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ABSTRCT

The Hedgehog (Hb) famiy of protein ar secrete growt factors that play an

esential role in the embryonic development of all organsms and the man components in

the pathway are conserved from insects to humas. These protein affect patrng an

morphogenesis of multiple tissues. Therefore, mutaons in the Hh paway can result in

a wide rage of developmenta defects and oncogenic diseaes. Because the mai

compnents in the pathway ar conserved from insects to human, Drosophila has ben

shown to provide a geneticay trctable system to gain insight into the processes that Hb

is involved in.

In this study, the roles of Hb cholesterol modification and endocytosis during

grdient formation are explored in the Drosophila laral wing imaginal disc. To exclude

the possibilty of lookig at a redstrbution of preexiting Hb inste of Hb movement, a

spatially and temporaly regulated system has ben develope to induce Hb expression.

Functional Hh-GFP with and without the cholesterol-modcation was expressed in a

wild-typ or skitsJ endocytosis mutat backgrund. The Gal80 system was used to

temporaly express (pulse) the Hb-GFP trnsgenes to look at the rate of Hh grient

formation over tie and determne whether th process was affected by cholesterol

modification and/or endocytsis.

Hh with and without cholesterol were both largely deteted in punctae strctus

and the spreing of the different forms of Hh was quantified by meauring distaces of



these parcles from the expressing cells. Hh without cholesterol showed a greater rage

of distrbution, but a lower percentage of paricles nea the source. Loss of endocytosis

blocked formation of intrcellular Hh parcles, but did not draticaly alter its

movement to taget cells. Stang for Hh, its recptor Ptc and cortical actin reveaed that

these punctae strctures could be clasified into four typs of Hh contaning parcles:

cytoplasmic with and without Ptc, and cell surace with and without Pt. Cholesterol is

specificaly required for the formtion of cytoplasmic paricles lackig Ptc. While

previous studies have shown discrepancies in the localization of Hh following a block in

endocytosis, Hh with and without cholesterol is detected at both apical and basolatera

surfaces, but not at basal suracs. In the absence of cholesterol and endocytosis, Hh

paricles can be observed in the extracllular space.

Through three-dimensional reconstrction and quantitative analysis, this study

concludes that the cholesterol modification is required to restrict Hh movement.

adition, the cholesterol modficaon promotes Pt-independent internalzation. Ths

study also observes that Dynamn-depndent endocytsis is necessar for internalon

but does not play an essential role in Hh distrbution. The data in ths thesis support the

model in which Hh movement occur via planar diffsion.
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Introducton

Durng development, groups of cells that ar originially homogeneous

diferentiat into cells with dierent cell fates resulting in patern or strctures.

Morphogens, or "fonn producing" substaces, were believed to be the factors that could

account for morphogenesis (Turig, 1952). Morphogens are defmed by the ability to

travel may cells away from the source, and to directly signal to cells in a concentration

dependent maer, resulting in different cell fats depending on loc concentrtions

(Figure 1.1; Tabata and Takei, 200). Severa secreted protein, such as the Wnt,

Trasformng Growth Factor p, and Hedgehog family members have been proposed to be

morphogens. Thus as a morphogen, Hedgehog (Hh) would elicit a concentration

dependent response in the target cells leading to different cells fates.

Diferent Cell Fates

Figure 1.1 - Morphogens

Morphogens are molecules that signal directly to taget cells, inducing cells to

differentiate with different fates concentrion dependent maer.



Db and human disea

One reason for the intense study of Hh is due to its role in human disease. Hh

patway disruption has ben associate with severa human developmental disorders and

cacers (Murone et al. , 1999). One specific developmental diseae is holoprosencephalY

(HPE- "smooth bran

). 

Sonic Hedgehog (SHH) loss of function or Patched (PTC; the

SHH receptor) ga of function (loss of SHH signalng) ha been found in HPE patients.

In HPE, the embryonic forebran does not develop normlly in the two hemispheres.

This developmental disease can cause severe brai malormtions usually leaing to

dea before bir, and less severe maormtions such as mild facial defects. One severe

facial defect is cyclopia, the development of a single eye. Interestingly, a link was

discovered between sheep born with cyclopia and their mothers ingesting a compound

cyclopamine. that was later found to inhibit Shh signaling (Rodenburg and Van der

Horst , 2005).

Hh patway mutaions have also ben linked to may types of cancers. PTC loss

of heterozygosity is the priar cause of Gorlin ' s syndrome, or nevoid basal cell

cacinoma Patients with Gorlin s syndrme have a predisposition parcularly to bas

cell cacinomas and meduUablastomas. Sporadic bas cell cainoma have an

upregulation of HH signaling as well, that is most freuently due to inactivation of PTC

but also attrbutable to SMO (a positive regulator of the HH pathway) activation.

Medullablastomas ar the most common malignant pediatrc brain tumor, and can most

commonly be found with PTC loss of heterozygosity that results in inpropriate HH

activity. Interestingly, tumors with activat HH signalng alo have increaed levels of



. .

genes involved in cell proliferation, including N-myc, C-myc, CyclinDl and CyclinD2

(Dellovade et al., 200).

The activation of the HH signalg pathways in several cacers have led to the

seah for molecules with therapeutic effects (DeUovade et al., 2006). In paricular

severa small molecules have been identified that are able to reduce the siz of HH-based

tumors. Using xenogrs of medullablastomas or mouse models that have these tumors

the natal molecules cyclopane and jervine as well as the synthetic Hhta-691 ar

able to reduce and occasionally elimate these tumor cells. Subseuent studies later

found that these smal molecules interfere with HH signalg at the SMO level. causing

inactivation of SMO and preventing constitutive HH signaling (Dellovade et al" 2006).

Becse these sma molecules do not appear to afect other pathways, they have

potential as therapeutic agents for HH-based diseaes.

Drosophi embryonic development

Drosophila embryos consist of segments that have alternating regions of naed

cuticle and denticle (hai) belts. Patterng of the embryo into these segments is the

result of a series of activities of varous classes of genes thoughout oogenesis and

embryogenesis (Akam, 1987; Gilbert 200). The initial activities in the embryo ar due

to materal effect genes. This maternaly produced RNA is deposited into the oocyte by

the mother and trslation into proteins occurs afer the oocyt is fertilied These

matern effect gene products act as trscription factors, post-trscriptional regulatrs

and/or signalg molecules during oogenesis and the ealy staes of embryogenesis.



They then activate or repress the gap genes. which are transcription factors that function

durig the syncytial blastoderm and cellulartion staes of embryo development,

dividing the embryo into broad regions. Ga gene products subsequently activate the

pai-rule genes, which encode trscription factors that are active from the blastoder

cellularzation stae though gastrlation. Finaly, the pai-rule genes regulate the

expression of the segment polarty genes. Segment polarty genes consist of tranription

factors and signalg molecules tht act later in embryonic development stag durig

gastrlation up until the laral stages. This activity completes the patterning of the

embryonic segments (Akam 1987; Gilbert 200).

Drosophila hedgehog

Drosophila hh was first discovered in 1980, in a large screen for genes affecting

the development and segmental patterning of the Drosophila embryo. This screen

conducte by Chrstiane Nusslein-Volhd and Erc Wieschaus. identified 15 genes

involved in patterning segments in Drosophila embryos. These genes were classified

into three groups based on their mutat segment patrning phenotypes: gap genes, pai-

rule genes, and segment polarty genes. hh was classified as a segment polarty gene

since every segment in the embryo was afected in the mutat (Nusslein- V olhard and

Wieschaus, 1980).

The hh gene was furter characterize with the identification and analysis of

different hh mutat alleles. Mutat hh embryos had only 40% the length of a wild-typ

embryo, resultig from the loss of the naked cuticle sections of each segment and



producing a "lawn of denticles" phenotype (Figure 1.2). Mosaic analysis of the adult

cuticle found that hh mutat clones in anterior comparments had little effect. However

posterior hh mutat clones had a nonautonomous effect, disrupting proper speificaton

of anterior comparment cells that were not mutat for hh. These posterior hh mutat

clones were adjacent to wild-typ cells with cuticle defects, consistent with

domineerig" nonautonomy, meang that mutat clones fit reult in inappropriate

behavior within the clone (i.e. a gene is mutated), and subsequently affects neighboring

cells (Le. consequences from the muta gene). Ths implied that there was either a

failed cacad of processes that began withn the mutat clone, or the defective clone

normaly produce a diffusible molecule that was necssar for proper signalng in the

adjacent tissue, such as a morphogen (Mohler, 1988).



Figure 1.2 - Ventral cuticula pattern of Drosophil melaogaster embryos from

wid-type and homozygous hh mutant Dies.

Wild-tye embryo cuticles are patterned into alternatg bands of naked cuticle and

denticles (hairs). hh mutat embryos have only 40% the lengt of wild-type and are

deleted for the naked cuticle porton of the segment patern, and have only denticle

resulting in the "lawn of denticles" phenoty. Ths "lawn of denticles" phenotype

resembled the hedgehog anmal, resulting in the gene being named 
hh (Nusslein- V olhard

and Weischaus, 1980).



The hh gene

The location of the hh gene was mape based on hh mutats that were associated

with reaangement breaoints, such as inversions and deletions (Mohler and Vani

1992) and. also based on the locaton of an enhancer trap insertion thought to be 

(Tabata et al., 1992). Subsequently, embryonic cDNA libraes were screened and the 

cDNA was isolated. Sequence analysis found hydrophobic sequences at the amo

termus (amno acids 63-81) flaned by basic hydrophilic sequences, which is typical of

transmembrae domais (Mohler and Van, 1992; Tabat et al. , 1992).

Vertbrate homologues were subseuently identifed in zebrah, chick, and

mouse. Unlike Drosophila several hh genes were found in vertbratmams: Sonic

Hedgehog (Shh), India Hedgehog (Ihh), and Desert Hedgehog (Dhh). Additional 

genes were found in zebrafish , including Tiggy-winkle Hedgehog (Twhh Ingham and

McMahon , 2001). With the identification of the hh gene , the Hh signaling pathway could

be elucidate

The li signalg pathway

Identifcation of the hh gene alowed in situ anyses in embryos that localized the

Hh trscript to the posterior comparent (Mohler and Van, 1992; Tabata et al. , 1992).

Observations that the localization of Hh corrlated to that of the trscription factor

Engrled (En) led to the discovery that En activates hh gene expression, intiating the Hh

patway in the posterior comparent (Figure 1.3; Tabat et al., 1992). As with Hh

itself, identification of other Hh pathway components stemmed from analysis of mutat



embryonic phenotypes. The 
hh mutant was first documente with an embryonic segment

polarty phenotype and almost all mutats of Hh pathway components exhibit the same

embryonic loss of naked cuticle and "lawn of denticles" phenotype (Ingham and

McMahon, 2001).

Afer trslation, Hh undergoes a series of cleavage and lipid modificaons

(discussed in a later section; Le et aI., 1994; Porter et al., 1996b). Mature Hh is secreted

from the expresing cells, aided by Dispatched (Disp; Burke et al., 1999). Disp is a

twelve trsmembrae domai protein thought to aid Hh secretion by either shuttlig Hh

to the membrane (Gallet et at., 2003) or tageting Hh to spific domas for secretion

(Burke et al., 1999). Aftr being secre, Hh is distrbuted to taget cells in the anterior

comparment. The mechansm of ths distrbution is unclea but it 
involves the heparan

sulfate proteoglycans (HSPG;) Dally and Dally-like (Dip; Desbordes and Sanson, 2003;

Han et aI. , 2004b; Lum et aI. , 2003a; Takeo et aI. , 2005) and the secreted protein Shifted

(Sbf; Glise et al., 2005; Gorfnkel et at, 2005). HSPG ar cell surfac glycoprotein

that are modified by the Ext famly of HSPG moding enzymes Tout velu (Ttv), Sister

of Tout velu (Sotv), and Brother of Tout velu (Botv; Bellaiche et at, 1998; 
Borneman et

al., 2004; Han et al., 2oo4a; Takei et at, 200; The et al., 199). Sbf is a secreted factor

that has been shown to be requir for proper Hh distrbution (Glise et al., 205;

Gorfnkel et aI., 2005). After reching taget cells, Hh binds to its recptor Patched (Pc;

Chen and Strbl, 1996; Ingham et al., 1991), which relieves the ptc-depndent inhibition

of Smoothened (Smo; Alcedo et al. , 1996; Chen and Strbl, 1996; Denef et at, 2000; van

den Heuvel and Ingham, 1996). Smo is a seven trsmembrae domain protein and



belongs to the G-protein-coupled reeptor famly, although it does not have a known role

as a receptor in Hh signing. Ptc normly inhbits Smo from activating the pathway,

possibly by regulating Smo subcllular localtion (Zhu et al., 2003). Once Smo

inhibition is releas, the kinesin-lie protein Costal-2 (Cos2) binds to the cytplasmic C-

termal tail of Smo, and recruits the complex contaning Cos2, Fused, Suppressor of

Fused, and Cubitus interrptus (Ci; Hooper, 2003; Jia et al., 2003; Lum et aI. , 2oo3b;

Monnier et aI., 1998; Robbins et aI., 1997; Ruel et al., 2003; Sisson et al., 1997). The

recruitment of ths complex to Smo results in the relea of the activated form of the Ci

trascription factor (Hooper, 203; Jia et al., 203; Ruel et aI., 2003). Ci is a zinc finger

protein that is cleaved in the absence of Hh signang to a repressor form (Aza-Blanc et

al., 1997) though Protein Kinase A phosphorylaton (Chen et al., 1998; Wang et al.

1999). Interestingly, this cleaved form of Ci represses Hh target genes. Hh signaling

activates full- length Ci , which then trans locates into the nucleus to activate Hh target

genes, which includes ptc, decapentaplegic (dpp), and wingless (wg; Alexandre et al.'

1996; Forbes et aI., 1993; Hepker et al. , 1997; Yon Ohlen et al., 1997; Wang et al., 200;

Wang and Holmgren, 2000).
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Figure 1.3 - The Hh signal pathway.
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The En transcription factor activates hh gene expression. After translation, the full length

Hh protein undergoes an autoproteolytic cleavage catalyzed by the C-terminus , dUling

which a cholesterol moiety is covalently attched to the C-termnus of the N-termal

frgment. In addition, an acyltransferae attaches a palmitoyl moiety to the N-termnus

of this frgment. The signalng molecule Hhp is then secreted from the producing cell

with the help of Disp. HhNp trvels from producing cells in the posterior comparent to

taget cells in the anterior comparent; ths movement is facilitaed by HSPGs. Once at

the target cell, Hhp binds to its receptorPtc and is internalized. This binding releases

the Ptc-dependent inbition of . Smo, to initiate a cascade of events resulting in the

stailzation of the active full lengt Ci and its trlocation into the nucleus. The

trscription factor Ci then activates Hh taget genes, including pIc and dpp.



II as morpbogen

An ealy study implied that Hh had morphogenetic propertes and the proper

regulation ofHh levels are importnt for paternng and cell specification during

development (Mohler, 1988). Durig the same period two other secreted proteins

importt in development, Dpp of the TGF-(3 famly and Wg of the Wnt/g famy were

also thought to be potential morphogens. Interestingly, Dpp and Wg were Hh tagets

and the relationship between the thee proteins and their morphogenetic properties was

unclea then.

Morphogen distrbution has ben extensively studied in Dros,ophila which ha

been a useful genetc tool for disseting the pathway of morphogen gradient formtion.

Many studies have used the embryo and the laal wing imginl disc to analyze

morphogen gradients. Embryos ar segmented, and each segment consist of an anterior

and a posterior compartment which have different cellular propertes. In a similar

fashion, the wing disc is also separated into anterior/posterior (Al) comparents

(Figue 1.4). The wing imaginal disc is a thn sac-lie strctu comprised of two single

layers of epithelial cells, separate by the lumen. The pepodial membrae consists of

large squamous cells. The columar epithelium (the disc proper) consists of polar
epithelial cells with the apical surace oriente towar the inide, facing the peripodial

membrae. Whle comparment boundaes were known, it was thought that interaction

between comparments might lead to synthesis or diection of signaling molecules to lead

to the appropriate cell behavior (Crick and Lawrence, 1975).



Figure 1.4 - Schematic repreentation of the Drosophil wing imal disc and

expression systems.
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Figure 1.4 - Schematic representation of the Drosophi wing imagial di and

expression systems.

(A) Pront view of the laral wing imaginal disc that gives rise to the adult wing. The

wing disc is segmente into the anterior and posterior (green) comparments. Posterior

comparment cells express Hh that is secreted to reach taget cells in the anterior.

(B) Trasverse view of the wing disc. The wing disc is compried of two epithelial

layers. The peripodial membrae (re) consists of squamous epithelial cells and the

columnar epithelial disc cells (yellow) are a single layer of pseudostrtifed cells. The

two layers ar separated by the lumen.

(C) Ga4-UAS system. The Ga4 protein (gray) binds to UAS sites to induce Gene-X in a

tissue speifc maner. The expression patern of Gene- X depends on the promoter used

to express Ga14.

(D) Ectopic expression using FIp-out clones. In the uninduced state, the target Gene-X is

downstrea of a stuffer gene or a stop codon (a). When the flpas enzyme is expressed,

recombination between FRT sites (blue diamonds) is catayz, removing the stuffer

region. This allows the taget Gene-X to be expressed.

(E) Clonal analysis using FRT-Flp. During mitosis, the flpas enzyme catyzes

recombination betweenFRT sites (blue diamonds) located nea the centrmere (red

circles). Chromosome ans ar exchanged, resulting in one cell that has two copies of

the wild-type gene (+) adjacent to the other cell that is homozygous for the mutated gene

(m), at the end of mitosis. The cells wil proliferate and fonn clones of homozygous

wild-typ and homozygous mutat cells in heterozygous tissue.



The question of whether Hh is a morphogen or not has been extensively debated.

The experiments leading to both of these assumptions are discussed below.

Hh is not a morphogen

Experiments where Hh was ectopically expressed in the wing showed that 

indirectly controls limb patternng though activation of expresion of the secrete

molecules Dpp and W g (Basler and Str, 1994). Whle Hh did act at long rage to cells

in a strpe severa cells wide and did ditly act on these cells, Hh was not considered to

be a morphogen. Hh was shown to induce expression of Dpp or W g in cells adjacent to

Hh expressing clones, which would in turn act as morphogens to induce proper wing and

leg patternng. Therefore, Hh was proposed to be th initiator of a cascade of events,

activating other long-range signaling molecules (Basler and Strhl, 1994).

The GaI4-UAS system was employed as well to induce ectopic Hh expression

(Figure 1.4; Brand and Perrmon, 1993). Ectopic expresion of En in anterior cells

resulted in ectopic activation of hh withn the En clone and activaton of dpp in cells

surrounding the clone. These anterior cells acquired a posterior identity due to En

expression and thus, were unable to respond to Hh signalng. Direct ectopic expression

of Hh, using UAS-hh induced in the anterior, cirumvente an acquisition of posterior

identity and resulte in Dpp expresion both in and arund the clone. Dpp is nonnaly

expressed in a stripe of cells at the Al boundar. Ectopic expression of Dpp with UAS-

dpp had a long rage effect on neighboring tisue by rerganing both anterior and

posterior wing patterns. Ths was paricularly evident in Dpp-expressing clones that were



fuer from the NP bounday, where ectopic Dpp resulted in extr wing materal in the

form of winglets. It appea that Hh induced wing patterng by short range signalng

that activated Dpp, and that Dpp had long rage concentration dependent signalng

activities (Zeca et al., 1995). These results led to the conclusion that Hh itself was not a

morphogen. but insted that Dpp was the morphogen induce by Hh signalng.

Hh is a morphogen

One of the ealiest studies that provided evidence for Hh acting as a morphogen

cae from studies in the embryo (Heemskerk and DiNardo. 1994). These embryonic

studies investigated the Hh-dose dependent response and made use of the fact th Hh

signaling is responsible for speifying diferent cell fates in the embryonic cuticle. Using

multiple copies of a heat-shock wild-type hh trnsgene. different levels of Hh were

expressed in the embryo based on the number of trs gene copies and length of heat-

shock trtment Ths reulte. in the shiftng of cuticle cell fates depending on the

amount of Hh expressed, suggesting that Hh ditly specified cell fates in a

concentrtion dependent maner (Heemskerk and DiNardo, 1994).

Subsequent analysis examned wing paternng by Hh and the Hh taget, Dpp. by

ectopicay expressing Hh and Dpp (Ingh and Fietz, 1995). Expression of Hh in the

wing margi in both posterior and anterior comparents resulted in an enlarged anterior

comparment, as well as ectopic Dpp expression in area of low Hh activity. Similar 

the previous embryo study, varing levels of ectopic Hh expreion also caused gred



effects, observed in wing pattrng, consistent with Hh acting as a long range

morphogen (Ingham and Fietz, 1995).

These studies demonstrted that Hh had long rage effects but did not

conclusively rule out the possibility of a secondary signal that would be expressed

differently in response to varing levels of Hh and act diectly on the taget cells instead

of Hh. Studies by Strhl et al. in the Drosophila abdomen found that ectopic expression

of Hh gave a range of results of cell fate speification based on the distace of the clone

in the anterior comparent from the Al bounda (Strhl et al., 1997a; Strl et aI.

1997b). This indicated th Hh orgaiz cell patrnng and cell polarty with the

anterior comparent (Strhl et al., 1997a). Subsequent experients constitutively

activated or blocked Hh signaling cell autonomously to detrmne whether Hh or a

secondar signal was responsible for activating taget cells. Activating Hh signaling with

PKA mutant and blocking Hb signaling with a smo mutant resulted in altered cell fates

in a cell autonomous manner. Thes observations inerred that Hh was directly acting on

cells in the anterior to specify diferent cell typ. Thus, Hb fuctioned as a grent

morphogen (Strhl et al., 1997b).

Furermore, evidence for Hh as a morphogen came from wing studies (Strgin

and Cohen, 1997). A concentrtion dependent effect of Hh for activatg taget genes

was observed using a temperae sensitive hh mutat alele. en was a taet gene in the

anterior comparent that was activated by high levels of Hh signaling. Activation of 

was affected by parial loss of Hb at a lower retrctive temperatue; however dpp 

low level taget) was only affecte when there was even less Hh expressed at the higher



restrctive temprae. Thus, the local concentrtion of Hh determed what taget genes

were activated. Additionally, the same study found that tetherng Hh to the cell

membrae by fusion to the trsmembrae domain of human CD2 resulted in the

activation of target genes only in immediatly adjacnt cells. It beame clear th Hh

itself had to be able to travel to taget cells to activat taget like dpp 
(normaly activat

in a row 8- 10 cells wide), and not a secnda signal. These results demonstrted that Hh

had the behavior and charcteristics of a morphogen - Hh ditly signals to target cells at

a distace and elicits dose-dependent responses. This was the most convincing evidence

that Hh indee acted as a morphogen in the wing (Strgini and Cohen, 1997).

Models for Db morphogen gradient formtion and distrbution

While much has been elucidated about Hh signaling and taget gene activation

the mechanism of how the Hh concentration gradient is formed and regulate is unclear.

Proposed models for morphogen ditrbution and the formaton of the morphogen

grent include fr difusion and planar movement (Figure 1.5). In the free diffuion

model, morphogens are secrete frm the proucing cells into the extrllular space, and

then diffe in thee-densions out to the taget cells. Evidence for fre dision has

been describe for Xenopus Activin, a membr of the TGF-p famly (McDowell and

Goron, 1999). Xenopus embryo cas were incubated with activin-coated beads before

being placed with untrte caps. Activin was able to diffuse thugh the untr tissue

and even though unreptive tissue contaning a mutat activin receptor, to active taget

genes (McDowell and Gurdon, 1999). Subsequent studies demonstrte that endocytosis



defective tissue did not alter Activin target gene activation (lullen and Gurdon, 2005;

Kinoshitaet al., 2006). Ths suggested that Activin was able to frly diffue to reach its

taget cell.

Another model for morphogen distrbution is planar movement. This can furter

be subdivide into two types: restrcte extracellular plaar diffusion along cell surfaces

and planar trcytosis. Studies involving the extrllula cell surfac proteins HSPGs

provide the strongest evidence for retrcted extracellular planar difsion. Clones of

mutations affecting proper prouction of HSPGs restrct Hh, W g, and Dpp distrbution

and signaling to cells at the edge closest to the expressing cells (BeUaiche et al., 1998;

Bornemann et al., 200; Caejo et al., 2006; Han et al" 200b; Takei et al., 200; The et

al., 1999). These morphogens accumulate in front of the HSPG mutat clones

(Belenkaya et aI., 2004 Ran et aI. , 2005 Takei et al. , 2004) while mutat cells in the

clone and competent wild-type cells on the other side of the clone do not have target gene

activation (Belenkaya et aI., 200; Bellaiche et al., 1998; Han et al., 2005). However, the

morphogens ca be detected along the sides of the clone, suggestig that morphogens 

forc to travel around the mutat clones. Furtermore, extracellular localization of the

Wg and Dpp morphogens in HSPG-defective clones is drcaly reduce (Belenkya
et aI., 200; Ha et al., 205), suggestig tht these morphogens are normally retained at

the extrellular cell surface by HSPG.

In the planar trscytosis model, the morphogen undergoes successive rounds of

endocytosis and exocytosis to trvel frm the producing cells, though cells, to the taget

cells. This model has ben studied by blockig endocytosis, and the results 



inconsistent. For example, W g has been deteted in intrllular vesicles named

argosomes (Greco et al., 200 I), which would support trcytosis. However, Wg

movement was unaffected when the endocytc pathway is blocked with shibire (shi) 

rab5 mutats (Maris et al., 2006; Strgini and Cohen, 200). Shi is the Drosophila

homolog of vertbrate Dynamn, a GTPase required for endocytosis and Rab5 is another

small GTPase required for endocytosis. Since W g movement is unaffected by blocking

Shi-mediatedendocytosis (Strgini and Cohen, 200), th would suggest that Wg

distrbution ocurs though diffusion. In addition, blocking endocytosis using a dominant

negative Rab5 mutat resulted in the extrellular accumulation of W g on either the

apical or basa surfaces, indicating that blocking endocytosis did not prevent extrcellular

Wg movement. Additionally, disrupting conventional recyclig pathways did not affect

Wg distribution (Marois et aI. , 2006). These results suggested that transcytosis was not

the mechanism for W g distribution.

There have also ben conflcting results on whether endocytosis affects Dpp

movement. Initial studies blockig Shi-mediated endocytosis found a reduced rage of

Dpp signaling and a shadow on the far side of the mutant clone, reflecting the absence of

Dpp. Ths was interprete as Dpp movement occurng around the endocytosis-defective

tissue (Entchev et al., 200). Subsequent studies using the same endocytosis mutat,

however, had the opposite result where Dpp distrbution was not impde. In ths case

Dpp was found on the other side of the clone (Belenkaya et aI., 200). Becuse of

conflctig reports, sometimes even with the same mutats, it is not clea what role

endocytosis plays in shaping the morphogen grdient.

M "



In addition to the man thee models, long cellular processes caled cytonemes

have been implicated in morphogen distrbution. Cytonemes were initially found to be

attracted to another protein importt in development, fibroblast growth factor (FGF),

and projected themselves towards the FGF sour (Ramez-Weber and Kornberg, 1999).

Recently, cytonemes have been observed to be infuence by Dpp and Dpp signalng

(Hsiung et al., 2005). In addition, Dpp tranmission along cellular processes from the

peripodial membrane though the wing disc lumen has also been described (Gibson et al.

2002). While cytonemes have ben diffcult to detect, their role as a vehicle for

morphogen distrbution is stil a viable possibilty.
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Figure 1.5 - Models for morphogen distribution.

(A) The fre diffusion model. Morphogens are secreted from the producing cells into the

extracellular space, where they diffuse in thee-dimensions out to the taget cells.

(B) The restrcted planar diffusion model. Morphogens trvel in the extracellular space

in two-dimensions on cell surfaces, movement that may be facilitaed by heparan sulfate

proteoglycans (HSPGs) acting as co-recptors or membrae tethers.

(C) The transcytosis model. Morphogens undergo successive rounds of endocytosis and

exocytosis to travel though cells, moving from the producing to the taget cells.



Components involved in shaping the Hh gradient

Many studies have sought to explain how the Hh grdient forms. Several factors

have been demonstrted to be involved in Hh movement and shaping the Hh grent.

These include the Hh lipid modifications, the Hh recptor Pt, endocytosis, and HSPGs.

The current evidence for the roles of these factors in regulating Hh distrbution is

discussed below.

Identifcation an the role of the Hh clwlesterol nwdifcation

Ealy studies deteted several form of the Hh protein and at that time it was

unclea how these different forms were produced or what their role was in Hh signaling.

Intial studies found a 46kD full length Hh protein (Hh), a 39kD Hh consistent with a

signal sequence cleaved off, a 19kD fragment of the N-termnal portion from full lengt

, and a 25kD fragment of the C-tenrnus (Lee et ai., 1994). Interestingly, the C-

termius of Hh had some simlarty to sequences found in serine protees, specifically

amo acids 323-329. Mamalan serine protees tyicay have a catalytc hitidine

(Albert et al., 1994). Thus, of paricular interest in the Hh protein was the histidine

found at position 329, which is conserved from Drosophila to vertbraes, and when

muta to an alanne, prevented the appece of the 19kD and 25kD Hh fragments.

Ths histidie is required for the autoproteolysis, as full lengt Hh is cleaved into the

19kD and 25kD frgments though an introlecular proteolysis mechansm (Le et al.,

1994). The same study demonstrted that this cleavage was necessar for Hh signalg

since uncleaved Hh was unable to activate W g signaling in embryos, and Dpp signalng



in discs. The N-termnal frament was fuer studied and found to be priarly cell-

associated, and had a punctae staning pattern, while the C-terminal fragment was found

to be secreted and had a more dise stang pattern. This led to an ealy model where

the N-terml frent might be responsible for short range signalig, while the C-

terml fragment might be responsible for long range signalng (Le et al.. 1994). When

constructs designed to replicat these fragments were generd and expressed in wings

the C-termnal fragment was found to have no effect beyond cleavage, whie the 

termius was able to activate Hh tagets. Thus. the N-termal fraent was identified as

th active signalng molecule (Fietz et al., 1995).

Simiar studies on the Hh frgments were also done with maalian Shh that

found Shh was simlaly cleaved and with cleavage reuig the C-termius (Bumcrot et

aI. , 1995). Interestingly, sequence comparsons found that the N-terminus wa the most

conserved region of the protein between species. There was 69% sequence identity

between the Drosophila and mouse Hh and 99% identity between mouse and chick.

This drpped to 30% and 71%. repetively, when furter sequences were comped

(Bumcrot et aI., 1995). This is consistent with all of the actual signaling activity residing

withn the N-termus.

Furter analysis found differences in an N-termal Hh generate afr full lengt

Hh cleavage (Hhp- for procssed), and an N-termial Hh trncaed at the cleavage site

(HhN). Hhp was found in cell membraes of Drosophila S2 tissue culture cells

(derived from embryos; (Porter et al.. 1996b), and in "large punctate strctus" that

localized basolateraly in embryos (Gallet et al., 2003). However, trncated Hh was not



found in S2 or embryo cell membranes, or in these large punctate strctures in embryos

(Gallet et aI., 2003; Portr et al., 1990). Instead, HhN was locaized apically and

distributed furer away in embryos frm the expresing cells. Biochemical experients

found that Hhp had a higher mobilty than Hh, and was more hydrophobic, contang

an additional 430 daltons th Hh. Subsequently, Hhp was discovered to have an

unidentified moiety covalently athed to the caroxyl tennnus (Porter et al., 1996a).

Additional studies identifed cholesterol as ths athment based on its siz and other

biochemical chaacteristics (Portr et al., 1996b).

Furter studies on the role of cholesterol produce contrdictory observatons.

Studies in both embryos and the wing disc suggeste that cholesterol was necessar for

the long-range signalng abilties of Hhp (Galet et al., 2003; Gallet et al., 2006).

However, other studies found that HhN was in fact, able to signal to cells further away

than HhNp, indicating that the cholesterol moiety may actually restrict HhNp distribution

(Burke et al., 1999; Calejo et al., 20; Dawber et aI., 205; Portr et al., 1 996b).

Furermore, peripoal membrae specific expression found that only Hh is able to

trverse the lumen to activate genes in the other membrae of the disc (Calejo et al.

2006; Galet et al., 2006). Ths suggests that the cholesterol is responsible for restrcting

Hhp to prevent free diffsion thugh the lumen. Hh distrbution is unafected in

Disp and HSPG mutats (Callejo et al., 200; Dawber et al., 2005; Galet et al., 2003),

implicating the cholesterol attachment as the cause of the HhNp restricte distrbution. In

adtion, maiy low level taget genes ar activated by HhN signalng (Callejo et al.



2006; Torroja et al., 200), suggesting that cholesterol somehow enhces Hhp activity,

possibly by enabling HhNp accumulaton.

Mamalan studies of the role of the cholesterol modificaon also reported

conflctig observations (Gofflot et aI., 2003; Lewis et at, 2001; Li et al. , 2006). Initial

studies in mouse systems concluded that the cholesterol was necessay for long-rage

signalng (Lewis et al., 2001). However, subsequent studies with conditional expression

of Shh without cholesterol found tht Shh was able to activate taget genes furter

away. In addition, the shape of the concentron grdient of Shh was altered, with less

signalng in the cells closer to the expressing cells and more signaling furer away.

ShhN protein was also observed to be localized to ar furter away from the expressing

cells than the cholesterol-modified form (Li et al., 200). Difference between the studies

were believed to be the result of technical differences between expression systems where

the initial study may have had lower levels of ShhN expressed (Li et aI. , 2006).

Identification an the role of the Hh paltae modification

After the discovery of the cholesterol modcation, biochemical analysis

determned that there was another moiety unaccounted for, which was determned to be a

paltoyl group covalently attched to the amo group on a cysteine at the N-termus

(Pepinsky et al. 1998). Centr Mising/Skinny Hedgehog/SightlesslRasp was

discovered to be the acyltrsferase responsible for the paltate addition to Hh (Amanai

and Jiang, 2001; Chamoun et al., 2001; Le and Treisma, 2001; Micchell et al., 2002).

This was the first known instace of an N-lied paltoylaton, since palmitaes are



normly thol-lined. Although the non-paltoylate Hh could stil be secrete and

reach taget cells, the dually lipidated Hh was 30 times more potent thanHhN, indicatng

that ths was the active signalg molecule (Chamoun et al., 2001; Micchell et aI., 2002).

Thus, it appears that the primary role of the palitoylation involves signalig instead of

distrbution.

To summarze Hh procssing, Hh is synthesiz as a 45kDa full lengt precursor

protein tht undergoes a series of posttrslational modificatons as it goes through the

secretory pathway. Full length Hh is tageted to the secretory pathway by a signa

sequence that is cleaved off. Hh then undergoe an autoprotelytc cleavage between

amno acids 257 (Gly) and 258 (Cys), that is cayzed by the C-terminus of the full

length protein. When ths cleavage occurs, a cholesterol moiety is covalently atched to

the C-terminal end of the N-terminal signaling molecule (Le et aI. , 1994: Porter et aI.

1996a; Porter et aI. , 1996b). An additional palmitoyl group is attached to the N-terminus

of the signing molecule thugh the activity of an acyltransfera (Aman and Jiang,

200 1; Chamoun et aI., 200 1; Le and Treisma, 200 1; Micchell et al., 2002; Pepinsky et

aI., 1998) to produce the 19kDa active Hh signaling molecule, HhNp.

Large punctate structures

The cholesterol modfication is thought to produce an association with

membraes (Petrs et at, 200); therefore, it is unclea how a membrae-asociate

protein is able to trvel away from the producing cells to reach the target cells and intiate

signaling. The cholesterol modifcation could have a role in faciltating movement, for



examle by enabling Hh association into more hydrophic micelle-lie larger strctues

consisting of multiple Hh molecules or other multimeric form as has been proposed by

severa groups (Callejo et al., 2006; Chen et al., 200; Feng et al. , 200; Galet et al.

2006; Zeng et al., 200 I).

One observation made in ealy studies of Hh protein localiztion was that Hh was

present in "dots" outside of the En expression doman (Forbset al. , 1993) or in "large

punctat strctures" in Drosophila S2 cells (Portr et aI., 1996a). Furer studies showed

that the "large punctae strctures" required Disp to form (Gallet et al., 2003; Gallet et al.

200) and requir Ttv for movement (Caejo et al., 2006; Galet et aL, 2003). Most of

these parcles loclized to endosomes (Callejo et al., 2006; Galet and Therond, 2005;

Torroja et ai., 200), and all paricles, includig ones that did not co-localize with

endosomal markers, appeared intracellularly in wing discs (Callejo et aI., 2006).

Interestingly, in embryos, a class of pre-endocytic paricles were identified that were

most liely extrcellular (Galet and Therond, 2005). Whether these strctures are the

vehicle for Hh movement, or wheter Hh accumulates in these parcles once at the taget

cells is unclear.

Gel fitration assays identified Hhp multimers of 160kDa from Drosophila

salvar glands, Clone 8 cells (derived from wing disc cells), and S2 cells (Calejo et al.

2006; Galet et al., 2006). Interestingly, Hhp multimers requird both lipid

modifications and could not be deteted with the cholesterol or paltate mutat Hh

forms (Calejo et al., 2006; Chen et al., 200; Gallet et al., 2006). Cell cultu

experiments using a Ci-luciferae system as a read-out of Hh signalng also suggeste



that the multimeric form of Hh ha stronger signalng abilities than the monomeric fonn

(Galet et al. , 2006).

In mamalian tissue culture cells, vertebrate Shhp was also biochemically

detected in large multimers that required both lipids (Chen et al., 200; Feng et al., 200;

Goetz et al. , 2006; Zeng et al., 200 1), simiar to Drosophila. These were established to

be Shhp multimers in co-imunoprecipitation assays which demonstrted tht ShhNp

could bind to other Shhp protein (Zeng et al, 201), possibly in an effort to bury its

hydrophobic moieties. These multimers appeaed to be relatively stale and resistat 

high salt or high detergent conditions (Gotz et al., 200). Without any lipid

modification, Shh could only be found in monomers that had a signcatly weaer

abilty to signal (Chen et aI., 2004; Feng et al., 2004; Gotz et al., 200). Furennore,

biologically active ShhNp multimers could also be isolated from chick limb bud tissue

(Zeng et aI. , 2001), indicating that these multimers were also present in vivo. Thus,

multieric Shhp could be the primar active biologica Shh (Gotz et al., 200; Zeng et

al., 2001). It is thought that thes multiers may increase Shhp activity and keep

ShhNp in a fonn that is capable of moving thugh the extrcellular environment (Gotz

et al., 2006).

Th role of Ptc

Intial genetic studies implicated Pt as the Hh reptor (Schuske et aI., 1994).

Furer experiments with pic mutats found that Ptc could bind and retrct Hh

movement, and this resulted in the activation of Hh taget genes, one of them being ptc



itself (Chen and Strhl, 1996). Ptc had two distinct functions: the first was to activate Hh

signalng, and the other was to bind and sequester Hh. Ptc contaned a sterol sensing

domain (SSD) that was implicated in being involved in signaling activaton. Evidence

for this comes from experiments where Ptc-SSD mutats ar able to bind and sequester

Hh but have autonomous activation of only low level tagets regarless of Hh levels

(Marin et al" 2001; Strutt et al., 2001). Additionally, a gain of function ptc alele that

has relatively low binding affmity for Hh is constitutively active (Mullor and Guerrero

2000). Thus, the ability of Pt to bind to Hh is separble from its capacity to activate

signaling. The role of Ptc in activatg Hh signaling is evident. The question remains as

to whether Ptc has an active role in Hh trport though cells.

Under normal conditions, Ptc binds Hh and the complex is endocytosed in a Shi-

dependent manner (Capdevila et aI. , 1994; Incardona et aI., 2000). Hh endocytosis also

appeared to be dependent on Ptc in mammalian systems (Incardona et aI., 2002;

Incadona et aI., 20). Endocytosis of Ptc results in removal of Hh from the

extrcellula spac, as well as Smo relocion to the cell surace and C-termus

modification (Denef et al., 200; Hooper, 2003; locardona et aI., 2002; Ingham et al.

2000; Jia et al., 2003; Ruel et aI., 2003; Zhu et al. , 2003). After the Hh-Ptc complex is

endocytosed, the complex is taeted to lysosomes for degron (Calejo et al., 2006;

Galet and Therond, 2005; Torroja et aI., 200). It appear that Ptc-dependent

endocytosis leads to the eventual degration of Hh; however, Hh dissociation from Ptc

and recycling after Ptc-dependent endocytosis canot definitively be rued out In ptc

mutat embryos, there is an apica accumulation of Hh parcles at taget cell (Gaet and



Therond, 2005), suggesting that Ptc was not necssary for Hh movement. Additionally,

pte mutat clones in the wing disc do not block Hh distrbution; in fact, Hh is able to

trvel furter, past the clone (Chen and Strhl, 1996). It appe that while Ptc does not

have a role in Hh movement, it is a critical player in shaping the Hh grient by

sequestering Hh and removing Hh from the system. Interestingly, Pt-independent

endocytosis has been observed but the identity of these vesicles is unkown (this study;

(Calejo et al. 20; Gallet and Therond, 2005; Torroja et aI., 200).

Endocytosis and nwrphogen distribution

If transcytosis had a signicat role in Hh grent formation, blocking

endocytosis should have a dramc effect on Hh distrbution. In the receiving cells, Ptc

binds Hh and the complex is endocytosed. As previously stated, Hh that is endocytosed

by Ptc is targeted for degradation (Callejo et al., 2oo6 Gallet and Therond , 2005; Torroja

et aI., 2004). No evidence has been found to suggest that Hh endocyWsed by Ptc is

recycled and releaed from the cell (Gallet et aI., 2006). Loss of Ptc results in Hh

relocalizaion but does not prevent Hh movement (Chen and Strhl, 1996; Gallet and

Therond, 2oo5).

To bettr exame wheter endocytosis afects morphogen distrbution

endocytosis mutats have ben utized in Drosophil. Using a dominant negative

mutat in embryos to block endocytosis does not appe to affect Hh movement (Galet

and Therond, 2005). In wing discs, blockig endocytosis affects Hh locization leading

to the accumulation of HhNp at the cell membraes basolaterally (Han et al., 200b;



Torroja et al., 2004) whie Hh accumulates apically (Callejo et aI., 200). Interestingly,

signaing and movement of Hh is unaffected with the mutat clone (Calejo et aI., 2006;

Ha et al" 200b; Torroja et al., 200). Since temprature sensitive endocytic mutants

were used in most of these studies, endocytosis was only blocked for a short five hour

period of the Hh distrbution proess whie Hh expression occured thoughout

development. Thus, this accumulation may be the result of a redstrbution of Hh that

was aleady present at those cells inste of an abilty of Hh to travel despite the

endocytosis block. Wing disc studies where endocytosis is blocked durng grdient

formation intead of at the gradient stedy-state wil be necessar to distigush between

redistrbution and movement, and determe whether endocytosis reay affects Hh

distrbution.

HSPGs aiding Hh distribution

HSPGs in the extrcellula mat have ben imlicated in affecting HhNp

distrbution. Intial studies found th Hhp could bind to heparn be and may

interact with hepar-modifed proteins in the extrcellular matr (Le et al., 1994). In

addition, whie Hhp was barely detetable in tissue cultue media, it could be displaced

by hepar treatent, leading to the sae idea th Hh may interat with proteins in the

extrcellular matrx or cell membraes (Bumcrot et al., 1995). Disruption of HSPG

biosynthesis using the Ext family of protein (Ttv, Sotv, and Botv) ha been shown 

afect all thee morphogen pathways (BeUaiche et al., 1998; Borneman et al., 200; Han

et al., 2004; Takei et al., 200; The et al., 1999). The Exts ar glycosyl trsferaes



enzymes essential for the proper prouction of HSPG. Mutations in tt and sotv have

been shown to result in decreaed hepar sulfate glycosaminoglycan chain synthesis

(Borneman et al" 200). Therefore, the Ext genes affect Hh distrbution though proper

HSPG production. The Ext mutats caused a decreae in Hh signalig levels, as well as

decreased levels of Hh protein in the mutat wing disc tissue (Borneman et al., 200;

Han et aI., 200a; Takei et aI., 200). Ttv is required for the long range distrbution of

Hhp (Galet et al., 2003; The et at, 1999). In both Itv mutat embryos and in tt mutat

clones in the wing disc, the activation of Hh signalng, as well as movement of Hh is only

detected in the first row of cells closest to the Hh producing cells (BeUaiche et al" 1998;

The et al., 1999). Hh accumulates in the wild-type tissue in frnt of the mutat clone and

no Hh signaling is observed behind the clones (BeUaiche et aI., 1998; Takei et al., 200).

In addition , clonal analysis indicates that the absence of functional HSPGs forcs HhNp

movement around the clone. These observations suggest that properly modified HSPGs

ar reuired for the planar movement of HhNp.

The HSPG core protein themslves, specifcay the GPI-linked glypicas Dally

and Dally-lie (Dip), have been shown to affect Hhp distrbution as well (Han et al.

200b). In embryos, DIp was shown to be requied for Hh signalng and epistais

experiments placed Dip upstr of Pt (Desbordes and Sanson, 2003), indicaing that

DIp action occurs durig ditrbution. In daly/dIp double mutat wing disc clones, there

is reduced Hh signaling and HhNp distribution to only the first row of the mutat clone

(Han et aI., 200b), similar to Ext mutat clones. Since Ttv is responsible for proper

biosynthesis of the hepar sulfate chains for Dally and DIp (Han et aI., 200b), this



suggests that the effects of the Ext and glypican mutats are from the same defect

is loss of HSPGs. Furtherore, HhNp co-locaze with Dip (Han et aI., 200b) and

RNAi experients in Drosophila Clone 8 cells identified Dip as a possible co-receptor

(Lum et al. , 2oo3a). Similar to the Ext experients, these observations point to HSPG-

medated planar movement of Hhp.

The secreted protein Shifted (Sht is a HSPG-inteacting protein that alo affects

Hh ditrbution. Mutat clones of shf demonstrat redce Hh signalg, reduce rage

of Hhp distrbution, and reduce amounts of basolatra Hhp (Glise et al., 2005;

Gorfnkel et al., 2005). Double mutat clones of shf and ttv in Hh-expressing cells in the

posterior comparent show reuce levels of HhNp protein, the same phenotype as the

ttv single mutat (Gorfnkel et at, 2005). This indicates that Shf acts upstr 

HSPGs during Hh distribution, and also is suggestive of a role for HSPG in Hhp

distribution.

Interestingly, HSPG (Callejo etal., 200; Gallet et aI., 2003), and Shf (Glise et

al., 2005; Gorfel et al., 2005) bave no effect on the non-cholesterol moded Hh.

The GPI-linked glypican could lociz to lipid microomais (lipid raf) and thus

interact with cholesterol modfied Hh in these comparents. Therefore, the cholesterol

modificaton would confer the abilty for Hhp to interat with HSPG.

HSPGs clealy have an importt role in Hh distrbution and grient formtion.

However, their exact role is undefined. Whie previous studies strongly support HSPG

involvement in the extrcellula planar diffuion of Hh HSPG involvement in a

trscytosis mechansm cannot be conclusively ruled out. Current results do not make a



clear distinction between whether HSPGs are simply co-receptors that aid in signaling, or

whether they have a more active role in Hh distrbution. Furter study is necssary to be

able to elucidate the precise role of HSPG.

Theoretica Modeling of morphogen gradient formation

Theoretical modeling has attempted to estalish mathematca models to explai

which mechansms must be the cause of qualitative observatons. However, even

theoretical studies have shown conflctig results on whether morphogengradients are

solely though difsion or though a combination of short-rage diffuion and long rage

trscytosis. Lader et at. generate a model for th mechansm of morphogen trsport

where they tae into account diffsion, receptor bindig, internalzation, and degrdation

(Lander et aI. , 2002). Their analysis stemmed from observations made in earlier Dpp

distribution studies (Entchev et aI., 2000; Teleman and Cohen, 200). According to their

theoretical analysis, the diffusion model can explai previous results of intealized Dpp,

the blockage of endocytosis reulting in a "shadow" behid mutant clones, as well as a

reduced range of signaling. The conclusion frm the initial study by Entchev et al. was

that Dpp reuires endocytosis for distrbution (Entchev et al., 20). However, in the

diffuion model, the endocytosis block would result in an increaed number of receptors

on the cell surface that would bind Dpp, and thus a steeper Dpp grent thugh the

clone which may be steep enough to prouce the shadow effect by seuestering Dpp

(Lader et al., 2002). Ths would explai the reduced range in signalg as well. The

previous data showed ths shadow was present at a 5 hour time point afr blocking



endocytosis and eventully gets filled by 24 hours (Entchev et al., 200), which is alo

support by the diffusion modling (Lader et al., 2002). Additionally, previous data

analyzing th rates of grent formation found it took 7 hour for the Dpp gradient to

form and the rate of trscytosis frm EGF studies in culture cells estiated at 0.6-4

hour per cell. Furtermore, the bucket brigade mechanism was determed to be a

minimum of 771 seconds per cell. These rats are far to slow to account for the rapid

rate of gradient formaton calcula to be 54-148 secnds per cell (Lader et al., 202).

A separe theoretical modeling of morphogen transport also based their analysis

on the same Dpp distrbution studies but took additional factors into account (Krse et al.

200), including a comparson of theoretical expted results and actual experimental

results. Krse et al' analyzed trsport with a two-dimensional description, whie Lader

et at. simplified the process to one-dimension. Also, Krse et al. slightly altered one of

the parameters in the diffusion modeling while looking at the block in endocytosis results

so that there was not an instataeous increa in recptor levels in mutat tissue. In

doing so, Krse et al. demonstrat that the original theoreca difusion modl would

have resulte in a stedy incree in reptor and ligad in the mutat tissue, which

would have produce a more pronounce shadow thugh tie, instead of a trsient

shadow. This result from the model doe not ag with the experimenta data: there was

no signcat increas in recptor or ligad (extrllular Dpp) and the shadow is only

trasient (Entchev et al., 200). The conclusion is that the theoretical dision model is

unable to explain Dpp distrbution results, imlying a role for other factors such as

reeptor trficking and other mechanisms in morphogen distrbution (Krse et aI., 200).



There is agreement abut the time of grdient formation appeang to be rather rapid

compared to currnt data about trascytosis and turnover tie, although the actual rate of

varous processes, including extrcellular difion, endocytosis, and reycling, has yet to

be detennned for morphogens in the wing (Kre et al., 200; Lader et al., 2002).

Much more quantitative analysis of morphogen distrbution and movement is

neeed, pariculaly during gradient formon as oppose to gradient stey state, to

provide data enabling the generaton of acurat maemacal modls of morphogen

grient formation.

Summary

The morphogen Hh has ben identified as one of the factors responsible for

detennining cell fates and producing patterns in tisues during development of many

organisms. Disruption of Hh distrbution and signaling can have serious consequences

during development as demonstred by human bir defects and diseae. Since Hh was

first discovered in Drosophila, ths organism has proven to be a useful model system to

study the Hh gradient and signaling pathway.

Previous studies have provided much inormaton about Hh distrbution; however

these studies also had limitations. I have attempte to address these limtations to clarfy

previous confcting da One limitation of previous studies was that overexpressed Hh

and/or preexistig pools of Hh were examned insted . of newly produced protein.

Therefore, the observed acumulation of Hh may be the result of a redistrbution of

protein that was aleady present instea of an abilty of Hh to move despite a block in



endocytosis. Ths issue has been addesse by using an inducible system, allowing the

study of newly synthesized protein. Another limitaion to the previous work is the

analysis of Hh distrbution at the gradient steady state and not durng grdient formation

which may provide more information of how Hh moves. Ths too ca be addressed with

an inducible system. Finally, observations made about Hh distrbution were qualtave,

while quantitative data came primary from taget gene activation instead of Hh itself.

Ths has ben addressed by quantifying Hh parcle distaces with imae analysis

softwar.

Thus, questions reman over the role of cholesterol modication in regulating Hh

distrbution, and whether endocytosis is reuir for Hh grdient formation.

addrssing limitations of previous studies, these questions ca be answered. This thesis

presents data to support the hypthesis that Hh movement is restrcte by the cholesterol

modification and that endocytosis is not required for Hh movement, which occurs

through a plan diffusion mechansm.
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QUANTITATIV ANALYSIS OF HEDGEHOG GRADIENT FORMTION
USING AN INUcmLE EXPRESSION SYSTEM

Backgrund

Members of the Hh famly have an evolutionarly conserved role in regulating

growt and diferentiaton during development of may organsms (Ingham and

McMahon, 200 1). Hh directly induces different cell fates in a concentrtion dependent

manner, and thus is classified as a morphogen. Ths concentration grdient is tightly

regulate and any disruption can cause abnormal cell speification (Heemskerk and

DiNardo, 1994; Strigini and Cohen, 1997). Mutations in Hh pathway components have

also been shown to lead to human disorders and diseae (Hooper and Scott 2005).

In Drosophila, the Hh morphogen is prouced and secrete frm posterior

comparent cells in embryos and imaginal wing discs. Hh trvels to anterior taget cells

and forms a concentrtion grdient frm its source (Igham and McMahon, 200 I; Tabata

and Takei, 200). Models that have been proposed for morphogen distrbution and

grdient formation include fre diffusion and planar movement. In the fre diffusion

model, the morphogen is secrete from the proucing cells into the extracellular spac

and diffuses in thee-dimensions out to the taget cells. In the planar movement model

the morphogen moves directly from cell to cell, always remaining in the two-dimensional

epithelial cell layer. Two mechanisms for planar movement have ben proposed:



restrcted extracellular planar diffuion along the cell surface and transcytosis, where

successive rounds of endocytsis and exocytsis move Hh though cells (Hooper and

Scott 2005; Tabata and Takei, 200).

Hh proteins in all organsms ar dually lipid modified as par of their intrcellular

processing to produce Hhp (p for procsed) and these modifications are liely to affect

movement of the morphogen. In Drosophila Hh is synthesiz as a 45 kDa full length

precursor protein that undergoe an autoprotelytic cleavage (Lee et al., 1994; Porter et

al., 1996a). Cholesterol is covalently athed to th C-termus of the N-termna

signalng molecule as par of ths procss (Portr et al" 1996b). A paltoyl group 

attached at the N-termnus by a membrae bound O-acyltrferase to produce a dualy

lipidated 19 kDa Hhp molecule (Amanai and Jiang, 2001; Chamoun et al., 2001; Lee

and Treisman , 2001; MiccheUi et aI. , 2002; Pepinsky et al" 1998). Because the protein is

lipid modified, Hh movement must include a mechanism that prevents this modification

from restrcting Hh to the membraes of the producing cell. One mechansm to

mobilie lipid moded Hh may be to form micelle-lie strctures; in gel fitron

assays, Hh and Shh multimers, which requie both lipid modfications, can be detected

(Calejo et al., 200; Chen et al., 200). Th high molecular weight Hh fraction wil

associate with cell membraes in tissue culture cells while the monomeric forms do not

(Feng et al., 2004; Galet et al., 2003). The hydrophobic moieties could be hidden inside

multimeric micelle-lie strctus to mae the Hhp complexes more soluble in order to

diffue (Chen et al., 2004; Zeng et al., 2001). Therefore, the cholesterol modificaon

could be require for multimerizaion that enables long range movement and proper



gradient formion. The requirement for cholesterol modification in signg is not clear

due to conflcting report from both Drosophila and maalan studies. In some

studies, using Drosophila wing discs and mouse limb buds, the unmodified Hh (Hh

has long range activity (Burke et aI., 1999; Calejo et al., 20; Dawber et aI., 2005; Li et

al., 2006; Porter et ai., 1996b). However, other Drosophila and mamlian studies

suggest that cholesterol is requir for long rage activity (Gallet et al., 2003; Gallet et

al., 200; Goffot et al. , 2003; Lewis et al., 2001).

In Drosophila and vertbrats, the extracllular mat components hepar

sulfate proteoglycans (HSPG) are involved in Hh movement Loss of HSPGs block Hh

movement, and signaling in adjacnt wild-typ cells is impai (Bellaiche et aI., 1998;

Bornemann et al., 200; Desbordes and Sanson, 2003; Han et aI., 200b; Lo et al.

2003 a; Takei et at. , 2004; The et at, 1999). Interestingly, HSPG regulation of Hh

movement depends on cholesterol, as unmodifed HhN is unafected by the loss of

HSPGs (Callejo et al., 200). The cholestel may mediat Hh and HSPG association, as

cholesterol-modified Hh and Shh ar able to bind heparn (Bumcrot et al., 1995; Le et

al., 1994). One interpretation of these reults is that HSPGs are required to mediate

planar movement of cholesterol-modfied Hh across or thugh target cells, but that

unmodified Hh is able to move via fre dision. In support of ths model, unmodified

Hh expresed in the peripodial cell layer of the developing Drosophila wing ca move

though the extrallular spac of the wing lumen while cholesterol-modified Hh is

restrcted to the layer of cells in which it is expresed (Callejo et aI., 200; Galet et al.,

2006).



Recptor-mediated endocytosis ha also ben proposed to regulate the spreang

of Hh. In addition to tranducing the Hh signal Patched (Ptc), the reeptor for Hh, ha

been shown to sequester and limt the range of distrbution by binding and interaling

Hh (Chen and Strhl, 1996; Torrja et aI., 200). Hh is thought to be primay

endocytosed together with Ptc and then ta for degrdaton (Calejo et al., 200),

although Pt-independent cytplasmic Hh parcles have ben detecte as well (Galet

and Therond, 205; Torroja et aI., 200). A role for endocytosis in Hh gradient

formation has ben propose, either as par of trcytosis or by removing Hh to limit the

distribution range. Blockig endocytosis in embryos and wing dics with a dynan

mutat (shibire in Drosophila or ski) does not appe to affect Hh taet gene expression

or spreading (Calejo et aI., 206; Galet et al" 2003; Han et al., 200b; Torrja et al.

2004). These observations suggest that Shi-mediate endocytosis may be reuir for Hh

degradation but not Hh distrbution. However, in these experiments shi is inactivated in

tissues with a prexistig gradient of Hh. It is unclear whether the Hh distrbution

observed reflects ths preexistig pool or newly synthesiz Hh produced following shi

inactivation.

Whle previous studies provided much information about Hh distrbution, these

studies also have some litations that may contribute to conflcting conclusions. One

limitaon that had ben suggested was that overexpressed Hh and/or prexisting pools of

Hh instead of newly produced protein, were examed (Wendler et al., 200). Therefore

the observed ditrbution of Hh may reflect restrbution of preexistig protein instead of

the ability of Hh to move despite the endocytsis block. Ths issue can be addressed by



using an inducible system where the movement of newly synthesized protein is stuied.

Another limitation is that Hh distrbution was examined afr the Hh gradient had reached

a steady state; analysis durig gradient fonnation may provide more informtion about

Hh movement This too can be addressed with an inducible system. Finally,

observations made about Hh distrbution were largely qualitative, while quantitative data

cae primary from taget gene activation insted of determnaton of Hh protein levels.

Ths study has attempted to resolve these issues by quantitatively investigatig the

distrbution of GFP-tagged form of Hh using an inducible expression system. 

determe whether the cholesterol modificaton and/or endocytsis have any effect on the

process of gradient fonnation, functional Hh-GFP with and without the cholesterol-

modification is expressed in a wild-ty or shi mutat background. Specifcally, the

Gat80-Ga14 system was used to temporally express (pulse) Hh-GFP transgenes in their

nonnal expression domain (the posterior comparment of the developing wing); this

method allows the rate of Hh gradent fonnaton over tie to be observed. This study

demonstrats tht both Hhp-GFP and Hh-GFP are present in. punctate structues

(paricles). A system has also ben develope for quantitaive measurement of Hh

ditrbution and found that Hh-GFP migrates fuer than Hhp-GFP while less is

retaned nea the expressing cells. This study demonstrtes that when endocytosis is

blocked, newly synthesized Hhp-GFP is still detected in paricles and ca still move

anteriorly, arguing agait an essential role of trscytosis. Lumenal HhN-GFP parcles

were observed, indicating cholesterol is responsible for retaning Hh on cell surfaces. I

propose that Hhp and Hh spread though both apica and basolatera regions by planar



diffusion and that the cholesterol modificaion .serves to retan Hh on the cell surfac and

promotes formation of a ste gradient.



Results

Generation of Hh-GFP fusion consructs and functiona characteritions.

To study movement and distrbution of newly synthesized lT, lT-GFP fusion

proteins were generaed that ar suitable for both live and fixed tissue experients. The

Hh-GFP fusion constrct (Figure 2. 1A) contans GFP cong sequences placed between

lT amno acids 254 (H) and 255 (V). The sam loction was used previously to generat

functionally tagged Hhp (Burke et aI., 1999; Callejo et al. , 2006), which is expeted to

be processed into a Hhp-GFP and an untagged Hh-C. To express unprocssed HhN-

GFP, an expression construct was made that encodes the N-termus of Hh fused to GFP.

Severa experients were performed to determe wheter Hhp-GFP is

functional. First , HhNp-GFP was constitutively expressed with the Gal4-UAS system

(Brad and Perrimon, 1993) using Hh-Ga4, which would express the trsgene using the

endogenous hh promoter. DsRed protein was coxpresed with the Hh fusion protein to

identify expressing cells and mak the anterior/posteor (Al) bounda in ths and

subsequent experiments. Hhp-GFP was secreted frm the dsRed-expressing cells

simiar to untagged wild-typ HhNp (Figure 2. 1B-D). Second, anti-Hh and anti-GFP

antibodies were used to detect HhNp-GFP and both co-localized with Hhp-GFP (Figure

1E-J). Thrd, Hhp-GFP and Hh-GFP were expressed in salivar glands using the

ubiquitous 71B-Ga14 drver and the glands were extrte to identify the Hh fusion

proteins on a Western blot (Figue 2.1K). For Hh-GFP, an approximately 46 kDa

protein band was detected corrponding to the predcted siz of the N-termnus fused to



GFP (lae 3). For Hhp, an approximtely 70 kDa band representing the uncleaved full

lengt HhF-GFP protein (U) and a 46 kDa band representing the cleaved Hhp-FP

signalng molecule (P, lane 4) were observed These results indicate that both Hh-GFP

fusion proteins are expressed and properly processed. Fourt, the abilty of Hhp-GFP

to rescue the embryonic lethalty of homozygous 
GSl mutats was teste. Expresing

Hhp-GFP in the posterior comparent using the En-Ga4 drver GSI 
mutats were

fully rescued to adulthood. These ans appeard to develop normly, 
demonstrte by a normal though slightly smaer wing (Figure 2. 1M). The wings of

fles ectopically expressing functional untagged Hhp (Portr et al. . 1996a) and wings

expressing HhNp-GFP had simar phenotypes of merged wing veins L2 and L3 (Figure

iN and 2. 10). Finaly, the abilty of Hhp-GFP to rescue 
GSl mutant embryonic

phenotypes was tested. Cuticle prepartions demonstrated that HhNp-GFP expressed in

the posterior comparment with the En-Ga14 driver in the 
GSl mutant was able to rescue

the mutat "lawn of denticles" phenoty in the expeted Mendelian raios (Figure 2. 1P-

R and Table 1). Additionaly, in situ hybridiztion showed that posterior Hhp-GFP

expression restores activation of rhomboid (rho). an embryonic Hh taget gene. in 

GSJ

mutat embryos. These results demonstre that the Hb-GFP fusion proteins are properly

synthesized, and that Hhp-GFP has the same properties as previously described for

wild-typ Hhp (Ingham, 1998).
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(A) Scheme of HhF-GFP (middle) and HhN-GFP (bottom) fusion constrcts and

predcted procsing as compar to wild-typ Hh (top). Hh-GFP is predcted to be

processed into Hhp-GFP.



(B-D) Hhp-GFP (green, C) is expresse in posterior cells labeled by fluorescent protein

dsRed (red, D) and is secret (B), simlar to wild-type Hhp (NP bounda maed by

a solid white lie). Scale bar: 5f1m

(E-J) Hhp-GFP (E H) can be dette using the anti-Hh antiboy (F,G) and anti-GFP

antibody (I,J). Scae bar: 8f1m

(K) Wester blot of salivar gland protein extrcts labled with anti-GFP (upper panel)

or tubulin (lower panel). Upper panel: as negative contrls, extrts of wild-typ W
II18

larae (lane 1) and larae expressing an untaged Hh (lae 5) were used CD8-GFP was

used as a positive control (lane2). A single 46 kDa band is seen in the lane with HhN-

GFP expressing larae (lane 3) and in the lane load with extract of HhF-GFP

expressing larae, two bands of 70 kDa and 46 kDa are seen (lane 4; U: unprocessed full-

length HhF-GFP, P: procesed HhNp-GFP). Lower panel: the same blot was reprobed

with anti-tubulin for loading control.

(L-O) HhF expression in adult wings. (L) Wild-ty wing. (M) Wing from HhF-GFP

rescue of 
GSI mutat ha a simla phenotyp to wild-typ. (N) As a positive control

untaged Hh is expressed with 7lB-G4 resulting in merged veins L2 and L3. (0)

Ectopic expression of Hh-GFP ha a similar phenotyp to untagged Hh.

(P-R) Hh-GFP expression resues GSJ mutat cuticle phenotype. (P) Wild-

embryonic cuticle. (Q) 

GSI
mutat embryonic cuticle is charcteried by a 40% length

of wild-type, loss of naked cuticle, and the "lawn of dentides" phenotype. (R) HhF-GFP

expression under the En-GaI4 promoter can rescue the mutat phenotype, restoring

some of the naked cuticle in the segments.
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(S-U) Hh-GFP expression restores rho expressIOn il 
GS1 mutat. (8) In situ

hybridization of rho in a wild-type embryo. (T) rho expression in the 
GS1 mutant is

drticaly reduced, (U) HhF-GFP expression under the En-Ga4 promote restores

expression of rho in the 
GS1 mutat.

Table 1. HhF-GFP Rescue cuticles
Genotye Normal Intermediate

En-GaI4; h M3 89.5% (325) 2% (7)
En-Gal4 HhF-GFP; hhGSt

ITM3 74% (218) 25% (71)

Percentages were calculated, total numbers are indicated in parenthesis.

Mutant

5% (31)
1% (4)
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Analysis of Hhp-GFP locization in livig tissue.

The Drosophila laral wing imaginal disc consists of two layers of epithelial

cells, separted by the peripoiallumen. On the apical side, a squaous epithelial layer

form the peripoial membrae, while on the bas side, the disc epithelium is found that

wil give rise to the wing and notum. Most previous studies exploring Hhp localizaton

in the disc epithelium have been perfonned with fied discs. In these studies and 

own experiments with fIXed disc, most Hhp in the anterior compaent is found in

punctate strctures, as deteted by imunostaning. To rule out the possibility of

fIXation-induce alteratons in Hh loction, I took advantae of the GFP ta 

examne the localization of Hhp-GFP in live tisues. Hh-Gal4 was used to express

Hhp-GFP in the endogenous Hh expression domain in the posterior comparent of the

wing imaginal disc (Tanimoto et at, 2000). In live discs , HhNp-GFP co-localized with

the membrane marker FM4-64 in the posterior comparent and was also found in

paricles in both the poterior and anterior comparents (Figu 2.2A). These pacles

were found in both apica and basolatra regions (Figue 2.2B). Hhp has previously

been observed in endosomes (Calejo et al., 200; Gaet et aI. , 2003; Galet and Therond,

2005; Torroja et al., 200). Endocytosed dextr was used to determe whether the

paricles contaning HhNp-GFP in live discs included endosomes. In both the anterior

and posterior comparents, many, but not all, of the Hhp-GFP parcles co-loczed

with dextr (Figure 2.2C-D), confinning that at leat some Hhp parcles correspond to

endosomes. The non-co-Iocaling Hhp-GFP vesicles could represent endosomes
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formed before or afr dextr incubation, non-endocytc vesicles, or extracellular

paricles.

The extrellular distrbution of Hhp-GFP was investigate using an in vivo

extracellula labelig method as describe by Strgin and 
Cohen (Strgin and Cohen,

2000). In ths procedure, live dics ar incubated with anti-GFP antibody and then

washed prior to fixation and detergent trtment. In contrl experiments using this

method, a protein with an extrcellular GFP ta (GFP-Dally-lie) was detected while an

intrllular YFP ta (Pt- YF) was not detete demonstrg that the stang

procedure reliably distinguhed between extrllula and intracllula locizon

(Figure 2.3A-B). When similar experiments were performed for HhNp-GFP. strong

extrcellula stang was observed in the apical and basal regions in the posterior

comparment of the disc where Hh is produce (Figure 2.2E and Figure 2.3C-D). In the

anterior comparment, extrcellular HhNp-GFP was detected in apical paricles (Figure

2E and Figure 2.3C-D, arws), basolatera paicles (Figue 2.2E and Figu 2.3C-

arowhea) and on the basolater membrae (Figure 2.2E and Figure 2.3C-D, bracket).

These lociztion reults are consistent with previously publihed data for both untagged

and tagged Hhp (Calejo et al., 2006; Galet et al.. 200; Torroja et al., 2004). In

conclusion, the largely punctate location of taged and natve Hh observed in the

anterior comparment of the developing wing afr fixation acurately reflects the

localization of Hh in living tissues.



Figure 2.2 - Hhp-GFP loc at the membrane, in endocytic compartents, and

extracelularly.



Figure 2.2 - Hhp-GFP locli at the membrae, in endocytic compartments, and

extracellularly.

(A-E) Locaization of Hhp-GFP (gn), expresse with Hh-G4, with FM4-64 (red

B), dextran (red, C-D), as well as extrllula lalig with the anti-GFP antibody and

DCAD to mar the apical region (re and blue, E). (B, E)Z-sections. Hhp-GFP (A'

co-loclizes with FM4-64 (A") at the membrae in the posterior (Al boundar marked

by the solid white line) as seen in th merge (A). Anterior Hhp-GFP appe 

paricles (arows). Most of the parcles loclie apicaly (B). Many of the anterior

Hhp-GFP paricles co-loce (arws in C-D) with dextr but some can be found

without dextran (arowheads in C-D). Incubaton of anti-GFP in cold medium detects

extrcellular Hhp-GFP in the anteor apicaly in paricles (arws in E), and

basolateral1y both in paricles (arowheads in E) and with a membrane association

(bracket in E). Scale bar: 811



Figure 2.3 - Extracelular li loca apicaly in partcles and basolaterally in

partcles and along the membrane.



Figure 2.3 - Extracellular Hh locze apically in partcles and baslaterally in

particles and along the membrae.

(A-B) Pt- YFP (green, A) and GFP-Dlp (gren, B), and extrllular lalig (red). As

controls for the extrllula labeling protocol with the anti-GFP antibody, Pt- YF was

used as a negative control since YF is athed to the cytoplasmic region of Pt and

GFP-Dlp was used as a positive control since GFP is athed to the extrcellular region

of DIp.

(C-D) HhNp-GFP (grn), extrllular labling with the anti-GFP antibody (red), and

DCAD to mar the apical region (blue- C,C" , ; purle-C'" , D"'

). 

Two separate

examles of extrcellular HhNp-GFP, extrllular Hhp-GFP is dette in the anterior

apically in paricles (arows in C and D), and baslatraly both in parcles (arwhea

in C and D) and with a membrane association (bracket in C and D).



Induction and quantitative analysis of a Hh gradient.

In the experiments described above and by other groups, Hh distribution in the

developing wing is characterized following expression over a period of several days. To

examne the movement and distrbution of newly synthesizd Hh the Ga80-Ga4

temperature-sensitive inducible system was employed (McGire et al., 2003). At low

temperature, Ga80 inhbits Ga4 activity (Figure 2.4A). Following a shift to higher

temperature, Gal80 is inactivated and Hh-Gal4 activates expression of Hh-GFP in

posterior wing disc cells. With ths system, Hh distrbution was analyzed at different

time points following induction (Figure 2.5). At 8 hour following induction, Hh-GFP

exists as parcles in the anterior comparent, primary nea the Al boundar. At 

and 72 hour following induction, increased numbers of paricles are observed, both nea

the Al boundar and further from the expressing cells (Figures 2. 5, 2. , and 2.7).

To examne how different factors alter the distrbution of newly synthesized Hh

an assay was develope to quantify the ditace of individual parcles of Hh-GFP frm

the Al boundar. Firt, a series of optical setions were trsformed into a thee-

dimensional reconstrction of Hh-GFP and dsRed locizon in a region of the wing

disc near the Al bounda (Figure 2.7 A). Next, the dsRed expressing cells were

convert into a single surace and the ditace of Hh-GFP parcles from this surace

was determned (see Methods and Figu 2.4A-C, individual data sets ar shown 

Figure 2.9). Because the number of parcles induce was varable, the percntages of

Hh-GFP parcles at different distaces frm the Al bounda were used to normalize



distrbutions profIes with and between different experienta conditions (Figues 2.

and 2.8).

To establish how long the Hh grdient taes to form (Figures 2.5 and 2.7), we

analyzed the change in Hhp-GFP distribution at 8, 24, and 72 hours following induction

(Figu 2.7D-F, Table 2). At eah tie point, the majority of Hhp-GFP was detected

within 8f1m (approxiately 3-4 cell wide) of the Al boundar. Ths distace represents

the average width of the region expressing high levels of the Hh taget gene ptc

(unpublished results). The percentage of HhNp-GFP paricles in ths region significantly

dereased from 8 to 24 hour, but not frm 24 to 72 hours (fable 3). Similarly, both the

medan and the 90th percentile distace values for the Hhp-GFP distrbutions

significantly increaed from 8 to 24 hour, but not from 24 to 72 hours. From ths

analysis , I conclude that the HhNp-GFP gradient is stil forming at 8 hours and is

approaching its final shape by 24 hours.
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Figure 2.4 - Schematic diagram of Ga14-Gal80 inducible expression system.

(A) Inducing Hh-GFP expresion. Vials ar kept at 18"C, the Ga80 permssive

temperature where tubuln-Gal80 blocks Gal4-mediated trscription. Upon a shift to

C, Gal80 repression is relieved and Gal4 trription proc. Hh-GFP is expressed

in the posterior cells with Hh-GaI4, and UAS-dRed marks the expressing cells.

(B) Inducing Hh-GFP expression in shi mutat background. Vials are kept at 18 C, the

Ga80 permssive temprature and 
shitsl mutat restrctive temperature. Upon a shift to

C, Gal4 transcription proceeds whie endocytosis is blocked Wild-ty Shi is

expressed in the posterior to restore endocytosis in the expressing cell. The resultig

Hh-GFP movement into the anterior would be due solely to shi independent mechams.

Hh-Gal4 is used agai to drve transgene expression.



Figure 2.5 - Cholesterol retrcts Hhp-GFP ditribution but endocosis is not

reuire for distribution.
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Figure 2.5 - Cholesterol retrcts HhNp-GFP distribution but endocytosis is not

required for distribution.

(A-H) Induced expression of Hbp-GFP in wild-typ (A-B) and sht background (C-

and HhN-GFP in wild-typ (E-F) and shi background (G-H). (A-H) 2SJ.m projectio

(A' - ) 20flm Z-section projections. At 8hr, Hhp-GFP parcles are found nea the 

boundar, marked by the solid white lie (A,A'). Afr 24hr, more pacles ca be found

fuer away (B, ). Hh-GFP parcles ar detecte fuer from the NP bounda than

Hhp-GFP at both time points (E-F). When endocytosis is blocked, Hhp-GFP paricles

are stil detecte in anterior cells (C-D). In wild-tye and 
shi'si backgrounds, Hhp-GFP

paricles appe closer to the apica side (A' - ) as well as Hh-GFP in wild-type.

When endocytosis is blocked Hh-GFP moves into the anterior but thre is reduced

punctate staining and more membrae accumulation (G-
H). prily on the apical side

of cells (0' - ). Scale bar: Sf1m
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Figure 2.6 - Bh gradient form by 24r of inducton.

(A-D) Induce expression of Hhp-GFP (A-B) and Hh-GFP (C-D) in wild-tye

background. (A-D)25 m projections; (A' ) 20 m Z-section projections. 24 and 72hr

distrbution of Hhp-GFP appe simlar, also seen for Hh-GFP. Scae bar: 5



Figure 2. Quantitative analysis of Bh-GFP distribution: Cholesterol is reuired to

retrict ditribution but endocytsis is not reuire for ditribution.
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Figure 2.7 - Quantitative analysis of Hh-GFP distribution: Cholesterol is reuired to

retrict distribution but endocytsis is not reuire for distribution.

(A-C) Schematic ilustrtion of quantitative analysis. (A) Thee-dimensional

reconstrction of a confocal z-stak with Hh-GFP (green) and dsRed (red) markig the

expressing cells. (B) Generation of isosurfaces. DsRed isosurfing was used 

generate a distace map used to measure distaces of Hh-GFP paricles. Hh-GFP

paricles were isosurfaced to identify parcles using an intensity theshold and size

criteria. (C) Depiction of paricle distace meaurments. Parcles were meaured for

the shortest distace to the expressing cells (lines depict manual meaurements but 

meaurements were calculated in an automat fashion). Scale bar: 5p.m

(D-F) Mean of normalzed Hhp-GFP (green) versus Hh-GFP (red) distrbution

profies in a wild-tye background. AU samples were normized to generate percentages

of particles at the distances. Normalized data was then averaged to generate distrbution

profies. Enlargement of the distrbution nea the x-axis shows more Hh-GFP is

detected fuer from the Al boundar (0 on the x-axs) at 8 (D; Hhp-GFP n=5, Hh-

GFP n=4) and 24hr (E; HhNp-GFP n=16, HhN-GFP 0=7). The same is seen at 72hr (F;

Hhp-GFP n=5, Hh-GFP n=6).

(G-H) Mea of normalzed Hhp-GFP distribution profies in wild-typ background

(green) versus 
sht mutat background (blue). At 8 (G; shtsJ n=4) and 24hr (H; shitsJ

n=7), HhNp-GFP in the mutat background is less restrcted and found furter away from

the Al bounda than in the wild-type background. The same HhNp-GFP distrbution

profies in the wild-type background from D and E are used for G and H, respetively.
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Figure 2. - Full ditribution profiles of Hh-GFP.

(A-C) Mean of normized HhNp-GFP (green) versus HhN-GFP (red) distrbution

profies in a wild-type background at 8 (A), 24 (B), and 12hr (C) tie points. More

Hhp-GFP is found closer to the Al boundar (0 on the x-axis) than Hh-GFP at 8hr

(A), 24br (B), and 72hr (C) time points.

(D-E) Mea of normalized Hhp-GFP distrbution profies in wild-typ background

(gren) versus sht mutat background (blue). More Hhp-GFP is also found closer to

the Al boundar (0 on the x-axis) in the wild-type background than in th sht mutat

background at 8 (D) and 24hr (E). The same HhNp-GFP distrbution profies in the wild-

ty background from A and B are used for D and E, respetively.



Table 2. Anal is of Hh-GFP aricle distribution in wi discs
Time point Sample Meian 90th 

percntile distance

8hr HhNp-GFP 2.S)1m :i 0.6)1m 8J1 :i 1.4)1m
HhN-GFP 4.4)m :i 3.0J1 27)1m :i 15.8)1m

HhNp-GFP(shf1) 2.71lm :iO.4)m 10J:i 1.81l

% wihin SJm
93 :i 3.
75:i 18.

85:t6.

24hr HhNp-GFP 3.5J1 :t 0.9J1
HhN-GFP 6.1J1 :t 1.
HhNp-GFP(shf1) 4.8) :t 1.2J1

11 J1 :t 2.41l
25J1 :t 7.0ll
16J1 :t 4.8ll

82:i7.
64:t 10.

70:t8.

72hr HhNp-GFP 3.8)1m :t 0.6J1 121lm :i 2. 1 Il
HhN-GFP 5.1J1:t 1.21lm 31J1:t 3.7J1

Between 4-16 discs were counted for each genoty an time point.
calculated for each measurement.

79:t8.
70 :! 11.

Standard deviation was

Table 3. ANOV A calculated P-values for signifcace
Median peile distance
..0.0001 -d.OO11887 0.0131

HhNp vs. HhN
HhNp vs. HhNp(shjS1

% wiin 81lm

...

0001
0417

8hrvs.24hr 0.0009 0.0011 0.0131
24hr vs. 72hr 0.861 0.1341 0.7693

There was no significat interacton beeen th time factor an the genoty factor. Therefore,
the significace of the main effec (time irrespetie of genoty or genotye irrespecive of
time) are reported. P-values less than are 0.05 are considered signif.



Figure 2.9 - Individual hisgr of raw data with median, 90th percentile dince
and % withi 8JI values.
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Figure 2.9 - Individua hisgra of raw data with medan, 90
th percentile ditance,

and % within 8fU values.

(A) Hhp-GFP at 8hr tie point: n=5

(B) Hhp-GFP at 24hr time point: n=16

(C) Hhp-GFP at 72hr time point: n=5

(D) Hh-GFP at 8hr time point: n=4

(E) Hh-GFP at 24hr time point: n= 

(F) Hh-GFP at 72hr time point: n=6

(G) Hhp-GFP in shl mutat background at 8hr time point n=4

(H) HhNp-GFP in shitsl mutat background at 8hr time point n=7



Cholesterol modfication is reui for proper Db distribution.

Having identied tie points when newly synthesiz HhNp is fonnng a

grdient (8 and 24 hour) or has reahed a steady state (72 hour), the distrbution of

Hh-GFP, which lacks the cholesterol modficaion, was examned at these sae time

points. Similar to Hhp-GFP, the majority of Hh-GFP was detected with the fIrt

811 from the Al bounda (Table 2) and the medan value, 90
th percentile distace, and

percent of paricles at 8J.m changed signficantly from 8 to 24 hours, but not from 24 to

72 hours (Table 3 and Methods). However, the shap of the gradient is different for llN

than Hhp. Compasons of composite distrbution profies reveal that the distrbution of

Hh-GFP is shift furter from the Al bounda at all tie points (Figure 2.7E-F).

The medan and 90th percentile distace value are .signficantly grear for Hh-GFP

than for HhNp-GFP (Tables 2 and 3) indicating that Hh is able to move furter from the

producing cells. In addition, the percentage of Hh-GFP within 811 was significantly

lower (Tables 2 and 3). Ths quantitave analysis extends previous studies indicating

that Hh is able to move furter into the anteror compent th Hhp (Bure et aI.,

1999; Callejo et al., 200; Dawber et aI., 2005). Ths diference is not simply a result of

greater amounts of Hh being secrete from producing cell. Rather, the cholesterol

modification of ll contributes to the shape of the grient. Speificaly, cholesterol is

required to creae a steeper Hh gradient with a higher pecentage near the Al bounda

and a decreaed maximum distace trveled.



Movement of newly synthesize HhNp-FP particles doe not require Shi.

Several studies have shown that Hh is internalzed with Pt and locales in

endocytic comparents though a mechanm that reuies the Drosophiln Dynamn

homolog Shi (Caejo et al., 2006; Han et al., 200b; Torroja et at, 200); transient

inbition of Shi-dependent endocytosis blocks HI internalation, but does not affect

Hh-dependent gene expression. These experiments may indicate that endocytosis is not

reuir for movement of Hh into its taget cells. However, because HI is synthesized

prior to Shi inbition, it is not clea wheter Hh observed in taget cells is newly

synthesized or was present prior to ski inactivaton.

To address ths question, the inducible Hh-GFP system was used to

simultaeously initiate a pulse of Hh-GFP expression in the posterior comparent and

inhibit Shi function in the anterior comparment. Initially, HhNp-GFP was expressed

throughout development (i.e. without Ga180) and then endocytosis was blocked for 8

hours with the temperature sensitive mutaion shCS under these conditions, Hhp-GFP

accumulated at the ba membraes of the anterior cells simlar to previously published

results (Calejo et al., 2006; Han et al., 200b; Torroja et al., 200) and in more apical

punctate strctues (Figure 2.10). Next, the effects of simultaeously inducing Hh-GFP

expression while transiently blocking endocytosis were examned. In these experients

using the Gal80-Gal4 system, the same temperatue shi induces Hh-GFP and dsRed

expression and inactivates shl In addition, wild-ty Shi was also expressed in the

posterior comparent, rescuing the endocytosis defect in the expressing cells (Figu

2.4B). Thus, Hh-GFP was induce in the posterior cells concurrntly with a block in Shi-



dependent endocytosis. Newly synthesized HhNp-GFP was observed in the anterior

comparment even when shi function was simultaneously inactivate (Figure 2.5C' and

). The absence of cytoplasmic parcles of Hh-GFP confirms that endocytosis is

blocked in these experients (Figure 2. 13, discuss below). These results dirtly

demonstrate that Hh does not require Shi function to move into and across taget cells in

the anterior comparent Based on these observations, I conclude tht Shi-dependent

trscytosis is not essential for movement of Hhp-GFP.

In contrast to the results with constitutively expressed Hhp-GFP which

accumulated on the baolatera membraes of th anterior comparent in the absence of

Shi, induce Hhp-GFP was predominantly found in parcles and no basal membrane

accumulation was observed (Figure 2.5). These parcles could be detected at both 8 and

24 hours when Shi-dependent endocytosis is blocked (Figure 2.5C-D) and could be found

in both apical and basolateral positions.

The distrbution of Hhp-GFP paicles in the absence of Shi fuction was

quantified as describe above. Overal, the distrbution profiles ar similar for Hhp-

GFP in the wild-typ and shF mutat backgrunds (Figures 2.7 and 2.8) with the

majority of Hhp-GFP found within 8f1m of the Al boundar (Table 2). The medan

values were not signficantly different in the shF mutat th in a wild-tye background

althugh the percentage of parcles with 8f1m was signcatly dierent in the shi1Sl

mutat (Table 3). These results suggest that while Hhp-GFP movement thugh the

anterior comparent is not drticaly altere when Shi-mediated endocytosis is

blocked, Shi function does contrbute to the shape of the Hh gradient; following



inhibition of Shi, the Hhp-GFP grient is less steep with a lower percentage of

paricles retaed nea the Al bounda.

The distrbution of newly synthesized Hh-GFP following shi inactivation was

also examned. Under these conditions, HhN-GFP predominantly accumulate at the

apical surace of the cells (Fgue 2.5G-H), although some basolatera puncta strctues

were still detected. Hh-GFP could also be observed in the lumenal space between the

peripodial and disc proper cell layers, consistent with previous reports where 
Hh ha

been shown to trvers the lumen (Calejo et at, 200; Gaet et al., 200); interestingly,

at leat some of the lumenal Hh-GFP was present as punctate strctu (Figure 2. 11).

Quatitave analysis of tota HhN-GFP parcle distrbution in these experients was not

possible since the extrcellular acumulatQn in the 

shitsl mutat prevented reliable

identification of individual paricles. Nonetheless, visua inspetion of the Hh-GFP

distribution clearly indicates that Shi-
dependent endocytosis is not essential for

movement of Hh-GFP across the anterior comparent and that much higher levels of

apical Hh-GFP accumulate in the absence of Shi function (Figu 2.5G-H). These

results suggest that most Hh-GFP is apically sereted and then degraded via Shi-

dependent endocytosis. However, the presence of some basolateral HhN-GFP in these

experients indicates that not all Hh-GFP is apically secrete.



Figure 2.10 - Constiutively expresed Hhp-GFP accmulat at basal membraes

afer blockig endocytosis.

(A-D) Hhp-GFP (grn) localzation prior to (A) and af an 8hr (B-D) endocytosis

block in the shitsl mutat backgrund with Phalloidi (re) as a cell surac marker; 3f1m

Z-section projections. Hhp-GFP does not nonny accumulate at cell surfaces in the

anterior comparent (NP bounda is marked by a solid white line). At the 
shi

permssive temperature, Hhp-GFPaccumulates priarly at the basal cell suraces in

the anterior to varying degrees (B-high, C-,intermediate, D-low). Scale bar 5f1m



Figu 2.11 GFP is dete in the lumen

(A-D)Z-setionsof HhNp-GFP (grn, A-B) and Hh.;GFP (gr, C-D) location

afetan Shr induction and 8hr endocytosis block in the 
shi mutat backgrund with

Phalloidi (re) as a cell surace marer (Al bounda mared by the solid white lie).

In two examles for eah, Hh-GFP. iSdetecte in the lumen (arow), the ar between

the top peripodial epithelial layer and bottom di proper epithelial layer, while Hhp-

GFP is not found in the lumenal space. Scale ba 5J1m



Ptc-independent punctte structures requir cholesterol and endocytosis.

In all of the experients using inducible Hh-GFP, punctae staning patterns were

observed. These parcles were classifed into four groups using Phalloidin which labels

cortica actin nea the cell surface marng cell outlines, and an antibody specific for the

Hh receptor Ptc (Figures 2. 12, 2. 13, and 2. 14). Approximaly 60 percent of induced

Hhp-GFP or HhN-GFP paricles in the anterior compent of wild typ discs were 

or near the cell surac and classified as "surace-associatd" (Table 4); a substatial

frction of these parcles were associated with Pt. With the 40 percent of Hhp-GFP

that was cytoplasmic, there was an even distrbution of Hhp-GFP cytoplasmic vesicles

with and without Ptc, suggesting that HhNp ca be endocytosed without binding to Ptc

(Table 5). In contrast, nealy all cytoplasmic Hh-GFP was associated with Ptc

suggesting that the cholesterol modification mediates Ptc-independent endocytosis (Table

5). In Sh( animals, very few cytoplasmic HhNp-GFP pa11icles could be detected (6

percent of tota, Table 4) and none of them appeard to coIocali with Ptc (Table 5).

Ths result confirms that inbition of Shi blocks most endocytosis of Hh, including 

Pt-dependent endocytosis. The majority of Ptc-independent endocytosis is also blocked.

It caot be definitively concluded whether the classifcation of remaining Ptc-negatve

Hh-GFP paricles as cytoplasmic are due to incomplete cell surace labling with

Phalloidin or represent cytoplamic parcles form by a Ptc- and Shi-independent

mechansm.

.!'i:.



% T ota
HhNp-GFP 40 :f 7
HhN-GFP 4O:f 12
HhNp-GFP(shr) 6 :f 2
3 samples were counted for
membrne-associated.

Hh-GFP co-Iocaizatin wi Ptc in wing dis
Cytoplasmic%Ptc %no Ptc
22:f 7 18:f 237:f11 3:f2

6:f2
each genoty. Phalloidin

Membrane-associated
% T ota %Ptc %no Ptc

60:f8 16:f6 44:f7
60:f12 22:f8 38:f11
94 :f 2 27 :f 1 67 :f 1

co-Jization was counted as

Table 4.

Table 5. Non-membrane-asociated Hh-GFP coiocizaon with Ptc in wing discs

% CoIoclized wi Ptc % Not coIoclized with Ptc55 :f 7 45 :f 792:f3 8:f3
100

HhNp-GFP
HhN-GFP
HhNp-GFP(shI

Since inhibition of Shi blocks mQst or al cytoplasmic parcles (Table 4), but

leads to greater movement though the anterior comparment (Table 2), these results

indicate that transcytosis does not playa major role in spreading Hhp-GFP. In addition

a Ptc-independent mechansm for Hhp-GFP uptae is observed that is dependent on

both the cholesterol modification and endocytosis.



Figure 2.12 - Quantifcation scheme of Hh-GFP membrane localization and co-

locaization with 

(A) Hh-GFP suraces were generaed to identi parcles bas on the same criteria used

in pacle distace meaurements. Each parcle was individually locate for paricle

classification (white arow connected to box).

(B-D) Classification of paricles. Afr parCle identification, Hh-GFP paricles (grn)

were locate in XY, XZ, andYZ views (B). Co-localation was determed with

Phaloidin (purple, C) and Pt (red D) in these views though the z-stack (white arows

identify the same paricle in XZ and YZ views tht was origially identified in th 

view). Scae bar: 5J1m



Figre 2.13 - Non-Ptc containg Hh-GFP particles reuire cholesterol but not

endocytosis.
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Figure 2.13 - Non-Ptc containing Hh-GFP particles require cholesterol but not

endocytis.

(A-C) Ptc co-localzation with Hhp-GFP (A). Hh-GFP (B), and HhNp-GFP in the

shitsJ background (C) afr expression induce for 8hr. (A-C) Hh-GFP (green) labeled

with Phaoidin (purple). (A' ) Hh-GFP (grn) labled with Ptc (red). (A" ) Hh-

GFP only. (A C"' ) Ptc only. 4 classes of Hh-GFP parcles are seen: non-Phalloidin

associated (cytoplasmic) with Pt (white arw), non-Phaloidi associated (cytoplasmic)

without Ptc (white arowhea), Phalloidin (membrae) associate with Pt (yellow

arow), Phalloidi (membrae) assoiated withut Pt (yellow arowhead). Most Hhp-

GFP paricles ar membrae-associate and do not conta Pt, but cytoplasmic parcles

have a relatively even distrbution with and without Ptc. More Hh-GFP also localizes

with Phalloidin, and almost an cytoplasmic HhN-GFP paricles contain Ptc. HhNp-GFP

paricles in sh;tJ mutant background are Phalloidin-associated and many do not contain

Ptc. The Al bounda is maked by a solid wbite line. Scae bar 5flm



Figure 2.14 - Non-Pt contaning Bh-GFP particles require cholesterol but not

endocytis (Z-econs).
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Figure 2.14 - Non-Ptc containg Hh-GFP particles require cholesterol but not

endocytosis (Z-secons).

(A-C) Z-section of Pt co-localzation with Hhp-GFP (A), HhN-GFP (B), and HhNp-

GFP in the sht background (C) afr expression induced for 8hr. (A-C) Hh-GFP (green)

labeled with Phaloidin (purle). 
(A' -C' ) Hh-GFP (geen) labeled with Ptc (red). (A"

) Hh-GFP only. (A C"' ) Pt only. 4 classes of Hh-GFP paricles are seen: non-

Phaoidin associate (cytoplamic) with Ptc (white arw), non-Phaoidi associate

(cytoplasmi ) without Ptc (white arrowhea), Phalloidin (membrae) 
associated with 

(yellow arow), Phaoidi (membrae) asociat without Pt (yellow arowhead). Most

Hhp-GFP paricles are Phaloidin-associat and do not contan 
Ptc, but cytoplasmic

paricles have a relatively even distribution with and without Ptc. 
More Hh-GFP alo

localizes with Phalloidin, and almost all of the cytoplasmi HhN-GFP paricles contan

Ptc. HhNp-GFP paricles in 
sht mutant background are Phalloidin-associated and many

do not conta Ptc. The NP bounda is maked by a solid white line. Scale bar: 5 Jim



Discion

Hh-GFP distribution and gradient formation

Inducible and functional GFP-tagged versions of full length and N-tennnal Hh

have been generated, which allows the study of newly synthesized Hh movement and

distrbution in live samples, as well as fIxed tissues. The initial analysis of Hhp-GFP

localiztion in living tissue demonstrte simiar loclizaion to endogenous HhNp, in

parcles that were mostly endosomes in th anterior. Upon close examation of Hhp-

GFP and Hh-GFP distrbution, both were found in puncta strctures that loclized

more apicaly in the anterior comparent, although basolatra strctures were also

observed. It was also seen that the Hh grdient appe to reuir a minium of 24 hours

to fully form. The minimum Hhp rate of movement is approximated to be at leat

mIour distance of the 90th percentile over the fit 8 hours) and the 90

percentile distace at m at the furtest time point (72 hours). This rate of Hh

distrbution is a minimum caculate ra, and is slower than the report ra of Dpp

grdient formon of 6-8 hour (Entchev et al., 200) and the spe of Activin diffion

of 300flm in a few hours (Gurdon et al., 1994). However, more time points are 
neeed to

detennne the exact rate of Hh grent formaton for comparson to diffsion 

trascytosis raes.

HhNp gradient formtion throug planr diion

Previous studies used a block in endocytosis to tr to separte the mechansms of

diffusion, which should not requir endocytsis, and trytosis, which should require



endocytosis. Wild tye Shi was expresse in 
the posterior cells of 

sht mutat discs and

diffuion versus trscytosis of a pulse of newly produced Hh was studied. This enabled

a simultaeous production of Hh and a block of endocytosis in the taget cells to examne

Hh movement. Unexpetedly, HhNp-GFP parcles were observed even though

endocytosis had ben blocked. Upon closer examation, alost all of these paricles

were associated with the cell surfac and not cytoplasmic, indicatig these were not

intrllular trcytotic vesicles. Ths suggests tht cycles of vesicular endocytosis and

exocytosis are unlely to contrbute to movement of Hhp. The absence of Hhp-GFP

parcles in the lumen when endocytosis was blocked indicates that wild-typ Hh has

restrcted planar movement, as previously demonstrted (Calejo et al., 2006). These

observations support the model of Hhp-GFP distrbution via planar dision.

Cholesterol is required for the steep HbNp grdient

Hh-GFP was obsered to be able to trvel th ties faster than Hhp-GFP

(27f1ID versus 8f1m distance of the 90
th percentile over th fit 8 hour) and to taget

more distat cells in the anteror compent (31f1m distace of the 90th 
percentile at the

fuest time point of 72 hour), consistent with ealier observatons that Hh had a

longe rage than Hhp (Burke et aI., 1999; Callejo et aI., 2006; Dawber et aI., 2005).

Hhp-GFP has a steep gradient with a shar decline and the cholesterol is required for

formg ths steep grent, as demonstrte by the higher percentage of Hhp-GFP

parcles withn the flft 8f1m from the expressing cells in comparson to Hh-GFP.

Hhp activates higher levels of the short rage taget genes en and ptc (Caejo et al.



206; Dawber et al., 2005), and ths suggests th the purpse of th cholesterol

modification is to retan Hhp closer to the expresing cells. resultig in a precise region

of short rage taget gene activation.

Hh-GFP without the cholesterol was also able to trvel into the anterior

comparment in the absence of endocytosis. When endocytosis is blocked Hh-GFP

was found to acumulate at high levels in the extrcellular lumenal spae beteen the

dic proper and the peripodial layer. Ths observaton is simiar to a previous report

(Caejo et al., 2006), suggestig that Hh-GFP is fr to diffue thee-dimensionay,

and again evidence that the cholesterol acts to restrct Hhp movement.

Previous studies have observed that Hh is secreted from the pepodal cells and

signals to the columar epithelial cells (Caejo et al., 200; Gallet et al., 200).

However, I believe that peripoial HhN-GFP has a minimal contrbution on the

distrbution profie. Since the posterior comparent of the peripodial membrae

overlies the setion that the meaurement dat originat from, th contrbution from the

peripodial membrae was taen into account by subtrcting the Hh signal at the end of

the distrbution profile frm the ret of the dat set. Subtrting ths signal did not

significatly alter thes reults and conclusions.

Ptc independent vesices

Furer examination of the Hh-GFP parcles detected four classes of paricles

including Ptc-independent cytoplasmic vesicles. Interestigly, Hhp-FP was observed

to have a significatly higher percentage of these Ptc-independent vesicles than HhN-



GFP. Previous studies have al observed Ptc-independent strctures (Callejo et al.,

200; Gallet and Therond, 2005; Gorfel et aI., 2005; Torroja et aI., 2004). However

there are distinct differences in my observatons from previous studies. Previous results

showed that most of Hhp co-loces with Ptc internally (Callejo et al., 200; Torroja

et at, 200) while a high proporton of Hh does not co-localize with Ptc (Callejo et al.,

200); however th study demonstred that there was an equal frction of Hhp that

did and did not co-localze with Pt intely while most intracellular Hh co-localized

with Pt. Since these previous studies were done at the Hhp grdient steady sta, the

Ptc reeptor could have ben saurated by ths point, resultig in higher levels of Hhp

and Ptc co-locization (Calejo et aI., 200; Torrja et al., 2004). Additionally, clones

looking at Hh and Ptc co-locization appe to be outside of the high Ptc-expresing

stripe (Callejo et aI. , 2006) and since there is less Ptc there, one might conclude that there

is less Ptc co-localization.

The Ptc-independent vesicles could represent Hhp-GFP that has somehow

dissociated from Ptc afr interntion, possibly as a par of a reycling mechansm.

C.elegans Hh-related peptides ar sort to multivesicular bodes (Ms), then recycled

back to the apical surac for secretion (Legeois et aI. , 200). However, a recent study

reported that Hh does not go though the Rab II-medated recycling patway (Galet et

al., 2006). Another possibilty is the presence of another receptor besides Pt, such as the

low density lipoprotein receptor, Megalin previously demonstrte to interat with

vertbrate Shh (McCay et al., 2002). The absence of these vesicles when endocytosis



is blocked indicates these vesicles are not essential for transport although furter studies

of these Ptc-independent vesicles are required to elucidate the nature of these vesicles.

Conclusions

Previous publicaions have report that cholesterol modifcaton of Hh is

importt for its distrbution by analyzing taget gene expression. However, these studies

showed dicrepancies in the range of non-cholesterol modified Hh and in the apicobasal

locaizion of the different form of Hh leadig to diferent models ofHh distrbution. 

system has been developed to induce a pulse of newly synthesized Hh that ea be us 

fuer characterie formation of the Hh grdient. Inducible expression, where a pulse of

newly synthesized protein is generate would enable observations of movement durng

gradient formation instead of at the gradient steady-state, and at protein concentrations

closer to endogenous levels. Since contrictory observations exist about the

mehansms regulating morphogen distrbution and grdient formation not only for 

but also for Dpp and Wg, clarfication could come from using an inducible system

together with quantitative meaurements.

In ths study, Hh has ben observed to be detected at a longer rage than

modified HhNp, similar to previous studies. Newly synthesized Hhp-GFP distrbution

has ben quantitatively demonstred to reuir cholesterol andea occur without

endocytis in ageement with published reults. Additionally, HhNp-GFP is detected in

intracellular vesicles that do not co-locale with Ptc but these are not essential for Hh

distrbution since they are not observed in endocytosis defective cells. Furtermore, in



ths inducible system, the modified and unmodifed forms of Hh lOCal at both apica

and basolateral regions suggesting there may not be a preferential region for movement.

The data from ths study support a model where the cholesterol modification of Hh is

requir to restrct its planar diffsion, thereby forming a steep grdient.



Material and Method

Drosophil stocks and genetic experients

The following mutats and trsgenes have ben previously described: GS1

amorphic allele also known as hhIl (Mohler, 1988); shi (Grgliatti et ai. , 1973), UAS-

shi+ also known as UAS-dynan (Entchev et al., 200), tubulin-Gal80ts (McGuir et

al. , 2003), UAS-dsRed (Kasuya and Iverson, 200), UAS-GFP-dy- like (Han et al.

20Mb), UAS-ptc- YFP (Zhu et al., 2003), Hh-Gal4 (Tanoto et al" 200), Ptc-Gal4

(Speicher et al., 1994), and 71 Ga14 (Brand and Peron, 1993).

UAS-hhF-GFP and UAS-hhN-GFP trsgenic fles were generate. Thes fusion

proteins are similar to those previously described (Gorfinkiel et al.. 2005; Torroja et aI.

2004). To constrct UAS-hhF-GFP, GFP was inert in fre into full lengt 

between amno acids 254 (H and 255 (V). The PCR priers used are as follows:

GAGTCGCGGCGCA TCA TGGAT and

TGGATCCGTGGAACTGA TCGACGAATC for the fit hal of full lengt hh (hhl);

ACGGATCCATGTGSGCAAGGGAG and

ACGAA TTCCTTT ACAGCTCGTCATGC for GFP;

AGGAATTCGTGCACGGCAC and

TGGTACCCAGGATTCCATCATCAAT for the second half of full length hh (hh2).

PCR frgments were generated using hh cDNA and eGFP-Nl (Clontech) plasmids as

templates, and cloned into pBluescript (Strtagene) in the following restrction enzymes



C J

sites (underlied in PCR prier seuence): NotIIam for hh1, BamlloRI for GFP,

and EcRIKpnI for hh2. The full hhF-GFP (hh1-GFP-hh2) sequence was then cloned

into pUASp2 (Rort 1998) using the NotIlnI restrction enzyme sites. To constrct

UAS-hhN-GFP that lacks the cholesterol modificaon hh was trncaed at amno acid

257 (G) and GFP was cloned in fre immedately behind trcaed hh. The PCR

priers used were: GAGGTACCGAGAAACAGCAACAACGAGTCTTAG and

TGGATCCAAGCCGTGGAACT for hh. The Hh PCR fraent was cloned into

pUASp that aleady contaned GFP using KpnIIam restrcti enzyme sites

(underlined in PCR pri seuence). All PCR product wer sequence (Macrogen).

Each constrct was co-injected with the delta 2- trposae helper plasmid into Ill8

embryos to generate trsgenic lines.

For rescue and localization experiments, the following larval genotyps were

used:

En-Gal4; UAS-hhF-GFP hhGSl

UAS-dsRed+; UAS-hhF-GFP/Hh-Gal4

UAS-hhF-GFP/71 B-Gal4

UAS-hhF/71 GaI4

UAS-CD8-GFP/+; 71 Ga4/+

UAS-myrpalm-CFP; UAS-hhF-GFP/Hh-Ga4

UAS-ptc- YFP/Ptc-Gal4

Ptc-Gal4/+; UAS-GFP-Dlp



For experients anal yzing Hh tempra distrbution, the following laal

genotyps were generat:

Hsflp UAS-dsRed/+; UAS-hhF-GFP hhGSl/Hh-Gal4 tub-Ga180ti

Hsflp UAS-dsRed/+; UAS-hhN-GFP hhGS1/Hh-Gal4 tub-Ga180ti

To examne Hh distrbution in discs with an endocytosis-defect in the anterior

comparment, a shi mutat allele was use. Shi is the Drosophila homologue of

maman GTPase Dynamn and the shi mutat allele is a tempraure sensitive allele

with the permssive temptu at lS"C and the retrctive temperae at C. These

larae have a shi mutat background at the restrctive temperare which coincides with

the expreion of wild-ty Shi under the Gal80-Ga4 system to rescue the mutat

phenotype in the posterior comparent. For these experiments, the following laral

genotypes were generated:

Sh/ FRT19A; UAS-sht/Hsflp UAS-dsRed; UAS-hhF-GFP GSl/Hh-Ga14 tub-

Ga0ti

sht FRT19A: UAS- shi+lHsflp UAS-dsRed; UAS-hh-GFP hhGS1/Hh-Gal4 tub-

Ga10ti

Western Blot

Using the 71B-Ga4 drvers for expresion, salvar glands were dissted from

the following larae: 

1l8 
(10 glands), UAS-CD8:GFP (5 glands), UAS-hhN-GFP hhGSl

(10 glands), UAS-hhF-GFP hhGSl (10 glands), and UAS-hhF (15 glands) and put on ice.

Salivar glands were put in 40tlL of sale bufer and broken up with a Dounce



Homogenizer. The lysae was spun down and the supernatt was collected and loaed

on a 10% polyacrylamde gel for SDS-PAGE. The blot was first laeled for presence of

GFP, then strpped and re-probe for a tubuln loading controL Antibodies use were

rabbit anti-GFP 1:1500 (Molecular Probes), mouse anti-tubuli 1:300 (Oncogene), and

anti-rabbit and anti-mouse HR 1:200 (Jackson Laboraories).

Wing Preparations

Wings were collected from adult fles expressing varous transgenes under the

control of the 71 Gal4 drver. Whle fles were put in isopropanol, wings were pulled

off fly boies and mounte in 50% Canada Balamisoproanol.

Cuticle Preparations

Embryos were dechorionated and devitellnized, then mounted in Hoyer

medum on slides incubated at C to clea the embryos.

Embryo in sit hybridization

Generation of the rhombid (rho) probe - a clone contaning rho cDNA wa.,;

linea with the enzyme Pvull and purfied using the QIAquick gel extrction kit

(Qiagen). DIG- labeled rho probe was trribe using the RiboMA Lage Scae RNA

Production Systems (Pomega) using T7 and T3 RNA polymeraes. Probe were

digested for 10 minutes.



Embryos were cleaed in ethanol/xylenes for 30 minutes, then fIXed in 4%

formaldehyde. After a 4 miute IOmgmL Proteinase K treatment, embryos were fIXed

again in 4% formaldehyde. Then embryos were hybridized with probe overnght. Afer

hybridization, embryos were washed and equilibraed then incubate with anti-DIG

antibody (1:40) for 1 hour. Embryos were incubated in the staning solution for up to 

hour, washed and mounted in 70% glycerol.

Induction of Hh-GFP expreion using GalSO

Laae were raed at 1 SOC. Thd inta larae (day 10-15 at the Ga80

permsive tempraure 18 C) were rea at 3TC (the Ga80 restrctive temperatu) for

, 24, or 72 hour. Laae were dissected at rom tempraure, and fied immedately

before immunostaining (tota time between removal frm permissive temperae to

fixation was 5- 10 minutes).

Imagial Dis Preparation and Imunostaining

Laae were removed frm 3TC to rom tempeture, disste, and fixed

immedately (tota time of 5-10 miutes). Imunostaing was performed acording to

Patel (patel, 1994). For induction studies, the following modfications were used.

Briefly, discs were fied in 4% paormaldehyde in PBS for 20 minute, washed in PBS,

blocked for 30 minute in PBS with 0.5% BSA and 5% normal goat serm (NGS),

incubated in primar antibody for 1 hour in PBS with 0. 1% TritonX- l00, 0.5% BSA, and

5% NGS, washed in PBS for 20 minutes, incubated in secndar antiboy dilute in the



initial blocking solution for 30 minutes, and washed for 30 miutes. Discs were mounted

in 50% glycerollBS. Strps of double-stick ta were added to the slides as spacrs to

prevent compression of the discs.

Primar antibodies were used at the following concentrations: rat anti-DCAD

1:50 (Od et al., 1994); mouse anti-Ptc 1:50 (Capdevila et al., 1994), rabit anti-dsRed

1:500 (Clontech), rat anti-Ci 1:10 (Motzny and Holmren, 1995), mouse anti-GFP 1:250

(Molecular Probes). Seconday antiboes used were anti-rabit and anti-ra Alexa 555

1:100, anti-mouse Alexa 647 1:1000 (Molecular Probes), and anti-rabit Cy3 1:600

(Jackson Laoratories).

Protocols for membrae labeling, endosome labeling, and extrcellular labeling

have been described previously (Entchev et at. , 200; Greco et aI. , 2001; Strgini and

Cohen, 200). Briefly, to label membraes, dis were mounted in 9J1M FM4-6

(Molecular Probes) diluted in lxPBS and incubated for 20 minute at 25 C before live

Imagmg. To label endocytic comparents, discs were incubate with 17J1M

tetramethylrhodne-dextr (300MW, Molecular Probe) diluted in incomplete M3

meda for 10 minute in the dak at C, washed and moute in incomplete M3 meda,

and incubated for 30 minutes at 250C before live imging. For extrcellular labling,

dics were incubated with anti-GFP (1:250 diution in incomplete M3 media) for 30

minutes on ice before being washed 5x with ice cold lxPBS and fixed in 

parormaldehyde/BS for 20 miutes at room temperature. Subsequent procssing 



the same as staed abve for imunostanig. For Alexa 546 and Alexa 647 Phalloidi

(Molecula Probes) labling, Phaoidin was dilute 1 :40 in blockig solution and added

durig secnda antiboy incubation step for 20-30 miute before washes and

mounting.

Microscopy, Image Acquisition, and Analysis

Fluorescence imes were collecte on a Leica TCSSP2 AOBS confoc

microscope, and processed using the Leica Confoc Softare 2.5 Build 1347, Adobe

Photoshop 7.0, AutoDeBlur & AutoVisuaize X 1.4. 1 (MediaCybernetics) and Ims

1 (Bitplane).

To count Hh-GFP contang vesicles, 79.35um
2 XY setions were collected

using the 63x objective, in the center of the wing pouch every 0. !l for the entie depth

of the disc (60- 100 m which was approximately 120-200 sections). All discs were

imaged under identical microscope settgs for laser power, pinhole, and gam.

Quatitave analysis was done in the !mars softar progr, as describe below.

Vescle identication an distce meaurement

For negatve contrls (the 0 hour time point), surace intensity thresholds were set

just below backgrund levels. Ths resulte in some background to be incoITctly

identified as rea signal. Afer ths step, surace were sorted accordg to volume and

any surface with a volume of less than O.03um3 was discded, leaving only a few



- J

background surfaces. Ths strgy was used to maxim tre Hh-GFP signal

identification and mize incorrt identificaton of background signal.

Ths stregy was applied to Hh-GFP expressing samples. Surac intensity

thresholds were set to just below background, then sort by volume, and suraces with

volumes more than 0.03 J.3 were counte and meaure. Surfaces are objects whose

surfaces consist of pixels with the same fluorecent intensity.

Afr vesicle identification, a "Distace Tranformaton" tool generated a distace

ma frm the UAS-dRed signal mag the expressing cells. Thi map was applied to

the surfacs to determine the shortest dita of vesicles from the Hh expressing cells.

The distace meaurements were then import into Excel and plotte to generate

distrbution profies. For each saple, total pacle numbers were normiz 

dividing the number of particles at each distance by the total number of parcles for that

sample, The nonnalized data was then averaged to generate the overall distribution

profie. For eah individual samle, the medan, 90th percentile distace, and percentage

at 811 were determed as well as the average value for each genoty and time point

The stadad deviation was calculated for the medan, 90th percentie distace, and

percntage at 811m values at each genotype and time point

Statitica Analysis

To determe whether the meaurement values of median, 90
th percentile distace

and percentage at 811m were signficant beteen genotyps and/or time points, the

meaurments were subjected to the analysis of varance (ANOV A). The natra log 



the medians, natural log of the 90th 
percntie distaces and the raw values for percentage

at 8!1 were analyzed as these met the normalty assumptions of the ANOV As.

Speifcally, the Tukey s HSD test was used to determne significance. There was no

significat interaction between the time factor and the genotype factor. Therefore, the

significance of the main effects (tie irespetive of genotyp or genotye irespetive of

time) ar described. P-values less than are 0.05 are considered signficat.

Quantication of Pt and Phaloidi coioction

Parcles were identified in the sae way as for distace meaurement

quantication. Aftr paricle identicaton, each paricle was anyz thugh the z-

stack for co-localzation with Ptc and Phaloidi, then sort into the appropriate

category.
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DISCUSSION

The work prente here provides some insight into the mechanism that regulats

and shapes the Hh morphogen grdient. Previous studies have presente contrdictory

observations abut how the Hh grent form and what tbe role is of the cholesterol

modfication. This work sought to clarfy the roles of the Hh cholesterol modificaon

and endocytosis in shaping the Hh grdient by using a system developed to look at newly

synthesized Hh protein. My results demonstrte that the Hh graent form though

diffion, and does not reuire any trscytosis mechansm. Furermore, the Hh

cholesterol modication is intrenta in properly shaping the grent by restrctig Hh

to a planar movement. Thus, the Hh morphogen grdient can form through planar

diffusion.

Whle ths study has provided some inight and clarfication of previous results

may questions stil rema. The man points of interet resulting from our results and

implications for Hh and other morphogens wil be disusse, including the mechaisms

of Hh distrbution, the role of cholestel, and imlicaons for Dp and W g.

Model and Mecanisms of Distrbution

Hh gradient formion via Plar Difion

The results from ths study and previous studies rue outff diion as a

mechansm of Hh distrbution. It is clea that Hh requies tighter regulaton of the



concentrtion grdient than fr difsion could provide (Gaet et al., 200). In addition,

Hhp has been shown to be unable to trverse the wing disc lumen, which would be

thee-diensional free diffusion (our studies; (Calejo et al., 200; Gaet et al., 2006)).

Thus, Hh movement ocur via planar movement and not free diffusion. Planar

movement could mea either an extracllular planar diffuion or pla transcytosis. My

results using the shitsl mutat demonstrte that Hh is able to trvel to taget cells in the

absence of endocytosis. Ths imlies that a planar diffsion pross is sufcient to form

the Hh gradient.

Role of trancytosis in shaing the Hh gradnt

The study presented here points to plan diffion as the method of Hh grdient

formation; however, it is stil unable to conclusively rule out a role for transcytosis.

Several questions remain: does any transcytosis of the Hh morphogen occur and what

purpose does it serve '1 Would trscytosis be a mechanism to fine tune the graent? Or

would it be a redundat pross that could potentially contrbute more to grent

formation in the absence of planar diffion'1

As mentioned abve, Ptc-independent vesicles were detecte that were

internalized by endocytosis. Prvious studies have also detected such vesicles but their

identity has yet to be determed These vesicles could potentialy represent

trscytosing vesicles that were internaliz though a receptor other than Ptc.

candidate reeptor is Megaln, a member of the low density lipoprotein recptor famly,

demonstrte to interat with Shh in vertbrate systems (McCay et al., 2002).
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Interestingly, Megan has ben shown to trcytose an unrlated ligad, thyrglobulin

(Marno et al., 200). Megal bindig to Hhp could potentially result in trscytosis of

Hhp. A putative homolog of Megali has beq identied in Drosophila although it 

yet to be determned whether ths protein is functionaly simlar to vertbra Megaln

(Fisher and Howie, 2006).

Another possibilty is that Ptc-medate endocytosis could alo lead to

trscytosis if HhNp-GFP has somehow dissociated from Ptc afer internaliztion and is

recycled back outside the celL A recnt study has shown tht C.elegan Hh-related

peptides are sorted to multivesicular boes (MVBs), and then reycled back to the apica

surfac for secretion (Liegeois et al., 2006). One study has indicated that Hh is not

recycled thugh the conventional Rab 11 recycling pathway (Gallet et al" 2006).

However, this data was not shown and there remains the possibility that Hh could be

resecreted through a non-conventional recycling mechanism.

Finally, it is possible that these Ptc-independent vesicles ar argosomes.

Argosomes ar membraous intrcellular vesicles that ar able to move from cell to cell

(Greco et al., 2001). They have previously ben describe as carer of the morphogen

Wg and thus represent a potential vehicle for Hh as well (Grec et al., 2001). The nature

of these arosomes, though, is not clea and whether endocytosis has a role in argosome

movement is yet to be determed. Thus, it caot be concluded whether the Ptc-

independent vesicles ar relate to these strctus.

In order to test for a trcytosis mechansm, evidence for the presence or absence

of Hh resecreton is neeed. A system has ben develope for maian tissue cultu
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cells that has ben able detect trscytosis (Marno et aI., 200). In ths in vitro system,

cells ar grown on dual layer fiter chambe as a polarze cell layer, at 100%

confuency. Junctional complexes prevent radom leage of molecules from one side to

the other. Once th cell layer has grown, the dual chabers allow exposure to molecules

of interest on one side, and analysis of molecule secretion on the other side.

Establishment of such a system for Drosophila cells could provide evidence for or

against an apica-basal trscytosis mechanism, although it would not be able to give

evidence of trscytosis if uptae and secretion ocur on the same side.

Role of the cholesterol modcation in retricting Hhp movement

Ths study provides evidence th th role of the Hh cholesterol modificaion is to

restrct HhNp movement. The role of the cholesterol moiety has been intensely studied

over the years, which has yielded contrdictory observations in both Drosophila and

vertebrate systems.

Studies from the embryo suggested that Hh had a reduced rage of distrbution,

confirmed by later studies in the wing disc frm the sae labratory (Galet et al., 203;

Galet et al., 200). Ths is in dit contrt to wing disc studies by two other grups

who found that Hh was able to signal to taget cells further away than Hhp and thus

had a furter rage of distrbution (Callejo et al., 200; Dawber et al., 2005). There were

technical varations between these studies that might be able to explain thse differences

(Wendler et al., 2006). The method of detecting Hh differed between the studies as

Gallet et al. used an anti-Hh antibody for detection (Galet et al., 2006), and CaUejo et ai.
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used Hh-GFP fusion proteins (Calejo et al., 200). If the Hh antibody had reuced

detection abilities for Hh, then Hh would not have been deteted furter away. The

use of GFP to locte Hh would have ben more acurate for deteting Hh distrbution.

Although in the wing disc experients, two diernt groups used th sam method the

clones expressing different form of Hh from the Gaet et al. study (Gallet et aI. , 2006)

were much smaller than in the Dawber et aI. study (Dawber et al., 2(05). Smaler clones

would have produce less Hh than the larger clones. Less Hh could have ben bound

by the Hh recptor Ptc surrunding the clone, in effect sequestering all the HhN

imedately and reducing any Hh that could have moved fuer.

Ths study demonstrtes the role of cholesterol in restrcting long-rage

movement; however, the mechanism of th action is unclea. Several hypotheses ca be

suggested regarded the role of the cholesterol modification. The cholesterol could restrict

movement by association with cell membranes or allow association with other factors

that sequester HhNp to prevent free difsion. Interetingly, large multimers of HhNp

ca be detted biochemically. Therefore, the cholesterol could alo promote

oligomerization to increase the concentrtion nea the expressing cells, thus promoting

activation of high level taet genes lie ptc and concurntly retag more Hhp at

these cells.

Whle Hh has signaling abilities, it does not activate ptc expreion as strongly

as Hhp does (Calejo et al., 2006; Dawber et al., 2005). Therefore, HhNp expreion

would result in more ptc expression and as a conseuence, more Hhp is seuestered

closer to the producing cells as there is more Ptc to bind Hhp. Lower HhN activaton of



103

pIC expression would result in less Pt to bind and sequester Hh, and a furter range of

distrbution. Thus, the restrction of Hhp distrbution by the cholesterol modificaton

could be due to both by a membrae-association and strnger bindig and sequestron

by Ptc. Analysis of the movement of Hhp and Hh over pIc mutat clones would be

necssar to clary whether ths is inde the situation.

Hh has also ben detted in lipid ra, microdomas that may function as a

platform for signal trsduction or intrcellular trckig (Chen et aI., 200; Rietveld et

al., 1999). Biochemica studies analyzed frctionate embryos using centrfugaton

seentaon assays. Interetingly, Hhp was detected in the lipid rat contang

frtions (Rietveld et al., 1999). In addition, Shhp multiers also co-localiz with 

lipid ra marker (Chen et al., 200). Thus, Hhp may be tageted to lipid 

microdomains for distrbution or signaling purpses, possibly due to the cholesterol

modification (Burke et aI., 1999). Whle the cholesterol requirement for HhNp

locaization in lipid rats has not yet ben demonstred it ca be hypthesized that this

would be the cae considering lipid ra ar rich in cholesterol.

In addition to lipid ra, HhNp has ben detete in lipophorin paricles. Recnt

studies have identified lipophorins as a potential caer of HhNp (panakova et al. , 2005).

Lipophorins are the Drosophila version of vertbrate lipoprotein parcles that consist of

aplipoprotein actig as scafolding, and a phospholipid monolayer that surunds a core

of esterified cholesterol and trglycerides (Rodenburg and Van der Horst, 2005). Lipid

modified proteins like Hhp would be able to ath to lipophorin pacles by insertng

its lipid moiety into the outer phospholipid monolayer. Panakova et al. showed co-
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locization of lipophori parcles with Hh by cell fractionation studies and

immunopreipitation experients. In addition, in vivo, Hh co-locized with exogenous

lipophorin in endocytc comparents. Removing lipophorin by RNAi resulted in the

acumulation of Hh in the first 5 rows of cells adjacent to the expressing cells and

afecting the expresion of long rage signalng taget. Subseuent addition of purfied

lipophorin alleviated ths effect on signalg. Panakova et al. hypthesized that there is a

reversible association of Hh with lipophori parcles, faciltang trsfer frm the

membrae of one cell to the next. When lipophorin levels are lowered ths increases the

length of tie Hh is at the cell membrae which slows the ra of tranfer and increaes

the probabilty of Ptc-dependet endocytsis of Hh before Hh can move to the next celL

Short range signalg would sti be effective but Hh would be sequeteed by Pt and

long range signaling would be affected (Panakova et aI. , 2005). These studies of Hh and

lipid-rich domains have not yet included analysis of the non-cholesterol modified form of

Hh. Such studies would be able to elucidate whether cholesterol is the reaon for

association with these domas, providig more insight to how cholesterol may act to

restrct Hhp distrbution.

Role of HSPG in facitati plan movement

While our study did not involve HSPG which are a par of the extrcellular

matr, future work should still involve HSPG since they have ben shown to be

involved in Hh distrbution (Bellaiche et al., 1998; Borneman et al., 200; Caejo et al.

2006; Gallet et aI. , 2003; Glise et al., 2005; Gorfmkel et al., 2005; Han et aI., 200a; Han
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et al., 200b; Lum et al. , 2oo3a; Takei et al., 200; The et al., 1999). Previous studies

have extensively analyzed the effects of losing HSPG on Hh distrbution and signalng

in Ext and HSPG core protein mutats. Hh is unable to move though Ex or HSPG

mutat clones and the reulting Hh movement occurs arund the clone. From these

results, HSPGs have ben demonstr to be necssar for the planar movement of

Hhp, while having no effect on HhN (Bellaiche et al. , 1998; Calejo et al., 2006; Han et

al., 200b; Takei et al., 200; The et al., 1999). However, the exact role of HSPG in Hh

signalng and distrbution has not been determned. HSPG could actively facilitate the

extrcellular movement of Hhp. Alternatvely, HSPG could act as co-receptors

clusteng Hhp and enhancing bindig to Pt, promoting high level taget gene

activation. HSPGs might be requir for Hhp endoytosis and trytsis. HSPG

could also be required for the specific localization of HhNp to lipid-rich domans such as

lipid ras or lipophorins. Interestingly, the lipophorin RNAi phenoty is similar to the

HSPG mutat phenotye for Hh distrbution where Hh movement is retrcte to the

mutat cells closest to the expressing cells (panakova et al., 2005). HSPG could

therefore faciltate Hh association with lipophori. Furtennore, studies in vertbra

systems have demonstred that disrupting lipid ra reduces the assoaton of heparn-

binding growth factors to HSPG (Chu et al., 200) suggesting a relatonship between

HSPGs and lipid ra, and posibly Hh.

The question of whether HSPGs faciltate endocytosis and/or trscytosis ca 

addrssed with double mutant analysis of HSPG and endocytosis mutats, for examle

analyzing whether any Hh paricles can be detete in ttlshi double mutats that 
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found in the fIrst one or two rows of a ttv mutat clone. Additional experients include

studying any changes in Hh extrcellular locaization in HSPG mutant clones or changes

in Hhp lipid-rich doman association in the absence of HSPG and/or the cholesterol

modification. The answers wil indica whether HSPG faciltae planar difion 

planar trancytosis.

A new way to investigate gradient formation and reguation

In this study, a system was develope to speifcally investigae the distrbution of

newly synthesized Hh-GFP. This system enabled ths study to avoid limitaons of

previous studies for severa reasons. The Ga80 inducible system generated a pulse of

expression of new protein. Thus, the distiction could be made between redistrbution of

Hh already present and movement of newly synthesize Hh in the endocytosis mutant.

Furthermore, by inducing expression for 8 or 24 hours, the over expression levels of these

trsgenes that can be sen with the Gal4 syste should be reuce. Additionally,

previous studies analyzed Hh distrbution at the grdient steay sta. While ths could

be informatve, studies during grdient formtion provide more insight to the mechaisms

that are involved with grent formation. Finaly, the generaion of Hh-GFP fuion

proteins enables dirt visualizon of Hh and its distrbution, instea of relying on

antibodies that could be less sensitive.

Tools for studying morphogen movement have ben develope in ths study that

wil facilitate future studies of Hh distrbution. In addition, reent studies have use other

newly develope tools that would be quite useful to incorporate. Integraon of these
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tools would be necessar to study relationships for example between lipophorins

endocytosis, and the cholesterol modification. In the end, this meas that more complex

genetics will be reuired to incorprate thes different tools into one system. Furter

double mutat anlyse to study multiple factors involved in Hh grdient formon

should provide more inormtion abut how each of these factors act to regulate and

produce the Hh gradent In addition to mutats and RNAi trgenic fles, new

fluorescent-tagged proteins and makers have alo ben develope. These fluorescent

tags leave the possibilty for live imagng open. Ultimately, live imaging of fluorescent

proteins in different mutant backgounds could provide conclusive information abut Hh

grdient formation and regulation.

Implications for other morphogens

The mechanism of distrbution for Dpp and Wg is not clear since contrdictory

observations have ben report as well. In almost identica experients, two groups

reported conflcting results on wheter endocytosis afects Dpp movement (Belenkya et

aI., 200; Entchev et al., 200). Both studies analyzed Shl-tl mutat clones in wing discs.

In the first study, the authors took advantae of the temptue sensitivity of Ga4 by

reag the larae at 16 C where Ga4 is less active. In shiftng their larae up to , a

pulse of Dpp-GFP expression was prouce They found that Dpp-GFP was unable to go

though the endocytosis defective clone as demonstred by an absence of Dpp-GFP

behind the clone (Entchev et al., 200). However, an identica study found that Dpp

could be detected behind the clone and extrcellular Dpp could be dette withn the
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clone, suggesting that Dpp was able to move thugh the mutat tissue (Belenkaya et al.

200). Two nealy identica experiments with confictig results suggest that improved

tools and technques ar required

The contradictory observations for W g do not are from using the same mutats,

but from using different tools to study different mechanms. The intial studies of W 

distrbution found that W g could move extrllularly and this extrcellular movement

depends on HSPG but not endocytosis (Baeg et aI., 2001; Han et al" 2005; Strgini and

Cohen, 200). Other studies examed intrllular vesicles that could move from cell to

cell and contans Wg, suggesting a trscytosis mechansm (Greo et al., 2001; Panakova

et aI., 2005). These contrdictory Wg results stress the necssity of integrting different

tools into the same system.

By using an inducible system and quantification for these morpho gens ,

clarfication of these discrepancies can be resolved, and would lead to further explanation

of how Dpp and W g distrbution occurs and how their morphogen grdients are

regulated.

Conclusions

Ths work prented in ths thesis ha demonstrted that the shape of the Hh

gradient is regulated by the cholesterol modcation. Furermore, the results

demonstrte that the formation of the Hh grdient occurs via a planar diffusion

mechanism. In addition, a quantitave system to study the movement of newly

synthesized protein durng gradient formation has been developed and previously
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reported contrdictory observations have ben resolved. There are stil many questions

that remain unanswered regarding how the Hh grdient is regulated. Therefore

development of new tools and techniques could provide more insight for future studies to

completely elucidate the mechansms of Hh graient formation and distrbution.
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