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Abstract 

 

DRM is a conserved transcription factor complex that includes E2F/DP and pRB family 

proteins and plays important roles in the cell cycle and cancer. Recent work has 

unveiled a new aspect of DRM function in regulating genes involved in development 

and differentiation. These studies, however, were performed with cultured cells and a 

genome-wide study involving intact organisms undergoing active proliferation and 

differentiation was lacking. Our goal was to extend the knowledge of the role of DRM in 

gene regulation through development and in multiple tissues.  To accomplish this, we 

employed genomic approaches to determine genome-wide targets of DRM using the 

nematode Caenorhabditis elegans as a model system. In this dissertation, I focus on 

the DRM component LIN-54 since it was proposed to exhibit DNA-binding activity. First, 

we confirmed the DNA-binding activity of C.elegans LIN-54 in vivo, and showed it is 

essential to recruit the DRM complex to its target genes. Next, chromatin 

immunoprecipitation and gene expression profiling revealed that LIN-54 controls 

transcription of genes implicated in cell division, development and reproduction. This 

work identified an interesting contrast in DRM function in soma vs. germline: DRM 

promotes transcription of germline-specific genes in the germline, but prevents their 

ectopic expression in the soma. Furthermore, we discovered a novel characteristic of 

DRM, sex chromosome-biased binding and function. We demonstrated that C. elegans 

DRM preferentially binds autosomes, yet regulates X-chromosome silencing by 

counteracting the H3K36 histone methyltransferase MES-4. By using genomics, 

cytology, and genetics, we defined DRM as an important player in the regulation of 

germline X-chromosome gene expression, and addressed molecular mechanisms 
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behind the antagonistic interactions between DRM and MES-4. I present a model to 

explain the interplay of DRM and MES-4, and propose a novel function of DRM and 

MES-4 in maintaining proper chromosome gene expression dosage. This work extends 

our knowledge of the conserved roles of DRM in development, and provides a new view 

of differing DRM functions in soma versus germline. Furthermore, we defined a novel 

chromosome-specific aspect of DRM-mediated regulation.  

 



viii 
 

Table of Contents 

Signature page ............................................................................................................... ii 

Dedication ......................................................................................................................iii 

Acknowledgements ....................................................................................................... iv 

Abstract ......................................................................................................................... vi 

Table of Contents ......................................................................................................... viii 

List of Tables ................................................................................................................. xi 

List of Figures ................................................................................................................ xii 

List of Third Party Copyrighted Material ....................................................................... xiv 

List of multimedia objects or files ................................................................................. xv 

List of Third Party Copyrighted Material ....................................................................... xvi 

List of multimedia objects or files ................................................................................ xvii 

Preface ........................................................................................................................ xviii 

 

 

Chapter I  

Chapter I: Introduction and Literature Survey ............................................................ 1 

Gene regulation and DRM/DREAM complex ............................................................. 1 

Discovery of the conserved DREAM complex ........................................................... 4 

Cell cycle roles of the DREAM complex ..................................................................... 7 

Role of DREAM complex in developmental gene regulation ...................................... 8 

General introduction about sex chromosomes ......................................................... 10 

X chromosomes create an imbalance in chromosome dosage ................................ 12 

Germline X chromosome silencing occurs in males of many organisms (MSCI) ..... 13 

Germline X chromosome silencing in C.elegans hermaphrodites ............................ 16 

MES proteins: The regulators of hermaphrodite X chromosome silencing .............. 17 

The effect of germline X chromosome silencing on genome organization ............... 20 



ix 
 

The interplay between the DRM complex and MES proteins ................................... 21 

Conclusions ............................................................................................................. 23 

 

Chapter II  

Chapter II. ................................................................................................................ 26 

Chapter II. Abstract .................................................................................................. 26 

Chapter II. Introduction ............................................................................................ 28 

Chapter II. Results ................................................................................................... 32 

Chapter II. Discussion .............................................................................................. 59 

Chapter II. Materials and Methods ........................................................................... 69 

 

 

 Chapter III  

Chapter III. Introduction ........................................................................................... 88 

Chapter III. Results .................................................................................................. 93 

Chapter III. Discussion ........................................................................................... 119 

Chapter III. Materials and Methods ........................................................................ 128 

Chapter III. Acknowledgements ............................................................................. 130 

 

 

Chapter IV  

Chapter IV: Perspectives and open questions ....................................................... 138 

DREAM regulates the distinct sets of genes involved in development and cell cycle139 

Additional regulatory layers on LIN-54(DRM)-mediated gene regulation ............... 140 

The E2F/DP-LIN-54 binding motif, and the effect of chromatin environments ....... 143 

How does MES-4 recognize autosomes? .............................................................. 144 



x 
 

The model for the DRM vs. MES proteins antagonisms, and the future approach to 
identify “R” ............................................................................................................. 146 

Why are the hermaphrodite X chromosomes silenced? ......................................... 148 

The Broader Implication of This Study ................................................................... 150 

References ……………………………………………………………………………….172



xi 
 

List of Tables 

Chapter II  

- Supplemental Table 2-1. LIN-54 ChIP peak locations, bound genes (excel file) 

- Supplemental Table 2-2. Table 2-2. LIN-54 responsive genes and their GO 

terms 

- Supplemental Table 2-3. Chromosomal distribution of (A) LIN-54 ChIP peaks, 

(B) Binding motifs for E2FLIN-54 (Motif 1) and other transcription factors 

Chapter III  

- Table 3-1. Genetic interaction between lin-54 and mes mutants  

- Supplemental Table 3-1. mes-4 mutation alleles used in this study 

- Supplemental Table 3-2. Summary of the phenotypes and histone modification 

changes in lin-54(n3423),mes-2(bn11) or mes-4(ok2326, bn23) single mutants, 

and the lin-54(n3423);mes-2(bn11) or mes-4(ok2326, bn23) double mutants 

- Supplemental Table 3-3. The numbers of genes that significantly changed their 

expression in the listed mutants 

- Supplemental Table 3-4. The list of “LIN-54 and MES-4 responsive genes” 

 

Chapter IV 

- Table 4-1. List of candidate genes used in the small scale RNAi screen for an unknown 

global repressor “R” 

  



xii 
 

List of Figures 

Chapter I  

- Figure 1-1. A conserved Transcriptional Protein Complex, DRM  

- Figure 1-2. X chromosome Silencing in Soma and Germline 

- Figure 1-3. MES proteins: Regulators of Hermaphrodite X chromosome 

Silencing  

Chapter II  

-  Figure 2-1. LIN-54 binds DNA directly through its tesmin domains and recruits 

DRM to promoters 

-  Figure 2-2. LIN-54 tesmin domain mutation does not disrupt its stability or 

association with DRM 

- Figure 2-3. LIN-54 binding is enriched at promoters of genes involved in 

development, reproduction, and cell division that contain a putative E2F-LIN-54 

binding motif 

- Figure 2-4. LIN-54 can function as a transcriptional activator or repressor 

- Figure 2-5. LIN-54 shows autosome-enriched binding and chromosome-biased 

gene regulation 

- Figure 2-6. DRM complex members localize to germline autosomes 

- Figure2-S1. The conserved DRM complex, its binding to promoters of genes 

encoding DRM subunits, and disruption of its binding in the lin-54(n2990) mutant 

- Supplemental Figure2-1.An additional motif enriched in LIN-54 bound 

promoters and location of Motif 1 relative to ChIP peaks 



xiii 
 

- Supplemental Figure2-3. lin-54(n2990) mutants show similar, but weaker 

phenotypes compared with lin-54(n3423) null mutants 

- Supplemental Figure2-4. LIN-54, EFL-1, DPL-1, and LIN-35 co-regulated genes 

show chromosomal bias 

 

Chapter III  

-  Figure 3-1. The severity of lin-54 mutant phenotypes is sensitive to X 

chromosome  

- Figure 3-2. LIN-54 and MES-4 counteract each other to influence X-linked gene 

expression in the germline 

- Figure 3-3. The other categories of microarray data parallel to Figure 2 

- Figure 3-4. MES and LIN-54 proteins show no obvious effect on each other’s 

localization 

- Figure3-5. Mutation of lin-54 does not disrupt the distribution of many autosome-

enriched or X-enriched histone modifications 

- Figure3-6. LIN-54 is required for H3K36me2 to spread to the X chromosome in a 

mes-2(bn11) mutant 

- Figure3-7. Summary and Model  

- Supplemental Figure3-1. Comparison of genes mis-regulated in the lin-

54(n3423) mutant and in the mes-4(bn23) mutant 

- Supplemental Figure3-2. Comparison of LIN-54 responsive genes identified in 

the previous study (chapter II) and this study 



xiv 
 

 

List of Third Party Copyrighted Material 

 

Chapter II was published in PloS Genetics in 2011. 

Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans 

DRM Complex.Tabuchi TM, Deplancke B, Osato N, Zhu LJ, Barrasa MI, Harrison MM, 

Horvitz HR, Walhout AJ, Hagstrom KA. PLoS Genet. 2011 May;7(5):e1002074. Epub 

2011 May 12. 

  



xv 
 

 

List of multimedia objects or files  

Chapter II  

- Supplemental Table 1. LIN-54 ChIP peak locations, bound genes, GO terms of 

bound genes, and genes commonly bound between C. elegans and D. 

melanogaster or human (Excel file) 

- Supplemental Table 2. LIN-54 responsive genes and their GO terms. (Tab 1) 

Genes with changed expression in lin-54(n2990) embryos (Excel file) 

 

 

 

  



xvi 
 

List of Third Party Copyrighted Material 

 

Chapter II was published in PloS Genetics in 2011. 

Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans 

DRM Complex.Tabuchi TM, Deplancke B, Osato N, Zhu LJ, Barrasa MI, Harrison MM, 

Horvitz HR, Walhout AJ, Hagstrom KA. PLoS Genet. 2011 May;7(5):e1002074. Epub 

2011 May 12. 

  



xvii 
 

 

List of multimedia objects or files  

Chapter II  

- Supplemental Table 1. LIN-54 ChIP peak locations, bound genes, GO terms of 

bound genes, and genes commonly bound between C. elegans and D. 

melanogaster or human (Excel file) 

- Supplemental Table 2. LIN-54 responsive genes and their GO terms. (Tab 1) 

Genes with changed expression in lin-54(n2990) embryos (Excel file) 

 

 

 

  



xviii 
 

Preface 

 

References to publication that presents the work contained within the thesis: 

Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans 

DRM Complex. Tabuchi TM, Deplancke B, Osato N, Zhu LJ, Barrasa MI, Harrison MM, 

Horvitz HR, Walhout AJ, Hagstrom KA. PLoS Genet. 2011 May;7(5):e1002074. Epub 

2011 May 12. 

 

Figures not generated by author: 

Figure2-1B and C were created by Bart Deplancke (Yeast-one-hybrid assay, Chromatin 

immunoprecipitation) 

Figure 2-2C was created by Bart Deplancke (Yeast-one-hybrid assay) 

Figure 2-2C was created by Melissa Harrison (Immunoprecipitation) 

Figure 2-3: ChIP was performed by Bart Deplancke, and the ChIP-chip data was 

analyzed by Imma Barrasa, and the motif was discovered by Naoki Osato  

Figure 2-3E:  Motifs excluding Motif 1 were obtained from other published works, and 

listed for comparison purpose:  worm E2F (Kirienko and Fay, 2007), human dE2F2 

(Georellet et al. 2006), and human CDE/CHR (Shmit et al.)  

Figure 2-4: Microarray analysis was performed by Julie Zhu  

Figure 2-5E: The occurrence of motifs was determined by Naoki Osato  



xix 
 

Figure 2-5E, some data was used from Chi and Reinke 2006.  to obtain commonly 

regulated genes 

Figure 3-2 and 3, microarray analysis was performed by Julie Zhu  



                                                                             CHAPTER I 
 
 
 

1 
 

Chapter I: Introduction and Literature 

Survey 
 

Gene regulation and DRM/DREAM complex 

The proper spatiotemporal control of gene expression is essential for cell integrity 

and development of multi-cellular organisms. In particular, developmental gene 

programs need to be coordinately controlled along with cell cycle gene regulation 

to ensure proper differentiation and cell fates of actively proliferating cells. For 

instance, in actively proliferating cells, certain developmental genes need to be 

kept repressed, while cell cycles genes are transcribed in a cell cycle dependent 

manner. Such intricate gene regulation is largely orchestrated by transcription 

factors and chromatin-modifying proteins.  

Some transcription factors (TFs) influence the expression of a wide range 

of genes.  Such candidates were recently discovered in Caenorhabditis elegans 

using high-throughput yeast one-hybrid (Y1H) assays that revealed gut and 

neuron protein-DNA interaction (PDI) networks (Deplancke et al., 2006). Based 

on this PDI network, Deplancke et.al. has proposed a systems level model for 

C.elegans gene regulation by transcription factors. According to this model, 

transcription factors can be largely categorized into at least three tiers: 

“specifiers,” “master regulators”, and “global regulators” of transcription. 

Specifiers bind to one or two promoters within one system for fine-tuning of gene 
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expression; master regulators bind to multiple gene promoters and control 

expression of many genes within one system; global regulators bind to many 

promoters of genes involved in multiple systems. While most tested TFs fit into 

the “specifiers” or “master regulator” categories, only a few TFs act as “global 

regulators.”  

One of these global regulators is C.elegans LIN-54 (JC8.6), which is 

conserved in Drosophila melanogaster (mip120) and Homo sapiens (hLin54), 

and its testis-specific orthologues are known as tombola and tesmin, respectively 

(Beall et al., 2002; Jiang et al., 2007; Korenjak et al., 2004; Litovchick et al., 

2007; Schmit et al., 2007; Sugihara et al., 1999). Evidence suggesting LIN-54 is 

likely to bind DNA includes LIN-54 binding to C. elegans promoters in yeast one-

hybrid (Y1H) assays  (Deplancke et al., 2006), D. melanogaster Mip120(Lin54) 

binding specific sequence elements within the chorion gene cluster  (Beall et al., 

2002), and the purified tesmin domain from human Lin54 interacts with the 

human cdc2 promoter in vitro (Schmit et al., 2009). It is clear LIN-54 is a 

conserved transcription factor, which potentially binds and regulates the 

transcription of many genes. However, little is known about LIN-54 functions and 

its effect on transcription of candidate target genes, especially in the context of 

development.  

Some transcription factors act together within a protein complex to confer 

DNA binding and gene regulation, and such is the case for LIN-54. LIN-54 is a 

member of the conserved multi-protein complex known as DREAM, which 
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includes a pRB-protein family member, and the heterodimeric DNA binding 

proteins E2F/DP. DREAM protein complexes similar in composition and functions 

have been identified in C. elegans (DRM) (Harrison et al., 2006), D. 

melanogaster (dREAM or Myb-MuvB)  (Korenjak et al., 2004; Lewis et al., 2004) 

and Homo sapiens (hDREAM or LINC)  (Litovchick et al., 2007; Schmit et al., 

2007), and nearly all individual components of DREAM are conserved among 

these organisms (Figure1-1). However, the overall contribution of LIN-54 DNA 

binding to DREAM complex function has not yet been explored in any systems. 

Below I discuss the discovery of DREAM, and its known roles in coordinating 

expression of genes involved in cell division and development. In this dissertation, 

I will use the term DREAM complex to refer to the generic complex. 
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Discovery of the conserved DREAM complex  
 

The DREAM protein complex was first biochemically identified and purified in D. 

melanogaster as dREAM or MMB (Myb-MuvB) complex  (Korenjak et al., 2004; 

Lewis et al., 2004). The recovery and subsequent analysis of proteins tightly 

bound to the cis-regulatory elements at the chorion gene cluster revealed a  

protein complex that consists of Myb and multiple Myb-interacting proteins (Mip), 

 
 
Figure 1-1. The conserved DRM complex 

 
Cartoon represents the eight-subunit C. elegans DRM complex. Table 
show DRM subunits and their homologs in the D. melanogaster 
dREAM/MMB complex and in the H. sapiens LINC/DREAM complex. D. 
melanogaster also has a paralogous tMAC complex that is testis-
specific. A Myb subunit has not been identified in C. elegans DRM. 1. 
Harrison et al. 2006; 2. Korenjak et al. 2004; 3. Lewis et al. 2004 (MMB 
also includes Rpd3 and L(3)MBT); 4. Beall et al. 2007 (tMAC also 
includes Comr and Topi); 5. Litovchick et al. 2007; 6. Schmit et al. 
2007;  7. Detected only in MMB; 8. Detected only in hDREAM; 9. 
Detected only in LINC; 10. Georlette et al. 2007. 
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such as mip-130, mip-40, mip-120, and caf1/p55  (Beall et al., 2002). Later, the 

additional constituents of dREAM (pRB protein-family RBF1/2, E2F2, dDP, 

dMyb) were identified by biochemical fractionation assays  (Korenjak et al., 2004). 

Concurrently, using a proteomics approach, another group discovered a related 

complex, MMB  (Lewis et al., 2004). MMB differs from dREAM in that it contains 

three additional members: LIN-52, the histone deacetylase RDP3, and L(3)MBT 

(Korenjak et al., 2004; Lewis et al., 2004). In addition, a study in testis found a 

testis-specific orthologus complex called tMAC that shares some components 

with dREAM/MMB (Beall et al., 2007; Jiang et al., 2007). Based on a genomic 

study, dREAM/MMB regulates the expression of genes primarily involved in cell 

cycle and development, but less is known about tMAC functions.  

In C.elegans, the components of the DREAM complex (C.elegans DRM) 

were initially discovered through genetic screens for factors involved in vulva 

development (Ceol and Horvitz, 2001; Fay and Yochem, 2007; Ferguson and 

Horvitz, 1989; Thomas et al., 2003). Those factors are encoded by synMuvB 

(synthetic multivulva class B) genes, which act “synthetically” with synMuvA 

genes to antagonize Ras signaling during vulva development. Most synMuvB 

genes are broadly expressed chromatin-associated transcriptional regulators, 

and when mutated affect a range of biological processes including embryo 

polarity, apoptosis (Reddien et al., 2007; Schertel and Conradt, 2007), sex 

determination (Grote and Conradt, 2006), and RNA interference (Lehner et al., 

2006; Wang et al., 2005). Subsequently, a biochemical study confirmed the 
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protein complex (DRM) consists of the synMuvB proteins LIN-35(Rb), EFL-

1(E2F), DPL-1(DP), LIN-54(Mip120), LIN-9(Mip130), LIN-37, LIN-52, and LIN-

53(Caf1) (Harrison et al., 2006). At present, the counterpart for the DNA-binding 

protein Myb is not apparent in C.elegans  (Harrison et al., 2006). DRM exhibits 

pleiotropic functions in worms since the loss of DRM function leads to a wide 

range of phenotypes. However, the comprehensive genome-wide gene 

regulatory targets and function of synMuv proteins or DRM complex remain 

largely unknown.  

DREAM complex is also identified in Homo sapience as hDREAM or LINC 

(LIN complex) (Litovchick et al., 2007; Schmit et al., 2007), and shows some 

unique features compared to fly or worm complexes. First, in contrast to those 

model organisms, the composition of hDREAM/LINC is rather complicated since 

pRB, DP, E2F, and Myb contain multiple family members that associate with 

hDREAM/LINC. For example, the human pRB-family is comprised of pRB, p130, 

and p107 proteins, yet only the last two proteins are components of 

hDREAM/LINC  (Litovchick et al., 2007; Osterloh et al., 2007; Pilkinton et al., 

2007; Schmit et al., 2007). Second, the concept of a stable core complex for 

DREAM is established in human. The core complex, termed “muvB core”, is 

composed of the homologues of synMuvB genes LIN-9, LIN-37, LIN-52, LIN-54, 

and RBB4 (CAF1) (Litovchick et al., 2007; Schmit et al., 2007), and “the muvB 

core” selectively interacts with two DNA-binding moieties of DREAM, the E2F/DP 

heterodimer or Myb, in a mutually exclusive manner (Litovchick et al., 2011; 
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Litovchick et al., 2007; Pilkinton et al., 2007; Schmit et al., 2007). This swapping 

of the DNA-binding proteins appears to be particularly helpful to control cell cycle 

genes in mammals and is discussed in the section below.   

 

Cell cycle roles of the DREAM complex  

 

The role of the DREAM complex in regulating cell cycle gene expression is best 

studied in mammalian cultured cells where DREAM alternately functions as a 

repressor or an activator complex depending on the cell cycle phase (Litovchick 

et al., 2007; Osterloh et al., 2007; Sandoval et al., 2009; Schmit et al., 2007). 

This switch in the transcriptional activity and targeting of a different set of genes 

is mediated by a subunit swapping mechanism. During the G0 phase of the cell 

cycle, the core of DREAM (“the muvB core”) incorporates the Rb-family protein 

p130 and E2F, but not Myb, to repress S phase genes. In S-phase, p130 and 

E2F dissociate from the muvB core, and Myb is incorporated to promote 

activation of G2/M phase genes, such as the mitotic kinases cdc2 and Aurora 

kinase  (Knight et al., 2009; Osterloh et al., 2007; Schmit et al., 2007). 

Consistently, the disruption of Myb or the muvB core leads to impaired 

proliferation and G2/M arrest (Knight et al., 2009; Osterloh et al., 2007). 

Similar regulatory properties were also observed in D. melanogaster. A 

genomic study of dREAM demonstrated that multiple members of dREAM bind to 

many gene promoters to either activate or repress transcription, and importantly 
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E2F and Myb function in a mutually exclusive manner (Georlette et al., 2007). 

Notably, similar to human, many fly genes involved in G2/M transition were also 

activated by the muvB core complex associated with Myb, but excluding E2F. 

This suggests a conserved gene regulatory mechanism and a role for DREAM in 

positively regulating M phase genes in fly and human. On the contrary, 

C.elegans lack an apparent Myb homologue, implying a different mode of cell 

cycle gene regulation in C.elegans; however, it is possible that low sequence 

conservation of Myb may be hindering a homology search and the functional 

counter-part for Myb does exist, but is not yet recognized.   

 

Role of DREAM complex in developmental gene regulation  
 

Many animals carrying the loss or compromised function of DREAM show 

developmental abnormalities, which is thought to be an indirect consequence of 

cell division failures. For example, the homozygous Rb knock-out mice develop 

relatively normal till at least 11.5 days of gestation, but die with developmental 

defects, including abnormal haematopoietic and nervous systems (Clarke et al., 

1992; Jacks et al., 1992; Lee et al., 1992). In D. melanogaster and C.elegans, 

compromising DREAM functions causes somatic and germline defects including 

sterility and lethality (Beall et al., 2004; Beitel et al., 2000; Ceol and Horvitz, 

2001; Chi and Reinke, 2006; Ferguson and Horvitz, 1989; Harrison et al., 2006; 

Katzen et al., 1985; Manak et al., 2002; Thomas et al., 2003).  
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However, molecular studies over the past several years, especially with 

the model organism D. melanogaster, suggested that cell division failure is not 

solely responsible for such developmental abnormalities, but  instead DREAM 

plays directly role regulating some genes involved in development and 

differentiation process. For example, microarray analysis revealed some of 

dREAM/MMB targets with sex- and development-specific expression in D. 

melanogaster cultured cells  (Dimova et al., 2003; Korenjak et al., 2004; Lee et 

al., 2010). Importantly, these genes were permanently repressed by 

dREAM/MMB in actively proliferating cells, suggesting a cell cycle-independent 

role of dREAM in regulating developmental genes. It is not well understood how 

dREAM regulates two distinct transcriptional programs (cell cycle-dependent 

regulation of cell division genes vs. cell cycle-independent repression of 

developmental genes). Furthermore, it is not yet clear whether developmental 

gene regulation is a conserved DREAM function, since studies in mammalian 

cultured cells only identified cell cycle genes as DREAM targets. Moreover, with 

the exception of gene expression profiling of the C. elegans germline (Chi and 

Reinke, 2006), genome-scale studies of the DREAM complex were performed in 

cultured cells. Therefore, it was important to extend genome-wide analyses of 

DREAM to multiple cell types and tissues derived from intact organisms 

undergoing active developmental processes to enable a comprehensive 

assessment of DREAM function through development. In Chapter II, I describe 

how we analyzed genome-wide binding and gene regulation by C. elegans DRM 
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in embryonic soma and in germline tissue, leading to better understanding its 

gene targets and developmental roles. One new role of DRM that I discovered is 

its regulation of X chromosome silencing in the hermaphrodite germline. 

Therefore, below I provide an introduction about sex chromosomes and special 

forms of gene regulation that occur on sex chromosomes. 

 

General introduction about sex chromosomes 

Many organisms carry sex chromosomes that are used to determine sex. In the 

well-known XY system, the sex of mammals is determined by the presence of the 

Y chromosome, where animals carrying Y chromosomes become males and XX 

animals become females (Gubbay et al., 1990; Koopman et al., 1991; Sinclair et 

al., 1990). In flies and worms, the sex is determined by the ratio of autosomal 

and X-linked genes (X vs. A ratio). Thus, under normal conditions,  animals 

carrying two X chromosomes develop into females (or hermaphrodites), while 

animals with a single X chromosome become males (XY or XO males) (Bridges, 

1916; Madl and Herman, 1979). Therefore, having a different number of X 

chromosomes between the sexes appears to be inevitable for organisms that use 

chromosome-based sex determination.  

Having a different number of X chromosomes between the sexes is linked 

with the fact that the X chromosome exhibits many distinct features compared to 

autosomes, such as its gene regulatory properties, associated proteins, 
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chromatin regulatory environments, gene content, and pattern of evolution 

(Ellegren and Parsch, 2007; Gurbich and Bachtrog, 2008; Vicoso and 

Charlesworth, 2006). For example, to compensate for the difference in X 

chromosome-linked gene dosages between the sexes, genes on X 

chromosomes are differentially regulated compared to autosomes by 

chromosome-wide gene silencing events termed dosage compensation (or gene 

activation in flies). Therefore, X chromosomes accumulate the different amount 

of gene regulatory proteins and modified histones compared to autosomes 

(Ellegren and Parsch, 2007; Gurbich and Bachtrog, 2008; Vibranovski et al., 

2009), (Namekawa et al., 2006). As another example, X-specific hemizygosity in 

the male allows the accumulation of recessive alleles that are beneficial to male 

fitness. Thus, the genes located on the X chromosomes evolve faster and tend to 

be male-biased (Ellegren and Parsch, 2007; Gurbich and Bachtrog, 2008; Vicoso 

and Charlesworth, 2006). Furthermore, hemizygosity in the male also create 

“sexual antagonism”: the X chromosome is transmitted through females more 

frequently than males, and thus, likely to fixate mutations beneficial to female 

fitness (Ellegren and Parsch, 2007; Gurbich and Bachtrog, 2008; Vicoso and 

Charlesworth, 2006). In summary, X chromosomes are very distinct from 

autosomes in many ways, and such differences are made by the facts that the 

different number of X chromosomes exists between the sexes.  
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X chromosomes create an imbalance in chromosome dosage  
 

The difference in the number of X chromosomes between the two sexes causes 

the problem of chromosome dosage imbalance between male and females, and 

between autosomes and the X chromosome. Between the two sexes, XX 

females (or XX hermaphrodites in C.elegans) can potentially produce twice as 

much X-linked gene products as XY males (or XO males in C.elegans). To 

correct for such potentially lethal imbalance, many organisms have developed 

various X-specific chromosome-wide gene regulatory mechanisms termed 

“dosage compensation” (Figure 1-2). For example, in humans one of the two X 

chromosomes in females is randomly selected for inactivation (Payer and Lee, 

2008); in flies the single X chromosome in males is up-regulated roughly two-fold 

(Mendjan and Akhtar, 2007); in worms, the two X chromosomes in 

hermaphrodites are repressed by half (Ercan and Lieb, 2009; Meyer, 2010). It is 

not clear why these organisms have developed such diverse strategies, but each 

mechanism involves epigenetic changes on the X chromatin.  For instance, X 

inactivation in human involves decorating the X chromosomes with 

heterochromatic histone modifications and DNA methylation partly by the action 

of non-coding RNA (e.g. Xist) (Payer and Lee, 2008). In flies, the active histone 

modification H4K16Ac is enriched on the male X chromosome (Mendjan and 

Akhtar, 2007). In worms, the two dosage compensated X chromosomes are 

depleted of the histone variant H2AZ (Petty et al., 2009). Thus, epigenetic 
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regulation seems to be a key method in correcting the imbalance in X-linked 

gene products between the sexes in many organisms.   

The different number of X chromosomes between the two sexes also 

implies an imbalance in chromosome-dosage between autosomes and the X 

chromosome, similar to cases of aneuploidy. When considering active alleles on 

autosomes and the X chromosome, males contain a single active X chromosome 

(X) and two active autosomes (AA), creating an X:AA ratio of 0.5. Interestingly, 

lines of evidence suggest that this X:A imbalance is also corrected in some 

organisms. In D. melanogaster, its dosage compensation strategy (the up-

regulation a single X chromosome in male) serves to correct not only the 

imbalances between the sexes, but also between X vs. A, making the X:AA ratio 

~1.0 (Gupta et al., 2006). Furthermore even in human and mice, somatic tissues 

showed the X:AA ratio of ~1.0 (Gupta et al., 2006; Nguyen and Disteche, 2006). 

This observation suggests X-linked genes in mammals are up-regulated twice as 

high as autosomal genes per active allele. Although a contradictory result was 

reported recently (Xiong et al., 2010), the leading hypothesis is that the X:A ratio 

is actively maintained in many organisms.  

 

Germline X chromosome silencing occurs in males of many 

organisms (MSCI) 

The different number of X chromosomes between the two sexes causes yet 

another problem in germline, which is handled differently by a germline-specific 
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gene regulatory mechanism. In the germline where meiosis takes place, the 

homologous chromosomes need to be properly aligned and paired for faithful 

chromosome segregation and gamete production. However, the single X 

chromosome in male germlines lacks a complete meiotic partner, providing the 

potential to aberrantly recombine with other chromosomes and cause 

chromosome mis-segregation during meiosis. To prevent such detrimental 

consequences, unpaired DNA, including the single X chromosome in males, 

triggers a defense mechanism called MSCI (meiotic sex chromosome 

inactivation), and undergoes heterochromatin formation (Turner, 2007) (Figure 1-

2). This is evident by the appearance of a condensed X chromosome called the 

sex-body (the XY-body), and the accumulation of histone modifications 

associated with inactive transcription (e.g. H3K9methylation) (Turner, 2007). In 

short, formation of such heterochromatin prevents it from recombining with other 

chromosomes, and thus ensures proper chromosome segregation. This 

evolutionarily conserved mechanism is thought to have evolved to silence 

unpaired DNA or chromosomes and it is widely used among many species, 

including human, fly, and worms.  
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Figure 1-2. X chromosome Silencing in Soma and Germline  

X chromosomes differ in number between the sexes, thus become target 
of X-specific chromosome-wide gene regulatory mechanisms. 

 In soma, a mechanism termed “dosage compensation” corrects the 
imbalance in X-linked gene products between the sexes. In humans, one 
of the two X chromosomes in females is randomly selected for inactivation; 
in flies the single X chromosome in males is up-regulated roughly two-fold; 
in worms, the two X chromosomes in hermaphrodites are repressed by 
half. 

In the male germline of many species, the single X chromosome 
undergoes heterochromatin formation and is silenced by a process known 
as Meiotic Sex Chromosome Inactivation (MSCI). The two X chromosomes 
in C.elegans hermaphrodites undergo mild transcriptional silencing in 
germline. 
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Germline X chromosome silencing in C.elegans hermaphrodites  
 

Another form of germline X chromosome silencing, presumably distinct from 

MSCI, is observed in C.elegans and its related nematode species (Kelly et al., 

2002). The two X chromosomes in hermaphrodite germlines were shown to 

temporarily undergo mild transcriptional gene silencing (Figure 1-2). This was 

first discovered by cytological observations that the X chromosome in early 

stages of meiosis were depleted of an active form of RNA-polymerase II and 

histone modifications associated with active transcription (Kelly et al., 2002). 

Later, microarray analysis of hermaphrodite germlines confirmed that X-linked 

transcripts were significantly lower in number and in expression level, compared 

to the expected (Reinke et al., 2004; Reinke et al., 2000; Wang et al., 2009). It is 

not known if other organisms similarly repress the X chromosome in the female 

germ line, and why C.elegans represses two X chromosomes in the 

hermaphrodite germline. However, this is thought to be a MSCI-independent 

process. First, the two X chromosomes in hermaphrodite germlines properly pair 

and synapse (Villeneuve, 1994). Second, the hermaphrodite silencing only 

occurs during early stages of meiotic prophase, whereas MSCI-related silencing 

of the X persists until spermatogenesis (Kelly et al., 2002). Lastly, a distinct set of 

regulators are involved in each process: RNAi-related proteins play roles in 

MSCI-related heterochromatin formation (Maine et al., 2005; Walstrom et al., 

2005), whereas the chromatin modifiers MES proteins are implicated in 

hermaphrodite X-silencing (Bender et al., 2006; Fong et al., 2002).  
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MES proteins: The regulators of hermaphrodite X chromosome 

silencing 

The proteins MES-2, MES-3, MES-4, and MES-6 mediate repression of X 

chromosome gene expression in the hermaphrodite germline.  Genetic studies 

first indicated roles of mes (“maternal-effect sterile”) genes (mes-4, mes-2, mes-3, 

mes-6) in modulating X-linked gene expression, by screening for mutations 

responsible for “grandchild-less” phenotypes (Capowski et al., 1991). 

Homozygous mes progeny from heterozygous mothers are fertile due to the 

maternal contribution (M+Z- generation: presence of maternal products but no 

zygotic expression), but their offspring become sterile adults carrying 

Figure 1-3 

MES proteins: Regulator of Hermaphrodite X chromosome 

Silencing 
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degenerating germ cells (M-Z- generation: neither maternal nor zygotic products 

is present). Interestingly, the degree of germ cell degeneration in mes (M-Z-) 

mutants worsens with an increase in the number of X chromosomes (Garvin et 

al., 1998), implicating a role for mes genes in controlling expression of at least 

some X-linked genes. Cloning and molecular characterizations of mes genes and 

their products revealed that mes genes encode for two sets of histone 

methyltransferases that differentially modify chromatin on autosomes and the X 

chromosome: H3K36 methyltransferase MES-4 and H3K27methyltransferase 

MES-2, further supporting their roles in regulating genes on the X chromosome 

(Bender et al., 2004; Bender et al., 2006; Capowski et al., 1991; Fong et al., 

2002).  

MES-4 is the homologue of the NSD1 family of H3K36 methyltransferases. 

It plays a distinct role from a canonical H3K36 histone methyltransferases (i.e. 

worm MET-1 and yeast Set2) that create H3K36me marks on gene bodies to 

prevent sporadic initiation of transcription (Bender et al., 2006; Rechtsteiner et al., 

2010). Instead, C.elegans MES-4 marks germline-expressed genes in embryonic 

soma, and thus is proposed to play an epigenetic role in transmitting the memory 

of a germ line program to the next generation (Rechtsteiner et al., 2010). In the 

germline, the MES-4 protein predominantly localizes to autosomes and 

methylates lysine 36 of Histone H3 (H3K36me2/3) (Bender et al., 2006). Despite 

its autosomal localization, MES-4 is implicated in hermaphrodite X chromosome 

silencing. Microarray analysis of mes-4 (M+Z-) mutant germlines showed 
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prominent up-regulation of X-linked genes, suggesting that autosome-enriched 

MES-4 normally helps to repress genes on the X chromosome (Bender et al., 

2006). It is possible that the roles that MES-4 plays in soma and germline may be 

connected; however, such evidence is currently lacking in the field.  

Another regulator involved in hermaphrodite X-silencing is MES-2, a 

histone H3K27 methyltransferase homologous to fly Enhancer of zeste E(Z) 

(Bender et al., 2004; Holdeman et al., 1998). MES-2 forms a protein complex 

with MES-3 and MES-6 (the MES-2/3/6 complex), resembling the Polycomb 

Repressive Complex 2 (PRC2) (Xu et al., 2001a). MES-6 is a homologue of fly 

extra sex combs (ESC), and MES-3 is a protein with unknown function (Korf et 

al., 1998; Xu et al., 2001b). In germline and early embryos, MES-2/3/6 catalyzes 

di- or tri-methylation of lysine 27 of Histone H3 (H3K27me2/3), a mark typically 

associated with inactive transcription (Bender et al., 2004). H3K27me2 appears 

uniformly on all chromosomes, while H3K27me3 appears on autosomes to a 

lesser degree, with the majority concentrated on X. In the absence of MES-2/3/6 

function, autosome-enriched MES-4 and its mark H3K36me2 were shown to mis-

localize to the X chromosome, suggesting that H3K27me on the X chromosome 

normally keeps X-linked genes silent by repelling MES-4 (Fong et al., 2002). 

Taken together, MES-4 and MES-2/3/6 are thought to work together to keep the 

X chromosome repressed in the germline.  
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The effect of germline X chromosome silencing on genome 

organization  

X chromosome silencing is intimately linked to genome organization. In many 

organisms, genes involved in spermatogenesis are under-represented on the X 

chromosomes, owing to the fact that if located on the heterochromatic male X, 

such genes would be silenced and lead to spermatogenesis defects and/or 

sterility (Gurbich and Bachtrog, 2008; Vicoso and Charlesworth, 2006). Thus, 

spermatogenesis genes are thought to have “fled” from the X chromosome 

during evolution. By contrast, in the C.elegans genome, not only 

spermatogenesis genes, but numerous germline-expressed genes (e.g. genes 

necessary for oogenesis and early embryogenesis) and essential genes are 

under-represented on the X chromosome (Kamath et al., 2003; Piano et al., 

2000; Reinke et al., 2004; Reinke et al., 2000; Wang et al., 2009). Likewise, a 

study of duplicated genes found that a copy located on autosome was likely to be 

essential, while an X-linked copy was dispensable (Maciejowski et al., 2005). 

These findings are in agreement with the fact that C.elegans has two forms of X-

silencing in the germline, male MSCI and hermaphrodite X-silencing. Therefore, 

evolutionary pressures imposed by germline X chromosome silencing in C. 

elegans are thought to have resulted in the autosome-biased location of 

germline-expressed and essential genes. However, autosome-biased 

transcriptional regulatory networks that orchestrate gene expression in the 

germline context had not been identified in any systems.  In Chapter II, I show 
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that the DRM complex is an important regulator of germline gene expression and 

that the complex and the DNA binding motif it recognizes are autosome-biased.  

 

The interplay between the DRM complex and MES proteins  

The first section of this chapter described the discovery and known functions of 

the DREAM complex. In the second section we discussed roles of MES proteins 

in hermaphrodite X chromosome silencing events. In C.elegans, DREAM 

complex (DRM) and MES proteins are genetically linked in coordinating many 

aspects of worm development and cellular processes.  

The process of vulva cell specification is one of the most well-

characterized systems illustrating the interplay between the DRM complex and 

MES proteins. DRM members are synMuvB class genes, and lead to ectopic 

vulva formation when synMuvA genes are simultaneously mutated (the multiple-

vulva, muv phenotype) (Fay and Yochem, 2007). Subsequently, a genetic screen 

for mutations that suppress muv phenotypes identified about ~40 genes as 

“synMuv suppressors” (Andersen et al., 2006; Cui et al., 2006b). Surprisingly, 

many synMuv suppressors encode for chromatin-acting proteins, such as an 

ATP-dependent chromatin remodeling complex, ISW1/NURF, or the histone 

acetylation complex, NuA3 complex, and, as discussed, histone 

methyltransferase MES-4 and MES-2/3/6 complex (Andersen et al., 2006; Cui et 

al., 2006b). In the case of vulva development, a key target of the synMuv 

pathway was shown to be the lin-3/EGF inductive signal in the hypodermis, 
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although the targets of synMuv pathway in other processes are largely unknown 

(Andersen et al., 2006; Cui et al., 2006a). In short, a genetically defined pathway 

involving vulva development provided initial insight that the proper specification 

of cell fates requires concerted actions of transcription factors and chromatin-

acting proteins. 

The antagonistic nature between synMuvB genes and the synMuv 

suppressors were also documented in other processes in C.elegans. For 

instance, the interplay between genes of the synMuvB and synMuv-suppressor 

class mediates proper distinction between soma and germline cell fates. Somatic 

cells in synMuv B mutants display germ cell-like features, such as ectopic 

expression of germline P-granules or enhanced RNAi efficiency (Lehner et al., 

2006; Petrella et al., 2011; Unhavaithaya et al., 2002; Wang et al., 2005). Like 

vulva development, the loss of synMuv suppressors suppresses such 

transformation (Cui et al., 2006b; Unhavaithaya et al., 2002; Wang et al., 2005). 

This knowledge was recently further extended by Petrella et al. who performed 

expression profiling of a synMuv B mutant (DRM component lin-35/rb) and 

synMuv suppressor (MES-4) in soma (Petrella et al., 2011). They showed many 

of synMuv B mutants arrest at high temperature (26oC) (high temperature arrest, 

HTA phenotypes) because somatic cells, particularly gut cells, ectopically 

express high levels of germline genes. The HTA phenotype and ectopically 

expressed germline genes were shown to be suppressed by mutating synMuv 

suppressor genes like MES-4.  Petrella et. al. concluded that the DRM complex 
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and MES-4 counteract each other by acting on a similar set of germline-genes in 

somatic tissues. Therefore, it became increasingly clear that transcription factors 

alone are not sufficient to mediate proper differentiation process, but required the 

coordinated actions of chromatin factors. However, it remains unknown whether 

such interplay is necessary for germline processes. In particular, the link between 

the DRM complex and MES proteins in germline processes were not described. 

In Chapter III, I provide evidence that DRM counteracts the activity of MES 

proteins in regulating germline gene expression, and that these antagonistic 

activities are necessary for proper levels of X chromosome silencing.  

Conclusions  

The DREAM complex is an evolutionarily conserved protein complex that is 

primarily known to regulate cell cycle genes. Work over the past decade has 

started to reveal novel and direct roles in regulating genes involved in 

development and cellular differentiation. However, previous studies utilized 

cultured cells, and therefore a comprehensive genome-wide study involving 

intact organisms undergoing active development and proliferation processes was 

still missing. The studies presented in this thesis addressed this missing aspect 

of C.elegans DRM function, focusing on the two developmental contexts, soma 

vs. germline. Throughout this dissertation, my primary focus was placed on the 

C.elegans DRM complex component LIN-54, because LIN-54 was categorized 

as “global regulators” based on yeast protein-DNA interaction networks, yet its 

biological functions were less clear in C.elegans. In addition, LIN-54 seemed 
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likely to act as a DNA-binding protein within the DREAM complex; however, the 

contribution of LIN-54 DNA-binding activity to the DREAM function was not 

known. Furthermore, based on studies in fly and human, LIN-54 is a part of the 

stable core complex (the muvB core, see page 35), and hence, by studying LIN-

54 we are likely to learn about the broad functions of the core complex. Lastly, 

we wished to map genome-wide DRM binding sites, and we reasoned our 

approach (e.g. chromatin immunoprecipitation, ChIP) would most likely succeed 

using LIN-54 since it likely directly binds DNA.  

In chapter II of this thesis, I provide evidence that C.elegans LIN-54 has 

DNA-binding activity in vitro and in vivo, and that this DNA-binding activity 

contributes to the DNA binding of the whole DRM complex. Importantly, by 

utilizing genomic approaches, we addressed a key question: what are the roles 

of LIN-54(DRM) in development, especially in germline and soma? Through my 

research, I found that the DRM plays a distinct role in germline versus soma. 

DRM controls different targets genes in germline versus soma, and these are 

mainly involved in cell division, development, and reproduction. Moreover, LIN-54 

promotes expression of reproduction genes in the germline, but prevents ectopic 

activation of germline-specific genes in embryonic soma. Strikingly, after 

mapping the transcriptional targets of LIN-54 and other DRM members, I 

discovered a unique and novel feature of C.elegans DRM regulation: 

chromosome bias. LIN-54(DRM) primarily binds and directly regulates genes 

located on autosomes. We hypothesize that such autosome-bias of DRM might 
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have co-evolved with the autosome-biased redistribution of germline-expressed 

genes.  

During the analysis of genomic data in chapter II, we found that the loss of 

DRM led to the enhancement of X-silencing in germline, raising a possibility that 

DRM may be involved in hermaphrodite X-silencing. We test this hypothesis in 

chapter III by investigating potential interplay with MES proteins. Gene 

expression profiling showed that many of the mis-regulated genes in the lin-54 or 

mes-4 single mutants become expressed the at normal level in the lin-54;mes-4 

double mutant. We conclude that the interplay between LIN-54(DRM) and MES 

proteins is essential to maintain the proper dosage of X chromosome and 

autosome gene expression in the germline.   
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                      Chapter II.  
 

Chromosome-biased binding and gene regulation by the 

Caenorhabditis elegans DRM complex 

 

 

Chapter II. Abstract 

DRM is a conserved transcription factor complex that includes E2F/DP and pRB 

family proteins and plays important roles in development and cancer. Here we 

describe new aspects of DRM binding and function revealed through genome-

wide analyses of the C. elegans DRM subunit LIN-54. We show that LIN-54 

DNA-binding activity recruits DRM to promoters enriched for adjacent putative 

E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding 

moieties together direct DRM to its target genes. Chromatin immunoprecipitation 

and gene expression profiling reveals conserved roles for DRM in regulating 

genes involved in cell division, development, and reproduction. We find that LIN-

54 promotes expression of reproduction genes in the germline, but prevents 

ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. 

elegans DRM does not act uniformly throughout the genome: the DRM 

recruitment motif, DRM binding, and DRM-regulated embryonic genes are all 

under-represented on the X chromosome. However, germline genes down-
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regulated in lin-54 mutants are over-represented on the X chromosome. We 

discuss models for how loss of autosome-bound DRM may enhance germline X 

chromosome silencing. We propose that autosome-enriched binding of DRM 

arose in C. elegans as a consequence of germline X chromosome silencing and 

the evolutionary redistribution of germline-expressed and essential target genes 

to autosomes. Sex chromosome gene regulation may thus have profound 

evolutionary effects on genome organization and transcriptional regulatory 

networks. 
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Chapter II. Introduction 

The development of multi-cellular organisms is orchestrated by transcription 

factors that coordinate the spatiotemporal expression of sets of target genes. 

Transcription factors often act together in the context of multi-protein complexes. 

For instance, DREAM is a multi-protein complex conserved among 

Caenorhabditis elegans (DRM), Drosophila melanogaster (dREAM/Myb-MuvB) 

and Homo sapiens (hDREAM or LINC), and includes a retinoblastoma tumor 

suppressor pRb-family protein and the DNA binding heterodimer E2F/DP (Beall 

et al., 2002; Harrison et al., 2006; Korenjak et al., 2004; Lewis et al., 2004; 

Litovchick et al., 2007; Pilkinton et al., 2007; Schmit et al., 2007). DREAM 

coordinates the expression of cell division and differentiation genes during 

development, and its subunit activities are altered in many human tumors (van 

den Heuvel and Dyson, 2008). 

  In C. elegans, the genes that encode DRM subunits were originally 

identified in genetic screens for mutations causing defects in vulva development. 

Specifically, DRM subunits are encoded by synMuvB (synthetic multivulva class 

B) genes, which act “synthetically” with synMuvA genes to antagonize Ras 

signaling during vulva development (Ceol and Horvitz, 2001; Fay and Yochem, 

2007; Ferguson and Horvitz, 1989; Thomas et al., 2003). Most synMuvB genes 

are broadly expressed chromatin-associated transcriptional regulators, and when 

mutated affect a range of biological processes including embryo polarity (Page et 

al., 2001), apoptosis (Reddien et al., 2007; Schertel and Conradt, 2007), sex 

determination (Grote and Conradt, 2006), and RNA interference (Lehner et al., 
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2006; Wang et al., 2005). Despite their important roles in disparate 

developmental contexts, a genome-wide analysis of genes bound and regulated 

by synMuvB proteins is lacking. 

 Biochemical studies of D. melanogaster identified the dREAM/Myb-Muv-B 

complex and a partially overlapping testes-specific complex called tMAC (Beall et 

al., 2007; Beall et al., 2002; Jiang et al., 2007; Korenjak et al., 2004; Lewis et al., 

2004). These complexes contain homologs of C. elegans synMuvB proteins. 

dREAM-like protein complexes were subsequently identified from C. elegans 

(DRM, (Harrison et al., 2006)) and human cells (hDREAM/LINC,(Litovchick et al., 

2007; Schmit et al., 2007)).  DRM includes LIN-35(Rb), EFL-1(E2F), DPL-1(DP), 

LIN-54(Mip120), LIN-9(Mip130), LIN-37, LIN-52, and LIN-53(Caf1). The human 

and fly complexes share these subunits and additionally contain a Myb subunit 

that is not apparent in C. elegans (Figure 1-1). 

 Several DREAM subunits contribute to its sequence-specific DNA 

binding, including E2F and DP, which together bind DNA as a heterodimer, and 

Myb. In flies and humans, E2F/DP and Myb act in a mutually exclusive manner to 

direct DREAM to its target genes (Georlette et al., 2007; Litovchick et al., 2007; 

Pilkinton et al., 2007; Schmit et al., 2007). Human DREAM is targeted to different 

sets of promoters by subunit switching (Litovchick et al., 2007; Pilkinton et al., 

2007; Schmit et al., 2007). During the G0 phase of the cell cycle, the DREAM 

complex incorporates the Rb-family protein p130 and E2F4, but not Myb, to 

repress S phase genes. At cell cycle entry, p130 and E2F4 dissociate from the 
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complex, and Myb is incorporated to promote activation of M phase genes. LIN-

54 is another DREAM component that has been reported to bind DNA: D. 

melanogaster Mip120(Lin54) binds specific sequence elements within the 

chorion gene cluster (Beall et al., 2002), C. elegans LIN-54 binds promoters in 

yeast one-hybrid (Y1H) assays (Deplancke et al., 2006), and human Lin54 

interacts with the human cdc2 promoter in vitro (Schmit et al., 2009). However, 

the overall contribution of LIN-54 DNA binding to DREAM complex function has 

not yet been explored. 

 Genome-wide binding and expression profiling studies of DREAM in 

mammalian cell culture primarily identified cell cycle genes as targets for the 

complex (Litovchick et al., 2007), while D. melanogaster cultured cell studies 

additionally revealed targets with sex- and development-specific expression 

(Dimova et al., 2003; Georlette et al., 2007; Korenjak et al., 2004). Thus, it is not 

clear whether developmental gene regulation is a conserved DRM function. With 

the exception of gene expression profiling of the C. elegans germline (Chi and 

Reinke, 2006), genome-scale studies of the DREAM complex were performed in 

cultured differentiated cells. It is important to extend genome-wide analyses of 

DREAM to multiple cell types and tissues derived from intact organisms, to 

enable assessment of DREAM function through development.  

 A key developmental function of D. melanogaster and C. elegans DRM 

subunits is the regulation of gene expression in the germline (Beall et al., 2007; 

Chi and Reinke, 2006; Jiang et al., 2007), which must occur within the context of 
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specialized germline gene expression features. The first such feature is a 

germline-specific form of X chromosome silencing. In male germlines of many 

species the single X is transcriptionally inactive and in C. elegans hermaphrodite 

germlines the two X chromosomes are partially silenced (Kelly and Aramayo, 

2007; Kelly et al., 2002). Whether transcription factors like DREAM act equally on 

X-linked and autosomal genes, which exist in different chromatin regulatory 

environments, is not known. The second property special to germline-expressed 

genes is that they primarily reside on autosomes, possibly because of an 

evolutionary adaptation to X silencing (Kamath et al., 2003; Parsch, 2009; Piano 

et al., 2000; Reinke et al., 2004). It has not been explored whether the 

chromosome-biased location of germline differentiation genes is related to 

chromosome-biased binding sites and chromosome-biased regulation by distinct 

transcription regulatory networks.  

 Here we analyze genome-wide binding and function of C. elegans LIN-54. 

We demonstrate that LIN-54 DNA-binding activity is required for the DRM 

complex to efficiently bind and regulate target genes containing adjacent putative 

E2F/DP and LIN-54 binding sites (DRM binding motif). We show that LIN-54 

binds to the promoters of genes involved in cell division, development, and 

reproduction, and acts differently in the germline versus the soma. The DRM 

binding motif, individual target genes, and overall DRM function are conserved 

among worms, flies, and humans. Despite this conservation, we discovered one 

striking feature of C. elegans DRM not shared in flies or humans: it is depleted 
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from X chromosomes.  We show that DRM binding, the E2F-LIN-54 hybrid motif, 

and LIN-54-regulated genes are all autosome-enriched. One paradoxical 

exception occurs in the germline, where DRM binds autosomes but genes down-

regulated in DRM mutants are enriched on X chromosomes. Evolutionary 

pressures imposed by germline X chromosome silencing in C. elegans are 

thought to have resulted in the autosome-biased location of germline-expressed 

and essential genes, major targets of DRM-mediated regulation. We propose that 

the autosome bias of C. elegans DRM co-evolved with the redistribution of its 

target genes. This example illustrates how sex chromosome gene regulation may 

create a biased genomic location of gene sets and their transcriptional regulatory 

networks. 

 

Chapter II. Results 

 

LIN-54 binds DNA through its tesmin domains 

The lin-54 gene encodes two proteins, LIN-54a and LIN-54b, both of which 

contain two tandem cysteine-rich repeats known as the tesmin/CXC domain 

(Figure 2-1A). Genetic screens for synMuv vulva development phenotypes 

identified the lin-54(n2990) and lin-54(n2231) missense alleles which confer 

similar loss-of-function phenotypes as a lin-54(n3423) deletion mutant (Harrison 

et al., 2006; Thomas et al., 2003). These missense alleles were independently 
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isolated and contain the same single-base substitution in the second tesmin 

domain (tesmin domain 2), which changes glycine 252 to a glutamic acid 

(G252E). The phenotypic effect of this mutation suggests that altering the tesmin 

domain compromises LIN-54 function and control experiments indicated that LIN-

54 protein levels are normal in lin-54(n2990) mutant animals (see below). The lin-

54(n2231) allele encodes a protein that contains an additional change in the C-

terminus (A442T) (Figure 2-1A). We reasoned that these mutant alleles might 

result in loss of lin-54 function because the corresponding protein fails to interact 

with other DRM complex components, because it fails to bind DNA, or because 

of a combination of these effects.  

Previously, we found that LIN-54 can bind multiple C. elegans gene 

promoters in Y1H assays (Deplancke et al., 2006). To ask whether the tesmin 

domains mediate DNA binding, we tested wild-type LIN-54, and mutant versions 

of LIN-54 carrying lesions in a single tesmin domain (G252E and G252E/A442T), 

or lesions in both tesmin domains (K186E/G252E) in Y1H assays. We found that 

the mutant proteins exhibited much weaker DNA binding compared to the wild-

type protein (Figure 2-1A and B). To examine the function of the tesmin domains 

in DNA binding in vivo, we performed chromatin immunoprecipitation (ChIP) 

experiments with wild-type and lin-54(n2990) mutant animals. Because we had 

noticed that LIN-54 binds its own promoter (Figure 2-1B), as well as promoters of 

genes encoding other DRM subunits (Supplemental Figure2-1A), we assayed 

binding at the lin-9 and lin-54 promoters. We observed a 4- and 2-fold decrease 
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in LIN-54 binding in the lin-54(n2990) mutant relative to wild-type animals at 

promoters of lin-9 and lin-54, respectively (Figure 2-1C, Supplemental Figure 2-

1B, p-value <0.01). Furthermore, the binding of other DRM complex proteins was 

also greatly reduced in lin-54(n2990) mutant animals (Figure 2-1C, p-value 

<0.01). These findings were supported by immunofluorescence analysis, which 

showed reduced chromosome localization of several DRM complex proteins in 

lin-54(n2990) mutant germlines (Supplemental Figure 2-1C). Control experiments 

showed that wild-type and lin-54(n2990) mutant animals produce a comparable 

amount of full-length, nuclear-localized LIN-54 protein (Figure 2-2A and B), unlike 

lin-54(n3423) null animals which produce no detectable LIN-54 protein and 

reduced amounts of other DRM subunits (Figure2-2B and (Harrison et al., 2006)). 

Together, these results indicate that LIN-54, in addition to EFL-1/DPL-1(E2F/DP), 

is a DNA binding protein involved in recruiting the DRM complex to its target 

genes. 
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Figure 2-1. LIN-54 binds 

DNA directly through its 

tesmin domains and 

recruits DRM to 

promoters.  

 

 

 (A) C. elegans lin-54 gene structure for 
wild-type isoforms (lin-54a and lin-54b), 
lin-54 mutant alleles, and yeast 
constructs used in this study. The lin-54 
gene encodes a protein with two 
tesmin/CXC domains (black boxes). lin-
54(n3423) is a null allele in which the 5’ 
end and most exons are deleted. lin-
54(n2990) is a missense allele that 
harbors a mutation in the second 
tesmin domain, and lin-54(n2231) has 
both the tesmin domain mutation and 
an additional point mutation. Constructs 
equivalent to lin-54a, lin-54(n2990), 
and lin-54(n2231) were used in yeast 
one-hybrid (Y1H) assays, and are 
referred to as LIN-54a, LIN-54G252E, 
and LIN-54 G252E/A442T, respectively. An 
additional LIN-54 construct containing a 
point mutation in each tesmin domain 
was created and is referred to as LIN-
54K186E/G252E. Gray box = exon, black 
box = tesmin domain, white box = 3’ 
untranslated region, asterisk = 
missense mutation. (B) Y1H assays 
using wild-type LIN-54a, LIN-54G252E, 
LIN-54G252E&A442T, and LIN-54K186E/G252E 
mutant proteins with the promoters of 
the genes pos-1, lin-54, and vha-15. 
AD = Gal4 activation domain, P = 
permissive media, S = selective media. 
(C) DRM subunit binding in wild-type 
and lin-54(n2990) mutants, measured 
by ChIP-qPCR at the target promoters 
lin-9 and lin-54. Binding is shown as 
the amount of DNA amplified in each 
ChIP sample relative to input, with the 
ratio in wild-type set to 1.0. Standard 
deviations from three independent 
experiments are shown. 
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LIN-54 tesmin domain mutations do not disrupt DRM complex 

formation 

We next tested whether LIN-54 tesmin mutations affect DRM complex formation 

in addition to compromising DNA binding. Using yeast two-hybrid assays, we 

found that both wild-type and mutant LIN-54 proteins can interact with the DRM 

subunit LIN-9 (Figure 2-2C). In addition, other DRM complex members co-

precipitated in lin-54(n2231) mutant animals (Figure 2-2D). These observations 

demonstrate that the tesmin mutation does not result in an unstable protein and 

does not compromise the integrity of the DRM complex. We conclude that the lin-

54 tesmin mutant phenotypes are most likely caused by a defect in DNA binding.  
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 (A) Immunofluorescence of LIN-

54 in embryos from wild-type 

and lin-54(n2990) animals. (B) 

Western blots of whole worm 

extracts from wild-type, lin-

54(n2990), and lin-54(n3423) 

mutants, probed with antibodies 

against LIN-54, histone H3, and 

actin. Lanes contain protein from 

25, 50, and 100 worms. (C) 

Yeast two-hybrid assay using 

eithr wild-type LIN-54 (top) or 

mutant LIN-54G252E/A442T (bottom) 

as bait and LIN-9 as prey. DB = 

Gal4 DNA-binding domain. AD = 

Gal4 activation domain. P = 

permissive media, S = selective 

media. (D) Immunoprecipitation 

using antibodies against LIN-37 

in lin-54(n2231) tesmin mutant 

extract, and probed with 

antibodies listed at left. 

 

Figure 2-2. LIN-54 tesmin 

domain mutation does not 

disrupt its stability or 

association with DRM. 
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LIN-54 binds genes involved in development, reproduction, and 

cell division  

 

We used ChIP-on-chip to identify genomic regions bound by LIN-54 in mixed-

stage wild-type animals. Reproducible peaks of LIN-54 binding were detected in 

two biological replicas by the program MA2C (model-based analysis of two-color 

arrays, Figure 2-3A) (Song et al., 2007). Using the MA2C criteria described in 

Materials and Methods, we identified 1992 LIN-54 binding peaks (Supplemental 

Table 2-1). We used the mode of each peak as a measure for the location of LIN-

54 association and found that 69% of the regions bound by LIN-54 occur within 

intergenic regions (Figure 2-3B). We next determined the relative position of 

intergenic LIN-54 peaks with respect to surrounding genes. We found that 60% 

of intergenic LIN-54 peaks occur within 1 kb upstream of protein-coding genes, 

and that the occurrence of a LIN-54 peak dramatically declined with distance 

from the translational start site (Figure 2-3B and C). When transcription factors 

bind between divergently transcribed genes it is difficult to determine whether 

they regulate one or both genes, so in these cases we considered the binding to 

be associated with both adjacent genes. Overall, LIN-54 bound to 1572 protein-

coding gene promoters (Supplemental Table 2-1). These genes are highly 

enriched for three major gene ontology (GO) branches: developmental process 

(p-value <10-100), reproduction (p-value <10-100), and cell division (p-value <10-30) 

(Supplemental Table 2-1). These results agree with and extend observations of 
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DREAM function in Drosophila and human tissue culture (Georlette et al., 2007; 

Litovchick et al., 2007) and suggest that DRM has conserved roles in 

development. 

 

LIN-54 target genes are conserved through evolution 

 

We discovered a significant degree of overlap among the individual genes bound 

by LIN-54 in worms, flies and humans (Figure 2-3D). The HomoloGene program 

has compared D. melanogaster and C. elegans genomes and defined a total of 

3015 orthologous gene pairs (see Materials and Methods). Restricting our 

analysis to these defined fly-worm ortholog pairs, we note that 1267 are bound 

by LIN-54/Mip120 in flies (Georlette et al., 2007), 647 are bound by LIN-54 in 

worms (this study), and 327 are bound in both species (p-value <10-6). 

Commonly bound genes are enriched for developmental GO terms such as sex 

differentiation as well as cell division terms such as cytokinesis and cell cycle 

(Supplemental Table 2-1). Commonly bound orthologs are involved in multiple 

aspects of cell division (smc-3, zyg-9, air-2, plk-1, cye-1), DNA replication and 

repair (cdc-6, mcm-2, pri-1, mre-11, rad-51) and transcription and chromatin 

regulation (rbp-6, taf-4, mys-1, ash-2, mrg-1). We also found significant overlap 

of genes bound by worm and human LIN-54: 62 orthologous gene pairs are 

bound in both species (p-value <10-4, Figure 2-3D) (Litovchick et al., 2007). 

Further, in all three species, DREAM binds immediately upstream of 33 genes in 
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proximal gene promoters (this study; (Georlette et al., 2007; Litovchick et al., 

2007)). Thus, LIN-54 targets the DREAM complex to genes involved in similar 

overall biological processes in three different phyla by binding to the proximal 

promoters of multiple orthologous genes. 

 

In all three species DREAM bound the promoters of genes encoding its 

own subunits (Figure 2-1B and C, Figure 2-3A, Supplemental Table 2-1, 

Supplemental Figure 2-1A and B) (Georlette et al., 2007; Litovchick et al., 2007)). 

C elegans LIN-54 also bound the promoters of other synMuvB class genes, 

including LIN-61/L(3)MBT, LIN-15B, LIN-13, and LET-418 (Supplemental Table 

2-1). This may suggest conserved transcriptional feedback between DRM 

subunits and perhaps other synMuvB class genes. However, genes encoding 

DREAM subunits show little change in expression upon LIN-54 depletion in D. 

melanogaster or C. elegans ((Georlette et al., 2007), Supplemental Table 2-2, 

data not shown). Perhaps the effects of DREAM autoregulation are small and 

required only to buffer DREAM levels and function.  

 

DRM binding motif  

We identified two DNA motifs that are over-represented in LIN-54-bound 

promoters in C. elegans (Figure 2-3E, Supplemental Figure 2-2). Motif 1 appears 

to be a hybrid E2F/DP and LIN-54 motif (Figure 2-3E, top, we will refer as “DRM 

binding motif”) and is usually found near the center of LIN-54 ChIP peaks (Figure 



                                                                             CHAPTER II 
 
 
 

41 
 

2-3F and Supplemental Figure2-2). The 5' end of this motif is similar to previously 

reported E2F/DP binding sites in C. elegans and other organisms ((Chi and 

Reinke, 2006; Kirienko and Fay, 2007; Muller and Engeland, 2010), 

http://jaspar.genereg.net). The 3’ end of Motif 1(DRM binding motif) resembles a 

cis-regulatory element in the human cdc2 promoter (called CHR, or cell cycle 

homology region), which can be directly bound by hLin54 in vitro (Schmit et al., 

2009). E2F/DP binding sites co-occur with CHRs in the promoters of some 

human genes, with a similar orientation and spacing as the motif we identified 

here ((Muller and Engeland, 2010), Figure 2-3E “human”). Moreover, a related 

motif was identified from Drosophila DREAM-regulated genes ((Georlette et al., 

2007), Figure 2-3E “fly”). These results suggest conserved recruitment of the 

DREAM complex to its target genes by two DNA binding moieties: EFL-1/DPL-1 

(E2F/DP) and LIN-54. LIN-54 bound promoters were also enriched for a periodic 

T-rich motif that resembles a related motif in Drosophila DREAM-bound genes 

(Motif 2, Supplemental Figure 2-2,(Georlette et al., 2007)). Other examples of 

periodic T-rich promoter motifs include sequences that function as nucleosome 

positioning signals (Segal and Widom, 2009) and elements with unknown 

function that are enriched in C. elegans germline-expressed promoters (Fire et 

al., 2006). 
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Figure 2-3. LIN-54 binding is enriched at promoters of genes 

involved in development, reproduction, and cell division that 

contain a putative E2F-LIN-54 binding motif.  
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Figure 2-3. LIN-54 binding is enriched at promoters of genes involved 

in development, reproduction, and cell division that contain a putative 

E2F-LIN-54 binding motif.  

 

(A) Representative MA2C derived peaks from two biological replicates of LIN-54 ChIP-

chip from mixed-stage worms. Arrows indicate genes and direction of transcription. (B) 

Relative locations of LIN-54 ChIP peaks. The distance between the mode of each LIN-

54 ChIP peak and the translational start site (TSS) of neighboring genes was calculated, 

and the percentages of four classes of LIN-54 locations are indicated. Enriched gene 

ontology (GO) terms among genes with peaks within 1 kb of their TSS include 

development, reproduction, and cell cycle/cell division. (C) The numbers of intergenic 

LIN-54 peaks relative to their distance from the nearest TSS. (D) Conservation of 

orthologous LIN-54 binding targets between worms, flies, and humans. (E) An 

overrepresented motif in LIN-54-bound promoters (Motif 1, top). Aligned below are 

previously defined motifs: the C. elegans EFL-1 consensus (Kirienko and Fay, 2007), an 

extended Drosophila dE2F2 motif enriched among dE2F2, dLIN-9 and dLIN-54 co-

regulated genes (Georlette et al., 2007) and the human CDE/CHR motif from the cdc2 

promoter (Schmit et al., 2009). Dotted lines outline regions bound by human E2F4 and 

LIN-54 at cdc2 and their homologous motif sequences in other organisms. (F) Examples 

of LIN-54 binding (ChIP peaks shown by black bars representing MA2C score) and 

location of Motif 1 (orange square) at promoters of two genes (mrt-2 and C29E4.12, 

arrows = TSS; green boxes = exons). 
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LIN-54 can activate or repress gene expression 

 

Mutations in lin-54 confer both germline and somatic abnormalities ((Harrison et 

al., 2006; Thomas et al., 2003), Supplemental Figure 2-3). To identify genes 

regulated by LIN-54 in vivo, we performed microarray expression profiling 

analysis of wild-type and lin-54 mutant C. elegans embryos and of isolated 

germlines. We chose embryos because they consist primarily of somatic cells, at 

a developmental stage with both active cell divisions and dynamic developmental 

gene expression programs. Since lin-54 null animals are sterile (Harrison et al., 

2006), embryos were obtained from the lin-54(n2990) strain. lin-54(n2990) is a 

partial loss-of-function allele that causes the same spectrum of phenotypes as a 

null allele, albeit weaker, making it an appropriate strain in which to examine 

partial loss of lin-54 function ((Harrison et al., 2006), Supplemental Figure. 2-3A). 

Germlines were dissected from lin-54 null adults that lack detectable lin-54 

transcript and protein ((Harrison et al., 2006), Figure 2-2, and data not shown), 

exhibit reduced levels of other DRM complex proteins (Harrison et al., 2006), and 

exhibit reduced germline chromosome association of DRM complex proteins 

tested (Supplemental Figure 2-1C). We isolated the germline region from the tip 

until late pachytene stage of meiosis, because nuclei in this region are 

morphologically similar between wild-type and mutant (Supplemental Figure 2-
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3B) and are undergoing X chromosome silencing (Kelly et al., 2002). While 

embryos contain a few primordial germ cells and dissected germlines contain 

some cells of the somatic gonad, the two samples predominantly represent 

somatic and germline tissue, respectively.   

We identified 678 genes whose transcripts increased at least 1.5-fold in 

mutant embryos (Figure 2-4A, Supplemental Table 2-2). Of these, 119 (18%) 

were also bound by LIN-54 (Figure 2-4A). We note that ChIP was performed on 

mixed-stage animals to survey binding sites, while microarray was performed on 

a single stage, which may make it more difficult to identify all genes that are both 

bound and regulated. Nevertheless, this degree of overlap is similar to that 

observed in other ChIP and microarray studies (Georlette et al., 2007; Hu et al., 

2007), and suggests that this gene set includes direct targets bound and 

regulated by LIN-54. GO analysis of up-regulated genes or of bound and up-

regulated genes revealed over-represented terms related to development 

(Supplemental Table 2-2), terms that were also enriched among genes bound by 

LIN-54 (Supplemental Table 2-1). Fewer genes showed reduced expression in 

mutant embryos (299, Figure 2-4A). These genes showed no GO term overlap 

with LIN-54 bound genes, and only 2% (7/299) contained LIN-54 ChIP peaks at 

their promoters. This observation suggests that most of these genes are 

regulated indirectly. We conclude that LIN-54 predominantly functions as a 

transcriptional repressor in embryos (Figure 2-4B).  
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We noted that many up-regulated genes fell into discrete functional sub-

categories related to development. Some of these gene sets might explain 

abnormalities of synMuvB mutant animals. For instance in lin-54 mutant embryos, 

18 up-regulated genes are involved in meiosis (GO term GO0001726) and 

overall, 11% of the up-regulated genes normally show germline-specific or 

enriched expression (Wang et al., 2009). Previously, mutations in synMuvB 

genes were shown to cause ectopic expression of certain germline P granule 

components in the soma, proposed to reflect soma to germline transformation 

(Unhavaithaya et al., 2002; Wang et al., 2005). Our genome-wide study 

strengthens this model by indicating that LIN-54 represses transcription of a 

variety of germline genes in embryo soma, including the P granule protein glh-1, 

the meiotic recombination protein spo-11, and the eggshell protein cpg-2. We 

also observed up-regulation of many RNA interference pathway genes in lin-54 

mutant embryos, including ego-1, rde-4, and sago-2. If these factors are normally 

limiting for a full RNAi response, their up-regulation might account for the 

enhanced RNAi phenotype that has been observed in synMuvB mutants (Lehner 

et al., 2006; Wang et al., 2005). 

In the germline, 78 genes showed increased and 251 genes showed 

decreased expression in mutant relative to wild-type animals (Figure 2-4A, 

Supplemental Table 2-2). Both sets of genes exhibit overlap with LIN-54 ChIP 

peaks (18% and 12%, respectively) (Figure 2-4A). Further, both up-regulated and 

down-regulated germline genes are enriched for development GO terms, which 
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again overlaps with the terms found in the ChIP data (Figure 2-4B, Supplemental 

Table 2-2). These observations suggest that both up- and down-regulated 

germline genes could include targets directly regulated by LIN-54. While the 

development GO term is associated with both embryonic and germline LIN-54 

target genes, reproduction and growth terms were only enriched in genes with 

decreased expression in the lin-54 mutant germline. These reproduction genes 

that we presume are normally activated by LIN-54 include germline-produced 

transcripts required for meiosis, oogenesis and early embryogenesis, as 

observed previously for EFL-1/DPL-1 (Chi and Reinke, 2006). Thus in contrast to 

embryos, in the germline LIN-54 appears to both activate and repress gene 

expression, and activates a distinct set of reproduction and growth genes 

required for germline function. 
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Figure 2-4

 

LIN-54 can function as a transcriptional activator or repressor. 

(A) Microarray gene expression profiling analysis of lin-54(n2990) embryos and 

lin-54(n3423) germlines. Genes that change expression in lin-54 mutant animals 

are grouped into four classes: “up in embryo”, “down in embryo”, “up in germline” 

and “down in germline”. Overlap with LIN-54 ChIP peaks is indicated. (B) 

Cartoon indicating the inferred regulation by wild-type LIN-54 in embryo (left) or 

germline (right) and the major Gene Ontology (GO) terms associated with each 

class of regulated genes. p-value <0.05 for all GO terms.  
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LIN-54 binding is under-represented on the X chromosome 

 

We discovered a striking non-uniform distribution of LIN-54 binding across the C. 

elegans genome: X chromosomes had significantly fewer LIN-54 ChIP peaks 

than autosomes (p-value < 10-15, Figure 2-5A). Each autosome had on average 

369 LIN-54 ChIP peaks (23 peaks per Mb), whereas the X chromosome 

contained only 145 (8 peaks per Mb) (Figure 2-5B, Supplemental Table 2-3A). 

On average, 8% of autosomal gene promoters, but only 2% of X chromosome 

promoters, were bound by LIN-54 (Figure 2-5C, Supplemental Table 2-3A, p-

value <10-41). This analysis shows that LIN-54-bound promoters are significantly 

under-represented on the X chromosome, independent of chromosome size and 

gene density. 

We also found that Motif 1 (DRM binding motif, Figure 2-3E), as well as 

the T-rich motif (Motif 2, Supplemental Figure 2-2A), were under-represented on 

X compared to autosome promoters (Figure 2-5D, Supplemental Figure 2-2B, 

Supplemental Table 2-3B, p-value < 10-13 for Motif 1). However, a published 

EFL-1 consensus site alone shows no bias against X chromosomes (Figure 2-5D, 

(Kirienko and Fay, 2007)). A uniform distribution was also observed for three 

additional transcription factors for which a consensus DNA binding motif has 

previously been determined (HLH-27, FLH-1, and NFI-1, Figure 2-5D) (Grove et 

al., 2009; Ow et al., 2008; Whittle et al., 2009). These results imply that the DRM 
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complex is recruited more frequently to autosomes than to the X chromosome 

through the combined DNA binding activities of LIN-54 and EFL-1. 

 

lin-54 mutants exhibit chromosome-biased gene expression 

changes  

 

We addressed whether the non-uniform binding of LIN-54 in the genome results 

in differential regulation of autosomal versus X-linked genes. LIN-54-responsive 

genes are distributed across all six C. elegans chromosomes (Supplemental 

Table 2-3), and we analyzed chromosome bias in two ways. First, to normalize 

for the variable number of genes on each chromosome, the percentage of LIN-54 

responsive genes out of all genes per chromosome was calculated (Figure 2-5E). 

Second, to compare expected to observed distributions, we calculated the 

percent of all genes in the genome located on autosomes and compared that to 

the percent of LIN-54 responsive genes on autosomes (Figure 2-5F “all genes” 

versus “genes up in mut” or “genes down in mut”). Additionally, because the 

germline has an inherent autosomal bias in its expressed genes, we also 

calculated the percent of autosomal genes typically expressed in embryo or in 

germline as “expected” and compare that to the “observed” percent of LIN-54 

responsive genes that reside on autosomes in each sample (Figure 5F 

“expressed genes” versus “genes up in mut” or “genes down in mut.” 
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Embryonic genes that were up-regulated in lin-54 mutants are over-

represented on autosomes (633/678, 93% observed versus 86% expected by 

chance, p-value <10-8, Figure 2-5E and Figure 2-5F “embryo up”). This finding is 

consistent with the idea that LIN-54 is preferentially recruited to autosomes, and 

primarily acts as a repressor in the embryo. Embryonic genes down-regulated in 

lin-54 mutants showed no significant chromosomal bias, consistent with our 

interpretation that these genes are mostly indirectly regulated (244/299, 82% 

versus 86% expected by chance, p-value = 0.03, Figure 2-5E and Figure 2-5F 

embryo down). 

To our surprise, LIN-54 exhibited two different patterns of chromosome-

biased gene regulation in the germline. Genes up-regulated in lin-54 mutants 

were over-represented on autosomes, to a degree that is significantly different 

from all genes (77/78, 99% versus 86% expected by chance for all genes, p-

value <10-3, Figure 2-5E and Figure 2-5F), and comparable to the inherent bias 

of the germline (99% versus 93% expected by chance for germline-expressed 

genes, p-value = 0.06). This is consistent with the autosome-biased localization 

of LIN-54. LIN-54 is likely a direct repressor of at least some of these genes, 

since 18% overlap with LIN-54 ChIP peaks (Figure 2-5F). In striking contrast, 

germline genes that were down-regulated in lin-54 mutants were located more 

frequently on the X chromosome than expected (64/251, 25% versus 14% 

expected by chance for all genes, p-value <10-5, or versus 7% expected by 
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chance for all germline-expressed X-linked genes, p-value <10-40, Figure 2-5E 

and Figure 2-5F, “germline down”). 

It appears paradoxical that LIN-54 and its binding motif are preferentially 

located within autosomal gene promoters, yet in the absence of LIN-54 more 

genes on the X chromosome than on an average autosome decrease expression 

in the germline. One possibility is that LIN-54 affects these X-linked genes 

indirectly, which would predict less correlation between binding (ChIP peaks) and 

gene expression changes. Indeed, down-regulated X-linked genes overlap less 

frequently with LIN-54 ChIP peaks than down-regulated autosomal genes (6% 

versus 13% overlap, Figure 2-5E). Our interpretation of this observation is that 

LIN-54 is normally a direct activator of at least some autosomal genes that are 

down-regulated in the mutant, but that LIN-54 more indirectly regulates X-linked 

genes. Perhaps LIN-54 regulates an autosomal gene involved in X chromosome 

gene regulation, or prevents inappropriate spread of a repressor to the X 

chromosome (see Discussion).  

Another apparent paradox is that LIN-54 loss leads to down-regulation of 

X-linked genes, when X chromosomes already undergo chromosome-wide 

silencing in the hermaphrodite germline. However, when we examined transcripts 

normally expressed in our wild-type germline samples using “present” calls from 

microarrays, we found that 15% of all X-linked genes are in fact expressed 

(376/2491 on array), consistent with published estimates from SAGE analysis 

(Materials and Methods, (Wang et al., 2009)). Of the 376 total germline-
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expressed X-linked genes, 17% are down-regulated in the lin-54 mutant (64/376) 

while only 4% of all germline-expressed autosomal genes are down-regulated 

(187/5097). The large percentage of total X-linked genes affected in the mutant 

may support models in which LIN-54 has chromosome-wide effects on X 

chromosome transcription (see Discussion). Thus on the X chromosome, the 

loss of LIN-54 function causes further silencing of X-linked genes.  
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Figure 2-5. LIN-54 shows autosome-enriched binding and 

chromosome-biased gene regulation. 
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Figure 2-5. LIN-54 shows autosome-enriched binding and 

chromosome-biased gene regulation. (A) LIN-54 ChIP peaks 

along the entire X chromosome (top) and chromosome IV (bottom). (B-C) 

Number of LIN-54 ChIP peaks per mega base (B) and percentage of 

promoters bound by LIN-54 (C) on each C. elegans chromosome. LIN-54 

ChIP peaks occur less frequently on the X chromosome, independent of 

chromosome size and gene density. (D) Occurrence of putative E2F/DP-

LIN-54 binding Motif 1 and other transcription factor binding motifs in 

promoter regions (1kb upstream from translational start site) of autosomal 

genes and X-linked genes. Motif 1 is under-represented in X-linked 

promoters. (E) Chromosome distribution of genes up-regulated or down-

regulated in lin-54(n2990) embryos (left), lin-54(n3423) germline (middle), 

or commonly co-regulated by cluster analysis of lin-54(n3423), efl-

1(n3639), dpl-1(n3316), and lin-35(n745) germlines (right). Overlap with 

LIN-54 ChIP peaks for an average autosome or X chromosome is 

indicated below. Commonly up is group E, commonly down is group B 

from Supplemental Figure 2-4. Data for efl-1, dpl-1, and lin-35 are from 

(Chi and Reinke, 2006). (F) The percentage of genes located on the five 

autosomes (gray) or the X chromosome (black). Expected values are 

presented both for all genes in the genome, and for all genes normally 

expressed (expressed genes) in embryo or germline, and compared to 

observed percentages of genes up-regulated (genes up in mut) or down-

regulated (genes down in mut) in lin-54 mutants. Asterisks indicate p-value 

<10-3 by Fisher’s Exact test or G-test. 
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The DRM complex preferentially localizes to germline 

autosomes 

 

We wondered whether the chromosome-biased localization and function of LIN-

54 are features shared by other members of the DRM complex. We first 

compared germline expression profiles of lin-54(n3423) with published germline 

expression profiles for efl-1(n3639), dpl-1(n3316), and lin-35(n745) mutant 

animals ((Chi and Reinke, 2006), Supplemental Figure 2-4). Genes commonly 

down-regulated in all four DRM mutants were more frequently located on X 

chromosomes than autosomes, consistent with observations in the lin-54 mutant 

(Figure 2-5E, “commonly down” and Supplemental Figure 2-4, group B). Also 

consistent was the finding that commonly down-regulated X-linked genes 

overlapped less frequently with LIN-54 ChIP peaks than commonly down-

regulated autosomal genes, again suggesting that more X-linked genes are 

regulated indirectly (6% versus 16% overlap, Figure 2-5E). Up-regulated genes 

common to all four mutants were more difficult to define. However, we did note 

that a commonly up-regulated group of genes primarily regulated in lin-54(n3423) 

(Figure 2-5E “commonly up”, Supplemental Figure 2-4 group E) and another 

cluster primarily up-regulated in lin-35(n745) (Supplemental Figure 2-4 group I) 

were each autosome-enriched, as observed for the lin-54 mutant alone. These 

results show that similar patterns of chromosome-biased gene regulation are 

exhibited by multiple DRM subunits.  
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Next, we examined the chromosomal localization of DRM complex 

members in the germline by immunofluorescence. Figure 2-6 shows nuclei in the 

pachytene stage of meiotic prophase, when homologous chromosomes are 

paired and beginning to condense. LIN-54 (red) co-localized with DNA (green), 

with the exception of one prominent region (Figure 2-6A, arrowheads). We 

demonstrated that this region corresponds to the X chromosome in two different 

ways. First, LIN-54 colocalized with H4K12Ac (blue), a histone modification 

associated with actively transcribed regions, which is under-represented on the 

partially silenced X chromosome ((Kelly et al., 2002), Figure 2-6B). Second, LIN-

54 did not co-localize with the H3K9me2-stained X chromosome in him-8(e1489) 

mutants (Figure 2-6C). In these mutants the X chromosomes do not pair during 

meiosis and therefore acquire this heterochromatic histone mark (Bean et al., 

2004).  

The DRM complex members LIN-9, LIN-35, LIN-37, LIN-52, and DPL-1 

were also under-represented on the X chromosome in the germline (Figure 2-6D 

and E). Thus, most DRM complex members localize on autosomes. Only one 

DRM subunit was not autosome-enriched. The CAF1 homolog LIN-53, which 

participates in multiple complexes (Harrison et al., 2006), showed little 

localization to DNA during this stage of meiotic prophase (Figure 2-6E). It is 

interesting to note that despite the uniform genomic distribution of the EFL-

1/DPL-1 motif, DPL-1 was enriched on the autosomes in the germline and co-

localized with LIN-54 (Figure 2-6D). These results support the hypothesis derived 
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from our motif analysis that when EFL-1/DPL-1 and LIN-54 jointly bind Motif 1 

(DRM binding motif), this complex disfavors the X chromosome. These results 

are also consistent with the finding that germline genes co-regulated by EFL-

1/DPL-1 and LIN-54 share similar biases in chromosome location. We conclude 

that LIN-54 acts with other DRM complex members to govern chromosome-

biased gene regulation in C. elegans. 

 

Figure 2-6. DRM complex members localize to germline 

autosomes. Shown are nuclei in the meiotic pachytene stage in the 

hermaphrodite germline. Arrowheads indicate a chromosome in the nucleus 

with less LIN-54 staining (A-D) or less staining of other DRM subunits (E). (A) 

Immunofluorescence with anti-LIN-54 antibody (red) and DNA dye (green, 

merge in yellow). (B) Antibodies against a histone modification associated 

with active transcription (H4K12Ac, blue) show enrichment on autosomes, 

and co-localize with LIN-54 (red, DNA in green). (C) LIN-54 (red, DNA in 

green) staining in the him-8(e1489) mutant in which X chromosomes do not 

pair and acquire the histone modification H3K9me2 (blue). (D) Co-staining of 

LIN-54 (red) with DPL-1 (blue, DNA in green). Both are under-represented on 

the X chromosome (arrowhead). (E) Immunofluorescence of DRM complex 

subunits (red) on wild-type germline nuclei (DNA, green; merge yellow). 

Images in A and B represent deconvolved confocal stacks. Scale bar 

represents 5μm (A) or 1μm (B-E). 



                                                                             CHAPTER II 
 
 
 

59 
 

Chapter II. Discussion 

 

Our genome-scale analyses of LIN-54 provide new insights into the binding and 

regulatory activities of the conserved transcription factor complex DRM. Our 

results in C. elegans, considered along with those available from Drosophila and 

human cells, highlight both conserved and non-conserved features of DRM. 

Conserved features include 1) DRM recruitment to promoters with a hybrid 

E2F/DP and LIN-54 binding motif (DRM binding motif), likely by the coordinated 

action of LIN-54 and E2F/DP, 2) its regulation of genes involved in cell cycle, 

development, and reproduction, and 3) its activity as both an activator or 

repressor. Through analysis of cells from a developing organism, we revealed 

conserved critical roles for DRM during animal development and showed that 

DRM activities vary in different tissues. Remarkably, we found that DRM binding 

and regulation are chromosome-biased in C. elegans but not Drosophila or 

humans, perhaps due to evolutionary pressures imposed by X chromosome 

silencing mechanisms. 

 

Targeting the DREAM complex to promoters 

 

Several members of the DREAM transcription factor complex have known or 

presumed DNA binding activity, but how they act in concert to direct promoter 

recognition was not well understood. Here we show that the DRM component 
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LIN-54 binds DNA directly, helps recruit DRM to promoters in vivo, and likely 

recognizes a hybrid E2F/DP and LIN-54 consensus motif (DRM binding motif). In 

Drosophila and humans, Myb is a DNA-binding component of the DREAM 

complex and it has been shown that Myb and E2F/DP function in a mutually 

exclusive manner (Georlette et al., 2007; Litovchick et al., 2007; Pilkinton et al., 

2007; Schmit et al., 2007). We show that LIN-54 is another key DRM recruitment 

subunit and may function coordinately with E2F/DP: the E2F/DP and LIN-54 

motifs co-occur in LIN-54 target genes and both components regulate a common 

set of genes. Our recognition that the C. elegans hybrid Motif 1, the CDE/CHR 

element of human cell cycle genes, and a motif identified in Drosophila DRM-

bound genes are related elements suggests that coordinate binding by E2F/DP 

and LIN-54 is a conserved means of recruiting DRM to promoters (this study, 

(Georlette et al., 2007; Litovchick et al., 2007; Muller and Engeland, 2010)). It 

has been observed that the E2F binding motif is more widely distributed than 

E2F family protein binding in vivo, and E2F family members often rely on 

cooperating transcription factors bound to neighboring sites for specificity 

(Freedman et al., 2009). Simultaneous binding of adjacent sequence motifs by 

E2F/DP and LIN-54 might increase the affinity of DREAM for target sites and 

might provide increased selectivity for target gene recognition. Future studies will 

reveal if there is a Myb-like component in the C. elegans DRM complex, and 

whether other subunits contribute to DRM targeting to the genome.  
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Conservation of DREAM function  

 

Genes bound and regulated by C. elegans LIN-54 predominantly function in 

development and differentiation, cell cycle and cell division, and in reproduction. 

Similar categories of regulated genes have been reported in genome-wide 

studies of Drosophila DREAM (Georlette et al., 2007). In human tissue culture 

cells, however, only cell cycle genes were enriched (Litovchick et al., 2007; 

Schmit et al., 2007). The similarities between C. elegans and Drosophila suggest 

broad conservation of DREAM function in both cell cycle and developmental 

gene regulation. Within the common GO term categories targeted by the DREAM 

complex, interesting functional subcategories were conserved. In all three 

organisms DREAM binds groups of genes involved in cell division processes 

such as sister chromatid cohesion, spindle assembly, and cytokinesis, as well as 

DNA replication and DNA repair. Both worm and fly DREAM bind and regulate 

genes involved in sex differentiation such as those required for genitalia 

formation, and genes required for germline functions including gametogenesis, 

fertilization, and meiosis. It seems likely that DREAM also regulates transcription 

of developmental and reproduction genes in mammalian systems, given known 

developmental roles of its individual subunits and the overall conservation of 

DREAM function. Perhaps developmental genes were not observed in 

mammalian studies because of the use of cultured cells derived from 

differentiated tissues. We find that similarities of DREAM function across species 
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lie not only at the overall level of biological processes: a remarkable degree of 

overlap exists among individual target genes. Further, the genes targeted by 

DREAM in all these organisms possess highly similar over-represented E2F/DP-

LIN-54 motifs. Altogether, our results unveil an evolutionarily conserved mode of 

DNA binding that targets the DREAM complex to similar sets of functionally 

coherent target genes. 

 

Different activities of DRM in the soma and germline 

 

We demonstrate that DRM acts differently in the soma versus the germline. In 

embryos, LIN-54 appears to primarily repress genes (a majority of genes are up-

regulated in the mutant, and up-regulated genes overlap with LIN-54 ChIP peaks 

and ChIP GO terms). In the germline, LIN-54 appears to primarily activate genes, 

yet may also serve as a repressor (a majority of genes are down-regulated in the 

mutant, and both up- and down-regulated genes overlap with ChIP peaks and 

ChIP GO terms). The target genes regulated in embryo versus germline are 

largely distinct, and fall into different enriched functional pathways (Figure 2-4, 

Supplemental Table 2-2). For example, in the germline LIN-54 promotes 

expression of genes required for germline functions like oogenesis, meiosis, and 

fertilization, as observed previously for EFL-1 and DPL-1 (Chi and Reinke, 2006). 

In the embryo, however, LIN-54 does just the opposite: it represses germline-

specific genes to prevent their ectopic activation in the soma. Even patterns of 
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chromosome-biased gene regulation mediated by LIN-54 showed differences 

between soma and germline, as discussed below. Our results highlight how DRM 

may serve as either an activator or repressor. The mechanisms by which DRM 

may either activate or repress gene expression are at present not well 

understood, but may involve sub-complexes with different subunit composition or 

interactions with transcriptional co-factors such as chromatin modifiers. 

Importantly, our results provide the first genome-wide comparison of DRM 

function in two cell types isolated from whole animals, and indicate that DRM 

function differs depending on developmental context. Continued genome-wide 

analyses of DREAM binding and regulation in a variety of organisms, particularly 

using specific tissues isolated from animals, will further our understanding of how 

this key transcriptional complex functions during development and reproduction. 

 

Why does C. elegans DRM avoid X chromosomes? 

 

We discovered that C. elegans LIN-54 binding and gene regulation are 

autosome-enriched. This bias is likely a feature of the worm DRM complex as a 

whole, since the localization patterns of all but one DRM subunit are autosome-

enriched, as are a class of germline genes co-regulated by multiple DRM 

subunits. Biased binding appears to be directed by a biased recruitment element, 

since the hybrid E2F/DP-LIN-54 recognition motif is also autosome-enriched in C. 
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elegans. However, when we examined the related hybrid motif in Drosophila 

(Figure 2-3E “fly”), and the published Drosophila and human DREAM ChIP 

profiles we found that they are evenly distributed between autosome and X 

chromosome promoters (data not shown, (Georlette et al., 2007; Litovchick et al., 

2007)).  

What evolutionary pressures might have driven the C. elegans DRM 

complex to disfavor the X chromosome? X chromosomes differ from autosomes 

in many aspects including histone variants and modifications, gene regulation, 

and rates of gene divergence and movement (Vicoso and Charlesworth, 2006). 

One possibility is that DRM targets are under-represented on the X chromosome 

because some aspect of this chromosomal environment is incompatible with 

DRM-mediated transcription regulation. A second possibility is that DRM 

localization and its differential regulation of autosomal and X-linked genes 

reflects some role in balancing autosome and X chromosome gene expression. 

Only a limited number of non-histone proteins have been shown to exhibit X 

chromosome- or autosome-biased localization, and these are involved in somatic 

dosage compensation or germline X chromosome silencing (Fong et al., 2002; 

Meyer, 2010; Takasaki et al., 2007). A third possibility is that the biased 

localization of DRM arose as a consequence of X chromosome silencing in the 

germline. The X chromosome is silenced in the germline by mechanisms that are 

distinct from somatic X chromosome silencing (Kelly and Aramayo, 2007). 

Germline-expressed genes and genes with essential functions are autosome 
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enriched, and thought to have “fled” the X chromosome to avoid being silenced 

(Kamath et al., 2003; Maciejowski et al., 2005; Piano et al., 2000; Reinke et al., 

2004). One hypothesis is that the DNA-binding properties of the C. elegans DRM 

complex co-evolved with the redistribution of its germline-expressed and 

essential target genes across the genome, resulting in an autosomal bias. 

Silencing of the X chromosome has not been reported in Drosophila or 

mammalian female germlines, perhaps explaining why autosome bias is specific 

to C. elegans DRM. The regulation of sex chromosome gene expression, by 

processes that evolve rapidly and vary widely among organisms, may therefore 

have consequences on the genomic distribution of gene sets and, as shown here, 

their transcriptional regulatory networks.  

 

A paradox in chromosome-biased gene regulation 

 

In embryos, the biases in DRM localization and DRM-mediated regulation 

correspond, but in the germline they do not. In lin-54 mutant embryos, up-

regulated genes likely include direct targets based on their overlap with LIN-54 

ChIP peaks, and were autosome-enriched like DRM binding. The down-regulated 

genes, on the other hand, are more likely indirect targets and showed no 

chromosome bias. In lin-54 mutant germlines, both up- and down-regulated 

genes included direct DRM targets. As in embryos, the up-regulated genes in the 
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germline were primarily autosomal. Interestingly, down-regulated germline genes 

were X-enriched.  

 How can we explain the paradox that the DRM complex predominantly 

binds to autosomes, but that its loss results in a decrease in expression of X-

linked genes? First, some LIN-54 does bind the X chromosome and might 

directly activate gene expression. However, fewer LIN-54-responsive genes on 

the X chromosome than on an average autosome are bound by LIN-54, 

suggesting that many X-linked genes are indirectly regulated. Second, loss of 

LIN-54 might induce ectopic soma-specific pathways that include X-linked genes. 

However, we found no evidence for enrichment of particular pathways among the 

affected X-linked genes and none are soma-specific. Other models invoke 

chromosome-wide alterations in X chromosome gene expression. A third model 

is that DRM regulates expression along the X chromosome indirectly either by 

activating a gene involved in X chromosome activation or by repressing a gene 

involved in X chromosome silencing, so that in mutants the X becomes more 

silenced. We did not find any obvious candidate for such a factor among mis-

regulated genes. Finally, a fourth model proposes that a repressor that is 

normally concentrated on autosomes, perhaps anchored there by DRM, spreads 

inappropriately to X chromosomes when DRM function is compromised. If that 

repressor is limiting, autosomal genes will increase in expression while X-linked 

genes become repressed, which is in agreement with our observations (Figure 2-

5E). Indeed, such reciprocal gene expression changes have been observed 
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when a limiting domain-specific repressor such as the S. cerevisiae SIR proteins 

spread inappropriately, thereby increasing repression at ectopic locations and 

diluting repression at their normal site of action (Taddei et al., 2009; Talbert and 

Henikoff, 2006; van Leeuwen and Gottschling, 2002). Related models have been 

invoked to explain why loss of the autosome bound MES-4 product de-silences 

germline X-linked genes and to explain why loss of the X chromosome bound 

Dosage Compensation Complex de-silences somatic X-linked genes and 

represses some autosomal genes in C. elegans (Bender et al., 2006; Jans et al., 

2009).  

 

Opposing actions of DRM and the histone methyltransferase 

MES-4  

 

MES-4 is an autosome-enriched histone methyltransferase that confers the 

“active mark” H3K36me (Bender et al., 2006). In many biological contexts, mes-4 

and synMuvB genes have opposing functions. For example, mutations in mes-4 

can suppress the defects in vulva development, the increased RNAi and 

transgene silencing, and the ectopic expression of germline genes in the soma 

caused by mutations in synMuvB genes (Bender et al., 2006; Cui et al., 2006b; 

Kelly and Fire, 1998; Unhavaithaya et al., 2002; Wang et al., 2005). Here we 

define another process in which mes-4 and synMuvB mutations have opposite 

effects. We show that in the hermaphrodite germline LIN-54 is autosome-
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enriched as is MES-4, but lin-54 mutants down-regulate while mes-4 mutants up-

regulate X-linked genes. 

 Bender et al. (2006) proposed that MES-4 indirectly regulates X-linked 

genes, by repelling a “global repressor” from autosomes and keeping it 

concentrated on the X chromosome. A possibility is that LIN-54 and MES-4 affect 

the X chromosome versus autosome distribution of the same repressor, in an 

opposite manner. A candidate for such a repressor is the C. elegans Polycomb 

Repressive Complex 2 (PRC2), which is composed of MES-2, MES-3 and MES-

6. MES-2 is an E(z) homolog that concentrates the H3K27me3 “repressive mark” 

on the X chromosome in the germline (Bender et al., 2004; Bender et al., 2006). 

MES-2/-3/-6 also keeps MES-4 and other active marks restricted to autosomes. 

Interestingly, it was recently shown that a class of genes repressed by the 

Drosophila DREAM complex is enriched for H3K27me2 and requires E(z) for 

repression (Lee et al., 2010). However, the cytological distribution of H3K27me3 

appears unaffected in mes-4 and lin-54 mutants ((Bender et al., 2006), data not 

shown). An important future direction is to explore potential links between DRM, 

MES-4, and Polycomb Group mediated gene repression, and to shed light on 

how these factors might interact to govern gene regulation.    
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Chapter II. Materials and Methods 

 

C. elegans strains and culture conditions 

All strains were cultured at 20oC unless otherwise noted, using standard methods. 

The following strains were used: N2 (Bristol) as wild-type, lin-54(n3423)/nT1 

[qIS51], lin-54(n2990), lin-54(n2231) (Harrison et al., 2006; Thomas et al., 2003), 

and him-8(e1489) (Hodgkin et al., 1979). Note: Previously, lin-54(n2231) was 

reported to have a single mutation (A442T) (Harrison et al., 2006); however, 

sequencing revealed an additional missense mutation (G252E). 

 

Immunofluorescence 

Embryos (Figure 2-2) were fixed with methanol/acetone (Strome and Wood, 

1983). Germlines (Figure 2-6 and Supplemental Figure 2-1C) were fixed 

essentially as described (Shaham, 2006), with the addition of 5 ul of 2% Triton-X 

before fixation in 4% paraformaldehyde. DNA was visualized either with DAPI or 

OllieGreen (added at 1:1000 with 10ug/ml RNAseA with the secondary antibody). 

Whole worms (Supplemental Figure 2-3) were prepared in Carnoy’s fixative as 

described by (Csankovszki et al., 2009). Primary antibodies to DRM subunits 

were described and validated in (Ceol and Horvitz, 2001; Harrison et al., 2006; 

Page et al., 2001). Another second anti-LIN-54 antibody was generated in rabbits 

against amino acids 207-306 (Strategic Diagnostics Inc.), validated by western 
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blot in wild-type and mutants, and showed the same localization patterns. 

Primary antibodies were used at 1:100 dilutions, and detected with secondary 

antibodies conjugated to Alexa Fluor 568 (Invitrogen) at a 1:500 dilution, except 

DPL-1 was performed as described [4,10]. Antibodies against H4K12Ac 

(Serotec), and H3K9me2 (Cell Signaling) were used at 1:1000 (primary) and 

seconday antibodies at 1:1000. Images for Figure 2-6 were captured by a 

Solamere Technology Group modified Yokogawa CSU10 Spinning Disk Confocal 

scan head attached to a Nikon TE-2000E2 inverted microscope and a 100x Plan 

Apo objective, using MetaMorph software (Molecular Devices). The images for 

Figure 2-6A and B were deconvolved using the constrained iterative 

deconvolution algorithm developed by the UMass Medical School Biomedical 

Imaging Group (Carrington et al., 1995). 

 

Yeast one-hybrid and two-hybrid assays 

Y1H and Y2H assays were performed as described (Deplancke et al., 2006; 

Walhout et al., 2000). Representative images for Figure 2-1B were obtained for 

Ppos-1 at 10mM 3AT 5 days, Plin-54 at 20mM 3AT 9 days, and Pvha-15 at 

60mM 3AT 9days.  

 

Western blot, immunoprecipitation, and chromatin immunoprecipitation 
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For western blot (Figure 2-2B), whole worm lysates were created from 200 hand-

picked synchronized young adults boiled in 2x loading buffer (National 

Diagnostics EC-886) for 30’ with intermittent vortexing. Lysates equivalent to 25, 

50, and 100 animals were loaded per lane and probed with anti-LIN-54, actin 

(Abcam #ab3280, 1:400) and Histone H3 (Abcam #ab1791, 1:1000). 

Immunoprecipitation, western blotting, and probing with DRM antibodies were 

performed as described (Harrison et al., 2006), ChIP was performed as 

described (Mukhopadhyay et al., 2008). Briefly, mixed stage wild-type worms 

were cultured in S-basal at 20oC. Lysates were cross-linked in 1% formaldehyde, 

sonicated, and immunoprecipitated with anti-LIN-54 antibody or pre-bleed 

antibody control. ChIP samples including the input were subjected to two rounds 

of linear amplification, using the genomePlex complete whole genome 

amplification kit (Sigma), and minimum difference between original precipitates 

and amplified precipitate confirmed by qPCR (data not shown). Both 

experimental and input were processed at NimbleGen, hybridized on 385K C. 

elegans Whole Genome 3-Array Set (Roche NimbleGen). To assay DRM subunit 

binding at the promoters of the lin-9 and lin-54 genes, ChIP was performed with 

antibodies against LIN-54, LIN-9, LIN-37, or pre-bleed control from wild-type or 

lin-54(n2990) mixed-stage extracts. qPCR was used to calculate the amount of 

lin-54 or lin-9 promoter DNA in ChIP samples relative to the total input DNA. The 

ratio in wild-type was set at 1.0. lin-9 promoter primers: 5’-cgactgtcaaacagcagctc-
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3’ and 5’-ttgaaatggcggttcttttc-3’. lin-54 promoter primers: 5’-atgatgagtgacgtctacc-

3’ and 5’-attgtttcgcgcgccgaaatttg-3’. 

 

 

RNA isolation and microarray 

Embryo: Animals were propagated on egg plates seeded with E. coli HB101 at 

20oC, bleached to obtain synchronized L1 larvae and then grown at 25oC for 48 

hours. Embryos from young adults were harvested by the bleach-alkaline method, 

and filtered through 100 micron mesh (Small Parts, Inc.). 200 µL of embryo pellet 

was suspended in 1 mL of Tri reagent (Molecular Research Center, Inc. TR118), 

flash-frozen, and dounced. Total RNA was purified with RNAeasy mini kits 

(Qiagen), treated with DNase, and integrity examined on agarose gel. 

Germline: Animals were grown at 20oC and dissected in 1X egg buffer to excise 

the germline 24 hours after L4 stage. Germlines were dissected to include mitotic 

tip through meiotic late pachytene (Supplemental Figure 2-3). RNA was isolated 

as described (Chi and Reinke, 2006), and linearly amplified once using 

MessageAmp II aRNA Amplification Kit (Ambion).  

Microarray: Probe-preparation, hybridization, and scanning for DNA microarray 

were performed at the Genomics Core facility at University of Massachusetts 

Medical School. Fluorescence-labeled cDNA probes were prepared using the 

One-Cycle kit (Affymetrix) and the Enzo HighYield RNA Transcript Labeling Kit 

(Enzo) for embryo, and the 3' IVT Express Kit (Affymetrix) for germline. cDNA 
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probes of three replicates were hybridized to GeneChip C. elegans genome 

arrays (Affymetrix).  

 

Chip peak analysis  

Raw ChIP-chip data were analyzed using three independent programs: MA2C 

(Song et al., 2007), ChIPOTle (Buck et al., 2005) and NimbleScan (Roche 

NimbleGen). While ChIPOTle called fewer and NimbleScan called greater 

numbers of peaks than MA2C, each identified a similar set of core peaks. MA2C 

analysis was performed with the following settings: # MA2C Score Method 

(median), Band Width (300), p-value cut off (-6), and other parameters were set 

as default. WS180 was used to annotate gene names. LIN-54 ChIP peaks 

(Figures 2-3 and 2-5A) were visualized using Affymetrix Integrated Genome 

browser. Modes of LIN-54 peaks were used to determine peak location for Figure 

3, and each intergenic peak was considered to associate with both neighboring 

genes. 

 

Ortholog pair analysis 

 HomoloGene (Ce.01-08-2009) defines 3015 orthologous pairs between C. 

elegans and D. melanogaster, and 3488 pairs between C. elegans and human. 

647 of 1572 genes bound by C. elegans LIN-54 have annotated fly orthologs; 

730 genes have annotated human orthologs. 1267 of 3147 fly genes bound by 
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Mip120 have worm orthologs (data from (Georlette et al., 2007) Table S3, using 

genes bound by Mip120 within 1 kb of 5' end, lr peak= 2.). Of 975 human genes 

bound by hLIN54 (data from (Litovchick et al., 2007) Table S4, using genes 

bound by hLIN54 within 1 kb of 5' end, during G0 and/or S phase), 186 have 

annotated worm orthologs.  

 

Motif analysis  

To predict motifs enriched in LIN-54 bound promoters, we defined significant 

peaks using ChIPOTle version 1.11 (Buck et al., 2005) with window size 300 bp, 

step size 38 bp. We selected the top 50 promoter peaks from each chromosome, 

based on p-value, for a total of 300 peaks, and analyzed the 1kb sequence 

surrounding their centers with MEME (Bailey et al., 2009). We searched for 7 – 

11 mer DNA motifs with parameters “-dna -mod zoops -minsites 20 -revcomp -

minw 7 -maxw 11” and 5th markov model of all C. elegans promoter sequences 

as a background nucleotide distribution, and then searched for 12 – 18 mer DNA 

motifs with parameters “-dna -mod zoops -minsites 20 -revcomp -minw 12 -maxw 

18” and the same background markov model. We confirmed that predicted motifs 

lie within ChIP peaks (Supplemental Figure 2-2). We determined the genomic 

distributions of promoter-associated TF motifs by searching promoter regions 

(1kb upstream from TSS) of all 20158 C. elegans genes (WS200) using MAST 

(Figure 2-5D) or FIMO (Supplemental Figure 2-2) in the MEME suite (Bailey et al., 
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2009).  Although the absolute values of motif occurrence varied depending on 

the p-value cutoff, the under-representation of Motifs 1 and 2 on the X 

chromosome was observed at multiple cutoffs. p-value cutoff used to search 

motifs in Figure 2-5D and Supplemental Table 2-3: 10-5 (EFL-1, HLH-27), 10-6 

(Motif 1, FLH-1), and 10-7 (NFI-1).  

  

GO term analysis  

 

GO analysis was performed, These dreams go on when I close my eyes, every 

second of the night I live another life. These dreams that sleep when it's cold 

outside; every moment I'm awake the further I'm away, using GO-TermFinder 

(Boyle et al., 2004), with p-value cut off of 0.01 (for LIN-54 bound genes) or 0.05 

(for LIN-54 responsive genes) with Bonferroni correction for multiple hypothesis 

testing. The evidence code Inferred from Electronic Annotation (IEA) was 

excluded from the analysis. 

 

Microarray analysis  

 

Statistical analyses were performed using R, a system for statistical computation 

and graphics ((Ihaka and Gentleman, 1996); http://www.r-project.org). The rma 
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method in the affy package from Bioconductor was used in R to summarize 

probe level data and to normalize the dataset to remove across array variation 

(Irizarry et al., 2003a; Irizarry et al., 2003b). Log transformed data were used in 

subsequent analysis and plotting. WormBase version WS190 was used.To 

determine differentially expressed genes between wild-type and mutants, 

moderated T Statistics in limma (Wettenhall and Smyth, 2004) was used with p-

value ≤0.01, fold change ≥1.5. When multiple probes sets correspond to one 

gene, the average fold change was determined. Raw data from (Chi and Reinke, 

2006) was re-analyzed with the same criteria described above, and genes 

responsive to efl-1(n3639), dpl-1(n3316), lin-35(n745), and lin-54(n3423) were 

clustered by the centroid-linkage hierarchical analysis (Cluster 3.0, (Eisen et al., 

1998)). Clusters were visualized with Java Treeview (Saldanha, 2004). To 

calculate the percent of genes per chromosome responsive to DRM members, 

we used the number of genes common between the custom arrays of (Chi and 

Reinke, 2006) and those represented on GeneChip C. elegans genome arrays 

(Affymetrix).  

To estimate genes normally expressed in wild-type embryos or germlines, we 

utilized the detection (present/absent) call generated by the Affymetrix microarray 

suite. Each probe set received numeric score based on the detection calls 

(present=1, marginal=0, and absent=-1), and the sum of the score for three 

biological replicas were calculated for each probe set (i.e. present in all three 

replicas = 3). A gene was considered expressed if the average score was more 
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than 1.5, and absent if less than -1.5. Our lists of expressed genes were 

comparable with those determined by SAGE analysis (Wang et al., 2009). 
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Supplemental Figure 2-1. The conserved DRM complex 

binds to promoters of genes encoding DRM subunits, 

and disruption of its binding in the lin-54(n2990) mutant.  

(A) LIN-54 and other DREAM subunits bind to the 5’ ends (within 1 kb 

of TSS) of genes encoding DREAM subunits in worms (this study), flies 

(Georlette et al., 2007), and humans (Litovchick et al., 2007; Schmit et 

al., 2007). *LIN-54 binding at its own promoter is indicated here 

because a strong, broad, peak was observed. Because its mode is just 

inside the coding region it did not meet our definition of LIN-54 bound 

genes in Supplemental Table 2-1. (B) DRM subunit binding in wild-type 

and lin-54(n2990) mutants, measured by ChIP-qPCR at the target 

promoters lin-9 and lin-54. Binding is shown as the amount of DNA 

amplified in each ChIP sample relative to input, without setting the ratio 

in wild-type to 1.0 as in Figure 2-1C. Results from three independent 

experiments are shown. (C) Immunofluorescence of hermaphrodite 

germline nuclei with antibodies against DRM subunits LIN-54, DPL-1, 

LIN-9, or LIN-37 in wild-type, lin-54(n2990) and lin-54(n3423) at 20OC. 

Strength of chromosome-associated staining was scored blind and 

assigned a score of 3 (strong), 2 (moderate), 1 (weak), or 0 (none) from 

at least two independent experiments and at least 20 different 

germlines; average score shown. lin-54(n3423) null strain severely 

disrupts association of other DRM subunits and the lin-54(n2990) strain 

partially disrupts association. Nuclei scored in region from germline tip 

until mid-pachytene stage of meiosis, as indicated above. 
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Supplemental Figure2-2 

An additional motif 

enriched in LIN-54 bound 

promoters and location of 

Motif 1 relative to ChIP 

peak (A) Motif 2, enriched in LIN-

54 bound promoters, and a 

related motif identified in 

Drosophila DREAM-bound 

promoters (Georlette et al., 2007). 

(B) Occurrence of Motif 2 in 

promoter regions of autosomal 

genes (gray bars) and X-linked 

genes (black bar). Motif 2 is 

under-represented within X-linked 

gene promoters (p-value <10-5) 

(C) The distance between the 

mode of LIN-54 ChIP peaks and 

the location of Motif 1. Based on 

criteria described in Materials and 

Methods, 356 genes contained 

both a LIN-54 ChIP-peak and 

Motif 1 within 1kb upstream from 

their TSS. More than half of those 

promoters had ChIP-peak modes 

that lie within 100 bp from the 

putative E2F-LIN-54 binding 

consensus (Motif 1). 
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Supplemental Figure 2-3.  lin-54(n2990) mutants show 

similar, but weaker, phenotypes compared with lin-

54(n3423) null mutants.  
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Supplemental Figure 2-3.  lin-54(n2990) mutants show 

similar, but weaker, phenotypes compared with lin-

54(n3423) null mutants.  

(A) Wild-type (top) and lin-54(n2290) (bottom) young adult 

hermaphrodites stained for DNA. lin-54 mutants exhibit an endomitotic 

oocyte (EMO) phenotype (left) which can result from various defects 

including defects in meiotic cell cycle, somatic sheath cell formation, 

or fertilization. lin-54 mutants also exhibit inappropriately connected 

gut nuclei (right), which may result from defects in mitotic 

chromosome segregation. Table shows comparison of these 

phenotypes in lin-54(n2990) and lin-54(n3423) at 20OC and 25OC.  

M+Z- (homozygous animals from heterozygous mother); M-Z- 

(homozygous animals from M+Z- hermaphrodites). % EMO: the 

percentage of animals with EMO phenotype 24 hrs. after L4 stage. % 

gut bridges: percentage calculated as the number of gut nuclei with an 

obvious connection/total gut nuclei x 100. (B) Dissected 

hermaphrodite germlines from wild-type (top), lin-54(n2990) (middle) 

and lin-54(n3423) (bottom) stained for DNA. Arrowheads indicate 

endomitotic oocytes. Box indicates region excised for germline 

microarray, chosen because germline nuclear morphology is similar 

between wild-type and mutant and because these stages precede re-

activation of the X chromosome (Kelly et al., 2002).  
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Supplemental Figure 2-4. LIN-54, EFL-1, DPL-1, and LIN-35 

co-regulated genes show chromosomal bias.  

Hierarchical clustering analysis of genes that changed expression in efl-

1(n3639), dpl-1(n3316), lin-35(n745), and/or lin-54(n3423) (left). The 

chromosomal distribution and the enriched Gene Ontology terms of ten 

clusters of genes are shown (right). p-value cutoff used for GO term 

search <0.01 with Bonferroni correction. NS= no significant GO found. * 

p-value <10-5. 
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Supplemental Table 2-1 (Attached Excel file) 

  

 
Supplemental Table 2-1 (excel file) 

Tab1: Genomic location of LIN-54 ChIP peaks  

Tab2: Genes bound by C.elegans LIN-54  

Tab3: Gene Ontology of genes bound by LIN-54  

Tab4: Genes bound in worm and fly  

Tab5: Genes bound in worm and human  

 
Supplemental Table 2-1. LIN-54 ChIP peak locations, bound genes, GO terms of 

bound genes, and genes commonly bound between C. elegans and D. 

melanogaster or human. 

 (Tab 1) Genomic locations of LIN-54 ChIP peaks and overlapping or nearby genes. 

LIN-54 ChIP peaks from two biological replicas were analyzed and merged using the 

MA2C program. Peak modes that are intragenic, 5’ to gene, or 3’ to gene are indicated. 

(Tab 2) LIN-54 bound genes defined in this study. (Tab 3) Gene Ontology terms 

enriched in genes containing LIN-54 ChIP peaks within 1kb from TSS (p-value <0.01) 

(Tab 4) Genes with worm-fly orthologs defined by HomoloGene that are commonly 

bound by LIN-54 in C. elegans and D. melanogaster (Georlette et al., 2007). (Tab 5) 

Genes with worm-human orthologs defined by HomoloGenes that are commonly bound 

by LIN-54 in C. elegans and human (Litovchick et al., 2007). FDR = False Discovery 

Rate. For details see Materials and Methods. 
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Supplemental  Table 2-2 (Attached Excel file) 

 

Supplemental Table 2-2 (excel file) 

Tab1: Genes with changed expression in lin-54(n2290) embryo  

Tab2: Genes with changed expression in lin-54(n3423) germline   

Tab3: Gene Ontology of LIN-54 responsive genes  

Tab4: Genes bound and regulated by LIN-54  

Tab5: Gene Ontology of bound and regulated genes  

 

Supplemental Table 2-2 LIN-54 responsive genes and their GO terms.  

(Tab 1) Genes with changed expression in lin-54(n2990) embryos. (Tab 2) Genes with 

changed expression in lin-54(n3423) germlines. (Tab 3) Gene Ontology terms enriched 

in genes up-regulated or down-regulated in lin-54(n2990) embryos or lin-54(n3423) 

germline. (p-value <0.05). (Tab 4) Genes with both LIN-54 ChIP peaks in their 

promoters and changed expression in lin-54 mutants (“bound and regulated”). (Tab 5)  

Enriched Gene Ontology terms of LIN-54 “bound and regulated” gene set.  FDR = False 

Discovery Rate. logFC = log fold change. For details see Materials and Methods. 
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Supplemental Table 2-3. 
 
 Chromosomal distribution of (A) LIN-54 ChIP peaks, (B) Binding motifs for E2F-

LIN-54 (Motif 1) and other transcription factors. p-value cutoff used to search 

motifs is 10-5 (EFL-1, HLH-27), 10-6 (Motif 1, FLH-1), and 10-7 (NFI-1). (C) LIN-54 

responsive genes in embryos and germlines. 
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                       Chapter III. 
 

The C.elegans DRM complex antagonizes the H3K36 

methyltransferase MES-4 to regulate X-chromosome gene 

expression 
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Chapter III. Introduction 
 

X chromosomes differ in number between the sexes. Like aneuploidy, the difference in 

X chromosome number creates an imbalance in gene product dosage between 

autosomes and the X chromosomes, and between the X chromosomes of the two sexes. 

Such imbalances are handled by chromosome-wide gene regulatory mechanisms called 

“dosage compensation”. Many species have evolved dosage compensation, but the 

compensation strategy that each organism uses is different; for example, in human one 

of the two Xs in females is inactivated (Payer and Lee, 2008), in flies the single male X 

is up-regulated (Mendjan and Akhtar, 2007), and in worms the two X chromosomes in 

hermaphrodites become repressed by half (Ercan and Lieb, 2009; Meyer, 2010). 

Despite different mechanisms, a common theme among organisms is the epigenetic 

modification of X chromosome chromatin.  

Regulation of X chromosome gene expression is handled differently not only 

between sexes, but also between soma and germline. In the male germ line, the single 

X chromosome undergoes heterochromatin formation and is silenced by a process 

known as Meiotic Sex Chromosome Inactivation (MSCI) (Turner, 2007). Because the 

single X chromosome lacks a meiotic partner, this severe compaction and silencing 

mechanism is thought to have evolved to prevent aberrant recombination with other 

chromosomes and to allow chromosome segregation during meiosis. C. elegans 

hermaphrodites undergo a distinct form of germline X silencing which partially silences 

the two X chromosomes (Kelly et al., 2002). Hermaphrodite germline X silencing likely 

functions as a dosage compensation system to balance X and autosomal gene products, 

but it is not yet clear if such a germline-specific form of X regulation exists in females of 
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other organisms. C. elegans hermaphrodite germline X silencing shows distinct genetic 

requirements from hermaphrodite somatic X dosage compensation, which involves a 

condensin I-like complex and associated proteins (Ercan and Lieb, 2009; Meyer, 2010), 

and from MSCI, which is facilitated by RNAi-related factors and changes in histone 

modifications (Maine et al., 2005; Walstrom et al., 2005). Hermaphrodite germline X 

silencing requires a set of MES (maternal effect sterile) histone methyltransferases, and 

appears to be antagonized by the DRM transcription factor complex (Bender et al., 

2006; Tabuchi et al., 2011).   

The proteins MES-2, MES-3, MES-4, and MES-6 mediate repression of X 

chromosome gene expression in the hermaphrodite germline. Homozygous mes 

progeny from heterozygous mothers are fertile due to the maternal contribution (M+Z- 

generation: presence of maternal products but no zygotic expression), but their offspring 

become sterile adults carrying degenerating germ cells (M-Z- generation: neither 

maternal nor zygotic products is present) (Capowski et al., 1991; Garvin et al., 1998). 

Interestingly, the degree of germ cell degeneration in mes (M-Z-) mutants showed 

sensitivity to X chromosome dosage: a less severe phenotype in animals carrying a 

single X chromosome, compared to animals with two X chromosomes, regardless of 

gender (Garvin et al., 1998). This implied a role for mes genes in controlling expression 

of at least some X-linked genes. Later, biochemical studies revealed that mes genes 

encode for two sets of histone methyltransferases that differentially modify chromatin on 

autosomes and X chromosomes (Bender et al., 2004; Bender et al., 2006; Fong et al., 

2002; Holdeman et al., 1998; Korf et al., 1998; Xu et al., 2001a; Xu et al., 2001b). MES-

4 predominantly localizes to autosomes, and is a NSD1-like methyltransferase 
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responsible for methylation of lysine 36 of histone H3 (H3K36me2/3) in germ line and 

early embryos (Bender et al., 2006; Fong et al., 2002; Rechtsteiner et al., 2010). 

Microarray analysis of mes-4 (M+Z-) mutant germlines showed prominent up-regulation 

of X-linked genes, suggesting that autosome-enriched MES-4 normally helps to repress 

genes on the X chromosomes (Bender et al., 2006). MES-2 is a homologue of fly and 

mammalian Enhancer of zeste (E(Z)), and forms a protein complex with MES-3 and 

MES-6 that resembles the Polycomb Repressive Complex 2  (PRC2) (Holdeman et al., 

1998; Xu et al., 2001a). In germline and early embryos, MES-2/3/6 catalyzes di- or tri-

methylation of lysine 27 of histone H3 (H3K27me2/3), a mark typically associated with 

inactive transcription (Bender et al., 2004; Fong et al., 2002). While H3K27me2 appears 

on all chromosomes, H3K27me3 is under-represented on autosomes and over-

represented on X chromosomes. In the absence of MES-2/3/6 function, autosome-

enriched MES-4 and its mark H3K36me2 were shown to spread to the X chromosomes, 

suggesting that H3K27me on X chromosomes normally keeps X-linked genes silent by 

repelling MES-4. Taken together, MES-4 and MES-2/3/6 are thought to keep the X-

chromosomes repressed in germline by working in a cooperative manner. However, the 

molecular mechanism used by these two sets of histone methyltransferases to mediate 

X-chromosome silencing remains unknown.  

We previously identified DRM as novel player in this process, and showed that 

DRM antagonizes hermaphrodite X chromosome silencing in C.elegans germlines 

(Tabuchi et al., 2011).  DRM is a conserved transcriptional regulatory complex 

consisting of eight members, including a pRB-family protein LIN-35, E2F/DP 

heterodimeric DNA-binding proteins (EFL-1/DPL-1), and LIN-54 (Figure1-1). Our results 
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revealed that DRM binding is enriched on autosomal genes yet the loss of DRM 

function leads to the enhancement of X chromosome silencing in hermaphrodite 

germlines. Normally, approximately 15% of the genes on the X chromosomes escape 

silencing and remain expressed in wild type germlines, and compromising DRM function 

further down-regulates expression of these X-linked genes (Tabuchi et al., 2011). Thus 

DRM is curiously similar, but opposite in action, to MES-4: both are autosome-enriched, 

yet DRM mutants lead to enhanced X silencing and mes-4 mutants lead to X de-

silencing. The molecular basis for how autosome-enriched DRM or MES-4 proteins 

remotely influence X-linked gene expression is still not known. Interestingly, DRM and 

MES-4 mutants show reciprocal genetic effects in a variety of other developmental 

contexts. For example, DRM subunits are as synMuvB (synthetic multi-vulva) class 

genes, and when mutated, exhibit vulva development defects in conjunction with the 

redundant synMuv A gene mutation, and the addition of a mes-4 mutation suppresses 

these defects (Fay and Yochem, 2007). Further, somatic cells in DRM mutants display 

ectopic expression of germline genes and mes-4 mutations suppress this effect 

(Andersen et al., 2006; Cui et al., 2006b; Fay and Yochem, 2007; Petrella et al., 2011; 

Unhavaithaya et al., 2002). Therefore, in this study we tested the hypothesis that DRM 

influences X chromosome silencing by counteracting the activities of MES proteins, and 

explored the molecular basis for how X-linked gene expression is controlled by 

autosomal DRM and MES-4 proteins.  

Here we provide evidence that DRM and MES proteins indeed have 

counteracting activities to regulate a common set of X-linked genes, and that a more 

normal expression of the X chromosome can be restored by simultaneous disruption of 
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both factors. We demonstrate that phenotypes caused by mutation of the DRM subunit 

lin-54 change severity in response to X chromosome dose in a manner that is reciprocal 

to that observed for mutation of mes genes. By profiling gene expression changes in 

hermaphrodite germlines, we show that lin-54 mutants hyper-silence the X, mes-4 

mutants de-silence the X, and lin-54;mes-4 double mutants restore remarkably normal 

X-linked gene expression. We compare the sets of X-linked genes regulated by DRM 

and by MES-4, and find that many of the same genes are regulated, in opposite 

directions, by these two factors (220/2797 genes on X chromosomes). The loss of DRM 

function did not affect levels of MES gene expression and vice versa, and DRM did not 

alter the localization of many histone modifications that differentially localize between X 

vs. autosomes. However, a striking change in H3K36me2 was observed when the lin-

54;mes-2 double mutant was examined. MES-4 and its mark H3K36me2 are normally 

enriched on autosomes, but inappropriately spread to the X chromosome in mes-

2(M+Z-) mutant background.  However, in the lin-54;mes-2 double mutant MES-4 and 

H3K36me2 maintain their restricted localization to autosomes, implying the MES-2/3/6 

complex may be a key player in facilitating aberrant localization of MES-4 in mes-2(lf) 

mutant background. Together, our results suggest that DRM and MES proteins play an 

antagonistic role in the germline to maintain the proper balance of X and autosome 

gene expression.  We propose a model, by which autosomal LIN-54 and MES-4 may 

influence the X chromosome versus autosome distribution of unknown repressor to 

maintain proper dosage of X vs. autosomal gene expression.   
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Chapter III. Results  

 

LIN-54 and MES mutant phenotypes are sensitive to X chromosome 

dose  

Previous studies showed that DRM and MES-4 exhibit a reciprocal effect on X 

chromosome gene regulation: the loss of lin-54 function enhanced X silencing, whereas 

the disruption of mes-4 function de-silenced the X chromosomes (Bender et al., 2006; 

Tabuchi et al., 2011). Further, phenotypes of mes mutants showed sensitivity to X 

chromosome dosage, where the degree of germ cell degeneration was much more 

severe in animal carrying two X chromosomes (XX animals), compared to animals with 

a single X-chromosome (XO animals) (Garvin et al., 1998). Given this evidence, we 

hypothesized that lin-54 mutant phenotypes would also show sensitivity to X-

chromosome dosage, in a manner reciprocal to mes mutations. To test this prediction, 

we first asked if the loss of functional LIN-54 would differently affect the phenotypes of 

worms that are XO male versus XX hermaphrodites. A strain carrying a weak loss-of-

function allele of lin-54(n2990), which compromises the DNA-binding activity of LIN-54, 

can be maintained as homozygous (Harrison et al., 2006; Tabuchi et al., 2011; Thomas 

et al., 2003). XX hermaphrodites carrying homozygous lin-54(n2990) (M-Z-) have 

mostly normal body and germline morphology, but exhibit endomitotic oocytes and 

temperature-sensitive sterility (Chapter II, Figure 2-S3). In contrast, we found most lin-

54(n2990) (M-Z-) homozygous males died before adulthood and the surviving animals 

exhibited severe morphology defects, including drastically decreased body length, 

deformed tails, and ectopic sperm (Figure3-1A). In order to quantify the degree of male-
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biased lethality of lin-54(n2990) animals, we set up a mating between homozygous lin-

54(n2990) (M-Z-) hermaphrodites and heterozygous lin-54(n2990)/nT1 balancer males. 

Assuming the mating went perfectly, the expected ratio of heterozygous lin-

54(n2990)/nT1 balancer males to homozygous lin-54(n2990) males is 1 to 1. However, 

we found 62 heterozygous males and strikingly only 3 homozygous males (the ratio of 

21:1) in three independent experiments (n=8) (Figure 3-1B).This suggests the majority 

of homozygous males die before they reach adulthood. In contrast, we observed 26 

heterozygous and 64 homozygous hermaphrodites in the same experiments where the 

expected ratio is also 1:1. Although it is not clear why less heterozygous 

hermaphrodites are represented compared to the expected, these results suggest that 

the loss of LIN-54 appear to have a greater impact on XO males compared to XX 

hermaphrodites.   

To differentiate whether the severe phenotypes observed in lin-54 mutant males 

are related to sex of the animal or to X chromosome dosage, we next compared the 

effect of lin-54 depletion in XX versus XO hermaphrodites. A gain-of-function allele of 

the sex determination gene tra-2, sexually transforms XO animals into pseudo-females 

(Doniach, 1986; Kuwabara et al., 1992). In transformed XO females carrying the tra-

2(e2531gf) mutation, we found that RNAi knock-down of lin-54 resulted in severe 

“sickness” such as the decrease in the body size and uncoordinated movements, while 

knock-down of lin-54 in XX hermaphrodites resulted in much less severe phenotypes in 

the body size and the movement (Figure 3-1B). To quantify the extent of “sickness”, we 

measured the body length of XO and XX animals depleted for either with empty vector 

or lin-54 (see material and method). We found the average body length XO animals 
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showed 21% reduction when depleted with lin-54 compared to the empty vector control 

(893 vs. 1129 pixel). In contrast, the average body length of XX animals showed 14% 

reduction compared to the empty vector control when lin-54 was depleted by RNAi 

(1247 vs. 1443 pixel). Thus, the loss of lin-54 appears to have a much more severe 

effect in animals carrying a single X chromosome (XO), compared to XX animals, 

regardless of sexual phenotype.  We speculate that animals carrying a single X 

chromosome are less able to tolerate an enhancement of X silencing caused by LIN-54 

depletion. Based on our data and the previously published mes-4 data (Garvin et al., 

1998), we tentatively conclude that lin-54 and mes-4 mutants have an opposite 

sensitivity to X chromosome dosage. This observation supports the idea that LIN-54 

and MES proteins influence expression of X-linked genes in an opposite manner. 
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Figure 3-1. The severity of lin-54 mutant phenotypes is sensitive to X 

chromosome dose. (A) Images of XX hermaphrodites and XO males from wild 

type (top) or homozygous lin-54(n2990) strain at the M-Z- generation (bottom). (B) 

The genetic cross to obtain lin-54(n2990, M-Z- ) males for (A). The expected and 

observed numbers of progenies are shown at the bottom. (C) The differential 

morphological impact of depleting LIN-54 in XX hermaphrodites and in XO pseudo-

females of the tra-2(e2531)/+ strain. (D) A bar graph showing the average body 

length (pixel) of XX or XO animals depleted with either empty vector or lin-54 in (B). 

** p<0.0001, *<0.0004 (student’s ttest). 
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LIN-54 and MES-4 counteract to affect X-linked gene expression in 

germline  

 

The loss of DRM or MES-4 showed opposite sensitivity to X chromosome dosage and 

affected X-linked gene expression in a reciprocal manner in the germline (Bender et al., 

2006; Tabuchi et al., 2011). We hypothesized that DRM and MES-4 may counteract 

each other to promote normal germline gene expression, in particular by maintaining 

adequate but not excessive X chromosome silencing. To test this hypothesis, we 

performed a microarray analysis to profile the germline gene expression of wild-type, 

lin-54(n3423) null mutant, mes-4(ok2326) null mutant, and lin-54(n3423);mes-4(ok2326) 

double mutant. Homozygous lin-54(n3423) animals produce no LIN-54 transcript or 

protein, and disrupt DRM complex function both by destabilizing other subunit proteins 

and by preventing binding of the complex to target genes (Harrison et al., 2006; Tabuchi 

et al., 2011). The mes-4(ok2326) allele removes the majority of the SET domain, a 

catalytic domain for histone methyltransferase activity (Supplemental Tables 3-1). In 

mes-4(ok2326) homozygous animals (M+Z-), RT-qPCR analysis detected a mature 

(poly-A tailed), but presumably truncated transcript for mes-4, and immunostaining 

showed no signals for MES-4 protein or the H3K36me2 mark in germline and early 

embryos (Supplemental Table 3-2, Figure 3-5). Therefore, we consider the mes-

4(ok2326) allele to be a null mutation. Total RNA was isolated from dissected gonads 

and labeled directly for microarray hybridization (see Methods). A comparison of genes 

that significantly changed expression in the absence of lin-54 compared to wild type in 

this experiment (525 total) versus the experiment described in Chapter II (328 total) 
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showed that many overlap (Supplemental Figure 3-1). However, more robust and 

diverse changes in gene expression and more prominent effects on X-linked genes 

were observed in this experiment, perhaps due to a change in the probe preparation 

protocol (See Material and Method).  

Our microarray analysis recapitulated the similar trends of X chromosome gene 

regulation as previously observed in lin-54 or mes-4 single mutants (Bender et al., 2006; 

Tabuchi et al., 2011). The data showed 417 down-regulated genes that were X 

chromosome-enriched (Figure 3-2A), and 108 up-regulated genes that are autosome-

enriched (Figure 3-3A) in lin-54(n3423), compared to wild type (Supplemental Table 3-

3). By contrast, in mes-4(ok2326) compared to wild type, we defined 646 up-regulated 

(Figure 3-2E) and 165 down-regulated genes (Figure 3-3E). The majority of up-

regulated genes (419/646) were located on the X chromosome (Figure 3-2E), whereas 

the down-regulated genes were almost exclusively located on autosomes (Figure 3-3E, 

Supplemental Table 3-3). In short, the lin-54 mutation primarily causes down-regulation 

of X-linked genes and up-regulation of autosomal genes. Conversely, the mes-4 

mutation shows the opposite effect: up-regulation of X-linked genes and down-

regulation of autosomal gene expression. This reciprocal nature of gene expression 

between X vs. A may reflect a competition for a limited amount of cellular machinery or 

regulators that influence gene expression. Hypothetically, in the lin-54 mutant 

background, autosomal genes may gain access to efficient transcription at the cost of X 

chromosome losing such access; the mes-4 mutation appears to have a reciprocal 

effect.  Given this scenario, we predicted that, when both lin-54 and mes-4 mutations 

are combined, the effects of each mutation may cancel out, and the lin-54;mes-4 double 
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mutants would  have  relatively normal gene expression. To explore this possibility we 

sought to answer the questions stated below.   

First, we asked whether the mes-4 mutation could reverse the enhanced X 

chromosome silencing caused by the lin-54 mutation or vice versa. To do so, we 

identified genes that significantly changed expression in the lin-54;mes-4 double mutant 

compared to the lin-54 single mutant, and found 363 up-regulated and 110 down-

regulated genes (Figure 3-2B, Figure 3-3B, and Supplemental Table 3-3). Strikingly, the 

majority of up-regulated genes in the double mutant compared to the lin-54 single 

mutant (254/363, 70%) were located on the X chromosomes (Figure 3-2B), suggesting 

that removal of mes-4 in a lin-54 background reversed the enhanced X-silencing caused 

by the lin-54 mutation. We also asked whether the lin-54 mutation could reverse the de-

silencing of the X chromosome caused by the mes-4 mutation. For this, we identified 

genes that significantly changed expression in the lin-54;mes-4 double mutant 

compared to the mes-4 single mutant, and found 166 up-regulated and 656 down-

regulated genes (Figure 3-3F and Figure 3-2F, and Supplemental Table 3-3). A 

significant portion of the down-regulated gene set was located on the X chromosome 

(248/656, Figure 3-2F, black bar, Supplemental Table 3-3). This result shows that many 

of the X-linked genes that were inappropriately over-expressed in the mes-4 mutant 

lower their expression when the lin-54 mutation is additionally introduced. Together, 

these results show that the lin-54 and mes-4 mutations cancel out each other’s effects 

on X-linked gene expression. Conversely, in the wild type DRM and MES-4 antagonize 

each other to regulate X-linked gene expression. 
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Second, we asked whether mutation of mes-4 reverses the trend of X-linked 

gene expression in lin-54 mutants through action on a similar set of genes. Indeed, as 

shown in the Venn diagram in Figure 3-2C, more than half of the X-linked genes down-

regulated in lin-54(n3423) versus wild type become up-regulated in the lin-

54(n3423);mes-4(ok2326) double mutant (Figure 3-2C, 65 genes). Similarly, of the 419 

X-linked genes up-regulated in mes-4(ok2326) versus wild type, 193 are down-

regulated in the lin-54(n3423);mes-4(ok2326) double mutant by comparison (Figure 3-

2G). These data indicate that the antagonistic transcriptional regulation of X 

chromosome gene expression by DRM and MES occurs on a similar set of X-linked 

genes. 

Third, we asked whether removal of both DRM and MES activities would return 

co-regulated genes and X chromosome-wide gene expression back to normal levels. 

We made this assessment using either the 38 X-linked genes that significantly changed 

expression in comparisons between lin-54 and mes-4 single or double mutations (“LIN-

54 and MES-4 responsive X-genes”, the genes in the Venn diagram intersections of 

Figure 3-2C and G, listed in Supplemental Table 3-S4) or using all X-linked genes. The 

log2 intensity value for each gene in our microarray data was used to indicate 

transcriptional output, and the wild-type value was set as one. For the 38 LIN-54 and 

MES-4 responsive genes, the median log2 intensity in lin-54 mutant was 0.87, reflecting 

silencing of these X-linked genes (Figure 3-2I). The median relative log2 intensity in the 

mes-4 mutant was 1.16, reflecting the de-silencing of these X-linked genes. Strikingly, 

the lin-54;mes-4 double mutant had a median log2 intensity of 1.0 (wild type level), 

suggesting that genes oppositely regulated by LIN-54 and MES-4 regain wild type 
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expression levels when both factors are removed (Figure 3-2I). We extended this 

analysis to include all X-linked genes expressed in the wild type hermaphrodite germline, 

and noted a similar trend: the median log2 intensities relative to wild type for lin-54, 

mes-4, and lin-54;mes-4 double mutant were 0.92, 1.11, and 1.03, respectively (Figure 

3-2J). This implies that LIN-54 and MES-4 have opposing effects that can alter 

chromosome-wide gene expression from the X chromosome. MES-4 helps silence 

genes along germline X chromosomes and DRM helps prevent excessive silencing. Our 

data show that DRM and MES-4 counteract each other by acting on a common set of X-

linked genes, and that removing both factors restores near-normal gene expression 

output from the X chromosome.  

Finally, we assessed gene regulation trends on autosomes in lin-54 or mes-4 

single mutants and lin-54;mes-4 double mutant strains. When comparing the down-

regulated genes in lin-54 vs. wild type and the up-regulated gene in lin-54;mes-4 vs. lin-

54 we found 38 overlapping genes (Figure 3-2D). This suggests that the lin-54 mutation 

causes some autosomal genes to lower expression level, and the mes-4 mutation 

antagonizes this effect.  We also identified a better overlap between the up-regulated 

genes in mes-4 vs. wild type, and the down-regulated genes in the lin-54;mes-4 double 

vs. mes-4 (135 autosomal genes, Figure 3-2H). Collectively, these data suggest the 

antagonistic interplay between DRM and MES-4 extends beyond X-linked genes, and 

affect some autosomal genes as well. 
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Figure 3-2. LIN-54 and MES-4 counteract each other to influence 

X-linked gene expression in the germline. 
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Figure 3-2. LIN-54 and MES-4 counteract each other to influence X-

linked gene expression in the germline. (A-D) Results of germline 

microarray in wild type, lin-54(n3423), mes-4(ok2326), and lin-54(n3423);mes-

4(ok2326) strains. Many X-linked genes silenced in the lin-54 mutant vs. wild type 

become up-regulated in the lin-54;mes-4 double mutant. Chromosomal distribution of 

genes down-regulated in lin-54 vs. wild type (A), and genes up-regulated in lin-

54;mes-4 double vs. lin-54 (B). Overlap of X-linked (C) or autosomal (D) genes in each 

category described above. (E-H) Many X-linked genes over-expressed in the mes-4 

mutant vs. wild type become down-regulated in the lin-54;mes-4 double mutant. 

Chromosomal distribution of genes up-regulated in mes-4 vs. wild type (E), and genes 

down-regulated in lin-54;mes-4 double vs. mes-4 (F). Overlap of X-linked (G) or 

autosomal (H) genes described above. (I-J) A box-and-whisker plot of relative log2 

intensities, representing the abundance of transcripts in the lin-54, mes-4, or lin-

54;mes-4 mutants. (I) Trend of the 38 X-linked genes sensitive to both lin-54 and 

mes-4 mutations “LIN-54/MES-4 responsive genes”. (J) Trend of all X-linked genes 

expressed in the germline. The percent responsive genes per chromosome is plotted 

on the Y-axis to normalize for the number of genes per chromosome in A, B, E, and F. 
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 Furthermore, we investigated the general trends on the autosomal gene 

expression pattern exerted by lin-54 or mes-4 single mutant and the lin-54;mes-4 

double mutant  (Figure 3-3: reciprocal analysis of Figure 3-2). We focused on the 

autosomal genes that, when compared to wild type, changed expression in either in the 

lin-54 (up) or mes-4 mutant (down), and  found that in the lin-54;mes-4 double mutant 

the expression of a common set of autosomal genes  return close to normal (Figure 3-

3B, E; Figure 3-3C, F). This data suggest that DRM and MES-4 counteract each other 

to act on, not only X-linked genes, but also the subset of autosomal genes.  

In summary, our data illustrates DRM and MES-4 proteins antagonize each other 

to act on a common set of X-linked genes and subset of autosomal genes. The 

reciprocal change in gene expression between X chromosomes and autosomes 

supports our hypothesis: the expression of autosomal vs. X-linked genes is controlled 

by a limited amount of transcription regulators, and the availability of such regulators 

may be reciprocally influenced by the actions of DRM and MES-4. Hence proper 

expression of autosomal and X-linked genes may be balanced by the interplay between 

DRM and MES-4. 
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DRM and MES proteins do not appear to regulate each other’s 

transcription or cytological distribution  

How do autosome-bound DRM and MES-4 proteins counteract each other to control 

germline X chromosome gene regulation? Both proteins are likely to control X-linked 

genes via an indirect mechanism, because the promoters of LIN-54 and MES-4 

responsive X-linked genes are infrequently bound by either LIN-54 or MES-4, and 

showed low incidence of a LIN-54 binding motif (Rechtsteiner et al., 2010; Tabuchi et al., 

2011).  

We first explored a possibility that LIN-54 might regulate the expression of mes 

genes. We reasoned that, if wild type LIN-54 negatively regulates expression of mes 

genes, then the loss of lin-54 would cause over-expression of MES proteins (silencing 

proteins), and consequently cause the enhancement X chromosome silencing. Analysis 

of the LIN-54 binding profile, as determined by ChIP-chip in mixed stage worms, 

revealed that LIN-54 was enriched at the promoters of mes-4, mes-2, and mes-6 genes 

(Tabuchi et al., 2011). However, a comparison of transcripts in lin-54 mutant animals 

versus wild type, by both microarray and by qRT-PCR in germlines or embryos, 

revealed no significant change in transcript levels for all mes genes (data not shown). 

Thus we find no evidence that LIN-54 counteracts MES activity by altering mes gene 

expression.  

Reciprocally, we next asked if MES proteins regulate lin-54 expression. If wild 

type MES proteins negatively regulate lin-54 expression, then loss of mes-4 would 

cause over-expression of LIN-54 (anti-silencing proteins) and consequently de-silencing 
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of X chromosomes. Published MES-4 binding and gene expression profiles did not 

observe MES-4 binding to LIN-54 promoter or changes to LIN-54 transcript levels in 

mes mutant germlines (Bender et al., 2006; Rechtsteiner et al., 2010). Using qRT-PCR, 

we also observed no changes to LIN-54 transcript levels in the mes-4(ok2326 and 

bn23) mutant germlines (data not shown). Taken together, we find no evidence that 

LIN-54 or MES-4 influence each other’s gene expression level.  

Another possibility is that LIN-54 may influence the stability or the localization of 

MES proteins (MES-4 and MES-2/3/6 complex). We performed immunostaining to 

monitor a potential change in the pattern of MES-4 and its mark H3K36me2 in the lin-54 

mutant germlines. We found that both the signal strength and the autosome-enriched 

localization pattern remained unaffected in the lin-54(n3423) mutant (Figure 3-4A, data 

not shown). Next, we examined the level and the pattern of the MES-2/3/6 mark 

H3K27me3. In wild type germ cells, H3K27me3 coats all chromosomes, but is more 

concentrated on the X chromosomes as reported by Fong et al. 2002 (Figure 3-4B, 

arrow). In the lin-54 mutant background, no obvious change in H3K27me3 level and 

localization pattern was detected (Figure 3-4B). These results provide no evidence that 

LIN-54 is required for MES-4 to properly associate with and methylate autosomes, or for 

MES-2/3/6 to concentrate H3K27me3 on X-chromosomes. However, it remains possible 

that this cytological approach is not sufficiently sensitive to detect subtle changes in 

protein distribution.  

Alternatively, we asked if MES-4 or the MES-2/3/6 complex was necessary for 

the stability of LIN-54 protein or its autosome-enriched localization.  In mes-4(ok2326 

and bn23, M+Z-) germline where signal for both MES-4 and H3K36me2 was 
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undetectable, we found that LIN-54 protein immunofluorescence signal was still present 

at levels comparable to wild type, and that it still localized to autosomes (Figure 3-4C(ii)). 

Furthermore, a normal distribution of LIN-54 was observed in mes-2(bn11, M+Z-) 

germlines where MES-2 and its mark H3K27me3 was undetectable and MES-4 and its 

mark H3K36me2 was shown to ectopically spread to the X-chromosome (Figure 3-4C 

(iii), and  Figure 3-4D) (Bender et al., 2006; Fong et al., 2002).  Therefore, we find no 

evidence that MES proteins affect LIN-54 protein stability, or act upstream to specify 

LIN-54 localization. The patterns of histone modifications established by MES proteins 

may not be directly required for LIN-54 to associate with autosomes.  

We also investigated the germline localization of LIN-54 in the subsequent M-Z- 

generations of mes-4(bn23) and mes-2(bn11) mutants, in which germ cells are 

degenerating, but some have reasonable chromosome morphology and can be assayed 

with immunostaining. In these nuclei, active histone modifications normally enriched on 

autosomes (e.g. H3K12Ac) or active RNA polymerase II were shown to inappropriately 

accumulate on the X chromosomes (Fong et al., 2002). When we co-stained these 

nuclei with LIN-54 (Figure 3-4C (iv and v), red) and an active histone modification 

(H4K12Ac, blue), we found that LIN-54 no longer tightly associated with chromosomes, 

but instead showed a diffused localization, while H4K12Ac stained all chromosomes as 

reported previously. The same results were obtained when localization of either LIN-54 

or the DRM component LIN-9 were examined in various mes (m-z-) germlines (mes-

4(bn73, bn67), mes-3(bn35), mes-6(bn66), data not shown). It is not clear how to 

interpret this observation: LIN-54 could fail to associate with chromosomes because it 

requires MES products to do so, or the loss of germ cell identity in the mes (M-Z-) 
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mutants may be so severe that proteins like LIN-54 that recognize germline 

chromosomes lose their association. In summary, at the cytological level, we found no 

evidence for localization dependencies between DRM and MES proteins.  
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Figure 3-4. MES and LIN-54 proteins show no obvious effect on each 
other’s localization.(A-D) Immunofluorescence images of germline nuclei during 

pachytene of meiosis. (A) The MES-4 mark H3K36me2 (red) stays restricted on autosomes 
in absence of LIN-54. (B) In wild type germline nuclei, the MES-2 mark H3K27me3 (red) 
coats all chromosomes, but is concentrated on the X chromosomes (arrow). A similar 
staining pattern was observed in nuclei from the lin-54(n3423) mutant (bottom). (C) LIN-54 
localization in mes mutants. In nuclei of mes-4(bn23) or mes-2(bn11) (M+Z-) mutant 
germlines, LIN-54(red) remains concentrated on autosomes. In the subsequent generation 
M-Z- germlines, LIN-54 dissociates from chromosomes, while the active histone 
modification (H4K12Ac, blue), which normally marks autosomes in wild type, spreads to all 
chromosomes. (D) Co-localization of LIN-54 (red) and the MES-4 mark H3K36me2 (blue) in 
mes-2(bn11) M+Z- germ cells. While H3K36me2 spreads to X (arrow), LIN-54 remains on 
autosomes.  
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Mutation of lin-54 does not disrupt the distribution of autosome-

enriched or X-enriched histone modifications. 

A number of histone modifications are known to differentially accumulate on autosomes 

or X chromosomes in the C. elegans germline. We hypothesized that LIN-54 may serve 

to establish a chromatin distinction between X chromosomes and autosomes by acting 

upstream of histone modifying enzymes. To test this hypothesis, we performed 

immunostaining in lin-54(n3423) mutant germlines to monitor a variety of histone marks 

known to be differentially enriched between X chromosomes and autosomes. These 

include ten autosome-enriched histone modifications representing active transcription 

and two heterochromatic histone marks enriched on X chromosomes (a list of 

antibodies is provided in Materials and Methods). None of these histone modifications 

showed a detectable change in the lin-54 mutant, indicating that LIN-54 is not 

necessary for the tested histone modifications to achieve differential localization 

between autosomes and Xchromosomes (Figure 3-5). This observation suggests that 

LIN-54 may function downstream or independent of the assayed histone modifications 

at the cytological level. 

Next we asked if the autosome-enriched pattern of LIN-54 association required a 

variety of proteins known to show differential localization and/or function between 

autosomes and the X chromosome. We surveyed LIN-54 localization in the absence of 

1) known autosome-associated proteins, such as XND-1 (a autosome-associated 

protein that promotes recombination events on Xchromosomes) and MRG-1 (a 

chromodomain-containing protein also involved in X-silencing, 2) MSCI-related factors 
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involved in the accumulation or distribution of heterochromatic histone modification 

(H3K9me) on Xchromosomes (such as ELK-1, EGO-1, RHA-1), or 3) proteins involved 

in somatic dosage compensation (DPY-30, DPY-27). In all cases, no change in LIN-54 

localization pattern was observed (data not shown). Therefore, the proteins tested 

above do not appear to recruit LIN-54 to autosomes.  
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LIN-54 is required for H3K36me2 to spreads to Xchromosomes in 

mes-2 mutant 

Since X-linked genes mis-regulated in either in lin-54 or mes-4 mutant germlines 

become expressed at more normal levels when both mutations are combined, we 

investigated if the changes in gene expression in the double mutant reflected alterations 

to the pattern of histone modifications created by the MES proteins. To do this, we 

examined the pattern of H3K27me3 histone modifications created by MES-2/3/6 in the 

lin-54;mes-4 double mutant (M+Z-) germ line. In this germline, we detected no signals 

for the MES-4 mark H3K36me2 as expected, and H3K27me3 maintained its enrichment 

on the X chromosome (Figure 3-6E and 6K, note: H3K27me3 pattern was unaffected in 

mes-4, lin-54, and mes-4;lin-54). This indicates that the H3K27me3 pattern is not visibly 

altered even when the expression of X-linked genes is changed as with mutation of lin-

54 or mes-4 or both.  

MES-2 functions similarly to MES-4 in germline development and X gene 

regulation, and its loss of function is predicted to cause de-silencing of X chromosomes.  

It has previously been shown that loss of mes-2 function causes loss of H3K27me3 in 

the germline, and the ectopic spread of H3K36me2 and other active modifications to the 

X chromosome (Bender et al., 2006; Fong et al., 2002) (Figure3-6E,K,N). To examine 

how the removal of both MES-2 and LIN-54 may affect the localization of MES-4 and its 

mark H3K36me2, we monitored the immunostaining pattern in the mes-2;lin-54 double 

mutant germline. Strikingly, in these nuclei we found H3K36me2 remained restricted on 

autosomes in both pachytene and diakinesis nuclei (Figure 3-6F, L, O). This suggests 
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that the lack of H3K27me3 is not sufficient to allow H3K36me2 to spread to X in the 

double mutant, but it requires wild type LIN-54 activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6.  LIN-54 is required for H3K36me2 to spread to the X 

chromosome in a mes-2 mutant.  
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Figure 3-6.  LIN-54 is required for H3K36me2 to spread to the X 

chromosome in a mes-2 mutant.  

(A-F) Immunofluorescence images of H3K27me3 (red) and DNA staining 

(green) of pachytene nuclei. The distribution of the H3K27me3 mark made by 

MES-2/3/6 does not change in absence of LIN-54(B), MES-4(C), or both (D), 

and H3K27me3 is undetectable in mes-2(bn11, M+Z- germline) (E) or mes-

2(bn11);lin-54(n3423) double mutant (F).  (G-L) Immunostaining of H3K36me2 

(red) and DNA staining (green) in pachytene stage of germ cells. (M-O) 

H3K36me2 pattern during diakinesis stage of germ cell meiosis. The MES-4 

mark H3K36me2 is restricted on autosomes in wild type (G, M) and lin-

54(n3423) (H), and disappears in mes-4(ok2324) mutant backgrounds (I, J).   

H3K36me2 spreads to the X chromosomes in mes-2(bn11, M+Z-) germlines (K, 

N). In contrast, H3K36me2 remains restricted on autosomes in the mes-2;lin-54 

double mutant (L,O). Arrows indicate the X chromosomes. 

 



                                                                              CHAPTER III 
 

116 
 

Genetic interaction between LIN-54 and MES-4 

Both lin-54 and mes-4 mutations result in pleiotropic defects, and thus it is difficult to 

pin-point a phenotype directly associated with aberrant X-linked gene expression in the 

germline. We predict that, if a particular defect (phenotype) is linked with the over- or 

under-expression of X-linked genes, then the penetrance or severity of the defect 

should be alleviated in the double mutant, where the X-linked gene expression is re-

balanced.  

To identify such a phenotype, we characterized the phenotypes of the single lin-

54(n3423) and mes-4(ok2326) mutants, and compared them to the lin-54(n3423);mes-

4(ok2326) double mutant. First, we documented the phenotypes of the single lin-

54(n3423) mutant: lin-54(n3423) homozygous progeny from heterozygous mothers 

(M+Z-) grow up to be sterile adults carrying many endomitotic oocytes (EMO 

phenotype) along with other defects, such as deformed vulva, twisted-gonads, and 

formation of ectopic sperm (Harrison et al., 2006; Tabuchi et al., 2011; Thomas et al., 

2003). The penetrance of EMO was 95% and the sterility was almost complete, 

although a young mother occasionally laid 1-4 embryos that could become very sick-

looking sterile adults (Table 3-1). Second, we confirmed that the mes-4(ok2326) mutant 

shows the maternal effect sterility as other alleles of mes mutants. Third, when we 

combined those two mutations, we found the lin-54(n3423);mes-4(ok2326) double 

mutant from heterozygous mothers showed 95% EMO penetrance, and 100% sterility 

with no escapers at the M+Z- generation. Thus, the double mutant appears to show a 

phenotype like the lin-54 single mutant. This suggests lin-54 is epistatic to mes-4 in 

terms of the EMO penetrance and the sterility. Since we found no escapers from the 
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double mutant line, another possible interpretation is that the mes-4 mutation may act 

synthetically to enhance the sterility of lin-54.  

To extend this analysis, we also made four other double mutants carrying alleles 

of mes-4(bn23, bn67 alleles), or a mes-2(bn11) allele in the lin-54(n3423) mutant 

background (Table 3-1). The information on each allele is described in Supplemental 

Table 3-1. All double mutants, except for the lin-54(n3423);mes-4(bn23), showed a 

similar genetic interactions as in lin-54(n3423);mes-4(ok2326): 90-95% EMO 

penetrance and M+Z- generation sterility (Table 3-1). The exception, the lin-

54(n3423);mes-4(bn23) double mutant showed a decrease in the EMO penetrance from 

96 % to 2%, and a slight increase in fertility. mes-4(bn23) is a point mutation predicated 

to affect protein stability  (Bender et al., 2006), see Materials and Methods, 

Supplemental Table 3-1) and, consistently immunofluorescence detected no protein nor 

the histone modification it creates, suggesting that mes-4(bn23) is a protein null allele 

like mes-4(ok2326). One possibility of why we detect such allele specificity is that the 

bn23 allele is linked with a genetic marker dpy-11(e224) and unc-76(e911) in cis, and 

thus the puzzling result might be related to a background genetic component, rather 

than the mes-4(bn23) mutation. RNAi knock-down of MES-4 in the lin-54(n3423) mutant 

background also showed a phenotype similar to that observed with lin-54(n3423);mes-

4(ok2326), in terms of the sterility and the EMO penetrance. Further experimentation is 

required to elucidate why we see such allele specificity, and a phenotype directly 

associated with aberrant X-linked gene expression in the germline.   
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Chapter III. Discussion  

 

In summary, this study provides a direct link at gene expression level between the 

previously identified gene regulatory properties of two proteins implicated in 

hermaphrodite X-silencing: LIN-54(DRM) and MES-4. We showed LIN-54 and MES-4 

antagonize each other to reciprocally and equally alter gene expression of their 

overlapping targets, the majority of which are located on X chromosomes, but some are 

located on autosomes. In an effort to understand the molecular mechanism by which 

these proteins counteract each other, we systematically investigated a number of 

regulatory possibilities and consequently found that LIN-54 and MES-4 do not influence 

each other’s gene expression, protein stability, or localization patterns, and the loss of 

LIN-54 does not alter the pattern of histone marks known to be differentially enriched 

between X and autosomes. Further, we provide a potential mechanistic clue as to how 

LIN-54 and MES-4 counteract each other by showing that lin-54 mutation suppresses 

the inappropriate appearance of MES-4 and its mark, H3K36me2, on the X 

chromosomes in the mes-2 mutant background.  This suggests the potential 

involvement of LIN-54 in H3K36me2 localization. We propose the antagonistic interplay 

between DRM complex and MES proteins is an essential component to maintain the 

proper dose of X-linked vs. autosomal gene expression in C.elegans germline.  

 

How do autosomal-enriched LIN-54 and MES-4 influence the 

expression of genes on the X chromosomes? (MODEL) 
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In this study, we identified many X-linked genes that change expression significantly in 

response to both lin-54 and mes-4 mutations. Given these genes are rarely bound by 

LIN-54 or MES-4, their expression is likely to be controlled by an indirect mechanism. 

One potential mechanism is that LIN-54 and MES-4 may counteract each other to 

regulate transcription of one or more autosomal gene(s) whose gene products may act 

in trans to control X chromosome gene expression. However, after examining the list of 

genes bound or/and regulated by either LIN-54 or MES-4, no obvious candidate was 

found.  

As an alternative, we propose a model that combines the previously proposed 

models to explain how autosomal MES-4 or LIN-54 influences expression of genes 

located on the X chromosomes. According to the MES-4 model proposed by Bender et 

al., MES-4 functions to repel the global repressors from autosomes to concentrate them 

to the X chromosomes (Bender et al., 2006). When the MES-4 function is disrupted, the 

global repressors may inappropriately spread from the X chromosome to autosomes. 

Assuming the global repressor is limiting, autosomal genes would decrease in 

expression while X-linked genes would increase in expression, which is in agreement 

with what we observed. In the LIN-54 model, LIN-54 may function to retain a portion of 

the global repressors to autosomes. When LIN-54 is absent, the global repressors might 

ectopically spread from autosomal loci to the X chromosomes. In which case, 

autosomal genes would increase in expression whereas X-linked genes that escape X-

silencing now become down-regulated (the enhancement of X-silencing).  Taking these 

two models into account, we entertain the possibility that LIN-54 and MES-4 may act on 
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the very same repressor (we refer to as “R”) to regulate its distribution across the 

genome. In other words, the antagonistic interplay between LIN-54 and MES-4 may be 

necessary to maintain the intricate balance of the global repressor allocation across the 

genome. Perhaps, this distribution of such repressors might be a key component to 

maintain the proper germline gene expression program, where X chromosome gene 

expression is adequately silenced. 

The identity of the mysterious global repressor ”R” is currently not known. One 

logical candidate is MES-2/3/6 (PRC2) repressor complex; however, cytological 

experiments suggest this is less likely since the H3K27me pattern created by the MES-

2/3/6 complex was unaffected upon the loss of LIN-54, MES-4, or both (this study and 

Bender et al., 2006). That being said, we cannot rule out a possibility that the potential 

change in H3K27me level may occur locally on a gene-by-gene basis, which may be 

difficult to detect at the cytological level using immunostaining. The use of more 

sensitive methods, such as ChIP, may be necessary to detect potential changes in local 

chromatin modifications. In fact, the unpublished ChIP data from the Strome laboratory 

shows that the H3K27me3 signals on the X chromosomes spreads to new regions on 

autosomes when MES-4 was depleted by RNAi (personal communication). In addition, 

we found that the MES-4 mark H3K36me stays restricted on autosomes in the mes-

2;lin-54 double mutant background. Together, these data support the involvement of the 

MES-2/3/6 complex in the process of DRM and MES-4 mediated hermaphrodite X 

chromosomes silencing.  

If the MES-2/3/6 complex acts as global repressors, then we do not need to 

invoke the third party player to explain the phenomenon, and instead all can be 
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explained by the interplay among the three known players: DRM, MES-4, and the MES-

2/3/6 complex. In agreement with this, the intriguing link between DREAM and PRC2 

complex in gene regulation that was recently shown: dREAM complex represses the 

developmentally-regulated genes by employing a histone deacetylase (HDAC)-

mediated hypo-acetylation at gene promoters, and PRC2-mediated accumulation of 

H3K27me2 at downstream of the promoter region (Lee et al., 2010). The loss of dREAM 

function lowers the H3K27me level at it’s target genes, and the loss of PRC2-mediated 

H3K27me de-represses the target genes.  Together, we speculate that DRM and the 

MES-2/3/6 (PRC2) complex may function together to repress transcription of 

developmentally-regulated genes. Potentially, promoter-bound DRM (Figure 3-7, blue 

blob) may anchor the MES-2/3/6 to facilitate H3K27 methylation (green blob) on the 

same target genes (”DRM-repressed genes”, Figure 3-7). Furthermore, there is strong 

evidence on the antagonistic relationship between H3K36me and H3K27me. The 

repressive mark H3K27me exhibits self-propagating spreading along chromosomes, 

and therefore the activity of “anti-repressors” is needed to restrain repressive chromatin 

(Margueron et al., 2009). Curiously, recent work showed H3K36me and H3K27me do 

not co-exist on the same histones, and H3K36me antagonizes methylation of H3K27me 

(Yuan et al., 2011), suggesting H3K36me plays an “anti-repressive” role in restricting 

the distribution of H3K27me. At the other end of the spectrum, the loss of the X-

enriched mark H3K27me allows H3K36me to spread to the X chromosomes in 

C.elegans germline (Fong et al., 2002), indicating that H3K36me may also antagonize 

H3K27me. Taken together, both H3K36me and H3K27me may repel each other to 

maintain the proper balance between activating and repressive chromatin environments. 
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Considering these two links, we hypothesize that co-occupancy of DRM (at promoter) 

and PRC2 (downstream) may be necessary to repel MES-4-mediated H3K36me to 

maintain repressed states of target genes. Below we discuss this model in detail.  

Assuming the global repressor is the MES-2/3/6 (PRC2) complex, we propose a 

working model in Figure 3-7. In wild type (1): promoter-bound DRM (green blob) 

anchors H3K27me (blue blob) to repress some autosomal genes (“DRM-repressed 

genes”).The active autosomal genes ( “germline-expressed genes”) are decorated with 

the MES-4 mark H3K36me on their gene bodies (yellow blob). H3K36me and H3K27me 

are restricted to the corresponding gene sets by their intrinsic repelling nature. In 

contrast, the X chromosomes accumulate a higher concentration of H3K27me and 

undergo mild silencing. In DRM mutant (2):  without the anchoring effect of DRM, 

H3K27me is released from the DRM-repressed genes and spreads primarily to the X 

chromosomes. The vacancy on the DRM-repressed genes permits H3K36me to invade 

and de-repressed these genes. The excessive amount of H3K27me on X causes an 

enhancement of X-silencing. In mes-4 mutant (3): the absence of the MES-4 mark 

H3K36me on autosomal “germlien-expressed genes” permits H3K27me to spread from 

X, and cause down-regulation of ”germline-expressed genes”. Concurrently, X-linked 

genes lose some H3K27me and become de-silenced. In mes-4; lin-54 double mutant 

(4):  “DRM-repressed genes” release H3K27me, and the vacant “germline-expressed 

genes” absorb H3K27me either from “DRM-repressed genes” or from the X 

chromosomes. The X chromosomes gain some H3K27me from ”DRM-repressed genes” 

or lose some to “germline-expressed genes”, making the net H3K27me level close to 

wild type levels. Ultimately, X-linked and autosomal genes show wild type levels of gene 
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expression. In mes-2 mutant (5): although H3K27me is absent at ”DRM-repressed 

genes”, DRM still repels the spreading of H3K36me resulting in no change in ”DRM-

repressed gene expression). The loss of H3K27me, especially from X, allows the 

spreading of H3K36me to the X chromosomes and causes de-silencing of X-linked 

gene. In mes-2;lin-54 mutant (6): ”DRM-repressed genes” lack both H3K27me and 

DRM, thus this vacancy allows H3K36me to spread in cis (within autosomes), leading to 

up-regulation of “DRM-repressed genes”. H3K36me stays restricted on autosomes, 

because autosomal vacancy acts as quencher. In conclusion, we think that X 

chromosome silencing may come down to a genome-wide balance between H3K36me 

and H3K27me, and DRM may facilitate such balance.   

 

LIN-54 and MES-4 responsive X-linked genes  

It is reasonable to speculate that LIN-54 and MES-4 responsive X-linked genes have 

specific features that allow them to be bound and modulated by these two DNA 

associated proteins.  Thus far we have not identified any specific gene ontology 

associated with these genes as they are largely non-essential and ubiquitously 

expressed with diverse functions. Additionally, they are dispersed throughout X 

chromosomes, but not likely in the specialized regions such as the paring centers or the 

telomeres.  It is possible that these genes display special chromatin environments, such 

as an “open” landscape of promoter sequences or chromatin state, thereby making 

them highly sensitive to the concentration of the global repressor. From modeENCODE, 

genome-wide landscaping of various histone modifications and transcription factors are 
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available. By using this information, mapping of the chromatin environments around 

these genes may provide important insight on what is responsible for recruiting these 

proteins to their binding sites.      
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Figure 3-7. Summary and Model 

 



                                                                              CHAPTER III 
 

127 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-7. Summary and Model 

Cartoons illustrate predicted accumulation of DRM (at gene promoters, green blob), 
H3K27me (blue blob, downstream of promoters), and H3K36me (yellow blob, over coding 
regions).   Autosomal genes are represented on the left and X-linked genes on the right. 
Two types of autosomal gene sets are show: “DRM target genes” that are repressed by 
DRM and presumed to also be repressed by H3K27me and “germline-expressed genes” 
that are transcriptionally active and decorated with H3K36me in their coding regions (MES-
4 targets). (1) wild type: DRM anchors H3K27me to repress autosomal “DRM targets”, and 
MES-4 decorates autosomal “germline-expressed genes” with H3K36me for activation. X-
linked genes are enriched with H3K27me and undergo mild X chromosome silencing. (2) 
DRM mutant: H3K27me is released from “DRM target genes”” (idea based in part on Lee et 
al.) and spreads to X chromosomes, leading to the enhancement of X-silencing. The 
vacancy on “DRM targets” would allow H3K36me to invade, and thereby become de-
repressed. (3) mes-4 mutant: the loss of H3K36me on “germline-expressed genes” permits 
H3K27me, primarily from the X chromosomes, to invade and become repressed. 
Consequently, the dilution of H3K27me on X chromosome causes the de-silencing of X 
chromosomes. (4) mes-4; lin-54 double mutant: ”DRM targets” release H3K27me, and the 
vacant “germline-expressed genes” absorb H3K27me either from ”DRM targets” or from the 
X chromosomes. The X chromosomes gain some H3K27me from “DRM targets” or lose 
some to “germline-expressed genes”, making the net H3K27me level close to wild type 
levels. Ultimately, X-linked and autosomal genes show nearly wild type levels of gene 
expression. (5) mes-2 mutant: although H3K27me is absent at ”DRM target genes”, DRM 
still repels the spreading of H3K36me resulting in no change in ”DRM target gene 
expression. The loss of H3K27me, especially from X, allows the spreading of H3K36me to 
the X chromosomes and causes de-silencing of X-linked genes. (6) mes-2;lin-54 mutant: 
“DRM targets” lack both H3K27me and DRM, thus this vacancy allows H3K36me to spread 
in cis (within autosomes), leading to up-regulation of ”germline-expressed genes”. 
H3K36me stays restricted on autosomes, because autosomal vacancy acts as quencher.  
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Chapter III. Materials and Methods 

 

C. elegans strains and culture conditions 

 

All strains were cultured at 20oC unless otherwise noted, using standard methods (1974 

Brenner). The following strains were used: N2 (Bristol) as wild-type, lin-54(n3423)/nT1 

[qIS51], and lin-54(n2990)/nT1[qIS51] [Harrison06, Thomas, Tabuchi], VC1874 mes-

4(ok2326)V/nT1[qIs51](IV;V),SS268 dpy-11(e224)mes-4(bn23)unc-76(e911)V/nT1[unc-

?(n754) let-?](IV;V), JK2663 dpy-11(e224) mes-4(bn67) V/nT1[unc-?(n754) let-? 

qIs50](IV;V), SS186 mes-2(bn11) unc-4(e120)/mnC1 dpy-10e128() unc-52(e444)II, 

SS836 mes-4(bn73)/DnT1, mes-3(bn35)/hT2, SS360 mes-6(bn66) dpy-

20(e1282)IV/nT1[unc-?(n754) let-?](IV; V), PK125 tra-2(e2531) II, RB868 xnd-1(ok708), 

RB869 xnd-1(ok709), XA6227 mrg-1(tm1227)/qC1 dpy-19(e1259) glp-1(q339)[qIs26] III. 

EL391 ego-1(om84) unc-29(e193)/hT2 [dpy-18(h662)] I; +/hT2 [bli-4(e937)] III, KMW1 

rha-1(tm329) II, DR1410 dpy-27(y56)/qC1 dpy-19(e1259) glp-1(q339) III, TY1936 dpy-

30(y228) V/nT1 [unc-?(n754) let-?](IV; V), VC3150 ekl-1(ok1197) I/hT2 [bli-4(e937) let-

?(q782) qIs48](I;III). 

 

NOTE: mes-4(bn23) mutation occurs at the 3’ end of intron 7, changing the splice 

acceptor dinuleotides (AG3130AA) essential for the splicing between exon 7 and exon 

8.  Coincidently, the next nucleotide (first nucleotide in exon 8) is G, thus bn23 creates 

de novo false splice site, AA3130G. This causes the removal of the first nucleotide of 

exon 8, and gives a rise to a nucleotide excision and a flame shift in the protein. The 

unstable mRNA and/or proteins are expected. 
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Phenotypic Analysis of XO Animals  

XO males: Homozygous lin-54(n2990, M-Z-) males were created by crossing the 

homozygous lin-54(n2990, M+Z-) hermaphrodites with heterozygous lin-54(n2990)/nT1 

males. The expected ratio of heterozygous hermaphrodites: heterozygous males: 

homozygous hermaphrodites: homozygous males is 1:1:1:1. XO females: The 

homozygous tra-2(e2531) hermaphrodites were mated with wild type males on IPTG + 

ampicillin mating plates, seeded with RNAi feeding clones (empty vector and lin-54 

clone from Ahringer library). The tra-2(e2531)/+ heterozygous cross-progeny (XX 

hermaphrodites and XO pseudo-females) depleted with empty vector or lin-54 was 

examined. The pictures of worms were taken at 24-48 hours after L4 stages with the 

microscope at Ceol laboratory. To immobilize worms, worms were mounted on the agar 

plates speeded with 100mM levamisole. The body length of worms were measured by 

Image J (n=27, two independent experiments).    

Antibody and Immunofluorescence 

Germlines were fixed and stained with antibodies essentially as described in (Tabuchi et 

al., 2011). Primary antibodies to DRM subunits were described and validated in (Ceol 

and Horvitz, 2001; Harrison et al., 2006; Page et al., 2001; Tabuchi et al., 2011). The 

commercially available antibodies against modified histones used in this study as follow: 

H3K4me1 (Upstate), H3K4me2 (#07-030, Cell Signaling #9725), H3K4me3(Abcam 

#8580-100), H3K9me2(Update #07-212, Cell Signaling #9753), H3K9me3(Abcam 

#8898), H3K27me3(Lake Pacid Biologicals #AM0174), H3K36me2(Cell Signaling 
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#9758),  H4K5Ac(Serotec AHP414), H4K8Ac(Serotec AHP415), H4K12Ac(Serotec 

AHP416), H4K16Ac(Abcam), H4hyperAc(Milpore #06-866). Images were acquired as 

described in (Csankovszki et al., 2009; Tabuchi et al., 2011). 

 

 

The probe preparation and microarray analysis  

Total RNA was isolated from the 50 ~70 dissected gonads from wild type, lin-54(n3423), 

and mes-4(ok2326, M+Z-), and lin-54(n3423);mes-4(ok2326) (M+Z-) mutants as 

described in Chapter II. Total RNA was straightly labeled with biotinated UTP (without a 

linear amplification step) using MessageAmp II aRNA Amplification Kit (Ambion). Probe-

preparation, hybridization, and scanning for DNA microarray were performed at the 

Genomics Core facility at University of Massachusetts Medical School. Fluorescence-

labeled cDNA probes were prepared using the One-Cycle kit (Affymetrix) and the Enzo 

HighYield RNA Transcript Labeling Kit(Enzo) for embryo, and the 3' IVT Express Kit 

(Affymetrix) for germline. cDNA probes of three replicates were hybridized to GeneChip 

C. elegans genome arrays (Affymetrix). 
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Supplemental Figure 3-1 

 Comparison of genes mis-regulated in the lin-54(n3423) mutant and in the 

mes-4(bn23) mutant [dpy-11(e224) mes-4(bn23) unc-76(e911)] 
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Supplemental Figure 3-2. Comparison of LIN-54 responsive genes 

identified in the previous study (chapter II) and this study.  

Overlap of up-regulated genes (A) and down-regulated genes (B) in lin-54(n3423) 

vs. wild type in the previous study (green) and this work (purple). (C) The overlap 

of LIN-54 responsive genes (this study) with LIN-54 bound genes (LIN-54 ChIP-

chip data from chapter II). A different probe preparation method was used in this 

set of Microarray analysis (see materials and methods). 
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Supplemental Table 3-1  
mes-4 mutation alleles used in this study 
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Supplemental Table 3-2.  

Summary of the phenotypes and histone modification changes in lin-54(n3423), 

mes-2(bn11) or mes-4(ok2326, bn23) single mutants, and the lin-54(n3423); 

mes-2(bn11) or mes-4(ok2326, bn23) double mutants.  Complete genotypes of 

the strains used: lin-54(n3423)/nT1 [qIS51];VC1874:mes-4(ok2326) 

V/nT1[qIs51](IV;V); SS268: dpy-11(e224) mes-4(bn23) unc-76(e911)V/nT1[unc-

?(n754) let-?](IV;V); SS186: mes-2(bn11) unc-4(e120)/mnC1 dpy-10e128() unc-

52(e444)II. 

 
 



                                                                              CHAPTER III 
 

136 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 3-3 

The numbers of genes that significantly changed their 
expression in the listed mutants. (fold change >1.5, P-value <0.01). The 

numbers in parentheses represent the % of responsive genes per each 
chromosome. The strains used this study: the lin-54(n3423) single mutant, the 
mes-4(ok2326) single mutant, and the lin-54(n3423);mes-4(ok2326) double 
mutant. 
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Supplemental Table 3-4 

The list of “LIN-54 and MES-4 

responsive genes”: The 38 X-linked 

genes and 16 autosomal genes that 

significantly changed expression in 

comparisons between lin-54 and 

mes-4 single or double mutations 

(the genes in the Venn diagram 

intersections of Figure 3-2C and G, 

and in Figure 3-2D and H.) 
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Chapter IV: Perspectives and open 

questions  
 

 

Spatiotemporal coordination of gene expression is essential for multi-cellular organisms 

to properly divide and differentiate during developmental processes. Such intricate gene 

expression is orchestrated by the concerted actions of transcription factors and 

chromatin-acting proteins. Chapters II and III elucidate novel functions of the C.elegans 

transcription factor LIN-54, which acts within the context of the multi-protein DRM 

complex. Our data demonstrated the significance of LIN-54 DNA binding activity for the 

proper functions of the DRM complex in regulating genes involved in cell cycle, 

reproduction, and development. Further, we found the DRM complex controls distinct 

sets of targets and its regulatory activities differ in soma and germline. The discovery 

that DRM is involved in an autosome-biased gene regulatory network shows possible 

co-evolution of germline-expressed genes and their regulatory networks. Lastly, we 

demonstrated a novel role of LIN-54(DRM) in hermaphrodite X silencing, which is 

coordinately antagonized by histone modifying MES proteins. This work defined a novel 

chromosome-specific aspect of DRM-mediated regulation and extended our knowledge 

on the conserved role DRM plays in development.    

 

Below I discuss the broader implications of our findings, and comment on future 

perspective on DRM regulatory networks and X chromosome biology. 
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DREAM regulates the distinct sets of genes involved in development 

and cell cycle 
 

Works presented in this study and in others suggest DREAM complex regulates many 

genes involved in development and cellular differentiation, in addition to cell cycle genes. 

In particular, our decision to use the intact animals undergoing active developmental 

processes permits us to reveal many DREAM regulatory target genes involved in a wide 

range of developmental processes. This confirms the notion that DREAM plays two 

distinct roles in 1) cell cycle-dependent regulation of cell division genes, and 2) cell 

cycle-independent regulation of developmental genes. The mechanism by which 

DREAM regulates two distinct transcriptional programs is poorly understood. However, 

this study of DREAM and its interplay with the chromatin-modifying proteins (MES 

proteins) expanded our knowledge on how transcription factors and chromatin-modifiers 

work together to mediate the global chromosome-wide gene regulation during 

development and cell cycle. Further, studies have implicated DREAM in epigenetic 

gene regulation and have suggested DREAM may cooperate with histone modifying 

proteins (Wen et al., 2008). Thus, coordinated action between DRM and histone-

modifying proteins in regulating developmental genes appears to be a likely regulatory 

mechanism, and future studies will address this important question.  

We note that tesmin/CXC domains like those in LIN-54 are also present in 

proteins with roles in epigenetic gene regulation, especially X chromosome dosage 

compensation. The MES-2 protein described above has a tesmin/CXC domain 

(Holdeman et al., 1998), as does its mammalian ortholog E(z)h2, which in females is 

recruited to the inactive X during dosage compensation (Payer and Lee, 2008). In D. 
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melanogaster, where dosage compensation occurs by up-regulating the single male X, 

DNA binding activity of the tesmin/CXC domain in MSL2 is required to recruit the 

dosage compensation complex to the male X (Fauth et al., 2010) An epigenetic 

silencing phenomenon in maize called paramutation also requires a tesmin/CXC 

domain protein (Brzeska et al., 2010). It not clear what feature of the tesmin/CXC DNA 

binding module may make it suited to distinguish X chromosomes from autosomes and 

to participate in epigenetic regulation. Perhaps tesmin domains preferentially bind 

chromatin with particular histone modifications or provide a platform for recruitment of 

proteins with histone modifying activities. In summary, the ability for DRM to recognize 

target DNA could be influenced by epigenetic chromatin features and also DRM may 

cooperate with histone modifiers and play an epigenetic role in regulating gene 

expression. 

Additional regulatory layers on LIN-54(DRM)-mediated gene 

regulation  

 

LIN-54 exhibits context-dependent binding throughout the cell cycle and within specific 

developmental stages. For example, LIN-54 proteins dissociate from meiotic 

chromosomes as they progress into the diplotene and diakinesis stages, and from 

mitotic chromosomes. This suggests that the DNA-binding motif alone is not sufficient to 

recruit LIN-54, and that the ability of LIN-54 to bind DNA is tightly regulated, especially 

during the cell cycle. This raises an interesting question: how is the DNA-binding activity 

of LIN-54 regulated?  
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One possible mechanism for LIN-54 regulation is cell cycle-dependent post-

translational modification of LIN-54 proteins, such as phosphorylation. The C.elegans 

LIN-54 protein sequence shows several possible phosphorylation sites, and 

phosphorylated hLIN-54 and other DREAM components were identified in human 

through proteomic analysis (Litovchick et al., 2011). Furthermore, the phosphorylation of 

the hDREAM component LIN-52 was shown to be essential for the assembly of the 

DREAM complex (Litovchick et al., 2011). Thus, we consider that the similar regulatory 

mechanism may apply to LIN-54 protein, and that the ability of LIN-54 to bind DNA or to 

form a sub-complex could be modulated by cell cycle or developmental stage-specific 

phosphorylation events. 

A second possibility is that the DNA-binding activity of LIN-54 is influenced by 

other DNA-binding proteins. In chapter II, we discovered the DRME2F/DP-LIN-54 

binding motif, implicating that LIN-54 functions together with E2F to recruit DRM to 

target DNA. However, genomic studies in D. melanogaster identified many additional 

genomic regions that are bound by LIN-54 but not E2F (Georlette et al., 2007). Thus, it 

raises a possibility that LIN-54 may function alone or in combination with other DNA-

binding protein(s). In the latter scenario, the availability of other DNA-binding protein(s) 

might contribute to the temporal and special binding pattern of LIN-54 at these genomic 

loci. This cooperative mechanism seems plausible when considering that “the MuvB 

core” swaps DNA-binding moieties from E2F/DP to Myb to alter target genes and its 

regulatory activities (activator vs. repressor) in human (Litovchick et al., 2011; Litovchick 

et al., 2007; Schmit et al., 2007). In C.elegans the counter-part for Myb has not yet been 

identified, although at least 11 myb-domain containing proteins are present within the 
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genome (www.pfam.com). In addition, C.elegans contains an E2F-like protein 2 (EFL-2), 

which is expressed in the germline. Thus, any of these proteins could act as potential 

LIN-54 interacting partners, and future proteomic studies will help to identify such 

partners.    

Third, the ability of LIN-54(DRM) to efficiently recognize and associate with target 

loci could be influenced by local chromatin environments (e.g histone modifications).  

Indeed, we observed that DRM failed to associate with DNA in mes-4 mutant (m-z-) 

germlines. Considering MES-4 plays an epigenetic role transmitting the memory of 

germline expression (Rechtsteiner et al., 2010), our interpretation for this result was that 

the DRM complex failed to recognize germline chromatin lacking underling epigenetic 

marks. Thus, we consider DRM may respond to chromatin states by interacting with a 

protein capable of “reading” epigenetic landmarks. One such candidate could be the 

malignant brain tumor (MBT)-repeat containing protein LIN-61, which preferentially 

binds to modified histones H3K9me2/3 in C.elegans (Koester-Eiserfunke and Fischle, 

2011). LIN-61 is a sub-stoichiometric component of C.elegans DRM, and the fly 

homologue L(3)MBT is a part of the MMB complex (Harrison et al., 2006; Lewis et al., 

2004). Moreover, in the C.elegans germline, LIN-61 shares the same autosome-biased 

localization pattern as DRM (data not shown). The hypothesis that DRM cooperates 

with LIN-61 to “read” chromatin states could be tested by monitoring the change in the 

enrichment of DRM at specific gene promoters upon the loss of LIN-61. 
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The E2F/DP-LIN-54 binding motif, and the effect of chromatin 

environments  

 

Analysis of C. elegans promoters bound by LIN-54 identified an over-represented motif 

that we presume to represent an E2F/DP-LIN-54 binding site. This motif is similar to one 

of the eight over-represented motifs found in fly dDREAM-bound promoters (Georlette 

et al., 2007). In humans, this motif resembles two tandem cis-regulatory elements 

prevalently found in cell cycle-related gene promoters: the cell cycle-dependent element 

(CDE) and the cell cycle genes homology region (CHR) (CDE/CHR elements) (Muller 

and Engeland, 2010). CDE is known as a variant E2F-binding site, while the CHR-

binding proteins(s) have been unidentified until very recently when an in vitro study 

showed that the tesmin domains of human hLin54 bind to the CHR sequence at the 

Cdc2 promoter. Taken together, we tentatively conclude that the C.elegans DRM motif 

we identified is likely to represent the combined E2F and LIN-54 binding sites, and is 

evolutionarily conserved among worms, flies, and humans.   

Is the DRM motif necessary and sufficient to recruit DRM complex in worms? 

The functional necessity of the motif to recruit the DRM complex and control gene 

expression could be addressed by a combination of both in vitro and in vivo assays. A 

gel shift assay could address the sequence-specific recognition and the affinity of LIN-

54 or E2F proteins to this motif in vitro. Complementarily, the use of wild type and 

mutated transgene reporters could determine the in vivo necessity of the motif.  

Furthermore, the sufficiency of the motif can be explored by determining the 

effect of the X-chromatin environment on the DRM recruitment. By trans-locating the 

autosomal DRM binding targets (i.e. the motif-bearing promoter and gene body) to X 
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chromosomes, we could ask if this promoter is sufficient to recruit DRM to the X 

chromosome. For example, autosomal gene egg-2 and san-1 are the best candidates to 

study this question. Both genes contain LIN-54 ChIP-peaks and the DRM-binding motif 

at their promoters and their expression significantly changes in the absence of LIN-54 

(egg-2 expression decreases, while san-1 expression increases in the lin-54 mutant). 

By placing egg-2 or san-1 on the X chromosome via a transposon-mediated method, we 

could monitor if the promoter of these genes newly acquires LIN-54 ChIP peaks, and 

importantly how these genes change expression in the absence of LIN-54.  Do both 

genes maintain the original autosomal gene expression patterns? (i.e. egg-2 expression 

decreases, while san-1 expression increase)? Or, do both genes adapt to the X 

chromatin environments, and follow the X chromosome specific trend (both egg-2 and 

san-1 expression decrease in lin-54 mutant)? This experiment will address the 

sufficiency of the DRM-binding motif, and in addition will determine whether the 

promoter sequences or the promoter-associated local chromatin environments would 

take precedence over the global chromosome-wide effects imposed on the X 

chromosome. 

 

How does MES-4 recognize autosomes?  

 

Cytology showed that the MES-4 protein is enriched on autosomes in germline and 

early embryos, and unlike the canonical yeast Set2-family H3K36methytransferase 

(C.elegans MET-1), MES-4 binding to autosomes is independent of RNA Polymerase II 

(Bender et al., 2006; Rechtsteiner et al., 2010).  A recent MES-4 ChIP-chip study 
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performed in embryos suggested that MES-4 and its mark H3K36me2/3 are enriched 

over the coding regions of genes that are predominantly expressed in the maternal 

germ line, and not necessarily the genes expressed in the embryonic tissue examined. 

Therefore, the proposed function of MES-4 in soma is to epigenetically transmit the 

memory of a previous germline expression program to the next generation. This would 

suggest autosome-enriched localization of MES-4 in germline is likely to reflect 

autosome-biased localization of germline-expressed genes. 

How MES-4 specifically recognizes the germline-expressed genes is still not 

completely understood.   MES-4 is less likely to recognize specific DNA elements, since 

MES-4 localization is influenced by the different states of chromatin, rather than the 

DNA sequences. This was demonstrated   using transgenes identical in their sequences, 

but different in copy number (i.e. chromatin states). In this experiment, MES-4 

associated with a complex of transgenes (“expressed” open transgenes with a few copy 

numbers), but not with repetitive transgenes (“silenced” closed transgenes with many 

copy number) (Fong et al.). It was reasoned that MES-4 is likely to be recruited to the 

DNA by responding to epigenetic marks on the target genes through its plant 

homeodomain (PHD) fingers, which recognize modified histones like its own mark 

H3K36me, rather than the chromatin conformation itself. Another possibility is that MES-

4 may associate with another autosome-enriched protein, MRG-1, which is known to 

associate with H3K36me2 in fungi (Keogh et al., 2005).  A telling experiment will be to 

temporarily induce expression of a gene in germline (e.g. by using a heat-shock 

promoter), and ask if MES-4 becomes enriched at this gene promoter in the embryos. 
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This would address whether MES-4 can recognize a temporarily activated gene in 

germline without the underlying epigenetic marks from the previous generation.   

The model for the DRM vs. MES proteins antagonisms, and the future 

approach to identify “R” 

 

In this study we placed DRM as an important player in the regulation of germline X 

chromosome gene expression. We showed that its action on X chromosomes is 

antagonistic to MES proteins, which were previously established as X chromosomes 

regulators. Such antagonistic interplay may ensure the proper amount and level of X-

linked genes are being expressed, and hence DRM and MES-4 are essential 

components for maintaining the proper dosage of X-linked gene products in the 

germline. 

An underlining molecular mechanism by which autosome-enriched DRM and 

MES-4 proteins act at a distance to control X-linked genes remains unknown.   Since 

we suspect the involvement of the MES-2/3/6 (PRC2) complex, we considered a model 

(Chapter III, Figure 2-7) in which DRM normally anchors H3K27me, and therefore a 

disruption of DRM causes a re-distribution of both H3K27me, a repressing genome 

mark, and H3K36me, an activating genome mark.  A second possibility is that both 

DRM and MES proteins influence the distribution of a different repressor “R” but in 

opposite directions. In DRM mutants, the “R” would concentrate more on X 

chromosomes, causing the enhancement of X chromosome silencing, where as in mes-

4 mutants, “R” would be re-distributed toward autosomes, causing de-silencing of X 

chromosomes.  



                                                                              CHAPTER IV 
 

147 
 

We hereby propose an effective approach to find novel regulators involved in 

hermaphrodite X silencing and/or the global regulator “R” by using genetic predictions 

and RNAi or genetic screens. If the concentration of “R” dictates X-linked gene 

expression, we predict the depletion or mutation of “R” would compromise the X 

chromosome silencing effect imposed by the lin-54 mutation, and reciprocally it would 

abolish the X chromosome de-silencing effect of the mes-4 mutation. Hence, the use of 

a good phenotypic read-out or a reporter for X-linked gene expression will allow us to 

conduct RNAi/genetic screens to identify “R”. 

 We conducted a pilot scale RNAi screen of factors based on their identifies and 

reported genetic interactions (the majority are synMuv B or synMuv suppressor class 

chromatin factors, Table 4-1). Here we used lin-54 sterility as a phenotypic read-out. We 

reasoned that a high concentration of “R” on the X chromosomes would cause 

enhanced X-silencing and subsequently the sterility of the lin-54 mutant animals, and 

therefore, the removal of “R” would alleviate lin-54 sterility. After each candidate was 

depleted by RNAi in the lin-54 mutant background, our preliminary data found that the 

depletion of hpl-2 transcript causes mild suppression in lin-54 sterility. HPL-2 is the 

heterochromatin protein 1 (HP1) homologue in C.elegans, and in other organisms HP1 

mediates gene silencing by binding to heterochromatic histone modification H3K9me. 

Therefore, HPL-2 is an intriguing possibility, and certainly follow up studies and a large 

scale RNAi screen are planned. We are mindful that using sterility may not be the best 

phenotypic read-out, since the lin-54;mes-4 double mutants showed a confusing allele 

specificity in the suppression of the sterility (Table 3-1). Thus, construction of a GFP 

reporter fused with “LIN-54 & MES-4 responsive genes (Chapter III)” may serve as a 
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better tool.  This GFP reporter and a large scale RNAi screen will likely produce 

promising results and allow us to resolve this mysterious phenomenon. In addition, a 

thorough screen in the future could help to identify additional players involved in 

germline X chromosomes gene regulation. More broadly, such follow up screen and 

study could help to elucidate how conserved transcription factors and chromatin 

modifiers interact to govern developmental gene regulation. 

 

Why are the hermaphrodite X chromosomes silenced?  

 

An especially confounding question is why both X chromosomes in hermaphrodite 

germline are repressed? It appears this method of reducing gene expression is 

independent of the MSCI process, because the two X chromosomes properly pair and 

recombine during meiosis. Given hermaphroditic nematodes conduct spermatogenesis 

at the last larvae stage, hermaphrodite X silencing could be reminiscent of having a 

male germline program. However, this possibility was also excluded by showing 

gonochoristic nematode species (nematodes with designated female and male) similarly 

represses the two X chromosomes in female germline. In another theory, the two X 

chromosomes are thought to be repressed because transcriptionally active X 

chromosomes would impair processes essential for the integrity of germ cells, such as 

meiotic crossovers or double-strand break repairs (Kelly 2002). 

An alternative theory sees this phenomenon as a germline form of dosage 

compensation. Dosage compensation is a process to equalize X-linked gene products 

between the two sexes. If the X chromosome is only silenced in the male germline via 
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MSCI-related mechanism, then the X-linked gene products between the germ lines of 

the two sexes would be imbalanced. To compensate for such an imbalance, nematode 

species might have evolved complementary X-silencing mechanisms in hermaphrodites 

or females. Indeed, despite the fact that the X chromosome is under-represented for 

genes specifically required for germline processes, many ubiquitously expressed house-

keeping genes are still located on the X chromosome and expressed in germline. 

Therefore, this theory sounds plausible. Another related hypothesis is that keeping the 

X chromosome repressed may help to establish the proper ratio of autosome vs. X-

linked gene dosage in germline. The skewed X:A ratio may lead to detrimental effects in 

C.elegans germline integrity, and thus the maintenance of the proper ratio may need to 

be maintained by the interplay of DRM complex and MES proteins. The exact biological 

consequences of having imbalanced germline X:A ratio is still under investigation. A 

more important question is whether hermaphrodite X-silencing (female X-silencing in 

other organisms) is evolutionarily conserved in other organisms. So far no evidence for 

such X-silencing in female germline is reported in any systems except for nematodes. If 

such is indeed the case, then why have only nematodes evolved such a specialized X 

silencing system? Alternatively, it is still possible that the studies have not thoroughly 

investigated this phenomenon, and maybe such female silencing may exist in other 

systems.  
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The Broader Implication of This Study  

 

In this study, we found the antagonistic interplay between DRM and MES-4 in regulating 

X-linked genes and some autosomal genes in the germline. We suspect such 

antagonistic interplay may ensure a proper balance of an X-linked vs. autosomal gene 

expression ratio in C.elegans germlines. In broader sense, such “balance between X vs. 

A” may essentially mean the “balance of chromatin marks” in the genome and therefore 

gene expression, governed by methyltransferases. In conclusion, the interplay among 

DREAM, MES-4, and MES-2/3/6 PRC2 complex in hermaphrodite X silencing concerns 

maintaining the repressive and active chromatin environments in certain domains on 

chromosomes. If such is the case, then we also suspect the similar interplay in higher 

eukaryotes.    

Like DREAM, MES proteins are conserved in higher eukaryotes and play pivotal 

roles in development and cell cycle gene regulation. For example, in flies the PRC2 

complex maintains repression of developmentally regulated homeotic genes (Moss and 

Wallrath, 2007). In mammals, the MES-2 homologue EZH2 ensures proper embryo 

differentiation and stem cell maintenance (Moss and Wallrath, 2007). Additionally, like 

DREAM, the activities of the PRC2 complex and MES-4 homologue NSD1 are altered 

or disrupted in many cancer cells (Morishita and di Luccio, 2011; Moss and Wallrath, 

2007; Rayasam et al., 2003). Although the link between DREAM and MES-4 homologue 

NSD1 is not clear at present, lines of evidence suggests a strong connection between 

DREAM and PRC2 complex in higher eukaryotes. For example, in flies the DREAM 

components LIN-53/CAF1 (RbAp48) share subunits with the PRC2 complex. In flies and 

mammal, MES-2 homologue E(Z) and EZH2 physically interacts with pRb-family protein, 
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respectively (Lee et al., 2010; Tonini et al., 2004). Further, the repression of DREAM 

target genes requires the activity of the PRC2 complex members (Lee et al., 2010; 

Tonini et al., 2004). Thus, it is intriguing to think if the similar antagonistic interplay 

between DREAM and MES homologues is conserved in human. 

  

 

Table 4-1  
List of candidate genes used in the small scale RNAi screen for a global 

repressor “R” 

 

genetic interactions

cfpl-1 synMuv Suppressor 

ekl-4 synMuv Suppressor 

hda2 HDAC

hpl-2 synMuv B 

htz-1 synMuv Suppressor 

isw-1 synMuv Suppressor, interact with MES-4

lin-53 synMuv B, DRM, NuRD complex member

lin-59 SET domain (HMT)

lss-4 synMuv Suppressor, ISW/SNF

mrg-1 synMuv Suppressor

mys-1 synMuv C, Tip60, NuA4 

mys-4 HAT

psa-4  ISW/SNF

set-2 SET domain(HMT) , 1 generation early sterility (Xu)

sin-3 synMuv Suppressor

trr-1 synMuv C, Tip60, NuA4 

zk1127.3 synMuv Suppressor

psa-1  ISW/SNF

xnp-1  ISW/SNF

hda1 HDAC

hcp-6 condensin II 

mix-1 condensin (I, Idc, II)

mes-3 MES-2/3/6 complex (PRC2)

mes-2 MES-2/3/6 complex (PRC2)

mes-6 MES-2/3/6 complex (PRC2)

Empty Vector negative control 

lin-54 positive control 

mes-4 positive control 
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