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Abstract 

The following work demonstrates that paternal diet controls medically important 

metabolic phenotypes in offspring. We observe transmission of dietary 

information to the zygote via sperm, and this information evades reprogramming 

that typically occurs after fertilization. Cytosine methylation is implicated as a 

major contributor to meiotic epigenetic inheritance in several transgenerational 

phenomena. Our extensive characterization of the sperm methylome reveals that 

diet does not significantly affect methylation patterns. However, we find that 

extensive epivariability in the sperm epigenome makes important contributions to 

offspring variation.  Importantly, coordinate cytosine methylation and copy 

number changes over the ribosomal DNA locus contributes to variation in 

offspring metabolism. Thus, rDNA variability acts independently of post-

adolescent paternal diet to influence offspring metabolism. Therefore, at least 

two mechanisms exist for epigenetically controlling offspring metabolism: 

stochastic epivariation and diet acting by an unknown mechanism to further 

modulate metabolism. This work argues that an offspring's phenotype can no 

longer be viewed solely as the result of genetic interactions with the 

developmental environment - the additional influences of paternal environment 

and inherited epigenetic variability must also be considered. These findings 

reveal novel contributions to metabolism that could revolutionize how we think 

about the risk factors for human health and disease.   
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INTRODUCTION 

 

During development in multicellular organisms, transcriptional networks drive cell 

fate decisions to generate adult organisms with numerous cell types carrying out 

specific functions. Cell state inheritance is a classic case of epigenetic 

inheritance in which cells with the same genome nonetheless exhibit differences 

in heritable phenotypes. Moreover, genetic analysis of complex diseases often 

uncovers “missing heritability” (Manolio et al., 2009) in which all known genetic 

contributors to a given phenotype only explain a small fraction of heritability of 

that phenotype.  Accumulating evidence suggests that ancestral epigenetic 

information influences offspring phenotypes, possibly accounting for this missing 

heritability (Danchin et al., 2011). Therefore, mature phenotypes arise from 

genetic interactions with the environment during development - as well as the 

previously ignored inherited epigenetic information. This revelation leads to 

important questions about the extent to which ancestral environments influence 

inherited phenotypes.  

 

Epigenetic inheritance 

Epigenetics plays an integral role in the development of multicellular organisms. 

In metazoa, hundreds of cell types result from the same genome and cellular 

identity is dictated by the specific subset of genes that are activated or 

repressed. Epigenetics provides a framework for cells to maintain their identity 
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through division by establishing a memory of genomic activity. For instance, 

although liver and kidney cells share the same genome, when a liver cell divides, 

it produces two liver cells and no kidney cells. The liver-specific gene expression 

program is recapitulated perfectly in both daughter cells. Thus, the liver 

phenotype is an example of epigenetic information, and genetic studies in 

multiple organisms show that epigenetic inheritance is essential for maintenance 

of cellular identity. Several overlapping mechanisms regulate such epigenetic 

information, including transcription factors, DNA methylation, and chromatin 

modifications. In addition, recent work has revealed higher order epigenetic 

regulation in the form of nuclear architecture that has been proposed to help 

coordinate gene expression. The integration of these epigenetic mechanisms 

ensures that cellular identity is established and maintained throughout 

development.  

 

The essential role for epigenetic regulators in cell state inheritance is revealed by 

genetic analysis. For instance, classic genetic studies of development in 

Drosophila melanogaster identified the competing Trithorax group (TrxG) and 

Polycomb group (PcG) mutants, which are required for maintenance of active or 

repressed gene expression, respectively (Schuettengruber et al., 2007). PcG and 

TrxG genes maintain expression of important development regulators after the 

initiating signal is removed, and mutations in these genes result in malformations 

caused by the inability to propagate cellular identity after initiating differentiation. 
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PcG maintains repression by methylating Histone 3 at Lysine 27 (H3K27), while 

TrxG maintains gene activity by methylating Histone 3 at Lysine 4 (H3K4). These 

chromatin marks establish transcriptional memory at genes important for cell 

state identity.  

 

In mammals, interfering with DNA methylation in fibroblast cultures causes them 

to differentiate into cardiomyocytes - the same transition induced by 

cardiomyocyte-specific transcription factors (TFs)(Ieda et al., 2010; Qian et al., 

2012). In this case, an epigenetic information carrier provides a barrier against 

changing cellular identity. The generation of induced-pluripotent stem cells (iPS) 

from differentiated cells provides another example of epigenetic influence over 

cell fate. Inhibiting either DNA methylation or histone deacetylation (a chromatin 

modification) during generation of iPS cells increases the efficiency of 

reprogramming (Mikkelsen et al., 2008). Thus, DNA methylation and histone 

deacetylation provide barriers to cellular reprogramming and “lock in” specific 

cellular identities once they are established.  

 

Aberrant epigenetic lesions highlight the roles of epigenetics in protecting and 

informing cellular identity, which can also be further appreciated from the 

extensive epigenetic deregulation in cancers (Hansen et al., 2011). Cancer 

arises from tissues through multistep processes resulting in loss of their 

programmed identity in their tissue of origin. Many epigenetic processes are 
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disturbed in cancer, including the deregulation of DNA methylation and PcG 

activity. Interestingly, a number of cancer therapeutics target epigenetic 

processes, including the DNA methylation inhibitor 5-azacytidine. Treatment of 

leukemias with 5-azacytidine leads to senescence of cancer cells, and reduction 

of their proliferative potential (Jasielec et al., 2014). Thus, cancer represents the 

loss of programmed cell identity, and is the reason behind therapeutics that 

target epigenetic processes.  

 

In addition to the vital roles that epigenetics plays in development, epigenetic 

mechanisms are also “plastic”, meaning that they respond to the environment. 

While the sequence of the genome remains constant throughout development, 

plasticity enables cells to respond to extracellular signals and environmental 

stresses without compromising cellular identity. For instance, chromatin 

packaging becomes altered in response to environmental conditions, as gene 

activity is generally well-correlated with a number of histone modifications (2012). 

Not only does chromatin state change in response to environmental cues, 

chromatin regulators are required for correct transcriptional responses to the 

environment (see for example (Weiner et al., 2012)). This plasticity ensures that 

cell types retain their cellular identity yet are flexible enough to respond to 

different environmental conditions.  
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Maintenance of cellular identity and plasticity are two complementary functions of 

epigenetics that operate during the lifetime of an organism – this is often referred 

to as mitotic epigenetic inheritance. An important question is whether epigenetic 

processes operate across generations. The ability of ancestral environments to 

influence phenotypes has been hotly debated for over a century, with the 

prevailing view for much of the 20th century being that organisms do not pass on 

environmental information to their offspring through the gametes. The germ 

plasm theory of August Weismann made a clear distinction between somatic 

cells and the germ line, which he thought was protected from somatic insults 

(Weismann et al., 1891). The development of the Modern Evolutionary Synthesis 

during the first half of the twentieth century left little room for epigenetic 

inheritance between generations, as this theory stated that phenotypes relied 

solely on inherited genotypes and developmental variations - offspring were not 

influenced by ancestral environments. These paradigms seemed to be confirmed 

by discoveries that extensive epigenetic reprogramming occurred after 

fertilization in mammals. However, in the past 10-20 years, clear examples of 

intergenerational epigenetic inheritance – the “inheritance of acquired characters” 

– have been described, necessitating a reevaluation of this dogma. 

 

Epivariation 

Some of the earliest confirmed cases of transgenerational epigenetic phenotypes 

were discovered in plants. One of the earliest and most famous examples of 
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transgenerational epigenetic inheritance is that of paramutation at the r locus in 

maize. The r locus encodes a transcription factor involved in pigment production, 

and Brink and co-workers discovered that genetically-identical maize could 

exhibit two distinct, heritable, color phenotypes – dark and light (Brink, 1956). 

Curiously, when a plant carrying a susceptible “paramutable” allele (r) was mated 

with a plant carrying the mutator allele (stippled), all offspring of this cross were 

found to have converted from r to r’ (a dark pigment to a light pigment) even 

though the locus was genetically identical. The mutator allele thus alters the 

regulatory state of the susceptible allele in trans, heritably influencing the 

production of pigment for hundreds generations even though all alleles were 

genetically identical. The distinctive phenotype of the r locus facilitated its 

investigation, and epigenetic information regulators including small RNA 

pathways, cytosine methylation, and chromatin regulators have all been 

implicated in paramutation (Heard and Martienssen, 2014). More cases of 

epigenetic inheritance of pigmentation phenotypes have subsequently been 

found in plants (Chandler and Stam, 2004), revealing novel complexity in the 

hereditary information - epigenetic inheritance across generations increases 

phenotypic variation. 

 

The plethora of phenomena in plants and absence in metazoa begged the 

question: “Are transgenerational phenomena restricted to the plant kingdom?” 

The conservation of transgenerational epigenetic inheritance (TEI) between 
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kingdoms was confirmed by studies of the agouti viable yellow locus (Avy) locus 

in mice (Morgan et al., 1999). The Avy locus results from the insertion of an 

intracisternal A particle (IAP) retrotransposon near the agouti gene, and 

genetically-identical Avy mice exhibit a range of coat colors from yellow to brown. 

Yellow Avy mice give birth to a higher fraction of yellow than brown offspring, and 

vice versa for brown mice, indicating that coat color phenotype in Avy mice is 

epigenetically heritable (albeit with incomplete penetrance). Thus, both the Avy 

and the r locus exhibit “metastable epialleles” – genes whose activity is 

ancestrally determined, but can vary between genetically identical organisms. 

The r locus in maize and the Avy allele in mice elucidate that vastly different 

heritable phenotypes result from the same genotype. Since these early 

discoveries, transgenerational phenomena have been found in most standard 

model organisms, including C. elegans (Fire et al., 1998; Greer et al., 2011), D. 

melanogaster (Cavalli and Paro, 1998), and M. musculus (Morgan et al., 1999), 

contributing to greater phenotypic complexity than would be expected if genotype 

were the sole conveyer of hereditary material.  

 

Imprinting and “programmed” epigenetic information 

While metastable epialleles demonstrate incomplete epigenetic inheritance 

between generations, in other cases epigenetic information can be stringently 

programmed. The most well known cases of programmed epigenetic marks are 

found in the study of imprinting, which is the allele-specific expression of genes 
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depending on the parent of origin (Reik and Walter, 2001). Seminal work into 

imprinting showed that the epigenetic carrier of transgenerational information is 

carried in cis on either the maternal or paternal allele of a given gene, with the 

epigenetic state of each allele being reset during gametogenesis in the next 

generation. The classic studies describing imprinting showed that the pronuclei 

transplanted between zygotes to produce gynogenetic (two maternal genomes) 

or androgenetic (two paternal genomes) embryos were unequal (Barton et al., 

1984; Surani et al., 1984). The embryonic lethal gynogenetic and androgenetic 

embryos had two distinct phenotypes. Gynogenetic embryos had smaller 

placentas, while androgenetic embryos were smaller, but with normal placentas. 

These experiments revealed that the maternal and paternal epigenetic 

contributions to the embryo are unequal. Since these experiments only 

transferred the pronuclei between zygotes, they argue that the inherited 

epigenetic information causing these phenotypes is contained in the chromatin 

fraction.  

 

Subsequent work on imprinting discovered the nature of this gametic inequality. 

The basis for the difference between maternal and paternal genomes is that 

epigenetic packaging over a number of genes does not reset after fertilization. 

Genetic lesions at the imprinted Igf2r cause embryonic lethality when maternally 

inherited, but offspring are viable when the mutation is paternally inherited 

(Barlow et al., 1991). These disparate phenotypes arise because the maternal 
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copy is the only one expressed during development as a result of inherited 

epigenetic information. The silent paternal copy of Igf2r is inherited and 

maintained in a silent state throughout development, so loss of the maternal copy 

results in virtual loss of all Igf2r. Parent-of-origin effects caused by imprinting are 

also present in human populations. The best-characterized case of imprinting in 

human populations is that of Prader-Willi and Angelman syndromes (Horsthemke 

and Wagstaff, 2008). These two syndromes are characterized by vastly different 

phenotypes, yet were found to be caused by the same exact deletion (chr15q11-

13), with the constellation of symptoms exhibited by a patient lacking this 

chromosomal region dependent only on whether the deletion was maternally or 

paternally inherited.  

 

Since the discovery of imprinting in the 1980’s, approximately a hundred 

imprinted genes have been confirmed in both mice and humans. A number of 

these imprints are conserved between species, although a subset is imprinted in 

a species-specific manner. Imprinting has been proposed to arise from “genetic 

conflict” - the idea that in polygamous species, a father promotes the survival of 

his offspring, while a mother conserves resources to ensure her ability to mate 

with other males and have more offspring in the future (Moore and Haig, 1991). 

The lack of conservation for several imprinted genes indicates that because of 

changes in the nature of genetic conflict between species, programmed 

intergenerational information can be lost over evolutionary time.    
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Mechanisms of epigenetic inheritance 

Genetic analyses of a number of epigenetic inheritance paradigms have 

identified several major pathways involved in epigenetic regulation. Classic 

epigenetics paradigms discovered by genetic analysis include cell state 

inheritance in flies, RNAi in worms, paramutation in maize, mating locus silencing 

in fission yeast, control of flowering time in Arabidopsis, imprinting in mammals, 

and many others. Genetic dissection of these and many other phenomena have 

identified chromatin packaging, small RNAs, and cytosine methylation as key 

regulators of epigenetic information. Importantly, it should be noted that these 

distinct mechanisms converge to coordinately regulate genomic processes. For 

instance, DNA methylation, heterochromatin, and the piRNA pathways all 

converge to silence transposable elements. 

 

Below, I will focus on the extensively studied DNA methylation (Bourc'his et al., 

2001; Mathieu et al., 2007), as analysis of this epigenetic mark formed the bulk of 

my thesis research. It is important to point out, however, than cytosine 

methylation is absent in many well-studied models such as C. elegans and S. 

pombe, which are nonetheless perfectly capable of epigenetic inheritance. 

Ongoing studies in the Rando laboratory focus on alternative epigenetic 
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information carriers, but these are beyond the scope of this project and so will be 

minimally discussed. 

 

I will discuss the functions of cytosine methylation, followed by the mechanisms 

responsible for its genomic patterning. Subsequently, the roles it is known to play 

in intergenerational phenomena will be reviewed. 

 

DNA Methylation 

In addition to the four bases that comprise the majority of DNA, a fifth base – 5-

methylcytosine – is present in diverse organisms including fungal species, 

mammals, plants, and many others. In mammals, DNA methylation regulates 

diverse processes including transcription, retrotransposon silencing, X-

inactivation, and genomic stability (Goll and Bestor, 2005). The vast majority of 

cytosine methylation occurs in the context of the CpG dinucleotide, although a 

small amount of non-CpG methylation has been described in embryonic stem 

cells (Ziller et al., 2011). Cytosine methylation alters the topology of the major 

groove of DNA without affecting its charge, and has a variety of regulatory 

consequences including disrupting the binding of certain transcription factors, or 

recruiting heterochromatin complexes that contain methyl-CpG-binding domains 

(MBDs). The dynamic genomic patterning of DNA methylation along with its 

modulation of various DNA-associated activities explains its pleiotropic effects. 

Although DNA methylation occurs in many species, I will discuss topics relevant 
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to mammalian cytosine methylation. Many of the functions and mechanisms of 

DNA methylation are similar between species, and I will refer the reader to the 

review by Zemach and Zilberman for more in depth analysis of topics relevant to 

cytosine methylation evolution (Zemach and Zilberman, 2010). 

 

Cytosine methylation regulates both differentiation and cell state identity, with 

cellular context determining the physiological role of cytosine methylation. 

Disruption of cytosine methylation in embryonic stem cells (ESC) blocks their 

differentiation to somatic lineages by preventing cytosine methylation-mediated 

silencing of pluripotent-specific factors (such as Oct4) (Feldman et al., 2006). 

Interestingly, disruption of cytosine methylation in ESCs doesn’t affect their ability 

to propagate in any way (Tsumura et al., 2006). Thus, in the case of ESCs, 

cytosine methylation does not affect cellular identity, while it is necessary but not 

sufficient for their differentiation into other cell types. On the other hand, the 

ability of the DNA methylation inhibitor 5-azacytidine to differentiate murine 

embryonic fibroblasts (MEFs) into cardiomyocytes suggests that identity of 

differentiated cell types can be disrupted in the absence of cytosine methylation 

(although 5-azacytidine has targets other than DNA methylation) (Qian et al., 

2012). Intriguingly, greater reduction of DNA methylation in MEFs leads to 

apoptosis (Jackson-Grusby et al., 2001). These opposite effects on cell lineage 

commitment and differentiation in ESCs and MEFs show that the roles of DNA 

methylation are contextual and cell type specific. These results demonstrate that 
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DNA methylation protects cellular identity in somatic cells, but that pluripotent 

cells rely less on DNA methylation and may need to remain in a plastic state for 

future lineage commitment. The phenotypes observed after inhibiting cytosine 

methylation in cell culture models hint at its crucial role in mammalian 

development.  

 

Functions of DNA Methylation 

As mentioned above, the developmental role of cytosine methylation derives in 

part from its ability to regulate gene expression by interfering with transcription. 

Many transcription factors (TFs) are sensitive to cytosine methylation, and exhibit 

reduced binding affinity for DNA sequences carrying a methylated CpG (Hu et 

al., 2013). Inhibition of TF binding by cytosine methylation can influence cellular 

phenotypes; as for example DNA binding by E2F TFs is modulated by 

methylation, resulting in altered proliferative phenotypes (Campanero et al., 

2000). As sequence-specific DNA binding proteins have a wide range of 

regulatory effects on the genome, from transcriptional activation and repression 

through organization of chromatin domains, cytosine methylation can affect any 

of these processes. As a key example, CTCF is a non-activating genomic 

insulator that organizes the genome into distinct modules, and its DNA binding 

activity is disrupted by cytosine methylation in several instances. Cytosine 

methylation regulated binding of CTCF mediates enhancer-promoter choice at 
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the imprinted H19/Igf2 locus (Hark et al., 2000) and trinucleotide-repeat instability 

at the spinocerebellar ataxia type 7 (Sca7) locus (Libby et al., 2008).  

 

While cytosine methylation interrupts binding for several transcriptional 

regulators, much of its effect on transcription resides in recruitment of repressive 

methyl binding domain (MBD) containing proteins. Several MBD containing 

proteins reside in large heterochromatin complexes that reinforce genomic 

silencing (Klose and Bird, 2006). For instance, cytosine methylation recruits the 

MBD-containing MeCP2, which forms a complex with histone deacetylases 

(HDACs) and co-repressors, such as Sin3a (Nan et al., 1998). Furthermore, 

MBD-containing proteins recruit chromatin-remodeling complexes (such as 

NuRD) that stabilize repression (Baubec et al., 2013; Le Guezennec et al., 2006). 

In addition to MBD domains, some repressive zinc finger proteins (ZFPs) 

specifically recognize motifs containing methylated cytosines (Prokhortchouk et 

al., 2001). The modulation of TF binding and the recruitment of heterochromatin 

complexes by cytosine methylation leads to gene silencing, as well as non-

canonical roles in maintenance of genomic architecture and genome stability. 

 

Along with its role in transcriptional regulation of genes, cytosine methylation 

represses repetitive element (retroelement) activity. Repetitive elements 

comprise up to half of mammalian genomes, and are capable of destabilizing 

their host genome (Rowe and Trono, 2011). Redundant and highly specific 
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pathways, including cytosine methylation, coordinately repress transcription and 

mobilization of retroelements. In a fashion similar to transcriptional repression, 

cytosine methylation recruits silencing complexes, such as those formed by 

MeCP2 (Muotri et al., 2010), to inhibit retroelement activity. These multiple layers 

of repression are necessary for robust repetitive element silencing, as loss of 

cytosine methylation leads to activation of these elements and genome 

instability. The sensitivity of MEFs to the loss of cytosine methylation partially 

derives from activation of several classes of retroelements (Jackson-Grusby et 

al., 2001). Interestingly, perturbations of cytosine methylation machinery during 

gametic development lead to massive activation of retroelements that results in 

genomic instability, and ultimately apoptosis that prevents reproduction (Kato et 

al., 2007). These results show that epigenetic silencing of retroelements is an 

essential function of cytosine methylation.  

 

Cytosine methylation is also integral to heritable control of gene dosage. The 

allele-specific expression of imprinted genes and the allele-specific silencing of 

the X-chromosome in females rely on cytosine methylation. In the case of 

imprinted genes, this epigenetic heritability extends from the parental generation 

to control gene dosage. The critical role of cytosine methylation in imprinting is 

observed in biallelic expression of imprinted genes at many stages of 

development in cytosine methylation mutants (Li et al., 1993). Unlike imprinted 

genes, random X-inactivation occurs after differentiation of the inner cell mass 
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(ICM), and the silenced copy is stably maintained throughout numerous cell 

divisions and development (Lee and Bartolomei, 2013). Disruption of cytosine 

methylation leads to activation of genes from the silenced X chromosome in 

differentiated cells (Mohandas et al., 1981). Interestingly, imprinted X-inactivation 

in marsupials occurs without cytosine methylation, and reactivation of the 

silenced X chromosome is a common phenomenon in marsupials, arguing that 

cytosine methylation contributes to long term silencing (Migeon et al., 1989). 

These examples of allelic regulation of transcription by cytosine methylation 

emphasize the role it plays in durable regulation of genetic activity.  

  

Numerous other functions of cytosine methylation are beginning to be revealed, 

such as its role in the regulation of splicing. Increased cytosine methylation over 

exons regulates binding of CTCF, which alters the elongation kinetics of RNA 

polymerase II (Shukla et al., 2011). This change in elongation rate controls exon 

usage resulting in the expression of different isoforms of genes. Therefore, 

cytosine methylation not only affects gene expression at the level of transcription 

initiation, but is also a regulator of mRNA isoform usage.  

 

Against the backdrop of trans-regulation of transcription by TFs and other DNA 

binding proteins, cytosine methylation adds a layer of cis-regulation that extends 

the complexity of genomic regulation. This cis-regulation modulates 

transcriptional activity, repetitive element silencing, gene dosage, as well as 
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other emerging activities. The intricate nature of this regulation makes cytosine 

methylation essential to mammalian survival.  

 

Establishing and Maintaining Cytosine Methylation 

Cytosine methylation in mammals is deposited by two de novo 

methyltransferases (DNMT3a and DNMT3b), which mediate the establishment of 

cytosine methylation, and maintained by DNMT1, which preferentially methylates 

the hemimethylated CpGs formed after replication of a symmetrically-methylated 

CpG. Recruitment of the de novo methyltransferases to DNA differs from that of 

the maintenance methyltransferase, each being recruited to DNA by different 

interaction partners. Active and passive processes also erase the patterns of 

cytosine methylation established and maintained by the methyltransferases 

during development. Therefore, genomic cytosine methylation patterns reflect the 

dynamic interaction between the antagonistic processes methylating and 

demethylating the genome.  

 

After replication of a symmetrically methylated CpG, the newly synthesized 

daughter strand lacks DNA methylation while the complementary parental strand 

carries a methyl-cytosine on the opposite side of the CpG. This hemimethylated 

CpG is the preferred substrate for DNMT1, whose recruitment to hemi-

methylated regions also requires the cooperation of PCNA (Proliferating Cell 

Nuclear Antigen) and UHRF1 (Ubiquitin-like containing PHD and RING finger 
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domains 1) (Sharif et al., 2007). PCNA ensures that DNMT1 is recruited to 

replicating DNA (Chuang et al., 1997), while UHRF1 targets it to hemi-methylated 

DNA. UHRF1 interacts with H3K9me2/3 (a heterochromatin mark) and 

hemimethylated DNA throughout replication and mitosis to precisely target 

DNMT1 to pre-existing cytosine methylation (Liu et al., 2013; Rothbart et al., 

2012). UHRF1 recruits DNMT1 by ubiquitylating H3K23, a transient histone 

modification that is bound by DNMT1 during replication (Nishiyama et al., 2013). 

This elegant, multi-layered system ensures that cytosine methylation is faithfully 

reproduced during cell division. 

 

In contrast to the maintenance of pre-existing methylation by DNMT1, DNMT3A 

and DNMT3B are responsible for establishing de novo cytosine methylation. 

These de novo methyltransferases associate with the catalytically inactive 

DNMT3L to form functional methylation complexes (Ooi et al., 2007). Since these 

complexes have little sequence specificity, recruitment depends on interaction 

with other DNA-associated factors. A variety of heterochromatin factors recruit de 

novo cytosine methylation, including Suv39H, G9a, and Setdb1-containing 

complexes (Epsztejn-Litman et al., 2008; Lehnertz et al., 2003; Li et al., 2006). It 

has also been found that the repressive histone modifications themselves recruit 

DNMTs, such as recruitment of DNMT3A by H4R3me2s (which is mediated by 

PRMT5) (Zhao et al., 2009). These modes of recruitment further accentuate the 

crosstalk between mechanisms responsible for silencing. Interestingly, the flavor 
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of heterochromatin determines the recruitment of cytosine methylation to a 

region. In contrast to genomic regions with H3K9me or H4R3me2s, regions with 

H3K27me (established by the Polycomb repressive complex (PRC)) are 

commonly devoid of cytosine methylation (Brinkman et al., 2012). Cytosine 

methylation encroaches into these regions when PRC function is compromised, a 

common feature of some cancers (Gal-Yam et al., 2008). PRC forms a 

competing complex with DNMT3L to prevent cytosine methylation at PRC bound 

regions, thus explaining the encroachment of cytosine methylation when PRC is 

disrupted (Neri et al., 2013). The ability of cytosine methylation to distinguish 

heterochromatic states is interesting because H3K27me is usually more labile, 

often being present in bivalent domains with the activating H3K4me modification, 

while H3K9me3-marked territories transmit long term silencing.  

 

Interplay Between DNA Methylation and Chromatin 

The interplay between chromatin and cytosine methylation explains the majority 

of the genomic methylation patterns. Reconstitution experiments in yeast 

demonstrate the role for the histone tail in establishing DNA methylation, as 

yeast lacking the H3 tail fail to establish cytosine methylation (Hu et al., 2009). 

Therefore, regions devoid of nucleosomes, commonly found in active promoters 

and enhancers, lack cytosine methylation (Chodavarapu et al., 2010). 

Nucleosome-depleted regions form through intrinsic nucleosome-deterring DNA 

sequences, as well as nucleosome displacement by a number of DNA interacting 
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factors, including TFs and chromatin remodelers (Feldmann et al., 2013; Kaplan 

et al., 2009). Therefore, many active regulatory regions are devoid of DNA 

methylation, since transcription factor binding commonly displaces nucleosomes.  

 

The interplay between cytosine methylation and chromatin extends beyond the 

recruitment of cytosine methylation by heterochromatic processes. Several 

mechanisms reinforce the active state of regulatory regions by antagonizing 

heterochromatin formation. Multiple SET-containing histone methylases catalyze 

the methylation of H3K4 at transcriptionally active regions. These methylases are 

recruited to their targets by CxxC domain, which binds unmethylated CpGs 

(Clouaire et al., 2012). In turn, H3K4me (all forms) interrupts binding of the de 

novo cytosine methyltransferases with the H3 tail (Ooi et al., 2007). Therefore, 

the H3K4me present at transcribed elements antagonizes aberrant DNA 

methylation, reaffirming the active transcriptional status. This maintenance of 

unmethylated states ensures that TFs bind their cognate sites to promote 

transcriptional competency. Hence, numerous antagonistic chromatin processes 

dynamically regulate cytosine methylation.  

 

The targeting of cytosine methylation through heterochromatin, along with the 

lack of a coherent copying mechanism for H3K9me has led to the idea that 

heterochromatin is established by histone modifications, and cytosine 

methylation locks in this heterochromatic state for extended silencing. A recent 



21

paper targeted HP1 to a single allele of the highly expressed Oct4 in ESCs to 

determine the kinetics of heterochromatin establishment and maintenance 

(Hathaway et al., 2012). HP1 recruitment led to H3K9me3 spreading over time, 

and the later establishment of DNA methylation. Full repression occurred before 

DNA methylation was observed, indicating that DNA methylation does not 

establish heterochromatin. However, reactivation of the locus occurred in clones 

with low DNA methylation, whereas clones with high methylation maintained 

repression over time. Inhibition of DNA methylation by 5-azacytidine treatment 

also reversed the repression of the locus. These results indicate that 

heterochromatin can be established independently of DNA methylation, but that 

epigenetic memory is stabilized through DNA methylation. This same mechanism 

appears to be used for the silencing kinetics during X-inactivation (Lee and 

Bartolomei, 2013). Organisms lacking DNA methylation still form 

heterochromatin; however, the absence of DNA methylation leads to greater 

plasticity - and reactivation of silenced genes.  

 

DNA Methylation in Development 

Mammals utilize cytosine methylation to dynamically regulate their genome 

throughout development (Smith and Meissner, 2013). The DNA methylome is 

reset after fertilization, reaching global levels of ~20% in the ICM in comparison 

to average methylation in somatic cells of ~70%. From this global minimum, DNA 

methylation is reestablished in cell-type specific contexts and gives rise to 



22

characteristic methylation profiles (Ziller et al., 2013). These cell type-specific 

patterns are formed during development by de novo establishment and are 

stable for numerous cell divisions. Over the past several years, research has 

revealed that DNA methylation is dynamic over many regulatory elements during 

development, with active demethylation adding a layer to this epigenetic 

regulation. 

 

Two major phases of methylome reprogramming take place in mammals. The 

first reprogramming occurs immediately after fertilization, when the gametic 

methylomes are erased. This erasure primes the epigenome for subsequent 

development, as well as preventing inheritance of ancestral insults. After 

reaching minimal levels in the ICM, the de novo methylation machinery 

establishes cell type-specific methylation patterns. The second major phase of 

reprogramming erases the somatic methylome in a subset of cells destined to 

become germ cells. Germ cells then establish sex-specific methylation patterns 

essential for reproduction. These two major phases of reprogramming were used 

in arguments against the possibility of transgenerational inheritance, since loss of 

epigenetic information at these stages should prevent inheritance of ancestral 

memory. However, we now know that imprinting and epialleles utilize memory 

stored in cytosine methylation to transmit intergenerational and transgenerational 
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information, respectively b . Therefore, the mechanisms of establishing and 

maintaining specific methylation patterns are important for development, as well 

as inheritance of intergenerational epigenetic information.  

 

The dynamic nature of DNA methylation patterns throughout development 

requires reversing cytosine methylation on occasion (Wu and Zhang, 2014). 

Although DNA methylation is a chemical mark that stores epigenetic memory, 

certain situations signal its erasure. For example, establishment of the pluripotent 

state and development of germ cells require activation of genes previously 

silenced by cytosine methylation. In many instances, cytosine methylation 

represses regulatory genes early in development only for them to be 

demethylated at a later stage (Borgel et al., 2010). Several mechanisms mediate 

this reversal of cytosine methylation. Transcriptional down-regulation of the DNA 

methyltransferases triggers the loss of methylation in pre-implantation embryos 

and primordial germ cells (Messerschmidt et al., 2014; Seisenberger et al., 

2012). Along with transcriptional control, the oocyte-specific isoform of DNMT1 

(DNMT1o) localizes to the plasma membrane during early pre-implantation 

development - spatially restricting its access to DNA (Hirasawa et al., 2008). This 

passive demethylation relies on the replicative dilution of cytosine methylation to 

reset the methylome.  

b Transgenerational refers to epigenetic information that survives both reprogramming 
stages (i.e.-epialleles), while intergenerational is the survival of information after 
fertilization that becomes reset in the germ line (i.e.-imprinted alleles). 
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Whereas passive demethylation requires replication, active demethylation occurs 

independently of cell division. Rapid demethylation occurs asymmetrically on the 

paternal pronuclei in the mammalian zygote (Santos et al., 2002), indicating that 

active demethylation takes place during this time of massive reprogramming, as 

well as at more limited regions throughout development. Active demethylation 

requires enzymatic removal of methylated cytosine. The TET enzymes catalyze 

oxidation of 5-methylcytosine, which is then deaminated by AID or Apobec to 

form 5-hydroxymethyluridine (5hmU) (Bhutani et al., 2010). TDG (Thymine DNA 

glycosylase) recognizes 5hmU in a 5hmU:G mismatch to initiate the base-

excision repair (BER) machinery (Cortellino et al., 2011). The BER pathway 

ultimately replaces the oxidized cytosine with an unmodified cytosine, thus 

reversing methylation through an indirect process. Alternatively, TET mediated 

oxidation of cytosine reduces DNMT1 activity, leading to passive replication 

coupled dilution of hydroxymethylation (Hashimoto et al., 2012). Consequently, 

oxidation of 5-methylcytosine by TETs leads to demethylation by both base-

excision repair and passive dilution of DNA methylation. Therefore, several 

processes mediate the erasure of cytosine methylation that is essential for 

reprogramming during developmental transitions.  

 

While redundant mechanisms reset the methylome to a totipotent state after 

fertilization, imprints survive this reprogramming by actively protecting of cytosine 
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methylation. TET3 initiates active demethylation of a majority of the genome after 

fertilization, but PGC7/Stella protects selected regions from this process 

(Nakamura et al., 2012). In another example of crosstalk between cytosine 

methylation and chromatin, H3K9me2 recruits PGC7 to inhibit the enzymatic 

activity of TET3 (Bian and Yu, 2014). Although sperm have few nucleosomes 

when compared to somatic cells (~5%), a population of their residual 

nucleosomes has H3K9me2, including at imprinted genes. Although this 

mechanism protects imprints and other select loci from active demethylation, a 

noncanonical mechanism maintains cytosine methylation that is present in 

H3K9me2 occupied regions during early development. Site-specific recruitment 

of DNMTs to methylated regions by ZFP57 accomplishes this task (Quenneville 

et al., 2011). ZFP57 (a KRAB-containing zinc finger protein (ZFP)) recruits KAP1, 

Setdb1, and DNMTs to a methylated DNA motif to maintain cytosine methylation. 

Therefore, inhibition of active demethylation and site-specific recruitment of 

heterochromatin maintain cytosine methylation over imprints through early 

development. Methylation maintenance during development later transitions to 

canonical replication-coupled propagation mechanisms.  

 

Epialleles represent the other class of well-studied transgenerational phenomena 

in mice that are not reprogrammed after fertilization. Intracisternal A Particle 

(IAP) retroelements regulate the activity of both the Avy and Axinfused epialleles in 

mice (Morgan et al., 1999; Rakyan et al., 2003). The Avy epiallele contains an IAP 
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element that creates an alternative transcription start site, while the IAP in the 

Axinfused epiallele drives expression of a truncated form of Axin. Metastable 

cytosine methylation controls the IAP elements of these epialleles. The actively 

inherited allele is unmethylated, while the repressed allele is highly methylated. 

Maintenance of DNA methylation over these epialleles through early 

development also relies on recruitment by ZFPs - as loss of KAP1 leads to 

demethylation of these elements in ESCs (Maksakova et al., 2013). Unlike 

imprinted genes that become reset in the germ lineage, IAP elements maintain 

cytosine methylation throughout this period (Seisenberger et al., 2012) - 

providing a possible mechanism for true transgenerational inheritance.  

 

Plasticity of Inherited Epigenetic Information 

The plasticity of inherited epigenomes is important for offspring phenotypic 

variation. If parents can inform their offspring of environmental conditions, these 

offspring could be better suited to the prevailing environment - a stress response 

that connects generations. As laid out above, mechanisms transmit information 

between generations, and these mechanisms rely on factors that are altered 

between individuals (ie-Avy) to produce a spectrum of phenotypes. Metastable 

epialleles reveal that transgenerational plasticity may be prevalent - but what 

environments induce transgenerational responses? If environmental variables 

influence offspring phenotypes, this would be important in determining 
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phenotypic variability, which was an idea championed by Jean Baptiste Lamarck 

(Jablonka and Lamb, 1995). 

 

The discovery of environmentally induced transgenerational phenotypes has 

traditionally been elusive, but numerous genuine examples have accumulated 

through the years. An early, but still investigated case relates to the inherited 

effects of heat shock in Drosophila melanogaster. Heat shock induces veinless 

phenotypes in flies, and more extreme heat stress results in heritable veinless 

phenotypes that persist for several generations (Waddington, 1953). Recently, it 

was shown that heritable responses to heat shock are mediated by ATF-2, which 

establishes and maintains heterochromatin (Seong et al., 2011). Heat stress 

signals through the Mekk1-p38 pathways to destabilize ATF-2, leading to a 

heritable release of silencing. Therefore, environmental disruption of 

heterochromatin by heat shock can be inherited in D. melanogaster.  

 

Numerous organisms respond to pervasive temperature variations, as 

temperature also mediates transgenerational responses in plants and worms. 

Many plants undergo a process of vernalization, whereby seeds enter a dormant 

state in cold weather that primes them for subsequent warming. This process 

involves cytosine methylation of FLC, and disruption of methylation leads to early 

flowering in subsequent wild type generations (Finnegan et al., 1998). Heat 

stress also affects heritable transcriptional gene silencing in plants, another 
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example of heat disrupting inheritance of heterochromatin (Zhong et al., 2013). 

Thus, like in flies, heat shock disrupts heritable heterochromatin in plants. On the 

other hand, C. elegans show fertility defects in response to heat shock, and 

inhibiting the RNAi pathway in C.elegans exacerbates these transgenerational 

fertility defects (Conine et al., 2013). The difference between utilization of 

silencing mechanisms between all of these species leads to the specific 

responses of each organism to temperature shifts and the dynamics of those 

shifts.  

 

Examples from D. melanogaster, A. thaliana, and C. elegans point to 

mechanisms that actively prevent transgenerational inheritance of stressed 

states. However, with enough stress these barriers are eventually overridden, 

and environmentally induced epigenetic information seeps into the next 

generation. Greater plasticity in subsequent generations is a result of the 

disruption of these mechanisms. For instance, plants lacking maintenance 

cytosine methylation have extreme phenotypic variation, a further indication that 

heterochromatic processes prevent intergenerational epigenetic inheritance 

(Mathieu et al., 2007). 

 

Some organisms, especially in the plant kingdom, have vastly different 

reproductive strategies than mammalian systems, which make it easy for them to 

inherit ancestral epigenetic information. Mammalian reprogramming during 
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gametogenesis and post-fertilization prevent most environmental information 

from crossing between generations, leading to repression of intergenerational 

epigenetic plasticity. However, this barrier to epigenetic inheritance is not 

complete, as epialleles demonstrate that a subset of the mammalian genome 

exhibits transgenerational plasticity. This plasticity results from epigenetic 

mechanisms responding to different signals at these loci.  

 

One of these signals is nutrition, as the Avy and Axinfused epialleles in mice are 

responsive to dietary supplementation in parents. For instance, long-term methyl 

donor supplementation (such as folate) leads to greater cytosine methylation of 

the Avy and Axinfused loci, lowering their heritable expression levels (Waterland 

and Jirtle, 2003a). Methyl donors feed into one carbon metabolism, the pathway 

responsible for cytosine and protein methylation by S-adenosylmethionine 

(Kaelin and McKnight, 2013), and common dietary supplements (such as folate, 

the B vitamins, or methionine) alter the balance of one carbon metabolism. This 

affects cytosine methylation at labile regions like epialleles, making these regions 

environmentally responsive. Since epialleles aren’t reprogrammed during 

gametogenesis or early development, these cytosine methylation changes 

provide a means to transmit transgenerational information. Additionally, although 

massive reprogramming after fertilization erases most DNA methylation, studies 

have indicated that up to 20% of methylation is heritable across generations 

(McRae et al., 2014). These refractory regions, enriched for certain classes of 
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repetitive elements (such as IAPs) (Smith et al., 2012), might be carriers of 

inherited epigenetic information.  

 

Epialleles present an opportunity to understand the mechanisms that are 

environmentally responsive in mammals. Interestingly, the genetic background of 

a mouse determines whether an epiallele can be paternally inherited, a strong 

indication that genetic differences within a species influence the prevalence of 

transgenerational inheritance (Rakyan et al., 2003). Furthermore, an ongoing 

mutation screen in the Whitelaw laboratory is searching for genetic modifiers of 

transgenerational epigenetic inheritance, already producing 20 modifiers of 

epigenetic inheritance (Daxinger et al., 2013). The common thread among many 

of these factors is their involvement in the formation of heterochromatin, including 

the DNA methylation machinery (DNMT1, UHRF1), the H3K9 methylation 

machinery (Setdb1, KAP1), and chromatin remodelers (Smarca5). As much 

crosstalk exists between these factors, coordination of their activity could 

influence epigenetic inheritance. Also, the activity of several of these factors has 

been demonstrated to be responsive to behavioral interventions, including 

prescribed exercise regimes that alter global cytosine methylation patterns (Ronn 

et al., 2013). Relatedly, several common dietary supplements have considerable 

effects on cytosine methylation, including ascorbic acid (Blaschke et al., 2013) 

and folic acid (Waterland and Jirtle, 2003a). These studies emphasize that 

heterochromatin is the major carrier of intergenerational epigenetic information, 



31

and factors controlling heterochromatin are environmentally responsive. 

However, research needs to be undertaken to determine the responsiveness of 

individual factors to additional environmental variations. 

 

Similar to heat shock in several organisms, mammals share some 

transgenerational environmental responses with other species. For instance, 

radiation leads to a heritable increase in mutation rates in both plants and 

animals (Molinier et al., 2006) (Barber et al., 2002). This response alters the 

genetic material, which disqualifies it from being strictly epigenetic; but the 

regulation of the pathway appears to be epigenetic, as the response is lost over 

several generations. This shared response is interesting because it indicates that 

epigenetic mechanisms communicate with the genetics of an organism, possibly 

increasing genetic variation in response to severe stresses.  

 

The transgenerational responses to heat shock, dietary supplementation, and 

environmental radiation demonstrate that a wide array of signals can elicit 

transgenerational responses. The set of ancestral environments that affect 

phenotypes is an important question. Some relatively new environmental 

variations may have arisen through industrialization, and the production of 

environmental chemicals. A number of industrially produced chemicals elicit 

cellular responses through known signaling mechanisms. For instance, certain 

chemicals act as endocrine disruptors, altering hormone responses in mammals 
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by blocking or activating specific receptors. One of these endocrine disrupters, 

vinclozolin (an agronomically prevalent fungicide), leads to paternally inherited 

spermatogenic deficits in rats (Anway et al., 2005). This response lasts for up to 

three generations, making it especially deleterious. These deficits are also 

associated with differences in DNA methylation in the sperm of these animals, 

demonstrating that the sperm methylome is responsive to environmental 

toxicants. Thereby, the disruption of cellular processes by industrial chemicals 

can have profound impacts for generations to come, and adds to the 

environmental conditions that influence offspring phenotypes.   

 

Many environmental variables elicit transgenerational responses in species-

specific manners. What makes an environmental stress likely to influence 

subsequent generations? The intensity and duration appears to play central roles 

in this determination, as harsher treatments carry more of a transgenerational 

effect (ie- increased heat shock or radiation). Additionally, there appears to be 

periods of greater susceptibility in the lifetime of organisms as well. Vinclozolin 

shows larger effects when given to pregnant females earlier in pregnancy, when 

germ cells are reprogrammed, indicating that the mammalian germline might be 

especially susceptible to altered in utero conditions. These findings in model 

systems may prove pertinent to the etiology of human health and disease. As 

evidenced by epidemiological studies, the conservation of intergenerational 
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epigenetic inheritance indicates that a portion of phenotypic variation in humans 

might be caused by ancestral conditions.  

 

These epidemiological studies show that transgenerational epigenetic plasticity 

plays an important, yet understated role in human health and disease. One of 

these studies focused on the parish of Overkhalix, Sweden; which kept detailed 

records on regional harvests, as well as mortality schedules. The Overkhalix 

cohort reveals that nutritional conditions of grandparents influence the health of 

the same sex grandchild (Pembrey et al., 2006). The Overkhalix cohort also 

shows that the time-period of the insult strongly affects the insult - going so far as 

to indicate that the same insult can have opposite effects on inherited 

phenotypes depending on when the ancestral generation encountered it. Thus, 

complex dynamics in the parental generation regulate the susceptibility of 

offspring to transgenerational phenotypes. The Overkhalix cohort and studies of 

nutritional supplementation of epiallelic mice demonstrate that nutritional status 

affects transgenerational phenomena. In the future, it will be necessary to 

determine what specific nutrients elicit responses, as well as whether organisms 

transmit information about general nutritional status. 

 

All the evidence listed above evidence strongly suggests that chromatin-based 

processes control transgenerational inheritance, with the regulation of 

heterochromatin being the strongest indicator of transgenerational phenomena. 
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Heterochromatin machinery differs widely between species; a number of species 

with strong environmentally induced transgenerational phenotypes lack DNA 

methylation (or have minimal levels), and inhibition of DNA methylation in plants 

increases the prevalence of transgenerational variation. Therefore, it appears 

that DNA methylation promotes inherited phenotypic robustness, since species 

with genomic hypermethylation show reduced responsiveness to environmental 

variation.  

 

Although the field of transgenerational epigenetics is still in its infancy, we 

see that transgenerational epigenetic mechanisms strongly influence offspring 

phenotypes.  Accumulating evidence suggests that most multicellular sexually 

reproducing organisms exhibit transgenerational epigenetic inheritance, and that 

a subset of these states is environmentally responsive. On one hand, hardwired 

intergenerational epigenetic phenomena, such as imprinting, prove necessary for 

organismal survival. On the other hand, the ability of the transgenerational 

“epiphenotype” to respond to environments provides added phenotypic 

variability, possibly conferring fitness benefits on offspring. Characterization of 

the inducing environments with organismal responses will go a long way in 

determining the extent of intergenerational epigenetics, along with providing the 

framework to elucidate the mechanisms responsible for the inheritance of 

epigenetic information. Finally, a better understanding of intergenerational 

epigenetics will help solve the mysteries of complex disease.  
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CHAPTER I: 

Paternally-induced transgenerational environmental reprogramming of 

metabolic gene expression in mammals 

Abstract 

Epigenetic information can be inherited through the mammalian germline, and 

represents a plausible transgenerational carrier of environmental information. To 

test whether transgenerational inheritance of environmental information occurs in 

mammals, we carried out an expression profiling screen for genes in mice that 

responded to paternal diet. Offspring of males fed a low protein diet exhibited 

elevated hepatic expression of many genes involved in lipid and cholesterol 

biosynthesis, and decreased levels of cholesterol esters, relative to the offspring 

of males fed a control diet. Epigenomic profiling of offspring livers revealed 

numerous modest (~20%) changes in cytosine methylation depending on 

paternal diet, including reproducible changes in methylation over a likely 

enhancer for the key lipid regulator PPARα. These results, in conjunction with 

recent human epidemiological data, indicate that parental diet can affect 

cholesterol and lipid metabolism in offspring, and define a model system to study 

environmental reprogramming of the heritable epigenome. 
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Introduction 

The past few decades have seen an important expansion of our understanding of 

inheritance, as a wide variety of epigenetically-inherited traits have been 

described (Jablonka and Lamb, 1995; Rando and Verstrepen, 2007). One 

implication of epigenetic inheritance systems is that they provide a potential 

mechanism by which parents could transfer information to their offspring about 

the environment they experienced. In other words, mechanisms exist that could 

allow organisms to “inform” their progeny about prevailing environmental 

conditions. Under certain historical circumstances – for example, repeated 

exposure over evolutionary time to a moderately toxic environment that persists 

for tens of generations – such non-Mendelian information transfer could be 

adaptive (reviewed in (Jablonka and Lamb, 1995; Rando and Verstrepen, 2007)). 

Whether or not organisms can inherit characters induced by ancestral 

environments has far-reaching implications, and this type of inheritance has 

come to be called “Lamarckian” inheritance after the early evolutionary theorist 

J.B. Lamarck, although it is worth noting that both Darwin and Lamarck believed 

in the inheritance of acquired characters. 

Despite these theoretical considerations, at present there is scant evidence for 

transgenerational effects of the environment, particularly in mammals. The 

majority of examples of transgenerational environmental effects described have 

been maternal effects (see (Harris and Seckl, 2011; Whitelaw and Whitelaw, 
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2008; Youngson and Whitelaw, 2008) for review), including in utero passage of 

photoperiod information in various rodents (Horton, 2005), cultural inheritance of 

stress reactivity and maternal grooming behavior in rats (Meaney et al., 2007; 

Weaver et al., 2004), and metabolic and psychiatric sequelae of fetal malnutrition 

in humans and rodents (Hales and Barker, 2001; Harris and Seckl, 2011; 

Symonds et al., 2009). However, maternal effects are difficult to separate from 

direct effects of in-utero environmental exposure on offspring. 

A small number of studies have identified heritable epigenetic effects of 

environmental perturbations on offspring. Treatment of pregnant rat mothers with 

the endocrine disruptor vinclozolin results in decreased fertility and behavioral 

changes in several generations of offspring (Anway et al., 2005; Crews et al., 

2007). In another study, withholding methyl donors from pregnant female mice 

resulted in decreased cytosine methylation across the agouti viable yellow Avy 

reporter locus (Waterland and Jirtle, 2003b), and the altered cytosine methylation 

profile persisted well beyond the first generation (Cropley et al., 2006). 

While demonstration of multi-generational changes (eg- an F2 effect) is important 

when using maternal treatment protocols to rule out simple plastic responses of 

offspring to the in utero environment, paternal effects avoid this issue as fathers 

often contribute little more than sperm to offspring. A handful of paternal effects 

have been documented in the literature – pre-mating fasting of male mice has 

been reported to affect serum glucose levels in offspring (Anderson et al., 2006), 
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and chronic exposure of male rats to high fat diet affects pancreatic islet biology 

in offspring (Ng et al., 2010). Furthermore, epidemiological data from human 

populations links experience of famine in paternal grandfathers to obesity and 

cardiovascular disease two generations later (Kaati et al., 2002; Pembrey et al., 

2006). These results motivate a deeper exploration of the mechanisms of pre-

mating paternal diet on offspring phenotype. 

It is therefore of great interest to determine what environmental conditions have 

transgenerational effects in mammals, and to characterize the mechanisms that 

mediate these effects. Here, we describe a genomic screen for transgenerational 

effects of paternal diet on gene expression in offspring in mice. Expression of 

hundreds of genes changes in the offspring of males fed a low protein diet, with 

coherent upregulation of lipid and cholesterol biosynthetic pathways. Epigenomic 

profiling in offspring livers identified changes in cytosine methylation at a putative 

enhancer for the key lipid transcription factor PPARα, and these changes 

correlated with the downregulation of this gene in offspring. Interestingly, we did 

not find effects of paternal diet on methylation of this locus in sperm, and overall 

sperm cytosine methylation patterns were largely conserved under various 

dietary regimes. These results establish an inbred, genetically tractable model 

system for the study of transgenerational effects of diet, and may have 

implications for the epidemiology of several major human diseases. 
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Results 

Experimental paradigm 

Male mice were fed control or low protein diet (11% rather than 20% protein, with 

the remaining mass made up with sucrose) from weaning until sexual maturity. 

Note that while the relevant dietary change in this experiment could be protein 

content, sucrose content, fat/protein ratio, etc., for simplicity we refer to the diet 

as low protein throughout the text. Mice on either diet were then mated to 

females reared on control diet (Figure 1.1A, S1.1A). Fathers were removed after 

one or two days of mating, limiting their influence on their progeny to the mating 

itself. All mothers were maintained on control diet throughout the course of the 

experiment. After birth, the offspring were reared with their mothers until three 

weeks old, at which point their livers were harvested for RNA isolation. DNA 

microarrays were used to profile global gene expression differences in the livers 

of the offspring from the two types of crosses (Table S1.1). 

A screen for genes regulated by paternal diet 

Testing for differences between 26 matched pairs of mice from the two F1 

groups, we found a significant overabundance of differentially-expressed genes, 

relative to the null hypothesis that the parental treatment does not affect offspring 

(1,595 genes at false discovery rate – FDR – of 0.001, Figure S1.1B–C). We also 

identified  a  more robust ( t-test with null hypothesis of mean change 0.2, FDR of 
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Figure 1.1 
A Screen for Genes Regulated by Paternal Diet 
(A) Experimental design. Male mice were fed control or low (11%) protein diet 
from weaning until sexual maturity, then were mated to females that were raised 
on control diet. Males were removed after 1 or 2 days of mating. Livers were 
harvested from offspring at 3 weeks, and RNA was prepared, labeled, and 
hybridized to oligonucleotide microarrays. 
(B) Overview of microarray data, comparing offspring of sibling males fed 
different diets—red boxes indicate higher RNA levels in low-protein than control 
offspring, green indicates higher expression in controls. Boxes at the top indicate 
comparisons between two male (purple) or two female (yellow) offspring. Each 
column shows results from a comparison of a pair of offspring. Only genes 
passing the stringent threshold for significant change (Figure S1B) are shown. 
Data are clustered by experiment (columns) and by genes (rows). 
(C) Validation of microarray data. Quantitative RT-PCR was used to determine 
levels of Squalene epoxidase (Sqle) relative to the control gene Vitronectin (Vtn), 
which showed no change in the microarray dataset. Animals are grouped by 
paternal diet and by sex, and data are expressed as ΔCT between Sqle and Vtn, 
normalized relative to the average of control females. 
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Figure S1.1 
Validation and Identification of Differentially Expressed Genes, Related to Figure 
1 
(A) Microarray data and q-RT-PCR results are shown for the indicated genes, for 
two offspring comparisons. 
(B and C) Evaluating the statistical significance of the number of genes that are 
differentially expressed between offspring of low-protein diet fathers and control 
diet fathers. Blue line, the number of differentially expressed genes that separate 
the two sets of offspring (y axis) that were scored a given p value (x axis) in a t 
test; black line, the number of genes expected by chance with that p value from 
1000 simulations with random reshuffling of subject labels; light gray or red line, 
the range of numbers of differentially expressed genes in the 95th percentile of 
1000 random simulations. Overabundance of differentially expressed genes is 
observed when using both tests: (B) combination of two one-tailed t tests; (C) 
combination of two one-tailed t tests using a null hypothesis with mean change of 
0.2. In this case the random reshuffling of the data corresponds to a null 
hypothesis with mean 0 rather than 0.2 and thus is an upper bound on the 
number expectance by chance. 
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0.01) group of 445 genes whose expression strongly depended on the diet 

consumed by their fathers (Figure 1.1B). In our analysis we focus on this more 

robust group of genes, however, all the phenomena described below are true for 

the larger group as well. These gene expression changes were observed in 13 (7 

low protein, 6 control) litters in experiments spanning several years, carried out in 

three different animal facilities (Figure S1.2A–B). In principle, random factors 

should be distributed equally between our two groups given the numbers of 

offspring examined, but we directly address a number of potential artifacts 

nonetheless, including changes in cell populations, circadian cycle, litter size, 

order of sacrifice, and cage location (Figure S1.2, see Experimental procedures). 

We confirmed our results by q-RT-PCR (Figures 1.1C, S1.1A). Squalene 

epoxidase (Sqle), which catalyzes the first oxygenation step in sterol 

biosynthesis, exhibited a ~3-fold increase in the low protein cohort in our 

microarray data, and q-RT-PCR showed a similar average expression difference 

across over 25 animals, gathered in crosses carried out several years apart 

(Figure 1.1C). The differences we observe occur in both male and female 

progeny (Figures 1.1C, S1.2C), though these dietary history-dependent 

differences are superimposed on a baseline of differential expression between 

the sexes. 
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Figure S1.2.  
Gene Expression Differences Repeat in Multiple Animal Facilities and Are 
Observed in Both Genders, Related to Figure 1.1 
(A) Data from 16 animals (8 control, 8 low-protein offspring) from an early 
iteration of the experiment presented in Figure 1A. Data are from Affymetrix 
microarrays, with each column representing single-channel intensity data for one 
animal. Each gene is normalized to the median across all 16 experiments (i.e., 
zero-centered). These animals were raised in Facility 1, distinct from the animals 
presented in the rest of this paper. 
(B and C) Data from Figure 1.1B, segregated by animal facility (B) or offspring 
gender (C). 
(D) Gene expression differences do not reflect changes in circadian rhythms. 
Periodically expressed genes from (Miller et al., 2007) are ordered according to 
time of peak expression during the circadian cycle, and average change in gene 
expression in our dataset is plotted alongside. 
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Upregulation of proliferation and lipid biosynthesis genes in low protein 

offspring 

To help define the physiological differences between our cohorts, we calculated 

enrichments of various Gene Ontology (GO) processes in the differentially 

expressed genes. Genes upregulated in our treatment group's offspring were 

enriched for a number of categories of genes involved in fat and cholesterol 

biosynthesis, including lipid biosynthesis (p < 9 × 10−26), steroid biosynthesis (p 

< 3 × 10−19), cholesterol biosynthesis (p < 2 × 10−12), and oxidation-reduction 

(p < 4 × 10−10). Another major group of upregulated genes are annotated to be 

involved in S phase, such as DNA replication (p < 2 × 10−9) and related 

annotations. Downregulated genes were enriched for GO annotations such as 

sequence specific DNA binding (p < 6 × 10−6) and ligand-dependent nuclear 

receptor activity (p < 6 × 10−5), although the number of genes matching these 

annotations was small (14 and 5, respectively). 

The increase in S phase genes likely indicates a hyperproliferative state, while 

the metabolic expression differences suggest that lipid metabolism is altered in 

these animals. To explore the mechanisms responsible for these altered gene 

expression programs, we asked whether the observed gene expression 

differences might reflect altered regulation of a small number of pathways. We 

checked for significant overlaps of the gene expression profile observed in our 

low protein offspring with a compendium of 120 publicly available murine liver 
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gene expression datasets (Experimental Procedures). Our low protein offspring 

gene expression profile significantly (p < .05 after Bonferroni correction) 

overlapped gene expression changes from 28 published profiles (Figure 1.2, 

Table S2), including gene expression profiles associated with perturbation of 

transcription factors that regulate cholesterol and lipid metabolism (SREBP 

(Horton et al., 2003), KLF15 (Gray et al., 2007), PPARα (Rakhshandehroo et al., 

2007), and ZFP90 (Yang et al., 2009)). Our gene expression dataset also 

significantly matched hepatic gene expression in a variety of mice with mutations 

affecting growth hormone (GH) and insulin-like growth factor 1 (IGF-1) levels 

(Boylston et al., 2004; Madsen et al., 2004; Tsuchiya et al., 2004). Hierarchical 

clustering according to the enriched public profiles revealed two types of 

prominent gene functions in our data: DNA replication (p < 6 × 10−14) and lipid 

or cholesterol biosynthesis (p < 2 × 10−27) (Figure 1.2). The partial overlap 

observed with each of many different transcription factor and growth factor 

profiles suggests that the altered gene expression profile observed in low protein 

offspring is likely related to reprogramming of multiple distinct pathways 

Multiple pathways are affected by paternal diet 

To assess whether the reprogrammed state in offspring reproduces the paternal 

response to low protein diet, we measured global gene expression changes in 

the livers of pairs of animals weaned to control or low protein diet as in Figure 

1.1A.  Genes that  change  in  offspring are not the same as the genes induced in  
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Figure 1.2  
Multiple Pathways Are Affected by Paternal Diet 
Comparison of upregulated gene expression profile with a compendium of public 
datasets of hepatic gene expression. A clustering of our upregulated genes 
according to their notation in the 28 significant (p < 0.00025) overlapping 
signatures from an assembled compendium of 120 publicly available murine liver 
signatures under various conditions and genetic perturbations (GEO; (Horton et 
al., 2003) and (Yang et al., 2009)). For each significant profile, the majority of 
overlapping genes are shown as yellow, whereas genes with opposite regulation 
(i.e., down rather than up in the dataset in question) are blue. The genes divide 
into two distinct clusters, one enriched in DNA replication and the other in various 
categories of fat and cholesterol biosynthesis. See also Table S1.2 and Figure 
S1.3. 
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the parental generation by these protocols (Figure S1.3). Instead, males fed the 

low protein diet upregulate immune response and apoptosis-related genes, and 

downregulate genes involved in carboxylic acid metabolism (analysis not shown). 

 

Transgenerational effects on lipid metabolism 

We further focused on cholesterol biosynthesis genes. Coherent upregulation of 

genes involved in cholesterol metabolism is observed in the offspring of low 

protein fathers (Figure 1.3A). Figure 1.3B shows a more detailed comparison 

between our upregulated dataset and published data (Horton et al., 2003) for 

genes activated by a major transcriptional regulator of cholesterol metabolism, 

SREBP. Many of the genes upregulated in low protein offspring have previously 

been shown to be upregulated by overexpression of SREBP-1a or SREBP-2 or 

downregulated by loss of the SREBP-activating gene, Scap. 

Altered cholesterol metabolism in the low protein cohort 

To explore the correspondence between hepatic gene expression and 

physiology, we measured lipid levels in three pairs of control and treatment livers 

to determine whether increased levels of lipid biosynthesis genes resulted from 

changes in lipid levels (Figure 1.3C, Experimental Procedures). Livers in the 

cohort with low protein diet fathers were depleted of cholesterol and cholesterol 
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Figure S1.3.  
Analysis of Paternal Response to Low-Protein Diet, Related to Figure 1.2 
(A) Males were fed control or low-protein diet from weaning until sexual maturity, 
then were sacrificed and livers were harvested for gene expression profiling as in 
Figure 1.1. Here, genes are ordered as in Figure S1.2B (right panel)—left panel 
shows gene expression differences as low-protein/control. Gene expression 
differences in offspring do not reflect the paternal response to the dietary regimes 
(note that these males were not fathers of the offspring analyzed in Figure 1.1B, 
but were treated equivalently). 
(B) Scatterplot of average gene expression in offspring (x axis) versus in males 
treated with LP or C diet (y axis). Only genes were chosen with fewer than 30% 
missing spots in each experiment (26 arrays each). R = −0.129.   
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Figure 1.3.  
Altered Cholesterol Metabolism in the Low-Protein Cohort 
(A) Cholesterol biosynthesis. Genes annotated as cholesterol biosynthesis genes 
are shown, with colors indicating average difference in expression in low-protein 
versus control comparisons. 
(B) Many genes upregulated in the low-protein cohort are SREBP targets. 
Upregulated cluster from Figure 1B is shown, along with data from Horton et al. 
(2003). Genes scored as up in both replicates from Horton et al. (2003) are 
shown as yellow, genes scored as down are blue. Columns show data from 
transgenic mice overexpressing SREBP-1a or SREBP-2 or from Scap knockout 
mice. 
(C) Cholesterol levels are decreased in livers of low-protein offspring. Data from 
lipidomic profiling of liver tissue from three control and three low-protein animals 
are shown as mean ± standard deviation. Red line indicates no change. p values 
were calculated using a paired t test on log-transformed lipid abundance data. 
Cholesterol esters, CE; phosphatidylethanolamine, PE; free cholesterol, FC; 
triacylglycerol, TAG; phopshatidylcholine, PC; cardiolipin, CL; 
phosphatidylserine, PS ; free fatty acid, FA; lysophosphatidylcholine, LYPC; and 
diacylglycerol, DAG. 
See also Table S1.3. 
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(whose levels were reduced more than two-fold). Additional differences were 

found in specific lipid classes, such as substantial increases in relative levels of 

saturated cardiolipins, saturated free fatty acids, and saturated and 

monounsaturated triacylglycerides in low protein offspring (Table S1.3). 

Together, these results demonstrate that paternal diet affects metabolites of key 

biomedical importance in offspring. 

MicroRNAs in offspring 

Small (19–35) RNAs such as microRNAs (miRNAs) have recently been 

implicated in epigenetic inheritance in mice (Wagner et al., 2008). To determine 

whether altered small RNA populations might drive our reprogramming effect, we 

characterized the small (19–35 bp) RNA population from control and low protein 

offspring livers by high throughput sequencing (Ghildiyal et al., 2008), and 

mapped reads to known microRNAs (Table S1.4). A number of miRNAs changed 

expression in the offspring from low protein diet fathers (Figure 1.4). Changes 

were often subtle in magnitude (~50%), but were reproduced in four control vs. 

low protein comparisons (paired t-test), and given the number of sequencing 

reads obtained for these RNAs this magnitude of difference is well outside of 

counting error (Table S1.4). Offspring of low protein cohort upregulated miR-21, 

let-7, miR-199, and miR-98, and downregulated miR-210. Many of these 

upregulated miRNAs are associated with proliferation in liver, with miR-21 and 

miR-199 both associated with hepatocellular carcinoma (Jiang et al., 2008), while 
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Figure 1.4  
Proliferation-Related MicroRNAs Respond to Paternal Diet 
Small (<35 nt) RNAs from the livers of eight offspring (four control, four low-
protein) were isolated and subjected to high-throughput sequencing. MicroRNAs 
that exhibited consistent changes in all four pairs of animals are shown, with 
average change shown as a bar and individual comparisons shown as points. 
See also Table S1.4. 
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let-7 is well-known as a tumor suppressor (Jerome et al., 2007). The increase in 

growth-associated miRNAs is consistent with the hyperproliferative gene 

expression profile observed in the offspring of low protein diet fathers. 

Proliferation-related microRNAs respond to paternal diet 

We found no statistically-significant overlap (p > 0.05) between the predicted 

targets of the miRNAs here and the gene expression changes we observe, 

though the subtle (~50%) changes in miRNA abundance we observe might be 

expected to have little effect on mRNA – even when specific miRNAs are 

artificially introduced in cells, downregulation of target mRNAs is less than 2-fold 

for the majority of predicted targets (Hendrickson et al., 2008). Our results 

therefore suggest that miRNAs are likely to be additional targets of the 

reprogramming pathway, yet are likely not the direct upstream regulators of the 

entire response (but see (Wagner et al., 2008)). 

Cytosine methylation in offspring 

How are offspring reprogrammed by paternal diet? Cytosine methylation is a 

widespread DNA modification that is environmentally responsive, and carries at 

least some heritable information between generations (Bartolomei et al., 1993; 

Cropley et al., 2006; Holliday, 1987; Rakyan et al., 2003; Waterland and Jirtle, 

2003b). As imprinted loci are often involved in growth control (Moore and Haig, 

1991), we first asked whether a subset of candidate imprinted loci exhibited 
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altered cytosine methylation in low protein offspring (Figure S1.4A). As these loci 

did not exhibit significant changes in methylation, we therefore turned to genome-

scale mapping studies to search for differentially methylated loci between control 

and low protein offspring. 

We performed reduced representation bisulfite sequencing (RRBS, (Meissner et 

al., 2008)) to characterize cytosine methylation at single nucleotide resolution 

across ~1% of the mouse genome (Table S1.5). RRBS was performed for livers 

from a pair of control and low protein offspring, and fraction of methylated CpGs 

was calculated for a variety of features such as promoters, enhancers, and other 

nongenic CpG islands. In general, we found that cytosine methylation was well 

correlated between control and low protein offspring (Figures 1.5A, B). However, 

we did observe widespread modest (~10–20%) changes in CpG methylation 

between the two samples (red and green dots in Figures 1.5A, B), consistent with 

many observations indicating that environmental changes tend to have small 

quantitative effects on cytosine methylation (Blewitt et al., 2006; Heijmans et al., 

2008; Ng et al., 2010; Weaver et al., 2004). Importantly, changes in promoter 

methylation did not globally correlate with changes in gene expression in 

offspring, indicating that the gene expression program in offspring is unlikely to 

be epigenetically specified at each individual gene (Figure 1.5C). Of course, 

widespread gene expression differences can be caused by changes to a small 

number of upstream regulators, and a number of differentially methylated regions 

are associated with cholesterol or lipid-related genes (Table S1.5). 
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Figure S1.4  
Cytosine Methylation in Offspring, Related to Figure 1.5, Figure 1.6, and Figure 
1.7 
(A) Growth-related imprinted genes are similarly methylated in control and low-
protein offspring. Cytosine methylation was measured by methyl-cytosine 
immunoprecipitation (MeDIP) of genomic DNA from control and low-protein 
offspring livers, followed by q-PCR. Fold methylation relative to a control locus 
(Gapdh) is indicated. 
(B) Ppara enhancer methylation in sperm is not responsive to diet. Individual 
bisulfite sequencing clones are shown for sperm isolated from males consuming 
control diet or low-protein diet. CpGs are shown as in Figure 1.6. Data from at 
least three animals are pooled here. 
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Figure 1.5.  
Transgenerational Effects of Paternal Diet on Hepatic Cytosine Methylation 
(A) Genomic DNA from control and low-protein offspring livers was subjected to 
reduced representation bisulfite sequencing (RRBS). For all annotated 
promoters, average fraction of CpGs that were methylated is shown for the 
control sample (x axis) compared to the low-protein sample (y axis). Red and 
green dots indicate promoters with significant (p < 0.05) methylation changes of 
over 10%. 
(B) As in (A), for nongenic CpG islands. 
(C) Promoter cytosine methylation changes are uncorrelated with gene 
expression changes. For each promoter, the average change in cytosine 
methylation is compared to the change in mRNA abundance from Figure 1.1B. 
See also Table S1.5 and Figure S1.4. 
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Transgenerational effects of paternal diet on hepatic cytosine methylation 

Most interestingly, we found a substantial (~30%) increase in methylation at an 

intergenic CpG island ~50 kb upstream of Ppara (Figure 1.6A). This locus is 

likely an enhancer for Ppara, as it is associated with the enhancer chromatin 

mark H3K4me1 (Heintzman et al., 2007) in murine liver (F. Yue and B. Ren, 

personal communication). Ppara is downregulated in the majority (but not all) of 

offspring livers (Table S1.1, Figure 1.6B), and the overall gene expression profile 

in our offspring livers significantly matches the gene expression changes 

observed in Ppara−/− knockout mice (Figure 1.2), suggesting that epigenetic 

regulation of this single locus could drive a substantial fraction of the observed 

gene expression changes in offspring. Indeed, variance of Ppara mRNA levels 

alone can be used to explain ~13.7% of the variance in the entire gene 

expression dataset (although this of course does not determine causality). 

Effects of paternal diet on methylation of a putative Ppara enhancer 

We therefore assayed the methylation status of this locus by bisulfite sequencing 

in an additional 17 offspring livers (8 control and 9 low protein), finding average 

differences of up to 8% methylation between low protein and control livers at 

several CpGs in this locus (Figure 1.6C). Importantly, these pooled data 

underestimate the potential role of this locus in reprogramming as they include 

animals  exhibiting  a  range  of  changes  in  Ppara  gene expression – individual 



63

 
 
 
 
 
 



64

Figure 1.6  
Effects of Paternal Diet on Methylation of a Putative Ppara Enhancer 
(A) Differential methylation of a putative Ppara enhancer. Top panel shows a 
schematic of chromosome 15: 85,360,000–85,640,000. Zoomed in region 
represents chr15: 85,514,715-85,514,920. RRBS data for one control and one 
low-protein offspring pair are shown below, with assayed CpGs represented as 
boxes colored to indicate % of clones methylated. Numbers to the left indicate % 
methylation, with number of sequence reads covering the CpG in parentheses. 
(B) Ppara is downregulated in most low-protein offspring livers. Box plot shows 
mean, quartiles, and highest and lowest values from Table S1.1. 
(C) Putative enhancer methylation correlates with Ppara downregulation. DNA 
from eight control and nine low-protein pairs of offspring livers was bisulfite 
treated, and at least 13 clones were analyzed for each animal. Percent 
methylation at each of the 12 CpGs in this region plotted on the y axis; data are 
shown as mean ± standard error of the mean (SEM). 
(D) Individual bisulfite clones are shown for three control and three low-protein 
offspring. White circles indicate unmethylated CpGs, black circles indicate 
methylated CpGs. Microarray data for change in Ppara RNA levels between the 
paired animals are shown to the left, in log2. Values under each bisulfite 
grouping indicate overall % methylation, with number of clones analyzed in 
parentheses. 
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animal pairs with large differences in Ppara mRNA levels exhibit differences of 

up to 30% at various cytosines across this locus. Figure 1.6D shows individual 

bisulfite clones for three pairs of animals with varying extents of Ppara 

downregulation (not all animals used for methylation analysis were analyzed by 

microarray). Taken together, these results identify a differentially methylated 

locus that is a strong candidate to be one of the upstream controllers of the 

hepatic gene expression response. 

Cytosine methylation, RNA, and chromatin in sperm 

The link between paternal diet and offspring methylation patterns lead us to 

consider the hypothesis that paternal diet affects cytosine methylation patterns in 

sperm. We therefore isolated highly pure (>99%) sperm from the caudal 

epididymis of males consuming control or low protein diet. We assayed the 

Ppara enhancer for methylation by bisulfite sequencing, but found no significant 

changes between males consuming control or low protein diet (Figure S1.4B). 

These results indicate either that cytosine methylation in sperm is not the 

relevant paternally-transmitted dietary information at this locus (but changes at 

some point during development – (Blewitt et al., 2006)), or that we captured 

animals whose offspring would not manifest significant changes in expression of 

the associated genes – as seen in Figures 1.1B or or 1.6B, Ppara 

downregulation is variably penetrant in low protein offspring. 
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To globally investigate effects of paternal diet on sperm cytosine methylation, we 

isolated sperm from four males – two consuming control diet, one consuming low 

protein diet, and one subjected to a caloric restriction regimen. We then surveyed 

cytosine methylation patterns across the entire genome via MeDIP-Seq 

(immunoprecipitation using antibodies against 5me-C followed by deep 

sequencing (Jacinto et al., 2008; Weber et al., 2005)) (Figures 1.7A, S1.5A, 

S1.6). Notably, global cytosine methylation profiles were highly correlated 

between any pair of samples, indicating that the sperm “epigenome” is largely 

unresponsive to these differences in diet (Figures 1.7B–D, S1.5B–E). Indeed, 

littermates on different diets (Figures 1.7B, C) were better correlated for promoter 

methylation than were the pair of control animals from different litters (Figure 

1.7D). While these results do not rule out cytosine methylation in sperm as the 

relevant carrier of epigenetic information about paternal diet, the high correlation 

between samples, coupled with the absence of cytosine methylation changes at 

the Ppara enhancer in sperm, lead us to consider alternative epigenetic 

information carriers including RNA (Rassoulzadegan et al., 2006; Wagner et al., 

2008) and chromatin (Arpanahi et al., 2009; Brykczynska et al., 2010; Hammoud 

et al., 2009; Ooi and Henikoff, 2007). 

Modest effects of diet on the sperm epigenome 

We analyzed RNA levels for three pairs of males and for two matched epididymis 

samples by Affymetrix microarray (Figures S1.6, S1.7A). Curiously, low protein 
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Figure 1.7  
Modest Effects of Diet on the Sperm Epigenome 
(A) MeDIP sequencing data are shown for two liver samples (top two tracks) and 
four sperm samples (bottom four) at a maternally methylated region (Gnas, left) 
and a paternally methylated region (Rasgrf1, right). 
(B) Comparison of control and low-protein methylation. For each promoter, 
methylation levels were averaged for 8 kb surrounding the TSS, and values are 
scatterplotted for control sperm (x axis) versus low-protein sperm (y axis). x and 
y axes are plotted on logarithmic scales. 
(C) As in (B), but for control versus caloric restriction. 
(D) As in (B), but for the pair of control samples. 
Similar results for (B)–(D) are found when focusing on the 1 kb surrounding the 
TSS (not shown). See Figure S1.7 for analyses of consistent RNA and chromatin 
differences between low-protein and control sperm. 
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Figure S1.5  
Modest Effects of Diet on the Sperm Epigenome, Related to Figure 1.7 
(A) MeDIP data identify expected tissue-specific methylation patterns. Scatterplot 
of average methylation for 8 kb surrounding the TSS for ∼22,000 annotated 
genes—average methylation in four sperm samples is shown on x axis, average 
methylation in two liver samples is shown on y axis (axes are on a log scale). 
Genes exhibiting high methylation in liver but not sperm include a number of 
maternal differentially methylated regions, and overall are enriched for genesets 
expressed at high levels in sperm (with GO annotations such as 
spermatogenesis). Conversely, genes exhibiting relatively high promoter 
methylation in sperm include a wide variety of developmental regulators (with GO 
annotations such as organ development), and many genes highly-expressed in 
the liver (with GO annotations such as lipid metabolic process). 
(B) Sperm cytosine methylation is globally similar across the genome under three 
distinct dietary regimes. Methylation data was mapped to the mouse genome, 
and data for 22,000 named genes is aligned by transcription start site (red 
arrow). For all four samples, genes are ordered by the extent of methylation 
across the 1 kb surrounding the TSS in the leftmost control animal. 

(C) As in (B), but for 6 kb surrounding ∼5000 nongenic CpG islands. All data are 
sorted by the extent of methylation in the central 1 kb for the 87.1 control sample. 
(D and E) Scatterplots of average MeDIP-seq signal over the central 1 kb of 
nongenic CpG islands for the indicated pairs of samples. 
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Figure S1.6  
Characterization of Sperm Preparations, Related to Figure 1.7 
(A) DAPI-stained images of a typical control sperm preparation. Ten fields are 
shown, with 100% of nuclei showing characteristic murine sperm morphology. All 
nuclei shown also strained positively with anti-Sycp3 (not shown). 
(B) q-RT-PCR of sperm RNA samples show high levels of sperm-enriched genes 
such as Prm1, Prm2, Smcp, and Odf1, and low levels of epididymis-enriched 
genes such as Actb and Myh11 (left panel shows sperm RNA samples, right 
panel shows epididymis RNA samples). Different bars within each set represent 
independent sperm samples. 
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Figure S1.7  
Effects of Diet on Sperm RNA Content and Chromatin, Related to Figure 1.7 
(A) Sperm RNA populations exhibit expected enrichments. Histogram of average 
Affymetrix microarray probe intensities for all six sperm samples is shown, with 
abundant RNAs in sperm exhibiting expected GO enrichments. 
(B) Sperm from animals consuming low-protein or caloric restriction diets exhibit 
relative depletion of epididymis-enriched genes, relative to sperm from animals 
on control diet. Data from 8 Affymetrix microarray analyses are shown. Log-
transformed abundance data for each gene was row-normalized (i.e., the 
average value of each row is zero), and genes with fold change > 1.8 in at least 
two samples are shown. Thus, the upper half of the cluster shows genes that are 
relatively abundant in epididymis (red), relatively depleted in low-protein and 
caloric restriction sperm (green), and of intermediate abundance in control sperm 
(black/light green). 
(C) Low-protein sperm are more “sperm-like” than are control sperm. Scatterplot 
of difference in RNA signal between sperm and epididymis (x axis) versus 
difference between sperm from one of the pairs of low-protein versus control 
animals (y axis). Red line shows LOWESS fit between sperm/epididymis and 
low-protein/control, and red and green dots show genes exhibiting a “corrected” 
low-protein/control enrichment above or below 1.8-fold. 
(D) Cluster of corrected sperm RNA changes between two low-protein/control 
pairs and one caloric restriction/control pair. Genes depleted in low-protein sperm 
are enriched for GO annotations including lipid metabolism, regulation of 
transcription, and organ development. 
(E) Validation of microarray results. q-RT-PCR was performed for the indicated 
genes, normalized against Gapdh, and low-protein/control ratios are shown (± 
SEM). Microarray values shown are LOWESS-corrected for possible epididymis 
contamination as in (C). 
(F) Individual low-protein/control ratios for nine animal pairs (most genes only 
have data for seven or eight of the nine pairs due to failed PCRs) used for (E). 
Note that there is significant variability in RNA changes, with the only consistent 
change being increased Dnahc3 levels in an additional 7/8 low-protein animals 
examined. Smarcd3, Bglap, and Ppard trend in the same direction as the 
microarray data, but variability results in insignificant (p > 0.05 by t test) changes. 
(G) H3K27me3 decreases over the Maoa and Eftud1 promoters in low-protein 
sperm. Data are shown as mean ± standard deviation. Q-PCR was carried out 
with primers to the indicated promoters, and normalized to Kctd16. Data for Mid1 
show that choice of normalization control is not the major driver for this result. 
(H) H3 levels do not change significantly at Maoa and Eftud1 promoters. As in 
(G), but with anti-pan H3 ChIP. 
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and caloric restriction samples consistently exhibited more “sperm-like” RNA 

populations (as opposed to epididymis RNA) than did control samples (Figure 

S1.7B–C). Whether this reflects systematic contamination issues or biological 

differences in sperm maturity or quality is presently unknown, although we note 

that we confirmed consistently-higher levels of the sperm-specific Dnahc3 by q-

RT-PCR in an additional 7/8 low protein sperm samples (Figure S1.7E). We note 

that control sperm samples were routinely >99.5% sperm as assayed by 

microscopy (Figure S1.6), but nonetheless we cannot completely rule out 

systematic contamination issues. With this possibility in mind, we identified genes 

were differentially-packaged in control vs. low protein sperm by correcting for 

potential epididymal contamination (Figures S1.7B–F). Interestingly, we observed 

downregulation of a number of transcription factors and chromatin regulators 

such as Smarcd3 and Pparδ, although q-RT-PCR validation was not statistically 

significant due to high inter-animal variability (Figure S1.7F). 

Although the downregulation of Smarcd3 was not significantly confirmed by q-

RT-PCR, this could reflect the variable penetrance of paternal diet on offspring 

described above. Given that heterozygous mutants in chromatin remodelers can 

affect offspring phenotype even when the mutant allele segregates away (Chong 

et al., 2007), we used an initial genome-wide mapping (not shown) of overall 

histone retention (pan-H3 ChIP) abundance and the key epigenetic histone 

modification H3K27me3 in sperm to identify targets for single locus analysis. We 
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observed a consistent decrease in H3K27me3 in low protein sperm at the 

promoter of Maoa (Monoamine oxidase) in 5/5 pairs of sperm samples, and a 

decrease in H3K27me3 at Eftud1 in 4/5 paired samples (Figure S1.7G–H). 

These results demonstrate proof of principle that the sperm epigenome is 

regulated by dietary conditions, although the biological implications of these 

observations are not yet clear. 

 

Discussion 

Taken together, our results demonstrate that paternal diet affects lipid- and 

proliferation-related gene expression in the offspring of inbred mice, and that 

epigenetic information carriers in sperm respond to environmental conditions. 

These results have potential implications for human health, and raise numerous 

mechanistic questions, discussed below. 

Paternal diet affects metabolism in offspring 

Our results clearly identify a set of physiological pathways whose expression is 

sensitive to paternal diet. Specifically, we find that hepatic expression of genes 

involved in proliferation and cholesterol biosynthesis can be regulated by 

paternal diet, and these changes are reflected in levels of several lipid 

metabolites. Combined with data showing that offspring glucose levels are 
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affected by paternal fasting in mice (Anderson et al., 2006), these results 

demonstrate that paternal diet has wide-ranging effects on the metabolism of 

offspring in rodents. Interestingly, a very recent study from Ng et al (Ng et al., 

2010) reported that chronic exposure of male rats to high fat diet was associated 

with pancreatic beta cell dysfunction in female offspring. It will naturally be of 

great interest in the near future to compare the transgenerational effects of high 

fat and low protein diets, although one clear difference is that in our system a 

transgenerational effect is observed in both sex offspring. 

Whether the effects we observe on cholesterol metabolism prove advantageous 

in low protein conditions remains to be tested, but it will be important to 

investigate ecologically-relevant diets in order to speculate more firmly about 

adaptive significance of any observed transgenerational effects. For example, at 

present we cannot say with certainty what aspect of the low protein regimen is 

sensed by males – it is possible that offspring metabolism is affected by overall 

protein consumption, or high sucrose, or fat/protein ratio, or even levels of 

micronutrients, as our males consumed diets ad libitum and thus might have 

overconsumed the low protein diet. 

The reprogrammed state: liver 

What is the mechanistic basis for the reprogrammed gene expression state? 

Genome-scale analyses of cytosine methylation in offspring livers identified 



76

several lipid-related genes that were differentially-methylated depending on 

paternal diet. Most notably, a putative enhancer for a major lipid regulator, Ppara, 

exhibited generally higher methylation in low protein offspring than in control 

offspring. Methylation at this locus was variable between animals, consistent with 

the partial penetrance of Ppara downregulation in our dataset. The overall gene 

expression profile observed in low protein offspring significantly overlaps gene 

expression changes observed in Ppara−/− mice (Rakhshandehroo et al., 2007), 

leading to the hypothesis that epigenetic Ppara downregulation via enhancer 

methylation is an upstream event that affects an entire downstream regulon in 

reprogrammed animals. Note that while the hepatic downregulation of Ppara 

suggests a liver-autonomous epigenetic change, we cannot rule out that hepatic 

gene expression changes result from global physiological changes resulting from 

downregulation of Ppara in some other tissue. 

Interestingly, Ppara expression in liver is also regulated by maternal diet – 

offspring of female mice consuming a high fat diet exhibit altered hepatic Ppara 

expression, with increased expression at birth but decreased expression at 

weaning (Yamaguchi et al., 2010). Together with our data, these results suggest 

that Ppara is a key nexus that integrates ancestral dietary information to control 

offspring metabolism. 
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Mechanistic basis for transgenerational paternal effects 

Paternal diet could potentially affect offspring phenotype via a number of different 

mechanisms. While we focus here on epigenetic inheritance systems, it is 

important to note that parental information can also be passed to offspring via 

social or cultural inheritance systems (Avital and Jablonka, 2000; Champagne 

and Meaney, 2001; Jablonka and Lamb, 1995; Meaney et al., 2007; Weaver et 

al., 2004). While such maternally-provided social inheritance is unlikely in our 

paternal effect system – males were typically only in females’ cages for one day 

– it is known that in some animals females can judge mate quality and allocate 

resources accordingly (Pryke and Griffith, 2009), and that seminal fluid can 

influence female postcopulatory behavior in Drosophila (Fricke et al., 2008; 

Wolfner, 2002). These and other plausible transgenerational information carriers 

cannot be excluded at present – ongoing artificial insemination and in vitro 

fertilization experiments will determine whether sperm carry the relevant 

metabolic information in our system. 

Here we focused on the hypothesis that paternal dietary information does indeed 

reside in sperm epigenetic information carriers. First, a subset of cytosine 

methylation patterns in sperm are known to be heritable (Chong et al., 2007; 

Cropley et al., 2006; Rakyan et al., 2003; Waterland and Jirtle, 2003b). Second, 

several reports suggest that RNA molecules packaged in sperm can affect 

offspring phenotype (Rassoulzadegan et al., 2006; Wagner et al., 2008). Third, 
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chromatin structure has been proposed to carry epigenetic information, as sperm 

are largely devoid of histone proteins but retain them at a subset of 

developmentally-important loci (Arpanahi et al., 2009; Brykczynska et al., 2010; 

Chong et al., 2007; Hammoud et al., 2009). Finally, it is conceivable that 

additional or novel epigenetic regulators (such as prions) are packaged into 

sperm, or that sperm quality is affected by diet, or that genetic changes are 

directed by the environment (although it is important to emphasize that inbred 

mouse strains were used in this study). 

Here, we report whole genome characterization of cytosine methylation patterns 

and RNA content in sperm obtained from mice maintained on control, low 

protein, and caloric restriction diets. Globally, cytosine methylation patterns are 

similar in all three conditions, indicating that the sperm epigenome is largely 

unaffected by these diets. Nonetheless, changes in relatively few loci can have 

profound effects in the developing animal, and our data do not rule out the 

possibility of inheritance through sperm cytosine methylation, especially given 

that MeDIP is unlikely to identify ~10–20% differences in methylation at a small 

number of cytosines. Importantly, the putative enhancer of Ppara (Figure S1.4) 

was not differentially methylated in sperm. It will therefore be of great interest in 

the future to determine when during development the differential methylation 

observed in liver is established, and to identify the upstream events leading to 

differential methylation (Blewitt et al., 2006). 
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Interestingly, we did identify effects of diet on RNA content and chromatin 

packaging of sperm. For example, sperm from control animals were consistently 

depleted of the highly sperm-specific Dnahc3 gene (Figure S1.7) relative to 

sperm from low protein animals. We cannot presently determine whether this 

represents reproducible differences in contamination, differences in sperm 

maturity, or something else. Finally, based on our observation that low protein 

sperm tended to be depleted of genes encoding a number of chromatin 

regulators, we have begun to search for dietary effects on sperm chromatin 

structure. Interestingly we found that the Maoa promoter was consistently 

depleted of the key Polycomb-related chromatin mark H3K27me3 (Figure 

S1.7G), demonstrating as a proof of concept that chromatin packaging of the 

sperm genome is responsive to the environment, and motivating genome-wide 

investigation into dietary effects on sperm chromatin. Given the common 

behavorial changes observed in other transgenerational inheritance paradigms, 

the possibility that H3K27me3 at Maoa affects offspring behavior (potentially via 

altered offspring responses to maternal stress – (Harris and Seckl, 2011)) will be 

of great future interest. 

Relevance to human disease 

These results are likely to be relevant for human disease, because not only is 

maternal starvation in humans correlated with obesity and diabetes in children 

(Lumey et al., 2007), but, remarkably, limited food in paternal grandfathers has 
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also been associated with changed risk of diabetes and cardiovascular disease 

in grandchildren (Kaati et al., 2002; Pembrey et al., 2006). Interestingly, in these 

studies ancestral access to food and disease risk was not associated with 

disease risk in the next generation, but was only associated with F2 disease risk. 

However, it is important to note that the transgenerational effects of food 

availability for paternal grandfathers depend on the exact period during childhood 

of exposure to rich or poor diets (Pembrey et al., 2006), whereas our 

experimental protocol involved continuous low protein diet from weaning until 

mating. Thus, future studies are required to define when and how paternal 

exposure to a low protein diet affects epigenetic programming of offspring 

metabolism. 

Together, these results suggest rethinking basic practices in epidemiological 

studies of complex diseases such as diabetes, heart disease, or alcoholism. We 

believe that future environmental exposure histories will need to include parental 

exposure histories as well as the exposure histories of the patient, to disentangle 

induced epigenetic effects from the currently-sought genetic and environmental 

factors underlying complex diseases. Our observations provide an inbred 

mammalian model for transgenerational reprogramming of metabolic phenotype 

that will enable dissection of the exposure history necessary for reprogramming, 

genetic analysis of the machinery involved in reprogramming, and suggest a 

number of specific pathways likely to be the direct targets of epigenetic 

reprogramming. 
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Methods 

Mouse husbandry 

All animal care and use procedures were in accordance with guidelines of the 

Institutional Animal Care and Use Committee. C57/Bl6 mice were obtained from 

Jackson Labs and from Charles River Laboratories (for different iterations of this 

experiment). All experiments were performed with mice, which had been raised 

for at least two generations on control diet to attempt to minimize any 

transgenerational effects of transitioning to control diet from chow provided by 

animal provider. For all comparisons shown, male mice were weaned from 

mothers at 21 days of age, and sibling males were put into cages with low protein 

or control diet (moistened with water to allow mice to break the hard pellets). 

Females were weaned to control diet. Males were raised on diet until 9–12 

weeks of age, at which point they were placed with females for one or two days. 

Control and low protein mating cages were always interspersed with one 

another. Note we always used virgin females to avoid confounding effects of the 

female's litter number, although this results in many lost litters as first litters were 

often consumed by their mothers. After one to two days, males were removed, 

and pregnant females were left alone with control diet and a shepherd shack until 

their litters were three weeks of age. At three weeks of age offspring were 

sacrificed by isoflurane and cervical dislocation, and median lobe of liver was 

rapidly dissected out and flash-frozen in liquid N2. 
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Diets 

Diets were obtained from Bio-serv, and compositions are listed in Table S1.7. For 

most experiments only low protein diet was sterilized per standard protocol at 

Bio-serv. For later experiments, both diets were sterilized. 

Table S1.7A 
Murine Diet Composition 

Ingredient Control Low Protein 

Cornstarch 39.75% (w/w) 39.75% 

Casein 20% 10.9% 

Maltodextrin 13.2% 13.2% 

Sucrose 10% 19.1% 

Soybean Oil 7% 7% 

Cellulose 5% 5% 

Mineral Mix 3.5% 3.5% 

Vitamin Mix 1% 1% 

L-Cysteine 0.3% 0.3% 

Choline Bitartrate 0.25% 0.25% 

Tert-butyl hydroquinone 0.0014% 0.0014% 
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RNA extraction 

Liver samples were ground with a liquid N2-cooled mortar and pestle. Total RNA 

for microarray analysis was extracted from liver powder using Trizol. 

Microarray hybridization 

30 µg of total RNA was labeled for 2 hours at 42 C with Superscript II reverse 

transcriptase using 4 µg of random hexamer and 4 µg of oligo dT. Cy3 and Cy5-

labeled samples were hybridized to home-printed “MEEBO” microarrays. 

MEEBO information is at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6352. Microarrays were 

hybridized at 65 C for 16 hours, washed as previously described (Diehn et al., 

2002), and scanned using Axon Genepix 4000B microarray scanner. 

Data availability 

All microarray data and deep sequencing data used in this study have been 

deposited to GEO (http://www.ncbi.nlm.nih.gov/projects/geo/), accession # 

GSE25899. Tables are available at 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039484/?report=classic#SD2 
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Comparison to public murine liver microarray data 

We built a compendium of public microarray data consisting of 120 gene-

expression profiles in the murine liver under various conditions and genetic 

perturbations. Signatures of differentially expressed genes were determined 

using a combination of two one-tailed t-test, with FDR correction of 0.1. Profiles 

significantly enriched with up or down regulated genes in low protein offspring 

were defined by a Hyper-Geometric p-value <= 0.05 after correction for multiple 

hypotheses (p<0.00025). 

Lipid measurements 

~50–100 mg of ground liver tissue from six animals (three paired sets) was sent 

to Lipomics for “Truemass” mass spectrometry characterization of 450 lipid levels 

(Table S4). Note that samples 73-1 and 76-1 come from PBS-perfused livers, 

while the other four samples were dissected without perfusion. 

Small RNA cloning and sequencing 

Total RNA was isolated from ground liver tissue using mirVana (Ambion). 18–35 

nt small RNA was purified from 100 µg of total RNA, ligated to adaptors, 

amplified, gel-purified, and sequenced using a Solexa Genome Analyzer 

(Illumina) (Ghildiyal et al., 2008). 



85

RRBS 

Reduced representation bisulfite sequencing was carried out as previously 

described (Meissner et al., 2008). Data are available at http://thrifty-

epigenome.computational-epigenetics.org 

Sperm isolation 

Caudal epididymis was dissected from sacrificed animals, punctured, and 

incubated for 30 minutes in M2 media (Sigma) at 37 C. Supernatant was 

removed, pelleted (3,000g for 5 minutes), and washed 2× with PBS, 1× in water, 

and incubated in Somatic Cell Lysis buffer. Sperm preparations were only used 

that were >99.5% pure as assessed by microscopy, and q-RT-PCR was also 

used to reject any sperm samples based on the ratio between epididymis-specific 

genes Actb or Myh11 compared to sperm-specific genes Smcp or Odf1 (Figure 

S1.6). 

MeDIP 

Methyl-DNA immunoprecipitation was carried out essentially as described 

(Weber et al., 2005; Weber et al., 2007). 4 µg of purified genomic DNA was 

fragmented to a mean size of 300bp using a Covaris machine, denatured, and 

immunoprecipitated with 5mC antibody (Eurogentec). ChIP material was Solexa 

sequenced, with ~21 million uniquely mappable reads per library. 
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Primers  

gene  Fw primer Rev primer Assay: 

Acsbg2 TGCTGAGCGATTCAGTGCTT TGGCTGCCTTTCGACACATT q-RT-PCR 

Actb ACTATTGGCAACGAGCGGTT AGCACTGTGTTGGCATAGAGGT q-RT-PCR 

Bglap  ACCCTGCTTGTGACGAGCTATC AGTTTGGCTTTAGGGCAGCACA q-RT-PCR 

Cebpb CGCACCACGACTTCCTCTC CGAGGCTCACGTAACCGTAGT q-RT-PCR 

Dnahc3 ACTTGGCAGGCTTGCAGAAACT TCGCTGTATCCTCAGAGGTTTGGA q-RT-PCR 

Elovl5 TTCGATGCGTCACTCAGTACCT TGGTCCCAGCCATACAATGAGT q-RT-PCR 

Fads1 TCTTTGGCACCTCGACATGGAA AAGCAGTTAGGCTTGGCATGGT q-RT-PCR 

Gapdhs TTGGCTGGCATCCTTGCTTACA AGGGCAATTCCAGCCTTAGCAT q-RT-PCR 

Gmcl1l AGTGGTTGACTTTGCTGCGA TCGTCCAACTGACCACTTCCAA q-RT-PCR 

Hmgcs1 TCTTCAATGCCGTGAACTGGGT TCCACCTGTAGGTCTGGCATTT q-RT-PCR 

Igfbp1 AACGCCATCAGCACCTATAGCA TGTTGGGCTGCAGCTAATCTCT q-RT-PCR 

Insig1 GCCAGCGTTATGCGCTGTA GGAACGATCAAATGTCCACCAC q-RT-PCR 

Kpna2 TGCAGGAGCACTTGCAGTCTTT AGGCCGTGATTCACAACTTGCT q-RT-PCR 

Lpin1 AACCTGGAAATGCTCTGGCTGT ACTCGCTGTGAATGGCCTGAAA q-RT-PCR 

Mas1 TATTTGGCTACAACACGGGCCT AGACGAATGCTGACTGGTGCTT q-RT-PCR 

Mdh1b ACTTCCAACATGACGACGGAGT TGGCAATCCAGACCTGCAAA q-RT-PCR 

Myh11 TCCTTCCTGGGCATTCTGGATA TGCAGCTTCTCGTTGGTGTAGT q-RT-PCR 

Odf1 ATCGCTCCGCAGTTTAGAGAGA CAGGTTCAAAGCCGCACACATT q-RT-PCR 

Pfkp TTTCAACCAGTGGCAGAGCTGA ATCTTCATGATGGGCCGCAGTT q-RT-PCR 

Ppard AGACAAACCCACGGTAAAGGCAGT TCCTGTGGCTGTTCCATGACTGA q-RT-PCR 

Prm1 ACCTTTCTAGGATGCTGCCGT TGTGGCGAGATGCTCTTGAAGT q-RT-PCR 

Prm2 CTACATAGGATCCACAAGAGGCGT GCTTAGTGATGGTGCCTCCTACAT q-RT-PCR 

Prm3 TGGCCTGTGTGAGTCAAGACAA TTCACCGGGATTTGCTCCTCTT q-RT-PCR 

Scd1 AAGTGAGGCGAGCAACTGACTA ACCGTCTTCACCTTCTCTCGTT q-RT-PCR 

Slx AGGCCAGCATTTGGCAAACA AAACGCTGCCATTCCACTGAG q-RT-PCR 

Sly TATCGCCTCAAGCAGAAGCA TGCCTACTTCATGTCCCATGTC q-RT-PCR 

Smarcd3 ACTCTGATGGCAGCATTGCCT TGGTTGTCTGGGCCATAAAGGT q-RT-PCR 

Smcp AGAGCCCAAGGAAGAACTGTGT ACAGCAAGGTGGTTTCTGTGGA q-RT-PCR 

Sqle TCCTTGCATCAGCTCCGAAA GAAAGCAACCCAACAGGACCG q-RT-PCR 

Srm TGGTCCAGTGCGAGATTGATGA TCATGAACTCAAAGCCATCGCC q-RT-PCR 

Sucla2 ACATTGAAGATGTGGCTGCCGA TTCTGTGCAAGTGTCACGGCTT q-RT-PCR 

Sycp3 AAGGGCCAGGTTTCCTCAGAT ATCAACCAAAGGTGGCTTCCCA q-RT-PCR 

Vcam1 CTTGGGAGCCTCAACGGTAC CCACGTGGATACTTCGTTCC q-RT-PCR 

Igf2 TGAAGAGACCCTGAGAGGGAGTTT TGTCATTCGAGCAGGTGCCTTACT q-PCR 

Igf2r AGAGGATTCCGCAAAGGAAGGGTT ATCTTCACCCTAGCGCTGAATCTC q-PCR 

MycN TTGACGCTCCAGGATGTTGTGGTT AAGATCAAGAGCGAGGCTTCTCCA q-PCR 

Grb10 TCGTTTAGGAGCTAGTTCGCTGTG AACACGCGCCAACATACGTGTTAC q-PCR 

Gapdh CTCTGCTCCTCCCTGTTCC TCCCTAGACCCGTACAGTGC q-PCR 

Maoa AAGTCCCATGCAGGCAGTAGTA ATCACTGAGGCTCTGAGGGATGTT q-PCR 
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Eftud1 TGCCTTCTTCCACTTTCTCCCA ACATGTGGACAGAGAGACCCAGA q-PCR 

Kctd16 AAATTCCTAAACTGCTGGCAGGGC CACACTCTAACAGAAAGAGGAAGGC q-PCR 

Mid1 ACAGTCATCCTTCTGCCTCA GGGTGACTGTGAGTGATT q-PCR 

PPARa 
TTTAGATTGGAGGAAGTTGAAGTAGA
T CCCTACCCTAAATCCAACATATATACA Bisulfite 
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CHAPTER II 

Genetic and epigenetic variation in murine sperm  

contributes to offspring metabolism 

 

Abstract 

 

Paternal environmental conditions impact offspring metabolic phenotypes. 

Although many intergenerational inheritance paradigms exhibit altered 

metabolism, there is a paucity of mechanistic details about the carrier of this 

information. In trying to identify this carrier, we performed in vitro fertilization 

experiments that localized the information to sperm, a major step in elucidating 

the signaling cascade that informs offspring of paternal environment. 

Subsequently, we characterized dietary effects on sperm cytosine methylation by 

whole-genome bisulfite sequencing (WGBS) on pooled samples, as well as 

reduced-representation bisulfite sequencing (RRBS) on 61 additional individual 

sperm samples. These experiments revealed that “epivariation” made far greater 

contributions to shaping the sperm methylome than dietary effects. This 

epivariation was prevalent over tandem repeats and linked with copy number 

variation of ribosomal DNA (rDNA). Genetic and epigenetic variability of the 

rDNA locus in sperm correlated with offspring cholesterol metabolism, revealing 

potential contributions of epivariability to inherited phenotypic variation. These 

results demonstrate that sperm carry paternal dietary information utilizing a 
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mechanism independent of genetic variation and cytosine methylation variation, 

which also sets offspring metabolism. 

 

Introduction 

 

Examples of intergenerational epigenetic inheritance have been discovered in a 

diverse set of organisms, including plants, water fleas, worms, and mammals 

(Heard and Martienssen, 2014; Lim and Brunet, 2013; Rando, 2012). In 

numerous cases, changes to parental environments alter offspring phenotypes. 

Recently, and with relevance to human health, multiple groups discovered that 

paternal dietary changes in rodents influence offspring phenotypes (Anderson et 

al., 2006; Carone et al., 2010; Jimenez-Chillaron et al., 2009; Ng et al., 2010). 

These dietary-induced transgenerational phenotypes are metabolic in nature, 

with offspring lipid and cholesterol changes, insulin resistance, and 

cardiovascular deficiencies being induced by paternal diet. Additionally, 

epidemiological studies in human populations conclude that the grandparent’s 

environmental conditions affect their grandchildren’s likelihood to develop 

metabolic diseases (Pembrey et al., 2006). Therefore, parental exposures 

contribute to variations in offspring phenotypes, including ones with medical 

implications. 

 



91

Previously, we discovered that fathers fed low protein diets sired offspring with 

altered hepatic metabolism (Carone et al., 2010). The expression of cholesterol 

and lipid metabolism genes increased in livers of offspring from low protein 

fathers. These offspring also had altered levels of cholesterol metabolites, uniting 

gene expression and metabolite changes. It’s been known for many years that 

cholesterol dysfunction is associated with cardiovascular disease and diabetes 

(O'Donnell and Elosua, 2008), and another published report on mice recently 

found that older offspring from low protein fathers develop cardiovascular 

disease and diabetes (Watkins and Sinclair, 2014). Therefore, discovering the 

mechanisms responsible for transmitting this epigenetic information is crucial for 

human health and disease. 

 

Therefore, we have undertaken a research program aimed at discovering the 

mechanisms behind the inheritance of paternal dietary information. This program 

includes the establishment of an in vitro fertilization (IVF) experimental paradigm 

to uncover the carrier of paternal dietary information. In addition to testing for the 

carrier of paternal dietary information, this experimental paradigm allows us to 

test direct relationships between changes in sperm, and changes in offspring 

phenotypes. Another aspect of this research program includes the 

characterization of transmissible epigenetic information, for which we have 

extensively characterized the sperm DNA methylome. This research increases 

our knowledge of the inheritance of environmentally induced phenotypes.  
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Results 

 
The Carrier of Paternal Dietary Information 

Even with the increasing number of environmentally induced transgenerational 

phenomena, a paucity of mechanistic details exist for the transmission of this 

information. Possible carriers of environmentally-induced information in males 

include sperm, seminal fluid, and other cryptic messengers (Rando, 2012). 

Determining the carrier of this information allows us to focus downstream 

investigations on changes inherent to that carrier. We performed murine IVF 

experiments to test the hypothesis that sperm carries dietary information to 

offspring (Figure S2.1). Since early embryo culture influences later phenotypes 

(Feuer et al., 2014), we controlled for potential biases caused by parental age, 

media effects, and mechanical manipulation to minimize variation from these 

confounding factors. In addition to our previous Low Protein (LP; 10% instead of 

19% protein) treatment, we expanded our dietary repertoire to include High Fat 

(HF; 60% instead of 20% fat calories) and Caloric Restriction (CR; 60% of daily 

ad libitum consumption) interventions as well. Male mice were placed on one of 

the three interventions at weaning, while siblings were given control diet. These 

males were maintained on these diets until use in IVF experiments. After 

reaching  sexual  maturity,  sperm  from  matched  males  was  used  to  fertilize  
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Figure S2.1 
In vitro Fertilization (IVF) Paradigm 
Sperm isolated from males is used to fertilize oocytes from superovulated 
females. Embryos develop in vitro, and are implanted into pseudopregnant 
females. Females give birth to the offspring, and the offspring are analyzed at 
weaning for gene expression or epigenomic differences. The epigenome of 
sperm is also analyzed. 
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oocytes derived from a single litter of females. We developed embryos in vitro 

until the 2-cell stage, at which point we transferred them to recipient females. 

Offspring derived from oviduct transfer of IVF embryos were analyzed for 

transcriptional changes at weaning, similar to our original investigations (Carone 

et al., 2010). 

 

We analyzed hepatic gene expression from our IVF-derived offspring to 

determine if they have altered regulation of cholesterol and lipid biosynthetic 

pathways. Utilizing Squalene Epoxidase (Sqle) as a representative gene for the 

cholesterol pathway, as it controls flux in cholesterol synthesis (Gill et al., 2011), 

we found IVF-derived Low Protein offspring had increased expression of Sqle 

when compared to Control offspring in a large cohort of animals (Figure 2.1A). 

Performing microarray analysis of a subset of samples, we found that the 

cholesterol biosynthetic pathway was coherently increased in Low Protein 

derived offspring livers (Figure 2.1B). These results clearly indicate that sperm 

carries the epigenetic information induced by paternal Low Protein diet. However, 

the possibility remains that there may be additional carriers of epigenetic 

information since the effect we see on Sqle is reduced in IVF offspring when 

compared with natural matings; but this may be the result of genetic background, 

as we necessarily used FVB/NJ mice in IVF experiments, while our original 

findings derived from C57BL/6 mice. 
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Figure 2.1 
IVF Recapitulates Paternal Dietary Effects 
A. qPCR analysis of offspring hepatic Sqle expression. Offspring from fathers on 
different diets are represented on the X-axis: C (Control), LP (Low Protein), HF 
(High Fat), and CR (Caloric Restriction). Each point represents the expression of 
Sqle from an individual offspring liver. Quartiles represented by thin black lines, 
while median is represented by thick black line. Expression was normalized to β-
Actin. Nonparametric relative contrast effects shows significant differences 
(p<0.05) for C:LP (p=0.03), C:HF (p=0.006), and HF:LP (4x10-8) comparisons. 
Similar significance values were found with T-Tests. 
B. Affymetrix microarray analysis of IVF offspring livers. Rightmost column 
represents average gene expression changes from Carone et al (Carone et al., 
2010). IVF average is the average of the three leftmost columns. Zoomed in 
region represents node containing several genes in the cholesterol biosynthesis 
pathway. 
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The additional paternal dietary interventions also caused metabolic gene 

expression changes in offspring (Figure 2.1A). Most interestingly, the direction 

and magnitude of the Sqle change mirrored the form and intensity of the dietary 

manipulation. Although the dietary interventions are not directly comparable to 

one another, the resulting differences in the father’s weight point to High Fat diet 

representing a major increase in energy intake, while Caloric Restriction 

significantly decreases energy abundance (not shown). Low Protein diet causes 

a nominal decrease in paternal body weight. High Fat diet had the opposite effect 

on offspring Sqle expression as compared with changes caused by Low Protein 

diet, while Caloric Restriction further increased the average Sqle expression 

when compared to Low Protein diet (Figure 2.1A). These results demonstrate 

that fathers are likely sending information about energy abundance to offspring, 

but should be directly tested in the future (Solon-Biet et al., 2014).  

 

Sperm DNA Methylomes 

Since sperm carry epigenetic information about a father’s diet, we could narrow 

down the mechanisms utilized to transfer this information. So, we set out to 

characterize the epigenomic changes in sperm induced by diet. For this purpose, 

we focused on sperm cytosine methylation, since relevant research has 

implicated it in control of epigenetic phenomena, such as imprinting and 

epialleles (Chong et al., 2007; Li et al., 1993). We characterized the sperm 

methylome by RRBS and WGBS, as complementary methods to understand the 
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population structures and dietary influences on sperm (Gifford et al., 2013; 

Meissner et al., 2008). We used RRBS to profile a subset of the genome at base 

pair resolution in numerous samples, while WGBS complemented this approach 

by characterizing the entire methylome for matched pools of sperm samples.  

 

Previously, we had observed large amounts of variation between control animal 

methylomes using low resolution MeDIP-Seq (Carone et al., 2010), which we 

wanted to follow up on to determine the factors shaping sperm methylomes. We 

analyzed the sperm methylomes of 61 mice on various diets using RRBS to gain 

a better understanding of the population structures of sperm methylation. RRBS 

characterizes the methylome at base pair resolution for ~4% of CpGs across the 

mouse genome, with an enrichment of CpGs located in GC-rich regulatory 

elements. The RRBS dataset included sperm samples primarily from Control, 

Low Protein, and High Fat diets (Table S2.1). CpGs captured in our RRBS 

dataset had a bimodal distribution of cytosine methylation (Figure S2.2A) that 

was strongly anti-correlated with CpG density (Figure S2.2B,C). The relationship 

between CpG density and cytosine methylation was skewed at repetitive 

elements, as even CpG-rich retroelements remained highly methylated (Figure 

S2.2B,D). Other groups have reported these hallmarks of sperm methylomes 

(Molaro et al., 2011), signifying that we have generated high quality data for 

making demographic inferences.  

 



99

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



100

Figure S2.2 
Overview of RRBS Dataset 
A. Average methylation levels for 1,041,729 individual CpGs which were 
sequenced at least 10 times in at least one RRBS dataset. Y axis shows number 
of CpGs exhibiting a given methylation percentage, as indicated on the X axis. 
Methylation distributions are shown for all CpGs, and separately for CpGs 
located in annotated repeat elements and for non-repeat CpGs.  
B. Relationship between CpG methylation and local CpG density. CpGs were 
classified as hypomethylated (<20% methylated) or hypermethylated (>80% 
methylated), and were separated into those located in repeats and those outside 
repeats. Number of CpGs in each class is shown (Y axis) for CpGs according to 
their local CpG density (# CpGs in the surrounding 200 bp).  
C. Boxplots showing the range of methylation values for all CpGs located in 
various local CpG density regions. Red box shows median, blue bar shows 
quartiles, and whiskers show max and min.  
D. As in (C), but with CpGs located within and outside of repeat elements plotted 
separately.  
E. Methylation distributions are shown as in A. for CpGs averaged across all 
animals, or across groups of males consuming the indicated diets. Here, only 
CpGs that were sequenced at least 10 times in at least half of the RRBS 
datasets (646,957 CpGs) are shown. 
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Diet does not alter the Global Methylome 

Sperm methylomes were very similar with all pairs having a correlation coefficient 

greater than 0.90, and an average coefficient of 0.967 (Figure S2.3A). 

Hierarchical clustering of the sperm methylomes did not group them by diet, 

which indicates that diet is not the primary driving force for global changes in the 

sperm methylome (Figure 2.2A). Notably, the correlations between pairs of 

Control or Low Protein animals were identical to those among Control and Low 

Protein animals (Figure 2.2B and S2.3B). These observations indicate that 

changing diets did not have a discernable effect on the global methylomes of 

these mice. Therefore, diet plays a secondary role for influencing the relationship 

of sperm methylomes.  

 

Epivariability of the Sperm Methylome 

Strikingly, pairwise comparisons of samples revealed that sibling sperm 

methylomes were the most related in our inbred mice (Figure 2.2B). We 

previously noticed this increased similarity between siblings when performing 

MeDIP-seq (Carone et al., 2010). These results indicate that distantly related 

inbred mice contain an inherent epivariability in their sperm methylomes. Also, 

these results suggest that the shared environment of siblings prior to separation 

largely determines sperm methylomes. The period prior to separation may also 

include  the  parental   generation,   as   epiallelic  traits   controlled   by   cytosine  
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Figure S2.3 
Distributions of correlations between individual sperm samples  
A. Correlation coefficients were calculated between all pairs of RRBS datasets, 
and distribution of correlation coefficients is plotted as a histogram.  
B. As in (A), but with comparisons shown between pairs of sperm samples 
isolated from animals on Control diet, between animals on Low Protein diet, or 
between pairs of animals on Control vs. Low Protein. 
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Figure 2.2 
Epivariation among sperm methylomes  
A. Correlations between 61 individual RRBS libraries. The environmental 
conditions for each male are indicated as colored boxes. Data include animals 
subject to Control, Low Protein, High Fat, Caloric Restriction, nicotine 
(administered 200 mg/mL free base in saccharine-sweetened drinking water), 
and the matched tartaric acid only control.  
B. Cumulative distribution plots for inter-sample correlations, for the indicated 
animal pairs.  
C. Heatmap showing 748 regulatory elements (promoters, distal CpG islands, 
and CpG island shores) as rows, with all CpGs within each element averaged. 
Heatmap shows zero-centered data, grouped both by animal and by regulatory 
element. Right panel shows that the majority of epivariable elements are CpG 
island shores. 
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methylation and changes in cytosine methylation caused by endocrine disrupters 

can persist for several generations (Anway et al., 2005; Morgan et al., 1999). The 

environmental factors that guide the demographics of the samples remain 

unknown at this point, since we found no correlation between methylome 

differences and the number of littermates, time of year, etc.  These results 

demonstrate that diet-induced methylation changes take place on an 

“epivariable” methylome guided by shared histories, indicating that “epivariability” 

might accumulate over generations in a fashion similar to Arabidopsis thaliana 

(Schmitz et al., 2013). Therefore, many of the phenotypes captured in 

intergenerational experiments involving diet exist on top of an epivariable 

background - even for inbred mouse strains. 

 

We sought to limit hypotheses for the mechanistic basis of this epivariability in 

mice by uncovering shared features of epivariable regions. We calculated the 

methylation levels for individual CpGs with high confidence, and used the 3,396 

most variable CpGs to search for enriched characteristics (Figure S2.4A). We 

found an abundance of “epivariable” CpGs positioned distal to transcription start 

sites, at an average distance of ~1.5kb away from the transcription start site 

(TSS) (Figure S2.4B). Many of these distal epivariable CpGs were located in 

CpG island shores, which have been shown to harbor variably methylated CpGs 

between  cells  (Irizarry et al., 2009).  When  we  averaged methylation scores for 
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Figure S2.4  
Epivariable CpGs  
A. Heatmap of epivariation for 3,396 highly variable individual CpGs. CpGs were 
selected from non-repeat regions, and sequenced at least 10 times in 80% or 
more of sperm samples. They deviated from the mean methylation value of that 
locus by at least 20% in at least 6 individual sperm samples. Data for each CpG 
are normalized to mean methylation across all animals.  
B. Distance from epivariable CpGs to the nearest TSS, with distribution of total 
RRBS dataset shown for background. 
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various regulatory elements (promoters, CpG islands, and CpG island shores), 

we recapitulated the enrichment of epivariable regions in CpG island shores 

(Figure 2.2C). Thus, the labile regions of the sperm methylome are located at the 

boundaries of regulatory elements, which may point to differential usage of these 

loci between animals resulting in phenotypic variability. This is, to our knowledge, 

the first study to determine the population epivariability of identical cell types 

between inbred animals. 

 

Search for Diet-Induced Differences in Sperm Methylation 

The RRBS results denoted a large amount of “epivariability” present in the sperm 

methylome, which masked possible signals from dietary manipulation. Although 

background epivariability is high, we wanted to further characterize the sperm 

methylome with the intention of discovering diet-induced differences. For this 

purpose, we performed Whole Genome Bisulfite Sequencing (WGBS) to 

characterize the entire methylome at base pair resolution. To guard against the 

inherent variability of sperm methylomes, we utilized a matched pooling strategy 

that should be robust against the individual variation uncovered by our RRBS 

data. We generated pooled WGBS libraries from equal amounts of sperm DNA 

from seven animals maintained on the same diet, and the matched pool from 

siblings maintained on another diet. These libraries were sequenced to an 

average depth of 1.3 billion reads, producing 47-fold mean coverage. 
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Figure 2.3 
Whole genome cytosine methylation in murine sperm 
A. Examples of typical methylation profiles. For the two genes shown, cytosine 
methylation data for each of the four libraries – Control 1, High Fat, Control 2, 
and Low Protein – are shown. Each vertical bar represents the methylation 
percentage for a single CpG. There is a general background of complete 
methylation, with hypomethylation occurring at CpG islands such as promoters. 
B. Average cytosine methylation for each of the four libraries plotted over CpG 
islands and surrounding DNA. CpG islands were length-normalized for this 
visualization.  
C-D. Scatterplots for individual CpG methylation levels between the matched 
Control and High Fat pools (C) or between matched Control and Low Protein 
pools (D). Data are shown only for the 80% CpGs with the greatest read depth 
(n=16.1 and 16.6 million CpGs for C and D). 
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These high-resolution sperm methylome datasets confirm that sperm are highly 

methylated with regions of hypomethylation occurring over regulatory elements 

(Figure 2.3A). Sperm have an average methylation (average of all CpGs) of 68%, 

which is similar to hypermethylated somatic lineages (Ziller et al., 2013). 

Additionally, many regulatory elements contain CpG islands, and these islands 

maintain identical hypomethylated architectures in all four pools (Figure 2.3B). 

These WGBS pools demonstrate that sperm are hypermethylated with focal 

regions of hypomethylation over regulatory elements, similar to somatic cells. 

 

As suggested by the DNA methylation landscape, most of the ~20 million 

individual CpGs were either fully methylated or fully unmethylated (Figure 2.3C 

and S2.5A-C). The CpGs that were fully methylated or unmethylated were 

unaffected by paternal diet (Figure 2.3C and S2.5A-C). However, some CpGs 

with intermediate methylation levels (20-80%) were enriched for differences 

between the dietary interventions. However, methylation differences at these 

individual CpGs rarely exceeded 20% absolute difference. Theoretically, these 

modest differences at individual CpGs cannot account for penetrant offspring 

phenotypes because of the “digital” nature of sperm. A single sperm fertilizes a 

single oocyte, so a CpG with 20% methylation merely means that 1 in 5 sperm 

are methylated at that CpG. A change from 20% to 40% methylation at a single 

CpG alters the frequency of sperm with the methylated CpG from 1 in 5 sperm  to  
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Figure S2.5 
Scatterplots of methylation levels between WGBS pools 
A-C. 3D plots showing cytosine methylation percentage for two WGBS pools (x 
and y axes, scale is from 0 to 100%), with z axis showing the number of 
individual CpGs. For each scatterplot only the 80% of genomic CpGs with the 
highest sequencing depth were used. The vast majority of individual CpGs are 
clustered around (0,0) and (100,100). 
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2 in 5 sperm. Therefore, these modest changes at individual CpGs cannot 

account for the penetrant nature of diet-induced phenotypes.  

 

However, integration of larger regions of modest, yet consistent changes in 

methylation can theoretically result in penetrant phenotypes. The digital nature of 

cytosine methylation would then be able to exert continuous control of a 

quantitative phenotype. Therefore, we searched for diet-induced differences over 

300 base pair windows that incorporated several adjacent CpGs, using read 

depth to calculate significance. We discovered hundreds of differentially 

methylated regions (DMRs) between our matched sperm methylomes (Table 

S2.2). Most of these DMRs were located in tandemly repeated regions, including 

both the 5S and 45S rDNA loci (Figure 2.4A-E). Other significantly altered 

tandem repeat DMRs included the interferon zeta (Ifnz) cluster (Figure 2.4F), 

defensins, Skint genes, and Mrgpra/b genes (Figure S2.6A-C). Many significant 

regions were shared between Low Protein and High Fat pools, and these regions 

were generally hypermethylated in Low Protein and hypomethylated in High Fat. 

Very few large DMRs were found outside of these tandem repeat families, with 

the few remaining DMRs located in CpG island shores (Figure S2.6D-E). 

Although repetitive elements have been implicated in transgenerational 

phenomena, we did not observe significant dietary effects on cytosine 

methylation over these regions (Table S2.3), including IAP elements that are 

responsible for epiallelic regulation (Lane et al., 2003). Interestingly, at most of  
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Figure 2.4  
Methylation differences primarily occur over repeated gene families 
A. Methylation changes over the 5S rDNA locus on chromosome 8, shown as 
Low Protein minus its matched Control pool – positive values indicate 
hypermethylated loci in Low Protein diet. Top panel shows 2 MB of chromosome 
8 surrounding the 5S rDNA repeats, bottom panel is a zoom-in as indicated.  
B. Zoom-in on 4 repeats of the 5S rDNA locus, showing Low Protein minus 
Control, High Fat minus Control, and Control 1 minus Control 2, as indicated. For 
all three images, the scale runs from -25% to +25%.  
C. Absolute methylation levels (from 0 to 100%) for the loci shown in (B).  
D-F. Both the 45S (18S and 28S) rDNA and Ifnz cluster are hypermethylated in 
the Low Protein pool. 
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Figure S2.6  
WGBS examples of diet-induced differential methylation 
A-E. For each locus, data are shown for Low Protein minus Control 2 (top panel, 
red), High Fat minus Control 1 (middle panel, green), and Control 1 minus 
Control 2 (bottom panel, blue). Y axis is consistently -25% to +25%. For some 
loci, absolute methylation levels are also shown. Loci include multigene families 
Ifnz (A), Skint (B), and Mgrpra/b (C), the beginning of the X chromosome 
pseudoautosomal region (D), and an example of an epivariable CpG island shore 
(E). 
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the tandem repeat clusters reported as DMRs between diets, we also saw 

differences between the two control pools. So, these regions might be highly 

variable in general, which is a good indication of environmental lability.   

 

Our discovery that a number of our WGBS DMRs differed between control pools 

(Figure S2.7) argues that these methylation changes might be driven by the 

epivariability discovered in our RRBS dataset. To address this issue, we returned 

to our RRBS datasets to decipher whether the WGBS pools reported bona fide 

dietary-induced changes or penetrant epivariability. Although RRBS covers only 

a subset of the genome, we found several CpGs located in the rDNA and Ifnz 

clusters represented in the RRBS dataset that were some of the most variable 

CpGs in the RRBS dataset (Figure 2.2C and S2.8). This indicates that our 

WGBS pools may have captured high epivariability as diet-induced changes at 

these loci.  

 

Epivariation at Ribosomal DNA 

The combined results from our RRBS and WGBS datasets suggest that 

epivariation dominates any changes elicited by paternal diet. The relative 

contributions of diet and epivariability to sperm methylation were subsequently 

determined at the 45S rDNA locus, one of the most significantly altered tandem 

repeat regions in both the RRBS and WGBS datasets. We investigated the 

methylation level at the 45S rDNA with bisulfite pyrosequencing to gain insight  
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Figure S2.7  
Differentially-methylated regions are generally epivariable  
All 300 bp windows with significant (q value < 0.05) differences between Control 
1 and High Fat, or Control 2 and Low Protein WGBS datasets, were selected. 
Data were zero centered, and the 2427 windows with at least one dataset 
exhibiting a 10% methylation difference were selected and clustered. Importantly, 
for the majority of windows exhibiting a difference between High Fat and Control 
1, or between Low Protein and Control 2, Control 1 and Control 2 datasets also 
differed. 
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Figure S2.8  
Epivariation at 5S rDNA locus  
RRBS data are shown for all CpGs exhibiting a correlation/anticorrelation of over 
0.3/-0.3 to the averaged RRBS data for the 5S rDNA cluster. Multiple CpGs that 
are unlinked to the rDNA cluster exhibit correlated methylation patterns, 
consistent with two loci responding either to the same genetic (rDNA copy 
number) or environmental (number of littermates) cue. 
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into the function of cytosine methylation over tandemly repeated regions. 

Extensive epivariability at the 45S rDNA locus was confirmed at two locations in 

219 animals (Figure S2.9A-C). Technical replicates from different bisulfite 

conversions were highly correlated (Figure S2.9D) and the methylation status of 

whole testis and sperm from the same animals were very similar (Fig2.9E). 

Extensive cytosine methylation variation at the 45S rDNA is observed, with 

methylation levels at individual cytosines ranging from ~5% to ~50% between 

Control sperm samples. 

 
Pyrosequencing of the 45S rDNA locus from matched littermates maintained on 

different diets revealed no consistent dietary effect on cytosine methylation at this 

locus (Figure 2.5A). While some discordance exists between siblings, none of the 

dietary interventions consistently altered methylation in a uniform direction. 

Again, the overall methylation levels vary greatly between animals, ranging from 

5% to 50% average methylation, even among control animals (Figure 2.5A). 

However, 45S rDNA methylation was most similar among siblings (Figure 2.5B) - 

like many other components of the sperm methylome, indicating that 45S rDNA 

methylation at this locus is either inherited or established early in development.  

 

Inheritance of Epivariation 

Our IVF paradigm allows us to directly test if the epigenetic differences in sperm 

influence  offspring  phenotypes.  First,  we  made  use  of  our  IVF  paradigm  to  
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Figure S2.9 
Epivariation at the 45S rDNA locus  
A. Schematic of murine 45S repeat, with primer pairs used for pyrosequencing 
indicated as stars.  
B-C. Methylation levels over 10 CpGs at the 45S ITS-1 sequence (B), and 3 
CpGs at the over the 45S spacer promoter (C). For each sperm sample, genomic 
DNA was bisulfite converted and amplified with bisulfite-appropriate primers. 
Methylation levels were quantitated via pyrosequencing. At each CpG, samples 
are separated according to the four dietary regimes.  
D. Replicate bisulfite conversions were pyrosequenced, and methylation levels 
for replicates are scatterplotted for individual CpGs and for the 45S promoter 
average.  
E. 45S promoter methylation is highly correlated between sperm and matched 
testis samples. 
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Figure 2.5 
Heritability of 45S rDNA Epivariation 
A. Average methylation levels over the 45S rDNA spacer promoter are 
scatterplotted for siblings split to Control diet (X axis) and either Low Protein, 
Caloric Restriction, or High Fat diet (Y axis). Each point shows the average 
methylation level for the 3 CpGs interrogated by pyrosequencing. While many 
siblings exhibit discordant methylation levels, none of the dietary interventions 
consistently altered methylation in a uniform direction. 
B. Differences in 45S rDNA methylation between all pairs of animals, between 
pairs of the same strain background, or only between siblings. Shown as 
cumulative distribution plots. 
C. Schematic of system used to link the paternal sperm epigenome to offspring 
phenotype. For a given sperm sample, 5% was used to generate offspring via 
IVF and surgical implantation. Ninety-five percent of the sperm sample was used 
for analysis of cytosine methylation, and methylation and mRNA abundance data 
from matched offspring were obtained. Importantly, the very same sample used 
to generate offspring was also used for molecular analysis. 
D. Heritability of rDNA methylation patterns. 45S promoter methylation was 
analyzed by pyrosequencing for 11 sperm samples and 20 matched offspring 
livers. Data are shown for individual CpGs (circles) as well as averaged for the 3 
CpGs. 
 

 

 
 
 
 
 
 
 
 
 
 
 



120

determine if rDNA methylation is inherited from the father (Figure 2.5C). We 

found that cytosine methylation at the 45S rDNA locus was correlated between 

paternal sperm and matched offspring livers, indicating that methylation of 45S 

rDNA is inherited (Figure 2.5D). Since sperm and liver are separated by 

numerous cell fate transitions, this reveals stability of inherited rDNA methylation 

throughout development. Analysis of early embryonic methylome profiling by 

others reveal that rDNA maintains cytosine methylation at these stages (Radford 

et al., 2014; Smith et al., 2012). On the other hand, tandem repeats are 

subjected to relatively rapid copy number changes (She et al., 2008), which could 

signal that our epigenetic measurements are capturing genetic changes.  

 

Inheritance of Copy Number Variation 

Considering the relatively rapid copy variation of tandem repeat genes, we 

determined if the heritability of epivariable rDNA methylation was related to rDNA 

copy number in the sperm of mice. We utilized qPCR (and digital droplet PCR 

(see (Hindson et al., 2011)) to determine the copy number of the 45S rDNA 

locus, finding that the locus was hypervariable, with calculated copy number 

ranging from ~100 copies to ~300 copies per sperm; consistent with previous 

reports for murine rDNA content (Veiko et al., 2007). Diet did not cause these 

changes in rDNA copy number; but like rDNA methylation, copy number was 

similar among siblings (Figure 2.6A). Interestingly, the genetic background of the 

mice  influenced  the  methylation status of the 45S rDNA (Figure 2.6B) – another  
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Figure 2.6 
Genetic Modifiers of rDNA Epivariation 
A. Comparison of rDNA copy number in siblings split to different diets. rDNA 
copy number was assayed by q-PCR, and relative copy number is shown – copy 
number here is given as 45S q-PCR Ct cycle subtracted from Ct cycle for q-PCR 
against the single copy Acacb gene. Similar results were obtained using a multi-
copy tRNA locus for normalization (not shown). 
B. Inbred mouse strains exhibit differential rDNA methylation. Animals separated 
by strain background as indicated. 
C-D. rDNA copy number is correlated with rDNA methylation. 45S and 5S rDNA 
copy number were quantitated for sperm samples as in (A), and 45S or 5S copy 
number were scatterplotted against averaged 45S promoter (C) or ITS-1 (D) 
methylation levels (Y axis), respectively. 
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indication that a genetic component is controlling methylation at this locus. 

Comparing rDNA methylation with copy number, we found that these two 

measures were correlated (Figure 2.6C). These results suggest that our rDNA 

methylation differences are caused by differences in rDNA copy number; a 

function that might be conserved among tandem repeats (Brahmachary et al., 

2014). Interestingly, the unlinked 5S and 45S rDNA loci are coregulated, as 5S 

copy number is correlated with 45S methylation (Figure 2.6D) (Gibbons et al., 

2015). Although we don’t know the mechanism that DNA methylation uses to 

count copies, rDNA dosage is homeostatically regulated by cytosine methylation 

(Grummt and Pikaard, 2003). When rDNA copy number increases, cytosine 

methylation increases to maintain the same number of active copies. 

 

Link between Metabolism and rDNA Variation 

Since rDNA plays a central role in cellular metabolism, modulation of its activity 

influences a number of metabolic processes (Oie et al., 2014; Paredes et al., 

2011). We wanted to know the effects of inherited changes in rDNA architecture 

on offspring metabolism; specifically, the cholesterol biosynthetic pathway. 

Astonishingly, both rDNA methylation and rDNA copy number in sperm were 

anti-correlated with Sqle expression in IVF offspring livers (Figure 2.7A,B). While 

extemporaneous pre-rRNA expression was not significantly correlated with Sqle 

expression (R = 0.13), these relationships could point to differential regulation of 

rRNA  at  an  earlier  time  point  in  development  or  altered nuclear architecture  
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Figure 2.7 
rDNA Variation Influences Offspring Metabolism Independent of Paternal Diet 
A. Paternal rDNA methylation was anticorrelated with offspring cholesterol gene 
expression. Here, the y axis shows expression level of Sqle in offspring liver 
(shown as 10-(CtActb-CtSqle)). 
B. Paternal rDNA copy number and offspring cholesterol genes expression. 
Same as in (A), except x axis represents 45S rDNA copy number determined by 
ddPCR (using β-Act for normalization). 
C. 45S methylation levels for Control animals (x axis) along with matched siblings 
raised on various diets (y axis). Circles show pairs (or trios) of sperm samples 
used for IVF.  
D. rDNA methylation data (left panels) and Sqle expression levels (right panels). 
Individual bars in the left panel show individual CpGs (differing numbers of ITS-1 
CpGs result from CpGs failing pyrosequencing quality control). Individual bars in 
the right panel represent individual offspring of a given IVF experiment. 
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caused by this change in rDNA methylation. Both rDNA methylation and copy 

number in sperm affects expression of metabolically relevant genes in offspring. 

 

Although unlikely, the relationship between rDNA regulation and offspring 

metabolism made us ask if rDNA was carrying paternal dietary information. We 

didn’t see any directed change in rDNA methylation with mice subjected to 

different diets (Figure 2.7C). However, since our paternal diet-induced phenotype 

is not completely penetrant (Carone et al., 2010), we tested the possibility that 

the sperm samples that showed decreases in rDNA methylation were the ones 

that produced offspring with elevated cholesterol metabolism. We utilized our IVF 

system to determine if changes in paternal rDNA methylation cause dietary 

effects on offspring metabolism. As seen in Figure 2.7C-D, the changes in rDNA 

methylation are inconsistent with changes in Sqle expression. While some 

matched litters have increased rDNA methylation and increased Sqle expression, 

others show the opposite effect (decreased rDNA methylation and increased 

Sqle). Therefore, it is highly unlikely that rDNA mediates the paternal dietary 

effects on offspring metabolism, while still influencing metabolism through 

stochastic variation.  
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Discussion 

Taken together, these results prove that sperm carries the diet-induced 

epigenetic information that alters offspring metabolism. Furthermore, our 

extensive methylome studies reveal prevalent epivariability over copy number 

variable regions. Although we failed to find consistent dietary effects on the 

methylome that explain offspring phenotypes, sperm epivariability is a major 

contributor to offspring metabolism on its own. The epivariable rDNA locus has 

coordinate methylation and copy number changes that influence offspring 

cholesterol metabolism. Therefore, our results reveal an unappreciated role for 

copy number variation-coupled epivariability in regulating inherited phenotypes; 

which acts independently of diet-induced reprogramming of sperm.  

 

Although cytosine methylation has been implicated in regulating 

transgenerational environmental effects, no conclusive evidence has been 

obtained. Methylation changes in many of these studies were modest over 

several CpGs (Dias and Ressler, 2014; Ng et al., 2010), which should preclude 

these changes from being the causative agent for penetrant phenotypes. We find 

large amounts of epivariation in our sperm methylomes with little contribution 

from diet-induced differences. This indicates that post-weaning diet has little 

effect on the methylome, which is largely established prior to this period. 

Interestingly, the Ferguson-Smith group found more consistent dietary-induced 

methylation differences in their model, which probably derives from their 
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manipulation of in utero development, when gametic methylomes are established 

(Radford et al., 2014). Therefore, the sperm methylome is largely refractory 

to reprogramming by chronic dietary changes after being established in utero.  

 

Despite the lack of diet-induced changes, our broad analysis of sperm 

methylomes enabled the discovery of drivers of epivariation between animals. 

CpG island shores and tandem repeat regions display the greatest amounts of 

epivariation in inbred strains of mice. The variation at CpG island shores is likely 

attributed to differential usage of these elements during spermatogenesis, as the 

width of the shore that remains unmethylated is linked to regulatory activity in cell 

type specific lineages (Irizarry et al., 2009; Ji et al., 2010). Variation at CpG 

island shores is probably lost after fertilization, since most methylation 

surrounding CpG islands is erased during pre-implantation development (Smith 

et al., 2012). On the other hand, tandem repeat genes represent a unique class 

of genes that have extensive copy number variation between animals, indicating 

dynamic instability at these loci. These characteristics of tandem repeats lead to 

epivariation at these loci, since we show that changes in copy number are 

correlated with methylation changes at rDNA loci. We show that this form of 

epivariation is paternally inherited, so cytosine methylation over tandem repeats 

represents heritable regulatory variation. 
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We find that combined genetic and epigenetic variation at the rDNA loci in fathers 

is linked to offspring metabolism. Since rDNA represents a central node in 

metabolic control (Grummt, 2013), altering the regulation of rDNA should have a 

dominant effect on cholesterol metabolism. Interestingly, the copy number of 

rDNA is variable within inbred strains of mice, showing that these mice are not 

genetically identical, as is assumed in numerous studies. This stochastic copy 

number variation of rDNA also leads to heritable genetic variation that strongly 

influences offspring metabolism. Since rDNA shares many characteristics with 

other tandem repeats, heritable copy number variations of other tandem repeats 

might have large effects on quantitative traits. Copy number variation at other 

tandem repeats have been shown to effect diverse phenotypes, such as immune 

function and starch digestion (Hollox et al., 2008; Perry et al., 2007). Therefore, 

previously unaccounted for phenotypic differences may be attributable to the 

combined effects of heritable genetic and epigenetic variation at tandem repeat 

regions (Manolio et al., 2009). Tandem repeats function in numerous pathways, 

from totipotency to olfaction to metabolism, so their variation likely has wide 

ranging effects. 

 

Conclusion 

We show that sperm transmit paternal dietary effects, a major step in finding the 

elusive mechanism of paternal effects. Our focus on the sperm methylome 

uncovered genetic and epigenetic variation in sperm that leads to heritable 
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changes in offspring metabolism. Our inability to find considerable diet-induced 

changes in sperm methylation strongly suggests that cytosine methylation does 

not carry paternal dietary information. Future studies searching for the 

mechanism behind environmentally-induced intergenerational phenomena 

should focus on other potential epigenetic carriers of information, including 

chromatin and small RNA. The combined effects of sperm epivariation and diet-

induced changes in sperm contributes to a large range of metabolic outcomes in 

offspring. 

 

 

Methods 

Animal husbandry 

Mice used in this study included C57Bl6/J and FVB/NJ strains from Jackson 

Laboratories. Animals were maintained on-site in accordance with approved 

IACUC protocols. 

 

Dietary regimens 

The 63 animals in the epivariation dataset included animals consuming standard 

laboratory chow, a defined Control diet (Bioserv AIN-93g), a Low Protein diet 

based on AIN-93g (10% of protein rather than 19%, remaining mass made up 

with sucrose), a High Fat diet 60% Fat based on Ain-93g (Bioserv S3282), as 

well as animals provided with nicotine hydrogen tartrate (200 mg/mL nicotine, 
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reported as free base) in drinking water sweetened with 2% saccharine to 

increase palatability, or animals provided with tartaric acid and saccharine water 

alone.  Animals were placed on diet at weaning (21 days) until mating or sacrifice 

(10-12 weeks). 

 

Isolation of epididymal sperm DNA 

Animals were sacrificed by isoflurane administration followed by cervical 

dislocation. For sperm isolation, cauda epididymis and epididymis were rapidly 

dissected, and punctured in 500 mL of human tubal fluid (HTF – Millipore MR-

070-D) and incubated at 37 C for 30 minutes to capacitate. Supernatant was 

removed, and 500 mL of PBS was added to bring total volume to 1 mL. Somatic 

cell fragments were removed and 0.1% Triton-X 100 (Sigma) was added with 

vortexing. Sperm were pelleted at 2000 g for 5 minutes, washed once with 1 mL 

water and then pelleted. They were washed again with 1 mL PBS, and pelleted 

again. Sperm was resuspended in 400 mL DNA Lysis Buffer (10mM Tris, 5mM 

EDTA, 0.5% SDS, and 200mM NaCl) with 10mM DTT, and incubated at 37oC for 

30 minutes. Sperm were subjected to needle homogenization. 20 mg/mL 

Proteinase K was added to the homogenate and incubated at 55oC for 16 hours.  

DNA was extracted with Phenol:Chloroform:Isoamyl Alcohol and precipitated with 

isopropanol. 
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In vitro fertilization 

In vitro fertilization was performed according to “Manipulating the Mouse Embryo” 

Second Edition (Hogan, 1994).  Superovulated FVB/NJ mice were used as egg 

donors and sperm was isolated from males fed dietary regimes as above. 

Isolated sperm were capacitated in HTF for 30 minutes at 37°C. Fertilization took 

place in 250 mL HTF media covered in mineral oil, pre-gassed in 5% CO2 at 

37oC.  Fertilized embryos were developed in KSOM (Millipore - MR-020-P) until 

the 2-cell stage. Swiss Webster Females between 25 and 35 grams were used 

as 2-call stage embryo recipients via unilateral oviduct transfer. 

 

Microarray Experiments. 

Affymetrix mouse GeneChip ST arrays were used for whole gene expression 

analysis.  Specifically, RNA was prepared by Trizol extraction, prepared with 

Ambion WT expression kit, and hybridized to Mouse 1.0 ST and Mouse 2.0 ST 

arrays according to manufacturer’s instructions. 

 

Reduced Representation Bisulfite Sequencing (RRBS) 

RRBS was carried out as previously described (Meissner et al., 2008). Briefly, 

genomic DNA was digested with MspI, ends were filled-in, and fragments were 

A-tailed. DNA fragments were ligated to methylated barcoded adaptors. DNA 

was subjected to bisulfite conversion and PCR amplified. Cleanup and size 

selection were performed with SPRI AMPure XP beads. 
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Whole Genome Bisulfite Sequencing (WGBS) 

Control and Low Protein WGBS pools were generated from 8 paired animal 

samples in which one sibling was weaned to Control diet and the other sibling 

was weaned to Low Protein diet. Control/High Fat pools were generated using a 

similar approach using 7 animal pairs. For each pool, each animal contributed 1 

ug of genomic DNA. DNA was sheared to an average length of ~100-500 bp with 

a Covaris sonicator, fragment ends were cleaned up and A-tailed. Fragments 

were ligated to pre-methylated Illumina paired-end adaptors, bisulfite converted, 

and PCR-amplified. Libraries were subjected to paired-end 50 bp sequencing on 

Illumina HiSeq sequencers, yielding an average of 1.4 billion reads and 140 

billion base pairs of sequence. 

 

Data Processing and Analysis 

Technical replicates were merged together and only the first member of a read 

pair was used. Data were mapped against mm9 mouse genome with bsmap 

software v2.73 (Xi and Li, 2009). Default parameters were used for error rate and 

maximum number of equal best hits was selected as default as well. Two 

versions of mapping were performed: all reads; non-identical reads. "Non-

identical" means that if more than one read had the same initial sequence, only 

one was used for mapping and further analysis. The same software was used to 

perform methylation calls. To get a methylation level for a given CpG, information 

from C from both strands was combined together. 
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Differentially-methylated CpGs were discovered with the methylKit R package 

(Akalin et al., 2012). Discovered CpGs were merged using tiling arrays with 

300nt windows to calculate p-values, q-values, and fold enrichment factors for 

High Fat and its Control, Low Protein and its Control. The data can be found in 

Table S2.2.   

  

Pyrosequencing 

Cytosine methylation data for individual loci were generated using a Qiagen 

Pyromark Q24 pyrosequencer. Genomic DNA was bisulfite converted, and loci to 

be analyzed were amplified by PCR – primers are listed in Table S2.4. Amplified 

DNA was cleaned up and analyzed using the manufacturer’s protocol for the 

Pyromark Q24. 

 

rDNA copy number analysis 

rDNA copy number was measured using q-PCR and digital droplet PCR 

(ddPCR). Briefly, genomic DNA was subject to q-PCR using primers located 

within the rDNA locus, at the Acacb single copy locus, and at the multi-copy 

tRNA-Lys genes. While both of these normalization controls were highly-

correlated with rDNA data, Acacb primers were in the linear range over a greater 

fraction of the dataset and so were chosen. 

ddPCR was performed according to manufacturer’s protocol (Bio-Rad). Briefly, 

DNA was digested with DpnI. Samples were mixed with primers for 45S rDNA 
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and B-Actin followed by droplet generation and PCR. Quantitation of products 

was performed on ddPCR machine. 

 

Table S2.4  

Primer List 

 

 

Primer Name Target Assay Sequence Reference
45S_rDNA_Bio-­‐
BF2 45S rDNA Pyro Bio-­‐GAATTTGATTATTTAGAGGAAGTAAAAGT
45S_rDNA_BR2 45S rDNA Pyro CACCCACCCCTTCTCT
45S-­‐rDNA_Seq2 45S rDNA Pyro CTCACTCCAAACACC
45s_Spacer_BF2 45S rDNA Pyro GGAAGTGTTTGTGGTGAGG Shiao et al.
45s_Spacer_Bio_
BR2 45S rDNA

Pyro
BIO-­‐CACCAACCCTAACATTTTTCC Shiao et al.

45s_Spacer_Seq
3 45s rDNA

Pyro
GTTTTGGAGATGGTGT Shiao et al.

rDNA_Term_F1 45S rDNA qPCR GAACCTTTAGGTCGACCAGTTG
rDNA_Term_R1 45S rDNA qPCR ACAAAGTACCACCCGGAGTA
Lys(CTT)_F1 Lys tDNA qPCR CGGCTAGCTCAGTCGGTAGA
Lys(CTT)_R1 Lys tDNA qPCR AACCCACGACCCTGAGATTA

Acacb_F1 Acacb
qPCR TGCTCATAGGCCAAGAGAAAGG

CT

Acacb_R1 Acacb
qPCR AGTGCTGGGATTACAGGCATGA

GT
5S rDNA F2 5S rDNA qPCR CCCGATCTCGTCTGATCTC
5S rDNA R2 5S rDNA qPCR CCTACAGCACCCGGTATT

Sqle_F1 Sqle RT-­‐qPCR TCCTTGCATCAGCTCCGAAA
Carone et
al.

Sqle_R1 Sqle RT-­‐qPCR
CGGTCAAAGCAACCCAACAGGA
CCG

Carone et
al.

B-­‐Actin_F1 B-­‐Actin RT-­‐qPCR GGCTGTATTCCCCTCCATCG
B-­‐Actin_R1 B-­‐Actin RT-­‐qPCR CCAGTTGGTAACAATGCCATGT
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CONCLUSION 

 

Summary 

The preceding work demonstrates that paternal diet controls medically important 

metabolic phenotypes in offspring. We observe transmission of dietary 

information to the zygote via sperm, and this information evades reprogramming 

that typically occurs after fertilization. Since cytosine methylation is implicated as 

a major contributor to meiotic epigenetic inheritance in several transgenerational 

phenomena, we profiled cytosine methylation of sperm treated with different 

dietary regimens. Our extensive characterization of the sperm methylome reveals 

that diet does not significantly affect methylation patterns. However, we find that 

extensive epivariability in the sperm epigenome makes important contributions to 

offspring variation.  Importantly, coordinate cytosine methylation and copy 

number changes over the ribosomal DNA (rDNA) locus contributes to changes in 

offspring metabolism. Thus, rDNA variability acts independently of post-

adolescent paternal diet to influence offspring metabolism. Therefore, at least 

two mechanisms exist for epigenetically controlling offspring metabolism: 

stochastic epivariation and diet-directed changes. This work argues that an 

offspring's phenotype can no longer be viewed solely as the result of genetic 

interactions with the developmental environment - the additional influences of 

paternal environment and inherited epigenetic variability must also be 



136

considered. These findings reveal novel contributions to metabolism that could 

revolutionize how we think about the risk factors for human health and disease.   

 

Intergenerational Epigenetic Inheritance 

Paternal dietary effects challenge the notion that environmentally-induced 

epigenetic information is reset between generations. This intergenerational 

memory demonstrates that epigenetic plasticity, which is a hallmark of mitotic 

epigenetic mechanisms, increases phenotypic variation through the process of 

reproduction as well. Concurrent with our finding that paternal low protein diet 

alters offspring metabolism, other groups realized similar phenotypes in rodents 

utilizing in utero undernutrition, intermittent fasting, and high fat diet (Anderson et 

al., 2006; Jimenez-Chillaron et al., 2009; Ng et al., 2010). In addition, paternal 

effects from liver damage and endocrine disrupters imply that environmental 

factors other than nutritional information are paternally transmitted (Anway et al., 

2005; Zeybel et al., 2012). These findings inform us that we need to update 

inheritance paradigms to include epigenetic contributions from ancestral 

environments in addition to the genetic and developmental influences on 

phenotype. 
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Sperm mediated transmission of paternal environmental response 

While a number of non-gametic carriers, such as seminal fluid contents or cryptic 

maternal responses to mate quality (Bromfield et al., 2014; Velando et al., 2006), 

are known to affect offspring phenotypes - we conclusively find that sperm 

carries paternal dietary information. Our finding that sperm transmits this 

information reveals the incongruity of the soma-germline barrier that was thought 

to protect the germ line from environmental insults (Weismann et al., 1891). 

Although we are the first to show that sperm carry nutritional information to 

offspring, relevant questions persist as to the carrier of other environmental 

information that is inherited, such as behavioral or chemical stresses. Previous 

studies attempting to locate the carrier of environmental stress have come to 

conflicting results (Dias and Ressler, 2014; Dietz et al., 2011). These other 

studies focused on inheritance of induced neurological phenotypes, which might 

be transferred by another carrier, such as the aforementioned seminal fluid. In 

spite of these conflicting reports on the carrier of inherited behavioral responses, 

we find that sperm conveys heritable nutritional information to subsequent 

generations. Future studies determining the carrier of other environmental 

information will give the field a better idea if there is a generalized mechanism for 

informing offspring of ancestral environmental stress. 

 

We speculate that dietary information reaches sperm through nutrient sensing 

pathways, and is converted to epigenetic information that is subsequently carried 
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to the mature oocyte. There are several barriers to sperm passing on epigenetic 

information intrinsic to the process of fertilization, which make our findings even 

more interesting. Sperm lack the epigenetic richness of somatic cells, containing 

minimal amounts of histones (~5% in sperm) and cytoplasmic information 

carriers (Hammoud et al., 2009). Additionally, the sperm DNA methylome is 

actively erased at fertilization to more closely resemble the oocyte methylome. 

However, dietary information survives despite processes that reprogram the 

remaining sperm epigenome to totipotency after fertilization (Hackett et al., 

2013). In spite of these epigenetic barriers, sperm transmit dietary information to 

offspring, leading to the exigency to characterize the sperm epigenome.  

 

Sperm Methylome 

Carriers of epigenetic information in sperm include cytosine methylation, 

histones, and small RNA species (McLay and Clarke, 2003). Cytosine 

methylation endures as the best-studied intergenerational information carrier in 

mammals; essential for the variability of epialleles and the programming of 

imprints (Goll and Bestor, 2005). We characterized the sperm methylome utilizing 

several high resolution, quantitative techniques. In depth profiling revealed 

extensive epivariation between inbred animals, but minimal effects of diet on this 

epigenome. Interestingly, epivariation was apparent in every technique used to 

measure cytosine methylation - even when attempting to guard against it by 
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using pooling strategies that should minimize variation. Therefore, epivariability is 

the dominant feature controlling differences in sperm methylomes.  

 

The lack of consistent dietary effects in this sea of variability convinces us that 

chronic dietary change after adolescence has minimal effect on cytosine 

methylation. Since we see consistent paternal dietary effects on offspring 

metabolism, this likely informs us that cytosine methylation is not the relevant 

carrier of hereditary dietary information. This epivariability stands in stark contrast 

to the consistent sperm methylation changes prompted by manipulating early in 

utero environments - when germ cells are reprogrammed (Radford et al., 2014). 

These combined results argue that early development establishes sperm 

methylomes that resist subsequent modest environmental influences. Future 

studies should be directed at determining if more stringent environmental 

conditions reprogram the mature sperm methylome, answering whether more 

severe insults begin to impinge on the established sperm methylome.  

 

Although diet has muted effects on the sperm methylome, the extensive 

epivariability of sperm indicates unexpected factors shape this epigenome over 

time. We searched in vain for confounding factors that could explain this 

epivariation, including seasonal effects, litter size effects, etc. Instead, the sperm 

methylome stochastically changes over time, with epivariability enriched at 

tandem repeats and other copy number variable elements, such as the rDNA 
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locus and Ifnz clusters. CpG island shores represent the other minor contributor 

to epivariability, similar to their roles in methylation variability in somatic lineages 

(Irizarry et al., 2009). The epivariation in CpG island shores probably results from 

differential usage during spermatogenesis, but is reprogrammed during early 

development (Smith et al., 2012), which minimizes any contribution that CpG 

island shore variability make to offspring phenotypic differences. On the other 

hand, we have evidence that epivariation at tandem repeats accumulates 

through multiple generations. The heritability of epivariation at tandem repeats 

stems from the observations that siblings have more similar methylomes than 

unrelated animals, and that the methylation patterns of the epivariable rDNA are 

inherited.  

 

Methylation at Tandem Repeats 

The epivariability at tandem repeats presents several interesting possibilities 

about the function of cytosine methylation at these elements. Threshold models 

for the targeting of cytosine methylation to repeated elements have been 

proposed (Goll and Bestor, 2005) that state that repeats need to reach a certain 

copy number before being recognized as selfish elements and becoming 

methylated. On the other hand, cytosine methylation represses meiotic 

recombination between unpaired regions (Colot et al., 1996), so it might be 

mediating stability of these repetitive regions when they are unsynapsed during 

meiosis. These models reveal intimate links for cytosine methylation and copy 
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number variation (CNV), but we propose that cytosine methylation at tandem 

repeats buffers the number of active copies. Since tandem repeats are subjected 

to relatively rapid copy number changes, we investigated whether the rDNA loci 

underwent copy number changes in sperm. We found CNV in the rDNA locus 

that, like cytosine methylation, was greater between unrelated animals than 

between siblings. Most interestingly, the copy number changes correlated with 

cytosine methylation changes, which presented us with this interesting concept. 

The changes in cytosine methylation might occur in response to copy number 

changes to homeostatically regulate the activity of rDNA. In other words, an 

increase in the number of copies of rDNA would only increase the number of 

silenced copies - thus maintaining relatively constant dosage. We find minimal 

difference in levels of rRNA between mice with different rDNA copy numbers in 

qPCR results, arguing for this homeostatic control. Recently, another group 

found correlations between CNVs at other tandem repeats and cytosine 

methylation in human populations, arguing that this regulation tandem repeats is 

likely conserved (Brahmachary et al., 2014).  

 

The lability of the rDNA locus demonstrates how combined genetic and 

epigenetic variation can be inherited. Others have shown that rDNA copy number 

is different between inbred mice, but the extent of this variation was unknown 

(Shiao et al., 2012; Veiko et al., 2007). We find that rDNA copy number is highly 

variable between mice - rDNA copy number can double within a strain of inbred 
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mice by our estimates. There were even differences of up to ~50 copies (~25% 

difference) between some siblings. These large differences in copy number could 

be detrimental if they were not homeostatically regulated, thus the concordant 

increase in cytosine methylation.  

 

Effects of Tandem Repeat Variation 

Do these variations manifest as phenotypic effects? Does rDNA escape 

homeostatic regulation to alter phenotypes? rDNA resides at the nexus of 

metabolic regulation, so changes in rDNA dosage will influence metabolic 

phenotypes (Grummt, 2013). The observed variations in rDNA appear to be 

intimately linked to heritable control of metabolism, as paternal methylation and 

copy number of rDNA are anti-correlated with cholesterol gene expression in 

offspring. Interestingly, another group recently showed that artificially increasing 

levels of rRNA in livers by perturbing the function of a negative regulator of rRNA 

synthesis led to multiple metabolic phenotypes, including a decrease in the level 

of cholesterol (Oie et al., 2014). Also, rDNA control over metabolism appears to 

be conserved between species. Artificially reducing rDNA copy number in flies 

largely affects metabolic genes, arguing the metabolic effects of rDNA CNVs are 

maintained throughout metazoan (Paredes et al., 2011). This metabolic 

association with rDNA variability is probably just the tip of the iceberg for the 

ability of tandem repeats to affect phenotypes, as CNV in other tandem repeat 
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genes have pleiotropic effects, such as the association of β-defensins with 

psoriasis and the expansion of amylase genes to extract nutrition from starch rich 

diets (Hollox et al., 2008; Perry et al., 2007). 

 

Therefore, tandem repeat associated genetic and epigenetic variation contribute 

to diverse phenotypes. Previous difficulties in ascertaining CNV had prevented in 

depth studies of subtle copy variations with phenotypes. However, newer 

technologies enable relatively accurate quantitation (Brahmachary et al., 2014; 

Hindson et al., 2011), making it possible to investigate the relationship between 

relatively small copy number changes and phenotypic variation. Research into 

this area may provide fruitful insights into complex diseases, such as the causes 

of autism spectrum disorders and metabolic disease (Tang and Amon, 2013). 

Recently, the use of new technologies has enabled the discovery of a link 

between rDNA copy number and mitochondrial density, another major contributor 

to energy homeostasis. Mitochondrial abundance is influenced by several factors 

- including rDNA copy number (Gibbons et al., 2014), which further implicates 

copy number variation as a modulator of metabolism. On a related note, Bradford 

et al found consistent changes in rDNA methylation induced by in utero 

undernutrition (Radford et al., 2014), and integrating our findings with theirs 

indicates that CNV may be directed by environmental stress at more sensitive 

times during development. In the future, if it is found that environment can direct 

changes in copy number, then we might be able to alleviate the burden of 
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diseases caused by CNVs, such as Huntington’s disease and Fragile X 

Syndrome (McMurray, 2010), through interventions that control copy number.  

 

Paternal Dietary Effects  

On top of the combined effects of epivariability and copy number variation, 

paternal diet directs cholesterol and lipid biosynthetic gene expression in the 

livers of adolescent offspring mice. This layered inheritance of metabolic control - 

one layer stochastic, the other environmentally directed - buffers offspring 

phenotypes against multiple environments by restraining offspring phenotypic 

variation. This buffering could ensure offspring survival by hedging against the 

possibilities of encountering any number of environments (Feinberg and Irizarry, 

2010). The directed response to diet informs offspring of prevailing environments, 

while stochastic variation tempers this phenotypic response. 

 

Offspring Metabolism 

These strategies of epigenetic inheritance result in metabolic offspring 

phenotypes. While our study focused on post-weaning hepatic phenotypes, 

another study confirmed our results that low protein diet causes metabolic 

phenotypes in offspring, but instead focused on adult offspring metabolic 

responses (Watkins and Sinclair, 2014). In the other study, offspring from low 

protein mice developed diabetic phenotypes (glucose intolerance and insulin 
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resistance) and cardiovascular deficiencies during adulthood. Although our 

studies didn’t directly analyze diabetes-related phenotypes, liver health and 

diabetes are intimately linked (Perry et al., 2014). In addition to this link, 

cholesterol represents a metabolite that is strongly implicated in cardiovascular 

disease in humans (O'Donnell and Elosua, 2008). Paternal low protein diet 

studies suggest that epigenetically inherited metabolic dysfunction early in life 

evolves into metabolic disease later in life. These findings could be essential for 

combating metabolic diseases - with interventions designed for ancestral 

generations.  

 

Functionally, we discovered seemingly paradoxical regulatory modules in our 

offspring hepatic studies. Whereas we detected increased expression of 

cholesterol biosynthetic genes in livers from low protein fathers, those same 

livers had decreased levels of cholesterol metabolites. Therefore, increased 

levels of cholesterol biosynthesis genes did not lead to an increase in the 

concentration of their products for mice at weaning age. One rationale for this 

“mismatch” could be that low levels of cholesterol in livers from low protein result 

from increased efflux or reduced absorption of cholesterol, and cholesterol gene 

expression is responding to these low levels of cholesterol through SREBP 

function (Brown and Goldstein, 1997). If cholesterol gene expression becomes 

locked in at these levels, then cholesterol metabolite levels would be increased 

later in life when either efflux is reduced or absorption increased (Holzer et al., 
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2013; Sene et al., 2013). The observation that low protein offspring suffer from 

diabetes later in life argues that there is a mismatch between molecular 

expectations and realities.  

 

This brings us to another interesting point about the outcomes of environmentally 

induced transgenerational inheritance. A hypothesis exists for the cause of 

metabolic disease deriving from a mismatch between the expectations and 

realities of future environments. This has been called the “Thrifty” hypothesis, but 

is also known as “the developmental origins of health and disease” (Hales and 

Barker, 2001). In this hypothesis, early environments set later phenotypes to 

match those early environments - in other words, greater plasticity exists early in 

development, and established epigenomes are insensitive to later environments. 

One of the major barriers to reprogramming differentiated cells to pluripotent cells 

is the epigenetic memory that needs to be erased (De Carvalho et al., 2010). As 

a case in point, early undernutrition increases energy storage at later stages of 

life (Meaney et al., 2007), and if abundant nutrition is encountered later on, a 

“mismatch” will occur that causes metabolic disease through excessive energy 

storage. Now, recent transgenerational epigenetics studies imply that the signals 

for this mismatch arise in the parental generation, and that periods of 

environmental sensitivity extend to the parental generation. A test to determine 

the relevance of this “thrifty” hypothesis to our work would be to change the diets 

of offspring to match the parental diet. If the “thrifty” hypothesis pertains to cases 
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of environmentally induced transgenerational phenomena, then matching the 

parental and offspring environments would alleviate disease relevant 

phenotypes.  

 

Our results implicate numerous environmentally sensitive molecular pathways in 

the regulation of offspring metabolic phenotypes. The liver methylome and 

transcriptome of our offspring mice indicate that several metabolic pathways are 

affected by paternal diet, which are controlled by master regulators, such as 

PPARA and SREBP. For instance, PPARA could be altering up to 15% of the 

gene expression changes observed in the livers of our low protein offspring, 

while our strong cholesterol phenotypes could be mediated by changes in 

SREBP. Although Ppara expression is changed in our offspring, and this 

correlates with changes in enhancer methylation, no changes were observed at 

the Ppara locus in sperm. This implies that the changes to Ppara arose at some 

developmental stage, and that other upstream regulators signal the change in 

Ppara. This could be a common theme for other regulators of the liver phenotype 

(such as Srebp), as we did not observe cytosine methylation changes in sperm 

for any of the master regulators that control large portions of our liver phenotype.  

 

Offspring Epigenetic Differences 

While hundreds of genes were altered in our low protein offspring, many with 

greater than 2-fold changes in abundance, our epigenetic analysis of livers found 
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modest changes in the methylome. The methylation differences observed at 

promoters did not correlate with these gene expression differences, implying that 

cytosine methylation does not fine tune expression responses at every individual 

gene. This finding is in line with other studies finding relatively modest 

correlations between cytosine methylation and global expression differences 

(Bock et al., 2012). On the other hand, differences in cytosine methylation at 

important regulators, such as the previously discussed Ppara, could affect 

downstream effectors. The differences in cytosine methylation arise at some 

point during development, since sperm do not exhibit dietary differences in 

cytosine methylation. The difficulty with trying to discover the origin of these 

differences is that there are numerous times in development that could elicit this 

difference: from early cell fate specification to later hepatogenesis. Several 

transitions occur in the DNA methylome during development, and whether these 

modest differences result from changes in establishment or erasure would be a 

difficult to ascertain. Liver methylation differences may have arisen from 

intercellular interactions, further complicating extraction of the epigenetic 

pathways. The complexity of cellular and molecular interaction precludes us from 

formalizing a conclusion with regards to the synthesis of our liver phenotype at 

this point.  
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Paternal Effects on Early Embryogenesis 

We are actively investigating the ontogeny of our offspring phenotypes with the 

knowledge that sperm carry ancestral dietary information. This enables us to 

focus our attentions on differences at fertilization and the early embryonic 

development bottleneck. Our efforts comprise characterization of the 

transcriptional changes elicited by paternal diet at these stages of development 

as a means to discover the affected pathways. We are focusing on early 

embryonic gene expression differences because alterations in transcriptional 

programs during pre-implantation development are known to lead to downstream 

metabolic phenotypes (Lane et al., 2014). For instance, culturing mouse embryos 

in vitro for longer periods leads to metabolic phenotypes (Feuer et al., 2014), 

indicating that early environmental stresses have long term consequences - by 

setting the epigenetic state at these points according to the “Thrifty” hypothesis.  

 

Our preliminary results (included in Appendix I) on the pre-implantation embryo 

transcriptome show that paternal diet alters a number of genes important for 

early cell fate specification programs - possibly changing the relative contribution 

to extraembryonic tissues (Macfarlan et al., 2012). A number of these cell fate 

specification genes are controlled by MERVL elements in an interesting example 

of co-option of retroelements to regulate cellular processes. Chimeric transcripts 

of MERVL with endogenous genes comprise a coordinately expressed network, 

and expression of these genes correlates with increased totipotency. Therefore, 
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our later metabolic phenotypes might arise from altering early cell fate decisions 

to affect the relative size of the placenta versus the embryo proper. Since this 

finding is preliminary, work needs to done to determine the functions of early 

gene expression changes. 

 

Future Directions 

Continuing research needs to be undertaken to find the mechanisms by which 

paternal environmental information is transmitted to offspring. Since we 

discovered that sperm transmits this information, focus should be paid to 

additional carriers of epigenetic information in sperm - most prominently histone 

modifications and small RNAs (Rando, 2012). While diet minimally influences the 

sperm methylome, cytosine methylation might still be essential to the process of 

informing offspring of paternal environments. For example, H3K9me2 protects 

cytosine methylation in the early embryo (Nakamura et al., 2012), and diet might 

cause differential retention of H3K9me2, which still needs the underlying cytosine 

methylation to provide robust epigenetic memory (Hathaway et al., 2012). For all 

potential epigenetic carriers, a signature of the difference should be able to be 

captured by transcriptional differences in early development. After paternal diet-

influenced transcriptional programs are found during pre-implantation 

development, these programs should be manipulated to determine their 

downstream effects. 
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Conclusion 

In total, the research has made a significant contribution to the understanding of 

the factors influencing offspring variability. Changes in paternal diet alter 

medically important metabolic phenotypes in offspring. Sperm carries this 

environmental information. While dietary epigenetic information is not contained 

in cytosine methylation, epivariation in the sperm methylome contributes to 

offspring variation. Most interestingly, this epivariation is intimately linked to copy 

number variation, regulating the dosage of associated genes - such as ribosomal 

DNA. Intergenerational regulation of ribosomal DNA influences offspring 

metabolic variation, on top of which, diet acts through an independent 

mechanism. All of these findings add to the determinants of phenotype. 

Previously, it was thought that genetic interactions with the environment in one’s 

lifetime determined their phenotype. Now, a parent’s environment, along with 

rapid genetic and epigenetic stochastic variation, increases phenotypic variation 

in offspring.  
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APPENDIX I: 

Early embryonic effects of paternal 

dietary manipulation 

 

Preface 

Most of this work is preliminary, and has not coalesced into a coherent story. 

However, an early result from this work is included in a manuscript under review. 

Here is the current title and author list on the submitted manuscript: 

Paternal diet alters tRNA fragment levels throughout the male reproductive 
tract in mammals  

Upasna Sharma, Colin C. Conine, Jeremy M. Shea, Benjamin R. Carone, 

Clemence Belleannee, Xin Li, Xin Y. Bing, Lucas Fauquier, Weifeng Gu, Philip D. 

Zamore, Robert Sullivan, Craig C. Mello, Manuel Garber, and Oliver J. Rando  

 

The result included in both this chapter and the manuscript is the analysis on 

MERVL elements represented in Fig.A1.3. This analysis derives from data 

generated by Jeremy Shea.  
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Abstract 

 

Paternal dietary interventions influence offspring metabolic phenotypes, altering 

biomarkers involved in diabetes and metabolic syndrome. Using IVF, we 

demonstrated that sperm carry the effects of altered paternal diets to the oocyte. 

Since the information needed for paternal diet-induced offspring phenotypes is 

contained in sperm, we hypothesized that this information may cause 

transcriptional changes in the pre-implantation embryo. Therefore, we have 

undertaken an exhaustive transcriptome profiling screen on hundreds of IVF-

derived embryos to search for dietary-induced expression changes in pre-

implantation development. We profiled single embryos at several stages of pre-

implantation development (2-cell, 4-cell, morulae, and blastocyst) to determine 

stage-specific changes caused by paternal diet. So far, this screen has revealed 

that paternal diet contributes to early embryonic regulation of totipotency factors 

driven by MERVL retroelements at the 2-cell stage. 

 

Introduction 

 

Reprogramming gametes after fertilization restores totipotency to the developing 

organism, enabling it to follow proper developmental trajectories. This 

reprogramming ensures that most somatic insults acquired by a parent do not 

afflict offspring phenotypes. However, accumulating examples of phenomena 
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that escape reprogramming reveal that not all transgenerational information is 

lost, and that numerous environments encountered by parents influence offspring 

phenotypes (Heard and Martienssen, 2014; Rando, 2012). Several studies have 

shown that paternal diet is a major modifier of offspring metabolism (Carone et 

al., 2010; Jimenez-Chillaron et al., 2009; Ng et al., 2010). The highly specialized 

sperm, which undergoes extensive reprogramming after fertilization, carries this 

hereditary information. Sperm commits little more than its nuclear content to the 

zygote, and this nuclear material undergoes extensive DNA demethylation and 

replacement of the ~95% of the genome packaged in protamines with new 

maternally contributed histones (McLay and Clarke, 2003). Although a majority of 

information is lost, dietary information contained in sperm affects offspring 

metabolic phenotypes. A fingerprint of this information should be apparent in 

early embryogenesis, possibly as diet-altered chromatin or changes in gene 

expression. 

 

Changes in the early embryo have substantial effects on later health, and these 

observations have been integrated into the Developmental Origins of Health and 

Disease (DOHaD) or “Thrifty” hypothesis (Hales and Barker, 2001). Early 

embryogenesis represents an environmentally sensitive stage of development 

where the epigenome is established, which becomes progressively less plastic at 

later stages of development. This means that the environment encountered by 

the early embryo determines the equilibrium of the later epigenome. So if the 
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environment drastically changes after early development, the epigenome may be 

mismatched to the new environment.  

 

One of the most labile periods for setting later homeostasis appears to be the 

pre-implantation embryo. The pre-implantation stage is extremely sensitive to in 

utero conditions, as solely restricting a mother’s diet during this period has lasting 

consequences on offspring health (Lane et al., 2014), with those offspring from 

restricted mothers showing symptoms of metabolic disease. Manipulating a 

mother’s diet at this point alters in utero conditions for longer periods, so IVF 

experiments that change the conditions of the early embryo are useful in 

determining exactly how much this period affects later health. Humans and mice 

derived from IVF have altered metabolism later in life, thus this pre-implantation 

stage is a critical window for setting later metabolism (Chen et al., 2014). 

Additionally, others have shown that altering the media conditions used for IVF 

influence offspring phenotypes (Feuer et al., 2014), which points to the ability of 

the pre-implantation environment to determine later phenotypes. Thus, 

characterizing environmental effects on pre-implantation embryos will help in 

determining the changes that cause later phenotypes. 

 

Alterations to the embryonic environment during pre-implantation development 

may change the kinetics of genome activation and epigenome reprogramming. 

Since paternal diet influences offspring metabolic phenotypes similarly to pre-
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implantation manipulation, both of these perturbations might elicit similar 

changes in pre-implantation development. Early embryonic gene expression 

transitions from being dominated by oocyte-specific factors to those needed for 

pluripotency (Deng et al., 2014). Some of the earliest factors activated from the 

paternal genome include Pol I directed transcription of rRNA needed for the 

ensuing rapid development (Lin et al., 2014). Shortly afterwards, a burst of 

totipotency-associated expression ensues, including release of several 

retrotransposon families and chimaeric transcripts driven by retrotransposons 

(such as MERVL elements) (Macfarlan et al., 2012). The first differentiation 

decisions follow during the morulae stage, with outer cells preferentially 

activating trophectoderm/extra-embryonic programs, and inner cell expressing 

pluripotency markers, such as Oct4 (Guo et al., 2010). Paternal dietary 

manipulations influence the relative contributions of the trophectoderm versus the 

inner cell mass (ICM), possibly by changing the dynamics of transcriptional 

transitions (McPherson et al., 2013). Thus, paternal dietary effects should be 

present in the pre-implantation embryo transcriptome. 

 

In the study presented here, we have undertaken extensive single embryo 

transcriptome profiling to determine the effects of paternal diet on early-embryo 

gene expression. We profiled hundreds of IVF-derived embryos at various pre-

implantation stages generated from sperm isolated from fathers on various diets. 

These experiments reveal a complexity derived from the transition from oocyte-
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dominated expression to embryonic activation, with a number of expression 

changes driven by paternal diet. 

 

Results 

 

Recent technological advances have enabled capturing the transcriptome of 

single-cells. Previously, only collections of cells could be profiled, preventing 

analysis of individual variability. Because of these recent advances, fleeting 

amounts of input material can be analyzed, and individual variation can be 

measured. We utilized the Smart-Seq2 protocol to profile the transcriptomes of 

individual embryos derived by IVF (Figure SA1.1) (Picelli et al., 2014). Smart-

Seq2 relies on the template switching capabilities of some MMLV RTs to insert 

PCR primer binding sites at both the 5’ and 3’ end of cDNA for subsequent PCR 

pre-amplification of material. Tagmentation by Tn5 transposase (Nextera, 

Illumina) subsequently adds deep sequencing adapters to the amplified cDNA, 

so that libraries can be constructed.  

 

We performed pilot experiments to determine the feasibility of capturing pre-

implantation embryo transcriptomes. Pilot experiments revealed that the zona 

pellucida doesn’t need to be removed to capture the pre-implantation embryonic 

transcriptome (not shown). Sequencing at very low depth (~200,000 mapped 

reads)  recapitulated  the  findings  of  previous  studies  on  the  early embryonic  
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Figure SA1.1 
Smart-Seq2 Overview 
Embryos are lysed, and RNA is captured using RNA AMPure beads. After 
AMPure cleanup, reverse transcription is performed with primer that contains a 
PCR primer binding site and an oligo-switching oligonucleotide with a binding site 
for the same PCR primer. Single-primer PCR is carried out to amplify material. 
Tagmentation with Tn5 transposase inserts adapters for library amplification. 
Final library amplification uses dual indexes. 
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transcriptome (Deng et al., 2014). These pilot studies affirmed that numerous 

oocyte-contributed transcripts are present in the 2C embryo (Spin1, Omt2b, and 

Obox5), while the 4C embryo begins expressing pluripotency markers, such as 

Klf2 and Myc. Even at very low read depth, 2C embryos are clearly distinct from 

4C embryos and morulae (Figure A1.1A). At these depths, diets did not influence 

the clustering of samples. Subsequently, we tested the ability of greater read 

depth to give us additional information about the early embryos. Correlations 

increased between read depths as gene expression increased (Figure A1.1B). 

Many more genes were captured at high read depths for lowly expressed genes, 

convincing us that saturation was not achieved at these low read depths. 

Although relevant information about cell-state is determined at low read depths, 

we proceeded to achieve higher read depths for each library by running sets of 

libraries (96-samples per pool) on a HiSeq instead of a MiSeq. 

 

Over 800 libraries were constructed and deep sequenced (TableSA1.1). 

Numerous combinations of embryos generated from sperm from males on 

different diets that were collected at different embryonic stages were included in 

the experiment, including embryos from sperm that fertilized oocytes from 

different sets of female donors to parse out oocyte contribution to variability. 

Previously, we had seen that oocytes from females of older mothers affected 

expression in offspring livers (data not shown), so we attempted to restrict 

ourselves to using oocytes from females of young mothers (first breeding). As the 



160

 
 



161

Figure A1.1 
Low Depth Sequencing Captures Embryonic Stages 
A. Correlation Matrix of pilot experiment. Boxes at the top represent paternal diet 
(yellow for Control, green for Low Protein, purple for High Fat, and blue for 
Caloric Restriction) with the row being the embryonic stage.  
B. Correlation between a library sequenced at low depth (~200,000 reads) on the 
y axis and high depth (>1,000,000 reads) on the x axis. Correlations between 
high depth tertiles and low depth of those same genes shown above the scatter 
plot.  
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table depicts, several sample sets had numerous embryos from each stage (2C, 

4C, M, and B) and from fathers on different diets, which makes these sets 

extremely useful for determining kinetics of development for embryos with shared 

backgrounds.  

 

 Principal component analysis (PCA) was performed on the first 241 samples 

sequenced at high depth. It reveals a trajectory of gene expression changes from 

the 2-cell stage to the morulae stage based off the genes determining the most 

variance (PC1), while the third principal component (PC3) segregated these early 

stage embryos further from blastocysts (Figure A1.2A). Gene ontology analysis 

finds an enrichment of reproductive annotations for two cell embryos, while 4-cell 

and morula samples become enriched for metabolic processes and cell cycle 

annotations. In the gene ontology analysis, blastocysts are enriched for 

developmental categories. When separating samples out by stage, trends of 

separation can be seen between different diets, but a clear distinction is not 

prevalent (Figure A1.2B for morulae stage embryos). This clustering analysis 

reveals that pre-implantation stages are transcriptionally distinct, while diet 

provides minimal means to separate staged embryos.  

 

The clustering analysis revealed that paternal diet did not induce substantial 

perturbations  to development. Rather, the effects of diet were subtler, potentially  
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Figure A1.2 
Principal Component Analysis of 241 Single Embryo RNA-Seq Samples 
A. Scatterplot of PC1 (x axis) and PC3 (y axis) from PCA (using 10 principal 
components). Embryonic stages are denoted by different color dots. PC2 was not 
used to plot results against PC1 because it also largely separated 2 cell embryos 
from every other stage. 
B. Scatterplot (as in (A)) of all Morula stage embryos separated by diet. Notice 
overlap between different diets. 
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propagated through development to result in offspring metabolic phenotypes 

(Lane et al., 2014). To find early embryonic transcriptional changes that might 

result in later metabolic phenotypes, we searched for genes that were altered at 

the 2-cell stage of development (Figure A1.3A). Interestingly, a number of genes 

altered by Low Protein diet were located adjacent to MERVL elements, and are 

controlled by the MERVL LTR (Figure A1.3B-D). MERVL forms chimaeric 

transcripts with its associated genes. These genes are specifically expressed at 

the 2C stage and considered to be demonstrative of the totipotent state 

(Macfarlan et al., 2012). Included in these genes is Trim43c (Figure A1.3C), 

which is only expressed in pre-implantation embryos (Stanghellini et al., 2009). 

Additionally, some MERVL controlled genes are essential for embryogenesis, 

such as Zscan4b, which is responsible for telomere maintenance in early 

embryos (Dan et al., 2014). This discovery phase is ongoing, and will be 

important for determining paternally effected transcripts in the early embryo. 
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Figure A1.3 
Paternal Diet-Induced Expression Changes in 2-cell Embryos 
A. Single-embryo RNA-Seq data for 62 2 Cell stage embryos – 37 Control and 25 
Low Protein embryos – generated via in vitro fertilization. Data here were zero 
centered according to embryo batches, and transcripts with >25 ppm average 
abundance were assessed for significant effects of diet on mRNA abundance.  
B. Schematic showing genomic context for four MERVL-associated genes. Other 
MERVL-associated genes, such as the Tdpoz cluster, are not as close to MERVL 
LTRs, but instead are located in large MERVL-rich genomic clusters, and have 
also been shown to be part of the MERVL-regulated gene expression program 
(Macfarlan et al., 2011).  
C. Low Protein embryos exhibit significant repression of Trim43c, a known 
MERVL target. Bars show Trim43c expression (cpm), for 2C embryos derived 
from Control or Low Protein sperm, as indicated.  
D. Cumulative distribution plots for MERVL targets (defined as those upregulated 
>2- fold in MERVL-positive ES cells (Macfarlan et al., 2012)), and all remaining 
genes, showing the percentage of all genes with the average Log2 (Low 
Protein/Control) as indicated on the x axis. The separation between these curves 
shows a significant overall shift to lower expression of MERVL targets in 2C 
embryos derived from Low Protein sperm.  
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Conclusion 

 

We have shown that the transcriptomes of each stage of pre-implantation 

development are distinct. These transcriptomes transition from oocyte dominated 

expression patterns through totipotency to the expression of pluripotent and 

extra-embryonic markers. Others have shown that individual cells from morulae 

express either pluripotent or extra-embryonic markers, revealing that these cells 

have initiated the first differentiation steps (Guo et al., 2010). The cells that 

contribute to the trophectoderm are located on the exterior of the morula, while 

those destined to become the inner cell mass are internal.  

 

Our analysis has revealed that diet alters totipotency genes in the early embryo, 

with many of these being controlled by MERVL elements (Macfarlan et al., 2012). 

The fact that we see differences in expression of these genes at the 2-cell stage 

suggests that the kinetics of early embryonic development are altered by paternal 

diet. Since MERVL elements are silenced by cytosine methylation independent 

mechanisms in ESC, including Kap1 and G9a, our results intimate that diet alters 

repression by these factors during early embryogenesis (Maksakova et al., 

2013). Diet could possibly alter the transition between cytosine methylation 

dependent silencing of these elements in sperm to the H3K9me2 mediated early 

embryonic repression. Interestingly, numerous 2C-specific genes increase 

expression in TET TKO cells, and hydroxymethylation has been mapped to these 
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regions, again leading to the inference that the kinetics of reprogramming are 

altered by paternal diet (Lu et al., 2014). Future studies will be needed to 

determine if demethylation over MERVL elements following fertilization is 

changed by paternal diet. 

 

Subsequently, altered developmental kinetics during early embryogenesis can 

change the ratio of trophectoderm to ICM (Binder et al., 2012; Lee et al., 2015). 

Reduction of trophectoderm leads to less placentation during uterine 

development, and has been associated with lower embryonic and birth weights. 

Therefore, a number of responses to manipulating pre-implantation kinetics may 

lead to disrupted development, and ultimately metabolic phenotypes in adults. 

The link between changes in pre-implantation development and later alterations 

in placentation needs to be investigated in the future.  

Methods 

In vitro fertilization 

In vitro fertilization was performed according to “Manipulating the Mouse Embryo” 

Second Edition (Hogan, 1994).  Superovulated FVB/NJ mice were used as egg 

donors and sperm was isolated from males fed dietary regimes as above. 

Isolated sperm were capacitated in HTF for 30 minutes at 37°C. Fertilization took 

place in 250 mL HTF media covered in mineral oil, pre-gassed in 5% CO2 at 
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37oC.  Fertilized embryos were developed in KSOM (Millipore - MR-020-P) until 

the 2-cell stage. Swiss Webster Females between 25 and 35 grams were used 

as 2-call stage embryo recipients via unilateral oviduct transfer. 

 

Single-Embryo RNA-Seq 

Single-Embryo RNA-Seq was performed according to the homemade Smart-

Seq2 protocol (Trombetta et al., 2014). Briefly, embryos were lysed in buffer 

containing TCL (Qiagen #1031576) containing 1% BME for 10 minutes at room 

temperature. RNA was isolated with 2.2X RNA-SPRI beads (Beckman Coulter 

#A63987). Reverse transcription was performed on isolated RNA using 

Superscript II (Life Technologies #18064-014) with additional betaine and MgCl2, 

using a 3’ poly-dT primer that attaches a PCR adapter and a 5’ template 

switching oligonucleotide that attaches a homotypic PCR adapter. PCR 

amplification used a single PCR primer and KAPA HiFi Hotstart (KAPA 

#KK2601). PCR cleanup was performed with XP-SPRI (Beckman Coulter 

#A63881). Product input for Nextera library construction was normalized with 

measurements from qPCR for ActB and DNA concentration from Nanodrop. 

Library construction was carried out with Nextera XT DNA Sample Prep kits 

(Illumina #FC-131-1096), except that quarter reactions were used. Final libraries 

were sequenced on MiSeq and HiSeq machines. 
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Data Analysis 

Adapter sequences were trimmed. Bowtie was used to map paired end reads. 

RSEM was used to calculate expression levels. R packages were used to 

perform correlation analysis and PCA analysis. Gene Ontology results from the 

server at geneontology.org. TTests were used to look for differential gene 

expression. 
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