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ABSTRCT

Heavy chain isotype switch recombination preceded the

appearance of RNA initiating 5' of the specific switch region which wil

undergo recombination. In an effort to understand the potential function of

germline transcripts in switch recombination and the degree to which the

regulation germ line transcri pts correlates with the regulation

switching, we studied this process in the murine B-Iymphoma cell line 1.2911,

which the presence bacterial lipopolysaccharide (LPS) switches

primarily to IgA and less frequently to IgE. Levels of a-germline transcripts

initiating upstream of switch (Sa) sequences are elevated in clones of this

line which switch well as compared to clones which switch less frequently.

TG F 1 has been shown to increase a-germline transcripts and switching to IgA

expression in LPS-stimulated murine splenic B-cells. We now demonstrate in

1.2911 cells that TGF also increases switching to IgA and increases the level of

germ line transcripts 5 to fold. Nuclear run-on analysis shows that this

increase is at the level of transcription. Thus, TGF appears to direct switching

to IgA by inducing transcription from the unrearranged Sa - C DNA segment.

Germline RNA is quite stable in 1.2911 cells, having a half life of about 3 to 5

hours, and we find only slight stabilzation in the presence of TGF Levels of

e -germ line transcripts are not increased by TGF IL-4, which modestly

increases switching to IgA in 1.2911 cells, slightly increases trancription of 

germline RNA. However, we present evidence suggesting that endogenously

produced IL-4 may also act at additional levels to increase switching to IgA.

IFNy, which reduces IgA expression in these cells, also reduces the level of 

germline transcripts. IFNy also reduces the level of e-germline transc ri pts

induced by IL- Our results support the hypothesis that the regulation of

i v



transcription of particular switch sequences by cytokines in turn regulates

the specificity of recombination.
In studies aimed at identifying other signallng pathways that promote

class switching, discovered that inhi b i tors the nuclear enzyme

poly(ADP-ribose) polymerase (P ARP) increase lipopolysaccharide (LPS)-

induced switching to IgA in the B cell lymphoma 1.2911 and to IgGI in LPS + IL-

treated splenic B cells. PARP, which binds to and is activated by DNA strand

breaks, catalyzes the removal of ADP-ribose from NAD+ and poly(ADP-

ribosylation) of chromatin-associated acceptor proteins. This enzyme

believed to function in cellular processes involving DNA strand breaks as well

as in modulating chromatin structure. In 1.2911 cells, P ARP inhibitors increase

IgA switching by day 2 and cause a 5-fold average increase in switching on

day 3 as assayed by immunofluorescence microscopy. The PARP inhibitor,

nicotinamide, also causes a reduced intensity of hybridization of CIl and C(X

specific probes to genomic DNA fragments containing the expressed VDJ-

and the unrearranged Sa. - C a. segments, respectively, indicating that PARP

inhibition increases rearrangment these fragments. Induction

switching by PARP inhibitors is not mimicked by treatment with cAMP

analogs or reduced by inhibitors of protein kinase A (PKA). Induction of

switching by PARP inhibitors does not appear to involve increased levels of

transcription of the unrearranged Ca. gene, although TGF~ is required for

optimal induction by PARP inhibitors, consistent with requirement for

transcription of the unrearranged CH gene. P ARP inhibitors do not overcome

the requirement for endogenously produced IL-
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CHAPER I

INODUCTON

The production by B cells of different classes of antibody with distinct

effector functions is a regulated process during an immune response. The

antibody class is determined by the constant region of the immunoglobulin

heavy chain (CH ), the expression of which controlled DNA

recombination event, known the chain isotype switch. Switch

recombination causes the rearranged H chain variable (V), diversity (D), and

joining (1) segments, which are initially expressed in association with the IgM

constant region gene I1)' to be subsequently expressed with one of six

downstream CH genes, ordered in the mouse 5' Y3-Yl-Y2b-Y2a-e-a.-3' (Shimizu

et al. 1982).

Rearrangement of V, D, and J gene segments occurs in the bone marrow

and thymus during pre B-cell development and early T-cell development,

respectively, and determines the specifici ty of an antigen receptor.

contrast, switch recombination occurs mature B -cells upon antigen

exposure in secondary lymphoid organs, thus allowing the antibody class to be

dictated by the antigen. Also unlike V(D)J recombination, the recombination

that occurs in isotype switching is not site specific. Recombination instead

occurs within or near 2 to 10 kb stretches of guanine rich DNA known as

switch (S) regions consisiting of tandemly repetitive sequences located 5' of C

and every C region gene except C (Nikaido et al. 1981; Nikaido et al. 1982).

These repeat sequences are composed of various combinations of motifs such

as GAGCT and GGGGT. DNA between SJ. and a downstream S region is deleted

(Cory and Adams 1980; Honjo and Kataoka 1978; Rabbits et al. 1980) as a circular
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DNA excision product (Iwasato et al. 1990; Matsuoka et al. 1990; von-Schwedler

et al. 1990). The precise means by which DNA is cut, aligned, and rejoined is

unknown as are the roles in recombination of nuclear proteins that have been

shown to bind to S regions (Liao et al. 1992; Marcu et al. 1992; Schultz et al.

1991; Waters et al. 1989; Willams and Maizels 1991; Wuerffel et al. 1992;

Wuerffel et al. 1990; Xu et al. 1992). Similarly, the sequences CTGG(G) and CCAG

occur near switch junctions functionswith nonrandom frequencies but, the

of these motifs are not known (Chou and Morrison 1993; Iwasato et al. 1992).

The correlation between the rearrangement of S~ DNA and the S-phase of the

cell cycle in cells undergoing switching, and the inhibition of switching with

inhibitors of DNA synthesis, support a role for DNA synthesis in switch

recombination (Gronowicz et al. 1979; Kenter and Watson 1987; A. Kenter

personal communication),. The finding of base substitutions, duplications and

deletions in switch recombination junctions has led to the proposal that an

error-prone DNA synthesis event effects recombination (Dunnick et al. 1993;

Dunnick and Stavnezer 1990; Dunnick et al. 1989).

One component the class switching recombination machinery

appears to be isotype nonspecific and can be induced in B cells and B cell lines,

coculture with inducers cell activation and proliferation, including

anti- IgM, anti- dextran, activated helper T cells (TH) or their membrane

fractions, anti-CD40, CD40 ligand, other cells in the local environment of the 

cell, or by bacterial lipopolysaccharide (LPS) (reviewed in Snapper and

Finkelman 1993 and Snapper and Mond 1993; Bergstedt-Lindqvist et al. 1984;

Coffman et al. 1988; Gascan et al. 1991; Grabstein et al. 1993; Hodgkin et al. 1990;

Jabara et al. 1990; Kearney and Lawton 1975; Noelle et al. 1991; Purkerson et al.

1988; Schrader et al. 1990; Severinson-Gronowicz et al. 1979; Shapira et al. 1992;



Spaulding and Griffn 1986).

Considerable evidence indicates that this general machinery is directed

to a particular isotype, or CH gene, by the cytokine-controlled accessibility of a

particular switch sequence (Lutzker et al. 1988; Stavnezer et al. 1988). Several

studies in mouse B and pre B cell lines show correlations between the switch

recombination activity of particular CH gene, hypomethylation and DNAse

sensitivity of that gene, and the steady state level of RNA transcripts

initiating upstream of and proceeding though the corresponding S regIOn

prior to recombination (Lutzker et al. 1988; Schmitz and Radbruch 1989;

Stavnezer-Nordgren and Sirlin 1986). Studies in LPS-activated spleen cells

have shown that the presence RNA transcribed from particular

unrearranged CH genes correlates with switching to those isotypes (Lutzker et

al. 1988; Stavnezer et al. 1988). These RNA, termed germline transcripts,

contain upstream exons derived from sequences located 5' of switch regions

that are deleted if switch recombination has occurred. These upstream

sequences are spliced to segments encoded by CH genes (Gaff and Gerondakis

1990; Gauchat et al. 1990; Gerondakis 1990; Lebman et al. 1990b; Lutzker and Alt

1988; Radcliffe et al. 1990; Rothman et al. 1990; Rothman et al. 1990; Sideras et

al. 1989; Xu and Stavnezer 1990).

The function of transcription of these RNA or of the RNA themselves is

unknown. small open reading frame (ORF) with an effective translation

initiation codon is found in the upstream exon of the murine a.- germline

transcript (Radcliffe et al. 1990). minor 1.8 kb species of mouse a.- germline

transcripts contains an open reading frame consisting of approximately 30 bp

of sequence of la exon spliced to exons (Gaff and Gerondakis 1990).

Likewise, the mouse 'Y and 'Ya germline transcripts contain possible ORFs



consisting of 79 and 33 nucleotides of their respective I exons spliced to C

region exons (Collns and Dunnick 1993; Goodman et al. 1993). Use of the 'Ya

ORF, however, would require bypassing 10 upstream translational start sites

and unlikely. of the human germlineotherNone mouseappears

transcripts sequenced contain open reading frames that could encode large

proteins (Gerondakis 1990; Lutzker and Alt 1988; Radcliffe et al. 1990; Rothman

et al. 1990; Rothman et al. 1990; Sideras et al. 1989). The 1.7 kb mouse 

germline transcript has been observed to associate with poly somes, and can be

translated in vitro, but attempts to detect a putative peptide encoded by it 

cell extracts al. 1990; Waite(Radcliffeunsuccessfulbeenhave

unpublished data).

possible germline transcri pts themselves participatethat

recombination. The overall structure of all the known germline transcripts is

identical. the only significant sequence homologies between the 5'However,

exons (I exons) of the corresponding human and mouse germline RNA which

have been examined include a 90bp stretch surrounding the start sites of the

germline y RNA (Rothman et al. 1990; Sideras et al. 1989), the 5' flanking

region for the E and a.-germline RNA (Gauchat et al. 1990; Lin and Stavnezer

1992; Nilsson et al. 1991; Rothman et al. 1990), and enhancer core- like

sequences within the human germ line I exons examined (Sideras et al. 1989).

These homologies suggesti ve similar transcription initiationare all

machinery . Comparative searches of secondary structure shared by germline

RNA have not been reported.

An attractive hypothesis that the activation of transcription, by
making a particular locus accessible to recombination factors, targets that

locus recombination. idea transc ri ption promotesthatThefor switch



recombination is not unique to switch recombination systems. Transcription

has been proposed to increase the frequency of VDJ recombination (Blackwell

et al. 1986; Schlissel and Baltimore 1989) and homologous recombination in

some yeast systems (Thomas and Rothstein 1989).

It has been well established in limiting dilution studies of murine B-

cells activated with LPS or of B-cells clonally activated by T -cells, that

cytokines direct particular (Bergsted t-isotypesisotype switching tocan

Lindqvist et al. 1988; Lebman and Coffman 1988a; Savelkoul et al. 1988).

Further evidence that regulation transcription thedeterminesthe

specificity of switch from the excellent correlationrecombination comes

between the effect in vivo and in vitro of cytokines on preferential isotype

expression and the induction of germline transcripts in LPS-stimulated mouse

lymphoma lines, pre B lines, and splenic B-cells (Bergstedt-Lindqvist et al.

1988; Berton et al. 1989; Esser and Radbruch 1989; Finkelman et al. 1990;

Gauchat et al. 1990; Lebman et al. 1990a; Lutzker et al. 1988; Rothman et al. 1990;

Rothman et al. 1988; Savelkoul et al. 1988; Severin son et al. 1990; Stavnezer 

al. 1988).

It has been shown in vitro in both polyclonal and antigen specific

systems that the abilty of one or another type of TH -cell line (or polyclonally

activated membrane fractions from either TH type) to support preferential

isotype expression by mouse splenic B-cells is largely dependent upon the

abilty to make (or the presence of) the appropriate lymphokine(s) (Coffman

et al. 1988; Hodgkin et al. 1990; Hodgkin et al. 1991; Lebman and Coffman 1988a;

Noelle et al. 1991; Stevens et al. 1988). For example, TH 2 - cells induce IgG 

expression. TH I- cells can support IgG 1 expression if supplemented with TH2-

cell supernatant or IL- and/or anti- IFN antibody. (Coffman et al. 1988;



Hodgkin et al. 1991; Stevens et al. 1988). Similarly, activated THI-cell

membranes supplemented with IL- and IL- or TH2 cell supernatant can

support IgGl responses (Hodgkin et al. 1991; Noelle et al. 1991). Additionally,

murine splenic B-cells treated with LPS produce mainly IgG3 and IgGZ When

treated with IL-4 in addition to LPS they make increased levels of IgGI and IgE

(Snapper et al. 1988).

IL- is also required for IgE expression as observed in micein vivo

treated with antibody duringanti- IL- antibody anti- IL- receptor

responses to anti- dextran or Nippostrongylus brasilensis (Finkelman et al.

1990). Moreover, IgE responses are absent and IgGI responses greatly reduced

in mice rendered IL- deficient by gene knockout (Kuhn et al. 1991). The IL-

induced expression of these isotypes in normal mouse B cells treated with

LPS is preceded by increased levels of yl and e-germline transcripts (Berton et

al. 1989; Rothman et al. 1990; Severinson et at. 1990; Stavnezer et at. 1988).

Collectively, the data cited above support the model that isotype non-specific

recombination machinery is directed to particular switch region by

mechanism involving transcription.cytokine-activated

Although many studies of cytokine-regulated expression of heavy chain

germline transcripts involve analyses of steady state levels of cellular RNA,

the available data implicate regulation at the transcriptional Thelevel.

induction of DNAse hypersensitive sites 5' to and within the 'Y switch region

upon IL- treatment is highly suggestive of transcriptional activation (Berton

and Vitetta 1990; Schmitz and Radbruch 1989). However, it is possible that some

of the increases in germ line transcripts observed after cytokine treatment of

cells occur post-transcriptionally. Regulation of germline transcripts at the



post-transcriptional level might imply that the RNA have additional functions.

Peyer s patches of the gut are major sites of IgA production. In germ-

free mice, a.-germline transcripts are preferentially detected in Peyer patch

germinal center (PNA high) B-cells after oral immunization with reovirus

type 1, suggesting that these germinal centers are sites of IgA switching

(Weinstein and Cebra 1991). Transforming growth factor ~ 1 (T G F ~) is a

pleiotropic cytokine generally antiproliferative for lymphocytes. Although it

has not been directly detected in Peyers patch germinal centers, for example

by in situ hybridization, TGF~ is made by many cell types including T-cells, B-

cells and intestinal epithelial cells (Barnard et al. 1989; Kehrl et at. 1986a;
Kehrl et al. 1986b; Koyama and Podolsky 1989; McIntire et al. 1993). It has been

shown that slgA- , LPS-activated, mouse splenic or Peyer s patch B-cells treated

with TGF~ switch to IgA (Coffman et al. 1989; Kim and Kagnoff 1990; Sonoda et

al. 1989) and that a 1.3 kb germline a. transcript is induced by TGF~ at the

steady state level in mouse splenic B-cells prior to switching (Lebman et al.

1990a; Lebman et al. 1990b). In mouse splenic B-cells treated with a variety of

different B-cell activators including LPS, anti- dextran, and in polyclonal or

antigen-specific T-cell systems, the frequency of surface IgA+ (slgA+ cells

observed after culture with TGF~ is low (2%), but switching to IgA is increased

5 to 16 fold by TGF~ (Coffman et al. 1989; Ehrhardt et al. 1992). TGF~ increases

the frequency of recovery of circular DNA resulting from the joining of S~ to

Sa from mouse LPS-activated B-cells (lwasato et al. 1992; Matsuoka et al. 1990)

and TGF~ has also been shown to influence expression of IgA and a. - germ Ii ne

transcripts in human B-cells (Defrance et al. 1992; Islam et al. 1991; Lars and

Paschalis 1993; Vlasselaer et al. 1992). The only other cytokine shown to

influence expression of IgA and to induce a. -germline transcripts IL-



although IL- is much less effective than TGF~ (Kunimoto et al. 1988; Lebman

and Coffman 1988b; Murray et al. 1987; Stavnezer et al. 1988).

The studies reported in this thesis were undertaken to examine the

effects of cytokines theand other inducers signaling pathways

induction of germ line transcripts and class switching in the B-cell lymphoma

1.2911. These studies extend earlier studies in the B-cell lymphoma 1.2911 and

help solidify class switchtranscri ptionallythe model directed

recombination. Clones of 1.2911 cells are induced with LPS to switch to IgA and

less frequently to IgE (Stavnezer et al. 1985). The a. and E loci in these cells are

hypomethy la'ted, and germline transcripts are present constitutivelya. and e

(Stavnezer-Nordgren and Sirlin 1986). Additionally, clones of this line which

have higher levels of germ line a. RNA switch to IgA more frequently than

lines that have less (Stavnezer et al. 1988; Stavnezer et al. 1990). In this thesis

I demonstrate that TGF~ stimulates LPS-induced switching to IgA in the 1.2911 B-

cell lymphoma. I show directly though nuclear run-on experiments that TGF~

treatment increases the rate of transcription of the endogenous a. - germ I i n e

gene. I also examine the effects of other cytokines on the regulation of a. and E

germline transcripts and on the regulation of IgA expression in 1.2911 cells.

These studies suggest that TGF~ directs, and IFNy inhibits switching to IgA by

mechanisms germline transcription.involving the regulation

Experiments showing that anti-IL-4-mediated inhibition of IgA switching does

not involve reduced levels of a. -germ line transcrips also suggest that in this

system endogenously switch recombinationproduced IL- regulates

different level.

Moreover, in an attempt to identify additional signallng pathways that

can regulate with transcri ptionalswitch recombination conjunction



targeting, I tested inducers of second messenger pathways for theirvarious

abilty to increase IgA switching and/or a. - germline RN A in 1.2911 cells.

discovered that although the a.-germ line promoter contains a cAMP response-

like element (Lin and Stavnezer 1992), methylxanthines which induce cAMP

increase IgA switching in 1.2911 cells by a cAMP independent mechanism. The

pharmacological agents used in this thesis were chosen for their ability to

mimic or block pathways known to be affected by methylxanthines. These

studies inhibitors nuclear poly(ADP-ribose)of theindicate that enzyme

polymerase (PARP) IgA swi tching associated geneandincrease

rearrangements in 1.2911 cells. This enzyme binds to and is activated by DNA

strand breaks proposed to role repairand been play DNAhas

amplification of tumor promoting genes, sister chromatid exchange and DNA

replication (reviewed in Althaus and Richter 1987 and De-Murcia et al. 1991).

Several studies that this enzyme can modulate chromatin structuresuggest

(DeMurcia et al. 1988; Ding et al. 1992; Thibeault et al. 1992). Upon binding DNA

ends at strand breaks, P ARP is activated, ADP-ribose residues fromremoves

NAD+ and attaches them in branching polymers to chromatin-associated

acceptor proteins, including topoisomerases. high mobilty grouphistones,

(HMG) proteins and PARP itself (Althaus and Richter 1987). Polymers of (ADP-

ribose) transient rapid degradation by poly(ADP-ri bose)duecan

glycohydrolase. Auto-poly (ADP-ribosylation) of PARP reduces its DNA

binding, resulting in inactivation (Ferro and Olivera 1982; Yoshihara et al.

1981; Zahradka and Ebisuzaki 1982). The NAD+ substrate analogs used in this

study presumably inhibit both enzyme activity and subsequent release from

DNA (Buki et al. 1991). Inhibitors of PARP do not appear to induce a.- germline

transcription in 1.2911 cells, but optimal induction of switching does require



that TGF~ 1 be present, emphasizing the requirement for transcription of the

unrearranged Ca. gene. Treatment with PARP inhibitors cannot overcome the

requirement for endogenously produced IL- for optimal levels of switching.

Possible roles of PARP in switch recombination are discussed.



CHAPER II

MATERIALS AND METHODS

Chemicals : Reagents dissolved in sterile distiled H20 were: caffeine; 8- ( 4-

chlorophenylthio)-adenosine 3' : 5' -cyclic monophosphate sodium (cpt-cAMP);

, 2' dibutyryl adenosine 3' : 5'-cyclic monophosphate sodium (db-cAMP); 

(6-aminohexy l)-amino-adenosine 3' : 5' -cyclic monophosphate (8- NH2 - c AMP);

N 2 , 2' dibutryryl guanosine 3 : 5 -cyclic monophosphate sodium (db-cGMP);

bromoguanosine sodium (8- Br-cGMP);-cyclic monophosphate

proflavine; cytosine arabinoside HCI (Ara-C); nicotinamide; nicotinic acid

(Sigma Chemical Co., St. Louis, MO); 3-methoxybenzamide (3MB), m-anisic acid

(MAA) (Aldrich Chemical Co., Milwaukee, WI); and H-89 2HCI (BIOMOL Research

Laboratories, Inc., Plymouth Meeting, P A). In most experiments, NaOH was

used to adjust the pH of the nicotinic acid and m-anisic acid, so that the culture

medium remained neutral upon their addition. isobutyl- l-methyl-xanthine

(IBMX), forskolin, 2-chloroadenosine (Sigma), dipyridamole (BIOMOL Res.

Lab. ), actinomycin D (Act D), and 5, dichlorobenzimidazole riboside (DRB)

(Sigma) were dissolved in 95% ETOH. lonomycin calcium salt, A23187 (Sigma),

RO-201724 (BIOMOL Res. Lab.), and 1 dihydroxyisoquinoline (Aldrich) were

dissolved in DMSO. Controls with DMSO or ETOH were included to determine

effects on switching to IgA.

Cell line. The slgM+ 1.2911 B cell line has been described previously (Alberini

et al. 1987; Stavnezer et al. 1990; Stavnezer et al. 1985). Briefly, this cell line

was derived from an IgM+lgA + B cell lymphoma that arose spontaneously in

I/St strain mice. Heavy chain switching in these cells is accompanied by DNA



recombination between SI1 and Sa. switch regions (Stavnezer et al. 1985).

Clones 22A 10 and 22D of 1.2911 (Alberini et al. 1987) were used in these

experiments.

Cell culture. For RNA blots and run-on experiments 0.25 to 0.75 x 106 cells/ml

were cultured in 20 to 40ml in T75 flasks. For switch assays, except when cells

were taken from large scale inductions, 0. 1 to 0.25 x 106 cells/ml were cultured

in 1-ml volumes in 24-well plates. Cells were cultured at 37 in an

atmosphere of 8% C02 in RPMI (Sigma Chemical Co., St. Louis, MO. or JRH

Biosciences, Lenexa, KS) complete medium containing 20% defined fetal calf

serum (Hyclone Laboratories, Logan, Utah), 0. mM non-essential amino acids,

mM sodium pyruvate, 2 mM L-glutamine, 200 U/ml penicilin, 200 mg/ml

streptomycin , 0. 1 mg/ml kanamycin sulfate (GIBCO Laboratories, Grand Island,

NY), 50l1M 2-ME (Sigma), and 0. 1 U/ml regular purified pork insulin (Squibb

and Sons, Inc., Princeton, NJ). Bacterial LPS was mainly E. coli 055:B5 dissolved

in RPMI without L-glutamine (RIBI ImmunoChem. Research, Inc. or Sigma).

The optimal dose was from 25 to 50 l1g/ml. Platelet derived porcine TGF 1 (R&D

Systems, Inc., Minneapolis, MN) was reconstituted in 4 mM HCl. Mouse rlL-

was either purified (given by Steve Gilis of Immunex Corp., Seattle, W A) (used

at 850 U/ml) concentrations of supernatants from theor optimal r1L-

secreting HeLa cell line (Bergstedt-Lindqvist et al. 1988) or the

plasmacytoma cell andX63- Ag8- Melchers 1988).line (Karasuyama

Recombinant mouse IFNy was from Shering Corp., USA and was donated as part

of the American Cancer interferon. IL-Society program was

supernanant from an X63 myeloma cell line secreting rIL-5 (Karasuyama and



Melchers 1988). Purified IL-6 (Jambou et al. 1988) was from Dana Fowlkes,

Univ. of North Carolina. Anti- IL- antibody (lIB 11, monoclonal rat IgGl)

(Ohara and Paul 1985) was either hybridoma culture supernatant (given by

Eva Severinson Stockholm, Sweden) or purified antibody (given by David

Parker or Robert Woodland, Worcester, MA). AD8 was a purified rat IgGl anti-

ars idiotype antibody (given by Robert Woodland, Worcester, MA).

Analysis of switching in 1.29J. cells. For day 10 to 11 switch assays, cells were

cultured as described above with various inducers, which were either removed

on day 3 to ' 4 of culture or slowly diluted as cells were fed and split. LPS was

added on day 0 and cytokines were added on day 0 or day 0 and day 1 in most

experiments. For days 2 to 5 switch assays, unless otherwise indicated, 5011g/m 

LPS was added on day 0 with other inducers and 2ng/ml TGF~ was added on days

o and 1 or days 0, 1 , and 2. On day 1 , 0. 8 ml medium was removed and replaced

with 1 ml fresh medium prior to addition of TGF~ in most experiments. Dilution

of LPS enhanced cell viability in the cultures. Cells were analyzed by

immunofluorescence microscopy on the days indicated as described (Stavnezer

et al. 1985). Briefly, cells dried onto slides coated with poly- Iysine (Sigma)

were fixed in 95% ETOH. Surface and cytoplasmic staining of IgM and IgA was

performed in a humid chamber at room temperature using affinity-purified

goat anti-mouse IgM-fluorescein isothiocyanate (FITC) and goat anti-mouse

IgA - tetramethy I rhod am ine (RITC) Biotechnology(Southernisothiocyanate

Associates, Inc., Birmingham, AL) diluted 1: 100 in phosphate buffered saline

containing 1 % or 1.5% fetal calf serum and 0. 1% or 0.2% NaN3. It should be

noted that staining of cells expressing both IgA and IgM withstood acid



treatment for 1 min at C with pH 4. acetate buffer (0.085M NaCl, 0.005M KCl

and 1 % FCS) followed by neutralization in PBS or PBS/FCS/NaN3 essentially as

described (Kumagai et al. 1975), both prior to fixation and post staining, ruling

out staining of cytophilc Ig or by cytophilc attachment of staining reagents.

For most experiments, results are the average of duplicate wells and 1000 cells

were counted per well.

Probes. For RNA blots and Southern blots, probes were DNA fragments which

were labeled by random priming, by using single-stranded hexanucleotide

primers (Boehinger Mannheim Indianapolis, IN). For nuclear run-on

analysis, denatured plasmid DNAs containing DNA insertsvanous was

immobilzed on nylon fiters. A50 is an 800-bp Pstl cDNA fragment that

encodes an uninducible mRNA of unknown identity (Nguyen et al. 1983),

GAPDH is 1.27-kb cDNA fragment encoding glyceraldehyde- phosphate-

dehydrogenase mRNA (Fort et al. 1985), BS is the Bluescript vector (Stratagene,

La Jolla, CA). containing no insert, CJl is a genomic HindIII fragment of the IgM

constant region (M2-5B) (Marcu et aI. 1980), -820- is an 820bp genomic
BamHI-Hhal fragment located immediately 5' to the initiation sites of a.-

germ line RNA (Lin and Stavnezer 1992), Ia. is a 1.4kb genomic BamHI-HindIII

fragment containing the start site(s) and upstream exon(s) of a.- germline
transcripts from 1.2911 cells (Radcliffe et al. 1990), and Sa.3 is a 320-bp genomic

Sau3A fragment from the germline a. gene in 1.2911 cells consisting of four 80-

bp consensus repeats from the 5' portion of the a.-switch sequence (Dunnick et

al. 1989; Waters et al. 1989). This probe is not reiterated in the genome, as

shown by hybridization to Southern blots of SacllPvuII-digested genomic DNA

from 1.2911 cells. Ca. is a fragment from the cDNA clone pJ55813 encoding Ca.



sequences (Marcu et al. 1980; Stavnezer et al. 1988), Ce is a 2. 1 kb BamHI-

HindlII genomic DNA fragment encoding the 5' portion of the Ce gene (Nishida

et al. 1981), the P ARP probe is a 1.1 kb cDN A fragment containing sequences

from the RNA start site to the internal EcoRI site corresponding to the DNA-

binding domain of mouse P ARP (Huppi et al. 1989), and C J( is a 730 bp fragment

containing cDNA sequences coding for CJ( and a small portion of the V region

of the MOPC384 1C chain isolated from the plasmid pM3841C by Hind III digestion

(Stavnezer et al. 1981).

RNA blot analysis. RNA isolation was performed essentially as described by

Chirgwin et al. (Chirgwin et al. 1979), by homogenization of frozen cell pellets

using an SDT Tissuemizer homogenizer (Tekmar, Cincinnati, OH) in solution

containing 6 guanidinium isothiocyanate (Bethesda Research Laboratories,

Life Technologies Inc., Gathersburg, MD). RNA was pelleted for at least 12 h

though a cesium cushion consisting of 5.7 M CsCI (CABOT, Revere, PA) and O.

EDTA. RNA pellets were resuspended in 10 mM Tris-HCl , pH7.5, 1 mM EDT 

containing 0.5% sodium dodecyl sulfate (SDS)(Sigma), extracted twice with

phenol (American Bioanalytical, Natick, MA)/chloroform (Mallinckrodt, Paris,

KY) and precipitated at - C or - C in 0.3 M sodium acetate (Sigma) and 2

volumes of 95% ethanol. RNA pellets were washed twice with 70% ethanol and

resuspended double-distiled All solutions treated with 0. 1 %H20. were

die thy I pyrocarbonate (Sigma) prior RNA 9uantitateduse. was

spectrophotometric ally , and either 1. to 3 Ilg poly(A)+ (selected once 

oligo(dT)- cellulose (Collaborative Research, Inc., Bedford, MA) or 10 to 20 I1g

total cell RNA was fractionated by electrophoresis on 1.0 to 1.4% agarose gels

(Boehinger Mannheim Biochemicals, Indianapolis, IN) in 2.2 M formaldehyde



(Fisher Scientific, Fairlawn, NJ or Mallnckrodt, Paris, KY). RNA was blotted to

nylon fiters (Zetabind, American Bioanalytical, Natick, MA) in lOX SSC (1.5 M

sodium chloride, 0. 15 M sodium citrate) by capilary transfer. Filters were

either prehybridized in 3x SSC, 5x Denhardt's solution (containing 0. 1 % BSA

fraction V (Sigma), 0. 1 % Ficoll 400 (Pharmacia, Inc., Piscataway, NJ), and 0. 1 %

polyvinylpyrrolidone (Sigma), yeast RNA (Img/ml) (Type VI; Sigma). 1% SDS,

50 mM sodium phosphate, 10 mM EDT A, and 50% formamide (BRL, Gathersburg,

MD) and hybridized in a similar solution containing Ix Denhardt solution and

sulfate (Pharmacia, Sweden), both C. Uppsala,dextran

prehybridized and hybridized at 60 to C in an aqueous solution containing
5M NaHP04 (pH7. 8) (composed of 268.08g Na2HP04'7 H20 + 4 ml H3P04 per

liter), 7% SDS, 1% BSA, and 1 mM EDTA, pH8.0, essentially by the method of

Church and Gilbert (Church and Gilbert 1984). Final washing of filters was in

lx SSC, 0. 1 % SDS, at 60 C for formamide hybridization and in O. lx SSC, 0.

SDS, at 60 to for aqueous hybridization. Autoradiography was performed at

Quantitation of hybridization wasintensifying screen.with

performed by densitometry (Quick Scan R&D, Helena Laboratories, Beaumont,

TX or SLR-ID/2D Biomed Instruments, Inc., Fullerton, CA) or on a Betascope 603

blot analyzer (Betagen, Waltham, MA). The densitometry results for poly(A)+

RNA were corrected for RNA loading by subsequent hybridization of blots with

probes specific for the un induced genes A50 or glyceraldehyde- phosphate-

dehydrogenase (GAPDH). Total cell RNA was normalized to densitometric scans

of negatives of photographs of 18 ribosomal RNA.

Nuclear analysis. Cells were cultured with variousrun-on transcription

inducers as described above for northern blot analysis. Nuclei isolation and



run-on transcription
previouslyreactions performedwere essentially

described (Greenberg et al. 1985). Nuclei (1 to 3 X 107 ), isolated in buffer
containing 0.5% Nonidet P-40 (BDH Chemicals Ltd., Poole, England), were
incubated at 30 C for 15 min in a mixture consisting of 100 to 150l1Ci (32pJ - UTP

(800 Ci/mmole) or (32pJ-CTP (400 Ci/mmole) and 0.2 or 0.5 mM CTP, GTP, and
ATP. In later experiments DTT (5 mM) was included but appeared to have no
effect. For isolation of 32P- labelled RNA were placedreaction mixtures

directly into 6M guanidinium isothyocyanate solution containing yeast RNA
(100 j.g/ml) as a carrier, and RNA was extracted at 650C with phenol,
equilbrated with 10 mM Tris, pH7.5, ImM EDTA pH 8, O. IM sodium acetate pH

and 1:24 isoamyl alcohol/ chloroform and subsequently precipitated
overnight at - with two volumes 95% ethanol, pelleted at 12 000xg at 40

washed in 80% ETOH, and resuspended in DEPC H20 (Galli et al. 1987). Attempts

were made to hybridize equal numbers of perchloricacetic acid -precipitable
counts from each reaction to duplicate filters containing lOll g 
immobilzed, linearized, or supercoiled plasmids. The number of counts
hybridized varied from 0. to 4x 106 between experiments. Probes specific for
uninduced genes were included on the filters and used to normalize the
hybridization results. RNA was nicked before hybridization in 25 to 50 
NaOH on ice for 5 to 15 minutes, and then neutralized with an equivalent
concentration of HCl. Denaturing polyacrylamide gels showed 

that excessive

nicking of the RNA was unnecessary, so minutes was used in later
experiments. Prehybridization for at least 1 h and and hybridization for at
least 72 h were performed at 42 C in solutions containing 50% formamide, as
described above for RNA blots. In initial experiments, fiters were washed
sequentially in 2x SSC and 0. 1x SSC, 0. 1 % SDS, at C, and then incubated at



C in 2x SSC containing pancreatic RNAse A (20I1g/ml) (Sigma) and RNAse Tl

(lOU/ml) (Sigma or Boerhinger Mannheim). RNAse treatment eliminates any

signal due to hybridization of labeled RNA via unlabeled sequences that are

nascent at the time the labeling reaction is started. Filters were then washed

at 37 C in 2x SSC, 0.5% SDS (Gall et al. 1987). In later experiments, washing

was described by Chen-Kiang and Lavery (Chen-Kiang and Lavery 1989)

with 2x SSC, 0.2% SDS, at 42 C and 55 C, then RNAse A (lOI1g/ml) and RNAse Tl

(lOU/ml) treatment in 2xSSC, 0.2% SDS at C, and with proteinase K

(lOOI1g/ml) in 2x SSC/O.2% SDS at 37 Filters were finally rinsed in 2x SSC,

2% SDS. Filters were auto radiographed for 1 to 2 weeks at - C, and

exposures were scanned by densitometry.

Measurement of a-germline RNA half- life.

as above at 0.25x 106 /ml in 40 ml volumes.

Cells were cultured with inducers

In the actinomycin D experiment,

cells were cultured with inducers for 36 h at which time IOl1g/ml Act D was

added to inhibit transcription. This concentration of Act was shown by (3 H) -

uridine incorporation into TCA precipitable completely inhibitcounts

transcription in 1.2911 cells at the times analyzed. Total cell RNA was isolated

before addition of Act (TO) and at 2, 6, and 14 h post addition. In the 5,

dichlorobenzimidazole riboside (DRB) experiment, cells were cultured with

inducers for 23 h, at which time 3011g/ml (94I1M) DRB was added. Total cell RNA

was isolated before addition of DRB (TO) and at 5, 10, and 15 h post addition.

RNA was analyzed by RNA blotting and hybridization with the Ia. probe to

detect a.- germline transcripts. RNA half-life was determined by densitometric

scanning of various exposures of blots and normalization to scans of 18S



ribosomal RNA from negatives of photographs of the gels. Half-life plots were

constructed by linear regression of scatter plots of time vs. % RNA

remaining (Simple Curve Fit, Cricket Graph Version 1.3.2, Cricket Software,

Malvern, PA).

Assay of 1L- in supernatants from 1.29J1 cells. In the measurement of IL-

activity in 1.2911 cell supernatants, 1 U of IL- activity is defined as that amount

giving half-maximal proliferation of the IL-2/IL- dependent cell line CTLL.

Standards included recombinant IL-4-containing supernatants from H-28 cells

or X-63 cells. The presence of IL-4 was detected by assay of (3H)-thymidine

incorporation after incubation of CTLL cells with 1.2911 culture supernatants in

the presence and absence of the murine IL-4- and murine IL-2-specific

antibodies 11B 11 (Ohara and Paul 1985) and S4B6 (Mossman et al. 1986),
respectively. CTLL cells were plated at 1 x 104/ml in 100111 volumes in 96 well

plates and were pulsed with ll1Ci 3H-thymidine/well for the last 4-7 h of a 24 h

incubation period at 37 C and 5% C02.

Southern blot analysis: 1.2911 cells were induced until day 3 as described for

switch assays, at which time they were expanded in fresh media until day 

Genomic DNA was isolated by digestion of cells in pronase (750j.g/ml), SDS

(1 %), RNase (lOOI1g/ml) (Sigma) in STE (lOmM Tris-HCl, pH 8, 100mM NaCl, ImM

EDT A, pH 8) for 2 hours at 37 C, followed by three phenol .chloroform

extractions and ETOH precipitation. DNA was spooled onto glass rods, washed in

70% ETOH and 95% ETOH and resuspended in TE (lOmM Tris, pH 8, ImM EDT A).

DNA was analyzed essentially as described (Southern 1975). 10.5 ug of DNA

digested with Bgl II and ETOH-precipitated, was loaded in each lane of a 0.



agarose gel. transfered Nitro PlusAfter electrophoresis, DNA was

nitrocellulose membranes (MSI, Westboro, MA) by capillary action. Filters

were baked for 2 hours at 80 Hybridizations were performed at 65 C for 

hours Corporation, ArlingtonRapid Hybridization Buffer (Amersham

Heights, IL) as described by the manufacturer.

Analysis of switching in splenic B cells. Six to seven week old, conventionally

housed, BALB/c mice (Jackson Laboratories, Bar Harbor, ME) were kiled by

cervical dislocation. Spleens were mashed between frosted glass slides in BSS

containing 1.5% heat inactivated FCS (BSS 1.5% 8FCS) and cell debris was

removed by gravity. Red blood cells were lysed in 2 ml Tris ammonium

chloride (17 mM Tris-HCL, 144 mM NH4Cl, pH 7.2) per spleen for 5 min. at 37

and cells were pelleted and washed Ix in BSS 1.5% 8FCS. Spleen cell

suspensions (2x 107 /ml) were depleted of T lymphocytes by incubation for 30

min. on ice in an anti- T cell antibody cocktail (Beaudoin et al. 1988) consisting

of HO- 13- , a mouse IgM anti-Thy 1.2 (ascites 1: 160), and 50% ammonium

sulfate cuts of GK1.5.6, a rat IgG2b anti-L3T4 (1:320), 3. 168.8, a rat IgM anti-Lyt2

(1:160); and Jijo. lO, an IgM rat anti mouse Thyl (1:320) in BSS 1.5% 8FCS. Cells

were pelleted, resuspended at 2x 107 cells/ml and incubated for 30 min on ice

in a solution of MAR 18.5, a mouse IgG2a anti-rat K-chain antibody (50% NaS04

cut, 1:160 in BSS + 1.5% 8FCS). Low-tox (Accurate) or agarose-adsorbed (Pel

Freeze) guinea pig complement was added to 1:20 or 1:10, respectively, and cells

were incubated an additional 45 min at Live cells were isolated on Ficoll-

hypaque, washed at least 1:10 vol:vol (cells + ficol: BSS 1.5% 8FCS), pelleted,

washed two additional times, and then layered onto Percol gradients (Sigma).

Small B cells were pooled from the 66-70% and 60-66% Percoll fractions



(Coligan et al. 1991). Surface staining revealed that this population was :;83%

IgM+ Cytoplasmic staining of saponin-permeabilzed cells demonstrated that

this cell population was :;93% IgM+ after 24 h preinduction with LPS (Sander et

al. 1991). Cells were cultured at 0. 0x106/ l in 5 ml RPMI 1640 containing

10% fetal calf serum (as above except insulin was omitted and C02 was 5%). For

induction of IgGI switching, cells were preinduced for 20-26 hours with 0.

11 g/ml LPS. Recombinant IL-4 (30, 300 or 10,000 U/ml) (a gift of Dr. Steve Gilis,

Immunex Corp., Seattle, W A), and/or 10mM nicotinamide or nicotinic acid was

added on day In some experiments, cells were analyzed on day 3. In other

experiments, inducers were diluted 12. fold on day 3 and cells analyzed on day

4 or Approximately lxl06 cells per 100111 were surface-stained for analysis

by fluorescence-activated cell sorting (FACS) at 4 C for 30-45 min. with goat

anti- IgM- FITC anti- IgG 1 - R -(as affinity purifiedabove) and goat

phycoerytherin (PE) Associates) 1 :200 and(Southern Biotechnology diluted

1:120, respectively, in PBS/ 1.5% FCS/ 0.2% NaN3. Cells were washed 3X in

PBS/FCS/NaN3 resuspended PBS/FCS/NaN3.5mland

Paraformaldehyde (4%) was added (0.2ml), and cells were vortexed and fixed 5

min. at room Cells were washed 2X in PBS/FCS/NaN3 andtemperature.

resuspended in 0.4 ml PBS/FCS/NaN3 for FACS analysis. Affinity purified goat

anti- IgA-FITC (Southern Associates)and goat anti- IgA- Biotechnology

served as negative staining controls.

Statistical Analysis: In the experiments herein, many values are reported as

the average fold several experiments :: the Standard Error of theincrease in

Mean (SEM) and significance (p). The fold increase is given because levels of



switching and germline transcripts are somewhat variable in 1.2911 cells from

experiment to experiment. For switch assays with TGF~ and with inhibitors of

PARP, the average raw values :t SEM and p values are also reported. values

were determined for both fold increase and raw values by a paired. two sample.

two-tailed, student t-test for means (Microsoft Excel Version 4.0, Microsoft

Corp. In tables in which the average fold increase is reported, the 10glO of

raw values were used to convert ratios into differences for t-tests. Where

multiple comparisons were made, p values were multiplied by the total number

of comparisons. This correction, the Bonferroni adjustment, compensates for

the increased chance of rejecting the null hypothesis when making multiple

comparisons.



CHAPER II

EFCT OF CYTOKINES ON SWITCHING TO IgA AND a.-GERMINE TRANSCRIPTS IN

THE B LYMPHOMA 1.2911: TGF~1 ACTIVATES TRANSCRIPTION OF THE

UNARGED Ca. GENE

TGFf3 augments switching to IgA in I.29Jl cells. To ask whether TGF~ increased

LPS-induced IgA switching in 1.2911 cells, as it does in splenic B cells, we

determined the percent of cells that stained on their surface or in their

cytoplasm with both anti- IgA and anti-IgM antibodies. This assay is the best

measure of switching in this system since these cells have recently undergone

switch recombination and they cannot be derived by outgrowth or selection of

IgA + cells present at the initiation of the cultures (Stavnezer et al. 1985).

observed increases in LPS-induced switching with TGF~ on days 3-5 (Table I

and Fig 1). Photographs of double-positive cells from a day 5 experiment are

shown in Figure 2. No increase with TGF~ treatment was observed in the

absence of LPS (Table I). Only a 2-fold average increase in IgA expression was

observed on day 10 with addition of TGF~ (Table I). Since the optimal fold

increase in the percent of double expressing cells with TGF~ occurred on day 3

with TGF~ added on days 0, 1 , and 2, this protocol was used for most of the switch

assays in this thesis. The average raw values (:t SEM) for switching

uninduced 1.2911 cells were 0.01 % (:t 0.01 %, n=17), 0.2% (:t 0. 1 %, n=7), and 0% (:t

0%, n=4), for double positive cells on days 3, 4, and 5, respectively. The percent

of total IgA+ cells averaged, 0.7% (:t 0.08%), 0.93% (:t 0. 1%), and 0.45% (:t 0.2%)

in the same experiments. Table I summarizes the effects of TGF~ on switching

to IgA in 1.2911 cells. summary of the average percent switching to IgA 

the presence of LPS or LPS + TGF~ on days 3, 4 and 5 is shown in Figure 



TG F f3 increases the steady state level of l.7kb and l.3kb a- germline transcripts

in 1. 29J. cells. To determine whether the increase in IgA switching with TGF~

treatment was preceeded by increased levels of a. -germ line transcripts, 1.2911

cells were incubated for 47 with increasing concentrations of porcine TGF~

in the presence and absence of 50 I1g/ml LPS. Northern blot analysis was

performed on poly(A)+ RNA using a probe specific for the Ia. upstream exon of

the 1. 7kb a. -germline transcript previously described (Radcliffe et al. 1990)

and shown on the map in Figure 3. As shown in Figure 4, in the absence of

LPS, TGF~ treatment results in a dose dependent increase in the level of 1.7kb

germline a. transcript. The mean induction of this RNA in three experiments,

after treatment for 43 to 47 h with 2ng/ml TGF~ in the absence of LPS, was 4.

fold above the untreated control (SE 0) (Table I). All hybridization results

reported in this thesis were corrected for RNA loading by normalization to

signals from uninduced genes (GAPDH and/or A50) or to 18S rRNA.

Although LPS increases switching to IgA in 1.2911 cells (Stavnezer et al.

1985), it has little effect on the level of a.-germline transcripts (see Figs. 4, 9A,

and 9B). In seven experiments in which cells were treated with LPS alone

(5011g/ml) for 46 to 48 h, the mean induction of a.-germline RNA was 0. fold

(SE 1). However, after longer treatment with LPS, a.-germline RNA levels

sometimes were found to increase up to about 2-fold (see below). In the

presence of LPS, TGF~ at 2ng/ml for 48 h caused a 5. fold mean increase in the

level of the 1.7kb a.-germline RNA, relative to LPS alone (Table I). In general

and as seen in Figures 4, 5 and 6, the fold- induction by TGF~ is comparable in

the presence and absence of LPS, but the overall level of germline a. RNA is

reduced in the presence of LPS (Table I).



Subsequent hybridization of the blot in Figure 4 with a probe specific

for the Ca. gene segment, which detects smaller a. - germline species,RNA

showed that the 1.3kb a.-germline transcript was also induced by TGF~. This

RNA is the same size as the major a.-germline transcript induced by TGF~ in

murine spleen cells (Lebman et al. 1990a; Lebman et al. 1990b). It contains an

upstream exon that is shorter than that seen in the 1. 7kb a.- germline

transcript resulting from a more 5' splice donor site (Gaff and Gerondakis

1990). The membrane forms of the a. -germ line transcript also appear to be

induced by TGF~ (Fig. 4, upper). The 1.0-kb germline transcript was not

induced. The induction of germline RNA by TGF~ is specific for the IgA

isotype, because the 1.6kb e-germline RNA was not induced (Fig. 4). In two

experiments the e germline RNA appeared to be reduced by TGF~ treatment in

the absence of LPS.

Kinetics of induction of a-germline Optimal induction of germline RNA.

RNA in 1.2911 cells occurred after 24 h of treatment with TGF~. The mean

induction of a. -germline RNA observed after 22 to 26 h of treatment with

2ng/ml TGF~ in the absence of LPS was 8. fold (SE 1) (Table I). Twelve-

hour treatment with TGF~ yielded smaller increases in a.-germline RNA (mean-

fold :t range, 3.2 z. 1.3, in two experiments). In order to examine more carefully

the kinetics of induction of a. -germline transcripts by TGF~, 1.2911 cells were

induced for 24 h with 2ng/ml TGF~ in the presence or absence of 50 I1g/ml LPS.

At 24 h, a portion of the cells were removed and analyzed for the presence of

a. -germline transcripts. The cells remaining were removed from inducers,

diluted two-fold, and recultured for a total of 48 and 72 h. As shown in Figure

5, in the absence of LPS, the 1.7kb a.-germline transcript was induced by TGF~



20- , 17-, and 4. fold relative to the control at 24, 48, and 72 h, respectively.

the presence of LPS + TGF , a.-germline RNA increased 7- , 3-, and 2- fold

relative to LPS alone at these same times. LPS alone caused a 2-fold increase in

a.-germline RNA at 48 and 72 h.

TGF f3 increases transcription of the a-germline gene in 1.29j1 cells. In order to

determine TGF~ causes an increase in the level of a. - g e r m I in ewhether

transcripts inducing transcription, nuclear run-on experiments were

performed. shown Figure 6A, nuclei isolated from 1.2911 clone 22D

treated for 4 and with 2ng/ml TGF~, showed 2.4- and fold

increase, respectively, of transcription of RNA hybridizing to the Ia. probe.

As shown in Figure 3, this probe contains sequences corresponding to the Ia.

upstream ex on of the Transcription RNA1.7kb a. -germ line RNA.

hybridizing to the Sa3 (a-switch region) and (a.-constant region) probes is

also increased. Sequences upstream of the transcription initiation sites had

background levels of hybridization (- 820- probe). Although a.- germline

transcription is much reduced in 1.2911 cells in the presence of LPS, TGF~

treatment stil increased transcription (Fig. 6B and Table I). There appears to

be no difference in the level of a. - germline transcri ption induced by 0.5ng/ml

or 2ng/ml TGF~ in the presence of LPS. The dose dependence of the increase in

a.-germline transcripts induced by TGF~ on northern blots might be explained

by a more sustained increase in transcription with 2ng/ml TGF~ compared to

5ng/ml TGF~.

The greatest increases in transcription of the a. -germline gene occured

after 12 h of treatment with TGF~ (Fig. 7 and Table II). The average induction

by TGF~ of RNA hybridizing to the Ia. and/or Sa.3 probe was 5. fold at 12 h in



two experiments.

Although the mcreases in the steady state level of a.- germline RNA

induced than increases observedTGF~ sometimes greaterare

transcription assays, the results of two experiments meaSUrIng the effect of

T G F ~ on the stabilty of a. -germline RNA after addition of either of two

inhibitors transcription 5 , dichlorobenzimidazole-ri boside (DRB)

actinomycin D (Act D), indicated that TGF~ has little or no effect upon the half-

life of this RNA, either in the presence or in the absence of LPS (Fig. 8). The

half-life of the 1.7kb a.-germline RNA averaged 5.5 h (range, 1) with LPS

and 4.9 h (range, 5) with LPS + TGF~. These inhibitors were added after

different lengths of treatment with LPS (24 h for DRB and 36 h for Act D).

Although a small increase in stabilty was observed with TGF~ in the DRB

experiment (less than 2-fold), and we cannot rule out the possibility that TGF~

affects other post- transcriptional such as RNA processing, the maInevents

action of TGF~ on a.-germline transcripts appears to be transcriptional.

IL- increases switching to gA and a- ge rmline transcripts in /.2911 cells. 

shown in Figure 7 and Table III, 12 h of treatment with IL-4 caused a 1.5-fold

increase in transcription of the a. -germline gene. This amount of induction

correlates with the increase in a. -germline RNA on RNA blots both in the

presence and absence of LPS and the amount of switching induced by IL-4 in

1.2911 cells (Table II, Figs. 9B , 10, and (Stavnezer et al. 1988). We detected less

than a 2-fold increase in the half-life of a.-germline RNA in cells treated with

IL-4 in one experiment. The combination of IL-4 and TGF~ does not greatly

increase transcription over that induced by TGF~ alone (4. fold vs. 3. fold

over control) (Fig. 7 and Table III). IgA expression on day 10 after treatment



with LPS plus TGF~ is also not significantly increased by addition of IL- (Table

III). Although IL- induces a. germline transcripts in the absence of LPS, IL-

does not induce switching to IgA in the absence of LPS.

IF N y reduces the level of a-germline transcripts and expression of IgA in 1.29J1

ceUs. The only other cytokine found to affect the levels of a. - g e r m Ii n e

transcripts or IgA expression in these cells was IFNy. As shown in the time

course experiment in Fig. 9A, IFNy reduced the level of a.- germline transcripts

at day 1 and day 2 by 22% and 80%, respectively, in the presence of LPS. The

reduction at day 2 is also observed in the presence of IL-4 (43% reduction

relative to LPS plus IL-4) (Fig. 9B). IFNy also reduced IgA expression induced

by LPS, both in the presence and in the absence of IL- (Fig. 10). IFNy did not

inhibit TGF~ -induced a. -germ line transcripts in the presence or absence of LPS

in one experiment. Table III summarizes the effects of IL-4 , IL-5, IL-6, and

IFNy on germ line a. transcripts. and day 10 expression of IgA in 1.2911 cells.

Treatment with IL-5 or IL-6 for 18 to 24 h did not induce transcription of

the a. -germline gene, nor did these cytokines increase IgA expression (Table

III). These results do not rule out the possibilty that IL- acts on IgA + I. 2 911

cells to increase secretion, as it does in IgA + Peyer s patch B-cells, splenic B-

cells, and the CH12LX B-cell lymphoma line (Beagley et al. 1988; Harriman et al.

1988; Kunimoto et al. 1988).

1L-4 and IF Ny regulate e-germline transcripts and switching to IgE in 1.29J1

ceUs. 2911 cells switch at a low frequency to IgE expression. IL-4, which

increases this switching, also induces e -germline transcripts in these cells

(Stavnezer et al. 1988; Stavnezer et al. 1990). Because expression of IgE



(Snapper et al. 1988; Snapper and Paul 1987) and the level of E- germline

transcripts (Severinson et al. 1990) are reciprocally regulated by IL- and

IFNy in splenic B cells, we determined whether the same was true in 1.2911 cells.

Consistent with studies in spleen cells, IFNy reduced the expression of E-

germline transcripts both in the presence and absence of IL- IFN also

inhibited LPS induced switching to IgE by 80% in two experiments, in which

1.0% (:t 0. 1 %, range) of cells were IgE+ in the presence of LPS, and 0.2% (:t

2%, range) of cells were IgE+ in the presence of LPS + IFN

y .

29J. ceUs synthesize IL- , and anti-IL- inhibits IgA switching in 1.29J. cells.

During these studies I noticed that 1.2911 cells (clone 22D) secrete IL-4 upon LPS

treatment. In supernatants from 22D cells treated for 36 or 48 h with LPS, I

detected levels of IL- ranging from 0. to 4. U/ml as measured by

proliferation of the IL-2/IL-4 dependent cell line, CTLL (Fig. 1 I). Low levels of

IL-4 were also detected after 6 h with LPS and after 48 h with LPS + TGF~. The

lower level of CTLL proliferation in supernatants from LPS + TGF treated ceEs

compared to those from LPS-treated cells is most likely due to the approximate

fold inhibition of CTLL proliferation by TGF~. Interestingly, C19, a clone of

I. 2 911 cells which has relatively low levels of a. - germline transcri pts and

which switches poorly to IgA (Stavnezer et al. 1988) made no detectable IL-

after 36 h of LPS treatment.

The endogenously synthesized IL- induced by LPS treatment appears to

influence the ability of 22D cells to switch to IgA. We observed that LPS-

induced IgA expression on day 10 was inhibited by 67% (SE, I. 9.7%) in 4

experiments by treatment with 2 5% supernatant containing anti- IL-

(lIB 11, added on day 0) and by 55% in one experiment with purified 11B 11 (4.



I1g/ml, added on days 0, 1 , 2). The percentage of IgA cells on day 10-

averages 4. :t 1.3 in the presence of LPS and 1.9 :t 0.8 with LPS + anti-IL-

(p..0. 05). Figures 12A and B demonstrate that this effect was dose-dependent

with lIB 11 concentration. At day 10-11, LPS + TGF~ I-induced IgA expression

was inhibited 46.9% (range :t 11.2 %) in The experimenttwo experiments.

shown in Fig. 12C demonstrates that the inhibition of IgA expression by anti-

IL-4 is reversed when rIL-4 is added back to the cultures. LPS + TGF~- induced

switching to IgA on days 2, 3 and 5 was also inhibited by lIB 11 supernatant.

LPS + TGF~ -induced expression of IgA + I g M + cells and total IgA cells were

reduced an average of 68.9% (SEM :t 7.2%) and 62.3% (SEM :t 12. 1 %),

respectively, in single experiments performed at each of these times.

irrelevant isotype control AD8, inhibit IgAdidantibody,matched not

switching on day 3 or 5 (day 2 not examined). Moreover, as shown in the next

chapter, analysis of IgA expreSSiOn induced by other inducers of switching in

this system also showed a requirement for endogenously produced IL- in the

expression of IgA+lgM+ and IgA+ cells on days 3 and 5.

Endogenously produced IL- does not appear to influence the levels of

a. -germ line transcripts in switching cells. 11 B 11 did not affect levels of a.-

germ line transcripts in cells treated with LPS + TGF~ in two experiments or

with LPS alone in three experiments (Fig. 13). Of note is that the quantity of

lIB 11 supernatant used in these experiments was sufficient to completely

block maximal IL- induced CTLL proliferation but not IL- induced CTLL

proliferation. Culture of 1.2911 cells for 48 h with 2.5% lIB 11 supernatant, in

addition to LPS or LPS + TGF~, completely abolished the recovery of IL-

activity from culture supernatants whether LPS at 10, 25 or 50j.g/ml was used.

Levels of CTLL proliferation induced by culture supernatants (and thus IL-



activity) were comparable regardless of the LPS concentration used. Since LPS

does not induce a. -germline transcription and anti- IL- does not inhibit a.-

germline transcripts, it is likely that endogenously synthesized (LPS- induced)

IL- acts at a different level to increase switching to IgA, perhaps to increase

recombinase or other activities required for recombination. Anti-IL- does

not appear to affect cell recovery or H-thymidine theseincorporation

experiments, ruling out a requirement for IL- for DNA synthesis or cell

division. It is likely that the relatively low levels of switch induction obtained

when IL-4 is added exogenously to LPS stimulated 1.2911 cells is due to the fact

that it is made endogenously.



CHAPER IV

INHIBITORS OF POL Y(ADP-RIBOSE) POLYMERASE INCREASE ANTIBODY CLASS

SWITCHING

Methylxanthines but not cAMP increase IgA switching in 1. 29J. cells. Because

the a.-germline promoter from 1.2911 cells contains an A TF/CRE element (Lin

and Stavnezer 1992), we tested whether inducers of cAMP and cAMP analogs

would induce switching to IgA by 1.2911 cells. Addition of isobutyl-methyl-

xanthine (IBMX), an inhibitor of cAMP-specific phosphodiesterase, for the

first 12 to 48 h of culture, increased the percent of IgA + cells at day 10 post

induction with LPS + TGF~, as assayed by immunofluorescence microscopy (Fig

14A and B). Similar increases were observed with IBMX alone or 

combination with forskolin (an activator of adenyl ate cyclase).

To more precisely switching, we determined the percent ofmeasure

cells expressing both IgA and IgM in their cytoplasm on days 3 to 

previously stated, we chose to assay double-positive cells because they cannot

be derived by outgrowth or selection of IgA + cells in the culture (Stavnezer et

al. 1985). By these criteria, IBMX significantly increased LPS-induced IgA

switching, while forskolin did not (Table IV). These results suggested that the

increased switching caused by IBMX was independent of cAMP. Caffeine,

another methylxanthine which inhibits phosphodiesterase, increased

switching to IgA in the presence of LPS + TGF~ (Table IV).

To further analyze the effect of cAMP, 1.2911 cells were treated with

chlorophenylthio (cpt)-cAMP (a phosphodiesterase resistant cAMP analog),

dibutyryl (db)-cAMP, or 8-NH2-cAMP in the presence of LPS + TGF Switching

to IgA was not significantly increased whether or not TGF~ was present (Table



IV and Fig. 15). Doses of 1 to 3 mM cpt-cAMP or dbcAMP did not significantly

increase the IgA + I g M + cells induced by TGF~ at day 3. Since different

isozymes of protein kinase A may be activated by various combinations of

cAMP analogs (Beebe et al. 1984), we also examined switching to IgA in 1.2911

cells after treatment with combinations of cAMP analogs, but this was also

ineffective (Fig. 16).

Several pathways affected by methylxanthines do not increase IgA switching

in I.29Jl cells. Since the above results indicated that IBMX and caffeine

augment LPS- induced switching 1.2911 cells by a cAMP- independent

mechanism, we screened compounds known to mimic antagonize several

other signalling pathways influenced by methylxanthines for their ability to

influence IgA switching in 1.2911 cells. None of the compounds tested could

mimic block the methy I x an thine- induced increases IgA switching,

except inhibitors of the nuclear enzyme poly(ADP-ribose polymerase). The

results are summarized in Tables IV and V.

Inhibitors of poly(ADP-ribose) polymerase increase IgA switching 29Jl

cells. Because a reported effect of methylxanthines is to inhibit the nuclear

enzyme poly(ADP-ribose) polymerase (PARP) (Levi et al. 1978), we tested NAD+

substrate analogs known to more specifically inhibit P ARP (Preiss et al. 1971;

Purnell and Whish 1980) for their abilty to increase LPS- and LPS + TGF~-

induced IgA switching in 1.2911 cells. Figure 17 summarizes the raw values of

several experiments with inhibitors nicotinamide and 3 -the

methoxybenzamide (3-MB) and their inactive analogs, nicotinic acid and 

anisic acid (MAA), respectively. The average percent of total IgA + cells on day



3 is approximately 2% after induction with LPS + TGF~. After induction by LPS

+ TGF~ + 3-MB or nicotinamide, 9- 11 % of the cells are IgA + on day 3. Similarly,

cells expressing both IgA and IgM average 1.5% on day 3 after treatment with

LPS + TGF~ and 5-7% after addition of LPS + TGF~ + 3MB or nicotinamide.

Figure 18 shows photographs taken at low magnification of IgM+ cells

and IgA cells induced by LPS + TGF~:: nicotinamide or nicotinic acid from an

experiment in which a five-fold increase in total IgA+ and IgA+lgM+ cells was

induced by nicotinamide at day Photographs taken at high magnification

demonstrating double expressing cells like those observed in this study were
shown in the previous chapter (Shockett and Stavnezer 1991). Figure 19

demonstrates that both single and double positive cells are resistant to weak

acid treatment and thus not likely due to binding of cytophylic Ig. The

percents of IgA + I g M + and total IgA cells induced by nicotinamide or 3MB in

the presence of LPS + TGF are the highest we have observed at this time. The

average induction by P ARP inhibitors is 5- fold over LPS alone and 5- fold

over that obtained using LPS + TGF~ ' as measured by the appearance of

IgA +lgM+ cells on day 3 (Table V). A 3-fold and 5-fold average increase over

LPS alone and LPS + TGF~ alone, respectively, is seen in the percent of total

IgA + cells.

The inactive analogs m-anisic acid (MAA) and nicotinic acid do not

cause significant increases in IgA switching (Fig. 17, 18, 20 and Table V). The

differences between the fold increase in double positive cells in the presence

of active vs. inactive analogs are statistically significant with poeO.004 and

poeO.003 for 3MB vs. MAA in the presence of LPS or LPS + TGFp, respectively, and

p..0.04 and poeO.OOI for nicotinamide vs. nicotinic acid in the presence of LPS 

LPS + TGF~, respectively.



Switch induction by 3MB is dose responsive and optimal by 2mM and

induction by nicotinamide is comparable at lOmM (Fig. 20). This difference

approximately activitiescorresponds the relative inhibitory of these

inhibitors of PARP, since the Ki for 3MB is approximately lO-fold lower than

that of nicotinamide (Banasik et al. 1992; Rankin et al. 1989). These compounds

do not increase switching in the absence of LPS. Although all of these

compounds somewhat anti-proliferative in this system thereare was 

correlation between effects on cell recovery and abilty to increase switching.

We also observe increased IgA switching in 1.2911 cells with the more

potent and specific PARP inhibitor, dihydroxyisoquinoline (l, di-OH-

isoQ). This compound preferentially inhibits the activity of PARP (Ki, 0.39I1M)

over mono(ADP-ribosyl) transferase (Ki, 89011M) in vitro (Banasik et al. 1992).

(Nicotinamide and 3MB also preferentially inhibit P ARP (Ki nicotinamide,

3111M; Ki 3MB , 3.4I1M) relative mono( ADP-ri bosy l)transferase (Ki

nicotinamide, 340011M; Ki 3MB, 2700IlM)(Rankin et al. 1989). Table VI shows the

results of switch assays with 1. di- OH- isoQ. Initially we observed a 2. fold

increase in the percent of IgA+ cells using 1,5-di-OH- isoQ (30nM) on day 3 with

LPS + TGF~ but no increase in double-expressing cells (Experiment I). We then

assayed on day 2 to see if there was an earlier increase in IgA + M + cells. Doses

of this compound above 50nM are toxic, but doses of 20, 30 or 40nM increase

the percent of IgA cells an average of 2. fold, 3. fold, and 3. fold,

respectively, and the percent of IgA+lgM+ cells 2. fold, 2. fold, and 2. fold,

respectively, in the presence of LPS + TGF~ on day 2 in two experiments

(Experiments II and III). These levels are similar to those induced by

nicotinamide or 3MB in the same experiments. In experiment IV in which this

compound was added at 30nM on both days 0 and 1, increases in the percent of



I g A + and the percent of IgA + I g M + cells on day 3 were again similar to

increases with nicotinamide in the same experiment. Because it is toxic 

1.2911 cells, we were forced to use 1, di-OH- isoQ at levels 10-fold lower than the

K i for inhibition of PARP. The other inhibitors of P ARP were used at levels

substantially above their Ki' for PARP inhibition possibly explaining the

slightly weaker effect with 1, di-OH- isoQ. We cannot speculate on the

differences in uptake or metabolism of these compounds in 1.2911 cells.

Inhibitors of PARP induce rearrangement of CJl and C genes in 1.29Jl cells.

Previously it has been shown that induction of switching in 1.2911 cells is

accompanied switch recombination involving the tandemly repeated

switch regions (Dunnick et al. 1989; Stavnezer et al. 1985). To determine

whether inhibitors of PARP increase switch recombination events at the C

and C loci in 1.291l cells, we cultured cells with inducers of switching, purified

genomic DNA, and analyzed it by Southern blotting. Maps of the expressed 

gene and the unrearranged a. genes in 1.2911 cells prior to switching are shown

in Figure 21A.

Figure 21 shows hybridization of B g 111 digested DNA from cells

cultured with no inducers, LPS, LPS + TGF~, or LPS + TGF~ + nicotinamide.

A.HindlII markers are loaded in the leftmost lane. Three fragments are

detected after hybridization to a probe specific for C I1' The largest B g 1 I I

fragment (15.4kb) contains the SI1 region and segment of the expressed

chromosome located 5' to C I1' The intermediate sized band (6.0kb) represents

the 3'

j. 

B g HI fragment present on both the expressed and nonexpressed

chromosomes. The smallest band the fragment of therepresents

nonexpressed chromosome. Hybridization of the same blot to a. Ca. probe



, \

detects the 16. 6kb unrearranged BglII fragment the expressed and

nonexpressed chromosomes which contains both Sa. and Ca.. The C probe

detects 75kb kappa light chain fragment that does not rearrange 1.2911

cells. To control for DNA loading and transfer, hybridization results have been

normalized to those with the CI( probe. The hybridization signal observed with

this probe appears to correspond with the loading of the gel as visualized by

ethidium bromide staining.

Densitometry of this blot (Fig. 21 C) shows that the band corresponding

to the 5' I1 fragment of the expressed chromosome containing SI1 is reduced in

intensity after culture with inducers of switching. A 60% diminution is seen

with LPS + TGF~, and a 75% diminution is seen with LPS + TGF~ + nicotinamide.

Diminution of the 3'11 fragment is intermediate as would be expected if the

expressed 11 gene undergoes deletion but the nonexpressed 11 gene does not.

this clone of 1.2911 cells the 5' B gIll fragment nonexpressedthe

chromosome is 5.7 kb shorter than in the parental 1.2911 cell line (Stavnezer et

al. 1985). Thus, extensive deletion of the switch region may have occurred on

this allele, preventing rearrangement. The intensity of hybridization to the

unrearranged reduced thealsofragment most presence

nicotinamide. The very low intensity of hybridization signal with the Ca.

probe of DNA from the nicotinamide-treated cells precluded scanning of this

band by densitometry.

Since the signals from the nonexpressed I1 fragment and the C

fragment are approximately the same, and are not reduced in intensity after

induction, nicotinamide does not appear to be causing a nonspecific nicking of

the DNA. Figure 21 shows that in this experiment, nicotinamide increased

switching 3 to 4-fold as measured both by IgA+lgM+ and IgA+ cells at.day 3. 



day 7, 5.6% (:t 0.2% range) of cells treated with LPS + TGF~, and 16. 8% (:t 2.

range) of cells treated with LPS + TGF~ + nicotinamide were IgA + , suggesting

that much of the rearrangement of 11 and a. genes that is evident at this time

either does not result in immediate IgA expression or results in nonproductive

rearrangements.

Inhibitors of PARP do not increase a-germline transcripts in 1.29J1 cells.

next determined whether inhibiting P ARP increases IgA switching in 1.2911

cells by increasing transcription through the a. -switch region. 1.2911 cells

were treated with inhibitors of P ARP and total cell RN A was isolated 24 hours

later. At this time, TGF~ optimally induces a.-germline transcripts (Shockett

and Stavnezer 1991). Hybridization of RNA blots with the Ia. probe showed that

inhibitors of PARP do not increase the 1.7kb a.-germline transcript in the

presence or absence of TGF~ (Fig. 22A). Levels of a. - germline areRNA

comparable using either inhibitory or non- inhibitory analogs. The 3. 8kb

PARP mRNA and the 1.3 kb GAPDH mRNA, which are not significantly affected

by these inhibitors, internal controls. In this experiment,serve as an

replicate cultures of cells were examined for switching on day Nicotinamide

and 3-MB increased double-expressing cells by lO-fold on day relative to

induction by LPS + TGF~. In the presence of LPS + TGF~ + nicotinamide or 3MB,

6% of the cells were IgA + and 4% were IgA +M + , compared to 0.6% IgA and

0.4% IgA +lgM+ with LPS + TGF~ (Fig. 22B).

Induction of IgA switching by PARP inhibitors is not due to elevation of

intrace llular levels. Since a reported effect of nicotinamide and itscAMP



?!,

'i,
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analogs is to inhibit cAMP-specific phosphodiesterase (Shimoyama et al. 1975),

we tested whether an inhibitor of protein kinase A (PKA) would inhibit the

induction of switching by nicotinamide. 1.2911 cells were treated with LPS +

T G F ~ nicotinamide in the presence or absence of the PKA inhibitor H-

(Chijiwa et al. 1990). 89 preferentially inhibits PKA with a 10- and 600-fold

lower Ki than protein kinase G and protein kinase C, respectively.

nicotinamide increased switching inhibiting cAMP-specific

phosphodiesterase and consequently increasing intracell ular cAMP levels,

PKA would be a likely cellular target and H-89 would inhibit the effect of

nicotinamide. 89 did not inhibit the increase in switching to IgA caused 

nicotinamide (Fig. 15). and surprisingly, at 1211M H-89, a small increase in

switching over that induced by nicotinamide was observed. These results and

those with cAMP analogs strongly argue that PARP inhibitors do not increase

switching elevating intracellular cAMP levels andthis system

subsequently activating PKA. Previously we observed inhibition of switching

with high doses of cAMP analogs (Fig. 15), and although this may be explained

by toxic effects, it is also possible that PKA activation is detrimental to

switching in this system.

Treatment with PARP inhibitors the requirement forcannot overcome

endogenously produced IL- in IgA switching by 1.29fJ cells. To determine

whether endogenously produced IL- was required for switching to IgA 

1.2911 cells in the presence of PARP inhibitors, 1.2911 cells were induced with

LPS + TGF~ + nicotinamide, in the presence and absence of 11 B 11 antibody, or

the irrelevant isotype matched control antibody, AD8. Purified lIB 11

(10j.g/ml) inhibited switching by 86% and 78% as measured by the percent of



IgA +lgM+ and total IgA+ cells, respectively on day 3 (Figure 23). Inhibition

was dose dependent with lIB 11 concentration and was not observed in the

presence of AD8. Inhibition of double staining cells induced by LPS + 3MB

(56%) and LPS + TGF~ + 3MB (53%) was also observed with 2.5% lIB 

supernatant on day but not with AD8. These experiments further

demonstrate the requirement for endogenously produced IL- for IgA

switching by 1.2911 cells.

Induction of switching in normal splenic B cells by PARP inhibitors.

determine whether inhibitors of PARP could increase switching in normal 

cells, T -depleted, small, mouse spleen cells were cultured with LPS + IL-4 in the

presence or absence of nicotinamide and examined for surface IgGI and IgM

expression by FACS analysis. Addition of nicotinamide to these cultures

increased IgGI switching to variable extent, and larger inductions by

nicotinamide observed experiments which switching waswere

suboptimal. Therefore, in Table VII we separated the data into two groups, one

including those experiments in which less than 10% of cells were induced 

express IgGI by LPS + IL- , and one including experiments in which greater

than 10% of cells were induced to express IgGI by LPS + IL- A 2. fold

increase (PoeO. 008) was seen with nicotinamide experiments which

switching was oel0%, and 1.3 fold increase (PoeO.007) experiments which

switching was ::10%.



CHAPR V

DISCUSSION

Our experiments strengthen and extend the previously reported finding

that TGF~ induces the steady state level of a.-germline transcripts and directs

switching to IgA in LPS activated B cells (Coffman et al. 1989; Lebman et al.

1990a). We demonstrate through experiments that TGF~nuclear run-on

induces transcription of the a. -germline gene in the B cell lymphoma 1.2911.

Increased transcription is observed as early as 4 h, is optimal at approximately

12 h and is stil observed 18 h after addition of TGF~. TGF~ increases

transcription both in the presence and absence of LPS. This early activation

of transcription is consistent with the hypothesis that TGF~ directs heavy

chain isotype switching to IgA by inducing transcription through the region

of DNA that wil undergo subsequent recombination.

The increased transcription of the a. -germline gene in 1.2911 cells is

followed by a corresponding increase in switching to IgA, as there is an 11-

fold increase in the percent of IgA+lgM+ cells by day 3 relative to that induced

by LPS alone. This result directly demonstrates that TGF induces switching

rather than outgrowth of IgA cells. Double positive cells must be derived by

an active switch event, because 1.29 IgA + cells have deleted the CI1 gene from

the expressed chomosome (Stavnezer et al. 1985). Additionally, TGF~, when

present longer in the cultures reduces the percent of IgA + cells at day 10. The

fact that TGF~ induces transcription as early as 4 after addition also supports

the idea that the effect of TGF~ on IgA switching is an early event.

Although TGF~ is antiproliferative for normal mouse B cells in the

presence of LPS (Kim and Kagnoff 1990) and for 1.2911 cells in the absence of
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LPS, TGF~ does not inhibit the growth of 1.2911 cells in the presence of LPS.

fact, in the presence of LPS, which is required for switching by 1.2911 cells,

2ng/ml TGF~ slightly increases, the cell recovery at day 3 (by 1. fold :t 0. 12.

SEM, in 17 experiments), and proliferation of 1.2911 cells, as measured by (3 H) -

thymidine incorporation at 48 These observations suggest that the II- fold

average increase in switching observed in 1.2911 cells on day 3 does not result

from the selective inhibition of IgM+ cell growth with consequential

outgrowth of IgA cells, or the selective outgrowth of IgA cells.

The steady state accumulation of a.-germline RNA observed on RNA blots

in the presence of TGF~ peaks at about 24 h post induction both in the presence

and absence of LPS. When inducers are effectively removed after 24 h the

level remains increased at 48 h and then declines significantly by 72 h. The

increase in a. - germline transcripts in 1.2911 cells is smaller and occurs with

faster kinetics than in murine splenic B-cells induced with LPS + TGF~.

Maximal levels of a.-germline RNA were observed on day 4 in spleen B cells

(Lebman et al. 1990a). It is possible that the induction in spleen cells requires

an activation period that is not needed in 1.2911 cells because they are already

proliferating. The greater induction of a. -germ line transcripts in spleen cells

as compared to 1.2911 cells may be explained by the lack of constitutive

transcription of the a. -germ line gene in spleen cells. It is possible that the

constitutive expression of a.- germline transcripts in 1.2911 cells is due to the

presence of 100pM levels of TGF~ detected in the cultures. We have been

unable to determine whether this TGF~ originates from the cells or FCS, but

preliminary studies suggest that anti-TGF~ antibody inhibits switching in this

system.

The fold increase in transcription of a.-germline RNA induced by TGF~ is
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somewhat less than the optimal increases in steady state levels assayed by RNA

blotting. TGF~, however, has only a small effect on the half-life of a.- germ line

RNA. It is possible that TGF~ increases the effciency of splicing of a.- germline

RNA precursors. TGF~ has been shown to regulate the splicing pattern of the

fibronectin messenger RNA precursor (Borsi et al. 1990).

Consistent with a requirement for transcriptional activation of the a.-

germline gene for IgA switching, IFNy-treatment of LPS-treated 1.2911 cells

reduces the level of a.-germline RNA on blots at day 1 and 2 of culture and also

reduces the . level of LPS- induced expression of IgA on day 10. IFNy did not

reduce levels of a. -germline transcripts in the absence of LPS. Inhibition by

IF N y is observed in the presence and absence of IL- reduction in the

frequency of switching to IgA by the CHI2.LX lymphoma after IFNy treatment

has also been reported (Whitmore et al. 1991). Unfortunately, due to the very

low signal obtained in nuclear run-on assays using nuclei from cells cultured

with LPS, it was impossible to determine directly whether IFNy inhibits

transcription of a.- germline RNA. Although the reduction in levels of a.-

germline transcripts on day 1 and 2 after addition of IFN'Y strongly suggests

that IFNy is acting early to inhibit switching, we have not determined whether

IFN y reduces the percentage of double positive cells at early times after adding

LPS to the cultures, as we have only assayed switching on day 10.

Studies of germline RNA promoter regions in transfection experiments

demonstrate that they respond to cytokines that induce the specific germline

transcri pts. Analysis of the promoter region for a. - germline RNA

transfection of reporter constructs into 1.2911 cells has shown that TGF~ induces

a minimal promoter containing 118 bp of sequence upstream of the first RNA



start site and that two copies of an oligonucleotide containing a pair of tandem

repeats found within the a.-germline promoter confer TGF~ inducibility to a

heterologous promoter (Lin and Stavnezer 1992).

Concurrent studies in other systems of cytokine induced switching and

germ line transcripts corresponding to isotypes other than IgA also show that

cytokines that induce preferential isotype expression in vivo and in vitro

(Finkelman et al. 1990; and Finkelman 1993 ) induce thealsoSnapper

corresponding germline RNA prior to switch recombination (Berton et al.

1989; Esser and Radbruch 1989; Gauchat et al. 1990; Lebman et al. 1990a; Lutzker

et al. 1988; Rothman et al. 1988; Rothman et al. 1990; Severin son et al. 1990;

Shapira et al. 1992; Stavnezer et al. 1988). For example, in LPS treated mouse

splenic B cells and/or B cell lines, interleukin-4 (IL-4) induces IgE and IgG 

switching, and Cyl -germline transcripts, and reporter genes driven by 

and Cyl-germline promoters (Bergstedt-Lindqvist et al. 1988; Berton et al. 1989;

Esser and Radbruch 1989; Rothman et al. 1991; Rothman et al. 1988; Savelkoul et

al. 1988; Stavnezer et al. 1988; Xu and Stavnezer 1992). As we have shown for

T G F~, and a. -germline transcripts 1.2911 cells, endogenous e- germline

transcripts the cell line 18. 81A20 also induced thearepre

transcriptional level (as assessed by run-on assay) by IL- (Rothman et al.

1991; Shockett and Stavnezer 1991).

Several studies indicate that transcri ptsgermlinerecent directly

and/or their promoters are required for switch recombination. Recently it

was shown that IgE switching in 18.81A20 pre B cells is rendered IL-

independent by replacement of the e promoter and I-exon (germline ex on)

with the Ig VH promoter and 11 intron enhancer by gene targeting (Xu et al.

1993). Additionally, in mice lacking the promoter and I exon of the y 1 -
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germline gene on one allele due to gene knockout, isotype switching occurs

only on the undisrupted allele (Jung et al. 1993). Thus, vivo, switch

recombination to IgG absolutely requires 5' elements upstream of the start

sites and/or the I exon of germ line yl RNA. Similar results have been obtained

in chimeric mice derived from injection of RAG- deficient blastocysts with

embryonic stem (ES) cells containing homozygous, targeted, replacement of

the ly2b exon and promoter with a neomycin resistance (neo ) gene expressed

in reverse orientation (Zhang et al. 1993). In B cells from these mice, LPS-

induced IgG2b switching is severely reduced. These results further define a

requirement for either transcription in the . correct orientation, Y2b-specific

promoter elements, the germline transcripts themselves, for swi tch

recombination. With regard to IgA expression, it was recently shown in the

CH12 lymphoma that reducing the level of a. - germline transcripts

treatment with antisense oligonucleotides, transient transfection

inducible constructs expressing antisense RNA, resulted in an approximately

40% reduction in expression of IgA+lgM+ cells in the presence of TGF~ + IL-

on days 2-3 (Wakatsuki and Strober 1993).

We have not determined the percent of 1.2911 cells that express ex-

germ line transcripts by in situ hybridization. Thus, we do not know whether

the increased transcription observed in the presence of TGFB occurs in all

cells with a fraction subsequently switching to IgA or whether a.- germline

transcription is only increased in the fraction that is induced to switch.

situ hybridization to Y1 -germline transcripts in mouse spleen B-cells treated

with LPS + IL- shows that the frequency of cells producing 'Y_germline

transcripts correlates with the frequency of cells that switch to IgGl (Turaga

et al. 1993).
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Our studies in 1.2911 cells and those cited above suggest that cytokine

induced transcription is intimately associated with the process of switch

recombination. The exact function of transcription in this process is not yet

known. Changes in the methylation status or the torsional state of switch

region DNA influenced proteins binding germline RNAmay

promoters. It has been shown in Xenopus oocytes that in microinjected P-

globin DNA packaged into chromatin torsional changes the promoter

(negative supercoiling), measured cruciform extrusion occur

coincidentally with the onset of transcription (Leonard and Patient 1991).

These physical changes in the DNA do not require transcriptional elongation,

because they the of the polymerase elongationoccur even presence

inhibitor, a. -aminitin. It has also been shown that the vaccinia virus

intermediate transcription factor, VITF-B, can melt sequences around the start

site of the vaccinia virus intermediate gene promoter in vitro in the absence

of RNA polymerase (or any other preinitiation proteins) as measured by

potassium permanganate sensitivity (Vos et al. 1991) . This unwinding 

stimulated by ATP. With regard to switch recombination, it remains to 

determined detail knockout transfected switchgreater gene

recombination substrates, whether the physical of transcription theact

binding proteins germ line RNA that bend,promoters open

demethylate chromatin, or the RNA itself is essential for switch recombination

and these requirements are most likely not mutually exclusive.

We consistently see a small but reproducible inductive effect by IL-4 on

both switching to IgA and a.-germline transcripts in 1.2911 cells. LPS treatment

of 1.29j. cells is necessary for switching, as assayed by the appearance of
I g A + I g M + cells, but LPS causes only minor increases in the level of a.-
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germline transcripts and a reduction in a. -germline transcription. Although

T G F ~ optimally increases a. -germline transcripts in the absence of LPS, TGF~

does not increase switching in the absence of LPS. Therefore, the activation of

germ line transcription alone is not sufficient for the activation of switch

recombination. Supernatants from LPS-treated 1.2911 cells contain detectable

IL- Furthermore, LPS-induced switching to IgA is inhibited 67% by anti-IL-

antibody. Since LPS does not induce a.-germline transcription, and since anti-

IL-4 does not inhibit levels of a.- germline transcripts in the presence of LPS

or LPS + TGF~, endogenously produced IL- appears to increase IgA switching

in 1.2911 ceils by a pathway distinct from transcriptional activation. Consistent

with this idea is the report that the frequency of switching to IgA, IgG2b and

IgG3 are all increased by IL-4 in the the CH12 B lymphoma (Whitmore et al.

1991), even though in spleen cells and pre B cell lines germline transcripts

from the a, Y2 b and Y3 loci are differentially regulated by IL- (Lutzker et al.

1988; Rothman et al. 1990; Severinson et al. 1990). IL- also augments non

IgE/lgG isotype production from cells cultured with activated T-cell

membranes, likewise suggesting that IL- affect switchingmay

mechanism distinct from the activation of germ line transcription (Hodgkin et

al. 1991). The CH12 B-cell lymphoma, which switches to IgA constitutively, also

produces IL-4 mRNA and activity constitutively (O'Garra et al. 1989). The levels

of IL- activity detected in CH12 cell supernatants are comparable to those

detected in 1.2911 cell supernatants. In contrast to 1.2911 cells, maintenance of

in vitro proliferation by the CH12.LX clone has been shown to require

endogenously produced IL- (Louie et al. 1993). Switching to IgA, IgG3, or

IgG2b in these cells was not significantly affected by inclusion of anti-IL-

antibody, although only low amounts of antibody were used (2. 3I1g/
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(Whitmore et al. 1991).; these amounts have been shown to be insuffcient for

complete neutralization of endogenous IL- CH12 cellmeasured

proliferation (Louie et al. 1993). It has been proposed that endogenous IL-

might be produced in B-cell responses to T-cell independent antigens (O' Garra

et al. 1989). This IL- could activate switching in B-cells in conjunction with

signals through the antigen receptor. Production of IL-4 by untransformed B-

cells has not been reported. It would be interesting to determine whether IL-

can be detected in supernatants from non- lgM isotype-positive wells derived

from IgM+lgA - lgG2b IgG3 - normal B-cells plated in limiting dilution in the

presence of LPS or LPS + TGF~.

Inhibitors of PARP antibody class switching. Our studies also showincrease

that inhibitors of the chromatin-associated enzyme, PARP, increase antibody

class switching in the B cell lymphoma 1.2911 and in splenic B cells. In 1.2911

cells, increased IgA switching is observed as early as 2 days after treatment

with inhibitors as evidenced by an increase in the percent of cells expressing

both IgM and IgA in their cytoplasm. These cells comprise transient

population in the cultures and are less frequently observed on day 7 or later.

Unlike the augmentation of IgA switching by TGF~, the increase due to P ARP

inhibitors involves mechanism distinct from induction of a.- germline

transcription. Preliminary studies suggest that optimal induction of LPS-

induced switching by inhibitors of PARP does, however, require TGFp, since

antibody to TGF~ added to the cultures inhibits this induction, suggesting a

general requirement for transcription the un rearranged gene.

Treatment 1.2911 cells with inhibitors of PARP cannot substitute for

endogenously produced IL-
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We also show that inhibitors of PARP induce rearrangement of DNA

fragments containing S ~ or Sa. Previously it has been demonstrated that

switching to IgA 1.2911 cells occurs typical switch recombination event

between and Sa. sequences, deleting the gene and all other intervening

genes, resulting the joining the expressed VDJ segment the

segment on the expressed chromosome (Dunnick et al. 1989; Stavnezer et al.

1985). Since the sites of switch recombination vary over approximately 2kb in

S 11 and in Sa., if many independent switch events are occurring in the cultures

studied in this thesis, then in the absence of outgrowth of IgA cells, detection

of a clear, ' rearranged, Ca. fragment on Southern blots from cells treated with

PARP inhibitors would be unlikely. diminution in CI1 and Ca. hy bridizing

fragments as was observed on the Southern blot of DNA from cells treated with

nicotinamide relative to that from untreated cells, would be expected (Hurwitz

and Cebra 1982). The reduction in signal intensity is observed in DNA from

cells treated with LPS + TGF~, but is most marked in DNA from cells also treated

with the P ARP inhibitor, nicotinamide, indicating that nicotinamide increases

rearrangement of these fragments.

Inducers of cAMP do not increase switching to IgA. The experiments reported

in this thesis demonstrate that although methylxanthines increase LPS or LPS

+ TGF~ induced switching to IgA in 1.2911 cells, cAMP analogs tested over a wide

range of concentrations cannot mimic this effect. These results are consistent

with those of Lyke and Strober, who found that IgA expression induced in LPS-

treated splenic B cells by treatment with cholera toxin is due to a cAMP

independent mechanism (Lycke and Strober 1989). Because their studies

utilzed a purified preparation of the B-subunit of cholera toxin, thought to be
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incapable activating intracellular cAMP, questions could asked

regarding the purity of the preparation and whether cAMP was actually not

induced. Our finding that the PKA inhibitor H-89 does not inhibit IgA

switching in our system is also inconsistent with a stimulatory role for cAMP.

Although cAMP analogs do not appear to increase switching to IgA in this

system, they do cause a small increase in the level of a.-germline transcripts,

but only in the absence of LPS (data not shown).

Possible mechanisms of increased heavy chain switching by PARP inhibitors.

Because of the multi - faceted and elusive function of poly(ADP-ribose)

polymerase in eukaryotic cells, several models of inhibitor action in switch

recombination are imaginable. First, PARP, which binds to and is dependent

on DNA strand breaks for activation, is a major acceptor of poly(ADP-ribose) in

vivo (Althaus and Richter 1987). Auto-ribosylated P ARP has a reduced affinity

for DNA (Ferro and Olivera 1982; Y oshihara et al. 1981; Zahradka and Ebisuzaki

1982). It is possible that the inhi bitors, by preventing auto-poly(ADP-

ribosylation), keep PARP bound to DNA ends generated by an endonuclease

activity involved in switch recombination (Buki et al. 1991). There are several

possible consequences of PARP remaining bound to DNA ends. For example,

P ARP bound to DNA ends could directly interact with switch factors.

Alternatively, DNA damage increases PARP activity and it is suggested that

PARP activity accelerates DNA repair (Althaus and Richter 1987; Ding et al.

1992; Satoh and Lindahl 1992; Satoh et al. 1993). Recently it was shown in cell

extracts that in the presence of PARP, DNA repair is dependent upon NAD+

suggesting that automodification and subsequent release of PARP from DNA

must occur to allow accessibilty to repair enzymes (Satoh and Lindahl 1992;



Satoh et at. 1993). PARP bound to DNA ends in switch regions may temporarily

reduce accessibilty to DNA repair enzymes, thus allowing switch regions to

align and recombine by protecting unrecombined DNA ends from religation.

This might be especially crucial since actively transcribed DNA sequences,

like switch regions prior to switch recom bination, are believed

preferentially repaired over untranscribed DNA (Buratowski 1993; Hanawalt

and Mellon 1993). Another possibilty is that PARP bound to DNA ends in

switch regions may protect the DNA from degradation by cellular nucleases

(Sastry et at. 1989).

Second, PARP is capable of binding to unusual DNA structures such as

cruciform DNA (Sastry and Kun 1990) and DNAIRNA hybrid molecules (Buki et

al. 1991). Recent work has suggested that the a.-switch region can form triple

stranded DNA structures which, when transcribed, may be stabilized by a

RNA/DNA interaction (Collier et at. 1988; Reaban and Griffn 
1990). It is

possible that PARP could bind and stabilze such a structure.

Third, inhibition PARP could Increase isotype switching

inhibiting poly(ADP-ribosylation) of protein required for recombination.

The activities of most enzymes are inhibited poly (ADP- ribosy lation)

(Althaus and Richter 1987; Yoshihara et al. 1985). For example, topoisomerase I

and II, enzymes that cut and rejoin DNA;. are both inhibited by poly(ADP-

ribosylation) (Darby et at. 1985; Ferro et al. 1983; Jongstra-Bilen et al. 1983;

Kasid et al. 1989). If their activities are required for switch recombination,

inhibition of P ARP would enhance recombination. Interestingly, P ARP and

topoisomerase I have been co-purified (Ferro et 
al. 1983; Jongstra-Bilen et at.

1983).

fourth model involves the finding that chromatin condensation and



nucleosome structure can be modulated by levels of poly(ADP- ribosylation)

and/or presence of polymer (DeMurcia et al. 1988; Thibeault et al. 1992). It has

been shown recently that chromatin from HeLa cells, depleted of endogenous

PARP stable transfection constructs inducibly expressing PARP

antisense RNA has increased DNAse I sensitivity and the cells have delayed

DNA single strand break repair kinetics (Ding et al. 1992). It is possible that

the inhibition of polymerase dictates a chromatin conformation that increases

accessibilty to recombination enzymes. However, this model might predict

that inhibitors of PARP would influence transcription of a.-germline RNA.

final model predicts that PARP inhibition increases the cellular NAD+

pool, which would be beneficial if switch recombination enzymes require

N A D + as a cofactor or the energy of A TP hydrolysis. Other models of how P ARP

inhibition may increase switching are possible, and the models above are not

mutually exclusive.

Interestingly, 3MB has recently been shown to increase the rate of

intrachromosomal homologous recom bination between stably transfected

pair of mutant thymidine kinase genes in a mouse fibroblast cell line

(Waldman and Waldman 1991). The lack of a preference for crossovers vs.

gene conversions suggested that P ARP inhibition increased the rate limiting

step for homologous recombination, which is the induction of DNA strand

breaks. Conversly, 3MB inhibited random ilegitimate integration of DNA into

the genome for which the rate limiting step is thought to be ligation

(Farzaneh et al. 1988; Waldman and Waldman 1990). Based on these results and

the fact that P ARP inhibitors also increase sister chromatid exchange in

Chinese hamster ovary (CHO) cells (Oikawa et al. 1980) and possibly mitotic

recombination in Drosophila (Ferro et al. 1984), both of which presumably



involve homologies, one might hypothesize that switch recombination

mechanistically more similar homologous recombination than

ilegitimate recombination, and that inhibiting PARP increases the initiation

switch recombination. CHO cells was recently shown that

intrachromosomal homologous recombination between di rect indi rect

repeats of an integrated copy of the neomycin resistance (neo ) gene was

increased 2 to 7-fold by induction of transcription of the neor gene (Nickoloff

1992). Although switch recombination is not believed to be a classical

reciprocal, homologous recombination process involving large regions

homology, one recent model of switching based on the sequence analysis of

many switch junctions is consistent with an error prone DNA synthesis event

involving priming from one switch region to another by short sequence

homologies (Dunnick et al. 1993; Dunnick and Stavnezer 1990).

Is PARP normally inhibited during antibody class switching? An intriguing

finding which suggests possible mechanism whereby PARP could

inhibited during class switching in vivo is the identification on human and

mouse B-cells of the cell surface antigen, CD38, which has homology to ADP-

ribose cyclase (Howard et al. 1992; States et al. 1992). ADP-ribose cyclase

produces cADP-ribose from NAD+ , releasing nicotinamide as a byproduct.

cADP-ribose has been shown to stimulate intracellular Ca

+ +

mobilization

(Galione 1993). While Ca

++ 

ionophores do not appear to significantly increase

switching in this system, if this enzyme was activated in B-cells induced to

undergo switching, and if cADP-ribose was produced, nicotinamide would be

released and the cellular NAD+ pool might be depleted. consequence of

either of these events could be inhibition of. PARP.



The T-cell signals that activate B-cells and drive them to proliferation

and class switching are currently being dissected in several labs (Parker

1993 ). The role of CD38 in this process has not been studied; however,

increased proliferation and calcium fluxes in mouse B-cells treated with anti-

CD38 antibody in the presence of LPS + IL-4 have been reported (Howard et al.

1992). It is also possible that that the activation of proliferation of B-cells by

T -cells ultimately leads to NAD+ consumption. Such metabolic changes have

been proposed to cause changes in PARP activity (Loetscher et al. 1987).

Similarly, cell acti v ation - ind uced increases glycohydrolase activity,

which degrades poly(ADP-ribose), could have the same effects as inhibiting

PARP. future goal of these studies is to determine whether known inducers

of switching such as LPS, activated T -cells, activated T -cell membranes, CD40

ligand, anti-Ig or anti- dextran ultimately result in the inhibition of PARP.

f _ We cannot explain the differing abilties of P ARP inhibitors to increase

switching in 1.2911 and spleen cells. While it is possible that effects seen with

inhibitors of PARP are isotype specific, we favor the idea that there are

inherent differences in P ARP activity in the two types of cells. It is possible

that inhibitors reach greater intracellular concentrations in 1.2911 cells than
in splenic B-cells, and thus P ARP inhibitors have a greater effect in 1.2911 cells

than in spleen cells. It is also possible that in normal splenic B-cells treated

with LPS + IL- PARP activity is already low enough to support switching.

Consistent with this idea is our finding that in experiments in which high

levels of switching to IgG 1 are induced by LPS + IL- , nicotinamide has only a

marginal effect, whereas in experiments with low levels of switching induced

by LPS + IL- , nicotinamide causes a greater increase. We have attempted to



measure levels of poly(ADP-ribose) or PARP activity in nuclear or cell extracts

from 1.2911 cells and splenic B-cells treated with switch inducers and PARP

inhibitors obtain better understanding the observed difference.

However, enzyme assays involving induction of artificially high levels of

PARP activation disrupted cells are not reliable and more reliable

measurement of endogenous polymer levels in cells that have not been treated

with DNA damaging agents is very difficult.

The involvement of normal cellular DNA repaIr enzymes in switch

recombination has precedent in V(D)J recombination, which is aberrant in

cells which are deficient in ubiquitously expressed genes involved in DNA

double-strand break repair, including SCID cells and certain CHO cell mutants

(Pergola et al. 1993; Taccioli et al. 1993). The human and mouse Sl1bp- protein,

which preferentially binds 5' - phosphoryl ated, single stranded DNA

containing GGGGT and GGGCT motifs, respectively, was recently cloned (Fukita

et al. 1993; Mizuta et al. 1993). This protein is ubiquitously expressed, and its

mRNA levels increased in mouse spleen cells treated with LPS. It contains

helicase motifs found in proteins involved in DNA replication, repair, and

recombination, thus implicating normal cellular enzyme switch

recombination. Definitive proof that inhibition of PARP is involved in switch

recombination 1.2911 cells awaits direct inhibition of polymerase via

antisense RNA or the inducible overexpression of the DNA binding domain of

PARP as a dominant negative inhibitor of the enzyme. We have as yet been

unnable to accomplish these experiments. DNA binding domain-mediated

inhibition of PARP activity and inhibition of alkylation-induced DNA single-

strand break repair has been reported in CV- monkey cells and human



fibroblasts (Kupper et al. 1990; Molinete et al. 1993). However, interpretation

of DNA binding domain experiments could be difficult depending on the role 

P ARP in switching, because the DNA binding domain, rather than inhibiting

PARP, could mimic it.

To our knowledge, the experiments reported in this thesis represent the

first evidence that inhibitors of the ubiquitous, nuclear enzyme, PARP can

increase recombination of immunoglobulin genes. As well as identifying

possible regulatory point for switching vivo, this study identifies

potentially useful means for inducing higher levels of class switching for

examining the mechanism of heavy chain switch recombination. Together

with the previously proposed requirement in switch recombination for DNA

synthesis (which is constitutive in 1.2911 cells), this study re-emphasizes the

requirement for germline transcription and identifies two other potential

levels of regulation of switching observable in the 1.2911 B cell lymphoma.

These include IL-4-acti v ated signal distinct from DNA synthesis and

transcription and the inhibition of poly(ADP-ribose) polymerase.

A Model For Switch Recombination: Although many possible models may 

proposed for how IgA switching occurs in this system, a plausible model is

described below. This model includes findings discussed above, and additional

recent preliminary findings.

The mode of signaling by TGF~ in this system is unknown. The TGF~ type

II receptor has been shown to contain a functional serine/threonine kinase

domain (Lin et al. 1992). Additionally, serine/threonine kinase activity has

been implicated in TGF induction of Plasminogen Activator-Inhibitor I (PAI-

I) expression and in the inhibition of phosphorylation of the retinoblastoma



Jk' -

susceptibilty gene product (RB) during late G 1 (Ohtsuki and Massague 1992).

The tandem repeats found within the a. -germline promoter that are required

for TGF~ inducibilty of reporter constructs are also found in a few, but not all,

other TGF~ - inducible genes. These repeats specifically bind proteins in

electrophoretic mobilty shift assays (EMS As) of nuclear extracts from 1.2911

cells and spleen cells. Although protein/DN binding is not induced by TGF~,

it is possible that TGF~ activates the a. - germ line promoter inducing

phosphorylation of the TGF~ response element binding protein or associated

proteins (Lin and Stavnezer 1992).

hypothesize that TGF~- induced activation of transcription of the a.-

switch region, or the binding of TGF~- inducible proteins to the a.- germline

promoter, would make it accessible to an endonuclease that recognizes and

binds switch region sequences. Alternatively, the endonuclease may bind 

proteins that bind to the switch regions or regions upstream of switch regions.

Another possibility is that such an endonucleolytic activity might associate

with the nascent germline transcript itself, or a RNA/DNA structure formed

within the switch region.

Transcription of the switch regions might also make them accessible to

proteins with binding specificities for single-stranded DNA, such the

helicase, S BP-2, which is capable of binding to single-stranded switch region

sequences and which is induced by LPS (Fukita et al. 1993; Mizuta et al. 1993).

Such a helicase could unwind DNA ends after cutting has occurred.

There are many possibilties for the action of P ARP at this stage and

many of these possibilties have been discussed above. I wil consider a

plausible scenario, incorporating some of these possibilties and some recent,

interesting, preliminary data.



Since PARP binds preferentially to DNA ends it is likely that it would

bind switch ends. Since PARP would then become locally activated (and since

it appears to be preferentially activated during the S-phase of the cell cycle

anyway (Bhatia et al. 1990), Le., at the same time that switching is believed to

occur), if PARP normally promotes immediate DNA repair, it is possible that

inhibition of P ARP would be required during switching so that endonuclease-

induced breaks in switch regions are not immediately repaired (a process that

would preferentially occur switch regions because they are

transcriptionally active). Inhibi tion of P ARP in vivo might result from

signals that ultimately lead to NAD depletion.

Preliminary data suggest that PARP might also bind to switch regions.

In HeLa cell nuclear extracts, PARP, complexed with DNA ligase I and a ligase

inhi bitor protein can isolated from affini ty columns containing Chi

sequences (Andy Eisen, Albert Einstein Medical College, personal

communication). These complexes have also been isolated from 1.2911 cells,

treated or untreated with LPS. Chi (GCTGGTGG) promotes recombination in

bacteria. Additionally, sequences which occur at high frequency around

switch junctions (CTGG and its complement GACC), are found within the chi

sequence (Chou and Morrison 1993). The sequence, CTGG, is also found within

binding sites for proteins, with unknown funtions in switching, that bind 

switch regions, including BSAP, NF- I1' and SNAP (Liao et al. 1992; Marcu et al.

1992; Waters et al. 1989; Wuerffel et al. 1992; Wuerffel and Kenter 1992;

Wuerffel et al. 1990). Thus, it is possible that PARP, DNA ligase I, and its

inhibitor bind directly to switch regions. It remains to be determined whether

PARP participates in protein complexes seen in EMSAs performed with DNA

fragments containing switch region sequences.



One may further speculate that modification of DNA ligase I or its

inhibitor by poly(ADP-ribosylation) regulates their activity. Although DNA

ligase I is a known acceptor for poly(ADP-ribose), the effect of poly(ADP-

ribosylation) on DNA ligase I is controversial.

These data suggest that the inhibition of DNA repair caused by

inhibition of PARP may occur either while PARP binds to DNA ends or at PARP

bound to switch regions. It is possible that PARP enhances immediate DNA

repair by activating DNA ligase I, and that during the init;al stages of

switching, inhibition of PARP inhibits repair by inhibiting DNA ligase I. It is

not yet known whether PARP bound to DNA ends is complexed with DNA ligase

I and its inhibitor.

If single stranded DNA ends from the switch regions are available (due

to a switch region associated endonuclease, the inhibition of DNA repair by

inhibition of PARP, and an LPS- induced helicase activity), short sequence

homologies found within opposing switch regions could allow imprecise

pairing and priming of DNA synthesis from one switch region to another, for

example, from S I1 to Sa., as has been previously proposed (Dunnick et al. 1993;

Dunnick and Stavnezer 1990) . Restoration of cellular NAD levels and

subsequent reactivation of PARP at this stage could reactivate DNA ligase I,

which might be required for the final stages of switching. Alternatively,

PARP and associated proteins may not be needed at this stage, and the

reactivation and auto-poly(ADP-ribosylation) of PARP would allow release of

PARP from DNA allowing accessibilty to other DNA repair enzymes. It is also

possible that the homologous pairing of single stranded DNA sequences might

displace PARP so that a polymerase (which might be another normal DNA

repair enzyme) has access to the DNA.



The role of endogenous IL-4 in this process is also not clear. Based on

my results in 1.2911 cells, endogenous IL- is not inducing IgA switching

simply by increasing DNA synthesis, or germline transcription. These results

suggest that IL-4 may instead be involved in the acti v ation of enzymes

involved in recombination. Of note is the finding that the activation of

proliferation of hematopoietic cells by IL- (as well as by insulin and insulin-

like growth factor I, IGF-I) is accompanied by tyrosine phosphorylation of a

170 kDa protein called the IL-4- induced phosphotyrosine substrate (4PS) and

of a protein called the insulin receptor substrate I (IRS-I), both of which

associate wfth phosphatidylinositol (PI) 3-kinase after stimulation (Wang et al.

1993a; Wang et al. 1993b). One may speculate that in 1.2911 cells, PI kinase

activation, induced by endogenous IL-4, ultimately leads to the activation of a

required switch enzyme such as an endonuclease or repair polymerase.
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TABLES AND FIGUR



1 
-

"L
 

.. 
-:

 

T
ab

le
 I

T
G

F
p 

in
cr

as
es

 a
cc

um
ul

at
io

n 
an

d 
tr

an
sc

rp
tio

n 
of

 a
-g

er
m

 li
ne

 R
N

A
 a

nd
 s

w
itc

hi
ng

 to
 I

gA
 in

 I
.2

9J
l c

el
ls

a

a-
ge

nn
lin

e 
R

N
A

ge
nn

lin
e 

R
N

A
ac

cu
m

ul
at

io
n

tr
ns

cp
tio

n

H
ou

 o
f

Fo
ld

H
ou

rs
 o

f
Fo

ld
T

re
at

m
en

t 
In

cr
ea

se
T

re
at

m
en

t
In

cr
ea

e

L
l'5

d
23

26
7
:
!
.
2
 
(
3
)

5
:
.
2
 
(
3
)

9:
!.1

 (
7

L
PS

 +
 T

G
Fp

e,
f

23
26

41
1.

7 
(2

)
2:

.9 
(2

)

47
-4

6:
1.

7 
(3

)

T
G

Fp
d,

22
-

8:
.1

 (
7

6:
1.

0 
(3

)

43
7

9:
1.

0 
(3

)

F
ol

d 
in

cr
as

e
in

 %
Ig

A
+

 c
el

ls
at

 D
av

 1
0-

n

F
ol

d 
in

cr
ea

se
 in

 %
Ig

A
 +

Ig
M

+
 c

el
ls

 a
t

:
:
1
1
.
:
!
 
2
.
2
 
(
1
8
)

(p
",

O
.O

O
1)

9:
!2

.7
 
(
7
)

(p
"'

O
.O

O
1)

41
1.

5(
4)

( 
p"

,O
.0

2)
2.

1:
!.

2 
(7

(p
c.

O
O

l)

1(
1)

1(
2)

1(
)

a
 
I
n
 
a
l
l
 
e
x
p
e
r
i
m
e
n
t
s
,
 
I.2

9j
L 

ce
lls

 w
er

e 
tr

ea
te

d 
w

ith
 5

0j
Lg

 L
P

S
 a

nd
 2

ng
/m

l T
G

F
.
 
V
a
l
u
e
s
 
a
r
e
 
t
h
e
 
m
e
a
n
 
.
:
 
SE

M
. T

he
 ra

ng
e 

is
 in

di
ca

te
d 

w
he

re
 tw

o 
e
x
p
e
r
i
m
e
n
t
s
 
w
e
r
e

p
e
r
f
o
n
n
e
d
.
 
T
h
e
 
n
u
m
b
e
r
 
o
f
 
e
x
p
e
r
i
m
e
n
t
s
 
i
s
 
s
h
o
w
n
 
i
n
 
p
a
r
e
n
t
h
e
s
e
s
.
 
F
o
r
 
d
a
y
s
 
3
,
 
4
,
 
a
n
d
 
5
 
s
w
i
t
c
h
 
a
s
s
a
y
s
,
 
L
P
S
 
w
a
s
 
a
d
d
e
d
 
f
o
r
 
2
4
 
h
o
u
r
s
,
 
d
i
l
u
t
e
d
 
5
-
 
o
r
 
6
-
fo

ld
 a

nd
 T

G
F

w
as

 a
dd

ed
 o

n 
da

y 
0 

an
d 

I,
 
o
r
 
d
a
y
s
 
0
,
 
1
,
 
a
n
d
 
2
.
 
V

al
ue

 in
 ta

bl
e 

is
 th

e 
av

er
ag

e 
fo

ld
 in

cr
ea

se
 in

 %
 d
o
u
b
l
e
 
p
o
s
i
t
i
v
e
 
c
e
l
l
s
.
 
F
o
r
 
d
a
y
 
1
0
-
1
1
 
s
w
i
t
c
h
 
a
s
s
a
y
s

, L
PS

 w
as

a
d
d
e
d
 
o
n
 
d
a
y
 
0
 
a
n
d
 
T
G
F
p
 
w
a
s
 
a
d
d
e
d
 
o
n
 
d
a
y
 
0
 
o
r
 
d
a
y
 
0
 
a
n
d
 
1
.
 
T
h
e
 
va

lu
e 

fo
r 

ea
ch

 s
w

itc
h 

as
sa

y 
ex

pe
rim

en
t i

s 
th

e 
m

ea
n 

of
 d
u
p
l
i
c
a
t
e
 
w
e
l
l
s
.
 
P
 
v
a
l
u
e
s
 
d
e
t
e
r
m
i
n
e
d
 

tw
o-
t
a
i
l
e
d
 
s
t
u
d
e
n
t
s
 
t
 
t
e
s
t
.
 
P
a
i
r
w
i
s
e
 
c
o
m
p
a
r
i
s
o
n
s
 
t
o
 
L
P
g
 
a
l
o
n
e
 
l
o
g
 
1
0
 
(
r
a
w
 
va

lu
es

).
b 

D
et

en
ni

ne
d 

by
 R

N
A

 b
lo

t a
n
a
l
y
s
i
s
 
a
t
 
t
h
e
 
t
i
m
e
s
 
in

di
ca

te
d.

c
 
D
e
t
e
n
n
i
n
e
d
 
b
y
 
nu

cl
ea

r 
ru

n-
on

 tr
an

sc
rip

tio
n 

an
al

ys
is

 a
t t

he
 ti

m
es

 in
di

ca
te

d.

d
 
V
a
l
u
e
s
 
r
e
l
a
t
i
v
e
 
t
o
 
u
n
 
in

du
ce

d 
co

nt
ro

l.
e
 
V
a
l
u
e
s
 
r
e
l
a
t
i
v
e
 
t
o
 
L
P
g
 
a
l
o
n
e
.

f
 
F
o
i
d
 
i
n
c
r
e
a
s
e
 
i
n
 
to

ta
l %

 Ig
A

 +
 c

el
ls

 w
as

 3
.

,
 
3
.

,
 
a
n
d
 
2
.

fo
ld

 w
ith

 L
P

S
 +

 T
G

F6
 a

nd
 0

.
,
 
0
.

,
 
a
n
d
 
0
.

fo
ld

 w
ith

 T
G

F6
,
 
c
o
m
p
a
r
e
d
 
t
o
 
L
P
S
-
i
n
d
u
c
e
d
 
a
n
d
 
u
n
i
n
d
u
c
e
d

ce
lls

, r
es

pe
ct

iv
el

y,
 o

n 
da

ys
 3

4 
an

d 
5.

E
ac

h 
ex

pe
rim

en
t r

e
p
r
e
s
e
n
t
s
 
h
y
b
r
i
d
i
z
a
t
i
o
n
 
t
o
 
t
h
e
 
l
a
 
o
r
 

pr
ob

e.



.. 

-f.

. .

d .

Table II

Induction of nuclear run-on transcription of a-germline RNA in

29Jl cells (clone 22D) by TGF

Pro be

Hours of TGF

Exp# Treatment

1.6
2.4 1.3

Values represent the average fold induction of transcription
obtained after treatment of cells with 2ng/ml TGF and
hybridization to duplicate fiters.
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TABLE IV: ABILITY OF VARIOUS COMPOUNDS TO INCREASE l A SWITCHING IN 1.29 Cells

2ng/ml

1mM

1mM

Forskolin
1 OILM. 1 OOILM

cDt cAM P
cAMP

1mM

500ILM

500ILM

Dipvrid

1 OnM , 1 OOnM,

1ILM

cGMP
1mM, 3mM
db-cGMP

1mM

adosne
1ILM. 10llM

100; 250ng/ml

lonomvcin
61Lg/ml

BAPTA
1ILM

Proflavin
11LM 11LM

5; 5; 10ILM

Modes ol Action

Increase a-germline
transcription

Inhibit cAMP/cGMP
phoshodiester

Adenosine R blocde,
Inhibit DNA repair
Inhibit Top I & Topo II
DNA intercalators,
Stimulate Ca++ flux
Inhibit poly (ADP-ribose)

polymeras

Stimulate adenylate cyclas
(Increase cAMP)

cAP anlo

Non-xanthine cAMP
phosphoiesterase
inhibitor

Non-xanthine cGMP
phosphoiesterase
inhibitor

cGMP anal

Adenosine deamina-
resistant adenosine analog

++ ionophores

Intracellular Ca+ +
chelator

Topo II inhibitor
DNA intercalator

Inhibit DNA repair

Increas
tchina

YES
YES
YES

YES

YES

Fold Increas
Relative to LPS

19 + J. +
DAY 3 11.4:1.2(18)
DAY 4 6.9i 2.7 (7)
DAY 5 5.4:1 1.5 (4)

5 :I 1. (1 2)

6 :I 0.3(3)

3 :I 0.4(3)

3 :I 0.3 (7)
3 (1)

0 (1)

7 :I 0. 2(2)

5 :t 0.2(3)

9 :t 0.1 (2)d

3 (1)

3 :t 0. 0(2)

5 :t 1.2(4)

1 :t 0.0(2)

3 :I 0. 3(2)

5 :t 0.5(2)

19+
8:1 0. 9(18)
6:1 1.3(7)

6:1 0.4(4)

9 :1.3(12)

3 :I 0.4(3)

1.4 :I 0. 2(3)

9:t 1 (7)
6 (1)

3 (1)

9 :t 0. 1 (2)

0:t 0. 2(3)

8 :I 0. 0(2)d

8 (1)

1 :t 0.0(2)

3 :t 0.3(4)

8 :t 0. 2(2)

5 :t 0. 2(2)

4 :I 0. 3(2)

old ease
Relative to
LPS+ TGFB

19 + l. +

3 :t 0. 3(9)

8 :I 1.9(5)c

0 :t 0. 0(2)

I. +

9 :t 0.4(9)

0 :t 0. 6(5)c

2 :t 0. 2(2)

1.4 :t 0.4 (7) 1:t 0. 3(7)
8 (1) 0.7 (1)

4 (1)

0.4 :t 0. 2(2)

9 :t 0.04(3)

3 :t 0. 1 (2)

0.4 (1)

7 :I 0.0(2)

2:t0. 2(4)

7 (1)

9 :t 0. 1(2)

2 (1)

4:1 0. 1(2)

0 (1)

5 :t 0. 2(2)

9 :t 0. 1 (3)

0:t 1(2)d

0.4 (1)

9 :t 0. 2(2)

2 :t 0. 2(4)

6 (1)

8 :t 0. 0(2)

3 (1)

5:1 0. 1(2)



(Table IV footnotes)

Cells were asayed for IgA+lgM+ cells and totallgA+ cells (which includes IgA+lgM+ cells) on day 3 or day 4 by
immunofluorescence microsy. In a few ca, cells were also assayed on day 2 or day 5. Values represent
the average fold increase in the % pos ive cells :I SEM. The number of expriments is shown in parentheses.

In all caes LPS or LPS + TGFB are included in the cultures, as indicated by the column in which the results are found.

TGFB fold over LPS: Day 3; A+M+ (p",O.OO01), A+ (P",O.OO01).

Day 4; A+M+ (P",O.OO1), A+ (P",O.OOG).

Day 5; A+M+ (P= 01), A+ (P= 011).

IBMX fold over LPS: A+M+ (P",O.OOO1), A+ (P",0.OOO1).

IBMX fold over LPS + TGFB: A+M+ (P:.0.05). A+ (P= 047).

Caffeine fold over LPS: A+M+ (P:.0.05) A+ (P=O.04).

Caffeine fold over LPS + TGFB: A+M+ (P",O.04) A+ (P",0.OO5).

! \,)

Paired two-tailed students t test. Log10(raw values). In a few instances where 0% switching

ocrred in the presence f LPS alone or LPS + nicotinic acid , a value of 0.1% (the limit of

detecion of the asay) was use in order to obtain an estimate of fold increase over LPS.

1 of 5 expriments is from a large scale experiment where media was not diluted on day 1

and cells. were asyed on day 2.

In 1 of 2 expriments , media was not diluted on day 1.
Values relative to LPS + IBMX :I TGFB. No blocking of IBMX effect by 

2-C1 adenosine.

A23187 fold over LPS: A+M+ (P:.0.2).



Table V: Fold Increase in IgA Switching by Inhibitors of
Poly(ADP-ribose) Polymerase at Day 3 in 1.29 cells

Fold over LPS

Treatment laA+laM+ l.b
+/- 0.4 (8) 002

1.4 +/- 0. (7) 

Methoxybenzamide (2mM) :;5. +/- 0.6 (8) 0001 

M-anisic acid (2mM) :;2.

+/-

(7)

Nicotinamide (10mM) :;6.8 +/- 1.7 (5)

Nicotinic Acid (10mM) +/- 0. (4)

+/- 0. (5) 

+/- 0. (4) 

Fold over LPS + TGFB

Trea A+l

Methoxybenzamide (2mM) 4.

+/-

(7) 003 +/- 0. (7) OOO 1

M-anisic acid (2mM)

+/-

(5) 1.6

+/-

(5)

Nicotinamide (10mM)

+/-

(8) O. 000 5.4

+/-

0.4 (8) O. 000 1

Nicotinic Acid (10mM) +/- 0. (6)

+/-

(6)

Compounds listed were added in addition to LPS (upper) or
LPS + TGFB (lower).

IgA+lgM+ designates the fold increase in the percent of cells
expressing both IgA and IgM in their cytoplasm.
IgA+ designates the fold increase in the percent of total IgA+
cells including the IgA+lgM+ dual expressing cells.

Average fold Increase in percent positive cells +/- SEM (n).
Comparisons to LPS alone (upper) or LPS + TGFB alone (lower).

Paired two-tailed students t test with Bonferroni adjustment.
Comparisons to LPS (upper) or LPS + TGFB (lower) log10 (raw values).



Table VI. Induction of IgA Switching in 1.29p cells by 1 dihydroxy-isoquinoline

Analvs Treat ent Cell

LPS + TGFB 9:!0. 6:! 0.

LPS + TGFB + l diOH-isoQ (30nM) 1.7 :! 0. 8:! 0.

LPS + TGFB + 3MB 9:! 0. 11. 2 :t 0.
LPS + TGFB + Nicotinamide 8.4 :t 0. 13. 1:!0.

II. LPS + TGFB 1 .7 :t 0. 3 :t 0.
LPS + TGFB + 1 . diOH-isoQ (20nM) 9:t0. 8 :t 0.

(30nM) 5 :t 0. 2 :t 0.
(40nM) 6 :t 0. 6 :t 0.

LPS + TGFB + 3MB 5 :t 0. 8 :! 1.
LPS + TGFB + Nicotinamide 4 :t 0. 7 :t 0.

II. LPS + TGFB 1.5 :t 0. 2.4 :t 0
LPS + TGFB + 1 diOH-isoQ (20nM) 1 :t 0. 7.4 :t 1.9
LPS + TGFB + 1 diOH-isoQ (30nM) 3 :t 0. 11.4 :t 0.4
LPS + TGFB + 1 diOH-isoQ (40nM) 3.4 :t 0. 1 0. 7 :t 0.4
LPS + TGFB + 3MB 5.4 :t 0. 7 :t 0.4
LPS + TGFB + Nicotinamide 7 :t 0.4 10.9:! 1.5

IV. LPS + TGFB 6:t 0. 7:! 0.

LPS + TGFB + 1. diOH-isoQ (30nM) 3 :t 0. 18. 7:!0.
LPS + TGFB + Nicotinamide 11. 6 :! 0. 18. 1 :! 0.

a Includes IgA+lgM+ cells.

b Averages of duplicate wells :t range. At least 1000 cells were counted per well.
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A+M+

TREATMENT

Day 3 

LPS
(n=18)

LPS + TGFB

Day 4 

(n=

DayS (n=

LPS

% Positive Cells (Av.:tSEM)

Figure Raw values of TGFf3 induced IgA switching in 1.29j1 cells on day 3, 4

and 5. Cells were cultured in 50l1g/ml LPS, added on day 0, with 2ng/ml TGF~,

added on days 0 and 1, or days 0,1, and 2. Inducers were diluted 6-fold on day 1

with fresh media and cultures were assayed for % IgA + M + and total % IgA 

cells by immunofluorescence microscopy on day 3, 4, or The % A includes

all cells expressing IgA, including double positive cells. The % A+M+ includes

only cells expressing both IgA and IgM. Values shown are the average

percent positive cells :t SEM. The number of experiments performed on each

day is shown in parentheses. Increases in average %lgA + M + cells with TGF~

were significant on days 3 and 4 with p.:0.001 and p.:0.02, respectively. On day 5,

p::0.05 although the fold increase was significant (see Table I). values were

determined by a two-tailed students t test.



UNSTAINED CELLS
G oat-a nt i -m 0 u se

IgM FITC

G oat-a nti -m 0 use
IgA RITC

Figure Immunofluoresce nce microscopy demonstrating double positive

cells. For each row, left, unstained cells; middle and right, cells stained with

anti-IgM FITC and anti-IgA RITC, respectively. White arrowheads, double

positive cells.



I a.

820- Sa.3

8g11 
E S H E 6g11

I a. So. Ca.

4kb, 0kb

1.7kb

Figure Map of unrearranged Ca. gene locus, a. - germline transcripts, and

probes. The 1.7kb transcript is the predominant a.-germline RNA in 1.2911 cells

and contains the la exon spliced to Ca. exons. The 2.4kb and 3.0kb forms also

encode a. membrane domains (Stavnezer et al. 1988). Probes are described in

detail in Materials and Methods and contain the following; la, 
start site(s) and

upstream ex on of a.-germline RNA; Sa3, a switch sequences; C , a. constant

region gene sequences; - 820-0, sequences 5' of start sites of a- germline

transcript.
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Figure 4. RNA blot demonstrating effects of TGFf3 on the 
steady state level of germline

transcripts in I.29p. cells.

level of 1.7kb a -germline transcript 3-fold in the absence of LPS and 4-fold in the
In this experiment, treatment with 2ng/ml 

TGF increased the

presence of LPS. RNA was isolated from I.29~ clone 22AIO cultured for 48 h in the

I~g poly(A)+ RNA was loaded per
presence of the indicated concentrations of 

inducers.

lane. Blots were hybridized to the indicated probes which are described in 
detail in

NEG C refers to RNA obtained from cells
Materials and Methods and/or shown in Fig. 3.

cultured without inducers.

signals obtained for 
hybridization to probes specific for the 

uninduced genes GAPDH and
The data were quantitated by normalization to the 

average of

A50.



22D6 24 hr. Induction
Time of RNA isolation:

24 hr. 72hr.

"T "T "T 

Figure 5. RNA blot analysis of RNA isolated from 1.29Jl clone 22D cultured for

24 h in the presence of the indicated inducers. At 24 h, inducers were

removed, cells were diluted 2- fold, recultured, and RNA was isolated at the

indicated times from the start of the cultures. 20l1g of total cell RNA was loaded

per lane. Hybridization of the Ia. probe detecting the predominant 1.7 kb a-

germline transcript is shown. Below are photographs showing 18S ribosomal

RNA (lower band) used for normalization.



TGF (2ng/m I)

4h 8h 18hVector- 
Jl- 

......

820- 0)-
1 a.-

Sa.3- -"'w

GAPDH-

-"'''

"". f

.. 

Figure 6. A. Run-on transcription analysis of nuclei isolated from 29/1 clone

22D after the indicated times of incubation with TGFfJ (2nglml). 
32P- Iabeled

RNA was hybridized to filters containing 511g of immobilized plasmid DNA with

the indicated inserts described in detail in Materials and Methods and/or Fig. 

Data were normalized to values obtained for the uninduced gene GAPDH lL.

Nuclear run-on analysis of nuclei isolated from 22A 10 cells after 18 h 

treatment with the indicated concentrations of TGF~ in the presence of LPS.

Probes are the same as in 6A.



vector-

:'l"

r''' lA.rl1

. : , .
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. ,

GAPDH- 

.....,

S a

Figure 7. Run-on transcription assay in nuclei from /.2911 clone 22D induced

for 
/2 h with TGFf3 in the presence and absence of 80ng/ml (850U/ml) rIL-

Note that in this experiment, hybridizatio to the la probe did not exceed

background hybridization to 
vector sequences in the control lane. Although

induction by TGF~ was clearly visible, quantitatio of labeled RNA hybridizing

the Ia. probe could not be obtained.

hybridizing to the Sa3 probe.

Quantitation was performed on 
RNA
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Figure 8.

36 h Induction

10 12 14
Time post Act D (h)

1/2 (h)

5.4
LPS

LPS + TGFB

1/2

LPS + TGFB 4.4

LPS (50ug/ml) 3.4

TGFB (2ng/ml)
2.4

1 0

Measurements of a-germline RNA half- life in the presence of TGFf3.

actinomycin D or DRB

1.2911 cells were cultured for d. 36 h in or IL. 23 h with the indicated inducers at

transcription.

23 h Induction

Time Post Drb (h)

was added, respectively, to inhibitwhich time

Total cell RN A was analyzed by RNA blot analysis and

hybridization with the la probe (see Fig 3) at the indicated times after addition

of transcription inhibitor. Half life of a. germline RNA was determined by

linear regressIon.



LPS

DAY 

LPS + IFN

I ex

" '

"If

" "

I,il
It 

.81' 7kb

GAPDH

. . . .. ,. . . - .. 

f'''.

C/ C/ .; C/ a. a. a. 

o: 

.. 

. :i

I ex M $. _11 7kb

,..;,-

A5011,."

Figure 9. A. Blot analysis of RNA isolated from 1.2911 clone 22D after various

days of treatment with 50l1g/ml LPS and LPS IOOU/ml IF Ny. Cells were split

1:3 on days 2 and 4. LPS and IF Ny were added on day 0 and day 2. 2.4 I1g of

poly(A)+ RNA was loaded in each lane. Blots in A and B were hybridized with

the Ia. probe. Normalization to the GAPDH signal was used to correct for

unequal loading. IL. RNA blot analysis of 22D cells treated for 2 days :t 5011g/

LPS :t 23% H-28 IL-4 sup. :t 100U/ml IFNy. 311g poly(A)+ RNA was loaded in each

lane. Unequal loading was corrected by normalization to the A50 signal.



100
LPS + 23% ILA sup.
LPS + 8% IL-4 sup.

LPS

1 0

1 0 1 2 1 4 1 6

IgA cell s

Figure 10. Effect of IFNy on expression of IgA in 1.29J1 clone 22D in the

presence and absence of lL-4 (H-28 supernatant). Cells were incubated with

the indicated inducers for 4 days and assayed for the %IgA + cells on day 10 by

immunofluorescence microscopy.



Figure 11. I.29/J cells secrete IL- after treatment with LPS. 1.2911 clone 22D

was cultured at lx106 cells/ml for 6 h or 0.25xl06 cells /ml for 48 h with

25l1g/ l LPS in the presence and absence of 2ng/ml TGF Supernatants were

harvested and assayed for the abilty to support growth of the IL-2/IL-

dependent cell line, CTLL as measured by (3 H) - thymidine incorporation.

Background proliferation of CTLL cells has been subtracted. Values are the

average of triplicate wells. A. and ll. CTLL proliferation with IL-2 and IL-

standards, Il. CTLL proliferation in presence of sups from 22D cells cultured 6

h with LPS, and c. and E.. 48 h with LPS. E. CTLL proliferation in presence of

sups from 22D cells cultured 48 h with TGF~ or LPS + TGF~. Two assays were

performed on sups from the same experiment. A, B, C, assay 1; D, E, F, assay 

CTLL assays performed in the presence of anti- IL- or anti- IL-4-specific

antibodies included, + (gIL-2, + anti-IL-2 antibody (S4B6) and + (gIL-4, + anti-IL-

antibody (lIB 11) (described in Materials and Methods).
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Control
+LPS + LPS

= 6

+ 4

1 0
11 811 sup.

Treatmen

LPS

LPS + 11811
LPS + 11811 + IL-

LPS+ IL-

LPS + TGFB

LPS + TGFB + 11811
LPS + IL-4 + TGFB

IL-

(purif.11 811 )(j.g/ml)

IgA+ Cells
1 a

Figure 12. Anti-IL- inhibits LPS- induced IgA expression on day 10. 1.2911 cells

(clone 22D) were plated at 0. 15xl06/ l in Iml volumes with LPS (25I1g/ l) and

11B11 sup (A) or purified 11B11 antibody (B). Cultures were split 2- fold on

days 3, 4, and 7 with fresh media and analyzed by immunofluorescence

microscopy on day 10. The averages of duplicate wells are shown. Ranges

were :5 :to.5 for +LPS wells and :5 :to.8 for -LPS wells. c. Cells were cultured at

25xl06/ l with the indicated inducers. Inducers were removed on day 4 and

cells were fed and split as necessary before analysis on day 10 by

immunofluorescence microscopy. Concentrations of inducers were, LPS,

25I1g/ l, llBll supernatant, 2.5%, rIL-4, 1 OOOU/mi , TGF~, 2ng/ml. Average (:t

range) of duplicate wells are plotted. 1000 cells were counted per well.
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GAPDH

Figure 13. RNA Blot demonstrating that anti-lL- antibody does not inhibit a-

germline transcri pts 1.2911 cells. 1.2911 cells were induced with LPS

(5011g/ml) :t TGF~ (2ng/ml) :t lIB 11 antibody (2.5% sup.) for 48 hr. Total cell

RNA was isolated and 20l1g loaded per lane. RNA was blotted and hybridized to

the la probe (Fig. 3) and to the GAPDH probe. RNA from two separate

experiments are shown on the left and right sides of the blot. In the

experiment the right, the quantity llBll sup. used completely

neutralized IL- activity in all the cultures in which it was added as assayed by

CTLL assay.



IMX (1 mM)

enQth o
ductioeat men

FORSK. + IMX

LPS (50ug/ml)

6 hrs.
II 12 hrs.

.. 24 hrs.
48 hrs.

LPS + IMX

LPS + IMX + FORSK.

FORSK. (10uM)

IgA+ Cells

eat

IMX (0.5mM)

IMX (1 mM)

LPS (50ug/ml)

LPS + IMX (O.5mM)

LPS + IMX (1 mM)

TGFB (2ng/ml)

LPS + TGFB

LPS + IMX (0.5mM) + TGFB

LPS + IMX (1 mM) + TGFB

24 hrs.

%lgA+ Cells

Figure 14. 1BMX increases 19A Expression on day 10. I.29~ cells were cultured at

25xl06/ l with the indicated inducers. Cells were diluted l6-fold at the indicated

times in Ll and at 24h in lJ. Inducers 
were removed on day 4 (A) or 5 (B). 

Cells were fed

and split as needed until day 10 and analyzed by immunofluorescence 
microscopy. In A

only wells containing LPS were analyzed at 48 The ranges of duplicate wells are

indicated. 500-1000 cells/well in A and 1000 cells/well in B were counted.



TREATMENT

LPS (501l/ml
LPS + TGFB (2ng/ml

LPS + TGFB + CPt-CAM

(100~M
(500~M

(1mM
(3mM)

LPS + TGFB + db-cAMP (1 
(10uM

(100~M
(500~M

(1mM
(3mM

LPS + TGFB + Nicotinamide
LPS + TGFB + Nicotinic Aci

LPS + TGFB + Nicotinamide + H89 (3~M
1. (6~M

(i2~

rn %A+M+ cells
%A+ cells

10 12 14 16 18 20 22 24

% Positive Cells (Av.:!Range)

Figure 15. Switching to IgA in 1.29Jl ceUs is not increased by cAMP analogs or

inhibited by inhibitors of protein kinase (PKA). 1.2911 cells were cultured at

15xl06/ l with LPS (50I1g/ml) added on day 0 and TGF~ (2ng/ml) added on

days 0, 1 and Inducers were diluted 6-fold on day 1, and switching was

%lgA + cells includes allassayed by immunofluorescence microscopy on day 

cells expressing IgA. IgA +lgM+ cells includes only those cells expressing both

IgA and IgM. Results are the average :t range of two experiments in which

cells were cultured in duplicate. 1000 cells were counted per well.

--- "" - -- -



LPS +

Treatment
LPS (50 ug/ml)

TGFB (2nglml)

db-cAMP + TGFB

8-amino-cAMP + db-cAMP + TGFB

8-amino-cAMP + TGFB

8-cpt-cAMP + db-cAMP + TGFB
8-cpt-cAMP + TGFB

db-cAMP (1 mM)

8-amino-cAMP + db-cAMP

8-amino -cAMP (0.5mM)

cpt-cAMP + db-cAMP
8-cpt -cAMP (1 mM)

% IgA+ IgM+ cells

. % 

IgA+ cells

Positive Cells

Figure 16. Failure of combinations of cAMP analogs to increase LPS- induced

/gA Switching in /.29/1 cells. 1.2911 cells were cultured at 0.25xl06/ l with LPS

(5011g/ l) :t TGF~ (2ng/ml)(added on days 0 and 1) and 8-Cl-phenyl thio-cAMP

(lmM), db-cAMP (lmM) or 8-NH3-cAMP (500I1M) and various combinations

thereof. Cultures were diluted 6- fold at 24 h and cells were analyzed by

immunofluorescence microscopy on day 

- --

- n



TREATMENT
LPS (50j./ml)

LPS + 3MB (2mM)

LPS + MAA (2mM)

LPS + NICOTINAMIDE (10mM)

LPS + NIC. ACID (10mM)

LPS + TGFB (2ng/ml)

LPS + TGFB + 3MB

LPS + TGFB + MAA

LPS + TGFB + NICOTINAMIDE

LPS + TGFB + NIC. ACID

(12)

(8)

A+M+

(5)

(7)

(8)

2 3 9 10 11 12 13 14

% Positive Cells (Av. :tSEM)

Figure 17. /gA cells induced on day after treatment of /.29/1 cells with

Cells were cultured at 0. 15-
inhibitors of poly(ADP-ribose) polymerase (PARP).

O.4x 106/ l with LPS (50mg/ml) plus inhibitors (or inactive analogs) added on

day 0 and TGF~ (2ng/ml) added on days 0, 1 and 2 or days 0 and 
1 in a few

ex periments. Cells were assayed by immunofluorescence microscopy on day 

The number ofThe average % total IgA+ or % IgA+lgM+ cells :t SEM is shown.

Differences in %lgA +M + cells with 3MB
experiments is shown in parentheses.

and nicotinamide were significant with p-c0.05 relative to controls without

PARP inhibitors.
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A. LPS + TGFB

B. LPS + TGFB + NICOTINAMIDE
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C. LPS + TGFB + NICOTINIC ACID

Figure 18. Photographs of representative fields observed 

immunofluorescence microscopy after treatment with nicotinamide Cell s

were visualized under low magnification after treatment with A. LPS + TGF~, Ii

LPS + TGF~ + nicotinamide, C. LPS + TGF~ + nicotinic acid. For each of A, B, and

C: on the left are cells stained with anti- IgM-FITC and on the right is the same

field stained with anti-IgA-RITC. Photograph was taken from a representative

experiment In which nicotinamide caused a 5-fold increase il double

expressing and total IgA cells.



Treatmen
LPS + TG (2ng/ml)

LPS + TG + 3MB (2mM)

LPS + TG + Nicotinamide (10mM)

LPS + TG (2ng/ml)

LPS + TG + 3MB (2mM)

LPS + TG. + Nicotinamide (10mM)

Treatmen

LPS + TG (2ng/ml)

LPS + TG + 3MB (2mM)

LPS + TG + Nicotinamide (10mM)

LPS + TG (2ng/ml)

LPS + TG + 3MB (2mM)

LPS + TG + Nicotinamide (10mM)

A+M+
. A+

o 2 4 6 8 10 12 14 16 18
% Positive Cells
(Av. 1: Range)

A+M+
. A+

% Positive Cells
(Av. 1: Range)

Figure 19 Staining of 1.29Jl ceUs is resistant to acid treatment. 1.2911 cells were

cultured at 0. 15x 106 /ml and treated with the indicated inducers which were

diluted six- fold on day 1. A. TGF~ (TG) was added on day 0, 1, 2 and cells were

analyzed by immunofluorescence microscopy on day Prior to fixation, cells

were treated for 1 min. at 4 C with pH 4. acetate buffer (described in Materials

and Methods) to remove cytophilc Ig. lJ TGF~ was added on days 0 and 1 and

cells were analyzed on day 2. Cells were treated with pH 4. acetate buffer post

staining to remove staining reagents associating by cytophilc attachment.

--- --..-



Treatment
LPS (SOj.g/ml)

LPS + 3MB (O.02mM)
(O.2mM)

(1 mM)
(2mM)
(4mM)

LPS + MM (1 mM)
(2mM)

'V (4mM)
LPS + Nicotinamide (10mM)

LPS + Nic. Acid (10mM)
LPS + TGFB (2ng/ml)

LPS + TGFB + 3MB (O.02mM)
(O.2mM)

(1 mM)
(2mM)
(4mM)

LPS + TGFB + MAA (O.02mM)
(O.2mM)

(1 mM)
(2mM)
(4mM)

LPS + TGFB + Nicotinamide
LPS + TGFB + Nic. Acid

IZ A+M+

Positive Cells

1 0

Figure 20. Experiment demonstrating dose responsiveness of I gA switch

induction by 3MB. Cells were cultured with LPS (50I1g/ml) and various doses of

3MB or other inducers diluted 6-fold on day 1. TGF~ (2ng/ml) was added on day

o and Cells were analyzed by immunofluorescence microscopy on day 



" -

Figure 21. Map of the expressed Jl gene and unrearranged a genes in IgM+

29Jl cells. Probes for C (M2-5B), Ca. (a.), and Ia. (upstream exon of a.- germ line 

transc ri pts) are indicated and are described Materials and Methods.

denotes the tandemly repeated switch regions. fL. Southern blot

demonstrating that nicotinamide reduces the intensity of germline BglII DNA

fragments containing Jl and a switch regions. DNA from 1.2911 cells treated

with the indicated inducers was digested with B g 111. Expressed 11, denotes the

unrearranged I1 containing 
B g 111 fragment of the expressed chromosome;

11, denotes the 
BglII fragment containing most of CI1 and its 3' segment from

the expressed and nonexpressed chromosomes; and Nonexpressed 11, denotes

the 5' I1 fragment of 
the nonexpressed chromosome. The unrearranged B g 11 I

fragment of the a. locus is designated C a. and an unrearranged B g 111 fragment

hybridizing with the C probe is designated C K. c.. Densitometry of 

hybridization signal to blot B. lL. Results of switch assays from this

experiment on days and 7.
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Figure 22. lL RNA blot demonstrating that inhibitors of PARP do not increase

germline transcripts in 1. 29Jl cells at 24 hours. 1OI1g of total cell RNA was

loaded per lane. Blot was sequentially hybridized with probes specific for the

germline exon (Ia.) of a.-germline RNA (see Figs. 4 and 21A), the mouse PARP

mRNA, and GAPDH mRNA. fL. PARP inhibitors induce switching on day 

Replicates from were cultured for 2 days and assayed for IgA switching by

immunofluorescence microscopy.
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Figure 23. Nicotinamide cannot overcome the requirement for endogenous

15x1061.2911 cells were stimulated withIL-4 in IgA switching by 1.2911 cells.

LPS (5011g/ l) + TGF~ (2ng/ml) :t Nicotinamide (lOmM) :t purified llB 11 (or

AD8) at the indicated doses. Inducers were diluted 6-fold on day TGF~ was

added on days 0, 1, and 2. 11 B 11 and AD8 were added on days 0 and 1. Cells were

At least 1000 cells were
analyzed by immunofluorescence microscopy on day 

counted per well. The ranges of duplicate wells are shown.
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