contribute to disease severity in HLA-B*57 individuals. We found little 

activation of NK-enriched cells early during acute infection (prior to fever day -1) as 

assessed by CD38
hi

 and CD71 expression. We found upregulation of CD69 on NK-

enriched cells early during acute infection, but high frequencies of CD69 seen at six 

months and one year after infection made it difficult to draw solid conclusions from this 

data.  

We used a series of in vitro experiments to investigate whether the interaction 

between HLA-B57 and KIR3DL1 might contribute to the delay in NK cell activation 

detected in our ex vivo studies. We found increased expression of HLA-B57 on DCs in 

DENV-infected cultures. Exposure of NK cells from healthy adult donors to DENV-

infected autologous DCs resulted in activation of NK cells as assessed by the expression 

of CD107a and CD69. We also found CD71 upregulation on KIR3DL1
+
 NK cells 

following stimulation with an NK-sensitive target cell 221, and inhibition of KIR3DL1
+
 

NK cells in the presence of 221 target cells transfected with HLA-B57 and pulsed with 

the NS126-34 peptide. Our in vitro data suggest that the interaction between B57-NS126-34 
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and KIR3DL1 could shape responses of the KIR3DL1
+
 subset of NK cells during DENV 

infection to make these cells more susceptible to activating signals received around fever 

day 0. These activated NK cells could produce cytokines that weaken the endothelial 

barrier and contribute to plasma leakage.  

 

B. Proposed Model 

 Based on our in vitro and ex vivo data we propose the following model of NK and 

T cell activation in HLA-B57
+
 patients who are infected with DENV. We speculate that 

increased levels of MHC class I expression inhibit the development of NK cell responses 

by keeping “licensed” NK cells, such as KIR3DL1
+
 NK cells, from responding robustly 

early during DENV infection (Figure 5.1 viremic phase). Presentation of the NS126-34 

peptide by HLA-B57 molecules serves to maintain inhibition of KIR3DL1
+
 NK cells in 

HLA-B57
+
/KIR3DL1

+
 subjects during the viremic phase. While DENV-infected APCs 

may not upregulate MHC class I during DENV, soluble NS1 can be taken up by 

uninfected APCs and the NS126-34 peptide can be cross-presented on MHC class I. Since 

NS1 is the only DENV protein known to be secreted from DENV-infected cells, cross-

presentation of DENV peptide epitopes is likely restricted to those present on the NS1 

protein. Following the clearance of DENV viremia (around fever day 0), we expect MHC 

class I levels to return to baseline. This change in MHC class I expression releases the 

inhibitory signal received by KIR3DL1
+ NK cells in HLA-B*57

+
 individuals (Figure 5.1 

critical phase). Our findings of peak activation of a subset of NK cells in patients with 

severe disease, DHF, around fever day 0 support the model. While we are unable to 
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further classify this subset due to limited amount of acute PBMC collected from the Thai 

study cohort, we hypothesize that these cells are, at least in part, KIR3DL1
+
 NK cells.  

 NK cell activation is important for the development of CD8
+
 T cell 

responses274-277, 283, 286, 343. Dampened NK cell responses during DENV infection may 

therefore lead to qualitatively poor CD8
+
 T cell responses, resulting in poor development 

of memory T cells, and subsequently contribute to the lack of robust proliferation of B57-

NS126-34 TET
+
CD8

+
 T cells during secondary DENV infection. Additionally, the 

activation of NK cells at Fever Day 0, coincident with peak activation of CD8
+
 T cells, in 

subjects who develop DHF contributes to the production of cytokines, such as TNF-α, 

which can lead to loss of endothelial barrier integrity.  

 The activation of “licensed” NK cells around Fever Day 0 is likely triggered by 

the upregulation of an NK cell-activating ligand. The abundance of NK cell activating 

receptors for which ligands remain to be identified makes it challenging to define how 

NK cells were activated. The activating ligands MICA/MICB have been linked 

epidemiologically to the development of symptomatic but not severe dengue in a Cuban 

study cohort92, 93
 and a genome-wide association study identified MICB with 

susceptibility for DSS94 (Table 1.2). These epidemiological relationships suggest that NK 

cells can contribute to dengue pathology.  
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Figure 5.1. Proposed model of the interaction between HLA-B57 and KIR3DL1 during DENV 
infection. (A) DENV infection results in the upregulation of HLA-B57 expression on uninfected 
bystander APCs during the viremic phase (yellow). During the critical phase (red), when viremia 

has resolved, HLA-B57 levels return to baseline. (B) KIR3DL1
-
 NK cells may be activated by 

interaction with virally infected APCs, in subjects undergoing a secondary infection, anti-DENV 

antibodies can engage the CD16 receptor on NK cells leading to activation. (C) KIR3DL1
+
 NK 

cells receive a strong inhibitory signal during viremia (yellow) due to the upregulation of HLA-B57. 
Presentation of the NS126-34 peptide on HLA-B57 maintains the interaction between HLA-B57 and 
KIR3DL1. Following the clearance of viremia HLA-B57 levels return to normal which decreases 

the inhibitory signal received by KIR3DL1
+
 NK cells. This release of inhibition allows KIR3DL1

+
 

NK cells to be activated at fever day 0, coincident with the activation of CD8
+
 T cells. 
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C. Final Conclusions and Future Implications 

 Even with over 60 years of research much is still unknown about the pathogenesis 

of dengue, treatment is still supportive, and effective tetravalent vaccines are still elusive. 

The prevalence of DENV infections has increased appreciably in the last decade and 

represents a major global disease burden53, 54. DENV is even beginning to re-emerge in 

the United States344. The geographical spread and increase in incidence of severe disease 

has raised awareness of dengue and interest in the production of a vaccine. DENV 

presents a unique challenge to vaccine manufactures due to the need to simultaneously 

elicit strong protective responses to all four serotypes.  

 An improved understanding of protective and pathologic responses to DENV 

should help to direct development and evaluation of candidate vaccines. It is likely that 

many factors contribute to DENV disease severity for any one patient. The adaptive 

immune system has been the focus of most research to date due to the strong association 

between secondary infection and DHF58, 69-76. NK cells have been shown to be important 

for the development of the adaptive responses to viral infections275, 277, 330, 343 and could 

shape the adaptive responses to DENV. The innate immune response to DENV thus 

deserves more attention. 

 In chapter 4, we showed late activation of NK cells in HLA-B57
+
 KIR3DL1

+
 

subjects during DENV infection. This delay in NK cell activation could hamper the 

development of protective memory CD8
+
 T cell responses to DENV through decreased 

production of cytokines early in infection and delayed maturation of DCs. NK cells 

appear to play a direct role in the development of mature DCs, particularly in the 
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presence of IL-12345. Low levels of IL-12 have been reported in patients with DHF 

compared to healthy control or patients with DF342. Thus NK cell responses may explain 

why secondary CD8
+
 T cell responses to this highly conserved epitope were no greater 

than primary responses in our Thai study cohort346. Additionally, NK cells are important 

for T cell development via the production of IFN-γ, IL-15, and IL-18347. However, it is 

difficult to specifically measure early NK cell responses in DENV patients since they 

present at the hospital several days following infection53, 341. Our data indicate that the 

innate immune response to DENV is more complex and variable between subjects than 

previously appreciated and may have a profound effect on the subsequent development of 

the adaptive immune response. 

 We speculated that increased levels of MHC class I during DENV infection allow 

the inhibitory NS1 epitope to be presented to KIR3DL1
+
 NK cells maintaining inhibition 

of this subset of NK cells during the viremic phase. We hypothesized that the subsequent 

decrease in MHC class I expression to normal levels results in the removal of this major 

inhibitory signal for KIR3DL1
+
 NK cells, making these NK cells easier to activate near 

the resolution of DENV viremia. Not all B57
+
KIR3DL1

+ individuals go on to develop 

DHF. Therefore, additional signals must be involved in the activation of NK cells at 

Fever Day 0. Identifying these signals should be an important focus although it will be 

challenging since the function of many human NK cells receptors and their ligands are 

unknown.  

 The expression of ligands for the activating NK cell receptor NKG2D, include 

MICA and MICB which was associated with symptomatic but not severe cases of DENV 
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in two epidemiological studies92, 93 and MICB which was associated with DSS in a 

genome-wide association study94 have yet to be studied in dengue patients. Studies which 

look at the timing of MIC expression and the subsequent NK cell responses during 

DENV infection should be undertaken. Especially since the close physical association of 

immune genes on Chromosome 6 makes it difficult to use epidemiological and human 

studies to identify the important ligands, receptors, and/or cytokines involved in disease 

pathogenesis and to investigate the relationship between these ligands and receptors. This 

is because many of these genes are located on Chromosome 6 near the MHC I genes and 

are therefore likely in linkage disequilibrium with HLA genes348. A number of cytokines 

are also part of this extended haplotype. We would expect that the expression of NKG2D 

ligands peaks shortly prior to fever day 0 and contributes substantially to NK cell 

activation at fever day 0 in subjects with DHF, but not in subjects with DF.  

 Epidemiological links provide the most logical starting place for future work. 

Differential expression of MIC alleles 349
 raises the possibility that other NK cell ligands 

may be differentially expressed and that these variations may be important in affecting 

dengue disease severity. Despite these challenges attempts should be made to study the 

expression of potential activating ligands on APCs in PBMC from subjects with acute 

DENV infection. The study of known NK cell ligands, especially those identified 

epidemiologically as important, needs to be undertaken for DENV. DENV E protein has 

been reported to bind an activating receptor NKp44216. MICA/MICB and DENV E would 

make reasonable targets for initial analysis of possible activating ligands. 
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 The ongoing DENV vaccine trials could potentially be leveraged to study the 

expression of NK cell ligands and early NK cell frequency and activation status in 

response to DENV infection. Punch biopsies of the injection site would allow the 

evaluation of known ligands on APCs. Vaccine studies also offer the benefit of easy 

access to pre-infection PBMC, and have the advantage of knowing exactly when the 

subject was infected.  

 Certain strains of DENV have been linked to the widespread development of 

severe disease after introduction to a new region, such as occurred in the Americas in 

198181, 82. NK cell interaction with DENV could help to explain some differences seen 

between strains through direct interaction with NK cell receptors. More recently the 

concept of NK cell memory has been widely debated. Data suggesting clonal expansion 

of MCMV-specific NK cells and the presence of NK cells capable of memory responses 

to viral antigens in mice have been reported350, 351. While it is unclear to what extent NK 

cell memory exists in humans and how this memory might be shaped, the high level of 

sequence identity between DENV serotypes suggests the possibility that NK cell memory 

could play a role in secondary responses to DENV infection. This may be difficult to 

evaluate in human subjects. As humanized mouse models improve, it may become more 

feasible to attempt to study NK cell responses to DENV in a humanized mouse system. 

These models could be particularly useful for investigating the possibility of NK cell 

memory responses to DENV infection.  

 There is mounting evidence that NK cells may be able to modulate responses to 

chronic infection not only at early time points but even weeks into the infection275, 276, 333, 339. 
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Our data suggest that NK cells may play a more long-term role in acute infections as 

well. In B57
+
KIR3DL1

+
 individuals, the association between late NK cell activation and 

DHF suggests a role for NK cells in dengue pathogenesis. It is not known if a similar 

phenomenon may be occurring in individuals with other MHC/KIR combinations. Recent 

work by Beltram et al. supports our finding that KIR/HLA interactions affect responses to 

DENV infection. This study identified an epidemiological relationship between a number 

of KIRs and the outcome of DENV infection in a cohort of DENV patients in Brazil139. 

In particular, they determined that individuals who had symptomatic DENV infection 

were more likely to be HLA-Bw4
+
KIR3DL1

+
 compared to healthy controls.  

 Our work is the first, we are aware of, to assess CD71 expression on CD8
+ T cells 

during an acute viral illness. CD71 appears to be a better marker of antigen-specific 

activation compared to CD69 or CD38 since we detected expression primarily on TET
+
 

cells. CD71 has also been recognized as an activation marker for CD4
+
 T cells and B 

cells352-354. While CD71 is occasionally included in activation panels our work suggests 

that CD71 should be considered a more specific marker of activation for T cell studies. 

 This is also the first study to identify tetramer binding to NK cells during DENV 

infection. Based on ex vivo phenotyping of an NK-enriched population, our studies reveal 

an underappreciated role for NK cells in DENV pathogenesis. Future research should 

focus on phenotyping NK cell subsets, in response to natural DENV infection and DENV 

vaccination and consider other HLA/KIR interactions. If the delayed NK cell activation 

we observed in our cohort occurs in all DHF patients regardless of the KIR/MHC 

partnerships present, this would suggest that NK cell responses are an important 
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component in all DHF cases. In contrast, if this delayed activation is only present in 

HLA-B57
+
KIR3DL1

+ donors the data will serve to highlight how variable and complex 

the development of DHF may be. Our work strongly suggests that NK cells play a role in 

the development of DHF and highlights gaps in our understanding of innate immune 

responses to DENV infections. NK cells are a highly dynamic and complex population of 

cells which likely play a larger role in immune responses than once thought. Revisiting 

the role of NK cells during DENV may provide insights into DENV pathogenesis which 

can help shape vaccine and drug development.  
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CHAPTER VI 

APPENDIX 

 

A. The Challenges of Multiparameter Flow Cytometry Analysis 

 Flow cytometry analysis has been one of the great advances in immunological 

studies. The ability to examine individual cells has dramatically increased our 

appreciation for immune cell heterogeneity and has allowed us to ask targeted questions 

about the functions of these diverse populations. However, as the technology advances 

and allows for more and more markers to be studied, the challenge of analyzing this data, 

and presenting the data in an understandable way to others, has become increasingly 

complicated. The use of flow cytometry to study expression of markers also raises 

questions of the extent to which biologically relevant divisions exist. Should markers 

with a broad range of fluorescence intensity be divided into multiple populations? How 

many divisions should be made and how should we decide where the divisions are?  

 By the simplest mathematical reduction, 12 color parameter flow yields 144 

possible two-dimensional plots. In practice, manual gating will begin with the disregard 

of those plots which duplicate another plot or display a parameter versus itself, and the 

process of selecting populations of interest by defining those characteristics for further 

data analysis begins to reduce the number of plots, but still leaves a large amount of data 

to analyze. Practical concerns also abound. The computing power required for these 

studies can be high and new analysis paradigms and new “flow” systems such as CyTOF, 
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mass cytometry, have required creative expansion of computing power and inventive 

programming355.  

 Many options for flow data analysis exist, but they fall basically into two types of 

systems: 1) manual gating of two-dimensional plots as described above or 2) computer 

aided automated analysis that is able to cluster or order individual events for multiple 

parameters simultaneously.  

 A number of well known manual analysis software programs exist including Diva 

(BD Biosciences) and FlowJo (Tree Star). Gating is the process by which the researcher 

chooses the population(s) of interest by manually defining the boundaries of each marker 

included in the study. These programs put no restrictions on how the user defines a 

population of cells. Gating of samples is very subjective and as such the quality of 

analysis is heavily dependent on the experience and opinion of the researcher. Templates 

for analysis help to introduce consistency between researchers356. 

 There are also a number of computer automated analysis programs for high 

dimensional data357. One such platform is Gemstone produced by Verity Software House. 

Gemstone is modeling software that generates, what they term, a probability state model 

(PSM). The idea is, rather than define an event as strictly positive or negative, consider 

the dynamic history of a cell for a given marker. The usefulness of this type of analysis 

paradigm becomes evident when considering the histogram for any marker where 

multiple populations exist but overlap (Figure 6.1 E). Simply dividing this histogram in 

two is unlikely to accurately reflect the biological division. Gemstone utilizes information 

from other surface markers to aid in correctly identifying cells as belonging to the 
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positive or negative state, and those cells which are in the process of transitioning from 

one state to the other.  

 Gemstone can consider as many parameters as required by the researcher. For a 

single parameter the simplest state can be thought of as either positive or negative. Then 

more complex parameters with transition between negative and positive can be added to 

build the model. User input then organizes the data into biologically useful groupings. 

The more biologically relevant data the program is given the more useful the model will 

be. Once you have selected your population of interest, for example CD8
+
 T cells, 

Gemstone allows the simultaneous viewing of all parameters. However, this data may not 

yet provide much insight into how the parameters are coordinated (Figure 6.1A). The 

model can be further refined by adding known relationships to the model. For instance, 

arranging cells along the x-axis with progression from naïve (CCR7
+
/CD45RA

+
) cells at 

the left hand side of the axis to the more terminal CM/EM cells (CCR7
-
/CD45RA

-
) and 

TE (CCR7
-
CD45RA

+
) cells, one is able to see how the expression of other surface 

markers such as CD69 and CD38 (Figure 6.1 B) or CD57 (Figure 6.1 C) varies between 

these populations. Such plots are referred to as ribbon plots. It also becomes apparent at 

what stage rare populations such as TET
+
 T cells emerge (Figure 6.1 C). Once the data 

has been organized by Gemstone, arrows show how markers move through the 

progression from naïve to memory cells on two-dimensional plots (Figure 6.1 D). 

Inokuma et al recently published on the use of PSM for analysis of memory CD8
+
 T-cell 

differentiation allowing the simultaneous viewing of expression levels of seven 

markers299. This paper highlights the usefulness of PSM for modeling kinetic processes. 
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 While Gemstone is automated it is important to remember that the software still 

requires input from the user and that fitting data to a bad model will result in bad data. 

This is not unique to Gemstone, and indeed the robustness of the model developed can be 

determined by standard statistical means and rejected when insufficient number of events 

are classified. Gemstone builds in a statistical readout providing the reduced chi-square 

(RCS) value of data correlation to the generated model.  

 As stated earlier, manual gate creation and placement in flow-cytometric data 

analysis is very subjective356. The use of automated analysis correlates well with expert 

manual gating, but provides for inter-laboratory consistency. This is particularly useful in 

clinical laboratories to improve speed and consistency of analysis358. As the number of 

flow-based diagnostic tests in clinical settings expands, and in the research setting the 

number of markers studied simultaneously increases, the need for automated analysis will 

also increase.  

 The studies presented in this thesis are additionally complicated by the added 

requirement for multiple samples from one individual over the course of disease. This 

makes finding helpful ways of presenting the data for others to quickly and easily 

visualize even more challenging. The apparent ease of visualizing all parameters 

simultaneously, even as ribbon plots, becomes more daunting when confronted with such 

a plot for every time point from every donor. Hence other graphical displays, which 

compile the data, such as graphs of frequency or MFI, are still likely the best endpoint for 

sharing the data with others once an important variable emerges from the data.  
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Figure 6.1. Gemstone Analysis. (A) Expression of CCR7, CD45RA, CD69, CD38, CD71 on 

CD8
+
 T cells before any modeling. (B) Expression of CD69, CD38, and CD71 on CD8

+
 T cells 

after modeling of CCR7 and CD45RA to identify naïve (CCR7
+
, CD45RA

+
 left) and memory 

(CCR7
-
 right) populations across the x-axis. This highlights that CCR7

-
CD45RA

-
 cells are those 

with the highest expression of CD69 and CD38 in this donor at this time point. (C) Modeling of 

CD8
+
 T cells as in B shows that CD57 is expressed mostly on CCR7

-
CD45RA

+
 terminal effector 

memory cells. This also highlights that CD8
+
 T cells which bind B57-NS126-34 TET are memory 

cells in this donor at this time point. (D) Two-dimensional plots in Gemstone show the progression 
of the markers along the x-axis using arrows overlaid on the dot plot. (E) Gemstone, rather than 
dividing the distribution into negative and positive events, uses probability state modeling to 
address the overlap region of the positive and negative peaks to accurately assign cells in this 
overlap region. 
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