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ABSTRACT 

 
The KCNE1 and KCNE3 type I transmembrane-spanning β-subunits assemble 

with the KCNQ1 voltage-gated K+ channel to afford membrane-embedded complexes 

with dramatically different properties.  Assembly with KCNE1 produces the very slowly 

activating and deactivating IKs current that shapes the repolarization phase of cardiac 

action potentials.  Genetic mutations in KCNQ1 or KCNE1 that reduce IKs current cause 

long QT syndrome and predispose affected individuals to potentially fatal cardiac 

arrhythmias.  In contrast, complexes formed between KCNQ1 and KCNE3 produce 

rapidly activating and mostly voltage-independent currents, properties that are essential 

for function in K+ recycling and Cl− secretion in gastrointestinal epithelia.   

This thesis addresses how these two homologous accessory peptides impart their 

distinctive effects on KCNQ1 channel gating by examining two important protein 

regions: 1) a conserved C-terminal motif in the β-subunits themselves, and 2) the voltage 

sensing domain of KCNQ1 channels.   

Sequences in both the transmembrane domain and C-terminus of KCNE1 and 

KCNE3 have been identified as contributing to the divergent modulatory effects that 

these β-subunits exert.  The homology of transmembrane-abutting C-terminal residues 

within the KCNE family and the presence of long QT-causing mutations in this region 

highlight its importance.  A bipartite model of modulation was proposed that suggests the 

transmembrane domain of KCNE1 is passive, allowing the C-terminal domain to control 

modulation.  Chapter II builds on this model by investigating the effect of mutating 
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specific amino acids in the KCNE1 C-terminal domain.  Point mutants that produce ‘high 

impact’ perturbations in gating were shown to cluster in a periodic fashion, suggesting an 

alpha-helical secondary structure that is kinked by a conserved proline residue and 

interacts with the Q1 channel complex.   

In Chapter III, the voltage sensing domain of Q1 channels is examined in the 

presence of either KCNE1 or KCNE3.  To determine the influence of these two peptides 

on voltage sensing, the position of the S4 voltage sensor was monitored using cysteine 

accessibility experiments.  In the slowly opening KCNQ1/KCNE1 complexes, voltage 

sensor activation appears to occur much faster than the onset of current, suggesting that 

slow channel activation is not due to slowly moving voltage sensors.  KCNE3, on the 

other hand, shifts the voltage sensor equilibrium to favor the active state, producing open 

channels even at negative voltages.  

Taken together, these findings provide mechanistic detail to illustrate how two 

homologous peptides radically alter the gating properties of the same K+ channel and 

present a structural scaffold to map protein-protein interactions. 
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CHAPTER I: Introduction and Literature Survey 

 
 Voltage-gated K+ (Kv) channels are critical for physiological processes that 

involve rapid response: propagating electrical signals throughout the nervous system, 

enabling cardiac, skeletal and smooth muscle contraction, and maintaining salt-water 

balance in gastrointestinal epithelia (Robbins, 2001; Bezanilla, 2006).  This family of 

proteins functions in all kingdoms of life by providing an aqueous pore that opens and 

closes upon changes in membrane voltage.  Potassium ions can then flow across the 

restrictive lipid bilayer and down their electrochemical gradient at a rate approaching that 

of simple diffusion.  This remarkable speed is complemented by a very strong selectivity 

for K+ over other monovalent cations.  

 Ion transport through Kv channels typically occurs in an outward direction – from 

the high K+ environment of the cell interior to the outside of the cell where the K+ 

concentration is much lower.  In excitable cells, K+ efflux repolarizes the membrane back 

to its typical resting potential of ~ -80 mV thereby terminating action potentials.  The 

movement of potassium ions across the membrane generates a measurable current termed 

the ionic current.  At any given voltage, the macroscopic ionic current from a population 

of channels depends on the single channel conductance, open probability and number of 

active channels at the cell surface.  

 Despite their diverse kinetic properties and tissue distribution, voltage-gated 

potassium channels share a common architecture.  They are tetrameric assemblies of α-

subunits (MacKinnon, 1991) whose amino- and carboxy- termini face the cytoplasmic 
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side of the membrane.  Each α-subunit monomer contains six transmembrane-spanning 

segments (S1-S6) and the α-subunits probably assemble as dimers of dimers (Tu and 

Deutsch, 1999).  Kv channels contain two essential domains: the voltage sensing domain 

(VSD) and the pore domain.  

The Pore 
 
 The tetrameric arrangement of S5 and S6 helices forms the inverted tepee-shaped 

ion-conducting pore domain (Doyle et al., 1998).  At the cytoplasmic face of the 

membrane, the S5 and S6 helices converge in a bundle crossing to form the gate that 

opens and closes to permit or restrict ion flow through the channel pore (Doyle et al., 

1998).  Ion flow can also be inhibited through a fast N-type inactivation process whereby 

a sequence of amino acids in the N-terminus of Drosophila Shaker-type K+ channels 

binds the intracellular side of the channel (Hoshi et al., 1990; Zagotta et al., 1990).  This 

finding, combined with studies showing that quaternary ammonium ions could block K+ 

current through the pore from the intracellular side of the membrane and be trapped 

inside the pore suggested that the activation gate was located at the intracellular mouth of 

the pore (Armstrong, 1966; Armstrong, 1969; Armstrong, 1971).  Further structure-

function studies suggested that the C-terminus of S6 forms the gate (Choi et al., 1993; 

Liu et al., 1997; Holmgren et al., 1998; del Camino et al., 2000); this was complemented 

by comparing the crystal structures of bacterial K+ channels in the open (MthK and 

KvAP) and closed (KcsA) conformations (Doyle et al., 1998; Jiang et al., 2002a; Jiang et 

al., 2003a).  It is now understood that intracellular gate opening occurs via a hinge or 

kink in the pore-lining S6 helices.  In prokaryotic K+ channels, a conserved glycine in S6 
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forms a gating hinge (Jiang et al., 2002b; Jiang et al., 2003a); this is replaced by a 

Proline-X-Proline or Proline-X-Glycine motif (X is any amino acid) in eukaryotic 

channels that bends the S6 helix to open and close channels (Holmgren et al., 1998; del 

Camino et al., 2000; del Camino and Yellen, 2001; Webster et al., 2004).  The closed 

KcsA crystal structure also revealed the reason for quaternary ammonium ion-trapping: 

the center of the pore opens up to a large water-filled cavity above the intracellular gate, 

roughly in the middle of the membrane.  This effectively limits the distance that ions 

need to travel through the membrane to 12 Angstroms (Doyle et al., 1998).   

 Potassium selectivity is achieved by a sequence of amino acids at the narrowest 

part of the pore, close to the extracellular side of the membrane.  The backbone carbonyl 

oxygen atoms in this ‘selectivity filter’ mimic the hydration shell of potassium ions in 

solution and the specific geometry of these carbonyl atoms permits K+ ion flow while  

preventing proper coordination of smaller-radius Na+ ions (Doyle et al., 1998; Zhou et 

al., 2001).  Figure 1-1 shows the pore region and selectivity filter of KcsA, indicating the 

four K+-coordinating positions. Electrostatic repulsion of adjacent K+ ions in the 

selectivity filter ensures rapid conduction through the channel; however, at low K+ 

concentrations, structural rearrangements of the selectivity filter can prevent ion 

conduction even if the intracellular gate is open (Zhou et al., 2001), a process called C-

type inactivation (Lopez-Barneo et al., 1993).  
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Figure 1-1   The pore and selectivity filter of the KcsA K+ channel  
 
(Left)  Ribbon diagram showing three subunits of the bacterial KcsA K+ channel crystal 

structure (front subunit omitted for clarity).  The selectivity filter is depicted in yellow, 

and potassium ions binding four sites in the selectivity filter and one site in the water-

filled cavity are indicated in green.    

 

(Right)  Close-up view of residues from two subunits forming the selectivity filter (front 

and back subunits not depicted).  Backbone carbonyl atoms form four K+ ion 

coordination sites.  Figure 1-1 is from (Morais-Cabral et al., 2001). 
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The Voltage Sensing Domain 
 
 The first four transmembrane segments (S1-S4) sit on the periphery of the central 

pore and comprise the voltage sensing domain (VSD).  Since voltage-gated channels are 

defined by their strong dependence on changes in membrane voltage to open (activate) 

and close (deactivate), Hodgkin and Huxley proposed that a ‘gating particle’ within the 

channel acts as a voltage sensor (Hodgkin and Huxley, 1952).  The repeating pattern of 

positively charged arginine and lysine residues at every third position in the S4 

transmembrane helix pointed to this segment as the possible gating particle, or voltage 

sensor.  When the cell interior is depolarized, the positively charged S4 helices move out 

toward the cell exterior (Larsson et al., 1996; Yang et al., 1996).  This movement in itself 

creates a very small, transient ‘gating current’ that can be measured if enough channels 

are expressed at the cell surface and if the ionic current is blocked (Armstrong and 

Bezanilla, 1973; Armstrong and Bezanilla, 1974).  Gating current measurements have 

revealed that in a single Shaker Kv channel, ~ 13 electron charge units are displaced upon 

channel opening, or ~ 3 per subunit (Aggarwal and MacKinnon, 1996; Seoh et al., 1996).  

Neutralization of S4 charges substantially decreases the gating charge, indicating that the 

four most N-terminal arginines translocate the majority of this charge (Aggarwal and 

MacKinnon, 1996).  The distance over which voltage sensors travel during activation and 

the chemical environment surrounding S4 charges has been the subject of intense debate.   
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Models of Voltage sensing 
 
 The crystal structures of three VSD-containing K+ channels show that the S3 and 

S4 subunits form an antiparallel helical domain termed the voltage sensor paddle (Jiang 

et al., 2003a; Long et al., 2005a; Long et al., 2007).  Accessibility studies performed with 

methanethiosulfonate (MTS) reagents (Larsson et al., 1996; Yang et al., 1996) and more 

recent probing with avidin capture of tethered biotin (Jiang et al., 2003b; Ruta et al., 

2003) suggest that upon depolarization, the S4 helices traverse 15-20 Å through the 

membrane.  Other approaches suggest a smaller translocation no more than the outer half 

of the lipid bilayer (Phillips et al., 2005) or  ~ 4 Å through a more focused electric field 

(Ahern and Horn, 2005).  Finally, fluorescence resonance energy transfer experiments 

invoke comparatively tiny vertical displacements of 2 Å or less (Chanda et al., 2005; 

Posson et al., 2005).  These models essentially depend on the degree of electric field 

focusing across the membrane.  A smaller, more focused electric field requires smaller S4 

movements to generate the gating charge whereas a membrane electric field spread across 

a greater distance requires larger motions (Tombola et al., 2006).   

 There has also been some discrepancy concerning whether the environment 

surrounding S4 arginines consists of protein, water, lipid, or a mixture of these.  It seems 

energetically unfavorable for positively charged guanidinium groups to be buried in the 

low-dielectric lipid bilayer.  Indeed, the accessibility of S4 residues to water-soluble 

reagents suggests that the gating charge arginines may be protected by water-filled 

crevices (Larsson et al., 1996; Yang et al., 1996; Cha et al., 1999; Starace and Bezanilla, 

2004).  Additionally, the finding that an arginine to histidine substitution in Shaker’s S4 
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creates a proton pore in the VSD supports an aqueous – or at least ion-friendly – voltage 

sensor environment (Starace et al., 1997).  Finally, acidic amino acids in S1 and S2 are 

postulated to form salt bridges with some of the basic S4 gating charges (Seoh et al., 

1996).  Two recent crystal structures of mammalian Kv channels confirm that the third 

and fourth arginines are stabilized by salt bridge interactions with acidic amino acids on 

S1 and S2 (Long et al., 2005a; Long et al., 2007).  The more N-terminal gating charge 

arginines are on a lipid-facing surface and may extend to face phospholipid head groups.  

Coupling Voltage Sensing to Gating 
 
 It is now accepted that membrane depolarization causes the outward displacement 

of voltage sensor helices, which triggers intracellular gate opening and allows ion 

conduction through the channel.  The Kv1.2 crystal structure presents an 

electromechanical mechanism to describe the tight coupling between voltage sensor 

activation and gate opening (Long et al., 2005b).  The VSD of one subunit surrounds the 

pore forming helices of an adjacent subunit, so that the S4-S5 linker – a helical domain 

that lies parallel to the membrane connecting the VSD and pore – travels underneath the 

neighboring subunit (Fig 1-2).  When voltage sensors are activated, the S4-S5 linkers 

widen the ion conduction pathway to open the channel.  Upon hyperpolarization, voltage 

sensors return to their resting state, the S4-S5 linkers clamp down, and compress the C-

terminal region of the S6 gate to close the pore and prevent ions from entering.   
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Figure 1-2  Proposed mechanism of voltage-dependent gating   
 
(Top) Ribbon diagram showing the Kv1.2 crystal structure top-down, from the 

extracellular side of the membrane.  Each subunit is presented in a different color (red, 

blue, gold, green), and helical segments are labeled S1-S6.  A single potassium ion is 

modeled in the center of the pore.  

 

(Bottom) Ribbon diagram side-view of the open conformation (left) and hypothetical 

closed conformation (right) of the Kv1.2 pore-forming subunits.  S4-S5 linkers are in red, 

S5 helices in grey and S6 helices in blue.  Green spheres show potassium ions modeled in 

the pore region.  Figure 1-2 is from (Long et al., 2005b). 
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This coupling mechanism is supported by studies that transplanted a VSD onto an 

otherwise voltage-independent channel.  For proper voltage-dependent function, these 

channels required both the S4-S5 linker region and a C-terminal portion of S6 (Lu et al., 

2001; Lu et al., 2002).  Point mutations in the pore region highlight the localized region 

of interaction and the relative independence of voltage sensing domains (Li-Smerin et al., 

2000b; Soler-Llavina et al., 2006).  Moreover, two proteins were recently identified with 

VSDs that function completely independently of pore domains: The C. intestinalis 

voltage-sensor-containing phosphatase (Ci-VSP) contains a VSD coupled to a 

phosphatase that forms the only known voltage-dependent enzyme (Murata et al., 2005), 

and the Hv1 protein is a VSD that, by itself, serves as a voltage-dependent proton pore 

(Ramsey et al., 2006; Sasaki et al., 2006).  Despite the independence of voltage-sensing 

domains and the relatively small interacting region with the pore, most Kv channels show 

strong coupling between domains.  Given that the probability of gate opening at 

hyperpolarized potentials is extremely low (Islas and Sigworth, 1999), the coupling 

mechanism demands that voltage sensors be in the active conformation for the gate to 

open.  

KCNQ1 K+ Channels 
 
 KCNQ1 (Q1), a member of the Kv7 family of voltage-gated potassium channels, 

is the subject of this thesis.  Q1 shares the standard Kv topology of α-subunits containing 

six transmembrane helices that tetramerize to form a K+-selective pore with four 

surrounding VSDs (Wang et al., 1996).  Despite the scarcity of structural data describing 

Q1, sequence homology predicts a similar structural scaffold to Kv1.2.  However, the C-
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terminus of Q1 channels is much larger than in other Kv channels, an important feature 

that allows this region to act as a scaffold for many intracellular signaling proteins.  Q1 

channels also activate slower than other Kv channels and have a very small single 

channel conductance between 0.7 and 4 pS (Pusch, 1998; Sesti and Goldstein, 1998; 

Yang and Sigworth, 1998).  This may be explained by the fact that Q1 has fewer 

positively charged residues in each S4 segment, as demonstrated in the sequence 

alignment in Fig 1-3 (Panaghie and Abbott, 2007).  Unlike many Kv channels, including 

the other four members of the Kv7 family, Q1 is not expressed in the nervous system at 

all, but is primarily found in cardiac and epithelial tissues (Wang et al., 1996; Yang et al., 

1997).  Voltage-dependent activation of Q1 channels is accompanied by a delayed 

inactivation process that, unlike classic C-type inactivation, occurs independent of 

extracellular K+ concentration (Pusch et al., 1998).  Delayed rectifying currents arising 

from Q1 channels exogenously expressed in Xenopus oocytes or cultured cells do not 

match any physiologically observed currents.  Rather, Q1 assembles with all five 

members of the KCNE family of β-subunits (E1-E5), which cause this otherwise voltage-

dependent channel to adopt a variety of unique gating properties and pharmacologic 

sensitivities depending on the KCNE β-subunit with which it assembles (Barhanin et al., 

1996; Sanguinetti et al., 1996; Schroeder et al., 2000; Tinel et al., 2000; Angelo et al., 

2002; Grunnet et al., 2002). 
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Figure 1-3  Sequence alignment for the S4 region in a variety of human ion channels   
 
Amino acid sequence of the S3-S4 linker, S4 and S4-S5 linker regions of human ion 

channel subunits.  Positively charged arginine (R) or Lysine (K) residues are presented in 

red.  Figure 1-3 is from (Panaghie and Abbott, 2007). 
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KCNE β-subunits  
  

 KCNE β-subunits are small (103-177 amino acids), single transmembrane 

spanning peptides that form stable complexes with a variety of Kv channels and modulate 

their function (McCrossan and Abbott, 2004).  These mostly α-helical peptides (Kang et 

al., 2008) extend their C-termini into the cytosol; their extracellular N-termini contain 

conserved N-linked glycosylation sites that have been useful for following KCNE 

trafficking through the secretory pathway (Chandrasekhar et al., 2006).  The founding 

member of this family, KCNE1 (E1), assembles with Q1 in the heart and inner ear to 

generate an extremely slowly activating and deactivating delayed rectifying complex 

(Barhanin et al., 1996; Sanguinetti et al., 1996).  When KCNE2 (E2) is expressed with 

Q1, the currents produced are voltage-independent, with diminished amplitude compared 

to Q1 channels expressed alone (Tinel et al., 2000).  Q1/E2 complexes are present in 

parietal cells of the stomach, where they are required for gastric acid secretion (Roepke et 

al., 2006).  E2 also assembles with another Kv channel, Kv11 (HERG) to form the 

rapidly activating IKr current in heart (Abbott et al., 1999).  Complexes formed by Q1 and 

KCNE3 (E3) activate almost instantaneously, conduct current at all measurable voltages, 

and co-localize in colonic crypt cells to recycle potassium and mediate cAMP-stimulated 

chloride secretion (Schroeder et al., 2000).  E3 also assembles with the Kv3.4 channel in 

skeletal muscle, where mutations in E3 are associated with periodic paralysis (Abbott et 

al., 2001).  In contrast, E4 acts as an inhibitory subunit to Q1 (Grunnet et al., 2002), and 

E5 radically right-shifts the voltage activation of Q1 channels (Angelo et al., 2002).  

While the biological roles of Q1/E4 and Q1/E5 complexes are still unclear, messenger 
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RNA encoding all five KCNE peptides has been detected in human heart, suggesting that 

a balance of KCNEs may be important for cardiac potassium channel function 

(Bendahhou et al., 2005; Lundquist et al., 2005).  Indeed, it was recently shown that 

different KCNE peptides can assemble with the same Q1 channel in a heteromeric 

complex, suggesting an additional level of K+ channel diversification by β-subunits 

(Morin and Kobertz, 2007; Manderfield and George, 2008).   

Long QT Syndrome  
 
 The physiological importance of Q1/KCNE complexes is highlighted by the fact 

that mutations in both subunits cause disease.  The slowly activating IKs current generated 

by Q1/E1 complexes in the heart contributes to a healthy heart rhythm by shaping the 

repolarization phase of cardiac action potentials.  The precise timing of action potentials 

is critical, and is reflected in the interval between Q and T waves on an electrocardiogram 

(ECG).  Mutations in Q1 or E1 that suppress channel function or prevent proper 

trafficking to the plasma membrane diminish the IKs current and impair repolarization, 

thereby prolonging the duration of cardiac action potentials and the corresponding QT 

interval of the ECG (Splawski et al., 1997; Bianchi et al., 1999; Splawski et al., 2000; 

Wilson et al., 2005).  This hereditary form of long QT syndrome (LQTS) affects 1 in 

5000 individuals, causing seizures, sudden loss of consciousness (syncope), ventricular 

arrhythmias (torsades de pointes), and can even lead to sudden death (Kass and Moss, 

2003).  Romano-Ward syndrome is the more common form of this cardiac disorder and is 

inherited as an autosomal dominant trait (Romano et al., 1963; Ward, 1964).  The much 

rarer Jervell and Lange-Nielson syndrome is inherited as an autosomal recessive disesase; 
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homozygotes show more severe cardiac abnormalities, have a higher risk of sudden 

death, and the QT prolongation is accompanied by congenital bilateral deafness (Jervell 

and Lange-Nielsen, 1957).   

 Why does a dysfunctional cardiac K+ channel cause deafness?  In addition to 

expression in the heart, Q1/E1 complexes are the sole carrier of K+ secretion across the 

apical membranes of vestibular dark cells and strial marginal cells in the inner ear 

(Wangemann et al., 1995).  Voltage-dependent Q1/E1 complexes are always open at the 

apical membrane potential of ~10 mV and the resultant current contributes to endolymph 

secretion required for normal hearing.  When both copies of Q1 or E1 contain loss-of-

function mutations, the lack of functional currents disrupts K+ recycling and endolymph 

homeostasis, causing neural deafness.  The severity of disease may also depend on the 

specific site and type of mutation.  For example, two mutations in the C-terminus of E1 

cause LQTS: S74L and D76N (Splawski et al., 1997).  Whereas S74L shifts the voltage 

dependence of activation to more positive voltages causing a significant reduction in IKs 

current, D76N completely abolishes channel function even though channels harboring 

this mutation successfully reach the plasma membrane (Wang and Goldstein, 1995).  

Mutations causing LQTS have now been identified in the N-terminus, transmembrane 

domain, and C-terminus of E1 as well as throughout the pore-forming Q1 subunit 

(Splawski et al., 2000).  

 Q1/E1 channels in human heart are also regulated by sympathetic nervous system 

stimulation since cardiac arrhythmias in patients carrying long QT mutations in Q1 or E1 

are sometimes precipitated by exercise or startling (Schwartz et al., 2001).  During 
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exercise or a fight-or-flight response, neurons release norepinepherine, which binds to β-

adrenergic receptors and activates the cAMP-dependent protein kinase A (PKA) 

signaling pathway to increase heart rate and shorten cardiac action potential duration 

(Kass and Wiegers, 1982).   

Intracellular Regulation  
 
 The connection between β-adrenergic signaling and Q1/E1 channel regulation 

revealed that Q1/E1 channels are part of a much larger macromolecular signaling 

complex (Marx et al., 2002).  In response to β-adrenergic signaling, PKA and protein 

phosphatase 1 (PP1) are recruited to regulate Q1 phosphorylation at serine 27 by the A-

kinase anchoring protein (AKAP), yotiao.  Yotiao binds a leucine zipper motif in the 

large C-terminal domain of Q1.  Phosphorylated channels generate increased IKs current 

and long QT mutations in the C-terminal leucine zipper motif prevent yotiao binding, 

PKA recruitment, and subsequent Q1 phosphorylation, thereby ablating cAMP-mediated 

regulation of the channel (Marx et al., 2002).  Two other long QT mutations in the E1 C-

terminus (D76N and W87R) also disrupt this functional regulation (Kurokawa et al., 

2003).  Q1/E1 channel complexes may also connect to the cytoskeletal network via 

interactions with β-tubulin, since disruption of microtubules diminishes IKs response to 

PKA-dependent stimulation (Nicolas et al., 2008).  

 Given that intracellular calcium alters the amplitude of IKs currents, calmodulin 

was proposed to bind and regulate Q1.  Assembly with calmodulin underlies the calcium 

sensitivity of Q1/E1 complexes, and its constitutive interaction with the Q1 C-terminal 
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IQ motifs – even in the absence of calcium – promotes solubility of this domain and is 

required for efficient channel delivery to the cell surface (Ghosh et al., 2006; Shamgar et 

al., 2006).  Accordingly, long QT mutants in the Q1 C-terminus that impair calmodulin 

binding result in reduced current amplitude.  Assembly between calmodulin and Q1 can 

be disrupted by phosphatidylinositol 4,5-bisphosphate (PIP2) interaction with the same 

Q1 domain, which activates Q1/E1 channels by left-shifting the voltage-dependence of 

activation (Loussouarn and Escande, 2003; Kwon et al., 2007).   

 Secondary structure predictions indicate that the Q1 C-terminus possesses four 

conserved helical regions (Yus-Najera et al., 2002).  The first two contain the calmodulin 

and PIP2 binding domains, while the second two helices form coiled coil domains that 

mediate subunit tetramerization.  Unlike other members of the KCNQ family that 

contribute to neuronal M-currents and can form heterotetrameric channels, Q1 forms 

homotetramers exclusively, a property attributed to the longer coiled coil region (Howard 

et al., 2007; Wiener et al., 2008).   

 The importance of the Q1 C-terminus as a multi-tiered scaffold involved in 

assembly, subunit specificity, trafficking, and regulation by a number of intracellular 

signaling proteins highlights the complexity of regulation that this channel experiences.  

As mentioned above, functional diversity is also achieved by Q1 assembly with a variety 

of β-subunits that fine-tune its electrical output.   

Q1/E1 and Q1/E3 assembly, interaction, and modulation 
 
 This thesis addresses the nature of Q1 modulation by two different KCNE β-

subunits: E1 and E3.  Whereas Q1/E1 complexes generate very slowly activating, 
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voltage-dependent currents, Q1/E3 complexes activate rapidly and are mostly voltage-

independent, producing current at all measurable voltages. 

 The exact location of KCNE peptides within the Q1 channel is still debated.  

Although E1 has been suggested to line the Q1 ion-conducting pore (Tai and Goldstein, 

1998; Chen et al., 2003b), every K+ channel crystal structure demonstrates that the pore 

region, and the selectivity filter in particular, is too small to surround any number of β-

subunits.  Accumulating evidence demonstrates physical interaction between both E1 and 

E3 peptides and the S6 region of Q1 (Tapper and George, 2001; Melman et al., 2004; 

Panaghie et al., 2006), and the new model proposes a permissive pore conformation that 

allows an extended binding surface for KCNE peptides, which may each bind the channel 

in slightly different ways (Melman et al., 2004).  A recent report also puts to rest the 

longstanding dispute over how many β-subunits are present in a single channel complex.  

Two, four, or a mixed number of KCNE subunits per complex have all been suggested 

(Wang and Goldstein, 1995; Wang et al., 1998; Chen et al., 2003a), however a tethered-

blocker approach conclusively counted two E1 β-subunits in functioning Q1/E1 

complexes (Morin and Kobertz, 2008).  This study also provides some distance 

measurements that constrain the location of KCNEs within the Q1 complex.  Since the 

shortest tethering linker used was 20 Å in length, the N-terminus of E1 probably resides 

approximately 20 Å from the pore.   

 The nature of Q1 modulation by E1 and E3 has also been investigated in some 

detail.  Progressive truncation of the E1 C-terminus removes the characteristic slow 

activation of Q1/E1 complexes without preventing coassembly, suggesting that a stretch 



 18

of C-terminal residues abutting the transmembrane domain is required for E1’s 

modulatory effect (Takumi et al., 1991; Tapper and George, 2000).  In contrast, chimeras 

that mix and match different homologous domains in E1 and E3 suggest that a triplet of 

amino acids in the transmembrane region controls modulation.  When these residues are 

swapped from E1 to E3 and vice versa, they confer the identity of the donor to the 

recipient.  For example, when residues FTL from E1 replace the corresponding TVG 

residues in E3, the resulting current is slowly activating and voltage dependent, 

reminiscent of Q1/E1 currents (Melman et al., 2001).  Melman and colleagues further 

postulated that a simple hydroxyl group on the central residue of this ‘activation triplet’ 

controls the specificity of gating and that the C-terminus merely mediates specific β-

subunit positioning in the channel complex (Melman et al., 2002).  These divergent ideas 

were reconciled with a bipartite model of Q1 modulation by E1 and E3 (Gage and 

Kobertz, 2004).  This model explains that the transmembrane and C-terminal domains 

participate in both assembly and modulation; however, the transmembrane sequence is 

either active or passive in generating voltage-independent currents (basal activation).  

The active E3 transmembrane domain dominates any C-terminal contribution to 

modulation resulting in a large amount of basal activation.  The E1 transmembrane 

domain is passive, uncovering C-terminal modulation of Q1 that produces slowly 

activating and deactivating currents.   

 Does the E1 C-terminus directly interact with Q1 to control slow gating?  Chapter 

II of this thesis expands on the bipartite model by identifying individual amino acids in 

the E1 C-terminus that are critical for modulation of Q1.  Given the sequence 
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conservation of transmembrane-abutting C-terminal residues in KCNE peptides and the 

presence of long QT-causing mutations in this domain, detecting key interacting residues 

and uncovering secondary structural elements would have important implications for the 

structure and function of the KCNE family as well as possible LQTS therapies.  This 

work describes the application of perturbation mutagenesis and helical analysis to answer 

this question.   

 Further questions remain concerning possible interactions between KCNE β-

subunits and the voltage sensing domain.   Although both E1 and E3 have been shown to 

interact with the pore region, the extremely slow Q1/E1 currents and voltage-independent 

Q1/E3 currents suggest that assembly of these β-subunits with Q1 may alter voltage 

sensor equilibrium.  Abbott and coworkers suggested that the paucity of charge in Q1’s 

S4 makes it uniquely sensitive to the modulatory effects of E1 and E3, which do not 

affect other Kv channels as drastically (Panaghie and Abbott, 2007).   

 To generate slowly activating currents, it’s possible that E1 either slows the 

equilibration rate of Q1 voltage sensors or slows the opening of the activation gate.  For 

voltage-independent currents at negative voltages, E3 either shifts voltage sensors to 

favor the active state or uncouples voltage sensor movement from gate opening.  Chapter 

III of this thesis uses MTS-accessibility analysis to assess the equilibrium of voltage 

sensors in Q1/E1 and Q1/E3 to directly distinguish these possibilities.   
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CHAPTER II:  Secondary Structure of a KCNE Cytoplasmic Domain 

 

Abstract 
 

KCNE peptides contain a conserved C-terminal cytoplasmic domain that abuts the 

transmembrane segment.  In E1, this region is required for modulation of Q1 K+ channels 

to afford the slowly activating cardiac IKs current.  This chapter describes the application 

of perturbation mutagenesis to determine whether the E1 C-terminus possesses any 

secondary structure and to identify the E1 residues that face the Q1 channel complex.   

A series of alanine and leucine point mutations were introduced into the E1 C-

terminus and standard activation curve analysis was used to calculate the free energy of 

channel opening.  Helical periodicity analysis of these mutation-induced perturbations 

defined the E1 C-terminus as α-helical when split in half at a conserved proline residue.  

This helical rendering assigns all known long QT mutations in the E1 C-terminal domain 

as protein-facing.  The identification of secondary structure within the E1 C-terminal 

domain provides a structural scaffold to map protein-protein interactions with the pore-

forming Q1 subunit as well as the cytoplasmic regulatory proteins anchored to Q1/KCNE 

complexes.   
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Introduction 
 

KCNE type I transmembrane peptides are a class of membrane-embedded β-

subunits that assemble with and modulate the function of voltage-gated K+ channels 

(McCrossan and Abbott, 2004).  The physiological importance of these small (100 -150 

aa) β-subunits on K+ channel function is underscored by the genetic mutations in E1 and 

E2 that cause abnormalities in the cardiac rhythm (Splawski et al., 2000).  Outside of the 

heart, mutations in E1 also cause endolymphatic collapse in the developing ear and a C-

terminal mutation in E3 has been implicated in periodic paralysis since it alters Kv3.4 

channel function (Letts et al., 2000; Abbott et al., 2001).  All five KCNE peptides 

assemble with and differentially modulate Q1 K+ channels (McCrossan and Abbott, 

2004).  Q1/E1 complexes produce the slowly activating and deactivating cardiac IKs 

current whereas Q1 assembly with either E2 or E3 gives rise to constitutively conducting 

complexes that rapidly activate and deactivate.  Complexes with E4 and E5 slow the 

activation kinetics of Q1 channels similarly to E1; however, co-assembly with these more 

recently discovered KCNEs results in K+ channel complexes that conduct only at 

extremely depolarizing potentials.  Q1/KCNE complex gating is also modulated by 

several intracellular proteins.  Calmodulin, PKA, protein phosphatase I (PP1), and A-

kinase anchoring proteins (AKAPs) are all cytoplasmic proteins that interact with 

membrane-embedded Q1/KCNE complexes (Marx et al., 2002; Kurokawa et al., 2003; 

Shamgar et al., 2006). 



 22

Although KCNE peptides modulate Q1 function differently, four KCNE peptides 

share a conserved cytoplasmic sequence of ~ 20 amino acids adjacent to the 

transmembrane domain.  Structure-function studies with E1 have shown that this domain 

is required for Q1 channel modulation (Takumi et al., 1991; Tapper and George, 2000).  

Moreover, one-third of the known genetic missense point mutations in E1 that cause long 

QT syndrome reside in this cytoplasmic region (Splawski et al., 2000; Schulze-Bahr et 

al., 2001; Ma et al., 2003; Lai et al., 2005; Napolitano et al., 2005).    

This chapter describes the use of perturbation mutagenesis to determine whether 

the E1 cytoplasmic domain possesses any secondary structure and to identify residues 

that interact with Q1 channels.  Alanine and tryptophan scanning has been previously 

used to examine the secondary structure and protein-facing residues of both soluble and 

membrane-embedded domains of voltage-gated K+ channels (Monks et al., 1999; Hong 

and Miller, 2000; Li-Smerin et al., 2000a; Li-Smerin et al., 2000b).  Using alanine and 

leucine mutagenesis, two distinct classes of E1 mutants were identified:  those that 

strongly shift the voltage-dependence of activation favoring the closed state, and those 

that resemble the wild type complex.  Periodicity analysis of this data reveals that the 

cytoplasmic C-terminal domain of E1 is helical when broken into two segments separated 

by a proline residue.  This suggests that either the E1 C-terminus is kinked, or it 

experiences two different protein environments above and below this junction point.  

Moreover, this helical rendering defines all known long QT mutations in this region as 

protein-facing.  Given that this domain is conserved in all but one of the known KCNE 

peptides, the E1 results predict that E2, E3 and E5 will possess a domain with similar 
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structure when associated with Q1 channel subunits.  In total, these results provide a 

structural motif from which to interpret the link between Q1/KCNE gating and 

intracellular regulation. 
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Materials and Methods 
 
Mutagenesis and in vitro transcription:  Q1 and E1 were subcloned into vectors 

containing the 5’ and 3’ UTRs from the Xenopus β-globin gene for optimal protein 

expression. Single point mutations were introduced into human E1 using Quickchange 

site-directed mutagenesis (Strategene) and confirmed by DNA sequencing.  For all 

surface luminometry experiments, the hemagglutinin A (HA) tag, YPYDVPDYA, was 

incorporated into the N-terminus of E1 between residues 22 and 23 (Abbott et al., 2001).  

The cDNA plasmids were linearized by MluI digestion, and cRNA was synthesized by 

run-off transcription using SP6 or T7 RNA polymerase (Promega).   

 

Electrophysiology:  Oocytes were surgically removed from Xenopus laevis and 

defolliculated using 2 mg/mL collagenase (Worthington Biochemical Corp.) in OR2 

containing (mM):  82.5 NaCl, 2.5 KCl, 1 MgCl2, 5 HEPES, pH 7.4 for 75-90 min.  

Isolated oocytes were rinsed with and stored in ND96 bathing solution (ND96B) 

containing (mM):  96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 50 μg/mL gentamicin 

(Sigma-Aldrich), pH 7.4 at 18°C.  Approximately 24h after extraction, oocytes were 

microinjected with 27.6 nL total volume of cRNA containing Q1 (7.5 ng/oocyte) and E1 

(3.75 ng/oocyte).  After 3–6 days, currents were recorded using Warner Instrument OC-

725C two-electrode voltage clamp (TEVC) and the data were acquired with Digidata 

1322A using pClamp 8 or 9 (Axon Instruments).  Electrodes were filled with 3 M KCl, 5 

mM EGTA, 10 mM HEPES, pH 7.6, and had resistance between 0.2 and 1.0 MΩ.  For 
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each experiment, oocytes were held at – 80 mV in ND96 (in mM):  96 NaCl, 2 KCl, 0.3 

CaCl2, 1 MgCl2, 5 HEPES, pH 7.4, and pulsed to a command potential of 40 mV.  

Oocytes injected with Q1 and wild type or mutant E1 RNA were only recorded from if a 

pulse to 40 mV produced current greater than 1 μA to ensure that currents were coming 

from exogenously injected channel complexes.  Tail currents for activation curves were 

measured in KD98 (in mM):  98 KCl, 0.3 CaCl2, 1 MgCl2, 5 HEPES, pH 7.4.  Oocytes 

were held at – 80 mV and the tail current protocol was a series of 4 s test pulses to 

potentials between –100 and + 60 mV in 10 mV increments.   

 

Data Analysis: The amplitude of tail currents was measured 6 ms after repolarization to 

– 80 mV and plotted versus the depolarized potential to produce activation curves for 

wild type and mutant E1 channel complexes.  Activation curves were fit to a Boltzmann 

function, I/Imax = A2 + (A1 – A2) / (1 + e(V – V1/2)*(–zF/RT)), where I/Imax is the normalized 

tail current amplitude,  V1/2 is the midpoint of activation, z is the maximum slope, F is 

Faraday’s constant, R is the gas constant and T is temperature in Kelvin. The upper and 

lower asymptotes, A1 and A2, were left to vary, allowing data to be fit in cases where 

channels were not fully activated in the voltage ranges that can be used with oocytes 

(Gage and Kobertz, 2004).  The isochronal free energy of channel opening, ΔGiso, was 

calculated for WT and each mutant Q1/E1 complex using the equation ΔGiso = zFV1/2.  

For each mutant, ΔΔGiso was calculated as ΔGiso 
mutant – ΔGiso 

WT.  The deactivation time 

constant (τd) was measured by fitting the current at – 80 mV following a 40 mV 

depolarization to a single exponential.  
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Periodicity Analysis:  The periodicity of ΔΔGiso was determined as previously reported 

by Swartz et al. using the following equation (Li-Smerin et al., 2000a):   
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P(ω) is the power spectrum as a function of angular frequency, ω, and was determined for 

E1 C-terminal segments of 7 to 10 residues where ‹V› is the average |ΔΔGiso| for each 

segment, Vj is the ΔΔGiso at position j, and n is the number of residues in a segment.  

Since α-helices are defined as having 3.6 residues per turn, a peak angle at 100° indicates 

an ideal α-helix.  Transmembrane helices have shown peak angles shifted to higher 

frequencies, and since this membrane-abutting C-terminal region is presumably an 

extension of the membrane-spanning helix, this analysis was centered at 105° (Rees et 

al., 1989; Li-Smerin et al., 2000a).  The α-periodicity index (α-PI) is the average value of 

P(ω) in this helical range (90° – 120°) relative to the average value of P(ω) over the 

entire power spectrum and is a quantitative assessment of helical character: 
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values for α-PI > 2 are considered indicative of an α-helix.  For mathematical analyses 

that necessitated the inclusion of the nonfunctional D76A mutant, a ΔΔGiso value of 1 

kcal/mol was used to maintain the α-PI and peak angle calculated for the K69-N75 

segment.  
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Cell Surface Luminometry:  The surface expression of HA-tagged E1 proteins was 

measured by luminometry (Zerangue et al., 1999).  Oocytes were injected with 7.5 ng Q1 

and 3.75 ng WT or mutant E1-HA.  After 3-5 days, currents were recorded from a few 

oocytes expressing WT E1-HA complexes to ensure that functioning complexes were 

present at the cell surface.  ND96B containing 1% BSA was used to block and wash 

oocytes, as well as dilute antibodies. Oocytes were cooled to 4°C, blocked for 30 min, 

and primary antibody (1 μg/mL rat monoclonal α-HA; Roche) was applied for 1 h at 4°C. 

Oocytes were washed (8 × 5 min), incubated for 40 min with secondary antibody (2 

μg/mL α-rat F(ab)2; Jackson ImmunoResearch Laboratories), and washed again (5 × 10 

min). Oocytes were finally washed with ND96B containing no BSA for 1 h at 4°C, 

individually placed in wells with 50 μL of ND96B solution and mixed with 50 μL of the 

SuperSignal ELISA Femto Maximum Sensitivity Substrate (Pierce Chemical Co.). The 

signal at 405 nm was integrated for 10 s after a 20 s delay using a Veritas Microplate 

luminometer (Turner Biosystems).  Data is reported in relative light units (RLU).  
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Results 
 
 The C-terminal sequence that abuts the predicted transmembrane domain of E1 is 

required for Q1 modulation (Tapper and George, 2000), suggesting that a protein-protein 

interaction exists between Q1 and E1 in this region.  To identify the C-terminal residues 

in E1 that face the Q1 channel complex and to determine whether this region possesses 

any secondary structure, E1 residues 68-86 were individually mutated to alanine, 

expressed with Q1 channels in Xenopus oocytes, and the changes in gating were 

measured using two-electrode voltage clamp (TEVC).  For native alanine residues, 

leucine was used to induce a perturbation; for native serine residues, both alanine and 

leucine mutants were examined. 

Of the 19 E1 C-terminal residues examined, only one mutant, D76A, did not 

express current.  This was expected given that the long QT mutation (D76N) and the 

equivalent mutation in rat affords a non-functional Q1 channel complex  (Wang and 

Goldstein, 1995; Splawski et al., 1997; Bianchi et al., 1999).  Currents elicited from 

voltage depolarizations of wild type (WT) and representative mutant Q1/E1 complexes in 

high external K+ are shown in Figure 2-1A.  To compare the voltage-gating of the WT 

and mutant Q1/E1 complexes, activation curves were generated by measuring the tail 

current after repolarization and plotting normalized current versus depolarization 

potential (Figure 2-1B).  Standard tail-current analysis requires that channels reach 

equilibrium between the open and closed states before repolarization; however, Q1/E1 

complexes do not reach equilibrium even after 90-second depolarizations (Takumi et al., 

1988).   
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Figure 2-1   E1 alanine mutants show diverse gating properties  
 
(A) Two-electrode voltage clamp recordings of WT, H73A, and E83A mutant channels 

expressed in Xenopus oocytes.  Currents were recorded in KD98 solution.  Dashed line 

indicates zero current.  Scale bars represent 1 μA (y-axis) and 0.5 s (x-axis).  Inset, 

protocol of 4 s depolarizations from −80 to 60 mV at 10-mV increments used to elicit 

currents shown. 

 
(B) Voltage activation curves for WT and representative mutant channel complexes 

calculated from tail current analysis.  Solid curves represent Boltzmann fits to the data.  

Data was averaged from 5-10 oocytes each ± SEM and is presented in Table 2-1.    
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Therefore, tail current amplitudes following 4 s pulses allowed an isochronal measure of 

Q1/E1 voltage dependence.   Activation curves were fit to a Boltzmann equation, and 

from the Boltzmann fit, the voltage of half maximal activation  (V1/2) and slope factor (z) 

were determined for WT and each mutant Q1/E1 complex (Table 2-1).  These parameters 

were used to calculate the isochronal free energy of Q1/E1 complex opening at zero 

voltage (ΔGiso), and for each mutant, ΔΔGiso was also determined (ΔGiso
mutant – ΔGiso

WT).  

As in previous perturbation studies (Monks et al., 1999; Hong and Miller, 2000; Li-

Smerin et al., 2000a; Li-Smerin et al., 2000b), residues with a |ΔΔGiso| > 1 kcal/mol were 

defined as high impact.  Using this arbitrarily defined cut-off, nine mutants scored as high 

impact, all of which resulted in stabilization of the closed state and acceleration of the 

deactivation kinetics when compared to WT.  For the native serine residues, where 

alanine and leucine substitutions were individually examined, both S68A and S68L were 

defined as high impact, only S74L scored as high impact, and both S84 mutants were low 

impact. 

 To determine whether there was a periodicity of high and low impact mutants, the 

C-terminal residues were plotted on a helical wheel (Figure 2-2, center).  An α-helical 

pattern was not immediately apparent by simple visual inspection, nor by Fourier 

periodicity analysis (vide infra).  While plotting the data on a helical wheel diagram, a 

helical pattern was initially observed for the bottom half of the region, but the pattern 

disappeared conspicuously after a proline residue.  Proline disruption of helical segments 

has been previously detected in transmembrane segments of two voltage-gated K+ 

channels by perturbation mutagenesis (Hong and Miller, 2000; Li-Smerin et al., 2000a).   
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Table 2-1.  Electrophysiological Properties of KCNE1 Mutants1 

Construct V½ (mV) z ΔG ΔΔG τdeactivation 
(ms) 

E1 31.3 ± 1.1 1.56 ± 0.03 1.02 ± 0.05 -- 665 ± 80 

S68A 60.0 ± 1.2 2.20 ± 0.06 3.04 ± 0.09 2.02 ± 0.10 131 ± 5 

S68L 51.8 ± 1.6 1.90 ± 0.13 2.26 ± 0.15 1.24 ± 0.16 139 ± 7 

S68D 43.6 ± 1.0 1.90 ± 0.07 1.91 ± 0.08 0.89 ± 0.09 156 ± 6 

S68E 44.8 ± 1.0 2.05 ± 0.12 2.11 ± 0.09 1.09 ± 0.10 145 ±14 

K69A 28.1 ± 1.6 1.84 ± 0.03 1.19 ± 0.06 0.17 ± 0.08 350 ± 28 

K70A 56.1 ± 0.6 2.24 ± 0.06 2.90 ± 0.09 1.88 ± 0.10 105 ± 4 

K70Q 54.5 ± 0.8 2.04 ± 0.08 2.27 ± 0.08 1.25 ± 0.09 132 ± 3 

L71A 42.6 ± 2.6 2.04 ± 0.08 2.02 ± 0.18 1.00 ± 0.19 256 ± 16 

E72A 43.0 ± 0.8 1.90 ± 0.02 1.88 ± 0.03 0.86 ± 0.06 362 ± 18 

H73A 52.3 ± 3.2 2.03 ± 0.02 2.40 ± 0.10 1.38 ± 0.11 176 ± 3 

S74A 34.1 ± 0.9 1.61 ± 0.03 1.27 ± 0.04 0.25 ± 0.06 496 ± 32 

S74L 53.4 ± 1.5 1.94 ± 0.09 2.37 ± 0.09 1.35 ± 0.10 200 ± 12 

S74I 44.4 ± 1.4 2.17 ± 0.03 2.22 ± 0.08 1.20 ± 0.09 189 ± 10 

S74M 30.3 ± 2.1 1.90 ± 0.03 1.35 ± 0.11 0.33 ± 0.12 255 ± 22 

N75A 27.9 ± 1.5 1.65 ± 0.02 1.06 ± 0.06 0.04 ± 0.08 644 ± 42 

D76A NF NF NF NF NF 

P77G ND ND ND ND ND 

P77A 38.4 ± 2.7 1.65 ± 0.05 1.41 ± 0.08 0.39 ± 0.09 406 ± 9 

P77L 39.5 ± 1.7 1.52 ± 0.08 1.38 ± 0.04 0.36 ± 0.06 381 ± 19 

F78A 69.5 ± 6.4 1.50 ± 0.10 2.14 ± 0.12 1.12 ± 0.13 161 ± 14 

N79A 45.6 ± 0.9 2.12 ± 0.04 1.98 ± 0.07 0.96 ± 0.09 179 ± 4 

V80A 43.7 ± 1.3 1.55 ± 0.02 1.39 ± 0.04 0.37 ± 0.06 258 ± 13 

Y81A 74.7 ± 1.0 1.85 ± 0.02 2.88 ± 0.15 1.86 ± 0.16 112 ± 3 
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Construct V½ (mV) z ΔG ΔΔG τdeactivation 
(ms) 

I82A 59.4 ± 1.2 2.20 ± 0.03 2.67 ± 0.04 1.65 ± 0.06 145 ± 5 

E83A 34.6 ± 0.8 1.34 ± 0.02 1.06 ± 0.02 0.04 ± 0.05 630 ± 50 

S84A 44.6 ± 1.2 1.90 ± 0.06 1.95 ± 0.05 0.93 ± 0.05 317 ± 16 

S84L 37.5 ± 4.2 1.13 ± 0.03 0.97 ± 0.09 -0.05 ± 0.10 449 ± 52 

D85A 48.0 ± 2.5 1.98 ± 0.04 2.18 ± 0.13 1.16 ± 0.14 297 ± 20 

A86L 24.8 ± 0.8 1.61 ± 0.03 0.92 ± 0.03 -0.10 ± 0.06 874 ± 57 
1Data from individual activation curves and deactivation time constants in KD98, 

obtained from 4–12 oocytes.  Activation curves were fit to a Boltzmann function as 

described in Materials and Methods.  V½ is the voltage of half-maximal activation 

and z is the slope factor.  Time constants of deactivation were fit to a single 

exponential as described in the Materials and Methods.  Values are mean ± SEM of 

several independent measurements.    NF, non-functional mutant, ND, no current 

detected. 
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Figure 2-2   Periodicity of gating perturbations in the E1 C-terminal domain  
 
Center, helical wheel diagram of the 19 C-terminal E1 residues examined. Red circles 

indicate residues with ΔΔGiso > 1 kcal/mol, blue circles indicate ΔΔGiso ≤ 1 kcal/mol.   

 
Power spectrum analysis indicates a peak angle of 125° and a-PI for of 1.77 for the entire 

C-terminal segment.  When residues above and below Proline 77 are plotted on separate 

helical wheels (left and right), high impact residues (red) and low impact residues (blue) 

segregate to separate faces of each helical diagram.  Each high impact face is denoted by 

a red line.  S68A is a high impact residue on the low impact face (filled blue with red 

outline).  D76A is expressed at the plasma membrane but is a nonfunctional mutant, as 

determined by cell surface luminometry (red fill).  
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Therefore, amino acids above and below the proline were plotted on two separate helical 

diagrams.  The residues on the bottom helical wheel (Figure 2-2, right) segregated on two 

distinct faces.  Clustering of the high and low impact residues was also observed for the 

top helical diagram (Figure 2-2, left); however, there were two high impact serines (S68 

and S74) and the non-functional mutant (D76A) that warranted further experimental 

investigation.  

 S68A is a noticeable outlier in the top helical wheel, landing on the low impact 

face.  Sequence analysis indicates that S68 is within a putative protein kinase C (PKC) 

consensus sequence, suggesting that this serine may be phosphorylated.  Since the 

premise of perturbation mutagenesis is that alterations in side chain volume lead to 

disruption of protein-protein interactions and thus channel function, it is possible that 

S68A scored as high impact due to the inability to posttranslationally place a negative 

charge at this position, and not due to a change in side chain volume.  To test this 

hypothesis, S68 was mutated to aspartic and glutamic acid: two commonly used 

imperfect isosteres of phoshorylated serine.  Figure 2-3 A shows the current-voltage 

relationships of the S68A, D, and E mutants.  Activation curves (Figure 2-3 B) show that 

substitution with either aspartic or glutamic acid had less of an effect (ΔΔGiso ~ 1 

kcal/mol) than the alanine mutant (ΔΔGiso ~ 2 kcal/mol).  If S68 is phosphorylated by 

PKC, mutation of the surrounding consensus sequence should also have a similar effect 

on Q1/E1 complex function.  Substituting K70 with glutamine is predicted by oriented 

peptide libraries to disrupt the PKC consensus sequence (Nishikawa et al., 1997), yet this 

polar residue produces a nominal change in side chain volume.   
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Figure 2-3   Negatively charged side chains produce smaller perturbations than 
alanine at position S68 
 
(A) TEVC recordings of S68A, S68D, and S68E channels expressed in Xenopus oocytes.  

Currents were recorded in KD98 solution.  Dashed line indicates zero current.  Scale bars 

represent 1 μA (y-axis) and 0.5 s (x-axis). Inset, protocol of 4-s depolarizations from −80 

to 60 mV at 10-mV increments used to elicit currents shown.   

 
(B) Voltage activation curves for S68A, S68D and S68E mutant channels calculated from 

tail current analysis.  Solid curves represent Boltzmann fits to the data.  Dotted line 

indicates Boltzmann fit of WT activation curve.  Data was averaged from 8-10 oocytes 

each ± SEM.  
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Like S68A, the K70Q mutant shifts the voltage-dependence of activation of the Q1/E1 

complex in favor of the closed state (Table 2-1). 

Of the native serines in the E1 C-terminal region, S74 was unique in that the 

alanine mutant was defined as low impact whereas the leucine mutant was high impact.   

Upon breaking the region in two halves, S74 was positioned at the high/low impact 

interface of the helical wheel (Figure 2-2, left).  If S74 is situated at the water-protein 

interface, side chains with a higher degree of rotational freedom could use the adjacent 

aqueous environment to adopt a conformation that would maintain productive protein-

protein interactions without steric clashes, whereas more rigid, branched side-chains 

could not.  Conveniently, leucine, isoleucine, and methionine have approximately the 

same Van der Waals volume (Creighton, 1992), yet their flexibility and the three-

dimensional space that they occupy is significantly different.  Figure 2-4 shows that 

mutating E1 S74 to the straight-chain methionine afforded a Q1-complex similar to WT, 

whereas mutation to the β-branched isoleucine resulted in a Q1/E1 complex similar to 

leucine, which was defined as high impact (Table 2-1). 

D76A was the only alanine mutation that did not express measurable current 

when co-injected with Q1 mRNA.  There are two possibilities to explain the negligible 

current observed with this mutation:  (1) the Q1/D76A complex is non-functional; or (2) 

the Q1/D76A complex cannot reach the plasma membrane.  To discern between these 

two, whole oocyte cell surface luminometry was employed to determine whether an 

extracellularly HA-tagged D76A could reach the plasma membrane.   
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Figure 2-4   Branched amino acids cause larger perturbations at position S74 
 
(A) TEVC recordings of S74L, S74M, and S74I channels expressed in Xenopus oocytes.  

Currents were recorded in KD98 solution.  Dashed line indicates zero current.  Scale bars 

represent 1 μA (y-axis) and 0.5 s (x-axis). Inset, protocol of 4-s depolarizations from −80 

to 60 mV at 10-mV increments used to elicit currents shown.   

 
(B) Voltage activation curves for S74 mutant channels calculated from tail current 

analysis.  Solid curves represent Boltzmann fits to the data.  Dotted line indicates 

Boltzmann fit of WT activation curve.  Data was averaged from 6-10 oocytes each ± 

SEM. 
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Figure 2-5 shows that D76A protein is present at the plasma membrane similarly 

to WT and the long QT causing mutant D76N, which is non-functional at the cell surface 

(Wang and Goldstein, 1995; Gage and Kobertz, 2004).  Since the Q1/D76A complex is at 

the plasma membrane but not conducting, this mutant was scored as a high impact 

residue. 

Splitting the E1 C-terminal region into two domains was based on the observation 

that the periodicity of high and low impact mutants shifted at P77, suggesting a kink or 

turn at this position.  To experimentally test whether the presence of a helix-breaking 

residue at this position was required for proper Q1/E1 complex function, P77 was 

replaced with amino acids that are known to either induce flexibility or maintain α-

helicity.  Both alanine and leucine are often found in helical regions and are considered 

helix-inducing (Rohl et al., 1996).  Substitution of either of these residues at position 77 

produced Q1-complexes similar to WT (Table 2-1).  Exchanging the proline for the 

highly flexible glycine residue did not afford currents above uninjected controls.  

The lack of an obvious trend with this mutagenic discourse prompted the use of 

Fourier transform periodicity analysis to determine the degree of helicity in each segment 

and the location of the helical phase change.  This non-biased analysis has been used to 

define the helical segments within an entire voltage-sensing domain of a mammalian K+ 

channel (Li-Smerin et al., 2000a).  Determining the periodicity of a region using a power 

spectrum requires a ΔΔGiso value for every residue.  To satisfy this requirement, this 

analysis excluded both D76A, since it was non functional, and S68A, given the 

uncertainty of the native state of this side chain in the functioning Q1/E1 complex.   



 39

 

Figure 2-5   D76A is expressed at the cell surface 
 
Whole oocytes luminometry was used to quantify the surface expression of HA-tagged 

E1 peptides (E1, D76N, D76A) and uninjected controls (UN).  Luminescence is reported 

in relative light units (RLU).  Error bars represent SEM from 10-20 oocytes.  
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 Figure 2-6 shows the power spectra for K69 – N75 and P77 – A86 when the E1 C-

terminal region is broken into two halves at P77.  Both spectra show a peak angle within 

the boundaries of helicity (90˚ – 120˚) and with α-periodicity index (α-PI) > 2.  These 

results are highly indicative of two helical domains, as was observed using simple helical 

wheel models (Figure 2-2).  To determine whether P77 was the ideal location to divide 

the E1 C-terminal domain, the breakpoint position was varied.  Since a ΔΔGiso value 

cannot be assigned for D76A, a placeholder value was used for D76 to maintain the 

helical trajectory of the K69 – N75 segment.  Propagation of the domain to include P77 

and F78 resulted in sharp drop in α-PI, indicating that residues past D76 should not be 

included in the top segment (Table 2-2).  For the bottom segment, the α-PI increased as 

the analysis was extended to include the proline while the peak angle remained consistent 

for a helix.   

However, inclusion of D76 using any high impact value greater than 1 kcal/mol 

decreased the α-PI, indicating that this high impact residue was out of helical phase with 

the bottom segment.  Taken together, dividing the entire E1 C-terminal domain at any 

position other than P77 resulted in less helical character for either the top or the bottom 

segments. 
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Figure 2-6  Periodicity analysis of the top and bottom segments of the E1 C-terminal 
domain  
 
P(ω) is plotted as a function of angular frequency (ω) to generate a power spectrum of the 

ΔΔGiso values for each segment.  A value of 1 kcal/mol was assigned for the non-

functional D76A mutant.  The primary peak occurs at 114° for the top segment and 112° 

for the bottom.  
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Table 2-2.  α-helical characteristics of C-terminal E1 segments1 
Segment α-PI Peak angle Segment α-PI Peak angle 

K69 – N75 2.44 114° P77 – A86 2.69 112° 

K69 – P77 1.61 123° F78 – A86 2.53 109° 

K69 – F78 1.51 126° N79 – A86 2.20 111° 
1Data from power spectrum periodicity analysis of ΔΔGiso for residues in 

each segment. Power spectra, α-PI and peak angle values were calculated 

as described in Materials and Methods.  For the top segments that contain 

D76, a placeholder value of 1 kcal/mol was used, which maintains the 

helical trajectory of the K69 – N75 segment. 
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Discussion 
 

 This chapter applied perturbation mutagenesis and helicity analysis to identify 

secondary structural elements in the conserved cytoplasmic region of the E1 β-subunit.  

Previous perturbation studies have primarily relied on comparing the free energy of 

channel opening of mutant channels versus wild type (Monks et al., 1999; Hong and 

Miller, 2000; Li-Smerin et al., 2000a; Li-Smerin et al., 2000b).  Measuring isochronal 

ΔΔG values permitted use of this parameter for Q1/E1 complexes, which do not reach 

equilibrium under standard-length test depolarizations.  Although these values are not 

free energies, they allowed for a comparative analysis of the effect of mutations in E1 on 

Q1 function.  Half of the mutations studied in the E1 C-terminus produced | ΔΔGiso | > 1 

kcal/mol—an arbitrarily defined cut-off for a high impact residue, but an empirically 

supported definition (Monks et al., 1999; Hong and Miller, 2000; Li-Smerin et al., 2000a; 

Li-Smerin et al., 2000b).  Changes in deactivation kinetics have also been used to define 

high impact residues, though a specific cut-off value has not emerged from previous 

reports (Monks et al., 1999; Hong and Miller, 2000).  Graphing the deactivation kinetics 

of the E1 mutants reveals that a 3-fold acceleration of channel closing rate mirrors the 

trend observed with isochronally measured ΔΔGiso (Figure 2-7).  Only one mutant, D76A, 

was refractory from this straightforward functional analysis since it did not generate 

measurable currents.  However, cell surface labeling experiments show that this mutant is 

at the plasma membrane and is non-functional, and thus is defined as high impact.   
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Figure 2-7  Changes in deactivation rate mirror ΔΔGiso measurements   
 
Double bar graph comparing ΔΔGiso and deactivation rate (τd) for the E1 C-terminal 

alanine and leucine mutants.  Solid bars indicate ΔΔGiso, open bars τd
WT/τd

mutant.  The 

dashed line denotes the cutoff values for ΔΔGiso and τd
WT/τd

mutant. Values for τd
WT/τd

mutant 

> 1 indicate accelerated deactivation kinetics.  
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Although only two mutations (D76A and the Long QT-causing D76N) have been 

examined at this position, it is interesting that both substitutions result in non-functional 

complexes that efficiently traffic to the plasma membrane. 

 Plotting the residues on helical wheels resulted in no obvious clustering of high 

impact residues (Figure 2-2, center).  Periodicity analysis using a power spectrum 

confirmed that no helical pattern was present:  both the peak angle (125˚) and α-PI (1.77) 

were inconsistent with the region being a continuous helix.  However, breaking the 

cytoplasmic region into two domains at a conserved proline (P77) segregated the high 

and low impact residues to distinct faces on helical wheels.  In addition, Fourier 

periodicity analysis indicates that both domains have significant helical character (Table 

2-2), which supports the arbitrarily defined 1 kcal/mol cut-off value used for the helical 

wheel diagrams (Figure 2-2).  Moreover, this depiction places all known long QT 

mutants in this region on the high impact face.  Given that mutants on the high impact 

face markedly shift the gating of Q1/E1 complexes, this analysis predicts that these 

residues directly interact with the channel complex.  This prediction is supported in high 

resolution detail with the crystal structures of voltage-gated K+ channels (Jiang et al., 

2003a; Jiang et al., 2003b; Long et al., 2005a), which verified that the high impact faces 

identified by previous perturbation studies are involved in protein-protein interactions 

within the voltage-sensing domain. 

Although a convincing pattern was observed with helical wheel diagrams for the 

E1 C-terminal domain, S68A did not segregate to the high impact face, even though it 

had the highest ΔΔGiso calculated.  S68 is within a putative PKC consensus sequence.  
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Disruption of the PKC site by mutation of the critical +2 basic residue (K70) to either 

glutamine or alanine resulted in Q1/E1 complexes with right-shifted activation curves 

similar to S68A, which cannot be phosphorylated.  Although phosphorylation of E1 at 

this serine has not been observed experimentally, it has been detected in the homologous 

serine in E3 (Abbott et al., 2006).  Substitution of S68 to either aspartic or glutamic acid, 

to mimic phosphoserine, showed that the more voluminous, but negatively charged side 

chains had less of an effect on Q1/E1 gating than the removal of hydroxyl group by 

alanine mutagenesis.  These preliminary data suggest that E1 may be phosphorylated at 

S68, but requires further biochemical support and verification in native tissues. 

Unlike S68 and S84, S74 was uniquely sensitive to changes in amino acid side 

chain volume in that only the bulkier S74L mutant scored as high impact.  Helical 

analysis revealed that this residue was at the edge of the high impact face, prompting 

further experimental examination.  Isovoluminous substitution showed that branched 

amino acids (isoleucine, leucine) were less tolerated than the straight chain methionine 

side chain, which scored as a low impact residue using both criteria (ΔΔGiso and τd).  

These results are consistent with the notion that S74 lies at the water-protein boundary 

since the flexible methionine side chain can adopt a productive protein-protein interaction 

between E1 and the Q1-channel complex while utilizing the adjacent aqueous 

environment without energetic penalty. 

Previous perturbation studies of voltage-gated K+ channels identified a proline 

residue in the S3 helix that disrupted the helical pattern of this transmembrane domain 

(Hong and Miller, 2000; Li-Smerin et al., 2000a).  The ensuing proposal that S3 is kinked 
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at this proline residue was confirmed by three high resolution crystal structures of voltage 

sensing domains (Jiang et al., 2003a; Jiang et al., 2003b; Long et al., 2005a).  Since the 

perturbation results presented in this chapter describe a strong helical pattern when the E1 

C-terminal domain is divided in half at a proline residue, P77 probably induces a kink or 

turn at this position.  Attempts to mimic this kink by replacing P77 with the helix 

breaking residue, glycine, were hindered since the Q1/P77G complex produced 

background-level current.  To determine if the proline geometry was required for proper 

modulation of Q1 channels, P77 was replaced with alanine and leucine, two residues that 

have a high helix propensity (Rohl et al., 1996).  When these mutants were expressed 

with Q1 subunits, K+ currents and gating characteristics similar to wild type Q1/E1 

complexes were observed.  Identical results (with alanine and tryptophan) were also 

obtained for the helix-kinking proline in the S3 segment of  K+ channel voltage sensors 

(Hong and Miller, 2000; Li-Smerin et al., 2000a), suggesting that detection of proline 

kinks using channel function and simple site-directed mutagenesis may not be possible.  

This conclusion is further supported by a systematic investigation of conserved proline 

residues in membrane proteins, which has shown that many protein-protein interfaces 

evolve ancillary interactions to stabilize kinked helices thus obviating the need for proline 

residues to maintain the bent geometry (Yohannan et al., 2004).   

Since mutagenesis could not elucidate whether a turn or kink was present at P77, 

power spectrum analysis aided in identifying the location of the phase change in the E1 

C-terminal domain.  Using this mathematical approach, breaking the domain at P77 

resulted in two segments with the greatest α-PI and peak angles most consistent with 
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helices that are adjacent to a transmembrane domain (Table 2-2).  This analysis indicates 

that the E1 C-terminal domain is helical with either a kink at P77 (Figure 2-8) or the 

domain experiences a different protein environment above the proline residue, which may 

also be influenced by PKC phosphorylation.  Sequence similarity of this membrane-

abutting domain predicts that E2, E3, and E5 will possess a similar structural motif and 

protein environment when co-assembled with Q1 subunits. 

This conserved structural scaffold adds to the growing body of evidence that the 

E1 C-terminal domain is critical for Q1 channel modulation.  Initial E1 deletion studies 

showed that removal of the membrane-abutting cytoplasmic domain eliminates the 

hallmark slow activation and deactivation kinetics of the Q1/E1 complex (Tapper and 

George, 2000).  An E3 deletion study concluded that while the E1 C-terminus is required 

for Q1 modulation, the homologous region in E3 is not necessary (Gage and Kobertz, 

2004).  The alanine mutants described in this chapter also support the ‘bipartite model’ of 

Q1 modulation by KCNE peptides.  Alanine mutants in E1 had significant effects on the 

voltage-dependence and deactivation kinetics of Q1/E1 complexes whereas the 

equivalent mutations in E3 are predicted to have no measurable effect on the 

constitutively conducting Q1/E3 complex.  Furthermore, tryptophan mutants in the E1 

transmembrane domain—though structurally informative—were consistently less 

perturbative on Q1/E1 complex function than C-terminal E1 alanine mutants (Chen and 

Goldstein, 2007). 

 The cytoplasmic E1 C-terminal domain also provides a structural platform 

for potential interactions with tethered water soluble regulatory proteins.  



 49

    

Figure 2-8  The transmembrane-abutting C-terminal domain of E1 contains two 
helical regions   
 
A cartoon of the Cytoplasmic E1 C-terminal domain split into two helical regions by a 

kink or turn at P77. 
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Calmodulin binds the Q1 C-terminus relatively close to the S6 transmembrane segment 

and facilitates channel assembly and calcium sensitivity (Shamgar et al., 2006).  Adjacent 

to the Q1 calmodulin binding site is a leucine zipper sequence that is required for yotiao, 

an A-kinase anchoring protein, to bind (Marx et al., 2002).  Anchoring of yotiao to the 

Q1 C-terminus targets cAMP-dependent protein kinase (PKA) and protein phosphatase 1 

(PP1), which control the phosphorylation state of the Q1 N-terminus.  Moreover, this 

PKA-mediated modulation can be disrupted by genetic mutations within the E1 

cytoplasmic domain (Kurokawa et al., 2003).  Thus, the manifold nature of Q1/E1 

complex regulation suggests that high impact regions identified in the C-terminus of E1 

may be revealing protein-protein interactions not only with Q1 α-subunits, but also with 

tethered cytoplasmic regulatory proteins.   
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CHAPTER III: KCNE Peptides Differently Affect Voltage Sensor Equilibrium    

and Equilibration Rates in KCNQ1 K+ Channels 

Abstract 

 Q1 voltage-gated K+ channels assemble with the family of KCNE type I 

transmembrane peptides to afford membrane-embedded complexes with diverse channel 

gating properties.  Q1/E1 complexes generate the very slowly activating cardiac IKs 

current whereas assembly with E3 produces a constitutively conducting complex 

involved in K+ recycling in epithelia.   

 This chapter examines the influence of E1 and E3 on voltage sensing in Q1 

channels by monitoring the position of S4 voltage sensors in Q1/KCNE complexes using 

cysteine accessibility experiments.  A panel of Q1 S4 cysteine mutants was expressed in 

Xenopus oocytes, treated with the membrane-impermeant, cysteine-specific reagent 2-

(trimethylammonium) ethyl methanethiosulfonate (MTSET), and the voltage-dependent 

accessibility of each mutant was determined.  State-dependent mutants were then 

employed to examine voltage sensing in Q1/E1 and Q1/E3 complexes.  The results 

demonstrate that E1 does not appreciably affect the rate of S4 equilibration, indicating 

that slow channel gating is not due to slowly moving voltage sensors.  In contrast, E3 

shifts voltage sensor equilibrium to favor the active state at hyperpolarizing potentials.  In 

total, these results point to voltage sensing as an additional layer of KCNE modulation of 

K+ channels and demonstrate that KCNE peptides differently modulate the voltage sensor 

in Q1 K+ channels. 



 52

Introduction 
 

Electrical excitability depends on the coordinated openings and closings of voltage-

gated cation channels.  The voltage sensitivity of these integral membrane proteins is 

mediated by a voltage sensing domain—a dynamic membrane-embedded domain composed 

of four transmembrane helices (S1-S4) that moves in response to changes in membrane 

potential (Long et al., 2005a; Long et al., 2005b).  The S4 segment of the voltage sensor 

possesses a high concentration of positively charged amino acids, which account for most of 

the charges per channel that move across the membrane’s electric field (Aggarwal and 

MacKinnon, 1996; Seoh et al., 1996).  The trajectory and distance traversed by the S4 

segment is an ongoing debate; however, all investigations agree that S4 moves between a 

resting and active state (Jiang et al., 2003b; Chanda et al., 2005; Posson et al., 2005; Ruta et 

al., 2005; Darman et al., 2006).  The shuttling of S4 charges between these two states has 

been followed in several voltage-gated channels using cysteine accessibility methodologies 

(Yang and Horn, 1995; Larsson et al., 1996; Yang et al., 1996; Yusaf et al., 1996).  These 

studies show that some residues in S4 are state-dependent:  inaccessible to aqueous reagents 

at rest, but upon membrane depolarization they become exposed to the extracellular milieu 

and modifiable.  For voltage-gated Na+, K+ and Ca2+ channels, depolarization shifts the 

equilibrium of the S4 segments to the active state, favoring an open activation gate that 

permits the rapid flow of ions across the membrane.  Conversely, the co-dependent 

relationship between the S4 segment and activation gate is inversely coupled in 

hyperpolarized-activated cyclic-nucleotide-gated (HCN) channels:  hyperpolarization shifts 

the sensor to the resting state and opens the activation gate (Mannikko et al., 2002; Vemana 
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et al., 2004).  In both classes of voltage-gated channels, the state of the S4 is tightly coupled 

to the equilibrium of the activation gate (Yellen, 1998). 

Q1 channels are voltage-gated K+ channels found in both electrically excitable 

and nonexcitable cells.  To meet the potassium flux requirements in this variety of 

tissues, Q1 channels co-assemble with the family of KCNE type I transmembrane 

peptides, which substantially alter the voltage sensitivity of the channel (McCrossan and 

Abbott, 2004).  Although currents from homomeric Q1 channels are not observed in 

native tissues, Q1 is a voltage-dependent delayed rectifier K+ channel when expressed in 

standard cell lines and Xenopus oocytes (Barhanin et al., 1996; Sanguinetti et al., 1996).  

Q1 co-assembly with E1 peptides forms a complex that generates the cardiac IKs current:  

an incredibly slowly activating current involved in maintaining the rhythmicity of the 

heartbeat (Barhanin et al., 1996; Sanguinetti et al., 1996).  Deactivation kinetics of the 

Q1/E1 complex are also slowed compared to homotetrameric Q1 channels.  In contrast, 

epithelial Q1/E3 complexes are open at both hyperpolarizing and depolarizing potentials 

and are weakly voltage-dependent (Schroeder et al., 2000).  If Q1/E3 complexes do open 

and close, the gating kinetics of these transitions are nearly instantaneous.  The three 

other KCNE peptides (E2, E4, E5) also profoundly affect Q1 voltage-gating, converting 

it into a leak channel, a non-conducting channel, and a severely right-shifted channel 

respectively (Tinel et al., 2000; Angelo et al., 2002; Grunnet et al., 2002).   

Most structure-function studies examining KCNE peptide interactions with Q1 

have focused on the pore-forming domain (S5-S6) of the channel (Tai and Goldstein, 

1998; Tapper and George, 2001; Melman et al., 2004; Panaghie et al., 2006).  However, 
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unlike most Kv-type channels that possess 5 – 7 net positive charges in S4, Q1 has a net 

charge of +3.  Abbott and colleagues linked KCNE peptides’ strong influence on Q1 

voltage sensitivity to the channel’s charge-poor S4 (Panaghie and Abbott, 2007).  Q1 was 

not modulated by E3 when charges were added to its S4 whereas charge removal from 

Q4 increases susceptibility to E3’s modulatory effects.  From this work, they proposed 

that E3 either uncouples the voltage sensor from the cytoplasmic gate or “locks” the 

voltage sensor in the active state; however, the position and equilibrium of the voltage 

sensor was not directly examined.  

This chapter experimentally addresses the following question:  Do E1 and E3 

peptides affect the voltage-dependent equilibrium and equilibration rate of the Q1 voltage 

sensor?  For Q1/E1 complexes, the strikingly slow activation kinetics can arise from 

increasing the energy barrier for one of the two steps of activation:  (1) S4 moving from 

the resting to active state or (2) activation gate opening (Fig. 3-1A).  For the 

constitutively conducting Q1/E3 complexes, E3 either uncouples voltage sensors from 

the activation gate or shifts the equilibrium of voltage sensors to significantly reside in 

the active state at hyperpolarized potentials, as hypothesized by Abbott and co-workers 

(Panaghie and Abbott, 2007) (Fig. 3-1B).   

To directly test these sets of possibilities, the S4 residues that were modified only 

upon depolarization were identified in unpartnered Q1 channels using cysteine 

accessibility experiments.  These state-dependent residues were then used to examine the 

position and equilibrium of S4 in Q1/E1 and Q1/E3 complexes.  The state-dependent S4 

residues in Q1/E1 complexes were modified essentially independent of pulse duration, 



 55

suggesting that E1 does not affect the time it takes for the voltage sensors to reach 

equilibrium.  In contrast, all modifiable S4 residues in Q1/E3 complexes were rapidly 

modified irrespective of membrane voltage, indicating that the voltage sensor frequently 

resides in the active state when E3 is present.  These diametrically opposed effects 

demonstrate the manifold nature of KCNE modulation of Q1 channels. 
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Figure 3-1  Cartoon models depicting possible mechanisms for Q1 channel 
modulation by E1 and E3  
 
(A)  In Q1/E1 channel complexes, slow gating arises from either the slow transition of S4 

voltage-sensing domains (orange with positive charges) from resting to active positions, 

or from slow activation gate opening.  

 

(B)  Q1/E3 complexes are open at hyperpolarizing potentials (denoted by negative 

charges along the cytoplasmic membrane) because S4 voltage sensors are uncoupled 

from the opening of the gate (left), or because the equilibrium of voltage sensors is 

shifted to favor the activated state (right).  
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Materials and Methods 
 
 
Mutagenesis and in vitro transcription:  Human Q1, E1, and E3 were subcloned into 

vectors containing the 5’ and 3’ UTRs from the Xenopus β-globin gene for optimal 

protein expression.  Single cysteine point mutations were introduced into Q1 using 

cassette mutagenesis and confirmed by DNA sequencing of the mutated insert.  The 

cDNA plasmids were linearized by MluI digestion, and cRNA was synthesized by run-

off transcription using SP6 or T7 RNA polymerase (Promega).   

 

Electrophysiology:  Oocytes were surgically removed from Xenopus laevis and 

defolliculated using 2 mg/mL collagenase (Worthington Biochemical Corp.) in OR2 

containing (mM):  82.5 NaCl, 2.5 KCl, 1 MgCl2, 5 HEPES, pH 7.4 for 75-90 min.  

Isolated oocytes were rinsed with and stored in ND96 bathing solution (ND96B) 

containing (mM):  96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 50 μg/mL of both 

gentamicin and tetracycline (Sigma-Aldrich), pH 7.4 at 18°C.  Approximately 24 h after 

extraction, oocytes were microinjected with 27.6 nL total volume of cRNA containing 

wild type or mutant Q1 (7.5 ng/oocyte), with or without E1 or E3 (3.75 ng/oocyte).  After 

3–6 days, currents were recorded using Warner Instrument (OC-725) two-electrode 

voltage clamp (TEVC) and the data were acquired with Digidata 1322A using pClamp 9 

(Axon Instruments).  Electrodes were filled with 3 M KCl, 5 mM EGTA, 10 mM 

HEPES, pH 7.6, and had resistance between 0.2 and 1.0 MΩ.  Current-voltage 

relationships were measured in ND96 (in mM):  96 NaCl, 2 KCl, 0.3 CaCl2, 1 MgCl2, 5 
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HEPES, pH 7.4 by holding at – 80 mV and pulsing for 4 s to potentials between –100 and 

+ 40 mV in 20-mV increments.  

 

MTS modification experiments:  To assess extracellular exposure of introduced 

cysteines, accessibility to the positively charged membrane-impermeant [2-

(trimethylammonium)ethyl] methanethiosulfonate  (MTSET) or the negatively charged 

(2-sulfonatoethyl)methanethiosulfonate (MTSES, Toronto Research Chemicals) was 

determined by measuring changes in current amplitude at + 40 mV.  

    

  MTSET      MTSES 

 

Since the half-life of these MTS reagents is ~15 minutes in aqueous solutions (Stauffer 

and Karlin, 1994), a 0.5 M stock solution was dissolved in water, and aliquots snap 

frozen in liquid nitrogen.  Aliquots were freshly diluted to 0.4 – 1.6 mM in ND96 

recording solution immediately prior to perfusion, and every 5 minutes thereafter to 

maintain a relatively constant concentration for the duration of each experiment.   

 Two different pulse protocols were used to determine if cysteine exposure was 

state-dependent.  In the open protocol, the membrane was depolarized 11% of the time, 

for 2 s every 18 s or for 4 s every 36 s.  In the closed protocol, the membrane was held at 

– 80 mV for 99.4% of the time, and only depolarized to + 40 mV for 250 ms every 42 s 
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or for 500 ms every 84 s.  Switching to the open protocol after ~500 s allowed a measure 

of the extent of modification for residues that were modified slowly in the closed 

protocol.  This was done in the presence and absence of MTSET to rule out any change in 

current associated with variation in pulse duration and interpulse interval.   

 To compare each mutant, the currents were normalized using two procedures.  For 

mutants that showed a decrease in current upon MTS modification, the data were 

normalized such that the current before reagent perfusion was equal to one. For mutants 

that showed an increase in current upon MTS modification, the baseline was defined as 

zero and the currents were subsequently normalized based on the full extent of 

modification.  The normalized data were plotted versus reaction time for each MTS 

modification.  All data fit well to a single exponential except for A226C, which required 

a biexponential fit to extract the fast component of modification.   

For the varying pulse duration experiments, five different pulse protocols were 

used.  In each protocol, the membrane was depolarized 11% of the total pulse time.  

MTSET or MTSES modification was monitored as the membrane was held at – 80 mV 

and depolarized to + 40 mV for 100 ms every 900 ms, 500 ms every 4.5 s, 1 s every 9 s, 2 

s every 18 s or 4 s every 36 s.  Modification-induced current changes were monitored at 

the end of the shortest pulse duration used for each set of experiments.  For voltage 

dependence experiments with I230C/E3, oocytes were held at – 80 mV and pulsed for 4 s 

to either – 100, – 80, – 40, 0 or 40 mV, followed by a – 30 mV tail pulse.  Current 

changes were monitored at the end of the – 30 mV tail for each voltage potential studied.  
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Results 
 
 
Identification of state-dependent S4 residues in KCNQ1 K+ channels 

To determine the influence of KCNE peptides on the position and equilibrium of 

the voltage sensor, residues in the S4 segment of Q1 were examined for accessibility to 

an externally applied aqueous cysteine-specific modifying reagent, MTSET.  Residues 

226–232 were individually mutated to cysteine, expressed in Xenopus oocytes, and 

currents were elicited from a series of test depolarizations using two electrode voltage 

clamp (TEVC).  The majority of the cysteine mutants (A226C, I227C, G229C, I230C, 

F232C) resembled wild-type Q1 (Fig. 3-2); however, charge neutralization of either of 

the two arginine residues by cysteine mutagenesis resulted in currents with altered gating 

kinetics (Fig 3-3, before).  R228C afforded small currents that slowly activated; R231C 

was a constitutively conducting channel.  The gating kinetics observed for these Q1 

cysteine mutants were nearly identical to those observed when the arginines were 

mutated to alanine (Panaghie and Abbott, 2007).   

These cysteine mutants were then screened for changes in current amplitude or 

gating kinetics when treated with MTSET.  Examination of the Q1 mutants after MTSET 

treatment revealed that the gating kinetics of the modified channels became nearly 

instantaneous and were open at hyperpolarized potentials (Fig. 3-3, after).  To monitor 

the rate of cysteine modification, a series of test pulses to 40 mV were elicited for each 

mutant in the presence of 400 μM MTSET.   
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Figure 3-2  TEVC recordings of Q1 channels alone or partnered with E1 or E3 
peptides   
 
Oocytes were held at −80mV and currents were elicited from 4-s command voltages from 

−100 mV to +40 mV in 20-mV increments.  Scale bars represent 0.5 μA (y-axis) and 0.5 

s (x-axis).  Dashed line indicates zero current.  
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Figure 3-3  S4 cysteine substitutions in Q1 are modified by MTSET.   
 
TEVC recordings of representative Q1 channels with cysteine substitutions in S4 

expressed in Xenopus oocytes before and after MTSET modification.  Oocytes were held 

at −80 mV, and currents were elicited from 4-s command voltages from −100 mV to +40 

mV in 20-mV increments.  Scale bars represent 0.5 mA (y-axis) and 0.5 s (x-axis).  

Dashed line indicates zero current. 
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Cysteines at positions 226–228 were modified using this protocol as the current increased 

exponentially with MTSET treatment (Fig. 3-4).  Modification-induced current changes 

were also measurable for G229C and I230C when the MTSET concentration was 

doubled.  R231C and F232C were unaffected by MTSET, indicating that these deeper 

residues were either not accessible to the reagent, or the modification did not induce a 

measurable change in current.  Since all modifications required MTSET treatment for 

longer than the half-life of the reagent (~ 15 min) (Stauffer and Karlin, 1994), freshly 

prepared MTSET was continuously added to the gravity-fed perfusion device every 5 min 

to maintain a relatively constant concentration (Materials and Methods).  Currents from 

wild-type Q1 expressed alone, with E1, or E3 were unchanged by MTSET (Fig. 3-4), 

demonstrating that changes in current observed with the mutants were due to the presence 

of cysteines in the S4 segment. 

Once S4 mutants that were measurably modifiable by MTSET were identified, the 

state dependence of modification was determined.  The rate MTSET of modification was 

compared using two test pulse protocols:  open and closed.  In the closed protocol, the 

channels are held at – 80 mV for the majority of the pulse duration and only briefly 

depolarized to ascertain MTSET modification rate; therefore, the S4 voltage sensors are 

primarily in the resting state.  In the open protocol, the channels are depolarized ~ 18-fold 

more, which shifts the equilibrium of the S4 voltage sensors to favor the active state.  

Thus, state-dependent S4 residues are modified faster in the open protocol compared to 

the closed, whereas state-independent residues are modified at a similar rate independent 

of the protocol used.   
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Figure 3-4   S4 cysteine substitutions in Q1 show state-dependent MTSET 
modification  
 
Change in current monitored over time using 40-mV test pulses with continuous 

perfusion of MTSET.  For negative controls, 800 μM MTSET was used for Q1 and 

Q1/E3, 1600 μM for Q1/E1.  The data were plotted on the same y-axis scale as the 

cysteine mutants and are separated by line hatches.  Open circles represent the ‘open’ 

protocol where channels were depolarized for 11% of the total time; filled squares 

represent the ‘closed’ protocol with depolarizations of 0.6% of the total time.  Currents 

from the open and closed protocols were measured ~ 5 ms before the end of the shortest 

depolarizing pulse and were normalized to the maximal change in current for 

comparison.  Curves were fit to single or double exponentials to calculate reaction rate 

constants.  Fitted parameters are presented in Table 3-1.  
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 The rates of S4 cysteine modification in the open and closed protocols are 

compared in Figures 3-4 and 3-5.  Modification rates for the first two residues (A226C, 

I227C) could be measured in both the open and closed protocols.  Since the “open” 

protocol is only open 11% of the test pulse cycle, MTSET reactions were expected to 

exhibit biexponential kinetics for the cysteine mutants that were appreciably modified in 

both states, as long as the rates of modification in the two states were significantly 

different.  For A226C, the reaction rate using the open protocol could not be fit to a 

single exponential, consistent with different rates of modification in the resting and active 

states of S4.  When the data were fit to two time constants, the fast component of the 

exponential was well-fit (Table 3-1, Fig 3-5); however, the error of the fit of the slower 

component was very large.  To measure and accurately fit the slow component of the 

reaction and minimize modification in the active state, the closed protocol was used.  

Using this protocol, the reaction fit a single exponential (Fig 3-4 and Table 3-1), 

consistent with modification occurring primarily in the resting state.  Comparing the two 

rates showed that A226C was modified 7.5-fold faster in the open protocol.  In contrast to 

A226C, modification of I227C using both the open and closed protocols appeared to 

follow a single exponential time course (Fig. 3-4).  Although a two exponential fit was 

expected, the similar rates of modification were not resolvable by mathematical fitting.  

Nonetheless, these results demonstrate that A226C and I227C are accessible to the 

extracellular solution when the S4 is at rest, but upon depolarization the residues are 

modified at a slightly faster rate. 
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Figure 3-5  Comparison of MTSET modification rates for Q1 S4 cysteine 
substitutions   
 
MTSET modification in the open protocol is represented by open circles, the closed 

protocol by filled squares.  The gray bar indicates the fold-change in rate between the 

open and closed protocols.  X-out open circles indicate no observed change in current 

using the open protocol; X-out squares are an estimate of reaction rate in the closed 

protocol based on the extent of modification determined by switching to the open 

protocol.  Data were averaged from 3-6 oocytes ± SEM.   
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Table 3-1.  Comparison of MTSET Modification of S4 residues in KCNQ11 

Construct KCNQ1 KCNQ1/KCNE1 KCNQ1/KCNE3 
 kopen kclosed kopen kclosed kopen kclosed 

A226C 153 ± 10   21 ± 7* 11 ± 2    5.2 ± 0.3* 64 ± 5   23 ± 2* 

I227C 161 ± 31   60 ± 3* 12 ± 3 13 ± 1 29 ± 3 26 ± 4 

R228C 20 ± 1 ~ 1 15 ± 1 ~ 1 28 ± 3   19 ± 2* 

G229C 1.5 ± 0.2 ~ 0.1 0.49 ± 0.06 < 0.05 8.5 ± 1.0     5.3 ± 0.6*

I230C 9.4 ± 1.1 ~ 0.5 1.2 ± 0.1 < 0.05 19 ± 2  15 ± 1 

1Data from individual exponential fits in ND96, obtained from 3–7 oocytes,  All MTSET 

modifications were fit to a single exponential, except for Q1(A226C) in the open 

protocol, which required a biexponential fit to extract the fast component of the reaction, 

as described in the Materials and Methods.  kopen and kclosed are the second order 

modification rate constants (M-1·s-1) determined using the open and closed pulse 

protocols.  Measured values are mean ± SEM.  Approximate values were calculated 

based on the extent of modification in the closed protocol, as described in the Materials 

and Methods.  Statistical comparison is between kopen and kclosed for each mutant K+ 

channel complex; *, p < 0.05. 
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MTSET modification of the three other S4 residues (R228C, G229C, I230C) 

could only be measured in the open protocol, but was well fit to a single exponential (Fig. 

3-4).  These residues were somewhat modified by MTSET in the “closed” protocol; 

however, the linear rate of modification was consistent with the reaction occurring during 

the short test depolarizations when the S4 is in the active state.  Since the time course 

needed to complete the reaction in the closed protocol was not experimentally tractable 

(hours) with workable concentrations of MTSET, the extent of modification in the closed 

protocol was determined by switching to the open protocol after ~ 500 s.  Normalization 

of the data using this end point allowed for comparison of the data generated from the 

two protocols (Fig. 3-4).  Based on the extent of modification, the reaction proceeded in 

the closed protocol ~ 15–20 fold slower than in the open, which closely approximates the 

18-fold difference in depolarization duration between the two protocols.  Thus, these 

three S4 mutants (R228C, G229C, I230C) are only modified when the channel is in the 

depolarized state. 

 

Measuring the rate of voltage sensor equilibration in Q1/E1 K+ channel complexes  

 The next task was to determine whether these mutant Q1 channels would 

assemble with E1 to produce complexes with slowly activating kinetics and remain 

modifiable in a state-dependent manner.  Co-expression of Q1 mutants (R228C, G229C, 

I230C) with E1 produced channel complexes that were highly reminiscent of wild-type 

Q1/E1, but after MTSET modification the mutant complexes became rapidly activating 

and open at negative potentials, as shown for R228C/E1 in Figure 3-6A.              
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Figure 3-6  R228C/E1 complexes show state-dependent modification by MTSET 
 
(A) TEVC recordings from R228C/E1 complexes expressed in Xenopus oocytes before 

and after MTSET modification.  Oocytes were held at −80 mV and currents were elicited 

from 4-s command voltages from −100 mV to +40 mV in 20-mV increments.  Gray 

dotted lines denote the amount of current from a 40-mV depolarization at 0.5, 2, and 4 s.  

Scale bars represent 0.5 μA (y-axis) and 0.5 s (x-axis).  Dashed line indicates zero 

current.   

 

(B) Change in current for R228C/E1 monitored over time using 40-mV test pulses with 

continuous perfusion of 400 μM MTSET.  In the ‘open’ protocol (open circles), channels 

were depolarized 11% of the total time; ‘closed’ protocol (filled squares), 0.6% of total 

time.  Shifting to the open protocol (arrow) after ~1000 s shows the completion of 

MTSET modification.  Currents from the open and closed protocols were normalized to 

the maximal change in current for comparison.  
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MTSET modification was state-dependent for all three mutant Q1/E1 complexes (Table 

3-1).  Figure 3-6B shows that MTSET modification of R228C/E1 occurs rapidly in the 

open protocol, but using the closed protocol the mutant complex was modified very 

slowly, consistent with the reaction occurring primarily in the active state.  To estimate 

the rate of modification in the closed protocol, the reaction was followed to completion 

after shifting from the closed to the open protocol (Fig. 3-6B, arrow).  The observed 

increase in current was due to subsequent modification of unreacted cysteines in S4 and 

was not an artifact of changing the interpulse interval since it was only observed when 

MTSET was in the bath solution. 

These three state-dependent Q1/E1 mutant complexes were then used to 

determine whether the slow gating in Q1/E1 complexes is due to S4 slowly transitioning 

from the resting to active state.  If the slow activation observed in Q1/E1 complexes is 

due to a sluggish voltage sensor, the MTSET modification rate of the cysteines in S4 will 

decrease with shorter pulse durations as long as the opening of the intracellular gate itself 

does not alter S4 accessibility to MTSET.  Conversely, if E1 has no effect on voltage 

sensor movement, then the modification rate should be independent of pulse duration.  To 

experimentally test these two possibilities, the total depolarization time was kept constant 

(11%), but the individual pulse lengths were varied between 0.1 and 4 s.  (Fig. 3-7, inset).  

The R228C/E1 mutant complex was examined first.  Since a series of rapid, short pulses 

can cumulatively shift the S4 segments into the active state and give rise to an apparent 

increase in instantaneous conductance (Bett et al., 2006), the interpulse interval required 

to fully reset the voltage sensors was determined in the absence of MTSET (Fig 3-7 top).
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Figure 3-7   S4 voltage sensors reach equilibrium quickly in Q1/E1 complexes upon 
depolarization 
 
(Top) Representative plots from the MTSET reaction with R228C/E1 using 0.1, 0.5, 2, or 

4 s 40-mV pulses, where the total depolarization time was kept constant (inset).  The total 

MTSET exposure time is plotted versus normalized current at the end of the 

depolarization.  Filled diamonds indicate the interpulse interval required to reset voltage 

sensors between pulses when no MTSET was added (900-ms interval for 100-ms pulse).  

 

(Bottom) Comparison of R228C, R228C/E1, and I230C/E1 in pulse duration 

experiments.  Black symbols represent modification by MTSET, red symbols 

modification by MTSES.  Data were averaged from 3-6 oocytes ± SEM. 



 72

MTSET treatment of R228C/E1 with different pulse durations from 0.1 to 4 s resulted in 

nearly identical rates of modification (Fig. 3-7).  As a comparison, a similar set of pulse 

frequency experiments was performed on unpartnered R228C to determine if the rate of 

S4 modification in homotetrameric Q1 channels also remained constant with various 

pulse durations (Fig. 3-7, bottom).  Similar pulse duration experiments with the 

G229C/E1 mutant complex were not experimentally feasible due to the extremely slow 

modification rate (Table 3-1).  However, for I230C/E1, MTSET modification rates were 

modestly dependent on pulse duration.  With 500 ms pulses, the rate of modification was 

~ 2-fold slower than for 4 s pulses.  A similar result was also obtained using the 

negatively charged MTS reagent, MTSES (Fig. 3-7, red triangles).  Thus, the 

examination of the state-dependent Q1/E1 complexes in pulse duration experiments 

shows that the voltage sensors reach equilibrium quickly when E1 is present.  

 

Voltage sensor equilibrium measurements in Q1/E3 K+ channel complexes 

Finally, Q1 voltage sensors were examined in the presence of E3.  Co-expression 

of E3 with all but one of the S4 cysteine mutants resulted in functional complexes that 

were constitutively conducting and possessed rapid gating kinetics similar to wild-type 

Q1/E3 complexes (Fig. 3-8).  The one deviant, R228C/E3, appeared to be closed at 

hyperpolarizing potentials and the depolarization-elicited currents were small in 

amplitude and slowly activating.  Of these mutants, five were rapidly modified by 

MTSET and the reactions went to completion in both the closed and open protocols (Fig. 

3-8).  
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Figure 3-8   S4 cysteine substitutions in Q1/E3 complexes show state-independent 
modification 
 
(Top) TEVC recordings from A226C/E3, R228C/E3 and I230C/E3 complexes expressed 

in Xenopus oocytes before and after MTSET modification.  Oocytes were held at −80 mV 

and currents were elicited from 4-s command voltages from −100 to +40 mV in 20-mV 

increments.  Scale bars represent 0.5 μA (y-axis) and 0.5 s (x-axis).  Dashed line 

indicates zero current.  

 

(Bottom) Change in current monitored over time using 40-mV test pulses with 

continuous perfusion of 400 μM MTSET.  In the ‘open’ protocol (open circles), the 

channel complexes were depolarized 11% of the total time; ‘closed’ protocol (filled 

squares) 0.6% of total time.  Currents from open and closed protocols were normalized to 

the maximal change in current for comparison.  Curves were fit to monoexponential time 

courses and fitted parameters are presented in table 3-1.  
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Moreover, all MTSET reactions were pseudo-first order and well fit to single 

exponentials, indicating that the S4 residues in Q1/E3 complexes were readily accessible 

to the extracellular solution in both the closed and open protocols (Table 3-1).  The lack 

of state-dependent modification for these S4 cysteine mutants when paired with E3 are in 

striking contrast to when the mutants were expressed alone, where A226C showed 

biexponential modification rates using the open protocol and R228C, G229C, and I230C 

were only modified upon depolarization (Fig. 3-4 & 3-5).  The possibility that state-

independent modification observed with Q1/E3 channels was due to the native 

extracellular cysteine in E3 was initially a concern.  Although control experiments with 

wild type Q1/E3 complexes showed no measurable effect in the presence of MTSET, 

modification of this E3 cysteine will result in a disulfide bond, which could react with the 

cysteine mutants in S4 via an accelerated disulfide exchange reaction.  To eliminate this 

possibility, experiments were repeated with a cysteine-less version of E3 and similar state 

independent modification of I230C’s voltage sensors was obtained (kopen ~ 15 M-1s-1, 

kclosed ~ 14 M-1s-1).  Examination of the deepest modifiable cysteine residue (I230C) with 

E3 at different test pulse potentials revealed that the rate of MTSET modification was 

independent of voltage from – 100 to 40 mV (Fig. 3-9).  In total, these results argue that 

at hyperpolarizing potentials, the equilibrium of voltage sensors in Q1/E3 complexes is 

shifted such that they are significantly exposed to the extracellular solution. 
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Figure 3-9   The equilibrium of voltage sensors is shifted to favor the active state in 
Q1/E3 complexes   
 
(Top) Comparison of MTSET modification rates for Q1/E3 S4 cysteine substitutions in 

the open (open circles) or closed (filled squares) protocols.  The gray bar gives the fold-

change in rate between the open and closed protocols.  X-out open circles indicate no 

observed change of current using the open protocol.  Data were averaged from 3 to 5 

oocytes ± SEM.   

 

(Bottom)  The rate of MTSET reaction with I230C/E3 channel complexes is independent 

of voltage.  Oocytes were held at −80 mV, and for each voltage, 4-s pulses were followed 

by a −30 mV tail pulse (100ms), which was used to monitor the change in current upon 

MTSET application.  The reaction time constant from single exponential fits is plotted for 

each voltage potential.  Data were averaged from 3 to 4 oocytes ± SEM.  One-way 

analysis of variance indicates that p > 0.5 for each data point in comparison to the others.  
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Discussion 
 
MTSET accessibility of cysteine residues in the S4 segment of Q1 channels 

This chapter examined the extracellular accessibility of introduced cysteines in 

the S4 voltage sensors of Q1 channel complexes to indirectly assess their position and 

equilibrium.  Although this approach has faithfully mirrored more direct measurements of 

S4 whereabouts in other voltage-gated channels (with gating currents and fluorescently 

labeled voltage sensors), there are at least three caveats to consider.  First, accessibility 

measurements may not exclusively report on S4 movement since other K+ channel 

rearrangements could expose S4 to the extracellularly applied reagent.  Second, since 

modification is ascertained by measuring changes in macroscopic current, it is unclear 

how many modified S4 segments are required to produce the measured effect.  Third, 

MTS-modified cysteines can undergo disulfide exchange with nearby free sulfhydryls, 

which may affect the rate and magnitude of the measurement. 

Using MTSET as the accessibility reagent, modification was observed for 

cysteines introduced at positions 226–230 in the S4 of Q1 channels.  The measured 

MTSET modification rates were slower compared to voltage sensors in other channels as 

well as model thiols (Larsson et al., 1996; Karlin and Akabas, 1998).  Although voltage-

gated channels share a common protein fold, differences in the microenvironments (steric 

and electrostatic) surrounding the S4 segment could explain the slow reaction rates 

observed with Q1.  To further elucidate the influence of the Q1 protein environment on 

S4’s range of motion, examination of the intracellular accessibility to MTSET would be 

particularly informative.  Unfortunately, the current from Q1 channel complexes in 
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excised macropatches rapidly decreases over time (rundown) (Loussouarn and Escande, 

2003), preventing the use of this experimental technique.   

External MTSET modification also revealed that the voltage sensors in Q1 

channels are sensitive to the removal, introduction, and specific location of charges in the 

S4 segment.  Removal of the positive charge at residues 228 and 231 by cysteine 

substitution ablated activation kinetics, as was previously observed with alanine mutants 

at these same positions (Panaghie and Abbott, 2007).  Charge re-introduction by MTSET 

modification restored gating kinetics and increased current output for R228C.  However, 

introduction of positive charge at previously uncharged positions resulted in channels 

with nearly instantaneous activation kinetics for all modifiable cysteine mutants except 

I230C.  Thus, the charge-sensitivity of the Q1 S4 segment makes the effects of MTSET 

modification on the voltage-dependence and changes in current amplitude unpredictable.  

In contrast, the state-dependence of MTSET modification of the S4 cysteine residues in 

Q1 followed a clear pattern.  The more N-terminal and presumably more accessible S4 

residues were measurably modified in both the open and closed states.  Correspondingly, 

modification of the more C-terminal residues was not detected, suggesting that these 

residues are too buried to react with MTSET.  The remaining three residues (R228C, 

G229C, I230C) were strongly state-dependent and therefore used to examine the effects 

of E1 and E3 on voltage sensor equilibrium.  
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E1 does NOT appreciably slow the equilibration rate of the Q1 voltage sensor 

Co-expression of E1 with the three state-dependent Q1 mutants resulted in two 

different rates of MTSET modification:  R228C/E1 was modified at a similar rate as 

R228C alone whereas the modification of G229C and I230C was considerably reduced (~ 

10-fold) in the presence of E1 (Table 3-1).  While it is tempting to compare the absolute 

rates of MTS modification between Q1 and Q1/E1 channel complexes to determine 

whether E1 slows the voltage sensors, this measurement reports on the equilibrium of the 

voltage sensor and not the kinetics of movement.  Thus, Nakajo and Kubo’s conclusion 

that E1 peptides slow the transition of the S4 segment to the active state based on 

differences in MTS modification rates was premature (Nakajo and Kubo, 2007).  

Moreover, the inclusion of KCNE peptides in the Q1 complex adds the potential for 

steric and electrostatic interactions that could substantially reduce or enhance the rates of 

MTS modification.  Therefore, it is imperative to examine each individual complex to 

elucidate the effects of KCNE peptides on voltage sensor equilibration rates.  

Accordingly, the dependence of MTSET modification rate on pulse duration was 

measured in an attempt to extract the kinetics of voltage sensor movement in Q1/E1 

complexes. 

 Examining two of the strongly state-dependent S4 cysteine mutants revealed that 

R228C/E1 was modified independent of pulse duration (as short as 100 ms) whereas 

I230C/E1 modified somewhat slower with the shortest depolarizations.  For R228C/E1, 

this result implies that voltage sensors reach equilibrium in less than 100 ms and that the 

rate limiting step is the opening of the Q1/E1 activation gate.  In support of this model, a 
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recent report found that the rate of A226C/E1 modification by MTS reagents is also 

independent of pulse duration with pulses as short as 30 ms (Nakajo and Kubo, 2007).  

For I230C/E1, a 2-fold difference in modification rate was observed between the 500 ms 

and 4 s pulse durations using both MTSET and MTSES.  However, this difference does 

not fully account for the ~ 7-fold change in conductance observed over this time frame, 

and may be attributed to increased extracellular exposure of this residue induced by 

cytoplasmic gate opening or other delayed conformational changes.  Alternatively, if E1 

does partially slow voltage sensor equilibration, the lack of dependence on pulse duration 

for R228C/E1 (and A226C/E1) can be explained by two pairs of voltage sensors moving 

at different rates.  To directly measure these rates, it will require either measuring gating 

currents or monitoring S4 motions with reporter probes.  Both of these experimental 

approaches will be challenging since the S4 segment is charge-poor and its modification 

with cysteine-specific reagents (at least MTSET) typically abolishes Q1 channel gating. 

 

E3 shifts the voltage sensor equilibrium to favor the active state 

For Q1/E3 complexes, the entire panel of S4 cysteine mutants was modified by 

MTSET in the closed protocol, indicating that these residues are equally accessible to the 

reagent at resting and depolarizing potentials (Table 3-1).  Although the increase in 

reactivity for a single mutant could be attributed to local accessibility differences between 

Q1 and Q1/E3 channel complexes, the across-the-board loss of state-dependence strongly 

argues that the voltage sensor equilibrium in Q1/E3 complexes is shifted to favor the 

active state at hyperpolarizing potentials.  This result confirms that the tight linkage 
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between voltage sensor and activation gate, which has been observed in the majority of 

wild-type voltage-gated channels, is maintained in Q1/E3 complexes.  This differs from 

mutagenic investigation of activation gates and voltage sensors in other voltage-gated 

channels that abolish this link, uncoupling the coordinated movement of these two 

protein domains (Lu et al., 2002; Sukhareva et al., 2003).  Since Q1/E3 complexes 

exhibit some voltage-dependence, this would suggest that E3 does not lock the voltage 

sensors up, but enables voltage-independent access to the active state.  A recent 

mutagenic investigation of KCNQ channel voltage sensors suggests that E3 converts Q1 

into a leak channel because the S4 segment has a smaller net positive charge (+3) 

compared to the other members in the family (Panaghie and Abbott, 2007).  For most of 

the cysteine modifications examined here, adding an additional positive charge to the S4 

with MTSET converted Q1 channels and Q1/E1 complexes into voltage-independent leak 

channels.  This trend appears to contradict the requirement for a charge-poor S4 to induce 

a leak current.  However, the resultant disulfide bonded ethyltrimethylammonium is a 

terrible structural mimic of arginine or lysine.  Moreover, the haphazard attachment of 

positive charge to the S4 could also disrupt voltage-sensing since the spacing of charges 

in voltage-sensitive channels is also highly conserved (Catterall, 1988).  On the other 

hand, one MTSET modification supports the paucity of charge model proposed by 

Abbott and co-workers.  Unmodified R228C/E3 complexes afforded small currents that 

were only measurable at positive potentials (Fig. 3-8); however, reinstating the charge at 

position 228 with MTSET afforded robust currents with more Q1/E3 character.  
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Conclusions 

 The discovery that E1 and E3 differently influence the motions of Q1 channels 

supports a bipartite model previously proposed for KCNE modulation of Q1 channels 

(Gage and Kobertz, 2004).  This model proposed that the E3 transmembrane domain was 

dominant in modulation and overrides the conserved C-terminal domain of KCNE 

peptides, whereas the E1 transmembrane domain was passive in modulation, allowing the 

C-terminus to influence channel gating.  These new data suggest that the mechanism for 

bipartite modulation arises from the tight coupling of the voltage sensor position to the 

activation gate.  The E3 transmembrane domain shifts the voltage sensor equilibrium to 

favor the active state, resulting in a predominately open activation gate.  Moreover, since 

E1 does not appreciably slow the rate of voltage sensor equilibration, it would allow the 

cytoplasmic domain of E1 to slow activation gate opening.  Although these data support 

the bipartite model and suggest potential Q1/KCNE protein-protein interactions, future 

structure-function studies are needed to determine whether the modulatory effects of 

KCNE peptides on voltage sensors and activation gates occur via a direct or allosteric 

mechanism.   
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CHAPTER IV: Discussion and Future Directions 
 

 This thesis examined the nature of Q1 modulation by two homologous yet distinct 

β-subunits: E1 and E3.  Q1/E1 complexes activate very slowly in a voltage-dependent 

manner whereas Q1/E3 channels activate almost instantaneously, generating currents 

with a voltage-independent component even at negative voltages.  These dramatically 

different effects prompted this investigation into the secondary structure of E1’s C-

terminus and the impact of E1 and E3 subunits on Q1 voltage sensor equilibrium.   

 Although the C-terminal region, in particular, is well conserved in E1 and E3 

peptides, its influence on channel modulation is markedly different.  The bipartite model 

explains two distinct sites of channel modulation residing in the transmembrane domain 

and C-terminus (Gage and Kobertz, 2004).  In E1, a permissive transmembrane domain 

allows C-terminal modulation to dominate as the deletion of membrane-abutting C-

terminal residues remove E1’s modulatory effect.  Also, several long-QT mutations in 

this region further highlight its importance (Splawski et al., 2000).   

 Chapter II addressed the individual contributions of membrane-abutting C-

terminal residues in E1.  Using perturbation mutagenesis, a number of positions were 

identified that substantially alter channel gating when mutated to alanine or leucine.  

These mutations clustered onto a single protein interface with helical structure that is 

kinked at proline 77.  In support of this finding, the same E1 residues suggested to 

interact with the Q1 channel complex were recently shown to form crosslinks with 

residues in the cytoplasmic-facing pore region of Q1 (Gage, 2008). 
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 Although many studies have addressed the regions in E1 and E3 that interact with 

or modulate Q1 channels, fewer groups have examined the effects of these peptides on 

the structure and function of Q1.  The voltage sensor is an appealing target because of the 

extreme effects that E1 and E3 have on voltage-dependent gating.  Abbott and coworkers 

proposed that the paucity of charge in Q1’s S4 segments contribute to its sensitivity to 

such extreme modulation – the nature of which is not seen in other Kv channels that 

assemble with these same β-subunits (Panaghie and Abbott, 2007).  

 Chapter III elucidated the response of Q1 voltage sensor equilibrium to assembly 

with E1 or E3.  Cysteine accessibility experiments were performed to identify positions 

in the S4 segment of Q1 that could be modified by MTSET only when voltage sensors 

were active.  In Q1/E1 channels, the rate of modification for these state-dependent 

cysteine mutants was not dependent on pulse length, indicating that voltage sensors 

equilibrate quickly and are not responsible for the slow gating observed for these 

channels.  Cysteines examined in Q1/E3 complexes showed state- and voltage-

independent modification by MTSET, confirming that voltage sensors are shifted to favor 

the active state causing constitutive current conduction.   

 This work reinforces the importance of the E1 transmembrane-abutting C-

terminus in producing the slowly activating IKs currents that are vital to maintaining heart 

rhythmicity.  This thesis also explains the distinct influences of E1 and E3 on Q1 voltage 

sensing.   
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Future Directions 
 
 A number of questions remain unanswered regarding the nature of unique 

modulation endowed by E1 and E3.  Melman and colleagues suggested that E1 and E3 

may interact with the Q1 pore in slightly different ways (Melman et al., 2004).  It is 

possible that Q1/KCNE interactions are state-dependent such that their interaction surface 

shifts when the channel moves from the closed to open conformation.  By docking their 

recent NMR structure of E1 onto a Q1 model, the Sanders group suggests that E1 may 

interact with two different clefts of Q1 depending on channel conformation (Kang et al., 

2008).  The crystal structure that best approximates Q1 is the mammalian Kv1.2, which 

indeed shows a gap between each VSD and its neighbor (Long et al., 2005a), suggesting 

an ideal location for E1 to interact with the pore as well as the voltage sensor.  A similar 

structural model is proposed by combining data showing disulfide bond formation 

between cysteines introduced in the E1 N-terminus and either Q1’s S4 (Nakajo and 

Kubo, 2007) or state-dependent disulfide bonds with S1 (Xu et al., 2008).  This model 

places E1 between two VSDs, where it interacts with the S4 helix of one subunit on one 

side, the S1 helix of a second subunit on the other side, and the S6 pore-lining helix of a 

third subunit that sits between the two VSDs.  Interacting points between C-terminal 

residues of E1 with Q1 that are implied in Chapter II and have been verified through 

crosslinking experiments (Gage, 2008) may further constrain the position of E1 within 

this model; however, assessing the state dependence of these interactions is crucial before 

any definitive determinations can be made.  
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 It is also possible that the structure of E1 is influenced by interactions with Q1.  

The kinked α-helical conformation proposed for the proximal C-terminal domain of E1 

in Chapter II was not observed in the NMR solution structure of E1 determined in lipid 

micelles (Kang et al., 2008).  This discrepancy can be explained by the fact that the NMR 

structure was solved for E1 alone, in the absence of the Q1 channel, and therefore does 

not account for interactions between Q1 and E1 that may stabilize a kinked helical 

conformation.  Also, the globular micelle environment does not accurately replicate a 

planar membrane bilayer and may introduce additional structural distortions.  Although 

indirect, perturbation mutagenesis may be a superior measure of E1 structure since this 

technique measures functioning, assembled channels in a native-like membrane.   

 What role does the conserved C-terminal domain play in other KCNE β-subunits?  

The bipartite model predicts that this region is not required for basal activation in Q1/E3 

complexes, and accordingly, introducing the dominant negative D76N mutation into the 

corresponding location in E3 (D90N) has no measurable effect on channel gating (Gage 

and Kobertz, 2004).  In contrast, the C-terminus is required for E4 inhibition of Q1 

channels.  Chimeras that replace the C-terminus of either E1 or E3 with that of E4 inhibit 

Q1 channel activity similar to wild type E4, and introduction of the E1 C-terminus into 

E4 abolishes this inhibition (Manderfield et al., 2008).  The emerging theme extends the 

bipartite model to include the entire KCNE family: the transmembrane domains of E3 

and probably E2 are required for basal activation of Q1 and C-terminal contributions 

from these β-subunits are masked.  Conversely, E1, E4, and perhaps E5 all contain 

permissive transmembrane domains which unveil C-termini that are critical for delayed, 
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and sometimes, inhibited Q1 channel activation.  Although this model has not yet been 

tested on E5, similar chimera constructions and perturbation mutagenesis strategies could 

be employed to dissect which domains and residues cause slow gating and the large 

voltage-activation shift.  The challenge in performing these experiments is the extremely 

positive depolarizations required to elicit measurable current from Q1/E5 complexes.  

 Chapter III reveals that voltage-independence in Q1/E3 complexes occurs because 

voltage sensors are shifted to favor the active state.  However, are all four voltage sensors 

equally shifted?  It is possible that if two E3 β-subunits assemble with each Q1 channel, 

their interaction causes only two voltage sensors to shift ‘up’ at negative voltages.  Since 

MTS-modification of cysteines introduced in Q1’s S4 cannot discriminate how many S4 

cysteines must be modified to produce a measurable current increase, this question 

remains unanswered.  The tethered charybdotoxin approach employed to count two E1 β-

subunits in functioning Q1/E1 complexes (Morin and Kobertz, 2008) could also resolve 

the number of E3 β-subunits in Q1/E3 complexes (Figure 4-1).  This technology could 

then be extended to count the number of shifted voltage sensors in Q1/E3 complexes at 

negative voltages by modifying cysteines introduced in the S4 domain instead of the β-

subunits.    

 Just as derivitized scorpion toxins have been used to probe the extracellular side 

of functioning K+ channels, a similarly derivitizable protein may be valuable to examine 

channel gating from the intracellular perspective.  Since Q1 channels rapidly lose current  
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Figure 4-1  Cartoon depicting one modification cycle used to count the number of 
E1 subunits in Q1/E1 complexes using a derivatized charybdotoxin (CTX)          
 
The CTX reagent is added (top left) and irreversibly blocks channels by tethering its 

maleimide moiety to the thiol group of a cysteine introduced into the N-terminus of E1.  

The reagent cannot be washed out without chemical cleavage (top right), which then 

allows the CTX blocking moiety to diffuse away.  The E1 cysteine is then permanently 

modified and no longer reactive to further rounds of modification.  Therefore, the number 

of E1 peptides in the channel complex is simply the number of cycles that require the 

tethered reagent to be chemically cleaved for current to be restored.  Figure 4-1 is from 

(Morin and Kobertz, 2008). 
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(rundown) in excised patches (Loussouarn and Escande, 2003), access to the intracellular 

aspects of this protein’s function have been limited.  To build on the work presented in 

useful.  One approach to monitor the motions of the intracellular gate would be to use the 

calmodulin protein as a fluorescent sensor of gate position.  Calmodulin constitutively 

binds the Q1 C-terminus very close to the S6 gate (Ghosh et al., 2006; Shamgar et al., 

2006), and many years of studying this small, soluble protein reveal straightforward 

methods for its mutagenesis, purification, and labeling with a number of cysteine-reactive 

probes (Allen et al., 2004).  To use calmodulin as a fluorescent sensor of intracellular 

gate position requires a fluorophore that changes in fluorescence intensity when the 

channel gate moves from the open to closed conformation.  If the microenvironment 

surrounding the channel gate is sufficiently different in the open versus closed 

conformation, a solvatochromatic fluorophore may be useful.  Otherwise, a fluorophore 

that undergoes self-quenching or self-FRET may be appropriate.  Preliminary data 

(Appendix) indicate that this type of experiment may be feasible; however the exact 

details are still under investigation.  In all, the use of derivatized calmodulin as a tool to 

probe the intracellular side of Q1/KCNE complexes using fluorescence, chemical biology 

or other methods remains a promising avenue. 
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Conclusion 

 In conclusion, this thesis adds to the growing body of biophysical and structure-

function data describing the remarkably different ways that the small KCNE β-subunits 

modulate the gating and voltage sensing properties of the physiologically diverse 

KCNQ1 K+ channel.  Continuing studies will, no doubt, increase our understanding of 

how these fascinating channel complexes assemble, traffic, and function, and will expand 

the tools available to target deleterious channel dysfunction.  
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APPENDIX: Calmodulin as a Sensor of Intracellular Gate Motions in Q1/E1 K+ 

Channel Complexes 

 

 KCNE subunits have very different effects on Q1 K+ channel gating and voltage 

sensing.  In the slowly activating Q1/E1 complexes, active voltage sensors are externally 

accessible within hundreds of milliseconds of depolarization, whereas channel activation 

continues over a much longer timescale of several seconds.  This suggests that voltage 

sensor movement is not the rate-limiting step in channel activation, and implies a slowly 

moving intracellular gate.  Calmodulin is a small (17 kD), soluble signaling protein that 

constitutively binds the Q1 C-terminal region in close proximity to the S6 gate.  To 

demonstrate that calmodulin may be used as an intracellular sensor of Q1/E1 gating 

motions, a cysteine-containing calmodulin mutant was purified, derivatized, and shown 

to assemble with Q1 channels in Xenopus oocytes.  This preliminary evidence suggests a 

novel means to probe the intracellular side of a functional ion channel in living cells by 

modifying one of its soluble partner proteins.   
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Materials and Methods 
 
Mutagenesis, protein expression and purification:  Calmodulin (CaM) DNA was 

obtained from David Yue (Johns Hopkins) and was subcloned into the pET-DUET1 

vector for expression and purification.  The T35C point mutant was introduced by 

Quikchange site-directed mutagenesis (Strategene) and confirmed by DNA sequencing of 

the entire gene.  Recombinant CaM-T35C was expressed and purified according to the 

protocol by Hayashi and others (Hayashi et al., 1998).  The pET-DUET1 plasmid 

containing CaM-T35C (~200 ng) was used to transform E. Coli strain BL21 (DE3).  

CaM-T35C was expressed by induction with 0.4 mM isopropyl-β-D-thiogalactoside 

(IPTG) once A595 reached 1.0.  The culture was grown for an additional 8 hours post 

induction, and pellets were collected by centrifugation at 5000 rpm for 15 minutes at 4°C.  

The bacterial pellet was resuspended in 50 mM Tris-HCl buffer, pH 7.5, containing 2 

mM EDTA, 0.2 mM phenylmethanesulfonyl fluoride (PMSF) and 1mM 2-

mercaptoethanol.  Cells were lysed using a Microfluidizer Cell-disrupter (Microfluidics 

Corp, Newton, MA) and centrifuged at 15000 rpm for 15 minutes at 4°C.  After addition 

of 5 mM CaCl2, the supernatant was applied to a phenyl-Sepharose CL-4B column 

equilibrated with 50 mM Tris-HCl, pH 7.5, 5 mM CaCl2, and 0.1 M NaCl.  After washing 

until A280 reached baseline, proteins were eluted using 50 mM Tris-HCl pH 7.5, 1mM 

EGTA.  Fractions containing CaM were dialyzed against distilled water and lyophilized.  

The concentration of resuspended CaM solutions was determined by ninhydrin assay 

(Rosen, 1957).  
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Calmodulin labeling:  Purified CaM-T35C (200 nmoles) was resuspended in PBS and 

reduced with 5 mM DTT for 30 minutes.  Maleimide PE02-Biotin (Pierce) was added at 

20 molar excess, and the mixture incubated at room temperature for 2 hours.  The 

reaction mixture was then dialyzed against PBS (3 solution changes, 500 mL each) using 

a 10,000 molecular weight cutoff Slidalyzer (Pierce) overnight at room temperature to 

remove unreacted Maleimide reagent.   

 

Oocyte preparation and electrophysiology:  Oocytes were surgically removed from 

Xenopus laevis and defolliculated using 2 mg/mL collagenase (Worthington Biochemical 

Corp.) in OR2 containing (mM):  82.5 NaCl, 2.5 KCl, 1 MgCl2, 5 HEPES, pH 7.4 for 75-

90 min.  Isolated oocytes were rinsed with and stored in ND96 bathing solution (ND96B) 

containing (mM):  96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 50 μg/mL gentamicin 

(Sigma-Aldrich), pH 7.4 at 18°C.  Approximately 24 h after extraction, oocytes were 

microinjected with 27.6 nL total volume of cRNA and/or protein containing Q1 (7.5 

ng/oocyte) and CaM (0.5 μmoles or 5 μmoles/oocyte).  After 3–6 days, currents were 

recorded using Warner Instrument OC-725C two-electrode voltage clamp (TEVC) and 

the data were acquired with Digidata 1322A using pClamp 8 or 9 (Axon Instruments).  

Electrodes were filled with 3 M KCl, 5 mM EGTA, 10 mM HEPES, pH 7.6, and had 

resistance between 0.2 and 1.0 MΩ.  For each experiment, oocytes were held at – 80 mV 

in ND96 (in mM):  96 NaCl, 2 KCl, 0.3 CaCl2, 1 MgCl2, 5 HEPES, pH 7.4, and pulsed to 

a command potential of 40 mV. 
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Oocyte membrane preparation:  A sample of oocytes injected with Q1 only, Q1 and 

CaM-B or CaM-B only were checked for functional K+ currents three days after 

injection.  Each batch of oocytes was homogenized at 4°C in 0.9 mL homogenization 

buffer: 100 mM HEPES, pH 7.6, 1 mM EDTA, 50 mM DTT, and 100 μg/mL 

phenylmethanesulfonyl fluoride (PMSF).  Cell debris was pelleted by centrifugation at 

3000 rpm for 10 minutes at 4°C and the supernatant was collected.  The pellet was 

resuspended in 0.9 mL homogenization buffer and centrifuged once more (3000 rpm, 10 

minutes, 4°C).  The supernatants were combined and overlaid on a 15% sucrose cushion, 

prepared with 100 mM HEPES, pH 7.6.  Samples were ultracentrifuged at 44,000 rpm for 

75 minutes, and pelleted membranes were solubilized in immunoprecipitation reaction 

buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mg/mL BSA, 50 mM NaF, 

5 mM EDTA, 1% Triton X-100, protease inhibitor cocktail.   

 

Immunoprecipitation Analysis: After resuspending oocytes membranes in 

immunoprecipitation reaction buffer for ~ 2 hours at 4°C, insoluble material was pelleted 

by centrifugation at 14000 rpm for 1 minute at 4°C.  Samples were incubated with 5 μl 

anti-Q1 antibody (Santa Cruz Biotechnology, Inc.) overnight at 4°C.  The samples were 

bound to protein G beads (Pierce) for 2 hours at room temperature to separate antibody-

bound protein complexes from oocytes membranes.  The beads were washed twice with 

immunoprecipitation reaction buffer and once with detergent-free wash buffer.  Co-

immunoprecipitated proteins were eluted from the beads with SDS-gel loading buffer for 

5 minutes at 95°C.  One-fifth of the total input used for co-immunoprecipitation and 
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eluted proteins were resolved by SDS-PAGE and analyzed by Western blot with anti-

biotin antibody (Sigma).  
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Results and Discussion 
 
 
 Calmodulin (CaM) is a small, soluble protein that constitutively binds the C-

terminus of each Q1 subunit very close to the S6 gate (Ghosh et al., 2006; Shamgar et al., 

2006), suggesting that calmodulin may be used as a sensor to probe the motions of the 

intracellular gate in Q1/E1 channel complexes.  To determine if purified, derivatized 

calmodulin can assemble with functioning Q1 channel complexes inside living cells, the 

Xenopus oocyte expression system was used.  Oocytes are ideal for this type of approach 

since purified protein can be directly injected into oocytes along with channel-encoding 

mRNA (Maduke et al., 1998); however, the purified, derivatized calmodulin must 

successfully assemble with Q1 channels at the plasma membrane without disrupting 

complex function. 

 Although calmodulin contains no native cysteines, cysteine-containing constructs 

have been previously generated and labeled for fluorescence resonance energy transfer 

(FRET) experiments (Allen et al., 2004).  Therefore, one of the positions known to 

tolerate cysteine substitution and further fluorescent labeling, T35, was mutated to 

cysteine, over-expressed in E. Coli and purified (Figure A-1).  To determine if CaM-

T35C affects Q1 channel function, the purified protein was injected along with mRNA 

encoding Q1 into Xenopus oocytes.  Figure A-2 shows that currents elicited from oocytes 

containing Q1 and CaM-T35C are indistinguishable from Q1 alone.   
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Figure A-1  Overexpression and Purification of Calmodulin T35C  
 
SDS Polyacrylamide Gel Electrophoresis of total E. Coli BL21 (DE3) proteins before 

induction (U) and after IPTG-induction (I) followed by elution fractions from phenyl 

sepharose purification of recombinant calmodulin protein with the T35C mutation (~17 

kD).  
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Figure A-2  Co-injection of purified Calmodulin T35C does not disrupt Q1 function   
 
Two-electrode voltage clamp recordings of Q1 expressed alone (left) or in the presence 

of 5 μmoles purified Calmodulin T35C (right) expressed in Xenopus oocytes.  Currents 

were elicited using a 4-s depolarization from − 80 mV to 40 mV.  Scale bars represent 

1μA (y-axis) and 0.5 s (x-axis).  
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 Purified CaM-T35C was then labeled with biotin-maleimide and co-injected with 

Q1 in Xenopus oocytes.  Figure A-3 shows that biotinylated calmodulin (~ 17 kD) co-

immunoprecipitates with Q1 from purified oocyte membranes only when both Q1 and 

biotinylated calmodulin are injected.   

 This preliminary data confirms the ease with which cysteines can be introduced 

into calmodulin and labeled with maleimide-containing probes.  Labeled calmodulin can 

assemble with Q1 in oocytes; however, it is still not clear whether labeled calmodulin 

out-competes the native Xenopus calmodulin for assembly with Q1.  The reverse co-

immunoprecipitation (IP α-biotin, IB α-Q1) combined with quantifying the amount of 

Q1 remaining in supernatants following biotin-pull down would suggest the fraction of 

Q1 that associates with biotinylated calmodulin in the membrane.   

 Although this work provides evidence to support the use of calmodulin as an 

intracellular probe, further study is needed to address whether fluorescence methods or a 

chemical biological approach would be the most effective means of implementation. 
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Figure A-3  Biotinylated Calmodulin co-immunoprecipitates with Q1 from Xenopus 
oocyte membranes       
 
Co-immunoprecipitation of biotinylated calmodulin (~17 kD) with anti-Q1 antibody.  

Membranes from oocytes injected with either Q1 alone, Q1 with 0.5 μmoles of purified 

biotinylated calmodulin (Q1/CaM 1), Q1 with 5 μmoles of purified biotinylated 

calmodulin (Q1/CaM 10) or just 5 μmoles purified biotinylated calmodulin (CaM 10) 

were incubated with anti-Q1 antibody.  One-fifth of the total detergent solubilized 

membranes and the precipitates were analyzed by SDS-PAGE and Western analysis was 

performed using anti-biotin antibody.  
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