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ABSTRACT 

The development of RNAi based technologies has given researchers the tools to 

interrogate processes as diverse as cancer biology, metabolism and organ 

development.  Here I employ genome-wide shRNA screens to discover the 

genes involved in two different processes in carcinogenesis, oncogene-induced 

senescence [OIS] and epigenetic silencing of tumor suppressor genes [TSGs].   

 

OIS is a poorly studied yet significant tumor suppressing mechanism in normal 

cells where they enter cell cycle arrest [senescence] or programmed cell death 

[apoptosis] in the presence of an activated oncogene. Here I employ a genome-

wide shRNA screen and identify a secreted protein, IGFBP7, that induces 

senescence and apoptosis in melanocytes upon introduction of the oncogene 

BRAFV600E. Expression of BRAFV600E in primary cells leads to synthesis and 

secretion of IGFBP7, which acts through autocrine/paracrine pathways to inhibit 

BRAF-MEK-ERK signaling and induce senescence and apoptosis. Apoptosis 

results from IGFBP7-mediated upregulation of BNIP3L, a proapoptotic BCL2 

family protein. Recombinant IGFBP7 has potent pro-apoptotic and anti-tumor 

activity in mouse xenograft models using BRAFV600E-postive melanoma cell lines. 

Finally, IGFBP7 is epigenetically silenced in human melanoma samples 

suggesting IGFBP7 expression is a key barrier to melanoma formation.   

 
Next I investigated the factors involved in epigenetic silencing in cancer. The 

TSG p14ARF is inactivated in a wide range of cancers by promoter 
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hypermethylation through unknown mechanisms. To discover p14ARF epigenetic 

silencing factors, I performed a genome-wide shRNA screen and identified 

ZNF304, a zinc finger transcription factor that contains a Krüppel-associated box 

[KRAB] repressor domain.  I show that ZNF304 binds to the p14ARF promoter and 

recruits a KRAB co-repressor complex containing KAP1, SETDB1 and DNMT1 

for silencing. We find oncogenic RAS signaling to promote the silencing of p14ARF 

by USP28-mediated stabilization of ZNF304. In addition I find ZNF304 to be 

overexpressed in human colorectal cancers and responsible for hypermethylation 

of over 50 TSGs known as Group 2 CIMP marker genes. My findings establish 

ZNF304 as a novel oncogene that directs epigenetic silencing and facilitates 

tumorigenicity in colorectal cancer. 
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CHAPTER I:  INTRODUCTION 

The latter half of the 20th century saw a revolution in understanding of biological 

processes that continues till this day.  From the 1962 Nobel Prize winning work of 

James Watson and Francis Crick’s discovery of deoxyribonucleic acid’s [DNA’s] 

double-helical structure and its base-paired nucleotide encoded information, to 

the sequencing of the entire human genome, we have been forced to rethink how 

biological systems function and are related to one another.  One field that has 

experienced a dramatic paradigm shift is the biology of cancer.  Once a 

mysterious scourge of man is now revealed to be a complex disease with 

environmental, genetic and epigenetic components [Watson and Crick, 1953].  

 

Cancer is not new to the human race and there is evidence that it existed in 

ancient Egypt and Greece.  For instance, cancer has been found in the form of 

growths in the bones of Egyptian mummies that are typical of osteosarcoma 

[History of Cancer, ACS, page 1].  Furthermore, the very word carcinoma 

originates in Greece from the “Father of Medicine,” Hippocrates, and evokes the 

crab-like appearance of the growths [History of Cancer, ACS, page 1].  

Furthermore, environmental contributors to the disease were very obvious in 

certain instances.  The link between chimney soot and scrotal cancer provides a 

clear example, where the soot collected in the folds of skin on the scrotum in 

chimney sweeps [History of Cancer, ACS, page 4].  There were also clear 

examples of genetic components early on as well.  Families that exhibited an 
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increased frequency of particular malignancies that were passed down from one 

generation to another were the first clue that cancer can be a genetic disease.  

Indeed, one of the first tumor suppressor genes [TSG], RetinoBlastoma [RB] was 

discovered through familial linkage analysis [Weinberg, 2007, pgs. 214-216].  

 

Cancer is largely a disease of age, meaning that the incidence increases among 

the older segment of the population.  This suggests that cancer is a complex 

disease that requires a significant amount of time to acquire the right combination 

of components for progression.  Another way to think about this paradigm, in light 

of the genomic revolution, is that cancer is a multi-gene disease that requires a 

certain combination of genetic alterations in order to progress.  The average 

mutation rate of the human genome is rather constant and it takes time for 

mutations to accumulate.  Hence the disease is more likely in an older individual 

who has had more time to acquire mutations.  This dependence on increased 

mutations in the genome explains how certain compounds that mutate the DNA 

or affects its ability to repair itself are carcinogenic.  A carcinogen increases the 

abundance of mutations and thus increases the likelihood that a detrimental or 

cancer-causing combination will occur [Weinberg, 2007, pgs. 400-402]. 

 

Cancer is a disease that manifests as uncontrolled growth of a cell population.  

Unregulated proliferation is a key phenotype for several reasons.  This 

proliferation increases the size of the aberrant population and increases the 
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likelihood that a member of the population will acquire further changes that will 

allow progression to the more aggressive phenotypes.  Increased proliferation 

also essentially increases the likelihood that a single cell will acquire more 

mutations.  So there is a distinct Darwinian process that takes place in cancer; 

one manifested at the population level and another at the individual level.   

 

As the tumor population grows, there is a greater chance that it will advance to 

further stages of the disease.  This tumor progression is ultimately dependent on 

a sub-population that gives rise to other members within the tumor.  Cancer cells 

often display immortalization or a bypass of the finite number of cell divisions a 

cell can undergo.  This is a critical phenotype that frees the pre-cancerous cell 

population from the limits of hereditary evolution. 

 

Normal cells can duplicate themselves a certain number of times before they 

stop growing.  This is called the “Hayflick Limit” after Leonard Hayflick who 

described this process definitively in 1961.  At the time, researchers believed that 

cells transplanted into cell culture conditions would be immortal and never stop 

replicating.  However while preparing for an experiment, Hayflick noticed his 

cultures would stop growing in cell culture after a while.  Hayflick believed there 

to be some sort of counting mechanism inherently in cells to tell how old they 

were.  Therefore, with cytologist Paul Moorhead, Hayflick performed an 

experiment where he took “old” male fibroblast cells and cultured them in equal 
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numbers with a “young” population of female fibroblasts.  Subsequent analysis 

revealed that there were only the “young” female fibroblasts after a certain 

amount of time.  Therefore the male cells somehow knew they were old and 

stopped growing irrespective of the cell culture conditions [Weinberg, 2007, pgs. 

358-360]. 

 

The Hayflick limit describes a widely observed phenomenon and has now been 

explained using modern molecular biological approaches.  The 2009 Nobel Prize 

winning work of Elizabeth Blackburn, Carol Greider and Jack Szostak revealed 

that at the end of the chromosomes in the genome, there are specialized DNA 

sequences that create a protective structure called telomeres.  These regions are 

unable to be completely replicated when DNA is synthesized during cell division.  

With each cell division, the telomeres shorten a defined length.  Therefore the 

length of the telomere region correlates with the age of the cell; longer telomeres 

are in a young cell, shorter telomeres are in an older cell.  Once a telomere is 

eroded, the cell undergoes programmed cell death, called apoptosis.  This 

counting mechanism, detection of telomere erosion and apoptosis ultimately 

remove older and more mutated members from the population of cells.  Hence 

this acts as a tumor suppressive system and must be disrupted in a tumor cell 

population [Weinberg, 2007, pgs. 368-370]. 
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As described before, a normal population of fibroblasts can be put into culture 

and one will eventually see a significant drop in growth rate.  This drop in growth 

rate is due to two related phenomenon, “apoptosis” and “senescence”.  

Apoptosis is programmed cell death or suicide whereas senescence is 

irreversible growth arrest.  A senescent cell exits the cell cycle but lingers 

afterwards and displays a distinct morphology.  Given the shear number of cells 

that can be analyzed in cell culture experiments [on the order of millions], there 

can be exceptions to this apoptosis and senescence induction.  After the massive 

drop in growth rate, termed “crisis”, one can continue to culture the plates 

[Weinberg, 2007, pgs. 369-372].  Eventually there will be cell populations that 

regrow and take over the plate again.  These cells are “immortalized” and can 

now be cultured indefinitely [Weinberg, 2007, pgs. 361-362].  These cells are no 

longer constrained by telomere shortening.  Either they have subverted the short 

telomere detection system or they have repaired their telomeres through an 

enzyme called telomerase that rebuilds the eroded ends of chromosomes 

[Weinberg, 2007, pgs. 376-380]. 

 

Immortalization is a very early step in carcinogenesis since it allows these cells to 

expand their population and in the process acquire additional mutations.  Hence, 

immortalization is the key criterion that allows the population and individual to 

undergo Darwinian evolution to the more advanced stages of cancer.  Since a 

cell never dies, it [and its progeny] is now capable of evolving.  If their sequence 
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of acquired mutations is advantageous to cancer progression, then they will 

begin to represent more and more of the total population.  In the process the 

tumor, a bulk population of cancer cells, itself has evolved to be more adapted to 

its new environment and displays a more aggressive and advanced phenotype. 

 

Due to the requirement for certain mutational events to take place, cancer 

possesses another characteristic property in that their global DNA integrity is 

compromised.  Cancer cells often display an increased mutation frequency 

compared to normal cells but they can also be unstable at the chromosomal level 

[Weinberg, 2007, pgs. 423-424].  Many cancer cells are aneuploid, meaning they 

have abnormal numbers of chromosomes.  There can significant numbers of 

extra chromosomes or conversely there can be missing chromosomes 

[Weinberg, 2007, pgs. 11-13]. To complicate things further, the chromosomes 

can break and refuse incorrectly thereby generating translocations.  These 

translocations are prevalent in cancer since they often times fuse two different 

genes [Weinberg, 2007, pgs. 109-115].  This aberrant genome integrity ultimately 

contributes to the genetic alterations required for cancer and drives the disease 

forward to more advanced phenotypes. 

 

A more advanced stage of cancer is characterized by several phenotypes such 

as defective cell death, self-sufficient pro-growth signaling, defective anti-growth 

signaling, angiogenesis [de novo growth of new blood vessels] and finally, 
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invasion into nearby and distant sites within the body [Hannahan and Weinberg, 

2011] A typical tumor progression involves the growth of the primary tumor at a 

site within the body.  Here the tumor mass increases and it evolves many of the 

cancer phenotypes previously mentioned.  As nutrients and oxygen become 

depleted, angiogenesis must take place and new blood vessels must be grown.  

This process is very disordered and the blood vessels are often times leaky and 

irregular, sometimes described as having a “tortuous” appearance [Weinberg, 

2007, pgs. 559-563].   

 

As the tumor itself grows, it is increasingly putting pressure on the surrounding 

tissue and membranes.  Eventually, the tumor breaks through these constraints 

and starts to invade local regions.  This is a critical stage since the tumor can 

now disseminate to other parts of the body and start new tumors.  This invasion 

often results in tumor cells being shed and ultimately entering both the de novo 

blood vessels formed during angiogenesis as well as the normal blood and 

lymphatic vessels that reside nearby.  Once in the vascular or lymphatic system, 

tumors cells can travel to distant parts of the body.  Here they can enter new 

tissue and reside, sometimes for many years, until they evolve or acquire the 

ability to grow in this new environment [Weinberg, 2007, pgs. 26-28, 594-597].   

 

This entire invasion process is termed “metastasis” and presents itself as one of 

the greatest hurdles in treating cancer.  Surgery is very effective at removing the 
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primary tumor and eradicating this founding population.  However, once a cancer 

has spread, it is difficult or impossible to remove every cell that has left the 

primary site. 

 

So how does a normal cell become a cancer cell and acquire all these abnormal 

traits and abilities?  An early clue that cancer is a genetic disease and DNA, and 

with its encoded genes, are involved came from a rather crude but unequivocally 

significant experiment by Manuel Perucho [Perucho et al., 1981].  The DNA from 

transformed cells was isolated and subsequently transfected into normal mouse 

fibroblasts using the calcium phosphate co-precipitation method.  Unexpectedly, 

the normal fibroblasts began to display cancer cell phenotypes such as increased 

proliferation and the ability to form a tumor when explanted into mice.  Therefore 

the ability to become a cancer cell was an inherent property of the DNA.  Thus 

one can conclude that cancer is a disease with genetic contributing factors. 

 

Since cancer involves so many complex phenotypes and cellular processes, 

there must be a tremendous number of genes involved.  Through the work of 

countless individuals, it has emerged that there are two major kinds of cancer 

genes, those that promote cancer phenotypes and those that prevent cancer 

phenotypes.  Cancer promoting genes are termed “oncogenes” and they derive 

from normal cellular genes termed “proto-oncogenes.”  Proto-oncogenes are 

altered by DNA mutation or viral genomes and acquire the ability to function as 
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an oncogene.  An oncogene induces cancer and has the ability to transform 

normal cells into cancer cells [Weinberg, 2007, pgs. 77-79].  Conversely the 

genes responsible for cancer prevention are known as “tumor suppressor genes” 

[TSGs].  These genes restrain cell growth and maintain the integrity of the 

genome [Weinberg, 2007, pgs. 209-210].  Oncogenes have their activity 

increased while TSGs have their activity decreased in cancer.  There are 

numerous ways in which a cell can have gene activity increased and decreased 

and all can be found in diverse examples of cancer.   

 

Oncogenes can be hyper-activated by a number of events such as point mutation 

to mimic an activated state, point mutation or deletion of an inactivation domain, 

translocation to a new promoter or enhancer, translocation with an 

oligermerization domain of another protein [where oligermerization enhances 

activity], genomic amplification, epigenetic derepression, and viral delivery of a 

proto-oncogene [Weinberg, 2007, pgs. 103-115].  Analogous to the tumor DNA 

transfection experiment mentioned earlier, viral delivery of exogenous DNA 

resulted in the discovery of many proto-oncogenes such as SRC, ABL, KIT, H-

RAS, K-RAS and MYC [Weinberg, 2007, pgs. 57-58, 81].   

 

Francis Peyton Rous’s 1966 Nobel Prize winning discovery, resulted from studies 

with a chicken sarcoma.  Rous observed that preparations from the sarcoma 

tissue could then be used to generate a new sarcoma in a disease-free Plymouth 
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Rock chicken.  These preparations were then prepared to be devoid of live 

sarcoma cells by grinding them up with sand and filtering the solution.  This cell-

free solution could also cause sarcomas when injected into chickens.  This 

cancer-causing property of the lysate was the first defined biological preparation 

to study tumor formation [Weinberg, 2007, pgs. 58-61].  It was later revealed that 

the preparation contained a retrovirus, named Rous Sarcoma Virus [RSV] after 

its discoverer.  The genetic elements of RSV were later determined and when 

compared to related viruses such as Avian Leukemia Virus [ALV], it was found to 

have an extra gene called SRC, named after the type of cancer it causes, 

sarcoma [Weinberg, 2007, pgs. 75-76].   

 

Some time later, the 1989 Nobel Prize winning work of Harold Varmus and 

Michael Bishop discovered a cellular version of SRC, called c-SRC.  The viral 

version, termed v-SRC, lacks a C-terminal phosphorylation domain found in c-

SRC, which inactivates the protein.  Therefore v-SRC is a constitutively active 

version of the proto-oncogene, c-SRC [Weinberg, 2007, pgs. 76-82].  Further 

studies revealed that c-SRC is a tyrosine kinase that is involved with cell 

movement and growth.  Enhanced activity of c-SRC, through point mutation or v-

SRC, causes cell transformation upon introduction. 

 

Another mechanism to increase the activity of a gene is genomic amplification.  

In this instance, the DNA sequence encoding the gene is unaltered yet the 
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number of copies of the gene increases.  There are several ways that this can 

occur but all require some compromise in the genomic integrity of the cell.  Cells 

that display aneuploidy for instance might favor members of the population that 

harbor extra copies of oncogenes.  MYC, a transcription factor, is one such 

oncogene and is overexpressed in various carcinomas such as pediatric 

neuroblastoma, Burkitt’s lymphoma, ovarian cancer and lung cancer [Meyer and 

Penn, 2008].  Genomic analysis of copy number variations in neuroblastoma 

samples compared with normal tissue reveals an abundance of copy number 

gains in the region containing the MYC gene, therefore it is amplified at a 

genomic level.  MYC is a powerful oncogene that regulates up to 10% of genes 

by some estimates [Meyer and Penn, 2008].  More recent evidence suggests that 

total transcription levels increase when MYC is upregulated [Meyer and Penn, 

2008].  Given the plethora of transcriptional targets of MYC, the mechanistic 

details of its transforming ability are an area of intense research. 

 

Alternatively and in contrast to solid tumors, MYC expression can be increased 

by genomic rearrangement.  In Burkitt’s lymphoma samples, it was revealed that 

MYC was frequently fused with the Immunoglobulin Heavy [IgH] Translocation of 

the MYC gene with the IgH chain promoter and enhancer causes dramatically 

escalated MYC expression and mimics MYC amplification [Weinberg, 2007, pgs. 

109].  Mouse models of the MYC translocation develop clonal lymphoma in the B 
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cell compartment, thus mimicking the disease state it was originally identified 

within [Adams et al. 1985]. 

 

One of the most prevalent and widely studied forms of proto-oncogene activation 

is point mutation.  Point mutations in various signaling molecules have been 

implicated in virtually every type of human cancer.  Often times these single 

nucleotide mutations result in a protein that is constitutively active.  In the case of 

kinases, their phosphorylation activity may be hundreds of times higher than their 

wildtype counterparts.  Therefore a single mutation in one allele can have a 

dominant phenotype and be oncogenic.   

 

Receptor tyrosine kinases [RTKs], which are responsible for growth factor 

signaling and downstream phosphorylation cascades are prime targets of point 

mutations [Weinberg, 2007, pgs. 129-140].  An activating mutation in an 

upstream RTK can cause a dramatic effect downstream due to the signal being 

propagated and amplified at every tier of the kinase cascade.  Some signaling 

cascades are more frequently targeted due to their potent ability to accelerate 

cell growth.  Alternatively the ease of causing a specific activating point mutation 

may account for its predominance in cancers.  For instance, a valine to glutamic 

acid substitution in B-RAF at position 600 results from a single nucleotide 

substitution, thymine 1799 to adenine.  Consequently, the enzymatic activity of 

the B-RAF increases significantly and results in constitutive signaling.  B-RAF a 
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Rapidly Accelerated Fibrosarcoma [RAF] family serine/threonine kinase is a 

critical upstream regulator of the pro-growth mitogen-activated protein kinase 

[MAPK] pathway.  The B-RAFV600E oncogene is a major driver of several human 

cancers such as melanoma, colorectal cancer, papillary thyroid cancer and non-

small cell lung cancer [Davies et al., 2002].   

 

In a parallel fashion, the RAS subfamily of small guanosine triphosphatases 

[GTPases] is found to be point mutated frequently in human cancers [Karnoub, 

A.E. and Weinberg R.A., 2008].  First identified in rat sarcomas, hence the name 

RAS, their oncogenic potential was revealed via their viral homologs in two 

different rat sarcoma viruses [Weinberg, 2007, pg 99].  RAS GTPases are small 

single-subunit G proteins that have two conformational positions, a GDP-bound 

or GTP-bound state.  The GTP-bound state results in downstream 

phosphorylation and signaling whereas the GDP-bound state is functionally 

inactive [Weinberg, 2007, pgs. 150-153].  Similar to the B-RAFV600E mutation, a 

single nucleotide substitution from guanine to adenine at position 38 results in a 

glycine to aspartic acid change at residue 13 in the protein.  Consequently RAS 

is now locked in a GTP-bound state and is constitutively active.  One of RAS’s 

target substrates is the RAF family kinases such as B-RAF.  Therefore RAS 

activation also results in enhanced MAPK pathway signaling in addition to other 

kinase signaling cascades such as the phosphoinositide 3-kinase [PI3K] pathway 

[Weinberg, 2007, pgs. 173-184].   
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Further upstream from RAS [and similar signaling factors] reside the growth 

factor receptors called RTKs. RTKs traverse the cellular membrane and require 

extracellular ligand binding in order for downstream signaling to occur.  

Extracellular ligand binding causes dimerization with other local RTKs and the 

close proximity of the two monomers allows trans-phosphorylation at tyrosine 

residues in partnered receptors.  These newly phosphorylated residues serve as 

binding sites for additional proteins that facilitate signal transduction throughout 

the cytoplasm.  Some binding partners include SRC, SOS [an activator of RAS] 

and PI3K.  These partners act as intracellular messengers of extracellular 

conditions via the RTKs [Weinberg, 2007, pgs. 166-173].   

 

RTK signaling is increased numerous ways such as genomic amplification and 

point mutations.  In contrast to B-RAF and RAS, there are numerous potential 

point mutants found for the RTK Epidermal Growth Factor Receptor [EGFR].  

There are particular “hot spots” found in the protein that have a plethora of 

potential mutations and all are found within the tyrosine kinase domain.  For 

instance the tyrosine kinase activation domain L858R mutation occurs about 

43% of the time in EGFR mutant lung cancer but nucleotide-binding loop 

G719C/S/A mutations account for 5% of mutations as well.  Furthermore these 

two sub-regions account for less than half of all EGFR mutations suggesting that 

there are multiple avenues to achieve enhanced kinase activity in EGFR [Pao, 

W. and Miller, V.A., 2005].   
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As mentioned previously, cancer is a complex multi-gene disease; ipso facto 

numerous genetic alterations must combine to achieve the transformed 

phenotype.  However there must be certain combinations that cooperate better 

than others.  In fact within human tumors we know that RAS and RAF mutations 

are mutually exclusive due to the fact that they are both activators of the same 

MAPK signaling pathway [Li W.Q. et al. 2006] A wide variety of cell culture and 

mouse models has found there to be an overarching theme among oncogenes 

and their cooperation.  Intracellular signaling oncogenes, such as RAS, 

cooperate and give rise to a more aggressive cancer phenotype when combined 

with nuclear transcription factors that have oncogenic properties such as MYC.  

For example in rat embryonic fibroblast [REF] cell culture experiments, there is 

low transformation efficiency when activated RAS or MYC is added alone.  

However when both are introduced together, the REFs now form foci, a 

characteristic of proliferating cancerous cells [Weinberg, 2007, pgs. 427-429].   

 

We will now shift focus to the other class of cancer genes, TSGs and their 

history, properties and how they interact with oncogenes.  Early studies with 

heterokaryons, or fused cells, revealed a cell intrinsic tumor suppression activity.  

Normal mouse cells were mixed with a radio-labeled population of tumor cells.  

They were then induced to fuse using murine Sendai virus.  The resulting cell 

fusion was no longer transformed and could not form tumors when explanted on 

naïve mice.  Therefore there was some cellular component that was capable of 
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suppressing the tumor phenotype.  The identity and nature of this component 

became an area of intense research because of its obvious role in stopping 

cancer [Weinberg, 2007, pgs. 210-213].   

 

As mentioned previously, cancer is a disease of age where the older you get, the 

more likely you are to develop the right combination of genetic attributes that 

allow the disease to progress.  However, this is not always the case.  

Unfortunately, there are early-onset syndromes where patients contract the 

disease in childhood or young adulthood.  These individuals often times are not 

the only members of their family to experience this disease.  Familial syndromes 

with a cancer predisposition have been invaluable to the study of the disease 

since they represent a human genetic model.   

 

Retinoblastoma syndrome was the fertile ground that resulted in the discovery of 

one of the first TSG.  Retinoblastoma is a cancer that forms within the retina of 

the eye usually resulting in blindness and in very rare cases, death.  There are 

two forms of retinoblastoma, non-heritable or sporadic [no prevalence in the 

family history] and heritable where an immediate relative had the disease.  

Sporadic retinoblastoma presents the disease later in life and it is unilateral, or 

only in one eye.  Heritable retinoblastoma presents early in life and can be 

screened for within the first months of life via an eye exam.  Heritable 

retinoblastoma has a very high likelihood of presenting multiple tumors in both 
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eyes, known as bilateral retinoblastoma.  Due to its early detection and low 

mortality, afflicted individuals can be cured and go on to live a normal 

reproductive life.  However, their progeny now carry the risk of developing the 

disease as well [Weinberg, 2007, pgs. 214-216].   

 

Analysis of disease presentation among numerous heritable retinoblastoma 

families gave rise to a seminal theory in cancer biology called “Knudson’s Two 

Hit Hypothesis”.  In 1971 Alfred Knudson formulated a statistical analysis of 

disease presentation and age of onset.  He noted that heritable retinoblastoma 

occurred earlier than the sporadic form of the disease and that the inherited form 

is almost always found in both eyes.  When age of onset is plotted against 

percentage of disease-free population, the two groups of retinoblastoma patients 

differed significantly.  The heritable retinoblastoma group formed a very linear 

relationship.  In contrast, the sporadic retinoblastoma group had a later onset and 

a more gradual curve.  Therefore Knudson hypothesized that cancer is a disease 

that requires multiple genetic alterations or “hits”.  Children with heritable 

retinoblastoma were born with one “hit” already and were more likely to acquire 

the second “hit” than normal children [Weinberg, 2007, pg 216].   

 

When applied to genes, this hypothesis suggests that one of two copies of a 

gene is disrupted in children with heritable retinoblastoma.  They will acquire a 

second inactivating mutation at a rate concordant with the normal cellular 
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mutation rate, thus the linear relationship between time and frequency of 

disease, in other words, a quadratic kinetic relationship.  However, an individual 

in the sporadic group started out with two normal copies of the gene.  Therefore 

they will acquire a mutation in the gene at the same rate as the heritable group.  

However they will then need to acquire a second mutation in that same cell in 

order to cause retinoblastoma.  This second hit has the same probability of 

occurring as the first but the overall rate is the normal rate multiplied against the 

normal rate.  This results in a significantly lower rate in the sporadic group versus 

the heritable group, hence the later onset in the sporadic group and a polynomial 

kinetic relationship.  For instance, if the average rate is one mutation in the gene 

of interest every 5 weeks, then the rate for the sporadic group is two mutations in 

the genes of interest every 25 weeks.  The conclusion from this theory is that a 

single copy of a tumor-suppressing gene is sufficient for its function.  In order to 

have the disease progress, both copies of the gene must be inactivated.  The 

loss of the second copy is known as loss of heterozygosity [LOH] [Weinberg, 

2007, pgs. 216-223].   It is interesting to note that the inheritance pattern among 

heritable retinoblastoma families suggests a dominant gene is being inherited.  

Yet it is the disease that is inherited dominantly, not the genes, which display a 

recessive mutation pattern.   

 

Later through a technique called restriction fragment length polymorphism 

[RFLP], the gene responsible for preventing retinoblastoma was identified 
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[Weinberg, 2007, pgs. 222-223].  Called Rb, for retinoblastoma, it turned out to 

be a very important gene in cell cycle regulation.  Rb is normally bound to the 

E2F transcription factor that is responsible for S phase transcription and 

progression through cell division.  Rb binding prevents E2F-dependent 

transcription and the cells do not divide.  However when Rb becomes 

hyperphosphorylated, it cannot bind E2F and S-phase progresses.  Therefore 

individuals with absent or defective Rb genes have uncontrolled cell growth and 

a much higher propensity for cancer [Weinberg, 2007, pgs. 277-284].   

 

In contrast to retinoblastoma, Li-Fraumeni syndrome presents individuals with 

many different types of cancer.  Analysis of family trees revealed a dominant 

inheritance pattern with many afflicted individuals being immediately related 

[Weinberg, 2007, pg 333].  Due to the diversity of cancers presented in Li-

Fraumeni syndrome patients we can infer that there is a critical, or more general, 

TSG being inactivated in this syndrome.  Through numerous studies by Lionel 

Crawford, David Lane, Arnold Levine, Lloyd Old, Wafik El-Deiry and Bert 

Vogelstein, the identity of this tumor suppressor was determined to be a 44 kilo 

Dalton [kDa] protein called TP53, or tumor protein 53 because it ran at around 53 

kDa on a sodium dodecyl sulfate polyacrylamide gel electrophoresis [SDS-

PAGE] gel [see for example Linzer D.I.H and Levine A.J., 1979; Lane, D.P. and 

Crawford, L.V. 1979; De Leo A.B. et al. 1979; Crawford, L.V. et al., 1982; el-

Deiry, W.S., et al. 1992 and Baker, S.J. et al., 1990].  When TP53 is deleted in a 
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mouse model, the mice develop mostly lymphomas but when a mouse harbors a 

mutation found in Li-Fraumeni syndrome they develop a wide spectrum of tumors 

analogous to Li-Fraumeni patients.  Both mice model develop cancer with a 

greatly accelerated rate over normal or heterozygous mice.  Therefore we can 

conclude that TP53 is a broadly used and critical tumor suppressor in the body 

[Olive, K.P. et al., 2004 and Donehower, L.A., et al. 1992]. 

 

TP53 has been an area of intense research given its generalizability and 

importance in cancer prevention and is arguably the most widely studied protein.  

It is now widely accepted that TP53 is a central hub of many intracellular signals 

and executes a critical role in deciding the major decisions of a cell.  TP53 

integrates signals from DNA damage, oxygen levels, nucleotide abundance and 

oncogene signaling.  In return, TP53 tetramerizes with itself and turns 

transcription of genes on in a process otherwise known as transactivation.  The 

result of this transcriptional regulation is upregulating processes such as DNA 

repair, cell cycle arrest, senescence, apoptosis and the inhibition of 

angiogenesis.  For instance, if the cell is damaged, TP53 executes a 

transcriptional program to repair the cell or enter apoptosis.  Thus, TP53 is the 

essential factor that oversees the integrity of cells and maintains the “normalcy” 

of a cell population [Zilfou, J.T. and Lowe, S.W. 2009] 

 



21

Interestingly, TP53 was initially considered an oncogene not a tumor suppressor.  

It was originally cloned from a tumor cell, hence the name tumor protein 53.  The 

tumor cell was capable of expressing this protein since it was mutated and did 

not properly function.  This mutated form was capable of transforming normal 

cells and thusly acted as a dominant negative isoform with oncogenic properties 

[Weinberg, 2007, pgs. 310-314].  The nature of this ability to prevent the normal 

functioning TP53 in the fibroblasts is derived from the tetramerization 

requirement of protein.  Hence the TP53 gene must tetramerize with three 

additional wildtype copies of TP53 in order to function.  Otherwise the tetramer is 

“poisoned” and displays dysfunctional transcriptional activation of target genes. 

 

When mouse fibroblasts are introduced with an activated RAS allele and possess 

a wildtype copy of TP53, the cells fail to create foci in cell culture.  However if the 

fibroblasts lack TP53 due to genetic deletion in mouse model such as TP53 

knock out [KO] mouse embryonic fibroblasts [MEFs], the introduction of RAS 

allows foci to form.  Interestingly, the introduction of RAS to mouse fibroblasts 

that harbor a TP53C135V ultimately form many more foci than the TP53 deletion.  

This reinforces the previous theory that TP53 must tetramerize with three 

wildtype copies of itself to function.  However the TP53C135V version actually 

displays a gain of function in terms of foci formation [Weinberg, 2007, pgs. 310-

314].  This experiment also displays an important relationship between TSGs and 

oncogenes.  A TSG must be inactivated prior to oncogene activation.  Otherwise, 
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the TSG is able to detect the oncogene activation and in turn activate TP53 who 

in turn removes the oncogene-bearing cell from the proliferating population via 

apoptosis or senescence in a process known as OIS.  Despite the firm grasp 

researchers have on this concept, there is a poor understanding as to how this 

detection and execution takes place. 

 

This surveillance mechanism is critical for maintaining the integrity of the cell 

population.  The genes that have been identified related to this function are all 

TSGs and among some of the most well studied genes of all time.  One of the 

critical genes that detect oncogene signaling and up-regulates TP53 is p14ARF in 

humans and p19ARF in mouse.  p14ARF responds to hyperactivated cell growth 

signaling such as the RAS/RAF/MEK/ERK pathway or aberrant E2F 

transcriptional activity and subsequently inactivates the protein responsible for 

TP53 degradation, HDM2 [Weinberg, 2007, pgs. 318-323].  HDM2 is an E3 

ubiquitin ligase that targets TP53 for degradation by the proteasome.  p14ARF 

antagonizes HDM2 function in two ways, first it inhibits the E3 ubiquitin ligase 

activity and secondly it blocks the nuclear localization of HDM2 and in turn 

sequesters it in the nucleolus.  TP53, being a nuclear-localized transcription 

factor, is thusly protected from HDM2’s activities and is allowed to accumulate 

[Weinberg, 2007, pgs. 318-323].  Upon accumulation TP53 goes on to 

transactivate target genes that halt cell cycle progression and ultimately initiate 

either senescence or apoptosis. 
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p14ARF resides within a unique genetic locus with two other important cell cycle 

regulators in chromosome 9, p16INK4A and p15INK4B, and collectively they are 

known as the INK4-ARF locus.  p16INK4A and p15INK4B are classical cyclin-

dependent kinase [CDK] inhibitors that bind to CDKs and prevent their 

phosphorylation of Rb.  Therefore p16INK4A and p15INK4B maintain Rb binding to 

E2F and inhibit S-phase progression.  p16INK4A and p14ARF share exons two and 

three, yet have unique and distantly located first exons and promoters.  

Unexpectedly, p14ARF’s exons two and three are read in an alternative reading 

frame from p16INK4A, hence the name ARF [Sherr, C.J., 2006]. 

 

Mouse models that delete the endogenous copies of p19ARF display a marked 

increase in tumor frequency [Kamijo, T. et al. 1999].  Furthermore, p14ARF is 

absent in many different human cancers such as colorectal, bladder and breast 

cancer [Sherr, C.J., 2006].  It is interesting to note that the deletion of TP53 or 

p14ARF does not always cause cancer in cell lines or mouse models immediately.  

However, if an oncogene, such as RAS, is introduced subsequently, then there is 

a bypass of the OIS response and the transformed phenotype is much more 

readily obtained.  Given their paramount importance in tumor suppression and 

close genomic proximity, it should come as no surprise that genetic alterations 

that inactivate all three INK4-ARF genes are prevalent in cancer [Sherr, C.J., 

2006]. 
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Two such methods of inactivating large portions of DNA are genomic deletion 

and epigenetic silencing.  Genomic deletions result in losses of large segments 

of the chromosome.  While the INK4-ARF locus is frequently deleted in many 

cancers, the three genes in the INK4-ARF locus are also among the top ten 

genes epigenetically silenced in all cancers [Esteller, M., 2002]. Epigenetic 

silencing is an emerging element in the progression of cancer.  Epigenetics is 

defined as any heritable change in gene expression that does not result from a 

change in the DNA sequence.   

 

Two major classes of epigenetic silencing mechanisms exist; histone 

modifications and DNA methylation, and they are often concurrent with one 

another.  Histone modifications are believed to control the packaging and access 

of the DNA to other regulatory factors such as transcription factors and 

polymerases.  Histone proteins that package the DNA into higher order 

structures are regulated through post-translational modifications on their N-

terminal tails. The properties of these chemical moieties affect the binding affinity 

of the tails for DNA.  For instance, histone acetylation on lysine residues reduces 

the positive charge on the tails and thusly decreases their affinity for the 

negatively charged DNA backbone.  Therefore, histone acetylation is associated 

with active transcription while histone deacetylation is associated with 

transcriptional repression.  Another histone modification, methylation, can cause 

transcriptional repression.  Histone three lysines nine and twenty seven, when 
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methylated, result in a robust inhibition of transcription and an efficiently silenced 

state [Weinberg, 2007, pgs. 226-232].   

 

DNA hypermethylation is another characteristic of silenced chromatin and occurs 

at the 5’ position of the dinucleotide cytosine-phospho-guanine [CpG] residues, 

thus generating two 5-methylcytosine nucleotides anti-parallel to one another.  

However, it must occur at CpG dinucleotides so that the mark can be deposited 

on both strands of DNA and be stably inherited upon DNA synthesis.  

Furthermore, cytosine is inherently less stable than the three other base 

nucleotides and can spontaneously deaminate into uracil.  This results in a point 

mutation if it is not discovered by DNA surveillance mechanisms and repaired.  

This spontaneous deamination has created a depletion of CpG dinucleotides in 

the genome yet some areas are unusually rich in Cpgs..  These so called CpG 

islands have an overabundance of CpG dinucleotides and are typically found 

near the transcriptional start site [TSS] of genes.  Hypermethylation within these 

CpG islands results in a silenced chromatin state and loss of gene expression 

[Weinberg, 2007, pgs. 226-232].  

 

Despite the fact that there is a global hypomethylation of the genome that takes 

place in cancer progression, CpG island hypermethylation typically occurs at the 

promoters of TSGs and has been attributed to supporting cancer progression 

[Laird, P.W. and Jaenisch, R. 1994].  While existing as a prevalent phenomenon 
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in both cell culture and human cancers, the factors responsible for directing and 

silencing TSGs via CpG island hypermethylation remain to be elucidated. 

 

The discovery of ribonucleic acid interference [RNAi] or post-transcriptional gene 

silencing [PTGS] has greatly expanded the abilities of researchers to interrogate 

biological processes.  The discovery of RNAi resulted in Andrew Fire and Craig 

Mello receiving the 2006 Nobel Prize in Physiology and Medicine.  RNAi is a 

biological process where short double stranded RNA [dsRNA] molecules inhibit 

the expression of a gene in a sequence specific manner and promote the 

degradation of its messenger RNA [mRNA] [Mello, C.C. and Conte, D. Jr, 2004].  

There are multiple endogenous and exogenous forms of RNAi that rely on 

slightly different short RNA species.  For instance cells naturally harbor non-

coding microRNAs [miRNAs], which are the products of transcription yet they 

form characteristic secondary structures and are processed by the RNA-induced 

silencing complex [RISC].  Conversely synthetic short interfering RNAs [siRNAs] 

can be transfected into cells and are loaded into the RISC machinery and 

facilitate silencing of their target mRNA.  Finally, there are short hairpin RNAs 

[shRNAs] that display some of the properties of miRNAs and siRNAs and can be 

conveniently cloned into viral vectors.  These vectors [often retroviral or lentiviral 

backbone vectors for stable expression] carry a miRNA-like promoter sequence 

and transcribe a single-stranded RNA that has a characteristic stem-loop 

structure similar to a miRNA’s secondary structure.  However, the stem-loop 
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dsRNA is cleaved and gives rise to a siRNA-like molecule and executes gene 

silencing in a manner more similar to siRNAs. 

 

RNAi has become a tremendous tool due to its sequence-specificity and 

efficiency at silencing gene expression.  There are now entire libraries of RNAi 

molecules for both siRNAs and shRNAs that target every gene in the genome 

with multiple independent dsRNAs.  Therefore researchers can perform 

systematic loss of function screens where every gene in the genome is 

interrogated individually and with multiple independent RNAi molecules.  

Therefore any unknown biological process that can give a robust signal in an 

assay [such as cell survival or green fluorescence protein [GFP] fluorescence] 

can be coupled with an RNAi screen to determine the genes involved.  In this 

way novel genes and pathways can be identified and systematically followed up 

for their biological mechanism and function. 

 

With the acquisition of shRNA libraries I chose to investigate the biology of 

cancer using these tools.  Here I describe the interrogation of two distinct 

processes in cancer.  First I investigate the molecular players involved in OIS in 

melanocytes.  I find that upon introduction of the oncogene BRAFV600E, 

melanocytes undergo rapid apoptosis and senescence.  However, I identified 17 

factors that upon knockdown confer survival to the cells.  Therefore these genes 

that are knocked down are involved in the BRAFV600E induced senescence 
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process.  I identify and characterize a secreted protein called IGFBP7 that I find 

to play a critical role in melanomagenesis prevention.   

 

Secondly I investigated the factors responsible for epigenetically silencing the 

TSG p14ARF in colorectal cancer using a genome-wide shRNA screen.  I identify 

a novel zinc finger transcription factor, ZNF304, which directs a silencing 

complex to the promoter of p14ARF.  I find that ZNF304 overexpression is 

dependent upon RAS activation.  RAS signaling upregulates the deubiquitinase 

USP28 that antagonizes ZNF304 proteasome-mediated degradation, thus 

resulting in ZNF304 overexpression in human K-RAS-positive colorectal cancer.  

Furthermore, I find that ZNF304 is responsible for directing the epigenetic 

silencing of a group of ~50 genes known as Group 2 CIMP marker genes in K-

RAS-positive cancers.   

 

These two sets of studies identify and explore the interrelated relationship 

between oncogenes and TSGs.  I have elucidated a set of genes that respond to 

oncogene activation and act to shut down cell growth to prevent 

melanomagenesis.  When melanoma does occur it must circumvent this 

response and it does so through epigenetic silencing of the TSG, IGFBP7.  

Through my second set of studies I have explored this process of epigenetic 

silencing of TSG.  I have found key players that preferentially silence these TSGs 

and how they are dependent upon oncogene signaling.  Taken together, I have 
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revealed a novel regulatory network that contributes to our understanding of 

cancer biology. 
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CHAPTER II:  BRAFV600E INDUCED SENESCENCE SCREEN 

Preface 

The majority of this research chapter derives from the work I performed with 

Narendra Wajapeyee, Ph.D. while we were in Michael Green, M.D./Ph.D.’s lab at 

UMass Medical School.  It was subsequently published in the journal Cell in 2008 

entitled “Oncogenic BRAF Induces Senescence and Apoptosis through 

Pathways Mediated by the Secreted Protein IGFBP7.”  Narendra was the first 

author and I was the second author and the remaining co-authors were Xiaochun 

Zhu, Meera Mahalingham and Michael Green.  Narendra and I came up with the 

concept for the screen and performed preliminary experiments using a variety of 

cell lines and oncogene combinations before settling on human fibroblasts with 

BRAFV600E introduction.  Narendra largely performed the cell culture component 

of the screen with my assistance making the BRAFV600E virus and sequence 

identifying candidate shRNAs.  Both Narendra and myself carried out validation 

of the candidate genes.  Narendra performed all Annexin V and BrdU 

incorporation experiments and I performed most of the proliferation experiments 

and senescence-associated beta-galactosidase [SA-βGal] experiments and 

imaging.  Xiaochun Zhu and myself performed the generation and purification of 

recombinant IGFBP7 [rIGFBP7].  Narendra and myself performed the 

quantitative real-time polymerase chain reactions [qRT-PCRs], chromatin 

immunoprecipitations [ChIPs] and sodium bisulfite sequencing [NaB-Seq] 

analysis throughout the paper either working alone or in concert.  Both Narendra 
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and myself, given the needs of the experiments, performed cell culture of 

fibroblasts, melanocytes and melanoma cell lines as well as drug treatments and 

generation of knockdown [KD] cell lines.  Narendra and myself often performed 

mouse xenograft experiments in tandem, however Narendra was usually 

responsible for the injections of rIGFBP7.  Meera Mahalingham, a trained 

dermatopathologist facilitated our studies with human melanomas and naevis.  

She provided us with tissue sections that were characterized by disease status 

and Narendra and I performed the genotyping and NaB-Seq analysis together.  

The immunohistochemistry staining for IGFBP7 was carried out at the UMass 

DERC Histology core facility and the results were photographed by myself and 

scored for expression by Meera.  Sarah Deibler [at the time, Sara Evans] 

facilitated the figure generation for the manuscript and edited the writing.   The 

paper was co-written by Narendra, Michael and myself.  Narendra and myself 

addressed the reviewers’ comments and performed all requested experiments in 

tandem. 

 

Subsequent to publication of this manuscript, work from the lab of Helen Rizos at 

the Westmead Institute for Cancer Research in Australia challenged some of our 

findings.  According to their work, they did not find any link between BRAFV600E, 

IGFBP7, the IGFBP7 target gene expression [SMARCB1, BNIP3L and PEA15] 

and senescence induction in human melanomas and melanocyte cultures.    

 



32

Following the publication of our Cell paper on IGFBP7, the lab of Helen Rizos at 

the Westmead Institute for Cancer Research in Australia refuted certain key 

aspects of our work and published a “Matters Arising” article entitled “IGFBP7 is 

Not Required for B-RAF-Induced Melanocyte Senescence” [Scurr, L.L., et al. 

2010].  Namely, they found there to be no correlation between expression of 

IGFBP7, PEA15 or BNIP3L upon BRAFV600E introduction in melanocytes and 

fibroblasts.  Furthermore, they analyzed numerous cell lines, melanoma and nevi 

samples and again found no correlation between BRAF status and IGFBP7 

expression.   They concluded that IGFBP7 is unnecessary for BRAF induced 

senescence. 

 

Unsurprisingly, we refuted their claims and presented a rebuttal shortly thereafter 

as a “Leading Edge Correspondence” in Cell entitled “Role for IGFBP7 in 

Senescence Induction by BRAF.”  There were many aspects of Scurr, L.L. et.  al. 

[2010] that were of concern to our group.  For one, they repeatedly fail to 

reproduce well-established and published results such as the induction of TP53 

post infection with BRAFV600E.  As a basic objection to their claims it is also 

noteworthy to mention they fail to use positive controls in most of their 

experiments that show negative data raising the possibility that their assays were 

not fully functional.  Furthermore their analysis of IGFBP7, BNIP3L and PEA15 

was performed using immunoblots and not qRT-PCR as we had done. 
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In addition, their analysis of melanomas and IGFBP7 expression failed to stratify 

primary versus metastatic melanomas.  In fact, our results reveal that metastatic 

melanoma lose IGFBP7 expression more frequently yet it does not correlate with 

BRAF status.  Therefore if primary and metastatic melanoma were not analyzed 

separately you would fail to see the correlation present in primary melanomas.  

Finally, the panel of cell lines they analyzed for IGFBP7 expression was a 

diverse collection of melanoma, non-melanoma and primary cells.  In our report 

we chose to focus on melanocytes and melanoma and never expanded our 

results to other cell types.  Above and beyond our results that refute their claims, 

there have been a number of independent groups that have verified and 

expanded upon our results.  Importantly two groups have shown a loss of 

IGFBP7 expression that correlates with BRAF status in colorectal cancer, a 

cancer type that frequently harbors a BRAF mutation [Hinoue et al., 2009; Suzuki 

et al., 2010]. 

 

In summary, the work of Helen Rizos’ group has raised important questions 

about our original Cell paper.   It is our belief that their experiments were not 

rigorously designed and that they failed to recognize the scope of our claims.   In 

response we repeated many experiments in additional cell lines and patient 

samples using a variety of assays that reinforce our original conclusions.   Finally 

the scientific literature bears several examples of other independent labs that 

have reproduced and expanded upon our original results.   We conclude that our 
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original results remain that IGFBP7 is a critical tumor suppressor in the process 

of BRAF-induced senescence and in the biology of melanoma.  
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Introduction 

Expression of an oncogene in a primary cell can, paradoxically, block 

proliferation by inducing senescence or apoptosis through pathways that remain 

to be elucidated.  Here I perform genome-wide RNAi screening to identify 17 

genes required for an activated BRAF oncogene [BRAFV600E] to block 

proliferation of human primary fibroblasts and melanocytes.  Surprisingly, I find a 

secreted protein, IGFBP7, has a central role in BRAFV600E-mediated senescence 

and apoptosis.  Expression of BRAFV600E in primary cells leads to synthesis and 

secretion of IGFBP7, which acts through autocrine/ paracrine pathways to inhibit 

BRAF-MEK-ERK signaling and induce senescence and apoptosis.  Apoptosis 

results from IGFBP7-mediated upregulation of BNIP3L, a proapoptotic BCL2 

family protein.  Recombinant IGFBP7 [rIGFBP7] induces apoptosis in BRAFV600E-

positive human melanoma cell lines, and systemically administered rIGFBP7 

markedly suppresses growth of BRAFV600E-positive tumors in xenografted mice.  

Immunohistochemical analysis of human skin, nevi, and melanoma samples 

implicates loss of IGFBP7 expression as a critical step in melanomagenesis. 

 

When expressed in primary cells, activated oncogenes can block cellular 

proliferation by inducing senescence or apoptosis [reviewed in Campisi, 2005; 

Mooi and Peeper, 2006].  OIS and apoptosis are thought to play important roles 

in suppressing tumorigenesis by preventing proliferation of cells at risk for 

neoplastic transformation [Campisi, 2005; Michaloglou et al., 2005].   
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The BRAF proto-oncogene provides a paradigm for studying OIS and apoptosis.  

BRAF is a serine-threonine protein kinase that functions as an immediate 

downstream effector of RAS [reviewed in Dhomen and Marais, 2007].  BRAF 

activates the MAPK extracellular signal regulated kinase [MEK], which in turn 

phosphorylates and activates extracellular signal-regulated kinases 1 and 2 

[ERK1 and ERK2].   

 

Activating BRAF mutations are found at high frequency in human cancers and 

are particularly prevalent in melanoma where they occur at a frequency of 50%–

70% [Davies et al., 2002].  Approximately 90% of activating BRAF mutations is 

glutamic acid to valine substitution at position 600 [V600E; formally identified as 

V599E] [Davies et al., 2002].  This mutation substantially increases protein 

kinase activity, resulting in constitutive BRAF-MEK- ERK signaling [Davies et al., 

2002].  In BRAFV600E-positive melanoma cell lines and mouse xenografts, 

BRAFV600E has been shown to be required for cell viability, proliferation, and 

tumor growth [Hingorani et al., 2003; Hoeflich et al., 2006; Satyamoorthy et al., 

2003; Sharma et al., 2005].   

 

Activating BRAF mutations are also present in up to 82% of melanocytic nevi 

[Pollock et al., 2003], which are benign skin lesions that rarely progress to 

melanoma [Bennett, 2003; Chin et al., 1998].  Nevi are growth arrested and 

display classical hallmarks of senescence, including expression of SA-β-Gal and 
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the cell-cycle inhibitor p16INK4A [Michaloglou et al., 2005; Sparrow et al., 1998; 

Wang et al., 1996].  Expression of BRAFV600E also induces senescence in 

cultured primary human melanocytes [Michaloglou et al., 2005].   

 

How, then, does an activated BRAF oncogene induce uncontrolled proliferation 

in melanoma and senescence in benign nevi? One hypothesis is that melanomas 

contain a second oncogenic lesion that inactivates the BRAF-mediated 

senescence pathway [reviewed in Campisi, 2005].  Although attractive, this 

hypothesis remains to be proven largely because the downstream factors and 

signaling pathways involved in BRAF-mediated senescence have not been 

characterized.  Here I perform a genome-wide RNA-interference [RNAi] screen to 

identify factors required for BRAFV600E to block cellular proliferation.   
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Results 

To identify genes required for BRAFV600E to block proliferation of primary cells, I 

performed a genome-wide small hairpin RNA [shRNA] screen [Figure 2-1].  The 

primary screen was performed in human primary foreskin fibroblasts [PFFs].  A 

human shRNA library comprising ~62,400 shRNAs directed against ~28,000 

genes was divided into 10 pools, which were packaged into retrovirus particles 

and used to stably transduce PFFs.  The cells were then infected with a 

retrovirus expressing BRAFV600E under conditions in which all cells were infected.  

Cells that bypassed the BRAFV600E-mediated cellular proliferation block formed 

colonies, which were pooled and expanded, and the shRNAs identified by 

sequence analysis.  Positive candidates were confirmed by stable transduction of 

PFFs with single shRNAs directed against the candidate genes, infection with the 

BRAFV600E-expressing retrovirus, and quantitation of cellular proliferation.  

Confirmed candidate shRNAs were then tested in a secondary screen for their 

ability to bypass the proliferation block in BRAFV600E-expressing primary human 

melanocytes.   

 

The screen identified 17 genes that, following shRNA-mediated knockdown, 

enabled BRAFV600E-expressing PFFs [BRAFV600E/PFFs] and melanocytes 

[BRAFV600E/melanocytes] to proliferate.  These genes are listed in Table 2-1 and 

proliferation assays of the 17 BRAFV600E/PFF knockdown [KD] cell lines are 

shown in Figure 2-2 and Figure 2-3   
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Figure 2-1.  Schematic summary of the genome-wide shRNA screen. 
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Table 2-1.  Genes required for BRAFV600E to block proliferation of human PFFs 
and melanocytes 
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Figure 2-2.  Proliferation of the 17 BRAFV600E/PFF KD cell lines.  
1 x 104 PFF fibroblasts stably expressing the indicated shRNA were cultured in 
12-well plates, infected with the BRAFV600E-expressing retrovirus, and after 14 
days stained with crystal violet. 
 

BJ 
NS 

BRAFV600E/BJ 
NS BIN1 ILIR1 RAP1GAP BNIP3L HSPA9B 

PEA15 BUB1 IGFBP7 DMTF1 MEN1 HIRA 

IRF1 TP53 FOXA1 SMARCB1 NF2 FBXO31 
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Figure 2-3.  Quantitative proliferation assays of the 17 BRAFV600E/PFF KD cell 
lines shown in Figure 2-2.  
PFFs stably expressing the indicated shRNA were infected with the BRAFV600E 
expressing retrovirus and after 14 days analyzed by the trypan blue exclusion 
assay. Growth of PFFs expressing a non-silencing shRNA [PFF-NS] relative to 
growth of untreated PFFs is shown. For the BRAFV600E/PFF KD cell lines, values 
were normalized to the growth of the corresponding PFF KD cell line in the 
absence of BRAFV600E expression. Error bars represent standard error. 
 
  



43

Expression of BRAFV600E in PFFs containing a control non-silencing [NS] shRNA 

[Figure 2-2] efficiently inhibited cellular proliferation.  Significantly, however, this 

block was overcome in all 17 BRAFV600E/PFF KD cell lines.  Quantitative real-

time RT-PCR [qRT-PCR] confirmed in all cases that expression of the target 

gene was decreased in the corresponding KD cell lines [Figure 2-4].  For all 17 

genes, a second, unrelated shRNA directed against the same target gene also 

enabled PFFs to proliferate following BRAFV600E expression [Figure 2-5].   

 

As expected from previous studies [Michaloglou et al., 2005], expression of 

BRAFV600E in primary PFFs efficiently blocked cellular proliferation [Figure 2-3].  

By contrast, BRAFV600E failed to block cellular proliferation in all 17 PFF KD cell 

lines.   

 

Following expression of BRAFV600E in melanocytes, the majority of cells became 

senescent [Figure 2-6], consistent with previous studies [Michaloglou et al., 

2005], although I found that ~10% of cells underwent apoptosis [Figure 2-7].  To 

determine the role of the 17 genes in these two pathways, apoptosis and 

senescence assays were performed in each melanocyte KD cell line following 

BRAFV600E expression.  Figure 2-7 shows that only 3 of the 17 genes were 

required for apoptosis: BNIP3L, which encodes a proapoptotic BCL2 family 

protein; SMARCB1, which encodes a component of the 
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Figure 2-4.  Analysis of target gene expression in the PFF and melanocyte KD 
cell lines. Quantitative real-time RT-PCR was used to analyze target gene 
expression in each of the 17 PFF [Top] or melanocyte [Bottom] KD cell lines. 
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Figure 2-5.  Confirmation of all 17 candidate genes using a second, unrelated 
shRNA directed against the target gene.  
[Top] Quantitative proliferation assays. For each of the 17 candidate genes, a 
second, unrelated shRNA directed against the same target gene was used to 
derive an independent PFF KD cell line. Each PFF KD cell line was infected with 
the BRAFV600E expressing retrovirus and proliferation monitored after 14 days. 
Growth of BRAFV600E/PFFs is expressed relative to the growth of normal PFFs. 
For the BRAFV600E/PFF KD cell lines, values were normalized to the growth of the 
corresponding PFF KD cell line in the absence of BRAFV600E expression.  
[Bottom] Quantitative real-time RT-PCR was used to analyze target gene 
expression in each of the 17 PFF KD cell lines.  
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Figure 2-6.  DNA replication assays of the 17 BRAFV600E/melanocyte KD cell 
lines, monitored by BrdU incorporation. Error bars represent standard error. 
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Figure 2-7.  Apoptosis assays of the 17 BRAFV600E/melanocyte KD cell lines, 
monitored by Annexin V-PE staining. Error bars represent standard error. 
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SWI/SNF chromatin-remodeling complex; and insulin growth factor binding 

protein 7 [IGFBP7], which encodes a secreted protein with weak homology to 

IGF-binding proteins.  By contrast, all but 1 of the 17 genes, BNIP3L, are 

required for BRAFV600E to induce growth arrest [Figure 2-6] and characteristic 

markers of senescence [see below].  Presumably the BNIP3L shRNA was picked 

up in the screen due to its ability to an inability to induce apoptosis upon 

BRAFV600E introduction, yet the cells still fail to proliferate.  Identical results were 

obtained using BRAFV600E/melanocyte KD cell lines that had undergone an 

additional 15 population doublings [Figure 2-8] and in PFFs [Figure 2-9].   

 

p16INK4A has been proposed to play an important role in replicative and 

oncogene-induced senescence [reviewed in Ben-Porath and Weinberg, 2005].  I 

was therefore interested in determining whether the genes identified in my 

screen were required for p16INK4A induction.  Figure 2-10 shows, as expected, 

that p16INK4A levels increased substantially following BRAFV600E expression in 

control melanocytes expressing an NS shRNA.  Significantly, p16INK4A expression 

was not induced by BRAFV600E in 16 of the 17 melanocyte KD cell lines.  The sole 

exception was the cell line knocked down for BNIP3L, which, as described 

above, is specifically involved in apoptosis [Figure 2-10].  The failure to pick up 

p16INK4A as a candidate gene indicates that my shRNA screen, like other large-

scale shRNA screens [see, for example Mullenders, 2009], was not saturating. 

Loss of histone H3 lysine 9 [H3K9] acetylation, another well characterized 
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Figure 2-8.  Analysis of the BRAFV600E/Melanocyte KD Cell Lines After an 
Additional 15 Population Doublings, and Further Characterization of the 
BRAFV600E/PFF KD Cell Lines. 
[Top] DNA replication assays. The BRAFV600E/melanocyte KD cell lines were 
allowed to undergo an additional 15 population doublings [+15 PD] and then 
analyzed for BrdU incorporation. Error bars represent standard error.  
[Bottom] Immunoblot analysis monitoring acetylation of histone 3 lysine 9 [H3K9] 
after an additional 15 population doublings. β-ACTIN [ACTB] was monitored as a 
loading control. 
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Figure 2-9.  Apoptosis assays [top] and DNA replication assays [bottom] of the 
BRAFV600E/PFF KD cell lines.  
Apoptosis was monitored by Annexin V-PE staining 4 days after BRAFV600E 
expression; DNA replication was monitored by BrdU incorporation 4 days after 
BRAFV600E expression. 
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Figure 2-10.  Immunoblot analysis monitoring induction of p16INK4A and H3K9 
acetylation in each of the 17 BRAFV600E/melanocyte KD cell lines. β-ACTIN 
[ACTB] was monitored as a loading control. 
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senescence marker [Narita et al., 2006], also occurred following BRAFV600E 

expression in control melanocytes but not in any of the melanocyte KD cell lines 

except for the BNIP3L KD cell line [Figures 2-10 and Figure 2-8].   

 

One of the genes required for the induction of both senescence and apoptosis 

was IGFBP7, which encodes a secreted protein [Wilson et al., 1997], raising the 

possibility that the BRAFV600Emediated block to cellular proliferation might occur 

through an autocrine/paracrine pathway.  To determine whether IGFBP7 is 

secreted and functions extracellularly, I analyzed the ability of conditioned 

medium [CM] from BRAFV600E/melanocytes to induce senescence.  Figure 2-11 

[top panel] shows that following expression of BRAFV600E in melanocytes, the 

level of IGFBP7 in CM increased substantially.  Addition of CM from 

BRAFV600E/melanocytes to naive melanocytes blocked cellular proliferation, 

primarily resulting from the induction of senescence [Figure 2-11, bottom panel 

and see Figure 2-19 below].   

 

Two experiments verified that IGFBP7 activation was downstream of BRAF-

MEK-ERK signaling.  First, BRAFV600E-mediated induction of IGFBP7 was 

blocked by addition of a MEK inhibitor [Figure 2-12].  Second, expression of a 

constitutively activated ERK mutant [ERK2Q103A or ERK2L73P,S151D] was sufficient 

to activate IGFBP7 transcription [Figure 2-13].   
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Figure 2-11.  The secreted protein, IGFBP7, inhibits cell growth 
[Top] Immunoblot analysis of IGFBP7 levels in CM from normal melanocytes, 
BRAFV600E/melanocytes, BRAFV600E/melanocytes stably expressing an IGFBP7 
shRNA, or BRAFV600E/melanocyte CM treated with an α-IGFBP7 antibody.  
[Bottom] Proliferation assays on naive melanocytes following addition of the 
different CMs described above. Proliferation was measured and normalized to 
the growth of untreated melanocytes. Error bars represent standard error. 
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Figure 2-12.  IGFBP7 Upregulation Occurs Downstream of BRAF-MEK-ERK 
Signaling. 
IGFBP7 protein levels in CM from BRAFV600E-expressing melanocytes [top] or 
mRNA expression in BRAFV600E-expressing melanocytes [bottom] was monitored 
in the presence of increasing amounts of a MEK inhibitor. The results show that 
BRAFV600E-mediated induction of IGFBP7 was blocked by addition of a MEK 
inhibitor. Error bars represent standard error. 
 
  



55

 
 
 
Figure 2-13.  IGFBP7 protein levels in CM from melanocytes  
[top] or mRNA expression in melanocytes [bottom] was monitored in the 
presence of BRAFV600E or a constitutively activated ERK mutant [ERK2Q103A or 
ERK2L73P,S151D]. The results show that expression of a constitutively activated 
ERK mutant was sufficient to activate IGFBP7 transcription. Collectively, these 
results demonstrate that IGFBP7 induction is downstream of BRAF-MEK-ERK 
signaling.  Error bars represent standard error. 
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The IGFBP7 promoter contains a consensus binding site for the dimeric AP-1 

[JUN/FOS] transcription factor [Figure 2-14].  Significantly, JUN [also known as c-

Jun] is activated through RAF-MEK-ERK signaling [Leppa et al., 1998], raising 

the possibility that AP-1 is involved in BRAFV600E-mediated induction of IGFBP7. 

Chromatin immunoprecipitation [ChIP] analysis verified that JUN bound to the 

IGFBP7 promoter in response to BRAFV600E expression [Figure 2-15], and 

siRNA-mediated knockdown of JUN abrogated induction of IGFBP7 transcription 

in BRAFV600E/melanocytes [Figure 2-16].  Again, the failure to pick up c-Jun as a 

candidate gene indicates that my shRNA screen, like other large-scale shRNA 

screens [see, for example Mullenders, 2009], was not saturating. 

 

I next sought to verify that IGFBP7 was the secreted protein responsible for the 

BRAFV600E-mediated cellular proliferation block.  In one experiment, I treated 

BRAFV600E/melanocytes with an shRNA targeting IGFBP7.  Figure 2-11 shows 

that IGFBP7 was absent from the CM of BRAFV600E/melanocytes expressing an 

IGFBP7 shRNA [top panel], and that this CM did not inhibit cellular proliferation 

of naive melanocytes [bottom panel].  In a second experiment, immunodepletion 

with an α-IGFBP7 antibody efficiently removed IGFBP7 from CM of BRAFV600E/ 

melanocytes [top panel], and this immunodepleted CM failed to inhibit cellular 

proliferation of naive melanocytes [bottom panel].   

 

To confirm that IGFBP7 could block cellular proliferation, I purified recombinant 
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Figure 2-14.  A Role for the AP-1 Transcription Factor in BRAFV600E-Mediated 
Upregulation of IGFBP7 Expression. 
Schematic of the IGFBP7 promoter showing a consensus binding site for the 
dimeric AP-1 [JUN/FOS] transcription factor located ~1 kb upstream of the 
transcription start-site. 
 
  



58

   

 
 
Figure 2-15.  A Role for the AP-1 Transcription Factor in BRAFV600E-Mediated 
Upregulation of IGFBP7 Expression. 
Chromatin immunoprecipitation [ChIP] analysis. ChIP assays were performed 
using extracts prepared 4 days following BRAFV600E retroviral infection. Error bars 
represent standard error. The results show that JUN binds to the IGFBP7 
promoter in response to BRAFV600E expression in melanocytes. 
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Figure 2-16.  AP-1 is required for BRAFV600E-mediated upregulation of IGFBP7 
expression.  
[Left]  Quantitation of IGFBP7 mRNA levels in BRAFV600E-expressing 
melanocytes following treatment with a non-silencing [NS] or JUN siRNA. The 
results demonstrate that JUN is required for BRAFV600E-mediated induction of 
IGFBP7 transcription.  
[Right] Quantitative real-time RT-PCR was used to analyze JUN mRNA levels 
following siRNA treatment. The results of Figures 2-15 and 2-16, in conjunction 
with my other results, indicate that BRAFV600E induces expression of IGFBP7, at 
least in part, through activation of ERK, which in turn activates AP-1, resulting in 
binding of AP-1 to the IGFBP7 promoter and stimulation of transcription. 
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IGFBP7 [rIGFBP7] from baculovirus-infected insect cells.  Figure 2-17 shows that 

following expression and purification, a polypeptide of ~33 kDa was detected, the 

expected size of IGFBP7.  Addition of rIGFBP7 blocked proliferation of primary 

melanocytes in a dose-dependent manner [Figure 2-18].  The growth-arrested 

cells had an enlarged flat morphology, characteristic ofsenescent cells, and 

stained positively for senescence-associated  β-galactosidase [Figure 2-19].   

 

The finding that primary melanocytes expressed IGFBP7 [Figure 2-11 and see 

below] raised the possibility that under normal conditions IGFBP7 might regulate 

melanocyte proliferation.  To test this idea, I compared the proliferation rates of 

untreated melanocytes, control melanocytes expressing an NS shRNA, and 

melanocytes expressing an IGFBP7 shRNA.  Figure 2-20 shows that melanocyte 

proliferation increased following IGFBP7 knockdown.  Thus, normal melanocytes 

express low levels of IGFBP7, which restrains proliferation.  When present at 

high levels, such as following expression of BRAFV600E, IGFBP7 induces 

senescence.   

 

I next analyzed the ability of IGFBP7 to block cellular proliferation in a panel of 

human melanoma cell lines.  The cells contained either an activating BRAF 

mutation [BRAFV600E; SK-MEL-28, MALME-3M, WM793B, WM39, and WM278] 

or an activating RAS mutation [RASQ61R; SK-MEL-2, SK-MEL-103, and WM1366]  
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Figure 2-17.  Coomassie-stained gel of purified, recombinant IGFBP7 [rIGFBP7]. 
Molecular weight markers are shown on the left, in kDa. 
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Figure 2-18.  Proliferation assay monitoring the effect of rIGFBP7 on the growth 
of melanocytes 14 days after treatment. Error bars represent standard error. 
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Figure 2-19.  β-galactosidase staining of melanocytes infected with a retrovirus 
expressing either empty vector or BRAFV600E or melanocytes treated with CM 
from BRAFV600E/melanocytes or rIGFBP7. Images are shown at a magnification 
of 10X, 20X, and 40X. 
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Figure 2-20.  Proliferation assay monitoring growth rates of untreated 
melanocytes or melanocytes stably expressing an NS or IGFBP7 shRNA. Error 
bars represent standard error. 
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or were wild-type for both BRAF and RAS [CHL, SK-MEL-31, WM1321, and 

WM3211].  For each cell line, the presence of IGFBP7 in the CM was determined 

by immunoblot analysis [Figure 2-21] and sensitivity to IGFBP7-induced growth 

inhibition was measured in a proliferation assay [Figure 2-22].  The results reveal 

a striking inverse correlation between IGFBP7 expression and sensitivity to 

IGFBP7-mediated growth inhibition that correlates with the status of BRAF or 

RAS.  Most importantly, melanoma cell lines harboring an activating BRAF 

mutation fail to express IGFBP7 and are highly sensitive to IGFBP7-mediated 

growth inhibition.  By contrast, cells that are wild-type for BRAF and RAS express 

IGFBP7 and are relatively insensitive to IGFBP7-mediated growth inhibition for 

reasons that remain to be determined.  Finally, melanoma cell lines containing an 

activating RAS mutation express low levels of IGFBP7 and are partially sensitive 

to IGFBP7-mediated growth inhibition.  I further analyzed the IGFBP7-mediated 

cellular proliferation block with regard to apoptosis and senescence.  

Significantly, in melanoma cell lines harboring an activating BRAF mutation, 

rIGFBP7 strongly induced apoptosis and surviving senescent cells were 

undetectable [Figure 2-23].  Thus, IGFBP7 primarily induced senescence in 

melanocytes and apoptosis in BRAFV600E-positive melanoma cells.   

 

To understand the basis of this differential response, I analyzed expression of the 

17 genes in primary melanocytes and SK-MEL-28 melanoma cells.  Figure 2-24 

[top panel] shows that in primary melanocytes, expression of BRAFV600E resulted  
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Figure 2-21.  [Top] Immunoblot analysis monitoring IGFBP7 levels in the CM 
from a panel of human melanoma cell lines. [Bottom] Quantitative real-time RT-
PCR analysis of IGFBP7 expression. Error bars represent standard error. 
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Figure 2-22.  Proliferation assays of human melanoma cell lines 24 hr after 
rIGFBP7 treatment. Proliferation was normalized to the growth of the 
corresponding cell line in the absence of rIGFBP7 addition. Error bars represent 
standard error. 
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Figure 2-23.  Apoptosis assays of human melanoma cell lines treated with 
rIGFBP7. Error bars represent standard error. 
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Figure 2-24.  Induction of Gene Expression by BRAFV600E and IGFBP7. 
Quantitation of gene expression in BRAFV600E/melanocytes compared to 
melanocytes [Top], rIGFBP7-treated melanocytes compared to untreated 
melanocytes [Bottom left], and rIGFBP7-treated SK-MEL-28 cells compared to 
untreated cells [Bottom right]. Gene expression was monitored by qRT-PCR in 
untreated and treated cells, and expressed as fold-upregulation. 
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in the transcriptional upregulation of seven genes, which are involved in 

apoptosis [BNIP3L, IGFBP7, and SMARCB1] and senescence [PEA15, IGFBP7, 

MEN1, FBXO31, SMARCB1, and HSPA9].  BRAFV600E-mediated induction of all 

seven genes did not occur following knockdown of IGFBP7 [Figure 2-25].  

Following addition of rIGFBP7 to melanocytes, six of the seven genes were 

induced, IGFBP7 being the exception [Figure 2-24, bottom left panel].  

Significantly, following addition of rIGFBP7 to SK-MEL-28 cells, neither IGFBP7 

nor PEA15 was upregulated [Figure 2-24, bottom right panel].  PEA15, a known 

regulator of BRAF-MEK- ERK signaling [Formstecher et al., 2001], is required for 

senescence [see Figure 2-10].  Thus, the lack of PEA15 induction in IGFBP7-

treated SK-MEL-28 cells can explain their failure to undergo senescence.  I note 

that BNIP3L is only modestly upregulated in primary melanocytes following 

expression of BRAFV600E or addition of rIGFBP7, consistent with the relatively low 

level of apoptosis in IGFBP7-treated melanocytes [see Figure 2-7]  

 

As described above, BRAFV600E-mediated apoptosis was dependent upon 

IGFBP7, SMARCB1, and BNIP3L, raising the possibility that these three proteins 

were components of a common pathway required for apoptosis.  I performed a 

series of experiments to confirm this idea and establish the order of the pathway.  

Figure 2-26 shows that following addition of rIGFBP7 to SK-MEL-28 cells, 

expression of SMARCB1 and BNIP3L were significantly increased, and 

apoptosis occurred as evidenced by caspase 3 activation.  Expression of a  
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Figure 2-25.  Melanocytes expressing either a non-silencing or IGFBP7 shRNA 
were monitored for BRAFV600E-induced expression of seven genes by 
quantitative real-time RT-PCR. Error bars represent standard error. The results 
show that BRAFV600E-mediated induction of all seven genes did not occur 
following knockdown of IGFBP7. 
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Figure 2-26.  [Top] Immunoblot analysis in SK-MEL-28 cells in the presence or 
absence of rIGFBP7 and stably expressing either an NS, SMARCB1, or BNIP3L 
shRNA. 
[Bottom] Schematic summary of the IGFBP7-mediated apoptotic pathway. 
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SMARCB1 shRNA [identified in primary screen] blocked induction of BNIP3L and 

apoptosis.  By contrast, expression of a BNIP3L shRNA [identified in primary 

screen] still resulted in induction of SMARCB1 following rIGFBP7 addition 

although apoptosis did not occur.  Collectively, these results reveal a pathway in 

which IGFBP7 increases expression of SMARCB1, which in turn leads to 

increased expression of BNIP3L culminating in apoptosis [Figure 2-26, bottom 

panel].   

 

In BRAFV600E/melanocytes, induction of SMARCB1 and BNIP3L was blocked 

following IGFBP7 knockdown [Figure 2-27].  Moreover, addition of CM from 

BRAFV600E-expressing melanocytes to naive melanocytes substantially 

upregulated SMARCB1 and BNIP3L, which did not occur with various control 

CMs that lacked IGFBP7 [Figure 2-28].  Thus, in BRAFV600E/melanocytes 

induction of SMARCB1 and BNIP3L is also dependent upon and downstream of 

IGFBP7.   

 

I next sought to determine the mechanistic basis for IGFBP7-mediated induction 

of BNIP3L and SMARCB1.  A previous study analyzing genome-wide targets of 

STAT proteins had provided evidence that STAT1 was involved in certain 

SMARCB1-inducible transcription responses and had shown that the SMARCB1 

promoter contains a STAT1 binding site located ~2.4 kb upstream of the 

transcription start site [Hartman et al., 2005].  I therefore investigated the  
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Figure 2-27.  BRAFV600E-Mediated Induction of SMARCB1 and BNIP3L is 
Dependent Upon and Downstream of IGFBP7. 
Immunoblot analysis showing SMARCB1 and BNIP3L induction in 
BRAFV600Eexpressing melanocytes in the presence of a non-silencing [NS] or 
IGFBP7shRNA. β-ACTIN [ACTB] was monitored as a loading control. The results 
show that induction of SMARCB1 and BNIP3L was blocked following IGFBP7 
knockdown. 
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Figure 2-28.  Immunoblot analysis monitoring SMARCB1, BNIP3L and p16INK4A 
in naïve melanocytes following addition of CM from normal melanocytes, 
BRAFV600E/melanocytes, BRAFV600E/melanocytes stably expressing an IGFBP7 
shRNA or in BRAFV600E/melanocyte CM immunodepleted of IGFBP7.  
 
The results show that addition of CM from BRAFV600Eexpressing melanocytes to 
naïve melanoctyes substantially upregulated SMARCB1 and BNIP3L, which did 
not occur with CM from BRAFV600E/melanocytes expressing an IGFBP7 shRNA 
or with CM from BRAFV600E/melanocytes following immunodepletion of IGFBP7. 
Collectively,the results of Figures 2-27 and 2-28 demonstrate that BRAFV600E-
mediated induction of SMARCB1 and BNIP3L is dependent upon and 
downstream of IGFBP7. 
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potential role of STAT1 in IGFBP7-mediated induction of SMARCB1 

transcription.  ChIP experiments revealed that following addition of rIGFBP7 to 

SK-MEL-28 cells, STAT1 was recruited to the SMARCB1 promoter [Figure 2-29], 

and shRNA-mediated knockdown experiments confirmed that STAT1 was 

required for IGFBP7-mediated upregulation of SMARCB1 [Figure 2-30].   

 

As described above, SMARCB1 is required for upregulation of BNIP3L by 

IGFBP7 [Figure 2-26].  ChIP experiments revealed that following addition of 

rIGFBP7, SMARCB1 as well as BRG1, an essential subunit of the SWI/SNF 

complex [Bultman et al., 2000], were recruited to the BNIP3L promoter near the 

transcription start site [Figure 2-31].  Following knockdown of SMARCB1, BRG1 

[and, as expected, SMARCB1] failed to associate with the BNIP3L promoter.  

Collectively, these results indicate that IGFBP7 stimulates BNIP3L transcription, 

at least in part, by increasing intracellular levels of SMARCB1, leading to 

formation of a SMARCB1-containing SWI/SNF chromatin-remodeling complex, 

which is recruited to the BNIP3L promoter and facilitates BNIP3L transcriptional 

activation.   

 

Finally, I asked whether apoptosis was dependent upon the continual presence 

of rIGFBP7 or was irreversible following transient exposure to rIGFBP7.  SK-

MEL-28 cells were incubated with rIGFBP7 for various lengths of time, following 

which the cells were washed and cultured in medium lacking rIGFBP7, and 
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Figure 2-29. [Top] Schematic of STAT1 binding site location in SMARCB1 
promoter.   
[Bottom] ChIP analysis monitoring STAT1 recruitment to the SMARCB1 promoter 
in SK-MEL-28 cells. [lower]  Error bars represent standard error. 
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Figure 2-30.  qRT-PCR analysis of SMARCB1 [left] or STAT1 [right] mRNA levels 
in SK-MEL-28 cells following treatment with an NS or STAT1 siRNA. Error bars 
represent standard error. 
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Figure 2-31.  [Top] Schematic of putative SMARCB1/BRG1 binding site in 
BNIP3L promoter.   
[Bottom, left]  ChIP analysis monitoring SMARCB1 or [Bottom, right] BRG1 
recruitment to the BNIP3L promoter in SK-MEL-28 cells. Error bars represent 
standard error. 
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apoptosis was quantitated after 24 hr.  Figure 2-32 shows that following 6 hr of 

incubation with rIGFBP7, the cells were irreversibly committed to apoptosis, 

which occurred even after removal of rIGFBP7.   

 

In BRAFV600E-positive melanoma cells BRAF-MEK-ERK signaling is 

hyperactivated, rendering the cells highly dependent on this pathway.  Thus, 

treatment of BRAFV600E-positive melanoma cells with a BRAF shRNA [Hoeflich et 

al., 2006] or an inhibitor of BRAF [Sharma et al., 2005] or MEK [Solit et al., 2006] 

blocks cellular proliferation.  I therefore considered the possibility that IGFBP7 

blocks cellular proliferation, at least in part, by inhibiting BRAF-MEK-ERK 

signaling.   

 

To test this idea I added rIGFBP7 to SK-MEL-28 cells and analyzed the levels of 

total and activated ERK [phospho-ERK].  Figure 2-33 shows that addition of 

rIGFBP7 resulted in a dose-dependent loss of phospho-ERK.  Similarly, 

expression of BRAFV600E in melanocytes markedly decreased phospho- ERK 

levels, which did not occur in BRAFV600E/melanocytes expressing an IGFBP7 

shRNA [Figure 2-34].  Moreover, addition of CM from BRAFV600E/melanocytes to 

naive melanocytes substantially decreased the levels of phospho-ERK, which did 

not occur with various control CMs that lacked IGFBP7 [Figure 2-35].  rIGFBP7 

also blocked growth factor-induced ERK activation [Figure 2-36].  Collectively, 

these results indicate that IGFBP7 inhibits BRAF-MEK-ERK signaling.   
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Figure 2-32.  SK-MEL-28 cells were incubated with rIGFBP7 for 0, 2, 6, 12, or 24 
hr, following which the cells were washed and cultured in medium lacking 
rIGFBP7 and apoptosis was quantitated. 
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Figure 2-33.  Immunoblot analysis in SK-MEL-28 cells treated with increasing 
concentrations of rIGFBP7 [0.2, 1.0, 2.0, 5.0, or 10  µg/ml] for 24 hr. 
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Figure 2-34.  IGFBP7-Dependent Inhibition of BRAF-MEK-ERK Signaling in 
Melanocytes Following BRAFV600E Expression or Growth Factor Stimulation. 
Immunoblot of phospho-ERK and total ERK in BRAFV600E-expressing 
melanocytes compared to BRAFV600E-expressing melanocytes containing a non-
silencing [NS] or IGFBP7 shRNA. The results confirm that phospho-ERK levels 
are markedly decreased in BRAFV600E/melanocytes, which are senescent. This 
decrease in phospho-ERK levels did not occur in BRAFV600E/melanocytes 
expressing an IGFBP7 shRNA. 
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Figure 2-35.  Immunoblot analysis of phospho-ERK and total ERK in naïve 
melanocytes following addition of CM from normal melanocytes, 
BRAFV600E/melanocytes, BRAFV600E/melanocytes stably expressing an IGFBP7 
shRNA or in BRAFV600E/melanocyte CM immunodepleted of IGFBP7.  
The results show that addition of CM from BRAFV600Eexpressing melanocytes to 
naïve melanocytes substantially decreased the level of phospho-ERK, which did 
not occur with the various control CMs that lacked IGFBP7. 
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Figure 2-36.  Immunoblot analysis of phospho-ERK and total ERK levels in 
melanocytes treated in the presence or absence of rIGFBP7 [10 µg/ml], or the 
presence or absence of melanocyte growth factors [1X Human Melanocyte 
Growth Supplement [Cascade Biologics]. Cells were treated or 48 hrs prior to 
harvesting cells. The results demonstrate that rIGFBP7 also blocked growth 
factor-induced ERK activation. 
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Addition of rIGFBP7 to SK-MEL-28 cells resulted in decreased levels of activated 

MEK1/2, corresponding with the reduced phospho-ERK levels and apoptosis 

[Figure 2-37].  Moreover, ectopic expression of a constitutively activated MEK1 

mutant [MEK1-EE] prevented IGFBP7 from blocking ERK activation [Figure 2-

38].  These results demonstrate that IGFBP7 blocks phosphorylation of MEK by 

BRAF.  Finally, I found that addition of IGFBP7 to SK-MEL-28 cells resulted in 

upregulation of RAF inhibitory protein [RKIP] [Figures 2-37 and 2-39], which has 

been shown to interact with several RAF proteins, including BRAF, and inhibit 

RAF-mediated phosphorylation of MEK [see, for example, Park et al., 2005].  

Following knockdown of RKIP in SK-MEL-28 cells, rIGFBP7 failed to block 

activation of MEK or ERK [Figure 2-39].  Collectively, these results indicate that 

IGFBP7 inhibits BRAF-MEK-ERK signaling by inducing RKIP, which prevents 

BRAF from phosphorylating MEK.   

 

To establish the relationship between inhibition of BRAF-MEK-ERK signaling and 

the IGFBP7-mediated block to cellular proliferation, I ectopically expressed a 

constitutively activated ERK2 or MEK1 mutant and analyzed sensitivity to 

rIGFBP7.  Figure 2-40 shows that expression of either an ERK2 [left] or MEK1 

[right] mutant in SK-MEL-28 cells substantially overcame the IGFBP7-mediated 

cellular proliferation block.  Expression of a constitutively activated ERK2 mutant 

also blocked BRAFV600E and IGFBP7-induced senescence in melanocytes 
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Figure 2-37.  Mechanism of IGFBP7-Mediated Inhibition of BRAF-MEK-ERK 
Signaling. 
[Top] Immunoblot analysis monitoring expression of RAF inhibitory protein 
[RKIP], phospho-MEK1/2, total MEK1/2, phospho-ERK and total ERK in 
BRAFV600E-positive SKMEL-28 cells following addition of rIGFBP7 for 0, 3, 6, 12 
or 24 hours.  
[Bottom] Apoptosis of rIGFBP7-treated SK-MEL-28 cells was monitored by 
Annexin V-PE staining. Error bars represent standard error. The results show 
that addition of rIGFBP7 to SK-MEL-28 cells resulted in induction of RKIP and 
decreased levels of activated MEK1/2, corresponding with the reduced phospho-
ERK levels and apoptosis. 
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Figure 2-38.  Immunoblot analysis of phospho-ERK and total ERK levels in SK-
MEL-28 cells treated in the presence or absence of rIGFBP7, and following 
expression of a constitutively activated MEK1 mutant. The results show that 
ectopic expression of a constitutively activated MEK1 mutant prevented the 
ability of IGFBP7 to block ERK activation. 
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Figure 2-39.  Immunoblot analysis monitoring expression of RKIP, phospho-
MEK1/2, total MEK1/2, phospho-ERK and total ERK in SK-MEL-28 cells treated 
in the presence or absence of rIGFBP7, and with a non-silencing [NS] or RKIP 
siRNA.  
The results show that following knockdown of RKIP in SK-MEL-28 cells, rIGFBP7 
failed to block activation of MEK or ERK. Collectively, the results of Figures 2-37, 
2-38 and 2-39 indicate that IGFBP7 inhibits ERK activation by inducing RKIP, 
which prevents BRAF from phosphorylating MEK. 
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Figure 2-40.  Proliferation assays monitoring sensitivity of SK-MEL-28 cells to 
rIGFBP7.  
Cells were transfected with an empty expression vector or a constitutively 
activated ERK2 or MEK1 mutant. Cell growth was analyzed 24 hr after treatment 
with rIGFBP7 and normalized to the growth of the corresponding cell line in the 
absence of rIGFBP7 addition. Error bars represent standard error. 
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 [Figure 2-41].  In addition, ectopic expression of a constitutively activated ERK2 

mutant in SK-MEL-28 cells increased phospho-ERK2 levels and prevented the 

IGFBP7- mediated upregulation of BNIP3L and induction of apoptosis [Figure 2-

42].   

 

The above results allowed us to draw two conclusions.  First, IGFBP7 blocks 

cellular proliferation, at least in part, by inhibiting BRAF-MEK-ERK signaling.  

Second, inhibition of BRAF-MEK-ERK signaling is required for activation of the 

IGFBP7-mediated apoptotic pathway.  This latter observation prompted us to ask 

whether inhibition of BRAF-MEK-ERK signaling was sufficient to induce 

apoptosis.  Figure 2-43 shows, as expected, that addition of a MEK or RAF 

inhibitor blocked BRAF-MEK-ERK signaling.  However, unlike rIGFBP7, MEK 

and RAF inhibitors did not increase BNIP3L levels or efficiently induce apoptosis.  

Thus, inhibition of BRAF-MEK-ERK signaling is necessary but not sufficient for 

IGFBP7-mediated upregulation of BNIP3L and induction of apoptosis.   

 

The ability of IGFBP7 to inhibit proliferation of BRAFV600E-positive human 

melanoma cell lines [see Figure 2-22] raised the possibility that IGFBP7 could 

suppress growth of tumors containing an activating BRAF mutation.  As a first 

test of this possibility, human melanoma cells that contained [SK-MEL-28] or 

lacked [SK-MEL-31] an activating BRAF mutation were injected subcutaneously 

into the flanks of nude mice.  Three, six, and nine days later, the mice were 
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Figure 2-41.  Inhibition of BRAF-MEK-ERK Signaling is Required for BRAFV600E- 
and IGFBP7-Induction of Senescence in Melanocytes. 
Quantitative proliferation assays showing that constitutively activated ERK2 
mutants block BRAFV600E-induced [left] or IGFBP7-induced [right] senescence in 
melanocytes. Error bars represent standard error. 
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Figure 2-42.  Immunoblot analysis in SK-MEL-28 cells stably transfected with an 
empty expression vector or a constitutively activated ERK2 mutant.  
SK-MEL-28 cells were either untreated or treated with 10  µg/ml of rIGFBP7, as 
indicated, for 24 hr prior to harvesting cells. 
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Figure 2-43.  Immunoblot analysis in SK-MEL-28 cells 24 hr after treatment with 
rIGFBP7, a MEK inhibitor [MEK-i], or a RAF inhibitor [RAF-i]. 
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injected at the tumor site with either rIGFBP7 or, as a control, PBS.  Figure 2-44 

shows that rIGFBP7 substantially suppressed growth of BRAFV600E-positive 

tumors but had no effect on tumors containing wild-type BRAF.   

 

I next asked whether tumor growth could also be suppressed by systemic 

administration of rIGFBP7.  SK-MEL-28 or SK-MEL-31 cells were injected into 

the flanks of nude mice and when tumors reached a size of 100 mm3, 100  µg 

rIGFBP7 was delivered by tail vein injection at days 6, 9, and 12.  Figure 2-45 

shows that systemic administration of rIGFBP7 completely suppressed growth of 

BRAFV600E-positive tumors, whereas tumors containing wild-type BRAF were 

unaffected.  In mice treated with rIGFBP7, BRAFV600E-positive tumors were 

deoxyuridine triphosphate nick-end labeling [TUNEL] positive [Figure 2-46], 

indicating that suppression of tumor growth resulted from apoptosis.  

Suppression of tumor growth by systemically administered rIGFBP7 was dose 

dependent, and concentrations higher than that required for inhibition of tumor 

growth could be delivered without apparent adverse effects [Figure 2-47].   

 

As shown above, BRAFV600E-positive melanoma cell lines fail to express IGFBP7 

and are highly sensitive to IGFBP7-mediated apoptosis.  These results raised the 

possibility that IGFBP7 functions as a tumor suppressor and loss of IGFBP7 

might be required for development of BRAFV600E-positive melanoma.  To 
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Figure 2-44.  SK-MEL-28 or SK-MEL-31 cells were injected subcutaneously into 
the flanks of nude mice, and 3, 6, and 9 days later [denoted by arrows], the mice 
were injected at the tumor site with rIGBP7 or, as a control, PBS. Error bars 
represent standard error. 
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Figure 2-45.  SK-MEL-28 or SK-MEL-31 cells were injected into the flanks of 
nude mice. When tumors reached a size of 100 mm3, 100  µg rIGFBP7 was 
systemically administered by tail vein injection at days 6, 9, and 12 [indicated by 
arrows]. Error bars represent standard error. 
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Figure 2-46.  Systemic Administration of rIGFBP7 Induces Apoptosis in 
BRAFV600EPositive Mouse Xenografts. 
Tumors derived from the rIGFBP7 systemic administration experiment shown in 
Figure 5B were analyzed in a deoxyuridine triphosphate nick-end labeling 
[TUNEL] assay. The results show that following treatment with rIGFBP7, 
BRAFV600E-positive tumors were TUNEL-positive, indicating that suppression of 
tumor growth resulted from apoptosis. 
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Figure 2-47.  Dose-dependent suppression of tumor growth by rIGFBP7. SK-
MEL-28 cells were injected into the flanks of nude mice as described in Figure 2-
45, following which rIGFBP7 was systemically administered by tail vein injection. 
Tumor volume was measured at day 21. Error bars represent standard error. 
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investigate this possibility, I performed immunohistochemical analysis of IGFBP7 

expression on a series of human skin, nevi, and melanoma samples.   

 

Figure 2-48 and Table 2-2 show that normal skin melanocytes expressed low but 

detectable levels of IGFBP7.  BRAFV600Epositive nevi expressed high levels of 

IGFBP7, consistent with the finding that expression of BRAFV600E in melanocytes 

increased IGFBP7 levels [Figure 2-11].  Significantly, expression of IGFBP7 was 

not detectable in BRAFV600E-positive melanomas.  By contrast, IGFBP7 was 

clearly expressed in melanomas lacking activated BRAF.   

 

To determine whether loss of IGFBP7 expression was the result of epigenetic 

silencing, I performed bisulfite sequence analysis.  Figure 2-49 shows that the 

IGFBP7 promoter was densely hypermethylated in BRAFV600E-positive 

melanomas but not in BRAFV600E-positive nevi or melanomas lacking activated 

BRAF.  Similar analyses in a panel of melanoma cell lines showed that the 

IGFBP7 promoter was densely hypermethylated in BRAFV600E-positive melanoma 

cell lines and modestly hypermethylated in NRASQ61R-positive melanoma cell 

lines [Figure 2-50].  Treatment of these cell lines with the DNA methyltransferase 

inhibitor 5-aza-2’-deoxycytidine restored IGFBP7 expression in BRAFV600E- and 

NRASQ61R-positive cell lines but had no effect in BRAF/RAS wild-type cell lines 

[Figure 2-51].  Collectively, these results indicate that loss of  
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Figure 2-48.  Immunohistochemical analysis of IGFBP7 expression in human 
tissue samples. Samples were stained with hematoxylin and eosin [H&E]. 
Arrowheads indicate IGFBP7-positive melanocytes. Images are shown at 2X 
and/or 20X. 
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Table 2-2.  IGFBP7 expression in human skin, nevi and melanoma samples. 
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Figure 2-49.  [Top] Schematic of the IGFBP7 promoter; positions of the CpG 
dinucleotides are shown to scale by vertical lines.  
 
[Bottom] Each circle represents a CpG dinucleotide: open [white] circles denote 
unmethylated CpG sites and filled [black] circles indicate methylated CpG sites. 
Each row represents a single clone. 
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Figure 2-50.  [Top] Schematic of the IGFBP7 promoter; positions of the CpG 
dinucleotides are shown to scale by vertical lines.  
 
[Bottom] Bisulfite sequence analysis of the IGFBP7 promoter in a panel of 
melanoma cell lines. 
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Figure 2-51.  qRT-PCR analysis of IGFBP7 mRNA levels in melanoma cell lines 
following treatment with the DNA methyltransferase inhibitor 5-aza-2’-
deoxycytidine [5-aza]. Error bars represent standard error. 
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IGFBP7 expression in BRAFV600E-positive melanomas and cell lines results from 

epigenetic silencing involving promoter hypermethylation.   
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Conclusions I 

By performing a genome-wide shRNA screen, I have identified 17 genes that are 

essential for BRAFV600E to induce senescence or apoptosis in primary cells.  

Unexpectedly, a critical component of the senescence and apoptotic pathways 

are a secreted protein, IGFBP7.  Expression of BRAFV600E in primary cells 

induces synthesis and secretion of IGFBP7, which functions through 

autocrine/paracrine pathways to inhibit BRAF-MEK-ERK signaling and induce 

senescence or apoptosis.  Consistent with my findings are previous reports that 

IGFBP7 [also called IGFBP-rP1 or MAC25] can inhibit proliferation of some 

cancer cell lines in vitro [see, for example, Hingorani et al., 2003; Mutaguchi et 

al., 2003; Ruan et al., 2006; Swisshelm et al., 1995; Wilson et al., 2002].  My 

results provide new insights into how activated BRAF promotes senescence, 

apoptosis and malignant transformation, which are schematically summarized in 

Figure 2-52 and discussed below.   

 

I note that TP53 was one of the genes I identified as required for BRAFV600E-

mediated senescence.  There have been several previous reports that loss of 

TP53 does not enable escape from oncogene-induced senescence [see, for 

example, Beausejour et al., 2003; Narita et al., 2006; Zhu et al., 1998].  However, 

these studies involved either a different cell type or oncogene than those used 
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Figure 2-52.  Schematic summary of BRAFV600E-mediated senescence and 
melanoma progression.  
Normal melanocytes [BRAF-wt] express and secrete low levels of IGFBP7, which 
inhibits BRAF-MEK-ERK signaling through an autocrine/paracrine pathway, 
thereby restraining proliferation. In BRAFV600E-positive nevi, constitutive 
activation of the BRAF-MEK-ERK pathway increases expression and secretion of 
IGFBP7, and the resultant high levels of IGFBP7 inhibit BRAF-MEK- ERK 
signaling and activate senescence. In a BRAFV600E-positive melanoma, IGFBP7 
expression is lost, enabling the cells to escape from senescence and resulting in 
uncontrolled proliferation. Addition of exogenous IGFBP7 to BRAFV600E-positive 
melanoma cells inhibits BRAF-MEK-ERK signaling and activates apoptosis.  
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in my study.   

 

Previous studies have shown that expression of BRAFV600E in melanocytes 

results in an initial proliferative burst leading to clonal expansion followed by 

growth arrest [Michaloglou et al., 2005].  My results explain this biphasic 

response.  In the first phase, the initial expression of BRAFV600E increases BRAF-

MEK-ERK signaling, providing a transient proliferative signal.  In the second 

phase, BRAFV600E expression results in the synthesis and secretion of IGFBP7, 

which acts through an autocrine/ paracrine pathway to inhibit BRAF-MEK-ERK 

signaling and activate a senescence program.   

 

The non-uniform expression of p16INK4A in nevi has prompted speculation that 

senescent cells secrete a senescence-inducing agent that acts upon neighboring 

cells [Gray-Schopfer et al., 2007].  I find that BRAFV600E-positive melanocytic nevi 

express high levels of IGFBP7 and propose that secreted IGFBP7 has a central 

role in the initiation and maintenance of the senescent state.  A senescence-

inducing secreted protein provides a powerful mechanism for tumor suppression 

because, following an initial oncogenic event in a single cell, neighboring cells is 

also protected.   

 

BRAFV600E cannot fully transform human melanocytes, implying the existence of 

additional, cooperating events required for tumor development [Peeper and Mooi, 
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2002].  The 17 genes I have identified are potential tumor suppressors in 

malignancies involving an activating BRAF mutation.  Unlike nevi, BRAFV600E-

positive melanomas do not express IGFBP7.  On the basis of this observation 

and the other results presented in this study, I propose that loss of IGFBP7 

expression allows escape from BRAFV600E-mediated senescence and is a critical 

step in melanomagenesis.   

 

Activated BRAF-positive metastatic melanoma is an aggressive disease that is 

refractory to conventional chemotherapeutic agents and lacks adequate 

treatment options [reviewed in Gray- Schopfer et al., 2007].  Inhibitors of BRAF 

have been developed but unfortunately have performed poorly in clinical trials.  I 

have shown that IGFBP7, but not a RAF or MEK inhibitor, efficiently induces 

apoptosis in BRAFV600E-positive melanoma cell lines.  IGFBP7 may be a more 

efficacious anti-cancer agent than a BRAF or MEK inhibitor because it both 

inhibits BRAF-MEK-ERK signaling and irreversibly induces apoptosis following 

transient exposure.  The selective sensitivity of BRAFV600E-containing human 

cancer cell lines to IGFBP7, and the ability of IGFBP7 to suppress BRAFV600E-

positive tumor growth in mice, suggest that IGFBP7 may have a role in treating 

malignancies harboring activating BRAF mutations.   
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 Scurr, L.L. et. al. [2010] Response: 

In their recent Matters Arising article, Scurr, L.L., et al. [2010] questioned several 

of my conclusions regarding the role of IGFBP7 in BRAFV600E-mediated 

senescence induction.  In my original study in Cell [Wajapeyee et al., 2008], I 

used a genome-wide RNA interference [RNAi] screen to identify 17 genes 

required for an activated BRAF oncogene [BRAFV600E] to block proliferation of 

primary melanocytes and melanoma cells.  One of these genes encodes a 

secreted protein, IGFBP7, which I showed has a central role in BRAFV600E-

mediated senescence and apoptosis.  Here, I reproduce several of the key 

findings of my earlier study and present new results that substantiate my original 

claims. 

 

In my original study [Wajapeyee et al., 2008], I showed that expression of 

BRAFV600E in primary melanocytes increases synthesis and secretion of IGFBP7, 

which then acts through an autocrine/ paracrine pathway to induce senescence.  

BRAFV600E-mediated induction of IGFBP7 expression was directly demonstrated 

in six independent experiments.  By contrast, Scurr, L.L., et al. [2010] claim in 

their Matters Arising that BRAFV600E results in decreased IGFBP7.  I introduced 

BRAFV600E into cultured human melanocytes by retroviral transduction, and in a 

series of new experiments now also show that transient transfection of a 

BRAFV600E-expression plasmid results in increased IGFBP7 [Figure 2-53].  
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Figure 2-53.  Immunoblot analysis monitoring IGFBP7 levels in human primary 
melanocytes transfected with an empty vector or BRAFV600E-expression plasmid, 
or transduced with a BRAFV600Eexpressing retrovirus.  
Two days following introduction of BRAFV600E, cells were cultured in the absence 
or presence of the MEK inhibitor U0126. Twenty-four hours later, conditioned 
medium was prepared and analyzed for IGFBP7. β-ACTIN [ACTB] was 
monitored as a loading control. 
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Furthermore, BRAFV600E-mediated induction of IGFBP7 is, as expected, lost 

following addition of the MEK inhibitor U0126, which blocks BRAF-MEK-ERK 

signaling.  Transfection of a BRAFV600Eexpression plasmid into melanocytes also 

induces expression of a co-transfected IGFBP7 reporter plasmid [Figure 2-54]. 

 

Originally, I showed that BRAFV600E transcriptionally activates other genes 

involved in senescence or apoptosis, including PEA15, SMARCB1, and BNIP3L 

[Wajapeyee et al., 2008].  By contrast, Scurr, L.L., et al. [2010] claim that 

following introduction of BRAFV600E into primary melanocytes, PEA15, 

SMARCB1, BNIP3L, and p53 protein levels are reduced.  Their p53 result is 

particularly surprising because activated oncogenes induce a DNA-damage 

response, which is expected to elevate p53 levels.  Indeed, in direct contrast to 

Scurr, L.L., et al. [2010], another study has shown that BRAFV600E increases p53 

levels in melanocytes [Yu et al., 2009].  To confirm my original conclusions, I 

performed a new immunoblot experiment, which shows that BRAFV600E activates 

the DNA-damage response and markedly upregulates expression of PEA15, 

SMARCB1, BNIP3L, and p53 in primary melanocytes [Figure 2-55]. 

 

Following the primary screen, I performed 11 independent experiments 

demonstrating that the BRAFV600Emediated block to cellular proliferation requires 

IGFBP7 [Wajapeyee et al., 2008].  These experiments involved two different cell 

types, two unrelated IGFBP7 short-hairpin RNAs [shRNAs], and five different  
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Figure 2-54.  IGFBP7 reporter assays.  
Human primary melanocytes were co-transfected with the BRAFV600E-expression 
plasmid and a reporter plasmid containing the human IGFBP7 promoter cloned 
upstream of the luciferase gene [pIGFBP7-luc] and, as well as a plasmid 
expressing Renilla luciferase, which was used to normalize the transfection 
efficiency across different samples. Two days later cells were cultured in the 
presence or absence of U0126, and 24 hours later luciferase activity was 
quantified. Error bars represent standard error. 
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Figure 2-55.  Immunoblot analysis monitoring levels of PEA15, SMARCB1, 
BNIP3L, p53, phosphorylated ATM and total ATM in primary melanocytes 
transduced with a retrovirus expressing vector or BRAFV600E. As expected, 
BRAFV600E induces a DDR as evidenced by the appearance of phosphorylated 
ATM. 
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assays related to cellular proliferation.  Finally, I showed that addition of IGFBP7 

to melanocytes is sufficient to induce senescence.   

 

In their Matters Arising, Scurr, L.L., et al. [2010] performed RNAi experiments 

and did not find a role for IGFBP7 in BRAFV600Emediated senescence.  To 

investigate this discrepancy, I repeated several of my original experiments 

[Wajapeyee et al., 2008], which confirmed that senescence in melanocytes is 

substantially reduced following shRNA-mediated knockdown of IGFBP7 [Figures 

2-56 and 2-57].   

 

Scurr, L.L., et al. [2010] suggested that my use of drug selection to introduce 

BRAFV600E and shRNAs may have inadvertently selected for senescence 

resistant cells.  To address this concern, I transduced melanocytes with the 

BRAFV600E-expressing retrovirus in the absence of drug selection.  IGFBP7 

knockdown was performed using two unrelated small-interfering RNAs [siRNAs] 

in the absence of drug selection, and induction of p16INK4A was analyzed as a 

marker of senescence.  As expected, BRAFV600E results in enhanced expression 

of p16INK4A as well as IGFBP7 [Figure 2-58].  Moreover, the two IGFBP7 siRNAs 

substantially reduced IGFBP7 levels resulting in loss of p16INK4A induction. 

 

Although I do not understand the failure of Scurr, L.L., et al. 2010 [2010] to 

observe a requirement for IGFBP7 in the induction of senescence by the BRAF  
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Figure 2-56.  Quantitative proliferation assays.  
Human primary melanocytes stably expressing a non-silencing [NS] shRNA or 
one of two different IGFBP7 shRNAs were infected with the BRAFV600E-
expressing retrovirus and after 7 days viable cells were counted using trypan 
blue exclusion. Growth of BRAFV600E-expressing melanocytes in the absence of 
an shRNA is shown relative to that of mock-infected melanocytes. Growth of 
BRAFV600E-expressing melanocyte cell lines expressing an shRNA has been 
normalized to that of the corresponding melanocyte knockdown cell line in the 
absence of BRAFV600E expression. Error bars represent standard error; 
experiments were performed in triplicate. 
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Figure 2-57.  DNA replication assays monitored by BrdU incorporation.  
Human primary melanocytes stably expressing a NS or IGFBP7 shRNA were 
infected with the BRAFV600E-expressing retrovirus and after 7 days analyzed by 
BrdU incorporation assay. Error bars represent standard error. 
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Figure 2-58.  Immunoblot analysis monitoring induction of p16INK4A. Human 
primary melanocytes transfected with a NS or IGFBP7 siRNA were infected with 
the BRAFV600E-expressing retrovirus at a high multiplicity of infection and after 3 
days cell extracts were prepared and immunoblotted for p16INK4A, IGFBP7 or 
ACTB. 
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oncogene, it is clear that the populations of cells in which senescence is being 

analyzed are markedly different in the two studies.  I analyzed senescence in 

BRAFV600E-expressing cells that contain elevated levels of IGFBP7, PEA15, 

SMARCB1, BNIP3L, and p53; by contrast, in Scurr, L.L., et al. [2010] the cells 

analyzed for senescence contained reduced levels of these factors. 

 

Finally, the inability of Scurr, L.L., et al. [2010] to observe a requirement for 

IGFBP7 is essentially a negative result; none of the experiments presented in 

Figure 4 of their Matters Arising included as a positive control an shRNA that 

knocks down a gene required for senescence induction.  Scurr, L.L., et al. [2010] 

presented elsewhere an experiment purporting to show that knockdown of both 

p53 and pRb abrogates BRAFV600E-mediated senescence [Figure S2].  However, 

examination of their results reveals that the level of BRAFV600E is substantially 

lower in the p53, pRb double-knockdown cells than in the control cells, which 

could account for the apparent difference in senescence induction. 

 

In my original study [Wajapeyee et al., 2008], I showed by immunohistochemical 

analysis that IGFBP7 expression is lost at high frequency in primary melanoma 

cells containing BRAFV600E.  Subsequently, I showed that in metastatic 

melanomas IGFBP7 is lost at an even higher frequency and is independent of 

BRAF mutational status [Wajapeyee et al., 2009].  Scurr, L.L., et al. [2010] 

analyzed IGFBP7 expression in human metastatic, but not primary, melanoma 
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samples and failed to observe a correlation with the status of BRAF, which is in 

agreement with my metastatic melanoma results.  To provide additional support 

for my original conclusions, I analyzed 14 new primary melanomas and found 

that IGFBP7 is expressed in all six primary melanomas containing wild-type 

BRAF but not in any of eight primary melanomas containing BRAFV600E [Figure 2-

59].  As in my previous studies, I also provide independent support for the 

immunohistochemical results using bisulfite sequencing to determine the 

methylation status of the IGFBP7 promoter [Figure 2-50]. 

 

Scurr, L.L., et al. [2010] found that IGFBP7 is expressed in virtually all 

BRAFV600E-containing benign melanocytic lesions [nevi], in agreement with my 

original immunohistochemical analysis [Wajapeyee et al., 2008].  Using tissue 

arrays, Scurr, L.L., et al. [2010] also found that IGFBP7 expression is not 

detectable in ~50% or more of the metastatic melanoma samples containing 

BRAFV600E or wild-type BRAF.  The Figure 3B legend in the Scurr, L.L., et al. 

[2010] Matters Arising states that the median expression value for IGFBP7 is 

zero for both BRAFV600E-containing and wild-type BRAF-containing metastatic 

melanoma samples, which is in excellent agreement with my 

immunohistochemistry results [Wajapeyee et al., 2009].  In summary, both my 

results and those of Scurr, L.L., et al. [2010] show that IGFBP7 is expressed in 

primary melanocytes and benign nevi, and that IGFBP7 expression is lost in a 
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high percentage of both BRAFV600E-containing and wild-type BRAF-containing 

metastatic melanomas. 

 

In my original study in Cell, I found that loss of IGFBP7 expression correlates 

with the presence of the BRAFV600E mutation in human melanoma cell lines 

[Wajapeyee et al., 2008].  Scurr, L.L., et al. [2010] also observed frequent loss of 

IGFBP7 expression in human cancer cell lines but without a correlation with 

BRAF status.  However, whereas I analyzed only human melanoma cell lines, 

Scurr, L.L., et al. [2010] analyzed a diverse collection of melanoma and non-

melanoma cell lines as well as primary cells.  For example, of the 10 cell types 

containing wild-type BRAF and another oncogene RAS analyzed by Scurr, L.L., 

et al. [2010], only one [NM138] is a human melanoma cell line.  The focus of my 

original study was melanoma and not other cancers, and thus the results of 

Scurr, L.L., et al. [2010] using non-melanoma cell lines are not directly relevant to 

my study or its conclusions.  Notably, however, two other laboratories have 

found, analogous to my results in melanoma, that in primary colorectal cancers 

there is a loss of IGFBP7 expression that correlates with the presence of an 

activating BRAF mutation [Hinoue et al., 2009; Suzuki et al., 2010]. 

 

In summary, here I provide new results confirming several of the main 

conclusions of my original study in Cell [Wajapeyee et al., 2008], including [1] the 

transcriptional induction of IGFBP7 by BRAFV600E, [2] the requirement of  
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Figure 2-59. Immunohistochemical analysis of IGFBP7 expression in wild type 
BRAF- [BRAF-wt] and BRAFV600E-containing human primary melanoma tissue 
samples.  
Samples were stained with hematoxylin and eosin [H&E]. Images are shown at 
20X. For reference, two new and BRAF-wt metastatic melanoma samples are 
included and, consistent with my previous findings [Wajapeyee et al., 2009], 
IGFBP7 expression is not detectable. 
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Figure 2-60.  Bisulfite sequence analysis of the IGFBP7 promoter in human 
primary melanoma tissue samples.  
[Top] Schematic of the IGFBP7 promoter; positions of the CpG dinucleotides are 
shown to scale by vertical lines.  
[Bottom] Each circle represents a CpG dinucleotide: open [white] circles denote 
unmethylated CpG sites and filled [black] circles indicate methylated CpG sites. 
Each row represents a single clone. The results reveal a perfect correspondence 
between the immunohistochemical analysis of IGFBP7 expression and the 
methylation status of the IGFBP7 promoter. 
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IGFBP7 for BRAFV600E-mediated senescence, and [3] the frequent loss of 

IGFBP7 expression in BRAFV600E-containing primary melanomas.  Collectively, 

these results implicate IGFBP7 as a tumor suppressor protein in melanomas. 

  



126

Conclusions II 

My studies of BRAF induced senescence have revealed an unexpected 

mechanism for limiting the growth of cells harboring an oncogene.  The important 

role of senescence in tumor suppression has gradually gained momentum given 

the acquisition of in vivo results.  For instance melanocytic nevi stain positively 

for SA-β-GAL and almost never progress into melanoma despite containing an 

activated BRAF allele.  Furthermore my studies reveal the importance of 

secretory factors in promoting the senescence phenotype.  Shortly after my 

publication, two other groups published findings that paralleled my own 

investigations into BRAF induced senescence.  Acosta et al. [2008] and Kuilman 

et al. [2008] revealed the prevalence of secretory molecules in senescence 

induction. 

 

Acosta et al. [2008] performed a loss of function screen to identify genes required 

for replicative and oncogene induced senescence in IMR-90 fibroblasts.  They 

identified the chemokine receptor CXCR2 as a critical mediator of senescence 

induction.  Importantly the extracellular ligands for CXCR2, interleukin-8 [IL-8] 

and GROα/Gro-1, also mediated the response.  These findings underline the 

importance of the interleukin secretory response in OIS and the overall 

importance of secretion in tumor suppression.  
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The work of Kuilman et al [2008] utilized a different approach to study BRAF 

induced senescence.  Similar to the studies of Judith Campisi’s group, they 

employed whole-genome transcriptional analysis and identified interleukin-6 [IL-

6] as being upregulated in BRAF-positive cells.  Similar to Acosta et al.’s [2008] 

findings that CXCR2 or IL-8 depletion causes senescence bypass, Kuilman et al. 

[2008] show that IL-6 or the IL-6 receptor, IL-6R, depletion facilitates senescence 

bypass.  Furthermore, additional genes involved in the chemokine signaling were 

also upregulated suggesting a general role in senescence induction that parallels 

the work of Acosta et al. [2008].  

 

From these three studies a common theme emerges that speaks to the 

importance of a secreted response to oncogenic stimuli.  Despite identifying 

different factors in each of the studies, all three define an autocrine regulatory 

mechanism for halting cell growth.  Importantly, the factors that were identified 

are all potential targets for inactivation in cancer and represent a novel tumor 

suppression system in cells.  Given the lack of identification and understanding of 

the exact inducers of each of these responses, it will be interesting to see how 

other research groups explore the similarities and differences found in these 

studies.   
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Methods 

Cell Lines and Culture 

Primary foreskin fibroblasts [BJ] and human melanoma cell lines were obtained 

from ATCC, and human primary melanocytes were obtained from Cascade 

Biologics; all cells were grown as recommended by the supplier. 

 

Retroviruses and Plasmids 

Retroviruses expressing empty vector or BRAFV600E were generated from 

plasmids pBABE-zeo [Addgene] or pBABE-zeo/BRAFV600E [Michaloglou et al., 

2005], respectively. Plasmids expressing ERK2Q103A and ERK2L73P, S151D 

[Emrick et al., 2006] and MEK1EE [Tournier et al., 1999] have been described. 

shRNA Screen 

 

The human shRNAmir library [release 1.20; Open Biosystems] was obtained 

through the UMass Medical School shRNA library core facility. Retroviral pools 

were generated and used to transduce PFFs as described [Gazin et al., 2007]. 

Cells were then infected with a retrovirus carrying BRAFV600E at MOI 20. Cells 

that bypassed the BRAFV600E-induced cellular proliferation block formed colonies, 

which were pooled and expanded, and the shRNAs identified by sequence 

analysis as previously described [Gazin et al., 2007]. Individual knockdown cell 

lines were generated by stable transduction of 6 x 104 cells with a single shRNA 

followed by infection with the BRAFV600E-expressing retrovirus. Individual 
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shRNAs were either obtained from the Open Biosystems library or synthesized 

[see Table 2-3 and Table 2-4]. 

 

Quantitative Real-Time RT-PCR 

Total RNA was isolated and reverse transcription was performed as described 

[Gazin et al., 2007], followed by quantitative real-time PCR using Platinum SYBR 

Green qPCR SuperMix-UDG with Rox [Invitrogen].  Expression of GAPDH was 

used as an internal reference gene.  Primer sequences are provided in Table 2-

6. 

 

Quantitative Proliferation Assay 

Cell viability was measured by trypan blue exclusion at the time point indicated in 

the relevant figure legend. The number of viable cells was quantitated, and the 

values were expressed as percent cell growth, as described in the relevant figure 

legend. For the assay shown in Figures 2-11, CM was replenished every 3 days 

and proliferation was measured after a total of 14 days of CM treatment. Unless 

otherwise stated, rIGFBP7 was added to the culture medium at 10  µg/ml. 

 

Apoptosis and DNA Replication Assays 

PFFs, melanocytes, or shRNA knockdown derivatives [5 x 105 cells] were 

infected with BRAFV600E-expressing retrovirus, and 4 days later the total cell 

population was stained for Annexin V-PE [BD Biosciences]. To monitor apoptosis 
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in melanoma cells following rIGFBP7 treatment, 5 x 105 cells were treated with 

rIGFBP7 [10 µg/ml] for 24 hr and stained for Annexin V-PE. For DNA replication 

assays, cells were treated as described above, except 4 hr prior to the end of the 

4 day retroviral infection, cells were incubated with 20 µM BrdU [Sigma] and 

processed as previously described [Wajapeyee and Somasundaram, 2003]. 

 

Antibodies and Immunoblot Analysis 

Cell extracts were prepared by lysis in Laemmli buffer in the presence or 

absence of a phosphatase inhibitor cocktail [Sigma], as needed. To prepare CM, 

cells were grown in Opti-MEM [Invitrogen] for 24 hr and media were harvested 

and concentrated using Centricon plus 20 tubes [Millipore]. CM was normalized 

to cell number prior to loading the gel. For the experiments shown in Figures 2-

29 and 2-42, rIGFBP7 was added to the culture medium at 10 µg/ml. For the 

experiment of Figure 2-43, SK-MEL-28 cells were treated with 2 µg/ml or 10 

µg/ml rIGFBP7, 20 µM or 40 µM of the MEK inhibitor PD98054 [Calbiochem], or 

5 nM or 10 nM of the RAF inhibitor GW5074 [Sigma] for 24 hr prior to harvesting 

cells. Blots were probed with the following antibodies:  α-p16 [Abcam]; α-

acetylated H3K9 [Upstate]; α-IGFBP7, α-BRAFV600E, cleaved caspase-3 p11 

[Santa Cruz]; αSMARCB1 [Abnova]; α-BNIP3L [Proscience]; α- β-actin [Sigma]; 

or α-phospho-ERK or α-ERK [Cell Signaling Technology].  
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Recombinant IGFBP7 Expression and Purification 

The human IGFBP7 expression vector pFASTBAC-1/IGFBP7, expressing a C-

terminal Flag-tagged fusion protein [Oh et al., 1996], was used to generate 

recombinant baculovirus using the Bac-to-Bac Baculovirus Expression System 

[Invitrogen]. The recombinant baculovirus construct was then transfected into Sf9 

cells [Invitrogen], and CM was collected and incubated with α-Flag M2 beads 

[Sigma], and the bound IGFBP7 protein was eluted using an α-Flag peptide 

[synthesized by CFAR, UMass Medical School, USA]. 

 

Senescence-Associated β-galactosidase Assay 

Melanocytes infected with a retrovirus expressing either vector or BRAFV600E or 

melanocytes treated with BRAFV600E/melanocyte CM or rIGFBP7[10 µg/ml] for 14 

days were processed as previously described [Dimri et al., 1995]. Cells were 

visualized on a Zeiss Axiovert 40 CFL microscope. Images were captured using 

QCapture Pro version 5 software [QImaging Corporation]. 

 

ChIP Assays 

ChIP assays were performed using extracts prepared 24 hr following rIGFBP7 

treatment. The following antibodies were used: αBRG1 [a gift from A. Imbalzano, 

UMass Medical School], α-phospho-STAT1 [Upstate], and α-SMARCB1 and α-

STAT1 [Santa Cruz]. For ChIP experiments on the SMARCB1 promoter, primers 

spanning a STAT1 binding site located ~2.4 kb upstream of the transcription start 
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site were used. For ChIP experiments on the BNIP3L promoter, a series of 

primer pairs that covered ~2 kb of the BNIP3L promoter were used; following 

addition of rIGFBP7, SMARCB1 and BRG1 were recruited to the BNIP3L 

promoter near the transcription start site. shRNA/siRNA sequences are provided 

in Table 2-4 and Table 2-5, and primer sequences used for amplifying the ChIP 

products are provided in Table 2-7. ChIP products were analyzed by quantitative 

real-time PCR using Platinum SYBR Green qPCR SuperMix- UDG with Rox 

[Invitrogen]. Calculation of fold-differences was done as previously described 

[Pfaffl, et al. 2001]. 

 

Tumor Formation Assays 

5 x 106 SK-MEL-28 or SK-MEL-31 cells were suspended in 100 µl of serum-free 

 MEM and injected subcutaneously into the right flank of athymic Balb/c [nu/nu] 

mice [Taconic]. At days 3, 6, and 9, mice were injected at the tumor site with 

either rIGBP7 [20 µg in 100 µl total volume] or, as a control, PBS. Tumor 

dimensions were measured every three days and tumor volume was calculated 

using the formula:  π/6 x [length] x [width]2. For the systemic administration 

experiments, cells were injected into the flank as described above and when 

tumors reached a size of 100 mm3, 100 µg rIGFBP7 in a total volume of 100 µl 

was delivered by tail vein injection at days 6, 9, and 12. Tumor dimensions were 

measured every 3 days. Animal experiments were performed in accordance with 

the Institutional Animal Care and Use Committee [IACUC] guidelines. 
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Immunohistochemistry 

The study was approved by the UMass Medical Center institutional review board 

[IRB #12543]. Archival materials from normal skin [n = 5], nevi [n = 20], and 

malignant melanoma [primary [n = 7] and metastatic [n = 13]] were retrieved from 

the pathology files of UMass Medical Center, Worcester, MA. The histologic 

sections of all cases were re-reviewed and the diagnoses confirmed by a 

dermatopathologist [MM]. All patient data were de-identified. Five micrometer-

thick sections were cut for immunohistochemical studies, which were performed, 

using standard techniques, with heat-induced epitope retrieval buffer and an α-

IGFBP7 antibody [1:20 dilution; Santa Cruz]. Appropriate positive and negative 

controls were included such as cell lines containing an shRNA against the 

antigen [ie IGFBP7] and a cell line over-expressing the antigen. Positive staining 

was noted by ascertaining expression of IGFBP7 in the cytoplasm; significant 

nuclear staining was not noted. All stained slides were reviewed by the 

dermatopathologist [MM] in a blind fashion with respect to genotype. Genomic 

DNA was isolated and quantitated, followed by PCR amplification [see Table 2-8 

for primer sequences] and TA cloning [Promega]. Multiple clones were 

sequenced or identifying the V600E mutation [T1796A] in exon 15 of the BRAF 

gene. 
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Bisulfite Sequencing 

Bisulfite modification was carried out essentially as described [Frommer et al., 

1992] except that hydroquinone was used at a concentration of 125 mM during 

bisulfite treatment [carried out in the dark] and DNA was desalted on Qiaquick 

columns [QIAGEN] after the bisulfite reaction. Six clones were sequenced for 

each cell line or human tissue sample [see Table S4 for primer sequences]. For 

5-aza-2’-deoxycytidine [5-aza] treatment, melanoma cell lines were treated with 

10 µM 5-aza [Calbiochem] for 48 hr. 

 

Deoxyuridine Triphosphate Nick-End Labeling [TUNEL] Assays 

Paraffin sections of 5 micrometer thickness were tested for DNA fragmentation 

by the non-isotopic in situ TUNEL method using the ApopTag Peroxidase in situ 

Apoptosis Detection Kit Apo-DirectTM TUNEL Assay Kit [Chemicon 

International]. 
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Table 2-3.  shRNA information 
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Table 2-4.  Synthesized shRNA information, hairpins were cloned into the pSM2-
shRNA backbone [Open Biosystems]. 
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Table 2-5.  Synthesized siRNA information 
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Table 2-6.  Primers used for quantitative real time RT-PCR 
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Table 2-7.  Primers used for ChIP 
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Table 2-8.  Primers used for BRAF genotyping and bisulfite sequencing 
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CHAPTER III:  p14ARF EPIGENETIC SILENCING SCREEN 

Preface 

This body of work was completed over the entire length of my graduate studies, 

eight years.  This research was my first and last project with the Green lab. It 

began with the assistance of Claude Gazin and Narendra Wajapeyee.  Each of 

us initiated a reporter cell line based screen using vector backbones generated 

by Claude.  Unfortunately Claude’s attempts were unsuccessful but Narendra’s 

resulted in a publication entitled “Epigenetic Silencing of the RASSF1A Tumor 

Suppressor Gene through HOXB3-Mediated Induction of DNMT3B Expression” 

in the journal Molecular Cell in 2009.  This publication combined with Claude and 

Narendra’s 2007 Nature paper entitled “An Elaborate Pathway Required for Ras-

Mediated Epigenetic Silencing” proved formative in my development of this work.  

Narendra and I had daily informal discussions related to my results and 

experiments.   

 

As time went on, I sought the help and expertise of others within and outside my 

lab.  Minggang Fang had developed a very similar project concerning the 

epigenetic silencing of MLH1 in a BRAF-positive cell line.  Minggang and I 

converged on the concept that our projects, for the first time, defined the 

connection between an oncogene and its consequences on the epigenetic profile 

of a colorectal cancer cell.  This link between the oncogenotype and epigenotype 

had been observed over a decade prior and has since been better characterized. 
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However the basis of this link has never been explained in molecular detail until 

my results.  The serendipity and complexity of our results drove us to work 

together on the molecular basis of the CIMP profile and the bulk of the CIMP-

based results were performed in concert.  Furthermore, Sung Mi Park, with her 

adept ability to purify proteins and perform beautiful in vitro experiments was 

utilized to investigate the specificity of the PRKD1 phosphorylation of USP28 via 

kinase assays. 
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Introduction 

The tumor suppressor p14ARF, encoded within the INK4-ARF locus, is 

epigenetically silenced in 30-45% of colorectal cancers [CRCs] through a 

mechanism[s] that remains to be determined.  Here I perform a large-scale RNA 

interference [RNAi] screen and identify ZNF304, a zinc-finger DNA binding 

protein, as the initiator of p14ARF epigenetic silencing in CRCs containing 

activated RAS.  ZNF304 binds directly to the p14ARF promoter and recruits a co-

repressor complex that includes the histone methyltransferase, SETDB1, and the 

DNA methyltransferase, DNMT1.  Knockdown of ZNF304 derepresses p14ARF 

and markedly decreases tumor growth in mouse xenografts.  Significantly, I find 

that ZNF304 is over-expressed in KRAS-positive CRC cell lines and human CRC 

samples. Over-expression of ZNF304 is dependent upon USP28, a 

deubiquitinase isolated in my original RNAi screen, which is upregulated by RAS 

signaling and antagonizes ZNF304 proteolytic degradation.  KRAS-positive 

CRCs frequently have a CpG island methylator phenotype [CIMP] characterized 

by aberrant DNA hypermethylation of a specific set of CIMP marker genes. I find 

that ZNF304 binds directly to and is required for epigenetic silencing of these 

CIMP marker genes both in vitro and in vivo.  p14ARF is also silenced in human 

embryonic stem cells [hESCs] and becomes poised for expression following 

differentiation.  Remarkably, I show that this same ZNF304-directed pathway 

also mediates epigenetic silencing of p14ARF in undifferentiated hESCs.  
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Epigenetic silencing represents an important mechanism by which tumor 

suppressor genes are inactivated during cancer development, and is believed to 

be a critical event in cancer progression [Esteller et al., 2002].  In many 

instances, epigenetic silencing occurs by DNA hypermethylation in CpG-rich 

promoter regions [Baylin et al., 2005].  A well-studied example is the INK4-ARF 

locus , which harbors a cluster of three tumor suppressor genes: p14ARF, p15INK4B 

[also known as CDKN2B] and p16INK4A [also called CDKN2A] [reviewed in Gil et 

al., 2006].  The three genes are located in close proximity to one another on 

chromosome 9, yet each is transcribed from a distinct promoter.  Notably, p14ARF 

and p16INK4A share exons two and three, yet each is translated in a different 

reading frame yielding unrelated polypeptides. The tumor suppressor activities of 

the encoded proteins derive from their ability to act as negative regulators of the 

cell cycle.  For instance, p15INK4B and p16INK4A both function in the retinoblastoma 

[Rb] tumor suppressor pathway and act by inhibiting the cyclin-dependent 

kinases CDK4 and CDK6, which in turn induces G1 arrest.  By contrast, p14ARF 

functions in the p53 tumor suppressor pathway and abrogates MDM2-mediated 

ubiquitination of p53, leading to an increase in p53 abundance [Sherr, C.J., 

2006].  

 

Inactivation of the INK4-ARF locus through chromosomal deletion or epigenetic 

silencing is a common event in cancer and yields cells with increased 

proliferative capacity and a predisposition to tumorigenesis. Disabling the 
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functions of p14ARF, p15INK4B or p16INK4A by promoter hypermethylation occurs at 

high frequency in numerous types of human cancers including colon [Burri et al., 

2001, Lind et al., 2004, Shen et al., 2003], primary central nervous system 

lymphomas [Nakamura et al., 2001, Zhang et al., 2005], chronic myeloid 

leukemia [Nagy et al., 2003] and bladder cancer [Chang et al., 2003, Dominguez 

et al., 2003, Kawamoto et al., 2006].  In general, the factors and pathways 

responsible for aberrant tumor suppressor hypermethylation have yet to be 

identified.  Epigenetic silencing of the p14ARF gene provides a paradigm for 

studying the mechanisms involved in tumor suppressor silencing in cancer. 

Notably, p14ARF is silenced due to DNA methylation in approximately 30% of 

human colon cancer samples analyzed [Dominguez et al., 2003].  Identifying the 

genes responsible for p14ARF silencing and understanding how they function may 

reveal novel mechanisms of cancer progression and identify new therapeutic 

targets.  Here I perform a genome-wide RNA-interference [RNAi] screen to 

identify factors required for p14ARF epigenetic silencing.  Using this approach, I 

identified the KRAB-containing zinc finger transcription factor, ZNF304, required 

for efficient p14ARF epigenetic silencing. Here I describe the mechanism and 

regulation of ZNF304-mediated silencing of tumor suppressor genes in human 

colorectal cancer. 
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Results 

To screen for factors involved in epigenetic silencing of p14ARF, I generated a 

reporter construct in which the p14ARF promoter was used to direct expression of 

a gene encoding the blasticidin-resistance [BlastR] gene [Figure 3-1].  This 

p14ARF-BlastR reporter construct was linearized by restriction enzyme digest and 

stably transfected into DLD-1 cells, a human CRC cell line in which endogenous 

p14ARF is epigenetically silenced [Zheng et al., 2000] and Figure 3-2].  I then 

selected cells in which the reporter gene had been silenced as evidenced by 

acquisition of blasticidin sensitivity.  Transcriptional repression of the reporter 

gene was due to DNA methylation of the p14ARF promoter as evidenced by the 

appearance of blasticidin-resistant colonies following treatment with the DNA 

methyltransferase inhibitor 5-aza-2’-deoxycytidine [5-AZA] [Figure 3-3].  

Furthermore, methylation of the endogenous p14ARF promoter and that of the 

reporter were confirmed by bisulfite sequencing.  Treatment with 5-AZA 

demethylates the endogenous promoter as well as that of the reporter [Figure 3-

4]. 

 

A human shRNA library [Silva et al., 2005] comprising ~62,400 shRNAs directed 

against ~28,000 genes was divided into 10 pools, which were packaged into 

retrovirus particles and used to stably transduce the DLD-1/p14ARF-BlastR 

reporter cell line.  Blasticidin-resistant colonies, indicative of de-repression of the  
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Figure 3-1.  Schematic of the generation of the DLD-1/p14ARF-BlastR reporter cell 
line and subsequent shRNA screen. 
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Figure 3-2.  Validation of DLD-1/p14ARF-BlastR reporter cell line. 
qRT-PCR analysis for p14ARF and/or BlastR mRNA expression in parental DLD-1 
cells [left] or the DLD-1/p14ARF-BlastR reporter cell line [right] treated with either 
DMSO or 10 µM 5-AZA for three days. Data was normalized to the DMSO 
control.  Data were collected from experiments performed in at least triplicate, 
and expressed as mean  ±  standard deviation.  Differences between groups 
were assayed using two-tailed student t-test using Excel [Microsoft]. Significant 
differences were considered when P < 0.05.  n.s., not significant [P > 0.05]; 
*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 

* 

* 

* 

* 
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Figure 3-3.  Validation of the DLD-1/p14ARF-BlastR reporter cell line. 
0.5 x 104 DLD-1 or DLD-1/p14ARF-BlastR cells were treated with either DMSO or 
5-AZA for three days and subsequently challenged with 0, 5 or 10 µM Blasticidin 
for 6 days. Plates were stained with crystal violet. 
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Figure 3-4.  Bisulfite Sequencing of DLD-1/p14ARF-BlastR reporter cell line. 
DLD-1 or DLD-1/p14ARF-BlastR cells were treated with either DMSO or 5-AZA for 
three days and harvested for genomic DNA and subsequent bisulfite sequencing 
analysis.  Each line represents and individual sequencing clone. 
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epigenetically silenced reporter gene, were selected and the shRNAs identified 

by sequence analysis [Figure 3-1]. 

 

Positive candidates identified in the primary screen were validated by stably 

transducing DLD-1 cells with an shRNA directed against each candidate gene, 

followed by analysis of endogenous p14ARF mRNA expression by qRT-PCR.  

Using this approach, I identified eight genes that, following shRNA-mediated 

knockdown, resulted in de-repression of the entire endogenous INK4-ARF locus, 

p14ARF, p15INK4B and p16INK4A, which are silenced in DLD-1 cells [Ishiguro, 2006, 

Zheng, 2000] [Figure 3-5, 3-6 and Table 3-1].  qRT-PCR analysis confirmed that 

each shRNA efficiently knocked down target gene expression [Figure 3-7].  For 

all genes, a second shRNA whose sequence was unrelated to that isolated from 

the primary screen also resulted in target gene knockdown and de-repression of 

endogenous p14ARF [Figure 3-7].  Therefore I believe the eight genes identified 

mediate silencing in of the entire INK4-ARF locus in DLD-1 cells. 

 

My lab’s previous studies show that epigenetic silencing of tumor suppressor 

genes [TSGs] is initiated by a sequence-specific DNA binding protein.  Therefore, 

I elected to focus on ZNF304, a zinc finger DNA-binding protein that contains a 

Krüppel-associated box [KRAB] repressor domain [Sabater, 2002].  
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Figure 3-5.  Validation of ZNF304 shRNA identified in RNAi screen. 
[Top] qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA expression in 
DLD-1 cells stably infected with either a NS or a ZNF304 shRNA identified in the 
RNAi screen.  Data was normalized to the NS control.  Data were collected from 
experiments performed in at least triplicate, and expressed as mean    ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  n.s., not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
 
[Bottom] Immunoblot analysis of p14ARF and ZNF304 expression in DLD-1 cells 
stably infected with either a NS or a ZNF304 shRNA identified in the RNAi 
screen. Tubulin was used as a loading control. 
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* 

* 
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Figure 3-6.  Validation of individual shRNAs identified in RNAi screen. 
qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA expression in DLD-1 
cells stably infected with either a NS or one of 7 shRNAs identified in the RNAi 
screen.  Data was normalized to a NS control.  Data were collected from 
experiments performed in at least triplicate, and expressed as mean    ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  n.s., not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
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Table 3-1.  Genes required for epigenetic silencing of p14ARF. 
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Figure 3-7.  Candidate repressor knockdown efficiencies and validation using a 
second unrelated shRNA. 
 
[Left] qRT-PCR analysis of p14ARF mRNA expression in DLD-1 cells stably 
infected with either a NS or one of eight unrelated shRNAs for candidates 
identified in the RNAi screen.  Data was normalized to a NS control. 
 
[Middle] Analysis of target gene expression in the primary DLD-1 KD cell lines. 
Quantitative real-time RT-PCR was used to analyze target gene expression in 
each of the KD cell lines used in Figures 3-5 and 3-6. All values are normalized 
to a NS control. 
 
[Right] Analysis of target gene expression in the secondary DLD-1 KD cell lines. 
Quantitative real-time RT-PCR was used to analyze target gene expression in 
each of the KD cell lines used Figure 3-7 [Middle]. All values are normalized to a 
NS control.  Data were collected from experiments performed in at least triplicate, 
and expressed as mean  ±  standard deviation.  Differences between groups 
were assayed using two-tailed student t-test using Excel [Microsoft]. Significant 
differences were considered when P < 0.05.  n.s., not significant [P > 0.05]; 
*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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KRAB domain proteins function by recruiting a co-repressor complex that 

includes the scaffolding protein KAP1 and histone methyltransferase SETDB1 

[Bellefroid, 1991, Friedman, 1996, Margolin, 1994, Urrutia, 2003, Witzgall, 1994].  

Knockdown of KAP1 or SETDB1 resulted in de-repression of p14ARF [Figure 3-8].  

p14ARF was also significantly de-repressed following knockdown of DNMT1 but 

the effect was less in the knockdown of the other DNA methyltransferases, 

DNMT3A and DNMT3B [Figure 3-8].  The identification of KAP1, SETDB1 and 

DNMT1 as ZN304 cofactors indicates that my shRNA screen, like other large-

scale shRNA screens [see, for example, Mullenders, 2009] was not saturating.  

 

qRT-PCR analysis confirmed that each co-repressor shRNA efficiently knocked 

down target gene expression [Figure 3-9].  Furthermore, for all genes, a second 

shRNA whose sequence was unrelated to that used in Figure 3-8 also resulted in 

target gene knockdown and de-repression of endogenous p14ARF, p15INK4B and 

p16INK4A [Figure 3-9].  Therefore I believe ZNF304, KAP1, SETDB1 and DNMT1 

contribute to the silencing of the INK4-ARF locus in DLD-1 cells. 

 

The chromatin immunoprecipitation [ChIP] assay of Figure 3-10 shows that 

ZNF304 as well as KAP1, SETDB1 and DNMT1 were bound to the promoters of 

the INK4-ARF locus in DLD-1 cells. Knockdown of ZNF304 resulted in decreased 

binding of KAP1, SETDB1 and DNMT1.  Taken together I believe ZNF304 is the  
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Figure 3-8.  qRT-PCR analysis of INK4-ARF locus mRNA expression in DLD-1 
cells stably infected with either a NS or candidate co-repressor shRNA.  Data 
was normalized to a NS control.  Data were collected from experiments 
performed in at least triplicate, and expressed as mean  ±  standard deviation.  
Differences between groups were assayed using two-tailed student t-test using 
Excel [Microsoft]. Significant differences were considered when P < 0.05.  n.s., 
not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-9.  Co-repressor knockdown efficiencies and validation using a second 
unrelated shRNA. 
 
[Left] qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA expression in 
DLD-1 cells stably infected with either a NS or one of five unrelated shRNAs for 
candidate co-repressors of ZNF304.  Data was normalized to a NS control. 
 
[Middle] Analysis of target gene expression in the primary DLD-1 KD cell lines. 
Quantitative real-time RT-PCR was used to analyze target gene expression in 
each of the KD cell lines used in Figures 3-8 and 3-11. All values are normalized 
to a NS control. 
 
[Right] Analysis of target gene expression in the secondary DLD-1 KD cell lines. 
Quantitative real-time RT-PCR was used to analyze target gene expression in 
each of the KD cell lines used Figure 3-9 [Middle]. All values are normalized to a 
NS control.   
 
Data were collected from experiments performed in at least triplicate, and 
expressed as mean  ±  standard deviation.  Differences between groups were 
assayed using two-tailed student t-test using Excel [Microsoft]. Significant 
differences were considered when P < 0.05.  n.s., not significant [P > 0.05]; 
*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-10.  ChIP analysis of the p14ARF [left], p15INK4B [middle] and p16INK4A 
[right] promoters was performed on chromatin extracts from DLD-1 cells stably 
infected with either a NS or ZNF304 shRNA.  Data was normalized to a control 
IgG immunoprecipitation.  Data were collected from experiments performed in at 
least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  n.s., not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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specificity determinant for the KRAB co-repressor complex and its subsequent 

epigenetic silencing function. 

 

Bisulfite sequence analysis showed that shRNA-mediated knockdown of 

ZNF304, KAP1, SETDB1 or DNMT1 resulted in decreased p14ARF DNA 

hypermethylation [Figure 3-11]. Collectively, these results indicate that following 

binding to the p14ARF promoter ZNF304 recruits the KRAB co-repressor complex 

and DNMT1, which is responsible for DNA hypermethylation and epigenetic 

silencing of the INK4-ARF locus.   

 

Our lab’s previous findings revealed that epigenetic silencing of tumor 

suppressors is often initiated and maintained by oncogenic signaling.  DLD-1 

cells contain an activated KRAS allele and I next investigated the relationship 

between KRAS and silencing of the INK4-ARF locus.  shRNA-mediated 

knockdown of KRAS in DLD-1 [Figure 3-13] cells resulted in depression of the 

INK4-ARF locus [Figure 3-12] and substantially reduced binding of ZNF304 and 

its co-repressors on the INK4-ARF promoters [Figure 3-14].  Binding of ZNF304 

and its cofactors was comparably reduced following treatment with Manumycin 

A, a farnesyltransferase inhibitor that antagonizes RAS localization and function 

[Figure 3-14].  As expected treatment with Manumycin A also causes a robust 

loss of hypermethylation of the p14ARF promoter region as determined by bisulfite  
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Figure 3-11.  Bisulfite Sequencing of p14ARF promoter region using bisulfite 
converted genomic DNA from DLD-1 cells stably infected with indicated shRNAs.  
Each line represents an independent sequencing clone. 
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Figure 3-12.  qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA 
expression using DLD-1 cells stably infected with NS or KRAS shRNAs or DLD-1 
cells treated with DMSO or 10 µM Manumycin A for 24 hours.  Data was 
normalized to NS and DMSO controls, respectively.  Data were collected from 
experiments performed in at least triplicate, and expressed as mean    ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
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Figure 3-13.  KRAS knockdown efficiency and validation using a second 
unrelated shRNA. 
 
[Left] qRT-PCR analysis of p14ARF mRNA expression in DLD-1 cells stably 
infected with either an unrelated NS or KRAS from Figure 3-12.  Data was 
normalized to a NS control. 
 
 [Middle] Analysis of KRAS gene expression in the primary DLD-1 KRAS KD cell 
line. Quantitative real-time RT-PCR was used to analyze KRAS gene expression 
in the KD cell lines used Figure 3-12. All values are normalized to a NS control.   
 
[Right] Analysis of KRAS gene expression in the secondary DLD-1 KRAS KD cell 
line. Quantitative real-time RT-PCR was used to analyze KRAS gene expression 
in the KD cell lines used Figure 3-13 [right]. All values are normalized to a NS 
control.   
 
Data were collected from experiments performed in at least triplicate, and 
expressed as mean  ±  standard deviation.  Differences between groups were 
assayed using two-tailed student t-test using Excel [Microsoft]. Significant 
differences were considered when P < 0.05.  n.s., not significant [P > 0.05]; 
*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-14.  ChIP analysis of the p14ARF, p15INK4B and p16INK4A promoters 
performed using chromatin extracts from DLD-1 cells stably infected with either 
NS or KRAS shRNA [Top] or DMSO or Manumycin A [Bottom].  Data was 
normalized to control IgG immunoprecipitation for each set of conditions.  Data 
were collected from experiments performed in at least triplicate, and expressed 
as mean  ±  standard deviation.  Differences between groups were assayed 
using two-tailed student t-test using Excel [Microsoft]. Significant differences 
were considered when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and 
**P ≤ 0.01 indicate statistical significance. 
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sequencing [Figure 3-15] and subsequent re-expression of the INK4-ARF locus 

[Figure 3-12]. 

 

To determine the generality and clinical relevance of these results I analyzed 

additional CRC cell lines and human patient-derived tumor samples that 

contained activated KRAS mutations.  ChIP analysis shows that in HCT116 and 

HCT15 cells, two other KRAS-positive CRC cell lines in which the INK4-ARF 

locus is epigenetically silenced [Figure 3-16], ZNF304 was associated with the 

INK4-ARF promoters [Figure 3-17] and shRNA-mediated knockdown of ZNF304 

or KRAS or Manumycin A treatment derepressed p14ARF, p15INK4B and p16INK4A 

mRNA expression [Figure 3-18].  

 

I next performed immunohistochemistry to measure ZNF304 levels in 68 KRAS-

positive CRC human tumor samples.  I found that in ~90% of these KRAS-

positive CRCs, ZNF304 was over-expressed relative to normal colon [Figure 3-

19 and Table 3-2].  I also used a pathology tissue ChIP [PAT-ChIP] assay to 

measure association of ZNF304 with the p14ARF, p15INK4B and p16INK4A promoters 

in KRAS-positive CRC human tumor samples compared to adjacent normal 

colonic tissue.  Figure 3-20 shows that ZNF304 was substantially enriched at the 

p14ARF, p15INK4B and p16INK4A promoters in the KRAS-positive CRCs.  I then 

sought to confirm hypermethylation of the p14ARF promoter in these patient  
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Figure 3-15.  Bisulfite Sequencing of the p14ARF promoter region using bisulfite 
converted genomic DNA from DLD-1 cells treated with DMSO or 10 µM 
Manumycin A for 24 hours.  Each line represents and independent sequencing 
clone. 
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Figure 3-16.  Bisulfite Sequencing of the p14ARF promoter region using bisulfite 
converted genomic DNA from either HCT116 or HCT15 cells.  Each line 
represents and independent sequencing clone. 
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Figure 3-17.  ChIP analysis of the p14ARF, p15INK4B and p16INK4A promoter regions 
in HCT116 and HCT15 chromatin extracts.  Data were collected from 
experiments performed in at least triplicate, and expressed as mean    ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
 
  

* 
* * 

* 

* * 

* * 
* * 

* * 

* * 

* * 
* * 

* * * * 

* * 

* * 

* * 

* * * * * * 
* * 

* * 
* * 

* * 

* * 

*- 



169

 
 
 
Figure 3-18.  INK4-ARF mRNA Expression upon KRAS inhibition. 
[Top] qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA expression in 
HCT116 and HCT15 cells that have been stably infected with NS, ZNF304 and 
KRAS shRNAs.   
 
[Bottom] qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA expression in 
HCT116 and HCT15 cells that have been treated with either DMSO or 10 µM 
Manumycin A for 24 hours. 
 
Data were collected from experiments performed in at least triplicate, and 
expressed as mean  ±  standard deviation.  Differences between groups were 
assayed using two-tailed student t-test using Excel [Microsoft]. Significant 
differences were considered when P < 0.05.  NS, not significant [P > 0.05]; 
*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-19.  Immunohistochemistry staining for ZNF304 expression in normal 
tissue and KRAS-positive colorectal adenocarcinoma samples.  Table below 
shows quantitation of KRAS-positive cohort.  

Normal (2X) Colorectal cancer (20X) 
ZN

F3
04

 

Percent positive staining in KRAS-positive cancers:   
ZNF304  88.2%  (60/68) 
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Figure 3-20.  PAT-ChIP analysis of the p14ARF, p15INK4B and p16INK4A promoters 
using ZNF304 in matched patient-derived normal adjacent and KRAS-positive 
colorectal adenocarcinoma tissue samples chromatin preps.  Bars represent 
ZNF304 enrichment at the indicated target promoter after normalization to a IgG 
control immunoprecipitation.  Data were collected from experiments performed in 
at least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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derived tissues.  I confirmed that the p14ARF promoter was in fact 

hypermethylated in the tumor tissue compared to the matched normal control 

tissue [Figure 3-21]. 

 

Notably, shRNA-mediated knockdown or pharmacological inhibition of KRAS 

markedly reduced ZNF304 protein levels [Figure 3-22], whereas ZNF304 mRNA 

was relatively unaffected [Figure 3-23].  Thus, activated KRAS post-

transcriptionally upregulates ZNF304 expression.  Consistent with this idea, the 

reduction of ZNF304 protein levels following KRAS inhibition can be 

counteracted by proteasome inhibitions [Figure 3-24].   

 

USP28, a nuclear localized de-ubiquitinase, was another candidate isolated in 

the primary RNAi screen for p14ARF repressors.  I asked whether USP28 was 

responsible for KRAS-mediated stabilization of ZNF304. Similar to the results 

with KRAS, knockdown of USP28 substantially reduced ZNF304 protein [Figure 

3-25] but not mRNA [Figure 3-26] levels. The co-immunoprecipitation 

experiments of Figure 3-27 shows that USP28 and ZNF304 physically interact.  

Moreover, co-transfection of wildtype USP28, but not a catalytically inactive 

USP28C171A mutant, reduced ubiquitination of ZNF304 [Figures 3-28].  Therefore 

I believe USP28 antagonizes the ubiquitin-mediated degradation of ZNF304 and 

thus contributes to epigenetic silencing of the INK4-ARF locus. 
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Figure 3-21.  Bisulfite sequencing analysis of the p14ARF promoter region. 
Genomic DNA derived from patient-derived matched adjacent normal colonic 
tissue and KRAS-positive colorectal cancer was analyzed by bisulfite sequencing 
analysis. 
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Figure 3-22.  Immunoblot analysis of DLD-1 cells stably infected with either NS or 
KRAS shRNA or treated with DMSO or 10 µM Manumycin A for 24 hours.  
Tubulin was used as a loading control. 
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Figure 3-23.  qRT-PCR analysis of p14ARF and ZNF304 mRNA expression in 
DLD-1 cells stably infected with either NS or KRAS shRNA or treated with DMSO 
or 10 µM Manumycin A for 24 hours.  Data was normalized to a NS or DMSO 
control respectively.  Data were collected from experiments performed in at least 
triplicate, and expressed as mean  ±  standard deviation.  Differences between 
groups were assayed using two-tailed student t-test using Excel [Microsoft]. 
Significant differences were considered when P < 0.05.  NS, not significant 
[P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
 
  

n.s. 
n s. 
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Figure 3-24.  Immunoblot analysis of ZNF304 expression in DLD-1 cells that 
have been treated with 10 µM Manumycin A for 24 hours then subsequently 
treated with 0, 2, 4, 6, 8, 10 µM MG-132 for 4 hours. Tubulin was used as a 
loading control. 
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Figure 3-25.  Immunoblot analysis of DLD-1 cells stably infected with NS or 
USP28 shRNA.  Tubulin was used as a loading control. 
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Figure 3-26.  qRT-PCR analysis of p14ARF, USP28 and ZNF304 mRNA 
expression in DLD-1 cells stably infected with NS or USP28 shRNA.  Data was 
normalized to a NS control.  Data were collected from experiments performed in 
at least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
  

n s. * * 

* * 
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Figure 3-27.  Co-immunoprecipitation analysis of ZNF304 and USP28 
interactions performed using DLD-1 cell lysate. 
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Figure 3-28.  Ubiquitination of ZNF304 is antagonized by USP28.  293T were 
transfected with HA-Ubiquitin, Flag-ZNF304 and either Flag-USP28 or Flag-
USP28C171A for 48 hours and cell lysates were prepared.  Ubiquitinated ZNF304 
was pulled down using anti-HA beads. In the mutant USP28 lane, ubiquitinated 
ZNF304 is present and appears as a smear below full-length ZNF304 [<75 kDa].  
Tubulin was used as a loading control. 
  

75 kDa 
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Notably, knockdown or pharmacological inhibition of KRAS led to reduced levels 

of USP28 protein and mRNA [Figure 3-29 and Figure 3-30].  These results 

suggest that KRAS signaling up-regulates expression of USP28, which in turn 

stabilizes ZNF304.  Analogous to my studies of ZNF304 expression in patient 

samples I performed IHC analysis on 256 KRAS-positive CRCs and found 

elevated USP28 expression in ~28% compared to normal tissue control [Figure 

3-31].  Taken together, I believe KRAS antagonizes ZNF304 proteasomal 

degradation by up-regulating USP28 expression both in KRAS-positive cell lines 

and in patient samples. 

 

Previous studies have shown that deubiquitinase-substrate interactions are 

regulated by phosphorylation [Kessler and Edelman, 2011].  PRKD1, another 

candidate isolated in the primary RNAi screen for p14ARF repressors, is a 

serine/threonine kinase that is deregulated in a variety of cancers [Eiseler et al. 

2009].  I noticed that USP28 contains a putative PRKD1 phosphorylation site 

[LxxRxS/T] [Nishikawa et al., 1997] and analyzed the role of PRKD1 in RAS-

mediated stabilization of ZNF304.  Figure 3-32 shows that shRNA-mediated 

knockdown of PRKD1 resulted in decreased ZNF304 protein levels, whereas 

ZNF304 mRNA levels were relatively unaffected [Figure 3-33].  Furthermore, 

treatment of DLD-1 cells with a PRKD1 chemical inhibitor, CRT0066101, also 

resulted in decreased ZNF304 protein levels as well as derepression of p14ARF, 

p15INK4B and p16INK4A [Figure 3-34].   
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Figure 3-29.  Immunoblot analysis of USP28 expression in DLD-1 cells stably 
infected with NS or KRAS shRNA or treated with DMSO or 10 µM Manumycin A 
for 24 hours.  Tubulin was used as a loading control. 
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Figure 3-30.  qRT-PCR analysis of USP28 mRNA expression in DLD-1 cells 
stably infected with NS or KRAS shRNA or treated with DMSO or 10 µM 
Manumycin A for 24 hours.  Data was normalized to a NS or DMSO control, 
respectively.  Data were collected from experiments performed in at least 
triplicate, and expressed as mean  ±  standard deviation.  Differences between 
groups were assayed using two-tailed student t-test using Excel [Microsoft]. 
Significant differences were considered when P < 0.05.  NS, not significant 
[P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
 
 
  

* * * * 
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Figure 3-31.  Immunohistochemistry staining of USP28 was performed on normal 
adjacent colonic tissue and KRAS-positive colorectal adenocarcinoma.  The table 
below quantitates the positive staining for the colorectal cancer samples. 
 

Normal (2X) Colorectal cancer (20X) 
U

S
P

28
 

Percent positive staining in KRAS-positive cancers:   
USP28  28.1%  (72/256) 
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Figure 3-32.  Immunoblot analysis of DLD-1 cells stably infected with NS or 
PRKD1 shRNA. Tubulin was used as a loading control. 
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Figure 3-33.  qRT-PCR analysis of ZNF304 mRNA expression in DLD-1 cells 
stably infected with either NS or PRKD1 shRNA.  Data was normalized to a NS 
control.  Data were collected from experiments performed in at least triplicate, 
and expressed as mean  ±  standard deviation.  Differences between groups 
were assayed using two-tailed student t-test using Excel [Microsoft]. Significant 
differences were considered when P < 0.05.  NS, not significant [P > 0.05]; 
*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
  

n.s. 
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Figure 3-34.  [Top] Immunoblot analysis of DLD-1 cells treated with DMSO or 10 
µM CRT0066101 for 24 hours. Tubulin was used as a loading control. 
 
[Bottom] qRT-PCR analysis of p14ARF, p15INK4B and p16INK4A mRNA expression in 
DLD-1 cells treated with DMSO or 10 µM CRT0066101 for 24 hours.  Data was 
normalized to a DMSO control.  Data were collected from experiments performed 
in at least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
  

* * 

* * * * 
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Due to dramatic re-expression of the INK4-ARF locus upon treatment with 

CRT0066101, we sought to determine whether the KRAB co-repressor complex 

was present at the INK4-ARF promoters under these conditions.  Figure 3-35 

displays a marked loss of co-repressor binding to the INK4-ARF promoters in 

DLD-1 cells treated with CRT0066101.  Furthermore we obtained a similar result 

as USP28 following knockdown or pharmacological inhibition of KRAS [Figures 

3-29 and 3-30].  Figures 3-36 and 3-37 show decreased PRKD1 protein and 

mRNA levels when RAS is inhibited suggesting that RAS signaling is responsible 

for PRKD1expression. 

 

I next asked whether USP28 is a substrate of PRKD1, given the phenocopying 

we find with USP28 and PRKD1 KDs and the presence of two putative PRKD1 

phosphorylation sites within the protein.  Consistent with this hypothesis, I found 

that USP28 and PRKD1 were stably associated in a co-immunoprecipitation 

assay [Figure 3-38]. I next performed an in vitro kinase assay with purified 

PRKD1 capable of autophosphorylation at Serine 916, a hallmark of PRKD1 

activity [Rybin et al 2009] [Figure 3-39].  Figure 3-40 shows that PRKD1 could 

phosphorylate a peptide containing the predicted USP28 phosphorylation site 

located at serine residue 899 but not other predicted sites in USP28. Notably, 

unlike wild type USP28, a USP28 derivative containing a mutation in the PRKD1 

phosphorylation site, USP28S899A, mutant was less capable at reducing ZNF304 

ubiquitination [Figure 3-41].  Importantly, this effect is lower than what is seen 
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Figure 3-35.  ChIP analysis of the p14ARF, p15INK4B and p16INK4A promoters 
performed using chromatin extracts from DLD-1 cells treated with DMSO or 
CRT0066101. Data was normalized to a control IgG immunoprecipitation under 
each set of conditions.  Data were collected from experiments performed in at 
least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
  

* 
* 

* 

* * 
* * * * * * * * * n.s. 

* * 

* * 
* * 

* * 

* * 

* * 

* * 

* * 

* * 
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Figure 3-36.  Immunoblot analysis PRKD1 expression in DLD-1 cells stably 
infected with either NS or KRAS shRNA or treated with DMSO or 10 µM 
Manumycin A for 24 hours.  Tubulin was used as a loading control. 
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Figure 3-37.  qRT-PCR analysis of PRKD1 mRNA expression in DLD-1 cells 
stably infected with either NS or KRAS shRNA or treated with DMSO or 10 µM 
Manumycin A for 24 hours.  Data was normalized to a NS or DMSO control, 
respectively.  Data were collected from experiments performed in at least 
triplicate, and expressed as mean  ±  standard deviation.  Differences between 
groups were assayed using two-tailed student t-test using Excel [Microsoft]. 
Significant differences were considered when P < 0.05.  NS, not significant 
[P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
  

* 
* 

* 
* 
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Figure 3-38.  Co-Immunoprecipitation analysis of USP28 and PRKD1 interaction 
performed on DLD-1 cell lysate. 
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Figure 3-39.  Purified wildtype and kinase dead versions of PRKD1 were 
incubated with radioactive ATP.  Only the wildtype version was capable of auto-
phosphorylation, indicative of kinase activity in PRKD1.  The bottom image is 
silver stained to show the abundance of each protein. 
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Figure 3-40.  Peptides corresponding to the indicated potential PRKD1 
phosphorylation residues were incubated with purified wildtype and kinase dead 
versions of PRKD1.  Only the serine residue at position 899 in USP28 was 
actively phosphorylated by PRKD1 indicated by the signal present in the second 
to last lane.  The bottom row is coomassie stained to show the relative 
abundance of the peptide. 
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Figure 3-41.  Ubiquitination of ZNF304 is antagonized by USP28 and PRKD1-
mediated phosphorylation modulates this activity.  293T were transfected with 
HA-Ubiquitin, Flag-ZNF304 and either Flag-USP28 or Flag-USP28S899A for 48 
hours and cell lysates were prepared.  Ubiquitinated ZNF304 was pulled down 
using anti-HA beads. In the mutant USP28 lane, ubiquitinated ZNF304 is present 
and appears as a smear below full-length ZNF304 [<75 kDa].  Tubulin was used 
as a loading control.  

75 kDa 
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with the catalytic-inactive form of USP28 [Figure 3-28].  Therefore PRKD1-

mediated phosphorylation of USP28 Ser899 may contribute to USP28-mediated 

stabilization of ZNF304 but may not be the only contributing regulator of this 

event. 

 

Kinases present a potentially druggable target and I sought to investigate PRKD1 

inhibition as a viable therapeutic avenue for reversing INK4-ARF 

hypermethylation and causing a loss of cell viability.  I used a small molecule 

inhibitor of the protein kinase D family, CRT0066101, in DLD-1 and other cell 

lines.  In DLD-1 cells treated with increasing amounts of CRT0066101 for 4 

hours, I see a marked reduction in DNMT1, SETDB1, KAP1, USP28, ZNF304, 

PRKD1 protein levels and a coordinate increase in p14ARF [Figure 3-42].  

Importantly there is significant decrease in PRKD1Ser916 auto-phosphorylation at 

1uM CRT0066101 indicating there is effective inhibition of PRKD1 enzymatic 

activity.  Furthermore there is an abundance of lower molecular weight bands for 

the USP28, ZNF304 and PRKD1, which I believe to be degradation products.  

Therefore, I believe CRT0066101 to effectively inhibit PRKD1 and cause a 

subsequent down-regulation of the entire KRAB co-repressor complex.   

 

I next treated a panel of cell lines with 8 µM CRT0066101 for 48 hours, then 

performed the cell viability Alamar Blue assay.  Cell lines that harbored both a 

KRAS and PI3K mutation were significantly more sensitive compared to PFF cells 
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Figure 3-42.  Immunoblot analysis of the co-repressor complex expression in 
DLD-1 cells following treatment with DMSO or 1, 2, 4, 6, and 8 µM CRT0066101 
for 24 hours. Tubulin was used as a loading control. 
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or singly mutated counterparts [Figure 3-43].  Despite its moderate toxicity in PFF 

cells, CRT0066101 represents a potential therapy for KRAS and PI3K positive 

colorectal cancers.  Perhaps future improvements in the chemistry of the 

molecule will yield a version that is less toxic to normal cells while retaining its 

potent growth inhibitory effect on tumor cells. 

 

As stated previously, aberrant silencing of the INK4-ARF locus occurs frequently 

in cancers.  In fact, in colon cancer there exists well-described epigenotypes 

termed CpG Island Methylator Phenotypes, CIMPs [Yagi et al. 2009].  These 

CIMP profiles termed CIMP-High and CIMP-low are distinguished from one 

another based on the hypermethylation and epigenetic silencing of characteristic 

marker genes that include p14ARF and p16INK4A hypermethylation. Many of the 

CIMP marker genes are known tumor suppressors.  In CIMP-High there is 

essentially hypermethylation of all the marker genes [approximately 60 genes] 

and in CIMP-Low, the majority of the marker genes [approximately 50 of the 60] 

are hypermethylated save a select few.  The genes methylated in CIMP- Low are 

termed Group 2 marker genes and the genes methylated only in CIMP-High are 

termed Group 1 marker genes.  These CIMP epigenotypes are also associated 

with distinct oncogeneotypes.  CIMP-High is associated with BRAF mutation and 

CIMP-Low with KRAS mutation [Yagi et al. 2010]. The molecular basis of the 

CIMP subtypes and how they are related to specific oncogenes remains to be 

determined. 
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Figure 3-43.  Proliferation was measured using the Alamar blue assay for the 
indicated cell lines following two days of treatment with 8 µM of CRT0066101.  
Data was normalized to a DMSO control for each cell line.  Data were collected 
from experiments performed in at least triplicate, and expressed as mean  ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
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I hypothesized that my ZNF304-KRAB corepressor complex may be responsible 

for silencing Group 2 CIMP marker genes in KRAS-positive colorectal cancers 

since p14ARF and p16INK4A are part of this group.  I performed KRAS and ZNF304 

knockdown experiments in DLD-1 cells then analyzed mRNA expression of the 

50 Group 2 CIMP marker genes [See Table 3-2 for gene list].  Strikingly, in every 

case, knockdown of either KRAS or ZNF304 resulted in a significant increase in 

gene expression [Figure 3-44]. In addition to Group 2 CIMP marker genes, I find 

that KD of either ZNF304 or KRAS in DLD-1 cells results in the re-expression of 

two genes that are used clinically as biomarkers in CRC.  Figure 3-45 shows re-

expression of vimentin, VIM, and septin 9, SEPT9, when ZNF304 or KRAS is 

knocked down.  Furthermore I tested a representative subset of Group 2 CIMP 

marker genes for re-expression upon KD of either ZNF304 or KRAS in HCT15 

and HCT116 cells.  Figure 3-46 shows a significant increase in expression of the 

tested genes upon KD of either ZNF304 or KRAS.  These results are consistent 

with my hypothesis that KRAS promotes an epigenetic silencing pathway that 

uses ZNF304 to target the Group 2 CIMP marker genes.   

 

I next tested whether the ZNF304-KRAB corepressor complex directly bound the 

promoters of Group 2 CIMP marker genes.  Figure 3-46 shows ChIP experiment 

results where I find significant enrichment of ZNF304, KAP1, SETDB1 and 

DNMT1 at the promoters of several Group 2 CIMP marker genes that we tested 

in DLD-1 cells.  This representative subset of Group 2 CIMP marker genes will  
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Table 3-2.  Group 2 CIMP Marker genes 
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Figure 3-44.  qRT-PCR of a panel of CIMP marker gene expression in DLD-1 
cells stably infected with either a NS, ZNF304 or KRAS shRNA.  Data was 
normalized to a NS control.  Data were collected from experiments performed in 
at least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-45.  qRT-PCR of VIMENTIN and SEPT9 gene expression in DLD-1 cells 
stably infected with either a NS, ZNF304 or KRAS shRNA.  Data was normalized 
to a NS control.  Data were collected from experiments performed in at least 
triplicate, and expressed as mean  ±  standard deviation.  Differences between 
groups were assayed using two-tailed student t-test using Excel [Microsoft]. 
Significant differences were considered when P < 0.05.  NS, not significant 
[P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-46.  qRT-PCR of a panel of CIMP marker gene expression in HCT116 
and HCT15 cells stably infected with either a NS, ZNF304 or KRAS shRNA.  
Data was normalized to a NS control.  Data were collected from experiments 
performed in at least triplicate, and expressed as mean  ±  standard deviation.  
Differences between groups were assayed using two-tailed student t-test using 
Excel [Microsoft]. Significant differences were considered when P < 0.05.  NS, 
not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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be used throughout several of the subsequent experiments.  Again, we sought to 

confirm our results in the two KRAS-positive CRC cell lines, HCT116 and 

HCT15.  Figure 3-47 shows ChIP experiment results where we find enrichment of 

the KRAB co-repressor complex at the promoters of a subset of Group 2 CIMP 

marker genes.   

 

Finally, I find that shRNA-mediated knockdown of KRAS and ZNF304 results in a 

loss of Group 2 CIMP marker gene promoter hypermethylation as shown by 

bisulfite sequencing [Figure 3-48].  I also confirmed hypermethylation of AOX1, 

CACNA1G and CHFR in the HCT15 and HCT116 cells using bisulfite sequencing 

[Figure 3-49].  Taken together my results suggest that KRAS initiates a pathway 

that uses the ZNF304-containing KRAB co-repressor complex to silence Group 2 

CIMP marker genes.   

 

I then returned to the PAT-ChIP analysis I had undertaken for ZNF304 

recruitment to the INK4-ARF promoters to investigate the relevance of the 

ZNF304 KRAB co-repressor complex’s role in silencing Group 2 CIMP marker 

genes in vivo.  When a subset of Group 2 CIMP marker gene promoters were 

analyzed I found more enrichment of ZNF304 at nearly all promoters in CRC 

samples versus their matched normal controls [Figure 3-50] when normalized to 

the control IgG immunoprecipitation in the normal tissue.  Furthermore, I 

confirmed that the promoters of AOX1, CACNA1G, IRF8 and p14ARF were  
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Figure 3-47.  ChIP analysis on a panel of CIMP marker gene promoters 
performed on DLD-1 cell chromatin extracts.  Data was normalized to a control 
IgG immunoprecipitation.  Data were collected from experiments performed in at 
least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-48.  ChIP analysis on a panel of CIMP marker gene promoters 
performed on HCT15 [left] and HCT116 [right] cell chromatin extracts.  Data was 
normalized to a control IgG immunoprecipitation.  Data were collected from 
experiments performed in at least triplicate, and expressed as mean    ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
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Figure 3-49.  Bisulfite sequencing performed on the promoter regions of a panel 
of CIMP marker genes in bisulfite converted genomic DNA from DLD-1 cells 
stably infected with NS, ZNF304 or KRAS shRNAs. 
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Figure 3-50.  Bisulfite sequencing performed on the promoter regions of a panel 
of CIMP marker genes in bisulfite converted genomic DNA from HCT15 [top] and 
HCT116 cells [bottom]. 
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hypermethylated in the CRC but not the normal tissue in the same set of 

matched samples as determined by bisulfite sequencing [Figure 3-51].  Taken 

together, my results show that KRAS up-regulates ZNF304, which then specifies 

Group 2 CIMP marker gene hypermethylation and epigenetic silencing in human 

KRAS-positive CRCs. 

 

As stated earlier, p14ARF is a well-established tumor suppressor and cell cycle 

regulator [Sherr, 1998, Sherr, 2006].  Mouse knockout models of the murine 

p14ARF homolog, p19ARF, display increased frequency of lymphomas and 

sarcomas with early onset [Kamijo, 1997] and, conversely, over-expression of 

p14ARF results in cell cycle arrest or apoptosis [Asker et al, 1999].   

 

Based upon these considerations I predicted that loss of ZNF304 [or DNMT1], 

which results in increased expression of p14ARF, would reduce tumorigenicity of 

the DLD-1 cell line.  To test this prediction, I performed double-knockdown 

experiments in a mouse xenograft system in which DLD-1 cells stably express 

two different shRNAs.  DLD-1 cells were transduced with pSM2 retroviral 

shRNAs directed against a non-silencing control or ZNF304.  Subsequently 

infected cells were selected using puromycin resistance.  Then, the puromycin-

resistant cells were infected with GFP-expressing pGIPZ shRNAs directed 

against a non-silencing control or p14ARF.  pGIPZ containing cells were FACS 

sorted using the GFP marker.  The four double-knockdown cell lines were 
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Figure 3-51.  PAT-ChIP analysis of ZNF304 enrichment on the promoters of a 
panel of CIMP marker genes in matched patient derived normal colonic tissue 
and KRAS-positive colorectal adenocarcinoma.  ZNF304 enrichment in both 
normal and tumor tissue was normalized to the control IgG immunoprecipitation 
in normal tissue.  Data were collected from experiments performed in at least 
triplicate, and expressed as mean  ±  standard deviation.  Differences between 
groups were assayed using two-tailed student t-test using Excel [Microsoft]. 
Significant differences were considered when P < 0.05.  NS, not significant 
[P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-52.  Bisulfite sequencing performed on the promoter regions of a panel 
of CIMP marker genes in bisulfite converted genomic DNA from patient derived 
matched adjacent normal colonic tissue and KRAS-positive colorectal cancer. 
 
  



213

injected subcutaneously into the flanks of BALB/c nu/nu mice [n=3 for each 

treatment group].  Figure 3-53 shows that knockdown of ZNF304 in DLD-1 cells 

significantly inhibited tumor growth compared to control DLD-1 cells expressing a 

non-silencing shRNA.   

 

Importantly, the double-knockdown of p14ARF and ZNF304 resulted in an 

incomplete rescue of DLD-1 tumor forming ability. Presumably knocking down 

ZNF304 causes re-expression of additional tumor suppressors in group 2 CIMP 

marker genes besides p14ARF [Figure 3-44]. Therefore the p14ARF/ZNF304 

double knockdown still expresses these other tumor suppressing genes and 

maintains a deficient tumor forming ability compared to the control.  Similarly, 

Figure 3-54 shows that DNMT1 knockdown DLD-1 cells formed a smaller tumor 

than DLD-1 cells containing a non-silencing shRNA.  Significantly, knockdown of 

p14ARF as well as DNMT1 also results in a partial rescue of tumor forming ability.  

Taken together these results indicate that loss of ZNF304 or DNMT1 and 

subsequent re-expression of p14ARF hinders the tumorigenicity of DLD-1 cells. 

These results also support the hypothesis that the KRAB co-repressor complex 

repress many TSGs besides p14ARF. 

 

Throughout this work I have been curious as to what the normal function of 

ZNF304 is.  There is a significant body of work suggesting that p14ARF and the  
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Figure 3-53.  2 x 106 DLD-1 cells stably infected with either NS/NS, NS/p14ARF, 
NS/ZNF304 or ZNF304/p14ARF double knockdowns were injected into the flanks 
of Balb/C nu/nu mice and monitored for tumor growth at indicated times. Data 
were collected from experiments performed in at least triplicate, and expressed 
as mean  ±  standard deviation.  Differences between groups were assayed 
using two-tailed student t-test using Excel [Microsoft]. Significant differences 
were considered when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and 
**P ≤ 0.01 indicate statistical significance. 
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Figure 3-54.  2 x 106 DLD-1 cells stably infected with either NS/NS, NS/p14ARF, 
NS/DNMT1 or DNMT1/p14ARF double knockdowns were injected into the flanks 
of Balb/C nu/nu mice and monitored for tumor growth at indicated times.  Data 
were collected from experiments performed in at least triplicate, and expressed 
as mean  ±  standard deviation.  Differences between groups were assayed 
using two-tailed student t-test using Excel [Microsoft]. Significant differences 
were considered when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and 
**P ≤ 0.01 indicate statistical significance. 
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mouse homolog, p19ARF, must be maintained at very low levels in stem cell lines 

[Pardal et al 2005 and Kim and Sharpless 2006].  Defects in the epigenetic 

machinery responsible for p19ARF silencing results in developmental defects [ie 

BMI1 KO mice] [Jacobs et al 1999].  Analagous to PRC1-mediated silencing of 

p19ARF in the mouse, I postulate that ZNF304 KRAB co-repressor complex to 

function in ES cells for repressing p14ARF levels.  In the human ES cell line, H9, I 

find that shRNA-mediated knockdown of ZNF304 causes a significant increase in 

the mRNA expression of p14ARF, p15INK4B and p16INK4A [Figure 3-55].  Therefore I 

can conclude that the ZNF304 KRAB co-repressor complex contributes to the 

down regulation of the INK4-ARF locus in undifferentiated H9 cells.   

 

I next sought to determine whether the ZNF304 KRAB co-repressor complex was 

involved in undifferentiated or differentiated H9 cells.  The immunoblot in Figure 

3-56 reveals a marked reduction in ZNF304 levels upon retinoic acid-induced 

differentiation of H9 cells.  Furthermore the ChIP experiment in Figure 3-57 

supports the role of ZNF304, KAP1, SETDB1 and DNMT1 on the INK4-ARF 

locus in undifferentiated H9 cells.  I find there to be a significant reduction in 

enrichment at the INK4-ARF locus for these four factors upon retinoic acid 

treatment [Figure 3-57]. 

 

Taken together these results support the hypothesis that ZNF304 normally 

functions in proliferating stem cells to repress INK4-ARF transcription.  Upon  
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Figure 3-55.  qRT-PCR of p14ARF, p15INK4B and p16INK4A mRNA expression in H9 
cells that are stably infected with either NS or ZNF304 shRNA.  Data was 
normalized to a NS control.  Data were collected from experiments performed in 
at least triplicate, and expressed as mean  ±  standard deviation.  Differences 
between groups were assayed using two-tailed student t-test using Excel 
[Microsoft]. Significant differences were considered when P < 0.05.  NS, not 
significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Figure 3-56.  Immunoblot analysis of ZNF304 expression in H9 cells that have 
been treated with DMSO or 10 µM retinoic acid for three days. Tubulin was used 
as a loading control. 
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Figure 3-57.  ChIP analysis of the p14ARF, p15INK4B and p16INK4A promoters 
performed on chromatin extracts from H9 cells that have been treated with 
DMSO or 10 µM retinoic acid for four days.  Data was normalized to a control IgG 
immunoprecipitation in each treatment group.  Data were collected from 
experiments performed in at least triplicate, and expressed as mean    ±  
standard deviation.  Differences between groups were assayed using two-tailed 
student t-test using Excel [Microsoft]. Significant differences were considered 
when P < 0.05.  NS, not significant [P > 0.05]; *P ≤ 0.05 and **P ≤ 0.01 indicate 
statistical significance. 
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differentiation, ZNF304 levels decrease and the replicative potential of the cells 

drops as a result.  Cells that have undergone differentiation now contain an 

INK4-ARF locus that is poised for activation upon oncogene activation.   
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Conclusions 

Here I have described a genome-wide RNAi screening method to identify factors 

required for epigenetic silencing of the tumor suppressor p14ARF.  Using this 

approach, I have identified eight genes whose knockdown leads to de-repression 

of the epigenetically silenced INK4-ARF locus.  I find that one of these factors, 

ZNF304, binds and recruits a KRAB co-repressor complex, comprising KAP1 and 

SETDB1, and DNMT1 directly to the promoters of p14ARF, p15INK4B and p16INK4A 

as well as the promoters of Group 2 CIMP marker genes.  Upon binding, DNMT1 

hypermethylates the promoter region near the transcriptional start site and 

silences gene transcription.   

 

RAS signaling is responsible for directing this silencing because USP28 is 

promoted by RAS signalling and in turn antagonizes ZNF304 ubiquitin-mediated 

degradation.  USP28’s interaction with ZNF304 is directed by a phosphorylation 

at Serine 899 by PRKD1, the absence of which prevents ZNF304 

deubiquitination.  Inhibition of the RAS signaling cascade results in re-expression 

of the INK4-ARF locus and Group 2 marker genes due to a loss of ZNF304-

mediated specificity [Figure 3-58].   

 

I find there to be an overexpression of ZNF304 in the majority of colorectal 

adenocarcinomas tested [~88%], suggesting that this protein is a proto-

oncogene.  Furthermore my investigations PAT-ChIP and bisulfite sequencing on   
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Figure 3-58.  Schematic model of KRAS-induced epigenetic silencing of Group 2 
CIMP marker genes.   
 
RAS activation results in increased RAF-MEK-ERK pathway signaling.  In turn 
there is increased mRNA expression of USP28 and PRKD1.  PRKD1 
phosphorylates and activates USP28 that then deubiquitinates ZNF304.  ZNF304 
then forms a co-repressor complex with KAP1, SETDB1 and DNMT1.  This co-
repressor complex is directed by ZNF304 to the promoters of Group 2 CIMP 
marker genes and initiates epigenetic silencing. 
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patient derived colorectal cancer tissues have revealed that this mechanism is 

indeed present in patients and found quite frequently.   

 

My preliminary investigations into ZNF304’s normal function have 

revealed a use in proliferating stem cell populations who must maintain low INK4-

ARF levels.  Presumably a premalignant population of cells has reinitiated this 

function of ZNF304 and allowed them to obtain increased proliferative potential 

and develop into carcinoma.  Our results are consistent with a variety of previous 

studies showing similarities between cancer cells and stem cells [for example 

see Ohm, et al. 2007 and Riggs, et al. 2013]. 

 

Collectively, our results indicate that ZNF304 directs epigenetic silencing of 

p14ARF, p15INK4B and p16INK4A and other TSGs thereby facilitating RAS-directed 

tumorigenicity.  Thus, in addition to its well-established role in promoting cellular 

proliferation and preventing apoptosis through downstream signaling pathways, 

RAS induces “secondary” oncogenic events by inactivating TSGs through 

epigenetic silencing.  This additional activity may explain, at least in part, why 

RAS is such a potent onco-protein and why activating RAS mutations are found 

at high frequency in human tumors. 
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Methods 

Cell Lines and Culture 

DLD-1, HCT116, HCT15, H460, 293T, SW48, PFF, CaCo2, SW948, SW1116, 

H9, LS513 and LoVo cells were obtained from ATCC and grown as 

recommended by the supplier.  For 5-AZA [Calbiochem] treatment, cells were 

treated with 10 µM 5-AZA [Calbiochem] and the drug was exchanged every 24 

hrs for 72 hours. 10 µM Manumycin A [Calbiochem], 10 µM PI-103 [Cayman 

Chemical] and 20 µM U0126 [Cell Signaling] was added for the indicated amount 

of time.  0-10 µM MG-132 [Cayman Chemical], 10 µM Retinoic Acid [Sigma-

Aldrich] , 0-10µM CRT0066101 [Cancer Research Technologies] was added at 

the concentration and length of time indicated. 

 

Reporter Construct Cloning and Validation 

The 3.98 kb p14ARF promoter was PCR amplified using primers with BglII and 

SalI restriction sites engineered in and cloned into a TKr/Blastr/RFP fusion 

reporter. This was then linearized using NheI and stably transfected into DLD-1 

cells using Amaxa. Briefly, nucleofection was performed with the aid of a 

Nucleofector device [Amaxa Biosystems, Cologne, Germany] and nucleofection 

buffer V. 1x 106 DLD-1 cells were transfected with 5 ug linearized p14ARF-BlastR 

reporter vector. The nucleofection procedure was performed using program X-12.  

Immediately after nucleofection, the cells were placed in complete growth 

medium and allowed to recover for 72 hours. Viable cells were allowed to grow 
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colonies and then subjected to 500 ug/mL G418 [Calbiochem] selection. 

Surviving colonies were then individually isolated and expanded for 

characterization.  Clones were treated with 10 µM 5-aza-2’-deoxycytodine [5-

AZA] for 72 hours.  After 24 hours treatment, blasticidin [Sigma-Aldrich] was 

added at indicated concentrations and continued for a total of seven days at 

which point cells were fixed and stained with 0.1% crystal violet to assess 

viability.  

 

shRNA Screen 

The human shRNAmir library [release 1.20; Open Biosystems] was obtained 

through the UMass Medical School shRNA library core facility.  Retroviral pools 

were generated and used to transduce DLD-1/p14ARF-BlastR cells as described 

[Gazin et al., 2007].  Cells were then selected with puromycin for 3 days at 4 µg 

per mL.  Subsequently, the puromycin-resistant population was challenged with 

blasticidin for 14 days at a concentration of 10 µg per mL.  Cells that bypassed 

the blasticidin challenge formed colonies that were picked individually and 

expanded.  The shRNAs were identified by sequence analysis as previously 

described [Gazin et al., 2007].  Individual knockdown cell lines were generated 

by stable transduction of 1 x 105 cells with a single shRNA followed by puromycin 

selection.  Individual shRNAs were obtained from the Open Biosystems library 

[Table 3-3]. 
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Validation:  Briefly, shRNAs were packaged into infectious retrovirus particles 

and DLD-1, HCT15 and HCT116 cells were infected and subsequently selected 

with 4, 5, and 2 µg per mL puromycin for 3 days, respectively.  At which point 

they were harvested for RNA and analyzed for target gene expression using 

qRT-PCR. 

 

Quantitative Real-Time RT-PCR 

Total RNA was isolated and reverse transcription was performed as described 

[Gazin et al., 2007], followed by quantitative real-time PCR using Power SYBR 

Green PCR Master Mix [Applied Biosystems].  GAPDH was used as an internal 

reference gene for normalization.  Primer sequences are provided in Table 3-4. 

 

Antibodies and Immunoblot Analysis 

21st Century generated the ZNF304 antibody against a peptide corresponding to 

amino acids [GFWCEAEHEAPSEQSV] of the ZNF304 coding region. Cell 

extracts were prepared by lysis in Laemmli buffer in the presence of protease 

inhibitor cocktail [Roche]. The following antibodies were also used:  α-KAP1 

[Bethyl], α-SETDB1 [Millipore], α-DNMT1 [Imgenex], α-DNMT3A [Imgenex], α-

DNMT3B [Imgenex], USP28 [Bethyl], p14ARF [Millipore], ACTB [in house], 

TUBULIN [in house], FLAG-M2 [Sigma-Aldrich], HA [Cell Signaling], PRKD1 [Cell 

Signaling], PRKD1-Ser916 [Cell Signaling], PRKD1-Ser744/748 [Cell Signaling], 

and KRAS [Abcam]. 
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ChIP Assays 

ChIP Assays were performed using the following antibodies: α-ZNF304 [21st 

Century-see above], α-KAP1 [Bethyl], α-SETDB1 [Millipore], α-DNMT1 

[Imgenex], α-DNMT3A [Imgenex], α-DNMT3B [Imgenex]. ChIP primers can be 

found in Table 3-5.  ChIP products were analyzed by quantitative real-time PCR 

using Power SYBR Green PCR Master Mix [Applied Biosystems].  Calculation of 

fold-differences was done as follows.  Samples were quantitated as percentage 

of input, and then normalized to an unrelated region in the genome [~-3.2 kb 

upstream from the TSS of GCLC].  Fold enrichment was calculated by setting the 

IgG control immunoprecipitation sample to a value of one and comparing the 

experimental values. 

 

Tumor Formation Assays 

2 x 106 DLD-1 cells infected with either non-silencing/non-silencing, non-

silencing/ZNF304, p14ARF/non-silencing or p14ARF/ZNF304 [as described below] 

were suspended in 100 µl of serum-free RPMI and injected subcutaneously into 

the right flank of athymic Balb/c [nu/nu] mice [Taconic].   Briefly, DLD-1 cells 

were initially infected with pSM2 retrovirus containg either p14ARF or non-

silencing shRNA.  Cells were puromycin selected to ensure a pure population of 

infected cells.  Then this population was infected with pGIPZ shRNA virus 

containing either ZNF304 or non-silencing shRNAs.  Subsequently the cells were 

FACS sorted for GFP+ cells to ensure a pure population of pGIPZ infected cells.  
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Tumor dimensions were measured every seven days for four weeks and tumor 

volume was calculated using the formula π/6 x [length] x [width]2.  Animal 

experiments were performed in accordance with the Institutional Animal Care 

and Use Committee [IACUC] guidelines. 

 

Bisulfite Sequencing 

Bisulfite modification was carried using the QIAGEN Epitect Bisulfite Conversion 

kit according to the manufacturer’s instructions.  Multiple clones were sequenced 

from each nested PCR product within each cell line [see Table 3-6 for primer 

sequences] of which 6 representative clones are displayed.  Assay kits from 

EpigenDX were also used according to manufacturer’s instructions and similarly 

sequenced and represented.  [see Table 3-6 for a list of assay kits used]. 

 

Immunohistochemistry 

Tissue microarrays were constructed as previously described [Chn et al. 2007].   

For ZNF304 and USP28 immunohistochemistry, antigen retrieval was performed 

using deparaffinized tissue sections in citrate buffer [BioGenex, San Ramon, CA] 

that were treated in a microwave for 15 min. Tissue sections were incubated for 

10 min with 3% H2O2 [to block endogenous peroxidase], with 10% normal goat 

serum [Vector Laboratories, Burlingame, CA] in phosphate-buffered saline for 10 

min. The primary antibodies against ZNF304 [21st Century, 1:250 dilution], 

USP28 [Bethyl, 1:100 dilution] was applied for 30 min at room temperature. 
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Later, the secondary antibody [BioGenex] was applied for 20 min and then 

streptavidin peroxidase conjugate [BioGenex] was applied for 20 min. Sections 

were visualized with diaminobenzidine for 5 min and by methyl green 

counterstain. Appropriate positive and negative controls were included in each 

run of immunohistochemistry such as cell lines that overexpressed the target 

protein or cell lines that harbor an shRNA against the target protein. 

 

ZNF304 and USP28 positivity was defined as 50% or more of tumor cells with 

unequivocal moderate/strong nuclear staining, as recommended for improved 

specificity. All immunohistochemically stained slides were interpreted by a 

pathologist [Shuji Ogino] blinded to any other clinical or laboratory data. A 

random sample of tumors was reexamined by a second pathologist [Xiaoyun 

Liao] who was unaware of other data. The concordance between the two 

observers was 0.89 [κ = 0.78; p < 0.0001], indicating substantial agreement. 

 

HA-Ubiquitin Pulldown 

2 x106 293T cells were plated on 10 cm dishs and transfected with 0.5 µg eGFP 

[for transfection efficiency monitoring], 1.0 µg p3XFLAG-ZNF304, 1.0 µg 

p3XFLAG-USP28 [wildtype and C171A or S899A mutants] and 1.0 µg HA-

Ubiquitin plasmids using the Effectene reagent [QIAGEN].  eGFP expression was 

monitored 48 hours later to ensure equvalent transfection efficiency.  Cells were 



230

harvested in NETN-150 buffer [20 mM Tris-HCL, pH 8.0, 150 mM NaCl, 1 mM 

EDTA and 0.05% NP-40] plus 1X protease inhibitor cocktail [Roche].  Pulldown 

were performed using anti-rabbit Trublot beads [eBioscience] and HA-tag 

antibody [Cell Signaling].  Beads were incubated with lysate for 4-24 hours and 

washed three times using NETN-150 buffer and eluted in 2X sample buffer. 

 

in vitro kinase assay 

HIS tagged-PRKD1 was cloned from pcDNA3.1-PRKD1 and pcDNA3.1-PRKD1-

KW constructs by digestion with BamHI and XhoI and ligation into pRSET using 

the same enzyme sites. HIS-PRKD1 was purified and 60 nM was incubated with 

10 µM radiolabeled ATP.  Autophosphorylation of the wildtype plasmid was 

confirmed to ensure activity by immunoblotting for PRKD1 Ser916 

phosphorylation.  Subsequently, HIS-PRKD1 and radiolabeled ATP were 

incubated with peptides corresponding to amino acids [TCLQRWRSEIEQDIQ] 

and [YSLFRKVSVYLLTGL] in USP28 and monitored for radiolabel 

phosphorylation of the peptide.  A 20 µL reaction was set up with the following 

components: 1 µL of 32P-gamma-ATP [10mCi], 1 µL of 10 µM ATP, 0.2 mM 

Microcystin, 4 µL of 5X kinase buffer [see composition below], 5 µL [60 nM final] 

kinase diluted in 1X kinase buffer, 5 µL of substrate [10 µM final] diluted in 1X 

kinase buffer, 3.8 µL ddH2O.  5X Kinase buffer:  23 mM MOPS, 11.5 mM β-

glycerphosphate, 23 mM MgCl2, 4.6 mM EGTA, 1.8 mM EDTA, 0.25 mM DTT 
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[pH 7.0].  Reactions were incubated for 30 minutes and stopped using 2X 

Laemmli Sample Buffer. 

 

Alamar Blue assay 

Between 0.05 x106 and 0.3 x106 cells were seeded per well of a 12-well plate 

and allowed to adhere for 24 hours.  Either DMSO or 8 uM CRT0066101 was 

then added for 48 hours.  111 uL of 10X Alamar Blue Dye [Invitrogen] was added 

for between 2 and 4 hours.  Readings were taken with a Spectramax M5 

[Molecular Devices] with an excitation wavelength of 530 nm and emission of 590 

nm.  Percent survival was calculated using the DMSO control well as 100%. 

 

PAT-ChIP assay 

Four formalin-fixed paraffin embedded tissue sections were collected and de-

paraffinized in Histolemon-Erba RS solution [Carlo Erba Reagents] for ten 

minutes at room temperature.  Spin down tissue and repeat de-paraffinization 

four times.  Resuspend tissue in 100% ethanol and incubate for ten minutes at 

room temperature.  Spin down tissue and repeat resuspension in 95% ethanol.  

Repeat washing/resuspension gradually increasing the percentage of water 

[70%, 50%, 20%, 0%] to rehydrate the tissue.  Material can now be processed as 

normal ChIP material with lysis buffer and sonication. 
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Statistics 

All quantitative data were collected from experiments performed in at least 

triplicate, and expressed as mean ± s.d.  Differences between groups were 

assayed using two-tailed student t-test using Excel [Microsoft]. Significant 

differences were considered when P < 0.05.  NS, not significant [P > 0.05]; 

*P ≤ 0.05 and **P ≤ 0.01 indicate statistical significance. 
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Table 3-3.  shRNA information 
 
  

Open Biosystems shRNAs
Gene Source ID Location
C2orf82 V2HS_41608 SH2372-A9

V2HS_245198 SH2590-E1
DICER1 V2HS_233045 SH2412-E5

V2HS_239140 SH2487-B1
F11R V2HS_16017 SH2124-F8

V2HS_16012 SH2252-H6
PRKD1 V2HS_170465 SH2480-A2

V2HS_170464 SH2328-G1
SLC17A6 V2HS_39419 SH2360-G12

V2HS_39421 SH2037-A7
UBE2G2 V2HS_254940 SH2624-D8

V2HS_171768 SH2761-B1
USP28 V2HS_14019 SH2625-E8

V2HS_6063 SH2559-D5
ZNF304 V2HS_58488 SH2305-A9

V2HS_58485 SH2515-D6
V2HS_58488 172_0266-D7

KAP1 V2HS_2091 SH2337-A9
V2HS_201585 172_0577-G3

SETDB1 V2HS_43632 172_0650-B2
V3LHS_388251 172_1525-B10

DNMT1 V2HS_113503 172_0491-D7
V2HS_113505 172_0616-G1

DNMT3A V2LHS_74666 172_0060-F1
V3LHS_391163 172_1400-E9

DNMT3B V2HS_11913 172_0514-H3
V2HS_77233 172_0103-F2

KRAS V2HS_203252 172_0410-B8
V2HS_169384 172_0236-C8

CDKN2A (p14ARF) V2HS_195839 SH2517-C6
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Table 3-4.  RT-PCR primer information 
 
  

qRT-PCR
Gene Sequence (5'->3') Gene Sequence (5'->3') Gene Sequence (5'->3')
p14ARF CCCTCGTGCTGATGCTACTG IRF8 AGTGGCTGATCGAGCAGATT TP73-AS1 GGGTAACTCCCCACTGTTGA

ACCTGGTCTTCTAGGAAGCGG AGTGGCTGGTTCAGCTTTGT GGCTGAGCTGGACAAAAGAC
p15INK4B GGCGCGGGGACTAGTGGAGA ABTB2 GCTGGTCAGTTTGTTGCTGA CHFR CCTCTGTGGCAAGTGATGAA

GCCCATCATCATGACCTGGATCGC TGGCTGAAGCAGTTCATGTC TCCAAATCCTCCTGATCCTG
p16INK4A GAAGGTCCCTCAGACATCCCC EDIL3 TTGGCTGATGGTTCCTTTTC COL4A2 AAGGAATCATGGGCTTTCCT

CCCTGTAGGACCTTCGGTGAC ATGGCATGGATTAGGAGTGC CTCTGGCACCTTTTGCTAGG
BLASTR GTCGCCAGCGCAGCTCTCTC CACNA1G AAGCAGACAGTGGAGCCTGT IGFBP3 AGGGCACTCTGGGAACCTAT

AGTCAGGTTGCCAGCTGCCG TCTGAGTCAGGCATTTCACG TGCAGTCATCCGAAGAATTG
ZNF304 AAGAGCTGTACAGTCCACATG SFRP2 GGGTCTGGTTGGTTGTTGTT TOLLIP CGGTGGTACAGAGAGCCTTC

TCTCACCTCAGCATGAGTC GGGCCACAGAGAAAATTGAA ACCACTTGTCCTCCACCTTG
USP28 AGGGGCCATGGTGGAGGGTG AOX1 TCACTCACGGTGGAATTGAA OVOL1 CAGGGCTTCTAATGCTCAGG

TCTGGCTGCCCAAGGGACTGA CAGGTGGACATTCGACATTG AGTGCACACACACAAGCACA
PRKD1 GGGGCTTTTCAGGCAGGGCT TSPYL5 TCCCACTTTCAGCAGTCCTT TMEFF2 CAATGGGGAGAGCTACCAGA

ACTCTGCCCCAGGGCTAAGCA CCCAGGAGAAGCTTGAGATG TCTGTGGCACATGATCCTTC
C2orf82 GGGCTCCTGTGGAACATC DFNA5 GAATGAGGTCCTGTGCGTTT CIDEB GGAACTGCAGTGGACAGTGA

TTAACCAGCGCAGTCCTCC GATGCCACCACACTTCTCCT CACTCCTTGTAGGGCTCCAG
DICER1 GTACGACTACCACAAGTACTTC NDNF CGCTCCCTGCAGTTTAAAAG D4 GGGTGGGCTACTTTTCTTCC

ATAGTACACCTGCCAGACTGT AAGTTGCTGCGAAGTGGAGT GTCGCTCTGGGTTTTACGAG
F11R CTATAGCCGAGGCCACTTTG CLDN23 TTGCCATGCAAACTCTCAAG STOX2 GGCGAACTCAACTCTTGTCC

ACACCAGGAATGACGAGGTC CCATTAAGCTGCTGGCATTT TTCTTTCCCAGAGGTGATGG
SLC17A6 TCGGCCAGATCTACAGGGTGCT THBS1 ACCAAAGCCTGCAAGAAAGA ZSCAN18 GCTTTCCTGCAGCCATTTAG

CACAGCGGCGCCTTCCTCTC TCTGTACCCCTCCTCCACAG TTGAAGAAAGCACTGGCAGA
UBE2G2 CAGCTGTTGCGGGGCCATGG HAND1 GTCCGCAGAAGGGTTAAACA PENK AAGCCAAAGAGCTGCAGAAG

GGGCCTGCTACAATTCCTTCCGGA GGCAAGGCTGAAAATGAGAC TTCAGGAAACCTCCATACCG
KAP1 AATGATGCCCAGAAGGTGAC IGFBP7 GGCATGGAGTGCGTGAAGAG EFHD1 GATGGCTTCATCGACCTGAT

TTGAGGTCCCACTGAAACTT CTTGCTGACCTGGGTGATGG GTCCTCATCCACCTCCTTGA
SETDB1 ACATCCTCAGCCTCTGCAT BNIP3 TTCCTTCCATCTCTGCTGCT THBD1 CGGGTTGTGTGTCTGTTCAC

TTCCAGTACCGGTCAGATCC ATCAAAAGGTGCTGGTGGAG CCTCCATGCATCTCATAGCA
DNMT1 TCCACAGCAAAGTGAAAGTCATCT THBS2 AAGTGTGTGAGCCCGAAAAC RASSF2 GGTCTTCCTGCACTTGAAGC

CTCGCGTAGTCTTGATCATACCA GTACATGGGGTCGCTGAAGT GCATCTCCACACACAAGGTG
DNMT3A CACACCTGAGCGCGACTGCA SPON1 CACATTTGATGGGGTGACTG ELMO1 CTGCTCAGCATGGAAATCAA

ACGATCCACGCGCCCATTCC TGTCTTCTCGGACCAATTCC TCATAGTTGCTGGGCTCCTT
DNMT3B CCCCGGAGATCAGAGGCCGAA LOX ATATTCCTGGGAATGGCACA EFHB1 CCTCCCTAATGTCCCAGGAT

CCCGCCGTCTCAGGGACTGT CCAGGACTCAATCCCTGTGT CCTCAGACCAGAAGGCTGAC
KRAS TAGACACAAAACAGGCTCAGG FBN2 TCCTGGATATCAGGCTACGC PPP1R3C TTGCAAGAGCGAACAGTGAC

TAATTACACACTTTGTCTTTGA TGAATTTGTGCACTGGGTGT TGCTCAGTTGGAATGACAGG
SOCS1 CTCCTTCCCCTTCCAGATTT UCHL1 AGCGTGAGCAAGGAGAAGTC EFEMP1 CAGGGACGCACAACTGTAGA

CACATGGTTCCAGGCAAGTA TTGAAGGGAAGAGGGGAAAT ATTGAAACCCAGGACTGCAC
CDO1 GTACGCCAAGTTCGACCAGT ALX4 AGAGAGCAACAAGGGCAAGA ADAMTS1 GGATGGCTGATGTTGGAACT

GTCCTTCACCCCAACAGAGA CACGTCTGGGTAGTGGGTCT TAATTCATGGGCTGTGGTGA
NEUROG1 GTTACTTTCCCCCTCCCCTA SLC30A10 ATCCACAATGTGACCATCCA VIM GGCCCAGCTGTAAGTTGGTA

CTTTAAAGCTCCCGCTTCCT CTTGGAGATGCAGGGTGAGT CCTAGCGGTTTAGGGGAAAC
PPP1R14A CTGGACGTGGAGAAGTGGAT SFRP1 AAGGGAGGCTCTCTGTAGGC SEPT9 CATCACGCACGATATTGAGG

AGCAGCTCCTGGATGAAGTC AATGACCAGGCCAATCAGTC CCAGCAGTTCTCGTTGTTGA
CRABP1 GCAAGTGCAGGAGTTTAGCC LRP2 AAACAATGGTGGGTGCTCTC

CACGGGTCCAGTAGGTTTTG TTCTTGCCATCACTTTGCAG
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Table 3-5.  ChIP primer information 
 
  

ChIP
Gene Sequence (5'->3')
p14ARF GTGGGTCCCAGTCTGCAGTTA

CCTTTGGCACCAGAGGTGAG
p15INK4B GGAACCTAGATCGCCGATGTAG

TGTTTTACGCGTGGAATGCAC
p16INK4A ACCCCGATTCAATTTGGCAG

AAAAAGAAATCCGCCCCCG
AOX1 ATCCTGGCTGTGGGTAACTG

TATCGCTAGCGCATTCTCCT
CACNA1G GTCTGGGCAGCAGTCTGATT

GGAGAGAACCACAGCTGGAA
CHFR TGTGCAACTGTACCCGAAAG

ATTCTGAGAGCCCCGCTAAT
EFEMP1 TCCACCAACAGCATACAAGC

TGTGAGGTGGGGTTTGTTTT
HAND1 GATAGCCACTCCCCCTTTTC

CGGCTTTGATGTCAACCTCT
IRF8 AATATCCAGCGCTCGTGAAG

GGCCCATTAATCAGAATCCA
LOX GCCAGAATAAGACCGTGAGC

AGAACCCCAATCCCAGAGTT
GCLC ACCGCCTCCCCGTGACTCAG

CAGCAGCAGCAGCCCAGAGG
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Table 3-6.  Sodium Bisulfite Sequencing primer information 
 
  

Bisulfite Sequencing
Gene Sequence (5'->3')
p14ARF TGATGTGGAAGAAAAGGGG

CCAAACCTCCAAAATCTCAAAA
p14ARF #2 AAGGGGAGGAGGGGATATGG

ACCACCATCTTCCCACCCTC
AOX1 ADS2444*
CACNA1G ADS2300*
IRF8 ADS1254*
CHFR ADS1462*
EFEMP1 ADS043*
HAND1 ADS1690*
LOX ADS852*
p16INK4A ADS1067*
p14ARF ADS2130*
*Commercially available assay kit from EpigenDX
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CHAPTER IV:  FINAL SUMMARY AND CONCLUSIONS 

Through my series of investigations, I have uncovered the mechanism of action 

of a novel TSG, IGFBP7, and the mechanism of epigenetic silencing for a panel 

of TSGs through the action of ZNF304.  Unexpectedly, I found these two 

research endeavors were linked in that IGFBP7 is a member of this panel of 

TSGs silenced by ZNF304. 

 

This body of work has provided novel insights into the relationship between 

oncogenes and TSGs.  For instance, I uncovered the complex tumor-

suppressing secretory response initiated in melanocytes upon introduction of an 

oncogene such as BRAFV600E.  Furthermore I identified some of the key players 

involved in the process whereby an oncogene such as RAS promotes the 

epigenetic silencing of a network of TSGs.  These interrelationships illuminate 

the interconnectedness of the cellular response to pro-growth signaling and the 

checks and balances in place to constrain growth.  Ultimately cancer subverts 

these checks and balances on its path to causing disease.   

 

Novel cancer therapeutics may make use of this knowledge about oncogene-

TSG signaling.  For instance, as demonstrated with BRAF and IGFBP7, in the 

disease state IGFBP7 is silenced.  However, ectopic reintroduction of this natural 

TSG causes robust cell death and tumor regression in a melanoma model that 

harbors BRAFV600E.  In a sense, rIGFBP7 administration restores the natural 
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defenses that cells use to prevent cancer.  In this way, therapeutics may cause 

fewer side effects due to the natural role this protein plays in the body already.   

 

It is somewhat surprising that the ectopic reintroduction of IGFBP7 in melanoma 

and primary cell lines does not cause any cell death [Figures, 2-21, 2-22 and 2-

23].  While this is a very good attribute that argues it is specific to BRAF-positive 

melanoma, it remains to be determined why these cells are resistant.  It would be 

interesting and beneficial to study the cause for this phenomenon.  If the 

molecular determinants were characterized, perhaps this information could be 

used in allowing IGFBP7 to target melanomas that do not harbor an activated 

BRAF allele. 

 

Future directions for the IGFBP7 project have revolved around its adaptation as 

an anti-cancer therapeutic.  Post-doctoral fellows in my lab have generated 

adeno-associated virus vectors for expressing IGFBP7 in vivo in a mouse model 

of BRAF-induced melanoma and well as xenograft models.  Thus far this work 

has proven promising but not without it’s own set of technical difficulties.  

Furthermore, Narendra, my co-author of this study, continues to work on IFGBP7 

and has initiated an shRNA screen to identify the factors required for IFGBP7-

mediated cell death.  It will be interesting to see where the study of this protein 

goes in the future and whether or not it yields any clinical benefit. 
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Similar to my results with IGFBP7, RAS signaling promotes a set of regulated 

interactions between the proteins PRKD1, USP28 and ZNF304.  While USP28 

and ZNF304 are not particularly druggable, PRKD1, being a kinase, represents a 

drug target with its well-conserved ATP pocket.  Hence the use of the PRKD 

inhibitor, CRT0066101 represents a potent antagonist to this set of RAS 

promoted interactions.  While unproven, I hypothesize that normal cells that do 

not harbor elevated RAS activity or PRKD1, USP28 or ZNF304 expression will 

be relatively unaffected by PRKD1 inhibition.  Therefore I believe this small 

molecule that targets an oncogene-induced epigenetic silencing pathway will 

bear fewer side effects than broader treatment modalities such as radiation. 

 

I think the study of ZNF304 requires a great deal more attention and resource 

development.  In the future, I believe we would benefit greatly from a ChIP-SEQ 

analysis of its binding sites within the genomes of DLD-1, HCT116 and HCT15 

cells.  Furthermore, a PAT-ChIP-SEQ analysis in actual patient samples would 

be a tremendous resource.  From these datasets, hopefully, we can derive some 

idea of what the ZNF304 binding sequence constitutes.  A superficial look at the 

zinc fingers of the protein reveals that it most likely binds to cytosines and 

guanines, which fits with our model that it binds within CpG islands [Scot Wolfe, 

personal communication].   

 



240

An additional benefit from having the genome-wide binding site analysis is it 

would provide an additional rationale for delineating whether a gene belongs 

within the CIMP gene signature.  Currently, the concept of CIMP in CRC is well 

accepted.  However, like any new field, there are many conflicting nomenclatures 

and definitions.  There is yet to be a definitive CIMP marker panel and there are 

several papers that use related yet different methodologies for defining this 

panel.  Perhaps the presence of ZNF304 at the promoter will constitute one 

hallmark for group 2 CIMP marker genes. 

 

Another aspect of KRAS-mediated epigenetic silencing that deserves more 

attention is the role of PRKD1 in stabilizing ZNF304.  We have clear results that 

PRKD1 is required for ZNF304 stabilization, yet the in vitro ubiquitination assay 

in Figure 3-41 does not yield a robust result that supports this hypothesis.  

Perhaps this experiment bears further biological replicates.  However, an 

alternate explanation is that this phosphorylation stabilizes USP28 itself from 

degradation.  It is interesting to note in this figure that it does appear that there is 

slightly less USP28 in the mutant lane.  Perhaps the overexpression via 

transfection somewhat masks this result.  An ongoing experiment that I am 

performing is looking at USP28 protein levels upon PRKD1 knockdown in DLD-1 

cells.  In support of this hypothesis is the result of Figure 3-42 where DLD-1 cells 

are treated with increasing amounts of the PRKD1 inhibitor, CRT0066101.  We 
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see that levels of USP28 begin to drop off upon PRKD1 inhibition and it appears 

that a lower molecular weight degradation product begins to accumulate. 

 

Another important and understudied aspect of this work is the upregulation of 

USP28 and PRKD1 via RAS signaling.  It remains to be determined how these 

two proteins are activated transcriptionally by RAS signaling as shown in Figures 

3-30 and 3-37.  Analysis of the two promoters of these genes may yield a 

common transcription factor binding site that may coordinately regulate their 

gene expression in the presence of activated RAS. 

 

Yet another aspect of this work that could use significant insight is the role of 

ZNF304 in undifferentiated stem cells.  The experiments using H9 cells are 

preliminary at best.  H9 cells are an acceptable model of human stem cells yet 

they display many properties of transformed cells such as unlimited replicative 

potential [if maintained in an undifferentiated state].  Therefore, at the very least, I 

believe additional models of human stem cells should be used to validate the 

results of Figure 3-55, 3-56 and 3-57.  Unfortunately, ZNF304 is specific to 

humans and does not have a mouse homolog.  This is very common with the 

zinc finger transcription factor family since it has expanded rapidly during 

evolution.  Therefore, it is impossible to explore the biology of ZNF304 in a 

mouse model or examine its role in mouse stem cell systems.  I believe only 
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through studies in a wide variety of human stem cell lines will we achieve any 

true understanding of what ZNF304 does normally.   

 

Finally, this body of work represents a paradigm for investigating the biology of 

cancer.  shRNA screens are a robust and high throughput method for 

interrogating virtually any biological process where a response can be stratified 

and isolated.  In my cases I used cell survival as the stratification method since it 

was one of the easiest methods available at the time.  In this way I identified 

many novel molecular players and ultimately novel regulatory nodes and 

networks that would have been unobtainable using previously available methods.  

Future work carried out using shRNA screens will yield innumerable insights into 

the biological paradigms we currently hold.   

 

Above all else, these types of approaches, especially in the context of cancer, 

humble anyone with a respect for the natural world.  I can only sit back and 

admire the complexity of living systems once I experience the interrelatedness of 

the gene expression and regulation.  Biological processes are unbelievably 

complex and it seems that once I think I understand one aspect I am led to 

question many others.   

 

In reality it is extremely difficult to isolate the effects of a single gene and study it.  

shRNA screens assist us in identifying some of these single genes that are able 



243

to be studied thankfully.  However, for anyone who has done one or more of 

these screens know, the list of primary candidates can be exhilarating yet 

daunting.  At times you may have a list with hundreds of genes and no clue how 

to validate effectively, prioritize or follow up the mechanism of any particular 

gene.  Ultimately you hope to elucidate at least a portion of the problem you are 

studying.   

 

This is where science meets art and it is up to the researcher to divine a solution.  

Every researcher has a different background and approach to these types of 

problems. For me, this is the greatest aspect of academic science where you 

exercise the freewill to be curious and clever and potentially discover something 

that no other person could possibly know.  shRNA screens are a treasure trove 

of opportunities and one can literally spend the rest of their life studying that 

initial list of genes you get at the conclusion of a screen.  Furthermore, working 

with others who perform the screens exposes you to wildly different assays and 

concepts.  From all this you become a much more rounded scholar than if you 

were to be highly specialized in a single area of research.   

 

shRNA screens have allowed us to strike out and pioneer the understanding of 

two poorly studied aspects of cancer biology, OIS and epigenetic silencing of 

TSGs.  Hopefully this body of work will be the foundation for other researchers to 

follow in their investigations of these processes and someday yield human 
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therapies.  Furthermore, I hope this approach and use of screening methods to 

be framework for others who wish to investigate novel processes in biology. 
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