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ABSTRACT

Fibroblast growth factor (Fgt) and Retinoic acid (RA) are known to be involved

in patterning the posterior embryo. Work has shown that Fgf can convert anterior tissue

into posterior fates and that embryos deficient in Fgf signaling lack posterior trnk and

tail strctures. Likewise, studies performed on RA have shown that overexpression of

RA posteriorizes anterior tissue, while disrupting RA signaling yields a loss of posterior

fates. While it appears these signals are necessar for posterior development, the role Fgf

and RA play in development of the hindbrain is stil enigmatic. A detailed study of the

requirements for Fgf and RA in the early vertebrate hindbrain are lacking, namely due to

a deficiency in gene markers for the presumptive hindbrain at early developmental stages.

In this study, we make use of recently isolated genes, which are expressed in the

presumptive hindbrain region at early developmental stages, to explore Fgf and RA

regulation of the early vertebrate hindprain.

We employed both overexpression and loss of function approaches to explore the

role of Fgf in early vertebrate development with an emphasis on the presumptive

hindbrain region in zebrafsh embryos. By loss of function analysis, we show that Fgf

regulates genes expressed exclusively in the hindbrain region (meis3 and hoxbla) as well

as genes whose expression domains encompass both the hindbrain and more caudal

regions (nlz and hoxblb), thus demonstrating a requirement for Fgf signaling throughout

the anteroposterior axis of the hindbrain (rostral to caudal hindbrain) by mid-gastrla
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stages. To further characterize early gene regulation by Fgf, we utilized an in vitro

system and found that Fgf is sufficient to induce nlz directly and hoxbl b indirectly, while

it does not induce meis3 or hoxbla. Furthermore , in vivo work demonstrates that Fgf

soaked beads can induce nlz and hoxbl b adjacent to the bead and meis3 at a distance.

Given the regulation of these genes in vitro and in vivo by Fgf and their position along

the rostrocaudal axis of the embryo, our results suggest an early acting Fgf resides in the

caudal end of the embryo and signals at a distance to the hindbrain. We detect a similar

regulation of hindbrain genes by RA at gastrla stages as well, suggesting that both

factors are essential for early hindbrain development.

Interestingly however, we find that the relationship between Fgf and RA is

dynamic throughout development. Both signals are required at gastrla stages as

disruption of either pathway alone disrupts hindbrain gene expression, but a simultaneous

disruption of both pathways at later stages is required to disrupt the hindbrain. We

suggest that Fgf and RA are present in limiting concentrations at gastrla stages , such

that both factors are required for gene expression or that one factor is necessar for

activation of the other. Our results also reveal a changing and dynamic relationship

between Fgf and RA in the regulation of the zebrafish hindbrain, suggesting that at

segmentation stages, Fgf and RA may no longer be limiting or that they are no longer

interdependent.

As we have demonstrated that an early Fgf signal is required for gastrla stage

hindbrain development, we next questioned which Fgf performed this function. We have
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demonstrated that the early Fgf signal required for hindbrain development is not Fgf3 or

Fgf8, two Fgfs known to be involved in signaling centers at the mid-hindbrain boundar

(MHB) and rhombomere (r) 4. We further show that two recently identified Fgfs , Fgf4

and Fgf24 are also insufficient alone or in combination with other known Fgfs to regulate

hindbrain gene expression. However, as Fgfs may act combinatorially, we do not rule

out the possibilty of their involvement in early hindbrain gene regulation. However, as

time passes and additional Fgfs are isolated and cloned, the elusive Fgf signal required

for early hindbrain development wil likely be identified.

Taken together, we propose that an early acting Fgf residing in the caudal end of

the embryo regulates hindbrain genes together with RA at gastrula stages. We suggest

that both Fgf and RA are required for gene expression at gastrula stages , but this

requirements changes over time as Fgf and RA become redundant. We also demonstrate

that the Fgf required for gastrla stage hindbrain development has yet to be identified.
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INTRODUCTION

The development of the vertebrate body axis is a complex multi-step process involving

the coordinated actions of many genes and signaling molecules. Current research has

elucidated many of the factors and processes involved in dorsoventral axis formation, but

much remains elusive in regards to anterior posterior axis formation. Although

posteriorizing signals have been studied, limited research has been performed to elucidate

how these factors regulate early hindbrain development. In the following pages I wil

outlne, using the zebrafish vertebrate model system, how the vertebrate hindbrain is

regulated by posteriorizing signals during early developmental stages.



The Zebrafish System

The zebrafish, a small silvery fish with horizontal blue strpes, has come a long

way from its native populace in the Ganges River in Indi , to common inhabitants in fish

bowls and home aquariums across the US , to a rise in prominence as a mainstay in

developmental biology laboratories across the world. The zebrafish, a tropical fish has

catapulted itself to the forefront of developmental biology research. In fact, late in 1996

an entire issue of the journal Development was devoted to studies performed in zebrafish

(Development 123 , 1996), making researchers take note that zebrafish were on the rise.

As many organisms have been studied in an attempt to unravel the mysteries of

development, why then has the zebrafish risen in prominance?

The zebrafish offers several advantages as a developmental model. Unlike the

fruitfly (Drosophila melanogaster), zebrafish are easy to keep up, inexpensive to

maintain, have a short generation time and individual females produce large quantities of

progeny. Unlike the mouse, zebrafish eggs develop ex utero and are transparent,

meaning every stage of development is readily visible under the simple dissection

microscope allowing the researcher easy access to all developmental stages. More

importantly however the zebrafish is a vertebrate, like humans , and follows the vertebrate

path of embryonic development and thus research can be applied to humans. Zebrafish

researchers have amassed a collection of mutations in two large scale mutagenesis

screens (one in Tubingen, Germany (Haffter et aI., 1996; Hammerschmidt et al., 1996a;

Kane et aI., 1996; Mullns et aI., 1996) and one at Massachusetts General Hospital

Boston (Solnica-Krezel et aI., 1996) (Schier et aI. , 1996) just to cite a few of the many



references), as well as smaller screens (Aringer et al., 1999; Rubinstein et al., 2000)

(Garty et aI., 2002; Gollng et aI., 2002; Kudoh et aI., 2001) isolating genes that affect

processes from early axis formation to vascular architecture to neural circuitry and have

provided models of human diseases. For example, the zebrafish sau mutant (sauternes)

has delayed erythroid maturation and abnormal globin , which phenocopies the human

sideroblastic anemia (Brownlie et aI. , 1998). As zebrafish mutations faithfully

phenocopy many human disorders, each mutation can provide candidate genes and

pathways for evaluation in human disease. As a number of the zebrafish mutants are

solid models of human disease, many pharaceutical companies are utilizing zebrafish in

pharacogical trals to test candidate drgs. Curently there are models of Alzheimer

disease, congenital hear disease, polycyctis kidney disease and cancer (Ward and

Lieschke 2002).

Although it is easy to ilustrate the benefits of zebrafish, they, as all model

systems, are not perfect. Curently, the technology to knock-out specific genes is not at

hand, as we do not yet have the techniques for homologous recombination in fish.

However, with recent advances in morpholino oligonucleotides, which are targeted to the

5 'UTR and A TG start site of a specific gene and inhibit translation of a taget mRA, it

has become possible to knock-down specific proteins of choice. Secondly, the zebrafish

is genetically redundant in its genome. There are at least two copies of some paralogous

chromosome segments in zebrafish, which generally correspond to orthologous

chromosomes segments in mammals. This suggests one large scale gene duplication



event occured after the divergence of fish and mamals. The redundancy of the genome

may complicate the comparson of homologous developmental pathways.

Overall the zebrafish system has its advantages and disadvantages, as does any

model system. However the positives far outweigh the negatives and they provide the

best vertebrate model system with a powerfl combination of ease, speed, cost, number

developmental access and transparency. Thus, the zebrafish has become a top choice for

a developmental model system and has proven itself here to stay.

The Developing Zebrafish Embryo

From Egg to Embyro-A gross overview of zebrafsh development

In order to faciltate the reading of this thesis, zebrafsh development is described in

general below with a paricular emphasis on early developmenta processes relevant to

this work followed by a general overview of later stages not as pertinent to this thesis.

The Early Stages: Zygote to Late Gastrulation

The newly fertilzed egg, or zygote, is alive with a great deal of activity.

Cytoplasm, of the non-yolky varety, is forced to stream anterior towards the animal pole

by waves of contractile forces, creating the blastodisc, the first single cell , segregating

itself from the underlying yolky vegeta cytoplasm on which it sits. After the first

cleavage the blastomeres, or cells, begin to divide in a meroblastic fashion at 15 minute

intervals to eventually yield the embryo proper.



The blastula is the stage in which the dividing cells resemble a ball, or blastodisc

resting atop the yolk cell, roughly around the 128 cell stage, after the 8th cell cycle. Two

populations of cells are evident, the external layer of cells, termed the EVL or enveloping

layer, and the deep cells of the blastoderm surrounded by the EVL (Figure IB). During

these early blastula stages, the marginal blastomeres which lie against the yolk cell

collapse and ajoin the underlying yolk cell creating the yolk syncytial layer or YSL

(Figure IB). Thus, at this time the developing embryo consists of the blastoderm

harboring roughly 1000 cells covered by the EVL and resting atop the YSL. At this stage

the embryo now enters the MBT or Mid-Blastula Transition where the embryo undergoes

a series of cellular changes where cell cycle time increases, zygotic transcription occurs

and the beginning of cell motility or epiboly commences.

Epiboly is the process by which the cells of the blastodisc and YSL begin to thin

and spread out over the yolk cell (Figure lA). As epiboly continues, around 5 hours, the

three germ layers (ectoderm, endoderm and mesoderm) of the embryo become

established in a process called gastrulation. Durng gastrlation, which occurs concurrent

with epiboly, a complex series of events needs to be coordinated, leading to the correct

spatial positioning of the three germ layers along the body axis. This process begins at

about 50% epiboly at the onset of involution on the future dorsal side of the embryo, a

process whereby cells of the blastoderm migrate vegetally and involute upon themselves

near the margin to create a sublayer of cells that migrates back anteriorly (Figure lC,D).

The new involuted layer of cells, called the hypoblast wil give rise to the endoderm

(future gut and associated organs) and mesoderm (futue muscle and internal



Animal pole

. .

'1:

. "

Ventred ' ,I Dorsal

.jl) P1rl c: I.l\' l' I

11;,

,.l ,11 1111 k \ II" i l \.1 

11lkki

\' I!gdal pole

Animal pole I rd

. / ::, :;:,

lcrlll

. '

'hl"

Ventral

. . 

' Dor\ /1

;. ' -'-,- '

,- \1

,\\.

1 ,1!1d

din..,1 illdllill1S

---_

l1,

..IJd, lln
ll, 111

V t'gelill pok

\nimal pule

Vcntral

tLl"krll1

1 )'11",

l11l''I,,,krJll

. 1 11 \eli )\
1\'

DorSi!!

VI.' l'ICiI pole

(A)

k"lll. lnlll
. !':h1,kr11,

Ih' UI(II. (11,!crll

o \k lld\\,kr1l: prl.:..lIJ"LIf
III hlllh 111\..,,\,\ 1-1111 ,11ld l lld",

, IlhLhkrl11

( \

,11.. 111 ;crl

I !\'"1\11, 1"1

1- 11\ L.' i L 

' \

rl'lhL\

111\lIlIllll:-

:-( Hll11' Jill! i Il 'll

\ 1)lk "\lh'\t1.11. " 1

Y,)I LUlllk

(F)
Animal pole

\n!nI1

\'t'ntrill

111\ 1.'II1)ll

\\l'

ijL' i

Dors,,1

1'111111)11

Po..tcril)!
cl.tll'olc

Figure 1. (A-F). Cell movements during gastrulation of the zebrafish.
A: Movements during zebrafish gastrulation: Epiboly spreads the
blastodermal cells to envelope the yolk; during involution cells of the
blastoderm migrate vegetally and involute upon themselves to generate the
hypoblast; during convergence and the hypoblast and epiblast cells
migrate to the dorsal side of the embryo forming the embryonic shield or
organizer." B: Embryo at 4 hpf illustrating the three main cell layers. C:

Embryo at 6 hpf ilustrating involution and creation of the hypoblast on the
dorsal side. D: Close-up at the marginal region. E: Embryo at 9 hpf illustrating
mesoderm expansion around the embryo. F: Embryos at 10 hpf illustrating
completion of gastrualtion. Adapted from "Developmental Biology" Scott F.
Gilbert, Sixth Edition.



organs). The outer layer of cells, called the epiblast wil give rise to the ectoderm (future

skin and nervous system). Following involution, cells of the both the hypoblast and

epiblast migrate to the dorsal side of the embryo, in a process called convergence (Figure

lA). This results in the formation of a thickened region on the dorsal side of the embryos

termed the embryonic shield or organizer. As more and more cells converge on the

embryonic shield, the shield narows and elongates towards the animal pole in a process

called extension (Figure lA). Thus, this is an active time in the embryo as cell

movements of epiboly, gastrlation, convergence and extension all occur concurrent with

one another. As time continues, the embryonic shield becomes less distinct as cells

continue epiboly (Figure IE), which comes to an end when the blastoderm completely

covers the yolk by 10 hpf (Figure IF).

Elaborating the Body Plan- Segmentation, Somitogenesis, Neurulation and

Morphogenesis

By the end of epiboly when the blastoderm completely covers the yolk cell, the

epiblast which is now exclusively ectodermal, begins to undergo extensive changes of

segmentation and neurulation, processes which overlap quite extensively. The embryo

enters the segmentation stage so called because the body plan becomes aranged in

developing segments and the embryo elongates quite significantly. During the

segmentation period, brain and spinal cord differentiate in a process called neurulation

and bilateral pairs of somites, which flank the spinal cord, arse sequentially in the

paraxial mesoderm of the trnk and tail in an anterior to posterior fashion with a



characteristic chevron shape pattern. Embryos become staged by the number of somites,

There are three derivatives of the somites, the myotome, which gives rise to the body

muscle segments and the sclerotome, which gives rise to the vertebral carilage and the

dermatome , whiCh generates the connective tissue of the skin,

At the end of gastrlation, along the dorsal side of the embryo , the primordium of

the central nervous system, the neural plate, becomes well delineated by prominent

thickness. Neurulation refers to the process by which the brain and spinal cord are

formed (Figure 2). During the very early stages of neurlation , the presumptive

neuroectoderm of the gastrla epiblast converges to form the neural plate (Figure 2a).

Durng the early segmentation stage, the epithelial cells of the neural plate begins to

condense (Figure 2b) and infold at the midline to form the neural keel (Figure 2c), which

rounds up into a solid cylindrical neural rod. Cells along the lateral sides of the neural

plate move inward towards the midline to occupy a dorsal position in the neural rod

while cells of the center of the neural plate are enveloped and become the ventral neural

rod. The neural tube is later formed by cavitation (Figure 2d. Even before cavitation

occurs however, the anterior portion of the neural keel undergoes morphogenesis and

eventually wil become the brain. At the commencement of the segmenation period, the

neural plate appears uniform in its consistency along the A-P axis (Figure 3a). Then,

during segmentation, about 10 swellngs or bulges, termed neuromeres become distinct

(Figure 3b). The first three bulges are quite large and distinctive and wil form the

forebrain strctures of the telencephalon, diencephalon and the mesencephalon or



(a)

(b)

(c)

(d)

Figure 2. (a-d). Development of the Neural Tube. a: The neural plate.
b: Infolding of the neural plate at the midline, Cells around the lateral side of
the neural plate migrate inwards and become dorsally positioned. Cells at the
center of the neural plate are enveloped, c: Continuation of infolding
creates the neural keel. d: Cavitation forms the neural tube. Scanned from
Papan and Campos-Ortega (1994),



(a)

(b)

(c)

Figure 3. (a-c). Formation of the brai. a: Schematic of the zebrafish
brain at 12 hpf, Note the lack of morphological subdivisions. b: Schematic
of the brain at 18 hpf. Here the brain becomes subdivided into 10 segments
or neuromeres representig the telencephalon (T), diencephalon (D) and
midbrain (M followed by seven hindbrai segments temed rhombomeres
(rl-r7). c: Advanced brai strctues are evident by 24 hpf. E: epiphasis
C: cerebellum, FP: floor plate, Adapted from "Embryology" Scott F. Gilbert.



midbrain. The beginnings of the eyes or optic primordium are also visible at this time.

The remaining seven neuromeres are termed rhombomeres (rl-7) and furter subdivide

the hindbrain region along the AP axis with rl being most anterior or rostral and r7 being

most posterior or caudal. The first neurons begin to differentiate concurrent with early

morphogenesis of the neural tube, These primar neurons develop large cell bodies and

extend long axons to the hindbrain and spinal cord, Sensory neurons, which mediate

tactile senses , shoot their axons between the neural tube and the periphery, and the motor

neurons have axons, which grow out to meet muscle cells to elicit the muscle

contractions.

As development continues, the major vertebrate embryonic tissues are formed.

By the end of segmentation, at about one day post-fertilzation , the embryos contains a

differentiated notochord, advanced brain morphogenesis (Figure 3c), segmented

hindbrain, a full complement of somites, neurons and reflexive contractile responses. 

this time the embryo is considered to be in pharngeal stages where a number of body

strctures are further elaborated. Fins are formed, pigmentation is apparent, the hear is

developed and jaws and gils become functional, yielding a free swimming, feeding,

breathing fish.

As this section was just a brief overview of zebrafish development to faciltate the

understanding of embryological stages used in this thesis, a more detailed description can

be found at the web site: http://zfish.uoregon,edu/zf info/ztbook/stages/stages.html.



Embryonic Axis Formation

During gastrlation, the vertebrate body plan is laid down as patterns are

established along the main embryonic axes. Discussed below are the formation of the

dorsoventral axis and the anteroposterior axis.

Forming the Dorsal Ventral Axs

The earliest source of patterning signals essential for induction of dorsal fate has

been suggested to be derived from the yolk, the extraembryonic strcture. Studies have

shown that when the vegetal most portion of the yolk is removed, the embryos do not

develop dorsal fates like neural tissue and in stead become ventralized, consisting mainly

of epidermis (Mizuno et al., 1999; Ober and Schulte-Merker, 1999; Schier, 2001).

Although this vegetally located dorsal determinant in not currently known, it is thought

that the determinantls are translocated to the future dorsal side of the embryo during the

fIrst cellular division. This translocation is thought to be mediated by the microtubule

network, as studies have shown that embryos treated with microtublule destabilzing

pharacological agents lack dorsal axis specification, (Jesuthasan and Stale, 1997),

Although the determnant is not known, it brings about the stabilization and nuclear

translocation of B-catenin, a transcription factor, in the dorsal YSL and the dorsal

marginal blastomeres. (Schneider et al., 1996). The Wnt siganllng pathway has been

shown in both zebrafish and Xenopus to stablize and localize the B-catenin (De Robertis

et aI., 2000; Moon and Kimelman, 1998), However it is stil not clear what factor/s

triggers the activation of the Wnt pathway on the dorsal side. Once nuclear, B-catenin



transcriptionally activates a number of genes on the dorsal side of the embryo like

bozozok, chordin, dickkopfl and squint, By this time, the "organizer" or embryonic

shield (where these genes are activated on the future dorsal side of the embryo) is easily

detected morphologically. The embryonic shield is a critical infrastructure for the

development of the dorsal ventral axis. The shield has been shown to contain

organizing activity," that is it has the ability to induce axis formation, Studies have

shown that transplanting the shield from the dorsal side of a donor embryo into the

ventral side of a recipient embryo generates a complete ectopic dorsal secondar axis on

the ventral side (Koshida et al., 1998; Saude et aI., 2000; Shih and Fraser, 1996).

As the organizer proper is sufficient for axis formation, what exactly is its role in

dorsoventral axis formation? Dorsoventral polarty of the embryo is established via

interactions between the organizer-borne dorsal factors and the ventrally derived bone

morphogenenic proteins or BMP' s (Thomsen , 1997) (Figure 4A). BMP' s are known to

ventralize embryos by activating transformng growth factor B (TGFB) family receptors

and signaling via downstream SMAD proteins on the ventral side of the embryo (Itoh et

aI., 2000).

The organizer borne bozozok acts as a transcriptional repressor and appears to

target ventral inducers like BMP2b and the vox/vent gene on the ventral side of the

embryo (Solnica-Krezel and Driever, 2001). Mutations in bozozok lack dorsal neural

structures. The other B-catenin targeted gene chordin, encodes extracellular antagonists

to the ventral BMP' s. By binding to BMPs, chordin inhibits BMP from binding to its

receptor and transducing a signal. Mutations in chordin, the dino mutants , show total
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Figure 4. (A-C). DorsalVentral Axis Formation. A: Schematic of wild
type embryo during early gastrla stages. BMP' s on the ventral side of the
embryo (V) interact with organizer borne factors of the dorsal side (D). B:
Schematic of BMP mutant embryos ilustrating a loss of ventral fates and
an expansion of dorsal fates. C: Schematic of noggin or chordin mutant
embryos illustrating a loss of dorsal fates and an expansion of ventral fates.



ventralization phenotypes, consisting of only ventral fates like blood and epidermis and a

total loss or significant reduction of dorsal fates like neuroectoderm (Hammerschmidt et

aI. , 1996b; Schulte-Merker et al., 1997) (Figure 4C). noggin andfollstatin other

dorsally localized polypeptides secreted from the organizer have also been shown to

antagonize BMP activity (Bauer et aI., 1998; Furthauer et aI., 1999). Furthermore

mutations in bmp7 (snailhouse) (Dick et aI., 2000; Schmid et aI., 2000), bmp2 (swirl)

(Kishimoto et aI., 1997) and smad5 (somitabun) (Hild et aI., 1999; Kramer et aI., 2002)

result in a strong dorsalization of the embryo as a result of the loss of the ventralizing

BMPs or SMAD signals (Figure 4B), Thus, the dorsoventral axis is established by the

battle between ventrally derived BMP proteins with dorsally derived transcriptional

repressors or secreted polypeptides.

Forming the Anteroposterior axis

Although dorsoventral patterning in the embryo has been extensively studied, less

is known about how the anterior posterior axis is formed. It is thought that

neuroectoderm becomes subdivided along the AP axis into forebrain, midbrain, hindbrain

and spinal cord. This process occurs when signals or activators convert ectoderm to an

anterior-type neural tissue subsequently followed by posteriori zing signals that modify

the already neuralized ectoderm to more posterior fates, The anteroposterior

(rostrocaudal) axis is established by actions of secreted factors such as cereberus and

dickkopf anteriorly and retinoic Acid (RA), fibroblast growth factor (Fgt) and wnt

proteins posteriorly.



dickkopf dkkl )is an organizer borne gene that has been implicated in anterior

specification, Overexpression of dkkl enhances anterior neuroectodermal development at

the expense of the midbrain and enlarges eye and forebrain regions (Hashimoto et aI.,

2000; Shinya et aI. , 2000). The gene cerberus encodes a secreted protein that can induce

ectopic heads in the absence of tail strctures (Piccolo et al., 1999).

Posterior development is thought to have three main players; fibroblast growth

factors (FGFs), retinoic acid (RA) and wnt proteins. Gain of function studies and

dominant negative mutants in Xenopus embryos has suggested that Wnt, FGF and

retinoids are candidates for posteriorizing transforming signals (Doniach, 1995; Kolm

and Sive , 1997; McGrew 1997). In zebrafish, Wnt810ss of function mutants have

enlarged forebrains concurrent with reduced or absent caudal neural tissue (Erter et aI.,

2001; Lekven et al., 2001) (Figure 5C), However, ectopic activation ofWnt signaling

blocks head formation (Kim et aI. , 2000) (Figure 5B). These data suggest Wnt signaling

influences AP patterning.

The requisite roles FGF and RA play in formation of the posterior body plan were

initially inferred from loss of function and gain of function studies(Blumberg et aI., 1997;

Cox and Hemmati-Brivanlou, 1995; Durston et aI., 1989; Kengaku and Okamoto, 1993;

Kengaku and Okamoto, 1995; Koshida et aI., 1998; Lamb and Harland, 1995; Sive et aI.

1990). For instance, over-expression of eFGF causes an anterior shift of caudal gene

expression into the hindbrain in Xenopus (Pownall et aI., 1998; Pownall et aI., 1996) and

misexpression of eFGF leads to development of trnk and tail derivatives at the expense

of anterior structures in zebrafish (Griffin et aI., 1995) (Figure 5B). Loss of function



studies generated the opposite phenotype. For instance, expression of a dominant

negative FGF receptor (dnFGFR) in Xenopus leads to loss of hoxB9 in the spinal cord

but does not affect hoxbl in rhombomere (r) r4 or otx2 in the forebrain (Pownall etaI.

1998; Pownall et aI., 1996). Loss of FGF signaling in zebrafish leads to a complete loss

of posterior strctures from somitel to the caudal end of the embryo, but the head and

otic vesicle are unaffected (Griffin et aI., 1995) (Figure 5C). Taken together, these data

suggest that there is a FGF-dependent domain caudal to the hindbrain from somite 1 to the

caudal end of the embryo. While this thesis research was being performed, studies

showed a role for FGFs at post-gastrula segmentation stages within the hindbrain. For

example , Maves et aI. (Maves et aI., 2002) and Walshe et aI. (Walshe et aI. , 2002) have

recently defined r4 as a signaling center necessar to promote r5 and r6 development in

the zebrafish hindbrain. They also demonstrated that FGF3 and FGF8 are expressed in r4

and are the essential signaling molecules in r4 mediating this effect, but how this r4

signaling center arses is stil unclear. FGFs also have other roles in the hindbrain. For

example, FGF8 is expressed at the mid-hindbrain boundar (MHB) where it is required

for development of the rostral hindbrain (e.g. cerebellum) (Brand et aI., 1996; Iring and

Mason , 2000; Reifers et aI., 1998) and FGFs reportedly regulate krox20 and kreisler

expression at late (post neurula) stages in chick (Marn and Chamay, 2000).

Retinoic acid is also necessar for posterior development, especially that of the

caudal hindbrain (Blumberg et aI. , 1997; Conlon, 1995; Durston et aI., 1989; Sive et aI.,

1990), Application of exogenous RA in Xenopus and zebrafish leads to a loss of the

anterior hindbrain (rl-3), but not of the posterior hindbrain (r4-7/8) (Figure 5B).
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Figure 5. (A-C). Anteroposterior Formation. A: Schematic of wild type
P patterning. B: Overexpression of posterior factors results in anterior

shift in posterior gene expression. C: Loss of posterior signals results in
loss of posterior structures.



Specifically, at the gene expression level, loss of krox20 expression in r3 of the rostral

hindbrain, but not in r5 was seen in Xenopus and zebrafish embryos treated with RA

(Godsave et aI. , 1998; Hil et aI., 1995). Other genes , e. Xhox3 are also lost rostrally in

response to RA (Ruiz i Altaba and Jessell , 1991). Concurrent with the loss of rostral gene

expression, caudal gene expression expands. For instance, treatment with exogenous RA

leads to ectopic expression of hoxbl in r2 in the mouse (Marshall et aI. , 1992). Changes

in gene expression also have functional consequences. For example, Mauthner neurons

normally located in r4 were ectopically detected in r2 in zebrafish treated with exogenous

RA (Hil et aI., 1995). These studies suggest a loss of rostral hindbrain fates, paricularly

in rl-r3, and an expansion of caudal hindbrain fates in response to RA treatment. 

loss of function studies using dominant negative Retinoic Acid Receptors (dnRR)

generated the opposite phenotype (Figure 5C). In Xenopus expressing the dnR, wild

type krox20 expression was detected in r3, but expression in r5 was lost. (Blumberg et aI.,

1997; Kolm and Sive, 1997; van der Wees et aI. , 1998). In addition, loss of hoxb3 in r5/r6

was detected (van der Wees et aI., 1998) as was loss of Hoxdl in the caudal hindbrain

(Kolm and Sive, 1997). In the presence of the dnRAR, ectopic krox20 staining was also

seen in r6 and r7 (van der Wees et aI. , 1998) suggesting an anteriorization of the posterior

hindbrain whereby r6 and r7 attained more of an r5 characteristic. Ectopic Mauthner

neurons were also detected in r5 and r6 of these embryos consistent with a change in

identity of r5 and r6 towards r4 (van der Wees et al. , 1998), Furthermore, retinoid

elimination from the diet of pregnant quail mothers lead to the loss of caudal hindbrain

strctures (Maden et aI., 1996). Taken together, these loss of function and gain of



function studies suggest an RA dependent domain from r4 to r7 in the caudal hindbrain.

This RA effect is likely mediated by Hox genes. For instace, ectopic expression of

hoxal/hoxblb in zebrafish phenocopies the RA overexpression phenotype (Alexandre et

aI. , 1996) and RA induces changes in the hindbrain Hox code resulting in a homeotic

transformation of r2/3 into r4/5 (Marshall et aI., 1992), suggesting that RA affects

hindbrain development via its effect on Hox genes.

Goal of the Project

Although it seems likely that all thee factors (Fgfs, RA and Wnts) play important

roles in posteriorization, the precise roles of each factor temporally and spatially have not

been well characterized. Here in this body of work, I wished to study the role of FGF and

RA in early hindbrain development.

t. ;.



CHAPTER 1

AN EARLY FGF -SIGNAL IS REQUIRED FOR GENE EXPRESSION IN THE

ZEBRAFISH mNDBRAIN PRIORDIUM

ABSTRACT

We have explored the role of Fibroblast growth factor (Fgt)-signaling in regulating gene

/ expression in the early zebrafish hindbrain primordium. We find that Fgf signaling is

required for gene expression along the entire rostrocaudal axis of the hindbrain

primordium by mid-gastrla stages. We demonstrate that this early Fgf signal is not

mediated by Fgf3 or Fgf8 - two Fgf-family members known to be secreted from

signaling centers at the midbrain-hindbrain boundar (MHB) and in rhombomere 4 (r4),

suggesting that an as yet uncharacterized Fgf family member is acting at gastrula stages.

We find thatfgf expression is lost upon disrupting gastrla-stage Fgf-signaling,

indicating that this early Fgf-signal may in fact be required to establish the signaling



centers in r4 and at the MHB. We also find that blocking either retinoic acid (RA) or Fgf

signaling disrupts hindbrain gene expression at gastrla stages , suggesting that both

pathways are essential at this stage. However, both pathways must be blocked

simultaneously to disrupt hindbrain gene expression at segmentation stages , indicating

that these signaling pathways become redundant at later stages, Furhermore, exogenous

application of RA or Fgf alone is sufficient to induce hindbrain genes in gastrla stage

tissues , suggesting that the two-signal requirement can be overcome under some

conditions. Our results demonstrate an early role for Fgf-signaling and reveal a dynamic

relationship between the RA and Fgf signaling pathways during hindbrain development.

INTRODUCTION

The vertebrate body plan is laid down during gastrlation, as patterns are established

along the main embryonic axes. The dorsoventral axis is established by the competing

actions of ventrolaterally expressed bone morphogenic proteins (BMPs) and BMP-

antagonists (e.g. noggin and chordin) secreted from the dorsal organizer (Lumsden and

Krmlauf, 1996; Piccolo et aI., 1996; Wilson and Hemmati-Brivanlou, 1997). The

anteroposterior (rostrocaudal) axis is established by the actions of secreted factors such as

retinoic acid (RA), fibroblast growth factor (Fgt) and wnt proteins posteriorly (Doniach

1995; Lumsden and Krmlauf, 1996; Yamaguchi, 2001), as well as by cerberus

(Bouwmeester et aI., 1996; Piccolo et aI. , 1999) and dickkopf (Niehrs et aI., 2001)

anteriorly.
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In terms of the anteroposterior axis, early experiments demonstrated that soluble

Fgf can convert anterior neural tissue to posterior neural fates in vitro (Cox and

Hemmati-Brivanlou, 1995; Lamb and Harland, 1995) while ectopic expression offgfin

vivo causes anterior shifts of posterior gene expression in both Xenopus and zebrafish

(Koshida et aI., 2002; Kudoh et aI., 2002; Pownall et al., 1998; Pownall et aI. , 1996),

suggesting a role for Fgfs in patterning posterior embryonic strctures, Subsequently, a

dominant negative form of the Fgf receptor (dnFGFR) was used to test whether

endogenous Fgf signaling is essential for posterior development. Such experiments

demonstrated a requirement for Fgf signaling in development of mesodermal strctures in

the trunk and tail (e,g, (Griffn et aI. , 1995; Griffin et aI., 1998; Pownall et aI., 1998)). It

also appears that early activation of gene expression in the spinal cord is Fgf-dependent

(Pownall et aI., 1998; Pownall et aI. , 1996), but this expression becomes Fgf-independent

at later stages (Kroll and Amaya, 1996; Pownall et aI., 1998). In contrast, the role of Fgf

signaling in hindbrain development is less clear-cut. Some investigators report that

blocking Fgf signaling disrupts expression of hindbrain genes (Holowacz and Sokol

1999; Kolm and Sive, 1995; Koshida et aI. , 1998; Kudoh et aI., 2002), while others find

no effect (Pownall et al" 1996), and yet others find that hindbrain gene expression is lost

only when Fgf signaling is disrupted simultaneously with activation of the BMP signaling

pathway (Koshida et aI., 2002), Recent experiments have demonstrated that bothfgf

and fgf are expressed at the blastoderm margin as well as within the hindbrain of the

gastrla stage zebrafish embryo (Furthauer et al" 2001; Philips et aI., 2001; Reifers et aI.

1998), consistent with regulation of caudal development by Fgfs. Indeed, simultaneous



disruption ofFgf3 and Fgf8 function leads to loss of gene expression in rhombomere 5

(r5) and r6 of the hindbrain (Maves et aI., 2002; Walshe et aI., 2002), but it is not clear if

these Fgfs are required for hindbrain gene expression outside r5/r6. Thus, while Fgf

signaling is broadly required for posterior development its detailed role in hindbrain

development is not understood, and it is not clear if the activity of Fgf3 and Fgf8 is

sufficient to account for all roles of Fgfs in posterior development.

Retinoic acid (RA) is also necessar for hindbrain development (Blumberg et al.

1997; Conlon , 1995; Durston et aI., 1989; Sive et al" 1990). Application of exogenous

RA to Xenopus and zebrafish embryos leads to loss of rostral hindbrain (rl-r3) fates

(Godsave et aI., 1998; Hil et aI. , 1995; Isaacs et aI., 1998) and a rostralward expansion of

caudal (r4-r7/8) hindbrain fates (Hil et aI., 1995; Marshall et aI. , 1992). In contrast,

disrupting endogenous RA signaling by using dominant negative Retinoic Acid

Receptors (dnRA) or by restrcting dieta retinoids, leads to loss of caudal hindbrain

fates (Blumberg et aI., 1997; Kolm et al" 1997; Maden et aI. , 1996; van der Wees et al.

1998) and, occasionally, to a caudal expansion of rostral fates (van der Wees et aI., 1998).

RA likely mediates these effects by regulating the expression of hox genes, For instance

ectopic expression of hoxbl b in zebrafish mimics the RA overexpression phenotype

(Alexandre et al., 1996) and RA induces changes in the hindbrain Hox code resulting in a

homeotic transformation ofr2/3 into r4/5 (Marshall et aI., 1992). Taken together, these

studies suggest an RA dependent domain from r4 to r7 in the caudal hindbrain, but it is

not clear if RA acts only via hox genes in this domain, nor have the relative roles of RA

and Fgf signaling been defined during hindbrain development.



Here we demonstrate that disruption of Fgf signaling blocks gene expression

throughout the hindbrain primordium and that this Fgf signal is required already by mid-

gastrla stages , prior to the onset offgf andfgf expression. Indeed, removing Fgf3 and

Fgf8 function does not affect gene expression in the hindbrain primordium at gastrla

stages, but blocks expression at later segmentation stages, suggesting that an early-acting

Fgf distinct from Fgf3 or Fgf8 is required for gastrla stage gene expression.

Surprisingly, embryos with disrupted Fgf-signaling show only mild defects in hindbrain

neuronal differentiation and we find that gene expression recovers in the hindbrain

primordium of segmentation stage embryos in spite of Fgf-signaling remaining blocked.

We demonstrate that blocking Fgf signaling simultaneously with blockade of RA

signaling - which by itself has only a mild effect on gene expression at segmentation

stages - abolishes this recovery. Thus, Fgf and RA are both required for gene expression

in the hindbrain primordium at gastrla stages, but this requirement is alleviated by

segmentation stages when the two pathways appear to become redundant. Lastly, while

blocking either Fgf or RA signaling disrupts gastrla-stage hindbrain gene expression,

exogenous application of either factor alone is sufficient to induce expression of

hindbrain genes , further demonstrating that the RA and Fgf signaling pathways are

dynamically related durng hindbrain development.

RESULTS

Fgf signaling is required for gene expression in the entire hindbrain primordium.



We set out to examine how Fgf signaling regulates gene expression in the hindbrain

primordium. Since several Fgf family members are expressed in the developing

zebrafish embryo (e. fgf,fgf andfgf17; (Philips et aI. , 2001; Reifers et aI., 2000;

Reifers et aI. , 1998; Walshe et aI. , 2002)), and other Fgfs may also be expressed during

early embryogenesis (e. fgf4 (Draper, 1999; Grandel et aI., 2000)) it is possible that

Fgfs may act combinatorially or redundantly to regulate gene expression in the hindbrain

primordium. We therefore employed a dominant negative FGF receptor (dnFGFR)

constrct (Amaya et al" 1991; Amaya et aI., 1993) that blocks signaling by most Fgf

family members (Ueno et al., 1992). mRA encoding the dnFGFR was injected at the 1-

4 cell stage and the injected embryos raised to late gastrla stage (9-10 hpt) when they

were assayed for changes in gene expression. We find a reduction in caudal expression

in dnFGFR expressing embryos (Fig. 1A. b; 94% of embryos affected; Table 1),

consistent with Fgf signaling regulating development of the zebrafish trnk and tail as

previously demonstrated (Griffin et aI., 1995; Griffin et aI., 1998). The effect vares from

unilateral reduction to complete bilateral loss of gene expression, likely dependent on the

distrbution of the injected dnFGFR mRA. We also observe a loss or reduction of

hoxblb expression (normally found in the caudal embryo and the caudal hindbrain up to

the r3/r4 boundar (Alexandre et aI., 1996; Sagerstrom et aI., 2001)) in dnFGFR-injected

embryos (Fig, lA. d; 95% of embryos affected), in accordance with a recent report

(Kudoh et al. , 2002). To explore this effect further, we examined nlz, which is expressed

in a similar pattern to hoxbl b (Sagerstrom et aI., 2001), and find that nlz expression is

also repressed by the dnFGFR constrct (Fig. lA. f; 93% of embryos affected). We next

.:4.;,
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Figure lA. Early hindbrain genes are FGF responsive. Embryos were
injected at the one to two cell stage with 500 pg LacZ control mRNA

, c , e , g, i , k, m , 0) or 500 pg dnFGFR mRNA (b , d, f, h , j, I , n , p), fixed at 10
hpf and analyzed by wholemount in situ hybridization for expression of
caudal , b), hoxblb , d), nlz , f), meis3 (g, h), hoxbla 

j), 

vhnfl , 1),

gbxl , n) and otx2 , p). All panels are dorsal views with anterior to the
top.



examined meis3 and hoxbla which are expressed between the r3/r4 boundar and the

caudal end of the hindbrain (Prnce et aI., 1998b; Sagerstrom et aI., 2001), but not further

caudally. We find that both meis3 (Fig. I A. h; 88% affected) and hoxbla (Fig. lA. j;

86% affected) expression is lost in dnFGFR expressing embryos, as is vhnfl expression

(Fig lA. I; 87% affected), which is normally found in r5/r6 (Sun and Hopkins, 2001).

These results demonstrate that Fgf signaling is required for gene expression in the caudal

hindbrain primordium, at least up through presumptive r4.

We next addressed whether Fgf signaling is required also for gene expression in

the rostral hindbrain. Specifically, we examined if expression of gbxl which is normally

found in rl-r3 (Itoh et aI., 2002; Rhinn and Brand, 2001), or otx2 which is expressed

rostral to rl , is affected by the dnFGFR construct. We find that gbxl expression is lost in

tailbud stage embryos expressing the dnFGFR constrct (Fig. lA. n; 73% affected), but

otx2 expression is unaffected (Fig. lA. p), indicating that Fgf signaling is required for

gene expression throughout the hindbrain, but not rostral to the midbrain-hindbrain

boundar, at this stage of development. Thus, our experiments confirm that hoxb 1 b

expression in the hindbrain is dependent on Fgf signaling, as reported previously

(Koshida et aI. , 1998; Kudoh et aI., 2002), but extend this data by demonstrating that four

other genes expressed in the caudal hindbrain primordium, as well as a gene expressed in

the rostral hindbrain , are also Fgf-dependent.

To confirm that the observed effects are due to disruption ofFgf signaling, 

also interfered with the function of Ras, which acts at a receptor proximal step in the Fgf

signaling cascade (Widmann et aI., 1999). To this end we employed a dominant negative



form ofRas (dnRas) (Feig and Cooper, 1988) and we find that dnRas disrupts expression

of caudal, hoxblb, nlz, meis3 and hoxbla in a manner similar to dnFGFR (not shown),

further confirming that Fgf signaling is required for early gene expression in the

hindbrain.

Fgf receptors have also been shown to interact with other receptor tyrosine

kinases, namely the PDGF (platelet derived growth factor) (Russo et aI., 2002), To

ensure that the observed effect we see is not due to any cross interactions between FGF

and other receptors, we utilzed an inhibitor specific to Fgf receptors, SU5402

(Mohammadi et aI. , 1997). SU5402 is a member of a new class of protein tyrosine kinase

inhibitors , which has been shown to specifically inhibit the tyrosine kinase activity of

FGFRs by inducing a conformational change in the nucleotide-binding loop

(Mohammadi et aI., 1997). Embryos were soaked at 4 hpf in a 0.2 mg/ml solution of

SU5402 in IX MBS until 10 hpf when they were fixed and processed for in situ analysis.

Upon treatment with SU5402, we were able to phenocopy the dnFGFR injected results

perfectly for all genes tested, caudal (Fig. IB, a,b), hoxblb (Fig. IB. c-e), nlz (Fig. IB. f-

h), meis3 (Fig, IB. i-k), hoxbla (Fig. IB, I-n) and otx2 (Fig. IB, o,

p). 

100% of embryos

were affected very strongly ranging from a total loss of gene expression to very strong

equivalent reduction or unilateral reduction. It was interesting that the drg could

phenocopy both unilateral (Fig IB. d, m) and bilateral reduction (Fig, IB. e, n) in

gene expression, as we expected a more uniform distribution of drg compared to the

injected dnFGR mRNA. However, this could be due to uneven diffusion of the drug or

perhaps may reveal a more complex underlying left-right asymmetr mechanism. Thus,
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Figure lB. Early hindbrain genes are FGF responsive. Embryos were
manually dechorionated and soaked in IX MBS until 4 hpf when they were
transferred to fresh IX MBS (a, c , f, i , I , 0) or 0.2 mg/ml SU5402 in IX MBS

, d , e , g, h , j, k , m , n , p) until 10 hpf when they were fixed and processed
for in situ hybridization for expression of 

caudal (a, b), hoxbl b (c-e), nlz
(f-h), meis3 (i-k), hoxbla (l-n) or otx2 , p). All panels are dorsal views
with anterior to the top except panels a and b which are vegetal views.



we conclude that the effect on hindbrain genes we detect in dnFGFR expressing embryos

is not due to cross interactions of the dnFGFR with PDGF or EGF.

We were also able to test the time window of F gf requirement for hindbrain gene

regulation with SU5402. Embryos were soaked in SU5402 staring at 4 hpf until 1 0 hpf

from 6 hpf to 10 hpf and from 8 hpf to 10 hpf when they were fixed and processed for in

situ analysis. We find that the 4- 10 hpftreatments phenocopied the dnFGFR results (Fig.

IB) and treatments at 6- 10 hpf or 8-10 hpf yielded mostly wild type embryos (not

shown). To more closely determine the FGF-required time window , we then soaked

embryos in SU5402 at 4 hpf for 15, 30, 45 or 60 minutes, extensively washed the

embryos and allowed them to develop in buffer until 10 hpf when they were fixed and

processed for in situ hybridization for nlz expression. We find that after 15 minute

treatments , 54% of embryos showed a loss of nlz gene expression, The percentage of

embryos that were affected rose steadily from 54% after 15 minutes , to 67% after 30

minutes, to 79% after 45 minutes to 92% by the 60 minute time interval. Thus, we

conclude that the early Fgf signaling required for hindbrain development occurs in a time

window between 4-5 hpf.

Fgf signaling is required prior to establishment of the signaling centers in r4 and the

MHB.

Two Fgf-producing organizing centers have been described in the hindbrain; one at the

.. 0,;

midbrain-hindbrain boundar (MHB) and one in r4. The MH expressesfgf andfgf17

and regulates development of the caudal midbrain and the rostral hindbrain (reviewed in



(Rhinn and Brand, 2001)) while r4 expresses 
fgf and fgf and regulates development of

r5/r6 (Maves et aI., 2002; Walshe et aI. , 2002). Thus , our observation that Fgf-signaling

is required for gene expression throughout the hindbrain primordium might be explained

by the actions of Fgf8/Fgf17 secreted from the MHB and/or Fgf3/Fgf8 secreted from r4.

fgf17 is not expressed at the zebrafish MHB until the 8 somite stage (Reifers et

aI., 2000), but the dnFGFR constrct disrupts hindbrain gene expression aleady at

tailbud stage (Fig. 1), demonstrating that Fgf17 cannot regulate early gene expression in

the hindbrain primordium. In contrast,
fgf andfgf are expressed in the zebrafish

hindbrain primordium during gastrla stages. fgf is expressed in the anterior half of the

hindbrain primordium already at 70% epiboly and resolves into separate expression

domains at the MHB and in r4 by tailbud stage (Maves et aI., 2002; Reifers et aI. , 1998),

whilefgf becomes expressed in r4 at 90% epiboly (Maves et aI. , 2002; Walshe et aI.

2002). However, we find that the dnFGFR constrct represses gbxl expression already at

70% epiboly (67% affected; not shown), suggesting that Fgf8 and Fgf3 secreted from the

MHB and/or r4 may not be required for early gene expression in the hindbrain

primordium.

To further explore the role offgf andfgf in regulating hindbrain gene

expression, we disrupted Fgf3 and Fgf8 function using antisense morpholino oligos

(MOs), as previously reported (Maves et al., 2002; Walshe et aI., 2002). Since Fgf3 and

Fgf8 may act redundantly, their function was disrupted simultaneously by co-injecting

anti-Fgf3 and anti-Fgf8 MOs. We do not observe any changes in hoxblb, nlz, meis3

hoxb 1 a, or gbxl expression in the hindbrain primordium of late gastrula stage embryos
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Figure 2 (a-I). Fgf3 and Fgf8 are not responsible for induction of early
hindbrain gene expression. Embryos were injected at the one to two cell
stage with control MOs (a, c), anti-Fgf3/antiFgf8 (b, d , e-j) morpholino
antisense oligonucleotides or dnFGFR (I) and raised to 10 hpf (e-I) or 16 hpf
(a- d). Embryos were analyzed by wholemount in situ hybridization for
expression of krox20 (a, b), valentino , d), caudal (e), hoxblb (f), nlz 

(g),

meis3 (h) hoxbla (i), gbxlG) andfgj8 (k , I). All panels are dorsal view with
anterior to the top.



co-injected with anti-Fgf3 and anti-Fgf8 MOs (Fig. 2f-j), suggesting that Fgf3 and Fgf8

are not responsible for the induction of early gene expression in the hindbrain

primordium. Two previous reports have demonstrated that co- injecting anti-Fgf3 and

anti-Fgf8 MOs blocks gene expression in r5 and r6 during segmentation stages (Maves et

aI. , 2002)(Walshe et aI., 2002). Consistent with these reports , we find that embryos co-

injected with anti-Fgf8 and anti-Fgf3 MOs display loss of krox20 expression in r5 and

valentino expression in r5/r6 (Fig. 2a-d; 91 % and 86% affected respectively) during

segmentation stages. However, expression of vnhfl which is thought to regulate krox20

and valentino expression in r5/r6 (Sun and Hopkins, 2001), is not repressed by Fgf3/Fgf8

MOs at late gastrula stages (not shown). These findings suggest that an early Fgf signal

acting prior to the establishment of the MHB and r4 signaling centers , is required for

hindbrain development. In fact, we find that fgf expression is lost in the rostral

hindbrain of embryos expressing the dnFGFR (Fig. 21; 81 % affected), indicating that this

early Fgf signal may be required to establish the r4 and/or MHB signaling centers. The

differing effects of the dnFGFR construct and the MOs are not due to quantitative

differences in their efficacy, since both approaches block Fgf signaling in the rostral

hindbrain primordium at tailbud stages (Fig. 2m-o; Fgf signaling detected by staining for

..,(,

di-phosphorylated ERK (dp-ERK), an antibody which reacts specifically to the di-

phosphorylated form of MAP kinase (ERK- l and ERK-2). The antibody does not

recognize the non-phosphorylated or the mono-phosphorylated forms of the MAP kinase

molecule or the di-phosphorylated forms of JNK and p38 MAP kinase (Umbhauer et aI.

1995)). Also anti-fgf3 and anti-fgf MOs do not affect trunk or tail development (e.



dP-ERK dP-ERK dP-ERK

Figure 2. (m-o). Fgf3 and Fgf8 are not responsible for induction of
early hindbrain gene expression. Embryos were injected at the one to
two cell stage with control morpholino (m), dnFGFR mRNA (n) or
antiFgf3/antiFgf8 morpholino antisense oligonucleotides (0) and raised to
10 hpf. ERK activation was detected by anti-dPERK antibody staining
(m-o). All panels are dorsal views with anterior to the top.
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caudal expression , Fig. 2e; (Maves et aI., 2002; Walshe et aI. , 2002), in contrast to the

dnFGFR, further suggesting the involvement of an early-acting Fgf signal. Taken

together, our results demonstrate that Fgf signaling is required in the hindbrain

primordium at an earlier stage and in a broader domain than previously reported.

Fgf signaling is suffcient to induce expression of some caudal genes in vitro

Our experiments demonstrate that Fgf signaling is required for gene expression in the

hindbrain primordium. We next tested whether Fgf signaling is sufficient to induce

expression of these genes. To this end we utilzed an in vitro differentiation assay

(caroon in Fig 3A; (Sagerstrom et aI., 1996)) that also enabled us to test ifFgf acts

directly or indirectly to induce gene expression. In paricular, a small group of cells was

explanted from the animal pole of several embryos at 5 hpf and aggregated together in

vitro in the presence of Fgf. We utilized bFgf, which is functionally interchangeable with

other Fgfs, e.g. eFgf/Fgf4 (Kimelman et aI., 1988; Lamb and Harland, 1995; Slack, 1989)

to induce Fgf signaling. After 4 hours in culture, the explants were subjected to RT-PCR

analysis to detect gene expression. We find that Fgf signaling significantly enhances the

expression of hoxblb, caudal and nlz, while expression of hoxbla and meis3 

unaffected (Fig. 3B; lane 2), We next treated explants with Fgf in the presence of

cycloheximide (which inhibits protein synthesis in the explants by 80%; not shown) to

determine ifFgf induces gene expression directly or indirectly. We find that induction of

nlz expression is unaffected by cycloheximide (Fig. 3B, compare lanes 2 and 3),

suggesting that Fgf signaling regulates nlz expression directly. In contrast
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late blastula
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Figure 3A. Schematic representation of animal cap dissection in
culture. Anmal caps were taken from sphere stage embryos , aggregated
into groups of30 , and cultured in vitro for 4 hours in control buffer (IX
MBS), I I-glml FGF or I I-g/ml FGF + 5 I-g/I-l cycloheximide in IX MBS,

4hr
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Figure 38. RT -PCR analysis of gene expression in explanted animal caps
and whole embryos. Explants (lanes 1-3) were harvested after 4 hour

treatments in I X MBS (lane I), I 
g/ml FGF (lane 2), or I mg/ l FGF +

l cycloheximide (lane 3) and analyzed for expression of hindbrain
markers meis3, hoxblb, hoxbla , caudal and nlz, otx2 was used as an

anterior marker tbx6 as a mesodermal marker and 
tubulin as a loading

control. RT-PCR was performed as described in Materials and Methods.
Whole embryos (lanes 4 and 5) were harested at 10 hpf and analyzed for the

same genes, RT-PCR reactions for whole embryos were also performed
without Reverse Transcriotase (RT) (Jane 5) as a control.
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cycloheximide blocks Fgf-mediated induction of hoxbl b and caudal expression (Fig, 3B,

compare lanes 2 and 3), suggesting that Fgf induces expression of these genes indirectly.

nlz and hoxbl b expression is induced near the Fgf source, while meis3 is induced at

a distance.

To further explore the role of Fgf signaling in hindbrain gene expression, we next

implanted Fgf-soaked agarose beads (same bFGF solution utilzed for in vitro

differentiation assay) at the animal pole of 5 hpf zebrafish embryos, Bead-implanted

embryos were raised to tailbud stage when they were fixed and analyzed

by in situ hybridization. We find that caudal, nlz and hoxblb expression is ectopically

induced over the implanted Fgfbead (white arows in Fig. 4A panel b, 83%; f and g,

89%; and d, 89%). In contrast, Fgf-soaked beads induce meis3 expression not over the

bead, but rather in a ring-like domain at a distance (Fig. 4A, panel j; 37%). Double in

situ hybridizations revealed that caudal expression (red stain) is found immediately

surrounding the Fgfbead up to the meis3 expression border (blue stain; Fig. 4B , panel b).

As the red staining is diffuse in nature, we cannot determne to what extent caudal

expression overlaps with meis3 expression, but the domains appear to be in close

proximity, We also note that when Fgf-soaked beads are found within the endogenous

meis3 expression domain, meis3 expression immediately adjacent to the bead is lost and

replaced with caudal (Fig 4B , panel c) or nlz (Fig, 4B, panel e) expression. Lastly, cross

sections through ectopic expression domains induced by Fgf-soaked beads show

expression of caudal, nlz and hoxbl b immediately adjacent to the transplanted bead (Fig
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Figure 4A. Early hindbrain genes are FGF responsive. Beads soaked in

IX MBS (a, c , e , h, k) or 0. mg/ml bFGF (b , d, f, g, i , j, I , m) were implanted
into the animal pole of 5 hpf embryos and analyzed by wholemount in situ
hybridization for expression of caudal , b), hoxbl b , d), nlz (e-

g), 

meis3 (h-j)

and hoxbl a (k-m). All panels are dorsal views with anterior to the top, except
panels g, j and m which are animal pole views. Black arrow in panels a, d and h
represent location of sections in Figure 4C (black arrow in panel a shows
location of section caudal to the hindbrain for caudal black arrow in panel h
shows location of sections through the hindbrain primordium for nlz, meis3 and
hoxbl b and black arrow in panel d shows location of animal pole section for all
genes). White arrow represents ectopic gene expression in response to
implanted bead.
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Figure 4B. Early hindbrain genes are FGF responsive. Double in situ
hybridizations. Bead implants were performed as described for Figure 4A
except double in situ hybridizations were performed with meis3 detected
in blue (a-e), caudal in red (a-c) and nlz in red (d, e). Panels a, c and dare
dorsal views with anterior to the top. Panel b is an animal pole view and
panel e is. a lateral view with dorsal to the left. Arrow points to ectopic
meis3 expression in b.
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Figure 4C. Early hindbrain genes are FGF responsive. Sections of FGF
bead implanted embryos. Embryos implanted with FOF soaked beads (as
described in Figure 4A.) were cross sectioned to determine germ layer
distribution of caudal , b), hoxbl b , d), nlz , t) and meis3 (g, h). Panels c
e and g represent sections through the hindbrain primordium (Fig 4A. panel h
black arrow) and panel a represents a section through the caudal domain of the
embryo (Fig 4A. panel a , black arrow). Dorsal to the top. Panels b , d, f and h

represent sections through the anterior pole of the embryo where the FOF
bead was implanted showing ectopic gene expression (Fig 4A. panel d
black arrow). Arrow in h points to ectopic meis3 expression. Asterisks show
location of implanted bead.
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4C, panels b, d, t) while meis3 expression is found at a distace (Fig. 4C, arow in panel

h; the meis3 expression ring was often incomplete, making it difficult to obtain sections

of more than a parial meis3 ring in a given plane). We conclude that hoxblb, caudal and

nlz expression is induced adjacent to the Fgf source , but that meis3 expression is induced

at a distance and that regions close to the Fgf source are incompatible with meis3

expression.

Fgf signaling is required for branchiomotor neuron migration in the hindbrain.

To further explore the role of Fgf signaling in hindbrain development we next examined

neuronal differentiation in dnFGFR-expressing embryos. In paricular, we monitored

branchiomotor (BM) neuron differentiation using a transgenic line expressing Green

Fluorescent Protein (GFP) under control of the motorneuron specific promoter/enhancer

from the islet- l (isll) gene (Higashijima et aI., 2000). BM neurons of the cranial nerves

differentiate in rhombomere-specific patterns such that the cells of the facial (VIIth)

nerve differentiate in r4 and r5 at 16 hpf, projecting their axons out through r4 and

innervating the second pharngeal arch. By 19 hpf, these cells undergo a posterior

migration from r4/r5 to r6/r7 and by 36 hpf this migration is complete. In contrast, BM

neurons of the trgeminal (Vth) nerve do not migrate, but differentiate as two groups, a

major anterior group in r2 (Va) and a smaller posterior group in r3 (Vp). Both Va and Vp

project axons out r2 and innervate the first pharngeal arch (Chandrasekhar et aI. , 1997;

Higashijima et al. , 2000; McClintock et al. , 2002). Lastly, BM neurons of the vagal
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(Xth) nerve differentiate in the caudalmost hindbrain (caudal to r7) and innervate the gil

arches.

We observe large numbers of GFP positive cells in r5, and sometimes r4 (Fig. 5b

c) of dnFGFR-injected embryos at 24 hpf. This is in contrast to control embryos that lack

GFP positive cells in r4 and r5 as a result of n VII neurons migrating to r6/r7, This

suggests that n VII neurons do not migrate properly in dnFGFR expressing embryos, but

instead ' stall' in r4 or r5. Overall, 57% of dnFGFR-expressing embryos display nVII

neuron migration defects at 24 hpf. By defining the ' stalling position ' as the rostral-most

rhombomere showing clumping of cells, we find that 44% of embryos show stallng in r4,

7% in r5 and 6% in r6, To confirm that these defects are not the consequence of dnFGFR

expressing embryos developing more slowly than control embryos, we examined

dnFGFR-expressing embryos at 36 hpf. At 36 hpf, migration ofnVII neurons has not

improved as 76% of embryos display defects (Fig. 5e , t) with 44% stallng in r4 (an

extreme case is shown in Fig 5, panel g), 26% in r5 and 6% in r6. As this defect was seen

at both time points, we conclude that it is not the result of delayed development but is a

consequence of disrupting Fgf signaling. We also note that nVa neurons in r2

differentiate normally in dnFGFR expressing embryos (Fig. 5b, c, e, t), Differentiation of

n Vp neurons in r3 was more varable (parially lost in 33% of embryos; Fig. 5b , c, e, t),

suggesting a minor effect on r3. We also find that nX BM neurons are lacking in

dnFGFR-expressing embryos (shown in Fig. 5f; 59%), consistent with Fgf signaling

being required for trnk and tail development caudal to the hindbrain. In contrast, the
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Figure SA. FGF is required for branchiomotor neuron migration in the
hindbrain. a-g: control (a , d) or dnFGFR (b , c, e , f, g) mRNA was injected into
one to two cells ofIsll-GFP transgenic fish embryos and fixed at 24 hpf(a-c)
or 36 hpf(d-g), deyolked and flatmounted. Arrows point to groups ofBM
neurons that do not migrate , but are stalled at rostral positions. Panel g shows
total migration failure and clumping in r4.



Figure 58. FGF is not required for primary reticulospinal neuron
development. hand i: Control (h) or dnFGFR (i) mRNA was injected into
one to two cells of wild type embryos and fixed at 28 hpf. Mauthner neurons
were visualized via immunohistochemistry with the 3AlO antibody (see
Materials and Methods).
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dnFGFR has no effect on Mauthner neuron differentiation in r4 , as 95% of injected

embryos show wild type arangement of Mauthner neurons (Fig 5, panels h and i).

We wished to verify that the migration defects we detected at 36 hpf were in fact

a consequence of blocking FGF signaling at early gastrula stages and not due to the

persisting dnFGFR blocking other Fgf's required later in hindbrain development. Thus,

we soaked embryos in SU5402 , an Fgf inhibitor (Sawada et aI. , 2001; Shinya et aI., 2001)

at 4 hpf for one hour, extensively washed the embryos and examined BM neuron

migration at 36 hpf. Indeed we detect the same migration failure and stalling of cells

within the hindbrain (not shown) confirming that early gastrla stage Fgf signaling 

required for BM neuron migration.

Hindbrain gene expression recovers in later stage dnFGFR expressing embryos

The effect of the dnFGFR constrct on differentiation of BM and reticulospinal neurons

was surprisingly mild given the effect on gene expression in the hindbrain primordium at

10 hpf. We therefore exa ined hindbrain gene expression in dnFGFR embryos at a later

stage (14 hpt) and find that they are significantly less affected at 14 hpf than at 10 hpf

(Table 1). In paricular, at 10 hpf nlz expression is affected in 93% of embryos, whereas

at 14 hpf, only 9% show a decrease in nlz expression and hoxbla is affected in 86% of

embryos at 10 hpf, but only in 24% at 14 hpf and the phenotype is less severe at 14 hpf.

Similarly, meis3 is affected in 88% of embryos at 10 hpf and in 44% at 14 hpf, but the

t .

phenotype is milder at 14 hpf,



Table 1. Co-o erative actions of P f and RA in re ulatin hindbrain ene ex ression
dnPGFR nRAR dnFGPRldnRAR

10 hpf 14 hpf' 10 hpf 14 hpf' 14 hpf'

nlz 93%(78/84) 9% (5/56) 58% (43/74) 18% (6/33) 70% (37/53)

meis3 88%(91/103) 44%(28/64) 69% (44/64) 9% (5/54) 94% (51/54)

hoxbla 86% (61/71) 24% (18/74) 72% (56/77) 20% (7/35) 61 % (28/46)

hoxb3 18%(19/105) 23% (10/43) 77% (41/63)

valentino 16% (23/142) 23% (22/93) 47% (22/47)

krox20 23% (30/133) 35%(30/85) 59% (27/46)

hoxd4 90% (48/53) 10% (4/41)

caudal 94% (62/66) 93% (25/27) 0% (0/61) 0% (0/28)

ntl 82% (18/22) 65% (32/49)

hoxblb 95% (81/85) 77%(41/53)

vhnfl 87%(90/104)

gbxl 73%(27/37)

fgf8 81 %(90/111)

a). mRNA encoding dnFGPR or dnRAR were injected into embryos as outlined in

Materials and Methods. Embryos were harvested at 10 hpf or 14 hpf and analyzed by in

situ hybridization for expression of the genes indicated at left. Embryos showing

reduction or loss of gene expression were scored as affected and are indicated as a

percent of total embryos. Absolute numbers of embryos are given in parentheses for each

experimental condition. Embryos injected with an equivalent amount of B-gal mRNA

were 95% normal. nd = not done



Other hindbrain markers tested at 14 hpf could not be compared to 10 hpf as they

are not expressed that early, but these genes also show only mild defects in dnFGFR-

expressing embryos. Specifically, hoxb3 and valentino show moderate reductions in r5

and r6 in 16- 18% of dnFGFR-expressing embryos and krox20 expression in r3 and r5 is

affected in only 23% of dnFGFR-expressing embryos. The only exception is hoxd4

normally expressed caudal to the r6/r7 border, that is affected in 90% of dnFGFR-

expressing embryos at 14 hpf, The hoxd4 expression domain appears shorter along the

anteroposterior axis, but double in situ hybridizations reveal that the gap between the

hoxd4 expression domain and krox-20 expression in r5, or hoxbla expression in r4

remains normal (not shown). We interpret this to mean that hoxd4 expression is not

affected in r7 , but is lost caudal to the hindbrain. In agreement with this, we find that

caudal and ntl remain affected caudal to the hindbrain at 14 hpf (93% at 14 hpf versus

94% at 10 hpf for caudal and 65% at 14 hpf versus 82% at 10 hpf for ntl). Thus, gene

expression in the hindbrain and in more caudal domains is affected in dnFGFR

expressing embryos at 10 hpf. This effect is largely reverted in the hindbrain at 14 hpf

but persists caudal to the hindbrain. This effect is not due to reduced efficacy of the

dnFGFR at these stages since Fgf signaling remains blocked (Fig. 7 A panels a, b),

Retinoic Acid regulates early hindbrain gene expression simiar to Fgf.

. ;

We reasoned that the restoration of gene expression at 14 hpf may be mediated by the

actions of other signaling molecules, A likely candidate for this role is RA, which



regulates expression of hindbrain genes (paricularly 
hox genes (Gavalas , 2002; Gavalas

and Krmlauf, 2000; Marshall et aI., 1996)). To test if RA regulates expression of the

Fgf-dependent genes defined in this study, we utilzed a dominant negative form of

retinoic acid receptor a (dnRARa), which cares a C- termnal truncation blocking its

abilty to dissociate from corepressors (Chen and Evans, 1995; Damm et aI., 1993; Kolm

et aI., 1997)). dnRAa mRA was microinjected at the 1-2 cell stage and changes in

gene expression scored by in situ hybridization at tailbud stage, As expected, 
hoxblb and

hoxbla expression was lost (Fig. 6A, panels j and 0; 77% and 72% respectively) in

dnRRa-injected embryos, meis3 expression was also lost (Fig. 6A, panel e; 69%)

demonstrating that meis3 is regulated by RA in the caudal hindbrain. In contrast, while

nlz expressio was also lost, this effect appeared restrcted to the caudal hindbrain

(approximately r4-r7; asterisk in panel y; 58%) and 
nlz expression was not affected

caudal to the hindbrain (Fig 6A, panel y). caudl gene expression was unaffected (Fig.

6A, panel t),

To achieve ectopic RA signaling, we next treated embryos with RA between

sphere and tailbud stage and scored changes in gene expression by in situ analysis at

tailbud stage. As expected, hoxblb and hoxbla expression expands anteriorly in

response to RA treatment (Fig. 6A, panels h, i , m and n; 97% and 90% respectively).

meis3 and nlz expression is also expanded anteriorly in the presence of exogenous RA

(Fig. 6A, panels c and d; 96% and panels w and x; 100%), while 
caudal expression is

unaffected (Fig 6A, panels r and s), In all affected cases, the expansion of gene

expression extended from the caudal border of the endogenous expression domain to the
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Figure 6A. Early hindbrain genes are RA responsive. Embryos were
cultured in IX MBS + 0.001% DMSO (a, b, f, g, k, I, p, q, u, v) or IX MBS+ I!lM
RA and 0.001 % DMSO (c, d, h, i, m, n, r, s, w, x) from sphere (4 hpf) to tailbud
stage (10 hpf), or injected with dnRAR mRNA at the one to two cell stage and
raised to 10 hpf (e, j, 0, t, y). Embryos were analyzed by wholemount in situ

hybridization for expression ofmeis3 (a-e), hoxblb (f-j), hoxbla (k-o), caudal

(p-t) and 
nlz (u-y). Panels are dorsal views with anterior to the top (a, c, e , f, h

, j,

, m , 0, p, r, t, u, w , y) or lateral views with dorsal to the right and anterior to the
top (b , d, g, i , I , n , q, s, v , x).



anterior pole of the embryo. No ectopic or expanded gene expression was detected

ventrally, laterally or posteriorly.

Our results correlate well with RA treatments of Xenopus and zebrafish embryos

(Holder and Hil , 1991; Papalopulu et aI. , 1991) which showed a dose dependent

truncation of the anterior axis of the embryo at later stages. To examine if such RA

mediated trncations correlate with our observed changes in gene expression, we

examined later stage RA treated embryos (14 and 24 hpt) and found that at 14 hpf

hoxbl b, hoxbl a and meis3 gene expression was stil expanded rostrally (Fig 6B , panels a-

t). This effect persisted at 24 hours, as expression of hoxbl a remained strongly

upregulated in the head region (Fig 6B, panels i andj) and coincided with a loss of otx2

forebrain gene expression (Fig 6B, arows in panels g and h). Thus , application of

exogenous RA expands endogenous gene expression from r4-r7 to the anterior pole of the

embryo and causes anterior trncations,

We analyzed embryo sections to determine which germ layers express

endogenous hoxblb, hoxbla, meis3 and nlz expression , and whether exogenous RA

induced ectopic gene expression in other germ layers. Cross sections through the

hindbrain primordium show hoxblb and nlz gene expression in the outer (likely

corresponding to ectoderm) and inner (likely corresponding to mesendoderm) layers for

both RA and control treated embryos (Fig, 6C, panels e, m and 0). hoxbla expression

was weak at this stage in untreated embryos , but appears primarly in the inner layer both

in treated and untreated embryos (Fig 6C, panels i and k). meis3 gene expression in

control embryos was found in both inner and outer layers. However, RA treated embryos
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Figure 6.B. RA mediated anterior truncations correlate with changes 
gene expression. a-j. Embryos were treated with IX MBS + 0.001 % DMSO

, c, e, g, i) or IX MBS + I/lM RA and 0.001 % DMSO (b, d, f, h, j) from
sphere to tailbud stage , washed and allowed to develop until 14 hpf (a-t) or
24 hpf (g-j) and analyzed by wholemount in situ hybridization for expression
of meis3 , b), hoxb 1 b , d), hoxb , f, i, j) or otx2 (g, h). All panels are
dorsal views with anterior to the top. Black arrows in g and h represent loss
of otx2 forebrain expression.
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showed meis3 gene expression most strongly primarly in the inner layer (Fig 6C, panels

a and c). In anterior sections, representing expanded gene expression in response to RA

treatment hoxblb and nlz expression was detected again in both layers (Fig 6C, panels h

and p) and hoxbla was again detected only in the inner layer (Fig. 6C, panel!). In the

expanded meis3 domain, inner layer staining was again detected (Fig 6C, panel d). Thus,

the presence of exogenous RA does not alter the germ layer distrbution of hoxblb,

hoxbla or nlz expression , but meis3 germ layer gene expression seems to be altered by

RA treatment.

Using our in vitro differentiation assay, we find that regulation of nlz and hoxbla

is protein synthesis independent (Fig 6D, lanes 2 , 3, 7, 8). In contrast, induction of meis3

and hoxbl b expression is protein synthesis dependent (Fig 6D, lanes 2, 3, 7, 8), although

hoxblb may be less dependent on protein synthesis shortly after RA addition (compare

ratio between lanes 2 and 3 to ratio between lanes 7 and 8).

Lastly, we find that dnRa. expressing embryos show a "stallng" phenotype

similar to that observed for dnFGFR expressing embryos (not shown). Specifically, 28%

of embryos showed a wild type migration pattern of n VII BM neurons , while 52%

showed stallng defects in r4 and 20% in r5, No stallng defects were observed further

caudally and nX neurons were not affected, consistent with RA signaling not being

required for trnk and tail development. Differentiation of n Vp neurons in r3 was

affected in 20% of embryos, This data suggest that RA, like Fgf, is required for

branchiomotor neuron migration within the hindbrain.
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Figure 6.C. Sections of RA treated embryos. Embryos were treated with IX
MBS + 0,001% DMSO (a, b , e , f, i j, m , n) or IX MBS + I/lM RA and 0.001%

DMSO (c, d, g, h, k, 1, 0 , p) as in Figure 6.A, and cross sectioned to analyze
germ layer expression ofmeis3 (a-d), hoxblb (e-h), hoxbla (i- I) and nlz (m-

p).

Panels a, c, e , g, i, k, m , 0 represent cross sections through the hindbrain
primordium , panels b , d, f, h, j, 1, n, p are cross sections through a more
anterior region displaying ectopic gene expression in response to RA treatment.
Dorsal to the top.
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Figure 6D. Early hindbrain genes are RA responsive. RT-PCR analysis of

gene expression in ex planted animal caps and whole embryos, Animal caps

were taken from sphere stage embryos (as shown in cartoon in Fig, 3A),
aggregated into groups of30 and cultured in vitro for 1.5 or 4 hours in IX MBS
with 0.001 % DMSO , I/lM RA in 0,001 % DMSO or I/lM RA + 5l-g/l-l

cycloheximide in 0.001 % DMSO. Explants (lanes 1- 8) were harvested

after 1.5 hrs (lanes 1-3) or 4 hrs (lanes 6-8) treatments in DMSO (lanes 1 6),

I/lM RA (lanes 2 , 7) or I/lM RA + 5l-g/l-l cycloheximide (lanes 3 , 8) and

analyzed for expression of hindbrain markers meis3 , hoxbl b , hoxbla, caudal

and nlz. otx2 was used as an anterior marker tbx6 as a mesodermal marker
and tubulin as a loading control. RT-PCR was performed as described in
Materials and Methods, Whole embryos (lanes 4 , 10) were harvested at
10 hpf and analyzed for the same genes. R T -PCR reactions for whole embryos
were also Derformed -RT (lanes 5 and 10) as a control.
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RA and Fgf cooperate to regulate hindbrain gene expression at segmentation stages.

We hypothesized that RA signaling might compensate for the loss ofFgf signaling during

segmentation stages. We first examined hindbrain gene expression at 14 hpf in dnRARa

expressing embryos and detect only a mild effect, suggesting that gene expression

recovers also in dnRRa expressing embryos (Table 1), In paricular, at 10 hpf, nlz

expression is affected in 58% of embryos, whereas at 14 hpf, only 18% show a slight

decrease in nlz expression, Similarly, hoxbla is affected in 72% of embryos at 10 hpf

but only 20% show a slight decrease in hoxb 1 a stain at 14 hpf and meis3 is affected in

69% of embryos at 10 hpf, while only 9% show disruption at 14 hpf. caudal was never

effected at 10 hpf, and shows no effect at 14 hpf, Later stage hindbrain markers were

also tested in dnRAR-expressing embryos. Specifically, hoxb3 and valentino showed

very mild decrease in expression in r5 and r6 (23% each) while krox20 expression in r3

and r5 was affected in 35% of dnRA-expressing embryos, hoxd4 expression was mildly

effected in 10% of dnR-expressing embryos auhe r6/r7 border, but not affected in its

expression domain further caudally.

We next co-injected dnFGFR and dnRA at the one cell stage and analyzed

hindbrain gene expression at 14 hpf. We find that gene expression remains affected in

dnFGFRdnRA co-expressing embryos at 14 hpf. In paricular, while nlz expression is

mildly reduced in 9% of dnFGFR-expressing embryos and 18% of dnRARa-expressing

embryos at 14 hpf, 70% of embryos are affected in dnFGFRdnRAR co-expressing

embryos (Fig. 7B , panels a, b; Table I), A similar increase in affected embryos (ranging

from 47-94%; Table I) in the presence of both dominant negatives was detected for
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Figure 7A. dnFGFR stil functions at 14hpf. Embryos were injected with
500 pg LacZ control (a) or dnFGFR (b), fixed at 14 hpf and processed for
immunohistochemistry with anti-dP-ERK antibody. Arrows represent loss
of dP-ERK staining at the MHB and arrowheads show loss of tail structures
in dnFGFR expressing embryos. Views are lateral with anterior to the top.
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Figure 7B. Hindbrain gene expression in dnFGFR/dnRAR co-expressing
embryos is affected at 14 hpf. Embryos were injected at the one to two cell
stage with 500 pg LacZ control (a, c, e, g, i , k) or 500 pg dnFGFR/500 pg
dnRAR mRNA (b , d, f, h, j, I), fixed at 14 hpf and analyzed by wholemount 

situ hybridization for nlz , b), meis3 , d), hoxbla 
, t), krox20 (g, h),

valentino , j) and hoxb3 , I) expression. All views are dorsal with anterior
to the too.



hoxbl a, meis3, hoxb3, valentino and krox20 (Fig, 7B, panel c-l). This data suggest that

Fgf and RA alone are sufficient to induce hindbrain gene expression at 14 hpf and only

when both signals are blocked is hindbrain gene expression affected. Thus, Fgf and RA

cooperate to regulate hindbrain gene expression at segmentation stages.

DISCUSSION

Previous work has demonstrated that Fgf signaling is required for gene expression in the

caudal embryo, including the caudal hindbrain (Holowacz and Sokol, 1999; Kolm and

Sive, 1995; Koshida et aI. , 1998; Kudoh et aI., 2002), an effect potentially attbutable to

fgf andfgf 
(Maves et aI. , 2002; Walshe et al" 2002). We have further explored the role

for Fgf signaling and find that it is required for gene expression throughout the hindbrain

primordium already by mid-gastrla stages. We demonstrate that this early Fgf signal is

not provided by Fgf3 or Fgf8, suggesting that an as yet uncharacterized Fgffamily

member is acting at gastrla stages. As expected, Fgf3 and Fgf8 regulate gene expression

in the caudal hindbrain during segmentation stages (as par of a signaling center in r4

(Maves et aI., 2002; Walshe et aI., 2002)), but we find thatfgf expression is lost upon

disrupting gastrla stage Fgf-signaling, indicating that early Fgf-signaling may be

required to establish the signaling center in r4, We also demonstrate that although both

Fgf and RA signaling is required for gene expression in the gastrla stage hindbrain

primordium , application of either exogenous RA or Fgf is sufficient to induce hindbrain

gene expression in gastrula stage tissues. Furthermore, while signaling by both factors is

required for gastrula stage gene expression, this requirement is alleviated by



segmentation stages when the two pathways appear to become redundant. Together,

these results reveal a dynamic relationship between RA and Fgf signaling during

hindbrain development.

Which Fgf famy member regulates ealy hindbrain development?

Our results reveal an early role for Fgf signaling in regulating hindbrain gene expression

at gastrula stages, but it is unclear which Fgf family member is at work. While fgf and

fgf are expressed in the germng by the 50% epiboly stage and in presumptive r4 by

80%-90% epiboly (Philips et aI., 2001; Reifers et aI., 1998; Walshe et aI., 2002),

potentially consistent with their regulating early gene expression in the hindbrain

primordium, we note marked differences between disrupting Fgf3 and Fgf8 function on

the one hand and disrupting all Fgf signaling on the other hand. Specifically, using

antisense morpholino oligonucleotides to disrupt Fgf3 and Fgf8 function does not affect

gastrla stage gene expression, while the dnFGFR constrct blocks nlz, meis3, hoxblb,

hoxbla, caudal and gbxl expression throughout the hindbrain primordium. This is

paricularly apparent in r4 , which is largely unaffected by disrupting Fgf3 and Fgf8

function , but at least four genes expressed in r4 are lost upon blocking Fgf signaling by

the dnFGFR constrct. Thus, it is unlikely thatfgf andJorfgf regulate early gene

expression in the hindbrain primordium. fgf17 has recently been isolated in zebrafish, but

unlike fgf or fgf, 
it is not expressed during gastrlation (Reifers et aI., 2000) and

therefore is not a candidate for an early role. Similarly, a zebrafishfgf4 gene was

reported recently (Grandel et aI., 2000), but we find thatfgf4 is not expressed until 11 hpf



(not shown). Since the Fgf-family contains at least 23 members (Ford-Perrss et aI.

2001) and the expression pattern of these genes has not been exhaustively analyzed

during embryogenesis, it appears possible that at least one family member wil be

expressed at gastrula stages. Lastly, we cannot exclude the possibilty that the early Fgf-

signal is mediated by a maternally deposited Fgf.

What is the source of Fgf at gastrula stages?

Although the source of the early-acting Fgf is not clear, clues might be derived from

varations in Fgf-responsiveness among the genes analyzed. In paricular, although

meis3, hoxbla, nlz and hoxblb all require Fgf signaling in vivo, only hoxblb and nlz are

induced by Fgf in vitro. Furtermore hoxbl band nlz are induced adjacent to implanted

Fgfbeads while meis3 is induced at a distace and hoxbla not at all, These observations

suggest that nlz and hoxblb may be expressed near the Fgf source in vivo, while meis3

and hoxbla expression might be found at a distance. Ths prediction correlates with the

expression of these genes along the rostrocaudal axis in vivo - nlz and hoxblb expression

extends to the caudal end of the embryo while meis3 and hoxbla expression is found

further rostrally - suggesting that the caudal end of the embryo may be the source of Fgf.

As discussed bothfgf andfgf are expressed caudally at gastrula stages, but are unlikely

to represent the essential Fgf signal. It is instead possible that the source of Fgf lies

outside the embryo proper, perhaps within the yolk, as it has been demonstrated that the

yolk can induce posterior gene expression in gastrula stage zebrafish embryos (Koshida

et aI. , 1998).



As noted, induction of meis3 expression appears to depend on the distance from

the Fgf-bead. This could simply be due to meis3 expression requiring a paricular

concentration of Fgf, perhaps corresponding to the concentration of Fgf found in the

caudal hindbrain in vivo. Furthermore, since endogenous meis3 is repressed when a Fgf-

bead is located within the hindbrain primordium (Fig 4B , panel c , e), it is possible that a

factor regulated by Fgf represses meis3 expression adjacent to the Fgf source (see model

described in Co-operative actions ofFgf and RA).

Co-operative actions of Fgf and RA

We find that disruption of either RA or Fgf signaling blocks hindbrain gene expression at

gastrla stages, suggesting that both factors are necessar at this stage. However, RA or

Fgf alone is sufficient to induce expression of at least some hindbrain genes when applied

exogenously to gastrula stage ectodermal explants or intact embryos, How do we explain

this discrepancy?

Our data support a model in which Fgf and RA each induce some factor x, which

is present at a limiting concentration at gastrla stages. Hindbrain genes can only be

induced when both Fgf and RA signaling produce a combined threshold level of factor x.

Factor x wil , in turn , induce hindbrain genes (Figure 8A, a), Perhaps meis3 expression is

only turned on at a distance because some repressor of meis3 is expressed directly around

the Fgf source, Upon injection of either dominant negative, the required threshold

concentration of factor x is not achieved and a loss of hindbrain gene expression detected

(Figure 8A, band c). Exogenous application of either factor alone in the animal pole



(beads or caps) may induce hindbrain gene expression because the high concentration of

exogenously applied Fgf or RA can induce significantly higher levels of factor x. (Figure

, b and c).

Our results also indicate that the relationship between RA and Fgf signaling

changes by segmentation stages. In paricular, blocking RA or Fgf signaling alone has

only a minor effect on hindbrain gene expression at segmentation stages, while

simultaneous disruption of RA and Fgf signaling severely blocks gene expression (Table

1), Based on our model proposed above, the endogenous levels ofRA and Fgfmay no

longer be limiting and thus, factor x can be produced by either factor alone at the

appropriate threshold concentration (Figure 8C, a-c). In support of this segmentation

stage model, it has been demonstrated in 
Xenopus that Fgf signaling increases as the

embryos develops (as detected by increase in MAPK activity) (LaBonne and Whitman,

1997) and that RA metabolism increases directly after gastrula stages in 
zebrafsh and

chick (Costardis et aI., 1996; Maden et aI., 1998).
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Figure SA. Endogenous hindbrain domain. a. Both Fgfand RA induce
expression of factor x at some basal level within the hindbrain. Only when a
threshold concentration of factor x is reached wil hindbrain gene expression be
induced. b. In the presence of the dnFGFR, only RA can induce expression of
factor x, which is insuffcient to induce hindbrain genes. c. In the presence of
the dnRAR, only Fgf can induce expression of factor x, which is insufficient to
induce hindbrain genes.
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Figure 8B. The animal pole a. There is no Fgf or RA signaling in the animal
pole of zebrafish embryos and thus no production of factor x. b. In the
presence of high exogenous levels of Fgf, factor x is produced in abundance
and even without the levels of factor x produced by RA , Fgf alone can induce
hindbrain genes. c. In the presence of high exogenous levels of RA , factor x is
produced in abundance and even without levels of factor x produced by Fgf
RA alone can induce hindbrain genes.
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Figure 8C. Segmentation stage hindbrain. a. By 14hpf enogenous levels of
Fgf and RA signaling have increased in the endogenous hindbrain region, Now

Fgf signaling alone or RA signaling alone can induce factor x at suffcinet
levels to induce hindbrain genes. b. In the presence of the dnFGFR, hindbrain

gene expression is still induced as RA signaling alone is suffcient to induce
hindbrain genes. c. In the presence of the dnRAR, hindbrain gene expression
is still induced as Fgf signaling alone is sufficient to induce hindbrain genes.



MATERIALS AND METHODS

Fibroblast growth factor and retinoic acid treatments

For bead implants, embryos were manually dechorionated, allowed to develop to sphere

stage (4 hpt) in IX MBS + G (Modified Barth' s Saline + gentamicin 50!-g/!-l)

(Sagerstrom et aI., 1996) and transferred to 3% methyl cellulose (Sigma) in IX MBS.

BioRad Affi-Gel Blue Beads (l00-200mesh) were washed several times in water,

transferred to a 0.5 mg/ml bFGF solution (Invitrogen) or IX MBS control solution and

incubated for 2 hours, eads were then implanted into the animal pole of embryos and

allowed to recover in the methyl cellulose for 1 hour after which they were transferred to

IX MBS until 10 hpf. Embryos were then fixed and processed for in situ hybridization

studies. Retinoic Acid (Sigma) was dissolved in DMSO and diluted in IX MBS.

Embryos were transferred into a solution of 1 uM RA or an equivalent amount of DMSO

(0.001 %) in IX MBS at 4 hpf and left until 10 hpf when they were washed several times

in IX MBS and fixed in 4% paraformaldehyde. Staging was performed according to

(Kimmel et aI. , 1995).

SU5402 Drug Soaks

SU5402 (Calbiochem) treatments were performed on manually dechorionated fish'

embryos at 4 hpf for varous time periods as described in Results Section, SU5402 stock

solution was prepared by dissolving SU5402 in DMSO and diluted before use to 0,

mg/ml in IX MBS. After appropriate soaking period, embryos were washed extensively

I,i



in IX MBS and allowed to develop to 10 hpf for in situ analysis or 36 hpf to monitor BM

neuron migration.

i -- Microinjections

Templates were generated by digesting pXFD/XSS (dnFGF) (Amaya et aI. , 1991) with

EcoRI and pSP6nucj3-gal with XhoI and pSP6-RAaL\403 (dnRAR) (Chen and Evans,

1995; Damm et al., 1993; Kolm et aI., 1997) with EcoRI. mRNA was generated with the

mMessage Machine Kit (Ambion). 1-4 cell stage embryos were microinjected into one

blastomere with 500 pg of either mRA or 500 pg of dnFGFR plus 500 pg dnR,

Control embryos received and equivalent amount of B-gal mRA. Embryos were

allowed to develop to 10 hpf or 14 hpf, fixed in 4% paraformaldehyde overnight and then

stored in MeOH prior to in situ hybridization or processed for immunohistochemistr

with anti-dP-ERK antibody as previously described (Shinya et aI., 2001).

Morpholino injections

Antisense morpholino oligonucleotides (MOs) fgf, 4-MISfgf,fgfB,fgfC, 5-

MISfgf3B and MISfgfC were ordered from GeneTools based on published reports

(Maves et al., 2002; Walshe et aI., 2002). 1-2 cell stage embryos were injected with a

cocktail of approximately 8.5 ngfgf, ngfgfB and 4. ngfgfC MOs or an

equivalent amount of 4-MIS fgf, 5-MISfgfB and MISfgfC control MOs, Embryos

were allowed to develop until 10- 16 hpf, fixed in 4% paraformaldehyde overnight and



then stored in MeOH prior to in situ hybridization or processed for

immunohistochemistr as described above.

Explants and RT-PCR

Animal caps were dissected as previously described (Sagerstrom et aI., 1996).

Aggregates were cultured in IX MBS, IX MBS with 1 pg/ml bFgf, IX MBS with 

pg/ml bFgfplus 5 pg/pl cycloheximide, IX MBS with 0,001 % DMSO, IX MBS with 

pM RA or IX MBS with JlM RA plus 5 Jlg/Jll cycloheximide. RNA was isolated using

the ToTally RNA Isolation Kit (Ambion), cDNA synthesis, PCR reaction and sample

purification was performed as previously described (Sagerstrom et al., 1996), Samples

were run on a 5% acrylamide gel and analyzed autoradiographically. Prmers for otx2

were previously described (Sagerstrom et aI., 1996), Other primers used were: meis3: 5'

GCGCCGCTAATGCTGGATAC-3' and 5' TTGGTCCCGGTGGTGTTC- hoxbla:

5' -AGAAGAAGCGAGAGAAGGA-3' and 5' - TTCACATTTTCGCCTGT -

hoxbl b: 5' - T ACTTGCCAAGTGCTTGTGCAAGT -3' and 5'

TATGATTGATAGTGGCTTGCAGA- tbx6: GGCCCGGTTAGAAGAGGTGT-

and 5' GGTATTTTGCGGTTGAGTTGC- tubulin: 5'

CTGTTGACT ACGGAAAGAAGT-3' and 5' - TATGTGGACGCTCT ATGTCTA.

Inhibition of protein synthesis by cycloheximide was determined though 

incorporation. An 80% reduction of incorporation was detected in explants treated

with cycloheximide.



Whole mount in situ hybridizations

Single and double in situ hybridizations were performed as previously described

(Sagerstrom et aI. , 1996). In situ probes for the following genes were used: meis3 and

hoxbl b (Vlachakis et aI. , 2000), hoxbl a and valentino (Prnce et aI. , 1998b), ntl (Schulte-

Merker et al" 1994), krox20 (Oxtoby and Jowett, 1993), hoxd4 (Prnce et aI., 1998a),

hoxb3 (Isaacs et aI., 1998), nlz (Sagerstrom et aI. , 2001) and cad (Joly et aI., 1992). To

prepare sections , whole in situ stained embryos were embedded in JB-4 media following

protocol in PolySciences JB-4 Mini Kit. 8 micron sections were taken using a microtome

with a dr glass knife and mounted in crystal mount (Biomeda M03).

Branchiomotor and Primary Reticulospinal Neuron visualization

dnFGF mRA was injected into embryos derived from natural crosses between female

and male GFP+lsletl transgenic fish (Higashijima et al. , 2000) at the one to two cell

stage, Injected embryos were kept in the dark to prevent photobleaching. At 18 hpf

embryos were transferred to IX phenylthiourea (PTU) media to prevent melanocyte

formation and then fixed in 4% paraformaldehyde at 24 or 36 hpf. Embryos were

dechorionated and washed in 0. 1 M phosphate buffer (NazHP0 H20 and NaH

and transferred to 90% glycerol overnight. Embryos were deyolked and flatmounted,

Visualization of GFP positive cells was performed with a Nikon Eclipse E600

microscope with a mercur/xenon lamp with fiters set for FITe. Reticulospinal neurons

were detected using the same protocol as (Hatta, 1992). Staining for HR was followed



according to instrction in Vector Laboratories DAB Substrate Kit for Peroxidase (SK-

4100).
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CHAPTER II

FGF4 AN FGF24 IN ZEBRAFISH HINBRAIN DEVELOPMENT

ABSTRACT

As ilustrated in Chapter 1 , an unidentified Fgf, acting early in development,

regulates gastrla stage hindbrain development. We could infer from the data that there

was an early acting Fgf signal and speculate as to its location, but were unable to

determine which specific Fgf or Fgfs performed this function. Currently 24 members of

the Fgf superfamily are known (Ford-Perriss et aI., 2001; Ornitz and Itoh, 2001), but

many have not been extensively characterized. Thus far only Fgf8, Fgf3, Fgf4, and

Fgf17/18 have been characterized in terms of expression pattern and function in the

zebrafish, It has already been determined that neither Fgf3,8 or 17/18 could regulate our

early hindbrain genes of interest (Chapter 1). Here, we demonstrate that disruption of

Fgf4 alone or in combination with Fgf8 and Fgf3 is not sufficient to phenocopy the loss

of hindbrain gene expression we detect in dnFGFR expressing embryos. Recently fgf4



,..

was cloned and shown to be expressed during early gastrlation, but we demonstrate the

disruption of Fgf24 alone or in combination with Fgf8 is unable to phenocopy the

disrupted hindbrain gene expression phenotype seen in dnFGFR expressing gastrula stage

embryos. Thus , we conclude that Fgf4 and Fgf24 alone or in combination with other

identified Fgfs are insufficient to be the early Fgf-signal required for gene expression in

the zebrafish hindbrain primordium,

INTRODUCTION

Currently 24 Fgf family members of the 
teleostfgf gene family have been isolated

(Ford-Perrss et aI., 2001). In zebrafish only a few of these genes,fgf3 (Maves et aI.,

2002; Philips et aI., 2001; Walshe et aI., 2002),fgf (Draper et aI., 2003; Irving and

Mason, 2000; Maves et aI., 2002; Walshe et al., 
2002),fgf17/18 (Philips et al., 2001;

Reifers et aI., 2000) andfgf4 (Grandel et aI., 2000) have been characterized. Fgf4 in

zebrafish was recently cloned (Grandel et aI. , 2000) and its expression pattern reported in

fin bud development post 35 hours, but early gastrla stage expression of Fgf4 was not

described. However, an abstract (Draper, 1999) had suggested that Fgf4 was expressed

during gastrulation in zebrafish. This is in agreement with Fgf4 work that was performed

in chick. Shamim et ai. reported thatfgf4 expression in chick was detected in the

primitive streak at the onset of gastrulation and was later found in the presumptive

posterior hindbrain. At later stages fgf4 
was also detected in the mesoderm underlying

the hindbrain, in the somites, branchial arches, limb bud and the tail bud (Shamim and

Mason, 1999).

j.,



Fgf24 was recently cloned and characterized and shown to have a role in

promoting posterior mesodermal development together with Fgf8 (Draper et aI., 2003).

fgf4 transcripts were detected as early as 4 hpf in the dorsalmost cells of the blastula

margin and by 6 hpf extends completely around the margin. By the end of gastrulation

fgf4 was localized to the tail bud. Morpholino-based gene knockdown of Fgf24 alone

had very minor effects on posterior mesodermal development, but when Fgf24

morpholinos were injected into acerebellar fish (mutatedfgf (Reifers et aI., 1998))

generating a knockdown of Fgf24 in anfgf mutant background, they demonstrated a loss

of most posterior mesodermal strctures, However, expression of early hindbrain genes

was not analyzed in this study,

The temporal expression patterns of these newly isolated zebrafish Fgf's suggest

that they could playa role in early hindbrain development and thus, we sought to test the

involvement of Fgf4 and Fgf24 in early hindbrain development. Here we demonstrate

that Fgf4 knockdown experiments show no effect on hindbrain development, alone or in

combination with other known Fgf' s. Accordingly, we show that loss of Fgf24 alone or

in combination with Fgf8 is unable to phenocopy the dnFGFR effect demonstrated in

Chapter 1. Thus, we conclude that Fgf4 and Fgf24 alone or in combination with other

known Fgfs is insufficient to be the early acting Fgf signal required for hindbrain

development.

RESULTS



Zebrafish Fgf4 most closely resembles chick and mouse Fgf4

The zebrafish Fgf4 was previously cloned (Grandel et aI., 2000)(AF283555) and

we designed primers to the published sequence to clone Fgf4 as well (see Materials and

Methods). Conceptual translation of the open reading frame yielded a 553 amino acid

polypeptide. We tested the homology of zebrafsh Fgf4 to Fgf4 in other species and

determined that zebrafish Fgf4 is most closely related to Fgf4 in chick and mouse (Fig,

lA,B), Our phylogenetic tree also ilustrates that zebrafish Fgf8, Fgf17, Fgf18 and Fgf24

are closely related in agreement with reports that suggest Fgf24 is a member of the

Fgf8/Fgf17/Fgf18 subclass of Fgfs (Fig, IB) (Draper et aI., 2003; Reifers et aI. , 2000).

In situ analysis of FGF4 expression

Expression of fgf4 is first detected at 11 hpf on the dorsal side of the embryo

overlapping with the developing tail bud (Fig. 2a). By 13 hpf very weak expression of

fgf4 can be found at the MHB (arow in Fig. 2b), as shown by double in situ analysis with

the MHB marker pax2 (Fig. 2c). Expression at this time also becomes very robust in the

tail tip (Fig, 2b), This strong expression in the tal tip wil persist until post 48hrs, The

expression at the MHB may initially be weak (Fig2 b-e), but becomes quite strong by 18

hpf (Fig. 2t) and maintains its intensity until post 48hours. By 30 fgf4 
is detected in

the branchial and pharngeal arches (Fig. 2g) and by 36 hpf is weakly detected in the

forming fin bud (Fig, 2h). This expression pattern is in agreement 
withfgf4 studies in

chick.



M 5 - - - - v Q 5 ALL P I L V L G L M - T 5 5 V R C A FG F4 ze b r ofl sh .
M L - - - - 5 A A ALL PAL L L G L L '1 P G A V R G R FG F4 Ch Ie k
M A K R G P T T G T L L P R V L L A L V V A LAD R G T FG F4 Mo us e

P LPG G - H 5 G P V ERR '1 E T - L Y 5 R 5 L A RIP FG F4 zebroflsh.
P P P G R L P P G P R Q R R '1 0 A A L FAR 5 V A R L P FG F4 Ch Ie k

A A P N G T R H A E L G H G '1 0 G - L V A R 5 L A R L P FG F4 Mo us e

148 G E - - - K R 0 I 5 R 0 5 - - 0 Y LTG I K R L R R L Y FGF4 zebroflsh.
15 7 A E - - - R R 0 A A R 0 G - - 0 Y L L G Y K R L R R L Y FG F4 Ch Ie k

166 V A A Q P P Q A A V R 5 GAG 0 Y L L G L K R L R R L Y FG F4 Mouse

217 C N V GIG F H L Q V LPG KIT G V H N E N R Y 5 L FG F4 zebroflsh.
226 C N V GIG F H I Q V L P 0 G RID G I H 5 E N R Y 5 L FG F4 Ch Ie k

250 C N V GIG F H L Q V L P 0 G RIG G V HAD T R 0 5 L FG F4 Mo us e

301 LEIS P V ERG V V T L F G V R 5 G L F V A M N 5 K G FG F4 zebroflsh.
310 LEIS P V ERG V V 5 I F G V R 5 G L F V A M N 5 K G FG F4 Ch Ie k

334 L E L 5 P V Q R G V V 5 I F G V A 5 R F F V A M 5 5 R G FG F4 Mo us e

385 K L Y G 5 E Q F T N E C K F R E K L LAN N Y NAY E 5 FG F4 zebroflsh.
394 K L Y G 5 T H V N 0 E C K F K E ILL P N N Y NAY E 5 FG F4 Ch Ie k
418 K L F G V P F F TOE C K F K E ILL P N N Y NAY E A FG F4 Mouse

469 L A H P G M Y I G L 5 K A G K T K K G N R V 5 T 5 M T M FG F4 zebroflsh.
478 R I Y P G M Y I A L 5 K N G R T K K G N K V 5 P T M T V FG F4 Ch Ie k

502 YAY P G M F MAL 5 K N G R T K K G N R V 5 P T M K V FG F4 Mouse

553 T H F L P R I .
562 T H F L P R I .
586 T H F L P R L .

FG F4 zebroflsh.
FG F4 Ch Ie k

FGF4 Mouse

Figure lA. Alignment of zebrafish with chick and mouse Fgf4. The amino
acid sequences of zebrafish Fgf4 , chick Fgf4 and mouse Fgf4 were aligned
with the Clustal Method in the Lasergene Package from DNAStar, using PAM
250 residue weight table. Yellow shaded areas are identical to zebrafish Fgf4.
Dashes indicate spaces inserted for better alignment.
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Figure lB. Phylogenetic Tree of Fgfs. Phylogenetic analysis of various Fgfs
in zebrafish , mouse, chick Xenopus and human species.
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Figure 2. (a-f). Expression pattern offgf4 during zebrafish development.
Anfgf4 probe was hybridized to embryos at 11 hpf (a), 13 hpf (b,c), 14 hpf
(d), 16 hpf ( e) and 18 hpf (t), Panel a is a dorsal view of a wholemount in situ
hybridization. Panels b-f are flatmounts, Panel b is a flatmount with
anterior to the left. Arrow shows weak exression offgf4 in the MH.
Panels c-f are close-up views of the MH offlatmounted embryos.
Arrow show increase infgf4 expression over time. Anterior is to the
top. Panel c is a flatmount of a double in situ hybridization with

fgf4 in blue and pax2 in red marking the MHR MHB:Mid-hindbrain
boundary, tb: tail bud,
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Figure 2. g- h. Expression pattern offgf4 during zebrafish development.
Anfgf4 probe was hybridized to embryos at 48 hpf. Panel g is a close-up of a
lateral view of the head. Panel h is a close-up of the fin bud. Anterior to the
top. MHB: Mid-hindbrain boundary, M: mandibular arch, H: hyoid arch
g: gill arch , FB: fin bud.



Fgf4 overexpression studies

As demonstrated above, we do not detect expression of fgf4 in zebrafish embryos

until 11 hpf. However, others reportfgf4 expression during gastrla stages and suggest a

role for Fgf4 with Fgf8 in mesodermal patterning at gastrula stages (Draper, 1999). This

early expression discrepancy may simply be a result of a less sensitive in situ protocol

utilzed by this lab, Even though we do not detectfgf4 expression during gastrla stages

we stil wished to determine if Fgf4 was involved in hindbrain development. Thus , Fgf4

was overexpressed and gastrla stage hindbrain gene expression analyzed. In paricular,

25 pgfgf4 mRA was injected in the one to two cell stage embryo, allowed to develop in

IX MBS until 10 hpf when they were fixed and processed for in situ analysis. Upon

overexpression, we detect a rostral ward expansion of hindbrain genes nlz (Fig. 3 a,

90%, n=69), meis3 (Fig. 3 d,e; 89%, n=56), hoxblb (Fig. 3 g,h; 100%; n=66), hoxbla

(Fig. 3 j,k; 97%; n=59) and of the caudal gene marker caudal (Fig. 3 m,n; 98%; n=61)

over control levels. This is consistent with other Fgf overexpression studies described in

the introduction of this thesis in that there is a rostral ward expansion of posterior fates

upon overexpression of Fgfs (see Introduction section: "Forming the Anteroposterior

Axis

Injection of anti-Fgf4 morpholino oligonucleotides can not phenocopy the dnFGFR

results.

Our overexpression studies suggest that Fgf4 acts as a typical Fgf in promoting

posterior fates in the early gastrla stage embryo, but our in situ analysis suggests that



nlz

:... ,

1 ' 

" '- " '" ';:' - ' - '-

;it it, ;;Ik')\;i
\:I;

Fgf4mRNA/
F f4 MO

meis3

hoxb 

hoxb 

caudal

Figure 3. Fgf4-MO is functional in vivo. Embryos were injected at
the one to two cell stage with control MO (a, d, g, j, m) or 25 pgfgf4 mRNA

(b, e , h, k, n) or 25 pgfgf4 mRA + 15 ngfgf4- fied at 10 hpfand
analyzed by wholemount in situ hybridization for expression of nlz (a-c),

meis3 (d-f), hoxblb 

(g-

i), hoxbla i) and caudal (m-o), All panels are dorsal
views with anteror to the ton.



fgf4 is not expressed until 11 hpf. However, given the reported earlier expression of Fgf4

by others (Draper, 1999) and our demonstrated overexpression phenotype, we thus set out

to examine if knocking down Fgf4 protein via morpholino injection was sufficient to

phenocopy the dnFGFR effect seen in Chapter I.

To first determine if the Fgf4 morpholino was functional and could specifically

block translation of 
fgf4, we performed an in vitro transcription/translation assay.

Namely, in vitro translatedfgf4 A was incubated with lysate mix (see materials and

methods) and incubated in the presence or absence of 40 pM Fgf4 or control

morpholinos. We detect that in the presence offgf4 RNA with no added morpholino that

a 21 kDA band corresponding to Fgf4 was translated (Fig 4, lane2), However, in the

presence offgf4 RNA and 40 pM anti-Fgf4 MO, we detect a total loss offgf4 translation

(Fig 4, lane 3), The abilty to blockfgf4 translation was specific to the anti-Fgf4 MO as a

block in translation is not detected with the Fgf4 control morpholino, Fgf4 inverse MO

or with two other random morpholinos (Fig 4. lanes 4-6). These results demonstrate the

specificity of the anti-Fgf4 morpholino and show that in an in vitro assay, Fgf4

translation can effectively be inhibited upon addition of anti-Fgf4 MO.

Once the morpholino was determined to be functional and specific in vitro, we

next determined if knockdown of Fgf4 could phenocopy the dnFGFR effect in vivo, Thus

anti-Fgf4 morpholinos were injected into the one cell stage and changes of gene

expression determined by in situ analysis. No change in early hindbrain gene expression

was noted even at extremely high concentrations (34 ng) of Fgf4 morpholino (not

shown), No change in MHB marker genes was noted as well, but this could clearly be a
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Figure 4. Fgf4-MO is functional in vitro. In vitro TNT' s of: Lane 1: Control
lane with no RNA or morpholino. Lane 2: 100 ngfgf4 RNA with no
morpholino, Lane 3: 100 ngfgf4 RNA incubated with 40 f-M fgf4-MO.

Lane 4: 100 ngfgf4 RNA incubated with 40 f-M fgf4inv- , the inverse

sequence tofgf4 as a control. Lane 5: 100 ngfgf4 RNA incubated with
40 f-M fgDB-MO, a control. Lane 6: fgf4 

RNA incubated with
40 f-M 4-MISfgDB- , another control. The Fgf4 translation product is
21 kDA.
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result of compensation by other Fgf's expressed there, namely Fgf8. As we did not see a

visible phenotype upon injection of Fgf4-MO, we wished to confIrm that the morpholino

was in fact functional in vivo, To test this we overexpressedfgf4 mRA and attempted

to rescue the overexpression phenotype (as seen in Fig. 3 b, n) by coinjection with

anti-Fgf4 MO. As described earlier, upon overexpression offgf4 mRA, we detect a

rostral-ward expansion of hindbrain genes nlz, meis, hoxbl b, hoxbl a and of the caudal

gene marker caudal (Fig. 3 , panels b, n). However, upon co-injection of 25 pgfgf4

mRA and 15 ng of anti-Fgf4 MO, this effect is largely reverted back to a wild type

phenotype for nlz (Fig. 3 panel c, 93% wild type, n=55), meis3 (Fig. 3 panel f, 87% wild

type, n=54), hoxblb (Fig. 3 panel i, 92% wild type, n=61), hoxbla (Fig. 3 panel I , 86%

wild type , n=69) and caudal (Fig, 3 panel 0, 100% wild type, n=53). This confirms that 

vivo the anti-Fgf4 MO is functional.

Although no effect on hindbrain genes could be detected upon injection of anti-

Fgf4 MO alone, it does not rule out the possibility that Fgf4 is involved in early hindbrain

gene regulation. It is possible that Fgf4 function is required along with other Fgf's , and

these other Fgf's may compensate for a loss of Fgf4 in hindbrain development in the

presence of the anti-Fgf4 MO. In order to test this, we co-injected the anti-Fgf4 MO with

morpholinos targeted to the other known Fgf's, namely Fgf3 and Fgf8, Upon co-

injection of a cocktail of all four morpholinos (fgf3B, fgf3C, fgf4, and fgf8), we detected

a loss of krox20 expression in r5 (97% affected, n=27) and valentino expression in r5/r6

(100% affected, n=8) at somite stages. These results suggest that the anti-fgf and anti-

fgf morpholinos were functional in agreement with previously published work (Maves et



aI., 2002; Walshe et aI., 2002). Again however, no change in early hindbrain genes was

detected (not shown). Thus, the combined knockdown of Fgf4, Fgf3 and Fgf8 has no

effect on early hindbrain gene development. Thus, we can conclude that Fgf4 alone or

Fgf4 in combination with Fgf3 and Fgf8 are insuffcient to phenocopy our dnFGFR

results.

Injections of anti-Fgf24 morphoUno oligonucleotides can not phenocopy the

dnFGFR result.

Recently zebrafish Fgf24 was cloned and its role in posterior mesodermal

development characterized (Draper et aI., 2003). This study reports thatfgf4 is co-

expressed withfgf in mesodermal precursors during gastrulation. Inhibition of Fgf24

alone has very minor effects on mesodermal development, but co-injection of both anti-

Fgf8 and anti-Fgf24 morpholinos blocks the formation of posterior mesodermal

strctures. Thus, both FgfS and Fgf24 are required to promote posterior mesodermal

development. More importntly, Draper et aI. (Draper et aI. , 2003) show fgf4 

expressed as early as 4 hpf in the dorsalmost cells of the blastula margin, By 6 hpf,fgf4

was detected completely around the margin and continued to be expressed in the

marginal cells throughout gastrlation. By 80% epiboly,fgf4 was detected in the

developing neuroectoderm and by the end of gastrulationfgf4 is localized to the tail bud,

This early temporal and spatial expression pattern offgf4 suggests that Fgf24 is a prime

candidate to regulate early hindbrain gene expression in the hindbrain primordium.



In order to determne if Fgf24 regulates early hindbrain genes , anti-Fgf24

morpholinos were injected at the one to two cell stage and changes in hindbrain gene

expression were detected by in situ analysis at 10 hpf, 
We find no effect on any of our

early hindbrain genes, 
caudal (Fig. SA. panel b), hoxblb (Fig. SA. panel e), nlz (Fig. SA.

panel h), meis3 (Fig. SA. panel k), hoxbl a (Fig. SA. panel n), the forebrain marker 
otx2

(Fig. SA. panel q) or a mesodermal marker 
ntl (Fig. SA. panel t). These results suggest

that Fgf24 alone does not regulate early hindbrain genes, We next co-
injected the Fgf24

morpholino along with an anti-Fgf8 morpholino, Knockdown of both Fgf' s has been

reported to block posterior mesodermal development (Draper et al., 2003). However, in

the presence of both anti-Fgf24 and anti-Fgf8 morpholinos, we again detected no change

in early expression of the hindbrain genes 
caudal (Fig. SA. panel c), hoxblb (Fig. SA.

panel t), nlz (Fig. SA. panel i), meis3 (Fig. SA. panel I), hoxbla (Fig. SA. panel 0) or the

forebrain marker otx2 (Fig. SA. panel r). ntl, a mesodermal marker, was used as a control

and was downregulated (Fig. SA. panel u) in the presence of both morpholinos in

agreement with previously published work (Draper et aI., 2003), This 
ilustrates the

morpholinos were functional. After morpholino injection, sibling embryos were

incubated to 14 hpf or 24 hpf and were also examined. At 14 hpf, 

ntl is extremely

downregulated (7S% lost, 24% extremely reduced) in the mesodermal precursors of the

tailbud in Fgf24/Fgf8 knockdown embryos (Fig. SB. panel c) compared to control (Fig.

SB, panel a) or the single knockdown of Fgf24 (Fig. SB, panel b). 
By 24 hpf, Fgf24/Fgf8

morpholino injected embryos show little paraxial mesoderm development and

significantly shorter tails (97% affected)(Fig. Se. panel c and d) than control-
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Figure 5.A. Fgf 24 and Fgf8 do not regulate gastrula stage hindbrain genes
expression. Embryos were injected at the one to two cell stage with control
MOs (a, d

, g,

j, m , p, s), anti-Fgf24 MOs (b, e , h , k, n, q, t) or anti-Fgf24/anti-
Fgf8 MOs (c, f, i, I, 0 , r, u) raised to 10 hpfand analyzed by wholemount in situ
hybridization for expression of caudal (a-c), hoxbl b (d-f), nlz (g-i), meis3 

(j-

l),
hoxbla (m-o), otx2 (p-r) and ntl (s-u). All panels are dorsal views with anterior
to the top except for panels s-u which are vegetal pole views. Asterisks
indicates loss of mesodermal precursors compared to control.
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Figure S.B. Fgf24/Fgf8-MO injected embryos do not have mesodermal
precursors in the tail. Emrbyos were injected at the one to two cell stage with
control morpholino (a), anti-Fgf24 morpholino (b) or anti-Fgf24 and anti-FgfS

morpholino (c) and raised to 14 hpf when they were fixed and processed
for in situ analysis for expression of nfl. All panels are flatmounts with
tail to the left, Asterisks indicate mesodermal precursors in the tailbud
which are reduced in anti-Fgf24/anti-FgfS MO expressing embryos.

;'t



i -

I -

, -

I -

I -=

-,-,.,-.- -- - - , - . -:.--,,- ,,-

c--.

--_ :-:: ---:- -::--_

__n

--- - -- - -- - - -. -. -- . . . - _ - - . -.._-_._._-_._--------_._-~~~ _._._--- ------- -_.__.._._--------___

___n_

__-

Figure 5.C. Fgf24/Fgf8 Morpholino injected embryos show lack of
paraxial mesodermal structures. Embryos were injected at the one to two
cell stage with control morpholino (a), anti-Fgf24 morpholino (b) or anti-Fgf24
and anti-Fgf8 morpholinos , raised to 48 hpf and fixed. All panels are lateral
views with anterior to the left.
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injected (Fig, 5e. panel a) or Fgf24 MO injected siblings (Fig, 5e. panel b), again

demonstrating the morpholinos were functional. Thus, Fgf24 alone or in combination

with Fgf8 are not responsible for early hindbrain gene regulation.

DISCUSSION

In Chapter 1 of this thesis, we clearly identify a need for early acting Fgf

signaling for gene expression throughout the hindbrain primordium at early gastrula

stages. We demonstrate here that this early Fgf signal is not provided by Fgf4 or Fgf24

alone or by a combination of either factor with known Fgfs.

Given the post-gastrla expression pattern detected for Fgf4 in this thesis , we

were not surprised that knockdown of Fgf4 alone or in combination with Fgf8 and Fgf3

showed no effect on hindbrain gene expression. Unlikefgf4, fgf4 is expressed as early as

4 hpf and therefore was a prime candidate for the Fgf which regulates the hindbrain genes

studied in this thesis. Therefore, we were surprised that Fgf24 knockdowns alone or in

combination with Fgf8 were insuffcient to phenocopy the dnFGFR effect we defined in

this study.

During the course of our Fgf knockdown experiments, we have suggested that

neither Fgf4 nor Fgf24 alone or in combination with other known Fgfs tested are

responsible for early hindbrain gene expression. However, we can not rule out the

possibilty that these Fgf's are involved with another essential as yet unidentified Fgf.

We also cannot test all permutations of all known Fgf's via morpholino knockdown



technology, as injected more than four morpholinos per injection is extremely difficult, if

not impossible. Thus, we can not rule out the pos ibity that early hindbrain genes are

regulated by a combination of multiple Fgfs. We also cannot conclude that the

morpholino approach knocks down all expression of the targeted protein. Although we

were able to faithfully phenocopy the loss of trnk and tail mesodermal derivatives in

Fgf24 knockdown experiements, we simply may not see an effect on the hindbrain genes

because the hindbrain is more sensitive to residual protein than is mesoderm.

The zebrafishfgf gene has been identified and catalogued in the Genban

(AF516334), but work on Fgf6 has yet to be published, Thus, the expression pattern 

fgf is not yet known in zebrafish. However fgf in mouse has been reported and found

specifically localized to the skeletal muscle at post-gastrulation stages (deLapeyriere et

aI. , 1993), No work onfgf in Xenopus or chick has been published, However, given the

late expression pattern in mouse and the lack of 
fgf6 expression in any neural tissue,fgf

may not be a potential candidate for the FGF which regulates early hindbrain gene

expressIOn.

Thus , the future of this work lies first and foremost with cloning more members

of the Fgf family. As Fgfs share approximately 30-60% amino acid homology (Ford-

Perrss et al. , 2001), it is possible to create degenerate PCR primers for the amplification

of more Fgfs. In fact, this is how the known Fgfs were first cloned. For instance,fgf

was cloned using degenerate PCR primers corresponding to a conserved region of protein

found in mouse and human homologues (Kiefer et aI., 1996). Perhaps the early acting

Fgf that we suggest regulates early hindbrain development could be isolated in this



manner. Secondly, the impact of the zebrafish genome sequencing cannot be overlooked.

In Februar 2001, the Sanger Center, the Max-Planck Institute for Developmental

Biology and Harard Medical School joined forces and began sequencing the zebrafish

genome by using BAC librares as well as by a "shotgun" strategy to produce many short

stretches of sequence that, in the end, would be assembled. It is hoped that the complete

annotated sequence of the genome wil be available to researchers at the end of 2003. . As

the zebrafish genome is sequenced to completion, unknown Fgfs wil certainly be

discovered.



MATERIALS AND METHODS

Cloning FGF4

The FGF4 sequence was obtained from GENBANK (AF283555) (Grandel et aI.

2000), Gene specific primers were designed to PCR amplify the sequence from 10 somite

staged total RNA (Qiagen RNeasy Kit according to manufactures protocols). 5' primer:

ATGAGTGTCCAGTCGGCCCTCTT- , 3'primer: 5'

TCAAA TTCT AGGCAAGAAA TGTGTCA TCGTCA- . PCR for 30 cycles as follows:

cycle 1: 94 C for 30 seconds, cycle 2: 55 C for 20 seconds, cycle 3: 72 C for 2 minutes,

The resulting PCR product was subcloned via EcoRl and Xhol sites engineered into the

primers into pCRII (NOT2. 1 Invitrogen) for in situ probe and pCS2+ for mRA

overexpression and sequenced.

Fgf4 in situ hybridization

To prepare an antisense probe, the Fgf4 pCRII plasmid was digested with Notl

and transcribed with SP6 RNA polymerase. For sense probe, Fgf4 plasmid was digested

with BamHI and transcribed with T7 RNA polymerase. In situ hybridization was

performed as previously described (Sagerstrom et al., 1996).

Fgf4 mRNA injection

mRA was synthesized from Notl-linearzed pCS2+ plasmids using the SP6

Message Machine kit (Ambion) and purified with the RNeasy Mini Kit (Qiagen). For

--..



injections, 25-50 pg of mRA was injected at the 1-2 cell stage an fixed at 10 hpf for 

situ analysis.

FGF4 in vitro transcription and translation

In vitro translation of synthetic mRA was performed by using Promega s Rabbit

reticulolysate system according to manufacturer s protocols. A total of 100 ng offgf4

mRA was added to 5.25 pi of lysate mix with eSS)Methionine, RNasin (Promega) and

amino acid mix (Promega) and was incubated at 30 C for 90 minutes in the presence or

absence or morpholino ranging from 20-400 pM. The translation products were

electrophoresed though a 15% agarose SDS-PAGE gel, transferred to Watman paper

dred and exposed for 2 hours.

Morpholino injections

Antisense morpholino oligonucleotides (MO' s) were ordered from GeneTools as

follows: fgf4-MO: 5' GCAAGAGGGCCGACTGGACACTCAT- ;fgf4inverse-MO: 5'

TACTCACAGGTCAGCCGGGAGAACG- . 1-2 cell stages embryos were injected and

allowed to develop until 10 hpf, fixed in 4% paraformaldehyde and stored in MeOH prior

to in situ hybridization. fgf, 4-MISfgf,fgfB,fgfC, 5-MISfgfB and 5-MISfgf3C were

ordered based on published reports (Maves et al., 2002; Shinya et aI., 2001). Embryos

were injected at the 1-2 cell stage with a cocktail of approximately 12 ngfgf4 25 ng

fgfB, 
25 ngfgfC and 11 ngfgf or an equivalent amount offgf4inverse, 4-MIS fgf,

MISfgfB, MISfgf3C and processed as described above.

- - - - - -



Forfgf4 morpholinos were ordered as described in (Draper et aI. 2003). fgf-

MO#2 was utilzed for this set ' of experiments (Maves et aI., 2002).
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CONCLUSION

LOOKIG TOWARDS THE FUTUR: OUTLOOK FOR FGFS IN NEURAL
DEVELOPMENT

This.Thesis has demonstrated a role for Fgfs in early hindbrain development. In

addition to this work, many research aricles have demonstrated roles for specific Fgfs

throughout a wide range of early and late neural developmental processes. Currently in

zebrafish Fgfs 3 , 4, 8 and 17 have been shown to play critical roles in neural

developmental (Holzschuh et aI., 2003; Iring and Mason, 2000; Lam et al. , 2003; Maves

et al. , 2002; Philips et aI. , 2001; Reifers et aI. , 2000; Shinya et aI., 2001; Walshe et aI.

2002; Walshe and Mason, 2003).

In other vertebrate species , namely chick and mouse, up to 10 Fgfs have been

shown to playa role in brain development from the early stages of neural induction to

late stage neuronal connectivity, spanning a vast spatial and temporal period in neural

development (Ford-Perrss et aI., 2001). Complicating the matter further is the
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expression in vertebrates of four different Fgf receptors (FGFR), three of which have

multiple isoforms expressed in a highly specific but dynamically changing manner

throughout development (Ford-Perrss et aI. , 2001). The combination of multiple Fgfs,

multiple FGFR isoforms and varing temporal and spatial expression patterns of them

both creates a complex web of Fgf regulation in brain development.

In mouse, Fgf-FGFR interactions have been studied primarly in cell lines.

Reports in mouse cell lines have demonstrated that Fgf3 binds with high affinity to

FGFR- l 11Th and FGFR-2 11Th isoforms (Mathieu et aI., 1995) and FGFR-3 IIIc was

preferentially activated by Fgfl (Lin et aI. , 1997). In vivo studies are sparse, but one

report in mouse has demonstrated that FgflO signals through the FGFR-2 IIIb isoform for

formation of the otic placode (Ornitz et aI., 1996; Pirvola et al. , 2000) and one report in

Xenopus has shown that Fgf8 signals through FGFR-4 in mesodermal induction

(Hardcastle et aI., 2000). However, much about specific ligand receptor pairs stil

remains elusive.

Although knowledge of Fgf ligand and receptor interactions in cell lines and in

vivo is limited, our knowledge of Fgfs and their cognate receptors role in neural

development in zebrafish pales in comparson. There are significant gaps in our

understanding of F gfs, FGFRs and neural development in zebrafish. N amel y, isolation of

F gfs in zebrafish is stil in its infancy, This lack of a full complement of F gfs

significantly reduces our understanding of neural development as ilustrated by this

Thesis work, Although we can conclude that Fgfs are involved in the critical processes

of early hindbrain development, we cannot specifically determine which Fgf or Fgfs
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perform this function, As time passes however, more Fgfs wil be isolated, cloned and

studied and roles for other Fgfs in neural development elucidated. Secondly the four

FGFRs present in zebrafish have only been cloned within the past two years and initial

expression studies have only been performed (Sleptsova-Friedrich et aI. , 2001; Thisse et

aI. , 1995; Tonou-Fujimori et aI., 2002). No studies have been performed to determine the

specifics of Fgf-FGFR interactions in zebrafish,

Thus, the future of Fgfs in neural development lies with isolating more Fgfs,

determining their expression patterns and characterizing their functions, determining

more extensively the expression patterns of FGFRs as well as characterizing the unique

combinations of FGFR isoforms with specific Fgfs both temporally and spatially

throughout neural development. This data is essential to elucidate the processes of Fgf

signaling in neural induction, neural patterning, neural proliferation and neuronal

specification.
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APPENDIX 1

FGF REGULATES ZEBRASH lm04 GENE EXPRESSION

The zebrafish lmo4 (limb-only domain) is a LIM containing protein (Grutz et aI.,

1998) (Kenny et aI., 1998) (Racevskis et aI., 1999) (Tse et aI., 1999) that was recently

cloned and its expression pattern temporally and spatially characterized during the first

48 hours of development (Lane et aI., 2002), LMO proteins serve to help form

transcription regulatory complexes by binding to LIM containing proteins as well as other

proteins (e. g. bHLH and GATA proteins (Rabbitts, 1998)), Zebrafish lmo4 was found to

be expressed in the somites , branchial arches, otic vesicle, pectoral fin buds, developing

eye as cardiac tissue at late post-gastrula stages (Lane et aI., 2002). During early gastrula

stages, zygotic lmo4 expression was detected by 6 hpf in the germ ring and by 8 hpf

becomes distrbuted in the dorsal ectoderm, By the bud stage (10 hpt), lmo4 expression

is restrcted to the rostral hindbrain. This expression profie of lmo4 overlaps with that of
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the early gastrla stage Fgf- dependent domain characterized in this thesis work, This

suggests that lmo4 is regulated by Fgf,

To test if lmo4 is regulated by Fgf, we first injected dnFGFR mRA (as described

in Chapter 1) at the one to two cell stage and the injected embryos were raised to late

gastrula stage (9-10 hpt) when they were fixed and processed for wholemount in situ

hybridization analysis. We find a reduction in lmo4 expression in dnFGFR expressing

cells varing from unilateral (Fig. 1 b) to complete bilateral loss (Fig. 1 c) of gene

expression most likely dependent on distribution of injected dnFGFR mRA. To further

explore Fgfs role in regulating lmo4 we implanted Fgf-soaked beads at the animal pole

(as described in Chapter 1) of 4 hpf wild type embryos, raised the embryos to tailbud

stage when they were fixed and processed for in situ analysis with an lmo4 probe. We

find that lmo4 is ectopically induced quite strongly over the implanted Fgf bead (Fig. Ie).

Thus , we conclude that early gastrla stage lmo4 expression is Fgf dependent. This is in

agreement with work that shows a decrease of lmo4 expression in the MHB region (Lane

et aI., 2002) of acerebellar mutant fish , a fish mutation in the fgf gene required for

maintenance of the MHB (Reifers et aI., 1998).

We also analyzed cross sections of 10 hpfwild type embryos to determne. germ

layer distrbution of lmo4. We detected weak expression of lmo4 in the tail in all germ

layers (Fig. It) but very robust expression in all germ layers in the presumptive hindbrain

region (Fig, Ig). No expression of lmo4 was detected in the head region (Fig. Ih).
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Figure 1 (a-e). Fgf regulates Im04 gene expression. Embryos were injected

at the one to two cell stage with SOO pg LacZ control (a) or 500 pg dnFGFR
mRNA (b , c) or beads soaked in IX MBS (d) or 0. mg/ml bFGF (e) were

implanted into the animal pole of 5 hpf embryo, fixed at 10 hpf and analyzed

by wholemount in situ hybridization for expression of lmo4 (a-e). All panels

are dorsal with anterior to the top.

\. ,



105

~~~

;t\

/( / - .

t-.

:'", /

ail

;q,,. 

T!T:rJ I,

." :_ - " '" ; , ' " ' ' . ,

r \
mid'-sectio'n

head

Figure 1. (a, g): Maximum lmo4 expression is detected in the
presumptive hindbrain. Wild type embryos were subjected to wholemount
in situ hybridization with an lmo4 probe at 10 hpf(a). Transverse sections of
those embryos were subsequently taken (f-g). (f): Transverse section taken of
caudal domain. (g): Transverse section taken through presumptive hindbrain
region. (h): Transverse section taken through presumptive head region.
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Pars of this work have appeared in separate publication:

Lane, M.E., Runko, AP. , Roy, N.M., and Sagerstrom, c.G, (2002). Dynamic expression

and regulation by Fgf8 and Pou2 of the zebrafish LIM-only gene lmo4. Gene Expression

Pattens , 207-211.
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