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Abstract 

 Human obesity is increasing globally at an impressive rate.  The rise in obesity 

has led to an increase in diseases associated with obesity, such as type 2 diabetes.  A 

major prerequisite for this disease is the development of insulin resistance in the muscle 

and adipose tissues.  Interestingly, experiments in rodent models suggest that 

adipocytes and macrophages can profoundly influence the development of insulin 

resistance.  Accordingly, the number of adipose tissue macrophages increases 

substantially during the development of obesity.  Numerous research models have 

demonstrated that macrophages promote insulin resistance by secreting cytokines, like 

TNFα, which impair whole body insulin sensitivity and adipose tissue function.  

Additionally, enhancements of murine adipose function, particularly glucose disposal, 

prevent the development of insulin resistance in mice on a high fat diet.  Thus, 

mechanisms which enhance adipose function or attenuate macrophage inflammation 

are of interest. 

Our lab previously identified mitogen activated protein kinase kinase kinase 

kinase 4 (MAP4K4) as a potent negative regulator of adipocyte function.  In these 

studies, TNFα treatment increased the expression of adipocyte MAP4K4.  Furthermore, 

the use of small interfering RNAs (siRNA) to block the increase in MAP4K4 expression 

protected adipocytes from some of the adverse effects of TNFα.  Because MAP4K4 is a 

potent negative regulator of adipocyte function, an understanding of the mechanisms by 

which TNFα regulates MAP4K4 expression is of interest.  Thus, for the first part of this 

thesis, I characterized the signaling pathways utilized by TNFα to regulate MAP4K4 
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expression in cultured adipocytes.  Here I show that TNFα increases MAP4K4 

expression through a pathway requiring the transcription factors activating transcription 

factor 2 (ATF2) and the JUN oncogene (cJUN).  Through TNFα receptor 1 (TNFR1), but 

not TNFR2, TNFα increases MAP4K4 expression.  This increase is highly specific to 

TNFα, as the inflammatory agents IL-1β, IL-6 and LPS did not affect MAP4K4 

expression.  In agreement, the activation of cJUN and ATF2 by TNFα is sustained over 

a longer period of time than by IL-1β in adipocytes.  Finally, MAP4K4 is unique as the 

expression of other MAP kinases tested fails to change substantially with TNFα 

treatment. 

 For the second part of this thesis, I assessed the role of MAP4K4 in macrophage 

inflammation in vitro and in vivo.  To accomplish this task, pure β1,3-D-glucan shells 

were used to encapsulate siRNA.  Glucan shells were utilized because they are 

effectively taken up by macrophages which express the dectin-1 receptor and they 

survive oral delivery.  I demonstrate that these β1,3-D-glucan encapsulated RNAi 

particles (GeRPs) are efficiently phagocytosed and capable of mediating the silencing of 

multiple macrophage genes in vitro and in vivo.  Importantly, oral treatment of mice with 

GeRPs fails to increase plasma IFNγ and TNFα or alter serum AST and ALT levels.  

Orally administered GeRPs are found in macrophages isolated from the spleen, liver, 

lung and peritoneal cavity and mediate macrophage gene silencing in these tissues.  

Utilizing this technology, I reveal that MAP4K4 augments the expression of TNFα 

in macrophages following LPS treatment.  Oral delivery of MAP4K4 siRNA in GeRPs 

silences MAP4K4 expression by 70% and reduces basal TNFα and IL-1β expression 
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significantly.  The depletion of MAP4K4 in macrophages protects 40% of mice from 

death in the LPS/D- galactosamine (D-GalN) model of septicemia, compared to less 

than 10% in the control groups.  This protection associates with significant decreases in 

serum TNFα concentrations following LPS/D-GalN challenge.  Consistent with reduced 

macrophage inflammation, hepatocytes from mice treated orally with GeRPs targeting 

MAP4K4 present less apoptosis following LPS/D-GalN treatment.  Thus, MAP4K4 is an 

important regulator of macrophage TNFα production in response to LPS.    

The results presented here add to the knowledge of MAP4K4 action in adipocyte 

and macrophage inflammation substantially.  Prior to these studies, the mechanism by 

which TNFα controlled MAP4K4 expression in adipocytes remained unknown.  

Considering that MAP4K4 is a negative regulator of adipocyte function, identifying the 

mechanisms that control MAP4K4 expression was of interest.  Furthermore, the role of 

macrophage MAP4K4 in LPS stimulated TNFα production was also unknown.  To 

address this question in vivo, new technology specifically targeting macrophages was 

needed.  Thus, we developed a technology for non toxic and highly specific 

macrophage gene silencing in vivo.  Considering that macrophages mediate numerous 

diseases, the application of GeRPs to these disease models is an exciting new 

possibility. 
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CHAPTER I: Introduction 

Normally following an increase in blood glucose levels, pancreatic beta cells 

release copious amounts of insulin into the blood to lower blood sugar levels.  This 

function of insulin is mediated primarily on the 3 major insulin target tissues, the liver, 

adipose and muscle.  In the liver, insulin functions to suppress hepatic glucose 

production by inhibiting glycogenolysis and gluconeogenesis while promoting the 

storage of glucose as glycogen.  In muscle and adipose tissue, insulin promotes the 

facilitated uptake of glucose and the conversion of the sugar to glycogen and 

triglycerides respectively.  The failure of insulin to elicit a proper response on these 

target tissues results in disruption of normal blood sugar levels.           

Until recently, very little regarding the cellular mechanisms of insulin action on 

the target tissues was known.  For more than 50 years after the discovery of insulin by 

Banting and Best, the majority of studies focused on the in vivo effects of insulin on the 

whole body.  Little knowledge existed on the mechanisms of insulin action on targeted 

cells.  However, all this changed upon the discovery of the insulin receptor1,2.  Soon 

investigators realized that the receptor possessed a tyrosine kinase activity3-5.  Since 

then, numerous insights into the intracellular actions of insulin have been made, yet 

much remains to be discovered.     

Insulin Signaling 

The insulin receptor (IR) comprises two extracellular α subunits, and two 

transmembrane β subunits.  Binding of insulin stimulates receptor auto-phosphorylation 
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through the protein tyrosine kinase activity located on the β subunits.  The auto-

phosphorylation event occurs as one β subunit trans-phosphorylates the other.  Auto-

phosphorylation increases the receptor’s catalytic activity over 200 fold6, and allows for 

the recruitment and phosphorylation of adaptor proteins7.  The first adaptor protein 

identified was the insulin receptor substrate-1 (IRS-1), which is recruited through it’s 

pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains8.  Other adaptor 

proteins interact with the insulin receptor, including IRS-2, IRS-3 and IRS-4 along with 

SHC, GAB2, DOCK1/2 , APS and others9-12.  However, work with transgenic mice 

suggests that the majority of insulin’s metabolic effects are mediated by mainly IRS-1 

and IRS-213,14.  Docking of the IRS proteins allows for their tyrosine phosphorylation by 

the IR and the subsequent formation of binding sites for Src-homology-2 (SH2) domain 

containing proteins.  For Insulin action, the most relevant IRS binding proteins are the 

SH2 domain containing regulatory subunits of phosphatidylinositol 3-kinase (PI3K) of 

the class 1A family and the growth factor receptor bound protein 2 (GRB2)7.  These two 

adaptor molecules regulate the two main conduits of insulin action, PI3K and the 

serine/threonine protein kinase B (AKT) and GRB2 and the mitogen activated protein 

kinases (MAPK).  AKT regulates glucose utilization, production and uptake while MAPK 

regulate cell growth, gene expression and differentiation.  The effects of these pathways 

are summarized below and in Figure 1.1. 
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Figure 1.1 The metabolic pathways regulated by insulin action.  Insulin binding the 
insulin receptor (IR) activates the receptor’s tyrosine kinase activity and stimulates the 
tyrosine phosphorylation of the insulin receptor substrate adaptor protein 1 (IRS1).  
Tyrosine phosphorylated IRS1 serves as a docking substrate for phosphatidylinositol 3-
kinase (PI3K) and the growth factor receptor bound protein 2 (GRB2) to activate to 
activate the protein kinase B (AKT) and extracellular-signal regulated kinase (ERK) 
branch of insulin mediated metabolic signaling.  Activation of AKT and ERK results in 
the regulation of the targets and processes indicated in the diagram.  Some of these 
processes are cell type specific, such as the stimulation of glycogen synthesis in muscle 
tissue, triglyceride synthesis in adipose tissue, glucose uptake in adipose and muscle 
tissue and the inhibition of gluconeogenesis in liver tissue.    
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The PI3K/AKT Branch of Insulin Signaling 

The functional PI3K enzyme that mediates insulin action consists of both a 

regulatory and catalytic subunit of Class 1A.  Class 1A PI3K kinases consist of 3 known 

catalytic subunits and 8 regulatory subunits generated from the alternative splicing of 3 

genes, of which multiple isoforms of both subunits are expressed in the insulin sensitive 

tissues15.  The p85α regulatory and the p110β catalytic subunit are the subunits to 

which insulin’s metabolic effects have been attributed7.  The importance of PI3K is 

highlighted by the fact that dominant negative PI3K subunits and the PI3K inhibitors 

LY294007 and wortmanin virtually abolish all of the hormone’s effects16.     

As mentioned earlier, insulin stimulated tyrosine phosphorylation of the IRS 

proteins increases the binding of the PI3K regulatory subunits through two SH2 

domains.  This interaction is necessary for the full activation of the catalytic subunit 17.  

Activated PI3K enzyme phosphorylates phosphatidylinositol (PI) molecules on the 3 

position of the inositol ring.  Particularly important is the phosphorylation of PI (4,5)-

bisphosphate on the 3 position, forming PI (3,4,5)-triphosphate, an important membrane 

docking phospholipid for PH domain containing proteins.  For Insulin action, the two 

most critical PIP3 binding proteins are the 3-phosphoinositide-dependent protein kinase 

1 (PDK1), and AKT.  Interestingly, PDK1 exists in a constitutively active state that is not 

altered by growth factor or hormonal signaling 18,19.  Instead, generation of PIP3 by PI3K 

changes the cytosolic localization of PDK1 to the plasma membrane where PDK1 

readily phosphorylates the activation loop of AKT on T30820.  However, T308 

phosphorylation must be accompanied by phosphorylation of AKT on S473 for full AKT 

activation.  Until recently, the identity of this putative PDK2 has remained a mystery.  
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New data suggests that the rapamycin-insensitive companion of mTOR (RICTOR)-

mammalian target of rapamycin (mTOR) complex may function as PDK2 since genetic 

ablation of RICTOR in mouse muscle impairs the insulin mediated S473 

phosphorylation21,22.   

Upon activation, AKT phosphorylates numerous substrates to control the 

metabolic actions of insulin7.  These include including Rab GTPase activating protein 

(GAP) with a molecular weight of 160 kDal (AS160), the forkhead box o (FOXO) 

transcription factors, glycogen synthase kinase-3 (GSK3), tuberos sclerosis complex 2 

(TSC2), phosphodiesterase 3B (PDE3B) and other proteins to control the metabolic 

actions of insulin7.   

Regulation of Glucose Uptake 

Perhaps the ability of insulin to lower blood sugar levels is the hormone’s most 

commonly recognized function.  Part of this effect is achieved through the facilitated 

uptake of glucose by the insulin sensitive glucose transporter, isoform 4 (GLUT4), 

mainly in muscle tissue23.  The importance of GLUT4 in regulating whole body glucose 

homeostasis is highlighted by numerous genetic mouse models.  Heterozygous, GLUT4 

+/- mice show decreased insulin sensitivity, and a predisposition towards diabetes24.  

However, this defect can be overcome simply through muscle specific GLUT4 over-

expression25.  Furthermore, in normal mice, adipose and muscle tissue specific over-

expression of GLUT4 protects from diet induced diabetes26,27.  Conversely, specific 

depletion of GLUT4 in mouse adipose or muscle tissues results in glucose intolerance 

and diabetes28,29.  Despite the success of rodent studies in demonstrating the 
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importance of GLUT4 in maintaining glucose homeostasis, studies in cellular models 

were needed to determine the mechanistic effects of insulin on GLUT4.  

Interestingly, insulin regulates GLUT4 plasma membrane translocation through a 

PI3K/AKT signaling mechanism.  Pharmacological and dominant negative inhibitors of 

PI3K have demonstrated the requirement of PIP3 for GLUT4 translocation30-32.  Thus, 

the targets downstream of AKT controlling GLUT4 translocation remain an area of 

intense investigation.  Recent work has recognized the RAB GAP, AS160, as a 

downstream target of AKT that regulates GLUT4 translocation33.  Members of the Ras 

superfamily of monomeric G-proteins (RAB) are the functional regulators of intracellular 

vesicle trafficking34.  Studies suggest that AS160 may retain GLUT4 in an intracellular 

compartment until insulin activates AKT.  Active AKT then phosphorylates and 

inactivates AS160.  Supporting this model, AS160 depletion by RNAi resulted in higher 

basal levels of GLUT4 on the adipocyte plasma membrane35,36.  However, other AKT 

substrates that regulate GLUT4 retention must exist as knockdown of AS160 only 

released part of the GLUT4 intracellular pool35,37.   

Regulation of Glycogen Synthesis by Insulin 

Upon uptake, glucose is converted to glycogen in muscle and liver by the 

enzyme glycogen synthase (GS).  GS is activated by glucose-6-phosphate and also by 

insulin within minutes of the hormone binding it’s receptor38.  Activation of GS was the 

first demonstration of a metabolic enzyme being affected by insulin39,40.  The conversion 

of glucose to glucose-6-phosphate by hexokinase (muscle) and glucokinase (liver) 

occurs simply by the cellular uptake of glucose by cells.  However, upon activation by 

insulin, GS transforms from a highly phosphorylated, low activity form, to a poorly 
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phosphorylated, but highly active form.  Interestingly, the low phosphorylated isoform is 

less dependent on glucose-6-phosphate for activity41.  Insulin activates GS through the 

phosphorylation of glycogen synthase kinase 3 (GSK3) by AKT in muscle42.  The AKT 

phosphorylation inhibits GSK3 activity, causing a decrease in the phosphorylation state 

of GS and a subsequent increase in muscle glycogen synthesis following insulin 

stimulation.  Interestingly, phosphorylation of GSK3 by AKT is not the major mechanism 

driving GS activation in liver.  Instead, dephosphorylation of GS stimulates liver 

glycogen production43.   

The dysregulation of GS may be an important feature in type 2 diabetes as 

diabetic humans have a dramatic suppression of hepatic glycogen synthesis.   Potent 

inhibitors of GSK3 reduce rodent blood glucose levels, primarily by increasing hepatic 

glycogen synthesis and decreasing gluconeogensis44.  Thus, enhancing GS activity 

remains a potential therapeutic target for improving glucose metabolism.    

FOXO Regulation of Metabolic Gene Transcription  

The FOXO transcription factor family regulates genes critical to metabolism in all 

metazoans.  In addition to metabolic gene regulation, the 4 mammalian homologues, 

designated FOXO1, FOXO3a, FOXO4 and FOXO6, also regulate other diverse 

processes, including cell cycle, apoptosis, DNA repair and oxidative stress45,46.  Under 

basal conditions, the FOXO transcription factors actively promote the transcription of 

target genes.  However, upon insulin stimulation, AKT phosphorylates the FOXO 

proteins, leading to their rapid exclusion from the nucleus and inactivation47.   
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FOXO regulation by AKT controls the expression of gluconeogenic and lipogenic 

gene expression during fed and fasted periods.  Although, all metabolic tissues require 

the regulation of FOXO for normal functioning, FOXO regulation by AKT in the liver is 

also important in controlling blood glucose levels.    Hepatocytes upregulate 

gluconeogenesis by increasing the expression of essential gluconeogenic enzymes, 

such as glucose-6-phosphatase, fructose-1,6-bisphosphatase and 

phosphoenolpyruvate carbokinase48.  The increase in expression of these enzymes is 

achieved in part by FOXO1 during periods of reduced insulin/AKT signaling.  In 

agreement, deficiency of the FOXO1 gene in mice improves insulin sensitivity through a 

reduction of hepatic glucose output caused by the reduced expression of gluconeogenic 

genes49,50.  Conversely, expression of constitutively active FOXO1 in hepatocytes 

increases gluconeogenic gene expression, elevates blood glucose and insulin levels, 

resulting in a failure to maintain euglycaemic in mice51.   

In the adipose and muscle tissues, FOXO transcription also promotes a 

metabolic switch during periods of fasting.  In adipose tissue, FOXO1 suppresses the 

promoter of peroxisome proliferator-activated receptor gamma (PPARγ) and hinders 

PPARγ target gene transcription52,53.  In muscle, the FOXO proteins regulate the switch 

from carbohydrate fuel sources to fatty acids during fasting54,55.  Altogether, 

dysregulation of FOXO in any of these tissues, due to decreased insulin signaling, can 

potentially have drastic effects on metabolic gene expression.             

TSC2 and mTOR Nutrient Sensing and Control of Cell Growth  

 The ability to sense the nutritional status and thus the proper time for cell growth 

is vital for cell survival.  The sensing of nutritional state is partly mediated by insulin 
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through the phosphorylation of TSC2 by AKT56-58.  This phosphorylation event is 

required for the insulin growth signal, as mutation of the phosphorylation sites blocked 

the ability of insulin to stimulate cell growth57,58.  Under basal conditions, the GAP 

domain of TSC2 promotes the hydrolysis of GTP by RHEB, a member of the Ras super 

family59.  In this manner, TSC2 exists in a complex with TSC1, RHEB and mTOR 

suppressing mTOR activity.  However, upon AKT phosphorylation, the TSC complex is 

inactivated allowing for the activation of mTOR. 

 Downstream of mTOR, two targets are crucial for the regulation of cell growth 

and size.  The first target, elongation initiation factor 4E binding protein (eIF4E-BP), 

inhibits translation by binding eIF4E.  Active mTOR phosphorylates several sites on 

eIF4E-BP, thus relieving the inhibition of protein translation60.  The second target 

important in cell growth is the p70 ribosomal protein S6 kinase (p70S6K).  The 

phosphorylation of p70S6K by mTOR increases the activity and subsequent 

phosphorylation of the downstream ribosomal protein target S6.  Interestingly, the 

phosphorylation of S6 does not affect translation but instead seems to determine cell 

size as mutation of the mTOR phosphorylation sites failed to elicit any changes in 

translation 61.  Furthermore, in this report, the authors demonstrate that rapamycin 

treatment failed to further decrease cell size in the S6 mutant cells, implying that S6 

regulates cell size, but not translation.   

Insulin Regulation of Lipolysis through PDE3B 

 The release of free fatty acids (FFAs) by adipose tissue is an important metabolic 

parameter regulated by PI3K/AKT signaling.  For example, following an overnight fast, 

more than 70% of the total body expenditure can be accounted for by lipid oxidation62.  
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It is during periods of fasting that catecholamines stimulate adrenoreceptors which in 

turn activate adenyl cyclase and increase intracellular cAMP levels.  The increase in 

cAMP activates the cAMP regulated protein kinase A (PKA) which phosphorylates and 

stimulates hormone sensitive lipase (HSL).  Active HSL catalyzes the conversion of 

stored triglycerides to glycerol and FFAs63.  However, the production of FFAs by 

adipose tissue is not required during the fed state.  Furthermore, FFA production must 

be tightly regulated as an excess of FFAs has been associated with insulin signaling 

and metabolic defects that will be discussed later in this chapter64.  To balance FFA 

release, insulin activation of PI3K promotes the AKT induced phosphorylation of PDE3B 

during the fed state65.  Phosphorylated PDE3B hydrolyzes cAMP and thus reduces 

intracellular cAMP levels and HSL activity.  The net result is a switch from triglyceride 

hydrolysis to triglyceride synthesis during periods of nutritional excess.  Disruption of 

this signaling cascade is a major contributor to the elevated levels of FFAs observed in 

diabetic patients63.        

Other AKT Targets  

 The AKT targets discussed above are of immense importance to metabolic 

disease.  However, other targets do exist whose importance may be less defined for 

metabolic disease.  These include the phosphorylation and subsequent inactivation of 

the pro-apoptotic BCL2 protein BAD, the phosphorylation of endothelial nitric oxide 

synthase which is thought to increase its activity and promote healthy vascular 

endothelium, and the phosphorylation of p21cip to promote cell cycle progression66-68.  

Undoubtedly, more targets of AKT exist that may have an even more profound impact 
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on metabolism than the targets discussed above.  Future work will no doubt highlight 

the importance of these new targets. 

Insulin Activation of Mitogenic Gene Expression 

 GRB2, an SH2 motif containing adaptor protein, is recruited to the IRS proteins 

following insulin induced tyrosine phosphorylation69.  GRB2 constitutively associates 

with the guanine nucleotide-exchange factor son of sevenless (SOS), which catalyzes 

the exchange of GDP for GTP in the membrane bound GTPase RAS70.  GTP bound 

RAS recruits and activates the kinase (v-raf-leukemia viral oncogene 1) RAF1.  

Activated RAF1 starts a serine and threonine phosphorylation cascade that begins with 

the phosphorylation and subsequent activation of mitogen activated protein kinase 

kinases 1 and 2 (MEK1/2).  Activated, MEK1/2 then phosphorylates and activates the 

extracellular-signal regulated kinases 1 and 2 (ERK1/2)71.  ERK1/2 in turn 

phosphorylates numerous substrates, including the ternary complex factor ETS family 

members like ELK1.  These transcription factors complex with serum response factors 

and promote the expression of genes containing serum response elements.  Typically, 

these gene products promote cellular growth and proliferation72,73.  Additionally, 

activation of ERK1/2 promotes cellular growth and proliferation through activation of p90 

ribosomal S6K (p90S6K).  Activated p90S6K stimulates protein synthesis through the 

phosphorylation of the ribosomal S6 subunit.  The mitogenic effects of insulin on 

ERK1/2 are conserved among numerous growth receptor signals in virtually all cells73.  

Thus, through the activation of the ERK signaling pathway, insulin further promotes cell 

growth, proliferation and differentiation. 
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 Insulin Resistance 

 Insulin resistance is the failure of insulin to modulate the signaling pathways 

discussed above.  In adipose tissue, insulin resistance results in decreased triglyceride 

synthesis in response to insulin and increased FFA release.  In muscle tissue, the 

primary defects are reduced insulin stimulated glucose uptake and storage as glycogen.  

Insulin resistance also fails to switch hepatocytes from glucose production to glycogen 

synthesis.  The net result is an increase in serum FFAs and the dysregulation of blood 

glucose levels.  If left unchecked, insulin resistance progresses towards type 2 diabetes.   

 Numerous agents and conditions cause insulin resistance in both humans and in 

rodent models.  These include septicemia, acidosis, chronic inflammation, elevated 

FFAs, obesity and drugs such as glucocorticoids74-77.  However, most of these causes 

are unique clinical conditions that fail to represent the majority of instances of insulin 

resistance.  In fact, obesity correlates the most frequently with insulin resistance63.  

Interestingly, obesity associates with other factors that cause insulin resistance, such as 

elevated serum, muscle and liver tissue FFA levels, and chronic low grade 

inflammation.  Although the exact basis of insulin resistance in obesity remains only 

partly understood, much work has elucidated some common themes that can be applied 

to humans.  The pathways discussed below and summarized in Figure 1.2 contribute 

significantly to the development of insulin resistance. 
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Figure 1.2 Intracellular signaling pathways contributing to inflammation and 
insulin resistance.  Two major pathways for insulin resistance are the activation of 
cJUN N-terminal Kinases 1/2 (JNK1/2) and IKKβ and NFκB transcription.  Both of these 
pathways regulate cytokine expression and inflammation in macrophages and 
adipocytes.  While the primary role of JNK1/2 is thought to be the phosphorylation of 
IRS1/2, new data suggests that deletion of JNK1 in hematopoietic cell types influences 
cytokine expression.   Additionally, IKKβ mediated gene transcription causes localized 
hepatic insulin resistance.  The protein kinase C theta (PKCθ) and episilon (PKCε) 
isoforms contribute to free fatty acid (FFA) induced insulin resistance in muscle and liver 
respectively, by phosphorylating IRS1 on serine 307 which inhibits IRS1 association 
with the IR.  Both JNK and IKKβ are also capable of phosphorylating S307.   
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Serine Phosphorylation of IRS proteins 

 Serine phosphorylation of the IRS proteins is a major contribution to insulin 

resistance.  Numerous protein kinases, to be discussed in the upcoming text, 

phosphorylate IRS-1 on serine residues.  These include, the cJUN n-terminal Kinase 

(JNK)78, the inhibitory κ B Kinase β (IKKβ)79, protein kinase C θ (PKCθ)80, GSK3, 

mammalian target of rapamycin complex‑1 (mTORC1) and p70S6K81, which all 

phosphorylate various serine residues of the IRS proteins.  In particular, S307 is a 

commonly targeted residue that correlates negatively with insulin sensitivity8,9.  

Phosphorylation of this residue disrupts the interaction of IRS1 with the IR.  However, 

numerous other serine residues exist, including serine 302, 318, 612 and others, whose 

phosphorylation is caused by agents that regulate insulin sensitivity 82.   

The Effects of FFAs on Insulin Resistance 

 Elevated serum FFAs, commonly observed in obese individuals83,84, are linked to 

numerous disease including type 2 diabetes, hypertension, dyslipidaemia, 

hyperuricaemia and abnormal fibrinolysis85-87.  In fact, elevated serum FFAs are often 

indicative of insulin sensitivity in diabetic individuals88,89. Further highlighting the link 

between obesity-elevated serum FFAs and insulin resistance is the fact that over 80% 

of type 2 diabetics are obese and have elevated serum FFAs90. 

 Interestingly, lipid infusion into healthy humans for 3-4 hours causes whole body 

insulin resistance91.  The effects of these lipids on whole body insulin sensitivity is 

mediated by slightly different mechanisms in the liver and muscle tissues92.  FFA 

accumulation in muscle, by either increased FFA uptake and/or decreased 

mitochondrial FFA oxidation, decreases insulin stimulated tyrosine phosphorylation of 
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IRS1, PI3K activity and insulin stimulated GLUT4 translocation64.  As mentioned earlier, 

insulin stimulated tyrosine phosphorylation of IRS1 by the IR is reduced by agents that 

cause insulin resistance.  Effectively, the serine phosphorylation reduces insulin 

signaling by inhibiting the association of IRS1 with the IR8,9.  In muscle, studies suggest 

that protein kinase theta (PCKθ) phosphorylates IRS1 in response to FFA 

accumulation85.  In agreement, knockout of PKCθ prevented the FFA induced 

reductions of both IRS1 tyrosine phosphorylation and PI3K activity80.   

FFAs cause insulin resistance by a slightly different mechanism in hepatocytes.  

Interestingly, the infusion of FFAs into healthy humans increases liver glucose 

production during hyperglycemic, insulinopenic clamps93.  However, this effect was lost 

in individuals fasted overnight94,95.  Further work demonstrated that elevated FFAs 

induced insulin secretion in fasted individuals, thus countering the effects of FFAs on 

gluconeogenesis.  Hence, FFAs were able to increase hepatic glucose production in 

fasted individuals by maintaining fasting insulin levels in humans with a somatostatin-

insulin infusion96.  

 Similar results were observed in rats fed a high fat diet for only 3 days in which 

hepatic lipid accumulation caused liver, but not muscle insulin resistance97.  In these 

studies, PKCε  negatively regulated the IR tyrosine kinase activity and thus the tyrosine 

phosphorylation of IRS297.  Although, the mechanistic data presented in these studies 

are correlative, the role of PKCε appears correct, as anti sense attenuation of PKCε 

expression blocked the ability of fatty acids to suppress insulin signaling despite 3 days 
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of high fat diet98.  Thus, although FFAs cause insulin resistance in hepatocytes and 

muscle tissues, different PKC isoforms mediate the effect.    

 Overall, the data suggests that elevated serum FFAs contribute to the 

development of insulin resistance.  However, data in humans suggests that FFAs only 

partially drive insulin resistance.  In agreement, elevated serum FFAs fail to correlate 

with insulin resistance and enhanced hepatic glucose output in non-diabetic obese 

humans as they do in type 2 diabetics99.  Additionally, studies in rats utilizing anti-

lipolytic agents potently lowered serum FFA levels, blood glucose levels and improved 

insulin sensitivity100.  However, in humans different results were obtained.   Treatment 

with Acipomox, an anti-lipolytic agent, decreased serum FFA levels and improved 

insulin sensitivity in obese non-diabetic subjects.  On the other hand, in obese diabetic 

individuals, Acipomox failed to substantially improve insulin sensitivity, despite reducing 

serum FFAs101.    Thus, although the accumulation of FFA in peripheral tissues plays a 

significant role in insulin resistance, additional factors must also contribute to insulin 

resistance in humans. 

Inflammation and Metabolic Disease 

 Over a century ago, high doses of anti-inflammatory sodium salicylate were 

demonstrated to reduce glucose secretion in the urine of patients who were likely type 2 

diabetic and insulin resistant74,102,103.  This effect of salicylates was rediscovered in 1957 

when a high dose of aspirin was used to treat an insulin dependent diabetic for arthritis 

associated rheumatic fever.  Amazingly, the patient became euglycaemic and no longer 

needed insulin.  However, upon discontinuation of aspirin treatment the patient’s ability 

to regulate blood glucose levels reversed to pretreatment conditions104.  A mechanistic 
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understanding of how salicylates regulated glucose disposal was not available as these 

early studies focused on insulin secretion and not on insulin resistance74,105.  Not until 

the start of the 21st century were salicylates shown to mediate their effects on insulin 

sensitivity by inhibiting the inhibitory κ B Kinase β (IKKβ)106,107.  Since these studies, 

numerous groups have demonstrated the correlation between inflammatory mediators 

and insulin resistance in humans108,109.  Furthermore, by utilizing rodent models, the role 

of inflammation in the development of insulin resistance is now beginning to be 

understood74,77.     

The Effects of Cytokines on Insulin Resistance 

 The discovery that tumor necrosis factor α (TNFα) was over expressed in rodent 

models of obesity and in humans provided the first mechanistic link between obesity 

and inflammation110-112.  Later work confirmed that TNFα impaired insulin signaling in 

adipocytes by decreasing IR and IRS tyrosine phosphorylation113,114.  Furthermore, 

neutralization of TNFα in obese rats improved insulin sensitivity and lowered plasma 

glucose and lipid levels115, while deletion of TNFα116, or the TNFα receptors117 in mice 

protected against diet induced obesity and insulin resistance.  Surprisingly, the same 

results were not observed in humans as early studies neutralizing TNFα failed to 

improve insulin sensitivity118,119.  These studies were limited by small sample sizes, 

single injections and a failure to demonstrate that the antibodies properly attenuated 

TNFα action.  Since these studies, patients receiving regular TNFα neutralization to 

combat rheumatoid arthritis demonstrated improved glycaemia which reverted upon the 

completion of treatment120,121.   
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The regulation of insulin signaling is not the only mechanism by which TNFα 

drives insulin resistance.  TNFα also functions to lower the transcriptional levels of 

mRNAs associated with improved insulin sensitivity and lipogenesis in adipocytes and 

hepatocytes122,123.  These studies demonstrated that TNFα infusion favors the 

expression of lipolytic and cytokine gene expression in adipose tissue, while favoring 

genes involved in cholesterol and lipid synthesis in hepatocytes123.  Furthermore, TNFα 

robustly stimulates lipolysis, causing an enhancement of serum FFAs124,125.  Despite the 

potent effects of TNFα on muscle insulin sensitivity, few changes were observed in 

muscle gene expression114,115,123. 

 Since the identification of TNFα as a mediator of insulin resistance, investigators 

have identified other cytokines that modulate insulin action.  These include, interleukin 1 

beta (IL-1β), interleukin 6 (IL-6), monocyte chemo-attractant protein 1 (MCP1), and 

others (for complete review see126).  Through diverse mechanisms, these cytokines 

regulate insulin signaling and insulin sensitivity in rodent models.   

 IL-1β is one of the least studied cytokines in terms of its regulation of insulin 

signaling and cell metabolism.  Similarly to TNFα, IL-1β is produced by monocytes and 

macrophages, and increases in expression during obesity127.  The expression level of 

IL-1β also correlates well with insulin resistance128.  More recently, investigators have 

examined the effects of IL-1β on insulin signaling and metabolism in cultured cell 

models.  Interestingly, IL-1β also negatively regulates insulin stimulated glucose 

transport in cultured adipocytes.  Unlike TNFα, IL-1β seems to affect both the tyrosine 

phosphorylation and the expression levels of IRS-1 but not IRS-2.  IL-1β also does not   
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alter adipocyte gene expression significantly.  The levels of the adipocyte transcription 

factors peroxisome proliferator activated receptor gamma (PPARγ) and 

CCAAT/enhancer binding protein alpha (C/EBPα) remain unchanged despite IL-1β 

treatment129,130.  Thus, in adipocytes it appears that IL-1β utilizes slightly different 

mechanisms to impair insulin sensitivity than TNFα.       

IL-6 is the most controversial cytokine in terms of its role in insulin resistance.  

Studies in hepatocytes demonstrated that IL-6 is capable of suppressing insulin 

signaling by inducing the suppressor of cytokine signaling 3 protein131.  Interestingly, IL-

6 functions as a potent lipolytic agent in adipose tissue, possibly to increase FFA 

availability for muscle oxidation during exercise132,133.  In elderly human muscle, IL-6 

administration actually increased glucose uptake133.  However, acute administration of 

IL-6 to mice decreases insulin stimulated glucose uptake in skeletal muscle, and 

increases hepatic glucose output134.  The opposite effect is observed in IL-6 deficient 

mice which become obese and insulin resistant, perhaps due to increased leptin and 

TNFα levels, and potential leptin resistance that is partially reversed through IL-6 

administration135.  Conversely, over expression of IL-6 in mice causes insulin resistance 

and obesity136.  Thus more work is required to identify the exact role of IL-6 on insulin 

sensitivity. 

Recent work has highlighted the importance of MCP-1 in obesity and insulin 

resistance.  In adipose tissue, the production of MCP-1 correlates remarkably well with 

obesity, resulting in the recruitment of macrophages to adipose tissue in both humans 

and in mice137-140.  In agreement, the number of macrophages in adipose tissue 
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increases from 5-10% in lean, to over 50% in obese individuals141.  Interestingly, the 

macrophage content of adipose tissue is a dynamically regulated process as weight 

loss following bariatric surgery is followed by equivalent losses of adipose tissue 

macrophages142.  In mice, the over expression of MCP-1, specifically in adipose tissue, 

increases adipose macrophage infiltration, serum FFA levels and decreases insulin 

sensitivity in liver and skeletal muscle143,144.  Interestingly, the genetic deletion of MCP-1 

fails to prevent diet induced obesity and insulin resistance145 while the deletion of the 

MCP-1 receptor did prevent insulin resistance, macrophage accumulation in adipose 

tissue and preserves insulin sensitivity146.  These discrepancy may be due to other MCP 

family ligands (MCP-2, 3, 4 or 5) which may bind the MCP-1 receptor and may stimulate 

the macrophage recruitment to adipose tissue147-150.     

 Other cytokines and inflammatory mediators undoubtedly influence insulin 

signaling and metabolism in the peripheral tissues and cells.  These include IL-18, 

monocyte colony stimulating factor, plasminogen activator inhibitor 1, C-reactive protein 

and others.  However, their roles remain less well defined.   Without question, more 

cytokines remain to be identified that will play a role in insulin signaling and peripheral 

tissue glucose metabolism.  

Promotion of Insulin Sensitivity and Resistance by Adipokines 

 It is commonly recognized now that adipose tissue functions as a secretory organ 

that produces both cytokines, such as TNFα, that cause insulin resistance, and 

beneficial agents that improve insulin sensitivity.  Leptin was the first adipose specific 

secretory protein discovered to have an effect on whole body metabolism151.  Since 

then numerous adipokines (adipocytes derived cytokines) have been identified152,153.  
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Remarkably, leptin regulates whole body metabolism by reducing food intake while 

simultaneously increasing energy expenditure through hypothalamic sympathetic 

nervous signaling154,155.  Furthermore, leptin expression increases dramatically in 

obesity suggesting that increased leptin secretion during obesity may function as a 

negative feedback mechanism to reduce adiposity156,157.  Despite this elegant 

mechanism to control adiposity, resistance to the actions of leptin develops during 

obesity.  

 Unlike leptin expression, the expression of adiponectin decreases during 

obesity158,159.  Interestingly, adiponectin’s effects are pleiotropic as exogenous 

adiponectin lowers hepatic glucose production160,161, increases muscle glucose uptake 

and fatty oxidation162, decreases body weight and adipose mass through neuronal 

regulation163, decreases serum FFA levels164 lowers blood pressure165 and protects 

against myocardial infarction166,167.  To mediate these functions, adiponectin activates 

the 5’amp activated protien kinase (AMPK)167-169.  AMPK regulates numerous 

intracellular substrates to produce a net effect which includes increased muscle FFA 

oxidation and glucose uptake, increased liver FFA oxidation, decreased 

gluconeogenesis, decreased lipogenesis and cholesterol synthesis and FFA release 

from adipose tissue.170    

 Other adipokines exist that effect insulin resistance and glucose metabolism.  

One example is resistin which results in acute hepatic, but not peripheral insulin 

resistance171.  Gene deletion of resistin lowers hepatic glucose production and fasting 

blood glucose levels172 while overexpression of resistin increases fasting blood glucose 

levels and decreases glucose tolerance173.  However, resistin may not be a true 
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adipokine as in humans, resistin is produced primarily by the stromal vascular cells of 

adipose tissue174, raising questions as to whether resistin is a true adipokine or actually 

a cytokine.  A more recently described adipokine is retinol binding protein 4 (RBP4).  

Interestingly, the elevation of serum RBP4 levels in mice causes insulin resistance while 

decreasing RBP4 function enhances insulin sensitivity175.  Because of the effects on 

whole body insulin sensitivity, the cellular functions of RBP4 remain an area of active 

research. 

 Overall, the adipokines and cytokines described above greatly influence insulin 

sensitivity and cellular metabolism.  Interestingly, both macrophages and adipocytes 

produce many of these molecules to influence whole body glucose homeostasis.  

Therefore, studies of adipocyte and macrophage function can offer insights into 

improving metabolic disease.   

The Mediation of Insulin Resistance by Inflammatory Signaling  

 Inflammation is mediated primarily by two major signaling conduits, the JNK1/2 

and nuclear factor κ B (NFκB) pathways.  Other pathways are also activated by 

inflammatory stimuli, such as the p38 stress activated protein kinases (p38 SAPK), 

ERK1/2, aPKC and others.  However, JNK and NFκB represent the two most studied, 

and perhaps potent, inflammatory signaling cascades in terms of insulin signaling 

regulation. 
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JNK and Insulin Resistance 

 The JNK family of protein kinases, phosphorylate the activator protein 1 (AP-1) 

transcription factor family in response to intracellular stresses176.   These stresses, 

including ultra-violet light, reactive oxygen species, certain cytokines and osmotic stress 

activate JNK through a complex series of cell and stimulus specific events.  Typically, 

the action of JNK is similar to ERK activation as a number of upstream kinases initiate a 

phosphorylation cascade that ultimately leads to JNK phosphorylation and activation.  

The kinases, MAPK Kinases 4 and 7(MKK4 and MKK7), phosphorylate the activation 

loop of JNK, preferentially on a tyrosine and threonine residue respectively177,178.  

However, despite this preference, both kinases are capable of phosphorylating the 

tyrosine and threonine residue.  This phosphorylation event culminates with JNK 

activation and phosphorylation of targets such as cJUN, ATF-2, BCL-2 and other 

transcription factors and cytosolic protein targets176.  Inactivation of JNK is achieved 

through dephosphorylation mediated by serine, threonine and dual specificity 

phosphatases that dephosphorylate both the threonine and tyrosine residues179.  

 Upstream of MKK4 and MKK7 a more complex picture emerges as numerous 

upstream kinases including transforming growth factor-β activated kinase, the mixed 

lineage kinases, the activator of S-phase kinases and the MAPK/extracellular regulated 

kinases can activate MKK4 and MKK7180.  These upstream MAPKKK are capable of 

being activated by tyrosine kinase receptors through RHO GTPases181,182, and through 

interactions with receptor adaptor proteins such as TNFα receptor associated factor 

2180.    Interestingly, the sterile 20 protein kinase family, and in particular MAP4K4/NIK 
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has been implicated in JNK activation and will be discussed in more detail later183,184.  

Further complicating the issue, JNK activating signaling cascades assemble on 

numerous scaffolding proteins, depending on the stimulus, to create local JNK signaling 

environments with in the cell185.  Thus, considering the vast number of potential 

upstream kinases and scaffolding proteins that potentially regulate JNK, understanding 

the regulation JNK in response to various stimuli can be complex.  

 As mentioned earlier, in obesity the expression of inflammatory cytokines like 

TNFα increases in adipose tissue110,111 which are capable of increasing JNK activity.  In 

diet induced and genetic leptin deficient (ob/ob) obese mice, JNK activity is 

increased186.  Interestingly, both IRS1 and IRS2 possess JNK binding domains, and are 

capable of being phosphorylated by JNK.  Similar to PKCθ, JNK readily phosphorylates 

IRS1 at S307, resulting in the disruption of the IR and IRS interaction and preventing 

the tyrosine phosphorylation of IRS178.  This phosphorylation event is mediated by 

JNK1, as JNK1 deficient rodents, but not JNK2 null mice were protected from high fat 

diet induce insulin resistance and IRS1 S307 phosphorylaiton186.  Furthermore, these 

JNK1 deficient mice were protected from high fat diet induced obesity and adipose 

tissue expansion.  Interestingly, JNK1 deficiency, in hematopoietic cells, protects mice 

from the induction of inflammatory cytokines (TNFα, IL-6 etc.) commonly observed from 

high fat diet treatment, without effecting weight gain or adiposity.  Conversely, in these 

same studies the authors show that JNK1 deficiency in non-hematopoietic cells protects 

mice from the adipose tissue expansion in response to a high fat diet, thus keeping the 

mice leaner187.  Hence, JNK signaling plays a significant role mediating the 

development of obesity and obesity derived inflammation and insulin resistance.  
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Furthermore, enhanced JNK signaling promotes adipose dysfunction and macrophage 

inflammation in obesity.                           

IKKβ and NFκB Induced Insulin Resistance 

 The NFκB family of transcription factors consists of 5 members noted, p65(RelA), 

RelB, c-Rel, p50 and p52.  In the canonical NFκB signaling pathway, inflammatory 

stimuli, such as tumor necrosis factor α (TNFα), activate IKKβ which subsequently 

phosphorylates the inhibitor-κ B protein (IκB).  Following, IKKβ phosphorylation, IκB 

undergoes proteasomal degradation, freeing the NFκB transcription factors p65/p50 for 

nuclear localization and the transcription of cytokines, pro and anti-apoptotic factors, 

growth factors and cellular adhesion molecules188.  IKKβ exists in a complex with the 

highly homologous IKKα and the non-catalytic IKKγ subunits189.   IKKα activates a 

second NFκB pathway dubbed the alternative pathway by phosphorylating p100.  

Following phosphorylation, p100 is ubiquitinated and partially degraded by the 

proteasome, producing p52190.  The active RelB/p52 heterodimer translocates to the 

nucleus inducing transcription of NFκB target genes that are important in B cell and 

secondary lymphoid organ development.    

 Unlike IKKα, IKKβ plays a central role in the development of insulin resistance.  

Interestingly, salicylate treatment improves insulin sensitivity in rodent models of obesity 

and insulin resistance through IKKβ inhibition106.  In these same studies, the authors 

showed that the heterozygous deletion of IKKβ protects against the development of 

insulin resistance in high fat diet and leptin deficient mice.  Furthermore, heterozygous 

deletion of IKKβ also protects from the negative effects of acute FFA on insulin 
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sensitivity191.  One postulated mechanism is the phosphorylation of IRS-1 on 

S30779,192,193.  In IKKα/β null embryonic fibroblasts the phosphorylation of IRS-1 S307 is 

reduced193.  However, the in vivo relevance of this interaction is questionable, as 

expression of a dominant inhibitory IκBα mutant in hepatocytes completely prevented 

the insulin resistance caused by liver specific constitutive IKKβ activation194.  In these 

same double transgenic mice, the authors also show that inflammatory cytokine 

expression, such as IL-6, is reduced suggesting that the primary effect of IKKβ inhibition 

in the liver is the prevention of inflammatory gene expression74.  NFκB also mediates 

TNFα repression of lipogenic gene expression and the enhancement of cytokine 

expression in adipocytes122.  Additionally, deletion of IKKβ in myeloid cells prevents 

systemic insulin resistance and maintains glucose sensitivity in rodents on a high fat 

diet195.  In these same studies, knockout of IKKβ, specifically in hepatocytes maintains 

liver insulin sensitivity despite the development of insulin resistance in the muscle of diet 

induced obese mice.  This suggests that inactivation of IKKβ in the liver affects only 

local insulin sensitivity.   Thus, IKKβ represents a crucial kinase in the regulation of 

systemic and local tissue insulin resistance.        

Toll Like Receptor Mediated Inflammation  

 The Toll-like receptor (TLR) family represents a basic defense system of the 

innate immune system against infection.  TLRs belong to a class of receptors that are 

stimulated by pathogen-associated molecular patterns 196.  The first TLR discovered 

was shown to be essential for embryonic dorsal-ventral patterning in Drosophila197.  

Years later, the receptor was revealed to have an essential role in the innate immune 
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response of insects against fungal infections198.  Since then 10 mammalian 

homologues, denoted TLR1-10, have been discovered that mediate key aspects of the 

mammalian innate immune response.  These include the recognition of double stranded 

viral RNA by TLR3 and gaunosine/uridine rich viral single stranded RNA by TLR7/8.  

Additionally, TLR9 recognizes unmethylated cytosine and guanosine motifs in viral 

DNA, while bacterial peptidoglycan and lipoteichoic acid are recognized by TLR2/6 and 

bacterial flagellin by TLR5199,200.  Although all of the TLRs activate a similar intracellular 

signaling cascade to stimulate cytokine and interferon production, the best 

characterization of these signaling events has been done in the lipopolysaccharide 

(LPS) sensing TLR4. 

TLR4 Signaling 

 LPS consists of three components, lipid A, a core oligosaccharide and an O side 

chain of which the lipid A portion is the most potent stimulator of TLR4.  Gram negative 

bacteria utilize LPS as an essential component of their cell wall, making the molecule a 

general marker of bacterial infection for the immune system201.  LPS is unable to bind 

TLR4 alone and requires several interacting molecules including LPS binding protein 

(LBP), CD14 and lymphocyte antigen 96 (MD-2)199.  Soluble LBP binds LPS and 

facilitates the association of LPS with CD14202.  In turn, CD14 transfers LPS to 

TLR4/MD-2 to modulate LPS recognition203.  Current data suggests that LPS cannot 

bind TLR4 directly and that the association of these intermediates are necessary for 

TLR4 activation by LPS199. 

 Upon LPS binding, TLR4 oligomerizes and recruits adaptor proteins through 

interactions with its Toll-interleukin-1 receptor (TIR) domain200.  The TIR domain of 
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TLR4 is essential for an LPS response as single missense mutation in the TIR domain 

of TLR4 renders C3H/HeJ mice insensitive to LPS204.  Five TIR domain-containing 

adaptor proteins interact with TLRs.  These include myeloid differentiation primary 

response gene 88 (MyD88), TIR domain-containing adaptor protein (TIRAP), TIR 

domain-containing adaptor inducing interferon β (TRIF), TRIF-related adaptor molecule 

(TRAM) and sterile α and HEAT-Armadillo motifs-containing protein (SARM)205.  The 

combination of these adaptor proteins determines the downstream signaling cascades 

activated.  Interestingly, the only TLR to utilize all of these adaptors is TLR4199.   

 The association of TIRAP and MyD88 with TLR4 is critical for LPS induced septic 

shock.  TIRAP contains a PIP2 binding domain that facilitates recruitment to the plasma 

membrane.  TIRAP then aids in the association of TLR4 with MyD88206.  Downstream of 

MyD88, the adaptor protein TNF receptor-associated factor 6 (TRAF6) is recruited 

through interactions with the IL-1 receptor associated kinase 1 (IRAK-1).  IRAK-1 is 

recruited by MyD88 and phosphorylated by IRAK-4 resulting in TRAF6 recruitment200.  

Interestingly, IRAK-4 knockout mice show LPS resistance and a substantial reduction in 

inflammatory cytokine expression207.  TRAF6 complexes with ubiquitin-conjugating 

enzyme 13 (UBC13) and the ubiquitin-conjugating enzyme E2 variant 1, isoform A 

(UBEV1A).  Together these enzymes activate the transforming growth factor-β kinase 

(TAK1).  TAK1 is capable of activating IKKβ and NFκB along with MAP kinase signaling 

cascades that activate AP-1 transcription199.  Additionally, the interferon regulatory 

factor 5 (IRF5) is activated by MyD88 and appears important for the induction of a 

subset of cytokines including TNFα and IL-6.  Furthermore, the deletion of MyD88 in 

mice also reduces LPS induced inflammatory cytokine production208.  Macrophages 
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from these mice have intact, but slightly delayed MAPK and NFκB activation, 

suggesting that other MyD88 independent pathways must be activated by TLR4. 

 Interestingly, defects in the late phase activation of NFκB and MAPKs were 

observed in TRIF deficient macrophages, suggesting that TRIF activated the delayed 

MAPK and NFκB responses observed in the absence of MyD88.  The combined 

deletion of TRIF and MyD88 severely blunted NFκB and MAPK activation209.  Thus, it is 

the combined signaling of MyD88 and TRIF that controls the TLR4 response to LPS.  

TRIF mediates signaling activation by associating with the serine/threonine kinase 

receptor interacting protein 1(RIP1) which activates NFκB and MAPK signaling.  

Additionally, TRIF appears important for the activation of the Type 1 interferon response 

by interferon regulatory factor 3 (IRF3).  IRF3 is activated by the recruitment of TRAF3.  

TRAF3 associates with the TRAF family member associated NFκB activator (TANK), 

TANK binding kinase 1 (TBK1) and IKKε to activate downstream signaling.  

Interestingly, TBK1 and IKKε are critical for the activation of IRF3 and the induction of 

the Type 1 interferon response. 

TLR 4 Stimulation of TNFα Transcription 

 Although numerous cytokines are produced by TLR4 activation, much focus has 

concentrated on the induction of TNFα by LPS.  Activation of TNFα gene expression by 

LPS appears mediated by a transcription factor complex which includes Egr-1, Sp1, 

ATF2/cJUN, ETS, and ELK in conjunction with the CBP/p300 coactivator proteins 210,211.  

The role of NFκB appears more controversial as some data support a role for NFκB in 

driving partial TNFα expression212,213.  However, recent studies demonstrate that role of 
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NFκB may be a secondary maintenance event for TNFα mRNA levels as the initial 

induction of the TNFα promoter does not change in response to chemical and genetic 

inhibitors of NFκB214. 

TLR 4 in Metabolic Disease   

Interestingly, LPS is not the only ligand that induces TLR4 mediated TNFα 

transcription, as endogenous molecules, such as saturated fatty acids and heat shock 

protein 60, along with drugs such as Taxol are also capable 215-218.  Circulating FFA, 

whose levels are increased during obesity, due to enhanced release from the enlarged 

mass of adipose tissue, are proposed to suppress insulin action as discussed 

previously.  Reports indicate that FFA released from adipocytes activate inflammatory 

cytokine production in macrophages.  Supporting this hypothesis, co-culture models of 

adipocytes and macrophages enhance macrophage inflammatory cytokine 

expression219,220.  However, it is unclear if the macrophages were activated by FFA or 

adipose adipokine/cytokine secretion in these studies.  In various cell culture models, 

palmitate and laurate induce TNFα transcription in macrophage cell lines218,220.  

Furthermore, TLR4 null mice are protected from high fat diet induced insulin resistance 

because of decreases in inflammatory gene expression in macrophages 221.  However, 

these studies with TLR4 null mice failed to adequately consider the effects of potential 

contaminating LPS.  Emerging data suggests that mice with compromised TLR4 and 

deletion of CD14 may actually be more sensitive to the effects of high fat diet (personal 

communication from Dr. Silvia Corvera).  Thus the exact role of TLR4 in metabolic 

disease remains to be fully defined.                         
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Model Systems for Studying Inflammation and Insulin Resistance 

 Insulin alters the metabolic activities of liver, muscle and adipose tissues.  

Therefore, cell lines derived from all of these tissues are potentially interesting model 

systems to study insulin signaling and insulin resistance.  However, the focus of these 

studies is the adipocyte and macrophage, as both cell types have great influence on the 

development of insulin resistance and inflammation as will be discussed below.  A 

greater understanding of the physiological processes in these cell types will enhance 

our knowledge of inflammation and insulin resistance. 

The Adipocyte as a Model System 

 The importance of adipocytes in driving systemic glucose homeostasis is 

highlighted by the fact lipodystrophy, or a complete absence of adipose tissue, causes 

insulin resistance in both humans and mice222-227.  To maintain glucose homeostasis, 

adipose tissue sequesters FFAs in the circulation and produces insulin sensitizing 

adipokines.  Dysfunction of these adipose processes results in whole body glucose 

intolerance and insulin resistance63.  Highlighting the importance of healthy functioning 

adipocytes, selective loss of GLUT4 in adipocytes causes systemic insulin resistance 

while enhanced GLUT4 expression in adipocytes causes enhanced insulin sensitivity 

and protects against high fat diet induced insulin resistance26,29.   Furthermore, drugs 

which enhance adipose lipid storage capacity, such as thiazolidinediones, improve 

insulin sensitivity in diabetic patients228. 

Normally during fed periods, adipocytes take up glucose and lipids and 

synthesize triglyceride for future energy needs.  Upon fasting, adipocytes readily 

hydrolyze the triglycerides to produce FFA and glycerol to be utilized as an energy 
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source by the peripheral tissues63,229.  Upon the development of obesity, adipose tissue 

release excess lipid in the form of FFA due to increased lipolysis.  The increase in FFA 

release is caused by a chronic state of inflammation that develop as adipocytes in 

obese individuals secrete cytokines like MCP-1, resulting in macrophage recruitment to 

adipose tissue141.  As macrophages accumulate in the adipose tissue, the local 

concentrations of cytokines, such as TNFα and IL-1β increase, enhancing lipid efflux 

from the adipocytes114,129,130,230.  Additionally, adipocytes also contribute to the chronic 

inflammatory state by also secreting cytokines and thus further activating lipolysis in a 

paracrine manner.  The result of adipose dysfunction is a positive regulatory loop with 

macrophages that enhances inflammation and exacerbates serum FFA 

concentrations63.  As mentioned earlier, the increase in serum FFA levels causes 

skeletal muscle and liver insulin resistance.  Thus, enhancing adipose tissue lipid 

storage capacity is a logical strategy for curbing insulin resistance. 

One logical target for curbing adipose tissue inflammation is PPARγ.  PPARγ is 

considered the master regulator of adipogenesis and lipogenic enzyme expression231.  

As mentioned earlier, TNFα and other cytokine’s suppress PPARγ transcription and 

thus the expression of lipogenic enzymes.  Treatment of insulin resistant individuals with 

drugs that activate PPARγ, such as thiazolidinediones enhance insulin sensitivity by 

increasing adipose FFA storage capacity and decreasing inflammation232.  Hence, 

mechanisms that enhance PPARγ activity and adipose function are likely to promote 

whole body insulin sensitivity.  
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The Role of Macrophages in General and Obesity Derived Inflammation 

Macrophages are important immune cells involved in processes such as wound 

healing and protection from bacterial infections.  Macrophage populations are 

distributed throughout the body and help maintain healthy tissue function233.  The 

primary role of macrophages is to phagocytose pathogens or cellular debris and 

activate other immune cells in response to infection234.   Because of their broad tissue 

distribution, macrophages are capable of acting as a sensor of infection and mounting a 

potent inflammatory response.  An excellent example of this is the activation of 

macrophage TLR4 by LPS which causes a robust increase in TNFα secretion.     

Macrophages also regulate less intense and milder forms of inflammation.  As 

discussed earlier, hints regarding the role of inflammation in insulin resistance had been 

known for over a century102.  The concept of obesity induced inflammation was first 

demonstrated fifteen years ago, when increased production of TNFα from adipose 

tissue was observed in obese rodents111, and later humans110.  Initially, the adipocyte 

was thought to be the major source of the obesity induced inflammation.  Subsequent 

studies clearly demonstrated that the inflammatory cytokines are also being produced 

by non-adipocytes in the stromal vascular cell fractions235 .  Further studies revealed 

that macrophage infiltration into adipose tissue is a major mechanism driving 

inflammation upon the development of obesity138,141.  Since these studies, macrophage 

mediated inflammation in obesity has been shown to play a role in numerous diverse 

diseases, including Alzheimers236, psorisis237, certain cancers238,239 and 

atherosclerosis240.    
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The infiltration of adipose tissue by macrophages is an important developmental 

stage in insulin resistance.  Treatments, such as thiazolidinediones, promote insulin 

sensitivity by increasing adipocyte lipid storage capacity and suppressing adipocyte 

inflammatory gene expression.  However, these treatments also reduce adipose tissue 

macrophage content in humans and rodents138,241.  Interestingly, the decrease in 

adipose macrophage content is accompanied by a corresponding decrease in 

inflammatory gene expression.  Also, as discussed earlier, it is the production of these 

cytokines that drives insulin resistance by two mechanisms, the stimulation of adipose 

FFA release, and direct negative effects on insulin signaling networks63.  Thus, the 

macrophage represents an important target for attenuating adipose inflammation and 

consequently, whole body insulin resistance.  Therefore, a better understanding of the 

cellular mechanisms that regulate macrophage inflammation is necessary. 

 

RNAi Therapeutics for Inflammatory Disease 

 RNA interference (RNAi) is an evolutionary conserved cellular mechanism for 

quelling gene expression that is broadly conserved from plants, fungi, insects to 

mammals242-246.  Following the discovery of RNAi in 1998242, the dream of a potential 

therapeutic application of RNAi became real upon the discovery that RNAi was 

functional in mammals245,246.  Since then, numerous studies have attempted to harness 

the power of RNAi to treat numerous diseases, including cancer, viral hepatitis, 

hypercholesterolemia, HIV, sepsis and inflammation in mice246-251 and nonhuman 

primates252.  The reason for the excitement regarding the therapeutic potential of RNAi 
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is that for the first time every gene expressed in mammalian cells can be targeted for 

suppression. 

The Biology of RNAi 

 RNAi is mediated by small (21-25 nucleotide) double stranded RNA molecules, 

termed small interfering RNAs (siRNAs)253-256.  siRNAs, either endogenously derived 

from longer double stranded RNAs (dsRNAs) or from exogenously delivery, contain 2-3 

nucleotide overhangs on the 3’ strand.  Endogenously derived siRNA are produced by 

the RNAse III-like enzyme, Dicer257,258, and loaded into an RNAi induced silencing 

complex (RISC) containing the dsRNA binding protein R2D2 and Dicer-2 enzyme.  The 

R2D2 protein binds to the more thermodynamically stable end to ensure loading of the 

correct antisense sequence into the RISC complex259.  Interestingly, the strand with a 

lower 5’ thermodynamic stability is preferentially loaded into the RISC260,261.   Upon 

loading, R2D2 is substituted for the RNAi endonuclease Argonaute-2 (AGO-2), which 

appears to be the functional RNAi endonuclease in the RISC259,262,263.  It is worth 

mentioning here that this same complex appears to regulate a similar mechanism of 

silencing with incomplete matches from endogenously derived microRNAs (miRNAs).  

Despite being produced from different precursors, miRNAs and siRNAs appear to be 

interchangeable as they both can suppress gene expression in cells.  However, 

whereas siRNAs generate cleavage of the mRNA target, miRNAs suppress translation 

by an unknown mechanism264,265.  Furthermore, in unique circumstances, miRNAs can 

also augment translation. 

 Although, RNAi offers great therapeutic potential, numerous obstacles exist in 

the application of RNAi as a disease intervention.  These obstacles include rapid 
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degradation of siRNA oligonucleotides in the serum and the extracellular environments, 

rapid excretion through the kidney, and low permeability through tight junctions and 

across cell surface membranes266,267.  Although, some success has allowed for a few 

clinical trials268, new techniques are needed for the delivery of RNAi to specific target 

tissues and cell types.  Furthermore, the development of an orally deliverable RNAi 

therapeutic would be the “holy grail” of the blooming field of RNAi therapeutics.            

MAP4K4 as a Therapeutic Target 

MAP4K4 is a member of the germinal center kinase (GCK) family of the sterile 20 

protein (STE20p) kinases.  Originally, MAP4K4 was identified as an interacting 

molecule with the receptor tyrosine kinase adaptor protein, NCK adaptor protein 

1(NCK)269.  Through in vitro overexpression studies, the authors demonstrated that 

MAP4K4 may activate an MEKK1, MKK4 and JNK cellular signaling cascade.  The 

activation of JNK by MAP4K4 in TNFα signaling was later confirmed in human cell lines.  

However, in these studies the authors did not see a requirement of MEKK1 for JNK 

activation, perhaps because the human MAP4K4 isoform used in these studies did not 

contain the proline rich regions thought to interact with the SH3 domains of NCK183.    

Later studies suggested a prominent role for MAP4K4 in development, as 

Drosophila expressing mutant MAP4K4 homologues failed to undergo dorsal closure270, 

and because deletion of MAP4K4 in mice prevented the migration of the mesoderm 

during gastrulation271.  Interestingly, the role for MAP4K4 in development appears to be 

mediated by ephrin receptor signaling184.  Further studies indicated that MAP4K4 was 

mediating cell migration, as attenuation of MAP4K4 by siRNA greatly reduced the ability 

of multiple cancer cell lines to migrate272, while other studies demonstrated a role for 
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MAP4K4 in lamellipodia formation and actin rearrangement273.  Despite all of the earlier 

studies indicating that MAP4K4 functioned upstream of JNK, later studies showed that 

the defect observed in the epithelial to mesodermal transition during embryogenesis 

was due to activation of p38 by MAP4K4 and not JNK271,274.  However, because of the 

lethality of the MAP4K4 null mouse, no insight into the role of MAP4K4 beyond 

embryogenesis was obtained. 

A role for MAP4K4 in the metabolic regulation of adipocytes was recently 

discovered.  Through an siRNA screen for kinases that potentially regulate glucose 

uptake and adipocyte function, MAP4K4 was discovered to be a negative regulator of 

adipogenesis275.  In these studies, attenuation of MAP4K4 by siRNA was shown to 

increase PPARγ expression, triglyceride storage and increase insulin stimulated glucose 

transport in adipocytes (see Figure 1.3 for model).  Because earlier studies linked 

MAP4K4 to TNFα activation of JNK, the effects of TNFα were tested in adipocytes 

where MAP4K4 expression was silenced.  Silencing of MAP4K4 partially protected from 

the negative effects of TNFα on PPARγ and GLUT4 gene expression275, suggesting that 

MAP4K4 mediates some of the TNFα effects on adipocytes.  Further studies, in muscle, 

showed that MAP4K4 could activate ERK1/2 in human muscle explants and that 

silencing MAP4K4 in these muscle explants  protects from TNFα induced insulin 

resistance276.   
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Figure 1.3 Model for MAP4K4 function in adipocytes.  TNFα activates numerous 
signaling pathways including NFκB and AP-1 gene transcription.  Additionally, MAP4K4 
functions in a separate pathway to suppress PPARγ expression.  The net result of these 
pathways is a decrease in the expression of genes such as GLUT4 and lipogenic genes 
which enhance adipose tissue function and triglyceride storage capacity.  Additionally, 
AP-1 and NFκB promote inflammatory gene expression along with NFκB inhibition of 
PPARγ function which further suppresses lipogenic genes and results in FFA release.  
The decreased adipose tissue function and increased cytokine and FFA release help 
drive systemic insulin resistance.     
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Additionally, a role for MAP4K4 in mediating inflammatory effects also exists as 

silencing of MAP4K4 in primary mouse T-cells prevents their activation277.  In these 

studies, the authors demonstrated that in co-culture models of activation, MAP4K4 was 

necessary for full activation of the TNFα promoter in T-cells.  However, the mechanism 

by which MAP4K4 controlled TNFα promoter activation was not fully characterized.  

Never the less, this data does suggest a role for the MAP4K4 regulation of TNFα 

production in immunological cells.  Furthermore, considering that TNFα is a major 

component of insulin resistance, MAP4K4 presents a potentially interesting target for 

attenuating metabolic disease. 

Specific Aims 

Initial studies from our laboratory demonstrated a role for MAP4K4 as a negative 

regulator of adipocyte function275.  In these studies, MAP4K4 mediated part of the 

effects of TNFα on adipocytes.  Additionally, the authors also observed that MAP4K4 

expression was increased significantly following TNFα treatment in adipocytes275.  

Because little knowledge regarding the mechanisms by which TNFα controlled MAP4K4 

expression existed, understanding the underlying signaling mechanisms regulating this 

process could potentially provide new therapeutic opportunities. 

Earlier studies had also implicated MAP4K4 as a potential mediator of 

inflammatory signaling183 and TNFα production277.  Because of the importance of 

macrophages in driving the inflammatory response in multiple diseases, I wanted to 

determine in MAP4K4 functioned in a similar manner in macrophages in vivo.  In order 
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to test this, we employed new strategies for attenuating MAP4K4 expression in vivo with 

RNAi.  Thus, the specific aims of this study were; 

1) To identify the signaling pathways by which TNFα regulates MAP4K4 

expression. 

2) To determine the role of MAP4K4 in LPS mediated macrophage inflammation 

in vivo and in vitro.  
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CHAPTER II: TNFα Stimulates Map4k4 Expression through TNFα 

Receptor 1 Signaling to cJUN and ATF2 

 
Disclaimer:  All experiments were performed by the author except for Figure 1A which 

was done by Xiaoqing Tang and Figure 2 which was done in collaboration with Adilson 

Guilherme and me.  Anil Chawla prepared the GST fusion construct for antibody 

generation, while Andrea Hubbard, Kalyani Guntur and I all assisted in the testing and 

purification of the antibody from the serum.  Xiaoqing Tang made the original 

observation that TNFα treatment increases MAP4K4 expression.  I did all statistical 

analysis in this chapter.  

 
This Chapter is in the format published: Tesz, G. J., A. Guilherme, K. V. Guntur, A. C. 
Hubbard, X. Tang, A. Chawla, and M. P. Czech. 2007. Tumor necrosis factor alpha 
stimulates Map4k4 expression through TNFα receptor 1 signaling to c-Jun and 
activating transcription factor 2. J Biol Chem 282:19302-12. 
 

Abstract 

TNFα is a cytokine secreted by macrophages and adipocytes that contributes to 

the low grade inflammation and insulin resistance observed in obesity.  TNFα signaling 

decreases PPARγ and GLUT4 glucose transporter expression in adipocytes, impairing 

insulin action, and this is mediated in part by the yeast Ste20 protein kinase ortholog 

Map4k4.  Here we show that Map4k4 expression is selectively upregulated by TNFα, 

while the expression of the protein kinases JNK1/2, ERK1/2, p38 SAP kinase, MKK4 

and MKK7 shows little or no response.  Furthermore, the cytokines IL-1β and IL-6 as 
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well as LPS fail to increase Map4k4 mRNA levels in cultured adipocytes under 

conditions where TNFα elicits a 3 fold effect.  Using agonistic and antagonistic 

antibodies and siRNA against TNFα receptor 1 (TNFR1) and TNFα receptor 2 (TNFR2), 

we show that TNFR1, but not TNFR2 mediates the increase in Map4k4 expression.  

TNFR1, but not TNFR2, also mediates a potent effect of TNFα on the phosphorylation 

of JNK1/2 and p38 SAP kinase and their downstream transcription factor substrates 

cJUN and ATF2.  RNAi-based depletion of cJUN and ATF2 attenuated TNFα action on 

Map4k4 mRNA expression.  Consistent with this concept, the phosphorylation of ATF2, 

along with the expression and phosphorylation of cJUN by TNFα signaling, was more 

robust and prolonged compared to that of IL-1β, which failed to modulate Map4k4.  

These data reveal that TNFα selectively stimulates the expression of a key component 

of its own signaling pathway, Map4k4, through a TNFR1-dependent mechanism that 

targets the transcription factors cJUN and ATF2. 

 

Introduction 

 
Mitogen-activated protein (Map) kinases are cellular regulators of such diverse 

processes as apoptosis 278,279, differentiation 280-282 and proliferation 283.  Map kinase 

activation by a variety of extra-cellular stimuli can be mediated by many types of cell 

surface receptors and occurs through protein kinase phosphorylation cascades (for 

reviews see 278,283).  Such cascades involve the activation of a Map kinase kinase 

kinase (Map3k), which phosphorylates and activates a Map kinase kinase (Map2k) 
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which in turn phosphorylates and activates an effector Map kinase.  This activation 

pattern is conserved from yeasts to mammals 284.  In the past few years, much effort 

has concentrated on identifying additional upstream kinases that regulate the 

downstream effector Map kinases.  This effort has lead to the identification and 

characterization of the sterile 20 (Ste20p) family of protein kinases, which can act 

upstream of Map3ks.  Ste20p kinases can be divided into two groups, the germinal 

center protein kinases (GCK) and the p21 activated protein kinases.  One GCK 

member, which we recently identified as a negative regulator of adipogenesis, is 

Map4k4275.  Map4k4 is a member of the GCK-IV group which appears to control cellular 

events ranging from cell motility, rearrangement of the cytoskeleton and cell proliferation 

272,274,285-288.  The majority of studies focusing on Map4k4 propose that Map4k4 acts as 

an upstream activator of the cJUN-n terminal kinases 1 and 2 (JNK1/2), extracellular 

signal-related kinase 1/2 (ERK1/2), and p38 SAP kinase 272,274,288,289. 

 We initially identified Map4k4 in an RNAi screen for regulators of insulin-sensitive 

deoxyglucose uptake in 3T3-L1 adipocytes 275.  Remarkably, silencing of Map4k4 with 

siRNA caused an increase in the expression of peroxisome proliferator-activated 

receptor gamma (PPARγ), along with a corresponding increase in the expression of the 

insulin-responsive facilitative glucose transporter isoform 4 (GLUT4) 275.  PPARγ is 

nuclear hormone receptor that regulates the expression of numerous genes specific to 

the adipocyte differentiation program, including GLUT4 290, which mediates insulin 

dependent glucose transport into both muscle and adipose tissue.  Selective loss of 

GLUT4 in muscle or adipose tissue of mice leads to insulin resistance, glucose 

intolerance and diabetes 28,29.  Conversely, increased GLUT4 levels in the adipose 
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tissue of transgenic mice enhances whole body glucose homeostasis, suggesting that 

improved glucose disposal in adipose tissue may alleviate metabolic disease 26.  Thus, 

understanding the regulation of molecules such as Map4k4 that govern the expression 

and activity of PPARγ and GLUT4 in adipocytes may provide important insights into 

potential mechanisms that both promote and alleviate metabolic disease.  

 Our finding that Map4k4 acts as a negative regulator of adipogenesis and insulin 

stimulated glucose transport 275 suggested that it may play a role in signaling by tumor 

necrosis factor alpha (TNFα), a cytokine that is also a known negative regulator of 

adipogenesis and GLUT4 expression 122,123.  In agreement with this idea, Map4k4 has 

been suggested to be an upstream element in the TNFα signaling cascade 183.  Many 

studies have recently brought attention to the importance of cytokines in inducing the 

low grade inflammation observed in obesity 112,291, and in mediating biological effects 

antagonistic to insulin action in adipose tissue 113-115,292.  In agreement with this concept, 

TNFα levels are elevated in obesity and in diabetic mice 111,293 and humans 110,294,295.  

Furthermore, TNFα attenuates metabolic signaling pathways initiated by the insulin 

receptor that lead to stimulation of glucose uptake 113,296 and inhibition of lipolysis 125.  

RNAi-based silencing of Map4k4 partially protected against the TNFα induced depletion 

of both PPARγ and GLUT4 275.  Additionally, siRNA silencing of Map4k4 has recently 

been shown to completely restore insulin sensitivity in muscle tissue from diabetic 

humans, in part by downregulating TNFα activation of JNK1/2 and ERK1/2 289. Hence, it 

appears that Map4k4 functions in the signaling pathways that mediate at least some of 

the inhibitory effects of TNFα on adipose and muscle tissue processes.    
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We previously noted that Map4k4 mRNA expression may be enhanced following 

TNFα treatment of 3T3-L1 adipocytes 275, a potentially significant modality through 

which TNFα may amplify it own acute signaling intensity.  Based on this preliminary 

observation, the aim of the present studies was to further investigate whether Map4k4 

protein kinase is indeed increased in adipocytes treated with TNFα and to identify the 

signaling pathways downstream of the TNFα receptors that control Map4k4 expression.  

We report here a remarkable specificity of TNFα action on Map4k4 protein kinase 

expression such that expression of other stress protein kinases such as JNK1/2 and 

p38 SAP kinase are unaffected by TNFα.  Strikingly, TNFα action on Map4k4 is not 

mimicked by other cytokines such as IL-1β and IL-6.  It is demonstrated here that this 

specificity of TNFα responsiveness appears due to a unique robust and prolonged 

phosphorylation of JNK1/2 and p38 SAP kinase that leads to activation of the 

transcription factors cJUN and ATF2.  These latter factors are in turn required for 

regulated Map4k4 expression.   

Experimental Procedures 

 

Materials- Mouse recombinant Tumor Necrosis Factor Alpha was obtained from 

Calbiochem (Cat # 654245).   Mouse recombinant Interleukin-6, mouse recombinant 

Interleukin 1β and LPS were obtained from Sigma-Aldrich (Cat# I9646, I5271 and 

L6529 respectively).   Antibodies against IκBα (sc-371), JNK1/2 (sc-7345), phospho 

cJUN (sc-1694) and phospho-JNK1/2 (sc-6254) were purchased from Santa Cruz 

Biotechnology Inc (Santa Cruz, California).  Antibodies against ATF2 (9226), phospho-
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ATF2 (9221), p38 SAP kinase (9212), and phospho-p38 SAP kinase (9215) were 

purchased from Cell Signaling Technology Inc.  Antibody to stimulate TNF receptor 1 

(AF-425-PB) and TNF receptor 2 (ab7369) were purchased from R & D Systems, Inc 

(Minneapolis, MN) and Abcam, Inc (Cambridge, MA) respectively.  TNF receptor 1 

neutralizing antibody (MAB430) was also purchased from R & D Systems, Inc.  Normal 

Goat IgG (AB108C) was purchased from R & D Systems, Inc while normal Rat IgG 

(20005-1) and Hamster IgG (20003) were purchased from Alpha Diagnostics 

International, Inc (San Antonio, TX).  All siRNA was purchased from Dharmacon 

(Lafayette, CO) and were custom ordered SMARTpool™ duplexes.   

Generation of Map4k4 Antibody- Anti Map4k4 antibody was generated by injecting 

rabbits with a GST fusion protein corresponding to amino acids 453 to 720 of Map4k4.  

This hydrophilic region was selected because of predicted high antigenicity and high 

surface probability.  The region was amplified by PCR (forward primer 5’-

CCCAGGAATTCGAAGAGGAGAGTGGAGAGGGAACAG-3’ and reverse primer 5’-

ACGATGCGGCCGCTCCCGCAGGCTTGAGAGACCG-3’), cloned into a pGEX-5 vector 

and expressed in E. coli BL21.  Cultures were induced using 1 mM IPTG for 6 hours 

and then lysed in STE buffer (50 mM Tris pH 7.2, 150 mM NaCl, 1 mM EDTA, 1 mM 

DTT, 5 ng/ml aprotinin, 5 ng/ml leupeptin, 10 mM PMSF, 1 mM benzamidine, 1 mg/ml 

lysozyme) followed by the addition of 1% Triton, 2 μg Dnase, 10 mM MgCL2 and 10 mM 

MnCL2 30 minutes later.   The Map4k4 fusion protein was then incubated with 

glutathione agarose beads end over end for 1 hour at 4°C.   The isolated GST Map4k4 

fusion peptide was shipped to Rockland for rabbit injection.  400 μg of protein was 

injected into two rabbits for the initial immunization followed by three 200 μg injections 
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for immunological boosts at days 7, 14 and 21 after the initial injection.  The IgG 

fractions were then isolated using Protein A-agarose beads.  In order to affinity-purify 

the anti-Map4k4 antibodies, 1 mg of lysates from HA-Map4K4 expressing COS-1 cells 

was resolved by SDS-PAGE and transferred onto a nitrocellulose membrane.  The 

membrane was then cut as strips between 250 KDa and 150 KDa and blocked with 3% 

BSA TBST for 1 hour.  The membrane strip was then incubated overnight with 2 ml of 

the IgG fraction, washed twice with TBST buffer and twice with PBS.  The anti-Map4K4 

antibodies were eluted with the addition of 1 ml glycine (100 mM, pH 2.6) to the strips, 

and incubated for 10 min at room temperature, with occasional vortexing.  The eluted 

antibodies were transferred to a fresh tube, containing 0.1 ml of 1M Tris buffer (pH 8.0) 

as well 0.1 % BSA and 0.05% azide to bring the final pH to 7.0.  Antibodies were stored 

at –200C. 

Cell Culture and siRNA Transfection - 3T3-L1 fibroblasts were cultured and 

differentiated into adipocytes as previously described 297.  For siRNA transfections, cells 

4 days post the induction of differentiation were used as previously described 275.  

Briefly, 1.125 × 106 cells were electroporated using 6 nmol of siRNA and then plated in 

4 wells of a twelve well plate.  Cells were recovered in complete DMEM (10% FBS, 50 

units/ml Penicillin and 50 μg/ml Streptomycin) and were cultured for 72 hours after the 

transfection before beginning experiments.   

TNFα, IL-1β, IL-6 and LPS stimulation - 3T3-L1 adipocytes, either 7 days post 

differentiation or 72 hours post siRNA transfection, were washed twice with PBS and 

treated with the indicated concentrations of TNFα in complete DMEM for the 

appropriate time intervals.  For the cytokine and LPS stimulations, 3T3-L1 adipocytes, 4 
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days post differentiation induction, were harvested and resuspended in 50 ml of DMEM 

with per 15 cm plate.  The adipocytes were distributed such that 1 ml of the harvested 

adipocytes were distributed per well of a 12 well plate (Cat # 3515, Corning, Inc, 

Corning, NY).   After 72 hours, the adipocytes were treated with the appropriate 

concentration of cytokine for the given period of time.  In all experiments, cells were 

washed with ice cold PBS, and harvested on ice as described previously 298.   Protein 

samples were separated on a 10% SDS polyacrylamide gel and transferred to a 

nitrocellulose membrane.  Membranes were then analyzed by western blot analysis.  

Changes in phosphorylation were determined through densitometry using Adobe 

Photoshop and normalized for loading against the non-phosphorylated kinase or 

transcription factor, with the exception of cJUN, whose expression increased during the 

entire stimulation and IκBα whose expression was variable.   

 

TNFR1 and TNFR2 stimulation- 3T3-L1 adipocytes were prepared the same as 

described for the cytokine treatments.  3T3-L1 adipocytes 7 days post differentiation 

were treated with the indicated concentrations of antagonistic or agonistic antibodies 

against TNFR1 or TNFR2 in the presence or absence of TNFα for 24 hours.  Antibodies 

were used at the concentrations recommended by the manufacturers for maximal 

activity.  Antagonistic antibodies were also tested for IL-6 induction at 10 times the 

concentration recommended and no additional increase in IL-6 mRNA was detected 

(data not shown).  Following treatment the cells were lysed and analyzed the same as 

for the cytokine treatments.     
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Isolation of RNA and Semi Quantitative Real Time PCR- RNA isolation was performed 

according to the Trizol Reagent Protocol (Cat # 15596-018, Invitrogen, Carlsbad CA).  

Briefly, media was aspirated and the cells were washed once with ice cold PBS.  Next, 

1 ml of Trizol reagent was added to each well.  The concentration and the purity of the 

RNA was determined by measuring the absorbance at 260/280 nm.  To further 

determine the quality of the RNA 1 μg of total RNA was run on a 1% agarose gel and 

the quality of the 28S and 18S ribosomal bands were inspected visually.   cDNA was 

synthesized using 1 μg of RNA and the iScript cDNA Sythesis Kit (Cat # 170-8891) from 

Bio Rad (Hercules, CA).  The cDNA was synthesized according to the protocol provided 

by the manufacturer in a 20 μl reaction volume.  For real time PCR, 1 μl of the 

synthesized cDNA was loaded into one well of a 96 well plate for detection of a specific 

target gene.  Primers used are listed in Supplementary Figure 2.1 and were designed 

with Primer Bank 299.  HPRT was used as an internal loading control as its expression 

did not change over a 24 hour period with the addition of TNFα and the silencing of the 

genes used in this study.  10 pmol of forward and reverse primer along with 12.5 μl of 

the iQ SYBR Green Supermix (Bio Rad) was added to each well along with 

DNase/RNase free water for a final volume of 25 μl Samples were run on the MyIQ 

Realtime PCR System (Bio Rad).  Relative gene expression was determined using the 

delta CT method 300.         

Statistics- The distributional characteristics of the outcomes were evaluated by both a 

visual inspection of histograms and the Kolmogorov-Smirnoz test performed on model 

residuals.  Transformations by natural logarithms was used in some cases to better 

approximate a normal distribution and to stabilize variances.  The observed effects were 
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evaluated by either one-way or multifactorial analysis of variance (ANOVA).  In the 

presence of significant main and/or interaction effects pairwise comparisons were made 

using the Tukey (HSD) multiple comparisons procedure with the exception of Figure 2.3 

where the Tukey-Kramer method was used due to unequal sample sizes between the 

groups.  Computations were performed using SAS Statistical software package.  The 

data are presented as means +/- SEM. 

Results 

 TNFα signaling upregulates the expression of Map4k4 protein and mRNA - 

To better characterize the TNFα-mediated increase in Map4k4 mRNA expression, we 

examined the dose-response relationship and time course of TNFα action in 3T3-L1 

adipocytes (Fig. 2.1A and 2.1B).  The fully differentiated adipocytes were treated with 

various concentrations of TNFα, ranging from 0.1 ng/ml to 100 ng/ml for 24 h.  The cells 

were then lysed, RNA was isolated, and the Map4k4 mRNA levels were compared 

using quantitative real time PCR.  A maximal increase in Map4k4 mRNA in response to 

5-10 ng/ml TNFα was observed that reached about 3 fold (Fig. 2.1A).  This 

concentration of TNFα corresponds to previously reported concentrations of TNFα 

which caused maximal impairment of insulin signaling in 3T3-L1 adipocytes 113.  A time 

course analysis of the increase in Map4k4 mRNA following 50 ng/ml TNFα showed a 2 

fold  increase in Map4k4 mRNA at two hours which increased by 48 hours to a maximal 

stimulation of over 4 fold (Fig. 2.1B).  To determine whether the increase in Map4k4 

mRNA resulted in a corresponding increase in protein, adipocytes were treated with 50 

ng/ml TNFα for 24 hours, lysed and immuno-blotted with an antibody we raised in 
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rabbits.  At 24 hours after the addition of TNFα, a 2.5 fold increase in Map4k4 protein 

levels was observed (Fig. 2.1C and 2.1D).  Thus, treatment with TNFα significantly 

increases Map4k4 expression in 3T3-L1 adipocytes.   
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Figure 2.1.  Treatment of 3T3-L1 Adipocytes with TNFα causes increased Map4k4 
expression that is both dose and time dependent.  A.  A representative experiment 
demonstrating the dose dependent relationship of the TNFα increase in Map4k4 mRNA.  
3T3-L1 adipocytes were treated with the indicated concentrations of TNFα for a 24 hour 
period.  Total RNA was harvested and Map4k4 mRNA was quantified using real time 
PCR.  B.  Time course of the increase in Map4k4 mRNA upon treatment with 50 ng/ml 
TNFα.  p<.05 (*) and p <.01 (**) when compared to 0 hours by ANOVA and Tukey’s 
HSD test. (n=3) C. 24 hr TNFα treatment increases Map4k4 protein expression.  3T3-L1 
adipocytes after 7 days of differentiation were treated with TNFα for 24 hours, lysed and 
analyzed by western blot D.  Densitometry analysis of 3 western blot experiments of 
3T3-L1 adipocytes treated with TNFα.  * = p <.05 when compared to samples without 
TNFα treatment by students t-test.  Results are the mean + SEM.  The data in Figure 
1A was obtained by Xiaoqing Tang.  The GST construct to produce MAP4K4 antibody 
was made by Anil Chawla and purified by Kalyani Guntur, Andrea Hubbard and me.  I 
produced and analyzed all other data. 
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Map4k4 has been proposed to act in a cascade that stimulates JNK1/2 activity in 

response to TNFα through a MKK4- and MKK7-dependent mechanism 183.  To 

determine if TNFα increases the expression of Map4k4 mRNA selectively among the 

Map kinase family, we treated 3T3-L1 adipocytes with various concentrations of TNFα 

over a 24 hour period, and then measured Map4k4, MKK4, MKK7, JNK1, JNK2, ERK1, 

and ERK2 protein kinase mRNA levels using quantitative real time PCR.  Map4k4 

mRNA levels increased 1.5, 2.6 (p <.01) and 3.4 fold (p <.01) with 1, 5 and 25 ng/ml 

TNFα respectively (Fig. 2.2).  In contrast, the expression of MKK4, MKK7, ERK2, JNK1 

and JNK2 was unperturbed by TNFα signaling.  ERK1 mRNA expression was found to 

increase only very slightly 1.2, 1.7 (p <.01) and 1.4 fold (p <.05) at 1, 5 and 25 ng/ml 

TNFα.  Furthermore, in other studies p38 SAP kinase protein expression did not change 

during treatment with 25 ng/ml TNFα (see Fig. 2.4B).  Taken together, these results 

suggest that the increase in Map4k4 expression following TNFα treatment is unique 

among the Map kinases we tested in its high responsiveness to TNFα signaling.  
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Figure 2.2.  Map4k4 mRNA expression in comparison to expression of other Map 
kinases in response to TNFα.   3T3-L1 adipocytes were treated with indicated 
concentrations of TNFα for 24 hours. Total RNA was harvested and mRNA expression 
levels of the indicated Map kinases were quantified using real time PCR.  p <.05 (*) 
while p <.01(**) when compared to the basal level for the given map kinase by ANOVA 
and Tukey’s HSD test.  For Map4k4, JNK1/2 and ERK1/2 n=5 and for MKK4 and MKK7 
n=3.  Results are the mean + SEM.  The data for this figure was produced by Adilson 
Guilherme and me.   
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 Map4k4 expression is specifically augmented by TNFα and unresponsive to 

IL-1β, IL-6 and LPS.  TNFα and other cytokines, such as IL-1β and LPS, initiate similar 

intracellular signaling networks that activate p38 SAP kinase and JNK1/2 along with the 

transcriptional regulator NFκB (Fig. 2.3A) (for reviews see 301-303).  In addition, TNFα 

treatment of cultured and primary adipocytes increases expression and secretion of 

other cytokines such as IL-6, which signals through the JAK/STAT pathway (Fig. 2.3A) 

122,123.  Thus, the increase in Map4k4 expression observed in response to TNFα may 

result from the secretion and actions of these secondary cytokines rather than TNFα 

itself.  Indeed, IL-6 expression was shown in our studies to be stimulated over 40 fold by 

TNFα in cultured adipocytes (Fig. 2.3C, top panel). To test whether these other 

cytokines also increase Map4k4 expression, we treated 3T3-L1 adipocytes with TNFα 

(50 ng/ml), IL-1β (100 ng/ml), LPS (100 ng/ml) or IL-6 (50 ng/ml) for 24 hours.  The 

concentrations of these agents tested were shown in our preliminary studies to be well 

in excess of the concentrations necessary for their maximal effects on expression of 

other genes (data not shown).  In all of these experiments, only TNFα was able to 

increase Map4k4 expression under these conditions (Fig. 2.3B).  That IL-1β, LPS and 

IL-6 do initiate other potent biological effects under these same conditions is indicated in 

Figure 2.3C. Thus, IL-1β and LPS stimulate IL-6 expression about 10 fold, while IL-6 

stimulates Socs3 mRNA several fold (Fig. 2.3C). Taken together, these results suggest 

that TNFα increases Map4k4 expression in cultured adipocytes through a signaling 

mechanism unique to TNFα, at least compared to the other cytokines tested in these 

experiments.
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 Figure 2.3.  Map4k4 mRNA is increased by TNFα, but not by IL-1β, LPS or IL-6.  A.  
A representative schematic of intracellular signaling pathways activated by TNFα, IL-1β, 
LPS and IL-6.  Briefly, TNFα, IL-1β and LPS bind the TNFα, IL-1 and toll-like receptors 
(TLR) respectively to initiate an intracellular response culminating with the activation of 
many similar transcription factors including AP-1 and NFκB.  However, IL-6 activates 
different intracellular pathways such as the Janus kinase (JAK) and signal transducer 
and activator of transcription (STAT) pathways.  3T3-L1 adipocytes 7 days post 
differentiation induction were treated with the appropriate stimuli for the indicated period 
of time.  B.  Time course of the Map4k4 mRNA increase in response to TNFα (50 ng/ml, 
♦), IL-1β (100 ng/ml, ∆), LPS (2 μg/ml, □) and IL-6 (50 ng/ml , ●) in 3T3-L1 adipocytes.  
p <.01(**) for TNFα treatment against all of the other individual cytokine treatments 
analyzed by two-way ANOVA with Tukey-Kramer post test.   C.  Time course for IL-6 or 
SOCS3 mRNA induction in response to TNFα, IL-1β and LPS or IL-6 respectively.  
Cytokine stimulations were repeated 4 times for TNFα, IL-1β and IL-6 and 3 times for 
LPS.  Results are the mean + SEM.   All data was produced and analyzed by me.     
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Signaling by TNFα, but not IL-1β, causes prolonged phosphorylation of JNK1/2 

protein kinases, p38 SAP kinase, cJUN and ATF2.  Since TNFα and IL-1β are 

thought to activate identical intracellular signaling pathways in 3T3-L1 adipocytes, we 

sought to compare the activation of these pathways by TNFα versus IL-1β utilizing 

phospho-specific antibodies targeting the downstream protein kinases and transcription 

factors.  Cultured adipocytes were treated with TNFα (50 ng/ml) and IL-1β (100 ng/ml) 

for various periods of time over a 24 hour period. To examine NFκB activation in 

parallel, we utilized antibodies recognizing total IκBα, which is rapidly degraded to 

initiate NFκB-mediated transcription.  Interestingly, both TNFα and IL-1β caused the 

rapid loss of the NFκB inhibitor protein, IκBα suggesting that both cytokines activated 

NFκB in a similar manner (Fig. 2.4A).  On the other hand, the activation of p38 SAP 

kinase was both more dramatic and more sustained in response to TNFα compared to 

IL-1β treatment (Fig. 2.4B).  Specifically, TNFα caused a 70 fold increase in p38 SAP 

kinase phosphorylation at 10 minutes, while IL-1β caused only a 20 fold increase in p38 

SAP kinase phosphorylation at this early time point.  The TNFα-induced 

phosphorylation did subside somewhat, but was maintained at levels near 20 fold over 

basal for over 2 hours and was dramatically higher than basal for over 6 hours (Fig. 

2.4B).  The effect of IL-1β in contrast, returned to basal levels within 1 hour.  This 

difference in p38 SAP kinase phosphorylation caused by TNFα versus IL-1β correlated 

well with p38 SAP kinase activation as the phosphorylation of its substrate ATF2 by 

TNFα, but not by IL-1β, was also sustained over the later time points (Fig. 2.5A).   
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Similar to the data obtained for p38 SAP kinase activation, both JNK1 and JNK2 

protein kinases exhibited large increases in phosphorylation during the first few minutes 

of treatment with either TNFα or IL-1β .  JNK1 and JNK2 are both expressed as isoforms 

with molecular weights of 46 and 55 kDal (Fig. 2.4C and 2.4D).  TNFα-induced 

phosphorylations of the JNK 46 kDal and JNK 55 kDal species was maintained at 

increases of about 20-fold and 5-fold, respectively, for a full 24 hours, while IL-1β 

induced phosphorylations in JNK subsided to near basal levels within the first hour of 

stimulation (Fig. 2.4C and 2.4D).  The phosphorylations of JNK1/2 correlated well with 

the phosphorylation of their substrate transcription factors ATF2 (Fig. 2.5A) and cJUN 

(Fig. 2.5B), which showed similar sustained increases in phosphorylation in response to 

TNFα but not to IL-1β.  Furthermore, the increase in cJUN phosphorylation was 

accompanied by a substantial increase in total cJUN protein (Fig 2.5C).  This is 

consistent with previous work identifying cJUN as a positive regulator of its own 

transcription 304,305.  Overall, these data suggest that although the signaling pathways 

activated by TNFα and IL-1β are similar, the kinetics of activation of the JNK1/2 and p38 

SAP kinase are quite different.  Furthermore, the sustained phosphorylation of JNK1/2, 

p38 SAP kinase, cJUN and ATF2 in response to TNFα correlates with its action to 

increase Map4k4 mRNA.   
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Figure 2.4.  TNFα, but not IL-1β, causes enhanced phosphorylation of p38 SAP 
kinase and JNK1/2 in 3T3-L1 adipocytes.  3T3-L1 adipocytes 7 days post 
differentiation induction were treated with either 50 ng/ml TNFα or 100 ng/ml IL-1β.  
After the indicated period of time, cells were harvested and lysates were examined by 
western blot and densitometry analysis for IκBα (A) and phospho-p38 SAP kinase (B).  
Phosphorylation of JNK1 and JNK2 which are both comprised of 46 and 55 kDal 
isoforms were analyzed in C (JNK46) and D (JNK55) respectively.  Densitometry is 
representative of three independent experiments.  Results are the mean + SEM. All 
data was produced and analyzed by Adilson Guilherme and me. 
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Figure 2.5.  TNFα, but not IL-1β, causes enhanced phosphorylation of cJUN and 
ATF2 in 3T3-L1 adipocytes.  3T3-L1 adipocytes 7 days post differentiation induction 
were treated with either 50 ng/ml TNFα or 100 ng/ml IL-1β for the indicated period of 
time and then lysed.  Cell lysates were examined by western blot and densitometry 
analysis for phospho-ATF2 (A), phospho-cJUN (B), and total cJun (C).  Densitometry is 
representative of three independent experiments.  Results are the mean + SEM.  All 
data was produced and analyzed by Adilson Guilherme and me. 
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 Depletion of cJUN and ATF2 attenuates the TNFα mediated increase in 

Map4k4 mRNA expression. ATF2 and cJUN are among numerous transcription 

factors that are activated in response to TNFα treatment 301,303, and our data described 

above suggested that Map4k4, cJUN and ATF2 are all differentially regulated by TNFα 

versus IL-1β.  Both of these transcription factors are only transiently activated following 

stimulation with IL-1β, while TNFα provokes a robust and sustained phosphorylation of 

cJUN and ATF2 in 3T3-L1 adipocytes (Figs. 2.4 and 2.5).  Thus, it is plausible that the 

sustained activation of these transcription factors by TNFα is required to cause the 

increase in Map4k4 expression (Figs. 2.1-3).  To address the role of cJUN and ATF2 in 

TNFα action on the expression of Map4k4, we depleted cJUN and ATF2 in 3T3-L1 

adipocytes using siRNA and then treated the cells with various concentrations of TNFα 

over a 24 hour period.  Silencing either cJUN or ATF2 caused a dramatic decrease in 

Map4k4 expression in the presence of 1, 5 and 25 ng/ml TNFα (Fig. 2.6A).   The 

decrease was highly statistically significant (p<.01) for 5 and 25 ng/ml TNFα upon 

silencing cJUN, ATF2 or both molecules in combination.  Additionally, when silencing 

both transcription factors simultaneously, we observed a decrease in the augmentation 

of Map4k4 mRNA expression in response to 1 ng/ml TNFα (p<.05).  Validation of the 

siRNA-based decreases in cJUN and ATF2 mRNA and protein (not shown) revealed 

reductions of approximately 50% (Fig. 2.6C and D).  Interestingly, silencing of cJUN and 

ATF2 did not significantly impair the up-regulation of IL-6 mRNA (Fig. 2.6B).  This is 

consistent with previous work, which identified Fra-1 and JunD but not cJUN or ATF2 as 

interacting with the AP-1 binding sequence in the IL-6 promoter in the presence and 
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absence of TNFα stimulation 306,307.  Altogether, these results combined with the 

observed sustained activation of cJUN and ATF2 in response to TNFα (Fig. 2.5A and 

2.5B), suggest that cJUN and ATF2 are required for TNFα-enhanced levels of Map4k4. 
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Figure 2.6.  Silencing of cJUN and ATF2 attenuates the TNFα-mediated increase 
in Map4k4 expression.  3T3-L1 adipocytes 4 days post differentiation induction were 
transfected with 6 nmol of either scrambled, ATF2, cJUN or cJUN plus ATF2 siRNA.   
48 hours later the cells were treated with the indicated concentrations of TNFα for a 24 
hour period.  Total RNA was harvested and analyzed by quantitative real time PCR for 
Map4k4 mRNA expression (A.) and IL-6 mRNA expression (B.).  p <.05 (*) while p <.01 
(**) against the corresponding TNFα treatment in the scrambled siRNA sample by two-
way ANOVA with Tukey’s HSD test.  To validate the knockdown cJUN (C.) and ATF2 
(D.) mRNA expression was assessed.  p <.05 (*) and p <.01 (**) against scrambled as 
analyzed by ANOVA with Tukey’s HSD test.  (n=4).  Results are the mean + SEM.  All 
data was produced and analyzed by me. 

 



64 
 

 

 TNFR1 stimulation increases Map4k4 mRNA expression.  TNFα exerts its 

effects through two distinct receptors, denoted type 1 (TNFR1) and type 2 receptors 

(TNFR2) 303.   The roles of these receptors in the inhibition of insulin action, lipolysis and 

the negative regulation of adipocyte-specific genes has been well characterized 

124,296,308, and mostly attributed to TNFR1.  To determine whether TNFR1 or TNFR2 is 

responsible for increasing Map4k4 expression specifically, we first utilized antibody 

preparations with specific agonistic properties for TNFR1 and TNFR2 as well as 

antagonistic properties for TNFR1.  In agreement with our previous experiments (Fig. 

2.1A + B, 2.2 and2. 3B), 24 h of TNFα treatment significantly increased Map4k4 mRNA 

expression approximately 3 fold in 3T3-L1 adipocytes (p<.01) (Fig. 2.7A).  Incubation of 

the cells with TNFR1 antagonistic antibodies almost completely blocked this effect of 

TNFα, while TNFR1 agonistic antibodies strongly mimicked the effect (p<.01) (Fig. 

2.7A).  Interestingly, agonistic antibodies against TNFR2 failed to increase Map4k4 

mRNA expression (Fig. 2.7A).  Non-immune IgG antibodies from the appropriate 

sources had no effect on either Map4k4 expression in TNFα stimulated or unstimulated 

conditions (data not shown).  These results suggest that TNFα-stimulated Map4k4 

expression is mediated through TNFR1, not TNFR2. 

To assess whether the antibodies were functioning properly we measured the 

changes in IL-6 mRNA expression, a cytokine highly upregulated in adipocytes following 

TNFα stimulation 122.  In agreement with previous studies (Fig 2.3C and 2.6B), TNFα 

caused a 20 fold increase in IL-6 mRNA expression (p<.01) (Fig. 2.7B).  Blocking the 

actions of TNFR1 with antagonistic antibodies significantly blunted the effect of TNFα by 



65 
 

approximately 75%.  However, adipocytes treated with the TNFR1 antagonistic 

antibodies and TNFα still showed a 4.5 fold increase in IL-6 mRNA, which presumably 

was due to the activity of TNFR2 (Fig. 2.7B).  In agreement, the TNFR2 agonistic 

antibodies increased IL-6 mRNA expression 4 fold.  Taken together, these results 

suggest that the TNFR1 antagonistic antibodies are potent inhibitors of TNFR1 function 

under the conditions of our experiments (Fig. 2.7B).  Furthermore, TNFR1 agonistic 

antibodies increased IL-6 mRNA approximately 13 fold (p<.01), suggesting that unlike 

the increase in Map4k4 mRNA, the increase in IL-6 mRNA requires the actions of both 

receptors.  

We also addressed the role of TNFR1 and TNFR2 in increasing Map4k4 mRNA 

following TNFα treatment by using siRNA to deplete the expression of these receptors 

in 3T3-L1 adipocytes.  In agreement with the results using antagonistic and agonistic 

TNFα receptor antibodies, silencing of TNFR1, but not TNFR2, significantly blunted the 

TNFα increase in Map4k4 mRNA (Fig. 2.7C).  Silencing was confirmed by assessing 

mRNA levels of TNFR2 and TNFR1, which showed approximately 70% and 60% 

depletions, respectively (Fig. 2.7D). Altogether, this data suggests that signaling through 

TNFR1 increases Map4k4 expression following TNFα treatment in cultured adipocytes.   
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Figure 2.7.  TNFα increases Map4k4 expression through TNFR1 but not TNFR2.  
3T3-L1 adipocytes 7 days post differentiation induction were treated as follows: 50 
ng/ml TNFα, 5 ng/ml TNFR1 agonistic antibodies plus 50 ng/ml TNFα, 5 ng/ml TNFR1 
antagonistic antibodies and 50 ng/ml TNFR2 antagonistic antibodies.  Total RNA was 
isolated after 24 hours of treatment and analyzed by quantitative real time PCR for 
Map4k4 mRNA (n=4) (A.) and for IL-6 mRNA (n=4) (B.).  p <.01 (**) against basal as 
analyzed by ANOVA with Tukey’s HSD test.  3T3-L1 adipocytes 4 days post 
differentiation induction were transfected with 6 nmol of either scrambled, TNFR1, 
TNFR2 or TNFR1 and TNFR2 siRNA.   48 hours later the cells were treated with the 
indicated concentrations of TNFα for a 24 hour period.  Total RNA was isolated and 
analyzed by quantitative real time PCR for Map4k4 mRNA (n=4) (C.).  p <.05 (*) while p 
<.01 (**) against the corresponding TNFα treatment in the scrambled siRNA sample by 
two-way ANOVA with Tukey’s HSD test. The efficiency of siRNA mediated silencing 
was determined by quantitative real time PCR for TNFR1 and TNFR2 mRNA (D.).  p 
<.05 (*) and p <.01 (**) against scrambled as analyzed by ANOVA with Tukey’s HSD 
test.   Results are the mean + SEM.  All data was produced and analyzed by me. 
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To determine whether unique signaling pathways are activated by TNFR1, which 

may account for the increase in Map4k4 mRNA expression, downstream signaling 

elements from TNFR1 and TNFR2 were dissected using agonistic antibodies.  3T3-L1 

adipocytes were treated with TNFα, TNFR1 or TNFR2 agonistic antibodies for various 

periods of time over 12 hours, and activation of JNK1/2, p38 SAP kinase, cJUN and 

ATF2 was assessed using phospho-specific antibodies.  Additionally, the 

disappearance of IκBα was used to estimate NFκB activation.  Stimulation of TNFR1 

resulted in a similar increase in phosphorylation of JNK1/2, p38 SAP kinase, cJUN and 

ATF2 as well as a similar loss of IκBα and increase in total cJUN protein when 

compared to TNFα treatment (Fig. 2.8A-D and Fig. 2.9A-C).  TNFR2 stimulation did not 

activate most intracellular signaling pathways tested, although we did observe a slight 

decrease in IκBα at the later time points, suggesting a possible slight activation of NFκB 

(Fig. 2.8A).  Additionally, p38 SAP kinase (Fig. 2.8B) and ATF2 (Fig. 2.9A) 

phosphorylation increased to 5 and 2 fold over basal, respectively, following TNFR2 

stimulation.  Thus, these data are similar to our previous results observed regarding the 

differences between IL-1β and TNFα signaling (Figs. 2.4 and 2.5), in which cJUN and 

ATF2, but not NFκB activation correlates with the increase in Map4k4 mRNA 

expression.  
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Figure 2.8.  TNFR1 activation, but not TNFR2 activation, increases JNK1/2 and 
p38 SAP kinase phosphorylation.  3T3-L1 adipocytes 7 days post differentiation 
induction were treated with either 50 ng/ml TNFα, 5 ng/ml TNFR1 agonistic antibodies 
or 50 ng/ml TNFR2 agonistic antibodies.  Total protein was harvested and evaluated by 
western blot analysis for IκBα (A.) phospho-p38 SAP kinase (B.), phospho-JNK46 (C.) 
and phospho-JNK55 (D.).  Densitometry is representative of three independent 
experiments except for phospho-p38 which was repeated twice.  Results are the mean 
+ SEM.  All data was produced and analyzed by me. 
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Figure 2.9.   TNFR1, but not TNFR2 activation increases the phosphorylation of 
cJUN and ATF2 in 3T3-L1 adipocytes.  3T3-L1 adipocytes 7 days post differentiation 
induction were treated with either 50 ng/ml TNFα, 5 ng/ml TNFR1 agonistic antibody or 
50 ng/ml TNFR2 agonistic antibody for the indicated period of time and then lysed.  Cell 
lysates were examined by western blot and densitometry analysis for phospho-ATF2 
(A), phospho- cJUN (B) and total cJUN (C).  Densitometry is representative of three 
independent experiments except for total cJun which was repeated twice.  Results are 
the mean + SEM.  All data was produced and analyzed by me. 
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Figure 2.10.  Model for the increase in Map4k4 expression via TNFα signaling.  
Our data are consistent with the following hypothesis: Treatment of 3T3-L1 adipocytes 
with TNFα stimulates TNFR1 and causes enhanced activation of JNK1/2 and p38 SAP 
kinase.  In turn, activated JNK1/2 and p38 SAP kinase cause increased phosphorylation 
and thus activation of cJUN and ATF2.  Increased activation of cJUN and ATF2 leads to 
increased Map4k4 transcription, thus increasing Map4k4 expression.  This increase in 
Map4k4 expression then negatively regulates PPARγ expression and adipogenesis in 
3T3-L1 adipocytes. 
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Supplementary Table 2.1 Primer sequences used in this study 
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Discussion 

TNFα promotes cellular inflammatory responses by altering gene expression 

through NFκB and AP-1 signaling 301,303, and appears to play significant roles in insulin 

resistance in obese mice 111,293 and humans 110,294,295.  The protein kinase Map4k4 is a 

proximal element in the TNFα signaling cascade 183,289 and may mediate in part TNFα 

actions on PPARγ and GLUT4 that impair insulin responsiveness in adipocytes 275.  

Furthermore, TNFα appears to utilize Map4k4 to cause insulin resistance in muscle, as 

siRNA depletion of Map4k4 in muscle tissue from diabetic patients completely restored 

insulin sensitivity 289.  In this study, we document that TNFα signaling increases the 

expression of Map4k4 in 3T3-L1 adipocytes (Fig. 2.1), potentially amplifying its own 

acute signaling pathway.  Our findings lead to the model summarized in Figure 2.10, in 

which TNFα activates TNFR1, causing a robust and potentiated activation of JNK1/2 

and p38 SAP kinase (Fig. 2.4 and 2.8).  According to this model, activation of JNK1/2 

and p38 SAP kinase cause increased phosphorylation of ATF2 and cJUN along with an 

increase in total cJUN protein (Fig. 2.5 and 2.9).  An important finding of this study was 

that cJUN and ATF2 were required for optimal stimulation of Map4k4 expression by 

TNFα (Fig. 2.6).  Taken together, these results provide mechanistic insight into TNFα 

signaling, and indicate that in addition to acutely activating Map4k4 protein kinase 

activity 183, the cytokine enhances the abundance of this kinase through transcriptional 

regulation.  As previously shown, siRNA depletion of Map4k4 partially prevents the 

TNFα depletion of GLUT4 and adipogenesis in cultured adipocytes 275.  Hence, the 
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increased activity (data not shown here) and the increased amount of Map4k4 induced 

by TNFα would be expected to provide a potent stimulus to decrease adipogenesis and 

inhibit glucose uptake.  

The kinetics of phosphorylation of JNK1/2, p38 SAP kinase and activation of 

NFκB through signaling by TNFR1 or TNFR2 or by TNFα and IL-1β has not been 

previously characterized in detail in adipocytes.  The activation of these signaling 

pathways is of interest because IL-1β and TNFα negatively regulate insulin signaling, 

and both cytokines suppress genes that enhance glucose uptake in adipocytes 

113,122,123,292,296.  Comparing the time frame in which TNFα regulates the expression of 

genes to the time course of activation of these signaling pathways provides insight 

regarding the mechanisms responsible for gene regulation.  Using this approach, we 

found striking correlations between the extent to which TNFα was able to maintain 

prolonged activations of JNK1/2 and p38 SAP kinase and its ability to increase Map4k4 

expression (Fig. 2.1 and 2.4). In contrast, the other cytokines we tested exerted only 

transient effects on these intermediate protein kinases and failed to mimic the 

stimulatory effects of TNFα on Map4k4 expression (Fig. 2.3).  Interestingly, LPS and IL-

1β but not IL-6, have also been implicated in decreasing PPARγ levels in brown 

adipocytes 309.  Considering that these cytokines do not increase Map4k4 expression 

(Fig. 2.3), our results suggest that TNFα may utilize Map4k4 expression as a unique 

mechanism to augment its inhibitory actions on PPARγ levels. These data suggest that 

TNFα is a particularly potent cytokine in regulating adipose function, and supports 
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previous work indicating it is a powerful negative regulator of adipogenesis and insulin 

signaling in intact mice and humans 111-115,122,123,293-295.  

The signaling mechanism through which TNFα regulates Map4k4 expression is 

mostly mediated by the TNFR1, while the actions of TNFR2 play little or no role (Fig. 

2.7, 2.8 and 2.9).  This data is consistent with previous work showing a requirement of 

TNFR1 for TNFα attenuation of insulin signaling and the enhancement of lipolysis 

124,296.  Interestingly, TNFR2 was not required for the impairment of adipogenesis 308.  

Furthermore, in that study, expression of a chimeric receptor containing the TNFR2 

extra-cellular domain and the TNFR1 intracellular domain, inhibited adipogenesis, 

suggesting that distinct intracellular signaling pathways are activated by TNFR1 and not 

by TNFR2 in cultured adipocytes.  This concept was confirmed by our findings (Fig. 2.8 

and 2.9).  Furthermore, in the same body of work, the authors show that the presence of 

the chimeric receptor suppressed PPARγ levels despite a failure of this receptor to 

activate NFκB in the presence of TNFα. Thus our findings confirm data from other cell 

systems in which TNFR2 stimulation failed to produce robust JNK and NFκB activation 

303,310,311. 

  Map4k4 regulation by TNFα may be relevant to functions of this protein kinase 

beyond its role in adipose biology, especially to its potential regulation of cell motility.   

For example, Map4k4 is necessary for the epithelial to mesenchymal transition during 

mouse embryo gastrulation, as evidenced in Map4k4 null mice 271,274.  Although these 

mice die in the embryonic stage, it is possible to show that the mesoderm is properly 

specified in these mouse embryos.   Instead, the defect resides in the inability of these 
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mesenchymal precursor cells to migrate 274.  Additionally, TNFα has been proposed to 

positively regulate the epithelial to mesenchymal transition in a number cell systems 

312,313, potentially suggesting a role for Map4k4.  Furthermore, Map4k4 was also 

recently shown to be necessary for the migration of cancer cells 272.  Considering that 

malignancies like colon cancer require an epithelial to mesenchymal transition, and that 

this transition is positively regulated by TNFα312, a potential role for Map4k4 regulating 

cancer invasion is plausible.  These and other recent studies indicating that Map4k4 

negatively regulates cellular adhesion and promotes cellular migration272,274,288 suggests 

that Map4k4 may in some way modulate cytoskeletal elements or other cellular 

components necessary for cell motility.  Thus, in addition to potentially regulating cancer 

cell invasion, the regulation of Map4k4 may be important in cells that require motility for 

proper function, such as cells of myeloid lineages.  These cells are known to use a 

transcription factor network similar to adipocytes to regulate gene expression and even 

the production of cytokines 314,315.  Thus it is possible that TNFα may increase Map4k4 

expression in other cell types to elicit multiple biological responses, including metastasis 

of cancer cells.   

In summary, we have shown here that TNFα is unique among a number of 

cytokines in its ability to increase the expression of a major element within its own acute 

signaling pathway, the protein kinase Map4k4.  Map4k4 is in turn unique in its response 

to TNFα, among many Map kinases tested for this response. Furthermore, Map4k4 is 

distinctive among many Map kinases tested in its ability to modulate insulin sensitivity in 

cultured adipocytes, as does TNFα 275.  The increase in Map4k4 expression in response 

to TNFα is mediated through a signaling pathway elicited selectively by TNFR1 
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activation leading to cJUN and ATF2 activation. Understanding the underlying molecular 

mechanisms whereby TNFα regulates Map4k4 expression may thus provide insight into 

new therapies for multiple disease states, including cancer and diabetes. 

 

Limitations and Future Perspectives 

Although insights into the mechanisms by which TNFα increases MAP4K4 

expression were elucidated in this study, numerous questions still remain.  For example, 

ATF-2 and cJUN were necessary for the full TNFα mediated increase in adipocyte 

MAP4K4 expression.  However, a direct interaction of these transcription factors on the 

MAP4K4 promoter was never demonstrated.  It remains possible that MAP4K4 

expression is indirectly controlled by ATF-2 and cJUN.  Therefore, experiments 

involving chromatin immuno-precipitation should be utilized to establish an ATF-2 and 

cJUN interaction on the MAP4K4 promoter.  Potential binding sites should also be 

tested utilizing a luciferase reporter system.  In these experiments sequence specific 

mutations can be made to verify the exact elements regulated by TNFα.   

The role of other transcription factors in controlling MAP4K4 expression, such as 

NFκB, is also another remaining question.  As mentioned earlier, NFκB is a major 

transcriptional regulator of gene expression in response to TNFα.  Thus, testing the role 

of NFκB in controlling MAP4K4 expression following TNFα treatment is of interest.  A 

potential pitfall with this approach is the requirement of NFκB to induce survival gene 

expression which counters the effects of TNFα mediated caspase activation316.  Hence, 
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to simply inhibit NFκB during TNFα treatment results in rapid cell death.  Therefore, the 

mutation of potential NFκB interacting sites on a MAP4K4 luciferase promoter construct 

might be a more reasonable approach.  Future work will no doubt identify other 

transcription factors that mediate the TNFα increase in MAP4K4 expression.  

Finally, we hypothesized that sustained activation of ATF-2 and cJUN potentiate 

MAP4K4 expression following TNFα treatment.  The data to support this hypothesis is 

correlative as we measured the phosphorylation of ATF2 and cJUN activation residues 

following treatment with TNFα, which increases MAP4K4 expression, and IL-1β which 

does not change MAP4K4 expression.  Perhaps this question can better be addressed 

by identifying the phosphatases that negatively regulate ATF-2 and cJUN activation in 

response to IL-1β treatment.  Silencing their expression may result in sustained 

activation of ATF-2 and cJUN following IL-1β treatment along with an increase in 

MAP4K4 expression.  Overall, the experiments suggested here could further enhance 

our knowledge of MAP4K4 regulation by TNFα.  In the future, work regarding the role of 

TNFα on MAP4K4 expression should address these remaining questions.
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CHAPTER III: Orally delivered siRNA targeting macrophage MAP4K4 

suppresses systemic inflammation 

 

Disclaimer:  All experiments were a collaborative effort between Myriam Aouadi and 

me.  Sarah Nicoloro helped with the mouse work and staining and analysis of cells and 

tissues for microscopy.  Mengxi Wang and My Chouinard helped with the mouse work, 

RNA isolation and real time PCR.  All yeast particles were prepared and loaded by Gary 

Ostroff and Ernesto Soto.  Myriam Aouadi and I loaded the siRNA into the GeRPs.  

Myriam Aouadi and I performed all statistical analysis done in this chapter. 

This Chapter is in the format that we submitted to Nature and is under second review at 
the time of this dissertation: 

Myriam Aouadi*, Gregory J. Tesz*, Sarah M. Nicoloro , Mengxi Wang,  My Chouinard, 
Ernesto Soto, Gary R. Ostroff, Michael P. Czech. 2008. Orally delivered siRNA targeting 
macrophage MAP4K4 suppresses systemic inflammation. 
* These authors contributed equally to this work 
       

Abstract 

Gene silencing by double stranded RNA, denoted RNAi, is mediated by specific 

targeting and degradation of messenger RNAs, and represents a novel paradigm for 

rational drug design. However, the potentially transformative therapeutic applications of 

RNAi have been stymied by a key obstacle—selective, safe delivery to target tissues in 

vivo. Here we report the engineering of encapsulated siRNA that potently silences 

genes in mouse macrophages in vitro and in vivo.  Using this method we discovered 

that the mitogen activated protein 4 kinase 4 (MAP4K4) is a novel mediator of 
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inflammatory responses. Oral delivery of as little as 10 µg/kg siRNA depleted MAP4K4 

in macrophages recovered from the peritoneum, spleen, liver and lung in mice. 

Importantly, silencing MAP4K4 in macrophages protected mice from lipopolysaccharide-

induced lethality by inhibiting tumor necrosis factor alpha and interleukin-1 beta 

production. These results provide a novel strategy for oral delivery of siRNA to 

attenuate inflammatory responses in human disease.  

Introduction 

The discovery that short sequences of double stranded RNA can cause depletion 

of cognitive RNA transcripts in eukaryotic cells has greatly expanded our understanding 

of gene regulation242. The specificity and potency of gene silencing by RNA interference 

(RNAi) is facilitated by cellular machinery that mediates these actions. For therapeutic 

applications, double stranded short interfering RNA (siRNA) oligonucleotides are 

relatively nontoxic, readily designed for high specificity, and need not be restricted to 

genes that encode proteins that bind small molecule drugs245,317. Thus RNAi can be 

targeted to all genes that encode protein sequences.  Additionally, siRNAs are designed 

to minimize the interferon response associated with exposure of cells to long sequences 

of double stranded RNA318,319.  Despite these properties, obstacles to in vivo delivery of 

siRNA are numerous and daunting.  These include rapid degradation of siRNA 

oligonucleotides in extracellular environments, rapid excretion through the kidney, and 

low permeability through tight junctions and across cell surface membranes266,267.  

Creative efforts have addressed some of these problems, and a few clinical trials are 

underway268.  However, a key goal in the field is to develop techniques that orally 

deliver siRNA-mediated gene silencing to specific target tissues and cell types. 
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In our studies designed to achieve this goal, we chose the macrophage as a 

potential target because it controls inflammatory responses associated with such major 

diseases as rheumatoid arthritis, colitis, and atherosclerosis. As a specialized host 

defense cell, the macrophage is a validated pharmaceutical target that contributes to 

pathogenesis through secretion of such inflammatory cytokines as tumor necrosis factor 

alpha (TNF-α) and interleukin-1 beta (IL-1β)320,321. To accomplish oral delivery of siRNA 

to macrophages in mice, we took advantage of a distinctive characteristic of micron-

sized particles of β1,3-D-glucan that allows their passage through M cells in Peyer’s 

patches in the intestinal wall (Supplementary Fig. 3.1) to the underlying gut associated 

lymphatic tissue (GALT)322,323.   Following transcytosis of such β1,3-D-glucan particles 

into the GALT, they undergo phagocytosis by resident macrophages and dendritic cells 

via the dectin-1 receptor and perhaps other beta glucan receptor-mediated 

pathways324,325.  GALT macrophages traffic away from the gut and infiltrate other 

reticuloendothelial system tissues, such that over time a significant proportion of total 

body macrophages contain ingested glucan particles323,326. 

 

Materials and Methods 

Preparation of hollow β1,3-D-glucan shells and siRNA encapsulation  

The siRNA was incorporated into the interior of hollow glucan shells to make 

glucan encapsulated siRNA Particles (GeRP) by a layer by layer synthesis strategy.  

Briefly, empty glucan shells (previously shown to be non-immunogenic)327 were 

prepared from Saccharomyces cerevisiae and fluorescently labeled. Then RNA was 
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absorbed into dry hollow glucan shells and encapsulated cationic complexes formed by 

cationic polymer trapping.  Negatively charged fluorescently labeled siRNA was 

absorbed onto the positively charged complex surfaces inside the glucan shells and 

finally coated with a cationic polymer layer to produce multi-layered GeRP formulations.  

Cell culture and GeRP treatment 

10 week-old C57BL6/J male were i.p. injected with 1 ml 4% thioglycollate broth. 

After 1-3 days, PECs were isolated and incubated for 48 h with GeRPs and FL-GeRPs 

at a 10:1 particle-to-cell ratio, as previously determined323. For microscopic analysis, 

cells were incubated with a F4/80 primary antibody antibody (AbD-Serotec, Raleigh, 

NC) followed by an Alexafluor633 secondary (Invitrogen Molecular Probes, Eugene, 

OR). Nuclei were stained with either Hoescht 33342 or DAPI as denoted in the figure 

legends.  

Animals.  

GeRP i.p. injection. 10 week-old C57BL6/J male mice were i.p. injected daily for 

3 days, from day 1 to day 3, with 2 x 109 GeRPs/kg (4mg/kg) containing 10 µg/kg Scr or 

MAP4K4 siRNA.   GeRP gavage. 10 week-old C57BL6/J male mice were administered 

4 x 109 GeRPs/kg (8mg/kg) containing 10 µg/kg Scr or MAP4K4 siRNA by daily oral 

gavage for 8 days. 

LPS Lethality Test.   

11 week-old C57BL6/J male mice treated with GeRPs containing Scr or MAP4K4 

siRNA were i.p. injected with a single dose of D-galactosamine (25 mg per mouse) 
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followed by an i.p. injection of E. coli LPS (0.25 µg per mouse). LPS and D-GalN were 

solubilized in sterile PBS. Animals were monitored for lethality for 24 h after LPS/D-

GalN challenge.  Blood and peritoneal fluid were collected at 1.5 and 4 h after LPS/D-

GalN injection for TNF-α level measurements.  

All procedures involving animals were approved by the Institutional Animal Care and 

Use Committee at University of Massachusetts Medical School. 

Preparation of glucan shells  

  Glucan shells were prepared as previously described328: S. cerevisiae cells (100 

g Fleishmans Bakers yeast, AB Mauri™ Food Inc., Chesterfield, MO) were suspended 

in 1 liter 1 M NaOH and heated to 80 °C for 1 h. The insoluble material containing the 

yeast cell walls was collected by centrifugation at 2000xg for 10 minutes. This insoluble 

material was then suspended in 1 liter of water and brought to pH 4-5 with HCl, and 

incubated at 55 °C for 1 h. The insoluble residue was again collected by centrifugation 

and washed once with 1 liter of water, four times with 200 ml isopropanol and twice with 

200 ml acetone. The resulting slurry was placed in a glass tray and dried at room 

temperature to produce 12.4 g of a fine, slightly off-white powder.  Glucan shells are 2-4 

microns in size, hollow, porous microspheres consisting primarily of beta 1,3-D-glucan 

and typically contain 5x1011 particles/g329. All chemicals, unless otherwise indicated 

were from VWR (West Chester, PA), Fisher (Waltham, MA) or Sigma (St. Louis, MO) 

and used without further purification. 

 

Fluorescein labeling of glucan shells 
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   Glucan shells (1 g) were suspended in 100 ml 0.1 M sodium carbonate buffer (pH 

9.2), collected by centrifugation at 2000xg for 10 minutes and resuspended in 100 ml 

0.1 M carbonate buffer (pH 9.2). 5-(4,6 - Dichlorotriazinyl) aminofluorescein (Molecular 

Probes, Eugene, OR) at a concentration of 1 mg/ml in DMSO was added to the buffered 

glucan shell suspension (10% v/v) and the reaction was mixed at room temperature in 

the dark overnight. Tris buffer (2 ml 1M, pH 8) was added and the reaction mixture was 

stirred for additional 15 minutes at room temperature to quench free fluorescent labeling 

reagent. The fluorescently labeled glucan shells were collected by centrifugation at 

2000xg for 10 minutes and washed with sterile pyrogen-free water until the color was 

removed.   The glucan shells were then dehydrated by four washes with absolute 

ethanol, two washes with acetone and dried in the dark at room temperature.  The 

resulting powder was ground to a fine bright yellow powder to produce ~ 1 g of FL-

glucan shells. 

Preparation of Glucan Encapsulated siRNA Particles (GeRPs) 

Dry glucan shells or FL-glucan shells were mixed with a volume of the anionic 

core polymer yeast RNA (Sigma;10 mg/ml in 50 mM Tris HCl pH 8, 2 mM EDTA and 

0.15M NaCl (TEN)) to minimally hydrate the glucan shell, and incubated for 2 h at room 

temperature to allow the glucan shell to swell and adsorb the yeast RNA solution as 

previously described328.  Neutral PEI (Aldrich; 25Kd branched PEI; 2 mg/ml in TEN, pH 

7) was added in excess to form glucan shell-encapsulated RNA complexes, and the 

shells resuspended by homogenization or sonication. PEI adsorption and complex 

formation was allowed to proceed for at least 1 h at room temperature. The glucan 

shell-encapsulated cationic complexes were centrifuged and shells resuspended in 70% 
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ethanol, washed three times in 0.9% saline, resuspended, counted using a 

hematocytometer at 200X magnification, diluted to 1x108 shells/ml in 0.9% saline, and 

stored at -20°C.  The binding of an siRNA layer to the cationized complex surfaces 

inside the uncharged glucan or FL-glucan shells was accomplished as previously 

described for DNA binding328, by preparing a suspension of glucan shell-encapsulated 

cationic complexes, (1x108 particles/ml), siRNA at indicated concentrations, and 0.9% 

sterile, pyrogen-free saline (total volume = 75 μl). The suspension was incubated for 2 

hours at room temperature to allow for siRNA binding to the cationic complex surfaces, 

and neutral PEI (25 μl 0.01% w/v) in 0.9% saline was added to trap and coat the bound 

siRNA inside the uncharged glucan shells.  The efficiency of siRNA binding to the 

glucan shell-encapsulated cationic complexes was demonstrated to be >95% of input 

siRNA by measuring unbound Dy547 labeled fluorescent siRNA in the supernatant 

(data not shown).  The homogeneity of shells formulated using this Layer-by-Layer 

synthesis method has been previously characterized by FACS analysis using 

fluorescent complex components328.  For animal experiments the siRNA formulation 

process was carried out at 20-fold higher concentration of all components, and following 

the addition of the final layer of PEI the GeRP formulations were collected by 

centrifugation at 2000xg for 10 minutes and resuspended in sterile pyrogen-free saline 

to deliver 200 μg of GeRP formulation in 200 μl.  The concentrated GeRP formulations 

were briefly sonicated to break up any aggregates and stored at -20 °C until use.  

Tissue macrophage isolation 
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10 week-old C57BL6/J male mice were administered 200 µg GeRPs by daily oral 

gavage for 8 days. On day 9, mice were i.p. injected with thioglycollate, and PECs and 

cells from spleen, liver, lung and muscle isolated on day 10.  Spleen, liver, lung and 

muscle tissues were cut into small pieces, washed with Dulbecco's phosphate-buffered 

saline (PBS) and digested at 37 ºC for 30 min. with agitation using 5 mg/ml collagenase. 

Digested tissues were then filtered through a 70 µm pore nylon mesh filter and 

centrifuged 10 min at 1300 rpm.  Cells were plated in plastic dishes for 2-3 hours in 

DMEM, 10% fetal bovine serum. The cells were then washed with PBS to remove non-

adherent cells and the adherent cells were used for Real Time PCR. 

For confocal analysis, mice were gavaged with a single dose of 400 µg GeRP in a 200 

µl volume and tissue macrophages were isolated 24 hours after, as described above. 

Cells were incubated with a F4/80 primary antibody (AbD-Serotec, Raleigh, NC) 

followed by an Alexafluor633 secondary antibody (Invitrogen Molecular Probes, 

Eugene, OR). Nuclei were stained with DAPI.  

Isolation of RNA and Real Time PCR 

RNA isolation was performed according to the Trizol Reagent Protocol from 

(Invitrogen, Carlsbad CA). The cDNA was synthesized from 1 µg of total RNA using 

iScript cDNA Synthesis Kit according to the manufacturer’s instructions from (Bio-Rad, 

Hercules CA).  For real time PCR, synthesized cDNA forward and reverse primers 

along with the iQ SYBR Green Supermix (Bio-Rad, Hercules CA) were run on the MyIQ 

Realtime PCR System (Bio-Rad). Sequences of the primers used are listed in the table 

below and were designed with Primer Bank (Supplementary Table 4).   The ribosomal 
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mRNA, 36B4 was used as an internal loading control, as its expression did not change 

over a 24 h period with the addition of LPS, TNF-α or the silencing of the genes used in 

this study.   

ELISA assay 

Mouse TNF alpha ELISA kit was used to measure concentrations of mouse TNF-

α in the PEC supernatant, plasma and peritoneal fluid. Mouse Interferon gamma ELISA 

kit was used to measure concentrations of mouse Interferon gamma in plasma.  ELISA 

kits were purchased from Pierce (Rockland IL) The ELISA immunoreactivity was 

quantified by measuring O.D at 450 nm and quantitated by a standard curve. 

AST and ALT measurement 

Evaluation of liver toxicity was performed by determining the enzymatic activity 

of the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum 

samples using a commercial kit (Fisher Scientific, Hampton, NH) according to the 

manufacturer's instructions. 

Histology and TUNEL assay 

Tissue sections were stained with F4/80-AlexaFluor405 antibody (AbD-Serotec, 

Raleigh, NC) and hematoxylin stained. TUNEL assay was performed on liver sections 

from mice challenged with LPS/D-GalN according to the manufacturer’s instructions 

(Upstate, Lake Placid NY). TUNEL images were obtained using a Zeiss Axiovert 200 

inverted microscope equipped with a Zeiss AxioCam HR CCD camera with 1,300 × 

1,030 pixels basic resolution and a Zeiss Plan NeoFluar 20×/0.50 Ph2 (DIC II) objective.  
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Tissue and cell images were obtained with a Solamere CSU10 Spinning Disk confocal 

system mounted on a Nikon TE2000-E2 inverted microscope.  Images were taken with 

a multi-immersion 20x objective with a N.A. 0.75; Oil: W.D.=0.35mm, or a 100x Plan 

Apo VC objective NA=1.4, Oil: W.D.=0.13mm. 

Statistics 

 The distributional characteristics of the outcomes were evaluated by both a 

visual inspection of histograms and the Kolmogorov-Smirnoz test performed on model 

residuals.  Transformations by natural logarithms were used in some cases to better 

approximate a normal distribution and to stabilize variances.  The observed effects were 

evaluated by either one-way or multifactorial analysis of variance (ANOVA).  In the 

presence of significant main and/or interaction effects pairwise comparisons were made 

using the Tukey (HSD) multiple comparisons procedure with the exception of Figure 

3.5F where the Kaplan-Meier analysis was used.  Statistical significance of p <.01 was 

determined using Log Rank (Mantel-Cox), Breslow and Tarone-Ware tests. 

 Computations were performed using SAS or SPSS Statistical software packages.  The 

data are presented as means +/- SEM. 

Results 

We prepared hollow, porous micron-sized shells composed primarily of β1,3-D-

glucan by treating baker’s yeast with a series of alkaline, acid and solvent extractions to 

remove cytoplasmic components, as well as other cell wall polysaccharides328 (Fig. 3.1). 

Such empty glucan shells are about 2-4 microns in diameter, and can be fluorescently 

labeled for tracking. Layer by layer synthesis methods were then developed to load 
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them with siRNA, yielding   β1,3−D-Glucan-Encapsulated siRNA Particles (GeRPs), as 

depicted in Figure 3.1.  First, a core complex of anionic material (RNA, DNA or other 

negatively-charged polymer) is synthesized within the glucan shells by electrostatic 

complex formation with a cationic polymer such as polyethylenimine (PEI).  The 

positively-charged cores inside the uncharged glucan shells electrostatically absorb the 

anionic siRNA payload to form GeRPs (Fig. 3.1).  Next is added another layer of the 

cationic polymer PEI, chosen for its effective action as a transfection agent and its 

relative low toxicity in vivo330. Additional layers of anionic siRNA and cationic PEI can be 

applied to synthesize multi-layered GeRPs composed of single or multiple siRNAs (not 

shown). The anionic siRNA within GeRPs is bound between cationic polyethylenimine 

(PEI) layers through electrostatic interactions in a pH-dependent manner. Upon 

phagocytosis by macrophages, GeRPs traffic to the endosomal compartment, where 

the acidic pH changes the layers’ charge. This promotes siRNA release from the multi-

layered core through the porous GeRP wall and endosomal membrane into the 

macrophage cytoplasm. 
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Figure 3.1.  Production of fluorescent Glucan encapsulated RNAi Particles 
(GeRP).  Glucan particles were purified from Baker’s yeast by a series of alkaline and 
solvent extractions hydrolyzing outer cell wall and intracellular components yielding 
purified, porous 2-4 micron, hollow beta 1,3-D-glucan particles (diagram of particles, 
left; procedure, middle; microscopy of particles, right).  Empty glucan particles were 
then labeled with fluorescein as described in the supplementary methods to track the 
glucan shells.  Cationic cores were synthesized inside the glucan shells by absorbing a 
sub-saturating volume of yeast tRNA to partially swell the particles followed by reaction 
with an excess of polyethyleneimine (PEI) to form encapsulated complexed cationic 
cores as evidenced by the phase distinct structures within the fluorescent glucan shells.  
Layer by layer synthesis methods were then used to absorb anionic Dy547-labeled 
siRNA onto the cationic surface of the cores followed by a final coat of PEI as seen by 
the fluorescent siRNA (red) inside the fluorescent glucan shells (green) in the confocal 
image on the far right bottom.  All images were produced by Ernesto Soto and Gary 
Ostroff. 
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To test GeRP formulations for siRNA-mediated gene silencing in macrophages, 

mouse peritoneal exudate cells (PECs) were prepared after intraperitoneal (i.p.) 

thioglycollate injection, as described in Methods. Preliminary experiments using a 

variety of siRNAs encapsulated within GeRPs showed extensive phagocytosis of 

GeRPs by the primary macrophages and significant gene silencing. For example, two 

siRNA oligonucleotides against TNF-α were highly effective in markedly inhibiting its 

expression in macrophages stimulated with lipopolysaccharide (LPS) (Supplementary 

Fig 3.2, bottom panel).  We then used this system of gene silencing in primary 

macrophages to test whether candidate intracellular signaling proteins might control 

TNF-α expression.  One of these was the Mitogen Activated Protein 4 Kinase 4 

(MAP4K4), a germinal center protein kinase that we and others found facilitates TNF-α 

signaling itself183,275,276,331. In these experiments, glucan shells were first derivatized with 

a green fluorescein (FL) probe.  They were then loaded with Scrambled (Scr) or 

MAP4K4 siRNA (oligo 1 in Supplementary Table 1) coupled to the red fluorescent 

probe, Dy547, using the layer by layer synthesis methods to prepare GeRPs as 

described in Methods.  PECs were incubated in vitro with these dual-labeled Scr siRNA- 

or MAP4K4 siRNA-containing GeRPs (10:1 particle-to-cell ratio) for 12 hours, and then 

stained with the macrophage specific F4/80-AlexaFluor350 antibody and the nuclei 

were stained with Hoescht (Fig. 3.2A; F4/80-AF350/Hoescht; blue stain).  Using 

confocal microscopy at low magnification, about 90% of the macrophages had 

internalized at least one FL-GeRP, as visualized by fluorescein or Dy547-siRNA 

fluorescence (Fig. 3.2A, left panels), while most cells had internalized multiple FL-

GeRPs (Fig. 3.2A, right panels show 2 cells at 100x magnification). Using the GeRPs 



91 
 

containing MAP4K4 siRNA, a 70-80% knockdown of MAP4K4 mRNA was achieved in 

106 PECs with as little as 40 pmoles siRNA (Fig. 3.2B), while PBS, unloaded GeRPs or 

those containing Scr siRNA had no effect (Fig. 3.2C).  

In testing the effect of MAP4K4 silencing on the macrophage inflammatory 

response in vitro, we stimulated macrophages with LPS, a major structural component 

of the outer membrane of Gram-negative bacteria. LPS activates monocytes and 

macrophages to produce cytokines such as TNF-α and IL-1β that act as endogenous 

inflammatory mediators332.  PECs (106) were incubated with 107 GeRPs containing 40 

pmoles of Scr or MAP4K4 siRNA for 48h, and then treated with saline or LPS for an 

additional 6h before total mRNA was harvested and analyzed by RT-PCR.  TNF-α 

mRNA levels were decreased by 40% in control cells treated with MAP4K4 siRNA-

containing GeRPs compared to GeRPs containing Scr siRNA (Fig. 3.2D). Importantly, 

this MAP4K4 silencing inhibited the LPS-induced TNF-α expression by nearly 50% (Fig. 

3.2D), while use of a second siRNA sequence against MAP4K4 in this protocol led to 

even a more robust knockdown (Supplementary Fig 3.2B). MAP4K4 silencing in PECs 

also resulted in an average 30% decrease of LPS-induced TNF-α protein secreted into 

the medium (Fig. 3.2E).  GeRPs with Scr siRNA, unloaded GeRPs (GeRPs containing 

tRNA/PEI cores, but not siRNA) or PBS failed to affect TNF-α expression (Fig. 3.2C) or 

secretion (Supplementary Fig 3.3), nor did these control treatments have an effect on 

expression of interferon response genes (Supplementary Fig. 3.10).  
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Figure 3.2. GeRPs containing MAP4K4 siRNA silence MAP4K4 expression and 
inhibit LPS induced TNF-α production in macrophages.  (a) Confocal imaging of 
thioglycollate-elicited PECs treated in vitro with FL-conjugated GeRPs (green) loaded 
with Dy547-labeled Scr or MAP4K4 siRNA (red).  Fixed cells stained with F4/80-Alexa-
Fluor350 antibody (blue) confirmed that macrophages phagocytosed GeRPs. Nuclei (N) 
were stained with Hoescht (blue) (Left panels, magnification: 20x and right panel 
magnification: 100x, arrows denote representative GeRPs).  (b) MAP4K4 mRNA 
expression in PECs treated with GeRPs loaded Scr or MAP4K4 (oligo 1) siRNA. (c) 
Expression of MAP4K4 and TNF-α in PECs treated with PBS, unloaded GeRPs 
(GeRPs with all constituents present except siRNA) or GeRPs loaded with 40 pmoles of 
Scr siRNA. (d) TNF-α mRNA expression and (e) TNF-α secretion in PECs treated with 
GeRPs loaded with 40 pmoles of Scr or MAP4K4 siRNA. Results are expressed in 
arbitrary units and are the mean + SEM (n=4). Statistical significance was determined 
by ANOVA and Tukey post test except for (e) where a two tailed student’s T-test was 
performed.  *(p <0.01).  PECs were prepared by Myriam Aouadi and me.  Images were 
produced by Sarah Nicoloro.  Myriam Aouadi and I harvested and analyzed the RNA by 
real time PCR.  ELISA for TNFα and GeRP preparation was performed by Myriam 
Aouadi.   
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cJUN-n terminal kinases 1 and 2 (JNK1/2), extracellular signal-related kinase 1/2 

(ERK1/2), p38 MAPK and NFκB pathways regulate TNF-α production in various cell 

types333,334. Interestingly, we found that MAP4K4 defines a proinflammatory pathway 

that activates TNF-α expression independently of the JNK1/2, p38, ERK1/2 and NFκB 

pathways (Fig. 3.3). Silencing MAP4K4 had no effect on the expression or 

phosphorylation of JNK1/2, p38 and ERK1/2, ATF2, or cJun. Similarly, no effect of 

MAP4K4 depletion on the degradation of the NFκB pathway regulator, IκBα in response 

to LPS was observed. Thus, MAP4K4 knockdown in primary macrophages failed to 

affect LPS-induced phosphorylation of these protein kinases, or LPS-induced 

degradation of IκBα in spite of its inhibition of TNF-α expression (Fig. 3.3).  These data 

demonstrate that MAP4K4 is a novel target for suppression of TNF-α expression in 

LPS-induced macrophage inflammatory responses, in addition to its previously known 

role in mediating some effects of TNF-α. 
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Figure 3.3. MAP4K4 silencing attenuates TNF-α expression but not LPS activation 
of MAP kinase and NFκB signaling pathways.  PECs were treated with GeRPs 
loaded with 40 pmoles of Scr or MAP4K4 (oligo 1) siRNA, and 48 hours later cells were 
treated with 1 µg/ml LPS for the indicated amounts of time.  Cell lysates were analyzed 
by Western blot for phospho- and total  (a) JNK1/2, (b) ERK1/2, (c) p38MAPK, (d) ATF-
2; and (e) phospho-cJUN and (f) total IκBα. Representative blots are shown from 3 
different experiments. Graphs show the mean of densitometry analysis + SEM of the 
immunoblot signals and are expressed in arbitrary units (n=3) Black squares ( ), Scr-
siRNA and white triangle ( ), MAP4K4-siRNA. Statistical significance was determined 
by ANOVA and Tukey post test. Under these conditions, MAP4K4 depletion markedly 
attenuated TNF-α expression (not shown). (g) Schematic diagram of potential MAP4K4 
signaling to modulate the expression of inflammatory genes such as TNF-α and IL-1β, 
indicating it acts independently or downstream of MAP kinases and NFκB.  PECs were 
prepared by Myriam Aouadi and me.  I did all western blot data and densitometry. 
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In order to evaluate GeRPs for oral delivery of siRNA-mediated gene silencing in 

vivo, mice were given Dy547-conjugated Scr or MAP4K4 siRNA (10 µg/kg) contained 

within FL-GeRPs (4x109 FL-GeRPs/kg) by oral gavage once daily for 8 consecutive 

days. The mice were then i.p. injected with thioglycollate on day 9 and PECs were 

isolated on day 10 (see protocol in Fig. 3.4B). Staining the PECs recovered from these 

mice with the macrophage-specific antibody F4/80-AF633 (Magenta) followed by 

fluorescence microscopy revealed that the FL-GeRPs containing Dy547-siRNA were 

indeed efficiently taken up by macrophages (Fig. 3.4A). Co-localization of 

AlexaFluor633, FL, and Dy547 fluorescent signals in adherent macrophages was 

readily observed. Strikingly, MAP4K4 mRNA expression as assessed by RT-PCR 

revealed a 70% knockdown in PECs isolated from mice orally gavaged with MAP4K4 

siRNA-GeRPs compared to PECs from control mice treated with Scr siRNA-GeRPs 

(Fig. 3.4C).  This level of knockdown is greater than the relatively lower number of 

macrophages that could be observed to contain GeRPs in Figure 3.4A, indicating 

possible degradation of the GeRPs and loss of detectable signal even though siRNA-

mediated knockdown persists. This lower number of macrophages containing 

detectable fluorescent GeRPs compared to the extent of gene silencing could be due to 

a dilution of the fluorescent tags during breakdown of the glucan shells and dispersal of 

the siRNA. This issue is under further investigation in our laboratories.  

MAP4K4 silencing was also analyzed in macrophages that had migrated to other 

tissues by dissociating cells from spleen, liver, lung, and skeletal muscle tissues with 
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collagenase on day 10 of the protocol (Fig. 3.4A), and then isolating an enriched 

macrophage population (see Methods).  Significant depletions of about 50%, 80% and 

40% in MAP4K4 mRNA levels were observed in these macrophage-enriched cells 

isolated from spleen, liver and lung tissues, respectively, in mice treated with MAP4K4 

siRNA-GeRPs compared to the control mice treated with Scr siRNA-GeRPs (Fig. 3.4C). 

Interestingly, no silencing of MAP4K4 expression was observed in macrophage-

enriched cells derived from skeletal muscle (Fig. 3.4C). In a parallel experiment, we 

could identify GeRP-containing macrophages isolated from spleen, liver and lung 

tissues of mice orally gavaged with fluorescently labeled GeRPs (Fig. 3.4A), bottom 

panel).  Again, only a small proportion of macrophages enriched from these tissues 

contained GeRPs when examined by confocal microscopy (not shown). In other 

experiments, tissue sections were also prepared and analyzed by fluorescence 

microscopy for the presence of macrophages containing FL-glucan shells.  These 

studies revealed infiltration of spleen, liver and lung with macrophages containing FL-

glucan shells (Supplementary Fig. 3.4B), which could be seen at higher magnification to 

harbor FL-glucan shells.  These cells were identified as macrophages using F4/80 

antibody (Supplementary Fig. 3.4B, lower set of panels). However, consistent with the 

lack of gene silencing in skeletal muscle (Fig 3.4C), GeRP-containing macrophages 

were not present in this tissue (Supplementary Fig. 3.4B).  Taken together, these data 

indicate that macrophages in the GALT internalize orally absorbed GeRPs, undergo 

siRNA-mediated gene silencing and move out of the gut to infiltrate tissues throughout 

the body. 
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Figure 3.4.  Orally administered GeRPs containing MAP4K4 siRNA attenuate 
MAP4K4 mRNA expression in gut macrophages that traffic into spleen, lung and 
liver.  (a)    Confocal microscopy of PECs and macrophage-enriched cells isolated from 
spleen, liver and lung. For PECs, mice were gavaged with 200 µg GeRPs (FL-labeled 
shells; Dy547 labeled siRNA) daily for 8 days, injected or not with thioglycollate on day 
9 and PECs were isolated on day 10. For tissue macrophages, mice were gavaged with 
a single dose of 400 µg dual labeled GeRPs and tissues were isolated 24 hours later, 
followed by preparation of macrophage-enriched cells. Staining with F4/80-AF633 
(Magenta) confirmed that some PECs and macrophages from spleen, liver and lung 
contained GeRPs (green). Nuclei (N) were stained with DAPI (blue). Arrows point to 
cells containing GeRPs (20x images) or representative GeRPs (100x images). (b) 
Timeline of oral siRNA-GeRP (Scr or MAP4K4, oligo 1) administration, and PEC/tissue 
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isolation (c) Analysis of MAP4K4 expression in PECs and adherent cells from tissues. 
Results are the mean + SEM (n=5). (d) Mice were gavaged with PBS, unloaded GeRPs 
or GeRPs loaded with 10 ug/kg of Scr siRNA. Serum INF γ levels were measured by 
ELISA (n=5). Statistical significance was determined by ANOVA and Tukey post test. 
Statistical significance was determined by a two tailed student’s T-test.  ** p <0.01 and * 
p <0.05.  GeRP preparation along with mouse handling, gavages and thioglycollate 
injections were done by Myriam Aouadi and me.  Myriam Aouadi, Sarah Nicoloro, 
Meng-Xi Wang and I sacrificed and dissected all mice.  The images were prepared by 
Sarah Nicoloro.  RNA and real time PCR was done by Myriam Aouadi and me.  I did the 
ELISA for IFNγ. 

 

   

In order to confirm that gene silencing by orally delivered GeRPs can be 

mediated by multiple siRNAs, we also gavaged mice with GeRPs containing another 

MAP4K4 and two TNF-α siRNA oligonucleotides found to be effective on macrophages 

in vitro (Supplementary Fig 3.2).  As shown in Supplementary Fig. 3.5, oral gavage of 

GeRPs containing these three other siRNA oligonucleotides was highly effective in 

silencing the cognate genes in PECs as well as macrophage-enriched cells isolated 

from spleen, liver and lung.  Importantly, oral gavage of GeRPs containing either siRNA 

or no siRNA (unloaded GeRPs) did not change interferon gamma levels in serum (Fig 

3.4D), consistent with lack of induction of interferon response genes in macrophages 

treated with GeRPs in vitro (Supplementary Fig 3.10).  Serum levels of liver enzymes 

were also all within normal ranges (AST < 255 IU/L; ALT < 77 IU/L)335 with little effect of 

any of the treatments (Supplementary Fig. 3.11).  Initial experiments indicate that the 

gene silencing with unmodified siRNA lasted about 8 days following the termination of 

oral administration of GeRPs under the conditions of these experiments (not shown).  

Thus, we have demonstrated efficient knockdown of two genes with 4 different siRNA 

sequences using orally delivered GeRPs (Fig 3.4 and Supplementary Fig 3.2, 3.5).      
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          We also tested the efficacy of MAP4K4 siRNA-GeRPs to silence MAP4K4 

expression in macrophages following delivery by i.p. injection.  Previous studies 

indicated that 3 daily i.p. injections of 2x109 empty glucan shells/kg achieved substantial 

uptake into  macrophages in mice322,323.  Mice were treated once daily for 3 days by i.p. 

injections of 10 µg/kg Dy547-labeled MAP4K4 siRNA or Scr siRNA in 2x109 FL-

GeRPs/kg, and then treated with thioglycollate on day 4 (Supplementary Fig. 3.6A).   

Fluorescence microscopy revealed PECs contained GeRPs (Supplementary Fig. 3.6B), 

resulting in a 30% knockdown of MAP4K4 mRNA (Supplementary Fig. 3.6C).  These 

results show that similar to oral delivery, i.p. administration of GeRPs causes efficient 

gene silencing in macrophages in vivo.  

Since MAP4K4 controls TNF-α expression and secretion by macrophages in vitro 

(Fig. 3.2), we next designed a protocol to test whether oral delivery of MAP4K4 siRNA-

GeRPs attenuates cytokine production and LPS-induced lethality in mice (Fig. 3.5A).  

Preliminary experiments revealed there was no effect of 3 or 10 days of treatment with 

empty glucan shells by either oral gavage or i.p. administration on serum TNF-α levels 

(Fig. 3.5B).  Similarly, we found no effect of oral gavage of GeRPs containing Scr siRNA 

or no siRNA (unloaded GeRPs containing tRNA/PEI) on serum TNF-α levels prior to 

LPS treatment compared to PBS administration (Supplementary Figs.3.8A and 3.9A).  

Remarkably, an 80% decrease in TNF-α expression in PECs was observed in mice 

orally gavaged with GeRPs containing MAP4K4 siRNA versus Scr siRNA (Fig. 3.5C).  

This was accompanied by an equally dramatic 80% knockdown of the inflammatory 

cytokine IL-1β, but not IL-10, or the chemokine receptor CCR2, known to be down-

regulated by LPS336,337. Importantly, TNF-α siRNA does not silence IL-1β, showing 
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specificity of this response to MAP4K4 knockdown (Supplementary Fig. 3.7).  These 

results indicate that silencing of MAP4K4 through oral delivery of GeRPs containing 

MAP4K4 siRNA potently downregulates the expression of the inflammatory cytokines 

TNF-α and IL-1β in macrophages in vivo.  

 We next measured circulating TNF-α protein levels after challenging mice with 

injections of LPS and D-galactosamine (D-GalN), known to elicit a powerful 

inflammatory response. Consistent with previous reports338, we found that circulating 

TNF-α levels are strongly elevated 1.5 h after LPS/D-GalN injection and then decrease 

to basal levels after 4 h. As shown in Figure 3.5D, oral delivery of GeRPs containing 

MAP4K4 siRNA blocked the elevation in serum TNF-α protein induced by LPS/D-GalN 

injection. In these mice a significant decrease of TNF-α levels in peritoneal fluid 1.5 h 

after D-GalN/LPS injection was also observed (Fig. 3.5E).  Similarly, serum TNF-α 

levels in response to LPS were decreased in mice orally gavaged with GeRPs 

containing other MAP4K4 or TNF-α siRNA oligonucleotides (Supplementary Fig 3.8A), 

but not with Scr siRNA or unloaded GeRPs compared to PBS treatment 

(Supplementary Fig. 3.9A).  These data demonstrate a striking downregulation of the 

TNF-α response to an inflammatory stimulus by depletion of MAP4K4 mRNA through 

oral delivery of GeRPs using two different siRNAs. 
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Figure 3.5. MAP4K4 silencing by oral gavage with GeRPs inhibits LPS-induced 
TNF-α and IL-1β production in vivo.  (a) Timeline of siRNA and D-galactosamine (D-
GalN) /LPS administration.  Mice were gavaged once daily with Scr or MAP4K4 siRNA 
in GeRPs (10 µg siRNA/kg) for 8 days.  Four hours after the final gavage, mice were i.p. 
injected with D-GalN, followed by an i.p. injection of LPS.  (b) Basal serum TNF-α levels 
before and after the administration of empty glucan shells. (c) Basal expression of TNF-
 α, IL-1β, IL-10 and CCR2 in PECs isolated from mice orally treated with GeRP siRNA 
formulations (10 µg/kg). Results are the mean + SEM (n=3).  Statistical significance was 
determined by a two tailed student’s T-test.    (d) Serum and (e) Peritoneal fluid TNF-α 
levels in siRNA treated mice 1.5 and 4 hours after LPS/D-GalN injection. Results are 
the mean + SEM (n=10). Statistical significance was determined by ANOVA and Tukey 
post test; ** p <0.001 and *p <0.05.  GeRP preparations and all animal injections, 
bleedings and handling were done by Myriam Aouadi and me.  Myriam Aouadi, Sarah 
Nicoloro, My Chouinard and I dissected all mice.  RNA and real time PCR was done by 
Myriam Aouadi and me.  Elisa for TNFα was done by Myriam Aouadi. 
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Lethality observed in LPS/D-GalN-challenged animals is attributed to 

inflammatory cytokine toxicity and can be mimicked by administration of TNF-α and IL-

1β, which synergize with each other339.  Furthermore, mice lacking the TNF-α receptor 

TNFRp55 and mice (C3H/HeJ) deficient in TNF-α and IL-1β release are resistant to 

LPS-induced lethality 204,340. Normal mice can also be protected from lethal 

endotoxemia by agents that selectively inhibit TNF-α  and/or IL-1β action or 

release341,342. We therefore tested whether such protection is elicited by oral delivery of 

MAP4K4 siRNA-GeRPs using the protocol in Figure 3.5A. After daily oral gavage for 8 

days with Scr siRNA or MAP4K4 siRNA GeRPs (10 µg siRNA/kg), mice were injected 

i.p. with 25 mg of D-GalN followed by 0.25 µg of LPS. As shown in Figure 3.6A, 90% of 

the control mice treated with Scr siRNA-containing GeRPs died between 4 and 8 h. In 

contrast, 50% of the mice treated with MAP4K4 siRNA containing GeRPs survived for 8 

h after LPS/D-GalN injection. Moreover, 40% of the mice treated with MAP4K4 siRNA 

containing GeRPs survived the LPS challenge (Supplementary Table 3.2). This 

difference between administration of Scr versus MAP4K4 siRNA was highly statistically 

significant using Kaplan-Meier analysis and three independent statistical tests (p<0.01) 

(Supplementary Table 3.3). Similar data were obtained with the alternate MAP4K4 

siRNA (oligo 2) and two TNF-α siRNA species (Supplementary Fig. 3.8B), although 

effects were smaller with the latter. 

In murine models, it is well accepted that the lethal effects of LPS/D-Ga1N 

challenge are due to hepatocyte apoptosis343. Thus, we employed TUNEL assays to 

detect apoptosis in liver of mice treated with Scr or MAP4K4 siRNA-GeRPs, 4 and 28 h 
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post D-GalN/LPS injection. Hepatocyte apoptosis in response to LPS injection was 

strongly attenuated by MAP4K4 siRNA-GeRPs (Fig. 3.6B). Furthermore, serum insulin 

and glucose levels were not significantly different among treatments (Supplementary 

Fig. 12). Thus, silencing of MAP4K4 expression by oral gavage of MAP4K4 siRNA-

GeRPs significantly protects mice from D-GalN/LPS-induced lethality through inhibition 

of TNF-α and IL-1β production in macrophages.  
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Figure 3.6. MAP4K4 silencing by orally delivered GeRPs inhibits mouse 
LPS-induced lethality. (a) Percent survival of mice orally treated with PBS or GeRPs 
loaded with Scr or MAP4K4 siRNA, followed by LPS/D-GalN injection.   Survival was 
assessed every hour for 24 hours. Statistical significance was determined using Kaplan-
Meier analysis and Mantel-Cox testing (p<0.01)(see also Supplementary Table 3.3). 
Additional groups of three mice treated orally with siRNA GeRPs but without LPS were 
used in each experiment to assess the MAP4K4 knockdown in the PECs (inset). 
Results are the mean of three independent experiments (PBS, n=11 mice; Scr and 
MAP4K4, n=22 mice). (b) Silencing MAP4K4 inhibits LPS/D-GalN -induced apoptosis in 
liver 4 and 28 hours after LPS/D-GalN injection.  Livers from untreated mice were 
treated with or without DNase and used as positive and negative controls, respectively.  
GeRP preparations and all animal injections, observations and handling were done by 
Myriam Aouadi and me.  Myriam Aouadi, Sarah Nicoloro, and I dissected all mice.  
Histological images were done by Sarah Nicoloro.    
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Supplementary Figure 3.1. Model for GeRP uptake by M cells and macrophages in 
the gut associated lymphatic tissue (GALT). GeRPs in the intestinal lumen enter M 
cells and undergo transcytosis. As they undergo exocytosis, macrophages in the GALT 
internalize the GeRPs by phagocytosis.  Gastrointestinal macrophages can migrate out 
of the GALT and travel through the lymphatic and circulatory systems to various tissues 
such as spleen, liver and lung. 



106 
 

 

Supplementary Figure 3.2. Gene silencing by a second siRNA targeting MAP4K4 
(oligo 2 in Supplementary Table 3.1) and two distinct TNF-α siRNAs (oligos 1 and 
2 in Supplementary Table 3.1, respectively. (a) 106 PECs were treated with 107 
GeRPs loaded with 40 pmoles of Scr or a second MAP4K4 siRNA (oligo 2).  Total RNA 
was harvested 48 hours after treatment and analyzed by real time PCR for the 
expression of MAP4K4 mRNA. (b) LPS-induced TNF-α expression in PECs treated with 
Scr- or MAP4K4 (oligo 2) siRNA-GeRPs, (c) and (d) LPS-induced TNF-α expression in 
PECs treated with GeRPs loaded with 40 pmoles of Scr, TNF-α (oligo1) or TNF-α (oligo 
2) siRNA.  PEC and GeRP preparations were done by Myriam Aouadi and me along 
with RNA preparation and real time PCR analysis.   

 

 
Supplementary Figure 3.3. GeRPs loaded with scrambled siRNA or unloaded 
GeRPs(which contain tRNA/PEI cores but no siRNA) have no effect on LPS-
induced TNF-α secretion. (a) 106 PECs were treated with PBS, 107 unloaded GeRPs 
or GeRPs loaded with 40 pmoles of Scr. TNF-α levels in PEC media was measured by 
ELISA.  Myriam Aouadi prepared the GeRPs and I prepared the PECs.  ELISA for 
TNFα was performed by Myriam Aouadi. 
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Supplementary Figure 3.4. Orally administered FL-glucan shells are taken up by 
migratory gut macrophages and traffic into spleen, liver and lung. (a) Timeline of 
oral administration of FL-glucan shells and tissue collection. (b) Staining with F4/80-
AF405 confirmed that spleen, liver and lung macrophages contained FL-glucan shells 
(green).  Upper panels, magnification: 20x and lower panel, magnification: 100x.  
Myriam Aouadi and I performed all animal handling.  Dissections were performed by 
Myriam Aouadi, Sarah Nicoloro and My Chouinard.  Histological staining and image 
analysis was done by Sarah Nicoloro. 
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Supplementary Figure 3.5. Orally administered GeRPs containing a second 
MAP4K4 siRNA or  TNF-α siRNA silence MAP4K4 and/or TNF-α expression, 
respectively,  in PECs, and spleen, liver and lung macrophages. (a) Timeline of oral 
administration of siRNA-GeRPs and tissue collection. Analysis of MAP4K4 or TNF-α 
expression in PECs and adherent cells isolated from spleen, liver and lung from mice 
gavaged with GeRPs loaded with 10 ug/kg of Scr, (b) a second siRNA targeting 
MAP4K4 (oligo 2), or two siRNAs against TNFa (c) TNF-α (oligo 1) or (d) TNF-α 
(oligo2).  GeRP preparations, mouse gavages, and dissections were done by Myriam 
Aouadi and me.  Myriam Aouadi and I did the RNA isolation and real time PCR.   
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Supplementary Figure 3.6.   i.p. administration of GeRPs containing MAP4K4 
siRNA reduce MAP4K4 mRNA expression in macrophages in vivo. (a) Timeline of 
i.p. treatment with siRNA-GeRPs and PEC isolation.  (b) Confocal microscopy of PECs. 
Staining with F4/80-AF633 (Magenta) confirmed that PECs contained GeRPs (green). 
Nuclei (N) were stained with DAPI (blue). Arrows point to representative GeRPs. Upper 
panels, magnification: 20x and lower panel, magnification: 100x. (c) MAP4K4 mRNA 
expression.  Results are expressed in arbitrary units and are the mean + SEM of four 
independent experiments.  Significance was determined using Student’s t-test * p 
<0.001.  Animal handling, gavage and dissection were done by Myriam Aouadi and me.  
Histological staining and image analysis was done by Sarah Nicoloro.  RNA isolation 
and real time PCR was performed Myriam Aouadi and me. 
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Supplementary Figure 3.7. MAP4K4, but not TNF-α silencing inhibits IL-1β 
expression. Expression of TNF-α and/or IL-1β in PECs isolated from mice orally 
treated with GeRPs containing 10 ug/kg of Scr, (a) MAP4K4 (oligo 2), (b) TNF-α (olgio 
1) or (c) TNF-α (oligo 2) siRNA.  Myriam Aouadi and I did all animal handling and 
gavages.  Myriam Aouadi, Sarah Nicoloro and I dissected all mice.  RNA isolation and 
real time PCR was performed Myriam Aouadi and me. 

 

Supplementary Figure 3.8. A second siRNA targeting MAP4K4 (oligo 2 in Supp 
Table 1) inhibits LPS-induced TNF-α production and lethality in vivo. Mice were 
gavaged with siRNA-GeRPs.  Four hours after the final gavage, mice were i.p. injected 
with D-GalN, followed by an i.p. injection of LPS.  (a) Serum TNF-α levels in siRNA 
treated mice 1.5 and 4 hours after LPS/D-GalN injection. Results are the mean + SEM 
(n=5). Statistical significance was determined by ANOVA and Tukey post test; *p <0.05. 
(b) Percent survival of mice orally treated with siRNA-GeRPs followed by LPS/D-GalN  
injections.  As the Figure shows, no mice treated with GeRPs containing Scr siRNA  
survived, even for 7 hours.  Myriam Aouadi and I did all animal handling, gavages, 
injections, bleeding and observations.  TNFα ELISA was done by Sarah Nicoloro. 
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Supplementary Figure 3.9. Unloaded GeRPs (containing tRNA/PEI cores but no 
siRNA) or GeRPs loaded with scramble siRNA have no effect on LPS-induced 
TNF-α production and lethality in vivo.  Mice were gavaged with unloaded GeRPs or 
GeRPs  loaded with 10 ug/kg of Scr siRNA.  Four hours after the final gavage, mice 
were i.p. injected with D-GalN, followed by an i.p. injection of LPS.  (a) Serum TNF-α 
levels were measured 1.5 and 4 hours after LPS/D-GalN injection. Results are the 
mean + SEM (n=5). Statistical significance was determined by ANOVA  and Tukey post 
test. (b) Percent survival of mice orally treated with siRNA-GeRPs, and then injected 
with LPS/D-GalN.   Survival was assessed every hour for 24 hours.  Myriam Aouadi and 
I did all animal handling, gavages, injections, bleeding and observations.  TNFα elisa 
was done by Sarah Nicoloro. 
 

 

 
 

Supplementary Figure 3.10. siRNA-GeRPs failed to elicit an interferon response in 
vitro. 106 PECs were treated with PBS, 107 unloaded GeRPs(containing tRNA/PEI 
cores but no siRNA) or GeRPs  loaded with 40 pmoles of Scr. Total RNA was harvested 
48 hours after treatment and analyzed by real time PCR for the expression of INFβ 
target genes, OAS1 and MX1 or INFγ target genes, IL-12. Results are the mean + SEM 
(n=3).  PEC, GeRP and RNA preparation and real time PCR was done by Myriam 
Aouadi.   
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Supplementary Figure 3.11. siRNA-GeRP oral treatment fails to alter serum liver 
enzyme levels in vivo. Mice were gavaged with PBS or GeRPs  containing 10 ug/kg of 
Scr or MAP4K4 (1) siRNA. (a) Alanine aminotransferase (ALT) and (b) aspartate 
aminotransferase (AST) were measured in serum 4, 8 and 20 days after the last gavage 
(n=3).  Animal handling, gavages, bleeding and handling along with AST and ALT 
assays were done by Myriam Aouadi and me.  
 

 
Supplementary Figure 3.12. MAP4K4 silencing fails to affect LPS regulation of 
blood glucose and insulin levels.  Mice were gavaged with PBS or GeRPs  loaded 
with 10 ug/kg of Scr or MAP4K4 (oligo 1) siRNA once a day for 8 days.  Four hours after 
the final gavage, mice were i.p. injected with D-GalN, followed by an i.p. injection of 
LPS.  (a) Serum insulin levels 2 and 4 hours after LPS/D-GalN injection. (b) Serum 
glucose levels 1, 2 and 3 hours after LPS/D-GalN injection. Results are the mean + 
SEM (n=5). Statistical significance was determined by ANOVA  and Tukey post test.  
Animal handling, gavages, bleeding, injections and handling along with AST and ALT 
assays were done by Myriam Aouadi and me.  
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Supplementary Table 3.1. Observed in vitro and in vivo (oral delivery of GeRPs) 
knockdown with various siRNA oligonucleotides in GeRPs. The data in columns at 
right represent the percent decreases in cognate gene expression observed due to the 
respective siRNA in GeRPs in our studies. 

 
 
Supplementary Table 3.2. Survival post LPS-challenge of mice treated with PBS, 
Scr or MAP4K4 (1) siRNA-GeRPs.  

 

Supplementary Table 3.3. Statistical testing of the equality of survival 
probabilities between Scr and MAP4K4 (1) siRNA-GeRP treatments in the LPS/D-
galactosamine challenge.  
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Primer Sequence
36B4 F GACCATTAGCCTTGTGTGTACTGTATG
36B4 R TGGATCGATTGTGCTTCAAGTT
MAP4K4 F CATCTCCAGGGAAATCCTCAGG
MAP4K4 R TTCTGTAGTCGTAAGTGGCGTCTG
TNF-α F CCCTCACACTCAGATCATCTTCT
TNF- α R GCTACGACGTGGGCTACAG
IL-1β F GCAACTGTTCCTGAACTCAACT
IL-1 β R ATCTTTTGGGGTCCGTCAACT
IL-10 F CTGGACAACATACTGCTAACCG
IL-10 R GGGCATCACTTCTACCAGGTAA
CCR2-F ATCCACGGCATACTATCAAGATC
CCR2-R CAAGGGTCACCATCATGGTAG
OAS1-F ATTACCTCCTTCCCGACACC 
OAS1-R CAAACTCCACCTCCTGATGC 
MX1-F GATCCGACTTCACTTCCAGATGG 
MX1-R CATCTCAGTGGTAGTCAACCC 
IL-12p40 AGACATGGAGTCATAGGCTCTG
IL-12p40 CCATTTTCCTTCTTGTGGAGCA

 

Supplementary Table 3.4 Primer sequences 
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Discussion 

Several technical features of the GeRP delivery system described here are 

notable. Most remarkable, the in vivo potency of 10 µg siRNA/kg in GeRPs to mediate 

gene silencing is 10 to 500 times greater than previous studies reporting systemic 

delivery by intravenous injection.  For significant effects in vivo, intravenous injection of 

siRNA formulations require doses ranging from 125 µg/kg to 50 mg/kg in mice246-251 and 

1 mg/kg in nonhuman primates252.  For attenuation of LPS-induced lethality in mice by 

i.p. injection, 1.2 mg TNF-α siRNA/kg was required344. These studies generally 

employed chemically modified siRNA to enhance stability. The high potency of orally 

delivered siRNA within GeRPs (10 µg/kg) is all the more surprising since unmodified 

siRNA was used in our studies. This high potency is likely due to protection of siRNA 

against nuclease degradation by PEI within GeRPs, low nonspecific binding of the 

GeRPs enroute to Peyers’ patches of the gut, and to the high efficiency of GeRP uptake 

by phagocytic cells in the GALT. Furthermore, the siRNA loading capacity within the 

hollow cavity of glucan shells is far greater than we have used here, and has the 

potential to orally co-deliver combinations of siRNA, DNA, proteins and small molecules.  

It should also be noted that while we have focused our attention on macrophages in this 

study, we cannot rule out the possibility that other cell types are also targeted by oral 

delivery of GeRPs.  

      The present results demonstrate a potent attenuation of the macrophage 

inflammatory response to LPS following GeRP-mediated delivery of siRNA against 

TNF-α (Supplementary Figs. 3.2 and 3.8) or MAP4K4 (Figs. 3.2, 3.5 and 
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Supplementary Figs 3.2 and 3.8) have significant therapeutic implications. Inflammatory 

cytokines and TNF-α in particular are pathogenic in humans, and injectable anti- TNF-α 

protein therapeutics are successful commercial products for the treatment of rheumatoid 

arthritis, ankylosing spondylitis, Crohn's disease, and psoriasis345. Macrophage-

mediated pathogenesis is also well characterized in mouse models of obesity-

associated insulin resistance346 and atherosclerosis347, while such autoimmune 

diseases as Type 1 Diabetes involve the deleterious actions of inflammatory 

cytokines348,349.  Further development of GeRP-mediated delivery of siRNA to attenuate 

inflammation for these and other human maladies will be a major focus of our future 

studies.  

Limitations and Future Perspectives 

 The results presented in this chapter are exciting for therapeutic reasons.  

However, numerous interesting questions remain and need to be addressed to further 

this technology.  One immediate question that we are currently addressing is why the 

level of knockdown observed is greater than the amount of macrophages containing 

GeRPs.  It is possible that the GeRPs are partially degraded by oral delivery and that 

the fluorescent tag is lost despite maintaining the ability to silence gene expression.  

Thus, studies are required to determine the durability of GeRPs in the fluids and 

enzymes of the gastrointestinal system. We also plan to utilize different chemical 

linkages and brighter fluorescent tags that may better survive oral delivery and allow for 

easier visualization in vivo.  Additionally, knockdown may persist despite the presence 

of low amounts of GeRP containing macrophages because the siRNA may also transfer 

to other macrophages.  This may occur through direct cellular contact or through the 
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exocytosis of partial siRNA containing GeRPs which are phagocytosed by other 

macrophages.  Experiments are underway to determine if exocytosed materials from 

GeRP treated macrophages can mediate gene silencing in untreated macrophages.   

An additional area of investigation remaining is the mechanism by which 

MAP4K4 regulates the production of TNFα in response to LPS.  Our results suggest 

that the LPS activation of MAPK and NFκB signaling pathways remains intact following 

MAP4K4 silencing.  Thus, a novel role for the MAP4K4 regulation of TNFα production 

may exist.  One possibility is PPARγ.  As previously mentioned, MAP4K4 negatively 

regulates PPARγ expression in adipocytes.  Recent studies have demonstrated that 

PPARγ can suppress inflammatory gene expression350 and that this function is required 

in macrophages to maintain insulin sensitivity351,352.  Hence, it is plausible that MAP4K4 

functions to suppress PPARγ in macrophages, as it does in adipocytes.  We also want 

to determine if MAP4K4 suppresses macrophage TNFα production in response to other 

TLR and general inflammatory agents.   Perhaps MAP4K4 may regulate TNFα 

production in obesity.    

Finally, we plan to test the ability of GeRPs to transfer siRNA to other non-

macrophage cell types.  Through conjugation of GeRPs with antibodies recognizing cell 

type specific markers GeRPs could potentially deliver siRNA to additional cell types.  

Although macrophages are an important drug target, gene silencing in other cell types is 

also of immense benefit in fighting other diseases.  By answering these questions, we 

may achieve better insight into the regulation of TNFα production by MAP4K4 and 

better utilization of the GeRP technology. 
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CHAPTER IV: Discussion 

 A major underlying mechanism leading to insulin resistance is the dysfunction of 

adipocytes and macrophages.  As mentioned earlier, adipose tissue is essential in 

maintaining systemic glucose homeostasis as the complete absence of adipose tissue 

causes insulin resistance in both humans and mice222-227.  Impairing adipose function, 

through the selective loss of GLUT4 in adipocytes, causes systemic insulin resistance29.  

Conversely, enhancing adipose function, through adipocyte specific GLUT4 over 

expression, causes enhanced insulin sensitivity and protects against high fat diet 

induced insulin resistance26.  Additionally, inflammation from macrophages causes 

insulin resistance in mouse models346.  Thus, the goals outlined for this thesis were to 

better understand the role of MAP4K4 in adipocyte and macrophage inflammatory 

processes.     

Previously our lab demonstrated that the germinal center kinase MAP4K4 

negatively regulates PPARγ expression and triglyceride synthesis in adipocytes275.  The 

authors also showed that MAP4K4 mediated part of the negative effects of TNFα on 

adipocyte gene expression.  Considering that enhancements of adipocyte function are 

of therapeutic interest, a better understanding of the signaling pathways utilized by 

TNFα to increase MAP4K4 expression was needed.  Thus, in Chapter II, I defined a 

pathway by which TNFα increases MAP4K4 expression.  Also, earlier studies had 

implicated MAP4K4 as a potential mediator of TNFα production in lymphocytes277.  

Because of the importance of macrophages in driving the inflammatory response in 

multiple diseases including insulin resistance, I wanted to determine if MAP4K4 
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controlled TNFα production in macrophages in vivo.  Thus, in Chapter III I demonstrated 

that MAP4K4 also regulates macrophage TNFα production in response to LPS in vivo.  

To achieve in vivo macrophage gene silencing, the GeRP technology was developed.  

Together, these studies better characterizes the role of MAP4K4 in adipocyte and 

macrophage inflammation.  

The Regulation of MAP4K4 Expression by TNFα in Adipocytes 

In Chapter II of this study, the regulation of MAP4K4 by TNFα in adipocytes was 

characterized.  This study was important for determining the mechanisms by which 

TNFα regulates adipocyte biology through MAP4K4.  As mentioned earlier, MAP4K4 

was previously demonstrated to negatively regulate PPARγ and lipogenic gene 

expression275.  The role of TNFα as a negative regulator of adipocyte gene expression 

had been realized for a number of years122,123.  However, the majority of these studies 

attributed most of the effects of TNFα on gene expression to NFκB.  Thus, the 

discovery that silencing of MAP4K4 prevents the full attenuation of adipocyte genes by 

TNFα suggested a potential role for MAP4K4 in the negative regulation of adipocyte 

function by TNFα275.  Hence, by understanding how TNFα regulated MAP4K4 

expression, new insight into the mechanisms by which TNFα regulates adipocyte 

function was gained through these studies.   

An important finding in these studies was that cJUN and ATF2 controlled 

MAP4K4 expression in response to TNFα.  Figure 2.6A demonstrated that silencing of 

either gene attenuates the TNFα mediated increase in MAP4K4 expression.  As a 

positive control IL-6 was used since it is robustly upregulated in response to TNFα 
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treatment.  Confirming earlier studies, I showed that increases in IL-6 transcript levels 

did not require cJUN or ATF2 (Figure 2.6B) 306,307.  In these studies, the authors 

demonstrated that FRA-1 and JUND, but not cJUN or ATF2, bind AP-1 sequences 

within the IL-6 promoter.  This result confirmed the specificity of the pathway 

hypothesized as other TNFα induced transcripts, like IL-6, did not appear to be altered.    

However, the possibility of other transcription factors regulated by TNFα mediating the 

increase in MAP4K4 expression cannot be ruled out from these studies.  Thus, in the 

future, determining the role NFκB or other transcription factors play would be of interest.  

The requirement of TNFR1, but not TNFR2 for the effect of TNFα on MAP4K4 

expression was consistent with the literature regarding TNFα signaling in adipocytes 

(Figure 2.7A and 2.7B).  Most of the TNFα effects on adipocytes have been attributed to 

TNFR1, not TNFR2.  In fact, signaling through TNFR1, but not TNFR2 increases 

lipolysis in 3T3-L1 Adipocytes124.  Furthermore, the authors went on to demonstrate that 

the negative effects of TNFα on insulin signaling are also through TNFR1, but not 

TNFR2, suggesting that TNFR2 is not an important component of TNFα signaling in 

adipocytes.  However, we detected a more subtle role for TNFR2 in the regulation of IL-

6.  Unlike MAP4K4, which did not require TNFR2 for full induction, the TNFα mediated 

increase in IL-6 expression did require TNFR2 signaling for the full effect.  This result 

demonstrated the specificity of our system and that the TNFα effect on MAP4K4 

expression was through TNFR1 but not TNFR2.    

Surprisingly, not all cytokines or inflammatory stimuli tested were capable of 

inducing MAP4K4 expression.  It is interesting to note that although numerous cytokines 
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can impair insulin sensitivity, each cytokine appears to use a unique mechanism.  IL-1β 

and TNFα are excellent examples of this point.  Both cytokines are potent mediators of 

inflammation that are elevated in obese humans127,128.  Additionally, both cytokines are 

capable of suppressing IRS-1 phosphorylation and attenuating insulin 

signaling113,115,116,129,130.  However, unlike TNFα which has a potent negative effect on 

lipogenic genes122,123, IL-1β treatment fails to alter the adipogenic genes PPARγ and 

C/EBPα129,130.  Interestingly, in our studies, IL-1β also failed to increase MAP4K4 

expression (Figure 2.3B), despite being in excess of concentrations required to activate 

IL-6 mRNA expression (Figure 2.3C).  Thus, the data presented in this body of work is 

consistent with the idea that TNFα is a unique cytokine because of its ability to influence 

adipocyte gene expression through the activation of NFκB and through MAP4K4.      

The Development of Technology for in vivo Delivery of siRNA 

 For the second part of this thesis, the role of MAP4K4 in macrophages was 

analyzed in vivo.  Thus, a major component of these studies was the development and 

characterization of technology to analyze the role of macrophage MAP4K4 in vivo with 

siRNA.  The first major obstacle in the usage of siRNA in vivo is tissue specificity.  To 

date, the majority of in vivo siRNA studies have failed to achieve tissue specificity due to 

the methods utilized.  For example, the so called “high pressure” transfection technique, 

in which siRNAs is injected into the tail vein, primarily targets hepatocytes246,353.  

Although this model has succeeded in attenuating Hepititis C infenctions in vivo, this 

transfection method may not be suitable for use in humans246.  Therefore, more specific 

in vivo transfection methods are needed. 
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  Other studies have also demonstrated limited success in terms of in vivo siRNA 

delivery to primary lymphocytes.  These cells are difficult to target for a number of 

reasons.  First, they do not readily transfect with conventional reagents such as 

lipofectamine or oligofectamine248,354.  Secondly, cells of the immune system typically 

broadly distribute and fail to localize simply to one part of the body.  Thus, a highly 

efficient systemic delivery method is needed.  One approach succeeded in targeting 

siRNA to cells expressing HIV-1 envelope protein, including the difficult-to-transfect 

primary T cells, by utilizing siRNAs complexed with antibodies against HIV-1 envelope 

protein249.  Other studies utilizing antibodies against lymphocyte markers have also 

demonstrated success in attenuating lymphocyte mediated colitis248,355.  Although these 

approaches do look promising, they are limited to tissue specific antigens that may or 

may not exist on target cells, and high quality antibodies which may not be attainable.  

Thus, an orally deliverable mechanism capable of systemic delivery to specific cell 

types would be of immense clinical interest. 

 Usage of GeRPs for the delivery of RNAi allows for tissue specificity with a 

common dietary component of yeasts.  Remarkably, β1,3-D-glucan is transcytosed in 

the intestine through M-cells to the GALT where macrophages readily phagocytose the 

particles (Supplemental Figure 3.1)322-325.  The specific phagocytosis by macrophages is 

mediated in part by the Dectin-1 receptor.  Because macrophages and monocytes are 

the primary phagocytes expressing the receptor, siRNA encapsulated within GeRPs 

target only these cell types324,325.  In support of this hypothesis, gene silencing was 

observed in multiple tissue macrophage populations including, peritoneal, spleen, lung 

and liver (Figure 3.4C).  In tissues, such as skeletal muscle, where low macrophage 
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populations are observed, gene silencing was not detected suggesting the specificity of 

the macrophage targeting (Figure 3.4C).  Microscopy images from these studies further 

illustrated the specificity as GeRPs were detected in macrophages isolated from the 

tissues where silencing was readily observed (Figure. 3.4A and Supplemental Figure 

3.4).  Altogether, the results presented in Chapter III suggest that the oral delivery of 

siRNA in GeRPs can target macrophages systemically.           

 A second major obstacle in the therapeutic use of siRNA is the potential toxicity 

of siRNA.  The initial excitement regarding the potential therapeutic usage of siRNA was 

dampened by the discovery that naked siRNA can induce a powerful interferon 

response in cultured cells318,356.  More recently, the beneficial effects of RNAi 

therapeutics in mouse models of choroidal neovascularization, were demonstrated to be 

non-specific effects caused by TLR3 mediated production of IFNγ and IL-12.  

Interestingly, in these studies both pro- and anti-angiogenic siRNA targets all 

suppressed choroidal neovascularization357.  Unlike the systems utilized in these earlier 

studies, activation of the interferon response system is not observed utilizing GeRPs.  

As demonstrated in Supplementary Figure 3.10, interferon response gene expression 

was unaffected by GeRP treatment.  Furthermore, after 8 days of GeRP treatment in 

vivo, serum TNFα (Supplemental Figure 3.9A) and IFNγ (Figure 3.4D) levels were 

unaltered.  Furthermore, serum AST and ALT liver enzyme levels were all within normal 

ranges following GeRP treatment suggesting that there are no long term liver toxicity 

issues as observed nonhuman primates treated with RNAi via the stable nucleic acid 

lipid particle technology252.   
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Because β1,3-D-glucan shells are common components of bakers yeasts, 

humans have been readily consuming the β1,3-D-glucan shells for millennia.  

Therefore, issues regarding the safety of glucan as a drug delivery system are not 

anticipated.  In agreement, we did not detect an increase in TNFα serum levels 

following more than 10 days of glucan shell treatment (Figure 3.5B).  Hence, it is likely 

that the glucan shell, in which the siRNA is encapsulated, protects the siRNA from 

detection until phagocytosis, thus preventing the activation of the interferon or other 

cytokine responses. 

MAP4K4 Regulation of Macrophage LPS Stimulated TNFα Production 

   By utilizing the GeRP system the role of MAP4K4 in vitro and in vivo was 

analyzed.  An important discovery in these studies was that MAP4K4 regulated 

macrophage LPS stimulated TNFα production.  Silencing of MAP4K4 inhibited LPS 

stimulated TNFα mRNA by 50% and protein by 30% in primary macrophages cultured 

in vitro (Figures 3.2D 3.2E respectively).  A detailed analysis of the signaling cascades 

activated by LPS signaling in macrophages demonstrated that phosphorylation of the 

major signaling cascades remained intact (Figure 3.3).   

 IL-1β was another cytokine observed to be positively regulated by MAP4K4 

(Figure 3.5C).  As mentioned earlier, IL-1β and TNFα can act synergistically in models 

of inflammation339.  However, other macrophage markers, such as the MCP-1 receptor 

(CCR2) or IL-10 failed to change significantly upon MAP4K4 silencing (Figure 3.5C), 

suggesting that MAP4K4 specifically regulates a select group of cytokines.  An area of 
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interest for the future would be a more comprehensive analysis of cytokine expression 

profiles of macrophages in which MAP4K4 has been silenced. 

Keystone to these studies was the demonstration that GeRPs can silence 

MAP4K4 expression and attenuate LPS mediated inflammation in vivo.  Previous 

studies had demonstrated that attenuation of TNFα and IL-1β release protected mice 

from the lethal effects of LPS341,342.  Thus, we tested MAP4K4 silencing in the LPS/D-

GalN model and observed increased survivability upon MAP4K4 silencing (Figure 3.6A 

and Supplementary Figure 3.8B).  However, previous reports suggested that anti TNFα 

siRNA administration alone prevented death in mice challenged with LPS by 75%344.  In 

this study, a single injection of siRNA against TNFα lowered TNFα protein levels by 

almost 80%.  Therefore in Chapter III, we also test survivability of mice treated with 

GeRPs containing siRNA against TNFα.  In our hands, two different oligos potently 

silenced TNFα expression (Supplemental Figures 3.2C and 3.2D), and attenuated the 

increase in serum TNFα during the LPS D-GalN challenge (Supplemental Figure 3.8A).  

Despite the success of these oligos, enhanced survival was not observed following 

LPS/D-GalN treatment (Supplemental Figure 3.8B).  Instead, a slight delay in the onset 

of death was observed.  Whether or not this delay was due to the effect of TNFα is an 

area of future interest.   

One potential explanation for why TNFα silencing was not as efficient as 

previously reported, is that our silencing was not as complete as the silencing observed 

in these earlier studies344.  In these previous studies mice were injected with an 

enormous amount of siRNA (1.2 mg/kg) when compared to our methods (10 µg/kg).  A, 
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second potential explanation for this outcome is that the injection of copious anti TNFα 

siRNA silenced TNFα expression in additional cell types that respond to LPS and 

secrete TNFα, such as T-cells343.  It is likely that TNFα attenuation does not occur in T-

cells with GeRPs.  Furthermore, IL-1β levels were not changed by TNFα silencing 

(Supplemental Figure 3.7B and 3.7C) as they are by MAP4K4 silencing (Figure 3.5C).  

Thus, the increase in IL-1β following LPS/D-GalN stimulation may be sufficient to cause 

death with TNFα silencing.  However, silencing MAP4K4 reduces the expression of both 

TNFα and IL-1β which may explain why MAP4K4 silencing protects better.  

Interestingly, the decrease in IL-1β was also observed with the use of a second oligo 

targeting MAP4K4 (Supplemental Figure 3. 7A).  This data suggests that the decrease 

in both TNFα and IL-1β following MAP4K4 silencing is a specific effect and potentially 

necessary for protection in the LPS/D-GalN model system.   

Future Perspectives 

While small molecular inhibitors remain difficult to design, this study 

demonstrates that tissue specific depletion of MAP4K4 and any other macrophage 

target with RNAi is possible through GeRP technology.  We do not know if the GeRP 

technology silences gene expression in other tissue types, such as adipocytes or 

hepatocytes.  However, gene silencing in macrophages alone is a remarkable 

achievement as macrophages mediate numerous clinical diseases including 

atherosclerosis347 and obesity-associated insulin resistance346.   

In the future, the GeRP technology will be used to test the role of macrophage 

MAP4K4 function in mouse models of insulin resistance.  As of now no data exists to 

suggest that macrophage MAP4K4 regulates obesity related inflammation.  If MAP4K4 
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also positively regulates macrophage TNFα expression in mice fed high fat diets, the 

GeRPs may potentially improve insulin sensitivity in these models.   Because of the role 

of MAP4K4 in negatively regulating adipocyte function, MAP4K4 may represent a 

pleiotropic target for attenuating insulin resistance.  In agreement, the attenuation of 

MAP4K4 in adipocytes enhances triglyceride storage275.  Treatments, such as 

thiazolidinediones, which enhance adipose tissue triglyceride storage improve insulin 

sensitivity232.  Thus, the production of the inflammatory cytokines TNFα and IL-1β from 

macrophages, and the release of FFA from adipose tissue may both be regulated by 

MAP4K4 in obesity.  We admit to not knowing the physiological role of macrophage 

MAP4K4 in the development of insulin resistance.  However, given the link between 

MAP4K4 and LPS induced TNFα expression discovered in Chapter III, we plan to test 

the function of macrophage MAP4K4 expression rigorously in mouse models of insulin 

resistance. 

Additionally, in these studies the mechanism by which TNFα controls MAP4K4 

expression in adipocytes was characterized in Chapter II of these studies.  Although 

ATF-2 and cJUN are important for the increase in MAP4K4 expression following TNFα 

treatment, undoubtedly other transcription factors also regulate MAP4K4 expression.  

One candidate that we plan to test is NFκB which is known to regulate the expression of 

numerous inflammatory genes.  Through experiments such as chromatin immuno-

precipitations, we plan to show a direct interaction of ATF-2 and cJUN on the MAP4K4 

promoter following TNFα treatment.  We would not be surprised if we also observe 

NFκB binding on the MAP4K4 promoter in these conditions.  Thus, a more careful 

analysis of the MAP4K4 promoter region is a worthwhile study.  
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Despite the identification of MAP4K4 as a mediator of LPS stimulated TNFα 

production in macrophages, work is required to determine the mechanism by which this 

is achieved.  First, MAP4K4 may regulate LPS induced TNFα production through a 

unique signaling mechanism.  Identifying interaction partners and signaling components 

in response to LPS stimulation is of interest.  Secondly, it is possible that MAP4K4 

silencing may alter LPS stimulated TNFα production by modulating of PPARγ.  Indeed, 

PPARγ deletion in macrophages results in the conversion of macrophages to a highly 

inflammatory state which exacerbates insulin resistance352.  Considering that that 

MAP4K4 negatively regulates PPARγ expression in adipocytes, it is plausible that 

MAP4K4 functions similarly to suppress PPARγ in macrophages.  Furthermore, the role 

of MAP4K4 in macrophage TNFα production may not be cell type exclusive, as 

MAP4K4 is also required for optimal TNFα production in T-cells277.  Thus, does 

MAP4K4 also regulate TNFα production in adipocytes, a known producer of TNFα 

during obesity?  All of these areas are of interest for future studies regarding MAP4K4.   

Lastly, the GeRP technology developed here is not limited to MAP4K4 targeting 

siRNAs as any expressed macrophage gene can be targeted.  This was demonstrated 

by our targeting of TNFα in Chapter III.  The development and characterization of this 

technology was perhaps the most important contribution of this body of work as the 

GeRP technology is applicable to any gene expressed in a macrophages.  Considering 

the vast amount of diseases mediated by macrophages, the GeRP technology is full of 

promise for future clinical application.      
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