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Abstract 
 

Cleavage and polyadenylation of a precursor mRNA is important for 

transcription termination, mRNA stability, and regulation of gene 

expression.  This process is directed by a multitude of protein factors and 

cis elements in the pre-mRNA sequence surrounding the cleavage and 

polyadenylation site.  Importantly, the location of the cleavage and 

polyadenylation site helps define the 3’ untranslated region of a transcript, 

which is important for regulation by microRNAs and RNA binding proteins.  

Additionally, these sites have generally been poorly annotated. To identify 

3’ ends, many techniques utilize an oligo-dT primer to construct deep 

sequencing libraries.  However, this approach can lead to identification of 

artifactual polyadenylation sites due to internal priming in homopolymeric 

stretches of adenines.  Previously, simple heuristic filters relying on the 

number of adenines in the genomic sequence downstream of a putative 

polyadenylation site have been used to remove these sites of internal 

priming.  However, these simple filters may not remove all sites of internal 

priming and may also exclude true polyadenylation sites. Therefore, I 

developed a naïve Bayes classifier to identify putative sites from oligo-dT 

primed 3’ end deep sequencing as true or false/internally primed. Notably, 

this algorithm uses a combination of sequence elements to distinguish 

between true and false sites.  Finally, the resulting algorithm is highly 
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accurate in multiple model systems and facilitates identification of novel 

polyadenylation sites. 
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INTRODUCTION 
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 The central dogma of molecular biology was first proposed by 

Francis Crick in the 1950s to explain the flow of genetic information.  In a 

very simplified explanation, the central dogma states that DNA is 

transcribed into RNA, which is translated into protein.  During 

transcription, RNA polymerase II (RNAP II) is recruited to a gene promoter 

to initiate transcription.  The direct RNA transcript is called precursor-

messenger RNA (pre-mRNA) and must be processed into messenger 

RNA (mRNA) before it can be used as a template for translation. !

Key steps in RNA processing are the addition of a methylated 

guanine (GTP) cap; splicing of introns and exons; cleavage of the 3’ end; 

and successive addition of a poly-adenosine (poly(A)) tail.  The 5’ end of 

the pre-mRNA is modified by the addition of a GTP cap when it is about 

20 nucleotides (nt) long [1].  Splicing of the pre-mRNA to remove introns, 

which do not code for protein, is coupled with transcription elongation [2].  

The 3’ processing complex recognizes specific sequence elements (cis 

regulatory elements) located on the 3’ end of the transcript leading to 

cleavage of the pre-mRNA by Cleavage and Polyadenylation Specificity 

Factor [3].  Finally, poly(A) polymerase (PAP) adds 200-300 adenosines to 

the 3’ end (in humans), partially regulated by Poly(A) Binding protein, 

which binds after 11-14 adenosines are added [4].  Importantly, the C 

terminal domain of RNAP II increases cleavage efficiency in vitro [5].  It is 
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thought that cleavage and polyadenylation are post-transcriptional 

modifications that occur while the C terminal domain of RNAP II is bound 

to cleavage and polyadenylation factors (Figure 1.1) [2].  3’ end 

processing has also been linked to proper transcription termination [6-8]. 

Cleavage and polyadenylation of a pre-mRNA is important for many 

reasons.  First, the cleavage site determines the 3’ end of the transcript.  

This defines an important regulatory region downstream of the stop codon 

known as the 3’ untranslated region (3’UTR).  The 3’UTR can be bound by 

microRNAs, short non-coding regulatory RNAs, or RNA binding proteins, 

both of which can affect the stability or the translatability of the transcript 

and thus gene expression.  Cleavage and polyadenylation are also 

important for export of the mRNA into the cytoplasm and transcript 

stability.  The poly(A) tail is bound by poly(A) binding protein, which in 

combination with the 5’ cap, helps regulate translation [9].  

Due to the importance of the 3’UTR and generally poor annotation 

of sites of cleavage and polyadenylation (pA) sites, techniques have been 

developed to identify pA sites on a genome-wide scale (reviewed in [10]).  

However, a major drawback is that the majority of these methods rely on 

priming by an oligonucleotide (oligo) of deoxythymines (oligo-dT).  Oligo-

dTs may bind to internal homopolymeric stretches of adenines as well as 

to the poly(A) poly(A) tail. Internal priming events are generally defined by 
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Figure 1.1: Cleavage and Polyadenylation is regulated by a multitude 
of factors. Purification of the human 3’ processing complex identified ~85 

proteins involved in cleavage and polyadenylation [11]. These included 

known polyadenylation factors such as the CPSF complex, CstF complex, 

CF I complex, CF II, polyA polymerase, and multiple polyA binding 

proteins. Additionally, RNAP II, transcription factors such as TF I and TF 

II, and splicing factors were discovered. !

Cis sequence elements may direct 3’ end processing. Cleavage 

and polyadenylation at a proximal or intronic site is associated with variant 

polyadenylation signals upstream and U rich sequences downstream [12-

24]. Usage of distal polyadenylation sites is associated with canonical 

polyadenylation signals (AAUAAA) and GU rich sequences downstream. 

Far upstream U rich elements, such as UGUA, as well as auxilliary 

downstream G- rich elements or secondary structure may aid in cleavage 

and polyadenylation [25]. 

Additionally, changes in protein factors will also affect cleavage and 

polyadenylation. Increasing amounts of transcription factors, such as E2F 

and Mef2, are associated with 3’UTR shortening [26, 27]. Additionally 

increasing amounts of CstF are associated with proximal polyadenylation 

site usage [23, 28], while increasing amounts of CFI are associated with 

distal polyadenylation site usage [20]. Decreasing or blocking splicing 

factors is associated with polyadenylation at proximal sites [23, 29]. 

Additionally, RNAP II pausing, allowing polyadenylation factors to interact 

with a weaker polyadenylation signal, is associated with polyadenylation at 

a proximal site [27, 30-34]. Finally, RNA binding proteins or polyA binding 

proteins may facilitate interaction of polyadenylation factors with a specific 

polyadenylation site or block the interaction of a polyadenylation factors 

with a specific site [35-38]. Adapted from [39]. 
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 a proportion of adenines downstream of a putative site and removed 

during computational analysis. Simple filtering does not remove all 

instances of internal priming, and may remove true 3’ ends [40, 41].  Thus, 

I used machine learning to reliably distinguish true 3’ ends from internal 

priming events. This innovative approach is highly accurate in multiple 

organisms and facilitates identification of novel 3’UTRs.  

In this introduction, I will review cleavage and polyadenylation of 

mRNAs, including a discussion of alternative polyadenylation.  Next, I will 

describe technical approaches that have been used to identify 3’ ends.  

Finally, I will introduce machine learning and its application in biology and 

medicine.  

 

Cleavage and Polyadenylation of pre-mRNAs 

 

The 3’ processing complex is composed of 85 proteins [11], 

including multi-subunit protein complexes, such as Cleavage and 

Polyadenylation Specificity Factor (CPSF), Cleavage Specificity Factor 

(CstF), Cleavage Factor I (CFI), that bind cis regulatory elements, known 

as the polyadenylation signal (PAS), downstream sequence element 

(DSE), and upstream sequence element (USE), respectively, to modulate 

cleavage and polyadenylation (Figure 1.1).  In one of the earliest studies, 
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Proudfoot and Brownlee aligned the sequences adjacent to the 3’ end of 

six different messenger RNAs (mRNA) from mouse, chicken, rabbit and 

human [42].  They discovered the sequence AAUAAA was present 

approximately 20 nt from the 3’ end in all six mRNAs (Figure 1.2).  

AAUAAA is now known as the canonical PAS, though single nt variants 

are also functional [43].  The PAS is known to bind CPSF (Figure 1.3) [44].  

Proudfoot also noted in five out of the six mRNA ends surveyed that a 

cytosine was the last nucleotide before the poly(A) tail (Figure 1.2) [42].  

Furthermore the dinucleotide CA is present most frequently 5’ of the pA 

site (Figure 1.1, 1.2, 1.3) [20, 43, 45].  Additionally, downstream of the pA 

site guanine/uracil or uracil rich sequences, known as DSE, bind CstF 

[46].  Uracil rich sequences upstream of the PAS, known as USE may 

recruit CFI [47].  CPSF, CstF, and CFI may be present along the entire 

transcriptional unit [31], thus the USE, PAS, and DSE signal where the 

transcript should be cleaved and polyadenylated.  

Diverse combinations of the cis elements described above may 

define the site of cleavage and polyadenylation of a pre-mRNA.  For 

example, only an adenine-rich sequence, rather than a canonical PAS, 

and strong uracil-rich DSE are needed for 3’ end processing of JUNB [48]. 

Stronger PASs contain uracil-rich elements 5 nt downstream and a slightly 

greater enrichment 25 nt downstream, whereas sites with no PAS have a 
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Figure 1.2. Alignment of the 3’ end sequence in six mammalian 

mRNAs. A. Rabbit a-globin. B. Rabbit b-globin. C. Human a-globin. D. 

Human b-globin. E. Mouse immunoglobulin light chain. F. Chicken 

ovalbumin mRNAs.!!
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Figure 1.3 Cis regulatory elements bind proteins involved in cleavage 

and polyadenylation to define the cleavage and polyadenylation site. 

Uracil rich upstream sequence elements, such as UGUAN, bind Cleavage 

Factor I. The polyadenylation signal, AAUAAA or a single nucleotide 

variant, is located approximately 20 nucleotides upstream of the cleavage 

and polyadenylation site and is bound by Cleavage and Polyadenylation 

Specificity Factor. Cleavage usually occurs 3’ of a CA dinucleotide. 

Downstream sequence elements are bound by Cleavage and 

Polyadenylation Stimulatory Factor and are generally guanine/uracil or 

uracil rich.  
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single strong peak of uracil-richness 20 nt downstream [24].  Furthermore, 

3’ end sequencing in parallel with cross-linking immunoprecipitation of 

CstF-64 followed by deep sequencing (CLIP-seq) revealed putative pA 

sites that may contain CstF-64 bound downstream had uracil-rich motifs in 

the 20-40 nt downstream, whereas sites only identified by 3’ end 

sequencing had mostly guanine richness in the same region [23]. 

Additionally, sites identified by CLIP-seq of CstF-64 containing AAUAAA 

upstream showed UG-rich motifs, while those without AAUAAA showed U-

rich motifs.  Taken together, these results suggest that a combination of 

sequence elements is important for 3’ end processing. 

CPSF and the Polyadenylation Signal 

Though the canonical PAS is known as AAUAAA, different 

kingdoms tend to use different motifs, though all are located ~20 nt 

upstream of the pA site.  In Entamoeba histolytica, a human parasite, 

AAWUDA motif is associated with polyadenylation [49].  Yeast tend to use 

AAAATA, with the motif AATAAA enriched slightly less [50, 51], though 

more recently AAWAAA was also identified [52]. AAUAAA is still the 

dominant PAS in plants, but is only present upstream of 7% of pA sites 

[40, 53].  Usage of canonical AAUAAA in 10 metazoans (H. sapiens, C. 

familiaris, M. musculus, R. Norvegicus, G. galus, D. rerio, T. rubripes, D. 

melanogaster, A. gambiae, and C. elegans) ranged from ~50-70% of pA 
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sites, with the higher order organisms using the canonical PAS more 

frequently [12, 13, 17, 18, 26, 54-57].  Other sites may use a variant PAS 

or no PAS at all.  The consensus PAS identified in humans is NNUANA, 

suggesting that positions 1,2,5 are highly variable while positions 3,4,6 are 

highly conserved [17].  Approximately 10-15% of C. elegans, mouse, and 

human pA sites use no PAS [12, 13, 17, 18, 24, 55, 57], although, the 

proportion is slightly higher in zebrafish [56] and Drosophila [55].  Finally, 

comparison of pA sites in human testis, liver, kidney, muscle, and brain 

showed these tissue use similar proportions of canonical and variant 

PASs [45]. 

To determine the functionality variant PASs, single nt mutations of 

AAUAAA in the simian virus 40 late (SV40) poly(A) signal were generated 

and examined in in vitro polyadenylation or cleavage reactions using HeLa 

cell extracts [43].  All single nt variants of AAUAAA decrease in vitro 

polyadenylation.  Cleavage efficiency, tested in a subset of the variants 

used for the polyadenylation reaction, was decreased similarly.  

Interestingly, Graber et al. demonstrated the distribution of AAUAAA and 

variants in Drosophila, mouse, and human correlated with these in vitro 

activities [43, 58].  Additionally 269 vertebrate mRNAs were cleaved most 

frequently adjacent to the dinucleotide CA [43].  Single or double 
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mutations of this dinucleotide shifted the position of cleavage site but did 

not affect cleavage efficiency. 

CPSF is necessary for in vitro polyadenylation and preferentially 

binds RNAs containing AAUAAA.  Only CPSF and PAP were needed for 

in vitro polyadenylation to occur [44].  Polyadenylation was inhibited by the 

addition of recombinant CPSF, which acts a dominant negative [59].  

Furthermore, in a reaction with only PAP, immunodepletion of CPSF 

decreases polyadenylation efficiency, which can be rescued by addition of 

exogenous CPSF [59, 60].  Polyadenylation of RNAs containing AAUAAA 

was more efficient than RNAs containing a mutant PAS [43, 44].  CPSF 

preferentially bound RNAs containing AAUAAA better than mutants [44, 

59, 60]. 

CstF and the Downstream Sequence Element 

DSE tends to be uracil rich in all organisms and is bound by CstF 

[23, 26, 50, 51, 54, 61, 62].  Initially, a reporter assay suggested the 

sequence YGTGTTYY downstream of the pA site was important for 

cleavage and polyadenylation [6].  Moreover, inspection of 100 

mammalian and viral genes showed that 67% contain the consensus 

YGTGTTYY 24-30 nt downstream of AATAAA [6].  RNA footprinting 

mapped CstF to uracil rich sequences 14-30 nt downstream of the pA site 

[63].  In agreement with the previous observation, CstF was not able to 
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bind the pre-mRNA if the DSE was replaced with unrelated sequence [63].  

Notably, this also inhibited cleavage, which could be rescued by the 

insertion of five uracils at the same position of the original DSE [63].  

Systematic evolution of ligands by exponential enrichment (SELEX) 

experiments [46], nuclear magnetic resonance  [30], and cross-linking 

immunoprecipitation of CstF-64 followed by deep sequencing (CLIP-seq) 

[20] confirmed that recombinant human CstF-64 binds to uracil rich 

sequences, interspersed with guanines, similar to the consensus 

YGTGTTYY identified in [6].  Correspondingly, SELEX experiments using 

the yeast homolog of CstF-64, which has ~50% sequence homology, 

identified a single consensus that is uracil/guanine rich, but also contains 

cytosines [46].  Interestingly, helix C of CstF-64 is strongly conserved in 

metazoans (human, mouse, xenopus, drosophila, worm) but not in plants 

or yeast [30]. As helix C is located perpendicular to the RNA recognition 

motif, this may explain the preference for cytosines in addition to uracil 

and guanine seen in yeast CstF-64 [46].  

The location of the PAS in relation to the DSE may determine the 

cleavage efficiency and cleavage location.  Shifting the PAS closer to the 

DSE inhibited cleavage [64].  Correspondingly, moving the PAS further 

upstream, shifting the PAS distally, or shifting both distally decreased 

cleavage efficiency at the original site and resulted in additional smaller or 
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larger products respectively [64].  A more comprehensive analysis of 3’ 

ends revealed the PAS was positioned 11-23 nt upstream of the pA site in 

nearly all genes examined [64].  The majority also contained a uracil rich 

DSE 10-30 nt downstream of the pA site.  Taken together, these results 

demonstrate the restricted positional arrangement of the PAS and DSE.   

CFI and the Upstream Sequence Element 

Uracil-rich elements dominate the USE [50-53, 58, 61, 62] and may 

enhance cleavage and polyadenylation efficiency by binding CFI.  SELEX 

[47] and CLIP-seq [20] discovered CFI bound UGUAN sequences, though 

other uracil-rich USEs are functional.  Addition of short antisense 

oligonucleotide to bind USEs [7, 47] or mutation of USEs [29, 31] resulted 

in decreased cleavage and polyadenylation of multiple pre-mRNAs.  

Similarly, substitution of USE in COL1A2 decreases polyadenylation, while 

addition of USE to the upstream region in the adenovirus IVA2, normally 

lacking USE, increases polyadenylation [7].  Accordingly, shifting USE 

closer to PAS or adding a second USE increased the cleavage activity of 

prothrombin pre-mRNA [29].  It is interesting to note that splicing factors, 

such as U2AF65 and hnRNP1 may facilitate cleavage in RNAs containing 

USE [29].  

UGUAA elements are located 55 nt upstream, 22 nt upstream, and 

7 nt downstream of the pA site in human 68 kiloDalton subunit of CFI 
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(CFIM-68) pre-mRNA [47].  Low doses (0.02 or 0.2 pmol) of CFIM led to 

increased cleavage of CFIM-68 pre-mRNA but high doses (2 or 4 pmol) led 

to decreased cleavage.  Mutation of all three UGUAA elements or just 

USE located 22 nt upstream of the pA site led to decreased cleavage 

compared to the wild type (wt), although addition of CFIM led to a dose-

dependent increase in cleavage efficiency.  Mutation of the UGUAA 7 nt 

downstream led to a decrease in cleavage efficiency, while mutation of the 

USE 55 nt upstream did not change the cleavage efficiency.  However, 

addition of CFI did not change the cleavage efficiency in either of these 

mutations. Conversely, increasing amounts of CFIM to wt showed dose 

dependent increased polyadenylation, which was decreased by mutation 

of either of the upstream USEs.  Taken together, these results suggest 

that CFI may regulate its own expression through three UGUAA elements. 

 

Alternative Polyadenylation 

 

 Alternative polyadenylation (APA), or the choice of different pA 

sites within a transcript,  is  common  among  many organisms (Table 1.1).
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Table 1.1: Prevalence of alternative polyadenylation. The percentage 

of genes identified with alternatively polyadenylated isoforms.  
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Sample % APA Reference 
C. elegans 43% [12] 
Drosophila 54.3% [15] 
Danio rerio (zebrafish) 55% [56] 

59%  [65] Arabidopsis 
70%  [66] 
51%  [53] rice 
82% [65] 

mouse 32% [18] 
mouse cells undergoing 
neuronal differentiation 

52% [16] 

human 54% [18] 
normal and tumor 
matched human breast, 
colon, kidney, liver and 
lung 

30% [19] 
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Moreover, the relative location of a pA site within a gene may be 

associated with distinct polyadenylation signals.  APA may alter both the 

coding sequence and non-coding 3’UTR. Longer 3’UTRs may contain 

additional binding sites for microRNAs or RNA binding proteins compared 

to their shorter counter parts, resulting in increased positive or negative 

regulation. However, changes in 3’UTR length among different organisms 

may not correlate with changes in microRNA regulation, as the average 

shorter 3’UTR in worm had increased predicted miRNA binding site 

density compared to fly or human [13].  In addition, a pA site located within 

an intron can alter the protein structure of a gene.  APA may be stage- or 

tissue-specific and thus may contribute to the proper development and 

differentiation of an organism.  Correspondingly, improper cleavage and 

polyadenylation may result in APA associated with disease.  

The location or utilization of a pA site within a gene may correlate 

with the cis elements controlling cleavage and polyadenylation.  Genes 

with a single 3’UTR tend to use canonical PASs compared to alternatively 

polyadenylated genes [18, 49].  Proximal or middle pA sites were more 

likely to use variant PASs, while the most 3’ distal pA sites were enriched 

for the canonical AAUAAA [12-22] and more uracil/guanine rich elements 

in the downstream region [15, 16].  Similarly, most frequently used pA 

sites tended to use the canonical AAUAAA [40, 41], as well as UGUA 
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upstream and uracil or uracil/guanine rich elements downstream [41].  The 

distal pA sites also tended to be more frequently used, suggesting more 

efficient processing perhaps due to the usage of AAUAAA [17, 18, 20].  

Intronic Polyadenylation Sites 

 20% of pA sites in 16,610 human genes are located in introns [33].  

Cleavage and polyadenylation within an intron may result in an alternative 

last exon, thereby modifying coding sequence and protein structure.  For 

instance, primary B cells express the membrane-bound form of 

immunoglobulin M heavy chain associated with a distal pA site, while 

differentiated B cells express soluble immunoglobulin M heavy chain 

associated with an intronic pA site.  CstF-64 preferentially binds the distal 

site [28].  When stimulated to differentiate, B cells upregulated expression 

of CstF-64, likely allowing it to bind at the intronic pA site and producing 

transcript for soluble immunoglobulin M heavy chain [28]. 

Overall, introns containing pA sites are larger than introns without 

pA sites [33].  As the 3’ processing complex assembles slower on weak 

pA sites [32], pausing of splicing machinery in longer introns may allow for 

these alternative pA sites to be used.  mRNA-seq from ten human tissues 

and five breast cancer cell lines showed alternative 3’UTRs were highly 

correlated with skipped exons and over-represented motifs were shared 

between introns and distal 3’UTR extensions [34], suggesting splicing may 
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be involved in intronic polyadenylation. CstF bound additional intronic 

locations not identified by 3’ end sequencing, suggesting a mechanism 

exists to block cleavage and polyadenylation at these CstF binding sites 

[23].  Preventing U1 snRNP, a spliceosomal protein, from binding led to 

polyadenylation at these intronic sites, suggesting that splicing and 3’ end 

processing are interconnected. 

3’UTR Usage in Proliferation and Transformation  

 Regulation of 3’UTR usage may be one way to control the 

proliferative capacity of the cell. Highly proliferative cells tend to show 

increased proximal pA site usage resulting in shortening of 3’UTRs. 3’ end 

profiling in multiple cancer tissues [19, 67] and proliferating cells [26] 

demonstrated increased 3’ end processing at proximal sites compared to 

controls. In opposition to the general trend, highly invasive breast cancer 

cells, that do not express the estrogen receptor, showed 3’UTR 

lengthening compared to a normal breast tissue cell line [67].  

Nevertheless, stimulation of resting mouse T cells, human T cells, B cells, 

or monocytes decreased extended 3’UTR usage 48 hours after 

stimulation, demonstrated by a negative correlation (R = -0.81) between 

proliferation and 3’UTR length [68]. Similarly, Cyclin D1, IMP-1, DICER1, 

Cyclin D2, RAB10, FGF2 had increased usage of shorter 3’UTRs in 

multiple cancer cell lines [21].  This 3’UTR shortening was associated with 
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increased protein production that could be attributed to loss of microRNA 

regulation [21, 68].  However, in MCF7 breast cancer cells, which also 

showed increased usage of proximal pA site, there was no negative 

correlation between 3’UTR length and gene expression [67].  

Multiple mechanisms may contribute to enhanced processing of 

proximal pA sites during proliferation.  Transcription factors E2F1 and 

E2F2 were increased in proliferating cells [26]. Knockdown of E2F1/2 

decreased expression of 3’ end processing proteins and increased 

distal/proximal 3’UTR ratios, suggesting increased E2F1/2 during 

proliferation may up-regulate cleavage and polyadenylation proteins to 

facilitate usage of proximal pA sites [26].  Stimulation of neuronal cells 

was associated with increased MEF2, a transcription factor, and 

shortened 3’UTRs [27].  Moreover, RNAP II was enriched at the shortened 

end of mRNAs upon stimulation, but not the longer ends [27], indicating 

MEF2 stimulation may increase RNAP II pausing to allow for cleavage and 

polyadenylation at a proximal site. 

3’UTR Usage During Development and Differentiation 

Changes in 3’UTR length during development and differentiation 

may help regulate gene expression.  Alternative pA site usage was 

significantly increased in Arabidopsis seedlings [65, 66].  In zebrafish, an 

initial shortening of 3’UTRs from 0-6 hours post fertilization (hpf), perhaps 
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due to the maternal zygotic transition, then lengthening of 3’UTRs from 6 

hpf to 120 hpf was seen [14], though overall there was a general trend 

toward lengthening into adulthood [56].  Mouse 3’UTRs also lengthen over 

the course of development [41, 69], then slightly shorten after transition to 

adulthood [69]. In contrast, the average 3’UTR length and the number of 

3’UTR isoforms per gene decreased throughout C. elegans development 

[12].  Furthermore, increased distal pA site usage was seen in 

myogenesis [69], and the differentiation of mouse ES cells into neurons 

[16]. Together, these meta-analyses suggest alternative 3’UTRs may 

contribute to proper differentiation. Indeed, I discovered that alternative 

polyadenylation may help regulate endothelial cell specification (see 

Chapter 2).  

Tissue Specific 3’UTR Usage 

A genome-wide study of ten human tissues and five breast cancer 

cell lines showed 80% of alternative 3’UTRs identified were tissue specific, 

implying tissue specific 3’UTRs may aid in differentiation [34].  For the 

most part, germ cells exhibit increased proximal pA site usage. In 

Dropsophila, testis displayed the shortest 3’UTRs while ovaries used 

intermediate length 3’UTRs [15].  However, in zebrafish ovaries expressed 

the shortest 3’UTRs and testis had the greatest number of tissue-specific 

pA sites [56]. Increased expression of Cst1,2,3 in the ovary may be 
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responsible for the increased usage of proximal pA sites! [56], as 

knockdown of CstF resulted in increased processing at distal pA sites [23, 

28].  In addition, germ cells undergoing spermatogenesis displayed 

shortening of 3’UTRs [70].  In comparison, brain contains the longest 

3’UTRs in both zebrafish [56] and Drosophila [15].  A subset of Drosophila 

genes showed neural-specific lengthening of 3’UTRs [71], perhaps due to 

neural specific expression of ELAV, an RNA binding protein [38].  Neural-

specific lengthening of 3’UTRs was also seen in mouse and human [72].  

Importantly, longer neural expressed 3’UTRs are enriched for regulatory 

microRNA and RNA binding protein sites [15] and also show increased 

conservation for predicted miRNA target sites in their extensions [72]. 

Alternative 3’UTR Usage in Disease 

 Inappropriate expression of alternative 3’UTRs may lead to 

differential regulation by microRNAs or RNA binding proteins and cause 

disease.  Up-regulation of a long 3’UTR isoform of !-synuclein (!-syn), 

which is stabilized by miR-34b, may account for the increased aggregation 

of !-syn in Lewy bodies, which is associated with Parkinson’s disease [73, 

74].  The distal portion of the Copine III 3’UTR was decreased in both 

Brodman Area 10 and the caudate in 20 post-mortem schizophrenic 

brains with normal matched controls, though a specific mechanism of how 

this is involved with schizophrenia has not been identified [75].  
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Mutations in the PAS of a gene may alter processing at the original 

pA site or lead to usage of an alternative PAS. For example, IPEX 

(immune dysfunction, polyendocrinopathy, enteropathy, X-linked) has 

been associated with an A to G (AAUAAA to AAUGAA) mutation in the 

polyadenylation signal of FOXP3 [76].  Similarly, different PAS mutations 

in both !"thalessemia and #"thalessemia resulted in transcripts with 

longer 3’UTRs [77-80].  PAS mutations have also been associated with 

cancer. Heterozygotes with a single nucleotide polymorphism (SNP) in the 

PAS of TP53 (AATAAA ! AATACA) had decreased TP53, perhaps due to 

lengthening of the 3’UTR [81].  This SNP was significantly correlated with 

prostate cancer, colorectal adenoma, and glioma in a genome-wide 

association study of 457 Icelanders [81].  Deletions or mutations, in the 

genomic sequence of the cyclinD1 (CCND1) 3’UTR, that introduce a 

canonical PAS were found in the majority of patients with CCND1 positive 

mantle cell lymphoma tumors over-expressing the short 3’UTR of CCND1 

[82].  The most highly proliferative tumors from patients with CCND1 

positive mantle cell lymphoma preferentially expressed shorter CCND1 

transcripts, which were found to be more stable.  In agreement with this 

observation, the Kaplan-Meir curves showed the patients with tumors 

expressing the full length 3’UTR had longer median survival (3.28 years) 

compared to those expressing the short 3’UTR (1.38 years). 
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Methods for Identifying Polyadenylation Sites 

Defining the 3’ ends of transcripts is important for examining 3’UTR 

regulation in development and disease.  The 3’ ends of genomes have 

generally been poorly annotated thus many tools have been developed to 

identify pA sites.  For example, a recent study of Arabidopsis seedlings 

allowed for re-annotation of 10,215 3’UTRs and the first annotation of 165 

3’UTRs [40].  Initial studies used publicly available expressed sequence 

tags (ESTs) to assemble putative pA sites and compile them into 

databases [17, 18, 33, 50, 54, 55, 58, 61, 62, 70, 83-90].  However, 

because the relatively low number of ESTs did not allow for thorough 

annotation of pA sites, models have been developed to predict putative pA 

sites [53, 55, 61, 89, 91-98].  More recently, deep sequencing has been 

used to identify 3’ ends of transcripts genome-wide [12, 15, 16, 19, 20, 35, 

40, 41, 45, 49, 52, 56, 57, 65, 67, 99-102]. 

The majority of these methods rely on an oligo-dT. Oligo-dTs were 

used to prime reverse transcription from the poly(A) tail for the majority of 

ESTs (Figure 1.4 TRUE).  However, oligo-dTs may also bind to 

homopolymeric stretches of adenines internal to 3’ ends, referred to as 

internal priming (Figure 1.4 False/oligo-dT internally primed).  To 

thoroughly investigate the prevalence of internal priming in oligo-dT 

identified ESTs, Nam et al. performed reverse transcription using an oligo-
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dT (16) followed by polymerase chain reaction (PCR) for either a control 

transcript with 20 internal adenines or endogenous transcripts containing 

eight or more internal adenines [103].  Sequence verification of these 

PCRs showed internal priming products were present in a ratio of three to 

one with true 3’ ends.  Addition of sequence (A/G/CA/CG/CC) to the 3’ 

end of the oligo-dT (referred to as an anchored oligo-dT) to anchor it to the 

junction of the 3’UTR end and the poly(A) tail decreased the proportion of 

internal priming products, present only in a one to one ratio with true 3’ 

ends.  Only half the number of adenines as the total length of the oligo-dT 

primer was needed for internal priming. Internal priming events were 

originally estimated to represent only 2-3% of cDNA libraries, suggesting 

this may not be of concern [104], though later analyses suggested 12-14% 

of human ESTs were due to internal priming [83, 103].  A motif of six 

consecutive adenines was identified ~15% of mouse and human 

annotated 3’UTR ends (Ensembl v65), suggesting internal priming events 

still plague genome annotations [72].  

Polyadenylation Site Databases 

Initial studies delineated pA sites from sequence tags with 3’ 

terminal adenines not templated in the genome.  ESTs with 5’ proximal 

thymines or 3’ terminal adenines were collected [17, 18, 33, 50, 54, 55, 

58, 61, 62, 70, 83-90].  If the adenine tail did not align to the genome, the  
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Figure 1.4: Oligo-dT mispriming creates false positives. Oligo-dT may 

bind to internal homopolymeric stretches of adenines as will to the poly(A) 

tail. For the most part, internal priming events are defined by the number 

of adenines in the genomic sequence downstream of a putative pA site. 

For example, if there are eight adenines in the 10 nt downstream it will be 

defined as internally primed. 
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 sequences were clustered into putative pA sites.  Finally, a simple filter 

based on the number of adenines downstream of the putative pA site was 

used to remove internal priming events (Figure 1.4). 

 Some of these EST-established pA sites were compiled into 

databases.  These are summarized in Table 2.  To aid in biological studies 

investigating the regulatory capacity of a specific 3’UTR, the majority of 

these databases contained additional features such as the supporting 

ESTs, tissue specific expression, repetitive elements, adenine-rich 

elements, and cis regulatory elements associated with cleavage and 

polyadenylation.  Some studies used simple filters as described above to 

remove internal priming events [85, 86, 105].  Alternatively, some 

databases assigned a confidence level to the pA site rather than removed 

putative sites of internal priming [87, 90].  Though these databases 

provided some insight into alternative 3’UTR usage, they were not 

comprehensive.  For example, PolyA_DB2 annotated only ~4500 pA sites 

[86] for the 27,490 genes in zebrafish [106].  

Polyadenylation Site Prediction Programs 

As the initial databases and gene annotations were not complete, 

prediction algorithms were created using various methodologies to aid in 

the  identification  of  novel  pA  sites  in  both  human  and  other  model 
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Table 1.2: Polyadenylation site databases 
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Database Organisms Additional 

Information 
Source 

UTRdb human, rodent, 
“other mammals”, 
“other 
vertebrates”, 
invertebrates, 
plants, and fungi 

repetitive and 
functional sequence 
elements 
*also contained 5’UTRs 

Pesole, 
Liuni et al. 
1999 

BodyMap 51 different human 
organs and tissues 

Tissue specificity Kawamoto, 
Yoshii et al. 
2000 

(no name) Human, 
mouse 

Color-coded putative 
PASs and associated 
putative pA sites, 
repetitive elements, 
adenine-rich elements  
individual ESTs (color 
coded by organ 
system) 

Beaudoing 
and 
Gautheret 
2001 

PolyA_DB Human, mouse gene structure from 
RefSeq, the supporting 
cDNA or EST evidence 
tags, the orthologs 
between human and 
mouse, the associated 
PAS, tissue expression 
pattern 

Zhang, Hu 
et al. 2005 

polyA_DB2 Human, mouse, 
rat, chicken, and 
zebrafish 

Same as polyA_DB 
cis elements identified 
in [62] 
conservation analysis 

Lee, Yeh et 
al. 2007 

polyA 
Cleavage 

Site 
Database 
(PACdb) 

human, mouse, 
rat, dog, chicken, 
zebrafish, fugu, 
fruitfly, mosquito, 
worm, rice, and 
baker’s yeast 

confidence level of the 
pA site based on 
characteristics of 
supporting ESTs and 
surrounding genomic 
sequence 

Brockman, 
Singh et al. 
2005 
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organisms.  These algorithms and their performance are summarized in 

Table 3.  Sequence regions or specific elements surrounding EST-

established pA site, such as the PAS, were used to model and predict pA 

sites.  Early attempts to predict human pA sites used discriminant 

functions, or scoring systems, based on position weight matrices of 

specific sequence regions [61, 91, 92].  Though these initial programs 

performed relatively well, they only detected sites with a canonical 

(AATAAA) or most common variant (ATTAAA) PAS.  The same 

methodology applied to human pA sites with variant or no PASs resulted 

in diminished performance [95]. Using a machine learning method called 

support vector machine improved performance predicting human pA sites 

[93, 94]. Similar approaches were used to predict pA sites in yeast [89], C. 

elegans [96], Drosophila [55], Arabidopsis [97, 98], and rice [53].  

However, with the exception of one support vector machine algorithm [94], 

they are not integrated into the current genome annotations.  

 While these methods achieved relatively high specificity and 

sensitivity, there are major drawbacks. The training sets used to develop 

these algorithms were not optimal. EST-established pA sites were used as 

the “True Positives”. However, these may be contaminated with instances 

of internal priming, and even heuristic filters may not remove all false 

positives. Additionally, in some cases the “True Negatives” were taken  
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Table 1.3: Polyadenylation Site Prediction Programs.  
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Method Organism Performance Source 
Linear 
discriminant 
function 

Human Sensitivity = 85.5% 
Specificity = 50.7% 
CC = 0.62 

Salamov and 
Solovyev 1997 

Two quadratic 
discriminant 
functions 

Human All gene length: 
Sensitivity = 61.5% 
Specificity = 48.5% 
CC = 0.413 
Last two exons:  
Sensitivity = 64.1% 
Specificity = 83.3% 
CC = 0.512 

Polyadq 
Tabaska and 
Zhang 1999 

Position weight 
matrix 

Human EMBL Annotated pA 
sites 
Sensitivity = 55.91% 
Specificity = 85.38% 
CC = 0.494 
“weak” pA sites (< 
30% of ESTs in a 
3’UTR): 
Sensitivity =31.38% 
Specificity = 80.21% 
CC = 0.262 

ERPIN 
Legendre and 
Gautheret 2003 

Support vector 
machine 

Human Sensitivity = 94.4% 
Specificity = 92.2% 

Liu, Han et al. 
2003 

Support vector 
machine 

Human Sensitivity = 84.3% 
Specificity = 84.8% 
CC = 0.693 

Polya_svm 
Cheng, Miura et 
al. 2006 

Linear 
discriminant 
function 

Human Canonical PAS 
Sensitivity = 80.8% 
Specificity 66.4% 
Variant PAS 
Sensitivity = 25.2% 
Specificity = 28.4%  
No PAS 
Sensitivity = 13.5% 
Specificity = 14.7% 

POLYAR 
Akhtar, Bukhari 
et al. 2010 
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!
Method Organism Performance Source 
Hidden Markov 
model 

Yeast Sensitivity = 95% 
Specificity = 95% 

Graber, 
McAllister et al. 
2002 

Hidden Markov 
model 

C. elegans Sensitivity = 68.3% 
Specificity = 68.3% 

Hajarnavis, Korf 
et al. 2004 

Hidden Markov 
model 

Human 
Drosophila 

Sensitivity = 50% 
Specificity = 77% 

Retelska, Iseli 
et al. 2006 

Generalized 
hidden Markov 
model 

 

Arabidopsis coding sequences, 
randomly generated 
sequences SN/SP= 
97% 
5’UTR SN/SP = 82%  
intron SN/SP = 72% 

PolyA Site 
Sleuth 
Ji, Zheng et al. 
2007 

Generalized 
hidden Markov 
model 

 

Rice SN/SP = 90% (score 
threshold = 4) 

PASS-Rice 
Shen, Ji et al. 
2008 

Bayesian 
networks 

Arabidopsis CC = 0.65 Ji, Wu et al. 
2010 

CC = Matthew’s Correlation Coefficient 
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from other genomic regions thought not to contain pA sites, e.g. coding 

regions and introns, which could be true sites of cleavage and 

polyadenylation. Additionally the algorithms must be used with these 

training sites, and are not available for re-training. Although some of these 

algorithms can be accessed through a web page, users may only input a 

few sequences for prediction and not entire genomes. 

Genome Wide Methods for Identifying Polyadenylation Sites 

More recently, genome-wide identification of 3’ ends was 

accomplished by deep sequencing.  However, the majority of methods 

utilize oligo-dT priming to identify 3’ ends followed by heuristic filtering to 

remove internal priming events.  The 3’UTR is adenine-uracil rich and the 

majority of heuristic filters use the number of downstream adenines in the 

genomic sequence downstream of a putative pA site to define internal 

priming, thus removing true 3’ ends while not removing all instances of 

internal priming.  Both computational and technical methods have been 

developed to address this problem.  

The majority of present-day deep sequencing techniques to identify 

polyadenylation sites use an anchored oligo-dT to amplify sequence from 

the poly(A) tail, therefore also identifying sites of internal oligo-dT priming 

(Figure 1.4).  RNA-seq reads with 5’ proximal thymines or 3’ terminal 

adenines were used to identify pA sites [15, 49] in a similar manner as 
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described above for ESTs.  A biotinylated, anchored oligo-dT was used to 

prime reverse transcription and then cDNA ends were isolated using 

streptavidin magnetic beads [12, 57, 65, 99].  Others simply primed 

reverse transcription using an oligo-dT [16, 20, 35, 45, 67, 100].  In some 

protocols, the RNA was fragmented before reverse transcription, perhaps 

increasing the likelihood the oligo-dT may bind to adenine-rich sequence 

that is not a poly(A) tail [16, 20, 35, 67, 100].  Poly(A) Site Sequencing 

(PAS-Seq) utilized an anchored oligo-dT (20) and the template switching 

activity of a Maloney reverse transcriptase to build a deep sequencing 

library composed of 3’ ends (Figure 1.5) [16].  PolyA-seq used an 

anchored oligo-dT (10) for reverse transcription followed by RNase H 

treatment to degrade the RNA template [45]. Klenow polymerase and a 

primer of random hexamers was used synthesize the cDNA. These 

methods are quick and relatively simple, but due to utilization of an oligo-

dT there are also false positives due to internal priming. 

Another oligo-dT based 3’ end sequencing method called 3’READS 

(3’ Region Extraction And Deep Sequencing) was created to decrease the 

number of internal priming events and remove partially degraded 

transcripts with short pA tails destined for exosome degradation was 

developed [41].  A chimeric oligo containing 45 thymines followed by 5 

uracils (CU5T45) in combination with stringent washings enriched the ratio 
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Figure 1.5. Poly(A) Site Sequencing (PAS-Seq). Briefly, poly(A) RNA 

was chemically fragmented. Reverse transcription was primed with an 

anchored oligo-dT (20) containing Illumina adapter sequence (PE1.0).  

The template switching activity of a Maloney reverse transcriptase was 

used to incorporate another Illumina adapter (PE2.0) on the 5’ end.  The 

library was PCR amplified. A custom sequencing primer with oligo-dT (20) 

is used to sequence at the junction of the cleavage site and the poly(A) tail 

on the Illumina platform. Adapted from [16]. 
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ratio of transcripts isolated with long (60 nt) poly(A) tails to those with short 

(15 nt) poly(A) tails 12:1.  However, the authors concede that about 6% of 

their mapped reads are due to internal priming. 

Direct RNA sequencing (DRS) was developed to identify RNAs 

without the bias that may occur when converting RNA to cDNA, including 

internal priming, and to allow for identification of unstable transcripts using 

small amounts of RNA (e.g. 2 ng of polyA+) [101].  An oligo-dT (50) bound 

to the flow cell is used to hybridize polyadenylated RNAs. A “T” fill step is 

performed to fill in the rest of the poly(A) tail, and then a “lock” step is 

performed with A/C/G. Single nucleotide with fluorophores are 

incorporated, imaged, and cleaved to allow for single nucleotide 

resolution.  

Poly(A) position profiling (3pseq) is an elegant procedure to only 

identify transcripts with polyadenylated ends (Figure 1.6) [13].  A 

biotinylated splint RNA:DNA hybrid oligo containing overhanging single-

stranded thymines, which will force hybridization only at the 3’ end of the 

poly(A) tail, was ligated to the ends of polyadenylated transcripts.  RNase 

T1, which cleaves 3’ to guanines, was used to partially digest the RNA.  

Subsequently, the 3’ ends were bound to streptavidin beads and washed, 

resulting in isolation of polyadenylated transcripts.  Next, reverse 

transcription was performed using only thymines to fill in the poly(A) tail.  
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Figure 1.6. Poly(A) position profiling (3pseq). A biotinylated splint 

RNA:DNA hybrid oligo containing overhanging single-stranded thymines, 

which will force hybridization only at the 3’ end of the poly(A) tail, was 

ligated to the ends of polyadenylated transcripts.  RNase T1, which 

cleaves 3’ to guanines, was used to partially digest the RNA.  

Subsequently, the 3’ ends were bound to streptavidin beads and washed, 

resulting in isolation of polyadenylated transcripts.  Next, reverse 

transcription was performed using only thymines to fill in the polyA tail. 

RNAse H digested the DNA:RNA hybrid, the original poly(A) tail, leaving 

2-4 3’ terminal adenines, releasing the 3’ ends from the biotinylated oligo. 

The supernatant was collected. Sequencing adapters were ligated to the 

3’ ends, the library was PCR amplified, and sequenced. Republished from 

[102]. 
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Formation, regulation and evolution of
Caenorhabditis elegans 39UTRs
Calvin H. Jan1,2, Robin C. Friedman1,2,3, J. Graham Ruby1,2{ & David P. Bartel1,2

Post-transcriptional gene regulation frequently occurs through
elements in mRNA 39 untranslated regions (UTRs)1,2. Although
crucial roles for 39UTR-mediated gene regulation have been found
in Caenorhabditis elegans3–5, most C. elegans genes have lacked
annotated 39UTRs6,7. Here we describe a high-throughput method
for reliable identification of polyadenylated RNA termini, and we
apply this method, called poly(A)-position profiling by sequencing
(3P-Seq), to determine C. elegans 39UTRs. Compared to standard
methods also recently applied to C. elegans UTRs8, 3P-Seq iden-
tified 8,580 additional UTRs while excluding thousands of shorter
UTR isoforms that do not seem to be authentic. Analysis of this
expanded and corrected data set suggested that the high A/U con-
tent of C. elegans 39UTRs facilitated genome compaction, because
the elements specifying cleavage and polyadenylation, which are
A/U rich, can more readily emerge in A/U-rich regions. Indeed,
30% of the protein-coding genes have mRNAs with alternative,
partially overlapping end regions that generate another 10,480
cleavage and polyadenylation sites that had gone largely unnoticed
and represent potential evolutionary intermediates of progressive
UTR shortening.Moreover, a third of the convergently transcribed
genes use palindromic arrangements of bidirectional elements to
specify UTRs with convergent overlap, which also contributes to
genome compaction by eliminating regions between genes.
Although nematode 39UTRs have median length only one-sixth
that of mammalian 39UTRs, they have twice the density of con-
served microRNA sites, in part because additional types of seed-
complementary sites are preferentially conserved. These findings
reveal the influence of cleavage and polyadenylation on the evolu-
tion of genome architecture and provide resources for studying
post-transcriptional gene regulation.
We developed a high-throughput method to identify 39 ends of

mRNAs and other polyadenylated transcripts (Fig. 1a). This method,
called poly(A)-position profiling by sequencing (3P-Seq), begins with
a splint-ligation that favours ends of poly(A) tails when appending a
biotinylated primer-binding site (Fig. 1a, step 1). After partial diges-
tion with T1 nuclease (which cuts after Gs; step 2), the polyadenylated
ends are captured (step 3), and the poly(A) tail is reverse transcribed
with dTTP as the only deoxynucleoside triphosphate (step 4).
Digestion with RNase H releases the polyadenylated ends (step 5),
which are purified (step 6) and prepared for high-throughput sequen-
cing (step 7).
3P-Seqwas designed to identify the 39 ends of polyadenylated RNAs

without recourse to oligo(dT) priming. Oligo(dT) priming can prime
on internal A-rich regions of transcripts, thereby yielding artefacts
difficult to distinguish from authentic polyadenylated transcripts
because the artefacts also have untemplated As9. Although untem-
plated adenylates at the ends of 3P tags could not have arisen from
internal-priming artefacts, in principle, such nucleotides could have
arisen from polymerase/sequencing errors. Countering this possibility
was the observation that homopolymeric runs containing untemplated

nucleotides at the ends of candidate 3P tags were overwhelmingly As
(Fig. 1b). Thus, non-genomic terminal adenylates at the ends of 3P tags
(a beneficial consequence of incomplete RNase H digestion near
duplex termini (Fig. 1a)) provided compelling evidence that they
derived from distal ends of bona fide polyadenylated transcripts.
To ensure proper assignment to polyadenylated transcripts, we

considered as 3P tags only reads that both mapped uniquely to the
genome and possessed at least two 39-terminal adenylates, of which at
least onewas untemplated.Nearly 32million reads fromC. elegansmet
these criteria, includingmillions from eachmajor developmental stage
(embryo, L1, L2, L3, L4, adult) as well as dauer L3 worms and germ-
line-deficient glp-4(bn2) mutant adults (Supplementary Table 1).

1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. 2Howard HughesMedical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA. 3Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. {Present address: Department of
Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, USA (J.G.R.).
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abundant cleavage site (position 0). Box plots show results for 380 cleavage sites
that were both between two non-A residues (which enabled precise mapping)
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respectively). A 50-nucleotide region containing the distal 3P cluster is enlarged
(box). Each tag sequence with a unique genome match is depicted as a bar,
coloured by tag frequency (key). e, Nucleotide sequence composition at mRNA
end regions. Shown above are elements implicated in cleavage and
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RNAse H digested the DNA:RNA hybrid, the original poly(A) tail, leaving 

2-4 3’ terminal adenines. Sequencing adapters were ligated to the 3’ ends, 

the library was PCR amplified, and sequenced. 3pseq identifies only true 

3’ ends, however it is more technically challenging than the oligo-dT 

primed methods outlined above, and thus less likely to be selected to 

identify pA sites (compared with an oligo-dT primed method in Table 1.4). 

Following oligo-dT primed 3’ end sequencing (see above), internal 

priming events were removed, defined by a proportion of adenines in the 

sequence flanking a putative pA site.  Comparison of Arabidopsis pA sites 

established by oligo-dT primed 3’end sequencing data or DRS 

demonstrated that these simple filters may not remove all internal priming 

events and can exclude true 3’ends, thereby increasing false positives and 

false negatives respectively [40].  Therefore, more computationally 

intensive filters were developed to remove sites of internal priming. 

Derti et al. scored the 10 bp downstream of the pA site to 

distinguish true pA sites from oligo-dT primed artifactual pA sites [45].  

Using universal human reference RNA, 3’ end sequencing library was built 

with oligo-dT (10).  Reads that mapped with at least three terminal 

adenines, excluding annotated sites or sites with a PAS, indicated internal 

priming events.  Conversely, reads that did not map with at least three 
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Table 1.4: Comparison of PAS-Seq and 3pseq. PAS-Seq is an oligo-dT 

primed method for identifying 3’ ends of transcripts. 3pseq ligates a splint 

RNA:DNA hybrid oligo to the 3’ ends of transcripts. PAS-Seq will identify 

sites of internal oligo-dT priming in addition to true pA sites. 3pseq will 

only identify true 3’ ends. 
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terminal adenines were deemed true pA sites.  With these distinctions, 

they created positional discriminant function or a scoring system based on 

the 10 bp downstream of the cleavage site, similar to [54], to remove 

oligo-dT primed 3’ends.  Though this method achieved relatively high 

sensitivity (85.6%), other groups have not applied this scoring system to 

filter 3’ end data generated from oligo-dT priming.  

 Categorization of putative pA sets before application of multiple 

heuristic filters was performed to remove sites of internal priming [107].  

An oligo-dT primed 3’ end sequencing technique was used to assess PAS 

usage in a human osteosarcoma-derived cell line.  Putative pA sites were 

separated into four groups based on the presence of a canonical PAS 

(AAUAAA or AUUAAA) upstream of the cleavage site and adenine-

richness downstream of the cleavage site.  Each category was 

heuristically filtered by known annotations, presence of alternative PAS, or 

downstream uracil or guanine/uracil richness.  This group reports a 

success rate of 88% by comparison of DRS data from human liver, which 

may not be accurate due to the comparison of different tissue types, as 

transcripts may be processed differently depending on the cell type or 

developmental stage.  Using this method would require replicating the 

detailed analysis for each organism or cell type, therefore employing their 

lengthy filtering process is not desirable. 
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Thus, rapid and easy to construct 3’ end sequencing libraries 

generated from oligo-dT priming would benefit from a user-friendly, but 

stringent bioinformatic analysis necessary to remove the associated 

internal oligo-dT priming events. pA site prediction algorithms could 

hypothetically be re-trained to remove instances of internal priming, 

however, these algorithms are not publicly available for retraining. So we 

examined machine learning methods that could be utilized to distinguish 

between sites of polyadenylation and internal oligo-dT priming. 

 

Machine Learning  

 

The term “machine learning” describes how computational systems 

can model patterns from data [108].  Machine learning is accurate, not 

biased by human interpretation, and fast. Within a data set used for 

learning (“training data”), certain “features” or characteristics are used to 

represent each sample. Machine learning can be divided into 

unsupervised and supervised learning methods (Figure 1.7).  

Unsupervised learning identifies patterns from a training set with unknown 

outcomes, for example by trying to cluster unknowns into groups.  When 

the training data consists of samples labeled with known outcomes a 
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Figure 1.7: Machine Learning. Machine learning can be divided into 

supervised and unsupervised learning.  Examples of logic-based 

supervised learning include decision trees and random forests.  Neural 

networks is an example of a perceptron-based technique that classifies 

input into one of multiple outputs.  Statistical based learning methods 

include Bayesian and naïve Bayesian classifiers, as well as nearest 

neighbor algorithms.  Finally, support vector machine is one of the newest 

methods of supervised machine learning and uses a multi-dimensional 

plane to segregate the two different outcomes. 
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supervised learning approach is used.  The goal of the learning 

algorithms, which may also be called classifiers, is to predict the outcome 

of unknown instances with the same  “feature” categories as the training 

set.  

For example, a classifier could be designed to distinguish between 

true pA sites and internally primed sites.  The training data could consist of 

sequence features and the outcomes could be labeled as true pA sites or 

internally primed sites.  After “learning”, the classifier could then be used 

to classify new sequences into the same outcomes.   

Multiple machine learning methods that could be applied for this 

purpose (reviewed in [108]). Simple decision trees use an individual 

classification rule at each “branching” to model training data. For example, 

starting with a set of putative pA sites, the presence or absence of a 

canonical PAS upstream could be the first rule. Subsequently, additional 

rules help classify data. However, generally a large “tree” is needed for 

modeling which can lead to the creation of a model that is too complicated 

(referred to as overfitting). The random forests method combines multiple 

decision trees and allows for multiple classification rules at each split. 

Multiple nodes connected together to classify data are called a neural 

network. Neural networks are considered slower than other classification 
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methods. Support vector machines create a multi-dimensional plane to 

segregate the two different outcomes of training data, for example true pA 

sites and internally primed sites. Additionally, both neural networks and 

support vector machines usually require large sets of training data.  

Bayesian classifications, based on Bayes theorem of conditional 

probability, use the relative probability of modeling characteristics or 

features to generate the probability of an outcome [108].1 Compared to 

decision trees and support vector machine, Bayesian classifiers have the 

additional benefit of giving a probability, rather than a discrete 

classification. However, this method assumes each characteristic is 

dependent on the others so a large number probabilities to be estimated 

for classification. For example, the presence of a PAS upstream, the 

presence of a downstream uracil rich motif and the number of As 

downstream could be used to model true pA sites and internally primed 

sites. Using a Bayesian classifier the following probabilities would need to 

be estimated:  

1) the presence of a PAS upstream dependent on the presence of 

a downstream uracil motif 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"!Appendix I contains a comparison of conditional probability calculated by 
Bayes theorem and the probability assuming conditional independence 
(naïve Bayes).!
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2) the presence of a PAS upstream dependent on the number of 

As downstream 

3) the presence of a downstream uracil motif dependent on the 

presence of a PAS upstream 

4) the presence of a downstream uracil motif dependent on the 

number of As downstream 

5) the number of As downstream dependent on the presence of a 

PAS upstream 

6) the number of As downstream dependent on the presence of a 

downstream uracil motif 

To simplify this problem, a “naïve” assumption can be made, that 

the features are conditionally independent of each other. In this case, each 

characteristic alone needs to be estimated, rather than each characteristic 

in relation to the others. Using a naïve Bayesian classifier now only three 

probabilities need to be estimated: 

1) the presence of a PAS upstream  

2) the presence of a downstream uracil motif  

3) the number of As downstream 

The simplicity of the naïve Bayes classifier results in many benefits. As 

evident by the simple example above, the number of parameters that need 
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to be estimated is reduced from exponential, represented as O(2N), to 

linear, represented as O(N) [109]. Consequently, a relatively small number 

of samples with known outcomes is needed for training and a large 

number of features can be used [108].  The training is quick and the 

required computational power is low. In real world instances, training data 

is often incomplete, and the information for each classification feature may 

not be available for all samples [108].  The naïve Bayes classifier will 

ignore missing information when computing probabilities, thus this is not 

an issue [108].  Finally, the naïve Bayes classifier performs well, even if 

the assumption of conditional independence is broken [110]. Tools to 

utilize naïve Bayes classification are available in several programming 

languages, including python, matlab, java, and R. 

Naïve Bayes classification has been applied successfully to 

biological and medical problems where the training set might be small and 

the number of features is high.  Ribosomal RNAs may be used to classify 

bacteria, however hundreds of thousands are maintained by the 

Ribosomal Database Project II and more are continually generated [111].  

A naïve Bayes classifier bacterial ribosomal RNA sequences into different 

taxonomies with 88.7% accuracy [111].  Often millions of single nucleotide 

polymorphisms (SNP) are examined to determine if one may correlate 

with disease.  For example, Naïve Bayes classifiers associated the same 
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SNP from patients with Late Onset Alzheimer’s Disease or normal 

matched controls that had previously been discovered [112].  Finally, a 

naïve Bayes classifier designed to identify breast lesions from ultrasound 

images displayed 93.94% sensitivity [113].  

!

Summary 

 

 Cleavage and polyadenylation of pre-mRNA transcripts is important 

for localization, stability, and gene regulation.  Combinations of cis 

elements within the transcript direct cleavage and polyadenylation.  

Furthermore, alternative polyadenylation produces distinct 3’UTRs, which 

may be important for proper development and have been implicated in 

disease.  Therefore, identification of polyadenylation sites genome-wide 

will aid studies investigating post-transcriptional regulation.  Early 

databases and prediction models are incomplete.  Multiple oligo-dT 

primed methods for identifying polyadenylation sites by deep sequencing 

are quick and efficient, but are inaccurate and lead to identification of false 

positives.  The current simple filtering methods, defining internal priming 

by the number of adenine in the genomic sequence, do not remove all 

false positives and may create false negatives.  More complicated 

computational analyses may be more accurate, but are not easily 
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adaptable.  The most accurate method, 3pseq, identifies only true 

polyadenylated 3’ ends, but is technically challenging and is not commonly 

used.  Therefore, novel techniques for accurately removing false positives 

in combination with oligo-dT primed 3’ end sequencing will improve 

genome-wide identification of polyadenylation sites.  Naïve Bayes 

classifiers require relatively small training data sets and require little 

computational power.  Thus I developed a naïve Bayes classifier to 

accurately delineate true pA sites from internally primed sites, which is 

discussed in the body of this work.  

!
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CHAPTER II 
 
 
 
 
 
 
 
 

POST-TRANSCRIPTIONAL MECHANISMS CONTRIBUTE TO 
DOWNREGULATION OF ETV2 DURING VASCULAR DEVELOPMENT 
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Introduction 

The vertebrate circulatory system serves as an essential conduit for 

the systemic distribution of oxygenated blood, nutrients, hormones, 

immunological factors and the removal of metabolic waste.  The formation 

of a patent and functional circulatory system begins before the onset of 

blood circulation with the specification of endothelial progenitors, or 

angioblasts, from the lateral mesoderm.  As angioblasts differentiate and 

express an endothelial gene program, they migrate and coalesce to form 

vascular cords through a process called vasculogenesis [114]. This initial 

vascular plexus is subsequently remodeled and extended into a system of 

patent blood vessels through a process referred to as angiogenesis.  

While the morphological events that define vasculogenesis and 

angiogenesis are relatively well-defined, the transcriptional regulatory 

networks that control angioblast specification and subsequent endothelial 

differentiation are poorly understood. 

Multiple transcription factor families have been implicated in the 

activation and maintenance of endothelial gene expression, including 

members of the Sox, Forkhead, GATA, and Kruppel-like families [115].  

Among the most prevalent transcription factors involved in endothelial 

biology are members of the ETS family.  ETS transcription factors are 

defined by the presence of a conserved, approximately 85 amino acid 
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DNA binding domain, referred to as the ETS domain, which consists of a 

winged helix-turn-helix motif that binds a core DNA sequence of 5’-

GGA(A/T)-3’ [116]. There are approximately 19 and 12 ETS factors 

expressed in human and zebrafish endothelial cells, respectively, 

including ETS1, ETS2, ETV2 (etsrp/ER71), ETV6 (TEL), FLI1, ERG and 

ELK3 (NET/SAP2) [115, 117, 118].  Most characterized endothelial gene 

promoters or enhancers contain essential ETS binding sites [115, 118-

120] and it has been proposed that nearly every endothelial gene may be 

regulated by ETS factors in some manner [118].  Indeed, the founding 

member of the ETS family, Ets1, which is highly expressed in endothelial 

cells in multiple species [121-123], is capable of directly binding to 

elements flanking genes encoding receptors important for vascular 

morphogenesis, including Vegf receptor-1 and -2 (Flt1 and Kdr, 

respectively) [124, 125], Tie-2 [126], and neuropilin-1 [127]. Targeted 

deletion or knockdown of individual ETS factors can cause specific 

developmental defects in embryonic vascular morphogenesis or function, 

although in many cases knockout mice are viable or display only mild 

phenotypes.  For example, mouse embryos lacking fli1 alone die at E12.5 

due to poor blood vessel integrity and cranial hemorrhage [128]. By 

contrast, Ets1-deficient mice are viable with no overt vascular defects 

[129] and only mild defects have been noted following knockdown of ets1 
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in zebrafish [122].  The highly conserved DNA binding domain shared 

between ETS factors and their overlapping expression in endothelial cells 

likely contributes to some degree of functional redundancy that reduces 

the severity of vascular defects in these cases.   

Indeed, ETS factors share significant consensus DNA-binding 

specificity [130] and can bind to and transactivate the same consensus 

sequences in some promoters [119, 131].  Analysis of double knockout 

mice further supports at least partially overlapping functions among some 

ETS factors. For example, mouse embryos lacking either Ets1 or Ets2 

alone display relatively normal vascular development.  However, 

combined loss of both Ets1 and 2 leads to embryonic lethality between 

E11.5 and E15.5 due in part to defects in vessel remodeling and 

diminished angiogenic branching [132]. Similarly, combined reduction of 

related ETS factors in zebrafish results in a higher penetrance of defects 

and a block in angiogenesis [122]. 

In contrast to the mild vascular phenotypes associated with loss of 

most ETS factors, mouse or zebrafish embryos lacking Ets-variant protein 

2 (Etv2; also known as Ets-related protein/Etsrp and ER71) show 

profound defects at the earliest stages of vascular development.  Etv2-

deficient mouse embryos fail to specify hematopoietic and endothelial cell 

lineages leading to embryonic lethality at E9.5 due to a failure to develop a 
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functional circulatory system [133, 134].  Zebrafish etv2 mutants and 

morphants display similar defects in vascular development and exhibit 

severe reduction in the expression of most endothelial genes, including, 

kdrl, flt4, cdh5, and plxnd1.  In addition, etv2-deficient zebrafish embryos 

exhibit defects in the morphogenesis of the major trunk blood vessels 

[122, 135]. The severe early vascular defects and global effects on 

endothelial gene expression in both mouse and zebrafish embryos 

suggests that etv2 plays an early role in specifying endothelial cell 

lineages. Consistent with this possibility, overexpression Etv2 in both 

zebrafish embryos and mouse embryoid bodies can expand endothelial 

cell lineages and induce concomitant expression of hundreds of vascular 

genes [135-138].  Furthermore, recent studies demonstrate that Etv2 is an 

essential component, along with Fli1 and Erg, during direct endothelial 

reprogramming of human amniotic cells [139].  Together, these studies 

suggest a central role for Etv2 in the initial specification of endothelial cells 

during the initial stages of vascular development. 

Despite the importance of Etv2 during early vascular development, 

its role during later stages is unclear.  Evidence suggests that Etv2 may 

only be expressed in endothelial progenitors early during mouse 

development (E9.5), while expression in the zebrafish is evident in 

angioblasts but appears to be down-regulated by 36 hpf in endothelial 
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cells of the axial vasculature [133-135].  Interestingly, mouse embryos are 

viable following conditional endothelial ablation of etv2 using a Kdr:Cre 

driver [140], suggesting that its function is restricted to very early stages of 

vascular development prior to the onset of kdr expression.  Although these 

studies suggest dynamic control and function of etv2 expression during 

embryogenesis, carefully quantified and staged studies in this regard are 

still lacking.  Furthermore, the mechanisms that exist to downregulate Etv2 

during development have not been investigated.  

In this work, we assessed the expression levels of etv2 transcript 

and protein during early zebrafish vascular development.  Both mRNA 

quantification and whole mount immunostaining revealed that Etv2 is 

expressed during early and mid-somitogenesis and subsequently 

downregulated as endothelial cells differentiate and form the major trunk 

blood vessels.  Conditional knockdown of Etv2 using a caged morpholino 

demonstrated that it is required only during endothelial cell specification 

and appears to be largely dispensable for subsequent vascular 

morphogenesis and function.  We further find that the etv2 3’ UTR is 

subjected to negative regulation in endothelial cells and that this effect can 

be mediated by members of the let-7 microRNA family.  Finally, we 

observe that Etv2 protein levels persist in endothelial cells of embryos 

lacking maternal and zygotic dicer1, which is required for microRNA 



! 65 

maturation.  Together, our results demonstrate that etv2 is required during 

a defined developmental window for angioblast specification and is 

actively downregulated, in part, through microRNA-mediated post-

transcriptional regulation.  

 

Results 

Based on previous studies that suggested etv2 levels might be 

dynamically regulated during embryogenesis, we carefully investigated its 

expression during zebrafish vascular development.  We first applied the 

NanoString nCounter gene expression assay to quantitatively measure 

etv2 transcript levels at different stages of development.  Using this 

approach, we observed that etv2 transcript increases between tail bud and 

10 somite stage (ss) and peaks at 18 ss, at which time it is expressed 

nearly 2 fold greater than endothelial transcripts encoding Fli1a and Fli1b, 

and the zebrafish Vegf receptor-2 ortholog, Kdrl (Figure 2.1A).  

Subsequently, etv2 transcript decreases between 18 ss and 48 hours post 

fertilization (hpf), when it is expressed at levels five fold below that of kdrl 

(Figure 2.1A).  By contrast, fli1a, fli1b, and kdrl transcripts continued to 

modestly increase from 10 ss until 48 hpf (Figure 2.1A).  Thus, the etv2 

transcript displays an initial burst of expression during the time in which 

endothelial specification and vasculogenesis are taking place and is 
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Figure 2.1: Etv2 is down-regulated during vascular development.  A. 

Graph of nCounter quantification for etv2, fli1a, fli1b, and kdrl at the 

indicated developmental stages.  Values are normalized to actb2 (beta-

actin) and eef1a1l1(ef1alpha).  B, D. Whole mount in situ hybridization 

using an antisense etv2 riboprobe at 5ss and 18ss.  C, E. Embryos at 5ss 

and 18ss immunostained with Etv2 antibody and anti-rabbit Alexa-488.  B, 

C. Dorsal views of flat-mounted embryos, anterior to the left.  D, E. Lateral 

views, anterior to the left.  F-I. Two-photon micrographs of trunk vessels in 

fixed Tg(fli1a:negfp)y7 embryos immunostained with antibodies against F, 

G Etv2 or (H, I) Fli1b. Left panels, immunostained protein detected with 

Alexa-568 secondary antibody. Middle panels, transgenic expression of 

nuclear localized EGFP. Right panels, overlay of Alexa-568 and EGFP 

signals. Embryos at F, H 25 hpf or G, I 48 hpf. 

!
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subsequently downregulated.  We next raised an antibody that specifically 

recognized the divergent N-terminal domain of Etv2 (Figure 2.2A,B) and 

used this to perform whole mount immunostaining on zebrafish embryos.  

Similar to etv2 transcript, we observed Etv2 protein in the anterior and 

posterior lateral mesoderm within nuclei of presumptive endothelial 

progenitors at 5 ss (Figure 2.1B,C) and during initial formation of the trunk 

blood vessels at 18 ss (Figure 2.1D,E).  However, we did not observe 

vascular expression of Etv2 protein at 24 hpf or 48 hpf, while an 

endothelial-expressed nuclear localized EGFP (Tg(fli1a:negfp)y7) was 

easily detectable at both stages in the same embryos (Figure 2.1F,G).  By 

contrast, we observed robust expression of Fli1b protein in endothelial 

nuclei of Tg(fli1a:negfp)y7 embryos at the same time points (Figure 2.1H,I).  

Interestingly, etv2 and fli1b transcript are expressed at similar levels at 24 

hpf (Figure 2.1A).  Despite its down-regulation in endothelial cells, Etv2 

protein was still detected at 24 hpf in a subset of cells posterior to the 

caudal vein plexus, which may comprise hematopoietic precursors [141] 

(Figure 2.2C).  We also detected a small population of weakly stained 

Etv2-positive cells in circulation at 48 hpf, while Fli1b was expressed in the 

majority of blood cells at this time point (Figure 2.2D). Taken together, 

these observations demonstrate that etv2 transcript and protein are 

expressed in angioblasts during vasculogenesis, but are subsequently 
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Figure 2.2: A polyclonal antibody against zebrafish Etv2.  A. SDS-
PAGE gel of HEK293T lysates transfected with mammalian expression 
vectors for EGFP (pCS- EGFP), myc-tagged zebrafish Etv2 (pCS-
5xmycEtv2), or left untransfected (mock).  Lysates from each sample were 
run on triplicate immunoblots, which were individually probed with Etv2 
polyclonal antiserum, a monoclonal against the myc-epitope (9E10), or a 
polyclonal against GFP.  The Etv2 polyclonal serum recognizes a single 
band that is the same size as that recognized following immunodetection 
for the myc epitope.  B. Tg(fli1a:negfp)y7 embryos at 18 hpf injected with 5 
ng of control or Etv2 MO followed by immunostaining using Etv2 
polyclonal serum and Alexa-568 secondary.  Etv2 antibody staining is 
clearly visible in embryos injected with control MO, but absent in embryos 
injected with 5 ng of an Etv2 translation blocking morpholino.  C. Top, 
camera lucida drawings of embryo at approximately 24 hpf.  Bottom, 
immunostaining of an Tg(fli1a:egfp)y1 embryo with Etv2 polyclonal serum 
and alexa-568 secondary at 24 hpf.  Faint Etv2 expression can be 
observed in many EGFP-positive cells within the caudal vein plexus, while 
strong Etv2 expression is apparent in a separate EGFP-negative 
population of cells (indicated by a white bracket).  Etv2 expression is not 
detectable in the dorsal aorta at this time point (red arrows).  D. Two 
photon micrographs of Tg(fli1a:negfp)y7 embryos immunostained with 
Etv2 (left panels) or Fli1b (right panels) polyclonal serum.  Top panels are 
signal from Alexa-568 secondary antibody. Bottom panels are overlay of 
Alexa-568 and EGFP fluorescence.  Images are higher magnification 
views of embryos shown in Figure 1G and I.  Left, arrows indicate EGFP-
positive endothelial nuclei that do not express Etv2; arrowheads indicate 
EGFP- negative/Etv2-positive cells within the dorsal aorta.  Right, arrows 
indicate EGFP- positive endothelial nuclei that also express Fli1b; 
arrowheads denote EGFP- negative/Fli1b-positive blood cells circulating 
within the dorsal aorta. 



! 70 

 



! 71 

 downregulated in endothelial cells as vascular development proceeds.  

 The dynamic expression of etv2 suggested that its function might 

only be required during early stages of vascular development. To 

investigate this possibility, we utilized a caged Morpholino (cMO) that is 

activated by exposure to UV light to conditionally block Etv2 translation at 

different developmental stages [142, 143].  We injected Etv2 cMO into 1-

cell stage Tg(fli1a.ep:DsRedex)um13 zebrafish embryos, exposed them to 

UV light at distinct developmental stages, and subsequently assessed 

vascular morphology and function.  As has been shown previously, 

embryos injected with a standard Morpholino targeting Etv2 exhibited loss 

of intersegmental vessels (ISV) and a poorly formed dorsal aorta (DA) at 

30 hpf and did not display circulation at 48 hpf (Figure 2.3A,E). By 

contrast, Tg(fli1a.ep:DsRedex)um13 embryos injected with Etv2 cMO that 

were not exposed to UV light, or those that were uninjected and exposed 

to UV, were phenotypically normal (Figure 2.3B, E).  Likewise, 

Tg(fli1a.ep:DsRedex)um13 embryos injected with scrambled control 

morpholino (MO) exhibited normal vascular morphology at 30 hpf and 

normal circulation at 48 hpf (Figure 2.3 and data not shown). However, 

most embryos injected with Etv2 cMO and exposed to UV light at 11 hpf or 

earlier exhibited defects in vascular morphology and loss of circulation !

(Figure 2.3C-E), similar to embryos injected with an uncaged Etv2 MO!
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Figure 2.3: Etv2 is required only during early stages of vascular 

development.  A-D. Confocal images of trunk blood vessels in 

Tg(fli1a.ep:DsRedex)um13
 embryos at 30 hpf.  Lateral views, dorsal is up, 

anterior to the left.  Embryos injected with (A) 5 ng standard Etv2 

Morpholino (MO) or (B) 2 ng Etv2 caged MO (cMO), but not illuminated 

with UV light.  ISVs (arrows), dorsal aorta (DA; bracket) and posterior 

cardinal vein (PCV; bracket) are indicated.  C, D. Embryos injected with 

Etv2 cMO exposed to UV light at C 3 hpf or D 11 hpf.  E. Penetrance of 

indicated circulatory defects in embryos at 48 hpf following injection with 

MO and UV exposure as indicated.  F. Percentage of mosaic miniRuby-

positive host embryos showing successful transplantation of 

Tg(fli1:EGFP)y1
 donor cells.  Donor embryos were injected with 100 pg of 

mcherry or etv2 mRNA. *p < 0.05.  G. Representative confocal images of 

wild type hosts with contribution to both vascular (green) and non-vascular 

(red) tissue. 
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(Figure 2.3A,E).  In all cases, we did not observe any overt effects on 

general morphology (data not shown).  Many fewer Etv2 cMO-injected 

embryos exposed to UV light at 12 hpf displayed defects in circulation and 

UV illumination at later time points did not cause severe defects in trunk 

blood vessels or loss of circulation (Figure 2.3E).  Thus, Etv2 appears to 

be required in a precisely defined early window during vascular 

development.  Such an early requirement would be consistent with a role 

for Etv2 during specification of lateral mesodermal precursors to an 

endothelial cell fate.  If this were the case we would expect exogenous 

Etv2 to increase the potential of cells to contribute to the vascular lineage.  

Indeed, mosaic analysis revealed that donor cells derived from 

Tg(fli1a:egfp)y1 embryos injected with etv2 mRNA were much more likely 

to contribute to trunk blood vessels than donor embryos injected with 

mRNA encoding mCherry (Figure 2.3F, G). Together, these observations 

demonstrate that Etv2 plays an essential role during endothelial cell 

specification but is likely dispensable for later aspects of vascular 

development.  

Recent studies in mouse demonstrate that persistent transgenic 

expression of Etv2 leads to defects in vascular morphology and causes a 

block in endothelial maturation [144].  Coupled with our observations that 

Etv2 is robustly downregulated at early stages of vascular development, 
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these results suggest the existence of mechanisms that actively reduce 

Etv2 expression.  Furthermore, the discrepancy between Etv2 and Fli1b 

protein expression compared to their relative levels of transcript at 24 hpf 

(compare Figure 2.1A,F,H) suggested that a post-transcriptional 

mechanism might contribute to reduction in Etv2 protein.  To investigate 

this possibility, we tested the ability of the etv2 3’UTR to repress reporter 

gene expression. In the process of cloning the appropriate regulatory 

sequences for this assay, we observed evidence of alternative 3’UTRs 

encoded by the etv2 locus2.  In ENSEMBL (version 69, Zv9), the 

annotated etv2 3’UTR spans only 298 nucleotides, while two separate 

expressed sequence tags (ESTs) identified in the NCBI database extend 

past this sequence by an additional 315 nucleotides (Figure 2.4A).  To 

further characterize expressed etv2 3’ UTR sequences, we performed 3’ 

rapid amplification of cDNA ends (3’RACE) from 24 hpf zebrafish 

embryos.   Sequence analysis of cloned 3’RACE products and 

subsequent RT-PCR confirmed the expression of both the ENSEMBL- 

and EST-annotated 3’UTRs (hereafter referred to as Short and EST etv2 

3’ UTR, respectively) as well as a third isoform encoding a 3’UTR of 

approximately 1030 nucleotides (Long etv2 3’ UTR; Figure 2.4A-C).  To 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
$I discovered alternative etv2 3’UTRs by polyadenylation site sequencing, 
though not noted in this manuscript. See Appendix V.  
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Figure 2.4: Evidence for alternative 3’UTRs encoded by the zebrafish 

etv2 locus.  A. Schematic depicting etv2 intron/exon structure and 

alternative 3’UTR lengths.  Evidence for the existence of each isoform 

derived from annotation, 3’RACE, and RT-PCR is indicated.  B. 3’RACE 

products amplified from 24 hpf embryos.  C. RT- PCR from 24, 30, or 48 

hpf wild type or MZDicer embryos was performed using primers specific to 

the short, EST, or long etv2 3’UTR.  Genomic (g) DNA was used as a 

positive control. + denotes reverse transcribed cDNA template; - indicates 

template without reverse transcription to rule out genomic DNA 

contamination.  D. Diagram of endothelial cell autonomous 3’ UTR sensor 

construct and experimental procedure for measuring post-transcriptional 

regulation of 3’UTRs. 
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determine the regulatory potential of these 3’UTRs, we employed an 

endothelial cell autonomous transient transgenic reporter assay in which a 

3’UTR of interest is placed downstream of a red fluorescent protein 

(mCherry; Figure 2.4D) [145].  This reporter construct also contains a 

separately expressed enhanced green fluorescent protein (EGFP) reporter 

fused to a control 3’UTR as an internal reference (Figure 2.4D).  We 

cloned each etv2 3’UTR downstream of mCherry and assessed their 

effect on reporter expression in endothelial cells in vivo compared to the 

internal EGFP cassette.  In embryos injected with a transgenic construct 

encoding mCherry fused with a control 3’UTR, we observed robust co-

expression of both mCherry and EGFP in endothelial cells within trunk 

blood vessels (Figure 2.5A).  By contrast, both the EST and Long etv2 

3’UTRs caused significant reduction of mCherry expression when 

compared to the co-expressed EGFP control (Figure 2.5B, C), while the 

Short etv2 3’UTR did not appear to alter expression reporter expression 

(Figure 2.5C and data not shown).  These results suggest that post-

transcriptional regulation of alternative etv2 3’UTRs may contribute to its 

regulation during vascular development. 

microRNAs (miRNA) are short non-coding RNAs that can repress 

gene expression through interaction with target sequences usually located 

in the 3’UTR of transcripts [146].  Since the etv2 EST and Long 3’UTRs  
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Figure 2.5. The etv2 3’UTR represses a heterologous reporter in 

endothelial cells.  A, B. Representative confocal micrographs of 48 hpf 

wild type embryos co-injected with 25 pg of a Tol2 bis-cistronic endothelial 

cell autonomous sensor construct encoding mCherry fused to a A control 

3’UTR or the B EST etv2 3’UTR sensor and 25 pg of transposase mRNA.  

Top, endothelial expression of the control EGFP transgene.  Middle, 

endothelial expression of the mCherry sensor transgene.  Bottom, merge 

of green and red channels. Lateral views, dorsal is up, anterior to the left.  

C. Quantification of relative mCherry fluorescence levels compared to 

EGFP following 3’ UTR sensor injection.  *p< 0.05, N. S. = Not significant. 
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caused repression of reporter gene expression, we investigated whether 

this may be due to miRNA regulation.  Analysis of the etv2 3’UTR 

sequence revealed 5 putative binding sites for members of the let-7 family 

of miRNAs in the longest defined etv2 3’UTR, with the short and EST etv2 

3’UTRs having two and three binding sites, respectively (Figure 2.4A). 

Additionally, let-7 binding sites were also evident in the mouse and human 

etv2 transcripts (data not shown), suggesting a conserved role for let-7 in 

regulating Etv2 levels. To test the possibility that Iet-7 regulates the etv2 

3’UTR we co-injected zebrafish embryos with mRNA encoding EGFP 

fused to the EST or short 3’UTR with either let-7a or a mis-match (mm) 

control duplex RNA, as well as mCherry mRNA with a control 3’UTR and 

subsequently compared levels of green and red fluorescence.  Coinjection 

of the etv2 EST 3’UTR sensor with let-7a duplex decreased EGFP 

expression compared to control duplex without an effect on mCherry 

levels (Figure 2.6A, B).  Quantification of EGFP and mCherry in the same 

embryos by Western analysis demonstrated that let-7a led to significant 

and potent repression of the etv2 EST 3’UTR (Figure 2.6E, F).  We also 

observed modest but significant repression of the Short etv2 3’ UTR by 

let-7a (Figure 2.6C-F). Consistent with the highly conserved sequence 

within let-7 microRNAs, we observed similar repression of the EST etv2 

3’UTR by other let-7 family members (Figure 2.7), which have been 
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Figure 2.6: let-7a negatively regulates the etv2 3’UTR.  A-D. 

Transmitted light (left column), green fluorescence (middle column) and 

red fluorescence (right column) images of embryos injected with sensor 

mRNAs.  A, B. Embryos co-injected with 25 pg gfp-est- etv2-3’ UTR and 

25 pg mcherry mRNAs and A control or B let-7a duplex.  C, D. Embryos 

co-injected with 25 pg gfp-short-etv2-3’ UTR and 25 pg mcherry mRNAs 

and C control or D let-7a duplex.  E. Western analysis for GFP and 

mCherry protein on embryo lysates at 24 hpf following injection with est- 

or short-etv2 3’ UTR sensor mRNA, mcherry mRNA, and indicated duplex.  

F. Quantification of Western analysis from three independent experiments.  

Bars represent the average ratio of GFP band intensities from embryos 

injected with control duplex compared to let-7a duplex from either the EST 

or Short GFP-etv2 3’ UTR sensor.  Significance was calculated using the 

student t-test.  *p < 0.05 
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Figure 2.7: Multiple let-7 family members can repress the etv2 3ʼUTR.  

Embryos were co-injected with gfp-est-etv2 3ʼ UTR sensor (25 pg) and 

mcherry mRNAs (25 pg), along with indicated RNA duplexes.  Bright field 

(left column), green fluorescent (middle column) and red fluorescent (right 

column) images of injected embryos were captured at 24 hpf. 
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reported to be expressed in zebrafish endothelial cells at 24 hpf [147].  

Furthermore, deletion of the five putative let-7 binding sites in the etv2 

Long 3’ UTR resulted in a significant increase in mCherry reporter 

expression in the endothelial autonomous sensor assay compared to the 

wild type Long 3’UTR (Figure 2.5C).  These observations suggest that let-

7 microRNAs can contribute to the negative regulation of Etv2 in 

endothelial cells.  

To determine if let-7 could repress endogenous etv2, we injected 

let-7a or control duplex into zebrafish embryos and assessed Etv2 protein 

and transcript levels.  While Etv2 protein was apparent at low levels in 

Tg(fli1a:egfp)y1 -positive cells lining the nascent dorsal aorta at 15 ss 

following injection with control duplex, we failed to detect it in embryos 

injected with let-7a duplex (Figure 2.8A).  Furthermore, we also noted 

reduced expression of the fli1a:egfp transgene in let-7a duplex injected 

embryos (Figure A5.8A), which is likely due to endothelial differentiation 

defects as a result of reduced Etv2 function [135].  We also observed 

significant effects on etv2 transcript as a result of ectopic let-7a 

expression.  We found that endogenous etv2 transcript was significantly 

down regulated at 15 ss following injection of the let-7a duplex compared 

to embryos injected with control mismatch duplex (Figure 2.8B). 

Furthermore, we noted concomitant reduction in fli1a, fli1b, hey2, lmo2, 
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Figure 2.8: Endogenous Etv2 is repressed by let-7a.  A. Two photon 

images of Tg(fli1a:egfp)y1 embryos injected control or let-7a duplex and 

immunostained with Etv2 polyclonal serum and Alexa-568 secondary 

antibody.  Lateral view, dorsal is up, anterior to the left.  Arrows denote 

Etv2/GFP-positive cells (left panels) or Etv2-negative/GFP- positive cells 

in the forming dorsal aorta (right panels).  B. Histogram showing fold 

change in expression of indicated genes at 15 ss in embryos injected with 

let-7a compared to those injected with control duplex measured by the 

nCounter system.  Genes normalized to actb2 (beta-actin) and eef1a1l1 

(ef1alpha). *p<0.05.  C. Histogram of relative nCounter expression counts 

normalized as in B for indicated genes following injection with mRNA 

encoding Etv2 (+Etv2) or Etv2 lacking the DNA binding domain (no Etv2) 

and mismatch (no let-7) or let-7a duplex (+ let-7).  D. Whole mount in situ 

hybridization using riboprobes against etv2 (left) or gata1a (right) at 15 ss 

in embryos injected control or let-7a duplex RNA.  Angioblasts that have 

migrated to the midline, or lack thereof, are indicated by arrows.  Dorsal 

view of flat mounted embryo, anterior is up.  E. Histogram showing 

percentage of successfully transplanted wild type host embryos 

(miniRuby-positive) that display contribution to vascular tissue, as 

indicated by presence of Tg(fli1a:egfp)y1-positive cells.  Donors were 

injected with control or let-7a duplex as above.  Data are from three 

independent experiments and significance was calculated using the 

Fisher’s exact test; *p < 0.05.  F. Confocal micrographs showing 

contribution of Tg(fli1a:egfp)y1 positive cells (green channel) from donors 

that were injected with control or let-7 RNA duplex.  miniRuby-positive 

cells (red channel) indicate overall contribution of donor cells in the trunk.  
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tal1,  kdrl,  and  flt4  in  let-7a  duplex-injected  embryos  (Figure 2.8B), 

consistent with the observation that Etv2 can induce expression of these 

endothelial genes [136, 138, 148].  Co-injection of etv2 mRNA containing 

a heterologous 3’UTR along with let-7a duplex rescued the expression of 

these Etv2-responsive genes, suggesting that they are not directly 

targeted by let-7a (Figure 2.8C). While we observed repression of several 

endothelial genes, there was no change in early hematopoietic markers 

such as gata1a and gata2a following injection of let-7a duplex (Figure 

2.8B).  Analysis of etv2 expression by whole mount in situ hybridization in 

let-7a injected embryos at 15 ss revealed a slight down-regulation in etv2 

expression in the lateral mesoderm.  More strikingly, we observed loss of 

midline-positioned etv2-positive cells, which normally comprise the 

forming aorta (Figure 2.8D).  This defect is also known to be associated 

with Etv2 deficiency [135] and is consistent with reduced Etv2 function as 

a consequence of ectopic let-7a expression.  We did not note any obvious 

changes in gata1a (Figure 2.8C), consistent with the gene expression data 

(Figure 2.8B).  Together these results demonstrate that let-7a can potently 

repress expression of the Etv2 protein and lead to reduction in endothelial 

gene expression. 

To investigate the effect of let-7a over-expression on endothelial 

cell commitment, we transplanted cells from Tg(fli1a:egfp)y1 embryos 
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injected with let-7a into wild type embryos and assessed the frequency of 

successfully transplanted host embryos with EGFP-positive donor cells. 

Consistent with our observation that let-7a can repress endogenous etv2, 

significantly fewer host embryos transplanted with let-7a overexpressing 

donor cells displayed contribution to vascular tissue compared to control 

mis-match injected embryos (Figure 2.8E).  Despite the negative effect of 

let-7a over-expression on endothelial cell contribution, let-7a duplex-

injected donor cells were otherwise able to contribute to other cell types 

(Figure 2.8F).  Taken together these data suggest that let-7 family 

members can act to limit the ability of Etv2 to induce endothelial 

specification during development.  

Determining the effect of let-7 deficiency is a challenge due to the 

large number of related family members.  Indeed, let-7a itself can be 

expressed from at least 6 distinct loci in the zebrafish genome and, 

including duplication events, there are a total of 18 different let-7 family 

genes (ENSEMBL, Zv9).  As mentioned above, several of these are 

expressed in endothelial cells and can repress the Etv2 3’UTR.  

Therefore, we over-expressed lin28a, which uridylates let-7 miRNAs and 

causes their rapid degradation [149-151], to reduce let-7 function. We find 

that injection of mRNA encoding Lin28a causes a significant decrease in 

let-7a expression in zebrafish embryos at 24 hpf (Figure 2.9A).  This effect 
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Figure 2.9: Contribution of let-7a and other microRNAs to Etv2 

repression.  A. Northern analysis of RNA isolated from 24 hpf embryos 

left uninjected or injected with 1 ng lin28a mRNA.  Blots were hybridized 

with using DIG labeled probes against let-7a and 5s RNA.  B. Histogram 

showing log2 fold change comparison of let-7 family members at 15 ss 

assessed by miScript qPCR quantification between embryos injected with 

1 ng lin28a mRNA and those left uninjected, quantification from triplicate 

experiments.  C. Histogram showing fold change comparison of indicated 

genes assessed by nCounter quantification between embryos injected 

with 1 ng lin28a and 1 ng $galactosidase mRNA.  Genes normalized to 

actb2 (beta-actin) and eef1a1l1(ef1alpha).  D. Two-photon micrographs of 

trunk blood vessels in Tg(fli1a:egfp)y1 embryos immunostained with Etv2 

polyclonal antiserum and Alexa-568 secondary antibody at 24 hpf 

following injection with 1ng of β-galactosidase (left panels) or lin28a 

mRNA (right panels).  E. Confocal micrographs of embryos 

immnuostained with Etv2 polyclonal antiserum and Alexa-568 secondary 

antibody at 48hpf.  Top, wild type embryo.  Bottom, MZdicer1hu715 mutant 

embryos injected with mir-430 duplex RNA (bottom).  Etv2-positive nuclei 

in the endothelial cells of trunk blood vessels are denoted by arrows 

(bottom).  
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was similar for other let-7 family members (Figure 2.9B), while mir-126, an 

unrelated miRNA expressed specifically in endothelial cells, was not 

significantly reduced. Despite reduction in let-7 miRNAs, we did not 

observe any significant changes in endothelial gene expression at 15 ss or 

24 hpf (Figure 2.9C).  Furthermore, neither etv2 transcript or protein levels 

appeared to change significantly in Lin28a over-expressing embryos and 

vascular development proceeded normally (Figure 2.9C, D).  These 

results raise the possibility that other miRNAs may contribute to post-

transcriptional repression of Etv2 in the absence of let-7.  Alternatively, 

sufficient levels of let-7 remain to repress Etv2, even in the presence of 

increased lin28a.  Therefore, we further investigated whether miRNAs 

contribute to Etv2 down-regulation by determining its expression in 

embryos lacking maternal and zygotic (MZ) dicer function. dicer1 encodes 

an essential nuclease required for miRNA maturation and MZdicer mutant 

embryos are devoid of mature miRNAs [152]. Wild type embryos at 48 hpf 

did not exhibit Etv2 expression in endothelial cells (Figure 2.9E).  By 

contrast, Etv2 protein expression was apparent at this stage in embryos 

lacking both maternal and zygotic dicer1 (MZdicer1) that had been 

injected with miR-430 to rescue early developmental defects associated 

with a lack of dicer1 (Figure 2.9E) [152].  Despite the persistence of Etv2 

protein, down-regulation of etv2 transcript seemed to occur normally in 
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wild type and MZdicer1 mutant embryos (Figure 2.4C).  These results 

suggest that microRNAs may play a role in post-transcriptionally 

regulating levels of Etv2 protein during vascular development.   

 

Discussion   
!

The ETS transcription factor Etv2 is essential for vascular 

development, but less is known about its dynamic regulation or functional 

requirements during different stages of vascular development.  Using the 

zebrafish as a model system, we find that both etv2 transcript and protein 

are expressed during angioblast specification and vasculogenesis, but are 

subsequently downregulated as development proceeds.  This expression 

pattern is mirrored by its functional requirement, which we find is restricted 

to early stages that correspond to angioblast emergence from the lateral 

mesoderm.  We further provide evidence that post-transcriptional control 

of Etv2 levels likely contribute to its down-regulation, and this regulation 

occurs in part, through let-7 miRNAs. 

The phenotypes of etv2-deficient zebrafish and mouse embryos 

suggest that it should be considered as a master regulator of endothelial 

cell fates.  In both species, loss of etv2 leads to profound defects in 

vascular morphogenesis and a global loss of endothelial gene expression 

[122, 134, 135].  Conversely, exogenous Etv2 expression can 
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precociously and ectopically induce an endothelial gene program [138, 

148].  Accordingly, we find that Etv2-overexpression can increase the 

commitment of cells to the endothelial lineage in mosaic embryos, similar 

to its effect in mouse embryoid bodies [137]. While our results indicate that 

Etv2 is essential for endothelial cell specification, it appears to be 

dispensable for later steps of vascular development. Conditional 

knockdown of Etv2 at early, but not later stages, severely perturbed 

vascular morphogenesis, demonstrating that its function is only required 

during an early window of development in which the first endothelial 

progenitors are known to emerge.  This early functional restriction is likely 

due the highly dynamic expression of etv2, which peaks during 

somitogenesis but is barely detectable by 24 hpf in the zebrafish embryo.  

Our results are consistent with recent studies in mouse embryonic stem 

cells where Etv2 expression can be detected in Brachyury-positive 

mesodermal cells that have not yet initiated expression of endothelial 

markers, such as vegf receptor-2 (vegfr2) [140]. Furthermore, etv2 

expression also appears to be reduced in mouse embryos as 

development proceeds [133].  Finally, conditional ablation of etv2 in 

mouse embryos using a Flk1:Cre driver does not effect endothelial 

differentiation or vascular morphogenesis [140], suggesting that etv2 is 

also dispensable for later steps in vascular development in mammals as 
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well.  Taken together with our studies, these results suggest that Etv2 

plays an essential and conserved role to commit early lateral mesoderm 

progenitors to an endothelial cell lineage, yet is not required during 

subsequent endothelial differentiation and morphogenesis.    

In many cases, ETS transcription factors are essential throughout 

the ontogeny of a particular cell lineage, often acting reiteratively during 

commitment and differentiation.  For example, Spi1 (also known as pu.1) 

is essential for development of the myeloid lineage [153, 154], where it is 

required for early expression of receptors for macrophage and granulocyte 

specific growth factors on progenitor cells [155].  Subsequently, spi1 plays 

an essential role in the terminal differentiation and function of both 

macrophages and neutrophils, where it continues to be expressed [155, 

156].  By contrast, Etv2 function is restricted to early endothelial 

specification and its persistent expression has deleterious effects on 

differentiation and vascular morphogenesis.  Continued endothelial 

expression of a Cre-activated conditional ROSA26:Etv2 transgene leads 

to abnormal yolk sack vascular morphology and a failure to induce 

expression of genes involved in vascular maturation [144].  A similar effect 

is observed during direct endothelial reprogramming of human amniotic 

cells, which requires ETV2, along with ERG and FLI1 [139].  While ETV2 

is essential for direct reprogramming in this context, it must be 
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subsequently down-regulated for normal endothelial differentiation to 

occur [139].  Together with our findings, these studies underscore the 

need to actively repress etv2 expression to allow normal endothelial 

differentiation.   

Our results suggest that miRNA-mediated post-transcriptional 

repression plays an important role in reducing the levels of Etv2 to allow 

normal differentiation.  The etv2 3’UTR is capable of mediating repression 

in endothelial cells and Etv2 protein persists in MZdicer1 mutant embryos, 

which lack miRNAs.  We further find that post-transcriptional repression of 

etv2 is mediated, in part, by members of the let-7 family of microRNAs. 

Our results are consistent with the role of let-7 microRNAs in other animal 

species, where they are known to promote cellular differentiation or block 

transformation by negatively regulating genes associated with growth and 

proliferation, such as RAS and MYC [157-160].  We also find evidence for 

multiple etv2 transcript isoforms with different length 3’UTRs, which varied 

in their potential to repress reporter expression and their responsiveness 

to let-7 over-expression.  While only the shortest 3’UTR did not 

appreciably repress reporter gene expression in our endothelial 

autonomous sensor assay, it retained two let-7 binding sites and could still 

be partially repressed by let-7a.  Importantly, let-7 potently repressed 

endogenous Etv2 protein levels, suggesting an important role for this 



! 98 

miRNA in regulating etv2 in vivo.  However, the precise role of alternative 

3’UTR usage in etv2 regulation is not clear at this time.  Interestingly, 

previous studies demonstrate that shortened 3’UTRs, which can 

presumably evade microRNA regulation, are prevalent in proliferating or 

transformed cells [21, 68]. Furthermore, 3’UTRs generally lengthen during 

embryonic zebrafish development as cells differentiate [14, 56].  These 

observations suggest that there may be a transition in 3’UTR usage as 

angioblasts differentiate into endothelial cells allowing for let-7 to 

contribute to Etv2 down-regulation during differentiation. 

Despite the effect of let-7a on endogenous Etv2 expression, we did 

not note any vascular defects caused by over-expressing lin28a, which 

drastically reduced let-7a levels.  In addition, lin28a over-expression did 

not appear to cause Etv2 to persist at later stages.  There could be 

several reasons for these results.  First, the degree of let-7a knockdown 

caused by exogenous lin28a expression, while significant based on our 

quantification, may not be sufficient to mimic a true genetic null given the 

number and diversity of let-7 microRNAs expressed in endothelial cells at 

this time point [147].  Thus, sufficient levels of let-7 microRNAs may 

remain to repress Etv2 even in the presence of high levels of Lin28a.  

Future application of lin28a transgenes that would allow persistent high 

level expression throughout development are likely required to fully 
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address this issue.  Second, other miRNAs may contribute to Etv2 

repression in the absence of let-7 family members.  While we are currently 

not able to rule out either of these possibilities, the persistent expression 

of Etv2 protein in MZdicer1 mutant embryos underscores the importance 

of miRNAs in mediating its repression during development.  Finally, there 

are likely to be additional regulatory mechanisms that contribute to Etv2 

down-regulation and may be sufficient to allow normal vascular 

development in the absence of let-7.  Indeed, while Etv2 protein persisted 

in MZdicer1 mutant embryos, etv2 mRNA was reduced as development 

proceeded similar to wild type siblings. Although exogenous let-7a 

appeared to reduce etv2 transcript following whole embryo analysis, 

comparison of in situ results and immunostaining suggested a much more 

potent effect on Etv2 protein rather than mRNA levels.  Furthermore, the 

observed decrease in etv2 mRNA was likely due to embryos displaying 

fewer angioblasts, a phenotype associated with Etv2 deficiency [122, 135] 

and consistent with the observed reduction in Etv2 protein following let-7a 

over-expression.  Together, these observations suggest that down-

regulation of etv2 mRNA may occur through transcriptional mechanisms.  

Consistent with this possibility, a recent study has identified an enhancer 

element in the zebrafish etv2 locus that drives expression in endothelial 

cells only during early stages of embryonic development but not later 
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[161]. The activity of this enhancer mirrors that which we observe for the 

endogenous transcript, suggesting that transcriptional mechanisms can 

contribute to the dynamic expression of etv2.  Thus, while our work 

suggests that miRNA-mediated post-transcriptional repression contributes 

to Etv2 down-regulation, it is likely that other mechanisms play an 

important role in this process. 

Whether let-7 or other miRNAs contribute to the repression of Etv2 

in mammals is unknown.  We did observe that human and mouse ETV2 3’ 

UTRs also contain let-7 binding sites (data not shown). Moreover, 

zebrafish and human endothelial cells highly express several let-7 family 

members[162], but do not express appreciable amounts of ETV2 [163].  

These observations suggest that let-7-mediated repression of etv2 may be 

a conserved aspect of its regulation.  Based on its powerful ability to 

induce endothelial gene programs and block differentiation, along with the 

evidence that it is normally actively repressed, we would further speculate 

that Etv2 is likely to play a role in the pathogenesis of syndromes 

associated with dysregulated endothelial growth.  In this regard, it will be 

of interest to determine if etv2 expression is persistent in cases of infantile 

hemangioma or angiosarcoma.  At the same time, further investigation 

into the mechanisms that contribute to etv2 regulation will likely provide 
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novel insights into how this master regulator contributes to endothelial 

lineage specification.  

 

Material and Methods 
 

Zebrafish Handling and Maintenance 

Zebrafish and their embryos were handled according to standard protocols 

[164] and in accordance with the University of Massachusetts Medical 

School IACUC guidelines. Tg(fli1a:egfp)y1, Tg(fli1a:negfp)y7 and 

Tg(fli1a.ep:DsRedex)um13 lines have been described [165-167]. Maternal 

zygotic (MZ) dicer1 embryos were made using the germline replacement 

technique as previously described [152, 168, 169].   

Etv2 Caged Morpholino Injections 

The Etv2 caged morpholino (cMO) used in this study has been previously 

reported [143]. 230 fmol (2 ng) of Etv2 cMO was injected into 

Tg(fli1a.ep:DsRedEx)um13 embryos at 1-cell stage. Embryos were 

subjected to UV illumination for 10 seconds at indicated stages using a 

Zeiss Axioskop2 Plus compound microscope with a DAPI filter and an 

Achroplan (Zeiss) 20x water immersion objective. Following 

photoactivation, embryos were grown in egg water at 28.5°C. Control 

embryos were left in the dark.  5 ng of scrambled control or 5 ng Etv2 MO 

[135] were injected as negative and positive controls, respectively. 
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Vascular morphology was assessed at 30 hpf.  Embryos were imaged 

using an MZFLIII fluorescent dissection microscope or using a using a 

Leica DMIRE2 confocal microscope (Objective: HC PL APO 20x/0.70CS).  

Circulatory defects were observed using a MZ12 stereomicroscope (Leica) 

and captured with a DMK21F04 camera (Imagesource) using Quicktime 

Pro or iMovie.  

Plasmid Construction 

The etv2 open reading frame was amplified from 24 hpf whole embryo 

cDNA and used in a BP recombination reaction with plasmid pDONR221 

(Invitrogen) to make pME-etv2. The zebrafish lin28a open reading frame 

was amplified from a full-length Zebrafish Gene Collection (ZGC) clone 

(Clone ID: 2643384; Thermo Scientific; see Table 2.1 for primers), Then 

subjected to BP recombination with plasmid pDONR221 to generate pME-

lin28a. pME-etv2, pME-lin28a, or pME-mcherry [170] were used in LR 

reactions with pCSDest or pCSMTDest [171] to generate pCS-etv2, 

pCSMT-etv2, pCS-lin28a, and pCS-mCherry.  Alternative etv2 3’ UTRs 

were cloned through PCR amplification using attB2 and attB3 primers (see 

Table 2.1) followed by BP recombination into pDONRP2r-P3 (Invitrogen) 

to give p3E-EST etv2 3’UTR, p3E-short etv2 3’UTR and p3E-long etv2 

3’UTR. let-7 binding sites were identified by miRANDA, RNAhybrid, and a 

perl script. Bases 1, 3, 4, 5, 6 were mutated to adenines within 5 identified  
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Table 2.1: Primers used in Chapter 2. 
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Primer # Primer Name Primer Sequence (5'-3')
906 for GST-Etv2 F gatcggatccGAAATGTACCAATCTGGATT
906 for GST-Etv2 R gatcctcGAGCGCTGCGTCTTTTGACCA
964 attB1 etv2 F GGGGACAAGTTTGTACAAAAAAGCAGGCTtaaccatggaaatgtaccaatctg
824 attB2 etv2 R GGGGACCACTTTGTACAAGAAAGCTGGGTctaatgtgtccaggactctgt

4173 etv2 3'RACE F CATCATTCACAAAACGGCGGGAAAGCGCTACG
4174 etv2 3'RACE nested F CCGCTTTGTCTGTGACGTGCAGGGCATGCTTG
4053 attB1 lin28 F GGGGACAAGTTTGTACAAAAAAGCAGGCTGCgccaccatgcccccggcaaatccgc
4054 attB2 lin28 R GGGGACCACTTTGTACAAGAAAGCTGGGTcctaatcagtgctctctggc
1751  etsrp 3'UTR short F attB2 GGGGACAGCTTTCTTGTACAAAGTGGCCTGGACACATTAGAGGAGGA
1752 etsrp 3'UTR short R attB3 GGGGACAACTTTGTATAATAAAGTTGtgtaatcgtccgtcttcaaca
1753 etsrp 3'UTR long F attB2 GGGGACAGCTTTCTTGTACAAAGTGGTGTTGAAGACGGACGATTACA
1754  etsrp 3'UTR long R attB3 GGGGACAACTTTGTATAATAAAGTTGtctgttgaagcttttggagag
4219 attB2-etv2 3'utrF GGGGACAGCTTTCTTGTACAAAGTGGAGGAGGAATTCTCGAAGGAT
4278 attB3 etv2 peak3 3'utr R GGG AC AAC TTT GTA TAA TAA AGT TG ATGCCACAACAACAGTTTTATTGTAAATAA
1793 F attB2 miR sensor control GGGG ACA GCT TTC TTG TAC AAA GTG G GGCGCGCCTACGTAACTAGT
1794 R attB3 miR sensor control GGGG AC AAC TTT GTA TAA TAA AGT TG CTCGAGACTAGTTACGTAGG
587 ets1 b1 fwd GGGGACAAGTTTGTACAAAAAAGCAGGCTgc gtg acc atg acggcagct
953 ets1a attB2  R GGGGACCACTTTGTACAAGAAAGCTGGGTcagactttactcgtccgtgtc

3332 Mm etsrp attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTtaaccatggacctgtggaactgggatgagg
3333 Mm etsrp attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTcttattggccttctgcacctggcagatgcc
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let-7 binding site seed sequences identified by all three methods, as 

described in [172]. The mutant let-7 etv2 3’ UTR fragment was 

synthesized by Genewiz (pUC57-kan-etv2_3putr_mut_let7) followed by 

subcloning into p3E-mcs1 with AscI and XhoI to give p3E-mutlet-7 etv2 3’ 

UTR.   To generate mRNA sensors constructs, p3E-ESTetv2 3’UTR or 

p3E-shortetv2 3’UTR were recombined with pCSDEST2 and pENTR-

EGFP2 [171] to yield pCS2-egfp-ESTetv2 3’UTR and pCS2-egfp-

shortetv2 3’UTR. Endothelial 3’ UTR sensor constructs were generated by 

performing an LR Gateway recombination reaction between 

pTolBasPegfpfliEPmcherryR2-R3 and one of the following 3’ entry clones:  

p3E-mcs1, p3E-shortEtv2-3’UTR, p3E-ESTEtv2-3’UTR, p3E-longEtv2-

3’UTR, p3E-mut-let7-Etv2-3’UTR. 

mRNA Synthesis and Injections 

Capped mRNA was synthesized from pCS plasmids that had been 

linearized with NotI using the SP6 mMessage mMachine kit (Ambion).  

mRNAs were injected into 1-cell stage embryos according to standard 

protocols [164].  

3’UTR Sensor Assays 

For whole embryo sensor assay, 50 pg of mCherry mRNA and 50 pg of 

indicated gfp etv2 3’UTR mRNA was co-injected along with 50 µM of 

indicated miRNA duplexes into 1-cell stage zebrafish embryos.  Embryos 
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were visualized at 24 hpf using an MZFLIII dissection microscope 

equipped with epifluorescence and digital images were captured using an 

AxioCam mRC (Zeiss).  Alternatively, equal numbers of dechorinated 

embryos were lysed by boiling in 2x Laemmli buffer. Lysates were run on 

an SDS-PAGE gel and transferred to Western blots, which were probed 

with antibodies against EGFP (Invitrogen, A11122) and mCherry 

(Clontech, 632496).  Blots were stripped in between each antibody 

detection.  Expression levels were quantified by measuring the optical 

density of bands using ImageJ following incubation with a horseradish 

peroxidase conjugated secondary antibody and chemiluminscence 

detection.  For endothelial autonomous sensor assays, 25 pg of indicated 

pTol sensor construct was co-injected with 25pg transposase mRNA into 

one-cell stage wild type embryos.  Individual 3’UTR constructs were 

always injected with control sensor in parallel.  At 24 hpf, embryos were 

transferred to egg water containing 0.2mM 1-phenyl-2-thiourea (PTU) to 

inhibit the pigment formation. At 48-50hpf, approximately five embryos 

from each group per experiment displaying robust transgenesis were 

imaged by confocal microscopy. Gain settings were set using embryos 

injected with the control sensor and remained constant throughout the 

experiment. Quantification of fluorescence levels was performed using 

Imaris by creating a surface based on GFP fluorescence and examining 



! 107 

the average values intensity sum of green and red channels. The 

red/green ratio of an experimental embryo was normalized against the 

red/green ratio of a control embryo imaged on the same day. All sensor 

experiments were done and quantified in quadruplicate, except the EST-

3’UTR which was done in triplicate.  Significance was calculated by a 

Welsh test and significance determined by a p value < 0.03.  

Antibody Production 

A fragment encoding the N-terminal 218 amino acids of zebrafish Etv2 

was amplified from 24hpf zebrafish cDNA (see Table 2.1 for primers), 

cloned into pCR2.1 by TOPO cloning (Invitrogen), and sequence verified. 

The etv2 fragment was subcloned into pGEX-6P-1 using BamHI and XhoI 

sites. pGEX-Etv2 was transformed into BL21(DE3) and glutathione S-

transferase (GST) fusion protein expression was induced with IPTG.  

Expressing bacteria were lysed using Bug Buster (Novagen), and proteins 

were purified using Glutathione Sepharose 4B(GE Healthcare), followed 

by release of the Etv2 fragment and removal of the GST using 

PreScission Protease (GE Healthcare).  Purified Etv2 protein was used for 

rabbit polyclonal antibody production (Caprologics, Gilbertville, MA).  Etv2 

antiserum was validated using Western analysis of lysates from HEK293T 

over-expressing myc-tagged zebrafish Etv2. The myc epitope was 
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detected using a 1:10,000 dilution of 9E10 (Sigma) and Etv2 protein was 

detected using a 1:5,000 dilution of anti-Etv2 polyclonal antibody serum.   

Whole Mount Immunostaining 

Staged zebrafish embryos were fixed overnight at 4°C in 2% 

paraformaldehyde (w/v) dissolved in phosphate buffered saline containing 

0.1% Tween-20 (PBSTw).  Embryos were washed 4 times for 5 minutes at 

room temperature in PBSTw and in PBS containing 0.5% TritonX-100 

(PBSTr) at room temperature for 30 minutes. Embryos were blocked for a 

minimum of 2 hrs in blocking solution (PBSTw, 0.1% TritonX-100, 10% 

normal goat serum, 1% BSA, 0.01% sodium azide) at room temperature. 

Fli1b and Etv2 rabbit polyclonal serum was diluted 1:1000 and 1:500, 

respectively, in blocking solution and embryos incubated over night at 4°C.  

Embryos were washed 6 times in PBSTw for 4 hrs minimum at room 

temperature and then incubated in Alexa Fluor 488 or Alexa Fluor 568 

(Invitrogen) anti-rabbit secondary antibody diluted 1/1000 as indicated in 

blocking solution overnight. Immunostained embryos were imaged on a 

LSM7 MP microscope (Zeiss; Objective: 20x/1.0 DIC(UV) VIS-IR 421452-

9800)  equipped with a Chameleon Ti:Sapphire pulsed laser (Coherent, 

Inc.)  Alexa Flour 488 was excited using 904 nm light and Alexa Flour 568 

was excited using 1057 nm light.  

miRNA Duplexes 
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RNA oligonucleotides (Integrated DNA technologies) corresponding to the 

mature and star sequences of zebrafish let-7a, let-7c, let-7f, and, let-7g 

(see Table 2.2) were diluted to 250 mM in nuclease-free water. Equal 

volumes of mature and start oligonucleotides were combined, heated to 

95°C and annealed at 37°C for 30 minutes. miRNA duplexes were 

aliquotted and stored at -80°C. 2 nl of miRNA duplexes were injected into 

embryos at a concentration of 50 µM .  A mis-match duplex in which 4 out 

of 8 bases in the seed sequenced were changed (Table 2.2) was used as 

a negative control (referred to as “control duplex”). 

Quantification of Endothelial Gene Expression 

mRNA was quantified using the NanoString nCounter gene expression 

system (Nanostring Technologies, Seattle, WA)[173]. Total RNA was 

isolated from embryos using a Qiagen RNAeasy kit.  For embryos injected 

with 50µM let-7a or mm-let7a duplex, RNA was isolated at 15 ss.  To 

assess over-expression of Etv2 and let-7a, embryos were co-injected with 

let-7a duplex as above along with 50 pg of mRNA encoding Etv2 or Etv2 

minus its DNA binding domain [Etv2(-DBD)] and RNA was isolated at 

shield stage.  For each experiment, 100 ng of total RNA was hybridized for 

12 to 20 hrs with the Nanostring probeset (Table 2.3) at 650C in a 

thermocycler.  Samples were then loaded into the nCounter prep station 

and  fluorescence  signal  was  quantified  using  the  nCounter  Digital  
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Table 2.2: let7 duplexes and probes used in Chapter 2. 
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dre-Let-7a mature rUrGrArGrGrUrArGrUrArGrGrUrUrGrUgArUrArGrUrU
dre-Let-7a anti-sense rArArCrUrArUrArCrArArCrCrUrArCrCrUrCrA
dre-Let-7c mature rUrGrArGrGrUrArGrUrArGrGrUrUrGrUrArUrGrGrUrU
dre-Let-7c anti-sense rArArCrCrArUrArCrArArCrCrUrArCrUrArCrA
dre-Let-7f mature rUrGrArGrGrUrArGrUrArGrArUrUrGrUgArUrArGrUrU
dre-Let-7f anti-sense rArArCrUrArUrArCrArArUrCrUrArCrUrArCrCrUrCrA
dre-Let-7g mature rUrGrArGrGrUrArGrUrArGrUrUrUrGrUrArUrArGrUrU
dre-Let-7g anti-sense rArArCrUrArUrArCrArArArCrUrArCrUrArCrCrUrCrA
mutant-Let7-sense rUrCrArCrCrUrUrGrUrArGrGrArUrGrUrArUrArGrUrU
mutant-Let-7 anti-sense rArArCrUrArUrArCrArUrCrCrUrArCrArArGrGrUrGrA
let-7a LNA 5’ –dig AACTATACAACCTACTACCTCA-dig- 3’
5S DIG-oligo probe 5’ –N(dig)ATCGGACGAGATCGGGCGTA - 3’
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Table 2.3: Nanostring probes used in Chapter 2. 
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Gene Accession  Targeted Region Tm_CP Tm_RP Gene PN(CP;RP)
etv2 NM_001037375.1 790-890 79 82 etv2 340352;240352
kdrl NM_131472.1 455-555 82 81 kdrl 340356;240356
flt4 NM_130945.1 620-720 82 82 flt4 340353;240353
fli1a NM_131348.2 620-720 81 81 fli1a 340355;240355
fli1b NM_001008780.1 1365-1465 82 82 fli1b 340350;240350
hey2 NM_131622.2 990-1090 83 82 hey2 346488;246488
actb2 NM_181601.3 1647-1747 84 82 bactin2 328374;228374
eef1a1l1 NM_131263.1 1455-1555 78 82 ef1a 328447;228447
gata2a NM_131233.1 2030-2130 81 82 gata2a 328441;228441
tal1 NM_213237.1 635-735 82 80 tal1 340349;240349
lmo2 NM_131111.1 215-315 79 82 lmo2 340354;240354
gata1a NM_131234.1 175-275 81 83 gata1 328442;228442

Gene Accession  Target Sequence

etv2 NM_001037375.1 CTTTGGCAGTTTCTGCTAGAACTCCTGCTGGATTCTGCTTGCCACACTTTTATAAGTTGGACTGGTGATGGCTGGGAGTTTAAAATGTCAGATCCCGCTG
kdrl NM_131472.1 AACATACCCAAACCAAAACGTTATCCTTGAGACGCAGATGAATCCTATGGCAGATGATGTTAAAAGAGGGGTACAGTGGGATCCAAAAAAAGGTTTCACG
flt4 NM_130945.1 TCCTGACCTAAAAGTCACTCTCTTCTCGTTAGTGCCGTATCCAGAGCCTGTGGATGGCAGTGTGGTCACCTGGAATAATAAAAAGGGTTGGTCGATTCCC
fli1a NM_131348.2 ACTTCCTGAGACTCACCAGCGTTTATAACACCGAGGTCCTTCTCTCACATCTCAATTACCTCAGGGAAAGTAGCTCATCGATATCATACAACACGCCATC
fli1b NM_001008780.1 GTAATTTCTTCACGCCTCAATCCACCTACTGGAACTCCGCAACCAGTGTGGTTTATCCCAGTTCACCGATGCCACGACATCCCAGCACTCACACTCACTT
hey2 NM_131622.2 CGCTGGATTCCCACTCTTCAGCCCCAGCGTTACAGCATCTTCAGTGGCTTCTTCCACCGTGAGCTCTTCCGTTTCCACATCCACCACATCCCAACAGAGC
actb2 NM_181601.3 CCTGGGCATATTGTAAAAGCTGTGTGGAACGTGGCGGTGCCAGACATTTGGTGGGGCCAACCTGTACACTGACTAATTCAATTCCAATAAAAGTGCACAT
eef1a1l1 NM_131263.1 CCAAGTGAATTTCCCTCAATCACACCGTTCCAAAGGTTGCGGCGTGTTCTTCCCAACCTCTTGGAATTTCTCTAAACCTGGGCACTCTACTTAAGGACTG
gata2a NM_131233.1 ATTTACTGAGTCACTTTGGTACTGAAAGAGCGGACGCAGAATCACTGTGTGGTAGTCAAAACGGCCACCTCAAAACTCTCATAAAGGACTCGCTTTGAGC
tal1 NM_213237.1 TAGCAATCGAGTCAAGCGCAGACCTGCACCTTATGAGGTTGAAATCAACGATGGTTCGCAGCCCAAAATTGTGCGACGGATTTTCACGAACAGTCGCGAG
lmo2 NM_131111.1 GCGTACACAATGTGTGCTGGATGTTTCTGACCTTTGATACACTTGCTAAGACAGCAGAACAGGTGCATCTCTGAAGCGTTTTGTGCGGCAGATGGTCTTT
gata1a NM_131234.1 ACAGACTCTGGTTTACTGCCACCCGTTGATGTAGATGAACCTTTCTACTCAAGCTCTGAGACTGACCTACTGCCATCGTATTATTCCACCAGCGTCCAGA
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Analyzer. Gene normalization and fold change calculations were done 

using Nsolver Analysis Software (Nanostring Technologies). In all cases, 

biological triplicates were performed and gene counts were normalized to 

eukaryotic translation elongation factor 1 alpha 1 like 1 (eef1a1l1) and 

actin, beta 2 (actb2). Either the average normalized gene count or the 

average fold change was plotted and error bars represent the Standard 

Error of the Mean (SEM).  

In Situ Hybridization 

An antisense DIG-labeled etv2 riboprobe was synthesized by linearizing 

pCS2-etv2 with EcoRI followed by in vitro transcription using T7 

polymerase.  A gata1a riboprobe was synthesized as described elsewhere 

[174]. Whole mount in situ hybridization was performed according to 

standard protocols [175]. 

Mosaic Analysis 

Tg(fli1a:egfp)y1 embryos were used as donors in all cases and 0.35% 

miniRuby (dextran, tetramethylrhodamine and biotin 10,000MW) 

(Invitrogen D-3312) was co-injected as a lineage tracer.  To assess the 

effect of Etv2 overexpression, we injected 100pg of myc-etv2 or mCherry 

mRNA into 1-cell stage donor embryo. For let-7a overexpression we 

injected 2 nl of either 50µm control or let-7a duplex. At sphere stage, 

approximately 20 cells were transplanted from the ventral blastoderm 
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margin of donors into wild type hosts, which were subsequently screened 

at 30 hpf for the appearance of red and green fluorescence.  Embryos 

were imaged using an MZFLIII fluorescent dissection microscope or using 

a using a Leica DMIRE2 confocal microscope (Objective: HC PL APO 

20x/0.70CS).  The proportion of successfully transplanted embryos (i.e. 

exhibiting miniRuby-positive cells in any trunk tissue) with contribution to 

blood vessels was determined in three separate experiments and 

significance was calculated by Fisher’s Exact test. p < 0.05 was deemed 

significant.  

Northern Blotting 

Northern blot analysis for microRNA expression was performed as 

previously described [176]. Zebrafish RNA was isolated using a miRNeasy 

Micro kit (Qiagen) and 5µg of total RNA was loaded per lane.  Blots were 

hybridized with a DIG labeled let-7a locked-nucleic acid probe (Exiqon), 

stripped using boiling water, and hybridized with a DIG-labeled 5s rRNA 

DNA probe (see Table 2.2).  Chemilumenscence detection was performed 

following incubation with a horseradish peroxidase-conjugated antibody 

against DIG.  Northern blots were performed using RNAs from three 

separate experiments and quantified by measuring the optical density of 

bands using ImageJ to compare levels in uninjected versus let-7a injected 

embryos.  Average fold difference from three independent experiments 
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was plotted and error bars represent SEM.  Significance was measured 

using a student t-test.  

3’ RACE and Etv2 3’ UTR Cloning 

3’ RACE was performed using the SMART RACE kit (Clontech). etv2-

specific primers for primary and nested PCR are listed in Table 2.1. 

Amplified fragments were gel purified, cloned into pGEM-t (Promega) and 

sequence verified.  

Quantitative PCR of miRNAs 

RNA was purified from uninjected zebrafish embryos injected at 24 hpf or 

those injected with 1 ng lin28a mRNA using a miRNeasy micro kit 

(Qiagen).   qRT-PCR to detect mature miRNAs was performed using the 

miScript System (Qiagen). Two µg of whole RNA was used to synthesize 

cDNA.  qPCR was performed from 100 ng of cDNA template with a 

commercially available primers for indicated miRNA (Qiagen) and the 

miScript universal primer using the miScript SYBR green PCR Kit 

(Qiagen). snord61.2 expression was assessed in parallel and used to 

normalize microRNA expression levels.  PCR quantification was 

performed on a StepOnePlus real time PCR system (Applied Biosystems).  

Each reaction was run in triplicate and performed on at least two 

experimental replicates and 2-log fold change calculated by comparing 

uninjected to Lin28a injected. 
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Introduction 

3’ end processing of pre-mRNAs in the nucleus influences 

transcription termination, mRNA stability and localization, and dynamic 

regulation of translation.  In plants, yeast, and metazoans, specific 

sequence elements in the 3’ untranslated region (3’UTR) direct cleavage 

and polyadenylation (reviewed in [1, 2]).  Among these elements is the 

polyadenylation consensus signal (PAS) [3], a defined hexameric 

sequence located 10-30 nucleotides (nt) upstream of the cleavage and 

polyadenylation site (pA site), which binds the protein complex Cleavage 

and Polyadenylation Specificity Factor [4-6].  While the PAS is 

predominantly known to comprise the sequence AAUAAA [3], numerous 

single nucleotide variants are also functional [7, 8].  In addition to the PAS, 

a guanine/uracil- or uracil-rich downstream sequence element can be 

found 20-40 nt downstream of the pA site [9-11] that is recognized by 

Cleavage Stimulatory Factor [12, 13].  In some instances, a uracil-rich 

sequence element is present upstream of the PAS [10, 14], which may 

also act to enhance usage of a specific PAS [15, 16] by recruiting 

Cleavage Factor I [17].  In combination, these sequence elements help 

define the site of cleavage and polyadenylation at the 3’ end of a pre-

mRNA.  
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 In many instances, differential PAS usage results in alternative 

polyadenylation (APA) and the formation of distinct transcript isoforms.  In 

some cases, APA can affect protein structure. For example, use of an 

alternative exon containing a common variant PAS (ATTAAA) in FLT1, an 

angiogenic growth factor receptor, truncates the full length sequence 

resulting in a soluble form of the receptor [18].  The soluble FLT1 receptor 

acts as competitive inhibitor of vascular endothelial growth factor 

stimulated angiogenesis [19] and has been associated with pathological 

conditions, such as preeclampsia [20].  APA may also modify the 

regulatory potential of the 3’UTR.  Longer 3’UTRs may contain more cis 

elements for binding of microRNAs or RNA binding proteins when 

compared to shorter 3’UTRs, subjecting 3’UTR isoforms to distinct 

regulation.  Interestingly, shorter 3’UTRs have been associated with 

uncontrolled growth and cancer [21-24] and highly expressed 

housekeeping genes in humans [25].  Conversely, the use of longer 

3’UTRs, in some cases, correlates with differentiation [26-36].  Alternative 

3’UTR usage can also be stage- or tissue-specific.  For example, miR-206 

is expressed at the same levels in diaphragmatic and limb satellite muscle 

cells, but the transcript encoding one of its targets, Pax3, possesses 

distinct 3’UTRs in these tissues [37].  A longer 3’UTR used in limb satellite 

cells leads to repression of Pax3, while Pax3 expression in diaphragmatic 
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satellite muscle cells persists due to evasion of miR-206 regulation 

through usage of a shorter 3’UTR [37]. In addition to normal biological 

processes, alternative PAS usage is also associated with Parkinson’s 

disease [38], schizophrenia [39], thalessemias [40-42], and cancer [43, 

44], suggesting a significant role for aberrant 3’ end processing in a variety 

of disease settings. 

Given the relevance of APA, reliable identification of cleavage and 

polyadenylation sites is necessary.  Early studies relied on expressed 

sequence tags (ESTs), constructed from cDNA libraries primed with an 

oligonucleotide of deoxythymines (oligo-dT), to broadly identify the 3’ ends 

of mRNAs [45-49].  More recently, deep sequencing has been applied for 

this purpose (reviewed in [50]).  Poly(A) Site sequencing (PAS-Seq) [29] 

and Sequencing of APA Sites (SAPAS) [24] utilize an anchored oligo-dT 

(20) primer and template switching to construct 3’ end libraries.  PolyA-seq 

is similar to these methods, but uses a shorter anchored oligo-dT (10) and 

random hexamers during second strand cDNA synthesis [51].  While 

these approaches are technically straightforward, a major drawback is that 

the oligo-dT primer can bind to internal homopolymeric stretches of 

adenines, as well as to the poly-adenosine (poly(A)) tail [52].  Additionally, 

fragmentation of RNA occurs before cDNA synthesis in a majority of these 

protocols, potentially allowing the oligo-dT access to mis-prime internally 
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adenine-rich regions.  Together, these technical issues lead to 

identification of false positive pA sites.  To reduce biases from internal 

oligo-dT priming and conversion of RNA to cDNA, Direct RNA Sequencing 

(DRS), using an oligo-dT (50) bound directly to a flow cell, was developed 

[10, 23, 53, 54].  A more selective method is poly(A)-position profiling by 

sequencing (referred to as 3pseq), in which a splint RNA:DNA 

oligonucleotide containing 3’ overhanging thymines is ligated to the 

polyadenylated tail of mRNAs leading to identification of only true 3’ ends 

of transcripts [36].  However, because this elegant method is technically 

daunting, most laboratories are likely to perform a simpler, oligo-dT primed 

approach, coupled with simple computational filters to remove sequences 

associated with mis-priming.   

Efforts to identify internally primed (referred to as false) sites from 

oligo-dT primed deep sequencing have mostly employed heuristic filters 

comprising a defined number of adenines in the sequence downstream of 

the cleavage site [7, 23, 24, 29, 32, 34, 35, 47-49, 55-65].  Although 

filtering may not be needed for more technically stringent techniques, such 

as DRS [53, 54], heuristic filtering does remove internally primed sites in 

these cases as well [23].  However, given the strict definition of a heuristic 

filter, these approaches will inevitably miss some internal priming events 

(false positives) and will also exclude true 3’ ends (false negatives) [54].  
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Alternative methods combine computational and technical methods to 

establish scoring systems that allow identification of oligo-dT primed 

3’ends [51].  Though these can achieve relatively high sensitivity, they 

require additional technical steps (e.g. control library construction), adding 

to cost.  In addition, subsequent analysis and filtering may not be 

straightforward or easily applicable [31, 51, 66].  Therefore, additional 

methods are needed to easily analyze oligo-dT primed deep sequencing 

data to identify true pA sites.   

 A naïve Bayes classifier is a supervised learning algorithm in which 

the features used to predict the class are considered conditionally 

independent given the class [67, 68]. Despite its simplicity, naïve Bayes 

classifiers have successfully addressed biological and medical problems, 

especially when many features are used for modeling [111-113].  In this 

study, we demonstrate its effectiveness in identifying internal priming 

events from oligo-dT primed 3’end sequencing data.  We used PAS-Seq, 

3pseq [69], and RNA-seq data to build training data sets containing true 

and false (internally primed) pA sites expressed in zebrafish.  We 

developed a naïve Bayes classifier to assign the probability of being true 

or false to a putative pA site based on features from the surrounding 

sequence.  Our algorithm outperforms several previously published 

heuristic filters and enriches for canonical motifs important for cleavage 
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and polyadenylation.  Furthermore, the nucleotide profiles and PAS 

distribution from algorithm-filtered oligo-dT primed 3’ end sequencing data 

mirror those from 3pseq data.  Biological validation shows that our method 

is highly accurate, facilitating identification of novel 3’UTRs.  Finally, we 

demonstrate the utility of the naïve Bayes classifier in other model 

organisms.  

 

Results 

Establishment of True Positives and True Negatives 

To develop an algorithm that could reliably distinguish true and 

false pA sites in oligo-dT primed deep sequencing data, we trained a 

naïve Bayes classifier.  For this purpose, we defined training sets 

consisting of True Positive pA sites and True Negative sites from a 

combination of data sources.  Given the demonstrated technical rigor of 

3pseq, we utilized published datasets generated using this technique to 

build a True positive training set.  An additional criterion of this set was 

presence of a pA site in both 3p-seq and PAS-Seq datasets from the 

same stage of zebrafish embryos (Figure 3.1A).  We defined True 

Negatives as sequence fragments derived from oligo-dT primed RNA-Seq 

data with five terminal adenines or five proximal thymines that mapped to 

genomic sequence and were not present in 3pseq (Figure 3.1A).  In both 
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Figure 3.1: Development of True Positive and True Negative training 

sets. A. RNA-seq reads starting with five thymines or five adenines were 

mapped to the genome. Reads that mapped were assigned to be putative 

sites of internal priming for the development of the True Negative training 

set. Reads that did not map had the terminal adenines or proximal 

thymines trimmed and were remapped. These reads were assigned as 

RNA-seq putative pA sites and were combined with PAS-Seq data for the 

development of the True Positive training set. The 22770 True Positives 

contain putative pA sites present in both 3pseq and RNA-seq putative pA 

sites/PAS-Seq (within +/- 10 nt). The 9219 True Negatives contain RNA-

seq internally primed sites that are not present in 3pseq (within +/- 10 nt).  

B. True Positives and True Negatives had to be present at both 6 hpf and 

24 hpf.  
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cases, True Positives and True Negatives had to be present in both 6 

hours post fertilization (hpf) and 24 hpf data sets (Figure 3.1B).  In 

zebrafish, about 55% of the ~26,000 genes are thought to be alternatively 

polyadenylated [30].  Together, the training set consists of 22770 True 

Positives, representing 21902 genes, and 9219 True Negatives, 

representing 5391 genes, demonstrating sites from a majority of zebrafish 

coding genes are represented in our training data.   

Prior to using these data for training, we examined the 

characteristics of flanking sequences up- and downstream of predicted 

cleavage sites in the True Positive and True Negative training sets.  

Analysis of nucleotide frequencies in genomic sequence flanking the True 

Positives demonstrated a prevalence of adenines and thymines upstream 

of the cleavage site (Figure 3.2A).  Downstream of the pA site, we noted 

enrichment of thymines and a slight enrichment of guanines (Figure 3.2A), 

consistent with observations in yeast, plants, and metazoans [11, 70].  A 

search for over-represented motifs in True Positive sequences revealed a 

canonical PAS upstream of the cleavage sites and a consensus in the 

downstream region similar to that identified in [11] (Figure 3.2B).  

Furthermore, the cleavage distance (Figure 3.2C), measured from the 3’ 

end of the PAS, clustered between 10 and 25 nt in the majority (87.5%) of 

True Positives with a canonical or variant PAS (Figure 3.2C), consistent 
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Figure 3.2: Training sets display characteristics of true pA sites and 

internally oligo-dT primed sites. A. Nucleotide composition of pA site-

flanking sequences in the True Positive training set.  B. Sequence logo of 

over-represented motifs identified in 50 nt upstream and 50 nt 

downstream of the True Positives. The canonical PAS (AATAAA) is 

identified upstream.  C. Distribution of cleavage distance for consensus 

PASs of True Positive training set, measured from the 3’ end of the PAS.  

D. Nucleotide composition surrounding True Negative training set.  E. 

Sequence logo of over-represented motifs 50 nt upstream and 50 nt 

downstream of the True Negatives.   F. Distribution of cleavage distance 

for canonical or variant PASs of True Negative training set, measured 

from the 3’ end of the PAS.  G. PAS distribution in 50 nt upstream 

sequence of True Positive and True Negative training sets.  
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with previously published results [64]. In contrast to the True Positive set, 

sequences flanking True Negative sites showed a relatively constant 

nucleotide frequency upstream of the pA site, with an enrichment for 

adenines in the first five nt downstream (Figure 3.2D), as expected based 

on the criteria used to build this dataset (see Materials and Methods).  

Searches for over-represented motifs failed to reveal elements resembling 

a canonical PAS upstream of the oligo-dT priming site in the True 

Negative set, while downstream the stretch of adenines used to define 

these sequences are clearly evident (Figure 3.2E).  Accordingly, only a 

small fraction of sequences from the True Negative training set contain a 

canonical or variant PAS (41.2%) and those that do fail to cluster at a 

defined distance proximal to the oligo-dT priming site (Figure 3.2F, G).  

Thus, our True Positive and True Negative training data represent two 

distinct populations that should clearly model the difference between true 

pA sites and internally primed sites.  

 

Algorithm and Parameter Tuning 

We incorporated sequence elements known to flank pA sites as features 

for building a naïve Bayes classifier (Figure 3.3A).  Canonical and variant 

hexameric PASs can be identified 10-30 nt upstream of the pA site [177], 

while uracil-rich elements can be found 0-20 nt upstream of the PAS [177]. 
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Figure 3.3: pA site features used for algorithm training. A. Schematic 

of region surrounding the pA site B. Features used in naïve Bayes 

classifier.  C. Variations in upstream and downstream sequence length for 

finding features, and upstream word size.  Boldface denotes features used 

for all subsequent training. 
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For that reason, we used all combinations of 6 nt (word size 6) as features 

in the upstream sequence region to allow for self-discovery of potential 

PAS and uracil-rich elements by the algorithm (Figure 2.S2B). 

Guanine/uracil- or uracil-rich elements 20-40 nt downstream of a pA site 

help direct cleavage and polyadenylation [177], while the presence and 

location of adenine richness downstream may indicate internal oligo-dT 

priming.  Therefore, features in the downstream sequence region included 

mono- and di-nucleotide frequencies as well as the average distance of 

the adenines to the pA site (Figure 2.S2B).  After varying the upstream 

(20-50 nt) and downstream (30-50 nt) sequence length for the features 

described above (Figure 2.S2C), using 30 or 40 nt of upstream sequence 

and 30 nt of downstream sequence consistently outperformed other 

models, though the variability between the different models was low 

(Appendix II).  We chose to use 40 nt of upstream sequence, as not to 

miss any possible PASs in the upstream region due to slight variations in 

cleavage site usage [178].  To develop and test the functionality of the 

naïve Bayes classifier to identify true and false pA sites, we randomly 

sampled 70% of the training set to build the classifier (training) and the 

remaining 30% to evaluate the performance (cross-validation) and 

averaged the results of 10 trials.  Following training, we found that the 

naïve Bayes classifier was capable of recalling 92.2% of True Negatives !
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Table 3.1.  Performance measurement from naïve Bayes classifier 

and indicated heuristic filters. 
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naïve 
Bayes 

8A 
only 

PAS 
+ 8A 

True Negative Rate  0.922 0.645 0.891 
Recall  0.938 0.984 0.899 
False Discovery Rate 0.032 0.127 0.047 
Matthew's Correlation 
Coefficient 0.843 0.722 0.773 
Precision 0.968 0.873 0.953 
F-score 0.953 0.925 0.926 
Accuracy 0.934 0.886 0.897 
False Positive Rate 0.078 0.355 0.109 

!
!
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Figure 3.4: The trained algorithm outperforms previously published 

heuristic filters.  Performance metrics for naïve Bayes classification 

compared to previously published heuristic filters, 8A or PAS+8A (see text 

for description of filters).  A. True Negative Rate.  B. Recall.  C. False 

Discovery Rate.  D. Matthew’s Correlation Coefficient.  
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(True Negative Rate, Table 3.1, Figure 3.4A) and 93.8% of True Positives 

(Recall, Table 3.1, Figure 3.4B). Furthermore, the naïve Bayes classifier 

incorrectly categorized only 3.2% of predicted positives (False Discovery 

Rate, Table 3.1, Figure 3.4C). (Matthew’s correlation coefficient (MCC), a 

balanced measure of true positives, false positives, true negatives and 

false negatives [179, 180], was calculated to be 0.84 (Matthew’s 

Correlation Coefficient, Table 3.1, Figure 3.4D). !

To compare the effectiveness of the naïve Bayes classifier with 

previously published methods, we categorized the training set with 

heuristic filters.  For this purpose, we applied a heuristic filter (referred to 

hereafter as 8A) in which putative pA sites with 8 or more adenines in the 

10 nt downstream of the pA site were assigned as false.  We also 

combined this heuristic approach with a requirement for a canonical or 

variant PAS in the 40 nt upstream sequence (referred to as PAS+8A), an 

updated version of the criteria used in [181].  The 8A filter recalled only 

64% of True Negatives while PAS+8A recalled 89% (True Negative Rate, 

Table 3.1, Figure 3.4A).  Although the 8A recalled True Positives at a 

higher rate than the classifier (Recall, Table 3.1, Figure 3.4B), 8A and 

PAS+8A incorrectly called more predicted positives (False Discovery 

Rate, Table 3.1, Figure 3.4C).  Comparison of MCC values revealed that 
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the naïve Bayes classifier performs significantly better than either heuristic 

filter (Matthew’s Correlation Coefficient, Table 3.1, Figure 3.2D). 

 It is possible that the size of the training set may lead to over-fitting 

due to biased sequence composition.  Therefore, we examined whether 

training set size influenced the predictive performance of the algorithm by 

varying the fraction of the training set used for algorithm training and 

subsequent cross validation.  Algorithm performance for a variety of 

metrics was similar using 50%, 60%, 70%, 80%, or 90% of the True 

Positives and True Negatives for training (Figure 3.5), which indicates that 

our initial training set was of sufficient size. 

Taken together, the naive Bayes classifier outperforms the heuristic 

filters on these initial training and cross-validation sets.  Furthermore, the 

increased specificity appears to come with little cost to sensitivity. 

!

Application to PAS-Seq data!

To test the performance of the naïve Bayes classifier on a new data 

set, we used all True Positives and True Negatives for training the naïve 

Bayes classifier.  We subsequently categorized unfiltered oligo-dT primed 

3’ end deep sequencing (PAS-Seq) data from 24 hpf zebrafish embryos 

as true or false (internally primed).  Following classification, we compared 

the output to the same dataset filtered with the 8A heuristic filter (see  
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Figure 3.5: Algorithm for training set size variation. Precision, Recall, 

Accuracy, F-score, True Negative Rate, False Positive Rate, False 

Discovery Rate, Matthew’s Correlation Coefficient, and Receiver 

Operating Curve (ROC) displayed for different sizes of training sets.   
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above) or to unfiltered 3pseq data from zebrafish embryos at the same 

stage [182], which should contain only bona fide pA sites.  

Analysis of the genomic sequence composition flanking 3’ ends 

from unfiltered PAS-Seq data shows enrichment for adenines upstream 

and downstream of the pA site (Figure 3.6A), similar to our True Negative 

training set (see Figure 2.2D, E) (rA = 0.89, rC = 0.78, rG = 0.79, rT = 0.76).  

Furthermore, we failed to identify a canonical PAS as an over-represented 

motif upstream of the putative pA site in unfiltered PAS-Seq data (Figure 

2.6A).  Indeed, only 20.6% of the putative pA sites contain AATAAA 

upstream of the putative cleavage site and 55.4% have no identifiable 

PAS (Figure 3.6B).  By contrast, the nucleotide profile of the 3pseq data is 

highly correlated with our original True Positive set (rA = 0.99, rC = 0.99, rG 

= 0.99, rT = 0.99) and shows enrichment of adenines ~20 and 5 nt 

upstream, enrichment of thymines ~10 nt upstream, and thymine richness 

downstream of the cleavage site (Figure 3.6C).  Accordingly, a canonical 

PAS is easily recognizable in sequence upstream of the putative cleavage 

site while the downstream motif displays preference for thymines and 

guanines (Figure 3.6C), characteristics of known pA sites [6, 177].  In 

contrast to unfiltered PAS-Seq data, 46.5% of the 3pseq data set has 

AATAAA in the 40 nt upstream and only 22.2% have no identifiable PAS 

(Figure 3.6B).  The majority (86.2%) of PASs is located 10 to 25 nt  
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Figure 3.6: Algorithm-filtered PAS-Seq 3’ ends resemble those 

identified by 3pseq. !Sequence characteristics displayed by nucleotide 

profile, 40 nt upstream sequence logo, and 30 nt downstream sequence 

logo in A. 24 hpf unfiltered PAS-Seq,  C. 24 hpf 3pseq,  D. 8A filtered 24 

hpf PAS-Seq, and  E. 24 hpf PAS-Seq filtered by naïve Bayes classifier.  

B. PAS distribution for unfiltered 24 hpf PAS-Seq, 24 hpf 3pseq, 8A 

filtered 24 hpf PAS-Seq, naïve Bayes classified 24 hpf PAS-Seq.!
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upstream of the putative pA site (data not shown).  Consistent with these 

differences, the 3pseq and PAS-Seq nucleotide profiles are poorly 

correlated (rA = 0.28, rC = 0.06, rG = 0.48, rT = 0.45).  Together, these 

results indicate that the PAS-Seq dataset likely contains a high proportion 

of sequences derived from internal oligo-dT priming.   

 Categorizing PAS-Seq using the 8A heuristic filter or the naïve 

Bayes classifier generated drastically different results.  The 8A filter 

classified 18.1% of putative pA sites as false, leading to slightly better 

correlation of sequence composition of the remaining sites with those from 

3pseq data  (rA = 0.45, rC = 0.12, rG = 0.65, rT = 0.61).  However, the 

adenine richness in the downstream sequence region and lack of 

enrichment of consensus PAS suggest internally oligo-dT primed sites 

remain called as positives by the 8A filter (Figure 3.6D).  By contrast, the 

naïve Bayes classifier calls 65.4% of putative pA sites from PAS-Seq as 

false and the nucleotide profile of the putative pA sites predicted to be true 

resembled that of 3pseq (Figure 3.6E; rA = 0.83, rC = 0.68, rG = 0.85, rT = 

0.86).  Furthermore, a canonical PAS, AATAAA, was easily detected as 

over-represented upstream of the putative cleavage site, and thymines 

were enriched in the downstream flanking sequence (Figure 3.6E).  In 

agreement with PAS distributions in genome-wide studies of pA sites [14, 

55, 56], 49% of the putative pA sites contain AATAAA and only 19.2% 
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have no PAS (Figure 3.6B).  Therefore, our naïve Bayes classifier 

successfully removes more contaminating sites of internal priming than 

the 8A filter, resulting in a set of putative pA sites that closely resembles 

3pseq both qualitatively and quantitatively.  

Comparison of the proportion of pA sites common to both PAS-Seq 

and 3pseq datasets in 24 hpf zebrafish embryos revealed a sizeable 

increase from 13.0% to 35.7% after filtering the PAS-Seq data with the 

naïve Bayes classifier (Figure 3.7A).  Not surprisingly, pA sites common to 

both sets exhibit characteristics similar to our True Positive training set 

(Figure 3.7B).  In addition, we noted that sequences flanking pA sites 

present in only 3pseq or PAS-Seq datasets also display characteristics 

observed in the True Positive training set (Figure 3.7C, D), although they 

show a slightly higher proportion of variant PAS usage (Figure 3.7E).  The 

unique appearance of these sites in only 3pseq or PAS-Seq datasets may 

be due to tissue-specific 3’UTR isoforms that are expressed at low levels 

in the whole embryo and thus may not be consistently detected at this 

sequencing depth. Indeed, common pA sites present in both PAS-Seq and 

3pseq have significantly (p < 2.2e-16) more sequencing reads contributing 

to them compared to either PAS-Seq (mean of 288.69 vs. 8.85) or 3pseq 

(mean of 204.94 vs. 21.4) alone (Figure 3.7F). Other technical issues may 

also contribute to a pA site being uniquely found in either dataset.  For 
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Figure 3.7: Comparison of raw and filtered PAS-Seq 3’ ends with 

those from 3pseq.  A. Overlap of 24 hpf zebrafish putative pA sites from 

PAS-Seq and 3pseq before and after filtering of PAS-Seq by the naïve 

Bayes classifier.  B-D. Nucleotide composition graphs, and sequence 

logos for over-represented motifs 40 nt upstream and 30 nt downstream of 

pA sites  B. common to PAS-Seq and 3p seq, or uniquely found in  C. 

PAS-Seq or  D. 3pseq datasets only.  E. PAS distribution  F. Mean 

number of sequencing reads contributing to a putative pA site.! 
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example, internal oligo-dT binding may block extension from an oligo-dT 

bound to the poly(A) tail [103], thus inhibiting identification of true 3’ ends 

in adenine-rich genomic loci in PAS-Seq.  Finally, there may be 

differences in PAS usage due to polymorphisms between the different 

zebrafish strains used to generate the PAS-Seq and 3pseq datasets [49].  

To biologically cross-validate our in silico predictions, we conducted 

two separate poly(A) tail length (PAT) assays to verify a putative pA site 

as true (polyadenylated) or false (internally primed).  In the G-tailed PAT 

assay (GPAT), yeast poly(A) polymerase is used to ligate guanosines and 

inosines to the 3’ end of polyadenylated RNA, which is then reverse 

transcribed with an anchored poly-cytosine primer (Figure 3.8A).  

Alternatively, an oligo-dT containing primer was used for reverse 

transcription (dtPAT; Figure 3.8B) [183].  In both assays, nested PCR was 

performed using a gene- specific forward primer and an assay-specific 

reverse primer to amplify the 3’ end of the transcript including the poly(A) 

tail, as well as using gene-specific forward and reverse primers to amplify 

fragments without the poly(A) tail (Figure 3.8A,B).  Due to different poly(A) 

tail lengths or variable oligo-dT binding along the poly(A) tail, validation of 

a true 3’ end will result in a smear on a 2% agarose gel in both assays 

(Figure 3.8A-C).  Conversely, an oligo-dT internally primed site will result 

in no product in the GPAT assay, but will yield a single product in the 
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Figure 3.8: Biological validation of filtered 3’ ends.!A, B. Schematics 

depicting A. G Tailed poly(A) Tail Length Assay and B. oligo-dT Primed 

poly(A) Tail Length Assay. C. Left, UCSC genome browser screenshot of 

3’end of nrp2a annotated by Ensembl (v68) and RefSeq in 6 hpf and 24 

hpf PAS-Seq and 3pseq datasets. Right, GPAT and dtPAT assays for 3’ 

end of nrp2a.  D. Left, UCSC genome browser (reversed to show negative 

strand in same orientation as C) shows a putative false pA site in an EST 

expressed in 24 hpf PAS-Seq but not 24 hpf 3pseq.  Right, GPAT and 

dtPAT assay for 3’ indicated at left.  C, D.  “+”: reaction included reverse 

transcriptase;  “-” : no reverse transcriptase. “PAT Assay R” denotes use 

of assay specific reverse primer. “Gene Specific R” denotes use of gene 

specific reverse primer. “G-tailed” or “oligo-dT” indicate the method by 

which the initial cDNA template was made, and which assay-specific 

reverse primer was used for the lanes labeled “PAT Assay R”.  Total RNA 

from 24 hpf whole embryos was used for biological validation. Confusion 

matrices for biologically validated sites compared with E. naïve Bayes 

classifier or F.  8A filter!!

!
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dtPAT assay (Figure 3.8A, B, D).  For biological validation, we applied the 

GPAT and dtPAT assays to 50 putative poly(A) sites in the zebrafish 

genome defined as True or False by our classifier (Appendix III).  42 of 

these sites were called True by the classifier and 22 of these correspond 

to annotated 3’UTR ends (Zv9, ENSEMBL v68), while 20 represented 

possible novel 3’ ends.  Of the True sites, all were successfully amplified 

using the GPAT assay, indicating these are true polyadenylated 3’ ends 

(Figure 3.8C, E; Appendix III).  Notably, 9 of the novel 3’ ends biologically 

validated as True were identified by 24 hpf PAS-Seq but not 3pseq.  13 

validated True sites contained PASs other than the canonical AAUAAA 

within 40 nt upstream of the cleavage site, while 1 lacked any consensus 

motif, suggesting that our classifier can identify true 3’ ends that lack a 

consensus PAS (Appendix III).  

Along with the putative True set, we assayed eight sites that were 

classified as False.  In this case, only one site was annotated as a 3’ end 

in ENSEMBL (Appendix III).  Half of these sites displayed a variant PAS in 

the vicinity of the putative 3’ end, while the remaining sites contained no 

PAS 40 nt upstream. 7 out of the 8 sites classified as False failed to 

amplify in the GPAT assay, but were detected by dtPAT suggesting that 

they arise from internal oligo-dT priming (Appendix III; Figure 3.8D,F).  

Furthermore, six of these sites contained fewer than eight adenines in the 
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downstream region and were called true by the 8A heuristic filter (Figure 

3.8F; Appendix III). One False site, which did not possess a consensus 

PAS and contained only three downstream adenines, was amplified by the 

GPAT assay (Figure 3.8E). Together, our biological cross-validation of 

putative pA sites demonstrates the high accuracy of the naïve Bayes 

classifier.  Importantly, our classifier facilitated the identification of novel 

pA sites from PAS-Seq allowing the discovery of new 3’UTRs in the 

zebrafish transcriptome. 

 

Naïve Bayes classifier displays utility in other species 

 The in silico and biological validation described above clearly 

demonstrates the utility of our naïve Bayes classifier to identify true pA 

sites from zebrafish PAS-Seq datasets.  To determine if our algorithm, 

which was trained using zebrafish datasets, could be applied to similar 

data from other species, we used it to filter 3’ end sequences generated 

by polyA-seq with an anchored oligo-dT(10) primer on RNA from human, 

rhesus, dog, rat and mouse [45].  In this particular study, Derti et al 

developed an empirical model to identify likely internally primed sequence 

fragments by constructing 3’ end libraries using an unanchored oligo-dT 

(10) primer [45].  In this case, reads that mapped to genomic sequence 

with at least three terminal adenines indicated internal priming while those 
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that did not map with at least three terminal adenines were deemed true 

pA sites [45].  The distribution of nucleotide frequencies downstream of 

the putative cleavage site was then compared between true pA sites and 

likely internal sites to derive a positional discriminant filter (referred to 

hereafter as Derti filter).  This filter was then applied to the sequence 10 nt 

downstream of the cleavage site to distinguish true pA sites from oligo-dT 

primed artifactual pA sites in polyA-seq [45].  On the defined training set, 

this filter demonstrated 85% sensitivity and 97.5% specificity.  Therefore, 

we filtered the same dataset with our naïve Bayes classifier to compare its 

utility to the Derti filter.   

Analysis of unfiltered polyA-seq data from human kidney, failed to 

reveal a PAS over-represented upstream of putative pA sites, and 

identified strong adenine enrichment downstream of the pA site, 

consistent with a significant contribution of mapped reads from internal 

oligo-dT priming (Figure 3.9A).  From approximately half million putative 3’ 

ends in the unfiltered data, we found that the Derti filter calls 94,945 of 

these as true pA sites, approximately half the number of transcript ends 

annotated in human Ensembl v70.  Accordingly, a canonical PAS is 

enriched upstream and guanines and thymines are enriched downstream 

of these filtered sites (Figure 3.9B), as expected of true pA sites.  Using 

the naïve Bayes classifier identified more than 130,000 pA sites from the 
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Figure 3.9: Naïve Bayes classifier shows utility in filtering human 3’ 

end sequencing datasets. Nucleotide profiles and sequence logos of 

over-represented motifs 40 nt upstream and 30 nt downstream of putative 

pA sites that were A. Unfiltered, B. called true by Derti et al. positional 

discriminant function [45], or C. assigned as true by naïve Bayes classifier. 

D. Overlap of putative pA sites called true by naïve Bayes classifier and 

Derti et al. positional discriminant function [45]. E. number of downstream 

adenines or F. PAS distribution for putative pA sites called true by naïve 

Bayes, both naïve Bayes and Derti et al. positional discriminant function, 

or just Derti et al. positional discriminant function.!

!
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same dataset and these sites also exhibited expected characteristics for 

true polyadenylated 3’ ends (Figure 3.9C).  Between the two filters, we 

identified approximately 77,000 commonly assigned polyA sites (Figure 

3.9D). To determine the discrepancies in uniquely called pA sites, we 

more carefully analyzed the differences in these sequences.  Closer 

inspection revealed that nearly all pA sites identified uniquely by the Derti 

filter have fewer than 5 adenines in the 10 nt downstream (Figure 3.9E), 

consistent with the focus of this filter on nucleotide frequencies in the 

downstream region.  In comparison, our naïve Bayes classifier identifies 

pA sites with all proportions of adenines in the downstream region, 

including 54,046 true pA sites called false by the Derti filter [45].  

Importantly, the majority of sites uniquely identified by our classifier 

possess a canonical PAS, suggesting that they are true 3’ ends (Figure 

3.9F).  By contrast, the majority of true sites uniquely identified by the 

Derti filter did not display a PAS in the upstream region (Figure 3.9F), 

suggesting that many may be false positive calls. However, without 

biological cross-validation, it is difficult to assess the false-positive rate 

within this group.  We would point out that our naïve Bayes classifier 

successfully identifies pA sites lacking a PAS at a rate similar to unfiltered 

3pseq, at least on zebrafish data (see Figure 3.7).  In any event, these 

observations suggest that our naïve Bayes classifier, trained on zebrafish 
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3’ end sequencing data, performs well in the identification of pA sites from 

mammalian species.  Furthermore, our classifier discovered many more 

likely true positive pA sites from unfiltered data than the Derti filter.  This is 

likely due to the interrogation and analysis of multiple sequence elements 

during the training of this classifier, while the Derti filter is restricted to 

consideration of only 10 base downstream mononucleotide frequencies. 

The application of a trained naïve Bayes classifier is clearly 

beneficial to identify true pA sites from oligo-dT primed 3’ end sequencing 

data from other animals.  Its usage could also be extended to RefSeq and 

other established sequence databases, as these gene models have been 

largely built from oligo-dT primed cDNAs and likely contain a significant 

number of incorrect 3’end annotations. Indeed, an estimated 12% of ESTs 

labeled as 3’ ends in dbEST human (release 10/04/2001) are due to 

internal oligo-dT priming [103] and our own analysis demonstrated that the 

3’ end of vegfc, as annotated by ENSEMBL, is due to mis-priming 

(Appendix III).  Thus, naïve Bayes filtering of annotated sequences in 

available databases, in addition to previously published genome-wide 

oligo-dT primed sequencing data, will likely lead to identification of new pA 

sites and eliminate false internally primed sites.  

Further studies are needed to assess the performance of the naïve 

Bayes classifier, trained on zebrafish data, in yeast and plants.  Though 
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sequence elements important for polyadenylation are conserved, the PAS 

appears to have less importance in yeast and plants.  As oligo-dT primed 

3’ end sequencing and DRS have been performed on both yeast and 

Arabidopsis, similar True Positive and True Negative training sets to the 

ones we described above could be created. 

 

Conclusions 

 Oligo-dT primed 3’ end library construction methods identify true pA 

sites as well as instances of internal priming.  Attempts to polish this data 

by heuristic filtering produce a high rate of false positive and false 

negative pA sites.  Using PAS-Seq, 3pseq [182], and RNA-seq data, we 

trained a naïve Bayes classifier to distinguish between true pA sites and 

oligo-dT internally primed sites based on sequence features flanking pA 

sites.  Our algorithm outperforms other heuristic approaches and classifies 

pA sites in zebrafish, mouse, rat, dog, rhesus, and human with high 

accuracy. In summary, our method for separating internally oligo-dT 

primed pA sites from true 3’ ends will be of use in further genome-wide 

studies to identify novel cleavage and polyadenylation sites and examine 

alternative polyadenylation. 

 

Materials and Methods 
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Zebrafish Care and Staging 

Zebrafish were maintained as described in [164] and staged as 

described in [184].  Studies were performed under the approval of the 

University of Massachusetts Medical School Institutional Animal Care and 

Usage Committee. 

RNA Purification 

Total RNA was purified from either 6 hpf or 24 hpf wild type CF 

zebrafish and treated with DNase I (Qiagen RNeasy Midi Kit, Qiagen 

RNase-Free DNase Set).  Polyadenylated RNA was selected using 

magnetic oligo-dT beads (Invitrogen mRNA Direct Kit). 

RNA-seq Libraries and Data Analysis 

The 24 hpf zebrafish RNA-seq library was built using an Illumina 

mRNA-seq protocol (Part # 1004898 Rev. D) and paired-end sequenced 

on an Illumina Genome Analyzer II (76 nt reads) and an Illumina Hi-Seq 

(101 nt reads).  Sanger 6 hpf RNA-seq data was downloaded from the 

European Bioinformatics Institute (run ERR022485).  RNA-seq reads from 

both developmental stages starting with at least five thymines (the reverse 

complement of a polyadenylated mRNA) or ending with at least five 

adenines were mapped to the zebrafish genome (Zv9) using Bowtie [185] 

(Figure 3.1A).  Those that mapped to the genome were taken as sites for 

potential internal oligo-dT priming and included in the True Negative 
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training set (Figure 3.1A).  The site of internal priming was assigned to the 

single nucleotide immediately upstream of the last mapped 3’ adenine in 

this set (referred to as RNA-seq internally primed sites).  Sequence 

fragments that did not map were trimmed of terminal adenines (or 

thymines) and re-mapped (Figure 3.1A).  Mapped reads (referred to as 

RNA-seq putative pA sites) were combined with the PAS-Seq data for 

establishment of the True Positive training sets (Figure 2.1A) (see Training 

Sets). 

3’ End Deep Sequencing Datasets 

We constructed PAS-Seq libraries as described in [16], using 

barcoded adapters, and paired-end sequenced on an Illumina Hi-Seq (101 

nt reads) with a custom sequencing primer described in [16] designed to 

exclude the remainder of the poly(A) tail from sequencing.  Libraries were 

de-convoluted using perl scripts and mapped to the zebrafish genome 

(Zv9) using Tophat [186].  Zebrafish 6 hpf and 24 hpf 3pseq [182] and 

mammalian polyA-seq alignments [45] were downloaded from the Gene 

Expression Omnibus (accession numbers GSE32880, GSE30198).  

cleanUpdTSeq was used to classify putative sites from unfiltered polyA-

seq as true or false, using a probability assignment cutoff = 0.5.  No 

additional filtering was performed on the 3pseq or the originally-filtered 

polyA-seq data sets. 
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Clustering of Deep Sequencing Reads into Putative pA Sites 

A custom perl script clustered mapped sequencing reads into 

putative pA sites.  Mapped sequencing reads were trimmed to the 3’ most 

nt, as this would likely correspond to the site of cleavage and 

polyadenylation.  Reads were clustered first for identically matching sites.  

A reiterative process was used to cluster adjacent sites within +/- 5 nt, 

starting with the site with the highest number of reads.  Within a cluster, 

the putative pA site was defined as the location with the most reads and 

the total reads were combined to give the height. Mann-Whitney test was 

performed to assess whether the height is different between PAS-Seq and 

3pseq concordant peaks and those present in one dataset alone [187]. 

Concordance or overlap between two data sets was defined as being 

within +/- 10 nt using a perl script.  The distance from the putative PAS to 

the pA site was determined as the distance from the 3’ end of the PAS to 

the pA site.  

Training Sets  

RNA-seq putative pA sites were combined with the PAS-Seq 

putative pA sites and clustered as described above (Figure 3.1A).  Sites 

concordant between the PAS-Seq and the 3pseq data sets were assigned 

to the True Positive training set (Figure 3.1A).  3pseq coordinates were 

used if there was not an exact match. RNA-seq internally primed sites not 
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concordant with 3pseq were assigned to the True Negative training set 

(Figure 3.1A).  Only sites that were present in both the 6 hpf and 24 hpf 

data sets were used for training (Figure 3.1B).  We did not take the 

number of sequencing reads that composed a putative pA site into 

account.  

cleanUpdTSeq 

The function buildFeatureVector in the cleanUpdTSeq package was 

used to build feature vectors for training dataset and test dataset.  

Features include: presence/absence of 4096 hexamers in the upstream of 

the pA sites; downstream mononucleotide frequency; downstream 

dinucleotide frequency; average distance of downstream adenines to the 

pA site (Figure 3.3B).  The upstream features are modeled as binomial 

variables and the downstream features are modeled as normal variables.  

A naïve Bayes classifier was built using the training data and the function 

buildClassifier, which leverages the R package e1071 [188] with laplace 

set to 1.  To classify the test dataset, the predictClass function was 

applied.  These functions along with sequence fetching utilities and 

training data are available on our website.  

Performance Metrics 

Precision, recall, true negative rate (TNR), false discovery rate 

(FDR), false positive rate (FPR), accuracy, F-score, and Matthew’s 
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correlation coefficient (MCC) were calculated using the following 

equations.  TP = true positive, TN = true negative, FP = false positive, FN 

= false negative. 

!

!

!

!

!

!

!

!

!

 

We calculated Pearson’s correlation coefficient, using R, to assess how 

correlated the nucleotide profiles were between the predicted PAS-Seq 

and the training sets [189, 190]. 

! 

Precision =
TP

FP + TP

! 

Recall =
TP

FN + TP

! 

TNR =
TN

TN + FP

! 

FDR =
FP

FP + TP

! 

FPR =
FP

TN + FP

! 

Accuracy =
TP + TN

TN + FN + FP + TP

! 

F " score =
2 # precision # recall

precision + recall

! 

MCC =
TP " TN # FP " FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

! 

MisclassificationError =
FP + FN

TP + TN + FP + FN
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Model Selection and Training Set Size!

 To evaluate the performance of the naïve Bayes classifier, the 

training datasets were randomly split (70% used for training and 30% used 

for cross-validation) in 10 trials, each with a range of probability cutoffs 

from 0-1 at an interval of 0.1 for each combination of upstream (20-50 nt in 

increments of 10 nt) and downstream (30-50 nt in increments of 10 nt) 

sequence.  We calculated the average precision, recall, F-score, 

accuracy, true negative rate, false discovery rate, false positive rate and 

MCC from the 10 cross-validations of each model, using a probability of 

true cutoff of 0.5 (Appendix II).  The top two models, using 30 or 40 nt of 

upstream sequence and 30 nt of downstream sequence, yielded very 

similar performance (MCC of 0.845 vs. 0.843).  We chose 40 nt of 

upstream sequence and 30 nt of downstream sequence as to not miss 

any potential PASs due to cleavage site microheterogeneity [178].  

Additionally, using a word size of 5 in the upstream region led to slightly 

decreased performance. 

To evaluate training set size, we trained the classifier with different 

percentages of the training data and used the remainder for cross 

validation.  The percentages of training data used and the number of total 

peaks for each are summarized below.  We calculated the average 

precision, recall, F-score, accuracy, true negative rate, false discovery 
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rate, false positive rate and MCC from 10 cross-validation trials and 

graphed these for the different probability cutoffs.  

% of training data set used 
for training 

# of peaks used for training 

50% 15995 

60% 19194 

70% 22393 

80% 25592 

90% 28791 
 

Performance of the Algorithm Compared to Heuristic Filters 

To examine the performance of the algorithm, we used the average 

of 10 cross validation trials using a probability cutoff of 0.5 as described 

above.  To compare the algorithm to previous heuristic filters, we used a 

perl script to separate all putative pA sites from the training set (True 

Positives and True Negatives) with at least 8 adenines in the 10 nt 

downstream (False) from those that did not (True).  We used a perl script 

to add the additional requirement of a canonical or variant PAS in the 40 

nt upstream to be called True. 

PAS Distribution 

To identify canonical and variant PASs used in zebrafish, we 

examined the 50 nt upstream of 3’ends annotated in Ensembl (v61) for 
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overrepresented motifs using Multiple Em for Motif Elicitation (MEME) 

[191].  In subsequent zebrafish analyses, a perl script was used to search 

for a canonical or variant PAS in order of decreasing importance.  For 

mammals, a perl script was used to search for a canonical or variant PAS 

in order of decreasing importance as denoted in polyA-seq data [45]. 

Motif Finding 

Multiple Em for Motif Elicitation (MEME) was used to search for 

motifs enriched in the sequence upstream and downstream of the putative 

pA sites [191].  For the True Positive and True Negative training sets, 50 

nt upstream for all of the sites was examined using MEME [191] with the 

following settings: -minw 5 -maxw 10 –oops.  50 nt downstream of all of 

the sites was examined using the options: -minw 5 -maxw 50 -oops.  For 

the other data sets, 40 nt upstream of the pA site and 30 nt downstream of 

10,000 randomly chosen sites within the data set were used for analysis.  

The upstream sequence was searched using options (-minw 5 -maxw 10 -

oops), and the downstream sequence was searched using options (-minw 

5 -maxw 30 -oops).  

Poly(A) Tail Length Assays 

Total RNA was purified from 24 hpf wild type CF zebrafish (Qiagen 

RNeasy Mini Kit). For the G-tail assay, we used the Affymetrix Poly(A) 

Tail-Length Assay Kit to add guanosines and inosines to the 3’ end of the 
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polyadenylated mRNAs (Figure 3.8A) [192].  Subsequently, reverse 

transcription was performed with a poly-cytosine anchored primer (Figure 

3.8A).  Alternatively, we used an oligo-dT(10) primer to make cDNA 

(Figure 3.8B) [183].  In both cases cDNAs were used as a template in a 20 

cycle primary PCR with Hot Master Taq DNA polymerase (5Prime) to 

amplify the 3’end with poly(A) tail with a forward primer and assay-specific 

reverse primer (G-Tail: Affymetrix Poly(A) Tail-Length Assay Kit Universal 

Primer, oligo-dT: GGGGATCCGCGGTTTTTTTTTT [183]) (Figure 3.8A, 

B).  Nested PCR was performed for 20, 25, 30, 35 cycles, so not to over 

amplify products, using 1 ul of a 1:50 dilution of the primary PCR as 

template, a nested forward primer and the assay-specific reverse primer 

(Figure 3.8A, B).  PCR products were run on a 2% agarose gel.  Gene 

specific oligonucleotides were also used to help estimate the size of the 

3’UTR without any poly(A) tail. The lower part of the smear or single band 

were excised from the gel, column purified (Qiagen MinElute Gel 

Extraction Kit), shotgun cloned (Promega pGEM-T Easy Vector System I), 

and sequence verified.  

!

!

!
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CHAPTER IV 
 
 
 
 
 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
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Contained in this dissertation is a novel method to accurately 

classify true pA sites, with both canonical and variant polyadenylation 

signals, and internal priming events from simple, oligo-dT primed 3’ end 

sequencing.  By reliably defining 3’ ends of transcripts, our method will 

facilitate examination of post-transcriptional gene regulation important in 

both development and disease processes. The current standard removes 

internal priming events by simple, heuristic filtering of sites with a high 

proportion of adenines in the genomic sequence flanking the putative pA 

site. Not only does the naïve Bayes classifier outperform these simple 

filters [15, 17, 53, 65, 99, 181, 193], it also shows utility in zebrafish, 

mouse, rat, dog, rhesus, and human. Importantly, the functions, training 

data, and documentation are available on the Lawson Lab website3. Each 

function has its own documentation that explains the usage and 

arguments.  In addition, a detailed step-by-step user’s guide is available 

(Appendix IV). Thus, the naïve Bayes classifier developed in these studies 

is an easily applicable, highly accurate solution to remove false positives 

from oligo-dT primed 3’end sequencing data and will be of use in future 

genome-wide studies identifying pA sites. 

 

Comparison of the Naïve Bayes Classifier and Derti Filter 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 http://lawsonlab.umassmed.edu/cleanupdtseq.html 



! 170 

Comparison of putative pA sites identified by the naïve Bayes 

classifier or the Derti filter [45] showed that the majority of true pA sites 

were identified by both. However there were also discrepancies between 

the two methods. The naïve Bayes classifier predicted additional sites as 

true 3’ ends. The Derti filter likely incorrectly identifies these sites as false 

because the Derti filter biases against sites with 5 or more adenines in the 

10 nt downstream of a putative pA site.  In this regard, the Derti filter may 

be no better than a simple, heuristic filter.  In fact, almost 20% of 3pseq C. 

elegans pA sites, which should all be true 3’ ends, were called false by the 

Derti filter, demonstrating it does create a large number of false negatives 

[45].  Conversely, the Derti filter identified a smaller proportion of sites as 

true, which were called false by the naïve Bayes classifier.  The majority of 

these sites use no PAS, suggesting a large proportion of them may 

actually be false.  

To further examine the validity of the naïve Bayes classifier in 

comparison to the Derti filter [45], at least two experiments could be 

conducted.  Biological validation of ambiguous putative pA sites as 

conducted for PAS-Seq could definitively identify whether the naïve Bayes 

classifier or the Derti filter was more accurate.  To more comprehensively 

examine the problem, after normalizing for sequencing depth, pA sites in 

human brain identified by polyA-seq could be compared with Direct RNA 
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Sequencing [52].  The naïve Bayes classifier or the Derti filter could be 

applied to the normalized pA site set and the performance of either 

method could easily be validated.  These experiments would likely confirm 

the superior performance of the naïve Bayes classifier compared to the 

Derti filter.  

 

Improvements to the Naïve Bayes Classifier 

 The naïve Bayes classifier performed significantly better than 

simple filters, however its performance may still be improved.  

Clarifications to the training data may lead to improvement, as would 

integration of additional training data.  The high performance of the naïve 

Bayes classifier is likely due to the multiple features used for 

categorization.  The consideration of additional features known to be 

important in cleavage and polyadenylation may indeed increase 

performance.  Finally, a different supervised learning method may result in 

improved classification.  

Additional training data could be generated with the same 

methodology as originally performed.  3pseq data is available for multiple 

zebrafish stages and specific tissues [56], only two of which were used.  

PAS-Seq could be performed to complement these.  Additionally, 3pseq 

data from mouse embryonic stem cells was recently submitted to the 
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Gene Expression Omnibus (GSM1089084).  PAS-Seq data has also been 

performed on mouse embryonic stem cells [16].  In combination with RNA-

seq data, additional True Positives and True Negatives could be 

established.  This may result in a more complete training set.  Moreover, a 

sizeable increase in the number of training sites may also allow for an 

increased number of features that can be used for training.  

Supplementing the original training data with biologically validated 

sites that may represent outliers would likely improve algorithm 

performance.  The misclassification rate of the naïve Bayes classifier, or 

the fraction of incorrect predictions, is 6.63% (Appendix II).  The 

misclassification rate suggests samples within the training data are 

mislabeled, which may be distorting the performance of the classifier.  

Though I established the True Positives and True Negatives with high 

confidence from deep sequencing data, I did not biologically validate 

them.  Therefore it is possible a True Negative could be a true 3’ end or 

vice versa. Thus identification of the misclassified sites followed by 

biological validation is imperative.  The single misclassified biologically 

validated putative pA site (Appendix III) contained no PAS upstream.  

Additional biological validation of putative pA sites containing no PAS will 

be a gainful addition to the training data.  Interestingly, all putative pA sites 

containing more than five adenines downstream were validated as 
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internally primed.  However, previous studies demonstrate the existence 

of true pA sites with a large proportion of adenines downstream [41].  

Further biological validation of putative sites with a large proportion of 

adenines in the downstream region may also be a worthy addition. 

Integration of the biological validation of these three subsets into the 

original training data will likely improve performance of the naïve Bayes 

classifier. 

Additional features may improve the performance of the naïve 

Bayes classifier, at the expense of increasing the complexity of training. I 

used the presence/absence of all hexamer permutations in the 40 nt 

upstream, in addition to the single and dinucleotide frequencies, and the 

average distance of adenines to the pA site in the 30 nt downstream. 

However, over-represented motifs have also been identified in the 40-100 

nt upstream, 0-40 nt downstream, and 40-100 nt downstream [62]. 

Therefore, adding the presence or absence of hexamers or pentamers in 

these specific regions may provide additional beneficial information for 

classification. On the other hand, the sequence of the RNA recognition 

motif of CstF-64 diverges and this correlates with slightly different motifs 

identified in the region downstream of the pA site for different organisms. 

These are all uracil or uracil/guanine rich, suggesting the original features 

of single and dinucleotide frequency may model pA sites for a variety of 
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organisms better. Tethering the distance to the cleavage site with each 

word found upstream could improve performance, as the PAS is generally 

located 20 nt upstream of the cleavage and polyadenylation site [54, 55, 

58], and moving the position of the PAS has been shown to affect 

cleavage efficiency [64]. Open structure surrounding the PAS is important 

for the accessibility of CPSF to the PAS [194], while RNA pseudoknots or 

binding sites for trans acting factors in the auxiliary downstream region 

may help to stabilize or localize the 3’ processing complex [25].  

Therefore, the secondary structure of the pre-mRNA should be considered 

as an additional feature.  More frequently used sites tend to use stronger 

cis elements, while less frequently used sites may use variant signals 

(Figure 3.4) [17, 18, 20, 41].  Thus, utilizing the peak height in relation to 

the total number of reads in a data set may allow for separate modeling of 

strong and weak pA sites.  

Clearly, many features have been proposed that could alter the 

performance of the naïve Bayes classifier. Too many features may lead to 

overfitting, or creating a model that is too complicated for the training data.  

Therefore, to determine if the proposed additional features would result in 

a significant increase in performance, feature selection should be 

conducted.  Feature selection eliminates features that may not have any 

additional predictive power from training. Additionally, different models 
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may be tested to examine different combination of features. Indeed, model 

averaging (compared to the original model selection I performed), may 

also aid in successful integration of additional features.  Instead of 

choosing the best performing model, the average of all models can be 

used if the initial training and cross validation is thought not to correctly 

model performance when the algorithm is applied to a set of unknowns.  In 

fact, previous studies have shown increased performance with feature 

selection or model averaging [112], thus, these steps may result in 

increased performance. 

Comparison of supervised learning algorithms showed other 

methods, such as random forests, outperformed naïve Bayes on average 

in 11 test cases [195]. Decision trees are a discrete classification method, 

in which a single feature is used as a branch point [108].  Due to this 

simple tree structure, these models are transparent and generally quick, 

though they require some “pruning” e.g. feature selection so the decision 

tree does not over-fit.  Random forests is an adaptation of simple decision 

trees, in which many trees are grown and multiple, randomly selected 

features can be used at branch points [196]. The average of all the trees 

in the “forest” is the model and increasing the number of randomly 

generated trees increases the accuracy of the model. No pruning of trees 

is needed and overfitting is not an issue. Using a random forest, which 
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contained 200 trees with 64 variables at each split, to model the True 

Positives and True Negatives yielded an out of bag error rate (equivalent 

to the misclassification rate of the naïve Bayes classifier) of 4.19% (Julie 

Zhu, unpublished data).  Thus random forests may yield minimal 

performance increases over the naïve Bayes classifier.   

 

Applications for the Naïve Bayes Classifier 

Many biologists (including myself before this project) know nothing 

about scripting and bioinformatic analysis. Galaxy is a web server with a 

user-friendly graphical user interface for deep sequencing data analysis 

[197-199]. “Workflows” or protocols can be publicly shared among users. I 

could create a workflow on Galaxy combining the mapping capabilities of 

Galaxy, the original scripts I wrote for analysis of 3’ end sequencing data, 

the naïve Bayes functions, and the training data. Thus, a user could 

upload the raw deep sequencing data, utilize the workflow, and obtain a 

highly accurate set of putative pA sites. This would be the ultimate user-

friendly solution.  

We did not test the performance of the naïve Bayes classifier in 

yeast or plants.  The divergence of polyadenylation signals in yeast, 

plants, and metazoans [40, 50], suggests the naïve Bayes classifier 

trained on zebrafish sites may not perform well. However, because DRS 
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[40, 52], which should contain no false positives, as well as oligo-dT 

primed 3’end deep sequencing [65, 66, 99] has been performed for both 

yeast and Arabidopsis, similar training sets to the ones described in the 

previous chapter could be generated.  The naïve Bayes classifier could 

then easily be retrained.  

The naïve Bayes classifier could be used to filter previously 

published 3’ end data sets that originally used simple filtering based on the 

number of adenines in the downstream region. Applying the classifier to 

these studies will likely remove all false positives and result in 

identification of novel polyadenylation sites, as demonstrated in the 

previous chapter.   

Current gene annotations are built, in part, from Expressed 

Sequence Tags (ESTs) generated using oligo-dT priming.  Previous 

analysis estimated 12% of 3’ labeled ESTs (dbEST human release 

10/04/2001) are artifacts of internal oligo-dT priming [103]. A recent study 

identified adenine-rich motifs at the 3’ ends of 15% of transcripts 

annotated in Ensembl v65 for mouse and human, suggesting internal 

priming does plague the current annotations [72]. Therefore the current 3’ 

end genome annotations may be contaminated with sites of internal 

priming. Indeed, I biologically validated the annotated 3’ end of vegfc in 

zebrafish as internally primed.  Thus the naïve Bayes classifier will likely 



! 178 

identify more internally primed sites from RefSeq and Ensembl transcript 

models. These sites should be biological validated, and the changes 

should be noted in a new set of transcript models.  

Interestingly, similar proportions of True Negatives and True 

Positives are miscalled, suggesting the 3pseq data may have rare artifacts 

of internal priming. In fact, I did biologically validate one site identified by 

3pseq as internally primed, which was correctly predicted by the naïve 

Bayes classifier (Appendix III). Thus, this method may even have utility in 

combination with 3pseq. 

 

Tools for Studying Cleavage and Polyadenylation in Zebrafish 

I could develop an in vivo method to examine cleavage and 

polyadenylation in zebrafish, as zebrafish have genetic conservation with 

mouse and human. Previously, the Lawson lab utilized the Tol2 

transposon system to develop a Tol2 plasmid that uses a bi-directional 

enhancer to express GFP as a control and mcherry fused to a 3’UTR of 

interest as a sensor [145].  The mcherry 3’UTR sensor uses the SV40 late 

poly(A) signal. Using a control 3’UTR downstream of the mcherry, the 

SV40 poly(A) signal could be substituted with other poly(A) signals to test 

whether they are sufficient for cleavage and polyadenylation. The GFP 

expression would still act as a control to screen for proper injection and 
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efficient transgenesis. The mcherry with SV40 poly(A) signal would act as 

the control for cleavage and polyadenylation. Though mcherry expression 

may be able to be used as a read out of proper 3’ end processing, the 

GPAT assay should be performed on RNA from these embryos to confirm 

cleavage and polyadenylation. To start, 100 nt up- and down-stream of a 

putative pA site could be tested. If that is sufficient, smaller fragments of 

upstream or downstream sequence could be tested or mutations could be 

made in the sequence containing the putative polyadenylation elements.  

Additionally, short antisense oligonucleotides, known as morpholinos 

(MOs) [200], could be designed against putative polyadenylation elements 

in a specific pre-mRNA. It would be important to also include some 3’UTR 

specific sequence, as to only affect a specific pA site. The MOs could be 

injected in parallel with a control scrambled MO. The GPAT assay could 

be used to confirm if this method blocks 3’ end processing of a putative pA 

site. This assay should be optimized first on known signals, such as 

AAUAAA.  

 

Non-canonical Polyadenylation 

Approximately 20% of pA sites do not use a PAS, implying this may 

be a regulated mechanism rather than a stochastic event. In some genes, 

such as JUNB, only an adenine-rich sequence, rather than a canonical 
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PAS, and strong uracil-rich DSE are needed for 3’ end processing [48].  

Examination of over 10,000 human pA sites, represented by ESTs 

containing at least 30 adenines in the poly(A) tail, demonstrated 5-10% of 

pA sites contain a hexamer with at least 5 adenines (not including 

AAUAAA and not overlapping with AWUAAA) in the 40 nt upstream [48]. 

pA sites with adenine-rich sequences upstream were significantly enriched 

for uracil or uracil/guanine elements. In the same regard, sites identified 

by CstF-64 CLIP-seq containing AAUAAA upstream contained 

uracil/guanine rich motifs, while sites not using AAUAAA contained uracil 

rich motifs [23]. These results suggest strong downstream sequence 

elements may be needed for regulation of non-canonical pA sites. 

Moreover, analysis of tissue-specific RNA-seq data demonstrated pA sites 

with adenine rich sequences were more likely to be expressed tissue-

specifically compared to pA sites using AWUAAA [48], indicating these 

may play a role in differentiation. Also, UGUAN elements upstream of the 

pA site in PAPOLG were important for cleavage and polyadenylation, 

likely by recruiting CFI [31].  

There are 1754 pA sites with no PAS in the 50 nt upstream in the 

True Positives training set which may allow us to investigate this 

mechanism in zebrafish. In these sites, there is a smaller enrichment of 

adenines 20 nt upstream and thymines downstream (Figure 4.1),        
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Figure 4.1: Sequence composition of True Positives with no PAS in 

the 50 nt upstream. A. Nucleotide composition pA site-flanking 

sequences. Sequence logo of over-represented motifs identified in B. 50 

nt upstream and C. 50 nt downstream. 
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compared to all True Positives (Figure 3.1). Adenines compose a larger 

fraction of the downstream sequence region in the True Positives with no 

PAS (Figure 4.1) compared to all True Positives (Figure 3.1).  The region 

upstream of the True Positives with no PAS contained a similar motif as 

the unfiltered PAS-Seq data (Figure 4.1, Figure 3.3), while downstream 

was enriched for thymines (Figure 4.1). !

The thymine richness downstream previously identified in non-

canonical pA sites [48] and identified in the True Positives containing no 

PAS upstream suggests CstF may play a role, as this protein is known to 

bind uracil rich sequences [20, 30, 46, 63]. Interestingly, knockdown of 

CstF increased distal pA site usage [23, 201]. Zebrafish have cstf1, cstf2, 

cstf3, and cenpi, an orthologue of mouse Cstf2. In situ hybridization and 

whole mount immunostaining should be performed to examine the 

expression of these proteins in multiple stages of development, as tissues 

may have differential expression of CstF [202]. CLIP-seq for either or all of 

these proteins, in combination with PAS-Seq followed by naïve Bayes 

classification of pA sites, could be performed to investigate if these 

proteins are enriched at pA sites with no PAS. If CstF regulates 3’ end 

processing at sites with no PAS, loss of CstF may result in a decreased 

proportion of pA sites with no PAS. To test this hypothesis, transcription 

activator-like effector nucleases (TALENs) could be used to knock-out 
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other cstf genes in mutants for cstf3 or cenpi [203]. PAS-Seq followed by 

naïve Bayes classification would be performed to define pA sites. Then, 

the PAS distribution could be compared between cstf mutants and 

controls.  

To identify other proteins that may be involved in regulating 

cleavage and polyadenylation of sites with no PAS, the sequences 

surrounding True Positives with no PAS should be further examined. It 

may be important to look at multiple sequence regions, as performed for 

human in [62]. If additional motifs are identified, they could be searched 

against databases of known motifs to perhaps identify novel proteins that 

are involved in cleavage and polyadenylation.  

These studies may reveal mechanisms regulating the processing of 

pA sites with no PAS. While the algorithm is able to correctly distinguish 

putative pA sites with variant PASs, it also has the most trouble correctly 

predicting sites with no PAS and few numbers of adenines downstream. 

Importantly, any insight into how cleavage and polyadenylation is 

regulated at sites with no PAS may allow for better modeling of these sites 

and improved algorithm performance.  

 

APA in Vascular Development 
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 Alternative polyadenylated transcripts have shown to be important 

in development and disease processes. I identified alternative 3’UTRs for 

etv2, a transcription factor important for endothelial cell specification, 

which may act to help down-regulate its expression as development 

proceeds (Moore et al, submitted, see Chapter 2). APA may play a role in 

other vascular processes such as defining artery and vein identity.  

Perhaps distinct 3’UTRs could play a role in artery vein identity. 

Some transcripts that are over-expressed in arteries compared to vein 

have decreased H3K27 acetylation and P300 in artery compared to vein 

(Samir Sissoui, unpublished data), indicating more active transcription 

may be occurring in vein. This result suggests that this subset of 

transcripts may have increased transcript stability in artery compared to 

vein. A miRNA or RNA binding protein may be differentially expressed in 

artery and vein that may result in different regulation. 

Another possibility is that these transcripts may express distinct 

3’UTRs in each tissue, allowing for different regulation by a miRNA 

present in both cell types. A similar relationship has been shown in muscle 

cells, where the transcript pax3 is expressed with unique 3’UTRs in two 

different tissue types, leading to differential miRNA regulation [204]. To 

further investigate this hypothesis, 3’ end sequencing could be performed 

in artery and vein cells isolated from the zebrafish embryo. Importantly, a 
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control RNA should be added in a known concentration to the original pool 

of mRNAs to allow for accurate quantification. 3’ end sequencing should 

also be performed on a population of endothelial cells before artery and 

vein differentiation occurs so that any changes in alternative 3’UTR usage 

during differentiation could be identified. Putative pA sites would be 

accurately identified using the naïve Bayes classifier. pA sites unique to 

artery or vein or differential usage of the same pA site in artery versus vein 

may indicate potential candidates of post-transcriptional regulation. The 

Lawson lab has profiled miRNAs in zebrafish endothelial cells [147]. Thus, 

with the potential 3’UTRs and potential miRNAs, target prediction 

algorithms could be used to further pinpoint candidates of miRNA 

regulation.  

After identifying putative candidates for miRNA regulation, 

validation of the 3’UTRs should be confirmed. Polyadenylated mRNAs 

could be G/I-tailed using yeast poly(A) polymerase, as in the GPAT assay 

(Figure 3.8A), followed by PCR with a gene specific primer and a cytosine-

rich primer and shotgun cloning. This would confirm the presence and 

sequence of true polyadenylated 3’UTRs. Nanostring technology could be 

adapted to quantify usage of the 3’UTR common to both tissues and the 

extended 3’UTR, which may only be present in vein or artery [173]. In situ 

hybridization analysis could be performed for the common and extended 
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portions of the 3’UTR to further confirm tissue specificity. Next these 

candidate 3’UTRs could be tested for post-transcriptional regulation using 

an endothelial cell-specific 3’UTR sensor in both wild type and MZDicer 

embryos [152], which contain no mature miRNAs. Subsequently, MOs to 

block miRNA binding to potential target sites within the 3’UTR or mutation 

of a putative binding site within the sensor construct would allow for 

identification of the specific regulatory miRNA. MOs designed to block the 

polyadenylation elements for a particular pA site would allow me to 

modulate alternative 3’UTR usage and examine the effect on artery vein 

identity. Further characterization may of these miRNA target interactions 

may elucidate important mechanisms defining artery-vein identity.  

 

Conclusions 

 Use of the naïve Bayes classifier, described in this dissertation, in 

combination with oligo-dT primed 3’ end sequencing will accurately 

identify novel pA sites. The naïve Bayes classifier is easy to use and 

outperforms simple heuristic filters to remove internal priming events. 

Additional training data or features may improve the performance of the 

naïve Bayes classifier. The current implementation can also be used to 

remove internal priming events from genome annotations. It could also be 

retraining using data from yeast and plants. Tools to study cleavage and 
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polyadenylation in zebrafish may allow for discovery of novel mechanisms 

regulating this process. Finally, the naïve Bayes classifier may help 

examine alternative 3’UTR usage important for artery and vein 

differentiation.  



! 189 

APPENDIX I 
 
 
 
 
 
 
 
 

BAYESIAN PROBABILITY 
 



! 190 

A sample space contains all the possible events within an experiment, 

represented by the box in Figure A1.1A [109, 205]4.  Within the sample 

space represented in Figure A1.1A, are events A and B. This sample 

space holds events “A but not B”, “A and B”, “B but not A”, and “not A and 

not B”. These can be represented by the following probabilities [205]: 

! 

ProbabilityEventA = p(A)5 

! 

ProbabilityEventB = p(B) 

! 

ProbabilityEventsA & B = p(A" B)  

! 

ProbabilityNotEventA,B =1" p(A# B)  

 Sometimes it is helpful to know what the conditional probability of 

an event is. For example, what is the likelihood of event B, given A?  First, 

we need to determine the probability of event A in the sample space.  

Then, within that subset, how many times does event B occur? Therefore, 

the probability of event B, given event A is equal to the probability of the 

events “A and B” divided by the probability of event A [205]. This is called 

the rule of conditional probability [205].  

! 

p(B | A) =
p(A" B)

p(A)
 (1) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%!I performed the derivations in this section using the two references for 
guidance. !
5 The 

! 

" represents “union/or” and the 

! 

" represents “intersection/and”. 
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Figure A1.1:  Pictorial representations of probability. A. Events A, 

represented by the pink circle, and B, represented by the blue circle, lie 

within the sample space.  B. Bayesian Networks can be represented by a 

directed acyclic graph. Notice the dependency of B1 and B2. C. Graphical 

representation of a naïve Bayesian Network with two features.  Features 

are assumed to be conditionally independent. D. Graphical representation 

of a naïve Bayesian Network with N number of features.  Features are 

assumed to be conditionally independent. 

!
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Similarly, if we want to know the probability of event A, given event B 

[205]: 

! 

p(A | B) =
p(A" B)

p(B)
 (2) 

From equation (1) it follows:  

! 

p(A" B) = p(B | A)p(A) (3) 

With these equations (2) and (3) we can derive Bayes Theorem, an 

equation to relate conditional probabilities named for Thomas Bayes 

(1701-1761) [205].  Substituting equation (3) into equation (2):  

! 

p(A | B) =
p(B | A)p(A)

p(B)
 (4) 

 What happens if we add a third variable?  For example, what is the 

probability of event A, given events B1 and B2?  This can be depicted in a 

directed acyclic graph (Figure A1.1B.).  Bayes theorem defines the 

probability as such:   

! 

p(A | B1 " B2) =
p(B1 " B2 | A)p(A)

p(B1 " B2)
 (5) 

The rule of conditional probability allows us to define the probability of 

events B1 and B2, given event A: 

! 

p(B1 " B2 | A) =
p(B1 " B2 " A)

p(A)
(6) 

We can expand the numerator of equation (6): 
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! 

p(B1 " B2 " A) = p(B1 | B2 " A)p(B2 | A)p(A)  (7) 

Thus substituting equation (7) into equation (6) results in: 

! 

p(B1 " B2 | A) =
p(B1 | B2 " A)p(B2 | A)p(A)

p(A)
= p(B1 | B2 " A)p(B2 | A) (8) 

If we use equation (8) in Bayes theorem (5): 

! 

p(A | B1 " B2) =
p(B1 | B2 " A)p(B2 | A)p(A)

p(B1 " B2)
= p(B1 | B2 " A)p(B2 | A)(9) 

Naïve Bayesian probability assumes conditional independence of events 

[109]. In this example, B1 and B2 are conditionally independent given A 

(Figure A1.1C): 

! 

p(A | B1 " B2) =
p(B1 | A)p(B2 | A)p(A)

p(B1 " B2)
 (10) 

For two events this simplification hardly seems warranted.  However, 

using Bayes theorem for N events: 

! 

p(A | B1 " ..." BN ) =
p(B1 " ..." BN | A)p(A)

p(B1 " ..." BN )
 (11) 

We see that the number of parameters that need to be estimated grows 

exponentially, represented as O(2N).  For example, if we wanted to use 20 

features to classify an outcome over 2 million parameters would need to 

be estimated, which would require an exponentially large training dataset.  

However, If we assume conditional independence of events (Figure 

A1.1D): !
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! 

p(A | B1 " ..." BN ) =
p(B1 | A)...p(BN | A)p(A)

p(B1 " ..." BN )
 (12) 

By assuming conditional independence of events, naïve Bayes 

classification significantly decreases the number of parameters that need 

to be estimated from training data to a linear proportion, represented O(N) 

[109].  
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APPENDIX II 
 
 
 
 
 
 
 
 

PERFORMANCE OF DIFFERENT NAÏVE BAYES MODELS 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Appendix II. Performance of different models investigated. The first 

number represents the length of upstream sequence for finding features 

and the second number represents the length of downstream sequence 

for finding features. 0.5 indicates the probability cutoff used to determine if 

a site was true or false.  
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APPENDIX III!
 
 
 
 
 
 
 
 

BIOLOGICALLY VALIDATED PUTATIVE POLYADENYLATION SITES 
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APPENDIX IV!
 
 
 
 
 
 
 
 

CLEANUPDTSEQ USER’S GUIDE 
!
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The cleanUpdTSeq User's Guide 

 

Authors: Sarah Sheppard, Nathan Lawson, Lihua Julie Zhu 

 

Introduction 

3' ends of transcripts have generally been poorly annotated. With the 

advent of deep sequencing, many methods have been developed to 

identify 3' ends. The majority of these methods use an oligo-dT primer, 

which can bind to internal adenine-rich sequences, and lead to artifactual 

identification of polyadenylation sites. Heuristic filtering methods rely on a 

certain number of adenines in the genomic sequence downstream of a 

putative polyadenylation site to remove internal priming events. We 

introduce a package to provide a robust method to classify putative 

polyadenylation sites. cleanUpdTSeq uses a naïve Bayes classifier, 

implement through the R package e1071 [188], and sequence features 

surrounding the putative polyadenylation sites for classification.  

 

The input for this package is a bed file of putative polyadenylation sites 

with or without sequence. First, the function BED2RangedDataSeq 

converts the bed information to RangedData. Next, buildFeatureVector 

builds a data frame containing the features for the naïve Bayes classifier. 
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An option is included to get the sequence surrounding the putative 

polyadenylation site from BSgenome [206]. 

 

Task 1: Use cleanUpdTSeq to classify a list of putative 

polyadenylation sites 

 

First, read in the bed file and then use the function BED2RangedDataSeq 

to convert it to RangedData. 

!
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&!
library(cleanUpdTSeq) 
testSet = read.table("test.bed", sep = "\t", header = TRUE) 
peaks = BED2RangedDataSeq(testSet) 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&!
!

Next, build a data frame containing the features for the classifier using the 

function buildFeatureVector. The zebrafish genome from BSgenome is 

used in this example [206]. For a list of other genomes available through 

BSgenome, please refer to the BSgenome package documentation [206]. 

!
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&!
testSet.NaiveBayes = buildFeatureVector(peaks,BSgenomeName = 
Drerio, upstream = 40, downstream = 30, wordSize = 6, 
alphabet=c("ACGT"), sampleType = "unknown", replaceNAdistance = 30 
method = "NaiveBayes", ZeroBasedIndex = 1, fetchSeq = TRUE) 
save(testSet.NaiveBayes, file = "test.Rdata") 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&!
!
Finally, classify putative polyadenylation sites.  
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!
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&!
predictTestSet(Ndata.NaiveBayes, Pdata.NaiveBayes, inputFile = 
"test.RData",outputFile = "test-predNaiveBayes.tsv", assignmentCutoff = 
0.5) 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&!
!
The output file is a tab-delimited file containing the name of the putative 

polyadenylation sites, the probability that the putative polyadenylation site 

is false/oligodT internally primed, the probability the putative 

polyadenylation site if true, the predicted class based on the assignment 

cutoff and the sequence surrounding the putative polyadenylation site.  
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APPENDIX V!
 
 
 
 
 
 
 
 

PAS-SEQ IDENTIFIES NOVEL ETV2 POLYADENYLATION SITES 
!
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!
 
PAS-Seq identifies novel etv2 polyadenylation sites. Screen shot from the 
UCSC genome browser at the etv2 locus. The peaks at the top represent 
putative polyadenylation sites. The “short” polyadenylation site 
corresponds to the annotated etv2 3’UTR end in both RefSeq and 
Ensembl. Two additional putative polyadenylation sites were identified 
(“EST” and “Long”) that do not correspond to any annotations.  

Short EST Long
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/-!$??L#!""@""CD!E#!$>$"&L?#!
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L"#! `24_(;(9(U(4-! [#-! [#G#! '9HZ4-! (46! X#G#! X*:U(9;*4-! <*"$%/)/& ,-& "&
*,*'"*,*)'"$&(,$%L<M&/).2&#242"$/&"&.#)("#.).2&02'1"*)/0&-,#&42#.2=#".2&
(,$%L<M&/).2&#2',+*).),*7!X2425!823-!$??A#!%*@""CD!E#!"L"A&$B#!

L$#! K,(H-! N#K#-! 2;! (:#-! <//20=$%& ,-& .12& '$2"4"+2& "*3& (,$%"32*%$".),*&
"(("#".5/& #2G5)#2/& "=,5.& VZ& /2',*3/& )*& 4)4,& "*3& )/& -"/.2#& -,#& /.#,*+&
.1"*&-,#&J2">&(,$%L<M&/).2/7!GH:!K2::!'*H:-!"===#!%*@>CD!E#!AA>>&F??#!

LL#! O*(4-!'#-!\#!I(4-!(46!/#M#!N22-!U)32/(#2"3&0:;<&(,$%"32*%$".),*&242*./&
)*& )*.#,*/& )*3)'".2& 3%*"0)'& )*.2#($"%& =2.J22*& (,$%"32*%$".),*& "*3&
/($)')*+7!X24HU2!025-!$??B#!%$@$CD!E#!"AF&FA#!

L%#! W(4P-! 7#O#-! 2;! (:#-! <$.2#*".)42& )/,-,#0& #2+5$".),*& )*& 150"*& .)//52&
.#"*/'#)(.,02/7!1(;<92-!$??>#!()'@B$$"CD!E#!%B?&F#!

LA#! /24(:-! G#-! 2;! (:#-! F12& (,$%L<M9=)*3)*+& (#,.2)*& *5'$2"#& V& /5((#2//2/&
"$.2#*".)42& '$2"4"+2& "*3& (,$%"32*%$".),*& /).2/7! K2::-! $?"$#!%(*@LCD! E#!
AL>&AL#!

LF#! '(3(-!]#.#-!2;!(:#-!?8!YV&',,#3)*".2/&"$.2#*".)42&CD9KF:&-,#0".),*&J).1&
.#"*/$".),*"$&#2+5$".),*7!1(;<92-!$?"L#!(*)@B%L=CD!E#!"$"&A#!

LB#! N*+(;(:H5*-!8#8#-!2;!(:#-![EF@9?\E8&%)2$3/&+2*,029J)32&)*/)+1./&)*.,&=#")*&
"$.2#*".)42&:;<&(#,'2//)*+7!1(;<92-!$??>#!()'@B$$"CD!E#!%F%&=#!

L>#! R*:P295-!`#-!Q#'#!N2U_2-!(46!G#!N23*42-!!\<]&023)".2/&CD&KF:&2Q.2*/),*&
)*& .12&S#,/,(1)$"& *2#4,5/& /%/.207! X2425!823-! $?"$#!"'@$?CD! E#! $$A=&
F%#!

L=#! 8*! X*(UU(9;*4H-! 8#K#-! [#! 1*5,*6(-! (46! /#N#! G(4:2S-! P2'1"*)/0/& "*3&
',*/2G52*'2/&,-&"$.2#*".)42&(,$%"32*%$".),*7!GH:!K2::-!$?""#!(&@FCD!E#!
>AL&FF#!

%?#! Q,295;423-! .#-! 2;! (:#-! S)#2'.& /2G52*')*+& ,-& <#"=)3,(/)/& .1"$)"*"& :;<&
#242"$/&("..2#*/&,-& '$2"4"+2&"*3&(,$%"32*%$".),*7!1(;!Q;9<+;!GH:!'*H:-!
$?"$#!%*@>CD!E#!>%A&A$#!

%"#! RHa<2-!G#-! 2;!(:#-!<*"$%/)/&,-&"$.2#*".)42& '$2"4"+2&"*3&(,$%"32*%$".),*&
=%&CD&#2+),*&2Q.#"'.),*&"*3&322(&/2G52*')*+7!1(;!G2;,H65-!$?"$#!%+@$CD!
E#!"LL&=#!

%$#! I9H<6JHH;-! 1#/#! (46! X#X#! '9HZ4:22-!CD& *,*9',3)*+& #2+),*& /2G52*'2/& )*&
25>"#%,.)'&02//2*+2#&:;<7!1(;<92-!"=BF#!"'&@AAB%CD!E#!$""&%#!

%L#! Q,22;5-!G#8#-! Q#K#!VPP-! (46!G#I#!W*+_245-!8,)*.&05.".),*/& )*&<<K<<<&
"*3&.12&(,$%&L<M&"33).),*&/).2O&2--2'./&,*&.12&"''5#"'%&"*3&2--)')2*'%&,-&
'$2"4"+2&"*3&(,$%"32*%$".),*&)*&4).#,7!1<+:2*+!.+*65!025-!"==?#!%#@"=CD!
E#!AB==&>?A#!

%%#! [2::29-!W#-! 2;! (:#-!?$2"4"+2&"*3&(,$%"32*%$".),*& -"'.,#&?8A& /(2')-)'"$$%&
)*.2#"'./& J).1& .12& (#290:;<& CD& (#,'2//)*+& /)+*"$& <<K<<<7! 7G'V! /-!
"=="#!%+@"LCD!E#!%$%"&=#!
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%A#! 829;*-!.#-!2;!(:#-!<&G5"*.).".)42&".$"/&,-&(,$%"32*%$".),*&)*&-)42&0"00"$/7!
X24HU2!025-!$?"$#!""@FCD!E#!""BL&>L#!

%F#! O(_(P(_*-! M#! (46! /#N#! G(4:2S-! :;<& #2',+*).),*& =%& .12& 150"*&
(,$%"32*%$".),*&-"'.,#&?/.A7!GH:!K2::!'*H:-!"==B#!%$@BCD!E#!L=?B&"%#!

%B#! '9HZ4-![#G#!(46!X#G#!X*:U(9;*4-!<&02'1"*)/0&-,#&.12&#2+5$".),*&,-&(#29
0:;<& CD& (#,'2//)*+& =%& 150"*& '$2"4"+2& -"'.,#& E07! GH:! K2::-! $??L#!
%"@FCD!E#!"%FB&BF#!

%>#! 1<425-! 1#G#-! 2;! (:#-! <& -5*'.),*"$& 150"*& 8,$%L<M& /).2& #2G5)#2/& ,*$%& "&
(,.2*.&S@!&"*3&"*&<9#)'1&5(/.#2"0&/2G52*'27!7G'V!/-!$?"?#!"*@=CD!E#!
"A$L&LF#!

%=#! RH4-! K#K#-! 2;! (:#-! ^5"*.)-)'".),*& ,-& /.,'1"/.)'& *,)/2& ,-& /($)')*+& "*3&
(,$%"32*%$".),*& )*& !*."0,2="& 1)/.,$%.)'"7! 1<+:2*+! .+*65! 025-! $?"L#!
(%@LCD!E#!"=LF&A$#!

A?#! X9()29-! /#R#-! 2;! (:#-!I2*,0)'& 32.2'.),*& ,-& *2J& %2"/.& (#290:;<& CD92*39
(#,'2//)*+&/)+*"$/7!1<+:2*+!.+*65!025-!"===#!"$@LCD!E#!>>>&=%#!

A"#! 3(4!R2:624-!/#-!G#!62:!V:UH-!(46!/#7#!I292T&V9;*4-!@.".)/.)'"$&"*"$%/)/&,-&
%2"/.&+2*,0)'&3,J*/.#2"0&/2G52*'2/&#242"$/&(5.".)42&(,$%"32*%$".),*&
/)+*"$/7!1<+:2*+!.+*65!025-!$???#!"#@%CD!E#!"???&"?#!

A$#! VT5H:(_-!]#-!2;!(:#-!?,0(#212*/)42&(,$%"32*%$".),*&/).2&0"(/&)*&%2"/.&"*3&
150"*& #242"$& (2#4"/)42& "$.2#*".)42& (,$%"32*%$".),*7! K2::-! $?"?#!
%(&@FCD!E#!"?">&$=#!

AL#! Q,24-! M#-! 2;! (:#-!I2*,02& $242$& "*"$%/)/& ,-& #)'2&0:;<& CD92*3& (#,'2//)*+&
/)+*"$/& "*3& "$.2#*".)42& (,$%"32*%$".),*7! 1<+:2*+! .+*65! 025-! $??>#!
&'@=CD!E#!L"A?&F"#!

A%#! Q(:*5)<9S-! /#-! [#W#! R<;+,*5H4-! (46! /#R#! X9()29-! <& 05$.)/(2')2/&
',0("#)/,*& ,-& .12& 02."T,"*& CD9(#,'2//)*+& 3,J*/.#2"0& 2$202*./& "*3&
.12&?/.A9WX&:;<&#2',+*).),*&0,.)-7!'GK!X24HU*+5-!$??F#!$D!E#!AA#!

AA#! 02;2:5_(-! 8#-! 2;! (:#-! @)0)$"#).)2/& "*3& 3)--2#2*'2/& ,-& (,$%"32*%$".),*&
/)+*"$/&)*&150"*&"*3&-$%7!'GK!X24HU*+5-!$??F#!$D!E#!"BF#!

AF#! ^:*;5_S-!Y#-!2;!(:#-!!Q.2*/)42&"$.2#*".)42&(,$%"32*%$".),*&35#)*+&T2=#"-)/1&
3242$,(02*.7!X24HU2!025-!$?"$#!""@"?CD!E#!$?A%&FF#!

AB#! ]Hb&W(:5,-![#-! 2;! (:#-!<&05$.)($2Q&:;<9/2G& /.#".2+%& .,& (#,-)$2& (,$%L<_M&
:;<O& "(($)'".),*& .,& "*"$%/)/& ,-& .#"*/'#)(.),*& #2/(,*/2& "*3& CD& 2*3&
-,#0".),*7!X24HU*+5-!$?""#!*#@%CD!E#!$FF&B"#!

A>#! X9()29-! /#R#-! 2;! (:#-! E*& /)$)',& 32.2'.),*& ,-& ',*.#,$& /)+*"$/O&0:;<&CD92*39
(#,'2//)*+&/2G52*'2/&)*&3)42#/2&/(2')2/7!I9H+!1(;:!.+(6!Q+*!^!Q!.-!"===#!
*'@$%CD!E#!"%?AA&F?#!

A=#! G<9;,S-![#X#! (46! /#N#!G(4:2S-!F12&VWZ9>S& /5=5*).&,-&150"*&'$2"4"+29
(,$%"32*%$".),*& /(2')-)').%& -"'.,#& ',,#3)*".2/& (#290:;<& CD92*3&
-,#0".),*7!X2425!823-!"==A#!*@$"CD!E#!$FB$&>L#!
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F?#! /244S-!.#-!R#I#!R(<9*-! (46!W#![2::29-!?1"#"'.2#)T".),*&,-& '$2"4"+2&"*3&
(,$%"32*%$".),*& /(2')-)').%& -"'.,#& "*3& '$,*)*+& ,-& )./& VZZ9>)$,3"$.,*&
/5=5*).7!GH:!K2::!'*H:-!"==%#!%(@"$CD!E#!>">L&=?#!

F"#! N2P24692-! G#! (46! 8#! X(<;,292;-! @2G52*'2& 32.2#0)*"*./& )*& 150"*&
(,$%"32*%$".),*&/).2&/2$2'.),*7!'GK!X24HU*+5-!$??L#!(@"CD!E#!B#!

F$#! R<-! /#-! 2;! (:#-! Y),)*-,#0".)'& )32*.)-)'".),*& ,-& '"*3)3".2& ')/9#2+5$".,#%&
2$202*./& )*4,$423& )*& 150"*& 0:;<& (,$%"32*%$".),*7! 01.-! $??A#!
%%@"?CD!E#!"%>A&=L#!

FL#! G(+8H4(:6-!K#K#-! /#!W*:<5T-!(46!O#!Q,24_-!F12&WX9>)$,3"$.,*&/5=5*).&,-&
.12&?/.A&(,$%"32*%$".),*&-"'.,#&=)*3/&.,&(#290:;</&3,J*/.#2"0&,-&.12&
'$2"4"+2&/).2&"*3&)*-$52*'2/&'$2"4"+2&/).2&$,'".),*7!GH:!K2::!'*H:-!"==%#!
%(@"?CD!E#!FF%B&A%#!

F%#! K,24-!]#-!K#K#!G(+8H4(:6-!(46! /#!W*:<5T-!?$2"4"+2& /).2&32.2#0)*"*./& )*&
.12& 0"00"$)"*& (,$%"32*%$".),*& /)+*"$7! 1<+:2*+! .+*65! 025-! "==A#!
"&@"%CD!E#!$F"%&$?#!

FA#! Q,24-! M#-! 2;! (:#-! F#"*/'#)(.,02& 3%*"0)'/& .1#,5+1& "$.2#*".)42&
(,$%"32*%$".),*& )*& 3242$,(02*."$& "*3& 2*4)#,*02*."$& #2/(,*/2/& )*&
($"*./&#242"$23&=%&322(&/2G52*')*+7!X24HU2!025-!$?""#!"%@=CD!E#!"%B>&
>F#!

FF#! W<-!c#-!2;!(:#-!I2*,029J)32&$"*3/'"(2&,-&(,$%"32*%$".),*&)*&<#"=)3,(/)/&
(#,4)32/& 24)32*'2& -,#& 2Q.2*/)42& "$.2#*".)42& (,$%"32*%$".),*7! I9H+! 1(;:!
.+(6!Q+*!^!Q!.-!$?""#!%+#@L?CD!E#!"$ALL&>#!

FB#! ]<-! M#-! 2;! (:#-! S)--2#2*.)"$& +2*,029J)32& (#,-)$)*+& ,-& ."*320& CD& KF:/&
"0,*+& 150"*& =#2"/.& '"*'2#& "*3& *,#0"$& '2$$/& =%& 1)+19.1#,5+1(5.&
/2G52*')*+7!X24HU2!025-!$?""#!"%@ACD!E#!B%"&B#!

F>#! Q(46)29P-!0#-!2;!(:#-!8#,$)-2#".)*+&'2$$/&2Q(#2//&0:;</&J).1&/1,#.2*23&CD&
5*.#"*/$".23& #2+),*/& "*3& -2J2#&0)'#,:;<& ."#+2.& /).2/7! Q+*24+2-! $??>#!
&"+@A>>LCD!E#!"F%L&B#!

F=#! /*-!\#-!2;!(:#-!8#,+#2//)42&$2*+.12*)*+&,-&CD&5*.#"*/$".23&#2+),*/&,-&0:;</&
=%& "$.2#*".)42& (,$%"32*%$".),*& 35#)*+&0,5/2& 20=#%,*)'& 3242$,(02*.7!
I9H+!1(;:!.+(6!Q+*!^!Q!.-!$??=#!%+'@"BCD!E#!B?$>&LL#!

B?#! N*<-!8#-!2;!(:#-!@%/.20".)'&4"#)".),*&)*&0:;<&CD9(#,'2//)*+&/)+*"$/&35#)*+&
0,5/2&/(2#0".,+2*2/)/7!1<+:2*+!.+*65!025-!$??B#!&)@"CD!E#!$L%&%F#!

B"#! R*:P295-! `#-! 2;! (:#-! ;25#"$9/(2')-)'& 2$,*+".),*& ,-& CD& KF:/& 35#)*+&
S#,/,(1)$"&3242$,(02*.7! I9H+!1(;:!.+(6!Q+*!^!Q!.-!$?""#!%+#@L>CD!E#!
"A>F%&=#!

B$#! G*<9(-!I#-!2;!(:#-!U)32/(#2"3&"*3&2Q.2*/)42&$2*+.12*)*+&,-&CD&KF:/&)*&.12&
0"00"$)"*&=#")*7!X24HU2!025-!$?"L#!
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BL#! 0,*44-! R#-! 2;! (:#-! <$.2#*".)42& "$(1"9/%*5'$2)*& .#"*/'#)(.& 5/"+2& "/& "&
',*42#+2*.&02'1"*)/0&)*&8"#>)*/,*D/&3)/2"/2&(".1,$,+%7!1(;!KHUU<4-!
$?"$#!&D!E#!"?>%#!

B%#! [<U(9-!`#-!2;!(:#-!:,==)*/&"*3&?,.#"*&(".1,$,+)'&="/)/&,-&3)/2"/2#!B;,!26#!
$??A-!I,*:(62:E,*(D!7:523*29!Q(<46295#!b3-!"A$A!E#!

BA#! KH,24-! V#Q#-! 2;! (:#-! F#"*/'#)(.,0)'& "*"$%/)/& ,-& (,/.0,#.20& =#")*&
)32*.)-)2/& 3%/#2+5$".23& /($)')*+& 242*./& )*& *,42$& '"*3)3".2& +2*2/& -,#&
/'1)T,(1#2*)"7!Q+,*THE,9!025-!$?"$#!%("@"&LCD!E#!">>&==#!

BF#! '2442;;-! K#N#-! 2;! (:#-! <& #"#2& (,$%"32*%$".),*& /)+*"$& 05.".),*& ,-& .12&
A`a8C& +2*2& L<<K<<<99b<<KI<<M& $2"3/& .,& .12& E8!a& /%*3#,027!
YUU<4HP242;*+5-!$??"#!)&@FCD!E#!%LA&=#!

BB#! V9_*4-! Q#R#-! 2;! (:#-! F1"$"//20)"& 352& .,& "& 05.".),*& )*& .12& '$2"4"+29
(,$%"32*%$".),*& /)+*"$& ,-& .12& 150"*&=2."9+$,=)*& +2*27! 7G'V! /-! "=>A#!
(@$CD!E#!%AL&F#!

B>#! NH52_HH;-! G#-! 2;! (:#-! [,0,T%+,5/& =2."_& .1"$"//"20)"& ,J)*+& .,& "&
05.".),*& )*& .12&'$2"4"+29(,$%"32*%$".),*&/2G52*'2&,-& .12&150"*&=2."&
+$,=)*&+2*27!/!G26!X242;-!"=="#!"#@%CD!E#!$A$&A#!

B=#! W,*;2:(Z-!7#!(46!1#!I9H<6JHH;-!<$(1"9.1"$"//"20)"&'"5/23&=%&"&(,$%L<M&
/).2&05.".),*&#242"$/&.1".&.#"*/'#)(.),*"$&.2#0)*".),*&)/&$)*>23&.,&CD&2*3&
(#,'2//)*+&)*&.12&150"*&"$(1"&N&+$,=)*&+2*27!7G'V!/-!"=>F#!)@""CD!E#!
$="A&$$#!

>?#! R(9;232:6-! K#N#-! 2;! (:#-!<& *,42$& (,$%"32*%$".),*& /)+*"$&05.".),*& )*& .12&
"$(1"&N9+$,=)*&+2*2&'"5/)*+&"$(1"&.1"$"//"20)"7!'9!/!R(2U(;H:-!"==%#!
#$@"CD!E#!"L=&%L#!

>"#! Q;(+2S-! Q#1#-! 2;! (:#-! <& +2#0$)*2& 4"#)"*.& )*& .12& F8cC& (,$%"32*%$".),*&
/)+*"$&',*-2#/&'"*'2#&/5/'2(.)=)$).%7!1(;!X242;-!$?""#!(&@""CD!E#!"?=>&
"?L#!

>$#! W*25;429-! .#-! 2;! (:#-!8,)*.&05.".),*/& "*3& +2*,0)'& 32$2.),*/& )*& ??;SV&
'#2".2& /."=$2& .#5*'".23& '%'$)*& SV& 0:;</& .1".& "#2& "//,')".23& J).1&
)*'#2"/23&(#,$)-2#".),*&#".2&"*3&/1,#.2#&/5#4)4"$7!':HH6-!$??B#!%+*@""CD!
E#!%A==&F?F#!

>L#! X(<;,292;-! 8#-! 2;! (:#-! <$.2#*".2& (,$%"32*%$".),*& )*& 150"*& 0:;</O& "&
$"#+29/'"$2&"*"$%/)/&=%&!@F&'$5/.2#)*+7!X24HU2!025-!"==>#!#@ACD!E#!A$%&
L?#!

>%#! \,(4P-!R#-! /#M#! N22-! (46!'#! O*(4-!Y)"/23& "$.2#*".)42& (,$%"32*%$".),*& )*&
150"*&.)//52/7!X24HU2!'*H:-!$??A#!'@"$CD!E#!0"??#!

>A#! \,(4P-! R#-! 2;! (:#-! 8,$%<dSYO& "& 3"."="/2& -,#& 0"00"$)"*& 0:;<&
(,$%"32*%$".),*7! 1<+:2*+! .+*65! 025-! $??A#! &&@8(;()(52! *55<2CD! E#!
8""F&$?#!
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>F#! N22-! /#M#-! 2;! (:#-!8,$%<dSY& NO&0:;<& (,$%"32*%$".),*& /).2/& )*& 42#.2=#".2&
+2*2/7!1<+:2*+!.+*65!025-!$??B#!&)@8(;()(52!*55<2CD!E#!8"FA&>#!

>B#! '2(<6H*4P-! 7#! (46! 8#! X(<;,292;-! E32*.)-)'".),*& ,-& "$.2#*".2&
(,$%"32*%$".),*&/).2/&"*3&"*"$%/)/&,-&.12)#&.)//52&3)/.#)=5.),*&5/)*+&!@F&
3"."7!X24HU2!025-!$??"#!%%@=CD!E#!"A$?&F#!

>>#! .9(-! O#-! 2;! (:#-!?,*/2#4".),*& ,-& "$.2#*".)42& (,$%"32*%$".),*& ("..2#*/& )*&
0"00"$)"*&+2*2/7!'GK!X24HU*+5-!$??F#!$D!E#!">=#!

>=#! X9()29-! /#R#-!X#8#!G+.::*5;29-!(46!O#]#!QU*;,-!8#,="=)$)/.)'&(#23)'.),*&,-&
@"''1"#,0%'2/&'2#24)/)"2&0:;<&CD9(#,'2//)*+&/).2/7!1<+:2*+!.+*65!025-!
$??$#!&+@>CD!E#!">A"&>#!

=?#! '9H+_U(4-!/#G#-!2;!(:#-!8<?3=O&8,$%<&?$2"4"+2&@).2&"*3&CD9KF:&S"."="/27!
'*H*4JH9U(;*+5-!$??A#!"%@">CD!E#!LF="&L#!

="#! Q(:(UH3-! .#.#! (46! `#`#! QH:H3S23-!:2',+*).),*& ,-& CD9(#,'2//)*+& /).2/& ,-&
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2$2+"*/&CDKF:/7!1(;<92-!$?""#!('*@BL$>CD!E#!=B&"?"#!



! 215 

"?L#! 1(U-! 8#[#-! 2;! (:#-! `$)+,L3FM& (#)02#& +2*2#".2/& "& 1)+1& -#2G52*'%& ,-&
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150"*& +2*2& 2Q(#2//),*& )*-,#0".),*7! X24HU2! 025-! $???#! %+@""CD! E#!
">"B&$B#!
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'$"//)-)2#& -,#&(,#."=$2&5$.#"/,5*37!^:;9(5H<46!G26!'*H:-!$?"$#!&#@""CD!
E#!">B?&>?#!

""%#! 0*5(<-!W#!(46!Y#!]:(UU2-!]"/'5$,+2*2/)/7!.44<!023!K2::!823!'*H:-!"==A#!
%%D!E#!BL&="#!
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.#"*/'#)(.),*"$& #2+5$".),*& ,-& 2*3,.12$)"$& '2$$& 3)--2#2*.)".),*& "*3&
"*+),+2*2/)/7!'*H+,*U!'*HE,S5!.+;(-!$??B#!%$$)@$CD!E#!$=>&L"$#!
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V4+HP242-!"==%#!*@FCD!E#!"AA"&FA#!
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