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ABSTRACT 

 

 Exposure to external stimuli promotes a variety of cellular responses including 

changes in morphology, gene expression and cell division status.  These responses are 

promoted by signaling pathways composed of modules that are conserved from lower to 

higher eukaryotes.  In Saccharomyces cerevisiae response to the external stimuli 

provided by mating pheromone is governed by the pheromone response pathway.  This 

pathway is composed of a G protein coupled receptor/heterotrimeric G protein (Gαβγ) 

module and a MAP kinase cascade.  Activation of this pathway allows the heterotrimeric 

G protein βγ dimer (Gβγ) to recruit polarity proteins to promote changes in cell 

morphology and to activate signaling through the MAP kinase cascade.  Here we 

investigate the regulation of these pheromone-induced responses. 

We first examine how an asymmetric polarization response is generated.  

Normally, a gradient of pheromone serves as a spatial cue for formation of a polarized 

mating projection, but cells can still polarize when pheromone is present uniformly.  Here 

we show that an intact receptor/Gαβγ module is required for polarization in response to 

both a gradient and uniform concentration of pheromone.  Further investigation into 

regulation of Gβγ by Gα revealed that the two interaction interfaces between Gα and Gβ 

have qualitatively different roles.  Our results suggest that one interface controls 

signaling whereas the other governs coupling to the receptor.  Overall our results indicate 

that communication between the receptor and Gαβγ is required for proper polarization. 
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We then examine how G1 CDKs regulate MAP kinase signaling.  Response to 

pheromone is restricted to the G1 stage of the cell cycle.  Once cells commit to a round of 

division they become refractory to mating pheromone until that round of division is 

complete.  One contributor to this specificity involves inhibition of signaling through the 

MAP kinase cascade by G1 CDKs, but it was not known how this occurs.  Here, we show 

that the MAP kinase cascade scaffold Ste5 is the target of this inhibition.  Cln/CDKs 

inhibit signaling by phosphorylating sites surrounding a small membrane-binding domain 

in Ste5, thereby disrupting the membrane localization of Ste5.  Furthermore, we found 

that disrupting this regulation allows cells to arrest at an aberrant non-G1 position.  Our 

findings define a mechanism and a physiological benefit for restricting pheromone-

induced signaling to G1.  

This thesis describes findings related to generation of an asymmetric polarization 

response, heterotrimeric G protein function, and coordination of differentiation signaling 

with cell division status.  Lessons learned here might be applicable to the regulation of 

polarization and differentiation responses in other systems as the signaling modules are 

conserved. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

Cellular responses to external stimuli are mediated by signal transduction 

networks composed of signaling modules that are conserved between higher and lower 

eukaryotes.  Common signaling modules include G protein coupled receptors (GPCRs) 

and their associated heterotrimeric G proteins and mitogen-activated protein (MAP) 

kinase cascades (Neer, 1995; Robinson and Cobb, 1997; Dohlman and Thorner, 2001; Qi 

and Elion, 2005).  These modules regulate a variety of cellular responses including 

changes in morphology, gene expression and cell division status. 

In the budding yeast Saccharomyces cerevisiae, a signaling pathway composed of 

a GPCR/heterotrimeric G protein module and a MAP kinase cascade mediates response 

to the external stimuli provided by mating pheromones (Dohlman and Thorner, 2001).  

This mating reaction stimulates cells to arrest the cell cycle in the G1 phase, induce 

expression of pheromone-responsive genes, and undergo polarized morphogenesis.  

Because the signaling modules used in the yeast pheromone response pathway are 

conserved in higher eukaryotes and because of its tractable genetics, S. cerevisiae is a 

good model system to use to investigate how cellular responses to external stimuli are 

regulated.  Here the yeast pheromone response pathway was used to study i) how cells 

generate an asymmetric morphological response to pheromone and ii) how pheromone 

response is restricted to the G1 stage of the cell cycle. 
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S. cerevisiae pheromone response pathway  

In S. cerevisiae, the two haploid cell types (a or α) secrete cell type-specific 

mating pheromones (a factor or α factor, respectively), which serve as chemoattractants 

that stimulate mating responses in cells of the opposite mating type (Figure 1-1) (Elion, 

2000; Dohlman and Thorner, 2001).  Each pheromone binds to a cell type specific GPCR 

that couples to a common heterotrimeric G protein (Gαβγ, composed of Gα, Gβ and Gγ 

subunits).  Binding of pheromone to the receptor catalyzes exchange of GTP for GDP on 

the Gα subunit, causing dissociation of Gα-GTP from the Gβγ dimer.  Once released 

from the inhibitory Gα subunit, Gβγ can trigger signaling through a MAP kinase cascade, 

which involves membrane recruitment of the scaffold protein Ste5, leading to activation 

of the Ste5-associated kinases, Ste11 (MAPKKK), Ste7 (MAPKK) and Fus3 (MAPK).  

Signaling though this MAP kinase cascade results in the transcription of mating specific 

genes and cell cycle arrest in the G1 stage of the cell cycle. Gβγ also recruits proteins 

necessary for the formation of an elongated mating projection (Figure 1-2).  This 

projection will grow toward its partner cell until the two cells meet and fuse to form a 

diploid zygote (Figure 1-1).   

 2



Figure 1-1 S. cerevisiae mating reaction 
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Figure 1-1.  S. cerevisiae mating reaction 

Exposure to mating pheromones secreted by a haploid cell of the opposite mating type stimulates 

mating responses, which include arrest in the G1 stage of the cell cycle and formation of an 

elongated mating projection.  This projection is oriented toward the mating partner and will grow 

toward the partner until the projections meet and fuse to yield a diploid zygote. 
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Figure 1-2.  The pheromone response pathway 
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Figure 1-2.  The pheromone response pathway 

The mating reaction is mediated by the pheromone response pathway.  Binding of pheromone to 

its G protein coupled receptor activates the pathway by catalyzing the exchange of GTP for GDP 

on the Gα subunit of the associated heterotrimeric G protein.  This results in dissociation of Gα 

from the Gβγ dimer.  Gα and Gβγ remain at the plasma membrane due to lipid modifications on 

the Gα subunit (not shown) and Gγ subunit (squiggled line).  Once free from Gα inhibition, Gβγ 

triggers signaling through the MAP kinase cascade by recruiting Ste5 and its associated kinases to 

the plasma membrane thus brining the MAPKKK Ste11 into proximity of its activator Ste20.  

This activates the phosphorelay system whereby Ste11 phosphorylates and activates the MAPKK 

Ste7, Ste7 then phosphorylates and activates the MAPK Fus3.  Fus3 then activates the 

downstream targets Far1 and Ste12 leading to cell cycle arrest and the transcription of mating 

genes, respectively.   

Free Gβγ also promotes polarity changes by recruiting the proteins necessary for the 

formation of a polarized mating projection. 
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KEY PLAYERS IN THE PHEROMONE RESPONSE PATHWAY: 

GPCR/Gαβγ module 

GPCRs mediate response to a wide variety of external stimuli including 

hormones, neurotransmitters, odorants and light (Pierce et al., 2002).  These receptors are 

composed of 7 transmembrane helices connected via extracellular and intracellular loops 

with the intracellular loops serving as the G protein-binding domain (Bourne, 1997; 

Hamm, 2001; Pierce et al., 2002).  In the yeast pheromone response pathway, the G 

protein coupled receptors mediate response to mating pheromone.  Ste2 is the receptor for 

α factor, and Ste3 is the receptor for a factor. These proteins are not similar at the 

sequence level but have similar structural features.  Both are serpentine receptors with 

seven α-helical membrane-spanning regions that have extracellular N-termini and 

intracellular C termini (Jenness et al., 1983; Burkholder and Hartwell, 1985; Nakayama 

et al., 1985; Hagen et al., 1986; Blumer et al., 1988).  The receptors are cell type specific, 

but they both couple to the same signaling pathway to promote pheromone response 

(Bender and Sprague, 1986; Nakayama et al., 1987).    

G protein coupled receptors interact with heterotrimeric G proteins (Gαβγ), 

composed of Gα, Gβ and Gγ subunits (Neer, 1995).  The Gα subunit is a GTPase that 

can bind GDP or GTP.  In the absence of stimulus, Gα is bound to GDP and associates 

with the Gβγ dimer.  In this state Gαβγ is inactive.  Gαβγ is activated when ligand binds 

to its receptor.  The receptor then catalyzes the exchange of GTP for GDP on the Gα 

subunit causing dissociation of Gα-GTP from the Gβγ dimer (Neer, 1995; Bourne, 1997; 
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Sprang, 1997).  Once dissociated, Gα and/or Gβγ activate downstream effectors to 

promote a variety of cellular responses (Gutkind, 2000; Neves et al., 2002). 

In yeast, a heterotrimeric G protein composed of the subunits, Gpa1 (Gα) (Dietzel 

and Kurjan, 1987; Miyajima et al., 1987), Ste4 (Gβ) and Ste18 (Gγ) (Whiteway et al., 

1989), regulates the pheromone response pathway.  In this pathway Gβγ activates the 

downstream responses, with Gα serving to inhibit Gβγ activity.  This was demonstrated 

by experiments showing that loss of Gpa1 causes constitutive pathway activation (Dietzel 

and Kurjan, 1987; Miyajima et al., 1987), whereas loss of Ste4 or Ste18 eliminates 

pheromone response and can suppress the constitutive activation caused by the loss of 

Gpa1 (Nakayama et al., 1988; Blinder et al., 1989; Whiteway et al., 1989).  In addition, 

overexpression of Ste4 itself can activate pathway signaling but required Ste18 to do so, 

further demonstrating Gβγ’s role in activating pathway effectors (Cole et al., 1990; 

Nomoto et al., 1990; Whiteway et al., 1990).  Gβγ activates pathway responses in two 

ways: it regulates the proteins that control cell polarity and it triggers MAP kinase 

cascade signaling (Figure 1-2) (Butty et al., 1998; Nern and Arkowitz, 1998; Pryciak and 

Huntress, 1998; Mahanty et al., 1999; Nern and Arkowitz, 1999; Winters et al., 2005). 

 

Lipid modification of the Gα and Gγ subunits 

A feature common to heterotrimeric G proteins is lipid modification on the Gα 

and Gγ subunits.  The Gα subunit is myristoylated and/or palmitoylated at its N terminus, 

while the Gγ subunit is prenylated at its C terminus (Wedegaertner et al., 1995).  The Gβ 
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and Gγ subunits are tightly associated and function as a single unit (Neer, 1995), thus 

lipid modification on Gγ regulates the Gβγ dimer.  In yeast, the Gα subunit (Gpa1) is 

myristoylated and palmitoylated (Stone et al., 1991; Song and Dohlman, 1996; Manahan 

et al., 2000) and the Gγ subunit (Ste18) is both prenylated and palmitoylated (Hirschman 

and Jenness, 1999; Manahan et al., 2000).  These lipid modifications serve to anchor the 

proteins to the plasma membrane and are important for their function (Wedegaertner et 

al., 1995; Chen and Manning, 2001).  Mutations that disrupt lipid modification of Gpa1 

disrupt its targeting to the plasma membrane and result in activation of the pathway 

(Stone et al., 1991; Song and Dohlman, 1996; Song et al., 1996; Manahan et al., 2000).  

Also, mutations that disrupt lipid modification of Ste18 disrupt signaling, as these 

modifications are required to maintain Gβγ at the plasma membrane after receptor 

activation (Hirschman and Jenness, 1999; Manahan et al., 2000).  

 

MAP kinase cascade and scaffold protein 

MAP kinase cascade 

MAPK cascades are composed of three protein kinases that act in a series.  The 

MAP kinase kinase kinase (MAPKKK) is a serine/threonine kinase that phosphorylates 

and activates the dual specificity MAP kinase kinase (MAPKK).  Once activated the 

MAPKK then activates the MAP kinase (MAPK) by phosphorylating it on a threonine 

and tyrosine residue (T-X-Y motif) in the activation loop of the conserved kinase domain 

(Gustin et al., 1998).  The MAPK then phosphorylates various effectors on serine or 
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threonine residues in the consensus PXS/TP sequence to regulate cellular activities 

(Robinson and Cobb, 1997; Johnson and Lapadat, 2002; Qi and Elion, 2005). 

The yeast pheromone response pathway consists of a MAPK cascade composed 

of the MAPKKK Ste11, MAPKK Ste7, the MAPK Fus3 and an associated scaffold 

protein, Ste5 (Figure 1-2).   A variety of biochemical and genetic experiments have 

established the order of these components (Dohlman and Thorner, 2001; Bardwell, 2005).  

In response to pheromone, Gβγ triggers membrane recruitment of Ste5 thus bringing 

Ste11 into proximity of its membrane-localized activator Ste20 (Pryciak and Huntress, 

1998; Mahanty et al., 1999; van Drogen et al., 2000).  Ste20, a member of the PAK (p21-

activated kinase) family of kinases, is localized to the membrane and activated via 

interaction with the membrane-bound Rho-family GTPase Cdc42.  Ste5 also brings Ste7 

and Fus3 to the plasma membrane and thus Ste5 provides an activation platform for the 

MAPK cascade (van Drogen et al., 2001).  After activation by Ste20, Ste11 activates 

Ste7, and then Ste7 activates Fus3.  Fus3 is the primary MAPK kinase in this pathway, 

but in cells lacking Fus3 another MAPK, Kss1 can mediate pathway responses (Madhani 

et al., 1997; Madhani and Fink, 1998).  Once activated Fus3 phosphorylates downstream 

targets that include the cell cycle arrest factor Far1 and the transcription factor Ste12, 

which mediates transcriptional induction of mating genes (Dohlman and Thorner, 2001; 

Bardwell, 2005). 

 

MAPK cascade scaffold protein, Ste5 

 10



 Ste5 is a scaffold protein for the yeast MAPK cascade (Choi et al., 1994; Kranz et 

al., 1994; Marcus et al., 1994; Printen and Sprague, 1994).  Since the discovery of Ste5, 

mammalian scaffold proteins have also been identified.  These scaffold proteins are not 

similar to Ste5 or each other at the sequence level, but are instead functionally similar 

(Whitmarsh and Davis, 1998; Burack and Shaw, 2000; Morrison and Davis, 2003).  

Scaffold proteins are thought to facilitate signaling by bringing the associated kinases 

into close proximity of one another and to promote pathway specificity by preventing 

cross-talk between the associated kinases with other MAPK cascades (Elion, 2001; Harris 

et al., 2001; Morrison and Davis, 2003; Park et al., 2003).  Scaffolds can also serve as 

adaptors by targeting the kinase cascade to a subcellular location. 

 An important step in activation of the mating pathway is the plasma membrane 

recruitment of Ste5 by the pheromone-activated Gβγ dimer (Figure 1-3A) (Pryciak and 

Huntress, 1998; Mahanty et al., 1999; van Drogen et al., 2001; Winters et al., 2005).  Ste5 

binds to Ste4 and mutations that disrupt this interaction disrupt Gβγ mediated signaling 

(Whiteway et al., 1995; Inouye et al., 1997; Feng et al., 1998).  In addition, artificial 

targeting of Ste5 to the plasma membrane causes constitutive signaling further 

demonstrating the functional significance of this recruitment (Pryciak and Huntress, 

1998).   Membrane recruitment of Ste5 serves two roles: (1) it promotes activation of 

Ste11 by its membrane-localized activator, Ste20 (Pryciak and Huntress, 1998; van 

Drogen et al., 2000); and (2) it amplifies signal transmission from active Ste11 through 

the remainder of the kinase cascade (Lamson et al., 2006).   
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Recently, work from our lab has shown that although Gβγ is the usual trigger for 

Ste5 recruitment to the plasma membrane, it is not sufficient.  Instead, Ste5 also binds 

directly to membranes, and the cooperative effect of these two weak interactions (Ste5-

Gβγ and Ste5-membrane) controls membrane recruitment (Figure 1-3B) (Winters et al., 

2005).  The Ste5-membrane interaction requires an N-terminal "PM" (plasma membrane) 

domain, a short basic-rich amphipathic α-helix that binds acidic phospholipid 

membranes, and which can also target Ste5 to the nucleus when not engaged at the 

plasma membrane. Gain-of-function mutations in the PM domain cause increased 

membrane affinity, allowing Ste5 to localize to the plasma membrane and activate 

signaling even without Gβγ (Winters et al., 2005).   

 

In the yeast pheromone response pathway, two cellular responses triggered by Gβγ 

are: (i) formation of a polarized mating projection and (ii) activation of MAP kinase 

cascade signaling which leads to cell cycle arrest.
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Figure 1-3.  Pathway activation involves recruitment of the MAPK cascade scaffold 

protein Ste5 to the plasma membrane 
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Figure 1-3.  Pathway activation involves recruitment of the MAPK cascade scaffold protein 

Ste5 to the plasma membrane 

(A) Plasma membrane recruitment of Ste5 by the pheromone-activated Gβγ dimer is an important 

step in activation of the pheromone response pathway.  This recruitment results in the assembly 

of a membrane-bound signaling complex that allows signal to proceed through the MAPK kinase 

cascade. 

(B) Although Gβγ triggers membrane recruitment of Ste5, the Gβγ/Ste5 interaction is not 

sufficient to bring Ste5 to the membrane.  Rather, it acts synergistically with a separate 

Ste5/membrane interaction, which is itself too weak to act on its own.  The Ste5/membrane 

interaction is mediated by the plasma membrane (PM) domain which is depicted here as a 

cylinder in the N-terminus of Ste5. 
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 CELLULAR POLARIZATION  

The ability to polarize is important for the development and function of many 

eukaryotic cells.  Cellular polarization involves the asymmetric distribution of 

intracellular materials in a way that is directed toward instructional cues that are 

themselves localized.  These cues may be internal or external to the cell.  For example, 

internal cues provided by the localization of polarity establishment proteins govern the 

asymmetric cell divisions that occur in Drosophila neuroblasts or Caenorhabditis elegans 

zygotes (Knoblich, 2001; Cowan and Hyman, 2004; Wodarz, 2005).  Whereas, external 

cues govern chemotaxis in Dictyostelium discoideum and mammalian neutrophils, such 

that a gradient of chemoattractant from a localized source stimulates cell polarization and 

directed cell movement along the gradient (Iijima et al., 2002; Bagorda et al., 2006; 

Franca-Koh et al., 2006).   

 

Polarization in S. cerevisiae

S. cerevisiae polarizes in response to both internal and external polarity cues.  

Polarization is controlled by the polarity establishment proteins, Cdc24 and Cdc42 

(Madden and Snyder, 1998; Pruyne and Bretscher, 2000b; Etienne-Manneville, 2004).  

Cdc24 is the guanine nucleotide exchange factor (GEF) for the Rho family GTPase 

Cdc42.  It activates Cdc42 by promoting exchange of GTP for GDP.  Once activated 

Cdc42 interacts with downstream effectors to organize the actin cytoskeleton, which in 

turn guides secretion to promote polarized cell growth (Pruyne and Bretscher, 2000a; 

Pruyne and Bretscher, 2000b).  A key step in polarization of the actin cytoskeleton is the 
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recruitment and local activation of Cdc42 at growth sites (Pruyne and Bretscher, 2000b; 

Pruyne et al., 2004).  This recruitment occurs in response to internal or external polarity 

establishment cues.  During vegetative growth internal cues determine the site of 

polarization, whereas external cues govern polarization during mating. 

 

Use of internal polarity cues during budding 

S. cerevisiae can exist as haploid or diploid cells and these cells reproduce 

vegetatively by budding (Figure 1-4A).  Polarized growth during budding occurs at 

specific sites that are determined by internal polarity cues.  Haploid cells bud in an axial 

fashion in which the next bud is formed adjacent to the previous bud site, while diploid 

cells bud in a bipolar fashion in which the bud is formed at one of the poles of the cell 

(Madden and Snyder, 1998; Chant, 1999).  These patterns of division are controlled by 

the bud site selection proteins, which serve as internal landmarks for polarity 

establishment.  There are three classes of bud site selection proteins: (i) those specifically 

involved in marking the site for axial budding, (ii) those involved in bipolar budding, and 

(iii) general bud site selection proteins which are required for both axial and bipolar 

budding (Madden and Snyder, 1998; Chant, 1999; Casamayor and Snyder, 2002).  

The general bud site selection proteins consist of the Ras-related GTPase Rsr1 

(also known as Bud1), its GEF Bud5 and its GTPase activating protein (GAP) Bud2 

(Bender and Pringle, 1989; Chant et al., 1991; Chant and Herskowitz, 1991; Park et al., 

1993).  Localized activation of Rsr1 at the bud site allows the recruitment of the polarity 

establishment proteins Cdc24 and Cdc42 to the bud site (Chant, 1999; Pruyne et al., 
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2004).  This is thought to promote localized activation of Cdc42 thereby allowing bud 

formation.  Although the general bud site selection proteins are important for both 

budding patterns their loss does not inhibit budding, but rather results in a random 

budding pattern (Figure 1-4A) (Madden and Snyder, 1998; Chant, 1999; Casamayor and 

Snyder, 2002). 

 

Use of external polarity cues during mating 

Polarization in response to a gradient of pheromone 

In response to a gradient of pheromone emitted from a mating partner, a cell will 

form a polarized mating projection that is oriented toward the partner (Figure 1-4B).  

Thus, unlike bud formation, which uses predetermined sites to guide polarization, a 

mating projection can form at any point on the cell surface (Madden and Snyder, 1992).  

The mating projection will grow toward its partner, following the pheromone gradient, in 

a process known as chemotropism (Arkowitz, 1999).  This ability to respond directionally 

was demonstrated by the formation and growth of a mating projection along an artificial 

pheromone gradient (Segall, 1993).  In addition, this was also shown by discrimination 

assays, which measure the cell’s ability to find a partner and mate when exposed to a 

mixture of potential partners that did or did not produce pheromone.  It was found that 

cells preferentially mated with pheromone producing partners (Jackson and Hartwell, 

1990b; Jackson and Hartwell, 1990a).  The ability to coordinate the direction of cell 

growth with the location of the external signal implies that the initial sensing of 

chemoattractant and at least some of the subsequent intracellular signal transduction 
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events do not occur uniformly within the cell but instead occur in an asymmetric, 

spatially-restricted manner.   

 Prior studies indicated that the receptor and heterotrimeric G protein are involved 

in detecting the directional information provided by the pheromone gradient as cells 

lacking these components are compromised in their ability to discriminating between 

pheromone producing and pheromoneless cells (Jackson et al., 1991; Schrick et al., 

1997).  This suggested that the receptor, the Gα subunit, or the Gβγ dimer might interact 

with the proteins involved in polarity establishment.  To this end, it has been found that 

Gβγ interacts the polarity proteins Far1 and Cdc24 (Butty et al., 1998; Nern and 

Arkowitz, 1998; Nern and Arkowitz, 1999). 

  Far1 is an adaptor protein that binds both Gβγ and Cdc24 (Butty et al., 1998; Nern 

and Arkowitz, 1999).  In the G1 phase of the cell cycle Far1 localizes to the nucleus via 

its nuclear localization signal (NLS) (Blondel et al., 1999) and sequesters Cdc24 in the 

nucleus (Toenjes et al., 1999; Nern and Arkowitz, 2000b; Shimada et al., 2000).  In the 

absence of pheromone, Cln/CDKs phosphorylate Far1 thereby triggering its degradation 

(McKinney et al., 1993; Henchoz et al., 1997).  This releases Cdc24 (Nern and Arkowitz, 

2000b; Shimada et al., 2000) and allows it to be recruited to the bud site to promote bud 

formation.  However, in response to pheromone the Far1/Cdc24 complex is exported 

from the nucleus (Blondel et al., 1999; Nern and Arkowitz, 2000b).  Far1 then targets 

Cdc24 to Gβγ (Nern and Arkowitz, 2000b; Shimada et al., 2000).  Cells expressing 

mutant forms of either Far1 or Cdc24 that cannot bind Gβγ are defective in orienting their 

growth toward a mating partner (Figure 1-4B) (Butty et al., 1998; Nern and Arkowitz, 
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1998).  Hence, communication between Gβγ and Far1/Cdc24 is thought to direct Cdc42 

activity to the proper site to establish the mating projection along the gradient of 

pheromone.  However, it is not known how Gβγ activity is spatially regulated to promote 

the formation of an asymmetric projection in the direction of the pheromone signal. 
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Figure 1-4.  Polarized growth during budding and mating 

 

 

 

 

 

 

 

 20



Figure 1-4.  Polarized growth during budding and mating 

(A) S. cerevisiae reproduce vegetatively by budding.  Haploid cells bud in an axial fashion in 

which the next bud is formed adjacent to the previous bud site.  This budding pattern can be 

visualized by examining the bud scars, which are remnants from cell separation (depicted here as 

red rings).  During axial budding the scars form a continuous chain (Chant, 1999).  Disrupting the 

general bud site selection machinery, for instance by loss of Rsr1 (rsr1∆), causes the cell to bud 

randomly, which is depicted here by the randomly localized scars. 

(B) Upon exposure to a gradient of mating pheromone cells reorient their growth away from the 

bud site and form a polarized mating projection toward the source of pheromone.  This 

chemotropic response involves communication between Gβγ, Far1 and Cdc24.  If this complex is 

disrupted, for instance by mutations in any one of these proteins, cells can no longer reorient their 

growth in response to pheromone.  They will instead form a mating projection using the bud site 

selection proteins as a spatial cue, which leads to formation of a mating projection at the bud site. 
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Polarization in response to a uniform concentration of pheromone 

For chemotactic cells (Dictyostelium and neutrophils) and chemotropic cells 

(yeast), a gradient of chemoattractant normally serves as a spatial cue for the direction of 

polarization.  However, these cells will still polarize when exposed to a uniform 

concentration of chemoattractant, implying the existence of “symmetry breaking” 

mechanisms that can generate asymmetric responses to symmetric signals (Sohrmann and 

Peter, 2003; Wedlich-Soldner and Li, 2003).  Symmetry breaking is thought to involve an 

initial asymmetry that arises through stochastic variation, which is then amplified to 

provide an axis of polarization (Kirschner et al., 2000; Wedlich-Soldner and Li, 2003).    

 In yeast, prior work indicated that there are two ways in which a cell can polarize 

when pheromone is provided uniformly rather than as a gradient.  We will refer to them 

as “default” and “de novo” polarization (Figure 1-5).  Default polarization uses pre-

existing polarity information provided by the bud site selection proteins as a spatial cue, 

resulting in the formation of a mating projection at the presumptive bud site (Madden and 

Snyder, 1992; Dorer et al., 1995; Nern and Arkowitz, 1999).  This default polarization is 

independent of Far1-Cdc24 communication but is dependent on bud site selection 

proteins.   In cells lacking these default sites (such as in rsr1∆ mutants where the budding 

pattern is disrupted), de novo polarization occurs at random positions that bear no 

relationship to previous polarization sites.  This de novo polarization is independent of 

bud site selection proteins but requires binding between Far1 and Cdc24 (Nern and 

Arkowitz, 1999).  Thus, interactions that are required for asymmetric response to a 

gradient of pheromone are also required for generating asymmetry de novo in response to 
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a uniform field of pheromone.  However, it is not known how the symmetry provided by 

the uniform stimulus is broken or how a polarization site is established and maintained. 
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Figure 1-5.  Yeast can polarize by two different means when pheromone is provided 

uniformly 
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Figure 1-5.  Yeast can polarize by two different means when pheromone is provided 

uniformly 

A gradient of pheromone normally serves as a spatial cue for polarization.  However, in a uniform 

concentration of pheromone this spatial cue is lacking, but cells can still polarize.   This 

polarization occurs by default or de novo processes.  Default polarization uses the bud site 

selection proteins as a spatial cue for polarization and the projection is formed at the bud site.  

This is indicated here by the formation of a projection next to the bud scars.  Cells can still 

polarize when these default sites are lacking, for instance in rsr1∆ cells.  This de novo projection 

formation occurs at random locations and requires binding between Far1 and Cdc24. 
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INDUCTION OF CELL CYCLE ARREST 

In the G1 stage of the cell cycle, yeast cells can respond to the external stimulus, 

mating pheromone (Figure 1-6).  However, in the absence of pheromone, once cells have 

reached the proper size and have enough nutrients to support division, they will pass Start 

and enter the division cycle (Cross, 1995).  Start marks the transition from G1 to S phase 

and is the point at which the cell becomes committed to finishing the division cycle.  

Once cells have passed Start they become refractory to pheromone arrest, a property that 

was used to define Start as a unique point of commitment to a new round of division 

(Hartwell et al., 1974).  Mammalian cells also must pass a similar commitment point, 

termed the restriction point, before beginning S phase (Blagosklonny and Pardee, 2002). 

 

Cyclin/CDK activities 

The cell cycle is driven by cyclin dependent kinases (CDKs).  These kinases, 

which are conserved from higher to lower eukaryotes, are activated by association with 

cyclin subunits.  The yeast cell cycle is driven by the CDK Cdc28, which associates with 

nine different cyclin subunits to promote various cell cycle transitions.   There are three 

G1 cyclins (Clns), Cln1-Cln3, and six B-type cyclins (Clbs), Clb1-Clb6 (Cross, 1995; 

Nasmyth, 1996).  The Clb family of cyclins regulates DNA replication and mitosis; Clb5 

and Clb6 promote DNA replication, Clb3 and Clb4 play a role in the formation of mitotic 

spindles, and Clb1 and Clb2 promote nuclear division and the switch to isotopic bud 

growth in the G2 stage of the cell cycle (Nasmyth, 1996; Bloom and Cross, 2007).  
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The G1 cyclins promote passage though Start.  Deletion of all three G1 cyclins 

causes cells to arrest in G1, however any one of the three is sufficient to promote 

proliferation (Richardson et al., 1989; Cross, 1990).   Despite this redundancy, the three 

G1 cyclins have different properties.  Expression of CLN1 and CLN2 is periodic during 

the cell cycle and reaches maximum levels during late G1, whereas CLN3 expression is 

less variable throughout the cell cycle (Wittenberg et al., 1990; Tyers et al., 1993).  

Furthermore, Cln3 is thought to play a different role in promoting Start than Cln1 and 

Cln2.  Cln3 activates the transcription of genes that are necessary for the progression 

from G1 to S phase, including CLN1 and CLN2 and the B-type cyclins CLB5 and CLB6 

(Tyers et al., 1993; Dirick et al., 1995; Stuart and Wittenberg, 1995).  Whereas Cln1 and 

Cln2 regulate other Start related events including i) bud emergence, ii) spindle pole body 

(SPB) duplication and iii) proteolysis of the cyclin B-CDK inhibitor, Sic1 (Nasmyth, 

1996; Bloom and Cross, 2007).  In addition, the Cln1/2 CDK complexes also play a role 

in restricting pheromone response to the G1 stage of the cell cycle (Oehlen and Cross, 

1994; Wassmann and Ammerer, 1997).  

 

G1 specificity of cell cycle arrest 

One contributor to the G1 specificity of pheromone arrest involves mutual 

antagonism between CDKs and Far1 (Figure 1-7A).  Far1, in addition to its role in 

promoting cell polarity (above), is also a CDK inhibitor (Chang and Herskowitz, 1990).   

Pheromone signaling in G1 cells allows the MAPK Fus3 to phosphorylate and activate 

Far1 (Chang and Herskowitz, 1992; Peter et al., 1993; Breitkreutz et al., 2001).  Once 
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activated Far1 associates with the G1 cyclin/CDK complexes and inhibits their activity 

by an unresolved mechanism (Tyers and Futcher, 1993; Peter and Herskowitz, 1994; 

Gartner et al., 1998; Jeoung et al., 1998).  Conversely, Far1 expression and stability are 

regulated by the cell cycle.  Accumulation of Far1 protein is restricted to the G1 stage of 

the cell cycle and as cells pass Start, Cln/CDKs phosphorylate Far1, targeting it for 

ubiquitin-mediated degradation (McKinney et al., 1993; Henchoz et al., 1997).  

In addition, other mechanisms may play an equally critical role in restricting 

pheromone arrest to G1, but they are poorly understood.  In particular, the activity of the 

pheromone response pathway is regulated by the cell cycle.   It has been shown that the 

basal and pheromone induced transcription of mating genes (e.g. FUS1) fluctuates during 

the cell cycle.  In synchronized cultures transcription levels of FUS1 are high in early G1, 

decreased in late G1 and S phase, and high again later in the cell cycle.  Conversely, the 

transcript levels of the G1 cyclins CLN1 and CLN2 were low in early G1, high in late G1 

and S phase, and then fell again (Oehlen and Cross, 1994; Wassmann and Ammerer, 

1997).   Thus the transcription of mating genes is minimized during periods of maximum 

G1 cyclin expression. 

Furthermore, it was found that overexpression of Cln2 could inhibit pheromone 

induced signaling through the mating pathway, and this repression required Cdc28 kinase 

activity (Figure 1-7B) (Oehlen and Cross, 1994; Wassmann and Ammerer, 1997).  

Overexpression of Cln1 had a similar effect but required deletion of Far1 as well.  These 

effects were specific to Cln2 and Cln1, as overexpression of Cln3 did not inhibit 

signaling (Oehlen and Cross, 1994).  These results demonstrated that G1 CDKs actively 
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inhibit signal transduction though the mating pathway MAP kinase cascade.  This results 

in a period from Start through S phase in which cells are unresponsive to pheromone. 

 While G1 CDK inhibition of pheromone signaling has been recognized for many 

years, the target and mechanism have remained elusive (Figure 1-7B).  Previous studies 

suggested that the inhibited step of the signaling pathway lay somewhere between the 

heterotrimeric G protein βγ dimer (Gβγ) and the first kinase of the MAP kinase cascade, 

the MAPKKK Ste11 (Wassmann and Ammerer, 1997; Oehlen and Cross, 1998).  Indeed, 

Cln2/CDK can phosphorylate the PAK-family kinase Ste20 (Oehlen and Cross, 1998; 

Wu et al., 1998), but removing CDK sites in Ste20 had no effect on the ability of 

Cln/CDK to inhibit pheromone signaling (Oda et al., 1999), thus failing to confirm Ste20 

as a relevant target. 
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Figure 1-6. Mating is restricted to the G1 stage of the cell cycle 
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Figure 1-6. Mating is restricted to the G1 stage of the cell cycle 

Exposure to mating pheromones during the G1 stage of the cell cycle causes cell cycle arrest and 

prevents passage though Start.  However, once cells pass Start and commit to another round of 

division, they become resistant to pheromone until that round of division is complete at which 

time they become sensitive to pheromone again. 
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Figure 1-7.  Mutual antagonism between the cell cycle and the pheromone response 

pathway contributes to the G1 specificity of cell cycle arrest 
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Figure 1-7.  Mutual antagonism between the cell cycle and the pheromone response 

pathway contributes to the G1 specificity of cell cycle arrest 

(A) In response to pheromone, the CDK inhibitor Far1 is phosphorylated and activated by Fus3.  

This allows Far1 to inhibit the G1 cyclin/CDK complexes and promote cell cycle arrest.  

Conversely, as cells pass Start the Cln/CDKs phosphorylate Far1, thereby triggering its 

degradation. 

(B) Cln2/CDK also plays a role in restricting pheromone response to G1 by inhibiting signal 

transduction through the mating pathway MAPK cascade.  However, the target and mechanism of 

this inhibition was unknown. 
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GOAL OF THIS WORK 

The goal of this work was to examine how cellular responses to external stimuli are 

regulated.  To accomplish this I used the yeast pheromone response pathway to examine 

how cells generate an asymmetric polarization response and how pheromone response is 

restricted to G1.  First, how Gβγ activity was regulated to generate an axis of polarization 

in response a gradient (chemotropism) or uniform concentration (de novo polarization) of 

pheromone was investigated (Chapter II).  Second, how G1 CDKs inhibit signal 

transduction through the mating pathway MAPK cascade was determined (Chapter III).  
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CHAPTER II 

QUALITATIVELY DIFFERENT ROLES FOR TWO Gα-Gβ INTERFACES IN 

CELL POLARITY CONTROL BY A YEAST HETEROTRIMERIC G PROTEIN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1, Figure 2-3 D, and Figures 2-5 B and C were contributed by Dr. Peter Pryciak. 

Rachel Lamson provided technical assistance. 
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Summary 

 

 In the pheromone response pathway, the heterotrimeric G protein Gβγ dimer 

activates MAP kinase cascade signaling and also recruits polarity proteins to induce a 

polarized mating projection.  Here, by activating the MAP kinase pathway independent of 

Gβγ, we studied the polarity role of Gβγ in isolation from its signaling role.  We show 

that, in addition to Gβγ, the Gα subunit and the receptor are required for following 

pheromone gradients (chemotropism) and for establishing a persistent polarity axis in the 

absence of pheromone gradients (de novo polarization). To explore regulation of Gβγ by 

Gα, we mutated Gβ residues in two structurally-distinct Gα-Gβ binding interfaces, 

resulting in two phenotypic categories: mutations in the N-terminal interface strongly 

disrupted chemotropism and de novo polarization, whereas mutations in the switch 

interface did not.  Incorporation of these mutations into a Gβ-Gα fusion protein, which 

forces the subunits to remain associated, revealed that dissociation of the switch interface 

regulates signaling, whereas the N-terminal interface may govern receptor-Gαβγ 

coupling.  In addition, we found that chemotropism and de novo polarization require GTP 

hydrolysis by Gα, suggesting that receptor-guided polarization involves Gα cycling 

between GDP and GTP bound states.  Overall, our results suggest that continuous 

communication between the receptor and Gαβγ is important for proper cell polarization, 

and that the Gαβγ heterotrimer may be able to function in a partially-dissociated state, 

tethered by the N-terminal interface. 
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Introduction Chapter II 

 

Polarized growth involves choosing a direction for polarization and then 

reorienting the cytoskeleton in the chosen direction.  The direction for polarization can be 

established in response to internal or external polarity cues.  S. cerevisiae polarize in 

response to both internal cues (for budding) and external cues (for mating) (Chant, 1999).  

In response to the external polarity cue, mating pheromone, yeast will form a polarized 

mating projection.  Normally, a gradient of pheromone emitted from a mating partner 

serves as a spatial cue to direct polarization and the cell will form a mating projection that 

grows along the gradient in a process termed chemotropism (Segall, 1993).  However, 

yeast can also polarize when pheromone is provided uniformly.  This occurs in two ways: 

default and de novo polarization (Madden and Snyder, 1992; Dorer et al., 1995; Nern and 

Arkowitz, 1999).   

This morphological response is mediated by the pheromone response pathway, 

which is activated when pheromone binds to its receptor.  This binding triggers 

dissociation of a heterotrimeric G protein (Gαβγ) into Gα-GTP and Gβγ.  Once freed 

from Gα inhibition, the Gβγ dimer then triggers signaling through the MAP kinase 

cascade and also recruits the polarity proteins to establish a polarized mating projection 

(Butty et al., 1998; Nern and Arkowitz, 1998; Pryciak and Huntress, 1998; Mahanty et 

al., 1999; Nern and Arkowitz, 1999; Winters et al., 2005).   

To better understand how external signals couple to intracellular factors to 

generate an asymmetric response, we studied the regulation of Gβγ activity in response to 
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a gradient or uniform field of pheromone.  Here we show that, in addition to Gβγ, the 

receptor and Gα subunit are required not only to sense pheromone gradients during 

chemotropism but also for de novo polarization in response to a uniform field of 

pheromone.  To further investigate this requirement, we used a series of mutations in Gβ 

(Ste4) to disrupt regulation of Gβγ by Gα.  Gβγ interacts with Gα through two distinct 

structural regions, the N-terminal interface and the switch interface (Wall et al., 1995; 

Lambright et al., 1996).  We found that these mutations cause qualitatively different 

phenotypes depending on which Gα-Gβ interaction interface is disrupted.  Our results 

suggest that the switch interface controls signaling, while the N-terminal interface 

governs coupling between Gαβγ and the receptor.  
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Results Chapter II 

 

Separating the polarity role of Gβγ from its signaling role 

The Gβγ dimer normally performs two roles in the mating pathway: it activates 

MAP kinase cascade signaling and it regulates proteins that control cell polarity (Butty et 

al., 1998; Nern and Arkowitz, 1998; Pryciak and Huntress, 1998; Mahanty et al., 1999; 

Nern and Arkowitz, 1999; Winters et al., 2005).  Our goal in this work was to study the 

polarity role of the receptor-Gαβγ module in isolation from its role in activating the MAP 

kinase cascade.  Therefore, we used a variety of methods to activate signaling 

independent of pheromone and Gβγ, and then studied how perturbing Gαβγ function 

affects chemotropism and cell polarization. This strategy is an extension of one used 

previously in which overexpression of the transcription factor Ste12 was used to study 

the mating role of various MAP kinase pathway components while bypassing their role in 

transcriptional induction (Schrick et al., 1997). Here, we used several newer reagents, 

including membrane-targeted versions of Ste5 (Ste5ΔN-CTM and Ste5ΔN-Sec22), which 

can promote robust MAP kinase cascade signaling, wild-type levels of mating, and 

normal polarized morphogenesis (Pryciak and Huntress, 1998; Harris et al., 2001). To 

ensure that communication between Gβγ and Ste5 was severed, these reagents used a 

truncated form of Ste5 that lacks the Gβγ-binding site (Ste5∆N), and all assays were 

performed in ste5∆ strains.  For comparison, we also used a constitutively-active form of 

Ste11 (Ste11ΔN) (Pryciak and Huntress, 1998) and overexpressed Ste12 (Dolan and 

Fields, 1990; Schrick et al., 1997).  When signaling output was measured by induction of 
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a transcriptional reporter construct (FUS1-lacZ), we found that some bypass methods 

activated signaling more strongly than others, but all were independent of Ste4 (Gβ) and 

pheromone (Figure 2-1A, right). 

We then used these signaling bypass methods to address the role of Gβγ in 

chemotropic mating.  Chemotropism was monitored using a "pheromone confusion" 

assay (Dorer et al., 1995; Nern and Arkowitz, 1998), in which mating success is 

compared in the absence vs. presence of excess exogenously-added pheromone (α 

factor), which obscures natural pheromone gradients emanating from partner cells.  

Chemotropically-proficient cells can use pheromone gradients to locate mating partners, 

and thus mate with higher efficiency when pheromone gradients are left intact (- α factor) 

than when gradients are obscured (+ α factor); cells defective at chemotropism are 

insensitive to the presence or absence of pheromone gradients and thus mate at the lower 

efficiency under either condition. Unlike earlier measures of “mating partner 

discrimination” (Jackson and Hartwell, 1990b; Jackson and Hartwell, 1990a), 

chemotropic proficiency in the pheromone confusion assay requires both Far1 and Far1-

Cdc24 binding (Dorer et al., 1995; Valtz et al., 1995; Nern and Arkowitz, 1998) and 

accurately reflects the ability of cells to establish a new polarization axis along 

pheromone gradients (Valtz et al., 1995; Nern and Arkowitz, 1998).  Using this assay, we 

found that cells expressing Ste4 (ste5Δ) were proficient at chemotropism, whereas those 

lacking Ste4 (ste5Δ ste4Δ) were defective (Figure 2-1A, left).  Among the different 

bypass methods, the membrane-targeted Ste5 reagents clearly promoted the most 

efficient mating. Nevertheless, a consistent behavior was observed regardless of the 

 40



bypass method or the absolute signaling level: namely, removal of Ste4 or addition of 

excess pheromone disrupted chemotropic mating without altering MAP kinase pathway 

signaling. 

 Gβγ activates MAP kinase cascade signaling via interactions with Ste5 and Ste20 

(Whiteway et al., 1995; Inouye et al., 1997; Feng et al., 1998; Leeuw et al., 1998; Pryciak 

and Huntress, 1998; Mahanty et al., 1999; Winters et al., 2005).  To unequivocally 

determine whether these interactions are dispensable for the chemotropic role of Gβγ, we 

performed quantitative assays of chemotropic mating in ste5∆ and ste5∆ ste20∆ 

backgrounds, using activated Ste11 (Ste11ΔN) or excess Ste12 to induce signaling or 

transcription.  Indeed, cells lacking Ste5 or both Ste5 and Ste20 remained proficient at 

chemotropism, because mating efficiency was higher (by 10- to 1000-fold) when 

gradients were left intact (- α factor) than when they were obscured (+ α factor), whereas 

strains lacking Ste4 (ste5∆ ste4∆ and ste5∆ ste4∆ ste20∆) were defective at 

chemotropism (Figure 2-1B).  Thus, the chemotropism role of Gβγ does not require it to 

interact with Ste5 or Ste20.  These findings provided a framework from which to further 

probe the chemotropism and polarity functions of the receptor-Gαβγ module without 

concern for their effects on MAP kinase pathway signaling.  

 

The pheromone receptor and all three Gαβγ subunits are required for 

chemotropism  

The ability of Gβγ to mediate chemotropism without regulating MAP kinase 

cascade signaling is consistent with the fact that Gβγ directly interacts with polarity 
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proteins via Far1 (Butty et al., 1998; Nern and Arkowitz, 1998; Nern and Arkowitz, 

1999).  However, because chemotropism is a directional phenomenon, it would be logical 

that Gβγ-Far1 binding could help guide polarization in the proper direction only if Gβγ 

was activated in a spatially asymmetric manner, congruent with the pheromone gradient.  

Since Gβγ activation is regulated by the receptor and Gα subunit, we directly compared 

the requirement for the receptor and all three G protein subunits in chemotropic mating 

assays.  As above, MAP kinase signaling and/or transcription was activated independent 

of Gβγ, so that genetic perturbation of the receptor-Gαβγ module would affect only 

chemotropism.  Despite approximately equal signaling levels (Figure 2-1D), the cells 

with an intact receptor-Gαβγ module could use pheromone gradients to increase their 

mating success, whereas cells lacking the receptor (ste5Δ ste2Δ) or any one of the G-

protein subunits (ste5Δ gpa1Δ, ste5Δ ste4Δ, or ste5Δ ste18Δ) could not (Figure 2-1C).  

Microscopic analysis confirmed that the intact receptor-Gαβγ module allowed cells to 

locate and fuse with mating partners, as judged by the formation of dumbbell shaped 

diploid zygotes (Figure 2-1E), although the mating-defective cells could still form 

polarized mating projections (Figure 2-1E).  Therefore, under these conditions the 

receptor-Gαβγ module is not required for polarization per se, but for properly guiding 

cell polarization toward a mating partner.  Note that these findings are consistent with the 

expectation that polarization in the “correct” direction (i.e., toward the source of 

pheromone) should require spatial regulation of Gβγ activity, and so they do not 

necessarily imply that the receptor and/or Gα perform separate polarization functions.  
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Figure 2-1.  Chemotropism role of Gαβγ and receptor is separate from signaling 

(A) Chemotropism requires Ste4 even when its signaling role is bypassed.  Strains PPY858 

(ste5∆) and PPY886 (ste5∆ ste4∆) harbored galactose-inducible forms of Ste5 (pPP452), 

Ste5∆N-CTM (pPP513), Ste5∆N-Sec22 (pPP524), Ste11∆N (pPP575), or Ste12 (pPP741 or 

pPP271).  Chemotropic proficiency (left) was assessed by patch matings performed in the 

absence (-) or presence (+) of exogenous α factor.  The mating results using the Ste5 derivatives 

show the more-dilute 2° replica, whereas the others show the 1° replica (see Appendix A 

Materials and Methods Chapter II).  Results were similar in both a and α cells, and in both W303 

and 381G strain backgrounds (P.M. Pryciak, personal communication).  Transcriptional 

activation of FUS1-lacZ (right) is shown for the same strains and plasmids after galactose 

induction for 4 hours ± 10 μM α factor.  Bars, mean ± SD (n=3).  To emphasize that transcription 

levels were not the primary determinant of mating efficiency, results are shown using Ste12 

overexpression constructs that yield high (hi) or low (lo) levels of transcriptional induction (due 

to different vector contexts). 

(B) Interaction with Ste5 and Ste20 is not required for the chemotropism role of Ste4.  

Quantitative matings were performed ± exogenous α factor. Strains PPY861, PPY867, PPY863, 

PPY842 harbored either galactose-inducible Ste11∆N (pRD-STE11-H3) or Ste12 (pNC252).  

Bars, mean ± SD (n=2). 

(C) An intact receptor-Gαβγ module is required for chemotropism.  Signaling was activated by 

galactose-inducible constructs (pPP513, pPP575, pPP741) in the indicated strains (PPY858, 

PPY979, PPY978, PPY886 and PPY989).  Chemotropism was monitored by patch or quantitative 

mating assays in the absence (-) or presence (+) of α factor.  Bars, mean ± SD (n=2-4).   

(D) Transcriptional activation of FUS1-lacZ by the same strains and constructs as in panel C after 

galactose induction for 4 hours ± 10μM α factor.  Bars, mean ± SD (n=3). 
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(E) Zygote formation.  Strains from panel C, harboring galactose-inducible GFP-Ste5∆N-CTM 

(pPP513), were mated with PT2α partner cells for 5.5 hours.  Representative fields of DIC and 

fluorescence (GFP) images are shown.  500 cells were counted for each mixture and the percent 

of zygotes was determined.  
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Free Gβγ is insufficient for de novo polarization  

In order to study the polarity function of the receptor-Gαβγ module in a setting 

where cells do not have to detect the direction of a localized stimulus, we assayed de 

novo polarization in response to a uniform field of pheromone.  Polarization was 

restricted to the de novo pathway by using rsr1∆ mutant strains, in which the default 

pathway is inactivated (Nern and Arkowitz, 1999).  First, we tested if pheromone had a 

role in de novo polarization beyond activating the MAP kinase cascade.  Pathway 

signaling was activated independent of pheromone and Gβγ by expressing either Ste5∆N-

CTM (PGAL1-STE5∆N-CTM) or an activated form of Ste11 (Ste11∆N) fused to Ste7 

(PGAL1-STE11∆N-STE7), which permits normal mating morphology by reducing cross-

activation of other (non-mating) pathways (Harris et al., 2001).  Unlike treatment with 

pheromone, pathway activation by Ste5∆N-CTM or Ste11∆N-Ste7 could not trigger de 

novo polarization (i.e., in rsr1∆ cells), despite being able to trigger default polarization 

(i.e., in RSR1 cells) (Figure 2-2A).  This inability to induce de novo polarization was not 

due to interference from excess MAP kinase pathway signaling, as cells harboring these 

pathway activators (ste5∆ + PGAL1-STE5∆N-CTM or PGAL1-STE11∆N-STE7) could 

undergo de novo polarization when pheromone was added (Figure 2-2B).  Importantly, 

we also found that de novo polarization requires Gβγ activity, as cells lacking the Gβ 

subunit (ste4Δ ste5Δ + PGAL1-STE11ΔN-STE7) did not polarize even when pheromone 

was added (Figure 2-2B).  Notably, however, communication between Gβγ and Ste5 was 

not required, because pheromone could stimulate polarization in cells lacking Ste5 (ste5Δ 

+ PGAL1-STE11ΔN-STE7) (Figure 2-2B).  These results show that, as with chemotropism, 
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the ability of pheromone and Gβγ to regulate de novo polarization is separable from any 

regulatory effects on the MAP kinase cascade. 

 Because de novo polarization does not require cells to sense the direction from 

which pheromone emanates, and because Gβγ interacts with the polarity proteins Far1 

and Cdc24, (Butty et al., 1998; Nern and Arkowitz, 1998; Nern and Arkowitz, 1999), it 

seemed possible that Gβγ alone would be sufficient to promote de novo polarization, with 

pheromone serving only to generate free Gβγ by dissociating the Gαβγ heterotrimer.  To 

test this view, Gβγ was activated without using pheromone, by deletion of GPA1 or by 

over-expression of STE4 (PGAL1-STE4) (Dietzel and Kurjan, 1987; Miyajima et al., 1987; 

Cole et al., 1990; Nomoto et al., 1990; Whiteway et al., 1990).  To avoid persistent 

growth arrest due to constitutive MAP kinase pathway signaling, GPA1 was deleted in a 

ste5∆ strain harboring PGAL1-STE11∆N-STE7 (Figure 2-2B) or in a ste4∆ strain harboring 

PGAL1-STE4 (Figure 2-2C).  Remarkably, although each method of Gβγ activation (i.e., 

gpa1∆ or PGAL1-STE4) could induce cell cycle arrest and cell polarization by the default 

pathway (i.e., in RSR1 cells), neither method could induce de novo polarization (i.e., in 

rsr1∆ cells) (Figure 2-2B and 2-2C).  Furthermore, the ability of pheromone to trigger de 

novo polarization was actually eliminated by the gpa1∆ mutation (Figures 2-2B and 2-

2C, right columns), and thus requires Gα in addition to Gβγ.   Therefore, while Gβγ can 

directly communicate with polarization proteins, free Gβγ is not sufficient for de novo 

polarization.  This deficiency might reflect a separate role for ligand-bound receptors or 

GTP-loaded Gα.  Alternatively, it might indicate that ligand-bound receptors and Gα can 

 47



promote an asymmetric distribution of Gβγ activity even when external pheromone is 

distributed uniformly. 
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Figure 2-2.  De novo polarization requires pheromone and Gα, in addition to Gβγ 

(A) Polarization was examined in RSR1 or rsr1∆ cells, after signaling was activated by 

pheromone (10μM α factor) (strains PPY398 and PPY1259) or by galactose induction of PGAL1-

STE5∆N-CTM (strains PPY1303 and PPY1306) or PGAL1-STE11∆N-STE7 (strains PPY1309 and 

PPY1312). 

(B) Pheromone, Ste4 and Gpa1 are required for de novo polarization.  The indicated rsr1∆ strains 

harboring PGAL1-STE5∆N-CTM or PGAL1-STE11∆N-STE7 (strains PPY1307, PPY1313, PPY1314, 

PPY1952) were examined after induction with galactose ± 10μM α factor.  Congenic RSR1 

strains (PPY1304, PPY1310, PPY1311, PPY1951) show that the galactose-inducible constructs 

can activate polarization by the default pathway. 

(C) Free Gβγ is not sufficient for de novo polarization.  Strains PPY794 (ste4∆ RSR1), PPY1228 

(ste4∆ gpa1∆ RSR1), PPY1248 (ste4∆ rsr1∆) and PPY1380 (ste4∆ gpa1∆ rsr1∆) harboring 

PGAL1-STE4 (pGT-STE4) were induced with galactose ± 10μM α factor. 
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Gβ mutants reveal different roles for the two Gα-Gβ interfaces 

To further investigate the requirement for the intact receptor-Gαβγ module in 

chemotropism and de novo polarization, we used a series of Gβ mutants to disrupt 

regulation of Gβγ by the Gα subunit.  Crystal structures of mammalian Gαβγ 

heterotrimers reveal two contact surfaces between Gα and Gβ, termed the “switch 

interface” and the “N-terminal interface” (Wall et al., 1995; Lambright et al., 1996).  The 

switch (Sw) interface involves a region of Gα that undergoes a conformational switch 

upon GTP binding, whereas the N-terminal (Nt) interface involves an N-terminal helix of 

Gα that protrudes away from the remainder of the globular GTPase domain (Figure 2-

3A).  The Gα and Gβ residues contacting one another in each interface are conserved 

between mammalian and yeast counterparts (Lambright et al., 1996; Sondek et al., 1996); 

in Gβ these include 16 residues.  Here, we studied a series of Gβ (STE4) mutations that 

collectively affect all residues predicted to contact Gα.  Briefly, these mutations derive 

from four sources:  (i) a screen for Ste4 mutants that are competent to signal but show 

mating defects (in which multiple isolates at K126 were found); (ii) a screen for Ste4 

mutants that show disrupted binding to Gpa1 but retain normal binding to Ste18 and Ste5; 

(iii) a previously described mutation in the Sw interface at Ste4 residues W136 L138 

(Whiteway et al., 1994); and (iv) site-directed mutagenesis of Ste4 residues that were 

predicted to be Gα contact points but were not uncovered in unbiased screens (and which 

showed the weakest Gα-binding defects, explaining why they were not uncovered in 

screens).   
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Co-immunoprecipitation and two-hybrid assays showed that mutations in either 

interface disrupt Gpa1-Ste4 binding without affecting binding to Far1 (Figure 2-3D).  

Furthermore, as expected for mutants released from repression by Gpa1, these Ste4 

mutants cause constitutively-active MAP kinase pathway signaling (Figure 2-3B), and 

they trigger default polarization in RSR1 cells (Figure 2-3C).  We focused most of our 

subsequent studies on the four Gβ mutants that were most defective for binding Gpa1, 

which include two in the Nt interface (L117R and K126E) and two in the Sw interface 

(W136R/L138F and L154R/N156K; hereafter termed “WL/RF” and “LN/RK”, 

respectively).   

Despite behaving similarly in binding, signaling, and default polarization assays 

the two classes of mutants (Nt interface versus Sw interface) showed opposing 

chemotropism phenotypes.  Mutations in the Nt interface disrupted chemotropism, as 

they caused low levels of mating whether pheromone gradients were intact (- α factor) or 

obscured (+ α factor) (Figure 2-3D).  This phenotype is consistent with disrupted 

interaction between Gpa1 and Ste4.  Surprisingly, however, the Sw interface mutants 

were chemotropism-proficient (Figure 2-3D), even though by signaling and binding 

criteria they appeared to be as strongly dissociated from Gpa1 as the Nt interface 

mutants.  Even when multiple Sw interface mutations were combined--i.e. W136R, 

L138F, L154R and N156K (“WL/RF+LN/RK”)--chemotropism remained intact (Figure 

2-3D).  Consistent with these findings, the Ste4 mutants also segregated into two 

phenotypic classes in de novo polarization assays, in which the Sw interface mutants 

remained competent while the Nt interface mutants were defective (Figure 2-3E).  
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Notably, although the Sw interface mutants could mediate de novo polarization, they still 

required the addition of pheromone, as with wild-type Ste4.  This finding indicates that 

there is an additional pheromone dependent step that can occur with the Sw interface 

mutants, despite their strong dissociation from Gpa1 in binding and signaling assays.  

This raised the possibility that the Sw interface mutants can maintain a weak interaction 

between Gα and Gβ at the Nt interface and thus remain in regulatory communication 

with the pheromone receptor.  This scenario, and others, was addressed by further 

experiments described below. 
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Figure 2-3.  Phenotypic consequences of Ste4 mutations that disrupt interaction between Gβ 

(Ste4) and Gα (Gpa1) 

(A) Model for orientation of the G protein coupled receptor rhodopsin, the heterotrimeric G 

protein transducin, and the membrane.  Adapted from (Hamm, 2001). The N-terminal and Switch 

interfaces are indicated. 

(B) Constitutively-active signaling by Ste4 mutants.  To avoid persistent growth arrest, the Ste4 

derivatives were expressed from the native STE4 promoter (see Table A-2) in ste4∆ ste7∆ cells 

(PPY1662) harboring PGAL1-STE7 (pPP2773).  Cells were treated with galactose ± 10μM α factor 

and FUS1-lacZ activation was measured.  Bars, mean ± SD (n=4). 

(C) Ste4 mutants trigger default polarization.  ste4∆ cells (PPY794) expressing the indicated Ste4 

variants from the GAL1 promoter were examined after galactose induction. 

(D) Ste4 Nt interface and Sw interface mutants behave similarly in binding assays but show 

opposing chemotropism phenotypes.  (Left) Ste4 mutants were tested for binding to Far1 and 

Gpa1 by co-immunoprecipitation and two-hybrid analysis. Results are summarized (P.M. 

Pryciak, personal communication).  (Right) Chemotropism proficiency was assessed by patch 

mating assays performed in the absence (-) or presence (+) of exogenous α factor.  PPY867 

(ste4∆ ste5∆) harbored PGAL1-STE5∆N-SEC22 (pPP524) and a STE4 construct, from top to 

bottom: pGAD424, pPP268, pPP969, pPP2865, pPP2866, pPP266, pPP966, pPP968, pPP2867, 

pPP2868, pPP971.  

(E) The two classes of Ste4 mutants (Nt interface vs. Sw interface) also show differences in de 

novo polarization proficiency. ste4∆ rsr1∆ cells (PPY1248) expressing Ste4 variants as in panel C 

were examined for polarization proficiency after induction with galactose ± 10μM α factor. 
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Compensatory mutation in Gα suppresses Nt interface mutant phenotype  

First, we wanted to determine if the stronger phenotype of the Nt mutants was 

truly a consequence of disrupted interaction between Gβ and Gα, rather than between Gβ 

and some other protein involved in cell polarity.  Binding assays (Figure 2-3D) showed 

that the Ste4 mutants could still bind the polarity protein Far1, but in principle we could 

not rule out effects on binding to other, unknown partners.  Therefore, we attempted to 

restore Gα-Gβ binding via a compensatory mutation in Gpa1.  One of the Nt interface 

mutations (Ste4-K126E) involves a residue that, based on mammalian Gαβγ structures, is 

expected to form an ion pair between Lys126 in Ste4 and Glu28 in Gpa1 (Figure 2-4A).  

The Ste4 mutation changes Lys126 to Glu (K126E), thereby reversing the charge.  To 

make a compensatory charge-reversal mutation in Gpa1, we changed Glu28 to Lys 

(E28K).  This Gpa1-E28K mutation, but not a control mutation (Gpa1-E28A), was able 

to restore a measurable binding interaction with Ste4-K126E (Figure 2-4B), although not 

to wild-type levels.  Also, the Gpa1 E28K and E28A mutations each reduced binding to 

wild-type Ste4, though by a mild degree that was most noticeable when Ste4 was 

expressed at lower levels from a weak promoter (Figure 2-4B).  It was not entirely 

surprising that Gpa1-E28K only partially restored binding to Ste4-K126E and that Ste4-

K126E caused a stronger binding defect than Gpa1-E28K, because the mammalian Gβ 

residue homologous to Ste4 K126 contacts Gα not only through this ion pair but also 

though hydrogen bonding and van der Waals interactions (Lambright et al., 1996).  

Nevertheless, these binding effects were enough to confer informative phenotypes in 

mating assays.   
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Indeed, the chemotropism defect of the Ste4-K126E mutant was at least partially 

suppressed by the Gpa1-E28K mutant, as mating of cells harboring Ste4-K126E was 

more efficient when co-expressed with Gpa1-E28K than with Gpa1-WT (Figure 2-4C 

and 2-4D).  Although mating was not restored to wild-type levels, this result was 

consistent with the incomplete restoration of Gpa1-Ste4 binding.  In addition, the 

observed suppression was allele-specific, as Gpa1-E28A did not suppress Ste4-K126E, 

and neither Gpa1-E28K nor Gpa1-E28A could suppress the other Nt mutant, Ste4-

L117R.  Furthermore, although the Gpa1-E28K mutation improved mating by Ste4-

K126E, it reduced mating by Ste4-WL/RF and Ste4-LN/RK, such that these Sw mutants 

were actually more defective than Ste4-K126E in cells expressing Gpa1-E28K (Figure 2-

4C).  This finding makes it highly unlikely that the phenotypic differences between Ste4 

Nt and Sw mutations can be explained by their different impact on binding between Gβγ 

and an unknown factor.   Instead, the pattern of allele-specific suppression and 

enhancement found with the Gpa1-E28K mutation supports a special role for Gα-Gβ 

binding via the Nt interface in chemotropism and cell polarization, and suggests that this 

interface can remain functional when the Sw interface is dissociated by mutation.  

Because the Gpa1-E28K mutant is sensitized to disruption of the Sw interface, an intact 

Sw interface may help maintain Gα-Gβ association when the Nt interface is mildly 

disrupted. 
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Figure 2-4.  Allele specific suppression of chemotropism defect of Nt interface mutant 

(A) Residues in the Nt interface.  Ste4 (Gβ)-K126 contacts Gpa1 (Gα)-E28. 

(B) Two-hybrid analysis showing that the Gpa1-E28K mutation partially restores interaction with 

Ste4-K126E.  DNA binding domain (DBD) fusions to Gpa1 derivatives (pPP247, pPP1502, 

pPP1505) were co-expressed in PPY762 with AD-Ste4 fusions under control of either a strong or 

weak promoter (pGADXP, pGADXP-STE4, pPP1121, or pPP249).  Bars, mean ± SD (n=3). 

(C) Gpa1-E28K partially suppresses the chemotropism defect of Ste4-K126E.  Patch mating 

assay of ste4∆ gpa1∆ ste5∆ cells (PPY1230) harboring PGAL1-STE5∆N-SEC22 (pPP524) and the 

indicated combination of GPA1 (YCpGPA1, pPP1501, pPP1503) and PGAL1-STE4 constructs 

(pGT-STE4, pPP1233, pPP1229, pPP1228, pPP1209). 

(D) Quantitative mating assay of cells carrying constructs as in panel C except that the Ste4 

derivatives were expressed from the native STE4 promoter, and the mating partner was PPY258.  

Bars, mating efficiency expressed relative to that of the wild type Ste4 and Gpa1 combination 

(mean ± SD, n=3). 
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Differences between Nt interface and Sw interface mutants are not due to altered 

interaction between Gpa1 and Fus3   

Next, we considered the possibility that an intact Nt interface was required to 

properly position the N-terminal helix of Gα for interactions with other proteins, such as 

pheromone receptor molecules or possible downstream targets of Gα.  Relevant to the 

latter possibility, Gpa1 can interact with the MAPK Fus3 via a MAPK docking motif in 

the N-terminal α-helix of Gpa1 (Metodiev et al., 2002).  Mutations in this docking motif 

(Gpa1-K21E R22E, herein referred to as Gpa1-EE) disrupt Fus3 binding and reduce 

mating (Metodiev et al., 2002).  This raised the possibility that an intact Nt interface is 

required mainly to allow proper interaction between the Gpa1 N-terminus and Fus3.  To 

test this notion we used the Gpa1-EE mutant to disrupt interaction between Gpa1 and 

Fus3, and then asked if the Nt and Sw mutations in Ste4 still showed any phenotypic 

differences.  We found that the Gpa1-EE mutant did not disrupt the chemotropic 

proficiency of wild-type Ste4 or the Sw interface mutants, whereas the Nt interface 

mutants were still defective (Figure 2-5A).  We also tested the Ste4 mutants in cells 

lacking Fus3 (ste4∆ fus3∆).  Here, mating by the Sw interface mutants was not as 

efficient as that of wild type Ste4, but it was still more efficient than that of the Nt 

interface mutants (Figure 2-5A).  Thus, both approaches suggest that the role of the Nt 

interface, and the different behavior of the Nt vs. Sw mutants, cannot be explained by 

indirect effects on the Gpa1-Fus3 interaction.   

 It is notable that we did not detect a strong mating or chemotropism defect for the 

Gpa1-EE mutant alone, suggesting that the Gpa1-Fus3 interaction may not be required 
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for chemotropism.  To address this issue further, we compared the roles of Fus3 and Far1 

in chemotropism, using the pheromone confusion assay (Figure 2-5B).   Loss of either 

Far1 or Fus3 caused a mating defect, but a much greater defect occurred when both Fus3 

and Far1 were absent, indicating that although both proteins are required for maximum 

mating efficiency, each protein can still function in the absence of the other (Figure 2-

5B).  Moreover, an important distinction between the roles of Fus3 and Far1 was 

apparent: the fus3∆ cells were proficient at chemotropism (i.e., they were sensitive to the 

loss of pheromone gradients), whereas the far1∆ cells were defective (Figure 2-5B).  To 

rule out the possibility that chemotropic proficiency in fus3∆ cells reflects redundancy 

between Fus3 and Kss1, we performed quantitative mating assays using fus3∆ kss1∆ cells 

(in which sterility was suppressed by PGAL1-STE12).  Despite low overall mating 

efficiency, the fus3∆ kss1∆ cells could still use pheromone gradients, and this behavior 

required Far1 (Figure 2-5C).  The simplest overall interpretation is that detecting 

gradients and using gradient information to locate mating partners does not require Fus3, 

whereas morphogenesis and successful fusion with a partner may require Fus3 functions 

that are distinct from gradient sensing per se. 
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Figure 2-5.  Qualitative differences between Ste4 mutants are not due to altered interaction 

between Gpa1 and Fus3 

(A) The Ste4 Nt interface and Sw interface mutants still show differences in chemotropic 

proficiency when interaction between Gpa1 and Fus3 is disrupted by the Gpa1-EE mutations.  

Patch mating assays were performed using: (left) strain PPY1228 (ste4∆ gpa1∆) harboring the 

indicated Gpa1 derivatives (pPP2711 or pPP2743) and PGAL1-STE4 plasmids;  (center, right) 

strain PPY1230 (ste4∆ gpa1∆ ste5∆) carrying the same Gpa1 derivatives and the indicated Ste4 

variants expressed from the native STE4 promoter.  PPY1230 also expressed either Ste5∆N-CTM 

(pPP479) or Ste5∆N-Sec22 (pPP1175) from the GAL1 promoter.  (Far right) Ste4 mutants also 

display qualitative differences in cells lacking Fus3.  Patch mating assay conducted with 

PPY1937 (fus3Δ ste4∆) harboring the indicated PGAL1-STE4 plasmids. 

(B) Pheromone confusion assay showing that fus3∆ cells are chemotropically proficient.  Strains, 

from top to bottom: PPY577, PPY824, PPY827, PPY836.  Similar results were also seen in 

S288C and W303 strain backgrounds (P.M. Pryciak, personal communication). 

(C) Quantitative mating assay of strains PPY663, PPY817, PPY498, PPY820 expressing 

galactose-inducible Ste12 (pPP271) performed ± exogenous α factor.  Cells were mated for 18 

hours.  Bars, mean ± SD (n=3). 
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Fusion of Gβ to Gα suggests a role for the Nt interface in coupling between the 

receptor and Gαβγ 

Finally, we addressed whether maintenance of the Nt interface was necessary for 

coupling of the heterotrimer (Gαβγ) to the receptor.  A model for coupling between a 

GPCR and its associated heterotrimeric G protein indicates that the Nt interface lies 

tangential to the membrane (Hamm, 1998; Hamm, 2001), and the N-terminus of Gα has 

been implicated in receptor recognition (Taylor et al., 1994; Itoh et al., 2001; Cabrera-

Vera et al., 2003).  This suggested that the Nt interface mutations may not only disrupt 

interaction between Gβ and Gα, but they may also disrupt the way Gαβγ interacts with 

the receptor.   However, the ability to test this notion was hindered by the fact that all of 

the Ste4 mutations caused constitutive signaling, which obscured whether the receptor 

might still exert some regulatory control over the G protein. To circumvent this difficulty, 

we took advantage of a previously described Ste4-Gpa1 fusion protein (Klein et al., 

2000), with the rationale that forced association to Gpa1 may inhibit the constitutive 

signaling of the Ste4 mutants and thus allow us to assay receptor coupling.   

Starting with the prior Ste4-Gpa1 fusion construct, we replaced the original GAL1 

promoter with the native STE4 promoter, and then compared its function to wild type 

(non-fused) polypeptides.  By multiple assays, we found the Gβ-Gα fusion (Ste4-Gpa1) 

to function in a manner that was virtually indistinguishable from when Gβ and Gα were 

expressed as separate polypeptides.  This included growth arrest (Figure 2-6A, left), 

regulation by the RGS-family protein Sst2 (Figure 2-6A, right), and pheromone-induced 

transcription (Figure 2-6B).  Furthermore, the Gβ-Gα fusion was able to mediate total 
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mating levels and chemotropic mating behavior that was similar to wild-type cells 

(Figures 2-6C and 2-6D).  Thus, the fusion of Gβ to Gα does not interfere with Gαβγ 

function in either signaling or gradient detection. 

 Next, we incorporated the Nt interface and Sw interface mutations into the STE4 

portion of the STE4-GPA1 fusion gene (in both the GAL1 promoter and native STE4 

promoter contexts), and then performed FUS1-lacZ assays to determine if forced 

association with Gpa1 could suppress the constitutive signaling activity of the Ste4 

mutants.  Again, the Nt interface and Sw interface mutants showed distinct phenotypes, 

as fusion to Gpa1 could suppress the constitutive signaling of the Nt interface mutants but 

not that of the Sw interface mutants (Figure 2-6E, left and middle panels).  There was a 

slight difference between the two Sw interface mutants in the native promoter fusion 

context, as fusion to Gpa1 partially reduced signaling by Ste4-LN/RK, but not Ste4-

WL/RF (Figure 2-6E, top).  

Further analysis of these mutant fusion proteins showed that although constitutive 

signaling by the Nt interface mutants could be suppressed by fusion to Gpa1, signaling 

could not be efficiently re-activated by the addition of pheromone, in contrast to the 

fusion containing wild-type Ste4 (Figure 2-6E, right panels).  The absence of robust 

pheromone response suggests that mutations in the Nt interface disrupt coupling between 

Gαβγ and the receptor, which may explain their defective behavior in both chemotropism 

and de novo polarization assays.  The Sw interface mutants, on the other hand, behave as 

if they remain unregulated by Gpa1 even in the fusion context (Figure 2-6E middle and 

right panels).  This suggests that dissociation of the Sw interface is the primary regulator 
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of downstream signaling.  Thus, while both Sw and Nt mutants show constitutive 

signaling when not fused to Gpa1, their different behaviors when fused to Gpa1 suggests 

the possibility that their different chemotropism/polarity phenotypes are a consequence of 

disrupted receptor-Gαβγ coupling in the Nt mutants, and by inference that this coupling 

can still occur in Sw mutants despite their constitutive signaling. 
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Figure 2-6.  Phenotypic consequences when Ste4 is forced to remain associated with Gpa1 

(A) The Ste4-Gpa1 fusion expressed from the native STE4 promoter functions indistinguishably 

from when Ste4 and Gpa1 are expressed as separate polypeptides.  Growth arrest of ste4∆ gpa1∆ 

cells (PPY1228) or ste4∆ gpa1∆ sst2∆ cells (PPY1942) harboring Gpa1 and Ste4 as separate 

(YCplac22-GPA1-WT + pPP226) or fused (pPP1340 + pRS314 vector) polypeptides. 

(B) FUS1-lacZ assays showing that the Ste4-Gpa1 fusion retains normal dose response to 

pheromone. PPY1663 (ste4∆ gpa1∆) harbored plasmids as in panel A.  Results are mean ± SD 

(n=4). 

(C) Patch mating assay of strains PPY1230 (ste5∆ ste4Δ gpa1Δ) or PPY886  (ste5∆ ste4Δ GPA1) 

harboring PGAL1-STE5∆N-CTM (pPP473) plus pRS316, pPP226, or pPP1340. 

(D) Patch mating assays showing that the Ste4-Gpa1 fusion protein remains proficient at 

chemotropism.  Strain PPY1230 carried PGAL1-STE5∆N-CTM (pPP479) and plasmids: pRS316, 

pPP2711, pRS314, pPP226, pPP1340.  (Vector plasmids were included when necessary to 

supplement an auxotropic deficiency to allow matings to be performed on the same plate.) 

(E) In the Ste4-Gpa1 fusion context the Ste4 mutants show distinct signaling phenotypes.  (Top) 

Strain PPY1662 (ste4∆ ste7∆) harbored a PGAL1-STE7 construct (pPP2773) plus either vector 

(pRS316) or the indicated STE4 or STE4-GPA1 fusion alleles, expressed from the native STE4 

promoter.  (Bottom) Strain PPY856 (ste4∆) harbored either vector (pPP446) or the indicated 

PGAL1-STE4 or PGAL1-STE4-GPA1 fusion constructs.  FUS1-lacZ activation was measured after 

induction with galactose ± 10μM α factor.  The data in the top left graph is identical to that in 

Figure 2-3B (- α factor), and is shown here to facilitate comparison. Bars, mean ± SD (n=4). 
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GTP hydrolysis by Gα is required for de novo polarization and chemotropism 

Our findings that pheromone and Gα, in addition to Gβγ, are required for de novo 

polarization (Figure 2-2B and 2-2C), and that the Nt mutants may disrupt receptor-Gαβγ 

coupling (Figure 2-6E), suggest that proper communication between Gαβγ and the 

receptor is necessary for directional responses even when the pheromone stimulus is 

provided uniformly.  This receptor-Gαβγ communication might be required solely to 

promote GTP-GDP nucleotide exchange on Gα, perhaps allowing GTP-bound Gα to 

perform a polarization role that acts synergistically with Gβγ.  Alternatively, receptor-

Gαβγ communication might be required to generate asymmetry in the distribution of Gβγ 

activity (and/or Gα-GTP), which otherwise would remain symmetric (e.g., in gpa1∆ cells 

or with constitutively-active Ste4 mutants). To address these possibilities, we used a 

mutationally-activated form of the Gα subunit, Gpa1-Q323L (herein referred to as Gpa1-

QL), which is defective at GTP hydrolysis (Dohlman et al., 1996; Apanovitch et al., 

1998).  We found that simultaneous activation of both Gα and Gβγ, by co-expressing 

Gpa1-QL with Ste4, was still not sufficient for de novo polarization in the absence of 

pheromone (Figure 2-7A and 2-7B). This was true regardless of whether Gpa1-QL was 

expressed with Ste4-WT or with the signaling-active Sw interface mutant, Ste4-WL/RF.  

In fact, we found that trapping Gpa1 in the GTP-bound state was detrimental, as cells 

expressing Gpa1-QL could not polarize even after exposure to pheromone (Figure 2-7A 

and 2-7B, + α factor).  Therefore, polarization requires more than just the acquisition of 

both GTP-bound Gα and active Gβγ.   
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 It seemed possible that activated Gα and Gβγ subunits might have to remain in 

close mutual proximity, and that this might be accomplished during receptor-mediated 

activation but not by co-expression of mutationally-activated subunits. Therefore, to force 

GTP-bound Gα to remain associated with Gβγ, we incorporated the Gpa1-QL mutation 

into the STE4-GPA1 fusion constructs.  In signaling assays, incorporation of either the 

Ste4-WL/RF or Gpa1-QL mutations (or both) into the Ste4-Gpa1 fusion caused 

constitutive activity (Figure 2-7C), yet none of these fusions could induce de novo 

polarization in the absence of pheromone (Figure 2-7A and 2-7B, - α factor).  Notably, 

however, the fusions containing the Gpa1-QL mutation were able to promote a detectable 

increase in elongation (and more so than when the same subunits were expressed as 

separate polypeptides).  Nevertheless, these elongated cells did not form the highly-

polarized, pear-shaped shmoos seen during pheromone treatment. Thus some aspect of 

pheromone-induced polarization was still missing, such as the ability to maintain a 

persistent polarity axis and/or to focus morphogenesis to a restricted portion of the cell 

perimeter.   

Furthermore, pheromone could still trigger de novo polarization when Ste4 was 

fused to Gpa1, but this was disrupted by the Gpa1-QL mutation (Figures 2-7A and 2-7B, 

+ α factor).  Consistent with these findings, the fusions containing the Gpa1-QL mutation 

were also defective in chemotropic mating assays (Figure 2-7D).  In addition, the Gpa1-

QL mutant (expressed as a separate polypeptide) eliminated the mating advantage of Sw 

interface mutants over Nt interface mutants (Figure 2-7E).  Thus, interfering with GTP 

hydrolysis activates Gβγ signaling but disrupts cell polarization and chemotropism, 
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regardless of whether Gα is fused to Gβ or kept separate.  Finally, it should be noted that 

when expressed at native levels, the Gpa1-QL mutant is recessive to wild-type Gpa1 and 

thus does not interfere with mating (Figure 2-8).  Altogether, these observations suggest 

that the ability of pheromone-bound receptor molecules to guide cell polarization, either 

along a de novo polarization axis or along pheromone gradients, requires normal coupling 

to the Gα GTP-hydrolysis cycle.  
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Figure 2-7.  Gpa1 GTP-hydrolysis mutant (Gpa1-QL) interferes with de novo polarization 

and mating 

(A and B) De novo polarization was monitored using ste4∆ gpa1∆ rsr1∆ cells (PPY1380) 

expressing Ste4 and Gpa1 variants as either separate or fused polypeptides, after 4 hour induction 

with galactose ± 10μM α factor.  Ste4 and Gpa1 subunits were expressed from pGT-STE4, 

pPP1228, pPP271, and pPP2802.  Ste4-Gpa1 fusions were expressed from pSTE4-GPA1-b, 

pPP1230, pPP2806, and pPP2807. (A) Representative DIC images of predominant morphology 

for each condition.  (B) Cell morphologies were quantified by counting 200 cells/condition.  Cells 

were scored as polarized if they formed pear shaped shmoos or elongated to a point; whereas 

those scored as elongated did not form a point on one end but rather elongated so that one axis 

was longer than the other.  Bars, mean - SD (n=3).   

(C) Transcriptional induction.  ste4∆ cells (PPY856) harboring the indicated fusion plasmids 

expressed from the GAL1 promoter (from top to bottom: pSTE4-GPA1-b, pPP1230, pPP2806, 

pPP2807) were induced with galactose ± 10μM α factor and assayed for FUS1-lacZ activation.  

Results for the WT-WT and WL/RF-WT fusion proteins are identical to those for the PGAL1-

driven constructs in Figure 2-6E (bottom, middle and right) and are presented here for 

comparison. 

(D) Fusion proteins harboring the Gpa1-QL mutation are defective at chemotropism.  Patch 

mating assay of ste4∆ gpa1∆ ste5∆ cells (PPY1230) harboring galactose-inducible Ste5∆N-CTM 

(pPP479) and the indicated fusion construct (plasmids as in C) in the absence (-) or presence (+) 

of 20 μM exogenous α factor.  

(E) Gpa1-QL eliminates the chemotropic advantage of Sw interface mutants over Nt interface 

mutants.  Patch mating assay performed with strain PPY1230 (ste4∆ gpa1∆ ste5∆) expressing 

galactose-inducible Ste5∆N-Sec22 (pPP1175) and the indicated combination of Gpa1 allele 
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(plasmids, from left to right: pPP2711, pPP2802) and Ste4 allele (plasmids, from top to bottom: 

pRS316, pPP226, pPP1377, pPP1378, pPP1379, pPP1380). 
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Figure 2-8.  Gpa1-QL is recessive to wild type Gpa1  

(A) Patch mating assay of ste4∆ ste5∆ gpa1∆ cells (PPY1230) and ste4∆ ste5∆ GPA1 cells 

(PPY867) harboring the indicated Gpa1 derivatives (pPP2711 or pPP2802) and Ste4-WL/RF 

(pPP1379).  These strains also expressed either Ste5∆N-CTM (pPP479) or Ste5∆N-Sec22 

(pPP1175) from the GAL1 promoter.  The mating partner, PPY198 (MATα ura3 trp1) was used 

to select for retention of the plasmids (TRP1 and URA3).  
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Discussion Chapter II 

 

This work examines how a GPCR and its coupled Gαβγ heterotrimer coordinate 

an asymmetric response to external stimuli.  Our findings indicate that although Gβγ is 

thought to be responsible for interacting with downstream polarity factors (e.g., Far1, 

Cdc24), chemotropism and de novo polarization both require an intact receptor-Gαβγ 

module (Figure 2-1).  Furthermore, our results suggest qualitatively different roles for the 

two Gα-Gβ interaction interfaces. Sw interface mutants are proficient in chemotropism 

and de novo polarization assays, whereas the Nt interface mutants are defective (Figure 2-

3D and 2-3E).   Forced association of Gβ with Gα revealed that the Sw interface controls 

signaling, whereas the Nt interface governs coupling to the receptor (Figure 2-6E).  As 

such, maintenance of the N-terminal interface is required for both chemotropism and de 

novo polarization.  Finally, Gα GTP hydrolysis is required as a Gpa1-GTP hydrolysis 

mutant interfered with rather than promoted de novo polarization and chemotropism.  

Overall, these results suggest that proper communication between the receptor and Gαβγ 

is important for chemotropism and polarized growth, perhaps to regulate Gαβγ in a 

spatially asymmetric manner. 

 

Distinctions between signaling and polarity roles of Gβγ  

Bypassing the role of Gβγ in signaling revealed several interesting points 

regarding mating efficiency.  First, the ability of exogenous pheromone to disrupt 

chemotropism does not require changes in MAP kinase cascade signaling, as signaling 
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levels were unaffected by exogenous pheromone and yet mating efficiency was decreased 

(Figures 2-1A and 2-1B).  Thus, the roles of Gβγ and pheromone gradients in 

chemotropism are clearly separable from their control of MAP kinase cascade signaling 

and transcription.  Second, the total level of mating efficiency is neither solely dictated by 

nor strongly dependent on transcription levels, as the two membrane-targeted Ste5 

reagents activated transcription to either high (Ste5∆N-CTM) or low (Ste5∆N-Sec22) 

levels and yet yielded higher-efficiency mating than the Ste11 and Ste12 reagents 

(Figures 2-1A and 2-1B).  Presumably, the Ste5 reagents promote the most efficient 

mating because they can activate the MAP kinase cascade (i.e., in contrast to Ste12 

overexpression, which induces transcription only) but do not cross-activate other 

pathways that inhibit mating (i.e., in contrast to Ste11∆N, which also activates the HOG 

pathway) (Harris et al., 2001).  Third, the ability of pheromone gradients to increase 

mating success is independent of the baseline level of mating, as this behavior was 

observed whether the baseline level of mating is relatively high (Ste5∆N-CTM and 

Ste5∆N-Sec22) or relatively low (Ste11∆N and Ste12) (Figures 2-1A and 2-1B).   

 

Heterotrimeric G protein dissociation mechanisms 

Several of our findings are relevant to the mechanism of Gαβγ dissociation.  

Although it is generally accepted that GTP-loading onto Gα causes Gα-GTP to dissociate 

from Gβγ (Gilman, 1987; Neer, 1995; Cabrera-Vera et al., 2003), some previous studies 

have raised the possibility that complete dissociation may not be necessary (Rebois et al., 

1997; Klein et al., 2000; Levitzki and Klein, 2002; Bunemann et al., 2003; Gales et al., 
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2006). Indeed, prior work showed that the yeast heterotrimer remained functional when 

Gα and Gβ were expressed as a Gβ-Gα fusion protein (Klein et al., 2000), which should 

restrict dissociation.  We have extended these results further by showing that this Gβ-Gα 

fusion protein performs both signaling and polarity functions indistinguishably from the 

wild type, non-fused proteins, even when expressed at native levels (Figure 2-6 A-D).  

Furthermore, we find that the two Gα-Gβ interaction interfaces have qualitatively 

different roles.  The chemotropic and de novo polarization proficiency of the Sw interface 

mutants indicates that despite being active for signaling, these mutants can still mediate a 

response to the pheromone ligand whereas the Nt interface mutants cannot mediate such 

a response (Figure 2-3D and 2-3E and Figure 2-6E), implying that the Sw mutants 

maintain a functional Nt interface.  This raises the possibility that when the Sw interface 

is dissociated, the Gαβγ heterotrimer may remain tethered by the Nt interface, allowing 

continued communication with the receptor.  By extension, it is conceivable that this 

“partial dissociation” state applies not only to the Sw interface mutants studied here, but 

also to receptor-activated Gαβγ.  Namely, GTP-induced conformational changes in the 

switch region of Gα may trigger an initial state in which the Sw interface dissociates but 

the Nt interface does not.  

Several structural considerations are pertinent to this partial dissociation model. 

First, the N-terminal helix of Gα has been previously implicated in receptor recognition 

and is thought to lie tangential to the membrane (Taylor et al., 1994; Bourne, 1997; 

Hamm, 1998; Hamm, 2001; Itoh et al., 2001; Cabrera-Vera et al., 2003), suggesting how 

an intact Nt interface may facilitate receptor coupling.  Second, Gα and Gβγ are anchored 
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to the membrane by addition of lipophilic groups to the Gα N-terminus and the Gγ C-

terminus (Wedegaertner et al., 1995), and these groups are predicted to lie adjacent to 

each other at one end of the Nt interface (Wall et al., 1995; Lambright et al., 1996).  

Membrane insertion of these groups increases the stability of the intact heterotrimer 

(Bigay et al., 1994; Chen and Manning, 2001), and thus may also help stabilize the weak 

interaction at the Nt interface and keep the partially dissociated structure intact.  

Solublizing the membrane with detergents would eliminate this contribution, explaining 

why GTP-activated heterotrimers (Gilman, 1987) and our Sw mutants appear fully 

dissociated in cell extracts.  Third, the behavior of the Gβ-Gα fusion protein is 

compatible with the partial dissociation model, as the linkage formed between the Gβ C-

terminus and the Gα N-terminus would constrain separation of the Nt interface but not 

the Sw interface.  Fourth, crystal structures of Gαβγ show that the N-terminal helix of 

Gα makes no contacts with the remainder of Gα (Wall et al., 1995; Lambright et al., 

1996), thus the linkage between them could freely rotate, potentially allowing the Gα and 

Gβ halves of the Sw interface to swivel away from each other.  Fifth, the N-terminal 

helix of Gα is usually structurally disordered when Gα is free or bound to effectors 

(Sunahara et al., 1997; Tesmer et al., 1997a; Tesmer et al., 1997b; Medkova et al., 2002), 

potentially implying that it tends to remain in contact with Gβγ.  Sixth, contacts between 

Gβγ and effector proteins in co-crystal structures generally involve Gβ residues in the Sw 

interface rather than the Nt interface (Gaudet et al., 1996; Lodowski et al., 2003), and 

thus are in principal compatible with partial dissociation.   
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Note that this partial dissociation model does not postulate that Gα and Gβγ are 

inseparable, but only that dissociation of the Sw interface (upon loading of Gα with GTP) 

does not automatically lead to dissociation of the Nt interface as a necessary and/or 

immediate consequence.  Complete dissociation might follow at a subsequent point, 

perhaps if GTP hydrolysis is delayed or when Gα-GTP and Gβγ bind their targets.  

Indeed, structural analysis of a tripartite Gα-GRK2-Gβγ complex suggests that the 

separation between Gα and Gβγ is too great for them to retain contacts and thus they may 

be completely dissociated, although the status of the Gα N-terminus was ambiguous due 

to being disordered (Tesmer et al., 2005).   Partial dissociation could be of some 

advantage in allowing an additional level of regulation of heterotrimer activity, or 

quickening heterotrimer reformation following GTP hydrolysis by Gα.  In our 

physiological context, it could facilitate chemotropism and de novo polarization by 

allowing the activated Gβγ complex to remain in regulatory communication with the 

receptor. 

 

Symmetry breaking 

Symmetry breaking, in which cells or molecular modules self-organize without a 

localized cue, is thought to involve the amplification of an initial asymmetry that occurs 

through stochastic variation (Kirschner et al., 2000; Wedlich-Soldner and Li, 2003). In 

yeast, symmetry breaking can allow formation of polarized buds in the absence of 

directional cues (Chant and Herskowitz, 1991; Irazoqui et al., 2003).  This has been 

proposed to result from stochastic variation in the local amount of activated (GTP-bound) 
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Cdc42, which is then amplified by positive feedback loops via two possible pathways 

(Irazoqui et al., 2003; Wedlich-Soldner et al., 2003).  One pathway involves self-

assembly of the adaptor protein Bem1, which links Cdc24 and Cdc42 (Butty et al., 2002; 

Irazoqui et al., 2003; Wedlich-Soldner et al., 2004).  The other involves feedback 

between Cdc42-induced actin polymerization and polarized transport of secretory 

vesicles carrying Cdc42 as cargo (Gulli et al., 2000; Wedlich-Soldner et al., 2003; 

Wedlich-Soldner and Li, 2003). 

Analogous mechanisms may apply during pheromone response to allow de novo 

polarization.  Breaking the symmetry inherent in a uniform field of pheromone may begin 

with a small difference in receptor-Gαβγ activation, resulting either from a stochastic 

fluctuation in local ligand concentration or from discontinuities in the plasma membrane 

distribution of receptor and/or Gαβγ molecules. These differences could cause a slight 

asymmetry in the initial activation of Gβγ and the resultant recruitment of polarity 

proteins (Butty et al., 1998; Nern and Arkowitz, 1998; Nern and Arkowitz, 1999), 

generating a weak landmark for polarity establishment (Arkowitz, 1999) that could then 

be amplified to form a persistent polarity axis.   

Our results implicate a role for continuous communication between pheromone-

bound receptors and Gαβγ, since activated Gβγ and Gα alone cannot induce de novo 

polarization.  Because pheromone receptors are rapidly internalized and new receptors 

are delivered by secretory transport along actin filaments (Jenness and Spatrick, 1986; 

Schandel and Jenness, 1994; Ayscough and Drubin, 1998), the slight initial asymmetry 

might become amplified by polarized delivery of new pheromone receptors to the initial 
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landmark, resulting in heightened pheromone response in that location which would 

reinforce the initial directional choice.  The mutations that disrupt de novo polarization 

(i.e., gpa1-Q323L, or ste4 Nt interface mutations) may disable this positive reinforcement 

by disrupting the ability to coordinate receptor localization with Gα activation and/or 

Gβγ activity/localization.  On the other hand, the chemotropism and de novo polarization 

proficiency of the Sw interface mutants suggests that, despite constitutively-active Gβγ 

signaling, these mutant heterotrimers remain in regulatory communication with the 

receptor.  Unfortunately, it remains unclear what this communication achieves in 

molecular terms, though it does require the Gα subunit and GDP-GTP cycling.  

Speculatively, we envision three scenarios that might explain the ability of pheromone to 

regulate polarization of cells that express a partially-dissociated, constitutively-active Sw 

mutant Gαβγ heterotrimer:  (1) interaction with asymmetrically-localized receptors might 

influence localization of the heterotrimer, thereby causing asymmetrically-localized Gβγ 

activity; (2) the Sw mutants might still allow nucleotide exchange on the Gα subunit at 

sites of pheromone-bound receptors, potentially promoting localized Gα-GTP, which 

could control polarization in synergy with Gβγ; or (3) pheromone-bound receptors might 

interact directly with downstream polarity factors, but normal affinity of receptors for 

ligand might require coupling to a Gαβγ heterotrimer with an intact Nt interface and 

normal GDP-GTP exchange properties.  Distinguishing among these scenarios will 

require further study. 
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Conclusions 

The findings reported here reveal several unexpected lessons that may be applicable to 

other examples of cell polarity control and/or of heterotrimeric G protein function.  First, 

the activated Gαβγ heterotrimer (and the resulting downstream signaling) is not 

inherently able to organize a directionally-persistent polarization axis.  Second, the 

requirements of the receptor-Gαβγ module are similar for gradient-controlled 

polarization and de novo polarization.  Third, the two structurally-distinct Gα-Gβ 

interfaces have functionally-distinct roles.  Fourth, the yeast heterotrimer may be able to 

function in a partially-dissociated state that allows continued regulatory communication 

with the receptor.  In future studies, it will be interesting to compare these behaviors 

shown by the yeast system to those of other systems. 
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CHAPTER III 

A MECHANISM FOR CELL-CYCLE REGULATION OF MAP KINASE 

SIGNALING IN A YEAST DIFFERENTIATION PATHWAY 
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Summary 

 

Yeast cells arrest in the G1 phase of the cell cycle upon exposure to 

mating pheromones. As cells commit to a new cycle, G1 CDK activity (Cln/CDK) 

inhibits signaling through the mating MAPK cascade. Here, we show that the 

target of this inhibition is Ste5, the MAPK cascade scaffold protein. Cln/CDK 

phosphorylates a cluster of sites flanking a small, basic membrane-binding motif 

in Ste5, thereby disrupting Ste5 membrane localization. Effective inhibition of 

Ste5 signaling requires multiple phosphorylation sites and a substantial 

accumulation of negative charge, suggesting that Ste5 acts as a sensor for high G1 

CDK activity. Thus, Ste5 is an integration point for both external and internal 

signals. When Ste5 cannot be phosphorylated, pheromone triggers an aberrant 

arrest of cells outside G1, either in the presence or absence of the CDK inhibitor 

protein Far1. These findings define a mechanism and physiological benefit of 

restricting antiproliferative signaling to G1. 
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Introduction Chapter III 

 

Cellular decisions are commonly regulated by external signals via MAP kinase 

cascades (Qi and Elion, 2005).  MAP kinase pathways are widely appreciated to 

stimulate cell proliferation, but they can also regulate cell differentiation.  Relatively little 

is known about how differentiation and antiproliferative signals may be integrated with, 

or counteracted by, the cell division status of individual cells.  In yeast, mating 

pheromones activate a MAP kinase cascade to trigger fusion between two haploid gamete 

cells (Dohlman and Thorner, 2001).  This mating reaction exhibits fundamental 

hallmarks of differentiation, in that cells exit the cell cycle, induce a unique program of 

gene expression, and undergo morphogenetic changes that allow them to adopt a new 

fate.  Mating pheromones cause cells to arrest specifically in the G1 stage of the cell 

cycle, prior to the G1 to S transition step known as Start.  However, once cells pass Start 

they become committed to finishing that round of division.  As such, when post-Start 

cells are exposed to pheromone they will complete the current division cycle and arrest in 

the next G1 phase (Hartwell et al., 1974). 

 Mutual antagonism between the Cln/CDK complexes and Far1, the CDK 

inhibitor, contributes to the G1 specificity of pheromone induced cell cycle arrest 

(McKinney et al., 1993; Peter and Herskowitz, 1994; Henchoz et al., 1997; Gartner et al., 

1998; Jeoung et al., 1998).  In addition, Cln/CDK activity also plays a role in restricting 

arrest to G1 by inhibiting signaling though the mating MAPK cascade (Oehlen and Cross, 
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1994; Wassmann and Ammerer, 1997).  This ability of the G1 CDKs has been recognized 

for many years, but the target and mechanism were unknown. 

Here, we report that G1 CDK activity inhibits pheromone signaling by inhibiting 

membrane recruitment of the MAPK cascade scaffold protein, Ste5. The Ste5 PM domain 

is flanked by multiple CDK sites that are phosphorylated by G1 CDKs in vivo and in 

vitro, and the addition of multiple negatively-charged phosphates impedes binding to 

acidic phospholipid membranes. Furthermore, we show that when CDK regulation of 

Ste5 is disrupted, pheromone signaling blocks cell cycle progression even after cells pass 

Start, and even in the absence of Far1, providing a physiological rationale for 

antagonizing pheromone signaling as cells begin a new division cycle. 
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Results Chapter III 

 

G1 CDKs inhibit the function of the Ste5 PM domain 

 To identify the target of Cln/CDK inhibition we used several new tools to dissect 

early steps in the mating pathway. First, we expressed activated forms of various pathway 

components (Figure 3-1B) from a strong, galactose-inducible promoter (PGAL1), to bypass 

upstream signaling steps. We then compared signaling with and without overexpression 

of Cln2, the G1 cyclin that is most potent at inhibiting pheromone response (Oehlen and 

Cross, 1994). While each activation method caused strong signaling, only those that 

require the Ste5 PM domain could be inhibited by Cln2 (Figure 3-1C). Especially 

revealing is the comparison between Ste5-Q59L and Ste5-CTM. Both activate signaling 

by targeting Ste5 to the plasma membrane, and both bypass Gβγ but still require Ste20 

(Pryciak and Huntress, 1998; Winters et al., 2005). Yet they behaved oppositely with 

regard to Cln2 sensitivity:  Ste5-Q59L (which is targeted to the membrane by an 

enhanced PM domain; (Winters et al., 2005)) was sensitive to Cln2 inhibition, whereas 

Ste5-CTM (which is targeted to the membrane by a foreign transmembrane domain; 

(Pryciak and Huntress, 1998)) was resistant. Furthermore, when comparing two Ste11 

derivatives, we found that Ste11-Cpr (which requires the Ste5 PM domain; (Winters et 

al., 2005)) remained sensitive to Cln2 inhibition, whereas Ste11∆N (which bypasses Ste5 

altogether; (Pryciak and Huntress, 1998)) was resistant. These results argue that G1 CDK 

inhibition does not act on Gβγ, Ste20, Ste11, or even the ability of Ste5 to facilitate 
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signaling through the MAP kinase cascade. Instead, signaling is inhibited only when 

membrane localization by the Ste5 PM domain is required. 

In addition to promoting the initial Ste20 to Ste11 step, membrane localization of 

Ste5 serves a second, Ste20-independent role in boosting signal transmission from active 

Ste11 through the MAP kinase cascade (Lamson et al., 2006). Because of this 

“amplification” effect, pheromone can stimulate signaling in ste20∆ cells that harbor a 

pre-activated Ste11 mutant, Ste11-Asp3 (Lamson et al., 2006). Cln2 still inhibited this 

Ste20-independent response (Figure 3-1D), indicating that there must be a target other 

than Ste20. Notably, however, partial Cln2 resistance was observed. Yet because this was 

true for both the Ste20-independent signaling by Ste11-Asp3 (Figure 3-1D) and the 

Ste20-dependent signaling by Ste11-Cpr (Figure 3-1C), it did not reflect the participation 

of Ste20 per se. Rather, we suggest that Cln2 inhibition is strongest when it can 

antagonize two successive signaling steps that each rely on Ste5 membrane localization, 

and becomes incomplete when the first step is bypassed by pre-localization or pre-

activation of Ste11. 

Further experiments showed that Cln2/CDK inhibition of pheromone response could 

be reversed by strengthening the Ste5-membrane interaction. First, mutations in the PM 

domain (Winters et al., 2005) that enhance membrane binding (T52L, Q59L, or a T52L 

Q59L double mutant) reduced Cln2 inhibition (Figure 3-1F, left), from 89% (WT) to 

34% (T52L Q59L). Second, by replacing the native Ste5 PM domain with foreign 

membrane-binding motifs (Winters et al., 2005), we found that signaling remained Cln2-

sensitive when using a relatively weak motif, the PH domain from PLCδ, but became 
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Cln2-resistant when using two tandem copies of this same motif (Figure 3-1F, right). The 

PM domain can also target Ste5 into the nucleus (Winters et al., 2005), but Cln2 

sensitivity was not changed by a PM domain mutation (NLSm; Figure 3-1E) that 

specifically disrupts nuclear localization (Winters et al., 2005). Collectively, our results 

suggest that Cln/CDK antagonizes the ability of the Ste5 PM domain to mediate 

membrane-localized signaling. 
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Figure 3-1.  Cln2/CDK antagonizes membrane-localized signaling mediated by the Ste5 PM 

domain 

(A) Pheromone response pathway, showing membrane recruitment of Ste5. 

(B) Methods for activating membrane-localized signaling.  From left to right: α factor (αf) 

treatment or Gβ overexpression (Whiteway et al., 1990); hyperactive membrane localization of 

Ste5 via an enhanced PM domain (Winters et al., 2005); membrane targeting of Ste5 via a foreign 

transmembrane domain (Pryciak and Huntress, 1998); membrane targeting of Ste11 via a 

prenylation/palmitoylation motif (Winters et al., 2005). 

(C) Cln2/CDK inhibition correlates with dependence on the Ste5 PM domain. Pathway-activating 

components were expressed from the GAL1 promoter and compared for their ability to induce 

FUS1-lacZ transcription in ste4∆ strains ± PGAL1-CLN2 (n = 4). 

(D) Ste20-independent signaling is sensitive to Cln2 inhibition. Wild-type Ste11 (WT) or a Ste20-

independent mutant (Ste11-Asp3) was expressed in ste11∆ or ste11∆ ste20∆ strains ± PGAL1-

CLN2. FUS1-lacZ induction was measured after α factor treatment (n = 6). 

(E) PM domain mutations that disrupt nuclear targeting (NLSm) do not affect Cln2 inhibition.  

FUS1-lacZ was induced by α factor treatment in ste5∆ ± PGAL1-CLN2 strains expressing Ste5-WT 

or Ste5-NLSm (n = 9). 

(F) Increased Ste5 membrane affinity causes increased resistance to Cln2. Left, Ste5 variants 

contained PM domain mutations that increase membrane affinity. Right, the native PM domain 

was replaced with 1 or 2 copies of the PLCδ PH domain. All forms were expressed from the 

native STE5 promoter in ste5∆ strains ± PGAL1-CLN2, and response to α factor was measured (n = 

4-9). 

Data in all bar graphs show the mean ± SD. 
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Multiple CDK sites flanking the Ste5 PM domain regulate signaling 

 Of fifteen possible CDK sites (i.e., SP or TP) within Ste5, eight are concentrated 

around the PM domain (Figure 3-2A). This conspicuous clustering, coupled with results 

described above, suggested that phosphorylation at one or more of these sites might 

regulate Ste5 signaling. Indeed, small deletions on either side of the Ste5 PM domain 

conferred partial Cln2 resistance (Figure 3-3B). Therefore, we replaced the Ser or Thr 

residues at all eight SP/TP sites with non-phosphorylatable Ala residues. This "Ste5-8A" 

mutant remained fully capable of pheromone response but was now completely resistant 

to Cln2 inhibition (Figures 3-2B and 3-3C). This phenotype was specific to the Ste5-8A 

mutant, as a previously-described Ste20 mutant lacking 13 CDK sites, Ste20-13A (Oda et 

al., 1999), conferred no Cln2 resistance in parallel tests (Figure 3-2B). Furthermore, the 

Cln2 resistance displayed by Ste5-8A was separable from any possible effects on Ste5-

Gβγ binding, because Gβγ-independent signaling by PGAL1-STE5-Q59L became resistant 

to Cln2 when Ste5 harbored the 8A mutations (Figure 3-2C). 

We also examined Ste5-8A signaling in synchronous cultures (Figure 3-2D). As cells 

progressed through the cell cycle, pheromone response was monitored by transcriptional 

induction of a FUS1-lacZ reporter and by phosphorylation of the MAPK Fus3. By either 

assay, Ste5-8A largely disrupted the normal cell cycle periodicity of pheromone 

response. Some fluctuation remained, especially at times immediately after release from 

cdc15 arrest, which could represent a minor effect of cell cycle position on other targets 

or a nonspecific effect of the temperature shift protocol. Overall, however, it is clear that 
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the Ste5-8A mutant confers a very strong, if not complete, resistance to G1 CDK 

regulation of pheromone response. 

 To ask which of these eight Ste5 sites governs CDK regulation, we replaced 

individual Ser or Thr sites with Ala residues. Remarkably, none of the eight single ("1A") 

mutants displayed the complete Cln2 resistance shown by Ste5-8A, and instead most 

conferred weak partial resistance (Figure 3-2E), with some variation in strength. By 

making combined mutants, we observed gradually increasing resistance to Cln2 as more 

sites were removed (Figure 3-2E), yet complete resistance was seen only when all eight 

sites were eliminated. Conversely, however, while Cln2 could inhibit signaling to a 

measurable degree when Ste5 retained 4 or 5 CDK sites, inhibition was much stronger 

when Ste5 retained 6, 7, or 8 CDK sites. Clearly then, no single site controls sensitivity to 

Cln2. Rather, multiple CDK sites are required to fully inhibit Ste5 signaling. 
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Figure 3-2.  Multiple CDK sites flanking the Ste5 PM domain control Cln2/CDK inhibition 

(A) Locations of potential CDK phosphorylation sites (SP or TP) in Ste5. 

(B) Elimination of 8 N-terminal CDK sites in Ste5 (Ste5-8A) causes resistance to Cln2.  

Response to α factor was measured in ste5∆ ± PGAL1-CLN2 cells expressing Ste5 variants (WT or 

8A) from the native STE5 promoter, or in ste20∆ ± PGAL1-CLN2 cells expressing Ste20 variants 

(WT or 13A) from the native STE20 promoter. Bars, mean ± SD (n = 8). 

(C) CDK resistance caused by 8A mutations restores membrane signaling independent of Ste5-

Gβγ interaction. Gβγ-independent signaling was activated by PGAL1-STE5-Q59L ± 8A in ste4∆ 

ste5∆ cells ± PGAL1-CLN2. Bars, mean ± SD (n=7). 

(D) The Ste5-8A mutant disrupts cell cycle periodicity of pheromone response. Cells (cdc15-2 or 

cdc15-2 STE5-8A) were synchronized in late M phase by arrest at 36˚C, and then transferred to 

25˚C. At various times, response to brief treatment with α factor was monitored (see Appendix A 

Materials and Methods Chapter II). Top, FUS1-lacZ induction (mean of 4 trials). Bottom, Fus3 

activation (phospho-Fus3) was measured using phospho-specific antibodies (mean of 6 trials). 

Arrows mark the times of bud emergence (see Figures 3-3D and 3-7G). 

(E) Ste5 phosphorylation sites were replaced with Ala residues either singly (1A) or in various 

combinations (2A, 3A, 4A, 8A). Response to α factor was tested in ste5∆ strains ± PGAL1-CLN2 

(mean + SD, n = 8-16). 
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Figure 3-3.   Mutations flanking the Ste5 PM domain affect sensitivity to Cln2 inhibition  

(A) Schematic depiction of CDK sites in Ste5.  The residue numbers are shown for the eight sites 

surrounding the PM domain for comparison to the deletion mutations in panel B. 

(B) Ste5 derivatives with small deletions flanking the Ste5 PM domain (Winters et al., 2005) 

were compared for their sensitivity to Cln2 inhibition.  Induction of FUS1-lacZ by α factor (mean 

± SD, n=4) was assayed in ste5∆ ± PGPD1-CLN2 strains expressing the Ste5 derivatives from the 

native STE5 promoter.  Partial resistance to Cln2 inhibition was observed for deletions that 

removed some CDK sites  (Δ3-36, Δ69-93, Δ94-123), but not for others (∆117-122, ∆124-151, 

∆152-159). 

(C) Halo assays showing that Ste5-8A resists the ability of Cln2 overexpression to inhibit 

pheromone-induced growth arrest.  Strains expressed Ste5-WT or Ste5-8A from the endogenous 

(genomic) STE5 locus, either with or without an integrated PGPD1-CLN2 construct.  Cells were 

plated on YPD and overlaid with filter disks containing α factor (20 μl of 100 or 20 μM).  Plates 

were photographed after 2 days. 

(D) Synchrony of cdc15 block and release cultures. Budding morphology was used to monitor 

cell cycle progression during synchronous culture experiments reported in Figure 3-2D.  At 30 

min. intervals, aliquots of the cultures (cdc15-2 or cdc15-2 STE5-8A) were fixed in 3.7% 

formalydehyde, and scored for the percentage of unbudded, small budded, and large budded cells 

(n = 300).  The examples shown here represent the mean of two parallel trials of each strain.  The 

timing of morphological transitions was similar in other experiments (see Figure 3-7G for 

additional examples). Note that entry into the cell cycle (as judged by the appearance of small 

buds) correlates with decreased pheromone response in wild-type (but not STE5-8A) cells (Figure 

3-2D). 
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Inhibition is proportional to added negative charge 

 We hypothesized that the addition of anionic phosphates next to the basic-rich PM 

domain interferes with its electrostatic attraction to acidic phospholipid membranes. 

Although our findings hinted that full interference might require phosphorylation at 

multiple Ste5 sites, it was equally possible that multiple sites merely serve to increase the 

likelihood of phosphorylation at one or a few sites. To address these issues, we replaced 

the same Ser/Thr residues with negatively-charged Glu residues (Figure 3-4A). 

Placement of Glu residues at all 8 sites (Ste5-8E) did reduce pheromone response, but not 

as strongly as when Ste5-WT was inhibited by Cln2 (Figure 3-4B). To explain this partial 

effect, we reasoned that if electrostatic interference was the operative mechanism, then 

the net charge might dictate the level of inhibition. Because Ser/Thr phosphorylation 

introduces a charge of –2, phosphorylation at 8 sites would add a net charge of –16, 

whereas 8 Glu residues would add a net charge of only –8 and thus would be less 

inhibitory. To test this notion, we sought to better mimic the –2 charge of each phosphate 

by using two Glu residues, and so we replaced the SP or TP dipeptides at each of the 8 

Ste5 sites with EE dipeptides (Figure 3-4A). Indeed, pheromone response by this "Ste5-

16E" mutant was reduced to a level similar to when Ste5-WT was inhibited by Cln2 

(Figure 3-4B). This strong effect required EE dipeptides at all 8 sites, because EE 

dipeptides at only 4 sites either before or after the PM domain (Ste5-up8E or Ste5-dn8E) 

caused only a partial reduction similar to when the eight Glu residues were distributed 

among all 8 sites (Ste5-8E), except that signaling could be further inhibited by Cln2 via 

the remaining 4 CDK sites. 

 100



 Several observations suggest that the strong signaling deficit of the Ste5-16E 

mutant reflects a specific effect on the Ste5 PM domain and not a complete inactivation 

of Ste5. First, the Ste5-16E mutant showed normal protein levels (Figure 3-4C), and it 

still bound Ste4 (Gβ) (Figure 3-4D). Second, the Ste5-16E mutant could still mediate 

basal signaling from an activated Ste11 derivative, Ste11-4 (Figure 3-4E), which does not 

require the Ste5 PM domain (Mahanty et al., 1999; Winters et al., 2005). Third, as with 

inhibition by Cln2 (see Figure 3-1C), the 16E mutation inhibited Ste5-Q59L but not Ste5-

CTM (Figure 3-4F) and therefore only blocks membrane signaling that requires the Ste5 

PM domain. A control mutant with AA dipeptides at all 8 sites was not informative 

because it was poorly expressed (Figure 3-4C), which we traced to the fact that an AA 

dipeptide was not tolerated at site #3 or #4. By allowing sites #3 and #4 to harbor only 

single replacements (either A or E) and replacing the six other sites with AA or EE 

dipeptides, generating "Ste5-14A" and "Ste5-14E", we found that Ste5-14A remained 

functional (and fully resistant to Cln2), whereas Ste5-14E was strongly inhibited (Figure 

3-4B). Therefore, the EE phenotypes reflect the addition of charge rather than the 

multiplicity of mutations. 

 As with inhibition by Cln2, the Glu replacements affected membrane-based 

signaling in general, rather than Gβγ-triggered signaling in particular, because they also 

disrupted Gβγ-independent signaling by Ste11-Cpr (Figure 3-4G). Again, the degree of 

inhibition was proportional to the added negative charge. Notably, Ste5-14E retained 

more function than Ste5-16E, suggesting that 16 negative charges are more inhibitory 

than 14, which agrees with our finding that removing single CDK sites confers partial 
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Cln2 resistance. Because the Ste5 PM domain normally acts cooperatively with Ste5-Gβγ 

binding (Winters et al., 2005), we predicted that the inhibitory effect of a small number of 

negative charges would be enhanced when Ste5-Gβγ affinity is reduced. Indeed, when 

using Ste4 (Gβ) mutants with reduced binding to Ste5, we could now detect inhibition by 

1 to 4 added Glu residues (Figure 3-4H). Thus, a small number of charges has measurable 

inhibitory potential, but multiple charges are necessary when the interactions governing 

Ste5 membrane recruitment occur with normal affinity. Collectively, the Glu replacement 

phenotypes show that added negative charges disrupt membrane signaling mediated by 

the Ste5 PM domain, and that the requirement for multiple CDK sites truly reflects a need 

for adding multiple phosphates. 
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 Figure 3-4.  Strong inhibition of Ste5 signaling requires a large number of negative charges  

(A) Glu replacement mutations at CDK sites. S/T residues were replaced with E or A, and SP/TP 

dipeptides were replaced with EE or AA, as indicated. 

(B) Inhibition of Ste5 signaling is proportional to added negative charge. Ste5 mutants were 

tested for α factor response in ste5∆ cells ± PGAL1-CLN2.  Ste5 "up4A" and "dn4A" refer to Ala 

mutations at sites #1-4 and #5-8, respectively. Bars, FUS1-lacZ levels, relative to Ste5-WT (mean 

± SD, n = 6). 

(C) Anti-myc blot showing levels of Ste5-myc13 mutants expressed in ste5∆ cells. 

(D) The Ste5-16E mutant can still bind Ste4. Extracts of ste4∆ ste5∆ cells coexpressing Ste5-myc 

and GFP-Ste4 (after 3 hr induction of PGAL1-GFP-STE4) were analyzed by immunoprecipitation 

(IP) and immunoblotting (blot) as indicated. Ste5-C180A served as a control that is defective at 

binding Ste4 (Feng et al., 1998). 

(E) Ste5 Glu mutants are competent to mediate basal signaling (i.e., no α factor) activated by 

Ste11-4 in ste4∆ ste5∆ ste20∆ cells. Bars, mean ± SD (n = 4). 

(F) The 16E mutations only inhibit signaling that requires the Ste5 PM domain. FUS1-lacZ (mean 

± SD, n = 3-6) was induced in ste4∆ ste5∆ cells (without α factor) by PGAL1-driven expression of 

Ste5, Ste5-Q59L, or Ste5-CTM, each of which either contained the 16E mutations (+16E) or did 

not (-16E). Anti-GFP blots confirmed that protein levels were unaffected by the 16E mutations 

(data not shown). 

(G) Glu mutants disrupt Gβγ-independent, membrane-localized signaling. Signaling (mean ± SD, 

n = 6) was activated in ste4∆ ste5∆ cells (without α factor) by coexpression of PGAL1-STE11-Cpr 

with the indicated Ste5 derivatives. 

(H) Ste5 derivatives containing various Ala or Glu mutations were coexpressed in ste4∆ ste5∆ 

cells with either Ste4-WT or Ste4 mutants (K55E or N157H S175P) that weaken Ste5 binding 
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(Leeuw et al., 1998; Winters et al., 2005). Response to α factor was measured (mean ± SD, n=6). 
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G1 CDK activity disrupts Ste5 membrane localization 

 Using a Ste5-GFPx3 fusion expressed at native levels (Winters et al., 2005), we 

found that PGAL1-CLN2 inhibited pheromone-induced membrane recruitment of Ste5-WT, 

but not Ste5-8A (Figure 3-6A). We also examined membrane localization mediated 

specifically by the Ste5 PM domain, in isolation from upstream factors (e.g., pheromone, 

Gβγ) or downstream signaling consequences (e.g., transcriptional induction, cell cycle 

arrest), by using the hyperactive Ste5 variant Ste5-Q59L (Winters et al., 2005). 

Expression of Cln2 displaced Ste5-Q59L from the plasma membrane (Figure 3-5A), and 

this effect was blocked by the 8A mutations (Ste5-Q59L+8A). Results were similar in 

strains lacking Ste20 or the MAPKs Fus3 and Kss1 (Figure 3-6B), ruling out any 

contribution from Cln2/CDK phosphorylation of Ste20 (Oehlen and Cross, 1998; Wu et 

al., 1998) or MAPK phosphorylation of Ste5 (Kranz et al., 1994; Flotho et al., 2004; 

Bhattacharyya et al., 2006). Because these experiments were performed in non-signaling 

strains, the effect of Cln2 was not due to a shift from G1-arrested cells to cycling cells. 

Thus, Cln2/CDK actively inhibits Ste5 membrane localization mediated by the PM 

domain. 

 To address whether these localization effects were due to added negative charge, 

we examined the Glu replacement mutations. In agreement with their signaling 

phenotypes (see Figure 3-4F), the 16E mutation disrupted membrane localization of Ste5-

Q59L, which depends on the PM domain, but not Ste5-CTM, which is independent of the 

PM domain (Figure 3-5B). Furthermore, displacement of Ste5 can be ascribed to a local 

effect on the PM domain (rather than more global changes in Ste5), because Glu 
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mutations blocked membrane localization of N-terminal Ste5 fragments (Figure 3-5C). 

When membrane binding by an N-terminal fragment was enhanced using the Q59L 

mutation (Figure 3-5C, bottom), displacing it required greater negative charge (i.e., 16E, 

rather than 8E), suggesting that competition between attractive and repulsive interactions 

determines the net membrane affinity. Collectively, these results indicate that 

phosphorylation near the Ste5 PM domain disrupts plasma membrane binding. 

 107



 

 108



Figure 3-5.  Disruption of Ste5 membrane localization by G1 CDK activity or negative 

charge 

(A) Localization of GFP-Ste5-Q59L ± 8A, expressed from the GAL1 promoter in ste4∆ ste7∆ 

cells ± PGAL1-CLN2. Note that hyperpolarized bud growth is due to Cln2 overexpression, not 

mating signaling.  Also see Figure 3-6B. 

(B) The 16E mutations disrupt Ste5 membrane localization mediated by the PM domain (Q59L), 

but not that mediated by a foreign transmembrane domain (CTM). Top, membrane localization 

induces mating pathway signaling, causing pear-shaped "shmoo" morphology. Bottom, 

localization results were similar in a non-signaling strain (ste4∆ ste7∆). 

(C) Negative charge disrupts membrane localization of Ste5 N-terminal fragments. Localization 

was compared (in ste4∆ ste7∆ cells) for WT and mutant derivatives of GFP-Ste5(1-214) and 

GST-GFP-Ste5(1-125), which can localize to the membrane in the absence of pheromone, Gβγ, 

and other Ste5 sequences (Winters et al., 2005). 
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Figure 3-6.  Cln2 expression disrupts Ste5 membrane localization  

(A) Cln2 inhibits pheromone-stimulated membrane recruitment of Ste5.  A Ste5-GFPx3 fusion 

(Winters et al., 2005) and a derivative harboring the 8A mutations (Ste5-8A-GFPx3) were each 

expressed from the native STE5 promoter in ste5∆ cells ± PGAL1-CLN2.  Cells growing in 2% 

raffinose medium were induced with 2% galactose for 1 hr prior to pheromone treatment, then α 

factor (5 μM) was added for 1 hr (in the continued presence of galactose).  After this time, an 

additional pulse of pheromone was applied by pelleting and resuspending cells in fresh medium (-

Ura /raffinose/galactose) containing 20 μM α factor.  Cells were then spotted onto microscope 

slides and visualized immediately. 

(B) Localization of GFP-Ste5-Q59L and GFP-Ste5-Q59L+8A (each expressed from the GAL1 

promoter) was examined in the indicated strains ± PGAL1-CLN2.  As in Figure 3-5A, expression of 

Cln2 disrupts membrane localization of Ste5-Q59L and this effect is blocked by incorporation of 

the 8A mutations.  The experiments here were performed in ste4∆ ste5∆ ste20∆ or ste4∆ fus3∆ 

kss1∆ cells, ruling out the possibility of indirect effects due to Cln2/CDK phosphorylation of 

Ste20 (Oehlen and Cross, 1998; Wu et al., 1998) or Fus3/Kss1 MAPK phosphorylation of Ste5 

(Kranz et al., 1994; Flotho et al., 2004; Bhattacharyya et al., 2006). 
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Cln2-dependent phosphorylation of Ste5 

 To test if Cln2/CDK directly phosphorylates Ste5, we performed in vitro kinase 

assays. As a substrate we used a purified Ste5 fragment (residues 1-125) encompassing 

the PM domain and all eight N-terminal CDK sites. Purified Cln2/Cdc28 phosphorylated 

the wild type Ste5 fragment, and this was severely reduced by the 8A or 8E mutations 

(Figure 3-7A). Thus, the N-terminus of Ste5 can serve as a direct Cln2/CDK substrate, 

and the CDK sites are required for phosphorylation. 

 In vivo, Cln2 overexpression promoted phosphorylation of Ste5, as evidenced by 

reduced electrophoretic mobility (Figure 3-7B) that was reversed by subsequent 

phosphatase treatment (Figure 3-7C). This agrees with a previous report that the 

phosphorylation status of Ste5 in vivo depends on Cdc28 (Flotho et al., 2004). The Ste5 

mobility shift was consistent with multiply phosphorylated forms, as it was comparable 

to the Ste5-16E mutant, which mimics phosphorylation at all 8 N-terminal sites (Figure 

3-7B). Furthermore, the effect of Cln2 on Ste5 mobility required the N-terminal CDK 

sites, because Ste5-8A and Ste5-16E were unaltered by Cln2 (Figure 3-7B).  Results were 

similar in strains lacking Fus3 and Kss1 (Figure 5B, bottom), ruling out any contribution 

from Ste5-affiliated MAPKs (which can also phosphorylate SP/TP motifs). Unlike Cln2, 

overexpression of other cyclins (i.e., Cln3, Clb5, or Clb2) did not alter Ste5 mobility 

(Figure 3-7D), which agrees with their inability to inhibit pheromone signaling (Oehlen 

and Cross, 1994; Oehlen et al., 1998). Thus, Ste5 is a specific substrate of Cln2/CDK 

activity in vivo, and the relevant phosphorylation sites correspond to those that allow 

Cln2 to regulate Ste5 signaling.  
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 Next, we wished to follow cell cycle-dependent changes in Ste5 phosphorylation, 

but our efforts were hindered by the low fraction of Ste5 showing a clear mobility shift. 

While a technical issue could be partly to blame (e.g., phosphatase activity in cell 

lysates), we wondered if Ste5 molecules in different subcellular locales might be 

modified to different extents. Indeed, when Ste5 was restricted to the cytoplasm by using 

the "∆NLS" allele (Winters et al., 2005), Cln2 expression could modify nearly all Ste5 

molecules (Figures 3-7D and 3-7E). In other respects phosphorylation of Ste5∆NLS 

resembled that of wild-type Ste5, including a specific requirement for Cln2 and for the 8 

N-terminal CDK sites (Figures 3-7D and 3-7E). Exploiting these favorable detection 

properties, we saw that Ste5∆NLS phosphorylation was elevated in cells arrested 

immediately after Start (cdc4, cdc53, or cdc34), but not when Cln1/2 were absent (cdc34 

cln1 cln2) or in cells arrested in G1 (cdc28-4, cdc28-13) (Figure 3-7F). Furthermore, in 

synchronous cultures, phosphorylation of Ste5∆NLS fluctuated during the cell cycle, 

peaking at the onset of budding (Figure 3-7G). Thus, modification of the N-terminal 

CDK sites in Ste5 occurs as cells pass Start.  
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Figure 3-7.  Phosphorylation of Ste5 by Cln2/CDK 

(A) Phosphorylation of the Ste5 N-terminus by Cln2/Cdc28 in vitro. Bacterially-expressed GST-

Ste51-125 fusions (WT, 8A, and 8E) were phosphorylated by recombinant Cln2-Cdc28.  Histone 

H1 served as a control substrate. 

(B) Cln2 expression in vivo alters Ste5 electrophoretic mobility. HA-tagged Ste5 (WT, 8A, and 

16E) was immunoprecipitated from the indicated strains after 3 hr galactose induction (to express 

Cln2), resolved by SDS-PAGE, and analyzed by anti-HA immunoblot. 

(C) The Ste5 mobility shift is due to phosphorylation. Ste5-HA3 was immunoprecipitated from 

ste5∆ ± PGAL1-CLN2 strains, and treated with calf intestinal phosphatase (CIP). 

(D) Effects on Ste5 mobility are specific to Cln2. Ste5-HA3 derivatives (WT, 8A, ∆NLS, 

∆NLS+8A) were analyzed as in panel B, using various PGAL1-cyclin strains. 

(E) Ste5∆NLS is more fully modified by Cln2. Ste5-HA3 derivatives were analyzed as in B. 

(F) Ste5∆NLS modification is elevated after Start and requires Cln1/2. WT and mutant strains 

(“cln1,2” = cln1 cln2) expressing Ste5-HA3 (∆NLS or ∆NLS+8A) were incubated for 3 hr at 

37˚C. 

(G) Modification of the Ste5 N-terminus is cell cycle dependent. Cells (cdc15-2 or cdc28-13) 

harboring Ste5-HA3 (∆NLS or ∆NLS+8A) were arrested at 37˚C for 3 hr, then transferred to 25˚C 

to resume cycling. Samples were collected at 20 min intervals (0-180 min). As cdc15 cells arrest 

with large buds, emergence of small buds was used to follow cell cycle progression (c.f., Figure 

3-3D). 

In panels B-G, Ste5-HA3 derivatives were expressed from the native STE5 promoter. 
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CDK-resistant signaling causes aberrant cell cycle arrest 

 To ask why it is beneficial to inhibit pheromone signaling as cells pass Start, we 

explored the physiological consequences of CDK-resistant Ste5 mutants.  First, we 

examined the G1 specificity of pheromone arrest. Unlike wild-type cells, which arrested 

uniformly in G1, a significant fraction of STE5-8A cells (~15%) arrested at a post-Start 

stage with 2N DNA content (Figure 3-8A). The Ste5-8A phenotype was dominant to wild 

type, and an increasing fraction of 2N arrest was observed as more CDK sites were 

removed from Ste5 (Figure 3-8B), suggesting that it reflects ectopic (non-G1) signaling 

by CDK-resistant Ste5 (rather than a leaky G1 arrest).  Indeed, the post-Start arrest 

phenotype required the STE5-8A cells to be cycling at the time of pheromone addition, 

and was not observed when pheromone was added to a uniform population of G1 cells 

(Figures 3-8C and 3-9). Also, pheromone treatment of cycling STE5-8A cells induced a 

unique morphology in which mating projections appeared to emanate from cell buds 

(Figures 3-8C and 3-10), suggesting that signaling responses occurred during the budding 

phase of the cell cycle. Remarkably, elimination of only one or two CDK sites in Ste5 

caused a measurable increase in 2N arrest (Figure 3-8B), showing that full inhibition of 

Ste5 via multiple CDK sites serves a physiologically important function. Accordingly, 

expression of Ste5-8E, which mimics the addition of 4 phosphates but cannot be inhibited 

further by Cln2/CDK, also allowed a substantial level of 2N arrest. We conclude that a 

failure of G1 CDKs to downregulate the mating MAP kinase pathway is detrimental, as it 

allows pheromone to arrest cells at an inappropriate cell cycle stage. 

 Because STE5-8A cells can arrest at either G1 or post-Start stages, the percentage 
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that arrest at the latter stage (usually ~15% 2N) likely reflects the fraction of cells in the 

asynchronous culture that were between the two arrest points. Indeed, when pheromone 

was added to STE5-8A cultures at different times after leaving G1, the level of 2N arrest 

roughly correlated with the fraction of the initial cell population that were in S phase 

(Figure 3-9). Hence, cells outside this susceptible window likely arrest in G1. Consistent 

with this view, the majority of STE5-8A cells could be trapped at the 2N stage when G1 

arrest mechanisms were bypassed. Specifically, overexpression of the B-type cyclin Clb5 

can push cells through Start even in the presence of pheromone, thereby making wild-

type cells pheromone-resistant ((Oehlen et al., 1998) and references therein). In STE5-8A 

cells, however, Clb5 overexpression could still push cells through Start but the cells 

arrested in response to pheromone, and did so almost entirely at the 2N stage (Figure 3-

8D). Therefore, signaling by CDK-resistant Ste5 has a dangerous potential to disrupt 

events during a post-Start window of the cell cycle. 

 

CDK-resistant Ste5 permits Far1-independent arrest 

 To further explore the consequences of CDK-resistant signaling, we tested the 

role of Far1, which is ordinarily required for pheromone-induced arrest (Chang and 

Herskowitz, 1990). Strikingly, the CDK-resistant Ste5-8A mutant restored pheromone 

arrest to far1∆ cells (Figure 3-8E). Removal of as few as one or two CDK sites in Ste5 

allowed significant suppression of the far1∆ arrest defect, with stronger suppression as 

more sites were removed (Figures 3-8F and 3-11A). Thus, Far1 becomes dispensable 

when Ste5 signaling cannot be inhibited. Indeed, far1∆ cells could be arrested (Figure 3-
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8G) by activating the mating pathway with CDK-resistant constructs (PGAL1-STE5-

Q59L+8A, PGAL1-STE5-CTM), but not with CDK-sensitive constructs (PGAL1-STE4, 

PGAL1-STE5-Q59L). Far1-independent arrest has been observed in previous studies but 

remains poorly understood (Chang and Herskowitz, 1990; Valdivieso et al., 1993; Tyers, 

1996; Oehlen et al., 1998; Cherkasova et al., 1999). Our results indicate that pheromone 

signaling is capable of robust growth arrest without Far1, but this is masked in far1∆ cells 

because the absence of Far1 allows Cln/CDK to downregulate Ste5. 

 Pheromone signaling in far1∆ STE5-8A cells caused arrest at more than one stage, 

because treated cultures showed a heterogeneous mix of 1N and 2N cells (Figure 3-8H 

and 3-11B), as well as unbudded and budded cells (data not shown), despite an 

immediate cessation of proliferation (Figure 3-11C). The G1 arrest appeared somewhat 

leaky and could be counteracted by G1 CDK activity (Figure 3-11B).  Most notably, Far1 

proved entirely dispensable for the post-Start arrest, because the near-uniform 2N arrest 

seen in STE5-8A cells overexpressing Clb5 (Figure 3-8D) was independent of Far1 

(Figure 3-8H). Altogether, our results indicate that CDK-resistant signaling by Ste5-8A 

can impede cell cycle progression of both G1 and post-Start cells in a Far1-independent 

manner.  Therefore, cell cycle control of Far1 (McKinney et al., 1993; Henchoz et al., 

1997) is not sufficient for cells to escape the arrest effects of pheromone, and instead 

downregulation of Ste5 is also critical. 
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Figure 3-8.  CDK-resistant Ste5 allows aberrant arrest 

(A) Pheromone arrests some STE5-8A cells at a post-Start (2N) stage. Cells were treated with α 

factor for the indicated times. FACS profiles show DNA content. 

(B) The post-Start arrest phenotype is dominant and reflects the level of CDK-resistance of Ste5. 

Wild type cells harboring STE5 plasmids (1A#5 = site #5; 1A#1 = site #1; 2A = sites #5-6) were 

treated with α factor for 3.25 hrs. The percent of cells with 2N DNA content was quantified by 

FACS (mean ± SD; n = 4). The dashed line marks the %2N value observed when the STE5-WT 

plasmid is present in wild-type cells. 

(C) G1 phase STE5-8A cells were purified by centrifugal elutriation, and treated with α factor 

either immediately or after cells resumed cycling. Arrest phenotypes were then compared. See 

Figures 3-9 and 3-10 for the complete data set. Arrowheads, cell buds with α factor-induced 

projections.  

(D) STE5-8A allows near-uniform 2N arrest when G1 arrest is bypassed using PGPD1-CLB5. Left, 

DNA content of cells after 3 hr ± α factor. Right, halo assays showing growth arrest by α factor. 

(E) Halo assays showing that STE5-8A restores pheromone arrest to far1∆ cells. 

(F) Suppression of the far1∆ arrest defect increases as more CDK sites are eliminated from Ste5. 

Fivefold serial dilutions of strains harboring STE5 plasmids (1A = site #5; 2A = sites #5-6; 4A = 

sites #1-4) were incubated on –Ura plates ± 1 μM α factor. 

(G) Pathway activation by CDK-resistant constructs causes Far1-independent arrest. Deletion 

strains harboring PGAL1-regulated activators of the mating pathway were grown on –Ura glucose 

or galactose plates. 

(H) The post-Start arrest triggered by Ste5-8A signaling is independent of Far1. The indicated 

strains were analyzed in parallel with those in panel D. 
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Figure 3-9.  Only cycling STE5-8A cells are susceptible to the post-Start arrest 

(A) G1 phase wild type and STE5-8A cells were purified by centrifugal elutriation, and then 

inoculated into YPD growth medium and incubated at 30˚C.  At various times afterward, aliquots 

were removed and split in two.  One half was fixed immediately (before α factor), and the other 

half was treated with α factor (1 μM) for 2 hours prior to fixation (after α factor).  FACS profiles 

from cycling cells were used to determine boundaries for the assignment of cells into G1 (1N), 

G2/M (2N), and S phase (between 1N and 2N).  The same boundaries were then applied to all 

profiles in the data set, to quantify the percentage of cells in S or G2/M before α factor treatment 

and the percentage of cells arrested at the post-Start (2N) stage after α factor treatment.  The 

percentage of budded cells (% bud) was scored visually (n = 400).  Note that the budded cells in 

α factor-treated STE5-8A cultures display an unique morphology (see Figure 3-10).  

(B) STE5-8A cells in G1 phase were purified by elutriation, inoculated into YPD growth medium, 

and immediately treated with 0.1 μM α factor for 2.5 hrs at 30˚C.  The α factor was washed out 

to allow cells to resume cycling, and then at 15 min intervals aliquots of cells were collected, half 

of which was fixed immediately and the other half re-treated with α factor for 2 hr.  FACS was 

used to quantify the percentage of cells in the G1, S and G2/M phases of the cell cycle before 

reapplication of α factor (open symbols) as well as the percent of cells arrested at the 2N stage 2 

hr after reapplication of α factor (closed symbols). 

 Both panels A and B show the following: (i) the post-Start (2N) arrest was observed only 

when pheromone was added to STE5-8A cells that had begun to leave G1; and (ii) the amount of 

2N arrest roughly correlated with the percentage of cells in S phase, rather than G1 or G2/M, 

suggesting that the cell cycle window in which cells are susceptible to the post-Start arrest 

roughly overlaps S phase. Results in panel B make the following additional points: (i) the uniform 

G1 arrest seen when elutriated STE5-8A cells are treated with α factor is stable for up to 4.5 hours 

 122



(i.e. the filled square at 150 min. represents elutriated G1 cells treated for 2.5 hours, then 

immediately re-treated for an additional 2 hours); and (ii) the similar results seen when using 

freshly elutriated G1 cells (panel A) or cells held in G1 for a prolonged period by α factor arrest 

(panel B) argues that STE5-8A cells become susceptible to post-Start arrest only as a result of 

leaving G1, and not as a result of fulfilling a minimum incubation time after elutriation. 
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Figure 3-10.  Pheromone treatment of cycling STE5-8A cells induces a unique morphology 

These images show examples of cell morphology from the experiments in Figure 3-9A.  

Specifically, cells are shown before and after α factor treatment of cultures that had been released 

from G1 for 0 min (purified G1 cells) or 100 min (cycling cells).  Note that α factor treatment of 

cycling STE5-8A cultures caused some cells to adopt an unusual morphology in which buds 

contained pointed projections (arrowheads), suggesting that they responded to pheromone while 

budding.  Presumably, these are the cells that arrested with 2N DNA content (see Figure 3-9A), 

whereas the unbudded shmoo cells represent those that arrested in G1.  Also note that the unusual 

morphology was not observed in wild-type cells or when STE5-8A cells in G1 were treated with 

α factor. 
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Figure 3-11.  CDK-resistant Ste5 allows Far1-independent arrest 

(A) Suppression of the far1∆ arrest defect increases as more CDK sites are removed from Ste5.  

Lawns of ste5∆ far1∆ cells harboring vector, Ste5-WT, or the indicated Ste5-Ala mutants were 

plated on –Ura plates and overlaid with filter disks containing 20 μl of 1 mM (top) or 200 μM 

(bottom) α factor.  Note that the suppression of the far1∆ defect parallels their resistance to 

Cln2/CDK inhibition (see Figure 3-2E).  Specifically, there is increasingly stronger far1∆ 

suppression as more CDK sites are eliminated, and the effects of single Ala mutations in both 

assays are strongest at site #1 and weakest at sites #2 and #8.  These results suggest that far1∆ 

suppression results directly from the CDK resistance of Ste5 signaling. 

(B) Disrupting Cln2/CDK regulation of Ste5 allows pheromone to arrest both G1 and post-Start 

(2N) cells in the absence of Far1. Left, FACS profiles show DNA content of cells after 3 hours ± 

1 μM α factor. Right, growth arrest of the same strains exposed to α factor for 1 or 2 days at 

30°C.  Note that in pheromone-treated far1∆ STE5-8A cultures, the relative proportion of 1N 

versus 2N arrested cells could be altered by varying the gene dosage of CLN2.  Given the role of 

Cln2 in promoting exit from G1, the observed pattern suggests that the Far1-independent G1 

arrest is somewhat leaky and can be counteracted by elevated Cln/CDK activity or stabilized by 

reducing Cln/CDK activity, whereas the post-Start arrest remains intact. As noted previously 

(Chang and Herskowitz, 1990), far1∆ cln2∆ cells could arrest in response to pheromone and did 

so predominantly in G1, though the long-term maintenance of growth arrest was more stable and 

the proportion of 2N cells was higher in far1∆ STE5-8A cln2∆ cells, suggesting that in the far1∆ 

cln2∆ cells Ste5 can be inhibited by other G1 cyclins (e.g., Cln1; (Oehlen and Cross, 1994)). 

(C) Pheromone triggers an immediate cessation of proliferation in strains that show Far1-

independent arrest. Cultures were split in two and incubated for 6 hours either with or without 

1μM α factor.  Cell numbers were counted using a hemacytometer, and compared to the number 
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of cells in the original culture immediately prior to the split (t = 0).  The ratio is shown on the y-

axis (mean ± SD, n = 3).  Note that, in strains where the far1∆ arrest defect is suppressed (see 

panel B), the immediacy of α factor-induced growth arrest is comparable to wild-type cells. 
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Discussion Chapter III 

 

Mechanism for cell cycle regulation of MAP kinase cascade signaling 

 In this study we define a mechanism by which G1 CDKs inhibit signaling through 

the yeast mating MAP kinase cascade. We show that the MAP kinase cascade scaffold 

protein Ste5 is the target of this inhibition, and that G1 CDK activity inhibits signaling by 

phosphorylating sites flanking a membrane-binding domain in Ste5. Our findings support 

a model in which these negatively-charged phosphates disrupt Ste5 membrane 

association by electrostatic interference (Figure 3-12A). Hence, through the use of two 

weak interactions that cooperatively control its membrane recruitment, Ste5 serves as an 

integration point for both external and internal regulatory cues (Figure 3-12B), such that 

signaling is activated only when two conditions are satisfied—i.e., when pheromone is 

present and the cell cycle stage is appropriate. The physiological benefit of this 

arrangement is that it restricts pheromone arrest to G1, thus preventing inappropriate 

disruption of cell cycle progression in cells that have passed Start. 

 The regulatory CDK sites in Ste5 lie in sequences flanking the PM domain that 

are dispensable for its normal signaling role ((Winters et al., 2005); see also Figure 3-

3B), and are predicted to be mostly random coil (Figure 3-13). Hence, rather than 

affecting a specific tertiary structure, the phosphorylated N-terminus of Ste5 may behave 

as an unstructured electronegative mass, making juxtaposition to its target energetically 

unfavorable. This mode of regulation may be generally applicable where phosphorylation 

serves to disrupt interactions. Phosphorylation of Ste5 provides a variation of 

 129



"electrostatic switch" mechanisms seen in other signaling proteins such as Src or 

MARCKS, where membrane interactions are disrupted by phosphorylation within a 

membrane-binding domain (McLaughlin and Aderem, 1995). In Ste5, the use of sites 

distal to the membrane-binding domain may impose a requirement for multiple 

phosphorylations, which is likely to be advantageous to the regulatory circuit (see below). 
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Figure 3-12.  Model for G1 CDK inhibition of Ste5 signaling 

(A) As cells pass Start, G1 CDK activity inhibits pheromone signaling by phosphorylating CDK 

sites flanking the PM domain in Ste5. The negatively-charged phosphates interfere with binding 

between the basic PM domain and the anionic phospholipid membrane. 

(B) Ste5 serves as an integration point for both external and internal regulatory cues, which act 

through the Gβγ-binding domain and the membrane-binding domain. 

(C) Far1 promotes pheromone arrest by inhibiting Cln/CDK activity, but Far1-independent arrest 

pathways also exist and are revealed when Ste5 signaling cannot be downregulated by Cln/CDK 

activity.  
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Figure 3-13.  Regulatory CDK sites reside in sequences that are predicted to be largely 

unstructured 

Top, consensus secondary structure prediction for full-length Ste5 (residues 1-917). 

Bottom, alignment of multiple secondary structure prediction algorithms for Ste5 residues 1-125, 

which contains the PM domain and all 8 N-terminal CDK sites.  The last line shows the 

consensus prediction (Sec. Cons.).  c = random coil; h = α helix; e = extended β strand; t = β turn.  

Sequence analysis was performed using "NPS@: Network Protein Sequence Analysis" 

(http://npsa-pbil.ibcp.fr/).  Note the prevalence of random coil in sequences surrounding the 

helical PM domain, and the consensus prediction that all 8 CDK sites lie in random coil. 
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Multisite phosphorylation as a sensor for high CDK activity 

 Inhibition of Ste5 signaling requires phosphorylation at multiple CDK sites, and 

maximal inhibition of Ste5 is required to avoid aberrant arrest. This behavior suggests 

that multisite phosphorylation of Ste5 serves as a sensor for high G1 CDK activity, so 

that signaling is not fully inhibited until CDK activity is high enough to promote cell 

cycle entry. Conceptually, this tactic is similar to that used by the B-type cyclin/CDK 

inhibitor protein Sic1, which must be phosphorylated on at least six CDK sites to trigger 

its degradation and the resultant progression into S and M phases (Nash et al., 2001). In 

each example, multisite phosphorylation likely enables a sharp phenotypic switch 

between distinct cell cycle stages. Unlike Sic1, we saw no indication that CDK 

phosphorylation (or added Glu residues) affects Ste5 protein stability. Moreover, CDK 

effects on Ste5 may be rapidly reversible, because chemical inactivation of Cdc28 can 

immediately restore pheromone response to post-Start cells (Colman-Lerner et al., 2005). 

Thus, robust dephosphorylation by cellular phosphatases may also help enforce a demand 

for high G1 CDK levels to inactivate Ste5 signaling. 

 

Cell cycle arrest by pheromone 

 Cell cycle control of Ste5 signaling is necessary to avoid an aberrant pheromone 

arrest. The best-known mediator of pheromone arrest is the CDK inhibitor Far1, yet for 

years it has been evident that Far1-independent arrest pathways must exist, because Far1 

is dispensable in cells lacking Cln2 (Chang and Herskowitz, 1990) or all 3 G1 cyclins 

(Tyers, 1996; Oehlen et al., 1998). Our results show that MAPK signaling can arrest 

 135



growth without Far1, but this is ordinarily masked in far1∆ cells because Ste5 gets 

inactivated by G1 CDKs (Figure 3-12C). Hence, when Ste5 cannot be inhibited, the Far1-

independent arrest is revealed. This can explain the preferential ability of cln2∆ to 

suppress far1∆ (Chang and Herskowitz, 1990), because Cln2 is the strongest of the 3 G1 

cyclins at inhibiting pheromone response (Oehlen and Cross, 1994). Therefore, although 

cells eliminate Far1 as they pass Start (McKinney et al., 1993; Henchoz et al., 1997), this 

regulation is essentially futile without also downregulating Ste5 signaling.   

 The mechanisms by which CDK-resistant Ste5 signaling can impede cell cycle 

progression are largely unknown. The ability of Ste5-8A to trigger a G1 arrest (or delay) 

without Far1 is consistent with reports that pheromone can repress G1/S transcription 

(Valdivieso et al., 1993; Cherkasova et al., 1999). This repression may normally act in 

conjunction with Far1 to promote a robust, stable G1 arrest, yet may still allow a weak 

G1 arrest in far1∆ cells. The post-Start arrest is more enigmatic. A similar phenotype was 

seen in cells lacking G1 cyclins (Oehlen et al., 1998) or expressing a stable form of Far1 

(McKinney and Cross, 1995). In light of our findings, these prior cases may result from 

disrupted Cln/CDK regulation of Ste5. The window of susceptibility to post-Start arrest 

roughly overlaps S phase, consistent with the period in which pheromone signaling is 

normally downregulated (Oehlen and Cross, 1994), and preliminary work suggests that 

the 2N cells cannot enter mitosis (S.C.S. and P.M.P., personal observations.  These are 

preliminary results that will be pursued by other lab members), but the molecular cause 

remains unknown. Possibly, signaling events that ordinarily help promote G1 arrest (e.g., 

CDK inhibition, transcriptional repression) can also block later cell cycle steps if 
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signaling is unabated. Or MAPK signaling during S phase might induce DNA damage or 

replication errors, triggering a checkpoint arrest.  Alternatively, physiological changes 

induced by the mating pathway (e.g., cytoskeletal rearrangements) may clash with cell 

division due to biochemical incompatibility or competition. In any scenario, 

downregulation of Ste5 would allow cells to properly commit to a new division cycle, by 

eliminating impediments to cell cycle progression. 

 

Coordinating signaling with cell cycle stage 

 The discovery that cells sharply alter their sensitivity to extrinsic stimuli upon 

commitment to division played an important role in the formulation of early models for 

the cell cycle (Hartwell et al., 1974). Sharp transitions between distinct cell cycle stages 

can be ensured by feedback loops (Brandman et al., 2005). In the pheromone response 

pathway, mutual reinforcement between Ste5 and Far1 (in which Ste5-dependent 

signaling activates Far1, and Far1 blocks inactivation of Ste5) establishes a positive 

feedback loop. Conversely, Cln/CDK inhibition of both proteins can facilitate a decisive 

switch between conflicting states (i.e., arrest vs. proliferation). 

 During animal development, control of cell fate by external signals often occurs 

in the context of carefully orchestrated patterns of cell division (Vidwans and Su, 2001). 

Thus, it may be generally important to coordinate the response to differentiation signals 

with cell division status. While it is common for MAP kinase cascades to regulate the cell 

cycle, the reciprocal regulation is less well appreciated, yet its utility is clearly 

demonstrated by the behavior of the pheromone response pathway. Such mutual 
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antagonism can also occur in pathways not involving MAP kinases, as in the TGFβ 

pathway where antiproliferative signaling by Smad3 is inhibited by G1 CDKs (Matsuura 

et al., 2004). Thus, while the mechanisms may vary, we expect that the beneficial role of 

coordinating signaling with cell cycle stage will be shared by other antiproliferative 

pathways. 
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CHAPTER IV 

GENERAL DISCUSSION AND UNPUBLISHED RESULTS 

 

 This work used the yeast pheromone response pathway to examine how cellular 

responses to external stimuli are regulated.  In yeast, exposure to mating pheromone 

promotes entry into a differentiation pathway that leads to formation of a diploid zygote.  

Cellular responses involved in this process include cell cycle arrest, expression of mating 

specific genes, and morphology changes.  These responses are triggered by the 

heterotrimeric G protein βγ (Gβγ) dimer, which mediates recruitment of the proteins 

necessary for cell polarization and activation of signaling through the MAP kinase 

cascade.  

Chapter II of this thesis examines one of the cellular responses to pheromone.  

Here, we studied how Gβγ activity is regulated to promote the formation of an elongated 

mating projection when a localized polarity cue is present (i.e., chemotropism in response 

to a gradient of pheromone) or absent (i.e., de novo polarization in a uniform 

concentration of pheromone).  We found that in both settings, despite Gβγ’s role in 

recruiting the polarity proteins, Gβγ alone was not sufficient.  Rather an intact receptor-

Gαβγ module was required for chemotropism and de novo polarization.  Further 

investigation revealed qualitatively different roles for the two Gα-Gβ interaction 

interfaces and suggests that the Sw interface controls signaling, whereas the Nt interface 

governs coupling to the receptor.  As such, an intact Nt interface is required for both 
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chemotropism and de novo polarization.  In addition, we found that GTP hydrolysis by 

Gα is required for polarization and mating.  Altogether these results indicate that 

communication between the receptor and Gαβγ is important for chemotropism and de 

novo polarization, possibly to regulate Gαβγ in a spatially asymmetric manner. 

In Chapter III another cellular response triggered by Gβγ was examined.  Here we 

investigated how signaling through the MAP kinase cascade is regulated by G1 CDKs to 

coordinate mating response with cell cycle stage.  We show that Cln2/CDK activity 

inhibits signaling by phosphorylating sites surrounding the PM domain in the MAPK 

cascade scaffold protein Ste5, to disrupt its membrane localization.  This inhibition 

requires many phosphorylation sites and substantial accumulation of negative charge.  

Furthermore, we found that disrupting this inhibition allows cells to undergo aberrant 

post-Start arrest regardless of whether the arrest factor Far1 is present or not.  Our 

findings define a mechanism and physiological benefit of restricting mating pathway 

signaling to G1. 

These studies provide insight into how cellular responses to external stimuli are 

regulated.  However, there are still remaining questions.  Some of the remaining 

questions and related unpublished data are discussed below. 

 

Role for asymmetric localization of Gβγ activity in polarity establishment 

Polarity establishment involves interaction between Gβγ and the polarity proteins 

Far1 and Cdc24 (Butty et al., 1998; Nern and Arkowitz, 1998; Nern and Arkowitz, 1999).  

However, our results in Chapter II show that free Gβγ is not sufficient for polarity 
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establishment and further indicate that communication between the receptor and Gαβγ is 

important.  The inability of free Gβγ to promote polarization may result from a uniform 

distribution of Gβγ and suggests that Gβγ activity may need to be spatially localized or 

clustered as mediated by receptor induced Gαβγ activation.  Clustering could allow for 

asymmetric recruitment of the polarity proteins, Cdc24 and Far1, and thus provide a 

means for localized activation of Cdc42.  It has been found that, in wild type cells, 

uniform recruitment of Far1 to the plasma membrane, by fusion to a foreign 

myristoylation sequence, is toxic.  In this setting, cells arrest as large unbudded cells 

(Wiget et al., 2004).  Therefore, rather than promoting polarization, uniform recruitment 

has detrimental effects, which are thought to be due to uniform recruitment of Cdc24 and 

thus activation of Cdc42 (Wiget et al., 2004).  This suggests that normally, in response to 

pheromone Gβγ recruits Far1 to the plasma membrane in a spatially asymmetric manner 

to promote polarization.  The findings of Wiget et. al. and those in Chapter II indicate 

that asymmetric localization of Gβγ activity may be important for polarity establishment. 

 

Possible role for Gα-GTP interaction with downstream polarity factors 

 Our results in Chapter II indicate that communication between the receptor and 

Gαβγ is important for polarity establishment.  This communication may allow receptor 

induced GTP loading onto Gα (Gpa1) to occur in a localized manner. It is possible that 

activated Gpa1 interacts with a downstream polarity factor and asymmetric activation of 

Gpa1 is important for this.  Although we found that interaction between Gpa1 and Fus3 is 
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not required for chemotropism, this does not rule out a role for Gpa1 interaction with 

some other target.   

We have unpublished observations that support such a possible role.  We 

examined whether overexpression of Gpa1 could suppress the mating deficiency of cells 

lacking Ste4.  Here the ability to bypass Gβγ’s role in activating signaling proved 

beneficial as it provided us with a setting in which we could detect a potential role for Gα 

in promoting chemotropism independent of Gβγ.   Signaling was activated using the 

bypass methods (Ste5∆N-CTM or Ste5∆N-Sec22) discussed in Chapter II and the mating 

ability of ste4∆ ste5∆ cells harboring Gpa1 expressed from a low copy CEN plasmid, 

high copy 2μM plasmid or from GAL1 promoter was examined.  We found that 

overexpression of Gpa1 (either from a high copy 2μM plasmid or from the GAL1 

promoter) increased the mating success of cells lacking Ste4 (Figure 4-1A-D),  In 

addition, we found that unlike wild type Gpa1, overexpression of Gpa1-QL cannot 

suppress the mating deficiency of cells lacking Ste4, suggesting that GTP hydrolysis by 

Gpa1 is required for this suppression (Figure 4-1C and D).  Overall, we found that 

overexpression of wild type Gpa1 can suppress the chemotropism defect of cells lacking 

Ste4.  

We do not know how overexpressed wild type Gpa1 is able to suppress this 

defect.  The suppression might be due to interaction between Gpa1 and an unknown 

downstream factor important for chemotropic proficiency.  Alternatively, in this setting, 

interaction between Gpa1 and Fus3 might be required.  Previously, it has been found that 

Fus3 interacts with the formin Bni1 (Matheos et al., 2004).  Thus it is possible that 
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interaction between Gpa1, Fus3 and Bni1 could promote actin assembly and polarized 

growth.   

To promote polarized growth the interaction between Gpa1 and its target (either 

the unknown protein or Fus3) would need to occur in a localized fashion, but how this 

occurs is also unknown.  This may be mediated by interaction with the receptor, as 

efficient mating requires cells to sense and respond in the direction of the partner.  

Normally, the intact heterotrimer is required for efficient interaction with the receptor, 

but maybe in this setting Gpa1 has some ability to interact with the receptor and this 

could allow localization of Gpa1.  However, it is also possible that localized polarized 

growth is not required and overexpressed Gpa1 suppresses the mating deficiency of ste4∆ 

cells in some other way.  Further characterization of this suppression will require 

examination of a ste4∆ ste5∆ strain lacking Fus3 and a ste4∆ ste5∆ strain lacking Ste2.  

Although the mechanism is unknown, the ability of overexpressed Gpa1 to suppress the 

mating defect of cells lacking Ste4 suggests that under normal mating conditions Gα-

GTP may act synergistically with Gβγ to promote polarity establishment. 
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Figure 4-1.  Overexpression of Gpa1 can increase the mating efficiency of cells lacking Ste4 

when signaling is activated independent of Gβγ 

(A) Patch mating assays were performed using strains PPY861 (W303 MATa ste5∆) and PPY867 

(W303 MATa ste5∆ ste4∆) harboring vector (pRS314), wild type Gpa1 expressed from a low 

copy CEN plasmid (pPP2711) or wild type Gpa1 expressed from a high copy 2μM plasmid 

(pPP2712).  These strains also carried PGAL1-STE5∆N-SEC22 (pPP1169).   

(B) Quantitative mating assay of the same strains as panel A.  Matings were performed as 

described in the methods for Chapter II (see Appendix A). Cells were mated for 5.5 hr and mating 

efficiency was determined as the percentage of input a cells that formed diploids.  Bars, mean ± 

SD (n=2). 

(C) Wild type Gpa1 expressed from the GAL1 promoter suppresses the mating deficiency of cells 

lacking Ste4.  Also, these results show that unlike wild type Gpa1, overexpression of Gpa1-QL 

cannot increase the mating success of cells lacking Ste4.  Gpa1 derivatives were expressed from 

the GAL1 promoter (pPP1836 or pPP1837), or a low copy CEN plasmid (pPP2711 or pPP2802).  

Vector, (pRS316).  These strains (PPY861 and PPY867) also harbored PGAL1-STE5∆N-SEC22 

(pPP1175). 

(D) Overexpression of Gpa1 increases the mating success of cells lacking Ste4 when either PGAL1-

STE5∆N-SEC22 or PGAL1-STE5∆N-CTM is used to activate signaling and thus does not depend on 

a specific signaling activation method (i.e., Ste5∆N-Sec22). Strains (PPY861, PPY867) harbored 

PGAL1-GPA1 derivatives (pPP1836 or pPP1837) or vector (pRS316), plus PGAL1-STE5∆N-CTM 

(pPP473) or PGAL1-STE5∆N-SEC22 (pPP1175). 

All patch mating assays shown here were performed as described in the methods for Chapter II 

(see Appendix A) and used the mating partner PT2α. 
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Does the receptor interact with the N terminus of Gα? 

In Chapter II we found that the two interaction interfaces between Gα and Gβ 

have qualitatively different roles.  Our results suggest that an intact Nt interface is 

required to maintain communication with the receptor.  In support of this a model for 

coupling between a mammalian receptor and Gαβγ indicates that the N terminal interface 

lies tangential to the membrane (Hamm, 1998; Hamm, 2001).  Also, the Gα N terminus 

has been implicated in receptor recognition.  In particular, it has been implicated in 

recognizing the third intracellular (ic3) loop of the receptor (Taylor et al., 1994; Itoh et 

al., 2001).  

To further investigate a role for the N terminus of Gpa1 in coupling to the 

receptor, we sought to disrupt this interaction.  To do so we mutated ten residues in the 

N-terminus of Gpa1.  In yeast, the N-terminus of Gα contacts Gβγ at residues N24, I27, 

E28, L31, E34 (Lambright et al., 1996).  Therefore, to try and maintain interaction with 

Gβγ while specifically disrupting interaction with the receptor we mutated residues that 

are next to those that contact Gβγ.  These include Q19, N20, D25, V26, Q29, S30, L33, 

Q36, R37 and D38 (the mutations are as follows, Q19 to A, N20 to A, D25 to A, V26 to 

A, Q29 to A, S30 to A, L33 to A, Q36 to A, R37 to G and D38 to A.  The resulting Gpa1 

mutant is herein referred to as Gpa1-10A).   We found that the Gpa1-10A mutant 

functioned similarly to wild type in mating, growth arrest, and signaling assays (Figure 4-

2 A and B). 

  This lack of phenotype might suggest that the N-terminus of Gpa1 does not 

extensively interact with the receptor.  Alternatively, it might indicate that mutating these 

 146



residues to Ala was not a severe enough change.  It has been found that an overall net 

positive charge of the ic3 loop of the yeast receptor, Ste2, is important for its function. 

Mutations that remove positively charged residues decrease pheromone response (Celic 

et al., 2003).   The authors suggest that the positively charged residues could be important 

for function as they might mediate interaction with negatively charged residues on Gα 

(Celic et al., 2003).  The N-terminus of Gpa1 has eight negatively charged residues, 

which include D12, D15, D25, E28, E34, D38, E41 and E51.  Our Gpa1-10A mutant 

changed two of these residues.  Thus, the lack of phenotype associated with our Gpa1-

10A mutant may be due to insufficient disruption of the interaction.  Mutating more of 

these negatively charged sites to alanine or changing the ten sites we mutated to 

positively charged residues may have a greater disruptive effect on interaction between 

the receptor and Gαβγ. 
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Figure 4-2. Mutating ten residues in the N-terminus of Gpa1 does not disrupt function 

(A) The Gpa1-10A mutant functions similarly to wild type Gpa1 in chemotropism assays and 

does not alter the chemotropic advantage of the Sw interface mutants over the Nt interface 

mutants.  Patch mating assays were performed as described in the methods for Chapter II (see 

Appendix A) using PT2α as a mating partner.  (Left) strain PPY1228 (ste4∆ gpa1∆) harbored 

wild type Gpa1 (pPP2711) or Gpa1-10A (pPP2766) and PGAL1-STE4 plasmids (see Table A-2); 

(right) strain PPY1230 (ste4∆ gpa1∆ ste5∆) carried the same Gpa1 derivatives, the indicated Ste4 

variants expressed from the STE4 promoter (see Table A-2), and Ste5∆N-Sec22 (pPP1175) 

expressed from the GAL1 promoter. 

(B) Gpa1-10A functions similarly to wild type Gpa1 in growth arrest and signaling assays.  (Left) 

lawns of ste4∆ gpa1∆ cells (PPY1228) harboring wild type Ste4 (pPP226) and wild type Gpa1 

(pPP2711) or Gpa1-10A (pPP2766) were plated on –Ura –Trp plates and overlaid with filter disks 

containing 20 μl of 1 mM α factor.  Plates were incubated for 3 days at 30°C.  (Right) 

Transcriptional induction.  ste4∆ gpa1∆ cells (PPY1228) harboring the same plasmids as (left) 

and a FUS1-LacZ plasmid (pPP1044) were treated with or without 10μM α factor for 2 hrs and 

then assayed for FUS1-LacZ activation.  Bars, mean ± SD (n=4). 
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Role for GTP hydrolysis  

Our results in Chapter II show that expression of a Gα GTP hydrolysis mutant, 

Gpa1-Q323L, interfered with mating and de novo polarization (Figure 2-7), revealing that 

Gpa1 may require the ability to hydrolyze GTP in order to promote receptor-guided 

polarization.  Several studies have found that GTP hydrolysis is important for the 

functions of another GTP binding protein, the Rho-family GTPase, Cdc42.  With 

mammalian Cdc42, disrupting the hydrolysis cycle affects cell proliferation (Vanni et al., 

2005).  For yeast Cdc42, it was found that GTP hydrolysis is important for cell fusion 

(Barale et al., 2006) and cell polarization in the absence of localized polarity cues 

(symmetry breaking) (Irazoqui et al., 2003).  These studies indicated that the ability to 

cycle between GDP and GTP bound states was important for targeting and/or localizing 

Cdc42 activity.  

  Normally, localized activation of Cdc42 is governed by localized polarity cues.  

During budding, the localized activation of another GTPase, Rsr1, a general bud site 

selection protein, is thought to promote local activation of Cdc42 by recruiting its 

activator Cdc24 to the proper bud site (Park et al., 1997; Park et al., 2002).  The GTPase 

cycle of Rsr1 is important for this targeting as expression of an Rsr1 mutant that cannot 

hydrolyze GTP disrupts localization of Cdc24 (Park et al., 2002).  Thus the GTPase cycle 

of Rsr1 is important for proper bud site selection.    

Similarly, localized receptor-induced GTP loading onto Gα could promote 

formation of a mating projection.  Here localized GTP-loading onto Gα and subsequent 

activation of Gβγ activity may allow interaction between Gβγ and the polarity proteins, 
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Far1 and Cdc24, to occur in a spatially restricted manner.  This could promote local 

activation of Cdc42.  These interactions could promote localized polarization of the 

cytoskeleton and stabilize the axis of polarization (Nern and Arkowitz, 2000a).  Thus the 

Gα GTP hydrolysis cycle may provide the necessary asymmetric spatial cue to establish 

and maintain a polarized mating projection.  

 

How does signaling by CDK-resistant Ste5 promote cell cycle arrest? 

 In Chapter III we found that CDK-resistant Ste5-8A allowed cell cycle arrest at 

both G1 and post-Start cell cycle stages.  Furthermore, this arrest was independent of the 

arrest factor Far1 (Strickfaden et al., 2007).  This raises the important question of how 

signaling mediated by CDK-resistant Ste5 promotes arrest.  In particular, what are the 

mechanisms for the G1 and post-Start arrest?  

 

Potential mechanism for the Far1-indpendent G1 arrest  

The G1 arrest mediated by Ste5-8A may be due to repression of genes necessary 

for the G1 to S transition.  Previous studies have reported that pheromone can repress 

G1/S transcription (Valdivieso et al., 1993; Cherkasova et al., 1999) but the mechanism 

remains unknown.  Two heterodimeric transcription factors, SBF (composed of Swi4 and 

Swi6) and MBF (composed of Mbp1 and Swi6), regulate the transcription of genes 

required for Start including CLN1 and CLN2 (SBF regulated) and CLB5 and CLB6 (MBF 

regulated) (Wittenberg, 2005).  Activation of the SBF complex is inhibited by the 

transcriptional repressor Whi5.  Whi5 is phosphorylated by Cln3/CDK to promote its 
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dissociation from SBF and thereby allow transcriptional activation of CLN1 and CLN2 

(Costanzo et al., 2004; de Bruin et al., 2004).  

It is possible that pheromone-induced signaling could disrupt the 

activation/activity of SBF and MBF thereby promoting the Far1-indpendent G1 arrest.   

In addition to Whi5, Swi6 and Swi4 are also phosphoproteins, which can be 

phosphorylated by CDKs (Ubersax et al., 2003).  Since MAPKs can also phosphorylate 

CDK SP/TP sites, it is possible that the mating pathway MAPKs could phosphorylate 

these components at a subset of these CDK sites to mediate transcriptional repression.  

Pathway signaling could directly inhibit activation of SBF or MBF through 

phosphorylation of Swi6 or Swi4.  It is also possible that MAPK mediated 

phosphorylation of Whi5 at a subset of its twelve CDK sites could prevent its dissociation 

from SBF and thereby prevent transcriptional activation.  

To begin to investigate a role for Whi5 or Swi6 in mediating the G1 arrest we 

asked if deletion of WHI5 or SWI6 in STE5-8A far1∆ cells would eliminate the G1 arrest.  

If Whi5 or Swi6 was required to mediate the G1 arrest, then the loss of these proteins in 

STE5-8A far1∆ cells would cause the cells to accumulate entirely at the 2N arrest stage in 

response to pheromone.  We deleted WHI5 or SWI6 in a STE5-8A far1∆ strain and 

analyzed these cells by FACS after exposure to α factor.  We found that these cells still 

arrested with both 1N and 2N DNA content, showing that loss of these proteins was not 

sufficient to eliminate the G1 arrest (S.C.S and P.M.P, personal observations.  These are 

preliminary results that will be pursued by other lab members).  This indicates that some 

other factor is responsible for the G1 arrest.  It is possible that Swi4 may be responsible 
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for mediating the G1 arrest as it may be subject to inhibitory phosphorylation from MAP 

kinases.  It is also possible that signaling activates some other repressor that blocks 

transcription of genes necessary for the G1 to S transition.  Further investigation is 

needed to determine the mechanism of the Far1 independent G1 arrest.  

 

Potential mechanism for the post-Start arrest 

 How the post-Start arrest is mediated remains an interesting and important 

unanswered question.  Preliminary investigations suggest that cells arrested at the post-

Start position cannot enter mitosis (S.C.S and P.M.P., personal observations. This work 

will be pursued by other lab members).  DAPI staining of STE5-8A far1∆ cells after 

exposure to α factor for 3 hours revealed that these cells were mononucleate even though 

60%-70% of the cells arrested with 2N DNA content, indicating that these cells arrest 

before nuclear division.  Interestingly, use of tubulin-GFP (Tub1-GFP) revealed that the 

STE5-8A far1∆ cells did not form bipolar spindles even though a high percentage of the 

cells arrested at the 2N position.  Rather, these cells had a monopolar spindle (i.e., a 

single dot of tubulin fluorescence with microtubules emanating from it) ( P.M.Pryciak, 

personal communication).   This monopolar spindle may represent SPBs that have 

duplicated but not separated or it may be a single unduplicated SPB.  A more detailed 

analysis of the monopolar spindle is needed to determine if it is due to a duplication or 

separation defect. 

 Spindle pole body duplication occurs during the G1 stage of the cell cycle and 

Cln/CDK activity plays a role.  Cln/CDKs have been shown to phosphorylate a key 
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component of the SPB, Spc42, and a regulator of the SPB, Mps1, and this is thought to be 

important for SPB duplication (Jaspersen et al., 2004).  CDK activity is also involved in 

SPB separation.  Here it is mediated by the Clb cyclins (Bloom and Cross, 2007).  Many 

SPB components have been identified as CDK substrates, but the role of phosphorylation 

by CDKs is not understood (Jaspersen and Winey, 2004).  Thus altered CDK activity, 

due to potential CDK inhibition or transcriptional repression caused by signaling 

mediated by Ste5-8A, may disrupt the normal regulation of SPB components and this 

could affect duplication and/or separation.  Also, it is possible that activation of the 

mating pathway MAPKs outside of G1 could allow inappropriate phosphorylation of 

SPB components and disrupt duplication and/or separation. 

In addition to possible role in regulating components of the SPB, uninhibited 

MAPK signaling may alter the activity of motors involved in SPB separation.  Separation 

involves the movement of one SPB to the other side of the nucleus and this requires 

microtubules and microtubule motors (Jaspersen and Winey, 2004).   It is possible that 

altered CDK or MAPK activity could disrupt the function of the motors involved in 

separation thereby promoting a separation defect.  Also it is possible that during the post-

Start arrest, the cells are simultaneously trying to organize the cytoskeleton for 

karyogamy, the nuclear fusion that follows mating, and mitosis.  This could cause severe 

defects as there could be competition for components involved in each process and thus 

neither process can be completed.  What the mechanism is for the post-Start arrest 

remains an interesting question. 
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Why do cells need Far1? 

We have found that although yeast have elaborate mechanisms for cell-cycle 

regulation of the arrest factor Far1, this is essentially futile if they cannot also regulate 

Ste5.  CDK-resistant signaling mediated by Ste5-8A allows for Far1 independent cell 

cycle arrest (Strickfaden et al., 2007).  This raises the question of why Far1 is necessary?  

Our results suggest Far1 is necessary to promote a robust and stable G1 arrest.  In STE5-

8A cells loss of FAR1 causes a higher percentage of cells to arrest at the post-Start (2N) 

stage, which can be seen by comparing STE5-8A and STE5-8A far1∆ cells (Figure 3-8 

and 3-11).  We have preliminary evidence suggesting that the post-Start arrest may be 

irreversible.  We compared the viability of wild type, STE5-8A, far1∆ and STE5-8A 

far1∆ cells after treatment with α factor.  Cells were exposed to α factor for 3 or 6 hours 

and then plated to allow colony formation.  After incubation at 30°C for 2 days colonies 

were counted and cell viability was determined by comparing the number of colonies 

formed to those of untreated cells.  We found that overall the cells remained viable after 

short (3 hr) treatment with α factor, but there was a slight decrease in viability for the 

STE5-8A far1∆ cells.  However, unlike wild type, cells that display post-Start arrest have 

decreased viability after longer (6 hr) exposure to α factor.  Furthermore, the loss of 

viability seemed to correlate with the percentage of 2N arrest as STE5-8A far1∆ cells 

experienced a greater loss in viability than STE5-8A cells (Figure 4-3).  This correlation 

between decreased viability and percentage of 2N arrest suggests that the post-Start arrest 

is detrimental.  Thus expression of Far1 is needed to provide a robust and stable G1 

arrest. 
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Figure 4-3. Pheromone treatment causes decreased viability in strains that show post-Start 

arrest 

(A) Cultures of wild type (DK186), STE5-8A (PPY1748), far1∆ (PPY1777) and STE5-8A far1∆ 

(PPY1778) cells were grown at 30°C and sonicated.  A aliquot was immediately harvested 

(untreated cells), and the remaining culture was exposed to 0.1μM α factor.  Aliquots of the 

treated cultures were then harvested at 3 hrs and 6 hrs.  The aliquots were diluted and plated.  

After incubation for 2 days at 30°C the plates were scored for colony formation.  The percent of 

cells that remained viable after α factor treatment was determined by comparing the number of 

colonies formed after α factor treatment to those of the untreated cells.  The % of viable cells is 

shown on the y-axis (mean ± SD, n=2).     
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Concluding Remarks 

Over the years, study of the yeast pheromone response pathway has advanced our 

understanding of how cellular responses to external stimuli are regulated.  Here, we 

learned lessons regarding how an asymmetric polarization response is generated.  These 

studies revealed several interesting findings regarding heterotrimeric G protein function 

including i) the requirement for an intact receptor/Gαβγ module for response to both a 

localized and uniform polarity cue, ii) that the two interaction interfaces between Gα and 

Gβ have qualitatively different roles and iii) that the heterotrimer may function in a 

partially dissociated state.  In addition, we gained insight into how CDK activity restricts 

MAPK signaling to a specific cell cycle stage.   We also learned the importance of 

coordinating response to differentiation signals with cell-division status.  As the signaling 

modules that comprise the yeast pheromone response pathway are conserved in higher 

eukaryotes, the lessons we learned here may be relevant for regulation of cell polarization 

and differentiation in other systems.  In the future it will be interesting to see if these 

cellular responses are subject to similar types of regulation in higher eukaryotes. 
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APPENDIX A 

MATERIALS AND METHODS 

 

Materials and Methods Chapter II 

 

Yeast strains  

Yeast strains used in this study are listed in Table A-1. PGAL1-STE5∆N-CTM was 

integrated at the HIS3 locus by transformation with NheI-digested pPP1268 to create 

strains PPY1303, PPY1304, PPY1306 and PPY1307.  PGAL1-STE11∆N-STE7 was 

integrated at the HIS3 locus by transformation with NheI-digested pPP1270 to create 

strains PPY1309, PPY1310, PPY1311, PPY1312, PPY1313, PPY1314, PPY1951 and 

PPY1952. 

 

Plasmids 

Plasmids used in this study are listed in Table A-2.  The STE4 mutants defective for 

interaction with Gpa1 were isolated through a variety of screens and site directed 

mutagenesis.  The STE4 mutations that caused the most severe disruption of Gpa1-Ste4 

binding were transferred to a variety of contexts for further study.  The STE4 mutants 

K126E, L117R, W136R/L138F and L154R/N156K were transferred as MscI-XhoI 

fragments from the two-hybrid constructs (pPP2865, pPP2866, pPP266 and pPP966) into 

the PGAL1-STE4 construct pGT-STE4 (Klein et al., 2000), creating pPP1233, pPP1229, 

pPP1228 and pPP1209.  Then, the mutants were placed under control of the native STE4 
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promoter by transferring MscI-BspEI fragments from these PGAL1-STE4 constructs into 

pPP1340, creating pPP1377, pPP1378, pPP1379 and pPP1380.  In addition, the 

mutations were transferred as MscI-XhoI fragments into a PGAL1-STE4-GPA1 fusion 

construct pSTE4-GPA1-b (Klein et al., 2000) to produce pPP1231, pPP1232, pPP1230 

and pPP1210. These STE4-GPA1 fusions were then placed under control of the native 

STE4 promoter by transferring MscI-BspEI fragments from the PGAL1-STE4-GPA1 fusion 

constructs into pPP226, generating pPP1340, pPP1341, pPP1342, pPP1343 and pPP1344.  

(pPP226 contains STE4 on a ~4-kb EcoRI fragment, from -2045 to +2003, cloned into the 

EcoRI site of pRS316 (Sikorski and Hieter, 1989)).  

 STE4-GPA1 fusions harboring the GPA1-Q323L mutation were constructed as 

follows.  First, the Q323L mutation was transferred on a SphI-SphI fragment from 

pRS316-GPA1-Q323L (Apanovitch et al., 1998) into the STE4-GPA1 fusion construct 

pPP1340, creating pPP1859.  Then, the BglII-BspEI fragment from pPP1859 was 

transferred into pPP1343 to create pPP2801.  To place these mutant STE4-GPA1 fusions 

under control of the GAL1 promoter, the MscI-BspEI fragments from pPP1859 and 

pPP2801 were transferred into pSTE4-GPA1-b (Klein et al., 2000), creating pPP2806 and 

pPP2807. 

 Plasmid pPP2711 (CEN TRP1 GPA1) was created by PCR amplification of GPA1 

(-201 to +1707) from YCp50-C3 (Dietzel and Kurjan, 1987), and ligation as a SacI-KpnI 

fragment into pRS314 (Sikorski and Hieter, 1989). The GPA1 mutations Q323L and 

K21E R22E were transferred into pPP2711 as BsrGI-BstBI fragments from pRS316-

GPA1-Q323L (Apanovitch et al., 1998) and YCplac22-GPA1-K21ER22E (Metodiev et 
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al., 2002), to create pPP2802 and pPP2743, respectively. The GPA1 mutations E28K and 

E28A were generated by site-directed mutagenesis of YCpGPA1 (Stone and Reed, 1990) 

and pPP247 (Pryciak and Hartwell, 1996), creating plasmids pPP1501, pPP1502, 

pPP1503 and pPP1505.  The PGAL1-STE7 construct pPP2773 was made by transferring 

STE7 as a BamHI-PstI fragment from pG7 (Harris et al., 2001) into the CEN TRP PGAL1 

vector pPP449 (Pryciak and Huntress, 1998)).  

 

Microscopy  

For de novo and default polarization assays, transformants were grown in selective 

raffinose media.  2% galactose was added to induce expression of PGAL1-driven constructs 

and, where indicated, 10μM α factor was also added.  After 2-8 hour induction cells were 

visualized without fixation.  For the de novo polarization assays in Figure 7A and 7B, 

images were captured for each condition, coded and then randomized to allow blind 

counts to be performed. 

 

Mating assays 

For patch mating assays, a cells were patched directly onto a lawn of partner PT2α cells, 

incubated overnight at 30° and then diploids were selected by replication to minimal 

media.  After an immediate (1°) replica was made, more dilute replications were made by 

repeating the replication of the master plate two more times, using a fresh velvet each 

time, to create 2° and 3° replicas (Harris et al., 2001; Lamson et al., 2002).  The replicas 

were then incubated for 2 days at 30°.  For pheromone confusion assays, patch matings 
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were performed as described above, except α factor was spread on one plate (+ α factor) 

to give a final concentration of 30 μM, unless otherwise indicated, and allowed to dry 

before the PT2α lawn was spread. 

 Quantitative mating assays were performed as described in (Pryciak and Huntress, 

1998; Lamson et al., 2002).  In brief, cells were grown overnight in selective raffinose 

medium and then 0.5 x 106 – 5 x 106 a cells were mixed with 0.5 x 106 – 1 x107 partner 

cells and collected onto filters. (The mating partner is PT2α unless otherwise indicated.) 

The filters were placed on SC/raffinose/galactose plates and cells were allowed to mate 

for 6 - 7 hours (unless otherwise indicated) at 30°.  After mating, filters were suspended 

in PBS and serial dilutions were plated on minimal media to select for diploids.  Mating 

efficiency was determined as the percentage of total plasmid-containing (a + a/α) cells 

that were diploid.  The quantitative mating in Figure 2-4D was performed similarly 

except the mating efficiency was determined as the percentage of input a cells that 

formed diploids (from two 6 hour and one 28 hour mating experiments) and is expressed 

relative to that of the wild type Ste4 and Gpa1 combination.  For quantitative matings 

done in the presence of exogenous α factor, α factor was spread on the mating 

(SC/Raffinose/Galactose) plate to give a final concentration of 30 μM before the filters 

were added. 

 For zygote formation 5 x 106 a cells were mixed with 5 x 106 PT2α cells, 

collected onto filters and placed on SC/raffinose/galactose plates.  After incubation at 30° 

for 5.5 hours, filters were harvested into PBS, sonicated, fixed in 5% formaldehyde and 

then visualized. DIC and fluorescence (GFP) images were captured. 
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Pheromone response and β-galactosidase assays 

Halo assays of growth arrest were performed by plating cells on -Trp -Ura plates and 

overlaying with filters containing 20μl of 1mM α-factor (Lamson et al., 2002).  Plates 

were photographed after incubation for 2 days at 30°.   

FUS1-lacZ transcriptional induction assays were performed as described 

previously (Pryciak and Huntress, 1998; Lamson et al., 2002). FUS1-lacZ induction by 

pathway-activating constructs under control of the GAL1 promoter was measured 4 hrs 

after addition of 2% galactose ± 10μM α factor to cultures grown in raffinose medium.  

To measure the effects of the Ste4 mutations on FUS1-lacZ activation in response to 

pheromone, cells were grown in raffinose media, induced with 2% galacatose for 1 hr, 

and then incubated ± 10μM α factor for an additional 2 hours.  For dose response assays 

comparing pheromone response of separate versus fused Ste4 and Gpa1 polypeptides, 

cells were grown in glucose and treated with the indicated concentration of α factor for 2 

hours.  Two-hybrid liquid β-galactosidase assays were performed as previously described 

(Lamson et al., 2002).  
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Table A-1.  Yeast strains used in Chapter II 
 
strain 

bkgnd* 
strain name genotype source §  

    
(a) PPY258 MATα this study 
(a) PPY498 MATa fus3∆ kss1∆ this study 
(a) PPY577 MATa FUS1::FUS1-lacZ::LYS2  this study 
(a) PPY663 MATa FUS1::FUS1-lacZ::LYS2 1 
(a) PPY817 MATa FUS1::FUS1-lacZ::LYS2  far1::ADE2 1 
(a) PPY820 MATa FUS1::FUS1-lacZ::LYS2 fus3::LEU2 kss1::ura3FOA far1::ADE2 this study 
(a) PPY824 MATa FUS1::FUS1-lacZ::LYS2 fus3::LEU2 this study 
(a) PPY827 MATa FUS1::FUS1-lacZ::LYS2 fus3::LEU2  far1::ADE2 this study 
(a) PPY836 MATa far1::ADE2 this study 

    
(b) PPY398 MATa  2 
(b) PPY794 MATa ste4::ura3FOA 3 
(b) PPY842 MATa ste4::ura3FOA ste5::ADE2 ste20-1::TRP1 4 
(b) PPY856 MATa FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA 4 
(b) PPY858 MATa FUS1::FUS1-lacZ::LEU2 ste5::ADE2 3 
(b) PPY861 MATa ste5::ADE2 this study 
(b) PPY863 MATa ste5::ADE2 ste20::TRP1 this study 
(b) PPY867 MATa ste4::ura3FOA ste5::ADE2 this study 
(b) PPY886 MATa FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA ste5::ADE2 3 
(b) PPY978 MATa FUS1::FUS1-lacZ::LEU2 ste5::ADE2 gpa1::URA3 this study 
(b) PPY979 MATa FUS1::FUS1-lacZ::LEU2 ste5::ADE2 ste2::URA3 this study 
(b) PPY989 MATa FUS1::FUS1-lacZ::LEU2 ste18::URA3 ste5::ADE2 this study 
(b) PPY1228 MATa ste4::ura3FOA gpa1::ura3FOA this study 
(b) PPY1230 MATa ste4::ura3FOA gpa1::ura3FOA ste5::ADE2 this study 
(b) PPY1248 MATa ste4::ura3FOA rsr1::ura3::HIS3 this study 
(b) PPY1259 MATa rsr1::ura3::HIS3 this study 
(b) PPY1303 MATa HIS3::PGAL1-STE5∆N-CTM this study 
(b) PPY1304 MATa HIS3::PGAL1-STE5∆N-CTM ste5::ADE2 this study 
(b) PPY1306 MATa HIS3::PGAL1 -STE5∆N-CTM rsr1::URA3 this study 
(b) PPY1307 MATa HIS3::PGAL1 -STE5∆N-CTM rsr1::URA3 ste5::ADE2 this study 
(b) PPY1309 MATa HIS3::PGAL1 -STE11∆N-STE7 this study 
(b) PPY1310 MATa HIS3::PGAL1 -STE11∆N-STE7 ste5::ADE2 this study 
(b) PPY1311 MATa HIS3::PGAL1 -STE11∆N-STE7 ste5::ADE2 ste4::ura3FOA this study 
(b) PPY1312 MATa HIS3::PGAL1-STE11∆N-STE7 rsr1::URA3 this study 
(b) PPY1313 MATa HIS3::PGAL1 -STE11∆N-STE7 rsr1::URA3 ste5::ADE2 this study 
(b) PPY1314 MATa HIS3::PGAL1 -STE11∆N-STE7 rsr1::URA3 ste5::ADE2 ste4::ura3FOA this study 
(b) PPY1380 MATa gpa1::ura3FOA ste4::ura3FOA rsr1::ura3FOA this study 
(b) PPY1662 MATa FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA ste7::ADE2 this study 
(b) PPY1663 MATa FUS1::FUS1-lacZ::LEU2  ste4::ura3FOA gpa1::ura3FOA this study 
(b) PPY1937 MATa fus3::LEU2 ste4::ura3FOA this study 
(b) PPY1942 MATa ste4::ura3FOA gpa1::ura3FOA sst2::LEU2 this study 
(b) PPY1951 MATa HIS3::PGAL1-STE11∆N-STE7 ste5::ADE2 gpa1::ura3FOA this study 
(b) PPY1952 MATa HIS3::PGAL1-STE11∆N-STE7 ste5::ADE2 gpa1::ura3FOA rsr1::URA3  this study 

    
(c) PPY762 MATa LYS2::(lexAop)4-HIS3 URA3::(lexAop)8-lacZ ste11::ADE2 5 

    
(d) PT2α MATα hom3 ilvi can1 3 

    
(e) PPY198 MATα his7 lys9 trp1 ura3 can1 cyh2 3 

    
 
* Strain background:  (a) 381G (cry1 ade2-1oc ade3 his4-580am leu2-3,112 lys2oc trp1am 
ura3-52 SUP4-3ts);  (b) W303 (ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1); (c) 
S288c (ade2 his3-Δ200 leu2-3,112 trp1-901); (d) other; (e) A364A. 
 
§ Source:  (1) (Strickfaden et al., 2007); (2) (Harris et al., 2001); (3) (Pryciak and 
Huntress, 1998); (4) (Winters et al., 2005); (5) (Butty et al., 1998). 
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Table A-2.  Plasmids used in Chapter II 
 
Name Alias Description Source § 
pPP120 pRD-STE11-H3 CEN URA3 PGAL1-GST-STE11∆N 1 
pPP126 YCpGPA1 CEN LEU2 GPA1 2 
pPP134 pNC252 2µm URA3 PGAL1-STE12 3 
pPP226 p316-ST4-a  CEN URA3 PSTE4-STE4 this study 
pPP244 pGAD424 2µm LEU2 GAL4-AD vector 4 
pPP247 pBTM-GPA1 2µm TRP1 lexA-DBD-GPA1 3 
pPP249 pGAD-STE4 2µm LEU2 GAL4-AD-STE4 3 
pPP266 pGAD-21.1 2µm LEU2 GAL4-AD-STE4(W136R,L138F) this study 
pPP268 pGAD-YS4 2µm LEU2 GAL4-AD-STE4 this study 
pPP271 pGS12-T 2µm TRP1 PGAL1-STE12 this study 
pPP446 pRD53-2μm 2µm URA3 PGAL1 vector   this study 
pPP452 pGS5 CEN TRP1 PGAL1-STE5 5 
pPP473 pGS5∆N-CTM CEN TRP1 PGAL1-ste5∆N-CTM (= Snc2 TM domain) 5 
pPP479 pH-GS5∆N-CTM CEN HIS3 PGAL1-ste5∆N-CTM (= Snc2 TM domain) 5 
pPP513 pGFP-GS5∆N-CTM CEN TRP1 PGAL1-GFP-ste5∆N-CTM (= Snc2 TM domain) 5 
pPP524 pGFP-GS5∆N-SEC22 CEN TRP1 PGAL1-GFP-ste5∆N-Sec22 TM domain 5 
pPP575 pGS11∆N-T CEN TRP1 PGAL1-GST-STE11∆N 6 
pPP636 pGADXP 2µm LEU2 strong PADH1-GAL4-AD vector 7 
pPP643 pGADXP-STE4 2µm LEU2 strong PADH1-GAL4-AD-STE4 7 
pPP679 pRS314 CEN TRP1 vector 8 
pPP681 pRS316 CEN URA3 vector 8 
pPP741 pNC252-HIS3 2µm HIS3 PGAL1-STE12 this study 
pPP966 pGAD-YS4-L154R,N156K 2µm LEU2 GAL4-AD-STE4(L154R,N156K) this study 
pPP968 pGAD-21.1-L154R,N156K 2µm LEU2 GAL4-AD-STE4(W136R,L138F,L154R,N156K) this study 
pPP969 pGAD-YS4-N92G,K94E,S96A 2µm LEU2 GAL4-AD-STE4(N92G,K94E,S96A) this study 
pPP971 pGAD-YS4-W411R 2µm LEU2 GAL4-AD-STE4(W411R) this study 
pPP1121 pXP4-3-C7 2µm LEU2 strong PADH1-GAL4-AD-STE4(K126E) this study 
pPP1150 pSTE4-GPA1-b CEN URA3 PGAL1-STE4-GPA1 fusion (1 a.a. linker) 9 
pPP1151 pGT-STE4 CEN URA3 PGAL1-STE4 9 
pPP1175 pH-GFP-GS5∆N-SEC22 CEN HIS3 PGAL1-GFP-ste5∆N-Sec22 TM domain this study 
pPP1209 pGT4-LN/RK CEN URA3 PGAL1-STE4(L154R,N156K) this study 
pPP1210 pGT4GA-LN/RK CEN URA3 PGAL1-STE4(L154R,N156K)-GPA1 fusion   this study 
pPP1228 pGT4-WL/RF CEN URA3 PGAL1-STE4(W136R,L138F) this study 
pPP1229 pGT4-L117R CEN URA3 PGAL1-STE4(L117R)   this study 
pPP1230 pGT4GA-WL/RF CEN URA3 PGAL1-STE4(W136R,L138F)-GPA1 fusion   this study 
pPP1231 pGT4GA-K126E CEN URA3 PGAL1-STE4(K126E)-GPA1 fusion   this study 
pPP1232 pGT4GA-L117R CEN URA3 PGAL1-STE4(L117R)-GPA1 fusion this study 
pPP1233 pGT4-K126E CEN URA3 PGAL1-STE4(K126E) this study 
pPP1268 pIH-GS5∆N-CTM integrating HIS3 PGAL1-ste5∆N-CTM (= Snc2 TM domain) this study 
pPP1270 pIH-G11∆N.S7 integrating HIS3 PGAL1-STE11∆N-STE7 fusion this study 
pPP1340 pS4GA-WT CEN URA3 PSTE4-STE4-GPA1 fusion this study 
pPP1341 pS4GA-K126E CEN URA3 PSTE4-STE4(K126E)-GPA1 fusion this study 
pPP1342 pS4GA-L117R CEN URA3 PSTE4-STE4(L117R)-GPA1 fusion this study 
pPP1343 pS4GA-WL/RF CEN URA3 PSTE4-STE4(W136R,L138F)-GPA1 fusion this study 
pPP1344 pS4GA-LN/RK CEN URA3 PSTE4-STE4(L154R,N156K)-GPA1 fusion this study 
pPP1377 pS4-K126E CEN URA3 PSTE4-STE4(K126E) this study 
pPP1378 pS4-L117R CEN URA3 PSTE4-STE4(L117R) this study 
pPP1379 pS4-WL/RF CEN URA3 PSTE4-STE4(W136R,L138F) this study 
pPP1380 pS4-LN/RK CEN URA3 PSTE4-STE4(L154R,N156K) this study 
pPP1501 YCpGPA1-E28K CEN LEU2 GPA1(E28K ) this study 
pPP1502 pBTM-GPA1-E28K 2µm TRP1 lexA-DBD-GPA1(E28K) this study 
pPP1503 YCpGPA1-E28A CEN LEU2 GPA1(E28A) this study 
pPP1505 pBTM-GPA1-E28A 2µm TRP1 lexA-DBD-GPA1(E28A) this study 
pPP1621 YCplac22-GPA1-WT CEN TRP1 GPA1 10 
pPP1859 pS4GA-Q323L CEN URA3 PSTE4-STE4-GPA1(Q323L) fusion this study 
pPP2711 p314-GPA1-WT CEN TRP1 GPA1 this study 
pPP2743 p314-GPA1-K21ER22E CEN TRP1 GPA1(K21E,R22E) this study 
pPP2773 pRS314-G7 CEN TRP1 PGAL1-STE7 this study 
pPP2801 pS4GA-WL/RF+Q323L CEN URA3 PSTE4-STE4(W136R,L138F)-GPA1(Q323L) fusion this study 
pPP2802 p314-GPA1-Q323L CEN TRP1 GPA1(Q323L) this study 
pPP2806 pGT4GA-Q323L CEN URA3 PGAL1-STE4-GPA1(Q323L) fusion this study 
pPP2807 pGT4GA-WL/RF+Q323L CEN URA3 PGAL1-STE4(W136R,L138F)-GPA1(Q323L) fusion this study 

 166



pPP2865 pGm3-C7 2µm LEU2 GAL4-AD-STE4(K126E) this study 
pPP2866 pGm5-E73 2µm LEU2 GAL4-AD-STE4(L117R) this study 
pPP2867 pGm4-J38 2µm LEU2 GAL4-AD-STE4(D224E) this study 
pPP2868 pGm4-I22 2µm LEU2 GAL4-AD-STE4(D272A) this study 
    
 
§ Source: (1) (Neiman and Herskowitz, 1994); (2) (Stone and Reed, 1990); (3) (Pryciak 
and Hartwell, 1996); (4) (Bartel and Fields, 1995); (5) (Pryciak and Huntress, 1998); (6) 
(Moskow et al., 2000); (7) (Butty et al., 1998) ; (8) (Sikorski and Hieter, 1989); (9) 
(Klein et al., 2000); (10) (Stratton et al., 1996). 
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Materials and Methods Chapter III 

 

Strains and Plasmids 

Yeast strains are listed in Table A-3. PGAL1-CLN2 or PGPD1-CLN2 were integrated at the 

HIS3 locus by transformation with NheI digested pPP1949 or pPP1948, respectively. 

PGAL1-CLB5 or PGPD1-CLB5 were integrated at the HIS3 locus by transformation with 

NheI digested pPP2656 or pPP2655, respectively.  PGAL1-CLN3 or PGAL1-CLB2 were 

integrated at the LEU2 locus by transformation with BstEII digested pPP2665 or 

pPP2666, respectively.  Replacement of the genomic STE5 locus with the STE5-8A allele 

used a pop-in/pop-out strategy. Cells were first transformed with XbaI digested pPP2330 

and selected for uracil prototrophy. Then, spontaneous 5-fluoro-orotic acid-resistant 

colonies were screened by PCR, restriction digestion, and sequencing to identify clones 

that retained the STE5-8A allele. 

 

Plasmids are listed in Table A-4. 

 

Signaling Assays 

FUS1-lacZ induction and β-galactosidase assays were performed as described (Pryciak 

and Huntress, 1998; Lamson et al., 2002). Activation of FUS1-lacZ by galactose-

inducible constructs in the presence and absence of PGAL1-CLN2 was measured 3 hrs after 

addition of 2% galactose to cultures grown in 2% raffinose media. To measure effects of 

PGAL1-CLN2 on FUS1-lacZ induction by pheromone, cells were grown in 2% raffinose 
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media, then induced with 2% galactose for 1 hr, followed by 5 μM α factor for an 

additional 2 hr. For FUS1-lacZ experiments not involving PGAL1-CLN2, cells grown in 

glucose media were treated with 5 μM α factor for 2 hr. 

 For signaling in synchronous cultures, cdc15 strains AA2596 and PPY1761 

harbored either pPP1044 (FUS1-lacZ) or pPP1513 (Fus3-myc13). Cultures in selective 

media were diluted into YPD and grown overnight at 25° C, shifted to 36° C for 3 hrs, 

then pelleted and resuspended in YPD at 25° C to release the mitotic block. To measure 

FUS1-lacZ induction, every 15 min aliquots were treated with 10 μM α factor for 22 

min. Induction was stopped by transfer to an ice water bath. To measure Fus3 activation, 

every 30 min aliquots were treated with 5 μM α factor for 8 min. Cells were then 

pelleted, frozen in dry ice, and stored at -80° C. Fus3-myc13 was immunoprecipitated 

from cell extracts, and phospho-Fus3 was detected by rabbit anti-phospho-p44/42 blots 

(#9101; Cell Signaling Technology), quantified by densitometry, normalized to Fus3-

myc13 levels measured in separate anti-myc blots, and expressed relative to time 0 for 

each experiment. 

 Halo assays (Lamson et al., 2002) used 20 μl of 1 mM (Figures 3-8E, 3-11A), 200 

μM (Figure 3-11A), 100 μM (Figures 3-8D, 3-8H, 3-3C, 3-11B) or 20 μM (Figure 3-3C) 

α factor. Unless indicated otherwise, growth arrest was monitored after incubation for 2 

days at 30˚C. 
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FACS analysis 

For FACS experiments, bar1∆ strains were treated with 1 μM α factor in order to 

minimize the possibility of leaky arrest. Results were similar using 0.1 μM α factor (data 

not shown). Cells were grown to OD660 = 0.2-0.3 in YPD, and incubated ± α factor at 

30°C. For experiments involving plasmids, cells grown overnight in selective media were 

transferred to YPD for 1.5 hrs prior to α factor addition. Cells were analyzed by FACS as 

described (Haase and Reed, 2002); instead of pepsin, cells were treated with 0.2 ml 

Proteinase K solution (1 mg/ml in 50 mM Tris, pH 8.0) for 1 hr at 36°C. 

 

Immunoblotting 

Immunoprecipitation and yeast extract preparation used published methods (Lamson et 

al., 2002). Immunoprecipitation of Ste5-myc13, Fus3-myc13, Ste5-HA3, and GFP-Ste4 

used mouse anti-myc (9E10; Santa Cruz Biotech), anti-HA (HA.11; Covance), and anti-

GFP (clones 7.1 and 13.1; Roche) antibodies. Blots were probed with rabbit anti-myc (A-

14; Santa Cruz Biotech), rabbit anti-HA (Y-11; Santa Cruz Biotech), or mouse anti-GFP 

(B34; Covance).  

 

Analysis of phosphorylation-dependent mobility of Ste5-HA3  

Immunoprecipitation and yeast extract preparation used published methods (Lamson et 

al., 2002), except the immunoprecipitation used a lysis buffer with high salt and 

phosphatase inhibitors (50 mM Tris-HCl, pH 7.5, 700 mM NaCl, 150 mM NaF, 150 mM 

β-glycerophosphate, 1 mM EGTA, 5% glycerol, 0.25% Tween-20, and 2mM PMSF) 
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(Harvey et al., 2005).  The immunoprecipation used 2 μl of mouse anti-HA (HA.11; 

Covance) and 45 μl of a 50% slurry of protein G beads that had been washed and 

resuspended in the high salt and high phosphatase inhibitors lysis buffer.  After 

immunoprecipitation, samples were resuspended in 30 μl sample buffer with 50 mM NaF 

and 100 mM β-glycerophosphate added.   

Samples were run on 10% polyacrylamide (30:1 acryl:bis) gels (see below for 

recipe).  No SDS was added to the gel.  Before loading the samples, the bottom of the gel 

and the wells were rinsed with running buffer to remove bubbles.  10 μl of sample was 

loaded onto gel and the gel was run at 4°C in a stepwise fashion.  Running conditions 

were as follows: 20V for 10 min, then 50V for 15 min, then 100V for 45 min, and finally 

200V for 2 hr and 50 min.   

Gels were washed in 1X transfer buffer for 30 – 60 min and transferred to PVDF 

membranes at 15V for 15 min using a semi-dry transfer unit.  Membranes were washed, 

blocked for 1 hr at room temperature in 5% milk/TTBS, and then probed overnight at 

4°C with rabbit anti-HA (Y-11; Santa Cruz Biotech) diluted 1:250 in 5% milk/TTBS.  

Then membranes were washed and probed for 1hr at room temperature with the 

secondary goat anti-rabbit AP (Bio-Rad) diluted 1:3000 in 5% milk/TTBS. 

Phosphatase treatment of Ste5-HA3 was performed as described (Chang and 
Herskowitz, 1992). 
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Kellogg lab gel recipes (S. Harvey, personal communication). 
 
Resolving Gel Mix 
 
Percentage of gel                   10.0  
30% w/v  acrylamide          3.34 ml     
1% w/v bisacrylamide         1.3 ml 
1.5 M Tris-Cl pH 8.8           2.5 ml 
Water                                   2.8 ml 
 
Makes 10 ml.  Add 50 µl 10% w/v ammonium persulphate and 5 µl TEMED per 10 ml of 
this mix. 
 
 
Stacking Gel Mix 
30% w/v acrylamide            0.83 ml 5% final 
1% w/v bisacrylamide         0.66 ml 0.13% final 
0.5 M Tris-Cl (pH 6.8!!)     1.25 ml 125 mM final 
Water                                   2.25 ml  
 
Makes 5 ml.  Add 50 µl 10% w/v ammonium persulphate and 5 µl TEMED per 5 ml of this 
mix. 
  
30% Acrylamide/1% Bisacrylamide. 
Make stocks at the required percentage. 

 

Kinase assays 

GST-Ste51-125 fusions (WT, 8A and 8E) were purified from E. coli strain BL21-Codon 

Plus (Stratagene) using glutathione-Sepharose beads. The Cln2/Cdc28 complex was 

purified from Sf9 insect cells infected with recombinant baculoviruses (Nash et al., 

2001). Cln2/Cdc28 (100 ng) was mixed with GST-Ste51-125 (30 μg) or histone H1 (1 μg) 

in 10 μl of reaction buffer (50 mM Hepes pH 7.5, 10 mM MgCl2, 1 mM DTT, 10 μCi 

[32P]-γ-ATP, 100 μM cold ATP), and incubated for 30 min at 30°C. Products were 
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resolved by SDS-PAGE and stained with coomassie blue.  Gels were then dried and 

analyzed by autoradiography. 

 

Microscopy 

GFP fusions to Ste5 (full-length or fragments) were visualized without fixation, after 

induction from the GAL1 promoter with 2% galactose for 2-4 hr (Pryciak and Huntress, 

1998; Winters et al., 2005). Results representative of multiple repeated experiments are 

shown. 

 

Elutriation 

Small G1 cells were purified by centrifugal elutriation following published methods (Lew 

and Reed, 1993; Futcher, 1999). Briefly, large cultures (approx. 1 liter) were grown in 

synthetic complete medium with raffinose as a carbon source (SC+Raff) overnight at 

30˚C.  Cells were collected by centrifugation, resuspended in approximately 100 ml of 

supernatant, and sonicated (6x 30 sec.) to separate mother-daughter clumps.  Cells were 

loaded at 60 ml/min into a 40-ml elutriation chamber at a rotor speed of 4000 rpm 

(Beckman JE-5.0 rotor), and then collected by increasing pump flow speed by 5-10 

ml/min increments.  Fractions with desired density and purity of small G1 cells were 

pooled.  Cells were collected by centrifugation, resuspended in YPD growth medium, and 

incubated at 30˚C for subsequent experimental manipulations. 

 

 

 173



Strain and plasmid combinations 

Combinations of strains and plasmids used for experiments in each figure are as follows. 

Figure 3-1.  (C) Strains PPY889 and PPY1704 harbored pPP135, pPP2063, pPP461, 

pPP1951, or pPP575.  (D) Strains PPY890, PPY1337, PPY1849, PPY1702 harbored 

STE11 plasmids (pPP1405 or pPP1407).  (E) PPY858 and PPY1695 harbored pPP2128 

or pPP2105.  (F) Strains: PPY858, PPY1695.  Plasmids: pPP1969, pPP2206, pPP2208, 

pPP2273, pPP1704, pPP1914, pPP2279. 

 Figure 3-2.  (B) Strains PPY858 and PPY1695 harbored STE5 plasmids (pPP2128 

or pPP2176).  Strains PPY913 and PPY1755 harbored STE20 plasmids (pPP2370 or 

pPP2371).  (C) Strains: PPY886 and PPY1705.  Plasmids: pPP2063 and pPP2240.  (D) 

Strains AA2596 and PPY1761 harbored a FUS1-lacZ reporter plasmid (pPP1044) or a 

Fus3-myc plasmid (pPP1513).  (E) Strains PPY858 and PPY1695 harbored a STE5-WT 

(pPP2128) or a STE5-Ala mutant plasmid (pPP2156, pPP2175, pPP2158, pPP2124, 

pPP2161, pPP2162, pPP2171, pPP2172, pPP2157, pPP2159, pPP2126, pPP2173, 

pPP2002, pPP2160, pPP2174, pPP2176.) 

Figure 3-3.  (B) Strains PPY858 and PPY1696 harbored STE5 plasmids 

(pPP1275, pPP1350, pPP1857, pPP1738, pPP1779, pPP1471, pPP1780, pPP1477).  (C) 

Strains: DK186, PPY1748, PPY1877, PPY1879. (D) Strains: AA2596 and PPY1761.  

Plasmid: pPP1044. 

Figure 3-4.  (B) Strains PPY858 and PPY1695 harbored STE5 plasmids 

(pPP2128, pPP2176, pPP2160, pPP2174, pPP2245, pPP2337, pPP2336, pPP2339, 

pPP2476, pPP2475).  (C) Strain PPY858 harbored plasmids (pPP2128, pPP2176, 
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pPP2160, pPP2174, pPP2245, pPP2337, pPP2336, pPP2339, pPP2476, pPP2475, 

pPP2338).  (D) Strain PPY886 harbored pPP650 or pPP449 and a STE5 plasmid 

(pPP681, pPP2128, pPP2339, pPP2108).  (E) Strain PPY866 harbored pPP633 and a 

STE5 plasmid (pPP1134, pPP2128, pPP2245, pPP2337, pPP2336, pPP2476, pPP2339).  

(F) Strain: PPY886.  Plasmids: pPP681, pPP2023, pPP2605, pPP2063, pPP2604, 

pPP2141, pPP2609.  (G) Strain PPY886 harbored pPP1532 and a STE5 plasmid 

(pPP1134, pPP2128, pPP2245, pPP2476, pPP2339, pPP2176, pPP2475).  (H) Strain 

PPY657 harbored a STE4 plasmid (pPP620, pPP857, pPP858) and a STE5 plasmid 

(pPP2128, pPP2176, pPP2125, pPP2127, pPP2001, pPP2244, pPP2245). 

 Figure 3-5.  (A) Strains PPY1215 and PPY1706 harbored pPP2063 or pPP2240.  

(B) Strains PPY886 and PPY1215 harbored PGAL1-GFP-STE5 plasmids (pPP2063, 

pPP2604, pPP2141, pPP2609).  (C) Strain: PPY1215.  Plasmids: pPP1658, pPP2331, 

pPP2268, pPP2255, pPP2333, pPP2270, pPP2614, pPP2616, pPP2615. 

Figure 3-6.  (A) Strains: PPY858 and PPY1695.  Plasmids: pPP1968 and 

pPP2613.  (B) Strains PPY1830, PPY1832, PPY842, PPY1826 harbored PGAL1-GFP-

STE5 plasmids (pPP2063 or pPP2240). 

Figure 3-7.  (A) Plasmids: pPP1955, pPP2328, pPP2329.  (B) Strains: PPY858, 

PPY1695, PPY1830, PPY1832.  Plasmids: pPP2467, pPP2468, pPP2523.  (C) Strains 

PPY858 and PPY1695 harbored pPP2467.  (D) Strains: PPY858, PPY1695, PPY1896, 

PPY1895, PPY1897.  Plasmids: pPP2467, pPP2468, pPP2663, pPP2701.  (E) Strains 

PPY858 and PPY1695 harbored STE5 plasmids (pPP2467, pPP2468, pPP2663, pPP2701, 

pPP2523).  (F) Strains: PPY858, PPY1766, BOY743, PPY1753, PPY1769, CWY231, 
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CWY465, CWY910.  Plasmids: pPP2663 and pPP2701.  (G) Strains PPY1762 and 

BOY743 harbored pPP2663 or pPP2701. 

 Figure 3-8.  (A) Strains: DK186, PPY1748.  (B) Strain DK186 harbored STE5 

plasmids (pPP1134, pPP2128, pPP2161, pPP2156, pPP2126, pPP2002, pPP2160, 

pPP2174, pPP2176, pPP2245).  (C) Strain: PPY1748.  (D) Strains: DK186, PPY1913, 

PPY1748, PPY1918.  (E) Strain PPY663 harbored pPP1134.  Strain PPY817 harbored 

pPP1134.  Strain PPY814 harbored pPP2176.  (F) Strain PPY1855 harbored STE5 

plasmids (pPP1134, pPP2128, pPP2161, pPP2126, pPP2160, pPP2176).  Strain DK186 

harbored pPP1134.  (G) Strains: PPY856, PPY1846, PPY1662.  Plasmids: pPP681, 

pPP135, pPP2063, pPP2240, pPP2141.  (H) Strains:  PPY1778, PPY1921. 

Figure 3-9.  (A) Strains: DK186, PPY1748.  (B) Strain: PPY1748. 

 Figure 3-10. Strains: DK186, PPY1748. 

 Figure 3-11.  (A) Strain PPY814 harbored STE5 plasmids pPP1134, pPP2128, 

pPP2156, pPP2175, pPP2158, pPP2124, pPP2161, pPP2162, pPP2171, pPP2172, 

pPP2157, pPP2159, pPP2126, pPP2173, pPP2002, pPP2160, pPP2174, pPP2176. (B) 

Strains: DK186, PPY1748, PPY1777, PPY1778, PPY1881, PPY1853, PPY1789.  (C) 

Strains: DK186, PPY1748, PPY1777, PPY1778, PPY1789, PPY1853. 
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Table A-3.  Yeast strains used in Chapter III 
 
strain 

bkgnd* 
strain 
name 

genotype source §  

    
(a) PPY657 MATa  FUS1::FUS1-lacZ::LYS2 ste4::ura3FOA ste5::LYS2 6 
(a)  PPY663 MATa  FUS1::FUS1-lacZ::LYS2  this study 
(a) PPY814 MATa  FUS1::FUS1-lacZ::LYS2 ste5::LYS2 far1::ADE2 this study 
(a) PPY817 MATa  FUS1::FUS1-lacZ::LYS2 far1::ADE2 this study 

    
(b) AA2596 MATa  ade1 cdc15-2 A. Amon 
(b) DK186 MATa  bar1  3 
(b) PPY842 MATa  ste4::ura3FOA ste5::ADE2 ste20-1::TRP1 6 
(b) PPY856 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA 6 
(b) PPY858 MATa  FUS1::FUS1-lacZ::LEU2 ste5::ADE2 2 
(b) PPY866 MATα  FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA  ste5::ADE2  ste20-1::TRP1 2 
(b) PPY886 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA  ste5::ADE2 2 
(b) PPY889 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ADE2 2 
(b) PPY890 MATa  FUS1::FUS1-lacZ::LEU2 ste11::ADE2 2 
(b) PPY913 MATa  FUS1::FUS1-lacZ::LEU2 ste20-3∆::TRP1 4 
(b) PPY1215 MATa  ste4::ura3FOA ste7::ADE2 6 
(b) PPY1337 MATa  FUS1::FUS1-lacZ::LEU2 ste20-1::TRP1 ste11::ADE2 7 
(b) PPY1662 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA ste7::ADE2 this study 
(b) PPY1695 MATa  FUS1::FUS1-lacZ::LEU2 ste5::ADE2 HIS3::PGAL1-CLN2 this study 
(b) PPY1696 MATa  FUS1::FUS1-lacZ::LEU2 ste5::ADE2 HIS3::PGPD1-CLN2 this study 
(b) PPY1702 MATa  FUS1::FUS1-lacZ::LEU2 ste20-1::TRP1 ste11::ADE2 HIS3::PGAL1-CLN2 this study 
(b) PPY1704 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ADE2 HIS3::PGAL1-CLN2 this study 
(b) PPY1705 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA ste5::ADE2 HIS3::PGAL1-CLN2 this study 
(b) PPY1706 MATa  ste4::ura3FOA ste7::ADE2 HIS3::PGAL1-CLN2 this study 
(b) PPY1748 MATa  bar1 STE5-8A this study 
(b) PPY1753 MATa  cdc4-1 ste5::ADE2 this study 
(b) PPY1755 MATa  FUS1::FUS1-lacZ::LEU2 ste20-3∆::TRP1 HIS3::PGAL1-CLN2 this study 
(b) PPY1761 MATa  ade1 cdc15-2 STE5-8A this study 
(b) PPY1762 MATa  ade1 cdc15-2 ste5::ADE2 this study 
(b) PPY1766 MATa  cdc28-4 ste5::ADE2 this study 
(b) PPY1769 MATa  cdc53-1 ste5::ADE2 this study 
(b) PPY1777 MATa  bar1 far1::ADE2 this study 
(b) PPY1778 MATa  bar1 far1::ADE2 STE5-8A this study 
(b) PPY1789 MATa  bar1 far1::ADE2 cln2::kanR this study 
(b) PPY1826 MATa  ste4::ura3FOA ste5::ADE2 ste20-1::TRP1 HIS3::PGAL1-CLN2 this study 
(b) PPY1830 MATa  FUS1::FUS1-lacZ::LEU2 fus3::LEU2 kss1::ura3FOA ste4::ADE2 this study 
(b) PPY1832 MATa  FUS1::FUS1-lacZ::LEU2 fus3::LEU2 kss1::ura3FOA ste4::ADE2 

HIS3::PGAL1-CLN2 
this study 

(b) PPY1846 MATa  FUS1::FUS1-lacZ::LEU2 ste4::ura3FOA far1::ADE2 this study 
(b) PPY1849 MATa  FUS1::FUS1-lacZ::LEU2 ste11::ADE2 HIS3::PGAL1-CLN2 this study 
(b) PPY1853 MATa  bar1 far1::ADE2 cln2::kanR STE5-8A this study 
(b) PPY1855 MATa  bar1 far1::ADE2 ste5::ura3FOA this study 
(b) PPY1877 MATa  bar1 HIS3::PGPD1-CLN2  this study 
(b) PPY1879 MATa  bar1 HIS3::PGPD1-CLN2 STE5-8A this study 
(b) PPY1881 MATa  bar1 HIS3::PGPD1-CLN2 far1::ADE2 STE5-8A this study 
(b) PPY1895 MATa  FUS1::FUS1-lacZ::LEU2 ste5::ADE2 HIS3::PGAL1-CLB5 this study 
(b) PPY1896 MATa  ste5::ADE2 LEU2::PGAL1-CLN3 this study 
(b) PPY1897 MATa  ste5::ADE2 LEU2::PGAL1-CLB2 this study 
(b) PPY1913 MATa  bar1 HIS3::PGPD1-CLB5 this study 
(b) PPY1918 MATa  bar1 STE5-8A HIS3::PGPD1-CLB5  this study 
(b) PPY1921 MATa  bar1 far1::ADE2 STE5-8A HIS3::PGPD1-CLB5 this study  

    
(c) BOY743 MATa  bar1::LEU2 cdc28-13 1 
(c) CWY231 MATa  bar1 5 
(c) CWY465 MATα  bar1 TRP1 cdc34-3 C. Wittenberg 
(c) CWY910 MATα  bar1 TRP1::PGAL1-CLN3 cdc34-3 cln1∆ cln2xs C. Wittenberg 
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* Strain background:  (a) 381G (cry1 ade2-1oc ade3 his4-580am leu2-3,112 lys2oc trp1am 
ura3-52 SUP4-3ts)  (b) W303 (ade2 his3 leu2 trp1 ura3 can1)  (c) 15Dau (ade1 his2 leu2 
trp1 ura3).  
  
§ Source: (1) (Oehlen and Cross, 1998); (2) (Pryciak and Huntress, 1998); (3) 
(Zimmerman and Kellogg, 2001); (4) (Lamson et al., 2002); (5) (de Bruin et al., 2004); 
(6) (Winters et al., 2005); (7) (Lamson et al., 2006). 
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Table A-4.  Plasmids used in Chapter III 
 
Name Alias Description** Source § 
    
pPP135 pL19 CEN URA3 PGAL1-STE4 2 
pPP449 pRS314-Galp CEN TRP1 PGAL1 vector 5 
pPP461 pGS5-CTM CEN TRP1 PGAL1-STE5-CTM 5 
pPP575 pGS11∆N-T CEN TRP1 PGAL1-GST-STE11∆N 6 
pPP620 pAS4-WT 2µm LEU2 GAL4-AD-STE4 8 
pPP633 pSTE11-4/HIS3 CEN HIS3 STE11-4 (T596I) 4 
pPP650 pGFP-GS4 CEN TRP1 PGAL1-GFP-STE4 5 
pPP681 pRS316 CEN URA3 vector 1 
pPP857 pAS4-K55E 2µm LEU2 GAL4-AD-STE4(K55E) 8 
pPP858 pAS4-N157H,S175P 2µm LEU2 GAL4-AD-STE4(N157H,S175P) this study 
pPP1044 pH-CFL CEN HIS3 FUS1-lacZ reporter  9 
pPP1134  p316P* CEN URA3 vector  this study 
pPP1275 p316P*-CYC1ter CEN URA3 TCYC1 vector 8 
pPP1350 pS5ET CEN URA3 STE5 TCYC1 8 
pPP1405 pFD53-STE11-WT CEN URA3 STE11 wt 7 
pPP1407 pFD53-STE11-Asp3 CEN URA3 STE11-Asp3 (=S281D, S285D, T286D) 7 
pPP1471 pS5ET/∆117-122 CEN URA3 STE5(∆117-122) TCYC1 8 
pPP1477 pS5ET/∆152-159 CEN URA3 STE5(∆152-159) TCYC1 8 
pPP1513 pF3-myc CEN URA3 FUS3-myc13 TCYC1 9 
pPP1532 pH-G11-Cpr  CEN HIS3 PGAL1-STE11-Cpr 8 
pPP1658 pHGF5N-F CEN HIS3 PGAL1-GFP-ste5(1-214) 8 
pPP1704 pS5-GFPx3 CEN URA3 STE5-GFPx3 TCYC1 8 
pPP1738 pS5ET/∆69-93 CEN URA3 STE5(∆69-93) TCYC1 8 
pPP1779 pS5ET/∆94-123 CEN URA3 STE5(∆94-123) TCYC1 8 
pPP1780 pS5ET/∆124-151 CEN URA3 STE5(∆124-151) TCYC1 8 
pPP1857 pS5ET/∆3-36 CEN URA3 STE5(∆3-36) TCYC1 8 
pPP1914 p5∆BFX-PLC CEN URA3 STE5[(∆48-67) + PLCδ11-140 ]-GFPx3 TCYC1 8 
pPP1947 pGEX-6P-1 E. coli GST fusion vector (Amersham) 3 
pPP1948 pIH-GPD-CLN2 integrating HIS3 PGPD1-CLN2   this study 
pPP1949 pIH-GAL-CLN2 integrating HIS3 PGAL1-CLN2   this study 
pPP1951  pT-G11-Cpr  CEN TRP1 PGAL1-STE11-Cpr this study 
pPP1955 pGEX-S5-D ste5(1-125)  in pGEX-6P-1  this study 
pPP1968 pS5k-GFPx3 CEN URA3 STE5-GFPx3 TCYC1 8 
pPP1969 pS5kmyc CEN URA3 STE5-myc13 TCYC1 8 
pPP2001 pS5kmyc-EEE CEN URA3 STE5(S43E,S69E,S71E)-myc13 TCYC1 this study 
pPP2002 pS5kmyc-AAA CEN URA3 STE5(S43A,S69A,S71A)-myc13 TCYC1 this study 
pPP2023 pCUGF-S5-WT CEN URA3 PGAL1-GFP-STE5 8 
pPP2063 pCUGF-S5-Q59L CEN URA3 PGAL1-GFP-STE5(Q59L) 8 
pPP2105 pS5kmyc/NLSm CEN URA3 STE5(NLSm)-myc13 TCYC1 8 
pPP2108 pS5kmyc/C180A CEN URA3 STE5(C180A)-myc13 TCYC1 8 
pPP2124 pS5kmyc-S43A CEN URA3 STE5(S43A)-myc13 TCYC1   this study 
pPP2125 pS5kmyc-S43E CEN URA3 STE5(S43E)-myc13 TCYC1 this study 
pPP2126 pS5kmyc-6971AA CEN URA3 STE5(S69A,S71A)-myc13 TCYC1 this study 
pPP2127 pS5kmyc-6971EE CEN URA3 STE5(S69E,S71E)-myc13 TCYC1 this study 
pPP2128  pS5kBmyc  CEN URA3 STE5-myc13 TCYC1  (w/ BssHII at STE5 codons 56-57) this study 
pPP2141 pCUGF-S5-CTM CEN URA3 PGAL1-GFP-STE5-CTM  9 
pPP2156 pS5kmyc-T4A CEN URA3 STE5(T4A)-myc13 TCYC1 this study 
pPP2157 pS5kmyc-411AA CEN URA3 STE5(T4A,S11A)-myc13 TCYC1 this study 
pPP2158 pS5kmyc-T29A CEN URA3 STE5(T29A)-myc13 TCYC1 this study 
pPP2159 pS5kmyc-2943AA CEN URA3 STE5(T29A,S43A)-myc13 TCYC1 this study 
pPP2160 pS5kmyc-up4A CEN URA3 STE5(T4A,S11A,T29A,S43A)-myc13 TCYC1 this study 
pPP2161 pS5kmyc-S69A CEN URA3 STE5(S69A)-myc13 TCYC1 this study 
pPP2162 pS5kmyc-S71A CEN URA3 STE5(S71A)-myc13 TCYC1 this study 
pPP2171 pS5kmyc-S81A CEN URA3 STE5(S81A)-myc13 TCYC1 this study 
pPP2172 pS5kmyc-T102A CEN URA3 STE5(T102A)-myc13 TCYC1 this study 
pPP2173 pS5kmyc-81102AA CEN URA3 STE5(S81A,T102A)-myc13 TCYC1 this study 
pPP2174 pS5kmyc-dn4A CEN URA3 STE5(S69A,S71A,S81A,T102A)-myc13 TCYC1 this study 
pPP2175 pS5kmyc-S11A CEN URA3 STE5(S11A)-myc13 TCYC1 this study 
pPP2176  pS5kmyc-A8 CEN URA3 STE5(8A)-myc13 TCYC1 this study 
pPP2206 pS5kmyc/T52L CEN URA3 STE5(T52L)-myc13 TCYC1 8 
pPP2208 pS5kmyc/Q59L CEN URA3 STE5(Q59L)-myc13 TCYC1 8 
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pPP2240 pCUGF-S5-Q59L+A8 CEN URA3 PGAL1-GFP-STE5(Q59L+8A) this study 
pPP2244 pS5kmyc-dn4E CEN URA3 STE5(S69E,S71E,S81E,T102E)-myc13 TCYC1 this study 
pPP2245 pS5kmyc-8E CEN URA3 STE5(8E)-myc13 TCYC1 this study 
pPP2255 pHG-GST-F5N-D CEN HIS3 PGAL1-GST-GFP-ste5(1-125) 8 
pPP2268 pHGF5N-F-8E CEN HIS3 PGAL1-GFP-ste5(1-214)/8E this study 
pPP2270 pHG-GST-F5N-D-8E CEN HIS3 PGAL1-GST-GFP-ste5(1-125)/8E this study 
pPP2273 pS5kmyc/T52L,Q59L CEN URA3 STE5(T52L,Q59L)-myc13 TCYC1 this study 
pPP2279 p5∆BFX-PLCx2 CEN URA3 STE5[(∆48-67)+2x PLCδ11-140 ]-GFPx3 TCYC1 this study 
pPP2328 pGEX-S5-D-A8 ste5(1-125)/8A in pGEX-6P-1 this study 
pPP2329 pGEX-S5-D-8E ste5(1-125)/8E in pGEX-6P-1 this study 
pPP2330 p306-S5-A8 integrating URA3 STE5-8A  this study 
pPP2331 pHGF5N-F-A8 CEN HIS3 PGAL1-GFP-ste5(1-214)/8A this study 
pPP2333 pHG-GST-F5N-D-A8 CEN HIS3 PGAL1-GST-GFP-ste5(1-125)/8A this study 
pPP2336 pS5kmyc-dn8E CEN URA3 STE5(dn8E)-myc13 TCYC1 this study 
pPP2337 pS5kmyc-up8E CEN URA3 STE5(up8E)-myc13 TCYC1 this study 
pPP2338  pS5kmyc-16A CEN URA3 STE5(16A)-myc13 TCYC1 this study 
pPP2339 pS5kmyc-16E CEN URA3 STE5(16E)-myc13 TCYC1 this study 
pPP2370 p316-S20XK-WT CEN URA3 STE20-WT (STE20 seq: -1210 to +3075) this study 
pPP2371 p316-S20XK-13A CEN URA3 STE20(13A) (STE20 seq: -1210 to +3075) this study 
pPP2465  pS5kmyc-up1AA,2AA CEN URA3 STE5(T4A,P5A,S11A,P12A)-myc13 TCYC1 this study 
pPP2466  pS5kmyc-up3AA,4AA CEN URA3 STE5(T29A,P30A,S43A,P44A)-myc13 TCYC1 this study 
pPP2467 pS5kB-HA CEN URA3 STE5-HA3 TCYC1 this study 
pPP2468 pS5kHA-A8 CEN URA3 STE5(8A)-HA3 TCYC1 this study 
pPP2475 pS5kmyc-14A#2 CEN URA3 STE5(14A)-myc13 TCYC1 this study 
pPP2476 pS5kmyc-14E#2 CEN URA3 STE5(14E)-myc13 TCYC1 this study 
pPP2523 pS5kHA-16E CEN URA3 STE5(16E)-HA3 TCYC1 this study 
pPP2604 pCUGF-S5-Q59L+16E CEN URA3 PGAL1-GFP-STE5(Q59L+16E) this study 
pPP2605 pCUGF-S5-16E CEN URA3 PGAL1-GFP-STE5(16E) this study 
pPP2609 pCUGF-S5-CTM+16E CEN URA3 PGAL1-GFP-STE5-CTM+16E this study 
pPP2613 pS5k-A8-GFPx3 CEN URA3 STE5(8A)-GFPx3 TCYC1 this study 
pPP2614 pHG-GST-F5N-D-Q59L CEN HIS3 PGAL1-GST-GFP-ste5(1-125)/Q59L this study 
pPP2615 pHG-GST-F5N-D-Q59L+16E CEN HIS3 PGAL1-GST-GFP-ste5(1-125)/Q59L+16E this study 
pPP2616 pHG-GST-F5N-D-Q59L+8E CEN HIS3 PGAL1-GST-GFP-ste5(1-125)/Q59L+8E this study 
pPP2655 pIH-GPD-CLB5 integrating HIS3 PGPD1-CLB5 this study 
pPP2656 pIH-GAL-CLB5 integrating HIS3 PGAL1-CLB5 this study 
pPP2663 pS5kHA-∆NLS CEN URA3 STE5(∆48-67)- HA3 TCYC1 this study 
pPP2665 YIpG2-CLN3 integrating LEU2 PGAL1-CLN3 D. Lew 
pPP2666 YIpG2-CLB2 integrating LEU2 PGAL1-CLB2 D. Lew 
pPP2701 pS5kHA-∆NLS+8A CEN URA3 STE5(∆48-67/8A)- HA3 TCYC1 this study 
    
 
§ Source:  (1) (Sikorski and Hieter, 1989); (2) (Whiteway et al., 1990); (3) Amersham, Inc.; (4) (Madhani et al., 1997); 
(5) (Pryciak and Huntress, 1998); (6) (Moskow et al., 2000); (7) (van Drogen et al., 2000); (8) (Winters et al., 2005) (9) 
(Lamson et al., 2006). 
 
 
** STE5-8A = T4A,S11A,T29A,S43A,S69A,S71A,S81A,T102A 
    STE5-14A = T4A,P5A,S11A,P12A,T29A,S43A,S69A,P70A,S71A,P72A,S81A,P82A,T102A,P103A 
    STE5-16A = T4A,P5A,S11A,P12A,T29A,P30A,S43A,P44A,S69A,P70A,S71A,P72A,S81A,P82A,T102A,P103A 
    STE5-8E = T4E,S11E,T29E,S43E,S69E,S71E,S81E,T102E 
    STE5-up8E = T4E,P5E,S11E,P12E,T29E,P30E,S43E,P44E 
    STE5-dn8E = S69E,P70E,S71E,P72E,S81E,P82E,T102E,P103E 
    STE5-14E = T4E,P5E,S11E,P12E,T29E,S43E,S69E,P70E,S71E,P72E,S81E,P82E,T102E,P103E 
    STE5-16E = T4E,P5E,S11E,P12E,T29E,P30E,S43E,P44E,S69E,P70E,S71E,P72E,S81E,P82E,T102E,P103E 
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