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Abstract 

 

 Mycobacterium tuberculosis, the causative agent of tuberculosis, can manipulate host 

cell death pathways as virulent strains inhibit apoptosis to protect its replication niche and 

induce necrosis as a mechanism of escape. In vitro studies revealed that similar to lytic 

viruses, M. tuberculosis has the ability to induce cytolysis in macrophages when it 

reaches an intracellular burden of ~25 bacilli. Base on this finding, we proposed the burst 

size hypothesis that states when M. tuberculosis invades a macrophage at a low 

multiplicity of infection it replicates to a burst size triggering necrosis to escape the cell 

and infect naïve nearby phagocytes, propagating the spread of infection. The first part of 

this study investigated if the in vitro observations of M. tuberculosis cytolysis were 

relevant to cell death of infected phagocytes during pulmonary tuberculosis in vivo. Mice 

infected with a low dose of M. tuberculosis revealed during TB disease, the major host 

cell shifted from one type of phagocyte to another. Enumeration of intracellular bacilli 

from infected lung cells revealed the predictions of the hypothesis were confirmed by the 

distribution of bacillary loads across the population of infected phagocytes. Heavily 

burdened cells appeared nonviable sharing distinctive features similar to infected 

macrophages from in vitro studies. Collectively, the data indicates that M. tuberculosis 

triggers necrosis in mononuclear cells when its number reaches the threshold burst size. 

 The previous study showed during the period of logarithmic bacterial expansion, 

neutrophils were the primary host cell for M. tuberculosis coinciding with the timeframe 

of the highest rate of burst size necrosis. The second part of this study examined this link 
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by infecting mice with one of four different M. tuberculosis strains ranging in virulence. 

Mice infected with the most virulent strain had the highest bacterial burden and elicited 

the greatest number of infected neutrophils with the most extensive lung inflammation 

and greater accounts of cell death. Treating these mice with a bacteriostatic agent 

decreased the bacterial load and infected neutrophils in a dose-dependent manner 

indicating necrosis induced by virulent M. tuberculosis recruited neutrophils to the lungs. 

Infected neutrophils can serve as a biomarker in tuberculosis as evidenced by poorly 

controlled infection and increased severity of lung immune pathology.  
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CHAPTER I: Introduction 

 

1.1 The Life Cycle of Mycobacterium tuberculosis 

 Tuberculosis (TB) is an infectious disease primarily caused by the intracellular 

bacterium Mycobacterium tuberculosis (Mtb). The pathogen spreads from one host to 

another when it becomes aerosolized in particles called droplet nuclei from the cough of a 

person with active pulmonary TB. The inhalation of infectious droplets by an uninfected 

person initiates the dissemination of the bacilli. As the droplet nuclei make their way into 

the alveoli of the lungs, they are encountered by resident alveolar macrophages. 

Engulfment of the pathogen incites an inflammatory response from the infected 

macrophage releasing proinflammatory signals, cytokines and chemokines, to recruit 

neighboring phagocytic cells (neutrophils, monocytes, dendritic cells (DCs) and alveolar 

macrophages) to the site of infection. As Mtb hijacks the macrophage for its residence for 

replication, the incoming naïve phagocytic cells eventually become the new host cells for 

the expanding mycobacteria population (1). The newly recruited cells will also serve as 

the foundation for the formation of the granuloma (2). For the next three weeks Mtb will 

replicate logarithmically, unabated, as it deploys its evasion strategies to counter the 

host's response to the invading pathogen.  

 The tuberculous granuloma is a definitive pathological hallmark feature of TB. The 

formation of the granuloma usually starts as an accumulation of various phagocytes such 

as macrophages, monocytes, dendritic cells and neutrophils surrounding infected 

macrophages (3). The macrophages in this aggregate differentiate into foamy 
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macrophages laden with lipid droplets, epithelioid macrophages and multinucleated giant 

cells (2, 4). With the onset of adaptive immunity, lymphocytes are also recruited to the 

granuloma. By this point, tissue architecture has dramatically changed and the granuloma 

resembles a more organized and structured cellular composition. The center is enriched 

with macrophages and it is encased by a shell of collagen and other extracellular matrix 

material forming the fibrous outer layer while lymphocytes (mostly CD4+ T cells, some 

CD8+ T cells and B cells (5)) encircle the periphery of the granulomatous lesion (2, 6). 

The arrival of lymphocytes to the granuloma is an indicator that the host adaptive 

immune system has commenced. Each granuloma, within the same host, exhibits 

individual stages of development indicating the impact of localized environment over its 

current state (2). The onset of adaptive immunity restricts mycobacterial replication, 

halting the logarithmic expansion of the bacilli. While there are numerous mediators of 

host immunity that combat the pathogen, the major factors that are critical in immunity 

against Mtb are CD4+ T cells and the cytokines, TNF-α, IFN-γ and IL-12 (5).  

 Although the host immune response is quite effective against Mtb, for most infected 

individuals complete eradication of the pathogen is not likely (7). However, even if many 

humans still harbor the bacilli, the pathogen is successfully contained as infected 

individuals are asymptomatic and do not produce infectious droplets. This marks the 

stage of latent TB infection (LTBI). Most people that are initially infected with Mtb reach 

the state of LTBI and remain in this condition lifelong. Approximately 5-10% of infected 

individuals will progress to develop active TB disease. Triggers that suppress the immune 

system significantly increase the chance of getting active disease. Some of those risk 
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factors include HIV infection, TNF-neutralizing therapy for rheumatoid arthritis or 

Colitis and diabetes (8). As disease progresses, the structure and composition of the 

granuloma changes as well. A caseous center starts to develop, most likely due to the 

increase in the number of foamy macrophages (4). The necrotic center eventually 

liquefies and cavitates causing the once contained bacilli to be released into the airway 

(4). This triggers the host to cough, releasing infectious droplet nuclei into the 

environment thus completing the life cycle of Mtb. 

1.2 Experimental Tuberculosis 

 TB is primarily a human disease but it is worth noting that without the use of animal 

models, the discoveries that have been made towards better understanding the disease 

simply would not exist. The use of nonhuman primates, rabbits, guinea pigs, mice and 

even zebrafish have all offered tremendously valuable insight into Mtb infection and the 

disease. To dissect the host response to Mtb, it is necessary to analyze the progression of 

disease in vivo. The mouse model has been invaluable in this role as their utilization has 

provided us with critical knowledge such as the importance of interferon-γ (IFN-γ), 

tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12) and CD4+ T cells in controlling 

Mtb infection ─ findings all confirmed in human disease studies (5). The TB mouse 

model has served as a powerful tool in understanding many aspects of TB, from Mtb 

virulence to the host immune response and the mechanisms of innate and adaptive 

immunity against Mtb. However, it is important to note that there are differences in the 

host-pathogen interactions amongst the host species. For example, the standard wild type 

(WT) mice, C57BL/6 or BALB/c, when infected with Mtb present a very different 
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pathology than TB disease in humans. Mice granulomas are poorly structured and are not 

hypoxic, necrotic nor fibrotic; the bacterial burden are relatively high and remain at a 

steady level as disease progresses; and for mice, Mtb infection is lethal (8). Additionally, 

mice infected with Mtb do not present latency of infection to active disease, as seen in 

humans (8). Due to these and other differences, new findings from mouse TB may only 

be inferred to be actually occurring in humans until they are validated in human TB. 

Other animal models may be preferential in studying certain aspects of the disease, such 

as latent infection or efficacy of new drugs and vaccines, because they reflect more 

accurately human disease. Nonetheless, the value of the mouse model and its expansive 

contribution to our current knowledge cannot be overlooked. There is still a lot we don't 

know about TB and with the wide availability of targeted mutant strains and the 

abundance of analytical reagents available, the mouse, as a host species, has not 

exhausted its usefulness in our goal to gain a better understanding of Mtb-host 

interaction. 

1.3 Immunity against M. tuberculosis 

1.3.1 Innate Immunity 

 Macrophages, one of the major host cells for Mtb, are equipped with numerous 

receptors to bind and phagocytose the bacilli. Complement receptor 3 (CR3) has been 

shown to be a major macrophage receptor, but macrophages can bind to Mtb via other 

surface receptors: CR1, CR4, mannose receptors, CD14, scavenger receptors, Fcγ 

receptors and receptors of surfactant protein A Sp-A (9). Pattern recognition receptors 
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(PRRs) also recognize Mtb through specific types of molecules expressed on the 

pathogen called pathogen-associated molecular patterns (PAMPs). The interaction 

between PAMPs and PRRs initiates the innate immune response which leads to the 

production of cytokines and elicits the adaptive immune response (10). One of the most 

important types of receptors involved in immunity against Mtb is Toll-like receptors 

(TLRs). To date, three TLRs have been identified that recognize mycobacteria. TLR2 is 

the most dynamic in recognizing Mtb. It can distinguish various mycobacterial 

lipoproteins as well as cell wall components such as mannosylated lipoarabinomannan 

(ManLAM) and phosphatidylinositol dimannoside. TLR9 detects mycobacterial DNA 

while TLR4 has been shown to be activated by the bacilli's heat shock protein 60/65 (10). 

The interaction between Mtb and TLRs initiates a signaling cascade through a common 

TLR adaptor protein, MyD88. The recruitment of other proteins eventually leads to the 

activation of transcription factor nuclear factor-κB (NF-κB) which translocates to the 

nucleus. This results in the production of effector molecules for innate host defense, 

primarily proinflammatory cytokines TNF-α, IL-1, IL-6, IL-8 and IL-12, chemokines and 

nitric oxide. In addition, co-stimulatory molecules that leads to Th1 adaptive immune 

response (10, 11). The proinflammatory cytokines along with mycobacterial antigens 

prime T cells. Thus, TLRs bridge the innate and adaptive immune responses to Mtb. 

 Studies that looked into the in vivo significance of TLR-mediated signaling in defense 

against Mtb examined mice lacking TLRs or MyD88. Mice lacking single TLR or double 

or triple knockouts yielded varying results in terms of immune response and the outcome 

of the disease (12). However, mice lacking MyD88 were extremely susceptible to Mtb 
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infection, succumbing quickly to death with significantly increased bacterial loads, 

extensive lung damage and decreased expressions of IL-12, TNF-α, IFN-γ, and nitric 

oxide synthase 2 (13, 14). Similar results were found with IL-1R-/- mice supporting the 

concept that the importance of TLR signaling in MyD88-dependent innate response to 

Mtb was the IL-1 signaling which is downstream of MyD88 (13). 

 A key finding in studying TLRs in the context of Mtb infection was the discovery of 

IFN-γ independent antimycobacterial pathway in human macrophages. Vitamin D 

deficiency has been identified as a risk factor for TB and the Vitamin D3 pathway has 

been shown to control bacterial replication in human macrophages. Liu et al. revealed 

that through TLR2 activation, macrophages increased their expression of Vitamin D 

receptor and upregulated Vitamin-D-1-hydroxylase genes which led to the production of 

cathelicidin, an antimicrobial peptide (15). This study also demonstrated that a 

correlation between TB susceptibility and cathelicidin, where African Americans who 

were more vulnerable to infection and disease had defective induction of cathelicidin 

mRNA. Cathelicidin has also been recognized to induce autophagy in THP-1 cells and 

human primary monocytes (16). 

 Nucleotide-binding oligomerization domain (NOD) proteins are intracellular PRRs 

that recognize PAMPs. Interaction of NOD2 with mycolyl-arabinogalactan 

peptidoglycan, a major component of mycobacterial cell wall, was shown to initiate the 

production of proinflammatory cytokines and nitric oxide (17). NOD2-deficient mice 

showed similar phenotype to WT mice when challenged with Mtb with comparable 

bacterial burden and pathology. However, Divangahi et al. (18) revealed the importance 
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of NOD2 in both innate and adaptive immune response to Mtb as NOD2-deficient mice 

infected with Mycobacterium bovis bacille Calmette-Guérin (BCG) had reduced type 1 

cytokines with less CD8+ and CD4+ T cells along with reduced Ag-specific T cell 

responses. Long term in vivo experiment demonstrated that NOD2-deficient mice 

infected with Mtb had greater bacterial burden at 6 months p.i. than WT mice and had 

shorter survival times. 

 Other immune cells from the innate host response are DCs, neutrophils, γδ T cells, 

NK cells and NKT cells. The importance of DCs during Mtb infection is clear ─ they are 

the primary antigen presenting cells and their role directly links innate immunity to 

adaptive immunity. The role of the remaining innate immune cells during Mtb infection 

has yet to be defined clearly, especially in humans. γδ T cells have been shown to secrete 

IFN-γ and TNF-α after activation in addition to IL-17 in response to IL-23 secretion from 

DCs, demonstrating a protective role against infection. Mtb-infected mice that are 

deficient in γδ T cells have been shown to have varying results depending on the route of 

infection and dose (19). NK cells can be another source of IFN-γ and when activated, 

lyse infected macrophages in a TLR-dependent manner. NKT cells are T cells with NK 

markers that can recognize Mtb cell wall lipids as antigens. They also have the ability to 

secrete IFN-γ as well as IL-4 and IL-10. A subset of NKT cells, invariant NKT cells has 

been shown to directly restrict mycobacterial replication and reduce bacterial lung burden 

in Mtb-infected mice (20). A recent finding from TB patients showed increased NKT 

cells expressing programmed cell death-1 (PCD-1), a negative regulator of T cells, from 

patients with higher sputum bacillary load. PCD-1 correlated with higher apoptotic cell 
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death of IFN-γ producing NKT cells while permitting NKT cells that produced IL-4 to 

live, skewing the T cell response towards Th2, thus favoring the pathogen (21). 

 Neutrophils are recruited into the lungs in the early stage of Mtb infection. They are 

the primary cells that harbored Mtb in patients with active pulmonary TB (22) however, 

their role in TB disease is contradictory. Many studies showed neutrophils to play a 

negative role in TB pathogenesis while others have revealed host defense. Even their 

ability to kill Mtb is controversial. It is common to observe accumulation of neutrophils 

at active sites of disease and the disease severity seems to be associated with the amount 

of localized neutrophil influx (23). Nandi and Behar (24) showed that when neutrophils 

were depleted in IFN-γR-/- mice this proved to be protective for the host, although there 

was no decrease in bacterial burden, there was an increase in the survival time. 

Neutrophils were associated with lung inflammation and contributed to the decline of 

disease outcome. This study also showed that IFN-γ reduced neutrophil viability and it 

directly prevented neutrophil recruitment in the lungs (24). A different study showed 

mice depleted of neutrophils prior to Mtb challenge had increased bacterial burden 

demonstrating their protective role in early defense against the pathogen (23). 

Neutrophils have been shown to facilitate in the induction of adaptive immunity by 

functioning with DCs. Mice infected with a proapoptotic Mtb mutant lacking nuoG, 

showed quicker DC acquisition of mycobacterial antigens and faster migration to lymph 

nodes resulting in faster priming of T cells (25). In a different study, depletion of 

neutrophils was shown to decrease trafficking of DCs to the lymph nodes resulting in the 

delay and activation of naïve T cells. Additionally, Mtb-infected neutrophils engulfed by 
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DCs promoted better migration to lymph nodes than DCs that directly phagocytosed Mtb 

demonstrating that neutrophils contributed to the initiation of adaptive immunity (25). 

However, there is growing amount of evidence that neutrophils are associated with TB 

pathology and disease severity. Their protective role during infection may be limited to 

early stage of infection and the robustness of their response to the pathogen may lead to 

detrimental outcome.  

 Cell death is also an innate host defense mechanism against Mtb. Mtb-infected 

macrophages undergo apoptosis as a means to control infection and reduce bacterial 

viability. This subject is discussed in detailed in Section 1.6. 

1.3.2 Adaptive Immunity  

 In almost all cases, the innate immune response is inadequate at controlling 

mycobacterial infection. Immunity against Mtb is dependent on the adaptive immune 

response requiring the activation of antigen specific CD4+ T cells. The appreciation for 

the essential role of CD4+ T cells against Mtb in humans is underscored in HIV infected 

individuals. The depletion of T cells in this group of immunocompromised individuals 

renders them extremely susceptible to mycobacterial infection (26). Mice lacking CD4+ T 

cells are unable to control bacterial growth and quickly succumb to death (26). Naïve T 

cells are activated by the presentation of antigens by DCs infected with Mtb that migrate 

to the draining lymph node. Once activated, CD4+ T cells traffic to the sites of infection 

where they activate macrophages by releasing IFN-γ and other cytokines. Specifically, 

immunity against Mtb is predominantly a Th1-mediated response driven by IFN-γ as 

mice that are unable to produce this cytokine or lack its receptors fail to inhibit bacterial 
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growth and the infection quickly becomes lethal (27). IL-12, which is released by 

macrophages and DCs, is essential in its contribution to the differentiation of naïve T 

cells into Th1 cells. Mtb-infected mice incapable of producing IL-12 cannot defend 

against the pathogen (28). Additionally, for humans that have mutations in the genes for 

IFN-γ receptor, IL12p40 subunit or IL-12 receptor β1 chain, TB is a severe systemic 

disease (29).  

 The arrival of CD4+ T cells to the site of infection marks the event when logarithmic 

bacterial expansion is inhibited as the antimicrobial mechanisms of macrophages are 

activated. The production of nitric oxide by inducible nitric oxide synthase (iNOS) and 

the production of reactive oxygen by nicotinamide adenine dinucleotide phosphate 

(NADPH) are the two primary defenses against the pathogen. The importance of reactive 

nitrogen intermediates (RNI) against the pathogen is demonstrated by the highly 

susceptible phenotype of NOS2 deficient mice challenged with Mtb (30). IFN-γ is 

absolutely necessary to fully activate macrophages to produce iNOS. Mice that are 

unable to produce reactive oxygen species (ROS) are only slightly susceptible to Mtb or 

equivalent in susceptibility to WT mice, demonstrating the importance of nitric oxide 

over reactive oxygen in killing mycobacteria (26).  

 The relative contribution of CD8+ T is still unclear and perhaps more likely to be 

significant in humans than in mice. CD8+ T cell have the potential to activate 

macrophages through cytokine production and kill infected cells through cytotoxic 

mechanisms, but these observations have only been made from in vitro studies, thus their 

relevance in TB disease is unclear (31). A study with nonhuman primates revealed that 
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CD8+ T cells contributed to protecting the host against TB in vaccinated rhesus 

macaques. Depletion of CD8+ T cells resulted in significantly reduced protection of BCG 

vaccine-induced immunity against Mtb and depletion of CD8+ T cells from previously 

cured rhesus macaques with antibiotic therapy reduced anti-Mtb immunity upon re-

infection (32). B cells have also been studied in BCG-vaccinated animals. A study 

demonstrated that B cells regulate neutrophils via IL-17 during both Mtb infection and 

BCG immunization and that efficacious protection with BCG vaccination required B 

cells. B cell deficient mice showed increased inflammation and neutrophil infiltration in 

the lungs of infected mice and vaccinated mice showed reduced Th1 response (33). 

Another study showed that mice with defective B cells that were incapable of secreting 

immunoglobulin were more susceptible to TB than WT mice or mice completely depleted 

of B cells (34). 

1.3.3 M. tuberculosis-Induced Cytokines 

 Recognition of mycobacterial components by mononuclear phagocytes (MPs), 

composed of mostly macrophages and dendritic cells (and later monocytes), triggers an 

inflammatory response that activates them and initiates the production and secretion of 

cytokines. This propagates further cytokine production and initiation of the adaptive 

immune response. There are numerous cytokines, proinflammatory and anti-

inflammatory, secreted during Mtb infection that shapes the outcome of infection. 

Although the proinflammatory response is to protect the host, excessive amount of 

proinflammatory cytokines can lead to tissue damage, whereas an overpowering anti-

inflammatory response can favor the pathogen. A fine balance must be maintained in 
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order to provide continued protection against the pathogen. The following is a table of 

only the major cytokines involved during Mtb infection. 

 

Table 1.1. Major cytokines during Mtb infection (5, 10, 35, 36).  

Cytokine Main Producer Effect
TNF-α Activated MPs, Th1 cells Key cytokine in host defense, induces production of 

cytokines & chemokines, granuloma formation & 
maintenance

IFN-γ Th1 cells, CD8+ T cells, 
MPs, γδ T cells, NKT cells, 
NK cells 

Key cytokine in host defense, promotes antigen 
presentation, activates macrophages, recruits CD4+ 
T cells

IL-12 Activated MPs With IL-18 induces differentiation of T cells into Th1 
cells that produce IFN-γ, DC maturation & migration 
to lymph nodes

IL-18 Activated MPs With IL-12 induces production of IFN-γ and other 
cytokines, chemokines and transcription factors

IL-1β Activated MPs, Th1 cells Independent of TNF-α/IFN-γ/iNOS/IL-12 protection 
of host, triggers PGE2 synthesis & negatively 
regulates type I IFNs

IL-6 Activated MPs Varying effects dependent on bacterial burden and 
stage of infection, shown to inhibit production of TNF-
α and IL-1β in M. avium  infection model

IL-23 Activated MPs In concert with IL-12 promotes activation of CD4+ T 
cells

IL-8 (aka 
CXCL8)

Activated MPs Chemokine that recruits neutrophils and T cells to site 
of infection

IL-4 Th2 cells Suppresses IFN-γ production in macrophages, with 
IL-13 downregulates TLR2 & TNF-α

IL-10 Activated MPs, T cells Downregulates IL-12 and TNF-α and blocks 
phagosome maturation in macrophages, inhibits 
antigen presentation in MPs, reduces IFN-γ and 
inhibits T cell responses, blocks trafficking of DC to 
lymph node and Th1 cells to lungs

TGF-β Activated MPs, T cells Inhibits ROS and RNI in macrophages, suppresses 
proliferation of T cells

Type I IFNs Activated macrophages, 
virus-infected epithelial cells 
& plasmacytoid DCs

Inhibits macrophage functions, suppresses IL-1, IL-
12 and TNF-α, induces IL-10, blocks macrophage 
activation by Th1 cells
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1.3.4 Autophagy 

 Autophagy is a form of cellular house cleaning where unwanted cytoplasmic 

components of the cell are degraded. Intracellular stress such as starvation or infection 

can trigger autophagy which is regulated by autophagy-related (Atg) proteins. The 

process is initiated by sequestering the targeted cellular component and forming a double 

membrane around the target known as an autophagosome. During the maturation process, 

the autophagosome fuses with the lysosome degrading the internal contents via the 

caustic lysosomal hydrolases (37). Autophagy directly kills mycobacteria and plays a key 

role in both innate and adaptive immunity against Mtb. There are several factors that 

modulate autophagy in context of mycobacterial infection, cytokines like IFN-γ and 

TNF-α, certain drugs, vitamin D and signals downstream of TLR ligation. Other 

functions of autophagy in regards to Mtb infection are suppressing proinflammatory 

cytokines, such as IL-1β and IL-18, and antigen presentation (38). 

 Although Mtb has evolved to evade host immune responses, such as blocking the 

phagosome maturation process and inhibiting its fusion with the lysosome, the cell 

counters this evasion with autophagy which delivers the pathogen directly to the 

lysosome. Therefore, autophagy reduces mycobacterial viability. Guiterrez et al. (39) 

showed that when autophagy was induced in BCG-infected macrophages, the 

mycobacterial phagosome became acidified and possessed markers of matured 

phagosome with co-localization of late endosome and lysosomal markers such as 

cathepsin D, LAMP-1 and vacuolar H+-ATPase. These phagosomes also displayed 

markers for autophagy, light chain 3 (LC3). This study also revealed that autophagy 
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could be induced with IFN-γ and virulent H37Rv was susceptible to killing by autophagy 

(39). In both mice and humans, immunity-related guanosine triphosphatases (IRGs) were 

shown to induce autophagy (40). In mice, IFN-γ induced autophagy required Irgm1, 

although this was not the case for human Irgm1 ortholog, IRGM. Nonetheless, in U937 

human macrophage cells, inducing autophagy reduced mycobacterial viability (40). 

Another study showed that when TLR2 was stimulated by mycobacterial lipoprotein 

LpqH, autophagy was induced via vitamin D receptor signaling in human primary 

monocytes (41). Others TLRs, including TLR4, also induced autophagy in murine 

macrophages recruiting the adaptor protein MyD88 or Trif which interacted with Beclin 

1, a key factor in autophagosome formation (42). Watson et al. (43) showed that within 4 

hours p.i., approximately 30% of intracellular Mtb colocalized with LC3 in infected 

BMDM and autophagy was ESX-1 dependent. Autophagy was induced by cytosolic 

sensing of Mtb DNA and targeted mycobacteria were associated with host ubiquitin. In 

vivo results revealed the importance of autophagy to host defense. Atg5─ mice were 

highly susceptible to Mtb infection surviving only about four weeks with excessive 

pulmonary damage, 1000-fold increase in lung bacillary burden and significant increase 

in proinflammatory cytokines TNF-α, IL-1α, IL-1β and IL-6 without any changes in IFN-

γ when compared to Atg5+ mice (43). IL-4 and IL-13, two Th2 cytokines, inhibit 

autophagy in both murine and human monocytes and macrophages. IL-4 and IL-13 also 

prevented autophagy-dependent killing of intracellular Mtb as well as phagosome 

maturation (44). The importance of autophagy was revealed when Kumar and colleagues 

(45) performed a genome-wide analysis to screen for host factors that regulated Mtb in 
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THP-1 cells infected with virulent Mtb and found that autophagy was a major pathway in 

controlling infection.    

 As a successful pathogen, Mtb has developed strategies to resist autophagy. Virulent 

H37Rv and attenuated strains, H37Ra and BCG, were used to infect human primary DCs. 

Only H37Rv was able to impede autophagy by preventing the autophagosome-lysosome 

fusion. Complementation strains that restored ESX-1/ESAT-6 to the attenuated strains 

reinstated autophagy inhibition (46). The Mtb protein, enhanced intracellular survival 

(Eis), was also shown to inhibit autophagy (47). This protein promotes the intracellular 

survival of Mycobacterium smegmatis, a nonpathogenic bacterium. When BMDM were 

infected with the eis deletion mutant, it resulted in an upregulation of proinflammatory 

cytokines, TNF-α and IL-6, and ROS generation along with an increase in autophagic 

vacuoles and autophagosomes suggesting that Eis modulates autophagy in the host. Mice 

infected with eis deletion mutant mirrored the results from the in vitro experiment (47). 

Furthermore, the mycobacterial cell wall component ManLAM, a key virulence factor of 

Mtb, was shown to not only contribute in blocking phagosomal maturation, but also 

prevented accumulation of autophagosomes in murine macrophages (48). In a proteomics 

approach, purified ManLAM coated latex beads were fed to macrophages and the 

phagosomal membrane proteins were quantified. Compared to M. smegmatis LAM or E. 

coli LPS, there was 30% less LC3 in ManLAM containing phagosomes indicating that 

virulent Mtb inhibits autophagy (48). 
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1.4 Immune Evasion of M. tuberculosis 

 The success of Mtb as a pathogen is due to its ability to evade the host immune 

response. The bacilli have acquired numerous methods to manipulate the host cell from 

both the innate and adaptive responses to the pathogen. One evasion strategy of Mtb is 

the ability to manipulate the phagosome. For most microbes that enter the airspace their 

encounter with the macrophage means their inevitable demise due to its potent 

antimicrobial mechanisms. Upon phagocytosis of the pathogen, it is encased in a 

phagosome, a membrane bound vesicle headed towards destruction by way of fusing with 

the lysosome. Through the maturation process, the phagosome becomes acidified 

enabling the optimal condition for the destructive enzymes of the lysosome to function 

properly and ultimately to destroy the internalized invader (49). For Mtb, however, the 

scenario is quite different. Mtb does not just survive within the hostile confines of the 

phagosome but alters it and preserves an environment capable of bacterial replication. 

Upon engulfing the bacilli, the phagosome maturation process is halted resembling an 

early endosome. The phagosomal membrane is associated with Rab5 but not Rab7 which 

suppresses the recruitment of early endosomal autoantigen-1 (EEA1) (50). This protein is 

required for fusing the phagosome to the lysosome enabling the proper delivery of 

lysosomal hydrolases. A mycobacterial component of the cell wall, ManLAM, has been 

identified with interfering with the phagosomal maturation process and preventing the 

fusion of the two organelles by blocking vesicular trafficking between the phagosome 

and trans-Golgi network and thus preventing the necessary molecules for the phagosome 

to mature (50, 51). Mtb protein kinase G has also been implicated to disrupt the transfer 
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of the Mtb-residing phagosome to the lysosome (52). Mtb arrests the acidification of the 

vacuole by preventing the acquisition of vesicular proton-adenosine triphosphatases 

(ATPases) resulting in approximately 6.4 pH (53, 54). At this pH level, most lysosomal 

hydrolases are inert, limiting their enzymatic capacity to destroy. Mtb also prevents the 

phagosome from recruiting iNOS, the machinery necessary to generate nitric oxide that 

kills Mtb (55). 

 Activation of macrophages by IFN-γ, TNF-α and IL-1β overrides the mycobacterial 

hold on the arresting phagosome and iNOS is activated. The generation of RNI is toxic 

causing damage to mycobacterial DNA, proteins and lipids (31). While bacterial 

replication is controlled, Mtb is not eliminated due to its countermeasures for RNI 

toxicity. The bacterial genome contains several mycobacterial genes that encode for 

proteins to handle nitrosative stress. AhpC, Lpd, SucB and AhpD work together to form 

an antioxidant complex (56). The msrA gene encodes for a reductase that also catalyzes 

the oxidizing agent (57). And nox1 and noxR3 have been implicated in protection against 

nitrosative and oxidative stress (58, 59). Mtb also encodes for superoxide dismutase 

proteins (Sod) and catalase (KatG) to protect against ROS (60, 61). 

 Another immune evading strategy of Mtb is in the interference of antigen 

presentation. Several studies have shown that MHC class II expression on Mtb-infected 

macrophages was reduced thus diminishing the ability for CD4+ T cells to recognize 

them. The reduced expression was attributed to defective transportation and processing of 

MHC class II molecules in the endosomal pathway (62) or downregulation of the class II 

transactivator, a protein that controls the expression of MHC class II genes (63). Another 
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study found that Mtb decreased the level of MHC-II mRNAs (64). A follow-up study 

revealed that a 19 kDa lipoprotein of Mtb inhibited MHC class II processing and 

presentation along with blocking the effects of IFN-γ induced upregulation of the 

molecule in a TLR2-dependent manner (65). Additionally, when Mtb-residing 

phagosomes were isolated from IFN-γ activated macrophages, there was a reduction in 

MHC class II antigen processing from phagosomes with live bacteria versus those with 

heat-killed bacteria (66). 

 The pathogen's ability to manipulate the fate of the host cell indicates the importance 

of cell death in its strategy to survive. Many studies have demonstrated that the cellular 

fate of the infected macrophage is dependent on whether the mycobacterial strain is 

virulent or attenuated. Mtb has developed strategies to alter the host cell death pathway to 

inhibit apoptosis and induce necrosis. The subject of Mtb and host cell death is featured 

in Section 1.6.  

1.5 Review of Cell Death 

 Cell death in the context of an infection is the host response to eradicate infected cells 

harboring the invading pathogen. However, both viral and bacterial pathogens have 

evolved to counter this measure by manipulating the host cell death pathway to evade 

eradication and promote survival. Infected cells engage in one of these principal forms of 

programmed cell death: apoptosis, necrosis, and pyroptosis. Each mode of cell death 

differs in morphology and the mechanism in which the cell determines its demise. This is 

a brief overview of the major modes of cell death involved in microbial infections. 
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1.5.1 Apoptosis 

 Apoptotic cell death usually protects the host from invading pathogens. There are 

three major pathways for apoptosis to occur: extrinsic, intrinsic and granzyme B. The key 

components involved in these pathways are initiator and effector caspases (cysteine-

dependent proteases). Initiator caspases begin the apoptotic cell death process by 

activating the downstream effector caspases by cleaving them into their active form. 

Effector caspases cause the cellular changes that promote the death of the cell, the 

execution phase.  

 The extrinsic apoptotic pathway is triggered by death receptors, members of the TNF 

receptor superfamily with a cytoplasmic death domain that is crucial for signaling. The 

two well characterized receptors, TNFR1 and Fas, upon binding to their respective 

cognate ligand, TNF-α and Fas ligand (FasL), oligomerize and initiate a cascade of 

signaling events through the death domain. The binding of FasL to Fas recruits the 

adaptor protein FADD via its death domain, whereas the TNF-α/TNFR1 pathway binds 

the adaptor protein TRADD with the recruitment of FADD. The association of FADD 

with procaspase-8 initiates the formation of a death-inducing signaling complex which 

causes the self cleavage of procaspase-8 into its activated form (67). Caspase-8 goes on 

to activate downstream effector caspases (caspases-3, -6, -7) to promote the execution 

phase of apoptosis (68).  

 Intrinsic apoptosis is initiated when the cell is under some form of intracellular stress 

such as ultraviolet irradiation, DNA damage, lack of nutrients or oxidative stress. Any 

one of these stressors can damage the outer membrane of the mitochondria. If 
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mitochondrial outer membrane permeability (MOMP) develops, cytochrome c, which 

resides in the intermembrane space, is released into the cytosol. Once in the cytosol, 

cytochrome c associates with an adaptor protein, apoptosis protease activating factor-1, 

causing it to oligomerize. This initiates the formation of a massive protein complex called 

the apoptosome which recruits and activates caspase-9, an initiator caspase (69). The 

activation of caspase-9 causes the downstream effector caspases to be cleaved and 

activated, inducing apoptosis. The triggering of the intrinsic pathway is hinged on the 

release of cytochrome c which is regulated by the interaction of proteins in the Bcl-2 

family. The Bcl-2 family of proteins is generally categorized into two groups: those that 

promote apoptosis and those that inhibit it (70). Pro-apoptotic proteins such as Bax and 

Bak can directly bind to the outer membrane of the mitochondria, forming pores to 

release cytochrome c. Anti-apoptotic proteins like Bcl-2, Bcl-XL, Bcl-w and Mcl-1 

promote cell survival. Bid is another pro-apoptotic Bcl-2 family member that coordinates 

with Bax and Bak to promote the release of cytochrome c (71). Bid is activated when it is 

cleaved which can be performed by number of proteases including caspase-8 and -9, 

allowing cross-talk between intrinsic and extrinsic pathways of apoptosis. 

 The third pathway for apoptosis involves cytotoxic T lymphocytes (CTLs) and NK 

cells. Apoptosis is induced by the release of perforin, a transmembrane pore-forming 

molecule, by CTLs or NK cells that creates pores on the targeted cell's surface. Following 

pore formation, cytoplasmic granules are released including serine protease granzyme B. 

Once inside the target cell, granzyme B can cleave procaspase-10 or procaspase-8 to 
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activate the mitochondrial pathway or directly cleave procaspase-3 to induce the 

execution phase (67, 68).  

 In the presence of an infection, apoptosis is designed to silently kill the pathogen 

without sounding the alarm of an inflammatory response. The morphological features of 

apoptosis include shrinking of the cell, condensation of the nucleus, DNA fragmentation 

and blebbing of the cell membrane resulting in the formation of apoptotic vesicles (72). 

These membrane-bound vesicles encase the cytoplasmic content of the cell, including the 

phagosomal residing pathogen, and are engulfed by neighboring phagocytes through the 

process of efferocytosis (73). Once phagocytosed, the efferocytic phagosome or 

efferosome, fuse with the lysosome allowing for the degradation of the apoptotic body 

including the pathogen (73, 74).  

1.5.2 Necrosis 

 Necrotic cell death is strikingly different from apoptotic cell death as many of the 

morphological features are opposite to that of apoptosis. Cells dying of necrosis undergo 

swelling of organelles and the rupturing of the plasma membrane which releases 

cytoplasmic content into the extracellular space (72). This cellular event is pro-

inflammatory as necrotic debris, such as damage-associated molecular pattern molecules 

(DAMPs), triggers inflammation and causes tissue damage. Unlike apoptosis with a well 

defined signaling pathway, necrotic cell death is caspase independent and can be 

triggered by a variety of stimuli leading to different signaling pathways to initiate 

necrosis. Cells that undergo necrosis commonly present some of these cellular events: 

mitochondrial membrane injury, production of ROS, ATP depletion, disruption of Ca2+ 
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homeostasis, activation of calpains and cathepsins and lysosomal membrane 

permeabilization (LMP) and the loss of plasma membrane integrity (75, 76).  

 There are several types of regulated necrosis that have been observed in infected 

cells. Necroptosis is probably the most mechanistically understood of the necrotic cell 

death pathways. This form of cell death is dependent on the receptor-interacting protein 

kinase 1 (RIP1) and RIP3 and can be induced by several factors such as death ligands, 

TLR ligands or microbial infections (72). In the TNF signaling pathway, upon inhibition 

of caspase-8, a complex called a necrosome which  includes RIP1, RIP3, caspase-8 and 

FADD is assembled resulting in LMP, ROS production and the activation of calpains and 

calcium-dependent cysteine proteases (72, 76). Another form of regulated necrosis is 

ROS induced NETosis and ETosis. First observed from dying infected neutrophils, this 

novel mode of cell death induces the release of neutrophil extracellular traps (NETs). A 

combination of chromatin, histones, neutrophil elastase and other antimicrobial 

molecules trap and kill invading pathogens (77). Other immune cells such as mast cells, 

eosinophils, and macrophages have been observed to undergo this form of cell death as 

well. Depending on the conditions in which NETS are released they can suppress 

inflammation or enhance it (77).  

1.5.3 Pyroptosis 

 Having features of apoptosis and necrosis, pyroptosis was first observed from 

macrophages infected with Shigella flexneri (72). Pyroptosis is inherently dependent on 

the activation of caspase-1 which is activated by a large protein complex in the cytosol 

known as the inflammasome. There are four types of inflammasomes and the particular 
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inflammasome that is assembled is based on the type of microbial or viral detection from 

the cytosol by NOD-like receptors. Once activated, caspase-1 processes proIL-1β and 

proIL-18, two proinflammatory cytokines, as well as the induction of pyroptosis. In 

certain bacterial infections, caspase-11 (also known as caspase-4) has been implicated as 

a requirement for caspase-1 activation (78). This mode of cell death is proinflammatory. 

During pyroptosis, the formation of pores in the plasma membrane causes the cell to 

swell leading to osmotic lysis and eventually the release of cellular contents into the 

extracellular space. This event is very similar to necrosis, however, in pyroptosis, 

apoptotic features of nuclear condensation and DNA fragmentation are also present (72). 

Pyronecrosis, another proinflammatory cell death, is similar to pyroptosis and is mediated 

by inflammasomes without the dependence on caspase-1 or caspase-11 (76). 

1.6 M. tuberculosis-Induced Cell Death 

 Cell death of the host is an intimate part of the mycobacterial life cycle. To initiate 

infection, Mtb must be able to alter the intracellular environment conducive for 

replication. This requires the pathogen to evade host defenses and keep the cell viable 

long enough until its utility has been expended. For Mtb to complete its life cycle, 

infection must be first established in the lungs of one host in order to transmit to another 

host. Since this is carried out via infectious droplet nuclei, Mtb must shift from an 

intracellular to an extracellular environment. This transition requires the pathogen to exit 

the host cell. To evade host defenses and exit the cell, Mtb must have the capacity to 

modulate the cell death pathways of the host.  
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1.6.1 Mycobacterial Genes and Host Cell Death 

 The discovery of mycobacterial genes that are directly involved in host cell death 

pathways suggests the importance of the fate of infected cells to the pathogenesis of Mtb. 

The mycobacterial gene, nuoG, encodes a subunit of type I NADH dehydrogenase 

complex that upon its deletion, the mutant Mtb strain is proapoptotic. THP-1 cells and 

BMDM challenged with nuoG deletion mutant showed increased levels of apoptosis over 

WT Mtb. Mice infected with the nuoG deletion mutant showed benefits to the host as 

they survived much longer, had reduced bacterial lung burden and presented with 

decreased lung damage compared to WT Mtb (79). In a gain-of-function experiment, 

when nuoG was expressed in nonpathogenic strain of mycobacteria, Mycobacterium 

kansasii, and used to infect immunodeficient SCID mice, the mutant strain exhibited 

increased virulence by shortening host survival time in concert with increased lung 

pathology (79). Another study showed that primary murine and human alveolar 

macrophages infected with the nuoG deletion mutant had an increase in ROS level in the 

phagosome and an increase in TNF-α secretion over WT Mtb. This revealed that virulent 

Mtb neutralizes ROS in the phagosome in order to inhibit TNF-α mediated apoptosis in a 

nuoG-dependent manner (80). Blomgran et al. (81) showed that virulent Mtb can 

influence adaptive immune response by the inhibition of neutrophil apoptosis in vivo. 

When compared to WT Mtb, mice infected with nuoG deletion mutant produced more 

apoptotic cells, had less bacilli per infected cell, quicker acquisition of bacteria by DCs 

and earlier trafficking to lymph nodes which led to faster activation of naïve T cells (81). 



25 
 

 The secA2 gene encodes for a component of the mycobacterial SecA2 protein 

secretion system. The deletion of secA2 gene resulted in a mutant strain that was 

proapoptotic. Infection of THP-1 cells and BMDM with the deletion mutant showed 

increased apoptotic cells when compared to WT. Additionally, mice infected with the 

SecA2 deletion mutant significantly enhanced the priming of CD8+ T cells, linking 

apoptosis to adaptive immune response (82). The proapoptotic phenotype was due to the 

disruption of the SecA2 secretion system which prevented the secretion of SodA, an iron 

co-factored enzyme, superoxide dismutase, that allows for the conversion of superoxide 

anion to hydrogen peroxide (82). A SodA knockdown mutant showed attenuation in 

infected mice with less bacterial burden in the lungs and spleens compared to virulent 

control Mtb. In a long term infection study, when compared to the attenuated strain BCG, 

mice infected with SodA knockdown mutant showed to be more attenuated with less 

alveolar infiltration and less bacteria in the lungs and spleen (83).  

 A recent study revealed another proapoptotic Mtb mutant strain. The mycobacterial 

protein nucleoside diphosphate kinase (Ndk) interferes with host cell death pathways. 

Mutant strains that disrupted Ndk expression were used to infect SCID mice which 

resulted in reduced virulence with extended survival time and a decrease in bacterial 

loads in the lungs when compared to WT Mtb. Ndk knockdown mutants presented similar 

phenotype to nuoG deletion mutants, infected macrophages had increased ROS 

production in the phagosome along with higher levels of apoptotic cell death when 

compared to WT. Ndk was shown to disrupt NADPH oxidase assembly by interfering 

with the recruitment of p67phox subunit necessary for ROS production (84). 



26 
 

 Another mycobacteria protein implicated in host cell death is early secreted antigenic 

target-6 (ESAT-6). ESAT-6 is a secreted protein that is dependent on the mycobacterial 

secretion system ESX-1. The gene is located in region of difference 1 (RD1) of the 

mycobacterial genome and its absence in BCG is considered the primary mechanism that 

contributes to its attenuated phenotype (85). ESAT-6 has been implicated to have 

cytolytic capacity as incubation of this purified protein with artificial lipid bi-layer 

resulted in the destruction of the membrane (85). Welin et al. (86) examined the effects of 

ESAT-6 in human monocyte-derived macrophages. When macrophages were infected 

with H37Rv at MOI 10 and cultured for two days, the infected cells died of necrosis. 

There was evidence of mitochondrial injury with the loss of transmembrane potential 

along with plasma membrane permeabilization with the release of IL-1β and a known 

DAMP, high mobility group box 1 (HMGB1). The cell death was also independent of 

caspase-1 and cathepsin B. These features of necrotic cell death were also dependent on 

ESAT-6. Macrophages infected with attenuated H37Ra or ESAT-6 or RD1 deletion 

mutants or H37Rv at a low MOI of 1 resulted in some of these features, but at 

significantly reduced levels (86). Simeone and colleagues (87) investigated the 

translocation of mycobacteria from the phagosome to the cytosol using fluorescence 

resonance energy transfer. Infected THP-1 macrophages at MOI of 1 were cultured for up 

to 10 days. Macrophages infected with BCG, RD1 deletion mutant or mutants that 

secreted truncated ESAT-6 showed no phagosomal rupture, even at 10 days p.i. When 

macrophages were infected with Mtb or M. marinum, phagosomal rupture occurred 

followed by necrotic cell death. At day 7 p.i. when differences between strains were most 
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evident, only 2-4% of cells infected with Mtb or RD1 complementation strains were 

viable (87). 

 Suppression of apoptosis supports an intracellular lifestyle and allows Mtb to 

replicate inside the macrophage. The bacillus encodes 11 serine/threonine protein kinases 

(STPK) which are signaling molecules that facilitate as environmental sensors. PknE, one 

of the STPKs, has been identified to suppress apoptosis. Infection of human macrophages 

with the PknE deletion mutant showed reduced intracellular growth with increased 

apoptosis. Microarray data from infected macrophages with the deletion mutant revealed 

increased expression of Bax, Bid and other components of intrinsic apoptotic pathway 

along with a decrease in the Mcl-1 expression. PknE was also shown to suppress 

apoptosis to support intracellular survival for Mtb in the presence of NO stress (88). 

MPT64 is a secreted protein of Mtb that suppresses apoptosis of the infected cell and 

preserves an intracellular environment for bacterial replication by upregulating the 

expression of the anti-apoptotic protein Bcl-2. Treating RAW264.7 macrophages with 

purified protein derivatives (PPD) from BCG induces apoptosis; however the addition of 

MPT64 inhibited apoptotic cell death (89). 

1.6.2 Apoptosis versus Necrosis in TB 

 There are primarily two types of cell death that Mtb initiates in the infected 

macrophage: apoptosis or necrosis. In the context of Mtb infection, apoptotic cell death is 

antimicrobial in nature and serves to protect the host. Control in the spread of infection is 

accomplished by killing the bacteria in apoptotic vesicles through efferocytosis, thus 

protecting naïve phagocytes from becoming infected and reducing bacterial viability (73).  
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Additionally, the replication niche necessary for bacterial expansion is eliminated. Since 

apoptotic cells do not promote inflammation there is minimal damage to the tissue. And 

finally, apoptosis of infected macrophages allows for dendritic cells to acquire 

mycobacterial antigens for cross-priming. Apoptosis is a death mode strongly induced by 

attenuated strains of Mtb (90, 91). Conversely, necrosis serves to benefit the pathogen. 

Necrotic cell death liberates the once intracellular Mtb to the extracellular space due to 

the disintegration of the cellular and plasma membranes. This fosters dissemination of the 

pathogen as necrosis is proinflammatory, recruiting naïve cells to be available for the 

freed bacilli to invade. Macrophages infected with virulent strains of Mtb actively 

suppress apoptosis (79, 82, 92) and induce necrosis (91, 93, 94).  

 Apoptosis, whether induced by FasL or TNF-α, reduces the viability of intracellular 

Mtb. Virulent Mtb has strategies to inhibit host directed apoptosis of infected cells. One 

study showed that primary human macrophages infected with Mtb had reduced surface 

expression of Fas when compared to uninfected cells indicating that Mtb has the ability to 

modulate this receptor to reduce apoptotic killing mediated by FasL (95). In a study with 

human AMs, microarrays were used to compare the expression profile between 

macrophages infected with attenuated H37Ra and virulent H37Rv. The data revealed that 

in H37Rv-infected macrophages, several proapoptotic genes were downregulated and 

there was an increase in the expression of antiapoptotic gene Bcl-w compared to 

uninfected and H37Ra-infected macrophages. Infection with H37Ra showed a profile that 

favored apoptosis. This study revealed that virulent Mtb interferes with signals 

downstream of TNFR1signaling to inhibit TNF-α dependent apoptosis (96). In another 
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study that used human AMs, virulent Mtb blocked TNF-α dependent apoptosis by 

inactivating TNF-α. While both H37Ra- and H37Rv-infected macrophages produced 

comparable levels TNF-α, only virulent H37Rv was able to induce the production of IL-

10 which led to the release of soluble TNFR2, thus binding to TNF-α and neutralizing the 

effects of the cytokine and preventing TNF-α mediated apoptosis (97). 

 In several studies that compared the effects of two mycobacterial strains, one 

attenuated and one virulent, H37Ra and H37Rv, respectively, the results consistently 

revealed that attenuated H37Ra induced apoptosis where virulent H37Rv promoted 

necrosis. Gan et al. showed the outcome of cell death from macrophages infected with 

H37Ra and H37Rv. In H37Ra-infected macrophages, the development of complete and 

stable apoptotic envelopes were formed by the translocation and exposure of 

phosphatidyl serine (PS) followed by annexin-1 which allowed for the crosslinking of 

annexin-1 by tissue transglutaminase thus stabilizing the membrane. In macrophages 

infected with H37Rv, the formation of apoptotic envelopes was blocked by an 

accumulation of proteolytically cleaved annexin-1. This event promoted plasma 

membrane disruption which led to necrosis. In both in vitro and in vivo experiments the 

virulent strain caused more necrosis where the attenuated strain caused apoptosis (90). 

Park et al. examined 4 clinical isolates of Mtb ranging in virulence. BMDM were 

challenged at low MOI of 5 and cultured for up to six days to allow for bacterial 

expansion. More virulent strains had faster growth rates with higher CFU and more 

bacilli per macrophage. More virulent strains also caused a higher percent of cell death 

and upon inspection with electron microscopy, infected cells died from necrosis. (93) 
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 Damage to the mitochondria can lead to apoptosis or necrosis depending on the type 

of injury. Chen et al. showed that human monocyte-derived macrophages infected with 

attenuated H37Ra or H37Rv induced MOMP which led to the release of cytochrome c, 

two critical events upstream of intrinsic apoptosis. However, when comparing the 

apoptotic markers, PS and annexin-1, H37Ra-infected macrophages had significantly 

more cells with these markers than H37Rv-infected macrophages. Macrophages infected 

with H37Rv induced irreversible mitochondrial permeability transition (MPT) permitting 

the dissipation of the mitochondrial transmembrane potential which led to necrosis (91). 

Electron microscopic examination of infected cells showed H37Ra-infected macrophages 

had intact plasma membrane and condensed nuclei, two morphological features of 

apoptosis; whereas H37Rv-infected cells had complete destruction of the plasma 

membrane, indicative of necrotic cell death (91). 

 Studies have shown that Mtb can manipulate the host eicosanoid pathway and direct 

whether infected macrophages die a necrotic or apoptotic cell death by interfering with 

the repair mechanism of the plasma membrane or mitochondrial membrane (94, 98). 

Eicosanoids, products of arachidonic acid, have been associated with cell death and have 

roles in both anti- and proinflammatory responses. By tipping the balance one way or the 

other, two eicosanoids, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4), determine the 

fate of the cell. Attenuated strains of Mtb, like H37Ra and BCG, activate the synthesis of 

PGE2 and are weak inducers of LXA4 production. In stark contrast, virulent strains of 

Mtb, like H37Rv or Erdman, are weak inducers of PGE2 and strong at inducing the 

production of LXA4 (99). Cyclooxygenase 2 (COX2) is an enzyme involved in the 
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biosynthesis of PGE2. LXA4 inhibits COX2 activity by blocking COX2 mRNA buildup, 

thus shutting down PGE2 synthesis. In contrast, PGE2 inhibits the production of LXA4. 

Consequently, when there are high levels of LXA4 there are inherently low levels of 

PGE2 and vice versa (99). One of the protective effects of PGE2, through its receptor 

EP2, is its suppression of mitochondrial inner membrane perturbation. Without PGE2, 

MPT induced by H37Rv infection leads to necrosis (98). PGE2 also protects the plasma 

membrane. Infection from Mtb produces small lesions in the plasma membrane of 

infected macrophages. Membrane lesions are repaired through the utilization, in part, by 

lysosomal trafficking and exocytosis. PGE2 promotes lysosomal-dependent repair of 

plasma membrane which prevents necrosis (94). Thus, virulent Mtb facilitates low levels 

of PGE2 by inducing LXA4 which compromises the integrity of both the mitochondrial 

membrane and the plasma membrane leading to necrosis. 

 In vivo studies paralleled the protective versus detrimental effect in the balance 

between PGE2 and LXA4. In mice that are unable to produce LXA4, 5-lipoxygenase 

knockout (5 -lo-/-) mice, aerosol infection with virulent Mtb extended their survival time 

over WT mice and had less bacterial burden, less lung inflammation and higher 

expression levels of IL-12, IFN-γ and NOS2 mRNA (100). Furthermore, mice deficient 

in producing PGE, PGE synthase knockout (PGES-/-) mice, died earlier than WT mice 

with significant increase in bacterial lung burden. WT mice infected with H37Ra resulted 

in more PGE2 whereas virulent Erdman-infected mice had higher levels of LXA4 (98). 

The role of lipoxin in Mtb infection was further supported by work in the zebrafish and 

M. marinum infection model as well as humans. Mutation in the locus that encodes 
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leukotriene A(4) hydrolases (lta4h) of the zebrafish led to an increase in lipoxin 

synthesis. These mutant zebrafish were hyper-susceptible to mycobacterial infection with 

increased bacterial burden and decreased TNF-α production. For humans, polymorphism 

in the LTA4H gene correlated to higher susceptibility to TB (101). 

 In a recent study investigating eicosanoids, Mayer-Barber et al. showed that during 

Mtb infection IL-1, interferon and the eicosanoid pathways are linked. Type I IFN 

promotes disease severity where PGE2 and IL-1 counter its detrimental effects. Clinical 

data from two study cohorts revealed that there was a correlation between severity of 

disease, IL-1, type I IFN and eicosanoids in TB patients; disproportionately high type I 

IFN expression with or without decreased IL-1 responses in conjunction with decreased 

PGE2/LXA4 ratios were seen in patients with severe TB (102). Both in vitro and in vivo 

experiments revealed IL-1α or IL-1β can induce the production of PGE2 and control 

bacterial replication during Mtb infection. Additionally, IL-1 and PGE2 were found to 

inhibit type I IFN. In Il1r-/- mice infected with Mtb, there were elevated levels of IFN-β. 

The addition of exogenous IL-1α or IL-1β to Mtb-infected macrophages blocked IFN-β 

production and the addition of exogenous PGE2 to infected macrophages curbed type I 

IFN production (102). Administering PGE2 with a 5-LO inhibitor reduced lung bacterial 

burden, lessened lung pathology and extended the survival time of Il1a,Il1b-/- mice 

infected with Mtb. The therapeutic benefits of PGE2 treatment of infected mice were 

directed towards disease exacerbation induced by type I IFN. Treating Ifng-/- or Tnfa-/- 

mice had zero effect on their survival indicating the treatment was exclusive to IL-1 

mediated defense (102).  
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1.6.3 High MOI Cell Death 

 When lytic viruses complete its replication cycles and reach a "burst size" in the 

hijacked cell, it induces cytolysis to exit the cell. Comparable to lytic viruses, our lab 

demonstrated that Mtb is also capable of inducing cytolysis in the macrophage when the 

intracellular bacillary load reaches a threshold value. When BMDMs were challenged 

with virulent Mtb Erdman at MOI ≥ 25, they rapidly succumbed to cytolysis, death 

ensuing as early as 3 hours p.i. (103). This type of cell death was uniquely independent of 

conventional apoptosis and necrosis because it displayed characteristics of both death 

modalities. Macrophages that undergo high MOI cell death initially exhibited nuclear 

condensation and PS translocation, characteristic behavior of cells undergoing apoptosis, 

but quickly transitioned to necrosis with massive cell-wide membrane damage along with 

the disintegration of the plasma membrane (103). This necrotic cell death was also 

independent of TNF-α and caspases but was partially dependent on lysosomal proteases. 

The attenuated BCG also exhibited cytolytic ability at MOI 25 suggesting that high MOI 

cell death is also independent of the cytolytic capacity of ESAT-6. Unlike the 

antimycobacterial outcome of apoptosis, high MOI cell death did not reduce 

mycobacterial viability (103).  

 A successive study further investigated the mechanism behind high MOI cell death 

induced by Mtb. It was determined that necrosis was initiated by LMP. The injury to the 

lysosome released hydrolases that propagated damage to the outer and inner 

mitochondrial membrane resulting in loss of membrane potential. The mitochondrial 

injury was independent of Bax and Bak and MPT was not responsible for the loss of 
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membrane potential (104). SEM images of infected BMDM displayed massive 

membrane damage with exiting bacilli. Although LMP occurred, cell death was 

independent of cathepsins B, L and D thus the traditional lysosomal cell death was ruled 

out. Additionally caspse-1 was not involved which precluded pyroptosis and 

pyronecrosis. Examination of the lipid profile from dead cells revealed a significant 

reduction in certain phospholipids suggesting the work of lysosomal lipases. Infection 

with RD1/espA deletion mutants determined LMP, mitochondrial injury or cytolysis was 

not the work of ESAT-6. The mycobacterial PhoPR two-component system regulates 

mycobacterial gene expressions upon phagocytosis and its deletion reveals attenuated 

phenotype in vivo similar to RD1 deletion mutant. Infection with phoPR deletion mutant 

yielded significantly reduced LMP, mitochondrial injury and cell death indicating that 

one or more mycobacteria genes regulated by PhoPR were contributing to high MOI cell 

death (104).  

 The high MOI macrophage infection model bypasses the natural progression of Mtb 

growth within the macrophage and allows one to directly examine the outcome of 

infected macrophages with high intracellular bacillary loads. This model also allows one 

to dissect the cytolytic ability of mycobacterial strain versus its ability to infect a cell at a 

low MOI and survive long enough to expand its growth to a lethal point. A study by Park 

et al. (93) challenged BMDM with MOI 5 with a variety of Mtb strains and cultured them 

for 6 days. The strains that grew the quickest killed the host cell when bacterial load 

reached a threshold that was cytotoxic. From their data, that threshold was approximately 

20 to 30 intracellular bacilli per macrophage, a value similar to our cytotoxic threshold 
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dose of MOI 25. Treating cells with IFN-γ protected the cells and inhibited bacterial 

replication indicating that the cytotoxicity was based on intracellular bacterial burden and 

not a trait of some virulent Mtb strains. 

 This study correlated high intracellular bacterial burden of macrophages with 

cytolytic activity of Mtb. The results from our studies and others suggest that virulent 

Mtb suppresses apoptosis and expands its growth until an intracellular threshold value, or 

a burst size, is reached upon which the replication niche becomes obsolete. Subsequently 

Mtb triggers a necrotic cell death to free itself from the confines of the intracellular 

domain. This mechanism serves as the exit strategy for the pathogen. Release into the 

extracellular space serves as the platform for new rounds of invasion into naïve 

phagocytic cells, replication and escape, propagating dissemination and spread of 

infection.  

 Although the cellular events in the mechanism of high MOI cell death were 

thoroughly investigated, that work and studies from others have focused on in vitro 

experiments. Therefore, we proposed the following burst size hypothesis as a model of 

the events that occur in vivo during Mtb infection (Fig. 1.1). The work presented in this 

dissertation investigates the relevance and the significance of necrotic cell death during 

the course of TB disease by using the murine low dose aerosol infection model for 

tuberculosis. Do the in vitro results of Mtb-infected macrophages translate to the cell fate 

of monocytic cells in the lungs? What is the pathological consequence of necrotic cell 

death to the host? The research presented in the following two chapters will answer these 

questions and enlighten this field of study to better understand the host-pathogen 
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interaction of TB in context of cell death and contribute to research toward improved 

therapies. 

 

 

 

 

  

Figure 1.1. Burst size hypothesis model. Upon inhalation of an infectious droplet, Mtb is encountered by a small 
group of resident alveolar macrophages in the lungs. The macrophage engulfs the pathogen and initiates its 
killing program. However, Mtb countermeasures the host's defense mechanism and modulates the phagosome to 
hospitable conditions, allowing for replication to occur. Starting initially from a very small number of bacilli, once 
Mtb expansion reaches a burst size, cytolysis is triggered. The lysosome is damaged, followed by severe 
mitochondrial injury along with disintegration of the nuclear and plasma membrane. The cell lyses open spilling 
the intracellular content into the extracellular space. The liberated bacilli are free to invade neighboring cells, and 
repeat the cycle of invasion, replication and escape thus propagating the spread of infection. 
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CHAPTER II: Intracellular Bacillary Burden Reflects a Burst Size for 

Mycobacterium tuberculosis In Vivo 

 

2.1 Abstract 

 We previously reported that Mycobacterium tuberculosis triggers macrophage 

necrosis in vitro at a threshold intracellular load of ~25 bacilli. This suggests a model for 

tuberculosis where bacilli invading lung macrophages at low multiplicity of infection 

proliferate to burst size and spread to naïve phagocytes for repeated cycles of replication 

and cytolysis.  The current study evaluated that model in vivo, an environment 

significantly more complex than in vitro culture.  In the lungs of mice infected with M. 

tuberculosis by aerosol we observed three distinct mononuclear leukocyte populations 

(alveolar macrophages, myeloid dendritic cells and recruited monocytes/macrophages) 

and neutrophils hosting bacilli. Four weeks after aerosol challenge, myeloid dendritic 

cells and neutrophils were the predominant hosts for M. tuberculosis while recruited 

monocytes/macrophages assumed that role by 10 weeks. Alveolar macrophages were a 

minority infected cell type at both time points. The burst size model predicts that 

individual lung phagocytes would harbor a range of bacillary loads with most containing 

few bacilli, a smaller proportion containing many bacilli, and few or none exceeding a 

burst size load. Bacterial load per cell was enumerated in lung monocytic cells and 

neutrophils at time points after aerosol challenge of wild type and interferon-γ null mice. 

The resulting data fulfilled those predictions, suggesting a median in vivo burst size in the 



39 
 

range of 20 to 40 bacilli for monocytic cells. Most heavily burdened monocytic cells 

were nonviable, with morphological features similar to those observed after high 

multiplicity challenge in vitro: nuclear condensation without fragmentation and 

disintegration of cell membranes without apoptotic vesicle formation. Neutrophils had a 

narrow range and lower peak bacillary burden than monocytic cells and some exhibited 

cell death with release of extracellular neutrophil traps. Our studies suggest that burst size 

cytolysis is a major cause of infection-induced mononuclear cell death in tuberculosis. 

2.2 Introduction 

 Natural infection with Mycobacterium tuberculosis (Mtb) occurs by inhalation, 

followed by invasion of resident alveolar macrophages that provide the major initial 

replication niche for the pathogen. Macrophages infected with Mtb in vitro may die with 

primarily apoptotic or necrotic features (105); the cell death mode most relevant to TB 

disease in vivo remains undefined. A widely held paradigm is that macrophage apoptosis 

promotes host defense in TB while necrosis favors spreading infection. We previously 

reported that the cytolytic activity of Mtb correlates with intracellular bacillary burden in 

macrophages, increasing dramatically at a threshold load of ~25 bacilli per macrophage 

(103). At high intracellular burden, Mtb triggers a primarily necrotic death dependent on 

bacterial genes regulated by the PhoPR 2-component system (104). Our in vitro studies 

and data from other groups suggest that virulent Mtb strains suppress apoptosis of host 

macrophages (79, 82, 83, 92, 96) and grow to a threshold burden (93, 103) whereupon 

necrosis is triggered as an exit mechanism analogous to the burst size of lytic viruses.  
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 In the present study, we investigated whether the necrotic death described for Mtb-

infected macrophages in vitro is relevant to the fate of monocytic cells in the lung that 

become infected during the course of TB disease in vivo. Inhalation of Mtb is followed by 

the invasion of a small number of resident alveolar macrophages. We posit that within 

each infected macrophage, bacterial replication expands an initial low multiplicity of 

infection (MOI) to a burst size value. Once this threshold is exceeded, the liberated bacilli 

spread to naïve phagocytes. Successive rounds of invasion, replication and escape will 

result in a distribution of bacillary loads across the population of infected phagocytes. 

This model predicts that at any given time point after low dose aerosol challenge, 

phagocytes harboring 1-10 bacilli will outnumber those with higher bacillary loads, and 

that host cells containing ≥ 25 bacilli will be a distinct minority of infected cells. The 

model also predicts that with the induction of adaptive immunity (~3 weeks after aerosol 

challenge), inhibition of Mtb replication will rescue many infected cells with a low 

bacillary burden from progressing to burst size. This will increase the proportion of cells 

containing 1-10 bacilli while heavily infected cells will die and be replaced at a low rate 

thereby reducing the proportion of cells containing ≥ 25 bacilli. 

  To test those predictions we enumerated acid fast bacilli (AFB) per cell in whole lung 

leukocytes and bronchoalveolar lavage (BAL) cells harvested from mice after low dose 

aerosol infection with Mtb Erdman. The distribution of AFB burden in monocytic cells 

harvested from wild type (WT) C57BL/6 mice followed the predicted pattern. Analysis 

of interferon-γ knockout (GKO) mice with TB also conformed to the predicted effects of 

unrestricted Mtb replication on the distribution of bacillary loads per cell. The 
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morphology of heavily infected monocytic cells isolated from the lungs of mice with TB 

exhibited features similar to those seen after high MOI challenge in vitro: nuclear 

condensation without fragmentation and loss of cell membrane integrity without cell 

swelling or apoptotic vesicle formation. Taken together, these results support the burst 

size hypothesis for TB in vivo. 

 During the course of these experiments it became apparent that the diversity of cell 

types hosting Mtb in vivo adds an additional layer of complexity to TB pathogenesis. 

Neutrophils were major Mtb host cells 2-3 weeks post infection (p.i.) but rarely contained 

>10 AFB per cell. We also observed differences in the distribution of Mtb between three 

subpopulations of mononuclear leukocytes classified by CD11b and CD11c expression. 

The proportion of infected host cells differed between these subpopulations, and the 

proportions changed dynamically between 4 and 10 weeks p.i. The relative 

permissiveness or restriction of intracellular Mtb replication as well as the regulation of 

host cell fate may differ for each of these phagocytic cell types with implications for host 

defense, immune pathology and latent TB infection. 

2.3 Materials and Methods 

 Ethics statement. Experiments with animals were conducted according to the 

National Institutes of Health guidelines for housing and care of laboratory animals and 

performed under protocols approved by the Institutional Animal Care and Use 

Committee and the Institutional Biosafety Committee at The University of Massachusetts 

Medical School (UMMS).   



42 
 

 Mice. C57BL/6 WT, IFN-γ-/- (B6.129S7-Ifngtm1Ts/J) knockout mice (#2287), and 

ApoE-/- were purchased from The Jackson Laboratory. Mice were housed in specific 

pathogen-free environment at Animal Medicine facility of UMMS.  

 Bacterial strain and Mtb infection. Mtb Erdman was used for in vitro and aerosol 

infections. Bacterial stocks for experiments were prepared as described previously (104). 

For in vitro infections, BMDM were generated as previously described (103) and plated 

in Lab-Tek tissue culture chamber slides (Nalge Nunc International) at a density of 

2 x 105 cells per well, or in 24-well cell culture plates at 5 x 105 cells per well in complete 

DMEM. Cells were infected with Mtb Erdman (MOI 25, 3 h, 37°C), washed with PBS 

and then overlaid with fresh complete DMEM. For aerosol infections, mice were exposed 

to Mtb in a Glas-Col Inhalation Exposure System set to deliver ~100 CFU or ~300 CFU 

to the lung. For each experiment, 2 mice were sacrificed 24 hours p.i. to verify the 

delivered dose as described. 

 Cell preparation. Lung leukocytes were isolated as previously described (106). 

Briefly, mice were sacrificed and lungs were perfused through the heart with PBS. 

Excised lungs were minced and digested with 150 U/ml collagenase IV and 60 U/ml 

DNase (Sigma-Aldrich; 45 min, 37°C). Processed tissues were filtered using a 40 µm cell 

strainer and treated with Gey's Solution (Sigma-Aldrich). BAL cells were collected by 

flushing lungs three times with 0.75 ml PBS containing 0.2% BSA and 0.2 mM EGTA, 

and added to1.0 ml of 20% FBS in PBS and placed immediately on ice. BAL fluid was 

washed in PBS and treated with Gey's Solution. Whole lung leukocytes and BAL cells 

prepared in this manner were fixed in 1.5% paraformaldehyde for overnight at 4°C. Fixed 
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cell suspensions were washed, re-suspended in PBS and stored in 4°C. Cell counts were 

determined using a hemocytometer.  

 Intracellular bacterial enumeration. BAL cells and lung leukocytes were harvested 

from Mtb infected mice at predetermined time points. Slides were prepared using 

cytocentrifugation to immobilize 1 x 105 cells per slide (Thermo Electron Corporation). 

Cytospin slides were heat-fixed for Ziehl-Neelsen staining kit (TB Stain Kit ZN, BD 

Diagnostic Systems) following manufacturer's protocol. Stained slides were visualized 

using a Nikon Eclipse E400 Microscope and photomicrographs were obtained with a 

Nikon DS-Ri1 camera using NIS-Elements Microscope Imaging Software. Individual 

cells were interrogated for intracellular bacteria by counting AFB encased or surrounded 

by cellular membrane. Accurately counting intracellular AFB was reliable at low 

bacillary burden but became progressive more difficult in high burden cells with clumped 

bacilli. AFB counts were grouped into five bins: 1-5, 6-10, 11-15, 16-20, and ≥ 21. Cells 

were identified as monocytic cells (comprising AM, RM, mDC) or neutrophils based on 

nuclear morphology. AFB counts were tallied separately for these two categories. 

 Acid-fast, DAPI and immunostaining. To examine the nuclear morphology, 

cytospin slides were heat fixed and submerged in TB Carbolfuchsin ZN (BD Diagnostic 

Systems). Slides were heated in microwave oven for two consecutive intervals of 15 sec 

separated by 2 min at room temperature and then gently rinsed under running distilled 

water and decolorized with TB Decolorizer (BD Diagnostic Systems). Slides were rinsed 

again and then stained with 0.5 g/ml of 4',6'-diamidino-2-phenylindole, dihydrochloride 
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(DAPI) staining for 2 min. After a final rinse, slides were dried and cover slips mounted 

with ProLong Gold Antifade reagent (Invitrogen).  

 For immunostaining, BAL cells were affixed to Cell-Tak (BD Biosciences) 

treated cytospin slides and blocked with 3% BSA and 10% goat serum in PBS. Cells 

were stained with primary antibodies, 1:50 myeloperoxidase (LS Bio) and 1:50 histone 

H2B (Santa Cruz Biotechnology) or 1:50 neutrophil elastase (Calbiochem). Fluorescent 

anti-rabbit antibodies conjugated to Alexa Fluor 488, 568, 594 or 647 (Invitrogen) were 

used as secondary antibodies. Cells were mounted and stained with DAPI with Prolong 

Gold Antifade Reagent with DAPI (Invitrogen).  Analysis of immunostained cells were 

performed with confocal scanning laser microscopy (SP2 AOBS Leica) and images were 

captured using LCS software.  

 Flow cytometry and analysis of lung cell population. BAL cells and lung 

leukocytes were washed and incubated with CD16/CD32 mAb (BD Biosciences) to block 

Fc binding. Cells were then stained with the following mAb purchased from eBioscience 

(San Diego, CA): eFluor450–anti-CD11b (M1/70); phycoerythrin–anti-CD11c (N418); 

allophycocyanin–anti-CD45 (30-F11); APC-eFluor780-anti-Ly-6G (RB6-8C5); and 

Live/Dead Fixable Dead Cell Stain Kit by Invitrogen. An LSRII flow cytometer (BD 

Biosciences) was used for acquisition and data were analyzed with FlowJo software 

(TreeStar). Unless otherwise stated, gating was set to exclude dead cells and lymphocyte 

populations in forward/side scatter graph and to include singlet cells in a dot plot of pulse 

area against pulse height. Gating on viable cells, we defined resident AM as CD11b- 

CD11c+/hi cells, RM as CD11b+/lo CD11clo/- and mDC as CD11b+/hi CD11c+/hi. Cells were 
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sorted utilizing BD FACSAria Cell Sorter (BD Biosciences) with the same gating 

strategies used for flow cytometry. Subsets of sorted cell populations were collected and 

affixed onto cytospin slides for Ziehl-Neelsen staining and enumeration of intracellular 

AFB by light microscopy. 

 GFP Labeling of Resident Alveolar Macrophages. A replication incompetent, 

VSVG-pseudotyped, lentivirus expressing GFP under the control of a CMV promoter 

(CMV-GFP-W) was used to transduce resident lung leukocytes. The vector was created 

using a 5-plasmid transfection method previously described (107, 108). Briefly, 293T 

cells were transfected with the pHAGE backbone lentiviral vector together with 4 

expression vectors encoding the packaging proteins Gag-Pol, Rev, Tat, and the G protein 

of the vesicular stomatitis virus (VSV-G). To transduce lung cells, the viral titer was 

adjusted to 5 x 109/ml in DMEM with 10% FBS and mixed with lipofectamine 2000 

(Invitrogen) at a ratio of 100:5 (v:v) on ice for 15-30 min. Mice were then infected by 

tracheal instillation of 5 x 107 virions in a volume of 50 ul.   

 Scanning electron microscopy. Samples of non-adherent cells infected with Mtb 

were processed by first preparing microscope slides with Cell-Tak (BD Biosciences). 

Cell suspensions were added to treated and dried slides by cytocentrifugation and allowed 

to bond to the Cell-Tak. The cells on the slides were fixed by immersion in 2% 

paraformaldehyde (v/v) / 2.5% glutaraldehyde (v/v) in 0.1 M Na cacodylate-HCl buffer 

(pH 7.2) overnight at 4°C. The next day the fixed samples were washed three times in 0.5 

M Na cacodylate-HCl buffer (pH 7.0) and then post-fixed for 1 hr in 1% osmium 

tetroxide (w/v) in the same buffer. Following post-fixation, samples were dehydrated 
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through a graded series of ethanol to two changes of 100% ethanol and critical point 

dried in liquid CO2. The microscope slides were cut to remove the excess glass, mounted 

onto aluminum stubs with silver conductive paste and then coated with carbon (1 nm) and 

then sputter coated with gold/palladium (4 nm). Specimens were then examined using an 

FEI Quanta 200 FEG MK II scanning electron microscope. 

 Computational model of TB infection in the lung. A 2-dimensional (2D) agent-

based model (ABM) framework developed (109-111) for spatially characterizing the 

mechanisms of immunity in the lung during TB infection was used to test the burst size 

concept. The virtual environment reflects a 2 mm x 2 mm section of lung parenchyma 

represented as a 100 x 100 2D grid with micro-compartments scaled to the approximate 

size of a macrophage (~20 μm). A virtual low dose infection is triggered by one infected 

macrophage (MI), with one intracellular Mtb. The ABM describes interactions between 

intracellular and extracellular Mtb, various states of macrophages (resting, infected, 

chronically infected and activated), T cell populations including CD4+, CD8+ and 

regulatory T cells along with major cytokines tumor necrosis factor-α and IFN-γ and 

chemokine effector molecules (e.g., CCL2, CCL5, CXCL9/10/11). Each immune cell's 

behavior adapts based on its environment and its interactions with other immune cells 

and Mtb. As infection progresses, Mtb is tracked continuously. Extracellular Mtb 

proliferation follows a logistic growth function (48 h doubling time) within a single 

micro-compartment with a given carrying capacity while intracellular Mtb follows an 

exponential growth curve with a doubling time of 24 h. Intracellular Mtb doubling time is 

set to 72 h after adaptive immunity appears at the infection site (i.e., 20 days p.i.).With 
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the current mechanisms already present in our model that can affect Mtb levels, we 

captured the process of burst size cytolysis by setting a maximum carrying capacity for a 

chronically infected macrophage. If the intracellular bacterial load exceeds this threshold, 

the macrophage bursts releasing viable bacteria into the extracellular space. The model 

allows a user defined parameter value for this threshold, labeled as burst size. For this 

study, we varied the burst sizes from 10 to 50 while maintaining fixed values for the 

remaining parameters to analyze affects of different burst sizes on the total lung bacterial 

burden. 

 Uncertainty and sensitivity analysis (U/SA) (112) has been used in this model to 

ensure that the selected parameter values influencing outcomes of infection (e.g. 

clearance, containment or dissemination) are in accordance with known dynamics. The 

results of U/SA analysis provide constructive evaluation of the critical processes and 

mechanisms suggesting strategies for model reduction, questions requiring additional in 

vivo experimentation, and to generate alternative hypotheses if burst size is not supported 

by model results (113).  

 Statistical Analysis. Unless otherwise stated, data from independent experiments are 

shown as mean ± SD or SEM. Comparisons between groups were evaluated with Student 

t-test using GraphPad Prism. Differences in the distribution of  AFB load in frequency 

bins obtained from experiments with GKO and WT mice evaluated  using analysis of 

variance for mixed model (114) with Restricted Maximum Likelihood (REML) algorithm 

(115) for fitting the model. Load data were transformed using natural logarithms to better 

approximate normally distributed errors, an assumption of the mixed model ANOVA. 
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The distributional characteristics of the data were evaluated using the Kolmogorov-

Smirnov goodness of fit test (116) upon model residuals. A p value < 0.05 was regarded 

as statistically significant.  

 In the computational model, standard unidirectional t-test, with heteroscedasticity 

assumption (i.e., different variability between groups) was used to test statistically 

significant differences (p<0.05) between time course predictions with different burst sizes 

at different time points.   

2.4 Results 

 Dynamic shifts of monocytic cells hosting Mtb in evolving pulmonary TB. 

Alveolar macrophages are the overwhelming majority of leukocytes in the normal 

alveolar space and they are considered the primary leukocyte type initially infected by 

inhaled Mtb in vivo. Any investigation of the burst size hypothesis for TB must consider 

the complexity of the in vivo environment and the potential for Mtb to invade a diverse 

spectrum of phagocytic cells in the lung (117, 118). To study the distribution of Mtb 

within subpopulations of monocytic cells, we harvested lungs of WT mice 4 and 10 

weeks after aerosol challenge with Mtb Erdman. Whole lung CD45+ leukocytes were 

sorted on the basis of CD11b and CD11c expression. Previous reports have extensively 

characterized subpopulations of leukocytes in lung tissues of mice with TB (118-125). In 

accordance with those studies, we classified alveolar macrophages (AM) as CD11b- 

CD11c+/hi, recruited monocyte/macrophages (RM) as CD11b+/lo CD11clo/- and myeloid 

dendritic cells (mDC) as CD11b+/hi CD11c+/hi. For clarity we refer to AM, RM and mDC 

populations in this report based on CD11b and CD11c expression, recognizing that this 



49 
 

might not invariably correspond to functional identity. We evaluated additional cell 

surface markers including Ly-6G, CD115, F4/80 and MHC class II (not shown) but these 

provided no additional useful discriminatory information. Uninfected mice were sampled 

for comparison to the TB group at both time points (Table 2.1). 

 Mononuclear cells from uninfected lungs comprised a roughly equal proportion of 

AM and RM, with mDC a distinct minority at 1.6% (Fig. 2.1A). By 4 weeks p.i., the total 

number of mDC increased > 40-fold and they expanded proportionately from 1.6% to 

18.5% of monocytic cells. The distribution of monocytic cells changed slightly at 10 

weeks p.i., with a moderate expansion of RM and modest contraction of the AM and 

mDC populations. Mtb-infected monocytic cells were enumerated by microscopy on 

cytospin slides with Ziehl-Neelsen staining (Table 2.2). After 4 weeks of TB disease, 

mDC were the predominant Mtb-infected cell type, representing 78.2% of total AFB+ 

monocytic cells (Fig. 2.1B). By 10 weeks p.i., the distribution of infected cells shifted, 

with RM becoming the primary Mtb host cells (60.4%), followed by mDC (31.2%). At 

both time points, AM represented approximately 10% of AFB+ monocytic cells. The 

relative propensity for different mononuclear leukocyte cell types to harbor Mtb was 

estimated based their representation in the total and AFB+ cells within the total 

population. On that basis, mDC were 13 and 18 times more likely to be infected with Mtb 

compared to AM or RM, respectively, at 4 weeks p.i. 

 Resident alveolar macrophages are a minor niche for Mtb replication. Resident 

AMs, by far the predominant leukocytes in the airspace of normal lungs, are the first 

phagocytes to become infected by Mtb following inhalation of droplet nuclei. In the 
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absence of infection or inflammation they are extremely long-lived, non-replicating cells 

with negligible replacement by bone marrow-derived leukocytes (107, 126). To 

investigate the impact of pulmonary TB on resident AM, we labeled these cells by 

tracheal instillation of a replication incompetent, VSVG-pseudotyped, GFP-expressing 

lentivirus (CMV-GFP-W) as previously described (107). Labeling efficiency is typically 

30-40% of BAL cells, with no transduction of epithelial cells or parenchymal leukocytes. 

After an early loss of transduced cells in the first several weeks, the number of GFP+ cells 

stabilizes at 20-30% of BAL cells for up to 2 years. To track the fate of resident AM in 

TB, mice were transduced with intratracheal CMV-GFP-W and rested for 8 weeks to 

allow the GFP+ cell population to stabilize. One group of transduced mice was then 

infected with Mtb Erdman by aerosol while control transduced mice remained uninfected. 

Sets of Mtb-infected and control mice were sacrificed 4 weeks and 10 weeks after 

infection of the TB group and whole lung leukocytes were isolated for analysis by flow 

cytometry (Fig. 2.1C).  

 In uninfected mice, GFP+ leukocytes comprised 97% AM, 2.8% mDC and < 0.3% 

RM or other cells (Table 2.3) reflecting the typical composition of leukocytes in airspace 

under basal conditions. After 4 weeks of TB disease, the total number of GFP+ cells was 

little changed from baseline but the proportion AM among all GFP+ cells fell to 68% 

while mDC increased to 27% of GFP+ cells. Thus, ~22% of AM shifted their surface 

phenotype to one resembling mDC. Whether this represents induction of CD11b surface 

expression on cells that retain AM properties, or if these cells convert into functional 

mDC remains to be determined. The phenotypic shift of resident AM contributed only 
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~3% of the total increase in lung mDC at 4 weeks p.i., indicating increased mDC 

population mostly resulted from differentiation of monocytic cells newly recruited to the 

lung. Comparison of total GFP+ cells counts between groups was limited by variation in 

labeling efficiency but the data suggest a trend after 10 weeks of TB for a modest loss of 

AM that were resident in the lung prior to infection. We found no GFP+ leukocytes 

containing AFB at 4 or 10 weeks p.i., suggesting little or no horizontal spread of infection 

through the resident AM population present in the lung prior to infection. Most if not all 

of the AM accounting for ~10% of Mtb-infected monocytic cells at 4 and 10 weeks p.i. 

(Fig. 2.1B) were recruited to the lung after infection. We conclude that resident AM may 

be critical host cells for intracellular infection by inhaled Mtb, but only for the first round 

of bacillary replication to burst size. Subsequently, the rapidly expanding number of 

bacilli shifts to phagocytes newly recruited to the lung, most of which do not differentiate 

into AM. 
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Figure 2.1. Distribution of Mtb infection within monocytic cell populations in the lung. Whole lung leukocytes were 
harvested from groups of mice with TB (4 and 10 weeks p.i.) and compared to uninfected controls. Monocytic cells 
were sorted into AM, RM and mDC as described in Materials and Methods. Ziehl-Neelsen staining was performed on 
cytospin preparations of sorted populations. (A) The proportion of AM, RM and mDC within the total lung monocytic cell 
population of uninfected mice and mice with pulmonary TB. (B) The proportion of AM, RM and mDC containing any 
AFB in mice with pulmonary TB. (C) The proportion of GFP-labeled lung leukocytes, GFP+ AM, RM and mDC, in 
uninfected mice and mice with TB. Lung leukocytes within the airspace were transduced by tracheal instillation of WT 
mice with CMV-GFP-W. After 8 weeks, one group of GFP-transduced mice was challenged by aerosol with 300 CFU of 
Mtb Erdman delivered to the lung. The category Other comprised cells that could not be categorized as AM, RM or 
mDC based on light scatter characteristics and CD11b/CD11c staining. By light microscopy, cells in the Other category 
included a small number of neutrophils that may have acquired GFP by efferocytosis, as well of cells with monocytic 
appearance that had very high intracellular Mtb burden and features of cell death. Monocytic cell subsets were 
classified by surface immunostaining as alveolar macrophages (AM; CD11b- CD11c+/hi), recruited 
monocyte/macrophages (RM; CD11b+/lo CD11clo/-) and myeloid dendritic cells (mDC; CD11b+/hi CD11c+/hi).  
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Cells x 104 % Cells x 104 % Cells x 104 % Cells x 104 % 

AM 14.1 ± 3.4 41.9 47.8 ± 15.9* 34.9 16.6 ± 2.6 22.8 45.6 ± 9.4* 27.8

mDC 0.8 ± 0.4 1.6 25.3 ± 7.7* 18.5 0.4 ± 0.1 0.6 20.8 ± 6.8* 12.7
RM 15 ± 3.7 56.4 63.7 ± 5.8* 46.6 26.3 ± 6.5 36.2 97.5 ± 13.6* 59.5

Total 29.9 136.8 43.3 163.9

†Results are presented as mean ± SD.  *Indicates statistical significance. 

Table 2.1. Percentage and total cell count of different cells from lung leukocytes.† 

Uninfected 4 weeks p.i. Uninfected 10 weeks p.i. 

Cells x 104 % AFB+ cells % Cells x 104 % AFB+ cells % 
AM 47 23.5 0.02 10.9 45 19.9 0.1 8.4

mDC 25 12.5 0.14 78.2 20 8.8 0.37 31.2
RM 63 31.5 0.02 10.9 97 42.9 0.71 60.4

Total 135 0.71 162 1.46

Table 2.2. Distribution of AFB+ cells for each cell type found in lung leukocytes. 
4 weeks p.i. 10 weeks p.i. 

Cells x 104 % Cells x 104 % Cells x 104 % Cells x 104 % 

AM 3.5 ± 0.9 97 2.28 ± 1.4 68.1 4.1 ± 0.8 97.9 2 ± 0.6* 75.2

mDC 0.1 ± 0.1 2.8 0.9 ± 0.6* 26.9 0.08 ± 0.04 1.9 0.6 ± 0.08* 22.6

RM 0.003 ± 0.0 0.1 0.047 ± 0.0* 1.4 0.002 ± 0.0 0.05 0.02 ± 0.01* 0.8
Other 0.006 ± 0.0 0.2 0.12 ± 0.02* 3.6 0.005 ± 0.0 0.1 0.04 ± 0.02* 1.5

Total 3.7 3.3 4.2 2.6

†Results are presented as mean ± SD. *Indicates statistical significance. 

Table 2.3. Percentage and total cell count of different GFP+ cells from lung leukocytes.† 

Uninfected 4 weeks p.i. Uninfected 10 weeks p.i. 
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 Enumeration of intracellular bacilli in pulmonary TB. To investigate the in vivo 

relevance of a burst size model for macrophage cell death in TB, we challenged C57BL/6 

mice with virulent Mtb Erdman by aerosol set to deliver ~300 CFU to the lung. Lung 

cells were subsequently harvested in different sets of infected mice exclusively by BAL 

or by enzymatic digestion to isolate whole lung leukocytes. Cells were immobilized onto 

slides by cytocentrifugation and intracellular bacilli were visualized with Ziehl-Neelsen 

staining. The percent and total number of AFB+ cells was enumerated at time points 

between 1 and 8 weeks p.i. In parallel with the characteristic kinetics of lung bacillary 

load in the aerosol TB model, the total number of AFB+ cells increased logarithmically 

until reaching a plateau value between 2 and 3 weeks p.i. (Fig. 2.2A). When compared to 

whole lung leukocytes, the total number of AFB+ BAL cells declined by 8 weeks p.i., 

likely reflecting a loss of airspace available to lavage. In contrast, the total number of 

AFB+ lung leukocytes remained stable between 2 and 8 weeks p.i., reflecting the major 

site of TB disease more accurately than BAL at later time points. The proportion of BAL 

cells and lung leukocytes infected with Mtb peaked around 1.5% at 2 weeks p.i. and then 

declined, owing to the recruitment of naïve leukocytes to the infected lung (Fig. 2.2B). 

Light microscopy allowed reliable identification of neutrophils that were therefore 

counted separately from monocytic cells. Mononuclear leukocyte subsets, comprising 

AM, RM and mDC, are not visually distinguishable. AFB+ neutrophils were not seen in 

BAL or lung leukocytes at 1 week p.i. but equaled monocytic cells as hosts for Mtb at 

weeks 2 and 3, the period of greatest bacillary expansion (Fig. 2.2C). 
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Figure 2.2. Kinetics of intracellular Mtb growth in vivo. BAL cells and whole lung leukocytes were harvested at 1, 
2, 3 and 8 weeks after aerosol infection of mice with 300 CFU Mtb Erdman delivered to the lung. Cells from both 
sources were counted and cytospin preparations were made for Ziehl-Neelsen staining. (A) The total number of 
Mtb-infected (AFB+) cells was derived by multiplying the % AFB+ cells by the total number of cells in each sample. 
Results for individual mice are presented as log10 total AFB+ cells, with the line representing the mean. (B) The 
proportion of Mtb-infected phagocytes within the total sample was counted at each time point and expressed as 
% AFB+ cells. (C) Neutrophils infected with Mtb were identified by their typical nuclear morphology on Ziehl-
Neelsen stained cytospin slides of BAL cells and whole lung leukocytes. The relative proportion of AFB in 
neutrophils versus monocytic phagocytes (AM, RM and mDC) is expressed as mean % AFB+ leukocytes ± SD 
from one representative experiment. All in vivo experiments were repeated twice. 
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 At each time point after aerosol challenge, AFB per neutrophil or monocytic cell was 

counted in individual cells. AFB counts were grouped into five bins (1-5, 6-10, 11-15, 

16-20 and ≥ 21) with the top bin reflecting the highest burden that we could reliably 

count to ± 2 AFB (Fig. 2.3). Consistent with the distribution of intracellular bacillary 

loads predicted for a burst size model, the number of AFB+ monocytic cells containing 1-

5 AFB was greater than cells with higher bacillary loads at all time points (Fig. 2.4A).  

 

 

 

 

  

Figure 2.3. Enumeration of intracellular Mtb in lung phagocytes. BAL cells and whole lung leukocytes were 
isolated from C57BL/6 mice 2 weeks after aerosol challenge with Mtb Erdman. Ziehl-Neelsen stained cytospin 
preparations were used to visualize and count intracellular AFB by light microscopy. Representative 
photomicrographs show examples of infected cells along with AFB counts as indicated magnification, 400X). 
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Also consistent with the burst size hypothesis, the proportion of AFB+ monocytic cells 

harboring ≥ 21 bacilli peaked during the period of logarithmic Mtb replication at weeks 1 

to 3 p.i. and then declined in parallel with induction of adaptive immunity. We previously 

reported an in vitro burst size of ~25 bacilli for Mtb-infected bone marrow derived 

Figure 2.4. Distribution of intracellular bacillary load in lung phagocytes changes over time after aerogenic Mtb 
infection. The number of AFB per cell was counted in BAL cells and lung leukocytes harvested at the indicated 
times after aerosol challenge with Mtb Erdman. Across all time points, Mtb burden per cell was interrogated in a 
total 5.7 x 106 individual phagocytes, with counts grouped into bins of 1-5, 6-10, 11-15, 16-20, or ≥ 21 AFB. 
Results are expressed as mean log10 AFB+ monocytic cells (A) or neutrophils (B) ± SD within each bin, counted in 
BAL cells or in whole lung leukocytes as indicated. All bins were compared at each time point and between time 
points as described in Materials and Methods. Statistically significant differences (p<0.05) are not indicated on 
the figure for the sake of clarity. Among statistically significant differences, monocytic cells with 1-10 AFB 
outnumbered cells with > 10 AFB at all time points p.i., the proportion of monocytic cells containing > 15 AFB was 
lower at week 8 than earlier time points, and the distribution of AFB loads was significantly different in neutrophils 
compared to monocytic cells. 
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macrophages (BMDM) (103). In the present study, the bin of whole lung monocytic cells 

containing ≥ 21 AFB peaked at 2.8% of all AFB+ monocytic cells by 2 weeks p.i. and 

then fell to 0.1% by 8 weeks p.i. (Fig. 2.5). We posit that cells with high burden reflect 

Mtb replication towards burst size, which dropped by a factor of 10 following the 

induction of adaptive immunity. The absolute number of heavily infected cells declined 

between 3 and 8 weeks p.i., indicating that cells dying after reaching burst size were 

being replaced at a reduced rate as host immunity limited Mtb replication. Monocytic 

cells estimated to contain up to 50 or more AFB were very rarely seen, representing 

0.017% of AFB+ cells at 3 weeks p.i. Most such cells appeared nonviable, with faintly 

stained cytoplasm and bacilli breaching the plasma membrane (Fig. 2.6A).  

 

 

 

  

Figure 2.5. Change in the proportion of intracellular bacillary load in monocytic cells. AFB per cell was counted in 
cytospin samples of whole lung leukocytes harvested 1, 2, 3 and 8 weeks after aerosol challenge with Mtb 
Erdman. Mtb burden per monocytic cell (comprising AM, RM, mDC) was counted and stratified into the indicated 
bins of 1-5, 6-10, 11-15, 16-20, or ≥ 21. Results are expressed as mean % AFB+ monocytic cells within each bin 
± SD at the indicated time points. Statistical analysis described in Materials and Methods confirmed a significantly 
different distribution of AFB load in high bins at 8 weeks p.i. as compared to earlier time points. 
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Figure 2.6. Cells heavily burdened with Mtb appear nonviable. (A) Lung leukocytes were isolated from WT mice 
2 weeks after aerosol challenge with Mtb Erdman. Cytospin preparations were made and Ziehl-Neelsen stain was 
used to visualize and count intracellular AFB by light microscopy at 400X magnification. Photomicrographs show 
examples of heavily infected cells with ~50 intracellular AFB. (B) Whole lung leukocytes harvested 4 weeks after 
aerosol Mtb challenge were prepared for cell sorting. Cytospin preparations were made from the sorted 
population of “dead” cells defined by lower forward-scatter and higher side-scatter characteristics. AFB where 
visualized with Ziehl-Neelsen staining (magnification, X400). (C) Lung leukocytes from WT mice with 3 weeks of 
TB disease were processed by cytocentrifugation and Ziehl-Neelsen staining. The image shows clumps of AFB 
associated with dead cell remnants barely capable of retaining dye (magnification, X400). 
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 We counted AFB per cell in cytospin preparations of flow-sorted monocytic cell types 

but found few cells containing > 10 AFB. This was inconsistent with results obtained 

with BAL cells or lung leukocytes that were cytocentrifuged directly onto the slides 

without further processing. Speculating that heavily burdened phagocytes progressing to 

necrosis were fragile and unable to withstand the stress of flow sorting, we examined the 

sorted population of non-viable cells defined by forward-scatter and side-scatter 

characteristics. Ziehl-Neelsen stained cytospins of those samples revealed much higher 

numbers of AFB in these dead and dying cells than in the sorted populations of viable 

cells (Fig. 2.6B). Collectively, these results support the concept of a mononuclear 

leukocyte burst size for virulent Mtb in vivo with a median value in the range of 20-40 

bacilli. Of interest, while lung leukocytes with ≥ 16 AFB declined by 84.5% between 3 

and 8 weeks p.i., some high burden cells were still seen at the later time point, well after 

the induction of adaptive immunity when total lung bacillary load is held stable. Our 

findings in TB contrast with a report that viable macrophages isolated from the footpads 

of M. leprae-infected athymic nu/nu mice contained an average of 120 AFB per cell 

(127). Unlike Mtb, M. leprae is not cytolytic for macrophages in vitro even at MOI 100 

(128). 

 In contrast to the distribution of Mtb in monocytic cells, neutrophils containing > 15 

AFB were not seen at any time point, and neutrophils with 11-15 AFB were identified 

only at 2 and 3 weeks p.i. (Fig. 2.6B). This corresponds to the period of logarithmic Mtb 

expansion in the lung and the peak number of the most heavily infected monocytic cells. 

These results suggest that neutrophils are recruited to the vicinity of necrotic monocytic 
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cells and acquire bacilli at low to moderate MOI. The data also imply that neutrophils 

may be poor hosts for Mtb replication, presumably owing to their limited lifespan. 

Alternatively, neutrophils could be subject to burst size cytolysis with a lower threshold 

value or some other cell death mode in the context of TB. 

 Mtb replication dynamics in IFN-γ-deficient mice. Interferon (IFN)-γ plays a 

critical role in protective immunity against Mtb by activating macrophages to limit 

bacterial replication (27). After aerosol challenge of GKO mice, lung Mtb burden 

increases logarithmically until death by 4-6 weeks p.i. We delivered 100 CFU of Mtb 

Erdman to WT and GKO mice and then harvested BAL cells for cytospin and Ziehl-

Neelsen staining at five time points from 7 to 21 days. As expected, the total number of 

AFB+ BAL cells increased progressively in GKO mice while in WT mice it was held to a 

plateau value after day 18 p.i. (Fig. 2.7). It was recently proposed that IFN-γ limits 

neutrophil recruitment to the lung in the transition from innate to adaptive immunity in 

TB (24). Consistent with that report, neutrophils represented a higher proportion of BAL 

cells in GKO compared to WT mice with TB (Fig. 2.8A). While neutrophils represented 

only 16% of BAL leukocytes in WT mice at 18 days p.i., they accounted for ~50% of 

AFB+ cells at that time point (Fig. 2.8B). This suggests that despite the influence of IFN-

γ on neutrophil trafficking, these cells are recruited to the immediate vicinity of Mtb 

infection where they may exert comparatively high phagocytic activity.  
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Figure 2.7. Kinetics of Mtb growth in IFN-γ-deficient mice. BAL cells were harvested from WT and GKO mice 7, 
11, 14, 18 and 21 days after aerosol challenge with 100 CFU Mtb Erdman delivered to the lung. Total cells from 
both sources were counted and cytospin preparations were made for Ziehl-Neelsen staining. (A) The total 
number of Mtb-infected (AFB+) cells was derived by multiplying the % AFB+ cells by the total number of cells in 
each sample. Results for individual mice are presented as log10 total AFB+ cells, with the line representing the 
mean. (B) The proportion of Mtb-infected phagocytes within the total sample was counted at each time point and 
expressed as % AFB+ cells with the bar indicating the mean. Data were analyzed as detailed in Materials and 
Methods. The number of AFB+ BAL cells from GKO mice was significantly different (p<0.05) from WT on days 14, 
18 and 21 p.i. The % AFB+ BAL cells from GKO mice were significantly different from WT on day 21 p.i. Data are 
representative from one experiment with five mice per group. In vivo experiments were repeated twice. 
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Figure 2.8. Lung leukocyte populations and distribution of intracellular Mtb in WT and GKO mice. (A) The relative 
proportion of neutrophils and monocytic cells in BAL from WT and GKO mice following aerogenic infection with 
Mtb Erdman was determined by light microscopy. Results are expressed as mean % cells of either type ± SD at 
the indicated time points. All groups were compared within and between all time points. GKO mice had a 
significantly higher proportion of neutrophils to monocytic cells compared to WT at 14, 18 and 21 days p.i. (B) 
The distribution of Mtb infection between neutrophils and monocytic cells was determined by counting AFB+ cells 
of both types on Ziehl-Neelsen stained cytospins. Results are expressed as mean % AFB+ ± SD. There was a 
statistically significant difference in the number of AFB+ neutrophils between WT and GKO mice on day 18 p.i. 
There was also a significant increase in the number of AFB+ neutrophils at day 21 p.i. for GKO mice compared to 
earlier time points. 
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 Based on the burst size hypothesis, unrestricted intracellular Mtb replication in GKO 

mice is predicted to result in a persistently high proportion of heavily infected monocytic 

cells past the time point when WT mice start to restrict Mtb replication. Bacterial load per 

cell in BAL monocytic cells and neutrophils from GKO and WT mice was counted at 

each time point and tabulated in bins (Fig. 2.9). GKO mice had a higher proportion and 

total number of heavily infected cells on day 7 p.i. suggesting an innate IFN-γ response 

(20, 129) that limits Mtb replication before adaptive immunity is expressed. Prior to the 

full induction of adaptive immunity, Mtb replication in WT mice also proceeded at a 

rapid rate such that on day 14 p.i. the distribution of AFB loads was similar to that of 

GKO mice. As an effective IFN-γ-dominated adaptive immune response was expressed in 

WT mice, the proportion of heavily infected BAL cells declined. At day 21 p.i., the 

proportion AFB+ cells in the top three bins were significantly higher in GKO compared to 

WT mice. AFB+ cells containing 1-5 bacilli remained the most abundantly populated bin 

in GKO mice at all time points and cells containing > 50 AFB were very rarely seen, as 

was the case in WT mice. We interpret the distribution of AFB loads in GKO compared to 

WT mice as supporting the burst size hypothesis and also indicating that IFN-γ has little 

if any direct influence on the burst size value.  
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Figure 2.9. Distribution of AFB loads in lung monocytic cells and neutrophils from WT and GKO mice with TB. 
GKO and WT mice were challenged by aerosol with 100 CFU of Mtb Erdman delivered to the lung. BAL was 
performed 7, 11, 14, 18 and 21 days p.i. A total of 4.8 x 106 Ziehl-Neelsen stained cells were counted. Numbers 
of AFB per cell were grouped into 5 bins as indicated and counted separately in monocytic cells (A) and 
neutrophils (B) from GKO and WT mice. Results are presented as mean log10 AFB+ cells in each bin ± SD. GKO 
mice had a greater number of AFB+ monocytic cells in all bins at 7 days p.i. and a significantly higher proportion 
of cells with ≥ 11 AFB compared to WT mice at that time point. The proportion of cells within each bin was similar 
between WT and GKO mice on days 11-18 p.i. but by day 21 p.i. the proportion of cells with ≥ 11 AFB fell 
significantly in WT compared to GKO mice. On day 21 p.i. the number of AFB+ neutrophils from GKO mice was 
significantly higher than earlier time points. In contrast, the number of AFB+ neutrophils from WT mice was 
significantly lower on day 21 than day 18 p.i.  
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 Cell death in vivo resembles high MOI necrosis in vitro. Macrophages challenged 

in vitro with Mtb at MOI ≥ 25 rapidly undergo an atypical, caspase -independent cell 

death dominated by lipolytic attack on lipid membranes (104). This cell death mode has 

unique morphological features including nuclear condensation without fragmentation, 

and disintegration of lipid bilayers throughout the cell. In the present study, we compared 

the morphology of BAL cells harvested 3-4 weeks after low dose aerosol Mtb Erdman 

challenge to that of BMDM infected for 3 h in vitro with Mtb at MOI 25. Similar to the 

characteristic changes seen in vitro, monocytic cells from the lungs of mice with TB 

exhibited nuclear condensation and this was restricted to those cells with a high AFB 

burden (Fig. 2.10A). Nuclear fragmentation, a characteristic of caspase-mediated 

apoptosis, was not seen in > 5 x 105 DAPI-stained lung cells from mice with TB. The 

morphology of lung leukocytes having low numbers of intracellular bacilli was uniformly 

similar to the normal appearance of uninfected cells (Fig. 2.11). 

 Mtb-induced macrophage cytolysis in vitro is characterized by disintegration of 

mitochondrial, nuclear and plasma membranes without cell swelling or formation of 

apoptotic vesicles. To examine the ultra-structural features of infected lung leukocytes in 

the context of pulmonary TB, BAL cell cytospin preparations were visualized by 

scanning electron microscopy (EM) and compared to BMDM challenged with Mtb 

Erdman in vitro at MOI 25 (Fig. 2.10B). BAL cells isolated from mice with TB showed a 

similar pattern of injury to BMDM infected in vitro: plasma membrane damage and no 

evidence of budding vesicles or osmotic lysis. We also observed extrusion of chromatin 

through damaged nuclear membranes in dying BAL cells (Fig. 2.12), akin to results we 
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previously reported with in vitro Mtb infection (104). Taken together, these observations 

demonstrate consistent similarities between Mtb-induced cytolysis in vitro and in vivo.  

 

 

 

  

Figure 2.10. Morphology of macrophage cell death in pulmonary TB. (A) BMDM challenged with Mtb Erdman in 
vitro (MOI 25, 3 h) and BAL cells from WT mice challenged 3 weeks previously with a low aerosol dose of Mtb 
Erdman were stained with carbolfuchsin to visualize intracellular bacilli and stained with DAPI to visualize nuclear 
morphology (magnification, X400). Heavily infected cells in both cases exhibited nuclear condensation without 
fragmentation (yellow arrows). (B) Representative scanning electron micrographs of BMDM infected with Mtb in 
vitro and BAL macrophages isolated from mice after 4 weeks of TB disease (magnification, X5,000). Damaged 
cells in both cases exhibit disintegration of outer cell membranes (red arrows) with escape of intracellular bacilli. 
BAL cells were isolated from GKO mice 4 weeks after aerosol Mtb infection. Cytospin preparations were 
processed for Ziehl-Neelsen staining, immunostaining or scanning EM. 
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Figure 2.12. Chromatin extrusion from DAPI stained AFB+ cells. BAL cells from mice with aerogenic TB infected 
were harvested 3 weeks, p.i. Samples were prepared on cytospin slides and stained with DAPI. The image 
shows nuclear condensation and chromatin extruding through a damaged nuclear membrane into the cytoplasm 
(white arrow; magnification, X400). 

Figure 2.11. Cells with low intracellular Mtb appear like uninfected cells. BAL cells were isolated from WT mice 2 
weeks p.i. and cytospin slides were prepared for (A) Ziehl-Neelsen or (B) DAPI plus carbolfuchsin staining. AFB 
were identified with light microscopy or fluorescence microscopy (magnification, 400X). Images of AFB+ cells with 
low intracellular Mtb appear similar in nuclear morphology with adjacent uninfected cells. Survey thousands of 
cells contain low number of bacilli identified none with the morphological features of necrosis that was typical of 
heavily infected cells. 
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 Mtb infection is associated with release of neutrophil extracellular traps in vivo. 

A high proportion of lung neutrophils were infected with Mtb after aerosol challenge and 

they were a significant host cell compartment for bacilli even after 8 weeks of TB 

disease. Compared to monocytic cells, neutrophils have a short lifespan in the lung in the 

absence of inflammation, which would seem to make them unproductive hosts for Mtb 

replication. Examining cytospin preparations of BAL cells from GKO mice, we observed 

large masses of amorphous extracellular material with numerous associated AFB (Fig. 

2.13A). A combination of carbolfuchsin and DAPI stains indicated that these structures 

had a high content of extracellular DNA. Scanning EM revealed a network of 

extracellular fibrillar structures with adherent bacilli similar to the morphological features 

first described by Brinkmann and Zychlinsky (130). Furthermore, the thread-like 

structures were abundantly studded with globular domains. The composition of NETs 

includes characteristic components including myeloperoxidase (MPO), neutrophil 

elastase and cleaved histones (131, 132). Confocal scanning laser microscopy and 

immunostaining with antibodies against neutrophil elastase, MPO and histones showed 

co-localization of these molecules with extracellular DNA (Fig. 2.13B). Together, these 

data indicate the presence of neutrophil extracellular traps (NETs). We did not see NETs 

in cytospins from WT mice with TB. Release of NETs could be limited to conditions of 

uncontrolled Mtb replication in GKO mice but more likely occurs at a low frequency in 

WT mice that is undetectable by the methods we used. Furthermore, we observed Mtb-

induced NETs in BAL from hypercholesterolemic ApoE null mice with TB (Fig. 2.13C). 

At the time of sampling p.i., these mice express comparable levels of IFN-γ with WT, but 
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are unable to control bacterial replication and they develop severe neutrophilic lung 

inflammation (133). Ramos-Kichik et al. (134) reported that Mtb induces NET release in 

vitro and that NETs trap the bacilli but are unable to kill them, in contrast to microbicidal 

activity of NETs against Listeria monocytogenes. We believe that our data from GKO and 

ApoE null mice are the first evidence for NET release in the context of TB disease in vivo 

and indicate that an extracellular population of bacilli may be adherent to NETs in the 

lung. 
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Figure 2.13. Morphology of neutrophil cell death in pulmonary TB. (A) Ziehl-Neelsen staining (left panel) 
identified amorphous extracellular material with associated AFB (magnification, X400). Scanning EM (middle 
panel) demonstrated the presence of cell-associated extracellular fibers consistent with NETs (magnification, 
X5,000). High resolution of SEM image (right panel) revealed globular domains decorating the extracellular 
fibrous structures (magnification, X25,000). (B) NETs were identified by immunostaining using DAPI to stain DNA 
(blue) and antibodies against histone H2B (green) and MPO (red) or neutrophil elastase (green) and MPO (red). 
Stained cells were analyzed using confocal scanning laser microscopy (magnification, 63X objective). (C) BAL 
cells from ApoE null mice 4 weeks p.i. were stained for DNA (blue), histone H2B (green) and MPO (red) and 
visualized with confocal scanning laser microscopy. 
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2.5 Discussion 

 We examined leukocytes from the lungs of mice infected with Mtb by aerosol to test 

a model of burst size cytolysis suggested by prior in vitro studies. The distribution of Mtb 

load in monocytic cells was skewed such that most AFB+ cells contained few bacilli 

while a minority had a high bacillary load. The morphology of heavily infected cells 

mirrored that seen with Mtb-induced necrosis in vitro; they appeared nonviable, with 

condensed nuclei and disrupted plasma and nuclear membranes. We interpret these 

findings as consistent with burst size cytolysis at median threshold in the range of 20-40 

AFB. That value is close to the burst size reported for in vitro infection of BMDM (104). 

The comparison of WT and GKO mice demonstrated that by limiting Mtb replication to 

burst size, IFN-γ promotes the survival of monocytic host cells with a sublethal bacillary 

burden. A similar phenomenon was reported for BMDM in vitro, where virulent Mtb 

strains introduced at low MOI grew rapidly and caused necrosis but cytolysis was 

prevented when Mtb replication was inhibited by exogenous IFN-γ (93). Despite an 

effective immune response in WT mice, some monocytic cells with > 15 AFB were 

present at 8 weeks p.i., accounting for 0.6% of all AFB+ cells at that time. This implies 

ongoing Mtb replication in a limited population of monocytic cells balanced by 

microbicidal activity in as yet unknown compartments during the period of “stationary 

persistence” that is not reflected by an increase in total lung CFU. A similar conclusion 

was reached by Gill et al. (135) in a study that employed in silico modeling and in vivo 

experiments using Mtb transformed with an unstable plasmid replication clock. 
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 Virulent Mtb strains inhibit host-protective apoptotic death of infected macrophages 

(79, 82, 83, 92, 96), permitting optimal replication before spreading to other cells. Transit 

between replication niches requires time and incurs risk for bacilli that may be trapped in 

the extracellular environment, subjected to antimicrobial activities, or taken up by 

phagocytes that do not support replication. Delaying host cell death for 3-5 Mtb 

doublings should accelerate the increase in total lung bacillary load in the critical period 

prior to the induction of adaptive immunity. Lacking any means to manipulate burst size 

in biological experiments, we took advantage of an existing computational model to test 

the effects of different burst size values on Mtb accumulation in the lung.  This in silico 

agent-based model replicates the interplay between host and pathogen, taking multiple 

variables into account over three biological scales: molecular, cellular and tissue in a 2 

mm x 2 mm section of lung. The model captures burst size by setting a value to the 

maximum carrying capacity of Mtb per macrophage, above which the macrophage bursts, 

releasing viable bacilli to infect naïve cells. We varied burst size values in the 

computational model to 10, 20, 30, 40, and 50, keeping all other parameter values fixed 

in order to analyze the effects of this isolated change. To account for stochastic 

variability, each experiment was run 20 times (equivalent to using 20 mice for each time 

point).  
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  Figure 2.14 shows five time courses of total bacterial counts for each burst size 

assumption. By day 20, a burst size >20 resulted in a significantly greater increase in total 

bacteria as compared to smaller burst sizes. For burst sizes 10 and 20, a peak is reached at 

day 20 and a lower steady state is achieved as adaptive immunity is expressed in the lung. 

For burst sizes > 20, the Mtb count either stabilizes at the peak (burst size 30) or trends 

up at a slower rate (burst sizes 40 and 50). Overall, increasing the burst size resulted in 

higher bacterial loads, consistent with advantage for the pathogen with burst size > 20. 

While providing independent support for the burst size hypothesis, the model has several 

limitations. In its current iteration, only macrophages are considered as hosts for Mtb and 

Figure 2.14. Higher burst size parameter values result in higher total bacterial counts in computational simulation 
of Mtb replication in the lung. A multiscale computational model described in Materials and Methods was used to 
generate values for total bacterial counts over time in a 2 mm x 2 mm virtual section of lung starting with a single 
macrophage infected with a single bacillus at time zero. The different curves correspond to different burst size 
parameter values for the number of Mtb bacilli within a macrophage that induce cytolysis. All the other 
parameters in the computational model capturing immune mechanisms are identical for each curve and are 
calibrated to reproduce a typical chronic Mtb infection in a mouse. The x-axis shows days after time zero, while 
the y-axis shows mean total Mtb counts ± SD for 20 individual program runs at each burst size value. For ease of 
illustration, significant differences (p<0.05) are not shown on the graph. Overall, t-test results show that higher 
burst size values favor higher total lung bacterial load. Scaling to the whole lung can be done by multiplying the 
prediction by a factor of ~104, assuming a mouse lung volume of ~1 cm3. The scaling returns CFU in the whole 
lung in the range of 1-10 x 106. 
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it assumes that every bacillus liberated from a dying macrophage invades a different new 

host cell at MOI 1.  Our animal data show that AM, RM, mDC and neutrophils all harbor 

Mtb and these cell types likely differ in their capacity to support or inhibit bacillary 

replication. The biological data also suggest that the efficiency of Mtb escape and re-

infection of new host cells is lower than the model assumes since we saw neutrophils 

(cells unlikely to support multiple rounds of Mtb replication) harboring up to 15 AFB. 

We also frequently observed Mtb in clumps that would deliver multiple bacilli if ingested 

by a single phagocyte (Fig. 2.6C). Insights from the in vivo TB study presented here will 

be applied to future refinements of the agent-based model.  

 We identified three discrete monocytic cell populations hosting Mtb, in general 

agreement with prior reports (117-119). We recognize that monocytic cells hosting Mtb 

in the lung may be even further sub-classified (121), and that functional heterogeneity 

between individual cells of the same surface phenotype is likely. Cells classified as mDC 

were increased in number and proportion by 4 weeks p.i. and were favored hosts for Mtb 

at that time. This increase was due mostly to recruitment, with a minor contribution from 

phenotypic shift of AM resident in the lung prior to aerosol Mtb challenge as 

demonstrated by lentiviral GFP labeling. By 10 weeks p.i., the predominant AFB+ 

monocytic cells were RM. The basis for that switch is presently unknown but might 

relate to the reported increase of GM-CSF and decrease of M-CSF in the lung over time 

after aerosol Mtb infection, which correlates with reduced DC-like cell surface markers 

and increased foamy macrophages (120). The extent to which mDC and RM defined by 

surface phenotype differ at a functional level is unknown. They might differentially 
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restrict or permit Mtb replication, differ in their response to IFN-γ, or differ in 

susceptibility to cytolysis. Ryan et al. (136) reported that Mtb induces non-apoptotic 

death of human peripheral blood-derived DC, with some features similar to those of 

murine BMDM challenged at high MOI in vitro. Our in vivo data imply that tissue mDC 

are subject to burst size cytolysis, but this has not been directly tested in vitro. IFN-γ-

activated BMDM restrict Mtb replication in vitro more effectively than activated bone 

marrow-derived DC (137). If that difference holds in vivo, it would favor RM survival 

with a sub-lethal Mtb load and the preferential accumulation of these cells in the lung 

over time p.i. Loss of heavily infected monocytic cells during the process of flow sorting 

prevented us from comparing the distribution of AFB loads within purified populations of 

mDC, RM and AM. We are exploring alternative approaches to generate such data. 

 We confirmed that neutrophils are also major Mtb host cells in vivo, albeit with a 

narrower range of AFB load than monocytic cells. As a proportion of all AFB+ cells, 

neutrophils were major Mtb hosts in the period of logarithmic increase of total lung 

bacillary load. The proportion of neutrophils with relatively high burden (6-15 AFB) also 

peaked at 2-3 weeks p.i. in WT mice. In GKO mice, total lung Mtb burden and infected 

neutrophils increased logarithmically until death. Cytokines play a major role in the 

positive and negative regulation of neutrophil trafficking to the lung in TB. Nandi and 

Behar reported that coincident with the induction of adaptive immunity, IFN-γ inhibits 

neutrophil accumulation in part by reducing Th17 differentiation (24). We found that 

neutrophils accounted for half of all AFB+ leukocytes on day 18 p.i. in WT mice, despite 

being a distinct minority of total lung leukocytes at that time. This indicates that 
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neutrophils are recruited to the proximity of necrotic cells at foci of Mtb infection in the 

lung. We propose that death-associated molecular patterns (DAMPs) released from 

monocytic cells undergoing Mtb-induced necrosis contribute to neutrophil recruitment 

and activation in TB. In that regard, we previously described neutrophil-rich 

inflammation and a high frequency of cell death in pulmonary TB lesions of diabetic and 

hypercholesterolemic mice that express IFN-γ to an equal or greater extent than mice 

without metabolic disorders (106, 133, 138), and we showed that HMGB1 is released in 

the course of Mtb burst size cytolysis (139). Despite their recruitment to TB lesions and 

phagocytosis of bacilli, neutrophils are unlikely to host multiple rounds of Mtb 

replication before dying by spontaneous apoptosis or by NETosis.  

 In summary, our data support a burst size model for Mtb cytolysis in vivo. The 

features of this atypical necrotic death that we characterized in vitro are favorable for an 

exit mechanism in vivo. Mtb-induced cell death occurs at a threshold intracellular burden, 

it liberates the bacilli free of apoptotic vesicles, and it has little impact on Mtb viability. 

We did not find any DAPI-stained cells with fragmented nuclei or signs of apoptotic 

vesicle formation by scanning EM of BAL or lung leukocytes in the present study. While 

classical apoptosis has clearly been demonstrated in TB, our data suggest that burst size 

necrosis is a common fate for Mtb-infected monocytic cells in vivo. The burst size model 

logically fits into the pathogenesis of TB but our results highlight complex host-pathogen 

interactions. Resident AM are a transient niche for Mtb immediately after inhalation, but 

bacilli rapidly move into cells with surface phenotypes of mDC or RM, preferentially 

infecting the former early in disease and then shifting to the latter during stationary 
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persistence. Neutrophils avidly acquire bacilli in the 3 week interval of logarithmic 

increase in total lung bacterial load. Their trafficking may be regulated in part by DAMPs 

released through burst size cytolysis of Mtb-infected cells. Neutrophils may promote host 

defense in the transition from innate to adaptive immunity(25, 140), but play a 

detrimental role if they accumulate in excess, as occurs with poorly controlled TB in 

mice and in humans (22, 138, 141). NETs lack antimicrobial activity against Mtb in vitro 

(134). Their potential to reduce Mtb viability in vivo is presently unknown. In 

neutrophilic TB lesions, NETs might promote lung injury as they were shown to do in a 

mouse influenza model (142). It is interesting to consider what role NETs could play in 

forming a milieu that supports extracellular persistence of Mtb in necrotic lung lesions. A 

refined understanding of host-pathogen interactions in TB will require analysis of unique 

Mtb interactions with each of these phagocyte types in vivo, using cells isolated from the 

tuberculous lung. 
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CHAPTER III: Neutrophil Recruitment and Infection is Associated 

with Bacterial Replication in Tuberculosis 

 

3.1 Abstract 

 We previously reported that burst size necrosis is the chief mode of mononuclear cell 

death in the lungs of mice infected with Mycobacterium tuberculosis and that neutrophils 

are major host cells for M. tuberculosis in the period of logarithmic bacterial growth 

before adaptive immunity is expressed. The present study explored the link between burst 

size necrosis and neutrophil accumulation in the lungs of wild-type C57BL/6 mice 

infected with one of four M. tuberculosis strains of increasing virulence (RvΔphoPR 

mutant, H37Ra, H37Rv and Erdman). At every time point studied, Erdman produced the 

highest bacterial load and the highest proportion and number of M. tuberculosis-infected 

neutrophils despite total lung neutrophil counts similar to H37Rv. These parameters, 

along with the proportion of TUNEL-positive cells, tracked with virulence across all 

strains tested. Differences in neutrophil infection were not reflected by levels of 

chemoattractant cytokines in bronchoalveolar lavage fluid, while interferon-γ (reported to 

suppress neutrophil trafficking to the lung in tuberculosis) was highest in Erdman-

infected mice. Treating Erdman-infected mice with ethambutol resulted in a dose-

dependent decrease in proportion of mononuclear cells with high bacterial burden and a 

dose-dependent decrease in the ratio of infected neutrophils to infected mononuclear 

cells. We conclude that faster replicating M. tuberculosis strains produce more burst size 
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necrosis that in turn drives neutrophil recruitment, overriding cytokine counter-

regulation. Neutrophils infected with M. tuberculosis constitute a biomarker for poorly 

controlled bacterial replication, high rates of infection-induced mononuclear cell death, 

and increased severity of pulmonary immune pathology in tuberculosis. 

3.2 Introduction 

 We previously reported that necrotic cell death of mononuclear phagocytes (MPs) 

infected with Mycobacterium tuberculosis Erdman is associated with high intracellular 

bacterial burden and is the predominant form of cell death in tuberculosis (TB) disease in 

vivo (143). Our data from in vivo and in vitro experiments support the concept of burst 

size cytolysis in MPs containing 20-40 bacilli (103, 104, 143). This necrotic cell death 

mode relies on mycobacterial genes regulated by the PhoPR 2-component system but it is 

independent of Esx-1 (104). Neutrophils comprised roughly half of all M. tuberculosis-

infected lung leukocytes 3 weeks after aerosol challenge with Erdman. Bacterial burden 

increases logarithmically at this early stage of TB disease, prior to the full expression of 

adaptive immunity in the lung (143). At later time points, when total lung bacillary load 

is constrained to a plateau level by host immunity, the proportion of neutrophils amongst 

all M. tuberculosis-infected phagocytes fell to ~10%. Mice lacking interferon (IFN)-γ 

failed to restrict Erdman replication and had a rising proportion of infected neutrophils 

until death. These results suggested the hypothesis that neutrophils are recruited to TB 

lesions in response to signals associated with burst size necrosis of MPs.  

 In the present study, we investigated the impact of M. tuberculosis replication rate on 

neutrophil recruitment to the lung and its influence on the pathology of TB disease. To 
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test the hypothesis that bacillary replication drives MP necrosis and consequently 

neutrophil recruitment to TB lesions, wild-type C57BL/6 mice were challenged with one 

of four M. tuberculosis strains differing in virulence: Erdman, H37Rv, H37Ra, or an 

H37Rv mutant lacking the phoPR coding region (RvΔphoPR). Results confirmed that 

bacterial replication during the innate phase of the host response correlated with the total 

number of lung leukocytes infected with acid-fast bacilli (AFB), the proportion of M. 

tuberculosis-infected (AFB+) leukocytes that were neutrophils and the distribution of 

AFB burden per cell in MPs and neutrophils. There was no biologically significant 

difference in the levels of IL-1α, IL-1β, IL-17, KC (CXCL1) or MIP-2 (CXCL2) in 

bronchoalveolar lavage (BAL) fluid at 2 weeks post-infection with any of the four strains 

despite presenting dramatic differences in AFB+ neutrophils. At the same time point, 

IFN-γ was 15-fold higher in BAL from Erdman-infected mice compared to the other 

strains. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining 

of lung sections showed that Erdman induced the most cell death, followed by H37Rv 

and then H37Ra. By light and fluorescence microscopy, neutrophils were identified 

adjacent to TUNEL+ cells. Finally, treating Erdman-infected mice with ethambutol 

resulted in a dose-dependent reduction in the proportion of monocytic cells with high 

intracellular AFB load, a shift to lower AFB load in infected neutrophils and a drop in the 

proportion of neutrophils amongst all AFB+ phagocytes. These results support a model 

where the rate of M. tuberculosis replication and consequent burst size necrosis of MPs 

drives neutrophil recruitment to TB lesions despite potentially counter-regulatory 

cytokine signals. 



83 
 

3.3 Materials and Methods 

 Mice. C57BL/6 mice were purchased from The Jackson Laboratory and housed in 

pathogen-free environment at Animal Medicine facility at The University of 

Massachusetts Medical School (UMMS). Experiments using mice were conducted in 

accordance with the guidelines set by the National Institutes of Health regarding the 

housing and care of laboratory animals. All animal experiments were performed under 

protocols approved by the Institutional Animal Care and Use Committee and the 

Institutional Biosafety Committee at UMMS. 

 Bacterial strains and M. tuberculosis infection. M. tuberculosis Erdman, H37Rv, 

H37Ra (provided by H. Remold) and RvΔphoPR mutant (provided by K. 

Papavinasasundaram) (2) were used in this study. Infections were performed by 

delivering ~100 CFU of M. tuberculosis Erdman, H37Rv or H37Ra by aerosol route 

using Glas-Col Inhalation Exposure System or ~400 CFU for RvΔphoPR. For every 

experiment, the delivered dose was verified by sacrificing two mice 24 h after exposure 

and plating lung lysates for CFU. 

 Bacterial culture. Bacterial burden was determined by counting CFU of infected 

lung homogenates. At indicated time points, lungs were harvested and homogenized in 1 

ml of PBS with 0.05% Tween 80 using a Bullet Blender (Next Advance) tissue 

homogenizer. Lung homogenates were serially diluted 10-fold and 100 μL of three 

consecutive dilutions, depending on the strain, were plated in duplicate on Middlebrook 

7H11 agar plates supplemented with Middlebrook OADC  Enrichment. Plates were 

incubated at 37°C and CFU were counted 2, 3 and 4 weeks after plating. 
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 Cell preparation. Whole lung leukocytes were isolated by sacrificing infected mice 

and perfusing the heart with PBS. Lungs were excised, minced and then incubated with 

150 U/ml collagenase IV (Sigma-Aldrich) and 60 U/ml DNase (Sigma-Aldrich) for 45 

min at 37°C with constant agitation. Lung tissues were filtered through a 40 μm cell 

strainer and treated with Gey's Solution (Sigma-Aldrich). Single lung cell suspensions 

were used for flow cytometry and cytospin preparation. 

 Enumeration of intracellular bacteria. Isolated whole lung leukocytes at a density 

of 1 x 105 cells per slide were immobilized onto cytospin slides by cytocentrifugation. 

Cytospin slides were heat fixed and processed for Ziehl-Neelsen staining (TB Stain Kit, 

BD Diagnostic Systems). Using light microscopy, each cell was examined for 

intracellular AFB and AFB counts were grouped into five bins: 1-5, 6-10, 11-15, 16-20 

and ≥21. Based on nuclear morphology, infected cells were identified as neutrophi ls or 

MPs (comprising alveolar macrophages, recruited monocytes/macrophages, myeloid 

dendritic cells). AFB counts were tallied separately according to the cell type. 

 Flow cytometry. Single lung cell suspensions were incubated in CD16/CD32 mAb 

(BD Biosciences) to block Fc binding. The following mAb purchased from eBioscience 

(San Diego, CA) were used for staining cell surface markers: CD11b-PerCP-Cyanine5.5 

(M1/70), CD45-APC (30-F11), Ly-6G-Alexa Fluor 700 (RB6-8C5). Live/Dead Fixable 

Dead Cell Stain Kit was purchased from Invitrogen. Data was acquired using LSRII flow 

cytometer (BD Biosciences) and analyzed with FlowJo software (TreeStar). The gating 

strategy excluded dead cells and lymphocytes by forward and side scatter. Gating on 

CD45+ cells, neutrophils were defined as Ly-6Ghi CD11bhi cells. 
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 Histology, TUNEL assay and immunostaining. M. tuberculosis-infected lungs were 

inflated with 10% buffered formalin and fixed for 24 h. Paraffin embedded sections were 

stained with hematoxylin and eosin (H&E) for histopathology. The In Situ Cell Death 

Detection Kit (Roche) was used for TUNEL assay. For immunostaining of lung sections, 

primary Ab against myeloperoxidase (MPO; LS Bio) and secondary Ab Alexa 555 

(Invitrogen) were used. The In Situ Cell Death Detection Kit (Roche) with fluorescein-

dUTP was used to detect TUNEL+ cells. All histology work was performed by the DERC 

Morphology Core facility at UMMS. Lung sections were analyzed using Nikon Eclipse 

E400 Microscope equipped with a Nikon DS-Ri1 camera using NIS-Elements 

Microscope Imaging Software or Spot Advance Software.  

 Cytokine measurement. BAL fluid was obtained by flushing infected lungs with 

lavage fluid (0.2% BSA 0.2mM EGTA in PBS) three times. BAL fluid was filter-

sterilized and stored at-80°C until ready for use. Cell-free lung lysates were prepared by 

adding equal volumes of homogenized lung tissue in PBS with 0.05% Tween 80 to T-

PER tissue protein extraction reagent (Thermo Scientific). The mixture was incubated (20 

min, 4°C) then centrifuged (10 min, 12,000 x g) and the supernatant was filter sterilized 

and stored at -80°C until used. BAL fluid and lung lysates were individually assayed for 

IFN-γ, IL-1α, IL-1β, IL-17, JE (CCL2), KC, MIP-2, (R&D Systems), HMGB1 (IBL 

International) and S100A8/A9 (CusaBio) by ELISA following the manufacturers' 

protocols. Absorbance was measured using Thermo-Multiskan Ascent ELISA reader 

(Thermo Scientific).  
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 Ethambutol treatment. Four days after mice were challenged with ~100 CFU of M. 

tuberculosis Erdman via aerosol route, ethambutol (EMB; Sigma-Aldrich) was provided 

to the infected mice ad libitum in drinking water at concentrations of 67, 200 and 600 

μg/ml. Water bottles containing EMB were replaced weekly and drug therapy continued 

for 11 days until the 2 week post-infection time point. 

 Statistical analysis. For Figure 1D, the data followed an approximate Poisson 

distribution; therefore we compared the median values by strain at each time point and 

bin using a Poisson regression model, and expressed the differences as ratios to a 

reference group and tested their statistical significance. For all other data, statistical 

analysis was performed using SigmaPlot v11.0 (Systat Software, Inc.). One-way 

ANOVA with Tukey or Holm-Sidak post-test was used for comparison with more than 

two groups and Student’s t-test was used when comparing two groups. A P value <0.05 

was considered statistically significant. 

3.4 Results 

 Lung bacterial burden and leukocyte infection reflect M. tuberculosis virulence. 

To investigate the influence of virulence on the distribution of intracellular 

M. tuberculosis infection among lung leukocyte populations, wild-type C57BL/6 mice 

were challenged by aerosol with one of four M. tuberculosis strains. The panel of bacteria 

included two commonly used virulent laboratory strains (Erdman and H37Rv) and two 

strains of reduced virulence (H37Ra and RvΔphoPR). Based on the association of 

mycobacterial virulence with faster in vivo doubling times (144) and a burst size model of 

horizontal transmission within the host, we predicted that M. tuberculosis virulence 
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would also be reflected in the distribution of bacilli between MPs and neutrophils and the 

distribution of AFB loads within individual leukocytes of both types. 

 Aerosol conditions were set to deliver ~100 CFU of Erdman, H37Rv or H37Ra and 

~400 CFU of RvΔphoPR to the lung. Total lung burden of each strain was measured at 2, 

4 and 24 weeks post-infection (p.i.) by counting CFU of plated lung homogenates (Fig. 

3.1A). All four strains exhibited logarithmic growth during the predominantly innate 

phase of host defense in the first 2 weeks p.i. Erdman had the highest replication rate in 

this interval, achieving 2 logs greater mean CFU than H37Rv which had the second 

highest number. Of the attenuated strains, mean CFU for RvΔphoPR was ~0.5 logs lower 

than H37Rv while H37Ra was a further ~0.5 logs lower than RvΔphoPR. Mean lung 

CFU for Erdman, H37Rv and H37Ra increased by 4 weeks p.i., while RvΔphoPR 

dropped by nearly 0.5 logs and was at least 2 logs lower than the other strains. At 24 

weeks p.i., Erdman and H37Rv declined slightly while H37Ra dropped more than 1 log 

from its 4 week p.i. high point.   

 The M. tuberculosis growth curves reflected the hierarchy of bacterial virulence. 

Results confirmed the substantially faster doubling time for Erdman compared to H37Rv 

noted by North and Izzo in CB-17 mice infected intravenously with 2 x 105 bacilli (144). 

The earlier control of Erdman could reflect accelerated kinetics of immune priming due 

to faster dissemination from lung to lymph node as proposed by Chackerian et al. (145).  

The early control of RvΔphoPR more likely reflects susceptibility of the pathogen to the 

effector mechanisms of host immunity.  
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 To investigate the correlation between total lung bacterial burden and infection of 

phagocytic cells, whole lung leukocytes were isolated by enzymatic digestion and 

immobilized by cytocentrifugation onto slides for Ziehl-Neelsen staining. Leukocytes 

containing any AFB were counted for each M. tuberculosis strain at each time point (Fig. 

3.1B). The total number of AFB+ leukocytes for all strains increased logarithmically in 

the first 2 weeks p.i. Between 2 weeks and 4 weeks p.i., total AFB+ cells from mice 

infected with Erdman, H37Rv and H37Ra continued rising logarithmically but at a lower 

rate. In mice infected with RvΔphoPR, total AFB+ lung leukocytes were confined to a 

plateau level nearly 3 logs lower than the Erdman group. Between 4 weeks and 24 weeks 

p.i., there was a slight trend for increased total AFB+ cells in mice infected with Erdman, 

H37Rv and H37Ra but at a much slower rate than in the first 4 weeks p.i. The slight 

increase of AFB+ leukocytes for all three strains occurred despite a decline in total lung 

bacterial burden that was modest for Erdman and H37Rv but >1 log for H37Ra. 

 The relative proportion of M. tuberculosis-infected neutrophils at 2 weeks p.i. was 

much greater in mice infected with Erdman than the other bacterial strains (Fig. 3.1C). 

No AFB+ neutrophils were identified in lung leukocytes from mice infected with 

RvΔphoPR. We interpreted these results as demonstrating a correlation between bacterial 

doubling time and horizontal spread of infection within the population of phagocytes 

recruited to the lung during the innate phase of host immunity, and a correlation of 

bacterial replication rate with burst size necrosis and neutrophil recruitment to the site of 

infection. These dynamics are curtailed when adaptive immunity reduces the proportion 

of MPs that remain permissive for M. tuberculosis replication, which in turn reduces the 
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rate of burst size necrosis. Total AFB+ lung leukocytes remained elevated at 24 weeks p.i. 

as control of M. tuberculosis replication prevented burst size necrosis in a high proportion 

of infected MPs, extending their survival with a sub-lethal intracellular M. tuberculosis 

load. 

 Phagocyte bacterial burden reflects M. tuberculosis replication rate and host 

immunity. To evaluate the distribution of M. tuberculosis burden on a per cell basis over 

the course of pulmonary TB disease, AFB per cell were counted in individual MPs and 

neutrophils as we previously described (143). Counts were grouped into five bins 

comprising cells with 1-5, 6-10, 11-15, 16-20 or ≥21 AFB per cell (Fig. 3.1D, E). The top 

bin reflected the fact that 20 AFB was the highest number that could be reliably counted 

within an infected cell by light microscopy. This number also approaches the estimated 

burst size range for M. tuberculosis Erdman in vivo (143). In the present study, the 

distribution of bacillary loads within MPs at 2 weeks p.i. largely matched the prediction 

for a burst size model with the majority of infected cells containing 1-5 bacilli and fewer 

than 10% containing ≥21 AFB (Fig. 3. 2). An exception was H37Ra where no MPs 

containing >15 bacilli were identified at that early time point. This might reflect random 

variation or methodological limitations but the data could reflect the induction of 

apoptosis by H37Ra at low MOI as was reported after in vitro infection of macrophages 

with this attenuated strain (146). A similar finding of fewer bacteria per infected 

phagocyte was also observed in mice challenged by aerosol with a pro-apoptotic (ΔnuoG) 

mutant of H37Rv (81). 
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 Control of bacterial replication in TB is only achieved with the expression of adaptive 

immunity at the site of disease (26).  By 4 weeks p.i., the proportion of MPs with high 

AFB loads was reduced by a factor of 10 or more (Figs. 3.1D, S1). This was consistent 

with immune-mediated enhancement of antimicrobial activity that is effective in most but 

not all M. tuberculosis-infected MPs with the greatest impact on the less virulent strains. 

By 24 weeks p.i., Erdman was the only strain where cells with ≥21 AFB could be 

detected. In H37Rv-infected mice, MPs had ≤20 AFB, and MPs from H37Ra -infected 

mice contained ≤10 AFB. We interpreted the persistence of cells heavily infected with 

Erdman and to a lesser extent H37Rv as evidence of ongoing M. tuberculosis replication 

in a reduced proportion of MPs that was balanced by elimination so that total lung CFU 

was held to a plateau value. This model is consistent with evidence for ongoing M. 

tuberculosis replication during the plateau phase of TB disease in mice that was detected 

using an unstable plasmid replication clock (135). The capacity for persistent growth 

under immune pressure was greatest for Erdman, less so for H37Rv and nil for H37Ra. 

 The infection rate and distribution of AFB load in neutrophils from mice infected 

with Erdman was consistent with our earlier report (143). The maximum neutrophil AFB 

load with Erdman was 11-15 at 2 weeks p.i., falling to 6-10 at 4 weeks and 1-5 at 24 

weeks (Fig. 3.1E). At 2 weeks p.i., lungs of mice challenged with H37Rv or H37Ra had a 

lower proportion and total number of AFB+ neutrophils than the Erdman group. The 

distribution of bacterial loads in neutrophils was limited to ≤10 AFB for H37Rv at 2 

weeks p.i. falling to ≤5 by 4 weeks p.i. Neutrophils from H37Ra -infected mice contained 

≤5 AFB at 2 weeks and 4 weeks p.i. No AFB+ neutrophils were identified in lung 
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leukocytes from mice infected with RvΔphoPR and by 24 weeks p.i. none were seen in 

H3Ra-infected mice. The temporal pattern of neutrophil infection was consistent with a 

model where these cells are recruited to sites of burst size necrosis, which are fewer as 

adaptive immunity restricts M. tuberculosis replication. We previously reported that 

RvΔphoPR is attenuated for the capacity to cause macrophage necrosis, even when 

delivered at high MOI in vitro (104). That phenotype would be predicted to result in a 

reduced capacity to escape macrophages through cytolysis in an M. tuberculosis strain 

that retains the virulence-associated phenotype of apoptosis suppression (92, 96). This 

would account for its restricted horizontal spread of infection amongst recruited lung 

leukocytes in vivo and in particular for the absence of detectable uptake by neutrophils.  
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Figure 3.1 Growth and distribution of M. tuberculosis strains in murine host.(A) Total lung CFU of M. tuberculosis 
Erdman, H37Rv, H37Ra at 2, 4 and 24 weeks after aerosol infection (RvΔphoPR at 2 and 4 weeks only). The 
values are presented as mean log10 CFU (n=4). Mice infected with Erdman had significantly higher CFU than the 
other mycobacterial strains, P<0.001 for all strains at 2 and 4 weeks p.i. and P<0.01 for H37Rv at 24 weeks p.i. 
Total lung CFU of H37Rv was significantly higher than H37Ra or RvΔphoPR, P<0.001 at 2 and 4 weeks p.i. and 
P<0.001at 24 weeks p.i. (B) Whole lung leukocytes were isolated and cytospin preparations were made for acid-
fast staining. The total number of M. tuberculosis-infected (AFB+) lung leukocytes was calculated by multiplying 
the percent of enumerated AFB+ cells by the total number of leukocytes in each sample. The data represent the 
mean log10 AFB+ cells (n=3). Erdman-infected mice had the greatest number of AFB+ leukocytes, P<0.001 for 2 
and 4 weeks p.i. and P<0.01 for 24 weeks p.i. H37Rv-infected mice had significantly more AFB+ leukocytes than 
mice infected with H37Ra or RvΔphoPR at 2 weeks p.i., P<0.01. At 4 weeks p.i., both H37Rv and H37Ra infected 
mice had significantly more AFB+ leukocytes than RvΔphoPR-infected mice, P<0.001. (C) The distribution of 
infection between neutrophils and mononuclear phagocytes was determined by counting AFB+ leukocytes from 
lungs harvested at 2 weeks p.i. Results are expressed as mean % AFB+ cells ± SD (n=3). * P<0.001. Intracellular 
AFB loads of M. tuberculosis Erdman, H37Rv, H37Ra and RvΔphoPR in mononuclear phagocytes (D) and 
neutrophils (E) at indicated time points were enumerated by microscopy. The number of AFB per cell was 
counted at the indicated time points with counts grouped into five bins of 1-5, 6-10, 11-15, 16-20, or ≥21 AFB. 
Data are presented as log10 AFB+ cells in each bin ± SD. Statistically significant differences (P<0.05) are not 
shown for sake of clarity. All strains, bins and time points were compared using a Poisson regression model. 
Among significant differences, Erdman-infected mice yielded more AFB+ mononuclear phagocytes and more 
AFB+ neutrophils for all bins at all time points compared to the other M. tuberculosis strains. 
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 Progressive lung pathology correlates with M. tuberculosis virulence. To compare 

pulmonary immune pathology in mice infected with Erdman, H37Rv or H37Ra, we 

examined H&E stained lung sections from mice challenged with a low aerosol dose of 

each M. tuberculosis strain (Fig. 3.3A). Inflammation was quantified by morphometric 

analysis of H&E stained sections, measuring the combined area of all the inflammatory 

lesions expressed as the % of total lung area examined at x20 magnification (Fig. 3.3B). 

At 2 weeks p.i., an average of 35 lesions per mouse was identified in the Erdman-

challenged group and this inflammation occupied ~2% of total lung area. In contrast, 

only one lung lesion per mouse was visible in the H37Rv-infected group (0.03% of total 

lung area) and no lesions were visible at this magnification in lungs from mice infected 

with H37Ra. Inflammation in Erdman-infected mice occupied 12.5% of total lung by 4 

weeks p.i. with values of 1.5% and 0.4% in mice infected with H37Rv or H37Ra, 

respectively. At the 24 week p.i. time point, lung architecture was extensively damaged 

in the Erdman group with 40% of total lung area involved. Inflammation progressed to 

Figure 3.2. Proportion of bacillary loads in mononuclear phagocytes. Wild-type mice were challenged with M. 
tuberculosis Erdman, H37Rv, H37Ra or RvΔphoPR by aerosol. Lung leukocytes were harvested 2, 4 and 24 
weeks p.i.(only 2 and 4 weeks for RvΔphoPR-infected mice) and cytospin slides were processed for Ziehl-
Neelsen staining. AFB per mononuclear phagocyte were counted on cytospin samples and stratified into 
indicated bins. Results are expressed as mean % AFB+ mononuclear cells within each bin ± SD. 
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involve 22.6% of lung area in H37Rv-infected mice and 1.3% of total lung area in the 

H37Ra group. In the phase of murine TB disease following the expression of adaptive 

immunity (4 and 24 weeks p.i.) total AFB+ leukocytes were nearly equal in mice infected 

with H37Rv vs. H37Ra group (Fig. 3.1B), yet the area of inflammation was much lower 

in  H37Ra-infected lungs (Fig. 3.3B). Bacterial replication (reflected by high AFB per 

cell in MPs; Fig. 3.1D) appeared to be a more significant driver of immune pathology 

than total number of M. tuberculosis-infected leukocytes. Notably, the inflammatory 

infiltrates in the lungs of H37Ra-infected mice were nearly devoid of neutrophils, 

whereas neutrophils were common in the pulmonary immune pathology of mice infected 

with Erdman and, to a lesser extent, H37Rv (Fig. 3.3C). We examined 4-week p.i. lung 

sections immunostained for myeloperoxidase (MPO) to detect neutrophils, finding no 

MPO signals from H37Ra-infected mice (data not shown) whereas MPO+ neutrophils 

were present in mice infected with Erdman and H37Rv.  
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Figure 3.3 Histopathology of M. tuberculosis-infected lungs. Wild-type mice were challenged with ~100 CFU of 
M. tuberculosis Erdman, H37Rv or H37Ra via aerosol route. Infected lungs were harvested at indicated time 
points and processed for H&E staining. (A) Representative photomicrographs at 2, 4 and 24 weeks p.i. 
(magnification x20). (B) Cross-sectional areas of all lung tissue sections were examined by light microscopy and 
measured for total lung area and areas of inflammation. Calculation for the percent of area of inflammation was 
derived from ((cumulative summation of inflamed areas)/(total lung area surveyed) x 100). Values are mean ± SD 
(n=3). * P<0.05 , ** P<0.001. (C) Representative images of MPO+ neutrophils in red fluorescence from lung 
sections of Erdman- and H37Rv-infected mice at 4 weeks p.i. (magnification x400). 
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 Increased cell death in lung lesions of M. tuberculosis Erdman-infected mice. To 

compare the extent of cell death at the tissue level in mice infected with each of the four 

M. tuberculosis strains, lungs were harvested for TUNEL assay. Lung sections from 2 

and 4 weeks p.i. were examined at x20 magnification to identify five fields of 

inflammatory infiltrates having the most abundant TUNEL+ cells in each section. In the 

selected fields, all TUNEL+ and TUNEL- cells were counted (Fig. 3.4A). At 2 weeks p.i., 

Erdman yielded an average of 7.6% TUNEL+ cells, which was nearly 6 fold higher than 

the other three strains. At this time point, the proportion of TUNEL+ cells was 

comparable in mice infected with H37Rv, H37Ra or RvΔphoPR. At 4 weeks p.i., lesions 

from Erdman-infected mice contained a mean of 11.1% TUNEL+ cells, while 5.0% and 

2.3% of cells were TUNEL+ in mice infected with H37Rv and H37Ra, respectively. At 

this time point, no TUNEL+ cells were identified in lung sections from mice infected with 

RvΔphoPR. At 24 weeks p.i., extensive lung tissue damage made it unfeasible to 

enumerate individual TUNEL+ cells, particularly in Erdman-infected mice (Fig. 3.4B). 

Areas of TUNEL staining were exclusively confined to necrotic lesions with densely 

packed leukocytes having both nuclear and cytoplasmic TUNEL staining. In these areas, 

cellular borders were mostly indistinguishable. The size of TUNEL+ regions paralleled 

the area of lung inflammation observed in H&E stained lung sections. 

 If neutrophils are recruited to the site of TB disease by damage-associated molecular 

pattern molecules (DAMPs) released from MPs undergoing infection-induced necrosis, 

then they should be found in proximity to dying cells. To further test that prediction, we 

processed lung sections from 4 weeks p.i. for combined MPO immunostaining and 
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TUNEL assay (Fig. 3.4C). By fluorescence microscopy we observed that neutrophils 

predominantly accumulated in lesions where TUNEL+ cells were also present. Virtually 

all of the TUNEL+ cells identified were MPO-, suggesting that the dead cells were 

predominantly MPs (147, 148). This impression was further supported by light 

microscopy of slides processed for colorimetric TUNEL assay (Fig. 3.4D). Although we 

were unable to count individual TUNEL+ cells at 24 weeks p.i., we did observe clusters 

of neutrophils positioned in areas of abundant TUNEL signals (Fig. 3.5). Altogether, 

these findings demonstrate that neutrophils are recruited to the immediate vicinity of 

macrophages undergoing infection-induced cytolysis where they engulf bacilli released 

into the extracellular space.  
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Figure 3.4 Cell death in lung lesions correlates with M. tuberculosis virulence. (A) Mice were infected with M. 
tuberculosis Erdman, H37Rv, H37Ra or RvΔphoPR by aerosol. Lung sections were processed for colorimetric 
TUNEL assay and TUNEL+ cells were enumerated by examining all cross-sectional areas of lung tissue sections 
and selecting 5 fields with the most TUNEL+ signals. For each field, individual TUNEL+ and TUNEL-cells were 
counted and all 5 fields were tallied. Percent TUNEL+ cells was calculated as ((total TUNEL+ cells)/(total 
cells)x100). Values are mean ± SD (n=3). * P<0.01, ** P<0.001. (B) Representative images of highest TUNEL 
signals from lung tissue sections at 24 weeks p.i. (upper panels, magnification x20; lower panels, magnification 
x200). (C) Representative immunofluorescent image of a lung section from an Erdman-infected mouse at 4 
weeks p.i. TUNEL+ cells are identified by green fluorescence and MPO+ neutrophils are identified by red 
fluorescence (magnification x400). (D) Colorimetric TUNEL assay on a representative lung section from an 
Erdman-infected mouse 4 weeks p.i. revealing neutrophils (arrows) in the vicinity of TUNEL+ cells (brown) 
(magnification x400). 
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 Neutrophil infiltration in the lungs correlates with bacterial virulence. The 

dynamics of neutrophil recruitment and intracellular infection was strikingly different in 

mice infected with an M. tuberculosis strain of high (Erdman) vs. intermediate (H37Rv) 

virulence. Between 2 weeks and 4 weeks p.i., total lung neutrophils increased 4.5 fold in 

mice infected with Erdman and 3.5 fold with H37Rv but dropped more than 1 log by the 

24 week time point (Fig. 3.6A). As a proportion of all CD45+ lung leukocytes, 

neutrophils peaked at 4 weeks p.i. (58% and 37% for mice infected with Erdman or 

H37Rv, respectively) and then fell to <3% at 24 weeks (Fig. 3.6B). At each time point, 

total lung neutrophils recovered from mice infected with either M. tuberculosis strain 

were not significantly different but the total number and proportion of M. tuberculosis-

Figure 3.5. Neutrophil clusters in lung TB lesions. Lung sections from mice infected with M. tuberculosis Erdman 
or H37Rvwere processed for H&E staining or colorimetric TUNEL assay. At 4 and 24 weeks p.i. clusters of 
neutrophils were observed predominantly in the vicinity of macrophages (H&E staining) and TUNEL signals 
(brown staining). 
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infected (AFB+) neutrophils were significantly higher in mice infected with Erdman 

compared to H37Rv (Fig. 3.6A). At the 2 week p.i. time point, AFB were detected in 

3.84% of total lung neutrophils from the Erdman group but in only 0.06% of neutrophils 

from mice infected with H37Rv. These distributions fell to 0.15% and 0.01% at 4weeks 

p.i. and then rebounded to 6.65% for Erdman and 3.22% for H37Rv at 24 weeks. The 

disproportionate number of AFB+ neutrophils in Erdman-infected mice, despite relatively 

similar total lung neutrophils in H37Rv-infected mice, suggested an association between 

macrophage burst size necrosis with the faster replicating M. tuberculosis strain along 

with neutrophil recruitment directly to the site of infection where bacilli are engulfed. 

The late rise in the proportion of AFB+ neutrophils in both groups of mice reflected a 

persistent population of infected cells within a shrinking pool of total lung neutrophils. 

 

  

Figure 3.6 Neutrophil accumulation in the lungs of mice with TB. Mice were infected with M. tuberculosis Erdman 
or H37Rv by aerosol. At 2, 4 and 24 weeks p.i. isolated lung leukocytes were analyzed by flow cytometry. 
Neutrophils were defined as Ly-6Ghi CD11bhicells. For AFB+ neutrophils, lung leukocytes were harvested and 
cytospin slides were processed for Ziehl-Neelsen staining. AFB+ neutrophils were identified based on nuclear 
morphology and acid-fast bacilli. (A) Total lung neutrophil counts and AFB+ neutrophil counts in mice infected with 
M. tuberculosis Erdman (green bars) or H37Rv (blue bars). AFB+ neutrophil counts in both groups (light green 
and light blue bars). Total neutrophil counts in Erdman-infected and H37Rv-infected mice were not significantly 
different at any time point but the number of AFB+ neutrophils was significantly greater in Erdman-infected mice 
at 2 and 4 weeks p.i. P<0.001. (B) The proportion CD45+ Ly-6Ghi CD11bhi neutrophils among all CD45+ lung 
leukocytes was higher in Erdman-infected mice (green bars) at 2 and 4 weeks p.i. compared to H37Rv-infected 
mice (blue bars). Data are presented as the mean ± SD (n=3)* P<0.01. 
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 Cytokine profile of tuberculous lung. We considered that DAMPs might provide 

dominant signals for neutrophil recruitment to TB lesions, at least during the period of 

logarithmic increase in lung bacterial load and peak levels of burst size necrosis. An 

alternative explanation is that neutrophil recruitment is mainly controlled by regulated 

cytokine signaling networks stimulated by the infecting microbes. In that case, the 

uniquely high level of neutrophil recruitment and neutrophil infection in TB lesions 

caused by M. tuberculosis Erdman should be reflected by high levels of candidate 

chemoattractant factors and low levels of factors associated with the resolution of 

neutrophilic inflammation. To test that prediction, we measured eight proinflammatory 

cytokines in BAL fluid from mice challenged with Erdman, H37Rv, H37Ra or 

RvΔphoPR at 2, 4 and 24 weeks p.i. (Fig. 3.7A). At 2 weeks, the levels of IL-1α, IL-1β, 

IL-17, JE, KC and MIP-2 were comparable in mice infected with any of the four M. 

tuberculosis strains. At 4 and 24 weeks p.i., the levels of IL-17, JE and KC in BAL fluid 

of Erdman-infected mice were by a statistically significant degree compared with the 

other two M. tuberculosis strains tested. The functional significance of those differences 

was uncertain and might reflect a result rather than a cause of greater leukocyte 

accumulation in the Erdman group at those time points. The BAL fluid of Erdman-

infected mice also had higher levels of IL-1α and IL-1β at 24 weeks. 

 In contrast to the other cytokines measured, the level of IFN-γ in  BAL fluid from 

Erdman-infected mice at 2 weeks p.i. was 14 times higher than in mice infected with 

H37Rv or the attenuated M. tuberculosis strains. Over the following two time points there 

was a rise and then a fall in IFN-γ levels for all M. tuberculosis strains but it remained 
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substantially higher in the Erdman-infected mice. Consistent with the BAL fluid results, 

the level of IFN-γ was also higher in whole lung lysate of mice infected with Erdman 

compared to H37Rv despite dilution with uninvolved tissue using that approach (Fig. 

3.7B). The elevated levels of IL-1α and IL-1β in BAL fluid of Erdman-infected mice at 

24 weeks p.i. indicated a persistent inflammatory response despite higher levels of IFN-γ 

in the mice infected with the most virulent strain of M. tuberculosis tested.  

 The calgranulins S100A8 and S100A9 as homodimeric or heterodimeric complexes 

are present constitutively at high levels in neutrophils (149). In addition to their 

intracellular functions, these S100 proteins are recognized as DAMPs released at high 

amounts at sites of infectious and non-infectious inflammatory disorders (150). Recently, 

Gopal et al. (151) linked S100A8/A9 proteins to neutrophil accumulation and damaging 

lung pathology in TB. Serum S100A8/A9 in human pulmonary TB patients was shown to 

directly correlate with severity of disease. We measured the S100A8/A9 protein complex 

in BAL fluid from mice infected with Erdman, H37Rv, H37Ra or RvΔphoPR (Fig. 3.7C). 

The levels were comparable at 2 weeks p.i. in mice infected with any of these four M. 

tuberculosis strains but at 4 and 24 weeks, the level in BAL fluid of Erdman-infected 

mice was significantly higher than in mice infected with H37Rv or H37Ra. The high 

levels of S100A8/A9 at the later time points in Erdman-infected mice may have been 

both a cause and effect of greater neutrophil accumulation in that group but there was no 

indication that these S100 proteins were a determining factor accounting for the 

predominance of AFB+ neutrophils in the Erdman group at 2 weeks p.i. 
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 Mycobacterial replication drives neutrophil recruitment in TB. It is conceivable 

that some property of M. tuberculosis Erdman other than its high replication rate and 

resultant burst size macrophage necrosis was responsible for the high rate of neutrophil 

infection in pulmonary TB lesions. To address that question, mice were challenged with 

100 CFU of Erdman delivered to the lungs and then treated for 11 days with the 

bacteriostatic drug ethambutol (EMB) at doses of 67, 200 or 600 μg/ml in drinking water, 

starting on day 4 p.i. A control group received plain water. All mice were sacrificed on 

day 14 p.i. for determination of lung bacterial load, total AFB+ leukocytes and the 

distribution of AFB load per phagocyte in MPs and in neutrophils. The 2 week time point 

was selected as the period of peak bacterial replication before the full expression of 

Figure 3.7 Lung cytokine levels during TB disease. The indicated cytokines were measured by ELISA of BAL 
fluid (A, C) and cell-free lung homogenates (B) from mice infected with indicated M. tuberculosis strains. Data are 
presented as the mean concentration± SD (n=3 or 4). * P<0.05, ** P<0.001. 
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adaptive immunity. Compared to untreated mice, there was a dose dependent decrease in 

lung CFU with EMB treatment of ~0.5 logs at 67 μg/ml and a further ~0.5 logs at 200 

μg/ml (Fig. 3.8A). Lung CFU in mice treated with EMB at 600 μg/ml was ~4 logs lower 

than untreated controls. The total number of AFB+ leukocytes mirrored the CFU counts 

(Fig. 3.8B). Treatment with EMB had a significant, dose dependent impact on the 

distribution of intracellular AFB loads in MPs, consistent with inhibition of bacterial 

replication (Fig. 3.8C). In untreated control mice, the total number of MPs containing 1-5 

AFB was 1.0 log greater than the number of cells with ≥21 AFB. This spread increased to 

1.7 logs and 2.3 logs in mice treated with EMB at 67 μg/ml and 200 μg/ml, respectively. 

No MPs containing >6 AFB were identified in mice given EMB at 600 μg/ml. There was 

a disproportionate reduction of AFB+ neutrophils compared to AFB+ MPs in mice treated 

with EMB (Fig. 3.8D). The ratio of AFB+ neutrophils to AFB+ MPs was 0.36 in control 

mice, falling to 0.19 and 0.17 in mice treated with at 67 μg/ml and 200 μg/ml, 

respectively. We interpreted these results as evidence that bacterial replication rate, 

reflected by the proportion of MPs with high AFB loads, drives burst size necrosis that in 

turn promotes neutrophil recruitment to sites of active TB disease in the lung. 
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3.5 Discussion 

 We previously reported data supporting a model of burst size necrosis for 

M. tuberculosis infected macrophages in vitro and in vivo (103, 104, 143). Following 

aerosol challenge, horizontal spread of M. tuberculosis Erdman, particularly into 

neutrophils, was curtailed by an effective adaptive immune response in wild-type 

C57BL/6 mice whereas infected neutrophils increased until death in IFN-γ-/- mice that 

Figure 3.8 Ethambutol (EMB) treatment of mice with TB. Mice were infected with M. tuberculosis Erdman by 
aerosol and treated with ethambutol at 67, 200 or 600 μg/ml for 11 days, beginning on day 4 p.i. At 2 weeks p.i. 
infected lungs were harvested and plated for CFU (A) or enumerated for AFB+ cells from cytospin slides with 
Ziehl-Neelsen staining (B-D). (A) Compared to untreated mice, there was a dose-dependent reduction of lung 
CFU in EMB-treated mice. Data represent mean (n=4). * P<0.01, ** P<0.001. (B) Total AFB+ phagocytes also fell 
with increasing dosages of EMB. * P<0.01, ** P<0.001 compared to untreated mice. (C) EMB treatment resulted 
in a dose-dependent reduction of total AFB+ MPs and a progressively lower proportion of mononuclear cells with 
high AFB loads. (D) EMB treatment resulted in a dose-dependent reduction of total AFB+ neutrophils and a lower 
proportion of neutrophils with high AFB loads at each dose increment. Only untreated mice had neutrophil AFB 
loads of 11-15 per cell while mice treated with 600 μg/ml EMB had no detectable AFB+ neutrophils. (B-D) Data 
represent mean ± SD (n=3). 
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were incapable of limiting bacterial replication in MPs (143). The present study extended 

that investigation by challenging wild-type mice with four M. tuberculosis strains of 

graded virulence as a complementary approach to study the effects mycobacterial 

replication on intracellular bacillary load, burst size necrosis and neutrophilic 

inflammation.  

 Whether classified on the basis of replication rate, total lung bacterial load or the 

extent of immune pathology, Erdman was clearly the most virulent of the four 

M. tuberculosis strains tested, followed by H37Rv and then H37Ra. As expected, the 

mutant RvΔphoPR was the most attenuated strain. The steep growth curve of Erdman 

between inhalation of ~100 CFU and the 2 week p.i. time point was matched by highest 

rate of horizontal transmission into neutrophils in that phase of TB disease. Resident 

alveolar macrophages are by far the predominant phagocytes in the normal alveolar 

airspace and therefore the most likely host cells for the first round of M. tuberculosis 

replication. Only single bacilli can be conveyed by inhalation of infectious aerosols to the 

alveolar airspaces, so the initial infection of alveolar macrophages begins at an MOI of 

one bacillus per macrophage. Our data unexpectedly demonstrate that RvΔphoPR was 

capable of limited replication in vivo, exceeding 5 AFB per cell in 50% of infected MPs 

and reaching ≥21 AFB in 3% (Fig. 3.2). The total number of RvΔphoPR bacilli in the 

lung increased by 4-5 doublings from the initial aerosol dose. Despite this replicative 

capacity there was no evidence for horizontal spread of RvΔphoPR to recruited 

leukocytes (Fig. 3.1B). That conclusion fits with the attenuated capacity for burst size 
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macrophage necrosis in vitro that we originally reported for this strain (104) along with 

the absence of neutrophil infection in vivo identified in the current study. 

 The disparities between H37Rv and Erdman were striking, as were some similarities 

between H37Rv and H37Ra. The H37Rv isolate used for our experiments was fully 

virulent in terms of reaching a plateau lung burden of ~106 CFU that persisted for 24 

weeks, along with a progressive increase in pulmonary immune pathology. It is known 

that H37Rv can spontaneously lose the expression of the cell wall lipid phthiocerol 

dimycocerosate (PDIM), resulting in its attenuation (152, 153). Although the H37Rv 

isolate used in our study retained PDIM (data not shown), it exhibited a slower in vivo 

growth rate compared to Erdman and substantially less horizontal spread into neutrophils. 

At 2 weeks p.i., the proportion of AFB+ neutrophils among all AFB+ phagocytes was 7 

fold lower in mice infected with H37Rv than in Erdman-infected mice and the proportion 

of M. tuberculosis-infected neutrophils within the total lung neutrophil population was 65 

fold lower. 

 The initial growth curve of H37Rv in the lung was steeper than H37Ra and it 

maintained a high plateau burden at 24 weeks p.i., by which time the total lung CFU of 

H37Ra declined more than 1 log. Despite these differences, the total number of AFB+ 

leukocytes in the lungs of mice infected with H37Rv or H37Ra was surprisingly close at 

the 4 and 24 week time points. At the last time point, the maximum intracellular bacillary 

burden in MPs had shifted towards lower values for H37Ra (≤10 AFB) compared to 

H37Rv (≤20 AFB). Among the factors that may contribute to these dynamics, we note 

that the survival of macrophages challenged in vitro with M. tuberculosis at MOI=1 is 
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prolonged by IFN-γ activation, which prevents bacilli from growing to a burst size load 

(93). We previously reported that IFN-γ exerts the opposite effect in macrophages with a 

high intracellular bacillary load (MOI=25) by accelerating necrosis (139). These effects 

of IFN-γ could explain the elimination of MPs containing >10 AFB at 24 weeks after 

infection with H37Ra that has limited or no replicative capacity at that late phase of TB 

disease and therefore does continuously drive some host cells to high AFB loads. 

Survival of MPs with a low burden intracellular AFB load would be extended while the 

most heavily infected cells would be eliminated. 

 Macrophage infection with M. tuberculosis has been linked to a diverse range of 

apoptotic and necrotic cell death modes, based mostly on evidence from in vitro 

experiments (154). Macrophages may respond to attenuated mycobacterial strains, 

including H37Ra, by undergoing caspase-mediated apoptosis that is believed to provide 

host-protective effects (74, 146). The slower growth rate of H37Ra in the first 4 weeks 

p.i. along with the scarcity of cells harboring >15 AFB could at least in part reflect 

macrophage apoptosis and the delivery of bacilli to acidified vacuoles following 

efferocytosis by naïve macrophages (73). Efferocytosis also provides a mechanism for 

spreading infection to naïve MP (81, 155), which might explain the ability of H37Ra to 

inhabit nearly as many lung leukocytes as H37Rv in our study. In contrast to H37Ra and 

some other attenuated strains, virulent M. tuberculosis strains suppress macrophage 

apoptosis to preserve a protected replication niche which they ultimately escape by 

triggering necrosis (103, 104, 143). This necrotic death mode shows a threshold dose 

effect at MOI 25 in vitro while evidence from mice with TB disease suggests an in vivo 
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burst size in the range of 20-40 AFB. The mechanistic basis for this bacterial load-

dependent cytolysis is presently unknown but appears to be a catastrophic event 

following lysosomal rupture that requires an intact M. tuberculosis PhoPR 2-component 

system. Under in vivo conditions it is likely that additional factors play a role in cytolysis 

but the majority of non-viable lung leukocytes in mice with TB contain >10 bacilli (143). 

 Neutrophils are increasingly recognized as major hosts for intracellular infection by 

M. tuberculosis in mice and in humans (22, 118, 143). They play a complex role in TB 

pathogenesis with host protective effects in the initiation of adaptive immunity (25, 140) 

but they promote damage when present in excess at later stages of disease (138, 141, 156, 

157). The determinants of neutrophil recruitment to sites of TB disease therefore assume 

importance as possible drug targets for host-directed therapies to limit tissue damage in 

TB. In the present study, infection with Erdman was associated with disproportionately 

high spread into neutrophils despite no significant difference in total lung neutrophil 

numbers compared to mice infected with H37Rv. The presence of AFB+ neutrophils 

unambiguously places those cells at the site of TB disease where they must, at least 

initially, engulf bacilli released from necrotic MPs.  

 Neutrophils are recruited to sites of necrotic cell death in vivo, swarming to sites of 

sterile or infectious injury (158). In contrast, apoptotic cells release lactoferrin which acts 

as a “stay away” signal specifically inhibiting neutrophil but not MP migration in 

response to “find me” signals, thereby facilitating the non-inflammatory clearance of 

apoptotic cells (159). In our experiments AFB+ neutrophils correlated with M. 

tuberculosis virulence and with time points after aerosol challenge when bacteria were 
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replicating at high rates and consequently triggering high rates of MP necrosis. Infection 

with Erdman resulted in the highest number and proportion of AFB+ neutrophils among 

total neutrophils and among total AFB+ lung leukocytes despite being the strongest 

inducer of IFN-γ, which was shown by Nandi et al. (24) to limit neutrophil recruitment 

and retention in the lungs of M. tuberculosis-infected mice. Neutrophil recruitment in 

Erdman-infected mice was not explained by the levels of several other chemoattractant 

factors in BAL fluid, suggesting that other signals perhaps in concert with DAMPs may 

override other regulatory influences. A range of neutrophil chemoattractant factors and 

pathways have been linked to DAMPs and neutrophil recruitment in TB and other 

settings, including S100A8/A9 proteins, leukotriene B4, formyl peptide receptor-2 

ligands, HMGB1, purine metabolites, MIP-2 and ENA-78 among others (151, 160-162). 

This redundancy complicates the identification of pathways. In the present study we were 

unable to link the enhanced neutrophil accumulation in Erdman-infected mice with levels 

of MIP-2, S100A8/A9 or HMGB1 in BAL fluid. We speculate that the higher level of 

S100A8/A9 at later time points in Erdman-infected mice was an effect rather than a cause 

of neutrophil accumulation. 

 In summary, the data presented here and the results from our published studies (103, 

104, 143) are consistent with a model of TB pathogenesis where bacterial replication in 

MPs reaches threshold lethal burden enabling bacilli to escape and spread infection to 

recruited phagocytes, including neutrophils, that respond to signals associated with 

necrotic cell death. The high proportion of neutrophils in TB lesions at the 24 week time 

point when areas of TUNEL-positivity were greatest (Fig. 3.4B) yet M. tuberculosis 
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replication even for Erdman was relatively low compared to 2 weeks p.i. (Fig. 3.1A) 

suggests that a feed-forward mechanism might perpetuate inflammation in more severe 

TB lesions. Neutrophils have relatively short half-lives in vivo, although there is 

contrasting evidence that their lifespan might be prolonged in TB or curtailed by 

M. tuberculosis-induced NETosis (81, 143). The high rate of burst size necrosis that 

occurs early in TB caused by fast-replicating virulent M .tuberculosis strains might cause 

neutrophils to accumulate in lesions in excess of the capacity to clear their corpses. This 

in turn would result in sustained release of DAMPs and other signals even as bacterial 

replication is restricted by IFN-γ to a limited number of permissive macrophages. Such 

dynamics could be a factor in the equilibrium between stable, expanding and contracting 

TB lesions revealed by positron emission tomography (163). Targeting pathways of 

neutrophil trafficking to sites of infection-induced necrosis might shift this equilibrium 

towards stability and contraction, thus limiting the tissue injury that is responsible for 

most morbidity and mortality in TB. 
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Chapter IV: Conclusion 

 

4.1 Summary 

 As an intracellular pathogen, Mtb must be able to survive and establish a replication 

niche within the host cell. However, to spread infection, it must also be able to exit the 

current cell in order to invade another. Many studies have shown that virulent Mtb 

prevents apoptosis and induces necrosis which supports this lifestyle. The work from Lee 

et al. (103, 104) correlated necrotic death of macrophages and high intracellular 

mycobacterial load proposing the escape mechanism of virulent Mtb is to trigger 

cytolysis when it reaches a threshold value. One of the goals of this thesis was to 

determine if in vitro high MOI induced cell death was applicable to the fate of Mtb-

infected MPs in the lungs during TB disease in vivo. The results presented in this thesis 

confirmed the in vitro observations and conformed to the predictions made by the burst 

size hypothesis. We presented a model of tuberculosis where infection was initiated by 

mycobacterial invasion of a few alveolar macrophages which progressed to the burst size 

value inducing cytolysis and facilitating dissemination. The freed bacilli infect naïve 

phagocytes and the cycle of invasion, replication and escape repeats.  

 Data from enumerating intracellular bacilli of infected MPs and neutrophils exhibited 

the predictions made based on the burst size hypothesis. Infected phagocytes displayed a 

diverse range of intracellular loads, but the proportion of cells with the lowest number of 

bacilli greatly outnumbered those with higher intracellular burden and infected cells at 
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burst size bacillary loads at were a minority. The median burst size was determined to be 

in the range of 20-40 bacilli. The percent of heavily infected cells were the highest during 

period of logarithmic bacterial expansion and then decreased significantly following the 

expression of adaptive immunity. This indicated that as heavily infected cells died they 

were replaced at a lower rate due to the host response limiting bacterial replication. It also 

greatly broadened the range between heavily infected cells and those with only a few 

bacilli. Examination of infected cells from Mtb-infected IFN-γ-/- mice revealed that in the 

absence of IFN-γ, unrestricted bacterial replication yielded progressive increase in 

heavily infected cells indicating IFN-γ rescued many infected cells from progressing to 

burst size in WT mice. Inspection of heavily infected cells from mice reflected 

morphological features from in vitro studies, substantial membrane damage and 

condensed nuclei without fragmentation. Taken together, the data supported the concept 

that bacterial replication in MPs reached a lethal cytolytic threshold (or burst size) which 

freed the bacilli to spread infection.  

 During the course of disease the primary host cell that harbored the pathogen shifted 

from one cell type to another. In the early stage of infection MPs were the only infected 

leukocytes, most likely represented by resident alveolar macrophages, the first cells to 

encounter the bacilli. After adaptive immunity, mDCs were the primary host cells, 

followed by RMs by 10 weeks p.i. AMs were a minority throughout the infection from all 

time points studied. During week 2-3 p.i. when bacterial population was expanding 

logarithmically, neutrophils were the primary host cells even though the proportion of 

neutrophils in the airspace never exceeded 20% of the total phagocytes. This indicated 
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that neutrophils were being recruited directly to the sites of necrotic MPs. The proportion 

of highest burdened neutrophils peaked during log growth of Mtb. In IFN-γ-/- mice, the 

number of infected neutrophils progressively increased until their death. Neutrophils 

from IFN-γ-/- mice exhibited formation of NETs and their current role in TB disease is 

unknown. The burst size hypothesis was revised to reflect the observation that four 

different phagocytes served as the primary host cell for Mtb (Fig. 4.1). A better 

understanding is needed in the interactions between each of these cell types and Mtb. 

 

 

 

  

Figure 4.1. Revised burst size model. After burst size necrosis the liberated bacilli are free to invade neighboring 
cells. Based on the time course of infection, the primary host cell will shift from one type to another. Resident 
alveolar macrophages will be the first cells to encounter the pathogen, during logarithmic bacterial replication, 
neutrophils are the primary host. After the expression of adaptive immunity, myeloid dendritic cells will be the 
major host cell, then during persistent phase of infection, recruited monocytes/macrophages will take the role. 
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 The rationale behind the second part of this thesis was based on noteworthy 

observations from the first part of this study. When bacterial replication increased 

logarithmically at early stage of TB disease, between week two and three p.i., neutrophils 

were the dominant host comprising roughly 50% of all infected cells although 

disproportionately, they were a minority of all phagocytes in the airspace. After the 

expression of adaptive immunity bacterial replication was constrained and infected 

neutrophils decreased to about 10% of all infected phagocytes. When bacterial replication 

was unrestricted, as seen in INF-γ-/- mice, the proportion of infected neutrophils 

progressively increased along with heavily infected MPs until death (143). This data 

indicated there is a link between burst size necrosis of MPs and infected neutrophils. The 

second part of this thesis described the continued study of burst size necrosis and the 

investigation into the impact of mycobacterial replication on burst size necrosis and the 

effect of neutrophil accumulation in the lungs. Based on the data from the first study, our 

hypothesis states that mycobacterial replication drives burst size necrosis of MPs which 

recruits neutrophils to the sites of infection (Fig. 4.2).  
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 To test that theory, four different strains of Mtb were selected, graded in virulence 

and ranked from the most virulent to the most attenuated: Erdman, H37Rv, H37Ra, 

mutant lacking phoPR coding region (RvΔphoPR). WT mice were infected with one of 

four strains and the infection outcome of each strain on the host was characterized by 

evaluating the lung bacterial burden, the distribution of bacillary loads of infected MPs 

and neutrophils, cell death rates, lung inflammation and immune response. The data from 

this study showed amongst all strains, Erdman proved to be consistently the most 

virulent. With the fastest replication rate, Erdman-infected mice yielded the highest lung 

bacterial load paired with the largest pool of infected cells. Heavily infected MPs and 

largest number of infected neutrophils were also seen in Erdman-infected mice. This was 

Figure 4.2. Burst size necrosis of MPs drives neutrophil recruitment. MPs infected with virulent Mtb undergo burst 
size necrosis when bacterial replication reaches a threshold value. Cell lysis of MPs release bacteria along with 
signaling molecules, such as DAMPs, that recruit neutrophils to sites of infection. Faster replicating Mtb will 
promote more burst size necrosis causing more neutrophils to traffic to the lung resulting in severe lung 
pathology. 



117 
 

the case for all times points tested. Erdman-infected mice produced the greatest amount 

of pulmonary inflammation with the most lesions and highest rates of cell death from 

TUNEL assays. Immunofluorescent images of MPO+ neutrophils from Erdman-infected 

mice had the highest signals compared to zero signals from H37Ra-infected mice at 4 

weeks p.i. MPO+ signals were also seen in proximity to TUNEL+ cells for Erdman-

infected mice. TUNEL stained lung section showed clusters of neutrophils localized in 

areas of TUNEL signals for both Erdman and H37Rv-infected lungs. Upon comparing 

the outcome of Erdman and H37Rv infections, while both groups had comparable 

amounts of lung neutrophils, Erdman-infected neutrophils were over 2 logs higher than 

H37Rv-infected neutrophils at 2 weeks p.i. and remained over a log at 4 weeks. This 

indicates that neutrophils are being recruited directly to the sites of MP necrosis. 

Evaluation of the cytokines from BAL at 2 weeks p.i. proved nothing significant from all 

strains tested, except for the high level of IFN-γ from Erdman-infected mice. When 

Erdman-infected mice were treated with Ethambutol, a bacteriostatic agent, in a dose-

dependent manner, the bacterial lung burden, total number of infected cells including 

heavily infected MPs and infected neutrophils all decreased.  

 The data from this study showed that none of the chemoattractant cytokines examined 

were responsible for the neutrophil recruitment in Erdman-infected mice. Erdman 

infection was a strong inducer of IFN-γ. Although IFN-γ has been shown to reduce 

neutrophil recruitment in the lungs during TB disease (24), our data suggests that some 

other signal possesses a stronger chemoattractant capacity to override the regulation of 

known cytokines. The possible candidate could be a DAMP. Studies have shown DAMPs 
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are released when Mtb-infected cells die via necrosis and many have been identified with 

neutrophil recruitment activity (13, 151, 160). In the presence of leukotriene B4 (LTB4), 

neutrophils at sites of infection could increase their accumulation by amplifying the cell 

death signal to distant neutrophils through intracellular signaling mediated by LTB4 

(158). LTB4 has also been shown to be elevated in the plasma from pulmonary TB 

patients and patients with advanced lesions had the highest values (164). This could be 

due to excess neutrophil accumulation.  

 In summary, the work presented in this thesis provides some insight to our 

understanding of the interaction between Mtb and the host in context of the cell death. 

This study showed that MPs infected with Mtb undergo necrotic cell death related to the 

high intracellular bacterial burden and this is a common fate for Mtb-infected MPs in TB 

disease in vivo. The primary host cell harboring Mtb during the course of TB disease 

shifted from one type to another. Lastly, work presented in this study revealed faster 

replicating Mtb strains promoted high rates of burst size necrosis recruiting more 

neutrophils to necrotic sites regardless of cytokine regulations increasing their infection 

rate and lung inflammation. Collectively, infected neutrophils can serve as biomarkers for 

poorly controlled Mtb infection. 

4.2 Discussion 

 The onset of adaptive immunity in the host dramatically changes the interaction 

between the host and the pathogen. In the context of Mtb infection, the induction of IFN-

γ has a profound impact on bacterial replication as reflected by the distribution of 

bacterial load per MP as demonstrated in this study between IFN-γ-/- and WT mice at 21 
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days p.i. (Fig. 2.9). This data shows the effect of IFN-γ in altering the bacterial loads, 

thus increasing the spread between the heaviest infected cells and least infected cells. The 

difference in the bacterial loads between these two groups may indicate that IFN-γ is 

involved in modifying the burst size of mononuclear phagocytes. A lower burst size is 

advantageous for the host as demonstrated from the in silico model (Fig. 2.14). A once 

sub-lethal load during innate phase of infection may be the new burst size after adaptive 

immunity thus significantly reducing the number of heavily infected cells. 

 This study demonstrated the association between bacterial replication and increased 

neutrophil accumulation and infection. It is possible that there is no preferential 

recruitment of neutrophils to sites of infection and rather Mtb-infected MPs and those 

dying from burst size necrosis release inflammatory signals to recruit any and all myeloid 

cells to these necrotic lesions. The peak of infected neutrophils during logarithmic period 

of bacterial replication may be more representative of their ability to arrive at these sites 

faster than other leukocytes. Neutrophils can move at speeds at least twice that of 

macrophages (165), allowing them to arrive at necrotic sites and engulf extracellular 

bacteria prior to the arrival of macrophages. Additionally, neutrophils have been shown 

to engulf bacteria faster than macrophages (166) which could also account for the higher 

proportion of infected neutrophils during this time. Although this study was unable to 

link neutrophil-specific signaling molecules to its enhanced recruitment, the very fact that 

DAMPs are passively released from necrotic cells and certain DAMPs are potent at 

recruiting neutrophils should be further investigated. The ability to target pathways of 

neutrophil migration to necrotic sites may lead to reduced lung injury in patients with TB.  
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 One of the highlights from this work revealed that during the course of TB disease, a 

diverse set of phagocytic cells harbors Mtb (AM, RM mDC and neutrophils) and that 

infected AM only accounted for approximately 10% of infected MPs. We also identified 

a population of resident AM that phenotypically shifted to resemble mDC. It is not 

known if these cells are functionally mDC and in what capacity they serve either the host 

or the pathogen. While the interaction between Mtb and macrophages has been studied 

extensively, it is clear that further analysis is needed in the interaction between Mtb and 

the other host phagocytes. Determining whether these cells provide a permissive or 

restrictive replication environment, response to IFN-γ and regulation of host cell fate are 

just some of the factors that need to be identified in order to enhance our understanding 

of host-pathogen interactions during Mtb infection. 

 Cell death and Mtb infection are intricately entwined as death of the host cell is an 

essential part of the pathogen's life cycle. In this study we demonstrated that during TB 

disease, necrosis is a common form of cell death for infected MPs and this death modality 

is a means for horizontal spread of infection. Although we were able to correlate 

internalized bacterial numbers with cell lysis, the bacterial factor(s) involved in triggering 

necrosis is yet unknown. Several studies have shown that ESAT-6, a secreted 

mycobacterial protein, is capable of cytolysis, damaging phagosomal membranes and 

involved in macrophage and neutrophil necrosis (86, 87, 167, 168). However, in vitro 

studies of Mtb infection-induced cytolysis revealed that necrotic cell death occurred when 

BMDM were challenged with BCG and an Mtb deletion mutant lacking both RD1 and 

EspA indicating this type of death was independent of ESAT-6 (103, 104). Perhaps 
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mycobacterial gene(s) under the control of PhoPR signaling system could be involved 

since macrophages infected with high MOI of RvΔphoPR failed to cause cytolysis (104). 

 Previous in vitro work also characterized the cellular events of lysosomal rupture and 

lethal mitochondrial damage preceding necrosis (104), but the mechanism behind the 

initiation of these critical events are yet to be discovered. Perhaps these unknown factors 

are also involved in the microdisruptions of the plasma membrane that was observed by 

Divangahi et al. during Mtb infection (94). Studies have linked necrosis triggered by Mtb 

to the production of host eicosanoid LXA4 induced by virulent strains of Mtb which 

simultaneously inhibits PGE2 production thereby preventing plasma membrane repair. 

Additionally, the suppression of PGE2 diminished its protective effect on the 

mitochondrial membrane compromising the stability of its inner membrane resulting in 

necrosis (94, 98, 99). It is unclear how Mtb influences the inhibition or production of 

these host eicosanoids. Future investigation into these areas will hopefully provide 

answers that will yield successful drug targets for therapies that will inhibit Mtb-induced 

cytolysis and/or block the pathways that cause necrotic cell death of MPs by host-derived 

therapies. 
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