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ABSTRACT 

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal 

malignancies in the United States, with an average five-year survival rate of just 

6.7%. One unifying aspect of PDAC is mutational activation of the KRAS 

oncogene, which occurs in over 90% of PDAC. Therefore, inhibiting KRAS 

function is likely an effective therapeutic strategy for this disease, and current 

research in our lab and others is focused on identifying downstream effectors of 

KRAS signaling that may be therapeutic targets. 

miRNAs are powerful regulators of gene expression that can behave as 

oncogenes or tumor suppressors. Dysregulation of miRNA expression is 

commonly observed in human tumors, including PDAC. The mir-17~92 cluster of 

miRNAs is an established oncogene in a variety of tumor contexts, and members 

of the mir-17~92 cluster are upregulated in PDAC, but their role has not been 

explored in vivo. 

This dissertation encompasses two studies exploring the role of miRNAs 

in pancreatic tumorigenesis. In Chapter II, I demonstrate that deletion of the mir-

17~92 cluster impairs PDAC precursor lesion formation and maintenance, and 

correlates with reduced ERK signaling in these lesions. mir-17~92 deficient 

tumors and cell lines are also less invasive, which I attribute to the loss of the 

miR-19 family of miRNAs. In Chapter III, I find that Dicer heterozygosity 

inhibits PDAC metastasis, and that this phenotype is attributable to an increased 

sensitivity to anoikis. Ongoing experiments will determine whether shifts in 

particular miRNA signatures between cell lines can be attributed to this 
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phenotype. Together these findings illustrate the importance of miRNA 

biogenesis, and the mir-17~92 cluster in particular, in supporting PDAC 

development and progression.  
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CHAPTER I 

Introduction 

 
“Good men, the last wave by, crying how bright 
Their frail deeds might have danced in a green bay, 
Rage, rage against the dying of the light. 
 
[…] 
 
Grave men, near death, who see with blinding sight 
Blind eyes could blaze like meteors and be gay, 
Rage, rage against the dying of the light.” 
     - Dylan Thomas 

 

Modern science has brought us to an age of incredible momentum and progress in 

the fight against human disease. Thanks to research in fields like cancer biology, 

immunology, genetics, structural biology and metabolism, many previously 

incomprehensible illnesses can now be understood and effectively fought using therapies 

targeted with molecular and even atomic precision. 

Sadly, our achievements are still far outweighed by our failures, and our 

understanding of most disease pathophysiology is incomplete. Within human disease, 

cancer presents one of the most significant hurdles to understanding because of the 

incredible diversity of aberrations in normal biology that occurs during tumor evolution. 

For decades, scientists and clinicians have fought to gain a detailed understanding of its 

molecular underpinnings, and we have consequently amassed a tremendous literature on 

the intricacies of cancer evolution. Indeed, we have even occasionally been able to 

achieve radical breakthroughs for one malignancy or another, saving hundreds of 

thousands of lives with a single drug. These successes often arise from the discovery of a 
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proverbial Achilles’ heel, but the discovery of such an exploitable weakness is 

historically a very rare event. Moreover, most of the wonder drugs do not work for 

everyone or forever. Far more often, what we obtain through research is a fractured 

understanding of the many contributing aspects of cancer, without meaningful 

integration. Most distressingly, findings that have been robustly characterized and 

repeated in animal models commonly fail to translate across species into humans, due to 

a mistaken understanding of the context of the original data or simply due to differences 

in human and mouse biology. 

This view of our progress, highlighting the difficulties and setbacks of cancer 

biology, is certainly bleak, but I think we are now at the beginning of a new age of 

discovery. Innovations in the accumulation and curation of large biological datasets have 

allowed us to begin gathering information at an unprecedented rate. The diverse paths of 

tumor evolution guarantee the continuing diversity of tumor appearance, behavior and 

response to treatment, and to date, generalizing from this spectrum has been our greatest 

hurdle to forward progress. But with continuing advancement in genome, transcriptome, 

and proteome profiling technologies, there is hope that this diversity can be built into a 

more complex and adaptable understanding in the near future.  

I offer this as a bit of hope, because the subject of this dissertation, pancreatic 

cancer, is truly one of the most devastating and intractable cancers of modern times. 

Frustration, it is probably fair to say, is ubiquitous among researchers and clinicians, but 

the pace of progress is objectively accelerating.  
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Indeed, optimism and hope are among the most impressive attributes of the 

patients, families, clinicians and researchers who battle this disease. Speaking for 

scientists and clinicians, we learn hope from patients and their families, who are, on the 

whole, unaccountably hopeful. They care deeply about progress in research, but not in the 

way one might expect. They and their families and friends go to Capitol Hill, they speak 

at symposia, they raise funds and awareness, but they aren’t doing it for themselves. They 

have hope for their own survival, true, but they work for everyone else’s future. With 

likely less than a year to live, they know that no research can help them; for them, there 

will be no last-minute wonder drug, no last-resort surgery. There is time only to live, to 

help build a better future for those who will come after, and to hope. It is for them that we 

work so hard, and it is because of the hope that they teach us, that we can manage to do it 

at all. They and their families deserve all that we, as scientists and clinicians, can achieve. 

We are the source of their hope, and they are the cause of our determination. 
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Annual deaths from pancreatic cancer in the United States have remained 

unchanged at approximately 10.9 per 100,000 individuals since 1975 (Howlader et al. 

2014). This disturbing statistic derives from our inability to detect early lesions or to treat 

advanced stages of disease. Reasons for these failures originate from both the complexity 

of malignant and premalignant disease and the particular challenges posed by normal 

pancreas anatomy. In this section, we will explore what is known about the origins and 

evolution of pancreatic cancer, as well as the modern tools that facilitate our growing 

understanding and where the field hopes to make progress in the coming years. Following 

that will be a foundational discussion of the particular class of molecules, called 

microRNAs, that constitutes the focus of my research. 

 

Normal Pancreas 

The pancreas is an organ containing two distinct compartments with disparate 

functions: the endocrine and the exocrine. The endocrine pancreas comprises 1-2% of the 

mass of the organ and is distributed throughout in the form of the islets of Langerhans, of 

which an adult human has approximately one million (Weir and Bonner-Weir 2013). 

These spheres of tissue contain distinct regions of specialized cells that secrete various 

hormones into the circulation. The major cell types and their products include α-, β-, δ-, 

ε-, and PP-cells, which secrete glucagon, insulin, somatostatin, ghrelin, and pancreatic 

polypeptide, respectively (Jain and Lammert 2009). Largely, these molecules exert 

complementary effects in the regulation of blood glucose levels, and they are coordinated 

by direct cellular monitoring of blood chemistry as well as paracrine signaling between 
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cells within the islet. Interestingly, the pancreas possesses a portal circulation between the 

endocrine and exocrine compartments, such that a portion of the hormones secreted by 

some of the islets pass in relatively high concentration through the capillary beds of the 

exocrine tissue prior to circulating into the venous system (Weaver and Sorenson 1989; 

Gorczyca et al. 2010). The physiological and pathological ramifications of this ‘insulo-

acinar’ circulation remain largely unexplored, although there is an appreciation that the 

effects of insulin and somatostatin play major roles in exocrine pancreas signaling 

(Barreto et al. 2010). The lymphatic system of the pancreas, although not histologically 

prominent, has been well-described and plays a critical role in the clearance of interstitial 

fluid for the prevention of pancreatitis (Mastracci and Sussel 2012). 

The exocrine pancreas comprises the vast majority of the organ (>95%) and 

consists predominantly of acinar cells organized around a ductal network. The pancreatic 

acinar cell is highly active in secretion and is responsible for the production of large 

quantities of digestive enzymes, including trypsinogen, chymotrypsinogen, pancreatic 

lipase, and pancreatic amylase. Trypsinogen and chymotrypsinogen are secreted as 

inactive precursors categorically referred to as zymogens, which are only normally 

activated upon exposure to enteropeptidase in the intestinal lumen. This assures that 

proteolytic activity is targeted to the digestive compartment of the gut and that the 

pancreatic parenchyma is protected from enzymatic damage (Leung and Ip 2006).  

Acinar cells possess a striking histological appearance in standard hematoxylin 

and eosin stains: their extensive reservoirs of zymogen granules are eosinophilic and 

concentrated apically, whereas their extensive rough endoplasmic reticula are basally 
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located, creating a high-contrast dichromatic cell. They are organized into small clusters 

called acini (hence their name), which facilitate the efficient secretion of fluid and 

enzymes into a shared cul-du-sac of the ductal system (Figure 1.1) (Low et al. 2010; 

Reichert and Rustgi 2011). 

The ductal network begins here, in the center of the acinus, with the suitably 

named centroacinar cell. These cells begin the job of modifying the acinar secretion by 

alkalizing it with the addition of bicarbonate (Lee et al. 2012b). Alkalization of 

pancreatic secretions is continued throughout the rest of the ductal network as the 

centroacinar cells give way to the low cuboidal cells of the intercalated ducts, and thence 

to the columnar cells of the lobular and main pancreatic ducts. Alkalization and hydration 

of pancreatic juice in these ducts is dependent on the cystic fibrosis (CF) transmembrane 

receptor, which is why individuals with CF experience pancreatic insufficiency and 

pancreatitis (Ishiguro et al. 2012). The main pancreatic duct combines with the common 

bile duct, which passes through the head of the pancreas on its journey from the liver, and 

this common duct then travels a very short distance and empties into the duodenum 

through the Sphincter of Oddi. 

When nutrients are detected by enterocytes in the small intestine, it stimulates 

enterocytes to secrete cholecystokinin-releasing peptide onto nearby I-cells in a paracrine 

fashion. I-cells then secrete cholecystokinin (CCK) into the circulation, resulting in the 

coordinated relaxation of the Sphincter of Oddi, stimulation of acinar cell secretion, and 

constriction of the gall bladder (Niederau et al. 1994; Rehfeld 2011). The activity of CCK 

is regulated by exocrine and endocrine feedback loops. Its activity is hormonally  
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antagonized by the action of pancreatic peptide and somatostatin, secreted by PP- and δ-

cells. CCK release from I-cells is also inhibited through trypsin-mediated digestion of 

CCK-releasing peptide in the intestinal lumen (Miyasaka et al. 1989). This arrangement 

allows the carefully coordinated storage and release of secretions from the pancreas and 

gall bladder, ensuring optimal digestion and assisting in glucose homeostasis.  

This anatomical arrangement also has ramifications for disease. In the event of 

ductal obstruction, backup of pancreatic enzymes or bile can occur. Stasis of pancreatic 

secretions causes pancreatitis from the action of digestive enzymes on the pancreatic 

parenchyma, and bile stasis causes jaundice, which is the backup of the yellow waste 

pigment bilirubin into systemic tissues. These obstructive effects can occur due to 

primary idiopathic or hereditary pancreatitis, gall stones, cystic fibrosis, and pancreatic 

cancer (Figure 1.1) (Lee et al. 2012b).  

 

Neoplasia 

Demographics 

 ‘Pancreatic cancer’ as a categorical term encompasses a range of distinct 

pathologies with disparate origins and prognoses, including adenocarcinoma, acinar 

carcinoma, cystadenocarcinoma, endocrine carcinomas, and rarer forms such as poorly 

differentiated or undifferentiated carcinoma (Lack 1989). However, neoplasms of the 

exocrine pancreas are dominated by pancreatic ductal adenocarcinoma (PDAC), which 

accounts for approximately 85% of all cases (Alexakis et al. 2004). Accordingly, the term 

‘pancreatic cancer’ in general usage typically refers to PDAC, which is not only the most 



15 
 

 

common form of pancreatic cancer, but also the most deadly, with an average five-year 

survival rate of 6.7% (Howlader et al. 2014). It is typically discovered in patients over 40 

years old, with a median age at diagnosis of 71 (Howlader et al. 2014). Its prevalence in 

the US makes it the fourth-leading cause of cancer-related death in the country (Jemal et 

al. 2007). 

 Environmental and behavioral risk factors for pancreatic cancer are varied, and 

between 30 and 40% of all sporadic pancreatic cancer cases can be attributable to a 

known risk factor (Yeo 2015). Smoking (Maisonneuve and Lowenfels 2015), obesity 

(Eheman et al. 2012), diabetes (Liu et al. 2015), and pancreatitis (Lowenfels and 

Maisonneuve 2004) each significantly increase one’s risk of developing pancreatic 

cancer. Due to the general population prevalence of tobacco use, obesity and diabetes, 

more pancreatic cancer cases are attributable to these risk factors than to pancreatitis, 

even though pancreatitis, particularly when chronic, contributes far greater risk 

(Maisonneuve and Lowenfels 2015).  

Most pancreatic cancers are sporadic, but between 5 and 10% of all cases can be 

attributed to an inheritable predisposition (Murphy et al. 2002; Permuth-Wey and Egan 

2009). The most dangerous heritable conditions are Peutz-Jehgers syndrome and 

hereditary pancreatitis, which carry a 132-fold and 87-fold increased risk of pancreatic 

cancer, respectively (Rebours et al. 2008; Weiss 2014; Bruenderman and Martin 2015). 

Other heritable syndromes, including familial adenomatous multiple mole and melanoma, 

hereditary non-polyposis colon cancer, and hereditary breast and ovarian cancer 

syndromes, also carry significantly increased risk of pancreatic cancer over that of the 



16 
 

 

general population. Generally, the degree of additional risk is less than that for Peutz-

Jehgers and chronic pancreatitis (Becker et al. 2014; Bruenderman and Martin 2015). The 

genetic bases of many other familial pancreatic cancer syndromes, which do not track 

with known mutations, have yet to be elucidated (Rustgi 2014). For now, high-risk 

individuals with familial pancreatic cancer are the only ones receiving active screening 

for disease (Pandharipande et al. 2014; Urayama 2015), but efforts are being made to 

define high-risk populations without a family history of pancreatic cancer who would 

benefit from screening (Bruenderman and Martin 2015). Screening methods currently 

focus on endoscopic ultrasound as the diagnostic tool with the highest sensitivity and 

specificity, which may be supplemented by mutational profiling of cellular material from 

pancreatic secretions (Urayama 2015). 

 

Initiation and Progression 

 Early neoplastic lesions of the pancreas are called pancreatic intraepithelial 

neoplasias (PanINs) because they exhibit clear evidence of neoplastic change but they are 

restricted to the epithelial layer of the duct system (Distler et al. 2014). In oncology and 

cancer biology, it is the ability to invade across the basement membrane and into other 

tissues that defines malignant disease (Hanahan and Weinberg 2011). 

PanINs are graded based on cellular and histological criteria (Hruban et al. 2001). 

PanIN-1 lesions possess a tall columnar morphology with prominent supranuclear mucin, 

but their nuclei are normal in appearance and remain basally located (Figure 1.2) (Maitra 

and Hruban 2008). PanIN-2 lesions are defined by the presence of mild nuclear  
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abnormalities including loss of polarity, crowding, and hyperchromatism, and they may 

take on papillary or micropapillary architecture. PanIN-3 lesions, which can be 

considered ductal carcinoma in situ (DCIS), are characterized by elaboration of the 

epithelial layer into papillary or micropapillary architecture that may be stratified or 

exhibit cribriforming (the appearance of many small holes piercing a stratified 

epithelium, suggestive of ductal lumens). Cells in PanIN-3 lesions also have more 

advanced nuclear atypia than what is observed in PanIN-2, including aberrant mitoses, 

significant nuclear morphology defects, and prominent nucleoli. Luminal necrosis may 

occur as aggressive proliferation in situ forces cells away from the sustaining vascular 

beds of the surrounding stroma, and dystrophic goblet cells may also be present (Maitra 

and Hruban 2008). In the strictest usage, ‘PanIN’ refers to human lesions, whereas the 

separate term ‘mPanIN’ refers to lesions described in mice, although their pathological 

criteria are equivalent. 

PDAC is classically thought to arise from PanIN-3 lesions, but it can also evolve 

from other exocrine neoplasias, notably intraductal papillary mucinous neoplasms 

(IPMNs) and mucinous cystic neoplasms (MCNs) (Distler et al. 2014). IPMNs are 

typically solitary lesions of the larger pancreatic ducts in the pancreatic head, which can 

be visualized radiographically and are considered benign in the absence of an associated 

adenocarcinoma (Castellano-Megias et al. 2014). MCNs are also benign solitary lesions, 

but in contrast to IPMN are typically found in women and are localized to the pancreatic 

tail with an ovarian-type stroma (Fukushima and Zamboni 2014). Although initiating 

mutations can differ among PanIN, IPMN, and MCN (Saiki and Horii 2014), progression 
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to PDAC from any of these precursors typically involves mutations in TP53 and SMAD4 

(Yonezawa et al. 2008). Molecular biology and progression-related events in PDAC will 

be discussed in greater detail later on in this chapter. 

 

Detection, Staging, and Treatment 

 It is known that PanINs occur in the general population at much higher 

frequencies than pancreatic cancer (Singh and Maitra 2007). The implications of this are 

profound, since it suggests that although these lesions histologically anticipate the 

development of malignancy, there are many individuals who never progress to cancer 

despite having low-grade PanINs. This is very similar to the current situation with 

prostate cancer: most older men exhibit some degree of benign prostatic hyperplasia 

(BPH), which is the precursor to prostate cancer, but most of those men will not progress 

to invasive disease, and a biomarker commonly used to stage prostate cancer is also 

produced by BPH, further complicating diagnosis (Canto et al. 2003). Similarly, any 

effective screening modality for PanINs would have to be sensitive and highly specific 

for the rarer PanIN-2 and PanIN-3 lesions, rather than the highly prevalent PanIN-1 

lesions. Thus far, very few studies have identified candidate gene signatures of advanced 

PanINs with potential as biomarkers (Pan et al. 2009; Yi et al. 2013). This is partially due 

to the difficult and expensive nature of proteomics, and recent advances in RNA biology 

have resulted in a shift towards a search for microRNA biomarkers, which can be easily 

profiled in a relatively inexpensive and high-throughput manner (Xue et al. 2013).  
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Considering the difficulties involved in detecting and discriminating PanIN 

lesions, the detection of mature pancreatic cancer in its earliest non-invasive stages is the 

highest priority. Currently the only potentially curative treatment for pancreatic cancer is 

surgical removal of localized disease. ‘Localized’ describes the fact that the tumor has 

not extended beyond the pancreas and has not metastasized to regional lymph nodes or 

more distant sites. Just 9% of all patients diagnosed with pancreatic cancer are localized 

at the time of diagnosis (Howlader et al. 2014). These patients are candidates for a radical 

surgery: a pancreaticoduodenectomy, or ‘Whipple,’ as it is often called in the US, 

memorializing the American surgeon who refined it in the 1930’s. The surgery is quite 

drastic, removing the distal portion of the stomach, most of the duodenum, the head of 

the pancreas, the common bile duct and the gall bladder. This subsequently requires re-

anastomosing of the remaining third of the duodenum to the proximal stomach, the tail of 

the pancreas, and the remaining portion of the bile duct. The procedure involves the 

dissection of numerous blood vessels which can be the source of life-threatening blood 

loss. If patients survive the surgery, then they experience the best possible prognosis for 

one who has been diagnosed with pancreatic cancer: a 25.8% chance at a five-year 

survival (Howlader et al. 2014). They spend this time adapting to insulin-dependent 

diabetes and chronic maldigestion, requiring exogenous insulin and supplementary 

pancreatic enzymes (Lindkvist 2013). Once their surgical wounds have healed, patients 

may undergo adjuvant chemotherapy to improve their chances of long-term survival. 

Treatment with the chemotherapeutic drug gemcitabine in this setting can extend median 

survival by approximately six months (Oettle et al. 2013). 
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Most patients with radiographically localized disease will undergo surgery, but in 

many cases, open surgery will reveal that the tumor has invaded adjacent structures, or 

pathological analysis of regional lymph nodes obtained during the resection will reveal 

disseminated disease. These patients with ‘regional’ disease comprise 28% of all 

pancreas cancer patients, and their five-year survival rate is 10% (Howlader et al. 2014). 

If staging is properly upgraded in the operating room prior to the full commencement of 

the Whipple, then the surgery may be aborted. However, due to the complex anatomical 

nature of the pancreas’ location in the abdominal cavity, and the aggressive potential of 

the tumors to progress in the short time between imaging and surgery, surgeons may not 

visualize or anticipate regionally advanced disease until the procedure is well under way. 

In my personal experience observing a Whipple here at the University, this occurred 

approximately eleven hours into surgery when the stomach and duodenum had been 

bisected and most major vessels to the pancreas had been ligated. It then became apparent 

that the tumor was invasive to the aorta, ruling out the possibility of clean surgical 

margins. Recent efforts have pursued pre-surgical treatments to downstage regional 

disease or preserve localized status until surgery can be performed. Such ‘neoadjuvant’ 

therapies show great promise and are improving outcomes (Rajagopalan et al. 2013; 

Ansari et al. 2014; Mellon et al. 2015). 

For the 53% of pancreas cancer patients who present with widely metastatic 

disease at diagnosis, surgery is not an option, and these patients have an appalling 2.3% 

chance of surviving for five years (Siegel et al. 2015). This is simultaneously the most 

dismal and the most common occurrence. Standard of care for these patients is a 
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chemotherapeutic regimen that has evolved from the original anti-pancreatic-cancer 

drugs, 5-fluorouracil (5-FU) and gemcitabine. 

5-FU and gemcitabine are nucleoside analogs that incorporate into the RNA and 

DNA of dividing cells, respectively, disrupting protein translation and arresting DNA 

synthesis, leading to cell death (Wilkinson et al. 1975; Plunkett et al. 1995). 5-FU was 

used for several decades as the standard of care for patients prior to the creation of 

gemcitabine (Arbuck 1990). Initial studies evaluating the benefit of gemcitabine versus 5-

FU found only a one-month improvement in median survival, but a higher percentage of 

patients on gemcitabine reported improved pain symptoms compared to those receiving 

5-FU (23.8% vs. 4.8%) (Burris et al. 1997). Since this study, oncologists have attempted 

to develop improved drug regimens using gemcitabine as the core therapeutic and 

standard of care. The best currently available treatment is a cocktail of oxaliplatin, 

irinotecan, leucovorin, and 5-FU in combination with gemcitabine. This regimen, called 

FOLFIRINOX, provides a median survival benefit of 4.3 months over gemcitabine alone, 

typically with three months of progression-free survival (Conroy et al. 2011). However, 

this regimen carries increased toxicity compared to gemcitabine, with higher rates of 

severe adverse events including neutropenia, thrombocytopenia, diarrhea, and neuropathy 

(Conroy et al. 2011). Ongoing work is being done to tailor the dosing of FOLFIRINOX 

to find efficacious schedules that will reduce toxicity, and thereby increase the number of 

patients who can tolerate this treatment (Gunturu et al. 2013), and for now FOLFIRINOX 

is considered standard of care for patients with advanced pancreatic cancer. Therefore, in 

the two decades since we began using gemcitabine to treat pancreatic cancer, we’ve been 
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able to provide the average patient with an additional four months of life. This stalemate 

has spurred basic biologists to explore the molecular biology of PDAC in the hopes of 

identifying druggable weaknesses in this nearly untreatable disease. 

 

Molecular Biology 

The greatest unifying pattern of pancreatic cancer is the mutational activation of 

KRAS (Almoguera et al. 1988; Smit et al. 1988). It is observed in the earliest PanINs (Shi 

et al. 2009; Kanda et al. 2012) and its expression is maintained late in disease progression 

(Biankin et al. 2012). Pancreatic cancers with activated KRAS exhibit oncogene 

addiction, whereby suppression of KRAS activity induces tumor cell death and regression 

of PanINs back to normal tissue (Collins et al. 2012a; Collins et al. 2012b; Ying et al. 

2012). Understanding KRAS is an essential prerequisite to an understanding of pancreatic 

cancer. 

KRAS is a member of a larger family of RAS proteins, including HRAS and 

NRAS, which are responsible for relaying and amplifying signals from growth factor 

receptors at the cell surface (Cox and Der 2010). Signaling through RAS begins when 

growth factors, such as EGF, bind to their transmembrane receptors, triggering their 

dimerization and the phosphorylation of their cytoplasmic tails. These phosphorylated 

sites can then recruit growth-factor-receptor-bound protein 2 (GRB2) to the plasma 

membrane by interacting with its SH2 domain. GRB2 in turn recruits Son-of-Sevenless 

(SOS), which activates RAS by facilitating RAS binding to GTP. 
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Figure 1.3. RAS signaling is controlled by GAPs and GEFs. 
This abbreviated schematic shows some of the pathways activated by RAS proteins and is not 
exhaustive. Mutations commonly associated with pancreatic cancer (e.g. KRAS

G12D
) affect RAS’ 

association with GAPs. All downstream signaling from RAS occurs only in the GTP-bound ‘on’ state. 
Downstream pathways generate overlapping and distinct effects in pancreatic cancer, and are subject 
to regulation at multiple steps. DUSP: dual-specificity phosphatase. 
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RAS proteins cycle through active and inactive conformational states by their 

association with GTP and GDP, respectively (Figure 1.3) (Scolnick et al. 1979; 

Schlichting et al. 1990; Cox and Der 2010). This cycling is governed by the hydrolysis of 

RAS-bound GTP to GDP, and the exchange of GDP for fresh GTP. The hydrolysis of 

GTP to GDP is catalyzed by RAS itself and is accelerated by the binding of GTPase 

activating proteins (GAPs) (Vigil et al. 2010). The exchange of GDP for GTP is 

facilitated by a family of proteins that includes SOS, called guanidine nucleotide 

exchange factors (GEFs). GDP-bound RAS is unable to recruit and activate downstream 

effectors, and in the course of normal cellular signaling, RAS proteins spend most of their 

time in a GDP-bound ‘off’ state with only intermittent pulses of GTP-induced activity.  

Importantly, the auto-inactivating GTPase reaction of an isolated RAS molecule is very 

slow (Chung et al. 1993), and cells therefore rely heavily on the activity of GAPs for the 

proper inactivation of RAS signaling.  

Relevant to the balance in RAS’ interaction with GAPs and GEFs is the fact that 

RAS is normally restricted to endomembranes by farnesylation of its C-terminus (Casey 

et al. 1989; Fehrenbacher et al. 2009). This localization brings RAS in close proximity to 

its activating GEFs and is required for RAS activity (Kohl et al. 1993). KRAS can 

generate two protein products through alternative splicing: KRAS4A and KRAS4B. 

KRAS4A, like the other members of the RAS family, HRAS and NRAS, is additionally 

modified for membrane association by palmitoylation (Laude and Prior 2008). KRAS4B, 

however, lacks the upstream amino acid signals required for palmitoylation, and therefore 

has a more dynamic interaction with the plasma membrane (Silvius et al. 2006). There is 
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evidence from studies of HRAS and NRAS that depalmitoylation can occur and drive 

rapid redistribution away from membranes, thereby inactivating RAS signaling, but the 

relevance of this regulation to the activity of KRAS4A remains unclear (Ahearn et al. 

2012). RAS proteins can also be post-translationally modified by phosphorylation, mono- 

and di-ubiquitination, and S-nitrosylation, although the specific impact of these 

alterations are largely uncharacterized (Ahearn et al. 2012). 

 There are many downstream pathways that are activated by KRAS in a GTP-

dependent manner (Figure 1.3) (Cox and Der 2010). One of the first identified 

downstream effectors of KRAS signaling was the RAF/MEK/ERK pathway (Dickson et 

al. 1992; Moodie et al. 1993). This signaling cascade results in the activation of 

transcription factors including c-JUN, FOS, and ELK1 to drive cell cycle progression 

(Downward 2003). KRAS also stimulates PI3K to activate AKT (Marte and Downward 

1997) and PDK1 (Eser et al. 2013; Ferro and Falasca 2014). These pathways relay pro-

survival and proliferative signals through yet other effectors including mammalian target 

of rapamycin (mTOR), Cyclin D1, and HIF-1α (Bauer et al. 2015). Independent of PI3K, 

RAS proteins can signal through TIAM to drive RAC1 activation and promote 

cytoskeletal rearrangement (Lambert et al. 2002). Another major pathway known to be 

activated by RAS is the phospholipase C-epsilon (PLCε) signaling pathway, which 

activates protein kinase C (PKC) to modulate cytoskeletal activity (Kelley et al. 2001) 

Mutational activation of KRAS in cancer typically entails a missense mutation at 

codon 12 or 13, substituting wild-type glycine residues for a more bulky aspartate or 

valine (e.g. KRASG12D or KRASG12V) (Capon et al. 1983). These mutations render KRAS 
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incapable of effectively binding to the GAPs that normally arrest KRAS signaling, 

resulting in aberrantly stable activation of downstream pathways (Scheffzek et al. 1997). 

The far less common mutation at codon 61 of a glutamine (e.g. KRASQ61L or KRASQ61H; 

Prior et al, Cancer Res 2012) achieves a similar end by destroying a critical residue in the 

active site of KRAS’ GTPase domain (Figure 1.3). Mouse models indicate, however, that 

mutational activation of KRAS is not sufficient to drive carcinogenesis, and some 

component of inflammation must be present to drive progression (Guerra et al. 2007; 

Guerra et al. 2011; Daniluk et al. 2012; Zhang et al. 2013). Moreover, EGFR signaling is 

required for the full oncogenic effect of KRASG12D (Ardito et al. 2012; Navas et al. 

2012), as is signaling downstream of the IGF1 receptor (Appleman et al. 2012), 

emphasizing that although mutational activation of KRAS is a very early event, its 

primary function appears to be to amplify or deregulate cellular responses to extracellular 

stimuli. This broadens the possibilities of therapeutic intervention against KRAS-mutant 

cancers to include upstream signaling components. 

Excessive activation of growth factor signaling in normal cells induces oncogene-

induced senescence (OIS), which is a physiological response that forms one of the first 

lines of defense against neoplasia. Senescence is characterized by an irreversible exit 

from the cell cycle, and in the particular case of OIS, is driven by upregulation of the 

CDKN1A and CDKN2A genes (Larsson 2011). The tumor suppressor gene CDKN2A 

encodes two protein products by an alternative splicing mechanism: the cell cycle 

inhibitor P16INK4A and the MDM2 antagonist P14ARF (Quelle et al. 1995). INK4A is a 

cyclin-dependent kinase inhibitor that blocks the G1-S transition, and ARF drives 
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proteolysis of the TP53 antagonist MDM2, thereby driving TP53 accumulation and cell 

cycle arrest in G1 and G2 (Zhang et al. 1998). Senescence is observable in PanIN-1 

lesions, where activation of KRAS is the primary driver, but telomere shortening and 

accrual of DNA damage are also present and contribute to the induction of senescence in 

a TP53-P21-dependent manner (Hruban et al. 2008). This occurs via the ATM/ATR-

TP53-P21WAF1 cascade that detects DNA damage (Larsson 2011). Thus progression 

beyond PanIN-1 requires the inactivation of key tumor suppressors in order to bypass 

OIS. Indeed, disruption of CDKN2A function is commonly observed in PanIN-2 lesions 

(Hruban et al. 2008), and in over 95% of PDAC tumors, where INK4A and ARF function 

can both be lost (Caldas et al. 1994; Bardeesy et al. 2006a). This single mutation 

therefore attenuates two tumor suppressive responses to OIS by simultaneously deleting 

INK4A to allow cell cycle progression and deleting ARF to desensitize cells to DNA 

damage. 

TP53 disruption is also observed in late PanINs and over 75% of PDAC cases, 

and is thought to contribute greatly to the genomic instability of PDAC by promoting 

DNA damage (Halazonetis et al. 2008; Jones et al. 2008; Koorstra et al. 2009). 

Interestingly, TP53 is not normally completely lost in PDAC, as one allele may be 

deleted, but the remaining allele is typically disrupted by missense mutation (Redston et 

al. 1994), suggesting a gain-of-function activity for TP53 in these tumors. 

Genetic disruptions of the TGF-β effector SMAD4 are seen in over 50% of PDAC 

cases, which allows bypass of TGF-β-induced growth arrest (Hahn et al. 1996; Iacobuzio-

Donahue et al. 2004). Mouse modeling has demonstrated that loss of SMAD4 definitively 
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enhances PanIN progression to PDAC; but in a subset of tumors, intact SMAD4 can 

promote growth, supporting the clinical evidence that SMAD4 loss is not universally 

required for tumor progression (Bardeesy et al. 2006b). In the absence of SMAD4, TGF-

β signaling plays a role in the activation of RAS to drive tumor progression (Xia et al. 

2015). 

 

microRNAs 

Nature, Pathway, and Mechanism 

 microRNAs (miRNAs) are a class of short RNA molecules initially discovered 

and described as the non-coding RNA product of the C. elegans gene lin-4 (Lee et al. 

1993; Wightman et al. 1993). Since then, miRNAs have come to be appreciated as highly 

diversified molecules that are broadly conserved across species (Lagos-Quintana et al. 

2001; Lau et al. 2001; Lee and Ambros 2001). They play roles in development, normal 

physiology and disease (Schickel et al. 2008; Sayed and Abdellatif 2011; Vidigal and 

Ventura 2015), and are predicted to control the expression of over half of the human 

transcriptome (Bartel 2009; Friedman et al. 2009). Our evolving understanding of 

miRNA processing and activity has been extensively reviewed (Filipowicz et al. 2008; 

Davis and Hata 2009; Newman and Hammond 2010; Huntzinger and Izaurralde 2011; 

Braun et al. 2012; Blahna and Hata 2013; Olive et al. 2015). Graphical representation of 

the miRNA biogenesis pathway about to be discussed is summarized in Figure 1.4 (Hata 

and Lieberman 2015). 
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miRNAs are initially transcribed as primary, or ‘pri-miRNAs,’ which possess a 

stereotypical stem-loop structure (aka hairpin) within the context of a longer, single-

stranded RNA transcript (Lee et al. 2002). This hairpin is recognized by the 

microprocessor complex, key components of which are the RNase III enzyme DROSHA 

(Lee et al. 2003) and its partner DiGeorge syndrome critical region 8 (DGCR8) (Denli et 

al. 2004; Gregory et al. 2004; Han et al. 2004; Landthaler et al. 2004). The 

microprocessor cleaves the pri-miRNA near the base of the stem to release a free hairpin, 

now a ‘pre-miRNA.’ This is then exported from the nucleus by Exportin 5 (XPO5) for 

further processing in the cytosol (Yi et al. 2003). Notably, some miRNAs can arise from 

within introns through splicing and debranching reactions that bypass the need for 

microprocessor cleavage (Okamura et al. 2007; Ruby et al. 2007; Yang and Lai 2011). 

Once in the cytosol, pre-miRNAs are bound by another RNase III enzyme, 

DICER. DICER, in association with trans-activation response RNA-binding protein 

(TRBP) (Chendrimada et al. 2005; Haase et al. 2005) or protein activator of PKR (PACT)  

(Lee et al. 2006), cleaves off the terminal loop of the pre-miRNA to generate a double-

stranded product around 22 nucleotides in length with small 3’ overhangs (Bernstein et 

al. 2001; Grishok et al. 2001; Hutvagner et al. 2001; Ketting et al. 2001). TRBP and 

PACT are not strictly necessary for pre-miRNA processing by DICER, but they do play a 

role in modulating the position of DICER cleavage within the pre-miRNA, which alters 

the activity of the mature miRNA (Fukunaga et al. 2012; Lee et al. 2013). 

The DICER-bound double-stranded RNA intermediate (dsRNA) now consists of 

the mature miRNA and its complementary strand (miRNA and miRNA*, respectively). 
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The transfer of one strand to Argonaute family proteins (AGO) to act as the mature 

miRNA is influenced by a number of factors including the thermodynamic stability of the 

RNA strands and Dicer complex association with TRBP or PACT, select one strand 

(Khvorova et al. 2003; Matranga et al. 2005). The complementary strand is then degraded 

by AGO’s RNase activity. Mammals possess four AGO family proteins (AGO1-4) but 

catalytic activity appears to be restricted to AGO2 (Hutvagner and Simard 2008). The 

AGO2-miRNA complex is called the miRNA-induced silencing complex (miRISC) and 

is now capable of screening mRNA transcripts for complementary sequences and 

catalyzing post-transcriptional gene suppression (herein ‘translational repression’), 

through mechanisms that may or may not involve mRNA degradation.  

The precise mechanisms of miRISC-induced translational repression, and the 

cofactors involved, remain an area of intense investigation. The earliest descriptions of 

miRNA function demonstrated that mRNA decay was not required for translational 

repression (Olsen and Ambros 1999; Seggerson et al. 2002). Since then, it has been 

shown that miRNAs can repress translation in active polysomes by inhibiting 

translational initiation or promoting ribosomal drop-off during peptide elongation 

(Humphreys et al. 2005; Pillai et al. 2005; Maroney et al. 2006; Nottrott et al. 2006; 

Petersen et al. 2006; Kiriakidou et al. 2007). Although not required for translational 

repression, mRNA degradation does also occur through decapping and deadenylation of 

the targeted mRNA (Behm-Ansmant et al. 2006; Giraldez et al. 2006; Wu et al. 2006; Wu 

et al. 2010; Chekulaeva et al. 2011; Fabian et al. 2011) via the recruitment of additional 

factors to the miRISC complex (Huntzinger and Izaurralde 2011). 
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AGO2 is the critical component of miRISC (Hammond et al. 2001), and it 

possesses the ability to cleave mRNA transcripts (Pillai et al. 2005). Direct mRNA 

cleavage in mammals by AGO2’s ‘slicer’ activity typically requires complete sequence 

complementarity, as in the maturation and activity of small interfering and short hairpin 

RNAs1 (siRNAs and shRNAs) (Wang et al. 2009). While mRNA cleavage has been well-

described in plants and flies (Carbonell et al. 2012), it is less prominent in mammals, 

possibly due to differences in the kinetics of mammalian AGO2 catalytic activity (Wee et 

al. 2012). Slicer-independent translational repression involving partial sequence 

complementarity is vastly more common in the normal activity of mammalian miRNAs, 

and it is responsible for much of the off-target effects of engineered siRNAs and shRNAs 

(Jackson et al. 2003; Jackson et al. 2006). Translational repression in the context of 

partial complementarity depends greatly on the miRNA seed sequence, which consists of 

nucleotides 2-7 in the 5’ end of the mature miRNA (Lewis et al. 2003b). The contribution 

of miRNA-mRNA binding events to target selection will be discussed in greater in a later 

section. 

There are two intriguing findings that bear mention for their inconsistency with 

the bulk of the published literature regarding miRNAs. One study found that target gene 

upregulation occurred as a result of miRNA binding to the mRNA transcript, but this 

activity appeared restricted to quiescent cells (Vasudevan et al. 2007). A more recent 

                                                 
1 siRNAs are double-stranded RNAs delivered transiently into cells that are capable of gene suppression 
(Fire et al. 1998; Hammond et al. 2000) through their ability to be recognized by DICER and loaded into 
miRISC. shRNAs are single-stranded precursors with the conserved stem-loop secondary structure 
common to pre-miRNAs, which makes them more efficient substrates for DICER processing (Siolas et al. 
2005). They can be synthesized and introduced directly for short-term processing and activity, or they may 
be expressed from a transgene for long-term gene suppression (Paddison et al. 2002) 
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supporting observation has demonstrated miRNA-dependent gene upregulation in a 

cancer context, where miR-483 bound to the 5’UTR of actively transcribing IGF2 to 

recruit factors and promote transcription (Liu et al. 2013). Another interesting 

observation that expands the possibilities of normal miRNA activity is that miR-451 can 

evidently be processed from pre-miRNA to mature and functional miR-451 through a 

DICER-independent pathway that requires the slicer activity of AGO2 (Cheloufi et al. 

2010; Cifuentes et al. 2010). To date, no other miRNAs have yet been identified that can 

be processed in this manner. 

 

Regulation of microRNA Activity 

As pervasive regulators of gene expression, miRNAs are themselves subject to 

many layers of regulation across all levels of their biogenesis and activity. At this early 

stage in our understanding, the data suggests a daunting diversity and complexity of 

regulatory mechanisms, but even a superficial understanding of normal miRNA 

regulation greatly informs our understanding of how it can be deregulated in cancer. 

Much of what is discussed below is graphically depicted in Figures 1.4 and 1.5 (Hata and 

Lieberman 2015; Olive et al. 2015). 

 The microprocessor complex is a major hub of regulatory activity in the 

biogenesis of miRNAs. The association of DEAD-box RNA helicase p68 (DDX5 or p68) 

and DEAD-box RNA helicase p72 (DDX17 or p72) with the microprocessor creates the 

‘super microprocessor,’ and their binding regulates the expression of different subsets of 

miRNAs (Slezak-Prochazka et al. 2010; Fuller-Pace and Moore 2011). For example, it is  
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Figure 1.5. Mechanisms regulating miRNA biogenesis. 
A more exhaustive representation of the modulatory mechanisms of miRNA biogenesis is presented. 
Blue boxes are stimulatory effects, whereas red boxes are inhibitory. Listed miRNAs are those that 
are known to be particularly affected by each factor. Figure is reproduced from: V. Olive, A. 
C. Minella, and L. He, Outside the coding genome, mammalian microRNAs confer structural and 
functional complexity. Sci. Signal. 8, re2 (2015), reprinted with permission from AAAS. 
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known that ligand-specific SMADs can bind to DDX5 and enhance the processing of 

some miRNAs (Davis et al. 2008). Similar DDX5 binding activity has been observed for 

TP53 in its promotion of several tumor-suppressive miRNAs upon DNA damage (Suzuki 

et al. 2009). These studies suggest that transcription factors may play transcription-

independent roles in regulating miRNA biogenesis. Furthermore, it has been shown that 

BRCA1 can recognize the secondary structure of some pri-miRNAs directly and recruit 

the microprocessor through its association with TP53, SMAD3, and DDX5 (Kawai and 

Amano 2012). In a conceptually similar model, nuclear YAP dissociates DDX17 from 

the microprocessor to impair the expression of DDX17-facilitated miRNAs, thereby 

linking cellular confluency to miRNA expression (Mori et al. 2014).  

Regulation of microprocessor activity also occurs through binding of other factors 

to pri-miRNAs, which can enhance or suppress processing. Enhancement can occur 

through protein binding to conserved regions in the terminal loops of pri-miRNAs, 

resulting in relaxation of the pri-miRNA stem to provide more favorable DROSHA 

cleavage (Michlewski et al. 2008). This has been described for HNRNPA1, which binds 

to the terminal loop of pri-miR-18a in a sequence-dependent manner and is required for 

the processing of this miRNA (Guil and Caceres 2007). KH-type splicing regulatory 

protein (KSRP) also promotes the processing of a subset of miRNAs, including let-7, 

miR-20a and miR-21, by binding to their pri- and pre-miRNA terminal loops and 

recruiting DROSHA and DICER complexes (Trabucchi et al. 2009). Suppression of 

processing can also occur, as in the case of let-7’s regulation by LIN28, where terminal 

loop binding of LIN28 inhibits microprocessor recruitment (Newman et al. 2008; 
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Viswanathan et al. 2008). Nuclear Factor-90 (NF90) and NF-45 also bind the terminal 

loops of pri-miRNAs and are negative regulators of processing (Sakamoto et al. 2009). 

Furthermore, HNRNPA1, previously described as a processing enhancer, has been shown 

to suppress processing of pri-let-7 by displacing KSRP from the terminal loop 

(Michlewski and Caceres 2010). This study illustrates the importance of cellular context 

and balance for the net activity of these factors. 

Cytosolic regulation of miRNA processing can occur in a miRNA-specific 

manner. A particularly well-studied example of this is the relationship between the 

miRNA let-7 and its regulator LIN28. In addition to its role in the nucleus regulating pri-

miRNA processing, LIN28 also binds to the terminal loop of pre-let-7 in the cytoplasm 

and inhibits its processing by DICER (Heo et al. 2008; Rybak et al. 2008). This occurs 

via the recruitment of terminal uridylyl transferase 4 (TUT4), which uridylates the 3’ end 

of the pre-miRNA, thereby preventing DICER binding and targeting the pre-miRNA for 

degradation (Heo et al. 2009). Uridylation has since been observed to occur across a 

broad range of pre-miRNAs (Ple et al. 2012; Westholm et al. 2012). TUT4 has been 

implicated in the regulation of other pre-miRNAs besides let-7 (Jones et al. 2012), and 

the related protein TUT7 has been shown to regulate a similar subset of pre-miRNAs 

(Thornton et al. 2014), but other protein factors involved in pre-miRNA uridylation have 

yet to be described. Opposing uridylation, adenylation of the 3’ end of mature miRNAs 

by poly-A polymerases promotes stability (Katoh et al. 2009), but the mechanisms of 

poly-A polymerase recruitment to miRNAs remains unknown. 
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AGO2 and DICER activity can also be modulated by cellular pathways to create 

broad effects on miRNA processing. AGO2 and DICER levels can be suppressed through 

selective autophagy (Gibbings et al. 2012), and DICER is itself regulated by miRNAs 

(Martello et al. 2010), including the tumor-suppressive miRNA let-7 (Jakymiw et al. 

2010). Numerous phosphorylation events integrate growth and stress signals to exert 

additional control over the output of the miRNA pathway. It is known that AGO2 is 

phosphorylated downstream of RAS signaling and that this is a reversible process critical 

to the gene silencing that occurs in OIS (Yang et al. 2014). AGO2 phosphorylation has 

been shown to occur in a MAPK- (Zeng et al. 2008) and AKT3-dependent manner 

(Horman et al. 2013), although additional effectors downstream of RAS likely contribute. 

Phosphorylation of AGO2 on serine387 is required for translocation of AGO2-bound 

mRNAs to processing bodies (P Bodies) (Zeng et al. 2008), where translational 

suppression occurs via inhibition of translational initiation and eventual mRNA 

destabilization. Also, phosphorylation of TRBP via the ERK pathway promotes DICER-

mediated processing of many miRNAs as an effector of RAS signaling (Paroo et al. 

2009), although in this study let-7 was specifically suppressed by activated TRBP via an 

unknown mechanism.  

Very recently, a class of RNA molecules has been identified, called competing 

endogenous RNA (ceRNA). These RNAs encode miRNA binding sites that allow them 

to act as decoy transcripts and alleviate miRNA suppression of a particular mRNAs (Tan 

and Marques 2014). A key determinant of whether an RNA will behave as a ceRNA 

appears to be the relative expression ratios of the miRNA, the target mRNA, and the 
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ceRNA (Bosson et al. 2014), such that very highly expressed mRNAs or miRNAs are not 

likely to be subject to significant regulation by ceRNAs. One prominent example of 

ceRNA biology that has garnered a lot of attention is the recently discovered activity of 

the PTEN pseudogene, PTENP1. PTENP1 acts as a ceRNA for PTEN, such that 

expression of PTENP1 increases expression of PTEN by alleviating miR-21-mediated 

suppression of the coding transcript (Yu et al. 2014). This is a strikingly elegant example 

of a previously unappreciated role for pseudogene transcripts in miRNA-mediated gene 

regulation. However, ceRNAs have since grown as a concept to include protein-coding 

transcripts as well, such that now the field is faced with the prospect of interpreting the 

interrelationships of all mRNAs within a miRNA targetome to define mRNA-ceRNA 

relationships (Poliseno and Pandolfi 2015). The feasibility of such a daunting analysis 

remains to be seen. 

 

Methods of Target Prediction and Validation 

 Because miRNAs exert their effects in a sequence-specific manner, significant 

effort has been put to devising methods of predicting functional miRNA targets. 

Predictive algorithms have predominantly evolved from the idea that canonical miRNA 

binding sites (binding to positions 2-7, or ‘6mer’ sites) have a stronger effect on mRNA 

expression than binding to other regions of the miRNA (Lim et al. 2005). Target 

prediction methods also typically take into account that binding to position 8 in the 

miRNA (7mer-m8), or the presence of an adenine nucleotide in the mRNA across from 



40 
 

 

position 1 in the miRNA (7mer-A1), or both of these conditions together (8mer) enhance 

translational repression (Grimson et al. 2007; Nielsen et al. 2007). 

One of the first available tools for predicting miRNA targets was TargetScan 

(Friedman et al. 2009). This platform leveraged 3’UTR conservation across more than 20 

species to develop probability scores for predicted miRNA targets: a strong predicted 

miRNA target is one with a conserved canonical miRNA binding site within a poorly 

conserved 3’UTR, whereas highly conserved 3’UTRs may contain conserved miRNA 

sites, but these may be conserved for reasons unrelated to miRNA activity and therefore 

receive a lower score. Friedman and colleagues also confirmed that binding sites for the 

‘offset 6mer’ (binding to miRNA positions 3-8) were significantly conserved in 

mammalian 3’UTRs, although the overall descending order of conservation proceeded as 

8mer > 7mer-m8 > 7mer-A1 > 6mer > offset 6mer (Friedman et al. 2009). Furthermore, 

their model included estimates of conservation allowing for G:U wobble in the 5’ end of 

the miRNA (Doench and Sharp 2004), as well as bulges and compensatory binding in the 

3’ end of the miRNA at nucleotides 13-16 (Brennecke et al. 2005). Thus, a TargetScan 

context score for a particular mRNA incorporates miRNA binding site conservation, 

3’UTR conservation, predicted suppression activity based on the type of seed match, the 

background conservation for that type of seed match, and the number of seed matches in 

the transcriptome for that particular miRNA (Friedman et al. 2009). 

Numerous other tools have been developed to predict miRNA targets in addition 

to TargetScan (John et al. 2004; Krek et al. 2005; Miranda et al. 2006; Maragkakis et al. 

2009), but they produce widely different target sets for the same miRNA, depending on 
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how various factors are weighed in each algorithm (Min and Yoon 2010; Thomson et al. 

2011). Furthermore, not enough is known about the biology of unusual miRNA binding 

sites to allow accurate predictions, including the predominantly 3’ pairing seen between 

miR-92 and its targets (Helwak Cell 2013), and so-called ‘centered pairing’ (Shin et al. 

2010). Moreover, although miRNA target sites preferentially occur at the start and end of 

long 3’UTRs (Gaidatzis et al. 2007), it has been shown that miRNAs can also bind to 

coding regions of mRNA transcripts (Tay et al. 2008; Rigoutsos 2009). Such sites are 

effective in translational suppression but are less effective than 3’UTR sites at mRNA 

destabilization (Fang and Rajewsky 2011; Reczko et al. 2012; Hausser et al. 2013). 

Further complicating efficacy prediction, local A/U content of the 3’UTR is known to 

promote destabilization of the transcript (Jing et al. 2005; Hausser et al. 2009).  

More definitive strategies for the identification of miRNA targets rely on the 

experimental validation of binding events, although even these strategies are limited by 

fixation steps that cannot capture the dynamic nature of binding reactions. High-

throughput sequencing of RNA that has been cross-linked to AGO2 protein (AGO2 

HITS-CLIP) offers the ability of knowing RNA sequences bound to AGO2 at the time of 

fixation, but the true miRNA-mRNA binding relationships can be difficult to determine 

and must be partly inferred with bioinformatics (Chi et al. 2009). A more direct approach 

involves the crosslinking, ligation, and sequencing of miRNA-mRNA hybrids (CLASH), 

which preserves the miRNA and its cognate binding site in one coherent read (Helwak et 

al. 2013), but it reports large numbers of noncanonical binding sites and has poor 

predictive value of the strength of miRNA function at an observed site. A more recent 
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advance is the use of biotinylated, psoralen-containing pre-miRNA mimics that 

purportedly improves capture frequency of binding sites (Imig and Brunschweiger 2015), 

although it still cannot predict the repressive strength of a given interaction. 

Proteomics ultimately offers the most powerful means of determining true 

relationships between miRNAs and net gene expression. Stable isotope labeling with 

amino acids in cell culture (SILAC) combined with mass spectroscopy offers a means to 

measuring acute changes in protein expression caused by miRNAs (Baek et al. 2008; 

Selbach et al. 2008). Combining SILAC with target prediction algorithms or HITS-CLIP 

approaches presents the greatest chance of experimentally identifying true miRNA targets 

in an unbiased way. 

 

The microRNA Pathway in Cancer 

 Soon after their discovery, miRNAs gained attention as regulators of cancer 

biology, and the earliest miRNAs to be studied in this context were let-7, miR-21, and the 

miRNAs of the mir-17~92 cluster (Takamizawa et al. 2004; Chan et al. 2005; Hayashita 

et al. 2005). Since then, an explosion of work has begun to characterize the many 

context-specific activities of miRNAs in cancer. Due to the evolutionary complexity of 

cancer, there exist near limitless possibilities in the ways a tumor may alter miRNA 

biogenesis in its favor, and just a few of those mechanisms will be discussed here, along 

with some of the more well-described oncogenic and tumor-suppressive miRNAs. 

 Oncogenes and tumor suppressors involved in cancer initiation and progression 

are known to alter miRNA expression. It has been shown that AGO2 phosphorylation by 
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EGFR causes deficits in the processing of a particular subset of miRNAs  (Shen et al. 

2013). This can occur downstream of RAS signaling in a MAPK and AKT-dependent 

manner, which has profound implications in the cancer context where these pathways are 

aberrantly activated (Zeng et al. 2008; Horman et al. 2013).  EGF has been shown to 

upregulate a pro-metastatic subset of miRNAs in mammary cells , and ERK activation 

can also increase TRBP phosphorylation to promote DICER-mediated processing of 

many miRNAs, which again places miRNA biogenesis downstream of RAS signaling 

(Paroo et al. 2009). Much of the work regarding oncogene control of miRNA processing 

is fairly recent and has not received as much attention as the characterization of 

individual miRNAs that themselves play the part of tumor-suppressors or oncogenes. 

 Let-7 is now a well-established tumor suppressor whose expression is reduced in 

many cancers (Takamizawa et al. 2004; Zhang et al. 2014b). Overexpression of let-7 in 

cancer cells can revert EMT phenotypes and trigger cell cycle arrest and cell death 

(Kumar et al. 2008; Li et al. 2009). Reduced let-7 expression is thought to be selected for 

during tumor progression because of its ability to suppress key oncogenes, including 

RAS family proteins, MYC, and high-mobility group A protein 2 (HMGA2) (Johnson et 

al. 2005; Lee and Dutta 2007; Mayr et al. 2007; Sampson et al. 2007). HMGA2 is a non-

histone chromatin factor whose expression is often upregulated in cancer, leading to an 

invasive phenotype (Watanabe et al. 2009). HMGA2 is normally regulated by let-7, and 

overexpression of HMGA2 can occur as a result of a shortened 3’UTR that omits these 

let-7 binding sites (Klemke et al. 2010; He et al. 2014b).  
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Figure 1.6. The mir-17~92 cluster and its related paralogs encode members of four miRNA 
families. 
miRNAs sharing the same seed sequence are grouped by color. Not all clusters contain miRNAs from 
all four families: notably, mir-106b~25 encodes only miR-17 and miR-92 families. 
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miR-21 is an equally well-established oncogene that is overexpressed in most 

tumor types (Chan et al. 2005; Volinia et al. 2006; Si et al. 2007; Schetter et al. 2008). It 

has been shown to suppress the expression of several key tumor suppressors, including 

PTEN, PDCD4, SPRY2, TP63, and KIP2, among others (Meng et al. 2007; Frankel et al. 

2008; Bhatti et al. 2011; Kwak et al. 2011; Quintavalle et al. 2013; Mishra et al. 2014). 

Fascinatingly, inhibition of miR-21 can cause robust cancer regression in a mouse model 

of lymphoma, demonstrating that tumors can exhibit oncomir addiction (Medina et al. 

2010). 

 The first oncomir ever characterized was the mir-17~92 cluster, so-called 

‘oncomir-1’ (He et al. 2005; Kort et al. 2008). This miRNA cluster encodes four distinct 

miRNA families and has two paralogs in the genome that most likely arose from gene 

duplication events (Figure 1.6) (Tanzer and Stadler 2004). Its various miRNA families 

have been powerfully implicated across many tumor contexts (Olive et al. 2010), and 

inhibition of cluster components can successfully combat tumor growth and survival 

(Olive et al. 2009; Murphy et al. 2013). Key pathways that are validated targets of mir- 

17~92 include TGF-β signaling, PTEN, p21WAF1, E2F transcription factors, and the pro-

apoptotic protein BIM, (Novotny et al. 2007; Petrocca et al. 2008a; Ventura et al. 2008; 

Kim et al. 2009; Olive et al. 2009; Grillari et al. 2010; Hong et al. 2010). 

Although particular miRNAs may be characterized as predominantly tumor-

suppressive or oncogenic, miRNAs are on balance thought to exert generally tumor-

suppressive effects in cancer. This thinking arises from the observations that 3’UTR 

shortening occurs in rapidly proliferating (Sandberg et al. 2008) and neoplastic cells 
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(Mayr and Bartel 2009), which would allow mRNAs to escape miRNA regulation. 

Moreover, DICER expression is reduced in lung cancer and this loss is associated with 

poor prognosis (Karube et al. 2005). Indeed, DICER loss or mutation is associated with 

tumor progression in several cancer contexts, and knockdown of miRNA processing 

machinery has been shown to drive tumor progression (Kumar et al. 2007; Hill et al. 

2009; Kumar et al. 2009; Lambertz et al. 2010). Also, transcription factors that are known 

positive regulators of miRNA expression are frequently mutated or functionally impaired 

in cancer, including SMAD proteins and TP53 (Davis et al. 2008; Maitra and Hruban 

2008; Suzuki et al. 2009). It has additionally been shown that defects in XPO5 (Melo et 

al. 2010) or TRBP (Melo et al. 2009) can severely impact global miRNA maturation in 

some cancers. 

 Counter to these observations, mutations in DICER or other components of the 

miRNA biogenesis pathway are not seen in PDAC, and miRNA upregulation is more 

common than downregulation in this disease (Bloomston et al. 2007; Zhang et al. 2009; 

Frampton et al. 2014). This suggests that miRNAs may play an oncogenic role in the 

promotion of pancreatic tumorigenesis and that mutations in the miRNA processing 

machinery are selected against during tumor evolution.  

 

Scope of Thesis 

 
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies 

in the United States, with an average five-year survival rate of just 6.7%. Advancements 

in the understanding of PDAC molecular biology are desperately needed in order to 
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improve patient survival and quality of life. miRNAs are powerful regulators of gene 

expression that can behave as oncogenes or tumor suppressors, and understanding their 

role in disease processes will inform our understanding and potentially lead to new 

therapeutic approaches. 

This dissertation encompasses two studies exploring the role of miRNAs in 

pancreatic tumorigenesis. In Chapter II, I test the hypothesis that the mir-17~92 cluster of 

miRNAs promotes KRASG12D-driven pancreatic tumorigenesis. I present evidence that 

loss of this miRNA cluster inhibits PanIN development and also promotes PanIN loss and 

acinar regeneration in the context of continuing KRASG12D signaling. This phenotype is 

associated with reduced ERK activity in PanIN lesions. Moreover, mir-17~92-deficient 

tumors are less invasive in vivo, and cell lines derived from these tumors are less invasive 

in vitro. I demonstrate that antagonizing the activity of miR-19 family miRNAs is 

sufficient to suppress the invasiveness of mir-17~92-competent PDAC cell lines from 

mice and humans. Thus mir-17~92 regulates pancreatic tumorigenesis and progression. 

Chapter III presents my exploration of the hypothesis that miRNA biogenesis 

broadly promotes pancreatic tumorigenesis. I find that Dicer heterozygosity inhibits 

PDAC metastasis, but it does not appear to alter other aspects of tumor biology. 

Phenotypic characterization of cell lines derived from tumors in this study suggests that 

the failure of Dicer-heterozygous tumors to metastasize is attributable to an increased 

sensitivity of these cancer cells to anoikis. Ongoing experiments will determine whether 

shifts in miRNA signatures between cell lines can be attributed to this phenotype. 
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Unrelated work regarding the preclinical testing of a triple-drug therapeutic regimen to 

treat advanced pancreatic cancer is presented in Appendix A. 
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 CHAPTER II 

mir-17~92 Promotes Pancreatic Tumorigenesis and Progression 

 

Introduction 

The mir-17~92 cluster, expressing miRNAs from the miR-17, -18, -19, and -92 

families, is upregulated in numerous cancers, including pancreatic cancer (Olive et al. 

2010). Profiling of human pancreatic tumors and pancreatic cancer cell lines has shown 

that miRNAs from the mir-17~92 cluster and its paralogs, mir-106b~25 and mir-

106a~363, are upregulated compared to samples of normal pancreatic tissue or chronic 

pancreatitis (Volinia et al. 2006; Szafranska et al. 2007; Ohuchida et al. 2012). mir-17 

expression in pancreatic tumors has been associated with reduced survival in humans, 

and its overexpression in human pancreatic cancer cell lines accelerates growth and 

promotes invasion (Yu et al. 2010). miR-17 levels in the serum of patients with 

pancreatic cancer also correlates with tumor stage and the presence of metastasis (Que et 

al. 2013). Other studies have found elevated levels of mir-18 (Morimura et al. 2011) and 

miR-25 (Ren et al. 2012) in the blood of patients with pancreatic cancer. A fairly recent 

study using laser capture microdissection of PanIN lesions found that mir-18, -17*, and -

93 were upregulated in PanINs compared to normal tissue, and miR-18 and -93 were 

further elevated in PanIN-3 lesions compared to earlier PanIN grades (Yu et al. 2012a). 

Together these data provide strong correlative evidence for the oncogenic role of mir-

17~92 family miRNAs in pancreatic carcinogenesis. 
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Functional studies of the role of mir-17~92 in pancreatic cancer are rare. One 

study found that simultaneous inhibition of all six miRNAs from the mir-17~92 cluster 

with pooled antagomirs impaired soft agar growth in some human pancreatic cancer cell 

lines (Kent et al. 2009). Another study identified upregulation of miR-106a in pancreatic 

cancer cell lines and linked its pro-invasive role to the suppression of TIMP2 (Li et al. 

2014). No in vivo studies of the cluster in mouse models of pancreatic tumorigenesis have 

been published. Therefore, based on the abundance of clinical data linking the mir-17~92 

cluster to pancreatic cancer progression and the clear need for a better understanding of 

the functional role these miRNAs play in this context, I sought to experimentally test the 

role of these miRNAs in a mouse model of pancreatic cancer. 

The mir-17~92 cluster is essential for proper development in mice and humans 

(Ventura et al. 2008; de Pontual et al. 2011; Hemmat et al. 2014) and germline deletion 

of mir-17~92 is lethal due to ventricular septal defects and lung hypoplasia (Ventura et 

al. 2008). Therefore in the following experiments, I make use of conditional alleles to 

delete the cluster specifically in the pancreas, thereby allowing me to determine the role 

of these miRNAs in pancreatic tumorigenesis and progression. The study itself integrates 

two model systems: the first measures effects of mir-17~92 loss on precursor lesion 

development in the presence of oncogenic KRASG12D, and the second model incorporates 

tumor suppressor deficiency to accelerate progression and tumor formation, thereby 

allowing me to study the role of the cluster in later stages of disease. 

 

  



51 
 

 

Results 

To determine the effect of mir-17~92 loss on pancreatic development, I induced 

pancreas-specific cluster deletion using the conditional allele mir-17~92flox and the 

recombination driver Ptf1a-Cre (Figure 2.1a). Importantly, mir-17~92flox/flox, Ptf1a-Cre 

mice robustly lose expression of the cluster, as measured by qRT-PCR on whole pancreas 

RNA (Figure 2.1b), yet they experience normal organ development, with typical exocrine 

and endocrine architecture and composition (Figure 2.1c). Thus the mir-17~92 cluster is 

dispensable for normal pancreas development.  

To assess the impact of mir-17~92 deletion on PanIN development, I crossed 

conditional cluster mice onto the LSL-KrasG12D background (for the LSL-KrasG12D allele 

schematic, see Figure 2.1a). Breeding pairs were designed with mir-17~92flox/wt, LSL-

KrasG12D and mir-17~92flox/wt, Ptf1a-Cre individuals to generate littermate mir-17~92wt/wt, 

LSL-KrasG12D, Ptf1a-Cre (‘KC’) and mir-17~92flox/flox, LSL-KrasG12D, Ptf1a-Cre (‘17KC’) 

mice. Littermate KC and 17KC animals were aged to four or nine months and 

subsequently sacrificed to obtain pancreata for histological analysis. At both ages, I 

observed greater amounts of healthy acinar tissue in 17KC animals than KC animals 

(Figure 2.2a-i). I also observed that 17KC pancreata contained less PanIN tissue by area 

than KC pancreata at nine months. 17KC animals gained healthy acinar tissue with age, 

whereas KC animals completely lost their acinar tissue by nine months. However, the 

distribution of PanIN grades shows no difference between genotypes (Figure 2.2j). These 

data suggest that loss of mir-17~92 impacts PanIN development and maintenance but not 

PanIN progression. 
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Figure 2.1. Homozygous loss of mir-17~92 in the pancreas is developmentally tolerated. 
(A) Deletion of conditional alleles in the pancreas is achieved by driving Cre recombinase from the 
endogenous Ptf1a promoter. Activated Kras

G12D
 is expressed upon deletion of an upstream stop 

cassette flanked by lox-p sites. The majority of the Tp53
flox

 and the entirety of the mir-17~92
flox

 alleles 
are deleted in a similar fashion. (B) qRT-PCR of whole pancreas RNA shows robust suppression of 
mir-17~92 miRNAs in mir-17~92

flox/flox
, Ptf1a-Cre animals; residual expression likely derives from 

endocrine and stromal components not targeted by Ptf1a-Cre. Expression of the related cluster mir-
106b~25 is unaffected. (C) mir-17~92

flox/flox
, Ptf1a-Cre pancreata are histologically normal by 

hematoxylin and eosin stain (‘H+E’) with appropriate differentiation and bulk in both exocrine and 
endocrine compartments. 

a b 

c 
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Immunohistochemical staining of these pancreata demonstrate no measureable 

differences in PanIN proliferative or apoptotic markers (Figure 2.3). Other measures of 

PanIN biology, including the stromal activation marker α-smooth muscle actin (α-SMA), 

the Notch pathway effector HES1, and the TGF-β effector phosphorylated SMAD3 

(pSMAD3), also show no difference in the PanINs of KC and 17KC animals (Figure 2.4). 

ADM lesions in 17KC pancreata stain more strongly with pSMAD3 compared to the 

ADM lesions of KC animals at equivalents ages, but early PanINs in both groups are 

negative for this marker (Figure 2.4i-l). However, 17KC PanINs do display marked 

reduction in MAPK signaling, as determined by staining for phosphorylated extracellular 

signal-regulated kinase (pERK) (Figure 2.5). These data suggest that mir-17~92 regulates 

PanIN maintenance by influencing ERK pathway activity downstream of KRASG12D. 

To look beyond PanIN formation and examine the effect of mir-17~92 on 

carcinoma development, I accelerated the KC model by including conditional loss of one 

copy of Tp53 (LSL-KrasG12D, Tp53flox/wt, Ptf1a-Cre; hereafter “KPC” and “17KPC” mice; 

for Tp53flox allele schematic, see Figure 2.1a). I observed that KPC and 17KPC mice 

display similar overall survival, tumor size, and rates of metastatic disease (Figure 2.6a-

c). Carcinoma subtypes were diagnosed by a licensed pathologist and the distributions of 

both groups were found to consist mostly of adenocarcinoma with less frequent poorly 

differentiated forms (Figure 2.6d-f). Histological evidence of invasion was also equally 

prevalent in both groups, and variously involved the stomach, liver, duodenum, colon, 

and spleen (Figure 2.7). Moreover, tumors across both groups exhibited similar rates of  
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Figure 2.5. 17KC PanINs display reduced phospho-ERK staining compared to KC PanINs. 
Immunohistochemical staining of phosphorylated ERK demonstrates substantially reduced 
positivity in 17KC PanINs compared to KC PanINs at both time points. Two examples are 
provided for each to demonstrate representative ranges in positivity. 
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proliferation and apoptosis as demonstrated by ki67 and cleaved caspase 3 (CC3) staining 

(Figure 2.8). 

17KPC mice sacrificed for illness arising from localized disease (‘localized’ 

17KPC mice) exhibited significantly prolonged survival compared to localized KPC mice 

(Figure 2.9a). Counterintuitively, these mice also had larger tumors than localized KPC 

mice (Figure 2.9b). Due to anatomical complexity around the pancreatic head, localized 

pancreatic cancer in mice can manifest with jaundice (evident in the ears, footpads, or 

pancreas) or GI obstruction, as seen by GI lumen distension upstream of an adhesion with 

the absence of downstream luminal contents (Figure 2.10a,b). 17KPC mice never 

presented with any form of GI or biliary obstruction (Figure 2.10c,d). Together, these in 

vivo findings suggest that loss of the mir-17~92 cluster generates a less invasive form of 

advanced pancreatic cancer, supporting an oncogenic role for this miRNA cluster in 

disease progression. 

To better understand the biology of mir-17~92 deficient pancreatic cancer cells, I 

generated a collection of cell lines from KPC and 17KPC tumors to measure cancer-

related phenotypes in vitro. I measured proliferative capacity by direct counting of 

adherent cell numbers over time and found that KPC and 17KPC cell lines display a 

spectrum of proliferative rates within each group, but there is no significant difference by 

genotype (Figure 2.11a). Similarly, cell lines from both groups display a spectrum of 

proficiency in their ability to grow in a suspended agarose matrix, which measures 

dependence on adhesion signaling for growth and survival (Figure 2.11b). More direct 

measures of cellular survival by trypan blue exclusion assay demonstrate that apoptotic  
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Figure 2.9. Loss of mir-17~92 prolongs survival in the absence of metastatic disease. 
(A) 17KPC survival is significantly longer after mice with metastatic disease are removed from the 
analysis. (B) Localized 17KPC tumors are larger than localized KPC tumors. 
Log Rank and Student’s t test p values: * < 0.05 

a b 
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Figure 2.10. Obstruction, a common feature of localized KPC disease, is never observed in 
17KPC mice. 
(A,B) Metastatic disease is more likely to cause internal bleeding and less likely to present with 
obstruction. (C) 17KPC mice were significantly less likely to present with abdominal distension. 
(D) 17KPC tumors were never observed to cause obstruction of the biliary or gastrointestinal systems.  
Fisher’s exact p values: * < 0.05, ** < 0.01 

a b 

c d 
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rates in normal growth conditions and in the absence of serum are also not significantly 

different between KPC and 17KPC cell lines (Figure 2.11c,d). I also performed transwell 

migration assays to measure each cell line’s capacity to move through a porous 

membrane in response to a serum gradient. A variation of this assay, called an invasion 

assay, includes a layer of Matrigel coating the membrane, the degradation of which is 

required prior to movement through the membrane. I find that 17KPC cell lines as a 

group are significantly disadvantaged in their invasive capacity compared to KPC cell 

lines (Figure 2.11f). However, no differences exist by genotype in their migration across 

uncoated membranes (Figure 2.11e). These data agree with my results in vivo that 17KPC 

tumors are less invasive, and they suggest that this is due to a specific defect in 17KPC 

cancer cells’ ability to manipulate extracellular matrix rather than more general defects in 

cellular locomotion. 

Invasion through basement membranes requires two major activities: degradation 

of the extracellular matrix and attachment-mediated movement through the mobilized 

substrate, which are coordinated in cancer cells by cellular protrusions called invadopodia 

(Chen et al. 1985). Invadopodia can be identified by the colocalization of their core 

protein components actin, cortactin, and paxillin into punctate or rosette-shaped 

structures (Chen 1989; Linder and Aepfelbacher 2003). To better understand the nature 

of the invasive defect seen in 17KPC cell lines, we collaborated with Chris Turner’s lab 

at SUNY Upstate to analyze invadopodia formation by immunofluorescence. They found 

that invadopodia in murine PDAC cell lines take the form of rosettes and that KPC cells 

lines exhibit higher rates of rosette formation than 17KPC lines (Figure 2.12). They  
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also performed FITC-conjugated gelatin degradation assays, which demonstrate that KPC 

lines degrade more substrate than 17KPC lines (Figure 2.12), which aligns with the 

higher prevalence of invadopodia in these KPC cell lines. These data suggest that loss of 

mir-17~92 reduces invadopodia formation. 

The mir-17~92 cluster encodes six miRNAs encompassing four miRNA seed 

families (Figures 1.4, 2.14), implicating thousands of predicted mRNA targets as 

downstream effectors of the cluster’s invasive program. To aid in my determination of 

which miRNA families may be most important in the invasive phenotype, I evaluated 

nine KPC and nine 17KPC cell lines for the expression of miR-17, -18, -19, and -92 

family miRNAs from the three cluster paralogs, mir-17~92, mir-106b~25, and mir-

106a~363. Quantitative RT-PCR demonstrates that 17KPC cell lines are indeed null for 

miRNAs from mir-17~92, however they retain robust expression from mir-106b~25 

(Figure 2.14a,b). In fact, this locus is sufficient to drive expression of miRNAs for the 

miR-17 and miR-92 families to levels close to that observed in KPC lines (Figure 

2.14d,e). This suggests that differences in the expression of miR-17 and -92 families may 

not be responsible for the invasive defect of 17KPC cell lines. However, miR-19 family 

miRNAs are only expressed from the mir-17~92 and mir-106a~363 clusters, and 17KPC 

lines completely lack expression of this miRNA family (Figure 2.14g). Based on the 

partial residual expression of the miR-17 and miR-92 families, and the generally very low 

expression of the miR-18 family (Figure 2.14c,f), I hypothesized that loss of the miR-19 

family was responsible for the defective invasion of 17KPC cell lines. 
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To validate the role for miR-19 family miRNAs in invasion, I utilized antagomirs 

– short oligonucleotides that bind and inactivate miRNAs – to specifically knock down 

miR-19 function in KPC lines with high invasive capacity and varying levels of miR-19 

expression. I first confirmed miR-19 antagomir activity using a β-galactosidase (β-Gal) 

reporter assay. The reporter construct contained the β-Gal coding sequence followed by a 

3’UTR with multiple miR-19 binding sites that stimulate translational suppression in the 

presence of miR-19. In a cotransfection experiment, pooled antagomirs against miR-19a 

and miR-19b enhance reporter activity in the KPC line 9248#1 (Figure 2.15b). However, 

miR-19 antagomirs cannot enhance reporter activity in 8849#3 cells, which have no 

endogenous miR-19 to antagonize (Figure 2.15a,b). 

Transfected antagomirs against miR-19 effectively suppress KPC cell line 

invasion in a Matrigel-coated transwell assay (Figure 2.16a). This response inversely 

correlates to the endogenous expression of miR-19 family miRNAs (Figure 2.16e), 

suggesting a dosage response. Indeed, the cell line with the highest expression of miR-19, 

9415#2, is resistant to antagomirs at a concentration of 50nM, but responds when treated 

with antagomirs at 100nM (Figure 2.16a). Notably, this effect is specific to invasive 

capacity, and antagomir treatment does not significantly affect migration ability across 

uncoated membranes (Figure 2.16c). The human pancreatic cancer cell lines MIA Paca-2 

and PANC-1 are also invasive and express very high levels of miR-19 (Figure 2.16f). 

Treating these human cell lines with miR-19 antagomirs reduces their invasive capacity 

without affecting baseline migration (Figure 2.16b,d). 
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Figure 2.15. A β-galactosidase reporter assay confirms that miR-19 antagomirs inhibit the 
activity of endogenous miR-19. 
A β-galactosidase reporter plasmid encoding a specially designed 3’UTR with miR-19 binding sites 
was cotransfected into cells with either control or miR-19 antagomirs at 50nM. The 8849#3 cell line 
completely lacks miR-19 but the 9248#1 cell line expresses high levels of miR-19 (A). Relative 
density of the colorimetric reaction is plotted with control antagomir-treated samples set to 100 (B). 
p values: ** < 0.01 

a b 
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Figure 2.16. PDAC cell line invasiveness is suppressed by miR-19 antagomirs. 
(A,B) Transwell invasion was measured for cell lines transfected with control or miR-19 antagomirs. 
(C,D) Baseline migration across uncoated membranes served as an internal control. miR-19 
expression levels are shown relative to the murine-specific control snoRNA234 (E) or the cross-
species compatible U6 RNA (F). p values: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001 

a b 

c d 

e f 
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Discussion 

Loss of mir-17~92 causes PanIN loss and acinar regeneration 

I demonstrate that deletion of the mir-17~92 cluster in the KC mouse model 

results in a significant reduction in the PanIN burden of aged animals. The distribution of 

PanIN grades in 17KC mice remains consistent with that of aged KC animals, suggesting 

that progression is unaffected by loss of the mir-17~92 cluster. Moreover, the difference 

in PanIN prevalence between KC and 17KC mice is less for younger animals than for 

older animals, suggesting that although PanIN formation may be reduced in 17KC 

animals, the predominant effect of mir-17~92 loss is to promote PanIN regression over 

time. Only a single study has shown that mir-17~92-related miRNAs are upregulated in 

human PanINs (Yu et al. 2012a), and in that study these miRNAs did not have the 

strongest association with PanIN grade among the many miRNAs profiled. Therefore the 

absence of progression-related differences between KC and 17KC mice agrees with the 

published human data and does not support a direct role for the mir-17~92 cluster in 

PanIN progression. 

Based on the published role of mir-17~92 in other tumor contexts as a promoter 

of cell cycle progression and as an antagonist of apoptosis, I initially hypothesized that 

the gradual loss of PanINs in 17KC animals was due to a shift in the balance of apoptosis 

and proliferation within these lesions. IHC staining for ki67 and CC3 clearly show no 

differences between KC and 17KC PanINs at either age, suggesting that the loss of 

PanINs in 17KC mice is not due to enhanced cell death and must be occurring by some 

other means. Moreover, aged 17KC pancreata not only lose PanIN content, but also gain 
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acinar content, suggesting that a regenerative process is occurring in parallel with lesion 

regression.  

Acinar-to-ductal metaplasia is a transformative event that converts the normal 

tissue of the pancreas into PanINs and contributes significantly to the neoplastic process 

in mouse models of pancreatic cancer (Kopp et al. 2012). Recent evidence suggests that 

this process is reversible in the pancreas, and mechanisms exist by which PanINs can 

regress back into healthy acinar tissue. Using an inducible-KRASG12D model, wherein 

KRASG12D expression is controlled by doxycycline dosing, one research group has 

demonstrated that withdrawal of KRAS signaling in established PanINs results in the 

regression of these lesions and the recovery of healthy acinar tissue (Collins et al. 2012a). 

The authors of that study also observe the remodeling and loss of the desmoplastic stroma 

around PanINs upon KRASG12D inactivation, and these changes are preceded by a loss of 

phosphorylated ERK in the PanIN lesions. In a critical follow-up study, the authors 

demonstrate that small molecule inhibition of ERK in the setting of continued KRASG12D 

signaling is sufficient to cause PanIN regression and acinar regeneration (Collins et al. 

2014). These data not only provide proof-of-principle that mature PanIN lesions can 

regress and be replaced by healthy acinar tissue, but they also demonstrate that this can 

occur in the continuing presence of KRASG12D signaling. 

Within my own genetic model, KRASG12D remains active in the pancreas 

throughout the lifetime of the animal. Critically, this suggests that whatever molecular 

differences exist between KC and 17KC PanINs are sufficient to overcome continuing 

KRASG12D signaling to promote PanIN loss over time. I am able to demonstrate that loss 
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of mir-17~92 results in reduced phosphorylated ERK in the PanIN lesions of 17KC 

animals, but does not increase cell death, as measured by CC3 staining. This finding 

aligns well with the published work of Collins et al, who also showed that inhibition of 

ERK signaling does not stimulate apoptosis, and instead appears to promote the 

redifferentiation of PanINs into acinar cells (Collins et al. 2014). Together, these data 

suggest that the loss of PanINs in 17KC animals may indeed be occurring by direct 

regression back into acinar tissue, thereby simultaneously reducing PanIN burden while 

increasing acinar content within 17KC pancreata. Importantly, phosphorylated ERK is 

not completely lost in 17KC PanINs, which could explain why PanIN regression was 

incomplete at nine months in my study, whereas small molecule inhibition of ERK or 

withdrawal of KRASG12D signaling are capable of much more rapid changes (Collins et 

al. 2014). 

The results of my in vivo study of PanIN formation clearly demonstrate that loss 

of the mir-17~92 cluster promotes PanIN loss over time, yet in the tumor study, where I 

additionally delete one copy of Tp53, tumor formation and overall survival are not 

impacted. Moreover, pancreas tissue adjacent to tumors harvested in this study show 

qualitatively similar and very high rates of PanIN formation (data not shown). This 

suggests that the tumor suppressive effect of reduced mir-17~92 expression is overcome 

by the pro-tumorigenic effect of Tp53 loss in this model. A recent paper showed that the 

TP53 effector protein CDKN1A (aka p21WAF1) is highly upregulated in acinar cells 

downstream of TP53 activation during acute pancreatitis, but it is strongly downregulated 

in ADM lesions (Grabliauskaite et al. 2015). In their mouse model, complete loss of 
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CDKN1A accelerated cerulean-induced ADM, suggesting that CDKN1A protects the 

acinar differentiation state in the setting of pancreatitis. Interestingly, absence of 

CDKN1A did not impair pancreas regeneration after withdrawal of the inflammatory 

stimulus (Grabliauskaite et al. 2015). Together, these data suggest that an intact TP53 

response helps to maintain the acinar differentiation state and that its downregulation 

promotes ADM. Thus, 17KPC animals likely experience enhanced progression into 

ADM compared to 17KC animals due to the genetic impairment of Tp53 function and a 

subsequent reduction in CDKN1A activity. Given the long timeline of PanIN loss and 

acinar recovery observed in 17KC mice, it is conceivable that the increased exuberance 

of ADM inherent to the 17KPC model simply overbalances the regenerative effect of 

mir-17~92 loss, resulting in no appreciable difference in the PanIN or tumor formation of 

17KPC mice compared to KPC mice. Interestingly, CDKN1A is a validated target of the 

miR-17 family (Fontana et al. 2008; Hong et al. 2010), suggesting a direct role for 

CDKN1A in the redifferentiation phenotype of 17KC animals. Although the work by 

Grabliauskaite and colleagues suggests that CDKN1A does not promote redifferentiation, 

higher levels of acinar CDKN1A in 17KC mice may contribute to locking 

redifferentiated cells into an acinar state and resisting reentry into ADM. A necessary 

experiment will be to return to the PanIN study and stain for CDKN1A to see if levels 

within acinar cells are higher in 17KC versus KC mice. 

Extending the idea of balance between ADM and redifferentiation, another 

interesting question is whether cluster-dependent differences in PanIN formation would 

be even greater in an adult-induced model, such as the published iKras model (Collins et 
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al. 2012a). It is known that activating KRASG12D in the adult pancreas, as opposed to with 

development, creates a weaker phenotype that additionally requires pancreatitis to 

generate PanINs (Guerra et al. 2007). This suggests that mature pancreatic tissues are 

more resistant to KRASG12D-driven ADM. It is possible that the resistance of 17KC mice 

to PanIN formation is overcome by the aggressive metaplasia that occurs with activation 

of KRASG12D during development, and that adult tissues might be even more responsive 

to regenerative pressure in the absence of mir-17~92. Indeed, perhaps it is the resistance 

of adult tissues to ADM that preserves acinar cells in 17KC mice, whereby 

developmentally driven PanINs lacking mir-17~92 redifferentiate in adulthood and find 

themselves now resistant to the effects of KRASG12D, subsequently persisting as acinar 

cells. 

 

mir-17~92 and transforming growth factor-β 

Activation of TGF-β is a watershed event in pancreatic tumorigenesis because of 

its prevalence in ADM, which drives the majority of PanIN formation. I have personally 

observed that TGF-β signaling is strongly increased in ADM lesions but largely absent 

from early stage PanIN lesions, and this signaling may be stronger in 17KC animals 

(Figure 2.4i-l). TGF-β is a known driver of EMT in a variety of contexts, and it is 

confirmed to have this activity in cultured pancreatic duct cells (Shin et al. 2011). Besides 

stimulating EMT, TGF-β signaling also triggers growth arrest by the induction of 

CDKN1A (Petrocca et al. 2008b) and has been suggested to antagonize ERK signaling by 

a SMAD-independent mechanism (Giehl et al. 2000). Thus TGF-β simultaneously 
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stimulates invasiveness and growth inhibition through several downstream effectors. It is 

well known that this tumor-suppressive role of TGF-β is bypassed in later stages of 

disease by the mutation of SMAD4 (Bardeesy et al. 2006b; Ijichi et al. 2006; Izeradjene 

et al. 2007). 

Published literature on the oncogenic role of mir-17~92 and its paralogs 

characterizes them as potent suppressors of TGF-β signaling, particularly by suppression 

of CDKN1A (Petrocca et al. 2008a; Petrocca et al. 2008b), SMAD4 (Fuziwara and 

Kimura 2014), and TGFBR2 (Volinia et al. 2006). Therefore, upregulation of the mir-

17~92 cluster is predicted to bypass TGF-β-driven growth arrest during ADM. This may 

suggest that growth arrest occurs at higher rates in the ADM lesions of 17KC animals. 

Perhaps this contributes to reduced PanIN burden in these animals. Interestingly, it has 

been shown in BRAFV600E-driven thyroid cancer that mir-17~92 is upregulated by the 

NOTCH effector HES1 and suppresses SMAD4 via miR-19 to drive proliferation 

(Fuziwara and Kimura 2014). Similarly, I observe prominent nuclear HES1 staining in 

ADM and PanIN lesions (Figure 2.4e-h), suggesting that NOTCH1-driven mir-17~92 

may act to suppress SMAD4 in KC animals, thus increasing the number of cells that 

successfully bypass cell cycle arrest. If this is the case, an interesting question will then 

be whether arrested cells persist in a mesenchymal state, undergo mesenchymal-to-

epithelial transition (MET) to achieve an arrested PanIN state, or regress to an acinar 

differentiation state. The final identity of these cells could have major ramifications on 

disease progression, and could differ between KC and 17KC animals. 

 



79 
 

 

mir-17~92 potentiation of ERK signaling - speculation 

As for how mir-17~92 might normally act to enhance KRASG12D signaling 

through ERK, that remains an important question. Ultimately, an unbiased approach to 

identifying miRNA targets would compare the results of prediction algorithms with RNA 

sequencing data to identify significantly downregulated transcripts that are also predicted 

targets of mir-17~92 cluster. Without RNA sequencing data there is a significant lack of 

support for choosing any particular predicted target as a likely player in the PanIN 

phenotype. However, in the absence of that data, speculation may suggest interesting 

relationships. 

Dual-specificity phosphatases (DUSPs) are well known to regulate the 

phosphorylation status of numerous MAPK family proteins, including ERK, JNK, and 

p38 (Rios et al. 2014). Several DUSPs have been implicated in pancreatic cancer 

progression and survival via modulation of MAPK signaling, including DUSP1 (Liu et al. 

2014), DUSP6 (Furukawa et al. 1998; Furukawa et al. 2005; Xu et al. 2005), and 

DUSP10 (He et al. 2014a). Because each DUSP simultaneously regulates multiple 

MAPK proteins, predicting their activity in a given cellular context is impossible, but 

validated relationships from the literature and predicted miRNA-mRNA interactions 

suggest a mechanism for mir-17~92’s regulation of ERK signaling, which is explored in 

the following discussion and summarized graphically in Figure 2.17.  

DUSP10 is a validated target of miR-92, and its suppression is required for JNK 

signaling and the proliferation of human pancreatic cancer cell lines (He et al. 2014a). 

The miR-17 family has been validated to suppress DUSP2 to drive ERK phosphorylation 



80 
 

 

in endometrial stromal cells (Lin et al. 2012). DUSP2 and DUSP7 preferentially suppress 

ERK activity over JNK or p38 MAPKs (Keyse 2008), and DUSP7 is a predicted target of 

both the miR-17 and miR-19 families by TargetScan analysis. Interestingly, MYC has 

been shown to regulate DUSP2 and DUSP7 in pluripotent stem cells (Chappell et al. 

2013), and MYC itself drives transcription of mir-17~92 (O'Donnell et al. 2005), 

suggesting that mir-17~92 may be a necessary facilitator of ERK signaling downstream 

of MYC in cancer contexts. An intriguing study showed that DUSP10, which 

preferentially dephosphorylates JNK and p38, also inhibits ERK activity in a 

phosphatase-independent manner by binding and sequestering phosphorylated ERK in 

the cytoplasm and preventing its activation of downstream targets or transcription 

(Nomura et al. 2012). Lastly, a tantalizing study showed that TGF-β induces ERK 

dephosphorylation in pancreatic cancer cells through the SMAD4-independent activity of 

an unidentified phosphatase (Giehl et al. 2000). Thus, DUSP2, DUSP7, and DUSP10 

represent a cancer-relevant anti-ERK regulatory network that may be potently and 

coordinately suppressed by multiple miRNAs of the mir-17~92 cluster (Figure 2.17). In 

particular, this network integrates signaling from key players in KRAS-driven pancreatic 

cancer, including KRAS signaling, TGF-β signaling, and MYC. Confirmation of these 

relationships will be critical follow-up experiments to the body of work presented in this 

chapter. 
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Figure 2.17. A potential mechanism for mir-17~92 promotion of ERK activity. 
Grey bars are predicted miRNA-mRNA target relationships or uncertain biological activities of 
proteins. Black bars are validated relationships from the literature. DUSP10 regulation of ERK is 
dashed to denote phosphorylation-independent suppression. MYC drives the expression of all 
members of mir-17~92, not just miR-17. 
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miR-19 promotes pancreatic cancer invasion 

Promoting tumor progression by heterozygous deletion of Tp53 creates tumors in 

both KPC and 17KPC mice. Tumors across these two genotypes are similar in size, 

pathological subtype, metastatic capability, proliferation, and apoptosis. The singular 

difference attributable to loss of the mir-17~92 cluster appears to be a reduced 

invasiveness of primary tumors in vivo. I determined that tumors were less invasive in 

vivo by stratifying mice into metastatic or localized groups and observing that mice 

which were sacrificed for severe illness arising from localized disease survived longer 

and with larger tumors in the absence of mir-17~92. The rationale for this stratification is 

that metastasis and local invasion may represent biologically distinct processes, whereby 

entry into the circulation may present different and unique challenges compared to 

extended invasion through dense desmoplastic stroma to reach adjacent organs. This is 

supported by the observation that 17KPC tumors are not significantly different from KPC 

tumors in their ability to metastasize to the liver or peritoneum. Admittedly, histological 

evidence of invasion appears with equal frequency between the two groups, suggesting 

that invasion is eventually achieved and represents the common endpoint of mice dying 

from localized disease; however 17KPC tumors grow larger and require more time in 

order to reach equivalently invasive stages compared to KPC tumors. 

These findings were nicely paralleled in vitro by my observations that KPC and 

17KPC cell lines performed equivalently in growth and survival measurements, but 

17KPC cell lines were particularly deficient in their invasive capabilities in a transwell 

assay. This correlates to a reduction in the presence of invadopodia, which are critical 
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structures for the execution of invasion through extracellular matrix. It is also consistent 

that gelatin degradation generally aligns with the prevalence of invadopodia formation 

between cell lines. For example, 9025#2 forms more invadopodia than 8745#3, and is 

also more effective at degrading gelatin. 

Interestingly, however, 9025#2 is less invasive than 8745#3 in a transwell assay. 

This might suggest at first that although 9025#2 cells are more capable of degradation, 

they may be deficient in chemotaxis, but the migration assay confirms that they are 

migration-competent and, indeed, perform far better than 8745#3 cells. This highlights 

the complex and coordinated nature of cancer cell invasion. For instance, I have not 

characterized whether 17KPC or KPC cell lines exhibit differences in their adhesion to 

particular substrates. Specifically, 9025#2 cells may be more migratory than 8745#3 cells 

in an uncoated transwell assay, but they may be less capable of moving on Matrigel 

components, which would render their increased invadopodia and gelatin degradation 

advantage irrelevant. Moreover, these cell lines still exhibit predominantly epithelial 

morphology as well-differentiated ductal adenocarcinomas, and the dynamics of cell 

separation or collective migration have not been assessed. 

Although I observe significant genotype differences in transwell invasion, 

invadopodia, and gelatin degradation, the specific contributions of these or other deficits 

within individual 17KPC cell lines dictate their net invasive capacity. While it seems 

clear that 17KPC tumors and cell lines are invasion defective, I must also acknowledge 

that there may be untested factors that are different by genotype and are also critical to 

17KPC biology. 
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My finding that invasion can be suppressed with just miR-19 antagomirs greatly 

simplifies the range of potential targets that could mediate and inform our understanding 

of the 17KPC invasion defect. Critically, I have not yet determined whether invadopodia 

formation is suppressed by treatment with miR-19 antagomirs, although these 

experiments will be performed in the near future in collaboration with the Turner lab at 

SUNY Upstate. Moreover, I plan to send cell line RNA for sequencing to determine 

which transcripts are significantly downregulated in KPC cell lines compared to 17KPC 

cell lines, in order to facilitate the identification of relevant miR-19 targets. Awaiting 

these data, we can theorize as to the potential mechanisms of mir-17~92-driven 

invasiveness by considering known biology governing invadopodia. 

SRC is a major regulator of invadopodia rosette formation (Oikawa et al. 2008). 

Several components of invadopodia are targets of SRC phosphorylation, including 

cortactin, CAS, ASAP, and paxillin (Thomas et al. 1995; Brabek et al. 2004; Bharti et al. 

2007). Since its initial characterization as a SRC substrate, paxillin has been variously 

shown to be phosphorylated downstream of EGF (Hetey et al. 2005), TGF-β (Tumbarello 

and Turner 2007), and AKT (Zhao et al. 2010), all of which are pathways relevant to 

pancreatic carcinogenesis. Phosphorylation is responsible for paxillin’s localization to 

peripheral actin and focal adhesions (Nakamura et al. 2000), where it acts to scaffold 

proteins required for invadopodia assembly (Deakin et al. 2012). Interestingly, it has 

recently been shown that MAP3K2 can trigger the ubiquitination of paxillin and force its 

cytoplasmic redistribution away from focal adhesions (Ameka et al. 2014). MAP3K2 is 

predicted to be powerfully and coordinately regulated by the mir-17~92 cluster: its 
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3’UTR contains five predicted binding sites for the miR-17 family (one 8mer site, three 

7mer-m8 sites, and one 7mer-A1site) and two sites for miR-19 (one 8mer and one 7mer-

m8). This suggests that MAP3K2’s expression and activity may be higher in 17KPC cell 

lines as a result of mir-17~92 loss, potentially promoting paxillin delocalization and 

inhibiting invadopodia stability. Based on immunofluorescence in the cell lines thus far 

analyzed, it is not clear that paxillin localization is significantly different between KPC 

and 17KPC cell lines, but this will need to be quantified to rule out slight, but significant 

differences not appreciable by qualitative assessment. 

Regulators of Rho GTPase activity, including Rho GAPs and GEFs, also present 

clear opportunities for miRNA regulation of cytoskeletal dynamics during invasion. 

DLC1 is a Rho GAP that inhibits tumor growth and invasion (Healy et al. 2008; Zhou et 

al. 2008). DLC1 has even been shown to regulate paxillin function in focal adhesions 

(Kaushik et al. 2014). DLC1 is a predicted target of miR-19 (one 8mer) but is not 

predicted to be targeted by any other members of the mir-17~92 cluster, opening up the 

possibility that this Rho GAP could be a miR-19-specific target responsible for invasive 

differences in 17KPC cell lines. Given that paxillin is phosphorylated downstream of 

AKT  (Zhao et al. 2010), another obvious candidate gene to interrogate will be PTEN, 

which antagonizes AKT activity, is a validated target of miR-19, and is a key component 

of the oncogenic activity of the mir-17~92 cluster in lymphoma (Olive et al. 2009).  
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PanIN formation is a reversible process 

Previous to the work presented in this chapter, the only documented way to 

achieve PanIN regression and pancreas regeneration after oncogenic insult was by direct 

inhibition of KRASG12D or ERK signaling. Because KRASG12D inhibition is clinically 

ineffective, and small molecule MEK inhibitors carry toxicity (Welsh and Corrie 2015), 

the implication that the mir-17~92 cluster controls ERK signaling opens up opportunities 

to explore alternative approaches to the medical treatment of precursor lesions. If the 

critical intermediary of mir-17~92-mediated ERK dephosphorylation is a dual-specificity 

phosphatase (DUSP), it could present an opportunity to treat PanIN lesions medically 

with gene therapy. Specifically, a pancreas-targeted adeno-associated virus (AAV) could 

be used to deliver a miRNA-resistant version of the critical DUSP to PanIN lesions. Such 

pancreatic-duct targeted AAVs are already in development for the treatment of cystic 

fibrosis in pigs and are being tested in mice (Guo et al. 2013; Griffin et al. 2014). 

Alternatively, since ERK activity is critical to PanIN maintenance, another approach 

could be to use such pancreas-tropic AAVs to deliver shRNAs targeting upstream 

activators of ERK, or ERK itself. 

Such methods will have to await the final development of the requisite AAV 

tools, but they could be our first attempt at non-surgical prophylactic therapy in healthy 

at-risk individuals. In particular, at-risk individuals with a family history of pancreatic 

cancer could be put on a gene therapy regimen designed to regress a significant bulk of 

their PanIN lesions back to healthy exocrine tissue. Given the long timeline of pancreatic 
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carcinogenesis, a histological reset such as this could result in tremendous gains of life, 

even if it was not curative. Moreover, gene therapy has the potential to be radically less 

toxic and more efficacious compared to prophylactic inhibitor therapy, given that it could 

be delivered in a tissue-specific manner and in a few doses, as opposed to chemical 

inhibitors, which must be dosed continuously and systemically. I am particularly drawn 

to the idea that PanINs can now be medically targeted using such a prophylactic 

approach, because these lesions, particularly PanIN-1, possess far more predictable 

biology compared to later stages of disease where severe disruption of gene expression 

and tumor evolution render generalized therapy ineffective. 

The diversity of late-stage tumor biology is the reason why targeted therapy of 

invasive or metastatic disease is an entirely separate and far more difficult problem. 

Pancreatic cancer invasiveness is a critical barrier to curative therapy for patients, 

because tumors frequently invade nearby tissues before causing symptoms that trigger 

detection. In particular, the mechanism of very early invasiveness, seen around ADM 

lesions and early stage PanINs, is an even greater mystery for its seeming disregard for 

the classical paradigm of carcinoma progression (Rhim et al. 2012). According to the 

work of Rhim and colleagues, ADM allows epithelial-derived cells to disseminate into 

the stroma and even into the circulation where they can seed and survive in the liver long 

before the advent of carcinoma. The presence of circulating pancreatic cells in humans 

with benign precursor lesions has since been confirmed (Rhim et al. 2014b). This is 

starkly different from other carcinomas like colon cancer that progress through benign 

hyperplastic stages to ductal carcinoma in situ prior to invading. Indeed, this suggests a 
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unique biology for pancreas cancer, where a significant number of cancer cells may exist 

outside the pancreas even in those patients with localized disease. This makes a great deal 

of sense with the clinical data that clean surgical resection offers only a 25% chance of 

surviving five years: clearly pancreatic tumors are not bound by their surgical margins. 

However, this is merely conjecture, as the malignant potential of these early-invasive 

cells or their effects on tumor progression have not been demonstrated. Suffice to say that 

our ability to use chemotherapy and radiation to combat metastatic disease is severely 

limited by the biological diversity of metastatic cells, and our best chance at clinical 

benefit in the near future may be interventions against PanINs. 

The interplay of mir-17~92 and TGF-β signaling in the context of oncogenic 

KRAS is complex, but suggests a link between early metaplastic events and the 

aggressiveness of late stage tumor progression. Importantly, we now appreciate that 

epithelially-derived cells expressing KRASG12D migrate into the stroma and can be found 

near ADM and PanIN lesions (Rhim et al. 2012). These cells possess myofibroblast-like 

morphology and likely play active roles in the biology of the investing stroma around 

PanINs and tumors. It follows that the stroma around KPC and 17KPC tumors therefore 

likely differs due to the genetic differences in these EMT-derived cells. Specifically, mir-

17~92-deficient cells that maintain a mesenchymal state would be predicted to respond 

more strongly to TGF-β signaling. Indeed, it has been shown that miR-19 blunts the 

TGF-β response of hepatic stellate cells and reduces their expression of αSMA and type I 

collagen (Lakner et al. 2012). Therefore cells derived from early EMT events in 17KPC 

mice would contribute to the formation of a denser stroma because of enhanced collagen 
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production compared to similar cells in the KPC group. Subsequently, tumors formed in 

the 17KPC context would find themselves within a denser stroma compared to KPC 

tumors, which would impair their ability to invade adjacent tissues. This conceptual 

model agrees with published work demonstrating that the reactive stroma around 

pancreatic cancer probably acts to limit tumor aggressiveness (Rhim et al. 2014a). 

Therefore early metaplastic events and the genetics governing them may exert a stronger 

influence over the clinical progression of late stage disease than previously appreciated, 

and this emphasizes the need to understand and if possible intervene in these early stages. 

 

PanIN regression and ADM dynamics – future experiments 

The finding that PanINs can regress under certain physiological conditions, 

including mir-17~92 loss, and subsequently be replaced by healthy exocrine tissue, 

suggests that PanINs may revert to acinar tissue directly through an event similar but 

opposite to ADM. However, histological stains, which capture a single moment in time, 

may be unable to distinguish such a redifferentiation event from ADM. Confirmation of 

acinar redifferentiation from PanINs would be genetically possible by the addition of a 

secondary recombination system, such as flippase recombinase (Flp) (Lee et al. 2012a), 

to complement the Cre-lox system of the KC model. 

For instance, a fusion transgene composed of the promoter region of Muc1 and 

the coding sequence of Flp (Muc1-Flp) would be predicted to activate Flp expression in 

cells that express Muc1: namely, early PanIN-1 lesions but not normal ducts or acini 

(Gold et al. 2007). The Flp recombinase recognizes flippase recognition target (FRT) 
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sites in DNA and deletes the intervening genetic sequence in a mechanism similar to that 

of Cre-lox (McLeod et al. 1986). Therefore a Muc1-Flp allele could be combined with a 

gene encoding red fluorescent protein (RFP) with an upstream FRT-stop-FRT cassette, 

similar to the LSL-KrasG12D allele. This ‘FSF-RFP’ allele could itself be driven from the 

ubiquitously expressed Rosa26 locus, which has been used extensively to drive gene 

expression in mouse models (Casola 2010). Importantly, a similar allele has been 

described already and generates no background fluorescence (Rhim et al. 2012). The full 

genetic model for PanIN lineage tracing would therefore consist of LSL-KrasG12D, Ptf1a-

Cre, Rosa26-FSF-RFP, Muc1-Flp, with or without mir-17~92flox/flox (suggesting the 

shorthand KCRF and 17KCRF). These KCRF mice would be expected to generate 

PanINs similarly to the well-described KC model, but would additionally activate RFP 

upon metaplasia downstream of Muc1 activation. Subsequently, Rosa26-RFP would 

remain constitutively active in all derived cells, including any differentiated acinar cells 

that derived from mature PanINs.  

miRNAs are thought to provide generally subtle regulation of gene expression, 

with the average miRNA-mRNA interaction generating less than a two-fold reduction in 

protein levels (Baek et al. 2008). This suggests that the regeneration phenotype of 17KC 

mice reflects the enhancement of an underlying process inherent to KC mice, rather than 

the acquisition of a completely new ability. It would therefore not be surprising to 

discover a low basal rate of PanIN regression in young KCRF mice in the absence of 

ERK inhibition or mir-17~92 loss. My prediction is that this reversion is normally 
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outbalanced by full KRASG12D signaling through ERK such that acinar regeneration is 

not observed by measuring total acinar content over time in KC mice.  

An additional benefit of the KCRF model is that it could be used to track invasive 

or metastatic cells derived from PanINs and tumors, allowing a higher resolution view of 

the impact of mir-17~92 deletion on tumor progression. KCRF mice could be bred to 

incorporate the Tp53flox allele (‘KPCRF’), which would not only provide a beneficial tool 

for tracking metastatic cells, but also provide an opportunity to use in vivo imaging to 

monitor tumor progression and spread. Importantly, both the Rosa26-FSF-RFP allele and 

the Muc1-Flp transgene can theoretically be bred to homozygosity, which is an important 

advantage in mouse genetics where Mendelian inheritance can make the generation of 

littermate pairs inefficient. Altogether, the KCRF model presents an exciting opportunity 

to confirm the reversibility of 17KC PanINs and more deeply explore the nature of the 

17KPC invasion deficiency. 

Future in vivo experiments exploring the role of mir-17~92 in pancreatic 

tumorigenesis should additionally delete the mir-106b~25 cluster now that we understand 

it to be so highly upregulated in murine pancreatic tumors. The work I present in this 

chapter – particularly the demonstration the miR-19 antagomirs suppress invasion – 

supports a miR-19-centric model of pancreatic cancer invasion; yet I have not determined 

whether other miRNAs of the cluster play a role in the invasive phenotype. Expression 

from the mir-106b~25 cluster may have prevented me from observing defects related to 

miR-17 or miR-92 family activity and is therefore a confounding variable in the above 

experiments. Although I believe I have arrived at meaningful interpretations of the 
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available data, I would be eager to see the results of dual cluster deletion on PanIN 

formation and tumor invasion. 

At the commencement of these studies, no conditional allele for mir-106b~25 

existed. Such an allele would be ideal, but germline deletion of mir-106b~25 is, in fact, 

developmentally tolerated (Ventura et al. 2008). Ventura and colleagues demonstrate that 

combined deletion of mir-106b~25 and mir-106a~363 displays no developmental 

abnormalities, so follow-up studies could even be performed using mir-17~92flox/flox, mir-

106b~25null, mir-106a~363null mice in the KC context to thoroughly determine the effect 

of the loss of these miRNAs in pancreatic carcinogenesis. Moreover, with the rapidly 

evolving technology of the CRISPR-Cas9 system, it is becoming much faster and more 

cost-effective to generate novel and complex mouse models in-house. For example, 

miRNA cluster alleles could be cloned with lox-p sites flanking specific subsets of the 

clusters in order to facilitate tissue-specific deletion of particular miRNA families. These 

alleles could be tested for efficacy in vitro and rapidly transitioned in vivo using CRISPR-

mediated recombination strategies. The development of CRISPR-Cas9 technology is 

beginning to finally give mouse genetics the power and speed that has previously been 

restricted to more facile model organisms, like Drosophila. 

 

Final thoughts 

The work presented in this chapter is consistent with our understanding of 

miRNAs as subtle modulators of gene expression. Specifically, the PanIN regeneration 

phenotype of 17KC animals, although dramatic, is a slow process that occurs over the 
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course of months. Additionally, the invasion defect of 17KPC tumors manifests as a 

slight survival benefit and a slight overall decrease in 17KPC cell line invasiveness. 

Indeed, my ability to demonstrate these differences rests largely in the scale of the 

experiments: sufficient mice were enrolled that stratification of the study data for 

localized disease still resolved a significant survival difference, and profiling eleven cell 

lines generated significant invasion differences, whereas statistical testing of eight-line 

subsets of the data fails to do so (data not shown). 

An advantage of my experimental design is that it examined the role of an entire 

cluster of miRNAs that contains multiple members of the same miRNA families, many of 

which target the same transcripts. This fact improved my chances of seeing phenotypic 

effects, but the subtlety of the resultant phenotypes should serve as a cautionary tale to 

future investigators. miRNAs are certainly critical regulators of cellular processes, but 

assessing their role by individual deletion in vivo is likely to rarely yield meaningful 

results unless the miRNA being investigated is already known to be a dominant regulator 

of a particular process and its activity is unlikely to be substituted by that of another 

miRNA. Barring that, the investigator should be prepared to dissect potential 

redundancies, as in my analysis of the expression of the mir-17~92 paralogs. 

 Tumor progression is an incredibly complex process, involving myriad signaling 

pathways that are interwoven at every level. Moreover, the specific cellular context 

significantly impacts the effect of a given pathway. Accordingly, the expression and 

impact of miRNAs on the various stages of tumor progression is similarly variable, and 

should not be considered as simply ‘tumor suppressive’ or ‘oncogenic.’ Understanding 
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the mechanisms behind miRNA effects in a transcriptome-specific context is an absolute 

necessity, but also an enormous challenge: consider, for instance, the fact that mir-17~92 

can potentially suppress CDKN1A, TGFBR2, SMAD4, PTEN, BIM, MYCN, and a host 

of GAPs and GEFs regulating RAS family proteins, but these signaling pathways 

themselves are under constant flux and selective pressure that varies according to cell 

type, extent of dysplasia, microenvironment, and host physiology. Ultimately, targets 

must be validated using robust RNA sequencing or proteomic technologies, but even 

these are limited by their resolution in a field that now considers each cell as an 

independent and potentially lethal entity. All of this is compounded by random mutations 

in cancers that generate unpredictable shifts in molecular interactions, at times rendering 

our best understanding of normal biology insufficient. To a certain extent, we can expect 

cancers to follow Murphy’s law, where anything that could go wrong, will go wrong. 

These complexities and uncertainty are strong arguments for a focus on cancer 

prevention, although we should never abandon our attempts to understand and treat 

advanced disease. 

 I have demonstrated that loss of mir-17~92 drives the regression of PanINs and 

their replacement with healthy acinar tissue. This work comes on the heels of similar 

studies demonstrating that PanIN regression can occur even in the continuing presence of 

oncogenic KrasG12D through downregulation of ERK signaling. Now, after decades of 

research, we are beginning to gain insight into the ways PanINs may be medically treated 

to prevent pancreatic adenocarcinoma. Perhaps soon we will begin to see a decrease in 

the number of pancreatic cancer cases in this country thanks to innovations in the medical 
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regression of PanINs. Previously, all talk of progress focused on detection, surgery, and 

improved chemotherapeutics, but these treatments carry significant morbidity and risk of 

mortality. It is hard to envision a way that a procedure as radical as the Whipple can be 

made much safer, but perhaps with a greater understanding of the very early stages of 

pancreatic neoplasia, we can prevent patients from ever needing it. My findings regarding 

the role of mir-17~92 in PanIN maintenance reassure me that this is possible, and they 

give me hope that soon this will be a flourishing field of research that will have a positive 

impact on the care of the pancreatic cancer patient. 
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Materials and Methods 

 

Cell Culture 

 All cell lines were grown in high glucose DMEM (Life Technologies #11965) 

supplemented with 10% fetal bovine serum (Atlanta Biologicals #s11150) and 100U/ml 

penicillin/streptomycin (herein ‘complete media’) (Pen/Strep: Life Technologies 

#15140). Cell lines were maintained at subconfluent densities on tissue culture-treated 

dishes and periodically thawed fresh from frozen stocks to maintain low passage number. 

 Proliferation assays were carried out by plating 2.5x104 cells per well of a 24-well 

plate and counting cells at regular intervals by dissociation in 0.25% trypsin (Invitrogen 

#25200) and trypan blue exclusion (Invitrogen #15250061). Doubling time was 

calculated by first plotting the log2 of the cell number against time and fitting a linear 

regression to the data. The slope of this line has units of doubling events/time, thus the 

doubling time is derived by taking the inverse of the slope (i.e. time/doubling event). 

 Migration assays were carried out by plating 2.5x104 cells in serum-free media 

into 8um-porous migration inserts (Fisher #08-774-162) in a 24-well plate. Cells were 

allowed to settle and adhere onto insert membranes for 20 minutes prior to the addition of 

750ul of complete media to the outside of the insert. Cells were then allowed to migrate 

towards the serum gradient for 24 hours prior to methanol fixation and staining with 

Giemsa (Sigma-Aldrich #48900). Nonmigrating cells were wiped from the interior 

surfaces of the insert prior to membrane separation and mounting on glass slides. Cells 

were counted across five 100x fields under the microscope and averaged across two 
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membranes for each experiment. Invasion assays involved the parallel seeding of cells 

onto invasion inserts (Fisher #08-774-122), which require rehydration in serum-free 

media for one hour prior to seeding, but are otherwise processed identically. Invasion 

index was calculated as the number of invading cells divided by the number of migrating 

cells multiplied by 100%. 

 Serum-starvation survival assays were performed by plating 5x104 cells per well 

of a 24-well plate. One day after seeding, cells were treated with complete media or 

serum-free media and incubated for a further 24 hours. At this time floating cells from the 

media and one PBS wash were collected and combined with trypsinized cells from the 

plate surface. This pool of live and dead cells was then pelleted by centrifugation and 

resuspended in 100ul of complete media supplemented with 0.04% trypan blue. Percent 

survival in fed and starved conditions was calculated as live cells divided by total cells 

multiplied by 100%. ‘Baseline survival’ is survival in the fed state, and ‘serum-starvation 

survival’ is survival in the starved state, divided by survival in the fed state, multiplied by 

100%, and therefore measures the additional death that is attributable to the absence of 

serum. 

 Soft agar colony formation was measured by mixing 2x complete medium, made 

from DMEM powder (Invitrogen #12100) in a 1:1 ratio with 1.4% agarose  (Denville 

#CA3510-8) in distilled water. This mixture is created and maintained at 42˚C to prevent 

agarose polymerization, and is used to coat 10cm plates and create a polymerized non-

adherent surface (‘hard agar plates’). A second mixture of 2x complete medium and 0.8% 

agarose is then made and used to resuspend a pellet of 3x105 cells, which are 
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subsequently distributed across three hard agar plates and allowed to polymerize before 

feeding with 8mls of complete media. Colonies are allowed to form for 14 days before 

counting. Quantification consists of counting the total number of colonies greater than 

three cell diameters wide, across eight 50x fields. 

 Antagomir transfections began with seeding of 2.5x105 cells per well of a 6-well 

plate 24 hours before transfection. miRCURY LNA Power Inhibitors (Exiqon #4101004-

100, 4103258-100, and 199006-100; herein ‘antagomirs’) were transfected by combining 

35 picomoles of antagomir with serum-free media to a final volume of 100ul. This was 

then combined with 20ul of Superfect (Qiagen #301305) and vortexed for ten seconds 

prior to incubation at room temperature for ten minutes. Cells were washed in PBS 

immediately prior to the addition of transfection complexes. The transfection mixture was 

combined with 600ul of complete media, the PBS wash was aspirated from the cells and 

the transfection mixture then added drop-wise. Transfection proceeded for three hours at 

37˚C before an additional 700ul of complete media was added to protect against 

dehydration. Cells were fed with fresh media 24 hours after transfection and at 48 hours 

were plated into assays. 

  

Histological Stains 

 Mouse tissues were fixed in 10% neutral-buffered formalin for at least 24 hours 

prior to processing through ethanol to paraffin blocks. Tissues were cut in 5um sections 

onto charged glass slides and allowed to dry overnight before staining. Prior to staining, 

paraffin slides were melted at 60˚C for 15 minutes and cleared through Xylenes (Fisher 
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#X3P) to 100% ethanol. Slides were then rehydrated through a graded alcohol series to 

distilled water. For immunohistochemical stains, antigen retrieval was performed using a 

citrate buffer (Vector Labs #H3300) by microwave heating at low power for 15 minutes. 

When peroxidase-labeled antibodies were to be used, endogenous peroxidases were 

inactivated by incubation in a 3% hydrogen peroxide solution for seven minutes. Tissues 

were then washed twice in TBS-T prior to blocking. When using mouse primary 

antibodies, an optimized Mouse-on-Mouse kit (Vector Labs #BMK-2202) was used 

according to the manufacturer’s instructions. For all other antibodies, tissues were 

blocked in PBS supplemented with 10% normal goat serum. A list of all antibodies and 

conditions used for immunohistochemical stains appears in Table 2.1. Stains were 

developed using ABC (Vector Labs #PK-6101) and Nova Red (Vector Labs #SK-4800) 

kits. Counterstaining was performed with hematoxylin and slides were dehydrated 

through a graded alcohol series and xylenes prior to being mounted in Permount (VWR 

#100496). 

 Hematoxylin and eosin stains were performed according to field standards. The 

quadchrome stain was developed by David Driscoll and consists of a hybrid protocol 

derived from Sirius Red staining for collagen and Alcian Blue staining for mucin. 

Briefly, slides are rehydrated through a graded alcohol series to distilled water. They are 

then incubated in Weigert’s Hematoxylin for one hour before being rapidly washed in 

acidified water (15 dips in 0.5% acetic acid). This is followed by Sirius Red staining for 

one hour, washes in acidified water, Alcian Blue staining for 30 minutes, washes in  
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    Antibody 

  Stain Cat. Number Concentration Time Temp 

C
o

-i
m

m
u

n
o

fl
u

o
re

sc
en

ce
 

anti-Insulin Dako A0564 1:500 4hr RT 

anti-Glucagon Dako A0565 1:50 4hr RT 

Alexa-fluor-594 
anti-rabbit 

ab150080 1:250 1hr RT 

FITC anti-guinea 
Jackson Immuno: 

706-095-148 
1:500 1hr RT 

Im
m

u
n

o
h

is
to

ch
em

is
tr

y anti-ki67 ab66155 1:600 4hr RT 

anti-CC3 cs-9664 1:800 4hr RT 

anti-αSMA ab5694 1:400 1.5hr RT 

anti-Hes1 CST-11988 1:5000 4hr RT 

anti-pSMAD3 ab52903 1:200 O/N 4°C 

anti-pERK CST-9101 1:400 1hr RT 

Table 2.1 Conditions of immunohistochemical stains. 
Blocking for all stains was performed with PBS supplemented with 10% normal goat serum overnight 
at 4˚C (pSMAD3 was blocked 4 hours at room temperature). RT: room temperature; O/N: overnight. 
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acidified water, and dehydration to xylenes prior to mounting. In this stain, collagen 

appears bright red, mucin is blue, nuclei are black, and cytoplasm is a weak yellow. 

 

qRT-PCR 

 Quantitative RT-PCR for miRNAs was performed as previously described 

(Fiedler et al. 2010). Briefly, total RNA was isolated by homogenization of PBS-washed 

adherent cells in TRIzol reagent (Invitrogen #15596). RNA was extracted to the aqueous 

phase using chloroform and precipitated in 70% isopropanol overnight at -20˚C to ensure 

capture of small RNAs. Pellets were washed in 70% ethanol prior to solubilization in 

DEPC-treated water and long-term storage at -80˚C. 

 cDNA libraries were created by first treating RNA with DNAse (Life 

Technologies #AM1907) to eliminate genomic contaminants. DNA-free RNA was then 

polyadenylated with E. coli poly-A polymerase (New England Biolabs #M0276) at 37˚C 

for 30 minutes prior to the generation of cDNA using a reverse transcription kit 

(Invitrogen #18080). During the RT reaction, a pool of special primers was used to 

generate cDNA copies of polyadenylated miRNAs. These specially designed primers 

encode a 20-nt universal tag, followed by a 15-nt oligo-dT segment, and finally a 2-nt tag 

that tethers the primer to the 3’ end of polyadenylated miRNAs. A pool of all 12 possible 

combinations for the 2-nt tag was used at a final concentration of 50uM to capture all 

miRNAs during cDNA synthesis. A complete list of RT primer sequences appears in 

Table 2.2. All subsequent steps of the cDNA synthesis were conducted according to kit  
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Primer Name Primer Sequence (5' - 3') 

miR-17 CAAAGTGCTTACAGTGCAGGTAG 

miR-106a CAAAGTGCTAACAGTGCAGGTAG 

miR-106b-5p TAAAGTGCTGACAGTGCAGAT 

miR-20a TAAAGTGCTTATAGTGCAGGTAG 

miR-20b CAAAGTGCTCATAGTGCAGGTAG 

miR-93 CAAAGTGCTGTTCGTGCAGGTAG 

miR-19a/b TGTGCAAATCTATGCAAAACTGA 

miR-18a TAAGGTGCATCTAGTGCAGATAG 

miR-18b TAAGGTGCATCTAGTGCTGTTAG 

miR-92 TATTGCACTTGTCCCGGCCTG 

miR-25 CATTGCACTTGTCTCGGTCTGA 

miR-363 AATTGCACGGTATCCATCTGTA 

snoRNA234 GATTTAACAAAAATTCGTCACTACCACTGAGA 

U6 snRNA (mmu/hsa) CATCTCGAGCTAATCTGGTGGG 

RT Primer 1 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT AA 

RT Primer 2 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT AC 

RT Primer 3 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT AG 

RT Primer 4 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT AT 

RT Primer 5 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT CA 

RT Primer 6 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT CC 

RT Primer 7 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT CG 

RT Primer 8 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT CT 

RT Primer 9 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT GA 

RT Primer 10 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT GC 

RT Primer 11 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT GG 

RT Primer 12 ACGCATCTATGCGCATATCG TTTTTTTTTTTTTTT GT 

Universal Reverse Primer ACGCATCTATGCGCATATCG 

Table 2.2 Primers used in PCR reactions. 
Primer sequences are provided for all qPCR primers used in the study. In all cases primers were 
derived according to the sequence of the mature mouse miRNA based on miRBase records. The 
primer for U6 snRNA is complementary to human and mouse U6 RNA. 
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directions. Lastly, samples were incubated with RNase for 20 minutes at 37˚C prior to 

long-term storage at -20˚C. 

 PCR for miRNAs used a slightly modified rapid program to amplify the very 

short miRNA cDNAs: denaturation at 94˚ for 15 seconds, annealing at 55˚C for 30 

seconds, and extension at 70˚C for 34 seconds, repeated 40 times . The reverse primer for 

all miRNA reactions was the sequence of the universal tag present in all 12 RT primers. 

The forward primer for each miRNA was the mature miRNA sequence. A full list of 

primers used to detect miRNAs in the study is presented in Table 2.2. PCR reactions 

were carried out on an ABI Step One Plus machine in 10ul volumes using SYBR Green 

(VWR #95072). 

 CT values were calculated for all miRNA PCR reactions at a uniform threshold of 

absorbance across all experiments and controlled to CT values for the endogenous 

reference (snoRNA234 in mouse-only experiments, U6 in human and cross-species 

comparisons). The expression of individual miRNAs is presented as relative snoRNA234 

units in order to convert the ΔCT value for each miRNA into a relative molar measure 

(calculated as 2ΔCT). Once all miRNAs are expressed in this manner, the expression levels 

of individual miRNAs can be straightforwardly summed to generate a measure of the 

relative abundance of all miRNAs within a shared miRNA family, allowing intra-family 

comparisons between treatment groups or genetic cohorts of cell lines. Because of seed 

family redundancy, this analysis is critical when considering the potential overall effect 

of a miRNA family composed of many differently expressed individual miRNAs. 
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Mouse Breeding, Euthanasia, and Necropsy 

 All mice generated in this study were housed in a dedicated facility in accordance 

with guidelines set forth by the Institutional Animal Care and Use Committee. The alleles 

for mir-17~92flox (Ventura et al. 2008), Ptf1a-Cre (Kawaguchi et al. 2002), LSL-KrasG12D 

(Jackson et al. 2001), and Tp53flox (Jonkers et al. 2001) have been described previously. 

 For the precursor lesion study, mir-17~92flox/wt, Ptf1a-Cre mice were maintained 

on a C57/Bl6 background and crossed to mir-17~92flox/wt, LSL-KrasG12D mice on a mixed 

background to generate littermate KC and 17KC animals. For the tumor survival study, 

mir-17~92flox/wt, Tp53flox/flox, Ptf1a-Cre mice were maintained on a C57/Bl6 background 

(F0 generation) and crossed together to generate littermate mir-17~92flox/flox, Tp53flox/flox, 

Ptf1a-Cre and mir-17~92wt/wt, Tp53flox/flox, Ptf1a-Cre mice (F1 generation). Littermate mir-

17~92flox/flox, LSL-KrasG12D and mir-17~92wt/wt, LSL-KrasG12D mice were generated in a 

similar fashion. These mice were then used to generate mating cages for the survival 

study. Thus, 17KPC and KPC mice (F2 generation) could be bred with high efficiency 

while preserving genetic relatedness through littermate control of the F1 generations. 

Over the course of the study, experimental animals were generated from mating cages 

formed from at least three separate F1 generations, further protecting study results from 

effects of random genetic drift between KPC and 17KPC breeders. 

 Health status was monitored at least three times per week for all animals. Major 

signs of illness warranting euthanasia included severely reduced mobility with lack of 

arousal upon handling, hunching, abdominal distension, wasting, palpable abdominal 

mass, and hyperventilation. Comorbidities contributing to euthanasia decisions included 
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pallor, squinting, grooming deficits, and abnormal gait. Prior to euthanasia extensive 

notes were gathered regarding general appearance and reasons for sacrifice. Upon 

necropsy, the disposition of the internal organs was noted prior to dissection, including 

distension of any tubular organs, fibrosis, adhesions, metastases, strictures, necrosis, 

jaundice or developmental abnormalities. Tumors were measured in three orthogonal 

directions (length, width and depth) and tumor volume was calculated according to the 

equation     
 
 (   ). The presence of adhesions or frankly invasive disease was 

noted, as well as the color, firmness, and location of the tumor within the pancreas 

relative to other structures. Tumors were then subdivided into pieces according to the 

amount of available tissue and the following priority list: 1) fixation (esp. along areas of 

adhesion or likely invasion), 2) cell line, 3) flash frozen samples for protein, RNA, and 

DNA. 
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CHAPTER III 

Partial Loss of Dicer Sensitizes Tumors to Anoikis and Inhibits Metastasis 

 

Introduction 

The lethal nature of pancreatic cancer is largely due to its early invasive and 

metastatic nature, which prevents the majority of patients from undergoing potentially 

curative surgery (Hariharan et al. 2008). Understanding the mechanisms of tumor 

progression, particularly as they relate to the processes of invasion and metastasis, is 

critical to the future of care for the metastatic patient. A major step in a carcinoma’s 

metastatic program is the ability to invade through basement membranes, escape the 

epithelial compartment, and cross into the circulation (Hanahan and Weinberg 2011). 

Subsequent to this, cells must survive in the liquid environment of the circulatory system, 

continue to evade the immune system, reattach at distance sites, invade into foreign 

tissues, and then survive and grow to form a competent metastasis (Chambers et al. 2002; 

Chaffer and Weinberg 2011). These multiple steps exert strong selective pressure on 

tumor cells, and metastatic seeding can be a very inefficient process (Luzzi et al. 1998). 

Nevertheless, for highly metastatic cancers like pancreatic cancer, tumor cells are 

evidently proficient at overcoming such hurdles, and we must better understand the 

means by which they achieve this. 

miRNAs govern nearly every cellular pathway and provide an additional means 

of understanding tumor origins and behavior (Lu et al. 2005). Broad characterization of 

human tumors reveals a general downregulation of miRNA biogenesis in many solid 
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tumors (Lu et al. 2005), indicating a tumor-suppressive role for miRNAs. This is 

supported by observations that widespread shortening of 3’UTRs also occurs in cancer 

(Mayr and Bartel 2009), and suppression of miRNA processing machinery can promote 

tumor progression in several cancers (Kumar et al. 2007; Hill et al. 2009; Kumar et al. 

2009; Lambertz et al. 2010).  

 Until very recently, the broad role of miRNAs in pancreatic cancer has not been 

explored (Morris et al. 2014; Wang et al. 2014). Generally, mutations in DICER or other 

components of the miRNA biogenesis pathway are not seen in PDAC, and miRNA 

upregulation is more common than downregulation in this disease (Bloomston et al. 

2007; Zhang et al. 2009; Frampton et al. 2014). It is also known that miRNAs are broadly 

required for the development and maintenance of pancreatic cell lineages (Lynn et al. 

2007; Morita et al. 2009; Morris et al. 2014). These data collectively suggest that 

miRNAs play an oncogenic role in the promotion of pancreatic tumorigenesis and that 

mutations in the miRNA processing machinery are selected against during tumor 

evolution. A single study has provided preliminary data for the role of Dicer in precursor 

lesion development that largely agrees with the published data from other tumor contexts 

(Morris et al. 2014; Wang et al. 2014), but to date no functional study of the role of Dicer 

in pancreatic tumorigenesis or progression has been described, nor has any explanation 

been proposed for the preservation of miRNA biogenesis in human pancreatic tumors. 

 This chapter describes my investigation into the requirement for Dicer in 

pancreatic tumorigenesis. In agreement with the published literature, I demonstrate that 

complete loss of Dicer creates instability in mature pancreatic lineages, resulting in 
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degeneration of the exocrine pancreas. Dicer heterozygosity is developmentally tolerated, 

and I show that partial loss of Dicer is also permissible for tumor development, but that 

Dicer-heterozygous tumors are deficient in their ability to metastasize to distant sites. In 

vitro experiments link this failure of metastasis to an increased susceptibility to anoikis, 

which is cell death triggered by loss of attachment and is analogous to the stress of 

surviving in the circulation. Efforts to describe miRNA signatures predictive of cell line 

phenotypes and metastasis are ongoing.  
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Results 

 Dicer is broadly required for normal vertebrate development (Harfe et al. 2005; 

Yang et al. 2005; Lynn et al. 2007; O'Rourke et al. 2007). Therefore I made use of the 

Ptf1a-Cre allele to selectively delete conditional alleles of Dicer in the pancreas 

(Mudhasani et al. 2008). In agreement with the published literature, I found that complete 

ablation of Dicer in the pancreas is not tolerated, as evidenced by the progressive 

deterioration and loss of the exocrine compartment in Dicerflox/flox, Ptf1a-Cre animals 

(Figure 3.1b,d,f) (Morita et al. 2009). I observed this at postnatal day 3 as hypomorphic 

acinar cells with reduced zymogen contents compared to Dicerflox/wt, Ptf1a-Cre animals 

(Figure 3.1a,b). This progressed to a pronounced loss of exocrine architecture by six 

months with residual islands of acinar tissue, ducts, islets, and lymph nodes existing 

within a vast expanse adipose tissue (Figure 3.1f). Staining of three-day-old pancreata 

revealed extensive apoptosis in Dicerflox/flox pancreata and a compensatory increase in the 

proliferative rate of acinar cells (Figure 3.2). 

Based on these findings, Dicerflox/flox, Ptf1a-Cre animals did not provide a 

developmentally normal baseline from which to measure differences in tumor formation, 

leading me to compare Dicerflox/wt animals to Dicerwt/wt littermates in the tumorigenesis 

study. It must be noted, however, that Dicerflox/wt animals also exhibit some abnormal 

changes in the form of sporadically ‘vacuolated’ acinar cytoplasm (Figures 3.1g, 3.3c). 

Vacuolization of the acinar compartment does not occur in Dicerflox/wt, Ptf1a-Cre animals 

(Figure 3.3a), but it does occur in the context of Tp53 loss (Figure 3.3b). In these contexts 

I do not observe any deterioration of the pancreas architecture or pancreatic insufficiency 
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Figure 3.3. ‘Vacuolization’ and degeneration are dependent on Tp53 and Dicer status. 
H+E staining was performed on the pancreata of mice from different backgrounds to examine the role 
of Dicer and Tp53 in vacuolization and fatty replacement. (A) Dicer

flox/wt
, Ptf1a-Cre: note the absence 

of acinar vacuoles. (B) Tp53
flox/flox

, Ptf1a-Cre.  (C) Dicer
flox/wt

, Tp53
flox/flox 

, Ptf1a-Cre. (D,E) 
Dicer

flox/flox
, Ptf1a-Cre. (F) Oil Red O stain of Dicer

flox/wt
, Tp53

flox/flox 
, Ptf1a-Cre. Arrows highlight 

vacuoles. 
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in aged animals (data not shown). Exocrine degeneration and fatty replacement occurs 

only upon complete genetic ablation of Dicer (Figure 3.3d,e). These ‘vacuoles’ are 

currently of an unknown composition or origin, but I have confirmed that they are neither 

lipid positive by Oil Red O stain (Figure 3.3f), nor glycogen positive by Periodic Acid 

Schiff stain (data not shown). 

 To induce tumor formation, I used the RCAS-tva system of retroviral gene 

delivery. The RCAS virus (replication competent avian sarcoma-leukosis virus long 

terminal repeat with a splice acceptor) is an engineered vector capable of infecting cells 

expressing the avian cell surface receptor tva (Bates et al. 1993; Young et al. 1993). 

Transgenic mice expressing tva under the control of the elastase promoter are therefore 

susceptible to pancreas-specific infection by RCAS viruses (Lewis et al. 2003a). The 

RCAS virus itself is designed to drive expression of the inserted gene of interest by the 

viral long terminal repeat (Gorman et al. 1982; Norton and Coffin 1987). Using this 

system, our lab has used RCAS virus expressing polyoma virus middle-T antigen 

(RCAS-PyMT) to induce tumors in the pancreas (Lewis et al. 2003a; Ahronian and Lewis 

2014; Sano et al. 2014). PyMT is an oncogene (Chowdhury et al. 1980) that acts to 

recruit signal transduction molecules to endomembranes (Schaffhausen and Roberts 

2009). It is capable of activating the SRC family proteins c-SRC and YES (Bolen et al. 

1985; Thomas et al. 1993), PI3K (Whitman et al. 1985; Summers et al. 1998), and RAS 

via its recruitment of SHC and GRB2 (Campbell et al. 1994). Induction of tumors using 

the RCAS-PyMT system allows the generation of diverse carcinoma subtypes, including  
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acinar carcinoma, ductal adenocarcinoma, and poorly differentiated forms (Lewis et al. 

2003a). Using this system, I sought to determine whether miRNA biogenesis would 

differentially impact the formation of these subtypes. 

I intraperitoneally injected litters of Elastase-tva, Dicervariable, Tp53flox/flox, Ptf1a-

Cre mice at postnatal day 3 with live chicken fibroblasts producing high titer RCAS-

PyMT virus (‘Dicervariable’ signifies that pups were derived from the crossing of 

Dicerflox/wt parents). I then compared the survival of Elastase-tva, Dicerwt/wt, Tp53flox/flox, 

Ptf1a-Cre to Elastase-tva, Dicerflox/wt, Tp53flox/flox, Ptf1a-Cre littermates (herein ‘PC’ and 

‘DPC’ respectively) (Figure 3.4). 

I observed that PC and DPC mice exhibit similar rates of overall survival and 

tumor size (Figure 3.5a,b). Moreover , the distribution of tumor pathologies was also 

similar between groups with similar rates of development of acinar and ductal 

carcinomas, in agreement with published literature regarding PyMT expression in the 

exocrine pancreas (Figure 3.5c-f) (Lewis et al. 2003a; Du et al. 2009). However, DPC 

mice experience significantly lower rates of metastatic disease than PC mice (Figure 

3.5j). Metastases were only observed in the liver and infiltrated into the liver parenchyma 

(Figure 3.5g) or grew intravascularly (Figure 3.5h).  

An extensive panel of cell lines derived from tumors in the survival study was 

characterized in vitro for performance in a variety of cancer-related phenotypes. 

Proliferative capacity, measured by direct cell number over time, shows no difference 

between PC and DPC cell lines (Figure 3.6a). The ability of cell lines to grow suspended 

in an agarose matrix was universally low across PC and DPC cell lines except for   
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Figure 3.6. PC and DPC cell lines exhibit a spectrum of behaviors in proliferative and 
chemotactic assays in vitro. 
No significant differences exist between PC and DPC cell lines in measures of proliferative rate (A), 
anchorage-independent growth (B), migration (C), or invasion through Matrigel (D). The cell line 
10087#1 was isolated from a PC mouse outside the survival study and is not included in statistical 
analyses (see discussion). 

a b 

c d 
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10086#4, and no significant differences existed by genotype (Figure 3.6b). Migration and 

invasion capacity, measured in a transwell assay, were also not significantly different 

between PC and DPC cell lines (Figure 3.6c,d). When assayed for their resistance to cell 

death in a variety of conditions, DPC cell lines were similar to PC cell lines in their 

baseline survival and resistance to serum starvation and gemcitabine (Figure 3.7a-c), but 

they were significantly more sensitive than PC lines to cell death upon loss of attachment 

(‘anoikis’; Figure 3.7d). Therefore, greater sensitivity to anoikis may underlie the reduced 

capability of DPC tumors to metastasize in vivo. 
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Discussion 

 

Dicerflox/flox pancreas degeneration 

It is not surprising that complete loss of Dicer is not tolerated in the pancreas. At 

this point, miRNAs are known to be broadly required for tissue development, 

homeostasis, and cellular survival (Bernstein et al. 2003; Lynn et al. 2007; Lambertz et 

al. 2010; Zhang et al. 2014a). What is interesting, perhaps, is that Dicerflox/flox, Ptf1a-Cre 

animals possess a growing pancreas at birth, but this tissue then slowly regresses and is 

replaced by adipose with time, leaving behind intact islets and isolated portions of the 

ductal system with residual, abnormal acinar tissue. This is a weaker phenotype than that 

observed by Lynn and colleagues, who used Pdx1-Cre to delete Dicer in the pancreas and 

observed severe exocrine degeneration at embryonic stages (Lynn et al. 2007). Pdx1 is a 

transcription factor responsible for the differentiation of both endocrine and exocrine cell 

lineages of the pancreas (Gu et al. 2002), and is expressed earlier in development than 

Ptf1a, which contributes predominantly to exocrine differentiation (Kawaguchi et al. 

2002). My work and the work of Lynn and colleagues together suggest that the timing of 

Dicer deletion is important for its developmental tolerability. 

At this point I do not know the precise mechanism of the acinar regression 

observed in these animals. It could be due to cell death and subsequent replacement by 

infiltrating adipose from adjacent visceral depots. This is supported by the higher rates of 

CC3 staining observed in the pancreata of Dicerflox/flox, Ptf1a-Cre pups. Another 

intriguing possibility is the transdifferentiation of pancreatic parenchyma into adipose. 
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This has been reported once before in animals which were engineered to lose Myc and 

which also expressed pancreatic lineage tracing genes (Bonal et al. 2009). This group was 

able to demonstrate that adipocytes present in the setting of a degenerating pancreas had 

previously expressed the pancreas-specific transcription factor Ptf1a, suggesting that 

these cells had originated from pancreatic exocrine progenitors. The observation of 

vacuolization in DPC pancreata initially offered an enticing clue that this could be 

relevant to my model, but whatever the nature of the observed acinar vacuoles, they are 

not lipid positive. Indeed, the persistence of these vacuoles into late age and the absence 

of exocrine degeneration or intercalating adipocytes in Dicerflox/wt, Tp53flox/flox, Ptf1a-Cre 

animals do not support the idea that this could represent a transition state between acinar 

and adipocyte differentiation. Nevertheless, aged human pancreata exhibit areas of 

adiposity that suggest the potential for acinar cells to transdifferentiate to adipocytes in 

response to stress or some other stimulus. From the perspective of cellular stress, it is 

possible that these vacuolar artifacts represent an aberrant response that is normally 

regulated or prevented in the setting of fully competent miRNA biogenesis. One 

possibility that leaps to mind is that these could be evidence of deregulated autophagy, 

but I have yet to stain these vacuolated tissues for autophagy markers. 

 

Carcinoma subtypes 

 I chose to use the RCAS-tva system of tumorigenesis partly because of its ability 

to induce a variety of different tumor types: acinar, ductal, and poorly differentiated 

carcinoma. One of the questions I wanted to ask was whether miRNA biogenesis was 
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more generally required in one carcinoma subtype or another, hypothesizing that this 

would be reflected in a shift of subtype prevalence in DPC animals compared to PC 

animals. The fact that this was not observed suggests that miRNA biogenesis is not 

preferentially required by one carcinoma more than another.  

 

Circulating tumor cells, anoikis, invasion, and metastasis 

 The major question of this project was whether single-copy loss of Dicer could 

negatively impact tumorigenesis. To this end, I was pleased to find that DPC tumors 

progressed to metastatic disease less frequently than PC tumors. Based on the 

developmental abnormalities of Dicernull pancreata, I initially suspected that the failure to 

metastasize would correlate with an aggressive cell death response. In my initial analysis 

of standard cancer cell phenotypes in vitro, including proliferation, soft agar colony 

formation, migration, invasion, and survival response to serum starvation, I did not 

observe any significant differences by genotype, although there was substantial 

variability across the entire panel of cell lines in most phenotypes. I noticed with some 

surprise that nearly all of the cell lines tested were quite deficient in soft agar colony 

formation compared to pancreatic cell lines I had worked with in the past (see Figures 3.6 

and 2.10). Moreover, at the completion of the soft agar assays, there was also no evidence 

of intact single cells to account for the cells which were seeded and observable at the 

beginning of the assay, suggesting that they had died and degraded. Because I observed 

robust resistance to cell death in serum starvation and standard growth conditions for PC 
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and DPC cell lines, I wondered if the failure to form soft agar colonies represented 

sensitivity to a specific form of cell death caused by the loss of attachment signaling.  

‘Anoikis’ (a neologism from Greek morphemes that roughly translates as 

‘homelessness’) describes the process of cell death in response to loss of extracellular 

attachment signals (Frisch and Francis 1994). When I suspend PC and DPC cell lines in 

media over a non-adherent surface, I observe that both cell lines display aggressive cell 

death over 24 hours, but DPC cell lines are more sensitive than PC cell lines. This 

provided a potential explanation of the in vivo data, suggesting that the reason for the 

reduced metastasis of DPC tumors is the accelerated death of circulating tumor cells 

(CTCs). Notably, in the course of assessing liver metastases in this study, I had observed 

frequent and numerous intravascular inflammatory foci in the livers of PC and DPC mice 

(Figure 3.5i), which I did not observe in the KrasG12D-driven mouse model of pancreatic 

cancer that I used in the studies described in Chapter 2. I now suspect that these foci 

represent an inflammatory reaction to dying CTCs that is characteristic of mice 

possessing tumors driven by RCAS-PyMT. I also observed that a portion of all 

metastases observed in either arm of the study grew intravascularly, further suggesting 

that PyMT-driven CTCs spend a significant amount of time in the vasculature prior to 

extravasation. 

One mouse in particular, 1449#2, provided an exciting opportunity to explore the 

interrelationship of anoikis, extravasation and metastasis. At sacrifice, this DPC mouse 

possessed four large and distinct primary tumors and two distinct liver metastases. I was 

fortunate to be able to successfully derive cell lines from all four primary tumors 
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(1449#2A-D) and both liver metastases (1449#2MA and 1449#2MB), all of which are 

characterized in Figures 3.6 and 3.7. Fascinatingly, 1449#2MA and 2MB are 

simultaneously the most invasive and the most anoikis-sensitive lines across the entire 

study of twenty cell lines. 

Based on the enhanced sensitivity of DPC cell lines to anoikis and their overall 

metastatic deficiency, I had originally suspected that the 2MA and 2MB lines would 

display increased resistance to anoikis compared to other DPC lines, hypothesizing that 

this would promote prolonged intravascular survival and facilitate metastasis. Strikingly, 

the extreme sensitivity of these cell lines to anoikis suggests that their survival in the 

circulation would have been severely challenged; instead it was probably their extreme 

invasive capacity – the highest observed of all cell lines in the study – that facilitated 

their rapid escape from the vasculature and successful metastasis. It is interesting to note 

that three of the top five anoikis-resistant DPC cell lines come from the 1449#2 mouse. 

This suggests that the presence of anoikis-resistant CTCs is still predictive of metastasis, 

but it may suggest a polyclonal model where anoikis-resistant CTCs do not themselves 

possess invasive capacity. Instead, anoikis-resistant CTCs could, through cell-cell 

contacts, provide survival signals to invasion-competent, anoikis-sensitive CTCs, thereby 

giving them more time to extravasate and seed metastases. Such a model would agree 

with my observations of intravascular tumor growth and could suggest that these are a 

necessary staging area for metastatic spread in this model. 
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10087#1 and Tp53 context 

 The cell line derived from mouse 10087#1 constitutes an outlier in the study 

because it was isolated from a Cre-negative animal which was in good health at the time 

of sacrifice. This animal had been injected as part of an experimental litter with RCAS-

PyMT and was sacrificed to obtain control pancreas tissue alongside an experimental 

littermate that was showing signs of illness. It was at this time that 10087#1 was noted to 

have a tumor in the head of the pancreas in addition to grossly visible metastases in the 

liver. This tumor therefore developed in the context of intact Tp53 and Dicer, making its 

biology distinct from that of the other PC mice. Moreover, this mouse was sacrificed in 

good health, which is why this animal is not included in the survival analysis and this cell 

line is excluded from statistical testing for differences between PC and DPC cell lines, 

although it is charted in Figures 3.6 and 3.7 for comparison. The behavior of this cell line 

in culture has implications for the influence of Tp53 status on pancreatic cancer biology.  

 The cell line 10087#1 exhibits severely impaired growth compared to nearly all of 

the other cell lines in the study, clearly shown by its long doubling time and its 

exaggerated failure to form colonies in soft agar. It is sensitive to anoikis and serum 

starvation, but resistant to gemcitabine, and its invasive capacity is elevated, suggesting a 

behavioral profile similar to the metastatic cell lines 1449#2MA and 1449#2MB. These 

characteristics also describe the typical clinical picture of pancreatic cancer in humans 

(slow growing, metastatic, invasive, and resistant to gemcitabine). TP53 is not 

completely lost in human pancreatic cancers, and single-copy loss is typically 

complemented by mutational inactivation of the second allele, suggesting an oncogenic 
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role for mutant TP53 in pancreatic cancer progression or maintenance (Redston et al. 

1994). Indeed, the mutated allele Tp53R172H has been shown to cooperate with oncogenic 

KrasG12D to drive metastasis (Hingorani et al. 2005), and mutant TP53 has been shown to 

promote gemcitabine resistance in human pancreatic cancer cells (Fiorini et al. 2015). 

Together these studies agree with the behavior of the 10087#1 cell line, and suggest that 

it likely possesses a mutated allele of Tp53. They also suggest that the metastatic cell 

lines from 1449#2 may have accessed similar biological pathways via some Tp53-

independent mechanism. A recent study has demonstrated that the pro-metastatic nature 

of mutant Tp53 in murine PDAC results from its ability to antagonize TP73 and alleviate 

TP73’s transcriptional repression of the pro-metastatic growth factor receptor PDGFR 

(Weissmueller et al. 2014). This suggests that in the complete absence of TP53, PC and 

DPC cell lines would be expected to be less metastatic due to the suppression of PDGFR 

by TP73. Perhaps the metastatic cell lines of 1449#2 have re-expressed PDGFR to 

enhance their invasive capacity through silencing of Tp73. An in-depth comparison of the 

transcriptional profiles of these cell lines could reveal convergent biology between these 

metastatic cell lines and human pancreatic cancers. 

 

Mechanism of anoikis sensitivity - speculation 

 Many classically cancer-associated growth and survival pathways have been 

implicated in anoikis resistance, including activation of cell surface receptors such as 

EGFR, IGF1R, and integrins, with subsequent downstream activation of MAPK and 

PI3K signaling (Galante et al. 2009; Buchheit et al. 2014). SRC activity is known to drive 
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anoikis resistance in pancreatic cancer cell lines (Connelly et al. 2010), and its activation 

can occur downstream of focal adhesion kinase (FAK) activity (Duxbury et al. 2004a; 

Duxbury et al. 2004b). In pancreatic cancer specifically, it has been shown that MAP3K7 

is important to anoikis resistance through its induction of noncanonical WNT signaling 

(Yu et al. 2012b), and HMGA1 promotes anoikis resistance of MIA PaCa-2 and BxPC3 

pancreatic cancer cell lines via PI3K-AKT pathway upregulation (Liau et al. 2007). 

These studies reveal the early stages of our understanding of anoikis, as they deal broadly 

with identifying the major operant signaling pathways in a few cellular contexts, but fall 

short of identifying unique aspects of anoikis that do not overlap with other general cell 

death pathways. Subsequently, there is little to go on when attempting to interpret a 

specific deficit in anoikis resistance that does not affect cell death responses to other 

stimuli, such as I observe in my characterization of DPC cell lines. 

It has also been suggested that anoikis resistance depends on the ability of the 

upstream driver oncogene to regulate the activity of RHOB, which is a tumor suppressor 

that impairs soft agar colony growth and promotes anoikis. Specifically, oncogenic RAS, 

but not active SRC, is capable of suppressing RHOB activity (Jiang et al. 2004). This 

may suggest why PyMT-driven cancer cell lines, which are predominantly driven by 

SRC signaling, are generally deficient in soft agar colony formation and sensitive to 

anoikis, but this does not offer much interpretation for the additional anoikis sensitivity of 

DPC lines compared to PC lines. A very interesting idea has been proposed that suggests 

miRNA biogenesis may broadly govern cancer stress responses through an ability to 
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buffer aberrant gene expression triggered by mutated gene promoters and enhancers 

(Ebert and Sharp 2012). 

The idea that Ebert and Sharp propose flows partly from the consideration of an 

analogy: mutations in protein coding sequences can be ‘buffered’ by chaperone proteins 

like HSP90 to generate normal cellular functions. Similarly, mutations in upstream 

genetic elements could contribute to aberrant transcriptional activation of genes, which 

could be buffered by miRNA suppression. Integral to this concept is the idea of miRNA 

thresholds (Mukherji et al. 2011), wherein stochastic bursts of transcription in the 

absence of upstream signaling (i.e. ‘leaky’ gene expression) is suppressed by an 

abundance of miRNAs targeting the comparatively low number of leaky transcripts. 

However, transcription driven by ‘intentional’ cellular signaling generates high levels of 

transcripts that overwhelm miRNA suppression to achieve translation. Therefore 

miRNAs act in part to suppress random transcriptional events by requiring a threshold 

level of transcription before gene expression can occur. However, in the context of 

impaired miRNA biogenesis, such as occurs in come cancers, stochastic transcription 

resulting from mutations in upstream repressive elements may achieve translation 

because of a reduced miRNA threshold. Ebert and Sharp propose that this random gene 

expression contributes to selective pressure against cancer cells that have partially lost 

DICER expression and accelerates the development of more malignant phenotypes.  

However, the interrelationship of transcriptional noise, physiological robustness 

and selective pressure could be very different in the specific context of pancreatic cancer, 

compared to other cancers where DICER is a validated tumor suppressor. Pancreatic 
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cancer is characterized by pronounced genomic instability that is observable in both early 

and late stages of disease progression (Hingorani et al. 2005; Hruban et al. 2008; 

Campbell et al. 2010). This aggressive instability is driven at least partly by a high 

prevalence of telomere shortening and tumor suppressor loss in early PanINs. Combined 

with the hypoxic, ischemic and inflammatory microenvironment around PanINs, this 

suggests that pancreatic cancer cells innately possess a robust mutator phenotype and 

experience significant selective pressure at baseline. In such a setting, preserving miRNA 

function could be advantageous by providing robustness to an already highly 

dysfunctional cellular physiology. Indeed, given the long timeline of pancreatic cancer 

development and the high rate of passenger mutations known to occur in disease 

progression, loss of translational control by impaired miRNA biogenesis could be lethal 

by suddenly exposing cumulative mutations in gene regulatory elements to selective 

pressure. Similarly, a pancreatic cell line engineered to have baseline deficiencies in 

miRNA biogenesis may be less capable of coping with acute stress due to aggressively 

mutated gene regulatory elements that promote aberrant gene expression when 

translational precision is needed. Considering this, it could make a great deal of sense that 

DPC cell lines would be less able to cope with the intensely selective pressure of anoikis 

compared to PC lines, which would be predicted to have higher levels of miRNA 

processing and therefore more robust control of their transcriptional response to stress. 

Profiling of human pancreatic cancers has to date focused on gene amplifications, 

chromosomal rearrangements, miRNA profiles, and the analysis of transcriptomes and 

proteomes (Buchholz et al. 2005; Prasad et al. 2005; Lee et al. 2007; Jones et al. 2008; 
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Zhang et al. 2009; Campbell et al. 2010; Yachida et al. 2010; Que et al. 2013; Kim et al. 

2014). However, no comprehensive study of mutations in upstream genetic elements 

including promoters and regulatory elements has yet been performed. Perhaps such an 

analysis would reveal a higher than average rate of mutations in pancreatic cancers in 

these genomic regions compared to other carcinomas, which might suggest a need for 

downstream regulation of gene expression by miRNAs. Hypomethylation of gene 

promoters is known to increase gene expression in cancer, and could exert selective 

pressure to maintain miRNA biogenesis as a means to balance deregulated transcription. 

However, evidence exists to support both hypermethylation as well as hypomethylation 

of gene promoters in pancreatic cancer, suggesting that the apparent requirement for 

miRNA biogenesis in this context is not related to the widespread hypomethylation of 

gene promoters (Omura et al. 2008; Tan et al. 2009; Yi et al. 2013). Further work is 

needed to determine the impact of passenger mutations in pancreatic cancer and what 

relationship they may play in governing transcriptional control. Such an analysis could 

lead to an improved understanding of the broad need for miRNA biogenesis in pancreatic 

cancer. 

 

Final thoughts 

The results of this study indicate that Dicer plays an important role in conferring 

physiological robustness to pancreatic cells, both in normal tissue homeostasis as well as 

in a cancer context. I have thoroughly characterized the behavior of a large panel of 

cancer cell lines from the tumor study, and have demonstrated a deficit in anoikis 
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resistance for DPC cell lines that aligns with the metastasis deficiency of DPC tumors. 

However, the mechanism of this deficiency remains to be determined. I have discussed 

the potential for general miRNA expression levels to buffer cellular responses to stress, 

but I have not yet determined whether specific miRNA-mRNA relationships could be 

differentially regulated in DPC cells that would explain their sensitivity to anoikis. 

In pursuit of this, I am collaborating with Mike Lee to perform multivariate 

analysis of small RNA sequencing from five PC cell lines and five DPC cell lines. The 

goal of this analysis is to compare each cell line’s miRNA expression profile to its 

phenotypic profile and determine across the entire set if predictive relationships exist 

between particular miRNAs and particular phenotypes. Our hope is that we will discover 

miRNA networks that could implicate particular cellular pathways or proteins in the 

anoikis resistance of PC cell lines. We could then validate a model based on these 

relationships by analyzing the miRNA expression of cell lines which have been 

phenotypically characterized but were not included in the sequencing set. However, if no 

relationships exist between the sequencing data and the degree of anoikis resistance, it 

would suggest that this phenotype is governed by something that we have yet to measure. 

This scenario could support the miRNAs-as-buffers model previously discussed, but that 

would also be very difficult to validate, requiring fairly nuanced biochemical analyses of 

a large number of cell lines to determine differences in transcriptional and translational 

rates in response to stress. It will certainly be interesting to see where the data leads over 

the next few months. 
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Materials and Methods 

Cell Culture 

 All cell lines were grown in high glucose DMEM (Life Technologies #11965) 

supplemented with 10% fetal bovine serum (Atlanta Biologicals #s11150) and 100U/ml 

penicillin/streptomycin (Life Technologies #15140). Cell lines were maintained at 

subconfluent densities on tissue culture-treated dishes and periodically thawed fresh from 

frozen stocks to maintain low passage number. 

 Proliferation, migration, invasion, serum starvation, and soft agar colony 

formation assays were carried out as described previously (Chapter II; Materials and 

Methods). Gemcitabine survival experiments were plated at 105 cells per well of a 24-

well plate and allowed to adhere for 24 hours prior to treatment with 200nM gemcitabine. 

Forty-eight hours after treatment, live and dead cells were counted by trypan blue 

exclusion. Anoikis assays were performed by plating a suspension of 2.5x105 cells per 

well of a 24-well plate pre-coated with poly(2-hydroxyethyl methacrylate) (‘poly-

HEMA’; Sigma-Aldrich #P3932). Suspended cells were plated in a 1:1 mixture of 2x 

complete media and 2% methylcellulose to prevent cell-cell interactions (Sigma-Aldrich 

#M7140). Twenty-four hours after plating, cells were collected, separated from 

methylcellulose medium by centrifugation and counted by trypan blue exclusion. 

 DF1 chicken fibroblasts were maintained at 39˚C in a humidified tissue culture 

incubator. Production of RCAS virus was initiated by transfection of 5ug of RCAS-

PyMT into a subconfluent 10cm plate of cells using Superfect (QIAGEN #301305). Viral 

titers were confirmed by serial dilution of viral supernatant onto naïve DF1 cells and PCR 
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of genomic DNA to confirm the presence of the RCAS envelope protein. Titers were 

required to be high enough to generate detectable infection of naïve DF1 cells at a 

dilution of 1:2x107. Prior to injection into mice, cells were trypsinized, suspended in 

complete media, and counted. Cells were then pelleted by centrifugation and suspended 

in serum-free media at a final concentration of 1x108 cells/ml. Primer sequences for the 

RCAS PCR reactions are: Forward: CAGTCTCTCCCTAACATTAC; Reverse: 

CTACCTTGTGTGCTGTCGACC. 

 

Histological Stains 

 Mouse tissues were fixed, processed, cut and stained as described previously 

(Chapter II; Materials and Methods).  

 

Mouse Breeding, Euthanasia, and Necropsy 

 All mice generated in this study were housed in a dedicated facility in accordance 

with guidelines set forth by the Institutional Animal Care and Use Committee. The alleles 

for Ptf1a-Cre (Kawaguchi et al. 2002), Tp53flox (Jonkers et al. 2001), and Dicerflox 

(Mudhasani et al. 2008) have been described previously. Dicerflox mice were a generous 

gift from Steve Jones at the University of Massachusetts. 

 For the tumor study, Elastase-tva, Dicerflox, Tp53flox mice were bred to 

homozygosity and subsequently crossed Elastase-tva, Dicerflox/wt, Tp53flox/flox mice to 

generate littermate PC and DPC animals. Three day-old pups were injected with DF1 

chicken fibroblasts producing high-titer RCAS-PyMT, as previously described (Ahronian 
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and Lewis 2014). Animals were then monitored as described above for signs of illness 

and euthanized appropriately. 
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APPENDIX A 

Preclinical Assessment of a Triple-Drug Regimen for the Treatment of PDAC 

 

Introduction 

 Preclinical trials are absolutely necessary for the discovery of new therapeutic 

regimens to treat advanced pancreatic cancer. The work of a previous graduate student in 

the lab, Victoria Appleman, demonstrated that KRASG12D or BRAFV600E-driven pro-

survival signals are partly mediated by autocrine signaling through the IGF1 receptor 

(IGF1R) by IGF2 (Appleman et al. 2012). She demonstrated that pancreatic cancer cells 

are resistant to inhibitors of MEK or IGF1R signaling when given singly, but a 

combination of the two inhibitors can stimulate growth arrest and cell death. Based on 

these promising data, we decided to attempt the therapeutic treatment of mice using MEK 

and IGF1R inhibitors in combination with gemcitabine. 

We designed and executed a two-step preclinical trial beginning with a toxicity 

study to explore the tolerability of a variety of treatment regimens. Based on the results of 

the toxicity study, a treatment study was performed that suggests a slight benefit of 

combined MEK/IGF1R treatment with gemcitabine over gemcitabine alone, but these 

data do not achieve significance. This study requires follow-up to confirm treatment 

efficacy in target tissues and to explore whether adaptations in tumors reflect selective 

pressure to overcome the intervention. The completion of this study will inform our 

understanding of the therapeutic potential for IGF1R inhibition in the treatment of 

pancreatic cancer. 
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Results 

We first performed a toxicity trial in healthy C57/Bl6 animals to investigate the 

tolerability of various experimental cocktails of MEK and IGF1R inhibitors with 

gemcitabine. The dosages and abbreviations for these cocktails are given in Table A.1. 

Four mice were enrolled into each of the twelve arms of the study. We chose to use the 

inhibitors in a daily gavage regimen to limit toxicity associated with less frequent larger 

doses and also to enhance pharmacological efficacy. The IGF1R inhibitor BMS-754807 

and the MEK inhibitor PD-0325901 were used at 50 and 5mg/kg/day, respectively. We 

additionally tested two gemcitabine dosages: 75 and 150mg/kg. Gemcitabine was 

delivered by intraperitoneal injection twice weekly, at least three days apart, at which 

time the animals were also weighed. Treatment proceeded for four weeks in age-matched 

C57/Bl6 mice specifically purchased from Jackson Labs for the study. At the end of four 

weeks, animals were euthanized and weighed, and samples were obtained for 

biochemical (serum, frozen pancreas and frozen liver) and histological profiling 

(pancreas, liver, kidney, bowel, heart, lungs). 

Overall, treatment regimens were well-tolerated as determined by weight 

maintenance and overall health (Figure A.1). PBG150 was deemed toxic because of 

ubiquitous weight loss and 50% mortality during treatment. Histological analysis of the 

tissues of these mice revealed unremarkable histology in the lungs, heart, kidneys and 

liver, but prominent dysplasia in bowel crypts (Figure A.2). Crypt dysplasia was 

observed in all high-dose gemcitabine groups and in low-dose gemcitabine combined 

with MEK inhibition (Table A.2), and consisted largely of enhanced nuclear  
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Table A.1 Drug regimen dosages. 
Drug dosing was based on an average mouse weight of 25g, such that a gavage of 100ul delivered 50 
and 5mg/kg of the BMS and PD drug, respectively. The two different gemcitabine dilutions in 
phosphate buffered-saline (PBS) were similarly calculated to deliver 75 or 150mg/kg in 100ul volume 
(i.e. 19 or 38mg/mL based on a 25g average body weight). 

Drug Regimen Code:

V P B PB G
75

PG
75

BG
75

PB
G
75

G
15

0

PG
15

0

BG
15

0

PB
G
15

0

Oral 

Gavage 

(100ul)

BMS-754807 in PEG:H2O + + + + + +

PEG:H2O + + + + + +

PD-0325901 in HPM-T + + + + + +

HPM-T + + + + + +

38mg/mL Gemcitabine in PBS + + + +

19mg/mL Gemcitabine in PBS + + + +

PBS + + + +

Oral 

Gavage 

(100ul)

IP Inj. 

(100ul)
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   Table A.2 Histological analysis of tissues from the toxicity study. 
‘-’: unremarkable histology; ‘B’: Ballooning degeneration; ‘D’: Dysplasia; ‘I’: Adipose Inflammation; 
‘H’: Hydronephrosis 

Animal Pancreas Liver Kidneys Bowel Heart Lungs

V#1 - - - - - -

V#2 - - - - - -

V#3 - - - - - -

V#4 - - - - - -

P#1 - - - - - -

P#2 - - - - - -

P#4 - - - - - -

B#2 - B H - - -

B#3 - B - - - -

B#4 - B - - - -

PB#1 - B - - - -

PB#2 - B - - - -

PB#3 - B - - - -

PB#4 - B - - - -

G75#1 - - - - - -

G75#2 - - - - - -

G75#3 - - - - - -

G75#4 - - - - - -

PG75#1 - - - - - -

PG75#2 - - - - - -

PG75#3 - - H D - -

PG75#4 - - - D - -

BG75#1 - B - - - -

BG75#2 - B - - - -

BG75#4 - B - - - -

PBG75#1 - B - D - -

PBG75#2 - B - D - -

PBG75#3 I B - D - -

PBG75#4 I B - D - -

G150#2 - - - - - -

G150#3 - - - - - -

G150#4 - - - - - -

PG150#1 - - - - - -

PG150#2 - - - D - -

PG150#3 - B - D - -

BG150#1 I B - - - -

BG150#2 I B - D - -

BG150#3 I B - D - -

BG150#4 I B - D - -

PBG150#1 - - - D - -

PBG150#2 I - - D - -
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euchromasia, disruption of nuclear polarity, inflammatory infiltrates, and increased cell 

death (Figure A.2b). Dysplasia was most severe in PBG150 animals, which also 

produced lightly colored, greasy stools, indicating malabsorption as a primary cause of 

weight loss. Additional histological findings relevant to treatment regimens included 

inflammation in the visceral adipose of PBG75, PBG150, and BG150 animals, which 

may be associated with tissue damage (Figure A.2e,f). Ballooning degeneration of 

hepatocytes was also observed in all mice treated with IGF1R inhibitor (Table A.2, 

Figure A.2d). Based on these data, PBG75 was chosen as the best-tolerated triple-drug 

regimen to be bested in the treatment study. 

During the treatment study, most mice maintained weight throughout treatment, 

with the notable exception of animals in the B cohort (Figure A.3). A disproportionate 

number of these animals succumbed to disease-related signs and symptoms (e.g. 

cachexia, jaundice, hunching, pain), but this association is not statistically significant. No 

statistically significant survival differences exist across the eight arms of the therapeutic 

trial, although there is the suggestion of a survival benefit of 22 days for the triple-

treatment regimen compared to gemcitabine alone (Figure A.4). 

Enrollment for the PBG groups was especially difficult due to occasional sepsis 

and death immediately following intraperitoneal injection (there were four iatrogenic 

mortalities for this group during enrollment). Necropsy of these animals revealed ascites 

and pruritic exudates in the IP cavity typically in the presence of an enlarged cecum that 

was visibly full of gas bubbles. Therefore death was due to the murine equivalent of 

ruptured appendicitis. This was most likely secondary to the small bowel pathology  
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Figure A.3 Weight trends are stable for low-dose triple-therapy; unopposed IGF1R 
inhibition carries higher tumor-related mortality. 
Weight measurements are plotted for the 21 days of active treatment. Asterisks highlight deaths 
related to disease during active therapy. 

* 
* * 

* 



143 
 

 

  

Figure A.4 No significant survival difference is seen with triple-drug therapy. 
There is an observable right-shift of 23 days in the survival curve of PBG-treated mice compared to 
gemcitabine alone, but the difference is not significant. 
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observed for this regimen in the toxicity study (i.e. malabsorption in the small intestine 

allowed nutrients to enter the large bowel, stimulating floral expansion and gas 

production and creating a toxic, enlarged cecum vulnerable to needle puncture). 
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Discussion 

 Targeting downstream pathways of KRAS signaling remains one of the most 

promising avenues of therapeutic intervention for the treatment of advanced pancreatic 

cancer. Initial work performed in vitro suggested efficacy against PDAC cell lines when 

treating with a combination of MEK and IGF1R inhibitors alongside gemcitabine, but our 

preclinical trial failed to generate statistically significant results. The data do suggest a 

benefit of an additional 22 days of survival for the PBG regimen, but the lack of 

statistical significance may simply indicate that our study was underpowered to detect 

this magnitude of a difference. A repeat trial focusing on this regimen with a higher 

enrollment could reveal if this difference is repeatable and significant. Indeed, in the 

treatment of pancreatic cancer, such a modest improvement in survival would be 

consistent with therapeutic advancements of the past, and should not be lightly discarded 

for being small in magnitude. However, prior to any repeat trials, a significant body of 

work remains to be completed with regards to immunohistochemical characterization of 

the tumors from this trial, specifically addressing ki67 and CC3 positivity and AKT, 

ERK, and IGF1R activity. It is reasonable to hypothesize that if the treatment did 

generate a partial clinical response, that the tumors which recovered after treatment may 

exhibit signs of a specific resistance to the therapy, including overexpression of IGF1R, 

EGFR, or MEK, hyper-activation of KRASG12D, or overexpression of members of the 

ABC family of multi-drug-resistance transporters. 

Future trials should also include a separate cohort of mice to be sacrificed on the 

last day of treatment, so that drug penetration and efficacy in tumor tissues can be 
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evaluated. One major factor in the chemotherapeutic resistance of pancreatic cancer is the 

physical barrier presented by the desmoplastic reaction around carcinoma cells. Dense 

networks of cross-linked collagen and a high oncotic pressure of the interstitial fluid 

inhibit drugs from diffusing out of the vasculature, through the stroma and into carcinoma 

cells (Neesse et al. 2011). This barrier is a significant challenge and several groups have 

sought ways of degrading it in order to improve drug access (Buckway et al. 2013; Meng 

et al. 2013). In lieu of such techniques, stromal investment must be accounted for when 

considering drug efficacy against a given tumor. Therefore stromal investment would 

need to be approximated by in vivo imaging at the time of enrollment in any future 

preclinical trials of the PBG regimen in order to accurately control for this variable across 

treatment groups. Together with a separate cohort for end-of-treatment histological 

analysis, this approach would yield definitive data on biochemical efficacy. 

 Another lingering curiosity from this study is the apparently more aggressive 

course of disease in animals treated with IGF1R inhibition alone (‘B’ groups). There is a 

20% chance that this observation is simply due to chance, according to a Fisher’s exact 

test, so a concrete interpretation is not strictly warranted, but if the finding is true, it does 

raise some concerns. For instance, in the three animals that died during treatment, all 

three exhibited severe signs of jaundice, although in one animal a tumor mass was not 

evident and in another the tumor was quite small, although all pancreata were notably 

fibrotic (data not shown). This may suggest a toxic effect of IGF1R inhibition against 

normal bile duct epithelium that only occurs in the context of a desmoplastic reaction. It 

is known that VEGF receptor signaling drives nitric oxide synthesis in endothelial cells to 
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stimulate smooth muscle cell relaxation (Isenberg et al. 2009), and perhaps (by an 

admittedly generous leap of the imagination) there exists a similar paracrine signaling 

between the normal bile duct epithelium and the investing desmoplastic stroma of the 

neoplastic pancreas, such that IGF1R inhibition results in pronounced bile duct stricture. 

Perhaps more simply, given that neoplastic cells escape the epithelial compartment 

during ADM and take on myofibroblast morphology (Rhim et al. 2012), this may suggest 

that IGF1R inhibition triggers contraction of these cells, perhaps through activation of 

PKC, although the mechanism of that interaction would contradict a classical view of 

RAS signaling. To date there are no studies suggesting any such relationship, but given 

that jaundice is a mitigating factor in recovery from pancreatic surgery (Roque et al. 

2015), this may be a worthwhile field of exploration. 
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Materials and Methods 

 

Mouse Breeding, Dosing, Euthanasia, and Necropsy 

 All mice generated in this study were housed in a dedicated facility in accordance 

with guidelines set forth by the Institutional Animal Care and Use Committee. The alleles 

for Ptf1a-Cre (Kawaguchi et al. 2002), LSL-KrasG12D (Jackson et al. 2001), and Tp53flox 

(Jonkers et al. 2001) have been described previously. 

 For the toxicity study, pure C57/Bl6 strain mice were obtained from Jackson Labs 

at ages between six and eight weeks. For the intervention study, Tp53flox/flox, LSL-

KrasG12D mice on a mixed background were crossed to Ptf1a-Cre mice on a C57/Bl6 

background to generate LSL-KrasG12D, Tp53flox/wt, Ptf1a-Cre mice for enrollment. 

 Health status was monitored at least three times per week for all animals and 

weights were measured on Mondays and Fridays for the duration of treatment in both 

studies. Major signs of illness warranting euthanasia included severely reduced mobility 

with lack of arousal upon handling, hunching, abdominal distension, wasting, palpable 

abdominal mass, hyperventilation, and weight loss greater than 10% of total body weight 

in 24 hours. Notes were recorded regarding external and internal signs of illness and 

samples were processed as previously described (see Chapter II, Materials and Methods).  

Drug administration via daily oral gavage was performed by trained animal 

medicine staff. Drugs were prepared and delivered twice weekly to the mouse room for 

use by animal medicine to ensure optimum inhibitor stability and efficacy. Intraperitoneal 

injections were performed on Mondays and Fridays using a 28 gauge insulin syringe. 



149 
 

 

Drug Preparation 

The IGF1R inhibitor BMS-754807 is dissolved in a 4:1 mixture of polyethylene 

glycol (PEG) and water. This occurs by first vortexing the desired amount of drug in a 

volume of PEG equal to 80% of the desired final volume until drug clumps have 

dissociated. Water is then added to bring the solution to its final volume and vortexing is 

continued for one minute to ensure complete solvation of the drug. The solution can then 

be 0.45um filter sterilized and is shelf-stable for several weeks at 4˚C. 

The MEK inhibitor PD-0325901 is dissolved in a 0.5% solution of 

hydroxypropylmethylcellulose (HPM) supplemented with 0.2% Tween-80 (‘HPM-T’). 

HPM powder disperses into water at high temperatures and dissolves at lower 

temperatures, and the final solution cannot be filter sterilized. Therefore assembling the 

liquid vehicle for the PD drug takes place in the hood and requires sterile technique. 

Briefly, an excess of water is heated to near-boiling on a stirrer-hot plate in the hood. A 

second flask is assembled with a stirring rod and the desired amount of HPM powder. 

With constant stirring, the desired volume of hot water is added to the HPM powder and 

allowed to mix until the powder has completely dispersed and there are no clumps. This 

solution is then allowed to cool very slowly to room temperature with stirring, upon 

which the HPM goes into solution. Tween-80 is then added and the HPM-T is left to stir 

overnight. PD drug is suspended in HPM-T by sonication, and stocks require periodic 

sonication to resuspend precipitated drug. Drug aliquots were sonicated and delivered to 

the animal facility every other day to prevent precipitation prior to gavage.  

 



150 
 

 

BIBLIOGRAPHY 

 
Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. 2012. Regulating the regulator: post-
translational modification of RAS. Nature reviews Molecular cell biology 13: 39-51. 

Ahronian LG, Lewis BC. 2014. In vivo delivery of RCAS virus to mice. Cold Spring 
Harbor protocols 2014: 1167-1169. 

Alexakis N, Halloran C, Raraty M, Ghaneh P, Sutton R, Neoptolemos JP. 2004. Current 
standards of surgery for pancreatic cancer. The British journal of surgery 91: 1410-1427. 

Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. 1988. Most 
human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549-
554. 

Ameka M, Kahle MP, Perez-Neut M, Gentile S, Mirza AA, Cuevas BD. 2014. MEKK2 
regulates paxillin ubiquitylation and localization in MDA-MB 231 breast cancer cells. 
The Biochemical journal 464: 99-108. 

Ansari D, Kervinen M, Andersson R. 2014. Neoadjuvant/downstaging 
radiochemotherapy in marginally resectable pancreatic cancer. Hepato-gastroenterology 
61: 2387-2390. 

Appleman VA, Ahronian LG, Cai J, Klimstra DS, Lewis BC. 2012. KRAS(G12D)- and 
BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires 
MEK/ERK-stimulated IGF1R signaling. Molecular cancer research : MCR 10: 1228-
1239. 

Arbuck SG. 1990. Chemotherapy for pancreatic cancer. Bailliere's clinical 
gastroenterology 4: 953-968. 

Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur 
PK, Delgiorno KE, Carpenter ES, Halbrook CJ, Hall JC et al. 2012. EGF receptor is 
required for KRAS-induced pancreatic tumorigenesis. Cancer cell 22: 304-317. 

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. 2008. The impact of 
microRNAs on protein output. Nature 455: 64-71. 

Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, 
Weissleder R, Mahmood U et al. 2006a. Both p16(Ink4a) and the p19(Arf)-p53 pathway 
constrain progression of pancreatic adenocarcinoma in the mouse. Proceedings of the 
National Academy of Sciences of the United States of America 103: 5947-5952. 



151 
 

 

Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, 
Lauwers GY, Hanahan D et al. 2006b. Smad4 is dispensable for normal pancreas 
development yet critical in progression and tumor biology of pancreas cancer. Genes & 
development 20: 3130-3146. 

Barreto SG, Carati CJ, Toouli J, Saccone GT. 2010. The islet-acinar axis of the pancreas: 
more than just insulin. American journal of physiology Gastrointestinal and liver 
physiology 299: G10-22. 

Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-
233. 

Bates P, Young JA, Varmus HE. 1993. A receptor for subgroup A Rous sarcoma virus is 
related to the low density lipoprotein receptor. Cell 74: 1043-1051. 

Bauer TM, Patel MR, Infante JR. 2015. Targeting PI3 kinase in cancer. Pharmacology & 
therapeutics 146c: 53-60. 

Becker AE, Hernandez YG, Frucht H, Lucas AL. 2014. Pancreatic ductal 
adenocarcinoma: risk factors, screening, and early detection. World journal of 
gastroenterology : WJG 20: 11182-11198. 

Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. 2006. mRNA 
degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and 
DCP1:DCP2 decapping complexes. Genes & development 20: 1885-1898. 

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. 2001. Role for a bidentate 
ribonuclease in the initiation step of RNA interference. Nature 409: 363-366. 

Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge 
SJ, Anderson KV, Hannon GJ. 2003. Dicer is essential for mouse development. Nature 
genetics 35: 215-217. 

Bharti S, Inoue H, Bharti K, Hirsch DS, Nie Z, Yoon HY, Artym V, Yamada KM, 
Mueller SC, Barr VA et al. 2007. Src-dependent phosphorylation of ASAP1 regulates 
podosomes. Molecular and cellular biology 27: 8271-8283. 

Bhatti I, Lee A, James V, Hall RI, Lund JN, Tufarelli C, Lobo DN, Larvin M. 2011. 
Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting 
programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma. Journal of 
gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary 
Tract 15: 199-208. 



152 
 

 

Biankin AV Waddell N Kassahn KS Gingras MC Muthuswamy LB Johns AL Miller DK 
Wilson PJ Patch AM Wu J et al. 2012. Pancreatic cancer genomes reveal aberrations in 
axon guidance pathway genes. Nature 491: 399-405. 

Blahna MT, Hata A. 2013. Regulation of miRNA biogenesis as an integrated component 
of growth factor signaling. Current opinion in cell biology 25: 233-240. 

Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, 
Taccioli C, Croce CM. 2007. MicroRNA expression patterns to differentiate pancreatic 
adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA : the journal of 
the American Medical Association 297: 1901-1908. 

Bolen JB, Lewis AM, Jr., Israel MA. 1985. Stimulation of pp60c-src tyrosyl kinase 
activity in polyoma virus-infected mouse cells is closely associated with polyoma middle 
tumor antigen synthesis. Journal of cellular biochemistry 27: 157-167. 

Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL. 2009. Pancreatic 
inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into 
adipocytes in mice. Gastroenterology 136: 309-319 e309. 

Bosson AD, Zamudio JR, Sharp PA. 2014. Endogenous miRNA and target 
concentrations determine susceptibility to potential ceRNA competition. Molecular cell 
56: 347-359. 

Brabek J, Constancio SS, Shin NY, Pozzi A, Weaver AM, Hanks SK. 2004. CAS 
promotes invasiveness of Src-transformed cells. Oncogene 23: 7406-7415. 

Braun JE, Huntzinger E, Izaurralde E. 2012. A molecular link between miRISCs and 
deadenylases provides new insight into the mechanism of gene silencing by microRNAs. 
Cold Spring Harbor perspectives in biology 4. 

Brennecke J, Stark A, Russell RB, Cohen SM. 2005. Principles of microRNA-target 
recognition. PLoS biology 3: e85. 

Bruenderman EH, Martin RC, 2nd. 2015. High-risk population in sporadic pancreatic 
adenocarcinoma: guidelines for screening. The Journal of surgical research 194: 212-
219. 

Buchheit CL, Weigel KJ, Schafer ZT. 2014. Cancer cell survival during detachment from 
the ECM: multiple barriers to tumour progression. Nature reviews Cancer 14: 632-641. 

Buchholz M, Braun M, Heidenblut A, Kestler HA, Kloppel G, Schmiegel W, Hahn SA, 
Luttges J, Gress TM. 2005. Transcriptome analysis of microdissected pancreatic 
intraepithelial neoplastic lesions. Oncogene 24: 6626-6636. 



153 
 

 

Buckway B, Wang Y, Ray A, Ghandehari H. 2013. Overcoming the stromal barrier for 
targeted delivery of HPMA copolymers to pancreatic tumors. International journal of 
pharmaceutics 456: 202-211. 

Burris HA, 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, 
Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P et al. 1997. Improvements in 
survival and clinical benefit with gemcitabine as first-line therapy for patients with 
advanced pancreas cancer: a randomized trial. Journal of clinical oncology : official 
journal of the American Society of Clinical Oncology 15: 2403-2413. 

Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, 
Hruban RH, Yeo CJ, Kern SE. 1994. Frequent somatic mutations and homozygous 
deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature genetics 8: 27-
32. 

Campbell KS, Ogris E, Burke B, Su W, Auger KR, Druker BJ, Schaffhausen BS, Roberts 
TM, Pallas DC. 1994. Polyoma middle tumor antigen interacts with SHC protein via the 
NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proceedings of the National 
Academy of Sciences of the United States of America 91: 6344-6348. 

Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, 
Morsberger LA, Latimer C, McLaren S, Lin ML et al. 2010. The patterns and dynamics 
of genomic instability in metastatic pancreatic cancer. Nature 467: 1109-1113. 

Canto EI, Shariat SF, Slawin KM. 2003. Biochemical staging of prostate cancer. The 
Urologic clinics of North America 30: 263-277. 

Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV. 
1983. Activation of Ki-ras2 gene in human colon and lung carcinomas by two different 
point mutations. Nature 304: 507-513. 

Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, 
Cuperus JT, Carrington JC. 2012. Functional analysis of three Arabidopsis 
ARGONAUTES using slicer-defective mutants. The Plant cell 24: 3613-3629. 

Casey PJ, Solski PA, Der CJ, Buss JE. 1989. p21ras is modified by a farnesyl isoprenoid. 
Proceedings of the National Academy of Sciences of the United States of America 86: 
8323-8327. 

Casola S. 2010. Mouse models for miRNA expression: the ROSA26 locus. Methods in 
molecular biology 667: 145-163. 

Castellano-Megias VM, Andres CI, Lopez-Alonso G, Colina-Ruizdelgado F. 2014. 
Pathological features and diagnosis of intraductal papillary mucinous neoplasm of the 
pancreas. World journal of gastrointestinal oncology 6: 311-324. 



154 
 

 

Chaffer CL, Weinberg RA. 2011. A perspective on cancer cell metastasis. Science (New 
York, NY) 331: 1559-1564. 

Chambers AF, Groom AC, MacDonald IC. 2002. Dissemination and growth of cancer 
cells in metastatic sites. Nature reviews Cancer 2: 563-572. 

Chan JA, Krichevsky AM, Kosik KS. 2005. MicroRNA-21 is an antiapoptotic factor in 
human glioblastoma cells. Cancer research 65: 6029-6033. 

Chappell J, Sun Y, Singh A, Dalton S. 2013. MYC/MAX control ERK signaling and 
pluripotency by regulation of dual-specificity phosphatases 2 and 7. Genes & 
development 27: 725-733. 

Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. 2011. 
miRNA repression involves GW182-mediated recruitment of CCR4-NOT through 
conserved W-containing motifs. Nature structural & molecular biology 18: 1218-1226. 

Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. 2010. A dicer-independent miRNA 
biogenesis pathway that requires Ago catalysis. Nature 465: 584-589. 

Chen WT. 1989. Proteolytic activity of specialized surface protrusions formed at rosette 
contact sites of transformed cells. The Journal of experimental zoology 251: 167-185. 

Chen WT, Chen JM, Parsons SJ, Parsons JT. 1985. Local degradation of fibronectin at 
sites of expression of the transforming gene product pp60src. Nature 316: 156-158. 

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, 
Shiekhattar R. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing 
and gene silencing. Nature 436: 740-744. 

Chi SW, Zang JB, Mele A, Darnell RB. 2009. Argonaute HITS-CLIP decodes 
microRNA-mRNA interaction maps. Nature 460: 479-486. 

Chowdhury K, Light SE, Garon CF, Ito Y, Israel MA. 1980. A cloned polyoma DNA 
fragment representing the 5' half of the early gene region is oncogenic. Journal of 
virology 36: 566-574. 

Chung HH, Benson DR, Cornish VW, Schultz PG. 1993. Probing the role of loop 2 in 
Ras function with unnatural amino acids. Proceedings of the National Academy of 
Sciences of the United States of America 90: 10145-10149. 

Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, 
Hannon GJ, Lawson ND et al. 2010. A novel miRNA processing pathway independent of 
Dicer requires Argonaute2 catalytic activity. Science (New York, NY) 328: 1694-1698. 



155 
 

 

Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ, Rakshit S, Flannagan 
KS, Adsay NV, Pasca di Magliano M. 2012a. Oncogenic Kras is required for both the 
initiation and maintenance of pancreatic cancer in mice. The Journal of clinical 
investigation 122: 639-653. 

Collins MA, Brisset JC, Zhang Y, Bednar F, Pierre J, Heist KA, Galban CJ, Galban S, di 
Magliano MP. 2012b. Metastatic pancreatic cancer is dependent on oncogenic Kras in 
mice. PloS one 7: e49707. 

Collins MA, Yan W, Sebolt-Leopold JS, Pasca di Magliano M. 2014. MAPK signaling is 
required for dedifferentiation of acinar cells and development of pancreatic intraepithelial 
neoplasia in mice. Gastroenterology 146: 822-834.e827. 

Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM. 2010. Loss of tyrosine 
phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in 
detached pancreatic cells. Molecular carcinogenesis 49: 1007-1021. 

Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, 
Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C et al. 2011. FOLFIRINOX versus 
gemcitabine for metastatic pancreatic cancer. The New England journal of medicine 364: 
1817-1825. 

Cox AD, Der CJ. 2010. Ras history: The saga continues. Small GTPases 1: 2-27. 

Daniluk J, Liu Y, Deng D, Chu J, Huang H, Gaiser S, Cruz-Monserrate Z, Wang H, Ji B, 
Logsdon CD. 2012. An NF-kappaB pathway-mediated positive feedback loop amplifies 
Ras activity to pathological levels in mice. The Journal of clinical investigation 122: 
1519-1528. 

Davis BN, Hata A. 2009. Regulation of MicroRNA Biogenesis: A miRiad of 
mechanisms. Cell communication and signaling : CCS 7: 18. 

Davis BN, Hilyard AC, Lagna G, Hata A. 2008. SMAD proteins control DROSHA-
mediated microRNA maturation. Nature 454: 56-61. 

de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, 
Genevieve D, Goldenberg A, Oufadem M et al. 2011. Germline deletion of the miR-17 
approximately 92 cluster causes skeletal and growth defects in humans. Nature genetics 
43: 1026-1030. 

Deakin NO, Pignatelli J, Turner CE. 2012. Diverse roles for the paxillin family of 
proteins in cancer. Genes & cancer 3: 362-370. 

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. 2004. Processing of primary 
microRNAs by the Microprocessor complex. Nature 432: 231-235. 



156 
 

 

Dickson B, Sprenger F, Morrison D, Hafen E. 1992. Raf functions downstream of Ras1 
in the Sevenless signal transduction pathway. Nature 360: 600-603. 

Distler M, Aust D, Weitz J, Pilarsky C, Grutzmann R. 2014. Precursor lesions for 
sporadic pancreatic cancer: PanIN, IPMN, and MCN. BioMed research international 
2014: 474905. 

Doench JG, Sharp PA. 2004. Specificity of microRNA target selection in translational 
repression. Genes & development 18: 504-511. 

Downward J. 2003. Targeting RAS signalling pathways in cancer therapy. Nature 
reviews Cancer 3: 11-22. 

Du YC, Klimstra DS, Varmus H. 2009. Activation of PyMT in beta cells induces 
irreversible hyperplasia, but oncogene-dependent acinar cell carcinomas when activated 
in pancreatic progenitors. PloS one 4: e6932. 

Duxbury MS, Ito H, Ashley SW, Whang EE. 2004a. CEACAM6 cross-linking induces 
caveolin-1-dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 
pancreatic adenocarcinoma cells. The Journal of biological chemistry 279: 23176-23182. 

Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. 2004b. CEACAM6 gene 
silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic 
adenocarcinoma cells. Oncogene 23: 465-473. 

Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological 
processes. Cell 149: 515-524. 

Eheman C, Henley SJ, Ballard-Barbash R, Jacobs EJ, Schymura MJ, Noone AM, Pan L, 
Anderson RN, Fulton JE, Kohler BA et al. 2012. Annual Report to the Nation on the 
status of cancer, 1975-2008, featuring cancers associated with excess weight and lack of 
sufficient physical activity. Cancer 118: 2338-2366. 

Eser S, Reiff N, Messer M, Seidler B, Gottschalk K, Dobler M, Hieber M, Arbeiter A, 
Klein S, Kong B et al. 2013. Selective requirement of PI3K/PDK1 signaling for Kras 
oncogene-driven pancreatic cell plasticity and cancer. Cancer cell 23: 406-420. 

Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto 
T, Raught B, Duchaine TF et al. 2011. miRNA-mediated deadenylation is orchestrated by 
GW182 through two conserved motifs that interact with CCR4-NOT. Nature structural 
& molecular biology 18: 1211-1217. 

Fang Z, Rajewsky N. 2011. The impact of miRNA target sites in coding sequences and in 
3'UTRs. PloS one 6: e18067. 



157 
 

 

Fehrenbacher N, Bar-Sagi D, Philips M. 2009. Ras/MAPK signaling from 
endomembranes. Molecular oncology 3: 297-307. 

Ferro R, Falasca M. 2014. Emerging role of the KRAS-PDK1 axis in pancreatic cancer. 
World journal of gastroenterology : WJG 20: 10752-10757. 

Fiedler SD, Carletti MZ, Christenson LK. 2010. Quantitative RT-PCR methods for 
mature microRNA expression analysis. Methods in molecular biology 630: 49-64. 

Filipowicz W, Bhattacharyya SN, Sonenberg N. 2008. Mechanisms of post-
transcriptional regulation by microRNAs: are the answers in sight? Nature reviews 
Genetics 9: 102-114. 

Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. 2015. Mutant 
p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. 
Biochimica et biophysica acta 1853: 89-100. 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and 
specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 
391: 806-811. 

Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, 
Donfrancesco A, Federici V, Giacomini P et al. 2008. Antagomir-17-5p abolishes the 
growth of therapy-resistant neuroblastoma through p21 and BIM. PloS one 3: e2236. 

Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, 
Roca-Alonso L, Funel N, Gall TM et al. 2014. MicroRNAs cooperatively inhibit a 
network of tumor suppressor genes to promote pancreatic tumor growth and progression. 
Gastroenterology 146: 268-277.e218. 

Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. 2008. 
Programmed cell death 4 (PDCD4) is an important functional target of the microRNA 
miR-21 in breast cancer cells. The Journal of biological chemistry 283: 1026-1033. 

Friedman RC, Farh KK, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are 
conserved targets of microRNAs. Genome research 19: 92-105. 

Frisch SM, Francis H. 1994. Disruption of epithelial cell-matrix interactions induces 
apoptosis. The Journal of cell biology 124: 619-626. 

Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD. 2012. Dicer partner proteins 
tune the length of mature miRNAs in flies and mammals. Cell 151: 533-546. 



158 
 

 

Fukushima N, Zamboni G. 2014. Mucinous cystic neoplasms of the pancreas: update on 
the surgical pathology and molecular genetics. Seminars in diagnostic pathology 31: 467-
474. 

Fuller-Pace FV, Moore HC. 2011. RNA helicases p68 and p72: multifunctional proteins 
with important implications for cancer development. Future oncology (London, England) 
7: 239-251. 

Furukawa T, Fujisaki R, Yoshida Y, Kanai N, Sunamura M, Abe T, Takeda K, Matsuno 
S, Horii A. 2005. Distinct progression pathways involving the dysfunction of 
DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous 
neoplasms of the pancreas. Modern pathology : an official journal of the United States 
and Canadian Academy of Pathology, Inc 18: 1034-1042. 

Furukawa T, Yatsuoka T, Youssef EM, Abe T, Yokoyama T, Fukushige S, Soeda E, 
Hoshi M, Hayashi Y, Sunamura M et al. 1998. Genomic analysis of DUSP6, a dual 
specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenetics and cell genetics 
82: 156-159. 

Fuziwara CS, Kimura ET. 2014. High iodine blocks a Notch/miR-19 loop activated by 
the BRAF(V600E) oncoprotein and restores the response to TGFbeta in thyroid follicular 
cells. Thyroid : official journal of the American Thyroid Association 24: 453-462. 

Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. 2007. Inference of miRNA targets 
using evolutionary conservation and pathway analysis. BMC bioinformatics 8: 69. 

Galante JM, Mortenson MM, Bowles TL, Virudachalam S, Bold RJ. 2009. ERK/BCL-2 
pathway in the resistance of pancreatic cancer to anoikis. The Journal of surgical 
research 152: 18-25. 

Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. 2012. Selective 
autophagy degrades DICER and AGO2 and regulates miRNA activity. Nature cell 
biology 14: 1314-1321. 

Giehl K, Seidel B, Gierschik P, Adler G, Menke A. 2000. TGFbeta1 represses 
proliferation of pancreatic carcinoma cells which correlates with Smad4-independent 
inhibition of ERK activation. Oncogene 19: 4531-4541. 

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, 
Schier AF. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal 
mRNAs. Science (New York, NY) 312: 75-79. 

Gold DV, Karanjawala Z, Modrak DE, Goldenberg DM, Hruban RH. 2007. PAM4-
reactive MUC1 is a biomarker for early pancreatic adenocarcinoma. Clinical cancer 



159 
 

 

research : an official journal of the American Association for Cancer Research 13: 7380-
7387. 

Gorczyca J, Litwin JA, Pitynski K, Miodonski AJ. 2010. Vascular system of human fetal 
pancreas demonstrated by corrosion casting and scanning electron microscopy. 
Anatomical science international 85: 235-240. 

Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH. 1982. The Rous 
sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of 
eukaryotic cells by DNA-mediated transfection. Proceedings of the National Academy of 
Sciences of the United States of America 79: 6777-6781. 

Grabliauskaite K, Hehl AB, Seleznik GM, Saponara E, Schlesinger K, Zuellig RA, 
Dittmann A, Bain M, Reding T, Sonda S et al. 2015. p21(WAF1) (/Cip1) limits 
senescence and acinar-to-ductal metaplasia formation during pancreatitis. The Journal of 
pathology 235: 502-514. 

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. 
2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 
235-240. 

Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen 
YH, McCray PB, Jr., Davidson BL, Divekar A et al. 2014. A novel gene delivery method 
transduces porcine pancreatic duct epithelial cells. Gene therapy 21: 123-130. 

Grillari J, Hackl M, Grillari-Voglauer R. 2010. miR-17-92 cluster: ups and downs in 
cancer and aging. Biogerontology 11: 501-506. 

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. 2007. 
MicroRNA targeting specificity in mammals: determinants beyond seed pairing. 
Molecular cell 27: 91-105. 

Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun 
G, Mello CC. 2001. Genes and mechanisms related to RNA interference regulate 
expression of the small temporal RNAs that control C. elegans developmental timing. 
Cell 106: 23-34. 

Gu G, Dubauskaite J, Melton DA. 2002. Direct evidence for the pancreatic lineage: 
NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 
129: 2447-2457. 

Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, 
Rodriguez-Justo M, Serrano M, Barbacid M. 2011. Pancreatitis-induced inflammation 
contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer cell 
19: 728-739. 



160 
 

 

Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, 
Dubus P, Sandgren EP, Barbacid M. 2007. Chronic pancreatitis is essential for induction 
of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer cell 11: 
291-302. 

Guil S, Caceres JF. 2007. The multifunctional RNA-binding protein hnRNP A1 is 
required for processing of miR-18a. Nature structural & molecular biology 14: 591-596. 

Gunturu KS, Yao X, Cong X, Thumar JR, Hochster HS, Stein SM, Lacy J. 2013. 
FOLFIRINOX for locally advanced and metastatic pancreatic cancer: single institution 
retrospective review of efficacy and toxicity. Medical oncology (Northwood, London, 
England) 30: 361. 

Guo P, Xiao X, El-Gohary Y, Criscimanna A, Prasadan K, Rymer C, Shiota C, Wiersch 
J, Gaffar I, Esni F et al. 2013. Specific transduction and labeling of pancreatic ducts by 
targeted recombinant viral infusion into mouse pancreatic ducts. Laboratory 
investigation; a journal of technical methods and pathology 93: 1241-1253. 

Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A, Filipowicz W. 2005. 
TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and 
functions in RNA silencing. EMBO reports 6: 961-967. 

Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein 
CL, Fischer A, Yeo CJ, Hruban RH et al. 1996. DPC4, a candidate tumor suppressor 
gene at human chromosome 18q21.1. Science (New York, NY) 271: 350-353. 

Halazonetis TD, Gorgoulis VG, Bartek J. 2008. An oncogene-induced DNA damage 
model for cancer development. Science (New York, NY) 319: 1352-1355. 

Hammond SM, Bernstein E, Beach D, Hannon GJ. 2000. An RNA-directed nuclease 
mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-296. 

Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. 2001. Argonaute2, a 
link between genetic and biochemical analyses of RNAi. Science (New York, NY) 293: 
1146-1150. 

Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. 2004. The Drosha-DGCR8 complex 
in primary microRNA processing. Genes & development 18: 3016-3027. 

Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 
646-674. 

Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. 2005. The RNaseIII 
enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. 



161 
 

 

Proceedings of the National Academy of Sciences of the United States of America 102: 
10898-10903. 

Hariharan D, Saied A, Kocher HM. 2008. Analysis of mortality rates for pancreatic 
cancer across the world. HPB : the official journal of the International Hepato Pancreato 
Biliary Association 10: 58-62. 

Hata A, Lieberman J. 2015. Dysregulation of microRNA biogenesis and gene silencing in 
cancer. Science signaling 8: re3. 

Hausser J, Landthaler M, Jaskiewicz L, Gaidatzis D, Zavolan M. 2009. Relative 
contribution of sequence and structure features to the mRNA binding of 
Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome 
research 19: 2009-2020. 

Hausser J, Syed AP, Bilen B, Zavolan M. 2013. Analysis of CDS-located miRNA target 
sites suggests that they can effectively inhibit translation. Genome research 23: 604-615. 

Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, 
Kawahara K, Sekido Y, Takahashi T. 2005. A polycistronic microRNA cluster, miR-17-
92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer 
research 65: 9628-9632. 

He G, Zhang L, Li Q, Yang L. 2014a. miR-92a/DUSP10/JNK signalling axis promotes 
human pancreatic cancer cells proliferation. Biomedicine & pharmacotherapy = 
Biomedecine & pharmacotherapie 68: 25-30. 

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, 
Cordon-Cardo C, Lowe SW, Hannon GJ et al. 2005. A microRNA polycistron as a 
potential human oncogene. Nature 435: 828-833. 

He X, Yang J, Zhang Q, Cui H, Zhang Y. 2014b. Shortening of the 3' untranslated 
region: an important mechanism leading to overexpression of HMGA2 in serous ovarian 
cancer. Chinese medical journal 127: 494-499. 

Healy KD, Hodgson L, Kim TY, Shutes A, Maddileti S, Juliano RL, Hahn KM, Harden 
TK, Bang YJ, Der CJ. 2008. DLC-1 suppresses non-small cell lung cancer growth and 
invasion by RhoGAP-dependent and independent mechanisms. Molecular carcinogenesis 
47: 326-337. 

Helwak A, Kudla G, Dudnakova T, Tollervey D. 2013. Mapping the human miRNA 
interactome by CLASH reveals frequent noncanonical binding. Cell 153: 654-665. 



162 
 

 

Hemmat M, Rumple MJ, Mahon LW, Strom CM, Anguiano A, Talai M, Nguyen B, 
Boyar FZ. 2014. Short stature, digit anomalies and dysmorphic facial features are 
associated with the duplication of miR-17 ~ 92 cluster. Molecular cytogenetics 7: 27. 

Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. 2008. Lin28 mediates the terminal 
uridylation of let-7 precursor MicroRNA. Molecular cell 32: 276-284. 

Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN. 2009. TUT4 
in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA 
uridylation. Cell 138: 696-708. 

Hetey SE, Lalonde DP, Turner CE. 2005. Tyrosine-phosphorylated Hic-5 inhibits 
epidermal growth factor-induced lamellipodia formation. Exp Cell Res 311: 147-156. 

Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, Jarzembowski 
JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ et al. 2009. DICER1 mutations in 
familial pleuropulmonary blastoma. Science (New York, NY) 325: 965. 

Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, 
Chang S, Tuveson DA. 2005. Trp53R172H and KrasG12D cooperate to promote 
chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. 
Cancer cell 7: 469-483. 

Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ, Xiao C, Hu WY, Han J, Sun P. 2010. 
The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-
induced senescence. Cancer research 70: 8547-8557. 

Horman SR, Janas MM, Litterst C, Wang B, MacRae IJ, Sever MJ, Morrissey DV, 
Graves P, Luo B, Umesalma S et al. 2013. Akt-mediated phosphorylation of argonaute 2 
downregulates cleavage and upregulates translational repression of MicroRNA targets. 
Molecular cell 50: 356-367. 

Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, Kosary C, Yu M, 
Ruhl J, Tatalovich Z et al. 2014. SEER Cancer Statistics Review, 1975-2011, National 
Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/, based on 
November 2013 SEER data submission, posted to the SEER web site, April 2014. 

Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, 
Kern SE, Klimstra DS, Kloppel G, Longnecker DS et al. 2001. Pancreatic intraepithelial 
neoplasia: a new nomenclature and classification system for pancreatic duct lesions. The 
American journal of surgical pathology 25: 579-586. 

Hruban RH, Maitra A, Goggins M. 2008. Update on pancreatic intraepithelial neoplasia. 
International journal of clinical and experimental pathology 1: 306-316. 



163 
 

 

Humphreys DT, Westman BJ, Martin DI, Preiss T. 2005. MicroRNAs control translation 
initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. 
Proceedings of the National Academy of Sciences of the United States of America 102: 
16961-16966. 

Huntzinger E, Izaurralde E. 2011. Gene silencing by microRNAs: contributions of 
translational repression and mRNA decay. Nature reviews Genetics 12: 99-110. 

Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. 2001. A 
cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 
small temporal RNA. Science (New York, NY) 293: 834-838. 

Hutvagner G, Simard MJ. 2008. Argonaute proteins: key players in RNA silencing. 
Nature reviews Molecular cell biology 9: 22-32. 

Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, Kern SE. 2004. 
Missense mutations of MADH4: characterization of the mutational hot spot and 
functional consequences in human tumors. Clinical cancer research : an official journal 
of the American Association for Cancer Research 10: 1597-1604. 

Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL. 
2006. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific 
blockade of transforming growth factor-beta signaling in cooperation with active Kras 
expression. Genes & development 20: 3147-3160. 

Imig J, Brunschweiger A. 2015. miR-CLIP capture of a miRNA targetome uncovers a 
lincRNA H19-miR-106a interaction.  11: 107-114. 

Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. 2009. Regulation of nitric 
oxide signaling by thrombospondin-1: implications for anti-angiogenic therapies. Nature 
reviews Cancer 9: 182-194. 

Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S, 
Mochimaru Y. 2012. Physiology and pathophysiology of bicarbonate secretion by 
pancreatic duct epithelium. Nagoya journal of medical science 74: 1-18. 

Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, 
Hruban RH, Adsay NV, Tuveson DA et al. 2007. Kras(G12D) and Smad4/Dpc4 
haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive 
adenocarcinoma of the pancreas. Cancer cell 11: 229-243. 

Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, 
Linsley PS. 2003. Expression profiling reveals off-target gene regulation by RNAi. 
Nature biotechnology 21: 635-637. 



164 
 

 

Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. 2006. 
Widespread siRNA "off-target" transcript silencing mediated by seed region sequence 
complementarity. Rna 12: 1179-1187. 

Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson 
DA. 2001. Analysis of lung tumor initiation and progression using conditional expression 
of oncogenic K-ras. Genes & development 15: 3243-3248. 

Jain R, Lammert E. 2009. Cell-cell interactions in the endocrine pancreas. Diabetes, 
obesity & metabolism 11 Suppl 4: 159-167. 

Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, 
Cohen DM, Chan EK. 2010. Overexpression of dicer as a result of reduced let-7 
MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes, 
chromosomes & cancer 49: 549-559. 

Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. 2007. Cancer statistics, 2007. CA: 
a cancer journal for clinicians 57: 43-66. 

Jiang K, Delarue FL, Sebti SM. 2004. EGFR, ErbB2 and Ras but not Src suppress RhoB 
expression while ectopic expression of RhoB antagonizes oncogene-mediated 
transformation. Oncogene 23: 1136-1145. 

Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram 
H, Han J. 2005. Involvement of microRNA in AU-rich element-mediated mRNA 
instability. Cell 120: 623-634. 

John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human MicroRNA 
targets. PLoS biology 2: e363. 

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, 
Reinert KL, Brown D, Slack FJ. 2005. RAS is regulated by the let-7 microRNA family. 
Cell 120: 635-647. 

Jones MR, Blahna MT, Kozlowski E, Matsuura KY, Ferrari JD, Morris SA, Powers JT, 
Daley GQ, Quinton LJ, Mizgerd JP. 2012. Zcchc11 uridylates mature miRNAs to 
enhance neonatal IGF-1 expression, growth, and survival. PLoS genetics 8: e1003105. 

Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, 
Kamiyama H, Jimeno A et al. 2008. Core signaling pathways in human pancreatic 
cancers revealed by global genomic analyses. Science (New York, NY) 321: 1801-1806. 

Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. 2001. 
Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model 
for breast cancer. Nature genetics 29: 418-425. 



165 
 

 

Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler 
K, Vogelstein B et al. 2012. Presence of somatic mutations in most early-stage pancreatic 
intraepithelial neoplasia. Gastroenterology 142: 730-733.e739. 

Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, 
Takamizawa J, Miyoshi S, Mitsudomi T et al. 2005. Reduced expression of Dicer 
associated with poor prognosis in lung cancer patients. Cancer science 96: 111-115. 

Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T, Suzuki T. 2009. 
Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the 
cytoplasmic poly(A) polymerase GLD-2. Genes & development 23: 433-438. 

Kaushik S, Ravi A, Hameed FM, Low BC. 2014. Concerted modulation of paxillin 
dynamics at focal adhesions by deleted in liver cancer-1 and focal adhesion kinase during 
early cell spreading. Cytoskeleton (Hoboken, NJ) 71: 677-694. 

Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. 2002. The role 
of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. 
Nature genetics 32: 128-134. 

Kawai S, Amano A. 2012. BRCA1 regulates microRNA biogenesis via the DROSHA 
microprocessor complex. The Journal of cell biology 197: 201-208. 

Kelley GG, Reks SE, Ondrako JM, Smrcka AV. 2001. Phospholipase C(epsilon): a novel 
Ras effector. The EMBO journal 20: 743-754. 

Kent OA, Mullendore M, Wentzel EA, Lopez-Romero P, Tan AC, Alvarez H, West K, 
Ochs MF, Hidalgo M, Arking DE et al. 2009. A resource for analysis of microRNA 
expression and function in pancreatic ductal adenocarcinoma cells. Cancer biology & 
therapy 8: 2013-2024. 

Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. 2001. Dicer 
functions in RNA interference and in synthesis of small RNA involved in developmental 
timing in C. elegans. Genes & development 15: 2654-2659. 

Keyse SM. 2008. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer 
metastasis reviews 27: 253-261. 

Khvorova A, Reynolds A, Jayasena SD. 2003. Functional siRNAs and miRNAs exhibit 
strand bias. Cell 115: 209-216. 

Kim MS, Zhong Y, Yachida S, Rajeshkumar NV, Abel ML, Marimuthu A, Mudgal K, 
Hruban RH, Poling JS, Tyner JW et al. 2014. Heterogeneity of pancreatic cancer 
metastases in a single patient revealed by quantitative proteomics. Molecular & cellular 
proteomics : MCP 13: 2803-2811. 



166 
 

 

Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, 
Yang HK et al. 2009. Functional links between clustered microRNAs: suppression of 
cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic acids research 37: 
1672-1681. 

Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z. 
2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. 
Cell 129: 1141-1151. 

Klemke M, Meyer A, Hashemi Nezhad M, Belge G, Bartnitzke S, Bullerdiek J. 2010. 
Loss of let-7 binding sites resulting from truncations of the 3' untranslated region of 
HMGA2 mRNA in uterine leiomyomas. Cancer genetics and cytogenetics 196: 119-123. 

Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, 
Scolnick EM, Oliff A, Gibbs JB. 1993. Selective inhibition of ras-dependent 
transformation by a farnesyltransferase inhibitor. Science (New York, NY) 260: 1934-
1937. 

Koorstra JB, Hong SM, Shi C, Meeker AK, Ryu JK, Offerhaus GJ, Goggins MG, Hruban 
RH, Maitra A. 2009. Widespread activation of the DNA damage response in human 
pancreatic intraepithelial neoplasia. Modern pathology : an official journal of the United 
States and Canadian Academy of Pathology, Inc 22: 1439-1445. 

Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JPt, Pan FC, Akiyama H, 
Wright CV, Jensen K et al. 2012. Identification of Sox9-dependent acinar-to-ductal 
reprogramming as the principal mechanism for initiation of pancreatic ductal 
adenocarcinoma. Cancer cell 22: 737-750. 

Kort EJ, Farber L, Tretiakova M, Petillo D, Furge KA, Yang XJ, Cornelius A, Teh BT. 
2008. The E2F3-Oncomir-1 axis is activated in Wilms' tumor. Cancer research 68: 4034-
4038. 

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da 
Piedade I, Gunsalus KC, Stoffel M et al. 2005. Combinatorial microRNA target 
predictions. Nature genetics 37: 495-500. 

Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. 2008. 
Suppression of non-small cell lung tumor development by the let-7 microRNA family. 
Proceedings of the National Academy of Sciences of the United States of America 105: 
3903-3908. 

Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. 2007. Impaired microRNA processing 
enhances cellular transformation and tumorigenesis. Nature genetics 39: 673-677. 



167 
 

 

Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T. 
2009. Dicer1 functions as a haploinsufficient tumor suppressor. Genes & development 
23: 2700-2704. 

Kwak HJ, Kim YJ, Chun KR, Woo YM, Park SJ, Jeong JA, Jo SH, Kim TH, Min HS, 
Chae JS et al. 2011. Downregulation of Spry2 by miR-21 triggers malignancy in human 
gliomas. Oncogene 30: 2433-2442. 

Lack EE. 1989. Primary tumors of the exocrine pancreas. Classification, overview, and 
recent contributions by immunohistochemistry and electron microscopy. The American 
journal of surgical pathology 13 Suppl 1: 66-88. 

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 2001. Identification of novel 
genes coding for small expressed RNAs. Science (New York, NY) 294: 853-858. 

Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH, Russo MW, 
Bonkovsky HL, Schrum LW. 2012. Inhibitory effects of microRNA 19b in hepatic 
stellate cell-mediated fibrogenesis. Hepatology 56: 300-310. 

Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, 
Der CJ. 2002. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent 
mechanism. Nature cell biology 4: 621-625. 

Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA, Marine JC. 
2010. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell 
death and differentiation 17: 633-641. 

Landthaler M, Yalcin A, Tuschl T. 2004. The human DiGeorge syndrome critical region 
gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Current 
biology : CB 14: 2162-2167. 

Larsson LG. 2011. Oncogene- and tumor suppressor gene-mediated suppression of 
cellular senescence. Seminars in cancer biology 21: 367-376. 

Lau NC, Lim LP, Weinstein EG, Bartel DP. 2001. An abundant class of tiny RNAs with 
probable regulatory roles in Caenorhabditis elegans. Science (New York, NY) 294: 858-
862. 

Laude AJ, Prior IA. 2008. Palmitoylation and localisation of RAS isoforms are 
modulated by the hypervariable linker domain. Journal of cell science 121: 421-427. 

Lee CL, Moding EJ, Huang X, Li Y, Woodlief LZ, Rodrigues RC, Ma Y, Kirsch DG. 
2012a. Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. 
Disease models & mechanisms 5: 397-402. 



168 
 

 

Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, 
Brackett DJ, Schmittgen TD. 2007. Expression profiling identifies microRNA signature 
in pancreatic cancer. International journal of cancer Journal international du cancer 
120: 1046-1054. 

Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA. 2013. Differential roles of human 
Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic acids 
research 41: 6568-6576. 

Lee MG, Ohana E, Park HW, Yang D, Muallem S. 2012b. Molecular mechanism of 
pancreatic and salivary gland fluid and HCO3 secretion. Physiological reviews 92: 39-74. 

Lee RC, Ambros V. 2001. An extensive class of small RNAs in Caenorhabditis elegans. 
Science (New York, NY) 294: 862-864. 

Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 
encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al. 
2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-
419. 

Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. 2006. The role of PACT in the RNA 
silencing pathway. The EMBO journal 25: 522-532. 

Lee Y, Jeon K, Lee JT, Kim S, Kim VN. 2002. MicroRNA maturation: stepwise 
processing and subcellular localization. The EMBO journal 21: 4663-4670. 

Lee YS, Dutta A. 2007. The tumor suppressor microRNA let-7 represses the HMGA2 
oncogene. Genes & development 21: 1025-1030. 

Leung PS, Ip SP. 2006. Pancreatic acinar cell: its role in acute pancreatitis. The 
international journal of biochemistry & cell biology 38: 1024-1030. 

Lewis BC, Klimstra DS, Varmus HE. 2003a. The c-myc and PyMT oncogenes induce 
different tumor types in a somatic mouse model for pancreatic cancer. Genes & 
development 17: 3127-3138. 

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. 2003b. Prediction of 
mammalian microRNA targets. Cell 115: 787-798. 

Li P, Xu Q, Zhang D, Li X, Han L, Lei J, Duan W, Ma Q, Wu Z, Wang Z. 2014. 
Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS letters 588: 
705-712. 



169 
 

 

Li Y, VandenBoom TG, 2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH. 2009. Up-
regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-
mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer research 
69: 6704-6712. 

Liau SS, Jazag A, Ito K, Whang EE. 2007. Overexpression of HMGA1 promotes anoikis 
resistance and constitutive Akt activation in pancreatic adenocarcinoma cells. British 
journal of cancer 96: 993-1000. 

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley 
PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate 
large numbers of target mRNAs. Nature 433: 769-773. 

Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ. 2012. Hypoxia-induced 
microRNA-20a expression increases ERK phosphorylation and angiogenic gene 
expression in endometriotic stromal cells. The Journal of clinical endocrinology and 
metabolism 97: E1515-1523. 

Linder S, Aepfelbacher M. 2003. Podosomes: adhesion hot-spots of invasive cells. 
Trends in cell biology 13: 376-385. 

Lindkvist B. 2013. Diagnosis and treatment of pancreatic exocrine insufficiency. World 
journal of gastroenterology : WJG 19: 7258-7266. 

Liu F, Gore AJ, Wilson JL, Korc M. 2014. DUSP1 is a novel target for enhancing 
pancreatic cancer cell sensitivity to gemcitabine. PloS one 9: e84982. 

Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, 
Ramaswamy S et al. 2013. The IGF2 intronic miR-483 selectively enhances transcription 
from IGF2 fetal promoters and enhances tumorigenesis. Genes & development 27: 2543-
2548. 

Liu X, Hemminki K, Forsti A, Sundquist K, Sundquist J, Ji J. 2015. Cancer risk in 
patients with type 2 diabetes mellitus and their relatives. International journal of cancer 
Journal international du cancer. 

Low JT, Shukla A, Thorn P. 2010. Pancreatic acinar cell: new insights into the control of 
secretion. The international journal of biochemistry & cell biology 42: 1586-1589. 

Lowenfels AB, Maisonneuve P. 2004. Epidemiology and prevention of pancreatic cancer. 
Japanese journal of clinical oncology 34: 238-244. 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert 
BL, Mak RH, Ferrando AA et al. 2005. MicroRNA expression profiles classify human 
cancers. Nature 435: 834-838. 



170 
 

 

Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom 
AC. 1998. Multistep nature of metastatic inefficiency: dormancy of solitary cells after 
successful extravasation and limited survival of early micrometastases. The American 
journal of pathology 153: 865-873. 

Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. 2007. 
MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 
56: 2938-2945. 

Maisonneuve P, Lowenfels AB. 2015. Risk factors for pancreatic cancer: a summary 
review of meta-analytical studies. International journal of epidemiology 44: 186-198. 

Maitra A, Hruban RH. 2008. Pancreatic cancer. Annual review of pathology 3: 157-188. 

Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, 
Giannopoulos G, Goumas G, Koukis E, Kourtis K et al. 2009. DIANA-microT web 
server: elucidating microRNA functions through target prediction. Nucleic acids research 
37: W273-276. 

Maroney PA, Yu Y, Fisher J, Nilsen TW. 2006. Evidence that microRNAs are associated 
with translating messenger RNAs in human cells. Nature structural & molecular biology 
13: 1102-1107. 

Marte BM, Downward J. 1997. PKB/Akt: connecting phosphoinositide 3-kinase to cell 
survival and beyond. Trends in biochemical sciences 22: 355-358. 

Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo 
V, Rondina M, Spruce T et al. 2010. A MicroRNA targeting dicer for metastasis control. 
Cell 141: 1195-1207. 

Mastracci TL, Sussel L. 2012. The endocrine pancreas: insights into development, 
differentiation, and diabetes. Wiley interdisciplinary reviews Developmental biology 1: 
609-628. 

Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. 2005. Passenger-strand cleavage 
facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123: 
607-620. 

Mayr C, Bartel DP. 2009. Widespread shortening of 3'UTRs by alternative cleavage and 
polyadenylation activates oncogenes in cancer cells. Cell 138: 673-684. 

Mayr C, Hemann MT, Bartel DP. 2007. Disrupting the pairing between let-7 and Hmga2 
enhances oncogenic transformation. Science (New York, NY) 315: 1576-1579. 



171 
 

 

McLeod M, Craft S, Broach JR. 1986. Identification of the crossover site during FLP-
mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. 
Molecular and cellular biology 6: 3357-3367. 

Medina PP, Nolde M, Slack FJ. 2010. OncomiR addiction in an in vivo model of 
microRNA-21-induced pre-B-cell lymphoma. Nature 467: 86-90. 

Mellon EA, Hoffe SE, Springett GM, Frakes JM, Strom TJ, Hodul PJ, Malafa MP, 
Chuong MD, Shridhar R. 2015. Long-term outcomes of induction chemotherapy and 
neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced 
pancreatic adenocarcinoma. Acta oncologica (Stockholm, Sweden): 1-7. 

Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos 
V, Villanueva A, Montoya G et al. 2010. A genetic defect in exportin-5 traps precursor 
microRNAs in the nucleus of cancer cells. Cancer cell 18: 303-315. 

Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, 
Fernandez AF, Carneiro F, Oliveira C et al. 2009. A TARBP2 mutation in human cancer 
impairs microRNA processing and DICER1 function. Nature genetics 41: 365-370. 

Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. 2007. MicroRNA-21 
regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. 
Gastroenterology 133: 647-658. 

Meng H, Zhao Y, Dong J, Xue M, Lin YS, Ji Z, Mai WX, Zhang H, Chang CH, Brinker 
CJ et al. 2013. Two-wave nanotherapy to target the stroma and optimize gemcitabine 
delivery to a human pancreatic cancer model in mice. ACS nano 7: 10048-10065. 

Michlewski G, Caceres JF. 2010. Antagonistic role of hnRNP A1 and KSRP in the 
regulation of let-7a biogenesis. Nature structural & molecular biology 17: 1011-1018. 

Michlewski G, Guil S, Semple CA, Caceres JF. 2008. Posttranscriptional regulation of 
miRNAs harboring conserved terminal loops. Molecular cell 32: 383-393. 

Min H, Yoon S. 2010. Got target? Computational methods for microRNA target 
prediction and their extension. Experimental & molecular medicine 42: 233-244. 

Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. 
2006. A pattern-based method for the identification of MicroRNA binding sites and their 
corresponding heteroduplexes. Cell 126: 1203-1217. 

Mishra S, Lin CL, Huang TH, Bouamar H, Sun LZ. 2014. MicroRNA-21 inhibits 
p57Kip2 expression in prostate cancer. Molecular cancer 13: 212. 



172 
 

 

Miyasaka K, Guan DF, Liddle RA, Green GM. 1989. Feedback regulation by trypsin: 
evidence for intraluminal CCK-releasing peptide. The American journal of physiology 
257: G175-181. 

Moodie SA, Willumsen BM, Weber MJ, Wolfman A. 1993. Complexes of Ras.GTP with 
Raf-1 and mitogen-activated protein kinase kinase. Science (New York, NY) 260: 1658-
1661. 

Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, Gregory 
RI. 2014. Hippo signaling regulates microprocessor and links cell-density-dependent 
miRNA biogenesis to cancer. Cell 156: 893-906. 

Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, Konishi H, 
Shiozaki A, Ikoma H, Okamoto K et al. 2011. Novel diagnostic value of circulating miR-
18a in plasma of patients with pancreatic cancer. British journal of cancer 105: 1733-
1740. 

Morita S, Hara A, Kojima I, Horii T, Kimura M, Kitamura T, Ochiya T, Nakanishi K, 
Matoba R, Matsubara K et al. 2009. Dicer is required for maintaining adult pancreas. 
PloS one 4: e4212. 

Morris JPt, Greer R, Russ HA, von Figura G, Kim GE, Busch A, Lee J, Hertel KJ, Kim 
S, McManus M et al. 2014. Dicer regulates differentiation and viability during mouse 
pancreatic cancer initiation. PloS one 9: e95486. 

Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, 
Imbalzano AN, Jones SN. 2008. Loss of miRNA biogenesis induces p19Arf-p53 
signaling and senescence in primary cells. The Journal of cell biology 181: 1055-1063. 

Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. 2011. 
MicroRNAs can generate thresholds in target gene expression. Nature genetics 43: 854-
859. 

Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S, Roussel MF. 2013. 
Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer 
research 73: 7068-7078. 

Murphy KM, Brune KA, Griffin C, Sollenberger JE, Petersen GM, Bansal R, Hruban 
RH, Kern SE. 2002. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and 
BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer 
research 62: 3789-3793. 

Nakamura K, Yano H, Uchida H, Hashimoto S, Schaefer E, Sabe H. 2000. Tyrosine 
phosphorylation of paxillin alpha is involved in temporospatial regulation of paxillin-



173 
 

 

containing focal adhesion formation and F-actin organization in motile cells. The Journal 
of biological chemistry 275: 27155-27164. 

Navas C, Hernandez-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M. 2012. 
EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal 
adenocarcinoma. Cancer cell 22: 318-330. 

Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, 
Olive KP, Gress TM et al. 2011. Stromal biology and therapy in pancreatic cancer. Gut 
60: 861-868. 

Newman MA, Hammond SM. 2010. Emerging paradigms of regulated microRNA 
processing. Genes & development 24: 1086-1092. 

Newman MA, Thomson JM, Hammond SM. 2008. Lin-28 interaction with the Let-7 
precursor loop mediates regulated microRNA processing. Rna 14: 1539-1549. 

Niederau C, Luthen R, Heintges T. 1994. Effects of CCK on pancreatic function and 
morphology. Annals of the New York Academy of Sciences 713: 180-198. 

Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. 2007. 
Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. Rna 
13: 1894-1910. 

Nomura M, Shiiba K, Katagiri C, Kasugai I, Masuda K, Sato I, Sato M, Kakugawa Y, 
Nomura E, Hayashi K et al. 2012. Novel function of MKP-5/DUSP10, a phosphatase of 
stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene 
expression in colon carcinomas. Oncology reports 28: 931-936. 

Norton PA, Coffin JM. 1987. Characterization of Rous sarcoma virus sequences essential 
for viral gene expression. Journal of virology 61: 1171-1179. 

Nottrott S, Simard MJ, Richter JD. 2006. Human let-7a miRNA blocks protein 
production on actively translating polyribosomes. Nature structural & molecular biology 
13: 1108-1114. 

Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek NE, Rajpert-
De Meyts E, Kjems J, Leffers H. 2007. Translational repression of E2F1 mRNA in 
carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. 
Cell death and differentiation 14: 879-882. 

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. 2005. c-Myc-regulated 
microRNAs modulate E2F1 expression. Nature 435: 839-843. 



174 
 

 

O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, 
Swanson MS, Harfe BD. 2007. Essential role for Dicer during skeletal muscle 
development. Developmental biology 311: 359-368. 

Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, 
Niedergethmann M, Zulke C, Fahlke J, Arning MB et al. 2013. Adjuvant chemotherapy 
with gemcitabine and long-term outcomes among patients with resected pancreatic 
cancer: the CONKO-001 randomized trial. JAMA : the journal of the American Medical 
Association 310: 1473-1481. 

Ohuchida K, Mizumoto K, Lin C, Yamaguchi H, Ohtsuka T, Sato N, Toma H, Nakamura 
M, Nagai E, Hashizume M et al. 2012. MicroRNA-10a is overexpressed in human 
pancreatic cancer and involved in its invasiveness partially via suppression of the 
HOXA1 gene. Annals of surgical oncology 19: 2394-2402. 

Oikawa T, Itoh T, Takenawa T. 2008. Sequential signals toward podosome formation in 
NIH-src cells. The Journal of cell biology 182: 157-169. 

Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. 2007. The mirtron pathway 
generates microRNA-class regulatory RNAs in Drosophila. Cell 130: 89-100. 

Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, Li QJ, Lowe SW, 
Hannon GJ, He L. 2009. miR-19 is a key oncogenic component of mir-17-92. Genes & 
development 23: 2839-2849. 

Olive V, Jiang I, He L. 2010. mir-17-92, a cluster of miRNAs in the midst of the cancer 
network. The international journal of biochemistry & cell biology 42: 1348-1354. 

Olive V, Minella AC, He L. 2015. Outside the coding genome, mammalian microRNAs 
confer structural and functional complexity. Science signaling 8: re2. 

Olsen PH, Ambros V. 1999. The lin-4 regulatory RNA controls developmental timing in 
Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of 
translation. Developmental biology 216: 671-680. 

Omura N, Li CP, Li A, Hong SM, Walter K, Jimeno A, Hidalgo M, Goggins M. 2008. 
Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer 
biology & therapy 7: 1146-1156. 

Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. 2002. Short hairpin 
RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & 
development 16: 948-958. 



175 
 

 

Pan S, Chen R, Reimel BA, Crispin DA, Mirzaei H, Cooke K, Coleman JF, Lane Z, 
Bronner MP, Goodlett DR et al. 2009. Quantitative proteomics investigation of 
pancreatic intraepithelial neoplasia. Electrophoresis 30: 1132-1144. 

Pandharipande PV, Heberle C, Dowling EC, Kong CY, Tramontano A, Perzan KE, 
Brugge W, Hur C. 2014. Targeted Screening of Individuals at High Risk for Pancreatic 
Cancer: Results of a Simulation Model. Radiology: 141282. 

Paroo Z, Ye X, Chen S, Liu Q. 2009. Phosphorylation of the human microRNA-
generating complex mediates MAPK/Erk signaling. Cell 139: 112-122. 

Permuth-Wey J, Egan KM. 2009. Family history is a significant risk factor for pancreatic 
cancer: results from a systematic review and meta-analysis. Familial cancer 8: 109-117. 

Petersen CP, Bordeleau ME, Pelletier J, Sharp PA. 2006. Short RNAs repress translation 
after initiation in mammalian cells. Molecular cell 21: 533-542. 

Petrocca F, Vecchione A, Croce CM. 2008a. Emerging role of miR-106b-25/miR-17-92 
clusters in the control of transforming growth factor beta signaling. Cancer research 68: 
8191-8194. 

Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, 
Pilozzi E, Liu CG, Negrini M et al. 2008b. E2F1-regulated microRNAs impair TGFbeta-
dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer cell 13: 272-286. 

Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, 
Filipowicz W. 2005. Inhibition of translational initiation by Let-7 MicroRNA in human 
cells. Science (New York, NY) 309: 1573-1576. 

Ple H, Landry P, Benham A, Coarfa C, Gunaratne PH, Provost P. 2012. The repertoire 
and features of human platelet microRNAs. PloS one 7: e50746. 

Plunkett W, Huang P, Gandhi V. 1995. Preclinical characteristics of gemcitabine. Anti-
cancer drugs 6 Suppl 6: 7-13. 

Poliseno L, Pandolfi PP. 2015. PTEN ceRNA networks in human cancer. Methods (San 
Diego, Calif). 

Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG, Hruban RH, 
Goggins M, Leach SD. 2005. Gene expression profiles in pancreatic intraepithelial 
neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. 
Cancer research 65: 1619-1626. 



176 
 

 

Que R, Ding G, Chen J, Cao L. 2013. Analysis of serum exosomal microRNAs and 
clinicopathologic features of patients with pancreatic adenocarcinoma. World journal of 
surgical oncology 11: 219. 

Quelle DE, Zindy F, Ashmun RA, Sherr CJ. 1995. Alternative reading frames of the 
INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell 
cycle arrest. Cell 83: 993-1000. 

Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G, Fiore D, 
De Marinis P, Croce CM, Condorelli G. 2013. Effect of miR-21 and miR-30b/c on 
TRAIL-induced apoptosis in glioma cells. Oncogene 32: 4001-4008. 

Rajagopalan MS, Heron DE, Wegner RE, Zeh HJ, Bahary N, Krasinskas AM, Lembersky 
B, Brand R, Moser AJ, Quinn AE et al. 2013. Pathologic response with neoadjuvant 
chemotherapy and stereotactic body radiotherapy for borderline resectable and locally-
advanced pancreatic cancer. Radiation oncology 8: 254. 

Rebours V, Boutron-Ruault MC, Schnee M, Ferec C, Maire F, Hammel P, Ruszniewski 
P, Levy P. 2008. Risk of pancreatic adenocarcinoma in patients with hereditary 
pancreatitis: a national exhaustive series. The American journal of gastroenterology 103: 
111-119. 

Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. 2012. Functional 
microRNA targets in protein coding sequences. Bioinformatics 28: 771-776. 

Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, Kern SE. 1994. 
p53 mutations in pancreatic carcinoma and evidence of common involvement of 
homocopolymer tracts in DNA microdeletions. Cancer research 54: 3025-3033. 

Rehfeld JF. 2011. Incretin physiology beyond glucagon-like peptide 1 and glucose-
dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta 
physiologica 201: 405-411. 

Reichert M, Rustgi AK. 2011. Pancreatic ductal cells in development, regeneration, and 
neoplasia. The Journal of clinical investigation 121: 4572-4578. 

Ren C, Chen H, Han C, Wang D, Fu D. 2012. Increased plasma microRNA and 
CD133/CK18-positive cancer cells in the pleural fluid of a pancreatic cancer patient with 
liver and pleural metastases and correlation with chemoresistance. Oncology letters 4: 
691-694. 

Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty 
GL, Rustgi AK, Vonderheide RH et al. 2012. EMT and dissemination precede pancreatic 
tumor formation. Cell 148: 349-361. 



177 
 

 

Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, 
Saunders T, Becerra CP, Tattersall IW et al. 2014a. Stromal elements act to restrain, 
rather than support, pancreatic ductal adenocarcinoma. Cancer cell 25: 735-747. 

Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN, Tsai S, Maggs LR, Kochman 
ML, Ginsberg GG, Lieb JG et al. 2014b. Detection of circulating pancreas epithelial cells 
in patients with pancreatic cystic lesions. Gastroenterology 146: 647-651. 

Rigoutsos I. 2009. New tricks for animal microRNAS: targeting of amino acid coding 
regions at conserved and nonconserved sites. Cancer research 69: 3245-3248. 

Rios P, Nunes-Xavier CE, Tabernero L, Kohn M, Pulido R. 2014. Dual-specificity 
phosphatases as molecular targets for inhibition in human disease. Antioxidants & redox 
signaling 20: 2251-2273. 

Roque J, Ho SH, Goh KL. 2015. Preoperative drainage for malignant biliary strictures: is 
it time for self-expanding metallic stents? Clinical endoscopy 48: 8-14. 

Ruby JG, Jan CH, Bartel DP. 2007. Intronic microRNA precursors that bypass Drosha 
processing. Nature 448: 83-86. 

Rustgi AK. 2014. Familial pancreatic cancer: genetic advances. Genes & development 
28: 1-7. 

Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG. 2008. A 
feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural 
stem-cell commitment. Nature cell biology 10: 987-993. 

Saiki Y, Horii A. 2014. Molecular pathology of pancreatic cancer. Pathology 
international 64: 10-19. 

Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, Hatano E, 
Fukushima A, Taniguchi T, Agata Y. 2009. The NF90-NF45 complex functions as a 
negative regulator in the microRNA processing pathway. Molecular and cellular biology 
29: 3754-3769. 

Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, 
Krueger LJ. 2007. MicroRNA let-7a down-regulates MYC and reverts MYC-induced 
growth in Burkitt lymphoma cells. Cancer research 67: 9762-9770. 

Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. 2008. Proliferating cells express 
mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 
(New York, NY) 320: 1643-1647. 



178 
 

 

Sano M, Driscoll DR, De Jesus-Monge WE, Klimstra DS, Lewis BC. 2014. Activated 
wnt signaling in stroma contributes to development of pancreatic mucinous cystic 
neoplasms. Gastroenterology 146: 257-267. 

Sayed D, Abdellatif M. 2011. MicroRNAs in development and disease. Physiological 
reviews 91: 827-887. 

Schaffhausen BS, Roberts TM. 2009. Lessons from polyoma middle T antigen on 
signaling and transformation: A DNA tumor virus contribution to the war on cancer. 
Virology 384: 304-316. 

Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, 
Wittinghofer A. 1997. The Ras-RasGAP complex: structural basis for GTPase activation 
and its loss in oncogenic Ras mutants. Science (New York, NY) 277: 333-338. 

Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan 
TL, Kwong DL, Au GK et al. 2008. MicroRNA expression profiles associated with 
prognosis and therapeutic outcome in colon adenocarcinoma. JAMA : the journal of the 
American Medical Association 299: 425-436. 

Schickel R, Boyerinas B, Park SM, Peter ME. 2008. MicroRNAs: key players in the 
immune system, differentiation, tumorigenesis and cell death. Oncogene 27: 5959-5974. 

Schlichting I, Almo SC, Rapp G, Wilson K, Petratos K, Lentfer A, Wittinghofer A, 
Kabsch W, Pai EF, Petsko GA et al. 1990. Time-resolved X-ray crystallographic study of 
the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345: 309-
315. 

Scolnick EM, Papageorge AG, Shih TY. 1979. Guanine nucleotide-binding activity as an 
assay for src protein of rat-derived murine sarcoma viruses. Proceedings of the National 
Academy of Sciences of the United States of America 76: 5355-5359. 

Seggerson K, Tang L, Moss EG. 2002. Two genetic circuits repress the Caenorhabditis 
elegans heterochronic gene lin-28 after translation initiation. Developmental biology 243: 
215-225. 

Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 2008. 
Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58-63. 

Shen J, Xia W, Khotskaya YB, Huo L, Nakanishi K, Lim SO, Du Y, Wang Y, Chang 
WC, Chen CH et al. 2013. EGFR modulates microRNA maturation in response to 
hypoxia through phosphorylation of AGO2. Nature 497: 383-387. 

Shi C, Hong SM, Lim P, Kamiyama H, Khan M, Anders RA, Goggins M, Hruban RH, 
Eshleman JR. 2009. KRAS2 mutations in human pancreatic acinar-ductal metaplastic 



179 
 

 

lesions are limited to those with PanIN: implications for the human pancreatic cancer cell 
of origin. Molecular cancer research : MCR 7: 230-236. 

Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. 2010. Expanding the 
microRNA targeting code: functional sites with centered pairing. Molecular cell 38: 789-
802. 

Shin JA, Hong OK, Lee HJ, Jeon SY, Kim JW, Lee SH, Cho JH, Lee JM, Choi YH, 
Chang SA et al. 2011. Transforming growth factor-beta induces epithelial to 
mesenchymal transition and suppresses the proliferation and transdifferentiation of 
cultured human pancreatic duct cells. Journal of cellular biochemistry 112: 179-188. 

Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. 2007. miR-21-mediated tumor growth. 
Oncogene 26: 2799-2803. 

Siegel RL, Miller KD, Jemal A. 2015. Cancer statistics, 2015. CA: a cancer journal for 
clinicians 65: 5-29. 

Silvius JR, Bhagatji P, Leventis R, Terrone D. 2006. K-ras4B and prenylated proteins 
lacking "second signals" associate dynamically with cellular membranes. Molecular 
biology of the cell 17: 192-202. 

Singh M, Maitra A. 2007. Precursor lesions of pancreatic cancer: molecular pathology 
and clinical implications. Pancreatology : official journal of the International 
Association of Pancreatology 7: 9-19. 

Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA. 
2005. Synthetic shRNAs as potent RNAi triggers. Nature biotechnology 23: 227-231. 

Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. 2010. MicroRNAs, 
macrocontrol: regulation of miRNA processing. Rna 16: 1087-1095. 

Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL. 1988. KRAS codon 12 
mutations occur very frequently in pancreatic adenocarcinomas. Nucleic acids research 
16: 7773-7782. 

Summers SA, Lipfert L, Birnbaum MJ. 1998. Polyoma middle T antigen activates the 
Ser/Thr kinase Akt in a PI3-kinase-dependent manner. Biochemical and biophysical 
research communications 246: 76-81. 

Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. 2009. 
Modulation of microRNA processing by p53. Nature 460: 529-533. 



180 
 

 

Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn 
SA. 2007. MicroRNA expression alterations are linked to tumorigenesis and non-
neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26: 4442-4452. 

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, 
Yatabe Y, Nagino M, Nimura Y et al. 2004. Reduced expression of the let-7 microRNAs 
in human lung cancers in association with shortened postoperative survival. Cancer 
research 64: 3753-3756. 

Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, Rajeshkumar NV, 
Rubio-Viqueira B, Hidalgo M. 2009. Characterizing DNA methylation patterns in 
pancreatic cancer genome. Molecular oncology 3: 425-438. 

Tan JY, Marques AC. 2014. The miRNA-mediated cross-talk between transcripts 
provides a novel layer of posttranscriptional regulation. Advances in genetics 85: 149-
199. 

Tanzer A, Stadler PF. 2004. Molecular evolution of a microRNA cluster. Journal of 
molecular biology 339: 327-335. 

Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. 2008. MicroRNAs to Nanog, Oct4 
and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 
1124-1128. 

Thomas JE, Aguzzi A, Soriano P, Wagner EF, Brugge JS. 1993. Induction of tumor 
formation and cell transformation by polyoma middle T antigen in the absence of Src. 
Oncogene 8: 2521-2529. 

Thomas SM, Soriano P, Imamoto A. 1995. Specific and redundant roles of Src and Fyn 
in organizing the cytoskeleton. Nature 376: 267-271. 

Thomson DW, Bracken CP, Goodall GJ. 2011. Experimental strategies for microRNA 
target identification. Nucleic acids research 39: 6845-6853. 

Thornton JE, Du P, Jing L, Sjekloca L, Lin S, Grossi E, Sliz P, Zon LI, Gregory RI. 2014. 
Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic acids 
research 42: 11777-11791. 

Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi 
R, Rosenfeld MG. 2009. The RNA-binding protein KSRP promotes the biogenesis of a 
subset of microRNAs. Nature 459: 1010-1014. 

Tumbarello DA, Turner CE. 2007. Hic-5 contributes to epithelial-mesenchymal 
transformation through a RhoA/ROCK-dependent pathway. Journal of cellular 
physiology 211: 736-747. 



181 
 

 

Urayama S. 2015. Pancreatic cancer early detection: Expanding higher-risk group with 
clinical and metabolomics parameters. World journal of gastroenterology : WJG 21: 
1707-1717. 

Vasudevan S, Tong Y, Steitz JA. 2007. Switching from repression to activation: 
microRNAs can up-regulate translation. Science (New York, NY) 318: 1931-1934. 

Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, 
Bronson RT, Crowley D, Stone JR et al. 2008. Targeted deletion reveals essential and 
overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132: 
875-886. 

Vidigal JA, Ventura A. 2015. The biological functions of miRNAs: lessons from in vivo 
studies. Trends in cell biology 25: 137-147. 

Vigil D, Cherfils J, Rossman KL, Der CJ. 2010. Ras superfamily GEFs and GAPs: 
validated and tractable targets for cancer therapy? Nature reviews Cancer 10: 842-857. 

Viswanathan SR, Daley GQ, Gregory RI. 2008. Selective blockade of microRNA 
processing by Lin28. Science (New York, NY) 320: 97-100. 

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, 
Roldo C, Ferracin M et al. 2006. A microRNA expression signature of human solid 
tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of 
the United States of America 103: 2257-2261. 

Wang B, Li S, Qi HH, Chowdhury D, Shi Y, Novina CD. 2009. Distinct passenger strand 
and mRNA cleavage activities of human Argonaute proteins. Nature structural & 
molecular biology 16: 1259-1266. 

Wang YJ, McAllister F, Bailey JM, Scott SG, Hendley AM, Leach SD, Ghosh B. 2014. 
Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role 
in Kras-driven pancreatic neoplasia. PloS one 9: e113127. 

Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M. 2009. HMGA2 maintains 
oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer 
cells. The American journal of pathology 174: 854-868. 

Weaver FC, Sorenson RL. 1989. Islet vasculature in atrophic pancreas: evidence for 
coexisting parallel and serial (insuloacinar) angioarchitecture. Pancreas 4: 10-22. 

Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD. 2012. Argonaute divides its RNA 
guide into domains with distinct functions and RNA-binding properties. Cell 151: 1055-
1067. 



182 
 

 

Weir GC, Bonner-Weir S. 2013. Islet beta cell mass in diabetes and how it relates to 
function, birth, and death. Annals of the New York Academy of Sciences 1281: 92-105. 

Weiss FU. 2014. Pancreatic cancer risk in hereditary pancreatitis. Frontiers in physiology 
5: 70. 

Weissmueller S, Manchado E, Saborowski M, Morris JPt, Wagenblast E, Davis CA, 
Moon SH, Pfister NT, Tschaharganeh DF, Kitzing T et al. 2014. Mutant p53 drives 
pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 
157: 382-394. 

Welsh SJ, Corrie PG. 2015. Management of BRAF and MEK inhibitor toxicities in 
patients with metastatic melanoma. Therapeutic advances in medical oncology 7: 122-
136. 

Westholm JO, Ladewig E, Okamura K, Robine N, Lai EC. 2012. Common and distinct 
patterns of terminal modifications to mirtrons and canonical microRNAs. Rna 18: 177-
192. 

Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. 1985. Association of 
phosphatidylinositol kinase activity with polyoma middle-T competent for 
transformation. Nature 315: 239-242. 

Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic 
gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862. 

Wilkinson DS, Tlsty TD, Hanas RJ. 1975. The inhibition of ribosomal RNA synthesis 
and maturation in Novikoff hepatoma cells by 5-fluorouridine. Cancer research 35: 
3014-3020. 

Wu E, Thivierge C, Flamand M, Mathonnet G, Vashisht AA, Wohlschlegel J, Fabian 
MR, Sonenberg N, Duchaine TF. 2010. Pervasive and cooperative deadenylation of 
3'UTRs by embryonic microRNA families. Molecular cell 40: 558-570. 

Wu L, Fan J, Belasco JG. 2006. MicroRNAs direct rapid deadenylation of mRNA. 
Proceedings of the National Academy of Sciences of the United States of America 103: 
4034-4039. 

Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, Huang K, Qiu Z. 2015. SMAD4 and its 
role in pancreatic cancer. Tumour biology : the journal of the International Society for 
Oncodevelopmental Biology and Medicine 36: 111-119. 

Xu S, Furukawa T, Kanai N, Sunamura M, Horii A. 2005. Abrogation of DUSP6 by 
hypermethylation in human pancreatic cancer. Journal of human genetics 50: 159-167. 



183 
 

 

Xue Y, Abou Tayoun AN, Abo KM, Pipas JM, Gordon SR, Gardner TB, Barth RJ, Jr., 
Suriawinata AA, Tsongalis GJ. 2013. MicroRNAs as diagnostic markers for pancreatic 
ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer 
genetics 206: 217-221. 

Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, 
Eshleman JR, Nowak MA et al. 2010. Distant metastasis occurs late during the genetic 
evolution of pancreatic cancer. Nature 467: 1114-1117. 

Yang JS, Lai EC. 2011. Alternative miRNA biogenesis pathways and the interpretation 
of core miRNA pathway mutants. Molecular cell 43: 892-903. 

Yang M, Haase AD, Huang FK, Coulis G, Rivera KD, Dickinson BC, Chang CJ, Pappin 
DJ, Neubert TA, Hannon GJ et al. 2014. Dephosphorylation of tyrosine 393 in argonaute 
2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced 
senescence. Molecular cell 55: 782-790. 

Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. 2005. Dicer is required for 
embryonic angiogenesis during mouse development. The Journal of biological chemistry 
280: 9330-9335. 

Yeo TP. 2015. Demographics, Epidemiology, and Inheritance of Pancreatic Ductal 
Adenocarcinoma. Seminars in oncology 42: 8-18. 

Yi JM, Guzzetta AA, Bailey VJ, Downing SR, Van Neste L, Chiappinelli KB, Keeley 
BP, Stark A, Herrera A, Wolfgang C et al. 2013. Novel methylation biomarker panel for 
the early detection of pancreatic cancer. Clinical cancer research : an official journal of 
the American Association for Cancer Research 19: 6544-6555. 

Yi R, Qin Y, Macara IG, Cullen BR. 2003. Exportin-5 mediates the nuclear export of pre-
microRNAs and short hairpin RNAs. Genes & development 17: 3011-3016. 

Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, 
Locasale JW, Son J, Zhang H, Coloff JL et al. 2012. Oncogenic Kras maintains 
pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670. 

Yonezawa S, Higashi M, Yamada N, Goto M. 2008. Precursor lesions of pancreatic 
cancer. Gut and liver 2: 137-154. 

Young JA, Bates P, Varmus HE. 1993. Isolation of a chicken gene that confers 
susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. Journal of 
virology 67: 1811-1816. 

Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, Chen K, Xiao H, Li H, Tang K et 
al. 2014. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress 



184 
 

 

clear-cell renal cell carcinoma progression. Molecular cancer therapeutics 13: 3086-
3097. 

Yu J, Li A, Hong SM, Hruban RH, Goggins M. 2012a. MicroRNA alterations of 
pancreatic intraepithelial neoplasias. Clinical cancer research : an official journal of the 
American Association for Cancer Research 18: 981-992. 

Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M. 2010. MicroRNA miR-
17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and 
involved in cancer cell proliferation and invasion. Cancer biology & therapy 10: 748-
757. 

Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, 
Winokur D, Gilman AJ et al. 2012b. RNA sequencing of pancreatic circulating tumour 
cells implicates WNT signalling in metastasis. Nature 487: 510-513. 

Zeng Y, Sankala H, Zhang X, Graves PR. 2008. Phosphorylation of Argonaute 2 at 
serine-387 facilitates its localization to processing bodies. The Biochemical journal 413: 
429-436. 

Zhang B, Chen H, Zhang L, Dakhova O, Zhang Y, Lewis MT, Creighton CJ, Ittmann 
MM, Xin L. 2014a. A dosage-dependent pleiotropic role of Dicer in prostate cancer 
growth and metastasis. Oncogene 33: 3099-3108. 

Zhang K, Gao H, Wu X, Wang J, Zhou W, Sun G, Wang J, Wang Y, Mu B, Kim C et al. 
2014b. Frequent overexpression of HMGA2 in human atypical teratoid/rhabdoid tumor 
and its correlation with let-7a3/let-7b miRNA. Clinical cancer research : an official 
journal of the American Association for Cancer Research 20: 1179-1189. 

Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q, Chen C. 2009. Profiling of 95 
microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR 
analysis. World journal of surgery 33: 698-709. 

Zhang Y, Xiong Y, Yarbrough WG. 1998. ARF promotes MDM2 degradation and 
stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor 
suppression pathways. Cell 92: 725-734. 

Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, Stanger BZ, Chung I, 
Rhim AD, di Magliano MP. 2013. Interleukin-6 is required for pancreatic cancer 
progression by promoting MAPK signaling activation and oxidative stress resistance. 
Cancer research 73: 6359-6374. 

Zhao Y, Zhang X, Guda K, Lawrence E, Sun Q, Watanabe T, Iwakura Y, Asano M, Wei 
L, Yang Z et al. 2010. Identification and functional characterization of paxillin as a target 



185 
 

 

of protein tyrosine phosphatase receptor T. Proceedings of the National Academy of 
Sciences of the United States of America 107: 2592-2597. 

Zhou X, Zimonjic DB, Park SW, Yang XY, Durkin ME, Popescu NC. 2008. DLC1 
suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice 
through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-
regulation of genes involved in metastasis. Int J Oncol 32: 1285-1291. 
 


	Subtle Controllers: MicroRNAs Drive Pancreatic Tumorigenesis and Progression: A Dissertation
	Let us know how access to this document benefits you.
	Repository Citation

	Title Page

	Signature Page

	Copyright

	Dedication

	Acknowledgements

	Abstract

	Table of Contents

	List of Tables

	List of Figures

	List of Third-Party Copyrighted Material

	List of Abbreviations

	Preface

	Chapter I: Introduction

	Chapter II: mir-17~92 Promotes Pancreatic Tumorigenesis and Progression
	Chapter III: Partial Loss of Dicer Sensitizes Tumors to Anoikis and Inhibits Metastasis
	APPENDIX A: Preclinical Assessment of a Triple-Drug Regimen for the Treatment of PDAC
	Bibliography


