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Doctor of Philosophy

Putting the Pieces Together:

Exons and piRNAs

by Christian K. Roy

Analysis of gene expression has undergone a technological revolution. What

was impossible 6 years ago is now routine. High-throughput DNA sequencing

machines capable of generating hundreds of millions of reads allow, indeed

force, a major revision toward the study of the genome’s functional output—the

transcriptome. This thesis examines the history of DNA sequencing, measure-

ment of gene expression by sequencing, isoform complexity driven by alternative

splicing and mammalian piRNA precursor biogenesis. Examination of these

topics is framed around development of a novel RNA-templated DNA-DNA liga-

tion assay (SeqZip) that allows for efficient analysis of abundant, complex, and

functional long RNAs. The discussion focuses on the future of transcriptome

analysis, development and applications of SeqZip, and challenges presented to

biomedical researchers by extremely large and rich datasets.
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Paired-end When both sides of a DNA insert or template are sequenced, uti-

lizing the original length of DNA between the reads to facilitate mapping

(Roach et al. [1995]).

Scaffold or Contig A draft sequence of nucleotides, meant to represent the ac-

tual biological sequence as closely as possible, examples include unassem-

bled fragments of chromosomes or fragments of mRNA transcripts.

Argonaute Protein(s) belonging to a group containing a Piwi (P-element induced

wimpy testes) domain, that bind nucleic acids and participate in many

target-guided processes, including RNA Interference, and RNA-induced

transcript/gene silencing.

Ligamer A DNA oligonucleotide containing two distinct regions of complemen-

tarity to a 5′ and 3′ section of RNA. Each region is normalized for Tm

such that the length of each section is ~15–30 nt. These two regions are
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connected by a short sequence of the designer’s choice, usually >5 nt in

length. Each ligamers overall length is ~45–60 nt. See figures 4.1 and 2.1.
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Chapter 1

Introduction

1.1 Fixed Genomes and Flexible Genes

Exodus tells of the liberation of the Israelites from Egyptian slavery. Humble

and reluctant Moses, their divine-appointed messiah, attempts to force the

Pharaoh Ramses to release the Israelites through inflicting 10 plagues. Pharaoh

is stalwart and stubborn as water turns to blood and the streets are flooded with

frogs, lice, and flies. As livestock falls dead from disease, people and animals

both are covered in boils, and the land burns in storms of fire, Pharaoh does not

bend.

The 8th plague was a swarm of Locusts, described in Exodus 10: 14-15:

14 And the locusts went up over all the land of Egypt, and rested in all
the coasts of Egypt: very grievous were they; before them there were
no such locusts as they, neither after them shall be such.

1
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15 For they covered the face of the whole earth, so that the land
was darkened; and they did eat every herb of the land, and all the
fruit of the trees which the hail had left: and there remained not any
green thing in the trees, or in the herbs of the field, through all the
land of Egypt.

The desolation of a locust plague was still not enough to persuade Ramses.

Nor was three days of darkness. Only after the death of all first-born Egyptians,

including Ramses own son, was Pharaoh persuaded to liberate the Israelites.

Locust swarms are not biblical fantasy. Today the United Nations’ Food and

Agriculture division maintains a Locust watch website that provides weekly

updates on potential swarms in northern Africa and the Middle East. Locusts

have long been, and continue to be, a powerful and feared force of Nature.

Unlike fire and brimstone, locusts are something that can be observed and

studied. What triggers a swarm? We know that the desert locust, Schistocerca

gregaria, is the one of 10 species that swarm and cause massive crop damage.

Schistocerca gregaria are in the insect Order Orthoptera, along with crickets and

katydids. Orthoptern members make sounds known as stridulation by vigorously

rubbing their wings, making for a noisy cloud of devastation. They only weigh

0.05–0.07 ounces and are less than 2.5 inches long but can consume their own

body weight in vegetation per day. One swarm of the infamous, and now curiously

extinct, Rocky Mountain locust contained 12.2 trillion insects. Its estimated total

weight was 27.5 million tons. The swarm covered almost 200 square miles (2/3
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FIGURE 1.1: The Solitary and Gregarious forms of Schistocerca gregaria

The two phenotypic forms of Schistocerca gregaria appear very different. The solitary
form is green and generally larger, while its gregarious form is more brightly colored,

smaller, and swarms in vast numbers. Photo from Wikicommons.

the size of Manhattan), and could travel 60 miles in a day. A locust swarm is truly

a modern biblical plague.

By definition swarms are temporary; the movement, en masse, from one location

to another. But where do 12.2 trillion locusts go when not swarming? Does

anyone care if their crops aren’t under assault? It seemed no one cared until

1921 when an important realization was made.
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The power and destruction Schistocerca gregaria can inflict makes it difficult to

believe that they are nothing more than common grasshoppers. Nothing more

than grasshoppers not just by analogy, but by actual Taxonomy. “Desert” locusts

are actually the gregarious form of Schistocerca gregaria (Figure 1.1), while the

more familiar and docile looking “grasshopper” is the solitary form. How does

such a dichotomy exist within the same organism—indeed the same genome?

Schistocerca gregaria are polyphenic, meaning that they have multiple (poly)

physical forms (phenotypes). Polyphenism is a general feature among insects.

These phenotypes are often extremely different. For example, pea aphids

(Acyrthosiphon pisum), which usually exist in an asexually reproducing, wingless

female form, respond to reduced food supply and overcrowding by producing

winged sexually-reproducing offspring. Winged organisms travel to new sources

of food and revert back to the asexually reproducing form [Purandare et al., 2014,

Shingleton et al., 2003]. In the case of Schistocerca gregaria, the gregarious

form is smaller and more brightly colored compared to its solitary cousins. This

transformation can happen in as little as two hours. What is the underlying cause

of this transformation?

In 2009, Anstey et al. [2009] reported that after two hours of forced crowding

Schistocerca gregaria displayed elevated levels of the neurotransmitter serotonin

in the ganglia (brain). Serotonin levels were strongly correlated with other
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gregarious form indicators. Serotonin regulates neuronal junctions and wiring

in the brain [Hoeffer et al., 2003]. Through the integration of environmental and

social cues, the grasshopper brain can be re-wired, resulting in tremendous

changes in behavior and phenotype. These changes prepare the organism to

deal with a different world. It allows the organism to survive. Survival that is to

the detriment of surrounding agriculture.

In an extremely interesting article, David Dobbs compares the two forms of

Schistocerca gregaria to that of Dr. Jekyll and Mr. Hyde, the principle characters

in the Robert Louis Stevenson novella. For Dr. Jekyll in fiction, and for Schisto-

cerca gregaria in reality, the power to morph into multiple forms demonstrates

the incredible power of a fixed genome yet plastic gene expression.

It is often said that something is “in the genes.” Another oft-heard idiom that is

perhaps more appropriate is: “it’s how you use them.” This thesis will illustrate

that, with ever increasing resolution in the measurement of functional gene

products (i.e. the “transcriptome”), we are beginning to realize the tremendous

diversity and complexity of gene expression.
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1.2 Nucleic Acid Sequencing

1.2.1 DNA Sequencing

That DNA is the source of genetic information in all living organisms was first

realized in 1953 [Watson and Crick, 1953]. The “pretty” and “elegant” arrange-

ment of complementary, antiparallel, DNA strands captivated everyone, including

one of DNAs co-discoverers [Watson et al., 2012]. Yet it took 25 years after the

structure was known to be able to determine specific arrangements of nucleotide

bases in a given length of DNA (i.e. to “sequence”). By 1977, two completely dif-

ferent methods developed by Sanger [Sanger and Coulson, 1975, Sanger et al.,

1977] and Maxam-Gilbert [Maxam and Gilbert, 1992] were reported. These

sequencing technologies, from then on referred to eponymously as “Sanger”

or “Maxam-Gilbert” sequencing, were used to determine the specific order of a

small piece of DNA (200–300 nt). Over the next 35 years, DNA sequences were

slowly cloned, sequenced, analyzed, and dutifully cataloged into knowledge.

During the late 1970’s and throughout the 1980’s, DNA sequences were typically

communicated in important publications [Bell et al., 1980, Sanger et al., 1978].

The birth of the Internet in the 1990’s allowed publicly-funded repositories to store

sequence information [Benson et al., 2011]. Yet it took the human genome project

to transform tedious and balkanized DNA sequencing efforts into an organized
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process capable of assembling complex genomes [Lander, 2011, Venter et al.,

2001]. An often criticized, but undeniably disrupting force in the human genome

project was the competing efforts by the privately-owned company Celera [Venter,

2007]. Instead of assigning specific sections of the genome to be worked out by

individual labs, Celera centralized the efforts by collecting many of the best “high-

throughput” Sanger-sequencing devices from Agilent (ABI 3700 DNA Analyzer).

Celera used a “shotgun” sequencing approach [Staden, 1979], combined with

sequence scaffolds from the publicly-funded project, to quickly assemble a high-

quality genome. Arguably, this was the first deep sequencing effort. Coincident

with the beginning of a new millennium. It changed the landscape of molecular

and biochemical research.

1.2.2 High-throughput Sequencing

Sanger’s DNA sequencing technology remains a valuable tool for every biological

scientist. However, Sanger sequencing has a practical throughput limit. Each

DNA molecule to be sequenced must be isolated, cloned, and amplified—using

bacteria. Given that the human genome [Consortium, 2004] comprises >3 billion

bp, and each Sanger reaction provides ~800 nt of quality sequence, at least ~4

million individual reactions are needed to determine the sequence of the human

genome. This number assumes all “reads” are of sufficient quality, length, and

do not overlap by even 1 nt.
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Even the best practical improvements to Sanger work-flows could not bring the

technology in-line with aspirations of analyzing many species and/or organisms.

The early 2000’s saw multiple efforts to improve the scale of DNA sequenc-

ing, first using Massively Parallel Signature sequencing (MPSS) [Brenner et al.,

2000], but perhaps more importantly, by Pyro- [Ronaghi et al., 1998] and Polony-

sequencing [Shendure et al., 2005]. Both pyro- and polony sequencing use

emulsion PCR [Nakano et al., 2003] for clonal amplification prior to sequencing,

removing the bottleneck of bacterial cloning. In contrast to Sanger sequencing,

where fluorescence signal from the last incorporated chain-terminating nucleotide

is observed, pyrosequencing visualizes light given off by luciferase reacting with

pyrophosphate (PPi), a by-product of nucleotide incorporation. This approach

was later commercialized by 454 technologies. Polony sequencing involves a

sequencing-by-ligation method, eventually commercialized by Applied BioSys-

tems and branded as SOLiD sequencing. While both of these technologies

provided valuable high-throughput sequences, neither has been as successful

as the approach commercialized by Solexa, now known as Illumina.

Illumina sequencers use a sequencing-by-synthesis approach. After clonal am-

plification of DNA on a slide surface [Bentley et al., 2008], fluorescent nucleotides

are visualized as they are incorporated into the growing DNA strand. Iterations

of the Illumina platform (e.g. GE, GE-II(x), HiSeq, HiSeq 2500, Hi X) have

demonstrated steady and impressive increases in both read depth and length.
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FIGURE 1.2: Cost of sequencing the human genome over time

The costs of sequencing the human genome has decreased on a log scale over a
10 year period due to major improvements in high-throughput sequencing. Data from
Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing
Program (GSP) Available at: www.genome.gov/sequencingcosts. Accessed 2014-05-

04).

On February 15th 2012, Illumina announced on its Basespace blog, that they

had sequenced a haplotype map (HapMap) sample at 40X coverage, using the

HiSeq 2500 platform and paired-end 100 nt reads in a single run. On January

14th, 2014, Illumina announced its HiSeq X system, the first platform to truly

attain the benchmark $1,000 genome [Hayden, 2014, Service, 2006]. These

machines demonstrate that sequencing genomes is no longer the monumental

endeavor it once was and that completely new experimental possibilities are a

reality for life science researchers (Figure 1.2).

1.2.3 RNA Sequencing

The first widely-accepted large scale method used to measure gene expres-

sion was Serial Analysis of Gene Expression (SAGE) [Velculescu et al., 1995].
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SAGE, like the before mentioned MPSS technique, produces a digital output of

gene expression using a clever procedure of restriction endonucleolytic cDNA

cleavage. Cleaved-product sticky ends are concatenated together to form long

DNA fragments. Fragments are cloned into a vector, amplified, and Sanger

sequenced. Using known sequences incorporated during concatenation, the

number of sequenced fragments that align to a given gene is related to the

abundance of the original RNA molecule. A clever molecular trick, SAGE allowed

researchers to dip into the 5-log range of mRNA expression. However, the

technique is still limited by Sanger sequencing read lengths and depth.

After SAGE but prior to second generation high-throughput sequencing (HTS)

technology, microarrays were the goto approach for gene expression analysis.

The importance of microarrays in the measurement of gene expression cannot

be overstated [Marioni et al., 2008, Shendure and Ji, 2008]. However, limitations

of novel sequence discovery combined with analogue signal, make the relevance

of microarray technology limited in application to complete isoform discovery

and annotation (see Section1.3.2 and Figure 1.5). Yet Microarray technology

is still very relevant. For example, use of microarrays in the recent definition

of the developing human brain transcriptome—where sample was precious

and quantification of known genes was of more importance than novel isoform

discovery–was a prudent analysis platform choice Miller et al. [2014].
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Different from SAGE and microarrays, the Solexa/Illumina platform relies on

clonal amplification of a single template directly on a slide surface and is there-

fore not restricted by bacterial cloning. This new form of “massively parrallel”

amplification uses imaging of clonal cDNA spots with sensitive digital cameras

during sequential addition of fluorescent nucleotides (sequencing by synthesis).

Machines from Illumina turned out to posses the right mix for a “second genera-

tion” HTS platform. Soon after the Solexa/Illumina platform achieved read lengths

of sufficient length and depth to measure gene expression, the first RNA-Seq

papers were published [Lister et al., 2008, Mortazavi et al., 2008, Nagalakshmi

et al., 2008], providing a glimpse into the future of molecular biology. Indeed, in

the years since, analysis by RNA-Seq has quickly overtaken other forms of gene

expression analysis, as demonstrated by the number of accessions created in the

publically-funded repository of sequencing data, the Gene Expression OmniBus

(GEO) [Barrett et al., 2013]. RNA-Seq allows for digital quantification of RNA

expression across more physiologically-relevant ranges [Blencowe et al., 2009],

novel sequence discovery, measuring RNA-editing [Li et al., 2011], and fuels the

novel area of transcript assembly [Trapnell et al., 2010]. Through modification of

the basic protocol or performing additional biochemical steps, RNA-Seq can be

used to investigate many aspects of RNA biology (Figure 1.3 and [Mutz et al.,

2013]).

Numerous methodologies enrich RNA-Seq libraries for particular types of RNA.
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FIGURE 1.3: Methods for High-throughput sequencing of RNA

In the short years since the first report of RNA-Seq, many variations have been
reported. The figure above provides an incomplete graphical illustration of these
variations. A more complete list of “*Seq” applications is maintained on this blog

http://liorpachter.wordpress.com/seq.

For example, measurement of nascent transcripts can be performed via Global

Nuclear Run-on sequencing (GRO-Seq) [Core et al., 2008], and the extremely

complicated process of RNA turnover (referring to the rates at which RNAs both

are produced and degraded) has been examined [Ghosh and Jacobson, 2010,

Tani et al., 2012]. RNA::Protein interactions can be measured with or without

cross-linking the protein to the RNA, via CLIP or RIP, respectively (see section

5.2.2) [Licatalosi and Darnell, 2006, Singh et al., 2014, Ule et al., 2005]. Once



Chapter 1. Introduction 13

an RNA has been fully transcribed, known processing steps such as 5′ 7meG

CAP formation and poly(A)+ tail formation can be measured using any of the

Cap-Seq/CAGE [Shiraki et al., 2003] or PAS/TAIL/PAL methodologies [Chang

et al., 2014a, Shepard et al., 2011, Subtelny et al., 2014]. Importantly, nascent

RNA can also be captured via Cap-Seq [Kruesi et al., 2013]. With appropriate

size-selection steps, small RNAs [Ghildiyal et al., 2008] can also be captured.

Finally, traditional RNA-Seq can capture many of the same RNA fragments

as the above mentioned methods, even though it is mainly associated with

measurement of traditional mRNA.

RNA-Seq (and all its flavors) are traditionally associated with quantification of

RNA obtained from many tissue culture cells or bulk pieces of tissue. Recently,

efforts to measure RNA expression in a single cell has gained attention [Shapiro

et al., 2013]. Perhaps the most interesting concept concerning single-cell gene

expression is the “biological uncertainty principle”, wherein it is possible to either

know, or change — but not both— the RNA composition of a single cell. The

name borrows from Heisenberg’s uncertainty principle [Kennard, 1927] and is

often confused with the more appropriate “Observer effect” [Riley and Steitz,

2013]. Leaving that issue aside, measuring the unique transcriptome of a cell is

surely an exciting and informative endeavor [Marinov et al., 2013, Shalek et al.,

2013, Wills et al., 2013]. Compared to DNA, the diversity of RNA synthesis

within living cells is more complicated [Shendure and Aiden, 2012] and the
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ability to accurately measure RNA dynamics among cells should allow for more

informative observations concerning biology than is currently possible using bulk

measurements.

1.3 Nucleic Acid Splicing

1977 brought the discovery of “split genes” [Berget et al., 1977, Chow et al.,

1977]. Almost immediately it was reasoned that RNA transcribed from split

genes could be arranged in different combinations, greatly increasing the coding

potential of a genome [Gilbert, 1978]. Differential arrangement of gene products

via transcription and splicing, where at least two unique transcripts produced,

known as alternative splicing, has proven to be an integral part of eukaryotic

gene expression.

1.3.1 Alternative Splicing

The number of genes estimated to be alternatively spliced has grown consider-

ably. In 1993, Phillip Sharp, Co-Nobel-prize winner for the discovery of splicing,

stated that: “Approximately, one of every twenty genes is expressed by alter-

native pathways of RNA splicing in different cell types or growth states” Sharp

[2014]. Not long after the assembly of the first human genome, a number of

groups combed through Expressed Sequence Tag (EST) databases to increase
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that estimate to 35%-59% [Modrek and Lee, 2002]. Soon after, analysis using

specially designed “splicing sensitive” microarrays resulted in an increased esti-

mate of 74% [Johnson et al., 2003]. In late 2008, three groups used RNA-Seq to

demonstrate that between 86% and 95% of human multi-exon genes are subject

to alternative splicing [Pan et al., 2008, Sultan et al., 2008, Wang et al., 2008].

Not only did they demonstrate that almost all genes are alternatively spliced,

they also showed that alternative splicing often occurs in a tissue- and cell

type-specific manner. In combination with transcription regulation, the study of al-

ternative splicing is critical to advance our understanding how comparably static

genomic DNA sequence produce the highly flexible and adaptive transcriptomes

of organisms.

A pair of papers recently published in Science best illustrate the amazing com-

plexity alternative splicing can generate between, and perhaps more importantly

within, organisms [Barbosa-Morais et al., 2012, Merkin et al., 2012]. RNA-Seq

performed on a diverse array of organisms and tissues has revealed that splic-

ing patterns are shared more closely between organs of different species than

between different organs within a species. Alternative splicing is essential for

physiologically-specialized organs to use a common genome.

Alternative splicing is an essential regulatory mechanism involved in the control

of gene expression. Its combinatorial nature could potentially answer many
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FIGURE 1.4: Dark Grey - Estimates of number of human genes; Light Grey - Estimates
of what percent of genes undergo some form of alternative splicing.

basic questions concerning gene expression, such as a physical explanation

of what separates us from our closest evolutionary ancestor, the chimpanzee

[Calarco et al., 2007b]. Additionally, the influence of alternative splicing on

disease and cancer is slowly coming to light [Tazi et al., 2009]. Unfortunately,

because of the limitations of methods currently used for the large-scale analysis

of isoform expression, we fail to obtain the complete picture of alternative splicing.

One specific missing element of that picture is the prevalence of coordination

between different regions of alternative splicing separated by large spans of

sequence. An efficient, large-scale, single-molecule technique that maintains

isoform sequence connectivity is required to complete the complicated picture of

alternative splicing.
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1.3.2 The Connectivity Problem

Alternative splicing research now relies on large-scale (aka: global, genome-

wide, high-throughput) techniques. Two of the most widely-applied technologies

employed for large-scale analysis of gene expression are microarrays and “2nd

generation” HTS. Unfortunately, both of these techniques have fundamental

limitations, with the major issues being probe specificity for the former and read

length for the latter.

Microarrays rely on hybridization of a target sequence to a known probe averag-

ing 25–100 nt in length [Southern, 2001]. Therefore, microarrays only report the

presence of short sequences in the target sample and do not provide linkage

information between the sequences. A hypothetical scenario can be used to de-

scribe this issue. The goal of this example is to investigate a transcript known to

display two different regions of alternative splicing (Figure 1.5). Probes targeting

these two regions demonstrate an increase in signal for both alternative splicing

events. While probes designed to hybridize accross splice junctions could be

used to report on splicing (i.e. “splicing sensitive arrays”), combinations of inde-

pendent splicing decisions potentially contained in the same transcript would not

be known. Put another way - it is not known if we observe an increase in unique

transcripts, each containing only one region of alternative splicing, or an increase

in production of a single transcript containing both regions [Calarco et al., 2007a].
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FIGURE 1.5: HTS read lengths are not sufficient to maintain alternative splicing con-
nectivity

A) Long RNAs may have multiple sites of alternative splicing, separated by 1000’s of nt;
B) Most mRNAs have ~10 exons of ~150 nt each. Some have many more (and longer)
exons. Read lengths of current sequencing technologies do not maintain connectivity

between distant sites.

This binary analysis is the heart of the “connectivity problem.” Microarrays have

proven extremely informative and will continue to do so for targeted applications.

However, this issue, combined with concerns of cross-hybridization, reproducibil-

ity, and a comparably small dynamic range, has hastened the displacement of

microarray by RNA-Seq as the preferred method for comprehensive analysis of

gene expression [Shendure and Ji, 2008].
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RNA-Seq is now the de facto method for comprehensive transcriptome analysis.

Additionally, RNA-Seq allows for de novo identification of isoforms, and is quan-

titative over a larger dynamic range [Mortazavi et al., 2008]. Techniques exist

to enrich samples for low-abundance isoforms, making the complete cataloging

of alternative splicing events a possibility [Djebali et al., 2008, Salehi-Ashtiani

et al., 2008]. Unfortunately, current read-lengths (Figure 1.5) of all 2nd gener-

ation sequencing platforms do not solve the connectivity problem. Excluding

single-molecule read lengths of sufficient length (i.e. “third generation platforms”)

[Shendure et al., 2004], other approaches proposed to solve the connectivity

problem include traditional cloning and sequencing or hybridization of query

oligos to single-molecule transcripts [Calarco et al., 2007a, Emerick et al., 2007,

Zhu et al., 2003]. While these approaches can determine exon sequence con-

nectivity, they scale poorly and are not feasible for large-scale applications.

1.3.3 A Splicing Code

Beyond RNA-Seq isoform quantification and annotation, a major area of effort in

alternative splicing research is decoding sequence regulatory elements (SREs)

contained in pre-mRNA that define alternative splicing site selection. In contrast

to core splicing signals, there exists limited knowledge of the SREs that serve to

increase and decrease the strength of a particular splice site. SREs serve as
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cis-acting sequences and binding sites for trans-acting factors. Some of the best-

studied SREs include Exon Splicing Enhancers and Silencers (ESEs and ESSs).

Members of the Serine-Arginine (SR) protein family typically bind to ESEs located

in an exon, promoting exon definition and thereby increasing the probability

that the exon will be included in the final transcript [Graveley, 2000, Long and

Caceres, 2009, Nilsen and Graveley, 2010]. In contrast, ESS recognition reduces

inclusion through binding trans-acting heterogeneous ribonucleoprotein particles

(hnRNPs) [Martinez-Contreras et al., 2007]. Therefore, trans-acting factor SRE

binding can either promote or inhibit splicing machinery::pre-mRNA interactions.

The current working hypothesis is that a finely tuned combination of these binding

events, constituting a “a splicing code”, determines the final exonic content of

each isoform [House and Lynch, 2008].

Sequence motifs that compose the alternative splicing code have been teased

out [Barash et al., 2010, Ladd and Cooper, 2002]. Assignment of binding motifs

to tissue-specific trans-acting factors has also progressed [Jin et al., 2003, Licat-

alosi et al., 2008, Ule et al., 2005]. Many of these binding motifs were identified

using combined computational and biochemical approaches. Computational

approaches involve searching for a comparative enrichment of sequences near

splice sites. Biochemical approaches include gel shift assays, Systematic Evolu-

tion of Ligands by Exponential Enrichment (SELEX), and cross-linking. Many of



Chapter 1. Introduction 21

these approaches are performed in vitro and disregard the importance of cellu-

lar context on binding affinities. However, with increasing accessibility of HTS,

many groups are extracting physiologically relevant, high-resolution data from

traditional biochemical techniques [Ingolia et al., 2009, 2011]. Deep-sequencing

approaches are also being applied to questions involving mechanisms of al-

ternative splicing. In addition to the RNA-Seq experiments, High-Throughput

Sequencing [following] Cross-Linking Immunoprecipitation (HITS-CLIP) has con-

firmed SRE motif data predicted from computational and microarray experiments

[Hafner et al., 2010, Licatalosi et al., 2008]. Using HITS-CLIP, researchers can

now enrich their samples for sequences that bind trans-acting factors of interest.

Identification of proximally-acting SREs is progressing at a rapid pace. New and

traditional biochemical methods, coupled with HTS, will undoubtedly fuel this

progress. Unfortunately, a critical component of alternative splicing regulation

currently neglected by the field is that of SREs acting across a considerable

distance (>800 nt). One observation that may lead to the identification of long-

range SREs is intramolecular coordination between distal splicing decisions.

Figure 1.5 shows a model transcript that may exhibit coordinated distal regions

of alternative splicing. In this model, the 5′ region of alternative splicing contains

a cassette exon, which may or may not be included. This region is separated

from the 3′ region of alternative splicing by many thousands of nucleotides. Does

the decision to include the cassette exon have an effect on which of the mutually
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exclusive exons is included? This type of alternative splicing regulation may

represent a general and pervasive phenomenon.

1.3.4 Coordinated Splicing

The “Miller Spread” showing spliceosomes associated with nascent RNA tran-

scripts suggested transcription and splicing are intricately linked [Osheim et al.,

1985]. Twelve years later, the observation that polymerase speed can affect

downstream splicing decisions was reported [Cramer et al., 1997], spawning

new research into co-transcriptional splicing.

One way that linked splicing decisions (coordinated splicing) could manifest is

dependence of a splicing decision in the 3′ portion of a transcript on a splicing

event in the 5′ portion, especially if seperated by other non-dependant splicing

events. One of the clearest examples of such regulation is mouse Fibronectin

(Fn1) (Figure 1.6) [Schwarzbauer and Tamkun, 1983, White and Muro, 2011].

In this gene, inclusion of the alternatively spliced Extra Domain A (aka “EDI”

or “EDA”) region promotes splicing from one of three alternative 3′ Splice Sites

(3′ SS) in the type III homology connecting segment (IIICS) region, resulting in

more frequent production of shorter transcripts [Fededa et al., 2005]. This effect

occurs over six constitutively expressed exons and 800 nt of sequence (5,400 nt

if introns are considered). Fededa et al. [2005] also analyzed EST databases,
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FIGURE 1.6: Mouse Fn1 contains multiple sites of Alternative Splicing

A) There are three highly-studied regions of alternative splicing in mouse Fn1: Cassette
exons EDB and EDA and the Variable(V)-region exon, which displays multiple 3′ splice
sites. Each of these sites is separated by multiple constitutive exons. B) Considering
simplistic splicing of these three exons, there are 12 different isoforms of mouse Fn1.

concluding that approximately 25% of human genes contain multiple regions

of alternative splicing. How many of these regions could show a coordinated

effect similar to that observed in Fn1? Providing some insight into this question,

[Fagnani et al., 2007] used microarrays designed to report on inclusion levels

of cassette exons in mammalian central nervous system tissues [Fagnani et al.,

2007]. The results produced a set of 38 pairs of exons mapping to the same

gene that showed a coordinated increase or decrease of inclusion levels.
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Some studies have investigated coordinated splicing between adjacent exons

present in mRNA. The vertebrate genes 4.1B and 4.1R are members of the

protein 4.1 family which encode cytoskeletal adaptor proteins. Both genes

undergo splicing of a 5′ first exon to distal second exons, skipping a stronger

proximal 3′ second exon [Parra et al., 2012, 2008]. This is accomplished through

“intrasplicing” involving an intronic sequence element (“intraexon”) only present

when transcription begins at the upstream 5′ exon. This allows the exon to ligate

to the weaker distal 3′ second exon via an intermediate splicing event.

Cis-acting sequences contained in intronic regions of a gene, a so-called Intronic

Recognition Elements (IRE), has also been reported for the equine β-casin gene.

In this gene, an IRE bound to the exit channel of the elongating polymerase

[Lenasi et al., 2006]. IRE binding of the nascent RNA promotes inclusion of

downstream cassette exons.

Taking a more genome-wide approach Peng et al. [2008] examined human and

mouse EST data looking for correlations between inclusion and exclusion of

adjacent alternative splicing cassette exons. The authors note that positively

correlated pairs of adjacent cassette exons typically resemble constitutive exons

in similarity to the consensus splice sequences. Negatively and weakly correlated

pairs are likely to be newly evolving exons whose sites have not evolved enough

to be constitutively included.
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The most current and thorough study of intra-gene splicing coordination involves

the Caenorhabditis elegans gene slo1 [Glauser et al., 2011, Johnson et al., 2011].

slo1 is the Caenorhabditis elegans orthologue of the human BK channel gene

Kcnma, which undergoes extensive alternative splicing [Nilsen and Graveley,

2010] via 13 cassette exons, potentially coding for over 1,000 different isoforms.

Kcnma is developmentally, spatially, and tissue regulated and is involved in a

diverse range of cellular processes, including hearing, circadian rhythms, urinary

function, and vasoregulation [Fodor and Aldrich, 2009].

In worms, slo1 can produce up to 12 different isoforms. Glauser et al. [2011]

used TaqMan qPCR to demonstrate that individual alternative region inclusion

frequencies do not correspond to complete isoform frequencies, suggesting an

interdependent-splicing model. Interdependence was supported when mutations

at one site altered both upstream and downstream sites of alternative splicing,

separated by at least one other splicing event. After measuring the biophysical

properties of the resulting protein isoforms [Johnson et al., 2011] Glauser et al.

[2011] conclude that coordinated alternative splicing is critical for proper BK

channel function in vivo. This study also identified an IRE that displayed some

type of coordinated (or co-regulated effect) on alternative splicing.

Indeed the Miller Spread was an early glimpse into another aspect of Nature’s

complexity. Described here are only a few examples of coordinated splicing.
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Genes like Fn1 and slo1 have been carefully studied for decades. Yet each was

done on a small, targeted scale. Increasing resolution of genome-wide data,

better transcriptome assembly, and more rigorous analysis may reveal more

examples of coordinated splicing decisions.

1.3.5 One Gene. Many Isoforms

Researchers often uncouple evolutionarily intertwined processes such as tran-

scription and splicing. A similar reductionist approach is to think of alternative

splicing as a binary process: isoform A or B is produced by picking either exon

A or B. What quickly becomes evident (to the detriment of researchers building

transcriptome assembly algorithms) is that the combinatorial nature of alternative

splicing makes it both a powerful means of generating isoform diversity and a

difficult problem to study [Trapnell et al., 2012].

A current attempt to investigate the breadth of combinations produced by alter-

native splicing is the ENCODE project [Birney et al., 2007, Dunham et al., 2012].

The transcriptional annotation arm of the ENCODE project [Derrien et al., 2012,

Djebali et al., 2012] used data from 15 human cancerous cell lines and found

genes produce ~10 isoforms.

The ENCODE project builds on prior evidence for the combinational quality of

isoform expression [Pan et al., 2008, Wang et al., 2008]. Most genes undergo
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FIGURE 1.7: Number of hg19 Alternative event types per gene

Alternative Event types per gene. “cassetteExon”’s are complete exons that are either
included or not. “altPromoter” indicates a different transcriptional start site, and thus
typically a different first exon identity. “alt[Five|Three]Prime” refers to different use
of 5′ and 3′ splice site use for a given exon. “retainedIntron” refers to including an
intronic region of a gene in the final mRNA. “atacIntron” refers to an intron whose
remove of which is performed via the minor spliceosome. “strangeSplice” according
to UCSC is “An intron with ends that are not GT/AG, GC/AG, or AT/AC. These are
usually artifacts of some sort due to sequencing error or polymorphism.” For complete
list of definitions refer here: http://genome.ucsc.edu/cgi-bin/hgTables and refer

to hg19:UCSC Genes:Alt Events schema. Accessed from RefSeq on 2014-03-24.

multiple forms of alternative splicing (Figure 1.7). Despite the prevalence of com-

plex alternative spliced genes, just a few genes are routinely used as examples

to illustrate numerical possibilities and biological significance. For example, the

human immune system relies heavily on alternative splicing for plastic antigen

recognition and response [Lynch, 2004]. Modulation of extracellular signaling pro-

teins such as CD44 and cellular adhesion protein CD45 have been well-studied

[Ponta et al., 2003, Zikherman and Weiss, 2008].

Alternative splicing in humans, however, does not seem to produce the extreme

number of unique isoforms as alternative splicing of genes in some simpler
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animals, such as Drosophila melanogaster (Figure 1.8 and Table 1.8). Perhaps

this reduced alternative splicing per gene is due to gene specialization, with

transcripts from different genes working in combination, as oppose to unique

transcripts from same gene [Park and Graveley, 2007]. For example, Drosophila

melanogaster have a single muscle myosin heavy chain gene (Mhc) capable of

producing up to 480 different isoforms through alternative splicing of 17 different

cassette exons [Bernstein et al., 1983]. In contrast, mammalian genomes encode

whole families of Mhc genes that have duplicated, diversified, and specialized

in function [Weiss and Leinwand, 1996]. The use of gene families reduces

the necessity for alternative splicing to generate molecular diversity. Section

1.3.6 discusses another example of Drosophila melanogaster generating isoform

diversity from a single gene, while the comparable human gene does not—the

extracellular binding protein DSCAM.

1.3.6 Drosophila melanogaster Dscam1

The gene most frequently used to demonstrate the combinatorial power of al-

ternative splicing is Drosophila melanogaster Dscam1. The “architecture” of

Dscam1 is rather unique, but as we see in Figure 1.8 and Table 1.1, Drosophila

melanogaster contain numerous genes that generate tremendous isoform di-

versity [Brown et al., 2014]. The basic structure of Dscam1 is shown in Figure

1.9.
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FIGURE 1.8: Number of transcripts per Drosophila melanogaster gene

Data from [Brown et al., 2014], Supplemental Table 3. Number of transcript per bin,
with bin sizes “closed” on the upper part of range.

Human Dscam (Down Syndrome Cellular Adhesion Molecule) was identified

while looking for genes on chromosome 21, specifically band 21q22, where

extra copies are expressed in Down syndrome patients [Yamakawa et al., 1998].

Dscam is a member of the immunoglobulin super family of proteins with extracel-

lular adhesion functions. Human Dscam undergoes some alternative splicing

and is broadly expressed in the developing nervous system. Yet, it does not con-

tain the same impressive number of cassette exons as Drosophila melanogaster

Dscam1.
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TABLE 1.1: Fly genes with >2,000 assembled transcripts according to [Brown et al.,
2014].

Gene Name # Introns # Transcripts # Proteins
Mhc 60 2040 511
slo 49 2070 279
ps 30 2099 27
rg 45 2178 23
shot 60 2478 886
scrib 53 2555 259
heph 75 2876 52
CG42748 26 2876 51
rdgA 35 3003 89
Mbs 39 3080 119
CaMKI 41 3992 7
par-1 48 4410 142
GluClalpha 27 4945 188
Sap47 24 5011 49
Patronin 50 5615 590
CG17838 37 8333 147
unc-13 52 8391 279
A2bp1 29 9055 58
Imp 33 9131 12
pan 38 9432 72
Sh 40 15995 66
gish 48 18972 142

12 Exon 4

variants

48 Exon 6

variants

33 Exon 9

variants

2 Exon 17

variants

FIGURE 1.9: The architecture of the Drosophila melanogaster gene Dscam1

Dscam1 has three clusters or “banks” of alternative cassette exons that are included in
a mutually-exclusive manner. The first bank, “Exon 4”, contains 12 different variants,
of which only one is ever included into the mRNA. Similarly, banks 6 & 9 each contain
48 and 33 different variants, respectively. These three banks code for extracellular IgG
domains, while the final region of alternative splicing, exon 17, encodes two different

trans-membrane domains, again only one of which is included in the final mRNA.
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Complex alternative splicing of Dscam1 was first noticed by the Zipursky lab

in 2000 [Schmucker et al., 2000]. While looking for proteins associated with

dock and pak, two proteins important for neuronal growth cone guidance, they

biochemically co-purified DSCAM1. Sequencing of Dscam1 clones revealed

that all clones contained different combinations of exons 4,6, and 9. These

three exons are chosen from three clusters of mutually-exclusive cassette exons,

containing 12, 48, and 33 exons (Figure 1.9). The initial report kicked off an

exciting period of research into Dscam1 structure and function.

Before the highlights of Dscam1 research are reviewed, it is illustrative to discuss

some basic Drosophila melanogaster anatomy. There are four anatomic regions

where Dscam1 expression has been highly-studied:

• Hemocyte cells of the immune system
• Larva Class IV da Neurons
• Pupal Mushroom-body neurons in the developing brain
• Tetrad synapses of the eye

During larval development, Dscam1 is expressed in the da neurons of the larval

body wall (Figure 1.10). The da neurons create a uniform sensory field that allow

larva to respond to mechanical stimulus. Morphologically, da neurons resemble

oak trees with broadly dispersed branches. In order to maximize coverage of the

field, every {cell::cell} interaction (i.e. every synapse) must be a productive one.

Molecularly, this is accomplished via an extracellular handshake between copies

of DSCAM1. If this handshake feels too familiar, a stable, lasting, and productive
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synapse is not encouraged [Wojtowicz et al., 2004].

The use of DSCAM1 to discern self from non-self is not unique to da neurons. It

is also essential in the developing pupal brain. Here, Dscam1 is expressed in

both axonal projections of neurons as they extend from Kenyon cell bodies and

bifurcate into the two different mushroom body lobes [Zhan et al., 2004].

Finally, the involvement of Dscam1 in the innate immune system of insects

has been demonstrated [Dong et al., 2006, Watson et al., 2005]. DSCAM1

recognizes antigen via similar self vs non-self interactions.

How diverse are Dscam1 isoforms? Are isoforms different between cells? How is

diversity generated? Are isoforms different among tissues or in individual cells?

These are the questions that research into Dscam1 has sought to answer over

the last 14 years.

Soon after the initial Dscam1 report Celotto and Graveley [2001] investigated

Dscam1 developmental regulation. They focused on the 12 variants of cluster 4

and observed regulation of exon 4.2. Embryonic transcripts show little inclusion

of this exon while adult transcripts show frequent inclusion. Exon 4.8 displayed

the opposite behavior. Similar regulation of cluster 4 exons was also observed in

a closely related species, Drosophila yakuba.

In 2004, Neves et al. [2004] used a specially designed microarray to robustly

characterize Dscam1 molecular diversity. They observed inclusion of virtually
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FIGURE 1.10: Important sites of Dscam1 expression in Drosophila melanogaster

Dscam1 has been high-studied in four different regions/cell types. (1) Hemocytes of the
immune system, where DSCAM1 is involved in antigen recognition; (2) In Class IV da
neurons, which sense mechanical stimulation of the larval body wall; (3) In mushroom
body neurons of the pupal developing brain; and (4) (not shown) in Tetrad neurons of

the eyes.
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all alternative exons from clusters 4, 6, and 9. Additionally, they examined

Dscam1 transcripts obtained from single-cell originating colonies and reported

that multiple Dscam1 transcripts were expressed per cell. They estimated that

each cell, depending on type, contained between 7–50 different combinations.

As discussed above, the use of microarrays to perform this analysis precluded

observing any potential coordination between variant exons.

Quickly after Neves et al. [2004] published their results, the Zipursky lab also

published a microarray study of Dscam1 isoforms [Zhan et al., 2004]. They

focused their analysis on neurons of the developing mushroom body (Figure

1.10). Not only did they also show that most Dscam1 combinations are likely

produced at some level, but that diversity of isoforms is required for bifurcation

of neurons into different lobes of the developing mushroom body. These results

highlighted a critical function for self vs non-self determination via DSCAM1-

mediating extracellular interaction.

How is mutually-exclusive exon usage among 48 different options possible?

Graveley [2005] observed a single “Docking site” within the intronic sequence

just 5′ to exon 6.1. This docking site was conserved among 15 insect species ex-

amined, from closely-related Drosophila simulans to a distantly-related Tribolium

castaneum (Red flour beetle). Astonishingly, the docking site was complemen-

tary to “selector sites” within intronic regions just 5′ of each of the 48 variant
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exons. A model was proposed where {docking::selector} interaction is required

to choose which variant exons is included, while a splicing regulator protein,

likely an hnRNP due to the repressive nature of the interaction, binds to unused

selector sites contained in the pre-mRNA [Graveley, 2000]. Additional mecha-

nisms have been reported for other clusters, including the iStem [Kreahling and

Graveley, 2005] in cluster 4, and the hnRNP protein hrp36 [Olson et al., 2007].

[Neves et al., 2004] examined Dscam1 expression in hemocyte cells, and their

results clearly show reduced variability in cluster 9 inclusion. Virtually all of

the signal obtained from hemocyte cells for cluster 9 was seen in variants

9.[6,9,13,30,and 31]. [Watson et al., 2005] also examined Dscam1 expression

in hemocyte cells, comparing it to that of neuronal cells. They propose that

secreted forms of Dscam1 are essential for a robust innate immune system

in insects, a finding that has also been observed in mosquitoes [Dong et al.,

2006]. Involvement of Dscam1 in the insect innate immune system highlights

how nature has applied one gene that produces extreme molecular diversity to

multiple problems involving determining self from non-self [Hattori et al., 2008,

Hemani and Soller, 2012, Shi and Lee, 2012].

In 2007 the Zipersky lab published [Hattori et al., 2007] the first in a series of ge-

netic reports describing the function and diversity of Dscam1. Using homologous

recombination, Hattori et al. [2007] showed that Dscam1 diversity is required for
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proper neural wiring but that individual neuronal-isoform identity is not important.

Two years later, Hattori et al. [2009] observed that flies capable of expressing

at least 4,752 different Dscam1 isoforms were indistinguishable from wild-type

controls. This series was recently advanced with another tour-de-force of genetic

manipulation. Miura et al. [2013] used a collection of Dscam1 mutants allowing

for visualization via GFP of specific cluster 4.X variant expression in real time.

They concluded that a single neuron expresses multiple Dscam1 isoforms over

time, and Dscam1 is expressed via “stochastic and probabilistic” mechanisms.

Research into Drosophila melanogaster Dscam1 has provided major advance-

ments to our understanding of multiple aspects of transcription, including: 1)

exon definition; 2) alternative splicing of cassette exons; 3) neuronal and cellu-

lar recognition; and finally 4) allows comparisons between how points 1–3 are

accomplished among model organisms. See sections 2.2 for more information

concerning Dscam1.

1.4 Nucleic Acid Ligation

Section 1.2 discusses implications of cheap DNA and RNA sequencing to

biomedical research. This section discusses how the ability to join pieces

of nucleic acid has also advanced our understanding of biology. A particular
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focus is placed on an enzyme with relevance to Chapters 2 and 4—T4 RNA

Ligase 2.

1.4.1 RNA-templated DNA-DNA ligation

In the late 1960’s and early 1970’s, the Lehman and Richardson labs char-

acterized two workhorse-enzymes of molecular biology. Robert Lehman and

colleagues, working at Stanford Medical School, first described the activity of

polynucleotide-joining enzyme from Escherichia coli (now known as E. coli DNA

Ligase) [Olivera and Lehman, 1967]. Work on this enzyme paralleled that from

the Richardson lab at Harvard Medical School, where they focused on polynu-

cleotide ligase from Escherichia coli infected with T4 bacteriophage (now known

as T4 DNA ligase) [Weiss and Richardson, 1967]. It became clear that while

these two enzyme’s shared a common mechanism—later elucidated by Modrich

et al. [1973]—they had important differences. First, T4 DNA ligase required ATP

as a cofactor, which E. coli DNA Ligase did not (it was later discovered that DNA

ligase required NAD as a cofactor). Second, only T4 DNA ligase could catalyze

ligation of blunt-ended DNA [Tabor, 1987].

The general mechanism of ligation (Figure 1.11) involves three steps: Step 1 (A)

the ε-amino group from the active site lysine performs a nucleophilic attack on

the α-phosphate of ATP in solution. B) The ligase is now charged with AMP and
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FIGURE 1.11: Mechanism of ATP-dependent ligation

Adapted from [Nandakumar et al., 2006] and specifically for that of T4 RNA ligase 2.
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inorganic phosphate (PPi) is freed into solution. C) Step 2: Nucleophilic attack

by the 5′ DNA phosphate on the 3′ side of the nick to the AMP:ligase phosphate.

D) Adenylated DNA is now competent for DNA ligation. E) Step 3: the 3′ OH on

the 5′ side of the nick performs a nucleophilic attack on the 5′ PO4 across the

nick, liberating AMP into solution. F) Sealed nick resulting in: Ligase, AMP, and

dsDNA.

In addition to elucidating the general mechanism of ligation, it was also discov-

ered that T4 DNA ligase lacks a preference for terminal polynucleotide structures.

The Khorana and Richardson labs both reported the activity of this enzyme on

combinations of RNA and DNA duplexes [Fareed et al., 1971, Kleppe et al.,

1970]. Both described an activity of T4 DNA ligase, RNA-templated DNA-DNA

ligation, that is of particular relevance to this thesis work. Unlike T4 DNA ligase,

E. coli DNA Ligase, will not join DNA strands on an RNA template [Bullard and

Bowater, 2006]. Soon after demonstrating these activities in vitro, the Khorana

lab reported detection of DNA generated in vivo (i.e. by and organism) [Besmer

et al., 1972], setting up an orthogonal field (respective to PCR) of nucleic acid

sequence characterization [Conze et al., 2009].

An enzyme that can catalyze an RNA-templated DNA-DNA ligation is a very

useful molecular biology tool for two main reasons. First, using RNA as a ligation

guide means no modification is made to the template. This contrasts cDNA
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analysis, where the RNA has been enzymatically converted by reverse transcrip-

tion, potentially losing valuable RNA-coded information, such as modified bases.

Second, synthesis of the DNA probes used in ligation is inherently easier and

cheaper compared to synthesis of RNA probes (see section 5.3.2). In addition

to being cheaper, synthesis of DNA probes has become high-throughput since

the adoption of microarrays as a standard gene expression measurement tool

[Schena et al., 1995].

A pair of papers from the Landegren lab first reported the utility of RNA-templated

DNA-DNA ligation for analysis of RNA transcripts [Nilsson et al., 2001, 2000]. The

Fu lab applied this approach in a multiplex experimental design in collaboration

with Illumina [Li et al., 2012a, Yeakley et al., 2002], while the Nilsson and

Landegren labs developed a single molecule application [Conze et al., 2010]. It

is important to note that all of these studies used T4 DNA ligase. Clearly, there

is interest and utility in analyzing RNA in both high-throughput and multiplex

experimental designs, using cheap DNA probes, and without cDNA conversion.

For more than 40 years after its first description, T4 DNA ligase was the only

choice for RNA-templated DNA-DNA ligation. However, a recent publication from

New England Biolabs (NEB) describes this activity by another well-studied ligase,

Chlorella Virus PBCV-1 DNA ligase (herein Chlorella DNA ligase) [Lohman et al.,

2014]. Chlorella DNA ligase is a long-studied enzyme and had been reported to
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not display RNA-templated DNA:DNA ligation activity [Ho et al., 1997, Sriskanda

and Shuman, 1998]. However, at high enough concentrations and under special

buffer conditions (specifically a critical concentration of ATP), Lohman et al.

[2014] have shown that Chlorella DNA ligase will join two DNA strands hybridized

to an RNA template. They further demonstrated that it performs no worse in this

activity than traditional T4 DNA ligase [Nilsson et al., 2001, Yeakley et al., 2002].

Building on the list of available enzymes that join hybrid polymer substrates

Chapter 2 presents data supporting RNA-templated DNA-DNA ligation activity

for another enzyme, T4 RNA Ligase 2.

1.4.2 T4 RNA Ligase 2

Proteins of the T4 and T7 bacteriophages have been a boon for molecular

biology. Without enzymes like polynucleotide kinase [Richardson, 1965], T7

RNA polymerase [Summers and Siegel, 1970], and T4 DNA ligase [Weiss and

Richardson, 1967], many essential manipulations of nucleic acids would have

been impossible for decades. Obviously, these enzymes also have essential

phage functions. T7 RNA polymerase is responsible for late stage replication

of T7 phage transcripts, while T4 PNK works in concert with T4 DNA and RNA

ligases to repair cleaved nucleic acids resulting from bacterial pathogen defense

systems [Wang et al., 2002]. Specifically, T4 RNA ligase 1 (herein “Rnl1”, also
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known as gene 63) maintains phage replication by repairing tRNAs cleaved by

an anticodon nuclease produced from the prr locus [Amitsur et al., 1987].

Given the utility and importance of these enzymes, novel enzyme discovery

is a fruitful area of research. The Shuman lab has a distinguished record of

discovering and characterizing numerous such enzymes, including many involved

in nucleic acid synthesis, modification, and repair. Through a BLAST search

looking for novel ligases with sequences related to Trypanosoma brucei RNA-

editing ligases TbMP52 and TbMP48 [Ho and Shuman, 2002], they identified

a gene in the T4 genome (gp24.1) with motifs in correct arrangement, spacing,

and number indicative of an RNA ligase.

Initial biochemical purification and characterization of gp24.1 [Ho and Shuman,

2002] revealed that it indeed codes for an RNA ligase, which was renamed T4

RNA ligase 2 (herein “Rnl2”). Rnl2 is a 374 amino acid monomeric protein com-

posed of 2 distinct domains initially purified as a 42-kDA His-tagged recombinant

protein. The N-terminal domain (1–243) is responsible for steps (1) and (3) of

the general ligation mechanisms (Figure 1.11), while the C-terminal domain

(244–329) is responsible for adenylation of the 5′ PO4 on the 5′ residue at the

3′ side of the nick, as shown in step (2). Rnl2 is routinely purified pre-adenylated

and immediately poised for its first ligation.

In contrast to the N-terminal domain, which is composed of motifs typical to main
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FIGURE 1.12: Structure and active site of pre-adenylated of Rnl2

Rnl2 as crystalized and described by [Nandakumar et al., 2006]. Structures from
{PDB:2HVQ} were generated with PyMol. Top left) Rnl2 is composed of a C-terminal
and N-terminal domain. Top Right) The active site of Rnl2 is highlighted. Bottom left)

Active site of Rnl2 as shown from bottom. This face interacts with substrate.

ligases, the C-terminal domain is not contained in other DNA ligases. While the

biological function of Rnl1 is known, the biological function of Rnl2 remains a

mystery more than 12 years after its discovery [Chauleau and Shuman, 2013].

However, there is some speculation that the flurry of research into bacterial

CRISPR phage defense may reveal a role for Rnl2 [Barrangou et al., 2007,

Chauleau and Shuman, 2013].
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Mutational analysis crystal structure analysis of Rnl2 have identified key func-

tional residues [Ho et al., 2004, Nandakumar et al., 2004, 2006, Yin et al., 2003].

The lysine residue at position 35 (K35) receives the AMP in Step 1. The K227

residue in the C-terminal domain is essential for both forward and reverse adeny-

lation of the 5′ PO4 at the nick [Viollet et al., 2011]. Mutation of H37 results in

an ~102 reduced ligation rate, indicating the important nature of this residue.

Finally, T39 has been shown to interact with the 2′ OH on the 3′ side of the nick,

preferring a C3′ endo sugar pucker conformation (Figure 1.13).

Rnl2 has a minimal footprint of 13 nt, centered on the nick, and only requires

magnesium for transfer of AMP to the 5′ phosphate. Work done in the Shuman

lab [Nandakumar et al., 2006] observed that 2′ deoxyribose residues on the

5′ side of the nick (i.e. DNA) adopt an RNA-like sugar pucker, leading to the

correct orientation of the 3′ OH relative to the AMP leaving group and resulting

in ligation. This conformation is of particular importance to results presented in

Chapters 2 and 4.

A modified version of Rnl2 containing only the N-terminal domain and a K227A

point mutation (“Truncated mutant”) has no adenyltransferase activity [Viollet

et al., 2011]. In this case, adenyltransferase refers to the ligase transferring AMP

from an adenylated substrate to itself; reverse chemistry of step 2 in Figure 1.11).

This mutant has been used in specialized cloning applications [Ghildiyal et al.,
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FIGURE 1.13: Active site of T4 RNA Ligase 2 with highlighted residues

Rnl2 complexed with nicked dsDNA as crystallized and described by [Nandakumar
et al., 2006]. Structures from {PDB:2HVR} and images generated with PyMol.

2008, Hafner et al., 2008, Viollet et al., 2011] that take advantage of this activity.

In these reactions, the use of pre-adenylated 3′ DNA adapters allows for selective

ligation among already phosphorylated species by limiting the enzyme-catalyzed

transfer of AMP from the adapter to other phosphorylated species. Use of this

truncated mutant to create a hybrid RNA/DNA molecule has greatly improved

high-throughput sequencing work-flows.

Ligation of hybrid substrates (e.g.. DNA-templated RNA-DNA vs. DNA-templated

DNA-DNA) have revealed general ligase substrate preferences. DNA ligases

appear to prefer the residue bearing the 5′ phosphate on the 3′ side of the nick

to be 2′ deoxyribose, and have a relaxed requirement for the sugar on the 5′ side

of the nick. RNA ligases have the reverse preference, demonstrating higher
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activities when the 5′ strand, 3′ OH residue also bears a 2′ OH. Rnl2 has an

additional preference for an RNA residue at the penultimate 3′ side of a residue

[Ho and Shuman, 2002, Ho et al., 2004, Nandakumar et al., 2004, 2006]. The

two base requirement for RNA at the 5′ side of the double stranded nick biases

Rnl2 to join RNA:[RNA/DNA] strands.

Independent labs have measured that RNA-templated DNA-DNA joining activity

of Rnl2 is below assay limits of detection [Bullard and Bowater, 2006]. However,

results discussed Chapters 2 and 4 show that with enough enzyme and sensi-

tive downstream measurements, Rnl2 will catalyze RNA-templated DNA-DNA

ligation. Previous reports of Rnl2 lacking this activity are likely due to a single

turnover mechanism in this reaction imposed by a non-typical sugar pucker of

the ligated DNA trapping the enzyme on the duplex.

1.4.3 Ligases as molecular tools

Section 1.4.1 describes the identification and development of ligases as tools in

molecular biology. Ligation of templated duplexes has multiple uses in cloning

and sequence characterization. The following section (1.5) discusses long

nucleic acid polymers, specifically mammalian piRNA precursor transcripts. Little

biology is known concerning these long transcripts. Chapters 2 and 4 discuss

the application of Rnl2 to characterize long nucleic acid polymers.
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1.5 Nucleic Acid Polymers

Fire et al. [1998] brought small RNAs to the forefront of research. Recently

lncRNA research has been in similarly exciting period [Guttman et al., 2009,

Khalil et al., 2009]. Whether “small” or “long” all classes of RNA are polymers of

ribonucleotides. This section will focus on an interesting class of nucleic acid

polymer—mammalian piRNA precursor transcripts. These transcripts, which

share similarities to traditional mRNAs, are processed into piRNAs. The section

ends with a history of transcript assembly using HTS data.

1.5.1 It Started Small: Mammalian piRNAs

piRNAs are small RNAs that are 23–35 nt long. They are slightly longer than

other small RNAs (e.g. miRNAs or siRNAs, which are 21 to 25 nt long). Contrary

to other small RNAs, piRNA biogenesis does not require the double-stranded

RNA-specific ribonuclease Dicer [Houwing et al., 2007, Vagin et al., 2006] and it

is believed they originate from single-stranded RNA precursor transcripts. Yet,

similar to other small RNAs, they do bind a subgroup of the Argonaute family

of proteins, PIWI proteins, from which their name is derived (PIWI Interacting

RNAs).

Aravin et al. [2001] first identified piRNAs in Drosophila melanogaster originating

from the Su(Ste) locus as heterogeneous 25–27 RNAs essential for silencing
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of Stellate and, more importantly, male fertility. In the few years since the initial

report, piRNAs have been cataloged, characterized, manipulated and mutated,

especially in Drosophila melanogaster [Hirose et al., 2014, Luteijn and Ketting,

2013, Siomi et al., 2011]. The most famous function for piRNAs in Drosophila

melanogaster is suppression of transposon transcripts during gametogenesis

[Malone and Hannon, 2009]. The Ping-Pong model elegantly explains how this

might be accomplished: cyclic cleavage of transposon transcripts and piRNA

precursor transcripts [Brennecke et al., 2007, Gunawardane et al., 2007]. Yet, it

appears that piRNAs have diversified beyond transposon silencing.

Four reports in 2006 defined the beginning of mammalian piRNA research

[Aravin et al., 2006, Girard et al., 2006, Grivna et al., 2006, Lau et al., 2006].

Each observed small 23–35 nt RNA species that bound PIWI proteins. They also

noticed that when aligned to the genome, most mapped to “clusters” of discrete

genomic loci, similar to flies.

Overtime, it became clear that mammalian piRNAs can divided into three major

classes (Figure 1.14). There are also three PIWI proteins in mice, each displaying

a distinct expression profile during development and an association with piRNAs

of a specific length.
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FIGURE 1.14: Overall view of the three classes of mammalian piRNAs. Figure design assisted by Xin Zhiguo Li.
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Fetal piRNAs (or “prenatal”) are present before birth. These piRNAs tend to

be short, bind the PIWI protein MIWI2 (PIWIL4) in mice, and have sequences

found in transposable elements [Carmell et al., 2007]. Quickly following MIWI2

in expression is the PIWI protein MILI (PIWIL2). It is during the “fetal” stage of

piRNA biogenesis in mice that, in order to silence expression of transposons

during germ line formation, MIWI2 and MILI undergo ping-pong amplification,

similar to that observed in flies [Aravin et al., 2006, Aravin and Hannon, 2008,

Aravin et al., 2008, Kuramochi-Miyagawa et al., 2004]. Importantly, this activity

has not been observed in adult testes.

During the first three weeks of a male mouse’s life the process of spermatogensis

is in its “first wave” and sperm cells are synchronized [Laiho et al., 2013, Oakberg

and Oakberq, 1956]. After the first wave and for the rest of the adult lifespan,

sperm in the testes are not synchronized. Instead there is a continuum of

sperm production. Therefore, it is during the first wave that specific stages

of can be easily isolated and studied. The next two classes of piRNAs are

named according to their expression respective to an important milestone in

gametogensis—the pachytene stage of meiosis I when chromosomes pair up,

cross over, and exchange genetic material.

Pre-pachytene piRNAs, historically but confusingly grouped with fetal piRNAs,

are expressed just before birth and continue to be expressed throughout the
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mouse lifespan. These piRNAs tend to map to traditional, annotated, protein-

coding genes. During the “neonatal stage” pre-pachytene piRNAs are bound

by the only PIWI protein expressed at that time, MILI. Also, piRNA expressed

during the pre-pachytene stage shift from mostly transposon-mapping to protein

coding gene 3′ UTR mapping [Robine et al., 2009].

The last class, pachytene piRNAs, are extremely abundant compared to pre-

pachytene piRNAs in adult testes [Girard et al., 2006, Lau et al., 2006, Li et al.,

2013a]. They bind another Piwi protein MIWI (PIWIL1). The genomic origin of

pachytene piRNAs, often unique in terms of genomic sequence, often fall within

“gene deserts.” Pachytene piRNA clusters are actually genes (aka: “piRNA-

producing loci”) encoding very long single-stranded transcripts devoid of introns

(see section 4) [Li et al., 2013a]. This gene architecture makes the pachytene

piRNA loci some of the most interesting RNA-producing regions of the mam-

malian genome.

Except for the uniquely-mapping quality of pachytene piRNA loci, their transcripts

are comparable to piRNA clusters in flies, such as flamenco. Flamenco tran-

scripts can be abolished by inserting a P-element into a putative promoter, as

measured by northern blot looking for piRNAs generated 168 kb downstream

(Figure 1.15 [Brennecke et al., 2007, Goriaux et al., 2014]. Similarly, transcription

of pachytene piRNA loci requires A-Myb, and piRNAs hundreds of thousands of
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flamenco – 200 kb

Precursor transcript

A.

B.

FIGURE 1.15: A the Drosophila melanogaster gene flamenco is a graveyard for transpo-
son sequences [Pélisson et al., 1994]. Evidence for expression of a single-contiguous
RNA transcript from flamenco (A) is provided by a P-element insertion into the sus-
pected promoter region (B). [Brennecke et al., 2007] could not detect specific piRNAs

(red X’s) by northern blot in the P-element mutant.

nt downstream from annotated 5′ ends are not seen in A-Myb mutant mice (see

Chapter 3).

1.5.2 From Long to Small: Precursor processing to mature
piRNAs

The process by which a long, single-stranded piRNA precursor transcript become

small mature piRNA is full of black boxes and question marks [Li et al., 2013b].

Indeed, we are very unsure of many steps between transcription and terminal

function of {piRNA::PIWI} complexes (PIWI-piRISC).
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For example, how do piRNA precursor transcripts exit the nucleus? This is not

known in mice, but there are clues from Drosophila melanogaster , where some

piRNA clusters are bidirectionally transcribed and bound by the HP1 homologue

Rhino [Klattenhoff et al., 2009]. Rhino co-localizes with the DEAD box protein

UAP56 near the perinuclear compartment known as nuage [Zhang et al., 2012a].

It is believed that Rhino and UAP56 assist in a hand off of large precursor

transcripts across the nuclear envelope where they are bound by the nuage

protein VASA [Zhang et al., 2012a].

Once precursor transcripts exit the nucleus they may enter chromatoid bodies

(comparable to nuage in flies) [Lim and Kai, 2007, Meikar et al., 2011, 2014,

Zhang et al., 2012a] where they are proposed to be “fragmented” into shorter

piRNA intermediates [Li et al., 2013c, Saito et al., 2010]. However, the location

of fragmentation is currently unknown in mice. In mice, the protein MitoPLD (aka:

PLD6, or Zucchini in Drosophila melanogaster ) is the proposed enzyme that

catalyzes fragmentation, but this has only been studied in 10.5 dpp mice and

therefore only for pre-pachytene piRNAs [Watanabe et al., 2011a].

Slicing activity for Zucchini has been observed in vitro and is supported struc-

turally [Ipsaro et al., 2012, Nishimasu et al., 2012]. Its activity has yet to be

shown in vivo [Luteijn and Ketting, 2013]. Fragmentation may, or may not, impart
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the 5′ U preference seen in mature piRNAs [Brennecke et al., 2007, Gunawar-

dane et al., 2007] and indeed Zucchini does not show a 5′ U bias in vitro [Ipsaro

et al., 2012, Nishimasu et al., 2012]. However, this preference may result from

downstream sequence preference of PIWI-protein binding [Cora et al., 2014].

Once fragmented into shorter RNAs, piRNA intermediates seem to be “loaded,”

into a specific time- and expression-appropriate PIWI proteins (Figure 1.14).

Following “loading,” piRNA intermediates are trimmed down to the length char-

acteristic of bound Piwi by the appropriately named, but hypothetical, enzyme

“Trimmer” [Li et al., 2013c]. Both “Loading” and “Trimmer” activity have not been

shown in mammalian systems but are inferred from Silk worm (Bombyx mori)

cellular extracts of ovary-derived BmN4 cells [Kawaoka et al., 2009]. Once

trimmed, piRNAs are methylated on the 2′ OH position by the enzyme HEN1

[Horwich et al., 2007, Kawaoka et al., 2011, Kirino and Mourelatos, 2007, Ohara

et al., 2007], but again this activity is not well-studied in mice. At this point,

a mature piRNA, complexed with a PIWI protein (PIWI-piRISC), is poised to

perform cellular function(s).

What are the cellular activities of PIWI-piRISC? MILI and MIWI2 have been

shown to direct epigenetic LINE1 and IAP transposon silencing in the embryonic

male germline [Aravin et al., 2007b, Carmell et al., 2007, Kuramochi-Miyagawa

et al., 2008]. Two studies [De Fazio et al., 2011, Reuter et al., 2011] used
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FIGURE 1.16: Figure taken from [Li et al., 2013b]: A model for piRNA biogenesis.
Primary piRNA transcripts are transcribed by RNA polymerase II and contain 5′ caps,
exons, introns, and poly(A) tails. The transcription of pachytene piRNA genes is
controlled by A-MYB; transcription factor(s) (TF) controlling pre-pachytene piRNA genes
remain to be discovered. Current models of piRNA biogenesis propose that PLD6
determines the 5′ end of piRNA intermediates with lengths >30 nt. These intermediates
are proposed to then be loaded into PIWI proteins. After PIWI binding, a nuclease is
thought to trim the 3′ end of the piRNA to the length characteristic of the particular
bound PIWI protein. Finally, further trimming is prevented by addition of a 2′ O-methyl
group to the 3′ end of the mature piRNA by the S–adenosylmethionine-dependent

methyltransferase HEN1. Figure adapted from [Li et al., 2013c].

point mutations in the catalytic triad of MIWI, MIWI2, and MILI to remove slicer

activity. De Fazio et al. [2011] found that MIWI2-deficient mice are fertile, silence

transposons, and display all signs of secondary piRNA biogenesis and concluded

that MILI (which is sterile) was required for transposon silencing. This finding was

later elaborated upon by Di Giacomo et al. [2013] to work in concert with other
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forms of epigenetic silencing to repress LINE1 expression. Reuter et al. [2011]

focused on MIWI and found that it required for silencing of LINE1 transcripts long

after they were epigenetically silenced (i.e. in the adolescent mouse).

The above studies point to a familiar scenario of piRNA-mediated target cleavage

and/or transcriptional silencing by PIWI-piRISC [Meister, 2013]. Yet confusingly,

HITS-CLIP of MIWI revealed that MIWI binds spermiogenic mRNAs without a

piRNA guide [Vourekas et al., 2012] and Reuter et al. [2011] demonstrated that

slicing of target by MIWI RISC requires near perfect binding.

How does does one reconcile these findings with the extremely uniquely-mapping

quality of virtually all pachytene piRNAs? Put another way, if MIWI requires near

perfect pairing between guide and target, and pachytene piRNAs perfectly pair

with nothing else in the genome but antisense transcripts from their own loci,

what is the mechanism of target recognition?

Taken together, frustratingly little is known or internally consistent concerning

biogenesis or function of mouse piRNAs. Indeed, even the catalytic nature of

PIWI proteins is a debated topic [Luteijn and Ketting, 2013, Meister, 2013]. A

recent report that the DNA modification 5hmC is high in piRNA intergenic gene

bodies [Gan et al., 2013], combined with known functions of fetal PIWI-piRISC

alludes to a function for self-mapping pachytene piRNAs.

Perhaps the site of PIWI-piRISC function is not cytoplasmic. Fly PIWI is localized
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in the nucleus, and MILI and MIWI2 have been shown in induce DNA methylation

[Aravin et al., 2008, Cox et al., 2000]. This is a potentially misleading course

of logic. Localization does not confirm interaction [North, 2006] or function and

inferring such from localization can be as dangerous as assuming cars function

in parking lots. Finally, a extremely tantalizing additional potential function for

mammalian piRNAs is that of genomic imprinting [Watanabe et al., 2011b]. This

function is in good agreement with germ line-specific and developmentally timed

nature of Piwi protein expression.

In summary, there are many holes and black boxes in the story of mammalian

piRNAs. Continued study is easily justified by the sterile phenotypes of all

pathway mutants. Time will tell if mammalian piRNAs are involved in a satisfying

process of biology or are crude side quest of Nature.

1.5.3 From Short to Long: Transcript Assembly

Initial genome-wide HTS of piRNAs revealed a tremendous amount of biology

[Brennecke et al., 2007, Gunawardane et al., 2007], but could provide little

information as to the original transcriptional unit. The ability to reconstruct piRNA

precursors had to wait for technological improvements in HTS read length and

alignment algorithms.
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Working backwards from small RNA-Seq data to original transcription units

was impossible. Mammalian piRNAs are too short (~30 nt) to allow for quality

assembly using even the most current algorithms. They simply do not provide

the sequence overlap necessary to build scaffolds. Also, repeat elements are

extremely abundant in mice [Nellå ker et al., 2012], and combined with short

reads further reduce the ability to assemble full-length sequences. Therefore, it

was necessary to sequence RNAs prior to mature piRNA formation.

Even with longer read lengths and the best assembly algorithms, the 5′ and

3′ ends of long and diverse transcripts like piRNA precursors often requires a

combination of multiple HTS datatypes [Blower et al., 2013, Li et al., 2013b].

Tailored versions of RNA-Seq, such as CAP-Seq (see section 1.2.2), are not

sufficient for accurate 5′ end determination, and require orthogonal datasets to

verify TSSs. Taking a page from lncRNA transcript discovery, complementary

data sets such as ChIP-Seq of H3K4 methylated histones, a marker for transcrip-

tional initiation can supplement RNA expression data [Khalil et al., 2009]. More

information about how multiple HTS datasets can be—and were used—to define

the transcriptional unit of piRNA precursors transcripts is provided in Chapter 3.

General assembly of full length transcripts (not just piRNA precursor transcripts)

is difficult for at least 3 reasons: (1) The transcriptome is expressed across 5

orders of magnitude and a typical RNA-Seq library contains many reads from
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a few highly-expressed genes and many fewer reads from lowly-expressed

genes [Blencowe et al., 2009]; (2) RNA-Seq libraries are often not created from

a completely pure source of mRNA and can contain reads from other RNA

classes (e.g. tRNAs) or intronic reads from pre-mRNAs; and (3) Reads are

often much shorter than a typical mRNA, making it difficult to assign which read

goes to which isoform of a given gene (see the “connectivity problem” discussed

in section 1.3.2. With these challenges in mind, what is the current state of

transcript reconstruction (herein transcript assembly )?

Computational transcriptome assembly of short reads is currently performed

in one of two modes: genome-guided and genome-independent [Garber et al.,

2011]. The difference between these two approaches is use of a high-quality

genome during the assembly process. Popular assembly programs such as

Cufflinks [Trapnell et al., 2010] and Scripture [Guttman et al., 2010] use genome-

aligned short reads as the bases for calling transcripts. Genome-independent

methods include Trinity, Oasis, and Velvet [Haas et al., 2013, Schulz et al., 2012,

Zerbino and Birney, 2008].

As mentioned previously, constraints imposed by the dynamic range of RNA

expression is the major complicating factor with current transcript assembly

programs. These programs frequently generate short transcript fragments (“con-

tigs”) due to poor coverage of long and lowly-expressed transcripts [Rehrauer
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et al., 2013, Steijger et al., 2013]. Merging contigs into continuous transcripts

is a major goal. Improvements will surely come from greater sequencing depth,

longer reads, and mRNA enrichment schemes, albeit with diminishing returns

[Chang et al., 2014b]. See section 5.1.2 for more thoughts concerning transcript

assembly. Longer-term barriers include repetitive sequences, transcript sec-

ondary structure [Wan et al., 2014], and mRNA processing including hydrolysis

and RT processivity [Sharon et al., 2013]. Finally, multiple forms of mRNA enrich-

ment and purification, specifically combining poly(A)+ tail and 5′ CAP selection,

can be used to increase the accuracy of mRNA transcript assembly [Blower

et al., 2013].

1.6 Nucleic Acid ’Omics

Biomedical science has just taken a very sharp step (Figure 1.2) into an era of

cheap genomics. Most questions, including those of gene expression, molecular

interactions, and evolution no longer need be investigated on a small scale.

Indeed formulating questions and hypothesis on a “big scale” should be consid-

ered from the very onset of a project. Combined broad and focused approaches

will allow for maximal gains in knowledge. Yet much of the work required to

reap maximal benefits from genome-wide approaches falls squarely on our own

education and experience. See section 5.4 for concluding thoughts.
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Simultaneous analysis of multiple
site alternative splicing via

RNA-templated DNA-DNA ligation

2.1 Introduction

In eukaryotes, genome size does not scale with complexity, in large part due

to expression of alternative mRNA isoforms. High-throughput sequencing has

revealed that ~58% of Drosophila melanogaster genes and >95% of human

genes produce multiple transcripts per gene [Brown et al., 2014, Pan et al., 2008,

Wang et al., 2008], with many human genes expressing 10 or more isoforms

[Djebali et al., 2012]. Isoform diversity is driven by alternative promoter use

(i.e., alternative first exons), alternative splicing at internal sites, and alternative

polyadenylation. With regard to alternative splicing, more than a quarter of

human genes contain multiple alternative splicing regions separated by stretches

61
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of constitutively-included exons [Fededa et al., 2005]. The combinatorial potential

of such multi-site alternative splicing exponentially increases the number of

possible isoforms, with some human genes predicted to have >100 isoforms and

Drosophila Dscam1, which utilizes four regions of mutually exclusive cassette

exons, predicted to have 37,224!

Although bioinformatic analysis of high throughput sequencing data has proven

incredibly powerful for identifying individual alternative splicing regions and

characterizing the diversity exon utilization within them, current technology is

limited to ~500 nt of contiguous sequence. Thus complete transcripts must

be intuited by piecing together multiple short reads [Boley et al., 2014, Garber

et al., 2011, Grabherr et al., 2011, Haas et al., 2013]. As a result, connectivity

information present in individual mRNA molecules is lost. With regard to distal

alternative splicing regions, this limits our ability to know (1) whether all possible

combinations are actually produced and (2) whether there is any long-range

coordination between different alternative splicing regions.

Linked processing events have been largely observed in reporter constructs

as a dependence of downstream exon inclusion due to promoter-dependent

polymerase speed [Kornblihtt et al., 2013]. There are also reports of coordi-

nated endogenous exon usage [Fagnani et al., 2007], most notably for mouse

Fibronectin (Fn1) [Fededa et al., 2005]. However, for many genes, including the
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notorious Drosophila melanogaster Dscam1, no coordination has been observed

between distinct splicing decisions [Miura et al., 2013, Sun et al., 2013]. Rigorous

examination of coordinated splicing remains technically challenging.

With an end goal of thorough analysis of linked splicing decisions, we designed

a novel experimental approach, SeqZip (Figure 2.1, with which to accurately and

rapidly profile multiple, distant (>1,000 nt) sites of alternative splicing contained

in the same transcript. SeqZip employs RNA-templated DNA ligation of specific

DNA oligonucleotides (oligos), termed “ligamers,” whose targeted sequences

can be separated by hundreds or thousands of nucleotides. Each ~40 nt ligamer

spans the ends of a single alternatively spliced exon, or the beginning and end

of a large block of constitutively included exons, looping out the sequence in

between the ends. Unique ligamer sets hybridized to individual RNA molecules

are then joined by enzymatic ligation with T4 RNA ligase 2 (Rnl2) [Ho and

Shuman, 2002]. The resultant multi-ligamer product reduces the sequence

space occupied by the looped out regions of the target RNA while retaining

targeted exon connectivity. This connectivity can then be assessed by either size

separation or sequencing of ligation products. SeqZip can quantitatively report

on RNA isoform abundance, and has a usable dynamic range spanning 6 orders

magnitude. Further, SeqZip does not use reverse transcriptase (RT), so is not

subject to the problems associated with RT of long RNAs.
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FIGURE 2.1: Principles of the SeqZip Assay

Using an RNA template, custom synthesized DNA oligonucleotide (“ligamers”) that have
either one, or two regions of complementarity to the RNA are allowed to hybridize. Lig-
amers containing one region of complementarity target the terminal, flanking, constant
sequences, and also contain primer sequences for subsequent amplification. Internal
ligamers contain two regions of complementarity, separated by a spacer sequence.
Hybridization of the internal ligamers encourages the RNA between the hybridization
sites to loop out. Once all ligamers are hybridized, Rnl2 is added in excess, and the

ligated DNA is amplified and analyzed.

Here we describe development and validation of SeqZip, its initial application

to investigate potential connectivity among alternatively spliced exons in Fn1

and its use to characterize the immense molecular diversity of Dscam1. We

also suggest other potential applications for SeqZip, including multi-site SNP

detection, multi-site smFISH probes, and Q-PCR improvements.

2.2 Results

2.2.1 Method development and validation

The SeqZip assay requires efficient enzymatic ligation of DNA oligos hybridized

to a RNA template (Figure 2.1). Although numerous ligases can join DNA or
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RNA fragments hybridized a DNA template [Bullard and Bowater, 2006], only

T4 DNA ligase, and recently Chlorella virus DNA ligase, are previously shown

to join DNA fragments hybridized to a RNA template [Lohman et al., 2014,

Nilsson et al., 2001]. The commonly used T4 DNA ligase has a high proclivity

for promiscuous ligation (NTL) [Kuhn and Frank-Kamenetskii, 2005]. Therefore,

we tested the ability of several other commercially available enzymes to perform

ligation reactions with four or five 5′ 32P-labeled 20 nt DNA oligos hybridized to

adjacent positions on either a DNA or RNA template (Figure 2.2). As expected,

all DNA ligases tested [Tth DNA ligase (Thermo), Tsc DNA ligase (Prokaria),

Thermostable DNA ligase (Bioline), T4 DNA ligase (NEB), and E. coli DNA ligase

(NEB)] efficiently joined all four oligos hybridized to the DNA template, and Rnl2

(NEB) lacked this activity (Figure 2.2A, left, lanes 1-6) [Bullard and Bowater,

2006]. Also as expected, T4 DNA ligase generated multiple slower migrating

products, likely resulting from non-templated ligation (Figure 2.2A, left, lane 4).

When the oligos were hybridized to an RNA template, only T4 DNA ligase and

Rnl2 produced ligation products (Figure 2.2A, left, lanes 11-12). Titration of both

enzymes revealed that Rnl2 had significantly higher activity on the RNA template

than did T4 DNA ligase (data not shown). Further, at enzyme concentrations that

yielded maximal ligation efficiencies after 8 hours, Rnl2 produced significantly

less (7.5-fold) non-templated product than did T4 DNA ligase (Figure 2.2A, right,

compare lanes 9,10 and 18,19), indicating that Rnl2 has a lower propensity for
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In Panel A above, lanes 4 and 11 of left gel are T4 DNA Ligase. Lanes 5 and 12 are T4
RNA Ligase 2. See section 2.2.1.1 for Full caption.

promiscuous ligation. Further, the inability of Rnl2 to mediate DNA-templated

DNA-DNA ligation minimizes the possibility that contaminating genomic DNA in

biological samples would confound SeqZip analysis (Figure 2.2A, left, lane 5).

Therefore, we decided to move forward with Rnl2.

We next assessed the feasibility of ligating multiple DNA oligos (ligamers), each

spanning a loop in an RNA template (schematized in Figure-2B). Four different
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ligamers were constructed to loop out various lengths of a 307 nt transcript. Each

26 nt ligamer consisted of 10 nt hybridizing to either side of the loop separated

by a 6 nt spacer. Ligamers were 5′ end labeled with 32P and hybridized to the

template RNA individually, pairwise, in threes, or as a complete set. Ligation

products were only observed when ligamers targeting adjacent RNA sequences

were present in the reaction, and 4-way ligation products were obtained only

when all ligamers were present. Thus DNA oligos designed to loop out various

lengths of a template RNA can be used to condense the connectivity information

in an RNA by more than 3 fold (i.e., a 94 nt RNA was condensed to a 26 nt DNA).

In subsequent studies we were able to push this condensation ratio to >49 fold

(see below).

2.2.1.1 Caption for Figure 2.2

T4 RNA Ligase 2 will catalyze RNA-templated DNA-to-DNA ligation

(left) A screen of ligases was performed (see section 2.4). Ligases were incu-

bated with an RNA or DNA template and a common pool of end-labeled DNA

oligos. Importantly, the DNA template was only 80 nt long and could therefore

only accommodate 4 oligos. Successful ligation is visualized as products of 40,

60, 80, or 100 nt. The doublet visible at 20 and 40 nt represents intermediate

adenylated oligos. The activity of each enzyme was confirmed using the DNA
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template. Of note is the inability of Rnl2 to create ligation products longer than

40 nt using a DNA template. Ligases examined and venders are as follows:

Lanes 1&8) Tth DNA ligase (Thermo), 2&9) Tsc DNA ligase (Prokaria), 3&10)

Thermostable DNA ligase (Bioline), 4&11) T4 DNA ligase (NEB), 5&12) T4 RNA

ligase 2 (Rnl2)(NEB), 6&13, E. Coli DNA ligase (NEB). Lanes 7&15 were not

loaded. Lane 14 contains radio-labeled oligos but no RNA template, Lane 15

contains the radiolabeled template, Lane 16 shows a 5 nt RNA ladder. (right)

A ligation time course was performed for Rnl2 and T4 DNA ligase (section 2.4).

Non-templated ligation (NTL) products are annotated as “x-6*” as there are

only 5 hybridization sites on the RNA template. (b) The ability of Rnl2 to ligate

adjacently hybridizing ligamers was tested by adding combinations of ligamers

to individual reactions and visualizing the mobility of the ligation products on a

denaturing PAGE gel. Only when adjacently hybridizing ligamers are included

in a reaction are bands of the expected mobility visible. (c) Four different in

vitro transcribed RNAs were created by through amplification of a plasmid with

specific pairs of primers, creating a 1,163 nt RNA with unique sequences on the

5′ and 3′ ends. These RNAs were incubated in pairs at different concentrations,

along with a pool of common ligamers hybridizing to the unique sequences and

a ligamer designed to loop out the common, 1,046 nt, internal sequence. After

radioactive (left) or endpoint (right), ligation products were visualized on a native

PAGE gel. Trans-transcript products are not visible in radioactive PCR, are only
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at RNA concentrations >10 nM in the endpoint PCR analysis. (d) “ABC” and

“DBE” RNAs were combined in different ratios (blue) in the same background of

poly(A)+ RNA. Ligation product band intensity (red) was obtained by radioactive

PCR.

2.2.2 Trans-transcript hybridization and ligation is minimal

One concern when looping out sections of RNA is the potential for an individual

ligamer to hybridize simultaneously to two different RNA molecules. This could

result in the undesired formation of ligation products from intermolecular (trans)

rather than intramolecular (cis) hybridization (Figure 2.2C). To investigate this,

we combined equimolar concentrations of two 1,127 nt RNA transcripts, each

containing a common 1,106 nt internal sequence connected to unique 5′ and

3′ termini, with a ligamer set designed to loop out 1,046 nt of the common internal

sequence (Figure 2.2C). Following incubation with Rnl2, ligation products were

PCR amplified. Ligations arising from cis-transcript hybridization result in 177

and 143 nt PCR products, whereas ligations from trans-transcript hybridization

result in 165 and 155 nt PCR products. Trans hybridization efficiency should

be much more sensitive to RNA concentration than cis hybridization efficiency.

Consistent with this, trans hybridization products were only abundant in end-

point PCR reactions when the two RNA targets were ≥10 nM, whereas cis

hybridization products were readily detectable for reactions containing as little
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as 0.01 nM target RNA (Figure 2.2C, lower left). Even in samples containing 10

or 50 nM target RNA, radioactive PCR revealed that cis hybridization products

predominated at low cycle numbers (Figure 2.2C, lower left). As detailed below,

both ligamer hybridization and ligation for SeqZip analysis of complex samples

are carried out on magnetic beads on which poly(A) RNA derived from 5 µg of

total RNA is adhered. Based on calculations of known mRNA abundances, the

vast majority of cellular mRNAs are present at concentrations well below 1 nM

on these beads. Thus trans hybridization is highly disfavored compared to cis

hybridization under these conditions.

To be useful for measuring the abundance of isoforms, SeqZip should faithfully

recapitulate input isoform ratios. To test the ability of SeqZip to measure input

isoform ratios, we combined two RNA transcripts at ratios varying from 1:1

to 1:100 (Figure 2.2D). Output ratios determined by radioactive PCR were

indistinguishable from input. With regard to dynamic range, we have obtained

ligation products from as little as 903 molecules (50 ∗ 10−18 mole in 30 µL) of

target mRNA (data not shown).

2.2.3 Reverse transcriptase-based detection versus SeqZip

As a first test of the SeqZip method for measuring relative spliced isoform

abundances of an endogenous target, we chose human CD45 (aka PTPRC)
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mRNA [Zikherman and Weiss, 2008]. CD45 is expressed in T-cells, where mRNA

isoforms (R) contain various combinations of exons 4, 5, and 6 (Figure 2.3A).

Jurkat cells (resembling naïve primary T-cells) predominantly express isoforms

R56, R5 and R0 (R0 denotes exclusion of all three exons) while U-937 cells

(resembling activated T-cells) predominantly express R456 and R56 [Yeakley

et al., 2002]. These three cassette exons are adjacent to one another and

together comprise only 585 nt, making this region of CD45 mRNA amenable to

analysis by both RT and SeqZip, and thus provided an excellent benchmark for

comparison between methods. Whereas the RT-PCR products varied in length

between 365 and 848 nt, shorter SeqZip-PCR products varied between 132

and 260 nt (Figure 2.3B), representing a ~3-fold compression of the connectivity

information.

Poly(A)+-selected RNA samples from Jurkat and U-937 cells, or an equimolar

combination of the two (Mix), were assessed by RT or SeqZip, both followed

by radioactive PCR. Both methods reported the expected isoform profiles for

every sample and relative isoform abundances reported by the two techniques

were remarkably similar (Figure 2.3C). Importantly, SeqZip did not underreport

the abundance of R456 in the Mix sample (which contained all four isoforms),

even though detection of R456 required three more ligation events than R0.

Thus SeqZip is a robust method for detecting and quantifying spliced isoforms of

endogenous transcripts.
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FIGURE 2.3: SeqZip on endogenously expressed RNAs

Catagories in panel F are as follows: “SeqZip:Observed” is the signal obtained from
direct visualization of ligation products. “SeqZip:Expected” the percentage of isoforms
expected from simple multiplcation of individual product frequencies. “PacBio:Observed”
is the isoform percentage obtain from direct sequencing of Fn1 cDNAs on the PacBio

platform. See subsection 2.2.3.1 for full figure caption.
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2.2.3.1 Figure 2.3 Caption

SeqZip on endogenously expressed RNAs

(a) Schematic demonstrated analysis of isoforms of the human CD45 gene by

SeqZip. (b) Denaturing PAGE gels showing products of RT (top) or SeqZip

(bottom) CD45 obtained from two different human T-cell lines, or a 1:1 mixture of

the two. (c) Quantified band intensity from the gels shown in (b) (top) and a mirror

image of the lane profile from the mix lanes (bottom). (d) When considering

the cassette exons EDA (blue), and the Variable region (light blue), mouse Fn1

can produce 6 different isoforms. Isoform nomenclature used in the rest of the

figure is shown next to the block schematic. Filled boxes depict exons, diagonal

lines indicate isoform sequences not shown, straight lines show absence of exon

in the final mRNA. (e) schematic showing more detail for the three regions of

Fn1 alternative splicing investigated. Also shown are different ligamer pools

(red). Looped regions indicated by dashed red lines, priming sequences as black

arrows. (f) SeqZip was performed on poly(A)+ RNA from various Fn1 modified

cell lines (see Figure 2.4). Ligation products were amplified via radioactive

PCR. (g) isoform band intensities are from (f) were quantified in triplicate and

are plotted. Black bars indicate individual exon intensities (EDA; V-Region), or

calculated expected frequencies (black bars under “Combination pool”). Shown

in light grey are observed combination isoform intensities and when available,
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frequencies of PacBio reads from RNA of each sample (grey).

2.2.4 SeqZip maintains connectivity and abundance between
many sites of alternative splicing

Mouse Fn1 contains three well-characterized sites of alternative splicing: Extra

Domain B (EDB,B), which is included in embryos but excluded in almost all

adult tissues except brain; Extra Domain A (EDA (A), which displays a more

variable alternative splicing pattern both across developmental stages and adult

tissue types; and Variable Region (V) wherein three alternative 3′ splice sites

lead to 120, 95, or 0 additional amino acids in FN1 (Figure 2.3D). One study

has suggested that EDA exclusion is associated with preferential use of the

most promoter-proximal 3′ splice site (120) in the V region [Fededa et al., 2005].

However, another concluded that splicing of the EDA and V regions occurs

autonomously [Chauhan et al., 2004]. These contrary results are possibly

explainable by differences in both mRNA source (MEFs vs. adult tissues, re-

spectively) and quantitation methods (region-specific or exon-specific RT-PCR,

respectively).

Together, the EDA and V regions produce up to six different spliced isoforms (Fig-

ure 2.3D). These two alternative splicing regions are separated by constitutively

included exons 34-39 comprising 815 nt. Analysis of the EDA and V exons using

traditional RT-PCR generates cDNAs ranging in size from 1 to 1.6 kilobases (kb).
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Using SeqZip, we could compress the exon connectivity information >5-fold into

uniquely sized ligation products (139 to 318 nt), greatly simplifying connectivity

and abundance analysis.

To examine possible coordination between the EDA and V regions, we first made

ligamer sets that reported on each region individually (individual pools A and

V) and in combination (Figure 2.3E). Using these ligamer pools, we obtained

ligation products from poly(A)+ RNA of MEF cells and analyzed them using

radioactive PCR (Figure 2.3F and G). EDA and V isoform distributions were

analyzed separately or in combination (Figure 2.3F, top row, black bars). The

expected isoform distributions for all EDA and V combinations, assuming the null

hypothesis of no coordination, were calculated from the individual frequencies

(Figure 2.3G, light grey bars). Connected splicing decisions should appear as

deviations from null-hypothesis frequencies. In no case did the SeqZip data

exhibit any significant deviance from the null hypothesis expectation. Thus, at

least in primary MEFs, EDA and V region alternative splicing appears to be

independently regulated.

To directly test the effects of EDA inclusion or exclusion on splicing of the V

region, Chauhan et al. [2004] used homologous recombination to create mice

where the intronic splicing enhancers were modified to favor either constitutive

inclusion (+/+) or exclusion (-/-) of exon 33. They also analyzed the parental
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strain (wt) and mice heterozygous for the modified locus (+/-). We analyzed

RNA obtained from immortalized MEFs of all four genotypes using SeqZip as

above(Figure 2.3G, lower 4 rows). While we did observe constitutive inclusion or

exclusion of the EDA exon as expected, in none of the lines did we observe an

effect of EDA inclusion or exclusion on the V-region. We further confirmed these

mRNA isoform distributions by directly sequencing full-length RT-PCR products

on the PacBio platform (Figure 2.3G, grey bars). Thus, our results are consistent

with the findings of Chauhan et al. [2004] that the EDA and V regions are indeed

autonomous with regard to splicing.

2.2.5 Dscam1 analysis by high-throughput sequencing

Unquestionably, the most challenging system for measuring multi-site alternative

splicing exon connectivity and isoform abundance is Dscam1 (Figure 2.4A).

Dscam1 has four regions of alternative splicing (exons 4, 6, 9 and 17), all utilizing

mutually exclusive cassette exons (with 12, 47, 33 and 2 variants, respectively).

Thus there are 37,224 possible Dscam1 mRNA isoforms, and previous studies

have suggested that all isoforms have the potential to be generated [Neves

et al., 2004, Sun et al., 2013, Zhan et al., 2004]. Consistent with this, a recent

study examining Dscam1 expression in individual neurons showed that all exon

4 variants are used and are incorporated in a stochastic and probabilistic manner

[Miura et al., 2013]. Only one study so far has attempted to assess the extent
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to which specific exon choices in the different cassette regions influence one

another [Sun et al., 2013]. That study examined connectivity between exons 4, 6

and 9 using an RT-PCR-based method dubbed “CAMSeq”.

Potentially problematic for RT-PCR-based approaches are long stretches of

sequence identity in the constitutive exons separating each cluster, as well as

the high sequence similarity between individual exon 4, 6 and 9 variants (Figure

2.5). Long regions of sequence homology favor template switching during both

RT and PCR [Houseley and Tollervey, 2010, Judo et al., 1998]. That is, an

incompletely extended DNA strand can hybridize to a different template during

the RT step or any subsequent PCR cycle, leading to novel “switched ” isoforms

not present in the original biological sample.

To test how template switching might affect Dscam1 isoform interrogation, we

developed an RT-PCR-based Triple-read sequencing method for examining exon

connectivity between alternative splicing regions 4, 6 and 9, similar to CAMSeq

(Figure 2.4B, & section 2.4). To specifically assess template switching, we gen-

erated four full-length cDNA clones (Dscam11,33,9, Dscam112,32,9, Dscam11,24,6,

and Dscam17,9,6; where the superscripted numbers indicate the included 4.X,

6.Y, and 9.Z exon variants respectively). Runoff RNA transcripts were mixed

together in three different ratios (1:1:1:1, 3:3:1:1, and 5:1:1:1) and the mixtures

were then processed in parallel to generate deep sequencing data. Indicative
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of template switching, many novel transcript isoforms containing exon combi-

nations not present in original control transcripts were observed (Figure 2.4C).

These template-switched isoforms made up 34% to 55% of the total isoforms

detected, with many being significantly more abundant than one or more of the

input isoform(s). We next analyzed similar control data from the CAMSeq study

[Sun et al., 2013]. CAMSeq proved to be much more robust than our Triple-read

protocol for accurately reporting both individual exon and individual transcript iso-

form abundances over five orders of magnitude. Nonetheless, template-switched

isoforms were present in the CAMSeq data, with many switched species be-

ing more abundant than the lowest input species. Further, many additional

invasive isoforms of unknown source were detected. Although the template-

switched and unknown source isoforms represented just 0.6–0.94% of total

reads, they represented 99.9% of all isoforms detected (5,378–5,906 switched

and source-unknown isoforms versus 8 input isoforms) (Figure 2.5B). Thus,

extensive template switching in both RT-PCR-based approaches (Triple-read and

CAMSeq) compromised their ability to accurately identify the exact isoform set

present in the original sample and faithfully report their relative input levels.

The technical issue of template switching can be greatly minimized using SeqZip

and ligamers containing an exon-specific barcode in the linker region (Figure

2.4D). The added sequence diversity and decreased length make SeqZip ligation
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products, in principle, much less prone to template switching (Figure 2.5A). Exon-

specific barcodes also ensure unambiguous isoform alignment. To apply SeqZip

to Dscam1, we designed ligamers targeting each variant exon in clusters 4, 6,

and 9 plus constitutive exons 3, 5, 7–8, and 10 (97 ligamers in all) (Figure 2.4E).

Whereas the exon 3–10 region ranges in size from 1,722–1,751 nt (median =

1,734 nt) in Dscam1 mRNAs, our ligamer design compresses this ~5-fold to a

356 nt median-length, 7 ligamer-containing (6 ligation events) products. These

products could be completely sequenced in a single Illumina MiSeq paired-end

250 nt run.

To assess (1) maintenance of input isoform ratios, (2) template switching during

PCR amplification, and (3) inappropriate ligamer hybridization during the liga-

tion reaction, we performed control experiments containing 3 different in vitro

transcribed Dscam1 isoforms mixed at a 1:10:100 ratio in a background of total

RNA from mouse Hepa 1-6 cells (Figure 2.6A, section 2.4). Separate ligation

reactions each containing a 97-ligamer pool wherein two highly expressed ex-

ons within each cluster were differently coded between the pools allowed for

detection of template-switched isoforms, both in our control experiments and in

biological samples. Following ligation, differentially coded samples are mixed

together, subjected to PCR and sequenced (Figure 2.4C, 2.5B & section 2.4).

As expected, SeqZip faithfully maintained Dscam input isoform abundance in

the control samples (Figure 2.5B). Further, we detected no template-switched
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isoforms (Figure 2.5C). Thus, as expected, our ligamer design strongly disfa-

vors template switching during PCR amplification. This also held true for a

complex biological sample (poly(A)+-selected RNA from S2 cells) where the

same differentially coding approach revealed just 17 of 111,242 reads (0.015%)

corresponding to switched isoforms (Figure 2.5C).

Given the high sequence similarity between variant exons within each cluster,

ligamer hybridization to near cognate sequences is potentially problematic. Lig-

amer hybridization is specified by the sequences at the ends of target exons

(Figure 2.1). To assess the potential for mis-pairing, we calculated the free

energy of hybridization [Reuter and Mathews, 2010] between each ligamer and

all exon variants within its target cluster. As expected, cognate ligamer-exon

pairs had predicted hybridization energies lower than ∆G◦ = -67 kcal/mol, with

the closest near-cognate pair being at least 12 units higher (Figure 2.7, section

2.4). In the control samples, only 642 of 50,475 high-confidence alignments

(1.3%) contained ligamers for exons not present in any input transcript, with the

vast majority of these species (221/236) being represented by 3 or fewer reads.

The two highest near-cognate hybridization products had abundances well below

those of the true targets (Figure 2.4C, 2.5B, 2.6D, 2.6E), indicating that, while

detectable, near-cognate hybridization is not a major problem for SeqZip.
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2.2.6 Analysis of Dscam1 transcripts

Having validated SeqZip as a reliable approach for analyzing Dscam1 isoforms,

we next analyzed RNA samples from S2 cells, 4–6 and 14–16 h embryos. Be-

tween ~450,000–1,000,000 reads were obtained for each sample. In total, 8,397

of the possible 18,612 unique isoforms were detected (Figure 2.4G). Individ-

ual isoform abundances were highly correlated in both technical and biological

replicates (Figure 2.4F; r=0.95-0.8). Of the 97 possible exons represented in

our ligamer set, all were detected except 6.11, for which substantial evidence

indicates it to be an unused pseudo-exon [Neves et al., 2004, Sun et al., 2013,

Watson et al., 2005, Zhan et al., 2004]. Thus absence of exon 6.11 reads from

our libraries additionally confirms the specificity of our technique. Yet another
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confirmation was the individual exon utilization patterns observed in S2 cells,

the only sample directly comparable between the SeqZip and CAMSeq datasets

(Figure 2.9A & B). Overall, the S2 exon utilization patterns were remarkably

similar between the two analyses. The exception was exon 6.47, which was

well represented in the CAMSeq data, but undetectable in the SeqZip data.

We currently do not understand this failure of ligamer 6.47 to capture exon

6.47 containing transcripts. Nonetheless, the similarity between the SeqZip

and CAMSeq data with regard to all other exon abundances demonstrates the

general robustness of SeqZip for accurately reporting exon abundances in highly

complex samples.

Comparison of exon utilization patterns across biological samples in our SeqZip

data revealed a substantial increase in diversity going from S2 cells (least

diversity) to 4-6 hour embryos (intermediate) to 14-16 hour embryos (highest)

(Figure 2.8A). As previously reported, the utilization patterns across clusters 4

and 9 exhibit dramatically change during development, whereas the utilization

pattern across cluster 6 remains relatively static [Celotto and Graveley, 2001,

Miura et al., 2013, Neves et al., 2004, Sun et al., 2013, Zhan et al., 2004]. S2

cells are characterized by poor utilization of exons 4.[2,9], and almost exclusive

utilization of exons 9.[6,9,13,30,31]. This pattern is characteristic of hemocytes

[Watson et al., 2005], consistent with the macrophage-like nature of S2 cells

[Schneider, 1972]. Whereas 4-6 hour embryos are very similar to S2 cells



Chapter 2. Multiple-site alternative splicing investigation using SeqZip 86

in their cluster 4 and 9 exon utilization patterns, 14-16 hour embryos show a

significant increase in exon diversity, especially in cluster 9. New isoforms are

likely neuronal in origin. To compare the expression levels of hemocyte- and

non-hemocytes indicative isoforms within each sample, we color coded them in

the scatter plots in Figure 2.8B. This makes it easy to see that as a class, the

“hemocyte-indicative” isoforms (i.e., those lacking exon 4.[2,9] or containing exon

9.[6,9,13,30,31]) dominate all samples in terms of abundance. As development

proceeds, however, “non-hemocyte indicative” isoforms increase in both number

and abundance.

For all three samples (S2 cells, 4-6 h and 14-16 h embryos), we calculated

expected pairwise and triple combination frequencies in individual transcript

isoforms by simple multiplication of individual variant exon frequencies in each

cluster. Plotting these expected frequencies against observed frequencies (Fig-

ure 2.8B) revealed no obvious outliers. Therefore, consistent with previous

analyses [Neves et al., 2004, Sun et al., 2013], we conclude that there is no

coordination between Dscam1 clusters 4, 6 and 9 with regard to alternative exon

choice.
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CAMSeq or SeqZip. Shaded triangle and box indicate isoforms containing exons 9.31
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2.3 Discussion

Here we describe development and implementation of a new method, SeqZip, for

compressing sequence information of long RNAs while maintaining connectivity

between distant regions of individual molecules. Completely orthogonal to

traditional methods of RNA sequence investigation such as RT-PCR, SeqZip can

be used to quickly and efficiently examine complex alternative splicing events,

and is particularly useful for investigating genes harboring multiple distal sites

of alternative splicing. Using SeqZip to investigate the splicing coordination in

mouse Fn1 transcripts and in Drosophila melanogaster Dscam1 we found no

evidence of splicing coordination in either gene.

2.3.1 Deconvoluting Dscam1

Many of the Dscam1 variant exons arose from exon-duplication and, therefore,

have very high sequence similarity [Lee et al., 2010]. The extreme diversity of

Dscam1 has been implicated in important biological functions, including neuronal

self recognition and immune function [Watson et al., 2005, Wojtowicz et al., 2004,

Zipursky and Grueber, 2013]. While flies coding for 4,752 unique isoforms have

been shown to display equivalent neurite formation as wild-type controls, animals

expressing 1,152 isoforms display neuronal branding defects, supporting the
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view that diversity of molecules, and not sequence, is essential for biological

function [Hattori et al., 2009].

Multiple technical hurdles currently hamper characterization of Dscam1 isoforms:

(1) determining the relative utilization of individual exons within each cassette

region, while maintaining connectivity information between cassettes using cur-

rent Illumina-platform RNA-Seq read lengths is currently not possible [LeGault

and Dewey, 2013, Neves et al., 2004, Zipursky and Grueber, 2013]; (2) sequenc-

ing full-length mRNAs expressed across 5 orders of magnitude is technically

challenging and costly [Hattori et al., 2008, Sharon et al., 2013]; and (3) due

to sequence similarity between Dscam1 isoforms, template switching artifacts

complicate high-throughput sequencing library preparation.

Recently, two studies have lent additional support to a longstanding hypothesis

that Dscam1 isoforms are produced via stochastic processing. The first is an

elegant genetic investigation into exon 4 variants, demonstrating that changes in

variant expression are not due to any requirement at a specific time, cell, or tissue,

and instead is determined by modulating the probability of choosing certain

variants [Miura et al., 2013]. In the second study, Sun et al. [2013] employed

a novel high throughput sequencing approach (CAMSeq). CAMSeq begins by

amplifying barcoded 2 kb Dscam1 RT products circularized into ~1 kb inserts

containing exon clusters 4, 6 and 9. Circularized products are amplified again,
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and deep sequenced via sequential hybridization of three constitutive exon-

specific primers, sequencing exons 4, 6, and 9. CAMSeq is extremely similar to

the Triple-read approach described above. CAMSeq analysis of Dscam1 diversity

in multiple Drosophila melanogaster (S2 cells, embryos, larva, pupae, and adult

brains) led the authors to conclude that all possible isoforms are expressed at all

developmental stages, again in a stochastic fashion.

Two potential complications of the CAMSeq approach are: (1) chimera forma-

tion via intermolecular ligation during the circularization step, and (2) template

switching during the RT step or either round of PCR. Using a clever barcoding

scheme, the authors were able to determine that chimeras represented ~1% of

their CAMSeq libraries, indicating that this is a non-trivial problem. Indeed, in

control libraries made from a mixture of 8 in vitro transcribed Dscam1 isoforms,

chimera formation resulted in detection of >5,000 other isoforms not present in

the original mix, with ~500 being represented by ≥ 10 reads (Figure 2.5B).

Whereas barcoding can distinguish bona fide isoforms from chimeras, there is

no way to distinguish isoforms present in the original RNA sample from artificial

combinations created by template switching. Template switching can occur

during the initial RT step [Houseley and Tollervey, 2010], or during either PCR

amplification step [Judo et al., 1998, Meyerhans et al., 1990]. With these potential

experimental complications in mind, we decided to investigate and characterize
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isoforms of Dscam1 using the SeqZip method.

Our analysis of Dscam1 yielded a very similar exon usage frequency to that of

CAMSeq at each stage examined (Figure 2.9). Additionally, we also observed

no connectivity between exon choices from any of the three clusters (Figure

2.8B). We do observe increased exon 9 diversity in 14-16 h embryos. Taken

together, our data also support the view that flies use a complex mixture of

Dscam1 isoforms, produced via stochastic and probabilistic splicing, in order

to discriminate self from non-self neuronal processes [Zipursky and Grueber,

2013].

Even a relatively shallow analysis of the human transcriptome using single-

molecule sequencing on the PacBio platform has revealed a rich population of

previously unreported isoforms, and thorough analysis of complex spliced genes

is becoming a reality [Sharon et al., 2013]. However, the most interesting spliced

genes often produce long (>1,500 nt) transcripts that are often expressed in

the central nervous system [Park and Graveley, 2007]. While human Dscam

does play a role in the neurologic disorder down syndrome, it does not undergo

extensive splicing [Yamakawa et al., 1998]. Unlike Dscam, human protocadherin

and neurexins are heavily processed and, similar to Dscam1, are involved in

neuronal wiring [Ushkaryov et al., 1992, Wu and Maniatis, 1999]. Recently,

PacBio was used to rigorously determine neurexin isoforms, and found that
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these genes do produce many different isoforms, but lack any coordination in

their alternative processing events [Treutlein et al., 2014]. Perhaps efficient

cell-cell recognition is accomplished not by an ordained and complicated system,

but by random and frequent shuffling of exons.

2.3.2 Other applications of SeqZip

A potentially more routine use of the SeqZip methodology is highlighted by

our analysis of mouse Fn1, where we simultaneously measured 12 different

alternative splicing isoforms and determined their relative expression using

traditional PAGE. While it is intriguing to think that inclusion of the EDA exon in

this gene influences alternative splicing decisions over a kilobase and multiple

exons away, we saw no evidence for this type of regulation in any of the cell lines

investigated.

SeqZip could also be used to assess the integrity of long RNAs, extended

3′ UTRs [Wang and Yi, 2013], or piRNA-precursor transcripts [Li et al., 2013a]. A

more routine laboratory task where SeqZip could prove useful is Q-PCR. SeqZip

does not include an RT step, providing an orthogonal means of measuring RNA

abundance. Also, any sequence can be placed between each ligamers two

regions of complementarity. Therefore sequences for custom priming, restriction

digestion, recombination, etc., can be introduced allowing for quantification
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or manipulation of ligation products. Analysis of ligation products can even be

multiplexed, allowing for simultaneous generation and analysis of internal controls

and primer sets. As demonstrated by our Dscam1 study, SeqZip ligation products

can be analyzed with high-throughput sequencing via incorporation of platform-

appropriate priming sequences either in the terminal PCR primers, or in the

spacer sequences of the internal ligamers. Therefore, this robust methodology,

which only takes 1.5 days to complete, complements more traditional analysis

via RT-PCR.

2.4 Materials and Methods

Cell lines and Drosophila melanogaster stocks

U-937 (CRL-1593.2), Jurkat (TIB-152), and S2 (CRL-1963) cell lines were

obtained from ATCC. Primary MEF cells were from C57BL/6J strain back-

ground and were obtained from The Jackson Labs. MEF lines were im-

mortalized using SV40 retroviral infection. Mixed Drosophila melanogaster

Oregon-R males and females were maintained at 25 ◦C. Embryos 4-6 hour,

and 14-16 were collected.

Ligamer design The 5′ and 3′ most sequences of a target sequence (ex. exon

or multiple exons) were obtained from online databases (Ensembl, UCSC,
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etc.). The Tm of these sequences was normalized to 60 ◦C ± 5 ◦C ac-

cording to nearest-neighbor rules [Xia et al., 1998] by adding or removing

flanking nucleotides. Most regions of complementarity fell 12–25 nt in

length. After assembling complementary region sequences, matching

sequences (i.e. the 5′ and 3′ edge sequences of a specific exon) were

combined with a short spacer sequences included between them. For

this study the spacer was restricted to (TGA)*N, where N was typically

2. With the full sequence now assembled, the reverse complement was

taken, ligamers requiring 5′ phosphorylation for subsequent ligation were

marked, and ligamers were ordered in 96 well format from Integrated DNA

Technologies (IDT). Ligamers were reconstituted to 1 µM in sets targeting

specific regions on a specific gene and subsequently diluted further for use

in the SeqZip protocol.

SeqZip Total RNA was isolated from a cell line or tissue type using TriReagent

(MRC) according to the manufacturer’s instructions. Poly(A)+ RNA was

isolated using the Poly(A)Purist MAG kit from Ambion (AM1922). Poly(A)+

RNA was not eluted from magnetic beads, and after the last wash step,

beads were aliquoted into appropriate amounts and reconstituted in hy-

bridization buffer (60 mM Tris-HCl pH 7.5 @ 25 ◦C, 1.2 mM DTT 2.4 mM

MgCl2, 480 µM ATP) including 10 nM appropriate ligamers. Hybridization

was performed in a thermocycler by heating samples to 62 ◦C for 5 minutes
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and cooling to 45 ◦C in 3 ◦C by 10 minute increments. Samples were left at

45 ◦C for 1 hour, then cooled again in 3 ◦C by 10 minute increments until

37 ◦C was reached, followed by enzyme addition. T4 RNA ligase 2 (NEB,

M0239) was added to compose 10% of final volume (ex. 2.5 µl in 22.5

µL previous samples). At this point the samples were in 1X ligation buffer

(51 mM Tris-HCl pH 7.5 @ 25 ◦C, 2.01 mM DTT, 5 mM KCl, 2 mM MgCl2,

400 µM ATP, 3.5 mM (NH4)2SO4, 5% glycerol). Samples were incubated

at 37 ◦C for 8–16 hours. Ligation products were amplified by PCR and

analyzed by either native PAGE or sequencing.

PacBio FN1 Analysis cDNA prepared using primers designed to amplify EDB-

>IIICS region was submitted for library construction using “The DNA Tem-

plate Prep Kit 2.0 ”and sequenced on a PacBio RS II. Circular Consensus

reads were aligned to an index of FN1 isoforms using BLAT.

MiSeq Library Preparation Individual SeqZip ligation reactions were amplified

for 12 cycles using common primers, in individual PCR reactions. After

amplification, PCR reactions were run on a 5% acrylamide gel, and DNA in

the appropriate size range of full-length ligation products was cut from the

gel, and eluted. Eluted DNA was precipitated, and amplified for another

22 cycles using primers containing Illumina priming sequences with inte-

grated barcodes. These PCR reactions were cleaned using a PCR clean
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up kit (Qiagen) and quantified. Samples were mixed and submitted for

sequencing on the MiSeq instrument, paired-end 250 nt read option.

MiSeq Library Analysis Paired reads were split according to the index read.

Libraries were aligned against an index of all possible Dscam1 ligamer

arrangements using bowtie2 [Langmead and Salzberg, 2012] in the “-very-

sensitive-local” mode and constrained using “-no-discordant” to only look

for reads where both pairs aligned to the same isoform. Read counts per

isoform were extracted using the SAMtools software package [Li et al.,

2009a]. Analysis of count values and graph generation was performed

using R [R Development Core Team, 2008].

Triple Read Sequencing To interrogate, RNA samples, reverse transcription

was performed using 5 µg total RNA, Superscript II (Invitrogen) and random

hexamer at 42o C for one hour. Three strand-switching control experi-

ments were performed by mixing plasmids encoding isoforms Dscam11.33.9,

Dscam112.32.9, Dscam11.24.6, and Dscam17.9.6 in the ratios of 3:3:1:1, 1:1:1:5,

and 1:1:1:1. PCR primers specific to exon 3 (Not1Ex3For: TAT CGG CGG

CCG CGG ACG TCC ATG TGC GAG CCG) and exon 10 (Ex10RevNot1:

ATA TCG CGG CCG CGA GGA TCC ATC TGG GAG GTA) with a Not

I restriction enzyme site on the 5′ ends were used to amplify the cDNA

or plasmids containing the region encompassing exons 4, 6, and 9 using
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Phusion polymerase (NEB) with an annealing temperature of 55 ◦C and 1

minute extension. PCR products were gel purified and digested with Not1

for 2 hours at 37 ◦C, followed by a heat inactivation at 65 ◦C for 20 minutes.

0.5 µg of the digested PCR products were circularized in 500 µL 1X T4

ligase buffer (NEB) with 1 µl T4 ligase at 18 ◦C overnight. Inverse PCR

was then performed with primers specific to exons 7 (PEex7Rev:CAA GCA

GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC

GCT CTT CCG ATC TAT GAA CTT GTA CCA T) and 8 (PEex8For: AAT

GAT ACG GCG ACC ACC GAG ATC TAC ACT GTT TCC CTA CAC GAC

GCT CTT CCG ATC TAA GTG CAA GTC ATG G) that containing Illumina

paired-end clustering sequences using Phusion polymerase (NEB) with a

55 ◦C annealing temperature and 30 second extension. Libraries were gel

purified, quantified and clustered on a Genome Analyzer IIx paired-end flow

cell on an Illumina cluster station using the standard clustering protocol.

Sequencing was performed on an Illumina GAIIx by modifying the protocol

for paired-end sequencing with an index read. Briefly, read 1 was per-

formed for 24 cycles with a primer complementary to the 5′ end of exon

8 (Ex8For:ACG ACG CTC TTC CGA TCT AAG TGC AAG TCA TGG).

The flow cell was denatured to remove the exon 9 sequencing products, a

primer complementary to exon 3 (Ex3For:CCC GGG ACG TCC ATG TGC

GAG CCG) was annealed, and read 2 sequenced for 12 cycles. Next, the
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flow cell was re-clustered using the paired-end protocol and read 3 per-

formed for 20 cycles using a primer complementary to exon 7 (Ex7Rev:GAA

CCG CTC TTC CGA TCT ATG AAC TTG TAC CAT).

Base calling was performed from the raw images using the Firecrest,

Bustard, and Gerald software modules of GAPipeline-1.4.0 and a matrix.txt

file for a PhiX lane from a previous flow cell for calibration. This generated

a single FastQ file per lane containing the three reads from each cluster

concatenated together. The reads within the FastQ files were parsed to

separate the three reads and the identity of each exon within each cluster,

and thus the full isoform, determined by matching to a database of known

exon sequences using Perl scripts.

Determining Sequencing Similarity of Dscam1 Sequences Endogenous Dscam1

sequences were obtained from genomic build DM3 using BEDTools [Quin-

lan and Hall, 2010]. All possible Dscam1 were assembled using a PERL

script. Five hundred random isoforms were obtained, and aligned using

TCOFFEE [Notredame et al., 2000] in the Jalview package [Waterhouse

et al., 2009]. Consensus scores of alignments were exported and graphed

in R. The same analysis was performed on Dscam1 ligation products,

except ligamer sequences were used in place of endogenous exonic se-

quences.
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Trans-transcript RNA design PCR was performed using oligos specified in Ta-

ble S2 in desired combinations. These oligos have partial complementarity

to the open reading frame (ORF) of human eiF4A3. A plasmid containing

this ORF was used (RefSeq: NM_014740 ) as a template for PCR. The

sequences of the individual RNAs were confirmed by sequencing.

Reverse Transcription Reverse transcription was performed using SuperScript

III (Invitrogen), 200 ng poly(A) selected RNA, and either a gene-specific

antisense primer or anchored oligo(dT).

Radioactive PCR A 5′ 32P-radiolabeled antisense primer was used in PCR

reactions run for a limiting number of PCR cycles. Multiple cycle numbers

were performed to test for expected increases in signal (typically 15,18,

and 21 cycles). Reactions analyzed on denaturing acrylamide gels to size

resolve ligation products. Bands were quantified using a Typhoon imager

(GE Healthcare) and the ImageQuant software package (GE Healthcare).

Endpoint PCR Using a 25 µl reaction volume, after 8 hours of ligation, 2 µl

reaction volume was added into a 20 µl PCR reaction with 500 nM primers

and 50% Green master mix from Promega. Samples were amplified for 35

cycles using a hybridization temperature 5 ◦C below the Tm of the primers.

10 µl of each PCR reaction was run out on an appropriate percentage

native 29:1 (acrylamide: bis-acrylamide) native acrylamide gel.
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Statistical Analysis Error bars represent the standard error of the mean of the

experimental replicates. Errors were propagated from individual standard

deviations according to the formula ∆Z = Z(SQRT(((∆A/A)^2)+((∆B/B)^2)))

where Z = A/B.

2.5 End Matter
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Chapter 3

An Ancient Transcription Factor
Initiates the Burst of piRNA

Production during Early Meiosis in
Mouse Testes

3.1 Preface

The contents of this Chapter have been published previously as:

Li, X. Z., Roy, C. K., Dong, X., Bolcun-Filas, E., Wang, J., et al.
(2013a). An ancient transcription factor initiates the burst of piRNA
production during early meiosis in mouse testes. Molecular cell,
50(1):67–81

For information not contained in this chapter (i.e. supplemental tables), please

refer to the following locations:

102
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NCBI: http://www.ncbi.nlm.nih.gov/pubmed/23523368

Molecular Cell: http://www.cell.com/molecular-cell/abstract/S1097-2765(13)

00172-X

Supplemental tables can also be found on the Zamore Lab website: http:

//www.umassmed.edu/zamore/publications/datasets/

3.2 Introduction

P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) can be distin-

guished from other animal small silencing RNAs by their longer length (typically

23–35 nt), 2′-O-methyl-modified 3′ termini, and association with PIWI proteins,

a distinct subgroup of Argonaute proteins, the small RNA-guided proteins re-

sponsible for RNA interference and related pathways [Aravin et al., 2008, Cenik

and Zamore, 2011, Farazi et al., 2008, Kim et al., 2009, Kumar and Carmichael,

1998, Thomson and Lin, 2009]. piRNA production does not require Dicer, the

double-stranded RNA endonuclease that makes microRNAs (miRNAs) and

small interfering RNAs (siRNAs), and piRNAs are thought to derive from single-

stranded rather than double-stranded RNA [Houwing et al., 2007, Vagin et al.,

2006].

In most bilateral animals, germline piRNAs protect the genome from transposon

activation, but also have other functions [Aravin and Hannon, 2008, Aravin et al.,
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2007a, 2001, Ashe et al., 2012, Brennecke et al., 2007, Carmell et al., 2007,

Hartig et al., 2007, Kuramochi-Miyagawa et al., 2008, Lee et al., 2012, Shirayama

et al., 2012, Vagin et al., 2004]. A few days after birth, the majority of piRNAs in

the mouse testis are pre-pachytene piRNAs; 25% of these piRNA species map

to more than one location in the genome. A second class of piRNAs, typically

derived from intergenic regions, has been reported to emerge in the mouse testis

14.5 days postpartum (dpp), when the developing spermatocytes synchronously

enter the pachytene phase of meiotic prophase I. These pachytene piRNAs

compose >95% of piRNAs in the adult mouse testis. Loss of genes required

to make pachytene piRNAs blocks production of mature sperm [Aravin et al.,

2001, Deng and Lin, 2002, Reuter et al., 2011, Vourekas et al., 2012]. What

triggers the accumulation of pachytene piRNAs when spermatocytes enter the

pachynema is unknown.

In Caenorhabditis elegans, each piRNA is processed from its own short RNA

polymerase II (Pol II) transcript [Gu et al., 2012]. In contrast, insect and mouse

piRNAs are thought to be processed from long RNAs transcribed from large

piRNA loci. Supporting this view, a transposon inserted into the 5′ end of the

flamenco piRNA cluster in flies reduces the production of flamenco piRNAs

168 kbp 3′ to the insertion, suggesting that it disrupts transcription of the entire

locus [Brennecke et al., 2007]. High-throughput sequencing and chromatin

immunoprecipitation (ChIP) has been used to define the genomic structure of
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the piRNA-producing genes of immortalized, cultured silk moth BmN4 cells

[Kawaoka et al., 2013]. However, for flies and mice, we do not know the structure

of piRNA-producing genes, their transcripts, or the nature of the promoters that

control their expression.

Instead, piRNA loci have been defined as clusters: regions of the genome with

a high density of mapping piRNA sequences [Aravin et al., 2006, Brennecke

et al., 2007, Girard et al., 2006, Grivna et al., 2006, Lau et al., 2006, Ro et al.,

2007]. In reality, piRNA-producing loci correspond to discrete transcription units

that include both intergenic loci believed to encode no protein [Brennecke et al.,

2007, Brennecke and Malone, 2008, Vourekas et al., 2012] and protein-coding

genes that also produce piRNAs [Aravin et al., 2007b, Robine et al., 2009, Saito

et al., 2009].

We used high-throughput sequencing data to define the genes and transcripts

that produce piRNAs in the juvenile and adult mouse testis. Using these data, we

identified the factor that initiates transcription of pachytene piRNA genes: A-MYB

(MYBL1), a spermatocyte protein that serves as a master regulator of genes

encoding proteins required for cell-cycle progression through the pachytene

stage of meiosis [Bolcun-Filas et al., 2011, Trauth et al., 1994]. A-MYB also

initiates transcription of the genes encoding many piRNA biogenesis factors.

The combined action of A-MYB at the promoters of genes producing pachytene
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piRNA precursor transcripts and genes encoding piRNA biogenesis proteins

creates a coherent feedforward loop that triggers a >6,000-fold increase in

pachytene piRNA abundance during the ~5 days between the early and late

phases of the pachytene stage of male meiosis. A-MYB also promotes its own

transcription through a positive feedback loop. The A-MYB-regulated feedforward

loop is evolutionarily conserved: A-MYB is bound to the promoters of both piRNA

clusters and PIWIL1, TDRD1, and TDRD3 in the rooster (Gallus gallus) testis.

3.3 Results

3.3.1 Defining piRNA-Producing Transcripts in the Mouse Testis

To define the structure of piRNA-producing loci in the testis of wild-type adult mice,

we assembled the transcripts detected by three biological replicates of strand-

specific, paired-end, rRNA-depleted, total RNA sequencing (RNA-seq; Figure

3.1A). We mapped reads to the mouse genome using TopHat [Trapnell et al.,

2009] and performed de novo transcriptome assembly using Trinity [Grabherr

et al., 2011] to identify unannotated exon-exon junctions. We used all mapped

reads, including reads corresponding to unannotated exon-exon junctions, to

perform reference-based transcript assembly (Cufflinks; [Trapnell et al., 2010].
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Li et al , Figure 1
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FIGURE 3.1: piRNA Precursors are RNA Pol II Transcripts

(A) Strategy to assemble the mouse testis transcriptome. Rectangles with rounded
corners, input or output data; rectangles, processes. Decisions are shown without box-
ing.(B) Aggregated data for piRNA-producing transcripts (5% trimmed mean). Oxidized
small RNA (>23 nt) sequencing data were used to detect piRNAs; transcript abundance
was measured using total RNA depleted of rRNA (RNA-seq). RNA Pol III data were
from SRA001030. Dotted lines show the transcriptional start site (Start) and site of

polyadenylation (End). See also Figure 3.2.
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Li et al., Supplemental Figure S1, Related to Figure 1
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To identify the transcripts that produce piRNAs, we sequenced piRNAs from six

developmental stages of mouse testes (10.5 dpp, 12.5 dpp, 14.5 dpp, 17.5 dpp,

20.5 dpp, and adult) and mapped them to the assembled transcripts. The first

round of spermatogenesis proceeds synchronously among the tubules of the

testis: mouse testes at 10.5 dpp advance no further than the zygotene stage

(staging according to [Nebel et al., 1961]); 12.5 dpp to the early pachytene; 14.5

dpp to the middle pachytene; 17.5 to the late pachytene; and 20.5 dpp to the

round spermatid stage. For each stage, we prepared two sequencing libraries:

one comprising all small RNAs and one in which oxidation was used to enrich for

piRNAs by virtue of their 2′-O-methyl-modified 3′ termini [Ghildiyal et al., 2008].

To qualify as a piRNA-producing transcript, an assembled RNA was required

to produce either a sufficiently high piRNA abundance (>100 ppm; parts per

million uniquely mapped reads) or density (>100 rpkm; reads per kilobase of

transcript per million uniquely mapped reads). These criteria retained both long

transcripts producing an abundance of piRNAs and short transcripts generating

many piRNAs per unit of length. To refine the termini of each piRNA-producing

transcript, we supplemented the RNA-seq data with high-throughput sequencing

of the 5′ ends of RNAs bearing an N(5′)ppp(5′)N cap structure (cap analysis of

gene expression; CAGE) and the 3′ ends of transcripts preceding the poly(A) tail

(polyadenylation site sequencing; PAS-seq). The assembled piRNA-producing

transcripts likely correspond to continuous RNAs in vivo because the CAGE
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library used to annotate transcript 5′ ends was constructed after two rounds

of poly(A) selection. Thus, the RNA molecules in the library derive from com-

plete transcripts extending from the 5′ cap to the poly(A) tail (Figure 3.1B).

Conventional 5′ and 3′ RACE (rapid amplification of cDNA ends) analysis of

piRNA-producing transcripts confirmed the ends of 16 loci (data not shown). To

provide additional confirmation of the 5′ end of each piRNA-producing transcript,

we also determined the locations of histone H3 bearing trimethylated lysine 4

(H3K4me3), a histone modification associated with RNA Pol II transcription start

sites Guenther et al. [2007].

3.3.1.1 Caption for Figure 3.2

(A) Positions of the 214 major piRNA-producing genes on the 19 autosomes

of mice. We detected no loci on the X or Y chromosomes. (B) Cumulative

distributions for all piRNAs and for uniquely mapping piRNAs comparing the

piRNA loci defined by our methods and by previous approaches [Girard et al.,

2006, Lau et al., 2006]. (C) Histogram of distances (in 200 bp bins) from the

annotated 5′ or 3′ end of a piRNA gene (this study) or cluster to the nearest

peak of reads from high-throughput sequencing for transcript 5′ (CAGE-seq) or

3′ (PAS-seq) ends, transcription start sites (H3K4me3) or A-MYB binding.
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3.3.2 piRNA Precursor RNAs are Canonical RNA Pol II Tran-
scripts

The presence of 5′ caps and poly(A) tails and the binding of histone H3K4me3

to the genomic DNA immediately upstream of the transcription start site of each

piRNA locus suggest that piRNA transcripts are produced by RNA pol II 3.1.

Moreover, using antibodies to RNA pol II but not RNA pol III, ChIP-seq showed a

peak at the transcription start site as well as polymerase occupancy across the

entire piRNA gene (Figure 3.1B; [Kutter et al., 2011]). We conclude that piRNA

transcripts are conventional RNA pol II transcripts bearing 5′ caps and 3′ poly(A)

tails.

3.3.3 A Transcript-based Set of piRNA Loci

Our transcriptome assembly yielded 467 piRNA-producing transcripts that define

214 genomic loci (Figure 3.2A and Table S1). Among the ~2.2 million distinct

piRNA species and ~8.8 million piRNA reads from the adult mouse testis, the

214 genomic loci account for 95% of all piRNAs.

Previous studies defined piRNA clusters based solely on small RNA sequencing

data [Aravin et al., 2007a, Girard et al., 2006, Lau et al., 2006]. Our approach

differs in that it (1) uses RNA-seq data, whose greater read length facilitates

the identification of introns, allowing us to define the architecture of piRNA
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precursor transcripts and (2) uses CAGE, PAS-seq, and H3K4me3 ChIP-seq

data to refine the 5′ and 3′ ends of the piRNA transcripts. Consequently, the

piRNA loci presented here account for more piRNAs using fewer genomic base

pairs than those previously defined (Figures 3.2B and 3.2C; [Girard et al., 2006,

Lau et al., 2006]. Our piRNA-producing loci include 41 piRNA loci that escaped

previous detection [Aravin et al., 2007a, Girard et al., 2006, Lau et al., 2006], 37

of which contain introns. The 41 loci account for 2% of piRNAs at 10.5 dpp and

0.36% in the adult testis.

3.3.4 Three Classes of piRNAs During Post-Natal Spermato-
genesis

Mice produce three PIWI proteins: MIWI2 (PIWIL4), which binds piRNAs in

perinatal testis [Aravin and Hannon, 2008, Carmell et al., 2007]; MILI (PIWIL2),

which binds piRNAs at least until the round spermatid stage of spermatogenesis

[Aravin et al., 2006, 2007a, Kuramochi-Miyagawa et al., 2004]; and MIWI (PIWILl),

which is first produced during the pachytene stage of meiosis [Deng and Lin,

2002]. From 10.5 to 20.5 dpp, piRNA abundance increases and longer piRNAs

appear, reflecting a switch from MILI-bound piRNAs, which have a 26-27 nt modal

length [Aravin et al., 2006, Aravin and Hannon, 2008, Montgomery et al., 1998,

Robine et al., 2009], to MIWI-bound piRNAs, which have a 30 nt modal length

(Figure 3.4A; [Reuter et al., 2009, Robine et al., 2009]. This switch occurs at the
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pachytene phase of meiosis. MILI-bound pre-pachytene piRNAs predominate

before the onset of pachynema; at the pachytene and round spermatid stages,

most piRNAs are MIWI-bound pachytene piRNAs.

We used hierarchical clustering to analyze the change in piRNA abundance from

10.5 to 20.5 dpp for the 214 genes defined by our data (Figures 3.3A and 3.4A

and Table S2). Three types of piRNA-producing genes were identified according

to when their piRNAs first accumulate and how their expression changes during

spermatogenesis: 84 pre-pachytene, 100 pachytene, and 30 hybrid loci. At

10.5 dpp, the earliest time we evaluated, 84 genes dominate piRNA production

(median piRNA abundance per gene = 16 rpkm; Figure 3.3B). Nearly all (81

out of 84) were congruent with protein-coding genes. The 84 pre-pachytene

piRNA genes account for 13% of piRNAs at 10.5 dpp, but only 0.31% of piRNAs

in the adult testis. Of the pre-pachytene piRNAs accounted for by the 84 loci,

15% derive from 31 piRNA-producing genes that, to our knowledge, have not

previously been described.

A parallel analysis of piRNA precursor transcription using RNA-seq (>100 nt)

corroborated the classification based on piRNA abundance; of the 100 piRNA

genes classified as pachytene based on the developmental expression profile of

their piRNAs, 93 were grouped as pachytene according to the developmental

expression profile of their transcripts. Of these 93, 89 are intergenic. All 84
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Li et al., Figure 2
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Li et al., Figure S2, Related to Figure 2. 
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piRNA genes designated pre-pachytene using piRNA data were classified as

pre-pachytene according to their transcript abundance.

Despite their name, pre-pachytene piRNAs were readily detected in >90% and

~95% pure pachytene spermatocytes, as well as round spermatids (Figure 3.4B;

[Gan et al., 2011, Modzelewski et al., 2012]. Transcript abundance from the 84

pre-pachytene loci was high at 3 dpp (median abundance = 11 rpkm), higher by

8 dpp (18 rpkm), and lower in purified leptotene/zygotene spermatocytes (3.3

rpkm; 3.4B). Yet piRNA precursor transcripts were readily detectable in purified

pachytene spermatocytes at a level (4.6 rpkm) comparable to that in purified

leptotene/zygotene spermatocytes (Figure 3.4B); [Gan et al., 2011, Modzelewski

et al., 2012]. From 10.5 to 20.5 dpp, the steady-state level of pre-pachytene

piRNA precursor transcripts remained constant (Figure 3.4B).

Finally, the abundance of pre-pachytene piRNA precursor transcripts was better

correlated with pre-pachytene piRNA abundance at 17.5 dpp (ρ = 0.47), when

pachytene spermatocytes compose a larger fraction of the testis, than at 10.5,

12.5, or 14.5 dpp (0.32 ≥ ρ ≤ 0.40; Figure 3.4C). Our data suggest that the

pre-pachytene loci continue to be transcribed and processed into piRNAs long

after spermatocytes enter the pachytene stage of meiosis. Thus, the name

pre-pachytene piRNA is a misnomer that should be retained only for historical

reasons.
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Hierarchical clustering identified 100 pachytene genes whose piRNAs emerge

at 12.5 dpp, 2 days earlier than previously reported [Girard et al., 2006]. Nearly

all the pachytene genes are intergenic (93 out of 100). piRNA expression from

pachytene piRNA genes peaks at 17.5 dpp (Figure 3.3B). Overall, the median

abundance of piRNAs from these 100 loci increased >6,000-fold from 10.5 to

17.5 dpp. Transcripts from pachytene genes were low at 10.5 dpp (median

abundance = 0.15 rpkm) and increased 116-fold from 10.5 to 17.5 dpp. From

10.5 to 20.5 dpp, the dynamics of pachytene piRNA abundance from each piRNA

gene correlated with the increase in abundance of its precursor transcripts (0.39

≥ ρ ≤ 0.63; ρvalue ≤ 7.3x10−5; Figure 3.4C). The 100 pachytene genes account

for 92% of piRNAs in the adult testis, making it unlikely that biologically functional

pachytene piRNAs originate from thousands of genomic loci [Gan et al., 2011].

Figures 3.5 and 3.6 provide examples of pachytene and pre-pachytene piRNA

genes defined by our data.
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Hierarchical clustering detected a third class, hybrid piRNAs, which derives

from 30 genes with characteristics of both pre-pachytene and pachytene piRNA

loci. Like pre-pachytene, hybrid piRNAs were detected at 10.5 dpp (median

abundance = 3.7 rpkm) and in purified spermatogonia [Gan et al., 2011]. Like

pachytene piRNAs, hybrid piRNA abundance increased during the pachytene

stage of meiosis, but the increase was delayed until late (17.5 dpp) rather than

early pachynema (14.5 dpp). Overall, piRNAs from hybrid genes increased

>10-fold from 14.5 to 17.5 dpp. The median abundance of piRNAs from hybrid

piRNA genes ranged from 90-120 rpkm in purified pachytene spermatocytes,

>20-fold greater than their median abundance in spermatogonia [Gan et al.,

2011, Modzelewski et al., 2012]. Moreover, hybrid piRNA precursor transcripts

were readily detected in purified pachytene spermatocytes (median abundance

= 9.0 rpkm; [Modzelewski et al., 2012]).

3.3.4.1 Caption for Figure 3.3

(A) Normalized piRNA density (rpkm) for each piRNA-producing gene is shown

as a heatmap across the developmental stages. Hierarchical clustering divided

the genes into three classes. Arrowheads mark seven pachytene piRNA genes

that were not classified as pachytene according to the change in the abundance

of their precursor RNAs from 10.5 to 17.5 dpp.(B) Top: box plots present piRNA
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density per gene as spermatogenesis progresses (here and elsewhere, pre-

pachytene in yellow and pachytene in purple). Middle: expression of A-Myb,

B-Myb, Mili , and Miwi was measured by RNA-seq. Bottom: box plots present

piRNA precursor expression per gene, measured by RNA-seq, from 10.5 to 20.5

dpp. See also Figure 3.4 and Table S2.

3.3.4.2 Caption for Figure 3.4

(A) As shown previously by others using lower temporal resolution, the modal

length of piRNAs increases as spermatogenesis proceeds to more advanced

stages. (B) Total piRNA rpkm abundance and piRNA transcript abundance per

locus by class, from purified spermatogonia, spermatocytes, round spermatids,

and 3 dpp and 8 dpp testis [Gan et al., 2011, Modzelewski et al., 2012]. (C) Cor-

relation between piRNA abundance per locus and piRNA precursor transcription

from 10.5 to 20.5 dpp. Throughout the Figures, gold indicates pre-pachytene

and purple indicates pachytene piRNA loci.

3.3.5 A-Myb Regulates Pachytene piRNA Precursor Transcrip-
tion

The coordinated increase in pachytene piRNA precursor transcripts suggests

their regulation by a common transcription factor or factors. Among the 100

pachytene piRNA genes, 15 pairs (30 genes) are divergently transcribed. The
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5′ ends of the piRNA precursor RNAs from each pair are close in genomic

distance (median = 127 bp), suggesting that a shared promoter lies between the

two transcription start sites.

We took advantage of the unique genomic organization of these 15 pairs of

divergently transcribed piRNA genes to search for sequence motifs common to

their promoters. The MEME algorithm [Bailey and Elkan, 1994] revealed a motif

highly enriched in these bidirectional promoters (E = 8.3 x 1012; Figure 3.7A).

This motif matches the binding site of the Myb family of transcription factors

(Figure 3.7A; [Gupta et al., 2007, Newburger and Bulyk, 2009]. The Myb motif is

not restricted to bidirectional promoters; MEME identified the same motif using

the promoters of all pachytene piRNA genes (E = 9.1 x 10−28; Figure 3.7B).

The Myb transcription factor family is conserved among eukaryotes. Like

other vertebrates, mice produce three Myb proteins, A-MYB (MYBL1), B-MYB

(MYBL2), and C-MYB (MYB), each with a distinct tissue distribution [Latham

et al., 1996, Mettus et al., 1994, Oh and Reddy, 1999, Trauth et al., 1994].

Testes produce both A- and B-MYB proteins. Multiple lines of evidence implicate

A-MYB, rather than B-MYB, as a candidate for regulating pachytene piRNA

transcription. First, the expression of A-Myb during spermatogenesis resembles

that of pachytene piRNAs: A-Myb transcripts appear at ~12.5 dpp and peak

at 17.5 dpp (Figure 3.3B; [Bolcun-Filas et al., 2011]. The expression of A-Myb
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Li et al., Figure S4, Related to Figure 4.
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messenger RNA (mRNA) increases ~15-fold from 8 dpp to 19 dpp, whereas

B-Myb mRNA expression remains constant and low during the same time frame

and into adulthood [Horvath et al., 2009]. Our RNA-seq data (Figure 3.3B)

corroborate these findings. Indeed, in our RNA-seq analysis of adult testes,

A-Myb mRNA was 24-fold more abundant than B-Myb. Second, a testis-specific

A-Myb point-mutant allele, Mybl1repro9, which is caused by a cytosine-to-adenine

transversion that changes alanine 213 to glutamic acid, leads to meiotic arrest

at the pachytene stage with subtle defects in autosome synapsis; A-Myb null

mutant mice have defects in multiple tissues, including the testis and the mam-

mary gland [Bolcun-Filas et al., 2011, Toscani et al., 1997]. Third, our RNA-seq

analysis of A-Myb mutant testes shows that there is no significant change in

B-Myb expression in the mutant, compared to the heterozygous controls, at 14.5

or 17.5 dpp. Finally, B-MYB protein is not detectable in pachytene spermatocytes

[Horvath et al., 2009].

To assess more directly the role of A-MYB in pachytene piRNA precursor

transcription, we used anti-A-MYB antibody to perform ChIP followed by high-

throughput sequencing of the A-MYB-bound DNA. The anti-A-MYB antibody is

specific for A-MYB, and the peptide used to raise the antibody is not present

in B-MYB. The model-based analysis of ChIP-seq (MACS) algorithm [Zhang

et al., 2008] reported 3,815 genomic regions with significant A-MYB binding

(false discovery rate, FDR < 10−25); we call these regions A-MYB peaks or peaks.
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Among the 500 peaks with the lowest FDR values, 394 (80%) contained at least

one significant site (ρ < 104) for the MYB binding motif (Figure 3.7A). Figure

3.7B shows an example of such an A-MYB peak at the bidirectional promoter of

the divergently transcribed pair of pachytene piRNA genes 17-qA3.3-27363.1

and 17-qA3.3-26735.1. A-MYB occupancy of this genomic site was confirmed

by ChIP and quantitative PCR (ChIP-qPCR) (Figure 3.8A).

The median distance from the transcription start site to the nearest A-MYB

peak was ~43 bp for the 100 pachytene piRNA genes but >66,000 bp for the

84 pre-pachytene genes (Figure 3.7C). Our data suggest that during mouse

spermatogenesis A-MYB binds to the promoters of both divergently and unidi-

rectionally transcribed pachytene piRNA genes.

To test the idea that A-MYB promotes transcription of pachytene, but not pre-

pachytene, piRNA genes, we used RNA-seq to measure the abundance of

RNA > 100 nt long from the testes of A-Myb point-mutant (Mybl1repro9) mice

and their heterozygous littermates (Figure 3.9). Pachytene piRNA precursor

transcripts—both divergently and unidirectionally transcribed—were significantly

depleted in A-Myb mutant testes compared to the heterozygotes: the median

decrease was 45-fold at 14.5 dpp (q = 1.1 x 10−13) and 248-fold at 17.5 dpp

(q = 3.9 x 10−23). The abundance of pre-pachytene piRNA transcripts was

not significantly changed (q ≥ 0.34). The binding of A-MYB to the promoters
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of pachytene piRNA genes, together with the depletion of pachytene piRNA

transcripts in the A-Myb mutant, further supports the view that A-MYB directly

regulates transcription of pachytene piRNA genes.

3.3.6 A-Myb Regulates Pachytene piRNA Production

To test the consequences of the loss of piRNA precursor transcripts, we mea-

sured piRNA abundance in the A-Myb mutant. Like pachytene piRNA pre-

cursor transcription, pachytene piRNA abundance significantly decreased in

mutant testes. At 14.5 dpp, median piRNA abundance per pachytene gene de-

creased 87-fold in A-Myb homozygous mutant testes compared to heterozygotes

(ρ < 2.2X10−16; Figure 3.9. By 17.5 dpp, median pachytene piRNA abundance

was >9,000 times lower in the A-Myb mutant than the heterozygotes (P < 2.2

x 10−16). In contrast, pre-pachytene piRNA levels were essentially unaltered.

Figure 3.11 presents examples of the effect at 14.5 and 17.5 dpp of the A-Myb

mutant on piRNA precursor transcript and mature piRNA abundance for one

pre-pachytene and three pachytene piRNA genes.

Our data show that A-MYB binds to the promoters of pachytene piRNA genes;

A-Myb, Miwi , and pachytene piRNA precursor transcription begins at 12.5 dpp;

and A-Myb mutant spermatocytes reach pachynema with subtle defects in au-

tosome synapsis [Bolcun-Filas et al., 2011]. Could pachytene piRNA depletion
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Li et al., Figure S5, Related to Figure 5.
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nonetheless be an indirect consequence of the meiotic arrest caused by the

A-Myb mutant? To test this possibility, we sequenced small RNAs from Spo11

mutant testes, which failed to generate double-stranded DNA breaks at the lep-

totene stage and display a meiotic arrest [Baudat et al., 2000, Romanienko and

Camerini-Otero, 2000]. The median abundance of piRNAs from pre-pachytene

genes did not decrease at 14.5 dpp. By 17.5 dpp, piRNA from pachytene genes

decreased just 5.9-fold in the Spo11 mutant testes compared to the heterozy-

gotes (Figure 3.10). We note that A-MYB protein abundance is reduced in the

Spo11 mutant [Bolcun-Filas et al., 2011].

Trip13 is required to complete the repair of double-strand DNA breaks on fully
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synapsed chromosomes. Trip13 mutants display a meiotic arrest similar to

that in A-Myb mutant testes [Li and Schimenti, 2007]: pachytene arrest with

synapsed chromosomes. To further test whether the loss of pachytene piRNA

precursor transcripts in A-Myb mutants reflects a general effect of meiotic arrest,

we measured piRNA precursor transcript abundance in Trip13 mutant testes at

17.5 dpp. Unlike A-Myb, piRNA precursor transcripts were readily detectable in

the Trip13 mutant (Figure 3.12). We conclude that the loss of pachytene piRNA

precursor transcripts and piRNAs in A-Myb mutant testes is a direct consequence

of the requirement for A-MYB to transcribe pachytene piRNA genes and not a

general feature of meiotic arrest at the pachytene stage.

3.3.7 A-Myb Regulates Expression of piRNA Biogenesis Fac-
tors

The A-Myb mutant more strongly affected pachytene piRNA accumulation than it

did the steady-state abundance of the corresponding piRNA precursor transcripts

(Figure 3.9; the median decrease in pachytene piRNA abundance was 2-fold

greater at 14.5 dpp and 38-fold greater at 17.5 dpp than the decrease in the

steady-state abundance of pachytene precursor transcripts (Table S1). These

data suggest that A-MYB exerts a layer of control on piRNA accumulation beyond

its role in promoting pachytene piRNA precursor transcription.
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Miwi has previously been proposed to be a direct target of A-MYB; Miwi mRNA

abundance is reduced in A-MYB mutant testes, and ChIP microarray data place

A-MYB on the Miwi promoter [Bolcun-Filas et al., 2011]. Our RNA-seq data con-

firm that accumulation of Miwi mRNA requires A-MYB: Miwi mRNA decreased

more than 50-fold in testes isolated from A-Myb mutant mice at 14.5 dpp com-

pared to their heterozygous littermates (Figures 3.13A and 3.14 and Table S3).

Furthermore, our ChIP data confirm that A-MYB binds the Miwi promoter in vivo

(Figures 3.13B, 3.8B, and 3.14). Like pachytene piRNAs, Miwi transcripts first

appear at 12.5 dpp (Figure 3.3B), and MIWI protein is first detected in testes at

14.5 dpp [Deng and Lin, 2002]. Loss of MIWI arrests spermatogenesis at the

round spermatid stage [Deng and Lin, 2002].

A previous study reported that piRNAs fail to accumulate to wild-type levels

in Miwi mutant testes [Grivna et al., 2006]. However, our data suggest that

the overall change in piRNA abundance caused by loss of MIWI is quite small:

RNA-seq detected no change at 14.5 dpp (change in total piRNA abundance

= 1.1; n = 2) and only a modest decrease at 17.5 dpp (change in total piRNA

abundance = 0.58; n = 1). piRNAs from pachytene loci decreased just 2.7-fold at

14.5 dpp (p = 0.0046) and 3.5-fold at 17.5 dpp (p = 1.8 x 10-6) in Miwi mutant

testes (Figure 3.9). By comparison, pachytene piRNAs declined 87-fold at 14.5

dpp and 9,400-fold at 17.5 dpp in the A-Myb mutant.
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Does the loss of MIWI affect piRNA precursor transcription? We measured

transcript abundance and piRNA expression in Miwi null mutant testes at 14.5

and 17.5 dpp. In Miwi−/− testes, pachytene piRNA precursor transcripts were

present at levels indistinguishable from Miwi heterozygotes (median change =

1.0- to 1.4-fold; q = 1; Figure 3.9). Thus, loss of MIWI does not explain loss of

pachytene piRNA precursor transcripts in A-Myb mutant testes.

In addition to Miwi , ChIP-seq detected A-MYB bound to the promoters of 12

other RNA-silencing-pathway genes (Figure 3.13B and Table S3). Of these,

the mRNA abundance—measured by three biologically independent RNA-seq

experiments—of Ago2, Ddx39 (uap56 in flies), Mael, Mili , Mov10l1, Tdrd9, and

Vasa did not change significantly at 14.5 dpp in A-Myb mutant testes compared

to heterozygotes (q > 0.05); except for Ago2, all decreased significantly in the

mutant at 17.5 dpp. In contrast, the abundance of the mRNAs encoding Tudor

domain proteins decreased significantly in A-Myb mutant testes: Tdrd6 (64-

fold decrease; q = 3.1 x 10-5) and Tdrd5 (7.5-fold decrease; q = 1.0 x 10-5).

Tdrd5 is expressed in embryonic testes then decreases around birth [Yabuta

et al., 2011]. TDRD5 protein reappears at 12 dpp, increasing throughout the

pachynema [Smith et al., 2004, Yabuta et al., 2011]. Our data indicate that

A-MYB activates Tdrd5 transcription at the onset of the pachytene stage of

meiosis. Similarly, Tdrd6 mRNA can be detected at the middle pachytene, but

not the zygotene stage, and peaks after late pachytene; TDRD6 protein can
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Li et al., Figure 6
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be detected at 17 dpp and continues to increase until 21 dpp [Vasileva et al.,

2009]. The findings that TDRD5 and TDRD6 colocalize with MIWI in pachytene

spermatocytes [Hosokawa et al., 2007, Vasileva et al., 2009, Yabuta et al., 2011]

and that TDRD6 binds MIWI [Chen et al., 2009, Vagin et al., 2009, Vasileva

et al., 2009] suggest a role for these Tudor domain proteins in pachytene piRNA

production or function. As in Miwi-/- testes, spermatogenesis arrests at the
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Li et al., Figure S6, Related to Figure 6
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round spermatid stage in Tdrd5−/− and Tdrd6−/− mutant testes [Vasileva et al.,

2009, Yabuta et al., 2011]. Loss of Tdrd6 expression has little effect on piRNA

levels (Figure 3.6; [Vagin et al., 2009], perhaps because the functions of Tudor

domain proteins overlap.

Other genes encoding piRNA pathway proteins whose promoters are bound by

A-MYB and whose expression decreased significantly in A-Myb mutant testes
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include MitoPld (Pld6; 3.9-fold decrease; q = 0.0095) and Tdrd12 (5.3-fold

decrease; q = 0.0046). MitoPld encodes an endoribonuclease implicated in an

early step in piRNA biogenesis in mice and flies [Haase et al., 2010, Houwing

et al., 2007, Huang et al., 2011, Ipsaro et al., 2012, Nishimasu et al., 2012,

Pane et al., 2007, Watanabe et al., 2011a]. The function of Tdrd12 is not known,

but its fly homologs (Yb, Brother of Yb, and Sister of Yb) are all required for

piRNA production [Handler et al., 2011]. Tdrd1 decreased 3.4-fold, but with

q value = 0.015. Tdrd1 is first expressed in fetal prospermatogonia, then re-

expressed in pachytene spermatocytes [Chuma et al., 2006]. In Tdrd1 mutant

testes, spermatogenesis fails, with no spermatocytes progressing past the round

spermatid stage [Chuma et al., 2006]. TDRD1 binds MILI and MIWI [Chen

et al., 2009, Kojima et al., 2009] and colocalizes with TDRD5 and TDRD6 in the

chromatoid body [Hosokawa et al., 2007].

Together, these data support the idea that at the onset of the pachytene phase

of meiosis, A-MYB coordinately activates transcription of many genes encoding

piRNA pathway proteins.

3.3.8 A-MYB and the Pachytene piRNA Regulatory Circuitry

A number of genes encoding known and suspected piRNA pathway proteins are

bound and regulated by A-MYB (Figures 3.13B and 3.14C). Our data support a



Chapter 3. A-MYB Initiates Pachytene piRNA Production 136

model in which A-MYB drives both the transcription of pachytene piRNA genes

and the mRNAs encoding genes required for piRNA production including Miwi ,

MitoPld, and Tdrd9. Regulation by A-MYB of both the sources of pachytene

piRNAs and the piRNA biogenesis machinery creates a coherent feedforward

loop (Figure 3.13C). Feedforward loops amplify initiating signals to increase

target gene expression. Furthermore, they function as switches that are sensitive

to sustained signals; they reject transient signals [Osella et al., 2011, Shen-Orr

et al., 2002].

A-MYB also bound to the A-Myb promoter (Figure 3.13B), and A-Myb transcripts

decreased 4.2-fold in testes from an A-Myb point mutant (Mybl1repro9; Figure

3.13B). The A-Myb mutant fails to produce the high level of A-MYB protein

observed in wild-type testes at the late pachytene stage of meiosis [Bolcun-Filas

et al., 2011]. Instead, A-MYB protein never becomes more abundant than the

level achieved in wild-type testes by the beginning of the pachytene stage. While

the lower level of A-MYB in the A-Myb mutant may reflect instability of the mutant

protein, a simpler explanation is that mutant A-MYB cannot activate A-Myb

transcription.
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Li et al., Figure 7
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FIGURE 3.14: See subsubsection 3.3.8.2 for full figure caption.

3.3.8.1 Caption for Figure 3.13

(A) mRNA abundance in A-Myb mutant versus heterozygous testes. The 407

genes with a significant (q < 0.05) change in steady-state mRNA levels are shown

as red circles. The 203 with A-MYB peaks within 500 bp of their transcription

start site are filled. (B) A-MYB ChIP-seq signal at the transcription start sites of
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A-Myb and genes implicated in RNA silencing pathways. For each, the figure

reports the change in mRNA abundance between 17.5 and 10.5 dpp in wild-type

testes and the mean change between A-Myb mutant and heterozygous testes

at 14.5 dpp (mean ± SD; n = 3). (C) A model for the regulation of pachytene

piRNA biogenesis by A-MYB. See also Figure 3.14 and Table S3.

3.3.8.2 Caption for Figure 3.14

A) mRNA abundance in 17.5 dpp A-Myb versus heterozygous testes. The 2,853

genes with a significant (q < 0.051) change in steady-state mRNA abundance

are shown as open red circles. Among them, 8721,009 genes also had A-MYB

peaks within 500 bp of their transcription start sites. These “A-MYB targets” are

marked with filled red circles. (B) Same as (A) but in 14.5 dpp Miwi mutant versus

heterozygous testes. The genes encoding proteins implicated in RNA silencing

pathways that were labeled in (A) and that showed no change in expression in

Miwi mutant testes are highlighted as green filled circles. As expected, Miwi ,

showed a significant decrease in mRNA abundance in Miwi-/- testes. (C) The

change in mRNA abundance (rpkm) in A-Myb and Miwi mutant testes versus

heterozygous controls for the RNA silencing genes highlighted in (A) and (B).
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3.3.9 Feed-Forward Regulation of piRNA Production is Evo-
lutionarily Conserved

Is A-MYB-mediated, feedforward control a general feature of regulation of piRNA

production among vertebrates? To test whether A-MYB control of piRNA pre-

cursor transcription is evolutionarily conserved, we used high-throughput se-

quencing to identify piRNAs in adult rooster testes. Birds and mammals diverged

330 million years ago [Benton and Donoghue, 2007]. After removing the se-

quences of identifiable miRNAs [Burnside et al., 2008] and annotated noncoding

RNAs, total small RNA from the adult rooster testis showed peaks at both 23

and 25 nt (Figure 3.15A). When the RNA was oxidized before being prepared

for sequencing, only a single 25 nt peak remained, consistent with the 25 nt

small RNAs corresponding to piRNAs containing 2′-O-methyl-modified 3′ termini.

These longer, oxidation-resistant species typically began with uracil (62% of

species and 65% of reads; Figure 3.15B), and we detected a significant Ping-

Pong amplification signature (Z score = 31; Figure 3.15C). We conclude that

the oxidation-resistant, 24-30 nt long small RNAs correspond to rooster piR-

NAs. Like piRNAs generally, rooster piRNAs are diverse, with 5,742,529 species

present among 81,121,893 genome-mapping reads. Like mouse pachytene

piRNAs, 70% of piRNAs from adult rooster testes mapped to unannotated inter-

genic regions, 19% mapped to transposons, and 14% mapped to protein-coding

genes. Of the piRNAs that map to protein-coding genes, >95% derive from
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introns. Forty-two percent of piRNA species mapped uniquely to the Gallus

gallus genome.

Using 24-30 nt piRNAs from oxidized libraries, we identified 327 rooster piRNA

clusters (Figure 3.16). These account for 76% of all uniquely mapping piRNAs.

Of the 327 clusters, 25 overlapped with protein-coding genes. To begin to identify

the transcription start sites for the rooster piRNA clusters, we analyzed adult

rooster testes by H3K4me3 ChIP-seq. More than 81% (268 out of 327) of

the clusters contained a readily detectable H3K4me3 peak within 1 kbp of the

piRNA cluster. In contrast, the median distance from a cluster to the nearest

transcription start site of an annotated gene was 73 kbp, suggesting that the

H3K4me3 peaks reflect the start sites for rooster piRNA precursor transcripts.

Next, we asked where in the genome A-MYB bound in adult rooster testes. A-

MYB ChIP-seq identified 5,509 significant peaks (FDR < 10-25). MEME analysis

of the top 500 peaks with the lowest FDR values identified a motif (E = 2.6 x

10-201; Figure 3.15D) similar to that found in the mouse (Figure 3.7A). A-MYB is

the only one of the three chicken MYB genes expressed in adult testis (X.Z.L.

and P.D.Z., unpublished data), supporting the view that these peaks correspond

to A-MYB binding. The core sequence motif associated with A-MYB binding

in mouse differs at one position (CAGTT) from that in rooster (C C/G GTT).

This difference between mammalian and chicken MYB proteins has been noted
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previously [Deng et al., 1996, Weston, 1992].

To determine whether chicken A-MYB might regulate transcription of some piRNA

clusters in the testis, we compared the A-MYB peak nearest to each piRNA

cluster with the nearest H3K4me3 peak. Of the 327 rooster piRNA clusters,

at least 104 were occupied by A-MYB at their promoters, as defined by an

overlapping H3K4me3 peak. These 104 clusters account for 31% of uniquely

mapping rooster piRNAs.

The chicken genome encodes at least two PIWI proteins: PIWIL1 and PIWIL2.

Remarkably, the promoter of Gallus gallus PIWIL1, the homolog of mouse Miwi ,

contained a prominent A-MYB peak (Figure 3.15E). TDRD1 and TDRD3 also

showed A-MYB peaks (Figure 3.15E). Thus, as in mice, Gallus gallus A-MYB

controls the transcription of both piRNA clusters and genes encoding piRNA

pathway proteins. We conclude that A-MYB-mediated feedforward regulation of

piRNA production was likely present in the last common ancestor of birds and

mammals.

In mice, we found no piRNA-producing genes on the sex chromosomes (Fig-

ure 3.2A), perhaps because mouse sex chromosomes are silenced during the

pachytene stage [Li et al., 2009a]. Birds use a ZW rather than an XY mechanism

for sex determination, so roosters are homogametic (ZZ), allowing the sex chro-

mosomes to remain transcriptionally active in males [Namekawa and Lee, 2009,
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Li et al., Figure 8
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FIGURE 3.15: See subsubsection 3.3.9.1 for full figure caption.
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Li et al., Supplemental Figure S8, Related to Figure 8
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FIGURE 3.16: Black horizontal lines denote the locations on the Gallus gallus (galGal3)
chromosomes of the piRNA clusters identified by small RNA sequencing. The figure
shows 324 clusters; clusters on E64 (cluster 370) and E22C19W28_E50C23 (clusters

109 and 563) are not shown.
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Schoenmakers et al., 2009]. Indeed, we find that 39 of the 327 rooster piRNA

clusters are on the Z chromosome, accounting for 12% of uniquely mapping

piRNAs (Figure 3.16). Of the 39 Z chromosome clusters, 18 had an A-MYB peak

at their promoter.

3.3.9.1 Caption for figure 3.15

(A) Length distributions of total rooster testis small RNAs (black) and miRNAs

(gray).(B) Sequence logo showing the nucleotide composition of piRNA reads

and species.(C) The 5′ -5′ overlap between piRNAs from opposite strands was

analyzed to determine if rooster piRNAs display Ping-Pong amplification. The

number of pairs of piRNA reads at each position is reported. Z score indicates

that a significant 10 nt overlap (Ping-Pong) was detected. Z score > 1.96

corresponds to p value < 0.05.(D) MEME-reported motif of the top 500 (by peak

score) A-MYB ChIP-seq peaks from adult rooster testes.(E) A-MYB, H3K4me3,

and input ChIP-seq signals at the transcription start sites of rooster PIWIL1,

TDRD1, and TDRD3. See also Figure S8.

3.4 Discussion

The data presented here provide strong support for the view that piRNAs in

mammals begin as long, single-stranded precursors generated by testis-specific,
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RNA Pol II transcription of individual piRNA genes (see also Vourekas et al.

[2012]. Transcription by RNA Pol II affords piRNA genes the same rich set of

transcriptional controls available to regulate mRNA expression. Our data es-

tablish that developmentally regulated transcription of piRNA genes determines

when specific classes of piRNAs emerge during spermatogenesis.

During mouse spermatogenesis, transcription of pachytene piRNA genes begins

at the onset of the pachytene stage of meiosis; pachytene piRNAs accumulate

subsequently. The presence of the MYB binding motif near the transcription

start sites of pachytene piRNA genes, the physical binding of A-MYB to those

genes, and the loss of pachytene piRNA precursor transcripts and piRNAs in

testes from A-Myb mutant mice all argue that A-MYB regulates pachytene piRNA

production.

A-MYB also drives increased expression of piRNA pathway genes. Among these,

Miwi expression shows the greatest dependence on A-MYB, but A-MYB also

drives transcription of genes encoding other proteins in the piRNA pathway,

including MitoPld, Mael, and five genes encoding Tudor domain proteins. For

example, A-MYB increases expression of Tdrd6 more than 500-fold. Loss of

A-MYB function more strongly depletes pachytene piRNAs than loss of MIWI,

in part because pachytene piRNAs can still be loaded into MILI in Miwi mu-

tant testes, although MILI-loaded pachytene piRNAs do not suffice to produce
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functional sperm. In the A-Myb mutant, expression of mRNAs encoding mul-

tiple piRNA pathway proteins decreases. We speculate that in wild-type male

mice, the increased expression of these mRNAs at the onset of the pachytene

stage of meiosis ensures that sufficient piRNA-precursor-processing and MIWI-

loading factors are available to cope with the large increase in pachytene piRNA

precursor transcription.

We propose that induction of A-MYB during the early pachytene stage of sper-

matogenesis initiates a feedforward loop that ensures the precisely timed pro-

duction of these piRNAs. Coherent feedforward loops show delayed kinetics

in order to reject background stimuli [Mangan and Alon, 2003]. Indeed, we

observed a delay from the early to middle pachytene in the accumulation of

pachytene piRNAs, despite the continued increase in A-Myb expression (Figure

3.3A). Pachytene piRNA levels increase 75-fold (median for the 100 genes) from

10.5 to 12.5 dpp, coincident with increased expression of A-Myb. However, from

12.5 to 14.5 dpp, pachytene piRNAs increase only 1.2-fold. Pachytene piRNAs

subsequently resume their accumulation, increasing 65-fold from 14.5 to 17.5

dpp. We believe this delay is a consequence of a feedforward loop that ensures

the production of pachytene piRNAs only at the pachytene stage of spermato-

genesis. Regulation by a feedforward loop also predicts a rapid shutdown of

pachytene piRNA pathways at round spermatid stage VIII, when A-MYB protein

levels decrease [Horvath et al., 2009]. Supporting this idea, the abundance of
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MIWI decreases sharply by the elongated spermatid stage of spermatogenesis

[Deng and Lin, 2002]. Testing this proposal is a clear challenge for the future.

In fruit flies and zebrafish [Brennecke et al., 2007, Houwing et al., 2007], most

piRNAs map to repetitive regions, whereas in mammals, uniquely mapping

intergenic piRNAs predominate in the adult testis. The discovery that 70% of

rooster piRNA reads map to intergenic regions suggests that the expansion of

intergenic piRNAs controlled by A-MYB feedforward regulation arose before the

divergence of birds and mammals. In the future, detailed analysis of piRNA

production across avian spermatogenesis should provide insight into the evolu-

tionary origins and functions of pachytene piRNAs, a class of piRNAs thus far

only detected in mammals.

In summary, we have shown that mouse piRNA genes are coregulated transcrip-

tionally, establishing that A-MYB coordinately regulates the biogenesis of an

entire piRNA class, the pachytene piRNAs. The discovery that a loss-of-function

A-Myb mutant, Mybl1repro9, disrupts piRNA precursor transcription in vertebrates

provides a tool to understand the transformation of long, single-stranded piRNA

precursors into mature piRNAs and to explore the functions and targets of the

pachytene piRNAs.
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3.5 Experimental Procedures

Mice

Mybl1repro9, Spo11tm1Sky, and Piwil1tm1Hf mice were maintained and used

according to the guidelines of the Institutional Animal Care and Use Com-

mittee of the University of Massachusetts Medical School and genotyped

as described [Baudat et al., 2000, Bolcun-Filas et al., 2011, Deng and Lin,

2002].

Sequencing

Small [Ghildiyal et al., 2008, Seitz et al., 2008] and long RNA-seq [Zhang

et al., 2012b] and analysis [Li et al., 2009b] were as described. Reads that

did not map to mouse genome mm9 were mapped to piRNA precursor

transcripts to obtain splice junction mapping small RNAs. Total small

RNA libraries from different developmental stages and from mutants were

normalized to the sum of all miRNA hairpin mapping reads. Oxidized

samples were calibrated to the corresponding total small RNA library via the

abundance of shared, uniquely mapped piRNA species. piRNA expression

data were grouped with Cluster 3.0. Differential gene expression was

analyzed with DESeq R [Anders and Huber, 2010]; ChIP-seq reads were

aligned to the genome using Bowtie version 0.12.7 [Langmead et al., 2009],

and peaks were identified using MACS [Zhang et al., 2008].
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Accession Numbers

The Gene Expression Omnibus (GEO) accession number for the RNA-seq,

ChIP-seq, and small RNA data reported in this paper is GSE44690.

Animals

Mice were maintained and used according to the guidelines of the Institu-

tional Animal Care and Use Committee of the University of Massachusetts

Medical School. C57BL/6J (Jackson Labs, Bar Harbor, ME, USA; stock

number 664); Mybl1repro9 in a mixed 129X1/SvJ x C57BL/6J background;

Spo11tm1Sky in a C57BL/6J background; and Piwil1tm1Hf in a mixed

129X1/SvJ x C57BL/6J background (“Miwi”) mice were genotyped as de-

scribed [Baudat et al., 2000, Bolcun-Filas et al., 2011, Deng and Lin, 2002].

Rooster testes from White Leghorn of the Cornell Special C strain, about
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15 months old, were used for small RNA analysis; and testes from the

Brown Leghorn strain, about one year old, were used for ChIP analysis.

RNA Sequencing

Small RNA libraries were constructed and sequenced as described [Ghildiyal

et al., 2008, Seitz et al., 2008] except that 18-35 nt RNA was isolated and

2S rRNA depletion omitted. Sequencing was performed using either a

Genome Analyzer GAII (36 or 76 nt reads) or HiSeq 2000 (50 nt) in-

strument (Illumina, San Diego, CA, USA). We analyzed published small

RNA libraries from purified mouse spermatogonia (SRR069809), sper-

matocytes (SRR069810, GSE39652), or spermatids (SRR069811; [Gan

et al., 2011, Modzelewski et al., 2012]; from Mili mutant or heterozygous

testes at 10 dpp (SRX003089 and SRX003088; [Aravin and Hannon, 2008];

from Tdrd6 mutant or heterozygous testes at 18 dpp (SRX012165 and

SRX012166; [Vagin et al., 2009]; and MILI IP samples from Tdrd9 mutant

or heterozygous testes at 14 dpp (SRX015795, SRX015796, SRX015797,

and SRX015798; [Shoji et al., 2009].

Strand-specific RNA-seq libraries [Zhang et al., 2012a] using Ribo-Zero

Gold (Epicentre Biotechnologies, Madison, WI, USA) were sequenced

using the paired-end protocol on a HiSeq 2000.

Small RNA Analysis
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Small RNA sequence analysis was as described [Li et al., 2009b] using

mouse genome release mm9 and chicken genome release galGal3. Non-

coding RNA annotations comprised data from ncRNAscan, the known

tRNAs from UCSC, and 18S, 28S and 5.8S rRNAs. miRNA hairpin and

mature miRNA annotation was from miRBase Release 19. Mouse and

chicken transposons were annotated using Repeat Masker from UCSC.

Reads that did not map to the mouse genome (mm9) were mapped to

piRNA precursor transcripts to obtain splice junction-mapping small RNAs.

Total small RNA libraries from different developmental stages and from

mutants were normalized to the sum of all miRNA hairpin-mapping reads.

Oxidized samples were calibrated to the corresponding total small RNA

library via the abundance of shared, uniquely mapped piRNA species.

Table S1 reports the statistics for high-throughput sequencing. For oxidized

(i.e., piRNA-enriched) samples, uniquely mapping small RNAs >23 nt were

mapped to each assembled piRNA precursor transcript and reported as

reads per kilobase pair per million reads mapped to the genome (rpkm)

using a pseudo count of 0.001.

Small RNA Analysis

RNA-seq reads were aligned to the genome (NCBI 37/mm9) using TopHat

2.0.4 [Trapnell et al., 2009]. Reads were mapped uniquely using the “-g

1” switch. We assembled the mouse testes transcriptome (see below).
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For genes with multiple isoforms, the transcript with the highest average

rpkm value among the three replicates of adult testes was selected for

further analysis. Fragments with both reads mapped within a transcript, or

to piRNA precursor transcripts, were counted using BEDTools [Quinlan and

Hall, 2010]. The sum of the reads aligning to the top quartile of expressed

transcripts per library was used to calibrate the samples. The number

of reads per transcript was normalized by length, divided by the library-

specific calibration factor, and reported as rpkm with a pseudo count of

0.001. Table S1 presents the statistics for the RNA-seq data. Sequences

mapping to five genes (Table S1) that overlapped with or were embedded

within a piRNA gene were excluded when calculating piRNA precursor

transcript abundance.

PAS-seq Library Construction and Analysis

PAS-seq libraries (Table S1) were prepared essentially as described [Shep-

ard et al., 2011] and sequenced using a HiSeq 2000 (100 nt read length).

We first removed adaptors and performed quality control using Flexbar 2.2

(http://sourceforge.net/projects/theflexibleadap) with the parameters “-at

3 -ao 10 –min-readlength 30 –max-uncalled 70 –phred-pre-trim 10.” For

reads beginning with GGG including (NGG, NNG or GNG) and ending

with three or more adenosines, we removed the first three nucleotides and

mapped the remaining sequence with and without the tailing adenosines to
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the mouse genome using TopHat 2.0.4. We retained only those reads that

could be mapped to the genome without the trailing adenosine residues.

Genome-mapping reads containing trailing adenosines were regarded as

potentially originating from internal priming and thus discarded. The 3′ end

of the mapped, retained read was reported as the site of cleavage and

polyadenylation.

CAGE Library Construction and Analysis

CAGE (cap analysis of gene expression; Table S1) was as described [Yang

et al., 2011] and sequenced using a HiSeq 2000 (100 nt reads). After

removing adaptor sequences and checking read quality using Flexbar 2.2

with the parameters of

-at 3 -ao 10 --min-readlength 20 --max-uncalled 70 --phred-pre-trim 10

, we retained only reads beginning with NG or GG (the last two nucleotides

on the 5′ adaptor). We then removed the first two nucleotides and mapped

the sequences to the mouse genome using TopHat 2.0.4. All unique 5′ ends

of the mapped positions were considered as CAGE-tag starting sites and

grouped into tag clusters using a distance-based method in which the

maximal distance between two neighboring tags was required to be <20 bp.

The peak position of a tag cluster was then reported as the transcription

start site.



Chapter 3. A-MYB Initiates Pachytene piRNA Production 155

Transcriptome Assembly and Annotation

De novo transcriptome assembly from three biological replicates of strand-

specific RNA-seq data from adult testes was performed using Trinity (r2012-

06-08) with default parameters [Grabherr et al., 2011]. The assembled

RNA sequences were aligned to the mouse genome (mm9) with BLAT

[Kent, 2002], and the alignments with more than 95% of sequence length

mapped and fewer than 1% mismatches retained.

We extracted novel junctions from Trinity (i.e., reads with [0-9]+M[0-9]+N[0-

9]+M pattern in the CIGAR string of SAM output), and re-mapped all RNA-

seq reads to these junctions, rescuing 1,402,444 reads in three replicates.

Rescued reads were combined with TopHat alignments (supplied with “-

max-multihits 100” to assembly through repetitive regions) and used as

input for reference-based assembly.

We used Cufflinks v2.0.2 [Trapnell et al., 2010] with parameters of:

-u -j 0.2 --min-frags-per-transfrag 40

to assemble transcripts. To join small transcript fragments caused by

insufficient read coverage or embedded repetitive elements, two different

gap-joining distance cutoffs were used for the assembly of genes (“overlap-

radius 100”) and piRNA loci (“–overlap-radius 250”). We used Cuffcompare

v2.0.2 [Trapnell et al., 2010] to annotate the 49,840 Cufflinks-assembled
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transcripts using parameters optimized for genic conditions (“overlap-radius

100”).

piRNA Precursor Transcript Annotation

We combined transcripts from the two Cufflink assemblies with those

from the Trinity assembly, producing 136,069 unique transcripts. Those

transcripts with 100 ppm or 100 rpkm unique mapping piRNAs at any time

point (10.5, 12.5, 14.5, 17.5, 20.5 dpp and adult oxidized small RNA from

testis) were selected for manual annotation.

To refine the termini of the piRNA-producing transcripts, we supplemented

the RNA-seq data with high-throughput sequencing of 5′ ends of RNAs

bearing (5′ )ppp(5′ ) cap structures (CAGE) and of the 3′ ends of transcripts

flanking the poly(A) tail (PAS-seq). To provide independent confirmation

of the 5′ ends of each piRNA-producing transcript, we used chromatin im-

munoprecipitation (ChIP-seq) of RNA polymerase II (pol II) and histone H3

bearing trimethylated lysine-4 (H3K4me3). Refinement of transcriptional

starts required both a CAGE and a H3K4me3 peak to support the 5′ end

of the transcript. When no H3K4me3 peak corroborated alternative tran-

scription start sites proposed by the CAGE data, the alternative transcripts

were merged with the fully substantiated transcript.

piRNA Gene Nomenclature
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When piRNA-producing genes overlap an annotated protein coding gene,

we refer to them using the name of the overlapping gene preceded by

“pi-”; when they do not, their names refer to their genomic location followed

by a number indicating the piRNA abundance in ppm at 6 weeks post-

partum. The last digit of a piRNA gene name specifies the rank order

of expression among isoforms, determined by the highest abundance of

transcripts (rpkm) observed for that gene among the six developmental

stages of testis.

Grouping piRNA Precursor Transcripts

For the most abundant transcript in each locus, the abundance (rpkm) of

piRNAs at each stage was expressed as a fraction of the maximum abun-

dance reached during the developmental time course. These data were

then analyzed by hierarchical clustering according to Euclidean distance

and complete linkage using Cluster 3.0. Clustering results were visualized

using Java Tree View 1.1.3.

Analysis of Differential Gene Expression

We determined differential gene expression using DESeq R [Anders and

Huber, 2010]. For each annotated mRNA, reads from each library were

aligned to the most abundant assembled transcript. Transcripts with q <

0.05 were considered to be differentially expressed. Table S3 lists the
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genes that were differentially expressed in A-Myb at 14.5 dpp. Three

biologically independent replicates were used for A-Mybhomozygotes and

heterozygotes at 14.5 and at 17.5 dpp.

Motif Discovery

For divergently transcribed piRNA gene pairs, the promoter region was

defined as the region between the transcription start sites defined by CAGE

peaks. Sequence motifs in these putative promoter regions were detected

ab initio using MEME [Bailey et al., 2009, Bailey and Elkan, 1994] in TCM

mod (any number of repetitions per sequence) and compared to existing

JASPAR and TRANSFAC libraries via TOMTOM [Gupta et al., 2007]. FIMO

was used to detect motif sites within the putative promoters (default p <

10−4; [Grant et al., 2011].

Chromatin Immunoprecipitation (ChIP)

ChIP was performed as described [Chen et al., 2008] except that testes

were macerated on ice and then fixed with 1.5% (w/v) formaldehyde for 20

min. Samples were then further crushed using 20 strokes with a “B” pestle

in a Dounce homogenizer (Kimble-Chase, Vineland, NJ, USA). Chromatin

was sheared by sonication and immunoprecipitated using anti-A-MYB

(HPA008791; Sigma, St. Louis, MO, USA) or anti-H3K4me3 (ab8580;

Abcam, Cambridge, MA, USA) antibody; immunoglobulin G (IgG; Sigma,
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item 2729) served as a control. ChIP-quantitative PCR (qPCR) was per-

formed using the CFX96 Real-Time PCR Detection System with SsoFast

EvaGreen Supermix (Bio-Rad, Hercules, CA, USA). Data were analyzed

using DART-PCR [Peirson et al., 2003]. Relative ChIP enrichment values

were normalized to MyoD1, a gene not expressed in testes. Table S1

lists ChIP-qPCR primers. ChIP-seq libraries for anti-A-MYB and control

input DNA were prepared following the Illumina ChIP-seq protocol and

sequenced on a HiSeq 2000 (50 nt reads).

ChIP-seq Analysis

ChIP-seq reads were aligned to the genome using Bowtie version 0.12.7

[Langmead et al., 2009]. Reads were mapped uniquely using the “-M

1 –best –strata” switches and one mismatch was allowed (-v 1). ChIP

peaks were identified using MACS version 1.4.1 [Zhang et al., 2008] using

default arguments, input as control, and a cutoff p-value = 10−25 was used.

BEDTools was used to assign peaks to the nearest 5′ end of genes. Table

S1 reports sequencing statistics for ChIP-seq.

RT-PCR

Total RNA was treated with Turbo DNase (Ambion, Austin, TX, USA), and

then reverse transcribed using SuperScript III (Invitrogen, Eugene, OR,

USA) with random primers (Promega, Madison, WI, USA). The resulting



Chapter 3. A-MYB Initiates Pachytene piRNA Production 160

cDNA was analyzed by conventional PCR. Table S1 lists the primers used

in Figure 3.12.

Ping-Pong Analysis

Ping-Pong amplification was analyzed by the 5′ -5′ overlap between piRNA

pairs from opposite genomic strands [Li et al., 2009b]. Overlap scores for

each overlapping pair were the product of the number of reads of each

of the piRNAs from opposite strands. The overall score for each overlap

extend (1-30) was the sum of all such products for all chromosomes.

Heterogeneity at the 3′ ends of small RNAs was neglected. Z-score for 10

bp overlap was calculated using the scores of overlaps from 1-9 and 11-30

as background.

Rooster piRNA Cluster Detection

We developed a dynamic programming algorithm to identify the genomic

regions with the highest piRNA density. We used oxidized small RNA reads

(>23 nt) to detect clusters. We used the conservative assumption that

piRNA clusters compose at most 2% of the chicken genome. We first split

the genome into 1 kbp non-overlapping windows and computed piRNA

abundance for each window. The mean of the top 2% of windows was

used as the penalty score for the dynamic programming algorithm. The

algorithm computes the cumulative piRNA abundance score as a function
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of the window index along each chromosome. The score at a window is

the sum of the score in the previous window and the piRNA abundance

in the current window, minus the penalty score; if the resulting score was

negative it was reset to 0. The maximal score points to the largest piRNA

cluster. We extracted the largest piRNA cluster, recomputed the scores at

the corresponding windows, and searched for the next cluster. The process

continued until the scores for all windows were zero. The boundaries of

each cluster were further refined by including those base pairs for which

piRNA abundance exceeded the mean piRNA abundance of the top 2%

windows. We considered only those clusters with abundance >10 ppm for

uniquely mapping piRNAs. In Figure 3.15E, gene models were corrected

using data from our unpublished adult rooster testis RNA-seq data.
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SeqZip - Development and
Applications

4.1 Overview

Development of SeqZip began with an attempt to circumvent an obvious short-

coming in second generation HTS—short read lengths. Until second generation

HTS (i.e. reads <100nt on either the Illumina or SOLiD platforms), most se-

quencing was done using cloned fragments, stored in bacteria, and analyzed

using dideoxy “Sanger Sequencing” (see 1.2.1). Indeed, this is how most ESTs

where analyzed. An extremely powerful feature of these ESTs is that as they

represent the sequence of a single original molecule of RNA. Connectivity be-

tween sequences that were far apart (>1,000 nt) in the original sequence was

maintained. It is this very feature, the continuity of sequence, that allowed whole

162
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genome shotgun sequencing to be used, and ESTs to be assembled into com-

plete genomes, despite sometimes lengthly, repetitive, stretches of DNA (see

section 1.2.1). Once research transitioned over to heavy use of the second

generation HTS, all of that connectivity was lost, and all the inherent information

with it.

Second generation HTS can be supplemented with other technologies. This has

been demonstrated perhaps most successfully with long-read assisted genome

assembly [Koren et al., 2012]. Why not supplement the disconnected nature of

short reads with another technology? To that end, Phillip D. Zamore proposed

an RNA-templated DNA-DNA ligation approach as drawn in Figure 4.1 (see

US Patent application 12/906,678). Using this approach, two or more distant

sequences of RNA are investigated using short DNA oligonucleotides that force

the intervening sequences to loop out. Incorporation of the hybridized DNA via

ligation with those of DNAs adjacently hybridized generates a positive readout of

sequence presence.

Along with Patent 12/906,678, Chapter 2 presents much of the early and im-

portant developmental work demonstrating reduction to practice of this method

(termed “SeqZip"), and its application to investigating connectivity of sequence

content in the biologically-interesting genes Fn1 and Dscam1.
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FIGURE 4.1: Original SeqZip Diagram

The original concept diagram of the SeqZip methodology. (A) Specific DNA oligos target
an mRNA and loop out the RNA sequence. Ligases is added to join the DNA oligos
together; (B) & (C) Two different possibilities of ligation products templated from the

RNA in (A), where Exon 2 is an cassette exon.

Presented in this Chapter are experiments demonstrating SeqZip application to

the following questions and issues:

• Section 4.2: Simultaneous investigation of 10 genes ("Multiplex") for coor-
dinated alternative splicing.

• Section 4.3: Investigation of RNA integrity using SeqZip.

• Section 4.4.4: Demonstrating the presence of long, continuous piRNA
precusors by SeqZip

The three sections add to the data discussed in Chapter 2 in some important

ways. Section 4.2 demonstrates that SeqZip can not only be used to investigate

an extremely complex alternatively spliced gene (Dscam1) in a comprehensive

manner, but can also be applied to looking at multiple genes at once. Section

4.3 exploits a subtle feature of the method—that the RNA must be intact in order
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to produce a ligation product. This can be used to report on a fraction of intact

RNA and deduce meaningful information such as the amount of intact RNA virus,

or the existence of as-yet unobserved mega transcripts, like mammalian piRNA

precursors (section 4.4).

4.2 Multiplex SeqZip Application

Is the coordination discussed in section 1.3.4 a general phenomenon? One of

the major goals of developing SeqZip was to investigate potential coordination

genome-wide. By genome-wide, what we really mean is to analyze many (or all)

of the RNA transcripts in a tissue for evidence of coordinated splicing decisions.

When development of the method reached the point that it could be applied to a

multiplex study, I did not posses the bioinformatic skills necessary to (1) identify

target transcripts, exons, and sequences to investigate for potential connectivity

and (2) design ligamers in an automated and high-throughput fashion. Both of

these points are discussed later (see 4.4 and 5).

In order to make some progress on applying the technique to multiple genes

at once, I used data presented by Fagnani et al. [2007]. This paper identified

genes displaying tissue-specific splicing patterns, focusing on those with CNS-

specific patterns. One section focused on “Coordination between alternative

splicing events belonging to the same genes,” and seemed to be the exact
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type of genes we were interested in applying SeqZip too. Five hundred of

the 3,044 genes investigated by their microarrays contained 2–5 alternative

exons. Fagnani et al. [2007] contained an additional data file listing all pair-wise

combinations of alternative exons in the same gene (with that gene having

significant expression in >20 different tissues) along with the standard and partial

spearman correlations.

It is important to note that the genes above also contain alternative first exons,

a prominent type of alternative splicing (Figure 1.7). Indeed, from microarrays

studies, it has been estimated that approximately 16%–23% of all alternative

splicing events involve alternative first and last exons [Bingham et al., 2008]. It is

known that, through alternative use of first and last exons, cells can fine-tune a

transcript’s untranslated region (UTR) and control many aspects of mRNA regu-

lation including nuclear export, localization, expression, and stability [Hughes,

2006].

Using the Fagnani et al. [2007] data, I filtered exon pairs to those with a distance

>350 nt between exons in the final pre-mRNA. I also visualized their transcript

architecture, and EST evidence using NCBI’s AceView tool [Thierry-Mieg and

Thierry-Mieg, 2006]. For example, the exons with strong correlation of expression

in Chl1 are in the beginning (second exon) and end (fourth from last exon,

accession BC060216) with plenty of supporting evidence for these exons being



Chapter 4. SeqZip - Development and Applications 167

TABLE 4.1: A list of 11 genes investigated in section 4.2. Coordination between exons
first suggested by [Fagnani et al., 2007].

Gene name nt mRNA between possible isoforms Exon 1 Exon 2
Chl1 4665 18 2 24
Mdm1 1846 4 EDA IIICS
PTPRF-Y 1633 4 2 13
Cacna1c 1403 4 15 21/22
PTPRF-X 936 4 9/10 21
FN1 813 8 13/14 21/22
Apbb1 802 260 1/2b 2/3e
Agrn 736 8 33/34c 33/34a
Exoc7 513 4 7 13
Prom1 512 4 7 9
Lphn2 396 32 19 24/25a

expressed and skipped. After combing through [Fagnani et al., 2007] data, I

assembled a list of 11 genes (Table 4.1) to investigate for coordinated splicing.

I hand-designed ligamers for each of these genes. Ligamers were ordered from

IDT in a 96-well plate format, pooled according to gene, and used to develop a

multiplex approach to applying SeqZip. I used total RNA from mouse brains as

the input material.

After attempts to perform SeqZip on all 11 genes in one ligation failed, I reverted

back to per-gene ligation reactions in order to trouble shoot and optimize the

assay. Once I had obtained ligation products from per-gene ligation reactions

for both the individual and combination ligamers pools, I pooled all the ligation

products and amplified them. Amplified products were sent for paired-end 100

sequencing on the Illumina GEIIx platform.
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After considerable delay and optimization from the Umass Sequencing Core

due to low library sequence diversity, the analyzed data demonstrated little

alternative splicing in the genes examined. Put another way—most of the

transcripts observed via SeqZip were uniform in exon inclusion and showed little

variation for cassette exon inclusion (Figure 4.2). These results forced us to

rethink applying SeqZip to multiple genes or complex alternative splicing (i.e.

Dscam1). For most genes, there were too few reads aligning to combination

products, arguing for more careful mixing of the more efficient individual products

with lower-efficiency combination products prior to sequencing. For a discussion

of different type of multiplex study, see section 5.3.1.

4.3 RNA Integrity

An exciting use of SeqZip is rapid quantification of RNA integrity. Integrity

defined as the faction of molecules that are continuous and unbroken nucleic acid

polymers, from the original site of transcript to 3′ processed end. Quantification of

integrity has many uses including: (1) quality control of RNA before downstream

analysis such as RT or sequencing, and (2) implications of infectivity for viruses

that package RNA genomes in virions.
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A.
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C.
D.

FIGURE 4.2: Measuring Apbb1 via SeqZip in multiplex study

A) Region of Apbb1 investigated. Two alternative promoters, a 5′ cassette exon (“E:1/2”)
and a 3′ group of cassette exons (“Exon 2/3 {A–G}”). B) Number of sequencing reads
mapping to individual Apbb1 ligation products (left) and combination (right). C) RT-PCR
of total RNA taken from a mouse brain looking for cassette exon usage at each position
shown in (A). Also shown in the size in nt of the expected bands. D) Schematic of

cDNAs cloned and sequencing from mouse brain total RNA.

4.3.1 Demonstration of Concept

In order to demonstrate the feasibility of the SeqZip assay toward performing

these type of analysis, I in vitro transcribed a 9,800 nt long RNA that I digested

using ZnCl2 at two different concentrations and times (Figure 4.3). The RNA

was probed using three ligamers, two to the very edges of the RNA and one that

looped out the intervening 8,000 nt. The amount of product observed should be

directly tied to the abundance of the full length template.
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FIGURE 4.3: Ligation product tied to RNA integrity

Top) Schematic demonstrating SeqZip analysis of transcript integrity. A middle ligamer
(L), that hybridizes to the edges of a 8,000 nt section of RNA should only ligate to

flanking ligamers when the template RNA is intact.
Middle) Intensity of PCR products amplified using end-labeled primers such that the
intensities of all bands can be quantitatively compared (i.e. semi-quantitative PCR).
Bottom) A denaturing agarose gel stained with EtBr showing the intactness of the

template RNA used in position-matched ligation reactions in the middle panel.

Figure 4.3 shows promising results toward the ability of SeqZip to report on RNA

integrity. The apparent intensity of the bands shown in (middle) was tied to the

amount of intact RNA seen in (bottom). However, the lane where the RNA was

degraded for two minutes with 10 mM ZnCl2 compared to 30 seconds with 100

mM ZnCl2 were not in good agreement, with clearly less intact RNA in the two

minute lane, but just as much ligation product. We hypothesized that this was

due to inherent secondary structure in the template we used (a section of the

HIV genome, discussed in section 4.3).
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At what concentration of template do “long” ligamers generate ligation products

from template fragments? We sought to address this question using pools of

ligamers targeting either 1) a complete template or 2) ~1 kb 5′ and 3′ transcript

fragments. The same template used in Figure 4.3 was used for these exper-

iments. SeqZip was performed using a 1:1 ratio of RNA fragments. Results

(Figure 4.4) show that SeqZip accurately reports on the presence of fragments,

and not full length transcripts at ≤1 nM template. This is in good agreement with

results presented in Chapter 2.

These results are encouraging, but bear repeating in order to address the issues

of potential secondary structure and repetitive regions inherent to the template

RNA used. Put differently—they should be repeated with a traditional mRNA

template, instead of a highly-structured and repetitive RNA such as the HIV

genome.

4.3.2 HIV Genome Integrity

In late 2010–early 2011, a graduate student in the Gottlinger lab, Anna Kristina

Serquiña observed that HIV produced from a cell line expressing ATPase-

defective forms of the SF1 helicase UPF1 [Bhattacharya et al., 2000] did not

infect reporter cell lines the same as control. Previous mass-spec results had

reported MOV10 (a SF1 family helicase [Gregersen et al., 2014]) was packaged
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FIGURE 4.4: Trans-transcript investigation

Left) Schematic of experimental design: Three pools of ligamers were used. Two
(labeled “3” and “5”) hybridize to the 5′ and 3′ sections of a 9,800 nt template RNA.
The last, labeled “L” connects these two regions via a long longer with target 5′ and
3′ regions of complementarity. (Right;Top) Combinations of the ligamer pools were used
with different concentrations of template RNA in the SeqZip assay. Ligation products
were amplified with end-labeled PCR primers and amplified using radioactive PCR.
Shown are low (left column) and high (right column) versions of two different exposure
times (1x on bottom and 6x on top). Right Bottom) Quantification of the bands shown
in the gel above, grouped by input template RNA concentration. The fold difference
in band intensity between the lowest signal “5” or “3” ligamer pool and the “L” pool is

indicated. Y-Axis is the raw band intensity.

into extracellular viral particles. Anna hypothesized that the decrease in infectivity

was due to a problem with RT when the genetic material is introduced into target

cells. The results of this study were recently published [Serquiña et al., 2013].

Anna was interested in using SeqZip to quantify intact HIV virus in virus-

producing cells and extracellular virions. The first step in applying SeqZip

to HIV was to design ligamers.
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4.3.3 HIV Ligamer Design

Research into the integrity of the HIV RNA genome using SeqZip began with

designing a set of ligamers against two different clones. The first, targeting

transcripts from the M19921 plasmid (so called “M” clone), and the section from

the K03455 clone containing nearly identical sequence. We targeted a difference

in sequence for one site of ligation (4.5)A). Three different pools of ligamers

were created: a Five(5) ligamer pool, with three ligamers designed to test for

the presence of sequence in the first 1,140 nt of the HIV genome, importantly

the first site of ligation in the 5 region pool contained a mismatch in the K clone

sequence; a three(3) pool, testing the last 1,210 nt of the genome, and a Long

(L) ligamer pool, also containing three ligamers, but the middle ligamer of which

spans the 5 and 3 regions, looping out 8,633 nt of sequence in the middle of the

HIV genome.

In vitro transcripts were created using both the K and M clones. These transcripts

were added to a background of total MEF RNA, and SeqZip was performed. Lig-

ation products were successfully amplified from all ligamer pools when using the

M clone transcript and all three ligamer pools. The abundance of these ligation

products, as measured by endpoint PCR, seemed to be spike-concentration

dependent. Notably, ligation products were not obtained from the K clone using

either the 5 or L ligamer pools, likely due to the mismatch between the transcript
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FIGURE 4.5: SeqZip can examine HIV transcript integrity

A) Schematic demonstrating the experimental design. Three different pools are used to
probe for connectivity on the 5′ (Five(5)) and 3′ (Three(3)) ends. Additionally, a Long (L)
ligamer is used to check for connectivity between the two ends. We used two different
clones of the HIV genome, described in the text and denoted as “M” and “K”. Important
here is that the “K” contains difference base at a ligation site of the 5 ligamer pool. B)
A series of end-point PCR gels showing amplified ligation products templated with in
vitro transcribed RNA at 10 nM or 10 pM of either the K or M clones, or from purified
virions of (M clone origin). Show are two different end points of PCR, 12 cycles (top) or

22 cycles (bottom). Also shown is a legend of expected ligation products lengths

and the ligamers at the site of ligation. Also of note was the appearance of

ligation products from purified endogenous virions of the M clone from all three

ligamer pools, and the absence of products from virions purified from plasmids

containing a defective protein, Gag, essential for viral packaging.
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The results show (Figure 4.5) that SeqZip and these three pools of ligamers can

be used to profile in vitro HIV transcripts and RNA from purified virions. Important

features of the figure are: (1) Ligation products are not observed for ligation

reactions using the K clone template RNA and the Five(5) pool of ligamers,

verifying the specificity of the ligamers to the different base of the M clone; and

(2) the amount of product from reactions using the L pool of ligamers required

more cycles (22 vs 12) in order to be visualized, as would be expected given the

physical constraint of hybridizing to two sequences separated by >8,000 nt.

Access to purified material and a general push to publish Anna’s UPF1 story

lead the Gottlinger lab to substantiate the viral genome integrity claims effecting

infectivity using a traditional northern blot [Serquiña et al., 2013]. However, these

results are encouraging and warrant additional optimization and application of

SeqZip to RNA integrity measurements.

4.4 piRNA Precursors

The first genome-wide studies of piRNAs in Drosophila melanogaster suggested

their production from a long, single-stranded RNA, as discussed in section 1.5

[Brennecke et al., 2007, Gunawardane et al., 2007]. Yet, demonstration of

precursor transcripts existing as continuous, long, RNA molecules had, as of

2010, yet to be demonstrated. If it could be shown through experimentation
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that precursors existed as long RNAs, it would provide valuable clues as to their

biogenesis, included how such a long RNA is packaged and transported around

the cell. With these goals in mind, the following section describes efforts to

demonstrating the continuity of precursor transcripts using SeqZip.

4.4.1 Mammalian piRNA Precursor Loci

Chapter 3 discuses 214 genomic loci that account for >95% of all pachytene

piRNAs. Many of these loci are intergenic. That is they reside many thousands

of base pairs away from another protein-coding gene. Yet many of these loci

are traditional protein coding genes themselves, making investigation into their

eventual biogenesis to mature piRNAs more complicated. Finally, some loci are

generated from what appear to be bidirectional promoters. Figure 4.6 shows the

location of each of these types of precursor loci on each of the 19 autosomal

chromosomes of the mouse. There were no loci identified on the X and Y

chromosomes, likely due to transcription silencing during gametogenesis.

The bidirectionally-transcribed sub-type of the pachytene loci are extremely

interesting and useful. A motif search of the small sequence between the

annotated 5′ TSSs of these transcripts allowed for identification of A-MYB as the

transcription factor that drove loci transcription (see section 3.3.5). Also, even as

the 214 loci account for >95% of the adult pachytene piRNAs, one could consider
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FIGURE 4.6: piRNA precursor locations in mice

Shown are the 19 autosomal and 2 allosomal mouse chromosomes. They are banded
according to ideogram staining and oriented with the centromere (dark black circle) on
the top. Yellow bars indicate the location of classified “pre-pachytene” loci, which are
mostly coincident with previously annotated mRNAs. Purple bars indicate pachytene
loci, and are usually far from any other annotated transcript. Finally green arrows,
pointing in opposite directions, represent those pachytene loci that are divergently

transcribed from a single promoter.

just 5 of these promoters, including 4 that drive bidirectional transcription, and

account for >50% of the pachytene piRNAs. Table 4.2 describes these loci and

transcripts, along with the cumulative number of piRNAs accounted.

Currently, the Zamore lab is designing sequence-specific DNA modifications (via

TALENs and CRISPRs) to remove these promoters from the mouse genome.

Once strains are created with these promoters removed, it is hoped that the
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TABLE 4.2: Just 9 piRNA genes create >50% of mammalian piRNAs

Cluster Name Matched
Cluster

Unique-mapping
wt.14dpp
piRNAs

Fraction of
pachytene

piRNAs

Cumulative
pachytene

piRNAs
17-qA3.3-26735.1 17-qA3.3-27363 3,021,022 17.2 17.2
17-qA3.3-27363.1 17-qA3.3-26735 1,742,695 9.9 27.2
9-qC-31469.1 9-qC-10667 1,006,333 5.7 32.9
9-qC-10667.1 9-qC-31469 272,385 1.6 34.5
7-qD2-24830.1 7-qD2-11976 652,564 3.7 38.2
7-qD2-11976.1 7-qD2-24830 280,312 1.6 39.8
6-qF3-28913.1 6-qF3-8009 564,930 3.2 43.0
6-qF3-8009.1 6-qF3-28913 180,210 1.0 44.0
2-qE1-35981.1 NA 1121042 6.4 50.4

phenotypes displayed will provide clues to the function of pachytene piRNAs in

mice.

4.4.2 Pachytene Precursors are Unique Pol II Transcripts

Though mammalian piRNA precursor transcription is driven by Pol II, transcripts

themselves have a unique architecture. They tend be very long (some are >100

kb). While not especially long compared to some annotated mRNAs, what is

unique is that many are not interrupted by introns for tens of thousands of nu-

cleotides. Given the coupling between splicing and transcription (discussed in

section 1.3.4) it is strange to see so much transcribed RNA, surely containing

cryptic splice sites, be largely skipped by the spliceosome. Perhaps more confus-

ing is that pre-pachytene precursors do have traditional mRNA-like design and

introns typical of Pol II transcripts. Yet, both types of transcripts are processed
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FIGURE 4.7: Some general features of piRNA transcripts

Top, left) Comparison between genic piRNA precursor transcripts (i.e. pre-pachytene),
mRNAs, Intergenic precursor transcripts (i.e. pachytene), and non-coding RNAs
(ncRNA) for overall length in nucleotides. Top, middle) Intron length. Top, right) Number
of introns. Bottom) Same as above, but considering fully processed (i.e. “spliced”)

versions of the transcripts.

into piRNAs. How does the cell partition these transcripts (see section 5.2.1)?

Also refer to Figure 4.7 for comparisons between “genic” (i.e. prepachytene) and

“intergenic” (i.e. pachytene) precursor transcripts (see Appendix A.2) and two

other classes of Pol II transcripts, mRNAs and non-coding RNAs (ncRNA).

An initial goal of characterizing piRNA precursor transcripts was to demonstrate

their existence as continuous RNA polymers in total RNA obtained from mouse

testes. Given the tremendous length of these transcripts (Figure 4.7), the go-

to experimental approach one would use to demonstrate continuity would be

gene-specific RT-PCR. A DNA oligo was designed to hybridize near the 3′ end of
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the loci 17-qA3.3-27363.1 (aka “M1”), the longest and most studied of the mice

piRNA-generating loci. RT would be primed using this oligo, generating cDNAs

that would extend (1) until the 5′ end of the transcript was reached or (2) RT fell

off the template. Following cDNA generation, pairs of DNA primers hybridizing to

5′ sections of the proposed transcript were used in PCR reactions. Boundaries

of the proposed transcript were determined using a combination of small RNA

sequencing and poly(A)+-unstranded RNA-Seq. A schematic of the approach is

shown in Figure 4.8A.

One expected issue when performing RT on such a long transcript expressed

at low levels is the lack of dependence on the RT primer. This is illustrated in

Figure 4.8B, where in the “+RT; -Primer” lanes there is still a clear signal for all 7

primer pairs. The signal is virtually gone when leaving out RT, suggesting that

an RNA template is the source of the signal. It is believed that extremely short

DNA species (as short as 4 nt) are priming the RT at some very low rate in the “-

Primer” reactions. This complication removes RT-PCR as a suitable experimental

approach to demonstrate the continuity of piRNA precursor transcripts.

4.4.3 Connectivity of Distance Intramolecular Sequences

Before applying SeqZip to these extremely difficult transcripts, we designed a set

of oligos to demonstrate the continuity of a traditional mRNA. The mRNA picked,
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FIGURE 4.8: RT Doesn’t Work for piRNA precursors

A) Experimental design of RT-PCR demonstration of piRNA precursor 17-qA3.3-27363.1
continuity. Shown in black, numbered 1-7 are primer pairs amplified by PCR, after
cDNA generation using the red “RT primer”. Also shown is the length of the locus, the
small RNA signal in green, and the RNA-Seq signal in black. The locus is shown 5′ (left)
to 3′ (right). B) Results from RT-PCR using the 7 primer pairs shown in A, and various

combinations of ± RT-primer and RT-PCR enzyme.

Dst1, was (1) of sufficient length (>23 kb as a fully processed mRNA) and (2)

expressed in mouse testes. Ligamers were designed to loop out ~5kb sections

spaced evenly along the length of the transcript. A ligamer was designed to loop

out 22 kb of the message, from 5′ to 3′ end. An illustration of the experimental

design is shown in Figure 4.9.
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FIGURE 4.9: SeqZip on a very long mRNA (Dst1)

A) A model of the Dst1 gene. Arrows show direction of transcription (5′ to 3′ ). Exons
are tall lines, intronic regions join the exons. A scale bar is shown for size in kb. B)
A schematic showing how SeqZip was used to investigate 5 different regions of Dst1
transcripts (called A-E). Indicated are the nt of each loop in kb. C) End-point PCR
of SeqZip ligation products from each of the ligamer sets shown in (B). Unmarked
lanes show failed A:B; A:B:C; A:B:C:D; and A:B:C:D:E multi-loop combinations. For the
ligations that did work, looping ligamers were ligated to non-looping “control” ligamers
immediately adjacent, in order to show that just a three-ligation reaction could work.
Reaction A:E used a single ligamer to span all the RNA of the individual loops and was

ligamer to adjacently-hybridized ligamers.

As seen in Figure 4.9C, ligation products were obtained from every ligamer

combination, including the critical set (“AE”) where >22 kb of the message was

looped out. In the control experiment, no ligation products were observed. This

experiment represents the longest successful “looping” in a SeqZip experiment

targeting an endogenously expressed RNA.

An additional demonstration of SeqZip’s application to profile long RNAs at

multiple sites are experiments involving Fn1. As described previously (see

section 2.2.1) Fn1 contains three main sites of alternative splicing: EDB, EDA,

and the V-region. Using the proper mix of ligamers, SeqZip examines and
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maintains connectivity at all three of these sites, correctly reporting on their

usage in the RNA template (Figure 4.10). With these results in hand, we felt

confident that SeqZip could be used to analyze piRNA precursor transcripts.

4.4.4 Precursor Transcript Continuity

Applying the same logic as that used to examine multiple distant sequences

in Dst1 and Fn1, ligamers were designed against a highly-expressed piRNA-

producing loci, 7-qD2-11976 (aka - “M11”). Five unique sites were picked, again

named A-E. Sites were picked to (1) avoid repetitive regions; (2) overlap with

expression evidence from small RNA and RNA-Seq data; (3) contain loops of ~5

kb in length; and 4) be unique in the genome. A schematic of the approach is

shown in Figure 4.11A.

Using total RNA obtained from adult mouse testes, analyzed by SeqZip and the

ligamers shown in Figure 4.11A, signal from ligation products could routinely

be observed from loops of ~5 kb (Figure 4.11B-left and Figure 4.12B). Also the

signal is dependent on source RNA (Figure 4.11B-right) and RNA from HEK293

(Human Embryonic Kidney) cells did not produce ligation products. The M1

and M11 clusters are both long and have reasonably high expression compared

to the other precursors. Yet, no ligation products were ever obtained for either
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FIGURE 4.10: Three sites of alternative splicing in Fn1 by SeqZip

A) Graphical representation of the 12 possible isoforms from mouse Fn1. B) Radioactive
PCR gel showing amplified ligation products templated with specific loops of ligamers.
Pools are specified by top row: B = EDB exon only; A = EDA exon only; V = V-Region
only; B:A = EDB and EDA exon combinations; B:V = EDB and V-Region combinations;
A:V = EDA and V-Region combinations; B:A:V = All two combinations, as shown in
panel (A). Marked in nt is shown on left, expected size of specific ligation ligation
products indicated in white letters on the gel, or black on right side. Where identity is
not obvious from size, identity of isoform provided. C) Quantification of bands from
panel (B). Black bars = observed signal of indicated band, Grey = product of individual

frequencies. Top only describes A:V combinations, lower shows all combinations.
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FIGURE 4.11: piRNA precursor Ligation products from Mouse Testes RNA and not
HEK293 Cell RNA

A) Schematic of the piRNA-producing loci (“gene”) 7-qD2-11976 (aka “M11”) shown
with scale bar, and relative looping ligamer locations. Loops are labeled A-E, and
the length of the loop in kb is shown. Also shown in green is small RNA expression
along this locus. B Left) Ligation products obtained from each set shown in (A) using
mouse testes RNA, or B Right) HEK293-cell RNA was used to test for ligation products
resulting from non-specific RNA. Similar to Figure 4.9, unmarked lanes contain failed

A:B; A:B:C; A:B:C:D; and A:B:C:D:E multi-loop combinations.

cluster when loops >~5 kb were used (data not shown). What was the cause of

this negative signal?

As first alluded to in Chapter 2 and discussed in section 4.2, ligation efficiency

should decrease with loop length and additional required ligations. All of the

ligation products used to profile precursors only required two ligation events.

Numerous other genes had been investigated with SeqZip that contained >2

sites of ligation (sections 2.3 and 4.4.3). This suggested that the length of the

loops was the limiting factor in obtaining ligation products templated off piRNA

precursors.
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FIGURE 4.12: SeqZip signal from piRNA-producing loci 17-qA3.3-27363.1

A) Schematic of the piRNA-producing loci 17-qA3.3-27363.1 (aka “M1”) shown with
scale bar, and relative looping ligamer locations. Loops are labeled A–G and the length
of the loop in kb. Green is small RNA expression along this locus and RNA-Seq in black.
B) Ligation products obtained from each set shown in (A) using mouse testes RNA.

We investigated this potential explanation by designing a series of ligamer sets

with increasing 1 kb increment loop lengths from 5–10 kb. Figure 4.13 shows

results typical of this series of experiments. The amount of ligation product when

using ligamers of increasing loop size decreases with the length of the loop. The

signal, after 35 cycles of end-point PCR, is barely visible when the loop is 9 kb,

and extremely faint when 10 kb. Ten kilo-bases represents just a fraction of the

length of some pachytene piRNA precursor transcripts.

Even after numerous attempts, ligation products could not be obtained for loop
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FIGURE 4.13: SeqZip signal from piRNA precursor transcripts decreases with loop
length

A series of ligamers were design against the 5′ portion of cluster 17-qA3.3-27363.1
(“M1”). Sets forcing increasing lengths were used, and ligation products were analyzed

by end-point PCR.

sizes >10 kb, no matter what the target transcript. At this point in the study,

we decided to abandon the demonstration of piRNA precursor transcripts as

continuous transcripts via SeqZip, and instead turned our attention to splicing

within the transcripts (discussed in the next section, 4.5) which eventually lead to

the study presented in Chapter 2.

What could be the cause of our inability to create ligation products? The method

worked so well, without any optimization, for mRNAs of similar length and

expression (e.g. Dst1). Our current hypothesis is that at steady-state levels, the

amount of full-length piRNA precursors that exist—in continuous polymers of

length >10kb—is extremely low. Low to the point of being below the SeqZip

limit of detection. Indeed, many nucleases appear to act on piRNA precursors

along their journey from Pol II transcript to mature piRNA (see section 1.5.2).

The piRNA machinery is perhaps too fast and efficient for us to capture these

extremely long RNAs. Future experiments that somehow perturb the pathway,
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such as Pld6 (aka MmZuc, MitoPLD and Zucchini in flies) could accumulate

precursors before cleavage occurs.

4.5 Precursor Splicing

Once it was determined that the existence of piRNA precursor transcripts as

continuous piRNA precursors could not be demonstrated using SeqZip, careful

attention was paid to RNA-Seq data used to determine the edges of precursor

loci transcription. The RNA-Seq data, once aligned with a splicing-sensitive

algorithm (i.e. “Tophat” [Trapnell et al., 2009]), showed that piRNA precursors

were spliced. Multiple reads and species supported intronic segments and each

contained little to no RNA-Seq and small RNA reads. A good example of the

high-level type of data observation that was being performed until this point is

shown in Figure 4.14. In this figure, small RNA data is shown in green along with

RNA-Seq data in black. For this particular cluster, the RNA-Seq data and small

RNA data appear continuous with the length of gene, as typical for many loci in

Drosophila melanogaster . It was necessary to increase the resolution used to

study the piRNA-generating loci in mice in order to accurately define transcripts.

One of the most illustrative piRNA-generating loci is that containing the genes

17-qA3.3-27363.1 and 17-qA3.3-26735 (Figure 4.15). These two genes are

expressed in pre-pachytene testes and increase expression once mice hit 14.5
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FIGURE 4.14: Example small RNA and RNA-Seq data aligned to a piRNA-generating
loci (17-qA3.3-26735)

Shown in the context of the genome and surrounding genes (blue) is a piRNA-generating
loci, with signal in green. Bottom) zoomed view of the small RNA signal (green) along

with poly(A)+-unstranded RNA-Seq (black).

dpp. These two genes alone account for 27% of all the piRNAs sequenced at

14.5 dpp (see Chapter 3 and Table 4.2). A extremely informative feature, detected

early from initial poly(A)+-unstranded RNA-Seq libraries, was the absence of

signal near the apparent 3′ end of the loci. There were many reads that could be

aligned across this gap, as if it was a traditional mRNA intron. There were no

repeat element that would have depleted this region of the message for reads,

as with other sections of the locus. The most obvious explanation was that the

precursor contained an intron, which was spliced out prior to poly(A) tailing.

The results shown in Figure 4.15 were very exciting initially, and provided impor-

tant clues to the biogenesis of piRNAs. The presence of an intron indicates Pol II

origin. The lack of small RNA within the intron supported mature piRNA creation
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FIGURE 4.15: Introns in mammalian piRNA precursors

Top) Divergently transcribed piRNA-producing genes 17-qA3.3-27363.1 and 17-qA3.3-
26735. These genes are transcribed from a common promoter. Plus strand small
RNAs are shown in blue, minus stranded small RNAs in red. poly(A)+-unstranded)
RNA-Seq is shown in black. Bottom) Zoomed portion of the message near the 3′ end of
17-qA3.3-26735. Plus-stranded small RNA (blue) and RNA-Seq reads in black. Multiple
RNA reads and species aligned across a intron. This region was also largely free of

small RNA signal.
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after precursor splicing. A major reason why this feature had not already been

noticed is that small RNA data is not long enough to accurately and confidently

align across splice junctions. Therefore, intron detection had to wait for applica-

tion of longer RNA-Seq reads and splicing-sensitive alignment software. Once

these introns were known, supporting their use with small RNA data become

possible.

Using genomic coordinates supplied by the splicing-sensitive alignment algorithm

[Trapnell et al., 2009], an alignment index of transcript sequences flanking the

introns was created. Then, using a more traditional (in terms of small RNA

alignment) aligner, Bowtie [Langmead et al., 2009], those piRNAs that did not

map to the genome could be aligned to index containg piRNA precursor splice

junctions. This experiment is shown graphically in Figure 4.16.

Chapter 3 discusses the ultimate refinement of the observations described

above, including the generality of splicing within precursor transcripts. In fact,

there are a total of 383 introns within the “intergenic” sub-classified 214 piRNA-

generating loci from [Li et al., 2013b] (see Table A.2). These introns display a

A-MYB–dependent small RNA signal across their exon-exon junctions (Figure

4.17). The more traditionally looking piRNA-producing loci of the “genic” subclass,

contain far more introns (2,113). The signal for these transcripts does not display

the same A-MYB–dependent small RNA signal.
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FIGURE 4.16: piRNAs map to precursor transcript splice junctions

Top) piRNA density (green) and RNA-Seq density at the 3′ most intron within 17-qA3.3-
26735. Bottom) A splice junction sequence (blue) created by joining the sequences just
outside the intron shown in (Top) is sufficient to align non-genome mapping piRNAs.

While it was not possible to demonstrate continuity of piRNA-producing precur-

sors using SeqZip, development of advanced HTS methods and computational

approaches provides clear evidence that they are (see Chapter 3). Proposed

future experiments into mammalian piRNA precursors are discussed in section

5.2.
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FIGURE 4.17: A-Myb Mutants produce no splice-junction mapping piRNAs for genic
piRNA-producing loci

Trimmed mean ppm of junction-mapping piRNAs within two classes (“genic & Inter-
genic”) loci. Shown in red is signal from A-Myb mutant mice, black A-Myb heterozygous
mice. All data from stranded RNA-Seq (strand accounted for during alignment and

signal aggregation).
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Discussion

5.1 Concerning the Transcriptome

Deep sequencing of transcriptomes has revolutionized biology. Previously, tran-

script identification and characterization involved significant labor, cost, and

materials. In the mid-90’s, microarray technology [Schena et al., 1995] provided

a tantalizing glimpse into the gene expression profile of cells and tissues. The

red and green landscapes hinted at incredible complexity. Full realization of this

complexity would have to wait for technology to catch up.

RNA-seq was made possible by incremental improvements in numerous support-

ive technologies included: (1) digital optics; (2) microscopy; (3) slide chemistry;

and (4) colony PCR. A HiSeq 2500 relies on all of these technologies (and

others) to produce the >100,000,000 sequences per lane that allow scientists to

peer into the transcriptional output of a genome.

194
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Biologists can now think beyond mRNAs and small RNAs. The former captured

our interest for 30+ years [Furuichi et al., 1975, Wei et al., 1975], while the latter

has been on a run-away train since 1998 [Fire et al., 1998]. Now included on

the list of captivating RNAs are long non-coding RNAs (lncRNAs). All classes

of RNA are now routinely measured by HTS. However, many biologists find

themselves overwhelmed by methods and approaches used to tackle these

biological “big data.” Current biology training programs do not provide most with

required skills in statistics, programing, and experimental design necessary to

work with genome-wide data (see section 5.4.3). The richness of these data

often results in unasked—and unanswered—testable hypotheses. Answers that

are just sitting in public data repositories [Plocik and Graveley, 2013].

This discussion will focus on long RNA classes that contain traditional mRNA

features—a 5′ m7G Cap, ligated exons, and a poly(A)+ tail. Many of these

long mRNAs are extremely dynamic in terms of co- and post-transcriptional

processing. So much so that until RNA-Seq comprehensive investigation of their

complexity was impossible.

5.1.1 Extensive transcription

There are 2,598,960 different poker hands possible from a 52-card deck. There

are 1,098,240 different single-pair combinations, with a probability of obtaining
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one being almost 50%. Compare this to a “Royal Flush”, for which there are only

4 options, and a probability of 649,739:1 or 1.54 * 10−6! It is these numbers that

makes it possible to play Poker for hours on end.

Similarly, forces of natural selection and evolution encourage biology to use

combinatorics to arrange exons into unique and rare combinations. This is

especially true for complex eukaryotic organisms, where virtually all genes are

alternatively spliced (Figure 1.4). Accurate determination and assembly of each

card (exon) that comprises a hand (transcript) is a major “known unknown”

[Rumsfeld, 2011] of research into long RNAs.

The ENCODE papers of late 2012 suggest that 95% of the genome is functional

[Dunham et al., 2012], a heavily debated finding [Bhattacharjee, 2014, Graur

et al., 2013]. Djebali et al. [2012] focused on transcription in the ENCODE

cell lines (discussed in section 1.3.5) and concluded that 75% of the genome

is transcribed into RNA. Additionally, “GENCODEv7” includes 9,640 manually

curated lncRNA loci. These lncRNA are some of the most novel and function-

ally interesting long RNAs [Derrien et al., 2012, Pauli et al., 2011]. Accurate

quantification and interpretation of this extensive transcription requires quality

annotation.
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5.1.2 A Need for Transcript Assembly

The field of transcriptome assembly is in its infancy (see section 1.5.3). Current

transcript assembly algorithms only provide predictions and probabilities for the

existence of real molecules. Until RNA is directly and completely sequenced

from single cells or molecular compartments, researchers will always be forced

to make compromises in annotation and quantification [Ozsolak and Milos,

2010, Steijger et al., 2013]. Once technology advances to the point where a

transcriptome is as accurately and quickly determined as a genome, exciting

research into subtle and nuanced transcriptome regulation will be revealed. For

example, what are the post-transcriptional differences between twins?

What is required to improve transcript assembly? Simulations indicate that

improvements will not come entirely from longer read lengths [Chang et al.,

2014b]. These simulations also demonstrate that the accuracy of current de

novo (see section 1.5.3) assemblers decreases sharply with increased alternative

splicing within the transcriptome. Systematic assessment of RNA-Seq transcript

reconstruction methods have concluded what is likely to be the most revolutionary

step toward accurate transcriptome assembly—single pass sequencing of single

transcripts [Engström et al., 2013, Steijger et al., 2013]. Results presented

by [Sharon et al., 2013], demonstrated inherent constraints imposed by RT

conversion of long RNAs to long cDNAs. Therefore, future single-molecule
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sequencing will have to be of the RNA directly. This will be especially important

and informative to measure RNA modifications such as N6-methyl-adenosine

[Pan, 2013].

5.1.3 Tissue and Cell Specificity

As discussed in section 1.3.1, mechanisms of alternative splicing are frequently

tissue-, time-, and cell- specific. Landmark studies examining alternative splicing

in different organ systems, from evolutionarily-distant organisms, found that

alternative splicing is more comparable between organs of different animals than

between different organs from the same animal [Barbosa-Morais et al., 2012,

Merkin et al., 2012]. The most current analysis of the Drosophila melanogaster

transcriptome by Brown et al. [2014] revealed that alternative splicing could be

better described as “tissue-specific splicing”. Further, tissue-specific lncRNA

expression has been recently reported [Washietl et al., 2014], adding to the

importance of sample resolution when performing transcriptome analysis.

The concept of “tissue-specific splicing” brings up a subtle but important consid-

eration. “Alternative splicing” conjures an image of dynamic post-transcriptional

RNA processing allowing cells to quickly respond to changes in environment,

developmental program, or stimuli. While it is true that the transcriptome of some

cell types, such as dendrites and macrophages, are very dynamic, the studies
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just mentioned suggest that most cells are not. In fact, the main reason many

of these events are even considered alternative is because we are comparing

transcriptomes of bulk samples. Is that a fair comparison?

By the current definition these events are indeed alternative, but what significance

does that label carry? In a sample of sufficient resolution, if genes are typically

not alternatively spliced, does their capability to do so matter? These questions

underscore the importance of advances in transcript assembly keeping step with

advancements in HTS technology and ever-increasing sample resolution.

5.2 In the haystack: piRNA Precursors

Chapter 3 describes the manual annotation of 467 transcripts from 214 loci

through the integration of many forms of HTS data. These loci account for 95%

of the total piRNAs in 14.5 dpp mice. These transcripts possess the archetypical

molecular signatures of Pol II origin, including 5′ 7meG CAP, introns, and poly(A)+

tails. Yet RNA from these molecules appears to be rapidly consumed and

processed into millions of unique small RNA ( 23–35 nt) species. How does the

cell partition mRNAs for translation by the ribosome or maturation into piRNAs?
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5.2.1 Precursor Identity

Figure 5.1 shows a good example that highlights the issue of cellular identification

of precursor transcripts. In testes of mice, the Wdfy3 gene produces at least

two different transcripts from different promoters. Virtually all piRNAs map within

the bounds of the shorter isoform (pi-Wdfy3.1). The promoter that falls more

3′ within the gene is also bound by A-MYB. The more 5′ promoter, which

presumably drives transcription of the longer isoform (pi-Wdfy3.2), is not bound

by A-MYB. Also, in A-Myb mutants, piRNAs from the shorter locus are drastically

reduced as are RNA-Seq reads. RNA-Seq reads aligning to the longer transcript

did not decrease.

These results indicate that A-MYB drives transcription of the shorter pi-Wdfy3.1

isoform, but not the longer isoform, annotated elsewhere simply as Wdfy3. A

general phenomenon of piRNAs mapping to the 3′ -UTR of mRNAs has been

reported [Robine et al., 2009]. How does a cell discriminate between these two

transcripts?

Recently it was demonstrated that virtually all RNAs interact with the ribosome

[Ingolia et al., 2011]. This observation was later refined to state that only mR-

NAs display a strong “Ribosome Release Score (RRS)” indicative of read-frame

engagement [Guttman et al., 2013]. Therefore, it is not surprising that prelim-

inary results support precursors being traversed by ribosomes (Xin Zhiguo Li,
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FIGURE 5.1: wdfy3 locus expresses both mRNA and piRNA precursor form in testes

The mouse genomic locus wdfy3 expresses both a traditional mRNA form, originating
from an upstream TSS, and a piRNA precursor transcript from a downstream TSS. The
piRNA precursor form appears to originate from an A-MYB-bound promoter, and is
expressed in A-Myb heterozygous mice. Also small RNAs (piRNAs) mapping to this
locus are only observed in A-Myb heterozygous mice, and not in A-Myb mutant mice.

unpublished). Additional experiments and bioinformatic analysis may tease out

sequence elements that assist in precursor discrimination from mRNAs by the

ribosome, similar to the RRS for traditional ncRNAs.

Beyond ribosome profiling, what are other experimental approaches that could

be used to gain insight into the biology of mammalian piRNA precursors?

5.2.2 Precursor Interactions

Intergenic piRNA loci share many features with other Pol II transcript classes

(Figure 4.7). Yet, almost half contain no introns. A simple visual inspection using
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genome browsers and the HTS datasets described in Chapter 3 reveals how

unique these loci are from the rest of the transcriptome.

As discussed in sections 1.3.1 and 1.3.3, splice sites and SRE are recognized

amidst a sea of extremely similar “cryptic” sequences. The spliceosome ma-

chinery is remarkably efficient in its use of correct splice sites. Spliceosomal

components assist in choosing from the overwhelming set of sequences. Berg

et al. [2012] identified the snRNP U1 as a key suppressor of cryptic polyadenyla-

tion site (PAS) use. This suppressor activity is in contrast to its primary role in

the definition of 5′ splice sites. Perhaps a similar mechanism is acting on cryptic

splice sites contained within precursor transcripts. What experiments could be

used to identify precursor interacting molecules—both protein and RNA?

Coincident with HTS development, methodology to measure genome-wide in-

teractions have also made considerable advances [König et al., 2011]. Method-

ologies to capture {Protein::RNA} interactions include “HITS-CLIP” [Licatalosi

et al., 2008], “PAR-CLIP” [Hafner et al., 2010], and “iCLIP” [König et al., 2010].

{DNA::RNA} interactions are measurable using “ChIRP” [Chu et al., 2012],

{RNA::RNA} interactions by “RAP” and “CLASH” [Engreitz et al., 2013, Hel-

wak and Tollervey, 2014]. These approaches could be applied to determining

piRNA precursor transcript interacting molecules. However, there are some

important caveats that warrant discussion.
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Some of the techniques mentioned above that investigate {Nucleic acid::Protein}

interactions require a target protein. For example, to investigate PIWI-piRISC

interacting sequencing, HITS-CLIP has already been performed on MILI and

MIWI in postnatal testes [Vourekas et al., 2012]. Few additional interacting

proteins are known, limiting the number of proteins to investigate. Obvious initial

candidates include MitoPLD, Mvh [Lasko, 2013] (the mouse homologue of Vasa)

and numerous Tudor-related proteins [Chen et al., 2011]. Finally, ChiRP and

RAP do not require a target protein if coupled to mass spectrometry.

Genome-wide studies of {Nucleic Acid::Protein} interactions typically require

cross-linking [Chodosh, 2001] using either ultraviolet light or reagents such as

glutathione. This requirement is why most original reports of these techniques

are performed in cell culture (due to the relative ease of exposing the sample to

the cross-linking reagent). Currently, the process of piRNA biogenesis has only

been reproduced in vitro using silk worm cell culture extracts [Kawaoka et al.,

2009, 2011], a system which is likely far from that of pachytene biogenesis and

function in mice. Therefore, application of these techniques to mammalian piRNA

pathway study would require testes sectioning prior to cross-linking. [Vourekas

et al., 2012] worked around this requirement by detunicated testes and creating

a cell suspension in a petri dish which was then irradiated.

Another potential experimental avenue would be to perform these studies in
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mature (or maturing) sperm. Sperm develops and matures as they move through

the seminiferous tubules and into the epididymis, where piRNAs are known to

be “sequence-able” in humans [Jones, 1999, Li et al., 2012b]. However, how

much of exciting biology driven by piRNAs has already occurred once sperm

have transitioned into the epididymis?

{Nucleic Acid::Nucleic acid} interactions typically require a ligation step, the

efficiency of which is typically very low [Helwak and Tollervey, 2014]. Also, the

“ChIRP” protocol is done in crude cell extract, where RNase H is a concern when

using DNA probes to pull down and query RNA. Given that precursor transcripts

seem to be rapidly processed (section 4.4.4), these methods may require prior

enrichment, perhaps using RNACapture [Mercer et al., 2014]. Given recent

developments into the CRISPR/CAS9 system for genome-editing [Sander and

Joung, 2014], the “CLASH” approach to look at precursor transcript {RNA::RNA}

interactions is attractive. The requirement for a tagged protein is no longer as

large a barrier compared to past forms of mammalian gene editing.

There are many applications to piRNA biogenesis biology for these experimental

techniques as they evolve and become more robust. Increased resolution of

time points, proteins, and species examined will help to create a comprehensive

purpose for piRNA in the maintenance of mammalian male fertility.
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5.2.3 Precursor Location

A drawback of all the methods and approaches discussed above is that they do

not maintain the anatomical and cellular location of transcripts. Localization of

RNA has been important for decades [Rebagliati et al., 1985], and was recently

shown in a large screen in Drosophila melanogaster embryos to be the rule

rather than the exception [Lécuyer et al., 2007].

The most important question for mammalian pachytene piRNAs is What are

they doing? We know that they are essential for the health of the species, as

discussed in section 3.2, and piRNA-pathway mutants are sterile. What could

these small RNAs, with complementarity to nothing but themselves, be doing?

The cellular location of precursor piRNA transcript processing is not known. The

most accepted hypothesis is that precursor transcripts are processed into mature

piRNAs with machinery tethered to chromatoid bodies [Meikar et al., 2011, 2014]

or another structure similar to Drosophila nuage. Knowledge of where mature

piRNAs are generated would provide clues into larger mechanistic details.

Identifying the location of mature piRNA processing from precursor transcripts

could be achieved through development and application of techniques to visualize

precursors in a dense sea of other RNA, including mature piRNAs. Improvements

in in vitro FISH experiments allow for discrimination of isoforms resulting from

alternative splicing [Lee et al., 2014b]. Robust FISH-type experiments could



Chapter 5. Discussion 206

be used to investigate cellular and anatomical locations of precursor transcript

processing. The SeqZip methodology could even be used in this regard (see

section 5.3.4.4).

Beyond FISH, direct imaging of intact precursor transcripts could be accom-

plished by engineering λN -RFP [Daigle and Ellenberg, 2007] and MS2-GFP

sequences into the 5′ and 3′ ends of piRNA-generating genes and performing

live-cell imaging experiments similar to experiments published by the Singer lab

[Park et al., 2014]. This would be assisted by the previously mentioned CRISPR/-

CAS9 systems. Mice expressing precursors containing MS2 loops could be

crossed with those containing MS2 bacteriophage capsid proteins fused to GFP

and RFP (MCP-GFP/RFP). Using this system precursors could potentially be

visualized in real time or at least in real locations.

5.2.4 Precursor Sequencing

Very recently methods demonstrating sequencing in situ have been published

[Ke et al., 2013, Lee et al., 2014a]. These methods represent a major improve-

ment over the single-cell sequencing approaches discussed in section 1.2.3.

Building upon the principles of FISH, in situ sequencing allows for novel se-

quence discovery, multiplex investigation, and cellular location RNA. Could in

situ sequencing be used to learn more about piRNA precursor biology?



Chapter 5. Discussion 207

FISSEQ, reported by Lee et al. [2014a], uses rolling circle amplification to create

a 3D grid of highly-concentrated DNA (“nanoballs”), originating from a single

RNA/cDNA. SOLiD sequencing is used to determine 27–30 bases from each

nanoball. Confocal microscopy is used to assign the sequence to a 3D location

within the sample. Read lengths for FISSEQ would make it difficult to distinguish

mature piRNAs from precursors. An experimental scheme, perhaps exploiting

the methylation of mature piRNAs, would be necessary to ensure sequencing of

piRNA precursors or intermediates.

Whether by determining the interacting molecules, physical location, or in situ

sequence, more advanced techniques are required to understand the exciting

cellular processes involving piRNAs.

5.3 Future of RNA-templated DNA-DNA ligation

The SeqZip methodology as developed and described in Chapters 2 and 4

works adequately and robustly for characterization of relatively simple (CD45)

and extremely complex (Dscam1) genes. Yet there is substantial room for

optimization. The improvements, modifications, and applications discussed

below support continued use of SeqZip in RNA research.
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5.3.1 A SeqZip Experiment to Observe Linked First and Down-
stream Cassette exons

Over just the past ~5 years, layers of functional coupling between transcription

and splicing have been observed [Merkhofer et al., 2014]. For example, specific

chromatin marks seem to not only demarcate transcriptionally active regions of

chromatin for silent ones, but also alternative splicing exons from constitutively

chosen ones [Kolasinska-Zwierz et al., 2009]. Also, first exons appear to be

epigenetically marked to aid in transcriptional identification [Bieberstein et al.,

2012]. Indeed there is convincing evidence for co-transcriptional splicing and

cross-talk with chromatin [Brown et al., 2012, Luco et al., 2011, Schwartz and

Ast, 2010].

In light of these observations, a transcriptome-wide SeqZip study looking for

coordinated use of first exons and downstream cassette exons is attractive.

Instead of focusing on a few genes with prior reports of coordinated first exon

use and downstream splicing (as done for work discussed in sections 1.3.4 and

4.2), one could take an agnostic approach and focus on all alternative first exon

use and potential coordination with downstream cassette exons.

In order to perform this experiment, current RNA-Seq data could be mined for

alternative first exon and cassette exons included in transcripts from the same

gene. Identified targets would be limited to those of sufficient variation and
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expression. Following target identification, an automated ligamer design process

(see Appendix B) could be used to create a database of ligamers. At least three

ligamers would be required per event, with very little duplicated use of ligamers.

The number of ligamers required would preclude the use of standard synthesis,

even in a 384-well plate format. Therefore, ligamers would need to be “printed”

on a custom microarray, similar to products offered by Nimblogen. Ligamers

would be barcoded and priming sequences included such that short (50–100 nt)

paired-end reads could reliably identify the templating first and cassette exons.

Ligamer design would be further optimized to include a barcoding scheme to

quantify the number of ligation events (and thereby transcripts) per {alt first

exon::cassette exon} pair. Libraries would be amplified using a digital PCR

scheme allowing determination of PCR jackpots and enhanced read quantifi-

cation [Shiroguchi et al., 2012]. Finally, the data would be aligned against a

reference of all {alt first exon::cassette exon} pairs and any potential coordination

determined.

This experiment would create a dataset not possible using any other technical

approaches available in the near future. Such a dataset would not only make

observation of coordinated events possible, but also assist in refinement of

transcript annotation. Indeed, SeqZip is complementary to HTS technology,

especially when reads are shorter than originating RNAs.
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FIGURE 5.2: Sugar pucker in Rnl2 structures

Using two different nucleic acid substrate combinations crystallized with Rnl2, Nan-
dakumar et al. [2006] demonstrates the effect of 3′ and 2′ identity of the base at the
5′ side of the nick: Left) The crystal structure (PDB: 2HVS), containing a 2′ position
deoxy residue, displays a DNA-like C2′ endo sugar pucker. In contrast to Right) where
the crystal structure (2HVR) contains a 2′ hydroxyl and displays an RNA-like C3′ endo

sugar pucker.

5.3.2 LNA-containing ligamers and T39A Rnl2

Rnl2 ligation using an RNA-base on the 5′ side of the nick encourages a C3′ endo

sugar pucker for the base, placing the 3′ OH in an apical orientation relative

to the the AMP leaving group (Figure 5.2) [Nandakumar et al., 2006]. With

lowered costs of oligo synthesis, incorporation of 2′ OMe at the penultimate and

ultimate bases of the 5′ nick ligamers should greatly increase ligation efficiency,

as these are the primary substrate-specificity determinants of Rnl2 due to this

conformational constraint (section 1.4.2) [Nandakumar et al., 2004, 2006].
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Nandakumar et al. [2004] demonstrated the importance of the ribose at this

penultimate position, evidenced by a 50-fold reduction in turnover for substrates

containing 2′ H substitutions. A Threonine-39 to Alanine (T39) mutation did not

phenocopy the 2′ H substitution on the penultimate sugar, indicating that the

structural constraint of sugar pucker is important for efficient ligation. These

results support the use of a T39A Rnl2 mutant for increased RNA-templated

DNA-DNA ligation efficiency, as the mutant would have one less molecular

requirement for an RNA substrate.

Future versions of the SeqZip assay could use a combination of LNA modified

bases [You et al., 2006] at either the penultimate or terminal residues (or both)

on the 5′ side of the nick in order to increase specificity and efficiency. The

combination of modified ligamers and the T39A Rnl2 mutant could enhance the

efficiency of RNA-templated DNA-DNA ligations required by SeqZip.

5.3.3 Thermostable Ligases

The use of LNA-containing ligamers brings up issues involving off-target hy-

bridization. Directed protein evolution of Rnl2 [Romero and Arnold, 2009, Stem-

mer, 1994] could be used to develop a thermostable variant of the enzyme,

similar to variations of DNA ligase that have been used for years [Barany, 1991].
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Use of LNAs and elevated ligation temperatures could alleviate off-target hy-

bridization events reducing both nonproductive hybridization and non-templated

ligation. This would also allow for use of reduced overall ligamer concentrations,

in line with the optimal SeqZip experiment described in section 5.3.1 and ligamer

synthesis on microarrays.

5.3.4 Other SeqZip Applications

SeqZip can be used in many different forms of RNA sequence characterization.

An incomplete illustration of these applications is shown in Figure 5.3. Three

novel applications are discussed below:

5.3.4.1 Multi-site SNP detection

The concept of connectivity in sequence can be applied not only to exons, or long

stretches of RNA, but even to single-nucleotide polymorphisms (SNPs). SeqZip

could be used to profile potential SNPs contained within the same transcript

and therefore within the same allele (Figure 5.3). For maximal benefit and

specificity, care should be taken as to where the variant ligamers bases are

placed respective to the 5′ or 3′ side of the ligation site. For example, Chauleau

and Shuman [2013] have demonstrated the importance of proper base pairing

at the 3′ OH side of the nick.
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FIGURE 5.3: Proposed uses of the SeqZip methodology

Shown are general applications of the SeqZip method to profiling RNA sequences. Top
row examples are substantiated by experiments described on Chapters 2 and 4. Middle

and bottom rows are hypothetical, but logical, extensions of the method.

5.3.4.2 Introduction of Destruction Sequences

Introduction of unique sequences into a ligation product is a powerful feature

of SeqZip. In addition to the other proposed uses (barcoding, sites of priming,

sequence diversity, etc.) introduced sequences could also be used to eliminate

ligation products. For example to remove unwanted abundant transcripts in

a transcriptome-wide SeqZip study (see section 5.3.1). Restriction enzymes
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or elimination via selective hybridization, similar to removal of ribosomal RNA

sequences during HTS library preparation [Chen and Duan, 2011], are two

potential ways to remove ligation products.

5.3.4.3 Re-purposing the SOLiD Platform

Custom sequences within ligamers could also be used to generalize exon identity.

Put another way, ligamers representing the first exon of a message could be

given a specific barcode, second exons another barcode, and so on. Then, using

a sequencing platform such as SOLiD and custom hybridization/sequencing

oligos, florescent signal would report not the sequence, but the numeric ID of the

exon within the target message. A few rounds of traditional sequencing could

identify the mRNA from each spot, and a simplistic schema of exon arrangement

could be interpreted from the ligation product. This would require major SeqZip

optimization, bioinformatic transformation of a given transcriptome annotation,

transcriptome-wide design and synthesis of ligamers, and customization of the

SOLiD ligation chemistry. But it would be extremely useful and informative for

complete and routine transcriptome quantification.
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FIGURE 5.4: Multi-Site smFISH using flourophore-containing ligamers

The simplest form of a multi-site FISH SeqZip experiment. Five ligamers are used,
with two hybridizing to the beginning and end of a target RNA sequence (e.g. and
exon), and having unique fluorescent labels (Cy3 and Cy5 in this case). The use of
the third ligamer, containing an addressable barcode is used to report on these two
ligamers hybridizing to the same RNA. Use of flanking ligamers allows for amplification,

downstream analysis, and trouble shooting.

5.3.4.4 SeqZip and Single-Molecule Multi-site FISH

A logical extension of the multi-site SNP detection application described above

is the use of SeqZip in multi-site FISH probes Figure (5.4). Advances in FISH,

microscopy, fluorescent moieties, and image processing are making this type of

experiment more approachable. A multi-site FISH SeqZip experiment could be

used to ask some of the questions described in section 5.2.3, including precursor

integrity and location, without the need for downstream processing.

5.4 Final Thoughts

This thesis has introduced the complexity, purpose, potential, and challenges of

transcriptome study. There is no comparison between these issues with that of
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the DNA genome. The next period of biomedical knowledge will be heralded by

advances in transcriptome analysis. This section discusses how scientists need

to grow with technology.

5.4.1 Science vs. Engineering

“There is a general attitude among the scientific community that
science is superior to engineering.” — [Macilwain, 2010]

“Science is about what is; engineering is about what can be. Engi-
neers are dedicated to solving problems and creating new, useful,
and efficient things.” — Neil Armstrong

A common schism between technically-oriented individuals is whether or not

they identify themselves as an engineer or a scientist. The first quote, from an

article published in Nature, communicates a clear bias in academic circles of

the importance of the why over the how. In essence, how one prioritizes these

questions categorizes individuals as scientists (why is important) or engineers

(how is more important). The second quote, from the first man to walk on the

Moon, Neil Armstrong, highlights what motivates a self described “engineer” and

“geek.” How does a graduate system—training PhDs for careers in life science—

educate individuals who fall into these two fundamentally different belief systems?

What was the basis for this aversion to technology development? The same

article in Nature states that this feeling toward engineering may be attributed. . .



Chapter 5. Discussion 217

. . . partly to a “linear” model of innovation, which holds that scientific
discovery leads to technology, which in turn leads to human better-
ment. This model is as firmly entrenched in policy-makers’ minds as it
is intellectually discredited. As any engineer will tell you, innovations,
such as aviation and the steam engine, commonly precede scientific
understanding of how things work.

In fact, some of the most notable breakthrough scientific discoveries, including

many made by Nobel Laureates, demonstrate a clear integration of both the

scientific method and practical application. For example, the 2007 award in

Physiology and Medicine was given for “discoveries of principles for introducing

specific gene modifications in mice by the use of embryonic stem cells.” By

combining principle discoveries an indispensable technique in modern genetics

was created—gene targeting.

The importance of technology to the advancement of science in general is not

limited to anecdotes resulting in a Nobel prize. A quick scan of the most highly-

cited papers in the PNAS reveals that the top 13, indeed all 13, describe a novel

methodology or technique. Sequencing of DNA, microarray analysis, tetracycline-

inducible promoters, recombinant adenovirus, and site-specific mutagenesis are

just a handful of the tools on the list. This effect can also be seen in computation

biology, where transformative algorithms, such as BLAT [Altschul et al., 1990]

and Bowtie [Langmead et al., 2009] attain citations well beyond a typical paper in

their journal of publication, indeed far more than most primary research articles.



Chapter 5. Discussion 218

The growth of big datasets is forcing all in biomedical research to think like an

Engineer. At least two major concerns require immediate attention: How to store

the data and how to analyze it?

5.4.2 The Data Deluge

“The HiSeq X Ten is sold as a set of 10 or more ultra-high throughput
sequencing systems, each generating up to 1.8 terabases (Tb) of
sequencing data in less than three days or up to 600 gigabases (Gb)
per day, per system, providing the throughput to sequence tens of
thousands of high-quality, high-coverage genomes per year.”
—Illumina Press Release

In a world where the HiSeq X is a reality, biomedical researchers need to change

how they approach every aspect of data analysis including storage, processing,

and visualization. Evidence is mounting that replicates, not depth, are essential

in differential gene expression [Liu et al., 2014]. Replicates compound problems

of keeping similar data and file types separate and tracked. How do we work

with all this data?

Systems need to be in place to track the necessary sample meta-data, analysis

and modifications performed. Systems should aid in eventual public posting

and sharing of HTS data. Laboratory information management systems (LIMs)

and Electronic lab notebooks (ELNs) must be implemented in academic labs

participating in copious amounts of HTS data generation and analysis.
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Once these systems are in place, the ability to navigate, via genome browsers

[Robinson et al., 2011, Zweig et al., 2008], will be of critical importance to allow

other members of the lab to reuse valuable datasets. Recent changes to the way

aligned genomic data is stored and added to UCSC genome browsers is a good

example of needed process improvements [Raney et al., 2014]. Finally, efforts

such as the Galaxy project will define how most academic labs perform future

“routine” HTS analysis [Blankenberg et al., 2010].

5.4.3 Biologists need Computation Biological Skills

Just 10 years ago, graduate students and PhDs in the fields of Molecular Biology

or Biochemistry need not venture far from Excel or perhaps a statistical program

with an advanced graphical interface (e.g. Prism or Graphpad). Software

knowledge that stops at these tools and the rest of the Microsoft Office suite is

no longer enough to generate big strides in research.

Working with tens of even hundreds of lines of data within a spreadsheet is man-

ageable. Computers from 20 years ago had more then enough computing power

to process these type of data. Data generated from most cutting-edge projects

can no longer be analyzed in a spreadsheet program. Many students and post-

docs find that they are unable to analyze the data generated from months or

years of bench work. Faced with learning what is effectively a collection of new
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TABLE 5.1: Changing tools for Molecular Biologists

What is Used What Should be Used
Word Plain Text
Hand-inserted Citations Citation-management Software (e.g. Papers )
Paper Notebooks Evernote or Commercial ELNs
Excel for Data Storage Relational Databases (i.e. MySQL)
Excel for Data Analysis R or MatLab
Local Code development & backup Online Code development (GitHub)

languages and awash in a sea of acronyms (e.g. LINUX, BASH, GNU, PERL, R)

they reach out for help from a “bioinformatics person.” Perhaps the relationship

and interaction with this personal is productive, leading to a collaboration and

exciting new knowledge. Sometimes it isn’t and the bench scientist shifts into

one of three modes: (1) wait; (2) find another bioinformatic-minded collaborator;

or (3) collect more data.

The “wait” mode is the most damaging, as it delays the progress of one’s work

and of science in general. Personally, I did not want to fall into this mode. Once

the multiplex study described in section 4.2 reached a point where I had millions

of sequencing reads but I could not find anyone to help me analyze the data, I

decided to educate myself on the basic principles of Linux, the command line,

and analysis of HTS data.

A biologically-train individuals possessing HTS data analysis skills is an extremely

powerful and empowering situation. This was recently communicated in Plocik

and Graveley [2013]:

“Such exercises will empower students to explore and assess the
quantitative data published in the manuscripts that they read, which
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can no longer be assessed at a glance like the qualitative gel-based
results on which molecular biology was founded. Ultimately, it will
be equally important to know how to write code as it is to pipette.” —
[Plocik and Graveley, 2013]

The fact is that no one will care about a project as much as the student or post-

doc who generated the data. Learning and training of computational skills bent

on analyzing large datasets (see Table 5.1) should be central to the education in

biomedical sciences in the future.
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Appendix A: Misc Information

A.1 Buffers

TABLE A.1: SeqZip Hybridization and Ligation Buffer

Component Concentration
Tris-HCl 50 mM
MgCl2 2 mM
DTT 1 mM
ATP 400 µM
pH 7.5 @ 25 ◦C

A.2 Equations

A.2.1 RNA concentration from radioactive in vitro transcrip-
tion

µM =

(
pmol

µL

)
=

(
cpm after purification × dilution factor

cpm before purification × dilution factor

)
×
(

mol UTP in original reaction

Reaction Volume

)
×
(

1

Number UTPs in transcript

)
× 10

−12
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A.2.2 RNA concentration based on absorbance

[RNA in M] =

(
A260 × Dilution Factor

10, 313 < note 1 > × nucleotides in message

)

note 1: This value represents an average RNA extinction (ε) coefficient value

A.2.3 Normalize oxidized small RNA libraries size to time-
matched unoxidized library

NB: this equation assumes calibration against a specific time-point , in this case
data obtained from 6 week-old testes.

unox τ norm1 =



( ∑
miRNA reads τ∑

miRNA reads 6wk

)
× depth 6wk

1, 000, 000


ox τ norm1 = unox τ norm1 ×

 ∑
oxidized shared ≥ 23 nt reads∑

unoxidized shared ≥ 23 nt reads



A.3 PCR Programs

Ligamer Hybridization ROY-H2 | Ligamer Hybridization
Steps 1–9 are 10 minute incubations at the following temperatures:
69;66;63;58;54;52;50;48;46 ◦C
Step 10 is a 45 ◦C incubation for 1 hour
Steps 11–14 are 10 minute incubations at the following templates:
43;41;39;37 ◦C
Final incubation is at 37 ◦C for∞

SeqZip ligation program ROY-37-4 | T4 Rnl2 RNA-template DNA:DNA ligation
1. 37 ◦C for 18 hours
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2. 10 ◦C for∞

A.4 Intergenic and genic piRNA-producing Loci

TABLE A.2: Intergenic and genic subclassifications of piRNA-producing loci from 3 and
[Li et al., 2013b].

Genic Locus Intergenic Locus
pi-Zbtb37 1-qC1.3-637
pi-Zbtb37 1-qC1.3-637

pi-Gm5878 1-qD-2017
pi-1700006A11Rik 10-qA3-2592
pi-1700016M24Rik 10-qB4-6488

pi-Abl2 10-qC1-875
pi-Acvr2b 10-qC2-545

pi-Ankrd11 11-qB1.3-590
pi-Arhgap20 11-qE1-3997

pi-Asb1 12-qE-23911
pi-Atxn1l 13-qA3.1-213

pi-BC026590 13-qA3.1-355
pi-Bcl2l13 13-qA5-156
pi-Bend4 13-qA5-208

pi-Cbfa2t2 13-qA5-464
pi-Cbl 13-qA5-703

pi-Cbx5 13-qA5-967
pi-Ccdc117 13-qB1-1517
pi-Ccrn4l 14-qC1-1010

pi-Cdc42ep3 15-qD1-4001
pi-Cmtm4 15-qE1-3710
pi-Cramp1l 17-qA3.3-26735

pi-Crkl 17-qA3.3-352
pi-Ctdsp2 17-qC-935

pi-D10Wsu102e 19-qC2-1361
pi-D730040F13Rik 2-qE1-35981

pi-Dcaf7 2-qE5-4
pi-Ddx19b 2-qF1-2536
pi-Dnmt3a 2-qG3-1029
pi-Eif2c2 3-qA2-617
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pi-Eif4ebp2 3-qA3-2052
pi-Elk4 4-qB3-277
pi-Exog 4-qB3-3994
pi-Eya3 4-qB3-639

pi-Fam168b 4-qD3-2082
pi-Fam53b 5-qF-14224
pi-Fbxl18 5-qG2-2301
pi-Fbxo41 5-qG2-950
pi-Foxo3 6-qC3-100
pi-Fth1 6-qC3-2394

pi-Gabpb2 6-qC3-6258
pi-Gan 6-qD1-2831

pi-Gtf3c4 6-qF3-1063
pi-Hic2 6-qF3-3040

pi-Hif1an 6-qF3-8009
pi-Hinfp 7-qB5-6255
pi-Hjurp 7-qD1-16444

pi-Hmbox1 7-qD1-654
pi-Igf2bp1 7-qD2-11976
pi-Igsf9b 7-qD2-24830
pi-Il17rd 7-qF3-3125
pi-Ing5 8-qC5-2209
pi-Ip6k1 8-qE1-3748
pi-Ipmk 9-qA1-178

pi-Kcng3 –
pi-Kctd7 –
pi-Klf13 –
pi-Klhl11 –
pi-Lpp –

pi-Lsmd1 –
pi-Luzp1 –
pi-Mafg –

pi-Map3k9 –
pi-March08 –
pi-Mcart1 –

pi-Mgll –
pi-Mlc1 –
pi-Mlec –
pi-Mllt6 –
pi-Mrs2 –
pi-Ndst1 –
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pi-Nr2c2 –
pi-Nsd1 –
pi-Phf20 –
pi-Pou6f1 –
pi-Ppm1f –

pi-Ppp1r12b –
pi-Ppp1r15b –
pi-Rab11fip4 –
pi-Rad54l2 –
pi-Rc3h1 –
pi-Rcan3 –
pi-Rnf169 –
pi-Rplp1 –

pi-Shank3 –
pi-Slc43a2 –
pi-Smcr8 –
pi-Snx30 –
pi-Socs7 –
pi-Ssh1 –
pi-Strbp –
pi-Tacc1 –
pi-Tbl2 –
pi-Tef –

pi-Tet3 –
pi-Tfcp2l1 –
pi-Tktl2 –

pi-Tmem194 –
pi-Trim71 –
pi-Uhmk1 –

pi-Uhrf1bp1 –
pi-Wdfy3 –
pi-Wipf2 –

pi-Zbtb49 –
pi-Zdhhc23 –
pi-Zfp280b –
pi-Zfp346 –
pi-Zfp382 –
pi-Zfp652 –
pi-Zfp866 –
pi-Zmat3 –
pi-Zyg11a –
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pi-Zyg11b –



Appendix B

Appendix B: Automated Ligamer
Assembly

B.1 Installation

Major Steps:

• Create an input csv file with required information

• Run this information sequentially through the scripts

• Use the results to order oligos from IDT

Required Tools:

• Perl

• BioPerl

• Ensembl Perl APIs

• String::Random Perl Package

Future improvements

• Use Ensembl Database to initilize queries

• Make the use of BioPerl more flexible

• Make more web-friedly

228



Appendix B. Perl Script for Automated Ligamer Assembly 229

Helpful hints on installing BioPerl and Emsembl Perl APIs:

## Install BioPerl, use git
cpan App::cpanminus # First prep cpan
cpanm DBI ## Install necessary DBI perl module
mkdir ~/src; cd ~/src
git clone git://github.com/bioperl/bioperl-live.git
cp ~/.bash_profile ~/.bash_profile.bak
echo -e ’PERL5LIB=$HOME/src/bioperl-live:$PERL5LIB’ >>

~/.bash_profile
source ~/.bash_profile

# Install ensembl perl apis
mkdir ~/src; cd ~/src
wget ftp://ftp.ensembl.org/pub/ensembl-api.tar.gz
tar xvfz ensembl-api.tar.gz

# Add locations to perlfile libs to $PATH
echo -e ’
PERL5LIB=${PERL5LIB}:${HOME}/src/ensembl/modules
PERL5LIB=${PERL5LIB}:${HOME}/src/ensembl-compara/modules
PERL5LIB=${PERL5LIB}:${HOME}/src/ensembl-variation/modules
PERL5LIB=${PERL5LIB}:${HOME}/src/ensembl-functgenomics/modules
export PERL5LIB’ >> ~/.bash_profile

B.2 Example Input Format
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Here is an example input file to create ligamers investigating the Gria3 gene in Rats:

# Comment lines are ignored
#Gene name
GRIA3

# PCR primers used - Solexa PE adaptor sequences
# Five prime
PCR-Primer-5’-ATCTGAGCGGGCTGGCAAGGC
#Three Prime
PCR-Primer-3’-GCCTCCCTCGCGCCATCAGA

ExonId LigID Name Strand Code TargetPrime bedLoc SetID ConstID
<Gria3_201/202-Shared-I14 10 rn4 minus TC 5 X:127903250-127903350 NANNNNNN 201_2_intron
<Gria33_201/202-Shared-I14 9 rn4 minus T 3 X:127903210-127903249 NNNNNNNN 201_2_intron
<Gria33_201/202-E15 8 rn4 minus TC 5 X:127914822-127915069 NNNNNNN 201,202
<Gria33_202-I14:15 7 rn4 minus I N X:127912345-127914821 TACACAT 202
<Gria33_202-E14 6 rn4 minus I N X:127912230-127912344 ACCCCAG 202
<Gria33_201-I14:15 5 rn4 minus I N X:127897499-127914821 CGCGCAC 201
<Gria33_201-E14 4 rn4 minus I N X:127897384-127897498 GTCTCAA 201
<Gria33_202-I13:14 3 rn4 minus I N X:127896828-127912229 ACCGATT 202
<Gria33_201-I13:14 2 rn4 minus I N X:127896828-127897383 CGCTATG 201
<Gria33_201/202-E13 1 rn4 minus T 3 X:127896580-127896827 NNNNNNN 201,202
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B.3 Ligamer Assembler Source Code

#! /usr/bin/perl

#Pre requisites
# These are working on 02/19/13
use lib "/home/royc/perl5/lib/perl5/"; # BioPerl location
#use lib "/home/royc/lib/ensembl.perl.zpi/ensembl/modules"; #ensembl packages

=head1 Ligamer Assembler

This script will automatically create ligamers.

=head2 Contact information

Script made by Christian Roy, Umass Medical School
christian.roy@umassmed.edu

=cut

use strict; # To help wtih variable control
use warnings; # To help me catch mistakes

use Bio::EnsEMBL::Registry; # To load remote EnsEMBL Registry
use Bio::EnsEMBL::Slice; # To retreave sequences from EnsEMBL registry
use Bio::DB::Fasta; # BioPerl tool to retreave sequnce from local FastA file
use Bio::SeqFeature::Primer; # BioPerl Tool for Tm normalization
use Cwd; # To retreave current working directory information

my $dir = getcwd; # Assign current working directory to scalar
my $timestamp = localtime(); # Grab the time at script start

## Variables
my (
$file_input, # Name of specified input file
$output_file, # Name of file to print results too
$species, # The species to grab from Ensembl
$strand, # The strand to grab for ligamer sequences
$working_sequence, # The slice sequence variable
$line_counter, #Keep track of stepping through input file
@arguments, # Keep track of input arguments
$fa_reference, # Fill if using a local FASTA Reference file
$chr, # Obvious
$coordinates, # Interim variable for splitting UCSC
$start, # obvious
$end, # Obvious
$gene, # target gene name
$lig_location, # Ligamer prime variable
$target_prime, # Broad variable to define ligamer type - see man
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$UCSCcoordinates, # Obvious
$pcrsequence, # fill with appropriate PCR sequence for terminal oligos
$barcode, # Fill will barcode for sequence between regions of comp.
$note_line, # Fill with notes for a ligamer query
$three_prime_PCR_sequence, # Fill with three prime PCR sequence
$five_prime_PCR_sequence, # Fill with five prime PCR sequence
$lig_joiner_code, # Internal varialbe for assembling ligamers see man
$set, # Move set assembly information input to output file
);

#Variables with Defaults
my $verbose=0; # Verbose loading of ensembl databases
my $db_version=62; # Default database version for ensembl database loading
my $temp="58"; # Defalt temp for Tm normalization
my $salt="0.05"; # Default salt concetration for Tm calculation in M
my $lig_conc="0.00000025"; # Defeult ligamer conc for Tm calc in M
my $man_print=0; # for printing manual information
my $help_print=0; # For printing help informatio to HTML file
my $ligamer_name=0; # Internal variable for sequental numbering of ligamers
my $remote=0; # set to 1 for ensembl database loading
my $control_length=20; # Default length for control variables in nt
my $plname=$0; # assign $plname scalar to script name (for help printing)

#Print Usage information if nothing is entered at commandline
if (@ARGV==0) {system "pod2text $0 | less"; die}

=head2 Usage

-hp = Print HTML POD data for scriptname
-mp = Print and view Manual POD data for scriptname
-i [File] = File Input
-o [File] = File output
-v [#] = Verbose for Ensembl loading
-d [#] = data_base version for Ensembl loading
-t [#] = Temp in degrees celcius
-salt [#] = Salt concentration for Tm in mM
-lig_conc [#] = Ligamer concentration for Tm in nM
-c [#} = Minimum length for Control ligamers (default=20)

=cut
## Finish message if run with no arguments

#Parse the command line
while(@ARGV>0)
{
@arguments = @ARGV; #Store the command line for printing later

my $next_arg=shift(@ARGV);
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if ($next_arg eq "-hp") { # Do you want to print HTML POD Data?
$help_print=1;
}

if ($next_arg eq "-mp") { # Do you want to print a manual?
$man_print=1;
}

if ($next_arg eq "-i") { # What is the name of the input file?
$file_input = shift @ARGV;
}
if ($next_arg eq "-f") { #n Name of the fasta file your sequences are in?
$fa_reference = shift @ARGV ;
}

if ($next_arg eq "-r") { # Do you want to fetch sequences from ensembl?
$remote = 1
}

if ($next_arg eq "-o") { # Name of output file
$output_file = shift(@ARGV);
}

if ($next_arg eq "-v") { # Do you want to see the ensembl load data?
$verbose = shift @ARGV;
}

if ($next_arg eq "-d") { # What version of ensembl do you want to use?#
$db_version = shift @ARGV;
}

if ($next_arg eq "-t") { # What temperature in degrees C do you want to norm
?

$temp = shift @ARGV;
}

if ($next_arg eq "-salt") { # Salt concentration for Tm calculations?
$salt = shift @ARGV ;
$salt = $salt / 1000; # from micro Molar to Molar
}

if ($next_arg eq "-lig_conc") { # Concentration for Tm calculations?
$lig_conc=shift@ARGV;
$lig_conc = $lig_conc / 1000000000; # nM to M
}

if ($next_arg eq "-c") { # What length would you like (min) for control ligs?
$control_length = shift @ARGV ;
$control_length = $control_length-1
}

} ## Finish Parsing the command line

###################### POD HELP SUBROUTINE
CALLS################################

my $scriptname=$0;
podhelp( $scriptname, $help_print, $man_print, $dir);
##################### POD HTML Subroutine

CALLS#################################

#################### open the ensembl registry#################################
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my $db;
if ($fa_reference) {
$db = Bio::DB::Fasta->new($fa_reference);
}

if ($remote==1) {
$db = ensembl_database($verbose, $db_version)
}

################################################################################
#open the output file
open (OUT, ’>’.$output_file) || die "The output file could not be created.\n";
## Print the headers
print OUT
# Start with general assembler information
">Source Program\t",$dir,$0,"\n".
">Date Run \t$timestamp \n".
">Arguments entered \t", "@arguments"," \n".
">Input filename \t$file_input\n".
">Output filename \t$output_file\n".
">Control Seq Length \t$control_length plus 1\n".
">Normalization temperature \t$temp\n".
##### now all on 1 line print the ligmaer-specific information
">Gene\t". #1
"Ligamer_Number\t". #2
"Species\t". #3
"Strand\t". #4
"Ligamer Joiner Code\t". #5
"Target Prime\t". #6
"UCSC coordinates\t". #7
"PCR Used\t". #8
"Barcode Used\t". #9
"Total Query span\t". #10
"Five Prime Sequence\t". #11
"5 Prime Length\t". #12
"Five Prime Tm\t".
"3 Prime Sequence\t".
"3 Prime Length\t".
"3 Prime Tm\t".
#"Ligamer Identifier\t".
"Ligamer Sequence\t".
"Ligamer Length\t".
"Notes\t".
"Set\t".
"\n";
################################################################################
## open the input file
open (INPUT, $file_input) || die "The file $file_input couldn’t be opened.\n";
###############################################################################

#################read and analyze each line of the input file #################
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while (my $line=<INPUT>) { ## starting brace to read through csv

if ($line=~/^#/){next} #skips comments
if ($line=~/^>/){print OUT $line; next} #skips and trans.these lines
if ($line=~/^~/){$line=~s/~//;chomp $line; $gene=$line;} # find gene

identifier
$gene=~s/[\s]+//g;
if ($line=~/^\@/){chomp $line;$note_line=$line;next} #store notes

chomp $line;

if ($line=~/^PCR-Primer-5’-/g) { #Find the 5 adaptor
$five_prime_PCR_sequence=$line;
$five_prime_PCR_sequence=~s/PCR-Primer-5’-//;
$five_prime_PCR_sequence=~s/[\s]+//g;
print OUT ">5_pcr\t".$five_prime_PCR_sequence."\n";
next
}

if ($line=~/^PCR-Primer-3’-/) {## find the 3 adaptor
$three_prime_PCR_sequence=$line;
$three_prime_PCR_sequence=~s/PCR-Primer-3’-//;
$three_prime_PCR_sequence=~s/[\s]+//g;
print OUT ">3_pcr\t".$three_prime_PCR_sequence."\n";
next
}

if ($line=~/^</) {#ligamer query lines start with a ’<’
unless ($note_line) {$note_line=" ";}

my $lig_joiner_code;
my $slice_sequence;

$line_counter++;

(
$gene,
$species,
$strand,
$lig_location,
$target_prime,
$UCSCcoordinates,
$barcode,
$set
) = parse_the_line($line);

$lig_location = uc $lig_location;

# Parse the ligamer query line
($chr, $start, $end)= parse_coordinates($UCSCcoordinates);
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my $target_seq_length = ($end-$start);

############ Get genomic slice from ensembl registry ###############
if ($remote==1) {
$slice_sequence =
get_genomic_sequence
(
$chr,
$start,
$end,
$species,
$db,
)

}
#####################################################################

############ Get the genomic slice from local Fasta #################
if ($fa_reference) {
#$chr="chr".$chr;
my $obj = $db -> get_Seq_by_id($chr);
$slice_sequence = $obj -> subseq ($start => $end);
}

####################################################################

#### get the correct orientation
my ($working_sequence) =
revcom_slice_based_on_strand
(
$strand,
$slice_sequence
);

# Get the T5 end
my ($T5_seq, $T5_tm, $T5_seq_length)=
obtain_T5_tm_sequence

(
$working_sequence,
$temp,
$lig_location,
$control_length,
$salt,$lig_conc
);

# Get the T3 end
my ($T3_seq, $T3_tm, $T3_seq_length) =
obtain_T3_tm_sequence

(
$working_sequence,
$temp,
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$lig_location,
$control_length,
$salt,
$lig_conc
);

#start to build your working HASH
my %common =
(
working_sequence => $working_sequence,
temp => $temp,
UCSCcoordinates => $UCSCcoordinates,
UCSC_chr => $chr,
UCSC_start => $start,
UCSC_end => $end,
gene => $gene,
ligamer_name => $ligamer_name,
species => $species,
strand => $strand,
target_prime => $target_prime,
five_prime_PCR_sequence => $five_prime_PCR_sequence,
three_prime_PCR_sequence => $three_prime_PCR_sequence,
barcode => $barcode,
target_seq_length => $target_seq_length,
seed => $control_length,
T3_seq => $T3_seq,
T3_tm => $T3_tm,
T3_seq_length => $T3_seq_length,
T5_seq => $T5_seq,
T5_tm => $T5_tm,
T5_seq_length => $T5_seq_length,
notes => $note_line,
set =>$set,
);

if ($lig_location eq "T" && $target_prime eq "5") { #Terminal 5 targeted
#Advance the ligamer number
$ligamer_name++;
$common{ligamer_name} = $ligamer_name;
# Add to the hash table
$lig_joiner_code = "T-5";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = Terminal_5(%common);
my %final = ligamer_piece_joiner(%lig_results);
my %bed_output = %final;
output (%final);
};

if ($lig_location eq "TC" && $target_prime eq "5") {# Grab the internal
$ligamer_name++;
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$common{ligamer_name} = $ligamer_name;
$lig_joiner_code = "T-C-5-I";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = Terminal_5(%common);

my %final_internal =
ligamer_piece_joiner

(%lig_results);

my $working_sequence = $lig_results{working_sequence};
my $T5_seq_length = $lig_results{T5_seq_length};

# Now grab the sequence inside of the control
$working_sequence = $common{working_sequence};
my $T5_ctrl_length = $common{T5_seq_length};
$common{T5_ctrl_length} = $T5_ctrl_length;
$working_sequence = substr ($working_sequence,$T5_ctrl_length);
$lig_location = "IC";
($T5_seq, $T5_tm, $T5_seq_length) =
obtain_T5_tm_sequence

(
$working_sequence,
$temp,
$lig_location,
$salt,
$lig_conc
);

$common{working_sequence} = $working_sequence;
$common{T5_seq} = $T5_seq;
$common{T5_tm} = $T5_tm;
$common{T5_seq_length} = $T5_seq_length;
$ligamer_name++;
$common{ligamer_name}= $ligamer_name;
$lig_joiner_code="T-C-5-T";
$common {lig_joiner_code}= $lig_joiner_code;
%lig_results = Terminal_5 (%common);
my %final = ligamer_piece_joiner(%lig_results);
output (%final_internal);
output (%final);
}

if ($lig_location eq "T" && $target_prime eq "3") {
$ligamer_name++;
$common{ligamer_name} = $ligamer_name;
$lig_joiner_code = "T-3";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = Terminal_3 (%common);
my %final = ligamer_piece_joiner (%lig_results);
my %bed_output = %final;
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output (%final);
};

if ($lig_location eq "TC" && $target_prime eq "3") {
#Grab the control
$ligamer_name++;
$common{ligamer_name} = $ligamer_name;
$lig_joiner_code = "T-C-3-I";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = Terminal_3 (%common);
my %final_internal = ligamer_piece_joiner (%lig_results);
# Grab the sequence internal of the control
$working_sequence = $common{working_sequence};
my $T3_ctrl_length = $common{T3_seq_length};
$common{T3_ctrl_length} = $T3_ctrl_length;
$T3_seq_length = $common{T3_seq_length};
$working_sequence = substr ($working_sequence,0, $T3_ctrl_length);
$lig_location = "IC";
($T3_seq, $T3_tm, $T3_seq_length) =
obtain_T3_tm_sequence
(
$working_sequence,
$temp,
$lig_location
);

$common{working_sequence} = $working_sequence;
$common{T3_seq} = $T3_seq;
$common{T3_tm} = $T3_tm;
$common{T3_seq_length} = $T3_seq_length;
$common{bed_start} = $start;
$common{bed_end} = $end;
$ligamer_name++;
$common{ligamer_name} = $ligamer_name;
$lig_joiner_code = "T-C-3-T";
$common {lig_joiner_code} = $lig_joiner_code;
%lig_results = Terminal_3 (%common);
my %final = ligamer_piece_joiner (%lig_results);
output (%final);
output (%final_internal);
};

if ($lig_location eq "I" && $target_seq_length>60) {
$ligamer_name++;
$common{ligamer_name} = $ligamer_name;

if ($lig_location eq "I" && $target_prime eq "C") {
$lig_joiner_code = "I-L-C";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = (%common);
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my %final = ligamer_piece_joiner(%lig_results);
$final{pcrsequence} = "";
my %bed_output = %final;
output (%final);
}

if ($lig_location eq "I" && $target_prime eq "N") {
$lig_joiner_code = "I-L";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = (%common);
my %final = ligamer_piece_joiner(%lig_results);
$final{pcrsequence} = "";
my %bed_output = %final;
output (%final);
#my %bed_final = prep_bed (%bed_output);
}

}

if ($lig_location eq "I" && $target_seq_length<=60) {
$ligamer_name++;
$common{ligamer_name} = $ligamer_name;
$lig_joiner_code = "I-S";
$common {lig_joiner_code} = $lig_joiner_code;
my %lig_results = obtain_short_interal_tm (%common);
my %final = ligamer_piece_joiner (%lig_results);
$final{pcrsequence} = "";
my %bed_output = %final;
output (%final);
#my %bed_final = prep_bed (%bed_output);
};

}## matching brace for ligamer data lines

else {next};
}## Matching brace for csv file input test
####### END LIGAMERS ASSEMBLY PORTION

close OUT;
close INPUT;
print "Program Finished.\n";
exit;

####### END MAJOR WORK OF PROGRAM !!
###############################################################################
#### Begin Subroutine section of program.
sub Terminal_5 {
my %results = (@_);

my $T3_seq = "";
my $T3_tm = "";
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my $T3_seq_length = "";

$results {T3_seq} = $T3_seq;
$results {T3_tm} = $T3_tm;
$results {T3_seq_length} = $T3_seq_length;

return %results;
}
################################################################################
##
################################################################################
sub Terminal_3 {
my %results = (@_);

my $T5_seq="";
my $T5_tm="";
my $T5_seq_length="";

$results {T5_seq} = $T5_seq;
$results {T5_tm} = $T5_tm;
$results {T5_seq_length} = $T5_seq_length;

return %results;
}
################################################################################

################ BEGIN Subroutine for short slices
#############################

sub obtain_short_interal_tm {

my %results = (@_);
my $working_sequence = $results{working_sequence};

my $working_sequence_tm_obj=
Bio::SeqFeature::Primer -> new(-seq=>$working_sequence);
my $T5_tm = $working_sequence_tm_obj->
Tm
(
-salt => $salt,
-oligo => $lig_conc
);

$T5_tm=substr($T5_tm,0,5);
my $T5_seq = $working_sequence;

$results{working_sequence} = $working_sequence;
$results{T5_seq} = $T5_seq;
$results{T5_tm} = $T5_tm;
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return (%results);
}
################################################################################

################################################################################
sub output { my %results=(@_);

print OUT $results{gene },"\t"; # 0
print OUT $results{ligamer_name },"\t"; # 1
print OUT $results{species },"\t"; # 2
print OUT $results{strand },"\t"; # 3
print OUT $results{lig_joiner_code },"\t"; # 4
print OUT $results{target_prime },"\t"; # 5
print OUT $results{UCSCcoordinates },"\t"; # 6
print OUT $results{pcrsequence },"\t"; # 7
print OUT $results{barcode },"\t"; # 8
print OUT $results{target_seq_length },"\t"; # 9
print OUT $results{T5_seq },"\t"; # 10
print OUT $results{T5_seq_length },"\t"; # 11
print OUT $results{T5_tm },"\t"; # 12
print OUT $results{T3_seq },"\t"; # 13
print OUT $results{T3_seq_length },"\t"; # 14
print OUT $results{T3_tm },"\t"; # 15
print OUT $results{ligamer },"\t"; # 16
print OUT $results{warning }; #
print OUT $results{ligamer_length },"\t"; # 17
print OUT $results{notes },"\t"; # 18
print OUT $results{set },"\t"; # 19

#Commented on 022013
#if ( defined $results{T5_ctrl_length} ) {
# print OUT $results{ T5_ctrl_length },"\t";
# }

#if ( defined $results{T3_ctrl_length} ) {
# print OUT $results{ T3_ctrl_length },"\t";
# }

print OUT "\n";

}
################################################################################

######BEGIN Subroutine to parse csv file into variables
########################

sub parse_the_line {

my $line = shift(@_);
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my (
$gene,
$ligamer_name,
$species,
$strand,
$lig_location,
$target_prime,
$UCSCcoordinates,
$barcode,
$set
)
= split /\t/ , $line ;

$gene=~s/^<//;
print "Gene - $gene\n";
print "Ligmamer name - $ligamer_name\n";
print "species - $species\n";
print "strand - $strand\n";
print "lig_location - $lig_location\n";
print "target_prime - $target_prime\n";
print "UCSC - $UCSCcoordinates\n";
print "barcode - [$barcode]\n";
print "Set - [$set]\n";

if ($barcode=~/ /){$barcode=~s/ //} ## GO HERE!

$gene=~s/<//;

return
(
$gene,
$species,
$strand,
$lig_location,
$target_prime,
$UCSCcoordinates,
$barcode,
$set
);

}

######END Subroutine to parse csv file into variables ############

######BEGIN Subroutine to parse genomic coordnates into variables ############
sub parse_coordinates {

my $input=shift(@_);

my ($chr,$coordinates) =split /\:/,$input;
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my ($start,$end) =split /\-/,$coordinates;
#$chr=~s/chr//; # I have comment out this to behave with local fasta files!

$start=~s/\,//g;
$end=~s/\,//g;

return ($chr, $start, $end);

}
######END Subroutine to parse genomic coordnates into variables

################

######Subroutine to make revcom depending on strand
annoation###################

sub revcom_slice_based_on_strand {

my ($strand, $slice_sequence) = @_;

#if the strand is positive - make the reverse compliment
$strand=lc($strand);

if ($strand eq ’plus’) {
$working_sequence = reverse($slice_sequence);
$working_sequence =~ tr/ACGTacgt/TGCAtgca/;
}

# if the strand is minus - do nothing
if ($strand eq ’minus’) {
$working_sequence = $slice_sequence;
}

return $working_sequence
}

###### END SUBROUTINE revcom_slice_based_on_strand ####################

################ BEGIN Subroutine to obtained only 5’ end of working sequence##
sub obtain_T5_tm_sequence {

my $working_sequence = shift (@_);
my $temp = shift (@_);
my $lig_location = shift (@_);
my $control_length=shift (@_);
my $salt=shift (@_);
my $lig_conc=shift (@_);
my $working_sequence_length = length ($working_sequence);
my $T5_seq_length;

if ($lig_location eq "TC") {$T5_seq_length=$control_length};
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if ($lig_location eq "T") {$T5_seq_length=19};
if ($lig_location eq "I") {$T5_seq_length=19};

my $T5_tm=0;
my $T5_seq;
my $T5_seq_out;

while($T5_tm < $temp)
{
$T5_seq_length++;
print ".";
$T5_seq=substr $working_sequence,0, $T5_seq_length;
my $T5_seq_primer=
Bio::SeqFeature::Primer ->
new
(
-seq=>$T5_seq
);

$T5_tm = $T5_seq_primer ->
Tm
(
-salt=>$salt,
-oligo=>$lig_conc
);

$T5_tm=substr($T5_tm,0,5);
if ($T5_seq_length eq $working_sequence_length) {last;}
if ($T5_tm>=$temp)
{
$T5_seq_out = $T5_seq;
print "\n";
last
}

if ($T5_seq_length eq 33)
{
$T5_seq_out=$T5_seq;
print "\n";
print STDERR "Warning: ".
"Assembly at line $. T5 side cut".
" off due to low Tm \n";
last
}

elsif ($T5_tm<=$temp){next}
}

return ($T5_seq_out, $T5_tm, $T5_seq_length);
}

################ BEGIN Subroutine to obtained only 3’ end of working sequence##
sub obtain_T3_tm_sequence {
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my $working_sequence = shift (@_);
my $temp = shift (@_);
my $lig_location = shift (@_);
my $control_length=shift (@_);
my $salt=shift (@_);
my $lig_conc=shift (@_);
my $working_sequence_length = length ($working_sequence);
my $T3_seq_length;

if ($lig_location eq "TC") {$T3_seq_length=(-$control_length)};
if ($lig_location eq "T") {$T3_seq_length=(-19)};
if ($lig_location eq "I") {$T3_seq_length=(-19)};

my $T3_tm=0;
my $T3_seq;
my $T3_seq_out;

while ($T3_tm < $temp )
{
print ".";
$T3_seq_length--;
$T3_seq=
substr $working_sequence, $T3_seq_length;
my $T3_seq_primer=
Bio::SeqFeature::Primer ->
new
(
-seq=>$T3_seq
);

$T3_tm = $T3_seq_primer ->
Tm
(
-salt=>$salt,
-oligo=>$lig_conc
);

$T3_tm=substr($T3_tm,0,5);
if ($T3_seq_length eq (-$working_sequence_length)) {last;}
if ($T3_seq_length<(-80)){die}
if ($T3_tm>=$temp)
{
$T3_seq_out=$T3_seq;
print "\n";
last
}

if ($T3_seq_length eq (-33))
{
$T3_seq_out=$T3_seq;
print "\n";
print STDERR "Warning: ".
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"Assembly at line $. T3 side cut".
" off due to low Tm \n";
last
}

if ($T3_tm<$temp){next}
}

return ($T3_seq_out, $T3_tm, $T3_seq_length);
}

################ END Subroutine to obtained only 3’ end of working sequence####

################ BEGIN Subroutine to joined pieces of ligamer #########
sub ligamer_piece_joiner{

my %results = @_;

my $lig_joiner_code = $results{lig_joiner_code};
my $T5_seq = $results{T5_seq};
my $barcode = $results{barcode};
my $T3_seq = $results{T3_seq};
my $pcrsequence;
my $short_sequence=$T5_seq;
my $ligamer;
my $ligamer_length;
my $warning=" ";
my $Phos_mod_code="\/5Phos\/";

if ($lig_joiner_code eq "T-5")
{
$pcrsequence=$results{three_prime_PCR_sequence};
$ligamer = join ("",$Phos_mod_code, $T5_seq, $barcode,$pcrsequence);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}

if ($lig_joiner_code eq "T-C-5-I")
{
$pcrsequence=$results{three_prime_PCR_sequence};
$ligamer = join ("",$Phos_mod_code,$short_sequence);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}

if ($lig_joiner_code eq "T-C-5-T")
{
$pcrsequence=$results{three_prime_PCR_sequence};
$ligamer = join ("",$Phos_mod_code, $T5_seq, $barcode, $pcrsequence);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}
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if ($lig_joiner_code eq "T-3")
{
$pcrsequence=$results{five_prime_PCR_sequence};
$ligamer = join ("",$pcrsequence,$barcode,$T3_seq);
$ligamer_length = length $ligamer;
}

if ($lig_joiner_code eq "T-C-3-I")
{
$pcrsequence=$results{five_prime_PCR_sequence};
$ligamer = join ("",$Phos_mod_code,$T3_seq);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}

if ($lig_joiner_code eq "T-C-3-T")
{
$pcrsequence=$results{five_prime_PCR_sequence};
$ligamer = join ("",$pcrsequence,$barcode,$T3_seq);
$ligamer_length = length $ligamer;
}

if ($lig_joiner_code eq "I-S")
{
$ligamer = join ("",$Phos_mod_code,$short_sequence);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}

if ($lig_joiner_code eq "I-L")
{
$ligamer = join ("",$Phos_mod_code,$T5_seq,$barcode,$T3_seq);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}

if ($lig_joiner_code eq "I-L-C")
{
$ligamer = join ("",$Phos_mod_code,$T5_seq,$barcode,$T3_seq);
$ligamer_length = length $ligamer;
$ligamer_length = $ligamer_length-7;
}

if ($ligamer_length > 60)
{
print STDERR
"Warning! The ligamer from input file data line $.".
" has a length greater than 60!\n";
};
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$results{pcrsequence} = $pcrsequence;
$results{ligamer} = $ligamer;
$results{ligamer_length} = $ligamer_length;
$results{warning} = $warning;

return %results;

}
################################################################################

################################################################################
## Load the latest Ensembl Registry
sub ensembl_database{

my $verbose=shift@_;
my $db_version=shift@_;

my $registry = ’Bio::EnsEMBL::Registry’;
print "Beginning to login to Ensembl database version $db_version.\n";
$registry->load_registry_from_db
(
-host => ’ensembldb.ensembl.org’,
-user => ’anonymous’,
-db_version => $db_version,
-verbose => $verbose,
);

print "Done loading ensembl database.\n";
return $registry;
}
################################################################################

################ BEGIN Subroutine to obtained get genomic sequence slice
#######

sub get_genomic_sequence {

my ($chr, $start, $end, $species, $db ) = @_;

my $slice_adaptor = $db->get_adaptor( $species, ’Core’, ’Slice’);

$chr=~s/^chr//;

my $slice = $slice_adaptor->
fetch_by_region
(
’chromosome’,
$chr,
$start,
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$end,
);

my $slice_sequence = ($slice->seq);

return $slice_sequence;
}
################ END Subroutine to obtained get genomic sequence slice ######
################################################################################
################ BEGIN Subroutine to PROVIDE POD HELP DATA ######
sub podhelp {

my $scriptname= shift@_;
my $help_print= shift@_;
my $man_print= shift@_;
my $perlname=$scriptname;
my $htmlname=$scriptname;
my $manname=$scriptname;

if ($help_print eq 1)
{
$htmlname =~ s/\.pl/\.html/;
system "pod2html $perlname --title=$perlname --outfile=$htmlname";
print "\n\t$htmlname printed in cwd.\n\n";
exit
}

if ($man_print eq 1)
{
$manname =~ s/\.pl/\.man/;
system "pod2man $perlname $manname";
print "\n\t$manname printed in $dir.\n\n";
system "man -l $manname|less";
exit
}

}
################ END Subroutine to PROVIDE POD HELP DATA ######
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